1994_Siliconix_Analog_Integrated_Circuits 1994 Siliconix Analog Integrated Circuits

User Manual: 1994_Siliconix_Analog_Integrated_Circuits

Open the PDF directly: View PDF PDF.
Page Count: 466

Download1994_Siliconix_Analog_Integrated_Circuits 1994 Siliconix Analog Integrated Circuits
Open PDF In BrowserView PDF
Analog Integrated Circuits
Data Book
1994

Siliconix
AMemberoftheTEMIC Group

Siliconix
AMember of the TBMIC Group

Sillconb: incorporated reserves the right to make changes in the circuitry or specifications at any time
without notice and assumes no responsibility for the use of any circuits described herein and makes no
representations that they are free from patent infringement.

Warning Regarding Life Support Applications
Siliconix products are not sold for applications in any medical equipment intended for use as a component of
any life support system unless a specific written agreement pertaining to such intended use is executed
between the manufacturer and Siliconix. Such agreement will require the equipment manufacturer either to
contract for additional reliability testing of the Siliconix parts and/or to commit to undertake such testing as
a part of its manufacturing process. In addition, such manufacturer must agree to indemnify and hold
Siliconix harmless from any claims arising out of the use of the Siliconix parts in life support equipment.

Stresses listed under '\<\I)solute Maximum Ratings" may be applied (one at a time) to devices without
resulting in permanent damage. This is a stress rating only and not subject to production testing. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

©1994 Siliconix incorporated
Printed in U.S.A

Siliconix
AMember ofthcTBMIC Group

About Siliconix
Siliconix is a leading manufacturer of semiconductor products for the computer, communications,
automotive, industrial, and hi-reI markets. The company's products bridge the interface gap between
real-world analog signals and the digitally operated microprocessor, providing both discrete and
integrated solutions to
•

sense, convert, and control signals at a system's input

• regulate and manage the system's power supplies
• provide useful signals and power at the output.

As a member of TEMIC, the microelectronics enterprise of Daimler-Benz, Siliconix has expanded its
worldwide presence and is further equipped to serve its customers on an international scale by sharing the
technologies and applications expertise of its sister companies and by taking advantage of a combined
international sales network.
In keeping with this global perspective, the company has aggressively pursued world-class standards of
cycle time, yields, and average outgoing quality in its manufacturing facilities in the United States and
Asia. Siliconix' continuous improvement efforts have resulted in dramatic improvements for each of
these areas and in numerous quality awards from its customers. The company has pursued international
quality certifications as well, and received ISO 9001 certification for its Santa Clara facilities in
November 1993. Our booklet "Making Continuous Improvement A Way of Business" tells more about
our commitment to quality. You can request a copy by calling (800) 554-5565.
The Company's manufacturing operations include wafer fabrication, assembly, and product testing. All
wafer fabrication is done in Santa Clara, where the facilities include a four-inch wafer fab and a Class 1,
six-inch wafer fab. High-volume assembly and product testing for plastic- and ceramic-packaged products
are handled in the Company's facilities in Thiwan, the Philippines, and China.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

Siliconix
AMembcr oltho TBMIC Group

Table of Contents

General Information
Alpha-Numeric Index ................................................................................ i
About This Data Book ............................................................................... ii
Ordering Information ............................................................................... iii

Section 1: Analog Switches
About Analog Switches
Selector Guide
DG129: Dual DPST JFET Analog Switch ............................................................. 1-1
DGI80!DGI81!DGI82: High-Speed Drivers with Dual SPST JFET Switches ............................... 1-4
DGI83!DGI84!DG185: High-Speed Drivers with Dual DPST JFET Switches .............................. 1-11
DGI86!DGI87!DGI88: High-Speed Drivers with SPDT JFET Switches .................................. 1-18
DGI89!DGI90!DGI91: High-Speed Drivers with Dual SPDT JFET Switches .............................. 1-25
DG200A: Monolithic Dual SPST CMOS Analog Switch ................................................ 1-32
DG201A/DG202: Monolithic Quad SPST CMOS Analog Switches ....................................... 1-37
DG201B!DG202B: Improved Quad CMOS Analog Switches ............................................ 1-44
DG201HS: High-Speed Quad SPST CMOS Analog Switch ............................................. 1-52
DG211!DG212: Low Cost Monolithic Quad SPST CMOS Analog Switches ............................... 1-60
DG211B!DG212B: Improved Quad CMOS Analog Switches ............................................ 1-68
DG221: Quad SPST CMOS Analog Switch with Latches ............................................... 1-75
DG243: General Purpose Monolithic Dual SPDT CMOS Analog Switch .................................. 1-81
DG271: High-Speed Quad Monolithic SPST CMOS Analog Switch ...................................... 1-85
DG300A/DG301A/DG302A/DG303A: CMOS Analog Switches ......................................... 1-90
DG304A/DG305A/DG306A/DG307A: CMOS Analog Switches ......................................... 1-99
DG308A/DG309: Quad MonolithicSPST CMOS Analog Switches ...................................... 1-107
DG308B!DG309B: Improved Quad CMOS Analog Switches ................................... ,........ 1-112
DG381A/DG384A/DG387A/DG390A: CMOSAnalogSwitches ........................................ 1-119
DG401!DG403!DG405: Low-Power, High-Speed CMOS Analog Switches ................................ 1-127
DG411!DG412!DG413: Precision Monolithic Quad SPST CMOS Analog Switches ........................ 1-137
DG417!DG418!DG419: Precision CMOS Analog Switches ............................................. 1-146
DG421!DG423!DG425: Low-Power, High-Speed, Latchable CMOS Analog Switches ...................... 1-155
DG441!DG442: Quad SPST CMOS Analog Switches ................................................. 1-163
DG444!DG445: Quad SPST CMOS Analog Switches ................................................. 1-171
DG540!DG541!DG542: WidebandNideo "T" Switches .............................................. 1-179
DG601: High-Speed Quad CMOS Analog Switch .................................................... 1-189
DG611!DG612!DG613: High-Speed, Low-Glitch D/CMOS Analog Switches ............................. 1-200
DG641!DG642!DG643: Low On-Resistance WidebandNideo Switches .................................. 1-208
DG5043: Monolithic General Purpose CMOS Analog Switch .......................................... 1-218
DG5143: Low-Power, High-Speed CMOS Analog Switch .............................................. 1-221

Table of Contents

Silicanix
AMcmbcr of the TBMIC Group

Section 2: Analog Multiplexers
About Analog Multiplexers
Selector Guide
DG406/DG407: 16-Channel/DuaI8-Channel High Performance CMOS Analog Multiplexers ................. 2-1
DG408/DG409: 8-Channel/DuaI4-Channel High Performance CMOS Analog Multiplexers ................. 2-11
DG428/DG429: Sinile, 8-Channel/DifferentiaI4-Channel Latchable Analog Multiplexers .................... 2-22
DG458/DG459: Fault Protected Single 8-Channel/Differential 4-Channel Analog Multiplexers ..... . . . . . . . . .. 2-34
DG485: Octal Analog Switch Array ................................................................. 2-42
DG506A/DG507A: Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers .................. 2-52
DGS08A/DG509A: Single 8-Channel/DifferentiaI4-Channel CMOS Analog Multiplexers ................... 2-60
DG528/DG529: Latchable Single 8-Channel/Differential 4-Channel Analog Multiplexers. . . . . . . . . . . . . . . . . . .. 2-70
DG534/DG538: 4-/8-Channel Wideband Video Multiplexers ............................................ 2-79
DG534A/DGS38A: 4-/8-Channel Wideband Video Multiplexers ......................................... 2-86
DG535/DGS36: 16-Channel Wideband Video Multiplexers ........................ : ................... 2-102
DG884: 8 X 4 Wideband Video Crosspoint Array .................................................... 2-113
DG894: Component Video Selector .......... ',' .................................................... 2-126

Section 3: WidebandNideo Amplifiers
About WidebandNideo Amplifiers
Selector Guide
'Si581: Unity-Gain Video Buffer .............................................. ~ ...................... 3-1
Si582: Wideband Low-Gain Amplifier ............................................. : . . . . . .. . . . . . . . . . .. 3-8
Si584: Quad Unity-Gain Video Buffer ............................................................... 3-16

Section 4: Voltage Converters
About Voltage Converters
Selector Guide
Si7660: Switched-Capacitor Voltage Converter. . .. . . .. . . . .. . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . .. . .. 4-1
Si7661: Switched-Capacitor Voltage Converter.. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. 4-7

Section 5: Appendix
,Application Notes ............................................................................... 5-1
Reliability Report ..................................................................... .,......... 5-2
Package Information . ........................................................................... 5-5
Military Information
Military Conversion Thble .................................... ~ ................................. 5-11
Process Option Flows ......•................................................................... 5-12

Cross Reference . ............................................................................... 5-14

Section 6: Sales Offices .....................................................................

6-1

General Information

Siliconix

Alpha/Numeric Index

AMcmbcr of tho TBMIC Group

Standard Parts
DG129 ............ 1-1
DG180 ............ 1-4
DGI81 ............ 1-4
DG182 ............ 1-4
DG183 ........... 1-11
DG184 ........... 1-11
DG185 ........... 1-11
DG186 ........... 1-18
DG187 ........... 1-18
DG188 ........... 1-18
DG189 ........... 1-25
DG190 ........... 1-25
DGI91 ........... 1-25
DG200A ......... 1-32
DG201A ......... 1-37
DG20lB ......... 1-44
DG201HS ........ 1-52
DG202 ........... 1-37
DG202B ......... 1-44
DG211 ........... 1-60
DG21lB ......... 1-68
DG212 ........... 1-60
DG212B ......... 1-68
DG221 ........... 1-75
DG243 ........... 1-81

DG271 ........... 1-85
DG300A ......... 1-90
DG301A ......... 1-90
DG302A ......... 1-90
DG303A ......... 1-90
DG304A ......... 1-99
DG305A ......... 1-99
DG306A ......... 1-99
DG307A ......... 1-99
DG308A ........ 1-107
DG308B ........ 1-112
DG309 .......... 1-107
DG309B ........ 1-112
DG381A . ....... 1-119
DG384A . ....... 1-119
DG387A . ....... 1-119
DG390A . ...... , 1-119
DG401 .......... 1-127
DG403 .......... 1-127
DG405 .......... 1-127
DG406 ............ 2-1
DG407 ............ 2-1
DG408 ........... 2-11
DG409 ........... 2-11
DG411 .......... 1-137

DG412 .......... 1-137
DG413 .......... 1-137
DG417 .......... 1-146
DG418 .......... 1-146
DG419 .......... 1-146
DG421 .......... 1-155
DG423 .......... 1-155
DG425 .......... 1-155
DG428 ....•...... 2-22
DG429 ........... 2-22
DG441 .......... 1-163
DG442 .......... 1-163
DG444 .......... 1-171
DG445 .......... 1-171
DG458 ........... 2-34
DG459 ........... 2-34
DG485 ........... 2-42
DG506A ......... 2-52
DG507A ......... 2-52
DGS08A ......... 2-60
DG509A ......... 2-60
DG528 ........... 2-70
DG529 ........... 2-70
DG534 ........... 2-79

DG534A . ........ 2-86
DGS35 .......... 2-102
DGS36 .......... 2-102
DG538 ........... 2-79
DG538A . ........ 2-86
DG540 .......... 1-179
DG541 .......... 1-179
DG542 .......... 1-179
DG601 .......... 1-189
DG611 .......... 1-200
DG612 .......... 1-200
DG613 .......... 1-200
DG641 .......... 1-208
DG642 .......... 1-208
DG643 .......... 1-208
DG884 .......... 2-113
DG894 .......... 2-126
DGS043 ......... 1-218
DG5143 ......... 1-221
Si581 ............. 3-1
Si582 ............. 3-8
Si584 ............ 3-16
Si7660 ............ 4-1
Si7661 ............ 4-7

Military Parts
5962-8671602M ... 1-85

5962-9204101M .. 1-163

JM38510/11106B .. 1-18

JM38510/l1607B .. 1-99

5962-8767301CA ... 1-4

5962-9204102M .. 1-163

JM38510/11107B .. 1-25

JM38510/11608B .. 1-99

5962-8768901VA .. 2-70

7705301E .. .. .. ... 1-37

JM38510/11108B .. 1-25

JM38510!1230lB .. 1-32

5962-9068901M ... 1-25

781401CA ......... 1-1

JM38510/1160lB .. 1-90

5962-9073101M .. 1-137

JM3851O/1110lB ... 1-4

JM38510/11602B .. 1-90

5962-9073102M .. 1-137

JM3851O!11102B ... 1-4

JM38510!11603B .. 1-90

5962-9073103M .. 1-137

JM38510!11103B .. 1-11

JM38510!11604B .. 1-90

JM38510/19003B .. 2-52

5962-920401M .... 2-11

JM38510/11104B .. 1-11

JM38510/11605B .. 1-99

JM38510/19007B .. 2-60

5962-920402M .... 2-11

JM38510!11105B .. 1-18

JM38510!11606B .. 1-99

JM38510/19008B .. 2-60

JM38510/12302B .. 1-37
JM38510!1900lB .. 2-52

Siliconix
AMembor of the TBMICGt'OUP

About This Data Book
The products detailed in this data book include analog switches and multiplexers, wideband video
switches, multiplexers, crosspoints, buffers, amplifiers, and voltage converters. These products are
designed for applications in the industrial, instrumentation, computer peripherals, communications,
automotive, and military markets. Siliconix serves· these markets with products of unequaled
performance, quality and reliability through the use of its leading design, processing, packaging, and
testing technologies.

The

electrical
The product specifications listed in this data book are arranged in a simplified format.
tables and performance curves contain detailed information, simplifying the tasks of design and
component engineers. Each of the data sheets is controlled by the Siliconix Quality Assurance
organization, which guarantees all stated limits.

For More Information
To request additional literature please call 1-800-554-5565. Literature and samples can also be requested
from our sales representatives. See the sales office listings in Section 6.
Customer service representatives are available during normal West Coast business hours to provide
information on orders placed with the factory.

For Thchnical Support
In addition to the individual data sheets, which provide Application Hints, Siliconix offers a number of
Applications Notes and Thchnical Articles to help you with your designs. Please refer to the Application
Note listing in Section 5, and use our FaxBack system 408-970-5600 to obtain copies.

ii

Siliconix

Ordering Information

AMcmber of the TBMIC Group

Integrated Circuits Nomenclature

DG

506

T

Device Family

A

c

J

-4

T

Device Number
Device Revision (when used)
Operating Tem
Packa e
Process 0 tion

Device Family

Package

(1 or2 Letters)

(1 Letter)

DG Si -

J

Analog Switches and Analog Multiplexers
Siliconix Integrated Circuits

Device Number
(3- or 4-Digit Numbers)

A
K
L
M
N

P
R

Operating Temperature Range

W
Y
Z

Metal Can
Dual-In-Line Package - Plastic DIP
Dual-In-Line Package - Ceramic DIP
Flat Package
CerQuad J-Leaded Chip Carrier
Plastic J-Leaded Chip Carrier - PLCC
Dual-In-Line Package - Sidebraze
,Dual-In-Line Package - Sidebraze
Wide-Body Small-Outline Package (SOIC)
Narrow-Body Small-Outline Package (SOIC)
Leadless Chip Carrier - Lce

(1 Letter)

A
B
C

D
E

-55 to 125°C
-25 to 85°C
oto 70°C
-40 to 85°C
-40 to 105°C

Process Option
/883- Processing to the current
revision ofMIL-SID-883,
Level B. Compliant Non-JAN
-4 - Ruggedized Plastic Flow

All possible combinations of device types, temperature ranges, package types and MIL-883 process options are not necessarily available. Consult
individual data book pages or sales office for complete information.

iii

Silicanix

Ordering Information

AMcmber altho TBMIC Group

Military Nomenclature

t:r "r L
MIL·M·38510

BE C

UJAN"CertificationM_a_rk___
Military Designator

LeadFinish
A - Solder Dip
C - Gold Plate

m

Detan Specllication (Slash Sheet)
/111 - DG181 Series
/116 - DG300A Series
1123 - DG200A Series
1190 - DG506 Series
Device'JYpe _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.....J
/111

/116

1123
/190

01 - DG181
Ol-DG182
03 -DGl84
04-DG185
01 - DG300A
02 -DG301A
03 -DG302A
04-DG303A

1....-_ _ _ _ _ _

05-DG187
06 - DG188
07-DG190
08 - DG191
05 -DG304A
06-DG305A
07-DG306A
08 -DG307A

01 - DG200A

02 - DG201A

01 - DGS06A
03 - DG507A

07 - DGS08A
08 - DG509A

Case Outline
C - 14-Pin Sidebraze
E -16-Pin Sidebraze
I - 10-Pin Metal Can
X -14-Pin Flatpack' or
28-Pin Sidebraze
DeviceClass
S - Class S
B -ClassB

'Package Designator for Flatpack Package
Changed 5/92 from "0" to "X"

Standard Military Drawing
5692

Federal Stock Class Designation.
Drawing

Number

{

~,

-

90731

RHA Designator
- = NonRHA
Pan Number - - - - - - - - - - - - - '
77052 - DGS08
90569 - DG401
90689- DG189
77053 - DG201
90731 - DG411
78014 - DG129
thruDG413
86716 - DG271
87673 - DG180
91552 - DG542
87689 - DG528
92041 - DG441/442
89763 - DG403
92042 - DG408/409
89961 - DG405

01 M

L
E A

Lead Finish
A - Solder Dip
C - Gold Plate
Case Out1ine
C -14-Pin Dual-In-Line
E - 16-Pin Dual-In-Line
I - 10-Pin Metal Can
F -Flatpack
X - 14-Pin Flatpack
V -18-Pin Dual-In-Line
2 -LCC

1....-_ _ _

• Applicable where documented by specification
L-_ _ _ _ _

iv

Device Class Designator*
M - Non-JAN class B
B or S - MIL-M-38510 certification and
qualification
Q or V - MIL-I-38535 certification and
qualification
Dash No.

Analog Switches . .

Siliconix
AMcmbcr of tho TBMIC Group

About Analog Switches
Siliconix is the world's leading supplier of high-performance, precision solid-state analog switches. For more
than twenty years, we've combined new technologies with our experience and expertise to produce new families
of leading-edge products.
Our DG4XX and DG6XX families of analog switches and multiplexers are one way Siliconix maintains its high
reputation for innovation. These new devices can be used to upgrade existing products or to open new doors to
high-performance analog switching. The DG4XX family includes all the most popular functions-SPST, SPDT,
and DPST-in single and dual switch configurations, along with several SPST quads. Packaging options include
both plastic and ceramic DIP, mini DIP, PLCC, and plastic SOIC packages for surface-mount assembly. These
are available in both industrial ( -40 to 86 0 C) and military ( - 55 to 125 0 C) temperature ranges. The growing
DG6XX series goes even further, giving you theJastest switching times and lowest on-resistance available.
The DG641/DG642, for example, are the industry's first analog switches with on-resistance below 10 g,
while the DG611/612/613 achieve switching speeds of 15 ns.
The DG2xx, DG3xx, and DG5XX families provide adequate performance for many applications. Siliconix
also offers its popular JFET (DGI8X) family of switches. Single-supply operation, charge injection
optimization, and a wide range of packaging options, including small outline and PLCC, are additional benefits.

CMOS
Since CMOS analog switches are parallel combinations of p- and n-channel MOSFETh, the effective
on-resistance is a combination of the PMOS and NMOS resistance curves (Figure 2). This gives a fairly
constant on-resistance over the entire analog voltage range. New CMOS switches also have the advantage of
very low quiescent supply current because, other than for channel leakage, no current flows in the driver except
when a control input transition occurs.

On

Ideal

v+

v+

v+

v+

Real
Analog Switch

So-;---t--'-r"WIr-1-'--+--..,...--oD

v-

S O--r---t--'-1-cr a....,r'--t---r--O D

vFigure 1. Comparison of the "Ideal" Switch to a Solid-State Analog Switch

Siliconix
AMcmbcr ofthe TBMIC Group

Metal-Gate and Silicon-Gate CMOS
Both metal- and silicon-gate technologies are incorporated into our CMOS processes, but each is used with
separate product lines. The mature metal-gate process is used for our DG2XX, DG3XX, and DGSXXfamilies.
Our newer silicon-gate process (DG4XX family) is recommended for applications needing state-of-the-art
performance and versatility.
Figure 3 gives a comparison of on-resistance curves for a JFET (DGI80), aD/CMOS (DG642), a metal-gate
CMOS (DG20IA), and a silicon-gate CMOS (DG400) analog switch.

D/CMOS "T" Switches
Siliconix manufactures analog switches and multiplexers for wideband/video applications using double-diffused
MaS (DMOS) technology. DMOS FETh are n-channel enhancement-mode MOSFETh which exhibit very low
capacitance and on-resistance compared to conventional CMOS devices. The result is wide bandwidth switches
which feature crosstalk and off-isolation performance as high as 100 dB at S MHz and 3 dB bandwidths in excess of
SOO MHz. These devices are ideal for broadcast video, digital data routing, high-end workstation networks and
imaging applications from medical to military. The DGS4x family of widebandlvideo "T" switches includes the
DGS40, DGS4I and DGS42 devices. The DG6IX family of high-speed non-T switches boast IS-ns switching times.
The DG64X family offers very low on-resistance.

Important Switch Parameters
Each switch family in the Siliconix product line has a set of optimized characteristics that make it suitable for
certain types of applications. ~everal major specifications should be compared and prioritized before seiecting
an analog switch for a particular circuit.

,

,

PMOS

\

\

\

1000

NMOS

\

,

-----~~'

,,
........

;'

....,;',

I

I

I

I

DCMOS (DG642)

I
100

~

10

'~~----~

-

o

+15

VA - Analog Signal Voltage (V)

Figure 2. Graph of CMOS Switch Resistance
vs. Analog Signal

JFET(DG~80)

~

v+ 15V
v- = -15V
TA= 25 D C

Effective Parallel Resistance
-15

~

DG411

;'

"

i-= CMOS (DG201A)

1=
r--

-15

-10
-5
5
10
o
VA - Analog Signal Voltage (V)

15

Figure 3. On-Resistance for Several Analog
Switch Technologies

..

Silicanix
AMcmbcr ortb TBMIC Group

On-Resistance (rn8(on»)
This specification is the dc resistance of the channel when the analog switch is in the on state. The on-resistance
of an analog switch depends upon the device type and the analog signal magnitude. Although the resistance may
vary across the entire analog signal range, the worst case is normally specified on the data sheet.

Switching Speed
Switching speed is the elapsed time from the application of the control signal on the input pin to the appearance
(or disappearance) of the analog signal at the output. Switching speed can be affected by the load on the analog
switch. Each ~ata sheet shows a switching time test circuit with a standard load for comparison purposes.

Switch Current
The amount of current that can be fed through the switch channel is sometimes important. For example, the
DG411 can handle up to 100 rnA of pulsed current or 30 rnA of continuous current, while the DG180 can handle
up to 200 rnA of continuous current.

Break-Before-Make vs. Make-Before-Break
For most analog switch applications, break-before-make switching is desired. Because it is often necessary to
disconnect one signal source before connecting another to avoid source crosstalk.
However,
make-before-break switching is critical in some control circuits, such as the feedback resistor gain selector for
programmable gain op amps, to avoid opening the loop.

Electrostatic Discharge Sensitivity (ESDS)
Electrostatic discharge is the transfer of charge that occurs when an object makes contact with a device at a
different potential. The standard MIL-883C, method 3015, classifies three levels of voltage protection that a
device must withstand on all pins. Class 1 devices are protected to 1999 V, Class 2 from 2000 to 3999 V, and Class
3 protection is greater than 4000 V. Beginning with DG411 series, most of our new devices have Class 2 ratings
and are marked accordingly.

Charge Injection
Charge injection is the transfer of charge to a load from the driver to the FET channels during switching. In a
sample-and-hold circuit, charge injection is critical as the charge added or subtracted from the holding
capacitor is seen as an offset error. The lower the charge injection the better. The DG4XX family, especially
the DG441 and DG411 series, are designed for balanced (linear and crossing near zero) charge injection. The
DG601 and DG611 use internal compensation to minimize the charge injection seen by applications sensitive to
this parameter.

Silicanix
AMcmbcr of the TBMIC Group

Power Supplies and Power Consumption
A bipolar supply means positive and negative voltages are used, while single supply means the negative supply is
grounded. Most analog designs use bipolar supplies, but a growing number of designers are turning to
single-supply operation to save board space and cost. Most of our devices work well with bipolar supplies, but
not all function properly in the single supply mode. The DG4XX family for analog switches and multiplexers
not only functions superbly in a single-supply mode, but it is fully characterized and specified with V + at 12 V
and V- at GND. The less the power consumed by a device within a system the better. Some members of the
DG4XX family draw under 1 tJA of supply current compared to the milliamperes required by previous products.

Interfacing
The two most common logic families are TIL and CMOS. The standard logic levels for both families are
displayed in Table 1. Not all analog switches are compatible with both types of logic. Refer to the functional
diagram section for each data sheet to determine the required logic levels.
Microprocessor compatibility is a growing concern when designing with analog switches. Standard analog
switches require a constant control signal present on the input to hold the switch in the desired position (on or
off). This could tie up a microprocessor control system unless external latches are added to control the switch.
The DG42X series has incorporated these latches, complete with control logic, on board to minimize parts
count and ease interface to microprocessor-based control systems.

Thble 1. Logic Levels for TIL and CMOS Compatibility

Logic

TIL

CMOS

0

s 0.8 V

s l.5V

1

'" 2.4V

'" (Vee - 1.5 V)

..

Analog Switch Selector Guide
Max

Max

Max

rn~on)
( )

~.........

DG417
DG418

35
35

2-Channel SPST

DG180
DG181
D0401

Functional

ConfiguratioD
1-Channel SPST

........<
.........
_...J
........<
.........
_...J

4-Channel SPST

........-r'
.........
_...J
........-r'
.........
_...J
........-r'
.........
_...J
........-r'
.........
_...J

Max Power

~

Supply Range

Max

On-Chip
Logic

CODsumptioD

(V)

Regulator

(mW)

Package

Comments

Page

60
60

44
44

-

0.035
0.035

J,K, Y
J,K, Y

8-Pin Package
8-Pin Package

1-146
1-146

400
150
150

N/A
N/A
80

36
36
44

A,p,X
A,p,X
J,K,Z

JFET
JFET

-

120
120
0.035

1-4
1-4
1-127

0.25
1
1

250
300
250

80
8
30

44
44
44

J,K
A,J,K,P
A,J, K,P

Latches

-

0.035
7.65
03

50
70
75

1
2
1

300
1000
250

10
-10
N/A

44
44
36

7.65
60
120

J
A,J,K
A,p,X

-

DG641
DG411
DG412

15
35
35

10
0.25
0.25

70
175
175

-19
5
5

21
44
44

108
0.035
0.035

J,Y
J,K, Y,Z
J,K, Y,Z

D0413
DG601
DG271

35
35
50

0.25
4
1

175
45
65

5
13
9

44
22
44

Yes
Yes

0.035
180
225

J,K, Y,Z
J,K, Y,Z
J,K, Y,Z

High Speed
High Speed

1-lF
1-189
1-85

DG20lHS
DG540
DG541

50
60
60

1
10
10

50
70
70

5
-25
-25

44
21
21

Yes
Yes
Yes

240
108
108

J,K, Y,Z
J,N,P
J,p,Y

High Speed
Video
Video

1-52
1-179
1-179

DG611
DG612
DG613

60
60
60

0.25
0.25
0.25

35
35
35

1
1
1

21
21
21

-

-0.018
0.018
0.018

J,K, Y,Z
J,K, Y,Z
J,K, Y,Z

Glitchless, High Speed
Glitchless, High Speed
Glitchless, High Speed

1-200
1-200
1-163

DG20lB
DG202B
DG211B

85
85
85

0.5
0.5
0.5

300
300
300

1
1
1

44
44
44

Yes
Yes

0.765
0.765
0.3.5

J,K, Y
J,K, Y
J,Y

-

1-44
1-44
1-68

DG212B
DG308B
DG309B
DG441

85
85
85
85

0.5
0.5
0.5
0.5

300
200
200
250

1
1
1
1

44
44
44
44

-

0.35
.0.03
.0.03
1.5

J,Y
J,K, Y
J,K, Y
J,K, Y

00442
00444
OG445

85
85
85

0.5
0.5
0.5

250
250
250

1
1
1

44
44
44

1.5
0.035
0.035

J,K, Y
J,Y
J,Y

1m

toN

(ns)

0.25
0.25

175
175

10
30
35

10
1
0.25

D0421
DG300A
DG304A

35
50
50

DG381A
DGZOOA
DG182

Part
Number

-

1YP

-

Yes

Yes

-

-

-

Yes
Yes

-

-

-

,...

JFET
Video

-

-

-

General Purpose
. General Purpose
General Purpose
General Purpose

-

-

1-155
1-90
1-99
1-119
1-32
1-4
1-208
1-137
1-137

1-68
1-200
1-200
1-163
1-163
1-171
1-171

Analog Switch Selector Guide (Cont'd)

4-Channel SPST

........

.......,.-('
_..J

Max

Max

l'J)s~QII)
~ )

IS(ol!)

(riA)

(ns)

toN

Q~
(p

On-Chip
Logic
Regulator

Max Power
Consumption
(mW)

Package

Comments

Page

DG221
DG308A
DG309

90
100
100

1
1
1

550
200
200

20
-10
-10

44
44
44

Yes

37.5
0.3
0.3

J,K, Y
J,K, Y
J,Y

Latches

1-75
1-107
1-107

DG201A
DG202
DG211
DG212

175
175
175
175

1
1
5
5

600
600
1000
1000

20
20
3
3

44
44
44
44

Yes
Yes

60
60
20.4
20.4

J,K, Y,Z
J,K
J,Y
J,Y

-

DG642
DG186
DG301A

8
10
50

10
10
1

100
400
300

-40
N/A
8

21
38
44

Yes

108
73
0.3

J,Y
A,P
A,J,K,Z

Video
JFET

DG187
DG419
DG305A

30
35
50

1
0.25
1

150
175
250

N/A
60
30

3B

-

A,p,X
J,K, Y
A,K,P

JFET
B-Pin Package

50
75

1
1

300
250

10
N/A

44
38

7.65
73

A,J,K
A,p,X

JFET

1-119
1-18

DG189
DG643
DG190

10
15
30

10
10
1

400
70
150

N/A
-19
N/A

36
21
36

-

73
0.035
0.3

DG387A
DG188

120
108
120

P
J,Y
p,X

JFET
Video
JFET

1-25
1-208
1-25

DG403
DG423
DG243

35
35
50

0.25
0.25
1

150
250
500

60
60
60

44
44
44

-

0.035
0.035
0.45

J,K, Y,Z
J,K,N
J,N

Latches
Latches

1-127
1-155
1-81

DG303A
DG307A
DG390A

50
50
50

1
1
1

300
250
300

8
30
10

44
44
44

-

7.65
0.3
7.65

J, K, p,Z
J, K, P, Z
J,K

DG5043
DG5143
DG542

50
50
60
75

1
0.5
10

1200
200
100
250

30
60
-25
N/A

44
44
21
36

-

9
0.035
108
120

J
J,K
J,p,Y
p,X

Part
Number

Functional
C 60 dB @ 1 MHz
• Make-Before-Break

• Minimizes Standby Power
Requirements
• Better Radiation Tolerance
• Less Distortion
• Higher Frequency Switching
• Smooth Closed Loop Response

•
•
•
•

Battery Powered Systems
Aerospace Control Systems
Low Distortion Circuits
High Frequency Switching Circuits

Description
The DG129 is a dual double-pole single-throw analog
switch for use in instrumentation, control, and audio
communication systems. It is ideally suited for applications
requiring a constant on-resistance over the entire analog
range.
On-resistance for the DG129 is 20 g (typical), and on-leakage
is < 2 nA With all switches off, total power consumption is
< 750 JLW. These switches have make-before-break action
and due to the processing are relatively radiation tolerant. An

enable pin (VR) simplifies interfacing with microprocessor, or
other logic.
Each device contains four junction field-effect transistors
(JFEll) to achieve constant on-resistance. Level-shifting
drivers enable low-level inputs (0.8 to 2.5 V) to control the
on-off state of each switch. With logic "0" atthe driverinput
the switches will be off. With a logic "I" at the input the
switches will be on. In the on-state each switch will conduct
current in either direction, and in the off-state each switch
will block voltages up to 20 V peak-to-peak.

Functional Block Diagram and Pin Configuration
Four spsr Switches per Package

Dual-In-Line

~

D2
S4

..

'fruth Table

IN2

Logic

Switch

0

OFF
ON

VNC

V+

D3

VR(ENABLE)

~

INl

Dl

Sl

lbpView

Not Recommended for New Designs

Logic "0" :s 0.8 V
Logic "1" .. 2.5 V
Switches Shown for Logic "1" Input

Ordering Information
Temp lbange
-55 to 125°C

Package
14-Pin Sidebraze

P-32167-Rev. B (11/15/93)

l'art NUlIIIIer
DG129AP/883
781401CA

1-1

Silicanix

DG129·

AMember of tho TBMIC Group

Absolute Maximum Ratings
V+toV- ........................................... 36V
V+toVO·.·····.···.·.··.· •. ··.··.··.·······.···.·.·36V
VoorVstoV- •..••......•.......................... 36V
VotoVs ..•.................•..................... ±22V
V+toVR······.· .. ···.···········.···.·.··.·.··.··.·25V
VRtoV- ...........................................• 25V
VINtoV- ...............................•........... 30V
V+ toVIN ........................................... 25V

VINtoVR ......................... :' ................ ±6V
Current (any terminal) ...............1................ 30 rnA
Storage Thmperture . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 150'C
Power Dissipation'
14-Pin DIP" ....•.................................. 825 mW
Notes:
a. All leads welded or soldered to PC Board.
b. Derate 11 mWrC above 75'C

Specifications 8
Thst Conditions
Unless Otherwise Specified
V+=12V,V-=-18V,
VR = OV,VIN = 0.8 Vor2.5vf

Thmpb

Mind

VANALOG

Full

-10

roS(on)

Is= -10mA, Vo = 10V

Room
Full

Symbol

Parameter

ASuft"1X
-55 to 125'C

I

'JYpe

I

Maxd Unit

Switch
Analog Signal Range
Drain-Source On-Resistance

10

V

20

30
60

n

-1
-100

0.03

1
100
1
100

Source-Off Leakage Current

Is(off)

VS= ±10V,Vo= :FlOV

Room
Full

Drain-Off Leakage Current

IO(off)

Vo = ±10V, Vs = :FlOV

Room
Full

1
-100

0.02

Channel-On Leakage Current

IO(on)

Vo=Vs=-10V

Room
Full

-2
-100

-0.03

Input Current with Input Voltage High

IJNH

VIN = 2.5 V

Room
Full

15

60
120

Input Current with Input Voltage Low

IJNL

VIN= 0.8 V

Room
Full

0.005

0.1
2

Thm-OnTIme

!oN
!oFF

See Figure 1

Room

0.5

0.6

Room

1.1

1.6

Room

2.4

nA

Input

Thrn-Offnme
Source-Off Capacitance

Cs(off)

Drain-Off Capacitance

CO(off)

Channel-On Capacitance

CO(on)
OIRR

Off-Isolation

f=lMHz
Vo, Vs=O
RL-75n,f -lMHz

Room

2.4

Room

2.8

Room

>60

flA

!'8

pF
dB

Supply
Positive Supply Current

1+

Negative Supply Current

l-

Reference Supply Current

IR

Positive Supply Current

1+

Negative Supply Current

1-

Reference Supply Current

IR

Room
One Channel On
VIN =2.5V

2.5

Room

-1.8

-1.6

Room

1.4

1.1

Room

-25

-0.5

Room

-25

-0.5

Room
All Channel Off
BothVIN=OV

0.6

3

rnA
25

flA

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = -55 to 125'C.
c. 'tYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1-2

P-32167-Rev. B (11/15/93)

Not Recommended for New Designs

Siliconix

DG129

AMcmber aftho TeMIC Group

Test Circuits
Switch output waveform shown forVs = constant with logic input waveform as shown. Note that Vs may be + or - as per switcbing time test circuit. Vo
is the steady state output with switch on. Peedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

+12 V

V+
Logic
Input
Switch
Input

3V

3V

tr <10ns
tf <10ns

50%

OV
Vs

OV

90%

Switch
Output OV

-

Logic "1" = Switch On

CL (includes fixture and stray capacitance)
Vo=Vs

tON

RL + lllS(on)

Figure 1. Switching TlI1le

Application Hints
V+
Positive Supply
Voltage
(V)

VNegative Supply
Voltage

VB.
Reference
Voltage

(V)

(V)

12

-18

15

-15

7

VIN
iAlllic Input
Voltage

VSorVD
ADalog Voltage

VlN.U(mIn)!VINl.{IIIIIX)
(V)

Rauge

0

2.5/0.8

-10 to 10

0

2.5/0.8

-7 to 13

-12

0

2.5/0.8

-5t05

5

-15

0

2.5/0.8

-7t03

5

-10

0

2.5/0.8

-2t03

Not Recommended for New Designs

P-32167-Rev. B (11/15,93)

..

(V)

1-3

Siliconix

DG180/181/182

AMemberofthe'I'BMICGroUP

High-Speed Drivers with Dual SPST JFET Switches
Features

Benefits·

Applications

• Constant On·Resistance Over Entire
Analog Range
• Low Leakage
• Low Crosstalk
• Rad Hardness

•
•
•
•
•

•
•
•
•
•

Low Distortion
Eliminates Large Signal Errors
High Precision
High Bandwidth Capability
Fault Protection

Andio Switching
Video Switching
Sample/Hold
Guidance and Control Systems
Aerospace

Description
The DG180/181/182 are preCISIon dual single-pole, on-resiStance include audio switching, video switching, and
single·throw (SPST) analog switches designed to pnwide data acquisition.
accurate switching of video and audio signals. This series is
ideally suited for applications requiring a. constan\ .
on·resistance over the entire analog range.
To alV.b.lev¢ faSt and a<:eurate. switch performance, each
device ooD:1pri~ foUt 'n·cha~l JFET transistors and a
The major difference in the devices is the on·re~iatance . TIL oontpatible bipolatdrlver. In the on state, each switch
(DG180-10 Q, DG181-30 Q, DG182--7S Q). Reduced ronducts current equally well in either direction. In the off
errors are achieved through low leakage cunent (lD(on) to.D.ditioD, the switches will block up to 20 V peak·to·peak,
< 2 nA). Applications which benefit from the flat WET with feedthrough' of less than -60 dB at 10 MHz.

Functional Block Diagram and Pin Configuration
Dual·ln·Line

Metal Can

Flat Package

~

S1
D1

L.......u-

NC

1

14

S2

2

13

D2

3

12

NC

NC

4

11

NC

IN1

5

10

IN2

V+

6

9

VL

7

8

V-·
VR

D1

IN2

IN1

V-

ThpView
Refer to JAN38510 Information, Military Section

. VL
ThpView

ThpView

Ordering Information - DG180/181/182
TeJllpRange

Padaige
DG180BA
10-Pin Metal Can

-25 to 85°C
14-Pin Sidebraze

10·Pin Metal Can

-55 to 125°C

14·Pin Sidebraze

14·Pin Flat Pack

1-4

·COmmon to Substrate and Case

Part Number
DG181BA
DG182BA
DG180BP
DG181BP
DG182BP
DG180AA/883,5962-8767301lA
DG181AA/883, JM38510/11101BlA
DG182AA/883, JM38510/11102BlA
DG180AP/883,5962-8767301CA
DG181AP/883, JM38510/11101BCA
DG182AP/883, JM38510/11102BCA
5962-8767301XA
JM38510/11101BXA
JM38510/11102BXA

lruth Thble
Logic

o

Switeh
ON
OFF

Logic"O" s 0.8 V
Logic "I" .. 2.0 V
SWitches Shown for Logic "I" Input

P·32167-Rev. B (11/15/93)

Siliconix

DG180/181/182

AMcmbcr altho TBMIC Group

Absolute Maximum Ratings
V+toV- ........•.••.••••..•.............•......... 36V
V+toVo ..•.......••..•..............•............. 33V
VotoV- .............••.•........•..........•..•.... 33V
Vo toVo ......••.••.............................. ±22V
VL toV- ..........•..•.........•..•.•.............. 36V
VLtOVIN ...........•.•.............................. 8V
VLtOVR •........•..••............................... 8V
VINtoVR .......•..•......•.......................... 8V
VR to V- ...................................•..•..... 27V
VRtoVIN ..............................•.........•... 2V
Current (S or D) DG180 ..................•......... 200 rnA

Current (S or D) DG181, DG182 •........•.....••..•.. 30 rnA
Current (All Other Pins) . • • • • • . . • • . . . . . . . . • • • • • . . . . . .. 30 rnA
Storage Thmperature . . . . . . . . . . . . . . . . . . . . . . . . • .• -6S to lS0·C
Power Dissipation"
10-Pin Metal eanb ...•......•.•.•......•.••......... 4S0 mW
14-Pin Sidebrazec •••••••••••.••••••.••.•••••.••••.• 825 mW
14-Pin Flat Packd •••••••••.••.••••••.••.•••••••••••• 900 mW
Notes:
a. All leads welded or soldered to PC Board.
b. Derate 6 mW/·C above 7S·C
c. Derate 11 mWrC above 7S·C
d. Deratel0mWrCabove7S·C

Speci6cations a for DG180
Test Conditions
Unless Otherwise Specified
Parameter

ASuIf'lX
-SS to 125·C

I

BSuflix
-25 to ss·C

I

V+=lSV,V- = -lSV,VL=SV
VR = Ov, VIN = 2 V, 0.8 V£

Thmpb

VANALOG

Full

l'DS(on)

Is = -10mA, Vo = -7.SV

Room
Fun

7.5

10
20

Vs = ±10V, Vo = :FlOV
V+ = 10V,V- = -20V

Room
Hot

O.OS

10
1000

IS
300

Vs = ±7.S V, Vo = 'fo7.5V

Room
Hot

O.OS

10

1000

lS
300

Vs- ±10V,Vo- 'fol0V
V+ = 10V,V- = -20V

Room
Hot

0.04

10
1000

IS
300

Vs = ±7.S V, Vo = 'fo7.SV

Room
Hot

0.03

10
1000

IS
300

Symbol

'JYpc

Mind

Maxd

Mind

IS

-7.5

Marl

Unit

lS

V

IS
25

0

Analog Switeh
Analog Signal Range·
Drain-Source
On-Resistance
Source Off
Leakage Current

IS(off)

-7.5

Drain Off
Leakage Current

IO(af!)

Channel On
Leakage Current

Io(on)

VO=Vs= ±7.SV

Room
Hot

-0.1

loss

2 ms Pulse Duration

Room

300

Input Current with
Input Voltage High

IINH

VIN=5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IINL

VIN=OV

Full

-30

Ion
Iocr

See Switching TIme Thst Circuit

Room

240

400

600

Room

140

200

250

Vs - -Sv,Io - 0

Room

21

Vo = -5 V, Is = 0

Room

17

Vo-Vs-OV

Room

17

Room

>5S

Saturation Drain Current

-2

nA

-10
-200

-200

rnA

..

Digital Input
10
20

10
20

I1A
-250

-250

Dynantlc Cbaraeteristics
111m-On TIme
Thru-OffTune
Source-Off Capacitance

CS(off)

Drain-Off Capacitance

CO(off)

Channel-On Capacitance

CO(on)
OIRR

Off Isolation

f=lMHz

f -lMHz,RL -7S0

ns

pF
dB

Power Supplies
Positive Supply Current

I+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3

Reference Supply Current

IR

Room

-1

P-32167-Rev. B (11/1S/93)

VIN = Ov, or SV

1.S

1.5
-S

-5

4.S

4.5
-2

rnA

-2

1-5

Siliconix

DG180/181/182

AMember of tho TBMIC Group

Specificationsa for DG181
Test Conditions
Unless Otherwise Specified

ASuff"1X

-55 to 125·C

I

B Suffix
-25 to 8S·C

I

V+ = 15 V, V- = -15 V, VL = 5V
VR = OV,VIN = 2 V,0.8VC

Tempb

VANALOG

Full

fDS(on)

IS = -10mA, VD = -7.5 V

Room
Full

18

30
60

Vs = :I: 10 V, VD = :nov
V+ = 10 V, V- = -20V

Room
Hot

0.05

1
100

5
100

Vs= :l:7.5V,VD= ;:7.5 V

Room
Hot

0,07

1
100

5
100

Vs = :l:10V,VD = ;:10V
V+ = 10V,V- = -20V

Room
Hot

0.5

1
100

5
100

Vs = :l:7.5V,VD = ;:7.5V

Room
Hot

0.6

1
100

5
100

ID(on)

VD=VS= :l:7.5V

Room
Hot

-0.02

Input Current with
Input Voltage High

IINH

VIN= SV

Room
Hot

<0.01

Input Current with
Input Voltage Low

IJNL

VIN=OV

Full

-30

Room

85

150

180

Room

95

130

150

Parameter

Symbol

type

Mind

Mud

Mind

15

-7.5

Maxd

Unit

15

V

50
75

r.!

Allalog Swltcl!
Analog Sigoal Rangee
Drain-Source
On-Resistance

Source Off
Leakage Current

Drain Off
Leakage Current
Channel On
Leakage Current

Is(off)

ID(ofl)

-7.5

-2
-200

nA

-10
-200

Dlgitallllput
10
20

10
20

I1A
-250

-250

DynaMic Charatterlstlcs
Thm-OnTIme

ton

Thm-OffTIme

!off

Source-Off Capacitance

~ofl)

Drain-Off Capacitance

CD(off)

Channel-On Capacitance

CD(on)

Off Isolation

OIRR

See Switching TIme 'lest Circuit

f=lMHz

Vs = -5V,ID = 0

Room

9

VD= -SV,Is=O

Room

6

VD=VS=OV

Room

14

Room

>50

f= 1 MHz, RL = 75r.!

ns

pF

dB

Power Supplies
Positive Supply Current

1+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3.1

Reference Supply Current

IR

Room

-1

VIN = OV,orSV

1-6

1.5
-5

1.5
-5
mA

4.5
-2

4.5
-2

P-32167-Rev. B (11/15/93)

Siliconix

DG180/181/182

A Member o( the TBMtC Group

Specifications a for DG182
Test Conditions
Unless Otherwise Specified

ASulTlX
-55 to 125'C

I

B Suffix
-25 to 85'C

I

V+ = 15V,V- = -15V,VL= 5V
VR = Ov, VIN = 2V, 0.8 yf

Tempb

VANALOG

Full

I'])S(on)

Is = -10 rnA, Vn = -7.5 V

Room
Full

35

75
150

Vs = ±10V, Vn = :nov
V+ = 10 V, V- = -20V

Room
Hot

0.05

1
100

5
100

Vs = ±10V, Vn = :HOV

Room
Hot

0.07

1
100

5
100

Vs= ±10V,Vn= :HOV
V+ = 10V,V- = -20V

Room
Hot

0.4

1
100

5
100

Vs= ±10V,Vn= :HOV

Room
Hot

0.5

1
100

5
100

In(on)

Vn=Vs=±10V

Room
Hot

-0.02

Input Current with
Input Voltage High

IJNH

VIN=5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IJNL

VIN=OV

Full

-30

Room

120

250

300

Room

100

130

150

Vs = -5 V, In = 0

Room

9

Vn = -5V,Is = 0

Room

6

Vn=Vs=OV

Room

14

Room

>50

Parameter

Symbol

'JYpc

Mind

Maxd

Mind

15

-10

Maxd

Unit

15

V

100
150

n

Analog Switch
Analog Signal Rangee
Drain·Source

On-Resistance
Source Off
Leakage Current

Drain Off
Leakage Current
Channel On
Leakage Current

IS(off)

In(off)

-10

nA

-10
-200

-2
-200

Digitallnput
10
20

10
20

!LA
-250

-250

Dynamic Cbaracteristics
1IIrn-On Tune

ton

1IIrn-Off Time

toff

Source-Off Capacitance

CS(off)

Drain-Off Capacitance

Cn(off)

Channel-On Capacitance

Cn(on)

Off Isolation

OIRR

See Switching Time Test Circuit

f=lMHz

f= 1 MHz, RL = 75 n

ns

pF

dB

Power Supplies
Positive Supply Current

1+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3.1

Reference Supply Current

IR

Room

-1

VIN = OV, or 5V

1.5
-5

1.5
-5

4.5
-2

4.5

rnA

-2

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature suffIX.
c. 'iypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

P-32167-Rev. B (11/15/93)

1-7

Silicanix

DG180/181/182

AMcmbcr of the TBMIC Group

lYPicaJ Characteristics
Supply Current vs. Temperature

lIN vs. VIN and Temperature

5

4

100

,I
~
VINL=O
VINH = 5V

80

~

I"'-' ........ i"'--.

IL I - r--... 1'000.. ........ ........
........

3

........

......... ~

60

--

-IR
1

_

IINL

"

........-1-

2

1

40

......

r-.....
..........

20

1+

r- IINH

o

o

-55 -35 -15

5

25

45

65

85 105 125

-55 -35 -15

5

Thmperature ("g

230

DG182

-

.;".t"'"

10

~~

[::r-J
f==

g

~

~

:e

DG180

9
I-I--

VD- 7.5 V
Is=-lOmA

0

25

50

75

I

I

I

,/

150

1/

-

1/

./

-'

- "'#>

#>

F-

5

110

V

lO

IJ'"

g

100

~

90

9

80

:e

/ / /

70
ID(on)
~

"7

A"1. . .

0.1
25

45

65

ID(off) f-~

85

Thmperature (og

1-8

..

tON •.,.

1"

-. --

~.

~.

1-

tOFF
~

~

25

,

45

65

85 105 125

Switching TIme vs. VD and Temperature (DG181/182)
130
120 I-- -

1

./

Thmperature ("g

V+ 10V
V
-20V
- VL 5V
c- VR=O

lS(off)

~

--

90
-55 -35 -15

100 125

==
=

..

..".

./

170

130

Leakage vs. Temperature (DG180)

....

105 125

......r_
,/

Thmperature ("g

100

85

I

190

110

-50 -25

65

I---VD=7.5V
210 I I-- - - VD = -7.5 V

~

1.0"""

IDGl~l

45

Switching TIme vs. VD and Temperature (DG180)

l"J>S(on) vs. Temperature
100

~

25

Thmperature (og

105

125

VD = 7.5 V

I - - - VD = -7.5 V

./'

-

. / ./'I~#>

1/
1/

./..

."

60 -:;r

...,.;

..,

--

1/

,

50
-55 -35 -15

_.--, , . .--1-

- 1'--

tOFF
~

I-'

5

25

45

65

85 105 125

Thmperature (og

P-32167-Rev. B (11/15/93)

Silicanix

DG180/181/182

AMember ofthe TBMIC Group

1Ypical Characteristics (Cont'd)
ID(olr) vs. Thmperature (DGI81/182)

Capacitance vs. YD orYs (DGI80)
30

100
10V,V
10 V, Vs

=V+
-VD

20V
10V

26

_f~B~HzI

,

10

"- ~of1

22
-

BSuff",
~

~

""""'"

1/ASuff",

18
:: ~
14

0.1

--

--

......

10
45

65
85
Thmperature (0C)

105

-8
o
8
-4
4
VD or Vs - Drain or Source Voltage (V)

125

Off Isolation vs. Frequency

Capacitance VS. YD or Ys (DGI81/182)
100

.~

18 '- VINL = 0.8 V
VINH = 2V
16 _ f=lMHz

90

.I 1CD(on)

80

14
12
10
8
6

70

~

&:i'

60

0

50

~

-- .......

f!l

CS(off),_

........ 1"-000..

-r-

.1

20
Capacitance is measured from test terminal
to common.

10

o
-10 -8 -6 -4 -2

0

2

4

6

8

10

VD or Vs - Drain or Source Voltage (V)

II
I~G1Jl!~8~ 1

.111

........

I'

....
DG180

........
rr-

"-

...

40
30

CD(off) -

4
2

Ci(Off) I

I...,..000o'

25

20

_I
-r
CD(on)

V+ = 15 V, V- = -lSV
VR=0,VL=5V
RL=75r.!

o riINI
loS

"
...

ililiti I IIIII
s

lOS
f - Frequency (Hz)

Schematic Diagram (1YPical Channel)
V+

S

IN

D

VP-32167-Rev. B (11/15/93)

Figure I.

1-9

Bilicanix

DG180/181/182

AMcmber of the 'll!MIC Group

Test Circuits
Feedthrough due to charge injection may result in spikes at the leading and trailing edge of the output waveform.

+5V

+15V

tOw. Vs = -3V

1, <10ns

3V

Logic
Input

toN: Vs=3V

I{ <10ns

OV
Vo
3V
OV

-

-

Switch
Output

CL (includes fIXture and stray capacitance)
RL
VOUT = Vs x RL + rDS(on)

-3V

Figure 2.

:~,v

---------..::lI~O%

Switching Tune

Application Hints a
VlI(

v..

VR

Voltage
(V)

Logic Supply
Voltage
(V)

Reference Supply
Voltage
(V)

15h

-15

5

GND

2.0/0.8

-7.5 to 15

10

-20

5

GND

2.0/0.8

-12.5 to 10

12

-12

5

GND

2.0/0.8

-4.5 to 12

15h

-15

GND

2.0/0.8

-10to15

10

-20

GND

2.0/0.8

-15 to 10

12

-12

GND

2.0/0.8

-7 to 12

V+

V-

Positive Supply

Negative Supply

Switch

Voltage
(V)

DG180
DG181

DG182

Logic Input
Voltage

5
5
5

VOOl(mtn)/

.V~mas)

Vs
Analog Voltage
Range
(V)

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
b. Electrical Parameter Chart based on V + = 15 V, VL = 5 V, VR = GND

1-10

P-32167-Rev. B (11/15/93)

Siliconix

DG183/184/185

AMember oCthe TBMIC Group

High-Speed Drivers with Dual DPST JFET Switches
Features

Benefits

Applications

• Constant On-Resistance Over Entire
Analog Range
• Low Leakage
• Low Crosstalk
• Break-Before-Make Switching
• Rad Hardness

•
•
•
•
•

•
•
•
•
•
•

Low Distortion
Eliminates Large Signal Errors
High Precision
Improved Channel Isolation
Eliminates Inadvertent Shorting
Between Channels
• Fault Protection

Audio Switching
Precision Switching
Video Switching
Video Routing
SamplelHold
Aerospace

Description
The DG183/184/185 are precislOn dual double~pole,
single-throw (DPST) analog switches designed to provide
accurate switching of video and audio signals. Tills series is
ideally suited for applications requiring a constant
on-resistance over the entire analGg range.
The major difference in the dl'lvices is the on-resistance
(DG183-10 Q, DGl84-----30 Q, DG185-75 Q). Reduced
errors are achieved through low leakage current (ID(on)
< 2 nA). Applications which benefit from the flat JFET

on-resistance include audio switching, video switching, and
data acquisition.
To achieve fast and accurate switch performance, each
device comprises four n-channel JFET transistors and a
TTL compatible bipolar driver. In the on state, each switch
conducts current equally well in either direction. In the off
condition, the switches will block up to 20 V peak-to-peak,
with feedthrough of less than -60 dB at 10 MHz.

Functional Block Diagram and Pin Configuration
Dual-In-Line

Dl

Flat Package

Sl

14

S3

D4

2

13

D3

Dz

3

12

Dl

S4

NC

IN!

D3

V-

Sz

4

11

Sl

S3

VR

lNz

5

10

INl

9

VL

V+
VL

6

S4

7

8

V-*
VR

D4

V+

NC

INz

Dz

Sz

ThpView

Refer to JAN38510 Information, Military Section
'Common to Substrate and Case

ThpView

Ordering Information - DG183/184/18S

Package

TeDlpRange

Part NUDlber
DG183BP

-25 to 8S'C

16-Pm Sidebraze

16-Pin Sidebraze
-SSto 12S'C
14-Pin Flat Pack

P-32167-Rev. B (11/15/93)

DG184BP
DG18SBP
DG183AP/883
DG184AP
DG184AP/883. JM38S10/11103BEA
DG18SAP/883. JM38S10/11104BEA
JM38SlO/11103BXA
JM38510/11104BXA

'Iruth 11tble
wgle

Switcll

o

OFF

ON
Logic ·0" :S 0.8 V
Logic "I" '" 2.0 V
Switches Shown for Logic "I" Input

1-11

Siliconix

DG183/184/185

AMcmbcr of tho 'I'BMIC Group

Absolute Maximum Ratings
V+toV- .........•.•.••.........•.................. 36V
V+toVD ...........•.......................•......• 33V
VDtoV- .•...•..•..••.•..•...•...•..•............... 33V
VD toVD ....•......•............................. ±22V
VL toV- ........................................... 36V
VLtoVIN ............................................ sv
VLtoVR ..................................•..•....... SV
VINtoVR ................... '......................... SV
VRtoV- .........•..•......•....................•... 27V
VRtoVIN ............................................ 2V

Current (S or D) D01S3 .......•.....•...•.......... ZOO rnA
Current (S or D) 00184, DG1SS ..........•........... 30 rnA
Current (All Other Pins) . . . . . . . . . . . . . . . . . . • . . . . . . . . . .. 30 rnA
Storage'Thmperature . . • . . . . . . . . . • . . . . . . . . . . . . •• -65 to lS0'C
Power Dissipation"
16-Pin Sidebrazeb ••..•.••.••••••.•••••.•••••••••••• 900 mW
14-Pin Flat Pack" .......................•......•.... 900 mW
Notes:
a. All leads welded or soldered to PC Board.
b. Derate12mW/'Cabove7S'C
c. Derate 10 mWI'C above 7S'C

Specifications a for DG183
Thst Conditions
Unless Otherwise Specified
Parameter

Analog Signal Range"

Symbol

V+ = lSV,V- = -15 V, VL= SV
VR = Ov, VIN = O.S Vor2vr

CDS(oo)

Source Off
Leakage Current

IS(off)

Drain Off
Leakage Current

ID(off)

Channel On
Leakage Current
Saturation Drain Current

Tempb

lYPc

Is = -10mA, VD = -7.5 V

Room

Mind

-7.5

I

B Suff"1X
-ZS to SS'C

Marl

Mind

15

-7.5

I

Maxd

Unit

15

V

7.5

10
20

15
ZS

n

Full

VANALOG

Drain-Source
On-Resistance

ASuff"1X
-55 tolZS'C

Full

Vs - ±10V,VD - 'FI0V
V+ = 10 V, V- = -2OV

Room
Hot

0.05

10
1000

15
300

Vs= ±7.5V,VD= 'F7.SV

Room
Hot

0.05

10
1000

15
300

Vs- ±lOV,VD - 'FI0V
V+ = 10 V, V- = -20V

Room
Hot

0.04

10
1000

15
300

Vs = ±7.5 V, VD = 'F7.5V

Room
Hot

0.03

10
1000

15
300

ID(oo)

VD=Vs=±7.5V

Room
Hot

0.1

IDSS

2 ms Pulse Duration

Room

300

Input Current with
Input Voltage High

IJNH

VIN=SV

Room
Hot

<0.01

Input Current with
Input Voltage Low

IlNL

VIN=OV

Full

-30

Room

240

400

600

Room

140

200

220

Vs - -SV,ID - 0

Room

21

VD= -SV,Is=O

Room

17

VD-VS-OV

Room

17

Room

>55

-2
-200

nA

10
-ZOO
rnA

Dlgltallaput
10

10
20

20

!lA
-ZSO

-ZSO

DynaIl1lc Characteristics
Thrn-On TIme

ton

Thm-OffTIme

toff

Source-Off Capacitance

CS(off)

Drain-Off Capacitance

Cn(off)

Channel-On Capacitance

CD(on)
OIRR

Off Isolation

See Switching TIme 'Thst Circuit

f=lMHz

f -1 MHz,RL-7Sn

ns

pF
dB

Powel' Supplies
Positive Supply Current

1+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3.1

Reference Supply Current

IR

Room

-1

1-12

VIN = Ov,or SV

1.S

1.5

-s

-s
4.5

-2

4.5

rnA

-2

P-32167-Rev. B (11/15/93)

Silicanix

DG183/184/185

AMcmbcr of the 'I'BMIC Group

Specifications a for DG184
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15V,V- = -15V,VL=5V
VR = Ov, VIN = 0.8 Vor2yf

A SuffIX
-55 to 125°C
Tempb

'JYpc

Mind

I

BSuffix
-25 to 85°C

Maxd

Mind

15

-7.5

I

Maxd

Unit

Analog Switch
Analog Signal Range"

-7.5

VANALOG

Fun

15

V

rnS(on)

Is = -10 rnA, Vn = -7.5 V

Room
Fun

22

30
60

50
75

0

Vs= ±lOV,Vn= 'FlOV
V+ = 10 V, V- = -20V

Room
Hot

0.06

1
100

5
100

Vs= ±7.5V, Vn= 'F7.5V

Room
Hot

0.05

1
100

5
100

Vs= ±10V,Vn= 'F10V
V+ = 10 V, V- = -20V

Room
Hot

0.4

1
100

5
100

Vs= ±7.5V,Vn= 'F7.5V

Room
Hot

0.3

1
100

5
100

In(on)

Vn=Vs=±7.5V

Room
Hot

-0.02

Input Current with
Input Voltage High

IINH

VIN=5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IINL

VIN=OV

Fun

-30

Room

85

150

180

Room

95

130

150

Drain-Source
On-Resistance

Source Off
Leakage Current

Drain Off
Leakage Current
Channel On
Leakage Current

IS(off)

In(off)

-2
-200

nA

-10
-200

Digitallnplit
10
20

10
20

IlA
-250

-250

Dynamic Characteristics
'furn-On Tune
'fum-Off TIme

Ion

See Switching TIme Thst Circuit

Iocr

Source-Off Capacitance

~off)

Drain-Off Capacitance

Cn(off)

Channel-On Capacitance

Cn(on)

Off Isolation

OIRR

f=lMHz

Vs = -5V,In = 0

Room

9

Vn = -5 V, Is = 0

Room

6

Vn=Vs=OV

Room

14

Room

>50

f= 1 MHz,RL = 750

os

pF

dB

l>ower Supplles
Positive Supply Current

1+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3.1

Reference Supply Current

IR

Room

-1

P-32167-Rev. B (11/15/93)

VIN = Ov, or 5V

3

3
mA

4.5
-2

D

-5.5

-5.5

4.5
-2

1-13

Siliconix

DG183/184/185

AMember of the TaMIC Group

Specificationsa for DG185
Test Conditions
Unless Otherwise Specified

ASuflix
-55 to 125°C

I

B SuffIX

-25toB5°C

I

V+ = 15V,V- = -15 V, VL = 5V
VR = Ov, VIN = 0.8 Vor2 yf

Thmpb

VANAWG

Full

roS(on)

IS = -lOrnA, VD = -7.5 V

Room
Full

35

75
150

Vs = ±10V, VD = :FlOV
V+=10V,V-=-20V

Room
Hot

0.05

1
100

5
100

Vs= ±lOV,VD= =F10V

Room
Hot

0.07

1
100

5
100

Vs= ±10V,VD= 'F1OV
V+ = 10 V, V- = -20 V

Room
Hot

0.4

1
100

5
100

Vs = ±10V, VD = =F10V

Room
Hot

0.3

1
100

5
100

ID(on)

VD=VS= ±10V

Room
Hot

-0.03

Input Current with
Input Voltage High

IJNH

VIN= 5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IJNL

VIN=OV

Full

-30

Room

120

250

300

Room

100

130

150

Vs=-5V,ID=0

Room

9

VD = -5V,Is = 0

Room

6

VD=VS=OV

Room

14

Room

>50

Parameter

Symbol

'JYpc

Mind

Max55

f - 1 MHz, RL - 75 Q

ns

pF
dB

Power Supplies
Positive Supply Current

1+

Room

Negative Supply Current

1-

Room

Logic Supply Current

IL

Reference Supply Current

IR

P-32167-Rev. C (11115193)

VlN = OY, or 5V

0.8
-3

Room
Room

0.8
-3

3.2
-2

3.2

rnA

-2

1-19

D

Bilicanix

DG186/187/188

A Mcmbcr oltho TsMIC Group

Specitications8 for DG187
A Suff"1X
-55 to 125'C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -15V,VL = 5V
VR = OV,VIN = 0.8 or2V£

Tempb

1YP"

Mind

I

B Sutlix
-25 to 85'C

Mud

Mind

15

-7.5

I

Maxd

Unit

AIlalogSwitch
Analog Signal Range·

-7.5

VANALOG

Full

15

V

'DS(on)

Is = -10mA, VD = -7.5V

Room
Full

22

30
60

50
75

g

Vs= :!:10V,VD= 'F10V
V+ = 10 V, V- = -20V

Room
Hot

0.06

1
100

5
100

Vs = :!:7.5V,VD = 'F7.5V

Room
Hot

0.13

1
100

5
100

Vs= :!:10V,VD= 'F10V
V+ = 10 V, V- = -20V

Room
Hot

0.04

1
100

5
100

Vs = :!:7.5V,VD = 'F7.5V

Room
Hot

0.03

1
100

5
100

ID(on)

VD=VS= :!:7.5V

Room
Hot

-0.02

Input Current with
Input Voltage High

IINH

VIN=5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IINL

VIN=OV

Full

-30

Room

85

150

180

Room

95

130

150

Drain-Source
On·Resistance

Source Off
Leakage Current

Drain Off
Leakage Current

Channel On
Leakage Current

IS(off)

ID(off)

-2
-200

nA

-10
-200

Digital Input
10
20

10
20
p.A

-250

-250

Dynamk Characteristics.
Thrn-On Tune

ton

Thrn-OffTIme

!off

Source-Off Capacitance
Drain-Off Capacitance

See Switching TIme Thst Circuit
CS(off)
CD(off)

Channel-On Capacitance

CD(oo)

Off Isolation

OIRR

f=lMHz

os

Vs = -5V,ID = 0

Room

9

VD = -5 V, Is = 0

Room

6

VD=VS=OV

Room

14

Room

>50

f -1 MHz,RL -75 g

pF

dB

Power Snpl'lies
Positive Supply Current

1+

Negative Supply Current

1-

Logic Supply Current

IL

Room

Reference Supply Current

IR

Room

0.8

Room
Room

-3

-3

VIN = OV, or 5V

1-20

0.8

3.2
-2

mA
3.2

-2

P-32167-Rev. C (11/15/93)

Siliconix

DG186/187/188

AMember of the TBMlC Group

Specifications a for DG188
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = lSV, V- = -lSV, VL = SV
VR = ov, VIN = 0.8 or2 yf

ASuff"1X
-55 to 125'C
Tempb

'JYpc

Mind I Maxd

B Suff"1X
-25 to 85'C
Mind

IM~

Unit

Analog Switch
Analog Signal Rangee

-10

15

V

Room
Full

35

75
150

100
150

£2

Vs= ±10V,Vo= :nov
V+ = 10 V, V- = -20V

Room
Hot

0.05

1
100

5
100

Vs= ±lOV,Vo= :FlOV

Room
Hot

0.07

1
100

5
100

Vs = ±lOV,Vo = :nov
V+ = 10V,V- = -20V

Room
Hot

0.04

1
100

5
100

Vs = ±1OV, Vo = :FlOV

Room
Hot

0.50

1
100

5
100

IO(on)

Vo=Vs= ±lOV

Room
Hot

-0.03

Input Current with
Input Voltage High

IJNH

VIN=5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IINL

VIN=OV

Full

-30

Source Off
Leakage Current

Drain Off
Leakage Current

Channel On
Leakage Current

Full

VANALOG
rns(on)

IS(off)

IO(off)

15

-10

Is = -lOrnA, Vo = -7.5 V

Drain-Source
On-Resistance

-2
-200

nA

-10
-200

Digital Input
10
20

10
20

!lA
-250

-250

Dynamic Characteristics
Thrn-On TIme

ton

Thrn-Off TIme

torr

Source-Off
Capacitance

CS(off)

Drain-Off
Capacitance

CO(off)

Channel-On
Capacitance

CO(on)

Off Isolation

OIRR

Room

120

250

300

Room

100

130

150

Vs=-5V, Io=0

Room

9

Vo = -5 V, Is = 0

Room

6

Vo=Vs=OV

Room

14

Room

>50

See Switching TIme 'Thst Circuit

f=lMHz

f=lMHz,RL= 75£2

ns

pF

dB

Power Supplies
Positive Supply
Current

I+

Negative Supply
Current

1-

Room

-3

D

0.8

0.8

Room

-3
mA

VIN = OV, or5V

Logic Supply
Current

IL

Room

Reference Supply
Current

IR

Room

3.2

3.2
-2

-2

Notes:
Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature suffIX.
.
C. 1Ypical values are for DESIGN AID ONLY, not guaranteed nor SUbject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not SUbject to production test.
f. VIN = input voltage to perform proper function.
a.

P-32167-Rev. C (11/15193)

1-21

Siliconix

DG186/187/188

AMcmbcr of the TBMIC Group

1YPical Characteristics
Supply Current vs. Temperature

lIN vs. VIN and Temperature

5

100
IVJNL1=0 I _

4

---

~

3

80

.....

~ ~~

r---. :--... ....... .......

--

2

IL f - -

'"

60

........-1-

--

-IR

VINH= 5V

IJNL
"""""" "'" t'...

.........

.....

~ IINH

o

o

-55 -35 -15

5

25

45

65

85 105 125

-55 -35 -15

5

230

-

DG18l,..-

~

VI

~~

IDG1817

t::rI
f==

210
~

I

:[

~
~

DG186

B

1
-50 -25

0

25

65

I

I

50

75

I

85

105 125

I

150

r---

1/

V
V

.

,.

-- .
.~

.........

F-

:,; ... 1""

-

~

90
-55 -35 -15

100 125

/

/

1-

110

".

./

170

130
Vo= -7.5 V
Is= -10mA

I

r-- _ Vo = 7.5 V
r-- __ Vo = -7.5 V
r--

190

~

-

45

Switching Time vs. Vo and Temperature (DG186)

rnS(on) vs. Temperature
100

f==

25

Thmperature (0C)

Thmperature ("C)

5

Thmperature (0C)

~

25

45

"
......,..,

to~ ...

- .. - -

-

tOFF

-

65

85 105 125

Thmperature (0C)

Leakage vs. Temperature (DG186)

Switching Time vs. Vn and Temperature (DG187/188)

100

130
V+ 10V
V - 20V
VL-5V
VR=O

120 --Vo=7.5V
110

/

10

:[
lSi of!)

1
IO(on) ~

/f

-'

V / /
-'

lOCo!!)

"

25

45

65

85

Thmperature (0C)

105

-

-

- - Vo = -7.5 V

-

~

90

~

80

60

125

l/'
./tON

100

",

l/'

-

./

"..

70 ~

VA.....

0.1

1-22

~

20

1+

10

.......

40

t::""

.L:.

,. -L

~ i-"""

50
-55 -35 -15

5

IL

"

-"

.!J.~

.""1

-- -

~

25

45

65

-ttOFF

85

105 125

Thmperature (0C)

P-32167-Rev. C (11/15/93)

Silicanix

DG186/187/188

AMember of the TBMIC Group

'JYpical Characteristics (Cont'd)
ID(olY) vs. Temperature (DG1871188)

Capacitance vs. VD or Vs (DG186)

100

30

f- f=lMHz

10V,V
10 V, Vs

V+
Vo

20V
10V

26

~

10

r--...

22
~

-

BSufflX

i...oo""

,.

1/

.."

1/ASufflX

18

== ~

.-

r--...

.....
Ci(Off)I

10
45

85
65
Thmperature ('C)

o
4
8
-4
Vo or Vs - Drain or Source Voltage (V)

125

105

-8

Off Isolation vs. Frequency

Capacitance vs. VD or Vs (DG187/188)
20

100

~1NL ,! 0.8 \,
18 ,... VJNH=2V
~
f=lMHz
16

90

.I 1-

80

CO(on)

14
(i;'

e
Q

{$

12
10
8
6

70

~

--

iii'

60

0

50

~

'-

f!l

CS(off),_

!"". I--...

.1

T-

Capacitance is measured from test terminal
to common.

o
0

2

4

6

8

:-.

DG186

~

""
.... ~

40

o

-10 -8 -6 -4 -2

:,

I111
II
II ~G1l7l8~ I.

........

30 - V+ = 15 V, V- = -15V
_ VR=0,VL=5V
20
RL= 75'-1
10
IITlriSI IIII

CO(off) -

4
2

_I

CO(on)

14

..,..,.

0.1

25

~ofl

10

VD or V S - Drain or Source Voltage (V)

"

I"
~

'~INI i

loS

1()6

f - Frequency (Hz)

Schematic Diagram ('JYpical Channel)

D
S

IN

D

Figure 1.

P-32167-Rev. C (11/15/93)

1-23

Siliconix

DG186/187/188

AMombcr of the TBUfC Group

Test Circuits
Feedthrough due to charge injection may result in spikes at the leading and trailing edge of the output waveform.
+5V

+15 V
tON: Vs=3V

toFF' Vs = -3 V
V+

VL
VSl
VS2

Logic
Input

Sl

Ir <10ns
tf <10ns

3V
OV

Vo

S2
3V
OV
Switch
Output
-3V

CL (includes flXlure and slray capacitance)

:~,v

---------"'I"~O%

RL

Figure 2.

Switching Tune

Application Hints a

VlN'
Logic Input
Voltage

V-

VL

VR

Negative Supply
Voltage

(V)

Logic Supply
Voltage
(V)

Reference Supply
Voltage
(V)

VINB(mln)i

Switch

V+
Positive Supply
Voltage
(V)
15b

-15

5

GND

2.0/0.8

-7.5 10 15

DG186
DG187

10

-20

5

GND

2.0/0.8

-12.5 to 10

12

-12

5

GND

2.0/0.8

-4.5 to 12

15b

-15

GND

2.0/0.8

-10 to 15

10

-20

GND

2.0/0.8

-15 to 10

12

-12

GND

2.0/0.8

-71012

DG188

5
5
5

V~mu)

Vs
Analog Voltage
Range
(V)

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
b. Electric:al Parameter Chart hased on V+ = 15 V, VL = 5 V, VR = GND

1-24

P-32167-Rev. C (11/15/93)

Siliconix

DG189/190/191

AMembor of the TeMIC Group

High-Speed Drivers with Dual SPDT JFET Switches
Features

Benefits

Applications

• Constant On-Resistance Over Entire
Analog Range
• Low Leakage
• Low Crosstalk
• Rad Hardness

•
•
•
•
•

•
•
•
•
•

Low Distortion
Eliminates Large Signal Errors
High Precision
lligh Bandwidth Capability
Fault Protection

Audio Switching
Video Switching
SamplelHold
Guidance and Control Systems
Aerospace

Description
The DG189/190/191 are preclSlon dual single-pole,
double-throw (SPD1) analog switches designed to provide
accurate switching of video and audio signals. This series is
ideally suited for applications requiring a constant
on-resistance over the entire analog range.

on-re$ktance inc1ude-a:udiOswitching, video switching, and
data acquisition.

To achieve f~st al\d accurate awitch performance, each
device comprises four n.channel JFET transistors and a
TIL compatible bipolar driver. The driver is designed to
. achieve break-before-make switching action, eliminating
the inadvertent shorting between channels and the
The major different» in the devices is dle oli-resistance crosstalk which would result. In the on state, each switch
(DG189-10 0, DGl90-30 0, 00191-75 0). Reduced conducts current equally well in either direction. In the off
errors are achieved through low leakage current (ID(on) condition, the switches will block up to 20 V peak-to-peak,
< 2 nA). Applications which benefit from the flat JFET with feedthrough of less than -60 dB at 10 MHz.

Functional Block Diagram and Pin Configuration
Dual-In-Line

D1
NC

Flat Package
S1

S4

1

14

S3

IN1

D4

2

13

D3

D2

3

12

D1

S2

4

11

S1

~

D3

V-

S3

VR

IN2

S

10

IN1

V+
VL

6

9

7

8

V-·
VR

S4

VL

D4

V+

NC

IN2

D2

S2

ThpView

D

Refer to JAN38S10 Information, Military Section

·Common to Substrate and Case
ThpView

'&npRange
-2S to 85°C

Ordering Information - DG189/190/191
PaCkAge
Part Number
16-Pin Sidebraze

16-Pin Sidebraze

-55 to 12S°C
14-Pin Flat Pack

P-32167-Rev. B (11/lS/93)

DG189BP
DG190BP
DG191BP
DG189AP/883,5962-9068901MEA
DG190AP/883, JM38510/11107BEA
DG191AP/883, JM385lO/11108BEA
JM38510/11107BXA
JM38510/11108BXA

o

SWitches Shown for Logic "1" Input

1-25

Siliconix

DG189/190/191

AMcm'bcr of the TBMIC Group

Absolute Maximum Ratings
V+ toV- ........................................... 36V
v+ toVn ........................................... 33V
VntoV- ............................................ 33V
Vn toVn ......................................... ±22V
VL toV- ........................................... 36V
VLtoVIN ............................................ BV
VLtoVR ............................................. BV
VlNtoVR ............................................ BV
VRtoV- ............................................ 27V
VRtoVIN ............................................ 2V

Current(SorD)DG1B9 ...................•........ 200rnA
Current(SorD)DG190,DG191 ...................... 30rnA
Current (All Other Pins) .............................. 30 rnA
Storage Thmperature . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 150'C
Power Dissipation"
16-Pin Sidebrazeb .................................. 900 mW
14-Pin Flat Pack" ................................... 900 mW
Notes:
a. All leads welded or soldered to PC Board.
b. Derate12mW/'Cabove75'C
c. Derate 10 mW/'Cabove 75'C

Specificationsa for DG189
Thst Conditions
Unless Otherwise Specified
Parameter

Symbol

ASuft-'x
-55 to 125'C

V+ = 15V,V- = -15V,VL=5V
VR = OV,VIN = 0.8Vor2 yf

Tempb

1YP"

Mind

I

B Suft"1X
-25 to 85'C

Max55

0.6

-2
-200

nA

10
-200
rnA

Dlgitllllnput
10
20

10
20
(.lA

-250

-250

Dynantlc Characteristics
Thm-OnTIme

Ion

Thrn-Off TIme

toff

Source-Off Capacitance

CS(off)

Drain-Off Capacitance

Cn(off)

Channel-On Capacitance

Cn(on)
OIRR

Off Isolation

See Switching TIme lest Circuit

f= 1 MHz

f - 1 MHz, RL - 75 g

ns

pF
dB

Power Supplies
Positive Supply Current

I+

Room

Negative Supply Current

1-

Room

Logic Supply Current

IL

Reference Supply Current

IR

1-26

VIN = OV, or5V

2.7

Room

3.1

Room

-1

1.5
-5

1.5
5

4.5
-2

4.5

rnA

-2

P-32167-Rev. B (11115193)

Silicanix

DG189/190/191

AMember aftho TBMIC Group

Specificationsa for DG190
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = lSV,V- = -15 V, VL= SV
VR = Ov, VIN = O.B Vor2 yf

ASutlb:
-55 to 125·C
Tempb

'JYpc

Mind

I

B Sutllx
-25 to BS·C

Maxd

Mind

15

-7.5

I

Maxd

Unit

Analog Switch
Analog Signal Range"

-7.5

VANALOG

Full

15

V

roS(on)

Is = -10 rnA, Vo = -7.5 V

Room
Full

18

30
60

SO
75

g

Vs= ±10V,Vo= :FlOV
V+ = 10 V, V- = -20V

Room
Hot

0.06

1
100

5
100

Vs= ±7.S V, Vo= 'F7.SV

Room
Hot

0.1

1
100

5
100

Vs= ±10V,Vo= 'FI0V
V+ = 10 V, V- = -20V

Room
Hot

0.05

1
100

5
100

Vs= ±7.5V,Vo= 'F7.5V

Room
Hot

0.06

1
100

5
100

10(on)

Vo=Vs= ±7.5V

Room
Hot

-0.02

Input Current with
Input Voltage High

IJNH

VIN=SV

Room
Hot

<0.01

Input Current with
Input Voltage Low

IJNL

VIN=OV

Full

-30

Drain-Source
On-Resistance

Source Off
Leakage Current

Drain Off
Leakage Current
Channel On
Leakage Current

IS(ol!)

10(01!)

-2
-200

nA

-10
-200

Digital Input
10
20

10
20

f1A
-250

-250

Dynamic Characteristics
Thrn-On TIme

ton

Thrn-Off TIme

lolf

Source-Off Capacitance

See Switching TIme Thst Circuit
CS(of!)

Drain-Off Capacitance

CO(ofl)

Channel-On Capacitance

CO(on)

Off Isolation

OIRR

f=lMHz

Room

BS

150

IBO

Room

95

130

150

Vs = -5 V, 10 = 0

Room

9

Vo = -SV,ls = 0

Room

6

Vo=Vs=OV

Room

14

Room

>50

f = 1 MHz, RL = 75 g

ns

pF

dB

Power Supplies
Positive Supply Current

1+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3.1

Reference Supply Current

IR

Room

-1

P-32167-Rev. B (11/15193)

VIN = OV, or SV

1.5

1.5

-5

-5
4.5

-2

D

rnA

4.5

-2

1-27

Siliconix

DG189/190/191

AMember of the TEMIC Group

Specificationsa for DG191
Thst Conditions
Unless Otherwise Specified

ASuflh:
-55 to 125°C

I

BSufnx
-25 to 85°C

I

V+ = 15 V, V- = -15 V, VL = 5V
VR = Ov, VIN = 0.8 Vor2 yf

Tempb

VANALOG

Full

15

V

'OS(on)

Is = -10mA, VD = -7.5 V

Room
Full

35

75
150

100
150

Q

Vs = ±10V,VD = :HOV
V+ = 10 V, V- = -20V

Room
Hot

0.05

1
100

5
100

Vs= ±10V,VD= 'F10V

Room
Hot

0.07

1
100

5
100

Vs= ±10V,VD= 'F10V
V+ = 10 V, V- = -20V

Room
Hot

0.04

1
100

5
100

Vs= ±lOV,VD= 'F10V

Room
Hot

0.05

1
100

5
100

ID(on)

VD=VS= ±10V

Room
Hot

-0.03

Input Current with
Input Voltage High

IJNH

VIN =5V

Room
Hot

<0.01

Input Current with
Input Voltage Low

IJNL

VIN = OV

Full

-30

Room

120

250

300

Room

100

130

150

Parameter

Symbol

lYPc

Mind

Maxd

Mind

15

-10

Maxd

Unit

Analog Switch
Analog Signal Range"
Drain-Source
On-Resistance

Source Off
Leakage Current

Drain Off
Leakage Current

Channel On
Leakage Current

IS(off)

ID(off)

-10

nA

-10

-2
-200

-200

Digitallnput
10
20

10
20

JlA
-250

-250

Dynamic Characteristics
111m-On TIme

ton

111m-Off TIme

to!!

Source-Off Capacitance

CS(off)

Drain-Off Capacitance

CD(o!f)

Channel-On Capacitance

CD(on)

OffIsolation

OIRR

See Switching TIme 'lbst Circuit

f= 1 MHz

Vs = -5V,ID = 0

Room

9

VD = -5V,Is = 0

Room

6

VD =Vs=OV

Room

14

Room

>50

f = 1 MHz, RL = 75 Q

ns

pF

dB

Power Supplies
Positive Supply Current

I+

Room

0.6

Negative Supply Current

1-

Room

-2.7

Logic Supply Current

IL

Room

3.1

Reference Supply Current

IR

Room

-1

VIN = Ov, or 5V

1.5
-5

1.5
-5
rnA

4.5
-2

4.5
-2

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature suffIX.
c. lYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1-28

P-32167-Rev. B (11/15/93)

Siliconix

DG189/190/191

AMember of the TBMIC Group

1Ypical Characteristics
Supply Current vs. Temperature

lIN vs. VIN and Temperature

5

100

~

.1

1

VINL=O
VINH=5V
4

]:
.!i

£.

..!.

80

~

:0- r--

.... ~

3

r-...... i"-o..

2

--

IL

.......

-

........

........ .....

60

IINL
rs;

....... ........-1-

..J

.....

........

40

.......

_

.........

-IR
20

1+

r-

o

IINH

o

-55 -35 -15

5

25

45

65

85 105 125

-55 -35 -15

5

Thmperature (0C)

== DG191

--

~

",

.......

IDG1910

:::r-r
==

~ I"""

-

--

DG189

230

210

g
~
:t;

9

-

Vo= -7.5V
Is= -lOrnA

170
150
130

-

0

25

50

75

I

I

1

65

85

......

l/

105 125

- -"." --

..,

to~ ..
",

- -.. ~

,

... .

~

-

tOFF

.......

~

-"'-

Jt'

......r_

./

./
~

./

I"""

~

F-

90
-55 -35 -15

100 125

1

r- _ Vo=7.5V
r- __ Vo= -7.5 V
r-

190

110

-50 -25

45

Switching Time vs. Vo and Temperature (DG189)

rnS(on) vs. Temperature

100

25

Thmperature ("C)

5

25

45

65

85 105 125

Thmperature (0C)

Thmperature (0C)

Leakage vs. Temperature (DG189)

Switching Time vs. Vo and Temperature (DG190/191)

100

130
F=V+=10V
V
20V
5V
r VR=O

f::

120 I - - VO=7.5V
Vo = -7.5 V
110 f--

r- --

r- VL

/

10

IS of!)
1
Io(on) ~

,"'
VA". . .
./I~

0.1
25

45

65

V VV
L

IO(off)

85

105

Thmperature ("C)

P-32167-Rev. B (11/15/93)

,

~

100

~

90

~

80

~

70 ~
-

60

125

~

..,.;

./
......... I~..

.- .........., "
.." .,
. . -1./

- -... - -

IL

.,

50
-55 -35 -15

~

~"

5

toFF

~

t-"

25

45

65

85 105 125

Thmperature (0C)

1-29

..

Silicanix

DG 189/190/191

AMember of the TBMIC Group

1Ypical Characteristics (Cont'd)
In(o!!) vs. Temperature (DGI90/191)

Capacitance vs. Yn or Ys (DGI89)
30

100
V+-lOV,V
10 V, Vs
Vn

20V
10V
26

10
22

.,.

f- BSufflx

""

~

/

18
ASufflx == ~

_I
CD(on)

.-

......

14

Ci(O!f)I

10

25

~O!l

.....

..... ~

JI'

.--

i"""

0.1

_f~H.~HzI

45

65
85
Thmperature CC)

125

105

4
8
-4
o
VD or VS - Drain or Source Voltage (V)

-8

011 Isolation vs. Frequency

Capacitance vs. Yn or Ys (DGI90/191)
20
18

f-

100

~INL ~ 0.8 \,
VINH = 2V

90

J I-

16 f- f=lMHz

80

CD(on)

14
12
10

8

6

70

i'-...

........

~

......

0

~

CS(o!f),_
_I
TCD(o!f) -

r"- i"--..

Capacitance is measured from test terminal
to common.
0

2

4

6

60

DG189

I'.....

50
40

['\.
i"'~

I'
~

i

o
-10 -8 -6 -4 -2

i'
i'"

30 - V+ = 15 V, V- = -15V
f- VR=0,VL=5V
20
RL=75Q
10
f-iINI 1IIIriSI IIIII

4

2

,

IIII
II
II ~G1Jo/l9ll .

........

8

10
f - Frequency (Hz)

VD or Vs - Drain or Source Voltage (V)

Schematic Diagram (1YPical Channel)

S

IN

D

Figure 1.

1-30

P-32167-Rev. B (11/15/93)

Siliconix

DG189/190/191

A Member of the TBMIC Group

Test Circuits
Feedthrough due to charge injection may result in spikes at the leading and trailing edge of the output waveform.
+5V

+15 V
tON: VS=3V
tOFF: Vs = -3 V
V+

VL
VSl
VS2

Logic
Input

tr <10ns
tf <10ns

3V
OV

Sl

Vo

S3
3V

r

OV

OFF

Switch
Output

____________________
-3V

CL (includes fIXture and stray capacitance)
RL

Figure 2.

~

OV

90%

Switching Tune

Application Hints a

VIN

Switch
D0189
D0190

DG191

V+
Positive Supply
Voltage

V-

VL

VII;

Negative Supply
Voltage

Logic Supply
Voltage

Reference Supply
Voltage

(V)

(V)

(V)

(V)

15b

-15

10

-20

12

-12

15b

-15

10
12

Logic Input
Voltage

Vs

Vnm(llllnv
V~as)

AnaIDg Voltage
Range

GND

2.0/0.8

-7.5 to 15

5

GND

2.0/0.8

-12.5 to 10

5

GND

2.0/0.8

-4.5 to 12

5

GND

2.0/0.8

-10 to 15

-20

5

GND

2.0/0.8

-15 to 10

-12

5

GND

2.0/0.8

-7 to 12

5

(V)

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not sUbject to production testing.
b. Electrical Parameter Chart based on V+ = 15 V, VL = 5 V, VR = GND

P-32167-Rev. B (11/15/93)

1-31

-

Siliconix

DG200A

AMcmber afthe TBMIC Group

Monolithic Dual SPST CMOS Analog Switch
Features

Benefits

Applications

• ± 15 v Input Signal Range

• Wide Dynamic Range
• Simple Interfacing
• Reduced External Compon~nt Count

•
•
•
•

• 44-V Maximum Supply Ranges
• On-Resistance: 45 g
• TIL and CMOS Compatibility

Servo Control Switching
Programmable Gain Amplifiers
Audio Switching
Programmable Filters

Description
The DG200A is a dual, single-pole, single-tbrilW analog
switch designed to provide general purpose switching of
analog signals. This device is ideally suited for designs
requiring a wide analog voltage range coupled with low
on-resistance.
. .
,

Each switcll c9ruiuctS equally well in both directions when
..on, a~d blocks up to 30 V peak-to-peak when off. In the on
'condition, this ~-dirootional switch introduces no offset
·!Yt)ltage Qf its oWn.
.'

The DG200A is desiglled on Sil.ii»nb( impt-

Ov, 2.4 V o-+I;;;;N",,2'-1~>-

DffIsolation = 20 log

Figure 3.

P-32167-Rev. B (11/15/93)

I~~ I

Off Isolation

C= RFbypass
XTALK Isolation = 20 log

Figure 4.

Cbannel-to-Cbannel Crosstalk

1-41

Siliconix

DG201N202

AMembcr of the TBMIC Group

Test Circuits (Cont'd)
+15V
Vo

V+
S

/

Vo

I

_

INX

lOOOpF
CL

t

I1VO

L

T

ONI

OFF

~

11Vo = measured voltage error due to charge injection
The charge injection in coulombs is I1Q = CL x 11Vo

Figure S. Charge Injection

Application Hints a
V+
Positive Supply
Voltage

VNegative Supply
Voltage

VIN IAglc: Illput
Voltage
VINH(min)fVlNL(lIUIX)

VsorVn
Analog Voltage
Range

(V)

tv)

tv)

(V)

15

-15

2.4/0.8

-15 to 15

10

-12

2.4/0.8

-12to12

12

-10

2.2/0.6

-101010

8b

-8

2.0/0.5

-8t08

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject 10 production testing.
b. Operation below :l: 8 V is not recommended.

Applications

Logic Input
Low = Sample
Higb = Hold

VIN

5.1Mn

+---+-oVOUT
V-

30pF
Acquisition TIme
Aperature TIme
Sample 10 Hold Offset
Droop Rate

DG201A

-15V

=2S11"
= 111"
=SmV
=5mV/s

Figure 6. Sample-and-Hold

1-42

P-32167-Rev. B (11/15/93)

Silicanix

DG201A/202

AMembcr oltho TBMIC Group

Applications (Cont'd)
160 ,.---,-----,----,,..---...,----,--.....,

fC4

120

Select
~

"0

fc3

TIL

80

I

Select

d
.;
t!l

Control

fC2

i~

Select
fCI
Select

0

V- DG201A GND
-40 '--_-'-_-'-_ _'-----',."._..;a._-'"'
10
100
1k
10 k
100 k 1 M

-15V

Frequency - Hz

AL (Voltage Gain Below Bre"fFrequency)

-15V

>------4---0

VOUT

=

~

= 100 (40 dB)

fc(BreakFrequency) = 2ltR3CX

1

fL (Unity Gain Frequency) = 2ltRICX
Max Attenuation = J"])S(on) "'" -40 dB

10k

Figure 7.

Active Low Pass Filter with Digitally Selected Break Frequency

+15 V

DG200A

..

V+

Vmlo-r----~~-~r ...~--~~
Vm2o-~-----Q1A-'--+_~

+15V
DG202

RpI

lOOn

-15V

0 - - - - -......... > __-J
Gain 2 (xl0) 0-----1---1 ~_ _....J
Gain 1 (xl)

Gain = Rp+RG

Ra

Gain 3 (x100)
Gain 4 (xlOOO)

RG3
lOOn

o-----+-~~ > __-J
o-----+_-----C:-----I

Logic High = Switch On

-15V
Figure 8.

P-32167-Rev. B (11/15/93)

A Precision Amplifier with Digitally Programable Input and Gains

1-43

Silicanix

DG201B/202B

AMember aftho TBMtC Group

Improved Quad CMOS Analog Switches
Features

Benefits

Applications

• ± 22-V Supply Voltage Rating

•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

TIL and CMOS Compatible Logic
Low On-Resistance-IDS(on): 45 C
LowLeakage-ID(on): 20pA
Single Supply Operation Possible
Extended Temperature Range
Fast Switching-toN: 120 ns
Low Glitching-Q: 1 pC

Wide Analog Signal Range
Simple Logic Interface
Higher Accuracy
Minimum uansients
Reduced Power Consumption
Superior to DG201A/202

Industrial Instrumentation
Test Equipment
Communications Systems
Disk Drives
Computer Peripherals
Portable Instruments
Sample-and-Hold Circuits

Description
The DG20lB!202B analog switches are highly improved
versions of the industry-standard DG201A/202. These
devices are fabricated in Siliconix' proprietary silicon gate
CMOS process, resulting in lower on-resi~tance, lower
leakage, higher speed, and lower power' consumption.
These quad single-pole single-throw switches are designed
for a wide variety of applications in telecommunications,
instrumentation, process control, computer peripherals,
etc. An improved charge injection compensation design

minimizes switching transients. The DG201B andDG202B
can handle up to ±22-V input signals, and have an
improved continuous current rating of30 mA. An epitaxial
layer prevents latchup.
All devices feature true bi-directional performance in the
on condition, and will block signals to the supply voltages in
the off condition.
The DG20lB is a normally closed switch and the DG202B
is a normally open switch. (See 'ftuth Thble.)

Fu.!!diom!l Block Diagram and Pin Configuration
'fruth Thble

DG201B

Logie

DGlOIB

oo201B

0

ON

OFF

1

OFF

ON

Logic "0" :s 0.8 V
Logic"l" '" 2.4 V
Switches Shown for Logic "1" Input

IN1
D1
S1

v-

V+

GND

NC

Ordering Information

lhmpRange

Package

Part Number
DG201BDJ

16-Pin Plastic DIP

DG202BDJ
DG20lBDK

-40 to 85°C

16-Pin CerDIP

16-Pin Narrow SOIC

ThpView

DG202BDK
DG201BDY
DG202BDY
DG201BAK
DG201BAK/883

-55 to 125°C

16-Pin CerDIP

DG202BAK
DG202BAK/883

1-44

P-32167-Rev. A (11/15/93)

Siliconix

DG201Bj202B

AMcmbcr of the TaMIC Group

Absolute Maximum Ratings
Voltages Referenced to VV+ ................................................. 44 V
GND ............................................... 25V
Digital Inputsavs, Vo ............... (V-) -2Vto (V+) +2 V
or 30 rnA, whichever occurs first
Current, Any Thrminal ............................... 30 rnA
Peak Current, S or D
(Pulsed at 1 ms, 10% duty cycle max) .................. 100 rnA
Storage Thmperature
(AI<, DK SuffIX)
-65 to 150'C
(OJ, DY SuffIX) ........ -65 to 125'C

Power Dissipation (Package)b
16-Pin Plastic DIPC ................................. 470 mW
16-PinNarrowSOICd ............................... 640mW
16-Pin CerDIPC .................................... 900 mW
Notes:
a. Signals on Sx, Dx, or INx exceedingV+ orV- will be clamped by
internal diodes. Limit fOJWard diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate6.5mW!"Cabove75'C
d. Derate7.6mW!"Cabove75'C
e. Derate 12 mW/'C above 75'C

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -15V
VIN = 2.4 V, 0.8 yf

ASuff'1X
-55 to 125'C
Tempb

'JYpc

Mind

I

Maxd

D Suff'1X
-40 to 85'C
Mindj Maxd

Unit

Analog Switch
Analog Signal Rangee
Drain-Source On-Resistance
roS(on) Match

-15

VANALOG

Full

roS(on)

Room
Full

45

Room

2

Vo = ±10V,Is = 1 rnA

AroS(on)

15

-15

85
100

15

V

85
100

0

Source Off Leakage Current

IS(olf)

Vs = ±14 V,Vo = '1'14 V

Room
Full

±0.D1

-0.5
-20

0.5
20

-0.5
-5

0.5
5

Drain Off Leakage Current

IO(olf)

Vo = ±14V,Vs = '1'14 V

Room
Full

±0.01

-0.5
-20

0.5
20

-0.5
-5

0.5
5

0.5
40

-0.5
-10

0.5
10

Drain On Leakage Current

IO(on)

Vs =Vo = 14V

Room
Full

±0.02

-0.5
-40

nA

Digital Conn-Ill
Input Voltage High

VINH

Full

Input Voltage Low

VINL

Full

Input Current
Input Capacitance

IlNHor
IINL

VlNHorVINL

2.4
0.8

0.8
-1

Full
Room

CIN

2.4

1

-1

1

5 .

V
[.lA

pF

Dynantlc Characteristics
Thrn-On TIme
Thrn-Off TIme
Charge Injection

toN

Vs=2V
See Switching TIme Thst Circuit

tOFF
Q

CL = 1000pF, Vg = OV,Rg = 00

Room
Full

120

300

300

Room
Full

6S

200

200

Room

1

Room

5

Source-Off Capacitance

CS(olf)

Drain-Off Capacitance

CO(olf)

Room

S

Channel On Capacitance

CD(on)

Vo = Vs = OV,f= 1 MHz

Room

16

Off Isolation

OIRR

90

XTALK

CL = IS pF, RL = 500
Vs = 1 VRMS, f = 100 kHz

Room

Channel-to-Channel Crosstalk

Room

95

P-32167-Rev. A (11/15/93)

Vs=OV,f=lMHz

ns

pC

pF

dB

1-45

..

Siliconix

DG201B/202B

AMembcr of the TBMIC Group

Speciticationsa
Thst Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ =15V,V- = -15V
VIN = 2.4 V, O.B vi

A Suffix
-55 to 125°C
Thmpb

lJpc

Mind

I

Maxd

DSufllx
-40 to B5°C
Mind.1 Maxd

Unit

Power Supply
Room
Full

50
100

Positive Supply Current

1+

Negative Supply Current

1-

Room
Full

-1
-5

Power Supply Range for
Continuous Operation

VOP

Full

±4.5

VIN = 00r5V

50
100

f.IA

-1
-5
±22

±4.5

±22

V

Specitications a for Single Supply
Thst Conditions
Unless Otherwise Specified

ASutrlX
-55 to 125°C

I

D Suffix
-40 to B5°C

I

V+=12V,V-=OV
VIN = 2.4 V, O.B vi

Thmpb

VANALOG

Full

roS(on)

VD = 3V,BV,Is = 1 rnA

Room
Full

90

160
200

Thrn-On TIme

toN

120

300

300

tOFF

Vs=BV
See Switching TIme 'lest Circuit

Room

Thrn-Off TIme

Room

60

200

200

Room

4

Parameter

Symbol

lJpc

Mind

Maxd

Mind

12

0

Maxd

Unit

12

V

160
200

n

Analog Switch
Analog Signal Rangee
Drain-Source
On-Resistance

Charge Injection

Q

CL = 1 np, Vgen= 6V, Rgen =

on

0

ns
pC

Power Supply
Room
Full

50
100

Positive Supply Current

1+

Negative Supply Current

1-

Room
Full

-1
-5

Power Supply Range for
Continuous Operation

VOP

Full

+4.5

VIN = 00r5V

50
100

f.IA

-1
-5
+25

+4.5

+25

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature sufrlX.
c. 'JYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1-46

P-32167-Rev. A (11/15/93)

V

Siliconix

DG201B/202B

AMcmbcr of tho 'IBMtC Group

lYPical Characteristics
rnS(on) vs. Vn and Power Supply Voltages
110
100

I'
V

80
70

J

±5V

50
~

I"

~

I

~

r--

"'"

30

9!

60

J

50

±10V - f - -

"

I '\

I

l/~~IV

-

.,

20

175

9!

150

J

125

/
V..,
75

50

~

~

.-.

--

r-.

-W

-5
o
5
Vo - Drain Voltage (V)

10

15

Input Switching Threshold vs. Supply Voltage
2.5 r----r--r--..-----,r----r---.--,----,

E

1\ 7V

- - :...

100

............

21--I---I---1I--!--+--1--I---I

r

J

-55'C " .

-15

20

V~ =5~

f
II

.-

~~
~

25:t

40

o
16

..... 125'C,.

10

rnS(on) vs. Vn and Single Power Supply Voltages
250

200

"ss:c
"". / .....
...- ......

20

I I

/'

//'1

30

±20V

10
-20 -16 -12 -8 -4 0 4 8 12
Vo - Drain Voltage (V)

225

,

70

I

I

60

40

,

_ V+=15V
90
V- = -15V
80

1\

1

90

9!

rnS(on) vs. Vn and Temperature

100

1

C/7~:"'~'j~':~~!'.~.,':'E'~',..~.~t;·~·"::. cl:,·'7'! ~"

1.5

~

10V
~12V

1

-"'''''''':::: .......... ~V
0.5 1--+--f--+-----1I---+-+--f--l

25

o

OL---'---'-----'L-----'---'-------'--'----'

o

2

4

6

B

W

U

U

±4

M

VD - Drain Voltage (V)

Leakage Currents vs. Analog Voltage
80

<-

60 I - V- = -22V
TA= 25'C
40

5
~ 20
t:

a

0

I

..e-20

.....;

.J+ =2~V

I

I

IS(off» 10 off)

~I"""

i""" ID(on)

±6

±B ±10 ±12 ±14 ±16 ±18 ±20

V+, V-Positive and Negative Supplies (V)

Leakage Currents vs. Temperature
1nA

I

--- -

j

V"

100pA

I

- ISOff),IO(:;~

.£I

D

,o-V+-15V
_ V = 15V
Vs, VD ±14V

~

::; WpA

-40
-60

-so
-20 -15 -10 -5
0
5
Thmperature CC)

P·32167-Rev. A (11/15/93)

10

15

20

1pA
-55 -35 -15

5

25

45

65

85

105 125

Thmperature CC)

1-47

Siliconix

DG201B/202B

AMembcroftheTBMICGroup

lYPical Characteristics (Cont'd)
Switching Time VS. Power Supply Voltage

Switching Time VB. Single Supply Voltage
500

v~Jv -

400

g
~co
j

~

.\
'1

g

,

300

~"

\

200

-

~

2

4

6

8
V+

30

f

... ton

100

o

400

-

300

200

100

10

12

14

16

18

o

20

I

o

o

110

~V-iA'

~:tJ
-15

-10

io-""'"

V

~~
~

V+=12V
v-=ov

o

5

±8

±12

±16

±2O

10

~

90

~

80

11IV+~lWII
V- =-lSV

'""

II

"'

70

I I I I I

-5

Ioff

Off Isolation vs. Frequency

120

100

k

±4'

-

Ion

V +. V-Positive and Negative Supplies (V)

Qs QD - Charge Injection VS. Analog Voltage
•

V+ =15V

o

Positive Supply (V)

10

".......

~

~

20

G'
,s,

\

I

II
i'oo..

RL=50Q

I'~-

:1111111111111111111111

15

lOOk

10k

1M

10M

f - Frequency (Hz)

VANALOG - Analog Voltage (V)

Supply Current vs. Switching Frequency
4

3

2

1

....

o
1k

10k

v
lOOk

1M

f - Frequency (Hz)

1-48

P-32167-Rev. A (11/15/93)

Siliconix

DG201B/202B

AMombcr althe TBMtC Group

Schematic Diagram (lYPical Channel)
V+
Sx

VV+

INX

Dx
GND

vFigure 1.

Test Circuits
+15V
V+
Vs= +2V

Logic

S

Vo

Input

3V
OV

tr <20ns
<20ns

50%

tf

RL I C L
lW
35pF

3V

-

-

Switch
Output Vo

Figure 2. Switching Tune
+15 V
+15 V

~~C_--+
v+
~----++--t---CTI

/

son

"'---1-+-7--1-0 Vo
Ov, 2.4 V 0 - 1 - - [ >

ov, 2.4 V

Off Isolation = ZOlog

I~: I

Figure 3. Off Isolation

P-32l67-Rev. A (11/15193)

0-t=IN;.o2""-i~>

C =RFbypass
XTALK Isolation = 20 log

Figure 4. Channel-to-Channel Crosstalk

1-49

Bilicanix

DG201B/202B

AMemberoftheTBMICGroup

Test Circuits (Cont'd)
+15 V
AVo
Vo

V+

s

I

Vo

I

_

INx

lOOOpF
CL

L

T*

ONI

OFF

~

AVo = measured voltage error due to charge injection
The charge injection in coulombs is Q = CLX AVO

Figure 5. Charge Injection

Applications
+15 V

'-----rlt~:t,

-+--------,

-<]I-----t---------t---o

Logic Input
!.ow = S~mp!e
High = Hold

+l5V

VIN

+---+00
V-

DG201B

30pF
-l5V
Aquisition TIme
Aperature TIme
Sample to Hold Offset
Droop Rate

=2Sf1S
=1f1S
=5mV
=5mV/s

Figure 6.

1-50

Sample-and-Hold

P-32167-Rev. A (11/lS/93)

VOUT

Siliconix

DG201B/202B

AMember of tho TBMIC Group

Applications (Cont'd)
160 ,.....--..,.--....,----,...---,--,.----.

fC4

120

Select

TIL
Control

I---!---+---+--j--+--I

fC3
Select
fC2
Select
fCI

o

Select

I---l--~ioo;.

V- DG201B GND

-40 '--_-'-_---'-_ _'-----'_ _
10
-15V

100

1k

""""'_~

10 k

100 kiM

f - Frequency (Hz)

At. (Voltage Gain Below Br"'f Frequency)

-15V

>-----.....--0

Your

~ ~

= 100 (40 dB)

fc(BreakFrequency) = ~
1
fL (Unity Gain Frequency) = 23tRICX
Max Attenuation = IDS(on) "'" -40 dB

10k.Q

Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency

+5V

+15 V

30pF

Vrnlo-~--~~L---~~----I

Vrn2 o-~----~" ...------'
+15 V

CHO-I--t

DG202B

RFI

RFI

RFI

18 k.Q

9.9 k.Q

100 k.Q

RGl
2 k&l

RG2
100 C

100 C

III

-15V
Gain 1 (xl) O - - - - - I H

Gain= RF+RG
RG

>----'

Ra3

Gain 2 (xlO) o-----t----n~---J
Gain 3 (xlOO) 0-------+------1 >--~
Gain 4 (xlOOO) o-------+----------n~---'
Logic High

~

Switch On

-15V

Figure 8. A Precision Amplifier with Digitally Programable Input and Gains
P-32167-Rev. A (11/15/93)

1-51

Siliconix

DG201HS

A Mcmbcr of the TBMIC Group

High-Speed Quad SPST CMOS Analog Switch
Features

Benefits

Applications

•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Fast Switching-tON: 38 ns
Low On-Resistance: 25 g
Low Leakage: 100 pA
Low Charge Injection
TIL/CMOS Logic Compatible'
Single Supply Compatibility
High Current Rating: -30 rnA

Faster Throughput
Higher Accuracy
Reduced Pedestal Error
Upgrades Existing Designs
Simple Interfacing
Replaces Hl201HS, ADG20lHS

Data Acquisition
Hi-ReI Systems
Sample-and-Hold Circuits'
Communication Systems
Automatic Test Equipment
Integrator Reset Circuits
Choppers ,
Gain Switching
Avionics

Description
The DG201HS is an improved monolithic device
containing four independent analog switches. It is designed
to provide high speed, low error switching of analog signals.
Combining low on-resistance (25 Q) with high speed (tON:
38 ns), the DG201HS is ideally suited for high speed data
'
acquisition requirements.

To achieve high voltage ratings and superior switching
performance, the DG201HS is built on a proprietary
high-voltage silicon-gate process. An epitaxial layer
prevents latchup.
Each switch conducts equally well in both directions when
on, and blocks input voltages to the supply values, when off.

Functional Block Diagram and Pin Configuration
Dual-In-Line and SOlC
"'1

.u'l

LCC
-.T,... '""T_
.1'11_

&.I."~

n_
~~

IN2
D1

D2

~

S1

~

V+

V-

V+

NC

NC

GND

NC

NC

S3

S3

54
D3
IN4
D4 IN4 NC IN3 D3
1bpVic:w

Ordering Information
'IempBange
-40 to 85·C

-55 to 12S·C

1-52

Package

Part NUl!lbeJ: ,

16-Pin Plastic DIP

DG201HSDJ

16-Pin Narrow SOIC

'ftuth Thble '

DG20lHSDY

o

ON

16-Pin CerDIP

DG201HSAKI883

1

OFF

LCC-20

DG201HSAZ}883

Logic ''0'' :S 0.8 V
Logic "1" '" 2.4 V
Switches Shown for Logic "1" Input

P-32167-Rev. A (11/15/93)

Siliconix

DG201HS

AMcmbcr oCtbo TBMIC Group

Absolute Maximum Ratings
V+toV- ........................................... 44V
GNDtoV- ..........•............................... 25V
Digital Inputs' Vs, Vo .•............. (V-) -4 V to (V+) +4 V

16-Pin CerDlpd ..............•..................... 900 mW
16-PinNarrowBodySOICC ......................... 600mW
lCC-20d .......................................... 900 mW

or 30 rnA, whichever occurs first
Continuous Current (Any Thrminal) .................... 30 rnA
Current, S or 0 (Pulsed 1 ms, 10% duty cycle) ........... 100 rnA
Storage Thmperature

(ASufflX) .. . . . . . . . . . . .. -65 to lS0'C
(0 SuffIX) . . . . . . . . . . . . .. -65 to 12S'C

Power Dissipation (Package)b
16-Pin Plastic DIP" ................................. 470 mW

Notes:
a. Signals on Sx, Ox, or INx exceeding V + or V-will be clamped by
internal diodes. Umit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC board.
c. Derate 6 mWI'C above 75°C.
d. Derate 12 mWI'C above 75°C.
e. Derate 7.6 mWI'C above 7S'C.

Specificationsa
ASuIIix

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

-55 to 125°C

V+ = 15 v, V- = -15V
VIN = 3 V, 0.8 yf

Tempb

Is = -10 rnA, Vo = :!:8.5V
V+ = 13.5 V, V- = -13.5 V

Room
Full

lYPc

Mind

I

D Sullix
-40 to 85°C

Max In(o~

IV+ = 15V,\r- I= -15V

[IIIIIII~

-55 -35 -15

0 -20

15

F--+-+--+-+--il--+-+--+---I
~~-~~-~-~~-~~-~

-55 -35 -15

5

25

45

65

85 105 125

Thmperature (0C)

P-32167-Rev. B (11/15/93)

Silicanix

DG211/212

AMcmber oftheTBMIc Group

1Ypical Characteristics (Cont'd)
Switching Time vs. Negative Supply Voltage

Charge Injection vs. Analog Voltage

550

70

V+ =15V I
VL=5V
500 I - TA= 25°C

g
~
~

400

.1.

,-- V+ = 15V
V- = 15V
SO '-- VL=5V
TA = 25°C
40

60

"

450

.1

tON

U'
~

0

30
QD

20

10

1'-

0

toFF

350

Qs

~

~

l.---'

-10
-20

300

o

-10

-5

-30
-15

-15

V - - Negative Supply (V)

f=~MHz

I

-10

-5

o

15

-

5

€
-t

./

I

o
-15

l...-- ~

ICD(off) or CS(off

6

10

V+ = 15V
V- = -15V
TA = 25°C

6

24

12

5

-r----r----.----''--r-:;..:;...;...---,

7

I

ICD(on

o

Input Switching Threshold vs. Logic Supply Voltage

TA = 25°C

18

-5

VANALOG - Analog Voltage (V)

Capacitance vs. VD or Vs
30

-10

4
3
2

o
5

10

15

~----~------~----~------~

o

5

VD or VS - Drain or Source Voltage (V)

10

15

20

..

VL - Logic Supply (V)

OtT Isolation vs. Frequency

Channel-to-Channel Crosstalk vs. Frequency

160

160

140
120

120

$'
~

0

f!l

1-'"""+--",Oc-+-----"'~----I-----I-----4

100
80
60

60

1----+----+--.:3io,.-I---'~

40

40

1---+----+----1---

20

w I--+--~--r-~-~I-~
O ........UWLL.l..LWIII..JU-UJUL..J....LJWLL....L..l.JJIW........LWIU
1k

10k

lOOk

1M

f - Frequency (Hz)

P-32167-Rev. B (11/15/93)

10M

100M

100

1k

10k

lOOk

1M

10M

100M

f - Frequency (Hz)

1-63

Siliconix

DG211/212

AMember of the TBMIC Group

Schematic Diagram (lYPical Channel)
V+o-------------~----~~----~--------------------------~_,

r---r--"""t-t--+-o s

GNDo-~>--"'"

.....--I~-....--+--oD
V-o--------+--------~~----~--------------~--------~

Figure 1.

Test Circuits
Vo is the steady state output with the switch ou. Feedthrough via switch capacitance may result.in spikes at the leadiug and trailing edge of the
output waveform.
+5V
+15V
Logic

Input

3V

Ir <2Ons
tf <2On8

50%
OV

v

2V

Switch
Input

Vs

Switch
Output

,,·U

V-

6

-15V

CL (includes fIXture and stray capacitance)
Vo=Vs

Figure 2.

Switching TIlDe
+5V

+5V

RL
RL+ l'JJS(on)

+15V

+15 V

son
Vo

OV,2.4 V

NC
OV,2.4 V

C=RFbypass
-15V

Figure 3. Off Isolation vs. Frequency

1-64

C= RFbypass
XTALK Isolation = 20 log

~

IN2

I~: I

Figure 4.

V
RL

-15V

Crosstalk vs. Frequency

P-32167-Rev. B (11/15/93)

Silicanix

DG211/212

AMem'ber oftbe TSMIC Group

Applications Hints a
logic transition voltage from the normal 1.6 V of TIL to
zero volts by connecting the VLpin to the GND pin. In this
mode of operation the input offset voltage between INx
and VL (= GND) measures less than ± 500 mV.

Some applications of the DG211 or DG212 will find the
logic control inputs INx driven from the output of
comparators or op-amps with nearly plus to minus 15-V
transitions. In these applications the user can shift the input

(V)

VNegative Supply
Voltage
(V)

VL
Logic Supply
Voltage
(V)

20

-20

15

-15

12

-12

10
Bb

-10

10

V+
Positive Supply
Voltage

VIN
Logic Input
Voltage
VINllCmm)NlNLCmax)

VsorVD
Analog Voltage
Range

(V)

(V)

5

2.4/O.B

-20 to 20

5
5

2.4/O.B

-15 to 15

2.4/O.B

-12 to 12

2.4/O.B

-10 to 10

-B

5
5

2.4/O.B

-BtoB

-10

10

5/2

-10 to 10

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
Operation below ± B V is not recommended.

b.

Applications

+5V +15V

+5V

..

Precision Altenuator

,..

VJN(max) =

Vee

Data Bus

D3
D2
Dl
Do

Qo

9Mr.l

Ql

900W

74175

QUAD Q2

150 V

90W

D
FF
Processor
System Bus

R eLK

Q3

9W

INPUT 0 - - - - - - - - '

DG211 or
DG212

~)L.---.....I

an

Your
-15V

Figure s. Microprocessor Contiolled Analog Signal Attenuator

P-32167-Rev. B (11/15193)

1-65

Siliconix

DG211/212

AMember ofthe'nM[C Group

Applications (Cont'd)

VIN 0 - - - - - - - 1

~------~---------------o Vour

+5V

Rl

GAJNlo--~-+_--t

Gain error is determined only by the
resistor tolerance. Op amp offset and
CMRR will limit accuracy of circuit.

90kn

Av=l

Vour
GAJN20-_~-+_--t

VIN

Av=10

(with SW4 closed)

GAJN40-----+----t
Av = 100

R4

DG211 or DG212

1kn

FIgure 6. Precision-Weighted Resistor Programmable-Gain Amplifier

+5V

+15 V

y

Y

v+

Logic Input

Low = Sample
High = Hold

t----t-OVour

Aquisition TIme
Aperature TIme
Sample to Hold Offset
Droop Rate

=25""
=1""

=SmV
'=5mV/s

FIgure 7.

1-66

DG211 Sample-and-Hold

P-32167-Rev. B (11/15/93)

Siliconix

DG211/212

AMcmbcr ofthc TBMIC Group

Applications (Cont'd)
+15V

VI

+5V

VL

DG212
+5V
IN!

74C04

74C04

J

Q

CLK

KCLR

R

IhMM74C73

J

Q

CLK

KCLR

-

-

IN4

0

-

IN!

1b
Scope

-

r-------------------,I

I

+l5V

Channell Amplifier
(Identical to 2, 3, 4)

I

..

I
I

+15 V

I
I
100 k.Q
I--~ 1MQ
I
Position
I
100k.Q
I
I
I R
-15V
I (See Below)
IL _
_ __________________ J
Al is op amp with suitable bandwidth, slew rate, etc., for desired signals.
R is added for extra gain according to formula: Voltage Gain = 1 + 100 k.Q
R

Figure 8.

P-32167-Rev. B (11/15/93)

The "Scope Extender" Which Displays 4-Channels Simultaneously on a Single

nee Scope

1-67

Siliconix

DG211B/212B

AMember of tho TsMIC Group

Improved Quad CMOS Analog Swtiches
Features

Benefits

Applications

• ± 22-V Supply Voltage Rating

•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

TIL and CMOS Compatible Logic
Low On-Resistance-rDS(on): 50 g
Low Leakage-ID(on): 20pA
Single Supply Operation Possible
Extended Temperature Range
Fast Switching-tON: 120 ns
Low Glitching-Q: 1 pC

Wide Analog Signal Range
Simple Logic Interface
Higher Accuracy
Minimum 'fransients
Reduced Power Consumption
.superior to DG2111212

Industrial Instrumentation
Test Equipment
Communications Systems
Disk Drives
Computer Peripherals
Portable Instruments
Sample-and-Hold Circuits

Description
The DG211B/212B analog switches are highly improved
versions of the industry-standard DG211/212. These
devices are fabricated in Siliconix' proprietary silicon gate
CMOS process, resulting in lower on-resistance, lower
leakage, higher speed, and lower power consumption.
These quad single-pole single-throw switches are designed
for a wide variety of applications in telecommunications,
instrumentation, process control, computer peripherals,
::t::. 1'..n ;~pro'!ed ch~!ge injection r.omren~ation design

minimizes switching transients. TheDG211BandDG212B
can handle up to ± 22 V; and have an improved continuous
current rating of 30 mAo An epitaxial layer prevents
latchup.
All devices feature true bi-directional performance in the
on condition, and will block signals to the supply levels in
the off condition.
The DG211B is a normally closed switch and the DG212B
is a normally open switch. (See Truth Table.)

Functional Block Diagram and Pin Configuration
'Jruth Table
DUal-In-Une and SOIC
INl

Logk
IN2

Dl

D2

DGZllB

»ClUB

0

ON

OFF

1

OFF

ON

~

Logic "0" s o.s V
Logic "1" 2: 2.4 V

V-

V+

Switches Shown for Logic "1" Input

GND

VL

Sl

Ordering Information
S4

S3

D4

D3

IN4

IN3

teDlP Rangel

Padalge

Part NUDlbe.l'
DG211BDJ

16-Pin Plastic DIP

DG212BDJ

-40toS5'C
'lbpView

1-68

DG211BDY
16-PinNarrowSOIC

DG212BDY

P-32167-Rev. A (11/15/93)

Siliconix

DG211B/212B

AMember of the TEMIC Group

Absolute Maximum Ratings
Voltages Referenced to VV+ ................................................. 44V
GND ............................................... 25V
Digital Inputs'Vs, VD ............... (V-) -2 Vto (V+) +2 V
or 30 rnA, whichever occurs first
Current, Any Thrminal ............................... 30 rnA
Peak Current, S or D
(Pulsed at 1 ms, 10% duty cycle max) .................. 100 rnA
Storage Thmperature . . . . . . . . . . . . . . . . . . .. . . . .. .. -65 to 125°C

Power Dissipation (Package)b
16-PinPlasticDIP" ................................. 470mW
16-Pin Narrow SDICd ............................... 640mW
Notes:
a. Signals on Sx, DX, or INx exceeding V+ or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6.5 mWrC above 75°C
d. Derate 7.6 mWrC above 75°C

Specifications
D SutrlX
-40 to 85°C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15V,V- = -15V
VL = 5 V, VIN = 2.4 V, 0.8 yo

Temp"

MJnc

Full

-15

I

'JYpb

I

Max"

Unit

15

V

Analog Switch
Analog Sigoal Ranged
Drain-Source On-Resistance
roS(on) Match

VANALOG
roS(on)

VD = ±10V,Is = 1 rnA

AroS(on)

Room
Full

45

Room

2

85
100

Source Off Leakage Current

IS(off)

Vs= ±14V,VD = 'f14V

Room
Full

-0.5
-5

±0.01

0.5
5

Drain Off Leakage Current

ID(off)

VD = ±14 V,Vs = '1'14 V

Room
Full

-0.5
-5

±0.01

OS

Drain On Leakage Current

ID(on)

Vs = VD = 14 V

Room
Full

-0.5
-10

±0.02

2.4

5

n

nA

0.5
10

Digital Control
Input Voltage High

VINH

Full

Input Voltage Low

VINL

FuU

Input Current
Input Capacitance

IINHor IINL

VINH or VINL

Full
Room

CIN

0.8
-1

1

V

vA
pF

5

Dynamic Charallteristills
Thrn-On TIme

tON

Thrn-Off TIme
Charge Injection

Room

300

tOFF

Vs=2V
See Figure 2

Room

200

Q

CL= l000pF, Vg = Ov,Rg = on

Room

1

Room

5

Source-Off Capacitance

Cs(or!)

Drain·Off Capacitance

CD(or!)

Channel On Capacitance
Off Isolation
Channel-to-Channel Crosstalk

P-32167-Rev. A (11/15/93)

Vs=OV,f=IMHz

Room

5

CD(on)

VD = Vs = OV,f= 1 MHz

Room

16

DIRR

CL = 15 pF,RL = 50n
Vs = 1 VRMS. f = 100 kHz

Room

90

Room

95

XTALK

ns
pC

pF

dB

1-69

..

Siliconix

DG211B/212B

AMcmbcr of the TBMIC Group

Specifications
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -15V
VL = 5 V, VIN = 2.4 V, O.S yo

D Suffix
-40 to S5'C
Temp"

Mine

J

1)pb

JMax"

Unit

Power Supply
I+

Negative Supply Current

1-

Room
Full

IL

Room
Full

VOP

Full

VIN = 00r5V

Logic Supply Current
Power Supply Range for
Continuous Operation

10
50

Room
Full

Positive Supply Current

-10
-50

fIA
10
50
±22

V

Max"

Unit

12

V

±4

Specifications for Single Supply
D Suff"1X
-40 to 85'C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+=12V,V-=OV
VL = 5V, VIN = 2.4 V, O.S yo

Temp"

Mine

Full

o

I

1)pb

I

Analog Switch
Analog Signal Ranged

VANALOG

Drain-Source On-Resistance

VD = 3V,SV,Is = 1 rnA

Dynamic Chal'aeter1sti~
Thrn-On TIme

tON

Thrn-OffTIme

tOFF

Charge Injection

Q

VS=SV
See Figure 2
CL= 1 nF, Vgcn= 6 V, Rsen =

on

Room

300

Room

200

Room

4

ns
pC

Power Supply
Room
Full

Positive Supply Current

I+

Negative Supply Current

1-

Room
Full

IL

Room
Full

VOP

Full

VIN = 00r5V

Logic Supply Current
Power Supply Range for
Continuous Operation

10
50
-10
-50

fIA
10
50

+4

+44

V

Notes:
a. Room = 25'C, Full = as determined by the operating temperature suffIX.
b. 'JYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.

1-70

P-32167-Rev. A (11/15/93)

Siliconix

DG211B/212B

A Member oftbe TEMIC Group

'JYpicaJ Characteristics
IllS(on) vs. Vn and Power Supply Voltages
110
CI

13c

;;l

.:a
~

.-

A

100

A

90

:/'

80
70

~

60

0
til

"

50

.§

40

=

~

I

i

g

30

1\
If ,

,. "'"...."'" <-

~

±5V

225
200

-j

-

<±IOIV

~

175

~

125

til

100

0

"0

.~

~

150

75

I

50

J

25

I /

50

I-' ./~15IV

-15

20

:....

~12V

E

15V

10
0

L

-10

10

15

~~

ID(~

...~

V

i--f--'"

--

IS(off).ID off) -

V

-20

1"""'---

V

-30

6

8

10

12

14

-20 -15 -10 -5

16

VD - Drain Voltage (V)

30

F V+
1= V r

15V
15V
Vs, VD - ±14 V

..... V

()

.2:

:::

"~
0

u"
I

10pA

~

V+ = 15V
0 - V- = -15VI"""'"

0

25

45

65

Thmperature CC)

P·32167-Rev. A (11/15/93)

/

I

V

5

10

15

20

..

Qs Qn - Cbarge Injection vs. Analog Voltage
•

10

-10

-20
1pA
-55 -35 -15

5

20

~ 100pA

IS(off).ID(off)

0

VANALOG - Analog Voltage (V)

Leakage Current vs. Temperature

.:j

-5
o
5
VD - Drain Voltage (V)

---

-40
024

E

-10

V+ =22V
30 I - V- = -22V
TA=25'C
20

.:j

o

InA

-

-55'C __

.........

Leakage Currents vs. Analog Voltage

I

--

~

40

":::
8

~10V

-&:- ,.

85'C

.-...

~~

25'~

1"'000..

o
16

125'C~

i'..

10

\\ 7V

~:-

I--""'"

20

I I

"I,

lL ~

30
±20V

~
.2:
d

/

V-

40

V~ =5~

,

I \
I

V/\

60

Ills (on) vs. Vn and Single Power Supply Voltages
250

j

/'

70

10
-20 -16 -12 -8 -4 0 4 8 12
VD - Drain Voltage (V)

CI

V- = -15V

80

r"

20

I- V+=15V

90

'/

I>:

0

rnS(on) vs. Vn and Temperature

100

85

105 125

-

V

~ f-~

V+=12V
V-=OV

/

-30
-15

-10

-5

o

5

10

15

VANALOG - Analog Voltage (V)

1-71

Siliconix

DG211B/212B

AMcm'bcr ofthel'BMlc Group

'JYpical Characteristics (Cont'd)
Off Isolation vs. Frequency

120
110
100

iii'

90

~

80

:I~+;+~N"I
V- = -15V

,~

IIII
,~

~

il l

I

RL=50Q

70

1' ....

60
50
40

10k

1M

lOOk

10M

f - Frequency (Hz)

Schematic Diagram (1Ypical Channel)
V+

Sx

1Nx

GND

V-

;

~

t

Level

v-

Shift!

y v+

Drive

lJ~

t

9

o Dx

Figure 1.

Test Circuits
+15V

V+
VS=+2V

o-f-"-S_ _- Vo

3V
OV

50%

Ir <20ns
tf <20 no

3V
Switch
Output Vo

Vo=VS

RL + 1'])S(0I1)

Figure 2.

1-72

Switching TIme
P-32167-Rev. A (11/15/93)

Siliconix

DG211B/212B

AMcmbcr ottbcTBMIC Group

Test Circuits (Cont'd)
+15 V
+15V

,..::----+t-+---01 ....---++If--t_-o

500

Va

NCO-+-----~~~--~~--~-o Va

Ov, 2.4 V O--fI::.N;.o2_C>-

Off Isolation = 20 log

Figure 3.

I~~ I

C= RFbypass

-15V

XTALK Isolation = 20 log

Off Isolation

Figure 4.

Channel-to-Channel Crosstalk

+15V
Va

V+

Rg

S

/

Vo

I

1Nx

l000pF
CL

t

AVo

L

T

ONI

OFF

~

AVo = measured voltage error due to charge injection
The charge injection in coulombs is Q = CLX AVo

Figure 5.

Charge Injection

Applications
+ 5V

+15V

D

Logic Input
Low = Sample
High = Hold

+15V

50pF

2000

+---+-0 VOUT
11000PF
30pF
-15V
Aquisition TIme
Aperature TIme
Sample to Hold Offset
Droop Rate

= 25lls

=11lS
=5mV
=5mV/s

P-32167-Rev. A (11/15193)

Figure 6.

Sample-and-Hold

1-73

Siliconix

DG211B/212B

AMember oftbe TBMIC Group

Applications (Cont'd)
+15Y

fC4
Select

TIL

160

,----r---,-----,----,--.,-----.

120

I--+--+--+----I---!---I

80

I---+--"'Io.---t--+--+--I

!g

fo
Select

I

.~

Control

".t 40 I-'iii~+or-~~",,;;;;~~-.t---+-~

fez
Select

~

fCl
Select

o

I----I---=p~

Y_ DG211B GND
-40
10

AL (Yoltage Gain Below Breat' Frequency) =

-15Y

>------'---0

Rl =10kn

100
1k
10k
Frequency - Hz

YOUT

R3
Ri:

lOOk

1M

= 100 (40 dB)

fc(BreakFrequency) = :btR3CX
1

fr. (Unity Gain Frequency) = :btRICX
Max Attenuation = l'DS(on) ... -40 dB
lOkn

Figure 7.

+5Y

Active Low Pass Filter with Digitally Selected Break Frequency

+15Y

30pF

Yrnlo-~--~~L---~~--~
Yrn2o-+---~"

...._ _- - l
+15Y

CH

DG212B

Rpl
18kn

Rpl
9.9kn

Rpl
lookn

RGI
2kn

RG2
100'-1

RG3
100'-1

-15Y

Gain = Rp+RG
RG

Gain 1 (xl) 0------11-1 >--~
Gain 2 (xlO) o-----+---C_----J
Gain 3 (xlOO) 0-------11----1;1>----'
Gain 4 (xl0oo) o-----+------D_----J
Logic High = Switch On
-15Y

Figure 8.

1-74

A Precision Amplifier with Digitally Programable Input and Gains
P-32167-Rev. A (11/15193)

Silicanix

DG221

AMember of the TBMIC Group

Quad SPST CMOS Analog Switch with Latches
Features

Benefits

Applications

•
•
•
•
•

• Compatible with Most ,..P Buses
• Allows Wide Power Supply Tolerance
Without Affecting TIL Compatibility
• Reduced Power Consumption
• Allows Flexibility of Design

•
•
•
•
•
•

Accepts lS0-ns Write Pulse Width
S-V On-Chip Regulator
Built on PLUS-40 Process
Latches Are 'fiansparent with WR Low
Low On-Resistance: 60 Q

!,P Based Systems
Automatic Test Equipment
Communication Systems
Data Acquisition Systems
Medical Instrumentation
Factory Automation

Description
The DG221 is a monolithic quad single-pole, single-throw
analog switch designed for precision switching applications
in communication, instrumentation and process control
systems. Featuring independent onboard latches and a
common WR pin, each DG221 can be memory mapped,
and addressed as a single data byte for simultaneous
switching.
Designed on the Siliconix PLUS-40 CMOS process, the

DG221 combines low power and low on-resistance (60 Q
typical) while handling continuous currents up to 20 rnA.
An epitaxial layer prevents latchup.

The device features true bidirectional performance in the
on condition. These switches guarantee a rail-to-rail
blocking capability (44 V max), in the off condition.

Functional Block Diagram and Pin Configuration

Four Latchable SPST Switches per Package

'!ruth Table
Dual-In·Une and SOIC

INx

WR

0

0

ON

1

0

OFF

V-

V+

X

1

GND

III

Control data latched-in,
switches on or off as selected
by last INx

I

X

Switch

Maintains previous state

Logic "0" s 0.8 V
Logic"1"" 2.4 V
Switches Shown for Logic "1" Input

Ordering Information

1bpView

P·32167-Rev. B (11/15/93)

Pan Number

Temp Range

Pac:kage

O'Cto70'C

16-Pin Plastic DIP

DG221CJ

-40'C to 8S'C

16-Pin Narrow SOlC

DG221DY

-S5'C to 125'C

16-Pin CerDIP

DG221AK/883

1-75

Silicanix

DG221

AMembcr of tho TBMIC Group

Absolute Maximum Ratings
Voltages Referenced to vv+ .•...............•...•...............•....•....•. 44V
GND •....•.•....•.•....•....•.....•.....•..•....... ZSV
Digital Inputsa, Vs. VD ............... (V-) -2 Vto (V+) +2V
or 20 rnA, whichever occurs first
Continuous Current (Any Thrminal) .................... 30 rnA
Continuous Current, S or D ...•...•..•.•..•....... :... 20 rnA
Peak Current, S or D (Pulsed 1 ms, 10% duty cycle) ....... 70 rnA
Storage Thmperature:

(AK Suffix) •........... -65 to 150°C
(CJ and DY SuffIX) •.•••• -65 to 1ZSoC

Power Dissipation (Package)b
16-Pin CerDIPC ...................................• 900 mW
16·Pin PlasticDIpd ................................. 470 mW
16-Pin SOlO' ....•....•.•..........•..............• 600 mW
Notes:

a. Signals on SX, Dx. or INX exceeding V + or V-will be clamped by
intemal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 12 mWrC above 75°C
d. Derate 6.5 mWrC above zsoC
e. Derate 7.7 mW/oC above 75°C

. Speciticationsa
ASufl"IX
-55 to 1ZSoC

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+=15Y,V-=-15V .
VIN = 2.4 Y, O.Sf V, WR: = 0

Thmpb

Is = -lOrnA, VD = ±10V

'JYpc

Mind

I

DSuflix
-40 to S5°C

Mud

Mind

15

-15

I

Mud

Unit

Analog Switch
Analog Signal Range"

-15

15

V

90
135

g

VANALOG

Full

Drain-Source
On·Resistance

lDS(on)

Room
Full

60

Source Off
Leakage Current

IS(off)

Room
Full

±0.01

-1
-100

1
100

-5
-100

5
100

Drain Off
Leakage Current

ID(off)

Room
Full

±0.02

-1
-100

1
100

-5
-100

5
100

±0.01

-1
-200

1
200

-5

5
200

Drain On
Leakage Current

Vs=±14Y,VD='F14V

ID(on)

VS=VD=±14V

Room
Full

90
135

-200

nA

Digital Control
Input Current

VIN = OVor = 2.4 V

Thm-OnTIme

toN

Thm-OffTIme

tow

Thm-On TIme Write

See Figure 2

toN,WR

See Figure 3

Room

550

550

Room

340

340

Room

550

550

340

toFBWR

Room

Write Pulse Width

tw

Room

120

150

150

Input Setup TIme

ts

Room

130

180

180

Input Hold TIme

tH

FulI

0

20

20

Room

20

Room

8

Thm-OffTIme Write

Charge Injection

Q

Source-Off Capacitance

Cscoff)

Drain-Off Capacitance

CD(off)

Channel-On Capacitance

CD(on)

Off Isolation

OIRR

Interchannel Crosstalk

XTALK

1-76

See Figure 4

CL=1000pF
VGBN=OY,RGBN=Og

f= 1 MHz, Vs. VD =OV

Vs = 1 Vp-~f= 100kHz
CL=15p ,RL=IW

Room

9

Room

29

Room

70

Room

90

340

ns

pC

pF

dB

P-32167-Rev. B (11/15/93)

Siliconix

DG221

A Member of the TBMIC Group

Specificationsa
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+=15V,V-=-15V
VIN = 2.4 V, 0.8r V, WR = 0

ASull"1x
-55 to lZS'C
Tempb

'JYpc

Mind

I

Maxd

D SutTa
-40 to 85'C
Mind

I

Maxd

Unit

Power Supplies
Positive Supply Current
Negative Supply Current

All Channels On or Off
VIN = OVor2.4 V

rnA

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = ZS'c, Full = as determined by the operating temperature suffIx.
c. 1Ypical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum. is used in this data sheet.
e. Guaranteed by design. not subject to production test.
f. VIN = input voltage to perform proper function.

Schematic Diagram (1YPical Channel)

V+

S
GND
INx

Level
Shift!
Drive

WR
D

0

V-

Figure 1.

P-32167-Rev. B (11/15/93)

1-77

Silicanix

DG221

AMemberoftheTBMICGroUp

Test Circuits
+lSV
V+

Logic
Input
Switch
Input
Switch
Output

3V
Ir < 10ns

OV

tf < 10ns

Vs
Vo

CL (includes fixture and stray capacitance)

Vo=Vs
Figure z.

Switching Tune

3V

WIt"
Vo

OV
3V

IN

OV
Vs
Your
Vo
toN,WR ...,

CL (includes fixture and stray capacitance)

Vo=Vs
RL

t-

-+j

r-

+ 1'])5(on)
Figure 3.

Wit Switching Tune

3V
IN

3V
tH = Hold TIme

L

ts=S~Tune

tw = WIt" Pulse Width

The latches are level sensitive. When Wit is held low the latches are transparent and the switches
respond to the digital inputs. The digital inputs are latched on the rising edge of WR:.

Figure 4. WR Setup Conditions

1-78

P·32167-Rev. B (11/15/93)

Siliconix

DG221

AMcmbcr ofthc TBMIC Group

Test Circuits (Cont'd)
+15V

V+

Rg

I

Vo

S

Vo
CL
I1000 PF

INx

t

AVO

L

T

OFFI

ON

~

AVO = measured voltage error due to charge injection
The charge injection in coulombs is Q = CLX AVO

Figure 5. Charge Injection

+15V

~I-C_--+
i-'!-----f.+-+--01 "--++.1-_-0 Vo

OffIsolation = 20 log
C= RFbypass
XTALKIsolation = 20 log

I~~ I

C=RFbypass

Figure 6.

Figure 7.

Off Isolation

..

Channel-to-Channel Crosstalk

Application Hints a

Positive Supply
Voltage
(V)

lITegadve Supply
Voltoge
(V)

GN'D

WR

VlN
Logie Input
Voltage
VlNB(mln)iVlNl.{1II8lI)

(V)

(V)

(V)

(V)

v+

v-

VS~VJ)

Analog Voltage

Range

15

-15

0

2.4/0.8

2.4/0.8

-15 to 15

20

-20

0

2.4/0.8

2.4/0.8

-20 to 20

10

-10

0

2.4/0.8

2.4/0.8

-10 to 10

10

-5

0

2.4/0.8

2.4/0.8

-StoW

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.

P-32167-Rev. B (11/15/93)

1-79

Siliconix

DG221

AMcmber ofthc 1'BMICGrOUP

Applications
+15V
9MQ

V+
DG221

900kn

IN2
90kn
Data Bus

:>

IN3

9kn

1kn

GND

V-

-15V

The TL081 is used as an output buffer while
the voltage divider provides attenuation.

Figure 8.

tAP-Controlled Analog Signal Attenuator

Output Attenuation for Figure 8

1l-uth Thble

On

Wi

1N1

IN}

IN3

IN4

0

All

0

0

1

1

1

0.1

0

None

0

1

0

1

1

0.01

1

0

1

0

1

1

0

1

0.001

1

1

0

2

0

1

1

1

0

0.0001

1

0

1

0

3

1

1

0

0

4

1N1

INz

IN3

1N4

WRa

0

0

0

0

1

1

1

1

0

1

1

1

0

1
1

Switch

Gain

Notes:
a. WR may be held at "0" for temporary operation similar to DG201J'{s. With WR at "0" SWl will remain on as long as INl is held at "0".

1-80

P-32167-Rev. B (11115/93)

Siliconix

DG243

AMember of the TBMIC Group

General Purpose
Monolithic Dual SPDT CMOS Analog Switch
Features

Benefits

Applications

•
•
•
•
•

• LowPower
• Reduced Switching Noise
• Reduced Need for Buffers

•
•
•
•
•

PLUS-40 Process
Make-Before-Break Operation
Full Rail-ta-Rail Analog Signal Range
'Ihle TIL Compatibility
LowrDS(on): 300

Programmable Gain Amplifiers
Analog Multiplexing
SelVo Control Systems
Programmable Filters
Audio Switching

Description
The DG243 is a monolithic dual SPDT analog switch
designed for general switching applications in
communication, instrumentation, and process control
systems. Featuring make-before-break action, the DG243
is used in closed loop systems to switch gain or bandwidth
networks without opening the loop.

The DG243 is designed on the Siliconix PLUS-40 CMOS
process to combine low power dissipation with a high
breakdown voltage rating of 44 V. An epitaxial layer
prevents latchup.
Each switch conducts equally well in both directions when
on, and blocks up to 30 V peak-to-peak when off.

Functional Block Diagram and Pin Configuration

Dual-In-Line

1ruth Table
Dl

Sl

Logie

SWbSW~

SW~,SW4

NC

INl

0

OFF

ON

03

V-

1

ON

OFF

S3

GNO

S4

VL

04

V+

NC

IN2
~

02

D

Logic "0" s 0.8 V
Logic "1" '" 2.0 V
Switches Shown for Logic "1" Input

Ordering Information

Teml'Range

Package

0·Cto70·C

16-Pin Plastic DIP

OG243CJ

ThpView

P-32167-Rev. A (11/15/93)

1-81

Siliconix

DG243

AMember of the Tl3MIC Group

Absolute Maximum Ratings
V+toV- ........................................... 44V
GNDtoV- .......................................... 25V
VL ................................. (GND - 0.3 V) to 44 V
DigitalInputs'Vg, VD ............. (V-) -2Vto(V+ plus2V)
or 30 rnA, whichever occurs first
Current (Any 1l:rminal) Continuous .................... 30 rnA
Current, S or 0 (Pulsed 1 ms 10% duty) .....•.......... 100 rnA
Storage 1l:mperature .......................... -65 to 125'C

Power Dissipation (Package)b
16-PinPlasticDIPC ................................. 450mW

Notes:
a. Signals on Sx, Ox, or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate6mWI'Cabove75'C

Specifications
e

Test Conditions
Unless Otherwise Specified
Parameter

Sufllx
Ot070'C

V+ = 15V,V- = -15V
VL = 5V,VIN = 2.0 V, 0.8 V"

Temp"

Mine

VANALOG

Full

-15

rnS(on)

Is = -lOrnA, VD = ±10V

Room
Full

Symbol

I I
'Jypb

Max"

Unit

15

V

30

50
75

r.l

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance

IS(off)
Switch Off Leakage Current

VD= ±14V,Vs= =F14V
ID(off)

Channel On Leakage Current

ID(on)

VD=VS= ±14V

Room
Full

-1
-100

±0.3

1
100

Room
Full

-1
-100

±0.3

1
100

Room
Full

-2
-200

±0.5

2
200

nA

Digital Control
Input Current with V!!" Low

VIN=0.8V

Input Current with VIN High
Dynamic Characteristics
1I1rn-Onnme

toN

1I1rn-Offnme

toFF

Charge Injection

Q

Off Isolation Reject Ratio

OIRR

Crosstalk (Channel-to-Channel)

XTALK

RL = 1 W, CL = 35 pF, See Figure 2
CL = 1000 pF, VGEN = Ov, RGEN = 0 r.l
RL = 75r.l,f= 1 MHz

Source-Off Capacitance

CS(of!)

Drain-Off Capacitance

CD(of!)

Room

250

700

Room

390

1200

Room

60

Room

75

Room

89

Room

15

Room

17

CD + S(on)

Room

45

Positive Supply Current

I+

Room

Negative Supply Current

1-

Room

Logic Supply Current

IL

Room

IGND

Room

Channel-On Capacitance

f=lMHz,Vs=OV

ns
pC
dB

pF

Power Supplies

All Channels On or Off
Ground Current

180
-300

100
-300

300

-150
300

~

-140

Notes:

a. Room = 25'C, Full = as determined by the operating temperature suffIX.
b.
e.
d.
e.

1»pical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
Guaranteed by design, not subject to production test.
VIN = input voltage to perform proper function.

1-82

P-32167-Rev. A (11115193)

Siliconix

DG243

AMember oftheTBMIC Group

Schematic Diagram (1YPical Channel)
V+

r---~----~+-~_OS

GND

INx

L----+----~

__~_OD

VFigure 1.

Test Circuits
Va is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the
output waveform.
+5V

Logic
Input
Switch
Input
Switch
Output

+15 V

3V
50%
OV

t, < 20ns
tf < 20ns

Vs
Va

CL (includes fixture and stray capacitance)

Vo=Vs

Figure 2.

+5V

RL
RL+ I'J)S(on)

III

Switching Tune

+15 V

Va

Figure 3.

P-32167-Rev. A (11115193)

Charge Injection

1-83

Silicanix

DG243

AMember oltho ~MIC Group

Applications
The make-before-break operation of the DG243 provides
simple transient suppression in these two important
applications.

occurring at the inverting input of the op amp.
Consequently, these transients are not amplified to VOU'F

Figure 4 takes advantage of the make-before-break
Figure 3 shows a minimum amount of glitching during operation of the DG243 by shorting transition current to
changes of gain states. The relatively low impedance of the real ground instead of virtual ground. The best results are
gain setting resistors (10 kg, 1 kg, and 100 g) shunt the obtained by selecting an op amp with the proper offset
injected charge-to-ground minimizing transient effects voltage specification.

Sl

VINl

.n

Your

INl

~

VIN2

'U

IN

DG243

J!igure 4. Minimizing Giitches in Audio Swiiching

Your
High Speed Op Amp

10kn

lkn

.n o-r::IN,:.ol_r>1l:l.DG243

VIN ---------------------

vour~

10012
Clean transitions no glitches due to op amp open loop.

J!igure 5. Make-Before-Break Improves uansient Response in Programmable Gain Amplifiers

1-84

P-32167-Rev. A (11/lS/93)

Siliconix

DG271

AMemberofthc TBMIC Group

High-Speed Quad Monolithic SPST CMOS
Analog Switch
Features

Benefits

Applications

•
•
•
•
•

• Fast Settling Times
• Reduced Switching Glitches
• High Precision

•
•
•
•
•

Fast Switching tON: 55 ns
Low Charge Injection: 9 pC
Low rDS(on): 32 Q
TIL Compatible
Low Leakage: 50 pA

High Speed Switching
Sample/Holds
Digital Filters
Op Amp Gain Switching
Flight Control Systems

Description
The DG271 high speed quad single-pole single-throw
analog switch is intended for applications that require low
on-resistance, low leakage currents, and fast switching
speeds.

Built on Siliconix' proprietary high voltage silicon gate
process to achieve superior on/off performance, each
switch conducts equally well in both directions when on,
and blocks up to the supply voltage when off. An epitaxial
layer prevents latchup.

Functional Block Diagram and Pin Configuration
Dual-In·Line and SOIC
IN1

IN2

D1

D2

S1

S2

v-

v+

GND

NC

S4

S3

D4

D3

IN4

IN3

D

D4 IN4 NC IN3 D3
ThpView

Top View
Ordering Information

Temp Range

Package

Part Number

o t070·C

16·Pin Plastic DIP

DG271CJ

-40t085·e

16-Pin Narrow sOle

DG271DY
DG271AK

16-Pin CerDIP

DG271AK/883
5962·8671602MEA

-55 to 125·C

DG271AZ/883
LCC-20

P-32167-Rev. B (11/15193)

'ftuth Thble
Switch

o

ON
OFF

Logic "0" s: 0.8 V
Logic"l" '" 2 V
Switches Shown for Logic "1" Input

5962-8671602M2A

1-85

Silicanix

DG271

AMomber of tho TSMIC Group

Absolute Maximum Ratings
V+toV- ........................................... 44V
GNDtoV- .......................................... 2SV
Digital Inputs" Vs. VD ............. (V-) -2 V to (V+) +2 V or
20 rnA, whichever occurs first
Current, Any Thrminal Except S or D ................... 30 rnA
Continuous Current, S or D ........................... 20 rnA
Peak Current, S or D
(Pulsed at 1 ms, 10% duty cycle max) .................. 100 mA
Storage Thmperature
(AI(, AZ, DY Su(ftx) . . . .. -65 to 150'C
(CJ SuffIX) ............. -65 to 125'C
Power Dissipation (Package)b
16-Pin Plastic DIP" .....•........................... 470 mW
16-PinPlasticNarrowSOICd ......................... 600mW
16-Pin CerDIP" ...............•.................... 900 mW
LCC-2of •........•............•................... 750 mW

Notes:
a. Signals on Sx. Dx, or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6.5 mWI'C above 75'C
d. Derate 7.6 mW/'C above 75'C
e. Derate 12 mWI'C above 75'C
f. Derate 10 mWI'C above 75'C

Specificationsa
Test Conditions
Unless Otherwise Specified

Parameter

ASutr.x
-55 to 12S'C

I

C, DSutrlX
Ot070'C
-40 to 85'C

I

V+ = 15V,V- = -15V
VJN = 2 V, 0.8 yf

Tempb

VANALOG

Full

roS(on)

Is= 1 rnA, VD = ±10V

Room
Full

32

Room
Full

±0.05

-1
-100

1
100

-1
-100

1
100

Room
Full

±0.05

-1
-100

1
100

-1
-100

1
100

Vs=VD=±14V

Room
Full

±0.05

-1
-200

1
200

-1
-200

1
200

VJN=2 V

Room
Full

0.010

-1
-10

VJN= 15 V

Room
Full

0.010

VJN= 0 V

Room
Full

0.010

Room
Full

55

65
80

65
80

Room
Full

SO

65
80

65
80

Room

9

Symbol

1)pc

Mind

Mud

Mind

15

-15

Mud

Unit

15

V

SO
75

C

Analog Switch
Analog Signal Range<
Drain-Source On-Resistance

IS(ofl)
Switch Off Leakage Current

VD= ±14V,Vs= 'l'14V
ID(ofl)

Channel On Leakage Current

ID(on) +
Is(on)

-15

SO
75

nA

Digital Contr4l)

Input Current with Voltage High

Input Current with Voltage Low

IJNH

IINL

-1
-10
1
10

-1
-10

1
10

tJA

-1
-10

Dynamic Claaraeteristlcs
Thrn-OnTIme
Thrn-OffTIme
Charge Injection

1-86

toN

Vs= ±10V
See Figure 2

toFF
Q

CL = loopF, Vgen = OV
Rgen = OC

ns

pC

P-32167-Rev. B (11115/93)

Siliconix

DG271

AMember ofthc TBMIC Group

Specifications a
Test Conditions
Unless Otherwise
Specified
Parameter

V+ = 15V,V- = -15V
VIN = 2 V, O.S yf

Symbol

C, D Suff'1X
Ot07O·C
-40 to S5·C

ASuff'1X
-55 tol2S·C

1YPc

Tempb

Mind

I

Maxd

Mind

I

Max d

Unit

Dynamic Characteristics (Cont'd)
Source Off Capacitance

CS(off)

Drain Off Capacitance

CO(off)

Channel On Capacitance

Co (on)

Off Isolation

OIRR

Vs = OV,VIN = 5V
f=lMHz

Room

6

Room

S

Vo =VS = OV,VIN = OV

Room

24

Room

75

Room

95

Room
Full

4.3

Room
Full

-3.4

RL = 50r.l,f= 1 MHz

Crosstalk

XTALK

pF

dB

Supply

I+

Positive Supply Current

7.5

7.5
11

11
rnA

All Channels On or Off
1-

Negative Supply Current

-6
-10

-6
-10

Notes:
a. Refer to PROCESS OPTION FLOWCHAKT (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25·C, Full = as determined by the operating temperature suffix.
c. 1}rpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1Ypical Characteristics
Leakage Currents vs. Analog Voltage
1

OJ

~

i
~
o
j
.~

Q

o

so
~
.e:

~

60

40 1--+-....j,oO!=--.j....::~-~-+--d--l

1

J

i

-50

~ -100

1

1

IO(off) or lS(off)

/'

.-

I

// ".(

rl~

TA= 2S·C
20
-15

-10

-5

o

5

10

Vo - Drain Voltage (V)

P-32167-Rev. B (11/15/93)

15

--

i..--""

IO(on)

-150
-15

-I

-10

-5

o

5

1

10

15

VANALOG - Analog Voltage (V)

1-87

Siliconix·

DG271

AMember of the TaMIe Group

'fYpical Characteristics (Cont'd)
Input Switching Threshold

2.5

Supply Current vs. Switching Frequency
8

7

2.0

6

~
;l:'

1.5

5

,£

1.0

4
3

1+

...... ~

1-

.".

1'10"

0.5

2
0

1
0

±10

±5

±15

1k

±20

Switching Frequency (Hz)

Leakage Currents vs. Temperature

lllS(on) vs. VD and Temperature
~

1M

lOOk

10k

V+, V-Positive and Negative Supplies M

10nA

70

CI
~

.j
..

60
50

P:

0

40

~

~

30

'01

IS
I

!

a
-15

-10

o

-5

5

10

15

Thmperature (0C)

Vo - Drain Voltage (V)
Switching Times vs. Temperature
90

80 I-

J+=~5)

V- = -15V

70

t(on)~

50

L

~

",

~

",
I(oy

V

40

~

,

V
~

~

\

160
-;;;-

S

140

\

"S
t.:::

120

J

100,

~

\
\

80
60

".

30
-55 -35 -15

-y~

\
" "I(on)

"

I'...

"'.....

""i'-...

~

"""'--

~

r-

40
5

25

45

65

Thmperature (0C)

1-88

/'

V

l,;1

60

Switching Times vs. Power Supply Voltage

180

85

105 125

±4

±6

±8

±1O ±12 ±14 ±16 ±18 ±20

V + - Positive Supply (V)

P-32167-Rev. B (11/15193)

Silicanix

DG271

AMember oltbo TsMIC Group

Schematic Diagram (1Ypical Channel)
V+

r------!r---....,.-I-+--o s

GND
INx

L--~I---...--+--OD

V-

Figure 1.

Test Circuits

+15V

V+

5V

. 5V
LogIc

Ir <20ns

Input OV

tf <20 os

Switch
Input Vs

-1V;;:=;==+=:r-

D

Switch V
Output a

CL (includes fixture and stray capacitance)
Vo=Vs

RL
RL+ l'DS(on)

Figure 2. Switching Tune

P-32167-Rev. B (11/15/93)

1-89

Siliconix

DG300N301N302N303A

AMember of the TsMICGf'oup

CMOS Analog Switches
Features
•
•
•
•
•
•

Analog Signal Range: ± 15 V
Fast Switching-tON: 150 ns
Low On-Resistance-rns(on): 30 g
Single Supply Operation
Latch-up Proof
CMOS Compatible

Benefits

Applications

• Full Rail-ta-Rail Analog Signal Range
• Low Signal Error
• Low Power Dissipation

• Low Level Switching Circuits
• Programmable Gain Amplifiers
• Portable and Battery Powered Systems

Description
The DG300A-DG303A' family of monolithic CMOS
switches feature three switch configuration optioll.$ (SPST,
SPDT, and DPST) for precision applications in
communications, instrumentation and process cantro!,
where low leakage switching combined with low power
consumption are required.
Designed on the Siliconix PLUS-40 CMOS process, these
switches are latch-up proof.andaredesigned to block up to
30 V peak-to-peak when off. An epitaxial layer prevents
latchup.

In the on condition the switches conduct equally well in
both dire<:ti[)ns (with no offset voltage) and minimize error
C(lnditiQns with their loW" On·resistan~.
Featuring low power comumption (3.5 mW typ) these
switches are idealfor batterypowered applications, without
sacrificing
switching
speed.
Designed
for
break-before-make switching action, these devices are
CMOS and quasi TTL compatible. Single supply operation
is allowed by connecting the V - rail to 0 V.

Functional Block Diagram and Pin Configuration
Dual-In-Line

DG300A

V

Metal Can

NC

v+

D1

D2

NC

NC

Sl

S2

NC

NC

IN1

IN2

GND

v-

V+ (Substrate and Case)

GND
ThpView

ThpView
Ordering Information - DG300A

Temp Range

Pac:kage

o t070'C

14-Pin Plastic DIP

DG300ACJ

Logic

Switch

14-Pin CerDIP

DG300ABK

o

OFF

10-Pin Metal Can

DG300ABA

-25 to 85'C

Part Number

'Iruth Thble

ON

DG300AAK
14-P"m CerDIP
-55 to 125'C

JM38510/1160lBCA
14-Pin Sidebraze
10-PinMetalCan

1-90

DG300AAK/883

Logic "0" :s 0.8 V
Logic "1" ~ 4 V

Switches Shown for Logic "1" Input

JM38510/1160lBCC
DG300AAA/883
JM38510/1160lBIA

P-32167-Rev. A (11/15/93)

Siliconix

DG300N301N302N303A

AMemoorofthe TBMIC Group

Functional Block Diagram and Pin Configuration (Cont'd)
Dual-In-Line

DG301A

Metal Can
V+ (Substrate and Case)

NC

V+
D2
NC

NC

NC

IN

NC

GND

VGND
ThpView

ThpView

Ordering Information - DG301A
Temp Range
Package
Pan Numbllr

o t070·C
-ZSt085·C

'Iruth Table

14-Pin Plastic DIP

DG301ACJ

Logic

SWI

SW1

14-Pin CerDIP

DG301ABK

0

10-Pin Metal Can

DG301ABA

1

OFF
ON

ON
OFF

DG301AAK
Logic "0" :s 0.8 V
Logic "1" '" 4 V
Switches Shown for Logic "1" Input

DG301AAK/883

14-Pin CerDIP

JM3851O/11602BCA
-55 to 1ZS·C

14-Pin Sidebraze

JM38510/11602BCC

10-Pin Metal Can

DG301AAA/883

DG301AAA
JM38510/11602BIA

..

DG302A
'Iruth Table
Dual-In-Line

Logic

o
NC

V+

S3

S4

D3

D4

D1

D2

S1

Sz

IN1

IN2

V-

GND

Top View

OFF
ON

Logic ''0'' :s 0.8 V
Logic "1" '" 4 V
Switches Shown for Logic "1" Input

Ordering Information - DG302A

TemllRange

Package

Ot070·C

14-Pin Plastic DIP

DG302AAK
-55 to 1ZS·C

14-Pin CerDIP

DG302AAK/883
JM38510/11603BCA

14-Pin Sidebraze
P-32167-Rev. A (11/15/93)

Pan Number
DG302ACJ

JM38510/11603BCC

1-91

Siliconix

DG300A/301A/302A/303A

AMcmber of the TSMIC Group

Functional Block Diagram and Pin Configuration (Cont'd)
'fiuth 'Thble

DG303A
Dual-In-Line

NC

V+

S3

S4

D3

D4

Dl

D2

Sl

~

Logie:

SWbSW~

0

OFF

ON

1

ON

OFF

SW3,SW4

Logic "0" '" 0.8 V
Logic "1" '" 4 V
Switches Shown for Logic "I" Input

Ordering Information - DG303A

Pan N\IIIlber

Thml'Range

Padlage
14-Pin Plastic DIP

INl

IN2

Ot070'C

GND

V-

-2St085'C

DG303ACT
DG303ABK
DG303AAK

14-Pin CerDIP
ThpView

-55 to 12S'C

DG303AAK1883
JM38510/11604BCA

14-Pin Sidebraze

JM38510/11604BCC

Dot-inf1'1O!
...Alu!l~lnt
.............
_ Mov;'nnlm
... ., ... ....,....... _ ..... ......
_ ........
.a..,~

~_

Voltages Referenced to VV+ _................................................ 44V
GND ............................................... 2SV
Digital Inputsa, Vs, VD ............. (V-) -2 Vto(V+) +2Vor
30 rnA, whichever occurs ftrst
Current, Any Thnninal Except S or D ................... 30 rnA
Continuous Current, S or D ........................... 30 rnA
(Pulsed at 1 IDS, 10% duty cycle max) .................. 100 rnA
Storage Thmperature

1-92

(A & B Suffix) . . . . . . . . .. -65 to 150'C
(C SuffIX) .. .. .. .. .. .... -65 to 12S'C

Power Dissipationb
14-PinPlasticDIPC ................................. 470mW
14-PinCerDIpd .................................... 82SmW
100Pin Metal Can° .................................. 450mW
Notes:
a. Signals onSx, Ox, or INX exceeding V+ or V- will be clamped by
internal diodes. Umit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6.5 mwrc above 2S'C
d. Derate11mWrCabove75'C
e. Derate6mWrCabove75'C

P-32167-Rev. A (11/15/93)

Silicanix

DG300N301N302N303A

A Member oCthe TBMIC Group

Specifications a
Test Conditions
Unless Otherwise Specu.ed

ASufr.x
-55 to 125'C

I

B. C Suff"1X

I

V+ = 15V,V- = -15V
VIN = 0.8 V orVIN = 4 yf

Tempb

VANALOG

Full

Drain-Source On-Resistance

rOS(on)

Vo = ±1OV, Is = -lOrnA

Room
Full

30

Source Off Leakage Current

IS(ofl)

Room
Hot

±0.1

-1
-100

1
100

-5
-100

5
100

IO(ofl)

Room
Hot

±0.1

-1
-100

1
100

-5
-100

5
100

10(on)

Vo=Vs= ±14V

Room
Hot

±0.1

-1
-100

1
100

-5
-100

5
100

VIN =5V

Room
Full

-0.001

-1
-1

VIN = 15V

Room
Full

0.001

VIN= OV

Room
Full

-0.001

Parameter

Symbol

'JYpc

Mind

Max d

Mind

15

-15

Maxd

Unit

15

V

50
75

g

Analog Switch
Analog Signal Rangee

Vs= ±14V,Vo= 'F14V
Drain Off Leakage Current
Drain On Leakage Current

-15

50
75

nA

Digital Control

Input Current with
Input Voltage High
Input Current with
Input Voltage Low

IINH

IINL

-1
1
1

-1
-1

1

J1A

-1

Dynamic Characteristics
Thrn-On Time

tON

Thrn-Off Time

tOFF

Break-Before-Make Time
Charge Injection

Room

150

300

Room

130

250

tOPEN

DG301A!303A Only
See Figure 3

Room

50

Q

CL = 1 nF, Rgen = OQ, Vgen = OV
See Figure 4

Room

8

Source-Off Capacitance

CS(ofl)

Drain-Off Capacitance

CO(ofl)

Channel-On Capacitance

CO(on)

Input Capacitance

Cut

Off-Isolation

OIRR

Crosstalk (Channel-to-Channel)

XTALK

See Figure 2

Vs,Vo=OV,f=lMHz

f=lMHz

I
I

Room

14

Room

14

Room

40

VIN= OV

Room

6

VIN= 15V

Room

7

Room

62

Room

74

Room
Full

0.23

Room
Full

-0.001

Room
Full

0.001

Room
Full

-0.001

VIN = Ov, RL = 1 kQ
Vs = 1 Vnns. f= 500kHz

ns

pC

pF

dB

Power Supplies
Positive Supply Current

1+

Negative Supply Curreut

1-

Positive Supply Current

1+

VIN = 4 V (One Input)
All Others = 0 V

VIN = 0.8 V (All Inputs)
Negative Supply Current

1-

0.5
1

1

10
100
-10
-100

rnA

-100

-10
-100

100

J1A

-100

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
Room = 25'C, Full = as determined by the operating temperature suffIX.
lYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
Guaranteed by design, not subject to production test.
VIN = input voltage to perform proper function.

b.
c.
d.
e.
f.

P-32167-Rev. A (11/15/93)

1-93

..

Siliconix

DG300N301N302N303A

AMembcr ofthc TBMIC Group

lYpical Characteristics
l'DS(on)

vs. VD and Power Supply

roS(on) VS. VD and Temperature
60 r--'=~~~~--r--'---'
V+ =15V
V- = -15V
50 1---~-~--+---r----1I---,

90 ,-----=;="-----r=----.--.:.r-"----,

70 /--_---1_ _--+.....-1--\1

40 1-~~-~---t--I--4--~

50

I----t---t---w

±20V
-15

-5

5

15

2S

-10

Vo - Drain Voltage (V)

roS(on)

Cl

,.

V- =OV
TA=2S'C

7.5V/ ,

V

500

-

~
-

"-

110V

\
_\

~

........

'15V

~
~N "

-!"
20V

co

o

Vo - Drain Voltage (V)

~" ~~

,

5

11 j

10

15

V+ - Positive Supply (V)
Input Switching Threshold
5 r-_.-v_s_._PoTs_It_w_e_S,u~pp~l~y_~,ol_ta~g~e,-_-,

Charge Injection VS. Analog Voltage

I

V- = -15V
TA=2S'C

V+ = 15)
40 I - V- = -15V
CL=lnF

4

I--I---+----t----+----t-~

30

3

I---+----+--+--~-~--,

t-

20

10

o

/

-15

I

-10

"" \.

'r-.. - -

-5

o

If
./

5

Vs - Source Voltage (V)

1-94

-

I'\.

'00 ~ ~G~t,,:
taPEN

o

50

15

iFF \

300

"'c.:..t

V

10

V- = -15V
TA=2S'C
VINH = 4 V
VINL=OV

\

400

M

J

5

Switching Time and Break-BeCore-Make Time
vs. Positive Supply Voltage

vs. VD and Power Supply Voltage

100

o

-5

Vo - Drain Voltage (V)

10

15

o

5

10

15

V+ - Positive Supply (V)

P-32167-Rev. A (11/15/93)

Silicanix

DG300A/301A/302A/303A

AMcmbcr of the TBMIC Group

lYPical Characteristics (Cont'd)
Supply Current vs. Temperature

-120

500

........ ~

400

.........

300

..!.

£

Off Isolation and Crosstalk vs. Frequency

-

-r--.

r-.... r-.... ......

_ Y+ =15Y
200
Y- = -15Y
YIN = 4 Y(One Input)
(All Other =
100 -

-100

.........

1+-

~r---..

III

Crosstalk

~

-80

'\"'

iii'

~

OffIsolation "
-60

a V)

a

r--

1-

-40

105 125

-20
10k

Y+ = +15Y
Y- = -15Y

mlill

5

-100
-55 -35 -15

5

25

45

65

85

Rn

f - Frequency (Hz)

Supply Curents vs. Switehing Frequency
15

10M

1M

lOOk

Thmperature (DC)

Leakage vs. Temperature

l00nA

LI=11~V"

~-.-'r--r~r--r~r--r--r-~

-Y-=-15Y
10nA
10
t:l

....

..!.

£

5

I"+~~

....'"

~

Ft,

o

10k

1k

lOOk

1 nA

1=--+-+--+--1

10pA ~-L-£~~_~~~-L_~~_~
-55 -35 -15 5
25' 45 65 85 105 125

1M

f - Frequency (Hz)

Switching Time vs. Power Supply Yoltage
400
350

:[
"S
t=:

Switehing Time vs. Temperature
400

-J+=15~
Y- = -15Y

350

300

300

250

250

200
150

""'--

~

............. 10...

toN f - - topp-

~

.....

100
50

g
~
t=:

200
150
100
50

r---

v'+=~5yl
Y- = -15Y
Ys=3Y

- J..,....oo

~

--

~

",-

.,---- r--- --ItON I

--- b+-t:

~

topp'- r---

o

o
±10

..

Thmperature (DC)

±12

±14

±16

±18

Supply Voltage (V)

P-32167-Rev. A (11/15/93)

±20

±22

-55 -35 -15

5

25

45

65

85 105 125

Thmperature (DC)

1-95

Siliconix

DG300N301N302N303A

AMem'bcr of tho TBMIC Group

Schematic Diagram (lYpical Channel)
V+O---------~----~----------~----------1_------------------------~~

...--......P---_--+-+--oS

Level
Shift!

Drive

GNDo----+----------~--------~

L----+----4----r--oD
V-o----+------------------------~--------~--------------~~--------~

Figure 1.

Test Circuits
+1SV

Logic "1" = Switch On
Vs = 3 V

V+
o-+-"-s____--",--'V\R,.,s,-I-,\,.,R",7

L.

75k,Q

67k.Q

Voltage gain of the instrumentation amplifier is:
Ay = 1 +

Figure 6.

1-98

2R 2'
R1

(In the circuit shown,AY1 = 10.4,AY2 = 101)

-15V

Low Power Instrumentation Amplifier with Digitally Selectable Inputs and Gain

P-32167-Rev. A (11/15193)

Siliconix

DG304A/305A/306A/307A

AMembcr ofthe TBMIC Group

CMOS Analog Switches
Features

Benefits

Applications

• ± lS-V Input Range

•
•
•
•

• Low Level Switching Circuits
• Porgrammable Gain Amplifiers
• Portable and Battery Powered Systems

•
•
•
•
•

Fast Switching-toN: 110 ns
LOWrDS(on): 30 Q
Single Supply Operation
CMOS Logic Levels
Micropower: 30 n W

Full Rail-to-Rail Analog Signal Range
Low Signal Error
Wide Dynamic Range
Low Power Dissipation

Description
The DG304A through DG307A series of monolithic
CMOS switches were designed for applications in
communications, instrumentation and process control.
This series is well suited for applications requiring fast
switching and nearly flat on-resistance over the entire
analog range.

applications, without sacrificing switching speed.
Break-before-make switching action is guaranteed, and an
epitaxial layer prevents latchup. Single supply operation
(for positive switch voltages) is allowed by connecting the
V- rail to Ov.

Designed on the Siliconix PLUS-40 CMOS process to
achieve low power consumption and excellent on/off switch
performance, these switches are ideal for battery powered

Each switch conducts equally well in both directions when
on, and blocks up to the supply voltage when off. These
switches are CMOS input compatible.

Functional Block Diagram and Pin Configuration
DG304A
Dual-In-Line

MetaiCao
V + (Substrate and Case)

NC

V+

Dl

D2

NC

NC

Sl

S2

NC

NC

INl

IN2

GND

V-

..

GND
ThpView
ThpView

Ordering Information - DG304A
Temp Range

Package

-0 to 70'C

14-Pin Plastic DIP

Part Number

DG304ACJ
DG304AAK/883

14-Pin eerDIP
-55 to 125'C

JM38510/11605BCA

10-PinCan

JM38510/ll605BIA

14-Pin Sidebraze

JM38510/11605BCC

P-32167-Rev. A (11/15/93)

1ruth Table

Logic

Switch

o

OFF
ON

Logic ''0'' s 3.5 V
Logic "1" '" 11 V
Switches Shown for Logic "1" Input

1-99

Silicanix

DG304A/305A/306A/307A

AMember of the TBMIC Group

Functional Block Diagram and Pin Configuration (Cont'd)
DG30SA
Dual-In-Line

Metal Can
V + (Substrate and Case)

NC

V+

Dl

D2

, NC

NC
~

S!
NC

NC

IN

NC

GND

VGND
ThpVi~

ThpView

Ordering Information - DG30SA
Temp Range

Package

Part Number

14-Pin CerDIP

JM3851O/11605BCA

10-PinCan

-55 to 125°C

14-Pin Sidebraze

1i'uthTable

Logic

SWi

DG305AAA

0

OFF

ON

JM3851O/11606BIC

1

ON

OFF

SW.;

Logic "0" S 3.5 V
Logic"1" .. 11 V

JM38510/11606BCA

Switches Shown far Logic "1" Input

DG306A
1i'uth Table

Dual-In-Line
NC

V+

S3

S4

Logic

Switch

o

OFF
ON

D3

D4

Logic"O" S 3.5V
Logic "1" .. 11 V

Dl

D2

Switches Shown for Logic "1" Input

SI

S2

IN!

Ordering Information - 306A

IN2

GND

V-

Temp Range

package

-Ota70°C

14-Pin Plastic DIP

PBrtNumber
DG306ACJ
DG306AAK,1883

ThpView

-55 to 125°C

14-Pin CerDIP
14-Pin Sidebraze

1-100

JM38510/11607BCA
JM38510/l1607BCC

P-32167-Rev. A (11{15{93)

Siliconix

DG304N305N306N307A

AMember oftbeTBMIC Group

Functional Block Diagram and Pin Configuration (Cont'd)

DG307A
Four SPST Switches per Package

Dual-In-Line
NC
S3

'fruth Thble
V+

Logic

SWt.SW1

S4

0

OFF

ON

1

ON

OFF

SW3,SW4

D3

D4

D1

D2

Logic "0" s 3.S V
Logic "I" .. 11 V

S1

Sz

Switches Shown for Logic "I" Input

IN1

IN2

GND

V-

OrderiDg Information - 307A

ThpView

ThmpRaDge

J!ackage

Ot070·C

14-Pin Plastic DIP

-25 to 85·C

Part NlQIlber
DG307ACJ
DG307ABK
DG307AAK

14-Pin CerDIP
-55 to 125·C

DG307AAK/883
JM3851O/11608BCA

14-Pin Sidebraze

JM3851O(1l608BCC

Absolute Maximum Ratings
Voltages Referenced to VV+ ................................................. 44V
GND ............................................... 25V
Digital Inputs·, Vs, VD ............. (V-) -2 Vto(V+) +2Vor
30 rnA, whichever occurs first
Current, Any Thnninal Except S or D ................... 30 rnA
Continuous Current, S or D ........................... 30 rnA
(Pulsed at 1 ms, 10% duty cycle max) .................. 100 rnA
Storage Thmperature

(AAA, AAK, ABK SuffIX)

-65 to 150·C
(ACJ SuffIX) . . . . . .. . . ... -65 to 125·C

P-32167-Rev. A (11/lS193)

Power Dissipationb
14-PinPlasticDIPC ................................. 470mW
14-Pin CerDIpd .................................... 825 mW
10-Pin Metal Can" .................................. 450 mW
Notes:
a. Signals on Sx, DX, or INX exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. DeratellmWrCabove7S·C
d. Derate 6.5 mwrc above 25·C
e. Derate 6 mW/·C above 75·C

1-101

..

Siliconix

DG304A!305A!306A!307A

AMcmber of the TBMIC Group

Specifications a
Test Conditions
Unless Otherwise Specified

ASufllx
-55 to 125°C

I

B, CSuffix
-25 to 85°C
Ot070°C

V+ = 15 V, V- = -15V
VIN = 3.5 Vor 11 yf

Thmpb

VANALOG

Full

Drain-Source On-Resistance

CDS(on)

VD= ±10V,Is=10mA

Room
Full

30

Source Off Leakage Current

IS(ofl)

Vs = ±14 V,VD = '1'14 V

Room
Full

±0.1

-1
-100

1
100

-5
-100

5
100

Drain Off Leakage Current

ID(ofl)

Vs = ±14 V,VD = '1'14 V

Room
Full

±0.1

-1
-100

1
100

-5
-100

5
100

Drain On Leakage Current

ID(on)

VD=VS= ±14V

Room
Full

±0.1

-2
-200

2
200

-5
-200

5
200

Room

-0.001

-1
-1

Parameter

Symbol

1)pc

Mind

Maxd

Mind IMaxd

Unit

Analog Switch
Analog Signal Rangee

-15

-15

15
50
75

15

V

50
75

Q

nA

Dlgital Control
Input Current
with Input Voltage High
Input Current
with Input Voltage Low

VIN=5V

IJNH

IJNL

Full

-1

VIN= 15V

Room
Full

0.001

1
1

VIN=OV

Room
Full

-0.001

Room

110

250

Room

70

150

1

-1
-1

J1A

-1

Dynamic. Characteristics
Thrn-OnTIme
Thm-OffTIme
Break-Before-Make TIme
Charge Injection

tON
tOFF
tOPEN

DG305A!307A ONLY
~p.p. Fignre3

Room

50

Q

CL=lnF,Rgen=O
Vgen = 0 V, See Figure 4

Room

30

Room

14

Room

14

Room

40

L VIN=OV

Room

6

VIN=15V

Room

7

Room

62

Room

74

Room
Full

0.001

Room
Full

-0.001

Source-Off Capacitance

CS(ofl)

Drain-Off Capacitance

CD(ofl)

Channel-On Capacitance

CD(on)

Input Capacitance

See Figure 2

CIN

Off-Isolation

OIRR

Crosstalk (Channel-to-Channel)

XTALK

f=lMHz,Vs=OV
VS,VD=OV

f=lMHz

I

VIN = OV,RL = lkQ
Vs = 1 V"""f= 500kHz

us

pC

pF

dB

Power Supplies
Positive Supply Current

1+

10
100

100

VIN = 15 V or 0 V (All Inputs)
Negative Supply Current

1-

-10
-100

-100

J1A

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature suff",.
c. lYpica1 values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not SUbject to production test.
f. VIN = input voltage to perform proper function.

1-102

P-32167-Rev. A (11/15/93)

Siliconix

DG304N305N306N307A

AMember of the TEMIC Group

1Ypicai Characteristics
rnS(on) vs. VD and

100
01
~

~
g

.0

:!:5V

VI
./

40

V"

.~

I

i

20

j

I'U

60

0

A

~-

~

~'
"'10 V . /

@

"'15 V

I'"

.-

i.---

:!:20V

g
a

-20

-15 -10

-5

l
I

!

e

0

5

80

g

,

~

r-60

15

10

20

40
20

o

/ I"'.I~,..

-

~

o

Leakage Currents vs. Analog Voltage

~,.,...

-10

L

,e.
,.!il -20

...."'

..-..

-"

L5V

+20V_

5

10

15

20

Vn - Drain Voltage (V)

I or lIS(of I
o c--.IID(off)
<'

T~= 25:C V- =OV

+r:(

1/
1/

VD - Drain Voltage (V)

10

+ Power Supply Voltage

A

100

j

80

@

"
'".0

rnS(on) vs. VD and

01

.!!l

~

± Power Supply

T~=25!C

_

Input Switching Threshold vs. V + and VSupply Voltages

10
9

~

I- TA = 25!C

---+------l--~

L"

8

L

7

..J.- i""'"

:~

IL.: .. :.,

6

In on)

.... '.
:.

:.

5

I
I

4

3

-30

2

....yr-"

I----+~--oo:::....---;---t-----I

-40
-15 -12 -9 -6 -3

3

0

9

12

o

15

o

:!:5

240
V- = -15V
TA = 25"C
VINH= 15V
VINL=OV

:\

200

\

!: 160
~
§

-

200

\

!

~

120

"- ~

§

'tOFF

"

80

o

V + - Positive Supply Voltage (V)

P-32167-Rev. A (11/15/93)

"" ""

120

..

15

I

"

-

toN

............

.....

r--

toFF

80

~

10

:!:20

V+ = 15V
TA=2S"C
VINH= 15V
VINL= OV

.....

160

40

5

I

~

\. tON

40

:!:15

Switching Time vs. Negative Supply Voltage

Switching Time vs. Positive Supply Voltage

240

:!:10

V +. V-Positive & Negative Supplies (V)

Vn or Vs - Drain or Source Voltage (V)

o

-5

-10

-15

V- - Negative Supply Voltage (V)

1-103

Siliconix

DG304N305N306N307A

AMcmbcr of the TBMIC Group

'fYpical Characteristics (Cont'd)
Supply Currents vs. Toggle Frequency
8

~JJUijll
RL= 00
CL=O

6

~Vs=Open

.

4

'I

2

/1
o
1k

10k

1M

lOOk

f - Frequency (Hz)

Schematic Diagram (1Ypical Channel)
V+o-------~------~----------~--------~----------------------~~

...-----,,..---_-I--+--oS
VLevel
Shift!
Drive

V+

Y

'----t--~-tt-O

D

Figure 1.

Test Circuits
+15V
Logic "1" = Switch On

V+
Vs = 3 V O'-'l-s----<:'1 ......;;;D-t--...,.____.......--o Vo

Logic
Input

VINH
ov--~

15V

OV---+J

,

Switch
Output

CL (includes fIXture and stray capacitance)
Vo=Vs

RL
RL + l'J)S(oo)
Figure 2.

1-104

toN

Switching TlDle

P-32167-Rev. A (11/15/93)

Siliconix

DG304N305N306N307A

AMcmbcr of the TEMIC Group

Test Circuits (Cont'd)
+15 V

Logic "1" = Switch On

Logic
V+

Input OV _ _V_INH_...J150%

\'-_ _ __

VSl =3V
Switch VS1-----;:::==~~-50%
Val

Output

oV

---""--_-oJ

VS2 :;:;:==~I---I-:-;::::=
Switch
VOl
Output

CL (includes fixture and stray capacitance)

Figure 3.

Break-Before-Make SPDT (DG305A, DG307A)

+15 V

V+
I1V

/
o
Va -~I

Va

INX----,
ON \

Figure 4.

'--

OFF

I

r=
ON

Charge Injection

..

Application Hints a
V+
Positive Supply
Voltage

VNegative Supply
Voltage

(V)

(V)

15
20

-15

15

0

-20

GND
Voltage
(V)

0
0
0

VIN
Logic Input
Voltage
VlNlJ(mln)/VlNL(IIIIUt)

VsorVp
Analog Voltage
Range

(V)

(V)

11/3.5
11/3.5

-15 to 15

11/3.5

Oto15

-20 to 20

Notes:
a Application Hints are for DESIGN AID ONLY, not guaranteed and not subjcctto production testing.

P-32167-Rev. A (11/15/93)

i-lOS

Siliconix

DG304N305N306N307A

AMembcr ofthc TBMIC Group

Applications
+15 V
-15V
1Ok,Q

Your
+15V

-15V

10k,Q

10k,Q
100 k,Q

r

I
I
L

Al

Ao

DG304A

Figure 5.

Binary
Input

Gain

11
10
01
00

1
10
100
1000

Low Power Binary to Ion Gain Low Frequency Amplifier

+15V -15V

VINl o---+--~1

+15V

..-+t------1
>-_-oVour

CMOS Logic
Input Select O--l~;:>-------T;
High=VINl

CMOS Logic
Gain Select O--1~»---T----T-t-1
High = lOx

Ix

lOx

DG307A
GND

20 k,Q

Figure 6.

1-106

180 k,Q

Low Power Nan-Inverting Amplifier with Digitally Selectable Inputs and Gain

p-32167-Rev. A (11/15/93)

Siliconix

DG308A/DG309

AMember o[the TEMIC Group

Quad Monolithic SPST CMOS Analog Switches
Features

Benefits

Applications

• ± lS-V Analog Input Range

•
•
•
•
•

• Portable and Battery Powered
Instrumentation
• Communication Systems
• Computer Peripherals
• High-Speed MUltiplexing

•
•
•
•

Low On-Resistance: 60 Q
Fast Switching: 130 ns
Low Power Dissipation: 30 n W
CMOS Logic Compatible

Full Rail-ta-Rail Analog Signal Range
Low Signal Error
Wide Dynamic Range
Single or Dual Supply Capability
Static Protected Logic Inputs

Description
The DG308A and DG309 are quad single-pole single-throw
analog switches designed for high speed switching
applications in communications, instrumentation, and
process control. This series is well suited for applications
requiring a low on-resistance over the entire analog range.
Featuring low on-resistance (60 Q) and fast switching
(130 ns), the DG308A is supplied in the "normally open"

configuration while DG309 is supplied "normally closed".
Input thresholds are high voltage CMOS compatible.
Designed with the Siliconix PLUS-40 CMOS process to
combine low power dissipation with a high breakdown
voltage rating of 44 V, each switch conducts equally well in
both directions when on, and blocks up to the supply voltage
when off. An epitaxial layer prevents latch up.

Functional Block Diagram and Pin Configuration

Four SPST Switches per Package

'Iruth Thble

Dual-In-Line

Logic

DG308A

IN2

0

OFF

ON

01

02

1

ON

OFF

S1

S2

IN1

V-

V+

GND

Ne

S4

Logic "0" s 3.5 V
Logic "I" '" 11 V
Switches Shown for Logic "1" Input

Ordering Information

S3

Temp Range
04

03

IN4

IN3

..

DG309

Package

Part Number
DG308ACJ

Oto70'e

16-Pin Plastic DIP

-40 to 85'e

16-Pin Narrow sOle

-55 to 125'e

16-Pin CerDIP

DG309CJ
DG308ADY

'lbpView

DG309DY
DG308AAK
DG308AAK/883
DG309AK!883

P-32167-Rev. B (11/15193)

1-107

Silicanix

DG308NDG309

AMember of the 1'BMICGrOUP

Absolute Maximum Ratings
Voltages Referenced to v-

v+ .................................................

Power Dissipationb
16-Pin Plastic DIP" ................................. 470 mW
16-PinNarrowSOIC" ............................... 600mW
16-Pin Cerdipd ..................................... 900 mW

44V

GND ............................................... ZSV
Digitaiinputs·, Vs, VD ............. (V-) -2Vto(V+) +2Vor
20 rnA, whichever occurs first

Notes:
a. Signals on Sx, Dx, or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate12mWrCabove75·C
d. Derate6.5mWrCaboveZS·C
e. Derate 7.6 mWrC above 75·C

Current, Any 'Thrminal Except S or D ................... 30 mA
Continuous Current, S or D ................•....•..... 20 mA
(Pulsed atl ms, 10% duty cycle max) ................... 70 mA
Storage'Thmperature

(AKSufflX) ............ -65 to 150·C
(CJ and DY SuffIX) ...... -65 to lZS·C

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

ASuftix
-55 to lZSoC

V+ = 15V,V- = -15V
VIN = 3.5 V or 11 yf

Thmpb

'JYpc

Mind

I

C, D SufI"1X

Maxd

Mind

15

-15

I

Maxd

Unit

15

V

100
125

Q

Analog Switch
Analog Signal RangeC

-15

VANALOG

Full

Drain-Source
On-Resistance

roS(on)

VD = ±10V,Is = lmA

Room
Full

60

Source Off Leakage
Current

IS(off)

Vs= ±14V,VD= '1'14 V

Room
Full

±0.1

-1
-100

1
100

-5
-100

5
100

Drain Off Leakage
Current

ID(of!)

VD = ±14 V,Vs = '1'14 V

Room
Full

±0.1

-1
-100

1
100

-5
-100

5
100

Room
Full

±0.1

-1
-100

1
100

-5

5
200

Di:"~hi

Or.. T
Current

_.

..... ~~

VD = vs =

--

±14 V

100
150

1-200 I

nA

Digital Control
Input Current with
Input Voltage High

IJNH

VIN=15V

Full

0.001

Input Current with
Input Voltage Low

IJNL

VIN = OV

Full

-0.001

Input Capacitance

CIN

Room

8

Room

130

200

200

Room

90

150

150

1

1

I1A
-1

-1
pF

Dynamic Characteristics
Thrn-On TIme

toN

Thrn-OffTime

tOFF

Charge Injection

Q

Source-Off Capacitance

Cs(off)

Drain-Off Capacitance

CD(o!!)

Channel-On Capacitance

CD(on)

Off-Isolation!

OIRR

1-108

See Figure 2
CL= 0.01 "F,Rgen = OQ, Vgcn = OV

f = 140kHz, Vs, VD = OV

RL = 75, Vs = 2 Vp-p.f= 500kHz

Room

-10

Room

11

Room

8

Room

27

Room

78

ns
pC

pF

dB

P-32167-Rev. B (11/15/93)

Siliconix

DG308A/DG309

AMember of tho TeMIC Group

Specitications a
Test Conditions
Unless Otherwise Specified
Parameter

V+=15V,V-=-15V
VIN = 3.5 V or 11 yf

Symbol

Tempb

lYPc

Room
Full

0.001

Room
Full

-0.001

ASufI'1X
-55 to 125'C

C, D SufI'1X

Mind I Max d

Mind_I Maxd

Unit

PQwer Supplies

1+

Positive Supply Current

All Channels On or Off
VIN=OVor15V

10
100

j.tA

1-

Negative Supply Current

10
100
-10
-100

-100

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature suffIx.
c. 'Jypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative valuy is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1Ypical Characteristics
~

Cl

!
0

~

150

r- TA'=

~
I

i

~

±5V

~

~

J
f\

90

--

60
30

g
o

-20

1/

~ ,..

-5

g

-

ell

5

0

~

I

J

10

15

20

o

IrU~

1'/
-I--1o

+1 V

,

-

-'
+iOV

5

10

15

Leakage Currents vs. Analog Voltage

Input Switching Threshold
vs. V+ and V- Supply Voltages

20

III

10

=ds,c

TA=25'C

8

---

0

-20

50

/

l

TA 25's(on) vs. Vn and Power Supply Voltage

l'J>s(on) vs. Vn and Power Supply

,...

~
~

-

-

ID(plf)

"""':

~

",.

6

~

I (on).4

21---~.e::---+---+----i

-30
-15-12 -9 -6

-3

0

3

6

9

12

VD or V S - Drain or Source Voltage (V)

P-32167-Rev. B (11/15/93)

15

o

~----~------~------~----~

o

±5

±10

±15

±20

V +, V-Positive & Negative Supplies (V)

1-109

Silicanix

DG308NDG309

AMcmber of the TBMIC Group

1Ypical Characteristics (Cont'd)
Supply Currents vs. Switching Frequency
(All Inputs Active)

Input Switching Threshold vs. Positive
Supply Voltage

8 '---'---.-~~--~---'r--'

1000
± 15 V Supplies
TA=ZS"C

7

800

1

600

£

400

V-=OV
TA=ZS"C

61---+----+----+---+-----:
5

I----j----+--+----:..t

4 t--t--+-~

..!.

3 t---t---1'f'r.!I'!!!!

I~~
~ Iii

200

OL-_L-_L-_L-_L-_L------'
o
5
10
15

100
1k

10k

lOOk

1M

V+

f - Frequency (Hz)

- Positive Supply Voltage (V)

Schematic Diagram (1Ypical Channel)

V+O--------~----~----------~--------_;r_----------------------r_I

......---..,,.....--,--;-+--0-

VIN

S

Level
Shift!
Drive

GND
D

V-

Figure 1.

1-110

P-32167-Rev. B (11/15/93)

Siliconix

DG308A/DG309

AMember orthe TEMIC Group

Test Circuits
+15V

V+
Switch
Input
Vs=3V

S

D

Vo

tr <20ns
t! <20ns

INJ

Logic
Input

50%
0

Switch
Output

Logic
Input

Switch
Output

o Vo
tON

CL (includes fixture and stray capacitance)

Vo =Vs

Vs

RL + rOS(on)

Figure 2. Switching Time

Applications
Single Supply Operation
The DG308A and DG309 will switch positive analog signals
while using a single positive supply. This will allow use in
many applications where only one supply is available. The
trade-offs or performance given up while using single
supplies are: 1) increased rDS(on) and 2) slower switching

speed. As stated in the absolute maximum ratings section
of the data sheet, the analog voltage should not go above or
below the supply voltages which in single supply operation
are V+ and Ov.

D

P-32167-Rev. B (11115/93)

1-111

Siliconix

DG308B/309B

AMember of the TBMIC Group

Improved Quad CMOS Analog Switches
Features

Benefits

Applications

• ± 22-V Supply Voltage Rating

•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

CMOS Compatible Logic
Low On-Resistance-IDS(on): 45 g
LowLeakage-ID(on): 20pA
Single Supply Operation Possible
Extended Temperature Range
Fast Switching-toN: < 200 DB
Low Glitching-Q: 1 pC

Wide Analog Signal Range
Simple Logic Interface
Higher Accuracy
Minimum 1tansients
Reduced Power Consumption
Superior to DG308A/309

Industrial Instrumentation
Test Equipment
Communications Systems
Disk Drives
Computer Peripherals
Portable Instruments
Sample-and-Hold Circuits

Description
The DG308B!309B analog switches are highly improved
versions of the industry-standard DG308A!309. These
devices are fabricated in Siliconix' proprietary silicon gate
CMOS process, resulting in lower on-resistance, lower
leakage, higher speed, and lower power consumption.
These quad single-pole single-throw switches are designed
for a wide variety of applications in telecommunications,
instrumentation, process control, computer peripherals,
etc. An improved charge injection compensation design

minimizes switching transients. The DG308B and DG309B
can handle up to ± 22-V input signals. An epitaxial layer
prevents latchup.
All devices feature true bi-directional performance in the
on condition, and will block signals to the supply levels in
the off condition.
The DG308B is a normally open switch and the DG309B is
a normally closed switch. (See Truth Thble.)

Functional Block Diagram and Pin Configuration
Truti::tThoie
Logie

DG308B

0

OFF

ON

1

ON

OFF

DG308B
Dual-In-line

Logic ''0'' :s 3.5V
Logic"1" ~ 11 V

INI

IN2

Dl

D2

Sl

S2

V-

V+

GND

NC

S4

S3

D4

D3

IN4

IN3

Switches Shown for DG308B Logic "1" Input

Ordering Information

ThmpRsnge

1-112

J>artNumher

Package

DG308BDJ
16-Pin Plastic DIP
-40 to 85°C
16-Pin Narrow SOIC

DG309BDJ
DG308BDY
DG309BDY
DG308BAK

-55 to 125°C

'lbpView

DG309B

16-Pin CerDIP

DG308BAK/883
DG309BAK
DG309BAK/883

P-32167-Rev. A (11115/93)

Silicanix

DG308B/309B

AMember altha 1'BMICGroup

Absolute Maximum Ratings

Voltages Referenced to VV+ ................................................. 44V
GND ............................................... 2SV
Digitallnputs'Vs, VD ............... (V-) -2 Vto (V+) +2V
or 30 rnA, whichever occurs first
Current. Any Thrminal ............................... 30 rnA
Peak Current, S or D
(Pulsed at 1 ms. 10% duty cycle max) .................. 100 mA
Storage Thmperature

(AIC, SurflX) . . . . . . . . . . .. -65 to 150"C
(DJ. DY SurflX) .......• -65 to 12S"C

Power Dissipation (Package)b
16-PinPlasticDIPC ................................. 470mW
16-Pin Narrow SOICd ............................... 640mW
16-Pin CerDII'" .................................... 900 mW
Notes:
a. Signals on Sx. Dx. or INx exceedingV+ orV- will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6.5 mWrC above 75"C
d. Derate 7.6 mWrCabove 75"C
e. Derate12mW/"Cabove75"C

Specificationsa
A Suffix
-55 to 125"C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -15V
VIN = 11 V, 3.5 yf

Tempb

'JYpc

Mind

DSutllx
-40 to 85"C

I

Maxd Mind

I

Maxd

Unit

15

V

85
100

0

Analog Switch
Analog Signal Rangee
Drain-Source On-Resistance
rnS(on) Match
Source Ofr Leakage Current

VANALOG

Full

rnS(on)

Room
Full

VD = ±10V,ls = 1 rnA

-15

ArnS(on)

Room

2

IS(ofl)

Vs = ±14 V,VD = '1'14 V

Room
Full

±0.01

-0.5

±0.01
±0.02

Drain Orf Leakage Current

ID(of!)

VD= ±14V,Vs= 'F14V

Room
Full

Drain On Leakage Current

ID(on)

Vs =VD = 14V

Room
Full

15

-15

85
100

45

%

-20

0.5
20

-0.5
-5

0.5
5

-0.5
-20

0.5
20

-0.5
-5

0.5
5

-0.5
-40

0.5
40

-0.5
-10

0.5
10

nA

Digital Contrlll
Input Voltage High
Input Voltage Low
Input Current
Input Capacitance

VINH

Full

VINL

Full

IlNHor
IINL

VlNHorVINL

11
3.5

3.5
-1

Full
Room

CIN

11

1

-1

1

5

V

!lA
pF

Dynamic Characterlsti~s
Thrn-OnTlffie

tON

Thrn-OffTlffie

tOFF

Charge Injection

Q

Vs = 3 V, See Figure 2
CL = 1000pF, Vg = OV,Rg = 00

Room

200

200

Room

150

150

Room

1

Room

5

Source-Off Capacitance

CS(ofl)

Drain-Off Capacitance

CD(of!)

Room

5

Channel On Capacitance

CD(on)

VD=Vs=OV,f=lMHz

Room

16

Off Isolation

OIRR

90

XTALK

CL = 15 pF,RL= 500
Vs = 1 VRMS, f = 100 kHz

Room

Channel-ta-Channel Crosstalk

Room

95

P-32167-Rev. A (11/15/93)

Vs=OV,f=lMHz

os
pC

pF

dB

1-113

Siliconix

DG308B/309B

AMcmber of the TEMIC Group

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -15V
VIN = 11 V, 3.5 yf

ASuff'1X
-55 to 125'C
Tempb

'JYpc

Mind

I

Maxd

D Suffix
-40 to 85'C
Mind

I

Maxd

Unit

Power Supply
Room
Full

1
5

Positive Supply Current

1+

Negative Supply Current

1-

Room
Full

-1
-5

Power Supply Range for
Continuous Operation

VOP

Full

±4

VIN = Oor15V

1
5

!LA

-1
-5
±22

±22

±4

V

Specifications a for Single Supply
Thst Conditions
Unless Otherwise Specified
Parameter

ASuftix
-55 to 125'C

V+ = 12 V, V- =OV
VIN = 11 V, 3.5 yf

Thmpb

VANALOG

Full

toS(on)

VD = 3V,SV,Is = 1mA

Room
Full

Symbol

'JYpc

Mind

I

D Suff'1X
-40 to 85'C

Max<'

Mind

12

0

I

Maxd

Unit

Analog Switch
Analog Signal Rangee
Drain-Source
On-Resistance

Thrn-On Time

tON

Thrn-Off Time

toFF

Charge Injection

Q

0

12

V

160
200

160
200

r.!

Room

300

300

Room

200

200

90

Vs = S V, See Figure 2
CL = 1 nF, Vgen= 6 V, Rgen = Or.!

Room

4

ns
pC

Power Supply
Positive Supply Current

Room
Full

1+
VIN = 00r12 V

1
5

1
5

Negative Supply Current

1-

Room
Full

-1
-5

Power Supply Range for
Continuous Operation

VOP

Full

4

!LA

-1
-5
44

4

44

V

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature suffIX.
c. 1)tpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1-114

P-32167-Rev. A (11/15/93)

Siliconix

DG308B/309B

AMomber ofcbc TBMIC Group

'IYpical Characteristics
l"J>s(on) vs. VD and Power Supply Voltages
110
CI

100

~

j

90

.~

80

~

A

I'

@

60

'"

50

0

~
.~

40

Q

J
CI

~

§

~

i""'"

g

"

<-

lI\

c-----

I

-

±10V

-c-----

I
J "\
~ ./~5IV

I I
16

.~

/'

70

~
d
a

"
"./

V""

60

~

50

1

30
20

I

J

o
-15

20

30 f-

~

125

r5l

100

'i§

75

Q
I

50

J

25

V~-5~
-

<-

/

-'- /

~
~

-

~

a

:,...

~

lOV
~12V
~........::

I

. . . . .:V

~

,!;-

-10

6

8

10

ID(on)~

~

0
-10 ~

./

-20

,

".....

""

-

IS(oflp ID(off) -

'7

U

U

M

-20 -15 -10 -5

0

5

10

15

20

..

Analog Voltage

Leakage Currents vs. Temperature

30

Qs Qn - Charge Injection vs. Analog Voltage
•

1=

v+ 15V
V - 15V
r Vs, VD ±14V

f:

IS(oflp ID(~

20

.,'

100pA

I

~
,:j

15

V~

VD - Drain Voltage (V)

8

10

-40
024

a

.........

--.

-30

o

InA

.-.

-5
o
5
VD - Drain Voltage (V)

10

~

\\ 7V

-SS'C _I"""

=2Jv
V- = -22V
20 f- TA=25'C

6

150

...........

./'00

Leakage Currents vs. Analog Voltage

225

~

.-.

~~

10

40

I
II

8S'C
25·7::

r--.

~

Q

125'C_

1"'000.

r--.....

40

1±20~

..." "

V- = -lSV

80

l"J>s(on) vs. VD and Single Power Supply Voltages
250

175

d

±5V -

20

..

~
a

j

r- V+=lSV

90

~

10
-20 -16 -12 -8 -4 0 4 8 12
VD - Drain Voltage (V)

200

.~

CI

I

30

I

A

1\
'I ,

I

70

0

roSton) vs. VD and Temperature

100

g
"

10

d

,

V+ =15V
0 I- V- = -IS V........

-20
1pA
-55 -35 -15

5

25

45

65

Thmperature ('q

P-32167-Rev. A (11/15/93)

/

I

0 -10

10pA

85

105 125

.......

V

~~

i"'"

~

V+=12V
V-=OV

/

-30
-15

-10

-S

o

S

10

15

Analog Voltage (V)

1-115

Biliconix

DG308B/309B

A Member of the TBurc Group

1Jpical Characteristics (Cont'd)
Off Isolation vs. Frequenl:)'
120
110

100
[

g

"-

90
80

IV+ =15V
V..:= -15V

I

"-

"-

70

RL= 50g

"-

60

"-

50
40
10k

1M

lOOk

"'

10M

f - Frequency (Hz)

Schematic Diagram (1Jpical Channel)
V+

Sx

v-

.V+

f
Logic 12V

Input

ODx

Ir <2005
tf

<2005

OV

Switch Vo
Output

Figure 2.

1-116

Switching Tune
P-32167-Rev. A (11/15/93)

Siliconix

DG308B/309B

AMombcr of1;ho TBMIC Group

Test Circuits (Cont'd)
+15V
+15V

~---+r-+-----01

...---+-f-3---r---O

50Q
Vo
Ov, 15 V o-t---I>-

50Q

~

NCo-t------o~~--~~--~_o

Vo
50Q

Ov, 15 V o-+I;;.N",-2-1

OffIsolation = 20 log

Figure 3.

I~: I

C= RFbypass
XTALK Isolation = 20 log

Off Isolation

Figure 4.

Channel-ta-Channel Crosstalk

+15 V

V+

Rg

I

Vo

s

Vo

I

INx
1000pF
CL

ONI

~

AVO

L

T
OFF

~

AVO = measured voltage error due to charge injection
The charge injection in coulombs is Q = CLX AVO

Figure s.

Charge Injection

Applications
+5V

+15V

30pF

D

Vmlo-t-----~~L-----~~--~__;
Vm2o-r----o~~-----J

+15V
DG308B

CH

-15V Gain1(x1)o-----H>------'
Gain= Rp+RG

Gain 2 (xlO) o - - - - - r - -..U-------'
Gain 3 (x100) 0----------1------/

Ra

> ____..1

Gain 4 (xlOOO) o----------t----------I

~------'

Logic High = Switch On

-15V
Figure 7. APrecision Amplifier with Digitally Programmable Inputs and Gains
P-32167-Rev. A (11/15/93)

1-117

Siliconix

DG308B/309B

AMember of the TBMIC Group

Applications (Cont'd)

Logic Input
Low = Sample
High = Hold

50pF

ZOOQ

t---+oyOUT
11000PF

Aquisition TIme
Aperature TIme
Sample to Hold Offset
Droop Rate

= 25 115
=1115
=5mY
=5mY/~

Figure 8. Sample-and-Hold

y

+15Y
160
120

1--+---+--1---\---+--1

I 80

1--+-..!IooIo.--I---+--+----\

fC4
Select

~

fc3

TIT..

Select

"'--'---"----'--'---'--'11

.~

Control

~

fC2
Select

H
" 40

1""'i~+i~"""fiOi::-....;ro..::~...---+--l

~

fel

o /--+---''''''"-.

Select

Y_ DG309B GND
-40

L-_..L-_-'-_..J..._.s.._.;:!IiI._~

10

100

-15Y

1k

10 k

100 k

1M

Frequency - Hz

AI. (Yoltage Gain Below Brea:: Frequency) =

-15Y

>-------4--0

YOUT

~

= 100 (40 dB)

fc(BreakFrequency) = 2ltR3CX

fr. (Unity Gain Frequency) =

1
2ltRlCX

Max Attenuation = fJ)S(on) "" -40 dB

10kQ

Figure 9. Active Low Pass Filter with Digitally Selected Break Frequency

1-118

P-32167-Rev. A (11/15/93)

Silicanix

DG381A/384A/387A/390A

AMcmbcr of the TBMIC Group

CMOS Analog Switches
Features

Benefits

Applications

• ± 15-V Input Range

• Full Rail-to-Rail Analog Signal Range
• Minimizes Signal Error
• Low Power Dissipation

• Low Level Switching Circuits
• Programmable Gain Amplifiers
• Portable and Battery Powered Sytems

• LowrDS(on): 30 Q
• Single Supply Operation
• Pin and Function Compatible with the
JFET DG1BO Family

Description
The DG381A-DG390A series of monolithic CMOS are ideal for battery powered applications, without
analog switches was designed for applications in sacrificing switching speed_ Break-before-make switching
instrumentation, communications, and process control. action is guaranteed, and an epitaxial layer prevents
Thisseriesissuitedforapplicationsrequiringfastswitching latchup. Single supply operation is allowed by connecting
and nearly flat on-resistance over the entire voltage range. the V-rail to 0 V.
Designed on Siliconix' PLUS-40 CMOS process, these
devices achieve low power consumption (3.5 mW typical)
and excellent on/off switch performance. These switches

Each switch conducts equally well in both directions when
on, and blocks up to the supply voltage when off. These
switches are CMOS and quasi TTL logic compatible.

Functional Block Diagram and Pin Configuration
DG381A
'Ii-uth Table

Logic

Dual-In-Line

Switch

o

ON
OFF

Logic "0" :s 0.8 V
Logic "1" '" 4 V
Switches Shown for Logic "1" Input

Ordering Information - DG381A

Temp JUnge

Pa.clIage

Oto70·C

14-Pin Plastic DIP

-55 to 125·C

14-Pin CerDIP

PartNwnhw:
DG381ACJ
DG381AAK/883

ThpView

P-32167-Rev. B (11/15/93)

1-119

Siliconix

DG381N384N387N390A

AMember of tho TBMIC Group

Functional Block Diagram and Pin Configuration (Cont'd)
DG384A
Dual-In-Line

1I.-uthThbie

Logic

Switeh

o

OFF

S1
1N1

ON

V-

Logic ''0'' :s 0.8 V
Logic "I" ~ 4 V

GND

Switches Shown for Logic "1" Inpul
NC

S4

V+
NC

1N2
~

Ordering Information - DG384A

Part Number

ThmpRange

Package

01070'C

16-Pin Plastic DIP

-55 to 125'C

16-Pin CerDIP

DG384ACJ
DG384AAK/883

ThpView

DG387A
Dual-In-Line

NC
NC

~

CJ

1I.-uthThbie

~
13

NC
NC

D1

D2

S1

~

IN

NC

V+

V-

NC

GND

o

OFF

ON

1

ON

Ol'l'

Logic "0" :s 0.8 V
Logic"l" '" 4 V
Switches Shown for Logic "1" Inpul

Ordering Information - DG387A

Temp Range

Package

01070'C

14-Pin PlaslicDIP

ThpView

-55 10 125'C

PsrtNumber
DG387ACJ

14-Pin CerDIP

DG387AAK/883

10-Pin Melal can

DG387AAA/883

Meta/Can
D2

NC

V-

IN

NC
ThpView

1-120

P-32167-Rev. B (11/15193)

Silicanix

DG381A/384A/387A/390A

AMcmbor ohho TBMIC Gt-oup

Functional Block Diagram and Pin Configuration (Cont'd)
DG390A
Dual-In-Line
'Iruth Thble
Dl

Sl

NC

INl

D3

V-

S3

GND

S4

NC

D4

V+

NC

IN2

D2

~

Logic

SW1'SW~

0

OFF

ON

1

ON

OFF

SW3,SW4

Logic "0" :s 0.8 V
Logic"l" '" 4 V
Switches Shown for Logic "1" Input

Ordering Information - DG390A

'lbpView

Temp Range

PaCkage

Ot070°C

16-Pin Plastic DIP

Part NUDlber
DG390ACJ
DG390ABK

-25 to 85°C
16-Pin CerDiP
-55 to 125°C

DG390AAK
DG390AAK/883

Absolute Maximum Ratings
Power Dissipationb
14-PinPlasticDlpd ..........................•...... 470mW
14-Pin CerDIPC ..................•................. 825 mW
10-Pin Metal Can" ••............................••.. 450 mW
Notes:
a. Signals on Sx, Dx, or INx exceeding V + or V - will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 11 mW/oC above 75°C
d. Derate 6.5 mW/"C above 25°C
e. Derate6mW/"Cabove75°C

Voltages Referenced to VV+ .........•....•.......•..•...•.•...............•. 44 V
GND .......•.....•...........................•..... 25V
Digital Inputs", Vs. VD ............. (V-) -2 V to (V+) +2Vor
30 rnA, whichever occurs first
Current, Any Thrminal Except S or D ................... 30 rnA
Continuous Current, S or D ........................... 30 rnA
(Pulsed at 1 ms, 10% duty cycle max) ....•............. 100 rnA
Storage Thmperature

(AM, AAK, ACK Suffix). -65 to 150°C
(ACJ SuffIX) . . . . . . . . • . .. -65 to 125°C

Specificationsa
Test Conditions
Unless Otherwise Specified
Parameter

ASutrlX
-55 to 125°C

V+ = 15 V, V- = -15V
VIN = 0.8Vor4

Tempb

VANALOG

Full

lDS(on)

VD = *10V, Is = -10 rnA

Room
Full

30
±O.l

Symbol

vr

lYPc

Mind I Maxd

B,CSutrlX
Ot070°C
-25 to 85°C
Mind IMaxd Unit

Analog Switch
Analog Signal Range·
Drain-Source
On-Resistance

-15

Source Off Leakage
Current

IS(off)

Vs= ±14V,VD= 'F14V

Room
Hot

Drain Off Leakage
Current

ID(of!)

Vs= ±14V,VD= 'F14V

Room
Hot

±0.1

Drain On Leakage
Current

ID(on)

VD=VS= ±14V

Room
Hot

±0.1

P-32167-Rev. B (11115/93)

15

-15

50
75

V

50
75

C

-s

S
100

-s

S
100

-s

5
100

-1
-100

1
100

-100

-1
-100

1
100

-100

-11

1
100

-100

-100

15

nA

1-121

-

Silicanix

DG381A/384A/387A/390A

AMember ofthe TBMIC Group

Specitications a
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

A Sufl"1X
-55 to 12S·C

V+ = lSV, V- = -lSV
VIN = 0.8 Vor4 Vi

Tempb

VIN =SV

Room
Full

VIN= lSV

Room
Full

VIN=OV

Room
Full

lYP"

Mind

-0.0
01

-1
-1

I

Mud

B, CSufllx
Ot070·C
-25 to 8S·C
Mind

I

Mud

Unit

Digital Control

Input Current with Input
Voltage High

Input Current with Input
Voltage Low

-1

IJNH

IINL

0.001
-0.0
01

1
1

1

-1
-1

I1A

-1

Dynamic Characteristics
Thrn-OnTIme

tON

Thrn-OffTIme

tOFF

Break-Before-Make
TIme

Room

150

300

Room

130

250

tOPEN

See Figure 3

Room

50

Q

CL - 0.01 J1F, Rgen - 00 Vgen - OV

Room

10

Room

14

Room

14

Room

40

Room

6

Charge Injection
Source-Off Capacitance

CS(off)

Drain-Off Capacitance

CD(off)

Channel-On Capacitance

CD(on)

Input Capacitance
Off-Isolation
Corn••talk
(Channel-ta-Channel)

CIN

See Figure 2

f= 1MHz;Vs. VD = OV

f=lMHz

I VIN= OV
I VIN= lSV

OIRR

'"

TALK

VIN = Ov, RL = 1 kQ
Vs = 1 V="f= 500kHz

Room

7

Room

62

Ream.

74

Room
Full

0.23

Room
Full

-0.0
01

Room
Full

0.001

ns

pC

pF

dB

Power SuppUes
Positive Supply Current

1+

Negative Supply Current

1-

Positive Supply Current

1+

VIN = 4 V (One Input)
(All Others = 0)

VIN = 0.8 V (All Inputs)
Negative Supply Current

1-

Room
Full

-0.0
01

0.5
1.0
-10
-100

1
-100

10
100
-10
-100

rnA

100

I1A
-100

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 2S·C, Full = as determined by the operating temperature suffIX.
Co
'I)lpical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum. is used in this data sheet.
e. Guaranteed by design. not subject to production test.
f. VIN = input voltage to perform proper function.

1-122

P-32167-Rev. B (11/15/93)

Silicanix

DG381A/384A/387A/390A

AMem'bcrofthe 'I'BMIC Group

1Ypical Characteristics
rDS(on) vs. VD and Power Supply

100

V+ = 15V
V- = -15V
50 r---4----+--~----~--~--~

80

.~

~

.-

0

~

60

40

Q
I

20

!

e

-ru
t

A

0
til

.~

I

40

--

:!:10V~

+15V

~

:!:20V

o

-5

0

5

10

15

20

-10

500

]:

/

I \.

~

-5

l/
./
o

5

10

Input Switching Threshold
vs. Positive Supply Voltage

400
300

3 r---~--~---r---+--~--~

~

..!.

£
1 r---+----r---+----~--4---~

10

V + - Positive Supply Voltage (V)

P-32167-Rev. B (11/15/93)

~

DG301/303 Only

5

500

~--~--+---~---+---4----4

5

~"

"""r---- tOPENI

10

15

..

Supply Current vs. Temperature

r---.---.----r~~~~--__,

o

.......

V + - Positive Supply Voltage (V)

V- =Oto-15V
TA=15'C

4

toN I

o0

15

toFF

\

~ ~

200

100

\

\

300

]

,

-10

V- = -15V
TA=15'C \
VINH = 4 V
VINL=OV

400

VS - Source Voltage (V)

5

15

Switching Time and Break-Before-Make
Time vs. Positive Supply Voltage

V+ =15V
V- = -15V
CL=lnF

-15

10

Charge Injection vs. Analog Voltage (Vs)

20

o

5

VD - Drain Voltage (V)

30

10

o

-5

VD - Drain Voltage (V)

50

40

I---:::I.::----l---l--+--r---J

./ ~'

",

-20 -15 -10

o

l"JlS(on) vs. VD and Temperature
.-----F=,..--=:.....,----r-----.-----,

_ TA=25'C

CI

j

60

15

r-.... ......

-

........ ..........

1-0-..

--...

V+ = 15V
200 I- V- = -15V
VIN = 4 V(One Input)
(All Other = OV)
100 I-

'r---1-

o
-100
-55 -35 -15

1+-

5

15

45

65

85

105 115

Thmperature (. C)

1-123

Siliconix

DG381N384N387N390A

AMember ofthe TBMIC Group

1)pical Characteristic (Cont'd)
120

Supply Curents VB. Switching Frequency

Off Isolation and Crosstalk vs. Frequency

li

-

....

100

15

~+1=111~~1I
_ V-=-15V

Crosstalk

,,,

~

80

10

Off Isolation

60

5
40

20

r-

V+ = 15V
V- = -15V

+I

ilill ~

Rn7~1111
lOOk

10k

1M

rill

o

1k

10M

~

a

1M

f - Frequency (Hz)

Switching Time vs. Power Supply Voltage

Leakage vs. Temperature
400
V+ = 15V
V- = -15V
Vs, VD = ± 14 V --+----l-+-:oI"-I~1<:l

10nA

lOOk

10k

f - Frequency (Hz)

100nA

~

~

I
InA

.E
....

..

350

f--

V+~15V I

V- = -15V

300
:[

250

~

200

S

150

:e

I'~

lOOpA

':1o

--

-

toN

tOFF-

1 1 1 1 1

j

L-_L-_~_-L_-L_~_~

-55 -35 -15

5

25

45

65

85

105 125

10

Switching Time vs. Temperature

250

20Q
150
100
50

Cl
~

.".,...

~

- -

" , . i""'"

-- --l,...-

~ i-"

~,,-

tON -

---

-

t-r-:: --

25

45

65

Thmperature (DC)

1-124

130

~

..

110

~

90

..
'2

70

}

toFF -

~

Q
1

50

!

30

~
5

18

,

85 105 125

150

i

.iIl

0

o
-55 -35 -15

16

20

22

170 ll>S(on) VB. Analog and Positive Supply Voltage

.J+

= 15v I
350 f- V- = -15V
Vs=3V
300

14

V+, V- Positive and Negative Supplies (V)

Thmperature (DC)

400

12

I

~_I=JVI
TA=25 DC
'vi =15J

'I

"

I
~

....

.... V
i-'" ",.

-- "

v+ = 10V

""

~

v+ =15V
l.o01ooo..

10

o

2

4

6

8

10

12

14

V+, V-Positive and Negative Supplies (V)

P-32167-Rev. B (11/15/93)

Silicanix

DG381N384N387N390A

AMem'ber of the TBMJC Group

Schematic Diagram (lYpical Channel)
V+O---------1_-----1------------~----------1_------------------------~~

,......-.....,p---_-+-+--OS
VLevel
Shift/
Drive
V+
GND

0---+------+--------1
L--~I--"",,"--+--oD

V-o--""""--------------------~---------+----------------+--------~

Figure 1.

Test Circuits
+15 V

Logic "1" = Switch On
V+

Logic
Input

Vs = 3 v o-+-'S'--____01 ~,.--_----_ _o Vo

50%

VINH
OV-----J

5V

oV

-------1-'

Switch
Output

CL (includes fIXture and stray capacitance)
RL
VO=Vs
RL + lDS(on)

tON

Figure 2. Switching Tune

+15 V

Logic "1" = Switch On

Logic
V+

Input 0 V _ _V_INH_..Jf50%

\\.._______

VSI = 3V
Switch VSI------;:::==:::::;---Output
RU TCLl

RL2TCL2

;00~3PF

300~3PF

Switch
Output

oV

VOl

--".:....----'

VS2 ~==~-r-----r----:;:::::=
V02

CL (includes fIXture and stray capacitance)

Figure 3. Break-Before-Make SPDT (DG301A, DG303A)
P-32167-Rev. B (11/15/93)

1-125

..

Siliconix

DG381N384N387N390A

AMember of the TBMIC Group

Test Circuits (Cont'd)
+15V

l

V+

Vo
Vg

IINo

~

\

faN

r-

Vo
1Nx
ON

OFF

Figure 4. Cbarge Injection

Applications
The DG381A series of analog switches will switch positive
analog signals while using a single positive supply. This
allows their use in applications where only one supply is
available. The trade-offs or performance given up while
using single supplies are: 1) increased fDS(on), 2) slower
switching speed. Typical curves for aid in designing with
single supplies are supplied (see 1YPical Characteristics).
The analog voltage should not go above or below the supply
..1 n,.
vonages WIDen In SIngll:: up~raliUll all; v.,.. allu u v.
•

..

•

...

...

'1"7 •

~.

In the integrator of Figure 4, RD controls the discharge rate
of the capacitor so that the pulsed or continuous current
ratings are not exceeded. During reset SW1 is closed and
SWzisopen.OpeningSWzwithSW1alsoopenwillholdthe
integrator output at its present value.

7

c

RD
Reset

o---t--c~J

Start/Stop

o---t--c~J

DG381A

R

Figure 5. Integrator with Reset and Start/Stop

1-126

P-3Z167-Rev. B (11115/93)

Siliconix

DG401j403j405

A Member of the TBMIC Group

Low-Power, High-Speed CMOS Analog Switches
Features

Benefits

Applications

• 44-V Supply Max Rating
• ± 15-V Analog Signal Range
• On-Resistance-rDS(on): 20 Q
• Low Leakage-ID(on): 40 pA
• Fast Switching-tON: 100 ns
• Ultra Low Power Requirements-PD: 0.35 IlW
• TIL, CMOS Compatible
• Single Supply Capability

•
•
•
•

•
•
•
•
•
•

Wide Dynamic Range
Low Signal Errors and Distortion
Break-Before-Make Switching Action
Simple Interfacing

Audio and Video Switching
Sample-and-Hold Circuits
Battery Operation
Test Equipment
Hi-Rei Systems
PBX,PABX

Description
The DG401/403/405 monolithic analog switches were
designed to provide precision, high performance switching
of analog signals. Combining low power (0.35 f.lW, typ) with
high speed (tON: 100 ns, typ), the DG401 series is ideally
suited for portable and battery powered industrial and
military applications.
Built on the Siliconix proprietary high-voltage silicon-gate
process to achieve high voltage rating and superior
switch on/off performance,
break-before-make is
guaranteed for the SPDT configurations. An epitaxial layer
prevents latchup.

Each switch conducts equally well in both directions when on,
and blocks up to 30 V peak-to-peak when off. On-resistance
is very tIat over the full ± 15-V analog range, rivaling JFEf
performance without the inherent dynamic range limitations.
The three devices in this series are differentiated by the
type of switch action as shown in the functional block
diagrams.

Functional Block Diagrams and Pin Configurations
LCC
NC Dl NC Sl INl

Dual-In-Line and SOIC

DG401

DG401

Dl

Sl

NC

INl

NC

V-

NC

GND

NC

VL

NC

V+

NC

IN2

D2

S2

NC

Ordering Information - DG401
Package

-40 to 85"C

16-Pin Plastic DIP

-55 to 125°C

16-Pin CerDIP
LCC-20

P-32167-Rev. C (11/15/93)

NC

GND

NC

NC

NC

VL

NC

V+

NC D2 NC ~ IN2
ThpView

ThpView

Temp Range

V-

Tho SPST Switches per Package
'Iruth Table

ParlNumber

DG40lDJ
DG401AK
DG401AK/883
DG401AZ!883

, Logic

o

Switch
OFF

ON
Logic "0" s 0.8 V
Logic "1" 2: 2.4 V
Switches Shown for Logic "1" Input

1-127

..

Siliconix

DG401/403/405

AMcmber of tho TBMIC Group

Functional Block Diagrams and Pin Configurations (Cont'd)
LCC

Dual-In-Line and SOIC

DG403

NC Dj NC

DG403

Dj

Sj

NC

INj

D3

V-

D3

S3

GND

S3

S4

VL

D4

V+

S4

NC

IN2

D4

D2

~

-40 to 8S·C

Logic

16-Pin Narrow SOIC

DG403DY
DG403AK

LCC-20

D1

DG403AZ/883

CJ

0

SWl>SWZ
OFF

SW3,SW4
ON

1

ON

OFF

LOgIc "0" :$ 0.8 V
Logic "I" '" 2.4 V
Switches Shown for Logic "I" Input

DG403AKJ883

LCC

Dual-In-Line and SOIC

DG40S

'Iruth Table

DG403DJ

-55 to 125·C

DG40S

NC D! NC
.

IN!

D3

V-

S3

GND

S4

VL

D3

D4

V+

NC

IN2

D2

~

-55 to lZS·C

4

21

1

:WI

1:.1.

~
Y
___
L __ .J

NC

IN2

Tho DPST Switches per Package

Part Number

'Iruth Table
Logic

Switch

16-Pin Narrow SOIC

DG405DY

o

OFF

DG405AK
DG40SAKJ883
DG40SAZ/883

V-

GND

DG405DJ

16-Pin CerDIP

18

S3

16-Pin Plastic DIP

LCC-20

1-128

3

NC D2 NC S2
ThpView

Ordering Information - DG40S

-40 to 85·C

IN!

NC

ThpView

Package

S!

Kev~

<;:

NC

Temp Range

IN2

Part Number

16-Pin Plastic DIP

16-Pin CerDIP

NC D2 NC S2
ThpView

Tho SPDT Switches per Package

Ordering Information - DG403
Package

IN!

NC

ThpView

Temp Range

Sj

ON
Logic "0" :$ 0.8 V
Logic "I" '" 2.4 V
Switches Shown for Logic "I" Input

P-32167-Rev. C (11/15/93)

Siliconix

DG401/403/405

AMcmbcr O[thcTeMlC Group

Absolute Maximum Ratings
V+toV- ..............•........................•... 44V
GNDtoV- ....•....•.................•.............. 25V
VL .•....•................... (GND - 0.3 V) to(V+) +0.3 V
Digital InputsaVs, VD .....•....... (V-) -2Vto(V+ plus2V)
or 30 rnA, whichever occurs first
Current (Any Thrminal) Continuous .................... 30 rnA
Current, S or D (Pulsed 1 ms 10% duty) ................ 100 rnA
Storage Temperature
(AX, AZ SuffIX) . . . . . . . .. -65 to 150'C
(DJ, DY SuffIX) ......... -65 to 125'C
Power Dissipation (Package)b
16-Pin Plastic DIP< ................................. 450 mW
16-Pin CerDIpd .................................... 900 mW
16-Pin Salce ..................•......•............ 600 mW
LCC20f ........................................•. 900mW

Notes:
a. Signals on Sx, Dx, or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6 mWI'C above 75'C
d. Derate12mWI'Cabove75'C
e. Derate 7.6 mWI'C above 75'C
f. Derate 13 mWI'C above 75'C

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

ASuflb:
-55 to 125'C

I

D Suffix
-40 to 85'C

I

V+=15Y,V-=-15V
VL = 5 Y, VIN = 2.4 Y, 0.8 yf

Tempb

tnS(on)

Is = -lOrnA, VD = ±10V
V+ = 13.5 Y, V- = -13.5V

Room
Full

20

35
45

45
55

6.tnS(on)

Is = -lOrnA, VD = ±5Y, OV
V+ = 16.5Y,V- = -16.5V

Room
Full

3

3
5

3
5

Room
Hot

-0.01

Room
Hot

-0.01

Symbol

lYPc

Mind

Maxd

Mind

15

-15

Maxd

Unit

15

V

Analog Switch
Analog Signal Range'
Drain-Source On-Resistance
6. Drain-Source
On-Resistance

IS(off)
Switch Off Leakage Current

V+ = 16.5, V- = -16.5 V
VD = ±15.5Y, Vs = :f15.5V

ID(off)
Channel On
Leakage Current

-15

Full

VANALOG

-0.25

0.25

-20

20

-0.5
-5

0.5
5

-0.25

-20

0.25
20

-0.5
-5

0.5
5

-0.4
-40

0.4
40

-1

1

-10

10

ID(on)

V+ = 16.5 Y, V- = -16.5 V
Vs = VD = ±15.5V

Room
Hot

-0.04

Input Current VIN Low

In.

VIN under test = 0.8 V
All Other = 2.4 V

Full

0.005

-1

1

-1

1

Input Current VIN High

1m

VIN 'Inder test = 2.4 V
All Other = 0.8 V

Full

0.005

-1

1

-1

1

RL= 300n, CL = 35 pF
See Figure 2

Room

100

150

150

Room

60

100

100

n

nA

Digital Control

(!A

Dynamic Characteristics
111m-On TIme

tON

111m-Off TIme

tOFF

Break-Before-Make
TIme Delay (DG403)

tD

RL = 300n, CL = 35pF

Room

12

Charge Injection

Q

CL = 10,000 pF
Vgen = OY,Rgen = on

Room

60

Room

72

Room

90

Off Isolation Reject Ratio

OIRR

Channel-ta-Channel Crosstalk

XTALK

P-32167-Rev. C (11115193)

RL = 100n,CL = 5 pF
f=lMHz

5

os

5
pC
dB

1-129

..

Siliconix

DG401/403/405

A Member aftho TBMIC Group

Specificationsa
Test Conditions
Unless Otherwise Specified
V+ = 15 V, V- = -15V
VL = 5V, VIN = 2.4 V,0.8V£

Tempb

1YP"

CS(off)

Room

12

CO(off)

Room

12

CO, Cs(on)

Room

39

Positive Supply Current

1+

Room
Full

0,01

Negative Supply Current

1-

Room
Full

-0.01

Logic Supply Current

IL

Room
Full

0.01

IGNO

Room
Full

-0.01

Parameter

Symbol

D Sulllx
-40 to 85°C

ASuftix
-55 to 125°C
Mind JMaxd

Mind

I

Maxd

Unit

Dynamic Characteristics (Cont'd)
Source Off Capacitance
Drain Off Capacitance
Channel On Capacitance

f=lMHz,Vs=OV

pF

Power Supplies

Ground Current

V+ = 16.5 V, V- = -16.5V
VIN = 00r5V

1
5

1
5

-1
-5

-1
-5
1
5

1
5

!LA

-1
-5

-1
-5

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature suffIX.
c. 'IYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by desigu, not subject to production test.
f. VIN = input voltage to perform proper function.

'J.Ypical Characteristics

Input Switching Threshold vs. Supply Voltages

Input Switching Threshold vs. Logic Supply Voltage
10

3.5

1V+~15~ I

8 -

3.0

V- = -15V
TA=25°C

~

6
.oOII!i!

4

I

",

I

.,~"

2

DG403 SW3,4

€

2.0

~

1.5

1.0
0.5

o

o
024

6

8

W U "

VL - Logic Supply (V)

1-130

2.5

H

W

W

(V+) 5
(V-) -5

10
-10

15
-15

W
-10

25
-5

30
0

35
0

40

o

P-32167-Rev. C (11/15/93)

Siliconix

DG401/403/405

AMember of the TEMIC Group

1YPical Characteristics (Cont'd)
I"])S(oo)
35

VS.

VD and Temperature

rDS(oo)

VS.

Vn and Power Supply Voltage

40

V+ = 15 V, V- = -15V
VL=5V

30 I'-"'~+---+-__j---I---+----l
30

~----+_----+_----+_----+_--~

25

20 I'-"''''''-:+---+---I---I---t_-I

15
±22V
10'--__--'-____-'-____-'-____'--__--'

-55'C
10 '--_-'-_--'-_ _
_ _.1....-_-'-_--'
-15 -10
-5
5
o
10
15

-25

-5

-15

VD - Drain Voltage (V)

5

15

I"])S(oo) VS. VD and Power Supply Voltage
(V- = OV)

70

.----..--..,....---'--=--T'---.-----,

60

~~--~----+_----+_----+_--~

Charge Injection vs. Analog Voltage
200
f- V+=15V,V-=-15V
180
VL=5V
/
160

TA=25'C

I

140

50 ~-__j~~-+--1-----t---__j

CL= 10k P/

120

IT
.e;
0
15V

~ V"

80
60

A

40
~

____

o

~

____

5

~

____

10

~

____

15

~

__

20

o

~

25

r~
F

1nA

~

§

-10

1pA

o

-5

5

10

15

..

Vs - Source Voltage (V)
Leakage Current VS. Analog Voltage
90

t+=115VI
V-=-15V
VL=5V
VD= ±14V

60

§
ID(o!!)

100pA
10pA

~oopF

.......... ""-

:::::: ~
-15

Leakage Current VS. Temperature

10nA

L.

.........-: ~

VD - Drain Voltage (V)

100nA

~

L,....--

1//1kpF

·100

20
10

26

VD - Drain Voltage (V)

~

~

~

~

O.lpA
-55 -35 -15

~

h ~

~ID(on)

30

<"
.e;

0

~

-30

-'"

-60
-90
-120

--

-

t- ID(o!!).IS(off)

~~

~ I"""

ID(on)

I

V+ =15V,V- = -15V
VL = 5V, TA = 25'C
ForlD(ofip Vs = OV
ForlS(ofip VD = OV

-

-150
5

25

45

65

Temperature ('C)

P-32167-Rev. C (11/15/93)

~~

85

105 125

-15

-10

-5

o

5

10

15

VD or VS - Drain or Source Voltage (V)

1-131

Siliconix

DG401/403/405

AMcmbcr orthcTBMIC Group

'fYpical Characteristics (Cont'd)
Switching Time vs. Thmperature*

100 n e--r-ir--r--r--r-i---.-.----,

240
210

V+ = 15 V, V- = -15 V, VL = 5V
-tON --tOFF

10n
180

S
.::

1 n 1=--t-----1f--I--t--+-::w:..4--+---!

£
£

100 p 1=--t-----1f--I--b!!I~-+--+-+---!

~
~
,":

150

~

90

120

60

10.0 P I.-....~~"+-t--+-+--f--+----i

Vs= -10V

--::t=;:=
~~-n~~~~~~~Vs=10V

30
1 P L.....-1----.J'----'--_'---L._L--'-_..I.---1

-55 -35 -15

5

25

45

65

85

o

105 125

-55 -35 -15 5

TA - Thmperature ('C)

200

Switching Time vs. Power Supply Voltage*

180

\,.~

120

-=-

§

100

~

80

270 240

~ Vs=5V

140
-;;;-

Vs=5V

l

.... .' ,.

;'-Vs= -5V

,~""

~

-

g

,r

1--1--

60 - V s = - 5 V

J
!

40
2:

~

120

±10

±15

65

90

-15V
-5V
OV

r-

\.
,\.,
1\' .............
\. ...........
~\c

,

±20

'\

~~,:

60

VL=5V

85

105 125

Vs=5V

r-

""- ~O':.~

.--

r?

~~-15V

3~ IL--_-..L__--'-__. IO_N_---..JI'-O_FF_J-'
.

;O_N_-_--'--It_oFF_--11

±5

180
150

L . I_ _- ' -_ _' - - _ - _. . . .

o

OV
-5V
-15V

210

§

I

!

45

Switchhig Time vs. Positive Supply Voltage*

300

1

160

25

TA - Thmperature ('C)

±25

v +. V-Positive and Negative Supplies (V)
'Refer to Figure 2 for test conditions.

o

5

10

v+

-t

--t

15

20

25

- Positive Supply (V)

Schematic Diagram (lYpical Channel)
V+o-----~-~-~------~---------~------------------~~

. . - - - _ -......--1-+--oS

Level
Shift!
Drive

GNDo--------+-----~--

_____~

'----ir-----+--o D
V-o-------~----------

______ ______
~

_4--------------~------~

Figure 1.

1-132

P-32167-Rev. C (11/15193)

Silicanix

DG401/403/405

AMcmbcr oftbc TBMIC Group

Test Circuits
Vo is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the
output waveform.

+5V

+l5V
3V

CL (includes fIxture and stray capacitance)

Vo=VS

Logic
Input

OV

Switch
Input'

Vs

50%

Switch
Output

OV

Switch
Input'

-Vs

tr <20ns
tf <20 ns

Vo

'VS = 10 V for toN. Vs = -lOVfor tOFF
Note: Logic input waveform is inverted for switches that
have the opposite logic sense control

RL + rDS(on)

Figure 2. Switching Tune
+5V

+l5V
Logic
Input

3VJ

50%

OV
VSl
VOl

VSl
Switch
Output

OV
VS2
VOl

Switch
Output

OV

t

-

CL (includes fIXture and stray capacitance)

Figure 3. Break-Before·Make
+5V

+15 V

Rg
Vo

IlOnF
CL

Vo - - _ . /
I N - -........
On

Off

On

Figure 4. Charge Injection

P-32l67-Rev. C (11/15/93)

1-133

Siliconix

DG401/403/405

AMcmber oltho TBMIC Group

Test Circuits (Cont'd)
+5V

+15V

+5V

r:-----Ho-+----<01 ....--++If--t_-O

Vo

+15V

~---~~~-----t+I~..J

~_+-+_INL ..J
DG403

Channel
Select

-

Figure 9.

Slope
Select

-15V

Stereo Source Selector

Figure 10. Dual Slope Integrator

Band-Pass Switched Capacitor Filter:
Single-pole double-throw switches are a common element
for switched capacitor networks and filters. The fast
switching times and low leakage of the DG403 allow for

higher clock rates and consequently higher filter operating
frequencies.

+5V +15V

VL

..

SI
S3

IN2....J
e;n

~

S2
S4

-

I

..n..r

IN1....J

Clock

GND

-

DG463
V-

-15V

>-.,.-'--0

"out

Figure 11. Band-Pass Switched Capacitor Filter
P-32167-Rev. C (11/15/93)

1-135

Siliconix

DG401/403/405

AMember of the 'nIMICGroup

Applications (Cont'd)
Peak Detector:
A3 acting as a comparator provides the logic drive for
operating SW1. The output of A2 is fed back to A3 and

goes negative, turning SWl off. The system will therefore
store the most positive analog input experienced.

compared to the analog input ein. If ein > eout the output
of A3 is high keeping SW1 closed. This allows Cl to charge
up to the analog input voltage. When ein goes below eout A3

Reset

...,
Rl

>-........--oCOut

- - - em

---

Figure 12. Positive Peak Detector

1-136

P-32167-Rev. C (11/15/93)

Siliconix

DG411/412/413

AMcmber of the TBMIC Group

Precision Monolithic Quad SPST CMOS Analog Switches
Features

Benefits

Applications

• 44-V Supply Max Rating

•
•
•
•

•
•
•
•
•

• ± lS-V Analog Signal Range
• On-Resistance-rnS(on): 25 g
•
•
•
•

Fast Switching-tON: 110 ns
Ultra Low Power-Pn: 0.351LW
TIL, CMOS Compatible
Single Supply Capability

Widest Dynamic Range
Low Signal Errors and Distortion
Break-Before-Make Switching Action
Simple Interfacing

Precision Automatic Test Equipment
Precision Data Acquisition
Communication Systems
Battery Powered Systems
Computer Peripherals

Description
The DG411 series of monolithic quad analog switches was
designed to provide high speed, low error switching of
precision analog signals. Combining low power (0.35 11W)
with high speed (tON: 110 ns), the DG411 family is ideally
suited for portable and battery powered industrial and
military applications.
To achieve high-voltage ratings and superior switching
performance, the DG411 series was built on Siliconix's high

voltage silicon gate process. An epitaxial layer prevents
latchup.
Each switch conducts equally well in both directions when
on, and blocks input voltages up to the supply levels
when off.
The DG411 and DG412 respond to opposite control logic
as shown in the Truth Thble. The DG413 has two normally
open and two normally closed switches.

Functional Block Diagram and Pin Configuration
DG411/412

LCC

DG411/412

Dual-In-Line and sorc

D1 IN1 NC IN2 D2

IN1

IN2

D1

D2

S1

S1

~

V-

V+

NC

NC

GND

NC

V-

V+

GND

VL

S4

S3

D4

D3

IN4

IN3

S2

S3

S4

D4 IN4 NC IN3 D3
lbpView

lbpView

1ruthTable

Ordering Information - DG411/412
Temp Range
-40 to 85°C
-40 to 85°C

Part Number

Package
16-Pin Plastic DIP
16-Pin Narrow sorc
16-Pin CerDIP

-55 to 125°C
LCC-20

P32167-Rev. B (11/15/93)

Logic

DG411

DG412

DG411DJ

0

ON

OFF

DG412DJ

1

OFF

ON

DG411DY
DG412DY
DG411AK, DG411AK/883, 5962-9073101MEA

Logic "0" s 0.8 V
Logic "1" '" 2.4 V
Switches Shown for DG411 Logic "1" Input

DG412AK, DG412AK/883, 5962-9073102MEA
DG411AZ1883, 5962-9073101M2A
DG412AZ1883,5962-9073102M2A

1-137

Silicanix

DG411/412/413

AMcmbcr of the TBMIC Group

DG413

DG413

LCC

D1 IN!

D2

~

S1
V-

V+

NC

NC

GND

NC

S4

S3

D4 IN4 NC IN3 D3
ThpView

'fruth Table

Ordering Information - DG413
Thmpllange
-40 to 8S·C
-S5 to 125·C

Locie

SWltSW4

16-Pin Plastic DIP

DG4130J

0

OFF

ON

16-Pin Narrow SOIC

DG413DY

1

ON

OFF

Part Number

Package

16-Pin CerDIP
LCC-20

SWz,SW,

DG413AK, DG413AK1883. S962-9073103MEA
DG413AZ1883. S962-9073103M2A

Logic "0" s 0.8 V
Logic "1" '" 2.4 V
Switches Shown for DG411 Logic "1" Input

Absolute Maximum Ratings
V+toV- .................•......................... 44V
GNDtoV- .................•......................•. 25V
VL •........................•..•• (GND -0.3 V) (V+) +0.3 V
Digital Inputsa• Vs. VD ............... (V-) -2Vto (V+) +2V
or 30 rnA, whichever occurs first
Continuous Current (Any Thnninal) .................... 30 rnA
Current, S or D (Pulsed 1 ms; 10% Duty Cycle) .......... 100 rnA
Storage Thmperature
(AK, AZ Suffix) . . . . . . . .. -65 to 1S0·C
(OJ. DY Suffix) .... . . . .. -65 to 125·C
Power Dissipation (Package)b
16-PinPlasticDIPC ...•..............•.............. 470mW

1-138

16-PinNarrowSOIcd .•............................. 600mW
16-PinCerDIpc .................................... 900mW
LCC-20" .....•.•.....•..............•••........... 900mW
Notes:
a. Signals on Sx. Dx. or INx exceeding V + or V - will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. A1lleads welded or soldered to PC Board.
c. Derate6mWf·Cabove25·C
d. Derate 7.6 mWrC above 75·C
e. Derate12mWf·Cabove7S·C

P-32167-Rev. B (11115193)

Silicanix

DG411/412/413

A Member of the TEMIC Group

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

ASumx
-55 to 125'C

I

D Suff"1X
-40 to 85'C

I

V+=15V,V-=-15V
VL = 5 V, VIN = 2.4 V, 0.8 yf

Tempb

V+ = 13.5 V, V- = -13.5 V
Is = -lOrnA, VD = ±8.5V

Room
Full

25

Room
Full

±0.1

-0.25
-20

0.25
20

-0.25
-5

0.25
5

Room
Full

±0.1

-0.25
-20

0.25
20

-0.25
-5

0.25
5

Room
Full

±0.1

-0.4
-40

0.4
40

-0.4

0.4

-to

to

Room
Full

110

175
240

175
220

Room
Full

100

145
160

145
160

25

'JYpc

Mind

Maxd

Mind

15

-15

Maxd

Unit

15

V

Analog Switch
Analog Signal Rangee
Drain-Source On-Resistance

1'])5(00)

IS(off)
Switch Off Leakage Current

V+ = 16.5, V- = -16.5V
VD= ±15.5V, Vs= 'F15.5V

ID(off)
Channel On Leakage Current

ID(on)

-15

Full

VANALOG

V+ = 16.5 V, V- = -16.5 V
Vs = VD = ±15.5V

35
45

35
45

°
nA

Digital Control
Input Current, VIN Low

VIN Underlest = 0.8 V

Input Current, VIN High

VIN Under10st = 2.4 V

Dynamic Characteristics
Thrn-On'TIme

tON
RL = 3000, CL = 35pF
Vs = ± 10 V See Figure 2

Thrn-Off'TIme
Break-Before-Make 'TIme Delay
Charge Injection

tOFF
tD

DG413 Only, Vs = lOV
RL = 3000, CL = 35 pF

Room

Q

Vg = Ov, Rg = 00, CL = 10nF

Room

5

Room

68

Room

85

Room

9

Off Isolatione

OIRR

Channel-to-Channel Crosstalk"

XTALK

RL = 500, CL = 5 pF, f = 1 MHz

Source Off Capacitancec

CS(off)

Drain Off Capacitancee

CD(off)

Channel On Capacitancee

pC
dB

Room

9

CD(on)

Room

35

Positive Supply Current

1+

Room
Full

0.0001

Negative Supply Current

1-

Room
Full

-0.0001

Logic Supply Current

IL

Room
Full

0.0001

IGND

Room
Full

-0.0001

f=1MHz

os

pF

..

Power Supplies

Ground Current

P32167-Rev. B (11/15/93)

V+ = 16.5, V- = -16.5 V
VIN=00r5V

1
5
-1
-5

1
5
-1
-5

1
5
-1
-5

1
5

tu\

-1
-5

1-139

Silicanix

DG411/412/413

AMember of the TBMIC Group

Speci6cations a for Unipolar Supplies
A Suffix
-55 to 125'C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

I

D SUff"1X
-40toS5'C

I

V+=12V,V-=OV
VL = 5 V, VIN = 2.4 V, O.B vt

Tempb

12

12

V

V+ = 10.BV, ls = -lOrnA
VD=3V,BV

Room
Full

40

BO
100

SO
100

Q

Room
Hot

175

250
400

250
315

Room
Hot

95

125
140

125
140

'fYpc

Mind

Maxd

Mind

Maxd

Unit

Analog Switch
Aoalog Signal Range"

Full

VANALOG

Drain-Source On-Resistance

rns(on)

Dynamic Characteristics
Thrn-OnTIme

tON

Thrn-OffTIme

RL = 300Q, CL = 35pF
VS = B V, ~ee Figure 2

IOFF

Break-Before-Make
TIme Delay

tD

DG413 Only
Vs = BV,RL = 300Q, CL = 35 pF

Room

25

Charge Injection

Q

Vg = 6 V, Rg = 0 Q, CL = 10 nF

Room

25

ns

pC

Power Supplies
Positive Supply Current

I+

Room
Hot

0.0001

Negative Supply Current

1-

Room
Hot

-0.0001

Logic Supply Current

IL

Room
Hot

0.0001

IGND

Room
Hot

-0.0001

1
5

1
5

-1
-5

-1
-5

!lA

V+ = 13.5, VIN = Oor 5V

Ground Current

1
5

1
5

-1
-5

-1
-5

l'4ULCI!I.

a.
b.
c.
d.
e.
f.

Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
Room = 25'C, Full = as determined by the operating temperature suffIX.
'iYPical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
Guaranteed by design, not subject to production test.
VIN = input voltage to perform proper function.

'JYpical Characteristics
On-Resistance vs. VD and
Unipolar Supply Voltage

On-Resistance vs. VD and Power Supply Voltage
50
45

TA~ 25'~

40

I

35

20
15

All

±15V......

I'"

1\
,-....,...
~
~
r--.. ...
;-

~

......... .:::

200

~

±10V

!

~±12V
",

~

~-

150
100

±20V

10

50

5

o

0
-20 -15 -10

-5

0

5

10

VD - Drain Voltage (V)

1-140

..

250

±ISV

30
25

300

±5~ A

_I

15

20

I

I

V~=5Iv

I

\ V+ =3V
VL=3V

I

I-

I

V+ =5V
~
I

1\

/

B~

,-

;".-

-

024

6

I

12V _

B

10

12

15V

"

M

20V
U

20

VD - Drain Voltage (V)

P-32167-Rev. B (11/15193)

Siliconix

DG411/412/413

AMem'ber oftbcTBMlc Group

lYPical Characteristics (Cont'd)
Leakage Current vs. Analog Voltage

40

I

30 20 _

I

OJ

V+ =15V
V- = -15V
VL=5V
10 -TA 25°C

~
,e;
~

"'

-20

-

k

~

./

-30
-40
-50

/'

..,,- ~
ID(on)

-

.~

./

t:l
I

-60
-15

~o
j

",

IS(off)

,

j

...-!

ID(of£)

-

0
-10

In, Is Leakages vs. Temperature

VD or Vs -

J

o

-5

-10

35 r--~~-r~-'--T---r--'
V+ = 15V
V- = -15V
30 I-:::....."""'--t--+-- VL = 5V

10

5

5

~_~_~

-15

15

Charge Inje~tion vs. Analog Voltage

40
0

-40
-60

,

#

20

CL= InF

-20

A r

i'o...

-10

~

I
I
120 r- V+ = 15V
V- = -15V
100 I- VL=5V

./

V/ ..............

G'
,e;

:.o"'CL=10nF

0

Y

60
/

40
20
0

o

-60
5

10

-15

15

#

~
~ //
~ '//

-40

-5

U

./
~

'"

CL=lnF

A~

o

-5

-10

5

10

15

..

VD - Drain Voltage (V)

Input Swit~hing Threshold vs. Supply Voltage

Switching Time vs. Thmperature
240
210

3.0

1-~+=I15VI

V- = -15V
180 r- VL=5V
Vs=10V

2.5

150

-- -

toN _

2.0
120

---

1.5
90 I"""""

1.0

I-"":

.---- ~

tOFF

60

0.5
0
(V+) 5
(V-)-5

15

/. 'I'

-20

3.5 ,---.,--,--....--,-----.---.---,

~

10

CL= 10nF

80

V s - Source Voltage (V)

~

_ _~_~

5

Charge Injection vs. Analog Voltage

r--V
-15

o

140

V+ I=15V I
80 -V-=-15V
VL=5V
60

0

~_-L

VD - Drain Voltage (V)

Drain or Source Voltage (V)

100

G'
,e;

__

-5

-10

30

o
10
-10

P32167-Rev. B (11/15/93)

15
-15

20
-10

25
-5

30
0

35
0

40
0

-55 -35 -15

5

25

45

65

85

105 125

Thmperature (0C)

1-141

Silicanix

DG411/412/413

AMcmber afthe TBMIC Group

1YPical Characteristics (Cont'd)
Operating Voltage Range

so

Supply Current vs. Input Switching Frequency
lOOmA

42

V+ = 15V
-15V
VL=5V
- - =lSW
4 SW --!-----!7fIC--ri--",.'-!

v- =

10mA

40

_ =

1mA

€

30

+

>

20
10

:

j

VL=
C
Compatible

W~tlbe

1011A

lIlA

VIN = 0.8 V, 2.4 V

100nA

2

o

1DOIIA

10nA

o

-10

-20

-30

-40

10

100

1k

10 k

100 k

1M

10 M

f - Frequency (Hz)

V - - Negative Supply (V)

Schematic Diagram (1YPical Channel)
VT~~·-,--~-~------~~--------~------------------------~-;

,.---...I"--..,..-+-+--<>S
VL

VIN

Level
Shift!
Drive

GND
D

V-

Figure 1.

1·142

P-32167-Rev. B (11/15/93)

Siliconix

DG411/412/413

AMember of the TEMlC Group

Test Circuits
+5V

+15V

3V
Logic
Input

tr <20ns
tf <20 ns

50%
OV

Vo
SWitch
Input·

Switch
Output
Switch
Input·

CL (includes fixture and stray capacitance)

Vs

Vo

90%

-

OV

Vo
-Vs

·VS = 10VfortoN, Vs = -lOVfortoFF
VO=VS

Note: Logic input waveform is inverted for switches that
have the opposite logic sense control

RL + J'DS(on)

Figure 2. Switching Tune

+5V

+15V
Logic
Input

VSl

VL
Sl

V+
Dl

t

V02

D2

~

j-50%
OV
VSl
VOl

VOl

INl
VS2

3V

-

RLl~CLl
35pF

300'-1

-

SWitch
Output

OV
VS2
V02

SWitch
Output

OV

..

CL (includes fIXture and stray capacitance)

Figure 3. Break-Before-Make (DG413)

+5V

+15 V

INX~
Vo
CL
I10nF

INX dependent on switch configuration Input polarity determined by
sense of switch.

Figure 4. Charge Injection

P32167-Rev. B (11/15/93)

1-143

Siliconix

DG411/412/413

AMembcr of the TBMIC Group

Test Circuits (Cont'd)
+5V

+15 V
+5V

+15 V

Vo

,

-15V

XTALKIsolation = 20 log

I I

Off Isolation = 20 log

Vo
Vs

C = RFBypass

C= RFbypass

Figure 6.

Figure 5. Crosstalk

+5V

Off Isolation

+15V

Meter
HP4192A

Imp::d:mce
Analyzer

or Equivalent

Figure 7. Source/Drain Capacitances

Applications
Single Supply Operation:
TheDG411/412/413 can be operated with unipolar supplies
from 5 V to 44 V. These devices are characterized and
tested for unipolar supply operation at 12 V to facilitate the
majority of applications. In single supply operation, V + is

1-144

tied to VL and V- is tied to 0 V. See Input Switching
Threshold vs. Supply Voltage'curve for VL versus input
threshold requirments.

P-32167-Rev. B (11/15/93)

Silicanix

DG411/412/413

A Member of the TBMlc Group

Applications (Cont'd)
Summing Amplifier
Whendrivingahighimpedance,highcapacitanceJoadsuch
as shown in Figure 8, where the inputs to the summing
amplifier have some noise filtering, it is necessary to have

shunt switches for rapid discharge of the filter capacitor,
thus preventing offsets from occurring at the output.

Rj

R2

VlNl

r

Cl

R3

Rs

R4

VIN2
VOUT

r

C2

R6

-=-

Figure 8. Summing Amplifier

..
P32167-Rev. B (11/15/93)

1-145

Siliconix

DG417/418/419

AMember of the TBMIC Group

Precision CMOS Analog Switches
Features

Benefits

Applications

• ± 15-V Analog Signal Range

•
•
•
•
•
•

•
•
•
•
•
•
•

On-Resistance--rOS(on): 20 g
Fast Switching Action-tON: 100 ns
Ultra Low Power Requirements-Po: 35 n W
TIL and CMOS Compatible
MiniDIP and SOlC Packaging
• 44-V Supply Max Rating

•
•
•
•
•

Wide Dynamic Range
Low Signal Errors and Distortion
Break-Before-Make Switching Action
Simple Interfacing
Reduced Board Space
Improved Reliability

Precision Test Equipment
Precision Instrumentation
Battery Powered Systems
Sample-and-Hold Circuits
Military Radios
Guidance and Control Systems
Hard Disk Drives

Description
The DG417/418/419 monolithic CMOS analog switches
were designed to provide high performance switching of
analog signals. Combining low power, low leakages, high
speed, low on-resistance and small physical size, the DG417
series is ideally suited for portable and battery
powered industrial and military applications requiring high
performance and efficient use of board space.
To achieve high-voltage ratings and superior switching
performance, the DG417 series is built on Siliconix's high

voltage silicon gate (HVSG) process. Break-before-make is
guaranteed for the DG419, which is an SPDT
configuration. An epitaxial layer prevents latchup.
Each switch conducts equally well in both directions when
on, and blocks up to the power supply level when off.
The DG417 and DG418 respond to opposite control logic
levels as shown in the Truth Table.

Functional Block Diagram and Pin Configuration
Dual-In-Line and sOle

DG417

Dual-In-Line and sOle

DG419

I

D

D

S

L
v-

v-

Ne
GND

GND

IN

v+

v+
. ThpView

ThpView

1l:uth Thble -DG417/418

1l:uth Thble -

DG419

Logic

DG417

DG418

Logic

SWl

SWz

0
1

ON
OFF

OFF
ON

o

ON
OFF

OFF
ON

Logic "0" = S 0.8 V, Logic "1" = 2: 2.4 V
Switch Shown for DG417 Logic "1" Input
Ordering Information Temp Range

Package
8-Pin Plastic MiniDIP

-40 to 85 0 e
8-Pin Narrow sOle

-55 to 125°e

1-146

v

8-Pin CerDIP

Logic "0" = ::S 0.8 V, Logic "1" = 2: 2.4 V
Switches Shown for DG419 Logic "1" Input

DG417/418
Part Number
DG417DJ
DG418DJ
DG417DY

Ordering Information Temp Range
-40 to 85°e
-55 to 125°e

Package

DG419
Part Number

8-Pin Plastic MiniDIP

DG419DJ

8-Pin Narrow sale

DG419DY

8-Pin CerDIP

DG419AK, DG419AK!883

DG418DY
DG417AK, DG417AK!883
DG418AK, DG418AK!883

P-32167-Rev. e (11/15/93)

Siliconix

DG417/418/419

AMember of the TeMIC Group

Absolute Maximum Ratings
Voltages Referenced to VV+ ................................................. 44V
GND ............................................... 25V

Power Dissipation (Package)b
8-Pin Plastic MiniDiPC .............................. 400 mW
8-Pin Narrow SOICd ................................ 400 mW
8-PinCerDIpc ..................................... 6oomW

VL ........................... (GND -0.3 V) to (V+) + 0.3 V
Digital InputsaVs, VD ............... (V-) -2 Vto (V+) + 2 V
or 30 rnA, whichever occurs first
Current, (Any Thrminal) Continuous .................... 30 rnA
Current (S or D) Pulsed 1 ms, 10% duty cycle ........... 100 rnA
Storage Thmperature

(AK SuffIX) ............ -65 to 150'C
(DJ, DY SuffIX) .... . . . .. -65 to 125'C

Notes:
a. Signals on Sx, Dx, or INx exceeding V+ or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6 mWI'C above 75'C
d. Derate 6.5 mWI'C above 25'C
e. Derate12mWI'Cabove75'C

Specificationsa
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+=15V,V-=-15V
VL = 5 V, VIN = 2.4 V, 0.8 yf

Tempb

Is = -lOrnA, VD = ±12.5V
V+ = 13.5 V, V- = -13.5 V

Room
Full

'JYpc

A Suffix
-55 to 125'C

DSufflX
-40 to 85'C

Mind IMaxd

Mind IMaxd

Unit

Analog Switch
Analog Signal RaogeC

rnS(on)

V+ = 16.5 V; V- = -16.5 V
VD = :fl5.5V, Vs = ±15.5V

ID(on)

V+ = 16.5 V, V- = -16.5 V
Vs = VD = ±15.5V

-15

15

3S
45

0.1

0.25
-20

0.25
20

0.25
-5

0.25
S

DG417
DG418

Room
Full

0.1

-0.25
-20

0.25
20

0.25
-5

0.25
5

DG419

Room
Full

-0.1

-0.75
-60

0.75
60

-0.75
-12

0.75
12

DG417
DG418

Room
Full

-0.4

-0.4
-40

0.4
40

-0.4
-10

0.4
10

DG419

Room
Full

0.4

-0.75
-60

0.75
60

0.75
-12

0.75
12

DG417
DG418

Room
Full

100

175
250

175
250

DG417
DG418

Room
Full

60

145
210

145
210

175
250

175
250

ID(off)

Channel On
Leakage Current

15
35
45

20

Room
Full

IS(off)
Switch Off
Leakage Current

-15

Full

VANALOG

Drain-Source
On·Resistance

V

°
nA

Digital Control
Input Current, VIN Low

..

Input Current, VIN High

Dynamic Characteristics
Thrn-On TIme

tON

Thrn-OffTIme

tOFF

RL= 3000, CL = 35 pF
Vs = ±10V
See Switching Tune Thst Circuit

"Iransition TIme

tTRANs

RL - 3000, CL - 35 pF
VS1= ±10V,VS2= :flOV

DG419

Room
Full

tD

RL - 3000, CL - 35 pF
VSl = VS2 = ±lOV

DG419

Room

13

Q

CL = 10 nF, Vgen - 0 V, Rgen = 0 g

Room

60

Room

8

DG417
DG418

Room

8

DG417
DG418

Room

30

DG419

Room

35

Break-Before-Make
TIme Delay
Charge Injection
Source Off Capacitance

CS(off)

Drain Off Capacitance

CD(off)
f=lMHz,Vs=OV

Channel On
Capacitance

P32167-Rev. C (11/15193)

CD(on)

5

ns

5
pC

pF

1-147

Siliconix

DG417/418/419

AMemberofthc1'EMICGrOUP

Specificationsa
Test Conditions
Unless Otherwise Specified
Parameter

V+ = 15V,V- = -15V
VL = 5 V, VIN = 2.4 V, 0.8 vi

Symbol

Thmpb

lYPc

Room
Full

0.001

Room
Full

-0.001

Room
Full

0.001

Room
Full

-0.0001

ASufI"lX
-55 to 125°C

D SufI"lX
-40 to 85°C

Mind I Max

30

+

20

1.0
10

0.5
0
(V+) 5
(V-) -5

2
0
10
-10

P32167-Rev. C (11/15/93)

15
-15

20
-10

25
-5

30
0

35
0

40
0

~~~~~~~~=j0

.=

CMOS Compatible

-10
-20
-30
Negative Supply V - (V)
Voltages Used for Production Thsting

-40

1-149

Siliconix

DG417/418/419

AMembcr oltho TaNIO Group

1)rpical Characteristics (Cont'd)
Switching Time vs. Temperature
120

V~ = ~5V, ~- = 1-15~

I

100 r- VL = 5V,VIN = 3 V Pulse

!

80

~

60

~

--

~~

40

i-""'"

"","""

tolJ.;oo
.,.".

/

~"I oo"\.,..,l

120
100

DG419
Source 1

-

80
60

20

20

V+ = 15V
V- = -15V
VL=5V

-

o

o
0

20

40

60

80

100 120

100

I

I

1k

10 k

Thmperature (0C)
Switching Time vs. Supply Voltages

70

_

V-=OV
VL=5V
VIN=3V

_

I

~

-

............ ~

I

i"-.....

100

!

90

~

80

~

I

________________
_L_~~_~_-L_

L-_~

±10

±11

±12

±13

±14

rr-

±15

V- =OV
VL=5V
VIN =3V
I

70

I

10

±16

11

12

I---+---+--,tt.'-II---+----::r--l

10 ttA I----t--:::;~-+----+-~~t--__t
1 ttA
100 nA

!--:JIC-_+--+--:~_+---I---l

L-_....L___~-L_ _~_ _L-.._

100

1k

10k

lOOk

f - Frequency (Hz)

1-150

13

14

15

16

V+ Supply Voltage (V)
Supply Current vs. Temperature
1ttA

V~ = 161.5v,~- =1-16.~V
VL=5V,VIN=OV

100nA

1M

_J

10M

~

/

I I

10nA

~

-

.......... r.........toN

_J

Power Supply Currents vs. Switching Frequency
10mA r--~~--r--~-~r-~_.
V+ = 15 V, V- = -15V
VL = 5V, VIN = 5V,50% D Cycle
1mA r----t---+---;-~~I--__t

.:!I

100 M

~

Supply Voltage (V)

100 ttA

10 M

"" ........ .........

110

~IITH-II
40

1M

Switching Time vs. V+

130
120

............. .....

100 k

",

f - Frequency (Hz)

80

"

<:::

40

-55 -40 -20

,
'"

-

Source 2

-

toFF

Crosstalk and ott Isolation vs. Frequency

140

I+.I~ ~

1nA

., V l/
...~
l/ ~GND
lOpA
~
.......
1pA
I'"

VV
V

~

.:!I 100pA

~

O.lpA
-55 -40 -20

0

20

40

60

80 100 120

Thmperature (0C)

P·32167-Rev. C (11/15/93)

Siliconix

DG417/418/419

A Mcmber olthe TBMlc Group

Schematic Diagram (1Ypical Channel)
V+O-------~--~--~--------4r--------~----------------------~,

S

VL
VLevel
Shift!
Drive

VIN

V+
GND
D
V-

Figure 1.

Test Circuits
Vo is the steady state output with the switch on.
+5V

+15V

3V

Logic
Input

50%

tr <20ns
tf <20 os

OV

CL (includes fIXture and stray capacitance)

Switch
Input

Vs

Switch
Output

OV

Note: Logic input waveform is inverted for switches that have
the opposite logic seose.

Vo=VS

Figure Z. Switching Tune (DG417/418)
+5V

+15 V
Logic
Input

VSl
VS2

VL
SI

3V~
\.

tr <20ns
tf <20ns

OV

S2
VSl =VS2
Switch
Output

VoOv~90%
_

tD

CL (includes fIXture and stray capacitance)

Figure 3. Break-Before-Make (DG419)

P32167-Rev. C (11/15/93)

1-151

..

Siliconix

DG417/418/419

AMcmbecoftbc TeMIC Group

Test Circuits (Cont'd)
+5V

+lSV

3V

Logk
Input

tr <20ns
tf <20ns

50%
OV
VSl
VOl

Switch
Output
VS2
CL (includes frxture and stray capacitance)
Vo=VS
Figure 4.

'lIansition Tune (DG419)

~Vo

+15 V

+5V

Vo
Rg
Vo

INx
OFF

CL
IlOnF

Vg

OFF

·ON

Q=dVOXCL
-15V
Figure 5.

+5V

Charge Injection

+15 V
+5V

J2

+15V

v+

50g

~
Vo
RL

XTALK Isolation = 20 log
C= RFbypass

Figure 6.

1-152

Crosstalk (DG419)

-15V

Off Isolation = 20 log

Figure 7.

I~: I

Off Isolation

P-32167-Rev. C (11/15193)

Siliconix

DG417/418/419

A Member of the TEMIC Group

Test Circuits (Cont'd)
+5V

+15V

Va

Figure 8.

+5V

-

-15V
Insertion Loss

+15V
+15V

NC

ov, 2.4 V

~~---''''''---

Meter

Meter

HP4192A
Impedance
Analyzer
or EqUIvalent

HP4192A
Impedance
Aitalyzer
or EqUIvalent

Ov, 2.4 V

f;lMHz

f;lMHz

-

-15V
Figure 9.

-

-15V

SourcelDrain Capacitances

Applications

..

Switched Signal Powers Analog Switch
The analog switch in Figure 10 derives power from its input
signal, provided the input signal amplitude exceeds 4 V and
its frequency exceeds 1 kHz.
Input

This circuit is useful when signals have to be routed to either
of two remote loads. On1y three conductors are required:
one for the signal to be switched, one for the control signal
and a common return.

A positive input pulse turns on the clamping diode Dl and
charges C1 . The charge stored on C1 is used to power the
chip; operation is satisfactory because the switch requires
less than 1 f.lA of stand-by supply current. Loading of the
signal source is imperceptible. The DG419's on-resistance
is a low 100 Q for a 5-V input signal.

P32167-Rev. C (11/15/93)

D

S1

o--'-¥'....,..-<:>-r- -'---"-1----,.--0

VOUT

S2

RU
IN
Control 0--+--1

lOkQ

RLl
10kQ

Figure 10. Switched Signal Powers
Remote SPDT Analog Switch

1-153

Siliconix

DG417/418/419

AMcmber of tho TBMIC Group

Applications (Cont'd)
Micropower UPS 1hlnsfer Switch

really needed. In the stand-by mode, hundreds of IlA are
sufficient to retain memory data.

When Vee drops to 3.3 V, the DG417 changes states,
closing SW1 and connecting the backup cell, as shown in
Figure 11. Dl prevents current from leaking back towards
the rest of the circuit. Current consumption by the CMOS
analog switch is aronnd 100 pA; this ensures that most of
the power available is applied to the memory, where it is

When the S-V supply comes back up, the resistor divider
senses the presence of at least 3.5 V, and causes a new
change of state in the analog switch, restoring normal
operation.

V+ SW1 VL

D

Vee
(5 V)

__~St-__~__,

+

DG417

l-_--l_~=+==_

.l3VLiCell

I

___IJI~-.J
GND

V-

Figure 11. Micropower UPS Circuit

Programmable Gain Amplifier

GaAs FET Driver

The DG419, as shown in Figure 12, allows accurate gain
selection in a small package. Switching into virtual ground
reduces distortion caused by toS(on) variation as a function
of analog signal amplitude.

The DG419, as shown in Figure 13 may be used as a GaAs
FET driver. It translates a TTL control signal into -8-V, O-V
level outputs to drive the gate.

+5V
DG419

RZ

Your

GND

V-

-BV

Figure 12. Programmable Gain Amplifier

1-154

Figure 13. GaAs FET Driver

P-32167-Rev. e (11/15/93)

Silicanix

DG421j423j425

AMember oCthe TeMIC Group

Low-Power, High-Speed,
Latchable CMOS Analog Switches
Features

Benefits

Applications

•
•
•
•
•

• tlP Compatible

•
•
•
•
•
•

Latched Control Inputs
Rail-to-Rail Analog Input Range
On-Resistance: 25 Q
Fast Switching Action-toN: 170 ns
Micropower Requirements--PD: 35 nW
• TIL and CMOS Logic Compatible
• Low Leakage: 40 pA

•
•
•
•
•

Wide Dynamic Range
Reduced Component Count
Low Signal Errors and Distortion
Break-Before-Make Switching Action
Battery-Compatible Operation

Data Bus Switching
Sample-and-Hold Circuits
Programmable Filters
IlP Controlled Analog Systems
Portable Instruments
Telecommunication Systems

Description
The DG421/423/425 are monolithic analog switches
featuring latchable logic inputs to simplify interfacing with
microprocessors. This series combines fast switching speed
(tON: 170 ns, typ), and Iowan-resistance (rOS(on): 25 Q,
typ) making it ideally suited for battery powered industrial
and military applications that require microprocessor
compatible analog switches.
The DG421 has two normally open switches (SPST). The
DG423 has two single-pole, double-throw (SPDT) pairs.
The DG425 has two normally open pairs (DPST).
To achieve high-voltage ratings and superior switching

performance, the DG421 series is built on Siliconix's high
voltage silicon gate CMOS process. Break-before-make is
guaranteed for the DG423. An epitaxial layer prevents
latchup.
Each switch conducts equally well in both directions when
on and blocks input voltages up to the supply rail voltages
when off.
The input data latches become transparent when WR is set
low. When WR goes high the latches store the logic control
data. A Iowan RS resets all switches to their default state
(all inputs low).

Functional Block Diagram and Pin Configuration
Dual-In-Line

DG421

Dual-In-Line

DG425
SI

Dl

WR

INl

WR

INl

NC

v-

D3

v-

NC

GND

S3

GND

NC

VL

S4

VL

NC

Dl

SI

v+

D4

v+

RS

IN2

RS

IN2

D2

S2

D2

S2

ThpView

D

ThpView

'ftuth Table - DG421/DG425
WR
0

P-32167-Rev. C (11/15/93)

RS

INx

Switch

0

OFF

Logic "0" :s 0.8 V
Logic "I" ~ 2.4 V

ON

SWitches Shown for Logic "1" Input

1-155

Silicanix

DG421/423/425

AMcmber of the TBMIC Group

Functional Block Diagram and Pin Configuration
(

DG423

PLCC

Dual-In-Line

VGND
NC
VL
V+

I~

S ~ ;;

i

ThpView

ThpView

Truth Table - DG423

WR.

RS

1Nx

SWloSWl

SW3,SW4

0

1

0

OFF

ON

1

ON

OFF

Logic "0" s O.B V
Logic "1" '" 2.4 V
Switches Shown for Logic "1" Input

Ordering Information - DG421/423/425
Temp Range

-40 to B5'

Package
16-Pin Plastic DIP

1Nx

RS

WR.

DG421DJ

X

1

0

X

1

J

Control data ,latched-in, switches
on or off as selected by last INx

X

0

X

X

1..

X

All latches reset, switches on or off
as when INx = 0, WR = 0, RS = 1

DG423DJ
DG425DJ

20-PinPLCC

Latch Operation Truth Table

Part Number

DG423DN

Latcb/Switeh X
'1tan~parent

latch operation

Absolute Maximum Ratings
Voltages Referenced to VV+ ................................................. 44V
GND ............................................... 25V
VL ............................ (GND -0.3 V) to (V+) +0.3 V
Digital Inputs" Vs, Vo .......... V- minus 2 V to (V+ plus 2 V)
or 30 rnA, whichever occurs first
Continuous Current (Any Terminal) .................... 40 rnA
Current, S or D (Pulsed 1 ms, 10% duty) ............... 100 rnA
Storage Thmperature. . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 125'C

1-156

Power Dissipation (Package)b
16-Pin Plastic DIPC ........ : ........................ 470 mW
20-PinPLCCd ..................................... BOOmW
Notes:
a. Signals on Sx, Dx, or INx exceeding V + or V - will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate6mWI'Cabove75'C
d. Derate 10 mWI'C above 75'C

P-32167-Rev. C (11/15/93)

Siliconix

DG421/423/425

A Member of the TBMIC Group

Specifications
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

D SuffIX
-40 to 85'C

V+ = 15'1, V- = -15V
VL = 5 V, VIN = 2.4 V, 0.8 yc

Tempa

Mine

Full

-15

Is - -lOrnA, VD - ±8.5V
V+ = 13.5 V, V- = -13.5 V

Room
Full

I

'JYpb

I

Max"

Unit

Analog Switch
Analog Signal Ranged

15

V

25

35
45

e

±0.01

0.25
5

±0.01

0.25
5

±0.04

0.4
10

Room
Full

170

250
300

tOFF

Room
Full

140

200
200

tww

Room
Full

200
200

Room
Full

100
100

Room
Full

60
100
5

VANALOG

Drain-Source On-Resistance

s(on) VS.
~

Cl

TAI=

50

~

25'~

I

Cl

±5V

1\

40

V

=
0i!C:

30

--

!

20

I

J

I"""

±15V __

I'

I
-5

-

~

±20V

0

5

60

a
§

50

'"C:

40

I

30

'Qe

10

15

J

"
1/\

70

=
0

.,.

"'-

10
-20 -15 -10

'\

~ /'\.

1"'''''''

Q

~C:

I

100... ±7.5V J

c5l

j

f'JI

.11l

~
C:
a
§

l'])S(on) VS. Vn and Power

Vn and Power Supply Voltage

20

I

I

-

7

--

I

'1

\ 10~
,15V_

I-...

~

-

o

20

~75

-

,A

i-"'"

)

."

TA=2S'C
V-=OV

\ IV
\
+

I

Supply Voltage

20V

5

10

.J

~
20

15

VD - Drain Voltage (V)

VD - Drain Voltage (V)

Leakage Currents VS. Analog Voltage

Supply Currents VS. Switching Frequency
4

<'
-e:

3
-50

oJ

2

~

I

-100 f--:;J~--+--I,..--+---+--I

_'" r I I I I I I
-15

-10

-5

o

5

10

15

: 1111111!!~+)11111111111
1k

~

~

10k

lOOk

1M

f - Frequency (Hz)

VANALOG - Analog Voltage (V)

Input Switching Theshold
+ and V-Supply Voltages

VS. V

2.5

r-----.----~--'-.o....!.-.....-''-----......,

2.0

f-----l-----1-~

1.5
1.0 f - - - 4
0.5 f - - - + - - - - - 1 - - - + - - - - I

OL---..I..---.....I...----1----I
o
±10
±15
±20
±5

V+. V- Positive and Negative Supplies (V)

1-158

P-32167-Rev. C (11/15/93)

Silicanix

DG421/423/425

A Member of the TBMIC Group

Schematic Diagram (1Ypical Channel)
V+

r---r----t"--;--t--o

S

INX

Level
Shift!
Drive

Latch

.....- - t - -......---t--o D
VFigure 1.

Test Circuits

+5V

+15V
3V

Vo

Logic
Input

OV

Switch
Input·

Vs

50%

Switch
Output

OV

Switch
Input·

-Vs

tr <20ns
tf <20ns

Vo

CL (includes fIXture and stray capacitance)
VO=Vs

·Vs = 10Vfor tON, Vs = -10 V for tOFF
RL + IDS(on)

Note: Logic input waveform is inverted for switches that
have the opposite logic sense control

Figure 2.

P·32167-Rev. C (11/15/93)

Switching Tune

1-159

Siliconix

DG421/423/425

AMember of the TBMIC Group

Test Circuits (Cont'd)
+5V

+l5V
Logic
Input

lOV
lOV

V+

VL
Sl

VOl
Switch 1
Output

I

.J

-

VOl

V02

D2

V-

50%

OV

Dl

S2

3VJ 1-

RL2~CL2 -=- -

OV

RLl;GCLl
3000 35pF
Switch 2
Output

3000 35 pF

CL (includes fIXture and stray capacitance)

-

Figure 3. Break-Before-Make

+5V

+15 V

Rg
Va
CL
IlonF

Figure 4.

+5V

Va - - - - /
IN-----,.

On

On

Off

Charge Injection

+l5V
+5V

+l5V

Va

-=- -=XTALK Isolation = 20 log

I~~ I

-l5V

Off Isolation = 20 log

I~~ I

C = RFbypass

Figure S.

1-160

Crosstalk

Figure 6.

Off Isolation

P-32l67-Rev. C (11/15/93)

Siliconix

DG421/423/425

AMember ofthe TeMIC Group

Test Circuits (Cont'd)
+5V

+15V
3:

E

--A

f

3V _ _ _ _ t
INx

Meter
HP4192A
Impedance
Analyzer
or EqUivalent

0------"

3V

O~

RS

r;:==

Switch
Output

Figure 7.

ww

~

two

20%

k=

80%

..~

Vo-------------=-I~

80%
- --

0

SourceIDrain Capacitances

Figure 8.

Latch Tuning

Applications
Figure 9 shows a circuit configured to increase the effective
resolution of the 12-bit DAC to 13 bits. The circuit operates

with a sign plus magnitude code. A sign bit of "0" connects
R3 to GND, giving 12-bit resolution per quadrant.

R2

RS
20kn

CL

20 kn

33pF
DG423
VREF

Analog Common
Sign Bit

12-Bit Plus Sign Magnitude Code Table
Digital Input

Sign
Bit

MSB

0

1111

1111

0

0000

1

0000

1

1111

Figure 9.

P-32167-Rev. C (11/15/93)

Analog Output
LSB

(Your)

1111

+(4095/4096)VIN

0000

0000

OVol1s

0000

0000

OVol1s

1111

1111

+(4095/4096)VIN

12-Bit PIuS Sign Magnitude D/A Converter

1-161

Siliconix

DG421/423/425

AMember of the TBMIC Group

Applications
When switch 81 of Figure 10 is closed, the op amp is placed
in the familiar unity-gain non-inverting configuration.
When switch 82 is closed and 81 is open the gain is given by:

The microprocessor system WR must gate the decoder
output to ensure proper timing.

Av = 1 + RI
Rz

+5V

Address
Decoder
74HC138

VoUT

+15V

-15V

Figure 10. Bus-Controlled Precision Gain-Ranging Circuit

Figure 11 shows a balanced-line microphone input stage
that provides selection or summing between two
balanced-line microphones
and
also
performs
differential-to-single-ended conversion. Either MIC A or
MIC B can be selected, and neither and/or both may be

summed at the output. This configuration uses "virtual
ground" switching, a method which minimizes distortion
resuiting from the anaiog swhch on-resisianoo muuuiatiull.
The actual voltage swings experienced by the analog switch
barely exceed 1 V for a 15-V full-scale range input.
500Q

~c~
A

+

500Q

>--'---0 Your

500Q

Do

wc~
B

+

500Q

DG42S

500Q

DI

Output

Dl

D2

0

0

None

0

1

MICA

1

0

500Q

MICB
MICAandMICB

Figure 11_ Bus-Controlled Selector for Balanced-Line Microphones

1-162

P-32167-Rev. C (11/15/93)

Siliconix

DG441/442

A Member of the 1BMlc Group

Quad SPST CMOS Analog Switches
Features

Benefits

Applications

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

Low On-Resistance: 50 Q
Low Leakage: 80 pA
Low Power Consumption: 0.2 mW
Fast Switching Action-toN: 150 ns
Low Charge Injection-Q: -1 pC
DG201A!DG202 Upgrades
TIL/CMOS-Compatible Logic
Single Supply Capability

Less Signal Errors and Distortion
Reduced Power Supply Requirements
Faster Throughput
Improved Reliability
Reduced Pedestal Errors
Simplifies Retrofit
Simple Interfacing

Audio Switching
Battery Powered Systems
Data Acquisition
Hi-ReI Systems
Sample-and-Hold Circuits
Communication Systems
Automatic Test Equipment
Medical Instruments

Description
The DG441/442 monolithic quad analog switches are
designed to provide high speed, low error switching of
analog and audio signals. The DG441 has a normally closed
function. The DG442 has a normally open function.
Combining low on-resistance (50 Q, typ.) with high speed
(tON 150 ns, typ.), the DG441/442 are ideally suited for
upgrading DG201N202 sockets. Charge injection has been
minimized on the drain for use in sample-and-hold circuits.

To achieve high voltage ratings and superior switching
performance, the DG441/442 are built on Siliconix's
high-voltage silicon-gate process. An epitaxial layer
prevents latchup.
Each switch conducts equally well in both directions when
on, and blocks input voltages to the supply levels when off.

Functional Block Diagram and Pin Configuration
DG441

DG441

..

Dual-In-Line and sOle
LCC
IN!

IN2

D!

D2

D! IN! NC IN2 D2

~

Sl
Sl

S2

v-

v+

v-

v+

NC

NC

GND

NC

GND

NC

S4

S3

D4

D3

IN4

IN3

S4

S3

D4 IN4 NC IN3 D3
ThpView

ThpView

P-32167-Rev. E (11/15/93)

1-163

Siliconix

DG441/442

AMember ofthe TBMIC Group

Ordering Information and Truth Table
Ordering Information
'ThmpRange

lruthThble
Logic

00441

OG442

DG44IDJ

0

ON

OFF

DG442DJ

1

OFF

ON

Part Number

Package
16-Pin Plastic DIP

-40 to 85'C
16-Pin Narrow SOIC

DG44IDY
Logic "0" oS 0.8 V
Logic "1" '" 2.4 V
Switches Shown for DG441 Logic "1" Input

DG442DY
DG441AK
DG441AK/883
5962-9204101MEA

16-Pin CerDIP

DG442AK

-55 to 12S'C

DG442AK/883
5962-9204102MEA
5962-9204101M2A
LCC-20

5962-9204102M2A

Absolute Maximum Ratings
V+toV- ........................................... 44V
GNDtoV- .......................................... 2SV
DigitalInputsaVs.Vo ............... (V-)-2Vto(V+)+2V
or 30 rnA, whichever occurs first
Continuous Current (Any Thrminal) .................... 30 rnA
Current, S or D (Pulsed 1 ms. 10% duty cycle) ........... 100 rnA
Storage Thmperature
(AK SuffIX) ............ -65 to 150'C
(Dj, DY SuiiIx) ....... .. -u.) tu 125<'C
Power DisSipation (Package)b
16-Pin Plastic DIP" .....•........•.................. 450 mW
16-PinCerDIPd ...•...........•.•......•.........•. 900mW
16-PinNarrowBodySOIcd ................•...•..... 900mW
LCC-2od ....•..•........•........................ 1200 mW

Notes:
a. Signals on Sx, Dx. or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6 mWI'C above 75'C
d. Derate12mWI'Cabove2S'C

Specificationsa for Dual Supplies
ASuff"1X
-55 to 12S'C

Thst Conditions
Unless Otherwise Specified
Parameter

Symbol

I

D Suff"1X
-40 to 85'C

I

V+ =15V,V- = -15V
VIN = 2.4 V, 0.8 vi

Thmpb

Is = -lOrnA, Vo = :!:8.5V
V+ =13.5 V, V- = -13.5 V

Room
Full

50

Room
Full

±0.01

-0.5
-20

0.5
20

-0.5
-5

0.5
5

Room
Full

±0.01

-0.5
-20

0.5
20

-0.5
-5

0.5
5

Room
Full

±0.08

-0.5
-40

0.5
40

-0.5
-10

0.5
10

'Jypc

Mind

Mud

Mind

15

-15

Mud

Unit

15

V

85
100

g

Analog Switch
Analog Signal Range"
Drain-Source
On-Resistance

roS(on)

IS(off)
Switch Off Leakage Current

V+ = 16.5. V- = -16.5 V
Vo = ±15.5 V, Vs = 'f15.5V

IO(of!)

Channel On
Leakage Current

1-164

IO(on)

-15

Full

VANALOG

V+

=16.5 V, V- = -16.5V
Vs =Vo = :!:15.5V

85
100

nA

P-32167-Rev. E (11/15/93)

Siliconix

DG441/442

AMcmbcr of the TeMIC Group

Specificationsa for Dual Supplies (Cont'd)
Test Conditions
Unless Otherwise Specified

ASu/I'tx
-55 to 125'C

I

DSu/I'tx
-40 to 85'C

I

Symbol

V+ = 15V,V- = -15V
VIN = 2.4 V, 0.8 yf

Tempb

'IYpc

Mind

Input Current VIN Low

IlL

VIN under test = 0.8 V
All Other = 2.4 V

Full

-0.01

Input Current VIN High

IIH

VIN under test = 2.4 V
All Other = 0.8 V

Full

0.01

Room

150

250

Room

90

120

120

Room

110

210

210

Room

-1

Room

60

Room

100

Parameter

Max d

Mind

Maxd

-500

500

-500

500

-500

500

-500

500

Unit

Digital Control

nA

Dynamic Characteristics
1I1rn-On Time
1I1rn-Off Time

tON
IDG441
IDG442

Charge Injectione
OffIsolatione
Crosstalk"
(Channel-to-Channel)

tOFF
Q

RL = 1 ill, CL = 35 pF
Vs = ±10 V, See Figure 2
CL=lnF, Vs=OV
Vgen=OV,Rgen=OQ

OIRR
XTALK

Source Off Capacitancec

CS(off)

Drain Off Capacitancec

CO(off)

Channel On Capacitancec

CO(on)

RL = 50 Q, CL = 5 pF
f= 1 MHz

f= 1 MHz
VANALOG = OV

Room

4

Room

4

Room

16

Full

15

250
ns

pC

dB

pF

Power Supplies
Positive Supply Current
Negative Supply Current
Ground Current

I+

1-

V+ = 16.5 V, V- = -16.5 V
VIN=00r5V

IGND

100

Room
Full

-0.0001

-1
-5

Full

-15

-100

100
-1
-5
-100

)1A

..

Specifications a for Single Supply
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

ASuftlx
-55 to 125'C

I

D Suftlx
-40 to 85'C

I

V+=12V,V-=OV
VIN = 2.4 V, 0.8 yf

Tempb

Is = -10 rnA, Vo = 3 V, 8 V
V+ = 10.8 V

Room
Full

100

RL = 1 ill, CL = 35 pF
Vs = 8 V, See Figure 2

Room

300

450

450

Room

60

200

200

Room

2

'IYPc

Mind

Maxd

Mind

12

0

Maxd

Unit

12

V

160
200

Q

Analog Switch
Analog Signal Rangee
Drain-Source
On-Resistance

Full

VANALOG
roS(on)

0

160
200

Dynamic Characteristics
1I1rn-On Time

tON

1I1rn-Off Time

toFF

Charge Injection

P-32167-Rev. E (11/15/93)

Q

CL=lnF,
Vgen=6Y,Rgen=OQ

ns

pC

1-165

Silicanix

DG441/442

AMcmbcrofthc1'BMICGrOUP

Speciticationsa for Single Supply3 (Cont'd)
Test Conditions
Unless Otherwise Specified
Parameter

ASuJrlX
-55 to 125°C

DSuJrlX
-40 to S5°C

I

V+ = 12 V, V- =OV
VIN = 2.4 V, O.S vf

Tempb

Fun

15

V+ = 16.5 v, V- = -16.SV
VIN = OorSV

Room
Full

-0.0001

-1
-100

-1
-100

Full

-15

-100

-100

Symbol

lYPc

Mind

Mud

I

Mind

Mud

Unit

Power Supplies
1+

Positive Supply Current

1-

Negative Supply Current
Ground Current

IGND

100

100

J.lA.

Notes:
a. Refer to PROCESS OPTION FLOWCHARr (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature suffIX.
c. lYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.

1)pical Characteristics
~

1"))S(on) vs. Vo and Temperature

100

~

OJ

OJ

~

~

j

j

80

.!!l

~
~
...'"=
..
0

~

60

Cl

~
.2

-5

0

5

10

15

20

V~ = 15VI V- = -15V

---- r--- .--.
----- l-r-- I

...".

...............

SO
40

Q
I

20

II
-20 -15 -10

60

jO

!

J

70

-r

.~

Q
I

so

......

r

I

200
150
100
so

o

I

J
,...

-

V~ =~V

1\

O°C
-.iooe

10

-55°C

I

I
-10

-5

-

I

o

5

10

15

rns(on) vs. VD and Temperature
(Single lZ-V Supply)
I

J+=lsv

-

~~V 12V

r-

15V
rv

4

8

12

Vo - Drain Voltage (V)

1-166

::;:::::::

~ r"\SV

~~

o

25°C

Vo - Drain Voltage (V)

1"))S(oo) vs. Vo and
Unipolar Power Supply Voltage

250

-'"

85°C

-..;;:~

Vo - Drain Voltage (V)

300

r--~

~-

0
-15

125°e

16

20

2

4

6

8

10

12

Vo - Drain Voltage (V)
P-32167-Rev. E (11/15/93)

Siliconix

DG441/442

A Memoor oflbe TBMIC Group

1YPical Characteristics (Cont'd)
Crosstalk and 011' Isolation vs. Frequency
140

-........

"

120
100

40

"" '"

80
60

Charge Injection vs. Source Voltage
50

~osstalk

'"

30

~

V+ = 15V
20 r-- V- = -15V
Ref.l0dBm

,e,

1k

10k

lOOk

-10

o

-5

5

10

VS - Source Voltage (V)

f - Frequency (Hz)
Switching Threshold vs. Supply Voltage

2.4

- - V+=12V
V- =OV

./
1-

-30
-10

10M

1M

",

",
/
....
'
./
i"""

0

-20

./

./

10

0

o
100

V+ = 15V
V-=-15V

20

U'

OffIsolati~

40

J

CL = 1 nF

Source/Drain Leakage Currents
20

I

I

-

IS(ol1 .IO(o!f)
0
1.6

~

~

/::'. :.;.; J:

: :.,

.. ..

<'
,e,

:~;. ,::'

~

L/

0.8 ioI'F---l--t--t--+--+---I--t--J

".

-20

/

-40

10(Y

....'"
-60
-80

o

I-""

V'"

V

V+ = 15V
V- = -15V
ForI(o!f).VD= -Vs

-100

o

±10

±5

±15

-15

±20

V+. V- Positive and Negative Supplies (V)

~

i"'"

-10

-5

o

5

10

15

..

Vo or Vs - Drain or Source Voltage (V)

Source/Drain Leakage Currents
(Single 12-V Supply)
10

I

I

IS(o!f).IO(of
0

<'
,e,

-10
IS(on

~

....'"

-20

-30

V

.""
+ I:,"V

-

V
V+ = 12V
V- =OV
For 10. Vs = 0
For Is. Vo = 0

-40

o

V

V

2

4

6

I

I

8

10

Vo or Vs - Drain or Source Voltage (V)

P-32167-Rev. E (11/15/93)

12
V - - Negative Supply (V)

1-167

Siliconix

DG441/442

A Member of the TBMIC Group

TYpical Characteristics (Cont'd)
Switching Time vs. Power Supply Voltage

160

--

140

r---

tON

120

80

Switching Time vs. Power Supply Voltage

500

~-Jv

400

.........

~ ~ON

300

.........

I,
..........

60

200

~OFF

.......... r--

-r--

-

100

40

toFF

20

o
±10

±12

±14

±16

±18

±20

±22

8

10

12

Supply Voltage (V)

14

16

18

20

22

Vs - Source Voltage (V)

Schematic Diagram (TYPical Channel)
V+O-~----~----------~----~---------4~-----------------------4~,

....--.....,p---_t"--i-+--OS

INX

o--r----"k~==l

V-

Level
Shift!
Drive

V+

Figure 1.

Test Circuits
+15 V
Logic
Input

3V
50%

V+
±lOV

S

OV

Vo

3V

Vs

Switch
Output

OV

Note:

Figure 2.

tOFF

Switch
Input

CL (includes fIxture and stray capacitance)

1-168

t, <20ns
tf <20ns

50%

Vo

80%

--

80%

Logic input waveform is inverted for DG442.

Switching Time
P·32167-Rev. E (l1f15193)

Siliconix

DG441/442

AMember aftha TaMIC Group

Test Circuits (Cont'd)
+15V

~________~ ~vo
Vo

V+
Vo

INX--~

ON

OFF
(DG441)

OFF

OFF

OFF
INx----/
(DG442)

Figure 3.

Charge Injection

c = 1 "F tantalum in parallel with 0.01 "F ceramic

+15V

C

+15V

~

c

+-----l~
v+
r=---------+-i---+-----S2

NCO-+------O~~--~~--~_o

0'1, 2.4 V

Vo

0-..,.I=N.;.,2'-1~>L-~;;;..--_,-...... C

-15V

~

XTALK Isolation =

20 log

C = RFhypass

Figure 4.

Offlsolation = 20 log

I~: I

Crosstalk

Figure 5.

I~: I

..

Off Isolation

+15V
C
V+

~

;---+-0.
Meter
HP4192A
Impedance

0'1,2.4 V

Analyzer

or EqUIvalent

-15V

Figure 6.

P-32167-Rev. E (11/15/93)

Source/Drain Capacitances

1-169

Silicanix

DG441/442

AMembcr olthc TBMIC;: Group

Applications

J+UV

+15V

RL

DG442 V+

p=3A

+15 V o---I-o-PL..+-.

~VN0300

IN

10 kr.I

+15V

VIN
+15 V

VOUT

_...1

IN 0 - - - - - - - ' -15V

0= LoadOCC
1 = Load On

Figure 7. Power MOSFET Driver

VIN

Figure 8.

...,..,[;»----.. . .-----0

o-~-_-:..-_-_-_-_-

!+15V
V+

H = Sample
L=Hold

Open Loop Sample-and-Hold

VOUT

Gain error is determined only by the resistor
tolerance. 00 amo offset and CMRR will
limit accuracY of circuit.

GAlNl

Av=l
With SW4 Closed

GAlN2

Av=lO

VOUT
VIN

Rl + R2 +R3 +R4
R4

= 100

GAlN3

Ay=20
GAlN4

Ay= 100

DG441 or DG442

-15V

Figure 9. Precision-Weighted Resistor Programmable-Gain Amplifier

1-170

P-32167-Rev. E (11/15/93)

Siliconix

DG444/445

A Member of the TeMIC Group

Quad SPST CMOS Analog Switches
Features
•
•
•
•
•
•
•

Low On-Resistance: 50 g
Low Leakage: 80 pA
Low Power Consumption: 22 n W
Fast Switching Action-toN: 120 ns
Low Charge Injection
DG211/DG212 Upgrades
TIL/CMOS Logic Compatible

Benefits

Applications

•
•
•
•
•
•

•
•
•
•
•
•
•
•

Low Signal Errors and Distortion
Reduced Power Supply Requirements
Faster Throughput
hnproved Reliability
Reduced Pedestal Errors
Simple Interfacing

Audio Switching
Battery Powered Systems
Data Acquisition
Sample-and-Hold Circuits
Telecommunication Systems
Automatic Test Equipment
Single Supply Circuits
Hard Disk Drives

Description
The DG444/DG445 monolithic quad analog switches are To achieve high-voltage ratings and superior switching
designed to provide high speed, low error switching of performance, the DG444/DG445 are built on Siliconix's
analog signals. The DG444 has a normally closed function. high-voltage silicon-gate process. An epitaxial layer
The DG445 has a normally open function. Combining low prevents latchup.
power (22 nW, typ) with high speed (tON: 120 ns, typ),
the DG444/DG445 are ideally suited for upgrading
DG211/212 sockets. Charge injection has been minimized Each switch conducts equally well in both directions when
on the drain for use in sample-and-hold circuits.
on, and blocks input voltages to the supply levels when off.

Functional Block Diagram and Pin Configuration
DG444
Dual-In-Line and SOIC

'D:uth Thble

INl

IN2

Dl

D2

Sl

~

Logic

00444

00445

0

ON
OFF

OFF
ON

1

-

Logic ''0'' s 0.8 V, Logic "1" 2: 2.4 V
Switches Shown for DG444 Logic "1" Input

v-

v+

GND

VL

Ordering Information

S4

S3

D4

D3

IN4

IN3

Temp Range

Package

Part Nwnber
DG444DJ

16-Pin Plastic DIP
-40·C to 8S·C
16-Pin Narrow sOle

DG44SDJ
DG444DY
DG44SDY

ThpView

P-32167-Rev. D (11/1S93)

1-171

Siliconix

DG444/445

AMember of the TBMJC Group

Absolute Maximum Ratings
V+toV- ........................................... 44V
GNDtoV- ....................•..................... 25V
VL· .......................... (GND -0.3 V) to (V+) + 0.3 V
DigitalInputs·VS,VD ............... (V-)-2Vto(V+)+2V
or 30 rnA, whichever oCcurs first
Continuous Current (Any Thrminal) ............•....... 30 mA
Current, S or D (Pulsed 1 ms, 10% duty cycle) ........... 100 mA
Storage Thmperature . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 125°C

Power Dissipation (Package)b
16-Pin Plastic DIP< ................................. 450 mW
16-PinNarrowBodySOIcd ...•..........•........... 600mW
Notes:
a. Signals on Sx, Ox, or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. AlI leads welded or soldered to PC Board.
c. Derate 6 mWrCabove 75°C
d. Derate 12 mW/oC above 75°C

Specifications for Dual Supplies
lest Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -15V
VL = 5V, VIN = 2.4 V,O.SV"

D Surra
-40toS5°C
Temp"

Mine

Fun

-15

IlYPb I Mar

Unit

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance

VANALOG
roS(on)
lS(off)

Switch Off Leakage Current

Is = -lOrnA, VD = ±S.5V
V+ = 13.5V,V- = -13.5 V

V+ = 16.5, V- = -16.5V
VD= ±15.5V,Vs= :;:15.5V

ID(ofl)

Room
Fun

15

V

50

S5
100

n

Room
Fun

-0.5
-5

:1:0.01

0.5
5

Room
Fun

-0.5
-5

:1:0.01

0.5
5

ID(on)

V+ = 16.5 V, V- = -16.5 V
Vs = VD = ±15.5V

Room
Fun

-0.5
-10

:1:0.08

0.5
10

Input Current VIN Low

In.

VIN under test = 0.8 V
All Other = 2.4 V

Fun

-500

-0.01

500

Input Current VIN High

1m

VIN under test = 2.4 V
All Other = O.S V

Fun

-500

0.01

500

Room

120

250

IDG441

Room

110

140

IDG442

Room

160

210

Room

-1

Channel On Leakage Current

nA

Digital Control

nA

Dynamic Characteristics
Then-On Tune
Thrn-Off TIme
Charge Injectione

tON
tOFF
Q

OffIsolatione

OIRR

Crosstalk (Channel-to-Channel)d

XTALK

CL=lnF, Vs=OV
Vgen = OV, Rgen = on
RL = 50n,CL = 5 pF,f= 1 MHz

Source Off Capacitance

CS(ofl)

Drain Off Capacitance

CD(ofl)

Channel On Capacitance

CD(on)

1-172

RL = 1 k&l, CL = 35 pF
Vs = ±10V, See Figure 2

f=IMHz
VANALOG=OV

Room

60

Room

100

Room

4

Room

4

Room

16

ns

pC
dB

pF

P-32167-Rev. D (11/1593)

Siliconix

DG444/445

AMcmber afthc TBMIC Group

Specifications for Dual Supplies (Cont'd)
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+=lSV,V-=-lSV
VL = S V, VIN = 2.4 V, O.B ve

DSutrlX
-40 to BS'C
Tempa

Minc

IlYPb I Mar

Unit

Power Supplies
Room
Full

Positive Supply Current

1+

Negative Supply Current

1-

Logic Supply Current

IL

Room
Full

IGND

Room
Full

Ground Current

V+ = 16.5 V, V- = -16.5 V
VIN=OorSV

Room
Full

0.001
-1
-S

-0.0001

0.001
-1
-S

1
S

1
S

"A

-0.001

Specifications for Unipolar Supplies
Test Conditions
Unless Otherwise Specified
Parameter

D SuffIX
-40 to BS'C

V+=12V,V-=OV
VL = S V, VIN = 2.4 V, O.B yo

Tempa

Minc

Full

0

Is = -lOrnA, VD = 3 V,B V
V+ = 1O.B V, VL = S.2S V

Room
Full

100

RL= 1 kQ,CL= 3SpF,Vs = BV
See Figure 2

Room

300

450

Room

60

200

Q

CL=lnF, Vgen=6V,Rgen=OQ

Room

2

1+

V+ = 13.2 V, VIN = Oar 5V

Room
Full

0.001

Symbol

IlYP I Mar
b

Unit

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistanced

VANALOG
rns(on)

12

V

160
200

Q

Dynamic Characteristics
Thrn-On TIme

tON

Thrn-OffTIme

toFF

Charge Injection

ns
pC

Power Supplies
Positive Supply Current
Negative Supply Current

1-

VIN=00r5V

Room
Full

Logic Supply Current

IL

VL = S.2SV, VIN = 0 or 5V

Room
Full

IGND

VIN=00r5V

Room
Full

Ground Current

-1
-5

-0.0001
0.001

-1
-S

1
5

1
5

flA

-0.001

Notes:
a. Room = 2S'C, Full = as determined by the operating temperature suffIX.
b. 1Ypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
e. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.

P-32167-Rev. D (11/1593)

1-173

..

Siliconix

DG444/445

AMember of the TBMIC Group

lYPical Characteristics
1"])S(oo)

80
OJ

vs. VD and Temnperature

~

j
~..

60

....... .....

----...:--

0

~

40

rn

of!..

30

Cl

20

=
0

-120

--

-100

- ----

50

~-

25°C

Jo

~

[

-""

-10

50

-40

I

-20

o

-5

5

15

10

V+ = 15V
V-=-15V
Ref.10dBm
L -__- L____

100

1k

~

__

10k

~

____- L__

lOOk

~

1M

10M

VD - Drain Voltage (V)

f - Frequency (Hz)

Charge Injection vs. Source Voltage

Switching Threshold vs. Supply Voltage

t

J

40 I-- CL= 1nF

4

30
20

.e

-60

o

-15

U

-80

-40°C

I

10

~

85°C

oo~-

I

Crosstak and Off Isolation vs. Frequency

-140

V+I= 15V I
70 r-- V- = -15V

V+ = 15V
V- = -15V

10

I l/

0
0

.Yr-

-10

,;'

/

V

3

. /V
~

V+ =12V

--

_Jtllllvn I

-20

-10

-5

0

5

10

Vs - Source Voltage (V)

-20

I
I
IS(oft ,ID(off)

-

<'
.e

ID(on) ..,.

,El -40

.....'"

-60
-80

V

V

V"

-15

V

,., ..,. /

-10

-5

10

-

I

IS(off» ID(of

<'
.e

-10
IS(on

.....'" -20

I

I

I

o

5

10

VD or Vs - Drain or Source Voltage (V)

-30

-

I

0

,El

V+ =15V
V- = -15V
ForI(off» VD = -Vs

-100

1-174

Source/Drain Leakage Currents
(Single 12-V Supply)

Source/Drain Leakage Currents

20
0

± VSUPPLY (V)

/'

+I~V

,;'

"'"

V+ =12V
V-=OV
ForID, Vs = OV
ForIs, VD = 0 V

-40
15

o

V

V

2

4

6

-1

1

8

10

-

12

VD or Vs - Drain or Source Voltage (V)

P-32167-Rev. D (11/1593)

Siliconix

DG444/445

AMember of the TBM[C Group

'tYpical Characteristics (Cont'd)
50

160

~
~~

40

30

5V - CMOS

140
120
100

- v-

Switching Time vs. Power Supply Voltage

-

tON

_-;r

........

,-

..?

-- --~--

~--...:'

80 ~

tOFF,-

-

tON

60

~

40

DG444-

tOFF
DG445---

20

-10

-20

v- -

-30

-40

-50

:dO

±12

±14

Negative Supply (V)

±16

±18

±20

±22

± VSUPPLY (V)

500

Supply Current vs. Temperature

1001lA
10 IlA

400

lIlA

j

300

.£

10nA

.,J

1nA

.!.-

200

/' ~V

~~

100pA

V VIL

lOpA

12

v+

14

16

18

20

1pA
-55

22

V-

20

vi

I

",..... ~

-

~

-

, CS(off}> ,CD(Off) ,

-15

25

50

75

I

V- = -15V

100

125

..

-

tON

120

!:

5

V+~15V

140

,/

10

o

0

Switching Time vs. Input Voltage

160

~

CS(on) + CD(on)
15

-25

Thmperature (0C)

15
-15V

I

I

~V

- Positive Supply (V)

25 Source/Drain Capacitance vs. Analog Voltage

vJ ==
t--

./

/' ,? .......-(1-)

100

10

/

I+,IGND

100nA

100 ~
80
60

~ i'oo. tON

-- ~--- kf~:;- -I

40 I-

DG444DG445---

20

-10

-5

o

5

10

VANALOG - Analog Voltage (V)

P-32167-Rev. D (11/1593)

15

2

3

4

5

Input Voltage (V)

1-175

Siliconix

DG444/445

A Member of the TBMIC Group

Schematic Diagram (1YPical Channel)
V+o---~--------~----~--------~----------~------------------------~~

_--_-_--l-4---oS
VLevel
Shift!
Drive
V+
GNDo---~----------~-----------J

L----+----L---~--OD

V-o---+-------------------------~--------~----------------~--------~

Figure 1.

Test Circuits
+5 V,

+15V

3V

Logic,
Input
VL
±10V

.v

S

V+
D

I
-.l

~- I

GND

v-

b

50%

tr <20ns
If <20ns

OV
Vo
RL
1ll.!

I

CL
35pF

-L

-

-

Switch
Input

Vs
Vo

ov:t.!~

Switch
Output

-15V

Note:

CL (includes fIXture and stray capacitance)

Figure 2.
+5V

50%

- "-

80%

Logic input waveform is inverted for DG445.

Switching Tune

+15V

Vo
Vo

INX-------.
OFF
(DG444)

INX

OFF

ON

OFF

OFF

(DG445)
Figure 3.

1-176

Charge Injection

P-32167-Rev. D (llf1593)

Siliconix

DG444/445

AMember of the TBMIC Group

Test Circuits (Cont'd)
+5V

+15V

c = 1 "F tantalum in parallel with 0.01 "F ceramic
C

~

+5V

r------~r+--+_------<01

o-+------o~~--~~~~_o

+15V

...-----+-8I--t---o

Vo

-15V
OffIsolation = 20 log
XTALK Isolation = 20 log
C = RFbypass

1

VoS
V

Figure 4.

Vo

1

~~

1

1
Crosstalk

Figure S.

Off Isolation

Meter

oV; 2.4 V

HP4192A
Impedance
Analyzer
or EqUivalent

""--''-----'''--

f=lMHz

-15V

Figure 6.

Source/Drain Capacitances

III

Applications
+5V

+15V

+15V

+15 V

---+----~-----oVOUT~
10kQ

Figure 7. Level Shifter
P-32167-Rev. D (11/1593)

1-177

Siliconix

DG444/445

AMombcr oftheT'BMIc Group

Applications (Cont'd)

VIN 0 - - - - - - 1

VOUT
Gain error is determined only by the resistor
tolerance. Op amp offset and CMRR will
limit accuracy of circuit.

With SW4 Closed:

GAlN2
hJ=10

~

Rl+R2+R3+~

= 100

GAlN3
hJ=20

GAlN4
Av = 100

DG444 or DG445

-15V

Figure 8. Precision-Weighted Resistor Programmable-Gain Amplifier

+5V

+15V

Logic Input

-c~,,---+-----_-o Low = Sample
High = Hold

DG444

VOUT

Figure 9.

1-178

Precision Sample-and-Hold

P-32167-Rev. D (11/1593)

Siliconix

DG540/541/542

AMembcr oftbc TBMIC Group

WidebandNideo "T" Switches
Features

Benefits

Applications

Wide Bandwidth: 500 MHz
Low Crosstalk: -85 dB
High Off-Isolation: -80 dB @ 5 MHz
"Tn Switch Configuration
• TTL Logic Compatible
• Fast Switching-toN: 45 ns
• LOWl"DS(on): 30n

•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•

Flat Frequency Response
High Color Fidelity
Low Insertion Loss
Improved System Performance
Reduced Board Space
Reduced Power Consumption
Improved Data Throughput

RF and Video Switching
RGB Switching
Local and Wide Area Networks
Video Routing
Fast Data Acquisition

• ATE
• Radar/FLR Systems
• Video Multiplexing

Description
The DG540/541/542 are high performance monolithic
wideband/video switches designed for switching RF, video
and digital signals. By utilizing a "T" switch configuration
on each channel, these devices achieve exceptionally low
crosstalk and high off-isolation. The crosstalk and
off-isolation of the DG540 are further improved by the
introduction of extra GND pins between signal pins.

To achieve TTL compatibility, low channel capacitances
and fast switching times, the DG540 family is built on the
Siliconix proprietary D/CMOS process. Each switch
conducts equally well in both directions when on.

Functional Block Diagrams and Pin Configurations
DG540

Dual-In·Line
IN1

IN2

D1

D2

GND

GND
~

Sl

GND

GND

GND

..

~

GND

S4

S3

GND

V+

GND

GND

S4

18

S3

v-

v+

v-

8

S3

GND

D4

D3

IN4

IN3

6'Z'7:Q~
....;;:;
t!l
'lbpView

'lbpView

Ordering Information - DGS40
Temp Range
-40 to 85·C

Package

Part Number

20-Pin Plastic DIP

DG540DJ

20-PinPLCC

DG540DN
DG540AP

-55 to 12S·C

20-Pin Sidebraze

DG540AP/883

1l:uth Thble

Logic

Switdt

o

OFF

ON
Logic "0" s 0.8 V
Logic "1" .. 2 V

Switches Shown for Logic "I" Input

P-32167-Rev. C (11/15/93)

1-179

Siliconix

DG540/541/542

AMcmber oftheTBMlC Group

Functional Block Diagrams and Pin Configurations (Cont'd)
DGS41

1ruth Table - DGS41

Dual-In-Line and SOIC

Logic

Switch

o

OFF

IN2
D2

ON
Logic "0" s 0.8 V
Logic"1" .,: 2 V

S2

V-

V+

GND

Switches Shown for Logic "1" Input

GND

Ordering Information - DGS41

-40 to 85'C
ThpView

DGS42

P~Number

Package

Temp Range

-55 to 125'C

16-Pin Plastic DIP

DG541DJ

16-Pin Narrow SOIC

DG541DY
DG541AP

16-Pin Sidebraze

DG541AP/883

1ruth Table - DGS42
Dual-In-Line and SOIC

,Logic.

SWl'SWZ

0

OFF

ON

1

ON

OFF

SW3tSW4

Logic ''0'' s 0.8 V
Logic "1" 2: 2 V
Switches ~hown for Logic "1" Input

Ordering Information - DGS42

Temp Range
-40 to 85'C

-55 to 125'C

P~Number

Package
16-Pin Plastic DIP

DG5420J

16-Pin Narrow SOIC

DG542DY

16-Pin Sidebraze

DG542AP
DG542AP/883

Absolute Maximum ,Ratings
V+ to V- , .................................. -03 Vto 21 V
V+toGND ................................. -0.3Vt021V
V- toGND ................................ -19Vto +0.3 V
Digitallnputs .....•.............. (V-) -O.3Vto(V+) +0.3 V
or 20 rnA, whichever occurs first
Vs, VD .......................... (V-) -0.3Vto(V-) +14 V
or 20 rnA, whichever occurs first
Continuous Current '(Any Thrminal) .................... 20 rnA
Current, S or D (Pulsed 1 ms, 10% duty cycle max) ..•..... 40 rnA
Storage Thmperature
(AP Suffix) . . . . . . . . . . . .. -65 to 150'C
(OJ, DN,.DY Suffixes) ... -65 to 125'C

1-180

Power Dissipation (Package)a
16-PinPlasticDlpb .................................
20-Pin Plastic DIP< ............•.......•............
16-PinNarrowBodySOIcd ..........................
20-PinpLCcd .....................................
16-, 20-Pin Sidebraze DIP< ...................... ; . . . .

470mW
800 mW
640mW
800mW
900 mW

Notes:

a. All leads welded or soldered to PC Board.
b.
c.
d.
e.

Derate 6.5 mWI'C"above 25'C
Derate7mW/'Cabove25'C
Derate10mWI'Cabove75'C
Derate 12 mWf'Cabove 75'C

P-32167-Rev. C (1lf15f93)

Siliconix

DG540/541/542

AMcmber altho TBMIC Group

Specifications a
A SuffIX
-55 to 125'C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 15 V, V- = -3V
VINH = 2 V, VINL = 0.8

VANALOG

V- = -5V,V+ = 12V

vr

Tempb

'lYPc

Mind

I

D Suffixes
-40 to 85'C

Maxd

Mind

8

-5

I

Maxd

Unit

Analog Swit~h
Analog Signal Range
Drain-Source On-Resistance
rns(on) Match

rns(on)

Is = -lOrnA, VD = OV

drns(on)

-5

8

V

Room
Full

30

60
100

60
75

Q

Room

2

6

6

Full

Source orr Leakage Current

IS(off)

Vs=0V,VD=10V

Room
Full

-0.05

-10
-500

10
500

-10
-100

10
100

Drain orr Leakage Current

ID(off)

Vs = 10 V, VD = OV

Room
Full

-0.05

-10
-500

10
500

-10
-100

10
100

Channel On Leakage Current

ID(on)

VS=VD=OV

Room
Full

-0.05

-10
-1000

10
1000

-10
-100

10
100

nA

Digital Control
Input Voltage High
Input Voltage Low

VINH

Full

VINL

Full

2

2

0.8

0.8
-1
-20

1
20

-1
-20

lIN

VIN = GND orV+

Room
Full

0.05

On State Input Capacitance"

CS(on)

VS=VD=OV

Room

14

20

20

Off State Input Capacitance"

CS(off)

Vs=OV

Room

2

4

4

orr State Output Capacitance"

CD(off)

VD=OV

Room

2

4

4

BW

RL = 50 Q, See Figure 5

Input Current

1
20

V
(1A.

Dynaml~ Charaeteristl~s

Bandwidth

ThrnOnTIme

RL= 1 kQ,CL = 35pF
50% to 90%
See Figure 2
ThrnOrrTIme

Charge Injection

orr Isolation

All Hostile Crosstalk

P-32167-Rev. C (1lf15/93)

500

Room
Full

45

70
130

70
130

DG542

Room
Full

55

100
160

100
160

DG540
DG541

Room
Full

20

50
85

50
85

DG542

Room
Full

25

60
85

60
85

Room

-25

DG540

Room

-80

DG541

Room

-60

DG542

Room

-75

Roo1)1

-85

tOFF

Q

OIRR

XTALK(AH)

CL = 1000pF, Vs = OV
See Figure 3
RIN = 75 Q, RL = 75 Q
f = 5 MHz, See Figure 4

MHz

Room

DG540
DG541
tON

RIN = 10Q, RL = 7SQ
f = 5 MHz, See Figure 6

pF

os

pC

dB

1-181

..

Siliconix

DG540/541/542

AMember altho TBMIC Group

Specificationsa
Test Conditions
Unless Otherwise Specified
Parameter

V+ = 15 v, V- = -3V
VINH = 2 V, VINL = 0.8 Vi

Symbol

ASuff'1X
-55 to lZS·C
Tempb

lYPc

Room
Full

3.5

Room
Full

-3.2

Mind

D Suff'lXes
-40 to 8S·C

I

Max

o

12

10

-55 -25

0

25

50

75

100

125

-1

0

'Thmperature ('C)

-2

-3

-4

-5

-6

V - - Negative Supply (V)

Schematic Diagram (1Ypical Channel)

Figure 1.

Test Circuits
+15V
tr <20ns
tf <20ns

3V

V+

Va

Logic
Input
Switch
Input

Vs

Switch
Output

0

90%

tON
CL (includes fIXture and stray capacitance)

Vo=Vs

RL
RL + roS(on)
Figure 2.

1-184

Switching Tune

P-32167-Rev. C (11/15/93)

Siliconix

DG540/541/542

AMember of the TBMIC Group

Test Circuits (Cont'd)
+15 V

lNo

V+

I

Vo

s

Vo
CL

I1000 PF

1Nx ON

i

L

T

\

(ON

OFF

AVO = measured voltage error due to charge injection
The charge injection in coulombs is AQ = CLX AVo

Figure 3.

Charge Injection

+15 V
+15V

...c-

v+
Vo

C

V+

S

D

Vo

1
1
_I

Rg = Sag
Ov, 2.4 V

RL
sag

-

-3V
-3V

OffIsolation = 20 log
C = RFBypass

Figure 4.

Off Isolation

Figure 5.

Bandwidth

+15V

V+
S

109

2.4 V

Q-

D

Vo

RL
75g

1Nx
S2

D2

S3

D3

S4

D4

-

RL
RL

-

XrALK(AH) =

Figure 6.

P-32167-Rev. C (11/15/93)

Vour
20 loglO VIN

All Hostile Crosstalk

1-185

Silicanix

DG540/541/542

AMcmber ofthc TeMIC Group

Applications
Device Description
The DG540/541/542 family of wideband switches offers
true bidirectional switching of high frequency analog or
digital signals with minimum signal crosstalk, low insertion
loss, and negligible non-linearity distortion and group
delay.
Built on the Siliconix D/CMOS process, these "T" switches
provide excellent off-isolation with a bandwidth of around
500 MHz (350 MHz for DG541). Silicon-gate D/CMOS
processing also yields fast switching speeds.
An on-chip regulator circuit maintains TTL input
compatibility over the whole operating supply voltage
range, easing control logic interfacing.
Circuit layout is facilitated by the interchangeability of
source and drain terminals.

Frequency Response
A single switch on-channel exhibits both resistance
[rns(on)] and capacitance [CS(on»). This RC combination
has an attenuation effect on the analog signal - which is
frequency dependent (like an RC low-pass filter). The
- 3-dB bandwidth of the DG540 is typically 500 MHz (into
50 Q). This measured figure of 500 MHz illustrates that
....1.. _ _ ....: ......:1.. ...:1..... __ ... 1

........ __ ...... + 1..", ..", ................ _+ .... A t..". n

t.U.... "".I.L'-'ll "'UaU.LU...... .....a.J..I. .LI.UL U .....

......". ---I-.fO) Sync Out

75:.f. I

RGB Source Select

"="

I

~

V

10054l

I

-3V

Figure 9.

1-188

RGB Selector Using Two DG542s

P·32167-Rev. C (11/15/93)

Siliconix

DG601

A Member of the TEMIC Group

High-Speed Quad CMOS Analog Switch
Features

Benefits

Applications

•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

Fast Switching Action-tON: 30 ns
Low On-Resistance-rDS(on): 20 Q
Single-Supply Operation
Low Charge Injection
TIL and CMOS Logic Compatible

Improved Data Throughput
Reduced Switching Errors
Simplified Power Supply
Reduced Switching Transients
Simplified Interfacing
High Reliability

Hard Disk Drives
Fast Sample-and-Hold Circuits
Precision Instrumentation
Computer Peripherals
Low Noise Op Amp Gain Switching
High-ReI Systems

Description
The DG601 is a high performance quad SPST CMOS
analog switch intended for applications where fast
switching, low charge injection and low on-resistance are
required. The DG601 features single-supply operation,
and is TTL-compatible with either a single 12-V supply, a
single 5-V supply, or with ± 5-V supplies.
Applications for the DG601 include 12-V systems requiring
TTL or 5-V logic levels, such as disk drives and other

computer peripherals. The fast switching time and low
charge injection make the DG601 ideal for high speed data
acquisition applications such as sample and hold amplifiers,
channel selection and gain ranging.
The DG601 is built on the Siliconix proprietary PolyMOS
process, allowing low parasitic capacitance to facilitate high
speed switching.

Functional Block Diagram and Pin Configuration
LCC

Dual-In-Line and SOlC

D1 IN1 NC IN2 D2
IN1

IN2

D1

D2

Sj

S2

V-

V+

GND

NC

S4

S3

D4

D3

IN4

IN3

Sj

S2

V-

V+

NC

NC

GND

NC

..

S3

S4

D4 IN4 NC IN3 D3
Top View

Top View

1\"uth Table

Ordering Information
Temp Range
40 to 85'C

Package

Part Number

16-Pin Plastic DIP

DG60lDJ

16-Pin Narrow SOlC

DG60lDY

LQgic
0

Switch
ON
OFF

DG601AK
16-Pin CerDIP
-55 to 125'C
LCC-20

P-32167-Rev. C (11/15/93)

DG601AK/883

Logic "0" :S 0.8 V
Logic "1" ;;, 2.4 V

DG601AZ/883

Switches Shown for Logic "1" Input

1-189

Siliconix

DG601

AMombcr of tho TBMIC Group

Absolute Maximum Ratings
Voltages Referenced to vv+ ................................................. 22V
GND ............................................... 13V
Digital Inputs', Vs, Vo ........... (V-) -2Vto (V+) plus 2Vor
30 rnA, whichever occurs first
Current (any terminal) ............................... 30 mA
Current S or D (Pulsed 1 ms at 10% duty cycle) .......... 100 mA
Storage Thmperature
(AK, KZ Suffixes) . . . . . .. -65 to 150'C
(OJ, DY Suffixes) ....... -65 to 125'C
Power Dissipation (Package)b
16-PinPlasticOJPC ................................. 470mW

16-PinSOIcd ...................................... 9OOmW
16-Pin CerDIPC .................................... 900 mW
LCC-20" ......................................... 1200mW
Notes:
a. Signals on Sx, Dx, or INx exceeding V + or V - will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. Ail leads welded or soldered to PC Board.
c. Derate 6.5 mW
above ZS'C
d. Derate7.7mWrCaboveZS'C
e. Derate 12 mW/'C above 75'C

rc

Speciticationsa for Single 12-V Supply
ASuOlx
-55 to1ZS'C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+=12v,V-=OV
VIN = 2.4 V, 0.8

vr

Tempb

'IYPc

Mind

I

D Suff"1X
-40 to 85'C

Mud

Mind

12

0

I

Mud

Unit

12

V

Analog Switch
Analog Signal Rangee
Drain-Source On-Resistance
On-Resistance Matchingg

Full

roS(on)

Room
Full

20

35
50

Room
Full

2.2

6
10

Room
Full

±0.01

-4
-100

4
100

-4
-100

4
100

Room
Full

±0.01

-4
-100

4
100

-4
-100

4
100

Room
Full

±0.1

-4
-200

4
200

-4
-200

4
200

V+ = 10.8'1, IS = 10mA
Vo = 2'1, 10V

ilroS(on)
lS(off)

Switch Off Leakage Current
IO(off)
Channel On Leakage Current

0

VANALOG

IO(on)

V+ = 13.2'1, V- = OV
Vo = 12.2 V, 1 V
Vs = 1 V, 12.2V
V+=13.2v,V-=OV
Vs, VD = 1 V, 12.2 V

6
10

n

nA

Digital ContNI
Input Current with VIN Low

VIN Under lest = 0 V

Input Current with VIN High

VIN Under lest = 5 V

Dynamic Characteristics
Thrn-On Time

tON

30

45

45

tOFF

RL = 3oon, CL = 35 pF
See Figure 2

Room

Thrn-Off Time

Room

14

30

30

Q

CL = 1,000pF, VYjin = 6 V
Rgen = 0 n, See igure 3

Room

13

RL= 50n,CL= 5pF
f=lMHz

Room

69

Room

88

Room

8

Charge Injection
Off Isolation Reject Ratio

OIRR

Crosstalk

XTALK

Source Off Capacitance

CS(of!)

Drain Off Capacitance
Channel On Capacitance

CO(of!)

f= 1 MHz, Vs = 6V

CD(on)

Room

8

Room

20

Room
Full

2.2

Room
Full

-2.1

ns

pC
dB

pF

Power Supplies
Positive Supply Current

1+

Negative Supply Current

1-

1-190

V+ = 13.2'1, V- =OV
VIN=OVor5V

4
6
-4
-6

4
6
-4
-6

mA

P-32167-Rev. C (11/15193)

Siliconix

DG601

A Member of the TEMIC Group

Specifications a for Dual Supplies
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = SV,V- = -SV
VIN = 2.4 V, O.S yf

A Suffix
-55 to 12S'C
Tempb

l)'pc

Mind

I

DSuffix
-40 toSS'C

Maxd

Mind

5

-5

I

Maxd

Unit

5

V

Analog Switch
Analog Signal Rangee
Drain-Source On-Resistance
On-Resistance Matchingg

-5

VANALOG

Full

roS(on)

Room
Full

27

40
60

40
60

Room
Full

2

6
10

6
10

V+ = 4.5 V, V- = -4.5 V
Is = -10 mA, VD = ±3.5V

lIrDS(on)

Room

0.01

Room

0,01

ID(on)

V+ -5.5V,V- -5.5V
Vs=VD=±4.5V

Room

0.1

Input Current with VIN Low

IlL

VIN Under Test = 0 V
All Other = 5 V

Room

-10

Input Current with VIN High

IIH

VIN Under'Thst - 5 V
All Other = 0 V

Room

10

Room

34

Room

20

Room

11

Switch orr Leakage Current
Channel On Leakage Current

lS(off)
ID(off)

V+ = 5.5 V, V- = -5.5 V
VD = '1'4.5 V, Vs = ±4.5 V

0

nA

Digital Control

pA

Dynamic Characteristics
Thm-On TIme

tON

Thm-OffTIme

tOFF

RL = 3000, CL = 35 pF
See Figure 2

Q

Vgen - 0 V, Rgen - 00
CL = 1 nF, See Figure 3

Charge Injection
Source Orf Capacitance

CS(off)

Drain Off Capacitance

CD(off)

Channel On Capacitance

CD(on)

f = 1 MHz, Vs = 0 V

Room

8

Room

8

Room

21

ns
pC

pF

Power Supplies
Positive Supply Current

V+ = 5.5 V, V- = -5.5V
VIN = OVorSV

Negative Supply Current

rnA

..

Specifications a for Single 5-V Supply
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ =5V,V- =OV
VIN = 2.4 V, 0.8 yf

ASu01x
-55 to 125'C
Tempb

l)'pc

Mind

I

DSufrlX
-40 to 85'C

Maxd

Mind

5

0

I

Maxd

Unit

5

V

Analog Switch
Analog Signal Rangee
Drain-Source On-Resistance
On-Resistance Matchingg

VANALOG

Full

roS(on)

Room
Full

50

100
140

100
140

Room
Full

2

10
15

10
15

IS(off)

V+=5.5V
VD = 1 V, Vs = 4.5 V

Room

±0.01

ID(off)

V+-5.5V
VD=4.SV,Vs=lV

Room

±0.01

ID(on)

Vs

Room

±0.1

Switch Off Leakage Current

Channel On Leakage Current

P-32167-Rev. C (11/15/93)

V + = 4.5 V, Is = -10 rnA
VD = 2 V, 3.5 V

AroS(on)

0

V+ - 5.5 V

= VD = 4.5 V, 1 V

0

nA

1-191

Siliconix

DG601

AMember of the TBMICGroup

Specifications a for Single 5-V Supply (Cont'd)
Test Conditions
Unless Otherwise Specified
Parameter

V+ =SV,V-= -SV
VIN = 2.4 V, 0.8 vI

Symbol

ASuff"1X

-ss to 125'C
Tempb

lYPc

Mind

I

Maxd

D Suffix
-40 to 8S'C
Mind

I

Maxd

Unit

Digital Control
Input Current with VIN Low

VINUnderThst = OV

Input Current with VIN High

VIN Under Thst - S V

pA

Dynamic Characteristics
Thrn-OnTIme

toN

Thrn-OffTIme

tOFF

Charge Injection

RL = 300n, CL = 3S pF
See Figure 2
~en - 2.5 V, Rgen = 0 n

Q

L = 1 nF, See Figure 3

Source Off Capacitance

CS(olf)

Drain Off Capacitance

CD(olf)

Channel On Capacitance

CD(on)

f= 1 MHz, Vs = 2.5 V

Room

32

Room

25

Room

6

Room

8

Room

8

Room

22

ns
pC

pF

Power Supplies
Positive Supply Current

rnA

V+ = S.5V, VIN = OVorSV

Negative Supply Current

Notes:
Refer to PROCESS OPTION FLOWCHARr (Section S of the 1994 Data Book or FaxBack number 7103).
Room = 25'C, Full = as determined by the operating temperature suffIX.
lYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
The a)gebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
Guaranteed by design, not subject to production test.
VIN = input voltage to perform proper function.
II.rnS(cn) compares on-resistance at the specified VD values.

a.

b.
c.
d.
e.
f.
g.

'tYpical Characteristics

Supply Current vs. Switching Frequency

16
12
8

1

J
-40'C - + - - {

o

I
o

2

4

6

8

VD - Drain Voltage.{V}

1-192

4

1+

0

"'"
11111
11111

-4

1-

-8

1111111
V+ =12V
V-=OV
All Switches Thggling
111111111 111111111

-12
-16

10

12

i'"

1k

10k

1M

lOOk

10M

f - Frequency (Hz)

P-32167-Rev. C (l1/1S/93)

Siliconix

DG601

AMember ofthe 'Il!MlC Group

lYpical Characteristics (Cont'd)
Leakage Current vs. Temperature
lOOnA
10nA

== V+

12V
Ov,
VANALOG IV

-v
§

./

./

InA

"

~ IOOpA

(3

./

g

40

..

30

~

20

F<

~

10(on)
.'1

lOpA
IpA

./

f- ~

40

80

o
CO~

20
15
10

r

..-""

~

1\...,

-20

I"'---

....

CO(off). CS(of

<'
.e:

!

4

6

8

10

./

12

Off·lsolation and Crosstalk vs. Frequency

t'--r-

80

~

Off-Isolation

........

/

o

60

o

6

I

I

8

10

12

2.4 -V-=OV

€
g"

2.0

t'-I"r-

~
-=a.

1.6

.s

V+ =12V
V- =OV
RL=50Q

1.2

,....-:

"

0.8

JV~~IVprJ
lk

4

2

1 .1

I

40
20 -

V+ = 12V
V-=OV -

Switching Threshold vs.
Unipolar Power Supply Voltage

2.8

Ig!~sst~IJ

...........

Is +O(on)

VANALOG - Analog Voltage (V)

120

IIIII

'"

/

'I

VANALOG - Analog Voltage (V)

100

~

./

",

-120

-180
2

./

-100

-160

o

./

./

-80

-

I

-60

-140

o

.....:-r
I
10(off).IS(off)

-40

-

V

120

80

Leakage Current vs. Analog Voltage

20

~

I.

40

Temperature (0C)

Capacitance vs. Analog Voltage

V+ 12V
25 f-V-=OV

-

o

-55-40

120

Temperature (0C)

30

./

IOFF

o

O.IpA

o

~

ION

,....-

I-'

10

1/ 10(off). lS(off)

-55-40

~+=12VI

50 I- V-=OV
Vs=2V

...
e

~~

Switching Time vs. Temperature

60

10k

0.4
lOOk

f - Frequency (Hz)

P-32167-Rev. C (11/15/93)

1M

10M

5

7

8

9

10

11

12

V + - Positive Supply (V)

1·193

Siliconix

DG601

AMemberoftho TBMIC Group

'IYPicaJ Characteristics (Cont'd)
Input Current vs. Input Voltage

30

~

V+ 12V
20 I- V- =OV

<'

~

I

'Ci

~
u"

4

0

/

'iii

"- -10

oS

~

V

~

-

r--.. 1-00..

3

~

10

Supply Currents vs. Temperature

5

2

1
~

"

U

V

~~

1

1-

-2

-5

-30
0

2

4

6

8

10

o

-55-40

12

Input Voltage (V)

~

28
24

36

j

32

~

24

~

20

..

16

~

12

~I

8

J
o

2

4

6

8

8
4
-5 -4 -3 -2 -1

10

!

40

F"

30

~
:ag

~

4

to.:,.... ~

~

I20

r10

~

----------- -------

o
-55-40

tOFF

2

3

4

5

3

2

1
'Ci

"t:

a

Supply Currents vs. Temperature

r- ~+=5V

I
V- = -5V

r- ~

1+

-

I

0
-1

-2
-3

r-

-4
-5

o

40

Thmperature (0C)

1-194

5

=5~

V+
V- = -5V
Vs=2V

-

0

VD - Drain Voltage (V)

Switching Time vs. Temperature

50

vs. Vo and Temperature

12

Vs - Source Voltage (V)

60

120

80

28

..

0
16

0

rnS(on)

40

CI

.l!l

20
~

40

Thmperature (0C)

32

U

- r---

------

0
-1

-3 I""
-4

-20

V+l12V V-=OV _

80

120

-55-40

o

80

40

120

Thmperature ("C)

P·32167-Rev. C (11/15/93)

Siliconix

DG601

AMcmbcr ofthc TBMIC Group

lYpical Characteristics (Cont'd)
80 r--._rn~S(~On~)_V_S·TV~D_aTn_d_1eTm~perr_m_urre__r-~
CI

~
g

70

50

50

§

40

!=

30

"

30

~
~

20

Q

.~'"
Q

g
"e

.."

20

I

J

r- _

60

~.
0

Switching Time vs. Temperature

60

~

V+=5~

V- =OV
Vs=2V

40

.."

f- ~

0

2

3

4

5

o

-55 -40

Vo - Drain Voltage (V)

2

1

I
U

0

"---

-1

i,..-

-2

V+l5V
16 --V=OV
14

-- I+

-3
-55 -40

o

10
8

~

40

/
//
./ /

12

---1-

120

Charge Injection vs. VS

18

IV+ =5V I
V-=OV

r--

80

40

Thmperature ("C)

Supply Currents vs. Temperature
3

-

tOFF

o

0

V
~

10

10

/"

--tON

6
4

CL=10n./

.......

...........

'-..

_.....

/

../'"

V

CL= 1n

2

3

2

o
80

120

Thmperature (0C)

o

4

5

Vs - Source Voltage (V)

Schematic Diagram (lYpical Channel)
V+

r---~----r-+--r--oS

..

GND

INX

L..----+----'----r--OD
VFigure 1

P-32167-Rev. C (11/15/93)

1-195

Siliconix

DG601

AMemberofthe TBMlC Group

Test Circuits

Logic
Input

V+
Vs = 2 V o-+-"S _ _-~

NCo-~--~~--~~~--o

I1nF
CL

Va

1 V; 4 V 0-+I:;.N",,2-1

XTALK Isolation = 20 log

-3V

C= RFbypass
Figure 3. Charge Injection

P·32167-Rev. C (11/15/93)

Figure 4. Crosstalk

1-205

..

Siliconix

DG611/612/613

A Member of the TBMIC Group

Applications
High-Speed Sample-and-Hold
In a fast sample-and-hold application, the analog switch
characteristics are critical. A fast switch reduces aperture
uncertainty. A low charge injection eliminates offset (step)
errors. A low leakage reduces droop errors. The SiS81, a
fast input buffer, helps to shorten acquisition and settling

times. A low leakage, low dielectric absorption hold
capacitor must be used. Polycarbonate, polystyrene and
polypropylene are good choices. The JFET output buffer
reduces droop due to its low input bias current. (See
FigureS.)

+SV

+12V
Output Buffer
D

Analog
Input

±5 V Output
toND
5 V Control o---f~IN'-!...f~

l'

V.DG611

--1-

CHOID

650 pF Polystyrene

Figure 5. High-Speed Sample-and-Hold

Pixel-Rate Switch
Windows, picture-in-picture, title overlays are
economically generated using a high-speed analog switch
such as the DG613. For this application the two video

sources mustbe synclocked. The giitch-iess anaiogswhciI
eliminates halos. (See Figure 6.)

+5V

+12V
Output Buffer
D

Background

Composite
Output

250Q
TItles

250Q

I
I
I
5 V Control o-+--H~.J
~DG613

-SV

Figure 6.

1-206

A Pixel-Rate Switch Creates TItle Overlays

P-32167-Rev. C (11/15/93)

Siliconix

DG611/612/613

AMember oftbeTBMlC Group

Applications (Cont'd)
GaAs FET Drivers
Figure 7 illustrates a high-speed GaAs FET driver. To turn
the GaAs PET on 0 V are applied to its gate via S1> whereas
to turn it off, -8 V are applied via S2. This high-speed,

low-power driver is especially suited for applications that
require a large number of RF switches, such as phased
array radars.

+5V

O!

-

RF
IN

GaAs

RF
OUT

I

IN!

.J

't2DG613

S2

5Vn

02

I

IN2

.J

GNO

V-

-8V

Figure 7.

A High-Speed GaAs PET Driver that Saves Power

III

P-32167-Rev. C (11/15/93)

1-207

Siliconix

DG641/642/643

AMember'ofthc TBMIC Group

Low On-Resistance WidebandNideo Switches
Features

Benefits'

Applications

•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•

Wide Bandwidth: 500 MHz
Low Crosstalk at 5 MHz: -85 dB
Low rDS(on): 5 Q, DG642
T1LLogicCompatible
Fast Switching: tON 50 ns
Single Supply Compatibility
High Current: 100 rnA, DG642

High Precision
Improved Frequency Response
Low Insertion Loss
Improved System Performance
Reduced Board Space
Low Power Consumption

RF and Video Switching
RGB Switching
Video Routing
Cellular Communications

• AlE
• Radar!FUR Systems
• Satellite Receivers
• Programmable Filters

Description
The DG641/642/643 are high performance monolithic
video switches designed for switching wide bandwidth
analog and digital signals. DG641 is a quad SPST, DG642
is a single SPDT, and DG643 is .a dual SPDT function.
These devices have exceptionally low on-resistances (5 Q
typ-DG642), low capacitance and high current handling
capability.

To achieve TTL cpmpatibility, low channel capacitances
and fast switching times, the DG641!642/643 are built on
the SiliconiX proprietary D/CMOS process. Each switch
conducts equally well in both directions when on, and
blocks up to 14 V pop when off. An epitaxial layer prevents
latchup.

Functional Block Diagram and Pin Configuration
DG641
lruthThble

Dual-In-Line and SOIC
INl

IN2

Dl

D2

Sl

Sz

V-

S4

S3
D3

IN4

IN3

o

OFF

ON

Switches Shown for Logic "1" Input

GND

D4

Switch

Logic "0" :s; 0.8 V
Logic "1" .. 2.4 V

V+

GND

Logie

Ordering Information - DG641
Temp Range
-40 to 85°C

Pan Number

Package
16-Pin Plastic DIP

DG64IDJ

16-Pin Narrow SOIC

DG64IDY

ThpView

1-208

P-32167-Rev. C (11/15/93)

Siliconix

DG641/642/643

AMember oftbe TEMIC Group

Functional Block Diagram and Pin Configuration
DG642
Dual-In-Line and sorc
'fruth Table
Sl

IN

Logic

SWl

Dl

V+

0

OFF

ON

V-

D2

1

ON

OFF

GND

S2

SW2

Logic "0" s 0.8 V
Logic "1"

~

2.4 V

Switches Shawn for Logic "1" Input

ThpView

Ordering Information - DG642
Package

Temp Range
-40 to 85°C

DG643

Dual-In-Line and SOIC

GND

Part Number

8-Pin Plastic DIP

DG642DJ

8-Pin Narrow SOlC

DG642DY

'fruth Table
Logic

SW1,SWl

0

OFF

ON

1

ON

OFF

GND

SW3,SW4

Logic "0" s 0.8 V
Logic "1" '" 2.4 V
Switches Shown for Logic "1" Input

V-

Ordering Information - DG643
GND

GND

ThmpRange
-40 to 85°C

ThpView

Package

Part Number

16-Pin Plastic DIP

DG643DJ

16-Pin Narrow SOlC

DG643DY

Absolute Maximum Ratings
V+taV- .................................. -0.3Vta21 V
V+ to GND ................................. -0.3 Vta21 v
V- to GND ................................ -19 V to +0.3 V
Digital Inputs. . . . . . . . . . . . . .. . . . .. (V -) -0.3 V to (V+) +0.3 V
or 20 rnA, whichever occurs first
Vs,Vo .......................... (V-)-0.3Vta(V-)+14V
or 20 rnA, whichev~r occurs first
Continuous Current (Any Thrminal Except S or D) ........ 20 rnA
Continuous Current S or D: DG641{643 ................ 75 rnA
DG642 .................. 100 rnA
Current, S or D (Pulsed 1 ms, 10% duty cycle max)
DG641{643 ............... 200 rnA
DG642 .................. 300 rnA

P-32167-Rev. C (11/15/93)

Storage Thmperature . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 125°C
Power Dissipation (Package)b
8-Pin Plastic DIP and Narrow SOlO' ................... 300 mW
16-Pin Plastic DIpd ................................ , 470 mW
16-PinNarrowSOIO' ............................... 600mW
Notes:
a. Signals on Sx, DX, or INx exceeding V+ or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate 7.6 mwrc above 75°C
d. Derate 6 mwrc above 75°C
e. Derate 10 mW/"C above 75°C

1-209

Silicanix

DG641/642/643

AMcmber aftho TBMIC Group

Specifications for DG641 and DG643
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

Limits
-40 to8S·C

1

V+ = lS V, V- = -3V
VINH = 2.4 V, VINL = 0.8 yo

Temp"

Mine

V- = -SV,V+ =12V

Full

-S

8

V- =GND, V+ =12V

Full

0

8

l1YPb

Max"

Unit

Analog Switch
Analog Signal Ranged

Drain-Source On-Resistance
rnS(on) Match

VANALOG

rnS(on)

Is = -lOrnA, VD = OV

l1rns(on)

Room
Full

8

lS
20

Room

1

2

Source Off Leakage Current

lS(off)

Vs=0V,VD=10V

Room
Full

-10
-100

-0.02

10
100

Drain Orf Leakage Current

ID(off)

Vs = 10V,VD = OV

Room
Full

-10
-100

-0.02

10
100

Channel On Leakage Current

ID(on)

VS=VD=OV

Room
Full

-10
-100

-0.1

10
100

VINH

Full

2.4

VINL

Full

V

Q

nA

Digital Control
Input Voltage High

V
Input Voltage Low

-1
-20

O.OS

1
20

Room

10

20

Room

4

12

VD=OV

Room

4

12

RL - 50 Q, See Figure 6

Room

500

Room
Full

SO

70
140

Room
Full

28

SO
8S

lIN

VIN = GND orV+

Room
Full

On State Input Capacitanced

Cs(on)

VS=VD=OV

Off State Input Capacitanced

CS(off)

Vs=OV

Off State Output Capacitanced

CD(off)
BW

Input Current

0.8

IlA

Dynamic Characteristics

Bandwidth
Thrn On TIme

tON

Thrn Off TIme

toFF

RL = 1 ill, CL = 3S pF, See Figure 2

Charge Injection
Off Isolation

pF

MHz

ns

Q

CL = 1000 pF, VD - 0 V, See Figure 3

Room

-19

OIRR

RIN = 7SQ,RL= 7SQ,f=SMHz
See Figure 4

Room

-60

XTALK(AH)

RIN = 10Q,RL = 7S Q,f= SMHz
See Figure S

Room

-87

Room
Full

3.5

pC

dB
All Hostile Crosstalk

Power Supplies
Positive Supply Current

1+

Negative Supply Current

1-

6
9

rnA

VIN = OVorVIN =SV
Room
Full

-6
-9

-3

Notes:
a. Room = 2S·C, Full = as determined by the operating temperature suffIX.
1Ypical values are for DESIGN AID ONLY, aot guaranteed nor subject to production testing.
The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
Guaranteed by design, not subject to production test.
VIN = input voltage to perform proper function.

b.
c.
d.
e.

1-210

P-32167-Rev. C (11/15/93)

Siliconix

DG641/642/643

AMember of the TBMIC Group

Specifications for DG642
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

Limits
-40t08S'C

I

V+ = lSV,V- = -3V
VINH = 2.4 V, VINL = 0.8 ve

Temps

Mine

V- = -SV,V+ = 12V

Full

-5

8

V- = GND, V+ = 12V

Full

0

8

l1YPb

Max"

Unit

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance
f])S(on) Match

VANALOG
f])S(on)

Is = -lOrnA, Vo = OV

Af])S(on)

Room
Full

5

8
9

Room

0.5

1

Source Off Leakage Current

IS(o!1)

Vs = OV,Vo = 10V

Room
Full

-10
-200

-0.04

10
200

Drain Off Leakage Current

IO(o!1)

Vs = 10V,Vo = OV

Room
Full

-10
-200

-0.04

10
200

Channel On Leakage Current

IO(on)

Vs=Vo=OV

Room
Full

-10
-200

-0.2

10
200

2.4

V

g

nA

Digital Control
Input Voltage High

VINH

Full

Input Voltage Low

VINL

Full

0.8
-1

lIN

VIN = GND orV+

Room
Full

On State Input Capacitanced

CS(on)

Vs=Vo =OV

Room

19

40

Off State Input Capacitanced

CS(o!1)

Vs=OV

Room

8

20

Ofr State Output Capacitanced

CO(o!1)

Vo=OV

Room

8

20

BW

RL = SO g, See Figure 6

Room

500

Room
Full

60

100
160

Room
Full

40

60
100

CL = 1000 pF, Vo = 0 V, See Figure 3

Room

-40

RIN = 75 g, RL = 75 g, f= 5 MHz
See Figure 4

Room

-63

RIN = 109, RL = 75g,[ = 5 MHz
See Figure 5

Room

-85

Room
Full

3.5

Input Current

0.05

-20

1
20

V

!lA

Dynamic Characteristics

Bandwidth
ThrnOnTIme

tON

ThrnOffTIme

tOFF

RL = 1 ill, CL = 35 pF, See Figure 2

Charge Injection

Q

Ornsolation
All Hostile Crosstalk

XTALK(AH)

pF

MHz

ns

pC

dB

Power Supplies
Positive Supply Current

I+

VIN = OVorVIN = SV
Negative Supply Current

1-

Room
Full

-6
-9

6
9

-3

rnA

Notes:
a. Room = 2S'C, Full = as determined by the operating temperature suffIX.
b. 1»pical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.

P-32167-Rev. C (11f15/93)

1-211

•

Siliconix

DG641/642/643

AMember of the TBMIC Group

1Ypical Characteristics
Supply Current vs. Temperature
~

5

1"--100..

4

~

3

"""

...

t:

0

U

-1

r- r- I--.

I-

-3

-4
i-""'"
-5 ~

J

./

100pA

~

i-- ~

10pA

.....-

/'

1pA

"... ~

-55 -35 -15 5

./

1nA

~

IGND

-2

/

10nA
1+

2

]:

Leakages vs. Thmperature

100nA

6

25

45

65

O.lpA
-55

85 105 125

-25

Temperature ('C)

e.
j
j
=

0

§

e.
j

V+ = 15V
V- = -3V
30

.i!\

125

9

11

V+ = 15V
'V-=-3V
15

~

=

20

§
r5l"

.~

0

Q

e
I

I

!

!

e

10

e
-3

-1

3

5

7

9

-1

11

VD - Drain Voltage (V)

3

On Capacitance
20
18

Off Isolation
-100

.\

\

-90
-80

~

\

14

"-

12

6

7

-110

16

10

5

VD - Drain Voltage (V)

22

1"-..
o

2

'~"

DG642

"i---

-70
-60
-50
-40

~G641/643

~ 100..

...... ;;:::~

DG6411643

~
ID~

......

-30

-20
-10

4

6

8

(VD) - (V-)

1-212

100

0

"
'"
.S

u

75

DG642
1»8(on) vs. Drain Voltage

20

0

~

50

25

Thmperature ('C)

DG6411643
1»8(00) vs. Drain Voltage

40

0

10

12

10

100

f - Frequency (MHz)

P-32167-Rev. C (11/15/93)

Silicanix

DG641/642/643

AMemoor oftbc TBMIC Group

lYpical Characteristics
110
100

All Hostile Crosstalk

~

90

~

Charge Injection vs. Vn
0

I

~ ....

...

f"-

.L1/6431.

-10

I

80

~

70

.e. -20 r....

G642'" ~

60

cLL 1JOOP~

IT
f"'=::::::

0

50

-

~

....... ~

DG641/643

-

40
-30

30

DG642

20

10

1

10

-40
-3

100

-2 -1

0

1

2

3

4

5

6

f - Frequency (MHz)

VD - Drain Voltage (V)

Switching Times vs. Temperature

Operating Supply Voltage Range

7

8

90

./

80

70

./

60

.e,

i'"

i'"

/

toN..;' "

50

./

40
30

./

- ~r

~

20
10

14 t----,.i---i' Operating
0: Voltage
I - - t - - - ; Area

t"""'"

10
-25

0

25

50

75

°

_0

t-

o
-55

".-"+--1-11-1
_!--1-i--J

100

125

:.::
~--~--~--~~--~--~~~

o

-1

Temperature (0C)

-2

-3

-4

-5

-6

V - - Negative Supply (V)

Schematic Diagram (lYpical Channel)
V+o-----~------~--------~~----

D
__
s

GND

IN

o-----t---l~-~=c>--_i .x>---I
D

V-o-----~------------~------~------~~

Figure 1.

P-32167-;-Rev. C (11/15/93)

1-213

Si6canix

DG641/642/643

AMember of the TBMIC Group

Test Circuits
+15 V
Ir <20ns

3V

V+

tf <20ns

Logic
Input

3V
Switch

o---I_J

Output

Figure 2. Switching Tune

+15V

t

I avo

Vo

V+

INx

ON

\

L

t

OFF

F

avo = measured voltage error due to charge injection
The charge injection in coulombs is Q = CL X aVo

Figure 3. Charge Injection

+l5V

~---~~-+----01·---+~~~~

-

Vo

-3V

Off Isolation = 20 log

I~: I

Figure 4. Off Isolation

1-214

P-32167-Rev: C (1l/1S/93)

Siliconix

DG641/642/643

A Member oftbe TEMIC Group

Test Circuits
DG642
VOUT
VOUT

RIN

100

Signal
Generator
750

-

"0"

(b)
VOUT

XTALK(AH) = 20

Figure S.

log10 -V

All Hostile Crosstalk - XTALK(AH)

Vom

Signal
Generator

500

Figure 6.

Bandwidth

Applications
Device Description
The DG641/642/643 switches offer true bidirectional
switching of high frequency analog or digital signals with
minimum signal crosstalk, low insertion loss, and negligible
non-linearity distortion and group delay.
Built on the Siliconix D/CMOS process, these switches
provide excellent off-isolation with a bandwidth of around
500 MHz. The silicon-gate D/CMOS processing also yields
fast switching speeds.

An on-chip regulator circuit maintains TIL input
compatibility over the whole operating supply voltage
range shown, easing control logic interfacing.
P-32167-Rev. C (11/15/93)

Circuit layout is facilitated by the interchangeability of
source and drain terminals.

Frequency Response
A single switch on-channel exhibits both resistance
[rOS(on)] and capacitance [CS(on)]' This RC combination
has an attenuation effect on the analog signal - which is
frequency dependent (like an RC low-pass filter). The
-3 dB bandwidth of the DG641/642j643 is typically
500 MHz (into 50 Q).
.

1-215

..

Siliconix

DG641/642/643

AMember ofthc TBMIC Group

Applications (Cont'd)
Power Supplies
Power supply flexibility is a useful feature of the
DG641/642/643 series. It can be operated from a single
positive supply (V +) if required (V - connected to
ground).

3. Capacitors should be of a suitable type with good high
frequency characteristics - tantalum bead and/or
ceramic disc types are adequate.
+15 V

+

Note that the analog signal must not exceed V-by more
than -0.3 V to prevent forward biasing the substrate p-n
junction. The use of a V-supply has a number of
advantages:

CII I

v+
SI

1. It allows flexibility in analog signal handling, i.e., with
V- = -5 V and V+ = 12Vj up to ±5-Vacsignalscan
be controlled.
2. The value of on capacitance [CS(on)] maybe reduced. A
property known as 'the body-effect' on the DMOS
switch devices causes various parametric effects to
occur. One of these effects is the reduction in CS(on) for
an increasing V body-source. Note however that to
increase V - normally requires V + to be reduced
(since V+ to V- = 21 V max.). A reduction in V+
causes an increase in rOS(on), hence a compromise has
to be achieved. It is also useful to note that tests
indicate that optimum video linearity performance
(e.g., differential phase and gain) occurs when V- is
around -3 V.
3. V - eliminates the need to bias the analog signal using
potential dividers and large coupling capacitors.

Decoupling
It is an established rf design practice to incorporate

C2

~

01
02

DG64X

S3

03
04

S4

V-

GNOs

CI = 10 "FThntalum
y = 0.1 "F Ceramic

-3V

Figure 7.

Supply Decoupling

Board Layout
PCB layout rules for good high frequency performance
must also be observed to achieve the performance boasted
by these analog switches. Some tips for minimizing stray
effects are:
1.

Use extensive ground planes on double sided PCB,
separating adjacent signal paths. Multilayer PCB is
even better.

sufficient bypass capacitors in the circuit to decouple the
power supplies to all active devices in the circuit. The
dynamic performance of the DG641/642/643 series is
adversely affected bypoor decoupling of power supply pins.
Also, of even more significance, since the substrate of the
device is connected to the negative supply, adequate
decoupling of this pin is essential. Suitable decoupling
capacitors are 1- to 10-!.lFtantalum bead, plus 10- to 100-nF
ceramic or polyester.

3. Careful arrangement of ground connections is also very
important. Star connected system grounds eliminate
signal current, flowing through ground path parasitic
resistance, from coupling between channels.

Rules:

Figure 8 shows a 4-channel video multiplexer using a
DG641.

1. De~upling capacitors should be incorporated on all
power supply pins (V +, V -). (See Figure 7).
2. They should be mounted as close as possible to the
device pins.
1-216

2. Keep signal paths as short as practically possible, with
all channel paths of near equal length.

In Figure 9, two coax cables terminated on 75 Q bring two
video signals to the DG642 switch. The two drains tied
together lower the on-state capacitance. An Si582 video
amplifier drives a double terminated 75-Q cable. The
double terminated coax cable eliminates line reflections.
P-32167-Rev. C (11/15/93)

Siliconix

DG641/642/643

AMember oftbe TBMIC Group

Applications (Cont'd)
+15 V
CHI

75Q

75Q

250Q
250Q

-3V

TTL Channel Select
Figure 8.

4 by 1 Video Multiplexing Using the DG641

+15 V

V+

CHI

VOUT

7SQ
DG642

-:- 75 Q

V-

250Q

TTL Channel Select
Figure 9.

-3V

2-Channel Video Selector Using the DG642

..

fc SELECT o-_--1I-I_N,::.2-l
S2

1/zDG643
CHI
CH2
CHSELECT

DI

RI

D
INI

..J

~------~--o VOUT

I/zDG643

1

fc=~

Figure 10. Active Low Pass Filter with Selectable Inputs and Break Frequencies

P-32167-Rev. C (11/15/93)

1-217

Siliconix

DG5043

AMember ofthe 'I'BMIC Group

Monolithic General Purpose CMOS Analog Switch
Features

Benefits

Applications

• ± 15-V Input Range

•
•
•
•

• Audio Switching
• Instrumentation
• Battery Powered Systems

• On-Resistance: <50 Q
• Break-Before-Make Switching
• TIL and CMOS Compatible

Improved Signal Headroom
Reduced Switching Errors
No Shorting of Inputs
Simple Interfacing

Description
The DG5043 solid state analog switch is recommended for
general purpose applications in instrumentation, and
process controL Built on the SiliconixPLUS-40 high voltage
CMOS process, this device provides ease-of-use and
performance advantages to the system designer_ Key
performance features of the DG5043 are l-/.Is switching,

low power supply requirements, and break-before-make
switching. Each switch conducts equally well in either
direction, when on, and blocks up to 30 V peak-to-peak
when off. Off leakage current is l-nA maximum. An
epitaxial layer prevents latch up. For new designs, DG403
is recommended.

Functional Block Diagram and Pin Configuration
Dual-In-Line

1ruth Table

D!

S!

NC

IN!

D3

V-

S3

GND

S4

VL

D4

V+

NC

IN2

Logic

SWl,SWZ

SW3 ,SW4

0
1

OFF
ON

ON
OFF

Logic "0" = :s 0.8 V
Logic "1" = ~ 2 V
Switches shown for Logic "1" input.

Ordering Information
Temp Range

Package

Part Number

oto 70·C

16-Pin Plastic DIP

DG5043CJ

Sz

D2
ThpView

Absolute Maximum Ratings
V+toV- ........................................... 44V
GNDtoV- .......................................... 25V

Power Dissipation (Package)b
16-PinPlasticDIPC ................................. 470mW

VL ................................. (GND - 0.3 V) to 44 V
Digital InputsaVs. Vn ............. (V-) -2 Vto (V+ plus 2V)
or 30 rnA, whichever occurs first
Curreut (Auy Thrminal) Coutinuous .................... 30 rnA
Current, S or D (Pulsed 1 ms 10% duty) ................ 100 rnA
Storage Thmperature . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 125·C

1-218

P-32167-Rev. A (11/15/93)

Notes:
a. Signals on Sx. Dx. or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.
c. Derate6mWrCabove75·C

Not Recommended for New Designs

Siliconix

DG5043

A Member oftbe TBMIC Group

Specifications
Test Conditions
Unless Otherwise Specified
Parameter

CSutrIx
Oto70"C

V+ = 15 V, V- = -15V
VL = 5V, VIN = 2 V, 0.8 ve

Temp"

Mine

VANALOG

Full

-15

'OS(on)

Is = -lOrnA, Vo = ±10V

Room
Full

Symbol

IlYP I Max"
b

Unit

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance

Switch Off Leakage Current

Channel On Leakage Current

Vs=Vo = 14V

Room
Full

-1
-100

Vs=Vo = -14V

Room
Full

-100

Vs=Vo = 14V

Room
Full

Vs=Vo = -14V

Room
Full

IS(oll)

10(on)

15

V

50
75

n

1
100

-1

1
100
2
200

nA

-2
-200

Digital Control
Input Current with VIN Low

VIN Under Thst = 0.8 V

Input Current with VIN High

VIN Under Thst = 2 V

Dynamic Characteristics
Thrn-On TIme

tON

1200

tOFF

Vs = ±10V, RL = 1 ill, CL = 35 pF
See Figure 1

Room

Thrn-OffTIme

Room

700

Charge Injectiond

Q

CL = 10 nF, Vgen = Ov, Rgen = on

Room

30

Off Isolationd

OIRR

RL = 75 n, CL = 5 pF, f = 1 MHz

Room

75

Crosstalk (Channel-to-Channel)d

XTALK

RL= 75n, Vs = 2 Vp_Bf= 1 MHz

Room

89

Source Off Capacitance

CS(oll)

Room

15

Drain Off Capacitanced

CO(off)

Room

17

Channel On Capacitanced

CO(on)

Room

45

Vo = Vs = OV,f= 1 MHz

ns
pC
dB

pF

Power Supplies
Positive Supply Current

1+

Negative Supply Current

1-

Logic Supply Current

IL

Ground Current

Full
VIN = 00r2.4 V

VIN = o or 2.4 V

IGND

Full

300
-300

Full
Full

300

I1A

-300

Notes:
a. Room = 25"C, Full = as determined by the operating temperature suffIx.
b. lYpieal values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.

Not Recommended for New Designs

P-32167-Rev. A (11/15193)

1-219

III

Siliconix

DG5043

AMember of the TBMIC Group

Test Circuits

+5V

+15V

Logic 3V
Input

Logic "0" = SW On

IN!

tr <20ns
tf <20ns

50%
tOFF ....

Switch
Output Vs
Switch
Output
0
CL (includes fIXture and stray capacitance)

tON

Figure 1.

+5V

+15V

VL
S

Rg

Va
CL
Il0nF

Vg

-

Va

P-32167-Rev. A (11/15/93)

,

I

INx
OFF \

ON

t
t

I!No

JOFF

Q=CLx AVo

Figure 2.

1-220

Switching Time

Charge Injection

Not Recommended for New Designs

Siliconix

DG5143

AMember of the TBMIC Group

Low-Power, High-Speed CMOS Analog Switch
Features

Benefits

Applications

• ± 15-V Input Range

•
•
•
•
•

•
•
•
•

• On-Resistance: 50 Q
• Fast Switching Action-toN: 100 ns
• LowPower-PD: <350 IlW
• TIL and CMOS Compatible

Improved Signal Headroom
Low Signal Errors
Break-Before-Make Switching Action
Reduced Power Consumption
Simple Interfacing

Audio Switching
Precision Switching
High-Speed Switching
Battery Powered Systems

Description
The DG5143 solid state analog switch is built on the
Siliconix proprietary high-voltage silicon gate process to
achieve high voltage rating and superior switch time onloff
performance.
Break-before-make switching action
guarantees that an on-channel will be turned off before the
off-channel can turn on. The DG5143 features ultra-low
power supply requirements and TTL and CMOS
compatibility.

Each switch conducts equally well in both directions when
on and blocks input voltages to the supply values when off.
This switch is ideal for battery powered industrial
applications with a maximum power supply current of lilA.
An expitaxiallayer prevents latchup.

Functional Block Diagram and Pin Configuration

Dual-In-Line

01

..

lruthTable

Logic

SWhSW2

SW3,SW4

0

OFF

1

ON

ON
OFF

Sl

NC

IN1

03

V-

S3

GNO

S4

VL

04

V+

NC

IN2

Logic "0" s 0.8 V
Logic "1" ., 2.4 V
Switches Shown for Logic "1" Input

02

S2

Ordering Information
Temp Range

Package

Part Number

Oto70'C

16-Pin Plastic DIP

DG5143CJ

Top View

P-32167-Rev. A (11/15/93)

1-221

Siliconix

DG5143

AMemberofthe TBMIC Group

Absolute Maximum Ratings
(V+) - (V-) ...................................... < 36V

Continuous Current, Any Thrminal ..................... 30 rnA

(V+) - (VD)· ...................................... < 30V

Peak Current, S or D (pulsed alms, 10% duty cycle max) . 100 rnA

(VD) - (V-)' ...................................... < 30V

Storage Thmperature ............................. -65 to 125'

(VD)-(VS)· ..................................... < ±22V

Power Dissipation (Package)b
16-PinPlasticDIP .................................. 450mW
Notes:
a. Signals on Sx, Dx, or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads welded or soldered to PC Board.

(VL)-(V-) ....................................... <33V
(VL) - (VIN) ....................................... < 30 V
VL ................................................ <20V
VIN' .............................................. < 20V

Specifications
Test Conditions
Unless Otherwise Specified
Parameter

CSufilX
Ot070'C

V+ = 15 V, V- = -15V,VL = 5V
VIN = 2.4 V, 0.8 ve

temp'

Mine

VANALOG

Full

-15

rns(on)

VD =±10V, Is = -lOrnA

Room
Full

Symbol

l1YPb

I

Max"

Unit

15

V

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance

IS(off)
Switch Off Leakage Current

VD = 'flO V, Vs = ±lOV
ID(o!!)

Channel On Leakage Current

ID(on)

Vs = VD = -10to 10V

75
100

Room
Full

-5
-20

5
20

Room
Full

-5
-20

5
20

Room
Full

-2
-40

2
40

°
nA

Digital Control
Input Current with VIN Low
Input Current with VIN High
Dynamic Characteristics
Thrn-On Time

tON

Thrn-Off Time

tOFF

Break-Before-Make
Charge Injectiond

RL = 3000, CL = 35pF
See Figure 1

tON-tOFF
Q

CL = 10,000 pF, Vgen = 0 V, Rgen = 0

°

Room

175

Room

150

Room

5

Room

Off Isolationd

OIRR

RL = 1000, CL oS 5 pF,f= 1 MHz

Room

Channel-to-Channel Crosstalkd

XTALK

Any Other Channel Switches
RL = 1000, CL S 5 pF, f= 1 MHz

Room

150

ns

pC

-50
-50

dB

Power Supplies
Positive Supply Current

1+

Room

Negative Supply Current

1-

.Room

Logic Supply Current

IL

Ground Current

IGND

VIN=OVor5V
Switch Duty Cycle <10%

10
-10

10

Room
Room

ItA

-10

Notes:
a. Room = 25'C, Full = as determined by the operating temperature suffIX.
b. 'l}>pica\ values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.

1-222

P-32167-Rev. A (11/15/93)

Silicanix

DG5143

AMem'bcr of the TBMIC Group

Test Circuits

+5V

+15V
3V
V+

VS1
VS2

S1

D1

S2

D2

Vs=10VfortoN
Vs = -10VfortOFF
VOl
V02

RLlJCLl
RL2 JCL2 ;000-=-35 pF
3000

-

-

-

35pF

-

Logic
Input

OV

Switch
Input

Vs

Switch
Output

OV

Switch
Input

-Vs

tr <20ns
tr<20ns

CL (includes fIXture and stray capacitance)

Figure 1. Switching Time

..
P-32167-Rev. A (11/15193)

1-223

Biliconix
A Member oftho TBMIC Group

1-224

General Information
Analog Switches
Analog Multiplexers _

WidebandlVideo Amplifiers
Voltage Converters
Appendix
Worldwide Sales Offices and Distributors

Siliconix
AMember of the TEMIC Group

About Analog Multiplexers
Analog multiplexers represent a higher level of integration than analog switches. They have many (4, 8, 16, or
more) inputs with only one or two common outputs. Multiplexers are used where it is necessary to transfer
information from many input channels to a common output, most often when only one transmission line is
available for all data transfer between various points. The transmitted signals are in either analog or digital
form. Siliconix multiplexers handle analog signals, passing bipolar voltages or currents, which are often
obtained from transducers. The analog signals represent physical phenomena such as temperature, pressure,
velocity, and flow speech. Typical applications include data acquisition, industrial process control, aircraft
systems monitoring, medical electronics, telemetry, and telecommunications.

Differential vs. Single-Ended Multiplexing
When is it better to select a differential multiplexer versus a single-ended configuration? Figures 1 and 2
demonstrate both options. Single-ended multiplexing, as shown in Figure 1, applies to systems that have signal
sources which are close to full-scale range and referenced to a common point (usually ground). Another case is
where different signal sources with small signal amplitude (mV range) are generated by transducers.
Instrumentation amplifiers can be used to precondition the signals and provide a common reference. This step
reduces feedthrough errors and losses while tailoring each signal source to a desired voltage (or current) to
obtain the maximum resolution available in an AID or D/A converter or other device driven by the multiplexers.
Differential multiplexing (Figure 2) is utilized for low-level switching and in noisy environments. It can tolerate
switching transients or some mismatch without a significant degradation of signal accuracy. Major
considerations are switch matching (rDS(on), I(off)' and capacitance), common-mode rejection, and the system's
tolerance to switching transients introduced by the break-before-make switching sequence.

o------&§b

10------&

10------& 1"'-_ _

1

0------&

1

~o------&I

Output

1

,
N 0------&

Output A

70------& 1

1,"'-_--1

Ixyxi
Figure 1. Single-Ended MUltiplexing

I

I

,Output B
I.

~o-----:b
1
0------&

~

rn

Figure 2. Differential Multiplexing

Siliconix
AMcmbcr or the TBMIC Group

The DG4XX series of Siliconix multiplexers is designed to reduce switching errors, glitching, and power
consumption while providing improved data throughput and increased ruggedness. For data acquisition, hi-rei,
and battery operated systems, the rugged DG406/407 and DG408/409 multiplexers are the answer for designs
requiring low on-resistance, low charge injection, fast transition time, and single-supply capability.
Other DG4XX family members include the DG428 and DG429, which have on-chip address and control latches
to simplify design in microprocessor-based applications, as well as the DG485 octal analog switch array for
low-power multiplexing in serial control applications.

n/CMOS WidebandNideo Multiplexers
The DG535 and DG536 are 16-channel wideband/video multiplexers which use the SiliconixD/CMOS process
to combine wideband DMOS "T" switches with high-density, high-speed CMOS logic and switch drivers to
form monolithic wideband/video multiplexing systems. These devices include on-board latches to hold the
address selection data and all of the necessary control logic to facilitate connection into larger arrays, matrices,
and multiplexers. The DG534 and DG538 are 4- and 8- channel wideband/video multiplexers which, like the
DG535 and DG536, feature address latches and control logic with the addition of data feedback and TTL
compatibility. They make excellent wideband/video crosspoints, routers, and multiplexers, reducing board
space, power dissipation, component count, and cost, while simplifying system design and improving reliability.
For detailed information on these products, please refer to the individual data sheets and to application notes
AN501 and AN502.

Crosspoints
The DG884 is the first monolithic wideband/video crosspoint switch available for commercial use. Any of eight
video inputs can simultaneously be routed to any of our outputs. This highly integrated device offers a major
reduction of the physical size and component count needed to implement a video switching matrix. The DG884
uses double-diffused DMOS switching elements to maintain low capacitance and low levels of crosstalk among
signal paths.
Double-diffused CMOS latches, chip select, reset, readback, and disable functions are all included on the chip
to ease system design, save power, and improve system reliability.

Factors Affecting Systems Performance
In any multiplexer application, the following factors should be considered:

1. System Attenuation: Includes loss in the analog signal caused by the multiplexer and the transmission path.
This is a frequency dependent factor.
2. Channellsolation: At low frequencies, this is principally a function of channel off-leakage currents, and at
high frequencies, it is a function of device and system capacitance.

3. Crosstalk: There are several sources of crosstalk, including overlap between switching channels, off-switch
capacitance, inter-switch capacitance, stray circuit capacitance, and distortion in the transmission medium.

..

Siliconix
AMembor of tho TBMrc Group

4. Noise: There are several sources of noise, including thermal or J ohnsonnoise generated in any resistance
components, crosstalk, leakages, switching transients, as well as thermal EMFs and transmission path
pickup.
5. Switching Rote: This is important in sampling system where it determines the maximum bandwidth frequency
of the multiplexers (via the sampling theorem) and defines crosstalk errors.
6. Settling Time: Although settling time is a function for the source and load impedances, the multiplexer's
contribution is directly related to the rDS(on) x CS(on) time constant and to the charge injection of the
multiplexer.

Glossary of Terms
Bandwidth
The "3 dB down" point of the frequency response characteristic.
Crosspoint Switch
A two-dimensional array of analog switches or analog multiplexers that allows for the routing of signals from
any input to any output.

Crosstalk
A measure of how much of an unwanted signal appears on a given analog channel due to spurious capacitive or
inductive coupling from another channel.
DlCMOS
Semiconductor process that combines DMOS FE'Th and CMOS logic on a monolithic chip.
Differential Gain
Expressed as a percentage, this is a form of distortion that appears as changes in the amplitude of the
chrominance (color) signal as a function of luminance (brightness) amplitude.

Differential Multiplexer
An analog multiplexer that selects both the high and the low side of each signal. It can be thought of as two
single-ended multiplexers operating in tandem.
Differential Phase
Measured in degrees, this is the phase shift of the color subcarrier resulting from changes in luminance level.

DMOS (Double-Diffused MOS)
A type of field-effect transistor featuring low on-resistance and low capacitance.

Input Capacitance
The capacitive load that the input terminal of an analog switch presents to the signal source. It is specified for
two conditions, with the switch on or off.

Siliconix
AMember of tho TBMIC Group

Insertion Loss
Expressed in dB, this is a measure of the signal loss caused by the impedance of the analog switch at a given
frequency.

Off-Isolation
A measure of how much of the signal applied to an "open" switch appears at its output due to parasitic
components such as gate-to-channel capacitance and lead inductance.

On-resistance
The dc input-to-output resistance of an analog switch channel when the switch is turned on.

Output Capacitance
The capacitive load that the output of an off switch adds to the output node.

PLCC Package (Plastic Leaded Chip Carrier)
A surface-mount package characterized for its small size and reliable lead-to-printed circuit board mechanical
interface

Readback
A feature that allows for the inspection of the control latch contents in a multiplexer or crosspoint switch.

Single-Ended Multiplexer
An array of analog switches that selects one of several analog input signals.

"T" Switch
An analog switch configuration consisting of two series switches and a shunt switch to ground. It is used to
improve dramatically the off-isolation of the array.

Video Amplifier
An amplifier, typically with a gain of2, which is normally used at the output of a video multiplexer or crosspoint
to drive a length of double-terminated coaxial cable.

Video Buffer
A current amplifier that is used is to preserve signal quality by eliminating the capacitive loading effect to
several video multiplexer inputs on a common signal source. This is normally a unity gain buffer.

Wideband
A relative term that is used in this book to refer to a frequency spectrum that is more than 2 MHz wide.

-

Analog Multiplexer Selector Guide
Max

Max

l'J)~on)

IS(on)

Typical
'lransitiou
Time

Charge
Injection

(nA)

Analog
Range
(V)

(pC)

On-Chip
Logic
Regulator

Max Power
Consumption
(mW)

(fts)

Pacl\age

Commeuts

Page

0.3

-70

-

595

J,N,P

Video, Latches

2-86

-5 to 10
-5 to 10
±15

0.3
0.3
0.25

-70
-70
20

Yes

595
595
0.9

J,N,P
J,N,P
J,K, Y,Z

Video, Latches
Video, Latches
High Speed

2-86
2-86
2-11

1
10
10
2

±15
±15
±15
-9.5 tol0

0.25
1.0
1.0
0.5

4
20
4

1.58
58.5
60
3

J,K,N
J,K, Y
J,K
J,K,Z

Latchable, High Speed

-

Yes
Yes
Yes
Yes

Latchable
Fault Protected

2-22
2-60
2-70
2-34

90
100
100

20
1
1

-5 to 10
±15
±15

0.3
0.2
0.25

-70
20
4

Yes
Yes

59.5
0.9
1.58

J,N,P
J,K, Y
J,K,N

Video, Latches
High Speed
Latchable, High Speed

2-86
2-11
2-22

DG50SA
DG528
DG458

400
400
1200

10
10
2

±15
±15
-95 to 10

1.0
1.0
0.5

20
4

59.5
60
3

J,K, Y,Z
J,K
J,K,Z

-

-

Yes
Yes
Yes

Latchable
Fault Protected

2-60
2-70
2-34

8-Channel
Differential

DG407
DG507A

100
400

1
5

±15
±15

0.3
1.0

15
20

Yes
Yes

0.5
58.5

J,K,N,Z
J,K,R

High Speed

DG535
DG536
DG406
DG506A

90
90
100
400

10
10
1
10

OtolO
Otol0
±15
±15

0.3
0.3
0.3
1.0

-35
-35
20
20

-

16-Channel
Single-Ended

Yes
Yes

0.75
0.75
0.47
58.5

J,P
M,N
J,K,N,Z
J,K,N,R,Z

Low Power, Video
Low Power, Video
Low Power, Fast

-

2-102
2-102
2-1
2-52

Specials

DG485
DG884
DG894

85
90
100

20
20
10

±15
-5 t08
-5t08

0.2
0.3
0.2

17
-100

-

-

Yes

0.11
925
136

J,N,Z
M,N
J,W

8-Ch, Serial Control
8x4 Video Crosspoint
RGB Video Mux

2-42
2-113
2-126

Functional
Configuratilm

Part No.

2-Channel
Differential

DG534A

90

20

-5 to 10

DG534A
DG538A
DG409

90
90
100

20
20
1

DG429
DG509A
DG529
DG459

100
400
400
1200

DG538A
DG408
DG428

4-Channel
Differential

8-Channel
Single-Ended

J = Plastic DIP
R = Sidebraze

C)

K= CerDIP
W = SOICWid.,.Body

M=CLCC
Y=SOIC

N=PLCC
Z=LCC

P = Sidebraze

-

-

-

2-1
2-52

Siliconix

DG406/407

AMcmber of the TBMIC Group

16-Channel/DuaI8-Channel
High Performance CMOS Analog Multiplexers
Features

Benefits

Applications

•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

Low On-Resistance-rDS(on): 50 Q
Low Charge Injection-Q: 15 pC
Fast Transition Time-tTRANs: 200 ns
LowPower: 0.2mW
Single Supply Capability
44-V Supply Max Rating

Higher Accuracy
Reduced Glitching
Improved Data Throughput
Reduced Power Consumption
Increased Ruggedness
Superior to DG506/507A
Wide Supply Ranges: ± 5 V to ± 20 V

Data Acquisition Systems
Audio Signal Routing
Medical Instrumentation
ATE Systems
Battery Powered Systems
High-Rei Systems
Single Supply Systems

Description
The DG406 is a 16-channel single-ended analog
multiplexer designed to connect one of sixteen inputs to a
common output as determined by a 4-bit binary address.
The DG407 selects one of eight differential inputs to a
common differential output. Break-before-make switching
action protects against momentary shorting of inputs.

Applications for the DG406/407 include high speed data
acquisition, audio signal switching and routing, ATE
systems, and avionics. High performance and low power
dissipation make them ideal for battery operated and
remote instrumentation applications. For additional
application information, see application note AN206.

An on channel conducts current equally well in both
directions. In the off state each channel blocks voltages up
. to the power supply rails. An enable (EN) function allows
the user to reset the multiplexer/demultiplexer to all
switches off for stacking several devices. All control inputs,
address (Ax) and enable (EN) are TIL compatible over the
full specified operating temperature range.

Designed in the 44-V silicon-gate CMOS process, the
absolute maximum voltage rating is extended to 44 volts,
allowing operation with ±20-V supplies. Additionally
single (12-V) supply operation is allowed. An epitaxiallayer
prevents latchup.

Functional Block Diagrams and Pin Configurations
Dual-In·Line

DG406

Dual·ln-Line

DG407

v+

D

NC
NC

v-

SI6

S7

SSb

S7.

SIS

S6

S7b

S6.

SI4

Ss

S6b

SS.

SI3

S4

SSb

SI2

S3

Sl1

S2

SID

SI

v+

D.

v-

Ss

SS.

S4.
S3.
S2.

S2b

SI.

S9

EN

SIb

EN

GND
NC

Ao

Ao

Al

A3

A2

GND
NC
NC

ThpView
P·32167-Rev. C (11/15/93)

B

Al
A2

ThpView
2-1

Siliconix

DG406/407

AMembcr of the TBMIC Group

Functional Block Diagrams and Pin Configurations (Cont'd)
PLCCandLCC

DG406

PLCC and LCC

DG407

J~~~o~","

J

~ cf ~

~~~«<~
'lbpView

ThpView

'fruth Thble - DG407

'fruth Thble - DG406

i\1

Al

At

At!

EN

On Switch

AZ

Al

Au

EN

On Switch Pair

X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
1
1
1
1
1
1
1
1
1

None
1
2
3
4
5
6
7
8
9

X
0
0
0
0
1
1
1
1

X
0
0
1
1
0
0
1
1

X
0
1
0
1
0
1
0
1

0
1
1
1
1
1
1
1
1

None
1
2
3
4
5
6
7
8

1
1
1
1
1
1

Ordering Information - DG406
1emp RallJle

Package

-40 to 85°C

28-Pin Plastic DIP
28-PinPLCC

-55 to 125°C

2-2

Logic "0"
Logic"!"
X

10
11
12
13
14
15
16

Part Number
DG406DJ
DG406DN

28-Pin CerDIP

DG406AK/883

LCC-28

DG406AZJ883

VAL s 0.8 V
VAH '" 2.4V
Don't Care

Ordering Information - DG407
Temp RallJle
-40 to 85°C
-55 to 125°C

Package

Part Number

28-Pin Plastic DIP

DG407DJ

28-PinPLCC

DG407DN

28-Pin CerDIP

DG407AK/883

LCC-28

DG407AZJ883

P-32167-Rev. C (11/15/93)

Siliconix

DG406/407

AMcmbcrofthc'I'BM1CGrOUP

Absolute Maximum Ratings
Voltages Referenced to V-

Power Dissipation (Package)b
28-PinPlasticDIP" ................................. 625mW
28-Pin CerDIpd ..•................................... 1.2 W
28-Pin Plastic PLCC" ................................ 450 mW
LCC-28e ...................................•....... 1.35 W
Notes:
a. Signals on Sx, Dx or INx exceeding V+ orV- will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate6mWI"Cabove75"C
d. Derate 12 mWrC above 75"C
e. Derate 13.5 mWrC above 75"C

V+ ................................................. 44V
GND ............................................... 25V
Digital Inputsa, Vs, Vo ............. (V-) -2 V to (V+) +2 Vor
20 rnA, whichever oocurs first
Current (Any Thrminal,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 rnA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) ................. 100 rnA
Storage Thmperature

(AK, AZ SuffIX) . . . . . . . .. -65 to 150"C
(OJ, DN SuffIX) . . . . . . . .. -65 to 125"C

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

ASntrlX
-55 to 125"C

I

DSntrlX
-40 to S5"C

I

V+ =15V;V- = -15V
VAL = O.S V; VAll = 2.4

vr

Tempb

1YPc

'OS(on)

Vo = :!:10V;Is- -lOrnA
Sequence Each Switch On

Full
Room
Full

50

8'OS(on)

Vo = :!:lOV

Room

5

Room
Full

0.01

-0.5
-50

0.5
50

-0.5
-5

0.5
5

VEN=OV
DG406
Vo = ±10V; Vs = :FlOV

Room
Full

0.04

-1
-200

1
200

1
-40

1
40

DG407

Room
Full

0.04

1
-100

1
100

1

-20

1
20

DG406

Room
Full

0.04

-1
-200

1
200

-1
-40

1
40

DG407

Room
Full

0.04

-1
-100

1
100

-1
-20

1
20

Symbol

Mind

Maxd

Mind

15
100
125

-15

Maxd

Unit

15
100
125

V

Analog Switch
Analog Signal Rangee
Drain-Source
On-Resistance
'OS(on) Matching Between
Channels&

VANALOG

Source Off
Leakage Current

IS(off)

Drain Off Leakage Current

IO(of!)

Drain On Leakage Current

IO(on)

Vs=Vo=:!:10V
Sequence Each Switch On

-15

0
%

nA

Digital ContrClI
Logic High Input Voltage
Logic Low Input Voltage

VINH
VINL

Logic High Input Current

IAll

Logic Low Input Current

IAL

Logic Input Capacitance

em

f=lMHz

Room

7

Transition Time

tTRANS

See Figure 2

Room
Full

200

Break-Before-Make
Interval

toPEN

See Figure 4

Room
Full

50

Room
Full

150

200
400

200
400

Room
Full

70

150
300

150
300

Full
Full

2.4

VA = 2.4 V; 15V

Full

-1

1

-1

1

VEN - OV; 2.4 V; VA = OV

Full

-1

1

-1

1

2.4
0.8

0.8

V

tlA
pF

Dynamic Characteristics

Enable Thrn-On Time

tON(BN)

Enable Thrn-OffTime

tOFF(BN)

See Figure 3

Charge Injection
Off Isolation·
P-32167-Rev. C (11115193)

300
400
25
10

300
400
25
10
ns

Q

CL -1 nF,Vs - OV;R, - 00

Room

15

pC

OIRR

VEN - OV; RL -1 W, f -100kHz

Room

-69

dB

2-3

•

Siliconix

DG406/407

AMcmber of the TBMIC Group

Specifications a
Test Conditions
Unless Otherwise Specir.ed
Parameter

Symbol

V+ = 15V,V- = -15V
VAL = O.S V, VAH = 2.4 yf

Tempb

'lYPc

Room
Room

S
130

ASufr.x

D Sutr.x

-55 to 125°C

-40 to S5°C

Mind

I

Maxd

Mind

I

Maxd

Unit

DyuaJllic Characteristics (CQIU'd)
Source Off Capacitance

CS(off)

Drain Off Capacitance

CD(off)

VEN =

ov, Vs = ov, f= 1 MHz

VEN = OV,VD = OV
f=lMHz
Drain On Capacitance

CD(on)

DG407

Room

65

DG406

Room

140

DG407

Room

70

Room
Full

13

pF

PQwer Supplies
Positive Supply Current

1+
VEN =VA = Oor5V

Negative Supply Current

1-

Room
Full

-0.01

Positive Supply Current

1+

Room
Full

50

Negative Supply Current

1-

Room
Full

-0.01

VEN = 2.4 V, VA = OV

30
75
-1
-10

30
75
-1
-10

100
500
-1
-10

i!A

100
200
-1
-10

Specifications a for Single Supply
Test Conditions
Unless Otherwise Specrued
Parameter

Symbol

V+ = 12V,V- =OV
VAL = 0.8 V, VAH = 2.4 yf

Tempb

'lYPc

A Suffix

D Sutr"1X

-55 to 125°C

-40toS5°C

Mind IMaxd

Mind IMaxd

Unit

Anawg Switc:h
Analog Signal Range"
Drain-Source
On-Resistance
I"DS(on) Matching Between
Channelsg

VANALOG

Full

l"DS(on)

Room

90

Room

5

Room

0.01

DG406

Room

0.04

DG407

Room

0.04

DG406

Room

0.04

DG407

Room

0.04

IS(off)

Drain Off Leakage Current

ID(off)

Drain On Leakage Current

ID(on)

12
120

0

12

V

120

Q

VD = 3 V, 10 V; Is = - 1 rnA
Sequence Each Switch On

AI"DS(on)

SourccOff
Leakage Current

0

VEN=OV
VD = lOV or 0.5 V
Vs = 0.5Vor 10V

Vs=VD=±10V
Sequence Each Switch On

%

nA

DyuaJllie Characteristics
Switching 11me of
Multiplexer

tTRANS

VSl = SV,Vss = OV,VIN = 2.4 V

Room

300

450

450

Enable 'fum-On 11me

toN(EN)

Room

250

600

600

Enable Thrn-Off11me

tOFF(EN)

VINH = 2.4 V, VINL = OV
VSl = 5V

Room

150

300

300

Q

CL = 1 nF, Vs= 6V,Rs = 0

Room

20

Charge Injection

2-4

ns

pC

P-32167-Rev. C (11/15/93)

Silicanix

DG406/407

AMcmbcr of the TBMICGrOUP

Specifications a for Single Supply
A Suffix
-55 to 125°C

Test Conditions
Unless Otherwise Specified

I

V+~12V,V-~OV

Parameter

VAL ~ 0.8 V, VAH ~ 2.4 yf

Symbol

Tempb

'I)tp.

Room
Full

13

Room
Full

-0.01

Maxd

Mind

D Sull"'"
-40 to 85°C

Mind

I

Maxd

Unit

Power Supplies
Positive Supply Current

I+

VEN = OVor 5V, VA = OVor 5V

1-

Negative Supply Current

30
75

30
75

-1
-5

JlA.

-1
-5

Notes:
a. Refer to PROCESS OPTION FLOWCHARI' (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature suffIX.
c. 1Jpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
g. ArOS(on) = --1

HP4192A
Impedance
Analyzer
or EqUivalent

RL

v-15V

Channel {
Select

Vo

D

Ao

-

Sl

I
I

Rg = 509

II<&!

-

Insertion Loss = 20 log

f=1MHz

Iv~:1
Figure 9.

Figure S. Insertion Loss

Source Drain Capacitance

Application Hints
Overvoltage Protection
A very convenient form of overvoltage protection consists
of adding two small signal diodes (lN4148, 1N914 type) in
series with the supply pins (see Figure 10). This
arrangement effectively blocks the flow of reverse currents.
It also floats the supply pin above or below the normal V +

or V - value. In this case the overvoltage signal actually
becomes the power supply of the Ie. From the point of view
of the chip, nothing has changed, as long as the difference
VS - (V -) doesn't exceed +44 V. The addition of these
diodes will reduce the analog signal range to 1 V below V +
and 1 V above V-, but it preserves the low channel
resistance and low leakage characteristics.

V+
1N4I48

Sx

---I--oD
DG40S
1N4148

VFigure 10. Overvoltage Protection Using Blocking Diodes

2-20

P-32I67-Rev. C (11/15193)

Silicanix

DG408/409

A Member of the TBM Ie Group

Applications
Dilferential4-Cbannel Seqnential Multiplexer/Demultiplexer

8-Cbannel Sequential Multiplexer/Demultiplexer

+15V

V+
SI
S2
S3
S4
S5
S6
S7
S8

Analog
Inputs
(Outputs)

NC

+15V

-15V

S3a
S4a

Da

GND V-

DG408

D

Differential
Analog
Inputs
(Outputs)

Analog
Output
(Input)

Differential
Analog
Outputs
(Inputs)

DG409
SIb
Szb
S3b

Ao Al A2 EN

+15V

Clock
In

-15V

Db

EN

DM7493 QB
BIN
AIN

Qc

QD
NC

rOl

Clock
In

J
Q
'hMM74C73
CLK

K

Q

J
Q
V,MM74C73
CLK

NC

Q

K

NC

CLEAR

0----1------------'

Enable In
(MUX On-Off Control)

6
Reset Enable

Figure 11.

III

P-32167-Rev. C (11/15/93)

2-21

Siliconix

DG428/429

AMember of the TBMIC Group

Single 8-ChannellDifferential 4-Channel Latchable
Analog Multiplexers
Features

Benefits

Applications

• Low rns(on): 55 Q
• Low Charge Injection: 1 pC
• On-Board TTL Compatible
Address Latches
• High Speed-tTRANs: 160 ns
• Break-Before-Make
• Low Power Consumption: 0.3 mW

•
•
•
•
•
•

•
•
•
•
•

Improved System Accuracy
Microprocessor Bus Compatible
Easily Interfaced
Reduced Crosstalk
High Throughput
Improved Reliability

Data Acquisition Systems
Automatic Test Equipment
Avionics and Military Systems
Communication Systems
Microprocessor Controlled Analog
Systems
• Medical Instrumentation

Description
The DG428/DG429 analog multiplexers have on-chip
address and control latches to simplify design in
microprocessor based applications. Break-before-make
switching action protects against momentary crosstalk of
adjacent input signals.

switches off for stacking several devices. All control inputs,
address (Ax) and enable (EN) are TTL compatible over the
full specified operating temperature range.

The DG428 selects one of eight single-ended inputs to a
common output, while the DG429 selects one of four
differential inputs to a common differential output.

The silicon-gate CMOS process enables operation over a
wide range of supply voltages. The absolute maximum
voltage rating is extended to 44 V. Additionally, single
supply operation is also allowed and an epitaxial layer
preventslatchup.

An on channel conducts current equally well in both
directions. In the off state each channel blocks voltages up
to the power supply rails. An enable (EN) function allows
the user to reset the multiplexer/demultiplexer to all

On-board TTL-compatible address latches simplify the
digital interface design and reduce board space in
bus-controlled systems such as data acquisition systems,
process controls, avionics, and ATE.

Functional Block Diagrams and Pin Configurations
DG428

DG428
Dual-In·Line
WR

RS

Ao

A1

EN

A2

v-

GND

S1

v+

~

S5

S3

S6

S4

S7

D

S8

18

A2

GND

v+
S5
~

~Q~J:J)

ThpView

Top View

2-22

P·32167-Rev. C (11/15/93)

Silicanix

DG428/429

AMember olthe TBMIC Group

Functional Block Diagrams and Pin Configurations (Cont'd)
DG429

DG429

Dual-In-Line

WR

RS

Ao

A1

EN

GND

EN

GND

V-

V+

V-

VDD

Sla

Slb

Sla

Slb

S2a

S2b

S3a

S3b

*

S2b

S3a

S3b

S4a

S4b

Da

Db

::

'"

a

~

U

Z

;;

.c
~

'"

ThpView

ThpView

'ftuth Thble - DG428
8-Channel Single-Ended Multiplexer
A2

At

I Ao I IWR I I
RS

EN

'ftuth Tahle - DG429
Dilferential4-Channel Multiplexer

On Switch

Latching
X

Reset
X

I
I

X

X

X

lSi

1

Maintains previous
switch condition

X

X

X

X

0

None (latches cleared)

X

X

X

0
0
0
0
1

0
0
1
1
0

1
1
1

0
1

0
1
0
1
0
1
0
1

0
1
1
1
1
1
1
1
1

EN

RS

On Switch

-40 to 85°C
-55 to lZSoC

P-32l67-Rev_ C (11/15/93)

X

I
I

X

X

lSi

1

Maintains previous
switch condition

X

X

X

0

None (latches cleared)

1
1
1
1
1

None
1
2
3
4

'ftansparent Operation
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

Ordering Information 'Thmp Range

X

Reset

'ftansparent Operation

1

I IWR I

Ao

At

Latching

None
1
2
3
4

X
0
1
0
1

0
1
1
1
1

0
0
0
0
0

..

5

Logic "0"
Logic"!"

6
7
8

DG428

X

VAL

s

0_8V

VAH;;' 2.4 V
Don't Care

Ordering Information -

Package

Part Number

l8-Pin Plastic DIP

DG428DJ

20-PinPLCC

DG428DN

l8-Pin CerDIP

X
0
0
1
1

DG428AK
DG428AK/883

Temp Range
-40 to 85°C
-55 to IZSoC

DG429

Package

FartNumber

l8-Pin Plastic DIP

DG429DJ

20-PinPLCC

DG429DN

18-Pin CerDIP

DG429AK
DG429AK/883

2-23

Silicanix

DG428/429

AMcmbcr of the TBMIC Group

Absolute Maximum Ratings
Voltage Referenced to vv+ ................................................. 44V

Power Dissipation (Package)b
18-PinPlasticDIPC ................................. 470mW
18-PinCerDIpd .................................... 900mW
20-PinPLCCC ..................................... 800mW

GND ............................................... 25V
DigitalInputsa, Vs, Vo ............. (V-) -2 Vto (V+) +2 Vor
30 InA, whichever occurs first
Current (Any Thrminal) .............................. 30 mA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) ................. 100 mA
Storage Thmperature
(AK Suffix) ............ -65 to 150'C
(DJ, DN SuffIX) . . . . . . . .. -65 to 125'C

Notes:
a. Signals on Sx, Dx or INxexceedingV+ or V- will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate 6.3 mWrC above 75'C.
d. Derate 12 mWrC above 75'c'
e. Derate 10 mWrC above 75°C,

Specificationsa
Test Conditions
Unless Otherwise Specified

Parameter

A Sull"lX

D Sull"lX
-40 to 85°C

-55 to 125°C

V+ =15V,V- = -15V
WR = O,RS = 2,4 V
VIN = 2,4 V, 0.8

Tempb

roS(on)

Vo = ±10 V, VAL - 0.8 V
Is= -1 InA, VAH=2,4V

Room
Full

55

AroS(on)

-10V < Vs < lOV
Is= -lmA

Room

5

IS(off)

Vs = ±10V, Vo - :FlOV
VEN=OV

Room
Full

±0.03

-0.5
-50

0.5
50

-0.5
-50

0.5
50

DG428

Room
Full

±0.07

-1
-100

1
100

-1
-100

1
100

DG429

Room
Full

±0.05

-1
-50

1
50

-1
-50

1
50

DG428

Room
Full

±0.07

-1
-100

1
100

-1
-100

1
100

DG429

Room
Full

±0.05

-1
-50

1
50

-1
-50

1
50

VA=2.4V

Full

0.01

1

1

VA -15V

Full

0.01

1

1

Full

-0.01

Symbol

vr

'JYpc

Mind

I

Mart

Mind

15

-15

I

Maxd

Unit

15

V

100
125

Q

Analog Switch
Analog Signal Range"
Drain-Source On-Resistance
Greatest Change in roS(on)
Between Channelsg
Source Off Leakage Current

Drain Off
Leakage Current

Drain On
Leakage Current

IO(off)

IO(on)

-15

Full

VANALOG

Vo = ±10V
Vs = :FlOV
VEN=OV

VS=VD= ±10V
VEN= 2,4 V
VAL = 0.8 V, VAH = 2,4 V

100
125

%

nA

Digital Control
Logic Input Current
Input Voltage High

IAH

Logic Input Current
Input Voltage Low

IAL

VEN - 0V,2.4 V, VA = OV
RS=OV,WR=OV

Logic Input Capacitance

em

f-1MHz

Room

8

'nansition TIme

tTRANS

See Figure 5

Room
Full

150

Break-Before-Make Interval

!oPEN

See Figure 4

Full

30
90

-1

I1A

-1
pF

Dynamic CharacteristiCB
250
300

10

250
300
10
ns

Enable and Write
Thrn-OnTIme

!oN(EN,WR)

See Figures 6 and 7

Room
Full

Enable and Reset
Thrn-OffTIme

!oFF(EN, RS)

See Figures 6 and 8

Room
Full

55

Charge Injection

Q

VGEN - OV,RGEN - OQ
CL = 1 nF, See Figure 9

Room

1

pC

OIRR

VEN - OV,RL - 300Q,CL = 15 pF
Vs = 7VRMs,f= 100kHz

Room

-75

dB

Off Isolation

2-24

150

225

150
225

150
300

150
300

P-32167-Rev. C (11/15/93)

Siliconix

DG428/429

AMcmbcr of the TBMIC Group

Specifications a (Cont'd)
Test Conditions
Unless Otherwise Specified

Parameter

Symbol

ASufrIX
-55 to 125'C

V+=15V,V-=-15V
WR=0,RS=2.4V
VIN = 2.4 V, 0.8 yf

Tempb

Vs = OV,VEN = Ov, f= 1 MHz

'JYpc

Mind

I

Maxd

DSufrIX
-40 to 85'C

Mind

I

Maxd

Unit

Dynamic Characteristics (Cont'd)
Source Off Capacitance
Drain Off Capacitance
Drain On Capacitance

CS(off)
CO(off)

Vo = OV,VEN =OV
f=lMHz
CO(on)

Room

11

DG428

Room

40

DG429

Room

20

DG428

Room

54

DG429

Room

34

pF

MinimUm Input Timing Requirements
Write Pulse Width

tw

Ax, EN Data Set Up time

Is

Ax, EN Data Hold 'TIme

tH

Reset Pulse Width

tRS

See Figure 2
Vs = 5 V, See Figure 3

Full

100

100

Full

100

100

Full

10

10

Full

100

100

ns

Power SuplJIies
Positive Supply Current
Negative Supply Current

1+
1-

VEN = OV,VA=O,RS = 5V

Room

20

Room

-0.00
1

100

100

-5

J1A

-5

Specitications a for Single Supply
Test Conditions
Unless Otherwise Specified

Parameter

Symbol

V+=12V,V-=OV
WR = O,RS = 2.4 V
VIN = 2.4 V, 0.8 yf

ASufrlX
-55 to 125'C

Thmpb

'JYpc

D Suffix
-40 to 8S'C

Mind

Maxd

Mind

Maxd

Unit

0

12

0

12

V

150

g

Analog Switth
Analog Signal Range·
Drain-Source
On-Resistance
IDS(on} Matchg

Full

VANALOG
lDS(on)

Vo - +10V, VAL - 0.8 V
Is = -500 f1A, VAH = 2.4 V

Room

ll.1DS(on)

-10V

:::':::,'

1
0.5
0

5

25

45

65

Thmperature (CO)

2-28

~
.a

85 105 125

0

±5

±10

±15

±20

VSUPPLY - Supply Voltage (V)

P·32167-Rev. C (11/15/93)

Siliconix

DG428/429

A Membcr of the TBMIC Group

Schematic Diagram (lYpical Channel)
v+
GND
D

Level
Shift

AX

Decode!
Drive

Latches
WR

o---~~------~

v+

CLK

1
1
1
1
1
1
1--

RESET

RS o-------~~--~
v-o--------4-----------------------4--------~------~~----------~

v-

Figure 1.

Detailed Description
The internal structure of the DG428/DG429 includes a 5-V
logic interface with input protection circuitry followed by a
latch, level shifter, decoder and finally the switch
constructed with parallel n- and p-channel MOSFETs (see
Figure 1).
The input protection on the logic lines Ao, At> A2, EN and
control lines WR, RS shown in Figure 1 minimizes
susceptibility to ESD that may be encountered during
handling and operational transients.

The logic interface is a CMOS logic input with its supply
voltage from an internal +5 V reference voltage. The
output of the input inverter feeds the data input of a D type
latch. The level sensitive D latch continuously places the
Dx input signal on the Ox output when the WR input is low,
resulting in transparent latch operation. As soon as WR
returns high the latch holds the data last present on the Dn

P·32167-Rev. C (11I15{93)

input, subject to the
Requirements" table.

"Minimum

Input

Timing

Following the latches the On signals are level shifted and
decoded to provide proper drive levels for the CMOS
switches. This level shifting ensures full on/off switch
opera tion for any analog signal level between the V + and
V - supply rails.
The EN pin is used to enable the address latches during the
WR pulse. It can be hard wired to the logic supply or to V +
if one of the channels will always be used (except during a
reset) or it can be tied to address decoding circuitry for
memory mapped operation. The RS pin is used as a master
reset. All latches are cleared regardless of the state of any
other latch or control line. The WR pin is used to transfer
the state of the address control lines to their latches, except
during a reset or when EN is low (see Truth Tables).

2-29

•

Siliconix

DG428/429

AMembeT of the TEMIC Group

Timing Diagrams
3V
RS

OV

Vo ----------------------~
Switch

80%

Output

OV
Figure 2.

Figure 3.

Test Circuits
+15V

+2.4 V

V+

RS
EN

Ir <20ns
<20ns

Logic

+5V

All S and D.

"'\: tf

Input

1-

DG428
DG429
. - - , - ' Ao, A]. (A2)
GND

Db. D 1--o___-0 Vo
V-

WR

Vs
Switch
Output

Vo

OV

1\ r
I--.\ "-J

O%

tOPEN

Figure 4. Break-Before-Make

+15V
RS
EN

Ao
Al
A2
GND

- -

V+
Sl

Sz-S7
DG428 '
Ss

WR

V-

-

Logic

Vo

D

- -

Input

Switch

tr <20ns
tf <20ns

3V
50%
OV
Vs]

Output

+15V

Vo

OV

V+
Vss
SsON

Vo

Figure s. nansition Tune

2-30

P-32167-Rev. C (11/lS/93)

Siliconix

DG428/429

AMember of the TBMICGrOUP

Test Circuits (Cont'd)
+lSV

+2.4 V

-SV

Sl
S2 - S8

Vo

I
-

-

-

-

35pF

Logic
Input

tr <20ns
tf <20ns

3V
50%
OV

- +15 V

+2.4 V

Switch
Output
Vo

V+
RS
EN

Ao

-SV

Slb
DG429
Sl. - S4",D.
~b - S4b

90%
Vo

Vo

Figure 6.

Enable tONltOFF TIme

+15V

+5V

+2.4 V

.------1RS

DG428
DG429

•

3V
WR

Remaining
Switches

50%
OV
Vo

1-.__---.--0 Vo

Switch
Output
20%
OV

Figure 7.

P-32167-Rev. C (11115193)

Write 'furn-On TIme tON(WR)

2-31

Siliconix

DG428/429

AMcmber of the TBMIC Group

Test Circuits (Cont'd)
+15V
V+

3V

+5V

RS

50%

ov
-tOFF(RS)
Vo

i-"?--........O Vo

Switch
Output
OV

Figure 8.

Reset Thm-OffTIme tOFF(RS)

RS

2.4 V

+15V

....-----1
Rg

~
OFF
ON
~

V+

Ao. AI. (A2)
S

OFF
EN..:::.::J

, LlVo

VO~

Vo

T
LlVo is the measured voltage error due to
charge injection. The charge in coulombs is
Q =CLxLlVO

Figure 9. Charge Injection

Applications
Bus Interfacing
The DG428/DG429 minimize the amount of interface
hardware between a microprocessor system bus and the
analog system being controlled or measured. The internal
TTL compatible latches give these multiplexers write-only
memory, that is, they can be programmed to stay in a
particular switch state (e.g., switch 1 on) until the
microprocessor determines it is necessary to tum different
switches on or tum all switches off (see Figure 10).

2-32

The input latches become transparent when WR is held
low; therefore, these multiplexers operate by direct
command of the coded switch state on A2, At. Ao. In this
mode the DG428 is identical to the popular DG408. The
same is true of the DG429 versus the popular DG409.
During system power-up, RS would be low, maintaining all
eight switches in the off state. After RS returned high the
DG428 maintains all switches in the off state.

P-32167-Rev. C (11/15/93)

Siliconix
or
A Member

DG428/429

the TBMIC Group

Applications (Cont'd)
When the system program performs a write operation to
the address assigned to the DG428, the address decoder
provides a CS active low signal which is gated with the
WRITE (WR) control signal. At this time the data on the
DATA BUS (that will determine which switch to close) is
stabilizing. When the WR signal returns to the high state,
(positive edge) the input latches ofthe DG428 save the data
from the DATA BUS. The coded informa tion in the Ao, At.

Data Bus

Processor
System
Bus

>

A2 and EN latches is decoded and the appropriate switch
is turned on.
The EN latch allows all switches to be turned off under
program control. This becomes useful when two or more
DG428s are cascaded to build 16-line and larger
multiplexers.

-

An, Al, A2, EN

DG428

RS

WR

V-

D

Analog

Output

-15V

Figure 10. Bus Interface

P-32167-Rev. C (11/15/93)

2-33

Siliconix

DG458/459

AMember of the TBMIC Group

Fault Protected Single 8-Channel/DifTerential 4-Channel
Analog Multiplexers
Features

Benefits

Applications

-

-

-

Fault and OvelVoltage Protection
All Channels Off When Power Off
Latchup-Proof
FastSwitching-TA: 200ns
Break-Before-Make Switching
Low On-Resistance: 180 Q
Low Power Consumption: 3 mW
TIL and CMOS Compatible Inputs

Improved Ruggedness
Power Loss Protection
Prevents Adjacent Channel Crosstalk
Standard Logic Interface
Superior Accuracy
Fast Settling TIme

Data Acquisition Systems
Industrial Process Control Systems
Avionics Test Equipment
High-ReI Control Systems
Telemetry

Description
The DG458 and DG459 are 8-channel single-ended and
4-channel differential analog multiplexers, respectively,
incorporating fault protection. A series n-p-n MOSFET
structure provides device and signal-source protection in
the event of power loss or overvoltages. Under fault
conditions the multiplexer input (or output) appears as an
open circuit and only a few nanoamperes ofleakage current
will flow. This protects not only the multiplexer and the
circuitry following it, but also protects the sensors or signal
sources which drive the multiplexer.

The DG458 and DG459 can withstand continuous
overvoltage inputs up to ±35V. AlldigitalinputshaveTfL
compatible logic thresholds. Break-before-make operation
prevents channel-to-channel interference.
The DG458 and DG459 are improved pin-compatible
replacements for HI-508N509A and MAX358/359
multiplexers.

Functional Block Diagrams and Pin Configurations

Dual·In·Line

DG458

A1

Au

A1

EN

A2

EN

GND

v-

GND

v-

v+

Sl

v+

Sl.

Slb

~

Ss

~

S2b

S3

S6

S3.

~b

S4

S7

S4.

S4b

D

S8

D.

Db

Au

ThpView

2-34

Dual·In·Line

DG459

ThpView

P·32167-Rev. C (11/15/93)

Silicanix

DG458/459

AMember o[thc TBMtc Group

'fruth Tables and Ordering Information
'Iruth Table - DG4S8

'Iruth Table - DG4S9

Az

Al

Ao

EN

On Switch

Al

Ao

EN

OnSwit~h

X

X

X

0

None

X

X

0

None

0

0

0

1

1

0

0

1

1

0

0

1

1

2

0

1

1

2

0

1

0

1

3

1

0

1

3

0

1

1

1

4

1

1

1

4

1

0

0

1

5

1

0

1

1

6

1

1

0

1

7

1

1

1

1

8

Logic "0"
Logic "1"
X

VAL s 0.8V
VAH '" 2.4V
Don't Care

Ordering Information
Temp

Range

Package

Part Number
DG458DJ

-40 to 85'C

16-Pin Plastic DIP

DG459DJ
DG458AK/883

16-Pin CerDIP
-55 to 12S'C

DG459AK/883
DG458AZ/883

LCC-20

DG459AZ/883

'Block DIagram and Pm ConfiguratIOn not shown.

III

Absolute Maximum Ratings
V+toV- ........................................... 44V
V+ toGND .......................................... 22V
V-toGND ........................................ -2SV
VEN, VA Digital Input ................ (V-) -4 Vto(V+) +4 V
Vs, Analog Input Overvoltage
with Power On .................... (V-) -20Vto(V+) +20V
Vs, Analog Input Overvoltage
with Power Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -35 V to + 35 V
Continuous Current, S or D ........................... 20 rnA
Peak Current, S or D
(Pulsed all ms, 10% Duty Cycle Max) .................. 40 rnA
P-32167-Rev. C (11/15/93)

Storage Thmperature

(AKSuffix) ............ -65 to 150'C
(DJ Suffix) .. .. .. .. .. ... -65 to 12S'C
Power Dissipation (Package)'
16-PinPlasticDIpb ................................. 600mW
16-Pin CerDIPC ................................... 1000 mW
LCC-2od ......................................... 1000mW
Notes:
a. All leads soldered or welded to PC board.
b. Derate 6.3 mW/,C above 25'C,
c. Derate 12 mW/,C above 75'C.
d. Derate 10 mWI'C above 75'C.

2-35

Siliconix

DG458/459

AMcmber ofthc'I'BMIC Group

Specificationsa
A SuffIX

Test Conditions
Unless Otherwise Specllied
Parameter

-55 to 125·C

D SuffIX
-40 to BS·C

V+ = 15V,V- = -lSV
VAL = 0.8 V, VAH = 2.4

Tempb

10

V

VD = ± 9.5 V, Is = -400 IlA

Room
Full

0.45

1.2
1.5

1.5
loB

IcQ

Vo - ±Sv, IS - -400 IlA

Room

IBO

400

400

Q

dIDS(on)

Vo = 0 V, Is = -4oollA

Room

6

IS(off)

VEN-OV
Vs= ±1OV,Vo= 'l'10V

Room
Full

0.03

0.5
-SO

0.5
50

-1
-20

1
20

DG4SB

Room
Full

0.1

-1
-200

1
200

-1
-SO

1
SO

DG4S9

Room
Full

0.1

-1
-100

1
100

-2
-25

2
25

-SO

SO

-20

20

Symbol

vr

lYPc

Mind JMaxd Mind JMaxd

Unit

Analog Switch
Analog Signal Rangell
Drain-Source On-Resistance
IDS(on) Matching Between
Channelsh
Source Off Leakage Current

lDS(on)

Drain Off
Leakage Current

IO(off)

Differential Off Drain
Leakage Current

IOIFF

Drain On
Leakage Current

-10

Full

VANALOO

VEN=OV
VO= ±10V
Vs = 'l'10V

10

-10

%

nA

IO(on)

Room

DG459 Only
DG4SB

Room
Full

0.1

-2
-200

2
200

-5
-SO

5
SO

DG4S9

Room
Full

0.05

-2
-100

2
100

-25

-s

5
25

Vs= ±33V,VD=OV
See Figure 1

Room

0.02

Vs- ±25V,Vo- ±10V,
See Figure 1

Room

0.005

-5

5

-10

10

Vs= ±25V,Vsups=OV
Vo = Ao, Al,A2,EN = OV

Room

0.001

-2

2

-5

5

Vs=VD=±10V

Fault
Output Leakage Current
(with Overvoltage)

IO(off)

Input Leakage Current
(with Overvoltage)
Input Leakage Current
(with Power Supplies Off)

IS(off)

nA

IlA

lligital Control

O.B

Input Low Threshold

VAL

Full

Input Low Threshold

VAL

Full

2.4

0.8

Logic Input Control

IA

VA - 2.4 VorO.BV

Full

-1

tA

See Figure 2

Room

200

toPEN

See Figure 3

Room

45

Room
Full

140

250
500

250
500

Room
Full

SO

250
500

250
500

2.4
1

-1

1

V

IlA

Ilynamic Characteristics
11'ansition'lime
Break-Before-Make TIlDe
Enable 11Irn-On 'lime

toN(EN)

See Figure 4
Enable Thrn-Off'lime

toFF(EN)

500
10

500
10
ns

1b 0.1 %

Room

0.5

1b 0.01%

Room

1.5

""

OIRR

VEN = OV,RL = 1 IcQ,CL = 15 pF
Vs = 3VRMS,f= 100kHz

Room

90

dB

Logic Input Capacitance

em

f-1MHz

Room

5

Source Off Capacitance

CS(off)

Settling 'lime
Off Isolation

ts

Drain Off Capacitance

CO(ol!)

Drain On Capacitance

CO(on)

2-36

Room

5

DG4SB

Room

15

DG4S9

Room

10

DG4SB

Room

40

DG459

Room

35

pF

P-32167-Rev. C (11115/93)

Siliconix

DG458/459

AMember oftbc TEMIC Group

Specifications a
Test Conditions
Unless Otherwise Specified
Parameter

V+ = 15 v, V- = -15V
VAL = 0.8 V, VAH = 2.4 yf

Symbol

ASutrlX
-55 to 125°C
Tempb

'JYpc

Room
Full

0.05

Room
Full

-0.01

Mind

I

D Suffix
-40 to 85°C

Max d

Mind

I

Maxd

Unit

Power Supplies
Positive Supply Current

1+

Negative Supply Current

1-

VEN = 5.0 or 0 V, VA = OV
Power Supply Range for
Continuous Operation

Room

0.1
0.2
-0.1
-0.2
±4.5

0.1
0.2
rnA

-0.1
-0.2
±18

±4.5

±18

V

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25°C, Full = as determined by the operating temperature suffIX.
c. 'IYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
g. When the analog signal exceeds the + 13.5 V or -12 V, f])S(on) starts to rise until only leakage currents flow.
rDS(on) MAX - rDS(on) MIN)
h. arDS(on) = (
rDS(on) AVE
x 100%

TYpical Characteristics

,

Off-Channel Leakage Currents vs. Input Voltage
1 rnA
V~ = 15v '
",......
100 flI\
V- = -15V
10 flI\

Input Leakage vs. Input Voltage
1 rnA

~+~V_I=O~

100 flI\

,,'

"t::
8

i
'"

10 flI\

'"

~

1fl1\
100nA
10nA

I

-

_

InA
100pA
10pA

"

U

I

:.I

I

I-- Operating Range -

~

',,-

-

I

1pA
-50 -40 -30 -20 -10 0

I

r-10 20

VS - Source Voltage (V)

P-32167-Rev. C (11/15/93)

30

§
il

100nA

~

InA

'"I

I

-

40 50

1fl1\

10nA

~ I-- Operating Range -

--l

I

I
100pA
10pA

""
I

•

I

I

'-

1pA
-50 -40 -30 -20 -10 0

-

L

~

10 20

1

30

40 50

VS - Source Voltage (V)

'2-37

Siliconix

DG458/459

AMembcrofthe'I'BMlcGroUP

'iYpical Characteristics (Cont'd)
Output Leakage vs. Off-Channel Overvoltage
1nA

~+ llSt

~

I

j

V- = -15V
~

~

100pA

1pA

~

1/

h

I

1600 !---!l--I--Il-l-+-........c-f'+-f+--I+--I

/'

.~ 10pA

o

,

l"J>s(on) vs. Input Voltage
2000 .---,..-"'-::-T"-a-,.....":"'--.rr-::"""---,.,--,

V

J
0.1pA
-50 -40 -30 -20 -10 0

10

20

30 40

o

50

Vs - Source Voltage (V)

1"»S(on) vs. VD and Temperature

700

~

c:

600

J

t""

25

V+ = 15V
V- = -15V

20

<'
6

500

"~

300

.~

200

~

400

0

0
ell

Q
I

.~~

1\'\

1250~

I-

O°C

~+-'\

-~.~'('"/ ~

.....

~

i

...l

~

"~

100

J

85°C

25°C

'/

-10-7.5 -5.0 -2.5

0

2.5

I

I

5.0

7.5

V~ =15V
V- = -15V

20

10

~

s
..""

0

~ -10
-15

l.."..ooo'

-

"'"

~

I

--

ID(off)

""""'"

IO(on)

V'

-20
-25
10

-15 -12-9 -6

-3

0

3

6

9

12 15

Vo or VS - Drain or Source Voltage (V)

Leakage Currents vs. Temperature

Switching Times (tTRANS. toN. tOFF)
vs. ±VSUPPUES

240
10 on)

200

h

~~

~

:Y

ID(off)

~

~~

25

I

Vo - Drain Voltage (V)

V+ 15V
V- = 15V
Vs, VD = ±10V -

0.10

15

Is~

15

~~
.£' -s I
",-,

10

...."'

10

leakage Current vs. Vs. VD

I

-55°C -

o

5

Vs - Source Voltage (V)

;::::

g
"e

p

IS(off)

160

120
VJN=2V
80
toFF(EN)

0.01 ~

-55 -35 -15

40
5

25

45

65

Thmperature (oq

2-38

85

105 125

±5

±10

±15

±20

V+, V- Positive and Negative Supplies (V)

P-32167-Rev. C (11/15/93)

Siliconix

DG458/459

AMcmbcr afthc TBMICGroUP

lYpical Characteristics (Cont'd)
Switching Times vs. temperature
280 r--r-r-......:r-.----,--":--,--.,---,
240

-10

200

U

~

160

.~

F

120

"e

QINJvs. Vs

0
V+ = 1JV
_ V-=-15V

.!:: -20

=

:s

-30

k

-40

80
40

5

2S

45

65

85

CL

-60
-10

105 125

-5

-100
-90

iii'

:!!..

IIv+ ~i5V II
V- = -15V
RL= lkr.!

~ '\~

2.0

J~ 1-..- ~
~

~

-70 I - -60

"

Crosstalk

' \ Off Isolation
,~

10k

1.0

i'

-50
lOOk

~

± VSUPPIJES

-

--

t--

-

~~

0.5

f'.r-.
1M

10

2.5

~

-80

5

Logic Input Switching Threshold vs.
3.0

Off Isolation and XTALK vs. Frequency

i'o..

o

v s - Source Voltage (V)

Thmperature ('C)
-110

10nF -

-,

~~~-~~-~~-~~~

-55 -35 -15

---./

.--

CL= 1nF

.............

-50

tOFF(EN)

o

.....

o
10M

2.5

f - Frequency (Hz)

5
7.5
10
12.5 15
17.5 20
V+. V- Positive and Negative Supplies (V)

Schematic Diagram (lYPical Channel)
V+
GND

III

D

AX o-~~-----~

EN

Level
Shift

Decode!
Drive

0---+----1

1
1
1
1
1
1
1--

vFigure 1.

P-32167-Rev. C (11/15/93)

2-39

Siliconix

DG458/459

AMember of the TBMIC Group

Test Circuits
+15V

V+

s"

±Vs

V-

I

VD

-15V

Figure 2.

Analog Input Overvoltage

+15V

+2.4 V

EN

v+

3V--

Logic
Input

Slb

50%

•

A2

OV

DG458 SSb

Vo

Switch
Output

Vo

+5V
90%

-5V
. . tA

Figure 3. rransition Tune

+15 V
V+

EN

+2.4 V

Sl> Ss

Logic
Input

+5V

3V
OV

~-S7

~/

L

DG458
DJ>,D
V-

Vo

Switch
Output

50%+

Vo
ov

-

-

Figure 4.

2-40

-r

----tJ~

toPEN

Break-Before-Make Tune

P·32167-Rev. C (11/15/93)

Siliconix

DG458/459

A Member of the 'Il!MIC Group

Test Circuits (Cont'd)
+15 V

Enable 3V
Input

50%

OV
Vs
Switch
Output

Va

Va

50'-1

OV
tON(BN)-'

- Figure S. Enable Delay

Detailed Description
The Sillconix DG458 and DG459 multiplexers are fully
fault- and overvoltage-protected for continuous input
voltages up to ± 35 V whether or not voltage is applied to
the power supply pins (V+, V-). These multiplexers are
built on a high-voltage junction-isolated silicon-gate
CMOS process. Two n-channel and one p-channel
MOSFEI's are connected in series to form each channel
(Figure 17).
Within the normal analog signal range ( ± 10 V), the rDS(on)
variation as a function of analog signal voltage is
comparable to that of the classic parallel N-MOS and
P-MOS switches.
When the analog signal approaches or exceeds either

supply rail, even for an on-channel, one of the three series
MOSFETh gets cut-off, providing inherent protection
against overvoltages even if the multiplexer power supply
voltages are lost. This protection is good up to the
breakdown voltage of the respective series MOSFETs.
Under fault conditions only sub microamp leakage currents
can flow in or out ofthe multiplexer. This not only provides
protection for the multiplexer and succeeding circuitry, but
it allows normal, undisturbed operation of all other
channels. Additionally, in case of power loss to the
multiplexer, the loading caused on the transducers and
signal sources is insignificant, therefore redundant
multiplexers can be used on critical applications such as
telemetry and avionics.

-15V

~
:P~
-~v
f
overv~ft~~ 0SJ.1I~~ilr;- I1F ~;!ltage
1 n
/'F/F F \
01

S

n-Channel
MOSFET
i. On

G

-.:-

Overvoltage

G

-.:-

n-Channel
MOSFET
i. Off

G

-.:-

p-Channel
MOSFET
is Off

-15V

tn fr
02

+15 V

03

+35 V

Overvoltage

\
n-Channel
MOSFET
i. Off

p-Channel
MOSFET
i.Off

(.) Overvoltage with Multiplexer Power Olr

Figure 6.
P-32167-Rev. C (11/15/93)

n-Channel / '
MOSFET
i. On

+15V

(b) Overvoltage with Multiplexer Power On

Overvoltage Protection

2-41

..

Silicanix

DG485

AMem.'ber of the 'lBMIC Group

Octal Analog Switch Array
Features

Benefits

Applications

• Low On-Resistance: 55 g
• Rail-to-Rail Analog Input Range

- Low Signal Distortion
- Devices Can Be Chained for System
Expansion
- Reduced Board Space
- Reduced Switch Errors
- Reduced Power Supply
Requirements
- Simple Interfacing

- Audio Switching and Routing
- Audio 'Thleconferencing
_ Data Acquisition and Industrial
Process Control
- Battery Powered Remote Systems
- Automotive, Avionics and ATE
Systems

-

Serial Interface
Low-Power-PD: 35 nW
TIL and CMOS Compatible
Any Combination of 8 SPST to the
Output

- High Speed-toN: 170 ns

- Summing Amplifiers

Description
The DG485 is an analog switch array consisting of eight
SPST switches connected to a common output. This device
may be used as an 8-channel multiplexer in serial control
applications. Any, all or none of the eight switches may be
closed at any given time. Combining low on-resistance
(rnS(on) 55 g, typ.) and fast switching (toN: 170 ns, typ.),
the DG485 is ideally suited for data acquisition, process
control, communication, and avionic applications.

(via LD) at any point into an octal latch which in turn
controls all switches. RS resets the shift register, forcing all
latch inputs to a low condition (all switches off). 'The serial
input (DIN) and serial output (DOUT) allow daisy chaining
of multiple arrays for large systems.

Contro~ data is input serially into the shift register with each
clock pulse. The shift register contents can be latched-in

Each channel conducts equallywell in either direction when
on and blocks up to rail-to-rail voltages when off.

Built on the Siliconix high voltage silicon gate process the
DG485 has a wide 44-V power supply voltage rating. An
epitaxial layer prevents latchup.

Functional Block Diagrams and Pin Configurations
Dual-In-line
LD

RS

VL

GND

S4

D

D

S]

Ss

Ss

S:l

Sjj

%

S7

Sl

S7

V+

Sa

DIN

V-

CLK

Dour

Sa

8

~ ~ g .:.
o
.~
lbpView

lbpView

2-42

P-32167-Rev. C (11/15/93)

Siliconix

DG485

AMember of the TBMIC Group

1i"uth Tables and Ordering Information

RS
1
1

eLK·

f
f

DIN

D1

Dn

0

0

D n_1

1

1

Dn_1

LD*

f
f

1

~

X

D1

Dn (No Change)

0

X

X

0

0

~

Dn

Ln

SWn

0

0

OFF

1

1

ON

Dn

l.".

(No Change)

*LD Input Level TI-iggered

'CLK Input Edge TI-Iggered

Ordering Information
Thmp Range
-40 to 85'C
-55 to 125'C

Package

Part Number

18-Pin Plastic DIP

DG48501

20-PinPLCC

DG485DN

LCC-20

DG485AZ/883

Absolute Maximum Ratings
Voltages Referenced to VV+ ____ ............................................. 44V
GND ................. _............................. 25V
Digital Inputs'Vs, VD ............... (V-) -2 Vto (V+) + 2 V
or 30 rnA, whichever occurs first
Continuous Current (Any Thrminal) .. _....... _. . . . . . . .. 30 rnA
Current, S or D (Pulsed 1 ms, 10% duty cycle) ........... 100 rnA
Storage Thmperature
(AZ SuffIX) .... _..... '.. -65 to 150'C
(01, DN SuffIX) . . . . . . • .. -65 to 125'C

P-32167-Rev. C (11/15/93)

Power Dissipation (Package)b
18-Pin Plastic DIP" ................................ _ 470 mW
2O-PinPLCC,LCcd ................................ 800mW
Notes:
a. Signals on Sx, Dx or INx exceeding V + or V-will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate 6 mWrC above 75'C.
d. Derate 10 mWrC above 75'C.

2-43

..

Siliconix

DG485

AMcmber of the TBMIC Group

Specificationsa
Thst Conditions
Unless Otherwise Specified
Parameter

Symbol

A Suffix
-55 to 125"C

V+ = 15 V, V- = -15V
VL = 5 V, VIN = 2.4 V, 0.8 yf

Thmpb

V+ = 13.5 V, V- = -13.5 V
Is = -smA, VD = ±10V

Room
Full

55

Room

6

Room
Full

0.01

Room
Full

0.1

V± = ±16.5VVS=VD= ±15.5V
One Switch At A TIme

Room
Full

0.11

V± = ±16.5V,Vs=VD= ±15.5V
All Switches On

Room

0.2

'JYpc

Mind

I

D SuffIX
-40 to 85"C

Maxd

Mind

15

-15

I

Maxd

Unit

15

V

85
125

Q

Analog Switcll
Analog Signal Range"
Drain-Source On-Resistance
Delta Drain-Source
On-Resistancel!

l'DS(on)
dI'DS(on)
lS(off)

Switch Off Leakage Current

V+ = 16.5 V, V- = -16.5V
VD= 'f15.5V, Vs= ±15.5V

ID(off)

Channel On Leakage Current

ID(on)

-15

Full

VANALOG

85
125

%

-20

-1

1
20

-1
-10

1
10

-10
-200

10
200

-10
-SO

10
SO

-20
-500

20
500

-20
-SO

20
SO

nA

Input
Input Current with VIN Low

IlL

VIN Under lest = 0.8 V
All Other = 2.4 V

Room
Full

-0.0001

-1
-5

1
5

-1
-5

1
5

Input CUrrent with VIN High

1m

VIN Under lest = 2.4 V
All Other = 0.8 V

Room
Full

0.0001

-1
-5

1
5

-1
-5

1
5

Output Voltage
with VIN Low - DOUT

VOL

10 = 1.6 mA, V+ = 4.5V

Full

0.25

Output Voltage
with VIN High - DOUT

VOH

10 = -801'1\ V+ = 16.5 V
VL=4.75V

Full

4.4

Thrn-On Tune

tON

Vs= ±10V
See Figures 1, 8

Room
Full

170

200
275

200
275

Thrn-Off TIme

tOFF

Vs= ±10V
See Figures 2, 3, 8

Room
Full

150

200
275

200
276

Data Setup TIme

tDs

Data Hold TIme

J1A

SIIl'ial Data Output
0.4

0.4
V

2.7

2.7

Dynamic Charal1teristlcs

Room
Full

40
60

40
60

tDH

Room
Full

40
60

40
60

LOAD Hold TIme

tLH

Room
Full

100
150

100
150

RESET Hold Tune

tRH

Room
Full

100
150

100
150

Room
Full

40
60

40
60

See Figures 4, 8

ImSB'i't to CLOCK t
Charge Injection
Off Isolation"

2-44

Delay

See Figures 5, 8

tDRc

ns

Q

Vs = OV,CL = 1,000pF
Any One Channel

Room

17

pC

OIRR

RL= 50Q,CL= 5pF,f -lMHz
See Figure 9

Room

-75

dB

P-32167-Rev. C (11/15/93)

Siliconix

DG485

AMember of the TEMIC Group

Specificationsa
A SuffIX
-55 to 125'C

D SuffIX
-40toS5'C

Mind I Maxd

Mind IMaxd

Test Conditions
Unless Otherwise Specified
Parameter

V+ = 15V;V- = -15V
VL = 5 V; VIN = 2.4 V; O.S yf

Symbol

Tempb

'Jypc

Unit

Dynamic Characteristics (Cont'd)
Maximum Clock Frequency

feLK

Room

10

Source Off Capacitancee

Cs(or!)

Room

7

Drain Ofr Capacitancee

CD(ofl)

Room

43

Vgen = OV; Rgen = 0 n, f = 1 MHz
One Channel On

Room

53

On-State Capacitancee

CD(on)

Vgen = OV;R~en = On,f= 1 MHz
All hannels On

Room

122

Room
Full

0.001

Room
Full

-0.001

Room
Full

0.001

Room
Full

-0.001

Vgen = OV; Rgen = On,f= 1 MHz

MHz

pF

Powel! Supplies
Positive Supply Current

1+

Negative Supply Current

1-

Logic Supply Current

IL

Ground Current

V+ = 16.5 V; V- = -16.5V
VIN = OorSV; VL = 5.25 V
Dour Open

IGND

3
10

3
10

-3
-10

-3
-10
3
10

t!A

3
10

-3
-10

-3
-10

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature sufftx.
c. 1Jpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
rDS(o.) MAX - rDS(o.) MIN)
g. For each VD : ArDS(o.) = (
rDS(o.) AVE

lYpical Characteristics
Supply Currents vs. Temperature

1t!Ar-~~~r--r-'--~~--r-~

100nA

V+ = 15V
V- = -lSV
VL=5V

CI

~

j

~

100 pA 1--+--+--:II5I!~-\---If+-I--+--+--I
10 pA

f--h~'F-

I

0.1 pA '---'-_"----'-_-'----''----'-_.J---'-_-'
-50 -30 -10 10 30 50 70 90 110 130
'Thmperature ('C)

P-32167-Rev. C (11/15/93)

120

1--+--1--+--::-11--+-+--1---1

100

1--+--I--+f---IF--1

so 1--+--+-:31'11:---\--+--+--+--1

! 60~~~
Q

1pA~~~~~1--t--r-i--t--l

140

!

40FP

20 1---,--,-

E!
-20 -15 -10

-5

0

5

10

15

20

VD - Drain Voltage (V)

2-45

•

Siliconix

DG485

A:Membcr of tho TBMIC Group

'fYpicaJ Characteristics (Cont'd)
1'))s(on) vs. Vn and Unipolar Power Supply Voltage
400

~

CI

J-

~

.~

300

~

250

1\

200

.~

~

150

Q

100

J

~
~

I 1\.v+=jV

c5

§

CI

-

=Iov I
VL=5V
I = -5mA

350

~ .......

8V

~

' ...... wv

I

12V

15V
-"

50

o

1

o

2

4

6

8

wnw

20

.;

30

M U

g
1>;'

e

1'

60

r5l
I

~

70

40

=

W

-----

90
80

50

Q

1'))s(on) vs. Vn and Temperature

100

=
~

0

I

II

~

<.5

20

1'1

0

+

....'"
....1'1
....'"

...... ......

1_
-55°C

I

o

~l

-w

o

-5

V+ =15V
l00nA _ V- = -15V
VL=5V
10nA _ V orvr= -14V

....'"

.E

-20

~

l00pA

~

-

IDlon)

IpA

"

~~/ ~

10pA
-40

L-_....I-_-'-_ _L-_-'-_-'-_--'

o

-5

5

10

O.OlpA
-50 -30 -10 10

15

30

r--.""

-100

OIRR

~
1.0 ,.,;;z......cl-+---+-..;;::;-......~~~--..c:=_l
0.5 I_-+--+-+--F=-.~--_..I::==-I_-+-_l

9

W n

n

W

V+, V-Positive and Negative Supplies (V)

70

~

.....
.....

-80

90

no

DO

-40 -20

~f\I

1'""

-60

o
D

50

.

-120

2.5

8

r-

RF Characteristics

-140

567

~~

V

Thmperature (og

VD or Vs - Drain or Source Voltage (V)

o

~ """

~(O"

::;;;;0'"

O.lpA
-10

15

Channel On/Off Leakage Currents
vs. Temperature

1J.tA

V+ =15V
V- = -15V
VL=5V

-15

10

5

VD - Drain Voltage (V)

-60

2-46

....J..o""'"
25°C-

"""-

InA

-80

,.,.."",..

v+ =15V
20 - V- = -15V
VL=5V
10
- Is= -5mA

-15

Channel On/Off Leakage Currents
vs. Analog Voltage

40

lrC-

~

-............ -.

VD - Drain Voltage (V)

60

..........

V+ =15V
V-=-15V
VL=5V .

-liiIT~rTm
lk

10k

lOOk

1M

10M

f - Frequency (Hz)

P-32167-Rev. C (11/15/93)

Siliconix

DG485

AMembcr ofthe 'n!MlC G!'OUp

lYPicaJ Characteristics (Cont'd)
Supply Currents vs. Switching Frequency
lOmA
lmA

t-

V+ ='lSV
V- = -15V
VL= 5V
Ji=3V

j

lool1A

.1

1011A

lIlA
loonA

~

~io"
~

V+

1..-" ....
In

I.;"
~

IL

140

"

~ 120

A

~

r:f

./
CD(on

100

(All Channels On) -

J

80

(Channell On Only)

40
10k

lOOk

-15

1M

f - Frequency (Hz)

V+ I=1SV I
60 f- V- = -15V
VL=5V
CD(ofl)

_.--'

45

/
o

30

-

20

Cs(yff)

o
-10

o

-5

5

15

10

10

/
/

/~

2S

/

15

-15

5

V+ I=15V I
V- = -15V
VL=5V
CL=lnF

35

~

10

o

-5

Charge Injection vs. Analog Voltage

55

J

~ '-

-10

VANALOG - Analog Voltage (V)

Source/Drain all' Capacitance
vs. Analog Voltage

70

/

CD~on)

60

1k

..

~"

r

r:l

i""""
100

40

I

VL=5V

10nA

50

~15V

-v- = -15V

160

i"'"

,1.;""" ,
,

r- 11

Source/Drain On Capacitance
vs. Analog Voltage

180

-

5

-5

15

"""'--' /

.-15

VANALOG - Analog Voltage (V)

/

-10

~

~

-5

o

5

10

15

Vs - Source Voltage (V)

Timing Diagrams
LD

OV
Vs---

VD

OV

..

3V

3V
LD

OV

VD

OV

Repeat for All Channels
tON

tOFF

Figure 1. toN from LD

Figure 2. toFF from LD

3V
5O%"'::::.K
RS

ov
Vs

VD

OV
toFF

Figure 3. tOFFfromRS
P-32167-Rev. C (11/15/93)

2-47

Silicanix

DG485

AMember of tho TBMIC Group

Timing Diagrams (Cont'd)

CLOCK

DATA____________________________J~__~------'I'--------------------------

Figure 4.

Data Setup and Hold Tune

LOAD

tRH

,

tDRC

Figure 5. Timing Relationships

RS

~.-----------------~ur------------------------------------

DIN
CLK
LD
Sl
~
~

----~------~----~~~--------____
S-------L-______
______
~

S4
Ss

________

-r----~~

______

~~~

____

S6
S]

Sg

________________

~rI~

________________

~~

Dour
Sl - Sg and Dour are expected output with the drain connected high. The sources require pull-down of 1 kn

Figure 6.

2-48

P-32167-Rev. C (11/15/93)

Siliconix

DG485

AMembcr of the TBMIC Group

Schematic Diagram (lYpical Channel)
V+ O-----------r_----~--------~----~r_----_,
..----------......0

Sl

~--~--~--+--o

D

-------;
DIN

o--t-------\

Level

Octal
Latch

Dn

Shift!

Drive

Shift

Register
CLK

o--t-------\

D8

CLK

LD

Dam

LD

o--t------~ b---------~

o-~~----~

~~

__________- J

-L..------O GND
V-

o-~------------------------------~

Figure 7.

Test Circuits
+15V

+5V

Vs O-----t---I

•

Dt---~--....,

D
S7 DG485

50g

Sa

.------------i

....------1

CLK

IIII

LD

- II

I
I

I
,""",S8'-1II---<:I"O"""...J

50gi

L.._ _ _......

-15V

Figure 8.

Switching Tune Test Circuit

P-32167-Rev. C (11/15/93)

Figure 9.

Adjacent Input Crosstalk

2-49

Silicanix

DG485

AMcmber orthe TBMtc Group

Test Circuits

VO
DG485

-

50Q

S2

50Q
~

50Q

i

I.II

~

I

I
I
........&-1

SgIf

I

Figure 10. Off Isolation

Applications

C~
LD

{

j
L

I

\
tLOGIC

\'----'/

tLOGIC(MIN): 80nsat25·C
150nsatl25·C

X~-...\,----,/

..J.::
I

r-cjl-\

<1>= for CLK and LD inputs of the same frequency.
The recommended phase delay ofLD from CLKis
Vz tLOGIC to tLOGIC:

\,--'-

tLOGIC

V+ = 15V
V- = -15V
GND=OV

....I
I
Figure 11.

DG485

VREF

DG48S
CLK

Figure 12. Multi-Function Circuit Provides Input
Selection, Gain Ranging and Filtering with

Figure.13. Serial DAC Circuit

OneDG485

2-50

P-32167-Rev. C (11115/93)

Siliconix

DG485

AMember ofthe TBMIC Group

Applications (Cont'd)
Rp

R

>--+'--oVOUI'

DG485
DG485

Figure 14. Summing Node Mixer

Figure 15. Multiplexing, Sampling Application

DG485

I

Switch Array

I

I

OcmlLatch

8085

SODI----------------------~--D~rn~1
I
ALEI---i

IDamB~

tID_O_UI''---t-_ _O ThNext

SIR
LD

CLK

D

I

Switch
Array

RS

8212

1(8)1
1-(~8)--------'

WR

'--:-Ad~d:-res-s~B:-U-S")

•

Decoder
8205

1

1--_ _ _ _ _ _ _ _--1

ruSI---------------------------~
Figure 16. Direct Serial Interface (8085)

P·32167-Rev. C (11/15/93)

2-51

Siliconix

DG506N507A

AMember of the TBMlC Group

Single 16-Channel/Differential 8-Channel CMOS
Analog Multiplexers
Features
•
•
•
•
•
•

Low On-Resistance: 240 g
TTL and CMOS Logic Compatible
Low Power: 30mW
Break-Before-Make Switching
44-V Power Supply Rating
Transition Time: 600 ns

Benefits

Applications

•
•
•
•

•
•
•
•
•

Easily Interfaced
Low Power Consumption
Low System Crosstalk
Wide Analog Signal Range

Communication Systems
ATE
Data Acquisition Systems
Audio Signal Routing and Multiplexing
Medical Instrumentation

Description
The DG506A, a 16-channel single-ended analog vultag,es up to the power supply rails, normally 30 V
multiplexer, is designed to connect one of sixteen inputs to peak-ta-peak. An enable (EN) function allows for device
a common output as determined by a 4-bit binary address selection when several multiplexers are used. All control
(Ao, At> A2, A3)' The DG507A, a differentia18-channel inputs, address (Ax) and enable (EN) are TTL or CMOS
analog multiplexer, is designed to connect one of eight compatible over the full specified operating temperature
differential inputs to a common differential outputs as range.
determined by its 3-bit binary address (All, Ai> Ai) logic.
Break-before-make switching action protects against The DG506N507A are fabricated in the SiliconixPLUS-40
process, which includes improved ESD protection for
momentary shorting of the input signals.
ruggedness. An epitaxial layer prevents latch up.
A channel in the on state conducts current equally well in
both directions. In the off state each channel blocks

For widebandlvideo
recommended.

multiplexing,

the

DG536

is

Functional Block Diagrams and Pin Configurations
DGS06A

Dual-In-Line

DGS07A

v+

D

NC

v-

NC

Dual-In-Line

v+

Da

Db

v-

NC

SSa

SSb

EN

GND

Ao

NC

GND
NC

AZ

ThpView

2-52

EN

NC

AZ

ThpView
P-32167-Rev. B (11!15!93)

Siliconix

DG506A!507A

AMember of the TBMlC Group

Functional Block Diagrams and Pin Configurations
'fruth Table -

DG506A

'fruth Table -

A3

A2

AJ

Ao

EN

OnSwitdt

Al

Al

X

X
0

X

X

0
0

0
1

0
1

X
0
0

X
0

1

None
1
2

1
1
0

0
1
0

1
1

3
4

0
0

0
1

1
0

1
1
1

5
6
7

1
1
1

1
1
0
0

1

0
0
0
0
0
0
0

0
0
0
1
1
1

0

Ao

On Switch

X
0
1

0
1

None

0
1
0

1
1

1

1
1
1

1

1

1

0

1

1

1

1

8

0
0

0
1

1

1

0
0

9
10

Logic "0"
Logic"!"

1

0

1

0

1

1
1
1
1

1
1

0
0
1

0
1
0
1
0
1

X

1

1
1

1

Ordering Information Temp Range

1

11

1

12

1
1
1
1

13
14
15
16

DG506A

Package
28-Pin Plastic DIP

ParlNumber
DG506ACJ

1
2

1

1
0

1

1

DG507A
EN

3
4
5
6
7
8

VAL :S O.8V
VAH"" 2.4 V
Don't Care

Ordering Information -

DG507 A

lllmp Range

Package

Ot070'C

28-Pin Plastic DIP

ParlNumber
DG507ACJ

Ot070'C
28-Pin eerDlP

-25 to 85'C
-40 to 85'C

28-PinPLCC
28-Pin eerDlP

-55 to 125'C

28-Pin Sidebraze
LCC20·

DG506ACK
DG506ABK
DG506ADN
DG506AAK

28-Pin eerDlP
-55 to 125'C

28-Pin Sidebraze
28-PinLCC

DG507AAK
DG507AAK/883
JM38510/19003BXC
DG507AAZ!883

DG506AAK/883
JM38510/19001BXC
DG506AAZ!883

·Block Diagram and Pin Configuration not shown.

..

Absolute Maximum Ratings
Voltage Referenced to VV+ ................................................. 44V
GND ............................................... 25V
Digitaiinputs', Vs, Vo ............. (V-) -2Vto (V+) +2 Vor
20 rnA, whichever occurs first
Current (Any Thrmina!, Except S or D) .................. 30 rnA
Continuous Current, S or D ........................... 20 rnA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) .................. 40 rnA
Storage Thmperature

(eerDIP) ........•... " -65 to 150'C
(Plastic DIP) ........... -65 to 125'C

P-32167-Rev. B (11/15193)

Power Dissipation (Package)b
28-PinPlasticDIPC ................................. 625mW
28-Pin eerDlP and Sidebraze ....•. , ..... , .........•. 1200 mW
28-PinPLCC" ....•.•............................. 1200mW
LCC20,28d ••••.•.••..••.•..•••••••.•..•.••••••.. 1000mW
Notes:
a. Signals on Sx, DX or INx exceeding V+ or V- will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate 8.3 mWI'C above 75'C.
d. Derate 14 mWI'C above 75'C.

2-53

Silicanix

DG506N507A

AMember oftho TBMIC Group

Speciticationsa
Test Conditions
Unless Otherwise Specified

ASuff"1X
-55 to 125'C

I

B, C, D Suffix
Oto70'C
-25 to 85'C
-40 to 85'C

I

V+ = 15 V, V- = -15V
VIN = 2.4 V, 0.8

Tempb

VANALOG

Full

COSton)

VD = ±10V, Is = -200 tu\

Room
Full

240

odCOS(on)

-10V'

1.0

0.5

±20V

I

0

10

0

20

Charge Injection vs. Analog Voltage
16
_

o

300

.!!l

.i

10

\

J
,
.-.'

"-

~
0

V

250

5

150

4

t:l

100

2

e

..

"-

./

200

§

'".

6

V+ = 15V
r- V- = -15V

~50

j

V- = -15V

8

!

-- "

..... ~

-55'C

.--'

-10

-5

o

5

10

V+I=15V I
r- V- = -15V

o
-15

15

-10

0

-

o

5

10

15

..

Crosstalk vs. Frequency

-20

"""I'"

r-

IJ1 ~1~~vl I

j

..... '"

-80

-4

-100

-6

..... '"

Plastic

..... '"

-60

1'0

CerDrt'"

~I'"

iii'
~

111111111

V- = -15V
ref.O.OdBm

-40

~ ......

-2

-5

Vn - Drain Voltage (V)

0

1+

2

'"

50

Supply Current vs. Switching Frequency

.£

./

zd,c

........

V s - Source Voltage (V)

I..!.

125'C

I

-15

4

r-.....

V

·Of

o

6

±20

vs. VD and Temperature

l'DS(on)

CI

12

g

±15

400

1 .1
V+=15V

14

±1O

±5

V+, V- Positive and Negative Supplies (V)

VD - Drain Voltage (V)

'"

..... '"

'"

-120
10k

lOOk
f - Frequency (Hz)

P-32167-Rev. B (11/15/93)

1M

1k

10k

lOOk

1M

10M

f - Frequency (Hz)

2-55

Siliconix

DG506A!507A

AMcmber ofthe1'EMlc Group

lYPical Characteristics (Cont'd)
Off Isolation vs. Frequency
0

IJ1~1~~vl

II

I

0

Plastic

~

-60

j

.... ~

-80
-100

g

i'i"

-40

i>:
i>:

900

1111111
CerDIP

-20 f- V- = -15V
ref. 0 dBm

iQ
::!..

Switching Time vs. Thmperature
1000

~

~~

vl=l~v

10k

lOOk

1M

V

600
500

,/

, .... ~

,/

....

"

",-

Switching Time vs. Positive Supply Voltage

100nA

1000

800

j

700

5

600

~

500

I\.
]

..........

..........

400
300

tRANS~

14

12

.1 tOPEN 1--:

~

..::i

16

18

20

I

1nA

lOpA

1pA

<'
.e

-5
-10

,/

/
./

/

~'

,"
,,"i '

~

/
/

5

~

~

25

1/
/

,/

/.S(off)

45

65

85

105 125

Thmperature (0C)

20

V-=-15V
Vs= -VD
TA=25°C

,...--..,::..>=.,.=--,;---=;--.::.,----,

-

0

IS(off)

k---""~

~

J

<'
.e

-15 -10

-20

..£I
-40

-60

-15
-5

o

-80
5

Vs - Source Voltage (V)

2-56

/

V+ I=15V I

0

..:'

85 105 125

ID on),ID(off) /

O.lpA
-55 -35 -15

22

IS(oll) vs. Analog Voltage

15

5

65

J+=~5VI

V+ - Positive Supply (V)

10 -

45

/

Leakages vs. Thmperature

1>l, 100pA

200
10

25

",

lOnA _ V- = -15V
VD= ±14V

"" ---

"

Thmperature (0C)

1100

,S

~~

1/~

200
-55 -35 -15

10M

f - Frequency (Hz)

900

-;/

,....,

./

700

300

1k

tRANS

800

400

-120

I

V- = -15V

10

15

-15 -10

-5

0

5

10

15

VD - Drain Voltage (V)

P-32167-Rev. B (11/15/93)

Silicanix

DG506A/507A

AMcmber aftho TBMIC Group

Schematic Diagram (lYPical Channel)
V+

...------,-0 SI

--------1

GND

V+

V-

AX

V+

EN

D

V-

Figure 1.

Test Circuits
+15V

+2.4 V

V+
EN
SI
A3
S:! - SI5
Az
Al DGS06A S16

Ao
GND

-

-

V-

D

Vo

Logic
Input

tr <20ns
tf <20ns

3V
50%
OV

I
-

-

35PF
Switch
Output

Vo

VSI
OV

•

+15 V
Vss
+2.4 V

V+

EN

SIb

DGS07A

Az
Al

Sa ON
Sab

Ao
V-

Db

Vo

• = SI. - Sa .. S2b - S7b. D.

Figure 2. uansition TIme
P-32167-Rev. B (11115/93)

2-57

Bilicanix

DG506A/507A

AMembcr of the TBMIC Group

Test Circuits (Cont'd)
+15 V

r----1r-i A3

V+
SI

A2
At

~ - S16

-5V
1-----,

Ao DGS06A

D t----;p--....,..--o Vo
lk

Logic
Input

3V:j

tr <20ns
50%

tr<20ns

ov

toN(EN)

+15V

OV-----,
Switch
Output

V+
-5V

Sib

Vo

SI. - SS.
~b - SSb 1----,

Vo

DGS07A

,--""'-"1 EN
lk

-

r

Vo
35PF

Figure 3. Enable Switching Tune

+15 V

+2.4 V

EN

Logic

V+

Input

+5V

,

DGS06A
DGS07A

'V-i

50%

OV

D,DbI-'t-_--o Vo
Switch
Output

Vo

Figure 4.

2-58

Break-Before;.Make Interva1
P-32167-Rev. B (11/15/93)

Silicanix

DG506N507A

AMember oftbe TBMIC Group

Application Hints a
v+

v-

Positive Supply
Voltage
(V)

VIN
Logi~IDput

VSorVD

Negative Supply
Voltage
(V)

Voltage
VINH(m1n)/VINL(JJUU<)

Analog Voltage
Range

(V)

(V)

15b

-15

2.4/0.8

-15 to 15

-12 to 12
-10 to 10
-8t08

12

-12

10

-10

2.4/0.8
2.2/0.6

8°

-8

2.0/0.5

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
Electrical Parameter Chart based on V+ = 15 V, V - = -15 V.
Operation below ± 8 V is not recommended due to shift in VINL(MAX).

b.
c.

Applications
+V

Overvoltage Protection

V+ S Vgs V-

A very convenient form of overvoltage protection consists
of adding two small signal diodes (lN4148, IN914 type) in
series with the supply pins (see Figure 5). This arrangement
effectively blocks the flow of reverse currents. It also floats
the supply pin above or below the normal V + or V - value.
In this case the overvoltage signal actually becomes the
power supply of the Ie. From the point of view of the chip,
nothing has changed, as long as the difference between V S
and the V-rail doesn't exceed +44 V. The addition of
these diodes will reduce the analog signal range to 1 V
below V+ and 1 V above V-, but it preserves the low
channel resistance and low leakage characteristics.

+V

DGS06A
DGS07A

Figure 5.
Channell
Channel 2

1N4148

Overvoltage Protection Using Blocking Diodes

D

Channel 16

S/H
Channel 17
Channel 18

ND

Data

Bus

D

Channel 32

Controller

Figure 6.
P-32167-Rev. B (11/15/93)

A 32-Channel Data Acquisition System

2-59

•

Siliconix

DG508A/509A

A Member of tho TBMIC Group

Single 8-Channel/Differential 4-Channel
CMOS Analog Multiplexers
Features

Benefits

Applications

• Low On-Resistance: 240 Q
• TfL and CMOS Logic Compatible
• Low Power: 30 mW
• Break-Before-Make Switching
• 44-V Power Supply Rating
• Transition Time: 600 ns

•
•
•
•

• Communication Systems

Easily Interfaced
Low Power Consumption
Low System Crosstalk
Wide Analog Signal Range

•
•
•
•

ATE
Data Acquisition Systems
Audio Signal Routing and Multiplexing
Medical Instrumentation

Description
The DGS08A, an 8-channel single-ended analog
multiplexer, is designed to connect one of eight inputs to a'
common output as determined by a 3-bit binary address'
(Ao, Al, A2)·

selection when several multiplexers are used All control
inputs, address (Ax) and enable (EN) are TTL or CMOS
compatible over the full specified operating temperature
range.,

The DGS09A, a dual 4-channel analog multiplexer, is
designed to connect ~:me of four differential inputs 'to a
common output as determined' by its 2-bit binary address
(Ao, Al) logic. Break-before-make switching action
protects against momentary, ~orting of the input signals.

Fabricated in the Siliconix Plus-40 process, the absolute
maximum voltage rating is extended to 44 V, allowing
increased operating headroom for standard ±lS-V signal
swings and operation with ±20-V supplies. An epitaxial
layer prevents latch up.

A channel in the on state conducts current equally well in
both directions. In the off state each channel blocks
voltages up to the power supply rails, normally 30 V
peak-to-peak. An enable (EN) function allows for device

For applications requiring address data latching, the
DGS28/S29 is recommended. DG408/409 is recommended
for higher precision applications. For widebandlvideo
routing and multiplexing, the DGS38A is recommended.

Functional Block Diagrams and Pin Configurations
DGS08A

Dual-In·Line and SOIC

LCC
EN

Ao

At

EN

A2

v-

GND

v+

St
S2

Ss

S3

~

S4

S7

D

Sa

v-

GND

St

v+

NC

NC

S2

Ss

S3

S6

S4
ThpView

2-60

Ao NC At A2

D

NC Sa
ThpView

S7

P-32167-Rev, A (11/15/93)

Siliconix

DG508N509A

A Member of the TBMIC Group

Functional Block Diagrams and Pin Configurations (Cont'd)
Ordering Information - DGS08A
ThmpRange

Package

oto 70°C

16-Pin Plastic DIP
16-Pin CerDIP
16-Pin Narrow SOIC

25 to 85°C
40 to 85°C

16-Pin CerDIP
LCC-20
16-Pin Sidebraze

-55 to 125·C

16-Pin Flat Pack
16-Pin Sidebraze

DG509A

'fruth Table -

Part Number

DGS08A

Ao

EN

On Switch

X
0
1

0

0
1
1
1

None
1
2
3

1

1

0
1

1
1

4
5

A2

Al

DG508ACJ
DG508ABK
DG508ADY
DGS08AAK

X
0
0

X
0
0

0

1

DGS08AAK/883

0
1

1
0
0
1
1

0

1

1

1

DG508AAZ1883
770520lEA
770520lEC
7705201 FA

1
1
1

7705201FC
JM38510/19007BEA

LogicUO"
Logic Ul"

JM38510/19007BEC

X

6
7
8

VAL s 0.8 V
VAH '" 2.4 V
Don't Care

LeC
EN Ao NC Al GND

Dual-In-Line and SOIC

Ao

Al

EN

GND

V-

V+

Sla

Slb

S2a

S2b

S3a

S3b

S4a

S4b

Da

Db

V-

V+

Sla

Slb

NC

NC

S2.

~

S3a

S3b

D. NC Db S4b
'ThpView

S4a

'ThpView

Ordering Information - DGS09A
Temp Range

Package

Ot070·C
-2S t08S·C
-40 to 8S·C

16-Pin Plastic DIP
16-Pin CerDIP
16-Pin Narrow SOIC
16-Pin CerDIP

-55 to 125·C

LCC-20
16-Pin Sidebraze

P-32167-Rev. A (11115/93)

Part Number
DGS09ACJ
DGS09ABK
DGS09ADY
DGS09AAK
DGS09AAK/883

'fruth Thble -

Al
X
0
0

1
1

DGS09A

Ao

EN

On Switch

X
0
1

0

0
1
1
1

None
1
2
3

1

1

•

4

DGS09AAZ/883

Logic "0"

VAL s 0.8 V

JM38S10/190OSBEA
JM38S10/19008BEC

Logic"!"
X

VAH '" 2.4 V
Don't Care

2-61

Siliconix

DG508N509A

AMcm.ber of the TBMIC GrQUP

Absolute Maximum Ratings
Voltage Referenced to V -

,

Power Dissipation (Package}b
16-Pin Plastic DI}'C .................................
16-PinNarrowSOICC ...............................
16-Pin CerDIpd ...... : .............................
LCC20d ..........................................

v+ ................................................. 44V
GND .. , ............................................ 25V
Digitallnputsa, Vs, Vo ........... :. (V-) -2Vto (V+) +2Vor
20 rnA, whichever occurs first
Current (Any'Thrminal, Except S or D) . . • . . • . . • . . • . . . . .. 30 rnA
Continuous Currenl, S or D ................ :.......... 20 rnA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) .................. 40 rnA
Slorage'Thmperature
(K SuffIX) . . . . • • . . . . . . .. -65 to 150'C
(1 and Y SuffIX) ....•.. " -65 to 125'C

470 mW
600mW
900 mW
900mW

Noles:
a. Signals onSX, DXorlNxexceedingV+ or V- will be clamped by
internal diodes. Limit forward diode current 10 maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate 63 mWI'C above 75'C.
d. Derate 12 mWI'C above 75'C.

Speci6cationsa
lest Conditions
Unless Otherwise Specified
Parameter

A Suffix

D SuffIX

-5510 125'C

-401oS5'C

I

I

V+ = 15 V, V- = -15V
VIN = 2.4 V, O.S yf

lempb

VANALOG

Full

roS(on)

Vo = :1:10 V, Is = -200 fAA

Room
Full

240

AroS(on)

-10V--~

AX

Decodel
Drive

I
I
I
I
I
I

~--------~----~,

V-

V+

EN

D

V-

Test Circuits
+15 V

Al

Ao

DGSOSA

S8

t f <20ns

D J---t---1~-o Vo

Logic
Input

tf

3V

<20ns

50%

IMQ

Switch

+15V

Output

Vo
r--..,..-j Al

V+
SI

±lOV

Ao Sla - S4.. Da 1----.,
:flOV

-

Figure 2.

2-66

"fransition Time

P-32167-Rev. A (11/15193)

Siliconix

DG508N509A

AMcmbcr orthe TBMIC Group

Test Circuits (Cont'd)
+15V
V+
-5V

...-_---1 EN

DGS08A

Logic
Inpul

Vo

I

son

Ir <20ns
If <20 ns

3V
50%
OV

35pF
OV

Swilch
OUlpUI
Vo

+15V

Vo

V+

r-_----1EN
Sl. - S4.. D.
S2b - S4b

DGS09A
Vo

Figure 3. Enable Switching Tune

+15V

+2.4 V

V+

EN

AIlS and D.
DG508A
DG509A

r---,.....--t A 2

Db. D

GND

V-

+5V

I---r--"""""-o Vo

Figure 4.

-

1Switch
OUlpUI
Vo

P-32167-Rev. A (11/15/93)

Ir <20ns
-\: 1[<20ns

Logic
Inpul

VS---~~ ~80%

oV

--l I-'-J

IOPEN

Break-Befare-Make Interval

2-67

Siliconix

DG508N509A

AMember ofthe TBMIC Group

Test Circuits (Cont'd)
+15V
V+

Logic 3
Input OV

~VVV---------~Sx

.-------f EN

OFF

OFF

D 1-.,--0 Vo

~o

Switch
Output

11Vo is the measured voltage due to charge transfer error Q,
when the channel turns off.
Q=CLxI1Vo

Figure s.

Charge Injection

+15V
+15V
VIN

VIN

s~

Sf

s~

S~
D

1\0
A1
A2
GND

-

RL
lkn

V-

EN

-

-

OffIsolation

Figure 6.

S1

= 20 log

IV;:

-

D

-

GND

EN

RL
1kQ

V-

-

-15V

I

-

-

Crosstalk = 20 log

IV;: I

Figure 7. Crosstalk

+15V

+15V

V+

V+

S1

I
I

D

Vo

A1
A2

Off Isolation

1\0
Al
A2
GND

Ao

Vo

-

Vo

Meter

S8 1-0--<>---1

Channel {
Select

HP4192A
Impedance

Ailalyzc:r

or EquIValent
EN

RL
1kQ

V-

-15V

-=-

Insertion Loss = 20 log

Figure 8. Insertion Loss

2-68

V+

S1

V+

f=1MHz

IVOlJTI
VIN

Figure 9.

Source Drain Capacitance

P-32167-Rev. A (11/15193)

Siliconix

DG508A!509A

A Member of the TEMIC Group

Applications

(V)

(V)

VIN
Logic Input
Voltage
VlNH(mlnj/VINL(max)
(V)

15
10
12
Sb

-15
-12
-10
-S

2.4/0.S
2.4/0.S
2.4/0.6
2.4/0.4

VNegative Supply
Voltage

V+
Positive Supply
Voltage

VsorVn
Analog Voltage
Range
-15 to 15
-12 to 12
-10 to 10
-8 toS

(V)

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
b. Operation below ± S V is not recommended.

+15V

Overvoitage Protection
A very convenient form of overvoltage protection consists
of adding two small signal diodes (lN4148, IN914 type) in
series with the supply pins (see Figure 11). This
arrangement effectively blocks the flow of reverse currents.
It also floats the supply pin above or below the normal V +
or V - value. In this case the overvoltage signal actually
becomes the power supply of the Ie. From the point of view
of the chip, nothing has changed, as long as the difference
between Vs and the V- rail doesn't exceed +44 V. The
addition of these diodes will reduce the analog signal range
to 1 VbelowV+ and 1 V above V-, but it preserves the low
channel resistance and low leakage characteristics.

V+

S

Vg

S

v-

1N4148

DGS08A v+
Internal
Junction

D

1N4148
-15V
Figure 10. Overvoltage Protection Using Blocking Diodes

-15V

+15V

Analog
Inf,uts
(Ou puts)

SI

{

I
I
I
I

Al

+5V

OCK
IN 0 - -

DG508A

D

-15V

+15V

Analog
Output
(Input)

Differential~
Analog

Da

Differential
Analog
Outpnt
(Input)

DG509A

Inputs
(Outputs)

A2 EN

EN

+5V

DM7493
J
QA

NC

Q

CLOCK
1/2 MM74C73
IN 0--+--1 CLK

J
Q
1/2MM74C73
'---+--i CLK

NC

Q

K

NC

CLEAR
ENABLE
IN o--+----------------~
(Multiplexer On·Off Control)
Figure 11. 8-Channel Sequential Multiplexer!
Demultiplexer

P-32167-Rev. A (11/15/93)

E~~lCE·o--~--~-------~----~
Figure 12. Differential 4-Channel Sequential Multiplexer!
Demultiplexer

2-69

•

Siliconix

DG528/529

AMcmbcr of the 'Il!MICGroup

Latchable Single 8-Channel/Differential 4-Channel
Analog Multiplexers
Features

Benefits

Applications

•
•
•
•
•

•
•
•
•

•
•
•
•

Low I'DS(on): 270 g
44-V Power Supply Rating
On-Board Address Latches
Break-Before-Make
Low Leakage-ID(on): 30 pA

Improved System Accuracy
Microporcessor Bus Compatible
Easily Interfaced
Reduced Crosstalk

Data Acquisition Systems
Automatic 'Thst Equipment
Avionics and Military Systems
Medical Instrumentation

Description
The DG528 is an 8-channel single-ended analog
multiplexer designed to connect one of eight inputs to a
common output as determined by a 3-bit binary address
(Ao, At. A2)· DG529, a 4-channel dual analog multiplexer,
is designed to connect one of four differential inputs to a
common differential output as determined by its 2-bit
binary address (Ao, AI) logic.
These analog multiplexers have on-chip address and
control latches to simplify design in microprocessor based

applications. Break-before-make switching action protects
against momentary shorting of the input signals. The
DG528/529 are built on the improved PLUS-40 CMOS
process. A buried layer prevents latchup.
The on chip TTL-compatible address latches simplify
digital interface design and reduce board space in data
acquisition systems, proce~s controls, avionics, and ATE.

Functional Block Diagrams and Pin Configurations
DG528

DG529

DG528
Dual-In-Line

Dual-In-Line

WR

RS

An

EN

v-

WR:

RS

Al

An

Al

A2

EN

EN

GND

GND

v-

v+

SI
S2

Ss

Latches

4

18

A2

GND

v-

v+

SI

v+

SI.

SIb

S2

Ss
S6

Sza

S2b

S3

De(:()dersJDrillelll-

S3

S6

S3.

S3b

S4

S7

S4.

S4b

D.

Db

D

S8

-<

-40

~

'±20V

-10

-5

o

5101520

-60
-15

-10

-5

o

5

10

VD - Drain Voltage (V)

VANALOG - Analog Voltage (V)

Input Switching Threshold vs.
V+ and V- Supply Voltages

Supply Currents vs. Toggle Frequency

15

2.5

lIB

4

2.0

@
~
;:t'

..,:,,:,.:: .. ,,:,:,:"::""

3

1.5

1+

2

1.0

~

,/

1/
Ii

./
./

1-

.J.I.+t

0.5

IIII
0

IIII

o
0

'±5

'±10

'±15

V+, V- Positive and Negative Supplies (V)

P-32167-Rev. C (11/15/93)

'±20

lk

10k

lOOk

1M

Thggle Frequency (Hz)

2-73

Siliconix

DG528/529

AMember of the TBMIC Group

Schematic Diagram
V+o---~------~--------------~------.------,

GND

r--T
r----l
I

I
I
_...1

v+
EN <>r-JovV\r--;-!Lot""

S1

I
I
I

v-

v+
......---+'......-+-oD

......----------+---------------~

v-o---+-------~------~------

Figure 1.

Detailed Description
The internal structure of the DG528/DG529 includes a 5-V
logic interface with input protection circuitry followed by a
latch, level shifter, decoder and finally the switch
constructed with parallel n- and p-channel MOSFETh (see
Figure 1).

Following the latches the Qx signals are level shifted and
decoded to provide proper drive levels for the CMOS
switches. This level shifting insures full on/off switch
operation for any analog signal present between the V +
and V-supply rails.

The logic interface circuit compares the TTL input signal
against a TTL threshold reference voltage. The output of
the comparator feeds the data input of a D type latch. The
level sensitive D latch continuo~places the Dx input
signal on the Qx output when the WR input is low, resulting
in transparentlatch operation. As soon as Wit returns high,
the latches hold the data last present on the Dx input,
subject to the minimum input timing requirements.

The EN pin is used to enable the address latches during the
WR pulse. It can be hard-wired to the logic supply or to V +
if one of the channels will always be used (except during a
reset) or it can be tied to addr~ decoding circuitry for
memory mapped operation. The RS pin is used as a master
reset. All latches are cleared re~less of the state of any
other latch or control line. The WR pin is used to transfer
the state of the address control lines to their latches, except
during a reset or when EN is low (see Truth Thbles).

Timing Diagrams

3Vl§

RSo'

50%

'~reh

Output

Figure 2.

2-74

d
tR~FF(RS)---k

Vo--------------------

0--:....---------

:%

Figure 3.

P-32167-Rev. C (11/15/93)

Silicanix

DG528/529

AMembcr ofthcTBMIC Group

Test Circuits
+15 V

-t
1lr <20ns

A1ISandD.

Logic
Input

+5V

DGSl8
DGSl9
...--_-1 A{), AI, (A2)
Db, D 1--_-_._0 Vo
GND WR
V-

Vs
Switch
Output
Vo

Figure 4.

t[<20ns

OV

Break-Before-Make

+15V

lr <20ns

Vo
Logic
Input

tf <20ns

3V
50%
OV

- -

-

-

Switch
Output
Vo

+15V

+2.4 V

VSI
OV

-

V+
VS8
tTRANS
SION

SsON

Vo

Figure S. lransition Tune

P-32167-Rev. C (11/15/93)

2-75

Siliconix

DG528/529

AMember of tho 1'BMICGrOUP

Test Circuits (Cont'd)
+15V

+2.4 V

Logic
Input

tr <20ns

3V
50%

tc <20ns

+15V
Switch
Output
Vo

V+

+2.4 V

RS

-5V

,.....,..-----1 EN
Sla -S4.,Da
S2b - S4b

DGS29

Al

D

WR
V- b I-t"-....,...--o Vo
L......,r----,---r--:-J
GND

Figure 6.

Enable tON/tOFF TIme

+15V

+2.4 V

-

EN

V+

AQ,Al,(A2)

+5V

Sl or Slb

3V
WR

Remaining
Switches
RS

DGS28
DG529

Db,D
V-

-

Vo
Vo

--"r50%

OV
Switch
Output

20%

OV

-

-

-

-

-

Figure 7.

2-76

Write Thrn-On TIme toN(WR)

P-32167-Rev. C (11/15/93)

Silicanix

DG528/529

AMember of the 'I'ElMlC Group

Test Circuits (Cont'd)
+15V

3V

+5V

+2.4 V

RS

Remaining
Switches
DGS28
DG529

50%
OV
-tOFF(RS)
Vo

Vo
Switch
Output
OV

Figure 8.

Reset Thrn-OffTIme tOFF(RS)

+15 V
±15V
Analog
Inputs

V+

>~Al.

____
D_at_a_B_us_ _ _

Processor
System
Bus

A2.

DGS28

RESETO--------I RS

D

Analog
Output

V-

•

-15V

Figure 9.

Bus Interface

Applications
Bus Interfacing
The DG528/DG529 minimize the amount of interface
hardware between a microprocessor system bus and the
analog system being controlled or measured. The internal
TTL compatible latches give these multiplexers write-only
P-32167-Rev. C (11/15193)

memory, that is, they can be programmed to stay in a
particular switch state (e.g., switch Ion) until the
microprocessor determines it is necessary to turn different
switches on or turn all switches off (see Figure 9).
2-77

Silcanix

DG528/529

AMombor of tho 1'8MIC Group

Applications (Cont'd)
The input latches become transparent when WR is held
low; therefore, these multiplexers operate by direct
command of the coded switch state on A2, AI> Ao. In this
mode the DG528 is identical to the popular DG508A. The
same is true of the DG529 versus the popular DG509A.
During system power-up, RS would be low, maintaining all
eight switches in the off state. After RS returned high the
DG528 maintains all switches in the off state. When the
system program performs a write operation to the address
assigned to the DG528, the address decoder provides a CS
active low signal which is gated with the WRITE (WR)

control signal. At this time the data on the DATA BUS (that
will determine which switch to close) is stabilizing. When
the WR signal returns to the high state, (positive edge) the
input latches of theDG528 save the data from the DATA
BUS. The coded information in the Ao, Ai> A2 and EN
latches is decoded and the appropriate switch is turned on.
The EN latch allows all switches to be turned off under
program control. This becomes useful when two or more
DG528s are cascaded to build 16-line and larger
multiplexers.

Application Hints 8
Vm

Positive Supply

v-

Negative Supply

LogicJnput
Voltage

Analog Voltage

Voltage

Vo~

VlNB(mln)/VlNL(max)

Rallge

(V)

(V)

(V)

tv>

20

-20

2.4/0.8

:1:20

15b

-15

2.4/0.8

:1:15

8e

-8 (min)

2.4/0.8

:1:8

v+

VSOl'VIJ

Notes:
a. Application Hints are for DESIGN AID ONLY. not guaranteed and not subject to production testing.
Electrical Parameter Chart based on V+ = 15 V, VL = 5 V, VR = GND.
e. Operation below :I: 8 V is not recommended.
b.

2-78

P-32167-Rev. C (11/15193)

Silicanix

DG534/538

AMembcr of the TBMIC Group

4-/8-Channel Wideband Video Multiplexers
Features

Benefits

Applications

• Wide Bandwidth: 500 MHz
• Very Low Crosstalk: -97 dB @ 5 MHz
• On-Board TIL-Compatible Latches
with Readback
• Optional Negative Supply

•
•
•
•
•
•

• Wideband Signal Routing and
Multiplexing

• Low I'DS(on): 45 g

Improved System Bandwidth
Improved Channel Off-Isolation
Simplified Logic Interfacing
Allows Bipolar Signal Swings
Reduced Insertion Loss
Allows Differential Signal Switching

• Video Switchers
• ATE Systems
• Infrared Imaging

Description
The DG534 is a digitally selectable 4-channel or dual
2-channel multiplexer. The DG538 is an 8-channel or dual
4-channel multiplexer. On-chip TTL-compatible address
decoding logic and latches with data readback are included
to simplify the interface to a microprocessor data bus. The
low on-resistance and low capacitance of the these devices
make them ideal for wideband data multiplexing and video
and audio signal routing in channel selectors and crosspoint
arrays. An optional negative supply pin allows the handling
of bipolar signals without dc biasing.

The DG534/DG538 are built on a D/CMOS process that
combines n-channelDMOS switchingFETh with low-power
CMOS control logic, drivers and latches. The lowcapacitance DMOS PETs are in a "T" configuration to
achieve extremely high levels of off isolation. Crosstalk is
reduced to -97 dB at 5 MHz by including a ground line
between each adjacent signal path.
The DG534A!DG538A are recommended for new designs.

Functional Block Diagrams and Pin Configurations
DGS34DJ

DGS34DN
Dual-In-Line

GND

NC

DA

DB

V+

V-

SAl

SBl

GND

GND

SA2

SB2

4/2

VL

RS

1/0

WR

EN

Al

Ao

PLCC

SAl
GND
SA2
4/2

•

7 1-;---,

I~

.( <' ffi Ig
Top View

ThpView

Not Recommended for New Designs

P-32167-Rev. A (11/15/93)

2-79

Silicanix

DG534/538

AMember of the TBMIC Group

Functional Block Diagrams and Pin Configurations (Cont'd)
DG538DJ

DG538DN
Dual-In-Line

GND
PLCC

~toc~~>J'
GND
GND

SB2

GND

GND

GND

SB2
GND

GND

SID

GND

GND

GND

SB4

VL

Ito

EN

I~ I~

.( .( < ~ IS
1bpView

A2

1bpView

Truth Tables and Ordering Information
Ordering Information - DGS34
ThmpRange

Package

-40 to 85°C

20-Pin Plastic DIP
20-PinPLCC

-55 to 125°C

2O-Pin Sidebraze

Iruth Thble -

i/o

At

Ao

DG534DJ

X

X

X

X

DG534DN

X

X

X

DG534AP

X

X

X

DG534AP/883

0

0

0

0

0

1

0
0

1

0

1

0

X

1
0

0
1

X

Part Number

1
Noteb

DGS34

RS

4/2a

I

1

1

Maintains previous state

X

X

0

X

None (latches cleared)

0

0

X

None

1
1
1
1
1
1

0

1
1
1
1
1
1
1
1

0

SAl
SA2

EN WR

0
0
0
0
0

1
LOgIc "0"
Logic "1"

0
0
0

1
1
Notec

On Switch

DAandDB
maybe
connected
externally

SBl
SB2
SAl and SBl

Latches
'fransparent

SA2and SB2

VAL S O.SV

VAH '" 2V
Don't Care
X
Notes:
a. Connect D A and DB together externally for single-ended operation.
b. With I/O high, An pin becomes output and reflects latch contents. See timing
diagrams for more detail.
c. 412 can be either "I" or "0" but should not change during these operations.

2-80

P-32167-Rev. A (1l/lS/93)

Not Recommended for New Designs

Siliconix

DG534/538

AMember of the 'fBMICGroup

Truth Tables and Ordering Information (Cont'd)
Ordering Information - DG538
ThmpRange
-40 to 85°C
-55 to 125°C

Package
28-Pin Plastic DIP
28-PinPLCC
28-Pin Sidebraze

'Il-uth Table -

Part Number

iJo A2 Al Au

EN

WR RS

DG538

B/4a

On Switch

DG538DJ

X

X

X

X

X

j'

1

1

Maintains previous state

DG538DN

X

X

X

X

X

X

0

X

DG538AP
DG538AP{883

X

X

X

X

0

1

X

None (latches cleared)
None

0
0

0

0
0

0

1

0
0

1

0

1

1
0

1
1

0
0

1
1

1
0

1
1

0

1
1

0
0
0

1
0
1

1

0
0
0

0
0

0
0
0

0

1

1
0

0

1

0

0
0
0

1
1
X

1
1
0

0

X

0

0

X

0
1

X

0

1
1
0
1
1
Noteb

1
1
1
1
1
1

0

1

0

1
1
1

0

1

0
0

1

1

Logic "0"
Logic"!"
X

1
1

SAl
SAl
SA3
SA4

0

SBt

0
0
0

SB2
Sm
SB4

1
1
1
1
Notec

DAandDB
should be
connected
externally

Latches
Transparent

SAt and SBI
SAlandSB2
SA3and SB3
SA4andSB4

VAL s 0.8 V
VAH" 2V
Don't Care

Notes:
a. Connect DA and DB together externally for single-ended operation.
b. With flO high, An pin becomes output and reflects latch contents. See timing
diagrams for more detail.
c. 8/4 can be either "I" or ''0'' but should not change during these operations.

Absolute Maximum Ratings
V+ toGND ................................ -0.3Vto+21 v
V+toV- ................................. -0.3Vto+21 v

v- toGND ................................

-10Vto +0.3 V

VL ..................................... OVto(V+) + 0.3 V
DigitalInputs .................... (V-) -0.3 V to (V+) + 0.3 V
or 20 rnA, whichever occurs first
VS,VD ......................... (V-)-0.3Vto(V-)+14V
or 20 rnA, whichever occurs first
Current (any terminal) Continuous ..................... 20 rnA
Current(S or D) Pulsed 1ms 10% Duty ................. , 40 rnA

Not Recommended for New Designs

Storage Thmperature

(A SuffIX) .. .. .. .. .. .... -65 to 150°C
(D SuffIX) .............. -65 to 125°C
Power Dissipation (Package)a
PlasticDlpb ....................................... 625 mW
PLCC" ........................................... 450 mW
Sidebrazed ....................................... 1200 mW

Notes:
a. All leads soldered or welded to PC board.
b. Derate 8.3 mwrc above 75°C.
c. Derate6mWrCabove75°C,
d. Derate 16 mWrC above 75°c'

P-32167-Rev. A (11/15193)

2-81

Silicanix

DG534/538

AMcmbcr of the TBMIC Group

Speciticationsa
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ =15V,V- = -3V,VL=5V
WR = O.BV,RS,EN= 2V

VANALOG

V- = -5V

ASuff"1X
-55 to 125°C
Thmpb

lYPc

Mind IMaxd

D Suffix
-40 toB5°C
Mind

I

Maxd

Unit

B

V

Analog Switch
Analog Signal Rangel!
Drain-Source
On-Resistance
Resistance Match
Between Channels

roS(on)
~roS(on)

-5

Full
Room
Full

Is = -lOrnA, Vs = OV
VAIL = O.B V, VAllI = 2 V
Sequence Each Switch On

45

B

-5

90
120

90
120

9

9

Q
Room

-5

-5
-50

5
50

-50

5
50

0.1

-20
-500

20
500

-20
-100

20
100

0.1

-20
-1000

20
1000

-20
-200

20
200

Source Off
Leakage Current

ISCoff)

Vs = BV,VD = OV,EN = O.BV

Room
FuI\

0.05

Drain Off
Leakage Current

ID(off)

Vs = OV,VD = BV,EN = 0.8 V

Room
Full

Drain On
Leakage Current

ID(on)

Vs=VD=BV

Room
Full

nA

Digital Control
Input Voltage High

VAllI

Full

Input Voltage Low

VAIL

Full

Address Input Current

IAI

Address Output Current

lAO

2

2
O.B

-1
-10

O.B

VAI=0V,or2Vor5V

Room
Full

-0.1

VAO = 2.7 V

Room

-300

VAO=O.4V

Room

300

PLCC

Room

28

40

40
45

1
10

-1
-10

V

1
10
j.IA

Dynamic Characteristics
On State Input
Capacitance!!

CS(on)

Off State Input
Capacitance!!

CS(off)

Off State Output
Capacitance!!

CD(off)

'Il'ansition 1ime
Break-Before-Make
Interval

DIP

Room

31

45

PLCC

Room

3

5

DIP

Room

4

4
5

10

B

PLCC

Room

6

DIP

Room

B

tTRANS

Room
Full

170

tOPEN

Room
Full

BO

EN, WRThrn On 1ime

tON

Room
Full

1BO

300
500

300
500

EN, ThrnOff1ime

toFF

Room
Full

95

175
300

175
300

Charge Injection
Chip Disabled Crosstalkf

Adjacent Input Crosstalkf

2-82

Qi
XTALK(CD)

Room

-70

RL= 75Q,f= 5 MHz
EN=O.BV

PLCC

Room

-75

DIP

Room

-65

RJN = 10Q,RL = 10kQ
f=5MHz

PLCC

Room

-97

DIP

Room

-B7

RJN = 75Q,RL=75Q
f=5MHz

PLCC

Room

-BO

DIP

Room

-70

XTALK(Al)

P-32167-Rev. A (11115193)

pF

10
300
500
50
25

300
500
50
25
ns

pC

dB

Not Recommended for New Designs

Siliconix

DG534/538

AMember of the TEMICGroup

Specificationsa
A Suff"1X
-55 to 12S'C

Test Conditions
Unless Otherwise Specified
Parameter

Symbol

V+ = 1SV,V- = -3V,VL= 5V
WR = O.BV,RS,EN= 2V

Tempb

'IYPc

RIN = 10g,RL= 10k.Q
f=SMHz

PLCC

Room

-77

DIP

Room

-72

RIN = 75 g, RL = 75 g
f=SMHz

PLCC

Room

-77

DIP

Room

-72

RIN = 100, RL = 10k.Q
f=SMHz

Room

-B4

RIN=RL=7S0
f=SMHz

Room

-B4

RL=50g

Room

500

Room
Full

0.6

Room
Full

0.6

Mind

I

Maxd

DSuffix
-40 to BS'C
Mind

I

Maxd

Unit

Dynamic Characteristics (Cont'd)

All Hostile Crosstalk

Differential Crosstalk

Bandwidth

XTALK(AH)

XTALK(DIFF)

BW

dB

MHz

Power Supplies
Positive Supply Current

1+
Any One Channel Selected with
Address Inputs at GND or V +

Negative Supply Current

1-

-l.B
-2

2
5
rnA

-l.B
-2

Full

10

21

10

Full

-5.5

0

-5.5

0

V+toGND

Full

10

21

10

21

IL

Full

tRW

Full

SO

SO

tMPW

Full

200

200

Data Valid to Strobe

tnw

Full

100

100

AQ,AJ,EN
Data Valid after Strobe

twn

Full

SO

SO

Address Bus Tri-StateC

Functional Check of
Maximum Operating
Supply Voltage Range
Logic Supply Current

V+toV-

2
5

V- toGND

Functional lest Only

sao

150

21

500

V

J.IA.

Timing
Reset to Write
WR,RS
Minimum Pulse Width

Ao. AJ, EN

See Figure 1

ns

tAZ

Room

2S

Address Bus Output

tAO

Room

95

Address Bus Input

tAl

Room

110

•

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature suffIX.
c. '!ypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d.· The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Defined by system bus requirements.
f. Each individual pin shown as GND must be grounded.
g. Guaranteed by design, not subject to production test.

Not Recommended for New Designs

P-32167-Rev. A (11/15/93)

2-83

Siliconix

DG534/538

AMember of tho TBMIC Group

Control Circuitry

EN

An

Xc

Latch

,

At

At

r

I
I
I
I
I
I
I
I
I
I
I

,

A2

r

I
I
I
I
I
I
I
I
I
I
I

vREF
8/4

-,
I
I
I
__ J

v+ I/O

v-

EN

At

• Decode section includes delay circuitry in AND gating to ensure proper break-before-make operation.
•• 1Ypical all digital inputs.

2-84

P-32167-Rev. A (11/15/93)

Not Recommended for New Designs

Silicanix

DG534/538

AMcmbcr of the TeM IC Group

Output Timing Requirements
WR

-r-~
l-tDw-:~1

3V
OV

3V
Ao, Al, A2, EN

X

Don't Care

OV

Write Data

X

Don't Care

Writing Data to Device

WR

Ao, Al, A2, EN

3V
OV
3V
Don't Care

OV
RS 3V
OV

Don't Care

Delay Time Required after Reset before Write

WR

3V --------------------------------------------------------------------OV
3V ----------------~
Driven Bus
OV ________________
-J

I/O 3V

HiZ

HiZ

Device Data' Out

Driven Bus

____________________~----J

OV
Reading Data From Device

• Enable must be latched high to read data, otherwise BUS is high Z. V - s -3 V required for readbaek functionality.

Figure 1.

Applications
To protect against latchup VL must not exceed V + by more
than 0.3 V. This is easily achieved by generating VL from
V + using a Zener or a resistor divider network as shown in
Figure 2. When an external VL is available the alternative

simple protection circuit shown in Figure 3 should be nsed
to prevent triggering the parasitic SCR during power up.
The DG53XA does not require these protection diodes.

,------------1r---<> +15 V

-VL
l8kQ

I

6.8kQ
5.1 V

VREF
7kQ

+15 V

*'

IN914
V+

I
I
I
-.-I

Figure 2.

+5V

--,

V+
DGS34

•

lOkQ
I=1mA

DGS34

GND

VL Generated from V +

Not Recommended for New Designs

Figure 3.

External Diodes Prevent Latchup

P-32l67-Rev. A (11/15/93)

2-85

Siliconix

DG534A/538A

AMcm'bcr of the TBMIC Group

4-/8-Channel Wideband Video Multiplexers
Features

Benefits

Applications

• Wide Bandwidth: 500 MHz
• Vel)' Low Crosstalk: -97 dB @ 5 MHz
• On-Board TIL-Compatible Latches
with Readback
• Optional Negative Supply

•
•
•
•
•
•
•

• Wideband Signal Routing and
Multiplexing

• Low I'J)S(on): 45 Q
• Single-Ended or Differential Operation
• Latch-up Proof

Improved System Bandwidth
Improved Channel Off-Isolation
Simplified Logic Interfacing
High-Speed Readback
Allows Bipolar Signal Swings
Reduced Insertion Loss
Allows Differential Signal Switching

• Video Switchers
• ATE Systems
• Infrared Imaging
• Ultrasound Imaging

Description
The DG534A is a digitally selectable' 4-channel or dual
2-channel multiplexer. The DG538A is an 8-channel or
dual 4-channel multiplexer. On-chip TTL-compatible
address decoding logic and latches with data readback are
included to simplify the interface to a microprocessor data
bus. The low on-resistance and low capacitance of the these
devices make them ideal for wideband data multiplexing
and video and audio signal routing in channel selectors and
crosspoint arrays. An optional negative supply pin allows
the handling of bipolar signals without dc biasing.

The DG534A1DG538A are built on a DlCMOS process
that combines n-channel DMOS switching FEll; with
low-power CMOS control logic, drivers and latches. The
low-capacitance DMOS FETs are connected in a "T"
configuration to achieve extremely high levels of off
isolation. Crosstalk is reduced to -97 dB at 5 MHz by
including a ground line between adjacent signal paths. An
epitaxial layer prevents latch-up.
For more information refer to Siliconix Applications Note
AN502.

Functional Block Diagrams and Pin Configurations
DG534ADJ

DG534ADN
Dual-In-Line

GND

NC

DA

DB

V+

V-

SAl

SBI

GND

GND

SA2

SB2

4/2

VL

RS

I/O

WR

EN

Al

Ao

SAl
GND

ThpView

2-86

P-32167-Rev. C (11/15/93)

Siliconix

DG534N538A

AMember of the TeMlc Group

Functional Block Diagrams and Pin Configurations (Cont'd)
DG538ADJ

DG538ADN
Dual-In-Line
DB
PLCC

V-



. > ..

Q

I

ower SUlJplles
Positive Supply Current

l+
Any One Channel Selected with
Address Inputs at GND or 5 V

Negative Supply Current

1V+toV-

2
5
-1.8
-2

2
5
rnA

-1.8
-2

Full

10

21

10

Full

-5.5

0

-5.s

0

V+toGND

Full

10

21

10

21

IL

Full

150

tRW

Room
Full

-22

tMPW

Room
Full

60

tDW

Room
Full

20
-20

Data Valid after Strobe

two

Room
Full

Address Bus 1'H-Statee

tAZ

Room

2S

Address Bus Output

tAO

Room

95

Address Bus Input

tAl

Room

110

Functional Check of
Maximum Operating
Supply Voltage Range

V-toGND

Logic Supply Current

Functional 'lest Only

500

21

500

V

!lA

Timllig
Reset to Write

WR,RS
Minimum Pulse Width

Ao,Al,BN
Data Valid to Strobe

Ao,Al,BN

See Figure 1

50

50

200

200

100

100

50

50

os

Notes:
a Refer to PROCESS OPTION FLOWCHAKf (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 2S.C, Full = as determined by the operating temperature suffIX.
Co
'JYpieal values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
' .
e. Defined by system bus requirements.
f. Each individual pin shown as GND must be grounded.
g. Guaranteed by design, not subject to production test.

2-90

P-32167-Rev. C (11115/93)

SiliconiX

DG534N538A

AMcmbcr of the Tl!MICGrol.lP

Control Circuitry

---===t-1~~~~
---

------

--- ---

8/4

•
v-

EN

A1

*'!Ypical all Readback (Ax.EN)pms
.

P-32167- Rev. C (11/15/93)

2-91

Siliconix

DG534N538A

A Momber of tho TBMtC Group

lYPicaJ Characteristics
Supply Currents vs. Temperature
1.0

!
fit:

"

~

.........

0.6

-;.t-

0.2

I

-0.2

I~

-0.6
-1.0

10nA

-I-- r-

"

ID(on)

3

- -

I--' I--'

..,.' --~

V

100nA

l1nA

IL
I

U

V+ = 15V
V-=-3V _
VL=5V

-

Leakage vs. Temperature

lIlA

1.4

100pA
10pA
1pA

-1.4
-40

-20

0

20

40

60

-40

80 100 120

-20

0

Thmperature (0C)

20

40

60

80 100 120

Thmperature ("C)

Address, EN Output Current vs. Temperature
8

~

OJ

(Source)

0

!

]

VAo-0.4V

~

-8

~

60

~

50

0

-16
".,..

-24

l/

--

0

20

 Supplies
50
100

Full

10

16.5

10

Full

200

200

Full

100

100

Full

50

50

50
100

J1A

16.5

V

Mlnbnum Input Timing Requirements
Strobe Pulse Width

tsw

Ao, Al, A2, A3 CS, CS, EN
Data Valid to Strobe

tDW

Ao, AJ, A2, A3 CS, CS, EN

See Figure 1

two

Data Valid after Strobe

ns

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
b. Room = 25'C, Full = as determined by the operating temperature suffIX.
c. '!ypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VA = input voltage to perform proper function.

1YPical Characteristics
l"J>s(on) vs. Vn and Temperature

400
~

Cl

360

~
g

320

.iIl

~0

j
.~
~

I

J

-

V~ = +15 v!
GND=OV

I

280

200

40

2

4

~

150

.~

90

I

60

...................-55·C _

i

30

6

Vn - Drain Voltage (V)

P-32167-Rev. B (11/15193)

~

8

8V

0

~

g

I
o

210
180

~

10

•

270 r- GND=OV
TA=25'C
240

I
. / /J
25·s,. "/

~

80

j
rl

)

160
120

Cl

.! S2
through S16) to a common output (D) under the control of
a 4-bit binary address (Ao to A3). The specificinput channel
selected for each address is given in the Truth Table.
All four address inputs have on-chip data latches which are
controlled by the Strobe (ST) input. These latches are
transparent when Strobe is high but they maintain the
chosen address when Strobe goes low. To facilitate easy
microprocessor control in large matrices a choice of three
independent logic inputs (EN, CS and CS) are provided on
chip. These inputs are gated together (see Figure 11) and
only when EN = CS = 1 and CS = 0 can an output switch
be selected. This necessary logic condition is then
latched-in when Strobe (ST) goes low.

A - - Signal

Signal
IN

OUT

Signal

GND

Figure 12. "T" Switch Arrangement

The two second level series switches further improve
crosstalk and help to minimize output capacitance.
The DIS output can be used to signal external circuitry.
DIS is a high impedance to GND when no channel is
selected and a low impedance to GND when anyone
channel is selected.

cs

O----J

The DG535/536 have extensive applications where any high
frequency video or digital signals are switched or routed.
Exceptional crosstalk and bandwidth performance is
achieved by using n-channel DMOS FETs for the ''T'' and
series switches.

EN O - - - - - J

~o_--------------~

Figure 11. CS, CS, EN, ST Control Logic

Break-before-make switching prevents momentary
shorting when changing from one input to another.
The devices feature a two-level switch arrangement
whereby two banks of eight switches (first level) are
connected via two series switches (second level) to a
common DRAIN output.
In order to improve crosstalk all sixteen first level switches
are configured as "T" switches (see Figure 12).
With this method SW2 operates out of phase with SWl and
SW3. In the on condition SWl and SW3 are closed withSW2
open whereas in the off condition SWl and SW3 are open
and SW2 closed. In the off condition the input to SW3 is
effectively the isolation leakage of SWI working into the
on-resistance of SW2 (typically 200 Q).
P·32167-Rev. B (11/15/93)

Figure 13. Cross-Section of a Single DMOS Switch

It can clearly be seen from Figure 13 that there exists a PN
junction between the substrate and the drain/source
terminals.

Should a signal which is negative with respect to the
substrate (GND pin) be connectl Az, A3 - High impedance

1

1

0

1

1

0

X

X

1

1

Actions

An, AI> Az, A3 become outputs and reflect the contents of the Current Event latches.

Bo.

Bl determine which Current Event latches are being read
All crosspoints opened (but data in Next Event latches is preserved)

All other states are not recommended.

2-114

P-32167-Rev. E (11/15/93)

Siliconix

DG884

A Member of the TBMIC Group

"fruth Tables (Cont'd)
WR

Bl

0

0

Bo

0

1

A3

Az

Al

Ao

Next Event Latches

1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

IN! to OUT! Loaded
IN2 to OUT! Loaded
IN3 to OUT! Loaded
IN4 to OUT! Loaded
INS to OUT! Loaded
IN6 to OUT! Loaded
IN? to OUT! Loaded
INs to OUTI Loaded

0

X

X

X

Thrn Off OUT! Loaded

0
0
0
0
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

IN! to OUT2 Loaded
IN2 to OUT2 Loaded
IN3 to OUT2 Loaded
IN4100UT2Loaded
INstoOUT2Loaded
IN6 toOUT2Loaded
IN?toOUTzLoaded
INs to OUTz Loaded

X

X

X

Thrn OffOUT2 Loaded

0
0
0
0
1
1

0
1
0
1
0
1
0
1

IN! 10 OUT3 Loaded
IN2 to OUT3 Loaded
IN3 to OUT3 Loaded
IN4 to OUT3 Loaded
INs to OUT3 Loaded
IN6 to OUT3 Loaded
IN? 10 OUT3 Loaded
INS to OUT3 Loaded

1

1

0
0

1

0

1

0
0
1
1
0
0
1
1

0

X

X

X

Thrn OffOUT3 Loaded

1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

IN! to OUT4Loaded
IN2 10 OUT4Loaded
IN3 to OUT4 Loaded
IN4 to OUT4 Loaded
INs to OUT4 Loaded
IN6 to OUT4 Loaded
IN?loOUT4Loaded
INs to OUT4 Loaded

0

X

X

X

Thrn OffOUT4 Loaded

1

1

1

Note:

1

When WR = 0 Next Event latches are transparent. Each crosspoint is addressed individually, e.g., to connect INI to OUT! thru OUT4
requires AQ, A!, A2 = 0 to be latched with each combination ofBo, BI. When RS = 0, all four DIS outputs pull low simultaneously.

Absolute Maximum Ratings
V+ toGND ................................. -0.3Vt021 V
V+toV- .................................. -0.3Vt021V
V-toGND ................................. -lOVtoO.3V
VLtoGND ............................ OVto(V+)+ 0.3V
Digital Inputs .................... (V -) - 0.3 V to (VL) + 0.3 V
or 20 rnA, whichever occurs first
Vs, Vn ......................... (V-) - 0.3 Vto (V-) + 14 V
or 20 rnA, whichever occurs first
CURRENT (any terminal) Continuous .................. 20 rnA
CURRENT (S or D) Pulsed 1 ms 10% duty . . . . . . . . . . . . .. 40 rnA

P-32167-Rev. E (11/15193)

Storage Thmperature

(A SuffIX) . . . . . . . . . . . . .. -65 to 150"C
(D SuffIX) . . . . . . . . . . . . .. -65 to 125"C
Operating Temperature (ASufflX) .............. -55 to 125"C
(D Suffix) . . . . . .. . . . . . . .. -40 to 85"C
Power Dissipation (Package)"
44-PinQuadJLeadPLCCb .......................... 450mW
44-Pin Quad J Lead Hermetic CLCO' ................. 1200 mW

Notes:
a. All leads soldered or welded to PC board.
b. Derate 6 mWrC above 75"C.
c. Derate16mWrCabove75"C.

2-115

•

Siliconix

DG884

AMomber of the TBMIC Group

Specifications a
Test Conditions
Unless Otherwise Specified

ASufTlX

-55 to 12S'C

V+ = 15 V, V- = -3V
Parameter

Symbol

--Y.!,..= 5 V, RS :' 2.0 V
SALVO, CS, \YR, I/O = O.B V

VANALOG

V- = -5V

Tempb

'JYpc

Mind

I

D Suffix
-40 to BS'C

Maxd

Mind

B

-5

I

Maxd

Unit

B

V

Analog Switch
Analog Signal Range"
Drain-Source On-Resistance
Resistance Match
Between Channels

roS(on)
aroS(on)

-5

Full

45

Is = -lOrnA, VD = OV
VAllI = 2.0 V, VAIL = O.B V
Sequence Each Switch On

Room
Full

90
120

90
120

Room

3

9

9

e

Source Off Leakage Current

lS(off)

Vs = BV,VD = Ov,itS = O.BV

Room
Full

-20
-200

20
200

-20
-200

20
200

Drain Off Leakage Current

ID(off)

Vs = OV,VD = BV,itS = O.BV

Room
Full

-20
-200

20
200

-20
-200

20
200

Thtal Switch On
Leakage Current

ID(on)

VS=VD=BV

Room
Full

-20
-2000

20
2000

-20
-200

20
200

2

nA

Digital Input/Output
Input Voltage High

VAllI

Full

Input Voltage Low

VAIL

Full

Address Input Current

Address Output Current

illS Pin Sink Current

IAI

VAl = OVor2VorSV

Room
Full

0.1

lAO

VAO = 2.7 V, See Truth Thble

Room

-600

VAO = 0.4 V, See Truth Thble

Room

1500

Room

1.5

Room

30

Ims

2

O.B

-1

1

-10

10

O.B
-1
-10

-200

500

V

1
10
-200

(l.A

500
rnA

Dynamic Characteristics
1 In to lOut, See Figure 11

On State Input Capacitancee

CS(on)

Off State Input Capacitance"

CS(off)

1 In to 4 Out, See Figure 11

See Figure 11

40

Room

120

Room

B

20

160

10

20

20

Off State Output Capacitance·

CD(off)

Room

Transition TIme

tTRANs

Room

Break-Before-Make Interval

tOPEN

Full

10

10

SAL"VO, WR Thrn On TIme

toN

Room
Full

300

300

SALVO, WJ{Thrn Off TIme

toFf

Charge Injection

See Figure 5

RL= 1 ke,CL = 35 pF
50% Control to 90% Output
See Figure 3

500
175

Room
Full

ns

175

300

See Figure 6

Room

-100

Matrix Disabled Crosstalk

XTALK(DIS)

RIN =RL= 7Se
f = 5 MHz, See Figure 10

Room

-82

Adjacent Input Crosstalk

XTALK(Al)

RIN = 10e, RL = 10ke
f = 5 MHz, See Figure 9

Room

-85

All Hostile Crosstalk

XTALK(AH)

RIN = 10e,RL = lOke
f = 5 MHz, See Figure 8

Room

-66

BW

RL = 50 e, See Figure 7

Room

300

2-116

20
300

Q

Bandwidth

pF

pC

dB

MHz

P-32167-Rev. E (11115/93)

Siliconix

DG884

AMcmbcr of the TeMIC Group

Specificationsa
Test Conditions
Unless Otherwise Specified

Parameter

Symbol

V+=15V,V-=-3V
VL = 5V, RS = 2.0V
SALVO, CS, WR, 1/0 = 0.8 V

ASuiTlX
-55 to 125°C

Tempb

'lYPc

Room
Full

1.5

Room
Full

-1.5

Mind

I

Maxd

D SuiTlX
-40 to 85°C

Mind

I

Maxd

Unit

Power Supplies
Positive Supply Current

1+

Negative Supply Current

1-

Digital GND Supply Current

IDG

Full

-275

IL

Full

200

Logic Supply Current

V+toVFunctional Operating Supply
Voltage Rangee

V-toGND
V+toGND

All Inputs At GND or 2 V
RS=2V

See Operating Voltage Range
(1Ypica1 Characteristics)
page 2-118

3
6

3
6

rnA

-3

-3
-5

-5

-750

-750
500

500

Full

13

20

13

Full

-5.5

0

-5.5

0

Full

10

20

10

20

IlA

20
V

Minbnum Input Timing Requirements
Address Write TIme

tAW

Full

20

50

50

Minimum WR Pulse Width

twp

Full

50

100

100

Write Address TIme

tWA

Full

-10

10

10

Chip Select Write TIme

tew

Full

50

100

100

Write Chip Select TIme

twe

Full

25

75

75

Minimum SALVO Pulse Width

tsp

Full

50

100

100

SALVO Write TIme

tsw

Full

-to

to

Write SALVO TIme

tws

Room

20

Input Output TIme

tIO

Room

150

200

200

Address Output TIme

tAO

Room

150

200

200

Chip Select Output TIme

teo

Room

150

200

Chip Select Address TIme

teA

Room

60

Reset to SALVO

tRs

Full

1/0 Address Input TIme

See Figure 1

tlA

Room

10
50

us

200
100

50

50

50

Notes:
a. Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103).
Room = 25°C, Full = as determined by the operating temperature suffIX.
c. 1Ypica1 values are for DESIGN AID ONLY, not guaranteed nor SUbject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.

•

b.

P-32167-Rev. E (11/15/93)

2-117

Siliconix

DG884

AMember of the TsMICGrOUP

'IYPical Characteristics
Adjacent Input Crosstalk

120

100

..,5'I

Matrix Disabled Crosstalk

120

100

......... r-...

r--....

.......

...

~

80

~

1

........

60

80

...... ~

..........
60

40

....

40

20

20
10

100

10

1

f - Frequency (MHz)

All Hostile Crosstalk

100

80

21

..... ......

19

r--...

,

100

f - Frequency (MHz)

,

~
.?;>

c..
c..

17

·il"

15

Operating Voltage Area

............

i'-.....

bl

...

~
I

I'... r--......

......

Operating Voltage Area

13

+
>

20

11

o
10

100

9

o

-2

-1

-3

-4

-5

-6

V - - Negative Supply (V)

f - Frequency (MHz)

Timing Diagrams and Parameter Definitions
Symbol

Parameter

TAW
TWA
Twp

Address to Write
Write to Address

Tcw
Twc
Tsp

Chip Select to WR

Minimum time chip select must be valid before a WR pulse

WI( to Chip Select

Minimum time chip select must remain valid after WR pulse

Tws
Tsw
TIA

2-118

WRPuise

SALVO Pulse

Desc:ription
Minimum time address must be valid before WR goes higb
Minimum time address must remain valid after WR pulse goes high
Minimum time of WR pulse width to write address into Next Event latches

Minimum time of SALVO pulse width

WR to SALVO

Minimum time from WR pulse to SALVO to load new address

SALVOtoWR

Minimum time from SALVO pulse to WR to load current address

1/0 to Address In

Minimum time 1/0 must be valid before address applied

P-32167-Rev. E (11/15/93)

Siliconix

DG884

AMember ofthe TBMIC Group

Timing Diagrams and Parameter Definitions (Cont'd)
Symb!ll

Parameter

TRS
TIO
TAO
Teo
TCA

RStoSALVO

Add"",

Address

,\a-A,

Minimum time address Bx must be valid until address Ax output valid

CStoOutput

Minimum time CS must be valid until Ax output is valid
Minimum time CS must be valid before address applied ialO is high

CS to Address In

'ESlor

Bo-BL

Minimum time 'flO must be valid before address output valid

I/O to Output
Address to Output

~,___________
Pk_~_t_rin~g_~_~_OO~_A
__________- ,

Device A

esfor
DeviceB

Descripti!lD
Minimum time RS must be valid before SALVO pulse

I

~t~-I

Presetting Device B

*. _ _

-rMIr--:-~~
Select: Output 1

n

_ _
Input

I

se_lcct
__
In.:..Pu_t-.;

Select Output 2

Select Input

tJ..J

lio

L
I
I
I I
I
twp !-'"""''-I-- tA"w
I tWA II II
I I-- tA'w
i'WAv
I . I
I I
r-----i
I
tw, I~ I t,w ---...I
b+I l.- tew --I
' - - twc ----'~
I L_-"I'-.. 1
I _ tew ----'I
II
I
I
---.......:
I•
r----l
""10;

res

--------------------------------~'~~-~-~-~-Qxwfu--ool_-a-,~--Y__
-n-m__
-.~-__
-M-,-~--~-am__--.~-t~--D-t!!--~-e-.~--m__
-ga-__
-eu-w-~--~7~1--------

__

__

I
!..2W

tw,

_-.! . - L
~
___
I

t,p

I

II

<' ~

I I
--t .... t--

Figure 1. Input Tuning Requirements

~...________In
__
~rr_~~lm~g~DM
__oo~
__
A ______~~

CSCor
Device A

I

I

Csfar
DeviceB

I

j-

ICO

JI

Addreu
DO-Bl

LatcllN
lCA

I
I
I
1---1

~~~~ _o_U~~_UI__-_-_-_-_-_-_-_-_-_-_-_-_~~::::::::::~~::::OU::tN:::::~~_-_-_-_-_-_-~~~~:_:_:_:_:_:_~:_:_:_~~::::~------_____
WR

~ ------------------rl--------------------------------------------------------~---------' - - 110

-----,

I~----------------------------------------~
liO~

Figure 2.

P-32167--Revoo E (11/15/93)

Output Tuning Requirements

2-119

•

Silicanix

DG884

AMember of the TBMIC Group

Test Circuits
-3V

lV

5V

15V

3V

Vo

INl
GND

SALVO

DGND

MpFl

lW

DG884
IN2 - INs

-

/

AQ,A},A2 OV

OUTl

-

SALVO
Ao, Al,A2
Bo Bl I/O es WR A3 RS

3V
50%
OV

I
I

:Ii

lV
Vo

1

90%

I I
H
ION

-

-

-3V

3V

5V

IOFF

Figure 3. SALVO Turn On/Off Tune

15V

3V

Vo

INl

lV

DGND

lW

DG884

/

AQ,Al,A2 OV

OUTl

GND
35 PF

IN2 - INs

-

I

-

WR

3V
50%
OV

Vo

lV

I
I

:II

1

90%

90%

I I
H
tON

-3V

5V

15V

3V
INl

Vo

OUTl

GND

AQ,A},A2 OV
Vo

DGND
DG884
INs
IN2 - IN7

-

toFF

Figure 4. WR Tum On/Off Time

-

lV

90%

lW

WR
AQ,A},A2
Bo Bl I/Oes SALVO A3 RS

-

f

50%

: "LJ.90%

I I
I

I
I

I" I
",
1.----1
I

tTRANS
tSBM

I

-

2-120

3V

Figure 5. rransition Tune and Break-Before-Make Interval

P-32167-Rev. E (11/15/93)

Siliconix

DG884

AMember oflhc TeMIC Group

Test Circuits
-3V

l5V

5V

-3V

r----i INI

I

t---IDGND

-==------'

, - - - - - - 1 INa

Vo

t---fGND
DG884

A3

Vo

GND
DGND

35pF

DG884

WR

WR

An,
AI,
A2 Be BI I/o

l5V

5V

An- A3

cs SALVO RS

Be BI liD

cs SALVO WR RS

5V

5V

Figure 7.

Figure 6. Charge Injection
Anyone input to anyone .---------------11""""0 Vo
output-all remaining
Outputs
inputs connected to
remaining outputs

-3 dB Bandwidth

Any input or output pin to
adjacent input or output pin

RIN
10C
RIN
10C

Inputs t--Cl--+--+--I---+-

Signal

v

Signal
Generator N
75C

Generator

XrALK(AH) =

20 logto

75C

VOUT

V-

AII crosspoints open

r--

(

Outputs
--,.:;--.,
~

RIN
10C

= 20 loglo

Vn + 1

or 20 loglo

-v;;-

Figure 9. Adjacent Input Crosstalk

:i~

Vo

•

75

Inputs

Meter
HP4l92A
Impedance
Analyzer
or Equivalent

-

5V

"0" = Off-State
"1" == On-State

V

N

V
-v:n_1

XrALK(AI)

Figure 8. All Hostile Crosstalk

Signal
Generator
75C

Vn+l

XrALK(D1S)

VOUT
= 20 loglo V-3V 15V

Figure 10. Matrix Disabled Crosstalk

P·32167-Rev. E (11/15/93)

Figure 11. On-State and Off-State Capacitances

2-121

Siliconix

DG884

AMomber oftheTBMIC Group

Pin Description
Pin

Symbol

1, 3, 4, 6, 8, 10, 12,
14, 16, 18, 20, 41, 43

GND

39

DGND

26

V+

Positive Supply Voltage

21

V-

Negative Supply Voltage
Logic Supply Voltage-generally 5 V

Desd.'iption
Analog Signal Ground
Digital Ground

38

VL

5, 7, 9, 11, 13, 15,
17,19

INl to INs

2, 40, 42, 44

OUI'ltoOUI'4

29

iiO

Determines whether data is being written into the Next Event latches or read from the Current Event latches

30

CS

Chip Select-a logic input

31,32, 22, 24

Ao, Al,A'b A3

27,28

Bo,Bl

35

Wi'{

36

SALVO

37

RS

22, 23, 24, 25

DISl toDI~

8 Analog Input Channels
4 Analog Output Channels

IN Address-logic inputs or outputs as defined by I/O pin, select one of eight IN channels
OUI' Address-logic inputs, select one of four OUI' channels
Write command that latches Ao, Ah A'b A3 into the Next Event latches
Master write command, that in one action, transfers all the data from Next Event latches into Current Event
latches
Reset-a low will clear the Current Event latches
Open drain disable outputs-these outputs pull low when the corresponding OUI' channel is off

Device Description
The DG884 is the world's first monolithic wideband
crosspoint array that operates from dc to > 100 MHz. The
DG884 offers the ability to route anyone of eight input
signals to anyone of four OUT pins. Any input can be
routed to one, two, three or four OUTs simultaneously with
no risk of shorting inputs together (guaranteed by design).
Each crosspoint is configured as a "T" switch in which
DMOS FETh are used due to their excellent low resistance
and low capacitance characteristics. Each OUT line has a
series switch that minimizes capacitive loading when the
OUT is off.

Interfacing
The DG884 was designed to allow complex matrices to be
developed while maintaining a simple control interface.
The status of the I/o pin determines whether the DG884 is
being written to or read from (see Figures 1 and 2).
In order to WRITE to an individual latch, CS and I/o need
to be low, while RS, WR and SALVO must be high. The IN
to OUT path is selected by using address Ao through A3 to
define the IN line and address Bo and Bl to define the OUT
line. That is, The IN defined by Ao throUghA3 is electrically
2-122

connected to the OUT defined by Bo, Bl' This chosen path
is loaded into the Next Event latches when WR goes low
and returns high again. This operation is repeated up to
three more times if other crosspoint connections need to be
changed.
Upon completing all crosspoint connections that are to be
changed in a single device, other DG884s can be similarly
preset by taking the CS pin low on the appropriate device.
When all DG884s are preset, the Current Event latches are
simultaneously changed by a single SALVO command
applied to all devices. In this manner the crosspoint
configuration of any number of devices can be
simultaneously updated.

DIS Outputs
Four open drain disable OUTs are provided to control
external line drivers or to provide visual or electrical
signaling. For example, any or all of the DIS OUTs can
directly interface with a Siliconix Si582 Video Amplifier to
place it into a high impedance, low-power standby mode
when the corresponding OUT is not being used. (See
Figure 15). The DIS outputs are low and sink to V-when
corresponding OUT is open or RS is low.
P-32167-Rev. E (11/15/93)

Siliconix

DG884

AMcmber o{tho TBMIC Group

Device Description (Cont'd)
Reset

Readback

The reset function (RS) allows the resetting of all
crosspoints to a known state (open). At power up, the reset
facility may be used to guarantee that all switches are open.
It should be noted that RS clears the Current Event latches,
but the Next Event latches remain unchanged. This useful
facility allows the user to return the matrix to its previous
state (prior to reset) by simply applying the SALVO
command. Alternatively, the user can reprogram the Next
Event latches, and then apply the SALVO command to
reconfigure the matrix to a new state.

The 110 facility enables the user to write data to the Next
Event latches or to read the contents of the Current Event
latches. This feature permits the central controller to
periodically monitor the state of the matrix. If a power loss
to the controller occurs, the readback feature helps the
matrix to recover rapidly. It also offers a means to perform
PC board diagnostics both in production and in system
operation.

8 Analog Inputs

OUTt

flO

OUT2

4

RS

o-~4-~------~~~-----------4--~

~o-~~------~~~

fiM

At o--t-r----------~~~
A

Iii""
~~

to.

Z

7

-

~~

'til!

@'L:

Ii,,"

9

OUT3

00

3

Bo
Bt

0--+-+-01-..,--,
o--t-r-tH

CSC:=!=~~===~L~

OUT4

WR 0

DIS3

Mux 3 Decoder

Open Drain
Output

•

SALVO o-------------------------------------~
One of Four Blocks of Logic/Latches Shown

Figure 12. Control Circuitry

P-32167-Rev. E (11/15/93)

2-123

Silicanix

DG884

A Member of tho TBMIC Group

Applications
WR
SALVO
1Wo-Si584
Quad Unity·Gain Buffersr-_ _...JL-_...JL-_ _- - ,

SiS8l

DlSj

f2

1m2

I

DG884

I
I

I
I
I

INs

IDS3

DIS4

@---+--1

RESET

Note: ])JS outputs are used to power down the Si582 amplifiers.
Figure 13. Fully Buffered 8 X 4 Crosspoint

Power Supplies and Decoupling
A useful feature of the DG884 is its power supply flexibility.
It can be operated from dual supplies, or a single positive
supply (V-connected to 0 V) if required. Allowable
operating voltage ranges are shown in Operating Voltage
Range (IYpical Characteristics) graph, page 2-118.
Note that the analog signal must not go below V-by more
than 0.3 V (see absolute maximum ratings). However, the
addition of a V - pin has a number of advantages:
1) It allows flexibility in analog signal handling, i.e. with
V- = -5 V andV+ = 15 V; up to ±5Vacsignaiscan
be accepted.

2) The value of on-capacitance (CS(on» may be reduced
by increasing the value of V -. It is useful to note that
optimum video differential phase and gain occur when
V- is -3 V. Note that V+ has no effect on CS(oo).
3) V-eliminates the need to bias an ac analog signal using
potential dividers and large decoupling capacitors.
It is established RF design practice to incorporate sufficient
bypass capacitors in the circuit to decouple the power
supplies to all active devices in the circuit. The dynamic
performance of the DG884 is adversely affected by poor
decoupling of power supply pins. Also, since the substrate
of the device is connected to the negative supply, proper
decoupling of this pin is essential.

Rules:
1) Decoupling capacitors should be incorporated on all
power supply pins (V +, V -, VL ).
2-124

2) They should be mounted as close as possible to the
device pins.
3) Capacitors should have good high frequency
characteristics-tantalum bead and/or monolithic
ceramic disc types are suitable.
Recommended decoupling capacitors are 1- to 10-I1F
tantalum bead, in parallel with 1oo-nF monolithic ceramic.
4) Additional high frequency protection may be
provided by 51-g carbon film resistors connected in
series with the power supply pins (see Figure 14).

+

~-¥l
V+
DG884

Cl = 111FThotaium
~ = 100 of Ceramic

Figure 14. DG884 Power Supply Decoupling
P-32167-Rev. E (11/15/93)

Biliconix

DG884

A Member of the TBMlC Group

Applications (Cont'd)
The VL pin permits interface to various logic types. The
device is primarily designed to be TTL or CMOS logic
compatible with +5 V applied to VL. The actual logic
threshold can be raised simply by increasing VL.
A typical switching threshold versus VL is shown in
Figure 15.

5

./

"tl

"0

""il

4

~

3

.3,

2

.~

,/

:>

/

1

o ./

o

V

Layout

,V

The PLCC package pinout is optimized so that large
crosspoint arrays can be easily implemented with a
minimum number of PCB layers (see Figure 16). Crosstalk
is minimized and off-isolation is optimized by having
ground pins located adjacent to each input and output
signal pins. Optimum off-isolation and low crosstalk
performance can only be achieved by the proper use of RF
layout techniques: avoid sockets, use ground planes, avoid
ground loops, bypass the power supplies with high
frequency type capacitors (low ESR, low ESL), use
striplines to maintain transmission line impedance
matching.

/

oS

/'

2

4

6
8
10 12 14
VL - Logic Supply (V)

16

18

Figure IS. Switching Threshold Voltage vs. VL

These devices feature an address readback facility whereby
the last address written to the device may be read by the

(;--(;---

~
I

Out
Bus

I

When the I/O assigns the address output condition, the Ax
address pins can sink or source current for logic low and
high, respectively. Note that VL is the logic high output
condition. This point must be respected if VL is varied for
input logic threshold shifting.
Note: Even though these devices are designed to be latchup
resistant, V L must not exceed V + by more than 0.3 V in
operation or during power supply on/off sequencing.

6

~

system. This allows improved status monitoring and hand
shaking without additional external components.

For additional information please refer to Application
Note AN504.

~

OJ

J'Q

~

~

I

Out
Bus

I

OJ

J'Q

~

"tl

;e

----

In
Bus

--t>
In
Bus

----

•

---)

----

In
Bus

In
Bus

--- -

----

9

Out
Bus

9

Out
Bus

Figure 16. 16 X 8 Expandable Crosspoint Matrix Using DG884
P·32167-Rev. E (11/15/93)

2-125

Siliconix

DG894

AMember of tho TsMIC Group

Component Video Selector
Feature\S

Benefits

Applications

• Wide Bandwidth: 200 MHz
• Very Low Crosstalk: -70 dB at 5 MHz
• CMOS Compatible
• J2c Bus Compatible
• Fast Switching-tON: <200 ns

•
•
•
•
•

• Component Video Switching:
RGB + SYNC, S-VHS, Y-C, etc.

Low Insertion Loss
Improved System Performance
Reduced Power Consumption
Easily Interfaced
Future System Expansion via I2C Bus

• AudioNideo Routing
• Digital TV
• ATE
• J2c Bus AudioNideo Systems
• SCART Video Switching

• Lowl'])s(on): 44Q
• Single Supply Capability

Description
The DG894 is a monolithic video selector designed for
switching a variety of component video signals. The low
on-resistance and low capacitance of the DG894 make it
ideal for video/audio signal routing. Switch control can be
through direct CMOS addressing or through the two-wire
IZCbus.
.

The DG894 is built on the Siliconix proprietary D/CMOS
process that combines n-channel DMOS switching FE'Th
with low-power CMOS control logic and drivers.
Low-capacitance DMOS FEIS are used to achieve high
levels of off isolation at low cost.

Functional Block Diagram and Pin Configuration
Dual-In-Line and SOIC
'Iruth Thble

VDD
Y1

GND

SMO

Sm.

Yo

0

0

12c Bus Operation. Address Ao = "1"

VDD

0

1

1
0

12c Bus Operation. Address Ao = "0"

Cour
Your
SMa

SCL

Vss

SDA

0

1
1
1
1

0

0

0
0
1

1
1
0

1

0

1
1

1
1

Raur

SDA

1
1

Gour

SEL

1

SCL

Fundioll/Switth On

0
1

All switches off

0

Yo. Co
Y1,C1

1

Y20~

0

R1. Glo B1. F1
R20 G20 B20 F2

1
0

R1. G1. B1. Flo Y1. C1
R20 G:u B20 F20 Y20 ~

1

Bour
FBour

Ordering Information

FB2

Temp Range
-40 to BS·C

Part Number

Pacltaae
28-Pin Plastic DIP

DG894DJ

28-Pin Wide Body SOIC

DGB94DW

1bpView

2-126

P-32167-Rev. C (1l/lS/93)

Siliconix

DG894

AMember of the TeMic Group

Absolute Maximum Ratings
V+ toGND ................................. -0.3Vto19V
V+toV- .................................. -0.3Vto19V
V- toGND ................................. -10Vto 0.3 V
Digital Inputs .................... GND -0.3 V to (V+) +0.3 V
or 20 rnA, whichever occurs first
Signal Inputs .............................. V ss -0.3 V to 8 V
or 20 rnA, whichever occurs first

Continuous Current (Any Thrminal) .................... 20 rnA
Current (Any Thrminal) Pulsed 1 ms, 10% Duty Cycle Max . 40 rnA
Storage Thmperature . . . . . . . . . . . . . . . . .. . . .. . . ... -65 to 125°C
Power Dissipation (Package)'
28-PinPlasticDIP .................................. 625mW
28-Pin Wide Body SOIC ............................. 450 mW
Notes:
a. All leads welded or soldered to PC board.

Specifications
Limits
-40 to 85°C

Test Conditions
Unless Otherwise Specified
Parameter

Symhol

VDD = 12 V, Vss = -5 V
VINH = 3 V, VINL = 1.5 yo

Temp'

Mine

l1YPb

I

Max"

Unit

Analog Switch
Analog Signal Ranged
Drain-Source On-Resistance
Resistance Match Between Channels

VANALOG
roS(on)

VDD = 12 V, Vss = GND

Full

0

4

VDD = 12 V, Vss = -5V

Full

-2

2

Is = -lOrnA, VD = OV

Aros(on)

V

Room
Full

44
51

Room

10

100
150

Source Off Leakag" Curr"nt

IS(off)

VS=4V,VD=OV

Room
Full

-10
-100

-0.05

10
100

Drain Off Leakage Current

ID(off)

VD =4 V,Vs = OV

Room
Full

-10
-100

-0.05

10
100

Thtal Switch On Leakage Current

ID(on)

VD=Vs=4V

Room
Full

-10
-100

-0.07

10
100

VINH

Full

3

VINL

Full

2.55

Vth

Room

2.55

Q

nA

Input
Input Voltage High
Input Voltage Low
Input Threshold
Thmp Coefficient of Input Threshold
Input Current
Output Voltage Low

2.55
1.5

Ilvrc

-200

TCth

Full

lIN

VIN = GND or VDD

Room
Full

VOL

Pin 21, During Acknowledge, IOL = 3 rnA

Room

Cut

Pin21,22

Room

3

10

CS(on)

VS=VD=OV

Room

10

15

-1
-20

0.05

V

1
20

f1.A

0.4

V

Dynamic
Input Capacitanced
On State Input Capacitanced
Off State Input Capacitanced

CS(off)

Vs=OV

Room

4

8

Off State Output Capacitanced

CD(olf)

VD=OV

Room

4

8

Bandwidthd

BW

RL = 50 Q, See Figure 1

Room

1I1rnOnl1me

ioN

200

1I1rn Offl1me

tOFF

RL = 1 kQ, CL = 35 pF, 50% to 90%
Vss = -5 V, 0 v, Vs = 3 V, See Figure 1

Room
Room

180

RIN = 10Q,RL = 1 kQ
f = 5 MHz, See Figure 2 and 3

200

FSCL(MAX)

Full

Component Crosstalk

XTALK(CO)

Room

-85

Channel Crosstalk

XTALK(CH)

Room

-85

P-32167-Rev. C (11/15/93)

MHz

500

SCL Max Clock Frequency

100

pF

ns
kHz

dB

2-127

--

Silicanix

DG894

AMcmbcr of tho TBMIC Group

Specifications
Test Conditions
Unless Otherwise Specified
VDD = 12V,Vss = -SV
VINH = 3 V, VINL = 1.5 yo

Symbol

Parameter

Limits
-40 to 85°C
Temp"

Mine

IlYP I

Max"

3
4

8
10

b

Unit

Supply Vctltage
Room
Full

1+

Positive Supply Current

All Control Inputs 0 V, S V

-8
-10

Room
Full

1-

Negative Supply Current

mA

-2.5
-3.0

Notes:
a. Room = ZS°c, Full = as determined by the operating temperature suffIX.
b. 1Ypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. VIN = input voltage to perform proper function.

m

Purchase of Siliconix DG894 components conveys a license to use them in the I2c system as defined by Philips.

lYpical Characteristics
~

Cl

j

l'J>s(on) vs. Drain Voltage

200
180 -

V+~12V I

160 -

V- = -SV
Is= -10mA

~

j

~

'"
0

V+ =12V
V-=OV
Is= -lOmA

180
160

---11----+----,,.

.!!l

.!!l

~0

l'])S(on) vs. Drain Voltage

200
~

Cl

~0

140
120

/)

100
8SOC

~
o§

80

Q
I

-

60

J

6
.~

)(j,

20

-4

-2

.....V/ 1/

Q
I

!

§

I
o

2
4
VD - Drain Voltage (V)

6

120
100

ell

~ --"'" ~40OC

40

106

ZSOC

~

140

80
25°C
60
40
20

8

2
4
6
VD - Drain Voltage (V)

0

tON vs. Bipolar Supply Voltage

c----r~-;-~__;.._'O":"":'T--=-r--_.,

8

tOFF vs. Bipolar Supply Voltage

4S.S

l

8S C

'" ~

43:S

100

V- = -SV
See Figure 1
94

:[

!

88

82

39.5

....

r--.

3S.S
10.8

11.2

11.6
12.0
12.4
12.8
V+ - Positive Supply (V)

13.2

10.8

~

zsoC

37.5

76

2-128

41.5

11.2

~

~

11.6
12.0
12.4
12.8
V + - Positive Supply (V)

13.2

P-32167-Rev. C (11115/93)

Siliconix

DG894

AMomber aftho TBMIC Group

1Ypical Characteristics (Cont'd)
tON vs. Unipolar Supply Voltage

r----r"-'--,--=--,--:..::....:r---=r----.

108

tOFF vs. Unipolar Supply Voltage

57

V- =OV

I
T54 I-- V- = OV
See Figure 1

100

92

51

84

48

76

45

68

42

r-:.;:85!C
~

r-- r-- "--

"'"

25°C

--

-40°C

10.8

11.2

11.6

12.0

12.4

12.8

13.2

10.8

11.2

V + - Positive Supply (V)

SDA Output Current vs. Supply Voltage

10

V

V

r--

10

-OV _

VOL=OAV
TA=25°C

r--

8
6

JpecllcatlOn
·fi .
Minimum Limit

--

-::::r-~

11.2

11.6

12.0

12.4

12.8

-40

13.2

-20

0

Component Crosstalk

120
110

70

~

20

~

'" "'- "'-

60

40

60

80

100

'Thmperature (0C)

VSUPPLY(V)

80

I
J
~OV

o

10.8

!l3

13.2

2

o

90

12.8

Specification
Minimum Limit

4

2

100

12.4

V+=12V
VOL = 0.4 V

6

4

12.0

SDA Output Current vs. Temperature

12

5V

8

11.6

V + - Positive Supply (V)

-

110

-

100
90

!l3

.......

Channel Crosstalk

120

VDS= +12 V
Vss = -5V
RIN= 109
RL= lkg
See Ftgure 2

80
70

.......

~

VDD = +12V
Vss= -5V
RIN=10g
RL= lkQ
See Ftgure3

'"'

.... r--.,

......

•

-

.... I'--r-.

60

......... i'o.
50

50

40

40
2

3

4

5

f - Frequency (MHz)

P·32167-Rev. C (11/15/93)

10

2

3

4

5

10

f - Frequency (MHz)

2-129

Siliconix

DG894

AMcmber ofthc'DIMIC Group

Test Circuits
+12V
5V

V+
Vs

Logic
Input

Vo

3V

Switch
Input

Vs

Switch
Output

OV

CL (includes fIXture and stray capacitance)
Vo=Vs

Figure 1. Switching Tune

,-------t-=BL--o----'-----.,.---'I-.,.....-o Baur
..-_ _-+.;;.FB:;.l!.....;o--:L._ _ _+-+-+-o FBaur
e.g., Y or C

Your
...---i--''------<:..-lL......,..+"t""O or
Cour
e.g., YlorCl
e.g',Y20r~

10n

10n

lOn

an

N

VOUT
XrALK(CO) =

20 \oglo VIN

XrALK(CH)

Figure 2. Component Crosstalk

Your
= 20 \0810 V IN

Figure 3. Channel Crosstalk

+12 V

V+

s

D

~----+---~~--~-1-0

Vo

Rg =75n

-

-5V

Figure 4. Bandwidth

2-130

P-32167-Rev. C (11115193)

Siliconix

DG894

AMember ofthe TBMIC Group

Operating Voltage Range
20
18
16

o.

Data Sheet Thst Conditions

Operating
Voltage
Area

14
12

~

j

~

-'.,.
.,.='

"

10

til

8

:~"

6

4
2

~
I

t

0
-0.0
V- - Negative Supply Voltage (V)

Figure 5.

Pin Description
Symbol
YO,Yl, Y2
Co,Cl,y
Rl, R2, GJ, Gz, BJ, Bz, FBJ, FB2

Description
An analog channel input, typically luminance.
An analog channel input, typically chrominance.
An analog channel input, typically "red", "green", ''blue'' or "fast blanking", as appropriate.

GND

Analog and digital ground.

VDD

Positive supply voltage'

Vss

Negative supply voltage

YOUT,CoUT
ROUT,GOUT,BoUT,FBoUT

An analog channel output, typically luminance or chrominance, as appropriate

•

An analog channel output, typically "red", "green", ''blue'' or "fast blanking", as appropriate.

SMO

A low selects serial mode (12C) operation. A high selects CMOS operation.

SDA

Serial data lineb

SCL

Serial clock lineh

SEL

CMOS control line or 12C addressc select line

Notes:
a. Both VDD pins (Pin 1 and Pin 26) must be connected for proper operation.
b. SDA and SCL pins become CMOS control inputs when SMO = High.
c. The SEL pin, in 12C bus operation (i.e., with SMO low), is the least significant bit of the device address. This allows two devices to operate on the
same lZC bus, yet retain independent control.

P-32167-Rev. C (11/15/93)

2-131

Siliconix

DG894

AMombcr of tho TBMlC Group

Applications
12C Bus Operation-RGB Switching
Figure 6 shows an inexpensive RGB + stereo selector. The
two audio channels are switched via the C, Y terminals. The
Si584 quad video buffer drives four 75-Q output lines.

Left1
Right1

-SV

+12V

Vss

VDD

Y1

YOUT

C1

CoUT

Left
Right

R1
G1
B1
SYNC1

+SV
Left2
Right2

~

7Sn
ROUT

R2

ROUT

GOUT

G2

GOUT

BOUT

B2

BOUT

FBOUT

SYNC2

SYNCoUT

+SV

SI584

SMO

t

SEL

-SV

: Conlrol Logia.

I
I

SDA
SCL

GND

Channel
Select

Figure 6.

2-132

P-32167-Rev. C (11115/93)

Siliconix

DG894

AMcmbcr altho TBMIC Group

Applications (Cont'd)

SCL--------~~----------~------~--~~--------------------------~
SDA----~--~~------~--_4------~~--_+--------------------__,

Figure 7.

Characteristics of the I 2C Bus

total bus capacitance

The I 2C Bus interface is ideally suited for communication
between different ICs or modules. Its salient features are:

supply voltage (Figure 7).

Data 'fraosfer 00 the I 2C Bus

• '!\vo wire bidirectional serial bus
- Serial data (SDA) and serial clock (SCL) lines
•

Multi-master system (built-in arbitration for
multi-master systems)

•

Devices have independent clocks

• Master and slave devices can be receivers and/or
transmitters.
•

Each device has a unique address.

•

Maximum bus clock rate of 100 kHz.

•

Any number of interfaces may be connected to the
bus

If the bus is not being used, both SDA and SCL lines must
be left high.

Every byte put onto the SDAline should be eight bits long
(MSB first), followed by an acknowledge bit, which is
generated by the receiving device.
Each data transfer is initiated with a start condition and
ended with a stop condition. The first byte after a start
condition is always the address byte. If this is the device's
own address, the device will generate an acknowledge by
pulling the SDA line low during the ninth clock pulse, then
accept the data in subsequent bytes until another start or
stop condition is detected.

Limited only by total capacitance of 400 pF
Each pin on bus limited to 10-pF capacitance
Input levels:
= 1.5 V (fixed supply operation)
= 3 V (fixed supply operation)
= 0.3 VDD (wide range supply operation)
= 0.7 VDD (wide range supply operation)

VIL max
VIH min
VIL max
VIH min

System Configuration

The eight bit of the address byte is the read/write bit (high
= read from addressed device, low = write to the addressed
device) so, for the DG894, the address is only considered
valid if the R/W bit is low.
Data bytes are always acknowledged during the ninth clock
pulse by the addressed device. Note that during the
acknowledge period the transmitting device must leave the
SDA line high.
Premature termination of the data transfer is allowed by
generating a stop condition at any time. When this
happens, the DG894 will remain in the state defined by the
last complete data byte transmitted.

Rp value depends on:

number of devices on bus

SDA
SCL

Start Condition

Stop Condition

Figure 8. STARr and STOP Conditions
P-32167-Rev. C (11/15/93)

2-133

•

Silicanix

DG894

AMembcr of the. TBMIC Group

Applications (Cont'd)

r-,

,,
,

~'----''--

,
,

-

MSB

i

L~.J

byte complete, interrupt within receiver
r-\
r-\
\...J 1 \...J 2 \ . . _ - -

-

-

/\
' rr
'---t""' ,

->---..J

. acknowledgement
signal from receiver

,
,

,
,

clock line held low while interrupts are serviced ,

,

acknowledgement
signal from receiver

"
SCL"'""t"'-""'h

i

r-,

---"'\

r--v-Y-

SOA'""T\'

;8~
ACK

Start Condition

Ls.!9.J

Stop Condition

Figure 9.

Data 'fransfer on the Pc Bus

Timing Specifications of the I 2C Bus

I 2C Bus Protocol

fc

The DG894 is a slave receiver type of I 2C interface and has
four allocated addresses, two of which are user
programmable through the SEL pin. Additional addresses
may be obtained by a metal mask option for users requiring
more than two DG894s on the same I 2C bus. Contact
Siliconix marketing for further information.

bus load conditions for timing specifications are as
follows:
4 kQ pull-up resistors to +5 V; 200 pF capacitor to ground.
All values are referred to VIH = 3 V, VIL = 1.5 V. .
Parameter
SCL Clock Frequency

SymbQI

Min

Max

Unit

fscl

-

100

kHz

tBUP

4.7

-

Start Condition Set-up TIme

tSU;STA

4.7

-

Bus Free Before Start
Start Condition Hold TIme

tlID;STA

4

-

SCL and SOA Low Period

tLOw

4.7

SCL and SOA High Period

tHIGH

4

-

tr
tf

-

1.0

Data Set-Up TIme (WRITE)

tSU;DAT

0.25

-

Data Hold TIme (WRIlE)

tlID;DAT

O·

-

SCL and SOA Rise Tune
SCL and SOAFaiI TIme

After the correct address has been sent, only one data byte
is needed to define the switch configuration. Subsequent
data put onto the bus will update the switches until a STOP
condition (or another START condition) signals that the
device is no longer being addressed. The switches will then
remain in their last configuration as long as power is
maintained to the chip.

liS

0.3

• A transmItter must mternally prOVIde at lease a hold tlllle to
bridge the undefined region (max 300 ns) of the falling edge of
theSCL.

Power on Reset
A power on reset function is provided on the DG894 to turn
all switches off following power up if the I 2C mode is
selected. In the CMOS control mode, the switches are
selected according to the state of the control inputs.

SDA

,,
,
,
, ,
'sro'

,,
,,
,

SCL _-I-_.L---I_+.&.._""""-

L.;_~

,
,tlID;STA
L.SI.A.J

tlID;DAT

Figure 10.

2-134

Pc Bus TJD;ling Diagram
P-32167-Rev. C (11/15/93)

Silicanix

DG894

AMcmbcr of the TEMIC Group

Applications (Cont'd)
Minimum Bit Stream to Set Up DG894 Switches

ISTA I 1 I 1 I 0 I 1 I 1 I Al I Ao I R/W I ACK I X
...
 ..1------ Address Byte

-----t.1

x

x

I D4 I D3 I Dz I DI I Do IACK I STO I

1
.....1------ Data Byte

-----.~I

STA = START CONDITION
Al = 2...CE!ogrammable to "1" with metal mask change)
Ao = SEL. Address bit set by use (address is inverse of SEL logic level)
R/W = READ/WRITE bit (must be "0", only WRITE mode allowed for DG894)
ACK = Acknowledge bit ("0") generated by DG894
D4 = 0 - - R2, G 2, B2, and FB2 switches off
D4 = 1 - - R2, G 2, B2, and FB2 switches on
D3 = 0 - - Rh Gh Bl, and FBl switches off
D3 = 1 - - Rh Gh Bl, and FBl switches on
D2 = 0 - - Y2, y, switches off
D2 = 1 - - Y 2, C 2, switches on
Dl = 0 - - Y h C h switches off
Dl = 1 - - Y h Cl, switches on
Do = 0 - - Yo and Co switches off
Do = 1 - - Yo and Co switches on
STO = STOP CONDITION

•
P-32l67-Rev. C (11/15/93)

2-135

Silicanix
AMcmbcroftheTBMICGrOUP

2-136

General Information
Analog Switches
Analog Multiplexers
WidebandNideo Amplifiers •

Voltage Converters
Appendix
Worldwide Sales Offices and Distributors

Bilicanix
AMember altho TBMIC Group

About Siliconix WidebandNideo Amplifiers
The Siliconix family of wideband/video amplifiers works together to provide complete system solutions
for such applications as video and data communication, signal switching and routing, and
high-resolution workstation buffering. Our Si581 and Si584 unity-gain buffers, as well as the Si582
low-gain amplifier, improve linearity and transmission accuracy, while providing reduced power
consumption, flat frequency response, and high color fidelity. With the Si582 amplifier at the output of
a switching matrix, the Si581/Si584 buffers at the input, and our wideband multiplexers and switches
(DG534A, DG535, DG536, DG538A, DG54X, DG61X, DG64X, DG884, or DG894) at the core, we
now provide a complete system solution for broadband distribution and back-terminated line-driving
applications.

Video Amplifiers
Part Number

Min
-3 dB
Bandwidth
(MHz)

Max
Offset Voltge
(mY)

Min
Slew Rate
(Vlfls)

Si581

400

8

500

2

J,Y

Unity Gain Video Buffer

Si582

150

5

430

4.5

J,Y

Video Amplifier with Disable

3-8

Si584

135

5

200

6

J,Y

Quad Video Buffer

3-16

J ; Plastic DIP

Y;SOIC

II

Max
Settling Time
(ns}

Package

COnIlguration

Page
3-1

Siliconix

Si581

AMcmbcr of the TeMIC Group

Unity-Gain Video Buffer
Features
•
•
•
•
•
•

-3 dB-Bandwidth: 730 MHz
Low Differential Gain: 0.1 %
Low Differential Phase: 0.01·
LowPower-PD: 150mW
Fast Settling: 0.2% in 5 ns
Low Distortion: -65 dBc at 20 MHz

Benefits

Applications

•
•
•
•
•
•

•
•
•
•
•
•

Flat Frequency Response
High Color Fidelity
Reduces Power Consumption
Increases Data Throughput
Improved Linearity
Improved Transmission Accuracy

Video Signal Routing
Telecommunications
Digital Video
Broadcast Quality Video Systems
HDTV Systems
Line Drivers

Description
The Si581 is a monolithic closed-loop unity-gain video buffer
with a very wide -3-dB bandwidth (730 MHz). Its unique
design offers a high-transparency, high-performance
alternative to conventional discrete, hybrid and open-loop
buffers.
The Si581 features low power dissipation (150 mW,
typical), fast settling (0.2% in 5 ns), without signal
degradation. Distortion is typically -65 dBc at 20 MHz,
gain flatness is less than 0.4 dB from dc to 50 MHz. These

performance specifications allow the designer to improve
system bandwidth while reducing power dissipation, board
space and design complexity. The output is protected
against short circuits to ground.
The Si581 uses a complementary bipolar IC process to
achieve excellent high frequency performance. All
performance is specified and rated for operation with
± 5-V supplies, reducing power consumption compared
with traditional ± 15-V designs.

Functional Block Diagrams and Pin Configurations
Dual·In·Line and sorc
V+

VoUT

NC

NC

NC

NC

VIN

V-

Ordering Information
Templlange
-40 to 85·C

Pru:kage

Part NumbeJ:

8-Pin Plastic DIP

Si581DJ

8-Pin Narrow sorc

Si581DY

ThpView

Absolute Maximum Ratings
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 7 V
Input Voltage Range ............................. V-to V +
Output Short Oreuit Duration. . . . . . . . . . . . . . . . . . . .. Continuous
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 rnA

P-32167-Rev. B (11/15193)

Storage Thmperature . • . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 150'C
Lead Thmperature (Soldering lOs) ................•.... 300'C
Junction Thmperature: Tr ............................ 175'C

3-1

Siliconix

Si581

AMember of tho TBMIC Group

Specifications
Test Conditions
Unless Otherwise Specified
Parameter

DSuffix
-40 to B5°C

Symbol

V+ = 5V,V- = -5V
RL = 100 0, Rs = 500

Temp"

Mine

SSBW

VOUT<0.5Vp_p

Room
Full

400
300

MSBW

VOUT = <1 V!>'p

IlYP IMax"
b

Unit

Frequency Domainh

-3-dB Bandwidthd

LSBW
Gain Flatness Peaking'" g

GFPH

Gain Flatness Roll Off"

GFRH

Linear Phase Deviatione

LPD

' VOUT = 5Vp_p

Differential Gain

RL= 1500
Vc.mer = 280mV

DG

f= 4.43 MHz
Vc.mer = 280mV

MHz

90
0

0.5
0.8

Room
Full

0

O.B

Room
Full

0.7

f - 3.5BMHz

Room

0,01

f-4.43MHz

Room

0,01

RL-1500

Room

0.1

RL=lW

Room

0.Q7

de to 200 MHz

DP

450
55
50

Room
Full
VOUT <0.5 Vp_p, de to 200 MHz

Differential Phase

Room
Room
Full

730

dB

1.2
1.5
2
deg

%

Time Domaind , h
tRS

VIN = 0.5 V Step
Input Rise/Fall time = 300 ps

Room
Full

0.4

1
1.4

tRL

VIN-5VStep
Input Rise/Fall time s 1 os

Room
Full

4.5

7.5
8.5

tsp

Th ±0.2 %, VIN = 2 V Step

5

10

Rise and Fall TIme

Settling TIme ,
Slew Rate

Full
Room
Full

SR

500
450

BOO

os

VI""

Distortion and Noise
2nd Harmonic Distortiong

HD2

3rd Harmonic Distortiong

HD3

Equivalent Input Noise F100rd

SNF

Equivalent Input Integrated Noised

INV

Room
Full

-65

-55
-48

Full

-65

-55

f >100 kHz

Room
Full

-158

-155
-154

dBm
(1Hz)

100kHz < f <200 MHz

Room
Full

40

57
63

l1V

VIN = 2 Vp_p, fIN = 20 MHz

dBe

Stati~dc

0.96
0.95

GA

Room
Full

Integral Endpoint Linearityd

ILIN

Room
Full

0.2

0.4
O.B

%FS

Input Offset Voltagef

VIa

Room
Full

2

8
16

mV

DVIO

Room
Full

20

IBN

Room
Full

Input Bias Current
Average Thmperature Coefficientd

DIBN

Room
Full

Power Supply Rejection RatioS

PSRR

Full

Small Signal Gaind

Input Offset Voltage
Average Thmperature Coeffieientd
Input Bias Currentf

Supply Currentf

3-2

1+

± 2 V Full Scale

No Load

Full

0.97

VN

-

l1V/oC

±20

±50
±100

!1A

200

-

700

nN°C

20

rnA

100

45

50
15

dB

P-32167-Rev. B (11/15/93)

Siliconix

Si581

AMember ofthe TSMIC Group

Specifications
DSufflX
-40 to BS·C

Test Conditions
Unless Otherwise Specified
Parameter

V+ =SV,V- = -SV
RL = 1000, Rs = 500

Symbol

Temp"

Mine

100
SO

IlYPb IMax"

Unit

Miscellaneousd
160

Input Resistance

RIN

Room
Full

Input Capacitance

CIN

Room
Full

1.6

Output Impedance

Ro

Room
Full

Aldc

Output Voltage Range

Vo

Room
Full

Output Current

10

Room
Full

k.Q

2.2

2.5

pF

2

3
3.5

0

3.2
-3

±4

3.2
3

V

SO

±70

-45

50
45

rnA

Notes:
a. Room = ZS·c, Full = -40 to BS·C.
b. "JYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. Gain flatness tests are performed from 0.1 MHz to 200 MHz.
f. Parameter is 100% tested at 2S·C and sample tested at BS·C.
g. Parameter is sample tested at ZS·C.
h. AC performance is very dependent on layout. Specifications apply only in a 50-0 microstrip environment.

lYPicaJ Characteristics: VSUP

-

± 5 V, RL - 100 Q, Rs - 50 Q

Forward Gain and Phase

I

~

""""

-1

.1::

"gp
::;;

-2

-

r-..

, ,

0

I

...... r--.

100

200

'"
....

300

f - Frequency (MHz)

P-32167-Rev. B (11115/93)

-

vo=o.sVp-p -

........ 1"-0.. Phase

-3

o

Gain Flatness and Phase Deviation

J

"

Magnitude

-- .... ~kagnLe'-

0

iii'

I

~

iii'
0

~

1"""'-0 r-....
400

-0.2

500

-45'
-90'

-135'

...,
[

"

~

.g

+2'

+1'
-0.4

.1::

1-

r---!hase

0

'"""

-1'

0.6

-O.B

-lBO'

r-,VOj1,p-p
0

SO

100.

150

~

c:

"

":\
200

-2'
ZSO

f - Frequency (MHz)

3-3

•

Bilicanix

Si581

AMomberoftheTsMICGrOUP

lYPicaJ Characteristics: VSUP

= ± 5 V, RL = 100 Q, Rs = 50 Q (Cont'd)

Reverse Gain and Phase

Input Impedance

lOOk

""""""",-

0

-20

Pi"

::!-

"

"0

__ I.Phase1

r-- __

I
I

r~

45'
0

Magnitude

-45'

;;J1

§:

"

N

tl

'/

-60

-

/

o

zoo

100

400

300

100

1

500

-40'

1\

"

""

,cz,.

-60'
-80'

-100'

1

10

1000

100

f - FrequencY (MHz)

Output Impedance

Recommended Rs vs. Load Capacitance

60

LZo

~~

70'
50

30

-;s

o
-ZO'

.......

f - Frequency (MHz)

40

20·

lk

10

V,O=j Vpr - I--

J

-80

rJ)

10k

90'

!'1.,....0- .,,-

-40

I

135'

II

,

/

a" 'I

20

50'

V

V

30'

IZol _

30 i---i--+-'IdH-+-Hi+I---,--,.-+-++++H

.... '"

o ~

5361l

10'

o

20

f---f--HH--PkIftt---+-+-++++t+I

-10'

-10
1

10

100

100

1000

Integral Nonlinearity
0.75

~

I

_

-

I

0

IlvRL=l;':
RL=200o

\\

o
-0.25

I

RL=~kQl

0.25

~

Frequency Response vs. RL

2

1EndpoInts
I. 1 I
= ±2V

0.50

,~
I~

-

~

.

til

i't ~

--

RL = 2000

1--0..

....... ......

1"'--0

......

l'...
..... 11oob-

~

~
I\.

-4

_\ sob
\

-6

-5 -4 -3 -2 -1

0

VJN (V)

1

2

3

4

5

\

~

\
\

\
~

-8

-0.50

3-4

-2

I
J. I
VJN = 0.5 Vp-p
~I_

i"\

1

1000

CL(pF)

f - Frequency (MHz)

200

400

600

800

1000

f - Frequency (MHz)

P-32167-Rev. B (11/15/93)

Siliconix

Si581

AMember ofthe THule Group

= ± 5 V, RL

lYpical Characteristics: VSUP
Forward Gain vs. CL with Recommended Rs
RL=2ooQ
Vo = 0.5 V p-p
0

iXi'

-2

"
·a""E

-3

~

"

~

"'" \ 1\
~"\

,

-4

\

~OPF

_\

100pF ~

-5

Small Signal Pulse Response
0.4

o

50

150

100

,-

0.2

€

0.1

-0.2
-0.3

-

V'

~

250
TIme (1 ns/Div)

Large Signal Pulse Response

Long-Term Settling Time

4

0.2

I I(

2

~

g

I

-

tIl

,

\

Output

-1

-3

-0.1

~

,,-

0

~
lil
OIl

-4

\.

~

10-8

10-4

RL~ 10dQ 1

I
I

-40

.!

I I

-30

II

3rd Harmonic Distortion
RL=I1OOIQ 1

1_

SlewLimiled~

-40

"C'

"0'

-50

Vo-4Vp-p

0

I

B -60

I

I

Vo - 2V p_p

.!35 dB~

1

Forward Gain vs. RL

1

For Frequencies <70 MHz

~
~

±-

"'-i'..

30

E

£

§

oS"

10

o

50

100

~
"

........ ....... """'"

-1

!'\.

'0

" .....r-...

20

o

1oonl -

0

40

150

.~

....... ......

200

250

f - Frequency (MHz)

l

-2

~I

,'" ~1~
1\..
'I

son I'..

'\

-3

_ Vo=l Vp-p

o

100

200

I

300

f - Frequency (MHz)

,
"

400

500

Applications
The SiS81 provides the accuracy of a closed-loop amplifier
plus unmatched dynamic performance.
with any high-frequency device, a good PCB layout is
required for optimum performance. This is especially
important for a device as fast as the SiS81 which has a
typical bandwidth of 730 MHz.

where additional isolation from high-frequency
(>400 MHz) resonances of the power supply is needed.

AJ;

To minimize capacitive feedthrough, the pins which are not
connected internally (pins 2, 3, 6, and 7) should be
connected to the ground plane. Input and output traces
should be laid out as transmission lines with the
appropriate termination resistors very near the SiS81. On
a 0.06S-inch epoxy PCB material, a SO-Q transmission line
(commonly called stripline) can be constructed by using a
trace width of 0.1" over a complete ground plane.
Figure 1 shows recommended power supply bypassing. The
ferrite beads are optional and are recommended only

3-6

Parasitic or load capacitance directly on the output of the
SiS81 will introduce additional phase shift in the device,
which can lead to decreased phase margin and frequency
response peaking. A small series resistor before the
capacitance effectively decouples this effect. The typical
characteristic curves illustrate the required resistor value
and the resulting performance vs. capacitance.
Precision resistors with low parasitic reactances were used
to develop the data sheet specifications. Precision carbon
composition resistors or standard spirally-trimmed metal
film resistors will work, though they will cause a
degradation of ac performance due to their reactive nature
at high frequencies.

P-32167-Rev. B (11115193)

Siliconix

Si581

AMembcr oltho TBM[C Group

Applications (Cont'd)

+5 V O---t---l

+

C3

6.8 J1F I

VIN

Cl
IO.01J1F

O---t------.!4

VOUT
ROUT
ROUT is chosen for desired output impedance
(SiS8l ROUT = 20)

RIN is chosen for desired input impedance

C2

-SV

Ferrite
Bead (Optional)

Figure 1.

From Camera 1

+

O.OlJ1F

o--~--'

Recommended Decoupling

SAl
.."..

750

DA
DG534
.."..

DB
From Camera 4

SiS81

---I.,....---I.

~_

~

To Video Monitor

750 .."..

SB2

('r
Control

Figure 2.

P-32167-Rev. B (llI1Sm)

Four Camera High-Defmition Closed Circuit TV System

'3-7

Silicanix

Si582

AMcm'oorofthc1'BMICG!'OUP

Wideband Video Amplifier
Features
•
•
•
•
•
•
•

-3-dB Bandwidth: 100 MHz
Low Differential Gain: 0.01 %
Low Differential Phase: 0.01·
± 1 to ± 8 Oosed-Loop Gain Range
LowPower-PD: 160mW
Fast Settling: 0.05% in 12 ns
Low Distortion: -60 dBc at 20 MHz

• DISABLE Function

Benefits

Applications

•
•
•
•
•
•

•
•
•
•
•

Flat Frequency Response
High Color Fidelity
Reduces Power Consumption
Increases Data Throughput
Improved Linearity
Improved 1ransmission Accuracy

Coaxial Cable Drivers
Video Signal Routing
Thlecommunications
Digital Video
Broadcast Quality Video Systems

• HDTV Systems

• SmallSize
• Automatic Power-Down

Description
The Si582 is a monolithic video amplifier with a -3-dB
bandwidth of 100 MHz. Its unique current-feedback design
offers a high-transparency, high-performance alternative
to conventional discrete, hybrid and other video amplifiers.
The Si582 features wide bandwidth, low power dissipation
(150 mW; typ) and fast settling (0.05% in 12 ns). Distortion
is typically -60 dBc at 20 MHz, gain flatness is less than
0.3 dB from dc to 40 MHz. These performance
specifications allow the designer to improve system
bandwidth while reducing power dissipation, board space
and design complexity. The wide bandwidth combined with

a 50-rnA output current at a gain of 2 provides an excellent
high performance solution for video distribution and line
driving applications. In addition, digital transmission
systems will benefit from its superior pulse response. The
output is protected against short circuits to ground.
The Si582 uses a complementary bipolar Ie process to
achieve excellent high frequency performance. All
parameters are specified and rated for operation with
± 5 V supplies, reducing power consumption compared
with traditional ± 15 V designs.

Functional Block Diagrams and Pin Configurations
Dual-In-Line and SDIC
Offset Adjust

Ordering Information

IN-

Teml' Bange

IN+

-40 to 8S·C

V-

PartNmnlJer

PlICbge
8-Pin Plastic DIP

SiS82DJ

8-Pin Narrow SDIC

SiS82DY

ThpView

Absolute Maximum Ratings
Supply Voltage. . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. ± 7 V
Input Voltage Range ........•.................... V- to V+
Output Short Circuit Duration. . . . . . . . . . . . . . . . . . . .. Continuous
Output Current . . . . • . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .. 70 rnA
CornrnonModeInputVoltage .......•.............. V-toV+

3-8

Differential Input Voltage .•.•....................•...... S V
Disable Input Voltage .•...•.••.•..............••.. V-to V+
Storage Thrnperature . . . . . . • . . . . . . . . . . . . . . . . . . .. -6S to 1S0·C
Lead Thrnperature (Soldering lOs) ..................... 300·C
Junction Thrnperature: Tl ..............•............. 17S·C

P-32167-Rev. B (11/1S/93)

Siliconix

Si582

AMembcr oftha TBMIC Group

Specifications
D Suffix

Test Conditions
Unless Otherwise Specified

Parameter

-40 to 85°C

Symbol

V+=5V,V-=-5V
RL = lOOn, RF = 25on,Av = 2

Temp"

Mine

SSBW

VOUT = ,,0.5 Vp_p

Room
Full

150
120

MSBW

VOUT - ,,2 Vp_p

Room

LSBW

VOUT = 5Vp-p,Av - 5

l'lYPb I Max"

Unit

Frequency Domainb

-3 dB Bandwidthd

Gain Flatness Peakingf, h

Full

200
MHz

100
35

50

GFPL

de to 40 MHz

Room

0

0.3

GFPH

>40 MHz

Room
Full

0

0.5
0_7

de to 75 MHz

Room
Full

0_6

1
1.3

Room
Full

0_2

1
1_2

Room
Full

0_01

0_02
0_1

Room
Full

0_01

0_04
0_05

2_4

Gain Flatness Roll Oftll

GFR

Linear Phase Deviation

LPD

Differential Phase

DP

Differential Gain

DG

VOUT SO.5Vp_p

de to 75 MHz

Av = 2, RF = 250n,RL= 150n
1 Vpop Video Signal, 3.58 MHz

dB

deg

%

Time Domain1, h
Rise and Fall 'TImed
Settling 'TIme"
Slew Rated

tRS

VIN = 0.5 V Step

Full

1_6

tRL

VIN - 5 V Step

Full

6.5

10

ts

Th ± 0_05 %, VIN = 2 V Step

Full

12

15

SR

AV=2

Full

SRl

Av=-2

Full

1600

Room
Full

-60

-45
-40

Full

-60

-50
154
-153

dBm
(1Hz)
IlV

430

ns

700
V/flS

Distortion and Noise
2nd Harmonic Distortionf, h

HDz

3rd Harmonic Distortionf , h

HD3

Equivalent Input Noise Floord

SNF

f > 100 kHz, 50 n on Input

Room
Full

157

Equivalent Input Integrated Noised

INV

100 kHz < f <200 MHz

Room
Full

40

57
54

VIN = 2 Vp_p. fIN = 20 MHz

dBc

Switching (DiJable)
Thrn On TIme

tON

ThrnOffTIme

tOFF

Off Isolation"

OI

Full

100

200

ns

Th 50 dB Attenuation @ 10 MHz

Full

0_2

1

fIN =

Full

-55

flS
dB

Full

250

10 MHz, DISABLE = "0"

Current to Disable
Current to Enable
Disable Drive Voltage
Voltage to Enable

lOIS

Full

-59
200
-80

-60

1

0.5

DISABLE = "0", lOIS - 250 \lA

Full

~="1"

Room
Full

3_2
4

2_6

VIO

Room
Full

-5

±2

DVIO

Room
Full

-40

IBN

Room
Full

-20
-36

VDISL
VDISH

\lA
V

Static,de
Input Offset Voltagef
Input Offset Voltage Average
Thmperature Coefficientd
Input Bias Current Non-invertingf

P-32167-Rev_ B (11/15/93)

-9

5

9
±20
10

mV

40

Ilvrc

20
36

\lA

3-9

Biliconix

Si582

AMember ofthe TBMIC Group

Specifications
Test Conditions
Unless Olhenris. Specified

Parameter

D Suff"1X
-40 to 85°C

V+=5V,V-=-SV
RL= 100 C,Rp= 250C,AV =2

Temp"

Mine

DIBN

Room
Full

-200

IBI

Room
Full

-20
-36

DIBI

Room
Full

Power Supply Rejection Rati08

PSRR

Full

Common Mode Rejection Ratio

CMRR

Full

Symbol

I I
'JYpb

Max"

Unit

200

oN°C

20
36

\.'A

200

oN°C

static, de (Cont'd)
Input Bias Current Non-inverting
Thmperature Coefficientd
Input Bias Current Invertingf
Input Bias Current Inverting
Thmperature Coefficientd

Supply Currentf

1+

100
±1O
±50
-200

45
45

dB

No Load

Full

16

18

Disabled, No Load

Full

4

6

rnA

MisceUaneous
Room
Full

100

200

kn

Non-inverting Input Resistance

RJN

Non-inverting Input Capacitance

CIN

Full

0.5

2

pF

Output Impedance

Ro

Aldc

Full

0.1

0.2

0

Output Voltage Range

Vo

No Load

Room
Full

-3.2
-3

±3.S

3.2
3

CMIR

Room
Full

-2
-1.2

±2.1

2
1.2

10

Room
Full

-50

±70

50
35

Common Mode Input Range
For Rated Performance
Output Currentd

50

-35

V

rnA

Notes:
a. Room = 25°C, Full = -40 to 85°c'
b. 'JYpical values are for DESIGN AID ONLY, not guaranteed nor SUbject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production testing.
e. Gain flatness tests are performed from 0.1 MHz to 50 MHz, and specifications are guaranteed from dc to 50 MHz.
f. Parameter is 100% tested at 25°C and sample tested at 85°c'
g. Parameter is sample tested at 25°C.
h. Ac performance is very dependent on layout. SpeclrlClltions apply only in a 50-0 microstrip environment.

'IYpical Characteristics
Non-Inverting Frequency Response
0

........
"\

-2

iQ

"

}

=8 "

-4

........ 1'-0..

"

-6

f'Av

i"- 1000.
Av=8

I

-8
20

40

{_

0

........

-r-

- "'"
A~=:l
~

-2

0

2,

[
(D

Av

~ r- io-~

~

o

3-10

A~

A

:::!-

.g

-

1-- ....

Inverting Frequency Response

-45'

1

......r-

r-

-90'

~
'g
"

}

- ...

60 80 100 120 140 160 180 200
f - Frequency (MHz)

......; ........

-4

........ ~

I\.

..::!!!II

-6

-

Av

\

Av=-2

-8

o

20 40

Al=L

""

-

..... ~ ......... r-...
........
~
Av=-2~
-I

'- " ,

Av=-8

-135'
-180'

:""

~

~

k"-

o

1

-90'

r-o

-135'

',.."

~

-45'

-180'

60 80 100 120 140 160 180 200
f - Frequency (MHz)

P-32167-Rev. B (11/15/93)

Siliconix

Si582

A Member of the TBMIC Group

'fYpicaJ Characteristics
Frequency Response for Various RLS
0

IR

......::: ~

-2

iii'
~

"

"C

.~
:;p
~

--. -

RL= 100

-4
-6

1~

1

RLI=~

-

~

I

-45·

{

20 40

60

~ ~

SOil

-40

a" .§
t!l

-60 I-+-+++++I+--++-IH-l.!om'--H-H++H+--I

-90·

RL=~

-135·

-80

-180·

I I
o

o

RL=lk.Q
~..L

RL = 100

-8

-20

11~
I

Forward and Reverse Gain During Disable

o

Av=2

-100

80 100 120 140 160 180 200

~-'-

lOOk

_ _ _-'--J...J...LJ..Ll"----'-..J....I..lJ.J.JJl...--'
1M
10M
100M

f - Frequency (MHz)

-30

f - Frequency (Hz)

p• '

50

i~toI1Jri~1

-40

iii'
~

e

2nd

-50

=

.~

c5

~

-60

V
i-"

-70
-80

' / ""

i-'"

V

n",

2-Tone, 3rd Order Intermodulation Intercept

2nd and 3rd Harmonic Distortion

_ iv

45

~

~

L

,. V'1~

la
j

/
/3rd

-

SOg

"-

40

......

35

" "-

30

I I
25

10

o

100

10

f - Frequency (MHz)

Equivalent Input Noise

"-

"

'"

30

-

......

PSRR

40

30

1k

25 pAjIHZ

lOOk

1M

f - Frequency (Hz)

P·32167-Rev. B (11/15/93)

-

Voltage
2.4 nVjIHZ

10k

50

-

I

10M

20
Av=2

60

"'" -"""

I

10
100M

"

~R

50

Non·Inverting Current ~

40

CMRR and PSRR

60

Inverting Current
, " 3 5 PAl 1HZ

I

100

20

f - Frequency (MHz)

100

~

.......

10

100

1k

10 k

100 kIM

10 M

f - Frequency (Hz)

3-11

Siliconix

Si582

AMember ofthe TBMIC Group

1YPical Characteristics
Pulse Response

Settling Time
0.20

A)=2

h

I'

~

I

I

,

\

~

0.15

...

t
\

0.10

~

0.05

~

II

I

I

2 V Output Step - I RL= 1000
h-J = 2
- I-

~

0

.g
'E -0.05
"
CIl

I"

Av= -2

-0.10

"

-0.15
-0.20
0

10

Long-Term Settling Time
0.20

II

-

0.10

~
...

~

.ff

il

0.05

o

""

-0.05

CIl

-0.10

""'"

f-'" ~

30

40

SO

Settling Time vs. Load Capacitance

SO

I I

2 V Output Step - I RL=1000
h-J = 2
-

0.15

20

TIme (ns)

2ns/Div

-

40

g
~

30

~

""

t

20

10
-0.15
-0.20
10- 10

so

0
10-8

10-6

10-4

10-2

10

100
CL(pF)

Recommended Rs vs. Load Capacitance

Enable/Disable Response
On

40

/

30

i'

Off

'"

"-I"-

""

10

o
10

100
CL(PF)

3-12

DIS Input, Pin 8 (5 V/Div)

I
~

20

1000

TIme (s)

""'-

Output, Pin 6
(400mV/Div) -

I I i
RL=1000
1000
200ns/Div
P-32167-Rev. B (1l11S!93)

Siliconix

Si582

AMembor of tho TBMIC Group

'lYpical Characteristics
Differential Gain and Phase (4.43 MHz)

Differential Gain and Phase (3.58 MHz)
0.05
7SQ

0.20

~

0.03

.

0.02

0.15

:3
..!l

~

1>'

~

l'"
~

0.10

is

0.01

0.05

0.25
Av=2

VOUT

0.04

"5

0.05

0.25

Av=2

"
'8

1

7SQ

Vour

0.04

0.20

0.03

0.15

0.02

0.10

0.01

0.05

~

=

'0;
(!l

."il.,
~

~

is

t1

Si
~

[

'"Cl="
'8
"
'eI
"
~

0
2

3

4

Number of 150·Q Loads

2

3

Number of 150·Q Loads

Applications
Setting Loop Gain
The Si582 uses a current feedback topology instead of the
more common voltage feedback, meaning that the closed
loop bandwidth and settling time are relatively
independent of closed loop gain.
Optimum bandwidth is achieved with a feedback resistor of
220 to 270 Q. Closed loop gain is then set by a suitable
choice of input resistor value. Figure 1 shows the
connections for inverting and non-inverting gains.
Feedback resistors greater than 270 Q may be used, but at
the expense of bandwidth. Values lower than 220 Q will
cause amplitude peaking in the passband. For example, a
feedback resistor value of 100 Q will create a peak of
approximately 4 dB as roll-off is approached.
Under no circumstances should the output be connected
directly to the inverting input in the hope of achieving unity
gain. This will cause the device to oscillate and draw
significant current from the power supply. Unity gain may
be achieved with a 220- to 270-Q resistor in the feedback
path with no input resistor. Similarly, capacitive feedback
should not be used with the Si582.

Offset Correction
Since the two inputs to the Si582 are quite different
internally, the noise and offset performance differs from
that of a differential input op-amp. The two input bias
currents are umelated, so that the technique of bias current
error cancellation by matching of the inverting and
non-inverting input resistances is ineffective.
P·32167-Rev. B (11/15/93)

The equation for output offset is shown in Figure 1, and is
the algebraic sum of the equivalent input voltage and
current sources which influence dc operation. Pin 1 may be
used to correct for the ± 10-mV offset by connecting as
shown in Figure 1. When not used, pin lshould be bypassed
to signal ground with a O.l-I.lF low inductance capacitor.

Disable Operation
The disable function of the Si582 is obtained by taking pin 8
to ground. A minimum current of 250 I.lAneeds to be sunk,
and a maximum voltage of 0.5 V is required for full disable.
When the disable function is not required, pin 8 may be left
open or could be tied to the +5-V rail.
Disabling the amplifier reduces power supply current and
places the output and inverting input pins in a high
impedance state (200 kQ II 0.5 pF)

PCB Layout and Supply Bypassing
The Si582 bandwidth and pulse response are dependent
upon good layout and decoupling techniques. Ground
plane construction is recommended to preserve as Iowa
ground impedance as possible. Power supply decoupling
components should be mounted close to the package and
should have good high frequency characteristics to preserve
the excellent pulse performance of the device. Figure 2
shows the recommended decoupling circuit. The 10-I.lF
capacitor should be Tantalum or other low ESR/ESL type.
For the O.l-I.lF capacitor, multi-layer ceramic capacitors are
recommended. A low value resistor in series with the 10-I.lF
capacitor's ground lead may be required to reduce output
pulse ringing.

3-13

Biliconix

Si582

A Membcr of the TBMIC Group

Applications
Rp

RIN

v~T·

VIN
220r.!

Ri
(Optional)

-

.

22Qr.!

-sv

-

VIN

Inverting
Ay=Rp/R1N

Ri (Optional)

Non-Inverting
Ay=l + Rp/RG

Output Offset = ±IBN x Rs(l + Rp/RIN)±
VIO(l + Rp/RIN) ±lm.Rp
Where:
IBI = Inverting Input Bias Current
IBN = Non-Inverting Input Bias Current
Rs = Non-Inverting Pin Resistance
VIC = Input Offset Voltage
Ri sets the impedance

Figure 1. Si582 Gain Circuits

DGS34A
220r.!

+sV

220r.!

Output

:>---t-o

lOr.!
O.Il'F

SOr.!
Ladder
Network

I

Figure 1. Decoupling the Si582

Figure 3. 4-Step Wideband Digitally Controlled Attenuator

Digitally Controlled Attenuator
Figure 3 shows the Si582 in a wideband, digitally controlled
attenuator circuit employing the DG534A, a 4 to 1
D/CMOS multiplexer. The Si581 buffers the input and
drives the 50-Q ladder attenuator. laps are chosen to suit
3-14

the application, i.e., O.l-dB or 1-dBsteps. The secondSi582
buffers the multiplexer for good linearity and, at a gain of
two, provides "lossless" cable termination at the output.

P-32167-Rev. B (11/15193)

Silicanix

Si582

AMember o!the TBMIC Group

Applications
250IJ.

250IJ.

Figure 4.

Differential Amplifier

250IJ.

250IJ.

250IJ.

RIN = 750

Figure 5.

Differential Line Receiver

4 each Si582
Line Drivers

Input Buffers
OUT!
IN!

I
I
I
I
I
I
I
I
I
I
I
I
I
I

IN!
75IJ.

Si584

DIS!

-=-

250IJ.

DG884
0:-

8x4
Crosspoint
0:-

OUT2
DIS2

•

OUT3
Si584

-=-

DI~

IN8

OUT4

IN8

750

DIS4

0

-=-

Control

Figure 6.

P-32167-Rev. B (11/15/93)

50 MHz 8 x 4 Video Crosspoint Switch

3-15

Siliconix

Si584

AMembcr ofthe TBMIC Group

Quad Unity-Gain Video Buffer
Features

Benefits

Applications

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•

- 3-dB Bandwidth: 120 MHz
30-MHz Gain Flatness: 0.1 dB
High Channel Isolation: 62 dB @ 10 MHz
Low Differential Gain-O.08%
Low Differential Phase-O.1 0
Low Power-PD: 30 mW/Channel
Fast Settling: 0.1% in 10ns
Low Distortion: -58 dBc @ 20 MHz

Flat Frequency Response
High Color Fidelity
Improved Transmission Accuracy
Reduces Power Consumption
Increases Data Throughput
Improved Linearity
Small Size

Video Signal Routing
Telecommunications
Digital Video
Broadcast Quality Video Systems
HDTV Systems

Description
The Si584 is a monolithic closed-loop quad video buffer
with a wide -3-dB bandwidth (120 MHz). Its unique
design, optimized for high quality video switching, offers a
high-performance alternative to conventional discrete,
hybrid and open-loop buffers.

designer to improve system bandwidth while reducing
system power consumption, board space and design
complexity. The outputs are protected against short
circuits to ground.

The Si584 features wide bandwidth, low power
consumption, fast settling (0.1 % in 10 ns), without signal
degradation. Third harmonic distortion is typically
-58 dBc at 20 MHz, gain flatness is typically 0.1 dB from
dc to 30 MHz. These performance specifications allow the

The Si584 is built on an advanced complementary bipolar
process to achieve excellent high frequency performance.
All performance is specified and rated for operation with
± 5-V supplies, reducing power consumption compared
with traditional ± lS-V designs.

Functional Block Diagrams and Pin Configurations
Dual-In-Line and SDIC

VOUT!

+Vcc
VOUT2
NC
VOUT3

Ordering Information
ThmpRange
-40 to 85'C

Pac:kage

Part Number

14-Pin Plastic DIP

Si584DJ

14-Pin Narrow SOIC

Si584DY

-Vee
VOUf4

Top View

Absolute Maximum Ratings
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 7 V
Input Voltage Range .........................•... V-to V +
Output Current . . . . • . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. 35 rnA

3-16

Storage Thmperature . . . . . . • • . . . . . . . . . . . . . • . . . .. -65 to 150'C
Lead Thmperature (Soldering lOs) .......•............. 300'C
Junction Thmperature: TJ ............................ 175'C

P-32167-Rev. B (11/15/93)

Siliconix

Si584

AMember of the TBMIC Group

Specifications
Test Conditions
Unless Otherwise Specified
Parameter

Symbol

DSunlx
-40 to 85'C

V+ =5V,V- = -5V
RL= 1oon,Rs= son

Tempa

Mine

s

Room
Full

135
120

l1YPb

I

Max"

Unit

Frequency Domlling
SSBW
- 3 dB Bandwidthf

VOUT =

0.5Vp-p

MSBW

Vour-1 Vp-p

LSBW

Vour- 2Vp-p

GFPL
Gain Flatness Peakingf

Full

70

95

Room
Full

0

0.2
0.3

>30 MHz

Room
Full

0

0.4
0.7

Your S O.5Vp.p

XTALK

f= 10 MHz

Room

62

tRS!

VIN = 0.5 V Step

Room
Full

1.8

2.8
3.0

Room
Full

5

7
8

Room
Full

10

15
20

Room
Full

3

10
15

Rise and Fall TIme
tRs2
VIN = 2 V Step
Settling TIme

MHz

120

0.1 to 30 MHz

GFPH
Crosstalk

Room

200

ts

Overshoot

OS

Slew Rate

SR

Room
Full

200
180

450

GA

Room
Full

0.96
0.95

0.97

VIN = 0.5 V Step

dB

ns

%
V/IJS

Static, de
Small Signal Gaind

VN

Integral Endpoint Linearityd

IUN

Room

0.4

0.6

%

Output Offset Voltagee

VIO

Room
Full

±0.5

±5
±8.2

mV

DVIO

Room
Full

±9
±40

,.VI'C

IB

Room
Full

±1

±5
±10

JlA

PSRR

Room
Full

Input Offset Voltage Average
Thmperature Coefficiente
Input Bias Currente
Power Supply Rejection RatioC
Supply Current, ThtaiC

1+

± 1 V Full Scale

No Load

48
46

Room
Full

56
12

dB
16.5
17

rnA

MisceUaneous
1.5

Input Resistance

RIN

Room
Full

Input Capacitance

CIN

Room
Full

1.8

3
3.5

pF

Output Impedance

Ro

At de

Room
Full

2.5

3.5
5

n

Output Voltage Range

Vo

No Load

Room
Full

±3.8
±3.6

±4

10

Room
Full

±20
±12

±ZS

2nd Harmonic Distortionf

HD2

Room
Full

-50

-38
-36

3rd Harmonic Distortionf

HD3

Room
Full

-58

-50
-45

Equivalent Input Noise Floord

SNF

Room
Full

-155

-153
-152

Output Current, per Bufferd

VIN = 2 V p-p, fIN = 20 MHz

P-32167-Rev. B (11/15/93)

f > 100 kHz, 50 n on Input

1
0.3

Mn

V
rnA

dBc

dBm
(1Hz)

3-17

•

Siliconix'

Si584

AMembcr of tho TBMIC Group

Specifications
Thst Conditions
Unless Otherwise Specified
Parameter

D Suffix
-40 to 85·C

V+=5V,V-=-5V
RL = 1ooC,Rg = SOC

Symbol

Mine

Thmp"

I

l1YPb

Max"

Unit

Performance Dmillg a DG884 CroupoJm Switchd,.
2nd Harmonic Distortion

HDz

3rd Harmonic Distortion

HD3

VIN=2~
liN = 5

See Thst Load
See Figure 1

Room

-60

Room

58

dBc

Differential Phase

DP

0.1

DG

f = 3.58 or
4.43 MHz

Room

Differential Gain

Room

0.08

%

XTALK(AH)

f= 10 MHz

Room

-54

dB

Crosstalk (All Hostile)

deg

Notes:

a. Room = 25·C, Full = -40 to 85·C.
b. 'JYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guaranteed by design, not subject to production test.
e. Parameter is 100% tested at 2S·C and sample tested at 85·C.
f. Parameter is sample tested at 25·C.
g. AC performance is very dependent on layout. Specifications apply only in a 50-0 micros trip environment.

lYPicaJ Characteristics: TA

= 25°C, Vee -

± 5 V, RL

Gain and Phase vs. Load

Output Impedance

Vo =O.SVpp

i

~["..

,

-2

......

RL=SOC "

I -......-..
"

-a

-4

lkQ I--

'- ~ 1OO~
~ ........ ....

"

SOC

-6

I
60

120

180

0

[

-

240

"

O·

'" -

lOOC..!::::::

I I
o

2S

...... ....... ......

1kQ

Phase

30

r--.....

N

.9
~

LZo

20

L

15
10

-45·

5

-135·

0

-180·

-5

-

.t:'l

r-.....

-80·

-85·

LZi

.......... r--.

l\-

20·

f '- Frequency (MHz)

3-18

°

10·

1'1'"

O·

100

-90·

&:i'

40

~

30

~

""'

300

1\
~

20

-95·
10

10

40·
30· N

~

f'.

10

60·
SO·

50

IZII

1'1"-

~

PSRR VS. Frequency

60

I\-

100

V

10

1"""' ....

.......

~

f - Frequency (MHz)

Input Impedance vs. Frequency

10k

V

""

II

70·

'""it

300

f - Frequency (MHz)

lOOk

80·

35

Gain

0

= 100 Q

100

300

10k

lOOk

10M

1M

100M

f - Frequency (Hz)

P-32167-Rev. B (11/15/93)

Siliconix

Si584

AMemberofthe TEMIC Group

'fYpicaJ Characteristics: TA = 25°C, Vee = ± 5 V, RL = 100 g (Cont'd)
Forward Gain YS. CL with Recommended Rs
I
! I

Recommended Its YS, Load Capacitance

:¥

100

I

80

I II

II

I

I

975Q

I

I III

Vour = 0.5 Vp-p

Vo

'I2OO~ t~~ IS3~Q

50Q _

Rs

0

~,

iiQ
~

60

'"

"- ~

40

'

.......

::l

;::l -0.5

200Q

RL=100Q

-0,15
-2,00

i\

-1,0

o

20

40

60

Time (10 ns/DiY)

P-32167-Rev, B (11/15/93)

80

100

-1.0

-0,6

-0,2 0

0,2

0,6

1,0

VIN(V)

3-19

Siliconix

Si584

AMcmbcr oftb TSMIC Group

1Ypical Characteristics: TA

= 25°C, Vee = ±5 V, RL = 100 Q (Cont'd)

Output Current vs. Temperature

'JYpical de Errors vs. Temperature

100

3.5

90

3.0

80

2.5

1
~

8
ia
0

70
60

Source__

50

i--""

40
30
20
10

.-- i--""

o

,.,-

-

--

i--""

i--"'"

Sin~i"'"

-~

~

2.0

~

1.0

~

~ I-'

'il

t:!
0

"- t\..

"

1.5

0.5

0.40
0.36

........ .......

-20 0

20

60

Voltage
3.9 nV/1HZ

,

0

100

0.12

-20 0

===
~

]

2nd 1000
-55

-65

I

0.1

2nd 200 0

10M

r- ~~WEROur_
~ ~OO
500-

...

-

"- ~

24

'r'(

K.~ ~
!;'

I

I

~

IJ

/ / [I

2ndiwi

T Oiii

3rd1W
100

All-Hostile Crosstalk Isolation

105
95
85

~
.~

-=

""g

~

~

~

..... ro;:

75

~

6S

RL=lW

55

RL= 1000

45
35

""~i'

25

~

15
20

o

140

10

~

~

22

0.04

f - Frequency (MHz)

2-Tone, 3rd Order Intermodulation Intercept

26

~

- 1/11

100M

30

1'.....

100

-"" ~

1 1

f - Frequency (Hz)

r:--

~

RL

3rd2000

-85
1M

60

3rd 1000

I

.J

lOOk

20

...

-45

-75

10k

a~

o---C>l0 = 2 Vp-p

f==

Current
0.9 pA/1HZ

1k

ei'

2nd and 3rd Harmonic Distortion

-35

~

100

0.08

I:1j

Thmperature ("C)

B
.iIl

5
10

20

30

f - Frequency (MHz)

3-20

0.16

........ r-....
........

i

o
-60

140

.~

~

~

. . . i'...

'0'

~

f

........ ...............

0.20

-0.5

Equivalent Input Noise

I

~B

-1.0

10

±.,

0.24

Vos ........ ~

Thmperature (0C)

e
!g

0.28

~

-1.5

-60

28

0.32

~

40

50

lOOk

1M

10M

100M

f - Frequency (Hz)

P-32167-Rev. B (11/15/93)

Siliconix

Si584

AMember of the 'I'BMIC Group

Test Circuit
VIN

R

R

R

R

R

Figure 1. Test Load

Applications
Operation
The Si584 is a quad unity gain buffer that offers high-speed
and low-power operation. Its closed loop topology provides
higher accuracy than that normally found in open loop
designs. The Si584 was designed to optimize differential
gain and phase when driving the distribute"d capacitance of
a video multiplexer or crosspoint such as the DG884.

+5V

Ferrite
Bead
(optional)

Board Layout and Crosstalk
High frequency designs demand good PC board layout for
best performance. A ground plane and power supply
bypassing with high-frequency ceramic capacitors adjacent
to the power supply pins are essential. Second harmonic
distortion can be improved by ensuring equal current
return paths for both the positive and negative supplies.
This is accomplished by connecting one side of the bypass
capacitors at the same point in the ground plane while
keeping the supply sides within 0.1" of the Si584 supply
pins.
Crosstalk is strongly dependent on board layout. Closely
spaced signal traces on the board will degrade crosstalk due
to capacitive coupling. A grounded guard trace between
signal traces will reduce crosstalk by reducing intertrace
capacitance. For this same reason it is recommended that
unused pins (2, 4, 6, 11) be connected to the ground plane.

VIN

0----._1"'•. . ;3•....;5.:,..7-;

14.12.10.8 ROUT
>"";"";'--''--''--'V\I\r-o VOUT

RIN

-5V

Figure 2. Decoupling the Si584
'~-Hostile"

crosstalk is measured by driving three of the
four buffers simultaneously while observing the fourth,
undriven, channel.

Unused Buffers
It is recommended that the inputs of any unused buffers be
tied to ground through 50-0 resistors.
P·32167-Rev. B (11/15/93)

Minimum Parts Count SO-MHz Video Switcher
Figure 3 illustrates a fully buffered 8 x 4 video switching
matrix capable of handling 80-MHz signals with only four
ICs. At the heart of this circuit is the DG884 crosspoint.
U1 and U2 buffer all eight inputs while U4 can drive a
second level of switching elements.
3-21

Silicanix

Si584

AMcmbcrofthe'D3JoucGroup

Applications (Cont'd)
It is worth noting that every time a video signal is processed
by an active or passive component, its bandwidth is subject
to a reduction due to each individual processing element's
own bandwidth. That is why, even when switching
baseband video, it is better to use a broadband switcher in
order to preserve signal quality and fidelity.

For lower bandwidth applications one Si584 output can
drive up to four DG884 inputs. This is useful when building
larger matrices ( 8 x 8, 8 x 16, etc.).

Providing the receiving end is properly terminated, the
Si584 can also be used as a cable driver for short distances.
When driving long cables that mayor may not be properly
terminated it is better to use a back terminated cable driver
with a 6-dB gain. This driving method reduces transmission
line reflections. The Si582 is recommended for this type of
application.

Inputs
IN1

Video 1

Outputs

I
I
I
I
I

Video A

-

IN4

Video 4

VideoB

DG884
Crosspoint

VideoC

U3
VideoS

-

INS

I
I
I
I
I
VideoS

VideoD

-

INS

Control

Figure 3.

3-22

Minimum Parts Count 80 MHz 8 X 4 Video Switching Matrix

P·32167-Rev. B (11/15/93)

An2J.llog

t~hiV.D:tcllil~s

Analog 1\1hl1ln11:ftlPH~xer§
'VViidebmmd/Virileo AmpHificlr§

Voltage Converters
AppCJlldhix

Worldwide Sales Offices and Distributors

m

Siliconix
AMombcr of the TBMIC Group

About Siliconix Voltage Converters
Siliconix presently supplies three types of power conversion circuits: charge pump voltage converters,
high-voltage switchmode regulators, and high-voltage switchmode controllers.
Our family oflow-cost switched capacitor voltage converters are used in applications where a single dc
supply is available. These monolithic products feature high conversion efficiency, minimum noise and
distortion, and minimum space requirements. They can be configured for voltage inversion or voltage
doubling, and require only a few external components (typically two electrolytic capacitors). A typical
application would be negative rail generation in a circuit with a battery supply.
The Si7660 is a voltage converter that inverts or boosts input voltages from the 1.5- to 10-V range. It
features power conversion efficiencies up to 98%. The Si7661 is a higher-voltage version of the Si7660
intended for input voltages from 7.5 V to 20 V.
The high-voltage switchmode regulators and controllers made by Siliconix employ high-performance
D/CMOS power IC technology to combine CMOS current-mode controllers with high-voltage input
regulation and output switching. This design allows Siliconix to build extremely high efficiency
switchmode power supply circuits that can run directly from high-voltage inputs such as PBX or ISDN
phone lines, or 100-VAC power lines.
The data sheets for Si91xx family of switchmode regulators and controllers may be found in the Siliconix
Power Products Data Book.

Voltage Converters
Max
Supply Current

Min
Supply Voltage

Max
Supply Voltage

Part Number

(mA)

(V)

Si7660

0.175

1.5

Si7661

2

4.5

Min
Output Voltage

Max
Output Voltage

(V)

(V)

(V)

10

-10

20

J,Y

4-1

20

-20

40

J

4-7

-----

J = Plastic DIP

Y= sOle

II

-

Package

------- -

- -

Page

Silicanix

Si7660

AMember ofthoTBMlC Group

Switched-Capacitor Voltage Converter
Features

Benefits

Applications

• 99.7% Open Circuit Voltage
Conversion Efficiency
• 98% Power Efficiency
• Operating Voltage Range of 1.5 to 10 V
• Requires Only Two Capacitors

• Inexpensive Negative Supply from
Positive Supply
• Easy to Use
• Minimum Parts Count
• SmaIl Size
• No Diode Drop at Output
• LowCost

• Conversion of S-V Logic Supply to
± S-V Supplies
• Negative Supply for Dynamic RAMs
• RS-232 Power Supply
• Negative Supplies for Analog Circuits
• Data Acquisition Systems
• Hand-Held Instruments
• High-Side Load Switches

Description
The Si7660 is a monolithic CMOS switched-capacitor
voltage converter that inverts (VaUT = - VIN), doubles
(VaUT = 2 VIN), divides (VaUT = VIN/2), or multiplies
(VaUT = ±n VIN) an input voltage. Operation with no
external diode is guaranteed over the full temperature
range for input voltages ranging from loS V to 10 V.
The Si7660 combines low quiescent current with high
efficiency and reliability. Included on chip are an oscillator,
control circuitry and four power MOS switches. An
epitaxial layer prevents latchup.

The oscillator, when unloaded, runs at a nominal 12 kHz.
The OSC pin may be used to change the running frequency.
The LV pin should be tied to ground to improve lowvoltage
operation (V + :5 3.5 V). For V + > 3.5 V, the LV pin
should be left disconnected.
1YPical applications include generating a -S-V supply from
a S-V logic supply to power analog circuits, generating 6 V
from a 3-V lithium cell, or 3 V from a single 1.S-V cell.
For additional information please refer to Applications
NoteAN401.

Functional Block Diagram and Pin Configuration

Dual-In-Line and sOle

Ordering Information
NC

v+

CAP+

ase

LV

GND

CAP-

VOUT

Temp Range

Package

Part Nwnber

oto 70°C

8-Pin Plastic MiniDlP

Si7660CJ

8-Pin Plastic MiniDlP

Si7660DJ

8-PinNarrowSOIC

Si7660DY

-40t085°e

III

ThpView

P-32167-Rev. B (11108/93)

4-1

Silicanix

Si7660

AMember of the TBMIC Group

Absolute Maximum Ratings
SupplyVoltage(V+ toGND orGND toVOUT) ............ 11 V
Oscillator Input Voltage:
(V+ < 5.5 V) .................... -0.3 Vto (V+) +0.3 V
(V+>5.5V) ............... (V+)-5.5Vto(V+)+0.3V
LV ............................ No connection for V+ > 3.5 V
Storage Thmperature . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 to 125'C

Power Dissipation:'
8-PinPlasticDIpb .................................. 300mW
8-Pin SOICb ....................................... 300 mW
Notes:
a. All leads soldered or welded to PC board.
b. Derate 10 mWI"C above 75'C

Specifications
Thst Conditions
Unless Otherwise Specified

Limits

I 'JYpc I

Symbol

V+ = 5'\1, Case = Od

Temp'

Minb

Supply Voltage Range Low

V+L

RL = 10k,Q, LV = GND

Full

1.5

3.5

Supply Voltage Range High

V+H

RL = 10k,Q,LV = Open

Full

3

10

Parameter

Maxb

Unit

Input

1+

Supply Current

RL =

Full

100

175

f1A

V+ = 5 '\1, LV = Open, 10 = 20mA

Room
Full

.55

100
120

Q

V+ -2'\1,LV - GND,Io - 3mA

Full

RL - 5 k,Q

Room

95

98

Room

99

99.9

00,

LV = Open

V

Output

Output Source Resistance

ROUT

Power Conversion Efficiency

PEl

Voltage Conversion Efficiency

VOUTEl

RL=

00

300
%

Dynamic
Oscillator Frequencyd

Room

12

kHz

V+ = 2'\1,LV= GND

Room

1

MQ

V+-5V

Room

100

k,Q

fose

Oscillator Impedance

Zose

Notes:
a. Room = 25'C, Full = as determined by the operating temperature suffIX.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. 1Ypical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. For Case> 1000 pF, Cl and 02 should be increased to lOO!-lR Cl = Pump Capacitor, 02 = Reservoir Capacitor.

1Ypical Characteristics
Power Conversion Efficiency vs. OSC Frequency
100
95

[

.ie
~

".

,.-

IL=lmA

1\

\.

50

90

........

10--"

85
80

Output Resistance as a Function of Supply Voltage
100

/

",.~

IL= 15mA

/

"""

-

r--. .......

20

-

......

75
70

10
100

1000
OSC Frequency (Hz)

4-2

10000

o

2

4

6

8

Input Voltage (V)

P-32167-Rev. B (11108/93)

10

Silicanix

Si7660

AMcmber oCthe TBMIC Group

'IYpical Characteristics (Cont'd)
Inverting Output Voltage vs. Output Current

Output Source Resistance vs. Temperature
100

r-

i

L Jm1

c:
~

,

60

g
40

I-- ~ i-""""

-

I---'"

20

0

~

80

".

-1

V

Y

.....,., ....L

~

./

V+=~

..........V+=5V

_

~

E
E:

-2

-'

-3

-4

o

-5

-60 -40 -20 0

20

40

60 80

100 120 140

o

E:

~

~

-~

-4

~
I--

-.....-

~

....".,.

.....- ~
.....~
-~

-6

I--

o

i..--"
~

I--

20

LV

60

40

~

"""'"

~ __ I"""

-8
-10

./

V" ,. V

- - -"...
-----

-2

E

./

20

30

I

I

40

50

60

Supply Current vs. Temperature

- l v 15V 16J

I I
V /
",
".
1/ /
/
~

/'

I/'"

Output Current (rnA)

140

vl=~v

/

LV=GND -

10

Inverting Output Voltage vs. Output Current

0

",

... /

TA - Thmperature (0C)

2

L

L

.,.... ./~

---

~

r--

~.5V..I ;--- ~.5V /

r - vl = 1 . 5 J /

....

,

120
7V

<'

8V
9V

/

_L
I
I- V+=5V
RL= 00

C

100

"i'..

~

j

~

,

....... i'oo..

./

80

lOV

....

60

Open
80

100

40
-60 -40 -20

0

20

40 60

80 100 120 140

Output Current (rnA)

TA - Temperature (0C)

Oscillation Frequency as a
Function of External OSC Capacitance

Unloaded Oscillation Frequency as a
Function of Temperature

10k

30

r-...
1k

-

~

~"'"

V+=5-VSupply

V+ =2-VSupply

25

-

20
15

""

""

100

10

10

100
OSC Capacitance (pF)

P-32167-Rev. B (11/08/93)

1k

i\.

"i'.

"-

5

'"'\.'\.

10

\

10k

o
-60 -40 -20

..... 5-VSupply

i'. ......

....... r--..

.......

2-VSupply
1
1·1
0

20

•

- -......

40 60 80 100 120 140

TA - Temperature (0C)

4-3

Siliconix

Si7660

AMcmbcr of the TBMlC Group

lYpical Characteristics (Cont'd)
Doubler Output Voltage vs. Output Current
20

~+ I 10~

16

st

12

-

8

......

4

"I"""'"

6~
I

-r-

-t r J
e

o

4V

o

u 4

-10

-20

I

-40

-30

-50

Output Current rnA

Schematic Diagram
r------~-----4~-----~--~----------_O

V+(8)

r - - - - - - - - - - O CAP+ (2)

.--------0

CAP- (4)

'---t--O VOUT (5)

GND
(3)

Figure 1.

Test Circuit
1+

1

8~----'----1---~

...----12

7

3

6

'-----14

5

- - - - - - - , Case

~
_
-

V+

lour

-L
-r

-L
Vour=VIN
~

10JlF

I

+

Figure 2.

4-4

P-32167-Rev. B (11/08/93)

Siliconix

Si7660

AMemberofthe TBMIC Group

Applications
There are many applications where a low current supply
made with a charge pump does just as well as a
conventional, fully regulated negative supply or dc-to-dc
converter module. The Si7660 contains all the circuitry
necessary to make a charge pump for voltage inversion,
doubling, division, multiplication, etc. Only two external
capacitors are needed and they may be inexpensive
electrolytics. Since the output resistance is in the tens of
ohms, heavy load currents will reduce the output voltage
and eventually may cause the device to go into shutdown.

the device can be exceeded. The maximum recommended
capacitor size is 1000 J.lF.
A previous version of the Si7660 required a diode in series
with Pin 5 when operating above 6.5 V. The current Si7660
does not require this diode, but will work in existing circuits
which have the diode.
Figure 4 shows a circuit that will produce two output
voltages utilizing both of the Si7660 features (i.e. inversion
and doubling). The combined output current must be
limited so the maximum device dissipation is not exceeded.

If the output ripple of the Si7660 is too great for a particular
application, the value of the pump (Cb Figure 3) and
reservoir (C2, Figure 3) capacitors can be increased to
reduce this effect. However, it is important to note that
increasing the capacitor size can lead to surge currents at
turn-on. If the current is too great, the power dissipation of

Two Si7660s can be paralleled to reduce the effective
output resistance of the converter. The output voltage at a
given current is increased since the voltage drop is halved
when the devices are connected as shown in Figure 6.

V+

Si7660

2

Vour= -(VIN - VFDX)
Your t---t----,--()

V+

8
7
Si7660

Cj
lO"F

-

3
5

4

::c.

Vour
C2
10"F

-

~

Figure 3. Basic Inverter Circuit

VIN

+15V

Si7660
V+
Cj

Cj

D2
Vour

+

tI.

V+

CAP+

Dj

CAP+

vour = (2 VIN) - (VFDI + VFD2)

Figure 4. Combination InverterlDoubler Circuit

VIN

Si7660

D2

~------~~--~~--O

Si7660

V+

CAP+

+

+23.6 V
C3

CAPVour
GND

Your = VIN
CAPVour
GND

+~
Figure 5. Creating +23.6 V from +15 V and +5 V

P-32167-Rev. B (11/08193)

~

Figure 6. Paralleling Two Si7660s to Reduce
the Effective Output Resistance

4-5

III

Siliconix

Si7660

AMcmberofthe TBMIC Group

Applications (Cont'd)
Battery Splitter

High Precision Voltage Divider

To obtain supplies from a single battery or power supply,
the circuit shown in Figure 7 offers a simple solution. It
generates symmetrical ± output voltages equal to one-half
the input voltage. Both output voltages are referenced to
Pin 3 (output common). To improve low voltage operation,
Pin 6 should be connected to Pin 3 when the input voltage
is less than 3.5 V.

A high precision voltage divider is shown in Figure 8.
Increasing the load current beyond 100 nA will cause a
small loss in accuracy.

4.5 V

8

VB
9V

+

2

7

Required for VB <3.5 V

Cl
- lOIlF

3

6

...,/

4

5

Si7660

-4.5 V

+
Output

3VSVBSllV

Figure 7.

Common

Battery Splitter

8

,..----12

VIN(3Vtoll V)

7

Si7660
36...,

1..--+--14
VIN
2

____ ~-..J

±O.OO2%

-

-tr
...l..

C:z
lOIlF

RequiredforV+ <3.5V

Figure 8. High Precision Voltage Divider

4-6

P-32167-Rev. B (11/08193)

Silicanix

Si7661

AMember of the TEMIC Group

Switched-Capacitor Voltage Converter
Features

Benefits

Applications

• Wide Operating Supply Voltage Range:
4.5Vt020V
• 99.7% Open Circuit Voltage Conversion
Efficiency
• 95% Power Conversion Efficiency

• Inexpensive Negative Supply
Generation
• Easy to Use, Requires Only Two
External Capacitors
• Minimum Parts Count
• Small Size

•
•
•
•
•
•

Conversion of +l2-V to ± 12-V Supplies
RS-232 Power Supply
Negative Supplies for Analog Circuits
Data Acquisition Systems
Handheld Instruments
High-Side Load Switches

Description
The Si7661 is a monolithic CMOS power supply circuit
which offers unique performance advantages over
previously available devices. The Si7661 performs a supply
voltage conversion from positive to negative for an input
range of +4.5 V to +20 V, resulting in a complementary
output voltage of -4.5 V to -20 V with the addition of only
two capacitors.

oscillator, voltage level translator, four power MOS
switches, and a logic network. This logic network senses the
most negative voltage in the device and ensures that the
output n-channel switch substrates are not forward-biased.
An epitaxial layer prevents latchup.
The oscillator, when unloaded, runs at a nominal frequency
of 10 kHz for an input supply voltage of 4.5 to 20 V. The
"OSC" terminal may be connected to an external capacitor
to lower the frequency or it may be driven by an external
clock.

Typical applications for the Si7661 are data acquisition and
microprocessor based systems, where a +5- to +20-V
supply is available for the digital functions, and an
additional -5- to -20-V supply is required for analog
devices, such as op amps. The Si7661 is also ideally suited
for providing low current, -5-V body bias supply for
dynamic RAMs.

The "LV" terminal may be tied to GROUND to bypass the
internal regulator and improve low voltage (LV) operation.
At high voltages (+8 to +20 V), the "LV" pin should be left
disconnected.

Contained on the chip are a voltage regulator, RC

For applications information refer to AN401.

Functional Block Diagram and Pin Configuration
Dual-In-Line

NC

Ordering Information

V+

asc

CAP+

GND

LV

CAP-

VOUT

ThmpRange
Oto70·C
-40to8S·C

Paclmge
8-Pin Plastic MiniDIP

Part Number
Si7661CJ
Si7661DJ

ThpView

P-32167-Rev. B (l1/1S/93)

4-7

Silicanix

Si7661

AMember aftbe TBMIC Group

Absolute Maximum Ratings
Supply Voltage (V+ to GND or GND to VOUT) ............ 22 V
Oscillator Input Voltage
V+ BV ......................... (V+) -BVto(V+) +0.2V
LV .............................. NoconnectionforV+ >9V
Storage Thmperature . . . . . . .. . . . . . . . . . . . . . . . .. .. -65 to 125°C

Power Dissipation:'
8-PinPlasticMiniDIpb .............................. 500mW
Notes:
a. All leads welded or soldered to PC board.
b. Derate 6.6 mWI'C above 25°C.

Specifications
Thst Conditions
Unless Otherwise Specified

Limits

I 1YP" I

Symbol

V+ = 15 V, Case = Od

Tempa

Minb

Supply Voltage Range Low

V+L

RL= 10kQ,LV= GND

Full

4.5

9

Supply Voltage Range High

V+H

RL = 10 kQ, LV - Open

Full

8

20

V+ - 4.5 V, RL - co,LV - GND

Full

100

200

!lA

V+ = 15V,RL = co, LV = Open

Full

0.7

2

rnA

V+ = 4.5 V, LV = GND,IOUl' = 3 rnA

Room

35

Room

30

100

r.!

Parameter

Maxb

Unit

Input

1+

Supply Corrent

V

Output

Output Source Resistance

RoUl'

V + = 15 V, LV = Open, IoUI' = 20 rnA

120

Full

Power Conversion Efficiency

PEF

V+ -15V, RL - 2kr.l

Room

Voltage Conversion Efficiency

VEF

V+ =15V,RL= co

Room

92
97

%

99.7

Dynamic
Oscillator Frequencyd

fose

Oscillator Impedance

Zose

V+ = 15V

Room

10

kHz

V+ - 4.5 V, LV - GND

Room

1

Mr.!

V+ -15V

Room

100

kr.l

Notes:
a. Room = 25°C, Full = as determined by the operating temperature suffIX.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. lYpical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. For Case> 1000 pF, Cl 'and ~ should be increased to 100 I'F. Cl = Pump Capacitor, ~ = Reservoir Capacitor.

1Ypical Characteristics
Output Source Resistance as a
Function of Supply Voltage
130

V+ =5V . /
70

'\

50

4-8

90

~

70

30

110

\~

90

g
i:>:

130

\

110

Ci'

Output Source Resistance as a
Function of Thmperature

o

4

lOUT = 3 rnA

50

~=~OrnA

30

8
12
Supply Voltage (V)

16

20

V

10
-55

I"'"
-25

-

~

5

.£

~ ~~15V
I

35
65
Thmperature (0C)

95

125

P-32167-Rev. B (11/15/93)

Siliconix

Si7661

AMember of the TBMIC Group

1Ypical Characteristics (Cont'd)
Output Voltage-LV

0

=GND

-2

~

V::'~!--

-4

-4

~

~

~

Output Voltage-LV = Open

0

j

-6

-~
-~

-8

-12

-10
60

40

80

o

100

90

I

20

80

\\

70
60

-55

r\.

-25

""""'" I\..

~

5

65

35

~

10

125

95

'"

100

V+ 15V TA=25"C -

10

100

1000

10000

Power Efficiency vs. Oscillator Frequency

,,~

"- .....

8

95

.......

~

6
4

_

80

100

10

2

20V

Cose - Oscillator Capacitance (pF)

Unloaded Oscillator Frequency
as a Function of Temperature

12

~

16V
18V

"' l\.

100

Temperature ('C)

14

~

~

14V

Frequency of Oscillation as a
Function of External Oscillator Capacitance

1k

"- ......

40

--

~

12V

10k

I

50

16

60

40

RL= 00
LV=GND
V+ =4.5V

\

~

10V

Output Current (mA)

Supply Current vo. Temperature
100

i"'"

~

Output Current (rnA)

j

I"'"'"

-20
20

0

~

,.. //
,.."""" . /
,..
,.. . /

-16

-8

<'
.:,

-- -

,,/

-- ---

r--.

i

90

~~
V+ = 15V
lOUT = 1mA
Cl =y.= lO"F

25

50

Thmperature ('C)

P-32167-Rev. B (11/l5/93)

- ......

85 f- TA=25'C

I I

o

,... i-'"

~

V+ =15V
-25

~

75

100

125

80
100

'I I I I'll
1k

10k

fose - Oscillator Frequency (Hz)

4-9

Siliconix

Si7661

AMembcr ofthe TBMIC Group

Schematic Diagram
r-----------~--------~------------~----~--------------------_oV+(8)

,---------------------0 CAP+ (2)
r - - - - - - - o CAP- (4)

L-~__<)

VOUT(5)

GND

, (3)

Figure 1.

Test Circuit
l+

V+

8
7

6

-------,

Case

~ ...L
-r

...L

5

lOUT

RL

L--<>

-

VOUT

Figure 2.

Applications
The Si766!'contains all the circuitry necessary to make a
charge pump for voltage inversion, doubling, division,
multiplication, etc. Only two external capacitors are
needed and they may be inexpensive electrolytics. Since
the output resistance is in the tens of ohms, heavy load
currents will reduce the output voltage and eventually may
cause the device to go into shutdown.

4-10

There are many applications where a low current supply
made with a charge pump does just as well as a
conventional, fully regulated negative supply or dc-to-dc
converter module. Some examples are negative power
supplies for microprocessors, dynamic RAMs, or data
acquisition systems. In addition, the extended input
voltage range of the Si7661 lends itself for use as a negative
generator for most op-amp applications.

P-32167-Rev. B (11/15/93)

Siliconix

Si7661

AMember of the TeMrc Group

Applications (Cont'd)
If the output ripple of the Si7661 is too great for a particular
application, the value of the pump (C h Figure 3) and
reservoir (Cz) capacitors can be increased to reduce this
effect. However, it is important to note that increasing the
capacitor size can lead to surge currents at turn-on. If the
current is too great, the power dissipation of the device can
be exceeded, causing destruction of the device. The
maximum recommended capacitor size is 1000 1-lF.

When an external clock is used to drive the Si7661 a 1-kQ
resistor should be used between the clock source and the
OSC input (Pin 7) as shown in Figure 4.
Figure 5 shows a regulator that will operate with much less
than 1-V drop between V+ and VOUT at large output
currents. Most three-terminal voltage regulators would
exhibit a drop of a volt or more under these conditions.

v+

v+

8

8

7

Z

Si7661
3

6

4

5

Z

Cl
10"F

Your

7

Si7661

3

6

4

5

-

Your
Cz

~

~ 10"F

~ 10"F

Figure 3.

Gate

Basic Inverter Circuit

Figure 4.

Driving the Si7661 with an External Clock

8~--~------------------~-O v+

z

Si7661

7

3
4

•

VN0300

Vz'
'The Zener voltage sets the output of the regulator.

VOUT

Figure s. Low Loss Regulator Circuit

P·3Z167-Rev. B (11/15/93)

4-11

Siliconix

Si7661

AMember ofthc TBMIC Group

Applications (Cont'd)
Battery Splitter

High Precision Voltage Divider

To obtain supplies from a single battery or power supply,
the circuit shown in Figure 6 offers a simple solution. It
generates symmetrical ± output voltages equal to one-half
the input voltage. Both output voltages are referenced to
Pin 3 (output common). Th improve low-voltage operation,
Pin 6 should be connected to Pin 3 when the input voltage
is less than 9 V.

A high precision voltage divider is shown in Figure 7.
Increasing the load current beyond 100 nA will cause a
small loss in accuracy.

1
2

Cl
- lOI1F

3

6

4

S

--

VB
12V

6V

8

+

7

Si7661

Required for VB <9 V

...,/
-6V

+
Output

4.5 V S VB S 22V

Figure 6.

Common

Battery Splitter

1

8

r-----~2

7

Si7661

V+(3Vto18V)

36...,
~--+-~4

Y..±.
2

±O.002%

:c.

~

s~L-~

I
I

___ , __ .J

lOI1F

RequiredforV+ <6V

Figure 7. High Precision Voltage Divider

4-12

P·32167-Rev. B (11/1S/93)

~:&1 f

"

L-_ _
'_

Appendix

II

Siliconix

Application Notes

AMember oftho TBMICGroUP

The following literature is designed to help you use Siliconix products in your applications. Call our FaxBack
system (408-970-5600) to have the document sent to you immediately via facsimile, or to order a copy to be sent
by mail, call 800-554-5565.
Application
FaxBack
Code Number
Note Number
Analog Switches and Multiplexers

Title

TAlOl
AN203
AN204

9201
9203
9204

AN205
AN206

9205

Serially·Controlled Eight·Channel Analog Switch Array Simplifies Signal Conditioning and Routing
Overvoltage Protection for CMOS Switches and Multiplexers

9206
9207

DG406 Multiplexer Optimizes Medical Simulator
15·ns DG611 Switch Family Combines Benefits of CMOS and DMOS 'Thchnologies

9301

DMOS FET Analog Switches and Switch Arrays

9101
9102
9103
9104
9105

An Introduction to FE1k
FETBiasing
The FET Constant·Current Source

AN207

High·Performance Multiplexing with the DG408
Silicon·Gate Switching Functions Optimize Data Acquisition Front Ends

DMOS
AN301
JFETs
AN101
AN102
AN103
AN104
AN105

SPICE Parameters for Select JFE1k
FE1k As Voltage·Controlled Resistors

LITTLE FOOT'" MOSFET.

AN804
Low-PowerFETs

8804

Designing with Complementary Power MOSFE1k in Surface·Mount (SO.8) Packages
Low·Voltage Motor Drive Designs Using N-Channel Dual MOSFETS in Surface-Mount Packages
Thermal Characteristics of Siliconix's LITTLE FOOT Family of Surface·Mount MOSFE1k
P-Channel MOSFE1k, the Best Choice for High-Side Switching

AN901
Power MOSFETs

8901

Depletion-Mode MOSFE1k Expand Circuit Opportunities

8601

Unclamped Inductive Switching Rugged MOSFE1k for Rugged Environments

AN701
AN702
AN703
AN704

8701
8702
8703
8704

A I-Watt Flyback Converter Using the Si9100

AN705

8705

The Si9910 Adaptive Power MOSFET Driver Improves Performance in High-Voltage Half-Bridge
Applications

AN706

8706

Motor Drive Circuits Using the D469A

AN707
AN708

8707
8708

Designing Low-Power Off-Line Flyback Converters Using the Si9120 Switchmode Controller IC

AN709

8709

AN710

8710

AN711
AN712
VideoIC.

8711
8712

AN801
AN802
AN803

AN601

8801
8802
8803

PowerIC.
Efficient ISDN Power Converters Using the Si9100
Desigoing DC/DC Converters with the Si9110 Switchmode Controller
Desigoing DCIDC Converters to Meet CCITT Specifications for ISDN 'Thrminals

Low-Power Universal-Input Power Supply Achieves High Efficiency
Desigoing with the Si9976DY N-Channel Half-Bridge Driver and LITTLE FOOT Dual MOSFE1k
High-Efficiency Buck Converter for Notebook Computers
HDD Servo Desigo Using the Si9990CS
A High-Voltage Half-Bridge Using the Si9901 with the Si9911 or Si9914

ANSOI

9501

AN502

9502

The DG535/536 Wideband Multiplexers Suit a Wide Variety of Applications
Microprocessor-Compatible Multiplexers Facilitate Video Switching Designs

ANS03

9503
9504

Si581 Wideband Buffer Applications
Video Crosspoint Switch Simplifies Large Matrix Designs

9401

Theory and Applications of the Si7660 and Si7661 Voltage Converters

ANS04

II

Voltage Converters
AN401

(11/15/93)

5-1

Siliconix

Reliability Information
Introduction
Reliability at Siliconix is ensured with two primary
programs: the Reliability Qualification Program and the
Reliability Monitoring Program. Siliconix publishes this
data by product family and it can be obtained by request
through your local sales office.

Qualification Program
Qualification programs of accelerated stress testing are
developed for the introduction of new devices (die
qualifications), packages, major process changes, new
materials or suppliers, new manufacturing equipment, and
new manufacturing locations.

AMemberoftheTBMICGroUP

summarized in general outline form as a flow chart in
Figure I and with operating life data in Thble 3.

Accelerated Reliability
Accelerated tests were developed to shorten the time
reqUired for reliability testing. The life cycle of a
component is accelerated by applying stress that is more
severe than that encountered under normal operating
conditions. This acceleration is produced by elevating
temperatures, increasing humidity or pressure, alternating
hot and cold temperature, switching power on and off, or
some combination of these conditions. The test results are
used to predict normal operating performance. In the
sections below we present a brief description of each stress.

A qualification starts after a qualification test plan is
developed. This plan specifies the following:

Summary of Tests

• Purpose and scope

High Temperature Operating Life

•

Device or geometry types and packages being
qualified

•

Process and assembly specs involved

• Test vehicles and location
• Tests and stresses
•

Duration of each stress

•

Sample sizes

•

Acceptance criteria

•

Number of lots required

Monitoring Program
The Reliability Monitoring Program, which includes
accelerated life tests, is designed to continuously monitor
product reliability. The program furnishes up-to-date
failure-rate and failure-mechanism data which can be used to
predict and improve long-term reliability performance. The
Monitoring Program covers a wide range of teclmologies and
product lines manufactured by Siliconix. In order to
accomplish this, products are grouped by similar technologies.
For example, components built in the same wafer fab, using
the same manufacturing processes, having similar complexity,
functionality, and package types are grouped into a
technology family. One component or more representing
each teChnology group is monitored according to a quarterly
schedule. An internal Reliability Performance Monitor report
is issued monthly and is reviewed by all engineering groups to
ensure improvement of product reliability.
The short-term and long-term monitor tests are outlined in
Tables I and 2. Also, the Reliability Monitor Program is

5-2

The high-temperature operating life accelerated test,
commonly referred to as "burn-in," is performed at
typically 125·e and 150·e under electrical bias.
The steady state and dynamic life tests determine the ability
of a product to survive a host of potential failure modes,
surface inversion, dielectric breakdown, and'electromigration
being typical examples.

Temperature Cycling Test
'Thmperature cycling exploits the differences in thermal
coefficients of expansion between silicon and the other
materials used in die fabrication and packaging. Each cycle
consists of IO-minute exposures at -65°e and 150·e with
a I-minute transfer at room temperature between the
temperature extremes. This test reveals potential
weaknesses in die and package materials and construction
and in the integration of the die and package.

Thermal Shock Test
The purpose of the thermal shock test is similar to that of
temperature cycling. This stress is more extreme, however,
due to the fact that the ambient medium is liquid and not
air, and the transition time is much shorter than for
temperature cycling.
Each cycle consists of a 5-minute exposure at -65·e and
l50·e with a maximum lO-second transfer time between
the temperature extremes.
(11115193)

Siliconix

Reliability Information

AMember of the TBMIC Group

Bias Humidity Test

Pressure Pot Test

The bias humidity test is used to test plastic packaged
devices for the effects of moisture penetration while
electrical potentials are applied. The components are
placed in a biased condition and then are subjected for
1000 hours to a temperature of 85°C and a relative
humidity 85%. This test confirms package integrity.

In the pressure pot test, water vapor is forced into
non-hermetic packages via micro gaps in the package-lead
seal. Water is then carried to the die surface via capillary
action of the bond wires. Electrical leakage may result.
External contamination of the package or lead finish may
be transported to the die or may directly cause corrosion of
the leads.

Table 1. Short-Term Reliability Monitor
'l'e~t

Condition

Sample Size

'l'estPoints

Static Operating Life
Dynamic Operating Life

121 'c, 15 PSIG

Pressure Pot
Thenna1 Shock

168 hours

125'C or 150'C
50

48 hours (Plastic)

Uquid to liquid. -65'C to 150'C

100 cycles

Solderability

MIL·SID·883D, M2OO3

Lead Integrity

MIL·SID-883D, M2004

(245'C ±5'C)

UdThrque

MIL-SID-883D, M2024

Marking Permanency

MIL-SID-883D, M2015

16 leads

Salt Atmosphere

MIL-SID-883D, M1009

15 leads

ESD, Human Body Model

MIL-SID-883D, M3015

12 leads

15 leads
(Hennetic)

24 hours (Hermetic)

Table 2. Long-Tenn Reliability Monitor
Test

Condition

Sample Size

ThstPoints

Static Operating Life
Dynamic Operating Life

125'C or 150'C

0, 168, 1000 hours
50

Biased Humidity (Plastic)

85'C, 85% relative humidity

Thmperature Cycling

Air-ta-air -65'C to 150'C

Power Cycling

11 TJ = 100'C

0, 500, 1000 hours
0, 250, 1000 cycles

30

0, 2000, 6000 cycles

Table 3.
High Thmperatul"e Operating Life
Technology

Number of Units

•

l"ITs8

Equivalent Device Hours
at S5~C and 1.0 eV

at 60% CLb

Metal-Gate, HVMG

5605

4,618,752,555

0.43

Silicon-Gate, HVSG

4787

3,569,237,924

0.25

Notes:
a. 1 failure per billion device hours
b. Confidence Level

(11/15/93)

5-3

Silicanix

Reliability Information

AMembcr of tho TBMIC Group

Failure Analysis

Record Results and Failure
Mechanisms in Worldwide
Database

Customer Reliability
Reports and Summaries

Internal Reliability
Monitor Report

Figure 1. Reliability Monitor Flow (Short- and Long-Term Monitors)

5-4

(11/15/93)

Silicanix

Package Information

AMember of the TBMlC Group

CerDIP
8· to l6·Pin

CerQuad
28· and 44·Pin

o
Flatpak
14- and l6·Pin

LCC
20· to 28·Pin

PLCC
20· to 44·Pin

Plastic DIP
8· to2O·Pin

SOIC
8· to l6·Pin

Sidebraze Ceramic
14· to 24·Pin

TO·lOO Metal Can

Wide.Body SOIC
16· to 28·Pin

10·Pin

(11/15/93)

•
5-5

Siliconix

Package Information

AMember of the TBMICGroup

• CerDlp, 8· to 16·Pin
MUHlneters
Min
Max

MIn

e

5.08
4.06
1.27
2.16
1.14
1.65
0.51
0.38.
0.20
0.30
9.40
10.16
19.05
19.56
19.05
19.56
6.60
7.62
7.62
8.26
2.54BSC
7.62BSC
3.81
5.08
3.18
3.81
0.51
1.14
0.64
1.52
1.65
2.41
0.38
1.14
O·
IS·

0.160
0.200
0.050
0.085
0.045
0.065
0.015
0.020
0.008
0.012
0.370
0.400
0.750
0.770
0.750
0.770
0.260
0.300
0.300
0.325
O.l00BSC
0.300BSC
0.150
0.200
0.125
0.150
0.020
0.045
0.025
0.060
0.065
0.095
0,015
0.045
O·
IS·

DiIIl

MUHmeters
Min
Max

Inches
Min
Max

A
Al
b
bl
D-l8
D·44
Drl8
Dl-44
E·l8
E·44
e
L

4.20
4.83
2.29
3.04
0.66
0.81
0.46
0.56
12.32
12.57
17.40
17.65
11.63
11.23
16.31
16.71
9.91
10.92
14.99
16.00
1.27BSC
0.51 I

0.165
0.190
0.090
0.120
0.026
0.032
0.018
0.022
0.485
0.495
0.685
0.695
0.442
0.458
0.642
0.658
0.390
0.430
0.590
0.630
0.050BSC
0.020 I

Dim
A
Al
b
bl
C
D-8
D-14
D-16
E
El
e
el
L
Ll

Lz
S-8
S-14
S-16

Inches
Max

• CerQuad Package, 28· and 44·Pin

D-SQUARE

- j j-L

1

0

L_

te

-1

5-6

DI-SQUARE

~

=f1
E

_J
~~AI

-

-

(11/15/93)

Silicanix
AMembor oltho TBMIC Gt'oup

Package Information

• Flat Package, 14- and 16-Pin
MllJilneters
Min
Max

Inches
Min
Max

e
L
S
SI

2.03
2.54
0.66
1.14
0.38
0.48
0.20
0.38
0.10
0.15
8.64
9.14
9.91
10.41
6.10
6.60
6.60
7.11
4.45
4.95
0.76
1.27
1.27BSC
7.62 I 8.89
- I 1.14
0.13 I
-

0.080
0.100
0.026
0.045
0.015
0.019
0.008
0.015
0.004
0.006
0.340
0.360
0.390
0.410
0.240
0.260
0.260
0.280
0.175
0.195
0.030
0.050
0.050BSC
0.300 I 0.350
I 0.045
0.005 I

Diln

MnUlneters
Min
Max

Inches
Min
Max

2.24
1.37
1.63
2.54
0.56
0.71
8.69
9.09
11.23
11.63
1.27BSC
1.14 I 1.40
1.96 I 2.36

0.054
0.088
0.064
0.100
0.022
0.028
0.342
0.358
0.442
0.458
0.050BSC
0.045 I 0.055
0.077 ~ 0.093

Pial
A
Al
b
bI
e
D-14
D-16
E-14
E-16
EI

Ez

• LCC, 20- to 28-Pin

A
Al
B
D-%O
D-%8
e
L
LI

•
(11/15/93)

5-7

Siliconix

Package Information

AMembcr of the TSMIC Group

• PLCC, 20· to 44·Pin

---I

e
D1 - SQUARE ' - -

01--==-1

Dhn

Millilneters
Min
Max

Inches
Min
Max

A
A1
b
b1
D-20
D-28
D-44
D1-2O
D1-28
D1"44
Dz-20
Dz-28
Dz-44
e
L

4.20
4.57
2.29
3.04
0.66
0.81
0.33
0.55
9.78
10.03
12.57
12.32
17.40
17.65
8.89
9.04
11.58
11.43
16.51
16.66
7.37
8.38
10.92
9.91
14.99
16.00
1.27BSC
0.51 I

0.165
0.180
0.090
0.120
0.026
0.032
0.013
0.021
0.385
0.395
0.485
0.495
0.685
0.695
0.350
0.356
0.450
0.456
0.650
0.656
0.290
0.330
0.390
0.430
0.630
0.590
0.050BSC
0.020 I
-

Dhn

MllIhneters
Min
Max

Inches
Min
Max

3.81
0.38
1.27
0.89
0.38
0.20
9.65
17.27
18.93
24.89
5.59
7.62
2.29
7.37
2.79
1.02
1.02
0.38
1.02
O'

0.150
0.015
0.050
0.035
0.015
0.008
0.380
0.680
0.745
0.980
0.220
0.300
0.090
0.290
0.110
0.040
0.040
0.015
0.040

0.200
0.050
0.080
0.065
0.020
0.012
0.460
0.760
0.840
1.060
0.280
0.325
0.110
0.310
0.150
0.080
0.080
0.060
0.080

O'

15·

• Plastic DIP, 8· to 20·Pin

O
1

2

A
A1
Az
b
b1

ff
E

~

E1

!

•

t

1

A

~

*

L

[\

\

r

"

IJ

c

5-8

D-8
D-14
D-16
D 20
E
E1
e

f-e1---i

ct

~

\\

\I

\

eY

L
5-8
5 14
S-16
5-20

e

5.08
1.27
2.03
1.65
0.51
0.30
11.68
19.30
21.33
26.92
7.11
8.26
2.79
7.87
3.81
2.03
2.03
1.52
2.03
15·

(11/15/93)

Siliconix
AMember ofthc TeMIC Group

Package Information

• SOIC, 8- to 16-Pin
Millimeters
Min
Max

Inchell
Min
Max

e

1.35
1.75
0.20
0.10
0.35
0.45
0.18
0.23
5.00
4.69
8.55
8.75
9.80
10.00
3.50
4.05
1.27 BSe
5.70 I 6.30
0.60 I 0.80
O·
8·

0.053
0.069
0.004
0.008
0.014
0.018
0.007
0.009
0.185
0.196
0.336
0.344
0.385
0.393
0.140
0.160
0.050BSC
0.224
0.248
0.024
0.031
O·
8·

Dim

Millimeters
MiJi
Max

lJichell
Min
Max

2.67
4.44
0.97
1.52
0.53
0.38
0.30
0.20
17.53
19.55
21.08
19.56
24.89
26.16
29.97
31.24
7.12
7.87
8.25
7.37
2.54BSe
7.62BSe
3.18
4.44
0.64
1.39
0.25
0.77
2.41
0.51
1.65
0.77
1.65
0.77
2.41

0.105
0.175
0.038
0.060
Om5
0.021
0.008
0.012
0.690
0.770
0.770
0.830
0.890
1.030
1.180
1.230
0.280
0310
0.290
0325
0.100BSC
0.300BSe
0.125
0.175
0.025
0.055
0.010
0.030
0.095
0.020
0.065
0.030
0.065
0.030
0.095

Dhu
A
Al
B
C
D·S
D·14
D·16
E

"

H
L

• Sidebraze Ceramic, 14- to 24-Pin

A
b
bl

c
D-14
D-16
D-10
D-14
E
EI

"

"I
L
LI
Q
S-14
S 16
S 10
S-14

•
(11/15/93)

5·9

Package Information

Silicanix
A Member ofihe 'IBMIC Group

• TO-100 Metal Can, 10-Pin
Millimeters

n=~
D 0 Dl

;----

,
-f-

I L,------- -

--

--

--

--

-

1
T
0h

Md

Dim

Min

A
Al
lifb
lifD
0Dl
E
e
el
j
k
L

4.19

4.70
1.02
0.41
0.53
8.51
9.40
7.75
8.51
0.25
1.02
5.84BSC
2.92BSC
0.72 I 0.86
0.74 I 1.14
12.70
-

Dim

Min

A
Al
b
e
D-16
D 20
D-24
D 28

2.15
2.90
0.10
0.30
0.45
035
0.23
0.28
9.95
10.75
13.30
12.50
15.85
15.05
18.40
17.60
7.25
8.00
127BSC
9.80
10.60
0.60
0.80
0°
8°

-

In<:bes
Max
Mill
0.165

0.185
0.040
0.016
0.021
0.335
0.370
0.305
0.335
0.010
0.040
0.230BSC
0.115BSC
0.028 I 0.034
0.029 I 0.045
0.500

-

• Wide-Body SOIC, 16- to 28-Pin
Millimeters

E

e
H
L

e

5-10

Md

Inches

Miil

Max:

0.085
0.114
0.004
0.012
0,018
0.014
0.009
0.011
0.392
0.423
0.492
0.524
0.624
0.593
0.693
0.724
0.285
0315
0.050BSC
0.386
0.417
0.024
0.031
0°
8°

(11115/93)

Military Information

Siliconix
AMcmber ofthcTBMIC Group

Conversion Table
Original "DG"
Part No.
DG180 Series to MIL-M-38510
This family consists of silicon,
break-before-make, multi-chip analog
switches with drivers.

DG200 Series to MIL-M-38510
This family consists of monolithic, silicon,
CMOS negative logic analog switches.

DG300 Series to MIL-M-38510
This family consists of silicon, CMOS,
monolithic, analog switches with drivers.

DG506 Series to MIL-M-38510
This family consists of monolithic, silicon,
CMOS/analog logic microcircuit.

(11/15/93)

JAN Part No.

JM38510/1110lBCC
JM38510/1110lBCA
JM3851O/1110lBIC
JM3851O/1110lBIA
JM38510/1110lBXA

DG187AP/883
DG187AP/883
DG187AN883
DG187AN883
DG187AL/883

JM38510/11105BCC
JM38510/11105BCA
JM3851O/11105BIC
JM3851O/11105BIA
JM3851O/11105BXA

DG182AP/883
DG182AP/883
DG182AN883
DG182AN883
DG182AL/883

JM38510/11102IlCC
JM38510/11102BCA
JM3851O/11102BIC
JM3851O/11102BIA
JM38510/11102BXA

DG188AP/883
DG188AP/883
DG188AA/883
DG188AA/883
DG188AL/883

JM38510/11106BCC
JM38510/11106BCA
JM38510/11106BIC
JM38510/11106BIA
JM38510/11106BXA

DG184AP/883
DG184AP/883
DG184AL/883

JM38510/11103BEC
JM38510/11103BEA
JM38510/11103BXA

DG190AP/883
DG190AP/883
DG190AL/883

JM38510/11107BEC
JM38510/11107BEA
JM38510/11107BXA

DG185AP/883
DG185AP/883
DG185AL/883

JM38510/11104BEC
JM3851O/11104BEA
JM38510/11104BXA

DG191AP/883
DG191AP/883
DG191AL/883

JM3851O/11108BEC
JM38510/11108BEA
JM38510/11108BXA

DG200AAP/883
DG200AAK/883
DG200AAN883
DG200AAN883

JM38510/1230lBCC
JM38510/1230lBCA
JM38510/1230lBIC
JM38510/1230lBIA

DG201AAP/883
DG201AAK/883

JM38510/1202BCC
JM38510/12302BEA

DG300AAP/883
DG300AAK/883
DG300AAN883

JM38510/1160lBCC
JM38510/1160lBCA
JM38510/1160lBIA

DG304AAP/883
DG304AAK/883
DG304AAN883

JM3851O/11605BCC
JM38510/11605BCA
JM38510/11605BIA

DG301AAP/883
DG301AAK/883
DG301AAN883

JM38510/11602BCC
JM38510/11602BCA
JM38510/11602BIA

DG305AAP/883
DG305AAK/883
DG305AAN883

JM38510/11606BCC
JM38510/11606BCA
JM3851O/11606BIA

DG302AAP/883
DG302AAK/883

JM38510/11603BCC
JM38510/11603BCA

DG306AAP/883
DG306AAK/883

JM38510/11607BCC
JM38510/11607BCA

DG303AAP/883
DG303AAK/883

JM38510/11604BCC
JM385io/11604BCA

DG307AAP/883
DG307AAK/883

JM38510/11608BCC
JM38510/11608BCA

DG506AAR/883
DG507AAR/883
DG508AAP/883
DG508AAP/883
DG509AAP/883
DG509AAP/883

JM38510/1900lBXC
JM38510/19003BXC
JM38510/19007BEA
JM3851O/19007BEC
JM38510/19008BEA
JM38510/19008BEC

Part No.

Standard Military Drawings

Original "DO"
Part No.

DG181AP/883
DG181AP/883
DG181AN883
DG181AN883
DG181AL/883

Basic"DG"

The following analog switches and
multiplexers consists of monolithic, silicon
CMOS except for the DG180, DG189, and
DG129 parts which are silicon, multichip with
bipolar driver.

JAN Part No.

DG129AP
DG180AL
DG180AP
DG180AA
DG189AP
DG201AAZ
DG201AAK
DG201AAP
DG201AAL
DG201AAL
DG271AZ
DG271AK
DG401AZ
DG401AK
DG403AK
DG405AZ
DG405AK
DG408AK
DG408AZ

Standard Military
Orawing Part No.
7801401CA
8767301AA
8767301CA
8767301IA
5962-9068901MEA
77053012A
770530lEA
770530lEC
7705301FA
7705301FC
5962-86716022A
5692-897630lEA
5962-90569012A
5962-9056901EA
5692-8976301EA
5962-89961012A
5962-8996101EA
5962-9204201MEA
5962-9204201M2A

Basic"DG"

Part No
DG409AK
DG409AZ
DG411AZ
DG411AK
DG412AZ
DG412AK
DG413AZ
DG413AK
DG441AK
DG441AZ
DG442AK
DG442AZ
DG508AAP
DGS08AAP
DG508AAL
DG528AK
DG542AP

Standard Military
Drawing Part No.
5962-9204202MEA
5962-9204202M2A
5962-9073101M2A
5962-9073101MEA
5962-9073102M2A
5962-9073102MEA
5962-9073103M2A
5962-9073103MEA
5962-9204101MEA
5962-9204101M2A
5962-9204102MEA
5962-9204102M2A
770520lEA
7705201EC
7705201FA
5692-8768901VA
5962-9155201MEA

5-11

II

Military Information

Siliconix
AMember of tho TBMlc Group

Process Option Flows
Thst and Condition

U.S. Build

u.s. Build

Only if SpecU1elJli

Dr

Parts Marked'l883 Dr
SMD, as Applieablec

QMLOffshore Build
Method~

Description

MIL-STD-883

1l'aceabilily to W/L

SEM

'Spate Rated
Extended Hi.Relb

CIaSlBS/S
JAN Devices

SMDand/883
Compliant Non-JAN
Method SOO4/SOOS

Ruggedized Plastic:

X

X

X

N/A

.4 Flow

X

N/A

N/A

N/A

Internal Visual

2010

Condition A

ConditionB

ConditionB

ConditionB

Die Shear

2019

X

N/A

N/A

N/A

Bond Strength
CertIData

2011

X

N/A

N/A

N/A

Stab Bake

1008·C

X

X

X

X

ThmpCycle

1010-C

X

X

X

X

Centrifuge

200l-E

X

X

X

N/A

PIND

202O-A

X

N/A

N/A

N/A

Fine Leak

1014-Aor-B

X

X

X

N/A
N/A

Gross Leak

1014-C

X

X

X

1st Electrical

per spec

X

X

X

X

Bum-In

101S-Aor-C

72hrs-A

160 hrs per SIS

160 hrs -A or -C

160 hrs. -A or-C

perspecd

Static2S°C
PDAperSlS

Static2S°C
PDA=S%

Static2S°C
PDA=S%

101S-Aor-C

240 hrs Dyn. (Min.)

perSIS

N/A

N/A

Static"

Static2S°C
PDA=5%

N/A

N/A

N/A

Functional"

Functional2S°C
PDA = 3% (datalog)

perSIS

N/A

N/A

Min. Thmp.

X

X

X

X

. Max.Thmp.

X

X

X

X

Interim Electrical
Post Burn-In
Bum-In
Interim Electrical
Post Burn-In

Final Electrical
Fine Leak

1014-Aor-B

X

N/A

N/A

N/A

Gross Leak

1014-C

X

N/A

N/A

N/A

X-Ray

2012

X

N/A

N/A

N/A

QCIA

5005

perspecd

X

X

-55,25, 12S°C

QCIB

5005

X

X

X

N/A

aClc

5005

N/A

X

X

N/A

QCID

5005

X

X

X

N/A

External Vtsual

2009

X

X

X

X

Deltas Option

Option

X

N/A

N/A

Solder Dip Option

Option

Option

Option

N/A

Notcs:
a. On U. S. builds, unless otherwise specified by 38510 or drawing. paris may be assembled offshore.
b. Space Rated Extended Hi-ReI process option avallable uod.. customer seD only.
c. Parts not qualified for /883 or SMD must not be marked as such. Aspecial now for non-compliant. non-JAN product can be genecated as custom. Contact marketing
for details.
d. Per spec is a refereoce to customer SCD.
e. PDA applies 10 both burn-ins.

5-12

(11/15/93)

Military Information

Siliconix
AMcmber altho TeMICGroup

Process Option Flows for Chip/Wafer
Standard Die/Chip with
Element Evaluation

Standard Die/Chip

Standard Die/Wafet' Form

Die ship element evaluation non-compliant!
non-JAN subgroup 1 and 3 performed in-line

Die ship
No canned sample

Die
Wafer form

Wafer probe
Static 25·C (min) per device spec
Internal visual Method 2010 condo B

Wafer probe
Static 25·C (min) per device spec
Internal visual Method 2010 condo B

Wafer probe
Static25·C (min) per device spec
Internal visual Method 2010 condo B

Canned sample:·
Method 2008 MIL S1D 883
Class B device
Subgroup 1 (55-1010)
Internal visual Method 2010 condo B
Subgroup 2 (55-10/1)
Final electrical Static @2S·Cmin/max oper.
temp. (per device spec)
Subgroup 3 (5 Die min)
(5/5 = 1010 or 20/1 wires)
Non-Destructive Thst
Method 2023 wire bond eval.
Method 2011 (cer! and data)

Die prep process

• SEM available

III
(11/15/93)

5-13

Siliconix

Cross Reference

AMcmbcr of the TBMIC Group

Siliconix Part Number (Direct Replacement) Suggestions are baSed' on the similarity of m~chanical and electrical characteristics, as
reported in the manufacturer's published data. Interchangeability is not guaranteed. Before
selecting a device as a substitute, the specifications should be carefully compared.
Siliconix Approximate Replacement

Irulostry
ParlNumber

Sl&onix
ParlNlIIDber

Suggestions are based on the similarity of electrical characteristics, as reported in the
manufacturer's published data. Interchangeablity is not guaranteed, as these parts may have
different pin configurations. Before selecting a device as a substitute, the specifications
should be carefully compared. For devices not shown in this guide, or for additional
information, the user should contact the nearest Siliconix sales office.
Approximate
Replacement

8100609EA

5962·905690lEA

8100610EA

5962·905690lEA

8100611EA

5962·899610lEA

8100612EA

5962·8916301EA

8100613EA
8100614EA

5962·8916301EA
5962·8916301EA

AD200DlAA

DG200AAA

AD200DlAP
AD200DlBA

DG200AAK
DG200ABA

AD200DlCJ

DG200ACJ

AD200DIPB

DG200ABK
DG411AK

AD20lDlAP
AD20lDIBP

DG411AK
DG411DJ

AD20lDICJ
AD302DlAP

DG302AAK

AD302DIBP

DG302AAK

AD302D1CJ

DG302ACJ

AD303DlAP

DG303AAK

AD303D1BP

DG303AAK

AD303D1CJ

DG303ACJ

AD7506DK

DG506ABK

AD7506JN

DGS06ACJ

AD7506JQ

DG506ACK

AD7506KN
AD1506KQ

DGS06ACJ
DGS06ABK

AD7506SD

DG506AAK

AD7506SQ

DG506AAK

AD75061E
AD7506TQ

DGS06AAZ/883
DG506AAK

AD7501IN
AD75071Q

DG507ACJ
DG507ABK

AD7507KN
AD7507KQ

DGS07ACJ

AD750700

DG507AAK

AD75071E
AD7507TQ

DG507AAZJ883

DGS07ABK

DGS07AAK

AD7509KD

DGS09ABK

AD7509KN

DG509ACJ

AD7509SD

DG509AAK

ADG200AA
ADG200AA/883

DG200AAA

ADG200AP

DG200AAN883
DG200AAK

ADG200AP/883
ADG200BA

DG200AAK/883
DG200ABA

ADG200BP

DG200ABK

ADG200CJ

DG200ACJ

ADG201ABQ
ADG201AKN

5-14

DG441AK
DG20lABK
DG44lDJ
DG201ACJ

Page
1·121
1·121
1·121
1·121
1·121
1-127
1-32
1·32
1·32
1-32
1-32
1-137
1·131
1-131
1-90
1-90
1-90
1-90
1-90
1-90
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-52
2-60
2-60
2-60
1-32
1-32
1-32
1-32
1·32
1-32
1-32
1-163
1-31
1-163
1-37

lndostry

Sl&onb:

ParlN_er

Part NlIIDber

ADG201AKR
ADG201tUE
ADG201PUE/883B
ADG201JITQ
ADG201PJQ/883
ADG201CJ
ADG20lHSAQ

ADG201HSKN
ADG20lHSKR
ADG20lHSSQ
ADG201HSlE
ADG20lHSlE/883B
ADG201HSTQ
ADG201HSTQJ883B
ADG202ABQ
ADG202AKN
ADG202AKR
ADG202J'JQ
ADG202JITQ/883B

ADG211AKN

ADG21lAKR

ADG212AKN

Page

DG44lDY

1-163

DG201ADY

1-37

5962·9204101M2A

1-163

DG201AAZ/883

1-37

5962-920410IM2A

1-163

DG201AAZ/883

1-37

DG441AK

1-163

DG20lAAK

1-31

DG441AK/883

1-163

DG20lAAK/883

1-31

DG44lDJ

1-163

DG20lACJ

1·37
1-52

DG201HSAK883
DG271AK

:'
DG201HSAK883

ADG201HSBQ
ADG201HSJN

Approxhnate
Replacement

DG271AK

1-85
1-52
1-85
1-52

DG20lHSDJ
DG271CJ

1-85

DG201HSDJ

DG271CJ

1-52

DG20lHSDY

DG271DY

1-52
1-52

DG20lHSAK883
DG271AK

1-85

DG201HSAZ883

1-52
DG271AZ/883

1-85

DG21IAZ/883

1-85

DG271AK

1-85

1-52

DG20lHSAZ883
DG201HSAK883

1-52

DG201HSAK883

1-52
DG271AK/883

1-85

DG442AK

1-163

DG202AK

1-37

DG442DJ

1-163

DG202CJ

1-31

DG442DY

1-163

DG442AK

1-163

DG202AK

1-31

DG442AK/883

1-163

DG202AK/883

1-37

DG444DJ

1-171

DG411DJ

1-131

DG211CJ

1-60

DG444DY

1-171

DG411DY

1-137

DG211DY

1-60

DG445DJ

1-171

DG412DJ

1-137

DG212CJ

1-60

(11/15/93) .

Siliconix

Cross Reference

AMembcr oftheTBMIC Group

Industry
P&rtNumber

Siliconlx
Part Number

Approximate
Replacement

lndustry

Page

Pan Number

Siliconlx
Part Number

Approximate
Rep/a_ent

Page

DG445DY

1-171

DG412DY

1-137

DG212DY

1-60

ADG221BQ

DG221AK/883

1-75

ADG221KN

DG221CJ

1-75

ADG221KR
ADG221TQ

DG221DY

1-75

DG221AK/883

1-75

ADG408BN

DG408DJ

2-11

ADG408BR
ADG408TQ

DG408DY

2-11

DG408AK

2-11

ADG409BN

DG409DJ

2-11

ADG509AKR

ADG409BR
ADG409TQ

DG409DY

2-11

ADG509ATE

DG409AK

2-11

ADG411BN

DG411DJ

1-137

ADG509~

ADG411BR
ADG411TQ

DG411DY
DG411AK

1-137
1-137

ADG528ABQ

ADG412BN

DG412DJ

1-137

ADG412BR
ADG412TQ

DG412DY

1-137

DG412AK

1-137

ADG44lBN
ADG441BQ

DG44lDJ

1-163

DG44lAK

1-163

ADGS28ATQ

ADG441BR
ADG44ITQ

DG441DY
DG441AK

1-163
1-163

ADG529ABQ

ADG442BN

DG442DJ

1-163

ADG442BQ

DG442AK
DG442DY

1-163

ADG442BR
ADG442TQ

DG442AK

1-163

ADG444BN
ADG444BQ

DG444DJ

1-171
1-171

AH0126D

DG129AP/883

1-1

ADG444BR
ADG444TQ

DG444DY

1-171

AH0126D/883

DG129AP/883

1-1
1-1

ADG445BN
ADG445BQ

DG445DJ

ADG445BR
ADG44STQ

DG445DY

ADG212AKR

ADG506ABQ
ADG506AKN
ADG506AKP
ADG506ATE
ADG506~

ADG507ABQ
ADG507AKN
ADG507AKP
ADGS07ATE
ADGS07ATQ
ADG508ABQ
ADGS08AKN

(11/15/93)

ADG508AKR
ADG508ATE
ADG508ATQ
ADG509ABQ
ADG509AKN

ADG528AKN
ADG528AKP

ADG529AKN

1-163

DG44lAK

ADG529~

2-60

DG508ADY
DG408DY

2-11

DG508AAZ/883

2-60

DG508AAK

2-60

DG408AK

2-11

DG509ABK

2-60

DG409AK

2-11

DG509ACJ

2-60

DG409DJ

2-11

DG509ADY

2-60

DG409DY

2-11

DG509AAZ/883

2-60

DG509AAK

2-60

DG409AK

2-11

DG528BK

2-70

DG428AK

2-22

DG528CJ

2-70

DG428DJ

2-22

DG528DN

2-70

DG528AK

2-70

DG428AK

2-22

DG529BK

2-70

DG429AK

2-22

DG529CJ

2-70

DG429DJ

2-22

DG529AK/883

2-70

DG429AK

2-22

1-171

AH0129D

DGl29AP/883

1-171

AH0129D/883

DGl29AP/883

1-1

DG442AK

1-171

AH0154/883

DGl29AP/883

1-1

1-171
1-171

AH0154D

DGl29AP/883

DG442AK

CDG20lAK

DG541AP

1-1
1-179

DG506ABK

2-52

CDG201BJ

DG541AP

1-179

DG406AK/883

2-1

CDG201BK

DG541AP

1-179

DGS06ACJ

2-52

CDG211CJ

DG541AP

DG441AK

DG406DJ

2-1

CDG306AK

DG541AP

1-179
1-179

DG506ADN

2-52

CDG308BJ

DG406DN

2-1

1-179
1-179

DGS06AAZ/883

2-52

CDG308BK
CDG308CJ

DG541DJ
DG541AP
DG541DJ

1-179

DG406AZ/883

2-1

DG506AAK

2-52

DG406AK/883

2-1

DG507ABK

2-52

DG407AK/883

2-1

DG507ACJ

2-52

DG407DJ

2-1

DG407DN

2-1

CDG308BJ

DG541AP

1-179

CLCllOAJP

Si581DJ

3-1

CLCllOAJE

Si581DY

3-1

CLC1l4AJP

Si584DJ

CLC114AJE
CLC410AJP

Si584DY
Si582DJ

3-16
3-16

CLC410AJE

Si582DY

DG200AAP/883

DG200AAK/883

1-32

DG200ABP

DG200ABK

1-32

3-8
3-8

DG507AAZ/883

2-52

DG200AK

DG200AAK

1-32

DG407AZ/883

2-1
2-52

DG200AAK
DG200AAK/883

1-32

DG507AAK

DG200AP
DG200AP/883

DG407AK/883

2-1

DG200BA

DG200ABA

1-32

DG508ABK

2-60

DG200BK

DG200ABK

1-32

DG408AK

2-11

DG200BP

DG200ABK

1-32

DG508ACJ

2-60

DG200CA

DG200ABA

1-32

DG408DJ

2-11

DG200CJ

DG200ACJ

1-32

1-32

5-15

..

Silicanix

Cross Reference
Industry
PaliNumber
DG201AAK
DG201AAKIHR
DG201ACJ-2
DG201ACSE
DG201ACY
DG201AK
DG201AK/883
DG201BK
DG201CJ
DG202AK
DG202BK
DG202BSE
DG202CJ
DG202CJ-2
DG202CK
DG202CSE
DG202DY

DG211CJ-2

DG211CSE

DG211CY

DG211DY

DG212CJ

DG212CSE

DG212CY

DG212DY
DG221AK

5-16

SlJiconix
PaliNumber

Appt'OXimau
Replacement

AMember of the TBMIC Group

Page

Industry
Part NlUDber

SlIlconlx
Part Number '

Approximau
Replacement

Page

DG441AK

1-163

DG221CK

DG221AK/883

1-75

DG201AAK

1-37

DG221CY

DG22IDY

1-75

DG441AK/883

1-163

DG271AK-2

DG271AK/883

1-85

DG201AAKJ883

1-37

DG271BK

DG271AK

1-85

DG44IDJ

1-163

DG271CK

DG271AK

1-85

DG201ACJ

1-37

DG281AN883

DG181AN883

1-4

DG441DY

1-163

DG281AP/883

DG18IAP/883

1-4

DG284AP/883

DG184AP/883

1-11

DG287AP/883

DG187AP/883

1-18

DG201ADY

1-37

DG44IDY

1-163

DG201ADY

1-37

DG441AK

1-163

DG201AAK

1-37

DG441AK/883

1-163

DG201AAK/883

1-37

DG441AK

1-163

DG201ABK

1-37

DG44IDJ

DG290AP/883

DG190AP/883

1-25

DG300AA

DG300AAN883

1-90

DG300AAA

DG300AAN883

1-90

DG300AAA-2

DG300AAN883

1-90

DG300AAA/HR

DG300AAN883

1-90

DG300AAK-2

DG300AAK/883

1-90

DG300AAKIHR

DG300AAK/883

1-90

DG300ACA

DG300ABA

1-90

1-163

DG300ACK

DG300ABK

1-90

DG201ACJ

1-37

DG300AK

DG300AAK

1-90

DG442AK

1-163

DG300BA

DG300ABA

1-90

DG202AK

1-37

DG300BK

DG300ABK

1-90

DG442AK

1-163

DG300CJ

DG300ACJ

1-90

DG202AK

1-37

DG300CK

DG300ABK

1-90

DG442DY

1-163

DG301AA

DG301AAA

1-90

DG212DY

1-60

DG301AAA-2

DG301AAN883

1-90

DG442DJ

1-163

DG301AAA/HR

DG301AAN883

1-90

DG202CJ

1-37

DG301AAK-2

DG301AAK!883

1-90

DG442DJ

1-163

DG30lAAKlHR

DG301AAK/883

1-90

DG202CJ

1-37

DG30lACA

DG30lABA

1-90

DG442AK

1-163

DG30lACK

DG301ABK

1-90

DG202AK

1-37

DG301AK

DG301AAK

1-90

DG442DY

1-163

DG212DY

1-60

DG301BA

DG301ABA

1-90

DG301BK

DG301ABK

1-90

DG301CJ

DG301ACJ

1-90

DG301CK

DG301ABK

1-90

DG302AAK-2

DG302AAKJ883

1-90

DG302AAK!HR

DG302AAKJ883

1-90

DG302ABK

DG302AAK

1-90

DG302ACK

DG302AAK

1-90

DG302AK

DG302AAK

1-90

DG302BK

DG302AAK

1-90
1-90

DG442DY

1-163

DG212DY

1-60

DG444DJ

1-171

DG411DJ

1-137

DG211CJ

1-60

DG444DY

1-171

DG411DY

1-137

DG211DY

1-60

DG302CJ

DG302ACJ

DG444DY

1-171

DG302CK

DG302AAK

1-90

DG41lDY

1-137

DG303AAK-2

DG303AAK/883

1-90

DG21lDY

1-60

DG303AAK!HR

DG303AAKJ883

1-90

DG444DY

1-171

DG303ACK

DG303ABK

1-90

DG4llDY

1-137

DG303AK

DG303AAK

1-90

DG44SDJ

1-171

DG303BK

DG303ABK

1-90

DG412DJ

1-137

DG303CJ

DG303ACJ

1-90

DG212CJ

1-60

DG303CK

DG303ABK

1-90

DG44SDY

1-171

DG304AAK

DG304AAK/883

1-99

DG412DY

1-137

DG304AAK-2

DG304AAK/883

1-99

DG212DY

1-60

DG304AAKIHR

DG304AAK/883

1-99

DG44SDY

1-171

DG304ACK

DG304AAK/883

1-99

DG412DY

1-137

DG304AK

DG304AAK/883

1-99

DG212DY

1-60

DG304BK

DG304AAK/883

1-99

DG44SDY

1-171

DG304CJ

DG304ACJ

1-99

DG412DY

1-137

DG304CK

DG304AAK/883

1-99

DG221AK/883

1-75

DG30SAA

DG30SAAA

1-99

DG30SAAA-2

DG30SAAA

1-99

(11/15193)

Siliconix

Cross Reference

A Member of the TeMIC Group

Industry

Pa!1Nmnber
D030SABA

SiJieonlx
Pal1NUlnbet
D030SAAA

Approximate
~pJ.«I\J.nt

Industry

Page
1-99

Part NUllJber
DGS04SAK-2

S1Iieonlx
Pal1 NUlIlbeJ'

Approximate
RepJa«/ll.nt

Page

DG40SAK/883

1-127

D030SACA

DG30SAAA

1-99

DGS04SAK/883

DG40SAK/883

1-127

DG306AAK

DG306AAK/883

1-99

DGS04SCJ

DG40S01

1-127

DG306AAK/HR

DG306AAK/883

1-99

DGS04SCK

DG40SAK

1-127

DG306ABK

DG306AAK/883

1-99

DGS06AAK/883

2-S2

DG306ACK

DG306AAK/883

1-99

DG406AK/883

2-1

DG306AK

DG306AAK/883

1-99

DG306BK

DG306AAK/883

1-99

DG306CJ

D0306ACJ

1-99

DG306CK

DG306AAK/883

1-99

DG307AAK-2

D0307AAK/883

1-99

D0307AAK/HR

DG307AAK/883

1-99

DG307ACK

DG307ABK

1-99

DG307AK

DG307AAK

1-99

DG307BK

D0307ABK

1-99

DG307CJ

DG307ACJ

1-99

DG307CK

DG307ABK

1-99

DG308AAK-2

D0308AAK/883

1-107

DG308AAK/HR

D0308AAK/883

1-107

DG308ACY

DG308ADY

1-107

D0309CK

DG309CJ

1-107

DG381CJ

DG381ACJ

1-119

DG384AAK/HR

DG384AAK/883

1-119

DG387M

D0387AAA/883

1-119

DG387AAA

DG387AAA/883

1-119

DG387AAA-2

D0387AAA/883

1-119

DG387AANHR

DG387AAA/883

1-119

DG387AAK

D0387AAK/883

1-119

DG387AAK-2

DG387AAK/883

1-119

DG387AAK/HR

DG387AAK/883

1-119

DG387ABA

DG387AAA/883

1-119

DG387ABK

DG387AAK/883

1-119

DG387ACA

DG387AAA/883

1-119

DG387ACK

D0387AAK/883

1-119

DGS06AAK-2
DGS06AAR-2
DGS06AAR/883
DGS06ACJ-2
DGS06ACN

DGS06AAK/883

2-S2

DG406AK/883

2-1

DGS06AAK/883

2-S2

DG406AK/883

2-1

DGS06ACJ

2-S2

DG40601

2-1

DGS06ADN

2-S2

DG406DN

2-1

DGS06ABK

2-S2

DG406AK/883

2-1

DGS06ADJ

DG40601

2-1

DGS06ADJ-2

DG40601

2-1

DGS06ACR

DGS01AAK-2
DGS01AAK/HR
DGS01AAR
DG501AAR-2
DG501AAR/883
DG501ACJ-2
DG501ACK

DGS01AAK/883

2-S2

DG407AK/883

2-1

DGS01AAK/883

2-S2

DG407AK/883

2-1

DGS07AAK

2-S2

DG401AK/883

2-1

DGS01AAK/883

2-S2

DG401AK/883

2-1

DGS01AAK/883

2-52

DG401AK/883

2-1

DG501ACJ

2-52

DG40101

2-1

DG501ABK

2-52

DG401AK/883

2-1

DG501ABK

2-52

D0387AK

D0387AAA/883

1-119

DG501ACR

DG401AK/883

2-1

DG387BA

D0387AAA/883

1-119

DG501ADJ

DG401DJ

2-1

D0387BK

DG387AAK/883

1-119

DG501ADJ-2

DG40101

2-1

DG387CA

DG387AAA/883

1-119

DG508AAK/883

2-60

DG408AK/883

2-11

DG5OSAAK/883

2-60

D0387CJ

DG387ACJ

1-119

D0387CK

DG387AAK/883

1-119

DG403AK/883

1-127

DG390AAK/883

1-119

D0390AAK/8S3
DG390AAK/HR

DG390AAK/883

1-119

DG401CJ

DG40lDJ

1-127

DG403CJ

DG40301

1-127

DG403CK

DG403AK

1-127

DG40SCK

DG40SDJ
DG40SAK

1-127

DGS041AK

DG401AK

1-121

DGS041AK-2

DG40lAK/883

1-121

DGS041AK/8S3

DG401AK/883

1-127

DGS041CJ

DG40lDJ

1-121

DGS041CK

DG401AK

1-121

DGS043AK
DGS043AK-2

DG403AK

1-127

DG403AK/883

1-121

DGS043AK/883

DG403AK/883

1-121

DGS043CJ

1-218

DG40SCJ

DGS043CJ

1-127

DG40301

1-121

DGS043CK

DG403AK

1-127

DGS04SAK

DG40SAK

1-121

(11/15/93)

DG508AAK-2
DG508AAK/HR
DGSOSACJ-2
DG508ACWE

DG408AK/883

2-11

DG50SACJ

2-60

DG408DJ

2-11

DGS08ADY

2-60

DG40SDY

2-11

DGS08ADJ

DG40801

2-11

DG508ADJ-2

DG40801

2-11

DG508ADY

2-60

DG508AEWE
DG509AAK-2
DG509AAK/HR
DG509ACJ-2
DG509ACWE

DG408DY

2-11

DG509AAK/883

2-60

DG409AK/883

2-11

DG409AK/883

2-11

DG509AAK/883

2-60

DGS09ACJ

2-60

DG409DJ

2-11

DGS09ADY

2-60

DG409DY

2-11

5-17

II

Siliconix

Cross Reference
lIIdliStry
.Part Number

SlIIemrlr

Part Numbel-

Approsimate
ReplaeemOllt

AMember of the TBMIC Group

l'age

DGS09ADJ

DG40901

2-11

DGS141AK

DG401AK

DGS14lAK1883

1-127 '
1-127

DGS141CJ

DG401AKJ883
D040101

DGS141CK

D0401AK

DGS143AKJ883

D0403AKJ883

DG5143AKE

lIIdIiStry
Part Number

SlIIemrlr

Part NUmber

Approsimate
Replacement

l'age

DGM187AK

D0187API883

1-18

DGM187AK/883B

D0187API883

1-18

DGMI87AK/HR
DGM187BA

D0187API883
D0187BA

1-18
1-18

1-127

DGM187BK

D0187BP

1-127

DGM187CJ

D0403AK

1-127

DGM188AA

1-127

1-18
DG387ACJ

1-119

D0188AN883
DG188AN883

1-18
1-18

DGS143CJ

1-221

DGM188AN883B

D040301

1-127

D0188AN883

1-18

DG5143CK

DG403AK

1-127 '

DGM188AAiHR
DGM188AK

D0188AP/883

DG514SAK

DG405AK

1-127

DG405AKJ883

1-127

DG188AP/883
DG188BA

1-18
1-18

DGS145AKJ883

DGMI88AK/HR
DGM188BA

DG5145CJ

DG405DJ

DGM188BK
DGM188CJ

DG188BP

DGS143CJ

1-18
1-18

DGS14SCK

DG405AK

1-127
1-127

DGS28CWN

DG428DN

2-22

DGM189AK/883B

DG189API883

1-119
1-25

DG528CJ

2-70

DG428DJ

2-22

DGM190AK
DGM190AK/883B

D0190AP/883
DG190API883

1-25
1-25

DGS2801

DG387ACJ

DGS28DK

DG528BK

2-70

DGMI90AK/l1R

D0190API883

1-25

DGS28EWN
DG529CK

D0428DN
DGS29BK

2-22

DGM190BK

DG190BP

1-25

2-70

DGM190CJ

DG40301

DGS29CWN

D0429DN

2-22

DGM191AK

D0191API883

1-127
1-25

DGS29CJ

2-70

DGM191AKJ883B

DG191API883

1-25

DG429DJ

2-22

DGM191AKJHR

1-25

DGS29DK

DGS29BK

2-70

DGMI91BK

DGI91AP/883
DG191BP

DGS29EWN

D0429DN

2-22

DGM191CJ

DG40301

1-127

DGMI81AA

D0181AN883

1-4

DGP201AAK

DG441AK

1-163

DGM181AN883B

D0181AN883

1-4

DGP201AAK/883

DG441AKJ883

DGM181AAiHR
DGM181AK

D0181AA/883
D0181AP/883

1-4
1-4

DGP201ADJ
DGP201ADY

D04410J

1-163
1-163

DGM181AK/883B

D0181AP/883

1-4

DGP303AAK

DG441DY
DG403AK

1-127

DGM181AKJHR

D0181AP/883

1-4

DGP303AAK/883

DGM181BA
DGM181BK

DG181BA

1-4

D0181BP

1-4

DGP303ADJ
DGP303ADY

1-119

DGPS08AAK

DGS2901

DGM181CJ

DG381ACJ

1-127
2-11

1-127

DG408AK

1-4
1-4

DGPS09AAK/883

DG409AKJ883

2-11

DGI82AP/883

1-4

DGP509ADJ

D0182BA
DGI82BP

1-4

2-11
2-11

1-4
1-119

DGP509ADY
Hll-0200-2
HII-0200-4

DG409DJ
D0409DY
DG200AAK
DG200ABK

1-32
1-32

D0184AP/883

1-11

HIl-0200-5

DG200ABK

1-32

D040SAK

1-127

HIl-0200-8

DG200AAK/883

1-32

DG40SAKJ883

1-127

HIl-02001883

DG200AAK/883

1-32

DG184AP/883

1-11

Hll-0201-2

DG201AAK

1-37

DG40SAK/883

1-127

Hll-0201-4

DG20lABK

1-37

D0184AP/883

1-11

DG20lACK

1-37

DG40SAK

1-127

Hll-0201-S
HII-0201-8

DG20lAAK/883

1-37

DGMI82AAIHR
DGMI82AK

DG182AN883
DGI82AP/883

DGMI82AKIHR
DGM182BA
DGM182BK
DGM182CJ

DG381ACJ

HIl-0201HS-2

D0184BP

1-11

DGM184CJ

DG405DJ

1-127

DGM18SAK

DG185AP/883

1-11

r
Hll-0201H5-4

DGM185AK/883B
DGMI85AK/HR

D018SAP/883
DG185AP/883

1-11
1-11

Hll-0201H5-5

DGM18SBK

1-11

DGM185CJ

DG185BP
DG40S01

1-127

DGM187AA

D0187AN883

1-18

DGM187AA/883B
DGM187AA,IHR

D0187AA/883

1-18

D0187AN883

1-18

5-18

DG403DY
DG408AKJ883

1-4
1-4

DGM184BK

1-127

DG40801
DG409AK

DG182AN883

DGMI84AK/HR

DG403AK/883
DG40301

DGP508AAK/883

DG182AA/883

DGMI82AN883B

DGM184AKJ883B

1-163

DGPS08ADJ
DGPS09AAK

DGMI82AA

DGM184AK

1-25

HII-020lH5-8
HIl-020lHSI883

2-11
2-11
2-11

DG201HSAK883

1-52

DG271AK

1-85

DG271AK

1-85

DG201HSAK883

1-52

DG201HSAK883

1-52
DG271AK

DG20lHSAK883

1-85
1-52

DG271AKJ883

1-85

DG271AK/883

~-8S

DG201HSAK883

1-52

(11/15193)

Silicanix

Cross Reference

AMember of the TEMIC Group

Industry
Part Number
HIl-0300-2

SlIkonlx

Part Number
DG300AAK

Approximate
Replacement

Page
1-90

HIl-0300-S

DG300ABK

1-90

HIl-0300-8

DG300AAK/883

1-90

Industry
Part Number
HI1-0S08-8
Hll-OS08/883

Silleonlx

Part Nlnllber

Approximate
Replacement

DG408AK/883

Page
2-11

D0508AAK/883

2-60

DG408AK/883

2-11

D0508AAK/883

2-60

Hll-0301-2

DG301AAK

1-90

HIl-0301-S

DG301ABK

1-90

HIl-OS08A-2

DG4S8AK/883

2-34

Hll-0301-8

DG301AAK/883

1-90

Hll-OSOSA-S

DG4S8AK/883

2-34

HIl-0302-2

DG302AAK

1-90

Hll-OS08A-8

DG4S8AK/883

2-34

HIl-0302-S

DG302AAK

1-90

HIl-0302-8

DG302AAK/883

1-90

HIl-0303-2

DG303AAK

1-90

HIl-0303-S

DG303ABK

1-90

HIl-0303-8

DG303AAK/883

1-90

HI1-0304-2

DG304AAK/883

1-99

HIl-0304-S

DG304AAK/883

1-99

HIl-0304-8

DG304AAK/883

1-99

HIl-030S-2

DG301AAK

1-90

Hll-030S-S

DG301ABK

1-90

HIl-030S-8

JM38S10/11606BCA

1-99

HIl-0306-2

DG306AAK/883

1-99

Hll-0306-S

DG306AAK/883

1-99

HI1-0306-8

DG306AAK/883

1-99

Hll-0307-2

DG307AAK

1-99

HIl-0307-S

DG307ABK

1-99

HIl-0307-8

DG307AAK/883

1-99

DG40SAK/883

1-127

DG384AAK/883

1-119

Hll-0384-8

Hll-OS09-2
HIl-OS09-4
Hll-OS09-S
Hll-0509-8

DG409AK

2-11

D0509AAK

2-60

DG409AK

2-11

DGS09ABK

2-60

DG409AK

2-11

DGS09ACK

2-60

DG409AK/883

2-11

DG509AAK/883

2-60

DG409AK/883

2-11

DGS09AAK/883

2-60

HIl-0509A-2

DG459AK/883

2-34

HI1-0509A-5

DG459AK/883

2-34

HI1-0509A-8

DG459AK/883

2-34

HIl-5041-2

DG401AK

1-127

HIl-5041-5

DG401AK

1-127

HIl-5041-8

DG401AK/883

1-127

HIl-5043-2

DG403AK

1-127

HIl-5043-5

DG403AK

1-127

HIl-S043-8

DG403AK/883

1-127

HIl-5045-2

DG40SAK

1-127

HIl-504S-S

DG40SAK

1-127

HI1-S045-8

DG40SAK/883

1-127

HI2-0200-2

DG200AAA

1-32

HI2-0200-4

DG200ABA

1-32

H12-0200-S

DG200ABA

1-32

H12-0200-8

DG200AAN883

1-32

H12-0200/883

DG200AAA/883

1-32

HI2-0300-2

DG300AAA/883

1-90

Hll-0509/883

Hll-0387-2

DG387AAK/883

1-119

Hll-0387-S

DG387AAK/883

1-119

Hll-0387-8

DG387AAK/883

1-119

DG403AK/883

1-127

DG390AAK/883

1-119

DG406AK/883

2-1

DGS06AAK

2-S2

DG406AK/883

2-1

DGS06ABK

2-S2

DG406AK/883

2-1

HI2-0300-5

DG300ABA

1-90

DGS06ACK

2-S2

HI2-0300-8

DG300AAN883

1-90

DG406AK/883

2-1

HI2-0301-2

DG30lAAA

1-90

DGS06AAK/883

2-S2

HI2-0301-S

DG301ABA

1-90

DG406AK/883

2-1

HI2-0301-8

2-S2

HI2-0304-2

DG30lAAA/883
JM38510/11605BlA

1-90

DGS06AAK/883
DG407AK/883

2-1

HI2-0304-5

JM38510/1160SBlA

1-99

DGS07AAK

2-S2

HI2-0304-8

JM38510/1160SBlA

1-99

DG407AK/883

2-1

DG30SAAA

1-99

DGS07ABK

2-S2

DG30lAAA

1-90

DG407AK/883

2-1

DGS07ABK

2-S2

DG407AK/883

2-1

DGS07AAK/883

2-S2

DG407AK/883

2-1

D0507AAK/883

2-S2

DG408AK

Hll-0390-8
HIl-OS06-2
HIl-OS06-4
HIl-OS06-S
HIl-OS06-8
Hll-OS06/883
Hll-OS07-2
Hll-OS07-4
HI1-0S07-S
HIl-OS07-8
Hll-OS07/883
HIl-OS08-2
HI1-0S08-4
HI1-0S08-S

(11115/93)

HI2-030S-2

1-99

JM38S10/1l606BlA

1-99

DG30SAAA

1-99

DG301ABA

1-90

DG301AAN883

1-90

JM38S10/11606BlA

1-99

H12-0387-2

DG387AAN883

1-119

2-11

H12-0387-8

DGS08AAK

2-60

HI3-0200-5

DG387AAN883
DG200ACJ

1-32

DG408AK

2-11

HI3-0201-S

DG20lAC1

1-37

DGS08ABK

2-60

HI3-020lHS-4

DG20lHSDJ

1-52

DG408AK

2-11

D0508ACK

2-60

HI2-0305-2
HI2-0305-5
HI2-0305-8

HI3-0201HS-S

1-119

DG20lHSDJ

1-52

DG271C1

1-85

5-19

•

Siliconix

Cross Reference
Jnd'll8try
PaJtNumb...

SlIkonlx

Approximate

Part NllDlber

Replacement

AMember of the TBMIC Group

lbd'll8try
Page

Part NIIDIh...

smeonlx
Part NllDlber

Approximate

Replacement

Page

HI3-0300-5

DG300ACJ

1-90

IH182MJD

DG182AP

1-4

HJ3-0301-5
HJ3-0302-5

DG301ACJ

1-90

IH182MIW

DG182AA

1-4

1-90
1-90

IH184CJE
IH184MJE

DG184BP
DG184AP

1-11

HJ3-0303-5

DG302ACJ
DG303ACJ

HJ3-0304-5

DG304ACJ

1-99

IH185CJE

DG185BP

1-11

HJ3-0305-5

DG301ACJ

1-90

IH18SMJE

DG185AP/883

HJ3-0306-5

DG306ACJ

1-99

IH187CIW

DG187BA

1-11
1-18

HJ3-0307-5

DG307ACJ

1-99

IH187MJD

DG187AP

1-18

HJ3-0381-5
HJ3-0387-5

DG381ACJ
DG387ACJ

1-119
1-119

IH187MIW
IH188CJD

DG187AA
DG187BP

1-18

HJ3-0390-5

DG403DJ

1-127

IH188CIW

DG188BA

1-18
1-18

DG188AP/883

1-18

1-11

DG406DJ

2-1

DG506ACJ

2-52

IH188MJD
IH188MIW

DG188AA

1-18

DG407DJ

2-1

IH190CJE

DG190BP

1-25

DG507ACJ

2-52

1-25

2-11

DG508ACJ

2-60

IH190MJE
IH191CJE
IH5041CJE

DG190AP

DG408DJ

DG191BP
DG40lDJ

1-25
1-127

HI3-0508A-4

DG458DJ

2-34

IH5041CPE

DG40lDJ

1-127

HJ3-0508A-5

DG458DJ

2-34

IH5041MJE

DG401AK

1-127

DG409DJ

2-11

IH5041MJE/883B

DG401AK/883

1-127

DG509ACJ

2-60

IH5041MJE/HR

DG401AK/883

1-127

HJ3-0509A-4

DG459DJ

IH5043CJE

HJ3-0509A-5

DG459DJ

2-34
2-34

DG403AK
DG5043CJ

1-127
1-218

HI3-5041-5

DG401DJ

1-127

HJ3-0506-5
HI3-0507-5
HJ3-0508-5

HI3-0509-5

DG5043CJ

1-218

DG403DJ

1-127

HJ3-5045-5

DG405DJ

1-127

HI4-020l/883

DG201AAZ;883

1-37

HI3-5043-5

HI4-020lHS/883

DG201HSAZ883

1-52
DG271AZ!883

1-85

IH5043CPE
IH5043CY

DG403DY

1-127

IH5043MJE

DG403AK

1-127

IH5043MJE/883B

DG403AK/883

1-127

IH5045CJE

DG405AK

1-127

IH5045CPE

DG405DJ
DG405AK

1-127

DG405AK/883

1-127
1-127

IH504SMJE/HR

DG405AK/883

1-127

IH5108CJE

DG458AK/883

2-34

IH5108CPE

DG458DJ

2-34

IH51081IE

DG458AK/883

2-34

DG458AK/883
DG458AK/883

2-34
2-34

IH504SMJE
IH5045MJE/883B

DG406AZ!883

2-1

DG506AAZ;883

2-52

DG407AZ!883

2-1

DG507AAZ/883

2-52

DG408AZ/883

2-11

IH5108MJE
IH5108MJE/883B

DG508AAZ;883

2-60

IH5141CJE

DG401AK

DG458AZ/883

2-34

IH5141CPE

DG40lDJ

1-127
1-127

DG409AZ!883

2-11

IH5141MJE

DG401AK

1-127

DG509AAZ;883

2-60

IH5141MJE/883B

DG401AK/883

HI4-0509A/883
HI4P0506-5

DG459AZ!883
DG506ADN

2-34

IH5142MTE

DG403AK

IH5142MJE/883B

DG403AK/883

HI9P0201-5

DG201ADY

1-37

IH5143CJE

DG403AK

HI9P0201-9

DG201ADY

1-37

IH5143CPE

DG403DJ

1-127

DG20lHSDY

1-52

IH5143MJE

DG403AK

1-127

1-85

IH5143MJE/883B

DG403AK/883

1-52

HJ4-0506/883
HI4-0507/883
HJ4-0508/883
HI4-0508A/883
HI4-0509/883

HI9P0201HS-5

DG271DY
DG20lHSDY

1-127
1-127
1-127
1-127

1-127
DG405AK

1-127

DG405AK/883

1-127
1-127

1-85

IH5144MJE
IH5144MJE/883B

HJ9P0508-5
HI9P0508-9

DG508ADY

2-60

IH5145CJE

DG405AK

DG508ADY

2-60

1-127

DG509ADY

2-60

IH5145CPE
IH514SMJE

DG405DJ

HI9P0509-5

DG405AK

1-127

HJ9P0509-9

DG509ADY

2-60

1-127

Si7660DY
Si7660CJ

4-1

IH514SMJE/883B
IH5208CJE

DG405AK/883

ICL7660CBA

HI9P020lHS-9

DG271DY

ICL7662CPA
IH181CJD

Si7661CJ

4-1
4-7

IH52081IE

DG459AK/883

2-34
2-34
2-34

DG181BP

1-4

IH5208MJE

DG459AK/883

2-34

IH181CIW

1-4

IH5208MJE/883B

DG459AK/883

2-34

IH18lM'IW

DG181BA
DG181AA

IH182CJD

DG182BP

1-4

IH182CIW

DG182BA

1-4

ICL7660CPA

5-20

1-4

IH5208CPE

DG459AK/883
DG459DJ

IH6108CJE

DG408AK

2-11

DGS08ACK

2-60

(11/15/93)

Siliconix

Cross Reference

AMember Qfthc TBMIC Group

Industry
PaI'tNumber
IH6108CPE
IH6108MJE

SiIieonix
Part Number

Approximate
Replacement

Page
1-127

MAX303ESE

DG403DY

1-127

MAX303EJE

DG403AK

1-127

MAX303MLP

DG403AZ/883

1-127
1-127

DG508ACJ

2-60

DG408AK

2-11

DGS08AAK

2-60

IH6116MJI/883B

siIieonix
Part Number
DG403DJ

MAX303EPE

IH6116MJI

IH6208MJE

Industry
Part Number

2-11

IH6116CPI

IH6208CPE

Page

DG408DJ

IH6116CJI

IH6208CJE

Approximate
Replacement

DG406AK

2-1

MAX303MJE

DG403AK

DGS06AAK

2-52

MAX30SCPE

DG40SDJ

1-127

DG406DJ

2-1

MAX30SCSE

DG405DY

1-127

DG506ACJ

2-52

MAX30SEPE

DG40SDJ

1-127

DG406AK

2-1

MAX30SESE

DG405DY

1-127

DG506AAK

2-52

MAX30SEJE

DG40SAK

1-127

DG406AK/883

2-1

MAX30SMLP

DG405AZ/883

1-127

DG506AAKJ883

2-52

MAX30SMJE

DG40SAK

1-127

MAX306CJ

DG406DJ

2-1

MAX306DJ

DG406DJ

2-1

MAX306DN

DG406DN

2-1

MAX306DK

DG406AK

2-1

MAX306AK

DG406AK

2-1

MAX307CJ

DG407DJ

2-1

DG409AK

2-11

DG509ACK

2-60

DG409DJ

2-11

DG509ACJ

2-60

DG409AK

2-11

DG509AAK

2-60

MAX307DJ

DG407DJ

DG409AK/883

2-11

MAX307DN

DG407DN

2-60

MAX307DK

DG407AK

DG407AK

2-1

MAX307AK

DG407AK

DG507AAK

2-52

MAX308EPE

DG408DJ

2-1
2-1
2-1
2-1
2-11

DG407DJ

2-1

MAX308ESE

DG408DY

2-11

DG507ACJ

2-52

MAX308EJE

DG408AK

2-11

DG407AK

2-1

MAX308MJE

DG408AK

2-11

DG507AAK

2-52

MAX309EPE

DG409DJ

2-11

DG407AK/883

2-1

MAX309ESE

DG409DY

2-11

DGS07AAKJ883

2-52

MAX309EJE

DG409AK

2-11

JM38S10/11601BCA

1-90

MAX309MJE

DG409AK

2-11

JM38510/11602BCC

JM38S10/11602BCA

1-90

MAX317CPA

DG417DJ

1-146

JM38S10/11603BCC

JM38SlO/11603BCA

1-90

MAX317CSA

DG417DY

1-146

JM38S10/11604BCC

JM38S10/11604BCA

1-90

MAX317EPA

DG417DJ

1-146

JM38S10/1160SBCC

JM38S10/1160SBCA

1-99

MAX317ESA

DG417DY

1-146

JM38510/11606BCC

JM38510/11606BCA

1-99

MAX317EJA

DG417AK

1-146

JM38S10/11607BCC

JM38S10/11607BCA

1-99

MAX317MJA

DG417AK

1-146

JM38S10/11608BCC

JM38510/11608BCA

1-99

MAX318CPA

DG418DJ

1-146

JM38S10/1230lBCC

JM38S10/12301BCA

1-32

MAX318CSA

DG418DY

1-146

JM38S10/12302BEC

JM38S10/12302BEA

1-37

MAX318EPA

DG418DJ

1-146
1-146

IH6208MJE/883B

DG509AAKJ883

IH6216CJI
IH6216CPI
IH6216MJI
IH6216MJI/883B
JM38510/1160lBCC

LF11201AD

DG411AK

1-137

MAX318ESA

DG418DY

LF11201N

DG411DJ

1-137

MAX318EJA

DG418AK

1-146

LF11202D

DG412AK

1-137

MAX318MJA

DG418AK

1-146

LF1220lD

DG411AK

1-137

MAX319CPA

DG419DJ

1-146

LF12202D

DG412AK

1-137

MAX319CSA

DG419DY

1-146

LF12202N

DG412DJ

1-137

MAX319EPA

DG419DJ

1-146

LF1320lD

DG411AK

1-137

MAX319ESA

DG419DY

1-146

LF13201N

DG411DJ

1-137

MAX319EJA

DG419AK

1-146

LF13202D

DG412AK

1-137

MAX319MJA

DG419AK

1-146

LF13202N

DG412DJ

1-137

MAX331MJE

DG441AK

1-163

LTC1044CJ8

Si7660CJ

4-1

MAX332MJE

DG442AK

1-163

MAX301CPE

DG40lDJ

1-127

MAX3S1CPE

DG411DJ

1-137

MAX301CSE

DG40lDY

1-127

MAX3S1CSE

DG411DY

1-137

MAX30lEPE

DG401DJ

1-127

MAX3SlEPE

DG411DJ

1-137

MAX301ESE

DG401DY

1-127

MAX3S1ESE

DG411DY

1-137

MAX301EJE

DG401AK

1-127

MAX351EJE

DG411AK

1-137

MAX301MLP

DG401AZ/883

1-127

MAX3S1MJE

DG411AK

1-137

MAX30lMJE

DG401AK

1-127

MAX3S2CPE

DG412DJ

1-137

MAX303CPE

DG403DJ

1-127

MAX3S2CSE

DG412DY

1-137

MAX303CSE

DG403DY

1-127

MAX352EPE

DG412DJ

1-137

MAX352ESE

DG412DY

1-137

(11/15/93)

5-21

II

Siliconix

Cross Reference
Incllislry
PartN....er
MAX3S2EJE

Sl&mtiJr
PartN_bel-

Approximate
Bepl&eelllent

DG412AK

AMcmber oftbc TBMIC Group

Page

Incllislry
PartNumher

SlIleonlx
PartN_be~

1-137

MP303DJBP

DG303AAK

Approximate
Beplaeement

Page
1-90

MAX352MJE

DG412AK

1-137

MP303DJCJ

DG303ACJ

1-90

MAX3S3CPE

DG413DJ

1-137

MP7S06JD

DG506ACK

2-52

MAX3S3CSE

DG413DY

1-137

MP7506JN

DG506ACJ

2-52

MAX3S3EPE

DG413DJ

1-137

MP7506KD

DGS06ACK

2-52

MAX3S3ESE

DG413DY

1-137

MP7506KN

DGS06ACJ

2-52

MAX353EJE

DG413AK

1-137

MP7506SD

DG506AAK

2-52

MAX3S3MJE

DG413AK

1-137

MP7506ID

DGS06AAK

2-52

MAX358CJE
MAX3S8CPE

DG4S8AK/883
DG4S8DJ

2-34

MP7507JD

DG507AAK

2-52

2-34

MP7507JN

DGS07ACJ

2-52

MAX3S8CPE-2

DG458DJ

2-34

MP7507KD

DG507AAK

2-52

MAX3S8EJE

DG4S8AK/883

2-34

MP7507KN

DG507ACJ

2-S2

MAX3S8EPE

DG4S8DJ

2-34

MP7507SD

DGS07AAK

2-S2

MAX3S8MJE

DG4S8AK/883

2-34

MP7507ID

DGS07AAK

MAX3S8MJEJ883

DG4S8AK/883

2-34

MP7508KD

DGS08ABK

2-60

2-S2

MAX3S8MJEJHR

DG458AK/883

2-34

MP7S08KN

DGS08ACJ

MAX358MLP

DG458AZ/883

2-34

MP7S08SD

DGS08AAK

2-60
2-60

MAX359CJE

DG459AK/883

2-34

MP7S09KD

DG509ABK

2-60

MAX359CPE

DG459DJ

2-34

MP7S09KN

DG509ACJ

2-60

MAX359CPE-2

DG459DJ

2-34

MP7S09SD

DGS09AAK

2-60

MAX359EJE

DG459AK/883

2-34

MUX08BQ

DG408AK

2-11

MAX359EPE

DG459DJ

2-34

MUX08FP

DG408DJ

2-11

MAX359JJE

DG459AK/883

2-34

MUX08FQ

DG408AK

2-11

MAX359MJE

DG459AK/883

2-34

MUX16BT

DGS06AAK

2-52

MAX359MJEj883

DG459AK/883

2-34

MUX16Ff

DGS06ABK

2-S2

MAX359MJEJHR

DG459AK/883

2-34

MUX24BQ

DG409AK

2-11

MAX359MLP

DG459AZ/883

2-34

MUX24FP

DG409DJ

2-11

MAX361CPE

1-163

MUX24FQ

DG409AK

2-11

MAX361CSE

DG44lDJ
DG441DY

1-163

MUX28BT

DG507AAK

2-52

MAX361EPE

DG44lDJ

1-163

MUX28Ff

DGS07ABK

2-S2

MAX361ESE

DG441DY

1-163

Sl7661CA

Si7661CJ

4-7

MAX36lEJE

DG441AK

1-163

SWOIBQ

DGZOlAAK

1-37

MAX36lMJE

DG441AK

1-163

SW01BQ883

DG20lAAK/883

1-37

MAX362CPE

DG442DJ

1-163

SWOlFQ

DG20lABK

1-37

MAX362CSE

DG442DY

1-163

SW02BQ

DG202AK

1-37

MAX362EPE

DG442DJ

1-163

SW02BQ883

DG202AK/883

1-37

MAX362ESE

DG442DY

1-163

SW02FQ

DG202AK

1-37

MAX362EJE

DG442AK

1-163

SW05BK

DG200AAA

1-32

MAX362MJE

DG442AK

1-163

SW05BK883

DG200AAA/883

1-32

MAX364CPE

DG444DJ

1-171

SW05BY

DG200AAK

1-32

MAX364CSE

DG444DY

1-171

SW05BY883

DG200AAK/883

1-32

MAX364EPE

DG444DJ

1-171

SWOSPK

DGZOOABA

1-32

MAX364ESE

DG444DY

1-171

SWOSFY

DGZOOABK

1-32

MAX365CPE

DG445DJ

1-171

SW05GP

DG202CJ

1-37

MAX365CSE

DG445DY

1-171

SW201BQ

DG411AK

1-137

MAX365EPE

DG445DJ

1-171

SW20IBQ883

DG411AK/883

1-137

MAX36SESE

DG445DY

1-171

SWZOlFQ

DG411AK

1-137

MP200DIAA

DGZOOAAA

1-32

SWZOlGP

DG411DJ

1-137

MP200DIAP

DG200AAK

1-32

SW202BQ

DG412AK

1-137

MP200DIBA

DG200ABA

1-32

SW202BQ883

DG412AK/883

1-137

MP200DICJ

DG200ACJ

1-32

SW202FQ

DG412AK

1-137

MP200DIPB

DG200ABK

1-32

SW202GP

DG412DJ

1-137

MP20lDJBP

DG411AK

1-137

TSC7660c0A

Si7660DY

4-1

MP201DICJ

DG411DJ

1-137

TSC7660CPA

Si7660CJ

4-1

DG411AK

1-137

MP20ADlAP
MP302DlAP

DG30ZAAK

1-90

MP302DIBP

DG30ZAAK

1-90

MP302DICJ

DG30ZACJ

1-90

MP303DIAP

DG303AAK

1-90

5-22

This Cross Reference material is accurate to the best knowledge and
belief of Siliconix. Since individual circuit design and layout can
influence device performance, the purchaser must be responsible for
the u1tinlate selection and determination of interchangeability_

(11/15/93)

General Information
Analog Switches
Analog Multiplexers
WidebandNideo Amplifiers
Voltage Converters
Appendix
Worldwide Sales Offices and Distributors

a

Silicanix
AMcmbcroftbe TBMIC Group

u.s. Sales Offices
EASTERN
Huntsville, AI. (35824)
'lEMIC
125 Eectronics Boulevard, Ste. C·l
'IEL: (205) 461-7894n895
FAX: (205)461-7928

"!toy, MI (48084)
'lEMIC
'!toy'1Cchnica1 Center
Continental FI81a
27011l'oy Center Drive, Ste. 100
'IEL: (810) 244-1400
FAX: (810) 244-0848

Nashua, NH (03062)
'lEMIC

Hoffman Esta.." IL (60195)
'lEMIC
1030 W.
Road, Sfe. 101
'IEL: (708) 490-0374
FAX; (708) 490-1499

20 Heatber Court
'IEL: (603) 886-9603
FAX; (603) 886-9603

Annapoils,MD (21403)
'lEMIC
1419 Forest Drive, Ste. 103
'IEL: (410)269-1898
FAX; (410) 974-8170

Annandale, NJ (08801)
'lEMIC
1322 Route 31 North
'IEL: (908) 735-6100
FAX; (908) 735-2258

Hi_,

Ossining, NY (10562)
'lEMIC
74 Revolutionary Road
'IEL: (914) 945-0618
FAX; (914) 945-0769
While Plain" NY (10605)
'I1!MIC

12Ro1andDrlvc
TIlL: (914) 997-1265
FAX; (914) 997-1277

WESTERN
Santa Clara, CA(95OS6)
'I1!MIC c/o SiIiconixhlc.

2201 Laurelwood Road
P.O. Box 54951
TIlL: (408) 970-5700
FAX: (408) 970-3950

Irvin" CA(92619-1084)
'I1!MIC
P.O_ _ 51084
TIlL:
FAX:

(714) 552-4080
(714) 552-4181

Ashevill., NC (28801)
'lEMIC
46 Haywood. Street, Ste. 337
'IEL: (704) 252-9827
FAX; (704) 252-5083

Houston (77027)
'I1!MIC
2100 West Loop Southt Stc. 800
TIlL: (713) 297-8871
FAX: (713) 297-8872

u.S. Sales Representatives
ALABAMA

CONNECTICUT

ILLINOIS

MASSACIlUSETTS

HuntMll. (35803)
Rep. Inc.
llS3S Gilleland Road
TIlL: (20S) 881-9270
FAX; (205) 882-6692

Wallingford (06492)
'Jechnology Sales, Inc.
237 Hall Avenue
TIlL- (203) 269-8853
FAX; (203) 269-2099

HoffmanEstates (60195)
V!c:tory Sales
1030 W. Higgins Road, 510.101
'IEL: (708) 490-0300
FAX; (708) 490-1499

Waltham (02154)
'l!clmology Sales, Inc.

ALASKA

DELAWARE

INDIANA

See Washington

See New Jersey (Soutbem)

ARIZONA
1I>mpc (85283)
Quadrcp Southern
40 W. Baselirlo Road, Sto. 112
TIlL: (602) 839-2102
FAX: (602) 839-2126

DISTRICT OF COLUMBIA
See Maryl8.D.d

MICHIGAN
Indianapolis (46250)
V!c:tory Sales
8041 Knuc Road
TIlL: (317) 577-4786
FAX: (317)577-4789

CALIFORNIA (Northern)
San Jose (95134)
Quadrcp, Inc.
2635 N. Frrst Street, Ste. 116
'IEL: (408) 432-3300
FAX; (408) 432-3428

(612)9~904

IOWA

FAX;

Cedar Rapids (52402)
Stan Clothier Company
1930 Strcet AndrcwsNE
'IEL: (319) 393-1576
FAX; (319)393-7317

MISSISSIPPI

400 Fairway Drive Sto. 107
'IEL: (305) 426-8944
(305) 570-8568

Largo (34643)

Irvine (92718)
Quadrep Southern, Inc.
15215 Alton Parkway, Ste. 200
TIlL: (714) 727-4222
FAX: (714) 727-4033

Stan Clothier
9600 W. 76th Street, Stc. A

Deerfield Beach (33441)

Sec 10xas (Arlington)

San Diego (92130)
Quadrcp Southern, Inc.
11995 El Camino Boa!, Sm_ 305
TIlL: (619) 755-1188
FAX: (619) 793-9269

PdenPrairie (55344)

FLORIDA

FAX:

CALIFORNIA (Southern)

Sec 1EMIC Sales Offices, "!toy, MI

MINNESOTA

'IEL: (612) 944-3456

MEC

ARKANSAS

332 Second Avenue
TIlL: (617) 890-5700
(617)890-3913

FAX:

MEC
10637 Harborside Drive North
'IEL: (813) 393-5011
FAX; (813) 393-5202

WIll..r Park (32789)
MEC
1305 Raintrec 1'1800
TIlL: (407) 740-0023
FAX: (407) 740-0083

GEORGIA
"IIIckor(30084)
&p,Inc.
1944 NorthiakoParkway
TIlL: (404) 938-4358
FAX; (404) 938-0194

HAWAII

KANSAS
Len... (66215)
Stan Clotbler Co.
13000 W. 87th Street Parkway, Ste. lOS
'IEL: (913) 492-2124
FAX: (913) 492-1855

KENTUCKY
SeoIndlana

See Alabama

MISSOURI
Saint Charles (63303)
Stan Clothier Company
3910 Old. Highway 94, South, Ste. 116
'IEL: (314) 928-8078
FAX; (314) 447-5214

MONTANA
See Washington

NEBRASKA
SccMWouri

NEVADA (Except Clark County)
LOUISIANA

See Califronia (Northern)

SccArUngtoD., 'l8xas

NEVADA (Clark County)

MAINE

ScoArizona

NEW IIAMPSHIRE

Sec Califorala (Northern)

Sec Massachusetts

COWRADO

IDAHO

MARYLAND

NEW JERSEY

Littleton (80122)
Quadrcp, Inc.
7891 S_ Garfield Way
'IEL: (303) 771-6886
FAX; (303) 771-6887

Boi.. (83702)

Thwson (21204)
ArbotckAssoaates, Inc.
100W_JoppaRoad
TIlL: (410) 825-0775
FAX; (410)337-2781

NEW MEXICO

Q.R-CrOWD

1524 w.Hays
TIlL: (208) 344-9588
FAX; (208) 344-9550

•

Sec Massachusetts

Sec New York (Metro/LL)

SceArizona

6-1

Siliconix
AMombor oltho TBMIC Group

u.s. Sales Representatives (Cont'd)
NEWYORK (Upstate)

OREGON

SOUTH DAKOTA

UTAH

Fairport (14450)
'lbcImoiogy Sale~ Inc
920 PeriDtonHills Office Park
TEL: (716) 223·7500
FAX: (716) 223·5526

Portland (97224)
OR. Crown, Inc.
17020 Sw. Upper BoonesFerryRoad,
S... 202
'IE[.: (503) 620-8320
FAX: (503) 639-4023

See Minnesota

,See. ColOrado

NEWYORK (Metro/L.I.)
Babylon (11702)
Al:trorcp Incorporated
103 Cooper Street
TEL: (516) 422-2500
FAX: (516) 422-2504

PENNSYLVANIA (Western)

NORTH CAROLINA

Sec New York (Mctro/LL)

Morrisville (27560)

See IndIana

PUERTO RICO

'IE[.:

San German (00683-0121)
-:mclmology Sales. Inc.
PO Box 122, Edificio RaIi, S1o. 216
'IE[.: (809) 892-4745
FAX: (809) 892-1128

2500 Ga-.y Ccntre Blvd., S... 400
(919) 469·9997
(919) 481·3879

NORTH DAKOTA
See Minnesota

OIDO
SceIndiana

Jefferson City (37760)

RHODE ISLAND
Sec Massachusens

OKLAHOMA

SOUTH CAROLINA

Sec 'II>lIas (ArUngtnn)

Sec Unnessee

See Massac:husetts

Rep. Inc.

VIRGINIA

P.O.Box490
1908 Branner Avenue
(615) 475·9011J9013
FAX: (615) 475-6340
'

WASHINGTON

TEXAS

BeUevue (98005)
O.R. Crown. Inc.
'J75 118thAve., 8.£,810.110

'IE[.:

PENNSYLVANIA (Eastern)

Rep. Inc.

FAX:

VERMONT
TENNESSEE

Sec Maryland

'IE[.:

(206) 453·5100
(206) 646-8775

ArUngton (76006)
Ion Associates, Inc.
2221 E. Lamar, 810. 250
'IE[.: (817) 695-8000
FAX: (817) 695-8010

FAX:

Austin (787S9)

WISCONSIN

Ion Associates, Inc.
4412 Splocwood SprinpRoad, S... 202
(512) 794·9006
FAX: (512) 794-9008
'IE[.:

WEST VIRGINIA
SecMlIlJ'Iand

Brookfield (53005)
VictcnySalos

405 N. Calhoun Road, Sto. 208
(414) 789-5770
FAX: (414) 789-5760
'IE[.:

Houston (77014)
Ion Associates, Inc.
14347-A 'Ibney Ch... Blvd.
'IE[.: (713) 537-7717
FAX: (713) 537·5612

WYOMING
Sec Colorado

Canadian Sales Representatives
Brompton, Ontario (L6T lK2)
Eectronics Sales Professionals (ESP) Inc.
27 Anno Court
'IE[.: (416) 458-1103
FAX: (416) 458-4469
British Columbia
See Washington

Montreal, Quebec (H2B lZ2)

North Gower, Ontario (K0A2111)

Scarborough, Ontario (MIV 31'6)

Electronics Sale, Professionals (ESP) Inc.

Ecctronics Sales Professionals (ESP) Inc.
5936'IblrdUneRoad NorthRR #3
'IE[.: (613) 489-3379
FAX: (613) 489-2778

Electronics Sales Professionals (ESP) Inc.

2102 Place Bloane-Brule
'IE[.:

FAX:

Chip Distributor
FLORIDA
Orlando (32810)

Chip Supply, Inc.
7725 N. Orange Blossom ')tail
(407)298-7100
'lWX: (810) SSO-Ol03
FAX: (407) 290-0164
'IE[.:

6-2

(514)388-6596
(514) 388-8402

60 Wildemcss Drive
'IE[.:

FAX:

(416) 321·9693
(416) 321·9794

Silicanix
AMembcr ofthe TEMfC Group

U. S. Distributors
ALABAMA
Huntsville (35816)
Future Electronics Corp.
4825 University Square, Ste, 12
TEL: (205) 830·2322
FAX: (205) 830·6664
Huntsville (35801)

Marshall Industries
3313 Memorial Parkway Soutb, Ste. 150
TEL: (205) 881·9235
FAX: (20S) 881·1490
Huntsville (35816)
Pioneer 1£cb.

4835 University Square, Ste, 5
TEL:
FAX:

(205) 837·9300
(205) 837·9358

ARIZONA
Phoenix (85034)
Future Electronics Corp.
4636E University Drive, Ste. 245
TEL: (602) 968·7140
FAX: (602) 968·0334

Phoenix (85044)
Marsballlndustries
9830 S. 51st Street, Ste.Bt21
TEL: (602) 496·0290
FAX: (602) 893·9029
Pboenix(85040)
Wyle Laboratories-EMG
4141 E Raymond Street, Ste. 1
TEL' (602) 437·2088
FAX: (602) 437·2124
Thmpc (85281)
Bell Industries
140 S. Lindon Lane #102
TEL: (602) 966·3600
(800) 525·6666
FAX: (602) 967·6584
Thmpc (85281)
HanllltonIHallmark
1626 S. Edward Drive
(800) 332·8638
FAX: (800) 257·0568

CALIFORNIA
Agoura Hills (91301)
Bell Industries
30101 Agoura Court, Ste. 118
TEL: (818) 865·7900
(800) 525·6666
FAl(, (818) 991·7695

Agoura Hills (91301)
Pioneer Std.
5126 Clareton Dnve, Ste.160
TEL: (818) 865·5800
FAX: (818) 865·5814
Calabasas (91302-1959)
Marshall Industries

El Moote (91731)
Marshall Corporate
9320 1elstar Avenue
TEL: (818) 307·6000
FAX: (818)307·6297

San Diego (92123)
Hamllton/Hallmark - #02
4545 Viewridge Avenue
TEL: (619) 571·7540
FAX: (619) 277·6136

Thornton (80241)
Wyle Distribution Group
451 E. 124th Avenue
TEL: (303) 457·9953
FAX: (303) 457·4831

Irvine (92718)
Bell Industries
220 1echnology Drive, Ste. 100
TEL: (714) 727-4500
(800) 525·6666
FAX: (714) 453-4610

San Diego (92123)
Marshall Industries
5961 Kearny Villa Road
TEL: (619) 627-4140
FAX: (619) 627-4163

CONNECTICUT

Irvin. (92714)
Future Electronics Corp.
1692 Browning Ave.
TEL: (714)250-4141
FAX: (714) 250·4185
Irvine (92718)
Marshall Industnes
1 Morgan
TEL: (714) 859·5050
FAX: (714) 581·5255
Irvine (92718)
Pioneer Std.
2171CchnologyDrive,Ste.l10
TEL: (714) 753·5090
FAl(, (714) 753·5074
Irvine (92714)
Wyle Laboratories·EMG
17872 Cowan Avenue
TEL: (714) 863·9953
1WX: (910) 595·1572
FAX: (714) 863·0473
Los Angeles (90049)
Bell Industries
11812 San Vmcente Blvd., Ste. 300
TEL: (310) 826-2355
(800) 525·6666
FAX: (310) 826·1534

Milpitas (95035)
Marshall Industries
336 Los Caches Street
TEL: (408) 942-4600
FAX: (408) 262·1224
Rancho Cordova (95670)
Marshall Industries
3039 Kilgore Ave. Ste.140
TEL: (916) 635·9700
FAX: (916) 635·6044
Rancho Cordova (95742)
Wyle Distribution Group
Sacramento Division
2951 Sunrise Blvd., Ste. 175
TEL: (916) 638·5282
FAX: (916) 638·1491
Reseda (91335)
JANDevices
6925 Canby,Bldg.l09
TEL: (818) 708·1100
FAX: (818)708·7436

26637 Agoura Road

TEL:
FAX:

(818) 878·7000
(818) 880·6846

Calabasas (91302)

Wylc Laboratories
26010 MureauRoad, Ste. 150
TEL' (818) 880·9000
FAX: (818) 8BO·551O

Chatsworth (91311)
Future Electronics Corp.
9301 Oakdale Ave., Ste. 210
TEL: (818) 772·6240
FAX: (818) 772·6247

San Diego (92123)
Wyle Laboratories-EMG
9525 Chesapeake Drive
TEL: (619) 565·9171
FAX: (619) 565·6512
San Jose (95131)
Hamilton/Hallmark - #03
2105 Lundy Avenue
TEL: (408) 435·3500
FAl(, (408) 435·3720

San Jose (95131-1326)
Future Electronics Corp.
2220 O"Thole Avenue
TEL: (408)434·1122
FAX: (408) 433-0822
San Jose (95134)
Pioneer1ech.
134 Rio Robles
TEL: (408) 954·9100
FAX: (408) 954·9113

San Jose (95119)
Zeus Electronics
6276 San Ignacio Ave., Ste. E
TEL: (408) 629-4789
FAX: (408) 629-4792
Santa Clara (95052)
Wyle Distribution Group
3000 Bowers Avenue
TEL: (408) 727-2500
1WX: (910)379-6480
FAX: (408) 727-5896
Sunnyvale (94089)
Bell Industries
1161 No. Fairoaks Avenue
TEL: (408) 734·8570
(800) 525·6666
FAX: (408) 734·8875

Cheshire (06410)
Future Electronics Corp.
Westgate Office Center
700 West Johnson Ave.
TEL: (203) 250·0083
FAX: (203) 250·0081
Cheshire (06410)
Hamilton/Hallmark - #21
125 Commerce Court, Unit 6
'IEL: (203) 797·2800
FAl(, (203) 272·1704
Shelton (06484)
Pioneer Std.
2 'Rap Falls Road
TEL: (203) 929·5600
FAX: (203) 929·9791
Meriden (06413)
Bell Industries
1064 E. Main Street
TEL: (203) 639·6000
(800) 525-6666
FAX: (203) 639·6005
Wallingford (06492)
Marshall Industries
20 Sterling Drive
Barnes Industrial. Park
TEL: (203) 265·3822
FAl(, (203) 284·9285

FLORIDA
Altamonte Springs (32701)
Bell Industries
650 S. North Lake Blvd., Ste. 400
TEL: (407) 339·0078
(800) 525·6666
FAX: (407)339·0139
Altamonte Sprinp: (32701)

Future Eectronics Corp.
650 S. Northlake Blvd.
TEL: (407) 767-8414
FAX: (407)834.9318

Woodland Hill, (91367)
Hamilton IAwet - #48
21150 Califa Street
TEL: (818) 594-0404
FAl(, (818) 594·8234

Altamonte Springs (32701)
Marshall Industries
380 S.Northlake Blvd., Ste. 1024
TEL: (407)767-8585
FAX: (407) 767·8676

Yorba Unda (92686)
Zeus Electronics
22700 Savi Ranch Pkwy.
TEL: (714) 921·9000
FAX: (714) 921·2715

Altamonte Springs (32701)
Pioneer 1Cch.
337 South Northlake Blvd. #1000
TEL: (407) 834·9090
FAX: (407) 834·0865

COLORADO

Rocklin (95677)
Bell Industries
4311 Anthony Ct , Ste. 100
TEL: (916) 652-0418
(800) 525·6666
FAl(, (916) 652-0403

Lakewood (80215)
Future Electronics Corp.
12600 W. Colfax Avenue, Ste. BUD
TEL: (303) 232·2008
(800) 950-3532
FAX: (303) 232·2009

Rocklin (95765)
Hamilton/Hallmark - #35
580 Menlo Drive, Ste. 2
TEL: (916) 624-9781
FAX: (916) 961·0922

Denver (80222)
Bell Industries
1873 S. Bellaire Street, Ste.l00
TEL: (303) 691·9270
(BOO) 525·6666
FAX: (303) 691·9036

Deerfield Beach (33442)
Pioneer'Jech.
674 S. Mllitary'Rail
TEL: (305) 428-8877
FAl(, (305) 481·2950

Fort Lauderdale (33309)
Hamiltoo/Hallmark, - #17
3350 N.W. 53rd Street, Ste. 105
TEL: (305) 484-5016
FAX: (305) 484-4740
Fort Lauderdale (33309)
Marshall Industries
2700 W. Cypress Creek Road, Ste. D114
TEL: (305) 977·4880
FAl(, (305) 977-4887

Costa Mesa (92626)
Hamilton!Hallmark - #29
3170 Pullman Street
TEL: (714) 641-4100
FAX: (714) 641-4122

San Diego (92123)
Bell Industries
5520 Ruffin Road, Ste. 209
TEL: (619) 576·3924
(800) 525·6666
FAX: (619) 492·9826

Englewood (80111)
Hamilton/Hallmark - #06
12503 E. Euclid Drive, Ste. 20
TEL: (303) 799·7800
FAl(, (303) 790-4991

Lake Mary (32746)
Zeus Eectronics
37 Skyline Drive, Bldg. D, Ste. 3101
TEL: (407)333·3055
FAX: (407)333.9681

Culve< CHy (90230)
Hamilton Corporate
10950 W. Washington Blvd.
TEL: (310) 558·2000
FAX: (310) 558-2076

San Diego (92122)
Future Electronics Corp.
5151 Shoreham Place, Ste. 220
TEL: (619) 625·2800
FAl(, (619) 625·2810

Thornton (80241)
Marshall Industries
12351 N. Grant Street, Ste A
TEL: (303) 451-8444
FAX: (303) 457·2899

Largo (34641)
Future Electronics
2200 1M1 Pines Drive. Ste. 108
TEL: (813) 530-1222
FAX: (813) 538-9598

6-3

Siliconix
AMember of the TBMIC Group

U. S. Distributors (Cont'd)
GEORGIA

IOWA

Peabody (01960)

Duluth (30136)
HamiltonIHallmark - #15
3425 Corporate Way
1E[., (404) 447-7500
FAX, (404) 625-5490

Cedar Rapids (52402)
HamUton/Hallmark - #44

1E[.,

2335·A Blairsferry N.E.

FAX,

1E[.,

(319) 393-0033

w;m;, (600) 332-4757
FAX,

(319) 393-7050

Hamiiton/Hallmark - #18
10 M Centennial Drive
(506) 532-3701
(506) 532-9302

Wilmington (01877)
Zeus Electronics

Duluth (30136)

25 Upton Dnve

Pioneer Thcb
42S0C Rivergreen Parkway

1E[.,

1E[.,

FAX,

(404) 623-1003
(404) 623-0665

Norcross (30071)
Bell Industries
3000 Business Park Drive #D
1E[., (404) 446-7167
(600) 525-6666
FAX, (404) 446-7264
Norcross (30071)
Future Electronics Corp.
4960 Peachtree Ind., Blvd., Ste. 230
1E[., (404) 441-7676
FAX: (404) 441-7560
Norcross (30093)
Marshall Industries
5300 Oakbrook Pkwy., Ste. 140
1E[., (404) 923-5750
FAX, (404) 923-2743

ILLINOIS
Addison (60101)
Pioneer Std.
2171 Thiecutive Drive, Ste. 200
1E[., (708) 495-9660
FAX, (706) 495-9631

KANSAS
Lenexa (66219)
HantlltonlHallmark - #58
15313 W. 95th
1E[.' (913) 668-1055
FAX: (913) 541-7951
Lenexa (66214)

Marshall Industries
10413 W. 84th '!efface
1E[.,

FAX'

(913) 492-3121
(913) 492-6205

Overland Park (66212)
Future Electronics Corp.
8826 Santa Fe Drive, Ste.150
1E[., (913) 649-1531
FAX, (913) 649-1766

KENTUCKY
Lexington (40511-1001)
HamiltonlHallmark
1847 Mercer Road, Ste. G
lELo (606) 259-1475
FAX, (606) 266-4936

MARYLAND

Bensenville (60106)
HamiltonlHallmark - #10
1130Thorndale Avenue
1E[., (706) 660-7760
FAX, (706) 773-7969

Columbia (21046)
Bell Industries
8945 Guilford Road, Ste. 130
1E[., (410) 290-5100
(600) 525-6666
FAX, (410) 290-8006

Elk Grove Vtilage (60007)
Bell Industries
870 Cambridge Drive
1E[., (706) 640-1910
(600) 525-6666
FAX, (706) 640-1926

Columbia (21046)
Future Electronics Corp.
6716 Alex:an.der Bell Drive, Ste. 101
1E[., (41)290-0600
FAX, (410) 290-0326

Hoffman Estates (60195)
Future Electronics Corp.
3150 W. Inggins Road, Ste. 160
1E[., (706) SS2-1255
w;m;, (600) 933-9641
FAX, (706) 490-9290
Schaumburg (60173)
Marshall Industries
50E. Commerce Drive, Unit I
1E[., (708) 490-0755
FAX, (706) 490-0569

INDIANA
Fort Wayne (46603)
Bell Industries
3433 E. Wasbnigton Blvd.
1E[., (219) 422-4300
(600) 525-6666
FAX, (219) 423-3420
Indianapolis (46268)
Bell Industries
P.o. Box 6885
5230 W. 79th Street
1E[., (317) 675-6200
(600) 525-6666
FAX: (317) 675-6219
Indianapolis (46268)
HamiitonlHallmark - #28
4275 W. 96th Street
1E[., (317) 872-SS75
FAX, (317) 676-7165
Indianapolis (46240)
Pioneer Std.
9350 N. Priority Way West Drive
1E[., (317) 573-0660
w;m;, (600) 332-5503 (IN)
w;m;, (600) 426-9126 (II, KY)
FAX, (317) 573-0979

6-4

Columbia (21046-2101)
Hamilton/Hallmark - #12
10240 Old Columbia Road
1E[., (410) 966-9600
FAX, (410) 361-2036
Gaithersburg (20877)
Pioneer'Thch.
9100 Gaither Road
1E[., (301) 921-0660
FAX, (301) 921-4255
Silver Springs (20904)
Marshall Industries
2221 Broad Birch Drive, Ste. G
1E[., (301) 622-1116
FAX, (301) 622-0451

MASSACHUSETTS
Andover (01810)
Bell Industries
100 Burtt Road, Suite 106
1E[.' (506) 474-6660
(800) 525-6666
FAX, (506) 474-6902
Bolton (01740)
Future Electronics Corp.
41 Main Street
1E[., (506) 779-3000
FAX, (506) 779-5143
Burlington (01803)
Wyle
15 Third Ave.
1E[., (617) 272-7300
FAX, (617) 272-6609
Lexington (02173)
Pioneer Std.
44 Hartwell Ave.
1E[., (617) 661-9200
FAX, (617) 663-1547

FAX,

(506) 656-4776
(506) 694-2199

Wilmington (01887)

Marshall Industries
33 Upton Drive
1E[., (506) 656-0610
FAX' (506) 657-5931

MICHIGAN
Grand Rapids (49512)

Future Electronics Corp.
4505 Broadmoor SE
(616) 698-6800
w;m;, (800) 334-6606
FAX, (616) 696-6621

1E[.,

Gt"andRapids (49512)
Pioneer Std.
4594 Broadmoor Ave. SE, Ste. 235
1E[., (616) 696-1601
FAX, (616) 696-1631
livonia (48150)
Future Electronics Corp.
35200 Schoolcraft Road, Ste. 106
1E[., (313) 261-5270
FAX, (313) 261-6175

NEW HAMPSHIRE
See Massachusetts

NEW JERSEY
Fairfield (07004)

Bell Industries
271 Route 46 West, Ste. F202-203
1E[.,

FAX,

(201) 227-6060
(600) 525-6666
(201) 227-2626

Fairlield (07006)

Marshall Industries
101 Fairfield Road
(201) 662-0320
(201) 662-0095

1E[.,

FAX,

Fairfield (07006)

Pioneer Std.
14 ''/>I.' Madison Road
1E[.,

FAX,

(201) 575-3510
(201) 575-3454

Marlton (08053)
Future Electronics Corp.
12E. Stow Road, Ste. 200,Bldg. 12
1E[., (609) 596-4060
FAX, (609) 596-4266
Mt, Laurel (06054)
Marshall Industries
158 Gaither Drive, Unit 100
lELo (609) 234-9100 (NJ)
1E[., (215) 627-1920 (PA)
FAX, (609) 776-1619

NEW MEXICO

livonia (48150)
Marshall Industries
31067 Schoolcraft Road
1E[., (313) 525-5650
FAX, (313) 525-5655

Albuquerque (87123)
Bell Industries
11728 LinnN.E.
1E[., (505) 292-2700
(600) 525-6666
FAX, (505) 275-2619

Plymouth (46270)
Pioneer Std.
44190 Plymouth Oaks Drive
TEL, (313) 416-2157
FAX: (313) 416-2415

Albuquerque (87109-3147)
HamiltonlHallmark - #22
7801 Academy Road NE-Bldg. 2, Ste.102
1E[., (505) 345-0001
1WX, (910) 989-0614
FAX: (505) 628-0360

N"", (40375)
Hamilton/Hallmark - #66
41650 Gru"denbrook, Ste. 100
1E[., (313) 347-4271
FAX, (313) 347-4021

NEW YORK

MINNESOTA

Binghamton (13905)
PIoneer Std.
1249 Front Street, #201
1E[., (607) 722-9300
FAX, (607) 722-9562

Bloomington (55341)
HamiltonlHa1lmark - #63
9401 James Avenue South, Ste. 140
1E[., (612) 661-2600
FAX, (612) SSI-9461

Endicott (13760)
Marshall Industries
100 Marshall Drive
1E[., (607) 796-1611
FAX, (607) 797-7031

Eden Prairie (55344)
Future Electronics Corp.
10025 Vdlley View Road, Ste. 196
1E[., (612) 944-2200
FAX, (612) 944-2520

Fairport (14450)
Pioneer Std.
840 Fairport Park
lELo (716) 361-7070
FAX, (716) 361-5955

Eden Prairie (55344)
Pioneer Std.
7625 Golden Wangle Drive
1E[., (612) 944-3355
FAX, (612) 944-3794

Hauppauge (11788)
Future Electronics Corp.
801 Motor Parkway
1E[., (516) 234-4000
FAX, (516) 234-6163

Plymouth (55447)
Marshall Industries
3955 Annapolis Lane
1E[., (612) 559-2211
FAX, (612) 559-8321

MISSOURI
Earth City (63045)
Hamilton/Hallmark - #05
3783 Rider 'nail South
1E[., (314) 291-5350
FAX' (314) 291-0362
Saint Louis (63141)
Future Electronics Corp.
12125 Woodcrest Executive Drive,
Ste.220
1E[., (314) 469-6605
w;m;, (600) 727-6605
FAX, (314) 469-7226

Hauppauge (11788)
Hamilton!Hallmark - #20
933 Motor Parkway
1E[., (516) 434-7470
FAX, (516) 434-7491
Port Chester (10573)
Zeus Electronics
100 Midland Avenue
1E[., (914) 937-7400
FAX, (914) 937-2553
Rochester (14623)
Future Electronics Corp.
333 Metro Park
1E[., (716) 272-1120
FAX, (716) 272-7182
Rochester (14623)
HamiltonJHa11mark - #61
1057 E. Henrietta Road
1E[., (716) 475-9130
FAX, (716) 475-9119

Siliconix
AMember of the TBMIC Group

U. S. Distributors (Cont'd)
NEW YORK (Cont'd)

Worthington (43085)
HamUtonlHailmark - #79

Rochester (14624)

777 Dcarboran Lane, Ste. L

Marshalllndustries
1250 Scottsville Road

1EL: (614) 888-3313
W,m;: (800) 767-0392
FAX: (614) 888-0767

1EL: (716) 235-7620
'JWX: (510) 253-5526
FAX: (716) 235-0052

OKLAHOMA

Syracuse (13212-4513)

Future Eectromcs Corp.

Thba (74146)

200 Salina Meadows Pkwy • 5te 130
1EL_ (315) 451-2371
FAX_ (315) 451-7258

HaDllltonlHallmark - #46
5411 S 12Sth East Avenue, Ste. 30S

Woodbury (11797)
Pioneer Std.
60 Crossways Park W.
1EL: (516) 921-8700
FAX: (516) 921-2143

1ELFAX:

(918) 252-7297
(918) 254-6207

Thlsa (74146)

Pioneer
9717 E 42nd Street, Ste. 105
1EL: (918) 665-7840
FAX:

(918) 665-1891

NORTH CAROLINA
Concord (28026)
Future Eectronics

OREGON
Beaverton (97005)
Bell Industries
9275 S.w. NImbus

Charlotte Motor Speedway, Ste 314
P.O. Box 600
1EL: (704) 455-9030
FAX- (704) 455-9173

1EL:

Mornsville (27560)

FAX:

Pioneer'lecb.
2200 Gateway Center Blvd., 5te. 215
1EL- (919) 460-1530
FAX- (919) 460-1540
Ral';gh (27604)

Future Eectronics Corp.
S225 Capitol
1 North Commerce Center
1EL: (919) 790-7111
FAX: (919)790-9022
Raleigh (27604)
HamiltonlHailmark - #24
3510 Spring Forrest Road
1EL: (919) 878-0819. X210
FAX: (919) 954-0940
Raleigh (27604)

Marshall Industries
5224 Greens Dairy Road
1EL: (919) 878-9882
FAX: (919) 872-2431

OHIO
Cleveland (44105)

Fioneer Std.
4800E.131stStreet
1EL: (216) 587-3600
FAX: (216) 587-3906

Dayton (45459)

Bell Industries
446 Wmdsor Park Drive
1EL:
FAX:

(513) 434-8231
(800) 525-6666
(513) 434-8103

Dayton (45459)
HamiIton/Hallm.u-k - #64

7760 Washington Village Drive
1EL: (513) 439-6721
FAX:

(513) 439-6705

Dayton (45414)

Marshall Industries
3520 Park Center Drive
(513) 898-4480
FAX: (513) 898-9835

1EL:

Dayton (45424)

Pioneer Std.
4433 Interpoint Blvd.
1EL:
FAX:

(513) 236-9900
(513) 236-8133

Mayfield Heights (44124)

Future Electronics Corp.
6009 E Lander Haven Drive
'IEL: (216) 449-6996
FAX:

(216) 449-8987

Solon (44139)

Marsballlndustrles
30700 Bainbridge Road Unit A
1EL: (216) 248-1788
FAX: (216) 248-2312

(503) 644-3444
(800) 525-6666
(503) 520-1948

Beaverton (97006)
Future Electronics Corp.
Cornell Oaks Corp. Center
15236N.w. Greenbner
1EL: (503) 645-9454
FAX:

(503) 645-1559

Beaverton (97005)
HamiltonJHallmark - #27
9750 SW N"tmbus Ave.
1EL_ (503) 526-6200
W,m;: (800) 962-8648
FAX_ (503) 641-5939
Beaverton (97005)
Marshall Industries
9705 S.W Gemini
1EL: (503) 644-5050
FAX: (503) 646-8256
Beaverton (97005)

Wyle Laboratories-EMG
9640 Sunshine Ct.
Bldr.G-ZOO
1EL: (503) 643-7900
FAX: (503) 646-5466

PENNsYLVANIA
Ho"ham (19044)
Ploneer'1Z:ch
500 Enterpnse Road
Keith \<)JJey Busmess Center
1EL: (215) 674-4000
'JWX: (510) 665-6778
FAX: (215) 674-3107
l'lttsburgh (15205)
Marshall Electronics
401 PBrlcwa)'Vlew Dnve
1EL: (412)788-0441
FAX: (412) 788-0447
l'ittsburgh (15238)
Pioneer Std.

259 Kappa Drive
1EL:
FAX:

(412) 782-2300
(412) 963-8255

1l"evosc (19053)
Bell Industries
2S56 Metropolitan Dnve
1EL: (215) 953-2800
(800) 525-6666
FAX: (215) 364-4927

Austm (78727)

HamiltonlHallmark - #26
12211 '1echnoiogyBlvd.
1EL:
FAX-

(512) 258-8848
(512) 258-37n

Austm (78758)
PlODeer Std.
1826 D Kramer Lane
1EL- (512) 835-4000
FAX- (512) 835-9829
Austin (78759)

Wyle Distribution
4030 W. Braker l.ane, Ste. 420
1EL: (512) 345-8853
FAX:

(512) 345-9330

Dallas (75244)
PioneerStd
13765 Beta Road
1EL: (214) 386-7300
FAX: (214) 490-6419

Houston (77082)
Future Electronics Corp
11271 Richmond Ave., Ste.l06
1EL:
FAX:

(713) 556-8696
(713) 589-7069

Houston (71063)
Hami.lton/Hallmark - #11
8000 West Glen
1EL:
FAX:

(713) 781-6100
(713) 953-8420

Houston (77040)
Marshall Industries
10681 Haddington
1EL- (713) 467-1666
FAX: (713) 467-9805
Houston (77099)
PIoneer Std.
10530 Rockley Road, Ste. 100
1EL: (713) 495-4700
FAX: (713) 495-5642
Houston (71099)
WyJe Distnbution
11001 S. Willcrest, #100
1EL: (713) 879-9953
FAX: (713) 879-6540
Richardson (75081)

Bell Industries
1701 Greenville Avenue, Ste. 306
1EL: (214) 690-0486
(800) 525-6666
FAX: (214) 690-0467
RIchardson (75081)
Future Electronics Corp.
1850 N. Greenville Avenue, Ste. 146
1EL: (214) 437-2437
FAX- (214) 669-2347
Richardaon (75081)

Marshall Industries
1551 N. Glenville Drive
1EL: (214) 705-0604
FAX:

(214) 705-0675

Richardson (75081)
Wyle Distribution
1810 N. Greenville Avenue
1EL: (214) 235-9953
FAX- (214) 644-5064
Carrollton (75006)
Zeus Electronics
3220 Commander Drive
1EL: (214)380-4330
FAX: (214) 447-2222

UTAH
Midvale (84047)
Bell Industries

6912 South 18$ West, Ste B

TEXAS
Austin (78759)
Future Electronics
9020 IT Capital of1Cxas Hwy. N.
1EL- (512) 502-0991
(800) 678-0991
FAX: (512) 502-0740

"IEL.
FAX:

(801) 561-9691
(800) 525-6666
(801) 255-2477

Salt Lake City (84106)
Future Electronics Corp.
3450 South mgbJand Drive, Ste. 301
1EL: (801) 467-4448
FAX: (801) 467-3604
Salt Lake CIty (84121)

HamiltonIHallmark - #09
1100 E. 6600 S, Ste. 120
1EL:
FAX:

(801) 266-Z022
(801) 263-0104

Salt Lake CIty (84119-1552)
Marshall Industries
2355 S_ 1070 W #D
lEI.: (801) 48S-!551
FAX: (801) 487-0936
Wost Valley CIty (84119)

Wyle Laboratones-EMG
1325 W. 2200 S., Ste. E
'IEL: (801) 974-9953
FAX_

(801) 972-2524

WASHINGTON
Bellevue (98004)

Ben Industries

1715 114thAve_. SE. Ste_ 208
1EL: (206) 646-8750
(800) 525-6666
FAX: (Z06) 646-8559
Bellevue (98007)

Ploneer'Thch.
2800 156th Avenue, S.E.
1EL: (206) 644-7500
FAX:

(Z06) 644-7300

Bothell (98011)

Future Eectronics Corp.
19102 N_ Creek Pkwy_. Ste_ 118
1EL: (Z06) 489-3400
FAX: (Z06) 489-3411
Bothell (98011)

Marshall Industries
11715N. CreekPkwy, South, Ste.112
1EL:
FAX:

(206) 486-5747
(Z06) 486-6964

Rodmond (98052)
Hamilton!Hallmark - #07
8630 154th Avenue, N.E.
lEI.: (206) 881-6697
FAX: (206) 867-0159
Rodmond (98052)

Wylc Distribution Group
15385 NE 90th Street

1EL: (206) 881-1150
FAX:

(206) 881-1567

WISCONSIN
Brookfield (53005)

Ploneer Standard
120 Bishops Way. Ste. 163
1EL: (414) 784-3480
FAX:

(414) 784-8Z07

Milwaukee (53214)

Marsh Eedronies, Inc.
1563 South lOIst Street
1EL: (414) 475-6000
FAX:

(414) nl-2847

New Berlln (53146)
HamUton!Hallmark, #57
2440 S. 179th Street
1EL: (414) 780-7200
FAX: (414) 780-7ZOI
Waukesha (53186)

Bell Industries
W. 226 N. 900 Eastmound Drive
1EL: (414) 547-8879
FAX:

(800) 525-6666
(414) 547-6547

Waukesha (53186)
Future Electronics Corp.
20875 Crossroads CU., Ste. 200
lEI.: (414) 786-1884
FAX: (414) 786-0744

Orem (84058)

Waukesha (53186)

Wyle Laboratories·EMG
973 S. 700E.
1EL: (800) 414-4144
FAX: (801) 226-0210

Marshall Industries
20900 Swenson Drive
1EL: (414) 797-8400
FAX: (414) 797-8270

6-5

Siliconix
AMember of the TaM[C Group

Canadian Distributors
ALBERTA
Calgary (TIY 685)
Future Electronics Corp
3833-29th Street N.E
lEl.: (403) 250-5550
FAX:

(403) 291-7054

Edmonton (T6ESN9)
Future Electronics Corp.
4606 97th Street
lEl.: (403) 438-2858
FAX:

(403) 434~12

BRITISH COLUMBIA
Burnaby (V5A4N6)

_couver (VSK 4X7)
Future Eectronics
1695 BOundaryRoad
lEl.: (604) 294-1166
FAX: (604) 294-1206

MANITOBA
Wmnipeg (R3H ON8)
Future Electronics Corp.
106 KingPdward Court
1EL: (204) 786-TIll
FAX:

(204) 783-8133

Mississausa (lAV 1W5)
Future Electronics Corp.
593S Abport Road, Ste.200
1EL: (416) 612-9200
FAX: (416) 612-9185
Mississausa (LST 21.1)
HamilloD/Hallmark - #59
151 Superior Blvd.
1EL: (416)564-6060
FAX: (416) 564-6033

Ottawa (K2C 3P2)
Future Electronics
Baxter Centro
1050 Baxter Road
(613) 821>8313
FAX: (613) 820-3271

lEl.:

ONTARIO

QUEBEC

Brompton (1.60 5G3)

Pointo Claire (H9R SCI)
Future Electronics

HamilloD/Hallmark - #45

Marshall Industries

8610 Commen::e Ct.
1EL: (604) 437-6667
FAX: (604) 294-1206

4 Paget - Unit 10-11
(416) 458-8046
FAX' (416) 458-1613

lEl.:

Pointe Claire (H9R 5P7)
Marshall Industries
148 Brunswick. Blvd.
lEl.: (514) 694-8142

FAX:

(514) 694-6989

Quebec (G2B5G5)

Future Electronics Corp.
1000 Avenue Street Jean-Baptiste, Ste.IOO

1EL: (418) 877-6666
FAX:

(418) 877-6671

Saint Laurent (H4S IP8)
HamilloD/Hallmark - #65
2795RueHalpern
1EL: (514) 335-1000
1LX: (610) 421-3731
FAX' (514) 335-2381

237 Hymus Boulevard
1EL: (514) 694-7710
1LX: 05-823599
FAX:

(514) 695-3707

European Saies/Representatives/Distributors
AUSTRIA
Bacher Electronics GmbH
Eilnorgasse6

1223Wien
lEl.: (43) 0222 81602215
1LX: 131532
FAX:

(43)0222863211201

FRANCE
AIm..
48 RUe de l!Aubepine
D.P.I02
92164 ANIONY CEDEX
1EL: (33) I 40-96-54-00
FAX: (33) I 46-66-60-28

EBV Elektronik

Diefenbachg:assc3S/6
l1S0Wien

1EL: (43) 0222 8941774
FAX:

(43)02228941775

Arraw E1ectroniquc
73-79 Rue des Solets
SilicS8S
94663Rungis

1EL: (33) 149-78-49-78

BELGIUM

FAX:

Diode
KeibetgU
Minervastraat, 14/B2

EBV EI.ktronik
16, rue de Gablce
77436 CHAMPS SUR MARNE
1EL: (33) 1 64-68-86-00
FAX: (33) 164-68-27-67

1930 Zaventem

1EL: (32) 2 7254660
FAX:

(32) 2 7254511

EBV Elektronik
Excelsiorlaan 3S
1930 Za'JCotem
1EL: (32) 02 7209936
FAX: (32) 02 7208152

SonetechCY
Limhutg Styrun, 243

B-1810Wemmel
1EL: (32) 2 4600707
FAX:

(33) 149-78-05-96

(32) 2 4601200

DENMARK

L TJ: Mutticomposants
16 Avenue des Andes
Zade Courtaboeuf
BP16
91941 Les tnis CedexA
lEl.: (33) 1 64-46-02-00
1LX: 603351
FAX: (33) 1 64-46-95-95

SCAiB
80 Rue d'Arcucil
94523 Rungis Cedcx
lEl.: (33) 146-87-23-13
1LX: 20467F

TEMIC
AEG DanskAktieselskab

FAX:

RosI:UdeveJ 8-10

TEMIC
3, Avenue du Centre

DK-2620 Albertslund
1EL: (45) 42648S22
FAX:

(45) 42 64"949

(33) 1 45-60-55-49

B.P.309

78054 Saint-Quentin-en.Yvelines

1EL: (33) 1 30-60-70-00

FINLAND

FAX:

(33) 1 30-64-06-93

Galedius '1Ahinik OK

p.o. Box 12S

Magistralsporten 4A
SF-00241 Helsinld
1EL: (358) 014 821TI
FAX: (358) 014 82 189

In' Components Group
Distribution GmbH & Co
P.O. Box 25 ('ll'opajakatu s)
PL34
00581HcIsinld
1EL: (358) 0-739100
FAX: (358) 0-712414

6-6

GERMANY

AIfrcd Neye Enateehnik GmbH
Ahnenweg 2 - 40219 DIlsseldorf

1EL:
FAX:

(49) 211 303010
(49) 211 3030130

AIfrcd Neye Enateehnik GmbH
Rheinstrasse 24 - 64283 Darmstadt
(49) 615126446
FAX: (49) 6151 294171

1EL:

EBV Elektronik GmbH

AIfrcd Neye Enateehnik GmbH
Breitwiesenstrasse 25 - 70565 Stuttgart

1EL:

Postfach - 70507 Stuttgart
(49) 711 7889770
FAX: (49) 711 7889744

lEl.'

AIfrcd Neye Enateehnik
Bucberstrasse 100 - 90408 Numberg
1EL: (49) 911 34750
FAX:

(49) 911 347530

AIfrcd Neye Enateehnik GmbH
Henschehing 5 - 85SS! Kirchheim/M\\nchen
1EL: (49) 89 9099990
FAX:

(49) 89 90999940

Alfred Neye Enatecbnik GmbH

Max-Stromeier Strasse 3 - 78467 Konstanz
1EL: (49) 7531 67181
FAX:

(49) 7531 67260

Alfred Neye Eaatec:hnik GmbH

Leoingrader Str&sse 15 - 01069 Dresden
1EL: (49) 3754873341
FAX:

(49) 3754872588

CEO Ditronic GmbH
Iulius-H61der-Strasse 42 - 70597 Stuttgart
Postfacb 700159 - 70571 Slnttgart
lEl.: (49) 0711 720010
PAX: (49) 0711 7200132

CEO Ditronic GmbH
Bernbacherstrasse 9
90768 Furth
1EL: (49) 911 752216
FAX: (49) 911 7520064

CEO Ditronic GmbH
EbertshelmerStrasse 12 - 67280 OUirbeim
1EL: (49) 6359 83201
FAX:

AIfrcd N.,. Enateehnik GmbH
Scb1I1erstrasse 14 - 254S1 Quickborn
Postfach 1246 - 25443 Qulckbom
1EL: (49) 4106 6120
FAX: (49)4106612223

AIfrcd N.,. Enateehnik GmbH
Hildesheimer Strassc 31 - 30169 Hannover
lEl.: (49) Sl1 816038
FAX:

(49) 511 816048

EBV Elektronik GmbH
Hans PinselSlr. 4 - 88S40Haar
Postfach 1109 - 85529 Hoar
D-8013 Hoar
1EL: (49) 089 460960
FAX: (49) 089 464488

(49) 6359 83201

Distron

Beheimstrasse 3 - 10585 Berlin
postfach 100208 - 10562 Berlin
1EL: (49) 030 3421041/44
PAX'

(49) 030 3419003

EBV EI.ktronik GmbH
Boblinger Strasse 13 - 71229 Leonberg
1EL: (49)7152300090
FAX: (49) 715275958

Weimarstr48
7000 Stuttgart 1
(49) 0711 619100
'ILX: 722271
FAX: (49) 07512 75958

EBV Eektronik. GmbH
Viersener Strasse 24 - 41462 Neuss
lEl.: (49) 2132530072
FAX:

(49) 2131 59300087

EBV E1ektronik GmbH
In der Meineworth 21 - 30938 Burgwedel
P",tCach 1355 - 30929 BUIgWedel
lEl.: (49) 5139 808070
FAX: (49)51395199
EBV Elektroruk GmbH
Schenckstrasse 99 - 60489 Frankfurt 99

1EL: (49) 069 785037
FAX'

(49) 069 7894458

Elkose GmbH EJektronik Vbrtrieb
11TMultlkomponent GmbH

E1ektronik Vbrtrleb
Bahnjofstrasse 44 - 71696 MOgliDgen
Postfach 1246 - 71693 Mog1ingen
1EL: (49) 071414870
FAX: (49) 07141 487210

Ing. Buro Rainer KOnig
Konigsberger Strasse 16A - 12207 Berlin
Postfach420 -12174BerUn

1EL:
FAX:

(49)307689090
(49)307738363

Spoerlc Electronic
Kackertstrasse 10 - 52072 Aachcn
(49) 241 889690
FAX: (49) 241 81162

lEl.'

SpoerJe Electronic
Rudower Strasse 27~29 - 12351 Berlin
Postfach 47645 - 12315 Berlm
lEl.: (49) 30 606011
1LX: 186029
FAX: (49)306014057

Spocrle Electronic
Hildcbrandstrasse 11- 44319 Dortmund
Postfach 130362 - 44313 Dortmund
lEl.: (49) 231 218010
1LX: 822S55
FAX: (49) 231 2180167

Siliconix
AMember althe TsM(C Group

European Sales/Representatives/Distributors (Cont'd)
GERMANY (Cont'd)
Spoerlc Electronic
1m Gefierth 11a - 63303 Dreieich
Postfach 102140 - 63267 Dreieich
TIlL:

n.x:

FAX:

(49) 6103 3040
417983
(49) 6103 304201

Spoerlc Electronic
Hans-Bunte-Strasse 2 - 79108 Frelburg
Postfach 5607 - 79023 Frciburg
lEL: (49) 761 510450
!LX: 7721994
FAX:

(49)761502233

Spoerlc Electronic
Rodeweg 18 - 37081 Gouingen
Postfach 3352 - 37023 G6ttingen
TIlL:

(49) 551 9040
!LX: 96733
FAX: (49) 551 90446/48

Spoerlc Electronic
Wiosbergring 42 - 22525 Hamburg
Postfach 540824 - 22508 Hamburg
lEL: (40) 40 8531340

=:
FAX:

2164536
(49) 40 85313491

Spocrle Electronic
Roscherstrassc 31 - 04105 Lelpng
lEL: (49)3415647201
FAX:

(49) 341 5852087

Spoerle Electronic
Fohringer Allee 17 - 85774 Unterfohring
Fostfach 1155 - 85765 Unterfohring
lEL: (49) 89 959990
FAX-

(49) 89 9509999/97

Spoerle Electromc Rathsbergstrasse 17 90411 Numberg
lEL: (49) 911 521560
FAX:

(40) 911 5215635

Spocrle Electronic
Hopfigheimer Strasse 5 - 74321
Bietigbeim-Bissingen
Postfach 1727 - 74307 Bietigbeim-Bissingen
lEL: (49) 7142 70030
FAX:

ESCO ltaliana Spa
V. I.e Casiraghi 355
20099 Sesta S. Gtovanni, Milan
lEL: (39) 224 09 241
FAX:

(39) 224 09 255

InteSl

Deutsche rrrlndustries
Vialc Ml1anofion, ElS
1·20094 Assago, Milan
lEL: (39) 282 47 01
FAX: (39) 282 42 631
'IEMIC

Via Stephenson 94
20157 Milano
lEL: (39) 2 33 2121
FAX:

(39) 233212201

NETHERLANDS
EBV

Planetenbaan 2
3606 AI<. Maarssenbroek
lEL: (31) 03465-62353
FAX:

(31) 03465-64277

DIODE COMPONENTS BV

Postbus 7139
5605 JC Eindhoven
Dc Run 1120
5503 LA Veldhoven
TIlL:
FAX:

(31) 40-545430
(31)40-535540

DIODE COMPOSANl1l BY

Coltbaan.17
3439 NG Nieuwegc
TIlL:
FAX:

(31) 3402-91234
(31)3402-46764/35924

'Iheresienstrasse 2
D·74072HeUbronn
postfacb 35 35

D·7402SlIcilbronn
(49) 0713167-0
(49) 0713167-2100

Sucursal Espana
Calle Marla Thbau, 6
28049 Madrid
(34) 91 358 8608
FAX: (34) 913589430

lEL:

'IEMIC
Principe de 'krgara, 112
Apartado235
28002 Madrid
TIlL: (34) I 562 76 00
FAX: (34) 1 562 75 14

SWEDEN
I1TMuphkomponcntAB
Ankdammsgatan 32
5-171 26 Soma
lEL: (46) 08 830 020
FAX:

(46) 08 271 303

'IEMICNordicA/S
KavalJerivagen 24, Rissne
P.O. Box2042
17202 Sundbybcrg, Sweden
lEL: (46) 8 733-0090
FAX: (46) 8 733-0558

'Ilrs Elektronik AD
Arrendevageo 36
P.O.Box3027
16303 Spanga
TIlL:
FAX:

(46) 8 36 2970
(46) 8 761 3065

SWITZERLAND
AbalecAG.
Grabenstrasse 9
8952 Schlieren
lEL: 1-730-0455
FAX:

1-730-9801

EBV Elektronik
Vorstadstr.37
8953 Dienkon
lEL: 1-7401090
FAX:

1-7415110

Future Electronics
Payl. Road - Colnbrook
Berkshire SL3 DEl
TIlL: (44) 0753 687 000
FAX: (44) 0753 689 100

HB Electronics Ltd.
I.e.ver Street - Bolton
LancsBL36B1
TIlL: (44) 0204 255 44
63478
FAX: (44) 0204 384911

'ILX:

Macro-Marketing Ltd.
Burnham laDe
Slough. Berkshire SLl 6lN
lEL: (44) 0628 604422
'ILX: 847945
FAX- (44) 0628 666873
MEMEC Ireland Ltd_
BlockH - Lock Quay

Clare Street - Limerick

SPOERLEEI.JlCIRONIC

FAX:

TIlL:
FAX:

lEL:

(47)22161610
(47)22257317

8032ZIlrich
(41) 1-3868686
(41) 1-3832379

FAX:

FABRIMEX
DIS1RlBUllON AG

En Untr1nehmender

TIlL:
FAX:

(39) 02 9522227

Cambridge CBS OND
TIlL: (44) 0223 812598
FAX: (44) 0223 812686

8. rue des Pccbeurs
1400 Yverdon-Ies--Bains
(41)24-219222
(41) 24-218141

TURKEY
SPAIN
ADM Electronica SA
MenorcaNo.3
28009 Madrid
lEL: (34) I 409 47 25
FAX: (34) I 409 69 03

(10) 353 61411842
(10) 353 61 411 888

Kircbenwcg 5

1200 Ltsbon
lEL: (351) 11-520101
FAX: (351) 11-520004

FAX:

SwaOham Bulbeck,

lEL:

1-201S9Milan
lEL: (39) 2 668 02 788
FAX: (39) 2 668 02 919

lEL: (39) 02 95343600
!LX: 330869

BCD Microelectronics Ltd
:3 Station Road

Rep of Ireland

SPOERLE EI.JlCIRONIC

Milano

Abercom Electronics Ltd
PardOVllD
Philip, Linlithgow Eil49 6QZ
lEL: (44) 506 834 222
!LX: 77994
FAX: (44) 506 834 554

Ein Untrtnehmen der

RedJ.s Logar
Rua Bernardo Lima
Nr. 27-1qIzda

20060 Cassina de Pecchi

Abacus Eectronics Ltd..
Abacus House
Bone Lane
Ncwbury, Berks RG14 SSP
lEL: (44) 0635-36222
!LX: 847589
FAX: (44) 0635-38670

'ThhonicA/S
P.O. Box 140 - Kalbakken
Kakkelovnskroken 1
N.()902 Oslo 9

Canel Electronica Srl
Vial. Dcgli Anigian.lli 6

Don In", GIuseppe Dc Mlco
S_PA
Via Vittorio ~neto 8

UNITED KINGDOM

FABRIMEX
DIS1RlBUllON AG

PORTUGAL
ITALY

EBV Eektron.ik ~rtriebs GmbH

NORWAY

(40) 7142 700360

1EMIC 1ELEFUNKEN microelectronic

TIlL:
FAX:

EBVEektronik
Via C. Frova 34
20092 CiniscUo Balsamo,Ml1an
TIlL: (39) 2 66017111
FAX: (39) 2 66017020

ERDAEektronikAS.
San \b TIc AS.
Keskin Kalem Sow 15

Microm.ark
159Boyn ValleyRoad

Maidenhead
Berkshire SL6 4DT
TIlL:
FAX:

(44) 0628 76176
(44) 0628 783799

ROMAKIECLtd_

Riversvale
Honeysuclde Lane
Headley laDe
Graysbol. Han' - GU 35 8JA
TIlL: (44) 831 5065 57
FAX: (44)428721943
TEMICUKLtd_

Istanbul
lEL: (90) 1144-21-68

Easthampstead Road
Bracknell
Berkshiro RG12 1LX
lEL: (44) 344 485757

FAX:

FAX:

80300 EscnlOpi
(90) 127 50540

(44) 344 427371

6-7

Silicanix
AMcmber of the TBMIC Group

Asia Pacific and Rest of the World
ARGENTINA

INDIA

KOREA

SINGAPORE

VEL S.R.L
Virrey CevaUosl43

Amspec (S) Pte Ltd

Chugtl8m. Electronics Ltd.
Rm. 903. Hosung Bldg.

1EMIC
AEGBuUding
2S "DuDpines Street 92, #02-00
1852
"IEL: (65) 788-6668
FAX: (65) 788-3383
SalesFAX: (65) 788.()Q31

1077 Buenos Aires
1EL: (54) 140-1025, (54) 1 45·7140,
FAX:

(54) 145·7163
(54) 1440-1533, (54) 145·2551

AUSTRALIA
IRH Components
1-5 Carter Street
Lidcombo 2141

NSWAustralia
1EL: (61) 2·3641766
FAX:

BRAZIL
2629 'll>rminal Blvd.
Mt View,CA94043

"IEL: (415) 967·8818
1LX: 345545
FAX: (415) 967-8836
UNIAoDigi!al
Rua ']bas, 622

Brooklin Novo - 04557
S.Paula -SP
1EL: (55) 11 533'()967
1EL: (55) 11241-8052
(55) 11 533-6780

HONG KONG
1EMICHongKongllmlted

Suite 1701, World Finance Centre
South 1bwct, Barbour City
19 Canton Road, 'Dimsbatsui
Kowloon
1EL: (852) 3789 789
FAX:

(852) 3755733

Willas - Arroy (Holdin!!,,) Lid.

Unitl,24IF
Wyler Center Phase 2
200 1lIi lln Poi Road
Kwai CbungN.'I:
Kowloon
1EL: (852) 4183700
FAX:

6-8

(852) 4816992

#44-22, Yoido-Dong

Youngdcungpo-Ku
Seoul

1EL:
FAX:

(82) 2·7820412
(82) 2-7853643

Spectra InnovationsInc.
780 Montague EIprossway, Sic. 208
San Jose. California 95131-1316

MALAYSIA

U.SA

Scan Components (M) Sdn. Bhd.

"IEL: (408) 954-8474
FAX:

(408) 954-8399

(61) 2-6471545 (DO charge)

1n1eCtra

FAX:

213 Henderson Road
#Ol-'J1 Hend.""" Industrial Park
Singapore 0315
1EL: (65) 2710016
FAX: (65) 2714112

ISRAEL

761·B,1al .. SultanAzlan Shah
11900 SungaiNibong
:reDang
1EL: (60) 4-835136
FAX: (60) 4·836320

1li....
4. Hayctzira Street
Ind. Zone - POB 2436

MEXICO

~ANA431oo

TEMIC Mexlcana

1EL: (972) 9 917 277

c/o AEG Mexicana SA de C.V.
Prot Calle 16No.S3
San Pedro de los Pinos

FAX:

(972) 9 982 616

JAPAN
1EMIC1ap. .
c:/oAEGJapanUd.

Sbuwa No.2 Kamiya-Cho
3-18-19'lbranomon

Minato-Ku, 'lOkyo lOS
1EL: (81) 3·5562-3321
FAX:

(81) 3·5562-3316

Nippon Siliconix, inc.
1-1 Uobisaiwal-Cbo,
2-Cbomo CbIyoda·Ku
1bkyo 100
"IEL (81) 3 3506-3696
1LX: 1·23548
FAX: (81)33506.3499

01180 M..Ioo, D.R
1EL: (52) 5n 77 88 33
FAX: (52) 5n 72 88 53

Arlington (76006)
Ion Associates Inc.
2221 E. Lamar, Ste.lSO
"IEL: (817) 695-8000
FAX:

(817) 695-8010

Ion Associatel Inc.
Valle de Los Pinos #7
Frace Wlc Del Paraiso
'Ilanincpantia, EdoDe Mexico
54060

1EL: (521) 5·398-3190
FAX:

(521) 5·398-3274

QuadRep Marketing (S) Ftc. Ltd
1 Marine Parade Central

#12-05 ParkwayBui1dcrs' Centre
1544

1EL: (65) 3461933
FAX:

(65) 3461911

Scan 'll>obnology (S) Pte Ltd
50 KallangBahru #04-01/03
Kallang Basin Industrial Estate
1233
1EL: (65) 2942112
FAX: (65) 2961685

SOUTH AFRICA
Ill_olink (l"IY) Ltd.
EO, Box 1020
Capotown8000
1EL: (27) 21·5350
TIX: 5·27320
FAX: (21) 419-6256

TAIWAN
1EMIC
6/F Room B, No. 297, Sec '2
Ho-l'in East Road
'nUpei City,R.O.C.
1EL: (886) 2755.6108
FAX: (886) 2 755-4777

Djnamar -WW.. Co. Ltd.
13th Floor, 186 Nanking East
Section 4

PUERTO RICO

'Ddpei 10570, R.O.C.
1EL: (886) 02 5775670

1·1 Ucbisaiwai-Cho 2 Chrome

MEClCaribo

FAX:

Cbiyocla·Ku,lbkyo 100
"IEL lbkJ'o: (81) 3·3506·3492
1LX: 1·23548
FAXlbkJ'o: (81) 3·3506-3499

P.O. Box5038
eoguasOO726
"IEL: (809) 746-9897
FAX: (809) 746-9441

Sec Scan 'lCc:hnology. Singapore

lOMEN Ecctronics Corp.

(886) 02 5775867

THAILAND



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:29 18:59:37-08:00
Modify Date                     : 2017:06:29 19:16:58-07:00
Metadata Date                   : 2017:06:29 19:16:58-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:71621872-e01a-5c42-be45-8f92bf264c38
Instance ID                     : uuid:53dd58a4-37c1-de41-8e4e-c455cfb406a6
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 466
EXIF Metadata provided by EXIF.tools

Navigation menu