1995_National_Operational_Amplifiers_Databook 1995 National Operational Amplifiers Databook
User Manual: 1995_National_Operational_Amplifiers_Databook
Open the PDF directly: View PDF .
Page Count: 1386
Download | |
Open PDF In Browser | View PDF |
OPERATIONAL AMPLIFIERSr DATABOOK 1995 Edition Operational Amplifiers Buffers Voltage Comparators Active Matrix/LCD Display Drivers Special Functions \' Surface Mount Appendices/Physical Dimensions •Ell •• • • [II TRADEMARKS Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks. ABiCTM Abuseable™ ) AirShara™ Anadig™ APPSTM ARi 1TM ASPECTTM AT/LANTICTM Auto-Chem DeflasherTM BCPTM BI-FETTM BI-FET IITM BI-LiNETM BIPLANTM BLCTM BLXTM BMACTM Brite-Lite™ BSITM BSI-2TM CDDTM CDLTM CGSTM CIMTM CIMBUSTM CLASICTM COMBOGD COMBOITM COMBOIITM COPSTM microcontrollers COP8TM CRDTM CROSSVOL TTM CSNITM CTITM CYCLONETM DA4TM DENSPAKTM DIBTM DISCERNTM DISTILLTM DNR" DPVMTM E2CMOSTM ELSTARTM Embedded System Processor™ EPTM E-Z-LINKTM FACTTM FACT Quiet Series™ FAIRCADTM FairtechTM FASTFASTr™ GENIXTM GNXTM GTOTM HEX3000TM HiSeCTM HPCTM HyBal™ 13LGD ICMTM IntegraiiSETM IntelisplayTM Inter-LERICTM Inter-RICTM ISETM ISE/06TM ISE/08TM ISE/16TM ISE32TM ISOPLANARTM ISOPLANAR-ZTM LERICTM LMCMOSTM M2CMOSTM Macrobus™ Macrocomponent™ MACSITM MAPLTM MAXI-ROMMicrobus™ data bus MICRO-DACTM p.Pot™ p.talker™ Microtalker™ MICROWIRETM MICROWIRE/PLUSTM MOLETM MPATM MSTTM Naked-8TM National GD National SemiconductorNational Semiconductor Corp.GD NAX800TM NeuFuz'rM Nitride Plus™ ,Nitride Plus Oxide™ / NMLTM NOBUSTM NSCSOOTM NSCISETM NSX-16™ NS-XC-16TM NTERCOMTM NURAMTM OPALTM Overture™ OXISSTM p2CMOSTM Perfect WatchTM PLANTM PLANARTM PLAYERTM PLAYER+TM PLLatinum™ Plus-2TM Polycrafl™ POPTM Power + Control™ POWERplanar™ QSTM QUAD3000TM Quiet Series™ QUIKLOOKTM RATTM RICTM RICKITTM RTX16TM SCANTM SCENICTM -,; SC)(TM SERIES/800TM Series 32000 GD SIMPLE SWITCHERGD SNITM SNICTM SofChekTM SONICTM SPiKe™ SPIRETM Staggered RefreshTM STARTM StarlinkTM STARPLEXTM ST-NICTM SuperATTM Super-Block™ SuperChipTM SuperilO™ SuperScriptTM SYS32TM TapePakGD TDSTM TeleGate™ The National Anthem" TinyPaKTM TLCTM Trapezoidal™ TRI-CODETM TRI-POLYTM TRI-SAFETM T~I-STATEGD TROPICTM Tropic Pele'TM Tropic ReefTM TURBOTRANSCEIVERTM TWISTERTM VIPTM VR32TM WATCHDOGTM XMOSTM XPUTM ZSTARTM 883B/RETSTM 883S/RETSTM PALGD is a registered trademark of and used under"license from Advanced Micro Devices, Inc. StratoguardTM 4.6 is a trademark of National Metallizing Co. Teflon GD is a registered trademark of E.I. DuPont de Nemours Company. LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITIEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reasonor (b) support or sustain life, and whose failure to perably expected to cause the failure of the life support deform, when property used in accordance with instructions vice or system, or to affect its safety or effectiveness. for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. NatlonalSemlconductorCorporatlon 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-9090 1·800-272·9959 TWX (910) 339-9240 National does not essume any responsibility for Use of any circuitry descrtbed,' no circuH patent licenses are implied, and National reserves the right, at any time without noUce, to change said clrcuHry or spacillcations. tflNational Semiconductor Product Status Definitions Definition of Terms This data sheet contains the design speCifications for product development. Specifications may change in any manner without notice. Production This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product Full Production This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Not In Production This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only. National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability ariSing out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. iii Table of Contents Alphanumeric Index .......................................................... . viii Additional Available Linear Devices ............................................ . xiii xxviii Industry Package.Cross Reference Guide ........................ :,' ............. . Section 1 . Operational Amplifiers Operational Amplifiers Definition ofTerms ...................................... . 1-5 1-6 Operational Amplifiers Selection Guide ......................................... . 1-22 lF147/lF34 7 Wide Bandwidth Quad JFET Input Operational Amplifiers ............ . lF155/lF156/lF157 Series Monolithic JFET Input Operational Amplifiers .......... . , 1-31 lF351 Wide Bandwidth JFET Input Operational Amplifier ......................... . 1-46 lF353Wide Bandwidth Dual JFET Input Operational Amplifier...................... " . 1-54 lF411 low Offset, low Drift JFET Input Operational Amplifier ..... ; ............... . 1-63 lF412 low Offset', low Drift Dual JFET Operational Amplifier ...................... . 1-70 1-77 lF441 low Power JFET Input Operational Amplifier ..............•................ 1-84 lF442 Dual low Power JFET Input Operational Amplifier ......................... . lF444 Quad low Power JFET Input Operational Amplifier ........................ . 1-93 lF451 Wide-Bandwidth JFET Input Operational Amplifier .........•................ 1-100· 1-106 . lF453 Wide-Bandwidth Dual JFET Input Operational Amplifier ..................... . lH0003 Wide Bandwidth Operational Amplifier ..................•................. 1-113 1-116 lH0004 High Voltage Operational Amplifier' ..................................... . LH0021/lH0021 C 1.0 Amp Power Operational Amplifier ..............' ............ . 1-120 lH0041/lH0041 C 0.2 Amp Power Operational Amplifier .......................... . 1-120 lH0024 High Slew Rate Operational Amplifier ................................... . 1-131 lHo032 Ultra Fast FET-Input Operational Amplifier .............................. . 1-135 1-143 lH0042Low Cost FET Operational Amplifier .................................... . lH0101 Power Operational Amplifier ........................................... . 1-153 1-164 lM10 Operational Amplifier and Voltage Reference .............................. . lM101A1lM201A/lM301A Operational Amplifiers ............................... . 1-180 1-190 lM1 07/lM207/lM307 Operational Amplifiers ................................... . lM108/lM208/lM308 Operational Amplifiers ................................... . 1-196 lM118/lM218/lM318 Operational Amplifiers ................................... . 1-203 lM124/lM224/lM324/lM2902 low Power Quad Operational Amplifiers ........... . 1-213 lM143/lM343 High Voltage Operational Amplifiers .............................. . 1-226 lM146/lM246/lM346 Programmable Quad Operational Amplifiers ................ . 1-236 lM148/lM248/lM348 Quad 741 Operational Amplifiers; lM149/lM349 Wide Band Decompensated (Av(MIN) = 5) ............................................. . 1-248 lM158/lM258/lM358/lM2904 low Power Dual Operational Amplifiers ........... . 1-261 lM221/lM321 Precision Preamplifiers ......................................... . 1-274 1-283 lM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier .......... . lM392/lM2924 low Power Operational AmplifierlVoltage Comparators ........... . 1-301 lM611 Operational Amplifier and Adjustable Reference .......................... . 1-305 lM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference ..... . 1-317 lM614 Quad Operational Amplifier and Adjustable Reference ..................... . 1-333 lM675 Power Operational Amplifier .........•................................... 1-346 1-353 lM709 Operational Amplifier .................................................. . 1-358 lM725 Operational Amplifier .................................................. . 1-366 lM741 Operational Amplifier .................................................. . lM747 Dual Operational Amplifier ............................................. . 1-370 lM748 Operational Amplifier .................................................. . 1-375 1-379 lM759/lM77000 Power Operational Amplifiers ................................. . lM1558/lM1458 Dual Operational Amplifiers ................................... . 1-390 lM1875 20 Watt Power Audio Amplifier ......................................... . 1-392 iv Table of Contents (Continued) Section 1 Operational Amplifiers (Continued) LM1877 Dual Power Audio Amplifier.... . .. ........ .... ...... ................ ... LM 1896/ LM2896 Dual Power Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM2877 Dual 4 Watt Power Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM2878 Dual 5 Watt Power Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM2879 Dual 8 Watt Audio Amplifier ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM2900/LM3900/LM3301 Quad Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM3045/LM3046/LM3086 Transistor Arrays.. ...... ... . ..... ..... ......•...... .. LM3080 Operational Transconductance Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM3303/LM3403 Quad Operational Amplifiers. . . .. .. . ... ... .. ... ........ .... ... . LM3875 High Performance 40 Watt Audio Power Amplifier ....................... , . LM4250 Programmable Operational Amplifier ... . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . lM6104 Quad Gray Scale Current Feedback Amplifier ............... " . . . . . . . . . . . . LM6118/LM6218 Fast Settling Dual Operational Amplifiers ........................ LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Raill/O Operational Amplifiers ...................................................... LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers ..................................... '.' . . . . LM6152 Dual/LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raillnput-Output Operational Amplifiers.. ...... ...... ........... ... ...... ............ ........ LM6161 /LM6261 /LM6361 High Speed Operational Amplifiers ..................... LM6162/LM6262/LM6362 High Speed Operational Amplifiers ..................... LM6164/LM6264/LM6364 High Speed Operational Amplifiers. ... ......... ..... ... LM6165/LM6265/LM6365 High Speed Operational Amplifiers.... .. ....... ..... . .. LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier ..... : . . . . LM6181 100 mA, 100 MHz Current Feedback Amplifier...... ..... ............... .. LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier .... . . . . . . . . LM6313 High Speed, High Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier. . . . . . . . . . . . . . LM7131 Tiny High Speed Single Supply Operational Amplifier.............. ..... . .. LM7171 Very High Speed High Output Current Voltage Feedback Amplifier .......... LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM13700/LM13700A Dual Operational Transconductance Amplifiers with Linearizing· Diodes and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . LMC660 CMOS Quad Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC662 CMOS Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . LMC6001 Ultra Ultra-Low Input Current Amplifier ................................. LMC6022 Low Power CMOS Dual Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6024 Low Power CMOS Quad Operational Amplifier.......................... LMC6032 CMOS Dual Operational Amplifier ..................................... LMC6034 CMOS Quad Operational Amplifier .............................. , . . . . . . LMC6041 CMOS Single Micropower Operational Amplifier... ..... .... ..... ...... .. LMC6042 CMOS Dual Micropower Operational Amplifier .......................... LMC6044 CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . LMC6061 Precision CMOS Single Micropower O~rational Amplifier ................ LMC6062 Precision CMOS Dual Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . LMC6064 Precision CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . LMC6081 Precision CMOS Single Operational Amplifier. ....•... ...... .... ...... .. LMC6082 Precision CMOS Dual Operational Amplifier ....... ~ . . . . . . . . . . . . . . . . . . . . . LMC6084 Precision CMOS Quad Operational Amplifier. . . . . . . . . . .. . . . . . . . . . . . . . . . . v 1-398 1-403 1-411 1-418 1-425 1-432 1-450 1-455 1-459 1-466 1-482 1-490 1-494 1-503 1-504 1-515 1-516 1-523 1-531 1-539 1-546 1-560 1-577 1-598 1-607 1-608 1-630 1-631 1-649 1-669 1-6.79 1-689 1-699 1-711 1-722 1-732 1-742 1-753 1-763 1-773 1-783 1-793 1-803 1-813 1-823 Table of Contents (Continued) f"', Section 1 Operational Amplifiers (Continued) h, ' LMC6462 DuaI/LMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS: Operational Amplifier •.......................................... '.. ; ..... , ... ".' LMC6482 CMOS Dual Rail-to-Raillnput and Output Operational Amplifier. '. "......... ,C ' LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier .........•. LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Raillnput and Output Operational' Amplifier .......................................... ,' ..... '......... '... '........ ; LMC6574 Quad/LMC6572 Dual Low Voltage (2.7Vand 3V) Operational Amplifier ....• LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-to-Raillnput and Output CMOS Operational Amplifier .................................' ................... ': .. LM'C6681 Singie/LMC6682 Dual/LMC6684 Quad'Low Voltage,\Rail-to-Raillnput and qutput CMOS Amplifier with Powerdown .......... " ........................... . LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Raillnput and Output ..•. I::.MC7111 Tiny CMOS Operational Amplifier with Rail-to~Ra:illnput and Output, ....... . LPC660 Low Power CM0S Quad Operational Amplifier ........................ '.... . LPC661 Low Power CMOS Operational Amplifier ................................ . LPC662 Low Power CMOS Dual Operational Amplifier ............................ . OP07 Low Offset, Low Drift Operational Amplifier .........................•'..•...• TL081 Wide Bandwidth JFET Input Operational Amplifier .... : . :.........•. ;'....... . 1'L082 Wide Bandwidth Dual JFET Input Operational Amplifier ..................... . 1-833 1-847 1-864 1-880 1-893 1-902 1-903 1-904 1-920 1-921 1-933 1-945 1-957 1-962 1-969 Section 2 Buffers Buffers Definition ofTerms ...... : ... ~ ...... ; ............................... ; . . . ' 2~3 Buffers Selection Guide .................... : '~ .................. ~ ... ,c•• ' •••••• : '•• ~ 2-4 LH0002 Buffer .................. :'.':' ................. '............... ," ... ',........ 2-5 LH0033/LH0063 Fast and Ultra Fast Buffers .... '...................... : ....... : . .' 2-8 LH4001 Wideband Current Buffer ................ :............................... 2-19 LH4002 Wideband Video Buffer ...................................' .. ~". . . . . . . . . . 2-23 LM102/LM302 Voltage Followers ............................... ;': ... : ...... ;'.. 2-27 LM110/LM210/LM3'10 Voltage Followers................ ... ... ... .. ... .......... 2-33 2-46 LM6121/LM6221/LM6321 High Speed Buffers .................. ; .......... :..... LM6125/LM6225/LM6325 High Speed Buffers ........... : ....................... " 2-'52 Section 3 Voltage Comparators Voltage Comparators Definition of Terms ........ .' ; .................. ',' ., . . . .. . . . 3-3 Voltt:ige Comparato'rs Selection Guide ........... : .........................•. , . . . 3-4 LF111 ILF211 ILF311 Voltage Comparators .............. , .......... ; . . . . . . . . .. . . 3-5 3-14 LH2111/LH2311 Dual Voltage Comparators ............ .... ... ..... ............. LM1 06/LM306 Voltage Comparators ........................ " .... '. . . . . . . . . . . .. . . 3-17 LM11,1 ILM211 ILM311 Voltage Comparators ... : .. ,............................. 3-21 LM119/LM219/LM319 High Speed Dual Comparators .............. ; ......... : . . .3-,35 LM139/LM239/LM339/LM2901 ILM3302 Low Power Low Offset Voltage Quad Comparators ...... ; ................. ; ........... : ............. :: ......... ,'.".,.. 3-42 LM160/LM360 High Speed 'Differential Compariltors ........ : .......... :; ... , .... : 3-54 l,M161 ILM261 ILM361 High Speed Differential 'Comparators: ................. ,: ~ . . . 3-58 Lt..1193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators. . . 3-63 LM61.2 Dual-Channel Comparator and ReferEmce ................ : : ............. , . 3-72 LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference . . . . . . 3-80 ui"615 Quad Comparator and Adjustable Reference ........................... :.. 3-96 LM710 Voltage Comparator. .......... ~ ..•....... : .. '.'........ " ...... _ .. . . . . . . . . 3-107 ~M760 High Speed Differential Comparator ........ : ........... " ....... : . . . . .. . . 3~ 111 LM1801 Battery Operated Power-Comparator ................... , ................ ' 3-'118 LM6511 180 ns 3V Comparator.: ........ : ............. ; .......... : ...... ::: .. :' 3-126 vi Table of Contents (Continued) Section 3 Voltage Comparators (Continued) LMC6762 Dual/LMC6764 Quad Micropower, Rail-to-Raillnput and Output CMOS Comparator ........................................... :.................... LMC6772 Dual, LMC6774 Quad, Micropower Rail-to-Raillnput and Open Drain Output CMOS Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC7211 Tiny CMOS Comparator with Rail-to-Raillnput .......................... LMC7221 Tiny CMOS Comparator with Rail-to-Raillnput and Open Drain Output ..... LP311 Voltage Comparator.. ..... ... .. .. . . ... .... . .. .. .. .... .. ... ..... .. ...... LP339 Ultra-Low Power Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 4 Active Matrix/LCD Display Drivers LM61 04 Quad Gray Scale Current Feedback Amplifier. . . . . . . . . . . . . . . . . . . . . . • . . . . . . LM8305 STN LCD Display Bias Voltage Source................................... . LMC6008 8 Channel Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 5 Special Functions DH0006/DH0006C Current Drivers ............................................. DH0034 High Speed Dual Level Translator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DH0035/DH0035C Pin Diode Driver .......................... :................. LH0094 Multifunction Converter .............................. ; . . . . . . . . . . . . . . . . . LM194/LM394 Supermatch Pair... . .. ...... ........ ...... ... . .. .. ... .. ... ..... . LM195/LM395 Ultra Reliable Power Transistors..... ... ........ .. ..... ..... .. .... LM3045/LM3046/LM3086 Transistor Arrays. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . LM3146 High Voltage Transistor Array. ... ... ... ..................... .. ... ... .... LP395 Ultra Reliable Power Transistor .......................................... Section 6 Surface Mount Packing Considerations (Methods, Materials and Recycling) ....................... . Board Mount of Surface Mount Components .................................... . Recommended Soldering Profiles-Surface Mount .............................. . AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability ................... , ......................... . Land Pattern Recommendations .............................................. . Section 7 Appendices/Physical Dimensions Appendix A General Product Marking and Code Explanation ...........•........... Appendix B Devicel Application Literature Cross-Reference ....................... . Appendix C Summary of Commercial Reliability Programs ......................... . Appendix D Military Aerospace Programs from National Semiconductor ............. . Appendix E Understanding Integrated Circuit Package Power Capabilities ........... . Appendix F How to Get the Right Information from a Datasheet .................... . Physical Dimensions .......................................... '.' ............. . . Bookshelf Distributors vii 3-131 3-132 3-133 3-144 3-145 3-149 4-3 .4-7 4-8 5-3 5-7 5-11 5-14 5-23 5-31 5-42 5-47 5-52 6-3 • 6-19 6-2~, 6-24 6-35 7-3 7-4 7-10 7-11 7-21 7-26 7 i 30 Alpha-Numeric Index AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability .•...... '..................... ; •......•........ , .............. : .. 6-24 Board Mount of Surface Mount Components ................................................. 6-19 DH0006 Current Driver .. : ... : ... ;' .................................... .'... ;.; .................... 5-3 DH0034 High Speed Dual Level Translator ........................................•....•...... 5-7 DH0035 Pin Diode Driver .....' ............... ; ............ :' .. ; .....................:........ 5-11 Land Pattern Recommendations ...................... '............... ; .............. ~ ...... 6-35 LF11l Voltage Comparator ............•...................................•................ 3-5 LF147 Wide Bandwidth Quad JFET Input Operational Amplifier ................................. 1-22 LF155 Series Monolithic JFET Input Operational Amplifiers ............•....................... 1-31 LF156 Series Monolithic JFET Input Operational Amplifiers ... , ....•................••......... 1-31 LF157 Series Monolithic JFET Input Operational Amplifiers .....•.............................. 1-31 LF211 Voltage Comparator •....••..•..........•........................•.......•............. 3-5 LF311 Voltage Comparator ................................................................. 3-5 LF347 Wide Bandwidth Quad JFET Input Operational Amplifier .................. :............... 1-22 LF351 Wide Bandwidth JFET Input Operational Amplifier ...................................... 1-46 LF353 Wide Bandwidth Dual JFET Input Operational Amplifier ...........................•...... 1-54 LF411 Low Offset, Low Drift JFET Input Operational Amplifier .........•.....•.......•.......... 1-63 LF412.Low Offset, Low Drift Dual JFET Operational Amplifier ................ , ................. 1-70 LF441 Low Power JFET Input Operational Amplifier .................. ; ........................ 1-77 LF442 Dual Low Power JFET Input Operational Amplifier ...........................•.......... 1-84 LF444 Quad Low Power JFET Input Operational Amplifier .........,....... '..... , .............•. 1-93 LF451 Wide-Bandwidth JFET Input Operational Amplifier .....••...••..•.•.................... 1-100 LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier ................./ .............. 1-106 LHD002 Buffer ...................•.....•........................•.......................... 2-5 LHOO'03 Wide Bandwidth Operational Amplifier ................................................ 1-113 LH0004 High Voltage Operational Amplifier ...•......•................... , .................. 1-116 LH0021 1.0 Amp Power Operational Amplifi~f ............................................... 1-120 LH0024 High Slew Rate Operational Amplifier ........•...................................... 1-131 LH0032 Ultra Fast FET-Input Operational Amplifier .....•.............•...................... 1-135 LH0033 Fast and Ultra Fast Buffers ..............................•.........................•. 2-8 LH0041 0.2 Amp Power Operational Amplifier ............................................... 1-120 LH0042 Low Cost FET Operational Amplifier ..........................................'...... 1-143 LH0063 Fast and Ultra Fast Buffers .......................................................... 2-8 LH0094 Multifunction Converter ................................. ~ ......•...................... 5-14 LH0101 power Operational AmpUfier. : ...... ; ............................... ~ .............. 1-153 LH2111 Dual Voltage Comparator ........................................................... 3-14 LH2311 Dual Voltage Comparator ............... ; ... : ...................................... 3-14 LH4001 Wideband Current Buffer ........................................................... 2-19 LH4002 Wideband Video Buffer ......................................................... '... 2-23 LM10 Operational Amplifier and Voltage Reference .......................................... 1-164 LM101A Operational Amplifier ............................................................ 1-180 LM102 Voltage Follower ...........................•.........•............................• 2-27 LM106 Voltage Comparator ........................................................•....... 3-17 LM 107 Operational Amplifier ..........•...............................••.................. 1-190 LM 108 Operational Amplifier ..•........................................................... 1-196 LfI/!110 Voltage Follower .....................................•............................. 2-33 LM111 Voltage Comparator ................................................................ 3-21 LM 118 Operational Amplifier .............................................................. 1-203 LM119 High Speed Dual Comparator ........................................................ 3-35 LM124 Low Power Quad Operational Amplifier .............................................. 1-213 viii Alpha-Numeric Index(continUed) LM139 Low Power Low Offset Voltage Quad Comparator ................ .' ..................... 3-42 LM143 High Voltage Operational Amplifier .................................................. 1-226 LM146 Programmable Quad Operational Amplifier ........................................... 1-236 LM 148 Quad 741 Operational Amplifier ...................................•................. 1-248 LM149 Wide Band Decompensated (Av(MIN) = 5) ................•......................... 1-248 LM158 Low Power Dual Operational Amplifier ............................................... 1-261 LM160 High Speed Differential Comparator .......................•.....................•.... 3-54 LM161 High Speed Differential Comparator .................................................. 3-58 LM193 Low Power Low Offset Voltage Dual Comparator ....................................... 3-63 LM194 Supermatch Pair ................................................................... 5-23 LM195 Ultra Reliable Power Transistor ....................•................................. 5-31 LM201 A Operational Amplifier ............................................................ 1"180 LM207 Operational Amplifier ......... '..................•.................................. 1-190 LM208 Operational Amplifier .......................................•...................... 1-196 LM210 Voltage Follower ................................................................... 2-33 LM211 Voltage Comparator ................................................................ 3-21 LM218 Operational Amplifier .•....................•....................................... 1-203 LM219 High Speed Dual Comparator ...........................•...................•........ 3-35 LM221 Precision Preamplifier •............................................................ 1-274 LM224 Low Power Quad Operational Amplifier .............................................. 1-213 LM239 Low Power Low Offset Voltage Quad Comparator ...................................... 3-42 LM246 Programmable Quad Operational Amplifier ........................................... 1-236 LM248 Quad 741 Operational Amplifier ........................................•....•....... 1-248 LM258 Low Power Dual Operational Amplifier ............................................... 1-261 LM261 High Speed Differential Comparator .....•............................................ 3-58 LM293 Low Power Low Offset Voltage Dual Comparator ....................................... 3-63 LM301A Operational Amplifier ............................................................ 1-180 LM302 Voltage Follower .................................. '......................... , ....... 2-27 LM306 Voltage Comparator ................•............................................... 3-17 LM307 Operational Amplifier ............................................................... 1-190 LM308 Operational Amplifier .................................................•.........•.. 1-196 LM310 Voltage Follower ........................................ _.......................... 2-33 LM311 Voltage Comparator ................................................................ 3-21 LM318 Operational Amplifier ...........................................................•.. 1-203 LM319 High Speed Dual Comparator ......................•................................. 3-35 LM321 Precision Preamplifier ............................................................. 1-274 LM324 Low Power Quad Operational Amplifier .............................................. 1-213 LM339 Low Power Low Offset Voltage Quad Comparator ...................................... 3-42 LM343 High Voltage Operational Amplifier .......................................•.......... 1-226 LM346 Programmable Quad Operational Amplifier ........................•.................. 1-236 LM348 Quad 741 Operational Amplifier ................................................ ; ... /. 1·248 LM349 Wide Band Decompensated (Av(MIN) = 5) .............................. ; •.......... 1·248 LM358 Low Power Dual Operational Amplifier ......................................... : ..... 1·261 LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier ...................... 1-283 LM360 High Speed Differential Comparator .................................................. 3·54 LM361 High Speed Differential Comparator .............•...................•...... ~ ......... 3-58 LM392 Low Power Operational AmplifierlVoltage COIT1~arator ....................•............ 1·301 LM393 Low Power Low Offset Voltage Dual Comparator ....................................... 3-63 LM394 Supermatch Pair .......................................•........................... 5-23 LM395 Ultra Reliable Power Transistor ...................................................... 5·31 LM611 Operational Amplifier and Adjustable Reference ...•........... ;............. . . . . . . . . . 1-305 ix Alpha-Numeric Index (Continued)' LM612 Dual-Channel Comparator and Reference ..•....•....•. ,.............. ': ........ ',' ... , ... 3-72 LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference ........•......•.. 3-80. LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference ...•............. 1-317 LM614 Quad Operational Amplifier and Adjustable Reference ......... , .••. , .•..•.. ; .......... 1-333 LM615 Quad Comparator and Adjustable Reference ..........•........ : ...................... 3-96 LM675 Power Operational Amplifier ........................'..................•............. 1-346 LM7o.9 Operational Amplifier .........•....................' ......'. ; ..... 0', ••••••• , ••••••••• 1-353 LM71 0. Voltage Compar.ator ........................................................ ,..... : ... 3-10.7 LM725 Operational Amplifier .................. '; ...........................................' .1-358 LM741 Operational Amplifier •..................................................... :; ....... ,1-366 LM747 Dual Operational Amplifier ....................................... ~' ................. 1-370. LM748 Operational Amplifier •.......................................... ; .....•..... ,....... 1-375 LM759 Power Operational Amplifier ..............•..................•...................... 1-37:9 LM76o. High Speed Differential Comparator .............................. '" ............... ; .. 3-111 LM1458 Dual Operational Amplifier ........................................................ 1-390. LM1558 Dual Operational Amplifier ................................................ " ....... 1-390. LM18o.1 Battery Operated Power Comparator ...... '......................................... ,3-118 LM1875 20. Watt Power Audio Amplifier ............................ " ....................... 1-392 LM1877 Dual Power Audio Amplifier ......................................................... 1-398 LM1896 Dual Power Audio Amplifier .....................................' ................... 1-40.3 LM2877 Dual 4 Watt Power Audio Amplifier ..•......... ,................... ~ .................. 1-4;/ 1 LM2878 Dual 5 Watt Power Audio Amplifier ........... ; ...,................................... 1-418 LM2879 Dual 8 Watt Audio Amplifier .................................... ; ............. ; .... 1-425 LM2896 Qual Power Audio Amplifier ....................................................... 1-403 LM29o.o. Quad Amplifier ....................................... , .... '.............. , ........ 1-432 LM29o.1 Low Power Low Offset Voltage Quad Comparator .•........•..•..... '., ................. 3-42 LM29o.2 Low Power Quad Operational Amplifier ..................................... ; ........ 1-213 L:M29o.3 Low Power Low Offset Voltage Dual Comparator .............................•... " ... 3-63 LM29o.4 Low Power Dual Operational Amplifier ..•.......•................................... 1-261 LM2924 Low Power Operational Amplifier/Voltage Comparator ............................... 1-30.1 LM3o.45 Transistor Array ....•.............•.............................................. 1-450. LM3o.45 Transistor Array ............................•........................... '...... , ... 5-42 LM3o.46 Transistor Array ................................................. '....... ~ ..•..•.... 5-42 LM3o.46 Transistor Array .....•..............•.....................•......... ~ ............. 1-450. LM3o.8o. Operational Transconductance Amplifier .................. :..•............. '.....' .... 1-455 LM3o.86 Transistor Array ............ ; ................................... '.................. 1"450. LM3086 Transistor Array ..........................................................,•........• 5-42 LM3146 High Voltage Transistor Array ........ ; .................:.. ; ....................,..... 5-47 LM33o.1 Quad Amplifier •............................................... ,....•....... '...... 1-432 LM33o.2 Low Power Low Offset Voltage Quad Comparator ............... '................. : ....• 3-42 LM33o.3 Quad Operational Amplifier ............•..............•.... , , .' .................... 1-459 LM34o.3 Quad Operational Amplifier .............................. , ..•.......• ; •........... 1-459 LM3875 High Performance 40. Watt Audio Power Amplifier .....................•;...•...... , ... 1-466 LM39o.o. Quad Amplifier ....•... ,',,,.,,;"...........•.. :............ ',' •.......... : ................. 1-432 LM425o. Programmable Operational Amplifier .................... , .................... : ..... 1-482 LM61o.4 Quad Gray Scale Current Feedback Amplifier ......................................... 1-490. LM61 0.4 Quad Gray Scale Current Feedback Amplifier ... ';' .; ....•" ..•..•. " ..................... 4-3' LMS118 Fast Settling Dual Operational Amplifier •.••• i ............ .•.•.•.•. 0' • • • • • • • • • • • • • • • • • 1-494 LM612,1 High Speed Buffer •.•..........•........•......................... '......•........ 0' 2-46' LM6125 High Speed Buffer, ........................................•'..........'.,; ........... 2-52 LM6132 Dual High Speed/Low Power 7 MHz Rai,l-to-RaiIIlO Operational Amplifier ............... ' 1-50.3 x Alpha-Numeric Index(continUed) LM6134 Quad High Speed/Low Power 7 MHz Rail·to-Raill/O Operational Amplifier ............. 1-503 LM6142 Dual High Speed/Low Power 17 MHz Rail-to·Raillnput-Output Operational Amplifier. '.... 1-504 LM6144 Quad High Speed/Low Power 17 MHz Rail,-to-Raillnput-Output Operational Amplifier .... 1-504 LM6152 Dual High Speed/Low Power 45 MHz Rail-to-Raillnput-Output Operational Amplifier ..... 1-515 LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raillnput-Output Operational Amplifier .... 1-515 LM6161 High Speed Operational Amplifier .................................................. 1-516 LM6162 High Speed Operational Amplifier .................................................. 1-523 LM6164 High Speed Operational Amplifier. ................. , ............................... 1-531 LM6165 High Speed Operational Amplifier .................... ; ..............•.............. 1-539 LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier .................... 1-546 LM6181 100 mA, 100 MHz Current Feedback Amplifier ....................................... 1·560 LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier ......................• 1-577 LM6218 Fast Settling Dual Operational Amplifier ............................................ 1-494 LM6221 High Speed Buffer .........................................................•...... 2-46 LM6225 High Speed Buffer ........•....................................................... 2-52 LM6261 High Speed Operational Amplifier ....................................... '" ......... 1-516 LM6262 High Speed Operational Amplifier ................... ; .............................. 1-523 LM6264 High Speed Operational Amplifier .................................................. 1-531 LM6265 High Speed Operational Amplifier. ................................................. 1-539 LM6313 High Speed, High Power Operational Amplifier ....................................... 1-598 LM6321 High Speed Buffer '...............................................•................ 2-46 LM6325 High Speed Buffer ................................................................ 2-52 LM6361 High Speed Operational Amplifier .................................................. 1-516 LM6362 High Speed Operational Amplifier .................................................. 1·523 LM6364 High Speed Operational Amplifier .................................................. 1·531 LM6365 High Speed Operational Amplifier ..............................................•... 1-539 LM6511 180 ns 3V Comparator ..........•................................................ 3-126 LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier ......................... 1-607 LM7131 Tiny High Speed Single Supply Operational Amplifier ...................•............'. 1-608 LM7171 Very High Speed High Output Current Voltage Feedback Amplifier .. : .................. 1-630 LM8305 STN LCD Display Bias Voltage Source ........... ; ....... : ...............•............ 4-7 LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers ...... 1·631 LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers ...... 1-649 LM77000 Power Operational Amplifier ..................................................... 1-379 LMC660 CMOS Quad Operational Amplifier ................................................. 1-669 LMC662 CMOS Dual Operational Amplifier ................................................. 1-679 LMC6001 Ultra Ultra-Low Input Current Amplifier ............................................ 1-689 LMC6008 8 Channel Buffer ................................................................. 4-8 LMC6022 Low Power CMOS Dual Operational Amplifier ...................................... 1-699 LMC6024 Low Power CMOS Quad Operational Amplifier ..................................... 1-711 LMC6032 CMOS Dual Operational Amplifier ................................................ 1·722 LMC6034 CMOS Quad Operational Amplifier ............................................... 1-732 LMC6041 CMOS Single Micropower Operational Amplifier .................................... 1-742 LMC6042 CMOS Dual Micropower Operational Amplifier ..................................... 1-753 LMC6044 CMOS Quad Micropower Operational Amplifier ..................................... 1-763 LMC6061 Precision CMOS Single Micropower Operational Amplifier ........................... 1-773 LMC6062 Precision CMOS Dual Micropower Operational Amplifier ............................. 1-783 LMC6064 Precision CMOS Quad Micropower Operational Amplifier ............................ 1-793 LMC6081 Precision CMOS Single Operational Amplifier ...................................... 1-803 LMC6082 Precision CMOS Dual Operational Amplifier ........................................ 1-813 LMC6084 Precision CMOS Quad Operational Amplifier ....................................... 1-823 xi Alpha-Numeric Index(ContinUed)' LMC6462 Dual Micropower, Rail-to-Raillnput arid Output CMOS Operational Amplifier .. ; .. ~ ... ,. 1-833 LMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS Operational Amplifier ....... ; .. 1-833 LMC6482 CMOS Dual Rail-to-Raillnput and Output Operational Amplifier .... ; ........•... ; •.... 1-847 LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier .......•....•.... ; .... 1-864 LMC6492 Dual CMOS Rail.to-Raillnput and ,Output Operational Amplifier ..... ; .... ; ..•... , ..... 1-880 LMC6494 Quad CMOS Rail-to-Raillnput and Output Operational Amplifier ........., .............. 1-880 LMC6572 Dual Low Voltage (3V) Operational Amplifier .... , . , ............ , ................. , " 1-893 LMC6574 Quad Low Voltage (2.7V) Operational Amplifier .. , .......................... : ....... 1-893 LMC6582 Dual Low Voltage, Rail-to-Raillnput and Output CMOS Operational Amplifier ...•.... , .. 1~902 LMC6584 Quad Low Voltage, Rail-to-Raillnput and Output CMOS Operational Amplifier .......... 1-902 LMC6681 Single Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown ..... 1-903 LMC6682 Dual Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown ...... 1-903 LMC6684 Quad Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown .... " 1-903 LMC6762 Dual Micropower, Rail-to-Raillnput and Output CMOS Comparator ...•............... 3-131 LMC6764 Quad Micropower, Rail-to-Raillnput and Output CMOS Comparator .................. 3-131 LMC6772 Dual Micropower Rail-to-Raillnput and Open Drain Output CMOS Comparator ',' ... : ... 3-132 LMC6774 Quad Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator ......... 3-132 LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Raillnput andOutput: •............. 1-904 LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Raillnput and Output .......• , .......... 1-920 LMC7211 Tiny CMOS Comparator with Rail-to-Rail.lnput ... , .... ; .........•....... ~' .......... 3-133 LMC7221 Tiny CMOS Comparator with Rail-to-Raillnput and Open Drain Output ... , .•.......... 3-144 LP311 Voltage Comparator ..........................................................•.... 3-145 LP339 Ultra-Low Power Quad Comparator ............... , . , ................•............... 3-149 LP395 Ultra Reliable Power Transistor ..............................•....... ; ............... 5-52 LPC660 Low Power CMOS Quad Operational Amplifier ...... , . , .. , ... .' .. '" ...... " ....... , .. 1-921 LPC661 Low Power CMOS Operational Amplifier ................•.......... , .......... ;~ .... 1-933 LPC662 Low Power CMOS Dual Operational Amplifier ...... , ................................ 1-945 OP07 Low Offset, Low Drift Operational Amplifier .. , ...... , .................................. 1-957 Packing Considerations (Methods, Materials and Recycling) . , ...•............. ; ..•............... 6-3 Recommended Soldering Profiles-Surface Mount ............... ,., .............. ; .......... 6-23 TL081 Wide Bandwidth JFET Input Operational Amplifier .... ,.,., ..... , ...................... 1-962 TL082 Wide Bandwidth Dual JFET Input Operational:Amplifier ............ ; .... ; ............ ; .. 1-969 xii Additional Available Linear Devices 54ACT715 Programmable Video Sync Generator ...... Section 2 74ACT715 Programmable Video Sync Generator ...... Section 2 ADC0800 8-Bit AID Converter ...................... Section 2 ADC0801 8-Bit,...P Compatible AID Converter ........ Section 2 ADC0802 8-Bit ,...p Compatible AID Converter ........ Section 2 ADC0803 8-Bit ,...p Compatible AID Converter ........ Section 2 ADC0804 8-Bit ,...p Compatible AID Converter ........ Section 2 ADC0805 8-Bit ,...p Compatible AID Converter ........ Section 2 ADC0808 8-Bit ,...p Compatible AID Converter with 8-Channel Multiplexer ........................... Section 2 ADC0809 8-Bit ,...p Compatible AID Converter with 8-Channel Multiplexer ........................... Section 2 ADC0811 8-Bit Serial 1/0 AID Converter with 11-Channel Multiplexer .......................... Section 2 ADC0816 8-Bit,...P Compatible AID Converter with 16-Channel Multiplexer .......................... Section 2 ADC0817 8-Bit ,...p Compatible AI D Converter with 16-Channel Multiplexer .......................... Section 2 ADC0819 8-Bit Serial 1/0 AID Converter with 19-Channel Multiplexer .......................... Section 2 ADC0820 8-Bit High Speed ,...p Compatible AID Converter with Track/Hold Function ............... Section 2 ADC0831 8-Bit Serial 1/0 AID Converter with Multiplexer Options ............................. Section 2 ADC0832 8-Bit Serial 110 AID Converter with Multiplexer Options ............................. Section 2 ADC0833 8-Bit Serial 1/0 AID Converter with 4-Channel Multiplexer ........................... Section 2 ADC0834 8-Bit Serial 1/0 AID Converter with Multiplexer Options ............................. Section 2 ADC0838 8-Bit Serial 1/0 AID Converter with Multiplexer Options ............................. Section 2 ADC0841 8-Bit,...P Compatible AID Converter ........ Section 2 ADC0844 8-Bit ,...p Compatible AID Converter with Multiplexer Options ............................. Section 2 ADC0848 8-Bit ,...p Compatible AID Converter with Multiplexer Options ............................. Section 2 ADC0851 8-Bit Analog Data Acquisition and Monitoring System ........................................ Section 1 ADC0852 Multiplexed Comparator with 8-Bit Reference Divider ............................... Section 2 ADC0854 Multiplexed Comparator with 8-Bit Reference Divider. .............................. Section 2 ADC0858 8-Bit Analog Data Acquisition and Monitoring System ........................................ Section 1 ADC08031 8-Bit High-Speed Serial 1/0 AID Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ............................ Section 2 ADC08032 8-Bit High-Speed Serial 1/0 AID Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ............................ Section 2 xiii Application Specific Analog Products Application Specific Analog Products Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Additional Available Linear Devices (COntinued) ADC08034 8-Bit High-Speed Serial 110 AID Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ......................•..... Section 2 AD008038 8-Bit High-Speed Serial I/O AID Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ...•........................ Section 2 ADC08061 500 ns AID Converter with S/H Function and Input Multiplexer ............................ Section 2 ADC08062 500 ns AID Converter with S/H Function and Input Multiplexer ............................ Section 2 ADC08131 8-Bit High-Speed Serial I/O AID Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ............................ Section 2 ADC08134 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ............................ Section 2 ADC08138 8-Bit High-Speed Serial I/O AID Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function ............................ Section 2 ADC08161 500 ns AID Converter with S/H Function and 2.5V Bandgap Reference .................... Section 2 ADC08231 8-Bit 2 ,...S Serial 110 AID Converter with MUX, Reference, and Track/Hold .................. Section 2 ADC08234 8-Bit 2 ,...S Serial 110 AID Converter with MUX, Reference, and Track/Hold ................. Section 2 ADC08238 8-Bit 2 ,...S Serial 110 AID Converter with MUX, Reference, and Track/Hold ................. Section 2 ADC12H030 Self-Calibrating 12-Bit Plus Sign Serial I/O AID Converter with MUX and Sample/Hold ..... Section 2 ADC12H032 Self-Calibrating 12-Bit Plus Sign Serial I/O AID Converter with MUX and Sample/Hold ..... Section 2 ADC12H034 Self-Calibrating 12-Bit Plus Sign Serial 110 AID Converter with MUX and Sample/Hold ..... Section 2 ADC12H038 Self-Calibrating 12-Bit Plus Sign Serial 110 AID Converter with MUX and Sample/Hold ..... Section 2 ADC12L030 3.3V Self-Calibrating 12-Bit Plus Sign Serial 110 AID Converter with MUX and Sample/Hold ........•.......................... Section 2 ADC12L032 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O AID Converter with MUX and Sample/Hold ..............•.................... Section 2 ADC12L034 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O AID Converter with MUX and Sample/Hold ................................... Section 2 ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial 110 A/D Converter with MUX and Sample/Hold ................................... Section 2 ADC1001 10-Bit,...P Compatible AID Converter ....... Section 2 ADC100510-Bit,...P Compatible AID Converter ...•... Section 2 ADC1031 10-Bit Serial I/O A/D Converter with Analog Multiplexer and Track/Hold Function ......•....... Section 2 xiv Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data AcquisitiQn Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Additional Available Linear Devices (Continued) ADC1034 1O-Bit Serial I/O AID Converter with Analog Multiplexer and Track/Hold Function .............. Section 2 ADC1038 10-Bit Serial I/O AID Converter with Analog Multiplexer and Track/Hold Function .............. Section 2 ADC106110-Bit High-Speed ,...P-Compatible AID Converter with Track/Hold Function ............... Section 2 ADC1205 12-Bit Plus Sign,...p Compatible AID Converter ...................................... Section 2 ADC1225 12-Bit Plus Sign ,...p Compatible AID Converter ............................. '......... Section 2 ADC1241 Self-Calibrating 12-Bit Plus Sign ,uP-Compatible AID Converter with Sample/Hold ... Section 2 ADC124212-Bit Plus Sign Sampling AID Converter ... Section 2 ADC1251 Self-Calibrating 12-Bit Plus Sign AID Converter with Sample/Hold ..................... Section 2 ADC10061 1O-Bit 600 ns AID Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC10062 1O-Bit 600 ns AID Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC10064 1O-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC1 0154 1O-Bit Plus Sign 4 ,...S ADC with 4- or 8-Channel MUX, Track/Hold and Reference ........ Section 2 ADC1 0158 10-Bit Plus Sign 4 ,...S ADC with 4- or 8-Channel MUX, Track/Hold and Reference ........ Section 2 ADC10461 10-Bit 600 ns AID Converter with Input Multiplexer and Sample/Hold ......•.............. Section 2 ADC10462 1O-Bit 600 ns AID Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC10464 1O-Bit 600 ns AID Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC10662 1O-Bit 360 ns AID Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC10664 1O-Bit 360 ns AID Converter with Input Multiplexer and Sample/Hold ..................... Section 2 ADC10731 10-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ............ Section 2 ADC10732 10-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ............ Section 2 ADC10734 10-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ............ Section 2 ADC1073810-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ............ Section 2 ADC10831 10-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ...........• Section 2 ADC10832 1O-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ............ Section 2 ADC10834 10-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ............ Section 2 ADC10838 10-Bit Plus Sign Serial 110 AID Converter with MUX, Sample/Hold and Reference ....•......• Section 2 xv Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Additional Available Linear ,Devices (Continu~d) ADC12030 Self-Calibrating 12-Bit Plus Sign Serial I/O A/DConverter with MUX and Sample/Hold ........ Section 2 Data Acquisition ADC12032 Self-Calibrating 12-Bit Plus Sign Serial 1/0 A/D Converter with MUX and Sample/Hold ........ Section 2 Data Acquisition ADC12034 Self-Calibrating 12-Bit Plus Sign Serial 1/0 AID Converter with MUX and Sample/Hold .•...... Section 2 Data Acquisition ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O AID Converter with MUX and Sample/Hold ........ Section 2 Data Acquisition ADC12062 12-Bit, 1 MHz, 75 mW AID Converter with Input Multiplexer and Sample/Hold ................ Section 2 Data Acquisition ADC12130 Self-Calibrating 12-Bit Plus Sign Serial 110 AID Converter with MUX and SamplelHold ........ Section 2 Data Acquisition ADC12132 Self-Calibrating 12-Bit Plus Sign. Serial I/O AID Converter with MUX and Sample/Hold ........ Section 2 Data Acquisition ADC12138 Self-Calibrating 12-Bit Plus Sign Serial 110 AID Converter with MUX and Sample/Hold ........ Section 2 ' Data Acquisition ADC12441 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign AID Converter with Sample/Hold ........ Section 2 Data Acquisition ADC12451 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign AID Converter with Sample/Hold ........ Section 2 Data Acquisition ADC12662 12-Bit, 1.5 MHz, 200 mW AID Converter with Input Multiplexer and Sample/Hold ............ Section 2 Data Acquisition ADC16071 16-Bit Delta-Sigma 192 kil/s Analog-to-Digital Converter ....................... Section 2 Data Acquisition ADC1647116·8it Delta-Sigma 192 ks/s ' Analog-to-Digital Converter ................•...... Section 2 Data Acquisition AH0014 Dual DPDT-TIUDTl Compatible MOS Analog Switch .................................. Section 8 Data Acquisition AH0015 Quad SPST-TIUDTl Compatible MOS Analog Switch .................................. Section 8 , 'Data Acquisition AH0019 Dual DPST-TIUDTl Compatible MOS" Analog Switch .................................. Section 8 Data Acquisition AH5010 Monolithic Analog Current Switch ............ Section 8 Data Acquisition AH5011 Monolithic Analog Current Switcl} ............ Section 8 Data Acquisition AH5012 Monolithic Analog Current h ....•....... Section 8 Data Acquisition AH5020C Monolithic Analog Curre itch .......... Section 8 Data Acquisition AN~450 Small Outline (SO) Pac f, ace Mounting Methods-Parameters and Their Effect on Product Reliability . : .................................... Section 9 Data Acquisition AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect 'On Product PowerlCs Reliability ...................................... Section 5 AN-450 Small Outline (SO) Package Surface MOUnting Methods-Parameters and Their Effect on Product Reliability ..•.............•..................... Section'5 Application Specific Analog Products Board Mount of Surface Mount Components .......... Section 5 Application Specific Analog Products Board Mount of Surface Mount Components .......... Section 5 PowerlCs Data Acquisition Board Mount of Surface Mount Components .......... Section 9 DAC0800 8-Bit 0/ A Converter ...................... Section 3 Data Acquisition Data Acquisition DAC0801 8-Bit 0/ A Converter ....................•. Section 3 ' DAC0802 8-Bit 0/ A Converter ...................... Section 3 Data Acquisition I xvi Additional Available Linear Devices (Continued) DAC0806 8-Bit 01 A Converter .............. ; ....... Section 3 DAC0807 8-Bit 01 A Converter ...................... Section 3 DAC0808 8-Bit 01 A Converter ...................... Section 3 DAC0830 8-Bit p,P Compatible Double-Buffered 01 A Converter ...................................... Section 3 DAC0831 8-Bit p,P Compatible Double-Buffered 01 A Converter ...................................... Section 3 DAC0832 8-Bit p,P Compatible Double-Buffered 01 A Converter ................. '..................... Section 3 DAC0854 Quad 8-Bit Voltage-Output Serial 01 A Converter with Readback ........................ Section 3 DAC0890 Dual 8-Bit p,P-Compatible 01 A Converter ... Section 3 DAC1006 p,P Compatible, Double-Buffered 01 A Converter ...................................... Section 3 DAC1007 p,P Compatible, Double-Buffered 01 A Converter ...................................... Section 3 DAC1008 p,P Compatible, Double-Buffered 01 A Converter ...................................... Section 3 DAC1020 10-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1021 10-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1022 10-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1054 Quad 1O-Bit Voltage-Output Serial 01 A Converter with Readback ........................ Section 3 DAC1208 12-Bit p,P Compatible Double-Buffered 01 A Converter ...................................... Section 3 DAC1209 12-Bit p,P Compatible Double-Buffered 01 A Converter ...................................... Section3 DAC1210 12-Bit p,P Compatible Double-Buffered 01 A Converter ...................................... Section 3 DAC1218 12-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1219 12-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1220 12-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1222 12-Bit Binary Multiplying 01 A Converter ..... Section 3 DAC1230 12-Bit p,P Compatible Double-Buffered 01 A Converter ................................•..... Section 3 DAC1231 12-Bit p,P Compatible Double-Buffered Of A Converter ...................................... Section 3 DAC1232 12-Bit p,P Compatible Double-Buffered 01 A Converter ...................................... Section 3 DP731 0 Octal Latched Peripheral Driver ............. Section 3 DP7311 Octal Latched Peripheral Driver ............. Section 3 DP8310 Octal Latched Peripheral Driver ............. Section 3 DP8311 Octal Latched Peripheral Driver ............. Section 3 DS0026 5 MHz Two Phase MOS Clock Drivers ..•..... Section 4 DS1631 CMOS Dual Peripheral Driver ............... Section 3 DS1632 CMOS Dual Peripheral Driver ............... Section 3 DS1633 CMOS Dual Peripheral Driver ............... Section 3 DS1634 CMOS Dual Peripheral Driver ............... Section 3 DS2003 High CurrentlVoltage Darlington Driver ....... Section 3 DS2004 High CurrentlVoltage Darlington Driver ....... Section 3 DS3631 CMOS Dual Peripheral Driver ............... Section 3 xvii Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition , Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Additional Available Linear Devices'(Continued) DS3632 CMOS Dual Peripheral Driver ........•...... Section 3 DS3633 .CMOS Dual Peripheral Driver ............... Section 3 D83634 CMOS Dual Peripheral Driver ..•..•......... Section 3 DS3658 Quad High Current Peripheral Driver ....•... ~ Section 3 DS3668 Quad Fault Protected Peripheral Driver ....... Section 3 DS3680 Quad Negative Voltage Relay Driver ........• Section 3 DS9667 High CurrentIVoltage Darlington Driver ....... Section 3 DS55451 Series Dual Peripheral Driver ........•..... Section 3 . DS55452 Series Dual Peripheral Driver .•............ Section 3 DS55453 Series Dual Peripheral Driver .............. Section 3 DS55454 Series Dual Peripheral Driver .............. Section 3 DS75451 Series Dual Peripheral Driver .............. Section 3 DS75452 Series Dual Peripheral Driver .............. Section 3 DS75453 Series Dual Peripheral Driver .....•........ Section 3 DS75454 Series Dual Peripheral Driver .............. Section 3 DS75491 MOS-to-LED Quad Segment Driver ........• Section 4 DS75492 MOS-to-LED Hex Digit Driver: ............. Section 4 DS75494 Hex Digit Driver .......................... Section 4 Land Pattern Recommendations ..................•. Section 5 Land Pattern Recommendations ..........•......... Section 5 Land Pattern Recommendations .........••......... Section 9 LF198 Monolithic Sample and Hold Circuit ............ Section 6 LF298 Monolithic Sample and Hold Circuit ..•.....•... Section 6 LF398 Monolithic Sample and Hold Circuit ............ Section 6 LF11201 Quad SPST JFET Analog Switch ....•...... Section 8 LF11202 Quad SPST JFET Analog Switch •.......... Section 8 LF11331 Quad SPST JFET Analog Switch ..........• Section 8 LF11332 Quad SPST JFET Analog Switch .........•. Section 8 LF11333 Quad SPST JFET Analog Switch ........... Section 8 LF13006 Digital Gain Set. ..........•......•........ Section 6 LF13007 Digital Gain Set ............•............•. Section 6 LF13201 Quad SPST JFET Analog Switch ........... Section 8 LF13202 Quad SPST JFET Analog Switch ..•........ Section 8 LF13331 Quad SPST JFET Analog Switch .........•. Section 8 LF13332 Quad SPST JFET Analog Switch .•......•.. Section 8 LF13333 Quad SPST JFET Analog Switch ........... Section 8 LF13508 8-Channel Analog Multiplexer .............. Section 8 LF13509 4-Channel Differential Analog Multiplexer .... Section 8 LH0070 Series BCD Buffered Reference ............. Section 4 LH0071 Series Precision Buffered Reference ..•...... Section 4 . LH1605 5 Amp, High Efficiency Switching Regulator ... Section 3 LM12 80W Operational Amplifier ........•. , ••..•.•.. Section 4 LM12H454 12-Bit + Sign Data Acquisition System with Self-Calibration .•...•....•.........•..•..... Section 1 LM12H45812-Bit + Sign Data Acquisition System . with Self-Calibration ......•....•....•..•......•.. Section 1 LM12L438 12-Bit + Sign Data Acquisition System with Serial 110 and Self-Calibration .........•...•...... Section 1 LM12L454 12-Bit + Sign' Data Acquisition System with Self-Calibration ........ ; ........................ Section 1 xviii Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific AnalQg Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products . "PowerICs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data AcquiSition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Power ICs .Power ICs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Additional Available Linear Devices (Continued) LM 12L458 12-Bit + Sign Data Acquisition System with Self-Calibration ................................. Section 1 LM34 Precision Fahrenheit Temperature Sensor ...... Section 5 LM35 Precision Centigrade Temperature Sensor ...... Section 5 LM45 SOT-23 Precision Centigrade Temperature Sensor ........................................ Section 5 LM50 Single Supply Precision Centigrade Temperature Sensor ........................................ Section 5 LM78LXX Series 3-Terminal Positive Regulators ...... Section 1 LM78MXX Series 3-Terminal Positive Regulator ....... Section 1 LM78S40 Universal Switching Regulator Subsystem ... Section 3 LM78XX Series Voltage Regulators ................. Section 1 LM79LXXAC Series 3-Terminal Negative Regulator .... Section 1 LM79MXX Series 3-Terminal Negative Regulators ..... Section 1 LM79XX Series 3-Terminal Negative Regulators ...... Section 1 LM105 Voltage Regulator .......................... Section 1 LM109 5-Volt Regulator ............................ Section 1 LM 113 Reference Diode ........................... Section 4 LM 117 3-Terminal Adjustable Regulator ............. Section 1 LM117HV 3-Terminal Adjustable Regulator ........... Section 1 LM120 Series 3-Terminal Negative Regulator ......... Section 1 LM122 Precision Timer ............................ Section 4 LM123 3-Amp, 5-Volt Positive Regulator ............. Section 1 LM125 Dual Voltage Regulator ..................... Section 1 LM129 Precision Reference ........................ Section 4 LM131 Precision VOltage-to-Frequency Converter ..... Section 2 LM133 3-Amp Adjustable Negative Regulator ......... Section 1 LM 134 3-Terminal Adjustable Current Source ......... Section 4 LM134 3-Terminal Adjustable Current Source ......... Section 5 LM135 Precision Temperature Sensor ............... Section 5 LM136-2.5V Reference Diode ...................... Section 4 LM136-5.0V Reference Diode ...................... Section 4 LM137 3-Terminal Adjustable Negative Regulator •.... Section 1 LM137HV 3-Terminal Adjustable Negative Regulator (High Voltage) .................................. Section 1 LM138 5-Amp Adjustable Regulator ................. Section 1 LM140 Series 3-Terminal Positive Regulator .......... Section 1 LM140L Series 3-Terminal Positive Regulator ......... Section 1 LM 145 Negative 3-Amp Regulator ................... Section 1 LM 150 3-Amp Adjustable Regulator ................. Section 1 LM 169 Precision Voltage Reference ................. Section 4 LM185 Adjustable Micropower Voltage Reference ..... Section 4 LM 185-1.2 Micropower Voltage Reference Diode ..... Section 4 LM185-2.5 Micropower Voltage Reference Diode ..... Section 4 LM199 Precision Reference ........................ Section 4 LM205 Voltage Regulator .......................... Section 1 LM231 Precision VOltage-to-Frequency Converter ..... Section 2 LM234 3-Terminal Adjustable Current Source ......... Section 4 LM234 3-Terminal Adjustable Corrent Source ......... Section 5 LM235 Precision Temperature Sensor ............... Section 5 LM236-2.5V Reference Diode ...................... Section 4 xix Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Power ICs Power ICs PowerlCs Power ICs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs Data Acquisition PowerlCs PowerlCs PowerlCs Application Specific Analog Products PowerlCs PowerlCs Data Acquisition Data Acquisition PowerlCs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Power ICs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Additional Available Linear Devices (Continued) LM236-5.0V Reference Diode ...................... Section 4 LM285 Adjustable Micropower Voltage Reference ..... Section 4 LM285-1.2 Micropower Voltage Reference Diode ..... Section 4 LM285-2.5 Micropower Voltage Reference Diode ..... Sectiori 4 LM299 Precision Reference ............ '............ Section 4 LM305 Voltage Regulator .......................... Section 1 LM309 5-Volt Regulator ............................ Section 1 LM313 Reference Diode ........................... Section 4 LM317 3-Terminal Adjustable Regulator ....•........ Section 1 LM317HV 3-Terminal Adjustable Regulator ........... Section 1 LM317L 3-Terminal Adjustable Regulator ...........• Section 1 LM320 Series 3-Terminal Negative Regulator ......... Section 1 LM320L Series 3-Terminal Negative Regulator ........ Section 1 LM322 Precision Timer ............................ Section 4 LM323 3-Amp, 5-Volt Positive Regulator ............. Section 1 LM325 Dual Voltage Regulator ..................... Section 1 LM329 Precision Reference ........................ Section 4 LM330 3-Terminal Positive Regulator ................ Section 2 LM331 Precision Voltage-to-Frequency Converter ..... Section 2 LM333 3-Amp Adjustable Negative Regulator ......... Section l' LM334 3-Terminal Adjustable Current Source ......... Section 4 LM334 3-Terminal Adjustable Current Source ......... Section 5 LM335 Precision Temperature Sensor ......-......... Section 5 LM336-2.5V Reference Diode ...................... Section 4 LM336-5.0V Reference Diode ...................... Section 4 LM337 3-Terminal Adjustable Negative Regulator ..... Section 1 LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage) .................................. Section 1 LM337L 3-Terminal Adjustable Regulator ............ Section 1 LM338 5-Amp Adjustable Regulator ................. Section 1 LM340 Series 3-Terminal Positive Regulator .•........ Section 1 LM340L Series 3-Terminal Positive Regulator ......... Section 1 LM341 Series 3-Terminal Positive Regulator .......... Section 1 LM345 Negative 3-Amp Regulator .........••........ Section 1 LM350 3-Amp Adjustable Regulator ................. Section 1 LM368-2.5 Precision Voltage Reference ....•........ Section 4 LM368-5.0 Precision Voltage Reference ............. Section4 LM368-10 Precision Voltage Reference .............. $ection 4 LM369 Precision Voltage Reference ........•........ Section 4 LM376 Voltage Regulator .......................... Section 1 LM380 Audio Power Amplifier ................•....... Section 1 LM383 7W Audio Power Amplifier ................... Section 1 LM384 5W Audio Power Amplifier ................... Section 1 . LM385 Adjustable Micropower Voltage Reference ..... Section 4 LM385-1.2 Micropower Voltage Reference'Diode .. ~ .. Section 4 LM385-2.5 Micropower Voltage Reference Diode ..... Section 4 LM386 Low Voltage Audio Power Amplifier ........... Section 1 LM387/LM387A Low Noise Dual Preamplifier ......... Section 1 LM388 1.5W Audio Power Amplifier .......•......... Section 1 LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array ................................ Section 1 ·xx Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition PowerlCs PowerlCs Data' Acquisition Power ICs Power ICs PowerlCs PowerlCs PowerlCs Application Specific Analog Products PowerlCs PowerlCs Data Acquisition Power ICs Data Acquisition PowerlCs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Power ICs Power ICs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs Data Acquisition Data Acquisition Data Acquisition Data Acquisition PowerlCs Application Specific Analog Products Application Specific Analog Products Application. Specific Analog Products Data Acquisition Data Acquisition Data Acquisition Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Produc;:ts Additional Available Linear Devices (Continued) LM390 1W Battery Operated Audio Power Amplifier ... Section 1 LM391 Audio Power Driver ......................... Section 1 LM399 Precision Reference ........................ Section 4 LM431 A Adjustable Precision Zener Shunt Regulator .. Section 3 LM555 Timer ..................................... Section 4 LM555C Timer .................................... Section 4 LM556 Dual Timer ................................ Section 4 LM556C Dual Timer ............................... Section 4 LM565 Phase Locked Loop ........................ Section 4 LM565C Phase Locked Loop ....................... Section 4 LM566C Voltage Controlled Oscillator ............... Section 4 LM567 Tone Decoder ............................. Section 4 LM567C Tone Decoder ............................ Section 4 LM628 Precision Motion Controller .................. Section 4 LM629 Precision Motion Controller .................. Section 4 LM723 Voltage Regulator .......................... Section 1 LM831 Low Voltage Audio Power Amplifier ........... Section 1 LM833 Dual Audio Operational Amplifier ............. Section 1 LM837 Low Noise Quad Operational Amplifier ........ Section 1 LM903 Fluid Level Detector ........................ Section 3 LM1036 Dual DC Operated TonelVolume/Balance Circuit ....... '.................................. Section 1 L:M1042 Fluid Level Detector ....................... Section 3 LM1131 Dual Dolby B-Type Noise Reduction Processor ...................................... Section 1 LM 1201 Video Amplifier System .................... Section 2 LM1202 230 MHz Video Amplifier System ............ Section 2 LM1203 RGB Video Amplifier System ................ Section 2 LM1203A 150 MHz RGB Video Amplifier System ...... Section 2 LM1203B 100 MHz RGB Video Amplifier System ...... Section 2 LM1204150 MHz RGB Video Amplifier System ....... Section 2 LM1205 130 MHz RGB Video Amplifier System with Blanking ....................................... Section 2 LM1207 85 MHz RGB Video Amplifier System with Blanking ....................................... Section 2 LM1208 130 MHz RGB Video Amplifier System with Blanking ....................................... Section 2 LM1209100 MHz RGB Video Amplifier System with Blanking ....................................... Section 2 LM1212 230 MHz Video Amplifier System with OSD Blanking ....................................... Section 2 LM1281 85 MHz RGB Video Amplifier System with On Screen Display (OS D) ........................... Section 2 LM1291 Video PLL System for Continuous Sync Monitors ....................................... Section 2 LM 1295 DC Controlled Geometry Correction System for Continuous Sync Monitors .................... Section 2 LM 1391 Phase-Locked Loop ....................... Section 2 LM1496 Balanced Modulator-Demodulator ........... Section 4 LM1575 SIMPLE SWITCHER 1A Step-Down Voltage Regulator ...................................... Section 3 xxi Application Specific Analog Products Application Specific Analog Products Data Acquisition Power ICs Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products PowerlCs PowerlCs Power ICs Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Application Specific Analog Application Specific Analog Application Specific Analog Application Specific Analog Application Specific Analog Application Specific Analog Products Products Products Products Products Products Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products PowerlCs Additional Available Linear Devices(cOntinlUld) LM1575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator .......... ; , ~' ................. Section 3 .·Powe('ICs LM1577 SIMPLE SWITCHER Step-Up Voltage Regulator ...................................... Section '. Pbwer ICs LM1577 ~IMPLE SWITCHER Step-Up Voltage Regulator .. , ................................... Section 3 Application Specific Analog Products LM 1578A Switching Regulator ...................... Section 3 PowerlCs Application Specific Analog Products LM1596 Balanced Modulator-Demodulator ........... Section 4 LM1815 Adaptive Variable Reluctance Sensor Amplifier ............................. ; ......... Section 3 Application Specific Analog Products Application Specific Analog Products LM1819 Air-Core Meter Driver ...................... Section 3 LM1823 Video IF Amplifier/PLL Detector System ..... Section 2 Application Specific Analog Products Application Spe.cific Analog Products LM1830Huid Detector ............................. Section 3 LM1851 Ground Fault Interrupter .................... Section 4 Application Specific Analog Products LM1865 Advanced FM IF System ..........•........ Section 4 Application Specific Analog', Products LM1868 AM/FM Radio System ..................... Section 4 Application Specific Analog Products LM1875 2.0W Audio Power Amplifier ................. Section 1 Application Specific Analog Products LM1876 'Dual 20W Audio Power Amplifier with Mute and Standby Modes . ; ......... : ................. Section 1 Application Specific Analog Products Application Specific Analog Products LM1877 Dual Audio Power Amplifier .......••........ Section 1 LM 1881 Video Sync Separator ...................... Section 2 Application Specific Analog Products LM1882 Programmable Video Sync Generator ........ Section 2 Application Specific Analog Products Application Specific Analog Products LM1893 Carrier-Current Transceiver ................. Section 4 LM1894 Dynamic Noise Reduction System DNR® ..... Section 1 Application Specific Analog Products Application Specific Analog Products LM1896 Oual Audio Power Amplifier .........•....... Section 1 LM1921 1 Amp Industrial Switch .........' ........... Section 3 Application Specific Analog PrOducts LM1946 OverIUnder Current Limit Diagnostic Circuit .. Section 3 Application Specific Analog Products Application Specific Analog Products LM1949 Injector Drive Controller .................... Section 3 LM1950 750 rnA High Side Switch ................... Section 3 Application Specific Analog Products LM1951 Solid State 1 Amp Switch ................... Section 3 . Application Specific Analog Products LM1971p.Pot 62 dB Digitally Controlled Audio Attenuator with Mute ............................ Section 1 Application Specific Analog Products LM1972 p.Pot 2-Channel 78 dB Audio Attenuator with Mute .......................................... Section 1 ApplicaUon Specific Analog Products LM1973 p.Pot 3-Channel 76 dB Audio Attenuator with Mute .......................................... Section 1 Application Specific Analog Products LM2416 Triple 50 MHz CRT Driver .................. Section 2 Application Specific Analog PrQducts LM2416C Triple 50 MHz CRT Driver ................. Section 2 Application Specific Analog PrOducts Application Specific Analog Products LM2418 Triple 30 MHz CRT Driver .................. Section 2 Application Specific Analog Products LM2419 Triple 65 MHz CRT Driver .................. Section 2 LM2427 Triple 80 MHz CRT Driver .................. Section 2 Application Specific Analog Products LM2524D Regulating Pulse Width Modulator ....... :. Section 3 PowerlCs LM2574 SIMPLE SWITCHER 0.5A Step-Down Voltage PowerlCs Regulator ...................................... Section 3 LM2574HV SIMPLESWITCHER 0.5A Step-Down Power ICs Voltage Regulator ............................... Section 3 LM2575 SIMPLE SWITCHER 1A Step-Down Voltage PowerlCs Regulator .... ; ..............•....•............. Section 3 LM2575HV SIMPLE SWITCHER 1A Step-Down PowerlCs Voltage Regulator ............................... Section 3 a. xxii Additional Available Linear Devices (Continued) LM2576 SIMPLE SWITCHER 3A Step-Down Voltage Regulator ...............•...................... Section 3 LM2576HV SIMPLE SWITCHER 3A Step-Down Voltage Regulator ............................... Section 3 LM2577 SIMPLE SWITCHER Step-Up Voltage Regulator .........•............................ Section 3 LM2577 SIMPLE SWITCHER Step-Up Voltage Regulator ...................................... Section 3 LM2578A Switching Regulator ...................... Section 3 LM2587 SIMPLE SWITCHER 5A Flyback Regulator ... Section 3 LM2876 High-Performance 40W Audio Power Amplifier with Mute ...................................... Section 1 LM2877 Dual4W Audio Power Amplifier ............. Section 1 LM2878 Dual 5W Audio Power Amplifier ............. Section 1 LM2879 Dual 8W Audio Power Amplifier ............. Section 1 LM2889 TV Video Modulator ....................... Section 2 LM2893 Carrier-Current Transceiver ................. Section 4 LM2896 Dual Audio Power Amplifier ................. Section 1 LM2907 Frequency to Voltage Converter ............. Section 3 LM2917 Frequency to Voltage Converter ............. Section 3 LM2925 Low Dropout Regulator with Delayed Reset ... Section 3 LM2925 Low Dropout Regulator with Delayed Reset ... Section 2 LM2926 Low Dropout Regulator with Delayed Reset ... Section 2 LM2926 Low Dropout Regulator with Delayed Reset ... Section 3 LM2927 Low Dropout Regulator with Delayed Reset ... Section 3 LM2927 Low Dropout Regulator with Delayed Reset ... Section 2 LM2930 3-Terminal Positive Regulator ............... Section 2 LM2931 Series Low Dropout Regulators ............. Section 2 LM2931 Series Low Dropout Regulators ............. Section 3 LM2935 Low Dropout Dual Regulator ................ Section 3 LM2935 LowDropout Dual Regulator ................ Section 2 LM2936 Ultra-Low Quiescent Current 5V Regulator .... Section 2 LM2936 Ultra-Low Quiescent Current 5V Regulator .... Section 3 LM2937 500 mA Low Dropout Regulator ............. Section 3 LM2937 500 mA Low Dropout Regulator ............. Section 2 LM2940/LM2940C 1A Low Dropout Regulators ....... Section 2 LM2940/LM2940C 1A Low Dropout Regulators ....... Section 3 LM2941 I LM2941 C 1A Low Dropout Adjustable Regulators ....................; ................. Section 2 LM2984 Microprocessor Power Supply System ....... Section 2 LM2984 Microprocessor Power Supply System ....... Section 3 LM2990 Negative Low Dropout Regulator ............ Section 2 LM2991 Negative Low Dropout Adjustable Regulator .. Section 2 LM3001 Primary-Side PWM Driver ................... Section 3 LM3101 Secondary-Side PWM Controller ............ Section 3 LM3411 Precision Secondary Regulator I Driver ....... Section 3 LM3420-4.2, -8.4, -12.6 Lithium-Ion Battery Charge Controller ...................................... Section 2 LM3524D Regulating Pulse Width Modulator ......... Section 3 LM3578A Switching Regulator ...................... Section 3 xxiii PowerlCs Power ICs PowerlCs Application Specific Analog Products PowerlCs PowerlCs Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products PowerlCs PowerlCs Application Specific Analog Products Application Specific Analog Products PowerlCs Power ICs Power ICs Application Specific Analog Products Application Specific Analog Products PowerlCs Power ICs Application Specific Analog Products Application. Specific Analog Products Power ICs Power ICs Application Specific Analog Products PowerlCs PowerlCs Application Specific Analog Products PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs PowerlCs Addi~ional Available Linear Devices(Contlnued) LM3875 High Performance 56W Audio Power Amplifier ....................................... Section 1 . Application Specific Analog Products LM3876 High Performance 56W Audio Power Amplifier . with Mute ........................... , .......... Section 1 Application Specific Analog Products LM3886 High-Performance 68W Audio Power Amplifier with. Mute ............................•......... Section 1 Application Specific Analog Products LM3905 Precision Timer ........................... Section 4 Application Specific Analog Products LM3909 LED Flasher/Oscillator ..................... Section 4 Application Specific Analog Products LM3914 Dot/Bar Display Driver ..................... Section 4 Applicatior:1 Specific Analog Products Application Specific,Analog Products LM3915 Dot/Bar Display Driver .............•....... Section 4 LM3916 Dot/Bar Display Driver ..................' ... Section 4 Application Specific Analog Products LM3940 1A Low Dropout Regulator for 5V to,3.3V Conversion .............................. '....... Section 2 ,PowerlCs Data Acquisition LM3999 Precision Reference ..... '.................. Section 4 LM4040 Precision Mioropower Shunt Voltage Reference ..................................... Section 4 Data Acquisition LM4041 Precision Micropower Shunt Voltage Reference ..........................•.•.••..... Section 4 Data Acquisition LM4431 Micropower Shunt Voltage Reference ........ Section 4 Data Acquisition LM4700 Overture™ 30W Audio Power Amplifier with Mute and Standby Modes ...................... ;. Section 1 Application Specific Analog Products LM4860 1W Audio Power Amplifier with Shutdown Mode ................................... '....... Section 1 Application Specific Analog Products LM4861 %WAudio Power Amplifier with Shutdown Mode ...•..' ...................................•Section '1 Application Specific Analog Products LM4862 350 mW Audio Power Amplifier with Shutdown Application Specific Analog Products Mode .......................................... Section 1 LM4880 Dual 200 mW Audio Power Amplifier with Shutdown Mode ................................ Section 1 Application Specific Analog Products LM61 04 Quad Gray Scale Current Feedback Amplifier ....................................... Section 2 Application SpecificAnalog Products Application Specific Ahalog Products LM6121 High Speed Buffer ......................... Section 2 Application Specific Analog Products LM6125 High Speed Buffer ......................... Section 2 LM6142 Dual High Speed/Low Power 17 MHz Application Specific Analog Products Rail-to-Raillnput-Output Operational Amplifier ...... Section 1 LM6144 Quad High Speed/Low Power 17 MHz Application Specific Analog Produets Rail-to-Raillnput-Output Operational Amplifier' ....•. Section 1 LM6152 Dual High Speed/Low Power 45 MHz Rail-to·Raill/O Operational Amplifier .............. Section 2 Application Specific Analog Products LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raill/O Operational Amplifier .... : ......... Section 2 Application Specific Analog Products LM6161 High Speed Operational Amplifier ........... Section 2 Application Specific Analog Products LM6162 High Speed Operational Amplifier ........... Section 2 Application Specific Analog Products LM6164 High Speed Operational Amplifier ........... Section 2 Application Specific Analog Products Application Specific Analog Products LM6165 High Speed Operational Amplifier ........... Section 2 LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier ............................ Section 2 Application Specific Analog Products LM6181 100 mA, 100 MHz Current Feedback Amplifier ..................•.................... Section 2 Application 'Specific Analog Products LM6182 Dual 100 mA Output, 100 MHz Dual Current Application Specific Analog Products Feedback Amplifier ............................. Section 2 xxiv Additional Available Linear Devices (Continued) LM6221 High Speed Buffer ......................... Section 2 LM6225 High Speed Buffer ......................... Section 2 LM6261 High Speed Operational Amplifier ........... Section 2 LM6262 High Speed Operational Amplifier ........... Section 2 LM6264 High Speed Operational Amplifier ........... Section 2 LM6265 High Speed Operational Amplifier ........... Section 2 LM6321 High Speed Buffer ......................... Section 2 LM6325 High Speed Buffer ......................... Section 2 LM6361 High Speed Operational Amplifier ........... Section 2 LM6362 High Speed Operational Amplifier ........... Section 2 LM6364 High Speed Operational Amplifier ........... Section 2 LM6365 High Speed Operational Amplifier ........... Section 2 LM7131 Tiny High Speed Single Supply Operational Amplifier ....................................... Section 2 LM7171 Very High Speed High Output Current Voltage Feedback Amplifier ............................. Section 2 LM7800C Series 3-Terminal Positive Regulator ....... Section 1 LM8305 STN LCD Display Bias Voltage Source ....... Section 2 LM9044 Lambda Sensor Interface Amplifier .......... Section 3 LM9061 Power MOSFET Driver with Lossless Protection ...................................... Section 3 LM9140 Precision Micropower Shunt Voltage Reference ..................................... Section 4 LM 12434 12-Bit + Sign Data Acquisition System with Serial 110 and Self-Calibration .................... Section 1 LM 12454 12-Bit + Sign Data Acquisition System with Self-Calibration ................................. Section 1 LM12458 12-Bit + Sign Data Acquisition System with Self-Calibration ................................. Section 1 LM18293 Four Channel Push-Pull Driver ............. Section 4 LMC555 CMOS Timer ............................. Section 4 LMC567 Low Power Tone Decoder .................. Section 4 LMC568 Low Power Phase-Locked Loop ............. Section 4 LMC835 Digital Controlled Graphic Equalizer ......... Section 1 LMC1982 Digitally-Controlled Stereo Tone and Volume Circuit with Two Selectable Stereo Inputs .......... Section 1 LMC1983 Digitally-Controlled Stereo Tone and Volume Circuit with Three Selectable Stereo Inputs ......... Section 1 LMC1992 Digitally-Controlled Stereo Tone and Volume Circuit with Four-Channel Input-Selector ........... Section 1 LMC6008 8 Channel Buffer ......................... Section 2 LMC7660 Switched Capacitor Voltage Converter ...... Section 3 LMD18200 3A, 55V H-Bridge ....................... Section 4 LMD18201 3A, 55V H-Bridge ....................... Section 4 LMD18245 3A, 55V DMOS Full-Bridge Motor Driver ... Section 4 LMD18400 Quad High Side Driver ................... Section 3 LMF40 High Performance 4th-Order Switched Capacitor Butterworth Low-Pass Filter ............. Section 7 LMF60 High Performance 6th-Order Switched Capacitor Butterworth Low-Pass Filter ............. Section 7 LMF90 4th-Order Elliptic Notch Filter ................ Section 7 xxv Application Application Application Application Application Application Application Application Application Application Application Application Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Specific Analog Products Products Products Products Products Products Products Products Products Products Products Products Application Specific Analog Products Application Specific Analog Products PowerlCs Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Data Acquisition Data Acquisition Data Acquisition Application Application Application Application Data Acquisition Power ICs Specific Analog Products Specific Analog Products Specific Analog Products Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Power ICs PowerlCs Power ICs Power ICs Application Specific Analog Products Data Acquisition Data Acquisition Data Acquisition Additional Availabl,e 'Linear Devices (~ntinued) LMF100 High Performance Dual Switched Capacitor Filter .......... ' •. , ..........•.......•.......... Section 7 LMF380 Triple One-Third Octave Switched Capacitor Active Filter ... ,\ ............................... Section 7 LP2950/ A-XX Series of Adjustable Micropower Voltage Regulators, ," •.......•.......•.......... Section 3 LP2950/ A-XiX Series of Adjustable, Micropower Voltage Regulators. " ....................•....•.. Section 2 LP2951 / A-XX Series of Adjustable Micropower Voltage Regulators .............................. Section 2 LP2951 I A-XX Series of Adjustable Micropower Voltage Regulators ...........•.......• : ......... Section 3 LP2952 Adjustable Micropower Low-Dropout Voltage Regulator ...................................... Section 2 LP2953 Adjustable Micropower Low-Dropout Voltage Regulator ............................... ; ...... Section 2 LP2954 5V Micropower Low-Dropout Voltage Regulator ................. ~ . ; , ................. Section 2 LP2956 Dual Micropower Low-Dropout Voltage Regulator ...................................... Section 2 lP2957 5V;Low-Dropout Regulator for ""p Applications .•.......................•.......... Section 2 LP2980 Micropower SOT, 50 rnA Ultra Low-Dropout Regulator ...................................... Section 2 MF4 4th Order Switched Capacitor Butterworth Lowpass Filter .................................. Section 7 MF5 Universal Monolithic Switched Capacitor Filter .... Section 7 MF6 6th Order Switched Capacitor Butterworth Lowpass Filter .................................. Section 7 MF8 4th Order Switched Capacitor Bandpass Filter .... Section 7 MF10 Universal Monolithic Dual Switched Capacitor Filter ..................... '.............. '........ Section 7 MM5368 CMOS Oscillator Divider Circuit ............. Section 4 MM536917 Stage Oscillator/Divider ................ Section 4 MM5450 LED Display Driver ........................ Section 4 MM5451 LED Display Driver ........................ Section 4 MM5452 Liquid Crystal Display Driver ................ Section 4 MM5453 Liquid Crystal Display Driver ....... '......... Section 4 MM5480 LED Display Driver ........................ Section 4 MM5481 LED Display Driver ........................ Section 4 MM5483 Liquid Crystal Display Driver .....•....>•••••• Section 4 MM5484 16-Segment LED Display Driver ; •.......... Section 4 MM5486 LED Display Driver ............. : .......... Section 4 MM58241 High Voltage Display Driver ............... Section 4 MM58341 High Voltage Display Driver ....•.......... Section 4 MM58342 High Voltage Display Driver ......•........ Section 4 Packing Considerations (Methods, Materials and Recycling) ...................................... Section 5 Packing Considerations (Methods, Materials and Recycling) ..................................... Section 5 xxvi Data Acquisition Data Acquisition Application Specific Analog Products PowerlCs Power ICs Application Specific Analog Products PowerlCs Power ICs Power-ICs PowerlCs Power ICs PowerlCs Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application SpecifiC Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog F!.rodiJcts PowerlCs Additional Available Linear Devices (Continued) Packing Considerations (Methods, Materials and Recycling) ..................................... Section 9 Recommended Soldering Profiles-Surface Mount .... Section 9 Recommended Soldering Profiles-Surface Mount .... Section 5 Recommended Soldering Profiles-Surface Mount .... Section 5 xxvii Data Acquisition Data Acquisition Power ICs Application Specific Analog Products tfI ) .. National Semiconductor .... " , ~ , Industry Package Cross-Reference Guide : NSC CJ MW ~=lfiil lin @ CJ NSC /-fA Signetics Motorola TI AMD Sprague 0 R 4/16 Lead Glass/Metal DIP 0 0 I L Glass/Metal Flat Pack F F Q F F, S F TO-99, TO-100, TO-5 H H T, K, L, DB G L H 8-,14- and 16-Lead Low Temperature Ceramic DIP J F U J 0 H P A, B, M R, 0 'W\fWW ? 0 D m (Steel) K TO-3 KS KC K OA N T, P N, K K (Aluminum) 8-,14- and 16-Lead Plastic DIP xxviii V P P, N NSC 90 ~~ t= ~ mill TO-263 3-&5-Lead TO-220 3-&5-Lead TO-220 11-,15- & 23-Lead NSC p,A Signetics Motorola TI AMD Sprague 8 T U KC U T Low Temperature Glass Hermetic Flat Pack W F T0-92 (Plastic) Z W 80 M 8 8 F W F P LP D D L OW LW 0 0 WJJUJJ RRRRRRRRRR ~ (Narrow Body) (Wide Body) WM • I::fl::fl::fl::fl::fl::fl::fl::fl::fl::f ltiiUUtCJtFtq]j ~ 80T-23·· 5-Lead M5 xxix 8, D CI> 'a NSC NSC ,..A Signetics Motorola TI AMD Sprague PCC V a A FN FN L EP LCC Leadless Ceramic Chip Carrier E L1 G U FKI FG/FH L EK "S ~ CI> () C ; '; a:: = . 0 (.) CI> m as ~ () as a. ~ 1i) ~ 'a ~ .5 IIBBBBBBBII xxx Section 1 Operational Amplifiers Section 1 Contents Operational Amplifiers Definition of Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational Amplifiers Selection Guide. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers . . . . . . . . . . . . . . . . . . . LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers................. LF351 Wide Bandwidth JFET Input Operational Amplifier........... ................ ... .. LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . LF411 Low Offset, Low Drift JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . LF412 Low Offset, Low Drift Dual JFET Operational Amplifier......................... ... LF441 Low Power JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LF442 Dual Low Power JFET Input Operational Amplifier .......................... . . . . . . LF444 Quad Low Power JFET Input Operational Amplifier ............................... LF451 Wide-Bandwidth JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier ........................... LH0003 Wide Bandwidth Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH0004 High Voltage Operational Amplifier............................................ LH0021/LH0021 C 1.0 Amp Power Operational Amplifier ................................ LH0041 I LH0041 C 0.2 Amp Power Operational Amplifier ................................ LH0024 High Slew Rate Operational Amplifier... ....... ................. ............... LH0032 Ultra Fast FET-I nput Operational Amplifier ..................................... LH0042 Low Cost FET Operational Amplifier. . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . LH0101 Power Operational Amplifier. . . .. . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . LM10 Operational Amplifier and Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM101A1LM201A1LM301A Operational Amplifiers........... ................. ......... LM107lLM207lLM307 Operational Amplifiers..... ....... ............................. LM108/LM208/LM308 Operational Amplifiers ............. :.................. ......... LM118/LM218/LM318 Operational Amplifiers ......................................... LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers ................. LM143/LM343 High Voltage Operational Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM146/LM246/LM346 Programmable Quad Operational Amplifiers....................... LM148/LM248/LM348 Quad 741 Operational Amplifiers; LM149/LM349 Wide Band Decompensated (Av(MIN) = 5) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers................ .. LM221/LM321 Precision Preamplifiers................................................ LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier . . . . . . . . . . . . . . . . . LM392/LM2924 Low Power Operational Amplifier !Voltage Comparators .................. LM611 Operational Amplifier and Adjustable Reference.. ..... ................ .......... LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference. . . . . . . . . . . . LM614 Quad Operational Amplifier and Adjustable Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM675 Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . LM709 Operational Amplifier. . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM725 Operational Amplifier. . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . LM741 Operational Amplifier. . . . . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . LM747 Dual Operational Amplifier................ ... ...... . ...... ................. ... LM748 Operational Amplifier. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM759/LM77000 Power Operational Amplifiers ........................................ LM1558/LM1458 Dual Operational Amplifiers................................ .......... LM1875 20 Watt Power Audio Amplifier..... .............. ....... ..................... LM1877 Dual Power Audio Amplifier ....................... , .......................... 1-2 1-5 1-6 1-22 1-31 1-46 1-54 1-63 1-70 1-77 1-84 1-93 1-100 1-106 1-113 1-116 1-120 1-120 1-131 1-135 1-143 1-153 1-164 1-180 1-190 1-196 1-203 1-213 1-226 1-236 1-248 1-261 1-274 1-283 1-301 1-305 1-317 1-333 1-346 1-353 1-358 1-366 1-370 1-375 1-379 1-390 1-392 1-398 Section 1 Contents (Continued) LM1896/LM2896 Dual Power Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM2877 Dual 4 Watt Power Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. LM2878 Dual 5 Watt Power Audio Amplifier. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . LM2879 Dual 8 Watt Audio Amplifier . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. LM2900/LM3900/LM3301 Quad Amplifiers ............ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM3045/LM3046/LM3086 Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. LM3080 Operational Transconductance Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. LM3303/LM3403 Quad Operational Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM3875 High Performance 40 Watt Audio Power Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . LM4250 Programmable Operational Amplifier .......................... ; . . . . . . . . . . . . . . . . LM61 04 Quad Gray Scale Current Feedback Amplifier .................................. ~. LM6118/LM6218 Fast Settling Dual Operational Amplifiers . . . . . . • . . . . . .. . . . . . . . . . . . . . . . . LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Raill/O Operational Amplifiers .................................... ; . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .. .. LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Raillnput-Output Operational Amplifiers ............................................................ LM6152 Dual/LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raillnput-Output Operational Amplifiers............................................................ LM6161/LM62611LM6361 High Speed Operational Amplifiers ........................... LM6162/LM6262/LM6362 High Speed Operational Amplifiers.... .. .. .. .............. ... LM6164/LM6264/LM6364 High Speed Operational Amplifiers ... . . . . . . . . . . . . . . . . . . . . . . .. LM6165/LM6265/LM6365 High Speed Operational Amplifiers...... .. ................ ... LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier ............... LM6181100 mA, 100 MHz Current Feedback Amplifier.................................. LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier . . . . . . . . . . . . . . . . . . LM6313 High Speed, High Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier. . . . . . . . . . . . . . . . . . . . LM7131 Tiny High Speed Single Supply Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . LM7171 Very High Speed High Output Current Voltage Feedback Amplifier .. . . . . . . . . . . . . . . LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers. LM13700/LM13700A Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC660 CMOS Quad Operational Amplifier. . .. .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . LMC662 CMOS Dual Operational Amplifier ............................................ LMC6001 Ultra Ultra-Low Input Current Amplifier. ... ... .. ... ........... .. ... . .. ........ LMC6022 Low Power CMOS Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6024 Low Power CMOS Quad Operational Amplifier ........ . . . . . . . . . . . . . . . . . . . . . . .. LMC6032 CMOS Dual Operational Amplifier ........................................... LMC6034 CMOS Quad Operational Amplifier. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6041 CMOS Single Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6042 CMOS Dual Micropower Operational Amplifier ................................ LMC6044 CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6061 Precision CMOS Single Micropower Operational Amplifier .. . . . . . . . . . . . . . . . . . . .. LMC6062 Precision CMOS Dual Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . .. LMC6064 Precision CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . .. LMC6081 Precision CMOS Single Operational Amplifier..... ..... .. .... ....... .. ... ... .. LMC6082 Precision CMOS Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6084 Precision CMOS Quad Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6462 DuallLMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS Operational Amplifier ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LMC6482 CMOS Dual Rail-to-Raillnput and Output Operational Amplifier. . . . . . . . . . . . . . . . . . LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier. . . . . . . . . . . . . . . . . 1-3 1-403 1-411 1-418 1-425 1-432 1-450 1-455 1-459 1-466 1-482 1-490 1-494 1-503 1-504 1-515 1-516 1-523 1-531 1-539 1-546 1-560 1-577 1-598 1-607 1-608 1-630 1-631 1-649 1-669 1-679 1-689 1-699 1-711 1-722 1-732 1-742 1-753 1-763 1-773 1-783 1-793 1-803 1-813 1-823 1-833 1-847 1-864 Section 1 Contents (Continued) . LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Raillnputand Output Operational Amplifier. .• LMC6574 Quad/LMC6572 Dual Low Voltage (2.7V and 3V) Operational Amplifier... . . . . . . • . . LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-to-Raillnput and Output CMOS . . Operational Amplifier ..............•..•................• ;: ..••........•• :........... LMC6681 Singie/LMC6682 Dual/LMC6684 Quad Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown . . . . . . . . . . . . • . . • . . . . . • •• . . • . . . . • . • . . . . . . . . . . . . . . . . . LMC7101 Tiny Low Power Operational Amplifier with Rail-to.RaiUnput and Output. . .. . . • . . . • LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Raillnput and Output. . . . . . . . . . . . . . LPC660 Low Power CMOS Quad Operational Amplifier ........•...... ; ...; •...•.•... ; . . • . LPC661 Low Power CMOS Operational Amplifier .......•... ; .......•....'. • . . . . . . . . . . . . . LPC662 Low Power CMOS Dual Operational Amplifier ....•....••...•.•..................' OP07 Low Offset, Low Drift Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . ... . TL081 Wide Bandwidth JF,ET Input Operational Amplifier ..•.......••....• : . . . . . . . . . . . . . . TL082 Wide Bandwidth Dual JFET Input Operational Amplifier... .•. .•. ... . .. . ..•. .. . . . .. . 1-4 1-880 1-893 1-902 1-903 1-904 1-920 1-921 1-933 1-945 1..957 1-962 1-969 ttlNational Semiconductor Operational Amplifiers Definition of Terms Bandwidth: That frequency at which the voltage gain is reduced to 1/J2 times the low frequency value. Common·Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range. Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. % harmonic distortion = (V22 + V32 Large-5ignal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage. Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (Rs) and load resistance (Ru. Output Resistance: The small signal resistance seen at the output with the output voltage near zero. Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping. Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme. Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it. + V42 + .. .)1f2 (100) V1 where V1 is the rms amplitude of the fundamental and V2, V3, V4, ... are the rms amplitudes of the individual harmonics. Input Bias Current: The average of the two input currents. Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage. Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input. Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies. Input Common·Mode Voltage Range (or Input Voltage Range): The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated. Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (Rs) and load resistance (Ru. Input Offset Current: The difference in the currents into the two input terminals when the output is at zero. Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage. Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded. Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions. Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one. Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (Rs) and load resistance (Ru. 1-5 :: "CI "S Co' c tflNational S e m i con due t o,r '" o t; CD .. j ' General' Purpose Operational Amplifier' Selection: Guide CD !E a E c( 1o ! Xo Automotive Temperature Range (- 400C to Part # Is nA{Max) Vos mV{Max) + 8S·C) Specs at TA = . GBW MHz (Typ) 2S·C (Note 1) Slew Rate V/",s (Typ) Supply Current (Note 3) mA(Max) Specified Supply ; Voltage Min ,V Max Special Features V LM6142A 1 250 17 25 O.B 2.7 24 R-R In-Out Dual LM6144A 1 250 17 25 O.B 2.7 24 R-R In-Out Quad LM6142B 2.5 300 1~ 25 O.B 2.7, :14 R-R In-Out Dual LM6144B 2.5 300 17 25 O.B 2.7 24 R-R In-Out Quad LMB33 5 1000 15 7 4 10 30 Dual Low Noise LP2902 4 20 0.1 0.05 0.031 3 26 Quad LM2902 7 250 1 0.5 0.75 5 26 Quad LM2904 7 250 1' 0.5 1.0 5 26 Dual 5 ,26 LM2924 250 7 1 Industrial Temperature Range (-2SOC ,to Part # Vos mV{Max) .- ' Is nA{MlIl\) 0.5 + 8S·C) Specs at TA GBW MHz (Typ) 1.0 Comparator + ,Op Amp = 2SOC (Note 1) Slew Rate V/",s (Typ) Supply Current (Note 3) mA{.,.ax) Specified Supply Voltage Min V Max V 10 40 , Special Features LM20BA 0.5 2 1 0.3 0.6 LM10B(L) 2 20 0.09' 0.1 0.4 LM201A 2 75 1 0.5 2.5 10 40 L~207 ,2 75 1 0.5 2.5 10 40 LM20B 2 2 1 0.3 0.6 10 40 LM224A 3 BO 1 0.5 0.75 5 30 Quad LM25BA 3 BO 1 0.5 1.0 3 32 Dual LF255 5 0.1 2.5 5 4 30 40 LF256 5 0.1 5 12 7 30 40 LF257 5 0.1 20 50 7 30 40 Minimum Gain of 5 LM224 5 150 1 0.5 0.75 5 30 Quad Dual (Note 4) Op Amp' + Reference Compensated LM201A LM25B 5 150 1 0.5 1.0 5 30 LM246 6 250 1.2 0.4 0.625 3 30 (Note 5) LM24B 6 200 1 0.5 1.13 10 30 Quad LH0042C 20 0.05 1 3 4 10 40 LM6132 0.25 110 7 22 0.4 2.7 24 R-R In-Out Dual LM6134 0.25 110 7 22 0.4 2.7 24 R-R In-Out Quad 1-6 General Purpose Operational Amplifier Selection Guide (Continued) Commercial Temperature Range (lrC to Part # Vos mV(Max) la nA(Max) + 7lrC) Specs at TA GBW MHz (Typ) = 25°C (Notes 1 and 2) Slew Rate V/p.s (Typ) Supply Current (Note 3) mA(Max) Specified Supply Voltage Min V Special Features Max V LF411A 0.5 0.2 4 15 2.8 10 40 LF441 A 0.5 0.05 1 1 0.25 10 40 LM308A 0.5 7 1 0.3 0.8 10 40 LM11C 0.6 0.1 0.8 0.3 0.8 5 40 LF412A 1 0.2 4 15 2.8 12 40 Dual LF442A 1 0.05 1 1 0.2 10 32 Dual LM604AC 1 50 7 3 9 10 32 Multiplexed Op Amp LF355A 2 0.05 2.5 5 4 30 36 LF356A 2 0.05 5 12 10 30 36 LF357A 2 0.05 20 50 10 30 36 LF411 2 0.2 4 15 3.4 10 30 LF412 3 0.2 4 15 3.3 12 30 Dual Minimum Gain of 5 LM324A 3 100 1 0.5 0.75 5 30 Quad LM358A 3 100 1 0.5 1.0 5 30 Dual LM604C 3 80 7 7 4.5 10 32 Multiplexed Op Amp LM741E 3 80 1.5 0.7 2.8 10 40 LM10C(L) 4 30 0.09 0.1 0.5 LP324 4 10 0.1 0.05 0.0375 (Note 4) 5 Op Amp + Reference 30 LF347B 5 0.2 4 13 2.8 10 30 LF355B 5 0.1 2.5 5 4 30 40 LF356B 5 0.1 5 12 4 30 40 LF357B 5 0.1 20 50 7 30 40 LF441 5 0.1 1 1 0.25 10 30 LF442 5 0.1 1 1 0.25 10 30 LM11CL 5 0.2 0.8 0.3 0.8 5 40 LF451 5 0.2 4 13 3.4 10 32 LF453 5 0.2 4 13 3.25 10 32 SOPkg Dual LM611 5 35 0.8 0.7 0.35 2.8 32 OpAmp LM613 5 35 0.8 0.7 0.25 2.8 32 20pAmps + 2 Comparators 1-7 Quad Dual SOPkg + Ref + Ref General Purpose Operational Amplifier Selection Guide (Continued) Commercial Temperature Range (O'C to Part '" Vos mV(Max) 18 nA(Max) + 70'C) (Notes 1 and 2) (Continued) GBW MHz (Typ) - Slew Rate V/I£8 (Typ) Supply Current (Note 3) mA(Max) Specified Supply Voltage Min V Max V LM614 5 35 0.8 0.7 0.25 2.8 32 LM392 5 250 1 0.5 1 5 30 LM346 6 250 1.2 0.4 0.63 3 30 LM346 6 200 1 0.5 1.13 10 30 LM349 6 200 4 2 1.13 10 30 LM741C 6 500 1.5 10 40 6 500 . 2.8 LM1458 . 0.5 2.8 30 30 Special Features Quad Op Amp + Ref (Note 5) LM4250C 6 75 0.2 0.2 0.1 3 30 (Note 5) LM324 7 250 1 0.5 0.75 5 30 Quad, Low Cost LM358 7 250 1 0.5 1.0 5 30 Dual LM301A 7.5 250 1 0.5 3 10 30 VCMtoV+ LM307 7.5 250 1 0.5 3 10 30 Compensated LM301A LM308 7.5 7 1 0.3 0.8 10 36 68 LM343 8 40 1 2.5 5 56 LF347 10 0.2 4 13 2.75 10 30 LF351 10 0.2 4 13 3.4 10 30 LF353 10 0.2 4 13 5.4 10 30 LF355 10 0.2 2.5 5 4 30 30 LF356 10 0.2 5 12 10 30 30 LF357 10 0.2 20 50 10 30 30 Minimum Gain of 5 Quad LF444 10 0.1 1 1 0.25 10 30 TL081C 15 0.2 4 13 2.8 10 30 TL082C 15 0.2 4 13 2.8 12 30 Quad Dual Dual *NotSpecified. Nole I: Datasheet should be referred to for test conditions and more detailed information. Note 2: Those looking for a oommercial part should also look at the Industrial Temp Range guide as many Hybrids are listed there. Nole 3: Supply current is per amplifier. Nole 4: The LMIO has 2 versions: one a high voltage part, good to 45V and a low voltage part, good to 7V. Refer to the datasheet for more information. Note 5: The LMI46 and LM4250 are programmable amplHiers. The data shown is for Vs 1-8 = ± 15V and ISET = 10 "A Reier to the datasheets for more information. General Purpose Operational Amplifier Selection Guide (Continued) Military Temperature Range (-S5"C to Part # Vos mV(Max) 18 nA(Max) + 12S0C) Specs at TA GBW MHz (Typ) = 25"C (Note 1) Slew Rate V/,..s (Typ) Supply Current (Note 3) mA(Max) Specified Supply Voltage Min V Special Features Max V LF411AM 0.5 0.2 4 15 2.S 10 40 LF441AM 0.5 0.05 1 1 0.2 10 40 LM10SA 0.5 2 1 0.3 0.6 10 40 LF412A 1 0.2 4 15 2.S 12 40 LF442A 1 0.05 1 12 40 Dual 1 100 10 . 0.2 LHOO04 0.15 10 SO High Voltage Multiplexed Op Amp 1 LM604A 1 50 7 2 4.5 10 32 LF155A 2 0.05 2.5 5 4 30 40 LF156A 2 0.05 5 12 7 30 40 LF157A 2 0.05 20 50 7 30 40 LF411M 2 0.2 4 15 3.4 10 30 Dual Minimum Gain of 5 + Reference LM10 2 20 0.09 0.1 0.4 1.2 40 Op Amp LM101A 2 75 1 0.5 3 10 40 VCMtoV+ LM107 2 100 1 0.5 3 10 40 Compensated LM101A LM10S 2 2 1 0.3 0.6 10 40 LM124A 2 50 1 0.5 0.75 5 30 LM15SA 2 50 1 0.5 0.5 5 30 Dual LP124 2 4 0.1 0.05 0.035 5 30 Quad LF412 3 0.2 4 15 3.25 12 30 Dual LM741A 3 SO 1.5 0.7 2.S 10 40 LF155 5 0.1 2.5 5 4 30 40 LF156 5 0.1 5 12 7 30 40 LF157 5 0.1 20 50 7 30 40 Minimum Gain of 5 Quad Quad LF147 5 0.2 4 13 2.75 10 40 LF442 5 0.1 1 1 0.25 10 40 Dual LF444A 5 50 1 1 0.20 10 40 Quad LM124 5 150 1 0.5 0.75 5 30 Quad 1-9 • General Purpose Operational Amplifier Selection Guide (C~ntinued) Military Temperature Range (- S5"C to Part # LM143 Vos mV(Max) 5 la . nA(Max) 20 + 12S C) Specs at TA D GBW MHz (Typ) 1 = 25"C (continued) Slew Rate VllJ-s (Typ) Supply Current (Note 3) mA(Max) 2.5 4 Specified Supply Voltage Special Features Min V Max V 56 80 High Voltage LM146 5 100 1.2 0.4 0.55 3 30 (Note 5) LM148 5 100 1 0.5 0.9 10 30 Quad LM149 5 100 4 2 0.9 10 30 Minimum Gain of 5, Quad LM158 5 150 1 0.5 1 5 30 Dual LM741 5 500 1 0.5 2.8 10 40 LM1558 5 500 • . 2.5 30 30 Dual LM4250 5 50 0.2 0.2 0.1 3 30 (Note 5) LH0042 20 0.025 1 3 3.5 . 10 40 1-10 f}1National Semiconductor Low Input Current Selection Guide <25 fA I <100fA I :>:5pA* I :>:20pA I :>:50pA I :>:100pA I :>:200pA I :>:500pA TA = 25"C LMC6001A*' LMC60018'* LMC660* LHOO42 LH0032A LH0032 TL081 LH0032C LMC662* LH0042C LF155A1156A LF155/156 LH0032AC LH4004 LMC6041* LF157A LMC6042' LF355A1356A LMC6044* LMC6062' LF357A LF441 A LF157 LF255/256 LF257 LF351 LF411A1411 LF355/356 LF3558/3568 LF357 LF3578 LF147/3478/347 LMC6082* LF442A LPC660' LF444A LF441 LF353 LPC661' LM11 LF442 LF412A1412 LPC662* LF444 LM11CL LMC6061* LM11C LMC6022* LMC6081 * LH0101 LMC6024* LMC6064* LMC6032* LMC6084* LMC6034* LMC6482* LH41 04 LMC6484' LH4104C LMC6001C LMC6462 LMC6464 LMC6492 . LMC6494 LMC6572 LMC6574 LMC6584 LMC6681 LMC6682 LMC6684 LMC7101 LMC7111 Note: Datasheet should be referred to for oondHions and more detailed infonnation. 'Guaranteed over industrial temperature range (- 40'C to + 85'C). Typical value is "100 percent tested and guaranteed. 1·11 ,; 40 fA. tfI National Semiconductor High Speed Operational Amplifier Selection Guide Part '" Slew Rate V/p.s (Typ) GBW MHz(Typ) Vas mV(Max) Is mA(Max) (Note 1) Notes High Output Current, Voltage Feedback GBW;;, 4 MHz, TA = 2SoC , LM7171 A 4100 ;!OO 1 8.5 LM6171A 3600 100 3 4 LM7171 4100 200 3 8.5 LM6171 3600 100 6 4 Low Power, Voltage Feedback LM6172 3600 100 1 4 Dual Low Power, Voltage Feedback LM6181 2000 100 7.0 10 Current Feedback, VIP LM7121A 1000 200 3 5 Low Power, Voltage Feedback LM7121 1000 200 6 5 Low Power, Voltage Feedback LH0024 500 70 4 15 LH0032 500 70 5 20 FETlnput LM6161 300 50 7 6.8 Unity Gain Stable, VIPTM LM6162 300 100 5 6.8 Min Gain 01 2, VIP LM6164 300 175 4 6.8 Min Gain 015, VIP LM6165 300 725 3 6.8 Min Gain of 25, VIP LM6313 250 35 20 11.5 Hi Speed Hi Power, Dual Fast Settling Dual, VIP Low Power, Voltage Feedback High Output Current, Voltage Feedback LM6218A 140 17 1 3.5 LM6218 140 17 3 3.5 Fast Settling Dual, VIP LHOO03 2-70 10-30 3 3 External Compensation LM118 70 15 4 7 LF157A 50 20 2 Min Gain of 5, JFET 30 30 . 7 LM359 11 Oljal Current Mode (Norton) Amp LM6152 30 45 2.5 1.5 R-R In-Out, Dual LM6154 30 45 2.5 1.5 R-R In-Out, Quad LM6142A 25 17 1.0 0.8 Low Power, R-R In-Out, Dual LM6144A 25 17 1.0 0.8 Low Power, R-R In-Out, Quad LF411A 15 4 0.5 1.4 JFET LJ=412A 15 4 1.0 2.8 DualJFET LF147 13 4 5 2.75 QuadJFET LF451 13 4 5 3.4 SOPkg LF453 13 4 5 3.25 SOPkgDual LF351 13 4 10 3.4 JFET LF353 13 4 10 3.3 LF156A 12 5 2 7 JFET LM833 7 15 5 4 Dual Low Noise 'Not specHied. Note 1: Supply current is per amplifier in a package. 1-12 DualJFET tfI National Semiconductor Precision Operational Amplifier Selection Guide nA(Max) GBW MHz (typ) Slew Rate VllJ-s(Typ) Supply Current (Note 1) mA(Max) 0.35 0.00001' 1.3 1.5 0.750 Low power 0.35 0.00001" 0.1 0.035 0.024 Micropower 0.5 7 1 0.3 0.8 Vos mV(Max) LMC6081A LMC60S1A LM308A Part '*' Is Notes Singles LM208A 0.5 2 1 0.3 O.S LM108A 0.5 2 1 0.3 O.S LF441 A 0.5 0.05 1 1 0.2 LF411A 0.5 0.2 4 15 2.8 LM11C O.S 0.1 0.8 0.3 0.8 LMCS081 0.8 0.00001' 1.3 1.5 0.750 Low power LMCSOS1 0.8 0.00001' 0.1 0.035 0.032 Micropower LMCS082A 0.35 0.00001' 1.3 0.75 0.75 Dual LMC6081A LMCSOS2A 0.35 0.00001' 0.1 0.019 0.019 Dual LMCS061A LMCS482A 0.5 0.00002' 1.3 1 0.50 Rail to RaillnpullOutpul LMC6082 0.8 0.00001" 1.3 1.5 0.75 Dual LMCS081 LMC6062 0.8 0.00001' 0.1 0.035 0.023 Dual LMCSOS1 Duals Quads LMCS084A 0.35 0.00001' 1.3 1.5 0.75 Quad LMCS081A LMCSOS4A 0.35 0.00001' 0.1 0.035 0.019 Quad LMCSOS1A LMCS484A 0.5 0.00002' 1.3 1 0.50 Rail to RaillnpullOutput LMCS084 0.8 0.00001' 1.3 1.5 0.75 Quad lMCS081 LMCS064 0.8 0.00001' 0.1 0.35 0.029 Quad LMCS061 'Typical Value Note 1: Supply current is per amplifier. 1·13 tfI National Semiconductor MicroPower/Low Power Operational Amplifier Selection Guide Is Part # p.A Typ (per Amp) Vos mV Max Output Swing 18 VCM fA Typ V V Typ TypwithRL=100kO GBW MHz Typ Specified Supply Voltage Min Max V V . Specs atTA = 25"C and Vs = +5V Singles LMC6C41A 14 3 2 -.0.4 to 3.1 .0..0.04 to 4.987 .0..075 5 15 LMC6C41 14 6 2 -.0.4 to 3.1 .0..0.04 to 4.987 .0..075 5 15 LMC6D61A 2.0 .0.35 1.0 -.0.4 to 3.1 .0..0.05 to 4.995 0.1 5 15 LMCSC61 2.0 .0.8 1.0 -.0.4 10 3.1 .0..0.05 to 4.995 .0.1 5 15 LPC661A 55 3 2 -.0.4103.1 .0..0.04 10 4.987 .0.35 5 15 LPC661 55 6 2 -.0.4103.1 .0..0.04 10 4.987 .0.35 5 15 LMCSC81A 45.0 .0.35 1.0 -.0.4103.1 .0..02104.98 1.3 5 15 LMCSC81 45.0 .0.8 1.0 -.0.4 to 3.1 .0 ..02104.98 1.3 5 15 LMC6681A 7.0.0 1 8.0 -.0.3 to 5.3 .0..05104.9 1.2 1.8 1.0 LMC6681 7.0.0 3 8.0 -.0.3 to 5.3 .0..05104.9 1.2 1.6 1.0 LMCSC42A 1.0 3 2 -.0.4103.1 .0..0.0410 4.987 .0.1 5 15 LMC6C42 1.0 6 2 -.0.4103.1 .0..0.0410 4.987 .0.1 5 15 LMC6C62A 16 .0.35 1.0 -.0.4103.1 .0..0.05104.995 .0.1 5 15 LMC6C62 16 .0.8 1.0 -.0.4103.1 .0..0.05 10 4.995 .0.1 5 15 LMC6462A 2.0 .0.5 15.0 -.0.2105.3 .0..0.05 10 4.995 .0..05 73 15 LMC6462 2.0 3 15.0 -.0.2105.3 .0..0.0510 4.995 .0..05 3 15 LPC662A 43 3 2 -.0.4103.1 .0..0.04 10 4.987 .0.35 5 15 LPCS62 43 6 2 -.0.4 10 3.1 .0..0.04 10 4.987 .0.35 5 15 LMC6C22 43 9 4.0 -.0.4 to 3.1 .0..0.04 10 4.987 .0.35 5 15 LMC662A 375 3 2 -.0.4103.1 .0..02104.98 1.4 5 15 Duals LMC662 375 6 2 -.0.4103.1 .0..02104.98 1.4 5 15 LMC6C32 375 9 4.0 -.0.4103.1 .0..02104.98 1.4 5 15 LMCSC82A 45.0 .0.35 1.0 -.0.4103.1 .0..02104.98 1.3 5 15 LMC6C82 45.0 .0.8 1.0 -.0.4 10 3.1 .0 ..02104.98 1.3 5 15 LMC6482A 5.0.0 .0.5 2.0 .0105 .0..03104.97 1.3 3 15 LMC6482 5.0.0 3 2.0 Ct05 .0..03104.97 1.3 3 15 5.0.0 3 15.0 -.0.3105.3 .0..02104.98 1.5 2.5 15.5 5.0.0 6 15.0 -.0.3 to 5.3 .0..02104.98 1.5 2.5 15.5 LMC6492A \LMCS492 1-14 MicroPower/Low Power Operational Amplifier Selection Guide (Conlinued) Part # Is /-LA Typ (per Amp) Vos mV Max Specified Supply Voltage 18 fA Typ VCM V Typ Output Swing V Typ with RL= 100 kO GBW Typ Min V Max V 1.8 10 MHz SpecsatTA = 25"Cand Vs = +5V Duals Conlinued LMC6582A 700 1 80 -0.3105.3 0.05 to 4.9 1.2 LMC6582 700 3 80 -0.3 to 5.3 0.05 to 4.9 1.2 1.8 10 LMC6682A 700 1 80 -0.3 to 5.3 0.05 to 4.9 1.2 1.8 10 LMC6682 700 3 80 -0.3 to 5.3 0.05 to 4.9 1.2 1.8 10 LMC6142A 650 1 170· 0.005 to 4.995 17 2.7 24 LMC6044A 10 3 2 -0.4103.1 0.004 to 4.987 0.1 5 15 LMC6044 10 6 2 -0.4 to 3.1 0.004 to 4.987 0.1 5 15 LMC6064A 16 0.35 10 -0.4 to 3.1 0.005 to 4.995 0.1 5 15 LMC6064 16 0.8 10 -0.4 to 3.1 0.005 to 4.995 0.1 5 15 Quads LMC6464 20 3 150 -0.2 to 5.3 0.05 to 4.995 0.05 3 15 LMC6464A 20 0.5 150 -0.2 to 5.3 0.05 to 4.995 0.05 3 15 LPC660A 40 3 2 -0.4 to 3.1 0.004 to 4.987 0.35 5 15 LPC660 40 6 2 -0.4 to 3.1 0.004 to 4.987 0.35 5 15 LMC6024 40 9 40 -0.4 to 3.1 0.004 to 4.987 0.35 5 15 LMC660A 375 3 2 -0.4 10 3.1 0.02104.98 1.4 5 15 LMC660 375 6 2 -0.4 to 3.1 0.02 to 4.98 1.4 5 15 LMC6034 375 9 40 -0.410 3.1 0.02 to 4.98 1.4 5 15 LMC6084A 450 0.35 10 -0.4 to 3.1 0.02 to 4.98 1.3 5 15 15 LMC6084 450 0.8 10 -0.4103.1 0.02104.98 1.3 5 LMC6484A 500 0.5 20 Ot05 0.03104.97 1.3 3 15 LMC6484 500 3 20 Ot05 0.03 to 4.97 1.3 3 15 LMC6494A 500 3 150 -0.3 to 5.3 0.02 to 4.98 1.5 5 15 LMC6494 500 3 150 -0.3 to 5.3 0.02 to 4.98 1.5 5 15 LMC6144A 650 1 170· -0.25 to 5.3 0.005 to 4.995 1.7 2.7 24 LMC6584A 700 1 80 -0.3 to 5.3 0.05104.9 1.2 1.8 10 LMC6584 700 3 80 -0.3105.3 0.05104.9 1.2 1.8 10 LMC6684A 700 1 80 -0.3 to 5.3 0.05104.9 1.2 1.8 10 LMC6684 700 3 80 -0.3 to 5.3 0.05 to 4.9 1.2 1.8 10 'nA 1-15 " IfINational Semiconductor . . Medium and High Power Operational Ampl·ifier Selection Guide (2 0.1 A Output) (TA = 25°C, Note 1) Part iF lOUT A (Typ) Vos mV(Max) mA(Max) Slew Rate V/p,S (Typ) PBW(Typ) Is LM6181 0.1 7.0 10 2000 60 MHz LM6182 0.1 (Dual) 7.0 20 2000 60 MHz LH0041 0.2 3 3.5 3 20kHz LH0101A 2.2 3 35 Hi 300kHz LH0101 2.2 10 35 10 300kHz LM675 3 10 50 8 • LM12(L) (Note 2) 7 80 9 60kHz LM12C(L) (Note 2) 15 120 9 60kHz LM7171A 0.1 1 8.5 . 4100 33 MHz LM7171 0.1 3 8.5 4100 33 MHz LM6171A 0.1 3 4 3600 28 MHz LM6171 0.1 6 4 3600 28 MHz 'Not Specified Note 1: Refer to Datasheet for conditions and more detailed information. N_ 2: lOUT for the LM12 Is dependent on the amount of power dissipated in ths output transistor. The datasheet should be referred to, to determine amount of current available. 1-16 ttl National Semiconductor Low Voltage Selection Guide Part II Minimum Supply Voltage Typical Supply Current (per Device) LMC6482 3V 500 IJ.A Dual 1 MHz Rail-to-Rail Amp LMC6484 3V 500 IJ.A Quad 1 MHz Rail-to-Rail Amp LMC7101 2.7V 500 IJ.A Tiny PakTM SOT23 1 MHz Rail-to-Rail Amp LMC7111 2.2V 251J.A Tiny Pak SOT23 35 kHz Rail-te-Rail Amp LMC6582 1.8V 700 Dual Low-Voltage, 1.2 MHz Rail-to-Raillnput and Output CMOS Amplifier LMC6584 1.8V 700 Quad Low-Voltage, 1.2 MHz Rail-to-Raillnput and Output CMOS Amplifiers LMC6681 1.8V 700 IJ.A Single Low-Voltage, 1.2 MHz Rail-to-Raillnput and Output CMOS Amplifier with Powerdown LMC6682 1.8V 700 p.A Dual Low-Voltage, 1.2 MHz Rail-to-Raillnput and Output CMOS Op Ampwith Powerdown LMC6684 1.8V 700 IJ.A Quad Low-Voltage, 1.2 MHz Rail-to-Raillnput and Output CMOS Amplifiers with Powerdown LM6142 1.8V 650 IJ.A Dual 17 MHz Gain-Bandwidth Rail-to-Rail Amp LM6144 1.8V 650 IJ.A Quad 17 MHz Gain-Bandwidth Rail-to-Rail Amp LM7131 3V 7mA Video Amp in SOT23 Tiny Pak, 70 MHz Gain-Bandwidth LM6132 1.8V 360 IJ.A Dual 7 MHz Gain-Bandwidth Rail-te-Rail Amplifier LM6134 1.8V 360 p.A Quad 7 MHz Gain-Bandwidth Rail-to-Rail Amplifier LM6152 1.8V 1500 IJ.A Dual 45 MHz Gain-Bandwidth Rail-to-Rail Amplifier LM6154 1.8V 1500 IJ.A Dual 45 MHz Gain-Bandwidth Rail-to-Rail Amplifier 1-17 Description ~ I I. ., li! !;, & f}1National Semiconductor, c o J AudioOp Amp Selection Guide ',ai :5 'is. E 011( Part 1& D~sc~~pti.Qn c # Precision Op Amp ~CP o LM833 CI. o ':t, "',' Dual Audio Amplifier THO 4.5;'V/JiZ" 0.002% SliIIW Rate GBW PSRR i 7V/p,S 15MHz 100dB Supply Range ±18V Singlel , Package Dual/Quad (Pin Count) Dual 50(8), DIP(8) " " LM837 Input Referred Noise Voltage Quad Audio Amplifier . ' , " L~347 Wide Bandwiath JEET LF3'Sl Wide Bandwidth JFET 4.5nVlJiZ" 0.0015% 10V/po8 25 MHz 100dB ±18V Quad 50(14), DIP(14) 20nV/JiZ" 0.02%' 13V/pos 4MHz 100dS ±18V Quad DIP(14), . 50(14) 25nVlJiZ" 0.02%' 13V/po5 4 MHz 100dS ±18V Single 50(8), DIP(8) 16nV/JiZ" 0.02% 13V/pos 4 MHz 100dS ±18V Dual 50(14), DIP(14) ~ ." ,., '" LF353 Dual LF351 -- ,-,' LF411 Low Offset, Low Drift JFET· . LF412 Dual LF4.11 25nVlJiZ" 0.02% 15V1pos 3 MHz 100dB ±18V Single DIP(8) 25nvlJiZ" , 0.02% 15V/pot; 3 MHz 100 dB ±18V , Pual DIP(8) LF444 Low Power JFET Quad 35nV/JiZ" 0.02% ±18V Quad DIP(14), 50(14) LM6142 High-Speed/Low Power Dual 16nV/JiZ" 0.03% 5V/",s 17MHz 87dB ±1.8Vto24V 'Oual PIP(8), 50(8) LM6144 High-Speed/~ow Power Qu~d 16nV/JiZ" 0.03% 5V/pos 17MHz 87dS ±1.8Vto24V Quad DIP(14), 50(14) " .. W/pos , 1 MHz 100dB ,., , " " ,. < .. " " ,', " :1' " 1-18 .. t!lNational Semiconductor Audio Power Amp Selection Guide Users Supply Voltage Part # Power [THO,;; 1% (Typ)] Power Specified as Continuous RMS Power [THO,;; 10% (Typ)] Power Specified as Continuous RMS 40 80 160 40 80 160 LM1896 .O.7W O.45W NA 1.1W 1.3W NA 12V LM1877 LM2877 LM2878 1.5W 1.5W 1.5W 1.0W 1.0W 1.0W O.55W O.55W O.55W 1.75W 1.75W 2.0W 1.3W 1.3W 1.3W O.75W O.75W O.75W 14V LM1877 LM2877 LM2878 LM2879 2.0W 2.0W 2.0W 1.3W 1.3W 1.3W 1.25W O.85W O.85W O.85W 2.5W 2.75W 2.75W 1.0W 1.0W 1.0W NA NA 1.75W 1.75W 1.75W 2W LM1877 LM2877 LM2878 LM2879 LM1875 LM3875 LM3876 LM3886 2.0W 2.5W NA 2.5W 3.7 5V (Vs= 611) 20V and Above (VS = 20V) (VS = 2011) (VS = 20V) (Vs= 28V) (Vs= ±2511) (Vs= ±3511) (Vs= ±3511) (Vs= ±3511) NA NA NA 20W 45W (115 = ±25V 45W (115 = ±25V 68W (Vs = ±28V 2.0W 3.0W 4.0W 7.0W 20W 56W 56W 63W 1.75W NA NA NA 30W 30W 33W 1-19 NA NA 25W 56W (115 = ±25V) 56W (115 = ±25V) 87W (115 = ±28V) 3.0W 4.25W 4.75W 8W 30W 70W 70W 78W NA NA 2.3W NA NA NA 39W 39W 41W tfI National Semiconductor Typical THO Ratings Typical THO Ratings THO Mea8urements Conditlon8 . SUpply ',' Range (V) Pa~kage Singlel Dual (Plneount) 0.72% 0..45% Po = lW@Vs= 5V Po = 0.5W @Vs = 5V 2.7Vt05.5V 2.7Vto5.5V Single Single SO(16) SO(8) 0.72% 0..45% 0.11% Po = lW@Vs= 5V Po = 0.5W @Vs = 5V Po = 0.5y..} @Vs = 6V 2.7Vto5.5V 2.7Vt05.5V 3Vto 10V Single Single Dual SO(16) SO(8) DIP(14) lW@Vs= 14V lW@Vs= 14V 2W@Vs=22V lW@Vs= 12V 6Vto 24V 6Vf024V 6Vto 32V 3Vto15V Dual Dual Dual Dual DIP(14), SO(14) SIP(ll) SIP(ll) SIP(ll) lW@VS=14V 1W@Vs= lW 2W@Vs= 22V lW@Vs= 12V 20W@Vs = ±25V 25W@Vs = ±30V 40W@Vs= ±35V 4OW@Vs = ±35V SOW@Vs = ±28V 6Vt024V 6Vt024V 6Vt032V 6Vt032V 16Vto 60V 20VtoSOV 20Vt084V. 20Vt084V 20Vto 84V Dual Dual Dual Dual Single Sin,!!le Single Single Single DIP(14), SO(14) SIP(ll) SIP(.ll) T0-220(11) . T0-220(5) . TO-220(1.1)· • TO-220(11 ) •• TO-220(11 ) •• TO-220(11 ) •• 0.055% 0.07% .0.14% 0.14% 0.055% 0.07% 0.15% 0.05% 0.02% 0.06% 0.06% 0.06% 0.03% Po Po Po Po = = = = Po= Po = Po = Po = Po = Po = Po = Po = Po = "Isolated packages avaUable. 1-20 tJ1 National Semiconductor Special Amplifier Selection Guide Amplifiers with Added Functions Featuring the new Super-Block™ family, these amplifiers have additional special functions within their packages which help minimize the number of components required in an application. These devices are often used in control circuits, power supplies, and automatic test systems. LM10 Op Amp and Adjustable Voltage Reference LM392 Op Amp and Comparator LM611 Super-Block Op Amp and Adjustable Voltage Reference LM613 Super-Block Dual Op Amp, Dual Comparator, and Adjustable Voltage Reference LM614 Super-Block Quad Op Amp and Adjustable Voltage Reference Transconductance Amplifiers (Voltage In, Current Out) These amplifiers provide a transconductance (gm) proportional to their bias current, which is controlled externally. This programmable gain makes the amplifiers useful in applications such as voltage-controlled amplifiers, current-controlled amplifiers, AGC circuits, and voltage multipliers. LM3080 Operational Transconductance Amplifier LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers LM13700 Improved Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers Transimpedance Amplifiers (Current In, Voltage Out) Transimpedance amplifiers are widely used to amplify photo-diode signals, and. to ground-reference differential voltage Signals which have high common-mode voltages. The LH0082 was designed to receive and amplify analog and digital Signals transmitted by fiber optics. Like the LM359, the LHOO82 can also be used as a video amplifier. The LM2900 series has found popularity in filter applications, as well as general-purpose amplifiers. LM359 Dual Current Mode (Norton) Amplifier LM2900 LM3900 LM3301 LM3401 Quad Current Mode (Norton) Amplifier 1-21 ... r----------------------------------------------------------------------------, ~ CO) ~ t:: t;tINational Semiconductor :: Ii.;. ...J LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers General Description Features The LF147 is a low cost, high speed quad JFET input operational amplifier with IlIl internally trh:nmed input offset voltage. (BI-FET IITM technology) .. The, device requires a low supply current and yet maintains a large gain bandwidth .product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF147 is pin compatible with the standard LM148 .. This feature allows designers to immediately upgrade the overall performance of existing LF148 and LM124 designs. 5 mV max Internally trimmed offset voltage 50pA Low input',bias current O.O~ pAlv'Hz Low input .noise current 4 MHz Wide gain bandwidth 13 V//Ls High slew rate 7.2 mA Low supply' currElnt· 1012.0. High inpl;Jt impedance <0.02% Low total harmonic distortion Av= 10, AL =10k;Vo=20 Vp:.p, BW=20 Hz-20 kHz 50 Hz • Low 1/1 noise corner Ii Fast settling time to 0.01 % 2/LS The LF14imay be used in applications such as high speed' integrators, fast 01 A converte~, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise .and offset voltage drift. • • • • • • • • )". Simplified Schematic Pual-ln-L1ne Package -%Quad v- V~O-------__--~------~-----, INTfRIIJILLV TRIMMED -VEE , Connection Diagram IN 3' IN 3- IU- ------411_------....----.. . . OUT3 DUT2 TL/H/5647 -1 0---.... TLlH/5647 -13 Top View Order Number LF147J, LF347M.LF347BN, LF347N,LF147D/883 or LF147J/883* See NS Package Number D14E, J14A, M14A or N14A "Available per SMD #8102306, JM38510/11906. 1-22 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. LF347B/LF347 LF147 Supply Voltage ±22V ±18V Differential Input Voltage ±38V ±30V ±19V ±15V Input Voltage Range (Note 1) Output Short Circuit Continuous Continuous Duration (Note 2) Power Dissipation 900mW 1000mW (Notes 3 and 9) 150·C 150"C Tjmax Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec.) Soldering Information Dual-In-Line Package Soldering (10 seconds) Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds) 80·c/W 70"C/W Parameter Input Offset Voltage IJ.vos/b.T Average TC of Input Offset 260·C 260·C 260·C 215·C 220"C 900V 85·C/W (Note 5) LF147 Conditions Min VOS -65·CS:TAS: 150·C ESD Tolerance (Note 10) 75·C/W 100·C/W DC Electrical Characteristics Symbol LF347B/LF347 (Note 4) See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. lljA Cavity DIP (D) Package Ceramic DIP (J) Package Plastic DIP (N) Package Surface Mount Narrow (M) Surface Mount Wide (WM) LF147 (Note 4) Typ Rs=10kO, TA=25·C Over Temperature 1 Rs=10kO 10 Tj=25·C, (Notes 5, 6) Over Temperature 25 50 LF347B Max Min 5 8 Typ 3 LF347 Max Min 5 7 10 Units Typ Max 5 10 13 mV mV p.V/·C 10 Voltage los Input Offset Current Ie Input Bias Current Tj = 25·C, (Notes 5, 6) Over Temperature RIN Input Resistance Tj=25·C AVOL Large Signal Voltage Gain Vs= ±15V, TA=25·C Vo= ± 10V, RL =2 kO Over Temperature Vo Output Voltage Swing VS= ±15V, RL = 10 kO ±12 ±13.5 VCM Input Common-Mode Voltage Range 100 25 25 200 50 50 200 8 50 1012 100 50 25 ± 11 Vs= ±15V 25 4 1012 50 100 100 25 25 pA nA 0 V/mV ±11 +15 -12 VlmV ±12 ±13.5 ± 11 V V dB Common-Mode Rejection Ratio RsS:l0 kO 80 100 80 100 70 100 80 100 80 100 70 100 Is Supply Current 7.2 11 V +15 -12 Supply Voltage Rejection Ratio (Note 7) 1-23 200 8 100 CMRR 11 pA nA 1012 PSRR 7.2 4 15 ±12 ±13.5 +15 -12 100 7.2 dB 11 mA • .....'" C') ...... LL ,......... AC Electrical Characteristics (Note S) " .- Symbol Parameter LF147 Conditions Min ~ , Amplifier to Amplifier Coupling LF347B Max Min -120 TA=2So C, f= 1 Hz-20 kHz (Input Referred) SR Slew Rate Vs= ±1SV, TA=,2SoC GBW Gain-Bandwidth Product en Equivalent Input Noise Voltage TA = 2So C, RS = 100n, f= 1000 Hz in, Equivalent Input Noise Current Tj=2So C, f=1000 Hz Vs= ±1SV, Typ TA=2SoC 8 2.2 " Typ LF347 Max Min 'Typ -120 13 8 4 2.2 13 8 4 2.2 Units Max -120 dB 13 V/p.s 4 MHz 20 20 20 nV/-/Hz 0.01 ' 0.01 0.Q1 pAl-/Hz Note I: Unless otherwise specified the absolute maximum negative input voltage Is equal to the negative power supply voltage. Note 2: Any of the amplifier outputs can be shorted to ground indelinRely. however. more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded. Note 3: For operating at elevated temperature. these devices must be derated based on a thermal resistance of BiA. Note 4: The LF147 is avalleble In the military temperature range - 55·Cs; TAS; I 25'C. while the LF347B and the LF347 are availeble In the commercial temperature range O"CS;TAS;70"C. Junction temperature can rise to TJ max = 15O'C. Note 5: Unless otherwise specified the specifications apply over the full temperature range and for Vs= ±20V for the LFI47 and for VS= ±15V lor the LF347Bf LF347. Vos. Ie. and los are measured at VCM=O. Note 6: The Input bias currents are Junction leakage currents which approximately double for every IO"C inc,rease in the junction ":'mperature. TI. Due to limHed production test time. the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises ebove the ambient temperature as a result of Internal power disslpetion. Po. Tj = TA+ BjA Po where BjA js the thermal resistance from junction to ambient Use of a heat si~k is recommended II Input bias cu~nt is to be kept tp a minimum. Note 7: Supply voltage rajection ratio is measured for both supply magnibJdes increasing or decreasing simultanaously in accordance with common practice from Vs = ±5Vto ±15V lor the LF347 and LF347B and from Vs = ±20Vto ±5Vforthe LF147. Note 8: Refer to RETS147X for LF147D and LF147J military specifications. Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate ' outside guaranteed IImHs. Note 10: Human body model., 1.5 kn In serieswHh 100 pF. 1-24 ,-----------------------------------------------------------------------------, ." .... .,.. Typical Performance Characteristics ~ :::! Input Bias Current ,. i I r._~_~±~ft¥~'-'--r-r-r-' DO I-+-+-+--+--+--+-_--+:i"""=-I 411 I---+-t--t-I---+-t-+--I i III 1--1--1--1--1--11--11--1---1 H--+-+-+--holf-HH-I 10 H-+-+-h",o'f-+-HH-I ~ !E5H--f-H-+-+-+-+-t-I 5 10 15 III POIITIYE SUPPlY VO\l'AIIE (V) 1~-20 .~ i! -15 !i Ii 1"='" II ! ! I -10 -15 -20 -25 C\_550 \ 250 I-++--t---l\-+-+-+-H 40 It 30 iii! III 0 L......JL..-JL..-JL..-JL....I.J'--III.....J'-I.I o i 5.5 ~ 5 4.5 4 3.5 3 10 III 30 OUTPUT SINI CURRENT (IlIA) r'\ 0 40 I ° III 1-t-+-+-+-trT- ~ d 10 20 31 40 OUTPUT SOURCE CURRENT (mA) Output Voltage Swing a 111- III ~: !i!e 15 0-1 ~I 10 I / 5 • ,. 5 0 15 20 25 0.1 iul'IU vaLTAIE (±V) 1 Rl-OUTPUT LOAD (1IfI) 10 26 Slew Rate e~ 18 I: "- ....... r-... ° 30 Rl=211 TA=25°C Gain Bandwidth \ I-t-+-+-+-tiii- ii 5 I 10 6 I ! i. H-I-¥-+-+-+-+-~ Output Voltage Swing ~I -5 ! -10 H--t-I-+-¥-H-+-if--l 60 I 1250C ~ !i! -5 Va= ±15V ~~" NEIIA1lYE SUI'IU vaLlASE (V) r" ...... ~~ ;-10 Positive Current Limit III 10 HHHr-I-+t-iH-I I-+-+-+-+-I-+-I~L-+-t -5 Va- ±15Y I!o..- _~ 15 !!!!!o I H-+-+1-+-Hr+-t~ 25 _ -15 Negative Current Limit !: ~ -25 -5I"CsTAs125'C 15 II" H-+++-H-t-++-I Negative Common-Mode Input Voltage Umit III_ III H--+-+-+--+-+-ho'IH-I It;" " E IP 6 -55°C, 25 0 C_ r - - 051.,52025 SUPPlY vaLlAIIE (±V) -550 CsTAS1WC Il!i! r+- -_ 5L......L...L.-'--'-L-I-.L....J......L..J Positive Common-Mode Input Voltage Limit n 7 125°C 0'--.1.--'-""'-...............--'---'--' -10 -5 • 5 10 CIIMIIOII-MOIIE VO\l'AIIE (V) a I - -50 -25 0 25 50 75 100 125 TEMPERATURE (OC) ~ .,.. ..... TA=aoC DO H--t-f--++-+-t--I I *! ~ Supply Current ,. ,....:,..;....,.-.-......-r--r-,.....,....,...... 0 I-10 r- -20 I-30 :) Ii ~ -1t11 L......L~~--L~~-L~WW_I60 0.1 1 10 FREQUEIICY (1Hz) 100 24 22 _=±I5Y ftl-2. -j-t-+--+--j At=1 III 1--t--1f-+-1--t-t-l 11 l:=H~FA~W~N6~::::i=1 ~:ES;tt-~ M 16 141= 12 1-+-+-+-1-+-+--1 10 '---'---'---'---'_.L-..l-...1 -50 -25 0 25 50 75 100 125 TElPEMTURE (OC) TUH/5647-2 1-25 • ... r---------------------------------------------------------------------------------, Typical Performance Characteristics ~ CO) LL. (Contiriued) ~ Undlstorted Output Voltage Swing :::!. 1.2 5 Distortion vs Frequency . 31 ,. Va~±I" 140 .... "'2k I I\, lA",25°C • Av-l ~n' DIST 0.1 is 0.0& o 100 1k ll1k FREQUENCY (Hz) I. 10k 140 1··~~------~v~I-_~±I:"~ IIL=2k TA = 25°C CMRR= 20 LOG VCII + 1-+-,,,,,..;;:: Vo I-+-+--p..... OPEN LOOP VGIJME ,. 100 I. lk 10k 1M 11M FRElIIIENCY (Hz) ..- ..- 1'0... 1'0... ..... o 1M I 8.. I -, III ..........+su....Y ...... ........ I 100 • .... , .... " ,IUWLr .... Ii • ~ o 10 1111 " ~ 1k 10k I . FllEllUENCY (Hz) , 10 100 Ik ll1k I . 1M 10M FREQUENCY (Hz) Equivalent Input Noise 7D Voltage VI'" ±15V TA=25"C Open Loop Voltage Gain 1\7"211 -·IIII°C:sTA:sI25°C r-..... 20 Power Supply ReJection Ratio I : OL..--'--'----''---'----'---' 10 1--1-0.. l'e 1• FREQUENCY (Hz) Common-Mode ReJection Ratio 140 120 'i I :• ,. I-'-Ht--IH--I-:i-tH-l Open Loop Frequency Response 1M ; i~ II ID ID 40 I' 31 2D I. lD 0 10 lk 100 10k FIIEIIUENCY(Hz) 10 Inverter SeHling Time II III III I -- 10111V '/Ir111 , . ., [\1111V -18 ll1k 5 10 15 SUPPlY VIIIJAIIE (± V) 2D FRBIUENCY (Hz) . I Ull\\1 D.l 1 SEnUN8 TIME iI&I) 10 TLlH/5647 -3 r- .... 'TI Pulse Response RL=2kO,CL=10pF ~ Small Signal Inverting ..... ..... r- Small Signal Non-Inverting > ~E 'TI ~ a W ~ ..... >E co e !CD Ii... CD Ii... ~ CI ...~ CD Z z CD ... CI > .. > l::0 S I::0 CI ::0 CI == nME (0.2 ""DIV} nME (0.2 ,..,DIV} TL/H/5647-4 TUH/5647-5 Large Signal Inverting Large Signal Non-Inverting > is ~CD > is ~ CD Ii... Ii... I- ... l- Q CI z Z CD CD ... C C . > > I::0 I::0 Q l::0 ::0 CI == TIME (2 j.lS/DIV} nME (2 /lSIDIV} TL/H/5647-6 TUH/5647-7 > ~ CD z i... CD ~ ~ I::0 ~ CI TIME (6j.1S/DIV} TL/H/5647 -8 Application Hints The LF147 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET IiTM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially cauSing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier 1-27 Application Hints (Continued) output to a high state, In neith.er case, does a latch occur since raising the.,iRPut back within the common-mode range again p~ the input stage ~1)!:Ithus th~ ,a~lifier in a hormal operating m,Ode. ',,,' ',r:' ,', ,,',,,,, "''':, '; , larity or that the unit is not inadvertently installed backwards in a soqket as an unlimited qurrent.surge through the resulting forward dlbd8 withiA, the It; co'uld caUS$ fusing 'of the internal ?Onductcirs ar'\rl r66ulfina:d stroy$d u,nit e Excee!;ling the ~sitiJ~ cO~mo~-mode limit ona single input will not ch!lnge the phas~'c>f ,t~ output; 1)6wever, if both inputs ~xceed~lJe limit, 'the oLitpi.\f of ,the:~amplifier will be '" " , ' ',, forced to a high 'state. ," As with 'most ampli,iers"fGllreshould bE! ,taken with lead dress,coml>0nentplaceme.ot,,~n~, supply decpupling in order to ensure ,stabilitY.' For example; resistors from the output to an input should be, placed iNith the bOcty close to the input to miniinize' "plck,up""atid 'in~mize the frEiquency of the feedb~ ,pole, by minilJlizjrig the C$PacitSnce from the , input to ground. , ' ';, " , ' A feedback pole is ~r~at6dWhim the,f~back around any amplifier ;is" resistive. Tile pa~lIliel resistance arid capacitance from the input Of the device (usually the inverting input) to AC ground set, the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the eiqlepted 3 d~ frequericy a lead capaqitor should be placed ttom t~e output to the Ip,put of the opamp. The value of 'the addeq,capacitor should be such that the RC time constaril cif ,this Capacitor and the resistance it parallels is greater.tharior~ual to the Original feedback pole time constant \::, ,"" ," '" ' , " , ' The aniplifie~ Will op~rate ,with 'a corriniol'].mode input voltage eq\Jal to the positive supplY; however, the' gain bandwidth and !llew rate 'may be decreased: in this condition. When ttie neg,litive 'C9!"rI)Oo.-modli VOltage swings to within 3V of the negatiVe s~pply, an increase in input offset voltage may occur. '.~" '). Each amplifier is individually, biased by a zener reference which allows normal circuit operation on ±4.5V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew ra~a. The LF147 will drjve a 2 kO load resistance t() ± 10V over the full temperature range.' If the amplifier is forced to drive heavier load c!Jrrents, however, an incrElaSE! in input offset voltage may occurOli the:negathfe voltage ~ng and ,finally reach an a,ctive current limitotl both positive and negative swings, ,",' " , Precautions shoull!be taken to ensure Jtllit the power supply for ,t~e integratedci~GUit nil~~r beCol1)eSrevE1,rsed,in po- ,:' Detailed Sch~matic TLlH/S647-9 1-28 Typical Applications Digitally Selectable Precision Attenuator Vo V,. . HI " All resistors 1% tolerance A1 A2 A3 0 0 0 0 0 0 0 0 Vo Attenuation 0 1 0 ." 0 -1 dB -2dB -3dB -4dB -5dB -6dB -7dB 0 0 •• .nEIUAnOI SELeCT INftUTS TL/H/5647-10 • Accuracy of better than 0.4% with standard 1 % value resistors • No offset adjustment necessary • Expandable to any number of stages • Very high input Impedance Long Time Integrator with Reset, Hold and Starting Threshold Adjustment .... --.., v,. Vour -15V ====:.._J L____ VTN LF13331 AIALDe SWITCHES t----------o~:a o SETTHRESHOLD I5V o-"""",""""'''''''''YI/Iwo-o -.IV tlk 11J1 VOLTAGE 1111 THRESHOLD ,f;DJUST TL/H/5647-11 • Vour starts from zero and Is equal to the integral of the input voltage with respect to the threshold voltage: VOUT=~ r (VIN-VTH)dt RCJo . • Output starts when VIN;;: VTH • Switch 51 permits stopping and holding any output value • Switch 52 resets system to zero 1-29 5... .......r::: r.:. Typical Applications (Continued) ~ Universal State Variable Filter. lUll 1001 . . ."""' INPUT o-~"" LOWPASS OUTPUT llIk NOTCH OUTPUT TUH/5647 -12 For circuit shown: fo ~ 3 kHz, fNOTCH ~ 9.5 kHz Q~3.4 Passband gain: Highpas~.1 Bandpass-I l.Owpas&-l Notch-IO • 'oxQS;200 kHz • IOV peak sinusoidal output swing without slew limiting to 200 ,kHz • See LMI48 data sheet for design equations 1-30 r-------------------------------------------------------------------------, t!lNational Semiconductor "" g: ..... ...... ~ ""..... ..... en General Description Advantages • Replace expensive hybrid and module FET op amps • Rugged JFETs allow blow-out free handling compared with MOSFET input devices '. Excellent for low noise applications using either high or low source impedance-very low 1If corner • Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers • New output stage allows use of large capacitive loads (5,000 pF) without stability problems • Internal compensation and large differential input voltage capability , Common Features (LF155A, LF156A,LF157A) • Low input bias current • Low Input Offset Current • High input impedance • Low input offset voltage • Low input offset voltage temp. drift • Low input noise current • High common-mode rejection ratio • Large dc voltage gain Precision high speed integrators Fast DI A and AID converters High impedance buffers Wideband, low noise, low drift amplifiers Logarithmic amplifiers 30 pA 3 pA 10120. 1 mV 3,...VrC 0.01 pAlJRZ 100 dB 106 dB Uncommon Features LF157A LF155A LF156A (Ay=5) 1.5 1.5 ,...s 5 12 50 V/,...s • Wide gain bandwidth 2.5 5 20 MHz • Low input noise voltage 20 12 12 nVlJRZ Simplified Schematic (J) .-----~~------~~~--~------~-o~" (II OUT &0 '3 pF in LF157 series. Units 4 0.01% • Fast slew rate Applications • • • • • • Photocell amplifiers • Sample and Hold circuits • Extremely fast settling time to (41 '----......- - - - - - - - - -.....- -____~----___4_+-___4'_O-vE£ ,; 1-31 "......g: ~ LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FETTM Technology). These amplifiers feature low input bias and offset currentsllow offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or commonmode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1If noise comer. ~ ..... TLlH/5646-1 Absolute Maximum Ratings I If MilitarylAerospace specified devices are required, contact the National Semiconductor Sales Offlce/Dl8trlbutQrs for availability and specifications. (Note 8) \ LF355/6/7 'LF355B/(iBI7B LF155A/6A17A LF155/617 LF255/617 LF355A/6A17A ±22V ±22V ±18V Supply Voltage ±22V ". " Differential Input Voltage ±40V ±40V ±40V ±30V Input Voltage Range (Note 2) ±20V ±20V ±20V ±16V' Output Short Circuit Duration Continuous Continuous Continuous Continuous 150"C 1fSOC 100"C 1000C 115'C 100"C 10o-C 560mW 1200mW 400mW 1000mW 670mW 380mW 400mW 1000mW 670mW 380mW 16O"C/W 65'C/W 160"C/W 6SOC/W 130"C/W 19SOC/W 160"C/W 65'C/W 130"C/W 195'C/W TJMAX H-Package 150"C N-Package M-Package Power Dissipation at TA = 25'C (Notes 1 and 9) H-Package (Still Air) 560mW H-Package (400 LF/Min Air Flow) 1200mW N-Package M-Package Thermal Resistance (Typical) {)JA: H-Package (Still Air) 16O"C/W H-Package (400 LF/Min Air Flow) 65'C/W N-Package M-Package (Typical) ()JC H-Package Storage Temperature Range 23'C/W -65'Cto + 150"C 2SOC/W - 6SOC to 23'C/W + 15O"C -65'Cto 2SOC/W +150"C -65'Cto + 150"C Soldering Information (Lead Temp.) Metal Can Package Soldering (10 sec.) 300"C 300"C 300"C 300"C DUal-ln-Une Package 26O"C 26O"C Soldering (10 sec.) 260"C Small Outline Package Vapor Phase (60 sec.) 215'C 215'C Infrared (15 sec.) 220"C 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD tolerance 1000V (100 pF discharged through 1.5 kO) 1000V 1000V 1000V DC Electrical Characteristics (Note 3) TA = Symbol Parameter , Tj = 2SOC LF155A/6A17A Conditions Min Vos Input Offset Voltage RS = 500, TA=2S'C OVer Temperature AVos/AT Average TC of Input Offset Voltage Rs=500 ATC/AVos Change in Average TC with Vos Adjust RS=500, (Note 4) los Input Offset Current Tj = 25'C, (Notes 3, 5) Max 1 3 3 Input Bias Current Tj = 25'C, (Notes 3, 5) 30 Tj s: THIGH 2 2.5 1 2 2.3 mV mV 5 3 5 p.VI'C Input Resistance Tj=25'C Large Signal Voltage Gain Vs= ±15V, TA=25'C Vo= ± 10V, RL =2k OVer Temperature Output Voltage Swing VS=±15V,RL=10k Vs=±15V,RL=2k 1-32 50 200 25 ±12 ±10 10 10 3 10 1 pA nA 50 30 50 5 pA nA 50 1012 0 200 VlmV 25 ±13 ±12 p.VI'C permV 0.5 1012 RIN Vo Max 25 AVOL Units Typ Min 0.5 Ti,S:THIGH Ie LF355A16A17A Typ ±12 ±10 VlmV ±13 ±12 V V DC Electrical Characteristics (Note 3) TA = Symbol Parameter Input Common-Mode Voltage Range CMRR Common-Mode Rejection Ratio PSRR Supply Voltage Rejection Ratio Vs= ±15V (Note 6) AC Electrical Characteristics TA = Symbol SR Parameter Slew Rate LF155A/6A17A CondHlons VCM Tj = 25°C (Continued) Min Typ ±11 LF355A/6A17A Max Units Min Typ Max +15.1 -12 ±11 +15.1 -12 V V 85 100 85 100 dB 85 100 85 100 dB Tj = 25°C, Vs= ±15V Conditions LF155A16A; Av= 1, LF157A; Av=5 LF155A1355A Min Typ 3 5 LF156A/356A Max Min Typ 10 12 LF157A/357A Max Max Units Min Typ 40 50 V/p,s V/p,s 15 20 MHz GBW Gain Bandwidth Product is Settling Time to 0,01 % (Note 7) 4 1.5 1.5 p,s en Equivalent Input Noise Voltage Rs=100n f=100Hz f=1000Hz 25 20 15 12 15 12 nV/,fHZ nV/,fHZ in Equivalent Input Noise Current f=100Hz f=1000Hz 0,01 0,01 0,01 0,01 0.01 0.01 pAl,fHZ pAl,fHZ C'N Input CapaCitance 3 3 3 pF 2.5 4 4.5 DC Electrical Characteristics (Note 3) Symbol Parameter Min Vos Input Offset Voltage Rs=50n, TA=25°C Over Temperature l:.vos/aT Average TC of Input Offset Voltage Rs=50n LF255/8/7 LF155/817 Conditions Typ 3 aTC/aVos Change in Average TC RS = 50.0, (Note 4) with Vos Adjust LF365/617 LF355B/8B17B Max Min 5 7 Typ 3 Max Min 5 6.5 Units Typ Max 3 10 13 mV mV 5 5 5 p,VI"C 0.5 0.5 0.5 p,VloC permV los Input Offset Current Tj = 25°C, (Notes 3, 5) Tj'S:THIGH 3 20 20 3 20 1 3 50 2 pA nA Ie Input Bias Current Tj = 25"C, (Notes 3, 5) Tj:S:THIGH 30 100 50 30 100 5 30 200 8 pA nA 1012 RIN Input Resistance Tj = 25°C AVOL Large Signal Voltage Gain Vs= ±15V, TA=25°C Vo= ±10V, RL =2k Over Temperature 50 Vo Output Voltage Swing Vs= ±15V, RL =10k Vs';' ±15V, RL =2k VCM Input Common-Mode Voltage Range Vs= ±15V CMRR Common-Mode RejeetionRatio PSRR Supply Voltage Rejeetion Ratio (Note 6) 1012 200 50 ±12 ±10 ±13 ±12 ±11 1012 .0 200 VlmV 200 25 ±12 ±10 ±13 ±12 ±12 ±10 ±13 ±12 V V +15.1 -12 ±11 ±15.1 -12 +10 +15.1 -12 V V 85 100 85 100 80 100 dB 85 100 85 100 80 100 dB 25 1-33 25 15 VlmV ,... .... II) DC Electrical Characteristics TA= Tj = II;; ..... ...I m 'r ..- Parameter' ........; I&- Typ II) II) ..I&- LF155AJ155, !-17~55, ' LF355A1355B Supply Current 2 1 Max ,I 4 " 2/i'C, Vs = ±15V " LFa55, LF156A1156, LF256/356B LF~56A/356 Typ 1 Max Typ 1 Max Typ 2 1 4 5 1 7 5 l : ", LF157A/151 LF257/a57B ," LF357A1357 1 Max",' ,.yp'l M~ 5 .1 10 1 I Typ Max 1 10 ,,; 5 " "", Units, mA ...I AC ElectricatCharacteristics TA = Symbol Parameter 'Sl,e\'l( Rate LF155/6: Av =1, LF157:Av=5 GBW Gain Bandwidth Product ts en . LF155/2551 LF156/256, LF156/2561 LF157/257; LF157/2571 355/355B 35713578 LFa56B 356/356B:" ' "lF351B Conditions ':1.,";1 Sf:! ' Tj = 25'C, Vs = ±15V typ Min Typ 5 7.5 12 Units Min Typ 30 50 V/lkS V/lkS. 2.5 5 20 MHz Settling Time to 0.Q1 % (NOte 7) 4 1.5 1.5, Iks Equivaler:tt Input Noise Rs=100n Voltage f=100Hz f=100qHz , 25 20 15 12 15 12 nV/,JHz nV/,JHz 0.01 0.01 0.01 ,0.01 0.Q1 0.Q1 pAl,JHz pAl,JHz 3 3 3 pF in :Equivalent Input Current Nqille, Cn~ Input CapaCitance f=100Hz, f= 1000 Hz Notes for Electrical Characteristics Note 1: The maximum power dissipation for these devices must be derated at elevated terpperatures arid is d,icIated by T)MAX, ~JA' anilthe,ambientt~peratui~ TA. The maximum available power dissipation at any temperature is Pd = (TjMAX - T,vIOJA or the 25'C PdMAX, whichever is less. Note 2: Unless otherwiSe specJlIed the absolut" ,maximum negative inW' voltage is aqualto the negative power supply voltage. Note 3: Unle,ss otherwise stated, these toM conditions apply: LF155A/6A17A LF15511617 'LF25511617 LF355A/6A17A 1.F355B/6B/78 , LF35511617 ± 15VS;VsS:± 18V ±15VS:Vs±20V Vs= ±15V ,Supply Voltage, Vs ±15VS:VsS:±20V ± 15VS:VsS: ±20V -55'CS:TAS: + 125'C -?5'CS:TAS: + 85'C O'CS:TAS: + 70'C O'CS:TIiS: + 70'C O'CS:TAS: + 70'0' TA + 85'C +70'C + 125'C +70'C +WC THIGH .. 'and Vos, Ie an~ lOS are measured atVCM=O. , Note 4: The Temperature Coefficient of l!1e adjusted input offset voltage changes only a small amount (0.5".v/'C typically) for a.ilih mV of adiUstment from its Original unadjustBd value, 'COmmon-modS rejectiori and open IQop voltage gain are also ynaffected by offset adjustment. , ' ' ,, NOte 5: The input bias currents are JunctIOn leakage currents which approximately doubl~ ior every 1~C Inc~e In the ju~ctIon temperature, TJ. Due to limited production test time, the input bias currents ,measured are cooelated 10 junction temperature. In normal operatfon t"" jJnC\ion temperature rises above the ambient , tempera",re as a result of intemal power dissipation, Pd. T) '" TA+ OJA Pd where OJA is ,the thermal res~nce from Junction to ambient., Use ¢ a heat sink is " recommended if input bias CUrTEUlt. is to be kept to a minimum. . , Note 6: Supply, Voltage Rejection ds measured for both supply magnitudes Increasing or decreasing simultaneously, ,In acco11 Z1i Positive Current Limit -II .... 1/ ~~A'.II'"L ~ 7 I I V ~:~~"" ~ Supply Current V / " Co_N..,ooE VOLTASE (VI Supply Current • RL -Zk TA-2re J '7 E;; ..... en V Ullin CAlE TEII'ERATURE rCl 48 ~ V.-±lIV TA-zrc RL-Ift . •-1. ... 1211 iii -Z& II i i 10r--+~*,~~~~--i l' Input Bias Current JI 11111 I-+-+-+-+-+~ ." ..... \ & / V l' 5 5101&2OZ&313548 OUTPUT SOURCE CURRENT (IlIA) 20 PGllTlVElUPPLYVOLJS IV) TUH/5646-2 Negative Common-Mode Input Voltage Limit -ID I-T~'_&5lc , ,. ,.. I--_TA-I&'C TA'I~&'e "::: ... o , -1' , k Open Loop Voltage Gain 11M RL ·n RS'50 ~ TA- ...re a. .. iii - / If? TA-zre= Output Voltage Swing ==' ~ ~TA'115'e .. .... ... S c Ie ..e c NEGATIVE SUPPLY VOi.TS IVI -20 Ie I 11k -15 5 10 21 24 SUPPLY VOLTAGE I.V) 10 i,..;- zo 1• II '. V 4 1& VS·±1SV TA-Ire • 1.11 OUTpUT LOAD RL IIeO) 10 TUH/5646-3 1,35 ~ II) .- ....~ r---------------------------------------------------------------------------------, Typical AC Performance Characteristics ~ .- Gain Bandwidth ...I ~ 1.8 U. Hi 5 Normalized Slew' Rate Gain Bandwidth I , I ~ ~ ~ I 1"'lII ! • ,z c' ,~ r- LF111 _r-- VS '±1DV- ....., VS"IIV_ ~ :-VS·,zDV " 1.Z 1!~ LF1&B ~ Ill!! .... CD 1.4 I I II.\. - I.B LF1&7 CURVES IDENTICAL 8UTMULTlPLIED BY 4 ~ 1""'11 ~ .IDY r- ~V r- r 1 ~ -55 -31,-11 5 25 48 8& .. IDS 125 TEMPERATURE rc} -1& -31 -11 5 25 48 .. B5 115 125 TEMPERATURE (OC) ~~ I.B .2 V -F"'" V;. ,JIV J ~ ~IJn D.' IA , '.2 o _1& -3& -1& & Z& 48 8& I. 10& 125 TEIoI'ERATURE rc} TL/H/5646-4 Output Impedance g •~~ ~ Output Impedance" 1111 g lD I Ii ~ co .. I; ~ co lD 11.1 0." D.l CIliii1ii::nr-....:......................tJ 1l1li 1k Output Impedance 1I11III 1M 11M FREQUENCY (H.) FREQUENCY (Hz) FREQUENCY (H.) TLlH/5646-12 LF155 Small Signal Pulse Response,Ay= +1 LF156 Small Signal Pulse Response,Ay=+1 . TIME (ll.5I'1iDIV) TIME IIId1D1V} TIME (l.lId1DIV) TL/H/S646-6 TLlH/S646-S LF,155 Large Slgn\ll Pulse Response,Ay= + 1 LF156 Large Signal Pulse ResponSe, Ay= + 1 TLlH/5646-7 LF157 Large Signal Pulse ,Response, Ay = + 5 TIME 1II.51d1D1V} TIME (1Id1DIV) TLlH/S646-6 Small Signal Pulse Response, Ay = + 5 TLlH/5646-9 TLlH/5646-10 Typical AC Performance Characteristics Inverter SeHllng Time •.. ~ " Lfli5 TA,zrc Vs' ±15V Open Loop Frequency Response Inverter Settling Time "8 111 III .. " ..y /:,mV e: .. ..;i= .. (Continued) j ~ lDooV,\, ll1V \.\,1 1111 o :II -15 co -20 -25 -3D II VS'±l5V DAIN -5 Ii -10 :!! &I Z5 I I -rp' -. - -10 ~ -75 ~ I I Ii ~ 10 II , " a ~ .. RI -1' ~ -15 -ZI -31 -35 -1Z5 40 ,, r\' '\. zo '\ lID r\. Undlstorted Output Voltage Swing ZI ~ zo I-LFI lZ i-- • 10k :-- '---.LF15~ ~ ..., i.. ;.... t ill i ' '" FREQUENCY (H.I 10 Z5 ~ -21 -71 -I. -1Z5 20 I-GAI'N :II ! j .. .. ll! i ~ .. '" " n 1111< i.. 101 i lZ0 ~ 100 Z E !! ~ ~ ZI 1111111 o I ""- -175 lID 40 TA'Z5'C VSe±15Y- {~F~~SUPPLY- ,, " "- ~~;;: LF,1 .. , ..... ZD ;-- NEBATIVESUPPL Y ..... ,I '" 1M n 1111< I. '" ..... ..... 1M 10M lk Equivalent Input Noise Voltage (Expanded Scale) TA-Z5'C._ VS··,5V ~~ a• !.. 41 ~\ i 2D ~ • ! 111M "FREIIUENCY (Hz) -125 -III ! .. I 1M -1& ;::; --... ........ 10 ~ lao II LF15B17 .. a FREQUENCY (H.I TA - Z5'C VS' ±l5V 40 -25 -liD!!! 1111 II 1M Equivalent Input Noise Voltage .. ! Power Supply Rejection Ratio lZ' i ,_ :II o -liD ::: E~ 0 -5 -II -15 -20 ; ! zo 51 Z5 15 " FREIIUENCY (MH.I 41 '"75 LF157 VS' "5V ",PHASE """"J. Z5 10 FREIIUENCY (MHzI II ~ .. 11M 3D -50 ill 1111' III 10k 111ft nil 1l1li 35 FREIIUENCY (Hz) ~ LF157 AV'5 ~ vs' mv 10 10 ...,... l' o 10 100 1l fI aa L155 ,.l ~ 10 121 100 75 ~ ~ 140 VS' ±l5V RL ,a TA'Z5"C Av" <1"OIST II 31 -10 101 1l I,. 110l '" 10M FREIIUENCY (HI) Z4 ~ LF157 ~~ LF151 Power Supply Rejection Ratio .. I\. iii, I ! TA'Zr- LF111 Il'IoPHASE - r-- --40 100 LFI5~ "\ I\.LFJ51 '\. 10 z "'.,!'IX FREnUENCY (HI) ~~ co -21 !!! -III ~S' .,'5V RL ,a "\ '\. I .. Ii. ..~ ..~ ..l= 50 Vs' ±15V- ......: Bode Plot 11111 - -5 Common,Mode Rejection Ratio I. ...... II -21 ~ III II FREIIUENCY (MH.I -31 ~ !..~ , ~~ Bode Plot 15 100 75 ~Jskl- I- L~'5~ • Ii] 11 'ft'o SEnLiNG TIME l1'li "'0) Bode Plot 10 .. ..Ii... i... .. ..". :II :: 10 10 1.1 D.I SEnUNG TIME Ii :!! n > ~ -5 -10 .. ; 10k ~ \ \'\. '\. LF155 LF151il 11II1II 10 FREIIUENCY (HzI TUH/5846-11 1-37 ~ ..... u.. .... ..... CD ....u..an Detailed Schematic r-~----------1---------~-----------4~----~~-----------OW~ III , :., ......... an an .... ~ .....-+--~M,.......-o ,. "7 L....--...- - - - ' - - -...- OUT (" . RI ....--......I_ _-:-4-__~4-+_-+__+__J-~--__ is i Z""DIV 1~IV 1 ""DIV TL/H/5646-17 TUH/5646-18 Low Drift Adjustable Voltage Reference • a. Vour/a.T= ±O.002%I'C' • All resistors and po1entiometers should be wire-wound • PI: drift adjust • • P2: VOUT adjust Use LF155 for • Low Ie "Low drift • Low supply current R3 118k TUH/5846-20 1-40 TUH/5848-19 Typical Applications (Continued) Fast Logarithmic Converter .-----t---'\oYII-=:-O V"Ef-W .." • Dynamic range: 100 ".A ,; II ,; 1 mA (5 decades), Ivol~IV/decade • Transient response: 3 tJS for .6.lj = 1 decade • Cl, C2, R2, R3: added dynamic ccmpensation • Vos adjust the LF156 to minimize quiescent error • R-r: Tel Labs type 081 + 0.3%I"C TL/H/5646-21 R2] -lnV; kT [R 1 R2 ~ 15.7k,RT ~ lk,0.3%I"C(forlemperalurecompensation) . IVOUTI ~ [ 1 + -R V r ] ~ logV;-RI T q REFRI Ir Precision Current Monitor •• v'O-+_""'~ .. • VO~5 • Rl, R2, R3: 0.1% resislors • Use LF155 for o Common-mode range 10 supply range Rl/R2 01/mA of Is) o Low Is o LowVos o Low Supply Currenl Va .•• TL/H/5646-31 8-Blt 01 A Converter with Symmetrical Offset Binary Operation . •• Ii• YREF"'1av III EO -IIV TL/H/5646-32 • Rl, R2 should be malched within ±0.05% • Full~scale response time: 3",,8 EO B1 B2 B3 B4 B5 B6 B7 B8 Comments +9.920 +0.040 -0.040 -9.920 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Positive Full-Scale (+ ) Zero-Scale (-) Zero-Scale Negative Full-Scale 0 0 1-41 Typical Applications (Continued) .. Wide BW Low Noise, Low Drift Amplifier Isolating Large Capacitive Loada C2 1.1. r - - - - - - t - - ' l M..........-o vo .. . , v,.o-oI\II""........"""t v- .o Power BW: IMAX ~ ...§:.... .. 2'11"Vp o Overshoot 6% TLlH/5646-22 ols 10 p.s 191 kHz o When driving large CL, lhe VOUT slew rate determined by CL and IOUT(MAX): o Parasitic input capacitance CI '" (3 pF lor LFI55, LFI56 and LFI57 plus any additional layout capacitance) interacts with leedback elements and creates undesirable high lrequency pole. To compensate add C2 such that: R2 C2 .. RI CI. AVOUT lOUT 0.02 . AT ~ CL '" o:sV/p.s ~ O.04V1p.s (with CLshown) .. Low Drift Peak Detector Boosting the LF156 with a Current Amplifier ., •• u. v.... u. v,. o By adding 01 and Rt, VOl ~ 0 during hold mode. Leakage of 02 provided by leedback path through Rt. o Leakage o IOUT(MAX) "'150 mA (will drive RL ;" 10011) o AVOUT AT 01 circuit is essentially Ib (LF155, LF156) plus capacitor leakage olCp. 0.15 . ~ 10-2 V/p.s (with CLshown) o Diode 03 clamps VOUT (AI) to VIN-V03 to improve speed and to IimR reverse bies of 02. o No addRional phase shift addad by the current amplifier o Maximum Input frequency should be shunt capecitance of 02. << Y.'II"RtC02 where C02 is the 3 Decades YCO Non-Inverting Unity Gain Operation for LF157 •• I RIC;" (2'11") (5 MHz) RI~R2+Rs 4 AV(DC) ~ I l-adB'" 5 MHz Inverting Unity Gain tor LF157 I RIC;" (2'11") (5 MHz) RI~~ 4 AV(DC) VC(R8+R7) I ~ (8 VPU R8 RI) C' O:<:Vc:<:30V,IO Hz:<:I:<:IO kHz ~ -I I-a dB'" 5 MHz TL/H/5646-25 RI, R4 matched. Unearity 0.1% over 2 decades. 1-42 r- Typical Applications .... ." (Continued) en ~ !;; .... High Impedance, Low Drift Instrumentation Amplifier +15V ~ r- .... + ." R3 ~ +1&V -15V ~-4-0VOUT +IIV R3 [2R2 =R R1 + 1 1/lV, v- + 2V ,;; VIN TL/H/5646-26 v+ • VOUT • System Vos adjusted via A2 Vos adjust • Trim R3 to boost up CMRR to 120 dB. Instrumentation ampl~ier resistor array recommended for best accuracy and lowest drift 1-43 common-mode,;; Typical Applications (Continued) Fast Sample and Hold +tlV +f5V ">=--....-oVOUT -1SV TLlH/5646-33 • Both amplifiers (A1, A2) have feedback loops Individually closed with stable responses (overshoot negligible) • Acquisition time TAo estimated by: 1 TA '" [2RON~~IN' Ch Yo provided that: VIN < 2".8, RON ~ and TA > VIN Ch , RON is of SWI IOUT(MAX) If inequality not satisfied: TA .. VIN CAh 20m • LFI56 develops full S, ouIput capability tor VIN" IV • Addition of SW2 improves accuracy by putting the voltage drop across SWI inside the feedback loop • Overall accuracy of system dete,,!,ined by the accur~cy of bOth amplifieni, AI -and A2 High Accuracy Sample and Hold HI 5Ik +15V +1iV >'-....-OVOUT -15V -1&V TL/H/5646-27 • By closing the loop through A2, the VOUT accuracy will be determined uniquely by AI. No Vos adjust required for A2. • TA can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible. • Overall system slower then fast sample and hold • RI, Cc: additional compensation • Use LFI56 for o Fast settling time o Low Vos 1.44 r- Typical Applications ." .... (Continued) U'I U'I ...... !;; .... U'I High Q Band Pass Filter Q) ...... r." Cl • .oat"..F .... I,F • By adding positive feedback (R2) Q increases to 40 U'I ...... • fep~ 100 kHz Rl &2' VIN --+-f VOUT o--'IIYo... - ~ 10.'0 VIN • Clean layout recommended • Response to a 1 Vp-p tone burst: 300,..s RI -IIV TL/H/5646-28 High Q Notch Filter .,. • 2Rl ~ R 2C ~ Cl ~ ~ 10 Mil 300pF • Capacitors should be matched to obtain high Q • fNOTCH ~ 120 Hz, notch ~ -55 dB, Q > 100 • Use LF155 for o Low Ie o Low supply current TLlH/5646-34 • 1·45 ,- r---------------------------------------------------------------------------~--_, II) ~ I!J1National Semiconductor LF351 Wide Bandwidth JFET Input Operational Amplifier General Descripti~n The LF351 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF351 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs. The LF351 may be used in applications such as high speed integrators, fast 01 A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift, but for applications where these requirements are critical, the LF356 is recommended. If maximum supply Typical Connection current is important, however, the LF351 is the better choice. Features 10 mV Internally trimmed offset voltage 50 pA Low input bias current 25 nV/.JHz Low input noise voltage 0.01 pAl.JHz Low input nqise current 4 MHz Wide gain bandwidth 13 V/p-s High slew rate 1.8mA Low supply current 1012{} High input impedance <0.02% Low total harmonic distortion Av= 10, RL =10k, Vo=20 Vp-p, BW=20 Hz-20 kHz 50 Hz • Low 1If noise corner 2 p-s • .Fast settling time to 0.01 % • • • • • • • • • Simplified Schematic Rr Vee Ri 5 INTERNALLY TRIMMED TLlH/5648-11 -VEE o---..--..-------~_--' TLlH/S848-12 Connection Diagrams Dual-In-Llne Package 8 BALANCE NC INPUT INPUT OUTPUT BALANCE TL/H/5648-13 Order Number LF351M or LF351N See NS Package Number MOSA or NOSE 1-46 5 .... Absolute Maximum Ratings U1 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage ±18V Power Dissipation (Notes 1 and 6) 670mW O"Cto +70"C Operating Temperature Range 11S'C Tj(MAX) ±30V Differential Input Voltage ±lSV Input Voltage Range (Note 2) Output Short Circuit Duration Continuous Storage Temperature Range -6S'Cto +lSO"C Lead Temp. (Soldering, 10 sec.) Metal Can 300"C DIP 260"C 6jA N Package M Package 120"C/W TBD Soldering Information Dual-ln·Line Package Soldering (10 sec.) 260"C Small Outline Package Vapor Phase (60 sec.) 21S'C Infrared (lS sec.) 220'C See AN·4S0 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering sur· face mount devices. ESD rating to' be determined. DC Electrical Characteristics (Note 3) Symbol Parameter LF351 Conditions Min Units Typ Max S 10 13 Vos Input Offset Voltage Rs = 10kn, TA = 2S'C Over Temperature IlVos/IlT Average TC of Input Offset Voltage Rs=10kn loS Input Offset Current Tj = 2S'C, (Notes 3, 4) Tj s; 70"C 2S 100 4 pA nA 18 Input Bias Current Tj = 2S'C, (Notes 3, 4) Tj s; ±70"C SO 200 8 pA nA 10 mV mV /LvrC 1012 n 100 V/mV RrN Input Resistance Ti=2S'C AVOL Large Signal Voltage Gain Vs= ±lSV, TA=2S'C Vo= ±10V, RL =2 kn Over Temperature 2S Vo Output Voltage Swing Vs= ±lSV, RL =10 kn ±12 VCM Input Common-Mode Voltage Range Vs= ±lSV ±11 -12 V CMRR Common-Mode Rejection Ratio RsS;10 kn 70 100 dB PSRR Supply Voltage Rejection Ratio (NoteS) 70 100 dB Is Supply Current V/mV lS ±13.S V +lS V 1.8 , 3.4 mA ..- II) COl) u.. .... AC Electrical Characteristics (Note 3) c Symbol Parameter LF351 Conditions Min Typ Units Max SR Slew Rate Vs= ±15V, TA=25°C 13 V/p.s GBW Gain Bandwidth Product Vs= ±15V, TA:=25°q 4 MHz en Equivalent Input Noise Voltage T A = 25"C, Rs = 100O, f=1000Hz 25 nV/~ in Equivalent Input Noise Current Tj=25°C, f= 1000 Hz 0.01 pAl~ Note 1: For operating at elevated temperature, the'devica must be derated based on the !hennal resistance, 8JA' Note 2: Unless otherwise specified the absolute milxlmum negative InpUt voltage Is equel to the ,negative power supply voltage, Note 3: These specifications apply for VS= ±15V and O"C,.TA" +70"C. VOS, Is and los are meesured at VCM=O. Note 4: The input bias currents are junction leakage currents which approximately double for every 1000C increase in the junction temperature, TI' DUe to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Po. Tj = TA+ 8jA Po where 8jA is the thermal resistance from junction to ambient. Use of a heat sink Is recommended if input bias current is to be kepi to a minimum. Note 5: Supply voltage rejection ratio Is measured for both supply magnitudes increasing or decreasing slmultaneo~sly in accordance with common practios. From ±15V to ±5V. Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits. 1-48 ... ~ en ... Typical Performance Characteristics Input Bias Current III i I- ~ co co G :t Ii ,. Input Bias Current VS' ,15V T " 25"C Supply Current z.z D"STAS+lI'C VCM"O VS·±1IV •• .... II ./V V V ..... 48 !; ~ 21 -I -10 COMMON,MOOE VOLTAGE (VI TEMPERATURE rCI Positive Common-Mode Input Voltage Limit Negative Common-Mode Input Voltage Limit O'CSTA$+IO"C I- =::~ U ,,~ Ii "!:i 15 / w" i!::> / w" I 15 " VOLTAGE (VI PIISITIVESUPPLY 2. = 11 o L--J.......L...L....I-...l-...l-...L...J D 10 15 2. D ° NEGATIVE SUPPLY VOLTAGE (V) Voltage Swing Output Voltage Swing -a ..'" ~ ~ -1a ~ 2D 1---l-+-f-hI'+-++---l -I 10'C o 10 2. '" •::I :c'co"' . > 30 II r.- f'..1oo. ,. &I PHASE BAlN -10 ID20 3148 liD TEMPERATURE rc) 1118 IS J ~ -II 14 ~ . c = co a ;I ! ~ l 13 Vs" .15V RL"n AV"1 .... I FALLING ,..... RIsING i:l i!i 12 -108 ,. -3D o 10 Slew Rate 150 -ZD !iii 3 I RL - OUTPUT LOAD Cln) lD •~ i'- I V D,1 RL"n CL "IDO,F if :!! V D 15 11I1'~s" '15V 1 _ CL"I.,F- u 11 SUPPLY VOLTAGE ltV) Bode Plot RL .. a " l"- 15 :> ... ,. o 40 3D V~""~V I 20 :II c DL-..1......I.......I.....J.---'_L-.J......J Gain Bandwidth !! 4.5 i'"' VS" ,!IV TA"zrc to OUTPUT •• K CURRENT (IlIA) i Z5 f O'C !i lil • -8 ~ !:i co H'C !:: 3D 10 OUTPUT SOURCE CURRENT (lOA) 3D -III iw D'C ,/ Ii! I j'rzrc ID"C / Negative Current Limit 2 r-. t.... / e" i I- 1/ ,,~ Ii "!:i 25 ~~ / !I ,. l- ° ~~ 15 " IS ZD SUPPLY VOLTAGE (.VI Positive Current LImit 15 O"CSTA$+1rC ~ V / 10 . 20 to / o 010213040&08110 10 20 ~ 1.2 10 ° 8.1 FREIIUENCY IMHz) -150 III 11 DII2I2I485DIIII TEMPERATURE ('C) TUH/5648-2 1-49 ~ I ..- ~ u.. ...I Typical Performance Characteristics (Continued) Undistorted Output Voltage Swing Distortion vs Frequency I.Z Vs-.IIV 1.171 T~-Z~C 1.15 I ' 1.1 .... .. I .. .~..,.. U2S • I. I. . ..=:.. I. 0: c co 51 I:l ;j co ~ w II r f v E 1 v o II VCM ai .. - I " I. I. 21 1.1. ,. VOllASE ~AIN • 11 lk I " 0: ~I5V co II " ~ 411 1M 11M I a . C w c : 111. ~ I!; ~~ ...... TA-rCTO-WC TA -11°C I. - 9 is i. ~ •... I. 1M .1l1li . ..iii ~. ..tr 15 . SUPPlYVOlTAGE(.V! II 101 lk l11k lUI Inverter Settling Time f ~ II ~ 5 I IlmV I' rt VS-"IV TA'25"C 'IIV Ii! ~~-I!!!! ~ f I.., 11K ,. lUI FREIIUENCY (Hz) AV-ID ~. •.1 9 I. I. i •,. ~ ~ 1 r I ~ 5 ~ 20, ZI ill VS" .,IV TA-2S'C I ~AV-ID. '- 10001.,M 111M 1 Output Impedance 101 RL -211 .... Ilk ,. 110 '1 , FREIIUENCY (H.I Open Loop Voltage Galn(V/V) ~ lK II III I'- lUI w c -SUPPLY'\ ,. ~,.. .!! I~UPPLY co 1M .~ ,. Equivalent Input Noise Voltage 11 .. .,..= . ... I. .. r--.. '" I.. ...... .. z. " i"- "- , I, 1 FREIIUEllCY (Hz) Vs' TA-ZSoC IZI ;! III ~ I J I. I . '"'".. FREQUENCY (III' ':. • 1M 1411 II ' CMRR - 20 LOG Va. + OPfN lOOP Vo VS-±lIVTA' ZS'C ,It FREQUENCY (HrI vI' .,IV Rl -Zk TA,zrc I,I~ ,. w I Power Supply Rejection Ratio r--+-.-.. '' 128 C Z8 ~ Common-Mode Rejection Ratio '.." R~'n' .... - " ..~ ..,.. • " ''..iii . '118 9 . FREIIUEIICY (Hz) :a 12. i I!; II ~ I!: I. I. 28 w Av-I'~+J Ik RL"ZII TA-Z5°C AV-I ,, Vo Parasitic input capacitance Cl .. (3 pF for LF351 plus any additionallaycUi capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: R2C2 '" R1Cl. Ultra-Low (or High) Duty Cycle Pulse Generator lNB14 Rl lNB14 H2 Long Time Integrator V' V' 1M V' 1M 1 VOUT = ftc ftz VIN OIT '1 1M y- 4.8 - 2Vs o toUTPUT HIGH'" RIC In 4.8 _ Vs o toUTPUT lOW '" R2C where Vs = V+ + VTUH/5648-IO In 2Vs - 7.8 'Low leakage capacitor Vs - 7.8 lv-I o 'low leakage capacitor 1-53 50k pot used for less sensitive Ves adjust ~ ~. I!J1National Semiconductor LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description Features These devices are low,cost, high speed, dual JFET input operational amplifiers with an int~rnally trimmed input offset voltage (BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In· addition, well matched higb voltage JFET input devices provide very low input bias and offset currents. The LF353 is pin compatible with thelltandard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs. • • • • • • • • • These amplifillrs may be used in applications such as high speed integrators, fast 01 A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low. input bias current, high input impedance, high slew rate arlll wide bandWidth. The devices also exhibit low noise and offset voltage drift. Typical Connection 10 mV Internally trimmed offset voltage 50pA Low input bias current 25 nV/JFfi. Low input noise voltage 0.01 pAlJFfi. Low input noise current 4 MHz Wide gain bandwidth 13 V/p.s High slew rate 3.6 mA Low supply current 10120. High input impedance <0.02% Low total harmonic distortion Av=10, RL=10k, Vo=20Vp-p, BW=20 Hz-20 kHz 50 Hz • Low 1/f noise corner 2 p's • Fast settling time to 0.01 % Connection Diagrams. Metal Can Package (Top View) R; V· 6 INVERTING INPUT B -VU V· Order Number LF353H See NS Package Number H08A Simplified Schematic , :; 112 Dual ycco----....- - - - -...-,.....,... Dual-In-Line Package (Top View) OUTPUT A Vo 'MVEHlING INPUT A NOI-INVERTING INPUT A y- INTERNALLY TAIMMED -VEE INT£RHALLY TRIMMED 3 INVERnNa INPUT. - ' - f - -.... Order Number LF353M or LF353N See NS Package Number MOSA or NOSE o--....- -...- - - -....__.J TUH/5649-1 1-54 r- 'T\ Absolute Maximum Ratings Co) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±18V Supply Voltage (Note 1) Power Dissipation O'Cto +70'C Operating Temperature Range 150'C Tj(MAX) ±30V Differential Input Voltage ±15V Input Voltage Range (Note 2) Output Short Circuit Duration Storage Temperature Range Lead Temp. (Soldering, 10 sec.) 260"C Soldering Information Dual-In-Line Package Soldering (10 sec.) 260'C Small Outline Package Vapor Phase (60 sec.) 215'C Infrared (15 sec.) 220'C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 7) 1700V (JJA M Package TBD Continuous - 65'C to + 150'C DC Electrical Characteristics (Note 4) Symbol Parameter LF353 Conditions Min Units Typ Max 5 10 13 Vas Input Offset Voltage Rs= 10kO, TA=25'C Over Temperature AVos/AT Average TC of Input Offset Voltage Rs=10kO 10 los Input Offset Current Tj = 25'C, (Notes 4, 5) 25 100 4 pA 50 200 8 pA nA Tj~70'C Tj = 25'C, (Notes 4, 5) mV mV p.VI'C nA 18 Input Bias Current RIN Input Resistance Tj=25'C AVOL Large Signal Voltage Gain Vs= ±15V, TA=25'C Vo= ± 10V, RL =2 kO Over Temperature 25 Va Output Voltage Swing Vs= ± 15V, RL = 10kO ±12 ±13.5 V VCM Input Common-Mode Voltage Range ±11 +15 -12 V V CMRR Common-Mode Rejection Ratio Rs~ 70 100 dB PSRR Supply Voltage Rejection Ratio (Note 6) 70 100 Is Supply Current Tj~70'C Vs=±15V 10kO 1012 0 100 V/mV 15 V/mV 3.6 dB 6.5 mA AC Electrical Characteristics (Note 4) Symbol Parameter LF353 Conditions Min Amplifier to Amplifier Coupling TA=25'C, f=1 Hz-20 kHz (Input Referred) Typ Units Max -120 dB SR Slew Rate Vs= ±15V, TA=25'C B.O 13 Vlp.s GBW Gain Bandwidth Product Vs= ±15V, TA=25'C 2.7 4 MHz en Equivalent Input Noise Voltage TA= 25'C, Rs = 1000, f=1000Hz 16 nV/,/Hz in Equivalent Input Noise Current Tj=25'C, f= 1000 Hz 0.01 pA/,/Hz 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of 115'C/W typ iunction to ambient for the Npackage, and 15S'CIW typ junction to ambient for the H package. Nota 2: Unless otherwise spacified the absoluta maximum negative Input voltage is equal to the negative power supply voltage. Note 3: The power dissipation lim", however, cannot be exceeded. Note 4:,These specifications apply for Vs~ ±15V and O'C<:TA<: +70'C. Vos, Ie and los are measured at VCM~O. Note 5: The input bias currents are Junction leakage currents which approximately double for every 100C increase In the junction temperature, Tj. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal oparation the junction tempamture rises above the ambient temparature as a resu" of internal power dissipation, Po. TJ ~ TA+ 9JA Po where 9jA is the thermal resistance from junction to ambient Use of a heat sink is Note recommended jf input bias current is to be kept to a minimum. Supply voltage rejection ratio is measured for both supply magnitudes increaSing or decreasing simultaneously in accordance with common practice. Vs ~ ±6Vto ±15V. Note 7: Human body model, 1.5 kO in series with 100 pF. Nota 6: 1-55 CIt Co) C') gan Typical Performance Characteristics Input Bias Current Input Bias Curlent " 108 I-Vs' '15V TA· IS C i... ...~ 80 ~ ,'"'"~ 10 !... ,40 !!! 10 - ..... ... ~ '"'"~ 100 ~ !; iii .~ -10 -5 10 .. / B~ / ~'" ~> a TO Positive Current Limit / H I r- ....... ~ 'i~ 10 I 2r C / 10 / 26 5101620 SUPPLY VO.LTAGE ('VI ~ 15 / / 10 ,." ,.~ 68 50 J'C ",TA" +7r c 15 "'~ 40 20 ac"TA,,+7a'c liP:~ 2.8 Negative Common-Mode Input VoHage Umlt 20 2 3,2 TEMPERATURE ( C) Positive Common-Mode Input Voltage Limit . !!! ~~ 30 10 "" V ... 3.1 2A 10 a 10 COMMON·MOOE VOLTAGE WI O'C 70"C / / t: L 2 a .0 a 10 15 20 , -15 i ~ ~ -1. 10 15 10 Voltage Swing .. i. .... ~ -5 7lrC ~> !; ..S J'C :i ~ -0 a 10 20 30 ~ > i ~ a 30 _ ~ 20 r"', :; r--.. 3,5 . ~ ....... 10 IS .... .:Ie. 41 58 .60 TEMPERATURE ('CI / a r--. JW~E '0 GAIN 70 15 10 Slew Rate VS",5V' RL '2'. AV'I 100 RL '2' CL·,OOpF 10 .,' 0,1 160 I'~S' -IIV 1-0. ~ 58 ~ ~ l~ a '" ~ .. ~ :D' -50 ~ 14 13 I FALLING - ""- RIsING 12 -100 -158 . -30 20 10 RL - OUTPUT LOAD (kill -20 O' 10 IS 10 Bode Plot -10 3 ",.. 20 SUPPLY VOLTAGE ('VI RL '2. CL 'IOOpF- 4,5 ~ ii '" OL-.l-....I-...I--'--'-...L......L...~ 40 Gain Bandwidth V~-iIJv ~ 10 ~~-+~--t-~-r-t-1 OUTPUT SINK CURRENT (mAl 6 VS·,HV TA·25'C 25 ~ ~ '" 40 30 Output Voltage Swing . 25"C 10 30 1 ~ '" 10 OUTPUT SOURCE CURRENT (mAl 41 ,...-.,.-..,...-',-,-.,.-.,.-.,.--, > !:: a NEGATIVE SUPPLY VOLTAGE (VI Negative Current Umlt . ~ o a POSITIVE SUPPLY VOLTAGE (VI ~ .! ,- :i aL-.l-..l-....I--l-...L.......L...-'---' c C ii iI! .. .... ....c . J'STA,,+7J'C vs· '15V ~ '" ~ Supply Current ~;c~;:t:--' f"'- 0,1 1 .10 FREOUENCY'(MHzI 100 11 a 10203040 SOH TO TEMPERATURE rCI TUJi/5649-2 1-56 r- ." Typical Performance Characteristics Co) (Continued) en Co) Undlstorted Output Voltage Swing Dlstortl,on vs Frequency 0.2 .. 0:1S ..t;'" ;:: ;:; I I ~ ~VOilorp"p ;- 0.125 0.1150 I 0.015 10 100 !:; > Ay'10~'rJ '" ID 10k .. '"ti 5. ..'" .. I 1211 100' r-hJ I 10 9 &II ~ ~ 8 VC~ 40 . 2kl I. ~ I .!!!. + OPEN LOOP CMRR·28 LOG VCM 10 VOLjAGE jAIN 1 I I 0 I. 100 lk 10k ~ 80 ~ &II r\. 40 " I'- 20 lOOk I 1M 10 100 lOOk '" ~ ..'".. 1M 10M i i. i lk 10k lOOk 1M 10M FREQUENCY IHzI Power Supply Rejection Ratio iii 3 VS' '1SVTA'IS'C 0 10k ti " ,I. R~'2k1 ~ FREQUENCY (HzI RFvo ~ ~ c !:; - 100 0 lOOk VS'ilIV RL "2k TA'IS'C I~ I C •~ Common-Mode Rejection Ratio '"~ ... '"2i> FREOUENCY (Hz) iii 3 iz 10 '" ,. 0 vS' !IIV RL-Zk TA' 2S"C AV'1 \<1"OIST c AV' 100 I ~ .. ..i '"... ..~ ~ ' 10k 0.1 0.015, '120 3D I vS' ,nv T~ ;21;"C 0.176. Open Loop Frequency Response ECluivalent Input !\Ioise Voltage TO 140 VS'i15V TA' 21'C 120 100 r--... 10 ......... sa ....... r'\. 20 I", 0 lK 100 FREQUENCY (Hz) 10k lOOk 1M 40 §! 30 Ii lil f' 50 E" i5! i"'-:SUPPLY -SUPPLY'\ 10 '&0 !~ ~ '\ 4D ... !Ii! " 20 10 0 111M 10 lk 100 10k lOOk FREQUENCY (Hz) FREOUENCY IHzI I i: Ii I' 1 I Open Loop Voltage Gain (V/V) Output Impedance 1M TA' O"C TO +21'C ~ ~ ~ !:i tOOK ~~ ",. .. '"~ .-: TA' 70'C 10 ~ .AV'100 .1 c i...'" '"> .'" 2i 9 ~ ..~ 10K . 10 IS SUPPLY VOLTAGE ('VI 20 II .r I . AV" 10 L 0.1 ~~'1~ ~ .•:::'" i ~ ~ ,.'" / ..'" 10 ,. 10k lOOk FREQUENCY (Hz) 1M 111M ~ ~ VS'ilIV TA'21'C lmV 0 I: ! lmV -I I!: 100 III II 10mV 5 !; 0.01 5 ~ ~ Vs' !15V TA' 21"C ~RL'2k ..~ Inverter Settling Time 100 10mV II l\ \\ II -I' 0.1 I 10 SEnUNG TIME ""I TL/H/5649-S 1·57 CO) in CO) LL. ...I Pulse Response Small Signal Non-Inverting Small Signaling Inverting :;E ~ CI ">E CD ~ !CD i i co !!! z .Z III III CD CD ·c ...~ ... I- '0 0 > > l::0 a. l::0 0 I::0 a. I::0 0 TIME (0.2 jlS/DIV) TIME (O.2Il11DIV) TLlH/5649-4 TL/H/5649-5 Large Signal Non-Inverting Large Signal Inverting TIME (2 IJS/DIV) TIME (2jJS/1lIV) TLlH/5649-6 TLlH/5649-7 Current Limit (RL = 1000) CD z i III CD ~ o > ~ o TIME (5 jlS/DIVl TLlH/5649-8 Application Hints These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. 1-58 r-----------------------------------------------------------------------------'r ." Application Hints (Continued) Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state. in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. W ~"""'OOUT +20 11111111 1 (NOTE 4) \ .... (NOTEZ) +15 1'1 11, +10 ii +5 os z ...;;:.. -5 I" -10 -15 -20 rtls 10 lk 100 ~t III 10k lOOk FREQUENCY (Hz) TL/H/5649-10 Note 1: All control. flat. Note 2: Bass a~d treble boost, mid flat. Note 3: Bass and treble cut, mid flat. Note 4: Mid boost, bass and treble flat. Note 5: Mid cut, bass and treble flat. • All potentiometers are linear .taper • Use the LF347 Quad for stereo applications 1-60 Typical Applications (Continued) Improved CMRR Instrumentation Amplifier Vs i'iDt-t---+-IH •• Vo -Vs Vs Vs' 1. - 1. - h h ! ! -Vs' -'s SEPARATE 2R2 AV~ ( ) +1 R1 rh ? and R5 R4 are separate isolated grounds Matching of R2'" R4', and R5's control CMRR With AVT • • = 1400, resistor matching = 0,01 %: CMRR = 136 dB Very high input impedance Super high CMRR Fourth O'rder Low Pass Butterworth Filter C D.DI • VOUT .3 11k -15V •• lOOk .3' 11k • • • • • • Corner frequency (fc) = j 1 R1R2CCl • -16V R.' lOOk 1 2" Passband gain (HO) = (1 + R4/R3) (1 + R4'/R3') First stage Q = 1.31 Second stage Q = 0.641 Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100 Offset nulling necessary for accurate DC performance TL/H/5649-11 1·61 ~ ~ .... Typical Applications (Continued) Fourth Order High Pass ButterWorth Filter "3' 211110 rr-l ~1 ° Cornerfrequency(fcl =VRi"ii2C2°2; = V~02; ° Passband gain (HO=(1+R4/R3) (1 +R4'/R3') ° First stage Q = 1.31 ° = 0.541 Second stage Q ° CircuH shown uses closest 5% tolerance resistor values for a fiRer with a corner frequency of 1 kHz and a passband gain of 10. Ohms to Volts Converter I" L..--"-o-ISV Vo = _1_V_ x RX RLADDER Where'RLADDER is the resistance from swilch SI pole 10 pin 7 of Ihe LF353. 1-62 TL/H/5649-13 r-------------------------------------------------------------------------, r"TI ..... ""..... ttlNational Semiconductor LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description Features These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs. These amplifierS may be used in applications such as high speed integrators, fast Of A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth. • • • • • • • • • Typical Connection 0.5 mV(max) Internally trimmed offset voltage 10/LV/'C(max) Input offset voltage drift 50 pA Low input bias current 0.01 pAl.'Hz Low input noise current 3 MHz(min) Wide gain bandwidth 1OVf /Ls(min) High slew rate ·1.8 mA Low supply current 1012.0 High input impedance <0.02% Low total harmonic distortion Av= 10, RL =10k, VO=20 Vp-p, BW=20 Hz-20 kHz 50 Hz • Low llf noise corner • Fast settling time to om % 2/Ls Ordering Information '" X Vec Y indicates temperature range "M" for military "C" for commercial Z indicates package type "H" or liN" Hi Connection Diagrams LF411XYZ indicates electrical grade Metal Can Package NC V- TUH/5655-5 Top View Nota: Pin 4 connected to case. Order Number LF411ACH or LF411MH/883· See NS Package Number H08A TLlH/5655-1 Simplified Schematic Vee 0----""------,,,---, Dual-ln-Une Package BALANCE INPUT Vo INPUT y- TUH/5655-7 INTERNALLY TRIMMED -VEE INTERNALLY TRIMMEO 0--...---...----....---' TUH/5655-6 Top View Order Number LF411ACN, LF411CN or LF411MJ/883· See NS Package Number N08EorJ08A 'Available per JM385101119D4 1-63 ....- ~ Absolute Maximum Ratings If Mllitary/Aer08pace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 8) LF411A LF411 ±22V ±18V Supply Voltage Differential Input Voltage ±38V ±30V Input Voltage Range (Note 1) ±19V ±15V Output Short Circuit Duration Continuous. .ConJinuous Power Dissipation (Notes 2 and 9) Tjmax NPa~e 670mW 150"C 162"C/W (Still Air) 65°q/W (400LF/min AirFlow) 20"C/W 670mW 115°C 120"C/W I, /ljA /ljC Operating Temp. Range, - HPackage (Note 3) (Note 3) Storage Temp. Range -65°C~TA~150"C -65°C~TA~15O"C Lead Temp. . (Soldering, 10 sec.) 26O"C ' 260"C ESD Tolerance Rating to be determined. DC Electrical Characteristics (Note 4) Symbol .Parameter LF411A Conditions Min Vos Input Offset Voltage l:.vos/ll.T Average TC of Input Offset Voltage los .Input Offset Current Input Bias Current 18 RIN Input Resistance ,,",OL Large Signal Voltage Gain Rs=10kO, TA=25°C Max 0.3 0.5 Rs=10 kO (Note 5) Vs= ±15V (Notes 4, 6) Tj=25°C Vs= ±15V (Notes 4, 6) LF411 Typ Min Unlta Typ Max 0.8 2.0 mV 20 (Note 5) '.. 100' p'vrc 7 10 7 25 100 25 pA Tj=70"C 2 2 nA Tj= 125°C 25 25 nA 200 pA Tj.=25°C 50 ·50 200 Tj=70"C 4 4 nA Tj=125°C 50 50 nA 1012 . l',=25°C 1012 0 Vs= ±15V, Vo= ±10V, RL =2k, TA=25°C 50 200 25 200 V/mV Over Temperature 25 200 15 200 VlmV Vo Output Voltage Swing Vs= ±15V, RL =10k ±12 ±13.5 ±12 ±13.5 V VCM Input Common-Mode Voltage Range ±16 +19.5 ±11 +14.5 V -11.5 V -16.5 CMRR Common-Mode Rejection Ratio Rs~10k PSRR Supply Voltage Rejection Ratio (Note7) Is Supply Current 80 100 70 100 dB 80 100 70 100 dB 1.8 AC Electrical Characteristics (Note 4) Symbol Parameter 2.8 1.8 3.4 rnA , LF411A Conditions Min Typ . Max LF411 Min Typ Units Max SR Slew Rate Vs= ±15V, TA=25°C 10 15 8 15 Vlp.s GBW Gain-Bandwidth.Product Vs= ±15V, TA=25°C 3 4 2.7 4 MHz en Equivalent Input Noise Voltage TA=25°C, Rs=1000, f= 1 kHz 25 2!;i nVlV\/RZ in Equivalent Input Noise Current TA=25°C, f= 1 kHz 0.01 0.01 pAl'V~ 1-64 Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. Note 2: For operating at elevated temperature, these devices must be derated based on a tliermal resistance of 8JA. Note 3: These devices are available in both the commercial temperature range O'C:<:TA:<:70'C and the military tempereture range -SS'C:<:TA:<:12S'C. The temperature range is designated by the position just before the package typa in the device number. A "C" Indicates the commercial temperature range and an "M" Indicates the military temperature range. The military temperature range Is available in "H" package only. Nota 4: Unless otherwise spaclfled, the spacHications apply over the full temperature range and for Vs~ t20V for the LF411A and for Vs~ ± ISV for the LF411. Vas, Ie, and las are measured at VCM~O. Note 5: The LF411A is 100% tested to this specHication. Tha LF411 is sample tested to insure at least 90% of the units meet this specificstlon. Note 6: The input bias currents are junction leakage currents which approximately double for every 100C increase in the junction temperature, TI. Due to lim~ed production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temparature as a result of internal power diSSipation, Po. TI ~ TA+ 81A Po where 81A is the thermal resistsnce from junction to ambient. Use of a heat sink is recommended H input bias current Is to be kept to a minimum. Note 7: Supply vo~ rejection ratio Is measured for both supply magnitudes increasing or decreasing simultaneously In accordance with common practice, from ± ISV to ± 5V for the LF411 and from ± 20V to ± SV for the LF411 A. Note 8: RETS 411 X for LF411 MH and LF411 MJ military specifications. Note 9: Max. Power Dissipation is defined by the package characteristics. Oparating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed IIm~. Typical Performance Characteristics Input Bias Current 100 i Ii ..... 1""" -10 -5 COMMOII-MODE VOIlAaE (V) 1 100 I~ ",.. :I lEw i!!i! ~! 10 o :a Ii 25 ....... ::"" t-:=: t\ o 50 125'C o -5 -10 -15 -20 NE&A11VE SUWLY VOIlAaE(Y) o o o ~ ....... o -55"C 10 2D 30 OUTPUT SOURCE CURRENT (mA) 40 Output Voltage Swing 25 10 15 20 SUPPLY VOLTAGE (± V) ~f 20 ..!;!!i!1 10 !i!~ 15 25'C 40 --~ ±15Y 30 RL=2k TA=ZSoC ~ -55'C 10 20 30 OUTPUT SINK CURRENT (mA) 25 ZSOC -25 10 o Ys~ 125"C 10' o I::;;; 1;::=0 Output Voltage Swing V =±115V 10 15 20 SOWLY VDIlAGE (±V) Positive Current Limit -5 10 15 20 POSITIVE SUI'PLY VOIlAGE (V) ~ o t-t-+-1H--¥1-t-+-t-l -10 Negative Current Limit -15 I I I I~ ~ ..... f;;r.c 15 1-1-1-1-1-1-1-1-1-1-1 "I:: i"'" i!i !l -15 hH-t-t-l--+--;,I ...._,K'"---,r-- INVERTING IN~T A NON.INVERTING INPUT A 3 " V- INTERNAllY TRIMMED -VEE OUTPUT B INVERTING INPUT. . -i-----' 6 NON.INVERTING INPUT B TOP VIEW TL/H/5656-1 o---.....-----....--------....-----J Ortler Number LF412ACN, LF412CN or LF412MJ/883' See NS Package Number JOSA or NOSE 'Available per JM38510/11905 1-70 r- ." .... Absolute Maximum Ratings ~ If Military/Aerospace specified devices are required, please contact the National semiconductor Sales Office/ Distributors for availability and specifications. (Note 9) NPackage H Package LF412A LF412 Power Dissipation (Note 10) (Note 3) 670mW ±18V Supply Voltage ±22V 115"C Tjmax 1500C ±38V ±30V Differential Input Voltage 152"C/W 115"C/W 8jA (Typical) Input voltage Range Operating Temp. Range (Note 4) (Note 4) (Note 1) ±19V ±15V Storage Temp. -65"C:5:TA:5: 150"C-65"C:5:TA:5: 1500C Output Short Circuit Range Duration (Note 2) Continuous Continuous Lead Temp. (Soldering, 10 sec.) 260"C 260"C ESO Tolerance (Note 11) 1700V 1700V DC Electrical Characteristics (Note 5) LF412A Symbol Parameter Conditions Vos Input Offset Voltage Rs=10 kO, TA=25"C /iVoslIH Average TC of Input Offset Voltage Rs= 10 kO (Note 6) los Input Offset Current Vs= ±15V (Notes 5 and 7) 18 Input Bias Current Min Max 0.5 Tj=25"C Vs= ±15V (Notes 5 and 7) LF412 Typ Min Max 1.0 1.0 3.0 mV 7 10 7 20 p'vrc 25 100 25 100 pA nA Tj=700C 2 2 Tj=125"C 25 25 nA 200 pA Tj=25"C 50 200 50 Tj=700C 4 4 nA Tj= 125"C 50 50 nA 1012 RIN Input Resistance Tj=25"C AVOL Large Signal Voltage Gain Vs= ±15V, Vo= ±10V, RL =2k, TA=25"C Vo Output Voltage Swing VCM Input Common·Mode Voltage Range 50 Over Temperature Vs= ±15V, RL =10k 200 Common·Mode Rejection Ratio Rs:5:10k PSRR Supply Voltage Rejection Ratio (Note 8) Is Supply Current Vo = OV, RL = 1012 0 200 V/mV 25 25 200 15 200 V/mV ±12 ±13.5 ±12 ±13.5 V ±16 +19.5 ±11 +14.5 V -11.5 V -16.5 CMRR Units Typ 80 100 70 100 dB 80 100 70 100 dB 3.6 00 5.6 3.6 6.5 mA AC Electrical Characteristics (Note 5) , Symbol Parameter LF412A Conditions Min Amplifier to Amplifier Coupling TA = 25"C, f = 1 Hz-20 kHz (Input Referred) Typ LF412 Max Min -120 Typ Units Max -120 dB SR Slew Rate Vs= ±15V, TA=25"C 10 15 8 15 V/p.s GBW Gain-Bandwidth Product VS= ±15V, TA=25"C 3 4 2.7 4 MHz en Equivalent Input Noise Voltage TA=25"C, Rs= 1000, f=1 kHz 25 25 nVl.JHz in Equivalent Input Noise Current TA=25"C, f=1 kHz 0.Q1 0.01 pA/.JHz 1·71 N .-. N II. ..J Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltag~. , Nota 2: Any of the amplifier outputs can be shorted to ground indeflntely. however. more then one should not be simultaneously shorted as the maximum junction temperature will ,be exceeded. Nota 3: For operating at elevated temperature. these devices must be derated based on a thermal resistance of BIANota 4: These devices are available in both the commercial temperature range O'C<:TA<:70"C and the military temperature range -55'C<:TA<:125"C. The temperature range is designated by the position just before the package type in the devica num~,er. A "C" indicates the commercial temperature range and an "M" indicetes the mmtary temperature range. The military temperature range is available in "H" pack8ge only. In all cases the maximum operating temperature is limited by internal junction temperature Tj max. " ' Note 5: Unless otherwise specHied, the specifications apply over the full temperature range and for Vs~ ±20V for the LF412A and for Vs"" ± 15'y for the LF412. Ves. lB. and los are measured at VCM~O. ' " Note 6: The LF412A is 100% tested to this speciflcetion. The LF412Is sample tested on a per amplifier basis to insure at least 65% of the amplifiers meet this specification. ' Note 7: The Input bias currents are junction leakage currents which approximately'double for every 1000C increase in the junction temperature. Tj. Due to limitad production test time, the Input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises abov.e the ambient temperature as a result of internal power dissipation, Po. Tj = TA + 6jA Po where 6jA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. Note 8: Supply voltage rejection ratio Is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. Vs ~ ±6Vto ±15V. Note 9: Refer to RETS412X for LF412MH and LF412MJ military specificetions. Note 10: Max. Power Dissipation is defined by the package characteristics. Operating the pari near the Max. Power Dissipation may cauSe the part to operale outside guaranteed limns. ' Nota 11.: Human body model. 1.5 kG in series wnh 100 pF. Typical Performance Characteristics Input Bias Current 100 Input Bias Current 1111< Vs~±15V T.~25'C - Vs~ ~ lk ~ 100 i ! -18 -5 ±15V 10' 10 1 -50 -25 positive Common-Mode Input Voltage Limit .. - ~> .!: 10 V ;;- V o 10 15 20 o 25, - Negative Current Limit ...... ~ "'=:: -55'C -5 I Ie z JO 5 10 20 30 OUTPUT SINK CURRENT (mAl 40 1520 25 Positive Current Limit " Vs±15V ~ K ~i'-.. 1\ I- o -5. -10 -15 -20 NEGATIVE SUPPLY VOLTAGE (VI o -25 Output Voltage Swing 1It.~2k r--- 25'C -1 -56'C :1 .. 010203040 Output Voltage Swing 25 I!I- 20 ...... 15 1-t-t-t-t-t-t7f-t-H ~t 20 HH-f--+:.A-+++-H .U H!-IA-+-+-+-+-+-H 10 15 2D SUPPLY VOIJAGE (± VI '1 30 TA~25'CI-H-+-+++-l 5, 125"C OUTPUT SOURCE CURRENT (mAl 30 10 I o ~~ ~~ ..U 25"1: 125'C 50 VS-±115V '" ~ \ -10 o 125"C "'" o z!!: -5 =>i! '" iii 15 -55'CsTAsl25'C iii! ~;; :;:! .....!"'" SUPPlY VOLTAGE (± VI 8!:!i !I!~ -10 V POSITIVE SUPPLY VOIJAOE (VI .... ~ ~C' !~ -15 . i! ~ ~ 25 50 75 100 125 TEMPERATURE ('CI 0 IE!: -1,5 I' 3.2 ~;;--2O ~ o ~..-: 3.6 .z.•- 20 z!! 11I ~ 4.8 2.8 Negative Common-M,ode Input Voltage Limit -25 :& ... 15 !~ ..... ,..,.. St- . E => 10' 18 -55'CsTAsI25"C i. => COMMON-MODE VOLTAGE (VI 25 1 4.4 L Ii!i! o Supply Current 4.8 YeM OV 25 ~!:. I 10 I ,,' 0.1 1 RL-OUTPUT LOAO'(kllf o 18 TLlH/5656-2 1-72 Typical Performance Characteristics (Continued) Bode Plot Gain Bandwidth 5.5 ., 5 '~ N :z: 4.5 z:E iii' >-6 iiI :::0 2 :I 4 20 iii !!. z 3 0 ~ z ~ co 0.1 ~ Iii is ". 10 100 lk 10k FREQUENCY (Hzl 140 iiilZO !!i~ :Eli Ii'"' I~ 100 ~ :::: ~ 60 60 ~I ~ VeM 20 U co 10 ~LTAGE ~GAIN ':' • 2 U I 100 ...... 60 I'-. 60 40 "', .......' ':-.. 1SUPPLr "' ZO 0 100 lk 10k lOOk 1M 10M FREQUENCY (Hzl 10 Open Loop Voltage Gain 1M RL=2k 55'C Av 10 1 100 Inverter Settling Time co 10 15 SUPPLY VOLTAGE (± VI 1\ 40 10 :::0 5 50 0 C ....O! 10k 60 1M §: z " 10 100 lk 10k lOOk 1M 10M FREQUENCY (Hzl 7tJ w !!! Vs -±15V TA- 25'C co ~ "- Equivalent Input Noise Voltage Output Impedance 100 -- 100 r-... 20 1 Va= ±15V TA=25"C t'·......,+SUPPLY 5! Iii '"'!I!l ..,'-'co Ul- r-... 40 1M lOOk FREQUENCY (Hz, 120 i'. 0 140 2 I -~ 60 Power Supply Rejection Ratio 0 10 Open Loop Frequency Response 9;i Vs= ±15V RL=2k TA=25"C Av=1 <1% DIST 0 10k lOOk 2k ':!' Va- ±15V 12 RL=2t< AIr=1 10 -50 -25 0 25 511 75 100 125 TEMP£RATUR£ ('CI ! 120 sm100 ...... ... - 60 coz \ ... - Vs- ±15V RL=2k TA=25'C CMRR = 20 LOG VeM + Vo -......,... OP£NLOOf' ~- B~ 40 '"' r-- ~ISIN~ 16 160 ZO Common-Mode Rejection Ratio 160 14 co'" ..1-\-' I I I I 0 -50 III ~ !! .. ...... 140 w - - 20 18 30 Av-l0{ 1 1 10 1 FREQUENCY (MHzl 0.1 I. - Ii !B ~LU~G 22 o ~ -150 100 -30 ~=ioo 10k ~ 0.05 I I~ .Undlstorted Output Voltage Swing rn,-..J 0.15 1 I 2& '24 '-100 -20 Distortion vs Frequency Vs- ±15V 1 50 -10 2.5 -50 -25 0 25 50 75 100 125 TEMP£RATURE ('CI TAj25"j ...... j I"- 0.2 150 Va= ±15 RL=2k 100 ,CL=I00 pF 10 I",~ 3.5 Slew Rate 30 V8- ±15Y RL=2t< CL=I00 pf "' , '"' lk 10k lOOk FREQUENCY (Hzl 1M . 0 -5 10 mY l\'mY I ,\ -10 0.1 1 10 SEnUNG TIME (ps, TLIH/5656-3 1-73 ... N •u.. ....I Pulse Response RL=2kO,CL=10pF Small Signal Inverting Small Signal Non-Inverting I CD z Ii ii .. >- :,1 ~, I~ ~&l ~l ~- ~!! 0 0' '" TIME (0.2 poI/llIY) TIllE (0.2 poI/llIY) Large Signal Inverting Large Signal Non-Inverting .. ..~~ ~ CD !il z ii ! I~ ~~ !l 0 0 ~ '" nME (2 poI/DlY) r-\ / \ i TIllE (2 poI/DlY) Current Limit (RL = 1000) TIME (5 poI/DlV) TLlH/5656-4 Application Hints Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back ,within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. The LF412 series of JFET input dual op amps are internally trimmed (BI-FET IITM) providing very low input offset voltages and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate ,to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maxim4m differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the owtput and force the amplifier output to the corresponding high or low state. Exceeding the positive common-mode limit on a single input will not change the phase of the output, however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state. ', The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. 1-74 r- ." Application Hints (Continued) ..... N oIiIIo Each amplifier is individually biased by a zener reference which allows normal circuit operation on ± 6.0V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate. The amplifiers will drive a 2 kO load resistance to ± 10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings. Precautions should be taken to ensure that the power supply for the Integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. • 1-75 C'I ·ii.... . Typical Application Single Supply Sample and Hold ----uVo 1 Detailed·schlte:m~a:t:ic:"""_""" _ _ _I_I_I____ Vee <> Vo 03 -VEEo-j-jL":L.---"'-"_'-~_--4~_"'__" __ TUH/5656-9 1-76 r-------------------------------------------------------------------------, r ....~ .... Nat io n a I S em i con due to r tJ1 LF441 Low Power JFET Input Operational Amplifier General Description The LF441 low power operational amplifier provides many of the same AC characteristics as the industry standard LM741 while greatly improving the DC characteristics of the LM741. The amplifier has the same bandwidth, slew rate, and gain (10 kO load) as the LM741 and only draws one tenth the supply current of the LM741. In addition, the well matched high voltage JFET input devices of the LF441 reduce the input bias and offset currents by a factor of 10,000 over the LM741. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF441 also has a very low equivalent input noise voltage for a low power amplifier. The LF441 is pin compatible with the LM741, allowing an immediate 10 times reduction in power drain in manyapplications. The LF441 should be, used where low power dissipation and good electrical characteristics are the major considerations. Features • • • • • • • • • • 1/10 supply current of a LM741 Low input bias current Low input offset voltage Low input offset voltage drift High gain bandwidth High slew rate Low noise voltage for low power Low input noise current High input impedance High gain Va = ± 10V, RL = 10k 200 p.A (max) 50 pA (max) 0.5 mV (max) 10 p.V/oC (max) 1 MHz 1 V/p.s 35 nVlyHz 0.01 pAlyHz 10120 50k (min) Ordering Information Typical Connection LF441XYZ X Y VCC indicates electrical grade indicates temperature range "M" for military, Ri "C" for commercial Z indicates package type "H" or "N" TLIHI9297 -1 Connection Diagrams Dual-In-Line Package Metal Can Package BALANCE NC NC INPUT INVE~~t~~ z OUTPUT BALANCE v- TLlHI9297-2 Top View TLlHI9297-4 Note: Pin 4 connected to case. Top View Order Number LF441ACN, LF441CM or LF441CN See NS Package Number M08A or N08E Order Number LF441MH/883 See NS Package Number H08A 1-77 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage Differential Input Voltage LF441A ±22V ±38V 8jC Operating Temp. Range Storage Temp. Range ±19V ±15V Output Short Circuit Duration Continuous Continuous NPackage 670mW 670mW 150"C 115"C 130"C/W MPackage 185"C/W 165"C/W 65"C/W 25"C/W (Note 3) -65"C Lead Temperature (Soldering, 10 seconds) Soldering Information Dual-In-Line Package Soldering (10 sec.) Small Outline Package Vapor Phase (60 sec.) Infrared (15 sec.) LF441 HPackage Power Dissipation (Notes 2 and 9) Tjmax 8jA(Typical) Board Mount in still air Board Mount in 400 LF/ min airflow LF441 ±18V ±30V LF441A Input Voltage Range (Note 1) s: TA s: -65"C 150"C 300"C (Note 3) s: TA s: 150"C 260"C LF441A LF441 260"C 260"C 215"C 220"C 215"C 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 10) Rating to be Determined DC Electrical Characteristics (Note 4) Symbol Parameter LF441A Conditions Min Vos Input Offset Voltage Rs = 10kO, TA = 25"C IlVos/IlT Average TC of Input Offset Voltage Rs = 10 kO (Note 5) los Input Offset Current Vs = ±15V (Notes 4 and 6) LF441 Typ Max 0.3 0.5 Min Max 1 5 mV 7.5 mV Over Temperature 18 Input Bias Current Vs = ±15V (Notes 4 and 6) Tj = 25"C 7 10 10 5 25 5 Tj = 70"C 1.5 Tj = 125"C 10 10 Tj = 25"C Tj = 70"C Tj = 25"C AVOL Large Signal Voltage Gain Vs = ±15V, Vo = ±10V, RL = 10 kO, TA = 25"C 50 Over Temperature 25 VCM Input Common-Mode Voltage Range CMRR Common-Mode Rejection Ratio Vs= ±15V,RL= 10kO ±12 ±16 Rs s: 10kO 80 1-78 50 pA" 1.5 nA 10 100 pA 3 nA 20 Input Resistance Output Voltage Swing 50 nA 1012 RIN Va /LV/"C nA 3 Tj = 125"C Units Typ 100 25 1012 0 100 V/mV V/mV 15 ±13 +18,.-17 100 ±12 ± 11 70 ±13 V +14,-12 V 95 dB r- ....t DC Electrical Characteristics (Note 4) (Continued) Symbol Parameter PSRR Supply Voltage Rejection Ratio Is Supply Current LF441 LF441A Conditions (Note 7) Min Typ BO 100 Min Max 70 150 Units Typ Max 90 dB 150 200 250 fJ-A AC Electrical Characteristics (Note 4) Parameter Symbol LF441A Conditions SR Slew Rate GBW Gain-Bandwidth Product en Equivalent Input Noise Voltage in Equivalent Input Noise Current = ±15V, TA = 25'C = ±15V, TA = 25'C TA = 25'C, Rs = 1000, f = 1 kHz TA = 25'C,f = 1 kHz Vs Vs Min Typ O.B O.B LF441 Max Units Min Typ Max 1 0.6 1 1 0.6 1 V/ILS MHz 35 35 nV/,JRZ 0.01 0.01 pAl,JRZ Note 1: Unless otherwise Specified the absolute maximum negative input voltage Is'equal to the negative power supply voltage. Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of 8jA. Note 3: The temperature range is designated by the position just before the package type in the device number. A "C" indicates the commercial temperature range and an "M" indicates the military temperature range. The military temperature range is available in "H" package only. Note 4: Unless otherwise specified the specifications apply over the full temperature range and forVs Vos, IB, and lOS are measured at VCM ~ O. ~ ±20V for the lF441 A and for Vs ~ ± 15V for the lF441. Note 5: The LF441 A is 100% tested to this speCification. Note 6: The input bies currents are junction leakage currents which approximately double for every 100C increase in the junction temperature, Tj. Due to limited producti'," test time, the input bias currents measured are correlated to junction temperature. In nonnal operation the junction temperature riSes above the ambient temperature as a resun of internal power dissipation, Po. Tj ~ Til + 8jA Po where 8JI\ is the thermal resistanca from junction to ambient. Use of a heat sink is recommended H Input bias current Is to be kept to a minimum. Note 7: Supply voltage rejection ratio is measured for both supply magnitudas increasJng or decreasing simultaneously in accordance with common practice. From ± 15V to ± 5V for the lF441 and from ± 20V to ± 5V for the lF441 A. Note 8: Refer to RETS441 X for lF441 MH military specHications. Note 9: Max. Power Dissipation is defined by the peckage characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside gueranteed limila. Note 10: Human body modeJ, 1.5 kll in series with 100 pF. Typical Performance Characteristics Input Bias Current 40 I Ii! !i ! i T.,=2I°C 30 ./ / 20 ." ...... 0 -10 -10 I I f ~ • -5 5 COMM_OIIE VOIJAOE (V) 1 25 0 25 &0 75 100 125 mlPEIIA1URE (-C) -25 .::1 U !iii ..I~i 5 0 0 5 10 1& 20 25 POSITIVE SUPPlY VDI1ADE (V) I 5 10 15 211 SIIl'PLY VOLTAlIE (±V) 25 Positive Current Limit 1& -55°C:sTA:s126°~_ !!il_ I!I- -20 10 0 Input Voltage Limit I~ 1& il25;C Negative Common-Mode -55°C:sTAS125°C 20 25-C 130 .. 120 110 100 -&0 -25 10 Js-d- 170 160 158 u 140 Ii! § i 10 5 2tI Input Voltage Limit III~2 ll80 ! " Positive Common-Mode Ie "'ii i::l 190 ::'~~5V lk B 100 /' 10 200 Supply Current 1l1li Input Bias Current Vs~±ISV -1& II' Ii II -10 -5 0 0 -5 -10 -16 -20 -25 NEOATIVE SUPPlY VOI1_ (V) 10 .... V.~±I5V ~~ IS-C."""" ~ -Ili-C & 0 \ 0 1 I 3 4 5 6 7 OUTfOT SOURCE CUIIIIEIIT (IlIA) • TLlH/9297 -5 1-79 , ~ ::: u. .... ,-------------------------------------------------------------------------------------, Typical Performance Characteristics (Continued) Output Voltage Swing 50 40 ... !~ ~£ ~~ sa '" 5111520 ziN' 1.25 o '-'-'--'-...L...-'--'--'--'--L...J 25 o r:=Z'lO ........ 1.0 ...... ...... !lo.75 20 ! r--.. '- " 0 i -10 ! 1.5 !. ~ l!! 1--1--- ,.. 1 J 1-- 1.0 Ya- ±15V Ta-ZS'C --+-....... Av---:1OG!:;'~/ 0.5 I 1-+-I---+--+-7.!Av!L_-:l,..lo Ill. !:!i ... 180 lk FREQUENCY (Hz) lOG U i ~ 80 80 j'" ~ 1.5 Av=1 Ii 1..0 S ,"'" ""'I Vs=±I5Y RL-l0k --+--+""""d---I 40 Ta-ZS'C --&--+--'1--1 20 eMRR = ~ LOG V:, + OPEN LOOP VOLTAGE GAIN 0 OL..:..;:.:.;.;.;:;;;..;;.:.:;;.:...------' 10 .1110 1k 11111 lOOk 1M 10M FREQUENCY (Hz) 0.5 180 140 II 11111 FREQUENCY (Hz) 1_ il, ii 100 80 ~- i'.." I--I--+'--"',<"""+-+--; 20 I--+---t--I-+"~~ o L......JL......JL......JL......JL......JL-~ .... 1 u I: : +sumv- I'... " ",SUPPLY ' lOG lk 11111 lOOk FREQuENCY (Hz) !~ ~~ 1110 1k 10k ltJG1c 1M FREQUENCY (Hz) 1M 8OHr~-+-~~+#~+m ~+ttt-++t1It-t-HtHf-Hrti 50 40 Ii: i " o L.......l---L_-L---L..r---..= 10 10 Equivalent Input MHOlse Voltage 1"- '- 80 80 I---II~ '~--t--t--I lOOk VI= ±15Y 1a=25'C ,,1 1--+--+--1f--f'RL=~Ok Vs-±15V 120 1-+--+---1I--f'Ta=25'C II : Power Supply Rejection Ratio r-..... r-~~--~-r~~~ iii 1110 1-"--+'1'",.-t~I--t---+--l OL-L..J...J.J.J.LIJ''--..L..J...LJ.J.lJJJ ·140 120 0 25 50 75 lOG 125 TEMPERATURE ('C) Open Loop Frequency Response ill. ~tttt---+-+-If¥HfI Common-Mode ReJection Ratio . F~LlNGI-RISING 0 -50 -25 10 i!'!. .-'-r....,---r--r--,..---, I -- !'!. -150 1 FREQUENCY (MHz) lk 100 -100 30 .-T"1rT1"TTTrr-~y~s-=.,..±~15rnV t=:t:t:j:j:lm~-l- RL=IOk' \ Ta=25'C 20 I-+-+j-H-H#-Jir. Av-l 1\<111 DlST 10k !; Ii :: f-~__'l'''''''''"1-- ~"·'~·l ~ !;; -50 's±15V RL=IDk V 10 10 RL -GUTP\IT .LOAD (kO) 2.0 Undlstorted Output Voltage Swing O~~~ liD 1 a: GA~ '" 0.1 2'5~. !:._...... ~= T oL-L..J....u.I.I.W'--..L..J...LJ..I.I.W Vs. ±15V 150 RL=10k 100 pF CL1=if 50 :I! t PHASE m 0 iii -3~ 0 25 50 75 100 125 TEMPalATURE ('C) 1-T-i+litl1lt-+++tt+tH 5 Slew Rate ~I'o, 10 Distortion vs Frequency 2.0 10 1-+-1-+++1+111--+-+++++111 25 -20 0.25 -50 -25 20; 15 Bode Plot D.D - ~ 15 20 SUPPLY VOLTAGE (±V) 6 3D Vs= ±15V RL=10k CL=IOG pF " ~! "'...... EZ ~I '" 10' H--I:.A-++-H-+-+--l Gain Bandwidth UD 111- H-++-t7"1-H-+-+--l 20 Vs=±15V Ta=Z5'C~~=t:t::j:l:1ttII 25 30 H-++++-M,--+-+--l OIIII'IIT SINK CURRENT (IlIA) 1.75 Output \toltage Swing 30 RL.=10k -5&'CsTasI25'C -f--f--- H-l'~:H+lf-I-H#-+++H H-tttH-I-fiH-ttlt-t-ttH ou....u.uu...u.uu..J..J.LL...L..LW 10 1110 lk 10k FREQUENCY (Hz) lOOk TLlH/9297-6 1-80 s....... Typical Performance Characteristics (Continued) Open Loop Voltage Gain 1M Output Impedance 1k RL=1Ok > ~ !i!1oo i ~ 100k !i: I 125j z ~ co 0.1 10k 5 ~ !I Ii 10 15 SUPPLY VOLTAGE (± VI ~!! W'" ~im 20 1k - II- ~ i ~ 5"C "co !:! ~~ 110 ~1~ .u.I -55"C II! L1 ~ Inverter Settling Time 10 VS-±15V Tl=n"C 10k 100k FREQUENCY (Hz) 1M I I I[ Vss ±15V I I 1_ Tl=25"C 1·0 RNWlttt=n'=-+'+lI+H-HI ~,~ -5 -10 1 rrrrt1l ffset voltage drift High gain bandwidth High slew rate Low noise voltage for low power Low input noise current High input impedance High gain Vo = ±10V, RL = 10k Metal Can Package' V+ vTL/H/9155-2 Top View TL/H/9155-1 Note: Pin 4 connected to case Simplified Schematic Order Number LF442AMH or LF442MH/883 See NS Package Number H08A % Dual V e e o - - - - t - - - - - -.....--.., Dual-In-Une Package Vo v+ OUTPUT A INVERTING INPUT A NON.INVERTING INPUT A A-_~--r- 3 INVERTING INPUT B INTERNALLY TRIMMEO -VEE OUTPUT B TUH/9155-4 0--"'--"----""--"" Top View TL/H/9155-3 1-84 'Order Number LF442ACN or LF442CN See NS Package Number NOSE Absolute Maximum Ratings If Military/Aerospace specified devices al1l required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9) LF442A LF442 ±22V ±18V Supply Voltage Differential Input Voltage ±38V ±30V ±19V ±15V Input Voltage Range (Note 1) Output Short Circuit Continuous Continuous Duration (Note 2) Tlmax (JJA (Typical) (Note 3) (Note 4) HPackage 150"C NPackage 115'C 65'C/W 165'C/W 21'C/W 1WC/W 152"C/W 260"C 260"C 9 JC (Typical) Operating Temperature (Note 4) (Note 4) Range Storage - 65'C s: TAS: 150"C - 65'C s: TAS: 150'C Temperature Range Lead Temperature (Soldering, 10 sec.) ESD Tolerance Rating to be determined DC Electrical Characteristics (Note 6) Symbol Parameter LF442A Conditions Min = 10 k~, TA Vos Input Offset Voltage t..Voslt..T Average TC of Input Offset Voltage Rs los Input Offset Current Vs = ±15V (Notes 6 and 7) Rs = 25'C LF442 Typ Max 0.5 1.0 Min Max 1.0 5.0 mV 7.5 mV Over Temperature Ie Input Bias Current = 10kO 7 Vs = ±15V (Notes 6 and 7) = RIN Input Resistance Tj AVOL Large Signal Voltage Gain Vs RL Vo Output Voltage Swing Vs VCM Input Common-Mode Voltage Range = = 25 5 = 25'C = 70'C 1.5 Tj = 125'C 10 Tj = 25'C Tj = 70"C Tj = 125'C 5 10 10 = 10kO s: Common-Mode Rejection Ratio Rs 10kO PSRR Supply Voltage Rejection Ratio (Note 8) Is Supply Current 50 200 100 pA 3 nA 25 1012 0 200 V/mV 25 200 15 200 VlmV ±12 ±13 ±12 ±13 V ±16 +18 ±11 +14 -12 V V 80 100 70 95 dB 80 100 70 90 dB 300 1-85 pA nA nA -17 CMRR 50 1.5 20 1012 ±15V, Vo = ±10V, 10 k~, TA = 25'C p.VI'C nA 50 3 25'C ±15V,RL 7 Tj Over Temperature = 10 Tj Units Typ 400 400 500 p.A C"I •• .... LL. ' . AC Electrical Characteristics (Note 6) Symbol Parameter ., Min, Amplifier to Amplifier Coupling TA = 25°C, f = 1 Hz-20 kHz (Input Referred) = ±15V, TA = 25°C = ±15V, TA ";25°C TA = 25°C, Rs = 1000, SR Slew Rate GBW Gain-Bandwidth Product en 'Equivalent Input Noise Voltage in Equivalent Input Noise Current LF442 , LF442A Conditions Typ Ma~( "Min -120 Typ, Units Max -120 dB Vs 0.8 1 0.6 1 Vlp.s Vs 0.8 1 0.6 1 MHz 35 nVl.JHz 0.01 pAl.JHz f= 1 kHz TA = 25"C, f = 1 kHz 35 ' , 0.01 Note 1: Unless otherwise specified the absolute maximum negative Input voltage Is equal to the negative power supply voltage. Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one ~ould not be simultaneously shorted as the maximum junction temperature will be exceeded. ' Note 3: The value given is in 400 linear feet/min air flow. Note 4: The value given is in static air. Nole 5: These devices are available in both the commercial temperature ranga,O"C ,; TA ,; 70"C and the military temperature ranga -55"C ,; TA ,; 125"C. The temperature range is designated by the position iust before the package type In the device nU'llber. A "C" indicates the commercial temperature range and an "M" indicates the military temperature range. The military temperature ranga is available in "H" package only. ' Note 6: Unless otherwise specified, the specifications apply over the full temperature ranga and tor Va '.. ± 20V for the LF442A and for Vs ~ ± 15V for the LF442. Vas. 'IB' and loa are measure\! at VOM = O. Note 7: The input bias currents are junction ieakage currents which approximately double for every irc incr8ase in the junction temperature, Tj. Due to limiiad production test time, the Input bias currents measured are correlated to junction temperature. in normal operation the junction temperature rises above the ambient temperature as a resuR of Internal power dissipation, Po. TI ~ TA + 91APO where 9jA is the thermal resistance from Junction to ambient Use of a heat sink is recommended ff input bias current is to be kept to a minimum. , Note 8: Supply voltage rejection ratio is measured for both supply magnRudes Increasing or decreasing slmuReneously In accordance wiih common ,practica from ± 15V to ± 5V forthe LF442 and ± 20V to ± 5V for the LF442A. ' 1 Note 9: Refer to RETS442X for LF442MH military specffications. 1-86 Typical Performance Characteristics Input Bias Current :; i.. :::> u ;/ ... Input Bias Current Supply Current 10k 40 400 Vs= ±15V TA=25·C 30 ; ./ ./ U 1/ 10 100 i i--'" 1 1 ~360 , , i V- ~ iE / 1 ./ 20 VCM-OV Vs= ±15V lk I :::> u ~ . lJ.C . . . 320 ..... -I I: :::> 10 1 -W -5 0 5 W 200 -50 -25 0 25 50 T5 100 125 TEMPERATURE (·CI COMMON-MOOE VOLTAGE (VI Positive Common-Mode Input Voltage Limit Negative Common-Mode Input Voltage Limit .... -rT 1 1 1 5 10 15 20 Sl(PPlY VOLTAGE (± VI ..~~........ -.....co 8!!i -55·CsTAS125·C 20 .1:: ~~ V 15 10 ili~ V 2iE o o " " " .. ;ii .:::1 -15 u'" -10 ~~ ..... ...... i~ ziE ...~ -10 "" ~ ~E !;~ ~! ~ ~ ~ ~ .., ~i\t~ r-... ~ z 2 4 o 6 8 -5 !h !:I do. 30 ... '" iiE 20 .. !;! Vs- ±15V ~ i\.. I til.., V -10 -15 -20 25 1\ 1\ ';j.- r- V ,\ o -25 ~ ~~ r- \ 012345678 OUTPUT SOURCE CURRENT (mAl Output Voltage Swing 50 ~~ ~~r-...'~~ Io / Output Voltage Swing 3G RL=10k -55·CsTAS12S·C 40 -5 o V NEGATIVE SUPPlY VOLTAGE (VI Vs= ±15V .. / o Negative Current Limit :::: ~ 1/ -5 10 15 20 25 POSITIVE SUPPLY VOLTABE (VI -15 :II 15 -55·CsTAS125·C llI-20 ~ " o Positive Current Limit -25 25 .... -55·C 240 ./ -10 ..... - ..... '2'5-I·C 280 ... Vs= ±15V 25 TA=25·C 1/ "'..... ... -'" 1/ ~t ... E!: ..s! 10 20 15 10 (;t W U W ffi OUTPUT SINK CURRENT (mAl o o 10 15 20 SUPPLY VOLTAGE (± VI 25 o 1 10 RL-OUTPUT LOAD (kOI 100 TUH/9155-5 1-87 II ...... '('11 it Typical Performance Characteristics Gain Bandwidth Vs= ±15V Rl=10k Cl=l00 pF 1.50 ~;'1.25 r-.... i;>-r; iii ::)! 1.0 r---. I'-.. ~ 0.75 r 0.5 0.25 -50 -25 20 """~ 10 - !z 0 25 50 75 100 125 TEMPERATURE (OC) r'-. !..to 5 150 1 10 \ 20 .. 10 100 lk FREQUENCY (Hz) o 10k ~! i'~ f' ~ ~' '=' Va. ....... 100 " 80 Vs= ±15V Rl=10k T.=25°C 60 40 z e ..,. ~~ 10k r-... 20 CMRR' = 2~ LOG VCM + OPEN LOOP VOIJAGE BAIN Vo o 10 100 lk 10k lOOk 1M 10M FREQUENCY (Hz) Open Loop Voltage Gain 1M 100 lOOk 10k FREDUENCY (Hz) I Vs= ±15V TA=25°C " '"""" " " "- ". ~ ..... lk ........ 120 UlGe'l!i ·80 . 60 I +SU~Y":'" "- 40 -SUPPlY 20 o .......... 10 100 lk 10k lOOk FREQ.UENCY (Hz) 1M o 1 " '""-. 1""-. 100 lk 10k lOOk 1M FREQUENCY (Hz) '10 70 ,...,.....,.,,.,.....r-rTTr-.--TTrr-r-n,, 60.rr+Ht+1+~-H#-r+~ 50 i' 40 30 20 10 0 10 100 lk 10k FREQUENCY (Hz) lOOk Inverter settling Time 10 I _io.:.v ~ ['-., Equivalent Input Noise Voltage ~ .... 9 .. " 40 Output Impedance Rl -10k > ~i 100 Power Supply Rejection .Ratio 140 ~ Rl=JOk Vs= ±15V TA=25°C 120 20 160 120 14l! ~ ~ 10 Common-Mode Rejection Ratio ~ 160 g~ 80 .... -55°C ~ 5°C lmY -5 125°f z - Vs= ±15V T.=25°C ~ 10k 5 10 15 SUPPl.Y VOLTAGE (±V) 20 O.OIIOO~:'-'...LU'k--'-.J...JJ'"':Ok-'-.LI.1'OJ...Ok-,-u..u'M FREQUENCY (Hz) -10 1 10mY~11 111111 10 SETTLING TIME (pS) 100 TUH/9155-6 1-88 r-----------------------------------------------------------------------------, ." r ........ Pulse Response RL = 10 kfi, CL = 10 pF N Small Signal Inverting ", ... ,;' l I '" '\ ( 1\ f ,\ \ , "., Small Signal Non-Inverting 1 i'--. .. , \ J TL/H/9155-7 TIWE(O.5 ,../DIY) TL/H/9155-8 Large Signal Inverting Large Signal Non-Inverting " I ! I ~ ~ 5 § \ / J I \, ,' .. ! !i1 ~ ~~ 5 1\ ( § .. " " f 1\ \ \, II / ",. .," " .,., " .,', "" ,," nWE(IOps/lllV) TUH/9155-9 TL/H/9155-10 1-89 II N "III' "III' ...u.. r--------------------------------------------------------------------------, Application Hints The amplifiers will drive a 10 kn load resistance to ± 10V over the full temperature range. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the intemal conductors and result in a destroyed unit. This device is a dual low power op amp with internally trimmed input offset voltages and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated wit\:lout a large increase in input current. The ,maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequenty there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capaCitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. Each amplifier is individually biased to allow normal circuit operation with power supplies of :f3.0V. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing. ' Typical Applications Battery Powered Strip Chart Preamplifier TIME CONSTANT 1 SEC 5 SEC 10 SEC sa SEC 1111 SEC Runs from 9v batteries (± 9V supplies) Fully setteble galn and time constant Battery powered supply allows direct plug-in interface to strip chart recorder without commonmode problems 2D.4k 0 Xl 1 i1 250k 110k Xi Xl0 X50 IJUll'UTTO > ....+:' ) STRIP CHART lilt -BY Xloa IWN TLlH/9155-11 1-90 .. r- Typical Applications ." (Continued) N "No FET" Low Power V - F Converter D3 '''' Trim 1M pot for 1 kHz full·scale out· put 15 mW power drain No integrator reset FET required Mount 01 and 02 in close proximity 1% linearity to 1 kHz 15V TL/H/9155-12 High Efficiency Crystal Oven Controller 15V 15V • Tcontrol = 75'C • AI's ou1pu1 represents the amplified difference between the LM335 temperature sensor and the crystal oven's temperature • 112, a free running duty cycle mod· 1.2M 100k -, 1.2M LMI85-1.2 I I I I I ulator, drives the LM395 to complete a servo loop 100k • Switched mode operation yields high efficiency lOOk • 1% metaJ film resistor ~D., '''' 15Vo--'IIIfIr-....' ,. LMI3& TIMP SENSOR L ________ I 1. T'!!..RMA.LFE2..~ I I I _ _ _ _ _ _ _ .J TUH/9155-13 Conventional Log Amplifier 5' lOOk r-'lN~""'''II'\fIr--15Y 1201<* • lM394 15V fIN! O+--'Y~_"'f OF:~i-""""""-'W'Io--""'I VOlTAGE AOJUST -15V TL/H/9155-14 EOUT =- [lOg 10 (~::) + 5] AT = Tel Labs type 081 Trim 5k for 10".A through the 5k-120k combination 'I % film resistor 1·91 Typical Applications (Continued) 01, 02, Q3 are included on LM389 amplHier chip which is temperaturestabilized by the LM389 and 02-03, Unconventional. Log Amplifier which act as a heater-sensor pair. 12V 01, the logging transistor, is thus immune to ambient temperature variaticn and requires no temperature compensation at all. lOOk SCALE LM329 FACTOR ADJUST 75k· 15V IN914 2.2k. tk 300 pF 50k ZERO ADJUST -15V TLlH/9155-15 Detailed Schematic Y.Oual ~--~~----------------------------------t-OV+ Vo 019 TLlH/9155-16 1-92 ,-------------------------------------------------------------------------, r .,.. .,.. .,.. ." t!lNational Semiconductor LF444 Quad Low Power JFET Input Operational Amplifier General Description Features The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics of the LM148. The amplifier has the same bandwidth, slew rate, and gain (10 kO load) as the LM148 and only draws one fourth the supply current of the LM148. In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148. The LF444 also has a very low equivalent input noise voltage for a low power amplifier. • % supply current of a LM148 • • • • • • • 200 ,.AIAmplifier (max) Low input bias current High gain bandwidth High slew rate Low noise voltage for low power Low input noise current High input impedance High gain Va = ±10V, RL = 10k 50 pA (max) 1 MHz 1 VI,.s 35nV/Fz 0,01 pAlFz 10120 50k (min) The LF444 is pin compatible with the LM148 allowing an immediate 4 times reduction in power drain in many applica, tions. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations. Simplified Schematic Connection Diagram % Quad Vee Dual·ln·Llne Package 0----""-----",,,----, OUT4 IN4- IN 4+ y- INf' IN 3- IN 2+ INZ- OUT3 Vo -VEE .. OUTI O--....--~._.---_ I.( 15 / 5 V ~~ .... V 5~ zi!! 5 10 15 20 POSmVE SUPPlY VOLTAGE (VI 200 0 75 100 125 50 5 25 .. .......~~ .... 1lI 1/ -15 / -10 / 1/ i / 0 -5 -10 ~ >- > 1/ -5 -15 -20 -25 NEGATIVE SUPPlY VOLTAGE (VI 15 25 20 Positive Current Limit 15 f--55°C:sTA:s125°C -20 10 SUI'Pt.Y VOLTAGE (± VI -25 0 0 0 25°C -55°C 400 Negative Common-Mode Input Voltage limit ... -•• i:::l -55°C:sTA:5125°C •= l!i 600 TEMPERATURE (OCI 25 20 lJoC 0 25 0 COMMON-MODE VOLTAGE (VI gE ..Ei...'" ..'" "" 10 i!! I _BOO ~ / :5 Supply Current ~ I"':i! Vr±115V ~ -..-~, ~o~ \~~ $... ~f-- 10 ~ 5 0 ,\ 0 1 2 3 4 5 6 7 8 OUTPUT SOURCE CURRENT (mAl TLlH/9156-3 1-95 r-------------------------------------------------------------------------------------. 5 .~ Typical Performance Characteristics (Continued) , Negative Current Umlt -15 I ~ -& o -&5'CSTaSl2&'~ ~f co'" i\~~ .. "'"I ~ ~ t- rf--j\J ~ h o h: 1/ 20 30 ~e . . CD 1;! co D 20 il1 l .0 o 18 Slew Rate CLi~~ """ 10 1'\ ! -10 _ 2.0 ~ z Ii! 1.5 Ii lID Iii iiil" 'i • ! ~ 140 120 100 Av=18 lk 80 611 20 o 1111 ...... ~ LOG Vt:II+ OPEN LOOP VOLTAGE GAIN Vo 10 100 1k 11k'. 1M 10M FREQUENCY (Hz) II! !It.=JOk V8= ±15V Ta=2&'C 128 Ii 811 I" '28 lk z co 10k o lOOk 1 10 ~ ii i,.Ii .....e ... i ID +su,l,y- "-r-.... I'... ID 40 -SUPPLY 20 o 10 100 lk 100 1k "1"- 10k lOOk 1M FREQUENCY (Hz) Vs.= ±15V Ta-j'C "- i'.. ~ 100 "' " Equivalent Input 7D Noise Voltage ~ 120 25 50 75 100 125 i i 100 Power Supply .T . _= 0 1611 140 140 Rejection Ratio ...... Vs= ±15V !It.=lOk Ta=25'C • -50 -2& FREQUENCY (HzI N Val' 0:& I : o 10k Common-Mode Rejection RatiO :, RISING Open Loop Frequency Response V.=± 15V !It.= 10k Ta= H'C Av=l DlST Xl" \ n r- FA~LlN81- TEMP£RATURE ('C) 10 Av=loo ,......... ! I I 1.0 Undlstorted Output Voltage Swing FREQUENCY (Hz) Ii -50 ~ ~ ... -150 10 2.5 100 2! ~ 1.5 -100 30 D 10 iI: m Vs- ±15V RL=10k Av=l FREGUENCY (MHzl Distortion vs Frequency D.5 :! . 0.1 TEMP£RATURE ('CI E 1.0 'ii' 2.0 ;;; III III -30 75 100 125 50 PHASE 8AI~ -28 100 10 1 RL-OUTPUT LOAG (1<0) 150 V8= ±15V RL=lGk pF 100 28 ,- - - 25 50 o 2& Bode Plot 0.5 0.25 -50 -25 0 28 15 30 ~ 0.75 10 SUPPLY VOLTAGE (± V) Va=±15V RL=lOk C!.=loo pF ~~ 15 "'z 20 Gain Bandwidth 1.5 i;' 10 15 10 "- Vs= ±15V 25 Ta-2&'C f--f- co f\ l' 1.75 'i _ w OUTPUT SINK CURRENT (IIIAI I~ 1.25 OLitput Voltage Swing 30 !It.-10k 40 ~ ~_-10 IIi , Output Voltage Swing 50 Va-±l.V "' I"- 10k FREQUENCY (Hzl "' '-1M 1. III 50 i~ 50 II,. 30 h. 51 r- 40 28 10 0 10 100 1k 10k lOOk FREQUENCY (HzI TL/H/9156-4 1-96 r-----------------------------------------------------------------------------, ." r Typical Performance Characteristics Open Loop Voltage Gain 1M Output Impedance ~-; .Ll111 ~... ~1v -55°C ~ lOOk co :> "E- 15°· lzsof z co 10 5 I I _lImY 15 0.01 20 100 It SUPPlY VOIJAGE (±V) III Vs=±15V TA=ZSoC lmY ,1~ ~rm ~ 10k i-' ~,- co 9 Inverter Settling Time 10 ~ . . ~ ~ lk RL-l0k ;; ~ (Continued) 10k lOOk ll11 111111 -- Vs=±15V TA=ZSOC -10 1M 10mY 1 10 FREQUENCY (Hz) 100 SETTLING TIME (pi) TL/H/9156-5 Pulse Response RL = 10 kn. CL = 10 pF Small Signal Inverting '" .. " ". '" / ,," Small Signal Non-Inverting .. " r "" " " ",. "., ,\ \ I II II I \ '" nWE (0.5 ",/DIY) nWE (0.5 "./DIV) TL/H/9156-6 /. ~ ~ g I / ., .. ,.,. , .. , ~ ! \\ ! !;l ~ ~ / \ ~ I 1\ ( TL/H/9156-7 Large Signal Non-Inverting \ / e!;l \ .I Large Signal Inverting ~ '\ ( 1\ ",. / "" nWE(,o",/DIY) "" .,' "', "" "', '" \ "', "" ., " IIII£('O",/DIV) TLlH/9156-8 TLlH/9156-9 1-97 Application Hints The amplifiers will drive a 10 kG load resistance to ± 10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may oCcur on the negative voltage swing and finally reach an active current limit on both positive and negative swings. This device is a quad low power op amp with JFET input devices (BI-FETTM). These JFETs have large reverse breakdown \(oltages from gate to··source and drain eliminating the need for clamps across the inputs. Therefore, large differential input'voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capaCitance from the input to ground. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversel of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch oCcur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capaCitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected a dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capaCitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within av of the negative supply, an increase in input offset voltage may occur. a Each amplifier is individually biased to allow normal circuit operation with power supplies of ± a.ov. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing. Typical ApplicatIon pH Probe Amplifier/Temperature Compensator "'For R2 ~ 50k, R4 ~ 330k ±1% For R2 ~ lOOk, R4 ~ 75k ±1% For R2 ~ 2OOk, R4 ~ 56k ±1% , 'Polystyrene pH OUT . OV-l0V= 'Film resistor type RN60C To calibrate, Insert probe in pH ~7 s0lution. Set the ''TEMPERATURE AD· JUST" pot, R2, to correspond to the solution temperatura: full clockwise for O"C, and proportionately for intermedi· ate temperatures, using a tum...count· ing dial. Then set "CALIBRATE" pot SO 0111II1II reads 7V. Typical probe ~ Ingold Electrodes ~PH-10PH "'cw TEMPERATURE ADJUST R3 1.0Ofc* ft4-·· 10k* R8 3.3M 15V TUH/9156- t 0 #465-35 1-98 .-----------------------------------------------------------------------, Detailed Schematic % Quad r-----t-------------------------------------~-ov+ ",-",-oVD RI 4110 019 TUH/9156-11 1-99 .... ~ ." .- .-------------------------------------------------------~------------~--~-----. ~d - pNational Semiconductor LF451 Wide-Bandwidth JFET-Input Operational Amplifier General Description Features The LF451 is a low-cost high-speed JFET-input operational amplifier with an intemally trimmed input offset voltage (81FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF451 is pin compatible with the standard LM741, allowing designers to upgrade the overall performance of existing designs. The LF451 may be used in such applications as high-speed integrators, fast 01 A converters, sample-and-hold circuits and many other circuits requiring low input'bias current, high input impedance, high slew rate and wide bandwidth. • • • • • • • • Connection Diagram s.o. Package- Typical Connection Internally trimmed offset voltage 5.0 mV (max) Low input bias current 50 pA (typ) Low input noise current 0.01 pAl,fFiZ (typ) Wide gain bandwidth 4 MHz (typ) High slew rate 13 V//J-s (typ) Low supply current 3.4 mA (max) High input impedance 10120 (typ) Low total harmonic distortion Av = 10, <0.02% (typ) RL = 10k, Vo = 20 Vp_ p, f = 20 Hz~20 kHz • Low 1/f noise corner 50 Hz (typ) • Fast settling time to 0.01 % 2 /J-s (typ) Rf v+ Ne BALANCE - INPUT v+ + INPUT v- OUTPUT RI BALANCE TLlH/9660-2 TOp View Order Number LF451CM See NS Package Number M08A vTLlH/9660-1 Simplified Schematic ~o-------~----------------~--_, INTERNALLY lRlt.IMED INTERNALLY lRlMMED ~o-----~--~--------------~--~ 1-100 TLlH/9660-3 Absolute Maximum Ratings (Note 1) ESD Tolerance Soldering Information (Note 5) SO Package: Vapor Phase (60 sec) Infrared (15 sec) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. 36V Supply Voltage (V+ - V-) Input Voltage Range V- s: VIN s: v+ Differential Input Voltage (Note 2) ±30V Junction Temperature (TJ MAX) 1500C Output Short Circuit Duration Continuous Power Dissipation (Note 3) 500mW TBD 215'C 2200C Operating Ratings (Note 1) TMIN s: TA s: TMAX O'C s: TA s: +700C 125'C 10Vto 32V Temperature Range LF451CM Junction Temperature (TJ max> SupplyVoltage(V+ -V-) DC Electrical Characteristics The following specifications apply for V+ = + 15V and Vface limits apply for T MIN to T MAX; all other limits TA = TJ = 25·C. = -15V. Bold- LF451CM Symbol Parameter Conditions Typical (Note 6) Tested Limit (Note 7) Vos Maximum Input Offset Voltage Rs = 10 kO, (Note 10) 0.3 5 los Maximum Input Offset Current (Notes 9, 10) TJ = 25'C TJ = 70'C 25 100 (Notes 9, 10) TJ = 25'C TJ = 700C 50 18 Maximum Input Bias Current RIN Input Resistance TJ =.25·C 1012 AVOL Minimum Large Signal Voltage Gain Vo= ±10V,RL=2kO (Note 10) 200 Vo Minimum Output Voltage Swing RL = 10k VCM Minimum Input Common Mode Voltage Range s: CMRR Minimum Common·Mode Rejection Ratio Rs 10kO PSRR Minimum Supply Voltage Rejection Ratio (Note 11) Is Maximum Supply Current Design Limit (Note 8) Units mV 2 pA nA 4 pA nA 200 0 50 25 VlmV ±13.5 ±12 ±12 V +14.5 -11.5 +11 -11 + 11 -11 V V 100 80 80 dB 100 80 80 dB 3.4 3.4 mA AC Electrical Characteristics The following specifications apply forV+ = +15VandV- = -15V.Boldface limits apply for T MIN to TMAX; all other limits TA = TJ = 25·C. LF451CM Symbol Parameter Conditions Typical (Note 6) Tested Limit (Note 7) Design Limit (Note 8) Units SR Slew Rate Av= +1 13 8 V/jJ-s GBW Minimum Gain-Bandwidth Product f = 100kHz 4 2.7 MHz en Equivalent Input Noise Voltage Rs = 1000,f = 1 kHz 25 nV/Jiz in Equivalent Input Noise Current Rs = 1000,f = 1 kHz 0.01 pA/Jiz Note 1: Absolute Maximum Ratings indicate limits bayond which damage to the device may occur. DC and AC electricalspacifications do not apply when operating the device beyond its specified operating ratings. Note 2: When the input voltage exceeds the power supplies, the current should be limited to 1 mAo Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ MAX, 9JA and the ambient temperature, TA. The maximum allowable power dissipetion at any temperature is Po = {TJ MAX - Tp,)/9JA or the number given in the Absolute Maximum Ratings, whichever is lower. For guaranteed operation TJ max = 125'C. The typical thermal resistance (9Jp,) of the lF451CM when bosrd·mounted is 170'C/W. Note 5: See AN-450 "SUrface Mounling Methods and Their Effect on Product Reliability" (Appendix OJ for other methods of soldering surface mount devicee. Note 6: Typical. are at TJ = 25'C and represent most likely parametric norm. 10101 Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level). Note 8: Dasign limits are guaranteed to National's AOQL. but not 100% _ . 'Note 9: The Input bias currents are junction leakage currents which approximately double for every IO"C incr..a.e·ln the junction tempe..ature TJ.· Due to liMited production test time, the input bias dUrrents are ccrrelated to junCllion "temperature. In normal operation the junction temperature rises abcv~ the ambient temperature as a result of Internal pqwer41ssipatlon, Po. TJ.~ TA+ 8JAPO where 8JA Is the thermal resistance from junction to ambient. Note 10: Vos,le, AVOL, and los are meaSured at VCM = OV. . '.,.' . Note 11: Supply voltage rejection .ratio is measured for both supply magnHudes Increasing or decreasing simultaneously in accordance with ocmm~~ practice. Typical Performance Characteristics 1.2 T~'a;C I.If .30 I I 1 I I II .. ..~ ~ ~V.!21t" !1.I21 co i I V.·.IIV 1.175 I I AV'IN - I I II I I. AY· tI-j'rl I.' I._ IIJI2I °tl " 21 , 10 ~ :0 co ~ '"~ 18 ~ o: 0: •.. i 5 II ~ f?FV. VCII _ ZI ;, i I CIIRR - 20 lOG!!!l + OPEN UJOf Vo VOLTAGEGAIN 21 i I 10 IN Ik Ilk IIOk ID 40 i zo - '"'" '"co ......... 1""' 0 I. ...... II " 21 ['.. IDO IK 10k lOOk ~ 5!:; !; " III 10M !! ~ :; 100 :0 • 10 - 71 50 40 30 20 11 0 lID 10 10 ~ ~ C ", 5 1--+-+-+1+0"~VifiI''''-HTA-i'H2I"+H+I \_V -5r-~~IOr·nV~~-I-~~~ co -10 I... lOOk ~ ~ 0.1 Ilk 10k Ii AV'I FREQUENCY CHII Ik r-T"'"I"'I"Tln111'nr"11""'"...."lvs..,•..,..ITTSVm l: Ik Ilk IIOk III 10M Inverter Settling Time 1111 20 II ID :ll i ~ 15 '\.. 10 FREOUENCY CHz)' C co 10 ! .'" r'\. -IUPPLY'\ ~ §! ~ ' \ .+sUPPLY " 41 I VS' .IIV TA' 2'"C u •~. SUPPLY VOLTAGE CtV) I\. I Output Impedance TA·.r:~lO+~"C TA'WC \. FREQUENCY CH,) IDO I :!i 9 FREQUENCY CHz) 1M - r\. ID Equivalent Input Noise Voltage ',: IDO Open Loop Voltage Gain (V/V) ~ :;..-- !\. 80 III 141 °10 III 1011 FREQUENCY CHz) j-RL"a ~ Power Supply Rejection Ratio co 121 I C co R~ 'ZII V"'"VTA'2S"C t\. FREQUENCY CHz) ; 41 ~ o III 110 l!: .. o 110 120 i • . 31 '100 !:; co > Common-Mode Rejection Ratio 31 co IZO Ii c FREQUENCY CHz) Ii VI W ! IIV RL·a TA' ft"c', AV·' ~ Ilk I".m ;; OP~!1 Loop Freque~cy Response Undlstorted Output Voltage Swing Distortion vs Freq!lency III 1011 I II ~\ L.-.L...J..I...... I..u.w..1~~\'I-.J...J..L.I.LW D.I 11 BEnUNG TillE c...t TUH/9660-5 1-102 Typical Performance Characteristics Input Bias Current 120 Input Bias Current Supply Current I' Vs =±15V TA -25'C C 100 (Continued) 5~~---r--'---r-~ VCM-' VS- V •• 2' ; ,. II, ~ III a ! ~ 5 o za I' -20 ca 3D i! :• .. i r-..... I I J I , I • i i:. Nega1iveSWlng > 5 3Ji .. ~ 10 15 31 flI ..... ~ .... T_HATURE rCl 1171 I I a,1 .. l\ FREDUENCY IMH.I ~ ill -10 ill Ii -151 II ;!! S -III LI II III RL-a CL -IUD,F PHASE -Ia Slew Rate lID II GAIN la RL - OUTPUT LOAD II r-. lo.. ,~ / / I I r\ jlC / JI"C / / woo i 1121 20 20 Ii . o TEIIPERATURE "CI Poslti,ve Common-Mode Input Voltage Limit .1 oo~ 61--+-+--+--+-,,-1 '" II -15 -10 .1: L'" lID ~ 20 i ;a 8f--f---+--I--+----I i- ,"' 60 10 O'C n "'II 100 ~ 50 Ii 1~ o 50 -20 3.0 o 10 20 30 40 50 60 70 TEIiPERATURE rCI 1,0 -30 0.1 I e~ ! 100,1 1,0 10 RL - OUTPUT LOAD 'kill SI!'wRate VB Vs =±I'!." 4,0 20 Bode Plot 30 i IS SUPPLY VOLTAOE '-VI OUTPUT SINK CURRENT ,.,AI Gain Bandwidth •~ I.. Output Voltage Swing ""'" 1 1 1 111 ..... -5 -20 30 1 1J .J.o1" 1 RL = 2kll 15 TA=25'C 11~ H'C 21 OUTPUT SOURCE'CURRENT ,..AI Voltage Swing 20 !: i 10 & " 15 211 NEGAnVE SUPPLY VOLTAGE 'VI ,10 FREOUENCY '1I~.zI 150 100 ;oj 20 18 16 14 12 10 8 =~:~t-;:::AV _+1 '---- --'-Failing RisIng - == 6 4 o o 10 20 30 40 ,50 60 70 TEIlPERATURE, ,'CI }lIH/9710-4 HOB Typical Performance Characteristics s (Continued) Ut Co:! Undistorted Output Voltage Swing . Distortion vs Frequency u T~"ZI;'C 1.11 I ,I I co ~VOi2l~H !I.IZI .a.. 121 311 VI- ,IIV 1.111 ! .. I:; I. 11.1 , tWI _' .'" ...=: "' II "V"I'~'rJ i.. ~ .. !.. ~ :!: I I_ . VS"'IIV Rl -n I~ fA-noc . , ~ iI, " " S fvE1k I, ZI VOlfAGE rAIN :.!! + OPEILOOP VCII 1 I I II III :a ! V I . :i.. Ii • CIIRR" ZI LOG Ik Ilk IIIk IlIk 1 1M 11M i i Open Loop Voltage Gain (V/V) ~ rero +2I"C 1.1 ~ i'-.. 10 ' "+Sumy -SU"lY'\ 2D 0 lID II "- ~ "- IIIk I. IK c !:; '\ 41 .... ~ "lA"WC ~~ II i .~ Ii 9 ~ 1M 11M 11K II SUPPLY VOLTAGE C.V) lID Ik VI- ,IIV fA" H"C I !;; 70 ~'!~ '60 50 40 30 i 20 ~c 10 t- I 0 10 100 ~AV"III r I AV"IO I f r ~~"I!!! ~ L 1.1 II III Ik I. I. fREQUENCY CHz) Ik lOOk 10k Inverter Settling Time E 10 I I II iii: r t\. 1110 IIIkIM 11M fREQUENCY CHI) 1.11 II 10 Equivalent Input Noise Volb!-ge Output Impedance c t- S .. .. i..'" ! VS" f,.";soC . ....... ...... "- III lID S ......-r: co I fREClUENCY CHz! ~I5V III Rl -a ~ . ..,. .... :I '- fREQUENCY CHz) 1M flo - '- 1M 140 fREQUENCY CHz) ~ '- 0 Power Supply Rejection Ratio II 41 '- . II fREQUENCY CHI) -hJ. Rl"a VS-'IIVfA"WC iii Ilk ID I. Ik ~ ZI Common-Mode Rejection Ratl(l III .. ..'" 'i!:; - III 9 fREOUENCY CHI) 121 :a ~ I lID 10 . Ii .a • II !;; '0 :a v." 'IIV Rl-a fA-ZIOC AV"I I\ 5 S CI TIME (0.2 I'I/DIV) TIME (0.2 jlS/DIV) TL/H/9710-7 TLlH/9710-8 Large Signal Non-Inverting Large Signal Inverting s ~ e.,. s i CD z z i i .,. 'III CI .>, CI III, ~ > 5 ...... ~ ~ = CI CI TIME (2I'1/DIV) TIME (2I'1/DIV) TL/H/97'10:8 TLlH/9710-9 Current Umit (RL = 1000) s ~.,. z i .,. III ... ;! CI > .... ~ = CI TIME. (5 j,CI/OIV) TL/H/971 0-1 0 1-110 Application Hints These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit with the non-inverting input, or with both inputs, will force the output to a high state, potentially causing a reversal of phase to the output. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state. The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. A feedback pole is created when the feedback around any amplifier is resistive.The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. The benefit of the SO package results from its very small size. It follows, however, that the die inside the SO package is less protected from external physical forces than a'die in a standard DIP would be, because there is so much less plastic in the SO. Therefore, not following certain precautions when board mounting the LF453CM can put mechanical stress on the die, lead frame, and/or bond wires. This can cause shifts in the LF453CM's parameters, even causing them to exceed limits specified in the Electrical Characteristics. For recommended practices in LF453CM surface mounting refer to Application Note AN450 "Surface Mounting Methods and Their Effect on Product Reliability" and to the section titled "Surface Mount" found in any Rev 1. linear Databook volume. Each amplifier is individually biased by a zener reference which allows normal circuit operation on ± 5V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate. The amplifiers will drive a 2 kO load resistance to ± 10V over the full temperature range of O"C to + 70"C. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings. 1-111 ! 'I ~ Detailed Schematic ~O--------'-----------------'-------------------1~------~------~----~ R9 '2211 ....--------~.....-o Vo RIO 300 R6 204 R8 1604 ~o-----+---------~--~--~~~~----~------~------~--~------~~ SUBS'lRATE 'TLlH/9710-11 1·112 r---------------------------------------------------~~ I tflNational Semiconductor LH0003 Wide Bandwidth Operational Amplifier General Description The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to 70 VI ,...s, a gain bandwidth of up to 30 MHz, and high output currents. Other features are: Features • Very low offset voltage • Large output swing > Typically > 90 dB 50 kHz to 400 kHz depending on compensation • High CMRR • Good large signal frequency response The LH0003 is specified for operation over the - 55"C to + 125"C military temperature range. The LH0003C is specified for operation over the O"C to + 85"C temperature range. Typically 0.4 mV ±10V into 1000 load Schematic and Connection Diagrams y+ 9 R2 2k Cl Rl 200k 7 BIAS 4 INPUTS 2 + caMP TLlK/l0123-2 5 caMP Top View R3 R4 R5 10k 10k lk Order Number LHOOO3H, LHOO03H·MIL or LH0003CH See NS Package Number H10G L---~__--------~__--------._~~3 TLlK/l0123-1 1·113 Absolute Maximum Ratings Equ~rto supply Input Voltage Load Current 120, rnA Operating Temperature Range LHOO03 - 55·C to + 125·C LHOO03C o·eta +85·C -65·Cto + 150"C Storage Temperature Range , 300"C . ~.ad TemperatIJre(SOldering, 10 sec.) If Military/Aerospace specified devices are required, please contact the NatIonal Semiconductor Sales Office/DIstributors for availability and specifications. Supply Voltage ±20V Power Dissipation See curve Differential Input Voltage .±7V Electrical Characteristics (Notes 1 & 2) Parameter Conditions. : ' Typ Max Units 0.4 3.0 mV Input Offset Current 0.02 0.2 /LA Input Bias Current 0.4 2.0 /LA 1.2 3 rnA Input Offset Voltage Rs Min < 1000 Supply Current Vs = ±20V Voltage Gain RL = 100k, Vs = ±15V, VOUT = ±10V 20 70 VimV Voltage Gain RL = 2k, Vs = ±15V,VOUT =. ±10V 15 40 VlmV Output Voltage Swing Vs = ±15, RL = 1000 ±10 ±12 V 100 kO 4 /Lvrc 8 nArC 70 90 dB 70 90 dB 1'.8 /LVrms Input Resistance Average Temperature Coefficient of Offset Voltage Rs < 1000 '. Average Temperature Coefficient of Bias Currerit < 1000, Vs= ±15V, VIN = ±10V < 1000, Vs= ±15V,aV = 5Vt020V CMRR Rs PSRR Rs Equivalent Input Noise Voltage Rs = 1000, f = 10 kHz to 100 kHz Vs = ±15V Note 1: These specifIcations apply for Pin 7 grounded, lor ±5V < Vs < ±20V, with capacitor Cl = 90 pF from pin 1 to pin 10 and C2 = 90 pF from pin Ii to ground, over the specified operating temperature range, upless otherwise specified. Note 2: Typical values are for tAMBIENT = 25'C unless otherwise specified, Note 3: See # RETSOO03X for the LMOOO3H military specifications. ! Typical Performance Chara~teristics 1000 1 MaXimum Power Dissipation 800 1- z ii ;i!8OO ::iii !!I ~ 400 I- AMBIENT I\. , .... " , '"iiiz ~ 0 f200 0 S .!!. 25 75 tOO TEMPERATURE ("C) 50 125 16 14 12 10 ; Large SIgnal Frequency Response I111 I IlIh,~ 15pF C2= 6 1\i30 PF 4 ct =90"':\11 8 Open Loop Frequency Response JsIJ~~~v -m-,I00' tU1il- .~ iilll 1\11111 2 C21=liinlil N Nlil 0 104 105 loB 107 FREQUENCY (Hz) ~ l!; ~ !S! BO BO RL = lOOk, Ct =~L:- RL =2004 . ~ "'C2=0 J r----rI 40 1--- ct 20 1'?!it~VI A=25"C I t2O· TA=25"C o I'\[ =9,OpF, _I, \ i=jOPF I I I"- \ I.... 100 10' 102 103 104 105 loB 107 108 FREQUENCY (Hz) TUKll0123-5 1-114 Typical Applications High Slew Rate Unity Gain Inverting Amplifier Cl TLlK/lD123-2 'Previously called NH0003INH0003C Typical Compensation Circuit Gain C1 pF C2 pF Slew Rate RL> 2000, V/p.s ;"40 ;,,10 ;,,5 ;,,2 0 5 15 50 90 0 30 30 50 90 70 30 15 5 2 ;,,1 Full Output Frequency RL = 2000 VOUT';' ±10V ~} 350 250 100 50 kHz Unity Gain Follower INPUT - ....w......"'" )----f--OUTPUT lk' l00pF TLlK/lDl23-4 1-115 ~~ :: ~National Semiconductor LH0004 High Voltage Operational Amplifier General Description The LH0004 is a general purpose operational amplifier designed to operate from supply voltages up to ±40V. The device dissipates extremely low quiescent power, typically 8 mW at 2SoC and Vs = ±40V. The LH0004's high gain and wide range of operating voltages make it ideal for applications requiring large output swing and low power dissipation. The LH0004 is specified for operation over the - SsoC to + 12SoC military temperature range. The LH0004C is specified for operation over the O"C to + 8SoC temperature range. .• Low input offset voltage typically 0.3 mV • Frequency compensation with 2 small capacitors • Low power consumption 8 mW at ± 40V Applications • • • • High voltage power supply Resolver excitation Wideband high voltage amplifier Transducer power supply Features • Capable of operation over the range of ± SV to ± 40V • Large output voltage typically ± 3SV for the LH0004 and ± 33V for the LH0004C into a 2 kO load with ± 40V supplies Schematic and Connection Diagrams R2 UK COMPENSATION TUH/5559-2 COMP.!__~~____~____' -____~::~---1--~10~~~~MP COMPENSATION Nota: Pin 7 must be grounded or connected to a voltage at least 5V mora negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby currant will be Increased. A resistor may be Inaerted in aertas with Pin 7 to Pin 9. The value of the resistor should be a maximum of 100 kG par voit of potential between Pin 3 and Pin 9. Order Number LHOOO4H, COMP .,;;5__""______. .__-1 LHOO04H-MILor LHOOO4CH See NS PaCkage Number H10G R3 30GK R4 311K RS &GK L.____-t~------~--------~~~3~VTL/H/5559-1 1-116 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2) Supply Voltage ±45V Power Dissipation (see Curve) 400mW ±7V Differential Input Voltage Equal to Supply Input Voltage Short Circuit Duration 3 sec Operating Temperature Range LHOO04 LHOO04C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) ESD rating to be determined. - 55'C to + 125'C O'Cto +85'C -65'C to + 150'C 260'C Electrical Characteristics (Note 1) Parameter Min = LHOOO4C LHOO04 Conditions Max 0.3 Min Units Typ Max 1.0 2.0 0.3 1.5 3.0 mV Input Offset Voltage Rs:<;; 1000., TA Rs:<;; 1000. Input Bias Current TA = 25'C 20 100 300 30 120 300 nA Input Offset Current TA = 25'C 3 20 100 10 45 150 nA Positive Supply Current Vs Vs ±40V, TA ±40V = 25'C 110 150 175 110 150 175 p.A Negative Supply Current Vs Vs ±40V, TA ±40V = 25'C 80 100 135 80 100 135 /LA Voltage Gain = = = = = Vs ±40V, RL VOUT = ±30V = 100k, TA Vs = ±40V, RL VOUT = ±30V = 100k = 10k = 25'C Typ = 25'C 30 60 30 10 60 VlmV V/mV 10 Output Voltage Vs CMRR Vs = ±40V, Rs:<;; 5k VIN = ±33V 70 90 70 90 dB PSRR Vs = ±40V, Rs:<;; 5k I:N = 20V to 40V 70 90 70 90 dB Average Temperature Coefficient Offset Voltage Rs:<;; 1000. 4.0 4.0 p.VI'C 0.4 0.4 nAl'C 3.0 3.0 p.Vrms ±40V, RL ±35 Average Temperature Coefficient 01 Offset Current Equivalent Input Noise Voltage Rs = 1000., Vs = ±40V 1 = 500 Hz to 5 kHz, TA = 25'C ±30 ±33 Note 1: These specifications apply for ±5V :s; Vs :s; ±40V. Pin 7 grounded. with cspacilors Cl = 39 pF between Pin 1 and Pin 10. C2 ground. - 55'C to +125'C for the LHOO04. and O'C to +85'C for the LHOOO4C unless otherwise specified. Note 2! Refer to RETSO004X for LH0004H military speciflcstions. 1-117 ±30 V = 22 pF between Pin 5 and ~ ~-----------------------------------------------------------------------------------------, § :::E: Typical Applications ..J Input O~fset Voltage Adjust Voltage Follower RI- y+ >-_..........- OUTPUT 5M I C2 22 PF ·May be zero or equal to source resistance tor minimum offset 5M TL/H/5559-3 y- External Current Limiting Method 01 TL/H/5559-4 High Compliance Current Source 10K 02 +40 03 04 10K • >--41"'-- ~--~~---t~-OUTPUT 'V, ±E'N 10 = 10K = average forward voltage drop of diodes 01 to D4 at 20 p.A to 50 /lA 10K 22PF~ Tl/H/5559-5 10K - 1·118 TUH/5559-6 r-----------------------------------------------------------------------------, r:::J: Typical Performance Characteristics Input Voltage Range 8o - T. _-IIDC t-I I -- ~ ~~ r- ~ l- •• I I I I , 5 15 25 II 4i J5 SUPPLY VGlTAIIl (.v. Negative Supply Current . ...: ... • T.-Zl"e -- T,. _125°1: II I"""' i--' 2 Ii •, I"""' .. " 1) ~ ;;; -- ~ i31 SUfPLYVGlTAIIE(>V! .. . .: ! IZI iI ;: ;: II • 2 ,, • , 1.1 II 31 II Large Signal Frequency Response ~ III " ,, '" FREDUEIICV (Hz1 1\ I I I 111131. SUPPLY VDLTAGE ('V! ~ I.. ... ~ 31 HM-1-1-+ +-+-1--1 Ii H~---tO'§ ""-'--'-"'--1--1 IS 41 VslII:t48V i ~ . TrZfC \' 31 -, Package Power Dissipation , \ '.1 II I. ~ IOIIfAT_ \ o _HEAT_ , '" "1\ 1, 1, " " CI-31.F ,\CI-a-, ZI r- t- a - ZZ • F " I"\, ,\ 'JC - 125' Ct. l\ 31 _YVGllAGE('V! SUPPLY VGlTAIIE ('V) VI- ±4IV ""'1'\ el·CZ·' I- CI!3I~ ...... -...... . - r - ajzzr RL " III - 41 I R."IOOkTD"- Output Voltage D ~ .... ....- .e! ~ ~ .~ .- > ~ . 4'x.. 41 r;rlrI-r-.-.~~~ T.-IZI"C_ iii • R."I_ C ,.~ .• • T. -!l°C_ 1211 41 I I I I I I III :; 31 T. "-IIi"C-6, Open Loop Frequency Response . , I I ., - I I " r- Positive Supply Current e .a ,...., T,. =-II°C III iI ie I- ~ 2D - ~ ". T.-we T.-.a"C ..T.-IZS"e II III 1 iii - T.~I~Oe 1J . T.I_2li~- - r- SUPPLY VUlTAIEI'VI III Iii ,, ~.l .... Voltage Gain .. Input Bias Current 4i '",-_ct. '1\ .\ FREOUEIOCY IIbI .~ , • SI 110 III TEWERATURE (OCI TL/H/5559-7 1-119 o .,.. 'Of' g :::J: ..J tJ1Nati~nal Semiconductor ...... .,.. 'Of' o o :s......o .,.. N LH0021lLH0021C 1.0 Amp Power Operational Amplifier LH0041/LH0041 C 0.2 Amp Power Operational Amplif,ier g General Description :::J: The LH0021/LHOO21C and LH0041/LH0041C are general , 12 pin TO-8 (2.5 watts with clip on heatsink) and a power 8 purpose operational amplifiers capable of delivering large pin ceramic DIP (2 watts with suitable heatsink). The output currents not usually associated with conventional IC LH0021 and LH0041 are guaranteed over the temperature Op Amps. The LH0021 will provide output currents in exrange of -55'C to +125'C while the ,LH0021C and cess of one ampere at voltage levels of ± 12V; the LH0041 LH0041 C are guaranteed from - 25'C to + 85'C. delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the Features inputs and outputs are protected against overload. the de• Output' current vices are compensatei:t with a single external capacitor and LH0021 1.0 Amp are free of any unusual oscillation or latch-Up problems. LH0041 0.2 Amp The excellent input characteristics and 'high output capabili• Output voltage swing ty of the LH0021 make it an ideal choice for power applica- ' , LH0021 ±12V into 100. tions such as DC servos, capstan drivers, deflection yoke ± 14V into 1000. LH0041 ' drivers, and programrhable power supplies. , • :Wide full power bandwidth 15 kHz The LH0041 is particularly suited for applications such as 100mW,i!t ±15V' • Low standby power torque driver for inertial 'guidance systems, diddle yoke driv• Low il)put offset er for alpha-numeric CRT displays, cable drivers, and ,provoltage and current 1 mV and 20 nA grammable power supplies for automatic test equipment. 3.0V/Ji-s • High slew rate The LH0021 is supplied in a 8 pin TO-3 package rated at 20, • High open loop gain 100 dB watts with suitable heatsink. The LH0041 is supplied in both ..J ...... .,.. N o o :s Schematic Diagram COMP C(00) 3000 pF OUT TLIH/9298-1 'Rse external on "G" and "K" packages. Rse internal on "J" package. Offset Null connections available only on "G" package. 1-120 Output Short Circuit Duration (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±18V Supply Voltage Power Dissipation See Curves Continuous Operating Temperature Range LH0021/LH0041 LH0021C/LH0041C - 55°C to + 125°C - 25°C to + 85°C Storage Temperature Range - 65°C to + 150"C Differential Input Voltage ±30V Lead Temperature (Soldering, 10 sec.) Input Voltage (Note 1) ±15V ESD rating to be determined. Peak Output Current (Note 2) LH0021/LH0021C LH0041/LH0041 C 300°C r- o o Conditions Voltage Drift with Temperature Rs = 25°C Offset Voltage Drift with Time Input Offset ~urrent Te = 25°C Offset Current Drift with Temperature Offset Current Drift with Time Te = 25°C Input Resistance 1.0 3.0 5.0 3.0 6.0 7.5 3 25 5 30 5 Te = 25°C 0.3 Rs1000,aVeM= ±10V Input Voltage Range Vs = ±15V Power Supply Rejection Ratio Rs';; 1000, avs = ± 10V Voltage Gain Vs RL Vs RL 70 p.V/oC p.V/week 5 15 5 20 p.V/W 100 300 50 200 500 nA nA 0.1 1.0 0.2 1.0 2 300 1.0 0.3 1.0 90 ±12 500 1.0 1.0 70 nArC nAlweek 200 3 Common Mode Rejection Ratio mV mV 30 100 Input Capacitance Units Typ Max 2 Input Bias Current Output Voltage Swing LHOO21C Typ Max Min 5 Offset Voltage Change with Output Power nA p.A MO 3 pF 90 dB ±12 V 80 96 70 90 dB 100 200 100 200 V/mV = ±15V, Vo = ±10V = 1 kO, Te = 25°C = ±15V, Vo = ±10V = 1000 25 V/mV 20 ±13.5 14 ±11.0 ±12 Vs = ±15V, RL = 1000 Vs = ±15V, RL = 100, Te = 25°C ±13 ±14 ±10 ±12 V V Output Short Circuit Current Vs = ±15V, Te = 25°C, Rse = 0.50 1.2 1.6 1.2 1.6 Power Supply Current Vs = ±15V, VOUT = 0 2.5 3.5 3.0 4.0 mA Power Consumption Vs = ±15V, VOUT = 0 75 105 90 120 mW AC Electrical Characteristics for LHOO21/LHOO21 C (TA = 0.8 0.8 Amps 25°C, Vs = ± 15V, Cc = 3000 pF) Umlts Parameter Conditions Slew Rate Av = +1, RL = 1000 Power Bandwidth RL = 1000 LHOO21 Typ 0.8 3.0 LHOO21C Max 20 Small Signal Transient Response Small Signal Overshoot Settling Time (0.1 %) Min 1.0 3.0 Units Max V/p.s 20 kHz 0.3 1.5 5 20 10 30 Harmonic Distortion f = 1 kHz, Po = 0.5W Input Noise Voltage Rs = 500, B.W. = 10 Hz to 10 kHz Input Noise Current B.w. = 10 Hz to 10 kHz 1-121 Typ 1.0 4 Overload Recovery Time Min 0.3 aVIN = 10V,Av = +1 .... o ~ LHOO21 Min < 1000, Te < 1000 < 1000 Q ::::E: Limits Rs RS 2.... ~ DC Electrical Characteristics forLH0021/LH0021C(Note4) Parameter N 5: o o .... ...... 2.0 Amps 0.5 Amps Input Offset Voltage 5: .... ...... 5: g Absolute Maximum Ratings p.s % 4 JLS 3 3 p.s 0.2 0.2 % 5 5 p.V/rms 0.05 0.05 nA/rms DC Electrical Characteristics for LH0041/LH0041C (Note 4) Limits Parameter , Conditions LHOO41 Min < 1000. TA = < 1000 Rs < 1000 Input Offset Voltage Rs Rs Voltage Drift with Temperature 25°C Offset Voltage Drift with Time LI::IOO41C Typ Max 1.0 3.0 5.0 Min Units Typ Max 3.0 6.0 7.5 3 5 5 5 p.V/oC p.V/week p.v/W 15 15 Offset Voltage Adjustment Range (Note 5) 20 20 Input Offset Current TA = 25°C 30 100 300 50 200 500 0.1 1.0 0.2 1.0 Offset Voltage Change with Output Power Offset Current Drift with Temperature Offset Current Drift with Time ' Input Bias Current Input Resistance 2 TA = 25°C 100 TA = 25°C 0.3 Input Capacitance RS1000. aVCM= ±10V Input Voltage Range Vs = ±15V 70 300 1.0 200 1.0 0.3 90 70 +12 Power Supply Rejection Ratio Rs ~ 1000. avs = ±10V Voltage Gain Vs= RL = Vs= RL = ±15V.VO= ±10V 1 kO. TA = 25°C ±15V.Vo= ±10V 1000 mV 2 3 Common Mode Rejection Ratio mV mV nA nA nArC nA/week 500 1.0 nA p.A 1.0 MO 3 pF 90 dB 'V +12 80 96 70 90 dB 100 200 100 200 V/mV 14 ±13 25 ±13 Vs = ±15V. RL = 1000 Output Short Circuit Current Vs= ±15V.TA='25°C (Note 6) 200 Power Supply Current Vs = ±15V. VOUT = 0 Power Consumption Vs = ±15V. VOUT = 0 AC Electrical Characteristics for LH0041/LH0041C(TA = ' V/mV 20 Output Voltage Swing ±14 V 300 200 300 mA 2.5 3.5 3.0 4.0 mA 75 105 90 120 mW 25°C. Vs = ±15V. Cc = 3000pF) Limits Conditions Parameter Slew Rate Av = +1. RL = 1000 Power Bandwidth RL = 1000 LHOO41 Typ 1.5 3.0 LHOO41C Max 20 Small Signal Transient Response Small Signal Overshoot Settling Time (0.1 %) Min Min Typ 1.0 3.0 Units Max V/p.s 20 kHz 0.3 1.0 0.3 1.5 5 20 10 30 % p.s p.s aVIN = 10V.Av = +1 4 3 3 Harmonic Distortion f = 1 kHz. Po = 0.5W 0.2 0.2 % Input Noise Voltage Rs = 500. B.W. = 10 Hz to 10 kHz 5 5 p.V/rms Overload Recovery Time 4 p.s B.W. = 10Hzt010kHz Input Noise Current 0.05 0.05 nA/rms Note 1: Rating applies for supply voltages above ± lSV. For supplies less than ±lSV, rating is equal to supply voltage. Note 2: Rating applies for LH0041 G and LH0021 K with FIsc = on. Note 3: Rating applies as long as package power rating is not exceeded, Note 4: Specifications apply for ±SV ,;; Vs ±18V, and -S5"C ,;; Te = ,;; 125"C for LHOO21K and LH0041G, and -2S'C ,;; Te ,;; +85'C for LHOO21CK, 'LH0041CG and LH0041CJ unless otherwiss'spacifted. Typical values are for 25"C only. Note 5: TO-a "G" packagGs only. " Note 6: Rating applies for "J" DIP package, and lor TQ-a ",G" package with Rse = 3.3 ohms. Note 7: See Typical Performance Charactaristics. 1-122 r-----------------------------------------------------------------------------~r % g Typical Performance Characteristics .... ...... N Safe Operating Are_LH0021 Power Deratlng-LH0021 - 2.0 50 8JC=2°C/W 1.5 ~ ::II IN INIfE EAT SINK ~ :s I IS 10 ~ -N-+8JA=2So C/W NO HEAT SINK o o so 25 75 lOll 125 0.5 0.0 z ~ -0.5 -1.0 -1.5 l~ I-"'" -IS -10 ISO 14 10 IA ~ '/ / 2 4 6 V A I ~-_o.15V Rl &19. 1% R3 >~",_o-15V 15K 1% VOUT2 = -VOUT R3' R4 R4 15K 1% -18TO -38V TUH/9298-10 t-126 r- % Typical Applications (Continued) S .... CRT Deflection Yoke Driver +1SV ...... 5: S .... o "! .......__:"f.7f 3000pf ..... r% YIN g .... ...... OEfLECTlON YOKE lOUT '" 5: g .... o ~ AI 10hm lW TUH/9298-11 Two Way Intercom +15Y r----I I -----, I I I I I I I -15V STATION 1 lOOK STATION 2 20nF TUH/9298-12 Programmable High Current Source/Sink A2 lK TL/H/9299-13 1-127 u.-------------------------------------------------------~--------------, .... , "'g" Typical Applications (Continued) ....:::E:...... .... "'g" :3 oN.... DC Servo Amplifier Power Comparator 11K +15V INPUT o-Jl,iV\t--t IK o o ......... :::E: ... N g ZIK ....:::E: -15Y SIZE ISERYO MOTOR 18 'Type 327 Lamp TUH/9298-14 Y- TL/H/9298-15 Auxiliary Circuits LH0021 Unity Gain Circuit with Short Circuit limiting LH0041G Unity Gain with Short Circuit Limiting Y' Y' >.:.:...........0 OUTPUT > -........0 OUTPUT INPUT ISC~~ IOC Rsc ~ 1.4 amps ~ 0.7 Rsc ~ Y- 210 mA yTLIH/9298-16 TUH/9298-17 LH00411LHOO21 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)" LH0041G Offset Voltage Null Circuit" HZ HZ 3nF 3 nF HI INPUT o-.J\M~"'Of Rl >~""OOUTPUT >~""OOUTPUT 10K R3 V' RI H3 Av~ lOOK Z8K >IIII......WI\r-. R3 R2 -Fi1 Y- RI Y- ~ 1lIII0 ~ TUH/9298-19 R3 Av~ -~ RI TUH/9298-18 1-128 --------------------------------------------------------------------------------------l ~ Auxiliary Circuits (Continued) ........r- Operation from Single Supplies POSITIVE 3&V V· ::::E: g IOV N .... o .... 5: g A .... .... 5: ~ .... o V'-IV:S:VouT :S:1V C) TLlH/9298-20 NEGATIVE :;:,: . {o-----, • TL/H/929B-21 1-129 (.) .,... 'OIl' g 3..... .,... Auxiliary Circuits (Continued) Operation from Non:Symmetrlcal Supplies V' < +3&V - V- V' ~+liV 'OIl' g 3 Q ~ 8 ::c '-.c:...o......,.. OUTPUT ">~~O OUTPUT ...I ..... .,... V· -IV >VQU1'>v- +IV 8 ::c ...I V-~-3IV+V' V-<-IV TLlH/9298-22 TLlH/9298-23 'For additional offset null circuit techniques see National Linear Applications Handbook. 1-130 I!J1National Semiconductor LH0024 High Slew Rate Operational Amplifier General Description The LH0024/LH0024C is a very wide bandwidth, high slew rate operational amplifier intended to fulfill a wide variety of high speed applications such as buffers to A to D and D to A converters and high speed comparators. The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers. The LH0024/LH0024C's combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters, oscillators, and comparators as well as many high speed general purpose applications. The LH0024 is guaranteed over the temperature range -55·C to + 125·C, whereas the LH0024C is guaranteed - 25·C to + 85·C. Features • • • • • • Very high slew rate-500 V/p.s at Av = +1 Wide small signal bandwidth-70 MHz Wide large signal bandwidth-15 MHz High output swing-± 12V into 1k Low input offset-2 mV Pin compatible with standard IC op amps Schematic and Connection Diagrams COMP/NULl 5 Metal Can Package COMP/NULL r---~~--~~-t~------------~---ov+ RI R5 • ---+--{ I OUTPUT COMP r-------+---G COMPlNULLo-----. . . y- TL/K/5552-2 INPUTS Top View Note: For heat sink use Thermalloy 2230-5 series. Order Number LH0024H, LH0024H-MIL or LH0024CH See NS Package Number H08B R4 4 ~---------t-----4~~~-4~-ovTL/K/5552-1 1-131 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2) Storage Temperature Range Lead Temperature (Soldering, 10 sec.) Supply Voltage Input Voltage Differential Input Voltage Operating Temperature Range 260'C ESD rating to be determined. ±18V Equal to Supply ±5V Power Dissipation - 65'C to + 150'C LH0024 LHOO24C - 55'C to + 125'C - 25'C to + 85'C 600mW DC Electrical Characteristics (Note 1) Parameter LHOO24 Conditions Min Max 2.0 4.0 6.0 Input Offset Voltage Rs = 50n, TA = 25'C Rs = 50n Average Temperature Coefficient of Input Offset Voltage Vs = ±15V, Rs = 50n - 55'C to 125'C -20 Input Off$et Current TA = 25'C 2.0 Input Bias Current TA = 25'C Supply Current Large Signal Voltage Gain Vs = ±15V, RL = 1k, TA = 25"C Vs = ±15V, RL = 1k LHOO24C Typ Min Units Typ Max 5.0 8.0 10.0 -25 5.0 10.0 4.0 15 30 40 12.5 15 mV mV /LV/'C 15.0 20.0 !LA 18 40 50 /LA /LA 12.5 15 /LA mA 4 3 5 3 2.5 4 V/mV V/mV Input Voltage Range Vs = ±15V ±12 ±13 ±12 ±13 V Output Voltage Swing Vs = ±15V, RL = 1k, TA = 25"C Vs = ±15V, RL = 1k ±12 ±10 ±13 ±10 ±10 ±13 V V Slew Rate Vs = ±15V, RL = 1k, C1 = C2 = 30pF, Av = +1, TA = 25"C 400 500 250 400 VI/Ls 60 60 dB 60 60 dB Common·Mode Rejection Ratio Vs = ±15V, aVIN = ±10V, Rs = 50n Power Supply ±5V ~ Vs ~ ±18V, Rejection Ratio Rs = 50n Note 1: These specHications apply for Vs = ±15Vand -55'C 10 Nole 2: Refer to RETSOO24 for LH0024H military specHicalions. + 125'C forthe LHOO24 and -25'C 10 +85'C for the LHOO24C. Frequency Compensation Frequency Compensation Circuit TABLE I Closed Loop Gain C1 Cz riC, C3 100 0 0 0 20 0 0 0 10 0 20pF 1 pF 1 30pF 30pF 3pF Rl I 'ISV t RZ 01 JIof I~ Z~I -!.CZ·' IJlD024 RI • OUTPUT 5 l ~~.~ . , "I -ISV 1·132 I ":" ':" TL/K/5552-6 r- :::z::: Typical Performance Characteristics o o N Maximum Power Dissipation IIIG I"- 1. .IDO co ... INFINITE IlEAT SlNKl 8.., - 18O"C/W I\. ~4011 NO HEAT SINK ,. ~310 I D 0 25 l 15 co l II lOOK 10K 10M 1M fREOUENCY IH,I 0 1111 110M :> Z C C II: ~ +5 ~ co ~ .. 0 lDO lID 3011 TlMEIIII! TA ·25·C ./ ... iii ~ 15 ,. ~ ~ 5co 5 V ~ ... 0 SDO 5 10 20 IS 25 Tol.-H!C !! ! l > . 12 . /: . t. 1/ •• I ~zo z ~.'25·e I - 1 i+""" . n- 0 11 V V S V 5 0 SUPPLY VOLTAGE I'VI I. ~ 10 0 0 Supply Current vs Supply Voltage 13 I 1 1 I 10 12 I I. II 11 SUPPLY VOLTAGE I-VI 20 - r- rTl· -sJ'e - ..~ .. - l _ ... 5 0 15 Input Bias Current vsVoltage ; ~ 10 SUPPLY VOLTAGE I'VI ~ 15 I ~12I'C- r- • lDOM Output Voltage Swing co D 10M 20 co , 1M R" ·IK ;; 15 -10 I. FREQUENCY IHd 20 Cl=C2-3hf r-TAI:.Z5·~- c--t-~L 'IK Ay=+l "co -5 2D Input Voltage vs Supply Voltage i+" ~ Av··:i.1 D 150 co Vs" ·l1V &1 "'C2:3O,F Rl " lK 5 Vs· ttl .. .. co Voltage Follower Pulse Response :> = 40 ~ ~ 15 101 125 50 TEMPERATURE rCI '" C c .. ~ RL • , . f ... ,,2S·C . . ,. ~ I"vs·:t'i !ID ~ I,r'\ 8". - 250"C/W 1210 II 20 Ii "" Open Loop Frequency Response 25 ~.. "'- c--.."' ~ ~5OD Large Signal Frequency Response I t ..~e f--- f--~o·J,Z5'C- r1 e I • 1 10 12 I. II II SUPPLY VOLTAGE I'VI TLlK/5552-7 Applications Information LAYOUT CONSIDERATIONS quire adjustment in order to perfectly cancel the input capacitance of the device. The LH0024/LH0024C, like most high speed circuitry, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near the device as is practicable with at least 0.01 p.F disc type capacitors. Compensating capacitors should also be placed as close to device as possible. The case of the LH0024 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in order to minimize stray capacitances. COMPENSATION RECOMMENDATIONS Compensation schemes recommended in Table 1 work well under typical conditions. However, poor layout and long lead lengths can degrade the performance of the LH0024 or cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout. In particular, when operating at a gain of -1, C3 may re- The LH0024/LH0024C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink such as the Thermalloy 22288 or equivalent. When operating the LH0024/LH0024C at a gain of the value of R1 should be at least 1 kG. + 1, HEAT SINKING 1-133 • Typical Applications TTL Compatible Comparator I. I. Offset Null 10K I pF . +I5V RI +I5V RZ 101C ~20PF RI V... o--~""--,, IIC INPUT o--"'\j'V\~"""" - >'~..~~ OUTPUT TL/K/5552-3 TLlK/5552-4 Video Amplifier ·IZV Rl 101C ZpF O.I.F .........-J llC INPUT - - , . . . . ."'\j"""',...t--.....;~ RI ~ R2 ~ R3 ~ R4 R4 101C A ~ R5 + (R3R4) ~ 5 v (R3) (R4) TLlK/5552-5 1-134 r- :::z:: 8 ttJNational Semiconductor w N LH0032 Ultra Fast FET-Input Operational Amplifier General Description Features The LH0032 is a high slew rate, high input impedance differential operational amplifier suitable for diverse applications in fast signal handling. The high allowable differential input voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region. • • • • 500 VI IJ-s slew rate 70 MHz bandwidth 10120 input impedance As low as 2 mV max input offset voltage • FET input • Peak output current to 100 mA The LH0032's wide bandwidth, high input impedance and high output capacity make it an ideal choice for applications such as summing amplifiers in high speed 0 to A converters, buffers in data acquisition systems and sample and hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 is guaranteed for operation over the temperature range - 55'C to + 125'C, the LH0032C is guaranteed for - 25'C to + 85·C. Schematic v·o-----_e~--~----_e~------~--------------_, RI R2 R3 11 Ij M,gw{ I, II Ii,I COMPENSATION I; ii OUTPUT COMPENSATION INVERT INPUT 111 NON·INVERT INPUT RS R5 R7 117 III R6 OUTPUT RI III R4 V-o---------~--------t_----_e~--_4~----------~ TUK/5265-1 1-135 Absolute Maximum Ratings Supply Voltage, Vs Input Voltage, VIN Differential Input Voltage Power Dissipation, Po Operating Ratings (Note 9) ±18V Temperature Range, TA LH0032G LH0032CG ±Vs ±30Vor ±2Vs (Note 10) Steady State Output Current Storage Temperature Range L Junction Temperature, TJ LH0032G Thermal Resistance, (Note 8) 8JA G Package 8JC G Package ±1.00mA 65~C to .; 50'C t Lead Temp. (Soldering, 10 seconds) - 55'C to -+ 125'C - 25'C to + 85'C 300'C + 175'C {OO'C/W 70'C/W " DC Electrical Characteristics Symbol Parameter Vs = :f:15V, TMIN';; TA';; TMAX unless otherwise noted (Note 2) (TA = TJ) Test Conditions Min LHOO32 Typ LHOO32C' Max Min TYP' Max Units Vos Input Offset Voltage TA=TJ=25'C (Note 3) 2 5 10 2 15 20 mV I:..vosl Average Offset Voltage Drift (Note 4) 15 50 15 50 ",VI'C ~T los Input Offset Current Ie Input Bias Current 'VINCM Input Voltage Range CMRR Common Mode Rejection Ratio AVOL Open-Loop. Voltage Gain VIN=O TJ = 25'C (Note 3) TA = 25'C (Note 5) 25 250 25 50 500 5 pA pA nA TJ = 25'C (Note 3) TA = 25'C (Note 5) 100 1 50 500 5 15 pA nA nA ~VIN= ±10V ' VO= ±10V, f=1 kHz RL = 1 kO (Note 6) Vo Output Voltage Swing RL = 1 kO Is Power Supply Current TA=25'C, 10 = 0 (Note 5) PSRR Power Supply Rejection Ratio (±5to ±15V) TJ=25'C ±10 ±12 ±to ±12 V 50 60 50 60 dB 60 70 60 70 dB ±13 V 57 ±10 57 ±13.5 18 ~Vs=10V 50 'Guaranteed by CMRR test condnion. ,. 1-136 60 ±10 20 20 50 60 22 rnA dB r AC Electrical Characteristics Vs = Symbol Parameter Conditions SR Slew Rate ts Settling Time to 1% of Final Value ts Settling Time to 0.1 % of Final Value tR Small Signal Rise Time tD Small Signal Delay Time ::c 0 ±15V, RL = 1k!l, TJ = 25°C(Note7) Av = +1 Av = -1, 0 Min Typ 350 500 V/p.s 100 ns AVIN = 20V Max 300 Av = +1, AVIN = 1V Units w N ns 8 20 10 25 Note 1: In order to limit maximum iunclion temperature to + I 75·C, it may be necessary to operate with VS < ± 15V when TA or TC exceeds specific values depending on the Po wHhin the device package. Total Po is the sum of quiescent and load·related dissipation. See applications notes AN·277, "Applications of Wide-Band Buffer Amplniers" and AN-253, "High·Speed Operational-Amplifier Applications" for a diSCUSSion of load-related power dissipation. Note 2: LH0032G is 100% production tested as specified at 25·C, 125"C, and -55·C. LH0032CG is 100% production tested at 25·C only. Specifications at temperature extremes are verified by sample testing. but these limits are not used to calculate outgoing quality level. Note 3: Specification is at 25·C junction temperature due to requirements of high-speed automatic testing. Actual values at operating temperature will exceed the value at TJ ~ 25 C. When supply voltages are ± 15V. no-load operating junction temperature may rise 4O-60"C above ambient, and more under load conditions. Accordingly. Vas may change one to several mV. and Ie and los will change significantly during warm·up. Refer to Ie and los vs. temperature grsph for expected values. Note 4: LH0032G is 100% production tested for this parameter. LH0032CG is sample tested only. LlmHs are not used to calculate outgoing qualHy levels. !J.Vosl !J.T is the average value calculated from measurements at 25·C and TMAX. Nole 5: Measured in still air 7 minutes after application of power. Guaranteed thru correlated automatic pulse testing. Nole 6: Guaranteed thru correlated automatic pulse testing at TJ ~ 25"C. Nole 7: Not 100% production tested; verified by sample testing only. LimHs are not used to calculate outgoing qualily level. Nole 8: For operating at elevated tarnperatures,the device must be derated besed on the thermal resistance 6JA and TJ max. TJ = TA + P06JA. Nola 9: Absclute Maximum Ratings indicate IimHs beyond which damage to the device may occur. Operating Ratings indicate condHions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply, only for the test condHions listed. Note 10: The maximum power dissipation Is a function of maximum junction temperature TJ max, total thermal resistance 8JA, and, ambient temperature TA. The maximum allowable power dissipation at any ambient temperature is Po ~ (TJ max - TpJI8JA. Note II: See RETSOO32X for LH0032G military specnications. Connection Diagram OUTPUT COMPENSATION 8ALANCE/~ COMPENSATION HC -L ~ 00 v+ 70 @ INV~ n I ' + @ 0 0T 1'9' v\!I. 1 INPUT!/ ' LOUT 6 NON·INV INPUT NC T NC NC TOP VIEW Order Number LH0032G, LH0032G/883 or LH0032CG See NS Package Number G128 1-137 TLlK/5265-23 ' • Typical Performance Characteristics Input Voltage Range and Output 22 1 m f=~--+-~~-t--+--1 ~ Ii 18 13 161:;0,,",,"""+--1::;;_1""'==1---( BO,dePlot 80 (Uncompensated) mVoltage va. SUpply Voltage 24 r~...;.:;r:;--,--.--, ;; +1 j RL=lk Tc = 25'C --+----+---.~ 15 1----+--+----1'---1 ~ 1----+---JoI'~y---I 10 GAIN ~ IIIIm 12 ~-t--t--t--+-~--1 10 '---'-__"---'-__. l - - I . _ . J 5 10 15 20 SUPPlY VOLTAGE I tV) o 26 Response Iv=±, -i1f -titm i I 1.m I '" : 135 .... J J 1M 10M 40 30 ~ 10 RL=lk o 100M 10k 1M 10M FREQUENCY 1Hz) lOOk 1 1 ...~ ~ -5 ::I 100M Vs=±15V ""=+10 RL=lk ~ "§! 0 100M Normalized Input Bias and Offset 104 Current va. Junction Temperature 10 ... 270 1- FREQUENCY (Hz) ~ ~ 100 Large Signal Pulse Response ~ +5 l!I ~ ::I .........w.......u. ~u.w 10 Vs= ±15V ""=+1 RL =Ik I ~ 20 10 Large Signal Pulse Response +10 . g 12 100M 10 - 14 225 ~~I~ +iJv ;: 16 6 lOOk 1M 10M FREQUENCY 1Hz) 90 80 i 18 135 c; 180 COmmon Mode Rejection Ratio va. Frequancy 51 ~ m o LU.IlIIWL...U.IlIIWUJ.i 10k lOOk 1M 10M FREQUENCY 1Hz) ! 24 22 kttffi~~~~~~-+H#~ 20 10k' Large Signal Frequency ~~~h;rmnr.........mn 60 r m 10 15 SUPPLY VOLTAGE I± V) 45 90 1111111 o O ' - -.........----'-_--'_-.J Bode Plot (Unity Gain 80 ! PHASE ~ E 14 i 'I -5 0 -10 -10 ~ 100 200 300 400 10" 500 100 TIME Ins) 200 300 400 500 25 45 65 85 105 125 145 165 JUNCTION TEMPERATURE I'C) TIME Ins) NormaUzed Input Blaa , 100 Current During Warm-Up Ii ":; 1 Vs ±15V TA-25'C tZO Total Input Noise Voltage va. Frequency' 118 10G gO .0 10 60 RS-l." sa I-40 ]0 20 1 1 I-- ...... AS 101 10 1 o 11111 o 2 4 10 10 TIME FROM POWER TURN·ON IMINUTES) 101 . 10' FREQUENCY (Hz) TlIK/5265-2 'Noise vollage includes contribution from source resistance. 1-138 r::r:: Q Auxiliary Circuits Q Co) N Output Short Circuit Protection Offset Null ,....-....--v+ v+ LM113 11 6211 -j v- v- TL/K/5265-15 TUK/5265-16 Typical Applications Unity Gain Amplifier 10X Buffer Amplifier 5 pF 8 pF-l0 pF 2k INPUT-..J\oM-"'I 11 >--.-OUTPUT v_10 J OUTPUT 9k l00pF 100 TUK/5265-17 TL/K/5265-18 100X Buffer Amplifier Non-Compensated Unity Gain Inverter v+ v+ 10k + 10k v- OUTPUT 270 10k OoOI 100 TLlK/5265-19 T v TLlK/5265-20 1-139 Typical Applications (Continued) High Speed Sample and Hold l00ll VuuT v+----~~~-- __ LOGIC ..... CONTROL .....___'Use polystyrene dielectric for minimum drift . TLlK/5265-21 v- r----*----.,I High Speed Current Mode MUX I 3.8 pF R5 11 12 14 TL/K/5265-22 Applications Information POWER SUPPLY DECOUPLING The LHOO32/LH0032A, like most high speed circuits, is sensitive to layout and stray capacitance. Power supplies should be by passed as near to pins 10 and 12 as practicable with low inductance capacitors such as 0.01 ",F disc ceramics. Compensation components should also be located close to the appropriate pins to minimize stray reactances. INPUT CURRENT Because the input devices are FETs, the input bias current may be expected to double for each 11'C junction temperature rise. This characteristic is plotted in the typical performance characteristics graphs. The device will self-heat due to internal power dissipation after application of power thus raising the FET junction temperature 40-60'C above freeair ambient temperature when supplies are ± 15V. The de1-140 .-------------------------------------------------------~r % g Applications Information (Continued) Compensating the LH0032 With the LH0032, two compensation schemes may be used, depending on the designer's specific needs. vice temperature will stabilize within 5-10 minutes after application of power, and the input bias currents measured at that time will be indicative of normal operating currents. An additional rise would occur as power is delivered to a load due to additional internal power dissipation. There is an additional effect on input bias current as the input voltage is changed. The effect, common to all FETs, is an avalanche-like increase in gate current as the FET gateto-drain voltage is increased above a critical value depending on FET geometry and doping levels. This effect will be noted as the input voltage of the LH0032 is taken below ground potential when the supplies are ±15V. All of the effects described here may be minimized by operating the device with Vs~ ±15V. These effects are indicated in the typical performance curves. The first technique is shown in Figure 14. It offers the best 0.1 % settling time for a ± 10V square wave input. The compensation capacitors Cc and CA should be selected from Figure 15 for various closed-loop gains. Figure 16 shows how the LH0032 frequency response is modified for different value compensation capacitors. Although this approach offers the shortest settling time, the falling edge exhibits overshoot up to 30% lasting 200 to 300 ns. Figure 17 shows the typical pulse response. R3 R2 INPUT CAPACITANCE The input capacitance to the LH0032/LH0032C is typically 5pF and thus may form a significant time constant with high value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a small capacitor across the feedback resistor. The value is strongly dependent on layout and closed loop gain, but will typically be in the neighborhood of several picofarads. In the non-inverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents away from the non-inverting input and to reduce the effective input capacitance. A unity gain follower so treated will have an input capacitance under a picofarad. DUTPIIT INPUT 1_"o'llRl",""_"'I -15V TLlK/5265-27 , FIGURE 14. LHOO32 Frequency Compensation Circuit I 810 iii;$ II HEAT SINKING While the LH0032/LH0032A is specified for operation without any explicit heat sink, internal power dissipation does cause a significant temperature rise. Improved bias current performance can thus be obtained by limiting this temperature rise with a small heat sink such as the Thermalloy No. 2241 or equivalent. The case of the device has no internal connection, so it may be electrically connected to the sink if this is advantageous. Be aware, however, that this will affect the stray capacitances to all pins and may thus require adjustment of circuit compensation values. l'\cC 5 !il I ill 1111 C I o 1 10 100 CLOSED LOOP GAIN TL/K/5265-28 FIGURE 15. Recommended Value of. Compensation Capacitor vs. Closed-Loop Gain for Optimum Settling Time For additional applications information request Application Note AN-253. 1-141 Co) N ~ r-----------------------------------~----------------------------------------------------_, CO) g Applications Information (Continued) :::E: H-iMA~V0N.L e~m=~p~~ll~~I-~ ..:.I Btl = 6D I:::IoI~N'H!IIII;Cc 1 pF "'... ee=6pF 0 ~ ~~ ~ =10 F z 40 -45 ~ t\ ~. ~ i~ i!jm_- ~ ~ ~ !ilE "iiF!::::=~I'MfIN~~.N-HIIIH -90 i I=11~t~·=~mlOPFl 20 eC PIIAS 111111 I.."" VS=",16V I[C~C=lrFi"'"''-'--'''.,...-135 RL=lk 1m I II '" TA=250C Cc=Ii.j: 1-'\ -20 L...1..LJ"JJ.""Wl-m.LJJ.WUL...J....L'.LWI ~iL.J.~WU-1Bt1 10k lOOk 1M 10M 100M o FREQUENCY (Hz) CLOSED LOOP GAIN TLlK/5265-29 TL/K/5265-31 FIGURE 16. The Effect of Various Compensation Capacitors on LHOO32 Open Loop Frequency Response FIGURE 18. Recommended Value of Compensation Capacitor vs. Closed-Loop Gain for Optimum Slew Rate 10V I 10V \ \ 10V \ I\I.·~' V I / \ 10llns \ ~ 10V SOns TL/K/5265-30 TLlK/5265-32 FIGURE 17. LHOO32 Unity Gain Non-Inverting Large Signal Pulse Response: TA = 2SoC,Cc = 10pF,CA = 100pF FIGURE 19. LHOO32 Unity Gain Non-Inverting Large Signal Pulse Response: Cc = 5 pF, CA =1000 pF If obtaining minimum ringing at the falling edge is the primary objective, slight modification to the above is recommended. It is based on the same circuit as that of Figure 14. The values of the unity gain compensation capacitors Cc and CA should be modified to 5 pF and 1000 pF, respectively. Figure 18 shows the suitable capacitance to use for various closed-loop gains. The resulting unity gain pulse response waveform is shown in Figure 19. The settling time to 1% final value is actually superior to the first method of compensation. However, the LH0032 suffers slow settling thereafter to 0.1 % accuracy at the falling edge, and nearly four times as much at the rising edge, compared to the previous scheme. Note, however, that the falling edge ringing is considerably reduced. Furthermore, the slew rate is consistently superior using this compensation because of the smaller value of Miller capacitance Cc required. Typical im· provement is as much as 50%. A more detailed discussion of this effect is provided in the Slew Response section of this Application Note. ' schematic, in which a 2700 resistor and a 0.01 p.F capacitor are shunted across the ,inputs of the device. This lag compensation introduces a zero in the loop modifying the response such that adequate phase margin is preserved at unity gain crossover frequency. Note that the circuit requires no additional compensation. a INPUT I~~lk~~lk~5~~ ~ f--'~ 270 lk 0.01,... ~. tJ LH0D32 >1.;..1 6,;/ ~10 OUTPUT .. -l:V 0.01'"f-= TL/K/5265-33 FIGURE 20. LH0032 Non-Compensated Unity Gain Compensation The second compensation scheme works well with both inverting or non-inverting modes. Figure 20 shows the circuit 1·142 r-------------------------------------------------------------------------.r% 8 ttlNational Semiconductor ~ N LH0042 Low Cost FET Op Amp General Description The LH0042 is a FET input operational amplifier with very high input impedance and low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The LH0042 is internally compensated and is free of latch-up. The LH0042 is specified for operation over the - 55'C to + 125'C military temperature range. The LH0042C is specified for operation over the - 25'C to + 85'C temperature range. The LH0042 op amp is intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents. The LH0042 provides low cost high performance for such applications as electrometer and photocell amplification, picoammeters, and high input impedance buffers. Features • High open loop gain-100 dB typ • Internal compensation • Pin compatible with standard IC op amps (TO-99 package) Connection Diagram Metal Can Package Ne v- TUKl5557-3 Top View Order Number LH0042H-MIL, LH0042H or LH0042CH See NS Package Number H08D 1-143 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage ±22V Power Dissipation (see Graph) SOOmW Input Voltage (Note 1) ±1SV ±30V Differential Input Voltage (Note 2) Voltage Between Offset Null and V- Short Circuit Duration Operating Temperature Range LH0022,LH0042,LHOOS2 LH0022C, LH0042C, LHOOS2C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) Continuous - SS·C to + 12S·C - 2S·C to + 8S·C -6S·Cto +1S00C 3000C ±o.sv DC Electrical Characteristics for LH0022/LH0022C (Note 3) TA = TJ(Max) Limits Parameter Conditions LH0022 Min Input Offset Voltage Rs ~ 100 kn, TA= 2S·C Vs = ±1SV Max 2.0 4.0 Rs ~ 100kn 10 Offset Voltage Drift with Time Input Offset Current Units Typ Max 3.S 6.0 mV 7.0 mV 1S 3 TA = 2S·C (Note 4) /LVrC 4 2.0 1.0 /LV/week S.O pA 2.0 O.S nA Doubles Every 10·C Doubles Every 100C 0.1 0.1 0.2 Temperature Coefficient of Input Offset Current Offset Current Drift with Time Input Bias Current Min S.O Rs';; 100kn, Vs = ±1SV Temperature Coefficient of Input Offset Voltage LH0022C Typ TA = 2S·C (Note 4) pAlweek 2S pA 10 2.S nA Doubles Every 100C Doubles Every 10·C Differential Input Resistance 1012 1012 Common Mode Input Resistance 1012 1012 n 4.0 4.0 pF S Temperature Coefficient of Input Bias Current Input Capacitance 10 10 n Input Voltage Range Vs = ±1SV ±12 ±13.S ±12 ±13.S V Common Mode Rejection Ratio Rs';; 10 kn, VIN = ±10V 74 90 70 90 dB Supply Voltage Rejection Ratio Rs';; 10kn, ±SV ~ Vs ~ ±1SV 74 90 70 90 dB Large Signal Voltage Gain RL=2kn,VOUT= ±10V TA = 2S·C, Vs = ±1SV 7S 100 7S 100 V/mV RL = 2kn, VOUT = ±10V Vs = ±1SV 30 Output Voltage Swing Output Current Swing RL = 1 kn, TA = 2S·C Vs = ±1SV ±10 RL=2kn,Vs= ±1SV ±10 VOUT = ±10V, TA = 2S·C ±10 V/mV 30 ±12.S ±10 ±12 V ±1S mA ±10 ±1S ±10 V Output Resistance 7S 7S n Output Short Circuit Current 2S 2S mA Supply Current Vs = ±1SV Power Consumption Vs = ±1SV 2.0 2.S 7S 1·144 2.4 2.8 mA 8S mW DC Electrical Characteristics for LH0042/LH0042C (Note 3) Limits Parameter Conditions LHOO42 Min Input Offset Voltage Rs"; 100k!l Temperature Coefficient of Input Offset Voltage Rs"; 100k!l LHOO42C Typ Max 5.0 20 Min 10 Offset Voltage Drift with Time Units Typ Max 6.0 20 15 7.0 mV /LV/'C 10 /LV/week Input Offset Current TA = 25'C (Note 4) 1.0 5.0 2.0 10 pA Input Bias Current TA = 25'C (Note 4) 10 25 15 50 pA Temperature Coefficient of Input Bias Current Doubles Every 10'C Doubles Every 10'C Differential Input Resistance 1012 1012 Common Mode Input Resistance 1012 1012 !l 4.0 4.0 pF Input Capacitance !l ±12 ±13.5 ±12 ±13.5 V Common Mode Rejection Ratio Rs"; 10k!l, VIN = ±10V 70 86 70 80 dB Supply Voltage Rejection Ratio Rs"; 10k!l, ±5V,,; Vs"; ±15V 70 86 70 86 dB Large Signal VOltage Gain Rs"; 2 k!l, VOUT = ±10V, TA = 25'C 50 100 25 100 V/mV ±12.5 ±10 Input Voltage Range 30 RS";2k!l,VOUT= ±10V Output Voltage Swing Output Current Swing RL = 1 k!l, TA = 25'C ±10 RL = 2k!l ±10 VOUT = ±10V ±10 25 V/mV ±12 V ±15 mA ±10 ±15 ±10 V Output Resistance 75 75 !l Output Short Circuit Current 20 20 mA Supply Current Vs = ±15V Power Consumption Vs = ±15V 2.5 3.5 105 1·145 2.8 4.0 mA 120 mW DC Electrical Characteristics for LH0052/LH0052C (Note 3) (Continued) Limits Parameter Conditions LHOO52 Min Input Bias Current TA = 25°C (Note 4) Typ Max 0.5 2.5 Min Typ Max 1.0 5.0 pA 0.5 nA 2.5 Temperature Coefficient of Input Bias Current Units LHOO52C Doubles Every 1COC Doubles Every 1COC Differential Input Resistance 1012 1012 n Common Mode Input Resistance 1012 1012 n 4.0 pF Input Capacitance 4.0 ±12 ±13.5 ±12 ±13.5 V Input Voltage Range Vs = ±15V Common Mode Rejection Ratio Rs:S; 10 kn, VIN = ± 10V 74 90 70 90 dB Supply Voltage Rejection Ratio Rs:S; 10 kn, ±5V:S; Vs:S; ±15V 74 90 70 90 dB Large Signal Voltage Gain RL = 2 kn, VOUT = ±10V Vs = ±15V, TA = 25°C 75 100 75 100 V/mV RL = 2 kn, Your = ±10V Vs = ±15V 30 Output Voltage Swing RL = 1 kn, TA = 25°C Vs = ±15V ±10 RL = 2kn, Vs = ±15V ±10 Output Current Swing Your = ±10 ±10V, TA = 25°C Output Resistance 30 ±12.5 ±10 Output Short Circuit Current ±10 25 Vs = ±15V Power Consumption Vs = ±15V ±12 V ±15 mA 75 n ±10 ±15 75 Supply Current V/mV V 3.5 3.0 105 AC Electrical Characteristics for all amplifiers (TA = mA 25 3.0 3.8 rnA 114 mW 25°C, Vs = ±15V) Limits Parameter Conditions Slew Rate Voltage Follower Large Signal Bandwidth Voltage Follower LHOO22/42/52 Min Typ 1.5 3.0 Units LHOO22C/42C/52C Max Min Typ 1.0 3.0 Max V/p.s 40 40 kHz Small Signal Bandwidth 1.0 1.0 MHz Rise Time 0.3 1.5 0.3 1.5 Overshoot 10 30 15 40 Settling Time (0.1 %) aVIN = 10V Overload Recovery p.s % 4.5 4.5 p's 4.0 4.0 p.s I , 1-146 AC Electrical Characteristics for all amplifiers (TA = 25°C, Vs = ± 15V) (Continued) Limits Parameter Conditions LHOO42 Min Input Noise Voltage Rs Rs Rs Rs = = = = 10 kO, fo 10 kO, fo 10 kO, fo 10kO,fo = = = = Typ LHOO42C Max Min Units Typ Max 150 150 nV/yHz 100 Hz 55 55 nV/yHz 1 kHz 35 35 nV/yHz 10kHz 30 30 nV/yHz 12 12 ",Vrms 10 Hz BW = 10 Hz to 10kHz, Rs = 10 kO Note I: For supply vo~ages less than ± 15V, the absolUle maximum inpUl vo~e is equal to the supply voltage. Note 2: Rating applies for minimum source resistance of 10 kll, far source resistances less thsn 10 kll, maximum differential input voltage is ± 5V. Note 3: Unless atherwise specHied,these speciflCatians apply far ±5V,;; Vs';; ±20Vand -55'C,;; TA';; +125'CfortheLH0042and -25'C,;; TA';; +85'C for the LH0042C. Typical values are given for TA = 25'C. Not. 4: Input currents are a strang function of temperature. Due ta high speed testing they are specified at a junction temperature Tj = 25'C. Self heating will cause an increase in current in manual tests. 25"C spec is guaranteed by testing at 12SOC. Note 5: See RETS0042X for the LHOO42H military specifications. Auxiliary Circuits (S~own for TO-99 pin out) Offset Null INPUT Protecting Inputs from r~·. ~;r: ± 150V Transients V' ...... ...... lOOK m, "Mt 10K ',' 2~1 ~, -'- ~ ~ lOOK y LH0042 3y 6 OUTPUT 4 .... V- ~ Note: All diodes are ultra low leakage. TLlK/5557-5 V' TL/K/5557-6 Boosting Output Drive to ± 100 mA ·-r~~ l~;Y ~ 4 OUTPUT VTLlK/5557 -7 1-147 LH0042 en () V' :::r CD 3 ! c;" c i" ca INVERT INPUT ; + NONIr:: 0 _F • 3 A~ =14 11 01 RS 40K OUTPUT RI II Cl ]0 pF . .... .... & OlD RI1 R4 • OFFSET NULL •• 10K POT (EXTERNAL) • SDK • • •• -. •• 0 V- OFFSET NUll Tl/K/5557 -1 Typical Applications Precision Voltage Comparator v· -sv INPUT Oo..J\M_"t 01 IN914 ..-o TTL OUTPUT >~~\/-- RZ 10K REFERENCE o-~Nv-'" vTL/K/5557 -9 Subtractor for Automatic Test Gear y+ 'IN1~ I I I : I I -, I I "':~O IL ~ LfU ____ AHD~ ·Low ......g• --{ II _±...1 • IN20-_ _ _ _ _ _ _ _ _ _..... TUK/5557-11 SOI1T ~ lOX (SIN1 - sIN21 Sensitive Low Cost "VTVM" 19K '15V INPUT lK 8M ", >~"""OOUTPUT 1M lOOK 1% O"1'F 811K 1% ] lOW LEAKAGE POLVSlYRENf -15V 10K 1% - TUK/57n-12 1-149 ~ 8 ,---------------------------------------------------------------------------------, Typical Applications (Continued) 3 Ultra Low Level Current Source "SV 10K 1 lOUT • III nA ZN4111 lM113 ,V, • 1,llV JK -ISV TLlK/5777-13 Sample and Hold I I I I M~G INPUT SAM~EIHOW r---.J >-411.....0 OUTPUT 1:1 D-I>-.J ~ L __ ~15L _ _ .J 'Polystyrene dielectric. TLlK/5557 -16 Re-Zerolng Amplifier R2 100M V' INPUT Rl O------.. 10M ---J\JY\_---.~ rI REZERD COMM~ I >';'&.-0 OUTPUT I I o-rO-C>-.J L _ ',!!!11D.!!!, _ -.J vCl---{).Ol p.F polystyrene. 1-150 TLlK/5557 -17 Typical Performance Characteristics Input Offset Current vs Temperature Maximum Power Dissipation III 1.... 111 -- I .11 !• co a: I , lao i II l- .o·IIfAT_ TD·I .... DIP I ... ! 'oM - IID'C/W .,/ ~co i V 0.1 0.01 150 III 25 zao Input Offset Voltage vs Temperature 65 85 105 T- TEMPERATURE ('CI 125 45 g 5DI . S 1/ 1: E co ~ l- !!! -500 !!! ~ V -111D I' V L -60 -21 ~ 10 ~ 20 6D 101 148 ~ III 1011 101M II Rs·ll1n II I' ZI 11 FREDUUCY (Hz) o Il 12 I 4 a: ~ i 11 V ./ • ..3 = ~ 111 .i lDB rffifIrl """! 1" I- 1111< ·IM 11M 41 e !:; 31 i za T.=25'C Vs .. t15 PREVIOUS Vas" 1 .V ~ i!!! ~ ....ill 18 '... ~ 11 10 -18 I'I' 1 20 TIME FROM POWER APPLICATION (MIN) Itl co i! ..3 I- su....y VOLTAGE ('V) Change in Input Offset Voltage Due to Thermal Shock vs Time 2I"C wcl ;; .. I ;; g V V :/ lJ.Ut' Stabilization Time of Input Offset Voltage from Power Turn-On = T. =25'C .=e g i 7 SOURCE RESISTANCE ((I} Common Mode Input Voltage vs Supply Voltage = 1.. 1_ fa' 1 kHz 50 I- ~ 111111 " ¥S-.I&V TA-zre . INPUT SOURCE RESISTANCE IU} Total Input Noise Voltage' vs Frequency ~ lDB I- 1M '~i~ 111 I;;! ~ TEMPERATURE ('C) m 'A "'25°C - l- .1 1Il0l( 16 210 i I- lH1M2 310 e !:; co I- ;! ;;; " VS~~";IV .. 3. .. ;, III l- 1/ i! ~ e l- I- 411 fi ~ Vos 12 14 " 100 90 T..... UOC ~~ V T•. ~ r- !ZS'C I 10 6 " ~ 28 ! ..~ 1--+-+t+fjf'!t---+-+-++ttHi n 1--+-+HlftH+---+-+-++ttHi e Vs' ,ISVt+HttI--+--HH-tttll T.· 25'C H-l-H-fb"""""'!"'IFFfml 24 20 1--+-+~I+H+---+-+-++ttHi 1--+--bI'H-I+H+---+-+-++ttHi I&I-+>f-H-I+H+---+++++++Il 18 14 1--¥-H-ttt+tt-+-t-++tI#I Z.O - ~ 10 ........ t - ....... .. l!:;_ Vs= 6.0 A 4 1/ 1 o 5 10 .. i.. .~ .~ ~ ,:.l.-zsi: Vs" "5V 14 H-1ffit1tt--1+H1lIII-+tt+ R, ZK 0 IZ H+t!I.+tffflllH+t+"T:,~A Z5 C 0 10 > 0 3. ZS ZO 10 OUTPUT CURRENT (. mAl Ik 10k 1M lOOk Frequency Characteristics vs Ambient Temperature 1.4 ." 10 ... ." INPUT ~ OUTPUT -4 'RESPONSE r- ..... -5 T:!';,.. 0: U Vs= !lSV -I ... 1.0 ~ OUTPUT TIR~JSIE~T 1.2 ;;! > > INPUT .! ...~ I Vs= ~15V 15 S ...-r'"'l r-.. :JLEiRAiE ~.R. I""N. CLOSED LOOP RL =211 -10 BArilDTt C, -IOOpF D.6 -Il 10 o .ZOO .400 .100 .100 TIME ",.1 T... -+25C C 140 .. 1.2 ~ .~ 1.0 5 = 100 ii 10 5 10 ""''' .." I!; D.I IIIIIII~ D.I II 15 SUPPLY VOLTAGE ItVI 40 Zo o 20 100 I. III' . '"'''' f1:3; 0: 5 -ZO ID" 10' ~,~~.1 10z Av-IO UHIL 10 1IIIlJII.- ~ Av Av·' 10k zo 60 100 140 TEMPERATURE rCI Output Resistance vs Frequency 110 .:: IZO ;;! > !:: -60 T!i<.1 Frequency Characteristics vs Supply Voltage 1.4 !!: 10M FREOUENCY 1Hz) Transient Response T... "25 C ZO 15 16 -,sv '.5 10 Vs" -'5V RL -ZK . ~ .." 12 V" L"OUTPUTVOLTAGE_ SWING - VII. SUPPLY VOLTAGE (·VI " '\ I Voltage' Follower Large Signal Response ~ ~ 16 ./ ,. Output Voltage SWing vs Frequency T. 0125 C LOAD RESISTANCE Ik"l IZ = It: 20 '" 1.0 20 '"c c It: 0.5 24 ~ Current Limiting 15 c It: ~ ./ 1 1 1 SUPPLY VOLTAGE I'VI Output Voltage Swing vs Load Resistance .. TA"'ZSC Z8 It: 15 RL ~2K!! 3& 3Z e I SUPPLY VOLTAGE (,VI Z8 ~ Tl.-66~ ~ 110 80 10 40 I .. iii 0: 0: . Output Swing vs Supply Voltage Voltage Gain 3.0 lOOk FREQUENCY (HzI 1M ur' Open Loop Transfer Characteristics vs Frequency - Vs· t15V T.· Z5'C RL ,..,.2 KH ~AIN "'\ PHl~ ~ 10 I -45 Ii: ~ SHltT I'\. 100 lk 46 , "- \ -10 -135 ~ ~ -III 10k IIOk 1M 10M FREQUENCY (HzI TlIK/5557 -19 \ 1-152 .-:::J: o..... tflNational Semiconductor o ..... LH0101 Power Operational Amplifier General Description Features The LH0101 is a wideband power operational amplifier featuring FET inputs, internal compensation, virtually no crossover distortion, and rapid settling time. These features make the LH0101 an ideal choice for DC or AC servo amplifiers, deflection yoke drives, programmable power supplies, and disk head positioner amplifiers. The LH0101 is packaged in an 8 pin TO-3 hermetic package, rated at 60 watts with a suitable heat sink. • • • • • • • • 5 Amp peak, 2 Amp continuous output current 300 kHz power bandwidth 850 mW standby power (± 15V supplies) 300 pA input bias current 10 V/",s slew rate Virtually no crossover distortion 2 settling time to 0.010/0 5 MHz gain bandwidth "'S Schematic and Connection Diagrams v+ CASE IS /OUTPUT SC+ FEEDBACK + 3 OUTPUT (CASE) TL/K/5558-2 Top View Order Numbers LH0101K, LH0101K-MIL, LH0101CK, LH0101AK, LH0101AK·MIL or LH0101ACK See NS Package Number K08A Note: Electrically connected internally. no connection should be made to pin. SC- vTL/K/5558-1 1-153 .... o .... o Absolute Maximum Ratings ....::E: If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5) ±22V Supply Voltage, Vs 5W Power Dissipation at T A = 25°C, Po Derate linearly at 25°C/W to zero at 150°C, Power Dissipation at TC = 25°0 Derate linearly at 2"C/W to.zero at 1500C Differential Input Voltage, VIN Peak Output Current (50 ms pulse), IO(PK) 62W ±40V.but ±20Vbut Input Voltage Range, VCM Thermal ResistanceSee Typical Performance Characteristics Parameter - 25°C to + 85°C - 55°C to + 125°C Storage Temperature Range, TSTG - 65°C to + 1500C Lead Temperature (Soldering ±Vs Typ Max 1 5 Units Max 10 mV 15 150 300 p.V/W 10 10 p.V/oC VCM = 0 Input Offset Voltage with Temperature Input Bias Current .I LH0101 C/AC T T A!> MAX 'I LH0101/A los 3 Typ (Note 2) Input Offset Voltage with Dissipated Power Is Min 7 TMIN !> TA!> TMAX \ I:Noslb.T Change in LH0101C LH0101 LH0101AC LH0101A Conditions Input Offset Voltage I:Noslb.Po Change in 2600C ±15V, TA = 25°C unless otherwise noted Min Vos 1500C < 10 sec.) ESD rating to be determined. DC Electrical Characteristics (Note 1) Vs = Symbol Continuous Operating Temperature Range, T A LH0101AC,LH0101C LH0101A, LH0101. Maximum Junction Temperature, TJ < ±Vs < 5A Output Short Circuit Duration (within rated power dissipation, Rsc = 0.350., T A = 25°C) Input Offset Current T A!> T .ILH0101C/AC MAX LH0101lA . ·1 Vo = ±10VRL = 100. AVOL Large Signal Voltage Gain Vo Output Voltage Swing Rsc = 0 RL = 1000. 50 200 ±12 ±12.5 300 1000 60 60 300 1000 75 250 15 15 75 250 50 200 ±12 ±12.5 Av = +1 RL = 100. ±11.25 ±11.6 ±11.25 ±11.6 Note 3 RL = 50. ±10.5 ±11 ±10.5 ±11 CMRR Common Mode Rejection Ratio b.VIN = ±10V 85 100 85 100 PSRR Power Supply Rejection Ratio b.Vs = ±5Vto ± 15V 85 100 85 100 Is Quiescent Supply Current pA nA pA nA V/mV V dB 28 1·154 35 28 35 mA r- AC Electrical Characteristics (Note 1), Vs = Symbol Parameter % LH0101 LH0101A Conditions Min en Equivalent Input f = 1 kHz Input Capacitance f = 1 MHz Power Bandwidth, -3 dB SR Slew Rate 7.5 Small Signal Rise or AV = Fall Time +1 Small Signal Overshoot GBW Gain·Bandwidth Product Is Large Signal Settling Max Min Typ 25 Units Max nV.JHz 3.0 3.0 pF 300 300 kHz 10 10 V/p,s 200 200 ns (Note 4) RL = 100 t r , tf Typ o..... LH0101C LH0101AC 25 Noise Voltage CIN o..... ±15V, TA = 25'C 4.0 10 10 % 5.0 5.0 MHz 2.0 2.0 p,s 0.008 0.008 % (Note 4) RL = co Time to 0.Q1 % THO Total Harmonic Distortion Po = 1 OW, f = 1 kHz RL = 100 Note 1: Specification is at TA ~ 25'C. Actual values at operating temperature may differ from the TA ~ 25'C valUe. When supply voltages are ±15V, quiescent operating junction temperature will rise approximately 2 TC>TS>TA -=- AMBIENT TEMP. TA TUK/5558-8 TL/K/5558-9 FIGURE 2. Semiconductor-Heat Sink Thermal Circuit The junction-to-case thermal resistance 8JC specified in the data sheet depends upon the material and size of the package, die size and thickness, and quality of the die bond to the case or lead frame. The case-to-heat sink thermal resistance 8es depends on the mounting of the device to the heat sink and upon the area and quality of the contact surface. Typical8cs for a TO-3 package is 0.5 to 0.7·C/W, and 0.3 to 0.5·C/W using silicone grease. FIGURE 3. Driving Inductive Loads Capacitive loads may be compensated for by traditional techniques. (See "Operational Amplifiers: Theory and Practice" by Roberge, published by Wiley): V+ Cc The heat sink to ambient thermal reSistance 8SA depends on the quality of the heat sink and the ambient conditions. COoling is normally required to maintain the worst case operating junction temperature TJ of the device below the specified maximum value TJ(MAX). TJ can be calculated from known operating conditions. Rewriting the above equation, we find: HC TL/K/5558-10 8JA = TJ - TA· C/W Po TJ = TA + P08JA·C Where: Po (Vs - VOUT)IOUT for a DC Signal + Iv+ - 8JA = 8JC + 8es + 8SA and Vs 8JC for the LH0101 is about 2"C/W. FIGURE 4. Rc and Cc Selected to Compensate for Capacitive Load A similar but alternative technique may be used for the LH0101: (V-)lla V+ = Supply Voltage Stability and Compensation As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. YlN~W""'-I A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input device (usually the inverting input) to ac TL/K/5558-11 FIGURE 5. Alternate Compensation for Capacitive Load 1-159 o ..... o..... ~ C) ~ C) :::E: ....I r-------------------------------------------------------------------------------------, Application Hints (Continued) Output SWing Enhancement When the feedback pin is connected directly to the output, the output voltage swing is limited by the driver stage and not by output saturation. Output swing can be increased as shown by taking gain in the output stage as shown in High Power Voltage Follower with Swing Enhancement below. Whenever gain is taken in the output stage, as in swing enhancement, either the output stage, or the entire op amp must be appropriately compensated to account for the additional loop gain. Output Resistance The open loop output resistance of the lH0101 is a function of the load current. No load output resistance is approximately 100. This decreases to under 10 for load currents exceeding 100 mAo Typical Applications See AN261 for more information. +15 YIN TL/K/5558-12 TL/K/5558-13 FIGURE 6. High Power Voltage Follower FIGURE 7. High Power Voltage Follower with Swing Enhancement v+ v- TLIKl5558-14 FIGURE 8. Restricting Outputs to Positive Voltages Only Following is a partial list of sockets and heat dissipators for use with the lH0101. National assumes no responsibility for their quality or availability. 8-lead TO-3 Hardware SOCKETS Keystone 4626 or 4627 Keystone Electronics Corp. AAVID Engineering Robinson Nugent 0002011 30 Cook Court 49 Bleecker St. Azimuth 6028 (test socket) laconia, New Hampshire 03246 New York, NY 10012 HEAT SINKS Azimuth Electronics Robinson Nugent Inc. Thermalloy 2266B (35°C/W) 2377 S. EI Camino Real 800 E. 8th St. IERC LAIC3B4CB San Clemente, CA 92572 New Albany, IN 47150 IERC HP1-T03-33CB (7"C/W) IERC Thermalloy AAVID 5791B 135 W. Magnolia Blvd. P.O. Box 34829 MICA WASHERS Dallas, TX 75234 Burbank, GA 91502 Keystone 4658 1-160 Typical Applications (Continued) v+-t----~--------~ TUK/5558-15 FIGURE 9. Generating a Split Supply from a Single Voltage Supply TL/K/5558-16 FIGURE 10. Power DAC lk as:! 2k -20 TUK/5558-17 FIGURE 11. Bridge Audio Amplifier 1·161 ~ r---------------------------------------~------------------------------------------------_, o C; Typical Applications (Continued) ::I: ..J 1k 6.9V LM199 t---- rt---- +5 TO +35 SNO -5 TO -35 TUK/5558-18 FIGURE 12. ± 5 to ± 35 Power Source or Sink +15 TL/K/5558-19 FIGURE 13. Remote Loudspeaker via Infrared Link +15 YIN lOUT = RIENIE YIN 0EfLECT10N YOKE TL/KJ5558-20 FIGURE 14. CRT Deflection Yoke Driver 1-162 ,-----------------------------------------------------------------------------, r ::::t: Q Typical Applications (Continued) .... .... Q SERVO MOTOR TUK/5558-21 FIGURE 15. DC Servo Amplifier -15 TL/K/5558-22 FIGURE 16. High Current Source/Sink 1·163 ... o ~ r-----------------------------~----------------------------------------_. t!lNational Semiconductor LM10 Operational Amplifier and Voltage Reference General Description The circuit is recommended for portable equipment and is The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer' and an . completely specified for operation from a Single power cell. In contrast, high output-drive capability, both voltage and independent, high quality op amp. current, along with thermal overload protection, suggest it In The unit can operate from a total supply voltage as low as demanding general-purpose applications. 1.1 V or as high as 4OV, drawing only 270pA A complementary output stage swings within 15 mV of the supply terminals or will deliver ±20 mA output current with ±0.4V saturation. Reference output can be as low as 200 mY. Some other characteristics of the LM 10 are 2.0 mV (max) • input offset voltage 0.7 nA (max) • input offset current 20 nA (max) • input bias current 0.1% (max) • reference regulation 2p.VI"C • offset voltage drift 0.002%I"C • reference drift The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog Signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs. This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings. Connection and Functional Diagrams Metal Can Package (H) Dual-In-Une Package (N) REFERENCE FEEDBACK v- REFERENCE OUTPUT 1 OPAMP INPUTI-) Z OPAMP INPUT (+1 3 • REFERENCE FEEDBACK y+ OPAMP OUTPUT V- BALANCE TOP VIEW TL/H/5652-1 TOP VIEW Order Number LM10BH, LM10CH, LM10CLH or LM10H/883 available per SMA# 5962-8760401 See NS Package Number H08A TLlH/5652-15 Order Number LM10CN or LM10CLN See NS Package Number N08E BALANCE Small Outline Package (WM) NC NC REF OUTPUT Op AIIP INPUT (-) Op AIIP INPUT (+) 1 14 2 13 3 12 4 11 5 OUTPUT REFERENCE FEEDBACK NC NC REF FEEDBACK Op AMP OUTPUT V- BALANCE Ne Ne 1 INPUTS V· REFERENCE OUTPUT REFERENCE ~--------~----~~~v TL/H/5652-16 TL/H/5652-17 Order Number LM10CWM See NS Package Number M14B 1-164 Ii:... Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales' Office/Distributors for availability and speclflcatlons_ (Note 7) LM10/LM10B/ LM10BU LM10CL LM10C 7V Total Supply Voltage 45V ±7V ±40V Differential Input Voltage (note 1) Power Dissipation (note 2) internally limited Output Short-circuit Duration (note 3) continuous -55'C to + 150"C Storage-Temp. Range Lead Temp. (Soldering, 10 seconds) Metal Can 300"C Lead Temp. (Soldering, 10 seconds) DIP 260"C Vapor Phase (60 seconds) 215'C Infrared (15 seconds) 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD rating is to be determined. Maximum Junction Temperature LM10 150"C LM10B 100"C LMHic 85"C Operating Ratings Package Thermal Resistance 8JA H Package N Package WM Package 150"C/W 87'C/W 90'C/W 8JC H Package 45'C/W Electrical Characteristics TJ=25'C, TMINS:TJS:TMAX (note 4) (Boldface type refers to limits over temperature range) Parameter LM10/LM10B Conditions LM10C Max 2.0 3.0 0.5 4.0 5.0 mV mV 0.25 0.7 1.5 0.4 2.0 3.0 nA nA 10 20 30 12 30 40 nA nA Max Input offset voltage 0.3 Input offset current (note 5) Input bias current Input reSistance Units Typ Typ Min Min 250 150 500 120 80 50 20 1.5 0.5 400 1.2V (1.3y)S:VOUTS:40V, RL =1.1 kO 0.1 mAS:IOUTS:5mA 1.5VS:V+ S:40V, RL =2500 0.1 mAS: lOUTS: 20 mA 14 8 8 4 Common-mode rejection -20VS:VCMS:19.15V (19y) Vs= ±20V 93 87 102 90 87 102 dB dB Supply-voltage rejection -0.2V~V-~ -39V V+=1.0V(1.1V) 1.0V (1.1V)S:V+ S:39.8V V-=-0.2V 90 84 96 90 96 87 84 93 90 96 dB dB dB dB Large signal voltage gain Shunt gain (note 6) Vs= ±20V,IOUT=0 VOUT= ±19.95V Vs= ±20V, VOUT= ± 19.4V IOUT= ±20 mA(± 15 mAl Vs= ±0.6V (0.85Y),IOUT= ±2 mA VOUT= ±0.4V (±0.3V), VCM= -0.4V 150 115 400 kO kO 80 400 VlmV VlmV VlmV V/mV V/mV V/mV SO 130 25 15 1.0 0.75 130 33 10 33 VlmV 25 8 6 4 25 V/mV V/mV V/mV 3.0 106 3.0 106 Offset voltage drift 2.0 5.0 ",V/'C Offset current drift 2.0 5.0 pArC 60 90 Bias current drift Tc<100"C Line regulation 1.2V (1.3V)S:VsS:40V 0S:IREFS:1.0 mA, VREF=200 mV Load regulation 0S:IREFS:1.0 mA V+ -VREF~1.0V (1.1V) 1-165 pArC 0.001 0.003 0.008 0.001 0.008 0.01 "Io/V "Io/V 0.Q1 0.1 0.15 0.01 0.15 0.2 "10 "10 o - Electrical Characteristics ')::=25°C, TUINS:TJS:TI/IAX, (note 4) (Boldface type refers to limits over temperatu", range) (Continued) Par~meter Amplifier gain LM10C LM10/LM10B Conditions 0.2VS:VREFS:35V Feedback sense voltage Min Typ 50 23 75 195 194 200 205 208 20 50 85 Feedback current Max Units "Max Min Typ 25 15 70 190 188 200 210 211 mV mV 22, 75 80 nA nA V/mV V/mV 0.003 %rc Reference drift 0.002 Supply current 270 400 500 300 500 570 15 75 15 75 Supply current change Parameter 1.2V(1.3V)S:VSS:40V LM10BL Conditions Min LM10CL 2.0 3.0 0.5 4.0 5.0 mV mV 0.1 0.7 1.5 0.2 2.0 3.0 nA 10 20 30 12 30 40 nA nA 0.3 I,nput offset current (note 5) Input bias cur.rent '" Inpl!t resistance Large signal voltage gain Vs= ±3.25V,IOUT=0 VOUT=±3.2V Vs= ±3.25V,IOUT=10 mA VOUT=±2.75V Vs= ±0.6V (0.85V),IOUT= ±2 mA VOUT= ±0.4V (±0.3V), VCM= -0.4V Units Max Max ,,'1. p.A p.A Typ Typ Input offset voltage p.A Min nA 250 150 500 150 115 400 ko. ko. 60 40 10 4 1.5 0.5 300 40 25 5 ,3 1.0 0.75 300 V/mV V/mV VlmV VlmV V/mV VlmV 8 4 30 6 4 30 VlmV V/mV 25 3.0 25 3.0 Shunt gain (note 6) 1.5Vs:V+ ::;:6.5V, RL =5000. 0.1 mAS:IOUTS:10mA Common-mode rejection -3.25VS:VCMS:2.4V (2.25V) Vs= ±3.25V 89 83 102 80 74 102 dB dB Supply-voltage rejection -0.2V:?V-':?, -5.4V VT=1.0V(1.2V) 1.0V(1.1V)S:V+ S:6.3V V-=0.2V 86 80 94 88 96 80 74 80 74 ' 96 dB dB dB dB 106 106 Offset voltage drift 2.0 5.0 p'vrc Offset current drift 2.0 5.0 pArC Bias current,drift 60 90 pArC Line regulation 1.2V (1.3V) S:Vs S:6.5V 0S:IREFS:0.5 mA, VREF=200 mV 0.001 0.Q1 0.02 0.001 0:02 0.03 %IV %IV Load regulation 0S:IREFS:0,5 mA V+ -VREF:?1.0V (1.1V) 0.01 0.1 ' 0.15 0.Q1 0.15 0.2 % % Amplifier gain 0.2V S:VREFS:5.5V 30 20 1-166 70 20 15 70 V/mV V/mV Electrical Characteristics TJ=25'C, TIIIN"T""TII.u:. (note 4) (Boldface type refer. to limits over temperature range) (Continued) Parameter LM10BL Conditions Feedback sense voltage Min Typ 195 200 194 Feedback current 20 LM10CL Max Min Typ 205 190 200 206 189 50 Reference drift 0.002 260 210 211 22 65 Supply current Units Max 75 90 500 280 nA nA %I"C 0.003 400 mV mV 500 570 p.A p.A Note 1: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when VIN ~ .!!'~!... --20 I -40 D.I 1.0 10 -- ~' ZiO :!! '"... 100 ~ ., .. ., ..~ a ;.. zoo ~ 150 , I~ lk §; j 40 Typical Stability Range Output Impedance T•• Z5'C ~ IE C 10 I- 11: 1111 ...... 50 100 lk 10k lOOk 1M 10k IIOk 1M FREOUENCY (H,) Large Signal Response 16 .. ~ Vs· :tlSV fA ~Z5°C =5mY VOD 1 \ \ 12 I ~ ..~ I I lk 50 > ...... 10k lOOk i t I VREP " ~ co -10 > ¥I ~' 18 .. 100 IE n ~~ ~. R\=470 I~ !; ==-~..,o....:~MRR", 80 '" 60 40 0.& 0.8 1.0 1 i '~ 10 100 1k . ~ 10 .. .. .. > 10k " LINE REJlULATION 4Vos , "- I , !! NPN ...... IOUT=-20mA .... -c- ~ ~ PNP lOUT" zamA Vs :!:20V Y~UT' 0 -1.1 -ZO ZO 40 TlME(...) ~ 60 \ 1M 80 ~~: i. . lOUT =0 I NPM ,'ouj" i20 jA I ~ lOUT- 0 if \ 0.08 I I ~ \ lOOk Thermal Gradient Feedback 0.1 \, PSRII"f Supply Current I- ~ ,' \ Rejection Slew Limiting 100 FIIEOUENCY IH,) C .! 0.3 -0.2 0 0.2 0.4 8.8 0.8 1.0 1.2 1.4 1.6 1.8 FREQUENCY (Hz) ~ Ili v- =0 T. - Z5'C TIME(ms) 0.4 ... 1. LiNE T 20 D.4 V' = iY 50 i -so ! ",~EGULATION PSR~ \ IE -10 IJ zoo mV 120 -PSt, I 1Z5'C Z5'C ---55'C IQ:' 1 ~ 100 !; TIME I...) Noise Rejection 10 ~r-- RL <:IOk 5 ..~-r- ~ TlME(ms) 140 a rr- -50 -0.2 0 O.Z 0.4 0.6 D.ll.0 I.Z 1.4 1.6 1.8 Follower Pulse Response' / If J ~ 100 c; 1 110"Y V+ = 5V V- =0 T. -25'C FREOUENCY (Hz) ~ 50mY 1\ 1\. 100 I- " \ 10mV ~ o ~ VOD 1 \ &OmV > . .... . Comparator Response Time For Various Input Overdrives Comparator Response Time For Various Input Overdrives I I PNP lOUT· zamA I 1/ VI tHV $ -iI.05 -20 c- vou,- a 20 40 80 80 TIME 1m.) TUH/5652-3 1-169 CI ~ Typical Performance Characteristics (Op Amp) (Continued) .ShuntGain Shunt Gain w CD I G -0.10 ..e 1-+-+-+-+- w -0.1& ~ l- E -0.20 !Ii -0.25 CI::J=-LJ:=C:i:J I I OUTPUT VOLTAGE (VI OUTPUT VOLTAGE (VI OUTPUT VOLTAGE (VI TL/H/5652-4 Typical Performance Characteristics (Reference) Load Regulation Line Reg\llatlon 0.1 IIII IIII it :- D.DS CD "- I.. TA =121°C I...... ~- l ; ffi . ~ III III -0.1 10 ~ ' CD ~ r"'ttl ~-O.05 . - ~ , I 25°C TA"mc co > .~ r"""~-""....r-+-+~ ... -0.3 : r-1--1~+--+--~~~ 1.0 ~ II! 10 10 .. r--. :i lOOk 10k Typical Stability Range ~~ ~4 o.s 1k .l.V REF = 0.1% g 10-1 CD ~ 9 10- 1 '" ........ ~ :0 I- I 100 FREQUENCY (HzI ~~ b-". ~/",... ....... r......1, ..4~ -..-V" 0.8 = ~ I l ~ > z co lA 100 w !i! Output Saturation ~ 1.2 z i 1.2 ~ w co -0.2 Minimum Supply Voltage ~O.2V ~ LOAD CURRENT (mAl 1.4 VRE. !!! ! 0 lk ! I -0.1 • 100 VO =1.5V V- -0 TA:..:!~~I--~ .... TA =25'C i TOTAL SUPPL V VOLTAGE .. ~ . Reference Noise Voltage 0.1 ........... ;~ 1D~ ~TttHmr-rTH~~rt~ffl .. 10-' 1n~«l:IIH"q.+-H:tmI-I+f.H!1lI ... '-=___......_.1--'-.;:::I100I -50 -25 0 25 50 7& TEMPERATURE rCI 10D 121 D.4 -50 -25 25 50 75 TEMPERATURE ('CI 100 12& 10-1• L-.L...1..L.LLWL..-L-.LU.LWII-..JL-J..WlW 0.01 0.1 1.0 10 LOAD CURRENT (mAl TL/H/5652-5 1-170 r-----------------------------------------------------------------------------, Typical Applications tt (Pin numbers are for devices in 8-pin packages) ~ 3: .... o Op Amp Offset Adjustment Limited Range Standard Limited Range With Boosted Reference V+ v+ VREF VREF VAEF Rt v- vv- Positive Regulatorst Low Voltage Zero Output Best Regulation V1N >11V ~ Your tOV I! Vour OVT05V I I I ! VOUT 3V R2 3.9K RI 2K TUH/5652-6 tUse only eleclToly1ic output capacitors. ttCircuH descriptions available in application note AN-211. 1-171 o ..... :=i Typical Applications t t (Pin numbers are for devices in B-pin packages) Current Regulator (Continu~d) Shunt Regulator CI' D.01~f ....---+-+ ....-..,.,.,..-+---.._+V ., I OUT OUT " (1·. . ~) VII!F • Ift2 + R31 VaiE R1R3 HI •• , ., 'Required For capacitive Loading Negative Regulator Precision Regulator r----__1~---__1r··OU.O CI' 2hf >''+-+-VOUT = -IItV '--t--.....-----+---4-VOUT =&OV .,. 1% ' - + - - - - VUII :s-1G.&V CI I.DD1/1F 'Electrolytic ' - -. . .- - - - - - - - - -. . .- GROUND Laboratory Power Supply r-------~-_1~-.._v~ RID " 3." o.01",F ... 'M ., ,.. AI "' C' 1.GI1",F ... ,01 , ---v.'" ' - -...- - - - 4....- - -..... ." co .,' '''' D-!IV 0-IA L--4~6-----4~--__6------------------~------C~ TUH/5652-7 'VOUT= 10- 4 R3 . ttCircuit descriptiOns available in application note AN-211. 1-172 Typical Applications tt (Pin numbers are for devices in B-pin packages) (Continued) HV Regulator Protected HV Regulator r--------....--....----.... --ZIIIVS;VIN~.UV .--_t---t--VIN"'ZDlV I--+_ _...._ _ _...... ~ ___ ~-VOUT"ZOOV .,. 1M L-____' -__________ ~~---- __ ,~ " "pF ----G•• I-Wlr-<~------...- - - - - - - - -..... Flame Detector Light Level Sensor ,...--....-+ or 'v .. --l PLATINUM* RHODIUM . -rTOU.SO. ",DIE .," ,. TTl LOGIC AI ., 'DO - '800-C Threshold Is Established By Connecting Balance To VREF. .. ., ,. " ·Provides HysteresiS Remote Thermocouple Amplifier Remote Amplifier .. '11M .,1 .. lUll v' l .,t "",. ..., lIS vo., 4Vo<:VOUT,;;20V 200-C,;;Tpo<:700-C tSpan Trim CHRDMEL ALUM£L PROlE ILevel-sh1lt Trim ..,. ... 'DO ," '" ttClrcuit descriptions available in application note AN-211. 1·173 . 'Cold-junction Trim ,.., , TL/H/5652-8 Typical Applications .t t (Pin numbers are for deviees in a-pin packages) (Continued) Transmitter for Bridge Sensor , if V"EF· ',1\ I 81 llOk 1% .. lOOk V'N U ". ::X;COUT . I. I 85 138k . ,%' J 81 A6 51 "I,. ,% 1% 8ES'Sl'VEJ 18'DGE Precision Thermocouple Transmitter 83 311k Al 383k Ihvrc PLAT'NUM RHODIUM ". ,% + ~--~I---+--....:.t PAOBE AI" IUk 1% A5 . t 38311 ,% Vour>IV 312to 10 mA"IOUT,;50 mA I AID '" Ik ,% 500'C';Tp ';1500'C AI 10 ,% SiE ·Gain Trim Optical Pyrometer 'APASS~, ~'ASlOP , Resistance Thermometer Transmitter 01 0' 03 ttLevel-shifl Trim 1N41i7 'Scale Factor Trim tCopper Wire Wound 1 mA,;Iour';5 mA V· ----' ; ---r--AI 81 0,01 ';11 02 ';100 01 OUT V A'1 A4 lk '" HZ 411 ,% ttCircun descriptions available in applicalion note AN-211. R3t" u ". TLIH/S652-9 1-174 Typical Applications t t (Pin numbers are for devices in B-pin packages) (Continued) Thermocouple Transmitter Logarithmic Light Sensor - r-------~----.-+ l OUT 01 1N457 CHROMEl ALUMEL PROBE 200'C S:TPs: 700"C 1 mAs: lOUTS: 5 mA 01 USk ". tGain Trim 1 mAS: lOUTS: S mA *50 pAs:loS:500 pA 02 100 1% oz COLD JUNCTION 03 50 CD'" ost U7 1% Battery-threshold Indicator Battery-level Indicator - ttCenter Scale Trim tScale Factor Trim 'Copper Wire Wound RBt* 84 1% 499 1% + ~-------.----~~--+ 02 290k .... 01 R4 03 &10k VTH "'6V ID,-5mA 01 .-z., R2 12k R3 11k Single-cell Voltage Monitor 81 U Double-ended Voltage Monitor .-----1--v· O. .. 02 2k 10k 3.311 r-~~W'lr-+--"'-"""" vTH'-nv Cl ZbF VTM "IV 01 "010 Flash Rate Increases Above 6V end Below 15V Flashes Above 1.2V '::' Rate Increases With '::' 03 lOOk Voltage TUH/5652-10 ttCircuH descriptions available in application note AN-2". 1-175 o..- :I r---------------------------------------------------------------------~------, Typical Applications t t (Pin numbElrs are for devices in8-pin packages) (Continued) Meter Amplifier .. Thermometer .... HZ A' III r--------""""I~---- INPUT ........,' ..e 10mV,100nA FULL-SCALE ... ,, DI I r-....- -.....---'I.I D2 UMI1 V">'v ... '" LII'" IU 1M AI ~ + j At ., !.IV 'Trim For Span I12t 1.&. ,% 110 .... At tTrim For Zero ~--~-~~--~II Light Meter RI 12k ~ R3 4IIk , 01 Microphone Amplifier ,...--------.. . -~.,v AI III R' c. UII ."),,, ,. 112 ',-100 Hz 12-5 kHz RL -500 'Max Gain Trim TLIH15652- " ttCircuH descriptions available In application note AN-2". 1-176 Typical Applications t t (Pin numbers are for devices in B-pin packages) (Continued) Isolated Voltage Sensor R& 50 ocr R' 47.1. 1% fEEDBACK TO <:.- 1.. FADM R3 REGULATED OUTPUT 210 SWITCH CONTROLLER R. 1.11. III tControls "Loop Gain" 'Optional Frequency Shaping Ught·level Controller L1 ~ , 01 115VAC RI 11k TL/H/5652-12 ttClrcuit descriptions available in application note AN-2". Application Hints With heavy amplifier loading to V-. resistance drops in the V- lead can adversely affect reference regulation. Lead resistance can approach 10. Therefore. the common to the reference circuitry should be connected as close as possible to the package. 1-177 b '~ ~~------------~~--------------~------------~----------------------------I I Operational Amplifier Schematic (Pin numbers ara for 8-pin packages) . . . 'I.~ .- . . \orw • ' Cjt~IV- -, -*n!~ I!! i! i~ ~ •• ,I ',.-- U"i • Ii ~ iI, t- ~, ea ;! ~ II U ~. 0- r- p- rt:. ii!; '- i! U \.~ ~ ;; ~ •• EOr ::= 'k ~. l:! " u t-- .:; = ~i 0" + .y- u r- .- .? I\.~,r c, e! " ~~ ill > ),,5 U ~ ~ W '<. , 1i1V--- ;U 51! . i~ u C-~ .~ 11 l' : ,_' II •• of _. lie -!.~~ .:1"<.. J' ffi 'IiI"<.. • .< Ii:: ",~ 1Io~ =. :~ iii • 'l.r' _...•;t ill +ii " " 'l.ar- •• ·af[J.2 )) • .. • .. ,. 1-178 . ..~' , • F' • LY.. ••• iii "r;&- " ~ it ii. 'I..~ £IT •• +" ~,~ .ii 1\ .i II ~ .7 V - - - - - 'AII I &k BIAS BUSS I All lAS! ZOk 15k , IAI' 4k , n~ I IA6J lUll All ZOk IAJl ZOk I ::D CD ..... CD CD ;:, lAIC Ilk ... n , , I I I I I , I, CD S» ~iGik ,[all., ;:, a. 5' ... All Ik ~I U REFEAENCE 1 OUTPUT II n(;1 Lsj I 4011 . 1 01(' Ir I I 10k -::D S» ! !A19 AIO . I." If,'" 10k ~:!k V~ +11 ...;:,CD ( All t91k CD co c iii' ...... 0 3! :::l :::l I: 3 CT Voltage Gain 28 '-- ~ ;...o~ ~ \I~, 5 rt:>;T.90'C II SUPPLY VOLTAGE (tV) i... 10 0 I 14 .. .... ::; . ..... .. ... r-~ ".i'f. lAIII~' \~ - ~ I I . I I I I \I • ,\l! ~\~.. ~ ~ 100· 15 • ~ j, .!... e II lAIllliaII! IZ ..,i"" 0 > 11 I I 10 10 SUPPLY VOLTAGE ('VI 15 I I I . O'C ;T.:>;JI'1: 5 .... ~ 5 \I I II SUPPLY VOLTAGE (tVI TLlH/7752-6 1-182 Typical Performance Characteristics Voltage Gain Supply Current u - ~T!.-Il·C .-- ...... ..::: ~ - '"' a '" .. '" ~ .. liAS. LMIIIAlLM2IIA I ~ ~ ~FF~i.L~A 3 ~I'-o ...Jl!.F8ri. Ll.nOIAILM2IIA 2 -10 IitI 110 III ....... - II I = i= •:I 1.-- II I o 25 II 45 65 10& 15 12& AMlIENT TEMPERATURE rCI Input Noise Voltage 40 VI- ,dlY 1'00. " ~ 30 :1 i \ TA =11°1: • I .. .. zt zt OUTPUT CURRENT ( - . • 10K IK Common Mode Rejection lOOK - lUI i,. •!i! I:i .. =: " l!i ... •• i8 TA -2I"c i II >- I 40 zt I .... a :s II .. - Power Supply Rejection IZO III n I. FREQUENCY tHz) "" FRECIUEI«:\' (Hz> ~ III I 10 Input Noise Current I1.-- "- 1 T.-12I"C o 200 METAL CAN T.·,zloe II I TEMPERATURE (·C) .. ,r"' - ~ T. -21 C Current Limiting Ii J~BIASLM30IA~ 21 = ~ II i • T!·b .- SUPPLY VOLTAGE ttV) Input Current, LM101A/LM201A1LM301A ... ?"'" II " II '-'YVOLTA8E( -~U~T -1_1 i'-' ~ ii-z. ..,.s \ \ • ' i D.A.Jr, 1-1- ~- 4 I! : CI·.,f cz·." 111 • • 4110.,• • TI.IH/7752-11 T.-ZSOC 1-184 -I -I -II V. ->lIV ro' -~t- fEEDfDRWARD I , I "2341.,. TIlE"", TI.IH/7752-15 "Pin connections shown are for B-pin packages. ~-I .... ~I'"" I-I-"IPOT -I T.-WC V. ·tliV -I -I -I' Inverter Pulse Response II f"'rfl~E -I ,. fREllUllCYOIII fREIlUDlCY (HI' ';'"",: TIME ... II ~I • I "'Out.uT I I I T.I_~·c : TLlH/7752-17 11 CI-.,f cz-." 1\ II -- I . I . I. I . I . Large Signal Frequency Response TA -R'"C TI.IH/7752-10 11 I I ,. fREllUEI" 0lIl lWOPOLE Voltage Follower Pulse Response II II I . V. J±I~vl , 12 j I.K fEEDFDRWARD -II TL/H17752-13 1'+t'IM"'*'It+-HJU.'~. !WI: 11K, ,,' Large Signal Frequency Response IIrT~'-nmrrTft~~m-, 'I .r'l S"'"r-... ,., I . I . I. I . TLlH/7752-9 IIIJ'N... J. ~ I .REQUEICY IHII Large Signal Frequency Response • 111111 I T~ -Zl'~ rV, -±,~,;- ~ [\. F fREllUEICY (HI' / ,.,. '" Open Loop Frequency 'Response ' Open Loop Frequency Response TL/H17752-19 Typical Applications* * Variable Capacitance Multiplier Simulated Inductor R2 100 C= 1 R3 10M +~Cl R. .£.-------It----....;.;.;;.:;;..---' L" Rl R2Cl RS Rp = R2 = Rl TL/H17752-21 Fast Inverting Amplifier with High Input Impedance Inverting Amplifier with Balancing Circuit Rl H2 INPUTo-.J\NIr-"--"""'M~-"""""I ....-o >~ OUTPUT OUTPUT tMay be zero or equal to parallel combina· tion of Rl and R2 lor R3 5Gill minimum offset. TUH/7752-23 TUH/7752-22 Integrator with Bias Current Compensation Sine Wave Oscillator cz .--_.u---..- III,F Ufo COSINE OUTJUT HI HI v,.-"""'M~.-------, ZIlK '" VOUT e. II1,F HI IlIK I" TUH/7752-25 HI IK 10= 10kHz TL/H/7752-24 "Pin connections shown are for 8-pin packages. 1-185 "Adjust lor zero integralQr drift. Current drift typically 0.1 ~AI'C over - 55'.C to + 125'C temperature range. • Application Hints** Protecting Against Gross Fault Conditions Compensating for Stray Input Capacitances or Large Feedback Resistor _-~N_-.-.OUTPUT C2 R3 C2 Ri* RI II'UT'~'V\I~~ OUTPUT RI· C2 TESTrollT R3 'Protects input tProtects output = AI Cs A2 I.PUT~"",....""'::f CI TUH17752-26 TL/H17752-27 tProtects output-nol needed when A4 is used. Isolating Large Capacitive Loads _-~N_-.-t~OU'lPUT R3 M C2 TL/H/n52-28 Although the LM1 01 A is designed for trouble free operation, experience h,as indicated, that it is wise to observe certain precautions given below to prote.ct the devices from abnormal operating conditions. It might be "pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices. When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 rnA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 ""F) should be treated as a low 'source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed. The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test pOint, it should be isolated by a limiting resistor, as test pOints frequently get shorted to bad places. Further, when the amplifer drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps. "Pin connections shown are for a-pin packages. Precautions should be taken to insure that the power supplies for the integrated circuit never become reversedeven under transient conditions. With reverse voltages greater than 1V, the IC wHi conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage.between Y+ and Y- will always cause a problem, although reversals with respect to ground may also give difficulti&s in many circuits. The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 kO, stray capaCitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capaCitor. Alternately, lead capaCitors can be used in the feedback network to negate the effect of stray capaCitance and large feedback resistors or an RC network can be added to isolate capaCitive loads. Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on eyery circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved. Typical Applications** (Continued) Standard Compensation and Offset Balancing Circuit FastSumming Amplifier CZ 3 pF RZ 30K Rl 30K Power Bandwidth: 250 kHz Small Signal Bandwlidth: 3.5 MHz Slew Aate: lOYI p.s .-~W'\r-- y- TlIH/7752-30 TlIH/7752-29 I - Fast Voltage Follower Bilateral Current Source R1 ..... >..;.....~YOUT Slew Aate: WI".. i R3 50K 0.1% C2 300PF R5 500 1% A3YIN IOUT=AiR5 Cl 30 pF Rl A3=A4+A5 10K - Al = A2 ~--~~~-------4t---loUT R4 HZ II1II ..... 4UK 1.1,. TL/H/7752-31 TlIHI7752-32 Fast AC/DC Converter' RS CZ 20K 10 "F 1% RZ R3 ZOK 1% 10K 1% r--4"''''''''''.~''-~N~~''-~~",",--.- OUTPUT INPUT ......JVv\O.......... C3" ·Feedforward compensation can be used to make a fast full wave rectifier without a fiRer. 30 pF TL/H/7752-33 "Pln connection. shown are for 8-pln packages. 1-187 ~ Typical Applications'" '" (Continued) Instrumentation Amplifier RI* R3 t 10K 0.1% 1M 0.1% " >-"~DUTPUT RI = R4;R2';' R3 " Rl Av=I+Fi2 '. tMatching determin~ CMRR. -~"----INPUTS - - - _ ..... + Integrator with Bias Current Compensation R3 20K TUH/7752-34 Voltage Comparator for Driving RTL Logic or High Current Driver R4 "75K AI v. -~M_.-------., el TUH/7752-37 >~""-vour • Adjust for zero integrator drift. Current drift typically 0.1 nArC over O'C to + 70'C temperature range. TLlHI7752-35 Low Frequency Square Wave Generator AI 1M r-----1....,---~ R4 LOW IMPEDANCE OUTPUT "5K ...~~_._._.' ">~ CLAMPED OUTPUT 01 "" 6.2V 02 6"2~ TL/H/7752-36 "Pin connections shown are for 81>in pacI - r----< ~ R1 II( RZ 2QK R8 B50 Q20::r R3 10K M liD 0 v- 'Pin connections shown are lor metal can, > , 1-192 TUH17757-1 ....a::: ... Guaranteed Performance Characteristics LM107/LM207 Input Voltage Range I.Voltage Gain II Output Swing m~-r~~~~~r-, o.... .... .... a::: N o .... ..... .... a: o.... 14 != " 1--+-1--' ii S I ~~ I ..•c " • _ Co) ~ II I-- -LM1IJ: ...."C,;;T. ';;IU'C I-- _"-:o8"C';;T.';;II"C 7t SUPPLY VOLTAGE (±VI ....... ~~ 12 I I I 1 1 21 " YVOLTAGE (tV) SUPPLY VOLTAGE (tV) TL/H/1757 -4 Guaranteed Performance Characteristics LM307 Input Voltage Range Output Swing Voltage Gain 20 II f->- ..,. -~~ .....,. " ..,. I,;' .,. ..,. 14 15 II i ~F' II"I:ST.Slrc 1 ~ -"""~I~ f-f-- g 1"'"11 "~ ~t::; ~ ... i"- r-r-- 10 ~ ,,~ i"" ~ 101 I ! ... • ~ : 1"1: ST. 91"1: 1 I. " ;;;;..r ~i"'" 1 I II I"I: 20 !:; T.I.Z5·l_ v. """ .~ 10 18 :I:1IV (Continued). Large Signal Frequency Response ,~ : 12 z il -20 110 IK 4 ~ 1\' 2 co f\.. IK , ~. S > 1. 1 1 -~~ 'IIPUT+\ I "'~ I ",j., OUTPUT .1 \ ~- TAl. 2~'C vY'l -8 -II IOIK 11K -4 -8 I' FREQUENCY (Hz) 81 =:c -z \ 10K IIDK 1M 10M .1 1 1 'I ' 1\ 10 18 T.'2S·i:" VI- ±15V I\. I Voltage Folrower Pulse Response iV '0 \I 21 3D 40 50 10 10 II FREQUENCY {Hz! TIME~ TLlH17757-7 Typical Applications** , . Inverting Amplifier Non-Inverting AC Amplifier R2 . RI R2 10M 1M You, R3 "OK Cl ....... I"" I TL/H17757-8 RIN TLlH17757-9 Non-Inverting Amplifier RI R2 TLlH/n57 -10 "Pin connections shDWT'! are for ,netal can. 1-194 = R3 R3 = Rl11R2 Typical Applications* * (Continued) Turntable Notch Filter RI lOOK 0.1% R2 >--"--VOUT lOOK G.I% CI 500 pF Al = A2 = A3 A4=A5=.!:!! 2 10 21r.JC, C2 A4 A5 = 60Hz TL/H17757 -11 Differential Input Instrumentation Amplifier a R4 lK 0.1" lOOK 0.1" v· INPUT a OUTPUT RI lK + R2 BALANCE R3 3 a lK 0.1" II R5 lOOK 0.1" TL/H17757-12 "Pin connections shown are for metal can. 1-195 I :I d N.a t ion a I ~p :& ~ ~ .... :!I S e m i con due tor LM108/LM208/LM308 Operational Amplifiers General Description The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a - 55'C to + 125'C temperature range. The devices operate with supply voltages from ± 2V to ± 20V and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensaticm as the LM101A, an alternate compensation scheme can ,be used to make it particularly insensitive to power supply nOise and to make supply bypass capacitors unnecessary. The low current error of the LM108 series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from 10 MO source resistances, introducing less error than ,devices like the 709 with 10 kO sources. Integrators with drifts less than 500 p.VI sec and analog time delays in excess of one hour can be made using capacitors no larger than 1 p.F. The LM108 is guaranteed from -55'C to +125'C, the LM208 from ~ 25'C to + 85'C, and the LM308 from OOC to , +700C. Features • '. • • Maximum input bias current of 3.0 nA over temperature Offset current less than 400 pA over temperature Supply current of only 300 /LA, even in saturation Guaranteed drift characteristics Compensation Circuits Standard Compensation Circuit RI -VON Alternate' Frequency Compensation RI R2 -JVV\,-.---,\NIr---..., R2 -VON -JVv\'~.--~M_--.., +VON --¥""---t >-"-V > - * - VOUT RJ OUT R3 B RI C Ct:;, RI + ~2 T Co = 30pF c,** c. 100 PF TUH17758-1 TL/H/n58-2 "Bandwidth and slew rate are proportional to I/Ct 'Improves relection of power supply noise by 8 factor of ten. "Bandwidth and slew rale are proportional to I/Cs Feedforward Compensation cz 5 pF , INPUT -"",."....-1 >;.e- OUTPUT R3 • 3K Cl 500 pF TUH17758-3 1-196 Absolute Maximum Ratings If Mllltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Offlcel Distributors for availability and specifications. (Note 5) LM108/LM208 ±20V Supply Voltage Power Dissipation (Note 1) 500mW ±10mA Differential Input Current (Note 2) Input Voltage (Note 3) ±15V Output Short-Circuit Duration Continuous - 55·C to + 125·C Operating Temperature Range (LM1 08) (LM208) - 25·C to + 85·C Storage Temperature Range -65·Cto + 150"C Lead Temperature (Soldering, 10 sec) DIP 260"C H Package Lead Temp (Soldering 10 seconds) 300·C Soldering Information Dual-In-Une Package 260·C Soldering (10 seconds) Small Outline Package Vapor Phase (60 seconds) 215·C 220"C Infrared (15 seconds) See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 6) 2000V LM308 ±18V 500mW ±10mA ±15V Continuous O·Cto +70"C - 65·C to + 150·C 260"C 300"C Electrical Characteristics (Note 4) Parameter LM108/LM208 Condition Min = = = = = = Input Offset Voltage TA Input Offset Current TA Input Bias Current TA Input Resistance TA Supply Current TA Large Signal Voltage Gain TA 25·C, Vs = ±15V VOUT = ±10V, RL ~ 10kO Typ Min Max 0.7 2.0 2.0 7.5 mV 25·C 0.05 0.2 0.2 1 nA 25·C 0.8 2.0 1.5 7 25·C 30 25·C 0.3 50 10 70 0.6 300 Input Offset Voltage 40 0.3 25 3.0 Input Offset Current 15 6.0 0.4 Average Temperature Coefficient of Input Offset Current 0.5 2.5 0.15 0.4 Input Bias Current 2.0 3.0 = Vs = TA Large Signal Voltage Gain RL ~ Vs = +125·C ±15V, VOUT 10kO ±15V, RL = = ±10V 10 kO 25 ±13 1-197 0.8 rnA VlmV 10 mV 30 p'vrc 1.5 nA 10 pArc 10 nA rnA 15 ±14 nA MO 300 3.0 Supply Current Units Typ 25·C Average Temperature Coefficient of Input Offset Voltage Output Voltage Swing LM308 Max ±13 V/mV ±14 V • co 0 (II) :i ..... ~ N ::IE .... ..... co 0 i...J Electrical Characteristics (Note 4) (Continued) Typ Min Input Voltage Rarige Max ±13.5 Vs = ±15V i. I,.M3Oa LM108/LM208 Condition Parameter , >:, Min Typ Units Max ±14 V Common Mode Rejection Ratio 85 100 80 100 dB Supply Voltage Rejection Ratio 80 96 80 96 dB Note 1: The maximum junction temperature of the LM108 Is lSO'C, forthe LM208, 100'C and for the LM308, 8S"C. For operating at elevated temperatures. devices in the H08 package musi be dereted based on a thenrnal resistance of .160'C/W, junction to ambient, or 20'C/W, junction to case. The thenmal resistance of the dual-In-line package Is 100'C/W,junction to ambient. Note 2: The Inputs are shunted with back-to-beck diodes for overvoltage protection. Therefore, excessive current will flow H a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is ueed. Note 3: For supply yqltages less than ±lSV, the absolute maximum Input voltage Is equal to the supply Yoltege. Note 4: These specifications apply for ±SV s: Vs s: ±20Vand -SS"C s: TA s: + 12S"C, unless otherwise specHled. WHh the LM208, however, all temperature speclflcations are limijed to - 2S"C s: TA s: 8S"C, and for the LM308Jhey are limited to O'C s: T A s: 70'C. Nota 5: Refer to RETS108X for LM108 milital)' specifications and RETs 108AX for LM108A milHa/)' specifications. Nota 6: Human body model, 1.S kfl in series with 100 pF. Schematic Diagram COMPENSATION r-________~--~1~.-~~ R4 20K RS 20K COMPENSATION __--~~8~--_.~----------------~~------~7 V+ R6 10K 11-_"-,\NH~6 OUTPUT INPUTS +-----+------~., "'--+~\IV-+-~I 020 R13 20K R12 820 4 L...--'W"..--41~""'I'\r-"-"''''''''''''''''-~''-41~---e_---V-, TL/H/7758-8 . 1-198 Typical Performance Characteristics LM108/LM208 Input Currents u u i - .... r-., I. Iii U I u - ~ i.. !; 1.1& I • I.,' ~ o. , I -IIi -35 -11 I H 41 • p a~111'1111 ~ " 1.1 i 'OFFSET ""'" Drift Error Offset Error c !:; I!" - r- r--_ 1.1 ,. .. , . 125 TEIiftRATURE C'CI Input Noise Voltage ,. ,. ...ti .t~ l !'11 ~1:IIIIIEt=t i iii II 1. ,. L..J...L.IIIIL..JL.J. II .REDUENCY 11K II ! ~= ,~ 48 20 ID ~ i " .... ....~ C I' . H I ' ....:: ... ~q-.,. - ,, '""r--- 41 SAl. ·21 1 11 lID lK - ~. -125'C ~.:25JC , , I ,. ,'-, L---L_-'--'_"';;_ _~ 10 lID ,. 11K IIOK ,. , . 10M .REOUENCY 1111' - • I. , I. 131 ID ;;r Ii ... ~ ! .. Ii \: t ..~ 12 r-' I-- IE: 41 11K '.K 1M 10M • REQUENCY 1Hz' Supply Current V.-t"V '\ T... --HOC "" o 5 OUTPUT CURRENT I,..A, 1t1 C,-3" , •• .REOUENCY IHII fA" 121"C 11 11 21 III I I • ~ i.. -Hp. 10K = 25~C Voltage Follower Pulse Response ,,,o2SoC V... .!:ISY '- TA SU"LY VOLTAGE I'V' 10 I-I-lK - .--I"""'" ~ Large Signal Frequency Response Co-'~~ ct-., ~ -21 IIOK ,.,.. 21 ct- 3oF-t- c"3'.m, ,Co-'ll,h 'V- .... f..,: -II·C '-IHIIz 121 i II' I--t--~'<-I ,/" I Open Loop Frequency Response ~~ 11K II IU"LY VOLTAIE ltV, III lK Output Swing 11 I I I I ct-, II l--flrl'PIrlf--+>.;-if--; .HEOUENCY CH., ~'25'C I 11' ~ ,,-, I--+r+--+- l1li, ......-1;':-IIi·C r ii lID I I " . .--,--.,.---r-..,....--,=. S 1.' I---jjr-ho<-f--¥-if--; -20 ,.K 'A .aJc ; 1" 10' I II Voltage Gain C2I Closed Loop Output Impedance Vs ",.t15V T... -ZIOt Av=' ;;; :!! INPUT RESISTANCE (Ill Power Supply Rejection 1. ~ lD11111 ~ '.&1111 ,. ,. 1 _PUT RDISTANCE 1'- 120 I. i10: I. ~ I.'UT ~om T \ 0 ..~ ... .... -2 J I I .-~I·J - ...., 1\ -·'II!._ ct-.,· Vo ~ -II I 211 411 . . .11. '21'41'11 TI.E .... TL/H/7758-6 1-199 Typical Performance Characteristics LM308 • . z ~ :i ~ BIAS, 'I I ....... [00..;.. i o.i. UG l- 100 i. ~SET--:- tJ I I I 0.10 o o ~ 10 ~ ~ ~ a " " m U H • 1.0 L.....L:.l..LJLUII......L..LJ. 100K I. 11M TEMPERATURE ('C) UL...L.;J.J..IJJIJII..-L..LJ. IIIK I. 100 FREQUENCY (H.) ,Ii:" IK 11K I. lOOk ,. II Voltage Gain Output Swing .. . ' - r"" w TA =1I"e C !:; I.. - ~ T.!O"~ ISO ~ 11 i TA-2S'C T: -a!c ! C,'D t-llOHz I. Supply Current T.·WC" I TA = zs"e I. 11K lOOk ,au Vs" +1SY I Jllll;fO': --I: , Ik FREIIUENCY tH.1 15 110 1111 FREQUENCY (Hz) ,IZI !! c co 101. Closed Loop Outnut hnpedance '10' i I. INPUT RESllTANeE 1111 INPUT RESISTANCE U. Input Noise Voltage TA·lrC Error = ~ '~MIII~ ',~ I 0.25 Drlt~ >IOIO'~ml .! f.:I ~. t I, "3 ! ,.()ffset Error Input· Curr,ents -25"C 310 ..... f..- r- 250 "il 200 iiii 150 . T.-WC ~ 100 51 a ao 21 II 15 SUPPLY VOLTAGE (.V) 5 Large Signal: Frequency Response 121 . ... ii :!! 10 ~ 8D ~ .0 or !:; " Ct- ~PF+-CI.lprilr " Cs' loo,F----,.!"! rI- 10 ., i'--- m GAIN PHASE - - - 90 4& Cs~ lOD:~ c,- JD,. -ZO 1 10 lDO IK ~ 10K ll11k 1M FREQUENCY (H., ... il. I "~. ~ ~ 0- C,-30,F za 111111 liD 10M ! \ 12 1111111 TA " HOC .. a i ,I w ~ !:; -30pF, g tlOOK FREIIUENeY tHz) 1M r- r-r- J IfOUTPUT I INPUT 0 ~ -2 ... -I -10 I::::: 111( r- -I lIK Voltage Follower Pulse Response I VB - illY C,-3,. o zo 11 SUPPLY VOLTAGE (iVl 11 ~~ 'I OUTPUT CURRENT t'lIIA) Open Loop Frequency Response III 5 '1 .... o 1\ 21 TA-~SJVs - "5~_ C,'JD,F ~ 10 II 100 12110150 TI.Et"~ TL/H/775B-7 1-200 Typical Applications Sample and Hold v' AI 1M INPUT SAMPLE OUTPUT tTeflon polyethylene or polycarbonete dielectric capec~or Worst case drift less than 2.5 mY/sec C2 30 pF TL/H/7758-4 High Speed Amplifier with Low Drift and Low Input Current R,• INPUT -~N\,--"-----"----'V\""'----.- OUTPUT .002"" 150K .002"F TL/HI7758-5 1-201 • Typical Applications (Continued) Fastt, Summing Amplifier Rs INPUT-JVIAI~"'----------"-"'1 C3 0.002 p.F OUTPUT R2 1M 'In addition to increasing speayf>assed ~Ith 0.1 p.F disc capacitors. Note 5: Slew rate is tested with Vs ~ ± 15V, The LM118 is In a unHy·galn non-lrTVertlng configuration, VIN is stepped from -7.5V to + 7.5V and vice versa, The slew rates between - 5.0V and + 5.0V and vice.versa are tested and guaranteed to exceed 50VI p.s. Not. 6: Refer to RETS118X forUA118H and LMII8J military speCifications. Note 7: Human body model, 1.5 kllin series With 100 pF. 1-204 Typical Performance Characteristics LM11 e, LM21 e Input Current 200 150 Voltage Gain ;;;;;;~ls 100 1 '0 ! 10 ! ~ ~ ~ ~ ~ 8 ,,0 i""'"- ~5JC....... T A 105 -T.·m"C -55 -J5 -15 5 25 45 65 15 10' 125 JOO 100 J8 10 . 5:;: . .. Ii! i 10 20 10k . w u - 10' ~ 5 ~ 10. 1 .. TA '" 2S'C i'\. 10' ~ '0- 2 - ~ 10-3 1. 180 12 ,.rJ V Av=y ~ i i! 22 I. . . "~ i ::I . 20 - i 1& e 14 ~ ii 12 .. I I I I 8 -55 -J5 -15 5 680 I"- :::-;;:i::::: r-.. ..... ...... 25 45 85 15 105 125 TEMPERATURE rCI 20 Input Current T TA =125'C 15 10 20 1-+--+-+--1-+--+--++1 -BOD ' - " -.............--'_"--'--'-.... -D.B -0.6 -u -D.2 0 0.2 0.4. U D•• 25 130 120 r-- r-~sli'YE ~LE~ ,,0 ~ I .. .. 70 NEGAT1YE SLEW it'{.... . E w l00r ~> ~ ..= == Vs "';:I:1SY TA =25-C -5 25 45 15 II 105 125 TEMPERATURE rCI uo lmY ~ lmY ~.5k11 R,. -ID -1& -55 -J5 -15 5 lD~Y I lD ...... I" Vs ·::tISV As-Rf-'OkO C,·S.f Inverter Settling Time 15 100 ~ 9. II DIFFERENTIAL INPUT IVI Voltage Follower Slew Rate J' ~"±1D~_ Vs"::t5V 10 SUPPLY VOLTAGE I±VI OUTPUT CURRENT (mAl ...... ~I::-- ...... -.J ~ VS'±ISV 1M I ..... t--t"~ JS.~15~t+- 10 5 - 15 4.0 10M -400 100k V iii ./ 10k T•• m~ .~ /' 1k I-- ~ ~ ~s=:t20V I'- " /1' ~ ~ r- T.'25"C- TA " Z5"C Unity Gain Bandwidth i 4.5 > 1M 10 FREQUENCY IH'I 24 E Current Limiting 14 Vs":t15V Av ' • ,oOO lOOk .~ 5.0 S ~ ..... T.'~ ~ FREQUENCY IHII Closed Loop Output Impedance 10' til 10M Supply Current .! \. 100 lOOk 1M T.·21"C_ 60 :E too. tOk FREQUENCY tHri 5.5 - FREQUENCY 1Hz! g 1k Rs"'2I1R o 10> '~ 100 20 15 ~ 80 40 '- '\ '-; 100 ~ :E SU~ -20 120 8 lk NEGATIVE 20 Common Mode Rejection 1010 100 40 ~..,,~_OSITIVE SUPPLY SUPPLY VOLTAGE !±VI P+1llIII=:m1ll1=mt;;2iiC1lll 10 ! TA '" 25'C ~, iii 5 Input Noise Voltage ~ 60 I: TEMPERATURE reI Jooo z > ., a ... ..- =25'C ,..., §: 100 I ~:; 80 ~ OFFSET ~ Power Supply Rejection 100 115 Vs .. :tISV lDOrY C.,,'Opf !1omv Ca." D.l,." ",i O.OJ D.l D.J TlMEI,a) TL/HI7766-4 1-205 Typical Performance Characteristics LM118, LM218 (Continued) ,. Large Signal Frequency Response i. T.~Jcl , 12 V.·~IV \ II i I. i ! ~ i II Open Loop Frequency Response - , II i~ T!' zJc v•• ~.v- II PHASe I K' ~ 10 II 22' I. , , I ii 48 ~ Voltage Follower Pulse Response 'II! I: .~ 41 . • l- \ ..I...~ \ .... 1M III .. 11M lIM -a IiIII 111 " FREDUENCY IHI) - 14 12 j 121 T.'zr~' '111 V.·~IV i II .. i I i! c II III 48 ~ co FEEOFOR.ARO ...... I 'M -I -11 ~::~::.- -II -211 1ft I . ,. '1M , ... -1.2 J I III Open Loop Frequency Response 1.2 ,. ...... ., ~ -a 10 " ~-I-' II! Ii '4a III ·c !:; co '" FEfDFOI_'O ,311 FR£QUEIICY IHII II DB 10 lAIN' 1.1 Inverter Pulse Response , PMJV' 'S.. T.'IIjC - I" IA ... ". TIIIEc.sJ zo v~.~Jv ~ II I'-OIlTPUT -4 ~ FREDUENCY !HI) Large Signal Frequency Response. , -t- !! I' 11 I I E GA.." • n r,-M- lJ 12 ,,' .,.OUTPUT -I . -~. -11 I I t.Z ... - T.·zrc FEEOFO_RO 0.1 I 'I-t- -4 -II -I.I I . I . 1M 11M I . FREQUENCY IHII I . It r\1 INPIIT";" \. -11 • I -r1- V.·~.V t.7 0.9 TIME"", TUH17766-5 Typical Performance Characteristics LM318 .. Voltage Gain Input Current 200 I '10 i:l i .... ... iii 110 !!! = .0 ill • .. . BIAS i'" '" 105 ;. : ~ 31 3 OFFSET o T.-7rc ,. 100 I I 95 '0 120 -"" '\ .. lao ~ • ::.. ..... .'.." a; 30 ,t I. ,. FREQUENCY IHzI I. 411 . II II 20 o 100 Ik 10k lOOk FREQUENCY IHd 'k 10k lOOk 1M 'OM FREQUENCY IHII u i... 6.0 . ..f.5 ill I\. 60 ! e!1(!B!~~~!: 20 Ro-2kO T. ~2rc_ 3, 100 15 Common Mode Rejection Input NOise Voltage ~3111 1--t--t---1f-~--f SUPPL YVOLTAGE ItVI TEMPfRATURE rCI I=I+mlII=+rnIll=Pn:::a;:;mr 20 ~O~--~--~~~~--~ 5 01033114110.70 I. i T•• 25'C ~ II l T.-rc C >- 48 3000 1I11III Power Supply Rejection 100 115 i:l " 'M 10M Supply Current .J•• r~ ~ ~-". [ k'" / T :1'2IC \ -- TA.iJft , 4.0 5 II I. 20 SUPPL Y VOLTAGE ItVI TL/H/n66-6 1-206 r- .... .... co i: Typical Performance Characteristics LM318 (Continued) ...... rClosed Loop Output Impedance ~ S .,c rl . ,. 10-2 10" Ay l=l_ ",- "- V 1'" i! ... lit' T" ,,2S·C - 10' co I... " V.·~5V III' 10 lID i Ay-V T. I'25'C E& g iC \ o lOll 1M I" 20 I~ 1.~~~~~.~~~ \ ..011 o II 15 10 DUTPUT CURRENT ImAI Z5 -I.....&-U-II.20I.ZUILI0'. DIFFERENTIAL INFUT IVI Voltage Follower Slew Rate 15 r-r-TT'I'TTT"--,r-r-n"TTT"--"'-' r- 1 I'OSITIVESLEW 1--+--+-+ III ..:: ,. ~ co ,. s ,.e: NEGATIVE SLEW II ,.ii L-..i--L_l-J----'_..i-...J r- -15 14~~~~I~m--ron T.~2~C' \ I V'i~~ 1-H+H~\t+-++1rtttIt-+-+j+t iS · 1-ttftI---\--r-rtttIt--r1 +Hi HtHl--i~-\t-+++ltt+--+-+-.y g I I! ! Htftt---l--!'\I-t+Htl--+J-+-j 4 I Nl·, I 120 i 1'\.1 lID .. i ID C 60 ..~ CD ,." 2M 5M r •• Z5'~ _ "- E a !; ..~ L 1 PHASE ~ -' SlIM \ II 1011 Ik f- ~ I 8 "' ... • 1M II 3M Ir~ C 10 w ,."~ . I ~' FfEDFDRWARD I ;: 10 .. , , Jill 10M 30M FREDUENCY IHzI 111 :I 'I il 1 r- -1& T. =25'C - \ I I V.=:t:15V 0.1 0.2 1.4 1.0 1.1 T'MElpd Inverter Pulse Response . i 10 b.. i'- I "- 40 ....... V ZI 11 V.=:tIBV r.=Z5'C- ~ FEIE DFDIRWA~D 12 1 PHAbr I "- -211 1. 111 lk 10k lDDk 1M 10M IOIIM FREIlUENCY IHd ~ .. i~ -12 ~ 1 ~- ~. w GAIN' 10l1li1 -Mo- -OUTPUT 'NPUT- -4 -211 -0.2 11k 1... 1M 10M I _ Open Loop Frequency Response , :\J ',1 i 1\ FREaUENCY IHd T."rc V.=:tIIV I . I 1 n ~ -I ",. -IZ 120 II .. i 12 w GAIN,\ -211 a co I I I 15 2Z5 ZI Large Signal Frequency Response 12 j ~ 41 FREaUENCY IHd 14 Vrtl~V I II 10M 20M Voltage Follower Pulse Response ZD w I 11.J,JB,.....L...J...lJ o LJ.LW.-L....L...J..L.J 0.5M 1M TlME~ Open Loop Frequency Response r- D,3 ••1 D.I3 TEMPERATURE rCI Large Signal Frequency Response .. -ID I1DZ03D4I&GIDID TEMPERATURE I'CI 8 I.V -I " II 010203841H&01. 11 h,v ~ .. 16 C 11 a V••':tI5V I Rs=R,=111Ul 1:,=5..., RfFIPH-t+ttl-ttt- Inverter Settling Time 110 :i i w .... CO 1\ V.=:tI5V i 12 ~ 4 ./ Unity Gain Bandwidth 22.--.----y---,--r-.----y--, 12 N r- -- T.=lrc . FREDUENCY IH.) .. .... 12 lID /' Ik iC Input Current 80D !l • \j --- - ......... Current Limiting -1-'1- I~OUTPUT ,NPUT- :/ ,/ 1\ \ \ -f-" ~- FEEOFORWARD -18 -z,-0.1 I 'H- I 0.1 I 1.3 D.5 - T. = 25'C V.=:tlBV 0.1 8.9 TlMEI/IIl TL/H/7766-7 1-207 co .- CO) ~ r-~----~----------------------------------------------------~--------~~----------, Auxiliary Circuits ~ .- Feedforward Compensation for Greater Inverting Slew Ratet N ::I.... Compensation for Minimum Settlingt Time 5K 5pF co ..- JK, ::I tOK v' >:.........~-OUTPUT 10K INPUT - " "_ __ tSlew rate typically 150Vl,..s. 'Balance circuij necessary fOr' increased slew. ~----.,~OUTPUT 27K '" • UK , _ _ _ _..1 BALANCE- TL.lHln66-8 TLlHI7766-9 Offset Balancing Isolating Large Capacitive Loads vi" Overcompensation !If r---"""'--...--......... OUTPUT 100 tUpF SK INPUT -""""'''-f TLlHln66-12 TlIHln66-10 TLIHI7766-11 Typical Applications Fast Voltage Follower" Integrator or Slow Inverter 5pF AI 10K 5pF OUTPUT CF = Large (CF:;' 50 pF) IN'UT ......W""'"~ TL.lHln66-14 '00 not hard-wire as infegrator or slow inverter, insert a IOk-5 pF network in series wnh the input, to prevent oscillation. TLIHln66-13 1-208 Typical Applications (Continued) Differential Amplifier Fast Summing Amplifier 10K 5 pF 10K 10K INPUT-~""''''I-'''t OUTPUT 5K INPUT_",,_ __ 10K INPUT-~,..,....~ OUTPUT 10K TL/H/7766-16 TUH/7766-15 Fast Sample and Hold IOpF 5K OUTPUT INPUT~""---, SAMPLE TUH/7766-18 D/A Converter Using Ladder Network 5pF 5K 5K 5K OUTPUT FROM SWITCHES TV· 0.1 ~F· 'Optional-Reduces settling time. TUH/7766-19 1·209 LM118/LM218/LM318 ;J "g' » Four Quadrant Multiplier ""2-g' ISV 0' ~ 50K 1% SDK 1% 38K 30K 1% 1% 120K 1% til 3pF 5K* i ::> 1 IIOK 50pF 1% 120K 1% ":)6 ~ ~ ~ o x INPUT , 121K 'W\; 1% • • ~ -I ISV ~""".<~IOKII IK 280 200 -ltV INI14 zero. ·"Y"zero + "X" zero ~Ou1put *Full scale. adjust. . . ISOK 1% ~ TL/H/776Ef-17 Typical Applications ......r.... r...~ r... !!I: (Continued) CD CIA Converter Using Binary Weighted Network Fast Summing Amplifier with Low Input Current 5,. s" !!I: N R, OUTPUT INPUT ... 10K . .DD2IJF CD ,. OUTPUT lOOK 1&DK _ FROM SWITCHES !: Co) "Optio~Aeduces settling time. T ":' '.1uF· .OD1j.1F V· 5K TUH/7766-20 TL/H/7766-21 Weln Bridge Sine Wave Oscillator Instrumentation Amplifier AI 750 lGa1< ", lZK ", lie NULL lZK 1% >--"'--OUT'UT AZ ZOK -'.'UT~W_H 1% "ll-10V-14 rnA bulb ElDEMA 1869 Al ~ A2 TL/HI7766-22 Cl ~ C2 1~ ... , . 200K ) "Ga,n ;" -A-lor 1.SK ,;; Ag ,;; 200K __ 1_ 2".A2Cl ., 9 "'--~~--"---'5V TL/H/7766-23 1-211 I Schematic Diagram ~~--------------------~~a~~-' ~----.-+-+-----------~&.-~~ 1-212 t!lNational Semiconductor LM 124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers General Description Advantages The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split pOwer supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply' voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard + 5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ± 15V power supplies. • Eliminates need for dual supplies • Four internally compensated op amps in a single package • Allows directly sensing near GND and VOUT also goes to GND • Compatible with all forms of logiC • Power drain suitable for battery operation Unique Characteristics • In the linear mode the input common-mode voltage range includes ground and the output vol1age can also swing to ground, even though operated from only a single power supply voltage • The unity gain cross frequency is temperature compensated • The input bias current is also temperature compensated Features • Internally frequency compensated for unity gain 100 dB • Large DC voltage gain 1 MHz • Wide bandwidth (unity gain) (temperature compensated) • Wide power supply range: Single supply 3V to 32V or dual supplies ± 1.5V to ± 16V • Very low supply current drain· (700 JJA)-essentially independent of supply voltage 45 nA • Low input biasing current (temperature compensated) 2mV • Low input offset voltage and offset current 5 nA • Input common-mode voltage range includes ground • Differential input voltage range equal to the power supply voltage OV to V+ - 1.5V • Large output voltage Swing Connection Diagram Dual-In-Une Package OUTPUT' .N'UT 4- INPUT ,+ GND INPUT 3+ INPUT 3- OUT 1:==:;~~l,III""!:::i;:===OUU OUTPUT 3 IN1- IN4- IN 1+ IN4+ y. GNO IM2+ IN3+ 1"2OU12 IM3OUT! TUH/9299-32 INPUT r OUTPUT 1 INPUT'- Order Number LM124AE/883 or LM124E/883 See NS Package Number E20A ounUT 2 TL/H/9299-1 Top View Order Number LM124J, LM124AJ, LM124J/883··, LM124AJ/883·, LM224J, LM224AJ, LM324J, LM324M, LM324AM, LM2902M, LM324N, LM324AN or LM2902N See NS Package Number J14A, M14A or N14A OUTPUT 1 OUTPUT" INPUT 1- INPUT.4- INPUT 1+ INPUT"+ y. INPUl2+ GOD INPUT 3+ INPUT 3OUTPU12 OUTPUT .3 TUH/9299-33 'LM124A available per JM3851 0/11 006 "LM124 available per JM38510/11005 Order Number LM124AW/883 or LM124W/883 See NS Package Number W14B 1-213 LM 124/LM224/LM324/LM2902 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9) LM124/LM224/LM324 LM124/LM224/LM324 LM2902 LM2902 LM124A1LM224A1LM324A LM124A1LM224A1LM324A SupplY Voltage, V+ -65·C to + 150"C 32V 26V Storage Temperature Range -65·Cto + 150"C 'Differential Input \joltage 32V 26V Lead Temperature (Soldering, 10 seconds) 260·C 26O"C '·-O.sVto +32V Input Voltage -0.3Vto +26V Soldering Information Dual-In-Une Package Input Current Soldering (10 seconds) 260·C 260"C 50mA (VIN < -0.3V) (Note 3) 50mA Small Outline Package , -", . Power Dissipation (Note 1) 215·C 215·C VaPor Phase (60 seconds) Molded DIP 1130mW 1130mW Infrared (15 seconds) 220·C 220"C Cavity DIP 1260mW 1260mW See AN-450 "Surface Mounting Methods and Their Effect on Product ReliabilitY" for Small Outline Package. , 800mW 800mW oth~r methods of soldering surface mount devices. Output Stiort-'Circuit to GND . .:. . , ESD Tolerance (Nole 10) 250V 250V (One Amplifier) (Note 2) ;-' V+ s: 15Vand TA = 25·C Continuous Continuous' -40"Cto +85·C Operating Temperature Range LM324/LM324A O"Cto +70"C - 25·C to + 85·C LM224/LM224A - 55·C to + 125·C LM124/LM124A ~ ..... Electrical Characteristics v+ = Parameter I i I I i I i i I I , 0 I +5.0V, (Note 4), unless otherwise stated LM124A COnditions Min Typ Input Offset Voltage (Note 5) TA = 25·C Input Bias Current (Note 6) IIN(+)or IIN(-), VCM TA = 25"C = OV, Input Offset Current IIN(+) -IIN(-), VCM TA = 25"C = OV, Input Common-Mode Voltage Range (Note 7) V+ = 30V, (LM2902, V+ TA = 25·C Supply Current Over Full Temperature Range R't- = 00 .On All Op Amps V = 30V (LM2902 V+ = 26V) V+ = 5V = 26V), LM224A Max Min Typ LM124/LM224 'LM324A Max Min Typ Max Min Typ Max Min Typ I LM2902 LM324 Max Min Typ Units Max 1 2 1 3 2 3 2 5 2 7 2 7 mV 20 50 40 80 45 100 45 150 45 250 45 250 nA 2 10 2 15 5 30 3 30 5 50 5 50 nA V+ -1.5 V V+-l.S ,0 V+-l.5 0 V+-l.S 0 V+-l.5 0 V+ -l.S 0 0 I 1.5 0.7 1.5 0.7 3 1.2 3 1.2 1.5 0.7 1.5 0.7 3 1.2 3 1.2 1.5 0.7 1.5 0:7 3 1.2 Large Signal Voltage Gain V+ = 15V,RL:<: 2kO, (Vo = 1Vto llV), TA = 25·C 50 100 50 100 25 100 50 100 25 100 25 100 Common-Mode Rejection Ratio DC, VCM = OVtoV+ -1.5V, TA = 2S·C 70 70 65 '8S 70 6S 50 Power Supply Rejection Ratio V+ = SVt030V (LM2902, v+ = SV to 26V), TA = 2S·C 6S 100 65 100 65 100 85 85 65 100 85 8S 65 100 70 50 100 3 1.2 mA I VlmV 'dB dB i Electrical Characteristics v+ Parameter = + 5.0V (Note 4) unless otherwise stated (Continued) LM124A Conditions Min Typ Amplifier-to-Amplifier Coupling (Note 8) f = 1 kHz to 20 kHz, TA = 25'C (Input Referred) -120 Output Current Source VIN+ = 1V,VIN- = OV, V+ = 15V, Vo = 2V, TA = 25'C Sink -120 LM324 Max Min Typ -120 LM2902 Max Min Typ 20 40 20 40 20 40 20 40 20 40 VIN = 1V, VIN + = OV, V+ = 15V, Vo = 2V, TA = 25'C 10 20 10 20 10 20 10 20 10 20 10 20 VIN - = 1V, VIN + = OV, V+ = 15V, Vo = 200 rnV, TA = 25'C 12 50 12 50 12 50 12 50 12 50 12 50 (Note2)V+ = 15V, TA = 25'C {Note 5) Input Offset Voltage Drift Rs= 00 Units Max -120 -120 40 Input Offset Voltage dB rnA 40 60 40 4 7 20 7 IIN(+) - IIN(-), VCM = OV ... Rs= 00 U1 Input Bias Current IIN(+) or IIN(':') Input Common-Mode Voltage Range {Note V+ = +30V (LM2902, V+ = 26V) 0 V+-2 0 Large Signal Voltage Gain V+ = +15V (VoSwing = 1Vto11V) RL ~ 2kO 25 25 Output Voltage VOH Swing V+ = 30V (LM2902, V+ = 26V) 30 IRL = 2kO IRL = 10 kO V+ = 5V, RL = 10 kO 60 40 5 20 7 30 30 200 10 300 10 40 100 40 100 40 200 40 26 28 27 20 V+-2 0 5 27 20 5 27 20 40 V+-2 0 500 5 20 40 V+-2 0 rnV 200 500 nA V+-2 V V/mV 22 28 5 V 23 24 20 5 - nA pAl'C 15 26 27 rnA 10 10 15 28 60 ,..VI'C 45 150 300 ,..A 7 10 26 28 40 7 25 26 28 60 9 100 10 15 40 7 75 V+-2 0 60 7 200 5 - 40 10 26 27 60 4 Input Offset Current Drift VOL LM124/LM224 Max Min Typ 20 Short Circuit to Ground n Max Min Typ -120 Input Offset Current ~ LM324A LM224A Max Min Typ --- - 100 - mV -------- ~06~W'/t~£W'/t~~W'/t~~W' LM124/LM224/LM324/LM2902 Electrical Characteristics v+ Parameter Output Current Source Sink = + 5.0V (Note 4) unless otherwise stated (Continued) LM124A LM224A LM324A LM124/LM224 Min TyP Min Typ Min Typ Min Typ 10 20 10 20 10 20 10 10 15 5 8 5 8 5 Conditions Vo= 2V VIN+ = +1V, VIN- = OV, V+ = 15V Max Max Max LM324 Min Typ 20 10 20 8 5 8 Min Typ 20 10 8 5 Max LM2902 Max rnA - VIN = +1V, VIN+ = OV, V+ = 15V Units Max Note 1: For operating at high temperatures, the LM324/LM324A1LM2902 must be derated based on a + 12S"C maximum junction temperature and a thermal resistance of 88"C/W which applies for the device soldered in a printed board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a' + ISO"C maximum junction temperature. Tha dissipation is the total of all four amplifiers-use external resistors, whare pOSSible, to allow the'limpllfler to satUrate of to reduce the power which Is dissipated in the Integrated circuit ' ' , circu~ Note 2: Short cirpuits from the OUtput to y+ can cause excessive heating and eventual destruCtion. When ~sldering short circu~ to ground, the maximum output current is approximately 40 rnA inde~e~rof the niagn~da of Y+. At values of sU(Jply voltage in exCess of + ISY, continuous short-circu~ can exceed the power dlssipetion ratings and cause eventual destruction. Destructive dlsslpetion can result from simultaneous shorts on all amplifiers. , 'Note 3: This input current will only exist when the voltege at any of the 'Input leads Is driven negative. It is due to the collector-base junction of the input PNP transistors becoming iorward biased and thereby acting as input diode 'clamps. In addition to this diode action, there Is also lateral NPN parasitic transistor action on the IC chip. This transistor action can CIluse the output volteges of the op ampS to go to the y+ voltage level (or to ground for a}arge overdrive) for the time duration that an il'lpUt is driven n~e. Thi,1s not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3Y (at 2S"C)., Note 4: Th";'" specifications are limltad to -S5"C ,; TA ,; + 125"C for the LMI24/LMI24A. With the LM224/LM224A, all temperature specifications are limned to -25"C ,; TA ,; +85"C, the LM324/LM324A temperatil;& specifications are limited to O"C ,; TA ,; +70"C, and the LM2902 specifications are limited to -4O"C ,; TA ,; + 85"C. 'Note 5: ito .. ,1.4V, As = Oil with it+ from SY to 301i; and over the lull input cOmmon.mode range (OY to y+ - I.SV) for LM2902, i/+ from SY to 28Y. , Note 6: The directiO(1 of the Input current is out of the IC due to the PNP il'lpUt stage. This current is essentially constai;~ independent of the state of the output SO no loading change exists on the input lines. Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3Y (at 2S"C). The upper end of tha'common-mode voltage range is y+ - 1.5V (at 25"C), but either or both lriputs can go to + 32Y whhOut damage (+ 26Y for LM2902), Indapendent of the magnHude of y+ . . . , . i\) c;; via .NOIe 8: Due to proximity of external cOmponents, insure that coupling is not Originating stray CapacitanCe betWeen these external parts. This typically can be detected as this type of capacitanca increases at higher frequencies. Note'a:Refer to RETS124AX for LMI24A mil~ specHications and refer to RETS124X for LM124 mil~ specifications. Note 10: Human body model, I.S kll in series whh 100 pF. Schematic Diagram (Each Amplifier) v' <,' ... -[ ; OUTPUT -=TLlH/9299-2 ., '- Typical Performance Characteristics Input Voltage Range Supply Current Input Current 15 90 1 I 80 I Jp 70 80 - f- f- .,. = +15VDC - f-- 20 10 r- I Open Loop Frequency Response ;!!. ~z 1\ = 20kll ~ 'r30 120 100 ! ~ 1\ = 2k11 i- Common Mode ReJection RatiO 'iii' 110 TA ~ 55 10 2D .,. - SUPPLY VOLTAGE (Vocl TA - 1EIIPERAlIJRE (COC) Voltage Gain -I r I -55 -35 -15 5 25 45 65 85 105125 5 10 15 .,. OR .,. - POWER SUl'PLY VOlTAGE (tVocl ~ r- TA 1= ood 10 +125COC ~ -- "'1 = ~5VDC I 3 I -- 30 o o 1I IVCII=OVDC I I I .,. = +30Voc I :~ I 80 I I ,.'"~ 8 10 20 30 100 1.Dk 10k lOOk 1.011 1011 40 .,. - SUPPLY VOLTAGE (Vocl Voltage Follower Pulse Response 4 8! i! I 2 Voltage Follower Pulse Response (Small Signal) Large Signal Frequency Response 20 ~ "'=15VoC' \ II 1,.... 1M lOOk f - FREQUENCY (Hz) 1\:S2.Ok 3 10k lk f - FREQUDlCY (Hz) i \ 15 I 0 i 3 10 I 1 - ~ 250~~~~~~--~~ 10 20 o 30 1 \ - TIME (j.o) 2 3 4 5, 6 \ - TIME (j.o) 7 8 10k Output Characteristics Current Sinking 10mw~~.n I 1 10+ - 0.1 1 10 100 OUTPUT SOURCE CURRDIT (mAocl 1 I 5 40 5 30 50 I c-cc- C- I I I ~ l""'- i'--, o - ;-- ,-- ........ 20 ~ 10 b6b1:I!d::I::I:II::I::::I:I!I:I:::tm...llW 0J)1 Current Limiting 90 80 70 80 0 I 0.1. ~ D.OO1 1M lOOk f - FREQUENCY (Hz) ccI""'- o 10 10 - OUTPUT SINK CURREHT 100 (mAocl -55 -35 -15 5 25 45 85 85 105125, TA - TEMPERAlIJRE ("C) TL/H/9299-3 1-217 Typical Performance Characteristics (LM2902 only) Input Current Voltage Gain ~ '} .s 1~ ai' ~ 75 z rs II< II< :::> u 50 I ~ .... g V !:i a.. 3!; i§ l!J _...--' "TA=+25"C 25 ~ ....~ 3!; o RL =20k4 120 , ~ RL~2.0~_ 80 «l o o 10 20 o 30 10 20 30 y+- SUPPLY VOLTAGE (VOC> Y+-SUPPLY VOLTAGE (Voc) TL/H/9299-4 Application Hints Where the load is directly coupled, as. in dc applications, there is no crossover distortion. Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier. The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 Voc to 30 Voc. Output short circuits either to ground or to the pOSitive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excesslye juncb'On temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp. The circuits presented in the section on typical applications emphasize operation only a Single power supply voltage. If complementary power supplies are available, all of the ~dard op amp circuits can be usee;!. In general, introducing a pseudo-ground (a bias voltage reference of V+ 12) will allow operation above .and below this valUe in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages 1ft(hicb range to ground can . easily be accommodated. The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 Voc.· These amplifiers· operate over a wide range of power supply lioltage with lillie change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply· voltage of 2.3 Voc. The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14). Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not Inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. \ Large differential input voltages can be easily accommodated and, as input differential voltage protection dioqes are not needed, no large input currents result from large differential input· voltages. The differential input voltage ·may be larger than V+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0:3 Voc (at 25°C). An input clamp diode with a resistor.to the IC input terminal can be used. To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-Chip vertical PNP transistor for output current sinking applications. . on For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. 1-218 Typical Single.;Supply Applications ry+ = 5.0 Voc) Non-Inverting DC Gain (OV Input = OV Output) +5V RI 10k ------ • 101 (ASSHOWNI 'R not needed due to temperature independent liN V,N (mV) TL/H/9299-5 DC Summing Amplifier (VIN'S ~ 0 Voc and Vo ~ Voc) Power Amplifier RI 91 Ok R lOOk • ..........~....-oVo Vo = o Voc for V,N = OVOC Ay= 10 R lOOk TL/H/9299-7 TL/H/9299-6 Where:Vo (V, = v, + V2 + Vi) :;, (V3 va - V4 V41 to keep Vo + > 0 Voc LED Driver "BI-QUAD" RC Active Bandpass Filter RI lOOk CI NSLIOZ 330pF R5 470k RZ TL/H/S29S-8 V,N o-...J\jI",OOk"""+"-I CZ 330pF R3 lOOk R6 470k ~",,~~~------------~------oVo R7 lOOk ~------~------------'-JV~--oV+ fo=lkHz Q = 50 R6 lOOk IOPFl C3 Ay = 100 (40 dBI TUH/S299-S 1-219 Typical Single-Supply Applications (V+ = 5.0 Voc) (~ntinuedl Lamp Driver Fixed Current Sources If + 2V TL/H/9299-11 ImA TUH/9299-10 Current Monitor RI* Driving TTL IL 0.1 - R2 100 TUH/9299-13 R3 Ik VL';: v+ - 2V '(Increase RI for IL small) TLlH/9299-12 Voltage Follower Pulse Generator >,,-ovo TL/H/9299-14 RI 1M IN914 RZ 10DIc IN914 ii'" R3 lOOk TL/H/9299-15 1-220 r-----------------------------------------------------------------------------, Typical Single-Supply Applications (V+ = 5.0 Voc)(Continued) :t Pulse Generator Squarewave Oscillator Ht Ht tUGk ! IN9t4 30k ~ .... N i: ~ ~ i: Co) R2 >-4HOVo t58k :JLIL H2 tUGk ~ ~ i: ~ N H3 tOOk H3 lOOk HS tOOk TLlH/9299-16 TL/H/9299-17 High Compliance Current Sink I. I +V'N Low Drift Peak Detector - I !IO - >",--oVo ZOUT + R, I 10 = 1 amp/voK VIN (Increase Re for 10 smalQ C "'1"M (POLYCARBONATE OR ...L POL YETHYLENEI":' 2N92.. "hi p AT 100 nA TL/H/9299-18 21. HIGHZIN ~ LOWZoUT - R I. 1M INPUT CURRENT COMPENSATION TL/H/9299-19 Comparator with Hysteresis +V'N , Ground Referencing a Differential Input Signal o-----...f Ht 'tM Ht tOk >-,,-oVo V. H H3 tM TLlH/9299-20 - +VCM TL/H/9299-21 1·221 Typical Single-Supply Applications (V+ = 5.0Vo c> (Continued) . Voltage Controlled Oscillator Circuit O.Os"F Rn lOOk +Vc* 51k > ....-0 OUTPUT I RI2 50k L...----------If-O OUTPUT 2 10k TL/H/9299-22 'Wide control voltage range: 0 Voc ,; Vc ,; 2 (V+ -1.5 Vocl Photo Voltalc-Cell Amplifier R, 1M ICELL ~ > ...-ovo (CELL HASav ACROSS ITI TUH/9299-23 AC Coupled Inverting Amplifier II, lOOk ,. f ~': 1\./\ V RL 10k RZ lOOk Ay 1 3Vpp T At = R1 (As shown. Ay = 10) TLlH/9299-24 1-222 r-------------------------~--------------------------------------------------.~ Typical Single-Supply Applications (v+ !!II: ..... = 5.0 Voc) (Continued) N ",. ..... !iNi : AC Coupled Non-Inverting Amplifier N RZ HI lOOk I\. ,·r ~ ~ !!II: 1M 1 1\ N .... 3Vpp V C'N w ",. T ~ !!II: 8 N H5 CZ AV~I+~ I DIlle IOPFT RI Av = 11 (As shown) TL/H/9299-25 DC Coupled Low-Pass RC Active Filter Cl o.OlpF Rl 16k >-,,-oVo R4 lOOk fO=lkHz Q=I Av ~ 2 TLlH/9299-26 High Input Z, DC Differential Amplifier HZ lOOk >,,-oVo For ~ Vo = ~ (CMRR depends on this resistor ratio match) ~ I + ~(V2 R3 As shown: Vo VI) = 2(V2 - Vtl 1-223 TUH/9299-27 ~ r-------------------------------------------------------------------------------~ ~ Typical Single-Supply Applications (V+ = 5.0 Voc) (Continued) High Input Z AdJustable·Galn DC Instrumentation. Amplifier ~ RI lOOk !I ~ ~ R3 lOOk ~ .~ R4 lOOk +V, >+-oVo If RI R6 R1 lOOk lOOk = RS & R3 = R4 = R6 = R7 (CMRR depends on match) TLlH/9299-28 Vo = I + 2Rl (V2 - V,) R2 AsshownVo = 101 (V2 - V,) Using Symmetrical Amplifiers to Reduce Input Current (General Concept) Bridge Current Amplifier R, - >+-OWo ',N +V'N > ..-oVo o-.....I - - - - t I. ~ For8«landR,»R Vo" VREFm~ TL/H/9299-30 R 1.5M - I. INPUT CURRENT COMPENSATION TL/H/9299-29 1-224 Typical Single-Supply Applications (V+ = 5.0 Voc) (Continued) Bandpass Active Filter HI 31.. V,N H4 &20 >-..-ovo ':' H3 820. C3 IOPF1' R1 H8 10010 10010 fO=lkHz Q = 25 TlIH/9299-31 1-225 t;tJNational Semiconductor LM143/LM343 High Voltage Operational Amplifier Features' General Description • Wide supply voltage range ±4.0V to ±40V The LM1431s a gener~lpurpose high voltage operational amplifier featuring operation to ± 40V, complete input over• Large output voltage swi(lg ± 37V voltage protection up to ±40V and input currents compara- . • Wide input common-mode range ± 38V ble to those of other super-13 op amps. Increased slew rate, • Input overvoltage protection Full ±40V together with higher common-mode and supply rejection, • Supply current is virtually independent of supply voltage insure improved performance at high supply voltages. Operand temperature ating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and Uni'que Characteristics temperature. Furthermore, gain is unaffected by output • Low input bias ,current 8.0 nA loading at high supply voltages due to thermal symmetry on • Low input offset current 1.0 nA the die. The LM143 is pin compatible with general purpose • High slew rate-essentially independent of temperature op amps and has offset null capability. and supply voltage 2.Sv/ p.s Application areas include those of general purpose op • High voltage gain--virtually independent of resistive amps, but can be extended to higher voltages and higher loading, temperature, and supply voltage 100k min output power when externally boosted. For example, when • Internally compensated for unity gain used in audio power applications, the LM143 provides a power bandwidth that covers the entire audio spectrum. In • Output short circuit protection addition, the LM143 can be reliably operated in environ• Pin compatible with general purpose op amps ments with large overvoltage spikes on the power supplies, where other internally-compensated op amps would suffer catastrophic failure. The LM343 is similar to the LM143 for applications in less severe supply voltage and temperature environments. Connection Diagram Metal Can Package Top View NC INVERTING INPUT 2 OUTPUT VTL/H17783-1 Order Number LM143H, LM143H/883* or LM343H See NS Package Number H08C 'Available par SMD# 7800303 1-226 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 4) Supply Voltage Power Dissipation (Note 1) Differential Input Voltage (Note 2) Input Voltage (Note 2) Operating Temperature Range Storage Temperature Range Output Short Circuit Duration Lead Temperature (Soldering, 10 sec.) ESD rating to be determined. LM143 ±40V 680mW 80V ±40V - 55'C to +- 125'C -65'C to + 150'C 5 seconds 300'C LM343 ±34V 680mW 68V ±34V O'Cto +70'C - 65'C to + 150'C 5 seconds 300'C Electrical Characteristics (Note 3) Parameter LM143 Conditions Min Input Offset Voltage TA = 25'C LM343 Typ Max 2.0 5.0 Min Units Typ Max 2.0 8.0 mV Input Offset Current TA = 25'C 1.0 3.0 1.0 10 nA Input Bias Current TA = 25'C 8.0 20 8.0 40 nA Supply Voltage Rejection Ratio TA = 25'C 10 100 10 200 p.VIV Output Voltage Swing T A = 25'C, RL :2: 5 kG large Signal Voltage Gain TA = 25'C, VOUT = ±10V, RL:2: 100 kG Common-Mode Rejection Ratio TA = 25'C 22 25 20 25 V 100k 180k 70k 180k VIV 80 90 70 90 dB ±24 ±26. ±22 ±26 Input Voltage Range TA = 25'C Supply Current (Note 5) TA = 25'C 2.0 Short Circuit Current TA = 25'C 20 20 mA Slew Rate TA = 25'C, Av = 1 2.5 2.5 V/p.s Power Bandwidth TA = 25'C, VOUT = 40Vp-p, RL = 5 kG, THO s: 1 % 20k 20k Hz Unity Gain Frequency TA ="25'C 1.0M 1.0M Hz Input Offset Voltage TA = Max TA = Min Input Offset Current TA = Max TA = Min 0.8 1.8 4.5 7.0 Input Bias Current TA = Max TA = Min 5.0 16 35 35 Large Signal Voltage Gain RL:2: 100 kG, TA = Max RL:2: 100 kG, TA = Min 50k 50k 150k 220k 50k 50k 150k 220k VIV Output Voltage Swing RL:2: 5.0 kG, TA = Max RL:2: 5.0 kG, TA = Min 22 22 26 25 20 20 26 25 V 4.0 2.0 6.0 6.0 V 5.0 mA 10 10 mV 0.8 1.8 14 14 nA 5.0 16 55 55 nA Note 1: Absolute maximum ratings are not necessarily concurrent, and care must be taken not to exceed the maximum junction temperature of the lM143 (1500C) or the LM343 (IOO'C). For operating at elevated temperatures, devices in the HOB package must be derated based on a thermal resistance of 155'C/W, junclion to ambient, or 20'C/W, junction to case. Note 2: For supply voltage less than ±40V for the LMI43 and less than ±34V for the LM343, the absolute maximum input voltage is equal to the supply voltage. Note 3: These specifications apply for Vs = ±2BV. For LMI43, TA = max = 125"C and TA = min = -55'C. For LM343, TA = max = 70'C and TA = min = O'C. Note 4: Refer to RETSI43X for LMI43H and LMI536H military specifications, Note 5: The maximum supply currenta are guaranteed at Vs - ±40V for the LMI43 and Vs = ±34V for the LM343. 1-227 LM143/LM343 tn n !..oy> ::T CD 3 !. n' c cZ' D; 3 ,t , R1Z 20 t'OOUTPUT RI3 Z7 " CI 10pF ~ 05 RZI S RZZ 11k ~ 31k , RU Uk , " OFfSET OFFSET NULL NULL , , , i , , '·OV- TUHm83-2 Typical Performance Characteristics Voltage Follower Slew Rate 5.1 I 4.0 .,. UNREGULATED 'OUTPUT VOLTAGE AOJU!:ENT Rl 22k 0.1,4 CERAMICT 10k ":' T ~. 1O,.F l00V ):. "a ':' '2. Cl lo,.F;"" 50V..L ~. A6 1.Ok + S· :::J (I) R3 22k -1+ R4 lOOk i ::::I ! C2 + lo,.F ;,... Z5V..L ~ 3 o CD ~ • • 1. ~ • • • 0.. Ov+ [ Co> tlSV REGULATED OUTPUT R2 3.6k 2.OW • ~ • • • iB > !: ~ • Or 08 lN5230 tPut on common heat sink. All resistors are y. watt, 5%, except as noted. t C8 O.lpF TCERAMIC Hhe 38V supplies allow for a 5% voltage tolerance. All resistors are V. watt, -- except as noted. • :::t 0 C4 ii~~~GULATED ':F :~~ -- TLfH17783-11 £t£W'I£t~W' II Typical Applications :j: (Continued)(For more detail see AN-127) 90W Audio Power Amplifier with Safe Area Protection RI ZMEG y.= ....---_, .3.Yo-...._--...._------~~oooo4 C5 O.I"F "I'"":, CERAMIC I +10 • RIZ 0.Z5 2.OW U* lo,.H >._-1 1--....,...-+---...- -....--+.......r"....r"I""'-...- - o ( ) OUTPUT RZ lOOk Rl6 0.Z5 2.0W '!' R3 lOOk C7 D.O,,"F R7 2.7k Ra 2.7k C& tPut on common heat sink *34 turns of no. 20 Wire on a %" form •• Adjust RS to set 10 Y- = -3ay D.I"F TCERAMIC = 100 rnA *lhe 3aV supplies allow for a 5% voltage tolerance. All resiStors are TLlH17783-12 Y. watt, except as noted. 1,-234 Typical Applications :j: (Continued) (For more detail see AN-127) 1 Amp Power Amplifier with Short Circuit Protection Y· : .J8Y RII lOOk 1% CJ O.I,.F TCERAMIC ...- - - I >~_~ "'-~.--...- . .- -. ._o YOUT Y'No----1H RI 10k tPut on common heat sink. All Diodesare 1N3193. C4 O.I"F CERAMlC~ Y- = -JIY TUH/7783-13 Hhe 38V supplies allow for a 5% voltage tolerance. All resistors are I y. walt, except as noted. I I ~ I: I' ! 1-235 tflNational Semiconductor LM 146/LM246/LM346 Programmable Quad Operational Amplifiers General Description Features (ISET=10 Il-A) The LM146 series of quad op amps consists' of four ,independent, high gain, internally compensated, low power, programmable amplifiers. Two: external resistors (RSET) allow the user to program the gain bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply Current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for'the two programming pins at the end, of the package, the LM146 pin-out is the same as the LM124 and LM148. • • • • • • • • • • Programmable electrical characteristics Battery-powered operation Low supply current 350 Il-Alamplifier Guaranteed gain bandwidth product 0.8 MHz min Large DC voltage gain 120 dB Low noise voltage 28 nV/.JHz Wide power supply range ± 1.5V to ± 22V Class AS output stage-no crossover distortion Ideal pin out for' Biquad active filters Input bias currents are temperature compensated Connection Diagram (Dual-In-Line ~ackage, Top View) PROGRAMMING EQUATIONS Total Supply Current = Gain Bandwidth Product v- Slew Aata 1.4 mA (ISET/l0 pAl = l' MHz (ISET/l0 pAl = 0.4V/,.. (ISET/l0 pAl Input Bias Current .. 50 nA (ISET/l0 pAl ISET = CUrrent Into pin 8, pin 9 (see schematic- diagram) V+ -V- - O.BV ISEl' =, " SETC ASET TL/H/5654-1 Order Number LM146J, LM146J/883, LM246J, LM346M or LM346N See NS Package Number J16A, M16A or N16A Schematic Diagram r-----------.....----....------<)v·,41 t--+--+---<>.UT v' TO OTHER OPAIIPS v' RSEl 'SET SET A. III V-I131 1-236 a. 0, TLlH/5654-2 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 5) LM146 LM246 LM346 Supply Voltage ±22V ±18V ±18V ±30V ±30V Differential Input Voltage (Note 1) ±30V ±15V ±15V CM Input Voltage (Note 1) ±15V Power Dissipation (Note 2) 900mW 500mW 500mW Output Short-Circuit Duration (Note 3) Continuous Continuous Continuous - 25·C to + 85·C Operating Temperature Range - 55·C to + 125·C O"Cto +70"C Maximum Junction Temperature 150·C 110"C 100"C -65·Cto + 150·C -65·C to + 150"C -65·Cto + 150·C Storage Temperature Range Lead Temperature (Soldering, 10 seconds) 260"C 260"C 26O"C Thermal Resistance (6]Al, (Note 2) Cavity DIP (J) Pd 900mW 900mW 900mW 100"C/W 100"C/W 100"C/W 6jA 115·C/W Small Outline (M) 6jA Molded DIP (N) Pd 500mW 90"C/W 6jA Soldering Information Dual-In-Une Package Soldering (10 seconds) + 260"C + 260"C + 260·C Small Outline Package +215·C +215·C +215·C Vapor Phase (60 seconds) + 220·C + 220·C Infrared (15 seconds) + 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD rating is to be determined. DC Electrical Characteristics (Vs= ± 15V, ISET= 10 J.LA, Note 4) Parameter LM146 Conditions Min Typ LM246/LM346 Max Min Typ Units Max Input Offset Voltage VCM= OV, Rs:S:50G, TA=25"C 0.5 5 0.5 6 mV Input Offset Current VCM=OV, TA=25·C 2 20 2 100 nA Input Bias Current VCM=OV, TA=25·C 50 100 50 250 nA Supply Current (4 Op Amps) TA=25·C 1.4 2.0 1.4 2.5 mA Large Signal Voltage Gain RL =10 kG, aVOUT= ±10V, TA=25·C 100 1000 50 1000 V/mV Input CM Range TA=25·C ±13.S ±14 ±13.S ±14 V CM Rejection Ratio Rs:S:10 kG, TA=25·C 80 100 70 100 dB Power Supply Rejection Ratio RsS:10 kG, TA=25·C, Vs = ±Sto ±1SV 80 100 74 100 dB ±12 ±14 S 20 O.S 1.2 Output Voltage Swing RL~10 ±12 ±14 Short-Circuit TA=2S·C S 20 0.8 1.2 kG, TA=25"C 3S· V 3S mA Gain Bandwidth Product TA=25·C Phase Margin TA=2S·C 60 60 Deg Slew Rate TA=2S·C 0.4 0.4 V/J.Ls MHz Input NOise Voltage f=1 kHz, TA=25·C 28 28 nV/JHz Channel Separation RL=10 kG, aVOUT=OVto ±12V, TA=2S·C 120 120 dB MG Input Resistance TA=25·C 1.0 1.0 Input Capacitance TA=25·C 2.0 2.0 Input Offset Voltage VCM= OV, RS:S:SOG O.S Input Offset Current VCM=OV 2 25 Input Bias Current VCM=OV SO 100 1.7 2.2 1.7 Supply Current (4 Op Amps) 1-237 6 0.5 pF 7.5 mV 2 100 nA 50 250 nA 2.5 mA DC Electrical Characteristics Parameter (Continued) (Vs = ± 1SV, ISET= 10 ",A; Note 4) LM146 Conditions RL =10 kO, ~VOUT= ±10V Large Signal Voltage Gain Power Supply Rejection Ratio .131 Output Voltage Swing Typ LM246/LM346 Max Min Typ Units . Max SO 1000 2S 1000 ±13.S ±14 ±13.S ±14 V RsS:SOO 70 100 70 100 dB RsS:SOO, Vs = ±SVto ±1SV 76 100 74 100 dB ±12 ±14 ±12 ±14 V Input CM Range CM Rejection Ratio Min RL;;'10kO V/mV DC Electrical Characteristic (Vs= ±1SV, ISET=1 ",A) Parameter LM146 Conditions Min Input Offset Voltage VCM= OV, RsS:SOO, TA=2SoC LM246/LM346 Typ Max O.S S Min . Units Typ Max O.S 7 mV Input Bias Current VCM= OV, TA=2SoC 7.S 20 7.S 100 nA Supply Current (4 Op Amps) TA=2SoC 140 2S0 140 300 ",A Gain Bandwidth Product TA=2SoC SO 100 SO 100 kHz DC Electrical Characteristics (Vs= ±1.SV, ISET=10",A) Parameter LM146 Conditions Min Input Offset Voltage VCM= OV, RsS:SOO, TA=2SoC Input CM Range TA=2SoC CM Rejection Ratio Rs s: son, TA = 2SoC Output Voltage Swing RL;;,10 kO, TA=2SoC LM246/LM346 Typ Max O.S S Min ±0.7. Units Typ Max O.S 7 mV V ±0.7 SO SO ±0.6 dB ±0.6 V Note 1: For supply voltages less than ± 15V, the absolute maximum Input voltage is equal to the supply voltage. Note 2: The maximum power disslpetion for these devices must be derated at elevated temperatures and is dictated bY TiMAJ(, 91A' and the ambient temperature, TA. The maximum available power dissipation at any temperature is Pd=(TIMAJ(' TAl/9jA or the 25"C PdMAXo whichever is less. Nota 3: Any of the amplHier outputs can be shorted to ground IndefinHely; however, more than one should not be simuHanecusly shorted as the maximum iunction .. temperature will be exceeded. Note 4: These specHications apply over the absalute maximum operating temperature range unless otherwise noted. Nota 5: Refer to RETSI46X for LMI46J mllHary specHicatlons. Typical Performance Characteristics 10". 1 2 0 II Input Bias Current vs ISET Supply Current vs ISET OPen Loop Voltage Gain vsISET" ~ 148 I~ IInl 111111111 illB ~ ,= ~co > D.l 1.1 10 ISET !pAl IDD 811 ~ ~ 6D '" 4D .~ 1.0 108 zo S:nIS:n18v~s:·±~1~5V1 o ~~~~~~~T~A~'~W~C~ 0.1 I 10 ISETt.AI 110 TL/H/5654-3 Typical Performance Characteristics Gain Bandwidth Product vslSET Slew Rate vs ISET 11M I. ~ i :i. ..!. ~ ..!i! .. I 1M f ~ t :z ;I 1.11 : I. i.. i Common-Mode Rejection Ratio vs ISET -f- I .,. I.' a.' f- 11.3 f- u rys- .. IV a.1 10 .. l!l 40 I" z· TA-n ~ ~ 21 i VS"':t:15V TA-2!/'C 1. 0.1 100 10 I.. II IDO ~ RL " 10k!! t~jtttij:ttt~~SET~-~'~.IIA~ 10 12 ,. 12 ~ Ii ::! 14 18 Vs- .,IV ~ ..5 :1 ~ II 11 ID 50 40 311 21 11 f-- f-- f-- 'SET" '0 11A Vs -"IV TA.-25"C 21 • 10 101 Input Bias Current vs Input Common-Mode Voltage 'sn' lallA S c 'SET -I IIA 10 c a .. i o TA - 2rc 'SET -IDIIA • 2 4 8 8 10 1% 14 'sn" 0.1 IIA i Vs= :tllV TA'Z5OC 8.1 -15 11 -10 -5 10 15 'NPUT COMMON·MOOE VOLTAGE IVI SUPPLY VOLTAGE (±VI Input Bias Current vs Temperature H 40 :1 SUPPLY VOLTAGE «VI 101 , 80 C ~ TA - 2!/'C 8 II So ! I :0f- 100 I. Input Voltage Range vs Supply Voltage i 4 120 0.1 II 2 101 Isn~1 Output Voltage Swing vs Supply Voltage o ,. VS-"IV ~ Power Supply Rejection Ratio vs ISET i 'SET~I o 40 0.1 .. ~ l5c ~ i'-' 8.1 .... • § 121 ~ c r-- '.1 1.1 • J 31 21 .. I. i f- 1.5 IA f- lDO 10 Input Offset Voltage vslSET ..~ r- 111 ISET~I IsuiloAl i.. II :iI It III 10 II 9 .10 fIi &I = bl. '.1 Phase Margin vs ISET 110 Input Offset Current vs Temperature Supply Current vs Temperature 10 10 • t:~'SET = lDIIA f-- f- ~SET=I11A I I I I 'SET-IlIA 8 -55 -35 -IS 5 25 45 8J 85 Itl 12S TEIIPERATURE C"CI VS"*15V I Vs=:tllV 'SET,'IIIA • -55 -35 -II 5 Z5 q 15 IS 105 125 TE_RATURE lOCI 0.0' -55 -35 -15 5 25 45 85 Ii 185 125 TEMPERATURE (OCI TL/H/5654-4 1,239 Typical Performance Characteristics Open Loop Voltage Gain VII Temperature Iii :s .•... ~ . ..i!i C co > co 9 ,140 Gain Bandwidth Product , vs Temperature I i ~ => ..'" co co 100 .1 106 l~ 'SET·,.A- I-- ico II: :Ii 41 iii .•c VS' .IIV -IS -3& -IS S 2& 4& IS II 115 121 'SET·D.hA 104 ~ !... ~ 10 ..... .. IS~T~151~1 »l 0.1 I; D.4 !!! 1111111 100 Ik FREQUENCY (Hz) => D.' S' ISET·ZO.A 1.2 10k 18 .. ~ II: • i... 4 ~ -4 co ~ ,..--r-...--.--r--,..--. ~ 100 ~.r--~-+-1--r--i .. = fi ISET" lOoAISET=loA :: f -8 SD .! ~ -12 !! -&D -II -20 lao 200 It 10k lOOk 1M Voltage Follower Transient Response ' ISET' lIMA VS·±ISV TA=WC I II 100 FREQUENCY (HzI FREQUENCY 1Hz) I I I INPUT rc) 3 \ISET·ZO.A ~ - I Power Supply Rejection RatiO vs Frequency Voltage Follower Pulse Response 20 11 12 II ;;; liD 1.2 Iii... ISET" ID.A I ~ EISET' p.I,.A TEMPERATURE .!! IS~T ~ Izl!~1 • • ~ ISET ""~A' ... E VS··,5V I I I 0.001 -55 -35 -16 I Z5 4S IS IS lOS IZI VS=±IIV TA' ZI'C 1.4 I ~ EISET·'.A ;:;: DJ1 Input Noise Current vs Frequency' 111111 I E TEMPERATURE rCI Input Noise Voltage vs Frequency 100 II 81 10 1-0 80 co 1'000 > 50 IIIco 40 30 '20 VS··,IV 1O TA =ZI'C - Vs = +15V 103 -IS -35 -1& S ZI 4S 1& IS 105 125 TEMPERATURE I'C) 110 ~ISET=ID~ I 0.1 iiii I; 101 10 EE 'SET·'o-A- I-- II: ° i Slew Rate vs Temperature 101 r: ISET' ~ I .A TO II.A 120 , (Continued) .. - - I I \ \ ~ ISET"lIoA VS'±IIV TA·2S'C CL"OIpF RL -Iaka 300 TIMEw,1 TIME"") TLlH/5654-5 ,Transient Response Test Circuit TL/H/5654-6 1·240 Application Hints Avoid reversing the power supply polarity; the device will fail. Isolation Between Amplifiers: The LM146 die is isothermally layed out such that crosstalk between all 4 amplifiers is in excess of -105 dB (DC). Optimum isolation (better than -110 dB) occurs between amplifiers A and D, Band C; that is, if amplifier A dissipates power on its output stage, amplifier D is the one which will be affected the least, and vice versa. Same argument holds for amplifiers Band C. Common-Mode Input Voltage: The negative commonmode voltage limit is one diode drop above the negative supply voltage. Exceeding this limit on either input will result in an output phase reversal. The positive common-mode limit is typically 1V below the positive supply Voltage. No output phase reversal will occur if this limit is exceeded by either input. LM146 Typical Performance Summary: The LM146 typical behaviour is shown in Figure 3. The device is fully predictable. As the set current, ISET' increases, the speed, the bias current, and the supply current increase while the noise power decreases proportionally and the Vos remains constant. The usable GBW range of the op amp is 10 kHz to 3.5-4 MHz. Output Voltage Swing vs ISEt= For a desired output voltage swing the value of the minimum load depends on the positive and negative output current capability of the op amp. The maximum available positive output current, (lCL +), of the device increases with iSET whereas the negative output current (lCL -) is independent of ISET. Figure 1 illustrates the above. Ill11l11a ... = ..t; 21 C .. - .! ! 21 = I l' +CURREIY LIMIT IICL.I 12 .~ .. .. - "CUR RElIT LIMIT IICL_I- ... - DA 1M II: '.14 i ~ f 11k D.5 1. VS-:t1&V YA"we • &8 § 11IDk I D ; lDD BUPPL Y CUR RElIT IpA) I I 11111111 L1 , lD I 11111111 ,D • ISEyc.A1 ISEylPA1 I T"[ •..z(-::) TLlH/5654-7 FIGURE 1. Output Current Limit vs ISET I I In)Z Input Capacitance: The input capacitance, CIN, of the LM146 is approximately 2 pF; any stray capaCitance, Cs, (due to external circuit circuit layout) will add to CIN. When resistive or active feedback is applied, an additional pole is added to the open loop frequency response of the device. For instance with resistive feedback (Figure 2), this pole occurs at %"IT (R1IiR2) (CIN + Cg). Make sure that this pole occurs at least 2 octaves beyond the expected -3 dB frequency corner of the closed loop gain of the amplifier; if not, place a lead capaCitor in the feedback such that the time constant of this capacitor and the resistance it parallels is equal to the RI(Cs + CIN), where RI is the input resistance of the circuit. (O)Z (O)Z I- 1i" TL/H/5654-B FIGURE 3. LM146 Typical Characteristics Low Power Supply Operation: The quad op amp operates down to ± 1.3V supply. Also, since the internal circuitry is biased through programmable current sources, no degradation of the device speed will occur. Speed vs Power Consumption: LM146 vs LM4250 (Single programmable). Through Figure 4, we observe that the LM146's power consumption has been optimized for GBW products above 200 kHz, whereas the LM4250 will reach a GBWof no more than 300 kHz. For GBW products below 200 kHz, the LM4250 will consume less power. 11M 1M TLlH/5654-9 10k FIGURE 2 Temperature Effect on the GBW: The GBW (gain bandwidth product), of the LM146 is directly proportional to ISET and inversely proportional to the absolute temperature. When using resistors to set the bias current, ISET' of the device, the GBW product will decrease with increasing temperature. Compensation can be provided by creating an ISET current directly proportional to temperature (see typical applications). I' lID SUPPLY CURRENT ..AI TL/H/5654-10 FIGURE 4. LM146 vs LM4250 1-241 Typical Applications Dual SUPPIYO~N~gatlve Supply Blasing SI!lgle (Po"ltive) Supply Biasing y. RSET SET 9 HSET RsET • lET 1111346 V+-O.6V ISET ~ ..:.....,:--".;.:,..:c RSET ISET~ iV-i-o.6V RSET ' Current Source Biasing with Temperature Compensation Biasing a" 4 Amp"flers with $Ingle Current Source , LM334Z y' y' RSET, - , ISET RI , LM34I HZ 67.7mV I 'SET=--RSET '~B SET - ISETZ ISETI R2 I I 67.7 mV - - = - , SETI + SET2=--ISET2 R1 RSET • The LM334 provides an '!SET direcUy propoo:lional"to absolute temperature. this ~'tha'slight GBW product Temperalure coefficient pi tha LM346. • For ISET1 "" ISET2 resistors Rl and R2 are not required H a slight elTOr between tha 2 set currents can be tolerated. If not, then use ':11 .. R2 to create a 100 mV drop across these resisters. 1-242 TLlH/5654-11 Active Filters Applications Basic (Non-Inverting "State Variable") Active Filter Building Block 10Gk 1111< TLlH/5654-12 • The LMI46 quad programmable op amp is especially suRed lor active fi~ers because 01 their adequate GBW product .I and low power consumption. Circuil synthesis equations (lor circuit analysis equations, consu~ 1 with the LMI46 data sheet). Need to know desired: 10 = center Irequency measured at the BP output 1 , 0 0 = quality lactor measured at the BP output Ho = gain at the output of interest (BP or HP or LP or all of them) • Relation between different gains: Ho(BP) = 0.316 x • R xC= 00 x I I Ho(LP); Ho(LP) = 10 x Ho(Hp) 5.033 X 10- 2 (sec) 10 II • F BP . R = (3.47800 - HolBPl _ HoIBP) or output. a 105 105 X 3.746 , x 00 ) -1. R = ,IN III: ( 3.47800_ 1 ) HOIBPl I . RO + 10-5 I: ~-I .ForHPouputRa= 'R _~ HO(HP)' IN + 10- 5 RO 1.1 x lOS 3.47800 (1.1 Ho(HP» ..2.. Note. All resistor values are given in ohms. II 11 X 10. -Ho-ILP)--I • For LP output: Ra = ::3.-:4=78;:-0~0-(::171-'7.H:-'0(:"'LP)l-:--:H-;--;' RIN = I o(LP) RO + 10- 5 • For BR (notch) output: Use the 4th amplifl9r of the LMI46 to sum the LP and HP outputs 01 the basic li~er. LPOO..J\M........ HP o-""VV'v-- TL/H/5654-13 Determine RF according to the desired gains: Ho(BRj I f«fnotch =-RRF Ho(LP), Ho(BR) L I f»fnotch =~RRFo(HPJ H. • Where 10 use amplilier C: Examine the above gain relations and determine the dynamics 01 the litter. Do not allow slew rate IimHing in any output (VHP, VBP, VLP), thai Is: VIN(peakJ <83.66 ISET I x 103 x 10 p.A x 10 x Ho (Vo~) If necessary, use amplifier C, biased at higher ISET' where you get the largest output swing. Oevlallon from Theoretical PredIctlons: Due to the linRe GBW products of the op amps the 10 , 0 0 will be slightly different Irom the theoretical predictions. I 10 0 real"'~' real"' 1+ GBW 00 321 xO 1- . G~W 0 1-243 Active Filters Applications (Continued) A Slmple-tOoDe8lgn BP, LP Filter Bu"dlng Block 3.8k 3... Rn Tl/H/5654-14 oil resistive biasing Is usad to set the LM346 performance, the 0 0 of this filter building block Is new1y insensitive to the op amp's GBW product temperature drift; H has also better noise performance than the state variable filter. Circuit Synthe818 Equatlon8 0.159 ' RO R Ho(BP) = QoHo(LP); R X C = - - ; Ra=Qo X R; RIN = - - = - fo Ho(BP) Ho(LP) o For the eventual use of amplifier C, see comments on the previous page. A 3-Amp"fler Notch Filter (or E"lptlc F"ter Bu"dlng Block) 3.8k Uk Rn >~""OVOUT C8R) TLlH/5654-1S Circuit Synthe81s Equations 0.159 RX C= HO(BR)I 0.159 X fo T; Ro=Qo X R; RIN = C' X f2notch C' R f< >fnotch C oFor nothing but a notch output RIN=R, C'=C. 1-244 Active Filters Applications (Continued) Capacltorless Active Filters (Basic Circuit) R3 Vs -tt5V ~---. HZ RID RI BR RI R7 "=' "=' TLfHf5654-16 • This is a BP, LP, BA filter. The filter characteristics are created by using the tunable frequency responsa of the LM346. • UmltaUons: 0 0 < to, fo X . . • Design equations: a fo(BR) = fo(BP). (1 A6 00 < 1.5 MHz, output voltage should not exceed Vpaak(out) + A5 A2 A3 = ~,b = Rl + A2' c = R3 + -~) '" fo(Bp) (C R7 R4' d 63.66 X 1()3 Ism,.A) ,; - - fo- - X 10,.A Al0 Al0' fo(BP) = RS + A7' e = R( + < < 1) provided that d = HO(BP) X e, Ho(BR) = f6 (V) c = fUV .: HO(BP) = a X c, HO(LP) = ii' 0 0 = .f8Xfi ~~. • Advantage: foOo, Ho can be independently edjusted; that Is, the filter Is extremely easy to tune. • Tuning procedure (ex. BP tuning) 1. Pick up a convenient value for b; (b < 1) 2. Adjust 00 through A5 3. Adjust Ho(Bp) through R4 4. Adjust fo through RBET. This adjusts the unily gain frequency (fu) of the op amp. A 4th Order BuHerworth Low Pass Capacltorless Filter i ~ R4 VI. 1110 Ex: fe = 20 kHz, Ho (gain of the filter) = TLfHf5654-17 I, 001 = 0.541, 0 0 2 = 1.308. • Since for this fi~er the GBW product of all 4 amplifiers has been designed to be the same (-1 MHz) only one currant source can be used to bias the clroun. Fine tuning can be further accomplished through Ab' 1-245 Miscellaneous Applications A Unity Gain Follower with Bias Current Reduction VIN Circuit Shutdown 0-+-----1 >-P-OVOUT VS=:!:1&V &VOri") ~.V • By pulling the SET pin(s) to V- the op amp(s) shuts down and its output • For better P!'rformance, use a matched NPN pair. goes to a high impedance state. According to this property, the LM346 can be used as a very low speed anaiog switch. Voice Activated Switch and Amplifier V· y+ D.1.F 1&V ?i H ....-~· MICI... CONTROL .-c--.;--...-- AUDIO OUT D.iM TUH/5654-18 1-246 Miscellaneous Applications (Continued) X10 Mlcropower Instrumentation Amplifier with Buffered Input Guarding R3 m R4 21l • 21k • 21k • Power dissipation: 0.4 mW H3 III TLlH/5654-19 1-247 tfI Nat ion a I S em icon due tor LM148/LM149 Series Quad 741 Op Amp LM148/LM248/LM348 Quad 741 Op Amps LM149/LM349 Wide Ban~ Decompensated (Av (MIN) - 5) General Description Features The LM 148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater. • • • , • • • • 741 op amp operating characteristics LoY' $upply current drain 0.6 mAl Amplifier Class AB output.stage-no crossover distortion Pin compatible with the LM124 1 mV Low input offset voltag~ 4 nA Low input offset current 30 nA Low input bias current Gain bandwidth product LM148 (unity gain) 1.0 MHz LM149 (Av;" 5) 4 MHz 120 dB • High degree of isolation between amplifiers • Overload protection for inputs and outputs The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications' where amplifier matching or high packing density is required. Schematic Diagram ~---------1~--------------------~-O.V~ OUT tOOk 75k 34U ~--"'----""'--""----------+--"'--------""--""-o-v" '1 pF In the LM149 1-248 TUH/7786-1 r- Absolute Maximum Ratings .......a: ....rCD If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 4) LM148/LM149 LM248 LM348/LM349 Supply Voltage ±22V ±18V ±18V ±44V Differential Input Voltage ±36V ±36V Continuous Output Short Circuit Duration (Note 1) Continuous Continuous ...........a: Power Dissipation (Pd at 25'C) and CD .... r- Thermal Resistance (9jAl. (Note 2) Molded DIP (N) Pd 9jA Cavity DIP (J) Pd 9JA Maximum Junction Temperature (TjMAX) Operating Temperature Range - - - 65'C to + 1500C 3000C 800mW 1100C/W 110'C -25'C';: TA ,;: +85'C -65'Cto + 1500C 300'C 750mW 1000C/W 700mW 1100C/W 1000C O'C,;: TA';: +700C -65'C to + 1500C 300'C 2600C 2600C 2600C 2600C - 1100mW 1100C/W 1500C -55'C';: TA';: +125'C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) Ceramic Lead Temperature (Soldering, 10 sec.) Plastic Soldering Information Dual-In-Line Package Soldering (10 seconds) Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds) 215'C 215'C 215'C 2200C 2200C 2200C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD tolerance (Note 5) 500V 500V 500V Electrical Characteristics (Note 3) Parameter LM148/LM149 Conditions Min Input Offset Voltage Input Offset Current Input Bias Current Input Resistance Supply Current All Amplifiers Large Signal Voltage Gain Amplifier to Amplifier Coupling LM248 LM348/LM349 Units Typ Max Min Typ Max Min Typ Max TA 1.0 5.0 1.0 6.0 1.0 6.0 mV TA 4 25 4 50 4 50 nA 30 100 30 200 30 200 = 25'C, Rs';: 10 kO = 25'C TA = 25'C TA = 25'C TA = 25'C, Vs = ±15V TA = 25'C, Vs = ±15V Your = ±10V, RL ~ 2 kO TA = 25'C,f = 1 Hz to 20 kHz 0.8 2.4 50 (Input Referred) See Crosstalk Test Circuit Small Signal Bandwidth TA = LM148 Series 25'C LM149 Series Phase Margin LM148 Series (Av TA = 25'C LM149 Series (Av Slew Rate LM148 Series (Av TA = 25'C LM149 Series (Av Output Short Circuit Current TA Input Offset Voltage Rs,;:10kO = 2.5 0.8 2.4 3.6 160 2.5 25 0.8 4.5 160 2.5 2.4 25 nA MO 4.5 mA 160 V/mV -120 -120 -120 dB 1.0 1.0 1.0 MHz 4.0 4.0 4.0 MHz 60 60 60 degrees = 1) = = 5) 60 60 60 degrees 1) 0.5 0.5 0.5 V/p.s = 5) 2.0 2.0 2.0 V/p.s 25 25 25 25'C Input Offset Current Input Bias Current 1-249 mA 6.0 7.5 7.5 mV 75 125 100 nA 325 500 400 nA CD r- a: ~ a: ~ ~ ....r- ...a: ~ CD Electrical Characteristics (Note 3) (Continued) Parameter LM148/LM149 Conditions Min Large Signal Voltage Gain Vs = ±15V, VOUT = ±10V, RL> :?kO Output Voltage Swing Vs = ±15V, RL = 10kO RL = 2kO Typ Max 25 ±12 ±10 = ±15V Input Voltage Range Vs Common-Mode Rejection Ratio Rs"; 10kO Supply Voltage Rejection Rs"; 10kO, ±5V,,; Vs"; ±15V Typ LM348/LM349 Max 15 ±13 ±12 ±12 ±10 Min Typ 15 ±13 ±12 ±12 ±10 ±12 ±12 Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; LM248 Min Units Max V/mV ±13 ±12 ±12 V V V 70 90 70 90 70 90 dB 77 96 77 96 77 96 dB however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded. Note 2: The maximum power dissipation for thesa devices muat be derated at elevated temperatures and is diceted by TiMA)(, 8jA. and the ambient temperature. TA. The maximum available power dissipation at any temperature is Pd = (TiMAX - TpJI9/A or the 25"C PdMAX. whichever is less. '. Note 3: Thesa specifications apply for Vs = ,±15V and over the absolute maximum,operating temperature range (TL ,;; TA ,;; TH) unless otherwisa noted. Note 4: Reier to RETS 148X for LMl48 military specHlcations and refer to RETS 149X for LM149 military specifications. Note 5: Human body model. 1.5 kn in series with 100 pF. . Cross Talk Test Circuit .. 1k Ow 1 ,~ (V' , '00 ..... J.. C1DVPEAIC) TLlH/7786-6 113I~ 1•••• I'f+V UNDER "OUT 11.'.101 TL/H/7786-7 Crosstalk = - 20 log Vs = e'OUT (dB) 101 x aour ±15V Application. Hints The lM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance. The lM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5. The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplffier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers. The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase ·of the output remains correcto If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current. like the LM741 , these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier, a resistor should be placed between the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading. The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip. As with most amplifiers, care should be taken lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from tile output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which' capacitance from the input to ground creates. A feedback pole is created when the feedback around any amplifier is resistive. The parallel reSistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligiole effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capaCitor shQuld be placed from the output to the input of, the op amp. The value of the added capaCitor should be such that the RC time constant of this capaCitor al)d the resistance it parallels is greater than or equal to the original feedback pole time constant. 1-250 Typical Performance Characteristics Supply Current Input Bias Current aa Voltage Swing 51 +25·~~ / ;:r;. :>-' ~ .iii f.::::: :::::: ~ -1 8a '" il 58 '" - Ja 5 i 4a iii 20 = '" 8 ~ ....:.,Z8Vs .... '~VS, 10 -15 ~~ '" ~ -1' ~ ~ , \-5&'C co \~ 15 -5 Ii 10 I. Ik 1110 1DO FREQUENCY IH.I 41 H -z& -3D -31 _ It 25 Ik 3D .. E c Ii ~ ..,.. LMI4S LM1 llil 5 -S (~? -15 -28 -.'ID Ik 11k 1D11o :: ~ I .. - =: ; :: ! -4Ii -II -'HASE -JI -10 '.1 10 FREQUEICY IMH -,,-oVOUT R/2 VOUT Vs R ~ ~ ~ 2 (iii + 1 ) , 'Is - TL/HI77B6-9 3V ,; VIN eM ,; Vs + - 3V, ±15V R2, trim R2 to boost CMRR 1-253 Typical Applications-LM 148 (Continued) Low Drift Peak [)eteetor with Bias Current Compensation Zilc >-""-0 v.... V'N Adjust A lor'rriinimum drift D3 low leakage diode RZ 2M 01 added to improve speed Vs = - ±15V I. R 1M m 3 TLIH17786-10 Universal State-Variable Filter R5 lOOk CI 0.001 R6 10k Rl R3 V'N O-......NV'-...-t RO R4 R, >~"""OV." Tune Q through AO. s: For predictable results: 10 Q 4 x 104 Use Band Pass output to tune lor Q ~=~. VIN(s) NHP(S) I o O(s) = 82 + = S2 HOHP. Q NBp(s) = -""'0Q HOBP =.2.. ~ fT = A-f'. Q = (' 2". VFi5Vi1i2' ~ ....,. 1 ( TLIHln86-11 80>0+ 0>02 O(S) AH 'NOTCH = 2;; Al I, 12 NlP = 0>02 HOlP· + A41A3 + A4IAO) 1 + AsIA5 (~!!)'h A5t2 )'h • HOHP = 1 + A31AO 1 + AalA5 H 1 + A41A3 + R41AO + R3iA4' OBP = 1 + A31AO + R31A4 H _ 1 + A51AS OlP - 1 + A31AO + A3iA4 ,1·254 Typical Applications-LM 148 (Continued) A 1 kHz 4 Pole Butterworth lOOk 50.3k liOk 50.3k >-.....-OVoun lOOk lOOk lOOk 10k 50.3k 50.3k >-....-oV 39.4k OUT2 lOOk TUH/77S6-12 Use general equations, and tune each section separately O,stSECTION = 0.541, 02ndSECTION = 1.306 The response should have 0 dB peaking A 3 Amplifier BI-Quad Notch Filter R7 RI RI C2 Ct RZ R3 Re RS R4 V,N(s) 00-4""-------------"'-------------" TLlH/7786-13 O fR8 RICI = \fA? x JR3C2R2CI' , fR8 0 = 2; \fA? x .. Necessary condItion for notch: Ex: 'NOTCH = 3 kHz, 0 = 5, I I As RI = R4R7 RI = 270k, I , JR2R3CI C2' NOTCH R2 = R3 = 201<, R4 I = 2; = 27k, R6 R3R5R7CI C2 R5 = 2Ok, Better noise performance than the state-space approach. 1-255 R6 = RS = 10k, R7 = lOOk, Cl = C2 = 0.001 poF Typical Applications-LM 148 (Continued) A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros) RICI = R2C2 = t R'IC'I = R'2C'2 = t' R" R'I 'e =I I kHz, 's fR6 = 2 kHz, I 'p = 0.543, Iz = 2.14, I /Rii I = 2.T VAs x 'j" Iz = 2.T VAL x 'j" Rp = RHRL RH + RL Ip Q = TLlH17786-14 = 0.841, I' p ~ 0.987, I' Z = 4.92, Q' = 4.403, normalized to ripple BW + R4iR3 + R4iRO) fR6 , JR'6 I + R'4iR'0 I + R61R5 x VAs' Q = VAs I + .R'6iR'5 + R'6iRp Q (I Use the BP outputs to tune Q, Q', tune the 2 sections separately RI R'I = R2 = 92.61<, R3 = R4 = R5 = lOOk, R6 = 10k, RO = 107.ak, RL = lOOk, RH = 155.11<, = R'2 = 50.9k, R'4 = R'5 = lOOk, R'6 = 10k, R'O = 5.78k, R'L = lOOk, R'H = 248.121<, R'I = lOOk. All capacitors are 0.001 ,.F. Lowpass Response -1' •.. - -20 C \ \ :!! -30 co -4G -58 r-'- -ID ~ -18 I. lOG lOOl FREQUENCY (Hz) TLlHI7786-15 1·256 Typical Applications-LM 149 Minimum Gain to Insure LM149 Stability The LM149 as a Unity Gain Inverter 4R R VIN -_,.".,...-...oooot VIN -_M.,...-t--I 4R >-"-OV >-"-OV R OUT TL/HI7786-16 Acl(SJ = VOUT = VIN -4 (1 +_5_) "ol(s) OUT TL/H17786-17 '" -4 VOUT ( --1 - ) "'-1 Acl(s)=--= VIN 1 +_6_ "oL(s) .. ± 5 Vos VIN =0 Power BW = 40 kHz Vol '" ± 5 Vos VIN = 0 Small Signal BW = G BW/5 vol Small Signal BW = G BW/5 Non-Invertlng-Integrator Bandpass Filter R R& Ro R7 R5 R R'N >.....jI"-_)BP TLlHln66-16 For stability purposes: R7 = R6/4. lORe =. R5. Cc = 1DC 1 JR5 1 Ra JR5 = 2; \fRii x RC' Q = R \fRii' fO(MAX). QMAl( = 20 kHz. 10 fo Ra Ha8P = RIN Better Q sensitivity with respect to open loop gain variations than the state variable fiRer. R7. Cc added for compensation 1-257 Typical Appllcations-LM 149 (Continued) Active Tone Control with Full Output Swing (No Slew Limiting at 20 kHz) lOOk BOOST CUT RI 11k CI O.05.F Rl 11k R5 3.6k >-4.....0V OUT C3 O.OO5pF R5 3.6k ·R4 500k TREBLE Vs ~ fMAX ±15V, VOUT(MAX) ~ 20 kHz, THO s: ~ 9.1 YAMS, fH 1% ~ 1 211'R5C3' fHB ~ + 2R7) C3 + R2)/RI (Rl + 2R7)/R5 211'(Rl Duplicate the above circuit for stereo Max Bass Gain"" (Rl 1 1 fL ~ 211'R2Cl ' fLB ~ 211'R1Cl as shown: fL .. 32 Hz, fLB '" 320 Hz Max Treble Gain '" iH '" TUH/n86-19 1 11 kHz, fHB'" 1.1 Hz Triangular Squarewave Generator CI D.ODI"F R'2 1l1li , R2 111ft ~, 211ft RI IIJIc v+o-....- . , 21J1c 2l1li 211ft ,........-oVZDk TL/H/n86-20 K X Y,N ,2V, f~8V+C1Rl,K~R2/R2'KS:25V,V +_ ~V ,Vs~±15V Use LM125 for ± 15V supply The circuit can be used as a low frequency V IF for process control. Ql, Q3: KE4393, Q2, Q4: Pl087E, 01-04 ~ lN914 ~ "0 ir en LM148, LM149, LM741 Macromodel for Computer Simulation Vee 3' 1 c iii' -=-1.8D3V 0' ~ C2" lo pF ::JJ Vb L:J v. OGom " UnU ~ 1 1 t ~ lOOk R2 ¢Va G. 15O.&,.U II 1 30 o 15 I I I I v+ = +30Voe 70 1 - TA 1= I I I I oed TO +125"C ~ I -'" TA - TEl/PWTURE ("C) I 160 2D v+ - SUPPLY VOLTAGE Open Loop Frequency Response 1<40 ,.-..,--,-..,---,--0::::-........, Voltage Gain ~ T. = -55"C- 10 -55 -35 -15 5 25 45 65 85 105 125 v+ OR'" POWER SUPPLY VOLTAGE (noe) , Supply Current Input Current 90 i Common-Mode Rejection Ratio - 120 r-rmrrl1l'""1-rmmr-n- 30 (Vocl RL = 20kA ~ """'jo..., RL = 2kA ~~ I J 100 80 60 40 20 0 10 20 30 v+ - SUPPLY VOLTAGE <40 1.0 10 100 1.I1k 10k lOOk 1.11.. 10M (Vocl Voltage Follower Pulse Response lk ~ v+=15VOO" \ Large Signal Frequency Response 2O~,"--~~OM~mm !450 15 ~.j()Q !i! i ~r--~+-4-4-~-H-+~ 1 10 H-ttlftttfII:-+tt :0 30D 1--1+...-+-+:-"-:+..;;;-1---1 f10 20 30 <40 7 8 10k 1- nME (PO) Output Characteristics Current Sourcing i::!5 c:. !i! '!> sS 5!!l Dill Output Characteristics Current Sinking Current Limiting 90 1: 7 6 I: 5 I: 4 ~~ 1 bIdd~:H:!±±±II:::!::t::IILWlJ 0.001 0.01 0.1 1 10 100 10· - OUTPUT SOURCE GURRENT (mAocl 1M lOOk f - fREQUENGY (Hz) 8rr~TTrrnrrr~Tm~om ~'8 1M Voltage Follower Pulse Response (Small Signal) 500,--,--~~~,---,---,...., J lOOk f - FREQUENGY (Hz) ~~2.0k I 1_ 10k f - FREQUENGY (Hz) I 20 +.s> 10 I f- f- f- f- I I I . ~ ro- i"-- ;-- f- - f- r-. .... I""'- o -55 -35 -15 5 25 45 85 85 105 125 10 - OUTPUT SINK CURRENT (mAoc) TA - TEl/P£JIATURE ("C) TUH/7787-4 1-265 ~ ~ .... ::::E ~ ,-----------------------------------------------------------------------------, Typical Performance Characteristics (Continued) (LM2902 only) Input Current Voltage Gain lao liD . .. ;;; '" 110 C") ........ :g ::::E i/ !:i ~ ,....T.·+2I"C J N .... ::::E co ..... ::::E .... ~ ::! R L-2010 ~ RL-Z.~_ 10 ~ I 40 II) 10 21 30 10 y+ -SUPPLY VOLTAGE (Vocl 20 y+ - SUPPLY VOLTAGE (Vocl TUH/nS7-5 Application Hints The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 Voc. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 Voc. Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accomodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier. The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of 3 Voc to 30 Voc. Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output sourCe current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp. Precautions should be taken to insure that the power supply for the.integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. Large differential input voltages can be easily accomodated and, as input differential voltage protection diodes are not needed, no large input currents' result from large differential input voltages. The differential input voltage may be larger than V+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 Voc (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used. To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large Signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications. The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+ /2) will allow operation above and below this value in single power $upply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated. For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion: 1-266 Typical Single-Supply Applications (V+ = 5.0 Vocl Non-Inverting DC Gain (OV Input = OV Output) .5V ~---...~+Vo GAIN = I. RI 10le 'R not needed due to temperature independent liN RZ iii = 101 (AS SHOWN) TL/HI7787 -6 TLlH/7787 -7 DC Summing Amplifier (VIN'S :<: 0 Voc and Vo :<: 0 Voc) Power Amplifier RI 910k R 100II .V,OO--illN\r-.. • V2 OO--illN\r-.. R lOOk >-4I,....OVo R . .- 100le +V3 OO--illN\r-.. Vo R lOOk Where: Vo (V1 .....l-oQVo = oVOCforVIN = oVoc Ay = 10 TLlH/7787 -8 TL/H/7787 -9 = V1 + V2 + Va + V. + Vi) ., (Va + V41 to keep Vo > 0 Voc "BI-QUAD" RC Active Bandpass Filter RI 100II CI 330 pF RS 470k C2 R3 lOOk 330pF R6 470k ~~~~r-~------ fO=lkHz a = 50 Ay ___ ~---OVo R7 lOOk ~---~~------~~~r-<>V' = 100 (40 dB) C3 + 10~Fr TL/H/7787 -10 1-267 Typical Single-Supply Applications (V+ = 5.0 Voe> (Continued) Lamp Driver Fixed Current Sources y+ + R2 2V TL/H17787 -12 1 1 • - (~) 11 12= - Current Monitor RI· 0.1 IL VL TLlH/n87 -11 R2 100' LED Driver 20mA .. - 82 Vo = 1V(ILl lA Vo -= '(Increase RI for IL smalQ R3 Ik TLlH17787 -13 VL';; V+ -2V - Driving TTL TL/H/n87 -14 Pulse Generator RI -= 1M IN914 R2 lOOk IN914 o.oOlpF TLlH/7787 -15 P Voltage Follower Vo :SLIl. R~ ll1Qk V' Vo Vo = VIN +VIN -= TL/H17787-17 1-268 TLlH/n87-18 r-----------------------------------------------------------------------------~ Typical Single-Supply Applications Squarewave Oscillator Pulse Generator CD ..... r IN914 N HI R1 lOOk r .... == en (V+ = 5.0 Vocl (Continued) 311! == en CD .... E ~ HZ CD .... r Vo 150k == N R2 lOOk R3 lOOk R3 lOOk I HS lOOk TL/H17787 -18 TL/H/7787-19 Low Drift Peak Detector 1. - >""4""-0 Va ZoJJT + c (POL YCARBONATE OR POLYETHYLENE) "...1pF ..L ":' 2N929* °hi ~ AT 100 nA HIGH ZIN LOWZOUT 21. ~ R 1M - I. INPUT CURRENT COMPENSATION TLlH/7787 -20 High Compliance Current Sink Comparator with Hysteresis +VON o------f HI 10k TL/H17787 -22 10 ~ 1 amp/volt VIN (Increase RE for 10 small) ":'" TL/H17787 -21 1-269 ~ ~ r---------------------------------------------------------------------------------, Typical Single-Supply Appllcations(v+ ~ Yoltage Controlled Oscillator (YCO) ~ O.Os"f (f) ....~ R lOOk f8 C'I ~ ~ .... = 5.0 Vee) (Continued) . +Vc* 51k >-11--0 OUTPUT I .... ::::& V·,2 51k L-----------t--o OUTPUT Z 10k TL/H17787-23 'WIDE CONTROL VOLTAGE RANGE: 0 Vee ,;; Vc ,;; 2"",+ -1.5Vocl AC Coupled Inverting Amplifier R, lOOk '1': 1\./\ V RL 1 JVpp T ':' 10k • RJ lOOk Ay Rf = A1 (As shown. Ay = 10) TUH17787 -24 Ground Referencing a Differential Input Signal RI 1M >,,-oVo VR R RJ 1M TL/H17787 -25 1·270 r-----------------------------------------------------------------------------~ ~ Typical Single-Supply Applications (V+ ....i!I: = 5.0 Vee> (Continued) g: AC Coupled Non-Inverting Amplifier Rl 100le ~ i!I: R2 1M ~ 1 ¥ E w ~ ..... 3Vpp T ~ i!I: N ! R4 , lOOk R2 " - -• ..J\N~-o V· Av=I+Ri" R5 Av l00Jc = 11 (As Shown) TUH/7787 -26 DC Coupled Low-Pass RC Active Filter Cl O.DI~F , HI "I&k > ...........oVo fO=lkHz Q =1 R4 lOOJc 10 Av = 2 TL/H/7787 -27 Bandpass Active Filter CI o.OI~F Rl 380. > ..........oVo R3 fO=lkHz Q = 25 &201e V' TL/H17787 -28 1-271 Typical Single-Supply Applications (V+ = 5.0 Voc)(Continued) High Input Z, DC Differential Amplifier R2 lOOk R.4 tOOk >,,-0 va +v,o-----t +V2o---------------~ For !!! ~ ~ (CMRR depends an Ihis R2 R3 resistor ratio match) Vo ~ I +~ R3 As Shawn: Vo TLlH17787-29 (V2 - VI) ~ 2 (V2 - VI) Photo VOltalc-Cell Amplifier R, Bridge Current Amplifier 1M R, ICElL ~ >-..-0 va (CELL HASOV ACROSS III FarB« I andR,» Vo '" VREF (2"8) RR, R TLlH/7787-33 High Input Z AdJustable-Galn DC Instrumentation Amplifier RI tlOk R3 tOOk R4 t ... +v, >+-0 va R& tOOk R7 tOO. +v. TL/H/7787-31 If Rt = R5 & R3 = R4 ~ RS ~ R7 (CMRR depends on match) Vo = 1 + 2Rl ~2 - Vtl As shown Vo R2 = 101 (V2 - VI) 1-272 Typical Single-Supply Applications (V+ = 5.0 Voc)(Continued) Using Symmetrical Amplifiers to Reduce Input Current (General Concept) - +V'No-..........- -... I 1 R 1.5M - I. 'j I '1 jl INPUT CURRENT COMPENSATION I ~ TUH/7787-32 Schematic Diagram (Each Amplifier) il I, TUH/7787-3 1-273 ~ ~ ~ ...... .... CIoI ;...I ,-------------------------------------------------------------------------------------, tfI Nat ion a I S e m i con d.u c t 0 "r LM221/LM321 Precision PreampUfiers General Description The LM221 series are precision preamplifiers' designed to operate with general purpose operational amplifiers to drastically decrease dc errors. Drift, bias current, common mode and supply rejection are more than a factor of 50 better than standard op amps alone. Further, the added dc gain of the LM221 decreases the closed loop gain error. The LM221 series operates with supply voltages from ±3V to ± 20V and has sufficient supply rejection to operate from unregulated supplies. The operating current is programmable from 5 ",A to 200 ",A so bias current, offset current, gain and noise can be optimized for the particular application while still realizing very low drift. Super-gain transistors are used for the input stage so input error currents are lower than conventional amplifiers at the same operating current. Further, the initial offset voltage is easily nulled to zerO. The extremely low drift of the LM221 will improve accuracy on almost any precision dc circuit. For example, instrumentation amplifier, strain gauge amplifiers and thermocouple amplifiers now using chopper amplifiers can'be made with the LM221. The full differential input and high commonmode rejection are another advantage over choppers. For applications where low bias current is more important than drift, the operating current 'can be reduced to low values. High operating currents can be used for low voltage noise with low source resistance. The programmable operating current of the LM221 allows tailoring the input characteristics to' match those of specialized op amps. The LM221 is specified over a -25°C to + 85°C range and the LM321 over a COC to + 7COC temperature range. Features • • • • • • • Guaranteed drift of LM321A-O.2 ",vrc Guaranteed drift of LM221 series-1 ",vrc Offset voltage less than 0.4 mV Bias current less than 10 nA at 10 ",A operating current CMRR 126 dB minimum 120 dB supply rejection Easily nulled offset voltage Typical Applications Thermocouple Amplifier wIth Cold JunctIon Compensation +15V R8 365k R5 BB6k ~:~.-~~~t-----------------~~~-----OO-P-F--------, LM113 RIO 4.99k 1% +15V 7 OUTPUT LMhlA >++-110 invtcl CHROMEL· ALUMEL T ',50 PF T· Il10pF ":' .~ fol'2.98V at output with LM113 a......,..--oooo4~-15V shorted. Output should equal ambient temperature at 10 mVI"K. tAdjust for output reading In ·C. 1-274 TLlH/n69-1 Absolute Maximum Ratings ±20V Supply Voltage Power Dissipation (Note 1) Differential Input Voltage (Notes 2 and 3) Operating Temperature Range LM321A Storage Temperature Range Lead Temperature (Soldering, 10 sec.) ESD rating to be determined. 500mW ±15V ±15V Input Voltage (Note 3) O"Cto +70"C -65°C to + 150"C 300"C Electrical Characteristics (Note 4) LM321A LM321A Conditions Parameter Unlta Min = Input Offset Voltage TA Input Offset Current TA = 25°C, RSET = 70k RSET = 6.4k Input Bias Current Input Resistance 25°C, 6.4k s;: RSET s;: 70k TA = 25°C, RSET = 70k RSET = S.4k TA = 25°C, RSET = 70k RSET = 6.4k 2 0.2 Max 0.2 0.4 mV 0.3 0.5 5 nA nA 5 50 15 150 nA nA 8 Mo. Mo. Supply Current TA = 25°C, RSET 0.8 2.2 mA Input Offset Voltage 6.4k s;: RSET s;: 70k 0.5 0.65 mV Input ~ias Current = = RSET = RSET = RSET = 70k 6.4k 15 150 25 250 nA nA 70k 6.4k 0.5 5 1 10 nA nA 70k 3 Input Offset Current Input Offset Current Drift RSET RSET = Typ 70k Average Temperature Rs s;: 2000., 6.4k s;: RSET s;: 70k Coefficient of Input Offset Voltage Offset Voltage Nulled 0.07 Long Term Stability 0.2 1 Vs = ±15V, (Note 5) RSET = 70k RSET = 6.4k ±13 +7, -13 ",vrc ",V/yr 3 Supply Current Input Voltage Range pAloC 3.5 mA V V Common-Mode Rejection Ratio RSET RSET = = 70k 6.4k 126 120 140 130 dB dB Supply Voltage Rejection Ratio RSET RSET = = 70k 6.4k 118 114 126 120 dB dB Voltage Gain TA = 25°C, RSET RL> 3Mo. 12 20 VIV 8 nVl.JHz Noise RSET = = 70k, 70k, RSOURCE = 0 Note 1: The maximum junction temperature 01 the LM321 A is 8S'C. For operating at elevated temperature, devices In the HOS package must be derated based on a thermal resistance 01 150'C/W, junction to ambient, or 18'C/W, Junction to case. Note 2: The inputs are shunted with back-to-back diodes In series with a soon resistor for overvoltage protection. Therefore, excessive current will flow ~ a differenlial'input voltage in excess of IV is applied between the inputs. Note 3: For supply' voltages less than ± ISV, the absolute maximum Input voltage Is equal to the supply voltage. Nota 4: These specifications apply for ±5 ,;; VS';; ±20Vand -55"C ,;; TA ,;; + 125'C, unless otherwise specified. WHh the LM221A, however all temperature specifications are Iimltad to -25'C ,;; TA ,;; +85"C, and for the LM321A the specifications apply over a O'C to '+70'C temperature range. Note 5: External precision resistor -0.1 %- can be placed from pins 1 and 8 to 7 Increase positive' common-mode range. Note 6: See RETS121X for LM121H/883 military specs and RET121 AX for LM121AH/883 military specs. 1-275 ... ...... ...~ .~ ....:::E Operating Temperature Range LM221 , LM121A (-883), LM121 (-883) - 25°C to + 85°C LM321 , LM321 A O"Cto +70"C Storage Temperature Range -65°C to + 150"C Lead Temperature (Soldering, 10 sec.) 260"C ESD rating to be determined. If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability an.d specifications.. Supply Voltage ±20V Power Dissipation (Note 1) Differential Input Voltage (Notes 2 and 3) Input Voltage (Note 3) , ., Absolute Maximum Ratings 500mW ±15V ±15V Electrical Charact~ristlcs (Note 4) LM221 , LM321 LM221 CondlUons Parameter Min Typ :s: RSET :s: 70k LM321 Max Min Typ Units Max Input Offset Voltage TA ;" 25°C, 6.4k 0.7 1.5 mV Input Offset Current TA = 25°C, RSET = 70k RSET = 6.4k 1 10 2 20 nA nA TA = 25°C, RSET = 70k RSET = 6.4k 10 100 18 180 nA nA Input Bias Current Input Resistance TA = 25°C, RSET = 70k RSET = 6.4k 4 0.4 2 0.2 MO MO Supply Current TA = 25°C, RSET = 70k 1.5 2.2 mA Input Offset Voltage 6.4k :s: RSET :s: 70k 1.0 2.5 mV Input aias Current RSET = 70k RSEr = 6.4k 30 300 28 280 nA nA Input Offset Current RSET = 70k RSET = 6.4k 3 30 4 40 nA nA Input Offset Current Drift RSET = 70k Average Temperature Coefficient of Input Offset Voltage Rs :s: 2000, 6.4k :s: RSET Offset Voltage Nulled 3 1 Long Term Stability 1 5 Supply Current Input Voltage Range pAloC 3 :s: 70k Vs= ±15V, (Note 5) RSET = 70k RSET = 6.4k p.V/yr 5 2.5 p.VloC 3.5 mA ±13 +7, -13 ±13 +7, -13 V V Common-Mode Rejection Ratio RSET = 70k RSET = 6.4k 120 114 114 114 dB dB Supply Voltage Rejection Ratio RSET = 70k RSET = 6.4k 120 114 114 114 dB dB Voltage Gain TA = 25"C, RSET = 70k, RI,>3MO 16 Noise RSET = 70k, RSOURCE = 0 12 8 VIV 8 nV/,fHz Note 1: The maximum junctton temperature of the LM221 is 100'C. The maximum Junction temperature of the LM321 is 85'C. For operating at elevated temperature, devices In the H08 package must be derated based on a thermal ~eslstance of 1&1'C/W, Junction to ambient, or 18'CIW, junctton to case. Note 2: The Inputs are shunted with back·to-back diodes in series wilh a. 5000 resistor for overvollage protection. Therefore, excessive current will flow If a differential input voltage In excess of 1V Is applie~between the iriputs. . . Note 3: For supply voltages less than ±.15V, the absolute maximum input voltage is equal to the supply vollage. Note 4: These specifications apply for ±5 " Vs " ±2OV and -55'C " TA " + 125'C, unless ~erwise specified. With the LM221, howevsr all tamparature specifications are limited to - 25'C " TA " + 85'C, and for the LM321 the specifications apply over a O'C to + 70'C temperature range. Note 5: External precision resistor -0.1 %- can be placed from pins 1 and 8 to 7 Increase positive common-mode range. 1-276 JiC Typical Performance Characteristics N N Distribution of Offset Voltage Drift (Nulled) Input Bias Current 1 ~co i.. 11 i . r- ... ,.70 .... - """ 1 -55 -15 Z5 I' TEMPERATURE rCI sof-+-+--Eliil-++-+-i 30 HH-+- 21 HH-+- ~ I.. ~. i 30 10 10 -11.4 105 '.Z -0.2 . ... ! 51 t; '.r---+---t-3~+-~~ 110 ;;i lZ0 I; 100 >= ~ ~ 68 Vs "i15V TA =-zre 148 ~ ........ ~ Rsn '" latA II 10k " tDOIt 10 100 c ~> '" m " 30 m f".:: ........ FREQUENCV (Hd Input Noise Current ~ ! ~fisET ;; 1.4 leO II FREOUENCY (Hz) Input Noise Voltage lDO ~ 01 u 0.1 VOLTAGE DRIFT ,"vrcl Negative Power Supply Rejection I-_-+-~'+_~~_~ 168 -G.l D.4 VOLTAOE DRIFT ,"vrcl 140 ......::"''1--...z:,---+--~ 1H 48 ZO Positive Power Supply Rejection ~ Co) 111-+--+--+--+-+-1-1--1 ! ii a: 71I.-T""""""'""T'""""'~--'-T"""""1 AuT ....4Idl- f- ; r- Distribution of Offset Voltage Drift (Nulled) 101 .~ .... ...... RaET;; lOlA 10 = ~ R,,,·U ... = 1 ii 110 10 1l1li' Ok· ll1k 1Dlk FREQUENCY 1Hz) Voltage Drift Differential Voltage Gain 11 RsET"I.41&8 Vs "':l15V ./ " 1.2 FREQUENCY Ubi OA U Set Resistor and Set Current v' 1.• -2 B 1.2 1.0 = § • ..... 10k Ii SET CURREIT/SlDE (,.AI ,. I .... ......... ~ ; . ill ..... ~ 0.8 .6 .-- I -15 Z5 .5 TEMPERATURE reI 101 lis" ·78kD -& RIET '" -8 -10 -12 .- -55 .1 JREF~RR!DT~- - co 0•• •.2 -15 58 , . - Common-Mode Limlta 1.1 Ii! u i ~,. 168 .,021 lET CURREITII1DE foAl Set Current : ,. 1.0 ... OFFSETVOLTAOE (..VI 1M a: V V O.Dl L-_...L_....J._ _.1-_...J 1110 1. lOll 101k i ./' V SUPPLVVDLTAGES 6.• wa l""- I'--. 1 1 1 1 1 1 I'-..., Aln -lll1A L Ll -15 RslT-Uta 25 65 105 TEMPERATURE ( el TlIH17769-9 1-277 N .... Y- . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , .~ ~ ..... Typical Performance Characteristics Y- ~ ~ .,~z ~ ~ -4 ~ i!i ~ -1 . c -2 ~ -3 ~ ~ -B -8 ! I -10 1,,0 -;1 I -7 8 &8 101 . lin-I -5 v. -:t1&V 1!i; I R.,. ill 1.1 B u 0,1 _r- I J DA U -55 -15 25 ! ~ ~ u u Ii! 1.1 i:!; 12 15 ~ \\: c I I I Ii! 5, ~ II I 10 21 .1 110 200 ,/ u ~ 1,0 f-" O,g .... -55 V / V ~ lIZ v- 1.4 ....T 1.8 U .. ~ :: It 1 1.2 101 rC) / 25 85 105 110 , i " V :/ -1& Common-Mode Rejection Ratio ; V , "' TE_RATURE I CI T. =2rC U IA TEMPERATURE II I 12 Offset Voltage Adjustment u -u"!!- ........ f-" ~ LT-701111 "':'1-- . iiii u j 12 1111 'VI -:lIIV '-3110Hz 1,3 SET CURRENTISIDE (PAl Supply Current 1,4 "z T. -+121'1: REFERRED'yo 2 I !! -8 . 'PSITIVESUPPLY 201 Differential Voltage Gain 1.4 1111 -I SET CURfiENT/SIDE tuA) 1,6 , ~ TA -+21 C ". -4 Ii., .. Output Common-Mode Voltage <111111 ~ J llill T --Irc S·r ... It.. (ContinUed)' u Vs -:tlIY flo • arc ~~ ~ ~T;;lAltn I: AsET =llwa"'" ~ ~ 4D 18 RATIO R2IRI 100 lk 11k 1_ FREGUENCY (H.I TL/HI7769-10 Connection Diagram Metal Can Package OUTPUT 1 V' Top View NO~: Pin 4 connected to case, Order Number LM121AH/883, LM121H/883, LM221H, LM321H or LM321AH See NS Package Numb~r H08C Note: Outputs are inverting from the input of the same number, 1-278 TLlH/n69-7 ~ Schematic Diagram N N .... ...... .... ....N i: Co) > ;~ ...... ;:! -... N a: ... lI!':: ..... a: .. -'" ... ... a:_ + > l- ...'" I- '"'" co I- ... => !! 1-279 I- ...'"~ .ill a: ... j I > ~ r---------------~----------------------------------------------------------------, ~ :::E ........I ~ ~ ~ Frequency Compensation Table I shows typical values for the two compensating capaCitors for various gains and operating currents. UNIVERSAL COMPENSATION The additional gain of the LM321 preamplifier when used with an operational amplifier usually necessitates additional frequency compensation. When the closed loop gain of the op amp with the LM321 is less than the gain of the LM321 alone, more compensation is needed. The worst case situation is when there is 100% feedback-such as a voltage follower or integrator-and the gain of the LM321 is high. When high closed loop gains are used-for example Av = 100o-and only an addition gain of 200 is inserted by the LM321 , the frequency compensation of the op amp will usually suffice. The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the basic configuration of frequency stabilizing network. In operation the output of the LM321 is rendered single ended by a 0.01 p.F bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor around the op amp. Bandwidth at unity-gain "" TABLE I Closed Loop Gain Av = 1 Av = 5 Av = 10 Av = 50 Av = 100 Av = 500 Av = 1000 120kO 6OkO 30kO 12kO 6kO 68 - 130 27 15 3 1 270 56 27 5 3 1 680 130 68 15 5 1 1300 270 130 27 10 3 - - - - - 15 10 1 - - This table applies for the LM108, LM101A, LM741, LM118. CapaCitance is in pF. DESIGN EQUATIONS FOR THE LM321 SERIES 2'/T~:E,.c ~ 1.~ X 106 SET Null Pot Value should be 10% of RSET . 2 x 0.65V Operating Current ~ R SET GainAv 06~SET for 0.5 MHz bandwidth C = 1 For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2 MHz. If the closed loop gain is greater than unity, .. may be decreased to: . c.. C= Current Set Resistor .. . . [0.65V X 50k] Positive Common-Mode Limit ~ V+ - 0.6RSET 4 106 ACLRSET ALTERNATE COMPENSATION The two compensation capaCitors can be made equal for improved power supply rejection. In this case the formula for the compensation capscitor is: C= 8 1Q6AcLRsET Typical Applications __~~OUTPUT R3 10k Cl 30 pF ·Offset adjust. tSee table for frequency compensation. ~--~~------~-v- FIGURE 1. Low Drift Op Amp Using the LM321A as a Preamp 1-280 TL/HI7769-2 .-----------------------------------------------------------------------------,~ iii: Typical Applications (Continued) ....~ .... Gain of 1000 Instrumentation Amplifier:/: Ii: .... RU 3M Co) N 0.111 INPUT OUTPUT LM321A Rl SOk 1% R2 SOk 1% R3 10k tBeller than I % linearity for input signals up to ± 10 mV gain stability typical +2% from -55 to + I 25'C. ':" Match of R5 and R6 effect power supply rejection R4 2Dkt vTL/H/7769-3 High Speed· Inverting Amplifier with Low Drift LII1D3-1 •• 2SOpF Uk INPUT-_...."""i 3pF >~-""_OUTPUT lM321A • 5 12k 'Bandwidth Slew Rate v- = 10 MHz = 40 VI p.. TUH17769-4 Medium Speed· General Purpose Amplifier -[ LM321A ~---,.-- OUTPUT 'Bandwidth Slew Rate v- = 3.5 MHz = 1.1 VI p.s TLlH/7769-5 1-281 ~ ~ ~ ...... ~ ~ r-------------------------------------------------------------------------------------, Typical Applications (Continued) Increased Common-Mode Range at HIgh Operating Currents or v· :i Z5k* Z5k* > -....-OUTPUT LM321A 5 4 v 1 kHz Applications • • • • • General purpose video amplifiers High frequency, high Q active filters Photo-diode amplifiers Wide frequency range waveform generation circuits All LM3900 AC applications work to much higher frequencies Typical Application Connection Diagram 0.5pF Dual-In-Llne Package 'SET(OUT)-t---, 0.01 "F ~~~+ VOUTA COMPA GND A -~!..i::i>~H'!ii.!r+- GND B >~""O·OUT 20k ~-+-IIN(+)B IIN(-IA IIN(+)A....;.,t--... IZV o-~'V\o""'" L-_-F- ISET(lN) 20k TUH/7788-2 Top View TUH/7788-1 o Av = 20 dB o -3 dB bandwidth o Differential = 2.5 Hz to 25 MHz phase error o Differential gain error < I' at 3.58 MHz < 0.5% at 3.58 MHz 1-283 Order Number LM359J, LM359M or LM359N See NS Package Number J14A, M14A or N14A Absolute Maximum Ratings " If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 22Voc or ±IINoc Power Dissipation (Note 1) J Package 'IW 750mW N Package Maximum TJ JPackage N Package Thermal Resistance Input Currents, IIN(+) or IIN(-) 1OmAoc Set Currents, ISET(IN) or ISET(OUT) ' 2mAoc Operating Temperature Range LM359 O"Cto +70·C -65·C to + 150"C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) , ,260"C Soldering Information Dual-In-Une Package 260·C Soldering (10 sec.) Small Outline Package Vapor Phase (60 sec.) , 215·C Infrared (15 sec.) 220·C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods bf soldering sur' face mount devices. + 150"C + 125·C ,\ J Package IIjA 147"C/W still air 110·C/W with 400 linear feet/min air flow NPackage IIjA 100"C/W still air 75·C/W with 400 linear feet/min air flow E~m rating to be determined. Electrical Characteristics ISET(IN) = ISET(OUT) = 0.5 mA, Vsupply = 12V; TA = 25·C unless otherwise noted ,0 Parameter LM3~9 Conditions Open Loop Voltage Gain Vsupply = 12V, RL TA = 125·C Bandwidth Unity Gain RIN = 1 kO, Ccomp = 10 pF Gain Bandwidth Product Gain of 10 to 100 RIN = 500 to 2000 Slew Rate Unity Gain Gain of 10 to 100 Amplifier to Amplifier Coupling Mirror Gain (Note 2) aMirror Gain (Note 2) Input Bi~ Current Input Resistance (pre) Output Resistance Output Voltage Swing VOUTHigh VOUTLow Output Currents Source Sink (Linear Region) Sink (Overdriven) Supply Current 0, =, lk, f = 100 Hz Typ 62 72 68 dB dB 15 30 MHz 200 400 MHz 30 60 V/p.s RIN = 1 kO, Ccomp = 10 pF RIN < 2000 f = 100 Hz to 100 kHz, RL = lk V/fLS 1.0 1.1 p.A/p.A 0,9 1.0 1.1 , p.A/fLA 0.9 1.0 1.1 fLAlp.A 3 5, % 8 15 30 p.A = 15 mA rms, f = 1 MHz RL = 6000 IIN( -) and IIN( + ) Grounded IIN(-) = 100 fLA, IIN(+) = 0 9.5 p.A 2.5 kO 3.5 0 10.3 2 50 V mV 16 40 4.7 mA mA 1.5 3 mA Vcom~-0.5V " dB 0,9 at 20 p.A to 0.2 mA IIN( + ) Over Temp, ISET = 5 fLA Inverting Input, TA = 25·C Over Temp. Inverting Input IIN(-) and IIN(+) Grounded, RL = 1000 = VOUT = tv, IIN(+) = 0 IIN(- = IOOfLA,IIN(+) = 0, VOUT Force = tv Non-Inverting Input Grounded, RL = 00 Max -80 at 2 mA IIN( +), ISET = 5 p.A, TA = 25·C at 0.2 mA IIN( + ), ISET = 5 p.A 'Over Temp. at 20 p.A IIN( + ), ISET = 5 p.A Over Temp. lOUT Units Min 18.5 22 mA Power Supply Rejection f = 120 Hz, IIN( + ) Grounded 40 50 dB (Note 3) Note 1: See Maximum Power Dissipation graph. Note 2: Mirror gain Is the current gain of the current mirror which is used as the non·lnverting input. ( AI = :IN~ -:) '" 5 -90 lDO ,. MIRROR OFF••VIE BIASING lOOk 1M 10M 6DO f--+-+~ SDO I-+--+-I~ ~O I-+--+-I~ 300 I-+--+--!~ 200 I-+--+-Iffl~ lDO f--+-+--e:~~~+-+-I 0L-L-~~~~~~~ 0 10k 10M liDO MM!aX~i~m~u~m~p~o~w~e~r~~~1on r1100 Ii lDOO ! 900 r.p:"F~~'f7.:~+-+-I ~ !w .~ SOURCE AMP LOAD -I kn 1M lOOk FREOUENCY (Hz) Y+=5V -100 10k 1k -50 ..... . 1M 0.01 111M 100M TA·2S'C -40 1.0 ~ \ ll111k ~ ... FREQUENCY (Hz) Amplifier to Amplifier Coupling (Input Referred) ~ __- ' 1oa. ,• ! \ 0 '". 1011 w SET CURRENT (IIA) -10 ;;; -20 co -30 1k Output Impedance / V 1DO lOG ;; 0.' 0.0, t. Y+· 12VOC + 0.11 Vrml POSITIVE INPUT AT GNO L..---'~-'-'';';''''-''''",---'- FREQUENCY (Hz) II TA=IS·C DAIN' -,0 V~UT = VCOMP - O.sV· 'V V -'IV / ~ o SET CURRENT (mA) Output Sink Current 1.0 I-::---I-:---~--~--f-----t TA'IS"C 20 OL..-.................................-----................w 10 ....., I TA"IS C V+ ... 12VOC + 0.11 V,ml '0.1 kHz POSITIVE INPUT AT GNO SET CURRENT (..A) ... ill '"'" ~--~--~--~--~-4 > 10 TA = 2SoC V+-12V ~m PQSlllrE INPUT AT GNO 1.01 C .! H ~~~~~~~~~~ 10 I. FREQUENCY (Hz) lk I. 111ft tM 10M -75 -50 -25 0 25 511 75 100 125 TEMPERATURE (0 C) Nota: Shaded area refers to. LM359J/LM359N FREOUENCY (Hz) TLlHmSS-5 Application Hints The LM359 consists of two wide bandwidth, decompensated current differencing (Norton) amplifiers. Although similar in operation to the original LM3900, design emphasis for these amplifiers has been placed on obtaining much higher frequency performance as illustrated in Figure 1. 1211 LFJ57 ,08 I 80 1\ iii '". This significant improvement in frequency response is the result of using a common-emitter/common-base (cascode) gain stage which is typical in many discrete and integrated video and RF circuit designs. Another versatile aspect of these amplifiers is the ability to externally program many internal amplifier parameters to suit the requirements of a wide variety of applications in which this type of amplifier can be used. ~ ~ r\.LM359 60 LMHIIO , ,\ I\. 40 '1\.\ 211 ~ \,\ o ,11 ,110 'k ,ote ,18k 'M ,OM '1I11M ,G FREIIUENCY (Hz) TL/HI7788-6 FIGURE 1 1-287 Application Hints (Continued) DC BIASING The LM359 is,ititendE!d for single supply voltage operation which requires DC biasing of the, output. The current mirror circuitry which provides the non-inverting input for the amplifier also facilitates DC biasing the output. The basic operation of this current mirror is that the current (both DC and AC) flowing into the non-invertirrg input will force an equal amount of current to flow into the inverting input. The mirror gain (AI) specification is the measure of how closely these two currents match. For more details see National Application Note AN-72. >-4HOVO DC biasing of th",output is accomplished by establishing a reference DC current into the (+) input, IIN( +), and requiring the output to provide the (-) input current. This forces the output DC level to be whatever value necessary (within the output voltage swing ofthe amplifier) to provide this DC reference current, Figure 2. - Rr v, AV(AC) = +~ VO(DCl = VBE(-) + Rs TUHI7788-9 + re v+ - VBE(+) Rf [ Rb + Ib(-) 1 FIGURE 4. Biasing a Non-Inverting AC Amplifier IFB v' > ......-oVo >_t-OVo vo(DC) = VBE(-) + IFa = IIN(+) At IIN(+) = v~ IFa At TL/H/778B-7 _!!t AV(AC)' = VO(DC) = VBEH R. + 11>1-) V~(+) Rb Ib( -) is the inverting input bias current FIGURE 2 -' (1 + :~) + Ib~-)Rf TL/H/7788-10 FIGuRE 5. nVBE Biasing The DC input voltage at' each input' is a tral)sistor VSE ("" 0.6 Vee) and must be considered for DC biasing. For most applications, the supply voltage, v+, is suitable and convenient for establishing IIN( +). The inverting input bias current, Ib( -), is a direct function of the programmable input stage current (see current programmability section) and to obtain predictable output DC biasing set IIN(+) ~ 10Ib(-). Tl)e following figures illustrate typical biasing schemes for AC amplifiers using the LM359: Rr The nVSE biasing configuration is most useful for low noise applications where a reduced input impedance can be accommodated (see typical application!! section). '. , ,i) " OPERATING CURRENT PROGRAMMABILITY (ISET) The input bias current, slew rate, gain' bandwidth product, output drive capability' and total device power consumption of both amplifiers can be simultaneously controlled and optimized via the two programming pins ISET(OUT) and ISET(IN). ISET(OUT) The output set current (lSET(OUl) is equal to the amount of current sourced from pin 1 and establishes the class A biasing current for the Darlington emitter follower output stage. Using a, single resistor from pin 1 to ground, as shown in Figure 6, this current is equal to: > ......-oVo AV(AC) = Vo(DC) _!!t = VBEI-) + FIGURE 3. Biasing I SET(OUT) TL/HI7788-B R. V+ - VBE(+) Rf [ ' Rb + Ib(-) v+ - VBE ' 5000 = RSET(OUn + 1 an Inverting AC Amplifier TUH/7788-11 FIGURE 6_ Establishing the Output Set Current Application Hints (Continued) ture of 25°C is assumed (KT/q = 26 mV and (Jtyp = 150). ISET(IN) also controls the DC input bias current by the expression: The output set current can be adjusted to optimize the amount of current the output of the amplifier can sink to drive load capacitance and for loads connected to V+. The maximum output sinking cunent is approximately 10 times ISET(OUT} This set current is best used to reduce the total device supply current if the amplifiers are not required to drive small load impedances. Ib( -) = 31SET '" ISET for NPN,8 = 150 ,8 50 which is important for DC biasing considerations. The total device supply current (for both amplifiers) is also a direct function of the set currents and can be approximated by: ISET(lN) The input set current ISET(IN) is equal to the current flowing into pin 8. A resistor from pin 8 to V + sets this current to be: Isupply '" 27 X ISET(OUT) + 11 X ISET(IN) with each set current programmed by individual resistors. PROGRAMMING WITH A SINGLE RESISTOR ISET IN () = v+ RSET(IN) Operating current programming may also be accomplished using only one resistor by letting ISET(IN) equal ISET(OUT)' The programming current is now referred to as ISET and it is created by connecting a resistor from pin 1 to pin 8 (Figure VeE + 500n 8). V+ - 2VSE ISET = RSET + 1 kG where VSE '" 0.6V v+ TLlH/nSS-12 ~'SET FIGURE 7. Establishing the Input Set Current ISET(IN) is most significant in controlling the AC characteristics of the LM359 as it directly sets the total input stage current of the amplifiers which determines the maximum slew rate, the frequency of the open loop dominant pole, the input resistance of the (-) input and the biasing current Ib( -). All of these parameters are significant in wide band amplifier design. The input stage current is approximately 3 times ISET(IN) and by using this relationship the following first order approximations for these AC parameters are: Sr(MAX) = max slew rate frequency of dominant pole 9!! 9!! RSET TLlH/n88-1S ISET(IN) FIGURE 8. Single Resistor Programming of ISET This configuration does not affect any of the internal set current dependent parameters differently than previously discussed except the total supply current which is now equal to: 3ISETON) (10-6) (VI",s) Ccomp 3 ISET(IN) (Hz) 21T Ocomp AVOL (0.026V) .. Input resistance = (Jre = ISET(OUl) = ISET Isupply '" 37 X ISET Care must be taken when using resistors to program the set current to prevent significantly increasing the supply voltage above the value used to determine the set current. This would cause an increase in total supply current due to the resulting increase in set current and the maximum device power dissipation could be exceeded. The set resistor value(s) should be adjusted for the new supply voltage. 150 (0.026V) 31 (0) SET(IN) where Ccomp is the total capacitance from the compensation pin (pin 3 or pin 13) to ground, AVOL is the low frequency open loop voltage gain in V IV and an ambient tempera9!! 1-289 Application Hints (Continued) One method to avoid this is to use ,an 'adjustable current source which has voltage' compliance to generate the set current as shown in Figure 9. ISET , = ~ i1125;C COMPENSATION The LM359 is internally compenSated for'stability with closed loop inverting gains of 10 or more.' For an inverting gain"otIEiss than 10 and ail non-invertingamplil1ers (the amplifier always has 1'00% negative current feedback regardless of the gain in the non-inverting eonfiguration) some external frequency compensation is required because the stray capacitance to ground from the (-) input and thEi feedback, resistor add additional lagging phase within the feedback loop. The value of the input ca~citancewill typically be in the range of 6 pF to 10 pF for a reasonably constructed circuit board. When using a feedback resistance of 30 kO or iess, the best method of compensation, without sacrificing slew rate, is to add a lead capaCitor in parallel with the feedback resistor with a value on the order of 1 pFto 5 pF as shown in Figure 10. TLltjln88-1~ RSET, FIGURE 9. Current souri:e Programming of ,ISET c, This circuit allows ISET to remain constant over the entire supply voltage range of the ,LM359, which also improve~ power supply ripple rejection as illustrated in the Typical Performance Characteristics. It should be noted, however, that the current through the LM334 as shown will change linearly with temperature but this can be compensated for (see LM334 data sheet). Pin 1 must never be shorted to ground or pin 8 never shorted to V+ without limiting the current t6 2' mA or less to prevent catastrophic device failure. >~~O'OUT CONSIDERATIONS FOR HIGH FREQUENCY OPERATION The LM359 is intended for use in relatively high frequency applications and many factors external to the amplifier itself must be considered. Minimization of stray capacitances and their effect on circuit operation, are the prim/afY, requirements. The following list contains some general guidelines to help, accomplish this end: v+ Gt - 1 pF to 5 pF for stability TLlHI7788-15 1. \: 2 ") but if necessary, use shielded wire. 7. Bypass the supply close to the device with a low inductance, low value capacitor (typically a 0.01 ".F ceramic) to create a good high frequency ground. If long supply leads are unavoidable, a small resistor (-100) in series with the bypass capaCitor may be needed and using shielded wire for the supply leads is also recommended. >_~'V\,,,,,+-o'OUT TLlHln88-16 FIGURE 11. Isolating Large capacitive Loads 1-290 ,-----------------------------------------------------------------------------, r i: w Application Hints (Continued) UI 3. Determine maximum value for R, to provide stable DC biasing In most applications using the LM359, the input signal will be AC coupled so as not to affect the DC biasing of the amplifier. This gives rise to another subtlety of high frequency circuits which is the effective series inductance (ESL) of the coupling capacitor which creates an increase in the impedance of the capacitor at high frequencies and can cause an unexpected gain reduction. Low ESL capacitors like solid tantalum for large values of C and ceramic for smaller values are recommended. A parallel combination of the two types is even better for gain accuracy over a wide frequency range. 31SET _ 100 ",A minimum DC I'(MIN) ;;, 10 x -(J- feedback current Optimum output DC level for maximum symmetrical swing without clipping is: VoOC(oPt) = Vo(MAX) - Vo(MIN) 2 + Vo(MIN) _ (V+ - 3VSE) - 2mV - AMPLIFIER DESIGN EXAMPLES The ability of the LM359 to, provide gain at frequencies higher than most monolithic amplifiers can provide makes it most useful as a basic broadband amplification stage. The design of standard inverting and' non-inverting amplifiers, though different than standard op amp design due to the current differencing inputs, also entail subtle design differences between the two types of amplifiers. These differences will be best illustrated by design examples. For these examples a practical video amplifier with a passband of 8 Hz to 10 MHz and a gain of 20 dB will be used. It will be assumed that the input will come from a 750. source and proper signal termination will be considered. The supply voltage is 12 Voc and single resistor programming of the operating current, ISET' will be used for simplicity. 2 12 - 1.8V 10.2V VoOC(opt) "" 2 = -'-2- = 5.1 Voc R'(MAX) can now be found: R VoOC(opt) - VSE(-) '(MAX) = , If(MIN) 5.1V - 0.6V 100 ",A = 45 ko. This value should not be exceeded for predictable DC biasing. 4. Select Rs to be large enough so as not to appreciably load the input termination resistance: Rs ;;, 7500. Let Rs = 7500. 5. Select R, for appropriate gain: R, Ay= --so;R,=10R s =7.5ko. Rs 7.5 ko. is less than the calculated R'(MAX) so DC predictability is insured. AN INVERTING VIDEO AMPLIFIER 1. Basic circuit configuration: 6. Since R, = 7.5k, for the output to be biased to 5.1 VOC, the reference current IIN( +) must be: 5.1V - VSE(-) , 5.1V - 0.6V 6 0 A I () IN + = = 0 '" R, '= 7.5 ko. 12Y Now Rb can be found by: Cj Rb = V+ - VSE(+) = 12 - 0.6 = 19ko. IIN( + ) 600 ",A 7. Select C; to provide the proper gain for the 8 Hz minimum input frequency: "N~ 175 - >-+-oeOUT C.;;, 1 1 =26F 27T Rs (flow) 27T (7500.) (8 Hz) '" A larger value of Cj will allow a flat frequency response down to 8 Hz and a 0.01 ",F ceramic capaCitor in parallel with Cj will maintain high frequency gain accuracy. 8. Test for peaking of the frequency response and add a feedback "lead" capaCitor to compensate if necessary. I Th/H/nes-17 2. Determine the required ISET from the characteristic curves for gain bandwidth product. GBWMIN = 10 X 10 MHz = 100 MHz For a flat response to 10 MHz a closed loop response to two octaves above 10 MHz (40 MHz) will be sufficient. Actual GBW = 10 x 40 MHz = 400 MHz ISET required = 0.5 mA V+ - 2 VSE 10.8V RSET - 1 ko. = - - - - - 1 ko. = 20.6 ko. ISET 0.5mA 1-291 CD Application Hints (Continued) • The amplifier always has 100% current feedback so external compensation is required. Add a small (1 pF-5 pF) feedback capacitance to leave the amplifier's .open loop response and slew rate unaffected. Final Circuit Using Standard 5% Tolerance Resistor Values: 0.5pF • To prevent saturating the mirror stage the total AC and DC current flowing into the amplifier's (+)input should be less than 2 mAo • The output's maximum negative swing is one diode above ground due to the VBE diode clamp at the (-) input. I • ."F DESIGN EXAMPLE: e'N = 50 mV (MAX), fiN = 10 MHz (MAX>, desired circuit BW = 20 MHz, Av = 20 dB, driving source impedance = 750, V+ = 12V. >-+oO'OUT 1. Basic circuit configuration: TLlH/7788-18 12V Circuit Performance: 30 1111111 25 .. ... WITHC .~ iii :!! ~ WITH~·" 28 C ... JITUJ~ C ~ ~ .'N~ ~ 10 175 - o 1M 10M 100M 2. Select ISET to provide adequate amplifier bandwidth so that the closed loop bandwidth will be determined by Rf and Cj. To do this, the set current should program an amplifier open loop gain of at least 20 dB at the desired closed loop bandwidth of the circuit. For this example, an ISET of 0.5 rnA will provide 26 dB of open loop gain at 20 MHz which will be sufficient. Using single resistor programming for ISEIV+ - 2VBE RSET = -1 kQ = 20.6kO TLlHm88-19 = 5.IV < I' for 3.58 MHz liN < 0.5% for 3.58 MHz liN Differential phase error Differential gain error I-a dB 12V TLlHI77B8-20 FREQUENCY (Hz) Vo(OC) >--,,-0 'OUT C, C -I pF 15 CII low = 2.5 Hz A NON-INVERTING VIDEO AMPLIFIER For this case several design considerations must be dealt with. ISET • The output voltage (AC and DC) is strictly a function of the size of the feedback resistor and the sum of AC and DC "mirror current" flowing into the (+) input. 3. Since the closed loop bandwidth will be determined by Rf and Cj (f-3dB = 211' 1-292 ~f Cj) Application Hints (Continued) to obtain a 20 MHz bandwidth, both Rt and C, should be kept small. It can be assumed that C, can be in the range of 1 pF to 5 pF for carefully constructed circuit boards to insure stability and allow a flat frequency response. This will limit the value of Rt to be within the range of: 1 2'11" 5 pF 20 MHz ~Rt~ For gain accuracy the total AC and DC mirror current should be less than 2 mAo For this example the maximum AC mirror current will be; ±Eljnpaak = ±50mV = ±66pA Rs + ra 7500 therefore the total mirror current range will be 574 pA to 706 pA which will insure gain accuracy. 8. Rb can now be found: 1 2'11" 1 pF 20 MHz or1.6kO ~ Rt:S; 7.96kO Also, for a closed loop gain of + 10, Rt must be 10 times Rs + ra where ra is the mirror diode resistance. 4. So as not to appreciably load the 750 input termination resistance the value of (Rs + rel is set to 7500. 5. For A., = 10; Rt is set to 7.5 kO. 6. The optimum output DC level for symmetrical AC swing is: VoCC(opt) = Rb = V+ - Vse(+) = 12 - 0.6 = 17.8 kO IIN(+) 640pA 9. Since Rs + ra will be 7500 and ra is fixed by the DC mirror current to be: KT 26mV ra = - - = - - "" 400 at 25°C q IIN(+) 640 pA Rs must be 7500-400 or 7100 which can be a 6600 resistor in series with a 300 resistor which are standard 5% tolerance resistor values. 10. As a final deSign stap, Ct must be selected to pass the lower passband frequency corner of 8 Hz for this example. VO(MAlQ - Vo(MIN) 2 + Vo(MIN) = (12 - 1.8~V - 0.6V + 0.6V = 5.4 Vcc 7. The DC feedback current must be: I FS = VoDC(optl - Vse(-) = 5.4V - 0.6V Rt 7.5k 2'11" (7500) (8 Hz) = 26.5 p.F A larger value may be used and a 0.01 p.F ceramic capacitor in parellel with Ct will maintain high frequency gain accuracy. = 640 pA = IIN(+) DC biasing predictability will be insured because 640 pA is greater than the minimum of ISET/5 or 100 pA. Final Circuit Using Standard 5% Toferane4 R....tor Values I,F 12V lOOI'F >--"'0 'OUT 810 30 "iN 12V TLlHI7788-21 1-293 en .---------------------------------------------------------------------------------, an C") Application Hints (Continued) :& u GENERAL PRECAuTIONS .' ::,;, , '~ Clr:cuit PerfQ~anCe , ? ..;' '. 1-c-++++ItH'I---++#HffI :,25 a , :!l, z ... ...... :> '" .J' 15 ,fJ: ., C ,10 '.,I, , oL---'-...L-JL...I,1J..UJ__..I-.L..J..J..I..IUJJ IbM ' 1M 1000M FR'E~i1ENCY (Hz) , '~ VO(DCl .. 5,4V ' :'1 ,~.' .~'n::;(" to ' " The supply voltage must never be reversed to the device; however, plugging the de,viee into' a socket backwards would then connect the positive supply voltage to the pin that has no internal connection (pin 5) which may prevent inadvertent device failure.' , . :"", Diflerentiar~~ ~rrOr « 0,5Dlfferential'~ain errOl' <'2% i_a'dB low ,;, 2.5 Hz ~. niA~ " TUHI7788-22 .; I The total device 'pe kept in mind when selectIng an operating supply VOltage, the programming current, ISET' arid the load resistance, particularly when DC coupling the output ~oa succeeding, stage._,To prevent damaging the current mirror inpllI! diode, ,,\he l)1irror .current should always be ,Iimi~ed to 10 mA, or,less, lIYhiCh is important ,if. thEl input is susceptible. to' high voltage trimsients. ilie voltage at any of the inputs must not be forced more negative than -O:TV without limiting the current 10 20" C co co ,~,.t' Th~ LM:35!1 is pesigned primarily for. Single ,i\UPPIYQ,RElration but ~plit$uppJle!llT1ay be u~!1 if the', negative ~ppl~ v91tage is .wel!regulated aS,the arpplifi~I'l!)'av~no'neiiatil/!l slJPply reJection. ' " Typical Applicaticms, DC Coupled Inputs Inverting ,.,. RI R. "''0'' VIN(DClo-..J\t,M,..-j~ 14 2 " >~""OVDUT ~-"'OVOUT y+o-,.,..,.VVo-+I TI.IH/7788-23 VBE(+) [ v+ - Rb Vo(DCl = AV(AC) = ~ Rs v~ei--')'],' Rf":'I- "V~(-) Rs f VIN(DC)- , TL/H/7788-24 VO(DC) = VSE(-) + (VIN(DC)- VBE(+)) Rf Rs p .... ' _ + __R_f__ V(Ae) -, Fls + r.(+) A • Eliminates the need for art'lnpUt coupling eapacitqr • Input DC level must be stable and can exceed the supply voltage 01 the LM359 provided that maximum input currents are not exceeded. \" ';', .,> \ . ' •• ' \,': , .''-.. ", , ' t . :', r V294 Application Hints (Continued) Noise Reduction using nVBE Biasing nVBE Biasing with a Negative Supply 10k Uk r----4""""--+--4""""-o12V C ' IN o-1 -r",::, O.DI~F ..L RSETUNI 1-'''''".,.....-'''1 CI >;",,-+-oVo .INo1l-¥"iY-4~-~ RSETIoun >~""'OVOUT TLlHI77B8-25 -15V TLlH/77B8-26 • RI and C2 provide additional filtering of the negative biasing supply Typical Input Referred Noise Performance Adding a JFET Input Stage v+ 32 nVBE BIASING- 2B 24 ~ > oS IS: 20 \: ISETUNI" 2 mA 16 ISETUNI" 0.5 mA\ 12 ~ ISETUNI = 0.85 mA (-I ~ (+Io-----ll----+-...... 4 o 10 100 lk 10k lOOk 1M VOUT FREQUENCY (Hz) TL/HI77B8-27 TL/H/7788-28 • FET Input voijage mode op amp • For Av • For AV = +1; BW = 40 MHz. Sr = 60 VI,..; Cc = 51 pF = +11; BW = 24 MHz. Sr = 130 V/,.s; Cc = 5 pF = + 100; BW = 4.5 MHz. Sr = 150 VI,..; Cc = 2 pF • For Av • Vos is typically <25 mY; 10011 potentiometer allows a Vos adjust range of:=: ±200 mV • Inputs must be DC biased for single supply operation 1-295 Typical Applications (Continued) Photo Diode Amplifier WO-~---------------------------1~-t--~--, ZpF 11k Ilk Uk 01 10 Uk ..------~ 6NOo-----~~------~---------------------------- TLlH17788-29 01 - RCA N·Type Silicon P·I·N Photodiode o F~uency response of greeter than 10 MHz 0" slow rise and fall times can be tolerated the gate on the output can be removed. In this case the rise and the fall time of the LM359 Is 40 ns. 45 ns, T PDH - 50 ns - T2L output o T POL - Balanced Line Driver vo v· R5 RL BOD R4 RZ CI .......-.I liN. RI I-"VI.,.,.. .-----.... TLlHI7788-30 V+ R3 V+-2'; ~_V+-2';where"'::::06V ForVol-V02-T' Fi2-2(V+-';)' R 5 ' ; .... Av-~(~+ 1) RI R4 o I MHz-3 dB bandwidth with gain of 10 and 0 dbm Into 600n 00.3% distortion at full bandwidth; reduced to 0.05% with bandwidth of 10 kHz o Will drive CL - 1500 pF wHh no additional compensation, ± 0.01 p.F with Coomp - 180 pF o 70 dB signal to noise ratio at 0 dbm into 600n, 10kHz bandwidth 1·296 Typical Applications (Continued) Difference Amplifier Voltage Controlled Oscillator ... ., ., C ..,F •• Vo Vo{DC) Av R4 = R3 (V+ - cf» where cf> = 0.6V 10 TL/H/7788-31 = ~forRI = R2 Rl R6 ::: = I o 'CMRR is adjusted lor max at expected CM input signal V'N-cf> 4CAVRI = 2Rl = amplifier input voltage = 0.6V where: R2 R5 5' lorR5 = 100 kfl cf> = DM7414 hysteresis, typ IV • Wide bandwidth AV • 70 dB CMRR typ • 5 MHz operation • Wide CM input vo~age range • T2L output Phase Locked Loop 5vO-------.-____________--, r l.....------.---~.....""""D"V Vcc 1/2 DM1414 ....~P-I aH~ Cl. • Up to 5 MHz oparation ps eLR PS eLA 101pF • T2L compatible input CLK All diodes = 2hF 'OY lN914 "I, ADJUST 25kHz LOW PASS FILTER .... Ia. GAIN ADJUST ... TL/H/7788-33 1-297 Typical Applications (Continued) Squarewave Generator AI Zk &V .....ovo >~ 1401c TL/H/7788-34 ' - I MHz Output is TTL compatible Frequency Is adjusted by R1 & C (RI < R2) Pulse Generator AI zze OUtput Is TTL compatible 5V Duty cycle is adjusted by RI Frequency is adjusted by C lek >z;"'+-oVo3,ZV JUL' OV 11k '-IMHz 7.5. 5Vo--'IIV'Y...--..J\j'VW--.... Duty cycle - 20% TUH/7788-36 Crystal Controlled Sinewave Oscillator 5pF 11k Vo - 500 mVPll , - 9.1 MHz THO < 2.5% L...--tDt---...... 9.1 MHz (FUNDAMENTAl) TUH/7788-37 1·298 Typical Applications (Continued) High Performance 2 Amplifier Biquad Fllter(s) lei .....---t"I---...., RQ v+ L. TL/H/nOO-35 • The high speed of the LM359 allows the center frequency 0 0 product of the filter to be: foX 0 0 ,; 5 MHz • The above filter(s) maintains performance over wide temperature renge • One haW of LM359 acts as a true non-inverting integrator so only 2 amplifiers (instead of 3 or 4) are needed for the biquad filler structure DC Biasing Equations for Y01(DC) "" Y02(DC) "" y+ 12 Type I Type II 1 1 R Ra - + -., = 2 - ; R1 = 2R Rb Type III Analysis and Design Equations Type Qo fz(notch) Y01 Y02 Ci RI2 RI1 fo I BP LP 0 Ri2 00 '/:z'lTRC Ra/R II HP BP C. 00 00 '/:z'lTRC Ra/R - III Notchl - Ci 00 Ri1 '/:z'lTRC Ra/R '/:z'lT4RRiC BR c. Ho(LP) Ho(BP) Ho(HP) Ho(BR) R/Ri2 Ra /R i2 - - RaCi/RC Ci/C - - - - Hal = CjlC 1_00 .- II ! I Hal = C/Ri 1-0 1-299 Typical Applications (Continued) Triangle Waveform Generator , ' C Z50pF Uk RI 8.8k ~~----------~VI ~ vcc' 5V >1~4"~V23.ZV-..., OV"" U HZ Uk r- V2 output Is TIL compatible R3 'Uk R2 adjusts for symmeby of the triangle waveform Frequency Is adjusted with R5 and C TL/HI7788-38 1-300 ttlNational Semiconductor LM392/LM2924 Low Power Operational Amplifier/Voltage Comparator General Description Features The LM392 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage. • Wide power supply voltage range Single supply 3Vt032V ±1.5Vto ±16V Dual supply • Low supply current drain-essentially independent of . 600,..A supply voltage 50 nA • Low input biasing current 2mV • Low input offset voltage 5 nA • Low input offset current • Input common-mode voltage range includes ground • Differential input voltage range equal to the power supply voltage Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard 5 Voe power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM392 extremely useful in the design of portable equipment. Advantages • Eliminates need for dual power supplies • An internally compensated op amp and a precision comparator in the same package • Allows sensing at or near ground • Power drain suitable for battery operation • Pin-out is the same as both the LM358 dual op amp and the LM393 dual comparator ADDITIONAL OP AMP FEATURES • Internally frequency compensated for unity gain 100 dB • Large DC voltage gain 1 MHz • Wide bandwidth (unity gain) OV to V+ - 1.5V • Large output voltage SWing ADDITIONAL COMPARATOR FEATURES • Low output saturation voltage 250 mV at 4 mA • Output voltage compatible with all types of logic systems Connection Diagram (Top View) (Amp"fler A = Comparator) (AmplifIer B = OperatIonal AmplIfIer) Dual·ln·Llne Package OIJ1l'lJTA ICOMPARATOR) 1 INVERTING INPUT A INVERTING INPUT B GilD __4+-_ _.. TL/HI7793-1 Order Number LM392M or LM2924M See NS Package Number MOSA Order Number LM392N or LM2924N See NS Package Number NOSE 1-301 Absolute Maximum Ratings If MllitarylAerospace specified devices are required, please contact the National Semiconductor Sales 'Offlcel Distributors for availability and specifications.' " , LM392 32Vor ±16V LM2924 26Vor ±13V 32V -0.3Vto +32V 26V -0.3Vto +26V 820mW 530mW 820mW '530mW Output Short-Circuit to Ground (Note 2) Continuous Continuous Input Current (VIN < -0.3 Voc) (Note 3) Operating Temperature Range 50mA O°Cto +700C 50mA -400Cto +85°C - 65°C to + 1500C 2600C -65°C to + 1500C 2600C 2600C Supply Voltage, V+ Differential Input Voltage Input Voltage Power Dissipation (Note 1) Molded DIP (LM392N, LM2924N) Small Outline Package (LM392M, LM2924M) Storage Temperature Range Lead Temperature (Soldering, 10 seconds) ESD rating to be determined. Soldering Information Dual-in-Line Package Soldering (10 seconds) Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds) 2600C 215"C 215°C 2200C, 2200C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Electrical Characteristics (V + = 5 Voc; specifications apply to both amplifi,ers unless otherwise stated) (Note 4) 'Parameter LM392 Conditions Min LM2924 Typ Max .. Min Units Typ Max Input Offset Voltage TA = 25°C, (Note 5) ±2 ±5 ±2 ±o7 mV Input Bias Current IN(+) or IN(-), TA =25°C, (Note 6), VCM = OV 50 250 50 250 nA Input Offset Current IN(+) - IN(-), TA = 25°C ±S ±SO ±S ±SO nA Input Common-Mode Voltage Range V+ = 30Voc, TA = 2SoC, (Note 7) (LM2924, V+ = 26Voc) V+-1.S V Supply Current RL = 00, V+ = 30V, (LM2924, V + = 26V) Supply Current RL = Amplifier-to-Amplifier Coupling f = 1 kHz to 20 kHz, TA = 2SoC, Input Referred, (Note 8) 00, V+-1.S 0 V+ = SV ,0 1 2 1 2 mA O.S 1 O.S 1 mA -100 -100 dB Input Offset Voltage (NoteS) ±7 ±10 mV Input Bias Current IN(+) or IN(-) 400 SOO nA Input Offset Current IN(+) - IN(-) 1S0 200 nA Input Common-Mode Voltage Range V+ = 30Voc,(Note7) (LM2924, V+ = 26 vo6f V+-2 V Differential Input Voltage Keep All VIN'S ~ 0 Voc (or V-, if Used), (Note 9) 26 V V+-2 0 0 32 OPAMPONLY Large Signal Voltage Gain V+ = 1S VOC, Va swing = 1 Vocto 11 VOC, RL = 2 kn, TA = 2SoC 25 1-302 100 25 100 VlmV Electrical Characteristics (V+ = 5 Voc; specifications apply to both amplifiersur:lless otherwise stated) (Note 4) (Continued) Parameter LM2924 LM392 Conditions Min Typ Max Min V+ -1.5 0 Typ Units Max OPAMPONLY Output Voltage Swing RL = 2 kO, T A 'k: 25'C, (LM2924, RL;;" 10 kO) 0 Common-Mode Rejection Ratio DC, TA = 25'C, VCM = OVoctoV+-1.5Vec 65 70 5'0 70 dB 65 100 50 100 dB 20 40 20 40 mA 10 20 10 20 mA 12 50 12 50 p.A TA = ~5'C Power Supply Rejection Ratio DC, Output Current Source VIN(+) = 1 Vec, VIN(-) = OVoc, V+ = 15Vec, Vo = 2 Voc, TA = 25'C Output Current Sink " VIN(-) = 1 Voc,.. "VIN(+) = aVec, V+ = 15 Vec, Vo =; . 2 VOC, T A = 25'C : VIN(-) = 1 Vec, VIN(+) = aVec, V+ =,15 Voc, Vo = 200 mV, T A = 25'C V+-1.5 V Input Offset Voltage Drift Rs= 00 ' 7 7 p.V/'C Input Offset Current Drift Rs = 00 10 10 pAec/'C 100 V/mV COMPARATOR QNLY Voltage Gain Large Signal Response Time RL;;" 15 kO, V+ = 15'Voc, ,TA=25'C 50 200 25 VIN = TIL Logic Swing;' , VREF = 1.4 Vee VRL = 5 Yec, RL = 5.1 kO, TA = 25'C 300 300 ns Response Time VRL = 5 Voc, RL = 5.1 kO, T A = 25'C, (Note 10) 1.3 1.5 /':S Output Sink Current VIN(-) = 1"voc, , " VIN(+) = aVec, Vo;;" 1.5 Vec, TA = 25'C 16 mA Saturation Voltage 6 VIN(-) ;;" 1 Voc, VIN(+) = 0, ISINK oS: 4 mA, T A = 25'C 250 VIN(-);;" 1 Vec, VIN(+) = 0, ISINK oS: 4mA Output Leakage Current VIN(-) = 0, VIN(+);;" 1 VOC, Vo = 5Vec, TA = 25'C 6 16 400 400 mV 700 700 mV 0.1 VIN(-) = 0, VIN(+);;" 1 Voc, Vo = 30VOC nA 0.1 1.0 1.0 p.A Note 1: For operating at temperatures above 25'C, the LM392 and the LM2924 must be derated based on a 125'C maximum iunction temperature and a thermal resistance 01 12'Z'CIW which applies lor the device soldered in a printed circuit board, operating in still air ambient The dissipation is the Iotal of both amplifiersuse external resistors, where poSSible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit. Note 2: Short circuits Irom the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 rnA lor the op amp and 30 rnA lor the comperator independent 01 the magnitude of V+. At values 01 supply voltage in excess of 15V, continuous short circuits can exceed the power dissipation retings and cause eventual destruction. Note 3: This input current will only exist when the voltage at any of the inpulleads is driven negalive. II is due 10 the collector-base Junction 01 the Input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addHlon 10 Ihls diode action, Ihere Is also lateral NPN paresitic transistor action on the IC Chip. This transistor action can cause the output voIteges of the amplifiers to go to the V+ voltage level (or to ground lor a large overdrive) for the time duration thai an input is driven negative. This is not destructive and normal output states will re-eslablish when the input voltage. which was negative, again returns to a value greater than -0.3V (aI25"C). 1-303 Note 4: These apecHicatIons apply far V+ = 5V, unless otharwIse stated. For the 1.M392, temparslU'e apeoifIcatIona are limited \0 O'C " TA " -t 7O'C and th8 LM2924 temperature specifications are limited \0 -4O'C " TA'" + 85'C. . Note 5: At output switch point, Vo .. UV, As = on with V+ from 5V \0 3OV; and over ths lull Input common-mode range (OV \0 V+ - 1.svi. Note 8: The direction of th8 input current Is out of th8 IC duB \0 \he PNP Input stage. ThIs current Is esse~1y constant, Independent of th8 state of ths output 80 no losdIng change exists on ths Input lines. . ' Note 7: The Input Comrnon-mode voltage or either Input signal voltage should not be allowed \0 go nag_ by more than 0.3V. The upper and of th8 commonmode voltage range Is V+ - 1.5V, but eIIher or both Inputs can go \0 32V without damage (28V far LM2924). Note 8: Due \0 proximity of external componants, Insure that coupUng Is not originating via ths stray capecItanoa between theae external parts. ThIs typiCally can be dstactad as. this type of capacitive Increasas at higher frequencies. . Note I: PosItIve excursions of input voltage may axcaed th8 power supply level. As long as the other Input voltage remains within ths common-mods range, ths comparator will provide a proper output state. The Input voltage \0 \he op amp should not axcaed ths power supply level. The Input voltage state muat not be 1888 than -0.3V (or 0.3V below ths magnltuds of the naga1IYe power supply, H used) on eIIher amplifier. Note 10: The responss time specified Is far a 100 mV inpUt step with 5 mVoverdrIve. For larger overdrive signals 300 ns can be obtained. Schematic Diagram Comparator A Amplifier B TLlHI7783-2 Application Hints Please refer to the application hints section of the LM193 and the LM158 datasheets. 1-304 tfI National Semiconductor LM611 Operational Amplifier and Adjustable Reference General Description Features The LM611 consists of a single-supply op-amp and a programmable voltage reference in one space saving 8-pin package. The op-amp out-performs most single-supply opamps by providing higher speed and bandwidth along with low supply current. This device was specifically deSigned to lower cost and board space requirements in transducer, test, measurement and data acquisition systems. Combining a stable voltage reference with a wide output swing op-amp makes the LM611 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (10 typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large caPacitive loads, as are commonly encountered in CMOS data acquisition systems. As a member of National's Super-Block™ family, the LM611 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance. OPAMP 300 IJA (op amp) • Low operating current 4V to 36V • Wide supply voltage range V- to (V+ -1.8V) • Wide common-mode range ±36V • Wide differential input voltage • Available in low cost 8-pin DIP • Available in plastic package rated for MilitaJy Temperature Range Operation REFERENCE 1.2V to 6.3V • Adjustable output voltage ±0.6% • Tight initial tolerance available 17 /LA to 20 rnA • Wide operating current range • Reference floats above ground • Tolerant of load capacitance Applications • • • • Transducer bridge driver Process and Mass Flow Control systems Power supply voltage monitor Buffered voltage references for AID's i1 Connection Diagrams I' N/c...l • _J~'-'t-~' -' ful-- CAlIIODE.! _ V-..!~1E \..J"'t- tl!v+ N/c..! ~N/c ANODE.! ~N/c f'EEDIIACK ..! ,!.-IN CATHODEl 5+1N N/C.! Tl/H/9221-1 BZ.¢u- V-!. ~1E I: 'j !l il-I 11 OUT I' ~-IN Ii 9 +IN ~N/C Tl/H/9221-2 Ordering Information Reference Tolerance & Vos ±0.6%@ 80 ppm/DC max Vos = 3.5 mV max ±2.0%@ 150 ppm/DC max Vos = 5mVmax Temperature Range NSC Drawing Military -SsoCS;TAS; + 125"C Industrial -40"CS;TAs; +8SoC Commercial O"CS;TAS; +70"C Package LM611AMN LM611AIN - 8-pin molded DIP N08E LM611 AMJ/883 (Note 12) - - 8-pin ceramic DIP J08A LM611MN LM611 BIN LM611CN 8-pin molded DIP N08E - LM6111M LM611CM 14-pin Narrow Surface Mount M14A 1-305 Absolute Maximum Ratings (Note 1) , If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Voltage on Any Pins Except VR 36V(Max) (referred to V- pin) (Note 2) -0.3V(Min) . ,I.;: Current through Any Input PIn and VR Pin Differential Input Voltage Military and Industrial Commercial Storage Temperature Range Maximum Junction Temperature ±2omA" . Thermal Resistance, Junction-to-Ambierit (Not6;~V'\tl N Package ,~ '1 fjtrC/W 150"C/W M Package Soldering Information Soldering (10 seconds) , ',260"C N Package ," 220"C .... " . M Package. . ", ESO Tolerance (Note'4)" ±1 kV .:±36V Operating Temperature Range.: ±~2V -65°C:s;:TJ'" + 150:'C 150"C I.M611AI.I.M6111,I.M6111;l1 I.M611AM.. LM611M . , LM611C .. ," ", -40"C':stTJ:S:: +S5°C -55°C:S::TJ:S:: -+;125°C O°C '" Tj:S:: 70"C " Electrical Characteristics .= These specifications apply for V,GND= OV. V+ = 5V, VcNi= Your = 2.SV. IR = 100 pA, FEEDBACK pin shorted to GNp, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the Operating Temperature Range. Symbol Parameter LM611AM LM611AI . Typ!.pal (Note 5), .l;Imlts ' . (Note 6) Conditions , .,., Total Supply Current Is RLOAD = co, 4V:S:: V-t::.:s:: ~6V (32Vfor LM611C) Supply Voltage Range Vs ,. '" LM611M LM611BI LM6111 i.M611C Limits (Note6) 210 300 350 2,21 320 370 2.2 2.S 2.9 3 46 43 p.Amax p.Amax 2.S Vmin 'V min '3 36 32 3. Units V max V max .32 OPERATIONAL AMPLIFIER Vos Over Supply VOS1 Vos Over V<;:M VOS2 VOS3 aT Average Vos Drift Ie Input Bias Current . "I' , 4V:s:: V+ :s:: 36V (4V :s:: V+ :s:: 32V for LM611C) 1.5 3.5 5.0 . 2.0 8.0 7.0 VCM = OV through VCM = (V+ - 1.SV). V+ = 30V, V- = OV 1.0 3.5 5.0 US 8.0 7.0 (Note 6) Average Offset Drift Current 10Sl n Input Resistance RIN .,. Input CapaCitance ,CIN '0.2 4 4 0 •• 5 5 nAmax nAmax nAmax nAmax pAloC .. ,. , lS00 MO . Cpmmon-Mode .. 5.7 pF ',-oltage Noise . f = 100 Hz, Input Referred CMRR C.ommbri-Mode Rejection-Ratio V+ = 30V,OV:S:: YCM:S:: (V+ -1.SV) CMRR = 20 log (aVCM/aVOs) SR 35 40 3S00 Current Noise . : 25 30 Differential In Av 10 : 11 Common-Mode en Reje~i~ -3 I,STEPII -.4 hooPA 1.0 '~ : ~" Ro=.b.Yro A~=O~A. ',121"1:' I!,OmA I "'-.", t ,II I II I -50 100 200 300 «lO 500 600 700 ,," , 1-3C!L ~ l,s 'Y+' iiEP ! '''' tt:: ~ 1 2.0 I' J , ,Js.c o.s 25'C '- -55I'C -0.5 -~O 125"1 - ~1,o ° TIME (PO) , "" 6 TlME(ms) TUH/9221-7 Typical P,rf,9r~an.ce Characteristic~ (Op Amps), , " v+:= sv,V-:- = GNb,,~ OV"YpM = V+/2, VOUT = V+/2,TJ = 2SOC, unless otherwise noted,:, Input Common-Mode Voltage .,..Ra!\ge ~s Temperature , ':yt , , OUTP.UT GOES E;yt-o.s ~ yt- I ~' !'!yt-I~ :. , V" i " ,~, ' V"-o.s V"- I I ,~~ f:"'i"'" l.OlY ~ ,,;' ~-2O ° 20 " " ..... r--i'-o 1-0. -~rj l~ 0UlPIIT 00Es LOW -I -2 '"3 i-" 5 -5 iii ..... 1:'" -20 JUNC;IIOII1EM~1U,RE (e) I~ ~ I 25"1: ~, ,25'C I ,I LI.l ' 1 V+=5V !1-~5"1: I I I '" INPUT '/OWIGE (V) ':, ':, "~rge-Slgna", ' "s.'!'rs"ponee , 6', 10' -55"1: -,1,01,2 3 ,,~,~ IP, 20 40 60 60 -10-.40-2119; 20,,40 60 60 100120140 JUIjClIOIj~~w(e) '~I "10 -15 -.4 ~ ~,~ 60 100120140 ~ 1O I6: fo-""'"' ki:::= ~F~ 1 15 11 " NORMAl. OPERATING,i!ANCE J , Input,.!I!as Current vs Common-Mode Voltage , , Vas vs JunctIon Temperature, ouiput Voltage Swing vtwaYn."-,~.,andcurrent . ' . ' "", E; vt-I,' ; , ,,' ~ vt-2 " ii' o~ LO.\D I V"~2 " , ", . , , ". • ," I 5O~ LOAD " ~ i.OAu " V"+I ." '" 10 REltRENCE ANODE -10- V" VOLTAGE (V) 20 30 TIME (PO) 1-310 40 50 ': V" -10-40-20 ° 2040 ~ ~10012014O JUNCIION lEMPERATURE (e) TLlH/9221-8 .-----------------------------------------------------------------------------.~ i: Typical Performance Characteristics (Op Amps) (Continued) CD -a. -a. V+ = 5V, V- = GND = OV, VCM = V+ 12, VOUT = V+ 12, TJ = 25°C, unless otherwise noted Output Source Current vs Output Voltage and Temp. Output Sink Current vs Output Voltage 2D .--2~.8-:S'r:-!:SI-36V~-r-...,-r-. 10 NEGATIVE INPUT=If"I-+-+--lA 1 ]: 0 Y... =If"+IY Output Swing, Large Signal 2Dnn_r...,-rllr;-r"" 1\ r=3OY 10 I , lJ " !I -~:t--~-~,1!~·~:~I~~~~ 6 30 - h, Or 102 ~ FREQUENCY (Hz) 4r--r--~~-.---r-~ Y+=ISY Y-=-ISY ~~~OpF.2k41o If" I"".IOOpl".2k41o y" 180 is: 103 Follower Small-Signal Frequency Response r==..... f-- 102 FREQUENCY (Hz) Smail-Signal Voltage Gain va Frequency and Load 360 i ·'*'1-1--+-1450 -60H ~~~ FREQUENCY (Hz) 1.tO 12D 100 2OOlI; i- ~ 100~~+-~~~~-+~ 80 HH-+-+-+I\~-t--+--l I : H'-+\+t--l ! 'lP- o 10-' 100 102 10' 10& FREOUENCY (Hz) TLlH/9221-IO 1-311 99- ~ r------------------------------------------------------------------------------------------, Typical Performance Characteristics COp Amps) (Continued) V+ = = 5V. V- Q GND OV. VCM = V+ /2. Your = V+ 12. TJ = 25°C. unless otherwise noted Power Supply Current vs Power Supply Voltage 1000 1100 I I aoo ! . ..~ il I-'" iT soo 4DD 300 200 100 ..2'SoC L I o -55°C ..~ 0.7 a 0.5 Riling I I I I ~ i .. ~ CIA D.3 .0.2 0. 1 o ':'"I~g r-- ..... r-- ~- ;;.. Veil! = DV I. wor.t oue. ~' .:!I , BO iii 40 ~ , 40 -80-.40-20 0 20 40 ao JUNCTION TEMPERATURE (OC) 20 -20 -40 "p FREQUENCY (Hz) , ~ t\.. .,~ YO \ -15 10-2 IfP 102 10' FREQUENCY (Hz) Input Offset Current vs Junction Temperature Input Bias Current vs Junction Temperature 1000 8 I'r-. - ")j~ ..... "< .5- § I~~ ~ ~ ~ I/ V 80 100120140 60 51: 20 -1000 *im~ r-.. BO BO I-t-t-t-t-J-"ool---t-I 1\ .- 10V ~ ! Slew Rate vs Temperature 0.8 100 10-10- 100~ 12°t::tt:ttljjj 1 2 3 4 5 10 20 30 40 SO 60 TOTAL SUPPLY VOLTAGE (v) D.8 Negative Power Supply Voltage Rejection Ratio 140 120 i""'I I-'" i"'" +125 OC ~ aoo iii II I I 700 Positive Power Supply voltage Rejection Ratio 140 .--.,--...,...,--,---r--r.,....,----r--, -2 II 11 -4 ~ Iii : 6 Rlpr.lntativi Unit. -2000 -60 -40-20 0 20 40 60 80 100 120140 JUNCTION TEMPERATURE (OC) -8 -8 -10 j / -12 -80 -40-20 0 20 40 80 80100120140 JUNCTION TEMPERATURE (OC) TL/H/9221-11 Typical Performance Distributions Average Vos Drift Military Temperature Range Average Vos Drift Industrial Temperature Range Vos DRIFT (/oIVIC) Average Vos Drift Commercial Temperature Range Vos DRIFT (/oIVIC) TL/H/9221-12 r-----------------------------------------------------------------------------~ ~ iii: G) .... .... Typical Performance Distributions (Continued) Average los Drift Industrial Temperature Range Average los Drift Military Temperature Range Average los Drift Commercial Temperature Range 20~--------------~ los DRIFT (pA/C) Voltage Reference Broad-Band Noise Distribution 30 I.. DRIIT (pA/c) los DRIFT (pA/C) Op Amp Voltage Noise Distribution Op Amp Current Noise Distribution o 100Hz 10:S f::!i10.000 Hz 20 0 10 I 0 0 4 812162024283236-404448 0 o8 VOLTAGE NOISE (pYRIIS) L m 162432 -40 48 56 &.4 72 80 88 96 CURRENT NOIS[ (fAmlsf/Ri) VOLTAGE NOISE (nYRIIS/IIli) TUH/9221-13 Application Information VOLTAGE REFERENCE ence voltage. Varying that voltage, and so varying Ir, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM 134 series, may generate Ir. Reference Blasing The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current Ir flowing in the 'forward' direction there is the familiar diode transfer function. Ir flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The applied voltage to the cathode may range from a diode drop below V- to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V reference with V+ = 3V is allowed. Cathad. TL/H/9221-15 FIGURE 2. Reference Equivalent Circuit Anode TUH/9221-14 FIGURE 1. Voltages Associated with Reference (Current Source Ir is External) The reference equivalent circuit reveals how Vr is held at the constant 1.2V by feedback, and how the FEEDBACK pin passes little current To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the refer- TLlH/9221-16 FIGURE 3. 1.2V Reference 1-313 ~ r---------------~--------------------------------------------------------------------~ ~ CD ::I Application Information (Continued) Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range curve for capacitance values-from 20 p,A t03 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering. 15V Adjustable Reference The FEEDBACK pin allows the reference output voltage, Vro , to vary from 1.24V to 6.3V. The reference attempts to hold Vr at 1.24V. If Vr is above 1.24V, the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then Vro ~ Vr ;" 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76V for Vro = 5V. Connecting a resistor across the constant Vr generates a current 1= R1IVr flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76V is generated from FEEDBACK to Anode with R2=3.76/1. Keep I greater than one thousand times larger than FEEDBACK bias current for <0.1 % error-I;;,,32 p,A for the military grade over the military temperature range (I;;" 5.5 p.A for a 1 % untrimmed error for a commercial part.) TL/H/9221-19 FIGURE 6. Output Voltage has Negative Temperature COefficient (TC) If R2 has Negative TC 15V TUH/9221-20 FIGURE 7. Output Voltage has Positive TC If R1 has Negative TC 15V 10k TUH/9221-17 FIGURE 4. Thevenln Equivalent of Reference with SV Output 15V Rl TL/H/9221-21 39k FIGURE 8. Diode In Series with R1 causes Voltage Across R1 and R2 to be Proportional to Absolute.Temperature (PTAn Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized. .~-""~1=32PA t--.....I R2 118k TL/H/9221-1 B R1 = Vr/l = 1.24/32p. = 39k R2 = R1 !(VrolVr) - 11 v = 39k ((5/1.24) - 1)1 = 118k FIGURE S. Resistors R1 and R2 Program Reference Output Voltage to be SV ' Understanding that Vr is fixed and that voltage sources, resistors, and capacitors lT1ay be tied to the FEEDBACK pin, a range of Vr ,temperature coefficients may be synthesized. TUH/9221-22 1= Vr/R1 = 1.24/R1 FIGURE 9. CUrrent Source Is Programmed by R1 r- iii: en Application Information (Continued) 2) Cross-over Distortion: The LM611 has lower cross-over distortion (a 1 VeE deadband versus 3 VeE for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion. Y 3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the current limit 250. 200 pF may then be driven without oscillation. TL/H/9221-23 FIGURE 10. Proportional-to-AbaoluteTemperature Current Source Op Amp Input Stage v The lateral PNP input transistors, unlike those of most op amps, have BVEeo equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages. Typical Applications +V = 10k 12V 11'~ TUH/9221-24 FIGURE 11. Negative - TC Current Source 10k 7.Sk 10.000Y Hysteresis The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis. 332Jl 15k + 51'F 10k· LY811 REF OPERATIONAL AMPLIFIER The amp or the reference may be biased in any way with no effect on the other, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). The amp may have inputs outside the common-mode range, may be operated as a comparator, or have all terminals floating with no effect on the reference (tying inverting input to output and non-inverting input to V- on unused amp is preferred). Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided. '10k must be low le. trim pol TUH/9221-28 FIGURE 12. Ultra Low Noise 10.DOV Reference. Total Output Noise is Typically 14 /L VRM& Adjust the 10k pot for 10.000V. 5-3:1:- - -.......--------;:. VOOT +sv :$50mA lOOk Op Amp Output Stage The op amp, like the LM124 series, has a flexible and relatively wide-swing output stage. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability: SOOk 1.2Y .....JWIr-_--I O.OOlI'F LM811 REF 317k 1) Output Swing: Unloaded, the 42 /LA pull-down will bring the output within 300 mV of V- over the military temperature range. If more than 42 /LA is required, a resistor from output to V- will help. Swing across any load may be improved slightly if the load can be tied to V + , at the cost of poorer sinking open-loop voltage gain. TL/H/9221-30 FIGURE 13. Simple Low Quiescent Drain Voltage Regulator. Total Supply Current is approximately 320 /LA when VIN = 5V, and output has no load. 1-315 .... .... .. .... CD ~ ...I r-------------------------------------------------------------------------------------~ Typical Applications (Continued) ;.' +V = 15V ~I~ 0--1.......,..---..,..-----, -i .0. O. IP O"I'-i 'D. VREF 1.2.4Y U18t1 REF 0.01 HF .1.111611 REF YOuT R1 t------"IIf¥1~-O VOUT 'V SOmA S.OY for 3500. 17k T~.n~uctr B~ldlI • . TL/H/9221-29 VOUT ~ (RI/R2 + I) VREF. RI, R2 should be 1% metal film. R3 should be low I.e. trim pot . TUH/9221-31 FIGURE 15. Low Drop-Out Voltage Regulator Circuit. Drop out voltage Is typically 0.2V. FIGURE 14. Slow Rise-Time Upon Power-Up, Adjustable Transducer Bridge Driver. Rise-time Is approximately 0.5 ms• . VO-~---------------------_.--~--_, .r 4700 0 1PF • LIII811 REF '0. ,L/H/9221-32 FIGURE 16. Nulling Bridge Detection System. Adjust sensitivity via 400 kfi pot. Null offset with R1, and bridge drive with the 10k pot. 1-316 t!lNational Semiconductor LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference General Description Features The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems. OPAMP 300 ,..A • Low operating current (Op Amp) 4V to 36V • Wide supply voltage range V- to (V+ - 1.8V) • Wide common-mode range ±36V • Wide differential input voltage • Available in plastic package rated for Military Temp. Range Operation Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1 n typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems. As a member of National's Super-BlockTM family, the LM613 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance. REFERENCE • Adjustable output voltage • Tight initial tolerance available • Wide operating current range • Tolerant of load capaCitance 1.2V to 6.3V ±0.6% 17 ,..A to 20 mA Applications • • • • Transducer bridge driver Process and mass flow control systems Power supply voltage monitor Buffered voltage references for AID's Connection Diagrams ...... E Package Pinout -IN Comp 1 COMPARATOR 2 3 V+ • s OP AMP 6 1 fEEDBACK 8 ~~~ i~ !! !! COMPARATOR !i 3 +,N +IN t!.!!. ~ CAT1iODE Amp (2) -IN Amp (2) (4) (4) 20 18 ' • a _a '51 ,. I Comp (1) • V+ 2 , ,a_ 171 ,al .4 13 V- !! .!! OP AMP Top View Camp -IN Out Comp CompOul (,) (,) S .7 • '0 " '3 '2 +'N Comp (4) v+IN Amp (3) -IN Amp (3) ••••••• TL/H/9226-1 Out FHd ~~f Sock calh- Qui ode ~;f Ordering Information Reference Tolerance" Vos ±0.6% 80 ppml"C Max. Vos S; 3.5mV ±2.0% 150 ppml"C Max. Vos :s;: 5.0 mV Max. TLiH/9226-48 Temperature Range NSC Drawing Military -SSDC S; TA S; + 125"C Induatrlal -40"C S; TA :s;: +85"C Commercial O"C S; TA S; +70"C Package LM613AMN LM613AIN - 16-Pin Molded DIP N16E LM613AMJ/883 (Note 14) - - 16-Pin Ceramic DIP J16A LM613AME/883 (Note 14) - - 20-Pin LCC E20A LM613MN LM6131N LM613CN 16-Pin Molded DIP N16E - LM6131WM 16-PinWide Surface Mount M16B 1-317 Absolute Maximum Ratings (Note 1) Thermal Resistance, Junction-to-Ambient (Note 5) N Package l00"C/W WMPackage 150"C/W Soldering Information (10 Seconds) N Package 26O"C WMPackage 220"C ESD Tolerance (Note 6) ±1 kV If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Voltage on Any Pin Except VR (referred to V- pin) (Note 2) 36V(Max) -0.3V(Min) (Note 3) ±20mA Current through Any Input Pin & VR Pin Differential Input Voltage ±36V Military and Industrial ±32V Commercial storage Temperature Range -65'C,;; TJ';; +150"C Maximum Junction Temperature (Note 4) 150"C Ope.rating Temperature Range LM613AI, lM613BI LM613AM, LM613M LM613C -40'Cto +85'C - 55'C to + 125'C O"C';; TJ';; +70'C Electrical Characteristics These specifications apply for V- = GND = OV. V+ = 5V, VCM =. VOUT = 2.5V, IR = 100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25'C; limits in boldface type apply over the Operating Temperature Range. Symbol Is Vs Parameter Total Supply Current Conditions RLOAD = 00, 4V ,;;V+ ,;; 36V (32Vfor LM613C) Supply Voltage Range Typical (Note 7) LM613AM LM613AI Limits {Note 8) LM613M LM6131 LM613C Limits (Note 8) 450 940 1000 S50 1000 1070 2.2 2.8 2.8 2.9 3 3 46 36 32 43 36 32 Units p.A (Max) jJA(Max) V (Min) V (Min) V (Max) V (Max) OPERATIONAL AMPLIFIERS VOS1 VOS2 Vos Over Supply VosOverVCM Vas3 aT Average Vas Drift 18 Input Bias Current los 4V,;; V+ ,;; 36V (4V,;; V+ ,;; 32VforLM613C) . VCM = OV through VCM = . (V+ - 1.8V), V+ = 30V, V- = OV (Note 8) Average Offset Current RIN Input Resistance 3.5 5.0 6.0 7.0 1.0 3.5 5.0 1.5 6.0 7.0 Differential mV(Max) mV(Max) mV(Max) mV(Max) p.V/'C (Max) 15 Input Offset Current 10Sl aT 1.5 2.0 10 25 35 11 30 40 0.2 4 4 0.3 5 5 nA(Max) nA(Max) nA(Max) nA(Max) 4 pAI'C 1000 MO CIN Input Capacitance Common-Mode 6 pF en Voltage Noise f = 100 Hz, Input Referred 74 nV/,[Hz In Current Noise f = 100 Hz, Input Referred 58 fAl.}Hz CMRR Common-Mode Rejection Ratio V+ = 30V,OV ,;; VCM ,;; (V+ - 1.8V) CMRR =,20 log (aVCM/aVOS) 95 80 75 90 75 70 Power Supply Rejection Ratio 4V ,;; V+ ,;; 30V, VCM = V+ 12, PSRR = 20 log (aV+ !Vos) 110 80 75 100 75 70 Open Loop Voltage Gain RL = 10 kO to GND. V+ = 30V, 5V ,;; VOUT ,;; 25V 500 100 94 50 40 40 PSRR Av 1-318 dB (Min) dB (Min) dB (Min) dB (Min) V/mV (Min) Electrical Characteristics These specifications apply for V- = GNO '= OV, V+' = 5V, VCM "" ,VOUT '= 2.5V, IR = 100 ,.,.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are 'for TJ in boldface type apply over Operating Temperature Range. (Continued) " Symbol Parameter ' Conditions SR GBW Slew Rate Gain Bandwidth LM613AM LM613AI Limits (Note 8) 0.70 0.55 0.50 0.85 0.45 0.45 = 50pF VOl Output Voltage Swing High RL = 10 kO to GND, V+ = 36V (32V for LM613C) V+ - 1:4 y+ - 1.8 V02 Output Voltage Swing Low RL = 10kOtoV+, V + = 36V (32V for Lt.1613C) VY- lOUT Output Source Current = 2.5V, V+,N = OV, = -0.3V VOUT = 1.6V, V+,N = OV, V-'N = 0.3V VOUT = OV,V+ IN = 3V, V-'N = 2V VOUT = 5V, V+,N =:' 2V, V-'N = 3V ISHORT Output Sink Current Short Circuit Current V/,.,.s O.B 0.5 ISINK Units' ,,' V+ = 30V (Note 9) CL LM613M LM6131 LM613C Limits (Note 8) Typical (Note 7) OPERATIONAL AMPLIFIERS (Continued) = 25°C; limits VOUT V-'N + O.B + 0.9 MHz MHZ .. V+ - 1.7 Y+ - 1.9 VY- + 0.9 + 1.0 V+ - 1.B Y+ - 1.9 V (Min) V (Min) + 0.95 + 1.0 V (Max) V (Max) VY- 25 ' 20 16 US 13 13 17 14 13 9 8 8 30 50 50 40 80 eo 30 60 70 32 80 90 mA(Min) mA(Min) mA(Min) mA(Min) mA(Max) mA(Max) mA(Max) mA(Max) COMPARATORS VOS Vos VCM Offset Vqltage Offset Voltage overVCM AT Average Offset Voltage Drift 18 ' Input Bias Current Vos los Av t, ISINK ILEAK 4V ,;; V+ ,;; 36V (32V for LM613C), RL = 15kO 1.0 3.0 5.0 2~0 8.0 7.0 OV,;; 'itCM ';; 36V V+ = 3i3V, (32V for (M613C) 1.0 3.0 5.0 1,,5 8.0 7.0 mV(Max) mV(Max) mV(Max) mV(Max) p'vrc 15 (Max) Input Offset Current 5 25 35 8 30 40 0.2 4 4 0.3 5 I IIA (Max) nA(Max) nA(Max) nA(Max) " RL = 10 kOto36V(32VforLM613C) 2V';; VOUT';; 27V 100 Large Signal Response Time V+,N = 1.4V, V~'N RL = 5.1 kO 1.5 jiS 2.0 p.s Output Sink Current ,V+ IN VOUT Voltage Gain Output Leakage Current = OV, V-'N"" = 1.5V VOUT = 0.4V V+,N VOUT = = = TTL Swing, 1V, 500 20 10 13 8 ' 10 8 ' mA(Min) mA(Min) mA(Min) ' mA(Min) ' 1.0 O.B 2.4 0.5 '0.5 0.1 10 2.8' 1V, V-'N = OV, 36V (32V for LM613C) VlmV V/mV 0.2 " 10 ,.,.A (Max) . ,.,.A(Max) , ' .. 1-319 Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = 2.5V, IR == 100 pA, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25"C; limits in boldface type apply over Operating Temperature Range. (Continued) LM613AM LM613A1 Umlta (Nole8) LM613M LM6131 LM613C Umlta (Nole8) 1.244 1.2365 1.2515 (±0.6%) 1.2191 1.2689 (±2%) 10 80 1.0 " Symbol Typical (Nole7) Conditions Parameter Units VOLTAGE REFERENCE VR Voltage Reference (Note 10) AVR AT AVR AT AVR AIR Average Temp. Drift (Note 11) Hysteresis (Note 12) VRChange VR(l00 pAl - VR(17 pAl 3.2 with Current VR(10 rnA) - VR(100 pAl (Note 13) R Resistance AVR(10 -+ 0.1 mAI/9.9 rnA AVRf100-+17 uAl/83 pA ~ AVRO VRChange with High VRO VR(Vro = vr) - VR(Vro = 6.3V) (5.06V between Anode and FEEDBACK) VR AV+ VR Change with VANODE Change VR.j.V+ - ~ - V~~+ - 36V) (V = 32 orL 13C) VR(V+ IFB en = 5V) - VR(V+ = 3V) :s: VFB :s: 5.06V FEEDBACK Bias Current VANODE VRNoise 10 Hz to 10kHz, VRO = VR 1 1 0.1 1.1 1.1 1.5 5 5 2.0 0.2 0 •• ••5 0.5. 13 7 10 ••5 0 ••• 13 7 10 2.5 0.1 1.2 1.2 0.1 1.3 1.3 0.01 1 1 0.01 1 •• 1 •• 22 35 50 28 40 5S 30 ppmrc (Max) p'vrc 0.05 2.8 V (Min) V (Max) mV(Max) mV(Max) mV(Max) mV(Max) o (Max) o (Max) mV(Max) mV(Max) mV(Max) mV(Max) mV(Max) mV(Max) nA(Max) nA(Max) P.VRMS Note 1: Absolute maximum ratings Indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its reted operating conditions. Note 2: Input voltage above V+ is allowed. As long as one Input pin voilsge remains inside Ihe commono/Tlode range. the comparator will deliver the correct output. Note 3: More accurately, His excessiva etnenI flow, with resulting excass healing, thailimils the voltages on an pins. When any pin is pulled a diode drop below Y-, a parasitic NPH transistor turns ON. No latch-up will occur as long as the cunant through that pin remains below the Maximum Rating. OparaUon is undefined and unpredictable when any parasitic diode or transistor Is conducting. Note 4: Simultaneous short-clrcuH of multiple comparators while using high supply voilsges may force junction tempareture above maximum, and thua should not be continuous. Note 10 Junction lempareturs may be calculated using TJ - TA + Po 9JA. The given thermal reaiatance Is worst-caaa for packages In sockets In stili air. For dissIpatIOn from one comparator or reference output transistor, nominal 9JA is 9f1'C/W for the N package, and packages soIderad to coppijr-clad board with lSSOC/W for the WM package. Note 8: Human body model, 100 pF discharged through a 1.5 kO resistor. Note 7: Typical valuas in standard typsface are for TJ = 25"C; values in bold face type apply for the fun operating temperature range, Thesa valuas represent the most Ukaly paramatrIc norm. Note e: AJllimils are guaranIaad at room temperature (standard type face) or at operating tempareture _ a s (bold type face). Note 8: Slew rate 18 measured with the op amp In a voltage followw configuration. For rising slew rete, the Input voilsge Is driven from 5V to 25V, and the output voltage tranl!illon Is sampled at lfN and 0 2OV. For failing slaw rete, the Input voltage is driven from 25V to 5V, and the output voltage transition Is sampled 8I2OV and lOY. Note 10: YR Is the Cathode-fo.faadback voltaga, nominally 1.244V. Note 11: Average raferenca drift is calculated from the measurement of the reference voltage at 25"C and at the temperatura extremas. The drift, in ppmI"C, is l()8e"'YR/(VRI25"C]·.UJ}, where "'VR is the lowest value subtracted from the highest, YRI25'C] Is the value at 25"C, and "'TJ is the temperatura range. ThIs ~ Is guaraniaad by design and sample testing. Note 12:Hysterasis Is the chengs in VR caused by a change In TJ, altar the raferance has bean "dahyatarized". To dehystariza the reference; that is minimize the hysteresis to the typical value. its junction tamparatura should be cycled in the following pattern, spIreIing in toward 25"C: 25"C, 85"C, -4O'C, 7O'C, O'C, 25"C. Note 13: Low contact rasisIance Is required for accurate measuramant Note 14: A milltsry RETS 613AMX eIactrIcal _ spacification is available on raquast. The MUItsry scraanad parts can aleo be procured as a Standard MIIiIsry Drawing. 1-320 Simplified Schematic Diagrams OpAmp TlfHf9226-2 Comparator ~------------------~~-----------------t~V+ OUT TUHf9226-3 Reference Bias TLfHf9226-4 1-321 ~ .- CD ~ r---------------------------------------------------------------------------------, Typical Performance Characteristics (Reference) TJ = 25°C, FEEDBACK pin shorted to v- = OV, unless otherwise noted Reference Voltage.vs Temp. .... VI--' -~ r-- ..... l.,.- i-": 1.224 i""'o 1- .... .... r-. r--. ..... a.: JI-G.04 -o.os -0.10 1.23 -60-.40-20 0 20 40 60 ,60 100120140 ~ ~ o --- .1.220 S 1.218 m1.216 I I I -o.os 1.214 2lIO 500 750 lOOO12l10150017502IIlO o TIlE (Houra) JUNCTION TEMPERATURE (e) vro=vr 200 300 400 500 Reference Voltage vs Reference Current 10~0-~-0~~---'---'---' 10r---r-~r-~--~ 100 1I11E BIASED AT 15O"C (hll) Reference Voltage vs Current and Temperature Reference Voltage vs ' Current and Temperature --.. ~ 1.222 - & om r--. ...... =.woe . TJ gOJM I--' Accelerated Reference Voltage Drift vs nme Refere"ce Voltage Drift 0.10 0.06 0.06 1.26 I I Vro=V, 125~ I - ' - 1--55"C 25"C l250C ~ -5 .......__'-----J'-----J'-----J 0Jl02 om 0.2 2 20 1 0.02 REFERENCE CURRENT (mA) 100 I I' 1-- 25"C 1-- Ii I I ON1~ E ~~ 12r"C 1.211 4.8811 -1 -10 -0.1 :tO.ool 0.1 ~ lj ~ l;i l-'i ml~ 0.001 12~5"C -r c -40 I ~0123456 b ~ W 20 M 40 10 100 10000 ~ ANODE - TO - FEEDI!ACK VOlTAGE (V) 1 1! I -1'01234561020 M 40 ANOOE-TO-FE£Dl!ACK VOLTAGE (V) Reference Noise Voltage vs Frequency m 1~11 0.1 b -r REFERENCE SHUNT CURRENT (mA) -55"C 25"C 0.01 1~11 125 [j"C -«l 10 10 -55"C 25"C I 3-36V 11)"11 f 1"C I~ 111)"10 FEEDBACK Current vs FEEDBAC~-to·Anode Voltage 1 I 0.1 - 1 => 0.01 REFERENCE CURRENT (mA) 20 20 1.2:S .. :S 6.3V ~o.oo1 c5 -0.1 :to.ool,' 0.1 FEEDBACK Current vs FEEDBACK·to·Anode Voltage 1-5S:S~:S125"C 10 -10" REFEREMCE CURRan (mA) Reference AC Stability Range 7 -15"C 20 2 REFERENCE CURRENT (mA) Reference Voltage vs Reference Current 1-- 0.2 ~- -55"C Reference Small·Slgnal Resistance vs Frequency 10000 ~ =6.3V ~= 100 t 1M° mA 1000 ~ I'I=IWIO I "'~lIl J111111 100 1 10 111111111100 1000 FREQUENCY (Hz) 10000 10 100 1000 FREQUENCY (kHz) TlIH/9226-5 1-322 Typical Performance Characteristics (Reference) (Continued) TJ = 2SoC, FEEDBACK pin shorted to Y- = OY, unless otherwise noted Reference Voltage with 100 - 12 p.A Current Step Reference Voltage with FEEDBACK Voltage Step Reference Power-Up Time -ro-_ ~ 2 VOlTAG£ 5.D8V ov 6i~ 105 , / / 2 2110 100 ;!OIl 1 0 o @ 2.0 i liI -2 >~ -3 -5 o Reference Change va Common-Mode Voltage 1l.c .125"C ?~'" -55"1: ',STEPII hoo;" 1'llomA II I II I ... I ~ r- f-- ~ I ~ 25"C.-:/' -1.0 25"i:' ~= -5'YOf 1001 125"C *v._I -10 I V"=GND -15 o V+ -~ ! . 125"C' 1- 100 200 ;!OIl <100 1500 &00 700 (V"-2) (V"-1) 10 -~ ~ ry; imo It:: ..", R,,=AV.. A~=O.2S -.4 100 200 ;!OIl <100 500 &00 700 liME (! on on I /V ~ ~ I-" v- 10 20 30 <10 50 60 70 INPUT VOLTAGE REFERRED TO y- (V) OUTPUT VOlTAGE (V) TLIH/9226-11 TLIH/9226-10 1-325 --~ ~ r-----~------~~----~~--------~~ !:j '. !i! ~ 5 .1 '-0 > --~~-------------- __ --~~~ __ ~-- . fl " " -55OC 2 I J +25OC () .* '~K-' +~5OCI VII +1~5~ . ! - Vo + 2 1 ~ . i"""oo 0 .* ~ :. o o.s 3 I !VO + 'r] 1 "" ' 0 -5mV +5mV ~ 0 -5mV o o.s 1 1.5 2 2.5 3 3.5 " nme (ps) ~; " 1 1.5 2 2.5 3 3.5 " nme (pa) TL/H/9226-13 TLlH19226-12 Comparator Response Tlmo-Non-Inv.rtlng Input, Positive Transition 5 '- 'I , II . -ssocj f I} II I +125OC 0 /" V~ I 5V Comparator . . Respon...Tlm....-Non-lnv.rtlng Input,·Negltlye TransHion ' ~ I Pf 5.IK + - !VO ~ I I \ VII~K - 3 Vo " +25"C -55OC ! +125"<: 1 ...... 0 ,!> '. F~ +5mV 0 -5mV .. o.s 5V \ " 2 g +25OC F~ ·0 5 ~. !:l !i! ~~ +5mV ~ 0 -5mV ~= "i"'~ 1 1.5 2 2.5 3 3.5 " o o.s 1 1.5 2 2.5 3 3.5 " 'nme (pa) nme CPs)· " TLlH/9226-14 TLlH/9226-15 Comparator ResPor1se Tlme&-lnvertlng Input, Positive TransHion ~ ... ~. ;I,!l. !:l !i! S· § 1 15V , , 5 +25OC 0 -10 -15V 5V ~ 0 -5V -55OC JI J. I( , ~15V ') .125oC ..11 Vo + 1~ ~ f1ir l 10 ~ Comparator. , . R.sponse Tlm.....-.lnvertlng Input, N.uatlv. Transition '+IIJ VI~K 15 -S ~__, I . ~55Oc" .5'1 I 11 " I II V~~K I} r- -I +125OC" 3 " " - ' ',', ;'" f1T !~4 +5mV ~ __ Comparator' R.sponse Tlm.&-Inv.rtlng Input, PosHive Transition £5 .~ __ ~ 10. ~ 5. :> 1\ \ ... ' !_ . J ~ 0 1 -S ,!> -10 -15V 5V ~ 0 '.I) -5V o ~~MMlnI21Al£IB +25OC ,~. II - -15V' ,,~ Vo ! -55"C .~ ~+125OC 1 ,\ o ~~MMlnI21Al£IB nme (ps) nme (ps) TLlH/9226-16 TLlH/9226-17 1-326 Typical Performance Characteristics (Comparators) (Continued) Comparator Response Tlmes-Non-Invertlng Input, Positive Transition ~ IS '" 10 ... ;:! -I J I ~ Y~~f~ S _ g ....:::> I 15Y - 0 0 +12SOC/J -S 0 > -10 -15V SV 0 -SV V, ;;;-- rr f ~ IS '" 10 ... h I 'I I Vo -15V I!: :::> ~ Comparator Response Times-Non-Invertlng Input, Negative Transition ;:! -I g .... :::> I!: :::> 'I -ssOC 0 +25"C ¥j9K.. S _I -15Y 0 0 ~ Vo +12S"C -s > -10 -S5"C ) -15V +2S"C J SV 0 > -SV z ,;- I I 15Y iE o o ~ OA M ~MMM1D121Al~lB TIme (ps) OB lD 12 U 1~ lB TIme (ps) TLlH/9226-19 TL/H/9226-18 Typical Performance Distributions Average Vos Drift Industrial Temperature Range Average Vos Drift Military Temperature Range 40r-----------------~ 30 10 o Vas ORin (pv/e) Vas ORin (pV/C) TLlH/9226-20 TLlH/9226-21 Average Vos Drift Commercial Temperature Range Average los Drift Military Temperature Range 1 Vas ORin (pv/e) 36 42 las ORin (pA/C) TL/H/9226-22 TL/H/9226-23 1-327 ... ~ ~--------------------------------------------------------------------------------, ~ Typical Performance Distributions (Continued) Op Amp Voltage Noise Distribution Average los Drift Industrial Temperature Range 20~------~---------, 30 100Hz Amps I, 2, 3, 4 15~----------------~ 20 i ::> 10~----------------~ 10 5~~~~----------~ o o o ~ 81624324048566472808896 VOLTAGE NOISE (nVRWS /'1HZ) los DRIFT (pA/C) TLlH/9226-24 TL/H/9226-27 Op Amp Current Noise Distribution Average los Drift Commercial Temperature Range Amps I, 2, 3, " CURRENT NOISE (fARMS /'1HZ) los DRIFT (pA/C) TLlH/9226-25 TLlH/9226-26 Voltage Reference Broad-Band Noise Distribution Application Information 30~------------------~ VOLTAGE REFERENCE· 10:S f :S10,DOO Hz Reference Biasing The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current Ir flowing in the "forward" direction there is the familiar diode transfer function. Ir flowing in the reverse direction forces the reference voltage to be developed from ·cathode to anode. The cathode may swing from a diode drop below Y- to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7Y. A 6.3Y reference with Y+ = 3Y is allowed. 20+---------~~----~ 10+---------~~----~ 0+,...,...,...,..,...,...,..,...,,......,..,..,.. o4 812162024283236404448 VOLTAGE NOISE (PVRwS> TL/H/9226-26 Anode committed to VTLlH/9226-29 FIGURE 1. Voltage Associated with Reference (current source Ir is external) 1-328 Application Information (Continued) The reference equivalent circuit reveals how V, is held at the constant 1.2V by feedback, and how the FEEDBACK pin passes little current. To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference vOltage. Varying that voltage, and so varying I" has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I,. 15V 100,k cathode TL/H/9226-32 FIGURE 4. Thevenln Equivalent of Reference with SV Output Rl 39k .I---... Anode=VTl/H/9226-30 3.76V FIGURE 2. Reference Equivalent Circuit ~----' ! 1= 32soA R2 118k Tl/H/9226-33 A1 ~ V,/I ~ 1.24/32" ~ 39k A2 ~ A1 l(VrolVr) - 11 ~ 39k 1(5/1.24) - 1)1 ~ 118k FIGURE S. Resistors Rl and R2 Program Reference Output Voltage to be 5V Understanding that V, is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V, temperature coefficients may be synthesized. TUH/9226-31 FIGURE 3. 1.2V Reference capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical 'curve for capacitance values-from 20 ,...A to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering. 15V Adjustable Reference The FEEDBACK pin allows the reference output voltage, Vro, to vary from 1.24V to 6.3V. The reference attempts to hold V, at 1.24V. If V, is above 1.24V, the reference will conduct current from Cathode to Anode; FEEDBACK cur· rent always remains low. If FEEDBACK is connected to Anode, then V,o = V, = 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76V for V,o = 5V. Connecting a resistor across the constaint V, generates a current 1= R1IV, flowing from cathode into FEEDBACK node. A Thevenin equivalent 3.76V is gen· erated from FEEDBACK to Anode with R2=3.76/1. Keep I greater than one thousand times larger than FEEDBACK bias current for <0.1% error-I~32 p.A for the military grade over the military temperature range (I ~ 5.5 ,...A for a 1% untrimmed error for a commercial part). TL/H/9226-34 FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) If R2 has Negative TC 15V 10k TUH/9226-35 FIGURE 7. Output Voltage has Positive TC if Rl has Negative TC 1-329 ~ ..... u:I ::s r--------------------------------------------------------------------------, Application Information (Continued) Referance Hysteresis The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary,...., always check the data sheet for any given device. Do not assume that no specificatiori means no hysteresis. OPERATIONAL AMPLIFIERS AND COMPARATORS Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, except when a substrate diode conducts (see Electrical Characteristics Note 1). For example, one amp input may be outside the common-mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying inverting input to output and noncinverting input to Y- on unused amps is preferred. Unused comparators should have non-inverting input and output tied to Y +, and inverting input tied to Y-. Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided. TL/H/9226-36 FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT) Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized. Op Amp Output Stage These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capaCitive drivs capability: 1) Outp~t Swing: Unloaded, the 42 pA pull-down will bring the output within 300 mY of Y- over the military temperature range. If more than 42 p.A is required, a resistor from output to Y- will help. Swing across any load may be improved slightly if the load can be tied to Y + , at the cost of poorer sinking open-loop voltage gain. 2) Cross-Over Distortion: The LM613 has lower cross-over distortion (a 1 YBe deadband versus 3 YBe for the LM124), and Increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion. 3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the current limit 250. 200 pF may then be driven without oscillation. v TL/H/9226-37 I = Vr/R1 = 1.24/R1 FIGURE 9. Current Source Is Programmed by R1 Comparator Output Stage The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the output voltage will be this external'positive voltage. For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor. The offset voltage may Increase when the output voltage Is low and the output current is less than 30 pA. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than 30 pA. TLlH/9226-3B FIGURE 10. Proportlonal-to-Absolute-Temperatura Current Source Op Amp and Comparator Input Stage The lateral PNP input transistors, unlike those of most op amps, have BYeBO equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages. TL/H/9226-39 FIGURE 11. Negative-TC Current Source 1-330 I.... Typical Applications W +Vo----------.--~~--------_, TL/H/9226-40 FIGURE 12. High Current, High Voltage Switch +VO---t_-------1~t_------._----------------, 50011 0.1 P£:[ 50011 '--~_O-Y TL/H/9226-41 FIGURE 13. High Speed Level Shifter. Response time ia approximately 1.5 p.1, where output la either approximately + V or - V. YIN 0---t_-1""'""------.....--------......, BV ....----------WIr-4--o VOUT 10k 5.0V 50mA 4.7 pF TL/H/9226-42 FIGURE 14. Low Voltage Regulator. Dropout voltage la approximately O.2V. YIN 0--,t_-1""'""--------------., 12V 10k 10.000V 33211 LIof613 REF '10k must be low TL/H/9226-43 I.e. trimpot FIGURE 15. Ultra Low Noiae, 10.00V Reference. Total output noise la typically 14 P.VRMS. 1-331 II ~ i..... ,-----------------------------------------------------------------------------, Typical Applications (Continued) +vo------, >+----0 Your Strobe : TLlH/9226-44 TLlH/9226-45 FIGURE 17. Basic Comparator with External Strobe FIGURE 16. Basic Comparator 1 5 V o - - - - -....- - - - - - , +V 7.5k TTL output 4.7k lk TLlH/9226-47 Tl/H/9226-46 FIGURE 18. Wide-Input Range Comparator with TTL Output, FIGURE 19. Comparator with Hysterasls(aYH = +Y(1k/1M» 1·332 tJ1 National Semiconductor LM614 Quad Operational Amplifier and Adjustable Reference General Description Features The LM614 consists of four op-amps and a programmable voltage reference in a 16-pin package. The op-amp out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems. OpAmp 300/LA • Low operating current 4V to 36V • Wide supply voltage range V- to (V+ - 1.8V) • Wide common-mode range ±36V • Wide differential input voltage • Available in plastic package rated for Military Temperature Range Operation Combining a stable voltage reference with four wide output swing op-amps makes the LM614 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap deSign that maintains low dynamic output impedance (1 n typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems. As a member of National's new Super-BlockTM family, the LM614 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance. Reference • Adjustable output voltage • TIght initial tolerance available • Wide operating current range • Tolerant of load capaCitance 1.2V to 6.3V ±0.6% 17 /LA to 20 mA Applications • • • • Transducer bridge driver and signal processing Process and mass flow control systems Power supply voltage monitor Buffered voltage references for A/D's Connection Diagram ..!. 1 1 v+~ ~ .! 1 FEEDBACK 8 !! j£j.~~ !! !! ~~ 13 v_ g .!l !!!. !.CAlHODE TL/H/9326-1 Ordering Information Reference Tolerance" Vos ±0.6%@ 80 ppml"C max Vos S; 3.5 mV max ±2.0%@ 150 ppm/'C max Vos S; 5.0mV Temperature Range NSC Military -S5"C S; TA S; + 125"C Industrial - 40"C S; TA S; + 8SoC Commercial O"C S; TA S; + 70"C Package LM614AMN LM614AIN - 16-pin Molded DIP N16E LM614AMJ/883 (Note 13) - - 16-pin Ceramic DIP J16A LM614MN LM614BIN LM614CN 16-pin Molded DIP N16E - LM614WM LM614CWM 16-pinWide Surface Mount M16B 1-333 Drawing Absolute Maximum Ratings If Military/Aerospace specified devices are required, plesse contact the National Semiconductor Sales Office/Distributors for availability and specifications. Voltage on Any Pins except VR (referred to V- pin) (Note 2) (Note 3) 150"C 100"C 150"C Soldering Information (Soldering, 10 seconds) N Package WMPackage 260"C 220"C ESD Tolerance (Note 5) ±1kV 36V(Max) -0.3V(Min) ±20mA Current through Any Input Pin & VR Pin Differential Input Voltage Military and Industrial Commercial Storage Temperature Range Maximum Junction Temperature Thermal Resistance, Junction-to-Ambient (Note 4) N Package WMPackage Operating Temperature Range ±36V ±32V ,-65°C S; TJ LM614AI, LM6141, LM614BI LM614AM, LM614M LM614C + 150"C S; Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT GND, unless otherwise specified. Limits in standard typeface are for TJ Operating Temperatura Range. Symbol Is Vs Parameter Total Supply Current Conditions RLOAD =00, 4V S; V+ S; 36V (32Vfor LM614C) Supply Voltage Range -40°C S; TJ S; +85°C -55°C S; TJ S; + 125°C ,O"C S; TJ S; +70"C = 2.5V, IR = 100 ,..A, FEEDBACK pin shorted to = 25°C; limits in boldface type apply over the Typical (Note 6) LM614AM LM614AI Limits (Note 7) LM614M LM614BI LM6141 LM614C Limits (Note 7) Unlta 450 940 1000 550 1000 1070 ,..A max ,..Amax 2.2 2.8 3 2.8 ,3 V min V min V max V max 2 .• 46 36 32 43 38 32 OPERATIONAL AMPLIFIER VOS1 V0S2 Vas Over Supply VOsOverVCM VOS3 aT Average Vas Drift Ie Input Bias Current los 4V S; V+ S; 36V (4V S; V+ S; 32V for LM614C) 1.5 3.5 5.0 2.0 8.0 7.0 VCM = OV through VCM = (V+ - 1.8V), V+ = 30V 1.0 3.5 5.0 1.5 8.0 7.0 (Note 7) 10Sl aT Average Offset Drift Current RIN Input Resistance mVmax mVmax ,..vrc max 15 Input Offset Current mVmax mVmax 10 25 35 11 30 40 0.2 4 4 0.3 5 5 4 nAmax nAmax nAmax nAmax pArc Differential 1800 MO Common-Mode 3800 MO CIN Input CapaCitance Common-Mode Input 5.7 pF en Voltage Noise = 100 Hz, Input Referred .f = 100 Hz, Input Referred V+ = 30V,OV S; VCM S; (V+ - 1.8V), CMRR = 20 log (aVCM/aVas) 4V S; V+ S; 30V, VCM = V+ 12, PSRR = 20 log (aV+1aVos) RL = 10 kO to GND, V+ = 30V, 74 nVl.JHz In Current Noise CMRR Common-Mode Rejection Ratio PSRR Av Power Supply Rejection Ratio Open Loop Voltage Gain f 5V S; VOUT S; 25V 1-334 fAl.JHz 58 95 80 75 80 75 70 dB min dB min 75 7.0 dB min dB min VlmV min 110 80 100 75 500 100 94 50 40 40 r- Electrical Characteristics , , (Continued) These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = ,2.5V, IR = 100 /l-A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25"C; limits In boldface type apply over the Operating Temperature Range. LM614AM LM614AI Symbol Parameter Conditione SR Slew Rate V + = 30V (Note 8) GBW Gain Bandwidth CL=50pF Typical (Note 6) (Note 8) ±0.70 ±0.85 ±0.55 ±0.45 LIInlte LM614M LM614BI LM6141 LM614C Umlta (Note 8) Unite ±0.50 ±0.45 V//l-S 0.8 0.52 ; MHz ,MHz V01 Output Voltage , Swing High RL = 10kOtoGND V+ = 36V (32Vfor LM614C) V+ - 1.4 y+ - US ,V+ -1.7 Y+ - 1;. V+ -1.8 Y+ -1 •• 'v min V02 Output Voltage SWing Low RL ='10kOtoV+ V+ = 36V (32V for LM614C) VY'- + 0.8 + 0 •• V:- + 0.9 Y- + 1.0 V- + 0.95, Y- + 1.0 V max V'max lOUT Output Source VOUT = 2.5V, V + IN = OV, V-IN = -0.3V 25 15 20 13 16 13 mAinli. mAmin ISINK Output Sink Current VOUT = 1.6V, V+IN = OV, V-IN = 0.3V 17 14 8 13 8 'mAlnin mAmin ISHORT Short Circuit Current VOUT = OV, V +IN = 3V, V-IN = 2V,Source 30 40 50 eo 50 eo mAmax mAmax 30 32 60 80 70 .0 mAmax mAmax • - VOUT = 5V, V +IN = 2V, V-IN = 3V,Sink ,'. V min VOLTAGE REFERENCE VR Voltage Reference (Note 9) 1.244 1.2365 1.2515 " (±0.60/0) 1.2191 1.2689 (±2.00/0) V min V max' .1VR aT Average Temperature Drift (Note 10) 10 80 1S0 PPM/DC max .1VR Hysteresis (Note 11) VRChange with Current VR(100 pA) - VR(17 pA) 3.2 .1TJ .1VR aiR VR(10mA) - VR(100"A) (Note 12) R Resistance .. /l-vrc 0.05 0.1 1 1.1 1 1.1 mVmax mVmax 1.5 2.0 5 5.5 5 5.5 mVmax mVmax 0.5e ''13 0.5e 13 o max o max .1VR(10-+0.1 mA)/9.9mA .1VR(100 -+ 17 pA)/83 JJ-A 0.2 o.e 2.5 2.8 7 10 7 10 mVmax mVmax 1.2 1.3 mVmax mVmax 't" .1VR b.VRO VRChange with High VRO VR(Vro = Vr) - VR(Vro = 6.3vi (5.06V between Anode and FEEDBACK) .1VR b.V+ VR Change with V+ Change VR(V + = 5V) - VR(V + = 36V) (V+ = 32VforLM614C) 0.1 ,0.1 1.2 1,.3 VR(V, + ,= 5V) - VR(V '+ = 3V) 0.Q1 0.01 1 1 US ·1.5 mVmax mVmax 22 2. 35 40 , 50 SS nAmax nAmax s: VFB s: 5.06V IFS FEEDBACK Bias Current VANODE en Voltage Noise BW= 10 Hz to 10'kHz. VRO = VR 1-335 30 P.VRMS Ii ....... •.... r-----------------------------------------------------------------------------, Electrical Characteristics (Continued) rating. to ~ ' Nottr 1: Absolute maximum indicate limits beyond which darn8ge the component may oCcur. Electilcal specifications do not apply. whsn operating the diMce beyond its'raIe!I operating COIIdIti~~. Note 2: Input voltage above V+ I. allowed. Note 3: More accurately, tt is excessive current 1Iow, with resulting excess heating, that limits the voltages on all pins. When any pin is puDed a diode drop below V-, a P8I'8fiItic iIIPN tranlllstor tums ON. No latch-up will occur as long as the current through that pin remains beloW the Maximum Rating. Operation i. undefined and unpredictable when any parasitic; diode ,or transistor is conducting. Note 4: Ju~ction temperature may be calpulated using TJ - TA + P09JA. The given thermal ._nos i. worst-case for packages in sockets in still air. For p&Ckages soIder8d to c;oppe.-cted bo8nd With dlsslpation from one comparetor or .eferenoe output transistor, nominal 9JA are '9fJ'CIW for the N packag8, WM packags. ' ' ' Note 5: Human body model, 100 pF discharged through a 1.5 kG reslstor. Note 8: Typical values In 'standard typeface are lor TJ = 25"0, values In lIoIcIfa• tha most likely parametric norm. .,... apply for the lull operating temperature range. These values repreesnt . Note 7: All limits are guaranteed at room temperature (standard type lace) or at operating temperature extremes <_ .,... face). Note 8: Slew rate is measured with oii amp In a voltage foIlowe. configuration. For ~slng slew rate, the input vollage is driven lrom 5V to 25V, and the output voltage _ o n is sampled at '1 OV and fl2OV. For lalOng slew rate, the Input vollage Is driven from 25V to 5V, and the output voltage transltion Is sampled at 20V and 10V. Note 9: VR,is the Cathode-feedback voltage, nominally 1.244V. Note 111: Average reierenos drift is calculated from the measurerbsnt 01 the reference.VoIIage at 25"C and at the temperature extremes. The drift, in ppmrc, is 1080AVR/(VRI25"CI oATJl, where AVR is the lowest value subtracted from the highest, VRI25'Clis the value at 25"C, and ATJ is the temperature range. This parameter is gueranteed by deslgn and sample _ng. Note 11: HystaresIBIs the change In VR caused by a chailge in TJ, alter the reIerenoe has been "dehysterized". To dehysterlze the reference; that Is mlnlmize,the ~ to the typical value. cycle its junction tempe",ture in the following patl8m, spiraling in toward 25"C: 25"C, 85"C, -4O'C, 7O'C, fJ'C, 25"C. Note 12: low contact resistance is required for accurate measurement. Note 13: A military RETSLM614AMX electrfcal testspaciflcallon Is available on request. The lM614AMJ/88a can also be procured as a Stendard Military DraWIng. Simplified Schematic Diagrams OpAmp v+ OUT vTLlH/932S-2 Reference Bias TLlH/932S-3 1-336 Typical Performance Characteristics (Reference) TJ = 25"C, FEEDBACK pin shorted to V- = OV, unless otherwise noted Reference'Voltage va Temperature on 5 Repre8entatlve Unlta 1.2S V~ - -- - V ...... t::=~ -r-. r-. ... , r-.~ ...... ...... ...... 1.25 -eD-«I-2O 0 20 40 60 80 100120140 Accelerated Reference Voltage Drift V8 Time Reference Voltage Drift 0.10 0IIII I 1J 0IIII gD.D4 ~ = 4O'C J!~ ~ ~ - 1.2Z0 B 1.218 ~ I I I o _ 6 ~RESOOA11VE UN"' I POINT AI'F£CIED BY H'/S'IERDIS HISIORY ~ 1.222 - D.II2 &-o.oz CIllO -D.OII -D.OII -0.10 1.224 1.214 o 100 1IIIE (Houn) Reference Voltage V8 Current and Temperature - 1.216 250 500 7l!O 1000 1250 1500 17l!O 2IXJO JUNCIlON lDIPERATURE (e) P 200 300 400 500 TIlE BIASED AT 15O"C (h..) Reference Voltage V8 Reference Current Reference Voltage V8 Current and Templ!lrature 5 10 I I Vro=Vr 125"Cj - I - 1--55"C 25"C 125"C ....t="' IJ ~- -55"C I -10-2 -10-4 *10""1 10-4 Reference Voltage vs Reference Current -,~ ONIOOV '-l- f I E IIr -10-2 _11)"4 t 10-' IOOV I -40 ANODE - TO - FEEDIIAa( 25"C -i5~ " I I b .. 40 ANODE - TO- FEEDIIAa( VOI.TAGE (VI Reference Noise Voltage V8 Frequency Reference Small-5lgnal Resistance vs Frequency 10000 I I b o,ll:;!m1m ' -101234561020 l00v 1 -10123451102030 '/1 I I I~ -40 '-55"C 25'1: I ;~ I m~ REFERENCE CURRENT (A) 20 I 10-2 FEEDBACK Current vs FEEDBACK-to-Anode Voltage 20 3-W 4.88Y I s'J. S 125'1: us .. suv '-55 -i Ir~ 1.211 I~'- FEEDBACK Current V8 FEEDBACK·ta-Anode Voltage Reference AC Stability Range 10-4 o 10-2 REFERENCE CURRENT (A) R£FERENCE CURRENT (A) 1-1- --~ ' I 25"C f-+- ~ 30 40 VOI.TAGE (VI 10 100 1000 FREQUENCY (Hz) 1·337 10000 FREQUENCY (Hz) TL/H/9326-4 .- .-----------------------------------------------------------------------------, ~ Typical Performance Characteristics (Reference) (ContinuEia) ¥', ' TJ = 25°C, FEEDBACK pin shorted to v- = OV, unless otherwise noted Reference Voltege with FEEDBACK Voltage Step Reference "ower-Up TIme ~ - 2 -All ~,YOLTAf1E ", J~ S.IIIY IN ,.. , I - _A I 5 11 , 4 3 2, Reference Voltage wIth 100- 12, p.A Current Step 1 1 - hb ~9. .... - rz; I 0 100:100 300 <100 500 eoo I o 7110 Reference Step Response for 100 p.A - 10 mA Current Step I i b I !II -2 >! -3 """ 125"C "SID' IIOOMA lP'mA o ~~ ?l25"C 1!.~=G.23' -5 Reference Voltege Change with Supply Voltage Step 2.0 ~ i'iiP iR,=l!.v -4 -(PO) IJ 1\ J 100:100 300 400 500 eoo ~ 100:100 300 400 500 100 7110 lIIIE (PO) 3 " I _\ v.. o .r ~r ~ -zace-:1 '- 12"t/ -1.0 7110 o 2 111[ (PO) - 3 lIIE(. .) TLlH/9326-8 Typical P.rformance Characterlstics(Op Amps) v+ 5V, v- = =' GND = av, VCM = V+ 12, VOUT = V+ /2, TJ = 25"C, unless otherwise noted input Commo~Mode Voltage Range va V' Temperature , 4 Vosva Junction Temperetllre on 9 , RepresentatIve Unite 20 OUTPUT GOE3 LOW SV'-0.5 ~ ,~ _... V'- I ~' r- :!lV'-I.5 i , ; ~ , SV- -0.5 V-~ I NOIIIIAL OPEIATINCRANGE -I ..w.."1 -:/.. ... opTPrTM LOW .. ~ ~ ,~ 0.8 6 I FA ", 0.5 Ii... -oy IS U WOQT,~i: 0.2 .~ ..fL., o. i tiOOmY 0.3 o '10 ~6.-4O-20 - I 1\\ . ~ ~ I!: I 0 20 40 80 1\0.100120140 JUNCTION, TEMPERATURE (e) ~ • "I. -15 r£r a , i~ ~ V-+2 i\\ .,' 20 V'- I ~ V'-2 -55~ 10 Output Voltage SwIng ,V' va Temp. and Current ~ fj F-F:~~~ .. -2 3 -4 -5 -8 , 0 m , nUE (pI) 40 fo-- !' I.~ LOAD! \ r- - II). LOAD 5}if, IL. . .. V-+ I ," 30 I e INPUT VOLTAGE ('I) ,FOLLOWER , , e -20 -I 0 I 2 3 4 5 10 20 40 60 60 /=~~:: / / '/ 3 ~, -~ ~o~ +, ill 5 1250 ,t::r:t rI 0 large-Signal Step Response 5 ~:--' 1 -5 ~ 1"'-55 JUNCTION TEMPERATUR£ (e) ....!. ' ... I -4 -80-40-20. 20 40 60 80 100120140 Slew Rate Va Temperature and Output SInk Current RlSlI!G,""; 125jy 10 :! ~ '~i" , JUNCTIoN TEMPERATuRE (e) 0.7 15 1 '1 ~ ..... ~ ~p I,.;~ ~F"" -3 -60-40-20 0 20 40 60 60 100120140 0" r--r-- ,f..,. Input BIas Current va Common-Mode Voltage 50 v" -60-40-20,0 20 40 10 10, 100l~I4O ~YNel1ON TEMPElATUR£ (e) TLlH/9326-S 1-338 Typical Performance Characteristics (Op Amps) (COntinued) V+ = 5V, V- = GND = OV, VCM = V+ /2, VOUT = V+ /2, TJ = 25°C, unless otherwise noted Output Source Current vs Output Voltage and Temp, 20 50 2.8:S V" :S 36V 10 NEGATIVE INPUT=V" 40 5 § A V• .,=V".IV 1 I Output Sink Current vs Output Voltage and Temp. ,I. r-- -ll"C i -10 -20 1 I 25"C I. -~ nl -50 III -5 "C ~ i J I s: I _ "p 1/ 103 J~ .,- 80 i( 80 I V"=I5V V"=ISV ~~ 125"C ft, 60 -80 -80 10', 101 ~ ~ II o -80 -80 10 ~ \ i!I E 60 1,20 100 80 60 103 10 --SSC V+=15V V-=-15V p~ ~25C- I125C " " """"- ""- 180 "- lib.. 90 ~ -90 ~ ~ ~ ~~YO FREQUENCY (Hz) Small"slgnal Voltage Gain vs Frequency and Load 120 100 == lD"80 ~ 80 ~ 4 V+=ISV V-=-ISV 5011f ' I'-I00pF,ZkA to V" 1 80 '-100",.ZkA to 'I' ~ " I'- ~ ~~ " 90 0 10' FREQUENCY (Hz) 101 Follower Small-51gnal Frequency Reaponse Common-Mode Input Ratio "., i55C~ lD" ~ . t: :E ~ 0 V+=15V V-=-15V I 120 '--Me nlludt -4S~ p-~ ~ I!l -2 E 125C/ 25V -4 C1oed= 10pF -6 V+=15Y .Al -SSC ,, .. ..go! -IM~ V-=15V -6 Follower 20 50 l' 100 200 ~80 500 1000 2000 FREQUENCY (kHz) 101 140 Voltage Rejection 125C ~J.25C -90~ -180 -80 102 102 FREQUENCY (Hz) 10' 140 lrP ~~F~-~- -180 102 FREQUENCY (Hz) 10-2 li"'j o 40 2: -40 -60 lao 100pF, 2kA TO V" 20 1. -20 V"=15V FOLLOWER Op Amp Current Noise vs Frequency 100 60 i~ I Jdv I I I 4 l IV.,-;- J !. pF, 2kA TO~2kA TO ~pF, TII/£ (PI) Op Amp Voltage Noise VB Frequency " ;;:-ill !.L 1~ 1000 101 r- J55~ 'rl~ FREQUENCY (Hz) lrP Small-Slgnal Pulse Response vs Load ~ 50t,-A L I I II, 105 FREQUENCY (Hz) Small-Slgnal Pulae Response vs Temp. Ay-l 10' 10' V"' V" OUlPllT VOLTAGE: (V) ./ 10 ~ 2829~3132 -10123 '/ Ay=~ 102 Ay= 100 10 J / 10-2101 i!l~~~ .J 80 / J.-"'"' '- I- , 15 V" = 30V 102 10 -55"C 25"C 11~ -55"C -10 V"=15V V"=-I5V 1 , ~ r20 rZ5 A~r- 10 Output Impedance vs Frequency and Gain 103 ~ .i. ~=3OV +25"C 20 -101-3-2-101 V" V" SUPPLY REl'EREIICQ) VOUT (V) 10' Output SwIng, Large Signal ~ 100 lD" 80 ~ ~ 80 40 20 1\ '1P 010"2 • r\ YO lrP 102 1\ \ vi 10' 101 FREQUENCY (Hz) TL/H/9326-6 1-339 ...• CD :E ..;.I r-----------------------------------------------------------------------------~ Typical Performance Characteristics (Op Amps) (Col'1tinulkt) v+ = 5V, v- = GND = OV, VCM = V+ 12, VOUT '."1' = V+ 12, TJ = 25°C. unless otherwise noted Power SUpply CUrrent vs Power Supply Voltage 1000 900 800 ~ .3 700 ....z 600 '+125 OC 500 ~ ... 'I """" u '\ 400 300 200 100 ~ 0~ en II .... -25°C ,.f"" i-" r' -55°C ~ ., o o .... ~ ~ jIIIIi I 2 3 4 5 10 20 30 40 50 60 TOTAL SUPPLY VOLTAGE (V) TLlH/9326-7 Positive Power Supply Voltage Rejection Ratio 140 140 120 120 -- 100 ~80 ~ Negative Power Supply Voltage ReJ~lon Ratio 60 ~ , 40 \. ~ ~ ~ Ii en , 0- r\ vi : 20 100 YO I 11)""2 ~ 20 • IV51~F~ -15V -20 -40 102 lcP 60 40 0 -15V o i'... 80 10-2 FREQUENCY (Hz) IcP r'\. r"\.. , r\. YO 1\ 10" 106 "FREQUENCY (Hz) TLlH/9326-21 TUH/9326-22 Input Offset Current va Junction Temperature 1000 I .... r-- o I~ ~ -1000 - ~ ~.,. .", ~~ 6 4 ",. , x ~ is ~ ~ 1,1 ~ 2 0 ::> """" u -2 -4 ~ ID -6 -a -10 6 Representative Units -2000 -60-40-20 0 20 40 60 80100120140 I ) l.-' -12 -60 -40-20 0 20 40 60 80 100120140 JUNCTION TEMPERATURE (OC) JUNCTION TEMPERATURE (OC) TLlH/9326-24 TL/H/9326-38 1-340 r-----------------------------------------------------------------------------, rI.... Typical Performance Distributions ~ Average Vos Drift Military Temperature Range Average Vos Drift Industrial Temperature Range Vo. DRIFT (jlVIC) Vas DRIFT (jlVIC) TUH/9326-28 TL/H/9326-30 Average Vos Drift Commercial Temperature Range Average los Drift Military Temperature Range los DRIFT (pl.jC) Vas DRIFT (jlVIC) TLlH/9326-31 TUH/9326-32 Average los Drift Industrial Temperature Range Average los DrIft Commercial Temperature Range 20~----------------, 15~----------------~ 5~~r-------------; o los DRIFT (pA/c) los DRIFT (pA/C) TLlH/9326-34 TLlH/9326-33 1·341 Typical Performance Distributions (Continued), Voltage Reference Broad-Band Noise Dlstributlo~ ,: ' , 30 Op Amp Voltage Noise Distribution 30 " 10sisl0,OOOHz .,' Op Amp Current , Nol,e DlstJ1butlon 100Hz .2,3, :4 Amps 1, 2, 3, 4 20 20 .. ~ " 10 o o" I ,-- ,,10 " 8121620242832364044'18 VOLTAGE NOISE z~ :::> l~ 0 0 81624324048566472808896 &V~) VOLTAGE NOISE (nVRIIS tv1fz") ' ' TL/H/iI326-35 CU.ENT NOISE (fArlt.ts f\'iIi) ,.; TUH/9326-'S6 TUH/9328-37 Application Information Cathode VOLTAGE REFERENCE Reference Bluing The voltage reference is of ii, shuntr9l;lulator topology that models as a simple zllher diode: Witll eurrent I. flowing in the ·forwar.d~ direction there Is the familiar diode transfer function. Ir flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may Swing from a diode drop below V- to the reference voltage or, to the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V refE!rence with V+ = 3V is allowed. Anode = v,- ", TUH/9326-10 FIGURE 2. Refetenere EqUlvldent Circuit 5Y 10~14$'t3aK ,Vro=Vr'= o " uv ' y- ~ Anode committed to V- TUH/9328-11 TUH/9326-9 FIQURE 3. 1.2V Reference FIGURE 1. Voltages Associated with Reference (Current S,ource Ir Is External) Adjustable Reference The refen~nce eql,liy~!e~t~ir~~it ~~~'~,how V. is held at the consia'nt 1.2V by feedback, iind how the FEEDBACK pin passes little 'current. The FEEDBACK pin alloWS the reference output voltage, V.o, to vary,from 1.24V to,6.3V: The reference attempts to hold V. at 1.24V.lf V. is above 1.24V, the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then Vro = V. = 1.24V. For, high~r voltages FEEDBACK is held at a constant voltage above Anode-say 3.76V for V.o = 5V. Connecting a resistor across the constaint V. generates a current I = R 1IV. flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3~ 76V is generated from FEEDBACK to Anode V#th R,2 = 3.76/1. Keep I To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I., has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alte\'n,ativiliy, an active current source, such as the LM134 series, may generate I•• CapaCitors in parallel with the refJrence are allowed. See the Reference AC Stability Range typi~aI curve for capacitance values-from 20 p.A to 3, rnA,any, capacitor value is stable. With the reference's wide stability range with resistive and capaCitiVeiCiads, a wid6' range of RC filter values will perform noise filtering. ,I 10-342 .:. Application Information (COntinued) greater than one thousand times larger than FEEDBACK bias current for <0.1 % error-I:?: 32 p.A for the military grade over the military temperature range (I:?: 5.5 p.A for a 1% untrimmed error for a commercial part.) 15V 10k 15V lOOk TLlH/9326-15 FIGURE 7. Output Voltage has Positive TC It R1 has Negative TC TL/H/9326-12 FIGURE 4. Thevenln' Equivalent of Reterence with 5V Output Rl 39k ........- ... !'=32!'A 3.76V R2 ~;""-_..J 118k TL/H/9326-16 FIGURE 8. Diode In Series with R1 Causes Voltage across R1 and R2 to be Proportional to Absolute Temperature (PTAT) TL/H/9326-13 R1 = Vr/I = 1.24/32p. = 39k R2 = R1 {(VrolVr) -11 = 39k {(5/1.24) - 1)1 = 118k FIGURE 5. Resistors R1 and R2 Program Reterence Output Voltage to be 5V Understanding that V, is fixed and that voltage sources, resistorS, and capacitors may be tied to the FEEDBACK pin, a range of V, temperature coefficients may be synthesized. Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized. TL/H/9326-17 I TL/H/9326-14 = Vr/R1 = 1.24/R1 FIGURE 9. Current Source Is Programmed by R1 FIGURE 6. Output Voltage has Negative Temperature Coefficient {TCI If R2 has Negative TC 1-343 Application Information (Continued) mon-mode range, another amp may be operated as a comparator, another with· all terminals floating with no effect on the others (tying inverting inpu\ to output .and non-inverting input to V- on unused amps is preferred). Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided .. _VL' R ~, . rRl ": ~ -r I v- ~ Op Amp Output Stage These op amps, like their LM124 series, have flexible and relatively wide-swing ou\put stage~. There are simple rules to optimize ou\put s~ng, reduce cross-ever distortion, and optimize capacitive /lrive capability: 1) Output Swing: Unloaded, the 42 IJ-A pull-down will bring the ou\put within 300 mV of V- over the military temperature range. If more than 42 IJ-A is required, a resistor from output to V- win help. Swing across any load may be improved slightly if the load can be tied to V + , at the cost of poorer sinking open-loop voltage gain 0-5V TuHI9326-18 FIGURE 10. Proportlonal-to-Absolute-Temperature Current Source _Vr" R 2) Cross-over Distortion: The LM614 has lower cross-over distortion (a 1 VeE deadband versus 3 VeE for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-ever distortion 3) Capacitive Drive: Limited by the output pole caused by the ou\put resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the current limit 250. 200 pF may then be driven without oscillation. THERMISTOR NTC P Rl '::~ r- I V- ~ 0-5V ~7 TLlHI9326-19 FIGURE 11. Negative-TC Current Source Hysteresis The reference voltage depends; slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis. Op Amp Input Stage • The latera(.··PNP input transistors, unlike most op amps, have BVEeo equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources prodUCing large differential and common-mode voltages. OPERATIONAL AMPLIFIERS Any amp or the reference may be biased in any way with no effect on the other amps or reference, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). One amp input may be outside the com- 1-344 Typical Applications +Y·15V v,. v.." 5-36V +SV ~SOmA. ~pr O.I"'~ 100k SOOk 5Dk ,.k "au 1.2V 1.24V 0,001 "r l.1li114 IIU lillI' 4 REf O.OlpF Rl 27k VOUT TLlH/9326-42 (R, IPs + 1) VREF TLlH/9326-44 R,. R2 should be 1 % metal film PfJ should be low T.C. trim pot FIGURE 12. Simple Low Quiescent Drain Voltage Regulator. Total supply current approximately 320 pA, when VIN = +5V. "'" ~ YOUT S.OY for 3504 Trantducer Bridg. FIGURE 14. Slow Rise Time Upon Power-Up, Adjustable Transducer Bridge Driver. Rise time Is approximately 1 ms. 10k 12V II'~ 10k 7.5k 10.000V 3324 Uk LW614 10k' + 'I'r REr t---------~~~-ovoo. s.ov TL/H/9326-43 50mA '10k must be low I.e. trimpot FIGURE 13. Ultra Low Noise 10.ODV Reference. Total output noise is typically 14I'VRM& TLlH/9326-46 FIGURE 16. Low Drop-Out Voltage Regulator Circuit, drop-outvoltage Is typically 0.2V. 5V -¥"l'r t-------.....---t I:>......w,..,.--t-:--t v"Ef/Z ADCOI04 D7-DO DATA OUT .>....---------1 v,. (+) 3k Sob z.:.: S·I--.....-----t Cod. Voltag. '>......-------------------------------------1 V,.(-) -= ':" 'Full 508.1. Adjust TLlH/9326-45 FIGURE 15. Transducer Data Acquisition System. Set zero code voltage, then adjust 100 gain adjust pot for full scale. 1-345 ~ .~ f}1National Semiconductor LM675~ower Operational Amplifier General Description The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for AC and DC applications. The LM675 is capable of delivering output currents in excess of 3 amps, operatlng at supply voltages of up to 60V. The device overload protection consists of both internal current limiting and thermal shutdown. The amplifier is also'lnternally compensated for gains of 10 or greater. Features • • • • • • 1 mV typical offset voltage Short circuit protection Thermal protection with parole circuit (100% tested) 16V-60V supply range Wide common mode range Internal output protection diodes III 90 dB ripple rejection • Plastic power package To-220 Applications • • • • • • 3A current capability • Avo typicaly 90 dB • 5.5 MHz gain bandwidth product • 8 VI p.s slew rate • Wide power bandwidth 70 kHz High performance power op amp Bridge amplifiers Motor speed controls Servo amplifiers Instrument systems . Typical Applications Connection Diagram Non-Inverting Amplifier TQ-220 Power Package (T) +Vcc 0 1 1 11 ii !:~;. o.I F ...L T ":' VIN _ _ +IN ~1~5 TLlH/6739-1 Front View n LM675.., " 2 ";/3 22k Order Number LM675T See NS Package T05S -Va;-4 'The tab is Internally connected to pin 3 (-Vee> O.l pf -- T 1 _..... 1 - RL 411- 111 To.22~F ":' ":' 20k ~ lk V TL/H/6739-2 1-346 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±30V Supply Voltage Input Voltage O·Cto +70·C Operating Temperature -VEEtoVCC Storage Temperature -65·C to + 150·C Junction Temperature 1500C Power Dissipation (Note 1) 30W 260·C Lead Temperature (Soldering, 10 seconds) ESD rating to be determined. Electrical Characteristics Vs = ± 25V, TA = 25·C unless otherwise specified. Typical Tested Limit Units Supply Current Parameter POUT Conditions 18 50 (max) mA Input Offset Voltage VCM 1 10 (max) mV 0.2 2 (max) /Jo A 50 500 (max) nA 90 70 (min) dB Input Bias Current VCM Input Offset Current VCM Open Loop Gain RL = OW = OV = OV = OV = 000 = PSRR INs ±5V 90 70 (min) dB CMRR Y,N = ±20V 90 70 (min) dB ±21 ±1S(min) Output Voltage Swing RL Offset Voltage Drift Versus Temperature Rs = SO < 100 kO 25 Offset Voltage Drift Versus Output Power 25 Output Power THO Gain Bandwidth Product fa = = 1%, fa = 1 kHz, RL 20 kHz, AVCL = = SO 1000 Max Slew Rate /JoV/W 25 20 W 5.5 MHz 8 V//Jos Input Common Mode Range Nota t: Assumes V /JoV/·C ±22 ±20 (min) V TA equal to 70'C. For operation at higher tab temperatures, the LM675 must be derated based on a maximum junction temperature of 150'C. Typical Applications (Continued) Generating a Spilt Supply From a Single Supply +18¥ -+ +8OV v+ Vs Hk = ±8V ..... ±30V ~ 1k 2211 ,,7 ~ 15k GND 1 f"' , v- 1·347 TUH/6739-3 Typical Performance Characteristics ~ z i ~ 0.1 ~ •i ::; ~ 0.01 S :!! I i ,.~ ;f. ~ m 0.1 H 20 ... ! 58 ./ 100 • 5 I N . i !: z POSmn SUPPLY -1 "" t-I-I- N+rm SUPP\.;" ~ 30 11M IlUERR~ .. i :::> 15 20 H SUPPlY VOI1AllE It VI 20 10 RL = 4n IV... I I 0 20 51 100 200 500 lk Zk 511 10k ZIIII Fll£QUENCY (HzI liN J I ~ ~ 300 I ::> u i ii! TA=25"1: 5' IWHY SINK I r- 5 l°rWI"jSI,K 0 ,... 5 1: I Iii ·v ~ 3 I• i ~ """" s- 30 i 20 .. :!! r- I 100 . ~ 8 50 Z r\ II 1 D \ 5 10 ' 15 20 2S OUTPUT VOIJME (t VI 'Vs = t25V 0 2S RL=BIl ~ 15 ,....L V 10 5 30 20 25 0 30 SUPPLY VOLTAGE (t VI j...oo" i"'" ~RL=4lJ """ 0 0 15 30 35 150 10 5 10 15 20 2S SUPPLY VOlTAGE (t VI Output Voltage Swing vs Supply Voltage ~O"C T.=O"C-- 5 a Current Limit vs Output Voltage" 01020304051 50 TO 80 TA-AMBIENT TEMPElIATURE ('CI , t81NTERFACE = I' C/W. See Application Hints. .... ~ r- r- 200 0 a ,...... I' I'o!. 18 vs Supply Voltage 250 5 30 Z'C/W IS.!'EATSINK I'C/W HEAT SINK 30 15 10 I lis = an ! ." ~ 15 B 10 INFINITE HEAT SINK 40 S5 Z5 20 ! J Ie 40 i 20 Device Dissipation vs Ambient Temperaturet i"'" V 1 10 45 " L ./ 5 a 1.0 10 POWER DuTM (WI L ./ 10 PSRR vs Frequency 100 00 10 TO 10 2S 30 15 IB ., Supply Current vs Supply Voltage 35 = - So! I " Input Common Mode Range vs Supply Voltage THO vs Power Output !:1.0 " 5 19 15 20 2S 30 SUPPlY VOI1AIIE (t VI TL/H/6739-4 ~I' 1-348 W ::r CD Rl 1112 ~: R8 1117 R23 2tIII R21 Rll lk 3D 013 Q1~ t* 02 ~D R18 2117 r-t: 012 014 Q23~ V" 311 "'t" HZ 3k3 -INPUT R3 3k3 04 05), ~ ~ ~15 ~ZI Cl 4 pF Rll ~-~ ~-~ tt; C4 Z3~~ ..... 1Q36 '-I ita7 6k5 a36~ p;: ~ '-t Q7J11'" OI~ 1""01,...t '-II HI t'" 011 '-II 5IIk 84 IIIdI HI 8112 R7 5IIk HI 4.. RUO~ ZOO 841 , 10k ZID JM 038 ..... 4DX ~01' R25 1112 Z12' R15 3k3 :: ,aza '1 Q32 R17 110 '-1 031 12 ~ZI ~, zn' ~ R16 6112 ~ R32 ~~ 017 lk ZO ~I 12 OUTPUT R30 Z13~ '-II 010 R31 tl '32 R36 5DO ..,.03D ~ R12 450 3 ~~ Z8 t'" 025 V" Z2'~ ~d h~ RID 3k5 +INPUT 016l,. D1 034, ~ 40X ~ZT :)T "'021 r-- ~ iii' ea ~ 1 JII'" R2I COk R~L 2SO n' c ~~ Z5 '~Z6 ... 024 ,...t - Vee ~~ Z4 R38 10k R22 3D 022~ ,...t 3 RZG 3 D) 037r ..,.t"'Q33 V" 30 ~ R4D Ik5 a --- 1131 24 V" R38 lk R2I 71 SlDNAL ~ R~ C2 W TLlH/6739-S Sl9W1 Application Hints ,type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These are part of the internal circuitry of the LM675, and needn't be added externally when standard reactive loads are driven. STABILITY The LM675 is designed to be stable when operated at a closed-loop' gain of 10 or greater, but, as with any other high-current amplifier, the LM675 can be made to oscillate under certain conditions. These usually involve printed circuit board layout or output/input coupling. THERMAL PROTECTION When designing a printed circuit board layout, it is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board ground point through separate paths. Otherwise, large currents flOwing along a ground conductor will'generate voltages on the conductor which can effectively act as Signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the 0.1 p.F supply decoupling capacitors as close as possible to the LM675 to reduce the effects of PCB trace resistance and inductance. For the same reason, the ground return paths for these components should be as short as possible. The LM675 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature on the die reaches 170"C, the LM675 shuts down. It starts operating again when the die, temperature drops to about 145°C, but if the temperature again begins to rise, shutdown will occur at only 150"C. Therefore, the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fauit will limit the maximum die temperature to a lower value. This greatly reduces the stresses imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fauit conditions. This circuitry is 100% tested without a heat sink. Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input leads are long. The problem can be eliminated by placing a small capacitor (on the order of 50 pF to 500 pF) across the circuit input. Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached during normal operaton. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor. POWER DISSIPATION AND HEAT SINKING Most power amplifiers do not drive highly capacitive loads well, and the LM675 is no exception. If the output of the LM675 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about 0.1 p.F. The amplifier can typically drive load capacitances up to 2 p.F or so without OScillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 10) should be placed in series with the output of the LM675. A method commonly employed to protect amplifiers from low impedances at high frequencies is, to couple to the load through a 100 resistor in parallel with a 5 p.H inductor. The LM675 should always be operated with a heat sink, even though at idle worst case power dissipation will be only 1.8W (30 rnA x 6OV) which corresponds to a rise in die temperature of 97"C above ambient assuming 6jA = 54°C/W for a T0-220 package. This in itself will not cause the thermal protection circuitry to shutdowntheamplifierwhen operating at roomtemperature,butamereO.9Wofadditionalpowerdissipationwill shuttheamplifierdown since TJ will then increase from 122"C (97"C + 25°C) to 170"C. In order to determine the appropriate heat sink for a given application, the power dissipation of the LM675 in that application must be known. When the load is resistive, the maximum average power that the IC will be required to diSSipate is approximately: CURRENT LIMIT AND SAFE OPERATING AREA (SOA) PROTECTION A power amplifier'S output transistors can be damaged by Vs2 excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the design of the external power supply, while the maximum current passed by the output devices is usually limited by internal circuitry to some fixed value. Short-term power disSipation is usually not limited in monolithic operational power amplifiers, and t/1is can be a problem when driving reactive loads, which may draw large currents while high voltages appear on the output transistors. The LM675 not only limits current to around 4A, but also reduces the value of the limit current when an output transistor, has a high voltage across it. Po (MAX) ::::: 2'IT2RL + Po ,where Vs is the' total power supply voltage across the LM675, RL is the load resistance and Po is the quiescent power dissipation of the amplifier. The above equation is only an approximation which assumes an "ideal" class B output stage and constant power dissipation in all other parts of the circuit. As an example, if the LM675 is operated on a 50V power supply with a resistive load of 80, it can develop up to 19W of internal power dissipation. If the die temperature is to remain below 150"C for ambient temperatures up to 70"C, the total junction-to-ambient thermal resistance must be less than When driving nonlinear, reactive loads such as motors or loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load whose terminal voltage may attempt to swing beyond the power supply voltages applied to the amplifier. This can cause degradation of the output transistors or catastrophic failure of the whole circuit. The standard protection for this 150"C - 70"C = C/W 19W 4.2". Using 6JC = 2"C/W, the sum of the case-to-heat sink interface thermal resistance and the heat-sink-to-ambient 1-350 ~----------------------------------------------------------------Ir Application Hints (Continued) thermal resistance must be less than 2.?!C/W. The case-toheat-sink thermal resistance of the TO-220 package varies' with the mounting method used. A metal-to-metal interface will be about 1·C/W if lubricated, and about 1.?!C/W if dry. If a mica insulator is used, the thermal resistance will be about 1.ftC/W lubricated and 3.4·C/W dry. For this example, we assume a lubricated mica insulator between the LM675 and the heat sink. The heat sink thermal resistance must then be less than sink can be isolated from the chassis so the mica washer is not needed. This will change the required heat sink to a 1.?!C/W unit if the case-to-heat-sink interface is lubricated. The thermal requirements· can become more difficult when an amplifier is driving a reactive load. For a given magnitude of load impedance, a higher degree of reactance will cause a higher level of power dissipation within the amplifier. As a general rule, the power diSSipation of an amplifier driving a 60· reactive load will be roughly that of the same amplifier driving the resistive part of that load. For example, some reactive loads may at some frequency have an impedance with a magnitude of 80 and a phase angle of 60·. The real part of this load will then be 80 x cos 600 or 40, and the amplkier power dissipation will roughly follow the curve of power dissipation with a 40 load. 4.?!C/W - 2·C/W - 1.ftC/W = 0.ft.C/W.' . This is a rather large heat sink and may not be practical in some applications. If a smaller heat sink is required fo~ r!ilasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be restricted ..10 500C (12?!F), resulting in a 1.6·C/W heat sink, or the heat Typical Applications (Continued) Non-Inverting Unity Gain Operation y+ 1 RIC "' 2".500 kHz Rs + R2 R1':-10- ~D.22PF Av(llC) =1 UNITY GAIN BANDWIDTH'" 50 kHz TLlH/S7S9-S . Inverting Unity Gain Operation Hz y+ 1 R1C",~ R2 Rl .: 10 ,*O.22 F P Av(DC) = -1 UNITY GAIN BANDWIDTH" 50 kHz TLlH/6739-7 1-351 ~ ~ r-------------------------~------------~--------------------------------~ ~ Typical Applications (Continued) Servo Motor Control .' Vee 4 1Ic~.-+.., V 1M a•22 • F M 1M ~a.22'F TUH/6739-6 TlIH/8739-9 1-352, tflNational Semiconductor LM709 Operational Amplifier General Description The LM709 series is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain. External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting. The LM709C is the commercial-industrial version of the LM709. It is identical to the LM709 except that it is specified for operation from O"C to + 70"C. Connection Diagrams Metal can Package Dual-In-Llne Package INPUT fREQUENCY COMPENSATION (A) 1 8 INPUT fREQUENCY COMPENSATION (a) INVERTING INPUT 2 7 v+ NON-INVERTING INPUT 3 INPUT FREQUENCY COMPENSATION (Al OUTPUT 5 v- OUTPUT fREQUENCY COMPENSATION TL/H/11477-6 OUTPUT FREQUENCY COMPENSATION Order Number LM709CN-8 See NS Package Number NOSE Tl/H/11477-4 Dual-In-Une Package Order Number LM709AH, LM709H or LM709CH See NS Package Number H08C INPUT fREQUENCY COMPENSATION (A) 3 INPUT FREQUENCY COMPENSATION (a) INPUT v+ INPUT OUTPUT 9 7 OUTPUT fREQUENCY COMPENSATION 8 Tl/H/11477-5 Order Number LM709CN See NS Package Number N14A 1-353 ... ...... Absolute Maximum Ratings (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage LM709/LM709A1LM709C ±1SV Power Dissipation (Note 1) LM709/LM709A 300mW LM709C 250mW Differential Input Voltage ±!;iV LM7Q9/LM709~/LM709C Input Voltage. ±10V LM709/LM709A1LM709C . Output Short-Circuit Duration ,ItTA = + 25°C) LM709/LM709A/LM709C 5 seconds , '. $torag(l Temperature Range;'. '. LM709/LM709A1LM709C Lead Temperature (Soldering, 10 sec.) LM709/LM709A1LM709C - " " -65°Cta + 1500C .. 3000C Operatlng:Ratings (Note 3)· Junction Thmperature'Range (Note 1) - 55°C to + 1500C LM709/LM709A LM709C OOC to + 1000C :rhermal F;lesistance (11JA> H Pa.ckage 1500C/W, (I1JC> 45°C/W S-Pin N Package 134°C/W 1.4-Pin N Package 1090C/W "j Electri.cal Characteristics (N~te 2) Parameter LM709A Conditions Min ~ 10 kO Typ LM709 Max Min Typ LM709C Max Min Typ Units Max Input Offset Voltage TA = 25°C, Rs 0.6 2.0 1.0 5.0 2.0 7.5 mV Input Bias Current TA = 25°C 100 200 200 500 300 1500 nA InputQffset Current TA = 25°C 10 50 50 200 100 500 Input Resistan~ TA = 25°C Output Resistance TA = 25°C 150 Supply Current TA = 25~C, Vs = ±W/ 2.5 Transient Response Risetin'le Overshoot VIN = 20 mV, CL TA = 25°C Slew Rate TA = 25°C Input Offset Voltage Rs'~ , 350 ~ TA TA . TA . TA = = = = 1.S 1.S 2.0 4.S 25°C to TMAX 25°C to TMIN 25°C to TMAX 25°C to TMIN Output Voltage Swing Vs = ±1~V, RL = 10 kO Vs = ±15V, RL = 2kO ±12 ±10 Input Voltage Range Vs = ±15V ±S Common-Mode Rejection Ratio Rs ~ 10kO Rs ~ 10kO TA =TMAX 'TA == TMIN Input Bias Current TA = TMIN Input Resistance TA = TMIN 50 ~50 nA kO 150 0 3.6 2.6 5.5 2.6 6.6 ,mA 1.5: 30 '. 0.3 10 1.0 30 0.3 10 1.0 30 p's 0.25 3.0 Vs= ±15V,Ri:;;,2kO VOUT = ±10V' , Input Offset Current 400 150 0.25 Large Signal Voltage Gain " 150 100 pF 10kO Average Temperature Rs = 500 Coefficient of Input Offset Voltage Rs ".10kO Supply Voltage Rejection Ratio 700 25 SO 85 6.0 10 10 15' 25 70 ±14 ±13 110 10 3.0 6.0 25 45 ±12 ±10 6.0 12 70 % V/p.s 0.25 mV . p'vrc 15 45 VlmV ±14 ±13 ±12 ±10 ±14 ±13 V ±S ±10 ±S ±10 V 70 90 65 90 dB 40 100 25 150 25 200 p.VIV 3.5 40 50 250 20 100 200 500 75 125 400 750 nA 0.3 0.6 0.5 1.5 0.36 2.0 p.A 170 40 100 50 250 kO Note 1: For operating at elevated temperatures, the device must be derated baaed on a 15O"C maximum junction temperatura for LM709/LM709A and 100"C maximum for L709C: For operating at elevated temperatures, the device must be derated baaed on thermal resistance 8JA, TJ(MAX) and TA. Note 2: These specHlcations apply for - 55'C s: TA s: + 125"C for the LM709/LM709A and O'C s: TA s: + 70'C for the LM70ec with the following conditions: ±9V s: Vs s: ±15V, C1 ~ 5000 pF, R1 ~ 1.5 kIl, C2 = 200 pF and R2 ~ 510. Note 3: Absolute Maximum Ratings indicate limits which if exceeded may rasu~ in damage. Operating Ratings are condRions where the device is axpected to be functional but not necessarily within the guaranteed performance limits. For guaranteed specifications and test conditions, see 1ha Electrical Characteristics. 1-354 r- i: ..... Q Schematic Diagram** CD INPUT FREQUENCY CQMPENSATION r-____-1~~I~(A~)----~8~(~B)--~--------~--~----~~~ R6 10k' R7 R15 lk 30k ...----..---.......w,........--'- OUTPUT Q6 R9 10k 5 OUTPUT t---t-----t-- FREQUENCY CQMPENSATION R13 75 TL/H/11477-1 Typical Applications * * Unity Gain Inverting Amplifier FET Operational Amplifier R4 CI 5000 pf 20k ....------Yvl\r---....- OUTPUT CI 2700 pf R3 20k INPUT .....W .......... R2' 51 :~--.....-'V\,."..- OUTPUT R2' 51 BALL-vTUHI11477-3 TL/H/11477-2 Voltage Follower VCM(MAX) Offset Balancing Circuit R3t R5 ~~"'------~i'r---1~- OUTPUT 160k 01 R4 lOOk v-~v+ CI 5000 pf R2' 51 R2' 51 INPUT----i INPUTS C2 200pf 'To be used with any capacitive loading on output >----...."""'IM..- OUTPUT C2 200 pf TUH/11477-7 ··Pin connections shown are for metal can package. TUH/11477-8 tShould be equal to DC source resistance on input. 1-355 • Guaranteed Performance Characteristics 15 s~ T01.:O:T.:O:TO.. 13 MINIMUM 11 ~ ! 111 ~ ~ ~ ... I\. • 10k ....I"" ..-1"'"11 L'" ~ :; S o 10 Voltage 1111 1111 IL LLLL !;! iii Input Common-Mode Range Output Voltage Swing 7 ~I , MINIMUM I I I I II8 2k I 111111 5 9 I\. • 10 11 12 13 14 100Voltage Gain TYIN :S TA:S TMAX ! 9 ~ 7 MINIMUM 5 4 15 9 10 SUPPLY VOLTAGE (tV) 11 12 13 14 15 10 ~ 85 Supply Current (L~70~A~:~~ TA • 25°C ".j.o1" ...,.. 1 1 1 1 1 1 1 MINIIlN (LM709/LM701A) 1 1 u..-r ....r--JI 1 1 80 NNMUM (LM70IC) 75 111111 9 10 11 12 13 14 15 SUPPLY VOLTAGE (tv) SUPPLY VOLTAGE (tV) I ~ i • _MUM (Ul709/LM~ as . ~ ...,.. TYPICAL -M' 1 o 9 10 11 12 13 14 15 SUPPLY VOLTAGE (tV) TL/H/I1477-9 1-356 Typical Performance Characteristics Input Offset Current 200 Vs = tl5V 120 '\ LM709C I'. LM709 1\. 80 I---I-''''Nri'-,... 1,+-+--+--1 ~ "' ~ Supply Current :; 0.81--11+-+-+-1>--+--1-'1 ~ f-++-t"'~:'::::+-+-I t; ~ 4 1--+-+--+-+-1 Vs' tl5V 1160 f-++-+-I--I-+-+-I ::: Input Bias Current I 1--+-+--+-+-1 .. ::: ! !~ 0.61-:':= 1:+-+-1--1-+-+-1 LM709 ; 0.4 ~ 02 !i' ~ 40f-~~~+-~L~M7~0~9A~~~r~-+-I 2r-+-+-+-+-+-+-1-~ ...... I---I-'..r--+-lf-+-+-+--I ~ LM70lC -f........ ..... Ir-+-+-+-+-+--J--J-~ ......i"'--. ~ o L...Jc...-J._.Lr-;-......L.:=_oI.....J Otr-:j~LM~7~09~A~t:!:~~~ 0~~~~~~~...1-~ -75 -50 -25 0 -75 -50 -25 0 -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (OC) 81_ Rete as a Function 01 CloeacI-Loop Gain Using Recommendad CompenasUon Networks 25 50 75 100 125 TEMP£RATURE (OC) Frequency Response for Various Closed-Loop Gains 80rrrnrrTrnrrTrnr~~~~ 100 .-----"T"'1rT'1'-r-r'T'T1r"'1 C...~ 10 ~F: 60 R1 • D. C2 Vs = tl5V TA = 25°C L1llLL Vs = mv .3PiT TA. = 25°C CI • 100'prJ 1111 I lin 40 RI=l.Skn,C2'3pFII HI-+t+-H-H....,I....+-t-tt--I 10 25 50 75 100 125 TEMPERATURE (OC) CI • 500 pF, 1111 U II[ 20 R1 .. 1.Skn, C2 == 20pF o I 10 100 ~llIoII.-!l~"±-i~iH = 200pF III III 1111 III -20 UJ,1u...J..1I.J,;lluw 1I...11.J.JJ...11IWJ.1u...J..II.J.J]I...J L-L..J..U-.l-.L..LJ..L-L....l..J.J.L..J 0.1 CI = 5000 pF, Rl = 1.5kJl, C2 100 Ik lk 10k lOOk 1M FREQUENCY (Hz) Input Bias Current as a Function of Supply Voltage Output Voltage Swing ! 105 """T'''T'''T''"T''''1-;"''T''''T'"T''"'' Vs .. :l:15V 12 = 25°C 1 5 TA _ !i! ijj 10M FREQUENCY (Hz) CLOSED-LOOP GAIN 9 :11& o 10 20 30 40 :! 100 i 95 TA. == 25°C ~ il 9OH-++-H-+++-IH-+-i 85 I-+-J-H++-t+-HI-+'1 80 50 L..J.....I-J.....I.....L...J.....L-'-...L...JL..J....J 9 OUTPUT CURRENT (tmA) 10 II 12 13 14 15 SUPPLY VOLTAGE (tV) TL/HI11477-10 1-357 U) , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , ~ ~ f}1National Semiconductor LM725 Operational Amplifier Generall, Description Features The LM725/LM725A1LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift,'and accurate closed-loop gain are required. With high common mode rejection and offset null capability; it is especiallY suited for Ic;>w level instrumentation applications over a Wide supply voltage range. The LM725A lias tightened' electrical performance with higher input accuracy and like the LM725, is guaranteed over a -55°C to + 125°C temperature range. The LM725C has slightly relaxed specifications and has its performance " guaranteed over a O"C to 70"C temperature range. • • • • • • ., 3,000,000 • 0.6 p.VI"C High open loop gain Low input voltage drift High common mode rejection Low input ,noise current Low input offset current ' High input voltage range Wide power supply range 120 dB 0.15 pAl-'Hz , 2 nA '±14V ±3V to ±22V • Offset null capability • Output short circuit protection Conoectidn Diagrams and Ordering Information Dual-In-Line Package OFFSET NULL OFFSET NULL V· INVERTING INPUT 2 NON-INVERTING INPUT 3 6 OUTPUT V- 4 5 COMP INVERTING INPUT TLlH/10474-2 Order Number LM725CN See NS Package Number N08E vTOP VIEW TL/H/10474-1 Order Number LM725H/883, LM725CH or LM725AH/883 See NS Package Number H08C 1-358 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±22V Supply Voltage Internal Power Dissipation (Note 1) 500mW ±5V Differential Input Voltage Input Voltage (Note 2) Storage Temperature Range -65"Cto + 150"C Lead Temperature (Soldering, 10 Sec.) 260"C Maximum Junction Temperature 150"C Operating TemperaturErRange T A(MIN) -55"C LM725 -55"C LM725A LM725C O"C ±22V to to to TA(MAX) +125"C + 125"C +70"C Electrical Characteristics (Note 3) Parameter LM725A Conditions Min Input Offset Voltage (Without External Trim) TA = 25"C, Rs:S: 10kO Input Offset Current = 25"C = 25"C TA = 25"C to = 10 Hz to = 100 Hz to = 1 kHz TA = 25"C to = 10Hz to = 100 Hz to = 1 kHz TA = 25"C TA = 25"C TA = 25"C, Input Bias Current Input Noise Voltage Input Noise Current Input Resistance Input Voltage Range Large Signal Voltage Gain LM725C LM725 Typ Max 0.5 0.5 Max Min Units Typ Max 1.0 0.5 2.5 mV Min TA 2.0 5.0 2.0 20 2.0 35 nA TA 42 80 42 100 42 125 nA RL ~ 2kO, VOUT = ±10V Common-Mode Rejection Ratio TA = 25"C, Rs:S:10kO Power Supply Rejection Ratio TA = 25"C, Rs:S: 10kO Output Voltage Swing TA = 25"C, RL ~ 10kO RL ~ 2kO = Power Consumption TA Input Offset Voltage (Without External Trim) Rs:S: 10kO Average Input Offset Voltage Drift (Without External Trim) Rs Average Input Offset Voltage Drift (With External Trim) Rs Input Offset Current TA TA = = = = 25"C TA TA 15 9.0 8.0 15 9.0 8.0 15 9.0 8.0 nV/~ nV/~ nV/~ 1.0 0.3 0.15 1.0 0.3 0.15 1.0 0.3 0.15 pAl~ pA/~ pAl~ 1.5 1.5 1.5 MO ±13.5 ±14 ±13.5 ±14 ±13.5 ±14 V 1000 3000 1000 3000 250 3000 V/mV 110 120 94 120 dB 120 2.0 ±12.5 ±12.0 5.0 ±13.5 ±13.5 80 2.0 ±12 ±10 105 10 ±13.5 ±13.5 80 0.7 2.0 ±12 ±10 105 35 ±13.5 ±13.5 80 1.5 p.VIV V V 150 mW 3.5 mV 500 2.0 2.0 5.0 2.0 p.V/"C 0.6 1.0 0.6 0.6 p.V/"C 1.2 7.5 4.0 18.0 1.2 7.5 20 40 1.2 4.0 35 90 35 150 10 20 80 70 180 20 80 100 200 500 TMAX TMIN Average Input Offset Current Drift Input Bias Current Typ = TMAX = TMIN 1-359 35 50 nA nA pAI"C 125 250 nA nA In ~ ..... :::& .... Electrical Characteristics (Note 3) (Continued) Parameter LM725A Conditions Min Large Signal Voltage Gain Typ LM725 Max Min Typ LM725C Max Min Typ Units Max RL: 4_ _ _ Vo l50pF TL/HI10474-8 1.362 r-----------------------------------------------------------------------------,~ i: ..... N Auxiliary Circuits U'I Voltage Offset Null Circuit V+ ~ TUH/1D474-3 Frequency Compensation Circuit Compensation Component Values R1 (0) (~F) 10,000 10k 50pF 1,000 470 0.001 100 47 0.01 10 27 1 10 Ay R3 6 R2 I R1C1 TLlH/10474-4 1·363 C1 R2 (0) (~F) C2 0.05 270 0.0015 0.05 39 0.02 ~ N ..... ~ r---------------------------------------------------------------------------------, Typical Applications Photodlode Amplifier R. Cl 1000 (NOTE 1) ,--""""'-10.000 ....---.JV..,..,.--....--....- ........ R5 .,."fv--l.000 GAIN 1 kA RANGE (NOTE 1) ~ELECT -= ~w..-l00 R7 200A 220pF I our R8 C2 -15V R6 R3 10kA 10 100 kA (NOTE 1) (NOTE 1) CALIBRATE TO RECORDER RIS 9.1kA 2kA (NOTE 1)(NOTE 1) Rl. 1000 (NOTE 1) C3 '00 PF RIO 510A TL/HI10474-9 DC Galns - 10.000; 1.000; 100; and 10 Bandwidth - Determined by value of Cl ± 100V Common Mode Range Differential Amplifier Thermocouple Amplifier Cl 500pF Rl R3 50kA 5kA 6 R2 511kA (NOTE 1) 39A R3 R4 IN 2000 5kA C2 l00pF REFERENCE THERMOCOUPLE R3 511 kA (NOTE 1) R6I~PF R7 50kA +.....-""""'--... 5100 TLlH/l0474-10 > .......~,.....-OUT 39A ~ - ~forbestCMR R5 R7 Rl R6 50kA 5kA = R4 R2 - R5 Gain-~+ (2:;) TLlH/l0474-11 DC Gain - 1000 Bandwidth - DC to 540 Hz Equivalent Input Noise - 0.24 poVrms Note 1: Indicates ± 1% metal film resistors recommanded for temperature stabilily. 1-864 ,-----------------------------------------------------------------------------'r Typical Applications i: ~ (Continued) Instrumentation Amplifier with High Common Mode Rejection R2 10kA 3 6 2 39A R6 100kA Rl 47kA IN R3 10kA RS 10kA +-I--~ R7 l00kA 39A TLlH/l0474-12 !:!:!. = ~ for best CMRR R6 R4 R3 = R4 RI = R6 = 10 R3 Galn=~ R7 Precision Amplifier AVCL SOMA = 1000 10kA 90kA 500kA II 6 >-.....- - £ 0 TLlHI10474-13 1-365 ~ "II' ~ ,--------------------------------------------------------------------------------, t!lNational Semicond~ctor LM741 Operational Amplifier General Description The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up whim the common mode range is exceeded, as well as freedom from oscillations. The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a O·C to + 700C temperature range, instead of - 55·C to + 125·C. Schematic Diagram 7 y+ NON-IIIVER11NG 3 INPUT R9 25 6OUTPUT RIO 50 020 022 5 OFFSET NULL OFFSET NUU Rl 1K R3 50K R2 1K R4 5K R12 50K Rll 50 4yTL/H/9341-1 Offset ,.,ulling Circuit OUTPUT TUH/9341-7 1-366 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Oftlce/ Distributors for availability and specifications. (Note 5) LM741A LM741E LM741 LM741C ±22V ±22V ±22V ±18V Supply Voltage Power Oissipation (Note 1) 500mW 500mW 500mW 500mW ±30V ±30V ±30V Differential Input Voltage ±30V Input Voltage (Note 2) ±15V ±15V ±15V ±15V Output Short Circuit Duration Operating Temperature Range Storage Temperature Range Junction Temperature Soldering Information N·Package (10 seconds) J. or H·Package (10 seconds) M·Package Vapor Phase (60 seconds) Infrared (15 seconds) Continuous - 55'C to + 125'C ContinL!ous Continuous - 65'C to + 150"C 150"C O"Cto +70'C - 65'C to + 150'C 100"C - 55'C to + 125'C - 65'C to + 150'C 150"C Continuous O"Cto +70"C - 65'C to + 150"C 100"C 260"C 300"C 26O"C 300"C 26O"C 300'C 260"C 300"C 215'C 215'C 215'C 215'C 215'C 215'C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 6) 400V 400V 400V 215'C 215'C "400V Electrical Characteristics (Note 3) Conditions Parameter LM741A1LM741E Min Input Offset Voltage TA = 25'C Rs s: 10kO Rs s: 500 TAMIN s: TA Rs s: 500 Rs s: 10 kO Typ Max 0.8 3.0 TA = 25'C, Vs = ±20V Input Offset Current TA = 25'C TAMIN 5.0 Units Typ Max 2.0 6.0 6.0 7.5 ±10 ±15 3.0 s: TA s: TAMAX TA = 25'C 30 ±15 30 20 200 70 85 500 s: TA s: TAMAX 1.0 TAM IN s: TA s: TAMAX, Vs = ±20V 0.5 6.0 mV mV 20 mV 200 nA 300 nA nArC 80 80 500 80 1.5 0.210 TA = 25'C, Vs = ±20V 0.3 2.0 0.3 2.0 500 nA 0.8 p..A MO MO ±12 TA = 25'C TAMIN mV mV p'vrc 0.5 TAMIN Large Signal Voltage Gain 1.0 Min 4.0 Average Input Offset Current Drift Input Voltage Range Max 15 Input Offset Voltage Adjustment Range Input Resistance LM741C Typ s: TAMAX Average Input Offset Voltage Drift Input Bias Current LM741 Min s: TA s: TAMAX ±12 ±13 50 200 ±13 V V TA=25'C,RL~2kO Vs = ±20V, Vo = ±15V Vs = ±15V, Vo = ±10V TAMIN s: TA s: TAMAX, RL ~ 2kO, Vs = ±20V, Vo = ±15V Vs = ±15V, Vo = ±10V Vs = ±5V, Vo = ±2V 50 20 32 25 10 1·367 15 200 V/mV '-IImV V/mV VlmV V/mV Electrical Characteristics (Note 3) (Continued) Parameter Conditions LM741A1LM741E Min Output Voltage Swing Vs = ·i20V RL~ 10kn RL~ 2kn Typ Max ±12 ±10 Output Short Circuit Current TA = 25°C TAMINS: TA 10 10 25 Common-Mode Rejection Ratio TAMIN Rs s: 10kn, VCM = ±12V Rs s: 50n, VCM = ±12V 80 95 86 96 s: TAMAX s: TA s: TAMAX TAMIN s: TA s: TAMAX, Vs = .±20VtoVs = ±5V Rs s: 50n Rs s: 10kn Transient Response Rise Time Overshoot TA = 25°C, Unity Gain 0.25 6.0 Bandwidth (Note 4) TA = 25°C Slew Rate TA = 25°C, Unity Gain Supply Current TA = 25°C Power Consumption TA = 25°C Vs = ±20V Vs = ±15V LM741E Max Min Typ Units Max V V RL~2kn LM741 A Typ ±16 ±15 Vs = ±15V RL.~ 10kn Supply Voltage Rejection Ratio LM741C LM741 Min 0.437 1.5 0.3 0.7 80 35 40 0.8 20 ±14 ±13 ±12 ±10 25 ±14 ±13 V V 25 rnA rnA dB dB 70 90 70 90 77 96 77 96 dB dB 0.3 5 0.3 5 p.s % 0.5 0.5 V/p.S MHz 1.7 2.8 1.7 2.8 rnA 50 85 50 85 mW mW 150 Vs = ±20V TA = TAMIN TA = TAMAX 165 135 mW mW Vs = ±20V TA = TAMIN TA = TAMAX 150 150 mW mW LM741 Vs= ;±15V 60 100 mW TA = TAMIN 75 45 mW TA = TAMAX Note 1: For operation at elevated temperatures. these devIcea must be derated based on thermal resistance, and Tj max. (listed under "Absolute Maximum Ratings"). TJ = TA + (8", Po). Thermal Re8latanoe CerdIp(J) 8", (Junction to AmbienU 100"CIW 8JC (Junction to Case) N/A . DIP(N) 100"CfW HOI (H) 17fJ'C/W so-a(M) N/A 25"C/W N/A 195"CfW For supply voltages less than ± 15V, the absolute maximum Input voltage is equal to the supply voltsge. Unless otherwise specIfled, these specifications apply lor Vs = ±15V, -55"C s: TA s: + 125"C (LM741/LM741A). For the LM741C/LM741E, these specIflcations are limltsd to O'C s: TA s: + 70'C. Note 4: Cslculeted value from: BW (MHz) = O.35/Rise Time(}£s). Note S: For military specifications see RETS741X lor LM741 and RETS741AX lor LM741A. Note 8: Human body model, 1.5 kll in series wtth 100 pF. NDte 2: Note 3: 1-368 Connection Diagrams Metal Can Package Ceramic Dual-In-Une Package NC NC 14 Ne Ne 2 13 NC + OFFSET NULL 3 12 Ne " 11 v+ +IN 10 OUT v- 6 9 - OFFSET NULL Ne 7 8 Ne -IN INVERTING INPUT 2 5 TLlH/9341-2 TLlH/9341-5 Order Number LM741H, LM741H/883', LM741AH/883 or LM741CH See NS Package Number H08C Order Number LM741J-14/883', LM741AJ-14/883" See NS Package Number J14A 'also available per JM38510/10101 "also available per JM38510/10102 Dual-In-Une or 5.0, Package OFF'SET NUU INVERnNG INPUT 8 2 NON-INVERnNG INPUT 7 Ceramic Flatpak NC v+ OUTPUT NC NC +OFFSET NULL Ne -INPUT V+ tlNPUT OUTPUT v- __-,._____.r---OFFSET NULL OFFSET NULL TLlH/9341-6 Order Number LM741W/883 TLlH/9341-3 See NS Package Number W10A Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN See HS Package Number J08A, M08A or N08E 'LM741H 18 available per JM38510/10101 1-369 ~ r-~--------------~--~--------~------------~--------------------~--~ ~ ~ ttlNational Semiconductor I"~ 'j." ! LM747 Dual Operational Amplifier General Description Features The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Othe(Wise, their operation is completely independent. .'" • • • • • • Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package fle~bility. .' The LM747C/LM747E is''identical··to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from O·C to .+ 70"C ' instead of - 55·C to + 125·C. No frequency compilnsation required Short-circuit protection Wide common-mode and differential voltage ranges Low power consumption No latch-up Balanced offset null Connection Diagrams ,, c Metal Can Package, Dual-In-Llne Package Ne INVERTING INPUT A NON-INVERTING INPUT A OffSET NULL A VINVERTING INPUT A ItI'<:ERTING INPUl, B OffSET NULL S rsO NON-INVERTING INPUT S INVERTING I~PUT OffSET NULL S S TOP VIEW TL/H/11479-5 TOP VIEW TLlH/11479-4 Order Number LM747H See NS Package Number H10C 'V+A and V+B are internally connec1ad. 1-370 ' Order Number LM747CN or LM747EN See NS Package Number N14A Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage ±22V LM747/LM747A LM747C/LM747E ±1BV Power Dissipation (Note 1) BOOmW Differential Input Voltage ±30V ±15V Input Voltage (Note 2) Output Short-Circuit Duration Indefinite Operating Temperature Range LM747/LM747A LM747C/LM747E Storage Temperature Range Lead Temperature (Soldering, 10 sec.) - 55·C to + 125·C O"Cto +70"C -65·Cto + 150"C 300"C Electrical Characteristics (Note 3) Parameter LM747A/LM747E Conditions Min Input Offset Voltage TA = 25·C Rs s; 10kn Rs s; 500. Typ Max O.B 3.0 LM747 Min . Typ 1.0 Rs s; 50n Rs s; 10kn = 25·C, Vs Input Offset Current TA = 25·C = ±20V 2.0 6.0 7.5 ±15 ±15 3.0 30 20 70 = = TA = 30 S; TA 25·C, Vs Vs ±20V TAMAX = ±20V 1.0 85 . 200 20 500 = = Vs = nAI"C 80 0.210 BO 6.0 0.3 2.0 ±13 ±12 ±13 25·C 25·C, RL ~ 2 kn ±20V, Vo = ±15V ±15V, Vo Vs Vs Vs = = = = = 500 1.5 80 0.3 2.0 ±12 ±13 50 50 = ±15V ±15V, Vo = ±10V ±5V, Vo = ±2V ±20V, Vo 200 20 200 32 Common-Mode Rejection Ratio Rs Mn V VlmV V/mV .15 10 V/mV ±16 ±15 V = ±15V 10kn RL ~ 2kn TA nA p.A V/mV 25 RL~ Output Short Circuit Current 500 0.8 V/mV ±10V Vs ±20V RL ~ 10kn RL ~ 2kn Vs , nA 300 RL~2kn Output Voltage Swing 200 0.5 ±12 TA Vs mV mV 0.5 TA = 25·C TAMIN S; TA mV p,VI"C ±10 Average Input Offset Current Drift Large Signal Voltage Gain Max 15 TA Input Voltage Range 5.0 Units Typ 6.0 Input Offset Voltage Adjustment Range Input Resistance Min 4.0 Average Input Offset Voltage Drift Input Bias Current LM747C Max = ±12 ±10 25·C 10 25 10 S; 10 kn, VCM Rs":S; 50 kn, VCM = = ±12V ±12V 35 40 95 1-371 ±12 ±10 25 70 80 ±14 ±13 90 ±14 ±13 25 70 90 V mA dB I, I'.1 Electrical Characteristics (Note 3) (Continued) Parameter LM747A/LM747E Condition. Supply Voltage Rejection Ratio Vs= ±20VtoVs= ±5V Rs s: 500 RsS:10kO Transient Response Rise Time Overshoot TA = 25'C, Unity Gain Bandwidth (Note 4) TA = 25'C Slew Rate TA = 25'C, Unity Gain Min Typ 86 96 Max 0.25 6.0 Supply Current!Amp TA = 25'C Power Consumption!Amp TA = 25'C Vs = ±20V Vs = ±15V LM747A LM747E LM747 0.437 1.5 0.3 0.7 LM747 Min Typ 77 96 0.8 20 LM747C Max Min Typ 77 98 Unite Max dB 0.3 5 0.3 5 ,.s % 0.5 0.5 V/,.s MHz 2.5 80 1.7' 2.8 1.7 2.8 50 85 50 85 150 mA mW Vs = ±20V TA = TAMIN TA = TAMAl< 165 135 mW Vs = ±20V TA = TAMIN TA = TAMAl< 150 150 150 mW Vs = ±15V TA = TAMIN TA = TAMAl< 80 45 100 75 mW Note 1: The maximum junction temperature of the LM747C/LM747E Is l00'C. For operating at elevated temperatures, davies In the T0-6 peckage must be derated based on a thermal resistance of 150'C/W, junction to ambient, or 45"C/W, junction to case. The thermal resistanoe of the dual~n-llne packega Is l00'CI W, junction to ambient Note 2: For supply voltages less than ± 15V, the absclute maximum Input voltage Is equal to the supply voltage. Note 3: These speclflcallons apply for ±5V s: Vs s: ±20Vand -55'C s: TA s: 125"C for the LM747A and O'C s: TA s: 70'CfortheLM747EunieBBotherwise specified. The LM747 and LM747C are specified forVs = ±15Vand -55"C s: TA s: 125'C and O'C s: TA s: 7O'C, respectively, unless otherwise specified. Note 4: Calculated value from: O.35/Rlse Time (,..a). Schematic Diagram (Each Amplifier) ~ ~ '" I 2(6) NOIHNVERrlNG INPUT J" Q1 Q2 Q3,.....t I....; INVERrING INPUT .... ~16 Q~ QI ~~ R1 lk "" ....... 04 ~7 ~ R3 50k 14(8) "~,, ~ -r Cl 30pr R8 7.5k Q14 Q~ R7 Uk R5 30k J. ~15 .~ Ql~ RI 25 .... 12(10) OUTPUT RIO 50 "':'7 QZ;--' ~20 ;...t ~ R2 1k R4 5k R12 50k Rl1 50 4 v- TLlH/11479-1 Note: Numbers in parentheses are pin numbers for amplifier B. DIP only. 1-372 Typical Performance Characteristics Input Bla8 and Off8et Currenta V8 Ambient Temperature 200 DC Parameter8 V8 Supply Voltage Lb~/LW7i7C OH~Y- Vs .~~ 180 110 ! iB ~ 120 r-... 100 80 "- I" SO "-iI-I- 40 20 o -~ I:::::: -so INPUT BIAS ~RRENT - r- OF~ ~""I'- ~ i INPUT CURRENT -20 20 ~ 1.4 ... ~ 140 1.2 ; 100 36 ~ 28 a I~-- 140 I.. ~ :€ ~ a ~ ~ .. I. ~ 12 g ~ g ~ o Ik 10k lOOk O. I 0.2 ... ~ ~ i 40 36 !i! 32 ~ I. ~ g ~ 'i , 0.6 iii" SHO~T~~~UIT - 0.2 CYRRfNT o -60 -20 20 60 2.0 5.0 r-- 20 t6 ~ .. 140 ~ Vs =*15V '\. =2k G. -100 pF o 0.200 0.400 0.&00 0.800 Output Re818tance V8 Frequency o ~ JRAJSIE~T RESPONSE ...100-1'" 1""" ... 1.0 ~,. ..... ~~EW, RATE 1"bJ. ""$.R. 0.8 CLOSED LOOP r 'jN,WI1H -20 20 " Ii' 10< ""\ PHA}. SHIFT 10' 10 0.8 I 20 80 100 Ik 10k 140 Vs =*15V TA = 25 0 C 45 '\. =;,:2kll lOOk FREQUENCY (Hz) 1M I " -45 f'\.. 10 100 Ik :l! ~ ~'N f'\.. 10" I o 100 20 IVS=lI5V 1.2 10' SUPPLY VOLTAGE (*V) 15 Open Loop Transfer 1r1 Characteri8tlcs V8 Frequency I---I---::±C=l",-+-+--I 20 12 TEMPERATURE (oc) T" =+25 0 C 15 14 10 INPUT VOLTAGE RANGE l V - 8 10 0.8 -80 I IAr--r--r--r--~~~ 10 IS Lo o T (I's) __~~__-L_~~ . .L 5 ... -5 Frequency Characterl8t1cs V8 Supply Voltage 5 A .. 18 A Frequency Characteristics V8 Ambient Temperature OUTPUT AMBIENT TEMPERATURE (oc) ~6~-L OUTPUT VOLTAGE SWING-Vpp 24 12 20 I SUPPLY VOLTAGE (lV) INPUT -10 i - 100 I '\. -2kll 28 10 10 I 1""':':::: ~- 0.4 1.0 10k lOOk 1M 10M 15 '> .5 r-'~~ ,- 1.0 0.8 0.5 Ik 1.4 P~I- '-1kHz SUPPLY 1.4 -::-~~ER CURRENT , 1.2 1.2 :€ Tran81ent Re8ponse -f-INP~ Rb,bAJCE Vs·~~ 1.6 10 100 LOAD RESISTANCE (kll) Normalized DC Parameter8 V8 Ambient Temperature 1.8 " I FREQUENCY (Hz) , 1M ~ Output Swing and Input Range V8 Supply Voltage 30 Vs =:i:15V 28 TA = 25 DC 26 24 22 20 IB 16 14 12 10 FREOUENCY (Hz) 2.0 -" o 20 6 100 TA:'~ Output Voltage Swing V8 Load Re8i8tance 1\ 20 15 10 YS =:l:15Y 110 SUPPLY VOLTAGE (*V) TA = +25 OC Vs =*15V '\. = 10kll 24 'oS-- vos - - - Output Voltage Swing V8 Frequency 32 "'----- ~ TEMPERATURE (Oc) :€ IJI 1,-- 0.8 120 100 10 80 70 60 50 40 30 20 10 1.0 O.S 80 Common Mode ReJection Ratio V8 Frequency ,.. -90 ~ -180 -135 ~ ~ ~ .a ! 10k lOOk 1M 10M FREQUENCY (Hz) TL/HII 1479-2 1·373 • ........ ~ ~~--~--------------------------~----~--~------------------------------------~ :!l Typical Performance Characteristics Input Resistance and .'Input Capacitance vs Frequency :s ...!l' B i lOll 100 1M 10 liDO ~. ~ ~, ,10k 10 ! f:l S Ik Broadband Noise for Various Bandwidths ~ !;c' lOOk :/ (Continued) III i ~ lOOk Ik FREQUENCY (Hz) 10k SOURCE Inpllt Noise Voltage and ,Current vs Frequency Voltage Follower Large Signal Pulse Response Ik 5i1~ II: 100 100 ~. o>~ Ib 10 ~ ~~ 1.0 1.0 :II 100 Ik 10k OUTPUT 5 !3 ~ ~ -5 0.1 lOOk LM7.7 SLEW RATE Vs·tlSV T.' 25 0 C INPUT E I!l !!II, III <> z; ~ lOOk RESIST~NCE ~~. 20 .0 60 80 100 120 TIME ()'t) FREQUENCY (Hz) TLIH111479-3 1-374 IJ1National Semiconductor LM748 Operational Amplifier General Description Features The LM748 is a general purpose operational amplifier with external frequency compensation. • • • • The unity-gain compensation specified makes the circuit stable for aU feedback configurations, even with capacitive loads. It is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits. The LM748C is specified for operation over the O'C to + 70'C temperature range. Frequency compensation with a single 30 pF capacitor Operation from ± 5V to ± 20V Continuous short-circuit protection Operation as a comparator with differential inputs as high as ±30V • No latch-up when common mode range is exceeded • Same pin configuration as the LM101 Connection Diagram Dual-In-Une Package caMP COMP INPUT' OUTPUT INPur V" 4 BALANCE TUH/11,47B-2 Top View Order Number LM748CN See NS Package Number N08B 1-375 CD ~ :::& """ r---------------------------------------------------------------------------------, Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National $emlconductor Sales OffIce/Distributors for availability and specifications. Supply Voltage Power Dissipation (Note 1) Differential Input Voltage ± 22V 500 mW ±30V Input Voltage (Note 2) Output Short·Circuit Duration (Note 3) Operating Temperature Range: LM74SP, .. ' Storage r emperature 'Range Lead Temperature (Soldering. 10 sec.) O"Cto +70C - 65·C to +'150·C +300·C Electrical Characteristics (Note4) Parameter , .Conditions Min Typ Max Units Input Offset Voltage TA = 25·C. Rs:S;: 10 kO 1.0 5.0 mV Input Offset Current TA = 25·C 40 200 nA Input Bias Current TA = 25·C 120 500 Input Resistance TA = 25·C Supply Current TA = 25·C. Vs = ±15V Large Signal Voltage Gain TA = 25·C, Vs = ±15V VOUT = ±10V. RL ~ 2 kO Input Offset Voltage RS:S;: 10kO Average Temperature Coefficient of Input Offset Voltage Input Offset Current Input Bias Current 300 SOO 1.S 50 160 Large Signal Voltage Gain Output Voltage Swing mA V/mV 6.0 mV ",vrc 6.0 TA = O·Cto +70·C 300 nA TA = -55·Cto + 125·C 500 nA TA = O"Cto +70"C 0.8 TA = -55·Cto + 125·C Supply Current 2.S 3.0 RS:S;: 10kO nA kO 1.5 TA = + 125·C. Vs = ±15V 1.2 2.25 mA TA = -55·Cto + 125·C 1.9 3.3 mA Vs = ±15V, VOUT = ±10V RL~2kO 25 VlmV Vs = ±15V, RL = 10kO ±12 ±14 V Vs= ±15V,RL=2kO ±10 ±13 V ±12 Input Voltage Range Vs = ±15V Common-Mode Rejection Ratio RS:S;: 10kO Supply Voltage Rejection Ratio RS:S;: 10kO V 70 90 dB 77 90 dB Note 1: For operating at elevated temperatures, the device must be derated based on a maximum Junction to case thermal resistance of 45'C per wall. or 150'C per wall junction to ambient. (See Curves). Note 2: For supply voltages less than ± 15V, the absolute maximum Input voltage is equal to the supply voltage. Note 3: Continuous short circuR is allowed for case temperatures to + 125'C and amblenttemperaturas to + 70'C. Note 4: These specifications apply for ± 5V ,;; Vs ,;; + 15V and O'C ,;; TA ,;; + 70'C, unless otherwise specHied. . 1-376 .-----------------------------------------------------------------------------, r s:::: ...... Typical Applications ct Inverting Amplifier with Balancing Circuit Voltage Comparator for Driving DTL or TTL Integrated Circuits R2 Rl INPUT o-~M....-4'--~M,....---., OUTPUT 6 >-..... -0 OUTPUT RS S.llo1ll TL/H/11478-4 R3 SOkll iMay be zero or equal to parallel combination of Rt and R2 for minimum offset. TLlH/11478-3 Voltage Comparator for Driving RTL Logic or High Current Driver OUTPUT INPUTS TLlH/11478-5 Guaranteed Performance Characteristics (Note 4) Output Swing Input Voltage Range Voltage Gain 20 ">' ~ l!l z ;:; 100 18 94 '01 .:!!. ".. ./ 12 !; ./ l!l ~ g i ./ ~ V o 5 88 <1 /»~+ ~~ 82 '7 10 15 20 10 15 SUPPLY VOLTAGE (.v) 20 '" J 78 I I 70 SUPPLY VOLTAGE (.v) ~\","", 5 10 15 20 SUPPLY VOLTAGE (.v) TL/H111478-6 1-377 !:Ii .... Typical Performance Characteristics Supply Current 2.5 -;;: 2.0 ~ a 1.5 ..s ~ I I -- T• • _5S oC 1.0 i lAo it iil I I -":i"". 2S oC _ A -- liD .3 z ~ g - >" " .:!:!. 10.0 li1 ~ TA = 12soe ~ ~ 5 TA """- 1 300 =25°C is ili a ~ I 5 l W g ~ " 200 100 i'- ;i 60 ~ 40 g "' ~ ~ -75 -50 -25 -- 0 "- - 25 50 ""c, 20 c, • I I 10 100 Ik c, li1 ~ ~ 30pF ~ c, • - :E '"z III • 3pF Ik ~ ~ -2 g -4 !::; FREQUENCY (Hz) I~ 'M 10~ -,... p , -- INPUT - I ~ "( ,- TA .IZ51oc 'Is o OUTPUT I I -8 -10 lOOk I~ I~ 1\ ~ 30 pF '" 'Ok ~ 10 = 25°C -6 o 10~ ~ Voltage Follower Pulse Response \ \ "' AMBIENT TEMPERATURE (Oe) ~ '\. FREQUENCY (Hz) 12 LM748 o Vs = :t1SV >" ·3pF 10k lOOk 1M '00 75 100125 TA .:!l \ -20 200 :< :- "' 300 Large Signal Frequency Response """- "" "" "'\.\ I 20 15 400 (Oc) 16 --- ""- 10 500 " ~ r-... TE~PERATURE TA = 25°C Vs • ±1SV 1250ck I-- 600 ~ i:i BIAS OFFSET TA = I-- Maximum Power Dissipation ~ o 120 80 _ ~ 1250C _ SUPPLY VOLTAGE (OV) ..s Open Loop Frequency Response 100 5 20 'Is = .tlSV OUTPUT CURRENT (OmA) !z 15 400 = :I::15V 5.0 o o -IT. '0 Input Current 'Is - SUPPLY VOLTAGE (OV) Current Umiting """=: :::--- I I I I 10 20 1.---1'" = 25°C 1 i-.. 80 IS I I _ITA' :5soCI = 12So c 1'A, SUPPLY VOLTAGE (OV) 15.0 1 ;;..-" 90 400 T'~~ ~ 100 !::; I I I 10 ... ;i - 125°C I I I 0.5 - - I := Input Bias Current Voltage Gain 120 = :ttSV '0 20 30 40 50 60 70 80 TIME (,,5) TUH/11478-7 1-378 t!lNational Semiconductor LM759/LM77000 Power Operational Amplifiers General Description Features The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mAo Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible. • Output current LM759-325 mA minimum LM77000-250 mA minimum • Internal short circuit current limiting • Internal thermal overload protection • Internal output transistors safe-area protection • Input common mode voltage range includes ground or negative supply Applications • • • • Voltage regulators Audio amplifiers Servo amplifiers Power drivers Connection Diagrams and Ordering Information He ff] OUT v- != -IN TUH/l0075-2 Top View vTL/H/l007S-1 Lead 4 connected to case. Top View Order Number LM759MH, LM759CH or LM759H/883 See NS Package Number H08C 1-379 Order Number LM759CP or LM77000CP See NS Package Number P04A Absolute Maximum Ratings Internal Power Dissipation (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature Range Metal Can - 65°C to + 175°C Plastic Package - 65°C to + 150°C Operating Junction Temperature Range Military (LM759M) -55°C to + 1500C Commercial (LM759C, LM77000C) O~C to + 125°C Lead Temperature Metal Can (soldering, 60 sec) 300°C 265°C Plastic Package (soldering. 10 sec) Inte;nally Limited ' , Supply Voltage ±18V Differential Input Voltage 30V ±15V Input Voltage (note 2) , LM759 Electrical Characteristics TJ Symbol = 25°C, Vcc = ± 15V, unless otherwise specified Parameter Conditions Min Rs S; 10kn Typ Max Units VIO Input Offset Voltage 1.0 3.0 mV 110 Input Offset Current 5.0 30 nA liB Input Bias Current 50 150 ZI Input Impedance Icc Supply Current 0.25 1.5 12 V+ - 2VtoV- nA Mn 18 mA V+ -2VtoV- V ±200 mA VIR Input Voltage Range los Output Short Circuit Current Ivcc-vol = 30V 10 PEAK Peak Output Current 3.0V S; Ivcc-vol S; 10V ±325 ±500 mA Avs Large Signal Voltage Gain RL ~ 50.0., Vo = ±10V 50 200 V/mV TR Transient Response 300 ns I Rise Time RL = 50.0.. Av = 1.0 " 5.0 lOvershoot SR Slew Rate RL = 50.0., Av = 1.0 BW Bandwidth Av = 1.0 The following specifications apply for -55°C S; TJ S; VIO Input Offset Voltage 110 Input Offset Current .' % 0.6 V//Jos 1.0 MHz + 150°C RsS;10kn liB Input Bias Current CMRR Common Mode Rejection Ratio Rs s; 10kn PSRR Power Supply Rejection Ratio Rs S; 10kn Avs Large Signal Voltage Gain RL VOP Output Voltage Swing RL = 50.0. 4.5 mV 60 nA 300 ~ 80 50.0., Vo = ±10V \ 1-380 100 nA dB 80 100 dB 25 200 V/mV ±10 ±12.5 V LM759C Electrical Characteristics TJ = 25°C, Vee = Parameter Symbol VIO Input Offset Voltage 110 Input Offset Current liB Input Bias Current ZI Input Impedance ±15V, unless otherwise specified Conditions Min Rs';: 10kn lee Supply Current VIR Input Voltage Range los Output Short Circuit Current IVee-vol 10 PEAK Peak Output Current 3.0V,;: IVee-vol ,;: 10V Avs Large Signal Voltage Gain RL:;' 50n, Vo TR Transient Response Typ Max Units 1.0 6.0 mV 5.0 50 nA 50 250 1.5 V+ -2VtoV- V+ - 2VtoV- V ±200 rnA 12 I Rise Time I Overshoot RL SR Slew Rate RL BW Bandwidth Av The following specifications apply for 0" ,;: TJ ,;: = = = = 30V 50n,Av 50n,Av = ±10V = 1.0 = nA 0.25 Mn 18 rnA ±325 ±500 rnA 25 200 V/mV 300 ns 10 % 0.5 V/p.s 1.0 MHz 1.0 1.0 + 125°C VIO Input Offset Voltage 7.5 mV 110 Input Offset Current Rs';: 10kn 100 nA liB Input Bias Current 400 CMRR Common Mode Rejection Ratio Rs';: 10kn 70 PSRR Power Supply Rejection Ratio Rs';: 10kn Avs Large Signal Voltage Gain RL:;' 50n, Vo VOP Output Voltage Swing RL = = 50n 1-381 ±10V 100 nA dB 80 100 dB 25 200 V/mV ±10 ±12.5 V LM77000 Electrical Characteristics TJ = Symbol 25°C, Vee = ± 15V, unless otherwise specified Parameter VIO Input Offset Voltage 110 Input Offset Current Conditions Min Rs s; 10kO liB Input Bias Current ZI Input Impedance lee Supply Current VIR Input Voltage Range los Output Short Circuit Current IVee-vol = 30V 10 PEAK Peak Output Current 3.0V s; IVee-vol s; 10V ±250 RL;;;' 500, Vo = ±10V 25 Typ Max 1.0 8.0 mV, 5.0 50 nA 50 250 0.25 1.5 + 13 to V- +13toV- 12 Avs Large Signal Voltage Gain TR Transient Response I I Rise Time RL = 500, Av = 1.0 Overshoot Units nA MO 18 mA V ±200 mA ±400 mA 200 VlmV 300 ns 10 % SR Slew Rate RL = 500,Av = 1.0 0.5 VIILs BW Bandwidth Av = 1.0 1.0 MHz The following specifications apply for 0° S; TJ S; + 125°C VIO Input Offset Voltage 110 Input Offset Current Rs 100 nA liB Input Bias Current 400 nA CMR Common Mode Rejection S; 10kO 10 Rs S; 10kO 70 S; 10kO 80 100 dB 25 200 VlmV ±10 ±12.5 V PSRR Power Supply Rejection Ratio Rs Avs Large Signal Voltage Gain RL;;;' 500, Vo = ±10V VOP Output Voltage Swing RL = 500 100 mV dB Nota 1: A~hough the internal power dissipation is limited, the iunction temperature must be kept below the maximum specified temperature in order to meet data sheet spscilications. To calculate the maximum iunction temperature or heat sink required, use the thermal resietance values which follow the Equivalent Circuit Schematic. Nota 2: For a supply voltage less than 30V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage. Nota 3: For military electrical specifications RETS759X are available for LM759H. I:, \ 1·382 m .a c C!' C» RI v+ CD ~ 0 Z3 ~' n c ;::; Q28 RI4 1M ISO RI6 2 -IN OUT RI7 +IN 2 I RIB 1M ISO ~ "" I ,t ----J:.. 032 R22 30 Q6 ZI I H..QU QI5 . .J--'--{..QI6 L..{..QI7 L-.[.QIS I Z4 R20 Uk v-OFFSET NULL + OFfSET NULL TUH1I0075-3 Note: All resistor values in ohms. OOOL.lW1/6SL.W1 Typ Package Max 8JC Typ 8JC 8JA Max 8JA ·C/W ·C/W ·C/W ·C/W Plastic Package (P) 8.0 12 75 80 Metal Can (H) 30 40 120 150 Mounting Hints Metal can Package (LM759CH/LM759MI1) The LM759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With ± 15V power supplies, the LM759 can dissipate up to 540 mW in its quiescent (no load) state. This would result In a 1000C rise in chip temperature to 125·C (assuming a 25"C ambient temperature). In order to avoid this problem, it Is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the LM759 is internally connected to the negative power supply terminal. PlastiC Package (LM759CP/LM77000CP) The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the. equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below 125·C under worst case load and ambient temperature conditions. P M = TJMax-TA or D ax 8JC + 8CA = TJ Max - TA (without a heat sink) 8CA = 8cs + 8JA 8SA SolvingTJ: TJ = = Where: TJ TA PD 8JA 8JC 8CA 8cs 8SA TA + PD (8JC + 8cA> or TA + PD8JA (without a heat Sink) = Junction Temperature = Ambient Temperature = Power Dissipation = Junction to ambient thermal resistance = Junction to case thermal resistance = Case to ambient thermal resistance = Case to heat sink thermal resistance = Heat sink to ambient thermal resistance 1-384 Typical Performance Characteristics Frequency Response for Various Closed Loop Gains 100 , 10 , I ~ ~ ... Open Loopvs Frequency Response 100 10 " 80 70 80 110 " : ~= .... '" I ' ... 1(p 10' 102 103 104 105 10' 107 Vex: = tl5V 1 , > ["'J ~ a IIJ IIIf TJ = l5O'C V II 10 0 -2 I-4 I- -e I 100 f- 2 10 Vee = tl5V ~ = 50A 20Vp.p I 40 20 Ay = 20dB 10 § .... 103 ~ • ., r ~- 10 • Yc:c = t15V TA = 25"C 1 RISE TIllE 0.22 jill r- ~- r- II TIlE Vee = tl5V ~=5OA C1. = lOOpF TA = 25"C -P' Input Noise Voltage vs Frequency 103 = = Vc:c t15V TA 25"C RL 1 W o.oz 0.D5 0.1 0.2 0.5 1.0 2 5 10 FREOUENCY - Hz Short Circuit Current vs Junction Temperature Noise Current '0' vs Frequency I II 0Q2Q.4111l1lll1.o1.2U jill Vee • t IIY (324) Yee = tin (1111,111) f= 1kHz 1.0 Ay = I 11- 10' 80lI 10 i 105 Voltage Follower Transient Response ·1\ I 104 FREQUENCY - Hz POWER OUTM - W Peak Output Current vs Output Voltage 800 8OOr.=~~~~~rT~ 700 1, 500 1-t--r-r--r':"'-r-t:..II""FF=t-I '800 1500 6400 =::~H~_ ...... :'" ro.... ....... § 400 I-t--t-+-t-:.I"'++-++-+-I-l ~ '" ...... ...... i 300 lli200 ili 100 tl 300 H7flC-H-+-H-++-H--f 5 ~ o 200 I-+-Hrl-+-t-+-+-+-t-H ~100r+++~rl-+-+~~ 110 FREQUENCY - Hz 1\ 15 Total Harmonic Distortion vs Power Output 0.001 0.01 10-2 1 10 ~ ~ ~ INM TIllE - 1 .... 20 ~ 01020304011060 Ay = OdS " ~ 102 BA 1 ' 25 .l 0U1PUT I 1000 Total Harmonic Distortion vs Frequency I 1 Vee = t15V-t ~=5OA I • TA = 25"C LOAD RESISIANCE - II ., : , Voltage Follower Large Signal Pulse Response TJ = 25"C 10 I J. Vee = tl5V RL=5OATA = 25"C 102 103 104 105 10' 107 IIII 25 15 I J III 30 20 " 120 100 35 FREQUENCY - Hz Output Voltage vs Load Resistance ~ r- ~20 FREQUENCY - Hz ~ P1fASE ", 1(p 10' J, GoIIN " ! -1: Output Voltage vs Frequency 180 160 140 100 JUNCTION TEllPERA1UR£ - "C 1110 12 18 :u 30 36 OUTPUT VOLTAGE - V TUH/l0075-4 1·385 Applications " '~ Offset NUll Circuit Paralleling LM759 Power Op Amps D.~ D.•SA Audio Applications TLlH/10075-6 Low Cost Phono Amplifier C2. 10pF R3 25k Speaker Output Impedance Power . (Watts) (Ohms) I 4 8 16 32 Cl Rl 47k CRYSTALi.~ - CARTRIDGE PI 0.05 I'F 25k P2 10k VOL CONT TONE CONTROL . TLlH/10075-7 1-386 0.18 0.36 0.72 1.44 MI~ Supply VOp_p . (Volts) (VoIW) ., 9. 12 15 25 2.4 4.8 9.6 19.2 ,-----------------------------------------------------------------------------, Applications (Continued) ~ Bi-DirecJlonallntercom System Using the LM759 Power Op Amp +12V § +12V BALANCE 16.0. XTAL MIKE VOLUME 25k -12V ,, ),1 1 2.7k TONE CONTROL (OPTIONAL) ,, ),1 1 +12V BALANCE 16.0. XTAL MIKE ~ a: ....... en CD ..... a: ....... VOLUME 2.7k 1k -12V TONE CONTROL (OPnoNAL) TLlH/l0075-9 Features: Circuit Simplicity 1 Watt of Audio Output Duplex operation with only on,e two-wire cable as 'interconnect. Note 1: All resistor values in ohms. 1-387 Applications (Continued) Servo Applications High Sl~w Rate Power Op AmplAudio Amp AG Servo Ampllfler-Brldge Type C 30n VI SOk -;i E--'lAfv-......---'W~., 10 pF 10k 5.1 k ' +~V--~~--~---t t-----vo v..J..AJ o 5. f k ....---If--'w...-.. 2 PHASE SERVOMOTOR L - - - - - - - < l I - - -.....--vs .I 0.47 J.\F 10k TL/H/fOO75-fO Features: High Slew Rate 9 V/,...s High 3 dB Power Bandwidth 85 kHz 18 Watts Output Power into an 80 'load. Low Distortion---Q.2%, 10 Vrms, 1 kHz into 80 Design Consideration Av ~ 10 TL/H/fOO75-fl Features: Gain of 10 Use of LM759 Means Simple Inexpensive Circuit Design Considerations: 325 rnA Max Output Current DC Servo Amplifier Sk SOk +15V O.II'F ..ri 1 Features: Circuit Simplicity One Chip Means Excellent Reliability Design Considerations 10 ~ 325 mA Note 1: All resistor values in ohms. 1·388 SERVOMOTOR TL/H/l0075-12 Regulator Applications Adjustable Dual Tracking Regulator +~---------------, +7V TO +35V ~----------~~--'---+Vo 5.6k 1% 2J1.f -VI 5.6k 1% --il_--I -7V TO -35V t-.....- -.....- .....--Vo TUH/1OO75-13 Features: Wide Output Voltage Range (±2.2V to ±30V) Excellent Load Regulation I:.vO < ±5 mV for ~Io = ±O.2 A Excellent Line Regulation ~Vo < ±2 mV for ~VI = 10V Note 1: All resistor values in ohms. 10 Amp - 12 Volt Regulator VI 15-25V - -.....- -.....- - - - - - - - - - . Rl 12 Q.4 2N2612 + I Vo 15J1.f @25V =12V R5 9.1 k R6 3k R7 100 6.2V Features: Excellent Load and Line Regulation Excellent Temperature Coefficient-Depends Largely on Tempco of the Reference Zener Note 1: All resistor values In ohms. I TUH/1OO75-14 1-389 ~ ~-------------------------------------------------------------------------------. ~ dNational ....:g~ VI' Semiconductor II) ~ LM 1558/LM 1458 Dual Operational Amplifier General Description Features· • •. • • • .• The LM1558 and the LM1458 are general purP9se dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. otherwise, their operation is completely independent. The LM1458 Is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from O'C to + 70'C instead of - 55'C to + 125'C. No frequency compensation required Short-circuit protection Wide common-mode and differential voltage ranges Low-P9wer consumption 8-lead can and 8-lead.mini DIP No latch up when input common mode range is exceeded . Schematic and Connection Diagrams r-~--------~,-----,,--------------~,---------~--r .. 2& 1171 Rli lUK ...----....--1. .--1. .- ....- 117 OUTPUT Rl. &I a. 011 Rl 1. AI 1. R3 n. 1M Rl1 R12 saK 5. sa vNote: Numbers in parentheses are pin TLlH/7886-1 ~u"'bers for amplnier 8. Dual-In-Une Package Metal Can Package v+ v+ OUTPUT A ~-t~- OUTPUT B INVERTING INPUT A '--+-INVERTING INPUT B vTL/HI7886-2 Top View Order Number LM1558H, LM1558H/883 or LM1458H See NS Package Number H08C V---t-------' TL/HI7a86-:i Top View Order Number LM1558J, LM1558J/883, LM1458J, LM1458M or LM1458N See NS Package Number J08A, M08A or N08E 1-390 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4) Supply Voltage ±22V LM1558 LM1458 ±18V Power Dissipation (Note 1) LM1558H/LM1458H 500mW LM1458N 400mW Differential Input Voltage ±30V ±15V Input Voltage (Note 2) Output Short-Circuit Duration Continuous Operating Temperature Range LM1558 - 55°C to + 125°C LM1458 O"Cto +70"C Storage Temperature Range -65°C to + 150"C Lead Temperature (Soldering, 10 sec.) 260"C Soldering Information Dual-In-Line Package Soldering (10 seconds) 260"C Small Outline Package Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD tolerance (Note 5) 300V Electrical Characteristics (Note 3) Parameter LM1558 Conditions = = = = = LM1458 Typ Max 1.0 5.0 25°C 80 200 25°C 200 500 Min Input Offset Voltage TA Input Offset Current TA Input Bias Current TA Input Resistance TA Supply Current Both Amplifiers TA Large Signal Voltage Gain TA = 25°C, Vs = ±15V VOUT = ±10V, RL ~ 2 kO Input Offset Voltage Rs s; 10kO 25°C, RS S; 10 kO 0.3 25°C 25°C, Vs = ±15V 1.0 3.0 50 Min 0.3 5.0 160 Max 1.0 6.0 mV 80 200 nA 200 500 1.0 3.0 20 Units Typ nA MO 5.6 160 mA V/mV 6.0 7.5 Input Offset Current 500 300 nA Input Bias Current 1.5 0.8 p.A Large Signal Voltage Gain Vs = ±15V, VOUT RL ~ kO Output Voltage Swing Vs = ±10V 25 15 mV V/mV = ±15V, RL = 10 kO RL = 2 kO ±12 ±14 ±12 ±14 V ±10 ±13 ±10 ±13 V = ±15V ±12 Input Voltage Range Vs Common Mode Rejection Ratio Rs s; 10kO 70 ±12 90 70 V 90 dB Supply Voltage Rs s; 10kO 77 96 77 96 dB Rejection Ratio Note 1: The maximum junction temperature of the LM1558 is 150'C, while that of the LM1458 is l00'C. For operating at elevated temperatures, devices In the HOS package must be derated based on a thermal resistance of 150'C/W, junction to ambient or 20'C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187"C/W, junction to ambient. Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the suppiy voltage. Note 3: These specifications apply for Vs = ± 15V and - 55'C ,;; TA ,;; 125'C, unless otherwise specHied. Wijh the LM1458, however, all specifications are limited toO'C';; TA';; 70'CandVs = ±15V. Note 4: Refer to RETS 1558V for LM1558J and LM1558H military speCifications. Note 5: Human body model, 1.5 kG in series wijh 100 pF. 1-391 U) IX; ~ r--------------------------------------------------------------------------------, tfI Nat ion a I S e m. i con d uc tor LM 1875 20W Audio Power Amplifier General Description Features The LM1875 is a monolithic power ,amplifier offering very low distortion and high quality performance for consumer audio applications. • • • • • • • • • • • The LM1875 delivers 20 watts into a 40. or 80. load on ± 25V supplies. Using an 80. load and ± 30V supplies, over 30 watts of power may be delivered. The amplifier is designed to operate with a minimum of external components. Device overload protection consists of both internal current limit and thermal shutdown. The LM1875 design takes advantage of advanced circuit techniques and processing to achieve extremely low distortion levels even at high output power levels. Other outstanding features include high gain, fast slew rate and a wide power bandwidth, large output voltage swing, high current capability, and a very wide supply range. The amplifier is internally compensated and stable for gains of 10 or greater. Up to 30 watts output power AvO typically 90 dB Low distortion: 0.015%, 1 kHz, 20 W Wide power bandwidth: 70 kHz Protection for AC and DC short circuits to ground Thermal protection with parole circuit High current capability: 4A Wide supply range 16V-60V Internal output protection diodes 94 dB ripple rejection Plastic power package TO-220 Applications • • • • • High performance audio systems Bridge amplifiers Stereo phonographs Servo amplifiers Instrument systems Typical Applications Connection Diagram + Vee C3 411-811 p O.Iid'r Cl '=' VIN 10 1 il!! ::~T ,2.2 PF Rl 1M +IN '=' TLiH/5030-1 -VEE ....- - - . C6 C4 Front View O.l pF T '![iOO"F '='R4 '=' 20k R3 lk Order Number LM1875T see NS Package Number T05B + C2 T22 p F '=' TLiH/5030-2 1-392 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 60V Input Voltage -65·Cto Storage Temperature -VEE to Vee + 150"C Junction Temperature 150"C Lead Temperature (Soldering, 10 seconds) 8Je 8JA 26O"C 3·C 73·C Electrical Characteristics Vcc= + 25V, -VEE= -25V, TAMBIENT=25·C, RL =8.0, Av=20 (26 dB), fo= 1 kHz, unless otherwise specified. Typical Tested Limits Units Supply Current Parameter POUT = OW Conditions 70 100 mA Output Power (Note 1) THD=1% 25 THD(Note 1) POUT = 20W, POUT = 20W, POUT=20W, POUT=20W, fo=1 kHz fo=20 kHz RL =4.0, fo= 1 kHz RL =4.0, fo=20 kHz Offset Voltage Input Bias Current Input Offset Current 0.Q15 0.05 0.022 0.07 W 0.6 % % % % ±1 ±15 mV ±0.2 ±2 poA 0 ±0.5 poA Gain-BandWidth Product fo=20 kHz 5.5 Open Loop Gain DC 90 PSRR Vee, 1 kHz, 1 Vrms VEE, 1 kHz, 1 Vrms 95 83 Max Slew Rate 20W, 8.0, 70 kHz BW 8 Current Limit VOUT = VSUPPLY -10V 4 Equivalent Input Noise Voltage Rs=600.o, CCIR 3 0.4 MHz dB 52 52 dB dB V/pos 3 A poVrms Note 1: Assumes the use of a heat sink having a thermal resistance of I·C/W and no insulator with an ambient temperature of 25·C. Because the output limiting circuitry has a negative temperature coeIIicient, the maximum output power delivered to a 40 load may be slightly reduced when the tab temperature exceeds 55·C. Typical Applications (Continued) Typical Single Supply Operation Rl 22k ..J!:.. C2 .J:. hi: 7 - , Cl - C4 Vee 0.1 "" R2 22k Tl0/'F R4 1M Jb. I :~ ft~OO/'F 1~5 "=' 4 LM1B75 ~ _ V R7 1 3 C6 ~~ I': - C5-1... 0.22""T C3 10 /,F p~+ R5 10k ""=' R6 200k TUH/5030-3 , 1-393 .... r-------------------------------------------------------------------------------------, .- Typical Performance Characteristics Power Output vs Supply :! THD vs Power Output THD vs Frequency Voltage ~ CD 1.0 0.1 g 35 Vs = :t25V o.os o.os vs:t 25V Po = lOW 1\=84 tHD = 111 30 om I~ : ~ 0.11:;i 0.1 = 44 -- -~ 1\=84 i..;' RL G.02 ""- / ,/ 0.01 I 111111 0.01 \. 0J)3 It ~I~I~ 1 o 1.0 10 50 100 200 500 lk 2k 20 100 POWER OUTPUT (W) o o 5k 10k 20k Supply Current vs Supply Voltage 45r-r-r-~~~~~, so .." 4OF=~IN~~~~H~~+J~~+NK~~_1 I~ 1 1 80 POSIIIVE SUPPLY 70 .." ~ - 60 50 f-- /1 l'.. N~1lVE SUPPLY"i"o 1 35~~~~~-+-+~ I 30~~~~~~~ ! 15~~~~~~~~, 1 o L-...L-...L.-L.-L.-L.-L.:: 50 100200 500 lk 2k 20 SUPPLY VOLTAGE (:tV) HEAT ~ 5 1O'C 1 Vnno o 051015202530 g • «l 30 INPUTllfFEllRml 20 lis = 0 10 RL = 4 o 30 Device Dissipation vs Ambient Temperaturet PSRR vs Frequency 100 ,,"" 10 15 20 25 SUPPLY VOLTAGE (:tV) FREQUENCY (Hz) 100 / / g0JJ6 o 5k 10k 2IIk 20 «l 80 80 100120140180 TA - AMIIIEIIT 1BIP£RAlURE (Ge) F1I£QUENCY (Hz) t>INTERFACE = l·C/W. See Application Hints. Power Dissipation vs Power Output Vs = UOV g: I 45 .: 30 III 15 ~ - . 50 50 .: ~ Vs • nov ~ ~=:tl~ 1 1 o III ~ 10 o 10 15 RL = 44 10= 1kHz 20 25 35 30 o Vs = :t25V /. ~ ~Vs=*15VF 10 15 20 25 POWER OUTPUT (W) POWER OutPUT (W) Open Loop Gain and Phase vs Frequency 30 =~~ 20 15 10 '" 135 15200 so ~ OUTPUT VOLTAGE (V) TA -45 ~ ill 100 -90 -151-~t+Htttt-+-H+++PII-135 -180 1Il0l ~ --- r-::: ~ ...... = riC' 150 ~ 111 30 ~25D r-- ~ lOOk ,. . . r-. .;' ~" -8 -25-20-15-10 -5 0 5 10 15 20 25 ~7O'C ~I 180 45 -20 I- Input Bias Current 5 -10 , 500 vs Supply Voltage P:'"~;:~ 25 1\ 1\ Vs =:t2DV ' - o 30 !-I-'~ Vs =:t3OV [...000'" 15 'F 10 5 ,," -.... \ [, 10= 1kHz g40 Vs = :t25V ..... 8 45 1\=84 -- -- ...,q:.. -- -1 -- ~-,. -~- -.....1--- -/ lOUT vs Vo~urrent Llmltl Sate Operating Area Boundary Power Dissipation vs Power Output 50 o o 5 10 15 20 25 30 SUPPLY VOLTAGE (:tV) FREQUENCY (Hz) TL/H/5030-4 'Thermal shutdown with infinite heat sink "Thermal shutdown wilh I'C/W heat sink 1-394 r-----------------------------------------------------------------------------~ ~ .... CD !::: Schematic Diagram ..... UI III 1·395 "' r---------------------------------------------------------------------------------, r... ~ :::E .... Application Hints STABILITY CURRENT LIMIT AND SAFE OPERATING AREA (SOA) PROTECTION The LM1875 is designed to be stable when operated at a closed-loop gain of 10 or greater, but, as with any other high-current amplifier, the LM1875 can be madjjto oscillate under certain conditions. These usually involve printed circuit board layout or output/input coupling. A power amplifier'S output transistors can be damaged by excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the design of the external power supply, while the maximum current passed by the output devices is usually limited by internal circuitry to some fixed value. Shorl-term power dissipation is usually not limited in monolithic audio power amplifiers, and this can be a problem when driving reactive loads, which may draw large currents while high voltages appear on the output transistors. The LM1875 not only limits current to around 4A, but also reduces the value of the limit current' when an output transistor has a high voltage across it. Proper layout of the printed circuit board is very important. While the LM1875 will be stable when installed in aboard similar to the ones shown in this data sheet, it is'sometimes necessary to modify the layout somewhat to suit the physical requirements of a particular application. When designing a different layout, it is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor' which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the 0.1 JLF supply decoupling capacitors as close as possible to the LM1875 to reduce the effects of PCB trace resistance and inductance. For the samereasori, the ground return paths for these components should be as . short as possible. When driving nonlinear reactive loads such as motors or loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load whose terminal voltage may attempt to swing beyond the power supply voltages applied to the amplifier. This can cause degradation of the output transistors or catastrophic failure of the whole circuit. The standard protection for this type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These are pari of the internal circuitry of the LM1875, and needn't be added externally when standard reactive loads are driven. Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input leads are long. The problem can be eliminated by placing a small capacitor (on the order of 50 pF to 500 pF) across the circuit input. THERMAL PROTECTION The LM1875 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature 'on the die reaches 17O"C, the LM1875 shuts down. It starts operating again when the die temperature drops to about 145°C, but if the temperature again begins to rise, shutdown will occur at only 150"C. Therefore, the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will limit the maximum die temperature to a lower value. This greatly reduces the stresses imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fault conditions. Most power amplifiers do not drive highly capacitive loads well, and the LM1875 is no exception. If the output of the LM1875 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about 0.1 JLF. The amplifier can typically drive load capacitances up to 2 ,...F or so without oscillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 10) should be placed in series with the output of the LM1875. A method commonly employed to protect amplifiers from low imll'ldances at high frequencies is to couple, to the load through a 10n resistor in parallel with a 5 ,...H induct,or. Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached during normal operation. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor device. DISTORTION The preceding suggestions regarding circuit board grounding techniques will also help to prevent excessive distortion levels in audio applications. For low THO, it is alsonecessary to keep the power supply traces and wires separated from the traces and wires connected to the inputs of the LM1875. This prevents the power supply currents, which are large and nonlinear, from inductively coupling to the LM1875 inputs. Power supply wires should be twisted together and separated from the circuit board. Where these wires are soldered to the board, they should be perpendicular to the plane of the board at least to a distance of a couple of inches. With a proper physical layout, THO levels at 20 kHz with lOW output to an 8n load should be less than 0.05%, and less than 0.02% atl kHz. POWER DISSIPATION AND HEAT SINKING The LM1875 must always be operated with a heat sink, even when it is not required to drive a load. The maximum Idling current of the device is 100 mA, so that on a 60V power supply an unloaded LM1875 must dissipate 6W of power. The 54°C/W junction-to-ambient thermal resistance of' a TO-220 package would cause the die temperature to rise 324°C above ambient, so the thermal protection circuitry will shut the amplifier down if operation without a heat sink is attempted. 1-396 Application Hints (Continued) In order to determine the appropriate heat sink for a given application, the power dissipation of the LM1875 in that application must be known. When the load is resistive, the maximum average power that the IC will be required to dissipate is approximately: If a mica insulator is used, the thermal resistance will be about 1.S'C/W lubricated and 3.4'C/W dry. For this example, we assume a lubricated mica insulator between the LM1875 and the heat sink. The heat sink thermal resistance must then be less than 4.2"C/W-2'C/W-1.S'C/W=0.6'C/W. VS2 PO(MAX) ::::: 21T2RL + Po This is a rather large heat sink and may not be practical in some applications. If a smaller heat sink is required for reasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be reduced to 50"C (122"F), resulting in a 1.S'C/W heat sink, or the heat sink can be isolated from the chassis so the mica washer is not needed. This will change the required heat sink to a 1.2"C/W unit if the case-to-heat-sink interface is lubricated. where Vs is the total power supply voltage across the LM1875, RL is the load resistance, and Po is the quiescent power dissipation of the amplifier. The above equation is only an approximation which assumes an "ideal" class B output stage and constant power dissipation in all other parts of the circuit. The curves of "Power Dissipation vs Power Output" give a better representation of the behavior of the LM1875 with various power supply voltages and resistive loads. As an example, if the LM1875 is operated on a 50V power supply with a resistive load of 80, it can develop up to 19W of internal power dissipation. If the die temperature is to remain below 150"C for ambient temperatures up to 70"C, the total junction-to-ambient thermal resistance must be less than 150"C-70"C 19W Note: When using a single supply, maximum transfer of heat away from the LMt875 can be achieved by mounting the device directiy to the heat sink (tab is at ground potential); this avoids the use of a mica or other Iypa insulator. The thermal requirements can become more difficult when an amplifier is driving a reactive load. For a given magnitude of load impedance, a higher degree of reactance will cause a higher level of power dissipation within the amplifier. As a general rule, the power dissipation of an amplifier driving a SO' reactive load (usually considered to be a worst-case loudspeaker load) will be roughly that of the same amplifier driving the resistive part of that load. For example, a loudspeaker may at some frequency have an impedance with a magnitude of 80 and a phase angle of SO'. The real part of this load will then be 40, and the amplifier power dissipation will roughly follow the curve of power dissipation with a 40 load. C 4.2" /W. Using 8Jc=2'C/W, the sum of the case-to-heat-sink interface thermal resistance and the heat-sink-to-arnbient thermal resistance must be less than 2.2'C/W. The case-toheat-sink thermal resistance of the TO-220 package varies with the mounting method used. A metal-to-metal interface will be about l'C/W if lubricated, and about 1.2"C/W if dry. Component Layouts Spilt Supply Single Supply GNU TLlH/5030-7 TL/H/5030-6 1-397 ~ ~ ~ ,----------------------------------------------------------------------------, t!lNational Semiconductor LM 1877 Dual Audio Power Amplifier General Description The LM1877 is a monolithic dual power amplifier designed to deliver 2W/channel continuous into 80 loads. The LM1877 is designed to operate with a low number of exter· nal components, and still provide flexibility for use in stereo phonographs, tape recorders and AM·FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output Q point centering. The LM1877 is internally compensated for all gains greater than 10. Features • 2W/channel • - 65 dB ripple rejection, output referred • - 65 dB channel separation, output referred • • • • • Wide supply range, 8V-24V Very low cross·over distortion Low audio band noise AC. short circuit protected Internal thermal shutdown Applications • • • • • • • Multi-channel audio systems Stereo phonographs Tape recorders and players AM·FM radio receivers Servo amplifiers Intercom systems Automotive products Connection Diagram Dual-In-Llne Package or Surface Mount Package 14 BIAS y+ ,3 OUTPUT2 OUTPUT, 'Z GNO GNO Order Number LM1877M-9 or LM1877N-9 See NS Package Number M14B or N14A BND GND INPUT, INPUTZ UEOBACKI FEEDBACKZ TL/H17913-1 Top View Equivalent Schematic Diagram .. , . +1NI'UT2 1·398 • -FEEDBACK! TUH17913-2 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 26V Input Voltage ±0.7V Operating Temperature OOCto +700C - 65'C to + 1500C Storage Temperature Junction Temperature Lead Temperature N-Package Soldering (10 sec.) M:Package Inlared (15 sec.) M-Package Vapor Phase (60 sec.) 260'C 220'C 215'C Thermal Resistance 8JC (N-Package) 8JA (N-Package) 8JC (M-Package) 8JA (M-Package) 1500C 30'C/W 79"C/W 27'C/W 114'C/W Electrical Characteristics Vs = 20V, TA = 25'C, (See Note 1) RL = 80, Av = 50 (34 dB) unless otherwise specilied Parameter Conditions Total Supply Current Po= OW Output Power LM1877 THD = 10% Vs = 20V, RL = 80 Vs = 12V, RL = 80 Min Typ Max Units 25 50 mA 1.3 W/Ch W/Ch Po = 50 mW/Channel 0.075 % Po = 500 mW/Channel 0.045 % Po"'; 1 W/Channel 0.055 % Output Swing RL = 80 Vs-6 Vp-p Channel Separation CF = 50 p.F, CIN = 0.1 p.F, I = 1 kHz, Output Relerred -70 dB -60 dB -65 dB -40 dB Rs = 0, CIN = 0.1 p.F, BW = 20 Hz-20 kHz, Output Noise Wideband 2.5 p.V Rs = 0, CN = 0.1 p.F, Av 200 0.80 mV Total Harmonic Distortion LM1877 2.0 I = 1 kHz, Vs = 14V -50 Vs = 20V, Vo = 4 Vrms Vs = 7V, Vo = 0.5 Vrms PSRR Power Supply Rejection Ratio CF = 50 p.F, CIN = 0.1 p.F, I = 120 Hz, Output Relerred . Vs = 20V, VRIPPLE = 1 Vrms -50 Vs = 7V, VRIPPLE = 0.5 Vrms Noise Open Loop Gain Equivalent Input Noise Rs = 0, 1= 100 kHz, RL = 80 70 dB Input Offset Voltage 15 mV Input Bias ClJrrent 50 nA Input Impedance Open Loop DC Output Level Vs = 20V 4 9 10 MO 11 V Slew Rate 2.0 V/p.s Power Bandwidth 65 kHz 1.0 A Current Limit Note 1: For operation at ambient temperature greater than 2S'C. the LM1Sn must be derated based on a maximum 1-399 ISO'C junction temperature. II ~ ~ co .... :Ii r-----------------------------------------------------------------------------, Typical Performance Characteristics ..... ,Power Supply ReJe~on Ratio . (Fleferred to the Output) va Frequency Device Dissipation va Ambient Temperature 12.1 .." I I"""'" " t~~l""'''''·''''·' .~~ r... If~J,:f;~;~:A!1 c: I y. 1= 1.8 If ~ tA . . .,. . . "'OIU.Ci.IIAMI 4.0 is I!l z.o 70 111 1."lTlIK~T ...J ,J't~ i ' 1.8 flEEtll jCIW 10 I : ~~~~Ht II: ~ 30~~~.-++tmffi-~rlff~ I ZD i II o l1ZD3I4I.BllIlD II TA - .IIENTTEMPERATURE rCl Power Supply Rejection Ratio (Referred to the Output) vs Supply Voltage ID I: Ii ~ ~VR"'LE" :5 V... V~I~LE ~ G.3:V~ CI.· ..,.F I • YRIPPLE -1 V_ "IZD Hz AV'ID • If II III ~'VPASS' II • "51 71 iii _ - • ID ! i.. i . ! ..g" /. V Ic 11~ H IYPAIiI ' ,.F fliTllllll to IoF ·11111111 I 10 10k lID lk FREIIUENCY (Hz) Channel Separation (Referred to the Output) vs Frequency C.VPAIiI· ... F VCC'7V •co .IJ ~1 ~ i 10 vo· ...v... AV"" 51 I. I~'~'~,~:, 11111 lk CJ.· ..... -f 30 I Ill! I. ,. VRlmE'1 Vrn 7.F AV· • 100.F 40 71 .ililliWll 11 Average Supply Current vs POUT ,. 40 ll11k 10 lID FREIIUENCY (Hz! lk FREIIUENCY (Hz) Total Harmonic Distortion va Frequency Total Harmonic Distortion va Frequency 10Fv:.~.' E¥:::;':';iv'3l.3lJ 10 Iii i...o" i-"" 10-" " I;; 15 ~ I" :I! ... V G.1 c Ii! 0.1 D.ll 10 1.5 lID Power DIssipation (W) Both Channels Operating Z2V 1.00" zev flV ~~4V L41n1~o 7 T LI 3!lTHO 1~llvv •• 10k I I POWER OUTFUT lWICHAN.EU . ., IRk 10 ,. ;; Output Swing va Supply VS"mv RL 'In iii .. II ,.~ 41 " IZ E ~ ZD I ,. 101k FREIIUENCY (Hz) 111 ~ t ./ ~ I r... lk ~ I "- ,. ,. ,. I. Voltage :a • 1k FREIIUENCY (HzI Open· Loop Gain vs Frequency III I\-In /- 11 FREflUENCY (Hz! POWER OUTPUT (w/CHANNELI • 11 II o S VOUy-4V,.. II 11 - ID co ;; CIYPAIS VCC'ZIV 41 II II 14 III....YVOLTAGE (VI :5 II ~~ II: VRIPPLE • a.& V,.. ;; Channel Separation (Referred to the Output) va Frequency ;; 1I.'j,. ,. 100 1k FREIIUENCY (Hz) ID "Ift~ ! Power S'!pply RejeCtIon Ratio· (Referred to the Output) va Frequency 'f' I' o o I \I II H II SUPPLY VOLTASE (VI TLlH17913-3 1-400 Typical Applications Stereo Phonograph Amplifier with Bass Tone Control + IDhF~ 51k 51. 'j i ~:~. ~ . STEREO CERAMIC CARTRIDGE I I I I'1 ij "I Ij ~ I I +) I 50hF ft I I I 2.7n TO" PF 510k 51k ! 8n 100. ~ I' ~ " ': U3pF I, Ik ! TL/H/7913-4 Frequency Response of Bass Tone Control ii :a ... :i! !i! B 55 :: 35 BOOST - S; ~ESPONSE ,/ L.,.; 25 > 15 10Dk TONE.I.' CONTROL FLAT III = ~ co MAXIMUM ;;;;;;; 45 c Vs 85 II! ...~ Inverting Unity Gain Amplifier '" 20 1/ ~AXIMUM 10k CUT RESPONSE I IPF I I 5D 100 200 500 1. 2k + T &Ie 1. 20k FREQUENCY (HzI TLlH17913-5 TL/H/7913-6 1-401 ~ ~ co .- ::& r-----~~--~------=-------~~------~----~--~------------------~~------~__, Typical Applications (Continued) ..... 'Stereo Amplifier with Ay = "200 !OIJ"l F RL 2.~U In TO.1 f ':", I3.'.5. -.~ I . .,¥A8GND I.1 I llOk TUH/7913-7 Non-Inverting Amplifier Using Spilt Supply 2k Typical Spilt Supply lOOk TL/H17913-9 'i!'· 2k lOOk TL/HI7913-B 1-402 tflNational Semiconductor LM 1896/LM2896 Dual Audio Power Amplifier General Description Features The LM1896 is a high performance 6V stereo power amplifier designed to deliver 1 watt/channel into 40 or 2 watts bridged monaural into 80. Utilizing a unique patented compensation scheme, the LM1896 is ideal for sensitive AM radio applications. This new circuit technique exhibits lower wideband noise, lower distortion, and less AM radiation than conventional designs. The amplifier's wide supply range (3V-9V) is ideal for battery operation. For higher supplies (Vs> 9V) the LM2896 is available in an 11-lead single-in-line package. The LM2896 package has been redesigned, . resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature. • • • • • Low AM radiation Low noise ~V, 40, stereo Po = 250 mW Wide supply operation 3V -15V (LM2896) .Low distortion . • • • • No, turn on "pop" Adjustable voltage gain and bandwidth Smooth waveform clipping Po = 9W bridged, LM2896 . Applications • Compact AM-FM radios • Stereo tape recorders and players • High power portable' stereos Typical ApplicatiOn! 1"=-"....- -. . .00 +Vs &In an HI I. SPEAKER CI .,IpI' >Vs 2k In &lpF TUH17920-1 FIGURE 1. LM2896 in Bridge Configuration (Ay = 400, BW = 20 kHz) Order Number LM1896N Order Number LM2896P See NS Package Number N14A See NS Package Number P11A 1-403 Absolute Maximum Ratings If Military/Aerospace specHled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage LM1896 Vs == 12V LM2896 Vs = 18V Operating Temperature (Note 1) OOCto +700C -65·Cto +l'500C Storage Temperature ' Junction Temperature Lead Temperature (Soldering, 10 sec.) Thermal Resistance 8Jc(DIP} ,; 8JA(DIP} 8JC(SIP} 8JA(SIP} 1500C 26O"C 300C/W 137"C/W l00C/W 5ffC/W Electrical Characteristics Unless otherwise specified, TA = 25·C, Av = 200 (46 dB). For the LM1896; Vs "" 6Vand RL = 40. For, LM2896, TTAB = 25·C, Vs = 12Vand RL = SO. Test circuit shown in Figure 2. ' Parameter LM1896 Conditions Min Supply Current Po = OW, Dual Mode Operating Supply Voltage THO = 10%,f = 1 kHz Vs = 6V, RL = 40 Dual Mode } Vs = 6V, RL = 80 Bridge Mode Vs = 9V, RL = 80 Dual Mode LM2896p·l LM2896p·2 V, - 12V,.< - . . " " ' _ } Distortion Max 15 25 3 Output Power LM1896N-l LM1896N·2 Vs = 12V, RL = 80 Bridge Mode Vs = 9V, RL = 40 Bridge Mode Vs = 9V, RL = 40 Dual Mode 0.9 TA = 25·C LM2896 Typ 10 1.1 1.8 1.3 Min Max 25 40 mA 15 V 3 2.5 9.0 7.8 2.5 W/ch W W/ch W/ch W W W/ch 0.09 0.11 0.14 % % % 2.1 2.0 7.2 TTAB = 25·C f=lkHz Po = 50mW Po = 0.5W Po = lW Units Typ 0.09 0.11 Power Supply Rejection Ratio (PSRR) CBY = 100 j.LF, f = 1 kHz, CIN = 0.1 j.LF Output Referred, VRIPPLE = 250 mV -40 -54 -40 -54 dB Channel Separation CBY = 100 j.LF, f = 1 kHz, CIN = 0.1 j.LF Output Referred -50 -64 -50 -64 dB Noise Equivalent Input Noise Rs ;= 0, CIN = 0.1 j.LF, BW = 20 - 20 kHz CCIR/ARM Wideband 1.4 1.4 2.0 j.LV j.LV j.LV 1.4 1.4 2.0 DC Output Level 2.8 3 3.2 5.6 6 6.4 V Input Impedance 50 100 350 50 100 350 kO Input Offset Voltage Voltage Difference between Outputs 5 LM1896N-2, LM2896p·2 10 Input Bias Current 120 5 20 10 120 mV 20 mV nA Note 1: For operaUon at ambient temperature greater than 25'C, the LMI896/LM2896 must be derated based on a maximum 15O'C junctton temperature using a thermal resistance which depends upon mounting techniques. 1-404 Typical Performance Curves Lllla96 Maximum Device Dlulpat10n 'va Ambient Temperature LM2896 Device DI_patlon VB Ambient Temperature t8 9 !: II Z.B 1--·""... 1 1 )Ct.::;~/;" u;~;:::::~ ...... ~ 21"1:/. . ~ FMEIIIII.·CIW I I D 1.1 1A is ::J r- ~ ;-- :! D.4 a II 50 4B 31 ,0 8.1 1.1 1/ DA / I'.,.,. 1.2 o ; i ZO 311 4D ! II 50 4a 3G i! 5k 10k IDk -D.. 1.0 . i! i': ..i co i! ....:z:" " o 4D 1.1 .... 50 1l1li zoa 510 Ik Ik l 8.1 8.5 j!: IA P"'F 1--1- 1 0.4 02 51 11112110 lao Ik Zk ~ II! !!j -II "Ii IE. -20 i~ . .is=' ' c n 2k 5k IDk ZOk -3~ -40 -&B ~ 50 1l1li 2l1li 108 -80 ~ D.It Hr++fIIII--+WI i I!i i i 3D !II AV-zao POUT' 0.5W 20 .. ~ c G 11k i 50 ~~:~?I:FIIIII.F 100 10 AL -an BRIDGE ..~ .. ~ Ilk lOOk I- RL-4(j I'DUAL RL -an "j'OUAL ..If. 8 lk FREQUENCY IHzI H+t~L'4n7 BRIDGE LM289tI II 10 10 1 Power Output VB Supply Voltage 12 40 0.1 FIELD STRElant ,,"VIMI Channel Separation (Referred to the Output) va Frequency 10 5k IDk ZOk ~ FREClUENCY IHzl 10 lk RL -40 DUAL MODE 1.0 0.8 0.1 20 ~ 20 .. ,-,,..,..,.....r-rrr lID PO-O.M :;: r-r- :b~:::OOE • Power Supply Rejection Ratio (Referred to the Output) va Frequency FREQUENCY IHzI 3G All Recovered Audio and Nolas VB Flekl S1rengllt for Different Speaker Lead Placement 0.2 5k 10k ZtIk --- LMI898 VS-IV FREClUENCY IHzI LMI8!16 VS-BV PO-O.III/ FREQUENCY IHzl 50 I I 50 4D &k 10k ZOk I I I I I 50 r-I- .. - 20 80 I 50 1111 zao SOU Ik Zk 80 3D OJ D.2 1---: 0.8 8.. I.Z D 20 1-1-: D.8 DA . :! Ii 3 THD and GaIn V8 Frequency Ay = 34dB,BW = 50kHz :c LMI191 VS'IV PD RL -40 DUAL MODE THD and Gain V8 Frequency Ay = 46dB,BW = 50kHz FREQUENCY IHzl I ,., AytvlVl - r-~ LMI_ Ys-IV Po-uw RL -40 DUAL MODE 40 3D THD and Gain VB Frequency Av = 4QdB,BW = 20kHz :a IIIIIZ• • 40115111111111 81 18 10 81 50 FREQUENCY IHzI ;; " I.B G.I "~ ./ 51 I. 2l1li 5IHI Ik 2k 211 10 TA - AMBIENT TEMPERATURE t'CI THD and GaIn V8 Frequency Ay = 54dB,BW = 5kHz LMtl81 -r- tV.·IV po-a.sw -r- IRL=4n DUALMDDE I.a ...i!... ...... ..... 1.2 THD and Gain va Frequency Av = 54dB,BW = 30kHz z F::'~~R_ r- 8.1 1.8 010203040&11&1178 80 TA-AMlJaT TEMPERATURE ('CI Ii 3 r-.... I.Z S Ii 1.0 ...... \, 4 ... i 1Io e/. 1x3111.·C/.~' I II 1.1 ..J..,.~.!..- - 3 dB Bandwidth V8 Voltage GaIn lor Stable Operation • - • 10 SUPP1.Y VOLTAGE IVI 12 TL/H17920-2 1-405 Typical Performance Curves (Continued) Total Harmonic Distortion vs Power Output 10 Power Dissipation vs Power Output Ik = 40 Power Dissipation vs Power Output Rl,: = 80 3.0 r-1--r...,...,...,...,--r--r-T"""1 . . a .............,...........'-''-'......................... o POWER' OUTPUT ClY/CHANIELI 3, 0 ..............-'--'....................................... 4 I POWER OUTPlJT ClYICHAINELI O.i 1.0 1.6 z.a POWER OUTPUT tw/CHANNELI TlIHI7920-3 Equivalent Schematic BOOTSTRAP 2 BOOTSTRAP,1 12(31 3191 ~--;-~--------~------~--~---------1--------;-~----'-O~ 1111< OUTPUT 1 o-+-HI-t lOOk lOOk 5(101 10k L-------..--~~~----~~~~~~~----~~~-----t--_+.~~------~~GNO 1(71 1(11) +INpUT 1 BYPASS , +INPUT 2 -INPUTZ 6, 9 No connection on LM1896 TLlH/7B20-4 () indicates pin number for \,.M2896 CQollection Diagrams Single-In-Une Package, +Vs Dual-In-Une Package • OUTPUTZ +lNl o BOOTSTRAP 2 -INI -IN2 ONo +1.2 LM188B OUTPUT 1 aiD +IN 1 o -IN 1 TLlH/7920-5 BOOTSTRAP 1 To~Vlew OUTPUT 1 , BYPASS TLlHI7920-6 Top View 1·406 r-----------------------------------------------------------------------------, r iii: .... Typical Applications (Continued) I ~ r iii: Cs ~O~~:~--~e-----~.Rl02 v, ~ CD G) 510 R2 5100 C2 + 10~FT TL/H17920-8 TLiH/7920-7 6,9 No oonnection on LM1896 () Indicates pin number for LM2896 FIGURE 2. Stereo Amplifier with AV = 200, BW = 30 kHz External Components (Figure 2) Components 1. R2, R5, R10, R13 2. R3, R12 3.Ro 4. C1, C14 Comments Setsvoltagegain,Av = 1 + R5/R2 for one channel and Av = 1 + R10/R13 for the other channel. Bootstrap resistor sets drive current for output stage and allows pins 3 and 12 to goaboveVs· Works with Co to stabilize output stage. Input coupling capacitor. Pins 1 and 14 are at a DC potential of Vs/2. Low frequency pole set by: 1 5. C2, C13 fL = -::--~-::::-c:2'ITRINC1 Feedback capacitors. Ensure unity gain at DC. Also a low frequency pole at: 1 6.C3,C12 7.C5,C10 8.C7 fL = 2'ITR2C2 Bootstrap capacitors, used to increase drive to output stage. A low frequency pole is set by: 1 fL = 2'ITR3C3 Compensation capacitor. These stabilize the amplifiers and adjust their bandwidth. See curve of bandwidth vs allowable gain. Improves power supply rejection (See Typical Performance Curves). Increasing C7 increases turn·on delay. Output coupling capacitor. Isolates pins 5 and 10 from the load. Low frequency pole set by: 1 10. Co 11.Cg fL = - - - - 2'ITCcRL Works with Ro to stabilize output stage. Provides power supply filtering. 1-407 ~r-------------------------------------------------------------------~ ~ :2 ..... (r; ....~ :=i Application Hints Amp 1 has a voltage gain set by 1 + RS/R2. The output of amp 1 drives amp 2 which is configured as, an inverting amplifier with unity gain. Because of this phase inversion in amp 2, there is a 6 liB increase in voltage gain referenced to Vi. The voltage gain in bridge is: AM Radios The LM1896/LM2896 has been designed fo fill a wide range of audio power applications. A common problem with IC audio power amplifiers has been poor signal-ta-noise performance when used in AM',~adio applications. In a typical radio application, the loopstick antenna is in ,close proximity to the audio amplifer. Current flowing in the' speaker and power supply leads can cause electromagnetic coupling to the loopstick, resulting in system oscillation. In addition, most audio power amplifiers are not optimized for lowest noise because of compensation requirements. If noise from the audio amplifier radiates into the AM section, the sensitivity and signal-ta-noise ratio will be degraded. The LM1896 exhibits extremely low wideband noise due in part to an external capaCitor CS which is used to tailor the bandwidth. The Circuit shown in Figure 2 is capable of a signal-to-noise ratio in excess of 60 dB referred to SO mW. Capacitor CS not' only limits the closed loop bandwidth, it also provides overall loop compensation. Neglecting C2 in F/{Jure 2, the gain is: 2(1 Vo = + RS) Vi R2 CB is used to prevent DC voltage on the output of amp 1 from causing offset in amp 2. Low frequency response is influenced by: fL=-_1_,2'ITRBCB Several precautions should be observed when using the LM1896/LM2896 in bridge configuration. Because the amplifiers are driving the load out of phase, an 80. speaker will appear as ,a 40. load, and a 40. speaker will appear as a 20. load. Power dissipation is twice as severe in this situation. For eXample, if Vs= 6V and RL = 80. bridged, then the maximum diSl!ipation is: ,V~ 2 62 Po=---X =--x2 Av(S) = S + AvCIJo S + ClJo R2+RS 1 where Av =~, ClJo = RSCS 20RL A curve of -3 dB BW (ClJo) vs All is shown in the Typical Performance Curves. Figure 3 shows a plot of recovered audio as a function of field strength in p,V/M. The receiver section in this example is an LM3820. The power amplifier is located about two inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are 118 inch from it. Referenced to a 20 dB SIN ratio, the improvement in noise performance over conventional designs is about 10 dB. This corresponds to an increase in usable sensitivity of about 8.S dB. BW = 0.707 2'ITRC where R = feedback resistor C = feedback capaCitor To measure the output voltage, a floating or differential mater should be used because a prolonged output short will over diSSipate the package. Figure 1 shows the complete bridge amplifier. Bridge Amplifiers The LM1896/LM2896 can be used in the bridge mode as a monaural power amplifier. In addition to much higher power output, the bridge configuration does not require output coupling capacitors. The load is connected directly between the amplifier outputs as shown in Figure 4. dB o- !!l -10 -30 get -40 CI " RECOVERED NOISE AT -50 II: ~ u lI! -80 / ~. l- '"", f'. =rr~ER -r C14 ~ R13 C1D T RI C2 T C13 TLlH17920-l0 Figure 4. Bridge Amplifier Connection Printed Circuit Layout less than 50 kO to prevent an input-output oscillation. This oscillation is dependent on the gain and the proximity of the bridge elements Rs and Cs to the (+) input. If the bridge mode is not used, do not insert Rs, Cs into the PCB. To wire the amplifer into the bridge configuration, short the capacitor on pin 7 (pin 1 of the LM 1896) to ground. Connect together the n\ldes labeled BRIDGE and drive the capacitor connected to pin 5 (pin 14 of the LM1896). Printed Circuit Board Layout Figure 5 and Figure 6 show printed circuit board layouts for the LM1896 and LM2896. The circuits are wired as stereo amplifiers. The Signal source ground should return to the input ground shown on the boards. Returning the loads to power supply ground through a separate wire will keep the THD at its lowest value. The inputs should be terminated in ~ ~ COMPONENT sIDe FIGURE 5. Printed Circuit Board Layout for the LM1896 1-409 TL/HI7920-ll Printed Circuit Layout (Continued) VIN1 BRIDGE INPUT INPUT GROUND COMPONENT SIDE TLlH/7920-12 FIGURE 6. Printed Circuit Board Layout for the LM2896 1-410 t!lNational Semiconductor LM2877 Dual4W Audio Power Amplifier General Description The LM2877 is a monolithic dual power amplifier designed to deliver 4W/channel continuous into 8n loads. The LM2877 is deSigned to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection and output Q point centering. The LM2877 is internally compensated for all gains greater than 10, and comes in an 11-lead single-in-line package. Features • 4W/channel • - 68 dB ripple rejection, output referred • - 70 dB channel separation, output referred • • • • • Wide supply range, 6-24V Very low cross-over distortion Low audio band noise AC short circuit protected Internal thermal shutdown Applications • • • • • • • Multi-channel audio systems Stereo phonographs Tape recorders and players AM-FM radio receivers Servo amplifiers Intercom systems Automotive products Connection Diagram (Slngle-ln-Llne Package) BIAS...!. • OUTPUT '-./ ,..!. GNO....! 0 INPUT'....! FEEDBACK ,2 *TAB"'!' 7 FEEOBACK2- 0 INPUT2...! GNO...! OUTPUT2 ..!!!. ".....!.!. TL/HI7933-1 Top View Order Number LM2877P See NS Package Number P11A 'Pin 6 musl be connected 10 GND. 1-411 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. 26V Supply Voltage Operating Temperature O"Cto +70"C Electrical Characteristics Vs = Parameter Total Supply Current 150"C Lead Temperature (Soldering, 10 sec.) 260"C Thermal· Resistance 9JC 8JA H.7V Input Voltage Distortion, THO Conditions 1 kHz, THO = 100/0, TTAB = 25·C = 20V = l8V = 12V, RL = 40. = 12V, RL = 80 f = Po Po Po f = Po Po Po 1 kHz, Vs = 20V = 50 mW/Channel = .1W/Channel = 2W/Channei 1 kHz, Vs = 12V, RL = 40 = 50 mW/Channel = 500 mW/Channel = lW/Channel Channel Separation CF = 50 p.F, CIN = 0.1 p.F~ f = 1kHz, Output Referred Vs = 20V, Vo = 4 Vrms Vs = 7V, Vo = 0.5 Vrms Noise Open Loop Gain 4.0 1.5 o~herwise specified. , Typ Max 25 50 mA 24 V 6 f = Vs Vs Vs Vs RL= 80 PSRR Power Supply Min PO=OW Output Swing Rejection Ratio 10"C/W 55·C/W 20V, TTAB = 25·C, RL = 80, Av = 50, (34 dB) unless Operating Supply Voltage Output Power/Channel -65·Cto + 150"C Storage Temperature Junction Temperature 4.5 3.6 1.9 1.0 0.1 0.07 0.07 0.25 0.20 0.15 Units W W W W 1 1 0/0 0/0 0/0 0/0 0/0 0/0 Vs-4 Vp_p . -50 -70 -60 dB dB -50 -68 -40 dB dB 2.5 p.V 0.80 mV 70 dB 15 mV CF = 50 p.F, CIN = 0.1 p.F, f = 120 Hz , Output Referred Vs = 20V, VRIPPLE = 1 Vrrns Vs = 7V, VRIPPLE = 0.5 Vrms Equivalent Input Noise Rs = 0, CIN = 0.1 p.F, BW = 20 Hz-20 kHz Output Noise Wideband Rs = 0, CIN = 0.1 p.F, Av = 200 Rs '= 0, f = 1 kHz, RL = 80 Input Offset Voltage Input Bias Current ". Input Impedance Open Loop DC Output Level Vs = 20V 9 50 nA 4 MO 10 11 V Slew Rate 2.0 V/p.s Power Bandwidth 65 kHz Current Limit 1.0 A Note 1: For operation at ambient temperature greater than 25"C. the LM2sn must be derated based on a maximum 150'C junction temperature using a thermal resistance which depends upon device mounting techniques. 1-412 Equivalent Schematic Diagram :: ... N "C ,...-;;"";"--il-O :::: ...... w I N .. -~ +' .. .. r-----~I-O~ +' ... "'C ...--~-+--o:::: .. ~-----~ ~ 1-413 ~ I r- ~ ~ r-------~----------------------------------------------------------------------__, Typical Performance Characteristics Power Supply Rejection Ratio (Referred to the Output) vs Frequency Device Dissipation vs Ambient Temperature 71 I ALUMIN. . 'IICkNElI_1/111NCH I 1K1~=~';'- .~.... !...r.!..- l&OCIW 1.4~~::::::~~ r-....I 1 o ... ..,. ~ hellN28° C/ • .\" .-e/w ~ ~~ L- ~ f;::: ~ I lIIIe I i.. . ~~~~+f~~~~ffH 10 ~ 31 5 20 i elW 111 II '" 10 HHiIltHlI-t-tt '".. 28 .. i 10 c 58 ..'"= AV=50 10 ! lDh~~~~HHffi-~+ffi~ 14 110 I~I,r D.O~I~,i,F 10 IS IIIII I.--" .... zoo ~ c:~~lr~J!f 10 Total Harmonic Distortion vs Frequency tOO ""Ii~lk "I I. 10te Total Harmonic Distortion vs Frequency .. .. i! n 10~~• • z .... ~ In is ii iii! , II'" c 50 r... I-ICI~I;I:·l ~fl FREQUENCV (HI) ", ... ~ lOOk /.". 4D0 &D Va .. 60G mVnns AV'50 FREOUENCV (H.) I -r - I- i= CB~;;W = 5O.F VCC - 7V 4D 10k 110 '"..S! 70 .. = 10 RL -In BOTH CHANNELS DRIVEN ! l-m 10te Channel Separation (Referred) to the Output) vs Frequency ii j~ilillj IIIII SUPt'LV VOLTAGE IV) ...il sao 1~'~~D.l~ VOUT=4Vrml Average Supply Current vs Power Output i vcc'zov 40 12 lk 100 FREOUENCY (Hz) 10 J~! ~ CBYPASS - ~ - t= 120 Hz • ! 70 ~ V~IP~LE ~ I.3:V"":, vRIPPU. a.6 v ..... "BYPASS -5 • C'N-O.I.F _ VRIPt'LE"1V ... 40 o ZO Channel Separation (Referred) to the Output) V$ Frequency ii ~~tRIPPLE -I V,.. I iill 3D 10k lk 100 10 -:.... I III o i FREQUENCY (Hz) NOISE~ ii III ~~+HI~~HH~~+ffi~ 40 i ~I+HtlIIII-++ 010203040506070 60 10 iiii ~ I Power Supply Rejection RatiO (Referred to the Output) vs Supply Voltage 5.. § 10 hl-H+HIlt-t~ 50~~iWt-~~m.~~~ .. lA-AMBIENT TEMPERATURE ('C) '".'" Power Supply Rejection Ratio (Referred to the Output) vs Frequency r--,""T"T1rrmr-r-rTTrmr-.rrn1'111 c D.t '" ~ ~ I- a 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ~ 1J~4V "f~ •a I I I I I 28V THD-3% lBY ~ J7" t:>n f'rHD - 10K 11 I I POWER DUTPUT !WICHANNEL) 11k a.D' lOOk 10 100 FREQUENCY (Hz) Power Dissipation vs Power Output RL - In I. lOa POWER OUTPUT (wICHANNEL) Open Loop Gain vs Frequency loa Vs - ZDV RL 'In .........:c .~ > I . r-. ·60 " 40 0 loa 1/ 1/ 12 V i ..~ " zo ~ II'" o lk 10fc lOOk FREQUENCY (Hz) tOOk 10k Output Swing vs Supply Voltage 18 RL .,an / 10 I Ik FREQUENCY IH,) 1M 4 a I ro u ~ n SUPPLY VOLTAGE (V) " " TLlHI7933-3 1-414 Frequency Response of Bass Tone Control iii 65 ... ~ :i1 !iii co ......z ~ 55 - 3& L 1/ ;;: ... co CD 2& > 15 ~ co ~ESPONSE 45 ~ z MAXIMUM BOOST TONE.l" CONTROL FLAT "- co S; l/ "'" 20 /MliXIMUM CUT RESPONSE I 50 100 ZOO 500 lk Zk 5k lDk 20k ' FREQUENCY (Hz) TL/HI7933-5 1·415 ~.r---------------------------------------------------------------------~ ii ~ Typical Applications (Continued) Stereo Amplifier with AV = 200 vso;.,....--. T D.lpF ~ ll11k TUHI7933-6 Non-Inverting Amplifier Using Split Supply 2k lOOk Y+~~ r; -& D.1 pF ':" 11 --, I 2k .& TYPICAL SPLIT SUPPLY TUH/7933-7 1-416 Typical Applications (Continued) Window Comparator Driving High, Low Lamps r---.---------.-----.---O+v ZIt VIN 10 TL/HI7933-8 Truth Table YIN High Low <%V+ %V+ to%V+ >%V+ Off Off On On Off Off Application Hints The LM2877 is an improved LM377 in typical audio applications. In the LM2877, the internal voltage regulator for the input stage is generated from the voltage on pin 1. Normally, the input common-mode range is within ±O.7V of this pin 1 voltage. Nevertheless, the common-mode range can be increased by externally forcing the voltage on pin 1. One way to do this is to short pin 1 to the positive supply, pin 11. The only special care required with the LM2877 is to limit the maximum input differential voltage to ± 7V. If this differential voltage is exceeded, the input characteristics may change. Figure 1 shows a power op amp application with Av = 1. The 100k and 10k resistors set a noise gain of 10 and are dictated by amplifier stability. The 10k resistor is bootstrapped by the feedback so the input resistance is dominated by the 1 MO resistor. lOOk 12V Z 10k >-+--OVOUT un 1M -12V TO. 'IlF TL/H/7933-9 FIGURE 1 1-417 I!!! :5~d pNational Sem,icon~uctor LM2878 Dual 5 Watt power Audio Amplifier ~" ;, '. .:' General Description Features The LM2878 is a high voltage stereo power amplifier designed to deliver 5W/channel continuous into 80 loads. The amplifier is ideal for use with low regulation power supplies due to the absolute maximum rating of 35V and its superior power supply rejection. The LM2878 is designed to operate with a low number of extemal components, and still provide flexibility for use in stereo phonographs, tape recorders, and AM-FM stereo receivers. The flexibility of the LM2878 allows it to be used as a power operational amplifier, power comparator or servo amplifier. The LM2878 is internally compensated for a" gains greater than 10, and comes in an 11-lead single-in-line package (SIP). The package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature. • • • • • • • Wide op~rating range 6V-32V 5W/chanrialoutput 60 dB ripple rejection, output referred 70 dB channel separation, output referred Low crossover distortion' AC shorl circuit protected In~rnal thermal s~utdown Applications '. Stereo phonographs •. AM-FM radio' receivers • Power op amp, power comparator • Servo amplifiers Typical Applications Frequency Response of Bass Tone Control I. iii &5 ~ .,-'a; § ., :: 5111k :; ..c ..f r~}4~ ":' STEREO CERAMIC CARTRIDGE I I I 55 i 45 :: 35 .~ 25 CONT1~~EFI~ ...... 1/ "7 ~ AAXIMUM f-- CUT RESr.O~.E 1 15 20 I 50 100 200 SOO Ik 2k 5. 10k 20k FREQUENCY (Hz) TL/HI7934-2 ":' I I I n 51. D.33.F I. + T MAXIMUM BOOST I-- ~ ~E~PONSE '-- ~ ~ ~ 'OO F • TL/H/7934-1 FIGURE 1. Stereo Phonograph Amplifier with Bass Tone Control 1-418 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 35V Input Voltage (Note 1) ±0.7V Operating TemPerature (Note 2) O"Cto +70·C Electrical Characteristics Vs = Parameter Total Supply Current Storage Temperature Junction Temperature -65·Cto + 150"C + 150"C + 260"C Lead Temperature (Soldering, 10 sec.) Thermal Resistance 8JC 8JA 10"C/W 55·C/W 22V, TTAB = 25·C, RL = 80, Av = 50 (34 dB) unless otherwise specified. Conditions Min Po= OW Operating Supply Voltage Typ Max Units 10 50 mA 6 32 V 5.5 1.3 W W f = 1 kHz, RL = 80 Po = 50mW 0.20 % Po = 0.5W 0.15 % Output Power/Channel f = 1 kHz, THO = 10%, TTAB = 25·C f = 1 kHz, THO = 10%, Vs = 12V Distortion 5 Po= 2W 0.14 % Output Swing RL = 80 Vs - 6V Vp·p Channel Separation CBYPASS = 50 p.F, CIN = 0.1 p.F f = 1 kHz, Output Referred Vo = 4Vrms -50 -70 dB CBYPASS = 50 p.F, CIN = 0.1 p.F f = 120 Hz, Output Referred VrfpPle = 1 Vrms -50 -60 dB -60 dB ±13.5 V PSRR Power Supply Rejection Ratio PSRR Negative Supply Measured at DC, Input Referred Common·Mode Range Split Supplies ± 15V, Pin 1 Tied to Pin 11 , Input Offset Voltage Noise Open Loop Gain 10 mV Equivalent Input Noise Rs = 0, CIN = 0.1 p.F BW=20-20kHz 2.5 p.V CCIR-ARM 3.0 p.V Output Noise Wideband Rs = 0, CIN = 0.1 p.F, Av = 200 0.8 mV 70 dB Rs = 510, f = 1 kHz, RL = 80 Input Bias Current Input Impedance Open Loop DC Output Voltage Vs = 22V 10 Slew Rate Power Bandwidth 3 dB Bandwidth at 2.5W Current Limit Note 1: ±O.7V applies 100 nA 4 MO 11 12 V 2 V/p.S 65 kHz 1.5 A to audio applications; for extended range, see Application Hints. Note 2: For operation at ambient temperature greater than 25"C, the LM2878 must be derated based on a maximum 15O'C junction temperature using a thermal reSistance which depends upon device mounting techniques. 1-419 Typical Performance Characteristics Power Supply Rejection Ratio (Referred to the Output) va Frequency Device Dlaalpatlon va Ambient Temperature 10 Power Supply Rejection Ratio (Referred to the Output) va Frequency 7D I AWIIIHIUM THlClNEIS - 11'11.8 ~ 1 ; .. §.. ..I... !.., J..- Xl-:-'::'~/;'- 11"1:/. 1.4~~;=:::~:~ I'--.JJ ~~ .J...~ "'.IW..... r- ~ ~ 1:50. 3dlll.-C/• .\" Nl iiii i FlEtAlII"C/W 1 o I I o 10 20 30 40 50 60 70 BO TA-AMBIENT TEMPERATURE ('C) i l!i t .. ~. 50 40 ?:i 31 I ttl .. .. ..... ; 1.3 V"'~.SIV{.,1 I-- f- co :f III I DO 50 li CI 40 6 10 14 11 22 I. 30 34 " SUPPLY VOLTAGE (VJ Total HarmoniC Distortion va Frequency 10.0 l I ~:: r:::I ~ 'I ~--oVOUT 10k TL/HI7934-5 2.m Top View 'Pin 6 must be connected 10 GND. 1M Order Number LM2878P See NS Package Number P11A -, - T O . ' /AF TLlH17934-6 FIGURE 2. Operational Power Amplifier, Av = 1 1-422 ,-----------------------------------------------------------------------------, r i: N External Components (Figure 3) CD 6.C4,C8 1. R2, R5, R7, R10 Sets voltage gain Av = 1 + R2/R5 for Input coupling capacitor. Pins 4 and 8 ..... CD one channel and Av = 1 + R10/R7 for are at a DC potential of Vs/2. Low fre2.R4,R8 3.RO 4.C1 5. C11 the other channel. Resistors set input impedance and supply bias current for the positive input. Works with Co to stabilize output stage. Improves power supply rejection (see Typical Performance Characteristics). Stabilizes amplifier, may need to be larger depending on power supply filtering. quency pole set by: 1 fL = 21TR4C4 7.C5,C7 Feedback capacitors. Ensure unity gain at DC. Also low frequency pole at: 8. Co 9. C2, C10 Works with RO to stabilize output stage. Output coupling capacitor. Low frequency pole given by: 1 fL = R1TRLC2 Typical Applications (Continued) 15V r--t---1"~ 10Dlc 1ft 2.m 2m MOTOR lOOk 2.m R1 510 TLlHI7934-8 FIGURE 4. LM2878 Servo Amplifier In Bridge Configuration TLlHI7934-7 FIGURE 3. Stereo Amplifier with Ay = 200 1-423 co iij ~ r---------------------------------------------------------------------------------, Typical Applications (Continued) r---t---------t-----t-~+v Truth Table lk VIN " <~V+ %V+ to 3/4V+ >3/4V+ 18 TUH17934-9 FIGURE 5. Window Comparator Driving High, Low Lamps 1·424 High Off Off On· Low On Off Off ,-------------------------------------------------------------------------, ~ a::: ..... CD N CI) f}1National Semiconductor LM2879 Dual 8W Audio Amplifier General Description The LM2B79 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, AM-FM stereo receivers, etc. The LM2B79 will deliver BW/channel to an Bn load. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. Features • • • • Avo typical 90 dB 9W per channel (typical) 60 dB ripple rejection 70 dB channel separation • • • • Self-centering biasing 4 Mn input impedance Internal current limiting Internal thermal protection Applications • • • • • • • Multi-channel audio systems Tape recorders and players Movie projectors Automotive systems Stereo phonographs Bridge output stages AM-FM radio receivers • Intercoms • Servo amplifiers • Instrument systems Connection Diagram and Typical Application Stereo Amplifier PlastiC Package o 11 10 9 8 7 6 5 4 3 2 1 ,... Y· OUTPUT 2 GIlD INPUT 2 FEEDBACK 2 Ne FEEDBACK 1 INPUT 1 GND OUTPUT 1 BIAS ,. III ,"""'-11----_-9--=++ a,,, +c, TOPYIEW TL/H/5291-1 """TI Order Number LM2879T See NS Package Number TA 11 B Till" ''''' -f t--='---6--9-"i+ u,., ,. 2.70 'TAB must be connected to. GND. o.ll'f r '=' TL/H/5291-2 FIGURE 1 1-425 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 35V Input Voltage (Note 1) ±0.7V Operating Temperature (Note 2) O"Cto + 70"C Storage Temperature Junction Temperature Lead Temp. (Soldering, 10 seconds) ESD rating to be determined. Thermal Resistance OJC OJA Electrical Characteristics Vs=28V, TTAB = Parameter 25°C, RL = so., AV = Conditions Total Supply Current Operating Supply Voltage Output Power/Channel Typ 12 6 6 f=1 kHz, THD=100/0, TTAB~25°C Distortion f=1 kHz, RL =80. Po=1 W/Channel Output Swing Channel Separation RL=8n CBYPASS=50 ,...F, CIN=0.1 ,...F f = 1 kHz, Output Referred Vo=4Vrms CBYPAss=50 ,...F, CIN=0.1 ,...F PSRR Negative Supply f = 120 Hz, Output Referred VriDDle=1 Vrms Measured at DC, Input Referred Split Supplies ± 15V, Pin 1 Tied to Pin 11 Units mA V W 1 0/0 8 Vs-6V Vp-p -50 -70 dB -50 -60 dB -60 dB ±13.5 V 10 mV 2.5 3.0 0.8 ,...V ,...V mV dB nA Mn Input Offset Voltage Equivalent Input Noise Rs=O,CIN=0.1,...F BW=20 -20 kHz CCIR-ARM Output Noise Wideband Rs=O, CIN=0.1 ,...F, Av=200 Rs=51O, f= 1 kHz, RL =80. Open Loop Gain Input Bias Current Input Impedance Max 65 32 0.05 PSRR Positive Su'pply Noise 1°C/W 43°C/W 50 (34 dB), unless otherwise specified. Min PO=OW Common-Mode Range - 65°C to +.150"C . 150"C 260"C Open Loop 70 100 4 DC Output Voltage Slew Rate Vs=28V 14 V Power Bandwidth 3 dB Bandwidth at 2.5W 2 65 VI,...s kHz Current Limit 1.5 A Note 1: The input voltage range is normally limited to ±O.7V with respect to pin 1. This range may be extended by shorting pin 1 to the positive supply. Note 2: For operation at ambient temperature greater than 25"C, the LM2879 must be derated based on a maximum 150"C lunctlon temperature. Thermal reslstanoe, lunctlon to case, is 3'C/W. Thermal resistance, case to ambien~ is 4IY'C/W. Typical Performance Characteristics 22 " 20 Device Dissipation vs Ambient Temperature INAW HEAT SINK 1. l! 1. 14 iii 12 1. !: .a .oC/W HfATSIHII .... ...... i r& ii ii 3 ....... R C • HEAT SINK [""'01 ......... I 2 0 10 20 3040l1lil1li7010 lA-AMBIENT TEMI'EllATURE (OCI !:; 10 Power Dissipation vs Power Output 11 1. I~s-zzv RL -m 10 c 8 10·C/W 4 Open Loop Gain vs Frequency 110 U Iial '" 4G Ii ~ ~ ZI D 110 rJ:.:1 •• ze 17 11;" ... "zzv • f-++4 3 2 1 0 It IIIIc lillie FREOUENCY (HzI 1M UV 7 5 D 2&V II THD 1",00 __ ;~.~2OV 4V J L I '=11cHz RL=ID All-III I 1 234 5 • 7 • • W POWER OUTPUT fW/CHAllNEL) TUH/5291-3 1-426 Typical Performance Characteristics Supply Current vs Output Power 800 l!i! .... ;:; ifi:!i U 700 800 ~ ~ l..oo" i""'" Uco ii 400 ill! r 300 I~ 200 100 ~i I o 80 ! ,.~ i~ Mv=50, iool~~ 70 Ei / Va = 28V, RL=8D,I=1 kHz I I 50 Il. i 0.5 0.2 0.1 ~ 0.05 !i2 D.D2 Av=50 RL=8D vee=r ~ Krr "-l\... .! ~ ~ ~" ~ z I 2D 10 10.0 5.0 Ii II 0.5 " I! 0.02 i""o~ Avj t 100 lk 10k FREOUENCY (Hz) lOOk 15 .... 10 I I-" ~ 1 1=1 kHz RL=8D 20 COl ", V L V 5 o 20 50 100 200 500 lk 2k 5k 10k 20k 10 15 20 25 30 35 y SUPPLY (V) FREOUENCY (Hz) Power Output/Channel vs Supply Voltage 10 ~ 11.0~.1~~ RL=B11 9 THO=10% I ..~ 0.1 1.0 POWER OUT (W/CHANNEL) ~ Output Swing vs Vs ~ 1/ "'" , E=i1¥z"B§m 0.1 10 25 Av=2OO~ III I II 40 lOOk Total Harmonie Distortion vs Power Output 0.01 0.01 :Ii! z: CmMS =50 ~F Vee=28V 50 Av=50 Your =4 VlIDS RL=B11 U 100 lk 1l1li FREOUENCY (Hz) ", 0.01 ~ .... 80 C VALUES ARE RIPPLE FIIIER ~ 0.2 1 1l'K..." N=~.~Y,.f", Il '" § !i! RL=8D Po=O.5W Vee =28V !:. ~:: 20 50 100 200 500 lk 2k 5k 10k 2Dk FREOUENCY (Hz) Iii h'"'kII.. i Total Harmonic Distortion vs Frequency 0.01 10 r- ~~ !IJ.ll~F' 111 5! II .JVs=2OV, I. Av=50 0.1 ~ 0.05 POio.rr-1II' 'r1 1 ~F 30 10 ~ 1 80 ;;; 11 40 o 01234567 OUTPUT POWER (W/CHANNEL) I 60 2D,.f Total Harmonic Distortion vs Frequency 10 Channel Separation (Referred to the Output) Frequency Supply Rejection vs Frequency !~ fillE oa .. "' .... 500 (Continued) I 10 ~ " 4 1 o ., ~ 6 8 10 12 14 16 18 20 22 24 26 28 SUPPLY YOIIAGE (V) TLlH/5291-4 1-427 LM2879 m J2 C ~' .. {(' CD :::J :::r CD 3 !. C:;' 5k c i' ca ji; 3 30k ... ~ 5k !!sUB GND03 06 NC .. 01 08 5 -FEEDBACK 1 TAB +INPUT 1"+INPUT2 7 GND09 -FEEDBACK 2 TUH/5291-5 Typical Applications Two-Phase Motor Drive o C2 0.1,.,. NC AI 27k C5 q R3 Uk 2.7 R4 27110 A7 10k 1'5,.,. + C7 2.7 TO. 1 I'F TL/H/5291-6 12W Bridge Amplifier 0.1 ,.,. SlaNAL INPUT ----III----~~---------___. 1M 1M 0.47,.,. 10k TUH/5291-7 1-429 Typical Applications (Continued) Simple Stereo Amplifier with Bass Boost 8.OZ"" 2.7 1lI0II 11 r 211 + ~ y. -, TO.,,.F ":' '1""" 811 ":' INPUT1~ C, 1lI0II 0.1 "" + '1'2III~F IllPUTZ~ 1lI0II ":' CF ..,"" I1 I I • I L 211 + 1lI0II T5~F 2.7 1lI0II -:r ":' 0.1,.F Power Op Amp (Using Spilt Supplies) lOOk y+ 10k 2.7 TO.,,.F y- 'I 0.1"" TUH/5291-9 1·430 TUH/5291-8 Typical Applications (Continued) Stereo Phonograph Amplifier with Bass Tone Control + T 'oo ,.F 0.33,.F lk 51k 510k lOOk 0.033 ,.F 10k }~m ~. I '=' STEREO CERAMIC CARTRIOOE I I I I I 500pF 1M '=' TO., Vs ,.F- + 1 50 ,.F 5OO,.F ffL" :'TO.,lm 1M ,.F- 510k lOOk lk + r 'oopF TLlH/5291-10 Frequency Response of Bsss Tone Control m :!!. 65~~~~~~--~~ ; 55 .... .. ~ 451-~~~a~ :s ~ ~ ~ 35 bl"'-H-ilO<. 25...,...jI9H- ~ 15~~~~~~~~~ 20 50 100 200 500 lk 2k 5k 10k 20k FREQUENCY (Hz) TL/H/5291-11 1-431 .- r--------------------------------------------------------------------------------, ~ i=s ~ =s IfINational Semiconductor LM2900/LM3900/LM3301 Quad Amplifiers General Description Features The LM2900 series consists of four independent, dual input, internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: ac amplifiers, RC active filters, low frequency triangle, squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage digital logic gates. • Wide single supply voltage 4 Voc to 32 Voc Range or dual supplies ±2 Voc to ±16 Voc • Supply current drain independent of supply voltage • Low input biasing current 30 nA • High open-loop gain 70 dB • Wide bandwidth 2.5 MHz (unity gain) • Large output voltage swing (V+ - 1) Vp-p • Internally frequeney compensated for unity gain • Output short-circuit protection. Schematic and Connection Diagrams v· Dual-In-Llne and S.O. "'-"-0 0--_.-.. . . . OUTPUT IIN- -INPUT 1.3mA .INPUT TL/HI7936-2 Top View CURRENT MIRROR TLlH/7936-1 Order Number LM2900N, LM3900M, LM3900N or LM3301N See NS Package Number M14A or N14A 1-432 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. LM2900/LM39oo LM3301 Supply Yoltage 28Yoc 32Yoc ± 16Yoc ± 14Yoc Power Dissipation (TA = 25'C) (Note 1) Molded DIP 1080mW 1080mW S.O. Package 765mW Input Currents, liN + or liN 20mAoc 20mAoc Output Short-Circuit Duration-One Amplifier Continuous Continuous T A = 25"C (See Application Hints) Operating Temperature Range -40"C to +85'C LM2900 -40"Cto +85'C LM3900 O'Cto +70'C Storage Temperature Range -65'Cto + 150"C -65'Cto + 150"C Lead Temperature (Soldering, 10 sec.) Soldering Information Dual-In-Line Package Soldering (10 sec.) Small Outline Package Vapor Phase (60 sec.) Infrared (15 sec.) 26O"C 260"C 260"C 260"C 215'C 215'C 220"C 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD tolerance (Note 7) 2000Y 2000Y Electrical Characteristics TA = 25'C, y+ = 15 Yoc, unless otherwise stated Parameter Open Loop Yoltage Gain Yoltage Gain LM2900 Conditions LM3900 LM3301 Min Typ Max Min Typ Max Min Typ Max Over Temp. AYo = 10Yoc Inverting Input Units Y/mY 1.2 2.8 1.2 2.8 1.2 2.8 Input Resistance 1 1 1 MG Output Resistance 8 8 9 kG Unity Gain Bandwidth Inverting Input Input Bias Current Inverting Input, y+ Inverting Input Slew Rate Positive Output Swing Negative Output Swing RL Output Yoltage Swing RL = 2k, y+ = 15.0Yoc YOUTLow YOUTHigh Output Source Current Sink Capability ISINK 30 y+ = Absolute Maximum Ratings 6.2 30 200 30 0.5 20 10 6.2 MHz 300 0.5 20 10 nA Vlp.s 6.2 10 0.09 0.2 mAoc - = 0, =0 liN = 10 p.A, IIN+ = 0 liN = 0, IIN+ = 0 RL = 00, liN IIN+ (Note 2) VOL 2.5 2.5 200 0.5 20 = 00 On All Amplifiers Supply Current VOUTHigh 2.5 = 5 Yoc = W,IIN - = 5p.A 13.5 13.5 0.09 29.5 0.09 29.5 0.2 18 6 10 5 18 0.5 1.3 0.5 1.3 0.5 1.3 5 5 ~ I Yoc 26.0 6 5 1-433 0.2 13.5 i mAce Electrical Characteristics (Note 6), V+ = 15 Voc, unless otherwis~ 'stated (Continued) .. ' ..' , Pa~ameter Conditions Power Supply Rejection TA Mirror Gain @ LM29bO Min Typ 0.90 , 0.90 = 25°C, f = 100 Hz '''' LMa90!) Max Min Typ 1.0 1.0 1.1 1.1 0.90 0.90 2 10 " "".!, Min 1.0 1.0 1.1 1.1 0.90 0.90 5 2 500 10 70 70 @ ~Mirror Gain @ 20 p,A to 200 p,A (Note 3) Mirror Current (Note 4) Negative Input Current TA = 25°C (Note 5) 1.0 1.0 Input Bias Current Inverting Input 300 300 .':{ > , .!:-M3301 Max 20 p,A (Note 3) 200 p,A (Note 3) ",!'! Typ Max 70 dB 1 1 1.10 1.10 5 2 5' 500 10 ,500 1.0 Units p.A/p,A % /lAoc mAoc nA Note 1: For operating at high temperatures, the device must be derated based on a 125"C maximum lunction temperature and a thermal reslstanoe 019Z'C1W which applies lor the device soldered In a printed circuR board, operating in a still air ambient. Thermal reslstanoe lor the S.O. package is 131~C/W. Note 2: The output'current sink capability can be increased lor 18fIle signal conditions by overdriving the inverting inpul This is shm." in the 'section on Typical Charecteristics. " Note 3: This spec indicates the current gain 01 the current mirror which Is used as the non-inverting input. " Note 4: Input VBE match between the non-Inverting and the Inverting Inputs occurs lor a mirror current (non-inverting input current) 01 approximately 10 pA. This is therelore a typical design center lor many 01 the application ci'rcuRs. Note 5: Clamp transistors are included on the IC to prevent the input voltages Irom swinging balow ground more than approximately - 0.3 Voc.TIlI> ~egative input currents which may result lrom large signal overdrive wRh capecilance input coupling need to be externally limited to values 01 approximately 1 ,rnA. Negative input currents in excess 014 rnA will cause the output voltage to drop 10 a low voltage. This maximum current applies to anyone 01 the input terminals. II more than one 01 the inpuf terminals are Simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; ..... lor example, the "Dilierentiator Circuif' in the applications section. Note 6: These specs apply lor -4O'C ,;; TA ,;; +B5"C, unless otherwise steted. Note 7: Human body model, 1.5 kfl in series with 100 pF. Application Hints When driving either input from a low-impedance ,source, a ,limiting resistor should be placed in, series with the input lead' to limit the peak input current. Currents as large as 20 rnA will not damage the device, but the current mirror on the, non-inverting input will saturate and cause a loss of mirror gain at rnA current levels-especially. at high operating temperatures. Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as im unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. Output short 'circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip diSSipation whIch will cause eventual failure due to excessive junction temperatures. For example, when operating from a well-regulated +5 Voe power supply at TA = 25°C with' a 100 kO shunt-feedback resistor (from the output to the inverting input) a short directly to the power supply will not cause catastrophic 'failure but the current magnitude will be approximately 50 rnA and the junction temperature will ' be above TJ max. Larger feedback 'resistqrs will reduce the current, 11 MO provides apprOximately 30 rnA, an open circuit provides 1.3 ,rnA, and a direct connection from the output to the non-inverting input will result in catastrophiC fllilure when the output is shorted to V + as this then places ·the base-emitter junction of the input transistor directly across the power supply. Short~circuits to grouncj will have magni: tudes of approximately 30 rnA and will not cause catastrophic failure at TA = 25°C. 0, • • • 1-434 Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is. likely only in breadboard hook-ups with long component leads and can be prevented by a more ,careful lead dress or by locating the non-inverting input biasing resistor close to. the IC. A quick check of this condition is to bypass the"non,inverting input to ground with a capacitor.. High impedance biasing resistors used in the non-inverting, input circuit make this input lead highly susceptible to unintentional AC signal pickup. 'Operation of this amplifier can be best understood by noticing that input currentS are differenced at the inverting-input terminal and this difference, current then flows thrQugh the external feedback resistor to' produce the output voltage. Common-mode current biasing is generally useful to allow operating with signal levels near ground or even negative as this maintliins the inputs' biased at + VSE. Internal clamp tran~istors, (see note 5) catc~-riegat~ve input VOltages 11t approXImately 0.3 Voc but the magnitude of current flow has to be limited by the external input network. For operation at high tel11perature, this limit should be approximately 100'p.A. This neY; "Norton" current-differencing amplifier can be used in most of the applications of a standard Ie op amp. Performance as a DC amplifier using only a single supply is not as precise' as a standard·IC op amp operating with split supplies but is"adequate,in many less critical applications. New functions are made possible with this amplifier which are useful in single power supply systems: For example, biasing can be designed separately from the AC gllin as was . shown in the "inverting amplifier," the "diffe~!lnce integrator"allows contrOlling the charging and the discharging of the integrating capaCitor with pOSitive voltages"and the "frequency doubling tachometer'" provides Ii simple circuit which reduces the ripple voltage on a tachometer output DC voltage. - Typical Performance Characteristics Open Loop Gain Voltage Gain llU ... i II C ..~ ... ~ NloLDAJ . i ~=5". III 'R: 4Q 'Zk I J 20 . 4Q > 111' la" la" lU' I - FREOUENCV 1Hz) Input Current ~ 2G II 15 RI. -- IT.' . ...5 co "\ i'- ..... I I'- .i'j , ," ~ 35 5t TA - TEMPERATURE It liS lU re) .! . ...~ .5 5 III !; I 5U 4Q ~ 31 11N~·'.uA T~ '~5"~ II ill 110 10 U 10' ......~ 15 ~ 15 TA -12&"C IU IS i""'... lD" ..i ~ co ·AI I < 111" ID" lD' 1.04 l.ao T. -2S'C 1 TA =85"C ~115'C I A I lU v" - 1& 15 ZQ 30 SUPPLY VOLTAGE IVn.,) Maximum Mirror Current II 1.12 !! !.UI C " I - FREQUENCV 1Hz) V 31 " !!!C e IIN+ .! II .. 12 .... ;0 co \, 10M TA~ 1A.' O'C 10 Mirror Gain I.. 1M ~ 1.1. tl 1" 2U v" -SUPPLV VOLTAGE IV.d Supply Rejection J. .! I " v+ -SUPPLY VOLTAGE (VDCI 10lk .... TA =2S2 C r I 11k Output Source Current .... 11.15101530 68 lk 1- FREQUENCV 1Hz) e I'N·"1h,A .1 100 IS TA " -a5"C lao I\... o 30 20 lU \ 4 Output Class-A Bias Current U . 5 ..:il t II I ~ I IU tOkSRLS"" I .! Ld::C ~ / 125 lZ v" -SUPPLVVULTAGEIV.cl Output Sink Currerit e II 95 14 co U -56 -21 Ii 1& T. ,Irc , T. -m'c f... T·'II5"C T.'15'C '(-I 5 35 --25 TA - TEMPERATURE I'C) II ~ ...... -&& 3Q Large Signal Frequency Response ~i5'C .! I 25 ZQ V+ -SUPPLY VOLTAGE (Vod 1. 10 4Q o L-.....L.__- ' - - - '__....I.........__..... • e 10 .... ~ r-~--+-_+--~-+--, 10 Supply Current 110 .... IUI----+-+-I----f.-+--i zu U lU' j I J "\ III' - f- r- 110 ~ !:; ""\ - Btl ~ U ! 5 Voltage Gain lUI - G.l1 -55 -It ~ i:l ""'- r--... ~O,BtI - i liN "'l11J,iA I ~ 35 65 15 TA - TEMPERATURE I'C) 115 .......... o -5t --25 35 IS r--.... IS 125 T. - TEMPERATURE I'C) TUH/7936-9 1-435 ~ I :5 I:5 r------------------------------------------------------------------------------------------, Typical Applications (V+ = 15 VDc) Inverting Amplifier Triangle/Square Generator --.l1M V' Oo-,\N'II-"""" ~ :5 2RZ 2M Ay" V' va. y+ YOCC="2 -~ AI TL/H/793B-3 TL/H/7936-4 Frequency-Doubling Tachometer Low VIN - VOUT Voltage Regulator ,-------------~----~~VO·VZ·VH + 39k Vz Ts"F >_._-oVODC TLlHI7936-5 510 TLlHI7936-6 Non-Inverting Amplifier Negative Supply Bla81ng Rl >-tHOVo f· y+ vocc="2 V+ Av"~ A1 TL/H/7935-7 1-436 - RZ Typical Applications (V+ = 15 Vee) (Continued) Low-Drift Ramp and Hold Circuit RAMP DOWN JL lOOk >-4......0vo RAMP UP JL lOOk 2M ZERO DRIFT 10M AoJ TLlH/7936-10 BI-Quad Active Filter (2nd Degree State-Variable Network) lOOk lOOk V,N o---+-""",M,-"'~ (_7 Voel lOOk 470k 10M 470k V' 1M Q=5O 10 = 1kHz V' Tl/HI7936-11 1-437 Typical Applications (V+ = ;, ,.:'t".' 15 Vocl (Continued) Voltage-Controlled Current Source (Transconductance Amplifier) V' lk 1M 1M +V'N o-..J\M_"---1 -'OOk I I 1M l I 10 =1 mAIVOL T V'N TUHI7936-12 HI VIN, Lo (VIN - YO) Self-Regulator - 10 -t.....o+Vo Vo =v ,N 1M TLlHI7936-18 TLlH/7936-17 Tachometer V· 180k flNfl-.Sl. >~~I--"'-O +vooe +V'N o-~N","""~-------4~ 200k TLlH/7936-19 1-439 'Allows Vo to go to zero. ~ ~ :I ..J r-----------------------------------------------------------------------------------------------, Typical Applications (V+ = 15 Vocl (Continued) Low-Voltage Comparator C; Power Comparator v+ g v+ No negative voltage limn if properly biased . ; ..J I:i LAMP lOOk +0.2 Vee TLlH/7936-21 TLlHI7936-20 Comparator Schmitt-Trigger 1M No positive voltaga limit TL/HI7936-22 TL/HI7936-23 Square-Wave Oscillator Pulse Generator 30k JOk >-....-oVo JL.J"L JL.rU 1= 1 kHz TL/HI7936-24 TL/H/7936-25 Frequency Differencing Tachometer' J9k ~---"'~D , 20k, VODe Voce = A (f, - TL/H/7936-26 1-440 Iv Typical Applications (V+ = 15 Vee) (Continued) Frequency Averaging Tachometer 39k I,rLJ"1. r1 r1 r L..J L..J >-4.....-0 20k Voce 20k o-.II,/'l,~ 12 .J Yo = A (1, + 12l VIN2 TL/H17936-27 Squaring Amplifier (WIHysteresls) BI-5table Multivibrator y' y' RESET 5M '\f\ ..f"L 200k 150k 200k 150k SET YARIABLE RELUCTANCE TRANSDUCER ..f"L 5M TLlH/7936-29 10M Y' TLlH/7936-28 Dlfferentlator (Common-Mode Biasing Keeps Input at + YaE) "OR"Gate 150k y' 15k A o--JW'\r-.., 15k Bo---"",.."...._ - -. . 30k 15k 15k TL/H/7936-31 v' o AV ..IlJl =2. 2 TL/H/7936-30 "AND" Gate y. Difference Integrator Uo--"",..,._ 1M +Y, 0--,.".,"'. .-4 24k A 0-........"""'"_ 24k 1M 24k 'Y 2 TLlHI7936-32 1-441 o--.J\oM_" Typical Applications (V+ = 15 Voc) (Continued) Low PasS Active Filter 1M 270k 1M ~ 300 pF fO=lkHz y+ OUTPUT BIAS ADJUST TL/H17936-34 Staircase Generator VBEBiasing - RESET .J1.. >-,,-oVo f· + V1NILn "2 Step/cycle TL/H17936-35 Vo - - YB. ' 0.5 Yoc YODe • YB• (1 + J\ R2 Rl 3k R2 Av'" -Fi1 ~) TUH/7936-36 Bandpass Active Filter D.lpF 39k fo=lkHz Q = 25 TUHI7936-37 1·442 .-----------------------------------------------------------------------------, r !: Typical Applications 01+ = 15 Voc} (Continued) i..... Low-Frequency Mixer Q r- !: w 8..... 1M r y+ !: ........---11 (f. - f,) w ....~ v, ~o Pt-F""",""'~.-t" + Vo I y. ~o ..PF-,\lf1,OO.,.k~~ y, >y. TL/HI7936-38 Free-Running Staircase Generator/Pulse Counter JDk 15Dk >-t....-oyo to S.lk PULSE GENERATOR 1M .IL RESET PULSE 51Dk ONf.SHOTWI INPUT COMPARATOR 1.2M t--w",,"--oy+ TUH/7936-39 1-443 Typical Applications (V+ = 15 Vee) (Continued) Supplying liN with Aux. Amp (to Allow Hi-Z Feedback Networks) 10M TL/HI7936-40 One-Shot Multlvlbrator 1M 2M lOOk PW '" 2 x loee 30k n 1.2M 'SpeedS recovery. TL/HI7936-41 Non-Inverting DC Gain to (0,0) OFFSETADJ 250k 1.5M 1M 1.5M TL/HI7936-42 1-444 r-------------------------------------------------------------------------------------~ Typical Applications (v+ = r- i: rgo 15 Voe) (Continued) Channel Selection by DC Control (or Audio Mixer) ..... r- i: :i.....o r- lOOk i: Co) Co) .... o lOOk 10M y' Vo i V+/2 lOOk y+ TLlHI7936-43 1.445 .- I ,-------------------------------------------------------------------------------------, Typical Applications (V+ = 15 Vee) (Continued) POWer Amplifier I y• .... 10M ~ 10M 10M .... :E y• 1M .Y'N 0--"1"",...... .- - - -. . TUH/7936-44 One-5hot with DC Input Comparator y. on y. '1 12 >-41.....-0 DUll SlOt :-u+ '1 12 OUTPUT 1 o-..-c~ 1M I.ZM Trips at Y,N .. 0.8 y+ Y,N must fall 0.8 y+ prior to 12 TUHI7936-45 High Pass Active Filter 410 pF TL/H/7936-46 1·446 Typical Applications (V+ = 15 Voc) (Continued) Sample-Hold and Compare with New + VIN 39k ~ 1~ 51k >~""-----4""-O VD, =V,N (HOLOI FOR I, < 1<;;1. CONTROL INPUT :..r-L HOLD SAMPLE ZERO DRIFT 10M AOJ 1M 20• ._----oV+ --------0 1M VO• = AOL IV ,N1tI - V'NIHOLDli FOR I,:;: t :;:12 TL/HI7936-47 Sawtooth Generator rL RESET 3k >-41.....0 Vo TUHI7936-49 1-447 ~ r---------------------~--------------------------------------------------------------, ~ CO) Typical Applications (V+ = 15 Voc) (Continued) :5 Phase-Locked Loop ~ :i ~ 12k 30k f'N ;SU :i V0'/\/V Vo,o-~~< fo 30k 30k >-1I.....- - -..-oQY02 y+ :.Jlf '0 TL/HI7936-49 Boosting to 300 mA Loads y+ (15VDC) ON :.s-L OFF Rl 420 OFF 1/:.: 10 I'N 2:0.1 mA +V'N - ~ 300mA R LAMP TLlH/7936-50 1-448 Split-Supply Applications ry+ = + 15 Voc & V- = -15 Voc) Non-Inverting DC Gain +15.00 VDC* 1M 2M ,-01\1""'-............ 200k 1M > ........-o±vo Av = 10 -15.00 VDC* ·Complementary Ir••king - TUHI7936-51 ACAmplHier +15Voc 1M !:~" 1M -15 VDC - fUM HL Vo TLlHI7936-52 1-449 t!lNational Semiconductor LM3045/LM3046/LM3086 Transistor Arrays Features ;' General Description • Two matched pairs of transistors VSE matched ± 5 mV Input offset current 2 p,A max at Ie = 1 mA monolithic substrate. Two of the transistors are internally ',\ connected to form a differentially-connected pair. The tran• Five general purpose monolithic transistors sistors are well suited to a wide variety of applications in low • Operation from DC to 120 MHz power system in the DC through VHF range. They may be • Wide operating current range used as discrete transistors in conventional circuits howev• Low noise figure 3.2 dB typ at 1 kHz er, in addition, they provide the very significant inherent inte- . .. Full military grated circuit advantages of close electrical and thermal temperature range (LM3045) -55°C to + 125°C matching. The LM3045 is supplied in a 14-lead cavity dualin-line package rated for operation over the full military temApplications perature range. The LM3046 and LM3086 are electrically • General use in all types of signal processing systems identical to the LM3045 but are supplied in a 14-lead mold.' operating anywhere in the frequency range from DC to ed dual-in-line package for applications requiring only a limVHF ited temperature range. . • Custom designed differential amplifiers • Temperature compensated amplifiers The LM3045, LM3046 and LM3086 each consist of five general purpose silicon NPN transistors on a common Schematic and Connection Diagram Dual-In-Line and Small Outline Packages SUBSTRAl;~ 14 13 12 11 10 OJ 4 TLlHI7950-1 Top View Order Number LM3045J, LM3046M, LM3046N or LM3086N See NS Package Number J14A, M14A or N14A 1-450 Absolute Maximum Ratings (TA = 25°C) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Power Dissipation: TA = 25°C TA = 25°C to 55°C TA> 55°C TA = 25°C to 75°C TA> 75°C Collector to Emitter Voltage, VCEO Collector to Base Voltage, VCSO Collector to Substrate Voltage, VCIO (Note 1) Emitter to Base Voltage, VEBO Collector Current, Ic Operating Temperature Range Storage Temperature Range Soldering Information Dual-In-Une Package Soldering (10 Sec.) LM3045 Each Total Transistor Package 300 LM3046/LM3086 Each Total Transistor Package 750 Units mW mW mW/oC mW mwrc 300 750 300 750 Derate at 6.67 750 300 Derateat8 15 20 20 5 50 - 55°C to -65°C to 15 20 20 V V V 5 50 V mA + 125"C + 150"C -40"C to - 65°C to 260"C + 85°C + 85°C 260"C Small Outline Package Vapor Phase (60 Seconds) 215°C Infrared (15 Seconds) 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Electrical Characteristics (TA = Parameter 25°C unless otherwise specified) Conditions Limits Limits LM3045, LM3046 LM3086 Min Typ Max Min Typ Units Max Collector to Base Breakdown Voltage (V(SR)CSO) IC = 10 ",A, IE = 0 20 60 20 60 V Collector to Emitter Breakdown Voltage (V~SRlCEO) Ic = 1 mA, Is = 0 15 24 15 24 V Collector to Substrate Breakdown Voltage (V(SR)Clb) Ic = 10 ",A, ICI = 0 20 60 20 60 V Emitter to Base Breakdown Voltage (V@RLeBO) Ie 10 p.A, Ic = 0 Collector Cutoff Current (ICBO) VCB = 10V, Ie = 0 Collector Cutoff Current (ICEO) Vce = 10V, Is = 0 Static Forward Current Transfer Ratio (Static Beta) (hFE) VCE = 3V {'C = 10mA Ic=1mA Ic = 10 ",A Input Offset Current for Matched Pair Q1 and Q21101 - 11021 VCE = 3V, Ic = 1 mA Base to Emitter Voltage (VSE) VCE = 3V {'E = 1 mA 'E = 10mA Magnitude of Input Offset Voltage for Differential Pair IVBE1 - VSE21 VCE = 3V, Ic = 1 mA Magnitude of Input Offset Voltage for Isolated Transistors IVBE3 - VBE41, IVSE4 - vSEsl, IVSES - VBE31 VCE = 3V, Ic = 1 mA Temperature Coefficient of Base to ~~E ) Emitter Voltage VCE = 3V, Ic = 1 mA (a Collector to Emitter Saturation Voltage (VCE(SAT) Is = 1 mA, Ic = 10 mA Temperature Coefficient of Input Offset Voltage VCE = 3V, Ic = 1 mA (a:;o) 5 7 0.002 5 40 7 0.002 0.5 100 40 nA 5 ",A 100 100 40 54 0.3 V 100 100 54 2 p.A 0.715 0.715 0.800 0.800 V 0.45 5 mV 0.45 5 mV -1.9 -1.9 mvrc 0.23 0.23 V 1.1 ",V/oC Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is Isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuH to maintsin isolation between transistors and to provide for normal transistor action. Electrical Characteristics (Continued) Parameter' , r Conditions Low Frequency Noise Figure (NFl Min Typ f =,1 kHz, VCE = 3V, Ic = 100 pA, Rs = ,1 kO Max Units 3.25 dB LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS Forward Current Transfer Ratio (hje> 110 (LM3045, LM3046) (LM3086) f = 1 kHz, VCE = 3V, Ic=1mA Short Circuit Input Impednace (hie> 3.5 kO Open Circuit Output Impedance (hoe) 15.6 "mho 1.8x10-4 Open Circuit Reverse Voltage Transfer Ratio (hrel ADMITTANCE CHARACTERISTICS Forward Transfer Admittance (Vtel 31 - j 1.5 f = 1 MHz, VCE = 3V, Ic=1mA Input Admittance (Vie> 0.3+JO.04 Output Admittance (veel 0.001 + j 0.03 See Curve Reverse Transfer Admittance (Vrel Gain Bandwidth Product (for) VCE = 3V, Ic = 3 rnA Emitter to Base Capacitance (~s) VES = 3V, IE = 0 0.6 Collector to Base Capacitance (CCS) VCS = 3V, Ic = 0 0.58 pF Collector to Substrate Capacitance (Cel) Ves = 3V,Ic = 0 2.8 pF 300 550 pF Typical Performance Characteristics Typical Collector To Base Cutoff Current vs Ambient Temperature for Each Transistor .. ;.:. 1 102 ~.. il. -I' !'~~ .. e II"' ~ 9, 1.- i... ill '"'"il ... "5 10' 128 I. =0 Veo - 111' c .,;:: 110 ; ~ 100 ....~ ~ 11 ..'" "~ Typical Static Forward Current-Transfer Ratio and Beta Ratio for Transistors Q1 and Q2 vs Emitter Current Typical Collector To Emitter Cutoff Current vs Ambient Temperature for Each Transistor lit' , 10 88 O 10 2& 7& 12& '00 T. - AMBIENTTEMPERATURE 1°C) JiliJ4 50 0 2& &0 12& 100 15 1 ;; :..r ;;: 0.9 ~ h" '0 jl..- / "FET 80 ~= ~il &V 8, 10"2 3 11111111!. I, Ih,. 'lOR Ih'ul 90 =~ 'i5 t====$ Ve• - 'OV 1.1 I 3v:'1II ,,!s·c hFU ;::c 1 TA V .01 I D.! C- 1 .1 TA - AMBIENT TEMPERATURE I C) ., rr- I 10 I. - EMITTER (mAl TLlH/7950-2 Typical Input Offset Current for Matched Transistor Pair Q1 Q2 vs C!)llector Current 10 ~ F c 5 ~ I, f:: I~ F ,co ... ~ f:: 11111rt~ F .0' ., ~ is , ~ i, J ,. r- .7 .1 [). 4 ... I .I J .S .a, IIIIIIIIIIIIIIIJ..,.; 111111111 111111111 ., , 3 ~ 2 !... , III , i'5! INPUT OFFSET VOLTAGE .4 Ie _ COLLECTOR IIOA) I VeE -3V T. -zrc ~ Fi "§ t:: ~ .01 .. Typical StatiC Base To Emitter Voltage Characteristic and Input Offset Voltage for Differential Pair and Paired Isolated Transistors vs Emitter Current 11 • I. - EMlmR (mAl TLlH17950-3 1·452 r-------------------------------------------------------------------------------------~ Typical Performance Characteristics riii: ~ (Continued) ~ UI ....... r- Typical Input Offset Voltage Typical Base To Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature .. ~ ~ ! ~~ .B ~ •6 I .J ~ to..... IE =3mAF.5 ImA O.,mA I -- ~ ~ ... ~~ I""'" ~ .5 .4 -75 -50 -25 0 ,-- C> 25 50 -- ~I .} I -75 -50 -25 0 25 ~ 15 . .. ~ III f-0.1kHz i-'" I kHz 10kHz o 50 75 lOB 125 .01 TA - AMBIENT TEMPERATURE C·CI TA - AMBIENT TEMPERATURE {-CI I 20 C> .1mA o 75 100 125 ,.,; lis = &aD" lA "ZS·C 25 . '" I~A .25 riii: VeE" 3V I I .50 ~ Typical Noise Figure vs Collector Current i.--" IE"tOlt .75 iii: 3D I VeE =3V .5 ~ e .1 • ,. VeE'" 3V .9 Characteristlca for Differential Pair and Paired Isolated Transistors vs Ambient Temperature Ie - COLLECTOR ConAl TL/H17950-4 Typical Noise Figure vs Collector Current Typical Noise Figure vs Collector Current Typical Normalized Forward Current Transfer Ratio, Short Circuit Input Impedance, Open Circuit Output Impedance, and Open Circuit Reverse Voltage Transfer RatiO vs Coftector Current 30 Veli"' 3V lis -IO,OOon TA '25"C II VeE ~3V 25 ! ZG lis = 1~+++Ht--t-+t+1fttt1 TA =21i"C 1-++I-tttHt-+-t+t-tt.LH 25 . ! 20 § \! D.lkHz/ 15 ~ I kHz !.. 10 V ~ ~ a .1 'm "II 10 .1 Ie - COLLECTOR CmAI .01 Ie - COLLECTOR CmAl Ie - COLLECTOR I..AI TL/H17950-5 40 Typical Forward Transfer Admittance vs Frequency T. =21i"C ~~ ,Ie Va; -3V "'lmA Typical Input Admittance lA·2S-C :1 ::!.! TA -WC I- VeE '3V VeE = 3V Ie -1 mA Ic"lmA U E 1; .. ,~:;J. ",u r-ii r\ l""- i~ "," I:~ I ~ I ! .~ 11111 o 1- FREOUENCY CMHz! 100 L ~ D. 10 "'./ I' u .. ... u - II Typical Output Admittance vs Frequency vs Frequency .1 10 1- FREOUENCY CMHzl 100 o .1 ~ 10 a.. 100 I-FREQUENCY CMHzl TL/H17950-6 1-453 Typical Performance Characteristics Typical Reverse Transfer' . AdmlHance vs Frequency "l;l'" w ~ i ~1 .5 !e Typical Gain-Bandwidth Product vs Collector Current .J W1~!I~TFJEJJEWWL- "~'" '" !" I- == ~J ":1 w"I ~ .J -1.5 I .. 10 1 f - '"..!:: 100 I 100 i-'" 5DD . .. C Ie "lmA -2 T.· 2i"C 6DD 400 ~ TA =25·C V~E "'3V ... .. _~e. '3~ I:; ~ -.5 1011 i ~ liD ,LE~ THAN 500 MHz \ , B: ~i (Continued) 3DD I 2DD 12345618910 FREQUENCY (MHzl Ie - COLLECTOR (mAl TL/H17950-7 1-454 ,-------------------------------------------------------------------------, t!lNational Semiconductor LM3080 Operational Transconductance Amplifier General Description Features The LM3080 is a programmable transconductance block intended to fulfill a wide variety of variable gain applications. The LM3080 has differential inputs and high impedance push-pull outputs. The device has high input impedance and its transconductance (gml is directly proportional to the amplifier bias current (IASel. • • • • • Slew rate (unity gain compensated): 50 V / /JoS Fully adjustable gain: 0 to gm • RL limit Extended gm linearity: 3 decades Flexible supply voltage range: ± 2V to ± 18V Adjustable power consumption High slew rate together with programmable gain make the LM3080 an ideal choice for variable gain applications such as sample and hold, multiplexing, filtering, and multiplying. The LM3080N and LM3080AN are guaranteed from O"C to +70·C. Schematic and Connection Diagrams r----1~---.------------_t~O+v (+/INPUTOO---------+--------..... 3 AMPLIFIER 00---1_-< D4 BIAS INPUT 5 L -____- - - - - - - - - - - -__~__~~-v 4 Dual-In-Line Package NC NC HINPUT v+ (+/ INPUT OUTPUT 5 v- AMPLIFIER BIAS INPUT TL/HI7148-2 Top View Order Number LM3080AN, LM3080M or LM3080N See NS Package Number M08A or N08E 1-455 TL/HI7148-1 ~ I Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Otflce/Distributors for availability and specifications. Supply Voltage (Note 2) LM3080 LM3080A DC Input Voltage Power Dissipation Output Short Circuit Duration Differential Input Voltage " O"C to + 70"C Storage;Temperature'Range 250mW -65'Cto + 150"C Lead Temperature (Soldering, 10 sec.) ±5V 2mA +Vsto -Vs Indefinite Operating Temperature Range LM3080N or LM3080AN ±18V ±22V , " Amplifier Bias Current (IABC) 260"C Electrical Characteristics ,(Note 1) Min Input Offset Voltage Over Specified Temperature Range IABC = 5poA Input Offset Voltage Change LM3080A LMao"O Conditions Parameter Typ Max 0.4 5 6 Min 0.3 Max 0.4 2 5 2" mV mV mV 0.3 0.1 Units Typ 0.1 3 mV Input Offset Current 0.1 0.6 0.1 0.6 poA Input Bias Current 0.4 1 5 7 0.4 1 5 8 poA poA 9600 13000 7700 4000 9600 12000 pomho pomho 5 500 650 3 350 5 500 7 650 poA poA 5 poA ,;; IABC ,;; 500 poA Over Specified Temperature Range Forward Transconductance (gm) Peak Output Current Over Specified Temperature Range 6700 5400 RL = 0, IABC RL';'; 0 350 = 5 poA RL = 0 Over Specified Temperature Range Peak Output Voltage Positive Negative RL RL = = 00,5 poA ,;; IABC';; 500 p.A 00,5 poA,;; IABC';; 500 p.A " 300 +12 -12 Amplifier Supply Current Input Offset Voltage Sensitivity Positive Negative +14.2 -14.4 +12 -12 1.1 20 20 aVOFFSET/aV+ aVOFFSET/aV- Common Mode Rejection Ratio Common Mode Range Input Resistance Magnitude of Leakage Current IABC Differential Input Qurrent IABC = = = 1.1 mA 20 20 150 150 poVIV poVIV 110 80 110 ±12 ±14 V 10 26 10 26 kO Unity Gain Compensated ' Note 1: These specifications apply for Vs = ± ISV and TA = 2S'C, arnplHier bias current (lABel Note 2: Selection to supply voltage above ±22V. contect the faCtory. 1·456 V V ±14 ±4V .. +14.2 -14.4 80 0 O,lnput 150 150 poA ±12 Open Loop Bandwidth Slew Rate 300 dB 0.2 100 0,2 5 0.02 100 0.02 5 nA nA 2 2 MHz 50 50 V/pos = soo p.A. unless otherwise specifled. Typical Performance Characteristics Input Offset Voltage 5 Input Offset Current 103~~fi vS"~li v Input Bias Current 104 .! +lzrc w . .~... CD !:; > ~ -1 -Z -3 JII' 10 . . . . +1~~F -5 -7 1111111 -I 0.1 1.0 laoO III '.1 ;;; ... 10 1.8 1110 , I" 10 1.0 1.1 lDOD 1.0 10 11100 100 IABC-AMPLIFIER BIAS CURRENT (,.AI 'AIC-AMPLIF'ER lIAS CURRENT (,.AI Peak Output Voltage and Common Mode Range Peak Output Current 15 104 .... ... ...... ,. 11110 103 :l! B 102 ~ c ~ IIIIIY 1 0.1 1.0 IIiDI 1. ""III .. ~~ J. - ww ~, ""'I "'" ,.. 111111 .... :!= VOUT VCMR 14 . ...~~ 13 D VS=·,5V RLOAO·· TA·,zrc ... ~1-13 ..II VCMR ~5 -14 VOUT 1111111 laoO 1.0 •. 1 'ABC-AMf'lIFIER ,BIAS CURRENT Wli 1111111 10 100 lD1D 1.0 IABC-AMI'L1FIER BIAS CURRENT Wli Total Power Dissipation Input Leakage Vs''''V -Vz· VI' vp 3BV ~w ..~.. ..... I/, c w ov= = CD C 10 :: +12&OC / 183 ! 101 w CD ~ ~ 1.0 = t; . !i ~ 102 c 8DO 7ao II. - 400 i 300 11111 1~I.\~c 1l1IIr .z~ IIIIll SOD iii ~ 0.1 1000 100 ~~i,'c 200 100 0.01 1.0 10 lao 1000 'AIC-AMPLIFIER lIAS CURRENT (pAl 0.1 1.0 10 lao 'ABC-AMPLlFIER BIAS CURRENT Wli 1000 o 1.1 1.0 10 lao lDOD 'AIC-AMPLIFIER BIAS CURRENT Wli TL/HI7148-3 1-457 Typical Performance Characteristics (Continued) Input and Output Capacitance Output Resistance 104 ' 11IIII '8 III~I "" CiN COUT VS 7 ±IIV I • iniitici 0.1 1.0 1. . . . 10 100 lao 111110 IABC-AMPLlFIE~ 'ABC-AMPLlF'ER BIAS CURRENT (pAl 111110 BIAS CUR,RE,NT (pAl TLlH17148-4 TLlHI7148-5 Leakage Current Test Circuit Unity Gain Follower +15 +38 V INPUT o--4I~"'VV\I-~-'" TL/H17148-8 Differential Input Current Test Circuit -15 ' 10k 0.001 ~F TL/HI7148-8 TLlHI7148-7 1-458 r-------------------------------------------------------------------------, I!J1National Semiconductor ~ ~ w LM3303/LM3403 Quad Operational Amplifiers General Description The LM3303 and LM3403 are monolithic quad operational amplifiers consisting of four independent high gain, intemalIy frequency compensated, operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. Features • Input common mode voltage range includes ground or negative supply • Output voltage can swing to ground or negative supply Connection Diagram ~ !!: w ~ S • Four internally compensated operational amplifiers in a single package • Wide power supply range single supply of 3.0V to 36V dual supply of ± 1.5V to ± l8V • Class AB output stage for minimal crossover distortion • Short circuit protected outputs • High open loop gain 200k • LM741 operational amplifier type performance Applications • Rlters • Voltage controlled oscillators Order Information 14-Lead DIP and SO-14 Package TL/H/l0064-1 Device Code Package Code Package Description LM3303J LM3303N J14A N14A Ceramic DIP Molded DIP LM3303M LM3403J LM3403N LM3403M M14A J14A N14A M14A Molded Surface Mount Ceramic DIP Molded DIP Molded Surface Mount Top View Equivalent Circuit ('14 of Circuit) OUT .-----------~--------~----~--~----~--_r~--_4~--~ • +IN-I--------++------. -IN L--4~----~~~~--~~--~~--~--~----~~~----4_--~~~~ TUH/l0064-2 1-459 Absolute Maximum Ratings ,i~ ", ," If Military/Aerospace specified devices ara required, please contact the National Semiconductor Sales Office/Distributors for availability and speclflcetlons. Storage Temperature Range Ceramic DIP -65·C to + 175·C -65·Cto + 150·C Molded DIP and SO-14 Internal Power Dissipation (Notes 1, 2) 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage between V t and VDifferentiallnput,Voltage (Note 3) Operating Temperature Range Industrial (LM3303) , Commercial (LM3403) Input Voitage ESD Tolerance -400Cto +85·C O·Cto +700C Lead Temperat\lre Ceramic DIP'(Soldering, 60 sac.) Molded DIP and SO-14 (Soldering, 10 sec.) ,,'1.36W 1.04W 0.93W S6V ±30V (V-) - 0.3VtoV+ (To Be Determined) 3000C 265·C " LM33()3 and LI\II3403 Electrical Characteristics TA = Symbol Parameter 25"C, Vee = ± 15V, unless otherwise specified LM3303 Conditions Min LM3403 Typ Max Min Units ' Typ Max VIO Input Offset Voltage 2.0 8.0 2.0 8.0 mV 110 Input Offset Current 30 75 30 50 nA 118 Input Bias Current 200 500 200 500 ZI Input Impedance lee Supply Current Vo =OV, RL = CMR Common Mode Rejection Rs';: 10kO VIR Input ,,91tage Range PSRR Power Supply Rejection Ratio los Output Short Circuit Current (Per Amplifier) (Note 4) Avs Large Signal Voltage Gain VOP Output Voltage Swing TR " Transient Response "";" 0.3 1.0 2.8 00 0.3 ,7.0 1.0 2.8 nA MO 7.0 rnA 70 90, 70 90 dB +12V toV- + 12.5V tQV- +13V toV- + 13.5V toV- V 30 150 p,VN ±10 ±30 ±45 rnA 200 20 200 ±12 12.5 ±12 +13.5 ±10 12 ±10 ±13 30 150 ±10 ±30 ±45 Vo = ±10V, RL ~ 2.0 kO 20 RL = 10 kO RL = 2.0kO' V/mV V Rise Timel Fall Time Vo = 56mV, Av = 1.0, RL = 10 kO 0.3 0.3 p,s Overshoot Vo = 5OmV, Av= 1.0,RL= 10kO 5:0 5.0 % BW Bandwidth Vo = 50mV, Av ~ 1.0,RL = 10kO 1.0 1.0 MHz SR SleYi,Rate VI = -10Vto +10V, 'Av = 1.0 0.6 0.6 V/p,s : ,. , ., 1-460 LM3303 and LM3403 (Continued) Electrical Characteristics TA = 25'C, Vee = ± 15V, unless otherwise specified The following specifications apply for -40'C :;;: TA :;;: + 85'C for the LM3303, and O'C :;;: TA :;;: + 70'C for the LM3403 Symbol Parameter LM3303 Conditions Min VIO Input Offset Voltage t:NIOIIH Input Offset Voltage Temperature Sensitivity 110 Input Offset Current alIO! aT Input Offset Current Temperature Sensitivity Typ LM3403 Max Min Typ 10 10 10 10 250 liB Input Bias Current Large Signal Voltage Gain Vo = ±10V, RL ~ 2.0kO VOP Output Voltage Swing RL 50 1000 = 2.0kO mV /LvrC 200 50 Avs Units Max nA pAl'C 800 nA 15 15 V/mV ±10 ±10 V LM3303 and LM3403 Electrical Characteristics TA = 25'C, V + = 5.0V, V - = GND, unless otherwise specified Symbol Parameter LM3303 Conditions Min Typ LM3403 Max Min Units Typ Max 2.0 8.0 mV nA VIO Input Offset Voltage 110 Input Offset Current 75 30 50 lIB Input Bias Current 500 200 500 nA Icc Supply Current 7.0 2.5 7.0 mA PSRR Power Supply Rejection Ratio 150 /LVN 8.0 2.5 150 Avs Large Signal Voltage Gain RL ~ 2.0kO VOP Output Voltage Swing (Note 5) RL CS Channel Separation = 20 200 20 10kO 3.3 3.3 5.0V:;;: V+ :;;: 30V, RL = 10kO (V+) -2.0 (V+) -2.0 1.0 Hz :;;: f :;;: 20 kHz (Input Referenced) mW Note 3: For supply voltage less than SOV between V + and V -, the absolute maximum input voltage is equal to the supply voltage. Note 5: Output will SWing to ground. 1·461 dB rc, the 14L·Molded DIP at B.S mW rc, and the 80-14 at 7.5 mW/'C. Note 4: Not to exceed maximum package power dissipation. V!mV V -120 -120 Note I: TJ Max - 15O"C for the Molded DIP and 80-14, and 1 75'C for the Ceramic DIP. Note 2: Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 200 • Typical Performance Characteristics Open Loop Frequency Response ~ Vcc=i15V 120 H nm:m+mlm~:;i11w] 100 1-+I0000000HH-+H!-f+HIl+ TA =25tC ~ ~ ~ " Ifl III I'. _ IV IV V IV IV ~ ~ ~ ,.. ... ....... ~ ..... M01E:QulAB~""'produ -20WWUU~~~~~~U 10 30 Ay=I00 ~ 1.0 Output Voltage vs Frequency Sine Wave Response i 20 ~ 15 ~ 10 i M 1"-.... _ -M 50JII/IYN 100 1.0k 10k lOOk 1.0W Vcc=i15V TA=25OC 1\ =,10k4 25 1.0k FREQUENCY (Hz) 10k lOOk lJl1j ,F1IEQUENCY (Hz) Output Swing vs Supply Voltage Input Bias Current vs Supply Voltage Input Bias Current vs Temperature TA =25"C «10 Vcc':!.~ 160 r-r....,...,..,..-.-r-r-;-..." 300 200 / 1/ o o 2.0 4Jl6.0 6.0 10 12 14 16 18 20 SUPPLY VOLTAGE (tV) ......... .... 100 o -75-55-35-15 5 25 45 65 65 105125 TEWPEftATURE (OC) 150 '---'--"--'--'-J.....'---'--"--'--' o 2.O,,4JI 6.0 6.0 10 12 14, 16 18 20 SUPPLY VOLTAGE (tV) TLlH/l0064-3 1·462 Typical Applications Multiple Feedback Bandpass Filter Comparator with Hysteresis R2 R1 vl----I Rl VIL ~ R1 + R2 (VOL - VREF) + VREF TL/H/10064-4 10 ~ Rl VIH ~ Rl + R2 (VOH - VREF) + VREF center frequency BW ~ Bandwidth R in kll Cin f'F Q Rl H - Rl + R2(VOH - You ~.i< 10 BW High Impedance Differential Amplifier Cl ~ C2~9 Rl ~ R2 ~ 3 1 R3 ~ 902 - 1 } Using scaling lactors in these expressions. If source impedance is high or varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. Design example: given: Q ~ 5, fo ~ 1 kHz Let Rl ~ R2 ~ 10 kll then R3 ~ 9(5)2 - 10 R3 ~ 215 kll R3 R4 C~~-16nF 3 . R5 R7 Wein Bridge Oscillator 50k4 TLlH/10064-7 VOUT ~ C(1 + a + b)(V2 - VI) ~ '" ~ lor best CMRR R5 R7 10kll Rl - R4 R2 - RS .' R6 ( 2Rl ) 1+RS R3 GalO~- ~C(I+a+b) AC Coupled Non-Inverting Amplifier Rl lOOkll TL/H/10064-5 R2 1 Mil 10 - _1-forlo -1 kHz 2".RC R - 16 kll C ~ 0.01 f'F TL/H/1OO64-9 AV-l+~ Rl Av - 11 (as shown) 1·463 • Typical Applications (Continued) AC Coupled InverDng Amplifier Voltage Reference ~ V+ l00ko. y,r R2 10ko. Co Vo 1~ Rl 10ko. 10ko. R2 l00ko. R V+ 0 + Cl 10J.'F .I. 00 V ~ TUH/l0064-10 2Vp..p vo _ _R_l_ ( _ v+ asshown) Rl + R2 T 2 vo-!v+ 2 TUH/l0064-8 AV-l!. Rl Av - 10 (as shown) Ground Referencing a Differential Input Signal Pulse Generator 30R~0. Rl 1110. lN91. R2 1110. R3 1110. +VCII R. 1 MJI; - I VI-~IIr-""""'_-"\I¥r-"'" I R3 100ko. I TUH/l0064-11 :J1.IL TL/H/l0064-14 Voltage Controlled Oscillator Rl 100ko. +Voo--~~~-'--~~ (NOTE 1) ru- 51 k.D. 10 ko. OUT 1 R2 50k.D. AA. OUT2 51ko. 10ko. TUH/l0084-12 Note 1: Wide Control voltage Range: ov.: Veo': 2 (V ±1.5V) 1-464 r-----------------------------------------------------------------------------'r ~ Typical Applications (Continued) w ~ ....w Function Generator TRIANGLE WAVE OUT E R2 300k.o. ~ ,.....--'lM-....-SQUARE WAVE Q OUT R3 75k.o. W Rl c 100k.o. Rf (NOTE 2) Rl + R2. TL/H/l0064-13 R2Rl + Rl Nota 2: 1= 4CRtRi II R3 = R2 BI·Quad Filter R R C 100kD. R3 Rl R2 Cl __~---. E- NOTCH OUT TL/H/l0064-15 Example: O=BW 10 = Center Frequency Gain TN = Bandpass Notch Gain TBP 10 = _1_ 2"RC' Rl -OR = 1000 Hz BW = 100 Hz TBP = 1 TN = 1 R = 160 kll Rl = 1.6 Mil R2 = 1.6 Mil R3 = 1.6 Mil C = 0.001 ",F 10 where: VREF = .!.vcc 2 R2=~ TBP R3 Cl ~ I I = TNR2 = 10C 1-465 ~ r---------------------------------------------------------------------~ ~d ~ pNational Semiconductor LM3875 Overture™ Audio Power Amplifier Series High-Performance 56W Audio Power Amplifier General Description Features The LM3875 is a high-performance audio power amplifier capable of delivering 56W of continuous average power to an 80 load with 0.1% (THO + N) from 20 Hz-20 kHz. • • • • The performance of the LM3875, utilizing its Self Peak Instantaneous Temperature ("Ke) (SPIKe) Protection Circuitry, puts it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe Protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including shorts to the supplies, thermal runaway, and instantaneous temperature peaks. The LM3875 maintains an excellent Signal-to-Noise Ratio of greater than 95 dB(min) with a typical low noise floor of 2.0 /LV. It exhibits extremely low (THO + N) values of 0.06% at the rated output into the rated load over the audio spectrum, and provides excellent linearity with an IMO (SMPTE) typical rating of 0.004%. 56W continuous average output pOwer into 80 100W instantaneous peak output power capability Signal-to-Noise Ratio > 95 dB (min) Output protection from a short to ground or to the supplies via internal current limiting circuitry • Output over-voltage protection against transients from inductive loads • Supply under-voltage protection, not allowing internal biasing to occur when !VEE! + !Vee! ,;; 12V, thus eliminating turn-on and turn-off transients • 11 lead TO-220 package Applications • • • • • Component stereo Compact stereo .Self-powered speakers Surround-sound amplifiers High-end stereo TVs Typical Application Connection Diagram V+ Plastic Package (Note 8) INPUT :1~ 11 10 I Re 1 kn 1ft 10knl 0 """ CD ('I) :i! .... .:E 4 3 VRf1 20 Ne Ne Ne VIN VIN + Ne Ne VOUTPUT Ne V+ TL/H/II449-2 Top View kn Order Number LM3875T or LM3875TF See NS Package NumberTA11B for Staggered Lead Non-Isolated Package or TF11B for Staggered Lead Isolated Package Ri lkn TUH/I14~9-1 FIGURE 1. Typical Audio Amplifier Application Circuit 'Optional componen1S dependent upon specific design requiremen1S. Refer to the External Compo. nents Description section for a component function description. 1-466 Absolute Maximum Ratings (Notes 1,2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage Iv+1 + lv-I (No Signal) 94V 84V Supply Voltage Iv+1 + lv-I (Input Signal) (V+ or V-I and Common Mode Input Voltage Iv+1 + lv-I:;:; 80V 60V Differential Input Voltage Output Current Power Dissipation (Note 3) ESD Susceptibility (Note 4) Junction Temperature (Note 5) Soldering Information T package (10 seconds) 150"C 260"C -40·Cto + 150"C Storage Temperature Thermal Resistance 8JC 8JA 1·C/W 43"C/W Operating Ratings (Notes 1, 2) Internally Limited 125W Temperature Range -20"C:;:; TA:;:; +85"C TMIN:;:; TA:;:; TMAX Supply Voltage Iv+1 + lv-I 20Vto84V Note: Operation is guaranteed up to 84V, however, distortion may be introduced from the SPIKe Protection Circuitry when operating above 70V if proper thermal considerations are not taken into account. Refer to the Thermal Considerations section for more information. (See SPIKe Protection Response) 2500V Electrical Characteristics (Notes 1, 2) The following specifications apply for V+ = + 35V, V- = -35V with RL = 80 unless otherwise specified. Limits apply for TA = 25·C. LM3875 Symbol Parameter Conditions Typical Limit (Note 6) (Note 7) Iv+1 + lv-I Power Supply Voltage ""PO Output Power (Continuous Average) THO + N = 0.1% (Max) f=1kHz,f=20kHz Peak Po Instantaneous Peak Output Power THO + N Total Harmonic Distortion Plus Noise 40W, 20 Hz :;:; f :;:; 20 kHz Av = 26 dB "SR Slew Rate (Note 9) VIN = 1.414 Vrms, f = 10 kHz Square-wave, RL = 2 kO "1+ Total Quiescent Power Supply Current VCM = OV, Vo = OV, 10 = 0 rnA 56 Units (Limits) 20 84 V (Min) V (Max) 40 W(Min) 100 W 0.06 % 11 5 V/,..s(Min) 30 70 rnA (Max) 1 10 mV(Max) Input Offset Voltage VCM = OV, 10 = 0 rnA Ie Input Bias Current VCM = OV, 10 = 0 rnA 0.2 1 ,..A(Max) los Input Offset Current VCM = OV, 10 = 0 rnA 0.01 0.2 ,..A(Max) 10 Output Current Limit Iv+1 = lv-I = 10V, ton = 10 ms, Vo = OV "Vod Output Dropout Voltage (Note 10) Iv+ - vol, V+ = 20V, 10 = +100 rnA Ivo - v-I, V- = -20V, 10 = -100 rnA ·PSRR Power Supply Rejection Ratio V+ = Vern = V+ = Vern = "Vos 'CMRR 40Vto 20V, V- = -40V, OV,lo = 0 rnA 40V, V- = -40Vto -20V, OV, 10 = 0 rnA 6 4 A (Min) 1.6 2.7 5 5 V (Max) V (Max) 120 85 120 85 dB (Min) Common Mode Rejection Ratio V+ = 60Vto 20V, V- = -20Vto-60V, Vern = 20Vto -20V, 10 = 0 rnA 120 80 dB (Min) 120 90 dB (Min) 8 2 MHz (Min) 2.0 8.0 ,..V(Max) "AvOL Open Loop Voltage Gain Iv+ I = lv-I = 40V, RL = 2 kO, l! Vo = 60V GBWP Gain-Bandwidth Product Iv+1 = lv-I = 40V fo = 100 kHz, VIN = 50 mVrms ··eIN Input Noise IHF - A Weighting Filter RIN = 6000 (Input Referred) 'cc Electricat Test; refer to Test Circu~ #f. "AC Electrical Test, refer to Test Circu~ #2. 1-467 I U) Ii ....::::IE r------------------------------------------------------------------------------------------, Electrical Characteristics (Notes 1, 2) The following specifications apply for V+ = +35V;.V- .,;. -35Viwfth RL = ao unless otherwise specified. l.imits apply for TA = 25°C. (Continued) LM3875 Symbol SNR IMD Parameter Signal-to-Noise Ratio Intermodulation Distortion Test Conditions Typical (Note 6) Umit (Note 7) Units (Umits) Po = 1W, A-Weighted, Measured at 1 kHz, Rs = 250 9adB dB Po = 40W, A-Weighted, Measured at 1 kHz, Rs = 250 114dB dB Ppk = 100W, A-Weighted, Measured at 1 kHz, Rs = 250 122dB dB 60 Hz, 7 kHz, 4:1 (SMPTE) 60 Hz, 7 kHz,1:1 (SMPTE) 0.004 0.006 % 'DC Electrical Test; refer to Test Circun #1. "AC Electrical Test; refer to Test Circun #2. Note 1: All von&ges are measured with respect to supply GND, unless otherwise sPecified. Note 2: Absolu/6 Msxfmum Ratings indicate limns beyond which darnege to the device may occur. Opsralfng Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limns. EI6cITicsl ChsracIerisIics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guarenteed for perameters where no limn Is given, however, the typical valua Is a good Indication of device performance. Note 3: For opsreting at case temperatures above 25'C, the device must ba derated based on a 15O"C maximum junction tempsrature and a !hannal resistance of 8JC = l.IJ'C/W Ounction to case). Refer to the Thermal Resistance figure in the Application Information section under Thennal Conelderatlona. Note 4: Human body model, 100 pF discharged through a 1.5 kll resistor. Note 5: The opsreting junction tempsreture maximum Is 15O"C, however, the instantaneous Sate Opsreting Area tempsreture is 25O"C. Note 6: Typlcals are measured at 25'C and representlhe parametric norm. Note 7: Limits are guaranteed to National's AOQL (Average Outgoing ,aualny LeveQ. Note 8: The LM3875T package TAllB is a non-isolated package, setting the tab of the device and the heat sink at V- potential when the LM3875 is directiy mounted to the heat sink using only thermal compound. If a mica washer is used in addition to thermal compound, 8cs (case to sink) is increased, but the heat sink will ba isolated from V-. Note 9: The feedback compensation network limns the bandwidth of the closed-loop response and so the slew rate will be reduced due to the high frequency roli· off. Wrthout feedback compensation, the slew rate Is typically 18V1,.... Note 10: The output dropout von&ge is the supply voltage minus the clipping voltege. Refer to the Clipping Von&ge VB. Supply Vonege graph in the TypIcal Performance CharaCterIstIca section. 1-468 Test Circuit # 1 '(DC Electrical Test Circuit) 24.9 kll 200kll OUTPUT 49.91l 50kll 49.91l SOURCE TL/H/11449-3 Test Circuit # 2 (** AC Electrical Test Circuit) Rtl Ri 1 kll C, 50 pI 20 kll Rt2 20 kll v+ OUTPUT Cc 220 pF SOURCE R 101l v- 1-469 1\ 2kll TUH/11449-4 ~ r-------------------------------------------------------------------------~--~__, I;; CI) Single Supply Application Circuit :i v+ r-----------~~+ INPUT RA 100 kn ,~~'~~-+----~--~ lit, 20 kn "RSN 2.7n Ri 1 kn "Ci 10j.£FI "S 50 pi "1It2 20 kn "CSN IO.lj.£F TUH/11449-5 FIGURE 2. Typical Single Supply Audio Amplifier Application Circuit 'Optional components dependent upon specific design requirements. Refer to the External Components Description section lor a component function description. Equivalent Schematic (Excluding active protection circuitry) 0.45 +INo----tH OUTPUT -IN 0.45 vTUH/11449-6 1-470 External Components Description Components 1. 2. 3. 4. 5. RIN RA CA C Rs 6. °Cc 7. Ri °Ci B. 9. 10. Rfl °Rf2 11. 12. 13. °RSN *CSN 14. 15. °L *R 16. Cs OCt (Figures 1 and 2) Functional Description Acts as a volume control by selting the voltage level allowed to the amplifier's input terminals. Provides DC voltage biasing for the single supply operation and bias current for the positive input terminal. Provides bias filtering. Provides AC coupling at the input and output of the amplifier for single supply operation. Prevents currents from entering the amplifier's non-inverting input which may be passed through to the load upon power-down of the system due to the low input impedance of the circuitry when the under-voltage circuitry is off. This phenomenon occurs when the supply voltages are below 1.5V. Reduces the gain (bandwidth of the amplifier) at high frequencies to avoid quasi-saturation oscillations of the output transistor. The capacitor also suppresses extemal electromagnetic switching noise created from fluorescent lamps. Inverting input resistance to provide AC Gain in conjunction with Rfl. Feedback capacitor. Ensures unity gain at DC. Also a low frequency pole (highpass roll-off) at: fe = 1/(271' Ri Ci). Feedback resistance to provide AC Gain in conjunction with Ri. At higher frequencies feedback resistance works with Ct to provide lower AC Gain in conjunction with Rfl and Ri. A high frequency pole (Iowpass roll-off) exists at: fe = [Rfl Rf2](s + 1/Rf2 Ct11 [(Rn + Rf2l (s + 1/Ct (Rfl + Rf2))]· Compensation capaCitor that works with Rfl and Af2 to reduce the AC Gain at higher frequencies. Works with CSN to stabilize the output stage by creating a pole that eliminates high frequency oscillations. Works with RSN to stabilize the output stage by creating a pole that eliminates high frequency oscillations. fe = 1I(271'RSN CSN)· Provides high impedance at high frequencies so that R may decouple a highly capaCitive load and reduce the Q of the series resonant circuit due to capacitive load. Also provides a low impedance at low frequencies to short out R and pass audio signals to the load. Provides power supply filtering and bypassing. "Optional ccmponents dependent upon specific design requirements. Refer to the Application Infonnation section for more infonnation. OPTIONAL EXTERNAL COMPONENT INTERACTION Although the optional external components have specific desired functions that are deSigned to reduce the bandwidth and eliminate unwanted high frequency oscillations they may cause certain undesirable effects when they interact. Interaction may occur for components whose reactances are in close proximity to one another. One example would be the coupling capacitor, Cc, and the compensation capacitor, Ct. These two components act as low impedances to certain frequencies which will couple signals from the input to the output. Please take careful note of basic amplifier component functionality when designing in these components. The optional external components shown in Figure 2 and described above are applicable in both single and split voltage supply configurations. 1-471 Typical Performance Characteristics " SPIKe Protection Response Safe Area , " Vs" :uov 1\ '" SA Supply Current vs Supply Voltage ""'I (\~c = ~, ,101kHz I... \ 1\ \ . J H \1" \ \. Sm. 10, O~~~~~~~_~I O~~~~--~~~~~ o 20 40 60 o 80 COLLECTOR-EMITTER VOLTAGE (V) 10 Pulse Thermal Resistance 30 40 50 Supply Current vs Output Voltage Pulse Th.rmal Resl,stanc,e TJ = 250 0 C 20 SUPPLY VOLTAGE (tV) TIME (ms) TC = 25°C 1-+-+-1-+-+ tv, = lOOms TJ = 250°C, TO-220 7 6~+-+_I-+-+~T~0-r2~20~~ ,-+++H!lIf--H-+++lIII TC = , Vs .. +20V +30V +-tOY oL-~~W-~~~~~~ OL-~~~--~~~~~ o 20 40 80 0,1 80 COLLECTOR-EMITTER VOLTAGE (V) TJ = 250 0 C lOOms 10-220 80 \ z 2 £ iiiQ i 60 ~= -'- 25 0 C 40 125°C I I o o 20 60 40 ~ 120 ~ 80 ~ 40 Te = 0.1 i ,J Y ':t 0.4 .3 § ~ -50 100 ~ ~ 0,3 0.2 SUPPLY VOLTAGE(OV) 35 40 I 100 150 Peak Output Current AT = +5.000 mil -50 1\\ \'-.. 3: "- ['. I'--. 0.1 o 30 50 CASE TEMPERATURE ('C) 1\ \ ~ 2 = 020V_ L J o = = t30V 10 8 , :/" 25 hs 20 Vs = 030V V.,.... (-V,,) = 040V VS 40 Vs 12~~~1 10 60 Input Bias Current vs Case Temperature ;?' 20 i8 PULSE WIDTH (ms) .j7 15 ~ I' o = OA 80 -5 0.5 Clip ing Voltage(-tVcc ) 10 II II Tc ~ 2,5~~, Tc '" 75 0 C Clipping Voltage vs Supply Voltage '\ =811 Vo - OV ~ ':t LI COLLECTOR-EMITTER VOLTAGE (V) ~ ellpp'" 40 100 ~ 80 20 TJ '" 250°C 10-220 180 l\ , ..\ ~ 0 Supply Current vs Case Temperature 200 g '", 75 0 C 20 -20 OUTPUT VOLTAGE (V) Pulse Power Limit tw .. g -40 100 PULSE WIDTH (ms) Pulse Power Limit 100 10 'OV -5 /,.- 30V 20V Iff ,.... 15V I,..... so -10 100 CASE TEMPERATURE ('C) 150 20V 30V .OV i8 I- veE ::' I 5V o.sv O.SlftS o TIME (mo) TL/H/11449-7 1-472 Typical Performance Characteristics THO (Continued) THO + Nvs Output Power + N vs Frequency THO + Nvs Output Power ~ E z E z @ i!: ~ c+ 100 10k lk c+ % lOOk (w) Output Power (W) THO Distribution Output Power vs Load Resistance FREQUENCY (Hz) Output Power THO Distribution 100 E ~ ~ ~ ~ 80 f O =20Hz 90 I I I I 80 70 I 80 I T.=_25 0 C Vce - t 35V ~-¥+- IAvo:o.06824103 SIGMA: 0.000280711 50 40 20 10 ~ o o 64 VCC=:l35V i 48 ~ > l 30 E IAVG:O.0393161 40 SIGt.lA:O.OO7on03 toIAX:O.O&4 32 1111":0.023 ~ I I I I I I I I II L L 24 16 8 o 0.004 0.008 0.012 0.016 0.020 0.002 0.00& 0.010 0.01. 0.018 50 ~~-pf- 56 _I LL I I I I I I - - =:::s; ....... ............. 10 5 10 15 20 25 R.. (n) 30 THO+N (\II) 50 60 70 80 90 100 1.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 90 - - - - 50 - - 1.0 96 1.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 102' - - - 40 - - - 2.4 1.9 1.7 1.4 1.1 2.5 2.1 1.8 1.5 3.8 3.2 2.8 2.4 2.0 1.6 1.2 5.1 4.3 3.8 3.3 2.8 2.3 1.8 7.1 6.1 5.5 4.8 4.1 3.5 2.8 2.1 1.5 132 11.3 9.8 8.B 7.B 6.8 5.B 4.B 3.B 2.8 138----10--- 108 I 35 I 15 : ~ g iI: ~ i 50 ~ 2iis 10 20 30 40 50 60 70 80 90 ~ el 40 ~ 30 ~ ~ ~ el 20 ~ 10 0 § 10 10 20 30 40 OUTPUT POWER (w) 50 60 0.'" ... =4n 40 10 20 30 40 OUTPUT POWER (w) 50 60 ... = sn en / 1/ 1/ V. / 30 /, ~ /.~ 20 o 0 ... = 1 60 50 10 0 0 THD+N.:sO.03" f=lkHz THO + N.:s 20HzStS 2 kHZ 70 .. 20 . Output Power vs Supply Voltage 80 ~ 30 : TUH/11449-15 50 40 I vcc.lv+i+lv-I Power Dissipation vs Output Power 60 I V,,: o Nota: The maximum heat sink thermal resistance values. 0 SA. in the table above were calculated using a 0cs = O.2'C/W due to thermal compound. Power Dissipation vs Output Power II / : I / : / 25 1.3 - - - - - - - -. 126 - - - - 20 - - - : 6n I 1.1 - - - - - - - -- - - - - - - - - - - 114- - - -30--120 80.: 4n 45 3.0 60 .40 Maximum Power Dissipation vs Supply .Voltage 110 1.2 1.3 35 TL/H/11449-8 1.3 1.6 \. 20 1.6 1.9 ;~D=+:t:5~D~.08% r:E 30 Max Heawlnk Thermal Resistance ("C/W) at the Specified Ambient Temperature rC) 40 f0- r- t-- I- 20Hz:s f:S 20kHz 40 ~ -0.025 0.025 0.075 0.125 0.175 -6.946E-19 0.05 0.1 0.15 0.2 THO+N (lI) ~ =25°C TA ~ MAX: 0.0086 MIN: 0.0072 80 fO =20kHz 72 o ~ 10 15 20 25 30 35 40 SUPPLY VOLTAGE (tV) TL/H/11449-16 1-473 ~ Typical Performance Characteristics IMD 60 Hz~ 7 kHz, 4:1 IMD 60 Hz, 4:1 , I 12.000 1,a.l62 '-1-59.35 -8.308 20.0000k~ :=10.00882 ~ rr-- IMD 60 Hz, 7 kHz, 4:1 50 i\.1.06000k]' AP 10 -1a.~6 1\. = an I ~ ..:.! -~.92 '-59.08 -69.23 -79.38 1'"89.s.t. -99.7 ~lp9.8 0.00 I 2k' 10k • ;' -28.62 -38,77 3 ~. ~: ' 0.1 .~ 1'1'" ill 0.010 0.001 0.0005 0.1 -120.0 6.ook UOk 6.8Ok 7.2Ok 7.60k 8.ook 6.2Ok 6.6Ok 7.00k 7.~Ok 7.8Ok 20k 10 100 Output Power (W) FREQUENCY (Hz) FREQUENCY (Hz) IMD 60 Hz, 1:'1 1 gO.020S6 E I I O. 1 IMD 60 Hz, 7 kHz, 1:1 20.000 2 •• 0000~ 1111\.= sn I -20.00 ~ -~.OO . 3 I I 0.010 I. I~AP I-54.i7l 0.0 IMD 60 Hz, 7 kHz, 1:1 50 lit..,...-- I 0.1 -60.00 :.! 11111. -80.00 0.01. -1,00.0 0.00 11 '2k I I I I 11111 10k 0.001 0.0005 0.1 -120.0 6.00k 6.40k 6.8Ok 7:2Ok 7.60k a.OOk 6.2Ok 6.60k 7.0Ok 7.~ 7.80k 20k 10 100 Output Power (W) FREQUENCY (Hz) FREQUENCY (Hz) Power Supply Rejection Ratio Common-Mode Rejection Ratio 120 r-rrmmrrrmnrnrmmrr~~""'1 Vs = :t!SV Tc = 25°C 100 80 ~ 60 40 1\. =.n 100 >Q. +PSRR 'iD 3 -PSRR i'! 11 ~ 60 20LL~UUIDm~~~WLLW. 100 Ik 10k lOOk 30 20 i ~O 40 10 20 1M THO = 10,. ~ 80 :l! 10 Vs = :t30V Vs = :t35Y TC = 25 0 C IlIIli I 'iD 3 Large Signal Response 120 0 10 100 FREQUENCY (Hz) Ik 10k lOOk 100 1M Ik FREQUENCY (Hz) 20 100 Ys = :l:40V 1\. = sn .,=20dB 90 80 1\ . 70 OUTPUT CHI I -20 lOOk IN Open Loop Frequency Response Pulse Response ~O 10k FREQUENCY (Hz) INPUT CH2 'iD 3 z :c '" 60 Vs = :t35V Tc = 25°C 1 III! I lUi I IIIl1m I GAIN IllIIm I -60 ~ PHASE 50 ~O ~ -120 ~ 30 20 -,.... i-' 10 -180 0 10 100 20 TIME (1' ...) Ik 10k lOOk 1M ION FREQUENCY (Hz) TUHI11449-9 1-474 Application Information GENERAL FEATURES Under-Voltage,Protectlon: Upon system power-up the un- Since a semiconductor manufacturer has no control over which heat sink is used in a particular amplifier design, we can only inform the system designer of the parameters and the method needed in the determination of a heat sink. With this in mind, the system designer must choose his supply voltages, a rated load, a desired output power level, and know the ambient temperature surrounding the device. These parameters are in addition to knOwing the maximum junction temperature and the thermal resistance of the IC, both of which are provided by National Semiconductor. der-voltage Protection Circuitry allows the power supplies and their corresponding caps to come up close to their full values before turning on the LM3875 such that no DC outpu~ spikes occur. Upon tum-off, the output of the LM3875 is brought to ground before the power supplies such that no transients occur at power-down. Over-Voltage Protection: The LM3875 contains overvoltage protection circuitry that limits the output current to approximately 4Apeak while also providing voltage clamping, though not through intemal clamping diodes. The clamping effect is quite the same, however, the output transistors are designed to work alternately by sinking large current spikes. As a benefit to the system designer we have provided Maximum Power Dissipation vs Supply Voltages curves for various loads in the Typical Performanca Characteristics section, giving an accurate figure for the maximum thermal resistance required for a particular amplifier deSign. This data was based on 9JC = 1°C/Wand 9cs = O.'Z'C/W. We also provide a section regarding heat sink determination for any audio amplifier design where 9cs may be a different value. It should be noted that the idea behind dissipating the maximum power within the IC is to provide the device with a low resistance to convection heat transfer such as a heat sink. Therefore, it is necessary for the system designer to be conservative in his heat sink calculations. As a rule, the lower the thermal reSistance of the heat sink the higher the amount of power that may be dissipated. This is, of course, guided by the cost and size requirements of the system. Convection cooling heat sinks are available commercially, and their manufacturers should be consulted for ratings. SPIKe Protection: The LM3875 is protected from instantaneous peak-temperature stressing by the power transistor array. The Safe Operating Area graph in the Typical Performance Characteristics section shows the area of device operation where the SPiKe Protection Circuitry is not enabled. The waveform to the right of the SOA graph exemplifies how the dynamic protection will cause waveform distortion when enabled. Thermal Protection: The LM3875 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature on the die reaches 165°C, the LM3875 shuts down. It starts operating again when the die temperature drops to about 155"C, but if the temperature again begins to rise, shutdown will occur again at 165°C. Therefore the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will cause the device to cycle in a Schmitt Trigger fashion between the thermal shutdown temperature limits of 165°C and 155°C. This greatly reduces the stress imposed 0':1 the IC by thermal cycling, which in tum improves its reliability under sustained fault conditions. Proper mounting of the IC is required to minimize the thermal drop between the package and the heat sink. The heat sink must also have enough metal under the package to conduct heat ffom the center of the package bottom to the fins without excessive temperature drop~ A thermal grease such as Wakefield type 120 or Thermalloy Thermacote should be used when mounting the package to the heat sink. Without this compound, the thermal resistance will be no better than 0.5°C/W, and probably much worse. With the compound, thermal resistance will be 0.2°C/W or less, assuming under 0.005 inch combined flatness runout for the package and heat sink. Proper torquing of the mounting bolts is important and can be determined from heat sink manufacturer's specification sheets. Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen as discussed in the Thermal Considerations section, such that thermal shutdown will not be reached during normal operation. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor device. Should it be necessary to isolate V - from the heat sink, an insulating washer is required. Hard washers like berylum oxide, anodized aluminum and mica require the use of thermal compound on both faces. Two-mil mica washers are most common, giving about O.4°C/W interface resistance with the ' compound. THERMAL CONSIDERATIONS Heat Sinking The choice of a heat sink for a high-power audio amplifier is made entirely to keep the die temperature at. a level such that the thermal protection circuitry does not operate under normal circumstances. The heat sink should be chosen to dissipate the maximum IC power for a given supply voltage and rated load. Silicone-rubber washers are also available. A 0.5°C/W thermal resistance is claimed without thermal compound. Expe:rience has shown that these ~ubber washers deteriorate and must be replaced should the IC be dismounted. With high-power pulses of longer duration than 100 ms, the case temperature will heat up drastically without the use of a heat sink. Therefore the case temperature, as measured at the center of the package bottom, is entirely dependent on heat sink design and the mounting of the IC to the heat sink. For the deSign of a heat sink for your audio amplifier application refer to the Determining the Correct Heat Sink section. Determining Maximum Power Dissipation Power dissipation within the integrated circuit package is a very important parameter requiring a thorough understanding if optimum power output is to be obtained. An incorrect maximum power diSSipation (Po) calculation may result in inadequate heatsinking, causing thermal shutdown circuitry to operate and limit the output power. 1-475 Application Information (Continued) Equations (1) and (4) are the only equatiQns naeded in ,the determination of the maximum heat. sink thermal resistance. This i~: p1 course, given that the syste(li'designer knows the tequirEl~ supply ,voltages to drive his rated, load at ~!!{licu lar poweroljtput level' arid the parameters provided by the semiconductor manufacturer. These p~ran\eters are" the junction to case thermal resistance, 8JC, TJmax = 150"C, and the recommended ihermalloy, Thermacote thermal compound resistance, 8cs. Th,efollowing equations can be l,lsed, to accurately calculate the maximum and a~Elrage integrate~, circuit power diSllipation fo[ your amplifier dE!sign, given the supply voltage,: ra~ed load, ,and output power. These equations can be directly applied to the PowE1r Dissipation vs Output Power ,curves in the Typical pe.ri'orroance Ch8racterlstlca section. a: Equation (1) exemplifies the maximum power dissipation of the Ie and equations (2) and (S) exemplify the average IC power dissipatio[l expressed in different forms. POMAX = Vcc2/2'11"2 RL where Vee is the total supply voltage (1) SIGNAL-TO-NOISE,RATIO In the measurement of the signal-to-noise,ratio. misinterpretations of the numbers actually measured are, common. One amplifier may sound much quieter than another, but due to improper testing techniques, they appear. equal in measurements. This is often the case when comparing integrated circuit designs to discrete amplifier designs. Discrete transistor amps often "run out of gain" at high frequencies and therefore have small bandwidths to noise as indicated below. POAVE = (VOPk/RL> IVcc/'11" :..- VOpk/2] (2) where Vee is the total sUpply voltage and \/Opk = vcci'11" POAVE = Vee VOpk/'11" RL - VOpk2/2 RL where Vee is the total supply voltage. (S) " Determining the Correct Heat Sln,k Once the maximum IC power dissipation is known for a given supply voltage, rated load, and the desired rated output power the maximum thermal resistance (in ·C/W) of a heat sink can be calculated. This calculation is madE! using equation (4) and is based on the fact that thermal heat flow,pa-, ramE1ters are analogous to electrical current flow properties. ~ 315' It is also known that typically the thermal resistance, 8JC Ounctlon to case), of the LM3875 is 1·C/W and that using Themalloy Thermacote thermal compound provides a thermal reSistance, 8cs (case to heat sink), of about 0.2·C/W as explained in the Heat Sinking section. ~ , ,iNTEGRAJ.EDCIRCUIT ~.. < ,/" ., - - -.... - '. \' 20 200 2k 20k 200k 2M FREQUENCY (Hz) " TL/H/11«9~11 Integrated circuits have additional open loop gain allowing additional feedback loop gain iii Order to lower harmonic distortion and improve frequenCy response. It is this adllitional bandwidth that can lead to erroneous signal-to-noise measurements if not considered during the measurement process. In the typical example above, the difference in bandwidth appears small ona log scale but the factor of 10 in bandwidth, (200 kHz to 2 MHz) can result in a 10 dB theoretical difference in the signal-to-noise ratio (white noise is proportional to the' square root of the bandwidth in a system). TAmb ~ f1lJC f1lcs f1ls~ In comparing audio amplifiers it is necessary to measure the magnitude of noise in the audible, bandwidtll by using a "weighting" filter.1 A "weighting" filter alters the frequency response in order to compensate for the average human ear's sensitivity to the frequency spectra. The weighting filters at the same time provide the bandwidth limiting as discussed in the previous paragraph. -PDIIAX ~-~~~------. TL/H/11449~10 But since we know POMAX, 8JC, and 8sc for the application and we are looking for '8SA, we have the following: ,8SA"" [(TJmax - TAmb) - POMAX (8JC DISCRETE , POMAX = (TJmax - TAmbl/8JA where 8JA = 8JC + 8cs + 8SA .. f\ 60 <5 ...'0 Referring to the figure below, it is seen that the thermal resistance from the die Ounction) to the outside air (ambient) is a combination of 'three thermal resistances, two of which are known, 8JC and tics. Since convection heat flow (powar dissipation) is analogous to current flow, thermal resistance is analogous to electrical resistance, and temperature drops are analogous to voltage drops, the power dissipation out of the LMS875 is equal ,to the following: TJmax 80 In addition to noise filtering, differing meter types give different lioise readings. Meter responses include: + 8cs)]/PDMAX(4) 1. RMS reading, Again it must be noted that the valJe of 8SA i~ dep~ndent upon the system deSigner's amplifier application and 'its corresponding parameters as described previously. If the ambient temperature that the audio amplifier is to be working under is higher than the normal 25°C, then ,the thermal resistance for the heat sink, given all other things are equal, wUl need to be smaller. 2. average respo!1dirlg~, S. ~k reading, and 4. quasi peak reading. Reference 1: CCIRIARM: A Practical Noise Measurement M9Ihod; by Ray Dolby, David Robinson and Kenneth Gundry, AES Preprinl No. 1353 (F-3). 1-476 r-----------------------------------------------------------------------------,~ i: Application Information (Continued) current amplifier, the LM3875 can be made to oscillate under certain conditions. These usually involve printed circuit board layout or output/input'coupling. Although theoretical noise analysis, is derived using true RMS based calculations, most actual measurements are taken with ARM (Average Responding Meter) test equipment. Typical signal-te-noise figures are listed for an A-weighted filter which is commonly used in the measurement of noise. The shape of all weighting filters is similar, with the peak of the curve usually occurring in the 3 kHz-7 kHz region as shown below. When designing a layout, It is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board common ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the 0.1 /l-F supply decoupling capacitors as close as possible to the LM3875 to reduce the effectsof PCB trace resistance and inductance. For the same reason, the ground return paths should be as short as possible. ...o E ... 0- ...'" In general, with fast, high-current circuitry, all sorts of problems can arise from improper grounding which again can be avoided by returning all grounds separately to a common point. Without isolating the ground signals and returning the grounds to a common pOint, ground loops may occur. 20 FREQUENCY (Hz) TL/H/II449-12 "Ground Loop" is the term used to describe situations occurring in ground systems where a difference in potential exists between two ground pOints. Ideally' a ground is a ground, but unfortunately, in order for this to be true, ground conductors with zero resistance are necessary. Since real world ground leads possess finite resistance, currents running through them will cause finite voltage drops to exist. If two ground return lines tie into the same path at different points there will be a voltage drop between them. The first figure below shows a common ground example where the positive input ground and the load ground are returned to the supply ground point via the same wire. The addition of the finite wire resistance, R2, results in a voltage difference between the two points as shown below. SUPPLY BYPASSING The LM3875 has excellent power supply rejection and does not require a regulated supply., However, to eliminate possible oscillations all op amps and power op amps should have their supply leads bypassed with low-inductance capacitors having short leads and located close to the package terminals. Inadequate power supply bypassing will manifest itself by a low frequency oscillation known as "motorboating" or by high frequency instabilities. These instabilities can be eliminated through multiple bypassing utilizing a large tantalum or electrolytic capacitor (10 /l-F or larger) which is used to absorb low frequency variations and a small ceramic capacitor (0.1 /l-F) to prevent any high frequency feedback through the power supply lines. ~, If adequate bypassing is not provided the current in the supply leads which is a rectified component of the load current may be fed back into internal circuitry. This signal causes low distortion at high frequencies requiring that the supplies be bypassed at the package terminals with an electrolytic capacitor of 470 /l-F or more. '""" GROUN~f---J LEAD INDUCTANCE Power op amps are sensitive to inductance in the output lead, particularly with heavy capacitive loading. Feedback to the input should be taken directly from the output terminal, minimizing common inductance with the load. Lead inductance can also cause voltage surges on the supplies. With long leads to the power supply, energy is stored in the lead inductance when the output is shorted. This energy can be dumped back into the supply bypass capacitors when the short is removed. The magnitude of this transient is reduced by increasing the size of the bypass capacitor near the IC. With at least a 20 /l-F local bypass, these voltage surges are important only if the lead length exceeds a couple feet (> 1 /l-H lead inductance). TWisting together the supply and ground leads minimizes the effect. R2 VI =(11 +IL)R, V2 =IL(R2 +V,) LAYOUT, GROUND LOOPS AND STABILITY The LM3875 is designed to be stable when operated at a closed-loop gain of 10 or greater, but as with any other high- TUH/II449-13 1-477 ~ ~ r-------------------------------------------------------------~--------------------------_, r- CD I.... Application Information (Continued) leads are .long. The problem can be eliminated by plaCing a small capacitor, Ce, (on the order 01.50 pF-500 pI;) acrQSS the LM3875 input terminals. Refer to the External Components Description section relating to component interaction with Cr. The load current IL' will be much larger than input bias current 11, thus V1 will follow the output voltage directly, i.e., in phase. Therefore the voltage appearing at the,non-inverting input is effectively positive feedback and the circuit may 0scillate. If there were only one device to worry about then the values of R1 a,l)d R2 would probably be small enough to be ignored; however, several devices normally comprise a total system. Any ground return of a separate (levice, whose output is in phase, can feedback in a similar manner and cause instabilities. Out of phase grDund loops also are trouble' some, causing unexpected gain and phase errors. REACTIVE LOADING It is hard for most power amplifiers to drtve highly capacitive loads 'very effectively and normally results in oscillations or ringing on the square wave response. If the output of the LM3875 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about 0.2 ,...F. If highly capacitive loads are expected due to long speaker cables, a method commonly employed to protect amplifiers from low impedances at high frequencies is to couple to the load through a 1on resistor in parallel with a 0.7 ,...H inductor. The inductor-resistor combination as shown in the Typical Application Circuit isolates the feedback amplifier from the load by providing high output impedance at high frequencies thus allowing the 10n resistor to decouple the capacitive load and reduce the Q of the series resonant circuit. The LR combination also provides low output impedance at low frequencies thus shorting out the 10n resistor and allowing the amplifier to drive' the series RC load (large capacitive load due to long speaker cables) directly. The solution to most ,ground loop problems is to always use a single-point ground system, although this is sometimes impractical. The third figure above is an example of a singlepoint ground system. The single-point ground concept should be applied rigorous: Iy to all components and all circuits when possible. Violations of single-point grounding are most common among printed circuit board designs, since the circuit is surrounded by large ground areas which invite the temptation to run a device to the closest groul'ld spot. As a final rule; make all ground returns low resistance and low inductance by using large wire and wide traces. . . Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input 1-478 Application Information (Continued) GENERALIZED AUDIO POWER AMPLIFIER DESIGN DESIGN A 40w/sn AUDIO AMPLIFIER The system designer usually knows some of the following parameters when starting an audio amplifier design: Input Level Desired Power Output Load Impedance Input Impedance Maximum Supply Voltage Bandwidth The power output and load impedance determine the power supply requirements, however, depending upon the application some system designers may be limited to certain maximum supply voltages. If the designer does have a power supply limitation, he should choose a practical load impedance which would allow the amplifier to provide the desired output power, keeping in mind the current limiting capabilities of the device. In any case, the output signal swing and current are found from (where Po is the average output power): . Given: Power Output Load Impedance Input Level Input Impedance Bandwidth Equation (1) and (2) give: Vopeak = ~ 40W sn 1V(max) 100kn 20 Hz-20 kHz ±0.25 dB 40W/Sn Vopeak = 25.3V lapeak = 3.16A Therefore the supply required is: ±30.3V @3.16A With 15% regulation and high line the final supply voltage is ± 38.3V using equation (3). At this point it is a good idea to check the Power Output vs Supply Voltage to ensure that the required output power is obtainable from the device while maintaining low THO + N. It is also good to check the Power Dissipation vs Supply Voltage to ensure that the device can handle the internal power dissipation. At the same time designing in a relatively practical sized heat sink with a low thermal resistance is also important. Refer to Typical Performance Characteristics graphs and the Thermal Considerations section for more information. The minimum gain from equation (4) is: Av ~ 18 (1) lapeak = ~(2 PO)/RL (2) To determine the maximum supply voltage the following parameters must be considered. Add the dropout voltage (5 volts for LM3875) to the peak output swirlg, Vapeak, to get the supply rail value, (i.e. + Vapeak + Vod) at a current of lapeakl. The regulation of the supply determines the unloaded voltage, usually about 15% higher. Supply voltage will also rise 10% during high line conditions. Therefore, the maximum supply voltage is obtained from the following equation: We select a gain of 21 (Non-Inverting Amplifier); resulting in a sensitivity of S94 mY. Letting RIN equal 100 kn gives the required input impedance, however, this would eliminate the "volume control" unless an additional input impedance was placed in series with the 10 kn potentiometer that is depicted in Figure t. Adding the additional 100 kn reSistor would ensure the minimum required input impedance. For low DC offsets at the output we let Rn = 100 kn. Solving for Ri (Non-Inverting Amplifier) gives the following: max. supplies z ± (Vapeak + Vod(1 + regulation)(1.1) (3) The input sensitivity and the output power specs determine the minimum required gain as depicted below: AV ~ (~Po RL )/(VIN) = VarmslVinrms (4) Normally the gain is set between 20 and 200; for a 40W, 8n audio amplifier this results in a sensitivity of 894 mV and 89 mY, respectively. Although higher gain amplifiers provide greater output power and dynamic headroom capabilities, there arl! certain shortcomings that go along with the so called "gain". The input referred noise floor is increased and hence the SNR is worse. With the increase in gain, there is also a reduction of the power bandwidth which results in a decrease in feedback thus not allowing the amplifier to respond as quickly to nonlinearities. This decreased ability to respond to nonlinearities increases the THO + N specification. Ri = Rn/(Av - 1) = 100k/(21 - 1) = 5 kn; use 5.1 kn The bandwidth requirement must be stated as a pole, i.e., the 3 dB frequency. Five times away from a pole give 0.17 dB down, which is better than the required 0.25 dB. Therefore: fL = 20 Hz/5 = 4 Hz fH = 20kHz x 5 = 100kHz At this pOint, it is a good idea to ensure that the Gain Bandwidth Product for the part will provide the designed gain out to the upper 3 dB pOint of 100 kHz. This is why the minimum GBWP of the LM3875 is important. The desired input impedance is set by RIN. Very high values can cause board layout problems and DC offsets at the output. The value for the feedback resistance, Rll, should be chosen to be a relatively large value (10 kn-100 kn), and the other feedback resistance, Ri, is calculated using standard op amp configuration gain equations. Most audio amplifiers are designed from the non-inverting amplifier configuration. GBWP = Av x 13 dB = 21 X 100 kHz = 2.1 MHz GBWP = 2.0 MHz (min) for LM3875 Solving for the low frequency roll-off capacitor, Ci, we have: Ci 1-479 > 11(21T Ri fLl = 7.S IJ.F; use 10 IJ.F. In' i::E ...I r----------------------------------~ Definition of Terms Input Offset Voltage: The absolute value of th!l voltage which must be applied between the'input terminals through two equal resistances to obtain zero output voltage and current. Input Bias Current: The absolute value of the average of the two input currents with the output voltll!!e and current at zero. Input Offset Current: The absolute value of the difference in the two input currents with the output voltage and current at zero. Input Common-Mode Voltage Range (or Input Voltage Range): The range of voltages'on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated. Headroom: The margin between an actua, signal qperating level (usually the power rating of the amplifier with partiCular supply voltages, a' rated load value, and a rated THO + N figure) and the level just before clipping distortion occurs, expressed'in decibels. Large Signal Voltage Gain: The ratio of the output voltage swing to the differential input voltage required to drive the output from zero to either swing limit. The output swing limit is the supply voltage less a specified quasi-saturation voltage. A pulse ot short enough duration to minimize thermal effects is used as a measurement signal. Output-Current Umlt: The output current with a fIXed output voltage aryd"a large input overdrive. The limiting current drops with time once SPiKe protection circuitry is activated. Common-Mode Rejection: The ratio of the input commonmode voltage range to the peak-to-peak change in input offset voltage over this range. Output Saturation Threshold (Clipping Point): The output swing limit for a specified input drive beyond that required for zero output. It is measured with respect to the supply to which the output is swinging. Power Supply ReJection: The ratio of the change in input offset voltage to the change in power supply voltages producing it. Output Resistance: The ratio of the change in output voltage to the change in output current with the output around zero. Quiescent Supply Current: The current required from the power supply to operate the amplifier with no load and the output voltage 'and current at zero. Power Dissipation Rating: The power that can be dissipated for a specified time interval without activating the protec: tion circuitry. For time intervals in excess of 100 ms, dissipation capability is determined by heat sinking of the Ie package rather than by the IC itself. Slew Rate: The internally limited rate of change in output voltage wltl'l :a large amplitude step' function applied to the input. ' Class B' Amplifier: The most commQn type of audio power amplifier that consists of two output devices each of which conducts for 180" of the input cycle. The LM3875 is a Quasi-AB type amplifier. Croasover Distortion: Distortion caused in the output stage of a class B amplifier. It can result from inadequate bias current providing a dead zone where the output does not respond to the input as the input cycle goes through its zero crossing point. Also for ICs an inadequate frequency response ,of the output PNP device can cause a turn-on delay giving crossover distortion on the negative going transistion through zero crossing at, the higher audio frequencies. THD + N: Total Harmonic Distortion plus Noise refers to the measurement technique in which the fundamental component is removed by a bandreject,(notch) filter and all remaining energy is measured including harmonics and noise. Signal-to-Noise RatiO:, The ratio of a system's output signal level to the system's output noise level obtained in the absence of a signal. The output reference signal is either specified or measured at a specified distortion level. Continuous Average Output Power: The minimum sine wave continuous average power output in watts (or dBW) that can be delivered into the rated load, over the rated bandwidth, at the rated maximum total harmonic distortion. Music Power: A measurement of the peak output power capability of an amplifier with either a signal duration sufficiently short that the amplifier power supply does not sag during the measurement, or when high quality external power supplies are used. This measurement (an IHF standard) assumes that with normal music program material the amplifier power supplies will sag insignificantly. Peak Power: Most commonly referred to as the power output capability of an amplifier that can be delivered to the load; specified by the part's maximum voltage swing. Thermal'Reslstance: The peak, junction-temperature rise, per unit of internal power dissipation (units in ·C/W), above the case temperature as measured at the center 'of the package bottom. The DC thermal resistance applies when one output transistor is operating continuously. The AC thermal resistance applies with the output transistors conducting alternately at a high enough frequency that the peak capability, of neither transistor is exceeded. Power Bandwidth: The power bandwidth of an audio amplifier is the frequency range over which the amplifier voltage gain does not fall below 0.707 of the flat band voltage gain specified for a given load and output power. Power bandwidth also can be measured by the frequencies at which a,specified level of distortion is obtained while the amplifier delivers a power output 3dB below the rated output. For example, an amplifier rated at 60W with ';;;0.25% THO + N, would make its power bandwidth measured as the difference between the upper and lower frequencies at which 0.25% distortion was obtained while the amplifier was delivering 30W. Galn:Bandwldth Product: The Gain-Bandwidth Product is a way of predicting the high-frequency usefulness of an op amp. The Gain-Bandwidth Product is sometimes called the unity-gain frequency or unity-gain cross frequency because the open-loop gain characteristic passes through or crosses unity gain at this frequency. Simply, we have the following relationship: AcL1 X f1 = AcL2 X f2 Assuming that at unity-gain (AcL1 = 1 orO dB) fu = f1 = GBWP, then we have the following: GBWP = ACL2 X f2 Definition of Terms (Continued) This says that once fu (GBWP) is known for an amplifier, then the open-loop gain can be found at any frequency. This is also an excellent equation to determine the 3 dB point of a closed-loop gain, assuming that you know the GBWP of the device. Refer to the diagram below. BI-ampllflcation: The technique of splitting the audio frequency spectrum into two sections and using individual power amplifiers to drive a separate woofer and tweeter. Crossover frequencies for the amplifiers usually vary between 500 Hz and 1600 Hz. "Biamping" has the advantages of allowing smaller power amps to produce a given sound pressure level and reducing distortion effects produced by overdrive in one part of the frequency spectrum affecting the other part. C.C.I.R'!A.R.M.: Literally: International Radio Consultative Committee Average Responding Meter This refers to a weighted noise measurement for a Dolby B type noise reduction system. A filter characteristic is used that gives a closer correlation of the measurement with the subjective annoyance of noise to the ear. Measurements made with this filter cannot necessarily be related to unweighted noise measurements by some fixed conversion factor since the answers obtained will depend on the spectrum of the noise source. S.P.L.: Sound Pressure Level-usually measured with a microphone/meter combination calibrated to a pressure level of 0.0002 ""Bars (apprOximately the threshold hearing level). S.P.L. = 20 Log 1OP/0.0002 dB Where P is the R.M.S sound pressure in microbars. (1 Bar = 1 atmosphere. = 14.5 Ib.lin2 = 194 dB S.P.L.). DOMINATE POLE OF (THE OPEN-LOOP RESPONSE t - - - - DC GAIN I OPEN-LOOP VOLTAGE GAIN A (dB) A_ I "I;L2 I _ _ _ 1__ : f AC GAIN _ I LOSS = -20 dB/DECADE I I I UNITY-GAIN FREQUENCY 0F THE OP AMP Acu - - -I- - - -I - - ...J I I-I (UNITY GAIN) 0 dB ...........--"'T'"--T"""~-..... Ip 12 11 lu INPUT FREQUENCY, F(LOG SCALE) TL/H/11449-14 1-481 ~ ~ IfINational Semiconductor LM4250 Programmable Operational Amplifier General Description Features The LM4250 and LM4250C are ,extremely v~rsatile programmable monolithic operati9f1al amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiesc~nt power consumption, slew rate, input noise,: and the gain-bandwidth product.. The device is a truly general purpose operational amplifier.. • ± 1v to ± 1SV power supply operation The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a O"C to + 70"C temperature range instead of the - 55°C to + 125°C temperature range of the LM4250. • • • • • • • 3 nA input offset current Standby power consumption as low as 500 nW No frequency compensation required Programmable electrical charaCteristics Offset voltage nulling capability Can be powered by two flashlight batteries Short circuit protection Connection Diagrams Metal Can Package Dual-In-Line Package QUIESCENT CURRENT SET 8 QUIESCENT CURRENT SET OFFSET 1 NULL INVERTING 2 INPUT INVERTING INPUT 7 V· NON-INVERTING 3 INPUT 6 OUTPUT V- " 5 OFFSET NULL TUHI9300-5 Top View TUHI9300-2 Top View Ordering Information Temperature Range Military -55"C:;;; TA:;;; + 125°C Commercial O"C :;;; TA :;;; +70"C Package NSC Package Number LM4250CN S-Pin Molded DIP NOSE LM4250CM S-Pin Surface Mount MOSA S-Pin Ceramic DIP JOSE S-Pin Metal Can HOSC LM4250J LM4250J-MIL LM4250H LM4250H-MIL LM4250CH 1-4S2 Absolute Maximum Ratings If Mllltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Offlcel Distributors for availability and specifications. (Note 2) Supply Voltage Operating Temp. Range Differential Input Voltage Input Voltage (Note 1) ISET Current Output Short Circuit Duration LM4250 ±1SV -55·C ~ TA ~ +125"C ±30V ±15V 150nA Continuous LM4250C ±1SV O"C ~ TA ~ +70"C ±30V ±15V 150nA Continuous 150·C 100"C 100"C 100"C 100"C TJMAX H-Package N-Package J-Package M-Package 150"C Power Dissipation at TA = 25"C H-Package (Still Air) (400 LF/Min Air Flow) N-Package J-Package M-Package 500mW 1200mW 300mW 1200mW 500mW 600mW 350mW 1000mW Thermal Resistance (Typical) 8JA H-Package (Still Air) (400 LF/Min Air Flow) N-Package J-Package M-Package 165"C/W 65·C/W 165·C/W 65·C/W 10S·C/W 130·C/W 10S·C/W 19O"C/W (Typical) 8JC H-Package 21·C/W 21·C/W -65·Cto + 150"C Storage Temperature Range Soldering Information Dual-In-Line Package Soldering (10 seconds) 26O"C Small Outline Package Vapor Phase (60 seconds) 215·C 220·C Infrared (15 seconds) See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD tolerance (Note 3) SOOV Note 1: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply Yoltage. - 65·C to + 15O"C Note 2: Refer to RETS4250X lor military specifications. Note 3: Human body model, 1.5 kll in series with 100 pF. Resistor Biasing Set Current Setting Resistor to YISET YS 0.1 Jl-A 0.5J1-A 1.0 !l-A ±1.5V 25.6MO 5.04MO 2.5MO ±3.0V 55.6MO 11.0 MO 5.5MO 1.09MO 544kO ±6.0V 116MO 23.0MO 11.5 MO 2.29MO 1.14MO 5!l-A 492kO 10 !l-A 244kO ±9.0V 176MO 35.0MO 17.5MO 3.49MO 1.74 MO ±12.0V 236MO 47.0MO 23.5MO 4.69MO 2.34MO ±15.0V 296MO 59.0MO 29.5MO 5.S9MO 2.94MO 1-4S3 Electrical Characteristics LM4250 (- 55°C 5: TA 5: + 125°C unless otherwise specified.) TA = TJ Vs =±1.5V Parameter Conditions ISET = 1 p.A Min ISET = 10p.A Max Min SmV Max Vos Rs 5: 100 kO, TA = 25°C 5mV los TA = 25°C SnA 10nA Ibias TA = 25°C 7.5nA 50nA Large Signal Voltage Gain RL = 100 kO; TA = 25°C Vo = ±0.6V, RL = 10 kO Supply Current TA = 25°C 7.5 p.A 80 p.A Power Consumption TA = 25"C 2Sp.W 240p.W 40k 50k Vos Rs 5: 100 kO 4mV 6mV los TA = +125°C TA = -55°C 5nA SnA 10nA 10nA 7.5nA Ibias ±0.6V Input Voltage Range 50nA ±0.6V Large Signal Voltage Gain Vo = ±0.5V, RL = 100 kO RL = 10kO SOk Output Voltage SWing RL = 100kO RL = 10kO ±0.6V Common Mode Rejection Ratio Rs 5: 10kO 70dS 70dS Supply Voltage Rejection Ratio Rs 5: 10kO 76dS 76dS SOk ±0.6V Supply Current 90 p.A 8p.A Vs = ±15V Parameter ISET = 1 !LA Conditions Min Vos Rs 5: 100 kO, TA = 25°C Max ISET = 10 !LA Min SmV Max 5mV los TA = 25°C SnA 10nA Ibias TA = 25°C 7.5nA 50nA Large Signal Voltage Gain RL = 100 kO, TA = 25°C Vo = ±10V, RL = 10 kO Supply Current TA = 25°C 10p.A 90 p.A Power Consumption TA = 25°C SOOp.W 2.7mW 100k 100k Vos Rs 5: 100 kO 4mV 6mV los TA= +125°C TA = -55°C 25nA SnA 25nA 10nA 7.5nA Ibias ±1S.5V Input Voltage Range Large Signal Voltage Gain Vo = ±10V, RL = 100kO RL = 10kO Output Voltage Swing RL = 100kO RL = 10kO ±12V Common Mode Rejection Ratio Rs 5: 10kO 70dS Supply Voltage Rejection Ratio Rs5:10kO 76dS 50nA ±1S.5V 50k 50k ±12V Supply Current Power Consumption 1-484 70dS 76dB 11 p.A 100 p.A SSOp.W SmW Electrical Characteristics LM4250C (O"C s: TA s: + 70"C unless otherwise specified.) TA = TJ Vs = ±1.5V Conditions Parameter Min Vos Rs s: ISET = 10,..,A ISET=1,..,A 100 kO, TA = 25°C Max Min 5mV Max 6mV los TA = 25°C 6nA 20nA Ibias TA = 25°C 10nA 75nA Large Signal Voltage Gain RL = 100 kO, TA = 25°C Vo = ±0.6V, RL = 10 kO Supply Current TA = 25°C S p.A 90p.A Power Consumption TA = 25°C 24p.W 270 p.W Vos Rs 6.5mV 7.5mV s: 25k 25k 10kO los SnA 25nA Ibias 10nA SOnA Input Voltage Range ±0.6V ±0.6V Large Signal Voltage Gain Vo = ±0.5V, RL = 100 kO RL = 10kO Output Voltage Swing RL = 100kO RL = 10kO ±0.6V Common Mode Rejection Ratio RsS:10kO 70 dB Supply Voltage Rejection Ratio Rs s: 25k 25k ±0.6V 10 kO 70 dB 74 dB Supply Current Power Consumption 74 dB Sp.A 90 p.A 24p.W 270p.W Vs = ±15V Parameter Conditions ISET = 1 p.A Min Vos Rs s: 100kO, TA = 25"C Max ISET = 10,..,A Min 5mV Max 6mV los TA = 25°C 6nA 20nA Ibias TA = 25°C 10nA 75nA Large Signal Voltage Gain RL = 100 kO, TA = 25°C Vo = ±10V, RL = 10 kO Supply Current TA = 25°C 11 p.A Power Consumption TA = 25°C 330p.W 3mW Vos Rs 6.5mV 7.5mV s: 60k 60k 100 kO 100 p.A los SnA 25nA Ibias 10nA SOnA Input Voltage Range ±13.5V Large Signal Voltage Gain Vo = ±10V,RL = 100kO RL=10kO Output Voltage Swing RL = 100kO RL=10kO Common Mode RejectionRatio Rs 10kO 70 dB Supply Voltage Rejection Ratio RsS:10kO 74 dB s: ±13.5V 50k 50k ±12V ±12V Supply Current Power Consumption 1-4S5 .70 dB 74 dB 11 p.A 100 p.A 330 p.W 3mW Typical Performa!,:,ce Characteristics Input Bias Current VII Temperature Input Bias Current vs ISET ,1000 -«l -30 100 Ys=t15Y Ys=tl.5Y 10 I 1sEr=10) S 3 ! 2, ~ !; ~ Vs = O5V 0 10 20 30 40 14 LM6104 Output Voltage vs Sink Current >§ -. 1,2 and negative output voltag8s. 1.0 -25 0 25 50 75 100 LM6104 Output Voltage vs Source Current ~ i~ FREQUENCY (MHz) -I 10' +7.5mA LOAD is I III I III I TIME (n.) 1.4 '/ =5.1 kn R,= 10kn -25 1600 8 1.6 ~ "'d~ '>~ . i; N: -20 -35 V-=5V -40 TA = +25 0 C 600 6 VOUT Referred to Supplies Vs = ±5V lIN = ± 100 !lA I". -15 -30 v+ =8V R,=2kn 200 4 SUPPLY VOLTAGE (OV) R,= I kn 0 R,= 10kR -- 2 R,=2kn 5 4 0 0 1000 Frequency Response vs RF Av = -1,RF = RG V+= BV v- = -5V TA = 25°C R,= lkn-- 100 FREQUENCY (kHz) Large SIgnal Pulse Response Av =-1 ' -25°C O. I FREQUENCY (MHz) 6 " I 50 100 "25°C' 2 i 60 1111 1-1.. +85 O C 3 iB Am llfier." 70 II. 0.1 e ~ m Ifler.: and # 90 z III 4 ~ 11111 100 ~ 5 Ay'-1~~ R,=2kn Am lifl,r # 1 Driven 110 r"" LCH,Jl. 'C,:: ,C,: 10 Supply Current vs Supply Voltage Amplifier to Amplifier Isolation 120 50 I ,0 60 OUTPUT SOURCE CURRENT (mA) -- ..- 10 20 30 Vs =05V 40 50 60 OUTPUT SINK CURRENT (mA) TL/H/I1979-3 1-492 Applications Information CURRENT FEEDBACK TOPOLOGY Bandwidth and slew rate are inversely proportional to the value of RF (see typical curve Frequency Response vs RF). This makes the amplifier especially easy to compensate for a desired pulse response (see typical curve Large Signal Pulse Response). Increased capacitive load driving capability is also achieved by Increasing the value of RF. The LM61 04 has guaranteed performance with a feedback resistor of 2 kfi. The small-signal bandwidth of conventional voltage feedback amplifiers is inversely proportional to the closed-loop gain based on the gain-bandWidth concept. In contrast, the current feedback amplifier topology, such as the LM61 04, enables a signal bandwidth that is relatively independent of the amplifier's gain (see typical curve Frequency Response vs Closed Loop Gain). FEEDBACK RESISTOR SELECTION: RF Current feedback amplifier bandwidth and slew rate are controlled by RF. RF and the amplifier's internal compensation capacitor set the dominant pole in the frequency response. The amplifier, therefore, always requires a feedback resistor, even in unity gain. CAPACITIVE FEEDBACK It is common to place a small lead capacitor in parallel with feedback resistance to compensate voltage feedback amplifiers. Do not place a capaCitor across RF to limit the bandwidth of current feedback amplifiers. The dynamic impedance of capacitors in the feedback path of the LM6104, as with any current feedback amplifier, will cause instability. 1-493 r-------------------------------------------------------------------------, -N'til ~. - LM6118/LM6218 ~ . National Semiconductor ~ , ~ Fast Settling Dual Operational Amplifiers General Description Features TheLM6118 series are monolithic fast-settling unity-gaincompensated dual operational amplifiers with, ±20 mA output drive capability. The PNP input stage has a typical bias current of 200 nA, and the operating supply voltage is ± 5V to ±20V. • • • • • • • These dual op amps use slew enhancement with special mirror Circuitry to achieve fast response and high gain with low total supply current. The amplifiers are built on a junction-isolated VIPTM (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's. Typical 0.2mV 400 ns 140 V/lJ.s 75 V/IJ.S Low offset voltage 0.Q1 % settling time Slew rate Av .. -1 Slew rate Av = +1 Gain bandwidth Total supply current Output drives 50n load (± 1V) 17 MHz 5.5 mA Applications • D/A converters • Fast integrators • Active filters Connection Diagrams and Order Information Ceramic Leadless Chip Carrier (E) Dual·ln·Llne Package (J or N) OUTPUTA Y+ A INPUT- OUTPUT B A INPUH BINPUT- TLlH/10254-4 Top View Y- Order Number LM6118N, LM6118J/883*, LM6218AN or LM6218N See NS Package Number JOSA or N08E BINPUT+ TLlH/10254-24 Order Number LM6118E/883* See NS Package Number E20A Typical Applications Small Outline Package (WM) R1 4.3k Nt OUTPUT R2 Nt 4.99k INPUT(-) INPUT(+) R4 4.99k He VOUT YTL/HI10254-3 R6 4.3k Top View , Order Number LM6218AWM or LM6218WM See NS Package Number M14B Single ended input to differential output Av = 10, BW = 3.2 MHz 40 Vpp Response = 1.4 MHz Vs 'Available per SMD #5962-9156501 = ±15V Wide-Band, Fast-8ettllng 40 Vpp Amplifier 1-494 TLlH/10254-1 Absolute Maximum Ratings (Note 1) ±2kV ESD Tolerance (C = 100 pF, R = 1.5 kG) 150"C Junction Temperature -65·Cto + 150·C Storage Temperature Range 300"C Lead Temperature (Soldering, 10 sec.) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Total Supply Voltage 42V (Note 2) Input Voltage Differential Input Current (Note 3) ±10mA Output Current (Note 4) Intemally Limited Power Dissipation (Note 5) 500mW Operating Temp. Range - 55·C to + 125·C -40"Cto +85°C -40"Cto +85·C LM6118 LM6218A LM6218 Electrical Characteristics ± 5V s: Vs s: ± 20V, VCM = OV, VOUT = OV, lOUT = OA, unless otherwise specified. Limits with standard type face are for TJ = 25·C. and Bold Face Type are for Temperature axtrame•• Parameter Input Offset Voltage Input Offset Voltage Input Offset Current Input Bias Current Typ 25"C Conditions Vs = ±15V V- + 3V V V + 3V + 3V 0.2 s: VCM s: V+ s: VCM s: V+ s: VCM s: V+ - 3.5V - 3.5V - 3.5V 0.3 20 200 Input Common Mode Rejection Ratio V + 3V s: VCM Vs = ±20V Positive Power Supply Rejection Ratio V = -15V 5V s; V+ s; 20V 100 Negative Power Supply Rejection Ralio V+ = 15V -20V s: V- 100 Large Signal Voltage Gain. Vout = ±15V Vs = ±20V RL = 10k Vout = ±10V Vs = ±15V RL = 500 (±20mA) Vo Output Voltage Swing Supply = ± 20V RL = 10k Total Supply Current Vs = ±15V s: s: V+ - 3.5V 100 -5V 500 200 17.3 5.5 LM6118 Umlts (Notes 6 & 7) LM6218A Limits (Note 6) LM6218 Umlts (Note 6) 1 1 3 2 2 4 1.5 1.5 3.5 2.5 2.5 4.5 50 50 100 250 100 200 350 350 500 .50 .50 1250 90 90 80 85 85 75 90 90 80 85 85 75 90 90 80 85 85 75 150 150 100 100 100 70 50 50 40 30 30 25 ±17 ±17 ±17 7 7 7 7.5 7.5 7.5 Units mV(max) mV(max) nA(max) nA(max) dB (min) dB (min) dB (min) VlmV(min) V/mV(min) V (min) mA(max) Output Current Limit Vs = ±15V,Pulsed 65 100 100 100 Slew Rate, Av = -1 Vs= ±15V,Vout= ±10V Rs = Rt = 2k,Ct = 10pF 140 100 100 100 50 50 50 Vs = ±15V, Vout = ±10V Rs = Rt = 2k,Ct = 10pF 75 Gain-Bandwidth Product Vs = ±15V,fo = 200kHz 17 0.01 % Settling Time Av =-1 AVout = 10V, Vs = ±15V, Rs = Rt = 2k,Ct = 10pF ·400 ns Inverter 5 pF Follower 3 pF Slew Rate, Av = + 1 Input capacitance 50 50 50 30 30 30 14 14 13 mA(max) V/",s(min) VI,... (min) MHz (min) Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrfcal speciflcatlons do iIot apply wheli operating the device beyond its rated operating conditions. Note 2: Input voltage range is (V+ - 1V) to (V-j. Nole 3: The inputs are shunted w~h three series-connected diodas back-1o-back tor input ·differential clamping. Ti1efetore differential input wltages greater than about t .8V will cause excessive current to flow unless limited to· less than 10 mAo Note 4: Current IimHing protects the output from a short to ground or any wltage less than the supplies. Wrth a continuous overload, the package dissipation must be taken into account and heal sinking provided when necessary. Note 5: Devices must be derated using a thermal resistance 01 fN'C/W for the N, J and WM packages. Note 6: Umits are guaranteed by lesling or correlation. Note 7: A military RETS spacification is available on request. AI the time ot printing, LM8118J/883 and LM6118E/883 RETS spec complied ~ the Boldface limits in this column. 1-495 co'r-----------------~-----------------------------------------------------------------------, ~ ....~ Typical Performance Characteristics Input Noise Voltage Input Bias Current ...~ 1000 U) YS R i15Y YCII=GV 500 :! -...;, ~ .. ! r-. ~ z 1000 (V'10 500 I ~ ~ 100 ~ 50 8 10 10 10 50 100 150 POSII1VE t: 20 o UY:SYs:SUGV ~ 200 20 -so Common Mode Umlts 100 mlPERAlUR£ «1:) lk 10k ~ :~ r- p, Nri I 50 lOCk 100 150 1EIIPERAlURE ('1:) rREQUENCY (Hz) i" . Common Mode Rejection 120 TA =25'1: 100 120 r--r---,----r-c--.-_, 60 100 f""'i~....,.-t--i-Rs =5004 R,=500l1 80 I---+......:+'-..-+- TA = 25'1: 50 Ay=+1 ~ 201---+---+---+--i~" ,.,.V/oC 170 S OV';;: VCM';;: 5V PSRR = 2.2 52. Input Offset Current CMRR Vo 3 OV,;;: VCM';;: 5V los 115°C/W 19SoC/W 81°C/W 126°C/W ±25mA Unless otherwise specified, all limits guaranteed forTJ = 25°C, V+ V + /2. Boldface limits apply at the temperature extremes. Symbol -40'C ,;;: TJ ,;;: +85°C Thermal Resistance (6JA) N Package, 8-Pin Molded DIP M Package, 8-Pin Surface Mount N Package,14-Pin Molded DIP M Package, 14-Pin Surface Mount S5V ±10mA Current at Input Pin 1.8V,;;: V+ ,;;: 24V 0.1 0.1 0.133 0.133 4.86 4.86 4.80 4.80 V max V min 5.0V DC Electrical Characteristics . '. . .o. o.. o.o., ' Unless Otherwise Specified, All Umits Guaranteed forTJ = 25°C, V+ = 5.0V, y- = OV, VCM = Vo = V+12 and RL ? 1 MO '.,' to V+ 12. Boldface limits apply at the temperature extremes. (ContinlJed) Symbol Isc Parameter. Conditions Output Short Circuit Current LM6142 ' Sourcing 13 Sinking ISC Output Short Circuit Current LM6144 I.:M6144AI LM6142AI Limit (Note 6) , Typ (Note 5) 24 Sourcing 8 LM61441!11 LM6142BI Limit, (Note 6) 10 8 4.9 4 35 35 , UnitS , ' . mA min inA max 10 10 5.3 5.3 mA min 35 35 rnA , max 6 6 3 3 35 35 mA' min mA max '/ Sinking 22 "' Is Supply Current Per Amplifier 650 8 8 4 4 35 35 mA "min 800 800 880 880 mA max , p,A max 5.0V AC Electrical Characteristics Unless Otherwise Specified, All UmitS Guaranteed for TJ = 25°C, V+ = 5.0V, V- = OV, VCM = Vo = V+ 12 and RL > 1 MO to Vs/2. Boldface limits apply at the temperature extremes. Symbol SR GBW Parameter Slew Rate Gain-Bandwidth Product Conditions Typ (Note 5) 8 Vp_p@Vee12V Rs>1kfi 25 f=50kHz 17 LM6144AI l.M6142AI Limit LM6144BI LM6142BI Limit (Note 6)' (Note 6) ; "'m en in T.H.D. 15 13 13 11 10 10 8 8 Units V/p,s min MHz min Phase Margin 38 Deg Amp-to-Amp Isolation 130 dB Input-Referred Voltage Noise f = 1 kHz Input-Referred Current Noise f = 1 kHz Total Harmonic Distortion f = 10 kHz, RL = 10 kO, nV 16 [Hz pA " 0.22 1-506 0.003 " [Hz % 2.7V DC Electrical Characteristics Unless Otherwise Specified, All Limits Guaranteed for TJ = 25·C, V+ = 2.7V, V- = OV, VCM = Vo = V+ 12 and RL to V+ 12. Boldface limits apply at the temperature extreme Symbol Vos 18 los Parameter Typ (Note 5) Conditions Input Offset Voltage 0.4 Input Bias Current 150 Input Offset Current RIN Input Resistance CMRR Common Mode Rejection Ratio PsRR Power Supply Rejection Ratio VCM Input Common-Mode Voltage Range 4 Large Signal Voltage Gain RL = 10k Vo Output Swing RL = 10kO 1.B 2.5 4.3 4.3 250 300 526 526 30 30 80 80 mV max nA max nA max MO dB min 76 79 -0.25 0 0 V min 2.95 2.7 2.7 V max V/mV min 0.019 510 O.OB 0.08 0.112 0.112 2.66 2.66 2.25 2.25 BOO BOO 880 880 2.7V AC Electrical Characteristics Unless Otherwise Specified, All Limits Guaranteed for TJ = 25°C, V+ = 2.7V, V- = OV, VCM = Vo = V+ 12 and RL to V+ 12. Boldface limits apply at the temperature extreme Parameter Conditions GBW Gain-Bandwidth Product f = 50kHz >m Phase Margin Gm Gain Margin Symbol Units 55 Per Amplifier Typ (Note 5) 1-507 1 MO 90 2.67 Supply Current LM6144BI LM6142BI Limit (Note 6) 12B s: VCM s: 1.BV OV s: VCM s: 2.7V 3V s: V+ s: 5V OV Av Is LM6144AI LM6142AI Limit (Note 6) > LM6144AI LM6142AI limit (Note 6) LM6144BI LM6142BI limit (Note 6) V max V min p.A max > 1 MO Units 9 MHz 36 Oeg 6 dB 24V Electrical Characteristics Unless Otherwise Specified, All Umits Guaranteed for TJ = 25'C; V+ to Vs/2. Boldface limits apply at the temperature extreme Symbol Vas Parameter Conditions Input ,Offset Voltage = 24V, VTyp (Note 5) 1.3 MO Input Resistance CMRR Common Mode Rejection Ratio OV ~ VCM ~ 23V 114 OV ~ VCM ~ 24V 100 PSRR Power Supply Rejection Ratio OV ~ VCM ~ 24V VCM Input Common-Mode Voltage Range Output Swing RL = 10kO GBW Supply Current Gain-Bandwidth Product -0.25 0 0 V min 24.25 24 24 V max V/mV min 500 0.07 Per Amplifier f dB min 87 23.85 Is 750 = 50kHz mV max 288 RIN Va 3.8 4.8 nA max Input Offset Current = 10k 2 4.8 Units 5 los RL LM6144BI LM6142BI Umlt (Note 6) nA, max Input Bias Current Large Signal Voltage Gain LM6144AI LM6142AI Umlt (Note 6) = v+ 12 and RL > 1 MO 174 Ie Av = OV, VCM "" Va 18 0.15 0.15 0.185 0.185 23.81 23.81 23.82 23.82 V max V min 1100 1100 p.A 1150 1150 max MHz Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur; Operating Ratings indicate conditions for which llie device is Intended to be functional, but specific performance Is not guaranteed. For guarantaed speclf'rcations a,nd the test conditions, see the Electricsl Charactenstics. Note 2: Human body model, 1.5 kO In series with 100 pF. Note 3: Applies to both single-supply and spllt....pply operation. Continuous short clrcuH operation at elevated ambient temperature can reBUn in exceeding the maximum allowed Junction temperature of 15O'C. Note 4: The maximum power dissipation is afuriction of TJ(m&><)' 6JA, and TA. The maximum allowable power diSsipation at any ambient temperatura Is Po (Tj(m&><) - TAJI6JA. All numbers apply for packages soldered directly into a PC board. Note 5: Typical values rapresent the most likely paramelric norm. Note 6; All limits are guaranteed by testing or statisticsl analysis. Note 7: For guaranteed military specifications see military datesheel MNLM6~ 42AM-X. 1-508 = r-----------------------------------------------------------------------------~~ Typical Performance Characteristics TA = el 1.0 '~" 0.8 Ii! ~ 0.6 Supply Current vs Supply Voltage II I " " i~1 L lJ."bl" 1"1 § - ... OoC "> -S 2.' 2.1 ~ I.S ~ +25 0 C -550C 0.• I 2.7 +85 0 C +125 0 C -S Offset Voltage vs Supply Voltage 3.0 t;; IL +2·S c B 0.2 ~ 0.0 ~ 1.2 .... * ,. 0.6 0.0 4 a 8 12 16 20 24 28 32 36 4 Offset Voltage vs VCM ~ 0.8 0.6 "> -S -40 o e ~ .L. 0.2 +!sOC -0.2 ~ ~ :';;SOC -0.4 II A -1.0 -2 -1.5 -1 -O.S 0 I +25°C 1 1.5 r. a -100 ~ -200 -300 It '" :! ..... .... ia i +25 OC 80 20 ~ Offset Voltage vs VCM Vs = :t:5V .J +asoc' -'OoC -2 a -1 +25 0 C -1.0 1 -6-5-4-3-2-10123456 COMMON MODE VOLTAGE (V) Bias Current vs VCM 500 Ys = :12.SV 400 300 200 , 100 Iiii=' 0 +85 OC -100 -200 -300 +25°C .. -=~ il1 -2 -1 0 Ys = :i:5V 300 200 100 to a i':l -100 i -200 -40 oe -3 2 +85 OC -300 -400 : , +25 0 C -40 o C I I -500 I R -6 -S -4 -3 -2 -1 0 1 2 3 • S 6 1 Open-Loop Transfer Function Open-Loop Transfer Function vSr, I ....... lOOk -.0 ......, ~lok 2k l"\ -60 I \ I I -80 -100 0.5 1 1.5 2 OUTPUT VOLTAGE (V) 2.5 35 1.0 Open-Loop Transfer Function ........ a 30 . COMMON MODE VOLT AGE (v) ~ -20 !'i 25 COMMON MODE VOLTAGE (v) ~ ~ 1.5 20 COMMON MODE VOLTAGE (V) 1 I ............ "> 40 ..3 ~ 1 15 -0.5 -0400 0.5 II 60 10 SUPPLY VOLT AGE (V) -sao -2 -1.5 -1 -0.5 0 100 -350 Bias Current vs VCM -"ooc -400 il -SOO r-- -.~oc "> -S ~ .00 /f_ +25 0 C -300 COMMON MODE VOLTAGE (V) 200 olio 0.5 500 +85 OC T'- 12 16 20 24 2a 32 36 0.2 -3 Vs = :l:1.5V 100 -2S0 0.4 Bias Current vs VCM il1 ~ I I I I -1.0 500 .... ~ i':l -200 H-+-++++-+- Vs = ±2.SV COMMON MODE VOLTAGE (v) 400 -ISO 0.6 2 300 .... olio -0.8 +85°C ~ 0.5 L 0.0 ~ -0.2 t;; ~ -0.4 ~ -0.8 .\\ -",oDe I I 1 -0.6 -o.a .1 -40 o C -S5°C ~ il1 Offset Voltage vs VCM 1.0 Vs = :t:1.SV 0.4 1 -100 SUPPLY VOLTAGE (V) 1.0 o.a ~ ~ ~\ ~ a SUPPLY VOLTAGE (V) "> -S ./ ~ a:: en +a~oc ~ ..."f:""'f'. 0.3 o -so Y ./ ;' ;' ~ I +125 0 C l-V ~ ........ V 0.9 en .... Bias Current vs Supply Voltage o l.a i: 25°C, RL = 10 kO Unless Otherwise Specified 100 Vs 80 "> ..3 ~ L I I 60 .0 20 ~ ~ ~ -20 ~ lOOk 10k -40 2k -60 250 = SV "> ..3 100 ~ SO ~ 0 10k \ ~ -100 !'i 2k -150 -200 -2S0 OUTPUT VOLT AGE (V) I I lOOk -50 -100 0.5 1 1.5 2 2.5 3 3.5 4 <1.5 5 I 150 -80 a Vs = IOV 200 I I a 1 2 3 4 5 6 7 8 9 10 OUTPUT VOLTAGE (V) TL/H/12057-3 1-509 Typical Performance Characteristics. TA = 25·C, RL = 10 kO Unless Otherwise Specified (Continued) Output Voltage va Source Current Output Voltage vs Source Current 10 Output Voltage vs Source Current 100 F==t=-40·C ~ .5- ':c z I ~ ~ +85·C====!· § a Iff o. 1 10 .5- A¥-+25·C 11 Vs = 3V ~ ~ ~ 0.1 L 0.0 1 1 10 1000 100 100 10000 OUTPUT SWING fROM V+ (mV) Output Voltage vs Sink Current .5- OUTPUT SWING fROM V+ (mV) Output Voltage vs Sink Current 100 ':c 10 .5- § 100 , - - , . - - , - - , - - - - , 10 Ia g; a "'. 10000 Output Voltage vs Sink Current 100 ':c 1000 OUTPUT SWING FROM V+ (mV) vs' Olf i 0.01 '"inz i 0.001 0.1 0.1 ~ 0.01 10 100 0.1 1000 10000 O.OIJ--f-I---+----+---I 0.001 '-_L..L_ _" , - _ - J ._ _...J 0.001 0.1 f---H--+---i-:---i ~ OUTPUT SWING FROM V- (mV) 10 100 1 1000 10000 OUTPUT SWING FROU V- (mV) 10 Ido 1000 10000 OUTPUT SWING fROM V- (m¥) TL/H/12057-4 Gain and Phase vs Load 120 100 Distortion + Noise vs Frequency Gain and Phase vs Load 120 =--r-...,.--.,--,,---.., 180 F""....+ - + - J - - - + - - - j -66 Vs = 24V -68 VO= 10Vpp' -70 100 1-"IIr+"'-+-+--If--+--I . 80J--+"~__l-~nr~rr4 60.J--+--f"-~.&-+\ ~ if 20f--+-+~+--If-~~rl ~ -72 % -74 3 ~ ~ -76 -78 -80 ./ -82 100 lk 10k lOOk 100 IN lk fREQUENCY (Hz) 10k lOOk 1M fREQUENCY (Hz) -8" lk 2k 4k " 8k 20k 40k 8Dk 6k 10k 60k lOOk fREQUENCY (Hz) GBW vs Supply 25.00 GBWat 100kHz 'i 20.00 I" .3 'l ~~ ~o~ ~~'~ I" V 0.00 1 6 8204080 10 60 100 SUPPLY VOLTAGE (V) TUH/12057-11 1-510 Typical Performance Characteristics TA = 25°C, RL 10 kG Unless Otherwise Specified (Continued) = Open Loop Gain vs Load, 3V Supply 120 10~ ~ r---- ./" .... 'M '00 '). r- 80 z ~ &0 ! '~ 40 .... 20 :-::-. kof~ 80 z '~ "":'k 1-"'"' ,:~ .... 'Ok ~ 9 ~ Open Loop Gain vs Load, 5V Supply 120 ~ &0 § 40 ~ 20 '~ 0 '20 ..... .... 'M 100"~ a;- 80 / ,,~ .;~ ; ~ '~ .... 'Ok ~ '00 '0 ,Ok lOOk 'k '20 ! i ~ V t5~-+-+--+~+--+--1 /V '0 f--I-V--i>'<--+-", • 'k 5 ~..- L...-~ o 5 ~ a;3 ~ '00 __~-L__L - J '0 '5 20 25 140 1---FFttoIOlll--I-tttttHr-+-H1-ttt11 ! 130 1-f-HH+HIf-H"IoHi1I11-++t+lttH ~ 1201-f-HH+HIf-r+Hffi~T+t+lttH ~ 110 ~ 50.0 ~-+-+-;.-+-=c::::i 1"-. NEG PSR 40.0 "' A 30.0 r-~~--+-~~'--JJ.-l ~~:~ t==t==t~PO~St~PS~R!:-"l~~:~::j ~H1fttttH-t+HflIIlf--,t-PtItllll 100 ~H1fttttH-t+HflIIli'-+++H1~ 10 30 70.0 " 60.0 Vs' 3V -I-"I"'.-t----1I-_+_~ 0.0 Crosstalk vs Frequency 150 r-r-nrTTTTn-,...,...rrmrn-rTTITTT1I 80 100 Ik 10k lOOk rREQUENCY (Hz) PSRR vs Frequency ~ rREQUENCY (Hz) \. '\ 95 90 100.0 Vs' 'ov , 90.0 ~ Vs .' 5V -I---r--l 80.0 ~ - 'ON """- 105 SUPPLY VOLTAGE (V) ~ I' 85 oL-~-J ,,~ 0~-r--r--r-1---r~ vs' 10V 110 '~ fI!. -20 '---'-_J.---L_-'-----'_...J 10 100 'k 'Ok 'OOk ,. 10M 115 20r-~~--+--+~F~~ I. 'Ok 60~-+-+-~~+-~-, .... lk p.~ 40~-+~+--+~~~-1 CMRR vs Frequency Unity Gain Freq vs Vs .... ;':'Ok '" rREQUENCY (Hz) ... • O~ '20~-+-+--+-+-~~1 -20 rREQUENCY (Hz) ~ 9 J-- '~ '~ .... 'k 0 -20 '--'-_J.---L_-'-----'--' '0 '00 lk ,ok 'OOk '" 'ON Open Loop Gain V8 Load, 24V Supply rREQUENCY (kHz) Noise Voltage vs Frequency ~".5 li~ g ~ '" ~ L-...L.......L__- ' - - ' -__'-''....... 10 tOO Ik 10k tOOk 1M 10M 1000 800 600 400 200 ~"- '\. ,; " '00 80 &0 40 § ~ .~ 20 '0 0.01 NOise Current va Frequency t-- '"~ 10 8 6 4 2 , 0.8 0.& 0.4 0.2 0.' 0.1 rREQUENCY (Hz) 1 10 100 '000 0.1 rREQUENCY (Hz) 1 '0 100 1000 10000 rREQUENCY (Hz) TUHI12057 -s NE vs R Source 20 18 ,& a;- 14 3 ~ i;! ~ ~ 12 10 8 6 4 2 a '00 'k 'Ok lOOk 'N 10. RsOUoeE (n) TLlH/120S7-12 1·511 • LM6142/44 Application Ideas Slew Rate va I!>. VIN Vs = ±5V The LMS142 brings a new level of ease of use to opamp system design. With greater than rail-to-rail' input voltage range concern over exceeding the common-mode voltage range is eliminated. Rail-ta-rail output Swing provides the maximum possible ,dynamic range at the ,output. This is particularly impor\ant when operating on low supply voltages. The high gain-bandwidth with low supply current opens new battery powered applications, where high power consumption, previously reduced battery life to unacceptable levels. To take advantage of these features, some ideas should be kept in mind. 'in .....'" .:::. ... =< '" ~ VI 55 50 45 40 35 30 25 20 15 10 ", : +SLEW f.. --= ,...., ~ Ih " .. " : - -SLEW o 0.0 0.5 1.0 1.5 2.0 2.5 3,0 3.5 4.0 ENHANCED SLEW RATE DiffERENTIAL INPUT VOLTAGE, (V) Unlike most bipolar opamps, the unique phase reversal preventionl speed-up circuit in the input stage causes the slew rate to be very much a function of the input signal amplitude. Figure 1 shows how excess Input Signal, is routed around the input collector-base junctions, directly to the current mirrors. The LMS142/44 input stage converts the input voltage change to a current change. This current change drives the current mirrors through the collectors of 01-02, Q3-04 when the input levels are normal. If the input signal exceeds the slew rate of the input stage, the differential input voltage rises above two diode drops. This excess signal bypasses the normal input tranSistors, (01-04), and is routed in correct phase through the two additional transistors, (05, OS), directly into the current mirrors. This rerouting of excess signal allows the slew-rate to increase by a factor of 10 to 1 or more. (See Figure 2.) As the overdrive increases, the opamp reacts better than a conventional opamp. Large fast pulses will raise the slew' rate to around 30V to SOVI /Ls. +IN TLlH/I2057-7 FIGURE 2 This effect is most noticeable at higher supply voltages and lower gains where incoming signals are likely to be large. This new input circuit also eliminates the phase reversal seen in many opamps when they are overdriven. This speed-up action adds stability to the system when driving large capacitive loads. DRIVING CAPACITIVE LOADS Capacitive loads decrease the phase margin of all opamps. This is caused by the output resistance of the amplifier and the load capacitance forming an R-C phase lag network. This can lead to overshoot, ringing and oscillation. Slew rate limiting can also cause additional lag. Most opamps with a fixed maximum slew-rate will lag further and further behind when driving capacitive loads even though the differential input voltage raises. With the LM6142, the lag causes the slew rate to raise. The increased slew:rate keeps the output following the input much better. This effectively reduces phase lag. After the output has caught up with the input, the differential input voltage drops down and the amplifier settles rapidly. -IN OUT TL/H/I2057-6 FIGURE 1 1-512 r-------------------------------------------------------------------------------------, r- .....== LM6142/44 Application Ideas en (Continued) These features allow the LM6142 to drive capacitive loads as large as 1000 pF at unity gain and not oscillate. The scope photos (Figure 3a and 3b) above show the LM6142 driving a 1000 pF load. In Figure 3a, the upper trace is with no capacitive load and the lower trace is with a 1000 pF load. Here we are operating on ± 12V supplies with a 20 Vp-p pulse. Excellent response is obtained with a C, of 10 pF. In Figure 3b, the supplies have been reduced to ±2.5V, the pulse is 4 Vp-p and Cj is 39 pF. The best value for the compensation capacitor is best established after the board layout is finished because the value is dependent on board stray capacity, the value of the feedback resistor, the closed loop gain and, to some extent, the supply voltage. N ..... r- ........en== 11nr ~ TLlH/12057-10 FIGURE 4 Typical Applications Another effect that is common to all opamps is the phase shift caused by the feedback resistor and the input capacitance. This phase shift also reduces phase margin. This effect is taken care of at the same time as the effect of the capacitive load when the capacitor is placed across the feedback resistor. FISH FINDER! DEPTH SOUNDER. The LM6142/44 is an excellent choice for battery operated fish finders. The low supply current, high gain-bandwidth and full rail to rail output swing of the LM6142 provides an ideal combination for use in this and similar applications. The circuit shown in Figure 4 was used for these scope photos. ANALOG TO DIGITAL CONVERTER BUFFER The high capacitive load driving ability, rail-to-rail input and output range with the excellent CMR of 82 dB, make the LM6142/44 a good choice for buffering the inputs of A to 0 converters. 3 OPAMP INSTRUMENTATION AMP WITH RAIL-TORAIL INPUT AND OUTPUT USing the LM6144, a 3 opamp instrumentation amplifier with rail-to-rail inputs and rail to rail output can be made. These features make these instrumentation amplifiers ideal for single supply systems. Some manufacturers use a precision voltage divider array of 5 resistors to divide the common-mode voltage to get an input range of rail-to-rail or greater. The problem with this method is that it also divides the signal, so to even get unity gain, the amplifier must be run at high closed loop gains. This raises the noise and drift by the internal gain factor and lowers the input impedance. Any mismatch in these preCision resistors reduces the CMR as well. Using the LM6144, all of these problems are eliminated. TLlHI12057-8 FIGURE3a In this example, amplifiers A and B act as buffers to the differential stage (Figure 5). These buffers assure that the input impedance is over 100 MO and they eliminate the requirement for preCision matched resistors in the input stage. They also assure that the difference amp is driven from a voltage source. This is necessary to maintain the CMR set by the matching of R1-R2 with R3-R4. TLlH/12057-9 FIGURE3b + R3 R4 TLlHI12057-13 FIGURES 1-513 ~ ~ .- CD :J...... C'\I ~ .- CD :Ii! .... r------------------------------------------------------------------------------------------, past the supplies so the cqmbined common mode voltage plus the signal should not be greater than the supplies or limiting will occur. The gain is set by the ratio of R2/R1 and R3 should equal R1 and R4 equal R2. Making R4 slightly smaller than R2 and adding a trim po, equal to twice the difference between R2 and R4 will allow the CMR to be adjusted for optimum. SPICE MACROMODEL With both rail to rail input and output ranges, the inputs and outputs are only limited by the supply voltages. Remember that even with rail·to-rai~ output, the output can not swing A SPICE macromodel of this and many other Natiol")al Semiconductor opamps is aVl\ilable at no qharge from the NSC Customer ResPonse Group at 800-272-9959. ,;,' ,', 1-514 ,-------------------------------------------------------------------------, r PRELIMINARY ttlNational Semiconductor == .... G) UI N ...... r 3: G) .... LM6152 Dual and LM6154 Quad High Speed/Low Power 45 MHz Rail-to-RaiitlO Operational Amplifiers General Description Features (For 5V Supply) Using patent pending circuit topologies, the LM6152/54 provides new levels of speed vs power performance in applications where low voltage supplies or power limitations made compromise necessary. With only 1.5 rnA/amp supply current, the 45 MHz bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life. In addition, the LM6152/54 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The railto-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The LM6152/54 can also drive capacitive loads without oscillating. • • • • • • • Operating on supplies of 1.SV to over 24V, the LM6152/54 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation. Rail-to-rail input CMVR Rail-to-rail output swing Wide gain-bandwidth: Slew rate Low supply current Wide supply range Fast settling time: -Gain • PSRR ~ -0.25V to 5.25V (maxImin) 0.01V to 4.99V (maxImin) 45 MHz (typ) @ 50 kHz 30 VI /Ls (typ) 1.51 Amp (typ) 1.SV to 24V 10S dB (tYp) with RL = 10k S7 dB (typ) Applications • • • • Portable high speed instrumentation 5V signal conditioning amplifierslADC buffers Bar code scanners Wireless communications Connection Diagrams 8-Pln DIP/SO 14-Pln DIP/SO v· OUT A .IN A -IN A 2 14. OUT D OUT A 2 13 12 .IN A -IN A v- -IN D OUT B -IN B 4 y. 4 11 5 10 .IN B .IN B TUH/12350-1 -IN B 6 .IN D y.IN C -IN C Top View 8 OUT B OUT C TL/H/12350-2 Top View Ordering Information Temperature Range Package Industrial -40"Cto +85"C NSC Drawing S-Pin Molded DIP LM6142AIN, LM6142BIN NOSE S-Pin Small Outline LM6142AIM, LM6142BIM MOSA 14-Pin Molded DIP LM6144AIN, LM6144BIN N14A 14-Pin Small Outline LM6144AIM, LM6144BIM M14A 1-515 9- :a:IE ...I ...... 9- r-----------------------------------------------------------------------------------~ tflN at ion a I S e m i con due tor CD C'\I CD :IE ...I ..... 9- CD LM6161 ILM6261 ILM6361 High Speed Operational Amplifier 9- CD :IE ...I General Description Features The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 VI p.s and SO MHz unity gain stabilitY with only S mA of supply current Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +SV. These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast-PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation. • • • .. • • • • • High slew rate High unity gain freq Low supply current Fast settling Low differential gain Low differential ph~e Wide supply range Stable with unlimited capacitive load Well behaved; easy to apply 300 V/p.s 50 MHz SmA 120 ns to 0.1% <0.1% 0.1· 4.7SV to 32V Applications • Video amplifier • High-frequency filter • Wide-bandwidth signal conditioning • Radar • Sonar Connection Diagrams 2G-LeadLCC r------vos VUIS ADJUST------, AO.IUST 10·Lead Flatpak 3 Me Yos ADJUST tNV INPUT NON-tHY INPUT 211120 ~~ Me Vos ADJUST INV.IMPLIT_ VOUTPUT 18 5 NOM-IMV. INPUT ----j r-r- 11 L118t8tE V+ V-~-t._ _ _. j__~NC ,. 7 '6 15 t 10 11 12 y+ VOUT 1314 TUH/9057-13 See NS Package'Number W10A TUH/9Q57 -14 See NS Package Number E20A Vos Adjust INY Input NI Input vTL/H/9057 -5 Temperature Range NSC Industrial -25"C s: TA s: +85"C Commercial Cl"CS:TAS: +7C1"C Package LM6261N LM6361N 8-Pin Molded DIP NOBE LM8361J 8-Pin Ceramic DIP J08A LM8361M 8-Pin Molded SuriacaM!. MOBA LM6161 E/883 5962-89621012A 20-Lead LCC E20A LM6161 W1883 5962-8962101 HA 10·Pin Ceramic Fla1pak Wl0A MUItary -55"C s: TA s: +125"C LM6161 J/883 5962-8962101PA LM6261M 1-S16 Drawing See NS Package Number J08A, NoaEor M08A Absolute Maximum Ratings (Note 12) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. SupplyVoltage(V+ -V-) 36V ±8V Differential Input Voltage (Note 8) See AN-4S0 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods. cif soldering sur~ face mount devices. -6SoC to + 1SO"C Storage Temp Range Max Junction Temperature ESD Tolerance (Notes 6 and 7) Common-Mode Voltage Range (V+ - 0.7V) to (V- - 7V) (Note 10) Output Short Circuit to GND (Note 1) Soldering Information Dual-In-Line Package (N, J) Soldering (10 sec.) Small Outline Package (M) Vapor Phase (60 sec.) Infrared (1S sec.) 1SO"C ±700V Operating Ratings (Note 12) Continuous Temperature Range (Note 2) LM6161 LM6261 LM6361 260"C 21 SoC 220"C -SsoC ,;;: TJ ,;;: + 12SoC -2SoC';;: TJ ,;;: +8SoC O°C,;;: TJ ,;;: +70"C Supply Voltage Range 4.75Vt032V DC Electrical Characteristics The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ;" 100 kO and Rs = 500 unless otherwise noted. Boldface limits apply for TJ = TMIN to TMAX; all other limits TJ = 2SoC. Symbol Parameter Vas Input Offset Voltage Vas Drift Input Offset Voltage Average Drift Ib Input Bias Current los Conditions Typ 5 Input Offset Current Average Drift LM6261 LM6361 Limit (Notes 3, 11) Limit (Note 3) Limit (Note 3) Units 7 10 7 8 20 22 mV Max p'vrc 10 Input Offset Current los Drift LM6161 3 6 3 5 5 6 Max 1S0 350 800 350 600 1500 1800 Max nAloC. kO RIN Input Resistance Differential 32S Input Capacitance Av = +1 @10MHz 1.5 AvaL Large Signal Voltage Gain VaUT = ±10V, RL = 2 kO (Note 9) 750 RL = 10 kO (Note 9) 2900 VCM Input Common-Mode Voltage Range Supply = ± 15V -10V';;: VCM';;: +10V PSRR Power Supply RejeCtion Ratio ±10V,;;: V± ,;;: ±16V Va Output Voltage Swing Supply = ± 15V andRL = 2kO pF SSO 300 S50 . 400 400 350 VIV Min +14.0 +13.9 +13.8 +13.9 +13.8 +13.8 +13.7 Volts Min -13.2 -12.9 -12.7 -12.9 -12.7 -12.8 -12.7 Volts Min 4.0 3.9 3.8 3.9 3.8 3:8 3.7 Volts Min 1.8 2.0 2.2 2.0 2.2 2.1 2.2 Volts Max 94 80 74 80 76 12 70 dB Min 90 80 74 80 76 72 70 dB Min +14.2 +13.5 +13.3 +13.5 +13.3 +13.4 +13.3 Volts Min -13.0 -12.7 -13.0 -12.8 -12.9 -12.8 Volts Min Supply = +5V (Note 4) Common-Mode Rejection Ratio nA 0.4 CIN CMRR p.A 2 -13.4 1-S17 VIV .- ! -~ ~ .- .CD.CD DC Electrical Characteristics (Continued) " specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ~ 100 kO and Rs = 500 unless otherwise noted. ~Idfa_limits apply for TJ '"' TMIN tq TW.x; all other limits TJ = 25'C. ;r~efollowjng ,.'1 Symbol Parameter Conditions Vo (Continued) Output Voltage Swing (Continued) Supply = +5V andRl=2kO (Note 4) ~ Typ 4.2 1.3 Output Short Circuit Current Source Sink IS Supply Current 65 65 5.0 LM6161 LM6261 LM6361 Limit (Notes3,11) LImit (Note 3) LImit (Note 3) Units Volts Min 3.5 3.5 3.4 3.3 3.3 3.3 1.7 1.7 1.8 2.0 1.9 1.9 30 30 30 20 25 25 30 30 30 20 25 25 6.5 6.5 6.8 ••8 •• 7 ••• Volts Max mA Min mA Min mA Max AC Electrical Characteristics The following specifications apply for Supply Voltage = ± 15V, VCM = 0, Rl ~ 100 kO and Rs = 500 unless otherwise noted. Boldface limit!! apply for TJ = TMIN to T MAX; all other limits TJ = 25'C. Symbol GBW Parameter Gain-Bandwidth Product Conditions LM6161 LM6261 LM6361 Typ LImit (Notes 3,11) Umlt (Note 3) Limit (Note 3) Units 50 40 40 35 30 35 32 MHz Min 200 200 200 180 180 180 @f= 20 MHz Supply = ±5V SR Slew Rate Av = + 1 (Note 8) 35 300 MHz Vlp.s Min Supply = ± 5V (Note 8) 200 Vlp.s PBW Power Bandwidth VOUT = 20Vpp 4.5 MHz Is Settling Time 10V Step to 0.1% Av = -1, Rl = 2 kO 120 ns cf>m Phase Margin 45 Deg AD Differential Gain NTSC,Av = +4 <0.1 % ~D Differential Phase NTSC,Av = +4 0.1 Ceg enD-D Inp!Ji Noise Voltage f = 10kHz 15 inD-il Input Noise Current f = 10kHz 1.5 nV/JHz pAlJHz Note 1: Continuous short-circuit operation at elevated ambient temparature can result In exceeding the maximum allowed junction temparature of lSO"C. Note 2: The typical junclion·to-ambianl thermal resistance of the molded plastic DIP (N) is 105"CIW, the molded plastic SO (M) package is lS5"C/W, and the ceidip (J) pacIiaga is 125'C/W:AII numbers apply for packages soldered d~ectly into a printed circuR board. Note 3: UmRs are guaranteed by _ng or, correlation. Note 4: For single supply operation, the following conditions apply: V+ ~ SV, V- ~ OV, VCM ~ 2.SV, VOUT ~ 2.5V. Pin 1 & Pin B (VOS Adiust) are each cOnnected to Pin 4 (V-) to realize maximum output swing. This connection will degrada Ves, Ves Drill, and Input Voltage Noise. Note 5: Cl .: SpF. Note 8: In order to actiieve optimum AC performance, 1/la input stage was designed without protective clamps. Exceeding the maximum differential Input vol1age results In revelSS breakdown of the bas&-emltler junction of one of the input transistors and probable degradation of the Input parameters (especially Vos, los, and Noise). Note 7: The average voltage that the weakaet pin combinations (those involving Pin 2 or Pin 3) can wRhstand and atill conform to the datasheet limits. The test circuR used consists of the human body modal of 100 pF in series with 15000, ' Note S: VIN ~ BV step. For supply~ ±SI(, VIN ~ SV step. Note 9: Voitage Galil is 'the total output swing (2OV) dMded by the input signal reqUired to produce that swing. Note 10: The voltage between V+ and _Input pin must not exceed 36V. Note 11: A military RETS electrical test specification is available on request. Althe ~me of p~nting, the RETS6161 Xapees complied with all Boldlacelimlts In this column. Note 12: Absolute Maximum Ratings indicate limRs beyond which damage to the davioa may occur. Operating Ratings indicate conditions for whi<:h the device Is intandad to be functional, but do not guarantee apecffic performanoa limits. For guaranteed specillcatlons and test condRions, see the Elemrlcal Characteristics. The QU8rarteed specifications apply only for the test conditions listed., 1-518 ,-----------------------------------------------------------------------------, Typical Performance Characteristics (RL = Supply Current vs Supply Voltage +~ 2 4 iI !: ~ ~ 10 lOll lk 10k lOOk FREQUENCY (Hz) +/- SUPPLY VOLTAGE (V) Gain-Bandwidth Product ~ ~ ~ - 8 W tt 246 +/- If! ]: ~ !po ~ 30 "= r- - ~ 0.1 10pF l00pF I ri 30 Vs =tlSV I.y =+1 , /1\. ,r-.... V o 10ri l00nF 1J'I" 10pF 1\ c.-=I' pF Slew Rate V~~ ~=+1 \cr / 10 V / -5SOC ~ RFj21eA ~~ ~ ~ ....... ~ ~ i;o" = Olpf LOAD CAPACITANCE 1nF 10ri o 2 l00ri ~ §! § t 80 .& 40 I I,,,,,, "'''''' 25"C,'25~ ~ "" +125"C r_ ...... -5SOC ~ 0.1 Vs = t15V I 10 LOAD RE51STANCE (leA) 8 W tt ~ ~ ~ SUPPLY VOLTAGE (V) o 2 lOll L +25"C I --- -ssoc IJ'" 2D l- o L- I ..,...j.ooo1"" V' e- 6 Gain vs Supply Voltage 80 z 4 +/- Voltage Gain vs Load Resistance 3 " 1'1 CAPACIIlVE LOAD ii' +~ +125"C / '\ \ "- ~ l00pF " 10nF l00ri 1J'I" LOAO c.\PAClTANCE Overshoot vs Capacitive Load 2D 10pF l00pF I ri "-:--... 1l:MPERATURE ("C) Neg.tMt~ o r-... ....... 10 I -55 -35-15 5 25 -45 115 115 105 125 ~ \ ~ Vs=tlSV Vo = tlOV Slew Ratevs Load Capacitance , , t; lOll .... i--' o ~ 1M Vs =t15V £ 2D ~ 1\ lOll lk 10k lOOk FREQUENCY (Hz) 1000 50 ~ .... ..... ~ Gain-Bandwidth Product vs Load capacitance oo"!!: ~ i=== If SUPPLY VOLTAGE (V) ~P- 10 I 70 10 10 o o 10M Propagation Delay Rise and Fall Times I .1 J,+-,,,,"'- ~ ....... ~OC 1-1- -55OC 1M - ~ l\. \ o ~ ~ iii: en N.tMt ....... I\. r-- - '\ I: 8 W tt 6 Power Supply Rejection Ratio !120 a lOll ...! +125"C IT-S5OC o Common-Mode Rejection Ratio I I I 4 6 8 W tt lit. = 21eA ~ ~ ~ +/- SUPPLY VOLTAGE (V) TUH/9057-6 1-519 ~ iii: en en .... .... ..... 10 kO, TA = 25°C unless otherwise specified) iii: en ~ .... .. ,------------------------------------------------------------------------------------------, ~ CD ~ ..... .. Typical Performance· Characteristics (RL = 10 kG, TA = 25°C unless otherwise specified) (Continued) ~ Differential Phase (Note) . Dlffer,ntlal,Galn (Note) CD ~ ..... .... ~ CD ~ TL/H/9057 -8 Note: Differential gain and differential phase measured for four senes LM6361 op amps configured as unily-gain followers, in senes with an LM6321 buffer. Error added by LM6321 is negligible. Test performed using Tektronix Type 520 NTSC lest system. TL/H/9057 -7 Step Response; Av = +1 TLlH/9057-1 (50 ns/div) Input Noise Voltage Input Noise Current 10,000 ~ ~ ~ Vs =i15V Av =+1 < U: " " ~ 1000 ,5- §! Power Bandwidth 1000 THD "'- 100 z r-- 10 1 10 100 lk FREQUENCY (Hz) 10k lOOk 1 10 100 lk FREQUENCY (Hz) - 10k lOOk 1'\ 4 o 0.1 10 100 FREQUENCY (11Hz) TLlH/9057 -9 1-520 Typical Performance Characteristics (RL = 10 kn, TA = 25"C unless otherwise specified) (Continued) Open-Loop Frequency Response Open-Loop Frequency Response Output Impedence (Open-Loop) 80 80 1 1 GAIN " 'I "' 60 :I! 180 '\.. I"- 20 ~ PHASE 1 1 " 111 1011 100II -20 lk 10k lOOk 1\ ~ 3 40 '" ~ :!I ~ 10 :!s -10 :f 360 1 ~ if; '" 270 360 l -20 111 1011 FREQUENCY (Hz) .eo 100II lG 1 -21-+-+-+-+--+--+--+--I -2 1~+-+-+-+-+-+-+-, W ~ .... 1-0 100 0 o lk 10k M ~ +/- SUPl'LY VOLTAGE (V) ~ lOOk 111 1011 100II FREQUENCY (Hz) Bias Current vs Common-Mode Voltage I -- -55"1: ? 1 1 1\ = 21d1 ~~~~~~~~~~ 8 1 lk ~ 1 ~~H-+-+-+-+-I 6 I '" =I 5 ~ .a 5 10k Output Saturation Voltage ~~~~~~~,-,-~ 4 ~en '" So FREQUENCY (Hz) Common-Mode Input Saturation Voltage 2 i 180 20 ~ lG - lOOk 50 30 en 270 ~ ~ ~ 2 4 6 8 W ~ M +f- SUPPlY VOLTAGE (y) ~ ~ o +Js.c -- -15 -10 - +125"1: -5 0 10 COII~-IIODE VOLTAGE (V) 15 TUH/9057-12 Simplified Schematic TUH/9057-3 1-521 ~ ~ r------------------------------------------------------------------------------------------, ~ ..... ~ CD ~, ~ ;:: CD ~ ~ Applications Tips The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the ,op, amp's input stage, the openloop gain was reduced as the stability increased. Gain error due to reduced AVOL is most apparent at high gains; thus, for gains between 5 and 25, the less-compensated LM6364' should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and LM6365 have the same high slew rate, regardless of their compensation. The LM6361 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when 'their load capacitance is greater than about 200 pF (especially in low-gain circuits). The LM6361's compensation is effectively increased with load capacitance, reducing its bandwidth and increasing its stability. Power supply bypassing is not as critical for the LM6361 as it is for other op amps in its speed class. Bypassing will, however; improve the stability and transient response and is recommended for every design. 0.01 p.F to 0.1 p.F ceramic capacitors should be used (from each supp,ly "rail" to ground); if the device is far away fr!Jm its power supply source, an additional 2.2 p.F to 10 p.F of tantalum may provide extra noise reduction. ' Keep all leads short to reduce ,stray capaCitance and lead and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can, cause signal cou, piing across adjacent nodes and can cause gain to uninten' tionally vary ""ith frequency. Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capaCitance may degrade circuit performance. indu~nce, Typical Applications Offset Voltage Adjustment 1 MHz Low-Pass Filter V+ ~, lli- IS0pr" ....- - - - 1 Cl >-....-VOUT 10kA' v- lOOK TUH/9D57-4 TUH/9057-'O tl % tolerance 'Matching determines liRer precision Ie = (27T4(RI R2Cl C2))-1 Modulator with Dlfferential-to-Single-Ended Converter +12V IAODULATlON BALANCE 2k 10k 0.1 p.F 50k 51 10k 11. +12V 51 3.9k 7 CARRIER IAODULATION INPUT I 0.01 p.F' 8 3.9k 6 OUTPUT LlA1496 -12 10k 9.1k TUH/9057-11 1-522 tfI National Semiconductor LM6162/LM6262/LM6362 High Speed Operational Amplifier General Description The LM6362 family of high-speed amplifiers exhibits an excellent speed-power product, delivering 300 V /".s and 100 MHz gain-bandwidth product (stable for gains as low as + 2 or -1) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V. These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performanee without the need for complex and expensive dielectric isolation. • • • • • • • 5mA 120 ns to 0.10/0 <0.10/0 <0.1· 4.75V to 32V Low supply current Fast settling time Low differential gain Low differential phase Wide supply range Stable with unlimited capacitive load Well behaved; easy to apply Applications • Video amplifier • Wide-bandwidth Signal conditioning for image processing (FAX, scanners, laser printers) • Hard disk drive preamplifier • Error amplifier for high-speed switching regulator Features • High slew rate • High gain-bandwidth product 300 VI".s 100 MHz Connection Diagrams 2D-LeadLCC 10-Pin Ceramic Flatpak YOSADJUST VOIIADJUST ·, ·, 3 !ltv.IMM- IIOII-INY.INPUT- · 2 :':.20 " ;--v. " " ;--"'" 17 LII8182E 110 v- 18 II 12 13 . I , INVINPUT~ NON-INV INPU~~ Yos pNC VosADJU:~ • ~VOSADJUST LM8182W Y' PV t::::= OUTPUT NC Y- TLlH/ll061-15 Top View See NS Package Number W10A ~\'" ,i .r :1 Your P~ ~~ 2~ Adfull Inpllf. '! '! '..... TL/H/ll061-2 See NS Package Number N08E, M08Aor J08A TLlH/ll061-14 Top View See NS Package Number E20A Temperature Range Military -SsoC S; TA S; +12SoC Industrial -2SoC S; TA S; +8SOC Commercial O"C S; TA S; +70"C LM6162N LM6262N LM6362N LM6162J/883 5962-9216501 PA NSC Drawing 8-Pin Molded DIP N08E 8-Pin Ceramic DIP J08A 8-Pin Molded Surface Mt. M08A ,LM6162E/883 5962-92165012A 20-LeadLCC E20A LM6162W/883 5962-9216501 HA 1O-Pin Ceramic Flatpak W10A LM6262M LM6362M Package 1-523 II Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V+-V-) 36V ±8V Differential Input Voltage (Note 2) (V+ -0.7V) to Common-Mode Input Voltage (V- - 0:3V) (Note 3) Output Short Circuit to GND (Note 4) Soldering Information Dual-In-Une Package (N) Soldering (10 seconds) Sma,Il Outline Package (M) Vapor Phase (60 seconds) Infrared (15 seconds) ' See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of sOldering surface mount devices. -65"C,;; TJ';; +150"C Storage Temperature Range Max Junction TemperatUre 150"C ±1100V ESD Tolerance (Note 5) Operating Ratings . Continuous Temperature Range (Note 6) LM6162 LM6262 LM6362 Supply Voltage Range 260"C 215"C 220"C -55"C';; TJ';; +125"C -25"C ,;; TJ ,,; +85"C O"C"; TJ"; +70"C 4.75Vt032V DC Electrical Characteristics These limits apply for supply voltage = ± 15V. VCM = OV, and RL ~ 100 kO, unless otherwise specified. Limits in standard typeface are for TA = TJ = 25"C; limits in boldface t¥pe apply over the OperaUng Temperature Range. Symbol 'Parameter Typical (Note 7) Conditions Input Offset Voltage ±3 ,Hemp Input Offset Voltage Average Drift 7 Ibias Input Bias Current Vos !;.VOS 2.2 'LM6162 Umlt (Note 8) LM6262 Umlt (Note 8) LM6362 Limit (Note 8) Units ±5 ±8 ±5 ±8 ±13 ±15 mV max p,V'"C 3 8 3 5 4 8 max ±350 ±800 ±350 ±.OO ±1500 ±1800 nA max p.A los Input Offset Current ±150 alos aTemp Input Offset Current Average Drift 0.3 nAl"C 180 kO RIN Input Resistance CIN Input Capacitance Differential AVOL Large Signal Voltage Gain VOUT = ±10V, RL = 2 kO (Note 9) RL = 10kO 6500 VCM Input Common-Mode Voltage Range Supply = ± 15V 2.0 Supply = +5V (Note 10) pF 1000 500 1000 700 800 850 +14.0 +13.9 .+13.8 +13.9 +13.8 +13.8 +13.7 V min -13.2 -12.9 -12.7 "'-12.9 -12.7 -12.9 -12.8 V max 4.0 3.9 3.8 3.9 3.8 3.8 3.7 V min 1.6 1.8 2.0 1.8 2.0 1.9 2.0 V max 1400 VIV min VIV CMRR Common-Mode Rejection Ratio -10V"; VCM"; +10V 100 83 78 83 78 76 74 dB min PSRR Power Supply Rejection Ratio ±10V,;; Vs';; ±16V 93 83 78 83 78 76 74 dB min Vo Output Voltage Swing Supply = ±15V, RL = 2 kO +13.5 +13.3 +13.5 +13.3 +13.4 13.3 V min -13.0 -12.7 -13.0 -12.8 -12.9 -12.8 V max +14.2 -13.4 1-524 DC Electrical Characteristics (Continued) These limits apply for supply voltage = ±15V, VCM = OV, and RL ~ 100 kO, unless otherwise specified. Limits in standard typeface are for T A = TJ = 25'C; limits in boldface type apply over the Operating Temperature Range. Symbol Vo Typical (Note 7) Parameter Conditions Output Voltage Swing Supply = + 5V and RL = 2 kO (Note 10) 4.2 1.3 losc Output Short Circuit Current Sourcing 65 Sinking Is 65 Supply Current 5.0 LM6162 Umit (Note 8) LM6262 Limit (Note 8) LM6362 Limit (Note 8) 3.5 3.5 3.4 3.3 3.3 3.3 1.7 1.7 1.8 2.0 1.9 1.9 Units V min V max 30 30 30 rnA 20 25 25 min mA min 30 30 30 20 25 25 6.5 6.5 6.8 6.8 6.7 6.9 mA max AC Electrical Characteristics These limits apply for supply voltage = ± 15V, VCM = OV, RL ~ 100 kO, and CL S; 5 pF, unless otherwise specified. Limits in standard typeface are for T A =' TJ = 25'C; limits in boldface type apply over the Operating Temperature Range. Symbol GBW Parameter Gain-Bandwidth Product Typical (Note 7) Conditions f=20MHz 100 Supply = ±5V SR Slew Rate Av = +2 (Note 11) LM6262 Limit (Note 8) LM6362 Limit (Note 8) 80 80 75 55 65 65 200 200 200 180 180 180 70 300 Supply = ±5V LM6162 Limit (Note 8) Units MHz min MHz V/JJ.s min 200 V/JJ.s PBW Power Bandwidth VOUT = 20Vpp 4.5 MHz ts Settling Time 10V step, to 0.1 0/0 Av = -1,RL = 2kO 100 . ns m Phase Margin Av= +2 45 deg Differential Gain NTSC,Av = +2 <0.1 0/0 Differential Phase NTSC,Av = +2 <0.1 deg en Input Noise Voltage f = 10 kHz 10 nV/y'Hz in Input Noise Current f = 10kHz 1.2 pAly'Hz Nota 1: Absolute maximum ratings indicate limits beyond which damage to the compcnent may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions. Nota 2: The ESD protection circuitry between the inputs will begin to conduct when the differential input voltage reaches av. Nota 3: a) In addHion. the voltage between the V+ pin and e~her Input pin must not exceed 36V. b) When the voltage applied to an Input pin is driven more then 0.3V below the negative supply pin voltage. a substrate diode begins to conduct. Current through this pin must then be kept less than 20 mA to limit damage from se~-heeting. Nota 4: Although the output current Is internally lim~ed, continuous short-clrcu~ operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150'C. Nota 5: This value is the average voltage that the weakest pin combinations can withstand and still conform to the datasheel lim~s. The test circu~ used consists of the human body model. 100 pF in series with 15000. Nota 6: The typical thermal resistance.junction·to-ambient. of the molded plastic DIP (N package) is 105'C/W. For the molded plastic SO (M package). use 155'CIW. All numbers apply for packages soldered directly into a printed circuit boord. Nota 7: Typical values are for TJ = 25'C. and represent the most likely parametric norm. Nota 8: Limits are guaranteed. by tasting or correlation. Note 9: Voltage Gain Is the total output swing (20V) divided by the magn~ude of the input Signal required to produce that swing. Nota 10: For single-supply operation. the following conditions apply: V+ = 5V. V- = OV. VCM = 2.5V. VOUT = 2.5V. Pin 1 and Pin 8 (VOS Adjust pins) are each connected to pin 4 (V-) to realize maximum output swing. this connection will increase the offset voltage. Nota 11: VIN = 10V stap. For ± 5V supplies. VIN = 1V stap. Note 12: A military RETS electrilcal test specification is available on request. 1-525 ~ !:::E ,---------------------------------------------------------------------------------, Typical Performance Characteristics .... Supply Current vs Supply Voltage i.... Common-Mode Rejection Ratio 6 :::E .... CD ! CD :5 o 2 4 6 +/- n u a m W 8 , 100 ~ .-l +l25CC '-5SOC '" 90 80 I 70 I 6 8 10 12 '\. lk 10k lOOk 1M 14 16 ~ ...... ~ +l25CC 1~ i " 0.1 10 pF 100 pF 1 ~ ,, o 2 4 6 8 W n u m '\ Ipp 20 \ 10 o 10 rf 100 rf 1 II \ \ 100 TEIIPEllATURE (CC) Overshoot vs Load Capacitance 80,---,---,---,---, , ......... o 10pF l00pF 1~ 10"" O~--~--~--J---~ - lOOk 1M F1lEQUEMCY (Hz) 111M , 7000 8000 10'. 110 ~ -ssoc ip I , 50 ~~ 2000 1000 100M 10000 100000 8000 ::;;- - -- +125'1: .....-r ~ -55'1: o ;j() 10k 1000 Voltage Gain vs Supply Voltage +~25"C 70 lk 100· lOAD CAPAC1TANCE (PF) 90 o 10 l00rf Voltage Gain vs Load Resistance 80 .... -55 -35 -15 5 25 45 65 85 105 125 lOAD CAPAC1TANCE ..... - '\. Output Impedance (Open-Loop) \. It! \. 300 ~ +/- SUPPlY VOLTAGE (V) lOOk 111M It- 400 ~ 1M r--. 10 -;: lOOk 50 !ij 200 !J 100 10k Propagation Delay, Rise and Fall Times lOAD CAPAC1TANCE ...-~ ~ !ij2OO lk 80 1000 i ~ ~ FR£QUENCY (Hz) i' oc... ~ 100 111M Slew Ratevs Load Capacitance ~~ ;j() 20 100 +25 -5SOC~ Nogatfn 40 Gain-Bandwidth Product vs Load Capacitance a I\.\. _ ~ 50 40 Slew Ratevs . Supply Voltage -;:300 .......~ ~ 110 \. +/- SUPPLY VOLTAGE (V) 400 90 70 50 1 4 100 FR£QUENCY (Hz) ~~~ 2 ~ \. SIIPPlY VOLTAGE (V) ~ ,.~ i,..oo" ~ /~ ~ ~ ~ o !: 80 110 Gain-Bandwidth Product vs Supply Voltage 120 Power Supply Rejection Ratio 110 ! +J.c ~. RL = 10kO, TA= 25°C unless otherwise noted 0.1 1 10 lOAD RES1STANCE (1<4) 100 2 4 6 8 .10 12 14 16 +17 SIIPP~Y.ytlLTAGE (V) . TL/H/l1 061-3 1-526 Typical Performance Characteristics (Continued) RL = 10 kO, T A = 25D C unless otherwise noted Differential Gain (Note) Differential Phase (Note) TUH/ll06l-5 Note: DHierentiai gain and dHierenliai phase measured for four series LM6362 op amps configured with gain of + 2 each, in series with a 1:16 a11enua1or and an LM6321 buffer. Error added by LM6321 is negligible. Test performed USing Tektronix Type 520 NTSC lest system. TLlH/ll06l-4 Step Response; Av = +2 Tl/H/ll06l-6 TIME (50 ns/div) Input Noise Voltage Input Noise Current 1000 Power Bandwidth 3Z 100 ~ ~ ......... I ....... "10 t ~ r\. Ys 2B '- 24 20 12 ~ z: 100 lk FREQUENCY (Hz) 10k lOOk 1 10 100 lk FREQUENCY (HI) 10k 1\ 4 ......... ~ 1 10 *15Y 16 u 1 = I.v= ., < 1:1 THO o lOOk 0.1 1 10 100 FREQUENCY (MHz) TUHl1l06l-7 1-527 ~ r-----------------------------------------------------------------------------~ ! ~ Typical Performance Characteristics (Continued) RL = 10 kG, TA = 25°C unless otherwise noted ~ Open-Loop High-Frequency Response' , ~ <40 ~ .... ~ 30 z ~ 0 20 <40 ~ ~ "- 20 0 ~ ~ 10 3 0 I' 45 PHASE l'\ 100 lk 10k lOOk -30 200 10M 100M 1M 1 FREQUENCY (Hz) 225 270 1000 100 10 FREQUENCY (MHz) TLlH/ll061-8 Common-Mode Input Voltage Limits ~. '-1 .Ii!z -2 ill .... '~" 1~r-r-+-+-+-+-+-, v-~~~~~~~~~ 6 8 W ~ U ~ +/- SUPPLY VOLTAGE (V) ~ 5 ~ , ~' 4 Bias Current vs Common-Mode Voltage .~ ~r-r-r-~~~~'-~ 2 TL/H/ll061-9 Output S.turatlon Voltage II--""HH-f-+-+-+--I ...'" en 135 en ~ 180 IL \ -20 -<40 90 r-.... ..0 -10 -20 [: !;;; GAIN ! Ii - ·2 !;. ~ v- I lit. = 2k4' 2 4 6 8 10 12 14 16 18 +/- SUPPLY VOLTAGE (V) -55'C_ ~ f- +~5'C -- ~ o -15 -10 I- +125'C -5 0 10 15 OOMMON-MODE VOLTAGE (V) TLlH/ll061-10 Simplified Schematic TLlH/ll061-1 1-528 !i: Application Tips The LM6362 has been decompensated for a wider gainbandwidth product than the LM6361. However, the LM6362 still offers stability at gains of 2 (and -1) or greater over the specified ranges of temperature, power supply voltage, and load. Since this decompensation involved reducing the emitter-degeneration resistors in the op amp's input stage, the DC precision has been increased in the form of lower offset voltage and higher open-loop gain. Power supply bypassing is not as critical for LM6362 as it is for other op amps in its speed class. However, bypassing will improve the stability and transient response of the LM6362, and is recommended for every design. 0.01 ,..F to 0.1 ,..F ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional 2.2 p.F to 10 ,..F of tantalum may be required for extra noise reduction. Other op amps in this family include the LM6361, LM6364, and LM6365. If unity-gain stability is required, the LM6361 should be used. The LM6364 has been decompensated for operation at gains of 5 or more, with corresponding greater gain-bandwidth product (125 MHz, typical) and DC precision. The fully-uncompensated LM6365 offers gain-bandwidth product of 725 MHz, typical, and is stable for gains of 25 or more. All parts in this family, regardless of compensation, have the same high slew rate of 300 V I,..s (typ). Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capaCitance in the Circuit layout can cause signal coupling from one pin, input or lead to another, and can cause circuit gain to unintentionally vary with frequency. Breadboarded circuits will work best if they are built using generiC PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capaCitance may degrade circuit frequency response. At low gains (+2 or -1), a feedback capacitor Cj from output to inverting input will compensate for the phase lag caused by capaCitance at the inverting input. Typically, values from 2 pF to 5 pF work well; however, best results can be obtained by observing the amplifier pulse response and optimizing Cj for the particular layout. The LM6362 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (in low-gain circuits). However, load capacitance on the LM6362 effectively increases its compensation capaCitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is not ideal, though, and ringing may occur in low-gain circuits with large capacitive loads. Typical Applications Inverting Amplifier, 30 MHz Bandwidth Offset Voltage Adjustment +5V V+ 2_ ~ 76 + 8 1" lOOk O.Olp.F I 5pF V- TLlH/11061-11 2k Operation on ± 15V supplies results in wider bandwidth, 50 MHz 0.01 p.F (typ). I -5V TLlH/11061-12 1-529 CD ..... CD N ...... r- a::::: CD ~ N ...... r- i: ~ CD N N ~ :I .... ..... ~---------------------------------------------------------------------. Typical Applications Video Cable Driver ~ :5.... ... &t (Continued) +15V O.OIP.f I 2k CD :5 >-~~1C==~~VM 500. tOO pI'" O.OIP.F 'Network required whenoperating on supply voltege over ± 5V. tor overvoltege protection 01 LM6321. II ± 5V supplies are used. omit network and connect output of LM6362 directly to input of LM6321. I -t5V TUH/ll061-13 1-530 tflNational Semiconductor LM6164/LM6264/LM6364 High Speed Operational Amplifier General Description Features The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300V per ILs and 175 MHz GBW (stable down to gains as low as + 5) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to + 5V. These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation. • • • • • • • • High slew rate High GBW product Low supply current Fast settling Low differential gain Low differential phase Wide supply range Stable with unlimited capacitive load 300 V/p.S 175 MHz 5mA 100 ns to 0.10/0 <0.10/0 <0.1" 4.75V to 32V Applications • Video amplifier • Wide-bandwidth signal conditioning • Radar • Sonar Connection Diagrams Vas Adjust a'l ) 2D-LeadLCC v+ 11 VOUT 61 ~ 'Vos 1 ~l Input Adjust 3 J, "" ....... VosJdlJUST Nle 5'1 ·, :s INV.INpur- MON-INV.INPUT- · · 41 10 " " r17 LU8184E "IS 7 • ,. z ~I! 10 II 12 13 . 1D-Lead Flatpak "13" Yas ADJUST Vos ADJUST LII11MW INY INPUT Y+ NON~INV INPUT VOUTPUT NO TL/H/9153-15 E---VOUT TopVlew NS Package Number W10A TL/H/9153-14 V- Top View input TL/H/9153-B NS Package Number J08A, M08A or N08E NS Package Number E20A Temperature Range Military -S5"C';; TA';; + 12S"C y+ • y- Industrial -2S"C ,;; TA ,;; +85"C Commercial O"C';; TA';; +70"C LM6264N LM6364N LM6164J/883 5962-8962401 PA LM6364M Package NSC Drawing 8-Pin Molded DIP NOSE 8-Pin Ceramic DIP J08A 8-Pin Molded Surface Mt. M08A LM6164E/883 5962-89624012A 20-Lead LCC E20A LM6164W/883 5962-8962401 HA 10-Pin Ceramic Flatpak Wl0A 1-531 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and speclflcatlons_ SupplyVoltage(V+ - V-) 36V ±8V Differential Input Voltage (Note 6) See AN-4S0 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Storage Temperature Range -6S·Cto +1SO"C Max Junction Temperature (Note 2) ESDTolerance (Notes 6 & 7) Common-Mode Input Voltage (V+ - 0.7V) to (V- - 7V) (Note 10) Output Short Circuit to Gnd (Note 1) Continuous 150"C ±700V Operating Ratings Temperature Range (Note 2) Soldering Information Dual-In-Line Package (N, J) Soldering (10 sec.) , Small Outline Package (M) Vapor Phase (60 sec.) Infrared (15 sec.) '-55·C,;; TJ';; +125·C -2S·C';; TJ ,;; +8S·C O·C,;; TJ';; +70"C LM6164 LM6264 260"C LM63~ 21S·C 220·C Supply Voltage Range 4.75Vt032V DC Electrical, Characteristics RL ;;" 100 kO and Rs TA = TJ = 25·C. Symbol = son The following speCifications apply for Supply Voltage = ±15V, VCM = 0, unless otherwise noted. Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits Parameter Vas Input Offset Voltage Vas Drift Input Offset Voltage Average Drift Ib Input Bias Current, Conditions 2 LM6264 LM6364 Limit (Notes 3, 11) Limit (Note 3) Limit (Note 3) Units 4 8 4 8 9 11 mV max 6 lOS ' Input Offset Current los Drift Input Offset Current Average Drift RIN Input Resistance CIN Input CapaCitance AVOL Large Signal Voltage Gain VOUT = ±10V, RL (Note 9) VCM Input Common-Mode Voltage Range Supply Differential RL " Typ LM6164 = = 2 kO ± 1SV Supply = +5V (Note 4) CMRR Common-Mode Rejection Ratio -10V';; VCM';; +10V PSRR Power Supply Rejection Ratio ±10V,;;V±,;; ±16V 2.5 3 8 3 5 S 8 max 1S0 350 800 350 800 1500 1900 mA max p.A 0.3 nAI"C 100 kO 3.0 pF 1.8 0.9 1.8 1.2 1.3 1.1 +14.0 +13.9 +13.8 +13.9 +13.8 +13.8 +13.7 V min -13.5 -13.3 -13.1 -13.3 -13.1 -13.2 -13.1 V min 4.0 3.9 3.8 3.9 3.8 3.8 3.7 V min 1.S 1.7 1.9 1.7 1.9 1.8 1.9 V max 105 86 80 86 82 80 78 dB min 96 86 80 86 82 80 78 dB min 2.5 VlmV min 9 10kO = p.VI"C 1-532 DC Electrical Characteristics AL TA ~ = The following specifications apply for Supply Voltage = ±15V, VCM = 0, 100 kO and As = 500 unless otherwise noted.·Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TJ = 25D C. (Continued) Symbol Vo LM6264 LM6364 Limit (Notes 3,11) Limit (Note 3) LlmH (Note 3) Units Parameter Conditions Typ Output Voltage Swing Supply = +5V andAL = 2kO +14.2 +13.5 +13.3 +13.5 +13.3 +13.4 +13.3 V min -13.4 -13.0 -12.7 -13.0 -12.8 -12.9 -12.8 V min 4.2 3.5 3.3 3.5 3.3 3.4 3.3 V min 1.3 1.7 2.0 1.7 1•• 1.8 1•• V max mA min Supply = +5V andAL = 2kO (Note 9) Output Short Circuit Current Source Sink Is LM6164 Supply Current 65 65 5.0 1-533 30 30 30 20 25 25 30 30 30 20 25 25 mA min 6.5 8.8 6.5 8.7 6.8 8 •• mA min AC ,Electrical Characteristics The following specifications apply for SuPPlY Voltage = ±15V, VCM =0, RL:~ 100 kO and Ft8= 500 unless otherwise noted. Boldface limits apply fOf· TA = Til = TMIN to TMAX; all other limits TA = TJ = 25·C. , Symbol GBW LM6164 . .Parameter Conditions " (Notes 3, 11) F=20MHz Gain-Bandwidth • Limit Typ 175 Product LM6264 LM6364 Limit Limit (Note 3) (Note 3) 140 140 120 100 120 100 Units MHz min Supply = SR Slew Rate ±5V 120 Av = + 5 (Note 8) Supply = 300 ±5V PBW Power Bandwidth VOUT = 20Vpp T8 Settling Time 10V Step to 0.1 % 200 200 200 180 180 180 V/p.a min 200 4.5 MHz 100 ns 45 O8g ... Av = -4, RL = 2 kO >m Phase Margin Av= +5 AD Differential Gain NTSC,Av = +10 <0.1 % >0 Differential Phase NTSC,Av = +10 <0.1 Deg enp-p . Input Noise Voltage F=10kHz 8 nV/-/Hz i np_p Input Noise Current F=10kHz 1.5 pAl-/Hz Nota 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the mllldmum allowed junction temperature of 15O'C. Nota 2: The typical junction-to-amblent thermal resistance of the molded plastic DIP (N) is 10S'C/Wall, the molded plastic SO (M) pact e' ~ ~ z lI! II 3.0 iI ~ ~~ ~ lis ~ 6 +/- SUPPLY VOLTAGE M LOAD CAPACITANCt: ~ 1pi' Slew Rate = t15V Rr = 2k4 Cr=lpF l00pF 10nF loonf Ay = +5 t--- I( 10pF 1of LOAD CAPACITANCE 400 ~ 10M Vs Vs = t15V Vo = tlOV Vs 111 ~ Overshoot vs Load Capacitance 30 Vs = t15V 10pF loopF - 1000 lEMPERATURE ("1:) ,'i o IIIe lOOk Gain-Bandwidth Product vs Load Capacitance .... .-- o-55 -35 -15 m Slew Rate vs Load Capacitance 400 \ lk \po +/- SUPPLY VOLTAGE M \ 100 20 W 12 U 8 10 FREQUEIICY (HI) ~~ Ir 60 10 2 10M FMllUEHCY (Hz) 40 o 1M Propagation Delay Rise and Fall Time -5,.. ~ .... o 10 i,...-' ~ 20 o 70 160 60 20 240 ~ , NEGATIVE' \ Gain-Bandwidth Product !3 80 60 +/- SUPPLY VOLTAGE !2OO 120 ~OSmvE \ 80 I I lii' ~. i .L- +125"1: l - Power Supply Rejection Ratio 120 ~ +25~ IT-55"C (RL = 10 kO, TA = 25°C unless otherwise specified) I 20 0 0.1 Vs = tlSV 10 I...... ,. ~ t--+2S"I: /. V 2.0 I~ -Sj I- fJ.~ 1.0 r I I 0 0 2 100 4 6 8 10 12 14 16 18 +/- SUPPLY VOLTAGE M LOAD RfSISTANCE (1<4) TL/H/9153-5 1·535 ~ ~ CD ~ .---------------------------------------------------------------------------------, Typical Performance Characteristics (RL = 10 kG, TA = 25°C unless otherwise specified) (Continued) i Differential Gain (Note) ~ ....~ :!I Differential Phase (Note) CD TUH/9153-7 Note: Differential gain and differential phase measured for four seriao LM6364 op amps in series with an LM6321 buffer. Error addad by LM6321 is negligible. Tao! performed using Tektronix Type 520 NTSC test system. ConflQured with a gain of + 5 (each output attenuated by 80%) TL/H/9153-6 Step Response; Av = . +5 TL/H/9153-1 TIME (50 ns/dlY) Input Noise Voltage Input Noise Current 1Il00 ., ~ 32 28 ~ ..s 100 §! 10 "'- 1 ~ ~ z Power Bandwidth 1Il00 1 1 .1"- 1 1 '- 24 II~slW~ tHO < Ill: 20 16 ......... 12 1 I I 10 100 lk FREQUENCY (Hz) ICIk lOOk 10 100 Ik FlIEQUENCY (Hz) ICIk - lOOk '\ o 0.1 1 10 100 FREQUENCY (11Hz) TL/H/9153-9 1-536 • Typical Performance Characteristics (RL = 10 kfl, TA = 25°C unless otherwise specified) (Continued) Open-Loop Frequency Reaponse Open-Loop Frequency Reaponse 1110 110 ! Output Realatance Open-Loop 10C1c 10 " 10 50 ~ J 50 ~ ~~ '\ ~ '\ 'A: 10 PHf ~ ~ ~ lk 1i' ~ CAiH 10k 10C1c 1M 10M lQOU 180 2ro 1I ....... 40 ""'~ 10 PHASE 0 II -10 II -20 1M lG 10M -I- 1 1\ ~ m lQOU lG 10 lk 10k 10C1c 1M 10M lQOU FREQUENC'f (Hz) F'R£QII£NCY (Hz) .,. Output Saturation Voltage Blaa Current va Common-Mode Voltage FREQUENCY (Hz) Common-Mode Input .,. Saturation Voltage , ~GAJN 20 5 1 1 I - :~ -5SOC - 25"1: r- 1 1 v- 2 4 18m u u ~ +/- SUPPLY VOLTAGE (V) ~ v- 1 lit. =2k4 2 4 6 8 mu u +/- SVPPLY VOLTAGE (V) ~ ~ o -15 -10 125"1: -- -5 0 5 10 COIIMOIHIODE VOLTAGE (V) 15 TUH/9153-13 Simplified Schematic • TL/H/9153-3 1-537 Applications Tips '. ~r: The LM6364 has been compensated for gains of 5 or greater (over specified ranges of temperature, power supply voltage, and load). Since this compensation involved adding emitter-degeneration resistors in the op amp's input stage, the open-loop gain was reduced as the stability increased. Gain error due to reduced AVOL is most apparent at high gains; 'thus, the uncompensated LM6365 is appropriate for gains of 25 or more. If unity-gs!n operation is desired, the LM6361 should be' used. The LM6361, LM6364, and LM6365 have the same high slew rate (typically 300 V/ ",,8), regardless of their compensation. The LM6364 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capaCitance is ' greater than about 200 pF (in low-gain circuits). However, load capacitance on the LM6364 effectively increases its compensation capacitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is not ideal, though, and ringing or oscillation may occur in low-gain circuits with large capacitive loads. To overcompensate the LM6364 for operation at gains less than 5, a series resistor-capacitor network should be addei;l between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 5. , Power supply bypassing will improve the stability and transient response of the LM6364, and is rec6mmellded for everydesign.O.Ol ""F to 0.1 ""F ceramic capacitors should be used (from each supply "rail" to grou~); if the device is far away from its power supply source; an additional 2.2 ""F to . 10 ",F (tantalum) may .•be required for extra nois~.!eduction. Keep all leai;ls short to reduce stray capacitance and'iead inductance, ,and make' sur~. ground paths are low-impedance, , especially where hiiavier currents will be flowing. Stray capacitance in the clrcuit,layout can cause signal coupling between adjacent nodes, .,so that circuit 'gain unintentionally varies with frequency. Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as oppo~ to.being soldered into the circuit, the additional input capacitance may degrade circuit performance. Typical Applications Offset Voltage Adjustment Noise-Gain Compensation for Gains :s;; 5 y+ 2. ~ Rr 76 3. " 8 100k y>~~YOUT TL/H/9153-10 Video-Bandwidth Amplifier Y· TUH/9153-11 RxCx :. (2"..25 MHz)-1 5 'Rx = R1 + RF(1 + R1/R2) Your . :', tflNational Semiconductor LM6165/LM6265/LM6365 High Speed Operational Amplifier General Description Features The LM61 1\5 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300- VI /-Ls and 725 MHz GBW (stable for gains as low as + 25) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to + 5V. These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation. • • • • • • • • 300 V//-Ls 725 MHz 5 mA 80 ns to 0.1% <0.1% <0.1° 4.75V to 32V High slew rate High GBW product Low supply current Fast settling Low differential gain Low differential phase Wide supply range Stable with unlimited capacitive load Applications • Video amplifier • Wide-bandwidth signal conditioning • Radar • Sonar Connection Diagrams 10-Lead Flatpak Top View NCt::::::::;. . VOSADJUST~ INPUT~ INV NON-IMV IMPUTt:::::::::i 20-Lead LCC Top View ?NC 'los ADJUST VosADJIIST ~Vos"'DJUST LM8185W V-~ ~,V' VOUTPUT " IMY.INPUT---; NO TLlH/9152-14 Order Number LM6165W/883 See NS Package Number W10A l 1112.0" ~~ I. ~v+ 17 I NON-INV.IIIPIfT~ 2. S LII818ISE 15 11011111.5 . . 7 IS r--VOI/T ~!s ~~ ,____..JT TL/H/9152-15 Order Number LM6165E/883 See NS Package Number E20A Adjust Input 3JI 4.1 y- Input TLlH/9152-S Order Number LM6165J/883 See NS Package Number J08A Temperalure Range NSC Industrial -25"C ,; TA ,; +85"C Commercial O"C,;TA'; +70"C Package LM6265N LM6365N 8-Pin Molded DIP NOSE 8-Pin Ceramic DIP J08A 8·Pin Molded SurfaceMl MOSA LM6165E/863 5962-89625012A 20-Lead LCC E20A LM6165W883 5962-8962501 HA 10-Pin Ceramic Flatpak W10A MlUtary -SS'C ,; TA ,; + 125"C LM6165J/883 5962·8962501 PA LM6365M 1-539 Order Number LM6365M See NS Package Number M08A Drawing Order Number LM6265N or LM6365N See NS Package Number N08E Absolute Maximum Ratings 11 Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V+ - V-I 36V Differential Input Voltage (Note 6) ±8V Common-Mode Voltage Range (V+ - 0.7V) to (V- - 7V) (Note 10) Output Short Circuit to GND (Note 1) Continuous Soldering Information Dual-In-Line Package (N, J) Soldering (10 sec.) 260"C Small Outline Package (M) Vapor Phase (60 sec.) 215°C Infrared (15 sec.) 220"C See AN-450 "Surface.Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Storage Temp Range -65°C to + 150"C Max Junction Temperature (Note 2) 150"C ESD Tolerance (Notes 6 and 7) ±700V Operating Ratings Temperature Range (Note 2) LM6165, LM6165J/883 LM6265 LM6365 Supply Voltage Range DC Electrical Characteristics The following specifications apply for Supply Voltage = ±15V, VOM = 0, RL ~ 100 kO and Rs Boldfac. limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25"C. Symbol Parameter Vos Input Offset Voltage VOS Drift Input Offset Voltage Average Drift Ib Input Bias Current los Conditions Typ 1 Input Offset Current Average Drift = 500 unless otherwise noted. LM6165 LM6265 LM6365 Limit (Notes 3, 11) Limit (Note 3) Limit (Note 3) Units 3 4 3 4 8 7 my Max p.V/oC 3 , Input Offset CUrrent loS Drift -55°C s: TJ s: + 1~5°C -25°C s: TJ s: +85°C O"C s: TJ s: + 70"C 4.75Vt032V RIN Input Resistance CIN Input Capacitance AVOL Large Signal Voltage Gain (Note 9) VOUT = ±10V, RL = 2kO VOM Input Common-Mode Voltage Range Supply Differential 3 8 3 5 5 8 Max 150 350 800 350 800 1500 1900 nA Max 0.3 nA/oC 20 kO 6.0 RL 7.5 8.0 5.5 5.0 +14.0 +13.9 +13.8 +13.9 +13.8 +13.8 +13.7 V Min -13.6 -13.4 -13.2 -13.4 -13.2 -13.3 -13.2 V Min 4.0 3.9 3.8 3.9 3.8 3.8 3.7 V Min 1.4 1.6 1.8 1.6 1.8 1.7 1.8 V Max s: VCM s: Common-Mode Rejection Ratio -10V 102 88 82 88 84 80 78 dB Min PSRR Power Supply Rejection Ratio ±10VS:V± Vo Output Voltage Swing Supply = ±15V, RL = 2kO s: 104 88 82 88 84 80 78 dB Min +14.2 +13.5 +13.3 +13.5 +13.3 +13.4 +13.3 V Min -13.4 -13.0 -12.7 -13.0 -12.8 -12.9 -12.8 V Min VlmV Min ~8 Supply = +5V (Note 4) CMRR pF 7.5 5.0 10.5 = 10kO = ± 15V p.A 2.5 +10V ±16V 1-540 DC Electrical Characteristics (Continued) The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ;;, 100 kO and Rs = 500 unless otherwise noted. Boldface limits apply for TA = TJ = T MIN to TMax; all other limits TA = TJ = 25'C. Symbol Parameter Conditions Typ Vo (Continued) Output Voltage Swing (Continued) Supply = +5V RL = 2 kO (Note 4) 4.2 1.3 Output Short Circuit Current Source 65 Sink Is 65 Supply Current 5.0 LM6165 LM6265 LM6365 Limit (Notes 3, 11) Umlt (Note 3) Limit (Note 3) Units V Min 3.S 3.S 3.4 3.3 3.3 3.3 1.7 1.7 1.8 2.0 1.9 1.9 30 30 30 20 25 25 30 30 30 20 25 25 6.5 6.5 6.8 6.8 6.7 8.9 AC Electrical Characteristics The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL;;' 100 kO and Rs = Boldface limits apply for TA = TJ = TMIN to T MAX; all other limits TA = TJ = 25'C. (Note 5) Symbol GBW Parameter Gain Bandwidth Conditions F = 20 MHz Typ 725 SR Supply = ±SV SOO Slew Rate Av = + 25 (Note 8) 300 LM6165 LM6265 LM6365 Limit (Notes 3, 11) Limit (Note 3) Limit (Note 3) 575 575 500 200 200 200 180 Supply = ±5V PBW Power Bandwidth Product Your = 20Vpp ts Settling Time 10V Step to 0.1 0/0 Av = -25, RL = 2 kO mA Min mA Min mA Max son unless otherwise noted. 350 Product V Max Units MHz Min Vlp.s Min 200 4.5 MHz 80 ns 45 Deg m Phase Margin Av = +25 Ao Differential Gain NTSC, Av = + 25 <0.1 0/0 <1>0 Differential Phase NTSC, Av = + 25 <0.1 Deg enp-p inp_p Input Noise Voltage F = 10kHz 5 nV/.JHz Input Noise Current F = 10kHz 1.5 pAl.JHz Note 1: Continuous short-circuit operation at elevated ambient temperature can resuH in exceeding the maximum allowed junction temperature of 15O'C. Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105"C/Walt. and the molded plastic SO (M) package Is lSS·C/Walt. and the cerdip (J) package is 12S·C/Watl. All numbers apply for packages soldered directly into a printed circuit board. Note 3: All limits guaranteed by tesUng or correlation. Note 4: For Single supply operation, the following conditions apply: V+ = SV, V- = OV, VOM = 2.SC, VOUT = 2.SV. Pin 1 & Pin 8 (VOS Adjust) are each connected to Pin 4 (V -) to realize maximum output swing. This connection will degrade Vos. Note 5: CL ,s; SpF. Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exeeding the maximum differential input voHsge resuHs in reverse breakdown of the base-emitter junction of one of the input transistors and probable dagradatlon of the Input parameters (especially Vos, los, and Noise). Note 7: The average voHsge that the weakast pin combinations (those involving Pin 2 or Pin 3) can withstand and sUil conform to the datasheet limits. The test circuH used consists of the human body model of 100 pF in series with 15000. Note 8: VIN = O.8V step. For supply = ± SV, VIN = O.2V step. Note 9: Voftage Gain is the total output swing (20V) divided by the input signal required to produce thet swing. Note 10: The voHsge between V+ and either Input pin must not exceed 36V. Note 11: A military RETS electrical test specification is available on requast. At the time of printing, the LM6165J/883 RETS spec complied with the Boldf.... limits in this column. The LM6165J/663 may also be procured as Standard MilRary Drawing #5962-8962601PA. 1-541 U) ~ CD r-------------------------------------------------------------------------------------, Typical Performance Characteristics RL = :!I..... Supply Current vs Supply Voltage ; U) +25~ ...... U) Common-Mode Rejeetlon Ratio i ~ ! 100 ! +125OC I ~ \ 80 60 2 4 o 10 1100 t; -ssOC..... i * ;Ii 800 / +2SOC 800 f..-o" I sao / / +12S"C .-r . 400 300 200 100 I I 1/ - 040 ~ 30 HEllATIV£ 80 I : 10M 10 . 100 I L,...o 'PO - " " I lOp!" lOOp!" Cr = 20 I OJ'; ~ /1 \\ VI o lOp!" ~SS..\ ~ , I I 1 nF _ ~ ::;.-r+2SOC ~ F"" ...... ......+125OC ~ ,/ II / 1'/ \ lOOp!" 10nF l00nF 11'1" Slew Rate Vs = tlSV Ay = +25 RF = 2k4 \ f/~=1PF NEGAM\ I nF LOAD CAPACITANCE Overshoot vs Capacitive Load 10nF l00nF 11'1" 1M Vs = tlSV Vs = tlSV Vo = tlOV 30 r-.... 10. lOOk 1000 ~ TEMPERATURE (OC) \ lk Gain-Bandwidth Produet vs Load Capacitance -55 -35 -15 S 25 45 65 85 105 125 g ~ FREQUENCY (Hz) Itt o a 25 lnF 1M ~~ 10 "POSmvt """\.'( \ POSmvt 20 Vs = tlSV lOp!" lOOp!" 10k lOOk tr 50 ! Slew Ratevs Load Capacitance o lk 60 - 246 8 W ~ ~ " t SUPPLY VOLTAGE (V) 400 100 Propagation Delay, Rise and Fall Times ......-r 700 100 70 I I I I 1000 .!,. 900 l'l FREQUENCY (Hz) Gain-Bandwidth Product 1 120 60 a 6 8 W ~ M " t SUPPLY VOLTAGE 1040 i ! 20 o ~ Power Supply Rejeetlon Ratio 120 ! -r- [-SSOC CD ..- 10 kG, TA == 25°C unless otherwise specified 10nF o l00nF 2 4 6 8 W ~ ~ " a t SUPPLY VOLTAGE (V) LOAD CAPACITANCE Output Impedance . (Open-Loop) - lOOk 10 10k 14 Ii 12 10 ~ '\ §! ...... lk t i' lOOk 1M Gain vs Supply Voltage la ..... ~ I j..... i--" 8 1/ .6 2 .JI I 2 o ...... +25OC -55OC ' - r~ §4 \ 10M 100M .... ~ - ...... .... 1\ = 2k4 4 6 8 W ~ ~ " ~ .. t SUPPLY volTAGE (V) FREQUENCY (Hz) TL/H/9152-S· 1-542 ~----------------------------------------------------------------------------, ~ Typical Performance Characteristics ill: G) .... (Continued) RL = 10 kG, TA = 25°C unless otherwise specified G) en ..... Differential Gain (Note) ~ Differential Phase (Note) I ~ en ..... ~ I ! TL/H/9152-7 Note: Differential gain and differential phase measured far four series LM6365 op amps configured with gain of + 25 (each output attenuated by 96%), In series wHh an LM6321 buffer. Error added by LM6321 is negligible. Test performed using Tektronix Type 520 NTSC test system. TL/H/9152-6 Step Response; Av = + 25 TLlH/9152-1 TIME (50 (ns/dlY) Input Noise Voltage Input Noise Current 1000 ~ ! ~§! I Power Bandwidth 1000 32 2B 100 .r-... "I ~ 24 I I 1 .... 1 1 1 100 Ik F1I£QUEI4CY (Hz) I lOIe lOOk < IX 211 L 10 , 12 1 10 THO 1 16 10 II~s Jm~ "-"i 100 Ik FREQUEI4CY (Hz) lOIe lOOk o 0.1 10 100 F1I£QUENCY (MHz) TLlH/9152-9 1-543 Typical Performance Characteristics RL = 10 kG, TA = 25°C unless otherwise specified Open-Loop' Frequency ~ponse 100 " ii' ~ 110 ~ 110 ~~ 40 ,~ 110 ,~ ~ ..... i'... 20 ~ Open-Loop Frequency Response r- K ~ ......... 0 -20 lk lOOk 10k 1M (Continued) 1 i\ 40 ~ ~' :!;' 20 " 1\ - :,~ I I 50 I ~O ...... Voltage Gain vs Load Resistance 180 ..... GAiN 10 PHASE 1\ 380 1111 I 1111 I -10 -20 1011 ,100M 270 : ~ ..... 1M 1011 FREQUEHCY (Hz) • ,v+ ~ -1 ~ -2 ~ j;! 0 10 0L....J.~"'"--+-'..LWw....J..L.L.ww ru ~ W 1 , , ',~~O RESISTANCE (k4) Bias Current vs Common-Mode Voltage Output Saturation Voltage 5 1 - " I-t-+-+-+---+-+-t'-;-i 1 1 RL = 2kA V'"'--'--'--'--'--'--'--L..,.-J 2 4 6 8 W tl U * SUPPlY VOLTAG£ (V) ~ ~ * SUPPLY VOLTAGE o -.... -Jete --- : 21-1-1-1-1-I-HH i:i ~ -ssoIl' 110 1r'~!!5o't"Hf!!lfI--+-H-If!!lfI--++HfI!H Common-Mode Input E +25"t, i ' 80 H-tHfttfI/;,--:;t-:-"HttfHI-t+1-ItIfI! FREQUENCY (Hz) v+ Saturation Voltage I:A ~f~ 1 :H+tttHtt-+l-ItHllt-ttittHIl H+tttHtt-+l-ItHllt-ttittHIl ~ 480' 100II " +l~~~tll 90 '.'!' ': " , '" ~lL 30 llJ()"" 25"C 1 125ete oS 0 5 10 COIIIION-MOOE VOLTAGE (V) -15 -10 15 TLlH/9152-10 Simplified Schematic TL/H/9162-3 1-544 r-----------------------------------------------------------------------------,~ Applications Tips used (from each supply "rail" to ground); an additional 2.2 ",F to 10 ",F (tantalum) may be required for extra noise reduction. Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause Signal coupling between adjacent nodes, and can cause circuit gain to unintentionally vary with frequency. Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capaCitance may degrade circuit performance. The LM6365 is stable for gains of 25 or greater. The LM6361 and LM6364, specified in separate datasheets, are compensated versions of the LM6365. The LM6361 is unitygain stable, while the LM6364 is stable for gains as low as 5. The LM6361, and LM6364 have the same high slew rate as the LM6365, typically 300 V I "'S. To use the LM6365 for gains less than 25, a series resistorcapacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 25. Power supply bypassing will improve stability and transient response of the LM6365, and is recommended for every design. 0.01 ",F to 0.1 ",F ceramic capacitors should be Typical Applications Noise-Galn Compensation Offset Voltage Adjustment Rr y+ ~ _76 3+ 'I 8 v+ y>-~-VOUT lOOk TL/H/9152~11 TL/H/9152-12 Rx ex :2: 1/(2".' 25 MHz) [Rl + RF (1 + Rl/R2)l ~ 25 Rx 1 MHz Voltage-to-Frequency Converter (fOUT = 1 MHz for VIN = 10V) l00pF 240k 4pF 0-10V INPUT ....J\M,-WIr-....- ......... >-+-'\M...-"'--*-- Output 14.2k LM385-2.5 Offset Adjust 10k 2.2~F lk lk y-~y+ lOOk All diodes 1N914 1-545 TL/H/9152-13 ...enena:::: CI'J ..... ~ !: en ~ CI'J ~ !: en w en CI'J til ' "", Nat ion a ISe m i con d uc tor LM6171 High Speed Low Power Low Distortion Voltage· Feedback Amplifier General Description· Features (Typical Unless Otherwise Noted) The LM6171 is a high speed unity-gain stable voltage feedback amplifier. It offers a·high slew rate of 3600V/p.S and a unity-gain bandwidth of 100 MHz while consuming only 2.5 mA of supply current. The LM6171 has very impressive AC and DC performance which is a great benefit for high speed signal processing and video applications. The ± 15V power supplies allow for large signal swings and give greater dynamic range and signal-to-noise ratio. The LM6171 has high output current drive, low SFDR and THO, ideal for ADC/DAC systems. The LM6171 is specified for ± 5V operation for portable applications. The LM6171 is built on National's advanced VIPTM III (Vertically Integrated PNP) complementary bipolar process. • • • • • • • • Easy-To-Use Voltage Feedback Topology Very High Slew Rate Wide Unity-~ain-Bandwidth Product -3 dB Frequency @ Av = + 2 Low Supply Current HighCMRR High Open Loop Gain Specified for ± 15V and ± 5V Operation 3600V/,...s 100 MHz 62 MHz 2.5 mA 110 dB 90 dB Applications • • • • • • • • • Multimedia Broadcast Systems Line Drivers, Switchers Video Amplifiers NTSC, PALI8 and SECAM Systems ADC/DAC Buffers HDTV Amplifiers Pulse Amplifiers and Peak Detectors Instrumentation Amplifier Active Filters Typical Performance Characteristics Large Signal Pulse Response Ay = + 1, Vs = ± 15 Closed Loop Frequency Response vs Supply Voltage (Ay = + 1) I Ys = :1:15, I > ~ > 'Ii> ~ 0 c: ';; '" e... !:::" v r-- ... :::> Ys =:l:2.7 Ys =:1:10 -, Vs =:1:5 -10 Q. II ~ :::> 0 -20 1M 10N lOON Frequency (Hz) Connection Diagram TIME (20 ns/div) Ordering Information Temperature Range a-Pin DIP/SO N/cl - IN l +INl y-.! \.J 0 Package !.N/C L y+ !. OUTPUT .2.N/C TL/H/12336-1 TUH/12336-9 TUH/12336-5 Industrial -4O"Cto +a5"C Transport Media NSC Drawing NOBE B-Pin Molded DIP LM6171AIN LM6171BIN Rails B-Pin Small Outline LM6171 AIM, LM6171 BIM Rails LM6171 AIMX, LM6171 BIMX Top VIew 1-546 Tape and Reel MOBA Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage ESD Tolerance (Note 2) Supply Voltage (V+ -V-) Thermal Resistance (6JN N Package, 8-Pin Molded DIP M Package, 8-Pin Surface Mount 2.75V,;;; V+ ,;;; 18V Junction Temperature Range LM6171 AI, LM6171 BI 2.5kV 36V ±10V Differential Input Voltage (Note 11) Common-Mode V+ -1.4VtoV- + 1.4V Voltage Range Output Short Circuit to Ground (Note 3) Continuous -65°C to + 150"C Storage Temperature Range Maximum Junction Temperature (Note 4) 150"C -40"C ,;;; TJ s: +85°C 108°C/W 172°C/W ± 15V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = + 15V, V- = -15V, VCM = OV, and RL = 1 kO. Boldtace limits apply at the temperature extremes Symbol Vos Parameter Conditions Input Offset Voltage TCVos Input Offset Voltage Average Drift 18 Input Bias Current lOS Input Offset Current RIN Input Resistance 6 8 1 3 4 3 4 /l-A max 0.03 2 3 2 3 /l-A max Common Mode 40 4.9 Common Mode Rejection Ratio VCM = ±10V Power Supply Rejection Ratio Vs = ±15V-±5V VCM Input Common-Mode Voltage Range CMRR ~ 60dB Av Large Signal Voltage Gain (Note 7) RL = 1 kO RL = 1 kO 110 95 MO 0 83 13.3 -13.3 RL = 1000 11.6 -10.5 1-547 80 75 75 70 85 80 80 75 ±13.5 90 mV max /l-V/oC 14 RL = 1000 Units 3 Differential Mode CMRR Output Swing LM6171BI Limit (Note 6) 6 Open Loop Output Resistance Vo LM6171AI Limit (Note 6) 5 1.5 RO PSRR Typ (Note 5) dB min dB min V 80 80 70 70 70 70 80 80 12.5 12.5 12 12 -12.5 -12.5 -12 -12 9 9 8.5 8.5 -9 -9 -8.5 -8.5 dB min dB min V min V max V min V max ± 15V DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = + 15V, V- = -15V, VCM = OV, and RL = 1 kO. B!I)ldfacelimits apply at the temperature extremes Symbol Parameter Conditions Continuous Output Current (Open Loop) (Note 8) Sourcing, RL = 1000 Sinking, RL = 1000 Continuous Output Current (in Linear Region) Isc Output Short Circuit Current Is Supply Current Typ (NoteS) 116 105 LM6171AI Umlt (Note 6) LM6171BI Umlt (Note 6) 90 90 85 85 90 90 85 85 Units mA min mA max Sourcing, RL = 100 100 rnA Sinking, RL = 100 80 mA Sourcing 135 mA Sinking 135 mA 2.5 4 4 rnA 4.5 4.5 max ± 15V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = + 15V, V- = -15V, VCM = OV, and RL = 1 kO. Boldface limits apply at the temperature extremes symbol SR GBW Parameter Slew Rate (Note 9) Conditions Av = +2, VIN = 13 Vpp 3600 Av = +2, VIN = 10Vpp 3000 Unity Gain-Bandwidth Product -3 dB Frequency Typ (NoteS) 100 LM6171AI Umlt (Note 6) LM6171BI Umlt (Note 6) Units V/p,s MHz Av= +1 160 MHz Av= +2 62 MHz cf>m Phase Margin 40 deg is Settling Time (0.1 %) Av = -1, VOUT = ±5V RL = 5000 35 ns Propagation Delay VIN = ± 5V, RL = 5000, Av= -2 6 ns AD Differential Gain (Note 10) cf>D Differential Phase (Note 10) en Input-Referred Voltage Noise f = 1 kHz InPllt-Referred Current Noise f=1kHz in 0.03 % 0.5 deg 12 1 1-548 nV .Hz pA .Hz ± 5V DC Electrical Characteristics Unless otherwise specified. all limits guaranteed for TJ = 25°C. V+ = +5V. V- = -5V. VCM = OV. and RL = 1 kO. Boldface limits apply at the temperature extremes Symbol Vos Parameter Input Offset Voltage TCVos Input Offset Voltage Average Drift 18 Input Bias Current los RIN Conditions 1.2 1 0.03 Common Mode 40 Differential Mode 4.9 Ro Open Loop Output ReSistance CMRR Common Mode Rejection Ratio VCM = ±2.5V Power Supply Rejection Ratio Vs = ±15Vto ±5V VCM Input Common-Mode Voltage Range CMRR Av Large Signal Voltage Gain (Note 7) RL = 1 kO PSRR Output Swing ~ 60 dB 105 95 84 80 RL = 1 kO 3.5 RL = 1000 3.2 -3.0 Sourcing. RL = 1000 Sinking. RL = 1000 Isc Is Output Short Circuit Current Units 3 6 8 mV max 5 p'vrc 2.5 2.5 3.5 3.5 32 30 Sourcing 130 Sinking 100 Supply Current 2.3 1-549 p.A max 1.5 1.5 p.A 2.2 2.2 max MO 0 80 75 75 70 85 80 80 75 ±3.7 -3.4 Continuous Output Current (Open Loop) (Note 8) LM6171BI Limit (Note 6) 14 RL = 1000 Vo LM6171AI Limit (Note 6) 4 Input Offset Current Input Resistance Typ (Note 5) dB min dB min V 75 75 85 85 70~ 70 80 80 3.2 3.2 3 3 -3.2 -3.2 -3 -3 2.8 2.8 2.5 2.5 -2.8 -2.8 -2.5 -2.5 28 28 25 25 28 28 25 25 dB min dB min V min V max V min V max mA min mA max mA mA 3 3 3.5 3.5 mA max r!!: .........en .... ± 5V AC Electrical Characteristics V+ = +5V, V- = Symbol -5V, VCM = OV, and RL = 1 kn. Conditions Parameter SR Slew Rate (Note 9) GBW Unity Gain-Bandwidth UnleS!! otherwise specified, all limits guaranteed for limits apply atthe temperature extremes Av= + 2, VIN = 3.5 Vpp Product -3 dB Frequency TJ = 25·C, Boldface Typ (Note 5) LM6171AI Umit (Note 6) LM6171BI Limit (Note 6) Units 750 V/p.s 70 MHz Av= +1 130 Av = +2 45 MHz m Phase Margin ts Settling Time (0.1 %) Av= -1,VOUT= +1V, RL = 5000. Propagation Delay VIN = ±1V, RL = 50qO, Av= -2 AD Differential Gain (Note 10) D Differential Phase (Note 1 0) en Input-Referred f = 1 kHz Voltage Noise in Input-Referred f = 1 kHz Current Noise 57 deg 48 ns 8 ns 0.04 % 0.7 deg 11 Mz"" 1 Mz"" nV pA Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate oondltions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test oonditions, see the Electrical Characteristics. Note :to Human body model, 1.5 kO In series with 100 pF. Note 3: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 15O"C. Note 4: The maximum power dissipation is a function of TJ(max)' 8JA, and TA. The maximum allowable power dissipation at any ambient temperature is Po (TJ(max) - TAl/8JA· All numbers apply for packages soldered directly into a PC board. Note 5: Typical Values represent the most likely parametric norm. Note 6: All limits are g~ranteed by testing or statistical analysis. Note 7: Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. ForVs - ±15V, VOUT +5V, VOUT - ±1V. Note 8: The open loop output current is the output swing with the 1000 loed resistor divided by that resistor. ±5V. For Vs - Note 9: Slew rate is the average of the rising and falling slew rates. Note 10: Differential gain and phase are measured with Av '7 + 2, VIN - 1 Vpp at 3.58 MHz and both input and output 750 terminated. Note 11: Differential input voltage is measured at Vs - ±15V. " 1-550 Typical Performance Characteristics Supply Current va Supply Voltage 3.5 rJ 125"C r-..- "< .5 2.5 1 iJ: 1.5 I.---' Supply Current va Temperature ~ -:;; ~ 10 ~ 15 12.5 1.5 17.5 "< 20 .3 1 = iii 1.1 1.0 f I'- r-.... "....... 0.9 J rrl Vs=:l:1SV '" r-., ....... ....... . . . r-., ...... 25 1.2 1 1.1 .5 11 0 Vs"5V~ 1: -120 Vs / L = t15V " -140 ..... -150 , ./ "< t 8 -5 • Q ~ / Vs '·15V-' 60 ~ 100 1k ""IIi .,.. ~50C f--- 0 30 Frequency (Hz) v· ~ 60 ~ 50 ~ ~ " Positiv• ..../ 60 ..f ~ - -1 -2 10 100 lk -4r C t\ Tr"'"' ;;;;;. -3 -4 1 85 0 e 25°C V-40 -30 -20 -10 0 10 90 120 Frequency (Hz) 20 30 40 Output Current (mA) PSRR vs Frequency .I. 80 "' \.. "' 10k lOOk Vs' '5V ~ 70 30 75 100 125 .l.~Jc \2~OC f- E Ys = :I::15V VIN = lVpp 40 25 50 =b / 70 "' 3 10M [""'II 850C{. 90 1 rNogaUv. 90 80 10k tOOk 1t.1 " Output Voltage vs Output Current P08itiv~ 60 ~ 50 ~ 1M 10M =0.5Vpp I~ ~ ~ 30 20 '10 Vs=:t:5V '\t\ ILNegative 3 " " VIN ~ 20 10 I? Temperature (Oe) L - 4OoC 100 '\ "f'.. l'. VS' HI/..../ ~OC\ 85°C -1 5 -120 -90 -60 -30 17 1\ 20 ....... 110 PSRR vs Frequency ~ .0 15 -iOo~- ~ -1 1 -1 2 CMRR vs Frequency 80 130 Output Current (mA) V.'.5V lrVS' .15V -< ~ r- 80 -55 -40 -25 0 Vs" '15V :E' 2S 50 75 100 125 100 10 85°C 1 3 2 11 10 -1 3 -1 120 .- I-. ........ "0 120 Output Voltage va Output Current v, Temperature (Oe) "'" 150 0.9 • -16 0 -55 -40 -25 0 25 45 65 85105125 100 -IS· -10 i V 1'\ Short Circuit Current va Temperature (Sourcing) .5 .!! "0 > -1 ,/ "" 90 1/ / V = t5Y I> ~ Common Mode Voltage (V) -8 0 -10 0 Vs 0.8 Ys =:l:1SV ......" ....... 1.0 140 '- 0 ~ V Temperature (Oe) -- ~ ~ ""<; 1.2 160 ~ 65 85 105 125 -90 r-... 0.4 -55_ 35 -15 5 0.8 .s 1.4 I....... -I'- 0.6 Ys =.t15V "> .Short Circuit Current vs Temperature (Sinking) ~ } 1.3 Temperature (Oe) "'3 ~ I'- 0.7 -55 -35 -15 5 ~ -13 0 i 1.6 Input Offset Voltage va Common Mode Voltage 0.8 :1- ..... I-"" 1.6 "> .5 Temperaiure (Oe) vi ••~V . . . r-., ..... ~ 2.0 1 -55 -35 -15 5 25 .5 65 85 105 125 Input Bias Current va Temperature 1.2 ~ Input Offaet Voltage vs Temperature ..... ~ ~ "-1J 1 Supply Voltage (:tV) 1.3 ..... 7 ~ Y T'-55"C 7.5 ~~ 1I T=250C 2.5 2.S .5 I..... ...... ..... ~ :1 A~ I...... ..... I.--' ~ V r Unless otherwise noted, TA = 25"C 100 lk 10k lOOk 1M 10M Frequency (Hz) TUH/12336-3 1-551 • Typical Performance Characteristics Unless otherwise noted, TA = 25'C (Continued) Open Loop Frequency Response 110 60 ~ 60 r-.: 20 ;j 90 roo 0 1 I ,", -20 0;~ ~ 45 .110 Vs = :l:SV ~ .3 ] i"- 80 I"- 40 0;- 100 Vs =±15V I"- 80 Gain Bandwidth Product vs Supply Voltage Open Loop Frequency Response ....... 40 i"- 20 . lOOk 1M "0lIl . 0 . \ -20 10k lOOk Gain Bandwidth Productvs. . Load Capacitance r\ ~ .3 ] ION .IM 45 0;- c 50 ~ ~ 30 20 ! ! - '" 60 500 \ 1 c ! "- 100 10k 60 100k I 0 500 1500 f '\. i. V,=;ill 10 " ............. to-. 1 il ... - . ~ 1 : i " 0.10 10k lk 100 1 lOOk 10 Input Current Noise vs Frequency 100 lk 10k Slew Ratevs Supply Voltage. Slew Rate vs Input Voltage 4000 3000 vs.=MY 3500 ~ ";j' ! / ~2500 ............ 1 3000 .! 2000 1 ~ 1500 : Cij ~ 0.10 1 10 100 ,Ik frequency (Hz) 10k lOOk 0 0 1..... 2000 $ 1500 ~ 1.000 /' -'. ...vr v,l= tl5V .::. , II .l! / 1000 500 2500 / / .l! lOOk frequency (Hz) frequency (Hz) frequency (Hz) 2000 Input current Noise vs Frequency t 10 toOO Load Resistor (n) ~ I 25°C .. 55°C 15 2000 ~..... '10 lk 12soe 10 : 10 - Vs = t5V Vs=:UV i' 11.5 - $ r\ 20 15 12.5 ..., .....- ~ C 1500 100 ~..... 10 ~ .s Input Voltage Noise vs Ffequency Vs=:l:1SV f 1000 65 Load R~sistor (n) Input Voltage Noise vs Frequency I ~ c ( r ~ 0;- '-12S 0 e r' 0 10. 1.5 Supply Voltage (:tV) /' , - ,\..2rC Capacitive Load (pr) $ 5 2.5 i ,,..-r- 85 0 20 40 60 80 100'2°'40'6°'80200 100 at -55iC 0 90 90 12Soe II 40 Vs=:l:1SV ~ I' 40 50 1~8.t 'I' vaL~~ 80 I ~ at 215'C ::,. Large Signal Voltage Gain vsLoad 95 Vs = :l:15V "- ~ ~\ A~ ; " 10 60 Large Signal .. Voltage Gain 10 60 'Ii 'A ~ 100M 90 ! • ~ 90 SO Frequency (Hz) F"requ'ehcy (Hz) 100 I 0 100M lOW ! 90 - 0 10k t l.....- 1?0 II 500 i'-' / 0 5 10 Supply Voltage (.V) IS I .2 3 4 5 6 1 8 9 10 Input'Voltage (V,_,) TUHI12336-4 1-552 Typical Performance Characteristics Unless otherwise noted, TA = 2500 !. 25 ~=+2 ......... 25"C (Continued) Open Loop Output Impedance vs Frequency Slew Ratevs Load Capacitance r!!I: en Open Loop Output Impedance vs Frequency 25 Vs - 'ISV "Is = iSV VOUT = 20Vp _ p 200 '[ --~ ~ ~ Vs =±15V 0'1 ISO o 1000 500 20 5 \ Sinking li --- '\.... r-. 0 100 200 300 400 500 ~l! 5 Ii 20 IS ~l! .- 10 Sfi'I'IW,?, 10 10k 100k 1M 10M 15 srl111~[ r 5 100M 10k 100k 10M 100M LOAD CAPACITANCE (prJ FREQUENCY (Hz) FREQUENCY (Hz) Large Signal Pulse Response Av = -1, Vs = ±15V Large Signal Pulse Response Av = -1,Vs = ±5V Large Signal Pulse Response Av = +1, Vs = ±15V \ I I I IJ \ TIME (20 ns/dr,) TIME (20 ns/dl,) Large Signal Pulse Response Av = + 1, Vs = ±5V Large Signal Pulse Response Av =+2, Vs = ±15V II TIME (20ns/dr,) Large Signal Pulse Response Av = + 2, Vs = ± 5V ,.- I :\ 1\ TIME (2 n./dr,) Small Signal Pulse Response Av = -1, Vs =, ±15V TIME (20 ns/dl,) SmaUSlgnal Pulse Response Av = -1, Vs = ± 5V 1\ 1\ TIME (20 ns/dr,) 1\ TIME (20 n./dl,) SmaUSignal Pulse Response Av = + 1, Vs = ± 15V J TIUE (20 n./dl,) TIME (20 ns/dr,) TL/H/12336-6 1-553 .... .... .------------------------------------------------------------------------------------------, Typical Performance Characteristics Unless otherwise noted, tA = 25°0 (Continued) :I ...I ~ ~ .Small Signal Pulse Response Ay = + 2, Vs = ± 15V Small Signal Pulse Response . Ay= +1,Vs;= ±5V Small Signal Pulse Response Ay = +2, Vs = ±5V ~ I TIME (20 n./dly) L I"""'I~ z rt ~ Vs ·i2·7S - vs =i:l0 -I Vs=iS -10 -20 - rt VS =i2.7S f.-VS =:i:l0 -I Vs=iS ~ 100M 10M FREQUENCY (Hz) I VS I III 15 - I\. -20 - _ I\. 1\.. 1\ \ SOpF \ \ \ -1 100M 1M 300M Total Harmonic Distortion vs Frequency 1 "~ o. 1 10M iSV I 1 2.Skll sVp_ p .Total Harmonic Distortion vs Frequency g "'" frequency (Hz) 10M 100M o. 1 '1 ~ 0.0 1 0.001 1M I VS =ilSVI Av = 2 1\ = ·2.SkR Vo = 20 Vp_ p J 0.01 0.00 I 100M 200M 10 Vs = Av = 1\ = '10 = 0.0 1 10M FREQUENCY (Hz) I lOOk \ ..1 1M 100M 200M 0.1 10k -1 -3 10 Yo.• 20Vp_' g ,I 1.S pF S Total Harmonic Distortion vs Frequency Av = 1 1\ = 2.Skll 10 ~ FREQUENCY (Hz) = :l:15V II 50pF -S FREQUENCY (Hz) Vs l v..~ 'iii' 3 -5 10M 1M IY 100pF I z -3 I III 100 so F 1.SpF I VS=iSV III 220pFI 13 11 ~ = I.S pF- IS 100pF 'iii' 3 z 100M Closed Loop'Frequency Response vs Capacitive Load (Ay = + 2) VS=iI5V J I Ylil 11 = 100pf - II 220 pF 13 J J UJ 1\.1 = ~2ci :FI....., III -10 10M FREQUENCY (Hz) Closed Loop Frequency Response vs Capacitive Load (Ay = + 2) = :l:SV I I\. = 220 pF·T:!I+""Itft-t--i 1M 100M FREQUENCY (Hz) Closed Loop Frequency Response vs Capacitive Load (Ay = + 1) F-, I H+&+-I -201--t-..,II-+--:tII L I 1M I VS=iI5V '-r-~ ~~~~~F+-I+IH-" -10 -20 I 10M I 1--t--hf-!1. = 1.5 I I 10 'iii' 3 1M Closed Loop Frequency Response vs Capacitive Load (Ay = + 1) I , VS · i l , S , I \ TIME (20 n./dly) Closed Loop Frequency Response vs Supply Voltage (Ay = + 2) Vs = i l S , -10 - I co co N TIME (20 "Idly) Closed Loop Frequency Response vs Supply Voltage (Ay = + 1) i ~E \ 10k lOOk 1M frequency (Hz) 10M 100M 0.00 1 10k lOOk 1M 10M 100M Frequency (Hz) TUH/I2336-7 1-554 .-----------------------------------------------------------------------------'r Typical Performance Characteristics Unless otherwise noted, TA = Undlstorted Output Swing vs Frequency Total Harmonic Distortion vs Frequency I 5: ..... ..... ..... 25°C (Continued) Undlstorted Output Swing vs Frequency 10~~--~mr"nmrTTm~ Ys = '5Y 1 '" = 2 v 1\ = 2.5 kn ttttIIt-+tttIIH-tffi!lll Vo = 5Vp_p 0.1 H+ttttlll--tttttlllt:lHttttIIH+tttHil 0.01 HtHlllll-hI1-Hllll--HttllIHtHlHB 21 f- , 1\ it I IIIIII 4 3~~~-+~~~~~ Vs = :tsv '" = 2 ,% Maximum 2 Distortion 1~~~~~~-U~~ 0.001 L...LJ.llJJ"'--LJ.U.IJW.....Ll.LWIIL...J..J..Ll.UW 10k 100k 10M 100M 1M lOOk Frequency (Hz) Undlstorted Output Swing VB Frequency :: ~ It ::: -0 5 I 1.8 2%hle.x. IN I I""'-J 1.6 TmTJ·/Dislortion l_t~~-l-n"""-I+!+IIIH-+I++HlI +++++HlAr\,,++-I+HHI '" = 1 \: O~------~~~~llllW lOOk 1M 10M Frequency (Hz) 100M Total Power DIssipation VB Ambient Temperature f".,. II -Tl'(J Ys = .15Y 1\ = 70Dn 10M Frequency (Hz) 30~rn~~rMmm~~~ Frequency (Hz) 1M Frequency (Hz) Undlstorted Output SWing vs Frequency ~ = IDOl! 100M 1.4 1.2 f-,*"+~"'-t--+~r--1 ~ 8 Pin DIP"" I'-.... e; ~ 1 0.8 0.6 I"N-..I " 1\ I l""--. ....... 0.4 f--t--'8t-p-'in-'sf-'0-+_+......... ~fo.-I 0.2 f---t-+-I+I-t--i--I---l o L-L-L-IL......JIL......JL-L......l -40 -20 0 20 40 60 80 100 TEMPERATURE (Oe) TL/H/12336-8 ~ I I I i 1-555 _ ..... CD . r-----------------------------------------------------------------------------~ LM6171 Simplified Schematic :I TLlH/12336-10 1-556 r-----------------------------------------------------------------------------, Application Information LM6171 Performance Discussion ~ iC .... en duce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads and probe jackets and using scope probe jacks. The LM6171 is a high speed, unity-gain stable voltage feedback amplifier. It consumes only 2.5 mA supply current while providing a gain-bandwidth product of 100 MHz and a slew rate of 3600V I /Ls. It also has other great features such as low differential gain and phase and high output current. The LM6171 is a good choice in high speed circuits. COMPONENTS SELECTION AND FEEDBACK RESISTOR It Is important in high speed applications to keep aU component leads short b,ecause wires are inductive at high frequency. For discreteicomponents, choose carbon composition-type resistors. arid mica-type capacitors. Surface mount components ~e preferred over discrete components for minimum inductive effeCt. The LM6171 is a true voltage feedback amplifier. Unlike current feedback amplifiers (CFAs) with a low inverting input impedance and a high non-inverting input impedance, both inputs Of.,;voltage feedback amplifiE!rs (VFAs) have high impedance nodes. The 10w'impe9ance inverting.inp\Jt in CFAs will couple with feedback capacitor 4nd cause oscillation. As a result, CFAs canoot'be used in· traditional op amp circuits such as photodiode amplifiers, I-to-V co.nverters and integrat?rs. Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects suoh as ringing or oscillation in high speed amplifiers. For LM6171 , a feedback resistor of 5100 gives optimal performance. Compensation for Input Capacitance LM6171 'Circuit Operation The combination of an amplifier's input capacitance with the gain setting resistors adds a pole that can cause peaking or oscillation. To solve this problem, a feedback capacitor with a value The class AB input stage in LM6171 is fully symrillltrical and has a similar slewing characteristic to the cl,lrrent feedback amplifiers. In the LM6171 SimplfiQd Schematic;.Q1 through 04 form the equivalent of the current feedback input buffer, RE the equivalent 6f the feedback resistor, and stage A buffers the inverting input. The triple-buffered output stage isolates the' gain stage from the load to provide low output impedance. CF > (RG X C,N)/RF can be used to cancel that pole. For LM6171, a feedback capaCitor of 2 pF is recommended. F/{Jure 1 illustrates the compensation circuit. '. . LM6171 Slew Rate Characteristic The slew rate of LM6171 is determined by the current available to charge and discharge an internal high impedance node capaCitor. The current is the differential input voltage divided by the total degeneration resistor RE. Therefore, the slew rate is proportional to the input voltage level, and the higher slew rates are achievable in the lower gain configurations. V'N -"'M..--•.....,....,,---.4........ VOUT :::= GN .......• When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs. By placing an external series resistor such as 1 kO to the input of LM6171, the bandwidth is reduced to help lower the overshoot. TL/H112336-11 FIGURE 1. Compensating for Input Capacitance Power Supply Bypassing Bypassing the power supply is necessary to maintain low power supply impedance across frequency. Both positive and negative power supplies should be bypassed individually by plaCing 0.01, /LF c,eramic capacitors directly to power supply pins and 2.2 /LF tantalum capacitors close to the power supply pins. Layout Consideration PRINTED CIRCUIT BOARDS AND HIGH SPEED OP AMPS There are many things to consider)Nhen designing PC boards for high speed op amps. Without proper caution, it is very easy and frustrating to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the'signal traces should be short and wide to provide low inductance and low impedance paths. Any unused board space needs to be·grounded to reduce stray signal pickup. Critical components should also be grounded at a col'flmon point to eliminate voltage drop. Sockets add capacitance to the board and can affec'! frequency performance. It is better to solder the amplifier directly into the PC board without using any socket. USING PROBES. Active (FEn probes are ideal for taking high frequency measurements because they have wide bandwidth, high input impedance and low input capaCitance. However, the probe ground leads provide a long ground loop that will pro- TL/H/12336-12 FIGURE 2. Power Supply Bypassing 1-557 ..... .... Application Information (Continued) Termination' In high frequency applications, refl!'lctions occur if signals are not properly terminated. Figure 3 shows a proPerly terminated Signal while F/{JUf8 4 shows an improperly terminat· ed signal. , , TlIH/12336-13 FIGURE 5. Isolatloo Resistor Osed , to Drlvecapa'cluve Load Tl/H/12336-14 FIGURE 3. Properly terminated Signal TlIHI12336-16 FIGURE 6. The LM6171 Driving a 200 pFLoad with a SOO Isolation Resistor Power Dissipation The maximum power allowed to dissipate in a device is defined as: ' Po = (TJ(max) - TpJ/9JA Where Po is the power dissipation in a device TJ(max) is the maximum junction temperature T A is the ambient temperature 9JA il! the thermal resistance of a particular package For example, for the LM6171 in a S0-8 package, the maximum power dissipation at 25°C ambient temperature is 730 mW. TLlH/12336-15 FIGURE 4. Improperly Terminated Signal ." .... To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The other end of the cabllil shquldbe terminated with the same value terminator or' rssistor. For the commonly used cables, RG59 has 750 characteristic imPedance,' and RG58 has 500 characteristic impedance. Thermal resistance, 9JA, depends on parameters such as die size, package size and package material. The smaller the die size and package, the higher 9JA becomes. The.8pin DIP package has a lower thermal resistance (108"C/W) than that of 8-pin (172"C/W). Therefore, for higher dissipation capability, use an 8-pin DIP package. so Driving Capacitive Load$ , T~e total power diSiiipated in 'a device can' be calculated as: Amplifiers driving capacitive loads can osciliate or have Ijnging at the output. To eliminate oscillation or reduCe ringing, an isolation resistor can be placed as shown below in Figure 5. The combination of the isolation resistor and the load capacitor forms a pole to increase stablility by adding more phase margin to the overall system. The desired performance depends on the value of the isolation resistor; the bigger the isolation resistor, the more damped the pulse response becomes. For LM6171, a 500 isolation resistor is recommended for initial evaluation. Figure 6 shows the LM6171 driving a 200 pF load with the 500 isolation resistor. Po ';;Pa + PL ' Po is the quiescent power dissipated in a device with no load connected ,at the output. PL is, the power dissipated in the device with a load, connected at the output; it is not the power dissipated by the load. Furthermore, ' Po = sup~ly current X total supply voltage , with no load \ ' PL = output current X (voltage difference between supply voltage and output voltage of the same supply) , ' 1-558 ri: Q) ......... .... Application Information (Continued) Pulse Width Modulator For example, the total power dissipated by the LM6171 with Vs = ± 15V and output voltage of 10V into 1 kO load resistor (one end tied to ground) is Po=Pa+PL = (2.5 mAl x (30V) + (10 mAl = 75mW + 50 mW = 125 mW Rl R4 x (15V - 10V) SlaA >-.._~~_,....- Your R3 Application Circuits Fast Instrumentation Amplifier R2 sian S10A VI RI R2 R6 I kn Ikn TLlH/12336-19 sian Design Kit R3 A design kit is available for the LM6171. The design kit contains: • High Speed Evaluation Board • LM6171 in a-pin DIP Package • LM6171 Datasheet • Pspice Macromodel Diskette With the LM6171 Macromodel • An Amplifier Selection Guide Vour sian R4 sian V2 RS R7 Ikn I kn TL/H/I2336-17 Pitch Pack V,N=V2-Vl A pitch pack is available for the LM6171. The pitch pack contains: • High Speed Evaluation Board • LM6171 in a-pin DIP Package • LM6171 Datasheet • Pspice Macromodel Diskette With the LM6171 Macromodel if R6 = R2, R7 = RS and Rl = R4 VOUT = ~ (1 + 2!!! ) = 3 Y,N R2 . R3 Multlvlbrator Rl Contact your local National Semicqnductor sales office to obtain a pitch pack. >-..-~~-.--- YOUT TUH/I2336-18 f=---~--- 2(RlCln(1+2~)) f = 4 MHz 1-559 I j i .r--------------------------------------------------------------------------------, CD ~ tflNationa" Semiconductor LM6181 100 mA, 100 MHz Current Feedback Amplifier General Description Features (Typical unless otherwise noted) The LM6181 current-feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. The amplifier can directly drive up to 100 pF capacitive loads without oscillating and a 10V signal into a 500 or 750 back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for an 80pin DIP high-speed amplifier making it ideal for video applications. Built on National's advanced high-speed VIPTM II (Vertically Integrated PNP) process, the LM6181 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at Av = -1, 60 MHz at Av = -10. With a slew rate of 2000VI ,..s, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of 50 ns (0.1 %) the LM6181 dynamic performance makes it ideal for data acquisition, high speed ATE, and precision pulse amplifier applications. • • • • • • • Slew rate 2000 V/,..s 50 ns Settling time (0.1 %) Characterized for supply ranges ± 5V and ± 15V Low differential gain and phase error 0.05%,0.04' High output drive ± 10V into 1000 Guaranteed bandwidth and slew rate Improved performance over EL2020, OP160, AD844, LT1223 and HA5004 Applications • • • • • Coax cable driver Video amplifier Flash ADC buffer High frequency filter Scanner and Imaging systems Typical Application Vin - ...- -.... VIN SO.n (2V/div) 820.n 820.n SO.n VOUT (2V/div) TLlH/11328-1 cable Driver TIME (SOns/div) TLlH/11328-2 Connection Diagrams (For Ordering Information See Back Page) 16-Pln Small Outline Package (M) 8-Pln Dual-In-Llne Package (N)I Small Outline (M-8) 16 Nle INVERTING INPUT 8 • VINVERTING INPUT Nle NON-INVERTING INPUT V+ • VNON-INVERTING INPUT V- OUTPUT Nle TLlH/11328-3 Order Number LM61811N, LM6181AIN, LM6181AMN, LM6181AIM-8, LM61811M-8 or LM6181AMJ/883 See NS Package Number J08A, M08A or N08E 'Heat sinking pins (Note 3) Nle Nle Nle • V- V- • Nle Nle Nle Nle V+ OUTPUT v- • TLlH/11328-4 Order Number LM61811M or LM6181AIM See NS Package Number M16A 1-560 r- !!I: Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage ±18V ±6V Differential Input Voltage ± Supply Voltage Input Voltage Inverting Input Current Soldering Information Dual-In-Line Package (N) Soldering (10 sec) Small Outline Package (M) Vapor Phase (60 seconds) Infrared (15 seconds) Output Short Circuit Storage Temperature Range -65°C S; TJ (Note 7) +150"C S; m ..... CO ..... 150"C ±3000V Maximum Junction Temperature ESD Rating (Note 2) Operating Ratings 15mA Supply Voltage Range 26O"C Junction Temperature Range (Note 3) LM6181AM -55°C S; TJ S; + 125°C LM6181AI, LM61811 -40°C S; TJ S; +85°C 215"C 220"C 7Vt032V Thermal Resistance (6JA, 6Jcl 8-pin DIP (N) 8-pin SO (M-8) 16-pin SO (M) 102"C/W, 42"C/W 153°C/W, 42"C/W 70"C/W, 38°C/W ± 15V DC Electrical Characteristics The following specifications apply for Supply Voltage = ± 15V, RF = 8200, and RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25°C. LM6181AM Symbol Vos Parameter Conditions LM6181AI Input Offset Voltage 2.0 3.0 2.0 4.0 TCVOS Input Offset Voltage Drift la 5.0 Inverting Input Bias Current 2.0 Non-Inverting Input Bias Current 0.5 5.0 5.0 2.0 1.5 0.5 5.0 5.0 1.5 2.0 3.0 30 10 10 10 0.3 Vs = ±4.5V. ± 16V 0.5 0.3 3.0 0.05 Inverting Input Bias Current Common Mode Rejection 0.5 S; +10V 0.3 Non-Inverting Input Bias Current -10V Common Mode Rejection S; VCM S; +10V 0.1 CMRR Common Mode Rejection Ratio -10V S; PSRR Power Supply Rejection Ratio Vs = ±4.5V. ±16V 0.5 0.05 0.3 S; +10V 60 50 60 70 Vo Output Voltage Swing Av = -1. f = 300kHz 0.2 12 11 12 130 10 100 75 1-561 70 11 11 10 100 85 0.75 p.AIV max 0.5 0.5 60 50 50 80 70 85 dB min dB min 0.2 0 10 MO min 12 11 11 11 8.0 130 0.5 1.0 0.1 11 7.5 Output Short Circuit Current 50 10 11 0.3 70 11 RL = 1000 0.5 0.2 10 RL=1kO 0.5 0.75 3.0 50 80 70 Non-Inverting Input Resistance p.A max 4.5 0.05 0.5 50 80 0.5 0.75 0.1 0.5 VCM 0.3 1.5 0.75 0.5 0.5 3.0 1.5 VCM Output Resistance 3.0 nAI"C Non-Inverting Input Bias Current Vs = ±4.5V. ±16V Power Supply Rejection RIN 10 5.0 30 Ro mV max p.VI"C 17.0 30 S; Isc 5.0 Non-Inverting Input Bias Current Drift Inverting Input Bias Current Power Supply Rejection 5.0 5.5 Inverting Input Bias Current Drift -10V la CMR 3.5 12.0 3.0 la PSR 3.0 3.5 12.0 TCla LM61811 Typical Umlt Typical Limit Typical Limit Units (Note 4) (Note 5) (Note 4) (NoteS) (Note 4) (Note 5) 10 V min 8.0 130 100 85 mA min ~ I ± ,\.' 15V DC Electrical Characteristics (Continued) " , " The following specifications apply for Supply Voltage = t,15V, RF = 8200, and RI..; '" " kO unless otherwise noted. Boldface limi~ apply at the temperature extremes; all other limi~s TJ = 25°C. .. ' ,LM6181AM Symbol Parameter Transimpedance ZT Conditions Typical (Note 4) RL = 1,kO LM6181AI Typical Limit (Note 5) (~ote.4) 1.0 1.8 1.8 0.5 RL = 1000 1.4 Supply Current No Load, Vo = OV 0.8 1.4 7.5 LImit Units (Not~5) 0.8 0.4 lA 0.7 MO min 0.35, 10 7.5 10 10 V+ - 1.7V V- + 1.7V Input Common Mode Voltage Range 1.8, 0.8 10 VCM 1.0 0.4 1() 7.5 Typical (Note 4) 0.5 0.4 Is lNUi1811 Limit (Note 5) 10 V+ -1.7V V- + 1.7V V+ - 1.7V V- + 1.7V mA max V ± 15V AC Electrical Characteristics The following specifications apply for Supply Voltage = ± 15V, RF = 8200, RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25°C. LM6181AM Symbol BW Parameter Closed Loop Bandwidth -3dB COnditions Ay= +2 100 100 Ay = +10 80 80 Ay =-1 100 Ay = -10 60 PBW Power Bandwidth Ay = -1, Vo = 5Vpp SR Slew Rate Overdriven Rise and Fall Time Vo = 1 Vpp 5 f = 1 kHz in(_) Inverting Input Noise Current Density f=lkHz Input Noise Voltage Density f = 1 kHz 60 1000 " 1400 80 MHz min 60 60 1" tf Non-Inverting Input Noise Current Density 100 2000 50 in(+) 80 80 60 Ay = -1, Vo = ±5V RL = 1500 Vo = 1 Vpp 100 2000 Settling Time (0.1 %) Propagation Delay Time 80 Units 100 60 ts tp LM61811 2000 Ay = -1, Vo = ±10V, ,1400 RL = 1500 (Note 6) en LM6181AI Typical Limit Typical Limit Typical Limit (Note 4) (Note 5) (Note 4) (Note 5) (Note 4) (Note 5) 1000 1400 50 1000 V//,-s min 50 5 5 " ns 6 6 6 3 3 3 pA/,!Hz 16 16 16 pAlJiZ nV/JiZ 4 4 4 Second Harmonic Distortion 2Vpp,10MHz -50 -50 -50 Third Harmonic Distortion 2Vpp,10MHz -55 -55 "":50 Differential Gain RL = 1500 Ay= +2 NTSC 0.05 0.05 0.05 % RL = 1500 Ay' = +2 NTSC 0.04 0,04 0.04 Deg Differential Phase , , 1-562 dBc ± 5V DC Electrical Characteristics The following specifications apply for Supply Voltage = ± 5V, RF = 8200, and Rl = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25°C. LM6181AM Symbol Vos Parameter ·Condltlons Input Offset Voltage Typical (Note 4) 1.0 LM6181AI Limit (Note 5) Typical (Note 4) 2.0 1.0 3.0 TCVos Input Offset Voltage Drift IB TCIB IB PSR 2.5 Inverting Input Bias Current 5.0 Non-Inverting Input Bias Current 0.25 5.0 22 1.5 0.25 1.5 0.25 1.5 3.0 3.0 3.0 /LA max nArC Inverting Input Bias Current Vs = ±4.0V, ±6.0V Power Supply Rejection Vs = ±4.0V, ±6.0V 0.3 0.5 0.3 0.5 0.05 0.5 s: VCM s: +2.5V CMRR Common Mode Rejection Ratio -2.5V s: VCM s: +2.5V PSRR Power Supply Rejection Ratio Vs = ±4.0V, ±6.0V Ro Output Resistance Av = -1, f = 300 kHz RIN Non-Inverting Input Resistance Vo Output Voltage Swing 0.3 0.5 0.05 0.5 0.3 50 0.12 70 80 0.12 70 0.5 0.5 57 50 47 80 64 dB min 64 0 8 8 8 MO min 2.6 2.25 2.6 2.2 2.0 75 1.4 0.75 1.0 0.5 2.2 8.5 1-563 2.0 75 1.4 0.75 2.2 0.5 8.5 1.0 V min 1.0 inA min 0.6 0.3 0.4 MO min 0.2 6.5 8.5 V+ - 1.7V V- + 1.7V 75 70 0.25 6.5 2.0 2.0 100 0.4 1.0 2.25 2.25 70 8.5 V+ - 1.7V v- + 1.7V 2.6 2.0 100 0.25 6.5 2.25 2.25 0.35 No Load, Vo = OV 1.5 70 70 Rl = 1000 50 /LAN max 0.25 100 Rl = 1 kO 0.5 1.0 0.25 2.0 Output Short Circuit Current 0.3 0.25 2.2 Rl = 1000 0.5 0.5 0.5 47 70 Rl = 1 kO 0.05 0.5 57 47 80 0.5 1.0 1.0 1.0 1.0 57 0.3 0.5 1.0 0.12 0.5 0.5 0.5 -2.5V Input Common Mode Voltage Range 17.5 5.0 3.0 Supply Current mV max /Lvrc 27.0 Non-Inverting Input Bias Current Drift Non-Inverting Input Bias Current Common Mode Rejection VCM 5.0 50 +2.5V Is 10 50 Transimpedance 3.0 2.5 50 s: VCM s: ZT Limit Units (Note 5) 3.5 22 1.5 Inverting Input Bias Current -2.5V Common Mode Rejection Isc 1.0 Inverting Input Bias Current Drift Non-Inverting Input Bias Current Power Supply Rejection IB CMR 2.0 2.5 2.5 10 LM61811 Limit Typical (Note 5) (Note 4) 8.5 8.5 V+ - 1.7V V- + 1.7V mA max V ~ I ± 5V AC Electrical Characteristics The'following specifications apply for Supply Voltage = ,± 5V, RF = 8200, and RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25°C. LM6181AM Symbol BW Parameter Conditions LM6181AI LM81811 Units Typical Limit Typical Limit Typical Limit (Note 4) (Note 5) (Note 4) (Note 5) (Note 4) (Note 5) Closed Loop Bandwidth - 3 dB Av= +2 50 50 50 Av = +10 40 40 40 Av = -:-1 55 35 55 35 55 35 MHZ min ,375 V/p.s min Av = -10 35 35 35 PBW Power Bandwidth Av= -l,Vo=4Vpp 40 40 40 SR Slew Rate Av = -1, Vo = ±2V, RL = 1500 (Note 6) 500 ts Settling Time (0.1 %) Av=-l,Vo=±2V RL = 1500 50 50 50 4, tf Rise and Fall Time Vo = 1 Vpp 8.5 8.5 8.5 tp Propagation Delay Time Vo = 1 Vpp 8 8 8 in(+) Non-Inverting Input Noise Current Density f = 1 kHz 3 3 3 pAl-'Hz in(_) Inverting Input Noise Current Density f = 1 kHz 16 16 16 pAl-'Hz nVl-'Hz en 375 500 375 500 ns Input Noise Voltage Density f = 1 kHz 4 4 4 Second Harmonic Distortion 2Vpp,10MHz -45 -45 -45 Third Harmonic Distortion 2Vpp,10MHz -55 -55 -55 Differential Gain RL = 150n Av= +2 NTSC 0.063 0.063 0.063 % RL = 1500 Av= +2 NTSC 0.16 0.16 0.16 Deg Differential Phase dBc Note 1: Absolute Maximum Ratings indicate limitS beyond which damage to the device may occur. Operating ratings indicata conditions the devica is Intanded to be functional, but device parameter spaclficatlons may not be guaranteed under these conditions. For guerantaed speciflcations and tast conditions, See the Electrical Charactaristics. Note 2: Human body model 100 pF and 1.5 kG. Note 3: The typical iunction·to-ambient thermal resistancs of the molded plastic DIP(N) package soldered. directly into a PC board is 102"C/W. The junction-to-ambiant thermal resistancs of the S,O. stJrfacs mOllnt (M) package mounted flush to the PC board is 70'C/W when pins 1, 4, B, 9 and 16 are soldered to a total 2 in2 1 oz. copper tracs, Thalli-pin S.O, (M) package must have pin 4 and at least one of pins 1,8.9, or 16 connectad to v- for proper operation. The typical junctiOnto-amblent thermal reslstancs of the S,O. (M-B) package soldered dlrectiy into a PC board Is 153'C/W. Note 4: Typical values represent the most likely parametric norm. Note 6: All limitS guaranteed at room tamperature (standard type lacs) or at operating tamperature extremes (bold face type). Note 6: Measured from + 25% to + 75% of output wavetorm. Note 7: Continuous short c1rcu~ operation at elevated ambient tamperature can result in exceeding the maximum allowed junction temperature of 15O"C. Output currents in excess of ± 130 rnA over a long tarm basis may adversely affect rellabll~. Note 8: For guarantaed MllitSry Temperature Range parameters see RETS8181X. 1-564 Typical Performance Characteristics Ii: .... G) T A = 25'C unless otherwise noted .... CD CLOSED-LOOP FREQUENCY RESPONSE Vs = ± 15V; RI = 820n; RL= lkn CLOSED-LOOP FREQUENCY RESPONSE Vs = ± 15V; R, = 82Dn; RL = 150n c- UNITY GAIN FREQUENCY RESPONSE Vs = ±15V;Ay = +1; lit = 820n ·~U~l~ ! I- _I~ 111~1~ I- _I~ I~I~IJ ~ III 1M 10M 100W UNIT GAIN FREQUENCY RESPONSE Vs = ±5V;Ay = +1; R, = 820n c1 ~ ~ OdB ~ 1 1M '\ = lk---'\ =100 '\ =150 10M 100M 1M ~ o· OdB 1M 10M t- ~, J. I.lH~J Vs = :tf5V Vs - *12.5V Vs = :l:12.5V Vs Vs "' "' m 10M 100M t! i t: iii l!l ~ m 10M 100M ~ if z ~ OdB ~ !:; i'- ~ 0' '\ = lk" '\ = 150 '\ • 100 iii "> 15 ~ z ~ 180 0 IdB c- -1M '\ • lk '\ = 150 '\ = 100 10M I"i I II lOW 100W 1M 10M 100M INVERTING GAIN FREQUENCY RESPONSE Vs = ±5V;Ay = -10; R, = 820n 1 180' 1 135° ~ 90° ~ 45° ~ 20dB ~ !: 20dS '\ = lk '\ • 150 '\ = 100 1M O' ~ 1M 135° ~ 90 0 ~ i" NON-INVERTING GAIN FREOUENCYRESPONSE Vs = ±5V;Ay = +2; R, = 820n " 100M = :tIOV = ::I:7.SV Vs = :t5V tlOV = *7.5V Vs = ::I:SV ~ ~ 100M ~ '" 180' 135' ~ 45' 10M 11111111 11111111 11111111 INVERTING GAIN FREQUENCY RESPONSE Vs = ±5V;Ay = -1; R, = 820n 90' ~ 1M ~ ~, FREQUENCY RESPONSE vs SUPPLY VOLTAGE Ay = -l;RI = 820n; RL = 150n 180 0 i"'""'- '\ = lk '\ =150 '\ = 100 100M 11111111 11111111 vs" :\ " ~ ~ 10M iii f- '\ • 150 '\ • 100 Vs INVERTING GAIN FREQUENCY RESPONSE Vs = ±15V;Ay = -1; R, = 820n "> i 180° t;: '\ = lk FREQUENCY RESPONSE V8 SUPPLY VOLTAGE Ay = -1; R, = 820n; RL = 1kn 0' ~ "' lV 45° ~ 90 0 ~ 135° OdB ~~ I- _I~'!'~: O' :- 10M ~ t 100M ~ cc- r- 1M '\ = lk '\ = 150'" '\ = 100~ 10M ~ ! t: iii ~ t100M TLlHI11328-5 1-565 .CD .- I....I Typical Performance Characteristics NON-INVERTING GAIN FREQUENcy RESPONSE Vs = ±,15V;Av = +10; Rf = 8200 TA = 25·Cunless otherwise noted (Continued) NON-INVERTING GAIN FREQUENCY RESPONSE Vs = ±5V;Av = +10; Rf = 8200 NON-INVERTING GAIN FREQUENCY COMPENSATION Vs = ±15V;Av = +2; RL = 1500 - ~ ~I.~!~~ ..... -~ ~I/!~r-I 1 I\. = l- I\. 11111 1M - ;:! g 1\ 10M 120 100 :E !;l ~ 20 Vs =:tSV I\. • I\. = ...,. ~ 1=I~i~~I, lkn 150 100 11111 10M ~ .N.. 130 12 120 110 9 = ' -ssoe 8 +25 OC 3 =~125OC 100 i = = -3 -6 _ -9 !r +125OC +25OC 50 40 -15 0.5 1.0 1.5 2,0 2,5 Rf' Ro (kll) 3.0 3.5 10 100 30 Ik 1000 TRANSIMPEDANCE ,va FREQUENCY Vs = ±5V RL= 1kO 130 130 120 120 110 120 110 110 100 100 90 g 10 g .5 80 .5 80 .5 it- 10 ;:t 10 ;r 80 60 50 ,50 40 4~ 30 10M 25mY FAWNG EDGE 10mV +0.2" FALLING EDGE 5mV lOOk I. 10. Ik 100M 11 180..(n. START -0,'55 Vs' '~.J..1'" 1000 +0.25% ~ -0.,5" ~ RISING EDGE -,a.8ns I. SdB PEAKING +0.25% -25mV 20ns/drv lOOk SUGGESTED fit and Rs lor CL Ay = -1;RL = 1500 ST'" +0.2% 10k 10000 /~V -0.2" -0,'" -43 mY -fS.8ns 10k SETTLING RESPONSE Vs = ±5V;RL = 1500; Vo = ±2V;AV = -1' 57mV RISING EDGE 100M 30 Ik 100M SETTLING RESPONSE Vs = ±15V;RL = 1500; Vo = ±5V;Av = -1 r--. 10M 80 40 30 /T1N 100M 10 60 1M 10M 10 50 lOOk 1. 100 g 10k lOOk TRANSIMPEDANCE va FREQUENCY Vs = ±5V RL= 1000 130 Ik 10k R LOAO (n) TRANSIMPEDANCE va FREQUENCY Vs= ±15V RL = 1000 '>l .• 10 80 10 60 -55OC -u '0 100M 10M TRANSIMPEp"NCE va FREQUENCY Vs = ±15V RL = ao 15 ~ =:t15Y 11111 11111 1. 100.. OUTPUT SWING va RLOADPULSED, Vs = ±15V, liN = ±200 pA, VIN+ = OV BANDWIDTH V8 fit &. Rs Av= -1,RL= 1kO f\:~s Ri.. 1. 100M -~ ~I/~~~ I lli ~ Ik = 150 a 100 1 ~ 20dB 1/7 100 Ys =: :t15Y 10 20na/dlv 180.4ns 0.5 1.0 1.5 2.0 '.5 3.0 3.5 RI , Ro (knl TLlH/I1328-6 1-566 Typical Performance Characteristics TA = 25°C unless otherwise noted (Continued) SUGGESTED RI SUGGESTED RI and RsFORCL Ay= -1 and RsFOR CL Ay = +2;RL = 150n 10000 10000 Ys = :l:5Y and Rs FOR CL Ay= +2 10000 Sd8 PEAKING 5dB PEAKING 1000 SUGGESTED RI Vs = :l:5V 1000 ~ S $ ~ ~~ 100 Ys I 10 0.5 1.0 1.5 Rf ~ = :l:15Y- 9 I 2.0 Ys 100 I 10 2.5 3.0 3.5 O.S 1.0 a Ro (kll) 1.5 ~ = :i:15V I I 2.0 Sd8 PEAKING Vs 1000 I: 3.0 3.5 = .t15Y I I 10 2.5 0.5 1.0 Rf & Ro (kll) OUTPUT IMPEDANCE va FREQ Vs= ±15V;Ay=-1 RI = 820n Vs ,/ 100 i-" :I::5V OUTPUT IMPEDANCE vs FREQ Vs = ±5V;Ay = -1 RI = 820n 1.5 2.0 Rf a R. I 2.5 3.0 3.5 (kll) PSRR (Vs+) yS FREQUENCY 70 80 50 :soS' :soS' 4 H-ItHffil-ftHltflI-+ttHitII--i 40 Vs· .0 4 H-ItHffil-+..t'HttIII-+ttHitII--i :l:15V 20 10 Vs = *SV 0.2S ~'ttHffil-fffiltlll-+ttHitII--i 20 111111 D.2SIo'i-ltHffil-fttittlll-+ttHitII--i 200 20 FREQUENCY (MHz) 200 Ik 10k FREQUENCY (MHz) PSRR (Vs-) va FREQUENCY 111111 ,M lOOk UI.. 100M FREQUENCY (Hz) INPUT VOLTAGE NOISE va FREQUENCY CMRR va FREQUENCY 100 70 60 50 01 ~ ~ 01 40 30 20 10 ~ I 70 80 SO 40 30 20 10 ~ Vs ! = *SV ~ 10 ~ I Ik 10k lOOk 1M lOW Ik 100M FREQUENCY (Hz) 10k lOOk 1M 10M 0.01 100M FREQUENCY (Hz) ~ ;: -.. ! 1000 ~ 1000 i ~ ~ B i SLEW RATE POSITIVE 10 FREQUENCY (kHz) 100 ..... SLEW RATE NEGATIVE ~ ~ SLEW RATE POSITIVE 100 ~ 100 " 1111111111111111 0.1 100 SLEW RATE va TEMPERATUREAy = -1; RL = 150n, Vs = ±5V 10000 ftSLEW RATE' NEGATIVE 10 FREQUENCY (kHz) SLEW RATE va TEMPERATUREAy = -1; , RL = 160n, Vs = ±15V INPUT CURRENT NOISE va FREQUENCY 0.1 10 -80 -40 -20 0 20 40 80 80 100 120 TEMPERATURE (oc) 10 -80 -40-20 0 20 40 80 80 100 120 TEMPERATURE (Oc) TUHII1328-7 1-567 ~ I 1 Typical Performance Characteristics -3dB BANDWIDTHVB TEMPERATURE -1 Ay~ 10 140 Vs -120 'i a ,100 i = =:i15V 1\=1k ] =:l:ISV ,"- =1000 I Vs • Vs 80 • 0b1:t1 Vs=:l::SV -eo -40 -20 9 '9, FALL TIME - 5 :! 7 " 2 6 PROPAGATION DElA.Y 5 • KMLITlwlE -eo -40 -20 9 8 7 ~ i!! i.I" 5 ~ SMALL SIGNAL PULSE RESPONSE VB TEMP, Ay Va ~ ±6V; RL ~ 1000 -1 9 ;R~~~~~~ ~UJ:;l: 7 FALL TlilE '~ 8 !ii RISE,miE RISE TIME ;: 5 4- 4 3 -80 -40 -20 0 20 40 60 80 100 120 TE\I~RATURE TEMPERATURE (Oc) ~ SMALL SIGNAL PULSE RESPONSE vsTEMP, Ay Vs ~ ± 15V; RL ~ 1000 +2 ~ 13 -13 13 12 12 11 11 11 10 10 10 , PROPAGATiON OELAY 8 ]: 9 ~ ;: 8- ! PROPAGATION DELAY FALL TIME 4 -'0 -40 -20 0 20 .jo 60 80 100 120 TEMPERATURE (Oc) !ii ;: 7 9 '8 ~ +2 PROPAGATION O£LA!.J.IFALL TIME RIS~'TIME 7 RISE"TIME 6 RISE TIME (Oc) SMALL SIGNAL PULSE RESPONSE vs TEMP, Ay : Vs'~ ±5V;RL = 1 kO +2 12 5 RISE TIM~ 6 5 3 -80 -.40 -20 0 20 40 60 60 100 120 0 20 '40 80 80 100 120 SMALL SIGNAL PULSE RESPONSE vs TEMP, Ay Vs = ±15V;RL ~ 1 kO 7 -1 FALL TIME TEMPERATURE (Oc) 9 ~ PROPAGATION DELAY FALL TIME J.t' 8 X 7 ]: !ROPAGATION Ii£LAY TEMPERATURE (flC) SMALL~NALPULSE RESPONSE vs TEMP, Ay Vs ~ ±5V; RL ~ no 8 8 RISE TIME 3 -80 -40"20 0 20 40 80 80 100 120 0 20 40 80 80 100 120 TEMPERATURE (Oc) 9 -eo -.40 -20 '" ~ 7 ~ 3 ;: ..- RISE TIME i!! 2 '-60 -40 -20 0 20 40 60 80 100 120 8 -1 8 5 3 • ~ ~ - FALL TIME .s 3 ;: ! PROPAGATION DELAY 8 SMALL SIGNAL PULSE RESPONSE vs TEMP, Av ~ -1 Vs ~ ± 15V; RL ~ 1000 ~ SMALL SIGNAL PULSE RESPONSEvsTEMP,Ay Vs ~ ±15V;RL ~ 1 kO i!! TEMPERATURE (ot)_ ..- TEMPERATURE (oc) ~ • FALL TIWE 9 8 RI~t nME 6 RISE TIME 2 -60 -.40 -20 0 20 40 60 80 100 120 0 20 40 .0 60-,100 120 SMALL SIGNAL PULSE RESPONSE ~ TEMP, Ay ~ + 1 VB ~ ±5V; RL ~ 1000 +1 PROrAGA110N DELA ~ 7 ~ TEMPERATURE (oc) ~ +1 6 PROPAGATION DELAY 3 FALL TINE ~ " 7 • RISE TIWE 10 8 .s ~ '" ;: 2 10 i!! ..-.s PROPAGATION DELAY 3 TEMPERATURE (Oc) :! lp 7 • SMALL SIGNAL PULSE RESPONSE vs TEMP,Ay VB ~ ±16V;RL = 1000 +1 9 5 40 -eo -.40 -20- 0 20 40 60 60 100 120 SMALL SIGNAL PULSE RESPONSE vs TEMP, Ay Vs ~ ±5V;RL ~ 1 kO ~ 8 ~ 1\ -lOOn. SMALL SIGNAL PULSE RESPONSE vs TEMP,Ay "s~ ±15V;RL~ 1kO 9 -' '" ;: = 25°C unless otherwise noted (Contin~ed) 8 6 :t~V TA FALL TIME 5 4 -eo -.10 -20 0 20 40 80 80 100 120 TEMPERATURE (Oc) ,- ,5' 4 -60 -40 -20 0 20 40 80 80 100 120 TEMPERATURE (oc) TL/H/I1328-29 1-568 Typical Performance Characteristics SMALL SIGNAL PULSE RESPONSE ¥II TEMP, Ay = -10 Vs = ±15V:RL = 1k0 SMALL SIGNAL PULSE RESPONSE ¥II TEMP, Ay = + 2 Vs = ±5V: RL = 1000 13 12 II FALL TIME ~ RISE TIME 9 :! ,.;: ~ 8 7 12 II II 10 10 9 ]: 8 ~ 7 6 5 5 4 4 -60 -40 -20 0 20 40 80 80 100 120 -60 -40 -20 0 20 40 80 80 100 120 ~ ;: 12 II II PROPAGATION DELAY RISE TIME 7 ....s ! RISE TIMEt- 4 -80 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (DC) SMALL SIGNAL PULSE RESPONSE vs TEMP, Ay = +10 Vs = ±15V:RL = 1 kO 13 12 FALL TIME II 10 10 RISE TIME 9 ]: ~PAOATIOH DElAY a ~ 7 9 8 7 PROPAGATION DELAY FALL TlME-H; 6 6 .6 5 5 5 4 4 4 3 -60 -60 -40 -20 0 20 40 60 80 100 120 -60 -40 -20 0 20 40 80 80 100 120 TEMPERATURE (DC) 13 12 II FALL TIME :~ -tttt PROPAGATION DELAY II 10 9 PROPAGATION DELAY FALL nME ]: 9 FALL TIME 8 ~ 7 RISE TIME 10 RISE TIME ] w ~ PROPAGATIOM DELAY 9 8 7 6 6 6 5 5 5 RISE TIME 0 20 40 60 80 100 120 SMALL SIGNAL PULSE RESPONSEvsTEMP,Ay = +10 Vs = ±5V: RL = 1000 13 12 12 7 -.0 -20 TEMPERATURE (DC) SMALL SIGNAL PULSE RESPONSE V8 TEMP, Ay = +10 Vs= ±5V;RL= 1kO 13 8 RISE TIME TEMPERATURE (oc) SMALL SIGNAL PULSE RESPONSE ¥II TEMP, Ay = + 10 Vs = ±15V:RL = 1000 :; ! FM.L lI\lE RfS[ TIME 5 SMALL SIGNAL PULSE RESPONSE V8 TEMP, Ay = -10 Vs = ±5V: RL = 1000 12 8 [-I PROPAGATION D~ 7 TEMPERATURE (DC) SMALL SIGNAL PULSE RESPONSE ¥II TEUP, Ay = -10 Vs = ±5V:RL = 1 kO 9 FALL TIME 9 8 8 FALL T~ TEMPERATURE (DC) ....s ;: PROPAGATION DELAY 8 10 SMALL SIGNAL PULSE RESPONSE vs TEMP, Ay = -10 Vs = ±15V:RL = 1000 12 -t+H-t PROPAGATION DElAY 10 ]: TA = 25DC unless otherwise noted (COntinued) 4 4 4 3 -60 -.to -20 0 20 40 60 80 100 120 3 -60 -40 -20 0 20 -'0 60 80 100 120 3 -60 -40-20 0 20 40 80 80 100 120 TEMPERATURf (DC) TEMPERATURE (DC) OFFSET VOLTAGE ¥II TEMPERATURE 4.0 OFFSET VOLTAGE Y8 TEMPERATURE 4.0 Vs = :t:fSV 3.5 3.5 3.0 3.0 '> -5 2.5 ; 1.5 2.0 1.0 .... TEMPERATURE (DC) -- - 0.5 ! 2.5 ; 1.5 Vs TRANSIMPEDANCE ¥II TEMPERATURE 5.0 =:i:5V 4.5 .... d = .t1SV 3.0 ~2.5 2.0 ..t2.0 1.5 1.0 0.5 Vs 3.5 -I- ""'" 0 -55 -35 -15 5 25 45 65 85 105 125 0 -55 -3$ -15 5 25 45 65 85 105 125 TEMPERATURE (DC) TEMPERATURE (DC) ~;::: -- - "'~::-- .... I-"" 1.0 0.5 ~::::: f- ",~nl_ - - 0.0 -55 -3$-15 5 25 45 65 85105125 TEMPERATURE (DC) TL/HII1328-8 1-569 .. r-----------------------------------------------------------------------------------------------------, ~ ~ Typical Performance Characteristics TRANSIMPEDANCE va TEMPERATURE 5.0 ~ 4.0 3.S <> 1.0 ;.; '\. "-......... '\ " 0.4 0.2 0.0 -60 = 38°C/W 0JC '" "- 1.2 """ iii 0 I = 70 o e/w -40 -20 0 W ~ ~ 00 100 lW 1~ TA AMBIENT TEMP (Oe) TL/HI11326-31 M-Package '9JA = Thermal Resistance with 2 square inches of 1 ounce Copper tied to Pins 1. 8. 9 and 16. 2.0 I 1.8 :§: 1.6 z 1.4 ~ 0- 1.2 0 iii ...'" ...;;: 1.0 0 0.8 u 0.6 0 0•• 0JC = 42°C/W / .................. 0JA = 153 o e/w ..... ~ ........... \ ~ "'- 0.2 0.0 -60 -40 -20 '\ "" .......... ....... 20 TA AMBIENT TEMP (Oe) TL/H/1132B-33 M-SPackage 1-571 ~ co ~ :E r---------------------------------------------------------------------------------, Typical Performance Characteristics (Contint,led} ..... Simplified Schematic ....--t--(,I~ OUTPUT TLlH/11328-32 1-572 r- ...... iii: Typical Applications en co CURRENT FEEDBACK TOPOLOGY For a conventional voltage feedback amplifier the resulting small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gainbandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6181, transcends this limitation to offer a signal bandwidth that is relatively independent of the closed-loop gain. Figures 1a and 1b illustrate that for closed loop gains of -1 and -5 the resulting pulse fidelity suggests quite similar bandwidths for both configurations. V..t TUH/11328-14 FIGURE 2. Rs Is Adjusted to Obtain the Desired Closed Loop Gain, AVCL POWER SUPPLY BYPASSING AND LAYOUT CONSIDERATIONS' A fundamental requirement for high-speed amplifier design is adequate bypassing of the power supply. It is critical to maintain a wideband low-impedance'to ground at the amplifiers supply pins to insure the fidelity of high speed amplifier transient signals. 10 poF tantalum and 0.1 poF ceramic bypass capacitors are recommended for each supply pin. The bypass c!!pacitors should be placed as close to the amplifier pins as possible (0.5" or less). VOUT IO.1V/div) FEEDBACK RESISTOR SELECnON: Rt Selecting the feedba~k resistor, is a dominant factor in compensating the lM6181. For general applications the LM61,81will maintain specified performance with an 8200. feedback resistOr. Although thls'value will provide good results for most applications, it may ~ adVantageous to adjust this value slightly. Consider, for instance, the effect on ~Ise responses With tWo different' configu!'8tions where both the closed-loop gains are 2 and the feedback resistors are 8200., and 16400., respectively, Figures 3a arid 3b illustrate the effect of increasing while maintaining the same closed-loop gain-the amplifier bandwidth decreases. Accordingly, larger feedback resistors can be used to slow down the LM6181 (see -3 dB bandwidth vs Rf typical curves) and reduce overshoot in the time domain response. Conversely, smaller feedback resistance values than 8200. can be used to compensate for the reduction of bandwidth at high closed loop gains, due to 2nd order effects. For example Flf}ure 4 illustrates redUCing Rf to 5000. to establish the desired small signal response in an amplifier configured for a closed loop gain of 25. Ri, TL/H/11328-12 1a R, Your IO.1V/div) IIME 15 Ds/div) TL/H/11328-13 1b FIGURES 1a, 1b: Variation of Ciosed Loop Gain from ,~1 to -;:5 Yields Similar Responses Your The closed-loop bandwidth of the Uv16181 depends on the feedback resistance, Rf. therefore, Rs and not Rf, must be varied to adjust for the desir9d closed~loop gain as in Ftgure2. IO.5V/div) IO.5V/div) IIME 120 Ds/div) TUH/11328-15 3a:Rt = 8200. 1-573 _ :5 CD CD r---------------------------------------------------------------------~ Typical Applications (Continued) Figure 6 illustrates the improvement c;>btained 470 isolation resilltor. 820tl with using a Your (0.5V/div) 5a VIN (0.5V/div) TL/H/11328-16 3b: Rf = 16400 . FIGURES Sa, b: Increasing Compensation -= TLlHI11328-18 Your (UV/div) . with Increasing Rf . VIN (0.2V/div) Your TIME (20 ns/div) (0.5V/div) 5b TLlH111328-19 FIGURES 58, b: Ay = -1, LM8181 ca.t Directly Drive 50 pF of Load Capacitance With 70 ns of Ringing Resulting In Pulse Response VIN 0.05V/div) 82M nME (20 ns/div) FIGURE 4: Reducing Rf for Large Closed Loop Gains, R, = 5000' TLlHI11328-17 SLEW RATE CONSIDERATIONS The slew rate characteristics of current feedback amplifiers are different than traditional voltage feedback amplifiers. In voltage feedback amplifiers slew rate limiting or non-linear amplifier behavior is dominated by the finite avsilability of the 1st stage tail.current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast. is not constant. Transient currE!nt at the inverting input determines slew rate for. both inverting and' non-inverting gains. The non-invertingconfigura~on sleW (ate is also determinedby input stage limitations. Accordingly. variations of slew rates Occur for different circuit topologies. 8a TLlHI11328-20 Vour (0.2V/div) VIN '10.2V/div) DRIVING CAPACITIVE LOADS The LM6181 can drive significantly larger capacitive loads than many· current feedback amplifiers. Although the LM61'81 can dir~ly drive as I'n~ch 8lI.10QpF Without oscillating. the resultll)g response will bea ~nction of the feedback resistor. value. Figure 5 illustrates the small-signal pulse response of the LM6181 while driving a 50 pF load. Ringing persiSts for approximately 70 ns. To achieve pulse responses with less r!nging either the feedback resistor can be increased (see typical curves Suggested Rt and Rs for or resistive isolation can be used (100-510 typically works well). Either technique. however. results in lowering the system bandwidth. TIME 120 ns/div) 6b TL/H/11328-21 FIGURES 8a, b: Resistive Isolation of CL Provides Higher Fidelity Pulse Response. R, and Rs Could Be Increased to Maintain Ay = -1 and Improve Pulse Response Characteristics.. Cu. 1-574 r- Typical Applications (Continued) I: Typical Performance Characteristics CAPACITIVE FEEDBACK For voltage feedback amplifiers it is quite common to place a small lead compensation capacitor in parallel with feedback resistance, Rt. This compensation serves to reduce the amplifier's peaking in the frequency domain which equivalently tames the transient response. To limit the bandwidth of current feedback amplifiers, do not use a capacitor across R,. The dynamic impedance of capaCitors in the feedback loo~ reduces the amplifier's stability. Instead, reduce~ peaking In the frequency response, and bandwidth limiting can be accomplished by adding an RC circuit, as illustrated in Figure 7b. en ..... CD ..... OVERDRIVE RECOVERY When the output or input voltage range of a high speed amplifier is exceeded, the amplifier must recover from an overdrive condition. The typical recovery times for openloop, closed-loop, and input common-mode voltage range overdrive conditions are illustrated in Figures 9, 11 and 12, respectively. The open-loop circuit of Figure 8 generates an overdrive response by allowing the ± O.5V input to exceed the linear input range of the amplifier. Typical positive and negative overdrive recovery times shown in Figure 9 are 5 ns and 25 ns, respectively. v+ vin-....- - - I 50n ~~--",,-oVOUT lkn TL/H/11328-24 FIGURE 8 v820n 820n f-3dB=_121TRC 7a YiN (0.5V/div) TUHI11328-22 VOUT (2V/div) TIME (50 Ds/div) TUH/11328-25 Vour FIGURE 9. Open-Loop Overdrive Recovery Time of 5 ns, and 25 ns from Test Circuit in Figure 8 (0.2V/div) TIME (50 ns/div) 7b TUH/11328-23 FIGURES 7a, b: RC Limits Amplifier Bandwidth to 50 MHz, Eliminating Peaking in the Resulting Pulse Response 1-575 ~ r-------------------------------------------------------------------------------~ CD ~ I-I Typical Performance Characteristics (Continued) The large closed-loop gain configuration in FigurB 10 forc.es the amplifier output, into overdrive. FigurB 11 displays the typical 30 ns recovery time. to a linear output value. 8200. The common-mode input of the circuit in FigurB 10 is exceeded by a 5V pulse resulting in a typical recovery time of 310 ns shown in FigurB 12. The LM6181 supply voltage is ±5V. 1500. 500. TLlH/11328-28 FIGURE 10 TL/H/11328-28 YOUT FIGURE 12. Exceptional Output Recovery from an Input that Exceeds the Common-Mode Range (5Y/div) YIN (0.5V/div) TIME (50 ns/div) 'TL/H/11328-27 FIGURE 11. CloSed-Loop Overdrive Recovery Time .of 30 ns from Exceeding Output Voltage Range from Circuit in Figure 10 Ordering Information Temperature Rlillge Package 8-Pin Molded DIP Military -55"Cto + 125"C Industrial' ~40"Cto +H"C LM6181AMN NSC Drawing LM6181AIN LM61811N N08E 8-Pin Small Outline Molded Package LM6181AIM-8 LM61811M-8 M08A 16-Pin Small Outline LM6181AIM LM61811M M16A 8-Pin Ceramic DIP LM6181 AMJ/883 J08A 1-576 IfINational Semiconductor LM6182 Dual 100 mA Output, 100 MHz Current Feedback Amplifier General Description Features (Typical unless otherwise noted) The LM6182 dual current feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. Each amplifier can directly drive a 2V signal into a 500 or 750 back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for a dual 8-pin highspeed amplifier making it ideal for video applications. • • • • Built on National's advanced high-speed VIP IITM (Vertically Integrated PNP) process, the LM6182 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at Av = -1,60 MHz at Av = -10. With a slew rate of 2000 V / ",sec, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of 50 ns (0.1%), the two independent amplifiers of the LM6182 offer performance that is ideal for data acquisition, high-speed ATE, and precision pulse amplifier applications. See the LM6181 data sheet for a single amplifier with these • • • • Applications • • • • • Coax Cable Driver Professional Studio Video Equipment Flash ADC Buffer PC and Workstation Video Boards Facsimile and Imaging Systems same features. Typical Application 1/2 LN6182 7S11 Cable 82011 Vour 82011 7S11 Video Cable Driver TlIH/11926-1 VIN (0.5V1D1V) V OUT (O.5V/DIV) TIME (SOns/DIV) TLlH/11926-2 1-577 . "'S Slew Rate 2000 V/ Closed Loop Bandwidth 100 MHz Settling Time (0.1%) 50 ns Low Differential Gain and Phase Error 0.05%, 0.04· RL = 1500 Low Offset Voltage 2 mV High Output Drive ± 1OV into 1500 Characterized for Supply Ranges ± 5V and ± 15V Improved Performance over OP260 and LT1229 ~ .-----------------------------------------------------------------------~~------, co ~ ~ ....I Connection Diagrams NC -IN A +I~ A, 4 y- +IN B 5 -IN B YOUT B 8 NC NC TL/HI11926-51 Order Number LM6182AMJ/883 See NS Package Number J14A Small Outline Package (M) 16 Y- • • YINVERTING INPUT 2 ,OUTPUT 'N/c NON-INVERTING INPUT • Y- 4 y+ N/c N/C N/c NON-INVERTING INPUT INVERTING INPUT • Y- OUTPUT Y- • TL/H/11926-4 'Heat Sinking Pins (Note 3) Order Number LM61821M or LM6182AIM See NS Package Number M16A Dual-In-Line Package (N) OUTPUT A ~1--'lL INVERTING INPUT A """"11-...;;.1 NON-INVERTI.NG I,NPUT ~, 8 y+ OUTPUT B INVERTING INPUT B .......:----Ir-- NON-INVERTING INPUT B :!'. TLlH/11926-3 Order Number I.,MS1'l12IN; I.,M6182AIN or I.,M6182AMN See 'NS Package Number N08E 1-578 Absolute Maximum Ratings (Note 1) Small Outline Package (M) Vapor Phase (60s) Infrared (15s) Storage Temperature Range If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±18V Supply Voltage ±6V Differential Input Voltage Input Voltage Inverting Input Current Output Short Circuit -65·C:s: TJ :s: + 150"C Junction Temperature ESD Rating (Note 2) ± Supply Voltage 15mA (Note 4) Soldering Information Dual-In-Line Package (N) Soldering (1 Os) 215·C 220·C 150"C ±2000V Operating Ratings Supply Voltage Range 7Vto 32V Junction Temperature Range (Note 3) -55·C:s: TJ:S: + 125·C LM6182AM -40·C :s: TJ :s: +85·C LM6182AI, LM61821 260"C ± 15V DC Electrical Characteristics The following specifications apply for supply voltage = ± 15V, Vcm = Vo = OV, Rf = 8200, and RL = 1 kO unless otherwise noted. Boldtacelimits apply at the temperature extremes; all other limits TJ = 25·C. Symbol Vos Parameter Conditions Input Offset Voltage TCVos Input Offset Voltage Drift Is Inverting Input Bias Current 2.0 Is PSR Is CMR CMRR PSRR 2.0 0.75 Inverting Input Bias Current Drift 30 Non-Inverting Input Bias Current Drift 10 Inverting Input Bias Current Power Supply Rejection ±4.5V:S: Vs:S: ±16V Non-Inverting Input Bias Current Power Supply Rejection ±4.5V:S: Vs:S: ±16V Inverting Input Bias Current Common Mode Rejection -10V:S: VCM:S: +10V Non-Inverting Input Bias Current Common Mode Rejection -10V:S: VCM:S: +10V Common Mode Rejection RatiO -10V:s: VCM:S: +10V Power Supply Rejection Ratio Ro Output Resistance RIN Non-Inverting Input Resistance Vo Output Voltage Swing LM6182AM LM6182AI LM61821 Limit (Note 6) Limit (Note 6) Limit (Note 6) Units mV max 3.0 3.0 5.0 4.0 3.S S.5 p'vrc 5.0 Non-Inverting Input Bias Current TCls Typical (Note 5) ±4.5V:S: Vs:S: ±16V Av =-1 f = 300kHz RL = 1 kO 0.1 0.05 0.15 0.1 60 80 10.0 17.0 p.A 2.0 2.0 3.0 max 4.0 4.0 5.0 nArC 0.5 0.5 0.75 3.0 3.0 4.5 0.5 0.5 0.5 1.S 1.S 3.0 p.A1V 0.5 0.5 0.75 max 1.0 1.0 1.S 0.5 0.5 0.5 1.0 1.0 1.S 50 50 50 47 47 47 70 70 70 87 87 8S dB min dB min 0 10 MO 11 1-579 5.0 12.0 0.2 12 RL = 1500 5.0 12.0 11 11 11 10 10 10 9.5 9.5 9.5 S.8 6.0 6.0 V min ~ .... CD :::E .... ± 15V DC Electrical Characteristics (Continued) The following specifications apply for supply voltage = ±15V, Vcm = Vo = OV, R, = 8200, and RL = 1 kO unless otherwise noted. Boldfecelimits apply at the temperature extremes; all other limits TJ = 25°C. Symbol Parameter Conditions , Ise ZT Typical (Note 5) Output Short Circuit Current Transimpedance Supply Current VCM LM6182A1 LM61821 Limit (Note 6) Umlt (Note 6) Limit (Note 6) 100 RL = 1 kO 1.8 RL = 1500 Is LM6182AM 1.4 No Load, VIN = OV Both Amplifiers 15 70 70 70 mA 37.5 40 '40 min 1.0 1.0 0.8 0.4 0.5 0.4 0.8 0.8 0.7 0.3 0.35 0.3 20 20 20 22 22 22 V+-1.7V V-+1.7V Input Common Mode Voltage Range Units MO min mA max V ± 15V AC Electrical Characteristics The following specifications apply for supply voltage = ±15V, Vcm, = Vo = ov, RI = 8200, and RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25"C. Parameter Symbol Conditions Typical (Note 5) Xt Crosstalk Rejection (Note 7) 93 BW Closed Loop Bandwidth -3 dB Av= +2 100 Closed Loop Bandwidth 0.1 dB Flat, RSOURCE = 2000 Av = +10 75 Av= -1 100 Av = -10 60 Av = +2, RL = 1500 LM6182AM LM6182AI LM61821 Limit' (Note 6) Limit (Note 6) Limit (Note 6) Units dB MHz 35 PBW Power Bandwidth Av = -1, Vo = 5Vpp SR Slew Rate Overdriven 2000 Av = -1, Vo = ±10V RL = 1500, (Note 8) 1400 50 60 1000 1000 1000 V/",s min ts Settling Time (0.1 %) Av = -1, Vo = ±5V RL = 1500 t" t, Rise and Fall Time Vo = 1 Vpp 5 tp Propagation Delay Jime Vo = 1 Vpp 6 in(+) Non-Inverting Input Noise Current Density f = 1 kHz 3 pA/v'Hz in(-) Inverting Input Noise Current Density f=1kHz 16 pA/v'Hz en Input Noise Voltage Density f=1kHz 4 nV/v'Hz Second Harmonic Distortion Vo = 2Vpp,f = 10MHz Av= +2 -50 Third Harmonic Distortion Vo = 2Vpp,f = 10MHz Av= +2 -55 Differential Gain RL = 1500 Av = +2, NTSC 0.05 % Differential Phase RL = 1500 Av = +2, NTSC 0.04 O8g Total Harmonic Distortion Vo = 2Vpp,Av = +2, f = 10 MHz, RL = 1500 0.58 % THO 1-580 ns dBc ± 5V DC Electrical Characteristics The following specifications apply for supply voltage = ± 5V, Vcm = Vo = ov, Rf = 8200, and RL = 1 kO unless otherwise noted. aoldfae.limits apply at the temperature extremes; all other limits TJ = 25"C. Symbol VOS Parameter Conditions Input Offset Voltage TCVos Input Offset Voltage Drift la Inverting Input Bias Current 1.0 la PSR la CMR CMRR PSRR 5.0 0.25 Inverting Input Bias Current Drift 50 Non-Inverting Input Bias Current Drift 3.0 Inverting Input Bias Current Power Supply Rejection ±4V,;; Vs';; ±6V Non-Inverting Input Bias Current Power Supply Rejection ±4V,;; Vs';; ±6V Inverting Input Bias Current Common Mode Rejection -2.5V';; VCM ,;; +2.5V Non-Inverting Input Bias Current Common Mode Rejection -2.5V';; VCM ,;; +2.5V Common Mode Rejection Ratio -2.5V,;; VCM ,;; +2.5V Power Supply Rejection Ratio Ro Output Resistance RIN Non-Inverting Input Resistance Vo Output Voltage Swing ±4V,;; Vs';; ±6V Av = -1 f = 300 kHz RL = 1 kO ZT Is VCM 0.3 0.12 57 80 Umlt (Note 6) Limit (Note 6) Umlt (Note 6) Units mV max 2.0 2.0 3.0 3.0 2.& 3.& p.VI"C RL=1kO p.A 1.5 1.5 3.0 max 3.0 3.0 &.0 nAloC 0.5 0.5 0.75 1.0 1.0 1.& 0.5 0.5 0.5 1.0 1.0 1.& 0.5 0.5 1.0 1.0 1_0 1.& 0.5 0.5 0.5 1.0 1.0 1.& 50 50 50 47 47 47 70 70 64 87 87 80 p.AIV max dB min MO 13 V+-1.7V V-+1.7V 1-581 17.5 27.0 8 1.0 Input Common Mode Voltage Range 10 22 0 1.4 No Load, VIN = OV Both Amplifiers 10 22 0.25 100 RL = 1500 Supply Current 0.05 2.2 Output Short Circuit Current Transimpedance 0.3 2.6 RL = 1500 ISC LM6182AM LM6182AI LM61821 2.5 Non-Inverting Input Bias Current TCla Typical (Note 5) 2.25 2.25 2.25 2.0 2.0 2.0 2.0 2.0 2.0 1.8 1.8 1.8 65 65 65 3& 40 40 0.75 0.75 0.6 0.3 0.3& 0.3 0.5 0.5 0.4 0.2 0.2& 0.2 17 17 17 18.& 18.5 18.5 V min mA min MO min mA max V ±5VAC Electrical Characteristics The ',following specifications' apply for supply voltage = ±5V, Vcm '="Vo= OV. R,,= 8200, and RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25°C. Symbol Parameter Conditions Typical (NoteS) Xt Crosstalk Rejection .(Note7) 92 BW CI~d Loop gahdwidth -3 dB Av"'; +2 50 ; Av = +10 40 Av= -1 55 Av = -10 35 Closed Loop Bandwidth 0.1 dB Flat, RSOURCE = 2000 Av = +2, RL = 1500 LM6182AM LM6182AI LM61821 Limit (Note 6) Limit (Note 6) limit (Note 6) Unltli dB MHz 15 PBW' Power Bandwidth Av = -1, VO= 4 Vpp 40 SR Slew, Rate Av = -1, Vo = ±2V RL = 1500, (Note 8) 500 ts Settling Time (0.1 %) Av = -1, Vo = ±2V RL = 1500 50 t r, t, Rise and Fall Time Vo = 1 Vpp 8.5 tp Propagation Delay Time Vo = 1 Vpp 8 375 375 375 Vlll-s min ns in(+) Non-Inverting Input Noise Current Density f = 1 kHz, 3 pAlYHz in(-J Inverting Input Noise Current Density f=1kHz 16 pAlYHz en Input Noise Vciltage Density f=1kHz 4 nV/yHz Second Harmonic Disfortion Vo = 2Vpp, f = 10 MHz Av= +2 -45 Vo = 2Vpp, f = 10 MHz , AV = +2 -.55 Third Harmonic Distortion THO dBc Differential Gain RL = 1500 Av = +2,NTSC 0.06 % Differential PhaSe RL = 1500 Av = +2,NTSC 0.16 Deg Total Harmonic Distortion Vo = 2Vpp,Av = +2, f = 5 MHz, RL = 1500 0.36 % Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur. Operating ratings indicate oondilions for which the device Is intended to be functional, but device parameter Specifications may not be guaranteed under these conditions. For guaranteed specifICations and test oondillons, see the E I _ Characteristics. Note 2: Human body model 100 pF and 1.5 kll. Note 3: The typical junc!ion-to-ambientthermal resistance of the molded plastic DIP(N) soldered directly into a PC board is 95"CIW. The junction·t~ambient thermal resistance of the S.O. surface moun! (M) package mounted flush to the PC board is 7rrC/W when pins 1.4,8,9 and 16 are soldered to a total of 21n2 1 oz copper trace. The S.O. (M) packags must have pin 4 and at least one of pins 1,8,9, or 16 connected to V... for proper operation. Note 4: Continuous short circuit operation at el8l!ated ambient temperature can resuR in exceeding the maximum allowable Junction temperature of 15(1'C. Each amplifier of the LM6182 Is short clrcuH currentlimHed to 100 mA typical. Note 5: Typical values rep,resent the most likely perametric norm. Note 8: All limits are guaranteed at room temperature (standard type face) or at operati,;g temperature extremes (bol_... bpa). Note 7: Each amp excited In tum wHh 100 kHz to produce Vo = 2 Vpp. Resulls are input referred. Note 8: Measured from + 25% to + 75% of output waveform. Note 9: Also available per the Standard Military Drawing, 5962·9460301 MCA. Note 10: For guaranteed military specllications see military datasheet MNLM6162AM·X. 1.582 Simplified Schematic 112 LM6182 INY-INPUT t--~ __ ~>OUTPUT TL/H111926-6 1·583 i~ Typical Performance Characteristics' ....I MAXIMUM POWER DERATING CURVES N-Package 3.5 3.3 3.0 ~ 2.7 c 2.4 0 :; 2.1 .!!o" .~ 1.8 1.5 0 1.2 ~ it 0 0.9 "0.5 0.3 I I\" 0jc = 3S oC/W / " S OJ. = 950C/~X \.. "" ...... "- r-.... ..... '!I 11 o -50 -40 -20 0 20 40 60 80 100120 140 TA - Ambienl Temperalure (OC) TL/H/11926-7 M~Package 3.6 3.3 3.0 ~ 2.7 ~ c 2.4 0 :;c. 2.1 1.8 1.5 0 1.2 it 0 0.9 "0.5 0.3 I I • ~.' ~jC ~ 3120~/W = 70 oC/W "'. / 'J \. '= . \. ~ I ..I o -50 -40 -20 0 20 40 50 80 100120140 TA - Ambienl Temperalure (OC) TUHI11926-8 OSlo - Thermal Resistance with 2 square Incheo of 1 ounce copper tied to pins 1, 8, 9 and 16 1-584 Typical Performance Characteristics (Continued) TYPICAL PERFORMANCE TEST CIRCUITS Non-Inverting: Small Signal Pulse Response, Slew Rate, - 3 dB Bandwidth Inverting: Small Signal Pulse Response, Slew Rate, - 3 dB Bandwidth y' y' S 111 0.' JAF s,n t TL/H/11926-9 TlIH/11926-10 Ampllfler-to-Ampllfler Isolation 820n Input Voltage Noise v' 8200 0.' t 820n -=- 820n 0.' t JAF 'OOk JAr TlIHI11926-12 TlIHI11926-11 XT (Crosstalk Rejection) ~ ~: Resistors CMRR y' PSRR(VS+) y' Matched to :1:0.02% 8200 8200 TL/H111926-13 TlIH111926-14 1-585 ~ :b ~ Typical Performance Characteristics Inverting Gain Frequency Response Vs = ±15V;Ay ~ -1, R, = 8200 .~ I 80 135 90, 45 C z ~ ~ OdB ~ £ ~ ~ 1\ = IkO 1\ = 150n 1\ = loon 1M Vs = ±5V,Ay = -1,R, = 8200 Vs= ±15V,'Ay= +2,R,=8200 ~ I+I1I!1111-++1fH!111l\ ~ lOOk ~ 10M 1M B ~ lOOk c 6dB 45 "N'100.0 90 0 I 35 ~ I 80 ~ ! SO.O S ~ if 10M 100M rREQUENCY (Hz) Inverting Gain vs - 3 dB Bandwidth Rf = 8200 1111111111111 1M ~ 60~~-+-r~~ Js~>Jv ~ ~ I nI ~ ~ ~~~~ 40~~~~~T-~~~~ 7 1.0 1.5 .. fir O~~~~~~~~~~ 2.0 3,0 2.5 o 3.5 Translmpedanpe vs Frequency Supply Voltage Ay =-1 R, = 8200 RL=1k,0 100 160 130 =="T"'1mrTTI1M.,."rrrTlTT-. 120 FF:mt~'HI-++HH-H1H++HI~ 140 ~ 80 ~ 60 !o,~~ ·~11~ " ,~ ~lkll ~ ·'S.!-- --{Sf~~~ :1. = I 1\=lknl' 60 ~ ~ ~s.~ II:: 110 1+~-H'tiI:-++HH-H1H+++H~ 80 V) lOOk 1M 10M 100M rREQUENCY (Hz) Settling Response Vs = ± 15V,RL = 1500 Ay = -1, Vo = ±5V RL = 1500 !r 90 1+++H+lftil-HR!.I-: 80 I-HfltHHliilllllIHI-tlffi Translmpedance vs Frequency 3 !f § 100 1++HI-H~~HH-H1H++HI-i 30~~~awlll~III~~~~ NON-INVERTING GAIN ., 3 20 o 10 INVERTING GAIN & Rs (kn) - 3 dB Bandwidth vs Non-Inverting Gain vs -3 dB Bandwidth S 100 20~~-+-r4-+-~-+~~ .,,!s, = >5V 1\ = 150n rREQUENCY (Hz) ~ 15~ 1\ = 1150n ~ 0.5 100M 80~~~4-~~~ 115T1\ =1 1 klnt 40.0 7 20•0 1\ = 100 lOOk Vs ~ 60.0 : 1\ = 150 §! , \ :;; ~ 1\ = IkO 7 1M 120.0 ..~ ~ t: iJi IIilB 100M - 3 dB Bandwidth vs R,andR.,Ay = +2 Vs = ±5V, Ay = +2, R, = 8200 0 ~ 1\ = Ikn 1\ = 150 1\ = 100 1'1111 rREQUENCY (Hz) Non-Inverting Gain Frequency Response ~ kn~' tttt~l-tt!tlflf~ I~I ;I~ f ,100M rREQUENCY, (Hz) z =I 45 90 I 35 I 80 0 ~ OdB ~ ~ 10M Non-Inverting Gain FrequenCy Response Ht~-H~~~I111-~~~90 H+~~~~~1111-~~~45 ~ z Inverting Gain Frequency Response HtHHII--HTijj/lI-Io.w.!lIlll-H+HHII--I180 Htt!llll--+tttttflHtffiHfl""-Htt!llll--I135 I 11111I1U lOOk .~ (Contiilued) Vs =±15VandTA =2~Clihlessotherwisenoted. 130 120 110 ',100 ~> 90 80 70 60 50 40 30 E Vs = >15V 0 ~ " 10k u; '" lOOk 1M If-HH-t-+-+-+-r-l--i -0.1" l;1 ,~s = >5V "' 1111 11111 1111 11111 lk ~HH-t-+~-+-r-l--i +0.1" 10M "32 ns 100M 218 ns TIME (25 n./DIV) rREQUENCY (Hz) TLlH/11926-15 1-586 r-----------------------------------------------------------------------------~ Typical Performance Characteristics Settling Response Vs = ±5V, RL = 1500 Ay = -1, Vo = ±2V (Continued) Vs = ±1SVandTA = 2So Cunlessotherwisenoted. r- a: .... G) ~ Long Term Settling Time Response Vs = ± 15V, RL= 1500,Ay= -1,Vo= ±5V Suggested Rf and R.forCL;Ay = -1 >" Q 1\ ~ E +0.'" +0.'% Q ~ ~ -0. I~ ~ -o.'~ 1': -52 n8 1.0 198 na TIME (25 n./DIV) Suggested Rf and R.forCL.oAy = +2 10000 Rr 128 m LL III IIIII ~ ~~~I 64 6 db Peskin 32 1\ 16 10001rlJl. 5 ~ 2 2.5 3.0 3.5 70 ~ V/ Vs = >l5V_ 60 .. 3 ~ ~ ~ 1.0 2.0 & Rs (kn) PSRR(Vs+)vs Frequency, Ay = 2, Rf = R. = 8200 Output Impedance va Frequency Ay = -1, RL = 8200 '~;~~'II'~ ~or t.5 TIME (20 "./DIV) . SO Vs = :t5V 40 YS =i15V 30 20 1O 0.5 0.25 1.0 1.5 Rr 2.0 2.5 3.0 ~ Vs 40 =:l:5V ..... 3 30 11 20 10 60 SO 1M 10M 100M Input Voltage Noise VB Frequency I Vs=:l:1SV Vs = :t5Y 40 lOOk 100 I 70 Vs=:l:1SV 10k FREQUENCY (H,) CMRR va Frequency Rf .= R. = 8200 60 SO Ik 100 FREQUENCY (MHz) 70 3 10 & Rs (kn) PSRR (Vs-) VB Frequency, Ay = 2, Rf = R. = 8200 ..... -10 0.125 0.3 3.5 ~ 30 20 ~ g 10 w 10 ~ ° -10 I Ik 10k lOOk 1M 10M 100M Ik 10k lOOk 1M 10M 10 100M FREQUENCY (Hz) FREQUENCY (Hz) lao Ik 10k lOOk FREQUENCY (Hz) .I Input Current Noise vs Frequency Slew Rate vs Temperature Ay == -1,RL = 1500 100 10000 ~. 1\ INVERTING INPUT 10 ia NON-INVERTING INPUT I 1IIIIIm IIIII I 100 Ik 10k FREQUENCY (Hz) lOOk ~ ~ "' POSITIVE~ "- ~ :z 10 POSITIVE SLET RArE "J "- "Q 10000 VS,=:t15V .! Il: Slew Rate vs Supply Voltage Ay = --t,RL = 1500 100O NEGAri~;:~:: RAul Ivs=:tsv POSITIVE SLEW RATE Vs"':tSV rrni'i"lnl I II 100 -60 -40 -20 a 20 40 60 80 100120 TEMPERATURE (Oc) "~ i 1000 NEGATIVE SLEW RATE ~ 100 4 10 12 14 16 SUPPLY VOLTAGE (tV) TLlHI11926-16 1-S87 Typical Performance Characteristics -20 Distortion va Frequency Distortion va Frequency Distortion va Frequency Vs = ±15V,Ay = +2, RL = 151).0, Vo ;= 2Vp-p " Vs = ±15V,Ay = -1, RL = 1500., Vo = 2Vp-p Vs = ±5V,Ay = +2, , RL = 1500., Vo = 2Vp-p 11111 -20 1111111 -30 H-+tHl::lII--:::++rJ,IIHttt-IIII--r11+H'1IH ! (COntinued) Vs = ±15VandTA'';'' 25"Cunlessotherwisenoted. 2n::,.d:;:HA:rRM."O;;;:NICITAf-ttttHll -40 H-+tfImT z ~ -50 H-+tH1*-+fflOOhI4-1It1tIlH ~ -60 H-+tH1*-+-lltIW-:-H1tlt1lH lIlU -20 r--l"TTmllnr-IIITTrmr......-,r-rrmm 11111 -30 H-+tHl::lII--:::++HttfHf-ttttHll -30 H-+tHl::lII--:::++I+:Httt-::::--r11t1t1lH ! 2n::,.d:;:HA:rRMrrO;;;:NICrJ'IY-11t1t1lH -40 H-+tfImT I i!l -50 H-++H1*-+ffi~'-H1tlt1lH -60 H-+tH1*-+-hlll-I*--H1tlt1lH ! 2n1ir d ~HA:rRMTOiTNICi'nI!--HftH!1IH -40 H-+tm I -~H-+tH1*-+~~~~~ is H-+tH!filHttr~iiirIllidir'H"iARi'iMi'T0NiTll~lInti -70 H-+tH1*-+l-II'Y: 3r"::-d""HA~RM~O~NIC~ -70 -80 L-J...J..LWJ,II,--./LLLIWlL IIII...J..JL.J.J.LWJ 0.1. I 10 100 -80 L-J'-WllI'--LJ.J.J.LULIIIII...J..JL.J.J.LIIIWJI 0.1 I 10 100 -60 H-+tH1*~II'It,iii31111r lSV t+HttfHf-ttttHll Ay " +2 I~.~Jl"'c:rNttttr-t-tffiHlH f\. I" -70 H-+tfHlll4fflHttt--H1tlt1lH Vs lll'lm 80 -60 H-+tH1*~'H+Httt--HftltllH - 3 dB Bandw.ldth vs Temperature, Ay Maximum Output Voltage Swing vs Frequency (THO ~ 1%) , ''''~. 10 == -1 100 FREQUENCY (WHz) . FREQUENCY (MHz) - 3 dB Bandwidth vs Temperature, Ay = ~ 0.1 100 Small Signal Pulse Reaponse vs Temperature, Ay = -1, +2 Vs = ± 15V, RL = 1 ko. 100 10 9HH~++~HH4+++~H aHH~++~HH4+++~H ! ! 7HH~+++rHH4+++~H ~ PROPAGATION DE~ )AlL TIME S v." .sv l\. " 150Jl L.U.:.!..L..w-II.L.L II..J...L-lI "I.L..L 11.J...J....1.. IL.J...J 20 'O~L.J...JWU~~~~L.J...JL.J...J -60 -40 -20 0 20 40 60 80 100 I 20 T~MPERATURE (Oc) i!!61111 ~ RISE TIM~1tttt" ! :4 3 3. -60 -40 -20 0 20 40 60 80100120 TEMPER,ATURE (Oc) Vs = ± 15V, RL = 1500. 10 7 ~ FALL TIME 5 4 Small Signal Pulse Response va Temperat.,.re, Ay = + 2, Vs = ± 15V, RL = 1 ko. :! !IPROiP1'~GA~TlO~"~tl£iL.Ai'lll~ RISE TIlliE FALL TlWE ·-60-40 -20 0 20 40 60 80100120 TEMPERATURE (Oc) aD 100120 TEMPERATURE (oc) Small Signal Pulse Response vs Tempereture, Ay = + 2, 1:111 1:p~Or1Gtj'~ -60 -40 -20 0 20 40 60 TEMPERATURE (Oc) Vs = ± 15V, RL = 1500. 7 RISE TIME 3'L..J..JU-J...L..L..1...1..L.J...J-L..J..J....I..J...L.JU -60-40 -20 0 20 40 60 80100120 Smail Signal Pulse Response . vs Temperature, Ay = -1, !~ 4 .,. ! ;:: 6 7 S 4 ~ ~'PI'iP'~fA~ 'AT~IO~N~f~LA~YI ~ FA~L ITI~E h' RISE TIME 3 -60-40 -20 0 2040 60 aD 100120 TEMPERATURE (Oc) TL/H/11926-17 1-588 Typical Performance Characteristics Settling Time vs Output Step, RF = 8200. RL = 150n,Ay = -1 Vs ;:: :l:5V '/ (Continued) Vs = ±15VandTA = 25°Cunlessotherwisenoted. Settling Time vs Output Step, RF = 8200. RL = 150n,Ay = -1 -t-I:-: ' 'IL'" 0.1% Vs =:t15V '" Small Signal Pulse Response vs Closed-Loop Gain RL = 1k '0 tld.'" Vs = :l:15V 9 Rr 8 ;OIU~ = 820n 71:l:11~OmV PROPAGATION DELAY ,.... d.'" '" I -2 ,,,'- f--4 -6 -3 ~ 10 ~ ~ ~ ~ 10 ~ W Small Signal Pulse Response vs Closed-Loop Gain RL = 1500. Rr ~ ::IE ;:: 81~IOUI~I~I:I'~1:01:1~I'YI I I I I 2 10 15 20 15 20 CLOSED-lOOP GAIN Vos vs Temperature ,0.0 '~s ='.5J- r- -0.5 10 -1.0 -1.5 RISE TINE 1 10 ~ 12 = 820/1 7 ~ Small Signal Pulse Response vs Supply Voltage Ay = +2,RL = 1k '0 ~~w+mmID!:u:J ~vs = t15V 9 ~ TIME (n.) TlWE (n.) :! 0.'% PROPAGATION DELAY RISE TIME fAll TIME o o :1:5 CLOSED-lOOP GAIN :1:10 -2.0 ...... r--- .... E - -2.5 vs=:ttSV :P -3.0 -3.5 -4.0 -4.5 -5.0 -55 -35 -15 5 25 45 65 85 105 125 ~ ::IE ;:: >" :1:15 r--- SUPPLY VOLTAGE (V) TEMPERATURE (DC) Zt vs Temperature Zt vs Temperature Is vs Temperature 1\.'= l~oa 1\.'= 1~I\ I. 1 , o .... :: i==" '"'" vrr -55 -35 -15 5 25 .5 65 85 'OS 125 L' vS='y ~ ..... ~ ~ 1-1-"" -55 -35 -15 5 25 PSRR vs Temperature '4 .s ,. I-V -- v.l J5V I- 13 .5 _VI -::: ~ ~='5V o TEMPERATURE (DC) I 15 12 ~ - Vs = '5V 11 ,...., - 10 -55 -35 -15 5 25 45 65 85 105 '25 65 85 105125 TEMPERATURE (oC) TEMPERATURE (DC) CMRR vs Temperature Ib (+ ) vs Temperature 68 66 ....i'vsl:t,!sv :--.." ...... 60 58 78L-L-L-L-L-L-~~~~ -55 -35 -15 5 25 .5 65 85 105125 TEMPERATURE (DC) ....... vrr r--- ...... Vs ,!. i' t-... ~ -2 ...... 56 -55 -35 -15 5 25 45 65 85 105125 TEMPERATURE (DC) -1 -3 -. -5 I- = t5V l'"""~s=i'5r- - I I -55 -35 -15 5 25 45 65 85 105125 TEMPERATURE (DC) TL/H/I1926-18 1-589 Ir I ~ I ~ .~------------------------------------------------------------------------------~ CIO ;;; :! Typical Performance Characteristics Vs = ±15V and TA = 25°C unless otherwise noted. (Continued) Ib (-) VB Temperature Ib (+ ) PSR VB Temperature 10 -=< .3 , '" /. _'I 0 f- f- ~Vs=:t15V -2 ~ -~ l.- I-- -6 -8 ~v~ ~ 0.5 0.4 o.~ v.. S .3 0.3 + 0.2 f- '" I 1 0.1 v:ttsv- o 0.3 " , ...... r-- N ~~ ~ '" . ~ .3 0.2 '"~ :!: ~ 0.1 o -55 -35 -15 5 25 ~5 1~0 130 120 ..s \ 0.2 0.1 70 o TEMPERATURE (Oc) ~ i!' 12 9 f- Vs = :t5V -1 -2 -3 -~ -5 -55 -35 -15 5 25 l I I\. = 1 kn I I ~5 TE~PERATURE ~5 65 85 105 125 TEMPERATURE (DC) I\. = 1 kR I\. = 150n -= ~ i!' I\. = 150a I I I I I\. = 150n r-.. , Output Swing VB Temperature 15 II\. = 1 ka ~ , 50 -55 -35 -15 5 25 -55 -35 -15 5 25 45 65 85 105 125 J I I ~ 100 60 Vsrr Output Swing VB Temperature 1:: 110 80 1"'- ...... ..... l"'- I"'- ..8' ~ ~!=+5V .l'o.. l- i-- l"'. Vs =:t5V ["'111 J! 90 "< '\. TEMPERATURE COc) " 65 85 105 125 18C( ±) VB Temperature =:t5V i\ 0.3 65 85 105 125 ~5 TEMPERATURE (Oc) 150 0.4 Vsj:t15V ~~ ./V v~ ~ -55 -35 -15 5 25 (Oc) 0.5 o.~ -- ~ o 0.6 Vs ,!. 0.2 Ib (-) CMR VB Temperature Ib (+ ) CMR VB Temperature ~ :1: 85 85 105 125 ~5 TEMPERAT~RE 0.5 S .3 0.3 i--'" -55 -35 -15 5 25 (Oc) S .3 '" o. lr-- IlI;vs='SV -10 -55 -35 -15 5 25 45 65 85 105125 TE~PERATURE Ib (-) PSR VB Temperature 0.5 - f- Vs=:l:15V -3 -6 -9 -12 I\. = 150n = .... I\. = 1 kn -15 -55 -35 -15 5 25 45 65 85 105 125 65 85 105125 TE~PERATURE (Oc) (Oc) TLIH111926-19 1-590 Typical Applications CURRENT FEEDBACK TOPOLOGY For a conventional voltage feedback amplifier the resulting small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gainbandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6182, transcends this limitation to offer a Signal bandwidth that is relatively independent of the closed loop gain. Figures 1A and 18 illustrate that for closed loop gains of -1 and - 5 the resulting pulse fidelity suggests quite similiar bandwidths for both configurations. TL/H/11926-22 FIGURE 2. Rf Sets Amplifier Bandwidth and Rs is Adjusted to Obtain the Desired Closed-Loop Gsln, Ay. Although this R, value will provide good results for most applications, it may be advantageous to adjust this value Slightly. ConSider, for instance, the effect on pulse responses with two different configurations where both the closedloop gains are + 2 and the feedback resistors are 8200, and 16400,. respectively. Figures 3A .and 38 illustrate the effect of increasing Rt while' maintaining the same closedloop gain - the amplifier bandwidth decreases. Accordingly, larger feedbaCk resistors can be used to slow down the LM6182 and reduCe overshoot in the time domain response. Conversely, smaller feedback resistance values than 8200 can be used to compensate for the reduction of bandwidth at high closed,loop gains; due to 2nd order effects.FOr example FfgUifM 4A,.and 48. iII\lstrate redUCing Rt to 500n ,to 8lItabiish'1he desired small signal response in an amplifier configured for a closed-loop gain of + 25. Vour (O.1V/DIV) TIME (5nsJDIV) TUH/11926-20 1A.Ay = -1 Vour (0.5V/D1V) Vour (0.1V/D1V) VIN (0.5V/DIV) TIME (5nsJD1V) TIME (20nsJDIVj TUH/11926-21 TUH/11926-23 1B.Ay = -5 3A.Rf = 8200. FIGURE 1A, 1B. Variation of Closed-Loop Gain from -1 to - 5 Yields Similar Responses. FEEDBACK RESISTOR SELECTION: Rf Selecting the feedback resistor, R" is a dominant factor in compensating the LM6182. For general applications the LM6182 will maintain specified performance with an 8200 feedback resistor. The closed-loop bandwidth of the LM6182 depends on the feedback reSistance, R,. Therefore, Rs, and not R" is varied to adjust for the desired closed-loop gain as demonstrated in Figure 2. ~ I I Vour (0.5V/DIV) VIN (0.5V/DIV) TIME' (~sJDlV) TUH/11926-24 3B. Rf = 16400 FIGURE 3A, 3B. Increase Compensation by Increasing R"Ay = +2 1-591 Typical Applications (Continued) is specified for a feedback resistance of 8200. Decreasing the feedback impedance below 8200 extends the amplifier's bandwidth leading to possible instability. CapacitiVe feedback should therefore not be usee! because the impedance of a capacitor decreases with increasing frequency. VOUT (0.5V/DIV) VIN (5OmV/DIV) TIME (2nS/DIV) TLlH/ll1l26-25 4A.Rt = 8200 • VIN (50mV/DIV) TLlH/I1928-26 4B.Rt = 5000 FIGURE 4A, 4B. Reducing Rt to Increase. Bandwidth for Large Closed-Loop Galna, Av = + 25 The extent 61 the ,amplifier's dependence on .At is displayed in Figure 5.1(j( one particular closed-loop gain. 120.0 1 L 1J 1 1 1 1 "N '00.0 \ '" ~ 80.0 ~ 60.0 40.0 '"I 20.0 .., i k ~s ~ tdv ~ 1 ~ll ~oI\: .1 1 ~~ ~s.=t5V 0.,5: 1.0 I\. = 15011 1.5 . "Rr .: 1 I' t l1Si , =1 1 kill l\ 0.0 J ~ ",Vs tlSi ~ = I'S~ll S ~.. Vs TL/H/I1926-28 FIGURE 6. Current Feedback Amplifiers are Unstable with Capacitive Feedback For voltage feedback amplifiers it is quite common to place a small lead compensation capacitor in parallel with feedback resistance, RI. This compensation serves to reduce the amplifier's'peaking. One application ofthe lead compensation capacitor is to counteract the effects of stray capacitance from the inverting input to g~bund'.in circuit board layouts. The LM6182 cUlTent feedback amplifier does not require thiS lead compensation capacitor and has an even Simpler, inore elegant, solution. To limit the bandwidth and peaking.of theLM6182 current feedback amplifier, do not use a capaCitor across RI as in Figuf'9 7. This actually. has the opposite effect and extends the bandwidth··of ttieamplifier leading to possible instability. Instead, simply inCrease the value of the feedback resistor as shdwn in Figuf'9 3. Non-inverting applications can also reduce peaking and limit bandwidth by adding an RC circuit as illustrated in Figuf'9 8. VOUT (O.5V/DIV) . :.' 2.0 2.5 :'3.0 3.5 8< Rs(kll) . ". TLlH/I1926-27 , ·,fIGURE 5. ~'dB Bandwidth I. Determined By , ''-'' .. : Selecting Rt•. , ' CAPACI,TIVE FEEDBACK, Current feedback amplifiers rely on feedback impedance for proper compensation. Even in unity gain current feedback amplifiers require a feedback resistor. LM6182 performance TLlH/11926-29 FIGURE 7. Compensation CapaCitors Are Not Used with the LM6182, Instead Simply Increase Rt to Compensate 1-592 Typical Applications (Continued) pensation capacitor. The current feedback amplifier is therefore not traditionally slew rate limited. This enables large slew rates responses of 2000 VI ,""S. The non-inverting configuration slew rate is also determined by input stage limitations. Accordingly, variations of slew rates occur for different circuit topologies. +15V 10l'F 1.1.- 0.1 ).IF DRIVING CAPACITIVE LOADS The LM6182 can drive significantly larger capacitive loads than many current feedback amplifiers. This is extremely valuable for simplifying the design of coax-cable drivers. Although the LM6182 can directly drive as much as 100 pF of load capacitance without oscillating, the resulting response will be a function of the feedback resistor value. Figure 98 illustrates the small-signal pulse response of the LM6182 while driving a 50 pF load. Ringing persists for approximately 100 ns. To achieve pulse responses with less ringing either the feedback resistor can be increased (see Typical Performance Characteristics "Suggested Rf and Rs for CL"), or resistive isolation can be used (100-510 typically works well). Either technique, however, results in lowering the system bandwidth. >----1- Your -15V 820a 820a '-3dB = 2.1RC Figure 108 illustrates the improvement obtained by using a 470 isolation resistor. TL/H/11926-30 SA 820n +15V 820n V OUT >----.-- (O.5VIDIV) VOUT 50n -15V VIN TUH/11926-32 (O.5VIDIV) 9A TIME (2Ons/DIV) TL/HI11926-31 SB FIGURE SA, SB. RC Limits Amplifier Bandwidth to 50 MHz, Eliminating Peaking In the Resulting Pulse Response as Compared to Figure 3A VOUT (0.2V1D1V) SLEW RATE CONSIDERATIONS ~ VIN (O.2VIDIV) The slew rate characteristics of current feedback amplifiers are different than traditional voltage feedbaCk amplifiers. In voltage feedback amplifiers, slew rate limiting or non·linear amplifier behavior is dominated by the finite availability of the 1 st stage tail current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast, is not constant. Transient current at the inverting input is proportional to the current available to the amplifier's com· I TIME (20ns/DIV) TUH/11926-33 9B FIGURE 9A, 9B. Av = -1, LM61S2 Can Directly Drive 50 pF of Load CapaCitance with 100 ns of Ringing Resulting in Pulse Response 1-593 ~ r---------------------------------------~------------------------------------------------_, .... CD CD ~ Typical Applications (Continued) nal power dissipation can be minimized by operating at reduced power supply volta~es, such as ±5V. Optimum heat dissipation Is acllieved by using wide circuit board traces and soldering the part directly onto the board. Large power supply and ground planes will improve power dissipation. Safe Operating Area (S.O.A.) Is determined using the Maximum Power Derating Curves. The 16-pin small outline package (M) has 5 V- heat sinking pins that enable a junction-to-ambient thermal resistance of 70"C/W when soldered to 2 in2 1 oz. copper trace. A Vheat sinking pin is located on each corner of the package for ease of layout. This allows high output power and/or operation at elevated ambient temperatures without the additional cost of an integrated circuit heat sink. If the heat sinking capabilities of the S.O. 'package are not needed, pin 4 and at least one of pins 1,8,9, or 16 must be connected to V - for proper operation. Figure 11 shows recommended copper patterns used to dissipate heat from the LM6182. 820n 820n 4711 :>----'-...-'10II1II-....5011 YOUT . I 50 PF -15Y TLlH/11926-34 10A VOllT (O.2V/DIV) . Y,N 1"'---------., (O.2V/DIV) I I 1. _ _ _ , r---~ 7 2 TIME (20nS/DIV) ... TL/H/11926-35 10B FIGURE 10A, 10B. Resistive Isolation of CL Provides Higher Fidelity Pulse Response. Rf and Rs Could Also Be Increased to Maintain Ay = -1 and Improve Pulse Response Characteristics. 5 - I4 I 'I .: .. 5 , , .. _--, .._:....._ ... ':...._:.:.. __ J TL/H/11926-36 8"p'1I1 DI~(N) 1"'------------., I" I POWER SUPPLY BYPASSING AND LAYOUT CONSIDERATIONS A fundamental requirement for high-speed amplifier design is adequate bypas$ing of the power ,supply. It is critical to maintain a wi~eband fow-impedance to.ground at the amplifierssupply pins to insure the fidelity of high speed amplifier transient signals. 0.1 ,..F ceramic bypass capaCitors at each supply pin are sufficient for many applications. Typically 10 ,..1= tantalum capacitors are alsprequired if large current transients are deliv,ered to the ioad. The bypass capacitors should be placed as close to the amplifier pins as pOSSible, such as 0.5" orless.. , Applications requiring high output pow~r, cable dr~ers for exampl~, cause increased internal power dissipation. Inter- I I 1 I 16 I L.._ __..I 2 15 ,.-3 14 I 4 15 5 12 ~- 6 ..I -8 7 11 oJ .. 10 -., 9 I I I I I L _ _ _ _ .-.;. _ _ _ _ _ _ _ ..I TL/H/11926-37 1~pln S,O. (M) FIGURE 11. Copper Heatsink Layouts 1-594 Typical Applications ~ en ..... (Continued) CROSSTALK REJECTION OVERDRIVE RECOVERY The LM6182 is an excellent choice for high speed applications needing fast overdrive recovery. Nanosecond recovery times allow the LM6182 to protect subsequent stages from excessive input saturation and possible damage. When the output or input voltage range of a high speed amplifier is exceeded, the amplifier must recover from an overdrive condition. The non-linear output voltage remains as long as the overdrive condition perSiSts. Linear operation resumes after the overdrive condition is removed. Overdrive recovery time is the delay before an amplifier returns to linear operation. The typical recovery times for exceeding open loop, closed loop, and input commom-mode voltage ranges are illustrated in Figures 14, 15, and 16. The open-loop circuit of Figure 14 generates an overdrive response bY!1l1owing the ±0.5V input to exceed the linear input range of the amplifier. TYPical positive and negative overdriVe'recovery times are 5 ns and 30 ns, respectively. The LM6182 has an excellant crosstalk rejection value of 62 dB at 10 MHz. This value is made possible because the LM6182 amplifiers share no common circuitry other than the supply. High frequency crosstalk that does appear is primarily caused by the magnetic and capacitive coupling of the internal bond wires. Bond wires connect the die to the package lead frame. The amount of current flowing through the bond wires is proportional to the amount of crosstalk. Therefore, crosstalk rejection ratings will degrade when driving heavy loads. Figure 12 and shows a 10 dB difference for two different loads. 120 I~s =1 ~i~~ II 11111 'iii 3 z 100 ...;:::iJ <..> 80 '" ..."""'" 60 '" 40 1=1: I~~I ~IIIIII ..J Av =+2 HJ.~ 0 I\'='l~ i'o +sv i'o VI VI 0 <..> VIN '" -+------1 son >--....-VOUT 1 kll 20 0.1 10 ,250il 100 FREQUENCY (MHz) TLlH/11926-38 TLlH/I192B-41 FIGURE 12. CroSstalk Rejection The LM6182 crosstalk effect is minimized in applications that cascade the amplifiers by preceding amplifier A with amplifier B. GNO START-UPTIME Using the circuit in Figure 13, the LM6182 demonstrated a start-up time of 50 ns. v+ = :l:5V > - - - 1 - VO TIME (SOnS/OIV) 820n TLlHI1192B-42 FIGURE 14. Open Loop OVerdrive Recovery Times of 5nsand30ns The large,closed-IOOP gain configuration in F/{/ure 15forces the amplifier output into overdrive. The typicel recovery time to a linear output value is 15 ns. 0.1 J.lF t t 10 J.lF -SV = V" TLlH/I192B-39 FIGURE 13. Start-Up Test Circuit 1-595 CD N N GO ..- CD ....:::E Typical Applications (Continued) +15V SPICE MACROMODEL A spice macrorilodelis available for the LM6182. Contact your'local National Semiconductor sales office to obtain an operational amplifier spice model library disk. Typical Application Circuits -15V 820n UNITY GAIN AMPLIFIER The LM6182 current feedback amplifier is unity gain stable. The feedback resistor, RI, is required to maintain the LM6182's dynamic performance. 50n TLlH/11926-43 >--41-- Your TLlH/11926-47 FIGURE 17. LM6182Is Unity Gain Stable NON·INVERTING GAIN AMPLIFIER Current feedback amplHiers can be used in non-inverting gain and ,level shHting functions. The same basic closedloop gain equation used for voltage feedback amplHiers applies to current feedback amplifiers: 1 + RI/Rs. TLlH/11926-44 FIGURE 15. 15 ns Closed Loop Output Overdrive Recovery Time Generated by Saturating tI:Ie Output ' Stage of the LM6182 The COm!Tll)n-mode input range of a unity-gain circuit is exceeded by a 4V pulse resulting in' a typical recovery time of 20 ns shown in Figur9,16. ' >-~~Vour TLlH/11926-46 FIGURE 18. Non·lnverting Closed Loop Gain Is Determined with the Same Equation Voltage Feedback Amplifiers Use: 1 + Rt/Rs , , +5V INVERTING GAIN AMPLIFIER The inverting closed loop gain equation used with voltage feedback amplifiers also applies to current feedback amplHiers. TLlH/11926-45 TLlH/11926-49 Vour (2V/DIV) FIGURE 19. Current Feedback Amplifiers Can Be Used for Inverting Gains, Just Like a Voltage Feedback Amplifier: - Rt/Rs GNO VIN (2V1D1V) GNO TIME COOnS/OIV) TLlH/11926-46 FIGURE 16. Output Recovery from an Input that Exceeds the Common-Mode Range 1-596 r- Typical Application Circuits (Continued) ... i: en co Ordering Information SUMMING AMPLIFIER The current feedback topology of the LM6182 provides significant performance advantages over a conventional voltage feedback amplifier used in a standard summing circuit. Using a voltage feedback amplifier, the bandwidth of the summing circuit in Figure 20 is limited by the highest gain needed for either Signal Vl or V2. If the LM6182 amplifier is used instead, wide circuit bandwidth can be maintained relatively independent of gain requirements. Temperature Range Package Military -SsoC to + 125"C 8-pin Molded DIP 16-pin Small Outline LM6182AMN Industrial -400Cto +8SoC ~ NSC Drawing LM6182AIN LM61821N N08E LM6182AIM LM61821M M16A If MilitarylAerospace specified devices are required, contact the National Semiconductor Sales Office or Distributors for availability and specifications. TUH/11926-50 FIGURE 20. LM6182 Allows the Summing Circuit to Meet the Requirements of Wide Bandwidth Systems Independent of Signal Gain i III 1-597 ~ r----------------------------------------------------------------------------. --~d [)II' National ~ Semiconductor LM6313 High Speed, High Power Operational Amplifier General Description Features The LM6313is a high-speed, high-power operational amplifier. This operational amplifier features a 35 MHz small signal bandwidth, and 250 V/,..s slew rate. A compensation pin is included for adjusting the open loop bandwidth. The input stage (A1) and output stage (A2) are pinned out separately, and can be used independently. The operational amplifier is designed for low impedance loads and will deliver ±300 mA. The LM6313 has both overcurrent and thermal shutdown protection with an error flag to signal both these fault conditions. These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation. • • • • • • • • Connection Diagram Typical Application Applications • • • • • • Dual-In-Une Package +Vs 250 V/,..s High slew rate 35 MHz Wide bandwidth Peak output current ± 300 mA Input and output stages pinned out separately Single or dual supply operation Thermal protection Error flag warns of faults Wide supply voltage range ± 5V to ± 15V High speed ATE pin driver Data acquisition Driving capacitive loads Flash A-D input driver Precision 500-750 video line driver Laser diode driver 1.1 k A2 INPUT A2 OUTPUT COMP. -Vs AI OUTPUT o-Vs o-Vs o-Vs N/C o-Vs -INPUT FlAG '----+';";'" +INPUT GND N/c" TLlHI10521-2 TL/H/10521-1 Top View Order Number LM6313N See NS Package Number N16A r! Temperature (CC) J,...- - ~ 'i--'" i-""" -so -25 U Overahoot vs ."r 1\ = 500 800 .Capacltlve Load 90 ~ 900 Input ArnpIItudo (:t V) Bandwidth vi Supply Voltage. ...... r-... 1\=11<4 II 1100 .! OUTPUT .2. NC v- 2 NON-INVERTING 3 INPUT TUH/12313-1 Top View Package Ordering Information +. 4 INVERTING INPUT Top View NSCDrawing Number Package Marking Supplied as 8-PinDIP LM7131ACN N08E LM7131ACN rails 8-PinDIP LM7131BCN N08E LM7131BCN rails 8-PinS0-8 LM7131ACM M08A LM7131ACM rails 8-PinSO-8 LM7131BCM M08A LM7131BCM rails 8-PinSO-8 LM7131 ACMX M08A LM7131ACM 2.5k units tape and reel 8-PinSO-8 LM7131 BCMX M08A LM7131BCM 2.5k units tape and reel 5-Pin SOT 23-5 LM7131ACM5 MA05A A02A 250 units on tape and reel 5-Pin SOT 23-5 LM7131BCM5 MA05A A02B 250 units on tape and reel 5-Pin SOT 23-5 LM7131ACM5X MA05A A02A 3k units tape and reel 5-Pin SOT 23-5 LM7131 BCM5X MA05A A02B 3k units tape and reel 1-608 TUH/12313-2 Absolute Maximum Ratings (Note 1) Lead Temperature (soldering, 10 sec) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Oltlce/Dlstrlbutors for availability and specifications. 2000V ESD Tolerance (Note 2) ±2.0 Differential Input Voltage (V+)+O.1V, (V-) - 0.3V Voltage at Input/Output Pin SupplyVoltage(V+ -V-) 12V Storage Temperature Range Junction Temperature (Note 4) Operating Ratings O"C';; TJ';; + 70"C Thermal Resistance (9JN N Package, 8-Pin Molded DIP SO-8 Package, 8-Pin Surface Mount ±80mA ±80mA Current at Power Supply Pin 2.7V,;; V,;; 12V Supply Voltage (V+ - V-) Junction Temperature Range LM7131AC, LM7131BC ±5mA Current at Input Pin Current at Output Pin (Note 3) 260"C - 65"Cto + 150"C 150"C 115"C/W 165"C/W 325"C/W M05A Package, 5-Pin Surface Mount 3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C, V+ 3V, VSymbol Vas = OV, VCM = Va = V+ 12 and RL Parameter Input Offset Voltage Average Drift Ie Input Bias Current CMRR CMRR +PSRR -PSRR VCM Conditions Typ (Note 5) 0.02 20 Input Offset Current 0.35 Common Mode Rejection Ratio OV ,;; VCM ,;; 0.85V (Video Levels) 75 Common Mode Rejection Ratio 0.85V';; VCM ,;; 1.7V (Mid-Range) 70 Positive Power Supply Rejection Ratio V+ = 3V, V- = OV V+ = 3Vto 6.5V 75 Negative Power Supply Rejection Ratio V- = -3V, V+ = OV V- = -3Vto -6.5V 75 Input Common-Mode Voltage Range V+ = 3V For CMRR 0.0 C,N Voltage Gain LM7131AC Limit (Note 6) LM7131BC Umit (Note 6) 2 7 4 10 10 ~ 50 dB 2.0 AVOL = 1500. Boldface limits apply at the temperature extremes. Input Offset Voltage TCVos los = RL = 1500, Va = 0.250V to 1.250V Common-Mode Input CapaCitance 60 2 1-609 Units mV max ",V/"C 30 30 40 40 3.5 3.5 5 IJ-A 5 max 60 55 60 55 dB min 55 55 50 SO 65 65 60 60 65 65 60 60 0.0 0.0 0.00 0.00 1.70 1.70 1.60 1.60 55 55 50 50 ",A max dB min dB min dB min V min V max dB pF 3V DC Electrical Characteristics Unless otherwise specified,alllimitsguaranleed forTJ= 25~C,V+ =,' 3V, v- = OV, VCM = Vo = .y+ 12 and RL = 1500.. Boldface limits apply atthe temperature extremes. (Continued) Symbol Va Parameter Typ Conditions (Note 5) Output Swing High V+ = 3V, RL = 1500 terminated at OV 2.6 Low V+ = 3V, RL = 1500 terminated at.OV 0.05 V+ = 3V, RL = 1500. terminated a1'1.5V 2.6 V+ = 3V, RL = 1500 terminated at 1.5V 0.5 High Low ,LM7131AC Limit (Note 6) LM7131Bc LllI1it (Note 6) Units 2.3 2.3 V 2.0 2.0 min 0.15 0.15 0.20 0.20 V max 2.3 2.3 2.0 2.0 0.8 0.8 1.0 1.0 'V min V max Va Output Swing High V+ = 3V, RL = 6000 terminated at OV 2.73 V max Va Output Swing Low V+ = 3V, RL = 6000 terminated at OV 0.06 V max Isc Output Short Circuit Current Sourcing, Va = OV 65 Sinking, Va = 3V Is Supply Current 40 V+ = + 3V 6.5 45 45 40 40 25 25 20 20 8.0 8.0 8.5 8.5 mA min mA min mA max 3V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 3V, V- = OV, VCM = Va = V+ 12 and RL = 1500. Boldface limits apply atthe temperature extremes. Symbol T.H.D. Parameter Total Harmonic Distortion Conditions F=4MHz,Av= +2 , RL = 1500, Va = 1.0Vpp Typ (Note 5) LM7131AC Limit (Note 6) LM7131BC Limit (Note 6) Units 0.1 % % Differential Gain (Note 10) 0.45 Differential Phase (Note 10) 0.6 SR Slew Rate RL = 1500,CL = 5pF (Note 7) 120 SR Slew Rate RL = 1500, CL = 20 pF (Note 7) 100 V/p.S Gain-Bandwidth Product 70 MHz Closed-Loop - 3 dB Bandwidth 90 MHz GBW 1-610 ° Vlp.S 5V DC Electrical Characteristics Unless otherwise specified. all limits guaranteed for TJ = 25'C. V+ = 5V. V- = OV. VCM = Vo = V+ /2 and RL = 1500. Boldface limits apply at the temperature extremes. Symbol VOS Parameter Input Offset Voltage TCVos Input Offset Voltage Average Drift 18 Input Bias Current los CMRR CMRR + PSRR - PSRR VCM Conditions Typ (Note 5) 0.02 20 Input Offset Current 0.35 Common Mode Rejection Ratio OV:5; VCM:5; 1.85V (Video Levels) 75 Common Mode Rejection Ratio 1.85V :5; VCM :5; 3.7V (Mid-Range) 70 Positive Power Supply Rejection Ratio V+ = 5V. V- = OV V+ = 5Vto 10V 75 Negative Power Supply Rejection Ratio VV- Input Common-Mode Voltage Range V+ For CMRR = - 5V. V+ = OV = - 5Vto -10V = 5V ~ 50 dB 75 0.0 Voltage Gain RL = 1500. Vo = 0.250V to 2.250V 70 CIN Common-Mode Input Capacitance Vo Output Swing High V+ = 5V. RL = 1500 terminated at OV 4.5 Low V+ = 5V. RL = 1500 terminated at OV 0.08 V+ = 5V. RL = 1500 terminated at 2.5V 4.5 V+ = 5V. RL = 1500 terminated at 2.5V 0.5 High Low LM7131BC Limit (Note 6) 2 7 4 10 Units mV max p,VI'C 30 30 40 40 3.5 3.5 5 5 65 65 60 60 55 55 50 50 65 65 60 60 65 65 60 60 - 0.0 - 0.0 0.00 0.00 3.70 3.70 3.60 3.60 60 60 55 55 2 p,A max p,A max dB min dB min dB min dB min V min V max dB min pF 4.3 4.3 4.0 4.0 0.15 0.15 0.20 0.20 4.3 4.3 4.0 4.0 0.8 0.8 1.0 1.0 V min V max V min V max Vo Output Swing High V+ = 5V. RL = 6000 terminated at OV 4.70 V max Vo Ouptut Swing Low V+ = 5V. RL = 6000 terminated at OV 0.07 V max Isc Output Short Circuit Current Sourcing. Vo Sinking. Vo Is Supply Current V+ = = = OV 5V +5V 65 40 7.0 1-611 .... .... Co) 10 4.0 AVOL LM7131AC Limit (Note 6) riii: ...... 45 45 40 40 25 25 20 20 8.5 8.5 9.0 9.0 mA min mA min mA max 5V AC Electrical Characteristics unleSSOthe~isespeCified,alllimitsguaranteedfortJ = 25°C,Y+ = 5Y, Y- = OY, YCM = Yo = Y+ 12 and RL = 1500. Boldface limits apply at the temperature extremes. Symbol Typ Parameter Conditions Total Harmonic Distortion F = 4MHz,Av = +2 RL = 1500, YO = 2.0Ypp Differential Gain Differential Phase SR T.H.D. (Note 5) LM7131AC Limit (Note 6) LM7131BC Umlt (Note 6) Units 0.1 % (Note 10) 0.25 % (Note 10) 0.75 ° Slew Rate RL = 1500, CL = 5 pF (Note B) 150 V/JA-s SR Slew Rate RL = 1500, CL = 20 pF (Note 8) 130 V/JA-S GBW Gain-Bandwidth Product 70 MHz Closed-Loop -3 dB Bandwidth 90 MHz 11 nY -- en Input-Referred Yoltage Noise f=1kHz in Input-Referred Current Noise f = 1 kHz ~ pA 3.3 ~ ± 5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, Y+ = 5Y, Y- = 5Y, YCM = YO = OY and RL = 1500. Boldface limits apply at the temperature extremes. Symbol Yos Parameter Input Offset Yoltage Average Drift 18 Input Bias Current CMRR +PSRR -PSRR VCM (Note 5) Input Offset Yoltage TCYos los Typ Conditions 0.02 20 Input Offset Current 0.35 ~ YCM ~ Common Mode Rejection Ratio -5Y Positive Power Supply Rejection Ratio Y+ = 5Y, Y- = OY Y+ = 5Yto 10Y 75 Negative Power Supply Rejection Ratio Y- = -5Y, Y+ = OY Y- = -5Yto -10Y 75 Input Common-Mode Yoltage Range Y+ = 5Y, Y- = -5Y For CMRR ~ 60 dB -5.0 Yoltage Gain LM7131BC Umlt (Note 6) 2 4 10 7 10 3.7Y 75 4.0 AVOL LM7131AC Umlt (Note 6) RL = 1500, Yo = -2.0 to +2.0 1-612 70 Units mY max JA-YI"C 30 30 p.A 40 40 max 3.5 3.5 p.A 5 5 max 65 65 80 80 dB min 65 65 80 80 65 65 80 80 -5.0 -5.0 -5.0 -5.0 3.70 3.70 3.80 3.80 55 55 50 50 dB min dB min Y min Y max dB ± 5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C, V+ = 5V, V- = 5V, VCM Symbol = Vo = OV and RL = 1500. Boldface limits apply at the temperature extremes. (Continued) CIN Common-Mode Input Capacitance Vo Output Swing High Sourcing, Vo Sinking, Vo = V+ Supply Current Is LM7131BC Limit (Note 6) = = -5V 4.5 65 5V +5V, V- = 40 -5V Units pF -4.5 Output Short Circuit Current LM7131AC Limit (Note 6) 2 V+ = 5V, V- = -5V RL = 1500 terminated at OV Low Isc Typ (Note 5) Conditions Parameter 7.5 4.3 4.3 4.0 4.0 -3.5 -3.5 -2.5 -2.5 45 45 40 40 25 25 20 20 9 9 10 10 V min V max mA min mA min mA max ± 5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C, V+ = 5V, V- = 5V, VCM = Vo = OV and RL = 1500. Boldface limits apply atthe temperature extremes. LM7131AC Limit (Note 6) LM7131BC Limit (Note 6) Parameter Conditions Typ (Note 5) Total Harmonic Distortion F = 4MHz,Av = -2 RL = 1500, Vo = 4.0Vpp 1.5 % Differential Gain (Note 10) 0.25 % Differential Phase (Note 10) 1.0 " SR Slew Rate RL = 1500,CL (Note 9) = 5pF 150 V/IJ-s SR Slew Rate RL = 1500, CL (Note 9) = 20 pF 130 V/IJ-s Gain-Bandwidth Product 70 MHz Closed-Loop -3 dB Bandwidth 90 MHz Symbol T.H.D. GBW Units Note 1: Absolute maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional. but spacific performance is not guaranteed. For guarantesd specifications and the test conditions, ses the Electrical characteristics. Note 2: Human body model, 1.5 kn in series with 100 pF. Note 3: Applies to both single·supply and spin-supply operation. Continuous short circuit operation at elevated ambient temperature can result in excesding the maximum allowed junction temperature of 150"C. Note 4: The maximum power dissipation is a function of TJ(max), 9JA, and TA. The maximum allowable power dissipation at any ambient temparature is Po = (TJ(max) - TAl/IIJA. All numbers apply for packages soldered directly into a PC board. Note 5: Typical values represent the most likely parametric norm. Note 6: All limits are guaranteed by testing or statistical analysis. Nota 7: Connacted as voltage follower wnh 1.5V step input. Number specified is the slower of the positive and negative slew rates. V+ = 3V and RL = 150n connected to 1.5V. Amp excned wnh 1 kHz to produce Vo = 1.5 Vpp. Note 8: Connected as Voltage Follower with 4.0V step input. Number specified is the slower of the positive and negative slew rates. V+ = 5V and RL = 150n connected to 2.5V. Amp excited wnh 1 kHz to produce Vo = 4 Vpp. Note 9: Connacted as Voltage Follower wnh 4.0V step input. Number specified is the slower of the positive and negative slew rates. V+ = 5V, V- =' -5Vand RL = 150n connacted to OV. Amp excited wnh 1 kHz to produce Vo = 4 Vpp. Note 10: Differential gain and phase measured wnh a 4.5 MHz signal into a 150n load, Gain = + 2.0, between 0.6V and 2.0V output 1-613 ..- C'I) ~ ~ Typical Performance Characteristics LM7131 Supply Current va Supply VoHage LM7131 Input Current va Temperature @ 3V o 10 I -3 '1 -9 ::: -12 , }-21 -24 -27 1 o 3 4 5 6 7 8 ." Input Voltage @ 5V 3V _ 3 10~-+~1-+-~-+~+-~ 7 30 25 20 15 ..3 10 1 -5~-+~1-+-~-t.A-+-t1 1. Ia 0 -5 = -10 ~-+~1-+-~---v~+-t1 .E -15 -20 rt:~~~!=tt=t1 I.- ~ = 150_ m~ ~ o 0.5 1 \.5 2 2.5 3 3.5 4 4.5 5 150 I-+HftllH-ffIlIIf-HfHIIIIf-H4llIIIf-HitIIII 100 I-+HltIIN-ffIlIIf-HfHIIIIf-H'ItlIIf-H~ ~ 1000 10k ~ 525 450 : ~ = 15011 YOUT = IV m- 3 50 ~ ~ ~ 40 225 30 150 20 75 10 0 1 10 100 1000 10k 10 100 1000 10k lOOk 1M ION lOON tOOk Frequenc)' (Hz) Frequency (Hz) LM7131 cable Driver Ay = +1@ +3V = 150 VOUT =IV LM7131 Cable Driver Ay = +2@ +3V 5V 2.5V INPUT INPUT 5}~,~V SOOmV /div I@ > 50 ~E 40 0 0 80 OUTPUT SOOmV 10 /div 0 10 100 1000 10k lOOk 1M 10M 100M ,, I 30 OV 1-'- ... rIi ~E '-1-- ~- on 20 10M 70 60 0 70 ~ =5k 300 ~ 1M "~s ~';3V] 80 375 -5 lOOk '~s~'~;~~ ~ 100 gO ~S'~'~2.'dJ 600 LM7131 PSRR va Frequency @ 5V ~ ~ 100 1000 10k lOOk LM7131 PSRR va Frequency @ 3V IlIlIIm III 675 frequency (Hz) m- 10 LM7131 Voltage Noise va Frequency @ 5V o Wl1llllllllJll..lllll~~!±H 3 1]1I"IIIIIUII Vs = +1-2. 5V ftttIIN-I1fIII--tttI1III V'N = IvP~:-:P~.-j-HlllI-I'I.tHllI Frequency (Hz) 750 80 110 100 90 80 70 60 50 40 30 20 10 0 3 LM7131 Voltage Noise va Frequency @ 3V 90 ~ V'N (v) 200rP~H-ffIlIIf-HfHIIIIf-H4llIIIf-H~ I- LM7131 CMRR va Frequency @ 5V VS=+5V- V'N (v) 350 rrrmmr"'T'TTl111ll"TTTlTIIII"'TI""'" 11111111nT"'T'1l l mnlnl l 300 Il+H!!IIl-+ffIlIIf-HfHIIIIl-Y4llIIIl-'-'.lllIII YS=:l:l.SV 250 I+HltIIH-ffIlIIf-HfI!!IIII ~ = 5k - 1..0- r- -30 -40 -20 0 20 40 60 80 100120140 .!: -15 -20 -25 -30 -+- =VOUT =tV -12 ~ -15 1- 10 -25 H-+1--t--1-+~+-H-+-l -30 '-'-'--L.L.JL.L--'---'-'-'-'--' o 0.5 1.5 2.5 100 VIN = 150 Case Temperature (e) LM7131 Input Current va 100 -9 ! Input VoRage 10 ~ ~ -18 -21 LM7131 Input Current va 30ro~-r'-r-ro-r.-'-~ 1 I Vs=+5V -6 Case Temperature (e) 25 ~-t-r~t-~-+~+-~ 20 ~-t-r~t-~_Vs +3V 15 ~=150 5V -27 Supply Volt.g. (v) I '.E' I- -30 -40 -20 0 20 40 60 80 100120140 9 10 11 12 @ '1 - .... r- -15 o -18 @ -3 VS =+3V+ ~ = 150 Y,N =YOUT = 1V -6 ~ LM7131 Input Current va Temperature ,,~- 50 "s/dlv III """1-- .... 1-' 0 0 on OUTPUT 5}~,~V -2.5V -I"- '"1-50 ns/div Frequency (Hz) TUH/12313-3 1-614 Typical Performance Characteristics E ..... ..... ..... (Continued) Co) LM7131 Driving 5' RG-59Av = +2@ +3V LM7131 Driving 75' RG-59Av = +2@ +3V LM7131 Cable Driver Av = +10@ +3V 2V 2V 5V INPUT INPUT iNPUT l~~V 200mV 200mV /diY /div r-I- -r-.- CABLE I OUTPUT OUTPUT 200mV /div OV 1-- F- ,..-1- -l- 1--:-- OV~ ..... ~ ...... r-' 5~~I:'V OV Ji -r- I- 50ns/div SO ns/div LM7131 Cable Driver Av = +1 @ +5V LM7131 cable Driver Av = +2@ +5V 5V LM7131 Driving 5' RG-59 Av = +2@ +5V 5V 2V iNPUT 500 mV INPUT SOOmV iNPUT 200mV /div IdiY 1-- \ \ /div - r--r- i-I-r- -r- -ICABLE OUTPUT OUTPUT SOOmV /div 200mY OVr r-- -r- OVr -,..- ""-f- 50na/dly!ill /div OV~ -r- 1-1- 50 na/dlY !ill LM7131 Driving 75' RG-59 Av = +2@ +5V 50 n./dlY !ill LM7131 Cable Driver Av = +10@ +5V 2V LM7131 Driving Flash AID LoadAv = -1 @ +5V 5V 5V iNPUT iNPUT SOOmV 1~~V /div II OVr 1--"'" 1..... - OVr \ 1-- -I- 50 naldly !ill 50 "IdlY !ill LM7131 Driving Flash AID LoadAv = +1@ +5V LM7131 Driving Flash AID LoadAv = +2@ +5V 5V OV ~ l.-I..-JI..-J....J.--I.-'--::'::--'-..L...J 50 n./dlY Irrl LM7131 Driving Flash AID LoadAv = +5@ +5V 5V 5V iNPUT SOOmY /div iNPUT l~~V ,. """-I- 1-- OUTPUT SOOmV OUTPUT 5~~i~V /div OVr OVr 50 "/diY !ill 50 "IdlY Irrl TLlH/12313-4 1-615 .- r-----------------------------------------------------------------------------~--~--~ CO) ..... Typical Performance Characteristics (Continued) ',,'. :i LM7131 Driving Flash AID LoadAy = +5@ +5V With 2 pF Feedback Capacitor LM7131 Driving Flash AID LoadAy = +10@ +5V SOOmV 5V INPUT 10pmV Idly INPUT 10pmV /div ~ I I I 5~~r.V l OVE 50ns/dlv I , OUTPUT OUTPUT 500mV Idly l- \ -500mV 50 ns/dly IITl IITl TLlH/12313-6 TLlH/12313-5 LM7131 Bode Plot @ 3V. 5Vand 10V Ref Level 0.000 dB IDlY 1.000 dB 5V.,.. 3V .JI' -Od8 spin Supplies Ay = +1 RL = 1500 10V -3d8 3V lOOk 1M 10M START 100 000.000 Hz 100M STOP 200 000.000 Hz TLlH/12313-7 LM7131 Single Supply Bode Plot @3V. 5V and 10V Ref Level 0.000 dB IDlY 1.000 dB 3V_ Single Supplies Ay = +1 RL = 1500 ~ Od8 10V -3d8 3V 5V lOOk IN 10M START 100 000.000 Hz 1-616 \. ~\ 100M STOP 200 000.000 Hz TLlH/12313-8 r- i: ..... Application Information and disk drive write heads. The small size of the SOT23-5 package can allow it to be placed with a pre-amp inside of some rotating helical scan video head (VCR) assemblies. This avoids long cable runs for low level video signals, and can result in higher signal fidelity. GENERAL INFORMATION The LM7131 is a high speed complementary bipolar amplifier which provides high performance at single supply voltages. The LM7131 will operate at ±5V split supplies, +5V single supplies, and + 3V single supplies. It can provide improved performance for ± 5V designs with an easy transition to +5V single supply. The LM7131 is a voltage feedback amplifier which can be used in most operational amplifier circuits. Additional space savings parts are available in tiny packages from National Semiconductor, including low power amplifiers, preCision voltage references, and voltage regulators. The LM7131 is available in three package types: DIPs for through hole designs, SO-8 surface mount packages and the SOT23-5 Tiny package for space and weight savings. Notes on Performance Curves and Datasheet Limits The LM7131 has been designed to meet some of the most demanding requirements for single supply amplifiers-driving analog to digital converters and video cable driving. The output stage of the LM7131 has been specially designed for the dynamic load presented by analog to digital converters. The LM7131 is capable of a 4V output range with a +5V single supply. The LM7131's drive capability and good differential gain and phase make quality video possible from a small package with only a + 5V supply. SUPPLY CURRENT vs SUPPLY VOLTAGE BENEFITS OF THE LM7131 This curve is relatively flat in the 200 mV to 4V input range, where the LM7131 also has good common mode rejection. The LM7131 can make it possible to amplify high speed signals with a single + 5V or + 3V supply, saving the cost of split power supplies. COMMON MODE VOLTAGE REJECTION EASY DESIGN PATH FROM Important: Performance curves represent an average of parts, and are not limits. Note that this curve is nearly straight, and rises slowly as the supply voltage increases. INPUT CURRENT vs INPUT VOLTAGE Note that there are two parts to the CMRR specification of the datasheet for 3V and 5V. The common mode rejection ratio of the LM7131 has been maximized for signals near ground (typical of the active part of video Signals, such as those which meet the RS-170 levels). This can help provide rejection of unwanted noise pick-up by cables when a balanced input is used with good input resistor matching. The mid-level CMRR is similar to that of other single supply op amps. ±5V to + 5V SYSTEMS The DIP and SO-8 packages and similar ± 5V and single supply specifications means the LM7131 may be able to replace many more expensive or slower op amps, and then be used for an easy transition to 5V single supply systems; This could provide a migration path to lower voltages for the amplifiers in system designs, reducing the effort and expense of testing and re-qualifying different op amps for each new design. BODE PLOTS (GAIN vs FREQUENCY FOR Ay = + 1) The gain vs. frequency plots for a non-inverting gain of 1 show the three voltages with the 1500 load connected in two ways. For the single supply graphs, the load is connected to the most negative rail, which is ground. For the split supply graphs, the load is connected to a voltage halfway between the two supply rails. In addition to providing a design migration path, the three packages types have other advantages. The DIPs can be used for easy prototyping and through hole boards. The SO-8 for surface mount board deSigns, and using the SOT23-5 for a smaller surface mount package can save valuable board space. DRIVING CABLES SPECIFIC ADVANTAGES OF S0T23-5 (TINY PACKAGE) Pulse response curves for driving 750 back terminate cables are shown for both 3V and 5V supplies. Note the good pulse fidelity with straight 150 loads, five foot (1.5 meter) and 75 foot (22 meter) cable runs. The bandwidth is reduced when used in a gain of ten (Av = + 10). Even in a gain of ten configuration, the output settles to < 1 % in about 100 ns, making this useful for amplifying small signals at a sensor or signal source and driving a cable to the main electronics section which may be located away from the Signal source. This will reduce noise pickup. The SOT23-5 (Tiny) package can save board space and allow tighter layouts. The low profile can help height limited deSigns, such as sub-notebook computers, consumer video eqUipment, personal digital assistants, and some of the thicker PCMCIA cards. The small size can improve Signal integrity in noisy environments by plaCing the amplifier closer to the signal source. The tiny amp can fit into tight spaces and weighs little. This makes it possible to design the LM7131 into places where amplifiers could not previously fit. Please refer to Figures 1-5 for schematics of test setups for cable driving. The LM7131 can be used to drive coils and transformers referenced to virtual ground, such as magnetic tape heads 1-617 .... .... w ~ COl) ~ :5 r-----------------------------------------------------------------------------------------------, Application Information (Continued) +V. rok P6204 I GHz FET Xl0 10~11 1.7)pF {1.12 pF .t----.,.....;::........---I +O.3V to IN +2V 75 75 TL/H/12313-9 Numbers in parentheses ars measured fIXture capacitances w/o OUT and load. FIGURE 1. Cable Driver Ay = +1 ~Tek ,.....Wlr-....- -......W\r-......<;....., P6204 I GHz FET Xl0 +V. rek P6204 I GHz FET Xl0 10~ 111.7)PF {1.12 pF 10~111.7)PF {1.t2 pF +O.15V @- ..L----""....- - t +Il'v IN 75 75 TL/H/12313-10 Numbers In parentheses ars messured fixture capacitances w/o OUT and load. FIGURE 2. Cable Driver Ay = +2 +Vs rok P6204 I GHz FET Xl0 10~111.7pF (1.12pF) .t +O.15V 10 IN +1V ---~....---I >~~~E:::I7-1.~TOk RL 75 P6204 I GHz rET Xl0 10~111.7)PF {1.12pF TL/H/12313-1' Numbers in parentheses are maasurad fixture capacitances w/o OUT and load. FIGURE 3. Cable Driver 5' RG·59 1·618 Application Information (Continued) 2k +v. Tok P62D4 I GHz rET XID IDlAi/1.7pr (1.12 prj 1: +D.15V to IN +IV ---..,.,.,.....---1 TUHI12313-12 Numbers in parentheses are measured fixture capecilances wlo OUT and loed. FIGURE 4. cable Driver 75' RG-59 220 2k T8k P62D4 I GHz rET XID IDlAi/1.7pr (1.12 prj ~T.k P62D4 I GHz r~ X1D lD~ 1.7 pr 1. 2 prj I: +v. 1: RL (0.15 prj +D.3V to IN +2V - - • 0.1 }Or, CH~PTm 47~r TANT TUH112313-13 Numbers in parentheses are measured fixture capacitances wlo OUT and load. FIGURE 5. Cable Driver Gain of 10 Ay = 1·619 + 10 ~ CO) ,... ..... ~ r-------------------------------------------------------------------------------------, Application Information (Continued) DRIVING TYPE 1175 FLASH AID LOADS The circuits in Figures 6-11 show a LM7131 in a voltage ad range) capacitor across the feedback resistor. See FigureS 9 and 10 for schematics and respective performance follower configuration driving the passive equivalent of a typical flash AID input. Note that there is a slight ringing on the output, which can affect accurate analog-ta-digital conversion. In these graphs, we have adjusted the ringing to be a little larger than desirable in order to better show the settling time. Most settling times at low gain are about 75 ns to < 1 % of final voltage. The ringing can be reduced by adding a low value (approximately 5000) feedback resistor from the output to the inverting input and p!acing a small (picofar~ curves for flash AID driving at Av = 2 pF feedback capacitor. + 5 with and without a See section on feedback compensation. Ringing can also be redl,lced by placing an isolation resistor between the output and the analog-to-digital converter input-see sections on driving capacitive loads and analog-to-dlgital converters. Please refer to Figures 6-11 for schematics of test setups for driving 'flash AID converters. 2k +vs 50 >tL __....._~__.,~kl GHz FET Xl0 10~// 1.7pF (1.72 pF) ·0.1 pF1 CHrTm 47~F TANT 20pF 30n I TlIH/12313-14 Numbers in parentheses are measured fix1ure capaCitances wlo OUT and load. FIGURE 6. Flash AID Av = -1 Tak P6204 1 GHz FET Xl0 +vs >tL_-__...._E----,~kl 10~//1.7pF (1.12 pF) (2.2 pr) GHz FET Xl0 1O~ / / 1.7)pF (1.72 pF / 50 • O. 1 pF1CH~PTm 47~F TANT 20pF I TLlH/12313-15 Numbers in parentheses are messured fix1ure capaCitances wlo OUT and load. FIGURE 7. Flash AID Av = 1-620 +1 r-----------------------------------------------------------------------------, r Application Information ...... i: ~ (Continued) Co) r-'!JV'v-......Tek P6204 1 GHz ~~eklGHZ ........A{IjI\--.....L-., FET Xl0 /11.7 pF l1.72pF) 10~ +VS FET Xl0 10~1/ 1.7pF lU2pF) (2.2 pF) I 50 30n • 0.1 /'Fl CH~PT~~~ 47~F TANT 20pF I TUH/12313-16 Numbers in parentheses are measured fixture capacitances wlo OUT and load. FIGURE 8. Flash AID Ay = 510 Tek P6204 1 GHz +2 2k +Vs FET Xl0 10~/11.7pF (1.72 pF) +O.IV \0 +0.5V 50 CHrT~~~ 47~F TANT 3M • 0.1 /'Fl 20pF I TL/H/12313-17 Numbers in parentheses are measured fixture cepecitances wlo OUT end load. FIGURE 9. Flash AID Ay = 1-621 +5 • Application Information (Continued) T8k P6204 1 GHz FET Xl0 10~//1.7pF (1.12 pF) +O.lV to +0.5V 50 • 0.1 I'FI CHrTX~~ 47~F TANT 20 PF I TL/H/12313-18 Numbers in parentheses are measured fixture capacitances wlo OUT and load. FIGURE 10. Flash AID Ay = + 5 with Feedback Capacitor 220 2k ~TOk ....---.y,f'v--""'::;--, r-'W~ Tok P6204 1 GHz FET Xl0 (1.12 pF +VS FET Xl0 P6204 1 GHz 10~ / / 1.7)pF 10~//1.7pF (1.12pF) +0.5V to +2.5V IN @- ..L 3M I 20PF TUH/12313-19 Numbers in parentheses are measured fixture capacitances wlo OUT and load. FIGURE 11. Flash AID Ay = 1-622 + 10 r-----------------------------------------------------------------------------,~ No load powerNo load LM7131 supply current - 9.0 mA Supply voltage is 5.0V No load LM7131 power - 9.0 mA x 5.0V = 45 mW Power with loadCurrent out is 2.0V/1S0 n = 13.33 mA Voltage drop in LM7131 is 5.0V (supply) - 2.0V (output) = 3.0V LIMITS AND PRECAUTIONS Supply Voltage The absolute maximum supply voltage which may be applied to the LM7131 is 12V. Designers should not design for more than 10V nominal, and carefully check supply tolerances under all conditions so that the voltages do not exceed the maximum. Differential input voltage is the difference in voltage between the non-inverting (+) input and the inverting input (-) of the op amp. The absolute maximum differential input voltage is ± 2V across the inputs. This limit also applies when there is no power supplied to the op amp. This may not be a problem in most conventional op amp designs, however, designers should avoid using the LM7131 as comparator or forcing the inputs to different voltages. In some designs, diode protection may be needed between the inputs. See Figure 12. Junction temperature at 400 ambient = 40 + 27.625 = 67.6225°. This device is within the 00 to 700 specification limits. The 325°/W value is based on still air and the pc board land pattern shown in this datasheet. Actual power dissipation is sensitive to PC board connections and airflow. Gain of +2 SOT23-5power dissipation may be increased by airflow or by increasing the metal connected to the pads, especially the center pin (pin number 2, V -) on the left side of the SOT23-5. This pin forms the mounting paddle for the die inside the SOT23-5, and can be used to conduct heat away from the die. The land pad for pin 2 can be made larger andlor connected to power planes in a multilayer board. 7S,n Input Protection ! w ..... Power dissipation 13.33 mA x 3.0V = 40 mW Total Power = 4S mW + 40 mW = 85 mW = 0.085 Temperature Rise = 0.085 W x 325°/W = 27.625 degrees Differential Input Voltage Diodes ......... i: Using the LM7131 Additionally, it should be noted that difficulty in meeting performanee specifications for the LM7131 is most common at cold temperatures. While excessively high junction temperatures will degrade LM7131 performance, testing has confirmed that most specifications are met at a junction temperature of 85°C. Rt 249,n TL/H/12313-20 See "Understanding Integrated Circuit Package Power Capabilities", Application Note AN-336, which may be found in the appendix of the Operational Amplifier Databook. FIGURE 12 Output Short Circuits The LM7131 has output short circuit protection, however, it is not designed to withstand continuous short circuits, very fast high energy transient voltage or current spikes, or shorts to any voltage beyond the power supply rails. Designs should reduce the number and energy level of any possible output shorts, especially when used with ± SV supplies. A resistor in series with the output, such as the 7S0 resistor used to back terminate 750 cables, will reduce the effects of shorts. For outputs which will send signals off the PC board additional protection devices, such as diodes to the power rails, zener-type surge suppressors, and varistors may be useful. Layout and Power Supply Bypassing Since the LM7131 is a high speed (over 50 MHz) device, good high speed circuit layout practices should be followed. This should include the use of ground planes, adequate power supply bypassing, removing metal from around the input pins to reduce capaCitance, and careful routing of the output signal lines to keep them away from the input pins. The power supply pins should be bypassed on both the negative and positive supply inputs with capacitors placed close to the pins. Surfaee mount capaCitors should be used for best performance, and should be placed as close to the pins as possible. It 'is generally advisable to use two capacitors at each supply voltage pin. A small surface mount capaCitor with a value of around 0.01 microfarad (10 nFl, usually a ceramic type with good RF performance, should be placed closest to the pin. A larger capaCitor, in usually in the range of 1.0 IJ.F to 4.7 IJ.F, should also be placed near the pin. The larger capaCitor should be a device with good RF characteristics and low ESR (equivalent series resistanee) for best results. Ceramic and tantalum capaCitors generally work well as the larger capacitor. For single supply operation, if continuous low impedance ground planes are available, it may be possible to use bypass capaCitors between the + 5V supply and ground only, and reduce or eliminate the bypass capacitors on the Vpin. Thermal Management Note that the SOT23-S (Tiny) package has less power dissipation capability (32S0/W) than the SO-8 and DIP packages (11so/W). This may cause overheating with ± S supplies and heavy loads at high ambient temps. This is less of a problem when using +5V single supplies. Example: Driving a 1S00 load to 2.0V at a 40°C (104 OF) ambient temperature. (This is common external maximum temperature for office environments. Temperatures inside equipment may be higher.) 1-623 II I y- , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , CO) y- .... ::E .... Using the LM7131 (Continued) Capacitive Load Driving The phase margin of the LM7131 is reduced by driving large capacitive loads. This can result in ringing and slower settling of pulse signals. This ringing can be reduced by placing a small value resistor (typically in the range of 22.11-100.11) between the LM7131 output and the load. This'resistor should be placed as close as practical to the LM7131 output. When driving cables, a resistor with the same value as the characteristic impedance of the cable may be used to isolate the cable capacitance from the output. This resistor will reduce reflections on the cable. Driving Flash AID Converters (Video Converters) The LM7131 has been optimized to drive flash analog to digital converters in a + 5V only system. Different flash AID converters have different voltage input ranges. The LM7131 has enough gain-bandwidth product to amplify standard video level signals to voltages which match the optimum input range of many types of AID converters. For example, the popular 1175 type 8-bit flash AID converter has a preferred input range from 0.6V to 2.6V. Iflhe input signal has an active video range (excluding sYnc levels) of approximately 700 mV, a circuit like the one in Figure 13 can be used to amplify and drive an AID. The 10 p.F capacitor blocks the DC components, and allows the + input of the LM7131 to be biased through R clamp so that the minimum output is equal to VRB of the AID converter. The gain of the circuit is determined as follows: Output Signal Range = 2.6V (V top) = 0.6V (V bottom) = 2.0V Gain = Output Signal Rangellnput Signal = 2.857 = 2.00/0.700 Input Current The LM7131 has typical input bias currents in the 15 p.A to 25 p.A range. This will not present a problem with the low input impedances frequently used in high frequency and video circuits. For a typical 75.11 input termination, 20 p.A of input current will produce a voltage across the termination resistor of only 1.5 mY. An input impedance of 10 k.l1, however, would produce a voltage of 200 mV, which may be large compared to the signal of interest. Using lower input impedances is recommended to reduce this error source. Gain = (RI/R1) +1 = (249.11/133.11) +1 R isolation and Cj will be determined by the designer based on the AID input capacitance and the desired pulse response of the system. The nominal values of 33.11 and 5.6 pF shown in the schematic may be a useful starting pOint, however, signal levels, AID converters, and system performance requirements will require modification of these values. The isolation resistor, R isolation should be placed close to the output of the LM7131, which should be close to the AID input for best results. R clamp is connected to a voltage level which will result in the bottom of the video signal matching the Vrb level of the AID converter. This level will need to be set by c;:lamping the black level of the video signal. The clamp voltage will depend on the level and polarity of the video signal. Detecting the sync signal can be done by a circuit such as the LM1881 Video Sync Separator. Feedback Resistor Values and Feedback Compensation Using large values of feedback resistances (roughly 2k) with low gains (such gains of 2) will result in degraded pulse response and ringing. The large resistance will form a pole with the input capacitance of the inverting input, delaying feedback to the amplifier. This will produce overshoot and ringing. To avoid this, the gain setting resistors should be scaled to lower values (below 1k) At higher gains (> 5) larger values of feedback resistors can be used. . Overshoot and ringing of the LM7131 can be reduced by adding a small compensation capacitor across the feed back resistor. For the LM7131 values in pF to tens of pF range are useful initial values. Too large a value will reduce the circuit bandwidth and degrade pulse response. Since the small stray capacitance from the circuit layout, other components, and specific circuit bandwidth requirements will vary, it is often useful to select final values based on prototypes which are similar in layout to the production circuit boards. Important Note: This Is an illustration of a conceptual use of the LM7131, not a complete design. The clrcun designer will need to modify this for Input protection, sync, and possibly some Iype of gain control for varying signal levels. Reflections Some AID converters have wide input ranges where the lower reference level can be adjusted. With these converters, best distortion results are ·obtained if the lower end of the output range is about 250 mV or more above the Vinput of the LM7131 more. The upper limit can be as high as 4.0V with good results. The output slew rate of the LM7131 is fast enough to produce reflected signals in many cables and long circuit traces. For best pulse performance, it may be necessary to terminate cables and long circuit traces with their characteristic impedance to reduce reflected signals. Reflections should not be confused with overshoot. Reflections will depend on cable length, while overshoot will depend on load and feedback resistance and capacitance. When determining the type of problem, often removing or drastically shortening the cable wjll reduce or eliminate reflections. Overshoot can exist without a cable attached to the op amjJ output. Driving the ADC12062 + 5V 12-BIT AID Converter Fl{}ure 14 shows the LM7131 driving a National ADC12062 12 bit analog to digital converter. Both devices can be powered from a Single + 5V supply, lowering system complexity and cost. With the lowest signal voltage limited to 300 mV and a 3.8V peak-to-peak 100 KHz Signal, bench tests have shown distortion less than - 75 db, signal to noise ratios greater than !i6 db, and SINAD (Signal to noise + distortion) values greater than 65 db. For information on the latest single supply analog-ta-digital converters, please contact your National Semiconductor representative .. 1-624 r-----------------------------------------------------------------------------, r Using the LM7131 i: .........w (Continued) .... Rclamp Video 1 O.&V 2.0V VRB VRT Bottom Top Reference Reference Risolation >---4~""",.,.--t VIN T~C1175 10 J'F Flit 7511 Converter 5.& pF TL/H/I2313-21 FIGURE 13 r------------------------------I ADC12062 I VIN1 : Input signal >>--------------...;;.;.~:t-- ilt;ux VIN2 I (Through Multiplexer) ~------------------------~~I----~ I I MUX OUT I I I I I I +5V Input signal> ___ _ (Direct) ADC INI I I I I I I RSW I'1N slH ~To Switch Comparators I ._-----------------------------_. TL/HI12313-22 FIGURE 14. Buffering the Input with an LM7131 High Speed Op Amp 1-625 .- C") ...... :I r---------------------------------------------------------------------------~------------_, Using the LM7131 (Continued) For additional space savings, the LM4040 precision voltage reference is available in a tiny SOT23-3 package. CCD Amplifiers The LM7131 has enough gain bandwidth to amplify low level signals from a CCD or similar image sensor and drive a flash analog-to-digital converter with one amplifier stage. Signals from CCDs, which are used in scanners, copiers, and digital cameras, often have an output signal in the 100 mV-300 mV range. See Figure 15 for a conceptual diagram. With a gain of 6 the output to the flash analog-todigital converter is 1.8V, matching 90% of the converter's 2V input range. With a -3db bandwidth of 70 MHz for a gain of + 1, the bandwidth at a gain of 6 will be 11.6 MHz. This 11.6 MHz bandwidth will result in a time constant of about 13.6 ns. This will allow the output to settle to 7 bits of accuracy within 4.9 time constants, or about 66 ns. Slewing time for a 1.8V step will be about 12 ns. The total slewing and settling time will be about' 78 ns of the 150 ns pixel valid time. This will leave about 72 ns total for the flash converter signal acquisition time and tolerance for timing signals. For scanners and copiers with moving scan bars, the SOT23-5 package is small enough to be placed next to the light sensor. The LM7131 can drive a cable to the main electronics section from the scan bar. This can reduce noise pickup by amplifying the signal before sending on the cable. Video Gain of + 2 The design of the LM7131 has been optimized for gain of + 2 video applications. Typical values for differential gain and phase are 0.25% differential gain and 0.75 degree differential phase. See Figure 12. Improving Video Performance Differential gain and phase performance can be improved by keeping the active video portion of the signal above 300 mY. The sync signal can go below 300 mV without affecting the video quality. If it is possible to AC couple the signal and shift the output voltage slightly higher, much better video performance is possible. For a + 5V single supply, an output range between 2.0V and 3.0V can have a differential gain of 0.07% and differential phase of 0.3 degree when driving a 1500 load. For a + 3V single supply, the output should be between 1.0V and 2.0V. cable Driving with + 5V Supplies The LM7131 can easily drive a back-terminated 750 video cable (1500 load) when powered by a + 5V supply. See Figures 2, 3 and 4. This makes it a good choice for video output for portable equipment, personal digital devices, and des)dop video applications. The LM7131 can also supply + 2.00V to a 500 load to ground, making it useful as driver in 500 systems such as portable test equipment. AID Reference Drivers The LM7131's output and drive capability make it a good choice for driving analog-to-cligital references which have suddenly changing loads. The small size of the SOT23-5 package allow the LM713t to be placed very close to the AID reference pin, maximizing response. The small size avoids the penalty of increased board space. Often the SOT23-5 package is small enough that it can fit in space used by the large capacitors pr!Wiously attached to the AID reference. By acting as a buffer for a reference voltage, noise pickup can be reduced and the accuracy may be increased. Cable Driving with + 3V Supplies The LM7131 can drive 1500 to 2.00V when supplied by a 3V supply. This 3V performance means that the LM7131 is useful in battery powered video applications, such as camcorders, portable video mixers, still video cameras, and portable scanners. Black AV",300mV o Rclamp .----. 0+--- Vclamp r-..J\IO'iv-_li-O'~ .. _ _ _ _ 01 cco RisoJation 30n Data Out TLlH/12313-23 FIGURE 15. CCD Amplifier 1-626 r-----------------------------------------------------------------------------, Using the LM7131 (Continued) Good AC performance will require keeping the output further away from the supply rails. For a + 5V supply and relatively high impedance load (analog-to-digital converter input) the following are suggested as an initial starting range for achieving high (> 60 dB) AC accuracy Upper output levelApproximately O.BV to 1V below the positive (V +) rail. Lower output levelApproximately 200 mV-300 mV above the negative rail. Audio and High Frequency Signal Processing The LM7131 is useful for high fidelity audio and signal processing. A typical LM7131 is capable of driving 2V across 1500 (referenced to ground) at less than 0.1 % distortion at 4 MHz when powered by a single 5V supply. Use with 2.SV Virtual Ground Systems with + 5V Single Supply Power Many analog systems which must work on a single + 5V supply use a 'virtual ground' - a reference voltage for the signal processing which is usually between + 5V and OV. This virtual ground is usually halfway between the top and bottom supply rails. This is usually + 2.5V for + 5V systems and + 1.5V for + 3V systems. The LM7131 can be used in single supply/virtual ground systems driving loads referenced to 2.5V. The output swing specifications in the data sheet show the tested voltage limits for driving a 1500 load to a virtual ground supply for + 3V and + 5V. A look at the output swing specifications shows that for heavy loads like 150 ohms, the output will swing as close as one diode drop (roughly, 0.7V) to the supply rail. This leaves a relatively wide range for + 5V systems and a somewhat narrow range for + 3V systems. One way to increase this output range is to have the output load referenced to ground-this will allow the output to swing lower. Another is to use higher load impedances. The output swing specifications show typical numbers for swing with loads of 6000 to ground. Note that these typical numbers are similar to those for a 1500 load. These typical numbers are an indication of the maximum DC performance of the LM7131. The sinking output of the LM7131 is somewhat lower than the amplifier's sourcing capability. This means that the LM7131 will not drive as much current into a load tied to 2.5 V as it will drive into a load tied to OV. r a: ...... .... .... ~ The LM7131 very useful in virtual ground systems as an output device for output loads which are referenced to OV or the lower rail. It is also useful as a driver for capacitive loads, such as sample and hold circuits, and audio analog to digital converters. If fast amplifiers with rail-to-rail output ranges are needed, please see the National Semiconductor LM6142 datasheet. 01 A Output Amplifier The LM7131 can be used as an output amplifier for fast digital-to-analog converters. When using the LM7131 with converters with an output voltage range which may exceed the differential input voltage limit of ± 2V, it may be necessary to add protection diodes to the inputs. See Figure 16. For high speed applications, it may be useful to consider low capacitance schottky diodes. Additional feedback capacitance may be needed to control ringing due to the additional input capaCitance from the 0/A and protection diodes. When used with current output 0/As, the input bias currents may produce a DC offset in the output. This offset may be canceled by a resistor between the positive input and ground. Spice Macromodel A SPICE macromodel of the LM7131 and many other National Semiconductor op amps is available at no charge from your National Semiconductor representative. I f DfA CONVERTER lout 1--'111,.,.-......1 - - -....- v.ry-S-m-a-II-r.~s;;.;ist..or~ ~ ....--1 Optional, cancels bias current low capacitance / Schott~y diodes TL/H/12313-24 FIGURE 16. OIA Ouput Amplifier 1-627 ........... ,---------------------------------------------------------------------------------, SOT-23-5 Tape and Reel Specification CI) ~ TAPE FORMAT Tape Section #cavatles cavity StatuI Cover Tape StatuI Leader (Start End) o(min) Empty Sealed 75 (min) Empty Sealed 3000 Filled Sealed 250 Filled Sealed 125 (min) Empty Sealed o(min) Empty Sealed Carrier Trailer (Hub End) TAPE DIMENSIONS ~0.061:1:0.002 TYP. [ 1.55:0.05] 8 AT TANGENT POINTS +-....,::==;,.. r-~~ RO.012 TYP [0.3] . ALL INSIDE RADII· ~ 0.041:1:0.002 TYP. [ 1.04±0.05] DIRECTION Of fEED - - - - - - GAGE LINE : ~ L 0.012 . /_~_: [0.3] SECTION 8-8 \ Ki R 1.181 MIN. I' [30] ----~ 8END RADIUS Nor TO SCALE TLlH112313-25 8mm 0.130 (3.3) 0.124 (3.15) 0.130 (3.3) 0.126 (3.2) Tape Size DIMA DIMAo DIMS DIM So 0.138 ±0.002 0_055 ± 0.004 (3.5 ±0.05) (1.4 ±0.11) DIMF 1-628 DIMKo 0.157 (4) 0.315 ±0.012 (8 ±0.3) DIMP1 DIMW ,-----------------------------------------------------------------------------, ..... Co) REEL DIMENSIONS TAPE SLOT A C DETAIL X SCALE: 3X TLlH/12313-26 8mm Tape Size ~ !iI: ..... ..... SOT-23-5 Tape and Reel Specification (Continued) 7.00 0.059 0.512 0.795 2.165 0.331 +0.059/-0.000 0.567 W1 + 0.078/-0.039 330.00 1.50 13.00 20.20 55.00 8.4 + 1.50/-0.00 14.40 W1 + 2.00/-1.00 A B C 0 N W1 1-629 W2 W3 ttl 'ADVANCE INFORMATION National Semiconductor LM7171 Very High Speed High Output Current Voltage Feedback Amplifier General Description Features (Typical Unless Otherwise Noted) The LM7171 is a voltage feedback amplifier optimally designed for AV > 1 operation. It provides a very high slew rate at 41 OOV/ p's and a wide gain-bandwidth product bandwidth of 200 MHz while consuming only 6.5 mA of supply current. It is ideal for video and high speed signal processing applications such as ultrasound and pulse amplifiers. With 100 mA output current, the LM7171 can be used for video distribution, transformer driver and laser diode driver. • • • • • • • • • The ± 15V power supplies allow for large signal swings and give greater dynamic range and signal-to-noise ratio. The LM7171 offers low SFDR and THO, ideal for ADC/DAC systems. In addition, the LM7171 is specified for ±5V operation for portable applications. Applications • • • • • • • • The LM7171 is built on Nationals advanced VIPTM III (Vertically integrated PNP) complementary bipolar process. Typical Performance 16-Pin Wide Body SO 8-Pln DIP/SO Hie e HDSL and ADSL Drivers Multimedia Broadcast Systems Professional Video Cameras Video Amplifiers Copiers/Scanners/Fax HDTV Amplifiers Pulse Amplifiers and Peak Detectors CATV/Fiber OptiCS Signal Processing Connection Diagrams Large Signal Pulse Response Av = +2, Vs = ±15V -;~ Easy-To-Use Voltage Feedback Topology 41ooV/p.s Very High Slew Rate 200 Ml-jz Wide Gain-Bandwidth Product 220 MHz -3 dB Frequency @ Av = +2 6.5 mA Low Supply Current 85 dB High Open Loop Gain 100 mA High Output Current 0.01 %, 0.02" Differential Gain and Phase Specified for ± 15V and ± 5V Operation ..!.. 2 -IN3 +IN- !\ v- ..!. ~ g \.J ~N/e ~ r:- ~v+ ~ OUTPUT \.J ~N/e Hie ~v+ ~OUTPUT ,!.!- Hie ~N/e ,!...N/e TLlH/I2351-2 TIME (20ns/div) TL/H/12351-7 Top View Ordering Information Temperature Range Package 8-Pin DIP ,!!- Hie ~~ ~N/e TLlH/12351-1 Top View N/e ...!.. Hie 2. -IN 2. N/e ..!. +IH2. f-+ Hie ..!. v- .!.... N/e ..!. Industrial - 40"C to + 85D C Military NSC Drawing Rails N08E -55"Cto + 125"C LM7171AIN, LM7171BIN 5962-9553601 QPA" 8-PinCDIP Transport Media Rails J08A Rails M08A 8-Pin Small Outline LM7171AIM, LM7171BIM LM7171AIMX, LM7171BIMX Tape and Reel 16-Pin Small Outline LM7171AIWM, LM7171BIWM Rails Tape and Reel LM7171AWMX, LM7171BWMX 'For the militaly temperature grede, please refer to the Military Datasheet MNLM7171 AMJ/883 1-630 M16B f}1National Semiconductor LM 13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM 13600 series consists of two current controlled transconductance amplifiers each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-tonoise improvement referenced to 0.5 percent THO. Controlled impedance buffers which are especially designed to complement the dynamic range of the amplifiers are provided. • • • • Excellent matching between amplifiers Linearizing diodes Controlled impedance buffers High output signal-to-noise ratio Applications • • • • • Current-controlled Current-controlled Current-controlled Current-controlled Multiplexers amplifiers impedances filters oscillators • Timers • Sample and hold circuits Features • grn adjustable over 6 decades • Excellent grn linearity Connection Diagram Dual·ln-Une and Small Outline Packages AMP BIAS INPUT DIODE BIAS 18 15 AMP BIAS INPUT DIODE BIAS INPUT (+1 INPUT H OUTPUT 12 INPUT (+1 INPUT H OUTPUT BUFFER OUTPUT v+ 11 V- BUFFER INPUT BUFFER 0 UTPUT TL/HI7980-2 Top View Order Number LM13600M, LM13600N or LM13600AN See NS Package Number M16A or N16A 1-631 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (Note 1), LM13600 36 Voc or ± 18\1 LM13600A 44 VOcor ±22V Power Dissipation (Note 2) T A = 25°C 570mW Differential Input VoltagE! ±5V Diode Bias Current (10) 2mA 2mA Amplifier Bias Current (lABC) Output Short Circuit Duration Continuous 20mA Buffer Output Current (Note 3) Operating Temperature Range O"Cto +70"C DC Input Voltage +Vsto -Vs -65°C to + 150"C Storage Temperature Range Soldering Information Dual·ln·Line Package Soldering (10 seconds) Small Outline Package Vapor Phase (60 secQnds) Infrared (15 seconds) 260"C 215°C 220"C See AN·450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods 'of soldering sur· face mdunt devices. Electrical Characteristics (Note 4) Parameter LM13600 Conditions Min Input Offset Voltage (Vos) Over Specified Temperature Range IABC = 51JA Vos Including Diodes Diode Bias Current (lD) Input Offset Change 5 fl-A s; IABC s; 500 fl-A = 500 IJA LM13600A Max 4 0.4 0.3 4 0.3 1 2 1 mV mV mV 0.5 5 0.5 2 mV Max 0.4 Min Units Typ Typ 0.1 3 0.1 1 mV Input Offset Current 0.1 0.6 0.1 0.6 Input Bias Current 0.4 1 5 5 7 IJA IJA 8 0.4 1 9600 13000 9600 12000 p.mho p.mho 7 650 IJA IJA Over Specified Temperature Range Forward Transconductance (gm) Over Specified Temperature Range 6700 5400 gm Tracking 0.3 RL RL RL = = = 0, IABC = 51JA 0, IABC = 500 IJA 0, Over Specified Temp Range 350 300 Peak Output Voltage Positive Negative RL RL = = 00,5 p.A S; IABC S; 500 fl-A 00,5 p.A S; IABC S; 500 fl-A +12 -12 Supply Current IABC Vos Sensitivity Positive Negative AVos/AV+ AVoslAV- Peak Output Current 7700 4000 = Common Mode Range Referred to Input (Note,5) 20Hz -2 103 I ~ Ii fi~ ° 10' &II II: II: :::0 ... 10 'e :::a-5... ~ II. a !; ... ~ -7 ... !; z -I .111A lIlA 10liA lDOpA 1000pA - 0.1 .lpA ~_ 1!Z 10' 15 14.5 14 III c c: ...... ~ 113.5 u 102 >0 II: II: :::0 !:i ~ a", 13 ~ ~i -13 a - c 100pA 1I00pA .1pA lIlA AMPLIFIER BIAS CURRENT (lABCI !i; 10' I a: a: 1 r-- +121° ~ I III '"~'02 c r-ofi ... ~ !! 1 2345& 7 '"~ "'" laOIlA -51"c -2&OC rc 25°C ..oC 71°C 110°C 125°C AMBIENT TEMPERATURE ITAI Input Resistance III' a-~ 10' I ~ .lpA ~1800 ~1400 200 c 0 III Z C ... !!! 10 C T ~ 'II ; 2 ... II: ~ ,' .lpA IpA lOOpA lOOOpA ilD' ... i-" CI 10pA AMPLIFIER BIAS CURRENT (lABCI Output Resistance +12 ffi 600 ;: 400 i--' O.lpA lpA 10' 6 ;;: 1000 aoo .01 lOOp A IOOOIiA v =± 15 v:;)" A=+2i;"'c 25° ~1200 lallA Input and Output capacitance - 1~55b lilA .1 AMPLIFIER BIAS CURRENT (lABCI Amplifier Bias Voltage vs 2000 Ampllfler Bias Current ;;:; 1600 /. 10 lDOOpA 10' INPUT DIFFERENTIAL VOLTAGE II I Iv ..... '- lapA / c 10' III 10' I / ...§W 10'L-L....IIIIL...I.J.1J. U ~ a: ~1D' - ~IO ~ Z III ~ '"~ / ..9- 10' Transconductance Input Leakage + /VIN-\-/vIN-VOUT- ~ ~ "'... AMPLIFIER BIAS CURRENT (lABCI 10' 100pA lOOOIlA Leakage Current I- IIII I IOpA III vOUT ~ "'-14.5 III lpA AMPLIFIER BIAS CURRENT "ABC) 10' v JII 1111 c a 10pA lo.lpA VCMRIlIl I Vs ,.!'f1'5 II RlOAO = 00 TA= °c a:E :.=:E -14 lpA IOOIlA Vouilm I !; ~-13.5 iii: 10' :.= .111A lUpA Peak Output Voltage and Common Mode Range Peak Output Current lit' .... lpA AMPLIFIER BIAS CURRENT (lABC) AMPLIFIER BIAS CURRENT (lABCI 10' :::0 CI I lapA lDOIlA lOOOpA AMPLIfiER BIAS CURRENT (lABCI o 1 .111A lilA 10llA 100pA 1000llA AMPLIfiER BIAS CURRENT (lABCI ,L.J...l.UII.III-u,u, O.lpA lilA IOIlA 100IlA,1000IlA AMPLIFIER BIAS CURRENT (lABcl TL/H17980-3 1-634 ,-----------------------------------------------------------------------------'r i: .... Typical Performance Characteristics (Continued) ~ 8 Distortion vs Dllfetentlal Input Voltage i Output Noise va Frequency Voltage VB Ampllller Bias Current 20 l°°~~_RII ~R: VS~±15~~ R = 10K .~ o :.... z i ~500 . i-400 ~ ~ v.. ,\\ co ~ a: ~co 600 iB 300 [/ 1 ~ MC= ~1l11 200 co ~ O.OII'-...............I"='O.............":',00~.......~,OOO -100 .1~A DIFFERENTIAL INPUT VOLTAGE (mVpp) I~A 10~A ~ 100 ~ ~ co 100~A lDOOpA IABC AMPLIFIER BIAS CURRENT (PA) 11111 o 10 1 11111 IA~,C;= 1 ,iAA 100 lK 10K FREOUENCY (Hz) lOOK TUH/7980-4 Unity Gain Follower +16V INPUTo-....-'\N\r-.----- -I 510 .,' ......_ - - f t OUTPUT 6K 10K -16V 0.0011lf TUHI798O-5 Leakage Current Test Circuit Differential Input Current Test Circuit .!lV .,5V -15 V TL/H/7980-7 TUHI7980-6 1-635 Circuit Description other. The remaining transistors and diodes form three current mirrors that produce an output current equal to 15 minus 14 thus: The differential transistor pair 04 and 05 form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function: (S) (1) The term in brackets, is then the tranSCQnductance of the amplifier and is proportional to IABC. where VIN is ·the differential input voltage, kTIq is approximately 2~ mV at 2SoC and 15 and 14 are the 'collector currents of transistors 05 and 04 respectively. With the exception of 03 ~nd 013, all transistors and diodes are identical in size. Transistors 01 and 02 with Diode 01 form a' current mirror which forces the sum of currents 14 and 15 to equal IABC; Linearizing Diodes For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates hoW the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input Signal is in the form of current Is. Since the sum of 14 and 15 is IABC and the difference is lOUT, currents 14 and 15 can be written as follows: (2) where IABC is the amplifier bias current applied to the gain pin. For small differential input voltages the ratio of 14 and 15 approaches unity and the Taylor series of the In function can be approximated as: kT In ~ ::: kT 15 - 14 q 14 q 14 14 = IABC _ lOUT 15 = IABC 2 2' 2 + lOUT 2 Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true: (3) (4) Collector currents 14 and 15 are not very useful by themselves and it is necessary to subtract one current from the (6) ID - ID-IS 10+IS 2" T lOUT =15-14 - ID 2' -Vs -vs TLlHI7980-8 FIGURE 1. linearizing Diodes 1-636 ~------------------------------------------------------~~E Linearizing Diodes (Continued) Applications-Voltage Controlled Amplifiers Notice that in deriving Equation 6 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed 10/2 and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors. Figure 2 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the 13 kG resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output. Controlled Impedance Buffers The upper limit of transconductance is defined by the maximum value of IABC (2 rnA). The lowest value of IABC for which the amplifier will function therefore determines the overall dynamic range. At very low values of IABC, a buffer which has very low input bias current is desirable. An FET follower satisfies the low input current requirement, but is somewhat non-linear for large voltage swing. The controlled impedance buffer is a Darlington which modifies its input bias current to suit the need. For low values of IABC, the buffer's input current is minimal. At higher levels of IABC, transistor 03 biases up 012 with a current proportional to IABC for fast slew rate. When IABC is changed, the DC level of the Darlington output buffer will shift. In audio applications where IABC is changed suddenly, this shift may produce an audible "pop". For these applications the LM13700 may produce superior results. For optimum signal-to-noise performance, IABC should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the SIN ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. SIN may be optimized by adjusting the magnitude of the input signal via RIN (Figure 2) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting RL. Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, 10 should be as large as possible. This minimizes the dynamic junction resistance of the diodes (re) and maximizes their linearizing action when balanced against RIN. A value of 1 rnA is recommended for 10 unless the specific application demands otherwise. 30K +Vs GAIN . - -...."fV·v---~ CONTROL RS ......-'---.. OUTPUT 5K -VS FIGURE 2. Voltage Controlled Amplifier TUHI7980-9 -VS FIGURE 3. Equivalent VCA Input Circuit 1-637 TL/HI7980-10 .... § Stereo Volume Control The circuit of Figure 4 uses the excellent matching of the two LM13600 amplifiers to provide a Stereo Volume Control with a typical channel-ta-channel gain tracking of 0.3 dB. Rp is provided to minimize the output offset voltage and may be replaced with two 5100 resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figure 2 as being: If Vc is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where: 10 = - 218 (IABC> = -2 18 VIN2 _ 21 8 (V- + 1.4V) 10 10 Rc 10 Rc.· Vo -V = 940 X IABC IN .,IV 10K VIN, RIN r-::- Rp 15 K IK AD 30K Vc -15V RC VIN2 10K RIN r lK -::- Rp TUH/7980-11 FIGURE 4. Stereo Volume Control - IABC VINZ MDDULATION o------....J"'''''----------o RC VIN, o-~.t'v'\r....------ . At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation, Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth La-Pass Filter of F/{Jure 13 and the state variable filter of Figure 14. Due to the excellent gm tracking of the two amplifiers and the varied bias of the buffer Darlingtons, these filters perform well over several decades of frequency. 3D K Iii K o---"V'v'\r--oO Vc +15V TL/HI7980-16 FIGURE 9. Voltage Controlled Resistor with Linearizing Diodes lOG K 100 K TUHI7980-17 FIGURE 10. Floating Voltage Controlled Resistor 38 K ft--.....I\JVv--__l Vc lOG K ......-o---OVo f •• RA '" (R+RAIZ1lC 1. K -1& V TUH/7980-18 FIGURE 11. Voltage Controlled Low-Pass Filter 1-640 Voltage Controlled Filters (Continued) 30 K 220K 10 K >..o-J1l/\f\r....-oO---1 (vos) \NULL .......-o-OVO f ~ o RAIlm (R+RAl2 ..C 10 K -15 V TlIHI7980-19 FIGURE 12. Voltage Controlled Hi·Pass Filter 15 K f _ RAgm o - (R + RAl2..c vco-----------------Avv\r~ Vo 100 pi 10 K -15 V TL/HI7980-20 FIGURE 13. Voltage Controlled 2·Pole Butterworth La-Pass Filter 15 K o----77.----------~~-AV~r_-ovc 10 K 1K LO-PASS r 1K BOOpl OUT ZOK 21 K BANDPASS OUT TL/H17980-21 FIGURE 14. Voltage Controlled State Variable Filter 1-641 C) ~ (II) ..- ...I == r------------------------------------------------------------------------------------------, Voltage Controlled Oscillators The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13600. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as Ie is varied from 1 mA to 10 nA. The output amplitudes are set by IA X RA. Note that the peak differential input voltage must be less than 5V to prevent zenering the inputs. A few modifications to this circuit produce the ramp/pulse vee of Figure 16. When V02 is high, IF is added to Ie to increase amplifier A 1's bias current and thus to increase the charging rate of capacitor C. When V02 is low, IF goes to zero and the capacitor discharge current is set by Ie. The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13600 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360" or 180" for the inverter and 60" per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1% THO. Vc V02 10 K -15 V lose = Ie 4CIARA TL/H17980-22 FIGURE 15. Triangular/Square-Wave veo -Ie IF veo-~IV~-.-J~~--------------------------------~ 510K 30 K &1 K -tl+tH U 9--o-----0~ tL IV02 (V+ - O.8V)R2 VPK 100 K ' tL FIGURE 16. Ramp/Pulse veo 1-642 = R1 + R2 tH::: 2Vp~ IF = 2VPKC Ie Ie 10::: 2Vp~lorle TUHI7980-23 -< IF ,-----------------------------------------------------------------------------, a: ~ ..... Voltage Controlled Oscillators (Continued) w g 30 K 820n 10 K 2Zl11l -15 V lDO K vcO---~~VVv-_1~------------------------__9 THD LM13700A Typ Max 0.4 Min Max 4 0.4 mV 0.3 4 0.3, 1 2 1' Over Specified Temperature Range IABC = 5pA Vas Including Diodes Diode Bias Current (10) Input Offset Change 5 p.A = 0.5 5 0.5 2 mV s: 500 pA 0.1 3 0.1 1 mV 0.1 0.6 0.1 0.6 p.A Over Specified Temperature Range 0.4 5 0.4 5 1 8 1 7 9600 13000 9600 12000 s: IABC 500 pA Input Offset Current Input Bias Current Forward Transconductance (gm) 6700 7700 p.A p.mho Over Specified Temperature Range 5400 4000 0.3 gm Tracking Peak Output Current Units Typ = RL = RL = RL = 0, IABC = 0, IABC Peak Output Voltage Positive Negative RL RL Supply Current IABC Vos Sensitivity Positive Negative Il.Yos/Il.Y+ Il.Yos/Il.Y- = = 350 500 p.A 0" Over Specified Temp Range "",5 pA "",5 pA = s: IABC s: 500 p.A s: IABC s: 500 p.A 500 p.A, ·Both Channels Differential Input Current IABC Leakage Current IABC O,lnput = 5 7 350 500 650 +14.2 -14.4 +12 -12 2.6 Common Mode Range Referred to Input (Note 5) 20Hz 0 D !; i -13 ~co2 =-13.& ..::IE Cco -14 ~"'-14.5 '8.1IlA, '1lA 10jtA lBOjtA AMPLIFIER BIAS CURRENT (lABel Leakage Currant lUi Vl!.IIT.1III I VeMR!. I VS= '±'f~ Ii RLOAO= .. TA· ·C V III fl + "'IN"\-I YIIt"YOUT7 ~ ~ / V ./ DV VO~ - r= 1-=-= II .11lA lIlA 10jtA IOOIlA 1000jtA AMPLIFIER BIAS CURRENT (lABCI f, 10 -SloC -25°C goc 25°C 50°C 75°C 100°C 'Z&OC AMBIENT TEMPERATURE (TAl 100Input Laakage i F==f+'2&0 ...a:IiiIQll a: , ~ :;:'02 ~ r-- 1--1< ..: C C ~IO ... ~ .!! I 8 I 2 3 4 5 &, 7 INPUT DIFFERENTIAL VOLTAGE Ampllfl.r Bias Voltage va 2000 7 s:-'800 .!.1600 6 .,4DO ii:s .!!- 1200 S A=+ i"c ". CI ...c ...~2 _ 800 ii! - :::4 '"' ~3 i!!I'DOO Ii! Output Realstance Input and Output Capacitance Amplifier BIas CUrrant 600 400 I 200 lOOOIlA a 1 .IIlA lilA lallA lGOIlA lGOallA AMPLIFIER BIAS CURRENT (lABCI a.lllA lilA 10llA l00IlA l000IlA AMPLIFIER BIAS CURRENT (lABCI TL/HI7981-3 1-652 Typical Performance Characteristics Distortion vs Differential Input Voltage 1 (Continued) Voltage vs Amplifier Bias Current Output Noise vs Frequency 20 r-rmmr.:"'"""'!lr.:'rTTTI1IIrTTTmm Vs = ±tS V+Jl-ltHtlllllLlI:>.\,!U!lI1III R • 10 Knll~~ lIUO~~_ _ e z ~! -20 I-+~*-H.II"~ f>~" 1- ~!:. »J co ~ . co "'> :.... ~ :::1-40 cu, Iii ~ ~~ -80 r co -10 ~ &UO '> 500 i 400 300 i ~". I-HttttlIt--H-t\'\'I~'OL~I.··t 12 lIl-C = 200 m 1111 IA':~ =1 I~~ 1100 co -100 L,.ljlJ..Al:-IJJJllIILjI""A......I~OlLjlA~ 1Ii8;;A l000jlA IABC AMPLIFIER BIAS CURRENT ("AI 010 100 lK 10K lOOK FREQUENCY (Hz) TlIHI7981-4 Unity Gain Follower +16V O.UI,.F .----+--...... ~ 10K INPUTo-....-I\N\,.....-----G--f . ., ......_-DOUTPUT &K 10K -15V UDI,.F TL/HI7981-5 Leakage Current Test Circuit Differential Input Current Test Circuit +15V +3& V -15V TlIHI7981-8 TL/H17981-7 1-653 Circuit Description Linearizing Diodes ' The differential transistor pair Q4 and Qs form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer' :function: For differential voltages greater than a few millivolts, Equation 3 ,becomes less valid and the transconductance be,comes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the,diodes are biased with current sources and the input signal is in the form of current Is. Since the sum of 14 and Is is IABC and the difference is lOUT, currents 14 and 15 can be written as follows: Is kT (1) VIN=-In q 14 where VI\'~ is the differential input voltage, kT Iq is approximately 26 mV at 25°C and Is and 14 are the collector currents of transistors Qs and ~ respectively. With the exception of Q3 ,and Q13, all transistors and diodes ara ,identical in size. Transistors Ql and Q2 with Diode 01 form a current mirror whiqh forces the sum of currents 14 and 15 to equal IABC; 14 + Is = IABC (2) where IABC is the amplifier bias current applied to the gain pin. 14 = IABC _ loUT Is = IABC 2 2 ' 2 !Q + Is IABC + lOUT kT In_2_ _ = kT In 2 2 Is q IABC _ lOUT q 2 2 2 !!2 _ I I <"2 10 2IABC) :. lOUT = IS ( I i ) for Is (3) VIN [IABCQ] = 2kT (4) 15 - 14 Collector currents 14 and Is are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to Is minus 14 thus: ' (5) The term in brackets is then the transconductance of the amplifier and is proportional to IABC. (6) Notice that in deriving Equation 6 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed 10/2 and that the diodes be biased with currents. In practice, replacing the current sources with reSistors will generate insignificant errors. I - I _IABC 4- S-""2 2 Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following i,s true: For small differential input voltages the ratio of 14 and Is approaches unity and the Taylor series of the In function can be approximated as: kT In ~ z kT 15 - 14 q 14 q, 14 + lOUT Applications: Voltage Controlled Amplifiers , Figure 2 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the 13 kO resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Flflure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output. lOUT = 15-14 - 10 Z -Vs -Vs TLlHI7981-8 FIGURE 1. LInearizing Diodes 1~654 Applications: Voltage Controlled Amplifiers (Continued) For optimum signal-to-noise performance, IABC should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the SIN ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. SIN may be optimized by adjusting the magnitude of the input signal via RIN (Figure 2) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting RL. Although the noise contribution. of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, 10 should be as large as possible. This minimizes the dynamic junction resistance of the diodes (rel and maximizes their linearizing action when balanced against RIN. A value of 1 mA is recommended for 10 unless the specific application demands otherwise. 30 K +Vs GAIN .---J"'Vv----G CONTROL .....--""--"" OUTPUT 5K -vs TUH/7981-9 FIGURE 2. Voltage Controlled Amplifier 10 ID-IS 2" - lOUT· 15-14 ID+IS - lOUT = IS e.1:BC) T ~ I I TUHI7991-10 FIGURE 3. Equivalent VCA Input Circuit 1-655 ! Stereo Volume Control The circuit of Figuf9 4 uses the excellent matching of the two LMt3700 amplifiers to provide a l)tereo Volume Control with a typical channel-to-channel gairi tracking of 0.3 dB. Flp is provided to minimize the output offset voltage and may be replaced with two 5100 resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figuf9 2 as being: Vo -V = 940 X IABC If Vc is derived from a second signal source then the ,circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Fl[}uf9 5, where: ' - 21S (I ) - 21s v',N2 21s (V- + lAY) 0=1ti ABC = I o R c - 1 ; Rc I The constant teml in tlie above equation may be cancelled by feeding Is x loRcl2(V- + 1.4Y) into 10. The circuit of FigUf9 6 adds RM to provide this current, resulting in a fourquadrant multiplier where Rc is trimmed such that Vo ;." OV for V,N2 = OV. RM also serves as the load resistor for 10. IN +15V 10 K VINI RIN ..r 7 IK ISK RD Rp ........-e--aVOl S.1K Vc 3D K -ISV RC 10K VINZ RIN r 7 lK .............-oVoz Rp 5.1 K -ISV TL/H17981-11 FIGURE 4. Stereo Volume Control VINZ MODULATION 'ABC lO'K_ (l01-------'VV\;..._---------000 RC VIN I CARRIER o--""""'...- - - - - C l H •......-- . At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation, where gm is again 19.2 X IABC at room tem~rature. Figure Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent gm tracking of the two amplifiers, these filters perform well over several decades of frequency. 100 K 100 K TLlHI7981-17 FIGURE 10. floating Voltage Controlled Resistor 30 K o---~~~----ovc 100 K VIN o---4Nv-. .---O-..... .......-c~.avo fo·RAIm (R+RA)2wC 10 K -15 V TLlH17981-18 FIGURE 11. Voltage Controlled Low-Pass Filter 1·659 Voltage Controlled Filters (Continued) 30 K 220 K 10 K (vos) \NULL >...-'lII'v"v_....-G--f '\'·1 1K 10 K I K I _ 0- RA9m (R + RAl2...C -15 V FIGURE 12. Voltage Controlled HI-Pasa Filter TLlH/7981-19 VCo---------~II'v"v_~ Vo 100 pi 10 K -1& V FIGURE 13. Voltage Controlled 2-Pole Butterworth Lo-Pasa Flltar TLlHI7981-20 IS K o----~----------~-~~v_-ovc 10 K I K LO-PASS OUT I K 20 K BANDPASS OUT FIGURE 14. Voltage Controlled State Variable Filter 1-660 TL/HI7981-21 Voltage Controlled Oscillators The classic Triangular/Square Wave veo of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13700. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as Ie is varied from 1 mA to 10 nA. The output amplitudes are set by IA X RA. Note that the peak differential input voltage must be less than 5V to prevent zenering the inputs. increase amplifier A 1's bias current and thus to increase the charging rate of capacitor C. When V02 is low, IF goes to zero and the capacitor discharge current is set by Ie. The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13700 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360" or 180· for the inverter and 60· per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1 % THO. A few modifications to this circuit produce the ramp/pulse veo of Figure 16. When V02 is high, IF is added to Ie to Vc VOl 10 K FIGURE 15. Triangular/Square-Wave veo -Ie TUHI7981-22 IF veo-~IV~~~~~--------------------------------, 510 K 30 K % 51 K VOl Vpt( ~ (V+ ±O.8V) R2 R, + R2 tH '" 2VpI(C IF tL ~ 2VpI(C Ie 10'" --Lforle« 2vPKe IF ~ I 100 K HI FIGURE 16. Ramp/Pulse veo 1-661 TL/HI7981-23 Voltage Controlled Oscillators (Continued) 30'K 6200 300 22110 30K vco----+~~~~~--------------------------~ THO (Note 11) 14-Pin Ceramic DIP 14-Pin Molded DIP 14-PinSO 14~Pin Side Brazed Ceramic DIP 90"C/W 85·C/W 115·C/W 9O"C/W DC Electrical Characteristics Unless otherwise specified, all limits guaranteed' for TJ = 25·C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Va = 2.5Vand RL > 1M unless otherwise specified. Parameter Conditions Input Offset Voltage Typ (Note 4) LMC660AI LMC660C LMC660E Limit (Notes 4, 9) Limit (Note 4) ,Limit (Note 4) LImit (Note 4) 1 Input Offset Voltage Average Drift Units 3 3 6 6 3.S 3.3 8.3 8.S 20 0.002 Input Offset Current Input Resistance 4 2 80 pA max 100 2 1 80 pA max 7ei 70 63 63 88 88 82 80 100 20 0.001 >1 Common Mode Rejection Ratio OV s: VCM s: 12.0V V+ = 15V 83 Positive Power Supply Rejection Ratio 5V s: V+ s: 15V Va = 2.5V 83 Negative Power Supply Rejection Ratio OV Input Common-Mode Voltage Range V+=5V&15V For CMRR ~ 50 dB s: V- s: -10V Sinking , RL = 6000 (Note 5) Sourchlg Sinking 70 70 63 63 88 88 82 80 dB min dB min 84 84 74 74 82 83 73 70 -0.1 -0.1 -0.1 -0.1 0 0 0 0 V max V+ ...: 2.3 Y+ - 2.8 V+ - 2.3 V+ - 2.5 V+ - 2.3 Y+ - 2.4 V+ - 2.3 Y+ - 2.8 V min 200 VlmV min -0.4 V+ - 1.9 RL = 2 kO (Note 5) Sourcing TeraO 94 " mV max p'vrc 1.3 Input Bias Current Large Signal Voltage Gain LMC680AMD LMC660AMJ/883 2000 500 1000 250 1-670 400 440 ,300 300 400 200 100 180 180 90 90 70 120 80 40 200 220 150 100 150 200 100 7S 100 100 50 50 35 80 40 20 dB min VlmV min V/mV min V/mV min Electrical Characteristics DC (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified. Parameter Output Swing Conditions V+ = 5V RL = 2kOtoV+/2 Typ (Note 4) 4.87 0.10 V+ = 5V RL = 6000 to V+ 12 4.61 0.30 V+ = 15V RL = 2 kO to V+ /2 14.63 0.26 V+ = 15V RL = 6000toV+/2 13.90 0.79 Output Current V+ = 5V Sourcing, Vo = OV Sinking, Vo = 5V Output Current V+ = 15V Supply Current Sourcing, Vo = OV 22 21 40 Sinking, Vo = 13V (Note 12) 39 All Four Amplifiers Vo = 1.5V 1.5 LMC660AMD LMC660AMJ/883 LMC660AI LMC660C LMC660E Umlt (Notes 4, 9) Limit (Note 4) Limit (Note 4) Umlt (Note 4) Units 4.82 4.82 4.78 4.78 4.77 4.79 4.76 4.70 0.15 0.15 0.19 0.19 0.19 0.17 0.21 0.25 4.41 4.41 4.27 4.27 4.24 4.31 4.21 4.10 0.50 0.50 0.63 0.63 0.63 0.56 0.69· 0.75 14.50 14.50 14.37 14.37 14.40 14.44 14.32 14.25 0.35 0.35 0.44 0.44 0.43 0.40 0.48 0.55 13.35 13.35 12.92 12.92 13.02 13.15 1.2.76 12.60 1.16 1.16 1.45 1.45 1.42 1.32 US8 1.75 16 16 13 13 12 14 11 9 16 16 13 13 12 14 11 9 19 28 23 23 19 25 21 15 19 28 23 23 19 24 20 15 2.2 2.2 2.7 2.7 2.9 2.6 2.9 3.0 1·671 V min V max V min V max V min V max V min V max mA min mA min mA min mA min mA max AC Electrical Characteristics Unless otherwise specified. all limits guaranteed for T J = 25'C. Boldtace.limits apply at the temperature extremes. Y + Y- = OY. YCM = 1.5Y. Yo = 2.5Y and RL > 1 M unless otherwise specified. "\j LMC660AMD Parameter Conditions Typ LMC660AMJ/883 (Note 4) Umlt 1.1 (Note 6) LMC660AI LMC660C LMC660E Umlt Umlt Umlt (Note 4) 5Y. Units . (Notes 4, Slew Rate = 9) (Note 4) (Note 4) 0.8 0.8 0.8 0.8 0.5 0.6 0.7 0.4 0.5 VlILS min Gain-Bandwidth Product 1.4 Phase Margin 50 Deg Gain Margin 17 dB Amp-to-Amp Isolation (Note 7) Input Referred Voltage Noise F= Input Referred Current Noise Total Harmonic Distortion MHz 130 dB 1 kHz 22 nVl.JHz F= 1 kHz 0.0002 pAl.JHz F= 10 kHz. Av =:' -10 0.Q1 % . RL = 2 kO. Vo Y+ = = 8 Vpp 15V Note 1: Applies to both single supply and spl~ supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of 150'C. Output currents in excess of ±30 rnA over long term may adversely affect reliability. Note 2: Tt1e maximum power dissipation is a function of TJ(max)' 9JA, and TA. The maximum !lilowable power dlssipation at any ambient temperature Is Po = (TJ(max)1 - TIJ/9JA· Nota 3: Absolute Maximum Ratings indicate lim~ beyond which damage to the device may occur..Operating Ratings indicate conditions for which the device Is intended to be functional, but do not guarantee specific perionnance limits. For guaranteed specifications and tast condHions, see the Electrical Characteristics. The guaranteed specilications apply only for the test condilions listed. Note 4: Typical values represent the most likely parametriC nonn. Um~ are guaranteed by tasting or correlation. = 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V ,. Vo ,. tl.5V. For Sinking tests, 2.5V ,. Vo ,. 7.5V. Note 6: V+ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates. Note 7: Input referred. V+ = 15V and RL = 10 kfl connected to V+ /2. Each amp excHad In turn with 1 kHz to produce Vo = 13 Vpp. Note 5: V+ Nota B: Human body model, 1.5 kfl in serles with 100 pF. Nota 9: A military RETS electricel test specification Is available on J(9JA. ,-----------------------------------------------------------------------------'r Typical Performance Characteristics Vs = Supply Current vs Supply Voltage Offset Voltage 4.0 '< 5 100 TJ = 1250C ii: t 1.0 I'. ~ 1 12 11 -150 -50 20 100 Output Characteristics Current Sinking Output Characteristics Current Sourcing I ~ I' o. 1 ,/. r o 2S SO 75 100 125 150 TEMPERATURE (DC) 10~~ V Input Voltage Noise vs Frequency 120 ,.--,r-n1T11l,.--,r-n1T11l,.--,r-nmm ~ ! il! d "w 0:a 1 150 TEMPERATURE (DC) I ~r7: V /. ~+ 0.0 1 so TOTAl. SUPPLY VOLTAGE (vae) I ~> i -100 10~~ WI iil ~ TJ = "S5OC o o E ." ~ ! V TJ =25OC , ~ It 10 3.0 2.0 § Input Bias Current 150 is Ii il := ± 7.5V, T A = 25°C unless otherwise specified 100 80 ~l-HtItflHl-HtItflHI-H-HItII O"_~ 0.1 0.01 0.001 0.01 0.1 10 o L-l...LJ.JJIIIL-L.I.J.LLIJII.....J...L.L 0.01==--'---'---'----' 0.001 0.01 0.1 10 100 100 OUTPUT SINK CURRENT (mAl 10 Open-Loop Frequency Response CMRR vs Frequency 140 27 90 120 24 100 at ~ 80 ! 50 ... ...... 80 &0 ~ ... 30 ~ ~ ~ 15 12 I, I'" -20 100 lk ll1k lOOk 1 1M FREQUENCY (Hz) 0 8 8 4121- ='" 'I V I. ~~ TIME (1'.) c I =TA=~50,C= 12 $ 9 ~TA·1!iOOC Tftr- _,""_IIM:1~::II1"'" ~ ••-'.IODIIf',OUTM_I. o ._c;, -ltopT.Ml'UTSINIOM111111 -3 lOOk ~ 1& 1,000 10 1 20 !iI UNSTABLE 1000 100 10 L L 1 -10-1-0.1-0.01-0.00100.0010.010.1 1 10 SINKING 10,00 0 9 "'" 1Oil OVERSHOOT SOURCING LOAD CURRENT (mA) i 20 1 ;:J~ 1M 100,00 0 ~ 100 _ w 5M Stability vs Capacitive Load I I ~ 40 30 FR£QUENCY (Hz) A., = +1 10,000 ~i= '" Stabllltyvs Capacitive Load 100,00 0 :: I \ . "\ I'.. '. ' 10 100 lk 10k lOOk 1M 1011 5 80 70 1\\ FREQUENCY (Hz) Non-Inverting Large Signal Pulse Response to R: ~~~~ rN. 21 1\ ....... 18 -~ ol,~ ,\ 20 20 10 10k Frequency Response vs Capacitive Load 100 80 70 It 100 FREQUENCY (Hz) OUTPUT SOURCE CURRENT (mAl I 1 I 1 ltv. +10or-10 .. .~ UNSTABLE ~ I I 1011 OVERSHOOT 211 OVERSHOOT 1 LL J -10-1-0.1-0.01-0.00100.0010.010.11 10 SINKING SOURCING LOAD CURRENT (mAl TLlH/B767-3 Note: Avoid resistive loads of less than 500n, as \hey may cause instability. 1·673 Application Hints !' Amplifier Topology is generally less than 10 pF. If .the frequency of the feedback pole is much higher than'the "ideal'~ closed-loop bandwidth (the nominal closed"loOp bandwidth in the absence of Cs>, the pole will have a negligible effect on sWlility, as it will add only a small amount of phase shift. The topology chosen for theLMC660, shown in Fif/ure 1, is unconventional (compared to general-purpose op' amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of- the integrator, to allow rail~to-rail output swing. Since the buffer. traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator. Howev~r; if the feedback polE.! is less than approximately 6 to 10 times tne "ideal" -3 dB frequency, a feedback capaCitor, CF, should be cqnnecte.d between the output and the inverting input of the op amp. This condition can also be stated, in terms of the amplifier's low-frequency noise gain: To maintain stability a feedllack capacitor will probably be needed if' , As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via Cj and Cff) by a dedicated unity-gain compensalion driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward. (RF + 1) RIN ~ ~6 X 2'11" X GBW X RF X Cg where ',(:F + 1) is the amplifier's low-frequency noise IN . gain and GBW is the amplifier's gain bandwidth product. An amplifier'S low-frequency noise gain is represented by the formula (~~ + 1) regardless cif whether the amplifier is being used in inverting or non:inverting mode. Note that a feedback capacitor is more likelY to be needed when the noise gain is low and/or the feedback resistor is large. If the above COndition is met'(indicating a feedback capacitor will probably be needed), and the noise gain is large en()ugh that: (~~ + 2~GBW x RF X eg, 1) ::<: TL/H/8787 -4 FIGURE 1. LMC660 Circuit Topology (Each Amplifier) the following value of feedback capacitor is recommended: The large Signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 6000 load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (6000) the gain will be reduced as indicated in the Electrical Characteristics. CF = .......=-Cs-=---:2(:F+1) IN . If (:I~ +1)::: 2~~~W x RF XCs Compensating Input CapaCitance The high input .resistance of the lMC660 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large;value resistors are used, Every amplifier has some capaCitance between each input and AC ground, and also some differential capacitance between the inputs. When tha feedback network around an amplifier is resistive, this input capaCitance (along with any additional capacitance due to circuit board traces, the soeket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier circuit, Figure 2 the frequency of this·pole is the feedback capaCitor should be: . ICg CF = \(GBW X RF Note that these capacitor values are usually Significant '. smaller than those given by the older, more conservative formula: 1. fp = 2'11"CgRp where Cg is the·total capaCitance at the inverting input, including amplifier input capcitance and any stray capacitance from the IC socket (if one is used), circuit board traces, etc., and Rp is the parallel combination of RF and RIN. This formula, as well as all formulae derived below, apply to inverting and non-inverting 'op-amp configurations. CsI ---.,.:.t~---lit! 'Cr TLlH/8767-6 FIGURE 2. General Operational Amplifier Circuit Cs consists of the amplifier's input capacitancs plus any stray capacitance When the feedback resistors are smaller than a few kO, the frequency of the feedback pole will be quite high, since Cg from the circuR board and socket. Cs and the 'feedback resiStors. 1-674 ~ compensatas for the pole caused by .. '. ' ,-----------------------------------------------------------------------------'r Application Hints (Continued) Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to u,se a somewhat larger feedback capacitor to allow for unexpected stray capacitanee, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for CF may be different from the one estimated using the breadboard. In most cases, the values of CF should be checked on the actual circuit, starting with the computed value. PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH·IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC662, typically less than 0.04 pA, it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC660's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 4. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, sinee no leakage current can flow between two pOints at the same potential. For example, a PC board trace-to-pad resistance of 1012n, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC660's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1olIn would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier'S performance. See Figures 5a" 5b, 50 for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 5d. Capacitive Load Tolerance Like many other op amps, the LMC660 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See Typical Performance Characteristics. The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in Figure 3a, the addition of a small resistor (50n to 100n) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation. 100kn Cx{10 pF) Rx (lOon) IC;oad TUH/8767-5 FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure 3b). Typically a pull up resistor conducting 500 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). V+ ~"O~l t.Guard Ring TUH/8767-16 FIGURE 4. Example, using the LMC660, of Guard Ring in P.C. Board Layout TUH/8767 -23 FIGURE 3b. Compenaatlng for Large Capacitive Loads with a Pull Up Resistor 1-675 ~ Q Application Hints (Continued) have to forego some of the advantages of PC board"construction, but the advantages are sometimes well worth the effort of using point-ro-point up-in-the-air wiring. See Figure 6. Cl Rl INPUT JVl,M....t-Io---JW\~-. CAPACITOR -+e r_ Guard Ring FEEDBACK I I I I OUTPUT I TLlH/6767 -17 (a) Inverting Amplifier TLlH/8767-21 R2 (Input pins are lifted out of PC board and soldered directly to componsms. All other pins connected to PC board.) FIGURE 6. Air WIring OUTPUT BIAS CURRENT TESTING The test method of Figure 7 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2momentarily. When S2 is opened, then TLlH/8787-18 (b) Non-Inverting Amplifier S2 (~ush-rod operated) OUTPUT C2 TLlH/8767- I 9 (c) Follower R3 Rl V, 100M L -= R2 V2 • I 100M TLlH/8767-22 FIGURE 7. Simple Input Blaa Current Teat Circuit A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of Ib -, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors. TLlH/8767-20 (d) Howland Current Pump Similarly, if Sl is shorted momentarily (while leaving S2 shorted) FIGURE 5. Guard Ring Connections The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may Ib + = dVOUT dt where 1-676 x (Cl + C,.) Ox is the stray capacitance at the + input. Typical Single-Supply Applications (V+ = 5.0 VDC) Additional single-supply applications ideas can be found in the lM324 datasheet. The lMC660 is pin-for-pin compatible with the lM324 and offers greater bandwidth and input resistance over the lM324. These features will improve the performance of many existing single-supply applications. Note. however. that the supply voltage range of the lMC660 is smaller than that of the lM324. Sine-Wave Oscillator C2 200pF »-...... VOUT +5V Low-Leakage Sampl_nd-Hold 20k 20k Input 9.1k 20k 5/H TLlH/8767-7 TLlH/8767-9 Oscillator frequency is determined by R1. R2. C1. and C2: fosc = 112'ITRC. where R = R1 = R2 and C = C1 = C2. Instrumentation Amplifier ( .. - " R3 R4 10k lOOk This circuit. as shown. oscillates at 2.0 kHz with a peak-topeak output swing of 4.SV. 1 Hz Square-Wave Oscillator Rl.44.2k R4 R2 t--t~~ R5,44.2k R6 10k R7 Rl 91k 20k pol +5V~--~~----~--~~--~ 470k TLlH/8767 -8 If R1 = RS. R3 = R6. and R4 = R7; then VOUT = R2 + 2R1 x R4 VIN R2 R3 .'. Av ~ 100 for circuit shown. For good CMRR over temperature. low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affect CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7. TLlH/8767 -10 • Power Amplifier R4 .....-t +5V ~---M..-- ....-~.VOUT TLlH/8767 -11 1-677 Typical Single-Supply Applications (V+ = 5.0 VDC) (Continued) 10 Hz Bandpass Filter 10 Hz High-Pass Filter Vour c, . YfN--t YOUT 0.015)01" 0.015j.1F R2 2.711 R2 10M R3 8.8M - R3 390k fa - 10 Hz Q - 2.1 Gain - -8.8 fe - 10 Hz d - 0.895· Gain - 1 2 dB passband ripple TUH/8767 -12 High Gain Amplifier with Qffaet Voltage Reduction . 1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only) Rl. TL/H/8767-13 R3 R4 UI0560.:>-+-..Vour Gain - Ie - 1 Hz d = 1.414 Gain - 1.57 -46.8 Output offset TLlH/8767-14 voltage reduced to the level Of the input offset voltage Of the bottom amplifier (typically 1 mV). TUH/8767-15 1-678 t;tINational Semiconductor LMC662 CMOS Dual Operational Amplifier General Description The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It operates from + 5V to + 15V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input Vas, drift, and broadband noise as well as voltage gain into realistic loads (2 kO and 6000) are all equal to or better than widely accepted bipolar equivalents. This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features. Features • • • • • Rail-to-rail output swing Specified for 2 kO and 6000 loads High voltage gain Low input offset voltage Low offset voltage drift 126 dB 3 mV 1.3 ILvrc • • • • • • • Ultra low input bias current 2 fA Input common-mode range includes VOperating range from + 5V to + 15V supply Iss = 400 /AA/amplifier; independent of V+ Low distortion 0.01% at 10 kHz Slew rate 1.1 V/ILS Available in extended temperature range (-4O"C to + 125D C); ideal for automotive applications • Available to a Standard Military Drawing specification Applications • • • • • • • • High-impedance buffer or preamplifier Precision current-to-voltage converter Long-term integrator Sample-and-hold circuit Peak detector Medical instrumentation Industrial controls Automotive sensors Connection Diagram 8-Pln DIP/SO OUTPUT A ...! ~u ~ v- I INVERTINGINPUTA- ~A NON·INVERTING INPUT A 3 v- 4 - 1a\ 7 OUTPUT a T+ +L!.... INVERTING INPUT a , - - _..6...... NON-l.VERTING INPUT a TLlH/9763-1 Ordering Information Temperature Range Package Military 8-Pin Ceramic DIP Extended Industrial NSC Commercial Drawing LMC662AMJ/883 Transport Media J08A Rail 8-Pin Small Outline LMC662EM LMC662AIM LMC662CM M08A Rail, Tape and Reel 8-Pin Molded DIP LMC662EN LMC662AIN LMC662CN N08E Rail D08C Rail a-Pin Side Brazed Ceramic DIP LMC662AMD 1-679 Operating Ratings (Note 3) Absolute Maximum Ratings (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ± Supply Voltage Differential Input Voltage Supply Voltage (V+ - V-I 16V (Note 12) .output Short Circuit to V + .output Short Circuit to V- Temperature Range LMC662AMJ/883, LMC662AMD LMC662AI LMC662C LMC662E Supply Voltage Range (Note 1) Power DiSSipation Thermal Resistance (6JIV (Note 11) 8·Pin Ceramic DIP 8·Pin Molded DIP 8·PinSQ 8·Pin Side Brazed Ceramic DIP Lead Temperature (Soldering, 10 sec.) 260"C .,.. 65"C to + 150"C Storage Temp. Range (V+) +0.3V, (V-) -0.3V Voltage at Input/.output Pins' Current at .output Pin ±18mA ±5mA Current at Input Pin Current at Power Supply Pin -55"C S; TJ S; + 125"C -40"C S; TJS; +85"C ~,c S; TJ S; +70"C -40"G S; TJ S; + 125"C 4.75Vto 15.5V (Note 10) 100"C/W 101"C/W 165"C/W 100"C/W 35mA (Note 2) Power Dissipation 150"C Junction Temperature ESD Tolerance (Note 8) 1000V DC Electrical Characteristics unless otherwise specified, all limits guaranteed for TJ = 25"C.·Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Parameter Conditions Input Offset Voltage Typ (Note 4) LMC662A1 LMC662C LMC662E Limit (Note 4, 9) Limit (Note 4) . Limit (Note 4) Limit (Note 4) 1 Input .offset Voltage Average Drift Units 3 3 6 6 3.5 3.3 6.3 6.5 20 0.002 Input Offset Current 4 2 60 pA max 100 2 1 60 pA max 70 70 63 63 68 68 62 60 100 ~O 0.001 >~ Input Resistance Common Mode Rejection Ratio OV S; VCM S; 12.0V V+ = 15V 83 Positive Power Supply Rejection Ratio 5V S; V+ S; 15V Vo = 2.5V 83 Negative Power Supply Rejection Ratio OV S; V- S; -10V Input Common·Mode Voltage Range V+=5V&15V For CMRR :?! 50 dB RL = 2 ka (Note 5) S9urcing Sinking RL = 6000 (Note p) Sourcing Sinking Teraa 70 70 63 63 68 68 62 60 dB min dB min 84 84 74 74 82 83 73 70 -0.1 -0.1 -0.1 -0.1 0 0 0 0 V max 'V+ - 2.3 Y+ -'2.6 V+ - 2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.4 V+ - 2.3 Y+ - 2.6 V min V/mV min 94 -0.4 V+ - 1.9 mV max p'vrc 1.3 Input Bias Current Large Signal Voltage Gain LMC662AMJ/883 LMC662AMD 2000 500 1000 250 1·680 400 440 300 200 300 400 200 100 180 180 90 90 70 120 80 40 200 220 150 100 150 200 100 75 100 100 50 50 35 60 40 20 dB min VlmV min VlmV min V/mV min DC Electrical Characteristics (Continued) unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldlace limits apply at the temperature extremes. V + = 5V, V- = OV, VCM = 1.5V, Va = 2.5Vand RL > 1M unless otherwise specified. Parameter Output Swing Conditions V+ = 5V RL = 2kOtoV+/2 Typ (Note 4) 4.87 0.10 V+ = 5V RL = 6000 to V+ /2 4.61 0.30 V+ = 15V RL = 2kOtoV+12 14.63 0.26 V+ = 15V RL = 6000 to V+ /2 13.90 0.79 Output Current V+ = 5V Sourcing, Va = OV Sinking, Va = 5V Output Current V+ = 15V Sourcing, Va = OV Sinking, Va = 13V (Note 12) Supply Current Both Amplifiers Va = 1.5V 22 21 40 39 0.75 LMC662AMJ/883 LMC662AMD LMC662AI LMC662C LMC662E Limit (Note 4, 9) Umlt (Note 4) Limit (Note 4) Umlt (Note 4) Units 4.82 4.82 4.78 4.78 4.77 4.79 4.78 4.70 0.15 0.15 0.19 0.19 0.19 0.17 0.21 0.25 4.41 4.41 4.27 4.27 4.24 4.31 4.21 4.10 0.50 0.50 0.63 0.63 0.83 0.58 0.89 0~75 14.50 14.50 14.37 14.37 14.40 14.44 14.32 14.25 0.35 0.35 0.44 0.44 0.43 0.40 0.48 0.55 13.35 13.35 12.92 12.92 13.02 13.15 12.78 .12.80 V min V max V min V max V min V max V min 1.16 1.16 1.45 1.45 1.42 1.32 1.58 1.75 V max 13 9 mA min 13 9 mA min mA min 16 16 13 12 14 11 16 16 13 12 14 11 19 28 23 23 19 25 21 15 19 28 23 23 19 24 20 15 1.3 1.3 1.6 1.6 1.8 1.5 1.8 1.9 mA min mA max • 1-681 AC Electrical Characteristics unless otherwise specified, all limits guaranteed for TJ Y- = OY, YCM = 1.5Y, Yo = 2.5Yand RL > I Parameter Slew Rate = 25°C. Boldface limits apply at the temperature extremes. y+ = 5Y, 1M unless otherwise specified. Typ Conditions LMC662AMJ/883 LMC662A1 LMC662C LMC662E LMC662AMD (Note 4) (Note 6) 1.1 Units Umlt Umlt Umlt Umlt (Note 4, 9) (Note 4) (Note 4) (Note 4) O.B O.B ,O.B O.B Vlp,s 0.5 0.8 0.7 0.4 min Gain-Bandwidth Product 1.4 MHz Phase Margin 50 Deg Gain Margin 17 dB 130 dB Amp-to-Amp Isolation (Note 7) Input-Referred Yoltage Noise = 1 kHz = 1 kHz F = 10kHz,Ay = -10 RL = 2 kO, YO = 8 Ypp Y+ = 15Y Input-Referred Current Noise Totsl Harmonic Distortion F 22 nY/./Hz F 0.0002 pAl./Hz 0.01 % Note 1: Applies to both single-supply and splR-supply operation. Continuous short circuR operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of 15O"C. Output currents in excess of ±30 mA 9V<'r long term may adversely affect reliabilRy. Note 2: The maximum power dissipation Is a function of TJ(mox), BolA> and TA. The maximum allowable power dissipation at any ambient temperature Is Po = (TJ(mox)-TAl/BJA· Note 3: Absolute Maximum Rati~gs indicate limits beyond which damage to lIIe device may occur. Operating Ratings Indicete conditions for which the device Is Intended to be functional, but do not guarantee specific performance limits. For guaranteed spsciflCBtlons and test ccndltions, see the Electrical Characteristics. The guaranteed specHications apply only for the test ccnditions listed. Note 4: Typical values represent the most likely parametric norm. UmRs are guaranteed by testing or correlation. = 15V, VOM = 7.5Y and RL connected to 7.5V. For Sourcing tests, 7.5V ,.; Vo ,.; 11.5V. For Sinking tests, 2.5V ,.; Vo ,.; 7.5V. = 15V. Connected as Voltege Follower with 10V step input. Number specified is the slower of the positive and negative slew rates. Note 7: Input referred. V+ = 15Vand RL = 10 kG connected to y+ 12. Each amp ex_In tum with 1 kHz to produce Vo = 13 Vpp. Note 5: V+ Note 8: V+ Note 8: Human body model, 1.5 kG in series with 100 pF. Note 9: A military RETS electrical test specification is availeble on request. At the time of printing, the LMC882AMJ/883 RETS spec ccmplied fully with the boldface IimRs in this cclumn. The LMC882AMJ/883 may also be procured to a Stendard Military Drawing specification. Note 10: For oparating at elevated temperatures the device must be derated besed on the thermal resistenca BJA with Po Note 11: All numbers apply for packages solderad directly Into a PC board. Note 12: Do not ccnnect output to V+ when V+ is greater than 13V or reilabilRy may be adversely affected. 1-.682 = (TrTAl/BJA. Typical Performance Characteristics Vs = Supply Current vs Supply Voltage 1600 3. I E ~ ,~ TJ -400 o "" o 1 "I ,} -S5OC ~ dt is the stray capacitance at the + input. r-----------------------------------------------------------------------------~~ Typical Single-Supply Applications (V+ i: = 5.0 Vocl ! Low-Leakage Sample-and-Hold Additional single-supply applications ideas can be found in the LM358 datasheet. The LMC662 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input resistance over the LM356. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LM662 is smaller than that of the LM358. OUTPUT INPUT s/H TL/H/9763-15 Instrumentation Amplifier r t TUH/9763-7 If AI = A5, Aa = Ae, and ~ = A7; then 1 Hz Square-Wave Oscillator VOUT = A2 + 2A1 x A4 VIN A2 A3 :. Av :::: 100 for circuit shown. For good CMAA over temperature, low drift resistors should be used. Matching of A3 to A6 and A4 to A7 affects CMAR. Gain may be adjusted through A2. CMAA may be adjusted through A7. R4 Rl Sine-Wave OSCillator R2 470k R3 470k 470k R2 C2 392k 200pF TUH/9763-9 Power Amplifier +5V R4 20k 20k 20k 9.1k lN914 ex 30DpF TUH/9763-10 TUH/9763-6 Oscillalorfrequency is determined by Rl, R2, Cl, and C2: lose = 1/2".RC where R = Rl = R2 and C = Cl = C2. This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V 1-687 • Typical Single-Supply Applications (V+ = 5.0 Voc) (Continued) . ·10 Hz Hlgh-Pa.. Filter 10 Hz Bandp&ss Filter C2 O.00681&F +5V R4 Your V VIN :"'t---i~t-""'--I Rl Vour 560k Cl O.OI5I&F O.OI5I&F +5V +J.J>Jv-....... R2 2.7M R3 fe = 10 Hz d = 10 Hz Q = 2.1 Gain = -8.8 fO = 0.895 390k Gain = 1 1 Hz Low-Pa.. Filter (Maximally Flat, Dual Supply Only) Rl R4 470k 270k TUH/9763-12 2 dB passband ripple TL/H/9763-11 High Gain Amplifier with Offset Voltage Reduction R3 Vour VIN R2 = = = fe 1 Hz d 1.414 Gain 1.57 TL/H/9763-13 R5 O.II&F R6 +5V +,",,",M...-4~WIr-" 22k 15k TUH/9763-14 Gain = -46.8 Output offset voltage reduced to the level of the input offset voltage of the bottom amplHler (typically 1 mV). 1-688 tflNational Semiconductor LMC6001 Ultra Ultra-Low Input Current Amplifier General Description Featuring 100% tested input currents of 25 fA max., low operating power, and ESO protection of 2000V, the LMC6001 achieves a new industry benchmark for low input current operational amplifiers. By tightly controlling the molding compound, National is able to offer this ultra-low input current in a lower cost molded package. To avoid long turn-on settling times common in other low input current opamps, the LMC6001A is tasted 3 times in the first minute of operation. Even units that meet the 25 fA limit are rejected if they drift. Because of the ultra-low input current noise of 0.13 fAl-/HZ, the LMC6001 can provide almost noiseless amplification of high resistance signal sources. Adding only 1 dB at 100 kO, 0.1 dB at 1 MO and 0.01 dB or less from 10 MO to 2,000 MO, the LMC6001 is an almost noiseless amplifier. The LMC6001 is ideally suited for electrometer applications requiring ultra-low input leakage such as sensitive photoda- tection transimpedance amplifiers and sensor amplifiers. Since input referred noise is only 22 nV/-/HZ, the LMC6001 can achieve higher signal to noise ratio than JFET input type electrometer amplifiers. Other applications of the LMC6001 include long interval integrators, ultra-high input impedance instrumentation amplifiers, and sensitive electrical-field measurement circuits. Features (Max limit, 25°C unless otherwise noted) • • • • • Input current (100% tested) Input current over temp. Low power Low Vos Low noise 25 fA 2 pA 750 ,..A 350 ,..V 22 nV/,JHZ" @1 kHz Typ. Applications • • • • Electrometer amplifier Photodiode preamplifier Ion detector A.T.E. leakage testing Connection Diagrams 8-PlnDIP a-Pin Metal Can 8 NC CAN NC v+ INVERTING INPUT 6 NON-INVERTING 3 INPUT V- 4 5 OUTPUT INVERTING INPUT NC 2 TL/H/11887-1 Top View TL/H/11887-2 Top View Ordering Information Package Industrial Temperature Range - 40"C to + asoc NSCPackage Drawing a-Pin MoidedOIP LMC6001AIN, LMC6001BIN, LMC6001CIN NoaE a-Pin Metal Can LMC6001AIH, LMC6001BIH 1-689 HOaC Absolute Maximum Ratings (Note 1) Current at Output Pin If MIlitary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage Voltage at Input/Output Pin Supply Voltage (V+ - V-) Output Short Circuit. to V- (Note 2) Lead Temperature (Soldering. 10. Sec.) Temperature Range LMC60.0.1AI, LMC60.0.1BI, LMCOO0.1CI -40"C ~ TJ ~ +S5·C 260"C Storage Temperature -65·Cto + 150.·C Junction Temperature 150.·C ±·10. mA Current at Input Pin 2kV Operating Ratings (Note 1) -0.,3Vto +16V (Notes 2: 10.) (Note 3) ESD Toleram;e (Note 9) (V-f.- O:3V Output Short Circuit to V + 40mA Power Dissipation ± Supply Voltage (V+) + 0.,3V, , ±30.mA Current at Power Supply Pin 4.5V Supply Voltage ~ ~ V+ Thermal Resistance (Note 11) 6JA. N Package 6JA, H Package 6JC, H Package 15.5V 100"C/W 145·C/W 45·C/W PO,wer Dissipation (NoteS) DC Electrical Characteristics Limits in standard typeface guaranteed for TJ = 25·C and limits in boldf._ type apply at the temperature extremes, Unless otherwise specified, V+ = 5V, V- = o.V, VCM = 1.5V, and RL > 1M. Symbol 18 Parameter Input Current lOS Input Offset Current Vos Input Offset Voltage Either Input, VCM Vs = ±5V = o.V, = ±5V, VCM = o.V Input Offset Voltage Drift 2,5 RIN Input Resistance CMRR Common Mode Rejection RatiO o.V ~ VCM ~ 7,5V V+ = 10.V Positive Power Supply Rejection Ratio 5V Negative Power Supply. Rejection Ratio o.V~ Large Signal Voltage Gain Sourcing, RL (Note 6) +PSRR -PSRR Av 10. . 5 Vs TCVos Typical (Note 4) Conditions Umlts (Note 5) LMC6001AI LMC6001BI Units LMC6001CI 25 10.0. 1000. 2000 4000 4000 1000 2000 2000 0..35 1.0. 1.0. 1.0 1.7 2.0 0..7 1.35 1.35 1.35 2.0 10. 10. 75 72 66 72 68 63 ~ V+ V- ~ 15V -10.V ~ Sinking, RL (Note 6) = = 2 kn 2 kn S3 94 140.0. 350. 1·690. mV p,V/·C >1 83 fA Teran 73 66 66 70 63 63 So. 74 74 77 71 71 dB min 40.0. 30.0. 30.0. 300 200 200 VlmV 1SO. 90. 90. min 100 60 60 DC Electrical Characteristics Limits in standard typeface guaranteed for TJ = 25°C and limits in boldface type apply at the temperature extremes. Unless otherwise specified, V+ = 5V, V- = OV, VCM = 1.5V, and RL > 1M. (Continued) Symbol VCM Typical (Note 4) Conditions Parameter Input Common-Mode Voltage V+ = 5V and 15V For CMRR ;?; 60 dB -0.4 V+ - 1.9 Vo Output Swing V+ = 5V RL = 2 kO to 2.5V 4.87 0.10 V+ = 15V RL = 2 kOto 7.5V 14.63 0.26 10 Output Current Sourcing, V+ Sinking, V+ = Sourcing, V+ Sinking, V+ (Note 10) Is Supply Current V+ V+ = = = 5V, Vo = = 5V, Vo 5V, Vo = 15V, Vo 15V, Vo = 15V, Vo = 5V = = 1.5V = OV 7.5V 22 21 OV 13V 30 34 450 550 Limits (Note 5) Units LM6001AI LM6001BI LM6001CI -0.1 0 -0.1 0 -0.1 0 V+ - 2.3 V+ - 2.3 V+ - 2.3 Y+ - 2.5 Y+ - 2.5 Y+ - 2.5 4.80 4.75 4.75 4.73 4.67 4.87 0.14 0.20 0.20 0.17 0.24 0.24 14.50 14.37 14.37 14.34 14.25 14.25 0.35 0.44 0.44 0.45 0.56 0.58 16 13 13 10 8 8 16 13 13 13 10 10 28 23 23 22 18 18 28 23 23 22 18 18 750 750 750 900 900 900 850 850 850 950 950 950 V max V min V min V max V min V max mA min /LA max • 1-691 AC Electrical Characteristics Limits in standard typeface guaranteed for TJ =' 25'C and limits in boldface Qpe apply at the temperature extremes. Unless otherwise specified, V+ = 5V, V- = OV, VCM = 1.5Vand RL > 1M.. Symbol SR Parameter Slew Rate Typical (Note 4) Conditions (Note 7) 1.5 Limits (Note 5) LM6001AI LM6001BI Units LM6001CI 0.8 0.8 0.8 0 •• 0 •• 0 •• V/,,"s min GBW Gain-Bandwidth Product 1.3 MHz 4>l m Phase Margin 50 Deg GM Gain Margin 17 dB en Input-Referred Voltage Noise F = 1 kHz 22 nV/VHz in Input-Referred Current Noise F = 1 kHz 0.13 IA/VHz THO Total Harmonic Distortion F= 10kHz,Av= -10, RL = 100 kn, Vo = 8 Vpp 0.Q1 0/0 Nota 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate oonditions for which the device Is intended to be functional but do not guarantee specific performance limits. For guaranteed specifications and test oonditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test oondHions Il8Ied. Note 2: Applies to both slngle supply and splH supply operation. Continuous short circuK operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150"C. Oulput currents in excess of ±30 mA over long term may adversely affect reliability. Note 3: The maximum power dlsslpation Is a function of TJ(max). 8JA. and TA. The maximum allowable powar dlsslpetion at any ambient temperature is Po ~ (TJ(max) - TtJI8JA· Nota 4: Typical values represent the most likely paramstric norm. Note 5: All limits are guaranteed by testing or statistical analysis. Nota 6: V+ Nota 7: V+ = 15V. VCM ~ 7.5V and RL oonnected to 7.5V. For Sourcing tests, 7.5V ,;; Vo ,;; 11.5V. For Sinking tests, 2.5V ,;; Vo ,;; 7.SV. = 15V. Connected as Voltage Follower with 10V step input. Umit specified Is the lower of the positive and negative slew rates. Note 8: For operating at elevated temperatures the device must be derated bssed on the thermal resistance 8JA with Po Nota 9: Human body model, 1.5 kG in series with 100 pF. Nota 10: Do not oonnect the ouiput to V+, when V+ is greater than 13V or reliabHlty will be adversely affected. Note 11: All numbers apply for packages soldered dlrectiy Into a printed ciralK board. 1-692 ~ (TJ - TtJI8JA. r-----------------------------------------------------------------------------~~ Typical Performance Characteristics Vs = ± 7.SV, TA B: ~ .... = 25°C, unless otherwise specified C) Input Current va Temperature Input Current vs VCM Vs = ±5V 25 100pA 10pA /' ~ z ~ lpA i3 ~ IOOfA "'~ lOlA ./ /' V 20 i 10 ..... r- z " o 100aA o 25 50 75 100 125 -3 ~ lao 30 90 ~ -10 - '\.tk -20 ~ ~, ~ lO'l I I 0.1 I I 0.01 0.001 0.001 OUTPUT SINK CURRENT(mA) 100 Ik 0.1 10 100 Gain and Phase Response vs Capacitive Load with RL = 500 kO 1 "" , Phase -20 10 0.01 OUTPUT SOURCE CURRENT(mA) 90 15 0.1 lOOk ... '2k Gain § 0.01 10k + I :!; 0.001 0.001 Ik > Gain and Phase Response va Temperature (-55"Cto + 125"C) 100 IDa Output Characteristics Sourcing Current SOURCE RESISTANCE (n) Output Characteristics Sinking Current !l1 10 I 1\ 0.001 100 " I J 'J z 0.01 ~ \ FREQUENCY (Hz) V : FREQUENCY (Hz) "z lOOk Noise Figure vs Source Resistance ~ 10 ~ 10k FREQUENCY (Hz) 0 E Ik \ I\.. r\ ~ 20 ~ \ ~ 40 10 16 1--- V-, IpPIY 60 ~ 10 60 14 "'j" 80 ~ ~ 100 80 12 ~UPPJ1 1"""'_ .... ,....Ii- 1\ V I \ v TI~E (1 Ju/D;v) "- :'- fTI~E(1 JOs/D;v) - I 1\.,= 1,.n Un~t.JI' rcill~n ~ AV=+l 140 120 100 80 60 25" qyarshoot 40 20 -6-5-4-3-2-10 1 2 345 6 OUTPUT VOLTAGE (V) TL/H/11887-4 1-694 I"'" i: Applications Hints AMPLIFIER TOPOLOGY Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a. The LMC6001 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional op-amps. These features make the LMC6001 both easier to design with, and provide higher speed than products typically found in this low power class. § .... +V COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6001. 20n Although the LMCS001 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors with even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. G.OAD 1000 pr 90k ~------------~~ When high input impedances are demanded, guarding of the LMCS001 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capaCitance as well. (See Printsd-Circuit-Board Layout for High Impedance Worlc). TL/H/11887-8 FIGURE 28. LMC6001 Nonlnvertlng Gain of 10 Amplifier, Compensated to Handle Capacitive Loads In the circuit of Ftgure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. 1 ---~--- 27TR1CIN 27TRM or R1 CIN ~ R2Cj Since it is often difficult to know the exact value of CIN, Cj can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMCS62 for a more detailed discussion on compensating for input capaCitance. Capacitive load driving capability is enhanced by using a pullup resistor to V+ (Ftgure 2b). Typically a pullup resistor conducting 500 p.A or more will significantly improve capacitive load responses. The value of the pullup resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pullup resistor (see Electrical Characteristics). V+ ~', R2 R1 VIN O--M""'--,--....--I , GN= I --- I 10k The effect of input capacitance can be compensated for by adding a capacitor, Cj, around the feedback resistors (as in Figure 1) such that: 1 VOUT > ......-oVOUT I I I TL/H/11887-7 FIGURE 2b. Compensating for Large capacitive Loads with a Pu"up Resistor TUH/11887-5 FIGURE 1. Cancelling the Effect of Input capacitance CAPACITIVE LOAD TOLERANCE PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see Typical Curves). It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6001, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface 1-695 ~ ~ r-----------------------------------------------------------------------------------------~ ~ ::E ...I Applications Hints (Continued) leakage of the PC board, even though it may sometimes appear acceptably IQw, because under conditions of l1igh humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6001's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc., connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120., which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would, cause a 500 times degradation from the LMC6001's actual performance. If a guard ring is used and held within 1 mV Of the inputs, then the same resistance of 10120. will only cause 10 fA of leakage current. Even this small amount of leakage will degrade the extremely low input current performance of the LMC6001. See Figures 4a, 4b, 4c for typical connections of guard rings for standard opamp configurations. R2 OUTPUT TLlH/II887-10 (b) Non-Inverting Amplifier OUTPUT TLlH111887-11 (c) Follower FIGURE 4. Typical Connections of Guard Rings The designer should be aware tl:1at when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an'excellent insulator. In this case you may have to forego some of the advantages of PC board cdnstruction, but the advantages are sometimes well worth the effort' of using pOint-to-point up-in-the-air wiring. See Figure 5. ' a ~ " rn" rn° [1' , "-INI '0 +INI y-" FEEOBACK CAPACITOR 0' '0 l t.Guard Ring T,LlH/11887 -8 FIGURE 3. Examples of Guard Ring In PC Board llIyout TL/H/11887-12 (Input pins are lifted out of PC board and soldared directly to components. All other pins connecmd to PC board), Cl FIGURE 5. Air Wiring INPUT Another potential source of leakage that might be overlooked is the device package. When the LMC6001 is manufactured, the device is always handled with conductive finger cots. This is to assure that salts and skin oils do not cause leakage paths on the surface of the package. We recommend that these same precautions be adhered to, during all phases of inspection, test and assembly. JVI,.,.....-4......---'IIVv--.. I I Guard Ring ........ i_ OUTPUT TLlH/II887-9 (a) Inverting Amplifier 1-696 placed in the feedback loop. This cancels the temperature dependence of the probe. This resistor must be mounted where it will be at the same temperature as the liquid being measured. The LMC6001 amplifies the probe output providing a scaled voltage of ±100 mV/pH from a pH of 7. The second opamp, a micropower LMC6041 provides phase inversion and offset so that the output is directly proportional to pH, over the full range of the probe. The pH reading can now be directly displayed on a low cost, low power digital panel meter. Total current consumption will be about 1 mA for the whole system. The micropower dual operational amplifier, LMC6042, would optimize power consumption but not offer these advantages: 1. The LMC6001 A guarantees a 25 fA limit on input current at 25'C. Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (110) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6001 is designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the 110 pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. Typical Applications The extremely high input resistance, and low power consumption, of the LMC6001 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, electrostatic field detectors and gas chromotographs. 2. The input ESD protection diodes in the LMC6042 are only rated at 500V while the LMC6001 has much more robust protection that is rated at 2000V. Two Opamp, Temperature Compensated pH Probe Amplifier The setup and calibration is simple with no interactions to cause problems. 1. Disconnect the pH probe and with R3 set to about midrange and the noninverting input of the LMC6001 grounded, adjust R8 until the output is 700 mV. 2. Apply -414.1 mV to the noninverting input of the LMC8001. Adjust R3 for and output of 1400 mV. This completes the calibration. As real pH probes may not perform exactly to theory, minor gain and offset adjustments should be made by trimming while measuring a precision buffer solution. The signal from a pH probe has a typical resistance between 10 MO and 1000 MO. Because of this high value, it is very important that the amplifier input currents be as small as possible. The LMC6001 with less than 25 fA input current is an ideal choice for this application. The theoretical output of the standard AglAgCI pH probe is 59.16 mVlpH at 25'C with OV out at a pH of 7.00. This output is proportional to absolute temperature. To compensate for this, a temperature compensating resistor, R 1, is C1 R9 +5 R4 >-.....-.OUT pH PROBE II h -V 01 R1 100k + 3500 ppmrC' R268.1k R3, 8 5k R4,9100k TLlH/11887-15 FIGURE 6. pH Probe Amplifier R538.5k R6619k R797.6k 01 LM404001 Z-2.5 C1 2.2 "F '(Micro-ohm style 144 or similar) 1-697 .- r-------------------------------------------------------------------------------------, I CJ ~ Ultra;;Low Input Current Instrumentation Amplifier F/{/urs 7 shows an instrumentation amplifier that features R2 provides a simple means of adjusting gain over a wide range Without degrading CMRR. Ai is an initial trim llsed to maximize CMRR Without using super precision matched reo sistors. For good CMRR over'temperature, low drift resistors should be used. high differential and common mode input resistance (>10140),0.01% gain accuracy at Av = 1000, exceller:Jt CMRR with 1 MO imbalance,in source resistance. Input cur· rent is less than 20 fA and offset drift is less than 2.5 p.Vrc. R3 R4 10k lOOk R6 10k 91k TLlH/11887-13 :.AV '" 100 for circuR shown (R2 = 9.85k). FIGURE 7. Instrumentation Amplifier 1·696 r-------------------------------------------------------------------------, ~ f}1National Semiconductor N N LMC6022 Low Power CMOS Dual Operational Amplifier General Description The LMC6022 is a CMOS dual operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V-, low input bias current, and voltage gain (into 1OOk and 5 kO loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 0.5 mW. This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LMC6024 datasheet for a CMOS quad operational amplifier with these same features. Features • • • • Specified for 100 kO and 5 kO loads High voltage gain Low offset voltage drift Ultra low input bias current • • • • • Input common-mode range includes VOperating range from + 5V to + 15V supply Low distortion 0.01 % at 1 kHz Slew rate 0.11 V/p.s Micropower operation 0.5 mW Applications • • • • • • • High-impedance buffer or preamplifier Current-to-voltage converter Long-term integrator Sample-and-hold circuit Peak detector Medical instrumentation Industrial controls 120 dB 2.5 p.V/oC 40 fA Connection Diagram 8-Pln DIP/SO OUTPUT A - 1 8 I-- V+ f1- - OUTPUT B k. 2 INVERTING INPUT A- ~ ;tJr...-1If:... 7 B \ NON-INVERTING INPUT A 3 - + + ! INVERTING INPUT B L-_+-5 NON-INVERTING INPUT B V--+--..... " TL/H/11236-1 TOp View Ordering Information Temperature Range NSC Drawing Transport Media 8-Pin Molded DIP N08E Rail 8-Pin Small Outline MOSA Rail Tape and Reel Industrial -40"C"; TJ ~ +85"C Package LMCS0221N LMC60221M 1-699 ~ a: N N Q B ~ Absolute Maximum Ratings (Note 1) Differential Input Voltage Supply Voltage (V+ - V-) ± Supply Voltage Lead Temperature (Soldering. 10 sec.) Storage Temperature Range Junction Temperature 150'C " '1000V ESD Tolerance (Note 4) Voltage at OutpuVlnput Pin (V+) +0.3V.(V-)-0.3V Current at Output Pin Current at Power Supply Pin Power Dissipation ,Operating Ratings Temperature Range Supply Voltage Range 35mA (Note 3) Thermal Resistance (IIJA>. (Note 11) 8-PinDIP 8-PinSO Is Input Bias Current los Conditions Input Offset Voltage Input Offset Voltage Average Drift 0.04 Input Offset Current 0.01 Input Resistance Common Mode Rejection Ratio OV s: VCM s: 12V V+ = 15V Positive Power Supply Rejection Ratio 5V Negative Power Supply Rejection Ratio OV Input Common-Mode Voltage Range V+ = 5V& 15V For CMRR ;;, 50 dB VCM Large Signal Voltage Gain 1M unless otherwise noted. LMC60221 Limit . (Note 6) 9 11 s: V+ s: s: V- s: 15V -10V 83 83 94 -0.4 RL = 100 kn (Note 7) Sourcing Sinking 1000 500 RL = 5 kn (Note 7) Sourcing Si,nking 1000 250 1-700 Units mV max /J-VI'C 200 pA max 100 pA max >1 V+ -1.9 Ay = 101'C/W 165'C/W 2.5 RIN -PSRR Typical (Note 5) 1 CMRR +PSRR 4.75)( to 15.5V (Note 10) ±18mA Parameter I:Nosll:J.T -40'C s: T,is: +85'C Power Dissipation DC Electrical Characteristics Vos (Note 2) (Note 12) Output Short Circuit to V+ The following specifications apply for V+ = 5V. V- = OV. VCM = 1.5V. Vo = 2.5V. and RL Boldface limits apply at the temperature extremel!; all other limits TJ = 25'C. Symbol ,±5mA Current at Input Pin Output Short Circuit to V- 16V 260'C -65'C to + 15O'C Teran 63 81 63 81 74 73 -0.1 dB min dB min dB min 0 V max V+ - 2.3 Y+ - 2.& V min 200 V/mV min 100 90 40 100 7& 50 20 V/mV min V/mV min VlmV min '. ri: DC Electrical Characteristics (Continued) The following specifications apply for V+ = SV, V- = OV, VCM = 1.SV, Vo = 2.SV, and RL Bolclfacelimits apply at the temperature extremes; all other limits TJ = 2S"C. Symbol Vo Parameter Conditions Typical (Note 5) Output Voltage Swing V+ = SV RL = 100 kfl to 2.SV 4.987 0.004 V+ = SV RL = 5 kfl to 2.SV 4.940 0.040 V+ = 1SV RL = 100 kfl to 7.SV 14.970 0.007 V+ = 15V RL = 5 kflto 7.5V 14.840 0.110 '0 Is Output Current Supply Current V+ = 5V Sourcing, Vo 22 Sinking, Vo (Note 2) 21 = OV = SV V+ = 1SV Sourcing, Vo 40 Sinking, Vo (Note 12) 39 = OV = 13V Both Amplifiers Vo = 1.SV 1-701 86 = 1M unless otherwise noted. ~ N N LMC60221 Limit (Note 6) 4.40 4.43 0.06 0.09 Units V min V max 4.20 V· 4.00 min 0.25 V max 0.35 14.00 13.90 0.06 0.09 13.70 13.50 0,32 0.40 13 9 13 9 23 15 23 15 140 165 V min V max V min V max mA min mA min mA min mA min p.A max \ ....,: ' AC Electrical Characteristics = = = The following specifications apply for V+ SV, VOV, VCM 1.SV, Vo noted. Boldface limits apply at the temperature extremes; all other limits TJ Symbol SR GBW Parameter Slew Rate Conditions (NoteS) Gain-Bandwidth Product = 2.SV, and RL = 1M unless other otherwise = 2S"C. Typical (Note 5) 0.11 LMC60221 Umlt Units (Note 6) O.OS 0.03 V/ILS min 0.3S MHz M Phase Margin 50 Deg GM Gain Margin 17 dB 130 dB Amp-ta-Amp Isolation (Note 9) en Input-Referred Voltage Noise F in Input-Referred Current Noise F = 1 kHz = 1 kHz 42 nV/.JHz 0.0002 pAl.JHz Note 1: Absolute Maximum Ratings indicate limits beyond which damags to component may occur. Operating Ratings indicate conditions for which the _ is intended to be functional. but do not guarantee specific performance limits. For guaranteed specifications and test conditions. see tihe Electrical Characteristics. The guaranteed specifications spply only for tihe test condijions listed. Note 2: Applies to both slngl&-supply and splij-supply operation. Continuous short clreuij operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding tihe maximum allowed junction temperature of 150'C. Output currents in excess of ± 30 mA over long term may adversely affect reliability. Note 3: The maximum PQW8r dissipation is a function of TJ(max). 8JA and TA. The maximum allowable power dissipation at any ambiant temperature is Po [TJ(max) - TN/8JA· Note 4: Human body model. lOD pF discharged through a 1.5 kO resistor. Note 5: Typicel values represent tihe most likely pararnebic norm. Note 6: All limits are guaranteed by testing or correlation. Note 7: V+ = 15V. VOM = 7.5V. and RL connected to 7.5V. For Sourcing tests. 7.5V ,; Vo ,; 11.5V. For Sinking tests, 2.5V ,; Vo ,; 7.5V. Note 8: V+ = 15V. Connected as Voltage Follower w"h 10V step InpuL Number specified Is the slower of the positive and nagstive slew rates. Note 9: Input referred. V+ = 15Vand RL = 100 kO connected to 7.5V. Each amp excited in tum wHh 1 kHz to produce Vo = 13 Vpp. Note 10: For operating at elevated temperatures tihe _ must be derated based on tihe tihermal resistance 8JA wijh Po = [TJ- TN/8JA. Note 11: AM numbers aPPly for packagss soldered directiy Into a PC board. Note 12: Do not connect output to V+ when V+ is greater than 13V or reliability may be adversely affected. 1-702 = Typical Performance Characteristics Vs = Supply Current vs Supply Voltage ± 7.5V, TA = 25°C unless otherwise specified Input Common-Mode VoRage Range vs Temperature Input Bias Current vs Temperature :li ~ 200 f-+-++-+-t-I-t-I 1!i 1501--1--+-+-1-+-+-+-1 :: ~" 11-+-+-+-l-+-+~I'-l--l -r- PACKAGE V V / ~ O.OII-+-+~V'-t-irl-+-+-l 50f-+V~-t-+-++-+--l 0./ o 2 4 6 8 10 12 14 16 1-±-~'-'t-t7~,:;t:I~ r- ., 0.0011-+-+-,-1::>4-+-++-+--1 1 1 O.0001 L .l.'-''-L....L......l..._L.. .L..l......J -75-50-250 255075100125150 SUPPLY VOLTAGE (V) ~~ ~ -3.0 I-t-t-+-+-+-+-+-l: +0.51-+-+-1-+-+-1-+--1 GU RAN EEO -o~t!j~~~~~3i~~ -75 ~s=+!5V L~ V 0'0001'-___'-_'-...JL--' 0.001 0.01 0.1 10 100 OUTPUT SINK CURRENT (mA) 100 I-+-+_I-+-~I'I-:+-+--l rt Rc = ',WI\ = lOOk 12°1-~;j;;;:;p-r-TTTI 125 I"r-.. 40f-+-~~~~--~~ 201-+-+-1-+--+-i-+--l oL-L-L-~~~~...I-...J 10 OUTPUT SOURCE CURRENT (mA) Crosstalk Rejection vs Frequency 801--1--+-+-1-+-+-+-1 75 1001\--+-+-+-f-+-+-+--l 80 \ ao \ O.OO01L_"-_..L...._..l...--'-_...J 0.001 0.01 0.1 10 100 25 1201-+-+-1-+--+-i-+--l 0.001 r.:f"-+-+--I---l ~=+5V -25 1A~\+15V 0.1f--t1---l-:7f--I---l 0.01' / - 160 """"'''''''-''''--T""-r-,--.--, 1401-+-+-+-f-+-+-+--l ~O.OO11"":::""-I/C---I--+-+--l S 5 V~=+!5~ GUARAN 'EED I-- 10....---.----.----,-----,rr---. / 1/ O.11--+--+--..y.'-+--I ~ ~01 ~3~~~TY~P!~"CA~~~~~~ Input Voltage Noise vs Frequency vs =I+ 5V 'III ll-_I_-I_~I_V~~~_l ~ 1 -2.5 TEMPERATURE (oc) Output Characteristics Current Sourcing "z g -1.5 -2.0 TEMPERATURE (OC) Output Characteristics Current Sinking isfl 0 ....---r--'--'-I'--T""""T""-'---' -0.51-+-++-+1 +-+-+-1 -1.0 f-+-++-+-t-I-t-I HERMETlC,-t-;",I''-1hH O.II-H'--I-+.....".'-+/--Ji<+-l ~ ~'> 100 lk 10k lOOk FREQUENCY (Hz) CMRR vs Frequency CMRR vs Temperature 100 r-r-;---,--.-.-.-r-,-....--, 140 r-.--.-,-...,----,-r-T"""'"l s:a;jjjj=ttj 1301-+-+-1--I--+-i-+--l 80 aOI-t-t-+--I--I-'~\-ir-r-l 120 f-+-++-+-t-I-t-I 1101-+-+-+--if-+-+-+--1 1001-+-+-1-+--+-i-+--l 40f-r-l-t-l-+-+~~-l-l 90H-t:t~jj 80~ 701-+--1-+-+-t-1-+--1 140 '--'---'-_'--'---'--'_.1-....1 100 10k lOOk 10 Ik FREQUENCY (Hz) 0'-'-'-'-'-'-'-'-'--' 10 100 lk 10k lOOk 1M FREQUENCY (Hz) 60~-'---'---'--'---'---'--.l-....I -75 -25 25 75 125 TEMPERATURE (Oc) Power Supply Rejection Ratio vs Frequency 140....--r-r-T"""T"""T""T""......""T'"-, 120 I-I-I-I-r-lr-lr-l_l_l-l 10°t:t:~~~t!tt!j 80~ aOf-f-f-~~,,~~~~_s~U_PP,L_Y-1 40 H-+-+++I\""",,<+'Id--H 201-t-t-+-~t-S~U~PP~L~Y~~~-l Ol-t-t-+-+-+-+-+'~-i;~:~ -20 L...J-'-1....l....l....L.....L.....L...L...I 10 100 lk 10k lOOk 1M FREQUENCY (Hz) TL/H/11236-2 1-703 • Typical Performance Characteristics Vs = Open-Loop Voltage Gain vs Temperature Open-Loop Frequency Response 180 r-r-r-,-,-,-,-.......,., 150 l::r-::I--I--+-+-+-+-+-+-l 'at .3 104,0 1\. ~ ~rL.. ~, 130 ~ ± 7.5V, TA = 25°C unless otherwise specified (Continued) = lOOk n-, ;; 1001-1-~d-+-+-+--t-+-l f'" ~ ~ 801-~~~d-+-+--t-+-l ~ 60 H-+-+-+Ood--+-+-+-t 401-~+-+-+-~d-+-+-l 'Z ~ 120 -I"'C 'Gi § 110 ~ '1\. • I 'at 5k ~~ ~ :?zi ~ !i! -25 25 75 125 -90 10M 1M 25 20 15 10 1\. 1\. ..'" -" I I I 2.5 0.25 ~ 0.20 ~ 0.05 2 0.00 0 75 - 125 V ! ~ i \ -f- o ro~~~W~2~4~8~~ 25 75 125 Non-Inverting Small Signal Pulse Response (Ay = +1) 100 ~ ~ !i! 50 ~ 0 I o I ~ !!: ~ 100 ~ l i : ! '\.. I\. o 2 4 8 8 10 12 14 16 Inverting Smail-Signal Pulse Response .5 Rr·~N=20k ,I \ TIME (I's) s I 6V 4V 2V OV 100 TIME (pI) Inverting Large-5ignal Pulse Response ~ I -25 ~ TEMPERATURE (Oc) ~ > 0.10 ! ~ 6 ~ I- i!E RISING ~ - RISING -75 ~ V 8 25 FALLING 0.15 TEMPERATURE (oc) FALLING -25 0.20 7.5 10 v 0.10 -75 ~ 0.00 5 Large-5ignal Pulse Non-Inverting Response (Ay = +1) Rr·~N=5k 0.15 0.25 0.05 0.40 ~ 0.30 ~ ~ ;;l = 5k 0.35 vou, (VOLTS) Inverting Slew Rate vs Temperature 1M 0.40 I -5 lOOk Non-Inverting Slew Rate vs Temperature = lOOk 5 FREQUENCY (Hz) 1 10k FREQUENCY (Hz) I I I -10 -15 -20 -25 -10 -7.5 -5 -2.5 0 -45 0.30 ~ (Vos vs VOUT) j 0.35 20 Hl-HfttHlI-tttHlllII"!;oId-ttHfll Gain Error ~ ! i ~ 90 lOOk ,~ FREQUENCY (Hz) Gain and Phase Responses vs Temperature 10k i! 201-~t-+-+-+-~v-+-l TEMPERATURE (Oc) lk ~ -20 1..-"--"--.1..-.1..--'--'--'-........., 0.010.1 1 10 100 lk 10k lOOk 1M 10M 100 -75 140 120 I-~:I-+-+-+-+-+-+-l Gain and Phase Responses vs Load Capacitance ~ - ~ 5 20 40 80 80 100 120 140 TINE (pI) ~N=Rr=5k 100 50 1\ II o 2 4 6 8 10 12 14 16 18 TIME (pI) TUH/11236-3 1-704 r-----------------------------------------------------------------------------~ ~ Typical Performance Characteristics Vs = ± 7.SV, TA a:: = 2SoC (Continued) o Stability va Capacitive Load N N Stability va Capacitive Load ~ 100,000 10,000 10,000 -;::- -;::- ..e CI ~ .... 1,000 w ~ ~ CI ~~ ~ ~ LlLJNsT1BLE > 5 ..e Ay=+1 100 I L~ r ~ ~ > E 0 ~ ~ ~ 1,000 ....I W 100 ~ 5" OVERSHOOT 10 10 1 -10 -0.1 -1 -0.001 0.001 0.1 -0.01 0 0.01 1 SINKING SOURCING LOAD CURRENT (mA) 1 -10 10 -1 TUH/II236-4 -0.1 -0.001 0.001 0.1 -0.01 0 0.01 1 SINKING SOURCING LOAD CURRENT (mA) 10 TL/H/I1236-5 Note: Avoid resistive loads of less than 500n, as they may cause instability. Application Hints AMPLIFIER TOPOLOGY The topology chosen for the LMC6022 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator. The large signal voltage gain while sourcing is comparable to traditional bipolar op amps for load resistance of at least S kO. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of S kO or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as SOOO without instability. COMPENSATING INPUT CAPACITANCE Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capaCitor would be. As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via Cr and Crt) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward. RZ CAPACITIVE LOAD TOLERANCE Like many other op amps, the LMC6022 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics. The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (SOO to 1000) in series with the op amp's output, and a capaCitor (S pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit ,Cc TL/H/11236-6 FIGURE 1. LMC6022 Circuit Topology (Each Amplifier) 1-70S Application Hints (Continued) operation. Thus, larger values of capacitance can be tolerated without oscill~tio!l. Note that in all casell, the output will ring heavily when the load capacitance is near the threshold for oscillation. ' PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDA~CE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantag\! of the ultra-low bias current of the LMC60~, typically less than 0.04 pA, it is essential to have an excellent layoul Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably I,ow, :because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. 100kll Cx(10pF) Rx(100ll) To minimize the effect of any surface leakage, layout a ring of foil, cOmpletely surrounding the LMC6022's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC6022's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figuf'BS 48, 4b, 4c for typical connections of guard rings for standard op-amp configurations. If both in~ puts are active and at high impedance;' the guard can be tied to ground and still provide some protection; see TLlH/11236-7 FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance capacitive load driving capability is enhanced by using a pull up resistor to V+ (FlfJuf'B 2b). Typically a pull up resistor conducting 50 p.A or more will significantiy improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). TLIHI11236-26 FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor Figuf'B 4d. rJ UI I _~_.:~_~ _____ o 1°O~UT44 1 -O~IN,+ 1+':'41 LGuard Ring TLlH/11236-8 FIGURE 3. Example of Guard Ring in P.C. Board Layout (Using the LMC6024) 1-706 Application Hints (Continued) Cl R2 Rl INPUT JVII'Y-~"'.&..-""""M-"'" I I I I Guard Ri"9 -+J r OUTPUT OUTPUT I TLlH/11236-10 TUH/11236-9 (a) Inverting Amplifier (b) Non-Inverting Amplifier R3 OUTPUT INPUT ~--+-I 10M TLlH/11236-11 TLlH/11236-12 (c) Follower (d) Howland Current Pump FIGURE 4. Guard Ring Connections The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the. board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point·to-point up-in·the-air wiring. See Figure 5. BIAS CURRENT TESTING The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch 52 momentarily. When 52 is opened, then 1- = dVOUT X C2. dt S2 (~u.h-rod operated) FEEDBACK CAPACITOR C2 TLlH/11236-13 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.) TL/H/11236-14 FIGURE 6. Simple Input Bias Current Test Circuit FIGURE 5. Air Wiring 1-707 Application Hints (Continued) A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of 1-, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors. Similarly, if S1 is shorted momentarily (while leaving S2 shorted) 1+ = dVOUT x (C1 where Typical Single-Supply Applications (V+ + ex> dt is the stray capacitance at the ex + input. = 5.0 VOC) Photodlode Current-to-Voltage Converter Micropower Current Source +5V LM385 (1.2V) C2 Vour R2 _ 1.23V 'OUT-liZ L 1.5V TO 2.4V TL/H/II236-16 TUH/II236-15 (Upper limit of output range dictated by input common·mode range; lower limn dictated by minimum current requirement of LM385.) Note: A 5V bias on the photodiode can cut i18 capacitance by a faclor of 2 or 3, leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current). Low-Leakage Sampl_nd-Hold C>-...... OUTPUT INPUT S/H ~C04066 TUH/II236-17 Instrumentation Amplifier ( - VIN I .... R3 R4 10k lOOk H R1 R2 2k ~ \,-------. ~ R5, RS ~ R6, and R4 ~ R7; Then Your ~~x~ YIN R2 RS :. Av :::: 100 for circuit shown For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 allecis CMRR. Gain may be adjusted through'R2. CMRR may be adjusted through R7. R5,44.2k R6 10k 91k TL/H/I1236-18 1·708 r-----------------------------------------------------------------------------, r Typical Single-Supply Applications (V+ N N R4 C2 R2 392k ~ 1 Hz Square-Wave Oscillator Sine-Wave Oscillator Cl i: = 5.0 VDC) (Continued) 200pr 10M 200pr Your :.:>-.... Your +5V Rl R2 +5V +-JV\"""--4~-",",y.,-_..J 470k 20k R3 470k 470k 20k TLlHI11236-20 Power Amplifier lN914 R4 ex 300pr TLlH/11236-19 Oscillator lrequency is determined by RI. R2. Cl. and C2: lose = 1/2".RC where R = Rl = R2 and C = Cl = C2. +5V ......JY\I\ro...- I Your This circuit. as shown. oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V. TL/HI11236-21 1-709 Typical Single-Supply Applications (V+ = 5.0 Voe) {Continued) : 10 Hz Bandpass Filter C2 O.0068I'F 10 Hz High-Pass Filter (2 dB Dip) +5V R4 Cl V:..., 1--.--11---'-4---1 Rl 560k +5V +-IVV\ro............. R3 fe = 10 Hz d = 0.895 = 10 Hz Q = 2.1 Gain = -8.8 fO Gain 390k = 1 TL/HI11236-23 TLlH/11236-22 1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only) Rl R4 470k High Gain Amplifier with Offset Voltage Reduction R3 270k Your O.02I'F fo = 1 Hz d = 1.414 Gain = 1.57 TL/HI11236-24 O.lI'F R5 +5V 22k Gain = -46.8 Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV). referred to VBIAS. 1·710 R6 +....JW\l---......I\IVv-...... 15k - TL/H/11236-25 t;tINational Semiconductor LMC6024 Low Power CMOS Quad Operational Amplifier General Description The LMC6024 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V-, low input bias current and voltage gain (into 100 kG and 5 kG loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 1 mW. This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LMC6022 datasheet for a CMOS dual operational amplifier with these same features." Features • Specified for 100 kG and 5 kG loads • High voltage gain 120 dB 2.5 p.VI"C Low offset voltage drift 40 fA Ultra low input bias current Input common-mode range includes VOperating range from + 5V to + 15V supply Low distortion 0.01 % at 1 kHz 0.11 V/p.s • Slew rate 1 mW • Micropower operation • • • • • Applications • • • • • • • High-impedance buffer or preamplifier Current-to-voltage converter Long-term integrator Sample-and-hold circuit Peak detector Medical instrumentation Industrial controls Connection Diagram 14-Pln DIP/SO 14 OUTPUT 4 OUTPUT 1 1 INVERTING INPUT 1 2 13 INVERTING INPUT -4 NON-INVERTING INPUT 1 3 12 NON-INVERTING INPUT" V+ l O NON-INVERTING INPUT 3 NON-INVERTING INPUT 2 5 INVERTING INPUT 2 6 9 INVERTING INPUT 3 OUTPUT 2 7 TUH/11235-1 TopYlew Ordering Information Temperature Range NSC Drawing Transport Media 14-Pin Molded DIP N14A Rail 14-Pin Small Outline M14A Rail Tape and Reel Industrial -40"C S; TJ S; +85"C Package LMC6024IN LMC60241M 1-711 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Seles Office/Distributors for availability and specifications. Differentiallnpu1 Voltage Supply Voltage (V+ - V-I 15O"C ESD Tolerance (Note 4) 1000V (Note 3) Power Dissipation ± Supply Voltage Operating RatinQs 16V Lead Temperature (Soldering, 10 ~.) " ' Storage Temperature Range Voltage at Outputllnput Pin Junction Temperature 26O"C -65·Cto +15O"C Supply Voltage Range (V+) + O.3V, (V-) - 0.3V Current at Input Pin ±5mA ±18mA Current at Ou1put Pin Current at Power Supply Pin Outpu1 ShOrt Circuit to V + 35mA (Note 12) Outpu1 Short Circuit to V- (Note 2) ~40"C:s: Temperature Range,. TJ :s: +85"C 4.75Vto 15.5V Power Dissipation (Note 10) Thermal Resistanqe (8JN, (Note 11) 14·Pin DIP 14·PinSO 115·C/W 85·C/W DC Electrical Characteristics The following specifications apply for V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V, and RL = 1M unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits TJ = 25·C. Symbol Vos Conditions Input Offset Voltage l:,vosl!:.T Input Offset Voltage Average Drift 18 Inpu1 Bias Current lOS OV:s: VCM:S: 12V V+ = 15V +PSRR Positive Power Supply Rejection Ratio 5V:S: V+ :S: 15V -PSRR Negative Power Supply Rejection Ratio O'"':S: V- :S: -10V " V+ ='5Vand15V For CMRR ~ 50 DB pA Max 100 pA Max RL = 100 kO (Note 7) Sourcing Sinking 63 81 dB Min 83 63 81 dB Min 74 dB Min 94 -0.4 1000 500 RL = 5 kO (Note 7) Sourcing Sinking 1000 250 1·712 TeraO 83 V+ - 1.9 Large Signal Voltage Gain mV Max 200 >1 Common Mode Rejection Ratio Units p.VI"C 0.01 Input Resistance Av 9 11 0.04 Inpu1 Offset Current Input Common·Mode Voltage Range LMC60241 Limit (Note 6) 2.5 R'N • Typical (NoteS) 1 CMRR VCM .l, Parameter 73 -0.1 0 V Max V+ - 2.3 Y+ - 2.5 V Min 200 V/mV Min 100 90 40 100 75 50 20 V/mV Min VlmV Min V/mV Min DC Electrical Characteristics (Continued) The following specifications apply for V+ = SV, V- = OV, VCM = 1.SV, Vo = 2.SV, and RL Boldface limits apply at the temperature extremes; all other limits T J = 2SoC. Symbol Vo Parameter Conditions Typical (Note 5) Output Voltage Swing V+ = 5V RL = 100 kO to 2.5V 4.987 0.004 V+ = 5V RL = S kO to 2.SV 4.940 0.040 V+ = lSV RL = 100 kO to 7.SV 14.970 0.007 V+ = lSV RL = SkOto7.SV 14.840 0.110 10 Output Current V+ = SV Sourcing, Vo SinkingVo (Note 2) Is Supply Current = = OV SV 22 21 V+ = lSV Sourcing, Vo 40 Sinking, Vo (Note 12) 39 = OV = 13V All Four Amplifiers Vo = 1.SV 1-713 160 = 1M unless otherwise noted. LMC60241 Umlt (Note 6) 4.40 4.43 0.06 0.09 4.20 4.00 0.2S 0.35 14.00 13.90 0.06 0.09 13.70 13.50 0.32 0.40 13 9 13 9 23 15 23 15 240 280 Units V Min V Max V Min V Max V Min V Max V Min V Max mA Min mA Min mA Min mA Min p,A Max AC Electrical Characteristics The following specifications apply for V+ = SV, V- = OV, VCM = 1.SV, Vo = 2.SV, and RL Boldface limits apply at the temperature extremes; all other limits T J = 2SoC. Symbol SR GBW Parameter Slew Rate Conditions, (NoteS) Gain-Bandwidth Product Typical (Note 5) 0.11 = 1M unless otherwise noted. LMC60241 Umlt (Note 6) Units O.OS Vlp.s Min 0.03 0.3S MHz 8M ' Phase Margin SO Deg GM Gain Margin 17 dB Amp-to-Amp Isolation (Note 9) 130 dB en Input-ReferrEjd Voltage Noise F 1 kHz 42 nVl./Hz in Input-Referred Current Noise = F= 1 kHz 0.0002 pAl./Hz Note 1: Absolute Maximum 'Ratings Indicate limits beyond which damage to the component may occur. Operating Ratings Indicate conditions for which the device is intended to be functional. but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Iha Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Note 2: Applies to both single-supply and spllt-supply oparation. Continuous short circuH oparation at elevated ambient temparature and/or multiple Op Amp shorts can resuH in 9Xl'89ding the maximum allowed junction temperature of 150'C. Output currents in excess of ±30 rnA over long lerm may adversly affect reliability. Note 3: The maximum power dissipation Is a function 01 TJ(max), 9JAo and T.... The maximum allowable power dissipation at any ambient temparalUre is Po = (TJ(max) - TAl/9JA· Note 4: Human body model, 100 pF discharge through a 1.5 kll resistor. Note 5: Typlcal values represent the most likely parametric norm. Note 8: All limits are guaranteed by testing or correlation. Note 7: V+ = 15V, VCM = 7.5V, and RL connected to 7.5V. For Sourcing tests. 7.5V ,,; Vo ,,; I L5V. For Sinking t8sts, 2.5V ,,; Vo ,,; 7.SY. Note 8: V+ = 15V. Connected as Voltage Follower wHh IOV step input. Number spacHled Is the slower of the positive and negative slew retes. Note 9: Input referred, V+ = 15V and RL = 100 kll connected to 7.5V. Each amp excRed in turn wHh I kHz to produca Vo = 13 Vpp. Note 10: For operating at elevated temparalUres the'device must be derated based on the thermal resistance 9JA wHh Po = (TJ - TAl/9JA. Note 11: All numbers apply for packages soldered dlrecUy into a PC board. Note 12: 00 not connect output to V+ when V+ is greater than 13V or reliRbIlHy may be adversely affected. 1-714 Typical Performance Characteristics Vs = Supply Current va Supply Voltage Input Bias Current va Temperature ~ 400 1-+-+-++-+-+--+-1 is m 1-+-+-+--+--+--+-+-1 ~ iill ~ I .!; __~i:l -55 to "25DC 200 r:::t=t~~ f- is § iii 5 r!! a 4 6 8 10 12 14 16 l-+-t---Il_t-lI-+:7f-~+--l _,- V O.Oll-l-h",.E-+--bl'+--+-+--I I-:I:7'F'-'l-l7"Ih:=~ t- O.OOII-I-I-~-b04-+-ILHI-I-I '--L."-'--'--'--'-...J1L-J1L-J--' -75 -50-25 a 25 50 75 100 125150 SUPPLY VOLTAGE (V) TEMPERATURE (DC) , ~ ~ ; ~ ~ ~i w" ill';. 15 U Vs +sy.JI 8> f~ i5!ll i!! .:: / ~K! ~ 0.0001 Vs ='5V 0.1 +O.5f-HH-t-t-t-+-l 0 -0.5 t:!:t;;f13 GU.RA~N~rE~EE035ii~ -75 Ii! -25 75 25 125 TEMPERATURE (DC) 140 1-1-+-+-+-+-+-+-1 120 1001\-1-+-+-+-+-+-+-1 80 1 60 \ 40 ~1~~~-+---+---+--I 0.001 0.01 GUAM 'I' -3.01--+-+-+++-+-+-1 I~ :~ ~ 1/ ~ -2.0 Input Voltage Noise va Frequency 11---1--+--=+---.1--1 0.01 -1.0 1-1-+-+-+-+-+-+-1 ~ i -2.5 -U~l~~T~YP~~ICA~~~~~~ > 10 r--r--r-,-..,-.,.,.,.....-.--. Ys "5": 0.1 I I a -0.5 Output Characteristics Current Sourcing Output Characteristics CUrrent SInking ~ HERMET1CM~'-++-I O. I 1--f--+--fPAC_K-fN;-:Er/F-I.I'"'-+-l'-'/-f--1 0.0001 2 Common-Mode Voltage Range vs Temperature 10 ,.-,-.,.--,Ir-I...-r--r-r...., 500 r--r--r-..,--r-r-,----.--. ~ ±7.5V, TA = 25"Cunless otherwise specified 1'- 201-+-+-+--+--+--+-+-1 1 10 100 0.0001 '-----'---"---'----' 0.001 0.01 0.1 I 10 lOa OUTPUT SINK CURRENT (mA) 10 100 lk 10k lOOk FREQUENCY (Hz) OUTPUT SOURCE CURRENT (mA) Crosstalk Rejection vs Frequency OOr--r--r-..,--r-r-,----.-, o'---'---'---'--~~~-"-...J CMRR vs Frequency CMRR vs Temperature 140 l00~~-'--r-r"'--r--r-~ 130 1-+-+-++-+-+--+-1 1201-+-+-+--+--+--+-+-1 ~ Ii' l00I-+-+-+-+-~V~--I--I 1101-+-+-++-+-+--+-1 100 1-+-+-+--+--+--+-+-1 80H-E:tfl:tl ':tY"'- "'- = -lOOk 12°!o;;;;~;t;:;;l;;;-rII-t1 80~ 60'--~~~-'--'--L~--' lOa F1I£QUENCY (Hz) Ik 10k lOOk 1M -75 -25 25 75 125 TEMP£RATURE (DC) FREQUENCY (Hz) Power SUpply Rejection Ratio vs Frequency 140 ,.....,r-r-,--r-r..,-,.....-r-~ 120HH-+-+--+-+-+-+-H lOO~stt!jtu 801=1= 60r-l--t-+-+~~~r~SrUP_PLrY' 40 1-+-+--I-+-+.......-l'Ic-if\.~-I-I Hr-I--t-+_~~SFUPPL~Y~~--t OHH-+-+--+-+-+-r'-r;:~ _HL....J~-L.-'-~~~-L....J 10 100 Ik 10k lOOk 1M FREQUENCY (Hz) TUHI11235-2 1-715 .. 1 701-+-+-++-+-+--+-1 ~ r-----------------------------------------------------------------------------~ ~ Typical ,Performance Characteristics Vs = ~ Open-Loop Voltage Open-Loop Frequency Response , :'-Galn vs Temperature 150 160 140 'iD' , .3 1'0 ~ ~ ~ I r- ~ ZL 120 '7: I\. • 110 ", = lOOk 'iD' ~ - ~ ,130 i -I\. ~ ~ 5k . ~ -25 25 75 Gain and Phase Responses va Load Capacitance - 100 c1 80 ~~ 60 I\.. 40 ~e ~m ~e 20 -20 0.010.1 1 10 100 lk 10k lOOk 1M 10M 100 -75 120 i!E ~~ 'G: ~ ±7.SV. TA = 2S0 Cuniess otherwise specified (Conlinued) 125 Gain and Phase ResponSes vs Temperature lk ~~ :I! ~ I l e I I\. = lOOk '.3 s ~ ~ 10 s -5 I\. -10 -15 -45 -20 -25 -10 -7.3 -5 -2.5 0 Iii Inverting Slew Rate vs Temperature j ~ 0.20 0 11r=~N=5k >- ! FAlUNG 0.25 j ~ 0.20 FALLING r- - 0.15 RISING 0.10 0.00 5 7.3 10 -75 -25 25 75 125 TEMPERATURE (oc) ! i~ 6V IV Non-Inverting Small Signal Pulse Response (Ay = +1) 0 10 : : ~ 0.15 ~ RISING ~ 0.05 -25 0 ~ 0.10 0.00 -75 2.5 0.30 ~ 0.05 ~ !:l 0.30 Q.25 I I I " 5k Large-Slgnal Pulse Non-Inverting Response (Ay = +1) ~ 0.40 ~ ~ 0.35 Vour (VOLTS) FREQUENCY (Hz) .'" .'" I I I I 15 90 1M G.4O 20 ~ lOOk Non-Inverting Slew Rate ve Temperature 25 0.35 10k FREQUENCY (Hz) (Vos vs VOUT) ~ lOOk P~... -45 Gain Error 'iD' 10k 45 FREOUENCY (Hz) TEMPERATURE (Oc) lk 90 :IS 8 75 125 - I o 1\ ~~ I ~ ~ 2 4 8 8 10 12 14 16 nME (}Is) Inverting Smail-Signal ,Pulse Response 0 I I -: 11r=~N=20k iii ~ o nME (}IS) Inverting Large-Slgnal Pulse Response ~ 11 r- 2O~6060W012~4~8~60 TEMPERATURE (Oc) I 0 ~ -~H=I1r=5k 6V / 4V ~ 2V I OV ro 0 ~ \ I ~ o 20 40 60 80 100 120 140 TIME (}II) 2 4 6 8 10 12 14 16 18 TIME (}II) TLlHI11235-3 1-716 Typical Performance Characteristics Vs = ± 7.5V, TA = 25°C unless otherwise specified (Continued) Stability vs Capacitive Load Stability va Capacitive Load 100,000 10,000 "i:" .5co ~ ..... 1,000 5 100 ...2!!: ~ ~ ~ Ay=+1 ~~ co 9 ,~ ~~ J..LJNSTlaLE III !:! J.l!! V" ~ ~ ~ 100r--r~r-~-+~T-~~r--r~r-; ~ 5" OVERSHOOT 10r-;--+~r-+--r-i--t-;--+-; 10 1~~~~~~~~~~~~~ -0.1 ~10 -1 -0.001 0.001 0.1 -0.01 0 0.01 10 -10 1 -0.1 -1 SINKING SOURCING LOAD CURRENT (mA) -0.001 0.001 0.1 -0,01 0 0.01 10 1 SINKING SOURCING LOAD CURRENT (mA) TUHI11235-5 TUH/11235-4 _ : Avoid resistive loads of less than soon. as they mey cause instability. Application Hints AMPLIFIER TOPOLOGY The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least 5 kO. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of 5 kO or less, the gain will be reduced as indicated in the Electrical Characterisitics. The op amp can drive load resistance as low as 5000 without instability. The topology chosen f,or ,the LMC6024 is unconventional (compared to general-purpose op amps) in Jhat the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output Swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability. and must withstand shorts to either rail, these tasks now fall to the integrator. COMPENSATING INPUT CAPACITANCE Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capaCitor will be necessary for compensation and what the value of that capaCitor would be. As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via Ct and Ctt) by a dedicated unity-gain compensa~ tion driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.' CAPACITIVE LOAD TOLERANCE Like many other op amps, the LMC6024 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics. The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (500 to 1000) in series with the op amp's output, and a capaCitor (5 pF to 10 pF) from Cc TUH/11235-6 FIGURE 1. LMC6024 Circuit Topology (Each Amplifier) 1-717 Application Hints (Continued) inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capcitance is near the threshold ' for oscillation. 100 kll PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WOAK ' It Is generally recognized that any circuit which must operate with less than 1000 pA of leakage currant requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the lMC6024, typically less than 0.04 pA, it is e~sential to have an excellent layout. Fortunately, the, techniques for obtaining low leakage~ are quite simple. First, the user must not i,gnore the surface leakage of the PC 'board, even though it may sometimes appear accep~bly low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. Rx (10011) I To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the lMC6024's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Rgure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 1012 ohms, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input. This would cause a 100 times degradation from the lMCS024's actual performance. However, if Ii guam ring is held wlthin 5 rOVof the inputs, then 'even a resistance of 1011 ohms would cause only 0.05 pA of'leakage current, or perhaps Ii minor (2:1) degradation of the amplifier'S performance.' See F/{/ures 48, 4b, 4c for typical corinections of guard rings for standard op.amp configurations. If both inputs are active and at high impedance, the guard can' be tied to grouOd and still provide some protection; see Figure4d. Goad TUH/11235-7 FIGURE 2a. Ax, Cx Improve Capacitive load Tolerance Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure 2b). Typically a pull up resistor conducting 50 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the currant sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). v+ ,,,E5Ji, TL/H/11235-26 FIGURE 2b. Compansating for large Capacitive loads with a Pull Up Resistor ~ ~1 ' rn rn [l ()() () () ~1 ~1 v+ , L t.GUard Ring TLlH/11235-8 FIGURE 3. Example 01 Guard Ring in P.C. Board layout (Using the LMC6024) 1-716 Application Hints (Continued) R2 Cl Rl INPUT JV ex is the stray capacitance at the + input. (V+ = 5.0 Vocl Photodiode Current-to-Voltage Converter Micropower Current Source +5V LWl85 (1.2V) C2 1 pF Rl Your L _ 1.2lV "ur -""ii2 TL/H/11235-16 TL/H/II235-15 (Upper limit of output range dictated by InpU1 common·mode range; lower limit dictated by minimum current requirement of LM385.) Note: A 5V bias on the photodiode can cU1 its cap_ce by a factor of 2 or 3. leading to improved response and lower noise. However. this bias on the photodiode will couse photodlode leakage (also known as its clark current). Low-Leakage Sampl_nd-Hold OUTPUT INPUT S/H ~CD4088 TUH/II235-17 Instrumentation Amplifier r VIN ~. R3 R4 10k lOOk If Rl = RS, RS = R6, and R4 = R7; Then VOUT=~X~ R2 VIN 9.1k RS :. Av '" 100 for circuit shown. R2 2k Your pot RS,44.2k R6 tOk R7 91k 20k pot TL/H/II235-18 1-720 over For good CMRR temperature, low drift resi.. tors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may'be adjusted through R2. CMRR may be adjusted through R7, Typical Single-Supply Applications (V+ = 5.0 Voe> (Continued) 10 Hz Bandpass Filter 10 Hz High-Pass Filter (2 dB Dip) +5V C2 0.0068 J.'r Cl V, ~I--.-...n---4~-t VOUT 56 Ok +5V ...oItIVIr.....-I Ie 10 = 10Hz Q = 2.1 Gain = Gain -8.8 II R3 = 10 Hz d = 0.895 390k =1 TUH/II235-20 TL/H/11235-19 ! 1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only) Rl R4 470k 270k ,i High Gain Amplifier with Offset Voltage Reduction R3 VOUT R2 0.02J.'r fe = 1 Hz d = 1.414 Gain = 1.57 TL/H/II235-21 R5 0.1 J.'r R6 +5V ....~WIr---. .oItIv+r..... 22k Gain = -46.8 Output offset voltaga reduced to the level of the Input offset vonage of the bottom amplifier (typically 1 mV), referred to VSIAS. 15k - TL/HI11235-22 .. I I 1·721 Nr-------------------------------------------~------------------~ (II) O~ ~ National Semiconductor :I LMC6032 CMOS, Dual Operational Amplifier General Description The LMC6032 is a CMOS dual operational amplifier which can operate from either a single supply or dual, supplies. Its performance features include an input common-mode range that reaches ground, low input bias current, and high voltage gain into realistic; loads, such as 2 kO and 6000. This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LMC6034 datasheet for a CMOS quad operational amplifier with these same features. For higher performance characteristics refer to the LMC662. Features • Specified for 2 kO and 6000 loads • High voltage gain • Low offset voltage drift • • • • • • • Ultra low input bias current 40 fA Input common-mode'ral)ge i(1cludes VOperating range from +5V to +15Vsupply Iss = 400 /J-A/amplifier; independent of v+' Low distortion 0.01 % at 10kHz Slew rate 1.1 V//J-s Improved performance over TLC272 Applicatio'ns • • • • • High-impedance buffer or preamplifier Current-to-voltage converter Long-term integrator Sample-and-hold circuit Medical instrumentation 126 dB 2.3/J-VrC Connection Diagram 8-Pln DIP/SO 8 1 OUTPUT A - ____ A-*, rz 2 INVERTING INPUT ......, r1- ~ OUTPUT B B + + - NON-INVERTING INPUT A 3 V_..;4+-_ _.J 7 1.'" - A - V+ INVERTING INPUT B 5 L-_-I- NON-INVERTING INPUT B TUH111135-1 Top View Ordering Information r-------------.---------r-----~--------~ Temperature Range Package NSC Drawing Transport Media LMC60321N 8-Pin Molded DIP N08E Rail LMC6032IM 8-Pin Small Outline M08A Rail Tape and Reel Industrial -40"C s: TJ s: +85"C 1-722 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage ± Supply Voltage Supply Voltage (V+ - V-) 16V Output Short Circuit to V+ Output Short Circuit to VStorage Temperature Range Junction Temperature ESD Tolerance (Note 4) (V+) + 0.3V. (V-) - 0.3V ±18mA ±5mA 35mA Current at Output Pin Current at Input Pin Current at Power Supply Pin (Note 10) (Note 2) Lead Temperature (Soldering. 10 sec.) (Note 3) Power Dissipation Voltage at Output/Input Pin Operating Ratings (Note 1) 260"C -40"C ,,;; TJ ,,;; +85°C Temperature Range Supply Voltage Range Power Dissipation -65°C to + 150"C 150°C 1000V 4.75Vto 15.5V (Note 11) Thermal Resistance (OJAl. (Note 12) 8-Pin DIP 8-PinSO 101°C/W 165°C/W DC Electrical Characteristics Unless otherwise specified. all limits guaranteed for TJ = 25°C. Boldtace limits apply at the temperature extremes. V+ = 5V. V- = GND = OV. VCM = 1.5V. VaUT = 2.5V and RL > 1M unless otherwise specified. Symbol Vas Parameter Input Offset Voltage l:,vasll1T Input Offset Voltage Average Drift Ie Input Bias Current los Conditions Typical (Note 5) 1 0.04 Input Offset Current 0.01 RIN Input Resistance Common Mode Rejection Ratio OV,,;; VCM";; 12V V+ = 15V 83 Positive Power Supply Rejection Ratio 5V,,;; V+ ,,;; 15V Va = 2.5V 83 Negative Power Supply Rejection Ratio OV,,;; V- ,,;; -10V Input Common-Mode Voltage Range V+ = 5V& 15V For CMRR ;<;: 50 dB -PSRR VCM Av Large Signal Voltage Gain 9 11 Sinking 200 pA max 100 pA max Sinking 60 63 60 dB min -0.4 -0.1 0 V max V+ - 1.9 V+ - 2.3 Y+ - 2.6 V min 200 V/mV min 2000 1000 74 dB min dB min 250 1-723 TeraO 63 70 94 500 RL = 6000 (Note 7) Sourcing mV max ",V/oC >1 RL = 2 kO (Note 7) Sourcing Units (Note 6) 2.3 CMRR +PSRR LMC60321 Limit 100 90 40 100 75 50 20 VlmV min V/mV min VlmV min I, ! DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for. TJ = 25"C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = GND = OV, VCM = 1.5V, VOUT = 2.5Vand RL > 1M unless otherwise specified. Symbol Vo Parameter Conditions Typical (NoteS) Output Voltage Swing V+ = 5V RL = 2 kn to 2.5V 4.87 0.10 V+ = 5V RL = 6000. to 2.5V 4.61 0.30 V+ = 15V RL = 2 knto 7.5V 14.63 0.26 V+ = 15V RL = 6000. to 7.5V 13.90 0.79 10 Output Current V+ = 5V Sourcing, Vo Sinking, Vo IS Supply Current = OV = 5V 22 21 V+ = 15V Sourcing, Vo 40 Sinking, Vo (Note 10) 39 = OV = 13V Both Amplifiers Vo = 1.5V 1-724 0.75 LMC60321 Limit (Note 6) 4.20 4.00 0.25 0.35 4.00 3.80 0.63 0.75 13.50 13.00 0.45 0.55 12.50 12.00 1.45 1.75 13 9 13 9 23 15 23 15 1.6 1.9 Units V min ,V max V min V max V min V max V min V max mA min mA min mA min mA min rnA max AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T J = 2SoC. Boldface limits apply at the temperature extremes. V+ = SV, V- = GND = OV, VCM = 1.SV, VOUT = 2.SVand RL > 1M unless otherwise specified. Symbol SR Parameter Slew Rate Conditions Typical (Note (NoteS) 5) LMC60321 Limit Units (Note 6) O.S 1.1 0.4 V/lJos min GBW Gain-Bandwidth Product 1.4 MHz 4>M Phase Margin SO Deg GM Gain Margin 17 dB Amp-to-Amp Isolation (Note 9) 130 dB en Input-Referred Voltage Noise F= 1 kHz 22 nV/.JHz in Input-Referred Current Noise F= 1 kHz 0.0002 pAl.JHz THD Total Harmonic Distortion F= 10kHz,Av 0.01 % RL = 2 kO, Vo = -10 = S VPP ±SVSupply N_ 1: Absolute Maximum Ratings indicate limits beyond which damage to component may occur. Operating Ratings indicate cond~ions for which the device is intended to be lunctional, but do not guarantee specific performance lim~. For guaranteed specifications and test cond~ns, see the Electrical Characteristics. The guaranteed specifications apply only lor the test con~ns listed. Note 2: Applies to both single-supply and spl~-supply operation. Continuous short c~cu~ operation at elevated ambient temperature andlor multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature 01 150'C. Output currents in excess 01 ± 30 mA oyer long term may adversely affect reliabilItY. N_ 3: The maximum power dissipation is a lunction 01 TJ(max), 9JA, and TA. The maximum allowable power dissipation at any ambient temperature is Po (TJ(max) - TAl/9JA· Note 4: Human body model, 100 pF discharged through a 1.5 kO resistor. N_ 5: Typical vaJuesrepresent the most likely parametriC norm. Note 6: All limits are guaranteed at room temperature (standard type lace) or at operating temperature extremes (bold type f ....). = 15V, VCM = 7.5V, and RL connected to 7.5V. For Sourcing tests, 7.5V " Vo " 11.5V. For Sinking tests, 2.5V " Vo " 7.5Y. = 15Y. Connected as Voltage Follower ~h lOY step input Number specified is the slower 01 the positive and negative slew rates. N_ 9: Input referred. Y+ = 15Yand RL = 10 kn connected to Y+ 12. Each amp excited in turn with 1 kHz to produce YO = 13 Ypp. N_ 7: V+ N_ 8: Y+ N_ 10: Do not connect output to Y+, when Y+ is greater than 13Y or reliabilItY may be adversely affected. Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance 9JA ~h Po Note 12: All numbers apply lor packages soldered directly into a PC bosrd. 1-72S = (TJ - TAl/9JA. = Typical Performance Characteristics Vs = Supply Current vs Supply Voltage 1600 ±7.5V. TA= 25°C unless citherwise specified Output Characteristics Current Sinking Input Bias Current r-r-r-,....,,.....,,.....,,.....,,.....,,.....,,....., 10~~ /.V 0.1 O~ O"~m ~V 0.01'----''----'_....1._-'-_-" 0.001 0.01 0.1 10 100 O.OI'-....I.-...L..---''---'---'---' o 12 o 18 25 TOTAL SUPPLY VOLTAGE (v DC) 50 75 100 125 150 TEMPERATURE (OC) Output Characteristics Current Sourcing OUTPUT SINK CURRENT (mA) Input Voltage Noise vs Frequency CMRR vs Frequency 100 120 r-rrmrnrTl-rnmr-rTT 90 ~ 100 = 80 ~ 80~~H*m-~+H~~++ I 60 70 60 50 I-HIoH*m-~+H~~++ ~ 30 20 10 o <-u..............L..I.J..J.IJ.W..-L..LJ. 10 100 OUTPUT SOURCE CURRENT (mA) 100 10k Ik Open-Loop Frequency Response 10k Ik FREQUENOY (Hz) lOOk IN FREQUENCY (Hz) Frequency Response vs Capacitive Load Non-Inverting Large Signal Pulse Response 1201-+~-+--+-1-+~ 100 ....... 80 " 60I-+-+",rl---il-t__i ~O 1-~-I--1If---:!"~+-+---I 1-+-+-+--t[-----'1,~t__i 20 10 100 Ik 10k lOOk 1M 10M 12 5M FRl:QUENCY (Hz) Stability vs Capacitive Load 100.000 ~ - i V' !:! lOll OVERSHOOT " l°l-HH-t-t-++++-I \ "Oor-'O \ lo.ooor-H~--+-+-' \t-\HH~ ~\~~+~~~~++-i • !-lJ UNSTABLE \ 1001-t-1t+.'±-±::±:±+++-I 10 lOll OVERSHOOT 211 OVERSHOOT \ \ \ \ -10-1-0.1-0.01-0.00100.0010.010.1 1 10 SINKING 20 ~ lOOO~~~~~~~~~~~J ~ 1.00°1-'lI"I;!o+...;U;.::N;:;ST,:.:AB=iL;=.E+++~ \ \ \ \Ay = 10.000f-I-I-I-HHf-Ay-'r-=-,+,'+-i ,,1, ~r16 Stabilltyvs Capacitive Load 100.000..-.-..--..--,.....,,.....,,.....,,.....,\--.--. ~ r-r1-1- TIME (,.8) FREQUENOY (Hz) 100 'A" 1500 C 2r-'f '= T'I Tor " -~~~~~~--~~~ I 7; 6 ~ 1-~P"'FT.=~50~= \ -10-'-0.1-0.01-0.00'00.0010.010.11 10 SOURCING SINKING LOAD CURRENT (mA) SOURCING LOAD CURRENT (mA) TUH/III35-2 Note: Avoid resistive loads of less than 500n. as they may cause Instability. 1-726 Application Hints AMPLIFIER TOPOLOGY tance from the IC socket (if one is used), circuit board traces, etc., and Rp is the parallel combination of RF and RIN. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations. The topology chosen for the LMC6032, shown in FlfJure " is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow a larger output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator. When the feedback resistors are smaller than a few kO, the frequency of the feedback pole will be quite high, since Cs is generally less than 10 pF. If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of CS), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift. As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via Ct and Cn) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward. RZ However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, CF, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier'S low-frequency noise gain: To maintain stability, a feedback capacitor will probably be needed if Cc ( RF RIN + 1) :s: 46 x 211" x GBW X RF X Cs where (~I~ + 1) is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula (~I~ + 1) regardless of whether the amplifier is being used in an inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large. Tl/H/11135-3 FIGURE 1. LMC6032 Circuit Topology (Each Amplifier) The large signal voltage gain while sourcing is comparable .to traditional bipolar op amps, even with a 6000 load. The gain while sinking Is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (6000)·the gain will be reduced as indicated in the Electrical Characteristics. If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that: (~I~ + 1) : ex is the stray capacitance at the + input. • I N ~ ::! ~----------------------------------------------------------------------------~ Typical Single-Supply Applications (V+ = 5.0 VOC) Additional single-supply applications ideas can be found in the LM358 datasheet. The LMC6032 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input resistance over the LM358. These features 'will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LMC6032 is smaller than that of the LM358. Low-Lea",ge Sample-and-Hold 0UlPUT INPUT S/H Instrumentation Amplifier R3 r 10k TVH/11135-13 lOOk 1 Hz Square-Wave OSCillator R4 t Voor >--+-... R6 R7 10k Ilk Rl 20k pol +5Y +---'W.---.....-"'II\/V-_-I TL/H/I1135-14 VOUT = R2 + 2R1 VIN R2 ifR1 = R5; R3 = R6, andR4 = R7. x R4 R3 TL/H/11135-16 = 100 for circuit shown. For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7. Power Amplifier R4 Sine-Wave Oscillator R2 C2 392k 200pF +5Y +-JVl/V-.......... R3 Voor +5V TVH/III35-17 - 10k 20k 9.1k 20k - ISDk lN914 1101 ex 300pF Tl/H/I I 135-15 Oscillator Irequency is de1errnined by Rl, R2, Cl, and C2: lose = 1/2".RC whereR = Rl = R2 and C = Cl = C2. This circuit, as shown, oscillates at 2.0 kHz with a peak-tQpeak output swing of 4.0V. ' Typical Single-Supply Applications w+ = 5.0 Voc) (Continued) 10 Hz High-Pass Filter 10 Hz Bandpass Filter +SV C2 O.OO68pF R-' VOUT V Cl ~1---4,......-j I---+--~ S60k O.OISpF O.OISpF +SV ...-"I\,..,......-f R2 2.7101 R3 10 Q I. = 10 Hz d = 0.895 = 10Hz = 2.1 Gain Gain = -8.8 1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only) R-' -'70k 270k 390k 1 TLlH/11135-20 2 dB passband ripple TLlH/11135-18 Rl = High Gain Amplifier with Offset Voltage Reduction R3 Rl VOUT Uk VOUT ..L~ R2 -= =1 Hz d =1.-'14 Geln =1.57 O.lpF R2 f. TL/H/11135-19 TLlH/11135-21 Gain = -46.8 Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV). 1-731 • ~ r----------------------------------------------------------------, 21f1 ~ U National Semiconductor LMC6034 CMOS Quad Operational Amplifier General Description The LMC6034 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches ground, low input bias current, and high voltage gain into realistic loads, such as 2 kO and 6000. This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LMC6032 datasheet for a CMOS dual operational amplifier with these same features. For higher performance characteristics refer to the LMC660. Features • • • • Specified for 2 kO and 6000 loads High voltage gain Low offset voltage drift Ultra low input bias current • • • • • • Input common-mode range includes V~ Operating Range from + 5V to + 15V supply Iss = 400 p.A/amplifier; independent of V+ Low distortion 0.01 % at 10kHz Slew rate 1.1 V/p.s Improved performance over TLC274 Applications • • • • • High-impedance buffer or preamplifier Current-to-voltage converter Long-term integrator Sample-and-hold circuit Medical instrumentation 126 dB 2.3 p.V/oC 40 fA Connection Diagram 14-Pln DIP/SO 1~ OUTPUT 1 13 INVERTING INPUT 1 2 INVERTING INPUT 4 12 NON-INVERTING INPUT 4 NON-INVERTING INPUT 1 3 V+ OUTPUT 1M unless otherwise specified. Symbol Parameter Vos Input Offset Voltage I:Nos/t.T Input Offset Voltage Average Drift Ie Input Bias Current los Conditions Typical (Note 5) LMC60341 Limit (Note 6) Units 1 9 11 mV max 2.3 0.04 Input Offset Current 0.Q1 RIN Input Resistance CMRR Common Mode Rejection Ratio OV';: VCM';: 12V V+ = 15V 83 Positive Power Supply Rejection Ratio 5V,;: V+ ,;: 15V Vo = 2.5V 83 Negative Power Supply Rejection Ratio OV';: V- ,;: -10V Input Common-Mode Voltage Range V+ = 5V& 15V For CMRR :2: 50 dB +PSRR -PSRR VCM Av Large Signal Voltage Gain /JoV/·C 200 pA max 100 pA max Teran >1 RL = 2 kn (Note 7) Sourcing Sinking RL = 600n (Note 7) Sourcing Sinking 1-733 63 80 63 80 dB min 70 dB min -0.4 -0.1 0 V max V+ - 1.9 V+ - 2.3 Y+ - 2.8 V min 200 V/mV min 94 2000 500 1000 250 74 dB min 100 90 40 100 75 50 20 VlmV min V/mV min VlmV min DC Electrical Characteristics (Continued) Unle$s otherwise specified. all limits guaranteed for TJ = 25°C. 80ldtace limits apply. at thf,! temperature e)!tremes. V+ = 5V. V- = GND = OV. VCM = 1.5V. VOUT = 2.5V. and RL > 1M unless otherwise specified. .,'. Symbol Vo Parameter Conditions Output Voltage Swing V+:,; 5V " RL = 2kOt02.5V Typical (Note 5) 4.87 0.10 V+ = 5V RL = 6000 to 2.5V 4.61 0.30 V+= 15V RL = 2 kO to 7.5V 14.63 0.26 V+ = 15V RL = 6000 to 7.5V 13.90 0.79 10 V+ = 5V Sourcing. Vo = OV Output Current Sinking. Vo = 5V Is Supply Current I 22 21 V+ = 15V Sourcing. Vo = OV 40 Sinking. Vo = 13V (Note 10) 39 All Four Amplifiers Vo = 1.5V 1.5 I 1·734 "LMC60341 Limit " Units (Note 6) 4.20 4.00 0.25 0.35 4.00 3.80 0.63 0.75 13.50 13.00 0.45 0.55 12.50 12.00 1.45 1.75 .. .. V min V max V min V max V min V max V min V max 13 mA min 13 mA min 23 mA min 15 23 15 2.7 3.0 mA min mA max AC Electrical Characteristics = Unless otherwise specified, all limits guaranteed for T J V+ = 5V, V- Symbol = GND = OV, VCM = 1.5V, Your = 25"C. 2.5V, and RL Parameter Boldface > limits apply at the temperature extremes. 1M unless otherwise specified. Conditions LMC60341 Typical Limit (Note 5) Units (Note 6) SR Slew Rate (Note 8) 1.1 0.8 V/p.s 0.4 min GBW Gain-Bandwidth Product 1.4 MHz cf>M Phase Margin 50 Deg GM Gain Margin 17 dB dB Amp-to-Amp Isolation (Note 9) 130 en Input-Referred Voltage Noise F 22 nVlJRZ in Input-Referred Current Noise 0.0002 pAlJRZ THO Total Harmonic Distortion = 1 kHz F = 1 kHz F = 10kHz,Av = -10 RL = 2 kn, Vo = 8 Vpp 0.01 % ±5VSupply Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings Indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test condHions, see the Electrical Characteristics. The guaranteed spscifications apply only for the test conditions listed. Note 2: Applies to both single-supply and split-supply opsraticn. Continuous shert circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed juncticn tempsrature of 15O'C. Output currents in excess of ±30 rnA over long term may adversely affect rellabliHy. Note 3: The maximum power dissipaticn Is a function of TJ(max)' 8JA, TA. The maximum allowable power dlsslpaticn at any ambient temperature is Po ~ (TJ(max)- TAl/8JA: Note 4: Human body model, 100 pF discharged through a 1.5 kll rasistor. Note 5: Typical values represent the most likely parametric norm. Note 6: All limits are guaranteed at room tempsrature (standard type face) or at operating tempsrature extremes (bold IJ"pe , .....). Note 7: V+ ~ 15V, VCM ~ 7.5V, and RL connected to 7.5V. For Sourcing tests, 7.5V .: Vo .: 11.5V. For Sinking tests. 2.5V .: Vo .: 7.5V. Note 8: V+ ~ 15V. Connected as Voltage Follower wHh 10V step input. Number specified is the slower of the positive and negallve slew rates. Note 9: 1npu1 referred. V+ ~ 15Vand RL ~ 10 kll connected to V.f./2. Each amp excited in tum wHh 1 kHz to produce Vo ~ 13 Vpp. Note 10: Do not connect output to V +, when V + is greater than 13V or reliability may be adversely affected. Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance 6JA wHh Po Note 12: All numbers spply for packages soldered directly into a PC board. 1-735 ~ (TJ - TAlI6JA. ~ ~ ,---------------------------------------------------------------------------------, Typical Performance Characteristics Vs = ~ Supply Current vs Supply Voltage ±7.5V, TA = 25°C unless otherwise speclfied 10 4.0 ~ :; 3.0 ifl TJ .,250C 2.0 TJ = 25°C I t ,Y 1.0 !5 1 1 1 1 o /. ~~/. V ,/.V o. 1 i IOn!. !sf?::V I i TJ ·-ss~c o Output Charecterlstlcs Current Sinking Input Bias Current 0'1~1I 0.01L.......JL.....--'_.....J.._....L_.J 0.001 0.01 0.1 10 100 0.0 I 12 25 o 20 16 50 75 100 125 150 TEMPERATURE (eoc) TOTAL SUPPLY VOLTAGE (VDC) Output Characteristics Current Sourcing OUTPUT SINK CURRENT (mA) Input Voltage Noise vs Frequency ~.s 100 I 60 !il 20 rr- 80 ~ 0'1~1I CMRR vs Frequency , 120 70 10 0;;;- .:!!. 50 II ~ 40 .jO 30 20 10 I...... o 0.01 0.1 10 100 10 100 Open-Loop Frequency Response 27 120 24 I ......... ""- 80 80 .jO "- 18 15 "- 20 -20 I 10 100 lk ~~~R:t ...... 1'1. -~ 01~ . "" 80 80 70 ....... io 50 40 30 20 10 "\ "a \ \ -3 __ q" .... -hIAS":s11M ~ - •• ct,.'OD .... OUTPUTIOIEINI'''''' ._q,.,01pF,ovrMSI_tllA lOOk ~~ 1M ~ i! -~ 11 !il I o-~ ~ "w ==~ iE 5i =1- ~= V 8 8 4 2 II. ~~ ~ i 100 10,000 10 I ~ UNSTABLE tlh I-" 10 I I JJ I -10"'-0.'-0.01"0.00100.00'0.010.1' SINKING JJ r--- ~16 20 to I I I I I Ay = +IOor-IO I I " .~,~ 1000 100 10" OVERSHOOT I 1 "1 -55oC 12 100,000 I I ~ TA;z Stabilltyvs Capacitive Load Ay = +1 rill TA-'5~~"," e:T.=25·C= nNE (1") $ 1,000 1M 5 5N Stabllltyvs Capacitive Load 10,000 lOOk 0 FREQUENCY (Hz) 100,000 10k Non-Inverting Large Signal Pulse Response \. 9 FREQUENCY (Hz) c:! Ik FREQUENCY (Hz) \ '\i 12 10k lOOk IN ION :; 100 10k Frequency Response vs Capacitive Load 140 100 Ik FREQUENCY (Hz) OUTPUT SOURCE CURRENT (mA) UNSTABLE ~ I I 10" OVERSHOOT I I I I 2" OVERSHOOT I 1 IIJ ""0-'-0.100(1.0'-0.00100.0010.010.1 1 10 SOURCING SINKING LOAO CURRENT (mA) SOURCING LOAD CURRENT (mAl TLlH/11134-2 Note: Avoid resistive loeds of less than 5000, eo they may cause Instability. 1-736 Applications Hint Amplifier Topolgy is generally less than 10 pF. If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of Cg), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift. However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capaCitor, CF, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability a feedback capaCitor will probably be needed if The topology chosen for the LMC6034, shown in Figure 1, is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow a larger output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator. As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C4 and Off) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward. (RRF + 1) :s; IN where (=I~ + ~6 X 2'IT X GBW X RF X CS 1) is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula (:,~ + 1) regardless of whether the amplifier is being used in inverting or non-inverting mode. Note that a feedback capaCitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large. If the above condition is met (indicating a feedback capaCitor will probably be needed), and the noise gain is large enough that: (=I~ + 1) ~ 2~GBW X RF X Cs, the following value of feedback capacitor is recommended: CF = TL/H/11134-3 FIGURE 1_ LMC6034 Circuit Topology (Each Amplifier) The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 6000 load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (6000) the gain will be reduced as indicated in the Electrical Characteristics. Cs 2(=1~ + 1) If (=I~ +1) < 2~GBW X RF X Cs the feedback capacitor should be: CF=~GB~~ RF Compensating Input Capacitance The high input resistance of the LMC6034 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used. Note that these capacitor values are usually significant smaller than those given by the older, more conservative formula: Every amplifier has some capaCitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capaCitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedbaCk resistors create a pole in the feedback path. In the following General Operational Amplifier circuit, Fl!Jure 2 the frequency of this pole is ----~I----- 1 fp=--2'ITCsRp where Cs is the total capacitance 'at the inverting input, including amplifier input capcitance and any stray capacitance from the IC socket (if one is used), circuit board traces, etc., and Rp is the parallel combination of RF and RIN. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations. cf TUH111134-4 FIGURE 2_ General Operational Amplifier Circuit Cs consists of the amplHier's input capacitance plus any stray capacitance from the circutt board and socket. CF ccmpensates for the pole caused by When the feedback resistors are smaller than a few kO, the frequency of the feedback pole will be quite high, since Cs Cs and the feedback resistors. 1-737 Applications Hint (Continued) USing the smaller capacitors win give much higher bandwidth with little. degradation of .transient response. II may be necessary in any of the above cases to !lse a somewhat larger feedback capaCitor to allow .for unexpected stray capaCitance, or to tolerateadditio!1a1 phase shifts in the loop, or ex~ssive capacitive load, or to decr!lase the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capaCitance 'may be larger or smaller than the breadboard's, so the actual optimum value for CF may be different from the one estimated using the breadboard: In most eases, the values of CF should be checked on the actual circuit, starting with the computed value. PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that anY'circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultriJ.~low· bias current of the LMC6034.· typically less than 0.04 pA, it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC bOjird, even though. it may sometimes appear acceptably low, because under !X)nditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6034's inputs and the terminals of capacitors; diodes,' conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Fig- " ure 4. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad .resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an inpul. This,would cause a 100 times degradation from the LMC6034's actual' performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier'S performance. See Figures 58, 5b, 5c for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure Capacitive Load Tolerance Like many other op amps, the LMC6034 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See Typical Performance Characteristics. The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in Figure 3a; the addition of a small resistor (500 to 1000) in series with the op amp's output, and a capaCitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus larger values of capaCitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation. 5d. Rx (lOOn) ICroad WH/l.1134-5 FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Rgure 3b). Typically a pull up resistor conducting 500 poA or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). v+ ~l: ~ 'LGuard Ring WH/III34-6 FIGURE 4. Example of Guard Ring In P.C. Board Layout TUH/III34-22 FIGURE 3b. Compensating for Large Capacitive Loads with a Pull Up Resistor 1-738 Application Hints (Continued) have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Cl Figure 6. Rl INPUT JIIW,.......' - - - ¥ ( \ r -.... ,, , Guard Ring ...... , FEEDBACK CAPACITOR OUTPUT 1: TUH/11134-7 (a) Inverting Amplifier TL/H/11134-11 R2 (Input pins are lifted out of PC board and 001_ directly to components. All other pins connected to PC boB"'.) FIGURE 6. Air Wiring OUTPUT BIAS CURRENT TESTING The test method of Ftgure 7 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch 52 momentarily. When 52 is opened, then TL/H/11134-8 (b) Non-Inverting Amplifier - dVOUT C2 1b - dt"X . 52 (push-rod opera led) OUTPUT C2 TL/H/11134-9 (c) Follower R3 Rl Vl 100M L - R2 •, V2 100M TL/H/11134-12 FIGURE 7. Simple Input Bias Current Test Circuit A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of Ib -, the leakage of the capaCitor and socket must be taken into account. Switch 52 should be left shorted most of the time, or else the dielectric absorption of the capaCitor C2 could cause errors. TUH/11134-1D (d) Howland Current Pump FIGURE 5. Guard Ring Connections Similarly, if 51 is shorted momentarily (while leaving 52 shorted) The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few Circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may Ib+ = dVOUT X (C1 dt where 1-739 + Cxl c" is the stray capacitance at the + input. Typical Single-Supply Applications (V+ = 5.0 VDC) Sine-Wave Oscillator Additional single-supply applications ideas can be found in the LM324 datasheet. The LMC6034 is pin-for-pin compatible with the LM324 and offers greater bandwidth and Input resistance over the LM324. These features will improve the performance of many existing single-supply applications. Note. however. that the SUpply voltage range of the LMC6034 is smaller than that of the LM324. C2 200 pF +5V Low-Leakage Sampl_nd-Hold 603-...... VOUT 20k 3O....._0ulpul Inpul 20k S/H TLlH/11134-13 TLlH/11134-15 Oscillator frequency is determined by Rt. R2. C1. and C2: Instrumentation Amplifier r 9.1k R2 fosc = t/2'ITRC. where R = Rt = R2 and C=C1=C2. R3 R4 10k lOOk This circuit. as shown. oscillates at 2.0 kHz with a peak-topeak output swing of 4.0V. 1 Hz Square-Wave OSCillator Rl.44.2k R4 .".-- --~-VOUT VIN (, ~>--+_VOUT Rl R6 +5V~--~~----~--~~--~ R7 470k 10k 91k 20k pol TL/H/11134-14 V R2 + 2Rt OUT = VIN R2 R4 if Rt = R5 x- R3=R6 R3 and R4 = R7. TL/H/11134-16 Power Amplifier = 100 for circuit as shown. For good CMRR over temperature. low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affect CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7. R4 . . . -..... VOUT TLlH/11134-17 1-740 Typical Single-Supply Applications (V+ = 5.0 VDe) (Continued) 10 Hz Bandpass Filter 10 Hz High-Pass Filter 3O-....... VOUT ,4>-...... V OUT +5V ..."""""""'-_.......... R2 10M R3 6.8M R3 'a0 = 10Hz = 2.1 Gain = -8.8 390k Ie = 10 Hz d = 0.895 TLlH/11134-18 Gain TLlH/11134-20 =1 2 dB passband ripple 1 Hz Low-Pass Filter (Maximally Flat, Dual SUpply Only) RI High Gain Amplifier with Offset Voltage Reduction R3 R4 Rl nt-.. . 3O-+-" VoUT _ o.lpr Gain = -46.8 Ie = 1 Hz d = 1.414 Gain Output offset voltage reduced to the level of TLlHI11134-19 >--+_VOUT --1· R2 R4 10M 22k C2 o.ll'r the input offset voltage 01 the bottom amplifier (typically 1 mV). = 1.57 TLlH111134-21 1-741 y- r---------~--------~----------------------------------------~----------------_. (.)2 ~ National :! Semiconductor LMC6041 CMOS Single Micropower Operational Amplifier General Description Features· Ultra-low power consumption and low input-leakage current are the hallmarks of the LMCS041. Providing Input currents of only 2 fA typical, the LMCS041 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground. • • • • • The LMC6041 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems. Low supply current ., . 14 pA (Typ) Operates from 4.5V to 15.5V single supply Ultra low input current 2 fA (Typ) Rail-to-rail output swing Input common-mode range includes ground Applications • • • • • • • Other applications for the LMCS041 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers. This device is built with National's advanced Double-Poly Silicon-Gate CMOS process. Battery monitoring and power conditioning Photodiode and infrared detector preamplifier Silicon based transducer systems· Hand-held analytic instruments pH probe buffer amplifier Fire and smoke detection systems Charge amplifier for piezoelectric transducers See the LMC6042 for a dual, and the LMC6044 for a quad amplifier with these features: Connection Diagram 8-Pln DIP/SO NC"'!" INVERTING INPUT !..NC 2. - ~ Z- V+ NON-INVERnN~ 2. INPUT + v-'!' .!.. OUTPUT ':"NC TL/HI11136-1 Ordering Information Temperature Range Package Industrial -40"Cto +85"C NSC Drawing Transport Media a-Pin Small Outline LMC6041 AIM LMCS0411M MOSA Rail Tape and Reel S-Pin Molded DIP LMCS041AIN LM6041IN NOSE Rail 1-742 ,~ i't Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ± Supply Voltage Differential Input Voltage Supply Voltage (V+ - V-I 16V Output Short Circuit to v(Note 2) (Note 11) Output Short Circuit to V + Current at Power Supply Pin Voltage at Input/Output Pin Lead Temperature (Soldering, 10 sec.) Supply Voltage Power Dissipation Storage Temperature Range Junction Temperature ESD Tolerance (Note 4) (Note 3) Power Dissipation Operating Ratings Temperature Range LMC6041 AI, LMC6041I 2600C -65·Cto +1500C -40·C';: TJ ,;: +85·C 4.5V ,;: V+ ,;: 15.5V (Note 9) Thermal Resistance (8JN (Note 10) 8-PinDIP 8-PinSO 1100C 500V ±5mA Current at Input Pin Current at Output Pin 35mA (V+) + 0.3V, (V-) - 0.3V 101·C/W 165·C/W ±18mA Electrical Characteristics Unless otherwise specified, all limits guaranteed for TA = TJ = 25·C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = V+ /2, and RL > 1M unless otherwise specified. Symbol Parameter Typical (NoteS) Conditions VOS Input Offset Voltage 1 TCVos Input Offset Voltage Average Drift 1.3 18 Input Bias Current 0.002 los Input Offset Current 0.001 LMC6041AI LMC6041I Umit (Note 6) Limit (Note 6) 3 3.3 6 8.3 Units (Umit) mV max p'vrc 4 4 pA max 2 2 pA max RIN Input Resistance CMRR Common Mode Rejection Ratio OV,;: VCM ,;: 12.0V V+ = 15V 75 68 88 62 80 dB min +PSRR Positive Power Supply Rejection Ratio 5V,;: V+ ,;: 15V Vo = 2.5V 75 68 ee 62 eo dB min -PSRR Negative Power Supply Rejection Ratio OV,;:V-';:-10V Vo = 2.5V 94 84 83 74 73 dB min CMR Input Common-Mode Voltage Range V+ = 5Vand 15V for CMRR ~ 50 dB -0.4 -0.1 0 -0.1 0 V max V+ - 1.9V V+ - 2.3V Y+ - 2.SY V+ - 2.3V Y+ - 2.4Y V min Sourcing 1000 400 300 300 200 V/mV min Sinking 500 180 120 90 70 V/mV min Sourcing 1000 200 1eO 100 80 V/mV min Sinking 250 100 80 50 40 VlmV min Av Large Signal Voltage Gain >10 RL = 100 kO (Note 7) RL = 25 kO (Note 7) 1-743 TeraO Electrical Characteristics " Unless otherwise specified, all limits guaranteed for T A = TJ = 25"C. Boldr.ce limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V,Vo = V+/2, and RL > 1M unless otherwise, specified. Symbol Va Parameter Output Swing Typical (Note 5) Conditions V+ = 5V RL = 100kOtoV+/2 4.987 0.004 V+ = 5V RL = 25kOtoV+/2 4.980 0.010 V+ = 15V RL = 100 kO to V+ /2 14.970 0.007 V+ = 15V RL = 25kOtoV+/2 14.950 0.022 Isc Outpu1 Current V+ = 5V Sourcing, Va Sinking, Va Isc Outpu1 Current V+ = 15V Is Supply Current = Sourcing, Va Sinking, Va (Note 11) Va V+ = = = OV 22 5V 21 = OV = 40 13V 39 14 1.5V 15V 18 LMC6041AI LMC6041I Limit (Note 6) Limit (Note 6) 4.970 4.940 4.850 4.810 0.030 0.060 0.050 0.080 4.920 4.870 4.870 4.820 0.080 0.130 0.130 0,1.0 14.920 14.880 14.880 14.820 0.030 0.060 0.050 0.090 14.900 14.850 14.850 14.800 0.100 0.150 0.150 0.200 16 13 10 8 16 13 8 8 15 15 10 10 24 21 8 8 Unite (Limit) V min V max V min V max V min V max V min V max mA min mA min mA min mA min 20 26 pA 24 30 max 26 34 pA 31 38 ' max : , 1-744 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T A = T J = 25°C. Boldface limits apply at the temperature extremes. V + = 5V, V- = OV, VCM = 1.5V, Va = V+ 12, and RL > 1M unless otherwise specified. Typ Symbol sR GBW Parameter Slew Rate Conditions (Note 8) Phase Margin en Input-Referred LMC6041I Limit (Note 6) Limit (Note 6) 0.02 Gain-Bandwidth Product m LMC6041AI (Note 5) 0.015 0.010 0.010 0.007 Input-Referred 60 Deg F = 1 kHz 83 F=1kHz 0.0002 Total Harmonic; F = 1 kHz, Av = Distortion RL = 100kO, Va = 2Vpp min kHz nV/yHz pAlyHz Current Noise T.H.D. V/p.S 75 Voltage Noise in Units (Limit) -5 % 0.01 ±5Vsupply Note 1: Absolute Maxium Ratings indicate limits beyond which damage to the device may occur. Operating conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance IImils. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specmcations apply only for the test cond~lons listed. Note 2: Applies to IIQth single-supply and spl~-supply operation. Continuous short circu~ operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of II O'C. Output currents in excess of ± 30 rnA over long term may adversely affect reliability. Note 3: The m"'!imum power dissipation is a function of TJ(max), 8JA, and TA' The maximum allowable power dissipation at any ambient temperature is Po ~ (TJ(max) - TAlI6JA· Note 4: Human body model, 1.5 kIl in series w~ 100 pF. Note 5: Typical Values repi"esent the most likely parametric norm. Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type). Note 7: y+ = 15V, YCM ~ 7.5Vand Rl connected to 7.5V. For Sourcing tests, 7.5V ,,; Vo ,,; 11.5V. For Sinking tests, 2.5V ,,; Vo ,,; 7.5Y. Note 8: Y+ ~ 15Y. Connected as Yoltage Follower with lOY step input Number specijied in the slower of the po~ive and negative slew rates. Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance 6JA with Po Note 10: Ail numbers apply for packages soldered directly into a PC board. Note 11: Do not connect output to V+ when Y+ is greater than 13V or reliability may be adversely affected. 1-745 = (TJ - .TAlI8JA' ..~ ~ ~------------------------------------------------------------------------------------, Typical Performance Characteristics Vs = ~ Offset Voltage va Temperature of Five Representative Units Supply Current va Supply Voltage ~ 2.5 ...-,.--,.--~~.,.-.,.-..,.-., 35 ~ ~tt~$;S;tlj 30 ~ 15 ~ 10 ~~ 0-; +25"C +85'C ;4IJOC - F- 5 i l.oetittE QlI 0.0 ::-eot1±±::±::t:B=:1 -eo -20 0 SUPPLY VOLTAGE (V) 1 dO -7~ -3D !>+0.5 . . ... . . ~12 -1-4.5-3-1.5 0 1.5 3 4.5 8 7.5 CONMON-IIOOE VOLTAGE (V) iii 1-GlI-50 0 ,25 210 i i 120 ~ 80 0.0001 100 50 50 75 100 100 0.1 o.ot lo.oooto.ooto.ot 0.1 1 10 100 OUTPUT SilK CURRENT (mA) Power Supply Rejection RatiO va Frequency 120 !, 100 I""r- ..... 80 90 ! 80 ~ «I .,. SUPPLY i' I'\. V>SUPPL~ 20 , .... ~ 30 0 1 75 o.oot ~ 150 I ~ 0.001 180 25 10 Input Voltage Noise vs Frequency 2«1 OUTPUT SOURCE CUIIR£NT (mA) -25 0 Output Characteristics Current Sinking lEIIPEIIATUR£ ("C) 10 10 ~ GUARANTEED 0 Output Characteristics Current Sourcing 0.1 I I I I _ 0.001 0.01 -25 12 - GUARANIUJ) - B~ -2.5 ii I TtPtCAL ~;: , ~ I I ~12 ~.o 1 , 0.001 -50 1DIP£RATURE ('Ie) Input Common-Mode Voltage Range vs Temperature i~ -o.!I ,, -- 0AI001 20 40 80 80 100 V' .. TEllPERATURE ('Ie) Input Bias Current vs Input Common-Mode Voltage , ~ ~~I--+-+-+-+-+-+-+--I 024881012141. 1 1 Iii -o.!I1---H~~~ IS -1.0 1--+-+-+-+-+-+-+--1 o~ II Ie I Input Bias Current vs Temperature «I I: ~ ± 7.5V, TA = 25°C unless otherwise specified 10 100 FREQUENCY (Hz) lk lC1c -20 10 100 lk ~ ICIc lUCIe III FREQUENCY (liz) TL/H/11136-2 1-746 Typical Performance Characteristics Vs = 100 90 80 70 ..,. ~ l! ~ 80 I 50 40 30 ISO ttO 'iii'140 tOO ~ 130 0 Ik 10k i"""- - ...... , 80 160 ~ z 120 80 ~ 10 Ii> '- 100 -25 0 25 50 75 100 TEMPERATURE (OC) Gain and Phase Responses vs Temperature I'\. ! '- I I'\. ~. to tOO tk tOk tOOktM tk tOk tOOk I\. ~25~ .. - r- ~ ~=Z r- ~ lOOk 1 I I -t5 -20 -25 2.5 VOl" (VOLTS) 5 - I 150 100 50 0 -50 -200 -250 7-' to lOOk 1M Non-Inverting Slew Rate vs Temperature D.04O 0.035 I- / :- v- / -tOO 8 -t50 10k FREQUENCY (Hz) 200 -to -7-' -5 -2.5 0 iE -45 lk 1M i ! ~ ~ Common-Mode Error vs Common-Mode Voltage of Three Representative Units ~ -to 45 ~ 250 I\. • 90 ~ ~ !l FREQUENCY (Hz) I I .1. ~ 0 Gain Error (VOS vs VOUT) ! l-s 80 aD 70 -50 ~ FREOUENCY (Hz) 10 80 90 ~ '- -20 0.0010.0t 0.1 I t5 ~ li1 40 20 ~ 80 r-r-TTTTm"--'..". 20 25 40 ~, ~ 100 ~ 20 110 .. 100 Gain and Phase Responses vs Load CapaCitance Open-Loop Frequency Response li1 0 i / 1\..' 25';-: TEMPERATURE (Oc) FREQUENCY (Hz) 140 :-111 ~ 120 90 50 -40 -20 1M lOOk I\. = lOOk ~ 10 10 100 Open-Loop Voltage Gain vs Temperature 120 70 20 10 = 2S'C unless otherwise specified (Continued) CMRR vs Temperature CMRR va Frequency li1 ± 7.SV, TA ,V / ~ 0.030 ..... 0.G25 ~ ~ JALLIJG i- 0.020 lo. 0.01 5 iil 0.01 0 RISING 0.005 -1-1-.4-202418 COMMON MODE VOLTAGE (V) -40 -20 0 20 40 10 80 too TEMPERATURE (Oc) TLlHI11136-3 1-747 Typical Performance Characteristics Vs == Inverting Slew Rate vs Temperature 0Jl45 ~ '"!'III ~D.035 ~' ~IOO~-r~~-+~~~ ~ ~ I'-- ~ I ~ FALLI4G ==== io.mo Non'-Invertlng' l!m~il' " , ]: , Signal Pulse'Response ' ~ .. Rr=RIN=3Jk O.IMO~ Non-Inverting Large Signal Pulse Response (Av = +1) ~ 0JI!i0 ± 7.5V. T A = 25~Cunless otherwise sPecified (Contit\ued) : ~ / 1/ 0.D15 -- ~ o:m -«1-20 «I 60 60 o lOOZlO:500«I0500600700800800 100 mtPERA:r'IRE (oe) i~IOOrt~~~~rf~ I-+..,.,../~~~-\-/--t-I ~ ~ 50 0 L......L......L-'-l-J.......J......\....l..-l-I 1 0102030«150607060 !lME (pS) nUE (PS) Inverting Large-Slgnal Pulse Response Stability VII eapacltlve Load (Av = +1) Inverting Smail Signal Pulse Response ]: ,I 100,000 ~IOO r i , 1 Rf = Rill = lOOk'< : RtN =Rr =lOOk s '''\I ~ UNSTABLE :!. '\. ~ Ay = +1 0 i ~ / ~! ]: ~0JI2S .. o.mo 0.D10 O~~~~~~~ ~ 100 S 0 § o lOOZlO:lOO«I0500600700800900 I I 1\ ~ 50 ~- o 10 :m 30 «I 50 60 70 60 90 nME (pS) ,nME (pS) 'Stability vs Capacitive Load (Av';' ±10) I -10 -0.1 -0.001 0.001 0.1 10 -I -0.01 0 0.01 SIliIaNG SOURCING LOAD CURRENT (mA) 100,000 1:' 10,000 .e Ay = tlO !'\I ~ 1.000 I 100 JJJ N.J 'IJ. .... w JlIIIIIIUJo ill 10 I -10 -0.1 -0.001 0.001 0.1 10 -I -0.01 0 0.01 SINKING SOURCING LOAD CURRENT (mA) TUH/11136-4 1.748 Applications Hints AMPLIFIER TOPOLOGY The LMC6041 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6041 both easier to design with, and provide higher speed than products, typically found in this ultra-low power class. CAPACITIVE LOAD TOLERANCE Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in F/{Jure 28. +V COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance with amplifiers with ultra-low input current, like the LMCS041. Although the LMC6041 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large 'feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuits board parasitics, reduce phase margins. 2011 CLOAD 1000pF 90k +-------------~~ When high input impedance are demanded, guarding of the LMC6041 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Prlnted-Clrcult-Board Layout for High Impedance Work.) 10k TUH/11136-6 FIGURE 2a. LMC6041 Nonlnvertlng Gain of 10 Amplifier, Compensated to Handle Capacitive Loads In the circuit of Figure 28, Rl and Cl serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. R2 RI VIN o--J\M--4,_-........ , Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure 2b). Typically a pull up resistor conducting 10 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). CIN :::: I I I ...... TL/H/11136-5 FIGURE 1. Cancelling the Effect of Input Capacitance The effect of input capacitance can be compensated for by adding a capaCitor. Adding a capaCitor, ~, around the feedback resistor (as in Figure 1) such that: 1 I V+ ~~, 1 ---~--- 27TRI CIN 27TR2 ~ , or R1 CIN';; R2~ Since it is often diffICult to know the exact value of CIN, ~ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capaCitance. TUH/11136-16 FIGURE 2b_ Compensating for Large Capacitive Loads with a Pull Up Reslator 1-749 Application Hints (Continued) PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMCS041, typically less than 2fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6041's inputs and the terminals of capaCitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifer inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6041's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would 'cause only 0.05 pA of leakage current. See FIgUf8S 48, 4b, 4c for typical connections of guard rings for standard op-amp configurations. I O~,44 III I I +o!JN44 I Cl Rl INPUT ,, , Guard Ring -+t , OUll'UT r TUH/11136-8 (a) Inverting Amplifier OUll'UT TUHI11136-9 , (b) Follower R2 OUll'UT TLlH/11136-10 I (c) Non-Inverting Amplifier FIGURE 4. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator: In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-Io-point up-in-the-air wiring. See Figure 5. _l2J_U l!J_~_~ -!4 ""'fY'-,9041......-~.,.,..-.. f'EEIl8ACK CAPACITOR LGuard Ring TUH/III36-7 FIGURE 3. Example of Guard Ring In P.C. Board Layout Tl/H/11138-11 (Input pins are liflEid out of PC board end soIdensd direcUy to components. All other pins connected to PC boerd.) FIGURE 5. Air Wiring 1-750 r-----------------------------------------------------------------------------,~ Typical Single-Supply Applications (V+ = 5.0 VOC) The extremely high input impedance, and low power consumption, of the LMC6041 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these type of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. 0.047F 10k Rejection of the common-mode component of the input is accomplished by making the ratio of R1JR2 equal to R3J R4. So that where, R3 R2 R1 R4 R4 ( R3 R2 + R3) VOUT=- 1 + - + - - - Vo R3 R4 Ro A suggested design guideline is to minimize the difference of value between R1 through R4. This will often result in improved resistor tempco, amplifier gain, and CMRR over temperature. If RN = R1 = R2 = R3 = R4 then the gain equation can be simplified: R. R2 Your VOUT = 2 (1 + :~) Vo Due to the "zero-in, zero-out" performance of the LMC6041, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of OV to Vs2.3V, worst case at room temperature. This feature of the LMC6041 makes it an ideal choice for low-power instrumentation systems. A complete instrumentation amplifier designed for a gain of 100 is shown in F/{Jure 7. Provisions have been made for low sensitivity trimming ofGMRR and gain. TlIH/11136-12 FIGURE 6. Two Op-Amp Instrumentation Amplifier The circuit in Figure 6 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000. This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply curre,nt of less than 28 /LA. To maintain ultra-high input impedance, it is advisable to use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 6, the input voltages are represented as a common-mode input VCM plus a differential input Vo. Ion Gain 191n 9.95k Trim 10k. 0.1% son CMPR Trim Vour = 100VO TlIH/11136-13 FIGURE 7. Low-Power Two-Op-Amp Instrumentation Amplifier 1-751 ~.... .- ~ ~------------------~----------------------------------------------------------------, Typical Single-Supply Applications (V+ = 5.0 Voci) (Continued) r OUTPUT INPUT YIN s/H YOU! 10k: \.----t TUH/III36-14 FIGURE 8. Low-Leakage sample and Hold TLlH/III36-15 FIGURE 9. Instrumentation Amplifier R4 R4 +SV'-W_H Rl R2 +SV +---'IM.------1--W_-01 470k R3 R3 470k 1501< 4701< Tl/H/III36-17 FIGURE 11. AC Coupled Power Amplifier TL/H111136-16 FIGURE 10. 1 Hz Square-Wave Oscillator 1-752 ,-------------------------------------------------------------------------, ~ a: ! tflNational Semiconductor N LMC6042 CMOS Dual Micropower Operational Amplifier General Description Features Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6042. Providing input currents of only 2 fA typical, the LMC6042 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground. The LMC6042 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems. Other applications for the LMC6042 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers. This device is built with National's advanced Double-Poly SIlicon-Gate CMOS process. See the LMC6041 for a single, and the LMC6044 for a quad amplifier with these features. • • • • • Low supply current 10 fJ-AI Amp (typ) Operates from 4.5V to 15V single supply 2 fA (typ) Ultra low input current Rail-to-rail output swing Input common-mode range includes ground Applications • • • • • • • Battery monitoring and power conditioning Photodiode and infrared detector preamplifier Silicon based transducer systems Hand-held analytic instruments pH probe buffer amplifier Fire and smoke detection systems Charge amplifier for piezoelectric transducers Connection Diagram II-Pln DIP/SO OUTPUT A 1 INVERTING INPUT A 2 NON-INVERTING INPUT A '-/ ~- ~ A+ 2. V" " '- r!- V" B + OUTPUT B r!- !NVERTING INPUT B - 5 NON-INVERTING INPUT B TL/H/11137-1 Ordering Information r------,----------r----.--------, Package Temperature Range NSC Drawing Industrial - 40"C to + 85"C Transport Media S-Pin Small Outline LMC6042AIM LMC6042IM MOSA Rail Tape and Reel S-Pin Molded DIP LMC6042AIN LMC60421N NOSE Rail 1-753 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage ± Supply Voltage Supply Voltage (V+ - V-) 16V Output Short Circuit to V+ (Note 12) Output Short Circuit to V- ESD Tolerance (Note 4) Voltage at Input/Output Pin ±5mA Current at Output Pin Current at Power Supply Pin ll00C 500V (V+) + 0.3V. (V-) - 0.3V Operating Ratings Temperature Range LMC6042AI. LMC60421 2600C Current at' Input Pin -65°C to + 1500C Junction Temperature (Note 3) (Note 2) Lead Temperature (Soldering. 10 seconds) (Note 3) Power Dissipation Storage Temperature Range -400C . Supply Voltage ±-18mA 35mA 4.5V s: tJ s: +85°C s: V+ s: 15.5V Power DiSSipation (Note 10) Thermal Resistance (8JAl. (Note 11) 8-PinDIP 8-PinSO 101°C/W 165°C/W Electrical Characteristics Unless otherwise specified. all limits guaranteed for TA = TJ = .25°C. Boldface limits apply at the temperature el\tremes. V+ = 5V. V- = OV, VCM = 1.5V. Vo = V+ 12 and RL > 1M unless otherwise specified. Symbol Vas Parsmeter Typical (NoteS) Conditions Input Offset Voltage 1 TCVos Input Offset Voltage Average Drift Ie Input Bias Current los Input Offset Current RIN Input Resistance CMRR Common Mode Rejection Ratio OV s: VCM s: 12.0V V+ = 15V 75 Positive Power Supply Rejection Ratio 5V s: V+ s: 15V Vo = 2.5V 75 Negative Power Supply Rejection Ratio OV s: V- s: Vo == 2.5V Input Common-Mode Voltage Range V+ = 5Vand15V For CMRR ~ 50 dB +PSRR -PSRR CMR Large Signal Voltage Gain LMC60421 Umlt (Note 6) Umlt (Note 6) 3 6 3.3 8.3 , RI: = 100 kO (Note 7) 4 4 pA(Max) 0.001 2 2 pA(Max) 94 -0.4 Sourcing Sinking RL = 25 kO (Note 7) Sourcing Sinking 1-754 mV Max 0.002 >10 -10V .Units . (Limit) p.VloC 1.3 V+-l.9V Av LMc6042AI 1000 500 1000 250 TeraO 68 62 88 80 68 62 ee eo dB Min dB Min 84 74 83 73 dB Min -0.1 0 -0.1 0 V Max v+- 2.3V Y+- 2.SY v+- 2.3V Y+- 2.4Y V Min 400 300 300 200 V/mV Min 180 90 120 70 200 100 1eo 80 100 50 eo 40 VlmV Min V/mV Min V/mV Min Electrical Characteristics Unless otherwise specified. all limits guaranteed for TA = TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V. V- = OV. VCM = 1.5V. Vo = V+ /2 and RL > 1M unless otherwise specified. (Continued) Symbol Vo Parameter Output Swing Typical (Note 5) Conditions V+ = 5V RL = 100 kO toV+/2 4.987 0.004 V+ = 5V RL = 25kOtoV+/2 4.980 0.010 V+ = 15V RL = 100kOtoV+/2 14.970 0.007 V+ = 15V RL = 25kOtoV+/2 14.950 0.022 Isc Output Current V+ = 5V Sourcing. Vo Sinking, Vo Isc Output Current V+ = 15V Is Supply Current = Sourcing, Vo Sinking, Vo (Note 12) = 22 21 5V = = OV OV 40 13V 39 Both Amplifiers Vo = 1.5V 20 Both Amplifiers V+ = 15V 26 LMC6042AI LMC60421 Limit {Note 6) Umlt {Note 6) 4.970 4.940 4.850 4.810 0.030 0.060 0.050 0.080 4.920 4.870 4.870 4.820 0.080 0.130 0.130 0.180 14.920 14.880 14.880 14.820 0.030 0.060 0.050 0.080 14.900 14.850 14.850 14.800 0.100 0.150 0.150 0.200 Units (Umlt) V Min V Max V Min V Max V Min V Max V Min V Max 16 13 rnA 10 8 Min 16 13 8 8 mA Min 15 15 10 10 24 21 8 8 mA Min mA Min 34 45 p.A 38 50 Max 44 56 p.A 51 85 Max ~ I i II 1-755 AC Electrical Characteristics Unless otherwise specified, an limits guaranteed for TA = TJ = 25D C. BolcH.c.limits apply at the temperature exltemes. Y+ = 5V, Y- = OV, VCM = 1.5V; Vo = V+ 12 and RL > 1 M unless otherwise specified. Symbol SR GBW m Conditions Parameter Slew Rate (Note 8) LMC6042Aj LMC60421 Limit (Note 6) Limit (Note 6) 0.02 Gain-Bandwidth Product PhaSe Margin Amp-ta-Amp Isolation (Note 9) en Input-Referred Voltage Noise f in Input-Referred Current Noise f=1kHz T.H.D. Total Harmonic Distortion f = 1 kHz.Av = -5 RL = 100kO, Vo = 2Vpp ±5YSupply = Typ (Note 5) 1 kHz 0.015 0.010 0.010 0.007 Units (Limit) Y/p.S Min 100 kHz 60 O9g 115 dB 83 nY/y'Hz 0.0002 pAly'Hz 0.01 % Note 1: Absolute Maximum Ratings Indicate ~mlts beyond which damage to tha _ may occur. Operating Conditions Indicate conditions for which the _ I s Intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, sae tha EIecIricaI Characteristics. The guaranteed speclflcations apply only for tha test condH/Ons listed. Note,2: Applies to both single-supply operation. Continuous short clrcuH operation at elevated ambient temperature can resuH In exceeding the maximum allowed junction tempereture of 110"C. Output currents in excess of ±30 rnA over long tenn may adversely affect rellabilHy. Note 3: Tha maximum power disslpetion Is a function of TJ(Max)' 8oJA, and TA. The maximum allowable power' dissipation at any ambient temperature 18 Po ~ (TJ(Max) - TNI8JA· Note 4: Human body model, 1.5 kll in series with 100 pF. "ote 5: Typical values represent the most likely parametric norm. Note 8: All 6mits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bofd 1ace type). Note 7: V+ ~ 15V, VCM - 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V " Vo " 11.5V. For Sinking tests, 2.SV " Vo " 7.5V. Note 8: V+ - 15V. Connected as Voltage follower with 10V step Input Number specified 18 tha slower of tha positive and negaUva slew reIae. Note 9: Input referred V+ - 15Vand RL - 100 kll connected to V+'/2. Each amp excited In tum with 100 Hz to produce Vo - 12 Vpp. Note 10: For operating at elevsted temperatures the device must be derated based on the thermal resistance 8JA with Po - (TJ - TNI8JA. Note 11: All numbers apply for packages soldered directly into a PC board. Note 12: Do not connect output to V+ when V+ is greater than 13V or reliabilHy may be adversely affected. 1-756 Typical Performance Characteristics Vs = Offset Voltage vs Temperature of Five Representative Units Supply Current vs Supply Voltage 40 ~ I: ~ 15 iii 10 ~ .., +25CC ~ +85"C i Jj o " o 4 6 8 W U U SUl'PLY VOLTAGE (V) 2 tt;;l~:r::~jj lD Q5 ; ~t=e:~~t:==4:~j " ~ -50 -25 -05 ~~ -ID il: ,, ~ ~~ . -- - - 0001 -7!l-B-45-3-1!l 0 1!l 3 45 6 7!l INPUT COIIIIO....MOIlE VOLTAGE (V) Output Characteristics Current Sinking I--- GUARANltED - I I I -3.0 Ii ~50 +Q5 Output Characteristics Current Sourcing GUAIWITEED -25 25 0 75 50 100 I 0D1I01 0001 0JI1 0.1 1 240rTnm~~~Tm~~ 110 ~ ~ l00~~~~~+*~~ i 100 Crosstalk Rejection vs Frequency 210 I\i-tttffliHtltHlIHtHtlllH-f .s 10 OUTPUT S1HK CURRENT (mA) 1IIIPERATURE ("C) Input Voltage Noise vs Frequency 10 100 lYP1CAL -25 ii \ 75 50 10 I I i\. 25 0 lEIIPEIIATUJlE (CC) Input Common-Mode Voltage Range vs Temperature do I" ODOO1 20 «I 110 110 1110 1IIIPERATURE ("C) 1 \ . .... . 1 == 1:j;;±:±:::E::t::I::I:::::l -60 -40-20 0 , 1 -1.51-+-+-+-+-+--!-+--I ~ Input Bias Current vs Input Common-Mode Voltage 1 1 ! ~ t=t:~~t;;j;;;!::1=~ -Jc , !O Input Bias Current vs Temperature 25 ...--.--...-...-...--.--.-..,-.., I 35 = 25°C unless otherwise specified ±7.5V. TA 150 I-+HIIHI~~~+*~~ ~ 120~~~~~~ ~ ~ o .......WJlJIL....I..I.WIUL.....\......UII-J.I. 1 100 CMRR vs Frequency .... ::!. eo 50 I 40 !O 20 10 0 10 lk 1«1 1 111< 10 120 110 100 100 80 ......... 80 70 r--- f-' lk ! V -.... 60 i"'- .,.. SUPPLY ~ .... V" SUPPLY I\. i'~ ~ 110 100 lk 111< F1IIQUENC'( (Hz) lOOk 1M 50 -40 -20 111< Power Supply Rejection Ratio vs Frequency 120 90 100 FREQUENCY (Hz) CMRR vs Temperature 100 90 80 70 I 100 FREQUENCY (Hz) 0U1PUT SOURCE CURREIIT (mA) ~ 10 0 20 40 eo 1IIIPERAlIJII[ ("C) 80 100 -20 10 100 lk 111< F1I[QU£NCY lOOk 1M (Hz) TL/H111137-2 1-757 Typical Performance Characteristics Vs = ±7.5V, TA = 25°C unless otherwise specified (Continued) Open-Loop Voltage Gain vs Temperature 110 150 ~ 140 !!; 130 3 ~, ~I 6' > ~ ~ Gain and Phase Responses vs Load CapaCitance Open-Loop Frequency Response 1\ • ~100 ~ 1\=~ ~ lID " 120 ~ =-~ 120 80 140 lOOk 90 ~ 80 ~~ 100 ~ 3 ~ "" 40 20 80 -20 0.0010.010.1 I TEMPERATURE (OC) 15 ,.. 10 S .3 Ik 1\ ~25~ 1\ • Li 0 -5 -10 -25 -10 -7.5 -5 -2.5 0 1M -~'2~ -1 1 1 O.oso 0.035 '0.045 • ~ 0.01 5 ~ ~ 0.035 RISING i 0.030 • 0.025 ;;! 0.01 0 0 20 40 10 10 100 a 50 I -5: ~ -100 - / - / ,. V 7.5 10 ~ ~ V ~ 10 20 30 40 50 60 70 80 TIME (1'.) 4 I 8 ~ ~ I'-1/ 1/ -40 -20 20 0 40 10 80 100 -o r-- 100200300400500800700800900 TIME (1") TEMPERATURE (Oc) Inverting large-Signal Pulse Response 1 1 1 Inverting Small Signal Pulse Response" 1 1 1 ,I 1 = RoN = lOOk / o 0, 2 Non-Inverting Large Signal Pulse Response (Av = +1) ~N 1\ ~ FALLING '=:::::: i!r I "" COMMON MODE VOLTAGE (V) 0.020 TEMPERATURE (oc) Non-Inverting Small Signal Pulse Reaponse 100 -250 5 2.5 0.01 0 -40 -20 150 .. -200 0.01 5 0.005 . 1Ir·~N·33k .. .. ,,0.D40 JALLlJG ~ 8 -150 Inverting Slew Rate vs Temperature 0.040 ~ 0.020 f- lOOk VOUT (VOLTS) FREQUENCY (Hz) Non-Inverting Slew Rate vs Temperature 1M 200 Ik ' lOOk lOOk Common-Mode Error vs Common-Mode Voltage of 3 Representative Units 1 -20 -- 10k FREQUENCY (Hz) 250 t--1-tl'lffiIt-t+ttlllIII-H'I'lttIII ~ 0.025 l -20 10100 IklOklOOklM -15 10.030 ~ Gain ~ Gain Error (Vos vs VOUT) 20 10k e ~ I'.. 'iii' ~ 20 25 -20 90 FREQUENCY (Hz) Gain and Phase Responsevs Temperature o.o! Ph... 40 ~~ 60 70L--L__L--L__~~~ -50 -25 0 25 50 75 100 60 z i1 " ~ -~ o 100200300400500600700800900 TIME (1'1) 1\ o = Rr = lOOk I II 10 20 30 40 50 60 70 80 90 TIME (1") TLIH/I I 137-3 1-758 Typical Performance Characteristics Vs = ±7.5V, TA = 25°C unless otherwise specified (Continued) Stability vs Capacitive Load I 100,000 Iii: - Stability vs Capacitive Load I 100.000 Iv = +1 lv=tlO LJ 10,000 tll,r+-+"h--++++-H "'~ 1,ooo~~~+UN~~~~~-+-a~ I'oo~~~ ~ 101-\-+-+-+-1-+-+++-1 I~~~~~~~~~ I~~~~~~~~~ -10 -I -0.1 -o.oo! OJIOI 0.1 10 -0.01 0 0.01 I SINKING -10 -I SOURCING -0.1 -0.001 OJIOI 0.1 10 -0.01 0 0.01 I stNKINC LOAD CURRENT (RIA) SOURCING LOAD CURRENT (mA) TLlH/11137-4 Applications Hints AMPLIFIER TOPOLOGY The LMCS042 incorporates a novel op-amp design topology that enables it to maintain rail-te-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6042 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, Ct, around the feedback resistor (as in Figure 1) such that: COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance with amplifiers with ultra-low input curent, like the LMC6042. Although the LMCS042 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capaCitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. When high input impedances are demanded, guarding of the LMC6042 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capaCitance as well. (See Prlnted-Clrcuit-Board Layout for High Impedance Work). CAPACITIVE LOAD TOLERANCE Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crosSover frequency of the amplifier resulting in either an OSCillatory or underdamped pulse response. With a few external cOmPonents, op amps can easily indirectly drive capacitive loads, as shown in Fl{Jure 28. __1=---_ :;,; __ 1_ 2'ITR1 CIN 2'ITR2 Ct or R1 CtN s; R2 Ct Since it is often difficult to know the exact value of CIN, Ct can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance. +Y 200 C, Your II Ir-- CwAD R2 __ ~OOOpF Rl 90k I 10k TLlH/11137-5 TLlH/11137-6 FIGURE 1. Cancelling the Effect of Input CapaCitance FIGURE 28. LMC6042 Nonlnvertlng Gain of 10 Amplifier, Compensated to Handle Capacitive Loads 1-759 I ~ r-----------------~--~----------------------~~--------------------------------~--~ ~ :J Applications Hints (Continued) In the circuit of Figure 2a, R 1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margi,n in the overall feedback loop. Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure ~b). Typically a pull up resistor conducting 10 p.A or more will signi,icantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of th& amplifier with respect to the desired ol,llput, swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). V+ ~~, t.Guard Ring TL/H/11137-1B ,TLlH/11137-7 FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor FIGURE 3. Example of Guard Ring In P.C. Board Layout PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pAof leakage current' requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6042, typically less than 2 fA, it is essential to have, an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not Ignore, the surface leakage of the PC board, even though it may sometimes appear acceptably 'lOW, because under 'conditions of high humidity or dust or contamination, the surface leakage will be appreciable. " , Cl Rl INPUT Jtl.tN....+-II---~I\r--.. I I I I Guard RIng - . . OUTPUT .r I TLlH/11137-B To minimize the effect of any jlurface leakage, layout II ring of foil completely surrounding the LMC6042's inputs and the terminals of capaCitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two pOints at the same potential. For example, a PC board trace-to-pad resistance of 10120., which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6042's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0. would cause only 0.05 pA of leakage current. See Figures 48, 4b, 4c for typical connections of guard rings for standard op-amp configurations. (a) Inverting Amplifier R2 OUTPUT TL/H/11137-10 (b) Non-Inverting Amplifier OUTPUT TLlH/11137-9 (c) Follower FIGURE 4. Typical Coimectlons of Guard Rings 1-760 r-----------------------------------------------------------~~ The circuit in Figure 6 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000. This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply current of less than 20 pA To maintain ultra-high input impedance, it is advisable to use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 6, the input voltages are represented as a common-mode input VCM plus a differential input Vo. Application Hints (Continued) The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5. Rejection of the common-mode component of the input is accomplished by making the ratio of R1/R2 equal to RS/R4. So that where, FEEDBACK CAPACITOR RS R2 R4 R1 R4 ( VOUT = RS 1 RS R2 + RS) + R4 + ----;:w- Vo A suggested design guideline is to minimize the difference of value between R1 through R4. This will often result in improved resistor tempeo, amplifier gain, and CMRR over temperature. If RN = R1 = R2 = RS = R4 then the gain equation can be simplified: TLlH/11137-11 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.) VOUT = 2 (1 FIGURE 5. Air Wiring + :~) Vo Due to the "zero-in, zero-out" performance of the LMC6042, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of OV to Vs - 2.SV, worst case at room temperature. This feature of the LMC6042 makes it an ideal choice for low-power instrumentation systems. Typical Single-Supply Applications (V+ = 5.0 Voc) The extremely high input impedance, and low power consumption, of the LMC6042 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. A complete instrumentation amplifier designed for a gain of 100 is shown in Figure 7. Provisions have been made for low sensitivity trimming of CMRR ~nd gain. O.047F 10k R2 TL/H111137-12 FIGURE 6. Two Op-Amp Instrumentation Amplifier 1-761 i: i Typical Single-Supply Applications (V+ = 5.0 Vocl (Continued). 104 Gain 1914 9.95k Trim 10k. 0.1% 504 CMPR Trim >-+- VOUT =l00VD TL/H/11137-13 FIGURE 7. Low-Power Two-Op-Amp Instrumentation Amplifier > __ OUTPUT INPUT S/H !CD4066 4 TL/H/11137-14 FIGURE 8. Low-Leakage Sample and Hold r R4 10k lOOk > ........ VOUT R2 10k pot VIN ~ R3 R6 10k • -------.j TL/H/11137-15 FIGURE 9. Instrumentation Amplifier R4 R4 10M Cl O.068 /1oF VOUT I Vour +5V Rl R2 +5V 470k R3 470k R3 470k 150k TLlH/11137-17 FIGURE 11. AC Coupled Power Amplifier TL/H111137-16 FIGURE 10. 1 Hz Square Wave Oscillator 1-762 r-------------------------------------------------------------------------,~ ill: ~National ~ Semiconductor LMC6044 CMOS Quad Micropower Operational Amplifier General Description Features Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6044. Providing input currents of only 2 fA typical, the LMC6044 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground. • • • • • The LMC6044 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems. Low supply current 10 p.A/ Amp (Typ) Operates from 4.5V to 15.5V single supply Ultra low input current 2 fA (Typ) Rail-to-rail output swing Input common-mode range includes ground Applications • • • • • • • Other applications for the LMC6044 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers. This device is built with National's advanced Double-Poly Silicon-Gate CMOS process. Battery monitoring and power conditioning Photodiode and infrared detector preamplifier Silicon based transducer systems Hand-held analytic instruments pH probe buffer amplifier Fire and smoke detection systems Charge amplifier for piezoelectric transducers See the LMC6041 for a single, and the LMCS042 for a dual amplifier with these features. Connection Diagram 14-Pln DIP/SO 14 13 12 11 10 9 B 2 3 4 5 6 7 TUH/11138-1 Ordering Information Temperature Range NSC Transport Media Package Industrial - 40"C to + 85"C Drawing 14-Pin Small Outline LMC6044AIM LMC6044IM M14A Rail Tape and Reel 14-Pin Molded DIP LMC6044AIN LMC6044IN N14A Rail 1-763 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availabilIty and specifications. ± Supply Voltage Differential Input Voltage Supply Voltage (V+ - V-) 16V (Note 12) Output Short Circuit to V + Output Short Circuit to V- (Note 2) Lead Temperature (Soldering, 10 sec.) Current at Input Pin 260"C ;tSmA ±18mA 3SmA (Note 3) Current at Output Pin Current at Power Supply Pin Power Dissipation Storage Temperature Range ; . Junction Temperature (Note 3) ESD Tolerance (Note 4) Voltage at 1/0 Pin (V+) Operating Ratings '\ ..110"C SOOV +0.3V, (V-) -0.3V ., TemperjltureRl!/lg~ :(. LMC6044AI, LMC60441 Supply Voltage -4&c,,; TJ"; +8SoC 4.SV,,; V+ ,,; 1S.SV Power Dissipation (Note 10) Thermal Resistance (8JAl. (Note 11) 14-PinDIP 14-PinSO 8soC/W 11soC/W ·-65°C to+1Scr.C Electrical Characteristics Unless otherwise specified. alilimits:9uaranteed for TA = Tj' = 2Soc. Boldface limits apply at the temperature extremes. V+ = SV. V- = OV. VCM= 1.SV. Va = V+/2, and RL > 1M unless otherwise specified. . . Symbol Parameter Typical (N6te 5) Conditions LMC6044AI . LMC60441 Limit (Note 6) Limit (Note 6) 3 3.3 6 e.3 Unita (Umit) Vas Input OffSet Voltage 1 TCVos Input Offset Voltage Average Drift 1.3 Ie Input Bias Current los Input Offset Current RIN Input Resistance CMRR Common Mode Rejection Ratio OV ,,; VCM ,,; l2.0V V+ = 1SV 7S 68 ee 62 eo dB min +PSRR Positive Power Supply Rejection Ratio SV,,; V+ ,,; 1SV Vo = 2.SV 7S 68 ee 62 eo dB min -PSRR Negative Power Supply Rejection RatiO OV"; v-,,; -10V Va = 2.SV 94 84 83 74 73 dB min CMR Input Common-Mode Voltage Range V+ = SV& 1SV For CMRR ~ SOdB -0.4 -0.1 0 -0.1 0 V max V+ - 1.9V V+ - 2.3V Y+ - 2.SY V+ - 2.3V Y+ - 2.4Y V min Sourcing 1000 400 300 300 200 V/mV min Sinking SOO 180 120 90 70 V/mV min Sourcing 1000 200 180 100 80 V/mV min Sinking 2S0 100 eo SO 40 VlmV min Av Large Signal Voltage Gain /J-V/oC "'. 0.002 4 4 pA max 0.001 2 2 pA max >10 RL = 100 kO (Note 7) RL = 2S kO (Note 7) 1-764 mV max TeraO Electrical Characteristics Unless otherwise specified, all limits guaranteed for T A = TJ = 25°C. Boldface limits apply at the temperature extremes. V + = 5V, V- = OV, VCM = 1.5V, Vo = V+ /2, and RL > 1M unless otherwise specified. (Continued) Symbol Vo Parameter Output Swing Typical (Note 5) Conditions V+ = 5V RL = 100 kO to 2.5V 4.987 0.004 V+ = 5V RL = 25 kO to 2.5V 4.980 0.010 V+ = 15V RL = 100kOtoV+/2 14.970 0.007 V+ = 15V RL = 25 kOtoV+/2 14.950 0.022 Isc Output Current V+ = 5V Sourcing, Vo Sinking, Vo Isc Output Current V+ = 15V Is Supply Current = Sourcing, Vo Sinking, Vo (Note 12) = 22 21 5V = = OV OV 40 13V 39 Four Amplifiers Vo = 1.5V 40 Four Amplifiers V+ = 15V 52 1-765 LMC6044AI LMC60441 Limit (Note 6) Umit (Note 6) 4.970 4.940 4.950 4.910 0.030 0.060 0.050 0.090 4.920 4.870 4.870 4.820 0.080 0.130 0.130 0.180 14.920 14.880 14.880 14.820 0.030 0.060 0.050 0.090 14.900 14.850 14.850 14.800 0.100 0.150 0.150 0.200 16 13 10 8 16 13 8 8 15 15 10 10 24 21 8 8 65 75 72 82 85 98 94 107 Units (Limit) V min V max V min V max V min V max V min V max mA min mA min mA min mA min p.A max p.A max AC Electrical Characteristics Unlessotherwisespecified,alllimitsguaranteedforTA;: TJ = 2S'C.8old· fac.limits apply atthe temperature extremes. v+ = SV, v- = OV, VCM = 1.5V, Vo = V+ 12, and RL > 1M unless otherwise specified. Typical Symbol 5R GBW is 0.001 ~ 0.001 0.01 0.1 10 100 Crosstalk Rejection vs Frequency 1IIIIm II 1111111111 RL = 25k 180 ISO .. 120 90 II) 30 OUTPUT SOURCE CURRENT (mA) 1«1 10 CMRR vs Frequency 70 60 SO 040 ! I 30 120 100 100 80 90 80 I" ...... lk 10k FREQUENCY (Hz) lOOk - ! [.....- ~ -4D -20 0 20 040 1-1- .... 60 TEMPERATURE (OC) 10k 60 040 .,. SUPPLY i' r-.. v+ SUPPL~ r\ ~:\ 20 SO 1M lk 100 Power Supply Rejection Ratio VI Frequency 110 60 100 10 FREQUENCY (Hz) 120 70 10 1 10k CMRR vs Temperature II) 20 10 0 lk 100 FREQUENCY (Hz) 100 90 100 60 0 1 '" 0.0001 10 OUTPUT SINK CURRENT (mA) 2«l I 100 g e 210 bI~ ~I 75 Output Characteristics Current Sinking - I I 25 0 25 TEMPERATURE (OC) GUARANTEED 0 -os m -50 10 '"'" l' ... Input Voltage Noise vs Frequency ~ ;!!. I 0.1 10 ~"!> -os l!Ig -1.0 Output Characteristics eurrent Sourcing S % Input Common-Mode Voltage Range vs Temperature lr<~-r'-~r<~-r, 0l'l II) 1 TEMPERATURE (OC) Input Bias Current vs Input Common-Mode Voltage § 2D «I 60 Input Bias Current vs Temperature II) 100 -20 10 100 lk ~ lDk lDDk 1M FREQUENCY (Hz) TUH/III38-2 1-767 • Typical Performance Characteristics = Vs = 25"C unless otherwise specified (Continued) ±7.5V, TA Open-Loop Voltage Gain vs Temperature 160 150 .... 3 1~0 z 130 ~ ~ ~ ~ Gain and Phase Responses vs Load capacitance Open-Loop Frequency Response lOOk .... 3 :-11 120 ~ I\. = 25k" ~ 110 80 1~0 I\. • ~~ 100 90 i\.. 120 100 60 i\.. '- 80 60 i\.. ~o 0 25 75 50 TEMPERATURE (Oc) 25 15 z ~ ~~ ~5 § i ~ I i '>' .3 I lOOk -5 ~ 2.5 -50 ~ -100 -150 -200 0.1150 O.NS 7.5 10 ~ JALLlJG F"'=== ~ ;A 0.020 ~ 0.005 0.815 5 60 80 100 6 -2 0 2 TEMPERATURE (Oc) -20 0 20 ~ 60 60 100 S o 2 0 Inverting Large-8lgnal Pulse Response I- 1-1- o , Inverting Small Signal Pulse Response ~ ~N = Rr= lOOk , 1/ 100200300~00500600700800900 ~ I \ II ~o TIME (1'8) 50 60 70 BO 8 TIME (1'.) Rr = ~N = lOOk. 10 20 30 6 1/ TEMPERATURE (Oc) ~ \ 4 / !i! 4 -~ Non-Inverting Small Signal Pulse Response ~ ~ 0.810 o ~ !.- 0.010 ~O / ,V FALLING ut 20 .......... ....... Non-Inverting Large Signal Pulse Response (Ay = +1) ~ 0.825 0 / COMMON MODE VOLTAGE (V) ~ ~ 0.830 RISING / ..... ~ Rr·~N=33k a.8M) ~ 0.035 -20 - ~ ~ 0.015 -M) V -10-. -250 5 Inverting Slew Rate vs Temperature O.MO ~ 0.020 I I I 50 VOUT (VOLTS) 0.035 Oil 100 ~=2t l - -25 -10 -7.5 -5 -2.5 0 Non-Inverting Slew Rate vs Temperature ~ '" ~ -20 FREQUENCY (Hz) ~ 0.025 150 ~ -15 1M ~ - r- 1\ = lOOk -10 -~5 . 200 L1. 0 1M 250 1\ ~ 25~ 10 90 lOOk Common-Mode Error vs Common-Mode Voltage of Three Representative Units I I I 20 '{ 0.030 10k FREQUENCY (Hz) Gain Error (VOS vs VOUT) .... 3 10k lk FREQUENCY (Hz) Gain and Phase Responses vs Temperature lk ~ -20 -20 0.0010.010.1 1 10 100 lk 10k lOOk 1M 100 ~ I GAIN "' i'. -25 90 20 ~ 20 BO 70 -50 PHASE ~O I-- l- o 100200300~00500600700B00900 TIME (1'.) o 10 20 30 ~O 50 60 70 80 90 TIME (1'0) TL/H/11138-3 1-768 Typical Performance Characteristics Vs = ±7.5V, TA = 25°C unless otherwise specified (Continued) Stability vs Capacitive Load 100,000 Ay $; 10,000 ~ 1,000 I ~ ~ =+1 Stability vs Capacitive Load 100,000 ,...,.....,.-;'..,.--r--i-,-,--,-, $; 10,000 ~ 1,000 UNSTABLE I 100 10 =*10 Ay " N.t IJ,I ti I\ij f"'I'lI.ll 100 10 1~~~~~-L~~ I~~~~~-L~~ -10 -10 -0.1 -0.001 0.001 0.1 10 -1 -0.01 0 0.01 1 SINKING -1 SOURCING -0.1 -0.001 0.001 0.1 10 -0.01 0 0.01 1 SINKING LOAD CURRENT (mA) SOURCING LOAD CURRENT (mA) TL/H/11138-4 Application Hints - -1- ; ; , - 1- - AMPLIFIER TOPOLOGY The LMC6044 incorporates a novel op-amp design topology that enables it to maintain rail to rail output swing even when driving a large load. Instead of relying on a push-pull unity gain outupt buffer stage, the output stage is taken directly from the intemal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6044 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. 2wR1 CIN 2wR2 ~ or R1 CIN s; R2~ Since it is often difficult to know the exact value of qN, ~ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance. CAPACITIVE LOAD TOLERANCE Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the'combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an OScillatory or underdamped pulse response. With a few extemal components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a. COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance with amplifiers with ultra-low input current, like the LMC6044. Although the LMC6044 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuits board parasitics, reduce phase margins. When high input impedance are demanded, guarding of the LMC6044 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Clrcult-Board Layout for High Impedance Work.) +v • !r- .-----I .. R2 10k TL/H/I1138-8 FIGURE 2a. LMC6044 Nonlnverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. TUH/III38-5 FIGURE 1. Canceling the Effect of Input capaCitance The effect of input capaCitance can be compensated for by adding a capacitor. Adding a capaCitor, ~, around the feedback resistor (as in Figure 1) such that: 1-769 Application Hints (Continued) which is normally considered a very' large resistance, could leak 5 pA if the trace wE!re a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6044's actual performance. However, if a guard ring is held within 5 'mY of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current. See FigUres 48. 4b. 4c for typical connections of guard rings for standard op-amp configurations. capacitive load driving capability is enhanced by using a pull up resistor to V+ (FigUf'82b). Typically, a pull up resistor conducting 10 p.A or niore will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). V+ Cl INPUT Rl .y,"""" ..........-....JW,....-t I, I I I Guard Ring - . . OUTPUT I TL/H/11138-18 1: FIGURE 2b. Compensa~ng for Large Capacitive Loads with a Pull Up Realator PRINTED-CIRCUIT-BOARDLAYOUT FOR HIGH-IMPEDANCE WORK. It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6044, typically 'less' than 2 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. (a) Inverting Amplifier R2 OUTPUT Tt/H/11138-10 (~) To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6044's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a Significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifer inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-ta-pad resistance of 10120, OUTPUT TlIH111138-9 (C) Follower FIGURE 4. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-tha-air wiring. See Figuf'85. TlIH/11138-7 FI~URE Non-Inverting Amplifier 3. Example of Guard Ring In P.C. Board Layout 1-770 ~------------------------------------------------------~r Typical Single-Supply Applications i: (V+ = 5.0Vocl use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 6, the input voltages are represented as a common-mode input VCM plus a differential input Vo. Rejection of the commonmode component of the input is accomplished by making the ratio of R1/R2 equal to R3/R4. So that where, fEEDBACK CAPACITOR R3 R4 R4 ( VOUT = R3 1 R2 R1 R3 R2 + R3) + R4 + ~ Vo A suggested design guideline is to minimize the difference TLlH/11138-11 of value between R1 through R4. This will often result in improved resistor tempco, amplifier gain, and CMRR over temperature. If RN = R1 = R2 = R3 = R4 then the gain equation can be simplified: (Input pins are IHIed out of PC board and soldered directly to components. All other pins connected to PC board.) FIGURE 5. Air Wiring The extremely high input impedance, and low power con· sumption, of the LMC6044 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these type of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. VOUT = 2 (1 + :~) Vo Due to the "zero-in, zero-out" performance of the LMC6044, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of OV to Vs2.3V, worst case at room temperature. This feature of the LMC6044 makes it an ideal choice for low-power instrumentation systems. The circuit in Figure 6 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000. This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply current of less than 40 pATo maintain ultra-high input impedance, it is advisable to A complete instrumentation amplifier designed for a gain of 100 is shown in Figure 7. Provisions have been made for low sensitivity trimming of CMRR and gain. TL/H/III38-12 FIGURE 6. Two Op-Amp Instrumentation Amplifier Ion Gain 1910 9.95k Trim 10k, 0.1% CMPR Trim VOUT = 100VD TLlH/11138-13 FIGURE 7. Low-Power Two-Op-Amp Instrumentation Amplifier 1-771 ~ ~ ~ ~ Typical Single-Supply Applications C'I + = 5.0 Voc) (Continued) ::& ..... > .......... OUTPUT INPUT S/H !CD4066 4 TUH/11198-14 FIGURE 8. Low-Leakage Sample-and-Hold r VIN R3 R4 10k lOOk > ....._Vour R2 10k pot (.------ R6 10k TUH/11138-15 FIGURE 9. Instrumentation Amplifier R4 R4 lOW Vour +5V +-"'V\,..,.......-t R2 Rl +5V +----Wv--....-~fIIIr----' 470k R3 470k ..70k TUH/lll38-17 FIGURE 11. AC Coupled Power Amplifier TL/H/11138-16 FIGURE 10. 1 Hz Square-Wave Oscillator 1-772 t!lNational Semiconductor LMC6061 Precision CMOS Single Micropower Operational Amplifier General Description Features (Typical Unless Otherwise Noted) The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6061 ideally suited for battery powered applications. • • • • • • • • Other applications using the LMC6061 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits' and true instrumentation amplifiers. This device is built with National's advanced double-Poly Silicon-Gate CMOS process. For designs that require higher speed, see the LMC60S1 precision single operational amplifier. For a dual or quad operational amplifier with similar features, see the LMC6062 or LMC6064 respectively. 100 /LV Low offset voltage 20/LA Ultra low supply current Operates from 4.5V to 15V single supply Ultra low input bias current 10 fA Output swing within 10 mV of supply rail, 100k load Input common-mode range includes V140 dB High voltage gain Improved latchup immunity Applications • • • • • • • Instrumentation amplifier Photodiode and infrared detector preamplifier Transducer amplifiers Hand-held analytic instruments Medical instrumentation D/A converter Charge amplifier for piezoelectric transducers PATENT PENDING Connection Diagram S-Pln DIP/SO NC..! INVERTING INPUT J. NON-INVERTING .1 INPUT- '-../ ~NC ~ ~ v+ + !.. OUTPUT ,- ~NC v-..i TL/H/11422-1 Top View Ordering Information Package S-Pin Molded DIP Temperature Range NSC Military Industrial Drawing -55°C to + 125"C - 4lrC to + S5"C LMC6061AMN S-Pin Small Outline S-Pin Ceramic DIP Transport Media LMC6061AIN LMC6061IN NOSE Rail LMC6061 AIM LMC6061IM MOSA Rail Tape and Reel JOSA Rail LMC6061AMJ/SS3 1-773 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage "± Supply Voltage (V+) +0.3V, Voltage at Input/Output Pin (V-) -0.3V SupplyVoltage(V+ - V-) Lead Temperature (Soldering, 10 sec.) Storage Temp. Range Junction Temperature ESD Tolerance (Note 4) 40mA (Note 3) Power Dissipation Operating Ratings (Note 1) 16V (Note 10) (Note 2) Output Short Circuit to V+ Output Short Circuit to V- ±10mA ±30mA Current at Input Pin Current at Output Pin Current at Power Supply Pin Temperature Range LMC6061AM LMC6061AI, LMC60821 Supply Voltage 2600C -65·Cto + 1500C 150·C -55·C';; TJ ,;; +125·C -400C';; TJ ,;; +85·C 4.5V';; V+ ,;; 15.5V Thermal ReSistance (9JA) (Note 11) N Package, 8-Pin MOlded DIP M Package, 8-Pin Surface Mount 2kV 115·C/W 193·C/W (Note 9) Power Dissipation DC Electrical Characteristics Unless otherwise specified, all limits guaranteed.for TJ = 25·C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise sp~cified. Symbol Vos Parameter Input Offset Voltage TCVos Input Offset Voltage Average Drift 18 Input Bias Current los Typ (Note 5) Conditions 100 Input Resistance OV';; VCM ,;; 12.0V V+ = 15V 85 Positive Power Supply Rejection Ratio 5V,;; V+ ';;,15V Vo = 2.5V 85 Negative Power Supply Rejection Ratio OV';;V-';;-10V 100 Input Common-Mode Voltage Range V+ = 5Vand 15V for CMRR :?: 60 dB Large Signal Voltage Gain 350 800 900 1300 -0.4 RL = 100kO (Note 7) Sourcing 4000 Sinking RL=25kO (Note 7) 3000 Sourcing Sinking 3000 2000 1-774 Units /lV Max /lVrC 100 4 4 pA Max 100 2 2 pA Max 75 75 66 70 72 63 >10 V+ - 1.9 Av 350 1200 0.005 Input Offset Current Common Mode Rejection Ratio VCM LMC6061I LImit (Note 6) 0.010 RIN -PSRR LMC6061AI Limit (Note 6) 1.0 CMRR +PSRR LMC6061AM LImit (Note 6) TeraO 75 75 66 70 72 63 dB Min dB Min 84 84 74 70 81 71 -0.1 -0.1 -0.1 0 0 0 V Max V+ - 2.3 Y+ - 2.6 V+ - 2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.5 V Min V/mV Min 400 400 300 200 300 200 180 180 90 70 100 60 400 400 200 1110 150 80 100 100 70 35 50 35 dB Min V/mV Min V/mV Min V/mV Min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified. Symbol Vo Parameter Output Swing Typ Conditions (Note 5) V+ = 5V RL = 100 kO to 2.5V 4.995 0.005 V+ = 5V RL = 25 kO to 2.5V 4.990 0.010 V+ = 15V RL = 100 kO to 7.5V 14.990 0.010 V+ = 15V RL = 25 kO to 7.5V 14.965 0.025 '0 Output Current V+ = 5V Sourcing, Vo Sinking, Vo 10 Output Current V+ = 15V Is Supply Current = Sourcing, Vo Sinking, Vo (Note 10) V+ V+ = = = OV 22 5V 21 = OV = 25 13V +5V, Vo = +15V, Vo 35 1.5V = 7.5V 20 24 1-775 LMC6061AM Limit (Note 6) LMC6061AI Limit (Note 6) LMC60611 LimIt (Note 6) 4.990 4.990 4.950 4.970 4.980 4.925 0.010 0.010 0.050 0.030 0.020 0.075 4.975 4.975 4.950 4.955 4.985 4.850 0.020 0.020 0.050 0.045 0.035 0.150 14.975 14.975 14.950 14.955 14.985 14.925 0.025 0.025 0.050 0.050 0.035 0.075 14.900 14.900 14.850 14.800 14.850 14.800 0.050 0.050 0.100 0.200 0.150 0.200 16 16 13 8 10 8 16 16 16 7 8 8 15 15 15 9 10 10 24 24 24 7 8 8 24 24 32 35 32 40 30 30 40 40 38 48 = 5V, Units V Min V Max V Min V Max V Min V Max V Min V Max mA Min mA Min mA Min mA Min p.A Max p.A Max I ,1 I ,j AC Electrical Characteristics Unless otherwise specified; all limits guaranteed for TJ '" 25°C. Boldface limits apply at the temperature extremes. V+ = 5V. V- = OV. VCM = 1.5V. Vo = 2.5V and RL > 1M unless otherwise specified. , Symbol SR Parameter Slew Rate GBW Gain-Bandwidth Product em Phase Margin en Input-Referred Voltage Noise . Typ Conditions (Note 5) (Note 8) 35 LMC6061AM LMC6061AI Umlt Limit LMC6061I Limit {Note 6) {Note 6) {Note 6) 20 20 15 8 10 7 100 Input-Referred Current Noise 'F=1kHz T.H.O. Total Harmonic Distortion Vlms Min kHz 50 Oeg 83 nV/y'RZ 0.0002 pAly'RZ 0.01 % F = 1 kHz in Units F = 1 kHz.Av = -5 RL = 100 kG. Vo = 2 Vpp ±5VSupply Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate cond"ions for which the device is intended to be functional. but do nof guarantee specific performance 11m"". For guaranteed specifications and test conditions. see the Electrical Characteristics. The guaranleed specifications apply pnly for the test conditions listed, Note 2: Applies to both single-supply and spin-supply operation. Continous short circuR operation at elevated ambient temperature can resuR in exceeding the maximum allowed iunctlcn temperature of 15O"C. Output currenls in excess of ±30 mA over long toon may adversely affect rellabilRy. Note 3: The maximum power dissipation is a function of TJ(Max)' 9JA, and TA' The maximum allowable power dissipation at any ambienl temperature is Po (TJ(Max) - TAl/9JA· Note 4: Human body model, 1.5 kG in series with 100 pF. lIota 5: Typical values represent the mosllikely parametric norm. Note 6: All 11m"" ara guaranteed by testing or statistical analysis. = 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V s; Vo s; 11.5V. For Sinking tests, 2.5V s; Vo s; 7.5V. = 15V. Conn!""ed as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates. Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance 8JA wRh Po = (TJ-TAl/8JA. Note 7: V+ Note 8: V+ Note 10: Do not connect output to V+, when V+ is greater than 13V or rellabilRy willi be adversely affected. Note 11: All numbers apply for packages soldered directly inlo a PC board. Note 12: For guaranteed Military Temperature Range parameters see RETsMC6061X. 1-776 = Typical Performance Characteristics Vs = ± 7.5V. T A = 25°C. Unless otherwise specified Distribution of LMC6061 Input Offset Voltage (TA = +25°C) Distribution of LMC6061 Input Offset Voltage (TA = -55°C) 2~ ~ S eo 21 15 12 ~ 10pA 100fA 10fA 1fA 1000A / .' .l/ o y~ y .3 i V i 75 100 20 15 10 125 0 m • = , ~ 12 10k 60 \'" 100 Output Characteristics Sourcing Current Output Characteristics Sinking Current ~ I 0.001 0.001 0.1 -10 [ I tI ~ 0.01 10 OUTPUT SOURCE CURRENT (mA) 100 ~ -~ -2 0 2 ~ 6 8 10 I 150 120 """' ....... 90 ~ ~ 60 > 30 10 -- -- -100 "Oi" 3 .. ~o 10k ~ 90 I""'" z , ~ 20 g 45 § I' is :!; 0.001 0.001 Ik Gain and Phase Response vs Temperature (- 55"C to + 125°C) 'I. =500k :c 0.1 ... 1.sJ•• -I"i r- ... =2k fREQUENCY (Hz) 10 I g 0.01 - -5 10k lk fREQUENCY (Hz) ~ N G o 10 1 i G ... = ••• 0 fREQUENCY (Hz) 10 ~ Input Voltage Noise vs Frequency ~ ".5 oj'-.. 40 lOOk 100 0.01 ~ lk N ~...J. -20 -10 -8 -6 IsupJJ 20 100 10 .3 0 10 G N. OUTPUT VOLTAGE (V) j\., ..,. • 000 0 180 V+ ~ ~ ~ 0 15 "> 14 16 r---. '{-'suP 1,\ "Oi" 3 N ~ 20 ~ 80 30 6 - .... .... ...... -15 10 • • ~ Y~ Input Voltage vs Output Voltage g 8 ~ N OffSET VOLTAGE (mV) ~ 50 ~ ~ i!i i"I ~o G ~ II b.. 60 > N ~ 100 0 70 0.1 • ~ .Power Supply Rejection Ratio vs Frequency ~ 80 I N N. TOTAL SUPPLY VOLTAGE(V) 100 + > ~ 15 12 0 0 0 0 ~~o;.- f-"" o 150 Common Mode Rejection Ratio vs Frequency F N T,t=25 0 C fl TEMPERATURE (oC) 90 • I "< i3 50 ~ TJ = I25~C 25 o 25 ~ N ~ 30 :/ V lpA ~ G Supply Current vs Supply Voltage 100pA E 18 OffSET VOLTAGE (mV) Input Bias Current vs Temperature '" 21 i:! OffSET VOLTAGE (mV) u 2~ !;i ~ ili 27 g ~ " ~ 18 ! "Oi" 3 30 from 3 Waftr LoU 27 g Distribution of LMC6061 Input Offset Voltage (TA = + 125"C) -45 -20 0.01 0.1 10 OUTPUT SINK CURRENT (mA) 100 Ik 10k lOOk 1M fREQUENCY (Hz) TL/H/11422-2 1-777 .... I.... Typical Performance Characteristics Vs = Gain and Phase Response vs Capacitive Load with RL = 20 kO 50 '01 ~ ~~ ~ 20 10- Il- O~ § ~;~~ '=,,~I ~ 30 I -10..- ~ -20..- 90 .... ~.... 10k lOOk I- 20 is :!; ::: 1\. q: OOk -30 lk IN FR£QUENCY (Hz) 10k ~ 'lOOk , :\ E ; " ~~ TINE(100 jOs/DIv) 1"\ 20 ~ 0 1\ -20k ' 10,000 ~ 40 !:Cii Non-Inverting Large Signal Pulse Response r-r-- 60 tt :;l TIME(10 jOs/Dlv) r-r- ~ if § U"\ 1\ =2Okl,,\ ~ 0 ~ 100 , 80 ~ Inverting Large Signal Pulse Response !:">' If !& j...1\ =500k ~ FREQUENCY (Hz) ~ ~ 1 1M !; ~-;- ~ 120 I -45 i"' !1!5iS 140 FR£QUENCY (Hz) Inverting Small Signal Pulse Response i.. 0 '01 ~ ~ pF ~IOOpF I -45 i f..'~ o 45 ~ f-... -o 10 ~ § 90 ~ ~., 30 1 ~ ~ Open Loop Frequency Response 160 ~ 40 ~ ~ 0 ~i Irlrl -30 1 '01 ~ 45 = 25°C, Unless otherwise sPecified Gain and Phase Response vs Capacitive Load with RL = 500 kO 50 1\ ~~~ 40 ~ ± 7.5V, TA 1.000 100 ~~ ~i"'i"- r:.N ~:~! 1I ~:'~I.' 1\ 10~ ~ hoot Stability vs Capacitive LoadRL = 1 MO 70 ... ~ 9 1·"1"' 60 ~ ~ 50 /Ol .....hoot ~ 10 '., ~~ I 0 illatle" III 40 " 1 -8-5-4-3-2-10 1 2 3 4 5 6 -8 -5-4-3-2 -10 1 2 3 4 5 6 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) TUHI11422-3 1·778 Applications Hints Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an OSCillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a. AMPLIFIER TOPOLOGY The LMC6061 incorporates a novel op-amp design topology that enables it to maintain rail-ta-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6061 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. +V 0.1 jJF COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6061. Although the LMC6061 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. When high input impedances are demanded, guarding of the LMC6061 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capaCitance as well. (See Printed-Clrcult-Board LByDUt for High Impedance Worlr). The effect of input capaCitance can be compensated for by adding a capacitor. Place a capacitor, Ct, around the feedback reSistor (as in Figure 1) such that: VIN 20ll Your R1 20pF c;,OAD 1000 pF I 90k 10k TL/H/11422-4 FIGURE 2a. LMC6061 Nonlnvertlng Gain of 10 Amp"fler, Compensated to Handle Capacitive Loads In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure 2b). Typically a pull up resistor conducting 10 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see electrical characteristics). 1 1 ---;;;,--21TR1CIN 21TR2Ct or R1 CIN:S;: R2Ct Since it is often difficult to know the exact value of CIN, Ct can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance. V+ R R2 TUH111422-14 , FIGURE 2b. Compensating tor Large Capacitive Loads with a Pull Up ResIstor TL/H/11422-5 FIGURE 1. CancelIng the Effect of Input Capacitance PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6061, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are CAPACITIVE LOAD TOLERANCE All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load on the amplifier. capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves). 1-779 Applications Hints (Continued) quite simple. First, leakage of the PC appear acceptably humidity or dust or be appreciable. Cl the user must not ignore the surface board, even though. it. may sometimes low, because under conditions of high contamination, the surface leakage will Rl INPUT To minimize the effect of any surface leakage, lay out a ring of foil completelY surrounding the LMC6061's inputs and the terminals of capacitors, diodes, condLictors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, whicl"J is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6061's actual performance. HolNever, if a guard ring is held within 5 mV of the inputs, thel) even a resistance of 1011 0 would cause only 0.05 pA of leakage current. See Figures 48, 4b, 4C for typical connections of guard rings for standard op-amp configurations. Jt,Ii-N-........,._......WIr--. OUTPUT TUH/11422-7 (a) Inverting Amplifier R2 OUTPUT TUH/11422-8 (~) Non-Inverting Amplifier OUTPUT INPUT --!--+.... -.'. ' TUH/11422-9 (c) Follower FIGURE 4. Typical ,?onnectlons of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC beard: 'Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5. LGUard Ring TUH/11422-6 FIGURE 3. Example of Guard Ring In P.C. Boai'd Layout rEEDBACK C~PACITOR TUH/11422-10 (Input pins are li!t9d out of PC All other pins 'connectsd to PC bOard and iloidered directfy io compo~ents. boai-dJ. FIGURE 5. Air Wiring 1-780 . Typical Single-Supply Applications (V+ = 5.0 Voe) Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCA effects. The (I/O) input and output pins look similar to the gate of the SCA. There is a minimum current required to trigger the SCA gate lead. The LMC6061 and LMC6081 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capaCitance from supplying excess current to the I/O pins. In addition, like an SCA, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. The extremely high input impedance, and low power consumption, of the LMC6061 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance (>10140), 0.01% gain accuracy at Av = 100, excellent CMAA with 1 k!l imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than 2.5 p.VI"C. A2 provides a simple means of adj~sting. ~~in over a wide range without degrading CMRA. R7 IS an Initial trim used to maximize CMAA without using super precision matched resistors. For good CMAA over temperature, low drift resistors should be used. r~;. VIN R3 R4 25k 250k >-.... VOUT 2k ~ I R6 \ ....- - t 25k 224k rUH/11422-11 If A1 = A5, As = Ae, and A. = Vour = A2 + VIN 2A1 A2 A7; then X~ As = 9.822k). FIGURE 6. Instrumentation Amplifier :.Av '" 100 for circuit shown (A2 1-781 Typical Single-Supply Applications (y+ = 5.0 Vee) (Continued) > ....._ OUTPUT INPUT 5/H tC04066 TUH/11422-12 FIGURE 7. Low-Leakage Sample and Hold R4 lOll R2 Rl 470k R3 470k 470k TUH/11422-13 FIGURE 8. 1 Hz Square Wave Oscillator 1-782 t!lNational Semiconductor LMC6062 Precision CMOS Dual MicropowerOperational Amplifier General Description Features (Typical Unless Otherwise Noted) The LMC6062 is a precision dual low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6062 ideally suited for battery powered applications. Other applications using the LMC6062 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers. • • • • • • • • This device is built with National's advanced double-Poly Silicon-Gate CMOS process. • • • • • Low offset voltage 100 p.V Ultra low supply current 16 pAl Amplifier Operates from 4.5V to 15V single supply Ultra low input bias current 10 fA Output swing within 10 mV of supply rail, 100k load Input common-mode range includes VHigh voltage gain 140 dB Improved latchup immunity Applications Instrumentation amplifier Photodiode and infrared detector preamplifier Transducer amplifiers Hand-held analytic instruments Medical instrumentation • DIA converter • Charge amplifier for piezoelectric transducers For designs that require higher speed, see the LMC6082 precision dual operational amplifier. PATENT PENDING Connection Diagram B-Pln DIP/SO OUTPUTA-!~U ~y+ 2 INVERTING INPUT A - NON·INVERTING INPUT A ~ 3 - + Y- ....;.41-_---' '~ + 7 IE-- .!.... OUTPUT B INVERTING INPUT B L.-_~5;.... NON·INYERTING INPUTB TUH/11298-1 Top View Ordering Information r-------r---------------------.----,------~ Temperature Range Package 8-Pin Molded DIP LMC6062AMN 8-Pin Small Outline 8-Pin Ceramic DIP NSC Transport Media LMC6062AIN LMC60621N N08E Rail LMC6062AIM LMC60621M M08A Rail Tape and Reel J08A Rail Industrial Military Drawing - SS'C to + 12S'C -40'C to + SS'C LMC6062AMJ/883 1-783 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage ± Supply Voltage Voltage at Input/Output Pin (V+) +0.3V, (V-) -0.3V Supply Voltage (V+ - V-) Output Short Circuit to V + 16V (Note 11) Output Short Circuit to V~ (Note 2) Lead Temperature (Soldering, 10 sec.) Storage Temp. Range Junction Temperature ESD Tolerance (Note 4) ±10mA ±30mA Current at Power Supply Pin Power Dissipation 40 rnA (Note 3) Operating Ratings (Note 1) Temperature Range LMCS062AM LMCS062AI, LMC60B21 -55"C ~ TJ ~ +125°C -400C ~ TJ ~ +85°C 4.5V ~ V+ ~ 15.5V Supply Voltage Thermal Resistance (6JAl (Note 12) B-Pin Molded DIP 8-PinSO Power Dissipation 2800C -65°C to Current at Input Pin Current at Output Pin +150°C 1500C 2kV 115°C/W 193°C/W (Note 10) DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified. Symbol Vos Parameter Input Offset Voltage TCVos Input Offset Voltage Average Drift 18 Input Bias Current los Typ (Note 5) Conditions 100 Input Offset Current Input Resistance OV ~ VCM ~ 12.0V V+ = 15V 85 Positive Power Supply Rejection Ratio 5V ~ V+ ~ 15V Vo = 2.5V 85 Negative Power Supply Rejection Ratio OV Input Common-Mode Voltage Range V+ = 5Vand15V for CMRR ~ 60 dB Large Signal Voltage Gain 350 800 900 1300 ~ V- ~ -10V 100 -0.4 RL = 10Q kn (Note 7) Sourcing 4000 3000 Sinking RL = 25kn (Note 7) Sourcing Sinking 3000 2000 1-784 5V, Unlta p.V Max p.VI"C 100 4 4 pA Max 100 2 2 pA Max 75 75 66 70 72 83 >10 V+ - 1.9 Av 350 1200 0.005 Common Mode Rejection Ratio VCM LMC60621 Limit (Note 6) 0.010 RIN -PSRR LMC6062AI Umit (Note 6) 1.0 CMRR +PSRR LMC6062AM Umlt (Note 6) = Tera n 75 75 66 70 72 83 dB Min dB Min 84 84 74 70 81 71 -0.1 -0.1 -0.1 0 0 0 V Max V+ - 2.3 Y+ - 2.8 V+ - 2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.5 V Min V/mV Min 400 400 300 200 300 200 180 180 90 70 100 80 400 400 200 150 150 80 100 100 70 35 50 35 dB Min V/mV Min V/mV Min V/mV Min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Va = 2.5V and RL > 1M unless otherwise specified. Symbol Va Parameter Output Swing Typ Conditions (Note 5) V+ = 5V RL = 100 kO to 2.5V 4.995 0.005 V+ = 5V RL = 25 kO to 2.5V 4.990 0.010 V+ = 15V RL = 100 kO to 7.5V 14.990 0.010 V+ = 15V RL = 25 kO to 7.5V 14.965 0.025 la Output Current V+ = 5V Sourcing, Va Sinking, Va la Output Current V+ = 15V Is Supply Current = Sourcing, Va Sinking, Va (Note 11) = 21 5V = = 22 OV OV 25 13V Both Amplifiers V+ = +5V, Va 35 32 = Both Amplifiers V+ = +15V, Va 1.5V 40 = 7.5V 1-785 LMC6062AM Limit (Note 6) LMC6062AI Limit (Note 6) LMC60621 Limit (Note 6) 4.990 4.990 4.950 4.970 4.980 4.925 0.010 0.010 0.050 0.030 0.020 0.075 4.975 4.975 4.950 4.955 4.985 4.850 0.020 0.020 0.050 0.045 0.035 0.150 14.975 14.975 14.950 14.855 14.885 14.825 0.025 0.025 0.050 0.050 0.035 0.075 14.900 14.900 14.850 14.800 14.850 14.800 0.050 0.050 0.100 0.200 0.150 0.200 16 16 13 8 10 8 16 16 16 7 8 8 15 15 15 8 10 10 24 24 24 7 8 8 = 5V, Units V Min V Max V Min V Max V Min V Max V Min V Max mA Min mA Min mA Min mA Min 38 38 46 pA 80 48 58 Max p.A Max 47 47 57 70 55 88 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ ';= 25°C, Boldfa!!e limits apply at the temperature extremes. V'" =, 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Symbol SR Parameter Typ Conditio!). Slew Rate (Note 5) (Note 8) 35 LMC6062AM LMC6062AI LMC60621 Limit Umit Limit (Note 6) (Note 6) (Note 6) 20 8 20 10 15 7 Units V/ms Min GBW Gain-Bandwidth Product 100 kHz 8m Phase Margin 50 Deg (Note 9) Amp-to-Amp Isolation en 155 dB 83 nV/VHz 0.0002 pAlVHz 0.01 % Input-Referred Voltage Noise F = 1 kHz in Input-Referred Cwrrent Noise F = 1 kHz T.H.D. Total Harmonic Distortion F = 1 kHz,Av = -5 RL = 100kn, Va = 2Vpp ±5VSupply Note 1: Absolute Maximum Ratings indicate limits beyond which damage to \he device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do nol guarantee speCific performance limits. For guaranteed specifications and test condRlons, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can resuR in exceeding the maximum allowed junction temperature of 15O"C. Output currents in excess of ±30 mA over long term may edversely affect reliability. Note 3: The maximum power dlssipstion is a function of TJ(Max)' 8JA, and TA.The maximum allowable power dissipstion at any ambient temperature is Po (TJ(Max) - TpjI8JA· Note 4: Human body model, 1.5 kll in series with 100 pF. Note 5: Typical values represent the most likely psrametric norm. Note 6: All limits ere guerenteed by testing or statistical analysis. Note 7: V+ ~ ISV, VOM Note 8: V+ ~ 15V. Connected as Voilsge Follower with 10V step inpul. Number specified is the slower of the positive and negative slew rates. Note 9: Input referred V+ ~ ~ 7.SV and Rl connected to 7.SV. For Sourcing testa, 7.SV ,;; Vo ,;; 11.5V. For Sinking testa, 2.5V ,;; Vo ,;; 7.5V. 15V and RL ~ 100 kll connected to 7.5V. Each amp excited in turn with 100 Hz to produce Vo Note 10: For operating at elevated tempsreturesthe device must be derated based on the thermal resistance 8JA with Po Note 11: Do nol connect oulpulto V+, when V+ is greater than 13V or reliability Willi be adversely affected. Note 12: All numbers apply for psckeges soldered directly into a PC board. Note 13: For guaranteed Military Temperature Range parameters, see RETSMC6062X. 1-786 ~ ~ 12 Vpp. (TJ':'TpjI8JA. ~ Typical Performance Characteristics Vs = ± 7.5V, T A = 25°C, Unless otherwise specified Distribution of LMC6062 Input Offset Voltage Distribution of LMC6062 Input Offset Voltage Distribution of LMC6062 Input Offset Voltage (TA = +25°C) (TA = -55°C) (TA = +125°C) ..... ~ ~ o I OFFSET VOLTAGE (mV) 1pA il ~ / ,OOfA l/ N V ,/ iil i " 1fA o 50 "< 3 ,V lOlA 100aA ~ 0 ~ G 25 50 75 100 N N. ~ 0 0 0 60 10pA ~ ~ • • N • ~ N ? ~ ~ • 0 125 TJ=12'~ .0 30 1.1'" 20 10 I I - 150 I,.. TJ =-S5 l- N 0 y • G N N. ~ 0 0 0 • N • 0 20 15 S 10 ... =600 3 ~~ ~ !! 8 • Input Voltage vs Output Voltage f:5o IIooo!. - -5 -10 ......I- ... 1 -20 -10 -8 -6 -. -2 0 10 12 1. 16 . . . . iiiiij 1•• Ok I -15 o o TEMPERATURE (oC) -I-'" TJ =2! C G • ~ OFFSET VOLTAGE (mV) Supply CUrrent vs Supply Voltage 100pA . ~ 0I 0I 0I OFFSET VOLTAGE (mV) Input Bias Current vs Temperature § N TOTAl SUPPLY VOLTAGE(Vdc) 2 • 6 8 10 OUTPUT VOLTAGE (V) Common Mode Rejection Ratio vs Frequency Power Supply Rejection RatiO vs Frequency 100 !\. =1 100 0 90 so .... 01 II! ...'" 01 70 3 ~ I' 80 v+ ISUPPI 60 \ 90 lk 100 10k 30 10 100 lk 10k 10 100 FREQUENCY (Hz) Output Characteristics Sourcing Current + > 01 .... 20 , ~ ~ 0.01 ~ ~ 0.001 0.001 ~ 0.1 0.01 0.1 10 OUTPUT SOURCE CURRENT (mA) 100 ~ 0.01 ~ 0.001 5 0.001 § Gain i III III -20 0.01 0.1 10 OUTPUT SINK CURRENT (mA) 100 i\. =500k Ph ... .0 ~ ~ g 10k lk Gain and Phase Response vs Temperature (- 55°C to + 125"C) 3 10 0.1 -- -- FREQUENCY (Hz) Output Characteristics Sinking Current 10 -- o 1 lOOk FREQUENCY (Hz) ~ 60 i'. ..... 0 10 , .0 20 30 '\. ..... 120 f'.. 50 •0 150 .~ I"{J sup 1,\ 80 3 Input Voltage Noise vs Frequency 160 lk 90 , I' -.s 10k lOOk 1M FREQUENCY (Hz) TLlH/I1298-2 1-787 ~ ~ r------------------------------------------------------------------------------------------, Typical Performance Characteristics Vs = :5 Gain and Phase Response VII Capacitive Load with RL = 20 kO 50 m- 3 z ~ 30 ~ ~ 20 ~ §, ~ Ph~ oIG ..... " II 10 Gain ... -10 -20 iim~ -30 I 10k m- 90 -, ,..611 ~ Gain and Phase Response vs Capacitive Load with RL = 500 kO 50 'I. j2. ~.r.~ , )-- 45 ~ 3 ~ 1 ~ K ~ ~ E -45 ~ § lOOk 40 30 10 -10 ~ 0 -20 -30 :""':,l! w' H- ··\1111 if 1 'I.,' 10k lOOk 140 ~ 120 1~ K ~ -45 m- 3 100 j...'1. =5 Ok ~ \ 1"- 'I. -20k 80 ~ 60 §, 40 '\ '\ "- 20 ~ 0 -20 0.01 0.1 1M , II Non-Inverting Large Signal Pulse Response 180 160 If """r- \ I 1 ~ 140 iil 120 ~u: IDO Stability vs Capacitive Load, RL = 20 kO 10,000 ~r-- ~ 1.000 ~ ... I 80 80 ID 100 Ik ,REQUENCY (Hz) TIME(IOOI'./Dlv) 1\ TIME(IO I'./O'v) r- 3 r-r- I'" I Non-Inverting Small Signal Pulse Response Crosstalk Rejection vs Frequency "ii' kG 1\ -20k 1-'1'1, TlME(IOO I'o/D'v) TlME('OI'./D;v) 'I. '.0 FREQUENCY (Hz) Inverting Large Signal Pulse Response II !"- I 10 100 Ik 10k lOOk 1M 10M FREQUEIICY (Hz) Inverting Small Signal Pulse Response , 45 .> Open Loop Frequency Response ISO 90 lfflr~·pF DOli ,REQUENCY (Hz) \ ~tl G. -, " Ik 1M 'OpF! PhoN",. 20 I F G." ±7.5V, TA = 25°C, Unless otherwise specified u ..... iulru. -"'l~ r 100 '0 ~:~\O ~~I"rn- ... 10 I -6-5-4-3-2-10 I 23456 OUTPUT VOLTADE(V) Stability vs Capacitive LoadRL = 1 MO 70 ~:.~A ~ ""l'bI o II ill o .......... III -6-5-4-3-2-10 I 2 3 4 5 6 OUTPUT VOLTAGE (V) TUH/I1298-3 1-788 r-----------------------------------------------------------------------------~ ~ a:::: Applications Hints Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Rgure 2a. AMPLIFIER TOPOLOGY The LMC6062 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the lMC6062 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. +v COMPENSATING FOR INPUT CAPACITANCE 20.n It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the lMC6062. G.OAD Although the lMC6062 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. 90k .-------------~~ 10k When high input impedances are demanded, guarding of the lMC6062 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capaCitance as well. (See Prlnted-Clrcult-Board Layout for High Impedance Wont). TUH/II298-5 FIGURE 2a. LMC6062 Nonlnvertlng Gain of 10 Amplifier, Compensated to Handle Capacitive Loads The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, Ct, around the feedback resistor (as in Figure 1) such that: In the circuit of F/{Jure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. 1 1 ---;,,--2'ITR,CIN 2'ITR2Ct or Capacitive load driving capability is enhanced by using a pull up resistor to V+ (F/{Jure 2b). Typically a pull up reSistor conducting 10 /LA or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). V+ R, CIN:S: R2Ct Since it is often difficult to know the exact value of CIN, Ct can be experimentally adjusted so that the desired pulse response is achieved. Refer to the lMC660 and the lMC662 for a more detailed discussion on compensating for input capacitance. ~~, R2 Rl VIN O-""""'M,......-,-............. , GN= I I 'ODD pF > ....-oVOUT TL/H/II298-14 FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor I I ........ PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK TUH/II298-4 FIGURE 1. Canceling the Effect of Input CapaCitance It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires specia/layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the lMC6062, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are CAPACITIVE LOAD TOLERANCE All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves). 1-789 n 0) ! Applications Hints (Continued) Cl quite simple. First; the user must not ignore the surface leakage ,of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6062's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two pOints at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6062's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current. See Figures 48, 4b, 4c for typical connections of guard rings for standard op-amp configurations. Rl INPUT .J\I<1/Ir"-+......,;...-.lltAI'v--.. 1 1 "I , 1 Guard Ri ng -+1 OUTPUT t: TUH/11288-7 (a) Inverting Amplifier R2 OUTPUT TL/HI11288-8 (b) Non-Inverting Amplifier OUTPUT INPUT -!---+-I TL/H/11288-9 (c) Follower FIGURE 4. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-ta-point up-in-the-air wiring. See Figure 5. t..Guard Ring TL/H/11298-6 FIGURE 3. Example of Guard Ring in P.C. Board Layout 1-790 Typical Single-Supply Applications Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (1/0) input and output pins look similar to the gate of the SCA. There is a minimum current required to trigger the SCR gate lead. The LMC6062 and LMC6082 are designed to withstand 100 rnA surge current on the 1/0 pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the 1/0 pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. (V+ = 5.0 Voc) The extremely high input impedance, and low power consumption, of the LMC6062 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance (>10140), 0.01% gain accuracy at Av = 100, excellent CMRR with 1 kO imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than 2.5 /JoV/'C. R2 provides a simple means of adjusting gain over a wide range without degrading CMRR. R7 is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used. fEEDBACK CAPACITOR SOLDER CONNECTION TUH/I1298-10 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board). FIGURE 5. Air WIring r l. 9.1k R3 R4 2Sk 2S0k Rl,44.2k R2 VIN If Rl ~ 2k YOUT pot RS,44.2k R6 2Sk R7 224k TLlH/tl298-11 R5. R3 ~ R6. and R4 ~ R7; then & YOUT ~ R2 + 2Rl X YIN R2 R3 :. Av '" 100 for circuR shown (R2 ~ 9.822k). FIGURE 6. Instrumentation Amplifier 1-791 III ~ ~ B ::!i r---------------------------------------------------------------------------------, Typical Single-Supply Applications (V+ = 5.0 Voe) (Continued) ~"""_OUTPUT INPUT , '~, 5tH ~CD4066 rL/H/1129B-12 FIGURE 7. Low-Leakage Sample and Hold R4 10M VOUT I Cl O.068J.1 F Rl +5V 470k TLlH/1129B-13 FIGURE 8. 1 Hz Square Wave..OSClllator 1-792 I!J1National Semiconductor LMC6064 Precision CMOS Quad Micropower Operational Amplifier General Description Features (Typical Unless Otherwise Noted) The LMC6064 is a precision quad low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption make the LMC6064 ideally suited for battery powered applications. • • • • • • • • Other applications using the LMC6064 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers. This device is built with National's advanced double-Poly Silicon-Gate CMOS process. For designs that require higher speed, see the LMC6084 precision quad operational amplifier. For single or dual operational amplifier with similar features, see the LMC6061 or LMC6062 respectively. Low offset voltage 100 ",V 16 ",AI Amplifier Ultra low supply current Operates from 4.5V to 15V Single supply Ultra low input bias current 10 fA Output swing within 10 mV of supply rail, 100k load Input common-mode range includes VHigh voltage gain 140 dB Improved latchup immunity Applications • • • • • • • Instrumentation amplifier Photodiode and infrared detector preamplifier Transducer amplifiers Hand-held analytic instruments Medical instrumentation D/A converter Charge amplifier for piezoelectric transducers PATENT PENDING Connection Diagram 14-Pln DIP/SO 14 OUTPUT 4 OUTPUT 1 INVERTING INPUT 1 INVERTING INPUT 4 12 NON-INVERTING INPUT 4 NON-INVERTING INPUT 1 v- V+ 10 NON-INVERTING INPUT 2 NON-INVERTING INPUT 3 '9 INVERTING INPUT 3 INVERTING INPUT 2 8 OUTPUT 3 OUTPUT 2 TLlHI11466-1 Top View Ordering Information Temperature Range Package 14-Pin Molded DIP 14-Pin Ceramic DIP Transport Media LMC6064AIN LMC60641N N14A Rail LMC6064AIM LMC6064IM M14A Rail Tape and Reel J14A Rail Industrial -40"Cto +85"C LMC6064AMN 14-Pin Small Outline NSC Drawing ',Military -55"Cto + 125"C LMC6064AMJ ,1-793 • Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage Voltage at Input/Output Pin ± Supply Voltage (V+) +0,3'i1, (V-) -0.3V Supply Voltage (V+ - V-) 16V Output Short Circuit to V + Current at Power Supply Pin Power Dissipation 40mA (Note 3) ±30mA Operating Ratings (Note 1) 260"C - 65"C to + 1SO"C 15O"C 2kV Junction Temperature ESD Tolerance (Note 4) ±10mA Temperature Range LMC6064AM -55"C ~ TJ ~ + 125"C LMCS064AI, LMC60641 -40"C ~ TJ ~ + 85"C Supply Voltage 4.SV ~ V+ ~ 1S.5V Thermal Resistance «(IJAl (Note 12) 14-Pin Molded DIP 81"C/W 14-PinSO 126"C/W Power Dissipation (Note 10) (Note 11) (Note 2) Output Short Circuit to VLead Temperature (Soldering, 10 sec.) Storage Temp. Range Current at Input Pin Current at Output Pin DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 2S"C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Va = 2.5V and RL > 1M unless otherwise specified. Symbol Vos Parameter Input Offset Voltage TeVos Input Offset Voltage Average Drift Is Input Bias Current los Typ (Note 5) Conditions 100 Input Offset Current Common Mode Rejection Ratio OV ~ VCM ~ 12.0V V+ 7' 15\l 85 Positive Power Supply Rejection Ratio 5V ~ V+ ~ 15V Va = 2.SV 85 Negative Power Supply Rejection Ratio OV Input Common-Mode Voltage Range V+ = 5Vand15V for CMRR ~ 60 dB Large Signal Voltage Gain 350 800 8«)0 1300 ~ V- ~ -10V 100 -0.4 RL = 100kO (Note 7) Sourcing 3000 Sinking RL = 25kO (Note 7) 4000 Sourcing 3000 Sinking 2000 1-794 5V, Units p,V Max p,VI"C 100 4 4 pA Max 100 2 2 pA Max 75 75 66 70 72 83 >10 V+ - 1.9 Av 350 1200 0.005 CMRR VCM LMC60641 Limit {Note 6) 0.010 Input Resistance -PSRR LMC6064AI Limit (Note 6) 1.0 RIN +PSRR LMC6064AM Limit {Note 6) = TeraO 75 75 66 70 72 83 dB Min dB Min 64 84 74 70 81 71 -0.1 -0.1 -0.1 0 0 0 V Max V+ - 2.3 Y+ - 2.8 V+ - 2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.5 V Min dB Min 400 400 300 200 300 200 VlmV Min V/mV 180 180 90 70 100 80 Min 400 400 200 150 150 80 VlmV Min 100 100 70 35 50 35 VlmV Min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Symbol Vo Parameter Conditions V+ = 5V RL = 100 kO to 2.5V Output Swing Typ (Note 5) 4.995 0.005 V+ = 5V RL = 25 kO to 2.5V 4.990 0.010 V+ = 15V RL = 100 kO to 7.5V 14.990 0.010 V+ = 15V RL = 25 kO to 7.5V 14.965 0.025 10 Output Current V+ = 5V . 10 Is Output Current V+ = 15V Supply Current Sourcing, Vo = OV Sinking, Vo = 5V Sourcing, Vo = OV 22 21 25 Sinking, Vo = 13V (Note 11) 35 All Four Amplifiers V+ = +5V, Vo = 1.5V 64 All Four Amplifiers V+ = + 15V, Vo = 7.5V 80 1·795 LMC6064AM LImit (Note 6) LMC6064AI Limit (Note 6) LMC60641 LImit (Note 6) 4.990 4.990 4.950 4.970 4.980 4.925 0.010 0.010 0.050 0.030 0.020 0.075 4.975 4.975 4.950 4.955 4.985 4.850 0.020 0.020 0.050 0.045 0.035 0.150 Units V Min V Max V Min V Max 14.975 14.975 14.950 V 14.955 14.985 14.925 Min V Max 0.025 0.025 0.050 0.050 0.035 0.075 14.900 14.900 14.850 14.800 14.850 14.800 0.050 0.050 0.100 0.200 0.150 0.200 16 16 13 8 10 8 16 16 16 7 8 8 15 15 15 9 10 10 24 24 24 7 8 8 V Min V Max mA Min mA Min mA Min mA Min 76 76 92 p,A 120 92 112 Max 94 94 114 p,A 140 110 132 Max AC Electrical Characteristics :' ." Unless otherwise speeified. all limits guaranteed for TJ =- 25·C. 'Soldface limits al1ply at the temperature extremes. V+=- 5V. V- =- OV. VCM =- 1.5V. Vo =- 2.5V and RL > 1M unless'otherwise spe6if~. Symbol SR' GBW 8m en Parameter Slew Rate Typ Conditions (NoteS) (Note 8) 35 Gain-Bandwidth Product Phase Margin LMC6064AM LMC6064AI Limit Limit LMC60641 Limit (Note 6) (Note 6) (Note 6) 20 20 15 8 10 7 Units V/ms Min 100 kHz 50 Deg Amp-to-Amp Isolation (Note 9) 155 dB Input-Referred Voltage Noise F=-1kHz 83 nV/VHz 0.0002 pAlVHz 0.01 % in Input-Referred Current Noise F =- 1 kHz T.H.D. Total Harmonic Distortion F =- 1 kHz.Av =- -:5 RL = 100kO. Vo = 2Vpp ±5VSupply Note 1: Absolute Maximum Ratings Indicale limits beyond which damage Ie the device may occur. Operating Ratings Indicale condHions for which the device is intended 10 be funcllonal. but do not guarantee specific psrformance limits. For guaranteed spsclilcetions and test conditions, see !he Electrical Characteristics. The guaranteed specHicatlons apply only for !he lest condHions Iisled. Note 2: Applies Ie both single-supply 'and splH-supply opsration. Continous short ci,cuH operation at elevate9 ambient tempsrature can result in exceeding the maximum allowed iunction temperature of 15O"C. Output currents in excess of ± 30 rnA over long term may adversely affect rellabilHy. Nole 3:'The maximUm pewer dissipation is a function of TJ(Max), BJA, arid TA. The maximum allowable power dissipation at eny ambient temperature Is Po (TJ(Max).- TN/BaA.. ' Nole 4: Human body model, 1.5 kG in series wHh 100 pF. Nole 5: Typical values represent the most likely parametric norm. Note 8: All limits are. guaranteed by testing or sletiatical analysis. = 15V, VCM = 7.5Vand RL connacted Ie 7.5V. For Sourcing tests, 7.5V ,; Vo ,; 11.5V. For Sinking lests, 2.5V ,; Vo ,; 7.5V. = 15V. Connacted as Voltage Follower with 10V step input Number specified is the slower of the positive and negative slew rates. Nole 9: Input referred V+ = 15V and RL = 100 kG connacted to 7.5V. Each amp,exciled in tum wHh 100 Hz to produce Vo = 12 Vpp. Nole 10: For opsrating at elevaled lempsratures the device must be derated based on the thermal reslslence 6JA wHh Po = (TJ-TN/BJA. Note 7: V+ Nole 8: V+ Nole 11: Do not connect output Ie V+, when V+ is greater !hen 13V or reliability witll be adversely affected. Note 12: All numbers apply for packages soldered directly Into a PC board. Note 13: For guaranteed Military Tempsrature Range parameters see RETSMC6064X. \ 1-796 = Typical Performance Characteristics Vs = ± 7.5V, TA = Distribution of LMC6064 Input Offset Voltage (TA = +25"C) 25"C, Unless otherwise specified Distribution of LMC6064 Input Offset Voltage (TA = + 125°C) Dlstrlblltlon of LMC6064 Input Offset Voltage (TA = -55°C) 30 27 30~~~~~~~~~-. 570 A.mpllflers from 3 Waftr lots 27 V+=5V g ~A;';:;; 24 g ~ S ::: S !::! > ~ ~ ~ ~ ~ : ~ ~ ? Y? ~ Q ~ ~ : N : G N ~ ? ~ ?Y ~ 0 0 0 0 OFFSET VOLTAGE (mV) ~ a i ~ / 100fA 10fA ,.' <' ..3 Ia V l/ ~ ~ 50 75 100 125 80 150 ... .:!!. 70 II! ::IE 60 U 60 1/ f- '0 20 ~~ 60 ~ '0 .:!!. ~ - 8 10 ~ ~ 16 - -5 \ r--.. -10 I I 10 100 1k 90 ~ 60 i FREQUENCY (Hz) Output Characteristics Sourcing Current Output Characteristics Sinking Cu"ent '\.. 120 '~ -- o 10 100 .:!!. ~ 0.001 0.001 0.01 0.1 10 OUTPUT SOURCE CURRENT (mA) 100 ~O i""" z ~~ 0.1 20 :!; Gain i I I s 0.01 0.001 0.001 -20 0.01 0.1 10k 10 OUTPUT SINK CURRENT (mA) 100 'I. =500k Ph ... ~ ~ I 1k Gain and Phase Response vs Temperature (-55"Cto + 125"C) ... 10 0.01 -- '-- r-- FREQUENCY (Hz) + ~ 6 8 10 30 10k > g 5 2 , 150 III iii """ 1 ... ~ I- 1\'.' Ok 1\=2k Input Voltage Noise vs Frequency ~ "! FREQUENCY (Hz) 0.1 N 180 ~ "l:Jsupl, \ 0 lOOk = OUTPUT VOLTAGE (V) I, I 20 10k ~ : ~,.J. -20 -10 -8 -6 -, -2 0 v+ sIIPP '0 30 ~ 0000 I 1\ -100 ..3 i 10 12 " 50 lk ... "-" S -15 ~ ... I OFFSET VOLTAGE (mV) / 80 100 I Input Voltage vs Output Voltage 100 !'L= Ok '" 10 I TOTAL SUPPLY VOLTAGE(Vdo) !-o 0 100c:ici Power Supply Rejection Ratio vs Frequency 100 80 ~ 0 I- TJ =25 0 C Common Mode Rejection Ratio vs Frequency ~ o~ : ~ : ~ N ~ ~ 15 TEMPERATURE (DC) 90 N ~ N. TJ =125 C o o 10DaA 25 • 000 20 100 IfA 0 0 N 120 v V 1pA • 9 Supply Current vs Supply Voltage 100pA ~ ~ 15 12 OFFSET VOLTAGE (mV) Input Bias Current vs Temperature 10pA ~ 2' 21 18 1k 90 , '\ -," 10k lOOk 1M FREQUENCY (Hz) TL/H/I1466-2 1-797 • Typical Performance Characteristics Vs = Gain and Phasa Responsa vs Capacitive Load with RL = 20 kG . ± 7.5V, TA = 25°C, Unless otherwise sj>ecified Gain and Phasa Responsa vs Capacitive Load with RL = 500 kG y'" 50 r-r-!'phm_"'IT"I"I.-rTTTT1T1T.oTp,TT1mn '0 ~,,~t-H1I1f11o'l:rf+tHlll'-++H-ItHIIO , G,;; OpF 30 I\,G. =, 20 LV 10 O 160 "0 XI ~ ~ p Open Loop Frequency Responsa ~ 120I-'t'\d'"",:-+-+-+-+-+-+-+--; '".~ t: -G.=OP;ftIIIPH~ttitll'rn\ftttt1rt1fl i ~'. oF' f-H-+T~'rtfllilF-l-bl'!iR.w-titirtifl 0 100",=.0.1' e ~ 801-'-+-+-'''''".+.-+-+-+-+-1 60 ~ § w Invertll!g Small Signal Pulse Responsa , lOOk _:: 1M ' , ... ='0 • .0 ~=.L.:.:;O.;J.:~-L. :.~ L-L-L-L-.l.... 0.01 0.1 1 10 100 lk 10k lOOk '" lOW FREQUENCY (Hz) FREQUENCY (Hz) \ 10k " 40 ~: ~~fi-tffiIllr~+l'MttI-'5 ~ lk -.00. -"TOol FREQUENCY (Hz) Inverting Large Signal Pulse Response Non-Inverting Small Signal Pulsa Response II II TIWE(100 "./Di.) TI"E(10 "./Di.) Non-Inverting Large Signal Pulse Responsa TIME(10"./DI.) Crosstalk Rejection vs Frequency StabUlty vs Capacitive Load, RL = 20 kG 10,000 ""'-'-"T""T""1"""T-r--.-r-r-,--, ~ ~ ~~ 9 --~ w 100 \ f-++-I-ttfttl--+-IH-1ftH-H 80f--~+++H~-H"tH-H I ~~+4~~-+~:~~ 1,000 :u. ill< ~ '".m""I, \[ I 11 .• t- ~~ .tlon 100 H-++t+-l~4-+-H-+-I 10K rahoot 10 H-+~+-I-+++-H-+-I 1~-L~-L~-L~~~ 100 TI"E(100 "./Di.) 1k -6-5-'-3-2-10 1 2 3 , 5 6 OUTPUT VOLTAGE (V) FREQUENCY (Hz) Stability vs Capacitive LoadRL = 1 MG +, ... =t.ff-' on 70 P"'IItJt--r-,H~+H~· nstable 0101I8t1on -8 -5 -, -3 -2 -1 0 1 2 3 , 5 6 OUTPUT VOLTAGE (V) TLlH/11466-3 1-798 Applications Hints Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 28. AMPLIFIER TOPOLOGY The LMC6064 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6064 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. +V COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6064. Although the LMC6064 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capaCitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. 20n '1.0AD 1000 pr 90k .-------------~~ When high input impedances are demanded, guarding of the LMC6064 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Clrcult-Board Layout for High Impedance Work). TL/H/I1466-5 FIGURE 2a. LMC6064 Nonlnvertlng Gain of 10 Amplifier, Compensated to Handle Capacitive Loads The effect of input capaCitance can be compensated for by adding a capacitor. Place a capacitor, Gj, around the feedback reSistor (as in Figure 1) such that: 1 I In the circuit of Figure 28, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. 1 ---;;,--2'1TRICIN 2'1TR2Gj or Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure 2b). Typically a pull up resistor conducting 10 /LA or more will significantly'improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). Rl CIN';;; R2 C, Since it is often difficult to know the exact value of CIN, Gj can be experimentally adjusted so that the desired pulse response is achieved. Refer to the. LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance. V+ ,"o~t R2 VIN RI O---'\M_ _,-_~-I I GN= I -- .I > ......-oVOUT TLlH/II466-6 FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor I I PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6064, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are TLlH/11466-4 FIGURE 1. Canceling the Effect of Input CapaCitance CAPACITIVE LOAD TOLERANCE All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves). 1-799 Applications Hints (Continued> quite simple. First, leakage of the PC appear acceptably humidity or dust or be appreciable. Cl the user must not ignore the surface board, even though it may sometimes low, because under conditions of high contamination, the surface leakage will -.ItI\,.,.-.. Rl INPUT To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6064's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leaka~e current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6064's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current. See Figures 48, 4b, 4c for typical connections of guard rings for standard op-amp configurations. -¥N............ OUTPUT TL/H/11466-8 (a> Inverting Amplifier R2 OUTPUT TL/H/11466-9 (b) Non-Inverting Amplifier OUTPUT INPUT -!--+-I TLlH/11466-10 (e) Follower FIGURE 4. Typical Connections of Guard Rings t.GUard Ring The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using pOint-ta-point up-in-the-air wiring. See Figure 5. TLlH/11466-7 FIGURE 3. Example of Guard Ring In P.~. Board Layout 1-800 Latchup Typical Single-Supply Applications CMOS devices tend to be susceptible to latchup due to their internal parasitic SCA effects. The (1/0) input and output pins look similar to the gate of the SCA. There is a minimum current required to trigger the SCA gate lead. The LMC6064 and LMC6082 are designed to withstand 100 mA surge current on the 1/0 pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the 1/0 pins. In addition, like an SCA, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. (V+ = 5.0 VOC) The extremely high input impedance, and low power consumption, of the LMC6064 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance (>10140), 0.01% gain accuracy at Av = 100, excellent CMRR with 1 kO imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than 2.5 p.VloC. R2 provides a simple means of adjusting gain over a wide range without degrading CMRA. R7 is an initial trim used to maximize CMAA without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used. FEEDBACK CAPACITOR TLlH/II466-11 (Input pins are lifted out of PC board end soldered direcUy to components. All other pins connected to PC bosrd). FIGURE 5. Air Wiring r l. R3 R4 25k 250k 9.1k R2 2k VIN If Rl ~ O -..... VOUT pot Rs. R3 R5,44.2k R6 25k R7 224k TLlH/I1466-12 ~ Re. end ~ ~ R7; then VoUT = R2 + 2Rl X & VIN R2 Rs :.Av '" 100 for circuit shown (R2 = 9.822k). FIGURE 6. Instrumentation Amplifier 1-801 ~ r-------~--------------------------------------------------------~--------------, ! Typical Single-Supply Applications (V+ = 5.0 Vee) (Continued) (.) ~ > ......... OUTPUT INPUT S/H TL/HI11466-13 FIGURE 7. Low-Leakage Sample and Hold R4 1011 VOUT I Cl O.068J.1 F R2 Rl +5V 470k R3 470k 470k TUH/11466-14 FIGURE 8. 1 !iz Square Wave Oscillator 1·802 f:}1National Semiconductor LMC6081 Precision CMOS Single Operational Amplifier General Description Features (Typical unless otherwise stated) The LMC6081 is a precision low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an Input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMCS081 ideally suited for precision circuit applications. • • • • • • • Other applications using the LMC6081 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits. This device is built with National's advanced Double-Poly Silicon-Gate CMOS process. For designs with more critical power demands, see the LMC6061 precision micropower operational amplifier. For a dual or quad operational amplifier with similar features, see the LMCS082 or LMCS084 respectively. Low offset voltage 150 ",V Operates from 4.5V to 15V single supply Ultra low input bias current 10 fA Output swing to within 20 mV of supply rail, 100k load Input common-mode range includes VHigh voltage gain 130 dB Improved latchup immunity Applications • • • • Instrumentation amplifier Photodiode and infrared detector preamplifier Transducer amplifiers Medical instrumentation • DIA converter • Charge amplifier for piezoelectric transducers PATENT PENDING Connection Diagram 8-Pin DIP/SO '-./ !.. NC ~ 2.. If'" NON-INVERTIN~ 1. + .!... OUTPUT INPUT V-.! 1. Ne NC ..!. INVERTING INPUT 2. TL/H/11423-1 Top View Ordering Information r--------.-------------------------.------.---------~ Package 8-Pin Molded DIP 8-Pin Small Outline Temperature Range NSC Military Industrial Drawing - S5"C to + 12SOC - 40"C to + 8SOC LMC6081AMN Transport Media LMCS081AIN LMC6081IN N08E Rail LMCS081 AIM LMCS0811M M08A Rail Tape and Reel 1-803 Absolute Maximum Ratings (Note 1) If Military/Aerospace speclfled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage ± Supply Voltage Voltage at Input/Output Pin (V+) +0.3V, (V-) -0.3V Supply Voltage (V+ - V-) ESD Tolerance (Note 4) Current at Input Pin Current at Output Pin Current at Power Supply Pin Power Dissipation 16V (Note 10) Output Short Circuit to V + Output Short Circuit to v- 40mA (Note 3) Operating Ratings (Note 1) Temperature Range LMC6081AM LMC6081AI, LMC6081I Supply Voltage (Note 2) Lead Temperature (Soldering, 10 Sec.) Storage Temp. Range Junction Temperature 2kV ±10mA ±30mA 26O"C -65"C to + 150"C 150"C -55°C,;;; TJ';;; + 125°C -40"C';;; TJ ,;;; +85°C 4.5V,;;; V+ ,;;; 15.5V Thermal Resistance (8JAl, (Note 11) N Package, 8-Pin Molded DIP M Package, 8-Pin Surface Mount Power Dissipation (Note 9) 115°C/W 193°C/W DC Electrical Characteristics Unless otherwise specified, all limits guaranteect for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified. Symbol Vos Input Offset Voltage TCVos Input Offset Voltage Average Drift Ie Input Bias Current los Conditions Parameter Typ (NoteS) 150 Input Offset Current Input Resistance OV ,;;; VCM ,;;; 12.0V V+ = 15V 85 Positive Power Supply Rejection Ratio 5V,;;; V+ ,;;; 15V Vo = 2.5V 85 Negative Power Supply Rejection Ratio OV';;; v-,;;; 94 Input Common-Mode Voltage Range V+ = 5Vand15V for CMRR ~ 60 dB Large Signal Voltage Gain 350 800 800 1300 -10V -0.4 RL = 2kO (Note 7) Sourcing Sinking RL = 6000 (Note 7) Sourcing Sinking 1400 350 1200 150 1-804 5V, Units p.V Max p.V/oC 100 4 4 pA Max 100 2 2 pA Max 75 75 66 72 72 83 >10 V+ -1.9 Av 350 1000 0.005 Common Mode Rejection Ratio VCM LMC6081 I Limit (Note 6) 0.010 RIN -PSRR LMC6081AI Umlt (Note 6) 1.0 CMRR +PSRR LMC6081AM Limit (Note 6) = TeraO 75 75 66 72 72 83 dB Min dB Min 84 84 74 81 81 71 -0.1 -0.1 -0.1 0 0 0 V Max V+ - 2.3 Y+ - 2.8 V+-'2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.5 V Min VlmV dB Min 400 400 300 300 300 200 Min 180 180 90 VlmV 70 100 80 Min VlmV 400 400 200 150 150 80 Min 100 100 70 35 50 35 V/mV Min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25'C. Boldtace limits apply at the temperature extremes. V + = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Symbol Vo Parameter Conditions Output Swing V+ = 5V RL = 2 kO to 2.5V Typ (Nota 5) 4.87 0.10 V+ = 5V RL = 6000 to 2.5V 4.61 0.30 V+ = 15V RL = 2 kO to 7.5V 14.63 0.26 V+ = 15V RL = 6000 to 7.5V 13.90 0.79 10 Output Current V+ = 5V Sourcing, Vo = OV Sinking, Vo = 5V 10 Output Current V+ = 15V Sourcing, Vo = OV Sinking, Vo = 13V (Note 10) Is Supply Current V+ = +5V, Vo = 1.5V V+ = + 15V, Vo = 7.5V 22 21 30 34 450 550 1-805 LMC6081AM Limit (Nota 6) LMC6081AI Umlt (Note 6) LMC6081I Limit (Note 6) 4.80 4.80 4.75 4.70 4.73 4.87 0.13 0.13 0.20 0.19 0.17 0.24 4.50 4.50 4.40 4.24 4.31 4.21 0.40 0.40 0.50 0.83 0.50 0.83 14.50 14.50 14.37 14.30 14.34 14.25 0.35 0.35 0.44 0.48 0.45 0.58 13.35 13.35 12.92 12.80 12.88 12.44 Units V Min V Max V Min V Max V Min V Max V Min 1.16 1.16 1.33 1.42 1.32 1.58 16 16 13 mA 8 10 8 Min mA Min 16 16 13 11 13 10 28 28 23 18 22 18 28 28 23 19 22 18 750 750 750 900 900 900 V Max mA Min mA Min ",A Max 850 850 850 ".A 950 950 950 Max .... CD AC Electrical Characteristics CI CD o ~ Unless otherwise specified, all limits guaranteed for TJ V- = OV, VCM Symbol SR GBW = 1.5V, Vo = > 2.5Vand RL Parameter Slew Rate = 25"C, Boldtacelimits apply at the temperature extremes. V+ = 5V, 1M unless otherwise specified. Typ Conditions (Note 5) (NoteS) 1.5 Gain-Bandwidth Product LMC6081AM LMC6081AI Limit Umlt LMC6081 Umlt (Note 6) (Note 6) (Note 6) O.S 0.8 O.S 0.5 0 •• 0 •• 1.3 Units V/p.s Min MHz ' .3 '" ~~ ~ 50 75 100 125 o 150 Common Mode Rejection Ratio vs Frequency 100 ! 70 ~ ~ ~ 60 i:l 2 4 6 8 10 12 14 16 50 -r-. V_~~'~ 1-t-+-!-++'--J"o.:I-t-'-'t--I " r\ 40~~-+-t-+-r-r~~ ~ 40 20~~-+-t-+-r-r~~ 30 O'-L:...JL......J~L......J~~~-'~ 10 100 lk 10k 1 lOOk 10 100 lk 10k FREQUENCY (Hz) FREQUENCY (Hz) Output Characteristics Sourcing Current Output Characteristics Sinking Current I o>~ ~ "$ 80 '"iii 60 ~~ ...... ~ ~ ...1=5 Ok ... =2k 2 4 o.OOt 0.001 0.01 0.1 10 OUTPUT SOURCE CURRENT (mA) 100 \ r'\.. 40 20 r--.... ~ 10 100 lk o~ 10k Gain and Phase Response vs Temperature (-55·C to + 125"C) ... 60 1"4 z 40 ~ ... =2k , ~ 20 , § is 0.01 .. 0.001 0.001 6 8 10 o ~ 0.1 ~ g - . 'I. l.Jo ~ ~ !'; -20 0.01 0.1 0 120 ~ 0.01 N ~ m 100 ~ 10 0.1 N ~ FREQUENCY (Hz) + 10 m 000 Input Voltage Noise vs Frequency lOOk > S! • N. I I ~ 60 0 OUTPUT VOLTAGE (V) "'1" ~d=:::j:::H~=t.st;;;t1 80 N -40 -10 -8 -6 -4 -2 0 120 r-lr-T---r-r--r-r...,-r:-"""'7.""I = F 80 ~ r- -10 -20 Power Supply Rejection Ratio vs Frequency 100 ... 10 TOTAL SUPPLY VOLTAGE (V) TEMPERATURE (·C) 90 r- 20 -30 25 • Input Voltage vs Output Voltage OE-~~~~--~~~~ o ~ • 40 1fA 100aA ~ OFFSET VOLTAGE (mV) /' 1pA N ? 1? Y 000 0 / 10pA ~ tOfA N 800.-'-.-~-'--.-.--r-' ~ ~ • OFFSET VOLTAGE (mV) 100pA i ~ • ~ ? ? ?? 000 0 10 OUTPUT SINK CURRENT (mA) 100 lk 10k lOOk 1M 90 45 -45 10M FREQUENCY (Hz) TL/H/II423-2 1-807 Typical Performance Characteristics (Continued) Vs = ±7.5V, TA = 25°C, Unless otherwise specified Gain and Phase Response vs Capacitive Load with RL = 6000 60 r- I\. =60 r40 ....3 20 ~ Open Loop Frequency Reli!ponse 'ai' r:-- 90 I- z Gain and Phase" Response vs Capacitive Load with RL = 500 kO rr- 45 OI- 0 3 z 40 1 ! ~ .... 3 ~ ",-SOOkA ",1\.='. 120 ---r-< r-.. 100~~+F=r~~~-+-+~~~ 80 80 0 40 ~ ~ ~ 80Q"-I'-'.3I.--I--I--I-+-I ~ H-+-+--+-+I"-'k~i "t .. 20r-r-r-+-+-+-+-~~~ l-20 140 20 z iE 160 r-r-r-r--r--r--r--r--r--, r- o f-I-I-f-,-If-II\. •• ooM.. .......O~ -20 -45 -20 "10k lOOk 1M 10k 10M FREQUENCY (Hz) Inverting Small Signal Pulse Response 0.010.1 1 10100 lk 10k 100klM 10M 'FREQUENOY (Hz) FREQUENCY (Hz) Inverting Large Signal Pulse Response Non-Inverting Small Signal Pulse Response \ v TlUE(lps/Dlv) TlME(lp,/Dlv) Non-Inverting Large Signal Pulse Response TIME (lps/Div) Stability vs Capacitive Load, RL = 6000 10000 ..9 u ..... l:: 1000 ~ ~ ~ I 100 ~:tJ J;t aU ",. .... •• ..hoot ... 180 160 "'~1 .• 0 '"~ • .!. AY=+ ptcll.to•.•• Unstablai_ P" ~ 140 ~ 120~-+1-~~~+-~-+1 ~ 100~-+1-~f-+~+-~-+~ ~ 80~-+1'-5~~f-"+h-~If-+~~~ ~ 4080~:$~~~:E~~=t~ ~ 10 1~~~~~~~~~~ TIME (lpo/Div) Stability vs Capacitive LoadRL = 1 MO 20~~~~~~~~~~ -6-5-4-3-2-10 1 2345 8 -8-5-4-3-2-10' 23458 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) TLlHI11423-3 1-808 Applications Hints Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an OSCillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a. AMPLIFIER TOPOLOGY The LMC6081 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6081 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. +V 0.1 ).IF COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6081. Although the LMC6081 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. When high input impedances are demanded, guarding of the LMC6081 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-8oard Layout for High Impedance 20n G.OAD 1000 pF t-______________~9AOAk~ TL/H/11423-5 FIGURE 2a. LMC6081 Noninvertlng Gain of 10 Amplifier, Compensated to Handle Capacitive Loads In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Work). 1 1 2'ITR2C, :r: 10k The effect of input capacitance can be compensated for by adding a capacitor, c" around the feedback resistors (as in Agure 1) such that: 2'ITR1C'N VOUT ---~--- Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Figure 2b). Typically a pull up resistor conducting 500 p,A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see electrical characteristics). or Rl C,N s: R2 C, Since It is often difficult to know the exact value of C,N, C, can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance. V+ ~', R2 Rl Y,N O--J.>M _ _•_ _"''''' • GN~ ~_""'OVOUT I TLlH111423-14 I I ..-. FIGURE 2b: Compensating for Large Capacitive Loads with a Pull Up Resistor TL/H/11423-4 PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6081, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite Simple. First, the user must not ignore the surface FIGURE 1. Cancelling the Effect of Input Capacitance CAPACITIVE LOAD TOLERANCE All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the reSistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves). 1-809 ~. ~ :::& ...I ,------------------------------------------------------------------------------------------, Applications Hints (Continued) C1 leakage of the PC board, eve.n though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of ariy surface leakage, layout a ring of foil completely surrounding the LMC6081's inputs and the terminals .of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-ta-pad resistance of 10120, which is normally considered a very large resistance, could . leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6081's actual perforl)1ance. However, if a guard ring is held within 5 mV of the inputs, then even·a resistance . of 1011 0 would cause only 0.05 pA of leakage current. See Figures 48, 4b, 40 for typical connections of guard rings for standard op-amp configurations. R1 INPUT """,W~"""""--'IJ\fV--" I I I I Guard Ring -+I r OUTPUT I TLlH/II423-7 (a) Inverting Amplifier R2 OUTPUT TLlHI1142S-8 (b) Non-Inverting Amplifier OUTPUT TLlH/II423-9 t.Guar~ (c) Follower FIGURE 4. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure5. Ring TL/H/II423-6 FIGURE 3. Example of Guard Ring in P.C. Board Layout rEEDBACK CAPACITOR TLlHI1142S-10 (Input pins ara lifted out of PC board and soldered diracUy to components. All other pins connected to PC board). FIGURE 5. Air Wiring 1-810 Typical Single-Supply Applications Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (1/0) input and output pins look similar to the gate of the SCA. There is a minimum current required to trigger the SCR gate lead. The LMC6061 and LMC6081 are designed to withstand 100 mA surge current on the 1/0 pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the 1/0 pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. (V+ = 5.0 Vocl The extremely high input impedance, and low power consumption, of the LMC6081 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance (>10140),0.01% gain accuracy at Av = 1000, excellent·· CMRR with 1 kO imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than R2 provides a simple means of adjusting gain 2.5 over a wide range without degrading CMRA. R7 is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used. p.vrc. r l, 9.1k VIN R3 R4 10k lOOk Rl,44.2k R2 2k pot >-.... VOUT R6 10k R7 91k TUH/11423-11 :. Av '" 100 for circu~ shown (R2 = 9.822k). FIGURE 6. Instrumentation Amplifier 1-811 I .... Typical Single-Supply Applications (V+ = 5.0 Voc) (Continued) .... > ....._ OUTPUT INPUT S/H ~CD4066 TUH/11423-12 FIGURE 7. Low-Leakage Sample and Hold R4 10M I Cl 0.068 PF R2 Rl 470k R3 470k 470k TL/H/11423-13 FIGURE 8. 1 Hz Square Wave Oscillator 1-812 r--------------------------------------------------------------------------------.r- i f}1National Semiconductor LMC6082 Precision CMOS Dual Operational Amplifier General Description Features (Typical unless otherwise stated) The LMC6082 is a precision dual low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6082 ideally suited for precision circuit applications. Other applications using the LMC6082 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits. This device is built with National's advanced Double-Poly Silicon-Gate CMOS process. For designs with more critical power demands, see the LMC6062 precision dual micropower operational amplifier. • • • • • • • Low offset voltage 150 ,..V Operates from 4.5V to 15V single supply Ultra low input bias current 10 fA Output swing to within 20 mV of supply rail, 100k load Input common-mode range includes VHigh voltage gain 130 dB Improved latchup immunity Applications • • • • • • Instrumentation amplifier Photodiode and infrared detector preamplifier Transducer amplifiers Medical instrumentation D/A converter Charge amplifier for piezoelectric transducers PATENT PENDING Connection Diagram I a-Pin DIP/SO U OUTPUT A...2 ,w~~.~ • ~ ...! NON~NVERTING INPUT A 3 - ~ yo , ++IE- ~ 4 v--t-----' .._ - tS_ '''"''' INVERTING INPUT a NON~.VERTING INPUT a TL/H/11297-1 TopYlew Ordering Information r---------r-------------------------r------r---------, Temperature Range Package 8-Pin Molded DIP 8-Pin Small Outline NSC Industrial Military Drawing - 55'C to + 125'C - 40'C to + 85'C LMC6082AMN LMC6082AIN LMC60821N LMC6082AIM LMC6082IM Transport Media N08E Rail M08A Rail Tape and Reel For MIL-sTD-aa3C qualified products, please contact your local National Semiconductor Sales Office or Distributor for availability and specification Information. 1-813 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales OHlce/Dlstributors for availability and specifications. Differential Input Voltage ± Supply Voltage (V+). +0.3V, Voltage at Input/Output Pin (V-) -0.3V Supply Voltage (V+ - V-) Output Short Circuit to V-, Lead Temperature (Soldering, 10 Sec.) Storage Temp. Range Junction Temperature ESD Tolerance (Note 4) ±10mA Current at Power Supply Pin Power Dissipation 40mA (Note 3) ±30mA Operating Ratings (Note 1) 16V (Note 11) (Note 2) Output Short Circuit to V + Current at Input Pin Current at Output Pin Temperature Range LMC6082AM LMC6082AI, LMC60821 Supply Voltage 260'C - 65'C to + 150'C 150'C 2kV -55'C ,s;; TJ ,s;; + 125'C -40'C,s;; TJ ,s;; +85'C 4.5V,s;; V+ ,s;; 15.5V Thermal Resistance (6JAl (Note 12) 8-Pin Molded DIP 8-PinSO 115'C/W 193'C/W Power Dissipation (Note 10) DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25'C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified. Symbol Ves Parameter Input Offset Voltage TCVes Input Offset Voltage Average Drift 18 Input Bias Current los Conditions Typ (Note 5) 150 Input Offset Current Input Resistance Ov,s;; VCM ,s;; 12.0V V+ = 15V 85 Positive Power Supply Rejection Ratio 5V,s;; V+ ,s;; 15V Vo = 2.5V 85 Negative Power Supply Rejection Ratio OV,s;;V-,s;;-10V 94 Input Common-Mode Voltage Range V+ = 5Vand 15V for CMRR ~ 60 dB Large Signal Voltage Gain 350 800 800 1300 -0.4 RL = 2kO (Note 7) Sourcing Sinking RL = 6000 (Note 7) Sourcing Sinking 1400 350 1200 150 1-814 5V, Units p.V Max p.V/'C 100 4 4 pA Max 100 2 2 pA Max 75 75 66 72 72 83 >10 V+ - 1.9 Av 350 1000 0.005 Common Mode Rejection Ratio VCM LMC60821 Limit (Note 6) 0.010 RIN -PSRR LMC6082AI Limit (Note 6) 1.0 CMRR +PSRR LMC6082AM Limit (Note 6) = TeraO 75 75 66 72 72 83 dB Min dB Min 84 84 74 81 81 71 -0.1 -0.1 -0.1 0 0 0 V Max V+ - 2.3 Y+ - 2.8 V+ - 2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.5 V Min VlmV Min 400 400 300 300 300 200 180 180 90 70 100 80 400 400 200 150 150 80 100 100 70 35 50 35 dB Min V/mV Min V/mV Min V/mV Min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Symbol Vo Parameter Conditions Output Swing V+ = 5V RL = 2 kO to 2.5V Typ (Note 5) 4.87 0.10 V+ = 5V RL = 6000 to 2.5V 4.61 0.30 V+ = 15V RL = 2kOt07.5V 14.63 0.26 V+ = 15V RL = 6000 to 7.5V 13.90 0.79 10 Output Current V+ = 5V Sourcing, Vo = OV Sinking, Vo = 5V 10 Output Current V+ = 15V Sourcing, Vo = OV Sinking, Vo = 13V (Note 11) IS Supply Current 22 21 30 34 Both Amplifiers V+ = +5V, Vo = 1.5V 0.9 Both Amplifiers V+ = +15V, Vo = 7.5V 1.1 1-815 LMC6082AM Umlt (Note 6) LMC6082AI Limit (Note 6) LMC60821 Limit (Note 6) 4.80 4.80 4.75 4.70 4.73 4.87 0.13 0.13 0.20 0.19 0.17 0.24 4.50 4.50 4.40 4.24 4.31 4.21 0.40 0.40 0.50 0.83 0.50 0.83 14.50 14.50 14.37 14.30 14.34 14.25 0.35 0.35 0.44 0.48 0.45 0.58 13.35 13.35 12.92 12.80 12.8. 12.44 1.16 1.16 1.33 1.42 1.32 1.58 16 16 13 8 10 8 16 16 13 11 13 10 28 28 23 18 22 18 28 28 23 19 22 18 1.5 1.5 1.5 1.8 1.8 1.8 1.7 1.7 1.7 2 2 2 Units V Min V Max V Min V Max V Min V Max V Min V Max mA Min mA Min mA Min mA Min mA Max mA Max AC Electrical Characteristics = Unless otherwise specified, all limits guaranteed for T J 25°C, Boldface limits apply at the temperature extremes. V+ VOV, VCM 1.5V, Vo 2.5Vand RL > 1M unless otherwise specified. = Symbol SR = = Parameter Slew Rate Typ Condltlona (Note 5) (NoteS) 1.5 LMC6082AM LMC6082A1 Limit Limit Limit (Note 6) (Note 6) (Note 6) = 5V, LMC60821 O.S O.S O.S 0.5 0 •• 0 •• Units VllI-s Min GBW Gain-Bandwidth Product 1.3 MHz 4'm Phase Margin 50 Deg Amp-to-Amp Isolation (Note 9) 140 dB Input-Referred Voltage Noise F= 22 nVlVHz in Input-Referred Current Noise F = 1 kHz 0.0002 pAlVHz T.H.D. Total Harmonic Distortion F = 10kHz,Av = 0.01 % en RL 1 kHz -10 = 2 kO, Vo = S Vpp ±5VSupply Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur. Operating Ratings indicate condittons for which the device Is Intended to be functional. but do not guarantee specffic performance limits. For guaranteed spectfications and test conditions, see the Electrical Characteristics. The guaranteed specifications epply only for the test conditions listed. Note 2: Appllas to both single-supply and spill-supply operation. Continuous short clrcuH operation at elevated ambient temperature can reouR in exceeding the maximum allowed junction temperatura of 15O'C. Output currents In excess of ± 30 rnA over long term may adversely affect reliability. Note 3: 'The maximum power disslpetion is a function of TJ(Max). 8JA, and TA. The maximum allowable power dissipation at any ambient temperature is Po = (TJ(Max) - TAl/8JA. Note 4: Human body model. 1.5 kG In series wHh 100 pF. Note 5: Typical values represent Iha mosi likely parametric norm. Note 6: All limits are guaranteed by testing or atatisticaJ analysis. Note 7: V+ = 15V. VCM = 7.5Vand RL connected to 7.5V. For Sourcing tests. 7.5V s; Vo s; 11.5V. For SInking tests, 2.5V s; Vo s; 7.5V. Note 8: V+ = 15V. Connecled as VoHage Follower wHh 10V step Input Numbar spectfied Is the slower of the positive and negative slew rates. Note 9: Input re1erred V+ = 15V and RL = 100 kG connected to 7.6V. Each amp excited in turm wHh 1 kHz to produce Vo = 12 Vpp. Note 10: For operating at elevated temperatures the device must be derated based on the thermal resiatance 8JA with Po = (TJ - TAl/8JA' All numbers apply for packages soldered directly into a PC board. Note 11: Do not connecl output to V+ • when V+ is greater than 13V Or reliability will be adversely affected. Note 12: All numbers apply for packagas soldered directiy into a PC board. 1-S16 Typical Performance Characteristics Vs = Distribution of LMC6082 Input Offset Voltage (TA = +25·C) ~ ~ ~ N ~ y ~ • • N 0 ~? ~ • N N. ~ ~ ~ Distribution of LMC6082 Input Offset Voltage (TA = -55·C) ~ N • OFFSET VOLTAGE (mV) Input Bias Current vs Temperature lOlA ," IfA 100aA TO. • N N. N r-,--r-....,.--,r--r--r--,---, 1.75 1-+-+-+---1f-+-+-+--l o 25 50 75 30 '> 20 ~ 10 I\L.J. 'I T f- f-:-: -10 § -20 1\-" 125 150 1-"'I-+-+---1f-+-+-+--l TEMP£RATURE(·C) ci I'-.::::.L §! 100 =~ 40 .3 0/ o 246 8 W ~ ~ ~ 0 ci ci Input Voltage vs Output Voltage 2.00 0.25 0 OFFSET VOLTAGE(mV) ""'" :/ :? ~; ;? ~ = N ~ • ~ 0000 Supply Current vs Supply Voltage / ~ 100lA ~ • /' 1pA a • Distribution of LMC6082 Input Offaet Voltage (TA = +125"C) OFFSET VOLTAGE (mV) 100pA § N ~ y;~y 0 0 0 0 10pA ± 7.5V, TA = 25"C, Unless otherwise specified ~ 'I.1"~.k I -30 I -40 -10 -8 -6 -4 -2 0 2 4 N " TOTAL SUPPLY VOLTAGE (Voc ) 6 8 10 OUTPUT VOLTAGE (V) Common Mode Rejection Ratio vs Frequency Power Supply Rejection Ratio vs Frequency 100 90 = ? == 80 120 r-r-r-1r-1r-1r.,....,,,,;,.,......,,,., 100 ~d:~+:::~j;"t;t1 t_~I'-. .........+ s•.,ly 80 70 60 60 I\j'" H-++"N- ·ppl~f-+- I-t-+-l-++~....p..,.l-t-I\+-l '" 1\r-.. 50 40~f-1f-1-+-+~~~~ 40 20~f-1f-1-+-+~~1-~ 30 10 100 Ik 10k Input Voltage Noise vs Frequency 120 ~ ! 80 ~ ii 80 ~ 40 i FREQUENCY (Hz) FREQUENCY (Hz) Output Characteristics Sourcing Current Output Characteristics Sinking Current 10 10 I 0.1 0.1 ! > ~ ~ §! ~ ~ 0.001 0.001 0.01 0.1 10 OUTPUT SOURCE CURRENT (mA) 100 ~O Ik 10k Gain and Phaae Response vs Temperature (-55"C to + 125"C) Gain ~ ~ 40 !:i §! 20 90 ~ 0.01 0.1 10 OUTPUT SINK CURRENT (mA) 100 45 Ph... IE ~ -20 I ~ § ~ 0.01 0.001 0.001 100 3 ~ 0.01 r--... r- FREQUENCY (Hz) 60 10 ~ 20 ~ I=! \ o o I'---'L.....JIoL.....JL.....JIO""O-'--'lk--'-I-'O-k-'-1-'OOk lOOk 100 -45 Ik 10k lOOk 1M 10M FREQUENCY (Hz) TL/H/11297 -2 1-817 ~ ~ CD r------------------------------------------------------------------------------------------, Typical Performance Characteristics Vs = ± 7.5V. T"; = 25°C. Unless otherwise specified. (J ~ Gain and Phase Response vs Capacitive Load with RL = 600.0. Gain and Phase Response vs Capacitive Load with RL = 500 k.o. Open Loop Frequency Response 160 60 r-;r-T"1"TTITrr-T"T"rrT 40 "ii1 3 z 90 20 45 ~ 40 1" J. !1i 45 20 ~ lOOk 1M ~ ~ 40 !1i -20 -45 10k 10M lOOk 1M 80 L",=500kll l"-. .... 20 ~~'O " ~~ 60 ~ .... 2.~~t i\ •••• FREQUENCY (Hz) Non-Inverting Small Signal Pulse Response .... f- II II 1\ I\. !V ~!- TIUE(l po/Oly) nUE(l po/Oly) Non-Inverting Large Signal Pulse Response T1NE(1 po/DIY) Crosstalk Rejection vs Frequency Stability vs Capacitive Load, RL = 600.0. 160 "ii1 10000 140 3 z r,..~ V / , I' ~ ~ iil ~ ~ 120 ~ ~ " if 1"1 100 ~ - I ~'5it· -20 0.010.1 1 10100 lk 10k 100klU lOU lOU Inverting Large Signal Pulse Response Inverting Small Signal Pulse Response ~ 20 FREQUENCY (Hz) FREQUENCY (Hz) I'1\ 1" ...II ~ i, 100 i!: -4' 10k i!5 <1 "ii1 3 1M) 120 90 i!: -20 "ii1 3 80 <'! 1000 100 ui"'~' ~ ~:~~o ~~.,Llin- If r... 2." /Yo ...... i-" 10 60 40 10 100 lk 10k lOOk FREQUENCY (Hz) TIME(1 ps/Dly) 1 -6-5-4-3-2-10 1 23456 QUTPUT VOLTAGE(V) stability vs Capacitive LoadRL = 1 M.o. 180 180 $ 140 ~ 120 i <'! 1\,-1,"n. U.!..J"r' r~"~ ..,,=+ 100 80 60 5 OYtrthoot ~ 40 20 -6.5-4-3-2-10 1 23456 OUTPUT VOLTAGE (v) TLlH/11297-3 1-818 Applications Hints Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a. AMPLIFIER TOPOLOGY The LMC6082 incorporates a novel op-amp design topology that enables it to maintain rail to rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. SpeCial feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6082 both easier to design with, and provide higher speed than products typically found in this ultra-low power class. +v COMPENSATING FOR INPUT CAPACITANCE It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6082. Although the LMC6082 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. When high input impedances are demanded, guarding of the LMC6082 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-8oard Layout for High Impedance Work). 2011 G.OAD 1000 pF 90k .-------------~~ TL/H/11297-5 FIGURE 2a. LMC6082 Nonlnverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads In the circuit of Figure 2a, RI and CI serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. ---:?:--2?TRICIN 2?TR2Gj or Rl CIN:;;; R2Gj Since it is often difficult to know the exact value of CIN, Gj can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance. Capacitive load driving capability is enhanced by using a pull up resistor to V + (Figure 2b). Typically a pull up resistor conducting 500 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the cumant sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). V+ ,,,~l R2 Rl VIN O-...J.W_ _......_ ......... -- I 10k The effect of input capacitance can be compensated for by adding a capaCitor, Gj, around the feedback resistors (as in F/{Jure 1 ) such that: 1 1 • '1N::;: VOUT I TL/H/11297-14 I I FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor TLlliI11297-4 PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6082, typically less than 10 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface FIGURE 1. Cancelling the Effect of Input Capacitance CAPACITIVE LOAD TOLERANCE All rail-ta-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves). 1-819 .- i I ~.....-oVOUT I I ~ ~ ~ ,---------------------------------------------------------------------------------, Applications Hints Cl leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. Rl INPUT .I\IW~....a---"\jYY--' 1 1 1 1 To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6082's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6082's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current. See Figures 48, 4b, 40 for typical connections of guard rings for standard op-amp configurations. Guard Ring -+1 OUTPUT 1 1: TUH'11297-7 (a) Inverting Amplifier R2 OUTPUT TUHI11297-8 (b) Non-Inverting Amplifier OUTPUT INPUT -!--f-i TUH/11297-9 (e) Follower FIGURE 4. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-ta-point up-in-the-air wiring. See Figure5. t..Guard Ring Tl/H/11297-6 FIGURE 3. Example of Guard Ring In P.C. Board Layout 1-820 Typical Single-Supply Applications Latchup CMOS devices tend to be susceptible to latchup due to their internal parasitic SCA effects. The (1/0) input and output pins look similar to the gate of the SCA. There is a minimum current required to trigger the SCA gate lead. The LMC6062 and LMC6082 are designed to withstand 100 mA surge current on the 1/0 pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the 1/0 pins. In addition, like an SCA, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility. (V+ = 5.0 Voc) The extremely high input impedance, and low power consumption, of the LMC6082 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers. Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance (>10 140),0.01% gain accuracy at Av = 1000, excellent CMAA with 1 kO imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than 2.5 ",VfOC. A2 provides a simple means of adjusting gain over a wide range without degrading CMAA. A7 is an initial trim used to maximize CMAA without using super preCision matched resistors. For good CMAA over temperature, low drift resistors should be used. FEEDBACK CAPACITOR TLfH/11297-10 (Input pins are lilted out of PC board and soldered directly to components. All other pins connected to PC board). FIGURE 5. Air Wiring ( VIN R3 R4 10k lOOk 9.lk R2 2k ~........._VOUT pot l. I I R5,U.2k R6 10k 91k TL/H/II297-11 VOUT R2 + 2 Rl - = - R2 - - x R.! VIN Ra :.Av :::: 100 for circuit shown (R2 = 9.822k). FIGURE 6. Instrumentation Amplifier 1-821 Typical Single-Supply Applications (V+ = 5.0 VOC) ~~~ OUTPUT INPUT 5/H ~CD4066 TL/H/11297-12 FIGURE 7. Low-Leakage Sample and Hold R4 1011 VOUT Cl O.068} 1M unless otherwise specified. Symbol Vos Parameter Input Offset Voltage Average Drift Ie Input Bias Current Typ (Note 5) 150 Input Offset Voltage TCVos los Conditions Input Offset Current Common Mode Rejection Ratio OV s: VCM s: 12.0V V+ = 15V 85 Positive Power Supply Rejection Ratio 5V s: V+ s: 15V Vo = 2.5V 85 Negative Power Supply Rejection Ratio OV Input Common-Mode Voltage Range V+ = 5Vand 15V for CMRR ~ 60 dB Large Signal Voltage Gain 350 800 800 1300 s: V- s: -10V 94 -0.4 RL = 2kn (Note 7) Sourcing Sinking RL'= 600n (Note 7) Sourcing Sinking 1400 350 1200 150 1-824 Units /LV Max /LVloC 100 4 4 pA Max 100 2 2 pA Max >10 V+ - 1.9 Av 350 1000 0.005 CMRR VCM LMC60841 Limit (Note 6) 0.Q10 Input Resistance -PSRR LMC6084AI Limit (Note 6) 1.0 RIN +PSRR LMC6084AM Limit (Note 6) Teran 75 75 66 72 72 63 75 75 66 72 72 63 dB Min dB Min 84 84 74 81 81 71 -0.1 -0.1 -0.1 0 0 0 V Max V+ - 2.3 Y+ - 2.6 V+ - 2.3 Y+ - 2.5 V+ - 2.3 Y+ - 2.5 V Min V/mV Min 400 400 300 300 300 200 180 180 90 70 100 60 400 400 200 150 150 80 100 100 70 35 50 35 dB Min V/mV Min VlmV Min V/mV Min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Symbol Vo Parameter Conditions Output Swing V+ = 5V RL = 2 ko. to 2.5V Typ (Note 5) 4.87 0.10 V+ = 5V RL = 6000. to 2.5V 4.61 0.30 V+ = 15V RL = 2 ko. to 7.5V 14.63 0.26 V+ = 15V RL = 6000. to 7.5V 13.90 0.79 10 Output Current V+ = 5V Sourcing, Vo Sinking, Vo 10 Output Current V+ = 15V IS Supply Current = Sourcing, Vo Sinking, Vo (Note 11) = 5V = = OV OV 22 21 30 13V 34 All Four Amplifiers V+ = +5V, Vo = 1.5V 1.8 All Four Amplifiers V+ = +15V, Vo = 7.5V 2.2 LMC6084AM Limit (Note 6) LMC6084AI Limit (Note 6) LMC60841 Limit (Note 6) 4.80 4.80 4.75 4.70 4.73 4.67 0.13 0.13 0.20 0.19 0.17 0.24 4.50 4.50 4.40 4.24 4.31 4.21 0.40 0.40 0.50 0.63 0.50 0.63 14.50 14.50 14.37 14.30 14.34 14.25 0.35 0.35 0.44 0.48 0.45 0.56 13.35 13.35 12.92 12.80 12.86 12.44 1.16 1.16 1.33 1.42 1.32 1.58 16 16 13 8 10 8 16 16 13 11 13 10 28 28 23 18 22 18 28 28 23 19 22 18 3.0 3.0 3.0 3.6 3.6 3.6 3.4 3.4 3.4 4.0 4.0 4.0 = 5V, Units V Min V Max V Min V Max V Min V Max V Min V Max mA Min mA Min mA Min mA Min mA Max mA Max • 1-825 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. Symbol SR GBW >m Parameter Typ Conditions Slew Rate (Note 5) (NoteS) 1.5 Gain-Bandwidth Product Phase Margin Amp-to-Amp Isolation (Note 9) LMC6084AM LMC6084AI Umit Limit LMC60841 Limit (Note 6) (Note 6) (Note 6) O.S O.S O.S 0.5 0.8 0.8 Units V//Jos Min 1.3 MHz 50 Deg 140 dB en Input-Referred Voltage Noise F = 1 kHz 22 nV/YHz in Input-Referred Current Noise F=1kHz 0.0002 pAlYHz T.H.D. Total Harmonic Distortion F = 10kHz,Av = -10 0.01 % RL = 2 kG, Vo = S Vpp ±5VSupply Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate condttions for which ths device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Note 2: Applies to both s1ngle·supply and split-supply operation. Continuous short circuR oparation at elevated ambient temperature can result in exceeding ths maximum allowed Junction temperature of t 50'C. Output currents in excess of ±30 mA over long term may advereely affect reliabiltty. Note 3: Ths maximum power dissipation is a function of TJ(Max), 8JA, and TA' The maximum aliowable power dissipation at any ambient temperature is Po = (TJ(Max) - TAl/8JA. Note 4: Human body model, 1.5 kO in ssries with 100 pF. Note 5: Typical values represent the most likely parametric norm. Note 6: All limits are guaranteed by _ng or statistical analysis. Note 7: V+ = 15V, VCM = 7.5Vand RL connected to 7.5V. For Sourcing tests, 7.5V s: Vo s: 11.5V. For Sinking tests, 2.5V s: Vo s: 7.5V. Note 8: V+ = 15V. Connected as Vottage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates. Note 9: Input referred V+ = 15Vand RL = 100 kO connected to 7.5V. Each amp excited in turm with 1 kHz to produce Vo = 12 Vpp. Note 10: For operating at elevated temperatures the device must be derated besed on the thermal resistance 8JA with Po = (TJ - TAl/8JA. All numbers apply for packages soldered directiy into a PC bosrd. Note 11: Do not connect output to V+, when V+ is greatar thsn 13V or reliability will be adVereely affected. Note 12: All numbers apply for peckages soldered directly into a PC board. 1-826 Typical Performance Characteristics Vs = Distribution of LMC6084 Input Offset Voltage (TA = +25"C) ± 7.5V, TA = 25°C, Unless otherwise specified Distribution of LMC6084 Input Offset Voltage (TA = + 125°C) Distribution of LMC6084 Input Offset Voltage (TA = -55"C) g i ~w 20 18 1& 14 g ~ 12 10 ::0 ~ w ~ Y~ : I : I ~ I 0 ~ ~ S~ ~ ~ ~ ~ OFFSET VOLTAGE (mV) . 1pA ",,"" 100fA 10fA 1fA G ~ N _ : ~ S~ N ~d~:; I ..' /' I /' '< 3.00 15 2.50 i'l 2.00 .t li! /' iil T~ T~~ . I 1.50 TJ--S ".- 1.00 ~ -- 30 S 20 I 10 .3 - f--' ~ - 1\.l.J. r- 'II -~I _ 'l.1'5~.' r- .... r- 1\.=2k -10 -20 I I -30 o ./ o TEMPERATURE (OC) 2 4 8 -40 -10 -8 -6 -4 -2 0 2 4 10 12 14 16 TOTAL SUPPLY VOLTAGE(Voc ) Common Mode Rejection Ratio vs Frequency 120 ........ 80 :! ~ . V+ .....r -S~-r- ..... 60 '\ ~ 40 o f\ ..... 20 1 10 100 lk 10k Input Voltage Noise vs Frequency ~ ~ I ~ FREQIIENCY (Hz) Output Characteristics Sourcing Current Output Characteristics Sinking Current 80 ~ _\ &0 \.. 40 10 - 100 lk 10k FREQUENCY (Hz) Gain and Phase Response vs Temperature (- 55°C to + 125"C) 60 1\. =2. Gain ~ 10 10 I o>~ ~O ....... 20 o lOOk FREQUENCY (Hz) 100 "01 e ~ 40 90 ~ !:l 0.1 ~ 0.1 ~ ~ 0.01 0.01 0.1 10 OUTPUT SOURCE CURRENT (mA) 100 ~ O 0.001 0.001 '" 20 Ph,.. § ~ 0.01 ~ 0.001 0.001 8 10 120 'l.t 100 6 OUTPUT VOLTAGE (V) Power Supply Rejection Ratio vs Frequency 100 ,....,,,,,,,..-nmnm-TTl"lTlmrTTTt... S~ : ~ ~ Input Voltage vs Output Voltage 0.50 100lA '---'-_...l..-_'----'-_-'---I o 25 50 75 100 125 150 0 I 40 3.50 .!§. I OFFSET VOLTAGE (mV) 4.00 10pA i 0 8 Supply Current vs Supply Voltage 100pA ~ • 12 10 OFFSET VOLTAGE (mY) Input Bias Current vs Temperature ii'l ~ ~~;~ 20 18 16 14 -20 0.01 0.1 10 OUTPUT SINK CURRENT (mA) 100 lk 10k lOOk 45 " 1M -45 10M FREQUENCY (Hz) TLlH/11467 -2 1-827 Typical Performance Characteristics Vs = ±7.5V, TA = 25°C, Unless otherwise specified (Continued) Gain and Phase Response vs Capacitive Load with RL = 6000 80 r- 11m ..... 40 'oD' .:!!. z IltI 20 r- ~ IJ~~ll J!I~./ 0 "i~~r ~-50 -20 lOOk 80 ,II ... =80 'O~l~ "y~'0 45 V" 0 ~ ) 1 ~ ~ 20 - , 0 -45 111. - • Opl 10k 10M , 1 45 .\ I-.iI 'H 11." -20 90 ~';' ~ <~ I 40 ili 20 ~ ~ I' - ~ I" ~ ~ E I- V' ~" <", 1/\ ~ II 18 r'-'!- v TINE(I!'s/Dlv) Stability vs Capacitive Load, RL = 6000 10000 'oD' .:!!. 140 .. Iiil 120 " I~rlt°'· R" ='00 t -20 0.010.1 1 10 100 lk 10k lOOk 1M 10M Crosstalk Rejection vs Frequency i I- . ."2.~A- ~"';' !5l5 160 ~ , 0 TINE(I!'s/Dlv) Non-Inverting Large Signal Pulse Response ! 1'\ I "" TIME(I!'s/Dlv) - ~~80 Non-Inverting Small Signal Pulse Response I \ ~ § 60 Inverting Large Signal Pulse Response - ~i:i II 80 !i! !:i FREQUENCY (Hz) - !; E w ;I ~ e" L... =500'" -,..... . . -HA 100 ~ ~ ~ 10M IN ;I ! 120 'REQUENCY (Hz) 'REQUENCY (Hz) Inverting Small Signal Pulse Response lOOk 140 'oD' .:!!. z ~ ~ ~ ~~i~I./, 0 i: O. ~=10 Il1tIk ~ -4. IN I/c"i Ililf 'oD' .:!!. z Open Loop Frequency Response 160 • P 1I11~m - ~!l~~ 40 90 1"1~~ ~'IPP: 10k Gain and Phase Response vs Capacitive Load with RL = 500 kO U~ -;;: 1000 ~ .5 ~ r-.. 100 ~ 100 10140), 0.01 % gain accuracy at Av = 1000, excellent CMRR with 1 kO imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than 2.5 p,VI"C. R2 provides a simple means of adjusting gain over a wide range without degrading CMRA. R7 is an initial trim used to maximize CMRR without using super preCision matched resistors. For good CMRR over temperature, low drift resistors should be used. FEEDBACK CAPACITOR TUH/II467-11 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board). FIGURE 5. Air Wiring r l. / VOUT R4 10k lOOk Rl,44.2k 9.1k VIN R3 R2 VOUT 2k pot R5,44.2k R6 10k R7 91k TUH/11467-12 R2 + 2Rl R2 R4 R3 --~---x- VIN :. Av '" 100 for circu~ shown (R2 ~ 9.822k). FIGURE 6. Instrumentation Amplifier 1-831 ~ Typical Single-Supply Applications (V+ = 5.0 Voe) (Continued) :J I>........ OUT~UT INPUT S/H TLlH/11467-13 FIGURE 7. Low-Leakage Sample and Hold R4 10M Your R2 Rl 470k R3 470k 470k TLlH/11467-14 FIGURE 8. 1 Hz Square Wave Oscillator 1-832 t!lNational Semiconductor LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS Operational Amplifier General Description Features (Typical unless otherwise noted) The LMC6462/4 is a micropower version of the popular LMC6482/4, combining Rail-to-Raillnput and Output Range with very low power consumption. The LMC6462/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier, guaranteed for loads down to 25 kO, assures maximum dynamic sigal range. This rail-to-rail performance of the amplifier, combined with its high voltage gain makes it unique among rail-to-rail amplifiers. The LMC6462/4 is an excellent upgrade for circuits using limited common-mode range amplifiers. The LMC6462/4, with guaranteed specifications at 3V and 5V, is especially well-suited for low voltage applications. A quiescent power consumption of 60 ",W per amplifier (at Vs = 3V) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage of 0.25 mY, and 85 dB CMRR maintain accuracy in batterypowered systems. • • • • 20 ",AIAmplifier Ultra Low Supply Current Guaranteed Characteristics at 3V and 5V Rail-to-Rail Input Common-Mode Voltage Range Rail-to-Rail Output Swing (within 10 mV of rail, Vs = 5V and RL = 25 kn) 150 fA • Low Input Current 0.25 mV • Low Input Offset Voltage Applications • • • • • Battery Operated Circuits Transducer Interface Circuits Portable Communication Devices Medical Applications Battery Monitoring Connection Diagrams B-Pln DIP/SO OUT A 1 2 IN A-IN A+"":' y-...! '-../ t 14·Pln DIP/SO .!..v> OUT A-1.. 7 IN A-.2. 3 IN A+ 4 y+5 IN B+ -OUT B 6 -IN B5 IN B+ IN B-...! TUH/12051-1 OUT B..2. Top View OUT 0 ~~fu r!!~IN D- ~ 0_ 12 IN 0+ l.!.. y_ 10 IN C+ :Y~ ~OUT 1... IN CC TL/H/12051-2 Top View Ordering Information Temperature Range Package 8-Pin Molded DIP 14-Pin Molded DIP 14-Pin 50-14 Transport Media LMC6462AIN, LMC6462BIN N08E Rails LMC6462AIM, LMC6462BIM LMC6462AIMX, LMC6462BIMX M08A M08A Rails Tape and Reel LMC6464AIN, LMC6464BIN N14A Rails LMC6464AIM, LMC6464BIM LMC6464AIMX, LMC6464BIMX M14A M14A Rails Tape and Reel Industrial -40"Cto +85"C LMC6462AMN 8-Pin 50-8 LMC6464AMN NSC Drawing Military -55"Cto + 125"C 1·833 Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ESD Tolerance (Note 2) 2.0kV Differential Input Voltage ± Supply Voltage (V+) + 0.3V, (V-) - 0.3V Voltage at Input/Output Pin Supply Voltage Junction Temperature Range LMC6462AM, LMC6464AM LMC6462AI, LMC6464AI LMC6462BI,. LMC6464BI Supply Voltage (V+ - V-) Current at Output Pin (Notes 3, 8) Current at Power Supply Pin Lead Temp. (Soldering, 10 sec.) Storage Temperature Range Junction Temperature (Note 4) s: V+ ,;; 15.5V -55°C s: TJ s: +125°C -40"C s: TJ s: +85°C -40°C s: TJ s: +85°C Thermal Resistance «(lJN N Package, 8·Pin Molded DIP M Package, 8·Pin Surface Mount N Package, 14·Pin Molded DIP M Package, 14·Pin Surface Mount 16V ±5mA ±30mA Current at Input Pin (Note 12) 3.0V '" 115°C/W 193°C/W 81°C/W 126°C/W 40mA 260"C " - 65°C to + 15O"C 150"C 5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M. Boldface limits apply at the temperature extremes. Symbol Vos Parameter Conditions Typ (Note 5) Input Offset Voltage 0.25 LMC6462A1 LMC6464AI Limit (Note 6) LMC6462BI LMC6464BI Limit (Note 6) LMC6462AM LMC6464AM Limit (Note 6) 0.5 3.0 0.5 1.2 3.7 1.5 Units mV max TCVos Input Offset Voltage Average Drift 18 Input Current (Note 13) 0.15 10 10 200 pAmax (Note 13) 0.075 5 5 100 pAmax ",vrc 1.5 los Input Offset Current CIN Common-Mode Input Capacitance 3 pF RIN Input Resistance >10 Teran CMRR Common Mode Rejection Ratio OV s: VCM s: 15.0V, V+ = 15V OV s: VCM V+ = 5V +PSRR -PSRR VCM s: 85 5.0V 85 Positive Power Supply Rejection Ratio 5V s: V+ s: 15V, V"7 = OV, Vo = 2.5V 85 Negative Power Supply Rejection Ratio -5V s: V- s: -15V, V+ = OV, Vo = -2.5V 85 Input Common-Mode Voltage Range V+ = 5V For CMRR ~ 50 dB -0.2 5.30 .. V+ = 15V For CMRR ~ 50 dB -0.2 15.30 1-834 70 65 70 67 62 65 70 65 70 67 62 65 70 65 70 67 62 65 70 65 70 67 62 65 -0.10 -0.10 -0.10 0.00 0.00 0.00 5.25 5.25 5.25 5.00 5.00 5.00 -0.15 -0.15 -0.15 0.00 0.00 0·00 15.25 15.25 15.25 15.00 15.00 15.00 dB min dB min dB min V max V min V max V min 5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ Boldface limits apply at the temperature extremes. (Continued) Symbol Av Parameter Large Signal Voltage Gain Typ (Note 5) Conditions RL = 100kO (Note 7) Sourcing Sinking RL = 25kO (Note 7) Sourcing Sinking Vo Output Swing = V+ = 5V RL = 100kOtoV+/2 Output Short Circuit Current V+ Isc 5V Output Short Circuit Current V+ Is = = 15V Supply Current = Sourcing, Vo Sinking, Vo = Sourcing, Vo Sinking, Vo (Note 8) = = V/mV min 14.965 27 27 38 12V Dual, LMC6462 V+ = +5V, Vo = 75 40 V+/2 Quad, LMC6464 V+ = +5V, Vo = V+/2 80 Dual, LMC6462 V+ = +15V, Vo = V+/2 50 Quad, LMC6464 V+ = +15V, Vo = V+/2 ·90 1-835 Units 200 14.990 OV LMC6462AM LMC6464AM limit (Note 6) 1M. V/mV min 4.990 5V LMC6462BI LMC6464BI Limit (Note 6) > 2500 4.995 OV V+/2 and RL Vo V/mV min 0.025 Isc LMC6462AI LMC6464AI Limit (Note 6) = 400 0.010 V+ = 15V RL = 25kOtoV+/2 = OV, VCM V/mV min 0.010 V+ = 15V RL = 100 kO toV+/2 = 3000 0.005 V+ = 5V RL = 25kOtoV+/2 5V, V- 4.990 4.950 4.990 ·4.980 4.925 4.970 0.010 0.050 0.010 0.020 0.075 0.030 4.975 4.950 4.975 4.985 4.850 4.955 0.020 0.050 0.020 0.035 0.150 0.045 14.975 14.950 14.975 14.985 14.925 14.955 0.025 0.050 0.025 0.035 0.075 0.050 14.900 14.850 14.900 14.850 14.800 14.800 0.050 0.100 0.050 0.150 0.200 0.200 19 19 19 15 15 15 22 22 22 17 17 17 24 24 24 17 17 17 55 55 55 45 45 45 55 55 55 70 70 75 110 110 110 140 140 150 V min V max V min V max V min V max V min V max mA min mA min mA min mA min /LA max /LA max 60 60 60 !LA 70 70 75 max 120 120 120 !LA 140 140 150 max 5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M. Boldface limits apply at the temperature extremes. Symbol SR Parameter Typ (Note 5) Conditions Slew Rate (Note 9) GBW Gain-Bandwidth Product cf>m Gm Phase Margin V+ = LMC6462AI LMC6464AI Limit (Note 6) LMC6462BI LMC6464BI Limit (Note 6) LMC6462AM LMC6464AM 'Limit (Note 6) 15 15 15 8 8 8 28 15V Gain Margin Units Vlms min 50 kHz 50 Deg 15 dB Amp-to-Amp Isolation (Note 10) 130 dB en Input-Referred Voltage Noise f = 1 kHz VCM = 1V 80 nVl.JFiZ in Input-Referred Current Noise f 0.03 pA/.JFiZ = 1 kHz 3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ Boldface limits apply at the temperature extremes. Symbol Vas TeVas Parameter = 25°C, V+ = Typ (Note 5) Conditions Input Offset Voltage 0.9 Input Offset Voltage Average Drift 3V, V- = OV, VCM LMC6462AI LMC6464AI Limit (Note 6) = Vo = LMC6462BI LMC6464BI Limit (Note 6) V+ /2 and RL LMC6462AM LMC6464AM Limit (Note 6) 2.0 3.0 2.0 2.7 3.7 3.0 > 1M. Units mV max p.VloC 2.0 Ie Input Current (Note 13) 0.15 10 10 200 pA las Input Offset Current (Note 13) 0.075 S S 100 pA CMRR Common Mode Rejection RatiO OV:S; VCM:S; 3V 74 60 60 60 dB min PSRR Power Supply Rejection Ratio 3V:s; V+ :s; 15V, V- 80 60 60 60 dB min VCM Input Common-Mode Voltage Range For CMRR ~ 50 dB -0.10 0.0 0.0 0.0 V max 3.0 3.0 3.0 3.0 V min 2.95 2.9 2.9 2.9 V min 0.15 0.1 0.1 0.1 V max p.A Vo Is Output Swing Supply Current RL = 25 kOtoV+/2 = OV Dual, LMC6462 Vo = V+/2 40 Quad, LMC6464 Vo = V+/2 80 1-836 55 55 55 70 70 70 110 110 110 140 140 140 p.A max 3V AC Electrical Characteristics Unless otherwise specified, V+ = 3V, V- = OV, VCM = Vo = V+ 12 and RL ture extremes. Symbol Parameter SR Slew Rate GBW Gain-Bandwidth Product Conditions (Note 11) Typ (Note 5) > 1M. Boldfaeellmlts apply at the tempera- LMC6462A1 LMC6464AI Umit (Note 6) LMC6462BI LMC6464BI Limit (Note 6) LMC6462AM LMC6464AM Limit (Note 6) Units 23 V/ms 50 kHz Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Nota 2: Human body model, t.5 kG in ssries with tOO pF. All pins rated per method 3015.6 of MIL-STD-863. This Is a class 2 device rating. Nota 3: Applies to both single supply and split-supply operaficn. Continuous short cireuH operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150"C. Output currents in excess of ± 30 mA over long term may adversely affect reliability. Note 4: The maximum power dissipation is a function of TJ(max). 8JA. and TA. The maximum allowable powar dlsslpetion at any ambient temperature is Po = (TJ(max) - TAl/8JA. All numbers apply for peckages soldered dlrectiy into a PC board. Note 5: Typical Values represent the most likely parametric norm. Nota 8: All limits are guaranteed by testing or statistical analysis. Note 7: V+ = 15V. VCM = 7.5Vand Rl connected to 7.5V. For Sourelng tests. 7.5V ,; Vo ,; 1t.5V. For Sinking tests. 3.5V ,; Vo ,; 7.5V. Note 8: Do not short circuit output to V+. when V+ is greater than 13V or reliability will be adversely affected. Note 9: V+ = 15V. Connected as Voltage Follower with 10V step input. Number specified Is the slower of eHher the posHive or negative slew rates. Note 10: Input referred. V+ = 15V and Rl = 100 kG connected to 7.5V. Each amp excited in tum wHh 1 kHz to produce Vo = 12 Vpp. Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of eHher the positive or negetive slew rates. Not. 12: Umlting input pin current is only necessary for input voltages that exceed absolute meximum Input voltage ratings. Note 13: Guaranteed limits are dictated by testar limitations and not device performance. Actual performance is reflected in the typical value. Nota 14: For guaranteed Military Temperature Range paramatars see RETSMC6462/4X. 1-837 Typical Performance Characteristics Vs = +5V, Single Supply, TA =. 25°C unless otherwise specified Supply Current vs Supp,y Voltage SourCing Current vs Output Voltage Sourcing Current vs Output Voltage 50~~~-'~-r-r-r'-' 100 100 ,I '5~r-r-+-+-+-~4-4--r~ Vs = 3V 10 i-' ~ .5 ~ .5 t! -~ 1.1 0.01 OWLL-L-L-~~~~~-J o 2 .. 6 SUPPLY VOLTAGE (V) 0.01 Q,l 0.001 0.001 10 OUTPUT VOLTAGE REFERENCED TO Vs (V) Sourcing Current vs Output Voltage 10 0.1 Sinking Current vs Output Voltage 100 100 rTTTT1TI1T""T111TTnrrrrTT11"~="" Vs = 3V Vs = 15V 0.01 OUTPUT VOLTAGE REFERENCED TO Vs (V) Sinking Current vs Output Voltage 100 rTTTT1TI1T""T111TTnrrrr=--,.""" I.! O.l!r 0.01 0.001' 0.001 8 10 12 14 16 18 20" / ~ II 0,1 Jl = 5V Vs 10 Vs = 5V ~ 10 ) ~ I ~ 0.1 H+tIltIII---t1-tlltIll-t-HftIIII-++ttI1III 0,1 f-+-l7ltIllfI.l--t1fttt11H+ttHIII-+tittttll H-HfIlllf-++IltIIIf-ttHllllf-+tI'1t1111 0.01 F-1I++tHtlll-+ttflllll-+HHtlIff-HtIHII 0,01 0,001 Ll..LlllWL...l..J.J.lllIJLLJ.JlllW.....l..llU1IW 0,01 0,1 10 100 0.111 0.01 0.001 0,001 OUTPUT VOLTAGE REFERENCED TO eND (V) Sinking Current vs Output Voltage V "=1 \~I~II 10~+tIltIII-~1mIll-t-H~.....,.Tffi~ 1I 240 r--,--,--,--r--r-.., 220 ~-t--r-+--t Vs =1 lSV I~ 200 180 ~-t--r-+--~-t-~ ">- 160 ~-t--r-+--~-t-~ ..s 140 ~-t--r-+--~-t-~ .s; 0.0 1 ~+tIltIII---t1-tlltIll-t-HftIIII-++ttI1III ~ 100 ~-tr-....::::!....o;;;::I--~-t-~ ~ :~~-t--r-~-t~--r,,~~~ g 40~-t--r-+--~-t-~ ..... 140 ~r-+-+-+-~~4--r-r~ 120 ~r-+-+-+-~4-4--r-r~ ! :5 ~ ~+-+-+-+-~4-4--r-r~ ~§! W~r-+-+-+-~~4--r-r~ ~ 80~~~f-+-+-~4-4--r-i ~ :~r-+-+-+-+-~4-4--r-i lk o 10k COMMON MODE INPUT VOLTAGE (V) AVosvsCMR 200 180 '" ~ : 120 1-1-+-+-+-+-+-+-++-1 ~ 100 ~r-+-+-::04-.... 10 ~ ~ ~ 120 = ±2.5V = 25 kn 100 -10 E= =0:: 80 ~ 0 !:; I\. I\. 70 = 100kn ~ t..o- Vs = 15V Vs = 5V 20 ~~ 0 1 2 20 PH~ I ~ ~25 10 I I 50 -30 10 100 lk 'iD 3D z 20 3 ij ~ 0 -10 ~~: 1 I r:::; G~ 10 Supply VOltage 30 Vs = 5V •. 135 = lOOk I \. = 4001(r +++ I~ lk I 1M =1 0 ~F 90 4Jo lpF 0 ~ I Inl' I 27 E "- ~ 45 I lOOk FALLING EDGE 29 28 C\. 1= ri p~ ~ I~ ,;- 10k ~ i -=. rl 26 / 25 S . E :> ~ > .. E 0 0 22 -67.5 20 21 I II SOOm~ 500m'¥ 115 JJs Non-Inverting Small Signal Pulse Response I TA = +25°C II ~ ~ :> ~ :;i 0 0 > E = 100kll I II r- TA = -55°C I\. ~ ~ 1\ ~ 11S}n > E = 100kO ~ e SOOm; 500mv !J ~ "0 N lISps II fA =+125 0 C I\. = 100kO I I 1151"9 20my 20mV' TINE (115"s/0IV) TIME (115 "./DIV) TIME (115 "./DIV) Non-Inverting Small Signal Pulse Response Non-Inverting Small Signal Pulse Response Inverting Large Signal Pulse Response I rr- II II E tr- 0 N 20my 20my 115 ". TIME (115 "./DlV) -67.5 1M 3 4 5 6 7 8 9 10 1112 13 14 15 Non-Inverting Large Signal Pulse Response TA = +25 OC 1\.=100kO -22.5 I I Non-Inverting Large Signal Pulse Response I\. 0 - r r- TIME (115I's/DIV) SGOmy SDOmv ~ TA = +125 0 C I\. = 100kn SUPPLY VOLTAGE (V) 1\ "> r- FREQUENCY (Hz) r- . ~ ~ l 'I :1 RISING EDGE 23 -22.5 1M :> Q 0 0 lOOk .y ..I- ~ 24 ~ ;;l ~ . ~ J 10k ~ 45 Non-Inverting Large Signal Pulse Response Slew Rate vs I\. PHASE 40 ~515 I I L -20 90 FREQUENCY (Hz) Gain and Phase vs Capacitive Load 60 ~ -55 0 10 100 lk 10k lOOk l~l~t 125 OUTPUT VOLTAGE 70 Vs = 5V I 135 = lOOk I\. I\,' No.GAIN -10 -40 0.0010.01 0.1 1 3 z ~ 0 -1 30 ij -20 -2 40 'iD 3 40 -30 60 50 I~ 60 -20 -3 Open Loop Frequency Response vs Temperature Open Loop Frequency Response .. ~ ~ :;i ~ ~ 0 ~ E ....0 II II TA = -55°C I\. = 100kn 20mv 20my ~ ~ > .. E 0 0 1151'S TIME (1151'./DIV) II II 0 f - - 1A = +125 C I\. = 100kn II J 500my SDOmy I \ 115 JJI TIME (115I's/DIV) TUH/12051-4 1-839 Typical Performance Characteristics (Continued) Vs = +SV, Single Supply, TA = 2SoC unless otherwise specified Inverting Large Signal Pulse Response Inverting Large Signal Pulse Response ~ I ~'" e'" I -i- TA = +2S ~ OC '\ = 100ka II \ \ W 500m'V 500my ~ 1;1 ~ I ~ ..... > E I· -r- ! i 115/.-'1 Inverting Small SIgnal Pulse Response TA = -55°C '\ = 100ka II I TI~E (115"./DIY) ~ TA ;;I '" '\1 = E N i ~ 115 p.s 500mv 500m'V sis ~ I II II ~ ~ TA = +25 0 C 1\. 100ka = ~ I I 20m; 20m'; 20m, 20my 115 JU TINE (115 "./DIY) 115 Jl.9 TINE (115 "./DIY) r ~ E '"N I TA = -55°C '\ = 100ka I ~ ~ g I Inverting Small Signal Pulse Response .~ I I ioya I TI~E (115 "./D1Y) Inverting Small Signal Pulse Response = +125 0 C I 20mv 20m'V 115 JJS TINE (115"./DIY) TUH/I2051-29 1-840 ,-----------------------------------------------------------------------------, r Application Information a: 2.0 Rail-to-Rail Output The approximated output resistance of the LMC6462/4 is 1800 sourcing, and 1300 sinking at Vs = 3V, and 1100 sourcing and 830 sinking at Vs = 5V. The maximum output swing can be estimated as a function of load using the calculated output resistance. 1.0 Input Common-Mode Voltage Range The LMC6462/4 has a rail-to-rail input common-mode voltage range. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output. 3.0 Capacitive Load Tolerance The LMC6462/4 can typically drive a 200 pF load with Vs = 5V at unity gain without OScillating. The unity gain follower is the most sensitive configuration to capacitive load. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. Capacitive load compensation can be accomplished using resistive isolation as shown in Fl{JUre 4. If there is a resistive component of the load in parallel to the capacitive component, the isolation resistor and the resistive load create a voltage divider at the output. This introduces a DC error at the output. 3V OV TL/H/12051-5 FIGURE 1. An Input Voltage Signal Exceeds the LMC6462/4 Power Supply Voltage with No Output Phase Inversion The absolute maximum input voltage at V + = 3V is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins, possibly affecting reliability. The input current can be externally limited to ± 5 mA, with an input resistor, as shown in Figure 3. TLlH/12051-6 FIGURE 4. Resistive Isolation of a 300 pF capacitive Load TL/H/12051-9 TLlH/12051-6 FIGURE 5. Pulse Response of the LMC6462 Circuit Shown In FIgure 4 FIGURE 2. A ± 7.5V Input Signal Greatly Exceeds the 3V Supply In FIgure 3 Causing No Phase Inversion Due to RI Fl{}ure 5 displays the pulse response of the LMC6462/4 Circuit in Figure 4. Another circuit, shown in Figure 6, is also used to indirectly drive capacitive loads. This circuit is an improvement to the circuit shown in Figure 4 because it provides DC accuracy as well as AC stability. Rl and Cl serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 should be experimentally determined by the system designer for the desired pulse response. Increased capacitive drive is possible by increasing the value of the capacitor in the feedback loop. >-+-00 Your TLlHI12051-7 FIGURE 3. Input Current Protection for Voltages El(ceedlng the Supply Voltage 1-841 E ~ 5: i ~ ~ ::5 ~ B ~ ....I ,---------------------------------------------------------------------------------, Application Information (Continued) or 10kn R1 C,N ~ R2CF which typically provides significant overcompensation. Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for CF may be different. The values of CF should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.) = 100 pr Rt = 300n c;, =330 pr '\ = 100kD. I 5.0 Offset Voltage Adjustment Offset voltage adjustment circuits are illustrated in F/{/ures 9 and 10. Large value resistances and potentiometers are used to reduce power consumption while providing typically ± 2.5 mV of adjustment range, referred to the input, for both configurations with Vs = ±5V. TUH/12051-10 FIGURE 6. LMC6462 Non·lnvertlng Amplifier, Compensated to Handle a 300 pF Capacitive and 100 kG Realstlve Load R4 V+ 500 kD. >~--VOUT nD. ~<4I------I 500 kD. V- TLlH/12051-13 FIGURE 9. Inverting Configuration Offset Yoltage Adjustment TUH/12051-11 FIGURE 7. Pulse Response of LMC6462 Circuit In Figure 6 R4 V+ ....;~ The pulse response of the circuit shown in Figure 6 is shown in Figure 7. 4.0 Compensating for Input Capacitance V- It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6462/4. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins. Rl 200 kD. R3 R2 VOUT 100D. VIN VOUT v;= 1+ R4 R3 ; R2«R3 TLlH/12051-14 FIGURE 10. Non-Inverting Configuration Offset YoltageAdJustment 6.0 Spice Macromodel A Spice macromodel is available for the LMC6462/4. This model includes a simulation of: . • Input common-mode voltage range • Frequency and transient response • GBW dependence on loading conditions • Quiescent and dynamic supply current > .....--QVOUT • Output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk. Contact the National Semiconductor Customer Response Center to obtain an operational amplifier Spice model library disk. TL/H/12051-12 FIGURE 8. Canceling the Effect of Input Capacitance The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in F/{/ure 8), CF, is first estimated by: 1 1 ------:;;,--2'11'R1 C,N 2'11'R2 CF 1-842 Application Information (Continued) Cl 7.0 Printed-Circuit-Board Layout for High-Impedance Work Rl INPUT JVVIr!,!-+"'~-J,l.""'--" It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6462/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6462's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 11. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two pOints at the same potential. For example, a PC board trace-to-pad resistance of 1012n, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 30 times degradation from the LMC6462/4's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 n would cause only 0.05 pA of leakage current. See Figures 128, 12b and 12c for typical connections of guard rings for standard op-amp configurations. I I I Guard Ring -+: OUTPUT I t: TL/H/I2051-16 (a) Inverting Amplifier R2 OUTPUT TUH/I2051-17 (b) Non-Inverting Amplifier i' OUTPUT TL/H/I2051-16 (c) Follower FIGURE 12. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier'S input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-ta-point up-in-the-air wiring. See Figure 13. FEEDBACK CAPACITOR ~ I i i I l.Guard Ring I TL/H/I2051-15 FIGURE 11. Example of Guard Ring In P.C. Board Layout TUH/I2051-19 (Input pins are lilted out of PC board and soldered direc1ly to components. All other pins connected to PC board.) FIGURE 13. Air Wiring 1-843 Application Information (Continued) benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers. 8.0 Instrumentation Circuits The LMC6464 has the high input impedance, large common-mode range and high CMRR needed for designing instrument~tion circuits. Instrumentation circuits designed with the LMC6464 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6464 an excellent choice for noisy or industrial environments. Other applications that A small valued potentiometer is used in series with Rg to set the differential gain of the three op-amp instrumentation circuit in Figure 1~ This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration. 10kll C4 3-20 pF AC CMR ADJUST SOkll,O.I% 0.1% SOkll Your 48.HIl DC CMR ADJUST + -"".,,,.,..--1 R2 SOOIl L - - - O VREFERENCE TUH/12051-20 FIGURE 14. Low Power Three Op-Amp Instrumentation Amplifier A two op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 15. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two opamp 'circuit. Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumemation amplifier. 1011 Gain 19111 9.9Sk Trim 10k, 0.1% SOil CMRR > ....._ Trim Your = 100VD TUH/12051-21 FIGURE 15. Low-Power Two-Op-Amp Instrumentation Amplifier 1-844 ~----------------------------------------------------------~~ Application Information (Continued) Typical Single-Supply Applications i V+ TRANSDUCER INTERFACE CIRCUITS rr=~i ______ ~ i: ~10~M~.!l~__- , 10k.!l >-t~--VOUT :>....-oVOUT TL/H/12051-25 Tl/H/12051-22 FIGURE 16. Photo Detector Circuit FIGURE 19. Full-Wave Rectifier with Input Current Protection (RI) Photocells can be used in portable light measuring instru· ments. The LMC6462, which can be operated off a battery, is an excellent choice for this circuit because of its very low input current and offset voltage. In Figures 18 and 19, RI limits current into the amplifier since excess current can be caused by the input voltage exceeding the supply voltage. PRECISION CURRENT SOURCE LMC6462 AS A COMPARATOR V+ VIN 0--------1 R TUH/12051-23 FIGURE 17. Comparator with Hysteresis lOUT Figure 17 shows the application of the LMC6462 as a com· parator. The hysteresis is determined by the ratio of the two resistors. The LMC6462 can thus be used as a micropower comparator, in applications where the quiescent current is an important parameter. TLlH112051-26 FIGURE 20. Precision Current Source The output current lOUT is given by: V+ - VIN) lOUT = ( R HALF-WAVE AND FULL-WAVE RECTIFIERS V+ OSCILLATORS >--.-.- C, VOUT VOUT R, R2 5V TL/H/12051-24 475k.!l FIGURE 18. Half-Wave Rectifier with Input Current Protection (RI) R3 475k.!l 475 k.!l TUH/12051-27 FIGURE 21. 1 Hz Square-Wave Oscillator 1·845 i ~ '; r-------------------------------------------------------------------------------------, CD . ~ ~ Application Information (Continued) For single supply 5V operation. the output of the circuit will swing from OV to 5V. The voltage divider set up R2. R3 and R4 will cause the non-inverting input of the LMC6462 to move from 1.67V (113 of 5V) to 3.33V (% of 5V). This voltage behaves as the threshold VOltage, LOW FREQUENCY NULL R1 and C1 determine the time constant of the circuit. The frequency of OSCillation. fose is (2:t)' where ~t is the time the amplifier input takes to move from 1.67V to 3,33V, The calculations are shown below. 1,67 = 5 (1 - e where 'T -~) = RC = 0.68 seconds - t1 = 0,27 seconds. and 3.33=5(1_e-~) - t2 = 0.75 seconds Then. fose = C:t) 1 2 (0.75 - 0.27) 25kn = 1 Hz 25kn TLlH/12051-28 FIGURE 22. High Gain Amplifier with Low Frequency Null Output offset voltage is the error introduced in the output voltage due to the inherent input offset voltage Vos. of an amplifier. Output Offset Voltage = (Input Offset Voltage) (Gain) In the above configuration. the resistors Rs and Rs determine the nominal voltage around which the input Signal, VIN should be symmetrical. The high frequency component of the input signal VIN will be unaffected while the low frequency component will be nulled since the DC level of the output will be the input offset voltage of the LMC6462 plus the bias voltage. This implies that the output offset voltage due to the top amplifier will be eliminated, 1-846 t!lNational Semiconductor LMC6482 CMOS Dual Rail-To-Rail Input and Output Operational Amplifier Features (Typical ul]less otherwise noted) • Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature) • Rail-to-Rail Output Swing (within 20 mV of supply rail, 100 kO load) • Guaranteed 3V, 5V and 15V Performance 82 dB • Excellent CMRR and PSRR 20 fA • Ultra Low Input Current 130 dB • High Voltage Gain (RL = 500 kO) • Specified for 2 kO and 6000 loads General Description The LMC6482 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers. It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6482 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC272 and TLC277. Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6482's rail-to-rail output swing. The LMC6482's rail-ta-rail output swing is guaranteed for loads down to 600!1.. Applications • • • • • Data Acquisition Systems Transducer Amplifiers Hand-held AnalytiC Instruments Medical Instrumentation Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source . • Improved Replacement for TLC272, TLC277 Guaranteed low voltage characteristics and low power dissipation make the LMC6482 especially well-suited for batteryoperated systems. See the LMC6484 data sheet for a Quad CMOS operational amplifier with these same features. 3V Single Supply Buffer Circuit Rall-To-Raillnput Rail-To-Rall Output +3V 3V 1\\ ov I / '>-.--0 YOUT ""-~ ov TLlH/11713-1 Connection Diagram INVERTING INPUT A v- OUTPUT B 6 INVERTING INPUT B 5 NON-INVERTING INPUT B TLlH/11713-4 TLlH/11713-3 Tl/H/11713-2 Ordering Information V' OUTPUT A NON-INVERTING 3 INPUT A 3V O.1I'F Temperature Range Package 8-Pin Molded DIP Military -S5"Cto + 125"C LMC6482MN 8-pin Small Outline 8-pin Ceramic DIP LMC8482AMJ/883 1-847 NSC Drawing Transport Media LMC6482AIN LMC84821N N08E Rail LMC6482AIM LMC84821M M08A Rail Tape and Reel J08A Rail Industrial -40"C to +8S'C Operating Ratings Absolute Maximum Ratings (Note 1) 3.0V ~ V+ ~ 15.5V Supply Voltage Junction Temperature Range LMC6482AM -55'C ~ TJ ~ + 125'C LMC6482AI, LMC64821 -40'C ~ TJ ~ +85'C Thermal Resistance (9JAl N Package, 8-Pin Moldeq DIP 90'C/W 155'C/W M Package; 8-Pin Surface Mount (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales OHlce/Distrlbutors for availability and specifications. ESD Tolerance (Note 2) Differential Input Voltage Voltage at Input/Output Pin Supply Voltage (V+ - V-) 1.5kV ± Supply Voltage (V+) +0.3V, (V-) -0.3V 16V ±5mA Current at Input Pin (Note 12) Current at Output Pin (Notes 3, 8) ±30mA Current at Power Supply Pin Lead Temperature (Soldering, 10 sec.) Storage Temperature Range Junction Temperature (Note 4) 40mA 260'C -65'C to + 15O'C 150'C DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25'C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M. Boldface limits apply at the temperature extremes. Symbol Vos Parameter Typ (NoteS) Conditions Input Offset Voltage 0.11 TCVos Input Offset Voltage Average Drift 18 Input Current (Note 13) los Input Offset Current (Note 13) CIN Common-Mode Input Capacitance RIN Input Resistance CMRR Common Mode Rejection Ratio +PSRR Positive Power Supply Rejection Ratio Input Common-Mode Voltage Range LMC64821 LMC6482M Umlt Umlt (Note 6) (Note 6) 0.750 3.0 3.0 1.35 3.7 3.8 4.0 4.0 10.0 pA max 0.01 2.0 2.0 5.0 pA max pF >10 OV ~ VCM ~ 15.0V V+ = 15V 82 OV ~ VCM V+ = 5V 82 5.0V 5V ~ V+ ~ 15V, V- = OV Vo = 2.5V 82 82 V- - 0.3 V+ = 5Vand 15V For CMRR ;;, 50 dB TeraO 70 65 65 87 82 80 70 65 65 87 82. 80 70 65 65 87 82 eo 70 65 65 87 82 80 - 0.25 - 0.25 - 0.25 0 0 0 V+ + 0.3V V+ + 0.25 V+ + 0.25 V+ + 0.25 y+ y+ y+ Av Large Signal Voltage Gain RL = 2kO (Notes 7, 13) Sourcing Sinking RL = 6000 (Notes 7,13) 666 75 Sourcing Sinking 300 35 1-848 mV max 0.02 3 ~ Units p,V/'C 1.0 -PSRR Negative Power Supply -5V ~ V- ~ -15V, V+ = OV Rejection Ratio Vo = -2.5V VCM LMC6482AI Limit (Note 6) dB min dB min dB min V max V min V/mV 140 120 120 84 72 80 min 35 35 35 V/mV 20 20 18 min V/mV 80 50 50 48 30 2& min 20 15 15 V/mV 13 10 8 min DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL Boldface limits apply at the temperature extremes. Symbol Vo Parameter Output Swing Typ (Note 5) Conditions V+ = 5V RL = 2kOtoV+/2 4.9 0.1 V+ = 5V RL = 6000 to V+ /2 4.7 0.3 V+ = 15V RL = 2kOtoV+/2 14.7 0.16 V+ = 15V RL = 6000 to V+ /2 14.1 0.5 ISC Isc Is Output Short Circuit Current Sourcing, Vo = OV V+ = 5V Sinking, Vo = 5V 20 15 Output Short Circuit Current Sourcing, Vo = OV V+ = 15V Sinking, Vo = 12V (Note 8) 30 Both Amplifiers V+ = +5V, Vo = V+/2 1.0 Both Amplifiers V+ = 15V, Vo = V+/2 1.3 Supply Current 30 LMC6482AI Limit (Note 6) LMC64821 Limit (Note 6) > LMC6482M Limit (Note 6) 4.8 4.8 4.8 4.7 4.7 4.7 0.18 0.18 0.18 0.24 0.24 0.24 4.5 4.5 4.5 4.24 4.24 4.24 0.5 0.5 0.5 0.85 0.85 0.85 14.4 14.4 14.4 14.2 14.2 14.2 0.32 0.32 0.32 0.45 0.45 0.45 13.4 13.4 13.4 13.0 13.0 13.0 1.0 1.0 1.0 1.3 1.3 1.3 16 16 16 12 12 10 11 11 11 9.5 9.5 8.0 28 28 28 22 22 20 30 30 30 24 24 22 1.4 1.4 1.4 1.8 1.8 1.9 1.6 1.6 1.6 1.9 1.9 2.0 1M. Units V min V max V min V max V min V max V min V max mA min mA min mA min mA min mA max mA max ~ ii 1-849 , AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 2SoC, V+ = SV, V- = OV, VCM Boldface limits apply at the temperature extremes. Symbol SR Parameter Slew Rate Typ Conditions (Note 5) (Note 9) 1.3 " V+ = 15V LMC6482AI Umlt (Note 6) =; Vo = V+ /2, and RL LMC64821 Limit (Note 6) LMC6482M Umit (NoteS) 1.0 0.9 0.9 0.7 0.83 0.54 > 1M. Units V/p.s min GBW Gain-Bandwidth Product 1.5 MHz >m Phase Margin 50 Deg Gm Gain Margin 15 dB dB Amp-to-Amp Isolation (Note 10) 1S0 en Input-Referred Voltage Noise F=1kHz Vem = 1V 37 in Input-Referred Current Noise F = 1 kHz 0.03 T.H.D. Total Harmonic Distortion F= 10kHz,Ay=-2 RL = 10 kO, Vo = 4.1 Vpp 0.01 F= 10kHz,Ay=-2 RL = 10 kO, Vo = 8.5 Vpp V+ = 10V , 1-850 0.01 nVly'Hz pAly'Hz 0/0 0/0 DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T J = 25D C, V + = 3V, V- = OV, VCM = Vo = V+ 12 and RL Symbol Vos TCVos Parameter Typ Conditions (Note 5) Input Offset Voltage 0.9 Input Offset Voltage Input Bias Current los I nput Offset Current CMRR Common Mode LMC64821 > Limit Limit Limit (Note 6) (Note 6) (Note 6) Power Supply 2.0 3.0 3.0 mV 3.7 3.8 max ",vrc 0.02 pA 0.01 OV:S; VCM:S; 3V pA 74 64 60 60 Input Common-Mode dB min 3V:S; V+ :s; 15V, V- = OV 80 68 60 60 Rejection Ratio VCM Units 2.7 Rejection Ratio PSRR 1 M. LMC6482M 2.0 Average Drift 18 LMC6482AI dB min For CMRR ~ 50 dB V- -0.25 0 0 0 Voltage Range V max + 0.25 V+ V+ V+ V+ V min Vo Output Swing RL = 2kntoV+/2 RL = 600n to V+ 12 2.8 V 0.2 V 2.7 2.5 2.5 2.5 V min 0.37 0.6 0.6 0.6 V max Is Supply Current Both Amplifiers 0.825 1.2 1.2 1.2 mA 1.5 1.5 1.6 max AC Electrical Characteristics Unless otherwise specified, V + = 3V, Symbol SR Parameter Slew Rate GBW Gain-Bandwidth Product T.H.D. Total Harmonic Distortion v- = OV,VCM = Vo = V+/2, and RL Typ Conditions (NoteS) (Note 11) F = 10 kHz, Av = -2 RL = 10kn, Vo = 2Vpp > 1M. LMC6482AI LMC64821 Limit Limit LMC6482M Limit (Note 6) (Note 6) (Note 6) Units 0.9 V/",s 1.0 MHz 0.01 % Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Rating. Indicate conditions for which the device is intendad to be functional, but specific performance is not guaranteed. For guaranteed specHicstions and tho test conditions, see the Electrical Characteristics. Note 2: Human body model, 1.5 kll in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a Class 1 device rating. Note 3: Applies to both singl....upply and .pllt-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150"C. Output currents in excess of ±30 mA over long term may adversely affect reliability. Note 4: The maximum power dissipation is a function of TJ(max)' 8JA, and TA. The maximum allowable power diSSipation at any ambient temperature is Po CTJ(max) - T,j18JA. All numbers apply for packages soldered directly into a PC board. Note 5: Typical Values represent the most likely parametriC norm. Note 8: All limits ans guaranteed by testing or statistical analysis. Note 7: V+ = 15V, VCM = 7.5Vand RL connected to 7.5Y. For Sourcing tests, 7.5V ,;; Vo ,;; 11.5V. For Sinking tests, 3.5V ,;; YO ,;; 7.5V. Note 8: Do not short circuit output to V+, when V+ is greater than 13V or nsiiabillty will be adversely affected. Note 9: y+ = 15V. Connected as Voltage Follower with 10V step input Number specified i. the slower of either the positive or negative slew rates. = 15V and RL = 100 kll connected to 7.5V. Each amp .excited in tum with 1 kHz to produce Yo = 12 Vpp. Note 10: Input referred, V+ Note 11: Connected as voltage Follower with 2V step input Number specified is the slower of either the positive or negative slew rates. Note 12: Umiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings. Note 13: Guaranteed limits ans dicteted by tester limitations and not device performance. Actual performance is nsflected in tho typical value. Note 14: For guaranteed Military Temperature parameters see RETS6482X. 1-851 = Typical Performance Characteristics Vs = +15V, Single Supply, TA = 25"C unless otherwise specified Supply Current vs Supply Voltage 2.0 '< .!. ! i +125OC~ 1.6 +8SoC 1.4 1.2 +25 0 C ..... ,~/ 10 .0 -= ~ ...., '< .!. ~ 1.0 -55°C o.a 0.1 , 0.4 0.0 ~ ""'" 0.8 G.2 o 2 D.O' 1"-""'1 4 8 8 .0 12 14 .8 25 50 75 100 .25 150 Sourcing Current va Output Voltage .00 100 10 .0 10 ! '< .!. ...c ! ~ D.' iii 0.1 0.01 0.01 0.01 D.' 0.01 10 D.' 0.01 0.1 10 Output Volleg. _ Oulpul Voltag. _roncod to Vs (V) OUtput Voltage Referlnoed to Vs (V) Sinking Current vs Output Voltage Sinking Current vs Output Voltage 100 '00 '0 10 '< .!. I I in 1/ 0.1 I D.O' F-0.00. .0 Oulpul Voltag. Rof....n..d to GND (v) 0.01 0.1 Input Voltage Noise vs Frequency ~ ! I ~~ Vs .80 80 = .5V 1\ \. 120 ..0 .00 &0 ~ IIII 80 Vs = .5V F=1kHz I 50 ~ 40 ~ 30 :! 40 I-- 20 .5 SUPPLY VOLTAGE (v) 70 ! '\.. 80 .00kll Input Voltage Noise vs Input Voltage I· .80 I I I 1\= .2 10 Oulpul Voltogo Ref....oed 10 GND (v) 200 I NEG SWING LL L 0.00' 0.1 l- ~~::;; • ...c D.O' ..nood 10 GND (v) Output Voltage Swing vs Supply Voltage '< .!. D.' '00 Sinking Current vs Output Voltage 100 '< .!. .0 D.' Output Voltag. Ref.renced to Vs (v) TEMPERATURE (oe) Sourcing Current vs Output Voltage ~ in D•• D.O' SUPPLY VOLTAGE (v) J Sourcing Current vs Output Voltage 100 I 1.8 Input Current vs Tempereture ~LL~~~~~-LLL~ 00 10 .00 lk o .Ok 1 2.., .. 5 8 7 8 IIOI112,3"t51' COMMON MODE INPUT VOLTAGE (v) FREQUENCY (Hz) TL/H/11713-5 1-852 Typical Performance Characteristics Vs = +15V, Single Supply, TA = 25°C unless otherwise specified (Continued) Input Voltage Noise vs Input Voltage Input Voltage Noise vs Input Voltage 80 ~"- .5 80 ~ 50 ~ 40 ~ 30 ~ ~"- Vs = SV F=lkHz ... r-- 1-1- 60 ~ 50 ~~ 40 V o ~ ~ 150 1.5 2 2.S 0.1 'iD' 80 ~ 50 3 130 120 1.0 90 =ISkll 'iD' 80 ~ 50 3 ~ ~ 20 20 10 10 lk 10k 120 M.. 70 111111 I\. 100 i1'H Vs = lSV I\. • Skll SO =15kll ~ 10 100 lk 10k lOOk FREQUENCY (Hz) 120 Vs = i7.SV F=10kHz = Skll II 80 I\. "( 0 1 lOOk CMRRvs Input Voltage 60 Vs = 3V "-\. 40 30 100 - 70 30 10 Vs ='sv_ 80 FREQUENCY (Hz) IIIIIN 90 I\. .0 CMRRvs Frequency 10.0 Negative PSRR vs Frequency ~ 0 1 10.0 100 1.0 FREQUENCY (kHz) "- 1Vs = 3V FREQUENCY (kHz) .." 120 100 70 ........ 140 0.1 ~ ~ 1 80 100 'iD' 130 100 0.5 Vs = 5V- I-- 90 110 3 ; 100 Vs = 5V I\. = Skll 160 ........ 1.0 z Positive PSRR vs Frequency 170 i:l lS0 'iD' 3 COWIION WODE INPUT VOLTAGE (V) Crosstalk Rejection vs Frequency 'iD' - I\. 110 COWMON MODE INPUT VOLTAGE (V) 3 V" V ..... Vs = 15Y = Skll 180 vJ = 3) F = 1 kHz 30 20 o 170 70 .5 ~ / ~ 20 80 I I I 70 Crosstalk Rejection vs Frequency - .0 CMRRvs Input Voltage ,..,,..,-,.--,.--.---r-----, HH-t-t+--t ~s==l~!;ZV I\. 100 = Skll ~ 80 HH-t-t++++-H = t! HH-t-t++++-H 80 30 4OHH--+-+-+-+-+--+--+-l 20 10 o 20 L....L-L-L..-L.l-L....L-L-L....J 20 10 100 lk 10k lOOk INPUT VOLTAGE (V) FREQUENCY (Hz) 120 Vs = tl.SV F= 10kHz = Skll I\. I' 1.0 1.0 s- Js ! ~2.~V 0.6 .5 O•• .} >'8 0.2 0 !: 0 -0.2 ii... -D.2 0 -0.8 -1.5-1.2-iU-D.8-D.3o.00.3 o.a INPUT VOLTAGE (v) G.9 1.2 1.5 s- 0.4 -0.& -1.0 -3 I 0.6 0.2 -OA vsCMR 0.8 .5 I0 40 aVos vsCMR 0.8 ;!; 20 INPUT VOLTAGE (v) avos CMRRvs Input Voltage 100 -2.5-2.0-1.5-1.0-0.50.00.5 1.0 1.5 2.0 2.5 -7.5 -6.0 -.4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 '"0 1.5 Vs = tl.5V ,/ -OA -0.6 -0.8 -2 -1 0 V,N (V) -1.0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 V,N (v) Tl/H/11713-6 1-853 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25°C unless otherwise specified (Continued) Input Voltage vs Output Voltage Input Voltage vs Output Voltage 160 ~ S! i 14. 160 ttf 120 '> -3 ~~"Q 80 ~~ • 50kll 40 120 I - Vs '; t7.5V '> -3 ! > -40 ~ -80 !; ~ ~*" ~ 40 -(0 -120 -160 80 .... 3 ~ 60 ..... ~ ... = 60011 40 3 z ~ 20 ~ I'\ -20 -2 -1 60 50 (0 IJ 1111 ....3 r-.. ,II'"" 7R 'II"- ~ 20 10 GAl. ~ -10 -20 -30 -40 -5. 10k ~~: 11111111 11111111 lOOk 50 45 £ ~ iE ....3 z ~ 45 ~ 700 600 l! 500 (00 ~ ! IN 40 30 20 10 0 -10 -20 ~ 200 100 1.50 1.(5 1.(0 1.35 .LlIIIIII'PHAs[ ~ ! o -(5 0.1 10 c,. • SOO'~F c,. = 1000pF Open Loop Output Impedance vs Frequency 1000 Vs = 15V LGAI,"IJ11iL . . f'~ ~ ~ " "j c,. = 0 c,. • 500 pF c,. = ,.0.pF 90 11111 lOOk 1000 10000 Ay = ., I\. = 10kn V,N = lVpp § £ ~ tJ z ;l! ~ ~ ! 900 H-Ifi-Hffllll-+IIlIa-vs = 15V 800 700 600 500 400 300 200 100 0 10M 1M 0.1 10 I . I 100 1000 10.00 FREQUENCY (kHz) Non-Inverting Large Signal Pulse Response I I .111.1#11.10" ,~\.\.\\IG~" T... 1.15 1.10 1.05 100 FREQUENCY (kHz) ... = 60011 9. 'N.1lTI!"'ii 1.30 1.25 1.20 1.00 0 FREQUENCY (kH.) ~ Vs = 15V = 2kll THD = 3'1 I\. 10 10M lOOk Slew Ratevs Supply Voltllge . i 300 100 iE l!E FREQUENCY (Hz) .. ~ III (5 11111111 -Ssoc 10k 10k 10M ~ 0.1 £ 1111111 85 0 C -30 -40 -50 90 Vs = 5V 900 800 Ay = ., 1111 8S OC 111111 90 1111111 Gain and"Phase vs Capacitive Load Open Loop Output Impedance vs Frequency § 15 135 125°C FREQUENCY (H.) 1000 180 12S C lk 90 "' Maximum Output Swing vs Frequency FREQUENCY (Hz) mtl~ IIIII~ G. ......... G. • • 00';; z Vs = 15V 20 0 -10 -20 III v.=,.V III 1\ = •••• 11 "' "' 10 100 lk 10k lOOk 1M 10M I\. = 2kll 30 10 100 lk 10k lOOk 1M 10M '" " FREQUENCY (H.) Q Gain and Phase vs Capacitive Load 40 30 0.1 1 -;~~~ FREQUENCY (H.) 50 0 1I11111L 11111111 JGAIN 10 -40 0.1 1 40 -20 80 70 Vs = 5V Vs • 15V Q 60 Open Loop Frequency Response MS Temperature = 500kll 1\.=2~ 80 OUTPUT VOLTAGE (V) Open Loop Frequency Responce .to<',f " 1\ = ••• ;;-<:! 20 OUTPUT VOLTAGE (V) I\. 1-.lt: 100 0 6 0" -1\='.k4 -3 -8-6-4-202468 100 r-- Vs = U.5V -80 -160 ~ 120 80 -120 120 ·.OpenLoop Frequency Response t'ifo ~ ,~\S~ t ~ I I = +125 O C. -~ 1-1\. = 2kll 1-'r1\ V 1~ 'r. II'S 3 4 5 6 7 8 9 10 1112 13 ,. 15 16 SUPPLY VOLTAGE (V) TINE (l.p./OIV) TL/H/11713-7 1-854 Typical Performance Characteristics Vs = + 15V, Single Supply, T A = 25·C unless otherwise specified (Continued) Non-Inverting Large Signal Pulse Response Non-Inverting Large Signal Pulse Response Non-Inverting Small Signal Pulse Response :;;! ~ in ~ ~ - f - I-- TA = +2S o C. f - - f 1-1\.=2kll -",. 1. ~-r- -, I I I ~ -t\ -f- - i jJ 1\ , )'0 ~ S' _ , T. = -SS·C, - - f 1\.=2kll_ , I I I 7'1- 1, 1,i E ~ e" i 1A' , po O - f - TA = +125 C. I\. = 2kll 1\ 1\ , po SOm\ SOm'V TIME (l),s/DIV) TIME (1 pl/DIV) TIME (ll'l/DIV) Non-Inverting Small Signal Pulse Response Non-Inverting Small Signal Pulse Response Inverting Large Signal Pulse Response ~ ~ ~ 1\.=2kll ~e :;;! If' ~ 1\ SOmV' e ~ ~ 1\ som\l ~ ~ T = +25 O C, -f- A l)'s ~ TA = -5S o C, :-f1\.=2kll 1\ 1\ Som\l SOmy O! If' :;;! II ~ Inverting Large Signal Pulse Response I\. = 2kll 1\ II ,. I. A / \. i 1 po Inverting Small Signal Pulse Response ~ ~ ~ -'- ~ ~ TA = -5S0 C, = 2kll I\. A 5 , 1'0 1\ II Inverting Large Signal Pulse Response i = +25 OC. TA = +125°C. = 2kll r- - f - I\. TIME (, po/DIV) ~ TA - f - f- ,. ,. i 1 ps ~ - I TIME (1 ps/DIV) TIME (ll's/DIV) '. " TIME (1 pB/DIV) " , lps i i S' ~E e" TA = +f25OC. -1-1- I\. = 2kll 1\ SOmy " SOmy 1 ps TIME ('ps/DIV) Inverting Small Signal Pulse Response Stabilltyvs Capacitive Load '0000 r~~~v :;;! I 1 - -- ~ TA = +25 OC. = 2kll - 1 - - ~ I\. I .. 1\ SOmy SOmy i ~ 'po TIWE (1 ps/DIV) ~ i ~ ~e e" -l- ~ II TIWE (, I'I/DIV) Inverting Small Signal Pulse Response ~ e" f' 1111" TA = -55 OC, 1 - -1-1- I\. = 2kll ~ I II 1 1\ SOm; 50my -:- lp.~ TIME (, po/DlV) . 25" OIER:iHC IT I 10 -6 -5 -4 -3 -2 -I 0 1 2 3 • 5 6 VOU1 (v) TL/HI1' 713-8 1-855 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25°C unless otherwiSE! specified (Continued) .Stability vs Capacitive Load Stabllltyvs capacitive Load .0000 .0000 ~===-~-. .0000 'v' • Stability vs capacitive Load ~ Vs = i7.5V I\. $ ~ .000 ~ .00 ill L .s ~ 25" OVERSHOOT JILl J Ifill .0,I -6 -5 -4 -3 -2 -. 0 • 2 3 4 5 6 ~ ~ -.1...-- Your t---------" lkn ~ ... Your 9.0 Data Acquisition Systems R4 R3 v;;- = - 500kn Low power, single supply data acquisition system solutions are provided by buffering the ADC12038 with the LMC6482 (Figure 14). Capable of using the full supply range, the LMC8482 does not require input signals to be scaled down to meet limited common mode voltage ranges. The LMC4282 CMRR of 82 dB maintains integral linearity of a 12-bit data acquisition system to ± 0.325 LSB. Other rail-torail input amplifiers with only 50 dB of CMRR will degrade the accuracy of the data acquisition system to only 8 bits. vTlIH/II713-25 FIGURE 12.lnvenlng Configuration Offset Voltage Adjustment R4 V+ '.... f v- Rl R3 200kA R2 loon VIN Your Your v;;= R4 1 + R3 ; R2«R3 TLlH111713-26 FIGURE 13. Non-Invenlng Configuration Offset Voltage Adjustment 5V r--------.------------t-------~~+ 1000 pF YIN ---11--+----+---.~Yv-~ AOC12038 > .....-ICHO C>--~-----iroM 2kA 2.048V 200kn 33n 0.47 ",F 130kn -+__ L-______.....______.....________ ~ 10 ",F AGND TLlH/I1713-28 FIGURE 14. Operating from the same Supply Voltage, the LMC6482 buffers the ADC12038 maintaining excellent accuracy 1-860 ,-----------------------------------------------------------------------------'r Application Information (Continued) benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased tranducers. A small valued potentiometer is used in series with Rg to set the differential gain of the 3 op-amp instrumentation circuit in Figure 15. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration. 10.0 Instrumentation Circuits The LMC6482 has the high input impedance, large common-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6482 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6482 an excellent choice of noisy or industrial environments. Other applications that 10kn C4 3-20 pF AC CMR ADJUST so kn, 0.1% VOUT 48.7 kn DC CMR ADJUST R2 soon L---o VREFERENCE TUH/11713-29 FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier A 20p-amp instrumentation amplifier designed for a gain of 100 is shown in F/flure 16. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit. Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier. Ion Gain Trim 191n 9.9Sk 10k, 0.1% son CIoIRR Trim .~~~ VOUT = 100VD TL/H/11713-30 FIGURE 16. Low-Power Two-Op-Amp Instrumentation Amplifier 1-861 i Application Information (Continued) 11.0 Spice ,Macromodel V+ A spice macromodel is available for the LMC6482. This model includes accurate simulation of: • Input common-mode voltage range ,10 kll • Frequency and transient response • GBW dependence on loading conditions • Quiescent and dynamic supply current • Output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk. TLlH111713-33 Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk. FIGURE 18. Full Wave Rectifier with Input Current Protection (RI) Typical Single-Supply Applications V+=3V >-....-VOUT TL/H/II713-31 FIGURE 17. Half·Wave Rectifier with Input Current Protection (RI) TLlH/I1713-34 FIGURE 18A. Full Wave Rectifier Waveform V+ t loUT TLlH/11713-32 loUT" FIGURE 17A. Half·Wave Rectifier Waveform The circuit in Figure 17 uses a single supply to half wave rectify a sinusoid centered about ground. RI limits current into the amplifier caused by the input voltage exceeding the supply voltage. Full wave rectification is provided by the circuit in Figure 18. V+ - VIN) (-RTL/H/11713-35 FIGURE 19. Large Compliance Range Current Source 1-862 Typical Single-Supply Applications Your 1 kll Your = 1 kll (R 1/R2) IL R1 « R2 TUH/11713-36 FIGURE 20. Positive Supply Current Sense 20kll Your TUH/11713-37 FIGURE 21. Low Voltage Peak Detector with Rall-to-Rall Peak Capture Range In F/{Jure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate is primarily determined by the value of CH and diode leakage current. The ultra-low input current of the LMC6482 has a negligible effect on droop. 20kll Your '~~~~: e---e-~~--~ 1 I ~CD4066BM SAMPLE TLiH/11713-38 FIGURE 22. Rall-to-Rall Sample and Hold The LMC6482's high CMRR (82 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range. C1 TL/H/11713-27 Rl = R2, Cl = C2; f = 1 2'11'Rl Cl; DF fC2fR2 = V.VC;VR; FIGURE 23. Rail-ta-Rail Single Supply Low Pass Filter The low pass filter circuit in Figure 28 can be used as an anti-aliasing filter with the same voltage supply as the AID converter. Filter designs can also take advantage of the LMC6482 ultra-low input current. The ultra-low input current yields negligible offset error even when large yalue resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less. 1-863 i B :I t!lNational Semiconductor LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier General Description The LMC6484 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers. It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6484 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC274 and TLC279. Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6484's rail-to-rail output swing. The LMC6484's rail-to-rail output swing is guaranteed for loads down to 6000. Guaranteed low voltage characteristics and low power dissipation make the LMC6484 especially well-suited for batteryoperated systems. See the LMC6482 data sheet for a Dual CMOS operational amplifier with these same features. Features (Typical unless otherwise noted) • Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature) • Rail-to-Rail Output Swing (within 20 mV of supply rail, 100 kO load) • Guaranteed 3V, 5V and 15V Performance 82 dB • Excellent CMRR and PSRR 20 fA • Ultra Low Input Current 130 dB • High Voltage Gain (RL = 500 kO) • Specified for 2 kO and 6000 loads Applications • • • • • Data Acquisition Systems Transducer Amplifiers Hand-held Analytic Instruments Medical Instrumentation Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source • Improved Replacement for TLC274, TLC279 3V Single Supply Buffer Circuit Rall-ta-Rallinput 3V / / Rall-ta-Rall Output +3V 3V ~\ \ ' \ > ....--oVOUT \ \ OV \.......... // / ov TUH/lln4-2 TLIH/11714-3 TL/H/11714-1 Connection Diagram 14 13 12 11 Ordering Information Temperature Range 10 Package Industrial -40"Cto +85"C Drawing Transport Media LMC6484MN LMC8484AIN LMC8484IN N14A Rail LMC6484AIM LMC8484IM M14A Rail Tape and Reel Jl4A Rail 14-pin Molded DIP 14-pin SmaliOulline 14-pin Ceramic DIP NSC MllHary - 55"C to + 125"C LMC8484AMJ/883 TL/H/11714-4 1-864 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ESD Tolerance (Note 2) 2.0kV ± Supply Voltage Differential Input Voltage (V+) + 0.3V, (V-) - 0.3V Voltage at Input/Output Pin Supply Voltage (V+ - V-) 16V Current at Input Pin (Note 12) ±5mA ±30mA Current at Output Pin (Notes 3, 8) Current at Power Supply Pin 40mA Lead Temp. (Soldering, 10 sec.) 260"C Storage Temperature Range Junction Temperature (Note 4) -65°C to + 150"C 150"C Operating Ratings (Note 1) 3.0V ~ V+ ~ 15.5V Supply Voltage Junction Temperature Range LMC6484AM LMC6484AI, LMC64841 -55°C ~ TJ ~ +125°C -40"C ~ TJ ~ +85°C Thermal Resistance (8JN N Package,14-Pin Molded DIP M Package, 14-Pin Surface Mount 70"C/W 110"C/W DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M. Boldface limits apply at the temperature extremes. Symbol Vos Parameter Typ (Note 5) Conditions Input Offset Voltage TCVos Input Offset Voltage Average Drift 0.110 LMC6484AI Limit (Note 6) LMC64841 Umit (Note 6) LMC6484M Limit (Note 6) 0.750 3.0 3.0 1.35 3.7 3.8 Units mV max p,VloC 1.0 Is Input Current (Note 13) 0.02 4.0 4.0 100 pAmax los Input Offset Current (Note 13) 0.01 2.0 2.0 50 pAmax CIN Common-Mode Input capaCitance RIN Input Resistance CMRR Common Mode Rejection Ratio >10 OV ~ VCM ~ 15.0V, V+ = 15V OV ~ VCM V+ = 5V +PSRR -PSRR VCM Av 82 s: 5.0V 82 Positive Power Supply Rejection Ratio 5V ~ V+ ~ 15V, V- = OV, Vo = 2.5V 82 Negative Power Supply Rejection Ratio -5V ~ V- s: -15V, V+ = OV, Vo = -2.5V 82 Input Common-Mode Voltage Range V+ = 5Vand15V For CMRR ~ 50 dB Large Signal Voltage Gain pF 3 RL = 2kO (Notes 7, 13) 65 65 87 82 80 70 65 65 87 82 80 70 65 65 87 82 80 dB min dB min 70 65 65 87 82 80 dB min V- - 0.3 -0.25 0 -0.25 0 -0.25 0 V max V+ + 0.3 V+ + 0.25 y+ V+ + 0.25 y+ V+ + 0.25 y+ V min 140 120 120 84 72 80 VlmV min Sourcing Sinking RL = 6000 (Notes 7, 13) TeraO 70 Sourcing Sinking 1-865 666 75 300 35 35 35 35 20 20 18 V/mV min 80 50 50 48 30 25 V/mV min 20 15 13 10 15 8 V/mV min DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V~ V- = OV, VCM = Vo.= V+/2 and RL Boldface limits apply at the temperature extremes. (Continued) Symbol Vo Parameter Output Swing Typ (Note 5) Conditions V+ = 5V RL = 2kOtoV+/2 4.9 0.1 V+ = 5V RL = 6000 to V+ /2 4.7 0.3 V+ = 1.5V RL = 2kOtoV+/2 14.7 0.16 V+ = 15V ·RL = 6000 tq V+ /2 14.1 0.5 Isc Isc Is Output Short Circuit Current Sourcing, Vo = OV V+ = 5V Sinking, Vo = 5V 20 15 Output Short Circuit Current Sourcing, Vo = OV V+ = 15V Sinking, Vo = 12" (Note 8) 30 All Four Amplifiers V+ = +5V, Vo = V+ /2 2.0 All Four Amplifiers V+ = +15V, Vo = V+/2 2.6 Supply Current 30 LMC6484AI Limit (Note 6) LMC64841 Limit (Note 6) LMC6484M Umit (Note 6) 4.8 4.8 4.8 4.7 4.7 4.7 0.18 0.18 0.18 0.24 0.24 0.24 4.5 4.5 4.5 4.24 4.24 4.24 0.5 0.5 0.5 0.85 0.85 0.85 14.4 14.4 14.4 14.2 14.2 14.2 0.32 0.32 0.32 0.45 0.45 0.45 13.4 13.4 13.4 13.0 13.0 13.0 1.0 1.0 1.0 1.3 1.3 1.3 16 16 16 12 12 10 11 11 11 8.5 8.5 8.0 28 28 28 22 22 20 30 30 30 24 24 22 2.8 2.8 2.8 3.8 3.8 3.8 3.0 3.0 3.0 3.8 3.8 4.0 AC Electrical Characteristics Unless otherwise specified, all Umits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL Boldface limits apply at the temperature extremes. Symbol SR Parameter Slew Rate Typ (Note 5) Conditions (Note 9) 1.3 V+ = 15V LMC6484A Limit (Note 6) LMC64841 Limit (Note 6) > LMC6484M Limit (Note 6) 1.0 0.9 0.9 0.7 0.83 0.54 1M. Units V min V max V min V max V min V max V min V max mA min mA min mA min mA min mA max mA max > 1M. Units V/p.s min GBW Gain-Bandwidth Product 1.5 MHz >m Gm Phase Margin 50 Deg Gain Margin 15 dB Amp-to-Amp Isolation (Note 10) 150 dB en Input-Referred Voltage Noise f = 1 kHz VCM = 1V 37 nV/,fFfZ in Input-Referred Current Noise f = 1 kHz 0.03 pAl,fFfZ T.H.D. Total Harmonic Distortion f = 1 kHz, Av = -2 RL = 10 kO, Vo = 4.1 Vpp 0.01 % f = 10 kHz, Av = -2 RL = 10 kO, Vo = 8.5 Vpp V+ = 10V 0.01 % 1-866 DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25'C, V+ = 3V, V- = OV, VCM = Vo = V+/2 and RL Symbol Ves TCVos Parameter (Note 5) Input Offset Voltage Input Offset Voltage 0.02 0.01 OV s; VCM s; 3V Input Common-Mode For CMRR ~ 50 dB Output Swing Supply Current pA 80 68 60 60 V- - 0.25 0 '0 0 V+ V+ RL = 2 kn to V+ /2 RL = 600n to V+ /2 Is mV max 60 V+ Vo 3.0 3 •• 60 3V S; V+ S; 15V, V- = OV Voltage Range 3.0 3.7 64 Rejection F!alio VCM 2.0 2.7 74 Rejection Ratio All Four Amplifiers Units pA Input Bias Current Input Offset Current Power Supply Limit (Note 6) p.VI'C los PSRR Limit (Note 6) 2.0 Ie CMRR' Common Mode Limit (Note 6) 0.9 Average Drift 1M LMC6484AI LMC64841 LMC6484M Typ Conditions > + 0.25 V+ dB min dB min V max V min 2.8 V 0.2 V 2.7 2.5 2:5 2.5 0.37 0.6 0.6 0.6 V min V max 2.5 2.5 2.5 mA 3.0 3.0 3.2 max LMC6484AI LMC64841 Limit Limit Umlt (Note 6) (Note 6) (Note 6) 1.65 AC Electrical Characteristics Unless otherwise specified, V + = 3V, Symbol SR Parameter Slew Rate GBW Gain-Bandwidth Product T.H.D. Total Harmonic Distortion v- = OV, VCM= Vo = V+/2 and RL Typ Conditions (Note 5) (Note 11) f = 10 kHz, Ay = -2 RL = 10kn, Vo = 2Vpp > 1M LMC6484M Units 0.9 Vlp.s 1.0 MHz 0.D1 % Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is Intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and tihe test conditions, see the Electrical Characteristics. Note 2: Human body model, 1.5 kll in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating. Note 3: Applies to both single supply and spin-supply operation. Continuous short circun operation at elevated ambient temperature can resuR In exceeding the maximum allowed iunctlon temperature of 15O"C. Output currents in excess of ± 30 mA over long term may adversely affect reliability. Note 4: The maximum power dissipation is a function of TJ(max)' 9JA, and TA. The maximum allowable power dissipation at any ambient temperatura Is Po = (TJ(max) - T/J19JA. All numbers apply for packages SOldered directly into a PC board. Note 5: Typical Values represent tihe most likely perametric norm. Note 6: All limits are guaranteed by testing or stetisticaJ analysis. Note 7: V+ = 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V ,;: Vo ,;: 11.5V. For Sinking tests, 3.5V ,;: Vo ,;: 7.5V. Note 8: Do not short circuit output to V+, when y+ Is greater than 13V or reliability will be adversely affected. Note 9: V+ = 15V. Connected as VOI~ Follower with 10V step Input Number specified Is tihe slower of _the positive or negative slew rates. = 15V and RL = 100 kll connected to 7.5V. Each amp excHed in tum with 1 kHz to produce Vo = 12 Vpp. Note 10: Input referred, V+ Note 11: Connacted as VoRage Follower wRh 2V step Input. Number specilled Is the slower of either the positive or negative slew rates. Note 12: Umlting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings. Note 13: ~uaranteed limits are dictated by tester limitetlons and not device performance. Actual performance is reflected in the typical value. Note 14: For guarantesd Military Tempersture Range parameters see RETSMC6484X. 1-867 Typical Performance Characteristics + 15V; Single Supply. TA = Vs = 25"C unless otherwise specified Supply Current va Supply Voltage Input Current vs Temperature Sourcing Current va Output Voltage 100 3.5 100 +t250C 3.0 ! iil i .85~ f--- 2.5 +150 C j 2.0 -~h- 1.5 iil 1.0 ~ 10 10 ~ .x !! 0.1 0.1 '0.01 o.s 0.0 o 246 W a 8 u 0.01 ~ ~ 2~ SUPPLY VOlTAGE (v) 75 100 125 1~ 0.1 Sourcing Current vs Output Voltage 10 100 Output Voltage Roforonced to Vs (V) TEIIPERATURE (Oe) Sourcing Current vs Output Voltage Sinking Current VB Output Voltage· 100 0.001 0.001 0.01 0.1 10 Output Voltage RoI...nced to Vs (V) Outpul Voltage Refe..nced to Vs (V) Sinking Current vs Output Voltage Sinking Current vs Output Voltage Output Voltag. _ced to GND (V) s 100 .!. 27 ~ 24 ~ ,. ;: 0.1 30 III ;5 10 Output Voltage Swing va Supply Voltage ~ I I I I 18 15 If 12 fi! 0.01 iii I 0.001 0.01 0.1 10 Output Voltag. Roforoncod to GND (V) 200 ~..... ! 160 140 ~ 100 ~ 60 ~ 40 z !:i Ys III 80 15Y ~ \. " 120 8D ! ~ 20 00 10 0'· 100 - lk 6 S"ff\NG NEG 1\ = 100kll 12 15 SUPPLY VOLTAGE (V) Input Voltage Noise vslnpUt Voltage I 180 I F--I- Output Voitag. Rof...nced t. GND (V) Input Voltage Noise vs Frequency II- ~r-t;; 21 70 IIII 80 VS'!= 15V F=lkHz !II 50 ~~ 40 i 30 ~~~~~~~~~~ o 10k FR~QUENCY (Hz) 1 2 3 4 5 • 7 8 9101112131.,51. COMMON MODE INPUT VOLTAGE (V) TLlH/117t4-5 1-868 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25"C unless otherwise specified (Continued) Input Voltage Noise vslnput Voltage 80 ~"- I I I 70 .5 60 I 50 ~ 40 ~ 30 Input Voltage Noise vslnputVoltage Ys = 5Y F=1kHz ~ ~ ~ I ~ ~~ -i- i- .... !:i 20 70 YS' = 3 ) F=lkHz 80 '/ 50 40 4 o 140 ! Vs = 5V = 5kll 80 'it 10 ~ 50 ~ 130 I\. " 100 lk 10k lOOk 80 40 60 " 30 20 ~ 1 10 100 lk 10k lOOk FREQUENCY (Hz) CMRR vslnput Voltage 120 Ys = *7.SV r -= 10kHz I\. = Skll 100 II! ::II ...... 0 10 CMRR vslnput Voltage ~ , 10 1 'it "'\. 40 FREQUENCY (Hz) Ys = 15Y I\. = Skll Ys = 3V 50 =ISkll 30 0 120 " ~ 10 I\. 20 CMRRvsFrequency II! ::II ! ~ FREQUENCY (kHz) 50 - 70 Ys = 3V 40 10.0 10.0 Ys =ISV_ 80 ......... 10 100 10 90 .ISkll 20 110 ~ 1.0 FREQUENCY (kHz) Negative PSRR vs Frequency 30 120 'it 0.1 100 - I 70 r-.... 1.0 120 2.S 1.S Ys = SY- 90 I\. 0.1 130 100 O.S 100 .:!. iil r--.... 140 PosHIve PSRR vs Frequency 170 'it ~ 150 COII_ MODE INPUT VOLTAGE (v) Crosatalk Rejection vs Frequency rlS0 z 110 COIIWON MODE INPUT VOLTAGE (v) 110 'it ~ I-' V I........ ,... Ys = 1SV I\. = 5kll 180 30 20 o Cro88talk Rejection vsFrequency 170 80 Vs = u.sv Fe; 10kHz 1\.. Skll 100 40 40 10 0 10 100 lk 10k 20 -7.s"",,-.t.5-3.0-1.50.01.5 lOOk CMRR vslnput Voltage 100 'it ~ I Vs 20 -2.5-2.0-1.5"1.0-0.50.00.5 1.0 t.5 2.0 2.5 6.0 7.5 INPUT VOLTAGE (v) FREQUENCY (Hz) 120 3.O.u :t:l.5V r = 10kH2: I\. = Skll 80 ! ,!l 0.8 0.1 ~s ~ ~2.~V 0.4 I: 20 -1.D !! t: z -o.a INPUT VOLTAGE (v) -3 1.0 0.8 0.8 Vs • .:I:l.SV OA 0.2 .." 0 -0.2 c ~ G -0.1 -0.1 -1.5-1.2-o.I--o.a-G.30.o0.3 D.6 G.l1.2 1.5 S .5 ,!l 0.2 40 80 AVosvsCMR AVos vs CMR 1.0 .= 1'0 INPUT VOLTAGE (V) -0.8 -1.D -2 -1 0 Y,N (v) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 V,N (Y) TL/H/11714-6 1·869 ~ I r------------------------------------------------------------------------------------------, Typical Performance Characteristics ,. Vs = +15V, Single Supply, TA = 25°C unless otherwise specified (Continued) In~ut Voltage vs Output Voltage . Input Voltage:· vs Output Voltage ~f 120 ~"'1 f- Ys = :l:7.SV ~1 ~., 80 ~ S 80 ...~ 40 .3 1.~ '$Ok 40 ~ > -40 -80 ~ 0 2 4 • -3 8 -2 -1 .. .... ~ ~ 80 60 1It.=2~ lit. 70 -- = 60011 .; -20 60 50 ~ 'iD' 40 ~ ·20 ~ "I' 20 111111 JGAIN 11111111 p£tI -~~~~ ~ Ik 10k 'iD' ~ ...... !II'••• ao tnF=:: 20 1""- GA'. 10 ~ -10 -20 III Vs "" 15V IILI\. =SOOkO ~:± 11111111 10k lOOk 20 45 £ 'iD' ~ z f ~ ~ 10 S I ~ ,... ~ 90 10 l\ -40 - 45 (} ~;! c;,=o Io"J c;,. 500pF' c;, =.1000 pF "L ·11111111 lOOk 900 S t! 600 500 400 1-H-tflIIt-+tlfll-tHlII-Vs = 15V 700 600 500 400 45 ~ 300 o· ·200 90 100 0 1M 0.1 10M 10 200 1000 10000 Non-Inverting Large Signal Pulse Response 1.50 1.45 1.40 1.35 ~ 1.30 S 1.20 "" = +1 lit. = VIN = 10kll, 1Vpp I I I I I I I~~~ ~~~ ;... 1.1 ~ i' s IS 1.26 1.15 1.10 lOll 1.05 0 1.00 1000 10000 100 FREQUENCY (kHz) Slew Ratevs Supply Voltage ~ 300 100 800 FREQUENCY (Hz) 1.. FREQUENCY (kHz) 0.1 90 ~ 10k = SV 100 o 1000 f'~ c;, = 500pF c;,.= 1000pF -50 700 10 ~ Open Loop Output Impedance vs Frequency Vs = 15V I~'!'IJ'!HI... -20 _30 45 800 0.1 THO = 3" . FREQUENCY (kHz) lit. = 6 0011 -10 10M 1M Vs i -45 10M 1M l"N.IllTIT'IIil 30 Open Loop Output Impedance. vs Frequency 900 lOOk I IIIIIII"HAS[ FREQUENCY (Hz) 1000 ~ Y. = 15V lit. =2kll 10 0 50 40 90 IIIUlil -50 £ "" = +1 l Gain and Phase vs Capacitive Load -30 -40 90 FREQUENCY (Hz) 1lItL. .... IIIII~ G. •• .-G. .50DpF z 15 135 45 1111I1U85°C ~ 1111110 -55°C -20 10 100 Ik 10k lOOk 1M 10M ~ 10 100 lk ·IOk lOOk 1M 10M Maximum Output Swing vs Frequency· 180 125°C 0 -10 Gain and Phase vs capacitive Load 40 11IlliLLUIli 65°C 111111 125°C 30 FREQUENCY (Hz) 50 ~ FREQUENCY (Hz) IIIV•. = 15V 1111\. = 2kll 11111111 10 \ -40 0.1 1 0.1 1 80 Vs == 3V 40 0 Open Loop Frequency Response .vs·Temperature lit. = 500k" '" " = 15V ~ OUTPUT VOLTAGE (v) Open Loop Frequency Response 100 60 V. -20 OUTPUT VOlTAGE (v) 120 2~., 20 -160 ~ 80 I\. = •••~ -80 -180 '·2~., ~'1 100 -DD., 40 -120 ~ v• • n.5V -40 -120 ~ ~, ~ f--- _I\. -SOk" ~ , ~. . 120 120 ~ ~ . -140 150 160 s· .3 ~ Open Loop Frequency Response I I ,,1~~ I I I ~ ~ 1-,\ !5 I!: 5 TA == +125 0 C, lit. = 2kll r\ I; ~ fro-. ~ 'V 11'8 3 4 5 6 7 8 9 1011 12 13 14 15 16 SUPPLY VOLTAGE (V) T1M~ (1I's/DIV) TUH/11714-7 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25·C unless otherwise specified (Continued) Non-Inverting Large Signal Pulse Response Non-Inverting Large Signal Pulse Response H- - T" = +25 0 C, _ I\. = 2kQ f--f-- - Non-Inverting Small Signal Pulse Response i! III ~ s-is ;I is "- .=. in ! I-~ w f--~f-- 1-1'\ I I I /'"'"1- '\ I I I I -f-7'~ Tlls Tv TIME (TIIS/DIV) ~ !; = +2SoC, I\. = 2kQ I,.. II i' ~ TA, E ·1 e in ! Til' ~!; r-r- TA = -5S oC, .=. TA -r- I\. II 1\ 1\ = 2kQ ;I Tv T' :z TIIS II so mY' l 1\ SOm'V TII8 Tv - !; i I TIIS Tv T' ~ E TA • +125 0 C. r-r-- I\. = 2kll ,I ~ TII8 T' -r- l 1\ 5 A SOmy SOmy TII8 TIME (T "./DIV) Inverting Small Signal Pulse Response ~ S- 1\ J e III i! Stabllltyvs Capacitive Load TOOOO~na i I 1/ -r- Inverting Small Signal Pulse Response ~ ~ r-r- TA = -,soc. I\. = 2kll "- TIME (TIIS/DIV) i r- TIME (TIIS/DIV) .=. Inverting Small Signal Pulse Response ! ~. TIIS = +125O C, = 2kll !o!! TIME (TIIS/DIV) .. TA -I\. ..i! ! \ +2S·C. ~E f--- f--f- I\.TA == 2kQ ~ e r- in III 1\ II I Inverting Large Signal Pulse Response i = +25 O C, V ! I is ~ III ~ ;;! ;I ~ ;I z I" 1\.=2kll 5Dm' SOmy Inverting Large Signal Pulse Response ~ Inverting Large Signal Pulse Response TIME (Ill./DIY) ;I TIIS i.. TIME (TIIS/DIV) ~ 1\ 1\ 50m' SOmy Non-Inverting Small Signal Pulse Response ~ 50m' SOmV' O TIME (TIIS/DIY) ;I 1\ 1\ TA = +125 C, f---f-f--f-- I\. = 2kll,.. TIME (TII./DIV) Non-Inverting Small Signal Pulse Response r-r- E 5 TIIS Tvl i ~. e ~ " I I A' J/ Tv TA = -55·C, 1\.=2kll _ _ ~ .. e E TA = = 2kll -f--f-- I\. -5S OC, I II SOmy 1 1\ so mY' TIIS -f-- '"'~ ~~ TODO ,~,~~'!~!~ ~ I TDO~~~~~~~~~~ TO~......L~~~-L~~......L~ -6 -5 -4 -3 -2 -T 0 I 2 3 4 5 6 TIME (TIII/DIV) TIME (Till/DIY) You, (v) TLlH/117T4-8 1-871 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25°C unless otherwise specified (Continued) . . Stability 'vs Capacitive Load Stabillty"va . CapaCltrve Loa.d 10000 .. :i 1000 1I I ~ e:! 2kA I I, ~ UNSTABLE~ ~ ~ I +10 10000.~ l000°mll~ . . . +1 . Ys.= 67.5V Rl • Stab,llfy va CapaciUve Load ~ ~. ! 1000 EO ~ e:! H I I I I ~ ~ 100'1.11~ f:f 10d. !;! 25" OVERSHOOT 10 -a -5 -4 -~ -2 -1 0 1 2 ~ 1\='''0 § 1000." ~'C LJ..I-t"' 100 Vs • *7.SV 10~~~~~~~~~ 10~~~~~-L~~~ -8-5-4-~-2-1 4 5 8 Vour (V) 0 1 2 ~ -8 -5 -.4 -~ -2 -1 0 1 2 458 Vour (V) Stability vs Capacitive Load 1.0000 10000 ~. Vs . ~. +10 Vs ';I I\. • .. 1000 i 100 'i::" .,s.. 4 5 8 Stability va Capacitive Load = .o7.5V 1\..2kll ~ Vour (V) +10 t.7.SV 60011 ~ I I I I e:! .I I I I I I 25" OVERSHOOT 10 -8 -5 -4 -~ -2 -1 0 1 2 ~ H 25" OVERSHOOT I I II I 10 -8-5-4-~-2-1 4,.5 8 Vour (V) 0 1 2 ~ 4 5 8 Vour (V) TLlHf11714-9 1-872 Application Information (Continued) 1.0 Amplifier Topology The LMC6484 incorporates specially designed wide-compliance range current mirrors and the body effect to extend input common mode range to each supply rail. Complementary paralleled differential input stages, like the type used in other CMOS and bipolar rail-to-rail input amplifiers, were not used because of their inherent accuracy problems due to CMRR, cross-over distortion, and open-loop gain variation. The LMC6484's input stage design is complemented by an output stage capable of rail-to-rail output swing even when driving a large load. Rail-to-rall output swing is obtained by taking the output directly from the internal integrator instead of an output buffer stage. TLlH/11714-12 FIGURE 2. A ± 7.SV Input Signal Greatly Exceeda the 3V Supply In Rgure 3 Causing " No Phase InY8r81on Due to R, 2.0 Input Common-Mode Voltage Range Unlike Bi-FET amplifier designs, the LMC6484 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no re"ulting phase inversion . on the output. Applications that exceed this rating must extemally limit the maximum input current to ± 5 mA with an input resistor as shown in F/{Jure 3. . 3V I~"'--VOUT TLlH/11714-11 FIGURE 3. R,lnput Current Protection for Voltages Exceed~ng the Supply Voltage 3.0 Rail-To-Rail Output ov The approximated output resistance of the LMC6484 is 1800 sourcing and 1300 sinking at Vs = 3Vand 1100 sourcing and 830 sinking at Vs = 5V. Using the calculated output resistance, maximum output voltage Swing can be estimated as a function of load. TLIH/11714-10 FIGURE 1. An Input Voltage Signal Exceeds the LMC6484 Power Supply Voltages with No Output Phase Inversion 4.0 Capacitive Load Tolerance The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins possibly affecting reliability. The LMC6484 can typically directly drive a 100 pF load with Vs = 15V at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-anip's output impedance and the capacitl\ie I~d induces phase lag. This results In either an underdamped pulse response or QScIllatJon. Capacitive load cOlTJpensation can be 8cOOmpiished using resistive isolation shown in F/gute 4. This Simple technique is useful for isolating the c/ilpacitive input of multiplexers and A(O converters. ., as TLlH/II714-17 'FiGURE 4. Resistive Isolation of a 330 pF Capacitive Load 1-873 Application Information (Continued) 5.0 Compensating .or Input Capacitance " It is quite common to Use large values of feedback resist· anCe 'with amplifiers that have ultra·low input current, like the LMC6484. Large feedback resistors can react with small values of input capacitance due t6 transducers, photOcii· odes, and 'circuit board parasities to reduce phase margins. Cf , R2 Rl VIN-.J/J\I\ro-... I -+-I I CIN ::::::: I I ....... TUH/II714-18 I FIGURE 5. Pulse Response of the LMC6484 Circuit In F1gurtl4 Improved frequency response is achieved by indirectly driv· ing capacitive loads as shown in Figure 6. , 'TUH/11714-19 FIGURE 8. Canceling the Effect of Input Capacitance The effect of input capacitance can be compensated' for by adding a feedback, caPacitor. The feedback capaCitor (as in Figure 8), Cr. is fl1;8l estimated by. lOkI! __1__ ~ _'_1_ ,21TRI GIN 21TR2 Cr or Rl GIN:S; R2Cr," which typically',prOviQS" significant Elvercompensation. Printed' circtJi(bo~ 'stray ~citanCe may ;bEl larger or smaller than t~!lt of a breadboard, so the actual optimum value for Cr may' be different. The values of Cr should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.) V,N TUH/11714-15 FIGURE 6. LMC6484 Non-Inverting Amplifier, Compensated to Handle a 330 pF Capacitive Load R1 and G1 serve to counteract the loss of phase margin by feeding forward the high frequency component of the output signal back to the amplifier's inverting input, thereby pre· serving phase margin in the overall feedback loop. The,val· ues of R1 and G1 are experimentally,determined for the desired pulse response. The resulting' pulse response can be seen in, Ftgure 7. Tl/H/11714-16 FIGURE 7. Pulse Response of LMC6484 Circuit In Flgurtl6 1·874 Application Information (Continued) 6.0 Printed-Circuit-Board Layout Cl for High-Impedance Work Rl It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. when one wishes to take advantage of the ultra-low input current of the LMC6484, typically I'ess than 20 fA, it is essential to have an excellimt layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. INPUT Jr,I.W,.!-++-!--Jr,I.i\r--. • •• Guard Ring ....: • OUTPUT r: TUH/11714-21 (a) Inverting Amplifier To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6484's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 9. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6484's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 0 would cause only 0.05 pA of leakage current. See Figures 10a, 10b and 10e for typical connections of guard rings for standard op-amp configurations. R2 OUTPUT TUH/11114-22 (b) Non-Inverting Amplifier OUTPUT Tl/HI11714-23 (c) Follower FIGURE 10. Typical Connections of Guard Rings The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-ta-point up-in-the-air wiring. See Figure 11. FEEDBACK CAPACITOR LGUard Ring Tl/H/11114-20 FIGURE 9. Example of Guard Ring In P.C. Board Layout TL/H/11714-24 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.) FIGURE 11. Air Wiring 1-875 Application Information (Continued) 7.0 Offset Voltage Adjustment 8.0 Upgrading Applications Offset voltage adjustment circuits 'are illustrated in Figures 13 and 14. Large value resistances and potentiometers are used to reduce power consumption while providing typically ± 2.5 mV of adjustment range, referred to the input, for both configurations with Vs = ±5V.. The LMC6484 quads lind LM~82. duals, hav4ij industry standard pin outs to retrofit existing applications. System pe;fOrmance can be greatly increas8d by the LMC6484's futures. ;rile key 'beneflt of designing il) the LMC6484 is increaSEid linear sign.al range. Most op-amps liave I.imitec! input common (!lode. ranges. Signals that exceed tl1isrange generate a n~n-linellr output respOl)se that PElfSists IO!l\l af; ter the iilp!,lt- Signal returns to the common niod~' :rilnge. Unear signal range is vital in. applications such as filters where Signal peaking can exceed input common mode ranges resulting in output phase inversion or severe distor~ tion. . . R4 V+ R3 500kll .>-4-- Vour ~." lkll ~~~-----I 9~q Dat~ Acq~isitio., VTl/H/11714-25 FIGURE 12. Inverting Configuration Offset Voltage Adjustment R4 V+ ..... f V- Rl R3 200 kll R2 10011 VIN Systems Low power, single supply data acquisition system solutions are provided by buffering the ADC12038 with the LMC6484 (F"I{/ure 14)•... Capable of using the full supply range, the LMC6484 does not require input signals to be scaled down to meet limited common' mode voltage rang9$. The LMC6484 CMRR .of 82 dB. maintains integral.linearity of a 12-bit data acquisition system to ±0.325 LSB. Other rail-torail input amplifiers with only 50 dB of CMRR will degrade the accuracy of the data acquisition system to only 8 bits• 500 kll Your Your YiN = 1+ R4 R3 ; R2«R3 TUH/I1714-26 FIGURE 13. Non-Inverting Configuration Offset Voltage Adjustment 5V ADC12Q38 12.1 kll ~""'-I'CHO . 1000pF VIN --II-+----+-...~~... C>----~--------~oow 200kll 10 l'F 3311 O.471'F 130kll L------.... -------4~-------t--_I AGND Tl/H/I1714-26 FIGURE 14. Operating from the same Supply Voltage, the LMC6484 buffers the ADC12038 maintaining excellent accurscy 1-876 .-----------------------------------------------------------------------------,~ a= Application Information (Continued) ~ benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers. 10.0 Instrumentation Circuits The LMC6484 has the high input impedance, large common-mode range and high CMAA needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6484 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6484 an excellent choice for noisy or industrial environments. Other applications that ! A small valued potentiometer is used in series with Ag to set the differential gain of the 3 op-amp instrumentation circuit in Figure 15. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration. 10 kl1 C4 3-20 pr AC CIIR ADJUST 0.1% 50kll 50 kll, 0.1% VOUT L - - - O VRErERENCE TLlH/11714-29 FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier A 2 op-amp instrument8tion amplifier designed for a gain of 100 is shown in Figure 16. Low sensitivity trimming is made for offset voltage, CMAA and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit. Higher frequency and 'Iarger ,common-mode range appiications are best facilitated by a three op-amp instrum,entation amplifier. . " lOll Gain Trim 1911l 9.95k 10k, O. '" ~ SOil CIIRR Trim .>........ VOUT = 100VD I Tl/H/11714-30 FIGURE 16, Low-Power Two-Op-Amp InstrumentaUon,Ampllfler I I I I I 1-877 ~ r-----~--------------~----------~------~--------------------------------------~--~ ~ Application Information (Continued) 11.0 Spic~Macromo,del ' _ V+ , A spice macromodel is avaliable for the L,MCs484. This model includes accurate Iilimulation of: ' • i,QPut co~~on-modevoltage range • frequency and transient response • GBW dependence on loading conditions 10kll "Rt • quiescent and dynamic supply current • output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk. Contact your local National Semiconductor sales office to obtain an operational amplifier spice 'model If~rary disk. TLlH/11714-33 FIGURE 18. Full Wave Rectifier with Input Current Protection (RI) Typical Single-Supply Applications V+=3V ~-""'-VOUT TLlH/11714-31 FIGURE 17. Half-Wave Rectifier with Input Current Protection (RI) TLlHI11714-34 FIGURE 18a. Full Wave Rectifier Waveform V+ R t lOUT _ (V+ lOUT - TLlH111714-32 R VIN) TLlH/11714-35 FIGURE 17a. Half-Wave Rectifier Waveform "IGURE 19,1,.al1le Compliance Range Current Source The circuit in Ftgure 17 uses a single supply to hillf wave" rectify a sinusoid centered about ground. RI limits current into the amplifier caused by the input voltage exceeding the supply voltage. Full wave rectification is provided by the circuit in Figure 18. 1-878 r-----------------------------------------------------------------------------,~ ~ Typical Single-Supply Applications (Continued) O.lll RI ~co ~ 'L \o-~~~~........~........--'--, 100ll R2 Your Your = I kll (RI/R2) 'L RI « R2 TLlH/I1714-36 FIGURE 20. Positive Supply Current Sense 20kll I' i: TLlH/11714-37 FIGURE 21. Low Voltage Peak Detector with Rall·to-Rall Peak capture Range In Figure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate is primarily determined by the value of CH and diode leakage current. The ultra-low input current of the LMC6484 has a negligible effect on droop. 20 kll Your TLlH/11714-38 FIGURE 22. Rail·to·Rail Sample and Hold The LMC6484's high CMRR (85 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range. CI Your TL/H/11714-27 AI = A2,CI = C2;f= 2"'~ICl;DF =~~~ FIGURE 23. Rail-to-Rall Single Supply Low Pass Filter The low pass filter circuit in Figure 23 can be used as an anti-aliasing filter with the same voltage supply as the AID converter. Filter designs can also take advantage of the LMC6484 ultra-low input current. The ultra-low input current yields negligible offset error even when large yalue resistors are used. Thi.s in turn allows the use of smaller valued capaCitors which take less board space and cost less. 1-879 itfl U ~ National Semiconductor ~ ~ LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail :! Input and Output Operational Amplifier General Description The LMC6492/LMC6494 amplifiers were specifically developed for single supply applications that operate from -400C to + 125°C. This feature is well-suited for automotive systems because of the wide temperature range. A unique design topology enables the LMC6492/LMC6494 commonmode voltage range to accommodate input signals beyond the ralls. This eliminates non-linear output errors due to input signals exceeding a traditionally limited common-mode voltage range. The LMC6492/LMC6494 signal range has a high CMRR of 82 dB for excellent accuracy in non-inverting circuit configurations. The LMC6492/LMC6494 rall-to-rail input is complemented by rail-to-rail output swing. This assures maximum dynamic signal range which is particularly important in 5V systems. Ultra-low input current of 150 fA and 120 dB open loop gain provide high accuracy and direct interfacing with high impedance sources. Features (Typical u~less otherwise noted) • Rail-ta-Rail input common-mode voltage range, guaranteed over temperature • Rail-ta-Rail output swing within 20 mV of supply rail, 100 kG load • Operates from 5V to 15V supply 82 dB • Excellent CMRR and PSRR 150 fA • Ultra low input current 120 dB • High voltage gain (RL = 100 kG) 500 pAlAmplifier • Low supply current (@ Vs = 5V) 1.0 ",VloC • Low offset voltage drift Applications • • • • • Automotive transducer amplifier Pressure sensor Oxygen sensor Temperature sensor Speed sensor Connection Diagrams 14·Pln Dip/so 8-Pln DIP/SO 14 r----t--OUT D 1 OUTA-f---, INA--:~ INA+-"';;~=;;;...I ~ -~'ND ~a...;;;;=~1~2_IN D+ .!.2-y- v+~ IN 11"-...;;5+-_--. . TopYlew OUT B 8-Pin Small Outline + 125"C LMC6492AEM LMC6492BEM LMC6492AEMX LMC6492BEMX Transport Media MOM Tape and Reel LMC6492AEN LMC6492BEN Rails 14-Pin Small Outline LMC6494AEM LMC6494BEM Rails LMC6494AEMX LMC6494BEMX LMC6494AEN LMC6494BEN NSC Drawing Rails 8-Pin Molded DIP 14-Pin Molded DIP c+ TUH/I2049-2 Top View Temperature Range Extended -40"C to IN OUT C Ordering Information Package 10 INr--;~ ~;-INC- TLlH/I2049-1 NoaA M14A .Tape and Reel Rails 1-880 N14A Absolute Maximum Ratings (Note 1) Operating Conditions (Note 1) 2.5V If Military/Aerospace specified devices are required, Supply Voltage please contact the National Semiconductor Sales Office/Distributors tor availability and specifications. ESD Tolerance (Note 2) 2OO0V Differential Input Voltage ±Supply Voltage (V+) + 0.3V, (V-) - 0.3V Voltage at Input/Output Pin Supply Voltage (V+ - V-) 16V Junction Temperature Range LMC6492AE, LMC6492BE ±5mA Current at Input Pin Current at Output Pin (Note 3) Current at Power Supply Pin Lead Temp. (Soldering, 10 sec.) Storage Temperature Range Junction Temperature (Note 4) 15.5V +125°C + 125°C 108°C/W 171°C/W 78°C/W 118°C/W 40mA 260'C -65°C to + 150'C 150'C DC Electrical Characteristics Vas s: TJ s: s: TJ s: N Package, 14-Pin Molded DIP M Package, 14-Pin Surface Mount ±30mA Unless otherwise specified, all limits guaranteed for TJ Boldface limits apply at the temperature extremes Symbol -40'C LMC6494AE, LMC6494BE -40'C Thermal Resistance (9JAl N Package, 8-Pin Molded DIP M Package, 8-Pin Surface Mount s: V+ s: Parameter = 25°C, V+ = 5V, V- = OV, VCM = Va = V+ 12 and RL > Typ (Note 5) Conditions Input Offset Voltage 0.11 LMC6492AE LMC6494AE Umlt (Note 6) LMC6492BE LMC6494BE Umlt (Note 6) 3.0 6.0 3.a 8.a 1 MO. Units mV max TCVOS Input Offset Voltage Average Drift Ie Input Bias Current (Note 11) 0.15 200 200 pAmax lOS Input Offset Current (Note 11) 0.075 100 100 pAmax RIN Input Resistance >10 TeraO CjN Common-Mode Input Capacitance 3 pF CMRR Common-Mode Rejection Ratio 1.0 OV s: VCM s: 15V V+ = 15V OV +PSRR -PSRR VCM s: VCM s: 5V 82 82 Positive Power Supply Rejection Ratio 5V s: V+ s: 15V, Va = 2.5V 82 Negative Power Supply Rejection Ratio OV s: V- s: -10V, Va = 2.5V 82 Input Common-Mode Voltage Range V+ = 5Vand15V For CMRR ~ 50 dB V- -0.3 V+ + 0.3 Av Large Signal Voltage Gain RL = 2 kOSourcing (Note 7) Sinking 1-8tH 300 40 /JoV/oC 65 63 80 sa 65 63 80 sa 65 63 80 sa dB min dB min 65 63 80 sa dB min -0.25 -0.25 0 0 V max V+ + 0.25 y+ V+ + 0.25 y+ V min VlmV min DC Electrical Characteristics " Unless otherwise specified, all limits guaranteed f9r TJ = 25D C, V+ = 5V, V- = Boldface limits apply at the temperature extremes (Continued) Symbol Parameter Output Swing Vo ' Conditions , Typ '(Note 5) , V+ =5V' ,RL =, 2kOtoV+/2 4.9 0.1 V+ = 5V RL = 6000 to V+ /2 4;7 O.:l V+ =' 15V RL = 2 kO to V+ /2 14.7 0.16 V+ = 15V RL = 600n to V+ /2 14.1 0.5 Output Short Circuit Current Isc V+ = 5V Isc Sinking, Vo = 5V Output Short Circuit Current Sourcing, Vo = OV V+ = 15V Sinking, Vo = 5V (Note 8) Supply Current Is Sourcing, Vo = OV 25 22, 30 30 LMC6492 V+ = +5V, Vo = V+/2 1.0 LMC6492 V+ = +15V, Vo = V+12 1.3 LMC641!4 V+ = +5V, Vo = V+12 2.0 LMC641!4 V+ = +15V, Vo = V+/2 2.6 ',' 1·882 .' VOM = av, y'o,= V: /2 andRL ;::, 1 MO: 'LMC64jl2AE LMC6494AE Umlt (Note 6) LMC6492BE' LMC6494BE Umlt' (Note 6) 4.8 4.8 4.7 4.7 Units V min 0.18 0.18 0.24 0.24 i' , 4.5 4.5 4.24 4.24 0.5 0.5 0.85 0.85 V max V min V max V 14.4 14.4 14.0 14.0 ~in 0.35 0.35 0.5 0.5 V max 13.4 13.4 13.0 13.0 1.0 1.0 1.5 1.5 16 16 10 10 11 11 8 8 28 28 20 20 30 30 22 22 1.75 1.75 2.1 2.1 1.95 1.95 2.3 ' 2.3 3.5 3.5 4.02 ,4.2 3.1! 3.1! 4.8 ,4.8, V min ; V max mA min mA max mA max mA max mA max AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, .;- = OV, VCM = Vo = V+/2 and RL limits apply at the temperature extremes > 1 MO. Boldface Symbol SR GBW Parameter Slew Rate Gain-Bandwidth Product Conditions {Note 9) LMC6492AE LMC6492BE Typ LMC6494AE LMC6494BE (Note 5) Limit Limit (Note 6) (Note 6) 1.3 V+ = 15V 0.7 0.7 0.5 0.5 Units V",smin 1.5 MHz cf>m Phase Margin 50 Deg Gm Gain Margin 15 dB 150 dB en in Amp-to-Amp, Isolation (Note 10) Input-Referred F=1kHz Voltage Noise VCM = 1V Input-Referred F=1kHz Total Harmonic Distortion lRZ pA 0.06 Current Noise T.H.D. nV 37 F = 1 kHz, Av = -2 RL = 10 kO, Vo = -4.1 Vpp lRZ 0.Q1 % F = 10 kHz, Av = -2 RL = 10 kO, Vo = 8.5 Vpp 0.01 V+ = 10V Note 1: AbsolUte Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate condHions for which the device is intended to be functlonel, but specific performance is not guaranteed. For guaranteed spaeDications and the test conditions. see the Electrical Choracteristics. Note 2: Human body model, 1.5 kO in series wHh 100 pF. Note 3: Applies to both single-supply and splH-supply operation. Continuous short operation at elevated ambient temperature can resuR in exceeding the maximum allowed junction temperature at 150'C. Output currents in excess of ± 30 mA over long term may adversely affect reliability. Note 4: The maximum power dissipation is a function of TJ(max), 8JA and TA. The maximum allowable power dissipation at any ambient temperature is Po = (TJ(max) - TAl/8JA· All numbers apply for packages scldered directly into a PC board. Note 5: Typical Valuee represent the most likely parametric norm. Note 6: All limits """ guaranteed by testing or statistical analysis. Note 7: V+ = 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing testa, 7.5V ,;; Vo ,;; 11.5V. For Sinking testa, 3.5V ,;; Vo ,;; 7.5V. Note 8: Do not short eircuH output to V+, when V+ is greater than 13V or r~liabilHy will be 'adversely affected. Note 9: V+ = 15V. Connected as vottage follower wHh 10V Step input. Number specified is the slower of the positive and negative slew rates. Note 10: Input referred, V+ = 15V and RL = 100 kO connected to 7.5V. Each amp excited in tum wHh 1 kHz to prilduee Vo =12 Vpp. Note 11: Guaranteed limits are dictated by teeter limits and not device performance.' Actual performance is reflected in the typical value. '" - 1-883 Typical Performance Characteristics Vs = +1SV, Single Supply, TA = 2S C unless otherwise specified D SUpply Current va SUpply Voltage 2.0 "< 1.6 +125 O C ..s u +85 O C ii3 1.2 +25 0 C - ,/ I ~ ~ 1.0 -55°C 0.8 """ ..", 0.6 0.0 o 2 .If 1 , 0.4 D.2 O. 11'" 4 6 8 10 12 14 16 25 50 SUPPLY VOLTAGE (V) 75 100 125 150 0.1 Sourcing Current va Output Voltage 100 100 10 10 "< 100 Sinking Current va Output Voltage "< ..s ..s !! ~ 0.1 0.01 0.1 0.01 0.01 '10 0.1 0.01 0.1 10 ~tput Voltage ~.renCed, to Vs (V) Output Yoltage Referenced to Vs (V) SInking Current va Output Voltage SInking Current va Output Voltage 100 ! 100 10 ~ 10 "< i "< ..s ..s... c in 0.1 0.01 0.1 0.01 Output Voltage Swing va Supply Voltage 30 27 24 ~ 18 15 ~ 12 l;1 9 ~ 10 0.01 Output Voitag' Referenced to GND (V) 0.1 10 200 :s l:! iii 160 140 \ 80 ~ 60 40 ~ Vs 100 §! 80 = 15V \ 120 , 20 00 10 ~ 100 - ~-;;;; MEG SWING I I I I ........ II I\. = 100kn I I I 3 6 9 12 15 SUPPLY VOLTAGE (v) ~ 70 IIII 60 Vs = 15V F=lkHz tl 50 ! lk l- Input Voltage Noise va Input Voltage I 180 I I I I 1/ Output Voltage Ref.renced to GND (V) Input Voltage Noise va Frequency ~..... I I I ~ 0.1 (v) Output Voltage Ref.renced to GND w ~ in 10 Output Voltage Rtf,renced to Vs (V) TEMPERATURE (DC) Sourcing Current va Output Voltage J Sourcing Current va Output Voltage 1000 I 1.8 ~ Input Current va Temperature iii ~ 40 30 20 10k 0 1 23" S 6 7 8 9101112t3U·1516 FREQUENCY (Hz) COMNON MODE INPUT VOLTAGE (V) TLlH/12049-3 1·884 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25°C unless otherwise specified (Continued) Input Voltage Noise vs Input Voltage Input Voltage Noise vs Input Voltage 80 ~ v! .'5)- 70 = 1 kHz F' ~ 60 tl 50 ~ ~ .jQ ...i 1 ! ~ I ~ r-- ~ .... 30 ~ 170 F 50 liD 0.5 1.5 = 5V BO '01 3 Negative PSRR Frequency Vs 60 = " 3V 50 '01 3 ~ ~ ~ ~ 70 60 "- 20 10 0 10 100 Ik 10k I lOOk 10 100 120 lit. = 5kG 10k lOOk CMRRva Input Voltage 120 .-.--,r-1-r-r-r--__, Vs = :t7.5V f - 10kHz lit. = 5kll 100 Ik FREQUENCY (Hz) CMRRva Input Voltage = "" 30 FREQUENCY (Hz) Vs 5kG \. 3V .0 10 I D 90 = SO 20 CMRRva Frequency BO Vs 60 J lit. ~ I 70 '" FREQUENCY (kHz) 100 = '5V _ t - - BO .jQ 10.0 v. 90 lit. =1 SkI! 0 1.0 10.0 VB 30 100 "" - - I 70 K! 0.1 I •• FREQUENCY (kHz) 100 v. = 5V 90 ~ .0 0.1 Positive. PSRR va Frequency r-..... ,.0 50 2.5 COMMON MODE INPUT VOLTAGE (v) lit. = 5kll ISO ~ g; 120 100 Ys ......... 130 100 liD '01 3 i;i ill 20 0 160 120 ~ ISO 30 !:i 170 130 - 15V lit. = SkI! ,.0 ~ I....... Crosstalk ReJection va Frequency i;i ....... V ".... '01 3 = Ys 160 .jQ COMMON NODE INPUT VOLTAGE (v) ill = 1kHz 60 0 ~ I=3)- v. 70 ~ 20 ! Crosatalk ReJection va Frequency 80 r- 15Y HH--t-++-t 100 ;'lit.==,:!:: = SkI! ! B°r-HH--t-t-t-+++-t g; ~ 60~~H--t-+-+-t-~+4 30 20 10 o 10 100 Ik 10k 1.0 Vs .. :l:1.5V F ..... aVos vaCMR 1.0 O.B = 10kHz lit. = 5kG ! :'fl ~. ! i'2.~V 0.6 0.4 Lo.I ~ G I -0 .• -0.6 -1.0 0.8 0.9 1.21.5 INPUT VOLTAGE (v) 0.6 0.4 0.2 ,/ ... -0.2 -0.8 20 J v. = i1.5V 3!; -0.2 -3 -2 -I 0 V,N (v) -0•• -0.6 -0.8 -1.0 -2 -1.5 -I -0.5 0 0.5 I 1.5 2 V,N (v) TUH/I2049-4 1·885 ~ I vaCMR O.B "> ..s :'fl 0.2 3!; -f.5-1.2-0.9~.8-o.3o.00.3 INPUT VOLTAGE (V) aVos CMRRvs Input Voltage 100 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 INPUT VOLTAGE (v) FREQUENCY (Hz) 120 ~~~~-J-L-L-L-L-L~ 20 -7.5-8.0 ......S-3.0-UO'O 1.5 3.0 4.5 6.0 7.5 lOOk I Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25°C unless othel'Wisespecified (Continued) 160 160 ~ '2t 120 s.=, w I\-i ~1 • 80 ~ 140 6'bo " .3 ~ Vs • '7.5V > 120 CSi2 ~ 80 ~ -.0 ~ ~' -80 -120 2,,'1 3 z ~. 60 ~ ~ 0 ~ 2 .'6 "" I\.'~ z ~ I\. .~ '600n -1 ,"I' 0.1 1 ...... 10 60 ~ '3 z. ~. .0 JGAIN ~ \ c,: • . -30 iE ~ ~a! ~ ~ ~ 45 500(, w . 3 10k -55o~- lOOk ~ 10 IGA'f'lmtI.. G. • 10 .\ " -10 " G. = 1000pF 90 1111 10k . ~ a! 800 700 w ~ 600 ~' 500 .00 i 300 !. 200 100 0 IN lOOk g £ iE .5 Vs • 15V 900 w G. • 0 G. • 500 pF / -50 1000 .5 ~ r-- 10M 0.1 10 FREQUENCY (Hz) 1.45 l 700 500 .00 300 200 1.40 Ay = +1 1\.' 'V1N I 10kn = wpp 1.35 ";::. 1.30 ~ 1.25 ~ 1.15 10000 Non-Inverting Large Signal. ~ulse :Response 1.1 I I I I It\iOt~ I~\.\.\\IG~;'" I 1.20 .r ~~s~~ 1.10 I 1.00 1000 10000 1000 ~ 1.05 100 100 FREQUENCY (kHz) Slew Rate vs Supply Voltage 1.50 100 Open Loop Output Impedance vs Frequency f'l+t S';O'~F G.'1000pF 10M 600 FREQUENCY (kHz) 0.1 = 15V 90 = 600n I\. 'N..ITll!I"ii I-40 I- 90 1M 100 0 FREQUENCY (kHz) Vs I 111111I'PHAs. 20 -20 Vs • 5V 10 ~ ~ -45 10M 1M z .5 800 0 ·0.1 10 ~ ill := 111111 85°C ,11111111 30 Open Loop Output Impedance vs Frequency 900 Vs' 15V I\. = 2kn THO' 3% 6 125°C FREQUENCY (Hz) 1000 £ w 20 -30 lOOk 90 ~ 40 ~ -50 Ay • +1 ~ Gain and Phase vs capacitive Load IIIII~ 11111111 111111 125°C lk 1l'IIl~ -40 15 111111 asoc -10 £ 11111111 Maximum Output Swing vs Frequency 180 FREQUENCY (Hz) G..O""- 10k 1111111 30 "', 10 100 lk 10k lOOk 1M 10M 135 _~I~~~ 10 ~~! 0 1 FREQUENCY (Hz) I\. • ·11111111 50 -10 0.1 Vs " 15V 2kn 111111 70 IlIv,=m 'I. = 500kn 90 III'PHAS' 11J1'... GAIN 20 1 Open Loop Frequency Response vs Temperature 10 100 lk 10k lOOk 1M 10M rm::::: 30 0 80 -20 -20 g " OUTPUT VOLTAGE (V) Gain and Phase vs Capacitive Load 3 ",. -20 -2 FREQUENCY (Hz) .. ~. 20 50 -20 40 Vs • 15V 40 -80 -3 Vs =.3V 20 50 • 60 ~. -40 8 Open Loop Frequency Response I\. • 500kn 40 -.0 3 - ' I . = 50kJl OUTPUT VOLTAGE (v) .. 80 'I.= .. o~ -160 ~ 80 1 't.l"'lJ .too.fQ 100 . -120 -160 100 I-- Vs' U.5V (1004 40 ~ 120 .. ~ 120 ~~ • SOkQ .0 ~. ~ ~ . Open Loop Fre.quency Response Input Voltsge vs Output Voltage Input Voltage vs Output Voltage I -K 1, TA = +125 0 C, ~ r\. 'rv '.2k n - 1p... - J/ II" 3 • 5 6 7 8 9 10111213141518 SUPPLY VOLTAGE (v) TLlH/I2049-5 1-886 .-----------------------------------------------------------------------------'r !!: Typical Performance Characteristics + 15V, Single Supply, TA = Vs = (") G) 25°C unless otherwise specified (Continl.>ed) Non-Inverting Uirge Signal Pulse Response ~ Non-Inverting Small Signal Pulse Response Non-Inverting Large Signal Pulse Response r= ~ ~ ~ ~ 1;1 ...z ~ 1;1 -f- r- -1\ ~ ~ ~ = +25 0 C, I--f- TA r- .1\. = 2kll I I I 1\ § 1, l/ t7 -l- ~ ~ ~ ;;~f- -~ = -55·C. I\. = 2kll _ - TA _ 1, :;7'~ ~ ~ 11" 50m~ SOm'Y 11" ~ ~ ~ ~ " "> ~ in II 1\ E " ~ i 11" ~ ~ ~ s:- z -f- TA = -55 0 C, 1\.=2kll II II If' ~ II ~ -'- I\. = 2 kn II 1;1 ~ 1, 1, ~ 1\ A ~ V 1, 1, 11" 11" Inverting Small Signal Pulse Response ~ ili in ~ ~ -r- ~ s:-o TA = -55°C, I\. = 2 kll ~ ~ ~ "- A § 1, 1, n~E (ll'./OlV) ...z " 1;1 '" E 1;1 \ 1\ TINE (l!'./DlV) Inverting Large Signal Pulse Response ~ s:o C. ~ ~ ~ § 1/" TA = +12S o C, = 2kll '-r-- I\. ~ I 1\ SOmV' SCmV' 1/" Inverting Small Signal Pulse Response Stabllityvs Capacitive Load 10000 ...z 1;1 ~ > E ~ ~ ~ ~ s:- ~ e" 1;1 5 Av r--r- TA = +25 0 C, I\. = 2kll - il '!; r-- 1 VI 5 1\ SOmy SOmV' 11'0 n~E (1 po/OIV) I' § ~ s:~ > ." ~ = +1 Vs = :t7.SV ~ 1;1 ~ ~ ~ -r- TIME (lp./DlV) Inverting Small Signal Pulse Response z r- -f- = 2kQ / 6 11" ~ C1 TA = +125 0 C. r-f- - I\. ~ ~ ~ in = +25 ~ nNE (1 /,o/OIV) ~ TA s:o 1;1 II 50m'. SOmV' Inverting Large Signal Pulse Response § II 11 i n~E (11'./D1V) ~ I--f- if' Inverting Large Signal Pulse Response SOm'. SOm'; "- = 2kll Non-Inverting Small Signal Pulse Response ~E -f- TA = +2S 0 C, I\. = 2kll If' " ~ s:o TA = +125 OC. I\. Non-Inverting Small Signal Pulse Response ;;- ~ 6 r-f- T1NE (1 J,,/D1V) ~ ~ " § ... ~ E ~ '"in l/r l,l .e.> ...z nNE (11'./D1V) ~ ~ I I I I "- '-f- n~E (11'./D1V) ~ in ~ ~ in i i 11" 1, ... ~ ~ 1;1 ~ ~ ~ z CD E ~ Q -r-r- TA = -55°C. I\. = 2kll II 1 1\ SOmy SOmV' 1/" TINE (1 p./OIV) -r- ... = 1 wn 1000 JJW W UNSTABLE ,1,,111 9 ~ > ;: ~ 100 <'l 25% OVERSHOOT I I I I I 10 -6 -5 - .. -3 -2 -1 0 1 2 3 .. 5 6 VOUT (V) TUH/1204S-6 1-887 ~ ! to) ~ ,---------------------------------------------------------------------------------, Typical Performance Characteristics Vs = I + 15V, Single Supply, TA = 25°C unless otherwise spElcified (Continued) Stability vs Capacitive Load Stabllltyvs CapaclUve Load 10000 lQOOO ~ ~ ~ '" 1 Vs ==n.sv '1.=" 1 1 1 1 UNSTABLE .'!> 1000 ~ ~ ~ Stability vs Capacitive Load 10000 '" =1 Vs = :I:1.5V A., = 10 Vs .. i7.5V It1 UN~~~ 1000 -=~ §'" ~ I I 25" OVERSHOOT 10 -6-5-4-3-2-10 1 23 .. 5 6 10 -6-5--4-3-2-10 1 2.3 ... 5 6 VOU, (v) VOUT (V) VOUT (V) Stability vs Capacitive Load 10000 Stabilltyvs Capacitive Load 10000 A., = 10 Vs = 10 =i7.5V 'I. = soon A., = :t:7.SV Vs 'I. = 2k C' ! 1000 ~ ~ ~ 100 -4 , GN=::: , Your •• ........ TLlH/12049-9 FIGURE 2. A ± 7.SV Input Signal Greatly Exceeds the SV Supply in FIgure 3 Causing No Phase Inversion Due to RI Applications that exceed this rating must extemally limit the maximum input current to ± 5 mA with an input resistor (RI) as shown in Ftgure 3. TLlH/12049-11 FIGURE 4. Cancelling the Effect of Input capacItance capacitive Load Tolerance All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see Typical Curves). Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an OSCillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 5. TLlH/12049-10 FIGURE 3. Rllnput Current Protection for Voltages Exceeding the Supply Voltages 1-869 Application Notes (Continued) CI +V O.II'F INPUT J.,fo,""''f-4~-~Yr-'' I I Guard Ring ~ r G.OAD 330 pF I , OUTPUT I 'TL/H/12049-14 (a) Inverting Amplifier R2 TUH/I2049,-12 FIGURE 5. LMC6492/4 Nonlnverting Amplifier, Compensated to Handle Capacitive Loads Prlnted-Clrcult-Board Layout for High-Impedance Work It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speeiallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6492/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LMC6492/4's inputs and the terminals of components connected to the op-amp's inputs, as in Figure 6. To have a signi~cant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 33 times degradation from the LMC6492/4's actual performance. If a guard ring is used and held within 5 mV of the inputs, then the same resistance of 1011 0 will only cause 0.05 pA of leakage current. See Figures 78, 7b, 7c for typical connections of guard rings for star)dard op-amp COnfigurations. ~o " OUTPUT TUH/12049-15 (b) Non-Inverting Amplifier OUTPUT INPUT TL/H/12049-16 (c) Follower FIGURE 7.Typlcal Connections of Guard Rings The designer should be aware,that when it Is inappropriate to layout a PC board for,th'e sake of just!! few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the 'amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have, to for.go some of the, advantages of PC board construction, but the advanta!l6s are sometimes well worth the effort of using point-ta-point up-in-the-air wiring. See Figure 8. , FEEDBACK CAPACITOR' rn rn ' [1'" -INI +IN1 0 0 -+-+--1 _v- TUH/12049-17 (Input pins are lifted oul of PC boaid and soldered directly to components. All other pins connected 10 PC board). L FIGURE 8_ Air Wiring t.GUard Ring TL/HI12049-13 FIGURE 6. Examples of Guard Ring in PC Board Layout ' 1-890 Application Circuits Instrumentation Amplifier DC Summing Amplifier (VIN ~ OVDC and Vo ~ VDC) R llJ1111 R3 R4 ,Ok 'OOk Vo ·OUT 1. +v"o--'II..,.".... R R6 TLlH/I2049-18 Where: Vo = V, + V2 - V3 - V. (V, + V2 ;;, (V3 + V41 to keep Vo > OVoc 'Ok If Rl = RS. R3 = R6. and R4 High Input 1, DC Differential Amplifier VOUT V,N R2 lD110 R7 9,k 20k pot TLlHI12049-21 = R7; then = R2 + 2Rl x~ R2 R3 :. Av :::: 100 lor circuit shown (R2 = 9.3k). Rail-to-Rall Single Supply Low Pass Filter CI v. VOUT TL/H112049-19 Rl For R2 R4 . = R3 (CMRR d_nds on thIS resistor ratio match) TLlHI12049-22 Vo=I+~(V2-V,) R3 1 Rl = R2. Cl = C2; I = ~ Damplng Factor = All shown: Vo = 2(V2 - V,) fC2fR2 y. 'Ie; VAl This low-pass filter circuit can be used as an anti-aliasing filter with the same supply as the AID converter. Filter designs can also take advantage of the LMC6492/4 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less. Photo Voltaic-Ceil Amplifier R, 1M Low Voltage Peak Detector with Rail-ta-Rall Peak Capture Range 20 kn >-"-OVo (CELL HASOV ACROSS IT) V,N TLlHI12049-20 TLlHI12049-23 Dielectric absorption and leakage is minimized by using a polystyrene or polypropylene hold capacitor. The droop rate is primarily determined by the value of CH and diode leakage current. Select low-leakage current diodes to minimize drooping. 1-891 Application Circuits (Continued) Pressure Sensor In a manifold absolute pressure sensor application, a strain gauge is mounted on the intake manifold in the engine unit Manifold pressure causes the senSing resistors, R1, R2, R3 and R4 to change. The resistors change in a way such that R2 and R4 increase by the same amount R1 and R3 decrease. This causes a differential voltage between the input of the amplifier. The gain of the amplifier is adjusted by Rt. ~~ Spice Macromodel Vo A spice macromodel'is available for the LMC6492/4. This model includes accurate simulation of: • Input common-model voltage range • Frequency and transient response • GBW dependence on loading conditions • Quiescent and dynamic supply current • Output swing dependence on loading conditions and many other characteristics as listed on the macromodel disk. Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk. TL/H/I2049-24 AI ~ Ax AI» AI. A2. A3. and A4 V _ (~_~)AI(A3+A4)V 0- Al+A2 A4+A3 A3A4 REF 1-892 r-------------------------------------------------------------------------, r a:::: n ~ ..... ttlNational Semiconductor ~ r a:::: LMC6574 Quad/LMC6572 Dual Low Voltage (2.7V and 3V) Operational Amplifier § Features General Description Low voltage operation and low power dissipation make the LMC6574/2 ideal for battery-powered systems. 3V amplifier performance is backed by 2.7V guarantees to ensure operation throughout battery lifetime. These guarantees also enable analog circuits to operate from the same 3.3V supply used for digital logic. Battery life is maximized because each amplifier dissipates only micro-watts of power. The LMC6574/2 does not sacrifice functionality for low voltage operation. The LMC6574/2 generates 120 dB of openloop gain just like a conventional amplifier, but the LMC6574/2 can do this from a 2.7V supply. These amplifiers are designed with features that optimize low voltage operation. The output voltage swings rail-to-rail to maximize signal-to-noise ratio and dynamic signal range. The common-mode input voltage range extends from 800 mV below the positive supply to 100 mV below ground. (Typical unless otherwise noted)· • Guaranteed 2.7V and 3V Performance • Rail-to-Rail Output Swing (within 5 mV of supply rail, 100 kG load) • Ultra-Low Supply Current 40 p.A/Amplifier • • • • Low Cost Ultra-Low Input Current High Voltage Gain @ Vs=2.7V, RL =100 kG Specified for 100 kG and 5 kG loads 20 fA 120 dB Applications • • • • • • Transducer Amplifier Portable or Remote Equipment Battery-Operated Instruments Data Acquisition Systems Medical Instrumentation Improved Replacement for TLV2322 and TLV2324 This device is built with National's advanced Double-Poly Silicon-Gate CMOS process. Connection Diagrams 8-Pln DIP/SO OUTPUT A -+--, INVERTING INPUT A -=-+-~ NON-INVERTING INPUT A 14-Pln DIP/SO INPUT 4- I{" v· OUTPUT B INVERTING INPUT B L-_-+";"" NON-INVERTING INPUT B TL/H/II934-1 Order Number LMC6572AIN, LMC6572BIN, LMC6572AIM or LMC6572BIM See NS Package N,umber ND8E or MD8A INPUT 1- TL/H/I1934-2 Order Number LMC6574AIN, LMC6574BIN, LMC6574AIM or LMC6574BIM See NS Package Number N14A or M14A Ordering Information Package Temperature Range Industrial, - 40"C to + 85"C NSCDrawing Transport Media s-Pin Molded DIP LMC6572AIN, LMC6572BIN N08E Rail 8-Pin Small Outline LMC6572AIM, LMC6572BIM MOsA Rail 14-Pin Molded DIP LMC6574AIN, LMC6574BiN N14A 14-Pin Small Outline LMC6574AIM, LMC6574BIM M14A LMC6572AIMX, LMC6572BIMX LMC6574AIMX, LMC6574BIMX 1-893 Tape and Reel Rail Rail Tape and Reel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor sales Office/Distributors for availability and specifications. ESD Tolerance (Note 2) 2000V ± Supply Voltage Differential Input Voltage (V+) +0.3V; Voltage at Input/Output Pin (V-) -0.3V SupplyVoltage(V+ - V-I Storage Temperature Range Junction Temperature (Note 4) , 12V ±5mA Current at Input Pin Current at Output Pin (Note 3) Current at Power Supply Pin Lead Temperature (Soldering, 10 Seconds) 2.7V ii;V~ ~ 11V Supply Voltage Junction Temperature Range LMC6572AI, LMC6572BI LMC6574AI, LMC6574BI , -40"C ~ TJ ~ +85°C :-40",C ~ TJ ~ +85°C Thermal "Resistance (9jA> JI.I Package, 8~Pin Molded DIP M Package, 8-Pin Surface Mount N Package,14-Pin Molded DIP M Package, 14-Pin Surface Mount 115°C/W 193°C/W 81°C/W 12a"C/W , ±10mA 35mA 260"C -65°C to + 150°C 150"C 2.7V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C. V+ = 2.7Y, V- = OV, VCM = YO = V+ 12 and RL > 1MO. Boldface limits apply at the temperature extremes. Symbol Vos Parameter Input Offset Yoltage TCVos Input Offset Voltage Average Drift 18 Input Current los Typ (Note 5) Conditions V:I' = 2.7Vand3V 0.5 LMC6574AI LMC6572AI Limit (Note 6) LMC6574BI LMC6572BI limit (Note 6) 3 7 3.5 7.5 1.5 mY Max /LVrC 0.02 Input Offset Current Units 10 10 pA Max 6 6 pA Max 0.01 RIN Input Resistance >1 TeraO CIN Common-Mode Input Capacitance 3 pF CMRR Common Mode Rejection Ratio OV ~ VCM Y+ = 5V Positive Power Supply Rejection Ratio 2.7V ~ V+ V- =OV Negative Power Supply Rejection Ratio -2.7V ~ VV+ = OV Input Common-Mode Voltage Range V+ = 2.7Vand3Y for CMRR ~ 50 dB +PSRR -PSRR VCM ~ 3.5V ~ 75 5V, ~ 75 -5V, 83 -0.1 Y+ - 0.8 Av Large Signal Voltage Gain RL = 100kO (Note 7) Sourcing 1000 Sinking 500 , 1-894 63 60 60 57 67 60 65 58 dB Min dB Min 75 67 73 65 dB Min -0.05 -0.05 0 0 V Max V+ - 1.0 Y+ - 1;3 Y+ - 1.0 Y+ ':"1.3" V Min V/mV VlmV 2.7V DC Electrical Characteristics (Continued) = Unless otherwise specified, all limits guaranteed for TJ Boldface limits apply at the temperature extremes. Symbol Vo Parameter' Output Swing 25°C. V+ = 2.7V, V- Typ (Note 5) Conditions V+ = 2.7V RL = 100 kO to V+ /2 2.695 0.005 V+ = 2.7V RL = 5kOtoV+/2 2.66 0.04 V+ = 3V RL = 100 kO to V+ /2 2.995 0.005 V+ = 3V RL = 5kOtoV+/2 2.96 0.04 Isc Output Short Circuit Current Sourcing, Vo Supply Current 6.0 OV OV, VCM = Vo = V+ /2 and RL LMC6574BI LMC6572BI Limit (Note 6) 2.68 2.65 2.88 2.82 0.03 0.06 0.05 0.09 2.55 2.45 2.45 2.35 0.15 0.25 0.25 0.35 2.98 2.95 2.98 2.93 0.03 0.06 0.05 0.09 2.85 2.75 2.75 2.85 0.15 0.25 0.25 0.35 4.0 4.0 Quad Package V+ = +2.7V, Vo = 160 Quad Package V+ = +3V, Vo V+/2 V+/2 160 = Dual Package V+ = +2.7V, Vo 80 = V+ /2 80 = V+/2 1-895 > 1MO. Units V Min V Max V Min V Max V Min V Max V Min V Max 3.0 rnA 2.0 Min " 2.7V Dual Package V+ = +3V, Vo = LMC6574AI LMC6572AI Limit (Note 6) 3.0 Sinking, Vo Is = = 3.0 2.5 rnA 2.0 1.5 Min 240 240 pA 280 280 Max 240 240 /LA 280 280 Max 120 120 /LA 140 140 Max 120 120 /LA 140 140 Max 2.7V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, Y+ = 2.7V, Y- = OY, YCM = Yo = Y+ 12 and RL Boldface limits apply at the temperature extremes. Symbol SR GBW Parameter Slew Rate Gain-Bandwidth ProduCt CondlUons Y+ = 2.7Yand3Y (NoteS) Typ, (Note 5) 90 Y+ = 3Y LMC6574AI LMC6572A1 Umlt (Note 6) LMC6574BI LMC6572BI Limit (Note 6) 30 30 10 10 > 1 MO. Units Vlms Min 0.22 MHz m Phase Margin 80 Deg Gm Gain Margin 12 dB dB Amp-to-Amp Isolation (Note 9) 120 en Input-Referred Yoltage Noise F=1kHz YCM = 1V 45 in Input-Referred Current Noise F=1kHz 0.002 T.H.D. Total Harmonic Distortion F= 10 kHz, Av= -2 RL = 10kO, YO = 1.0Ypp 0.05 nVlVHz pA/VHz % Note 1: Absolute Maximum Ratings indicate-limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is Intended to be functlonel. but specific performance Is not guaranteed. For Quaranteed specifications and test conditions. see the Electrical Characteristics. ,Note 2: Human body model. 1.5 kn in aeries with 100 pF. Note 3: Applies to both slngle-supply and splft-supply operation. Continuous short eireuH operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150'C. Note 4: The maximum power dissipation Is a function of TJ(Max). (JJA. and TA. The maximum allowable power dissipation at any ambient temperature Is Po = (TJ(Max) - TAl/(JJA. All numbers apply lor packages soldered directly into a PC board. Note 5: Typical values represent the most likely parametric norm. ~ 8: Aillimils are guaranteed by testing or statistical analysis. Note 7: V+ = 3V. VCM = 1.5Vand RL connected to 1.5V. For Sourcing tests, 1.5V s: Vo s: 2.5V. For Sinking teste. O.5V s: Vo s: 1.5V. Note 8: Connected as Voitegs Follower with 1.0V step inpul Number specified Is the slower of the positive and nagalive slew rates. Note 9: Input referred. V+ = 3V and RL = 100 kG connected to 1.5V. Each amp excited in tum 'Yfth 1 KHz to produce Vo = 2 Vpp. 1-896 Typical Performance Characteristics Supply Current va Supply Voltage (Dual Package) 100 I-- 90 80 ~ r:.: .... I-- 60 1 I a ~O ,/ ,/ " 0.00 I I V- / o. I I 30 20 10 Sourcing Current vs OUtput Voltage ,/ ! 50 J = 25"C. Unless otherwise specified Input Current vs Temperature . 10 e.lj;o~ +3V. TA 100 fooo-"t~OC 70 .3 l-- .. 40ot = Vs I o o 10 12 25 50 75 100 125 ISO Temperature (Oc) Supply Volt.ge (V) Sinking Current va Output Voltage Output Voltage Referenced to Vs (V) Output Voltage Swing vs Supply Voltage Input Voltage Noise vs Frequency 200 Ii A - lA'"! ~ 140 POSITIVE SWING ./' N~GATIVE Sj'NG 180 ~ 160 ! 120 : 100 I 80 j 60 ~ 40 I-- 10 60 i u , 100 - 120 :; ..,. ~ 50 ~ ~ ~ ~ ~o 100 lk 10k 20 10 10 lOOk 0 10 100 lk 10k .3 50 1 ~O 30 W~~ ..,. ~ -F" -2 10~~~~~~~~LW~ Ik Frequency (Hz) 10k lOOk 100k ~ 90 ¢ 70 I\. =5kll 30 XI Jr 20 10 Av. -~ 50 ~ = 100kll 30 10 ~ £ ~ il: -10 II\. =Skll'" -10 -8 -2.0 -1.5 -1.0 -0.5 0 10k IIIII rRt! 50 -6 20 Ik Open Loop Frequency Response 40 I-~ 3. ~ 60 I fl '" rs~ 1-1-" "> 80 70 1\ 100 Frequency (Hz) Input Voltage vs Output Voltage (Vs = ± 1.5) 90 100 10 100k Frequency (Hz) 110 100 10 ~O 20 CMRR vs Frequency ~ u 60 50 30 Frequency (Hz) ::II 70 30 o 10 ~ 90 80 60 ~ 10k Negative PSRR va Frequency 70 ..,. Ik Frequency (Hz) i'- 80 I I 100 100 90 1~0 ..,. 10 100 ~ I 12 Positive PSRR vs Frequency Crosstalk ReJection vs Frequency 80 .......... o Supply Voltage (V) Output Voltage Referenced to GND (V) .3 "- 20 l\.i'OO~1I . ..,. \. \.. -30 111111111 0.5 1.0 1.5 2.0 Output Voltage (V) Ik 10k lOOk 1M Frequency (Hz) TLfHfI1934-3 1·897 r---------------------------------------------------------------------------------, ~ ti' Typical Performance Characteristics ';.... ~ Open Loop Frequency Response vs Temperature ' .... (Continued)Vs = +3V;TA= 25"C,UnlessotheI'WiSe'Specified Maximum Output SWing vs Frequency ZOUT vs Frequency , 4k II) B ....::E '\ = Skn 90 50 30 10 l ~ ~ ~ 2.Sk t 2k .§ I -10 Vs = :t2.5V S 3k t ! ii ;:: Jllllllm 3.5k V5 =3V 70 1.5k i , lk 500 -30 "" o lk 10k to IN lOOk Frequency (Hz) toO 100 lk tOk Non-Inverting Large Signal Pulse Response Slew Rate vs Supply Voltage' tOOk IN Frequency '(Hz) Frequency (kHz) Non-Inverting Small Signal Pulse Response . 0.16 0.15 ~ 1;;; .-- / f~LLlNG 1 0.1. I ---1~. Vour • quiescent and dynamiC supply current • output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk. R2 Rl +3V _.JVI/Ir-t--JVil~--' 470k 470k R3 470k Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk. TUH/11934-15 FIGURE 8. 1 Hz Square Wave Oscillator TypIcal Slngl8-Supply Applications .. , ",. l1U1 VIo-~W,_.... Trim R V2 o-~Wi.,.-"'" R CW' " Trim VOUT " 100VD V3 o--w,.,.--, >-....-OVOUT R TUH/I1934-13 FIGURE 6. Low-Power Two-Op-Amp Instrumentation Amplifier ..s;:q ~t ~!!Sl+ R V4o-~W,_'" R VOUT "VI +V2 - V3 - V4 20ko. I I • ~CD4066BM ... TUHI11934-16 FIGURE 9. AdderlSubtractor Circuit Vour 0.47 pF J,c"OI.D 2.37 kll SAMPLE >-....-oVour TUH/II934-14 FIGURE 7. Sample and Hold 15 kll 15 kll FeuTorr = 100 Hz Av" 2 Q" 0.707 TUHI11934-17 FIGURE 10. Low Pass Filter 1-901 m d ~ (ill' Nat i on a I O PRELIMINARY S e m i con due tor ....... ~ B LMC6582 Dual/LMC6584 Quad ~ Low Voltage, Rall-To-Rall Input and Output CMOS Operational Amplifier General Description The LMC6582/4 is a high pertormance operational amplifier which can operate over a wide range of supply voltages, from 1.8V to 10V. It has guaranteed specs at 1.8V, 2.2V, 3V, 5V, and 10V. The LMC6582/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier assures maximum dynamic signal range. This rail-to-rail performance of the amplifier, combined with its high open-loop voltage gain makes it unique among rail-torail CMOS amplifiers. The LMC6582/4 is an excellent upgrade for circuits using limited common-mode range amplifiers. The LMC6582/4 has been designed specifically to improve system performance ,in low voltage applications. Guaranteed operation down to 1.8V means that this family of amplifiers can operate at the end of discharge (EOD) voltages of several popular batteries. The amplifier's 80 fA input current, 0.5 mV offset voltage, and 82 dB CMRR maintain accuracy in battery-powered systems. For a single. dual or quad CMOS amplifier with similar specs and a powerdown mode, refer to the LMC6681/2/4 datasheet. Features (Typical uniess otherwise noted) • Guaranteed Specs at 1.8V, 2.2V, 3V, 5V, 10V • Rail-to-Rail Input COl"(1mon-Mode Voltage Range • Rail-to-Rail Output Swing (within 10 mVof supply rail, @ Vs = 3Vand RL = 10 kO) • CMRR and PSRR 82 dB • Ultra Low Input Current 80 fA • High Voltage Gain (VS = 3V, RL = 10 kO) 120 dB • Unity Gain Bandwidth 1.2 MHz Applications • • • • • • Battery Operated Systems Sensor Amplifiers ' Portable Communication Devices Medical Instrumentation Level Detectors, Sample-and-HoldCircuits Battery Monitoring Connection, Diagrams 8-Pln DIP/SO 14-Pin DIP/SO OUT A IN AIN A+ v+ IN s+ TL/H/12041-1 IN s- IN C- OUT B OUT C Top View TL/H/12041-2 Top View Ordering Information Package Temperature Range Industrial, -40'Cto + 85°C NSC Drawing Transport Media 8-pin Molded DIP LMC6582AIN, LMC6582BIN N08E Rails 8-pin Small Outline LMC6582AIM, LMC6582BIM LMC6582AIMX, LMC6582BIMX M08A M08A Rails Tape and Reel 14-pin Molded DIP LMC6584AIN, LMC6584BIN N14A Rails 14-pin Small Outline LMC6584AIM, LMC6584BIM LMC6584AIMX, LMC6584BIMX M14A M14A Rails Tape and Reel 1-902 PRELIMINARY tflNational Semiconductor LMC6681 Singie/LMC6682 Dual/LMC6684 Quad Low Voltage, Rail-To-Raillnput and Output CMOS Amplifier with Powerdown Features General Description The LMC6681 1214 is a high performance operational amplifier which can operate over a wide range of supply voltages, from 1.8V to 10V. It has guaranteed specs at 1.8V, 2.2V, 3V, 5V, and 10V. The LMC6681 1214 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier assures maximum dynamic signal range. This rail-to-rail performance of the amplifier, combined with its high open-loop voltage gain makes it unique among CMOS rail-to-rail amplifiers. The LMC6681/2/4 is an excellent upgrade for circuits using limited common-mode range amplifiers. The LMC6681/2/4 has a powerdown mode which can be triggered externally. In this powerdown mode, the supply current decreases from 1.4 rnA (for two amplfiers) to 1.5 ,...A (for two amplifiers). The LMC6684 has two powerdown options. Each of the powerdown pins disables two amplifiers. The LMC6681/2/4 has been designed specifically to improve system performance in low voltage applications. The amplifier's 80 fA input current, 0.5 mV offset voltage, and 82 dB CMRR maintain accuracy in battery-powered systems. (Typical unless otherwise noted) • Guaranteed Specs at 1.8V, 2.2V, 3V, 5V, 10V • Rail-to-Rail Input Common-Mode Voltage Range • Rail-to-Rail Output Swing (within 10 mV of supply rail, @ Vs=3V and RL = 10 kO) • Powerdown Mode Is OFF :s; 1.5 ,...AI Amplifier (Guaranteed at Vs = 1.8V, 2.2V, 3V, and 5V) 80 fA • Ultra Low Input Current 120 dB • High Voltage Gain (Vs = 3V, RL = 10 kO) 1.2 MHz • Unity Gain Bandwidth Applications • • • • • • Battery Operated Circuits Sensor Amplifiers Portable Communication Devices Medical Instrumentation Battery Monitoring Circuits Level Detectors, Sample-and-Hold Circuits Connection Diagrams 14·Pin DIP/SO a·Pin DIP/SO NC NC Y'" ININ' I{" OUT 5 4 OUT A OUT A IN A- IN A- IN A+ IN A+ .,. V' 10 NC PO TL/H/12042-1 Top View 16·Pin DIP/SO PO POB a+ NC Ne IN Ne Ne IN B- OUT B TL/H/12042-2 Top View TUH/12042-3 Top View Ordering Information r------------.--------------------r------.~------__, Package Temperature Range Industrial, - 40"C to + 85'C NSC Drawing Transport Media 8-Pin Molded DIP LMC6681AIN, LMC6681BIN N08E Rails B-Pin Small Outline LMC6681AIM, LMC6681BIM LMC6681AIMX, LMC6681B1MX M08A M08A Rails Tape and Reel l4-Pin Molded DIP LMC6682AIN, LMC6682BIN N14A Rails l4-Pin Small Outline LMC6682AIM, LMC6682BIM LMC6682AIMX, LMC6682BIMX M14A M14A Rails Tape and Reel l6-Pin Molded DIP LMC6684AIN, LMC6684BIN N16A Rails l6-Pin Small Outline LMC6684AIM, LMC6684BIM LMC6684AIMX, LMC6684BIMX M16A M16A Rails Tape and Reel 1-903 tJ1 National Semiconductor LMC7101 Tiny Low Power Operational Amplifier with Rail.;To-Raillnput and Output General Description Features The LMC7101 is a high performance CMOS operational amplifier available in the space saving SOT 23-5 Tiny package. This makes the LMC7101 ideal for space and weight Critical designs. The performance is similar to: a single amplifier of the LMC6482/4 type, with rail-to-rail input and output, high open loop gain, low distortion, and low supply currents. The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout. • Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO:.s designs • Guaranteed specs at 2.7V, 3V, 5V, 15V supplies • Typical supply current 0.5 mA at 5V • Typical total harmonic distortion of 0.Q1 % at 5V • 1.0 MHz gain-bandwidth • Similar to popular LMC6482/4 • Input common-mode,range includes V- andV+ • Tiny package outside dimensions-120 ~ 118 x 56 mils, 3.05 x 3.00 x 1.43 mm Applications • • • • Mobile communications Notebooks and PDAs Battery powered products Sensor interface Connection Diagrams 8-PlnDIP NC...! INVERTING INPUT.l NON-INVERTING ~ INPUT ".J '-../ ~ ' w S-Pln SOT23-S '''M ~NC ~v+ ~ OUTPUT v+ 2 + ~ NON-INVERTING 3 INPUT ~NC 4 INVERTING INPUT TUHI11991-2 TUH/11991-1 Top View Package Ordering Information Top View NSC Drawing Number Supplied As Package Marking 8-PinDIP LMC7101AIN N08E LMC7101AIN 8-PinDIP LMC7101BIN N08E LMC7101BIN Rails Rails 5-Pin SOT 23-5 LMC7101AIM5 MA05A AOOA 250 Units on Tape and Reel 5-Pin SOT 23-5 LMC7101BIM5 MA05A AOOB 250 Units on Tape and Reel 5-Pin SOT 23-5 LMC71 01 AIM5X MA05A AOOA 3k Units Tape and Ree) 5-Pin SOT 23-5 LMC7101BIM5X MA05A AOOB 3k Units Tape and ReS) " 1-904 r Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Offlce/Dllltrlbutors for availability and specifications. ESD Tolerance (Note 2) Difference Input Voltage Voltage at Input/Output Pin SupplyVoltage(V+ -V-) Junction Temperature Range LMC71 01 AI, LMC7101BI Thermal Resistance (6JAl N Package, 8-Pin Molded DIP 16V ±SmA ±3SmA Current at Input Pin Storage Temperature Range Junction Temperature (Note 4) -40'C Symbol Parameter S; TJ S; +8SoC 11soC/W 32soC/W 3SmA 260'C -6SoC to + 1SO'C 1SO'C > 2SoC, V+ = 2.7V, 1 MO. Boldface limits apply at the temperature extremes. Conditions V+ = 2.7V Typ (Note 5) LMC7101AI Umlt (Note 6) LMC7101BI Limit (Note 6) Units 0.11 6 9 mV max Vos Input Offset Voltage TCVos Input Offset Voltage Average Drift Ie Input Bias Current 1.0 84 84 pAmax los Input Offset Current O.S 32 32 pAmax ILV/oC 1 RIN Input Resistance CMRR Common-Mode Rejection Ratio OV S; VCM s; 2.7V V+ = 2.7V 70 SS SO dB min VCM Input Common-Mode Voltage Range V+ = V For CMRR ~ 50 dB 0.0 0.0 0.0 V min 3.0 2.7 2.7 V max 60 50 4S dB min PSRR Power Supply Rejection Ratio CIN Common-Mode Input CapaCitance Vo Output Swing >1 V+ = 1.3SVto 1.6SV V- = -1.3SVto -1.6SV VCM = 0 RL = 2kO Supply Current SR Slew Rate GBW Gain-Bandwidth Product TeraO pF 3 RL = 10kO Is .... .... Q MOSA Package, S-Pin Surface Mt. 2.7V Electrical Characteristics Unless otherwise specified, all limits guaranteed forTJ = V- = OV, VCM = Vo = V+ 12 and RL o ...... 2.7V s; V+ s; 1S.SV Supply Voltage 2000V ± Supply Voltage (V+) + 0.3V, (V-) - 0.3V Current at Output Pin (Note 3) Current at Power Supply Pin Lead Temp. (Soldering, 10 sec.) ~ Recommended Operating Conditions (Note 1) 2.4S 2.1S 2.1S V min 0.2S O.S O.S V max 2.68 2.64 2.64 Vmin 0.02S 0.06 0.06 V max 0.81 0.81 0.95 0.95 mA max O.S (Note 8) 1-90S 0.7 V/ILS 0.6 MHz • .... o.... o" :l 3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T.i = :!5"C, V+ = 3V, V- = OV, VCM = 1.5V, Va = V+ /2 and RL = 1 MO. Boldfa_ limits apply at the temperature extremes. Symbol Vas Parameter Typ Conditions (Note 5) Input Offset Voltage 0.11 LMC7101AI Limit (Note 6) LMC710jBI Limit (Note 6) Units 4 7 8 mV max ~ TCVos Input Offset Voltage Average Drift 18 Input Current 1.0 84 84 IlAmax los Input Offset Current 0.5 32 32 pAmax RIN Input Resistance >1 CMRR Common-Mode Rejection Ratio OV,;; VCM';; 3V V+ = 3V VCM Input Common-Mode Voltage Range For CMRR PSRR Power Supply Rejection Ratio CIN Common-Mode Input Capacitance Va Output Swing ~ 50 dB V+ = 1.5Vto7.5V V- = -1.5Vto -7.5V Vo = VCM = 0 Tera 0 74 64 60 db min 0.0 0.0 0.0 V min 3.3 3.0 3.0 V max 80 68 60 dB min 3 RL = 2 kO RL= 6000 Is /Lvrc 1 Supply Current 2.8 2.6 2.6 V min 0.2 0.4 0.4 V max .2.7 2.5 2.5 Vmin 0.37 0.6 0.6 V max 0.81 0.81 0.88 0.88 mA max 0.5 1-906 pF r- 5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = 1.5V, Vo = V+ /2 and RL = 1 MO. Boldface limits apply at the temperature extremes. Symbol VOS Parameter Input Offset Voltage TCVOS Input Offset Voltage Average Drift 18 Input Current los Input Offset Current Typ (Note 5) Conditions V+ = 5V 0.11 64 pAmax 32 pAmax 65 60 60 55 Positive Power Supply Rejection Ratio V+=5Vto15V V- = OV, Vo = 1.5V 82 Negative Power Supply Rejection Ratio V- = -5Vto -15V V+ = OV, Vo = -1.5V 82 Input Common-Mode Voltage Range For CMRR ;;, 50 dB Vo Output Swing VCM S; 5V 82 -0.3 RL = 2kO 4.9 RL = 6000 4.7 0.3 Output Short Circuit Current Sourcing, Vo = OV Sinking, Vo = 5V IS 70 65 65 62 70 65 65 62 -0.20 -0.20 0.00 0,00 5.20 5.20 5.00 5,00 3 0.1 ISC TeraO >1 S; 5.3 Common-Mode Input Capacitance ",vrc 32 OV 24 19 Supply Current 0.5 ...... ..... o ..... mV max 64 Input Resistance CIN 7 9 1 Common-Mode Rejection Ratio VCM 3 5 (') Units 0.5 RIN -PSRR LMC7101BI Limit (Note 6) 1.0 CMRR +PSRR LMC7101AI Limit (Note 6) i: db min dB min dB min V min V max pF 4.7 4.7 4.6 4.8 0.18 0.18 0.24 0.24 4.5 4.5 4.24 4.24 0.5 0.5 0.65 0.85 16 16 11 11 11 11 7.5 7.5 0.85 0.85 1.0 1.0 V min V max V min V max mA min mA min mA max ~ I; I, f 1-907 .... ........<:» CJ :::::E ..... 5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = 1.5V, Va = V+ 12 and RL = 1 MO. Boldface limits apply at the temperature extremes. .Parameter Symbol T.H.D. Conditions Typ (Note 5) F = 10 kHz, Av = -2 RL = 10 kO, Va = 4.0 Vpp Total Harmonic Distortion LMC7101AI Umit (Note 6) LMC7101BI Limit (Note 6) Units 0.Q1 % SR Slew Rate 1.0 Vlp.s GBW GaiIL-Bandwidth Product 1.0 MHz 15V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 15V, VSymbol = OV, VCM = 1.5V, Va = V+ 12 and RL = 25°C, V + 1 MO. Boldtace limits apply at the temperature extremes. Typ Conditions Parameter (Note 5) LMC7101AI Limit (Note 6) LMC7101BI Umlt (Note 6) = Units Vas Input Offset Voltage 0.11 mVmax TCVos Input Offset Voltage Average Drift 1.0 p.V/oC 18 Input Current 1.0 los Input Offset Current' 0.5 RIN Input Resistance >1 CMRR Common-Mode Rejection Ratio OV!!:: VCM';; 15V Positive Power Supply Rejection Ratio V+ V- Negative Power Supply Rejection Ratio VV+ Input Common-Mode Voltage Range V+ For CMRR :?: 50 dB +PSRR -PSRR VCM 82 = 5Vto 15V = OV, Va = 1.5V = -5Vto -15V = OV, Va = -1.5V = 5V 82 82 -0.3 15.3 Av Large Signal Voltage Gain RL = 2kO (Note 7) Sourcing Sinking RL = 6000 (Note 7) CIN Input Capacitance Va Output Swing Sourcing Sinking 340 24 300 15 14.7 V+ = 15V RL = 6000 14.1 0.5 Output Short Circuit Current Sourcing, Va (Note 9) = OV 50 Sinking, Va = 12V (Note 9) Is 64 32 70 65 65 60 50 Supply Current 0.8 1-908 pAmax pAmax TeraO 70 65 65 82 70 65 85 82 -0.20 -0.20 0.00 0.00 15.20 15.20 15.00 15.00 80 80 40 40 15 15 10 10 34 6 34 6 14.4 14.4 14.2 14.2 3 V+ = 15V RL = 2kO 0.16 ISC 64 32 . dB min dB min dB min V min V max V/mV V/mV pF 0.32 0.32 0.45 0.45 13.4 13.4 13.0 13.0 1.0 1.0 1.3 1.3 30 30 20 20 30 30 20 20 1.50 1.50 1.71 1.71 V min V max V min V max mA min mA min mA max 15V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 15V, V- = OV, VCM = 1.5V, Vo = V+ /2 and RL = 1 MO. Bolclfac.limits apply at the temperature extremes. !C ....o .... .... CI Parameter Symbol SR Conditions V+ = 15V Slew Rate LMC7101AI Typ (Note 5) 1.1 (NoteS) V+ = 15V Limit (Note 6) LMC7101BI Limit Units (Note 6) 0.5 0.5 V/p.s 0.4 0.4 min GBW Gain-Bandwidth Product 1.1 MHz m Phase Margin 45 Deg Gm Gain Margin 10 dB en Input-Referred F= Voltage Noise VCM = 1V 37 ,JRZ Input-Referred F= 1.5 ,JRZ 0.01 % in 1 kHz 1 kHz Current Noise T.H.D. Total Harmonic Distortion F= 10 kHz, Av = -2 RL = 10 kO, Vo = S.5 Vpp nV fA Note 1: Absolute Maximum Ratings indicate "mils beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is intended to be functional, but specHic performance Is not guaranteed. For guarantead specifications and the test conditions, see the Electrical Characteristics. Note 2: Human body model, t.5 kfl In series with 100 pF. Nota 3: Applies to both single-supply and spl~...upply operation. Continuous short operation at elevated ambient temperature can resuH in excaeding the maximum allowed iunction temparature at 15O"C. Note 4: The maximum power dissipation is a function of TJ(max), 8JA ana TA. The maximum allowable power dissipation at any ambient temperature is PO (TJ(max) - T AJI8JA. All numbers apply for packages soldered dlrecUy into a pC board. ~ Nota 5: Typical Values represent the most likely parametric norm. Nota 6: Alilimiis are guarantead by testing or statiStical analysis. Nota 7: V+ ~ 15V, VCM ~ 1.5V and RL connect to 7.5V. For Sourcing teats, 7.5V ,;; Vo ,;; 12.5V. For Sinking tests, 2.5V ,;; Vo ,;; 7.5V. Note 8: V+ ~ 15V. Connected as a Voltage Follower with a 10V Slap input. Number spacified is the slower of the positive and negative slew rates. RL ~ 100 kfl connected to 7.5V. Amp excited with 1 kHz to produce Vo ~ 10 Vpp. Nota 9: Do not short circu~ output to V+ when V+ is greater than 12V or reliability will be adversaly affected. 1-909 Typical Performance Characteristics Vs = +2.7V. Single Supply. TA =. 25~C unless specified. 2.7V PERFORMANCE Open Loop Input Voltage vs Output Voltage (2.7V) Frequency Response (2.7V) rr.".,.="""..,. 500 9°B 100 1D 3 ;j 60 400 1\.=600+++ I\. ~2k 300 80 70 60 Gain and Phase vs Capacitance Load (2.7V) fol\.~=«iI2klo.j;j;ll!l;t ~ 200 III 100 1 50.=600 40 i I\. = 500k 50 40 I;:- GAIN VS=:t1.35V l- • 'io pF Htttf 30 90 G.=10pF 67.5 45 22.5 20 PHAS 0 10 -100 o .= -200 30 20 -300 -10 10 -400 -20 o 100 10k 100k lk Frequency (Hz) -1.5 -1 1M ~ o 1~ PHASE 30 t-tttIt G.=10pF' _ 67.S,t S' ~ -10 -20 -30 10k lOOk 1M lOOk ....I--t-""I'" 400 -1500 VS =:t1.35V 300 200 ~ >~ -1000 -90 10M dVos vs Common Mode Voltage (2.7V) -750 -1250 lN Frequency (Hz) -500 -22.5 -45 -67.5 • I -90 10k 112.5 ~~.5 j .,;: o ~ 10 1.5 . / dVos rr!e~VI~ - -250 90 20 GAIN 0.5 dVosvs Supply Voltage 50 G. =510pF 0 Output Voltage (V) Gain and Phase vs Capacitance Load (2.7V) 40 -0.5 ~ -22.5 -45 -67.5 -30 -500 10 180 157.5 135 1 12.5 100 -100 -200 -300 -400 2.5 10M 3.5 4.5 -500 -1.4 -1 -0.6 -0.2 Supply Voltage (V) Frequency (Hz) Sinking Current vs Output Voltage (2.7V) 0.2 0.6 1 1.4 Common Mode Voltage (V) Sourcing Current vs Output Voltage (2.7V) 10 0.01 <...J.-J..U.WJl--U-UW1L...1..u..u......wJWlW 0.001 0.01 0.1 10 Output Voltage (V) Output Voltage (V) TL/H111991-15 1-910 rI: Typical Performance Characteristics n ..... .... .... Single Supply. TA = 2SoC unless specified (Continued) 3V PERFORMANCE Open Loop Frequency Response (3Y) 400 ~~.600 Vs ·3V 90..... 80 .... 2k '> .3 70 60 z 50 -3 ~ Input Voltage vs Output Voltage (3Y) Input Voltage Noise vs Input Voltage (3Y) 500 100 -I .... 500k 'iD «:) w ~ ... ·600 300 100 Vs = .t1.5V 90 'N ... ·2k ~ 200 100 80 60 50 .... 50k 40 !: -100 30 ~ -200 30 20 - 20 40 -300 -soo 0 10 100 lk 10k 0.0 0.5 1.0 -1.5 1.5 OUTPUT VOLTAGE (v) FREQUENCY (Hz) -1.0 -0.5 0.0 0.1 INPUT VOLTAGE (V) Output Voltage Raferencad to GND 5V PERFORMANCE Open Loop Frequency Response (5Y) Input Voltage vs Output Voltage (5Y) Input Voltage Noise vslnputVoHage(5y) 100 100 80 r-f--'o,/", • 600r- Ys '> 3 'iD ~ ~ 50 g 40 ~ 30 20 60 40 20 0 -20 =±2.5V ~ f=~ <./r- ~ =-.. ~ w ·50k ~ -40 ~ -60 -80 10 0 '10 100 .... 5kR -1,5 -1.2 -0.9 -0.6 -0.30.00.3 0.6 0.9 1.2 1.5 10 Output Voltage Referenced to Vs z 1.5 20~~~~-L-L-L-L~ 0.1 L..Ioo::LUJWL.JLL -3 1.0 r--r--r-1"""''''''''r-1-CC--:-:-= f-f-HHHr-f ~s. ·,~~:ZV 100 0.01 0.5 CMRR vs Input Voltage (3Y) 120 0.001 1 kHz COMMON MODE INPUT VOLTAGE (V) Sinking Current vs Output Voltage (3V) Sourcing Current vs Output Voltage (3V) = o -1.5 -1.0 -0.5 lOOk f 10 -400 10 Ys = 3V 10 lk 10k FREQUENCY (Hz) lOOk 90 Vs 80 f = :t2.5Y = 1 kHz 70 60 SO 40 30 20 10 -100 -2.5 o -1.5 -0.5 0.5 1.5 OUTPUT VOLT AGE (v) 2.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -2.0 -1.0 0.0 1.0 2.0 COMMON NODE INPUT VOLTAGE (V) 120 CMRR va Input Voltage (5V) f-f-f-f-Hr-f '00 ~s:,~!:zv ..... 5kR w~~~~-L-L-L-L-L~ -2.5-2.0-1.5-1.0-0.50.00.51.01.5 2.02.5 Output Voltage Referenced to Vs Output Voltage' Referenced to GND INPUT VOLTAGE (V) TUH/II991-S 1-911 o~ ::: ~ r---------------------------------------------------------------------------------------------~ Typical Performance Characteristics Vs = +15V, Single Supply, TA = 25"C unless specified (Continued) Input Voltage va Output VoltSge (15V) Open Loop Frequctncy ReSponse (15V) 100 90 ~OOkHft- 3 z Vs = 15V 70 .1\ = 800 ~ 60 ... ~ 50 ~ 40 40 II J'I-.I 20 1\ = 50k ;: -20 ~ z -40. 20 - -80 0 -100 100 lk 10k ~ lOOk f = :l:7.5V = 1 kHz -80 10 10 .Vs 90 Vs .. :t7.5V 1'1-.111 60 30 Input Voltage Nolae ya Input Voltage (15V) 100 1\,,,2~1\=60011111 80 1\ • 2k 80 .., 100 ~ ~ ~ 0 -7 -5 -3 -1 FREQUENCY (Hz) 2 1 4 3 6 5 8 7 OUTPUT VOLTAGE (v) Sourcing Current va Output Voltage (15V) Sinking Current va Output Voltage (15V) 100 10 ~ CMRR va Input Voltage (15V) 100 120 10 100 !,. .5 li! 5i z iii 0.1 ! 5 0.1 Vs = t7.5V F= 10kHz = 5kll 1\ I'- 80 60 40 0.01 20 0.1 10 -7.5-6,0-4.5-3.0-1.50.01.53.0 4.5 6.0 7.5 100 INPUT VOLTAGE (V) Output Voltage RefereMed to GND Output Voltage Referenced to Ys Supply Current va Supply Voltage Input Current va Temperature 1000 Output Voltage Swing va Supply Voltage 10000 20 S .. 900 ~ .5 800 3700 ~ 600 ~500 " 400 :; 1000 i13 100 i ~ 200 ~ "~ 10 100 o o 1 3 6 12 15 Input Voltage Noise va FrequenCY~111 I .., 400 300 i 200 n ~ ~O 1~ 3 ~ no 70 Vs 60 100 1000 FREQUENCY (Hz) 1£4 1£5 , .., ~ 3 40 12 6 15 Negaove PSRR va Frequency Vs = 5V 1\ = 5k 80 70 60 Vs III 3V t!; 50 ~ 40 30 30 20 20 10 1,0 10 1\ • lOOk o 90 1\ = 5k ;,"3;' y -~ 100 50 1,1/ POI Swing SUPPLY VOLTAGE (V) o 10 '0 TEMPERATURE (Oc) Vs ~";;v 90 500 ~ i W , ~ 80 Vs = 1SV ~ ~ ..... I--' Neg Swing 10 !i1 / Positive PSRR va Frequency 100 =1 600 - ~ SUPPLY VOLTAGE (v) 700 15 ;: o 100 lk 10k FREQUENCY (Hz) lOOk 10 100 lk 10k lOOk FREQUENCY (Hz) TL/H/11991-4 1-912 Typical Performance Characteristics Vs = + 15V, Single Supply, TA = 25°C unless specified (Continued) 100 IlllIU1 --III IIlIlIm Vs = 15V 90 80 ... ~ ~ ~ ~ 70 60 I\. 50 Open Loop Frequency Response @ 25°C open Loop Frequency Response@ -4O"C CMRR vs Frequency 90rnDrnm~mr~----~~ 90 80 80 70 70 60H\~~~~Irl~~lHffiI = 5kR 50rH~~MH~rH~~~fflM 112.5 £ 40 ~ 90 40 30H+~~~~~~~~. 30 20rH~~MM~~~~Itl·~ 45 10H+ffii+ffiMH~H+~~"f,~ 22.5 20 ... BO 135 50 112.5 40 ° z 87.5 if ~ ~ 30 20 45 10 22.5 ~ o~~~~MH~~1rl1l 10 o 10 100 Ik 10k lOOk 100 Ik FREQUENCY (Hz) Open Loop Frequency Response @85"C l1li. ~!I: 5V. 15q • 3V : Wi.... JlII 111111 IIIi 111111 1111 3V"SV I V ~ 1111"1 20 Ht/lll-+ffi,.5V'·Tr'5iiiVrtt~:I:f 30 10 -10 PHASE :~2.5 1.. ~ .f 0 i ~ .e. 45 05 22.5 0 LJ.J.WLlllWIIILJJII.lllLIIIB.llJJJIU.UJlII!~ 100 Ik 10k lOOk IN -22.5 ION I\. = 2k THO = 3"- III II 80 ... 50 z 40 ~ ~ 11111011111 1111. 60 II.· 1IL 11111111111 ~:'~ O'!~' PHASE 30 900 157.5 800 135 112.5 90 B7.5 45 10 22.5 CI = 500 pF 0 11111. 1111111 10 100 1k 10k S a ~ i ~ 1.40 F~lIi~9 ;d9~ I ~ £ BOO 500 l! 400 ~ 300 0 200 100 lOOk 'M 1.25 !1l if Ik ~ 45 10k lOOk 0 -22.5 10M IN Slew Rste vs Temperature r;;-;;-i5v1=H+++=1f=+41 1.80 I\. = 10k 1.70 Ay = + I 1;;:- ~ = ~:~~ ~~~'"~=E'Sov~-P~-PSl~f.~II!;n39EEdI9~.~ Vs = 3V 1.40 -; 1.30 ii 1.20 Vs ac: s 1.10 t:::I:tt:t:~:;;j;;;,i:;~Fj::t1 ~ ~:: ~:E8~lEsR~i·tin~9~Efd9~.~ 5V Vs = 15V 10k t-'i::tt:~::t:t=~ I 0.80 0.70 lOOk 1M ttttiTI:i:ttttjj 0.60 0.50 -40 -20 0 20 40 BO 80 -30 -10 10 30 50 70 CASE TEMP (oC) Inverting Small Signal Pulse Response ~ S' "'" ~ ~ 1.15 1.05 £ 90 ~ !; 1.20 1.10 112.5 FREQ (Hz) Inverting Small Signal Pulse Response 10~t 135 22.5 IIiLlIIIII! FREQUENCY (Hz) I\. Ay == +1 r-V'N = IV p-p 157.5 67.5 CI = 500pF 100 180 2.00 1.90 I Vs = 15V Ik ,ON 'Ji": ~'~ .1111111 II III! 10 100.0 0 -22.5 1.35 1.30 30 -10 10.0 11111.11111 11111111111 PHASE 10 700 Slew Ratevs Supply Voltage 1.45 RI = BOOR ..• 20 FREQ (Hz) 1.50 40 1000 180 20 -10 z Output Impedance vs Frequency Vs = 15V RI = 500k GAIN 50 ~ 202.5 Vs = 15Y GAIN ntII IlIlr 60 ... ~ 1.0 1M 11111 I Frequency (kHz) 202.5 10k lOOk Gain and Phase vs CSpacltlve Load 70 Vs = 15V_ Ay = +1 _ 0.1 Gain and Phase vs capacitive Load 70 Ik FREQ (Hz) 80 fREQ (Hz) 90 100 90 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0 ~ 135 67.5 H-HflIH+II"fll+1I1I_lIIlftfIIH II. 111111 10 1M Maximum Output Swing vs Frequency 90 .........."mTnrT"TT1IIIrrr......................... 202.5 II1II 11111 1111111· Temp = 85,~,i 180 80 70 ~ GAl. 11111 RI = ~. lIII 157.5 60 10k lOOk FREQ (Hz) Vi ~ Riling Edge ~ 0 1.00 is ;;:E 1--1- TA = -""OoC, I\. = 2kR 1-- 1--1- TA = +2S o C. = 2kR - I\. -- 0 on ~ II 1\ I}'. SOmy 50m'V ~ II 1\ SOm'; SOmy I". 3 4 5 6 7 8 9 10 II 12 13 14 15 SUPPLY VOLTAGE (V) TIME (I "./DIV) TIME (I "./DIV) TL/H/11991-5 1·913 Typical Performance Characteristics + 15V, Single Supply, TA Vs = = 25'C unless specified (Continued) Inverting SmaH Signal Pulse Response :;i z ~" 1;1 ~ 1;1 ~ "- .. '"'" ~ i~ TA = +85 0 C. -f-- Rt:f' 2kn --,--f- z 1". 1, O C. II '\ '" = +25 - f - 1\.' 2kn A" ~ 1\ , SOmV' SOmV' TA - f - I\. • 2kn ~ .~ I ~ ~ TA = -40 0 C, .~ t"oo.' "in g Inverting Large Signal \,ulse Response Inverting Large Signal Pulse Response 1\ /[ 1, \ 1, 1, 11" ,lS'I TIME (11'./DIV) Invertlng"Large Signal Pulse Response Non-Inverting Small Signal Pulse Response Non-Inverting Small Signal Pulse Response . ~ :;i ~, ~ ~ ~ ~ ~ TA ::= -;-f- -Ilt. =,2kn " \ 1, I 1, 1\ 1\ ' ", ~ g 11" 0 C, I\. • 2kn .;' 1;1 = -40 -I-: TA E :;i z , If '" ~ -:-- -f- ~ '> II' :;i II ~ e, " '> z +85 O C. '" ~ , ;Om\ SOmV' '" ~ :-r- E 1\.'2kll 1\ 1\ I 1". TA = +25 0 C, II' II ~Om\ SamV' 11" TIME (11'./DIV) Non-Inverting Small Signal Pulse Response Non-Inverting Large Signal Pulse Response Non-Inverting Large Signal Pulse Response :;i :;i z ~ ~ , TA = +85 C, '--r- I\..an II' -'-r0 ....L 1\.' 2kn r-r- g 'ty Non-Inverting Large Signal Pulse Response ~ c 1\..2'kn - '\ 1, 'rv 1F-- I- J/ 1". 1, 1000 '.U NS"'AB ,E. I""III ~ JL '" 11" 1, ~-+\ Vs :: t7.5V ~ c 1\. • 2kn 1000 I J.J I I I UNSTABLE .E 9 ~ " 7r-- I I I 10000 :r:~·5V III = +25 0 C, -r-r1\.' 2kll TA _ Stability vs capacitive Load ~ > E ~ 100 I- 100 ~ 2;% OIER';HCOT 10 I I I I I -6 -5 -4 -3 -2 -I 0 1 2 3 4 5 6 . TIME (1j../DlV) r-~ g 9 r,K; r-r- - , stability vs Capacitive Load 10000 TA = +85 0 C, ~ 1'p. 1,1 '" ~, ~ A '" '> :;i _ -~ , II I I t;11- ~ 11" TA ' ~40oC, - :-Ic- - ~ ;om\l SOmV' i s:-~ a ~' :;i II 1\ 1\ 1;1 Vou, (v) 25" OVERSHOOT 10 1111 I :"6 -5 -4 -3 -2 -I 0 1 2 3 " 5 6 Vou, (V) TUH/11991-6 1-914 r- I: Typical Performance Characteristics Vs = + 15V, Single 'Supply, TA = Ay _ ~ 1000 f11 10000 +1 UN;:~~ ~ ~ ~ o ..... Stabllltyvs Capacitive Load Vs :;:.5 ~ Stabllltyvs Capacitive Load 10000 .., =+10 Vs = :l:7.SV ~ ..... ..... 25°C unless specified (Continued) Stability va Capacitive Load 10000 (") It Vs = l.n 1000 ~ 25% OVERSHOOT i 1000 2: !: ~ 100 100 ~ 25" OVERSHOOT 25" OVERSHOOT I 10 = n,5V It = 2kn :;:.5 2: 100 .., = +10 = ±7.5V 10 10 -6 -5 -4 -3 -2 -1 0 1 2 3 " 5 6 -6 -5 -4 -3 -2 -1 0 1 2 3 " 5 B -6 -5 -" -3 -2 -1 0 1 2 3 " 5 6 VOUT (V) VOUT (v) VOUT (V) Stabllltyvs Capacitive Load 10000 .., = +10 Vs ! 51 It = :t7.SV = 600n 1000 9 ~ E ~ 100 ~ 25% OVERSHOOT 10 I I I I I -6 -s -4 -3 -2 -1 0 1 2 3 " 5 e VOUT (V) TLlH/II991-7 1·915 ~ o ~ p..;, ~ r-------------------------------------------------------------------------------------, Application Information 1.0 Benefits of the LMC7101 Tiny Amp 3V SIze. The small footprint' of the SOT 23-5 packaged Tiny amp, (0.120 x 0.118 inches, 3.05 x 3.00 mm) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products. Height. The height (0.056 inches, 1.43 mm) of the Tiny amp makes it possible to use it in PCMCIA type III cards. Signal IntegrHy. Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to the Signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the signal destination, such as a buffer for the reference of an analog to digital converter. Simplified Board Layout. The Tiny amp can simplify board layout in several ways. First, by placing an amp where amps are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided. By using multiple Tiny amps instead of duals or quads, complex signal routing and possibly crosstalk can bEl reduced. DIPs available for prototyplng. LMC7101 amplifiers packaged in conventional B-pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages. Tapes of ten for prototyplng. The SOT23-5 packaged devices are available in convenient and economical ten unit tapes for prototypes, evaluation, and small production runs. Low THD. The high open loop gain of the LMC7101 amp allows it to achieve very low audio distortion-typically 0.01 % at 10kHz with a 10 kO load at 5V supplies. This makes the Tiny an excellent for audio, modems, and low frequency signal processing. Low Supply Current. The typical 0.5 mA supply current of the LMC7101 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications. Wide Voltage Range. The LMC7101 is characterized at 15V, 5V and 3V. Performance data is provided at these popular voltages. This wide voltage range makes the LMC7101 a good choice for devices where the voltage may vary over the life of the batteries. ov TLlH/11991-B FIGURE 1. An Input Voltage SIgnal Exceeds the LMC7101 Power Supply Voltages with No OUtput Phase Inversion VIN (±7.5VI YOUT (lV JtIiv) TL/H/11991-9 FIGURE 2. A ± 7.5V Input Signal Greatly Exceeds the 3V Supply In Rgure 3 Causing No Phase Inversion Due to R, Applications that exceed this rating must externally limit the maximum input current to ± 5 mA with an input resistor as shown in Figure 3. > .....- VOUT TLlH/11991-10 FIGURE 3. R,lnput Current Protection for Voltages Exceeding the Supply Voltage 2.0 Input Common Mode Voltage Range 3.0 Rail-To-Rail Output The LMC7101 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. FlfJure 1 shows an input voltage exceeding both supplies with no resulting phase inversion of the output. The absolute maximum input voltage is 300 mV beyond either rail at room temperature. Voltages greatly exceeding this maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins, adversely affecting reliability. The approximate output resistance of the LMC7101 is 1800 sourcing and 1300 sinking at Vs = 3Vand 1100 sourcing and BOO sinking at Vs = 5V. Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load. 1-916 The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 5), C, is first estimated by: 4.0 Capacitive Load Tolerance The LMC7101 can typically directly drive a 100 pF load with Vs = 15V at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. Capacitive load compensation can be accomplished using resistive isolation as shown in F/(Jure 4. This simple technique is useful for isolating the capacitive input of multiplexers and AID converters. 1 1 ---:i!!-2'ITR1 C,N Ii: !l .... o .... 2'ITR2Ct or R1 CIN::;;: R2C, which typically provides significant overcompensation. Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for CF may be different. The values of CF should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.) Cf R2 Rl TUH/11991-11 FIGURE 4. Resistive Isolation of a 330 pF Capacitive Load VIN --¥.fIt--.-......-I • CIN ::::::: I I I 5.0 Compensating for Input Capacitance when Using Large Value Feedback Resistors ...... TUH/11991-12 FIGURE 5. Cancelling the Effect of Input CapaCitance When using very large value feedback resistors, (usually > 500 kO) the large feed back resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasities to reduce phase margins. .I I I I I I 1-917 .- o.- t> ~ r-------------------------------------------------------------------------------~ 80,-':~~3"~ Tape and R.e~1 $f),ecifica~ion " TAPE FORMAT· Tape Section *' Cavities Cavity Status Cover Tape Status 'Leader (Start End) o (min) EmptY Sealed 75 (min) Empty Sealed 3000 Filled Sealed 250 Filled Sealed 125 (min) Ernpty Sealed o (min) Empty Sealed , ' Carrier Trailer' (Hub End) " '. TAPE DIMENSIONS 0' 0.061 :to.002 TYP. [ 1.55:t0.05] BAT TANGENT POINts +-~==;,""'''''''_ , ,Ro.oi2 TYP' [0.3] ALL INSIDE RADII 0' 0.0-41 :to.002 TYP. [ 1.04%0.05] DIRECTION or rEED - - - - - - GAGE LINE :'l ',' ~ - . / _~_: 0.912. [0.3] SECTION B-B \ ~i R 1.181 MIN. I' [30] ----~ BEND RADIUS NOT TO SCALE TLlH/11991-13 8mm Tape Size 0.130 (3.3) 0.124 (3.15) 0.130 (3.3) 0.126 (3.2) DIMA DIMAo DIMB DIMBo 0.138 ±O.o02 0.055 ± 0.004 (3.5 ±0.05) (1.4 ±0.11) DIMF 1-918 DIMKo 0.157 (4) 0.315 ±0.012 (8 ±0.3) DIMP1 DIMW SOT-23-5 Tape and Reel Specification (Continued) REEL DIMENSIONS TAPE SLOT r A N 'L DETAIL X SCALE: 3X TUH/II991-14 8mm Tape Size 7.00 0.059 0.512 0.795 2.165 0.331 + 0.059/-0.000 0.567 W1+ 0.078/-0.039 330.00 1.50 13.00 20.20 55.00 8.40 + 1.50/-0.00 14.40 W1 + 2.00/-1.00 A B C 0 N W1 W2 W3 6.0 SPICE Macromodel A SPICE macromodel is available for the LMC7101. This model includes simulation of: • Output swing dependence on loading conditions and many more characteristics as listed on the macro model disk. Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk. • Input common-mode voltage range • Frequency and transient response • GBW dependence on loading conditions • Quiescent and dynamic supply current 1-919 .... .... .... ~ ttl PRELIMINARY National Semiconductor LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Raillnput and Output General Description Features The LMC7111 is a micropower CMOS operational amplifier available in the space saving SOT 23-5 package. This makes the LMC7111 ideal for space and weight critical designs. The wide common-mode input range makes it easy to design battery monitoring circuits which sense signals above the V + supply. For easy prototyping, the LMC7111 is available in a conventional S-pin DIP package. The LMC7111 is available in two offset voltage grades, 3 mV and 7 mY. The main benefits of the Tiny package are most apparent in smllil portable electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout. • • • • • • • • Tiny SOT23-5 package saves space Very wide common mode input range Specified at 2.2V, 2.7V, 3V, 3.3V, 5V, and 10V Typical supply current 25 /LA at 5V 50, kHz gain-bandwidth at 5V Similar to popular LMC6462 Output to within 20 mV of supply rail at 100K load Low input current 100 fA Applications • • • • • • Mobile communications Notebooks and PDAs Current sensing for battery chargers Portable electronics Sensor interface Battery monitoring Connection Diagrams " ,"'Mw' 8-PinDIP NC..! INVERTING INPUT.l NON-INVERTIN~ , INPUT .J y-.j '-../ ~ 5-Pln SOT23-5 ~NC ~y+ y+ 2 ~OUTPUT NON-INVERTING 3 INPUT ~NC + - 4 INVERTING INPUT TLlH/12352-1 TL/H/12352-2 ' TopView Top View Ordering Information Package Ordering Information NSCDrawing Number Package Marking Transport Media 8-Pin DIP LMC7111AIN N08E LMC7111AIN 8-PinDIP LMC7111BIN N08E LMC7111BIN Rails 5-Pin SOT23-5 LMC7111AIM5 MA05A A01A 250 Units on Tape and Reel 5-Pin SOT23-5 LMC7111 BIM5 MA05A A01B 250 Units on Tape and Reel 3K Units on Tape and Reel 3K Units on Tape and Reel 5-Pin 5OT23-5 LMC7111 AIM5X MA05A A01A 5-Pin SOT23-5 LMC7111 BIM5X MA05A A01B 1-920 Rails IJ1National Semiconductor LPC660 Low Power CMOS Quad Operational Amplifier General Description • • • • The LPC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It features a wide range of operating voltage from + 5V to + 15V and features rail-torail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input Vos, drift, and broadband noise as well as voltage gain (into 100 kO and 5 kO) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is typically less than 1 mW. High-impedance preamplifier Active filter Sample-and-Hold circuit Peak detector Features • • • • • • • • • • • • This chip is built with National's advanced DOUble-Poly Silicon-Gate CMOS process. See the LPC662 datasheet for a Dual CMOS operational amplifier and LPC661 datasheet for a single CMOS operational amplifier with these same features. Applications • High-impedance buffer • Precision current-to-voltage converter • Long-term integrator Rail-to-rail output swing Micropower operation Specified for 100 kO and 5 kO loads High voltage gain Low input offset voltage Low offset voltage drift Ultra low input bias current Input common-mode includes VOperation range from + 5V to + 15V Low distortion Slew rate Full military temp. range available Connection Diagram 14-Pln DIP/SO OUT'UT 4 IN'r14 INPUT.· 12 13 v·111 INPUTI+ IN'UI~ 3- OUT,un 10 I ~ ,..... Ld p ~ ....... ..h.. ~ 1 ·OUTPUT 1 IN,J;I- 9 3 IN'UT1· ).4 I ~ .1' INPUTZ· I.PUT Z- 7 OUTPUT Z TL/H/l0547-1 Top View Ordering Information Package 14-Pin Side Brazed Ceramic DIP Temperature Range Military Induatrlal LPC660AMD NSC Drawing Transport Media D14E Rail 14-Pin Small Outline LPC660AIM orLPC660IM M14A Rail Tape and Reel 14-Pin Molded DIP LPC660AIN or LPC660lN N14A Rail J14A Rail 14-Pin Ceramic DIP LPC660AMJ/883 1-921 (1 mW) 120 dB 3 mV 1.3 poVloC 2 fA 0.01 % at 1 kHz 0.11 Vlpos Absolute Maximum Ratings (Note 3) Operating Ratings (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Differential Input Voltage ± Supply Voltage SupplyVoltage(V+ -V-) 16V Output Short Circuit to V+ (Note 11) Output Short Circuit to V(Note 1) Temperature Range LPC660AM LPC660AI LPC6601 Supply Range PowerDjssipation Lead Temperature (Soldering, 10 sec.) 260"C Storage Temp. Range Junction Temperature (Note 2) ESDRating(C = 100pF,R = 1.5kn) Power Dissipation - 65°C to + 150"C 150"C 1000V (Note 2) ±5mA Current at Input Pin Current at Output Pin (V+) Voltage at Input/Output Pin Current at Power Supply Pin -55°C S; TJ S; + 125°C -40"C S; TJ S; +85°C - 4O"C S; TJ S; + 85°C 4.75Vt015.5V (Note 9) Thermal Resistance (9JAl. (Note 10) 14-Pin Ceramic DIP 14-Pin Molded DIP 14-PinSO 14-Pin Side Brazed Ceramic DIP 90"C/W 85°C/W 115°C/W 90"C/W ±18mA - 0.3V + 0.3V. (V-) 35 rnA DC Electrical Characteristics Unless otherwise specified. all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ V- = OV. VCM = 1.5V. Vo = 2.5V, and RL > 1M unless otherwise specified. Parameter Conditions Input Offset Voltage Typ LPC660AM LPC660AMJ/883 LPC660AI LPC6601 Limit (Notes 4, 8) Limit (Note 4) Limit (Note 4) 1 Input Bias Current 3 3 6 3.5 3.3 6.3 20 4 4 pA max 100 2 2 pA max 70 70 63 6.8 88 81 70 70 63 88 88 61 100 0.001 Input Resistance 20 >1 Common Mode Rejection Ratio OV S; VCM S; 12.0V V+ = 15V 83 Positive Power Supply Rejection RatiO 5V 83 Negative Power Supply Rejection Ratio OV Input Common Mode Voltage Range V+ = 5V& 15V For CMRR > 50 dB S; S; V+ V- S; S; 15V -10V mV max p'vrc 0.002 Input Offset Current 5V, Units 1.3 Input Offset Voltage Average Drift = Teran 94 -0.4 V+ - 1.9 1.922 84 84 74 82 83 73 -0.1 . -0.1 -0.1 0 0 0 V+ - 2.3 V+ - 2.3 V+ - 2.3 Y+ - 2.6 Y+ - 2.5 Y+ - 2.5 dB min dB min dB min V max V min DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25'C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V, and RL > 1M unless otherwise specified. (Continued) Parameter Large Signal Voltage Gain Output Swing Conditions Typ RL = 100 kO (Note 5) Sourcing 1000 Sinking 500 RL = 5 kO (Note 5) Sourcing 1000 Sinking 250 V+ = 5V RL=100kOtoV+/2 LPC660AM LPC660AMJ/883 LPC660AI LPC6601 Limit (Notes 4, 8) Limit (Note 4) Limit (Note 4) 4.987 0.004 V+ = 5V RL = 5kOtoV+/2 4.940 0.040 V+ = 15V RL = 100kOtoV+/2 14.970 0.007 V+ = 15V RL = 5 kO to V+ 12 14.840 0.110 Output Current V+ = 5V Sourcing, Vo = OV Sinking, Vo = 5V Output Current V+ = 15V Supply Current Sourcing. Vo = OV 22 21 40 Sinking, Vo = 13V (Note 11) 39 All Four Amplifiers Vo = 1.5V 160 1-923 Units 400 400 300 250 300 200 180 180 90 70 120 70 200 200 100 150 180 80 100 100 50 35 80 40 4.970 4.970 4.940 4.950 4.950 4.910 0.030 0.030 0.060 0.050 0.050 0.090 4.850 4.850 4.750 4.750 4.750 4.850 0.150 0.150 0.250 0.250 0.250 0.350 14.920 14.920 14.880 14.880 14.880 14.820 0.030 0.030 0.060 0.050 0.050 0.090 14.680 14.680 14.580 14.800 14.800 14.480 0.220 0.220 0.320 0.300 0.300 0.400 16 16 13 12 14 11 16 16 13 12 14 11 19 28 23 19 25 20 19 28 23 19 24 19 200 200 240 250 230 270 V/mV min VlmV min VlmV min V/mV min V min V max V min V max V min V max V min V max mA min mA min mA min mA min /LA max AC Electrical Characteristics Unless otherwise specified, all limits guarantEled for T J = 25°C. Boldface limits apply at the temperature extremes. V + V- = OV, VCM = 1.5V, Vo = 2.5, and RL > 1 M unless otherwise specified. LPC660AM Slew Rate Typ Conditions Parameter (Note 6) 0.11 Gain-Bandwidth Product LPC660AI LPC6601 Limit Umlt Umlt (Notes 4,8) (Note 4) (Note 4) 0.07 0.07 0.05 0.04 0.05 0.03 LPC660AMJ/663 = 5V, Units Vlp.s min 0.35 MHz Phase Margin 50 Deg Gain Margin 17 dB Amp-to-Amp Isolation (Note 7) Input Referred Voltage Noise F= Input Referred Current Noise Total Harmonic Distortion 130 dB 1 kHz 42 nV/.JHz F= 1 kHz 0.0002 pA/.JHz F= 1 kHz,Av 0.01 % RL = = 100kO, Vo -10 = 8Vpp Note 1: Applies to both single supply and spiR supply operation. Continuous short clrcuR operation at elevated ambient temperature and/or multiple Op Amp shorts can resuR In exceeding the maximum allowed junction temperature of 15O'C. Output currents In exoess of ±30 mA over long term may adversely affect reliabllijy. Note 2: The maximum power dlssipetion is a function of TJ(max). 8JA and TA. The maximum allowable power dissipation at any ambient temperature is Po = (TJ(max)-TAl8JA· Note 3: Absolute Maximum Ratings indicate IimRs beyond which dam..ge to the device may occur. Operating Ratings Indicate conditions for which Iha device is Intended to be functional, but do nol guarantee specific performance IimRs. For guaranteed specHications and teal conditions. see the Electrical Characteristics. The guaranteed specifications apply only for the test condRlons listed. Note 4: UmRs are guaranteed by testing or correlation. Note 5: V+ = 15V. VOM = 7.5Vand RL connected to 7.5V. For Sourcing tests, 7.5V ~ Vo ~ 11.5V. For Sinking tests. 2.5V ~ Vo ~ 7.5V. Nota 8: V+ = 15V. Connected as VoRage Followar with 10V step Input Number specified is the siower of Iha positive and negative slew rates. Note 7: Input referred. V+ = 15V and RL = 100 kO connected to V+ /2. Each amp axcRed in turn with 1 kHz to produos Vo = 13 Vpp. Note 8: A militsry RETS electrical test specification is available on request. At the time of printing. the LPC880AMJ/883 RETS specification compiled fully wnh the boldface IImRs In this column. The LPC880AMJ/883 may also be procured to a Stsndard Miln&ry Drawing specification. Nota 9: For operating at elevated temperatures.1ha device must be derated besed on Iha thenmal resistsnee 8JA with Po = (TrTAl/8JA. Note 10: All numbers apply for packages soldered directly into a PC board. Note 11: Do not connect output to V+ when V+ Is greater than 13V or reliabilijy may be adversaiyaffected. 1-924 Typical Performance Characteristics Vs = Supply Current vs Supply Voltage Input Bias Current vs Temperature 500 10 400 ~ 1 i 300 I 0.1 iill 200 100 I I I I/' 0/ 2 0 • 6 8 10 -- 12 14 ~ 0.01 ~ 0.001 z ..e Vs Vs 1 I ~~ ! 0.1 0.01 0.001 / W E '15¥] +5'1-' i ii .. Ie 1/ will !ilw ~e 1 10 ~ i se GU RA '[ED 0 !I; 0 -l;:! -0.5 25 50 75 100125150 -75 m 100 -25 25 75 125 TEMPERATURE ('c) Input Voltage Noise va Frequency 160 IALI.15Y 0.1 ~s=':SV....., 0.01 i r.:+- V ~ .:s I ~~ I 0.0001 0.001 0.01 140 120 100 80 \ 8D \ 40 ...... I--... 20 0 0.1 1 10 100 10 OUTPUT SOURCE CURRENT (mA) 100 lk 10k lOOk FREQUENCY (Hz) CMRR va Frequency 60 i:! I I I I 1 Crosstelk Rejection va Frequency a : ij 8\. +0.5 V)'5v-/j 0.001 ~=+5V me- - ~....I -3.0 I-- 10 OUTPUT SINK CURRENT (mA) "iii" 3 PLASTIC PACKAGE Ow 0.1 GUARAN g!a -2.5 =>0 0.0001 0.001 0.01 TYPICA~ ~! -2.0 OUtput Characteristics Current SOurcing 10 0 i ~~ =::: / ~ TEMPERATUR£ ('c) Output Characteristics Current Sinking E V V " .. . SUPPlY VOLTAGE (V) 0 ~> -0.5 It' V 0.0001 -75 -50-25 0 16 ~~ HERMETIC PACKAGE ~ -55°C to +125OC Common-Mode Voltage Range vs Temperature I I 'C" .3 ~ ± 7.5V, TA = 25'C unless otherwise specified CMRR vs Temperature 140 100 130 80 , 80 "iii" 3 If 100 ,.g;<.> rt Rt.=1~~=100 120 \. 40 ,, 20 " 140 10 12D 60 "iii" 3 ,.<.>g; lk 10k lOOk 100 90 80 , 70 0 100 110 60 10 100 FREQUENCY (Hz) lk 10k lOOk 1M FREQUENCY (Hz) -75 -25 25 75 125 TEMPERATURE ('c) Power Supply Rejection RatiO va Frequency 140 120 , 100 "iii" 3 ~ 80 60 y+ SUPPLY f"\. 40 Y" SUPPLY 20 1'-;: 0 -20 10 100 lk 10k lOOk 1M FREQUENCY (Hz) TL/H/l0547-2 1-925 • ~ Typical Performance Characteristics Vs = ..... Open-Loop Voltage Gain vs Temperature ± 7.5V, TA = 25°C unless otherwise specified (Continued) Open-Loop Frequency Response 160 140 '01 ~ ..... 120 Gain and Phase Responses vs LOad Capacitance - 100 z :c 80 ~ 60 :; g t'I... I\. 40 -25 25 75 125 aOrTTrnm-rrr~"mmrTTmm 25 20 ~ 15 z ~ 10 :!! 90 s ~ ~ -20 is '" -45 I\. 5 -3 I §, -5 -10 ~ i, ~ g ~3!; Rr=~N=5k 0.30 0.25 ~ 1 1/ ~ ~ = 5k 1 1 2.5 0 75 RISING 0.10 -25 75 125 Non-Inverting Small Signal Pulse Response (Ay = +1) s.§. ~ 100 ~ s.§. 125 - V 1\ o 2040 ~ I ~ ~ 6V / 4V ~ ~ §. o 2 o 4 6 a 10 12 14 16 Inverting Small-8ignal Pulse Response 100 ; ; ~N=Rr·Sk ! ... 100 ~ ~ r- ,..-1(' \ ~ g Rr=~N=20k OV I 50 TIME (1'.) s.§. 1 2V -r- 100 TIME (1'0) ~ g ~g ~ ~10~2~4~~~0 Inverting Large-Slgnal Pulse Response ~ 0 - f- g TEMPERATURE (oe) ~ fALLING 0.20 0.15 TEMPERATURE (OC) lV ~ 0.05 ;::: 0.25 0.00 -75 57.5 10 6V ~g 25 0.30 O.DS <:, RISING -25 0.35 3!; 0.10 0.00 -75 .... fALLING 0.20 0•.15 1M 0.4D Large-Slgnal Pulse Non-Inverting Response (Ay = +1) ~ . lOOk Non-Inverting Slew Rate vs Temperature VOur. (VOLTS) OAO ~ 10k fREQUENCY (Hz) I -15 -25 -10 -7.5 -5 -2.5 0 Inverting Slew Rate vs Temperature .... lk = lOOk I\. fREQUENCY (Hz) 0.55 0 -45 1 1 1 1 1 1 -20 -90 10M 1M lOOk 45 Gain Error (Vas vs VOUT) '01 10k iEe fREQUENCY (Hz) Gain and Phase Reaponses vs Temperature lk 90 -20 0.010.1 1 10 100 lk 10k lOOk lW 10M TEMPERATURE (OC) ~ ... E !I.!~ 20 i 20 40 60 ao 100 120 140 50 , \ o 2 II 4 6 a 10 12 14 16 la TIME (1'.) TIME (1") TL/H/l0547-3 1-926 Typical Performance Characteristics Vs = ± 7.5V, TA = 25°C (Continued) Stability va capacitive Load ..... ... 100,000 10,000 10,000 " ..e: Q -c 1,000 9 &oJ ~ t: 0 i:" 100 ~ ~ J...I.JNST~BLE r--. ! ~ ..e: Av=+1 ~~ :2: -c a.. Stability va Capacitive Load 100,000 5% OVERSHOOT Q - 9 ~ IL ~ V ~ I I. I ~I"",,UN~j~~,~ '"'" H 0% OVERSMoT II ~ Wllll , Z% OVERSHOOT 100 ~ 10 1 -10 , 1,000 &oJ if ~ I .1 Ay=+10 or -10 10 1 -0.1 -0.001 0.001 0.1 -1 -om 0 0.01 SINKING SOURCING LOAD CURRENT (rnA) 10 -10 -0.1 -1 -0.001 0.001 0.1 -0.01 0 0.01 SINKING SOURCING LOAD CURRENT (rnA) TL/HI10547-4 10 TLlH/l0547-5 Note: Avoid resistive loeds of less than 500n, eo they may cause instability. Application Hints AMPLIFIER TOPOLOGY The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least 5 kn. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of 5 kn or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as 5000. without instability. The topology chosen for the LPC660 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from. the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to. the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator. COMPENSATING INPUT CAPACITANCE Refer to the LMC660 or LMC662 datasheets to. determine whether or not a feedback capaCitor will be necessary for compensation and what the vlihie of that capacitor would be. As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via Ct and Ctd by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path· consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed . forward. CAPACITIVE LOAD TOLERANCE Like many other op amps, the LPC660 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics. The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently lOW, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (500. to lOOn) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without" interfering with lower-frequency circuit TL/H/l0547-6 FIGURE 1. LPC660 Circuit Topology (Each Amplifier) 1-927 Application Hints (Continued) operation. Thus, larger values of capacitance can be tolerated without OSCillation.: Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation. PRINTED·CIRCUIT·BOARD LAYOUT FOR HIGH·IMPEDANCE WORK It is generally recognized that any circuit which must oper· ate with less than 1000 pA of leakage current requires special ,layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LPC660, typically less than 0.04 pA, it is essential to have an excellent layout Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though if may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. 100 kl} Cx(10pF) Rx (100l}) I Goad To minimize the effect of any surface leakage, layout a ring of foil completely surrounding the LPC660's Inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Fig- Tl/Hf10547-7 FIGURE 2L Rx, Cx Improve Capacitive Load Tolerance ure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC Capacitive load driving capability is enhanced by using a pull up resistor to V+ (FlfJUre 2b). Typically a pull up resistor conducting 50 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 1012 ohms, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LPC660's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 ohms would cause only 0.05 pA of leakage current, or perhaps a 'minor (2:1) degradation of the amplifier's performance. See FlfJures 48, 4b, 4c for typical connections of guard ringS for standard op-amp configurations. if both Inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see v+ R I c Figure4d. TLlH/l0547-28 FIGURE 2b. Compensating for Large ,Capacitive Loads with A Pull Up Resistor t. Guard Ring TLlHf10547-19 FIGURE 3. Example of Guard Ring In P.C. Board Layout using the LPC660 1-928 Application Hints (Continued) Cl R2 Rl INPUT J\I~"",~---,W_""" OUTPUT OUTPUT TUH110547-21 TUH/1 0547-20 (a) Inverting Amplifier (b) Non-Inverting Amplifier R3 Rl --M.---............. 10011 • .L R2 Vl -= OUTPUT V2 ---'w,r---.............. 10011 1011 Tl/H/10547-22 lit. TUH/10547-23 (c) Follower (d) Howland Current Pump FIGURE 4. Guard Ring Connections The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up In the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board con· struction, but the advantages are sometimes well worth the effort of using point-to·point up-in·the-air wiring. See Figure 5. BIAS CURRENT TESTING The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then 1- = dVOUT X C2. dt S2 (push-rod operated) C2 FEEDBACK CAPACITOR SOLDER CONNECTION TUHI10547-24 TUHI10547-25 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.) FIGURE 6. Simple Input Bias Current Test Circuit FIGURE 5. Air Wiring 1-929 C) , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , ~ Application Hints (Continued) A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of 1-, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors. Similarly, if S1 is shorted momentarily (while leaving S2 shorted) where Typical Single-Supply Applications (V+ Ox 1+ = dVOUT x (C1 + ex> dt is the ,stray capacitance at the + input. = 5.0 Voe) Photodlode Current-to-Voltage Converter Mlcropower Current Source +5V Rl LII385 (1.2V) C2 111 R2 1 _ 1.23V R2 our- TLlH110547-18 TL/H/10547-17 (Upper limn of output range dictated by input common-mode range; lower limn dictated by minimum current requirement of LM385.) Note: A 5V bias on the pbotodiode can cut its capacnance by a factor of 2 or 3. leading'lo improved response and lower noise. However, this bias on the photodiode will cause pholodiode leakage (also known as its dark currant). Low-Leakage Sample-and-Hold > ....._ OUTPUT INPUT 5/H !CD4066 4 TLlH/10547-8 Instrumentation Amplifier ( .. - I YIN " R3 R4 , 10k lOOk flRl Rl,44.2k R2 2k For good CMRR over temperature, low drift resis· tors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adlusted through R2. CMRR may be adlusted through R7. pot \+-----. = R5, R3 = R6, and R4 = R7; then VoUT = R2 + 2Rl x ~ VIN Rt R3 :. Av:::: 100'forcircuitsshown. R5,44.2k R6 10k 91k TLlH/10547-9 1-930 Typical Single-Supply Applications (V+ = 5.0 Voc) (Continued) 1 Hz Square-Wave Oscillator Sine-Wave Oscillator Cl 200pf R2 392k C2 200pf R4 10M Cl O.068/,f VOUT I > ....._ VOUT +5V Rl R2 +5V 470k 20k R3 470k 20k 470k + 20k TL/H/10547-11 Power Amplifier R4 TLlH/10547-10 Oscillator frequency is determined by AI. A2. Cl. and C2: fose ~ 1/2"AC where A = Al = A2 and C = Cl = C2. +5V ....-'IIV\ro_~ VOUT This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V TL/H/10547-12 1-931 I Typical Slngle-Supply Appllcallons (V+ - 5.' V""" ~ 10 Hz Bandpass FIlter 10 Hz High-Pass FiRer (2 dB Dip) C2 +5V R4 VOUT V CI ~t---4","""",,I--t---I 560k 0.015 pF 0.015 J.lF R2 2.7M +5V ....1\1\,.,........... R3 10 Ie - 10 Hz d = 0.895 Gain = 1 = 10Hz Q = 2.1 Gain = -8.8 390k TLlHI10547-14 TLlHI10547-13 High Gain Amplifier with Offset Voltage Reduction 1 Hz Low-Pass FIlter (Maximally Flat, Dual Supply Only) RI R4 470k 270k R3 Vour VOUT VII R3 R2 R4 8.2M CI =I Hz =1.414 Gain =1.57 10M f. 0.02J.1F o.o2J.IFI d 0.1 J.lF TLlH/10547-15 0.1 J.lF R5 R6 +5V ........,.".,--.......I\jW.... 22k 15k Gain = -46.8 Output offset vol1age reduoad to the level of the Input offset voltage of the bottom ampPfter (typically 1 mV). referred to VBIAS. 1-932 - TL/H/l0547-16 ttlNational Semiconductor LPC661 Low Power CMOS Operational Amplifier General Description The LPC661 CMOS operational amplifier is ideal for operation from a single supply. It features a wide range of operating supply voltage from +5V to +15V, rail-to-rail output swing and an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input Vas, drift, and broadband noise as well as voltage gain (into 100 kO and 5 kO) are all equal to or better than widely accepted bipolar equivalents, while the supply current requirement is typically 55 pA This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LPC660 datasheet for a Quad CMOS operational amplifier or the LPC662 data sheet for a Dual CMOS operational amplifier with these same features. Features (Typical unless otherwise noted) • Rail-to-rail output swing • Low supply current • Specified for 100 kO and 5 kO loads • • • • • • • • 120 dB High voltage gain 3 mV Low input offset voltage 1.3 p.V/oC Low offset voltage drift 2 fA Ultra low input bias current Input common-mode range includes GND Operating range from + 5V to + 15V 0.01 % at 1 kHz Low distortion 0.11 V/p.s Slew rate Applications • • • • • • • High-impedance buffer Precision current-to-voltage converter Long-term integrator High-impedance preamplifier Active filter Sample-and-Hold circuit Peak detector 55 pA Connection Diagram S-Pln DIP/SO NC{38 NC INVERTING INPUT 2 _ NON-INVERTING 3 INPUT 7 'If" 6 OUTPUT V- 4 SNe TLlHI11227-1 Ordering Information Temperature Range Package Military -ssoC to + 125"C 8-Pin Small Outline S-Pin Molded DIP lPC661AMN NSC Transport Media Industrial -WC to +85"C Drawing LPC661 AIM LPC661 1M MOBA Tape and Reel Rail LPC661AIN LPC661IN NOSE Rail 1-933 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V+ - V-) 16V Differential Input Voltage ± Supply Voltage , " {Note 9)Output Short Circuit to V + Output Short Circuit to V(Note 2) Storage Temperature Range - 65°C to + 150°C 2600C J,ead Temperature (Soldering, 10 se~,) Junction Temperature (Note 3) 1500C Power Dissipation (Note 3) ESD Rating (C= 100 pF, R= 1.qk£l) 1000V " Gurrenf at Input Piri Current at Output Pin Voltage Input/Output Pin Current at Power Supply Pin , Vas Parameter Conditions " Input Offset Voltage TCVos Input Offset Voltage Average Drift Ie Input Bias Current , Typ ' 1 LPC661AM Limit (Note 4) 0.002 Input Offset Current 0.001 Input Resistance CMRR Common Mode Rejection Ratio OV ~ Vct1 ,83 V+ - 1.9 Av 1M unless'otherwise noted. ' , 1.3 RIN +PSRR = 3.15 100 los '35mA Operating ,Rat~"gs(lI!ote 1) 4.75V ~ V+ ~ 15.5V Supply Voltage Junction Temperature Range LPC661AM ',-55°C ~ TJ ~ +125°C LPC661AI -400C ~ TJ ~ +85°C LPC661 I -400C ~ TJ ~ +85°C Pow,er Dissipation (Note 7) Thermal Resistance (8JAl (Note,8) 8-PinDIP 101"C/W 8-PinSO 165°C/W DC Electrical Characteristics ' The following specifications apply for V+ = 5V, V- = OV, VCt7 0.05 0.05 0.03 Units Limit ' (Limit) (Note 4) / SR Slew Rate (Note 6) 0.11 " V/p.s min GBW Gain-Bandwidth Product 350 kHz cf>m Phase Margin 50 Deg GM Gain Margin 17 dB en Input Referred Voltage ~oise F=1kHz 42 nVl.JFiZ in Input Referred Current Noise F=1kHz 0.0002 pA/.JFiZ T.H.D. Total Harmonic Distortion F = 1 kHz,Av = -10 RL =100 kG, Vo = 8 Vpp V+ = 15V " 0.01 % Note 1: Absolute Maximum Ratings indicate limits beyond which damaga to the device may occur. Operating Ratings Indicate conditions for which the devlca is intended to be functional, but do not guarantee specific parfonnance limits. For guaraOteec:t epecifications and test conditions. see the Electrical Characteristics. The guaranteed specifICationS apply only for the test conditions listed. Note 2: APplies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result In exceeding the maximum allowed lunction temperature of 15O'C. Output currents In excess of ± 30 rnA aver long term may adversely affect reNabilIty. Note 3: The maximum power dissipation is a function of TJ(rn8x). 8JA and TA. The maximum allowable power dissipation at any ambient tempereture Is Po = (TJ(max)-TAlI8JA. Note 4: Umlts are guaranteed by testing or correlation. Note 6: vi; = 15V. YOM = 7.5V and RL connected to 7.5Y. For sourcing tests. 7.5V'';' Yo ,;." 11.5Y. For sinking tests. 2.5V ,;. Yo ,;. 7.5V. Note 6: y+ = 15V. Connected as Yoltage Follower with lOY step Input. Number specified Is the slower of the positive and negative slew rates. Note 7: For operating at elevated temperatures the devlca musl be derated besed on the thermal resistence 8JA with Po = (TJ-TAlI8JA. Note 8: All numbers apply for packages soldered directly il)lo a PC board. Note 9: Do not Connect output to Y+ when Y+ Is greater then 13Y or reliability may be adversely affected. " i 1-936 Typical Performance Characteristics Vs = Supply Current YS Supply Voltage Input Bias Current vs Temperature 100 ~ 70 5 Ii 80 il ~ ~ 10 '0 80 .3 ~55 :; i i3 ; + i25' ~~ ~ 0 ~ ~ IJt 50 40 . 30 l lE 20 I - r- a ,I 0 2 4 • 6 HERMETIC PACKAGE 0.1 V 0.01 10 12 14 16 I! iii !II 0.1 ~ 0.01 ~ 0.001 Ii! !:i I ~ / 0.1 S 1/ ~~ 10 el! >" ~~II! 0.01 0.001 v....... \. 40 100 ~z 80 1 80 \ ~ AI ~ ~ It 10k FREQUENCY (Hz) lOOk 1M 75 125 t- 20 a 0.1 1 10 100 10 100 Ik 10k lOOk FREQUENCY (Hz) Power Supply Rejection Ratio va Frequency 140 'i1 ~ Ie = 90 , 80 eo 1\.'" SUPPLY I'" 40 V" SUPPLY 80 20 70 a 60 100 I........ 40 120 Ii :a 25 120 ! 100 lao rrr" 140 120 110 " • a -25 ... ~ TEMPERATURE (OC) 130 'i1 ~ ,, 20 10 ~ 140 60 Iou. -75 CMRR va Temperature 80 " ;i -o~ OUTPUT SOURCE CURRENT (mAl 100 Ii :a 8> +0.5 Input Voltage Noise va Frequency ls=·r V 0.0001 0.001 0.01 100 CMRR va Frequency ~ -3.0 160 ~L\15V OUTPUT SINK CURRENT (mA) 'i1 I~ :a II! Vs.J+5~ I 0.1 o-!j 1 r- CA~ GUARAN ill! -2.5 I I ~~ TY :1-2•0 Output Characteristics Current Sourcing ~=+5V 0.0001 0.001 0.01 -1.0 I . . 10 +15Vj +5'1'" Vs Vs I a ~I! TEMPERATURE (OC) Output Characteristics Current Sinking > ~~ ~a -1,5 / / 0.0001 -75 -50-25 a 25 50 75 100125150 SUPPLY VOLTAGE (v) 10 " PLASTIC PACKAGE " 0.001 1/ V Common-Mode Voltage Range va.Temperature i~ -0.5 ~ I 10 ~ ± 7.5V. TA = 25°C unless otherwise specified· i";~ -20 -75 -25 25 75 1£IIPERATURE (OC) 125 10 100 Ik 10k lOOk 1M FREQUENCY (Hz) TLlHI11227 -2 1-937 .... ~ .... Typical Performance Characteristics Vs = .± 7.5V, TA = Open-Loop Voltage Gain vs Temperature Open-Loop Frequency Response 150 160 140 :!,.fO 1\ i zz. ~ 130 i ~~ = lOOk - Iii' ~ rG: ~ ~ -~ 1\ = 5k f' ~ ~ 110 ~ 100 ~ 80 -25 25 75 w !:l :; ~ -20 0.010.1 1 10 100 lk 10k lOOk 1M 10M 125 15 z i1 ~ 90 ~. :; 10 S .3 I ~ ~ ~ .;. 1\ 5 -5 -10 -20 -10 -7.5 -5 -2.5 0 Inverting Slew Rate vs Temperature ~~ 0.35 R,-=Rt.=5k 0.1 5 ~ IV ! ~ :; I 0.00 25 75 125 o w 20 40 60 80100120140160180 ~ 0 100 1/ 50 \ o ~ / ~ !!; ~ r20 40 60 8 10 12 14 16 100 : Rt.=R,-=5k .s 100 r\.. 2V r~ ov o 4 6 ~ s 4V 2 w R,-=Rt.=20k 6V 125 Inverting Small-8ignal Pulse Response .s I ~ 75 TIME (1") s I !:l 50 10 TIME (1") :; 25 Non-Inverting Small Signal Pulse Response (Av = +1) I ~ Inverting Large-Signal Pulse Response E ~~ \ V ~ TEMPERATURE (Oc) E -25 i ~ -25 RISING 0.10 ! ~ RISING - f- TEMPERATURE (Oc) E 0.05 -75 FALLING 0.15 0.00 -75 7.1; 10 FALLiNG 0.20 0.1 0 0.20 0.05 5 !i 0.25 0.25 ~ oj 6V ~ 0.30 ~ 2.5 0.30 ~ ~, = 5k large-Signal Pulse Non-Inverting Response (Av = +1) <:,' 0..40 u: I 1/ 0.35 VOUT (VOLTS) FREQUENCY (Hz) i "- I I I -25 1M .. = lOOk -15 -45 0..40 I I I 1 1\ 1M Non-Inverting Slew Rate vs Temperature (Yos vs VOUT) 20 lOOk FREQUENCY (Hz) Gain Error ~ ~ 10k FREQUENCY (Hz) 25 ~ ,0 20 Iii' lOOk i r-... 20 f-l-+1fl!Hfl-H'tcl+HIo'-+++I+I1II 40 ~ Gain and Phase Responses vs Temperature 10k ! ~~ TEMPERATURE (Oc) lk Gain and Phase Responses vs Load Capacitance - 60 !:l 100 -75 120 ~ '/. Z. ~ 120 25°C unless otherwise specified (Continued) I 80 100 120 140 TIME (1") 50 \ II o 2 4 6 8 10 12 14 16 18 TIME (1'.) TUH111227-3 1-938 Typical Performance Characteristics Vs = Stability va Capacitive Load Stability va capacitive Load --r-,........--,--r-. 100,000 r-.---,--y-.... 100,000 10,000 ~ ..e; co ...1!:... 1,000 :. 100 ~ .... e:; ± 7.5V, TA = 25"C(Continued) 10,000 ~ Ay=+1 ~ N.I JNST1BLE ~ ~ ILJ.U.I 1,000 .~ Ll ~ r 100 r-+-+-r-+~:..;.;:;F+-I-+---I J ~ 5" OVERSHOOT 10r-+-+-r-~~-+-~-I-+---I 10 1~~~~~~~~~~--~~ -10 -0.1 -0.001 0.001 0.1 -1 -0.01 0 0.01 SINKING SOURCING LOAD CURRENT (mA) 10 -10 -(1.1 -1 -0.001 0.001 0.1 -0.01 0 0.01 SINKING SOURCING LOAD CURRENT (mA) TL/H/II227-4 10 TLlH/II227-5 Note: Avoid resistive loads of less than 500n, as they may cause instability. Application Hints AMPLIFIER TOPOLOGY The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least 5 kO. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of 5 kO or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as 5000 without instability. The topology chosen for the LPC661 is unconventional (comparec\ to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the· integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator. COMPENSATING INPUT CAPACITANCE Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be. As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C, and c,,) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path conSists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward. CAPACITIVE LOAD TOLERANCE Uke many other op amps, the LPC661 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitiv!l to oscillation is a unity-gain follower. See the Typical Performance Characteristics. The load capaCitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (500 to 1000) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit TL/H/11227-6 FIGURE 1. LPC661 Circuit Topology 1-939 -~~----------------------------------~ I ~ Application Hints'(Continued) operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation. PRINTED·CIRCUIT-BOARD LAYOUT FOR HIGH·IMPEDANCEWORK It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. VIIhen one wishes to take advantagll of the ultra-low bias current of the LPC661, typically less than 0.04 pA,it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably law; because under conditions of high humidity'or dust or contamination, the surface leakage will be appreciable: IOOkA Cx(IOpF) Rx(IOOAj To minimize the effect of any surface lelik8ge, layout a ring of foil completely surrounding the LPC661's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Ftgure 3. To have a Significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the ssme voltage as the amplifier inputs, since no leakage current can flow betWeen two points at the same potential. For example, a PC board trace-to-pad resistance of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LPC660's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance ,of 1011 0 would cause only \>.05 pA of leakage currerit, or perhaps a, minor (2:1) degradation of the amplifier's. performance. See Figures 48, 4b, 4c for typical connections of guard rings for standard op-amp coilfigurations. If both inputs are active and at high ImpSdance, the guard can be tied to ground and ,still provide some protection; see TLlHfl1227-7 FIGURE 2a. Rx, ex Improve Capacitive Load Tolerance Capacitive load driving capability is enhanced by using a pull up resistor to V+ (Ftgure 2b). Typically a pull up resistor conducting 50 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics). v+ R Ftgure4d. TLlHfll227-24 FIGURE 2b. Compenaatlng for Large Capacltlv~ Loada with A Pull Up Resistor l.Guard Ring TLfHfll227-8 FIGURE 3. Example of Guard Ring in P.C. Board Layout, Uaing the LPC660 1-940 .-----------------------------------------------------------~~ ~ .... Application Hints (Continued) Cl R2 Rl INPUT -ItJ1M.............-.AJltIY--.. Guard Ring I I I I -+t OUTPUT OUTPUT I 1: TLlH/11227-10 (b) Non-Inverting Amplifier TLlH/11227-9 (a) Inverting Amplifier R3 Rl VI 10011 L OUTPUT R2 V2 • I 10011 1olot TLlH/11227-11 (e) Follower TLlHI11W-12 (d) Howland Current Pump FIGURE 4. Guard Ring Connections The designer should be aware that when it is inappropriate to layout a PC board for the sake of just a f$W circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only alr as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-alr wiring. See FtgUre5. BIAS CURRENT TESTING The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then 1- = dVOUT X C2. dt .- S2 (push-rod operatsd) FEEDBACK CAPACITOR C2 I Tl/H/11227-13 (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.) TLlH/11227-14 FIGURE 6. Simple Input Bias Current Test Circuit FIGURE 5. Air WIring 1-941 Application Hints (Continued) A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of 1-, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors. Similarly, if S1 is shorted momentarily (while leaving S2 shorted) 1+ = dVOUT x (C1 + Cxl dt . where Cx is the stray capacitance at the Typical Sin~le-Supply Applications (V+ + input. = 5.0 Vee) Photodlode Current-to-Voltage Converter Micropower Current Source +5Y LM385 (1.2Y) C2 1M I pF R3 YOUT R2 L 1.5V TO 2.4V (Upper limit of output range dictated by Input common-mode range; lowar IImR dictated by minimum current requirement of LM385.) Note: A 5V bias on the photodiode can cut its capacitance by a factor of 2 or 3, leading to improved response and lower noise. However, this bias on the photodiode will cause photodioda leakage (also known as Its dark current). L!?w-Leakage Sample-and-Hold . > ....... OUTPUT INPUT ~CD.4066 I ""i2 TL/H/11227-16 TL/H/11227-15 5/H ~ 1.23V 'OUT - 0.1 I'F POLYPROPYLENE' . OR POLYSTYRENE . , TUH/11227-17 -I 1-942 '.". r-----------------------------------------------------------------------------,~ Typical Single-Supply Applications (v+ '1J = Sine-Wave Oscillator R2 392k (") 5.0 Vee) (Continued) - I 1 Hz Square-Wave Oscillator R-4 C2 200pF CI 10M 200pF Your +5V >-.... Vour Rl R2 +5V.---~~--~----~~--~ 470k 20k R3 -470k -470k TlIH/11227-19 Power Amplifier R4 Tl/H/11227-18 OScIllator frequency is detennined by Rl, R2, Cl, and C2: whereR lose = 1/2".RC = Rl = R2andC = Cl = C2. Vour This circuit, as shown, oscillates at 2.0 kHz with a peak-to- . peak output Swing of 4.5V TUH/11227-20 1-943 Typical Single-Supply Applications (V+ = 5.0 Voc) (Continued) 10 Hz Band~ Filter 10 Hz High-Pass Filter (2 dB Dip) +5V C2 0.0068 ,.r R4 Your y, Cl :...,t--.. . . . . . . . . . . . . ..... 560k +5V +-"'V\fIr-......-t R3 10 Q Ie = 10 Hz d = 0.895 Gain = 1 = 10Hz = 2.1 Gain = 18.9 dB 390k TLlH/II227 -22 TLlH/11227-21 1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only) Rl R4 470k 270k Your f. d = 1 Hz = 1.414 Gain = 1.57 TL/H/11227-23 '·944 t!lNational Semiconductor LPC662 Low Power CMOS Dual Operational Amplifier General Description The LPC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It features a wide range of operating voltage from +5V to +15V, rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input Vos, drift, and broadband noise as well as voltage gain (into 100 kG and 5 kG) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is typically less than 0.5 mW. This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process. See the LPC660 datasheet for a Quad CMOS operational amplifier and LPC661 for a Single CMOS operational amplifier with these same features. • • • • • Features • • • • • • • • • • Applications • • • High-impedance buffer • Precision current-to-voltage converter Long-term integrator High-impedance preamplifier Active filter Sample-and-Hold circuit Peak detector Rail-ta-rail output swing Micropower operation «0.5 mW) Specified for 100 kG and 5 kG loads 120 dB High voltage gain 3mV Low input offset voltage 1.3 p.v/"C Low offset voltage drift 2 fA Ultra low input bias current Input common-mode includes GND Operating range from + 5V to + 15V 0.01% at 1 kHz Low distortion 0.11 Vlp.s Slew rate Full military temperature range available Connection Diagram 8-Pln DIP/SO '-'-!n,~~~ INVERTING INPUT A....! NON-lNVERnlG IN'UTA WB\ 3 - J OU1PUT 8 + +rIINPUT B I L -L, - INVERnlS . • V-....;.+----' ,--_..5.... NON-INVERTIN. INPUT I TLlH/l0548-1 Top VIew Ordering InfQrmation Package Temperature Range Military 8-Pin SideBrazad Ceramic DIP Industrial LPC662AMD NSC Drawing Transport Media DOSC Rail 8-Pin Small Outline LPC662AIM orLPC662IM MOBA Rail Tape and Reel 8-Pin Molded DIP LPC662AIN orLPC6621N N08E Rail J08A Rail 8-Pin Ceramic DIP LPC662AMJ/883 1-945 ~ I ! I Absolute Maximum Ratings (Note 3) Operating Ratings (Note 3) If Military/Aerospace specified devices are required;' please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Temperature Range LPC662AMJ/883 LPC662AM LPC662A1 LPC6621 Differential Input Voltage Supply Voltage (V+ - V-) ± Supply Voltage 16V (Note 11) (Note 1) Output Short Circuit to V+ Output Short Circuit to VLead Temperature (Soldering, 10 sec.)' Storage Temp. Range Junction Temperature ESD Rating (C = 100 pF, R Power Dissipation Current at Input Pin = -400C,:;; TJ~ \l-85°C 4.75Vto 15.5V " (Note9) Sup~yRange ',', Power Dissipation Thermal Resistance (8JAl (Note 10) 8·Pin Ceramic DIP' 8·Pin Molded DIP a·PinSO 8·Pin Side Brazed Ceramic DIP 2600C - 65°C to' + 15!r.'C 1500C fOOOV (Note 2) 1.5 kn) , -55°C s: TJ s: +125°C -55°C s: TJ s: + 125°C -:400C s: :rJ s: +85°C ',' , " 1000C/W 10:l°C/W 165°C/W 1000C/W ±5mA ±18mA Current at Output Pin Current at Power Supply Pin 35mA (\l+) + 0.3V, ('1-) -0.3V Voltage at Input/Output Pin DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and,l;IL > 1M unless otherwise specifie~. Conditions Parameter Input Offset VOI~ge Typ LPC662AM LPC662AMJ/663 Limit (Notes 4, 8) LPC662AI' Umit (Note 4) 1 3 3 3.5 3.3 "- , LP'C6621' Limit (Note4) . 6 8.3 1.3 Input Offset Voltage Average Drift Input Bias Current 0.001 4 pA max 2 2 pA max 20 '100 >1 Common Mode Rejection Ratio OV s: VCM s: 12.0V V+ = 15V 83 Positive Power Supply Rejection Ratio 5V s: V+ s: 15V Vo = 2.5V ~3 Negative Power Supply Rejection Ratio OV Input Common·Mode Voltage Range V+ Teran . s: V- s: -10V 94 7'0 70 63 88 88 81 70 70 63 88 88 81 84 84 74 82 83 73 -0.1 -0,1 -0.1 0 0 V+ .:.. 2.3 V+ - 2.3 V+ - 2.3 Y+ - 2.8 Y+ -2.5 V+ - 2.5 1.1 = -0:4 5Vand 15V 50dB mV max 4 20 100 Input Resistance , /J-vrc 0.002 Input Offset Current Units ForCMRR'~ ,0 V+ -1.9 \.' '1·946 dB min dB min dB min V max V min DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ 0= 25°C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. (Continued) Parameter Large Signal Voltage Gain Output Swing Conditions Typ RL = 100 kO (Note 5) Sourcing 1000 Sinking 500 RL = 5 kO (Note 5) Sourcing 1000 Sinking 250 V+ = 5V RL= 100kOtoV+/2 LPC662AM LPC662AMJ/883 Limit (Notes 4, 8) 4.987 0.004 V+ = 5V RL = 5kOtoV+/2 4.940 0.040 V+ = 15V RL = 100kOtoV+/2 14,970 V+ = 15V RL = 5kOtoV+/2 0.110 Output Current V+ = 5V Sourcing, Vo = OV Sinking, Vo = 5V Output Current V+ = 15V Supply Current Sourcing, Vo = OV 400 400 300 300 200 180 180 90 70 120 70 200 200 100 150 180 80 100 100 .50 35 80 40 4.970 4.970 4.940 4.950 4.950 4.910 0.030 0.030 0.060 0.050 0.050 0.090 4.850 4.850 4.750 4.750 4.750 4.850 0.150 0.150 0.250 0.250 0.250 0.350 14.920 14.840 22 21 40 Sinking, Vo = 13V (Note 11) 39 Both Amplifiers Vo = 1.5V 86 1·947 LPC6621 limit (Note 4) 250 14.880 0.007 LPC662AI Limit (Note 4) 14.920 . 14.880 14.880 14.820 0.030 0.030 0.060 0.050 0.050 0.080 14.680 14.680 14.580 14.800 14.800 14.480 0.220 0.220 0.320 0.300 0.300 0.400 16 16 13 12 14 11 Units V/mV min V/mV min V/mV min V/mV min V min V max V min V max V min V max V min V max rnA min 16 16 13 rnA 12 14 11 min rnA min 19 28 23 19 25 20 19 28 23 19 24 18 120 120 140 145 140 180 rnA min p.A max AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C. Boldface limits apply at the temperature extremes. V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified. Parameter Slew Rate Typ Conditions (NoteS) 0.11 Gain-Bandwidth Product Phase Margin Gain Margin LPC662AI Umlt (NOte") LPC6621 Limit (Note 4) 0.07 0.07 0.05 0.04 0.05 0.03 Units Vlp-s min. 0.35 MHz 50 Deg 17 dB 130 dB F=1kHz 42 nV/.jHz F = 1 kHz 0.0002 pA/.jHz 0.01 % Amp-to-Amp Isolation (Note 7) Input Referred Voltage Noise Input Referred Current Noise Total Harmonic Distortion LPC662AM LPC662AMJ/883 Umlt (Notes 4, 8) F = 1 kHz,Av = -10, V+ = 15V . RL = 100kO, Vo = 8Vpp Note 1: Applies to both single supply and spin supply operation. Continuous short circuit operation at elevated ambient temperature and/or muHlple Op Amp shorts can result in exoeed;ng the maximum allowed junction temperatura of l5O'C. Output currenta In excess of ± 30 mA over long term may adversely affect reIiabIIHy. Note 2: The maximum power dissipation is a function of TJ(max), 9JA. and TA' The maximum allowable power dissipation of any ambient temperatura is Po = (TJ(max) - Tp.}18JA· Note 3: AbeoIute Maximum Ratings incflCale limns beyond which damage to the device may oCcur. Operating Ratings indicate conditions for which the device Is Intended to be functional, but do not guarantee specific pe 0.001 t ! ' . _ + - - + - - t - - f 10 .al.. -1.0 a -1.5 ~ ! -2.0 GUARA ... g= -2.5 'I' -3.o! I:-+-+-t-lf-t--t-+-:-L Input Voltage Noise vs Frequency l~s~'!5V 1 0r--r-..,.--r-r--r-r--r-, output Characteristics Current Sourcfng 0.01" 0.0011~ 0.001 0.01 ~~ :\. - 0 . 5 _1 TtMPERATURE (OC) ~1.l.m 5~ 0.0001 r-v~ V$ = .5V ~ Input Common-Mode Voltage Range vs Temperature TEMPERATURE (OC) Output Characteristics Current Sinking ~ = 25°C unless otherwise specified Input Bias Current vs Temperature 250 r--r-..,.--r-r--r-r--r-, 3 ± 7.5V, TA 0.1 1 10 O~-'--'---'---'----'-'-.l-..1 100 10 OUTPUT SOURCE CURRENT (mA) 100 lk 10k lOOk FREQUEMCY (Hz) Crosstalk Rejection 80 vs Frequency 100 CMRR vs Frequency 140 CMRR vs Temperature ,130 f--+-+-+--+-f--t-+--l 801--t-+-+--t--l--t-+--t 120 f--+-+-+--+-f--t-+--l ! Il' 110 1001--t-+-+--t--lfl-t-+--t I001--t-+-+--t--l--t-+--t lit. = 1 ~~ =100k 120 j....~±:;;;p~-r-t--t--j 80 90H-E=fff~ I---'F 70r-+--l--r-+--l--t-~-l 1401--'--'---'---'----'-'-.1-..1 10 100 lk 10k lOOk FREQUENCY (Hz) &o~-'--'---'-~--' 100 lk 10k lOOk 1M FREQUENCY (Hz) -75 -25 25 __L-~..1 75 125 TEMPERATURE (OC) ~ I Power Supply Rejection 140 Ratio vs Frequency 120I-HH-t-t-+-+-++-t 10°t:SS~;tll!!~ 80 i= I\. y+ SUPPLY 60 H--+-+-+-''40,:-+'~-t-H 40I-HH-t-t~~~+-t 20I-HH-+~~S+U~PfY~~~ ot-H--f'--+-+-+-+--t-~-F4: -20 L-JL-..J---'---'--'--'-....L.-'--'--' 10 100 lk 10k lOOk 1M FREQUENCY (Hz) TL/H/l054B-2 1-949 io a.. ..... Typical Performance Characteristics Vs ",":t 7iN. TA = Open-Loop Voltage Gain vsTemperature " 2S·Cunless Qtherwise specified (Continued) Open-Loop Frequency ReSponse Gain and Phase Responses vs Load CapacHance 160 r-r-,---,---,-,-,-,--..,---, ! ~ I-+-+-+~-,lc:-:-I-+-I 140 .. 120I-j-3I,:f-+-+-+-+-+-+--1 ~ 801-r-+-~~+-+-+-+--1 I~~ __ =r-+-+-+-+-+-+~~ ~ 130 3 z 120 ~ 60~r-r-+-~~+-+-+--1 ~ 401-t-t-t-+-~v-+-+--i i 110 "201-r-+-+-+-+-+"od-+--1 100 -20 '---'-'-.1-.1--'--'--'--"--' 0.010.1 I 10 100 Ik 10k 100klM 10M §r -75 25 75 1001-t-P,;I-+-+-+-+-+--i 125 Gain and Phase Responses YS Temperature 80rTTmM-rrrmr~TImrTTmm 25 15 90 " 40 20H+HfIll-"N -20 H+Hflll-miiim=-I.,j.HIIIIH+Hf1ll -~5 lk 10k lOOk ~ i 10 ~ 5 ~ -5 I\. "-10 -15 Non-Inverting Slew Rate 0.-10 D.35 'i ~ 0.25 i!i 0.15 1 u: 0.1 0 .. 0.25 ~ ~ 0.00 5 -75 7.5 10 -25 25 75 125 TEMPERATURE (Oc) Large-Slgnal Pulse Non-Inverting Response (Av = +1) Non-Inverting Small Signal Pulse Response (Av = +1) S' .s ~ 100 ~ Rr=R,.=5k ~ ~ ~ iE fALLING S' 0.15 ~'100 RISING \@ "0.10 V o.os "--o 0.00 c75 I- RISING VOUT (VOLTS) 0.30 0.20 - 0.05 1 2Jl FALLING io.2O 1/ = 5k 0.40 ~ 0.30 I -25 -10 -7Jl -5 -2Jl 0 1M lOOk VB Temperature = lOOk -20 1M Inverting Slew Rate vs Temperature 0.35 t-t-+l1tlll1t- 0 10k 1 1 1 1 1 1 I\. fREQUENCY (Hz) '0' 45 ,--LLJLLlULL FREQUENCY (Hz) Gain Error (VOS va "OUT) 20 ~ 90 Hl-trlttijH-++++III1;;;;:! ~ lSi! FREQUENCY (Hz) TEMPERATURE (oc) ~ ,,:iii' if:!' -25 25 75 125 ~" 50 \ 5 2DAO"~~W~2D14016~~ 024 TIME (1'0) Inverting large-Signal Pulse Response 1 i Rr = R,N = 20k ~ / ~ .~ ~ 0 , '\ ~ o o 20 40 60 80 100 UO 140 TIME (I's) ~ ~ Rt.=Rr=5k 0 "- 8 W U Inverting Small-Signal Pulse Response ~ 10~L 1 6 TIME (1'0) ! 1 \ ~ -of-- TEMPERATURE (Oc) I > I I 2 4 6 8 10 12 14 16 18 TIME (1'.) TL/H/l0548-3 1-950 Typical Performance Characteristics Vs = = 25°C (Continued) ± 7.5V, TA Stability vs Capacitive Load Stability vs Capacitive Load 100,000 100,000 10,000 t:' ..eo Q 9... ~ § 1,000 10,000 ~ 100 ~f- Ay~+10Ior -110 I t:' Q ~ ....(§ ~ N. ~ ~ J..J.JNsT1BLE 1,000 ... Photodiode Currerit-to-Voltage Converter Mlcropower Current·Source LW385 (1.2V) +5V Rl + ,.. \ ,'-'XI C2 lW 1 pF R3 l00W Vour 1_ 1.5V TO UV 1.23V _ 'UUT- R2 TLlH/l0548-18 TL/H/l0548-17 (Upper limR of output range dictated by input common-mode range; lower IimR dictated by minimum current requirement of LM385.) Note: A 5V bias on the photodiode can cut Its capaCitance by a factor of 2 or 3, leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current). Low-Leakage Sampie-and-Hoid ~~~ OUTPUT INPUT 5/H TL/H/l0548-8 Instrumentation Amplifier ( - R3 R4 10k lOOk VOUT=~X~ •. n VIN I R2 R3 :·.Av :::: 100 for circuR shown. R2 VIN If Rl = R5, R3 = R6 and R4 = R7; then > ....._ VOUT 2k ~ \.------. R6 10k 91k TLlH/l0548-9 1-954 Fa! good .GMRR over temperature, low drift resi.. tors. ~hould be"used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adJustad through R2. CMRR may be adjusted through R7. r-----------------------------------------------------------------------------'r "'D Typical Single-Supply Applications 0/+ Sine-Wave Oscillator Cl 200pr R2 392k ~ = 5.0 VDcl (Continued) 1 Hz Square-Wave Oscillator C2 200pr N R4 10M Your .>......- +5V Vour Rl +5V +--W.".....-.....---W."....._..... 20k 20k TL/H/I0548-11 Power Amplifier R4 TL/H/l0548-10 Oscillator frequency is determined by RI, R2, Ct, and C2: whereR fose = 1/2".RC = RI = R2andC = CI = C2. +5V +.JVVIr.......... This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V TL/H/l0548-12 ! ~ ! 1-955 Typical Single-Supply Applications (V+ = 5.0 Vee) (ContInued) 10 Hz Hlgh-P... Filter (2 dB Dip) 10 Hz Bandpass Filter C2 0.OO681'F . ~5V R4 v Cl :...,1-.....-n---4~---f 560k +5V ....-'YtIV-........... R3 10 10 = 10 Hz Gain Q= 2.1 Gain = -8.8 =1 TLlH/l0548-14 TL/H/l0548-13 1 Hz Low-P... Filter (Maximally Flat, Dual Supply Only) RI R4 47Dk 270k High Gain Amplifier wlth.OHaet Voltage Reduction R3 VII p, -= R3 R2 RI Vour -4.7k "Vour VIN 390k d.= 0.895 = 10 Hz , O.II'F . 8.211 CI 0.021'F 0.021'~ Ie = I Hz = t.-414 Geln = 1.57 d R2 R4 22k lOll C2 O.II'F TLlHI10548-15 R5 O.II'F R6 +5V ....--'\M,......--4~W_. 22k 15k Gain = -46.8 Ou1pUt offset voltage reduced to !he level of the Input offset voltage of !he bottom amplifier (typically 1 mV), referred to VSIAS. 1·956 TLlH/l0548-18 o ~ I!fINational Semiconductor OP-07 Low Offset, Low Drift Operational Amplifier General Description Features The OP-07 has very low input offset voltage which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nUlling. The OP-07 also features low input bias current and high openloop gain. The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain applications. The wide input voltage range of ± 13V minimum combined with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains. • • • • • • • • Stability of offsets and gain with time or variation in temperature is excellent. • • • • The OP-07 is available in T0-99 metal can, ceramic or molded DIP. For improved specifications, see the LM607. Low Vos 75 "'V Max Low Vos Drift 0.6 ",VI"C Max Ultra-Stable vs Time 1.0 ",VI Month Max Low Noise 0.6 ",Vp-p Max Wide Input Voltage Range ±14V Wide Supply Voltage Range ± 3V to ± 18V Fits 725/108A1308A, 741, AD510 Sockets Replaces the p.A714 Applications Strain Gauge Amplifiers Thermocouple Amplifiers Precision Reference Buffer Analog Computing Functions Connection Diagram Dual-In-Llne Package ~"-/ r!-vos TRIM 7 Vos TRIM...1. 2 -IN--i-- - +IN...! I-- + V-"'! ~V+ r!- OUT ~N.C. TUH/10550-1 See NS Package Number N08E Ordering Information r-----------~--------_.------------~ TA = 2S"C VosMax ("'V) N08E Plastic Operating Temperature Range 75 OP07EP COM 150 OP07CP COM 150 OP07DP COM 'Also available per SMD #8203602 1-957 Absolute Maximum Ratings - 65·b to: + 150"C 260"C -65·Cto + 150"C Storage Temperature Range Lead Temperature (Soldering, 60 sec.) Junction Temperature If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales OffIce/Distributors for availability and specifications. Supply Voltage ±22V 500mW Internal Power Dissipation (Note 5) ±30V Differential Input Voltage ±22V Input Voltage (Note 6) Output Short·Circuit Duration Continuous Operating Temperature Range O"C to.. + 70"C OP·07E, OP-07C, OP·07D Simplified Schematic ~------~------~--~~--~--~~~--~----~----'---~--T-~ ....., .-- . -• RI • • ..... .. RI' ~~-4 ____ ~ ________ ... ~~~~ __ ~ __ ~ __ ~ __ ~ ....., TVH/l0550-3 'R2A and R2B are electronically trimmed on chip al1he factory for minimum offset voltage. 1·958 Electrical Characteristics Unless otherwise specified, Vs = ± 15V, TA = 25·C. Boldface type refers to limits over O'C !> T A !> 70'C Symbol Parameter OP·07E Conditions Min Vas Input Offset Voltage (Note 1) Vasil Long·Term Vas Stability (Note 2) los Input Offset Current OP.07C Typ Max 30 45 Units Typ Max 75 130 60 85 150 250 p.V 0.3 1.5 0.4 2.0 p.V/Mo 0.5 0.9 3.8 5.3 0.8 i •• 6.0 8.0 nA ±1.2 ±1.5 ±4.0 ±5.5 ±1.8 ±2.2 ±7.0 ±9.0 nA Min Ie Input Bias Current enp-p Input Noise Voltage 0.1 Hz to 10 Hz (Note 3) 0.35 0.6 0.38 0.65 p.Vp.p en Input Noise Voltage Density fa = 10 Hz fa = 100 Hz (Note 3) fa = 1000 Hz 10.3 10.0 9.6 18.0 13.0 11.0 10.5 10.2 9.B 20.0 13.5 11.5 nV/.JHZ inp-p Input Noise Current 0.1 Hzto 10 Hz (Note 3) in Input Noise Current Density fa = 10Hz fa = 100 Hz (Note 3) fa = 1000 Hz RIN Input Resistance Differential·Mode (Note 4) RINCM Input Resistance Common·Mode 15 IVR Input Voltage Range Common·Mode Rejection Ratio VCM = ±13V PSRR Power Supply Rejection Ratio Vs= ±3Vto±1BV Vs = ±3Vto ±18V Ava Large Signal Voltage Gain RL;;" RL;;" RL;;" Vs = Output Voltage Swing gO 15 35 pAp.p 0.80 0.23 0.17 0.35 0.15 0.13 0.90 0.27 0.18 pA/.JHZ 50 RL;;" 10kO RL;;" 2kO RL;;,,2kO RL;;" 1 kO GO ±13 ±14 V 123 123 100 97 120 120 dB 20 32 7 10 32 51 p.VIV 200 180 500 450 120 100 400 400 150 400 100 400 ±12.5 ±12.0 ±12.0 ±10.5 ±13.0 ±12.8 ±12•• ±12.0 ±12.0 ±11.5 ±11.0 ±13.0 ±12.B ±12.6 ±12.0 V 0.1 0.3 0.1 0.3 V/p.s 0.4 0.6 0.4 0.6 MHz RL ;;" 2 kO (Note 3) BW Closed·Loop Bandwidth AVCL = Ro Output Resistance Va = 0,10 = 0 60 Pd Power Consumption Vs = ±15V,NoLoad Vs = ±3V, No Load 75 4 Offset Adj. Range Rp = 20kO ±4 Average Input Offset Voltage Drift Without External Trim With External Trim (Note 4) Rp = 20 kO (Note 4) TCVOSn 120 ±14.0 Slew Rate + 1 (Note 3) MO 106 103 5 7 2 kO, Va = ±10V 2kO 5000, Va = ±0.5V, ±3V(Note4) 33 ±13.0 SR TeVos B 160 CMRR Va 14 0.32 0.14 0.12 V/mV 60 0 120 6 BO 4 150 8 0.3 1.3 0.5 1.8 0.3 1.3 0.4 i •• 8 35 12 50 pArC 13 35 18 50 pArC ±4 mW mV p.V1·C TCloS Average Input Offset Current Drift (Note 3) TCle Average Input Bias Current Drift (Note 3) 1·959 • Electrical Characteristics Unless otherwise specified, Vs = ± 15V, T A = 25°C. Boldface type refers to limits over O"C ~ TA ~ Parameter Symbol Conditions Min Vos Input Offset Voltage + 70"C OP-07D (Note 1) Max 60 150 250 p.V 0.5 S.O p.V/Mo 0.8 1 •• 8.0 8.0 nA ±2.0 ±3.0 ±12.0 ±14.0 nA 85 (Note 2) Units Typ VOStt Long-Term Vos Stability los Input Offset Current la Input Bias Current enp-p Input Noise Voltage 0.1 Hz to 10Hz (Note S) 0.38 0.65 p.Vp-p en Input Noise Voltage Density fo = 10Hz fo = 100 Hz (Note 3) fo = 1000Hz 10.5 10.3 9.8 20.0 13.5 11.5 nV/.JHz inp-p Input Noise Current 0.1 Hz to 10 Hz (Note 3) in Input Noise Current Density fo = 10Hz fo = 100 Hz (Note 3) fo = 1000Hz RIN Input Resistance Differential-Mode (Note 4) RINCM Input Resistance Common-Mode 7 IVR Input Voltage Range CMRR Common-Mode Rejection Ratio VCM = ±1SV PSRR Power Supply Rejection Ratio Vs = ±3Vto ±18V Avo Large Signal Voltage Gain RL ~ 2kO, Vo = ±10V RL=2kO,Vo= ±10V RL: .~ I • Gain Bandwidth 30 V~">I~ _ RL "ft cL"laapF- r-.... II II SUPPLY VDLTAI. I.VI r-.... 20 ..... 10 I -10 ""'" I lllza.41I11178 I I II j"C we I II D • rc • • 41 Output Voltage Swing Yo" tllV TA"we ZI ~ ,. II V 1,1 It GAIN -20 Slew Rate II 150 Va= ±15 RL=2k 1ao c..=11~1~ , "" 50 I 1 10 FREQUENCY (MHzl 1~ 14 Yo"'11Y I RL "a AV"I FALLIIS -~50 I i! ;I - ...l. II Ii -100 -150 0,1 II RL - OUTPUT LDAD 110111 PHASE -30 TEMPERATURE ret -r-- , II!... Bode Plot i ....... ZI I a .1 ZD I.~ · DUTPIIT ..N. CURRENT I..Al "- 1 3D ~ II OUTPIIT SOURCE CURRENT I.Al > -5 WC I za II 411 ~ -1' II Voltage Swing Negative Current Umlt II Positive Current Umlt II NEIATIVE IUPPL YVDLTASE IVI -II = I ", III....YVDLTAIIE I.VI .~ / I'III1TIVE SUPPI.YVOLTAIE IVI I ; / iii> :: E I. / la S! !:~ / a rCSTAS+7rc !; V I Negative Common"Mode Input Voltage Umlt ZD V • TE_RATURE rCi C _.....DE VOLTAGE IVI I u II -II ~ "".. , ZI I E G"STAS+lI"C FVCII"a ~VS'±lIV TA"WC 'C 1aG II 111 .... 111178 TEIlPERATURE'rCi TUH/8358-5 1-964 Typical Performance Characteristics Distortion vs Frequency II v•• nlV 1.111 T~.-:C ~I loll Iii I. I ~V'".VH ~ !I.IH . ~ Av""~~ !. i .. lUll .... = la II RL"a TA" WC Av·1 , ",,' > ... I- :::> I:::0 CI TIME (Oo2l'slDIV) TIME (0.2 j4/DIV) TLlH/B35B-13 TLlH/835B-7 Large Signal Inverting Large Signal Non-Inverting s: is ~ CD z i... CD C I- ""CI > I- '~ CI T,IME (211s/DIV) TIME (2 ",slDIV) TL/H/B35B-14 TL/H/B35B-15 Current Limit (RL = 1000) TIME (5 j4/DIV) TLlH/835B-16 Application Hints The TLOIi1 is k~ op amp with an internally trimmed input offset voltage !!ndJFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state, In neither case does a latch occur since raising the input back within the 1-966 r--------------------------------------------------------------------------.~ Application Hints (Continued) common-mode range again puts the input stage and thus the amplifier in & normal operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state. The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. The TL081 is biased by a zener reference which allows normal circuit operation on ±4V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate. resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling. Ii ..... As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capaCitance from the input to ground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capaCitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. The TL081 will drive a 2 kG load resistance to ± 10V over the full temperature range of O"C to + 70"C. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the Detailed Schematic VCCO-----------~------------~--_1~----._----------------_, • Vos ADJUST TLlH/8358-8 1-967 .... ...9 Typical Applications Supply Current Indicator/Limiter Hi-ZIN Inverting Amplifier C2 RS - -;...-t----. ~~~:rs~~~~:El~TlON VSUPPl YO-"'-I\Ni~... IS + INI14 VD RI yy- TLJH/8358-9 • VOUT switches high when Asls > Vo Tl/H/8358-10 Parasitic inpul cepecilance Cl '" (3 pF for TLOBI plus any addHlonai layout capacilance) 1nterac1s with feedback elemenla and creales undesirable high frequency pole. To compensa1e, add C2 such I~ A2C2 '" A1CI. Ultra-Low (or High) Duty Cycle Pulse Generator IN914 Rl lNI14 R2 Long Time Integrator y. RESET r - "'~~r---I\Ni~",-oOUTPUT 1 12 ~, IS INTEGRATE 1/4lF13333 4 ___ , 2 y- C* y. 1M I '2 VOUT = iii: Y,N Dil 1M f '1 1M y- TUH/83S8-ll 4.8 - 2Vs • IoUTPUT HIGH'" AIC £ n 4.8 - Vs • IoUTPUTlOW '" A2C £ n 2Vs - 7.8 Vs - 7.8 where Vs = V+ + lv-I 'low leakage capacitor y- TLJH/8358-12 • Low leakage capacitor • SOk pot used for less sensitive Vas adjust .------------------------------------------------------------------.~ i t!lNational Semiconductor N TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description Features These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI.FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL082 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and most LM358 designs. These amplifiers may be used in applications such as high speed integrators, fast 0/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift. • • • • • • • • • Typical Connection Connection Diagram Intemally trimmed offset voltage Low input bias current Low input noise voltage Low input noise current Wide gain bandwidth High slew rate Low supply current High input impedance Low total harmonic distortion Av = 10, RL = 10k, Vo = 20 Vp - p, BW = 20 Hz-20 kHz 15 mV 50 pA 16nV/yHz 0.D1 pAl yHz 4 MHz 13 V/fJ-S 3.6 mA 10120 <0.02% 50 Hz 2 fJ-s • Low 1/f noise corner • Fast settling time to 0.01 % DIP/SO Package (Top View) R, OUTPUT> R; . . . . . . . r-_- INVERTING INPUT A NON.INVEATING ."'UTA l OUTPUTB INVERTING INPUT I V-~--"'" i NON.INVERTING 'NPUTB Tl/H/8357 -3 ·VEE TlIH/8357-1 Order Number TL082CM or TL082CP See NS Package Number M08A or N08E Simplified SchematiC VCC<>-----1~----.....~-__. Vo INTEANALLY TFlI.ED INTERNALLY TAIMMED -VEE <>--.....- -.....- - -.......~---I 1·969 TUH/8357-2 (!II CD ... 9 Absolute Maximum Ratings " If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±18V Supply Voltage Power Dissipation Operating Temperature Range Differential Input Voltage Input Voltage Range (Note 2) Output Short Circuit Duration Storage Temperature.Range Lead Teinp. (Soldering, 10 seconds) ESD rating to be, determined. (Note 1) O"C to ,+ 70"C ±30V ±15V Continuous -65°Cto +150"C 26O"C 150"C Tj(MAX) DC Electrical Characteristics (Note 4) Symbol Parameter TL082C Conditions Min Units Typ Max 15 20 Vos Input Offset Voltage Rs = 10 kO, TA = 25°C Over Temperature 5 l:.voslt.T Average TC of Input Offset Voltage Rs = 10kO 10 los Input Offset Current Tj = 25"C, (Notes 4, 5) Tj:;;: 70"C 25 200 4, pA nA 18 Input Bias Current Tj = 25"C, (Notes 4, 5) Tj:;;: 70"C 50 400 8 pA nA mV mV p.VI"C 1012 0 10P VlmV RIN Input Resistance Ti = 25°C AVOL Large Signal Voltage Gain Vs = ±15V, TA = 25°C Vo= ±10V,RL=2kO Over Temperature 25 Vo Output Voltage Swing Vs= ±15V,RL= 10kO ±12 ±13.5 V VCM Input Common-Mode Voltage Range Vs = ±15V ± 11 +15 -12 V V CMRR Common-Mode Rejection Ratio Rs:;;: 10kO 70 100 dB PSRR Supply Voltage Rejection Ratio (Note 6) 70 100 Is Supply Current 15 V/mV 3.6 dB 5.6 mA AC Electrical Characteristics (Note 4) Symbol Parameter TL082C Conditions Min Amplifier to Amplifier Coupling TA = 25°C, f = 1Hz20 kHz (Input Referred) 8 Typ Units Max -120 dB 13 V/p.s SR Slew Rate Vs = ±15V, TA = 25"C GBW Gain Bandwidth Product Vs = ±15V, TA = 25°C 4 MHz en Equivalent Input Noise Voltage TA = 25°C, Rs = 1000, f=1000Hz 25 nV/YHz Tj .: 25°C, f = 1000 Hz pA/yHz Equivalent Input Noise Current 0.01 in Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of t 15"CIW junction to ambient for the N package. Note 2: Unless otherwiss specified the absolute maximum negative input voltage is equal to the negative power supply voltage. Note 3: The power dissipation limit, however, cannot be exceeded. Nota 4: These specifications apply for Vs ~ ±15V and O"C S;TA s; +70"C. Vos, ie and los are measured at VOM ~ O. Note 5: The input bias currents are junction leakage currents which approximately double for every 1000C Increase In the junction temperature, TI' Due to the IImHed production test time, the Input bles currents measured are oorrelated to junction temperature. In normal operation the junction temperature rises ebove the ambient temperature as a result of internal power dissipation, Po. TI ~ TA + BjA Po where BjA Is the thermal resistance from junction to ambient. Uss of a heat sink Is recommended if input bias current is to be kept to a minimum. Note 6: Supply voltage rejection ratio is measured for both supply magnHudes increasing or decreasing simultaneously in acoordance with common practice. Vs ~ ±6V to ±15V. 1-970 Typical Performance Characteristics Input Bla8 Current 110 I r- - .- r-r- 10 ! 41 ..... r- ~ )~ 110 ii ~ ~ 7lre 25"C T O°C / o o 10 15 o 21 i I-18 •o 21 1& , 48 10 21 40 3D OUTPUT SOURCE CURRENT (lOA) NEGAnVESUPPLY VOLTAGE (VI Negative Current Limit -15 l' o POSITIVE SUPPLY VOLTAGE (VI Voltage Swing Output Voltage Swing 31 RL -ft r-YA _ 2&"C 1 .. ~ i.. VS·,15V TA'lrc 25 ~ 2D w ~ ..~ . ~ 2&"C > -5 ~ w ~'C IrC 1& 10 /V co -I • o 20 31 40 o OUT'UT SIN. CURRENT (lOA) I 31 _ 21 RL -ft CL -11O,F- "" r" 10 3.& 0.1 :s ~ co r-... ..... .... 'Slew Rate VS' '15V RL =2k CL 'l00pF -10 - 50 X .... TEMPERATURE (OCI 7. ! ~ IE <: i $ .. ..iii 14 VS' ,1&V RL -2k AV-l I FALLING RlsING- 13 r- :II -50 i oJ 12 -100 -150 -30 3 15 101 .JJlSE GAIN 10 RL - OUTPUT LOAD (kU) -20 t- .10103041 • 2D 150 -.. Ii r--. 15 Bode Plot V~"I~V U II SUPPLY VOLTAGE ('VI Gain Bandwidth i i"i / ~ .. ,,~ 10 / 2 i ! - 1& / liIi Iz 25 Positive Current Limit / V 21 1& ....... Ih. ~ II II SUPPLY VOLTAGE ('V) "'C~TAS.+1D'C V B~ I o ~ II V V 2•• u ~ 21 Wco i!:> ~ V Negative Common-Mode Input Voltage Limit I C$TA$+70"C ~ 3.2 TEMPERATURE ('CI 20 ~ ill.. 81.2130<10&01071 Positive Common-Mode Input Voltage Limit ~ 3.• 10 1. -& CO. .ON"OOE VOLTAGE (VI =~ .! i ~ iii io"" i 28 -10 .1=,= 1 1/ :I o I II":S;TA:S;+7lrC Vs' '15V :: ...... Supply Current FV~:t i .1 ia :_2 VS' '15VTA' 25 C Input Bias Current lk . 10 0.1 FREQUENCY (MHzI 100 11 '10203148 .... 70 TEMPERATURE (OCI TUH/8357-4 1-971 • Typical Performance Characteristics (Continued) ) Distortion va Frequency 0.2 3D Vs' '11V 0.175 I.. 11 T~=25;C 0.15 co ~VO'2OVP'" ~ "I 1 it .. 0.125 CI ;:: G.l co CI t; 0.075 is 0.010 • 10. ' i VS='15V RL =2. TA'ZS'C AV" 1, 10 Ii ~ 100 CI .0 ti isco =: .. r-\-.J.. I; I8 20 I~ VS"'5V AL -2. TA'25 C Frvo '" 1 i ~ I. VCM 10 40 40 f$ 20 ~ 2k I " I 100. 0 lID lk 10k '''' a3 !c .. ~ is .. I 1M I,OM i Vs' '15Y 120 co 100 10 ....... ~ ...... 10 TA'~5'C '"I"'\... 10 110 lK 10k r--.. 1M lH. VS' '15V TA,25 C TA' "CTO <21'C . 10 " 1 a ..-,: ~AV-IID ~ c TA,7lrC ~ II CI > ~ " Ii ..:r ~ CI 10K 10M 50 > 40 31 20 " iil 11 10 •. 1 2G ~ Ii. • ~ !: ~ 10k IIOk FREDUENCY IH.) 1M 111M III II 10mV I ..• IE L lk 10 II CI lDO 100 10k lOOk Inverter Settling Time ~ ~v·,~ ~ I AV'II ,. 0 FREDUENCY 1Hz) D.Ol SUPPLY VOLTAGE I'V) ~ i CI 1& 7G l- , 1 10k 100. 1M 111M 10 Output Impedance AL '210 10 ~ ! lID 5 ... i I, 0 ~ I• f'. -SUPPLY, 20 lk 100 CI +SUPPLY " 411 Open Loop Voltage Galn(V/V) i!:i ,ooK ~ ~ 10 Equivalent Input Noise Voltage FREDUENCY 1Hz) 1M C \. 1 FREDUENCY 1Hz) 140 FREDUENCY IH.) ....~ I\. 1M Power Supply Rejection Ratio co CMRR'IO LOG yVO < OPEILOOP CM VOL JAGE JAIN 1 1 1 10 \. FREDUENCY 1Hz) Common-Mode Rejection Ratio • CI '\.. 0 10k 100. 10k 10 BD 0 100 RL =210 VS' '1IV~ TA'2S'C III !:; CI > · " FREOUENCY IH.) 120 C ~ CI 10 a .... - "- '\.. .. I . 1\ ~ 0 121 c I- AY"0:/ 0.025 :5 CI ;:: Open Loop ~recil!ency Response UndlBtorted Output Voltage Swing -S -10 1.1 '(f Ya'"IV TA'ZI'C ,"IV ,"'V 10llV ~\ \, 1 10 SEnLiNG TIME "',) TUH/8357-5 1-972 Pulse Response Small Signal Inverting Small Signal Non-Inverting ... ...'"~ CI ... e:=>=> > CI TIME (0.2 JJs/DIV) TIME (0.2 jJs/DIV) TLlH/8357-7 TLlH/8357 -6 Large Signal Non-Inverting Large Signal Inverting '"z ii... ...'"<... ... ...'"~ CI CI ...>=> e:=> ...>=> ...... => CI CI TIME (2 jJslDIV) TIME (2 JJs/DIV) TLlH/8357 -8 TL/H/8357 -9 Current Limit (RL = 1000) :; is "> '"z ii... ...'"~ CI ...>=> e:=> CI TL/H/8357-10 Application Hints These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case 1-973 Application Hints (Continued) does a latch occur since raising the input back within the common-mode range again puts the input· stage and thus the amplifier in a normal.operating mode. Exceeding the positivecomrTion-mode limit on a single input will not change the phase of the output; however, if both inputs exceed. the limit, the output of theamplifief .will be forced to a hig!"! state. ' The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. Each amplifier is individually biased by a zener reference which allows normal.circuit operation on ±6V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate. The amplifiers will drive a 2 kO load resistance to ± 1OV over the full temperature range of O"C to + 70"C. If the amplifier is forced to drive heavier load currents, however, an increase in input offset .voltage may occur on the negative voltage swing and· finally reach an active current limit on both positive and negative swings. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or thatthe.unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result In a destroyed unit. Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling. As with mOst amplifiers, .care should be taken with lead dress, 'component placement and supply deC()upling in order to ensure stability. For example, resistors from the output to an input should be placed with thE! body close to the input to minimize "pick-up" and r'naximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. ' A feedback Pole is created when the feedback around any amplifier Is resistive. The parallel resistance and. capacitance from the input·of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the elCpllcted 3 dB frequency a lead capacitor should be placed from,the output to the input of the op amp. The value of the added capacitor should ,be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original fe9dback pole time . constant. Detailed Schematic ..~----------~----~ VCCQ-----------~t_------------~~--~------ Vo ..--_t----t_~~--~~--~--------~~--~ -VEEo---~----~----e_-------- TlIH/8357-11 1-974 r--------------------------------------------------------------------------, ~ i Typical Applications ~ Three-Band Active Tone Control BDDST~ CUT BASS 11k 3.6. Uk >~",,"",ODUT TUH/8357-12 +20 I 111111 (m4 ~ .... (NDTE2) +15 +10 iii +5 llYll ~lrrJi\ fI' :s .. '" 11111 U .... z -5 " -10 -15 -20 ~Dfi~1 / 1'~5 10 100 lk 11111 10k lOOk FREQUENCY (Hz) Note 1: All controls Iial. Note 2: Bass and treble boost. mid flal. Note 3: Bass and treble cut, mid flal. Note 4: Mid boost, bass and treble Iial. Note 5: Mid cut, bass and treble Ilat. • All potentiometers are linear taper • Use the LF347 Quad lor stereo applications 1-975 TLlH/8357-13 ~ I Typical Applications (Continued) Improved CMRR Instrumentation Amplifier Vs (+Ic>ff----t+=f Vo Hot-+--+lH vs Vs' l -Vs l - - h h ! ! -·s -VS' SEPARATE TUH/8357-14 AV'= (~+ 1)~ R1 R4 m and ... are separate isolated grounds Matching of R2's, R4's and RS's control CMRR = 1400, resistor matching = 0,01 %: CMRR = 136 dB ° Very high input impedance With AVT ° Super high CMRR Fourth Order Low Pass Butterworth Filter c D.ol R3 11k -IIV R4 lOOk R3' m -fiV R4' lOOk TUH/8357-15 ~ 1 ,.,-- 1 ° Comer frequency (fcl = VR1R2CCi°i; = ,,~0i; ° Passband gain (HoI = (1 + R4/R31 (1 + R4'/R3'1 ° First stage Q = 1.31 ° Second stage Q = 0.541 ° ClrcuH shown uses nesrest S% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100 o Offset nulling n9C9SSBry lor accurate DC performance 1-976 .... i Typical Applications (Continued) N Fourth Order High Paaa Butterworth Filter Rl 200> RI' 14Dk VINo-f C 0.001 "'>..:.....-oVDUT R3 21Gk R3' 21111k TUH/8357-16 ~1~1 • Comer frequency (fel ~ VR1Fi2C2· 21T ~ V~· 21T • Passband gain (Ho) ~ (1 + R4/R3) (1 + R4'/R3') • First stage Q ~ 1.31 • Second stage Q ~ 0.541 • Circuit shown uses closest 5% tolerance resistor values for a flltar with a corner frequency of 1 kHz and a passband gain of 10 Ohma to Volta Converter 10M "OUT"'V FUll SCALE 1....-_.... -o.15V Vo ~ _1_V_ x Rx RLADDER Whera RLADDER Is the resistance from switch 51 pele to pin 7 of the TL082CP. 1-977 TUH/8367 -17 Section 2 Buffers Section 2 Contents Buffers Definition of Terms .......................................................... Buffers Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH0002 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH0033/LH0063 Fast and Ultra Fast Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH4001 Wideband Current Buffer ...................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH4002 Wideband Video Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM102/LM302 Voltage Followers.................................................... LM11 O/LM21 O/LM31 0 Voltage Followers ...................•......................... LM6121/LM6221/LM6321 High Speed Buffers ......................................... LM6125/LM6225/LM6325 High Speed Buffers .... ~... .......... ...................... 2-2 2-3 2-4 2-5 2-8 2-19 2-23 2-27 2-33 2-46 2-52 (fINational Semiconductor Buffers Definition of Terms Bandwidth: That frequency at which the voltage gain is reduced to 1/,f2 times the low frequency value. Output Resistance: The small Signal resistance seen at the output with the. output voltage near zero. Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping. % harmonic (V22 distortion = Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme. + V32 + V42 + ... )1/2 (100%) V1 Power Supply ReJection: The ratio of the change in input offset voltage to the change in power supply voltages producing it. where V1 is the rms amplitude of the fundamental and V2, V3, V4, ... are the rms amplitudes of the indMdual harmonics. Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output volt- Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (Rs) and load resistance (RLl. age. Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input. Input Offset Voltage: That voltage which must be applied to the input terminal to obtain zero output voltage. Input Resistance: The ratio of the change in input voltage to the change in input current. Supply Current: The current required from the power supply to operate the buffer with no load and the output midway between the supplies. Input Voltage Range: The range of voltages on the input terminal for which the buffer operates within specifications. Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions. Large-slgnal Voltage Gain: The ratio of the output voltage swing to the change in input voltage. Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (Rs) and load resistance (RLl. Output Impedance: The ratio of change in output voltage to output current under the stated conditions. 2-3 til ~ I. National Semiconductor • Buffer Selection Guide (Notes 1 and 2) Device Type Key Features , Slew Rate Bandwidth Gain (Vlp-s) -3 dB (MHz) (Av) Output (V,mA) Full Power BW (MHz @Vpp, Ru Test Conditions LH0063 FET Input, Very Fast 2400 200 0.93 ±13, ±260 40@20,50 RL = 50, Vs = '±15V LH0033 FET Input, High Speed 1500 100 0.98 ±9, ±90 24@20,1k RL = 1k, Vs = ±15V LH4002 Wideband Video ,Buffer 1250 200 0.97 ±2.2, ±44 100@4,50 RL = 50, Vs = ±5V 1'200 LH2003/2033 Wideb~nd Video' Buffer 100 0.9 ±11.3, ±113 2@20,100 RL= 1k,50,Vs= ±15 LM6121/6125 High Speed VIPTM Buffer 80Q 50 0.90 ±12, ±240 10.6 @12, 50 RL = 50, Vs = ±15V LH0002 Medium Speed 200 30 0.97 ±10,±100 3@20,1k RL = 1k, Vs = ±12V LH4001 Low Gost LHOO02 125 25 0.97 ±10, ±100 4@ 10,100 RL = 100, Vs = ±12V 30 20 0.9999 ±10,±10 0.5@ 20, 10k RL = 10k, Vs = ±15V LM110, 210, 310 Voltage Follower Note 1: Datasheet should be referred to for te.rt conditions and more detailed Information. Note 2: 200'C T~mp Range Parts are available., Cons~.1t local sales office for information. " ,I 2·4 ,:' r-----------------------------------------------------------------------~ ~ :::c 8 t;tINational Semiconductor C) N LH0002 Buffer General Description Features The LH0002 is a general purpose buffer. Its features make it ideal to integrate with operational amplifiers inside a closed loop configuration to increase current output. The symmetrical output portion of the circuit also provides a low output impedance for both the positive and negative slopes of output pulses. The LH0002 is available in an 8-lead TO-99 can. The LH0002C is available in an 8-lead T0-99, and a 10-pin molded dual-in-line package. The LH0002 is specified for operation over the - 55"C to + 125°C military temperature range. The LHOOO2C is specified for operation over the OOC to + 85°C temperature range. • • • • • • • • • 400 kO High input impedance 60 Low output impedance High power efficiency Low harmonic distortion DC to 30 MHz bandwidth Output voltage Swing that approaches supply voltage 400 mA pulsed output current Slew rate is typically 200 VI IJ-s Operation from ± 5V to ± 20V Applications • Line driver • 30 MHz buffer • High speed 01 A conversion Schematic and Connection Diagrams Dual-In-Line Package VI· 1(2) V2• VI· INPUT EI (10) --'-"--1-1 VIV2- EI 3 8 <4 7 5 E3 OUTPUT E4 ~ TLlH/5560-2 Order Number LHOOO2CN See NS Package Number N10A INPUT 8(3) 5(7) E4 Metal Can Package ~(6)-~H--f INPUT TLlH/5S60-1 Pin numbers In parentheses denote pin connections for dual·in-line peckage. OUTPUT Order Number LH0002H, LH0002H-MIL or LH0002CH LHOOO2H/883* see NS Package Number HOOD • Available per SMD "7801301 2-5 TL/H/5560-3 ~ I Absolute Maximum Ratings Operating Ratings (Note 3) (Note 3) Temperature Range LHOO02 LH0002C If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2) Input Voltage Thermal Resistance (Note 5) 6JA, H Package 6JC, H Package 6JA, N Package ±22V Supply Voltage Power Dissipation (Note 4) 600mW (Equal to Power Supply Voltage) Storage Temperature Range -65·Cto + 150"C Junction Temperature N Package H Package steady State Output Current + 150"C .+ 175·C -55"Cto + 125"C O"Cto +85·C + 125·C/W + 75·C/W + 120"C/W ±100rnA Pulsed Output Current (50 ms On/1 sec. Off) ±400rnA Lead Temperature Soldering (10 seconds) Metal Can Plastic ESD Rating (Note 6) 300"C 26Q"C 2kV Electrical Characteristics (Note 1) Parsmeter Voltage Gain Conditions Min Typ = 10kO, RL = 1.0 kO, VIN = ±10V Rs = 200 kO, VIN = ± 1.0V, RL = 1.0 kO VIN = ±1.0V, RL = 500, Rs = 10 kO RL = 1:0 kO, VIN = ± 12V Vs = ±15V, VIN = ±12V, Rs = 500, RL = 1000, TA = 25·C RS = 3000, RL = 1.0 kO Rs = 1.0 kO, RL = 1.0 kO VIN = 5.0 Vrms, f = 1.0 kHz RL = 500, aVIN = 100 mV RS = 10 kO, RL = 1.0 kO Rs = 10 kO; RL = 1.0 kO 0.95 0.97 180 400 Rs Input Impedance Output Impedance Output Voltage Swing Output Voltage Swing . DC Output Offset Voltage DC Input Bias Current Harmonic Distortion Rise Time Positive Supply Current Negative Supply Current 6.0 ±10 Max Units kO 10 ±11 0 V ±10 V ±10 ±30 mV ±8.0 ±10 JlA 7.0 12 ns +6.0 +10 mA -8.0 -10 mA 0.1 % Note 1: Specfficatton applies for TA - 25"C with + 12V on Pins 1 and 2; -12V on Pins 6 and 7 for the metal can package and + 12V on Pins 1 and 2; -12V on Pins 4 and 5 for the duaf.in-Une package. unless otherwise specified. The parameter guarantees for LHOOO2C apply over the temperature range of O'C to + 85'C. while perameters for the L\iOOO2 are guaranm,d over the temperature range -55"C to + 125"C unless otherwise specified. Note 2: Refer to RETSOOO2X ;.,... LHOOO2 miHIary specHicaHons. Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device Is intended to be functional. but do not guarantee speciflc performance limits. For guaranteed spaciflcations and test conditions. see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Note 4: The maximum power dissipation js·a functipn of maximum junction temperature (TJMaxl. totsIthermai resistance (9JAl. and ambient temperature (TAJ. The maximum allowable power dissipation M any ambient is Po - (TJMax - TAJ/9JA. Note 5: For operating at elevated temperatur.... the device must be derated based on the thermal resistence 9JA and TJMax. TJ = TA + P09JA. Note 6: Human body model. 1.5 kn in series With 100 pF. '.' 2-6 r- ::::J: g Typical Applications N High Current Operational Amplifier RI I.rUT -~..,.,..-=tOUTPUT TUH/S560-4 LIne DrIver SELECT CAPACITOR TO ADJUST r-_tt_.,TIME RESPONSE OF PULSE. Y.. iIOLOIID 'Previously called NHOOO2/NHOOO2C TUH/5560-S Typical Performance Characteristics Input Impedance (Magnitude" Phase) Frequency Responae ,, ,, -.l 11.'- -- 1.1 VHf-1 V,_RL -110,. T.' II"C v.-'" -241 :I /,11. -1' 'DOD 1,- ... I ~ PIIAS ./ '.0 I.D 2.1 zu 11.1 R.-lIkn 11 a I I.' Positive Pulse U L ~ ... If ~ 3.0 r- =2.' co e ~ 1.• ~ 0 OUTPUT \ I , \ Ii a o • 5 Negative Pulse lis -±1ZV R,.' R,-SIIO T.-ZI'C !!!u - INP~T fl ...... V. "±1ZV RLaR.-SIIl T.· Z5"C ..• - - -Z.D ~ ~ 7~UT~UT _ 0'111 TIME I"" ZI o .11 I.D &0 '5.0 SUPPLY VOLTAOE I1VI fII Input Bias Current 18'III.ZO TIME Insl ~ ", ~~ ~ ~ ~ ~ TA -12S·e ~ c,....- TA"-H·C~ If ,V II 48 ./ .,. 2.0 II INPUT \ o ~ . /i-""'" T.-ZS"C_~ ~ -3.0 -4.0 I ./ 4.• • I -5.0 ZO 48 18 '0 i.. :I:1"' ............ t - - - -55"Cto'II"C FREQUENCY IMH.I FREDUE_CY (MH.I ~ ~ -20 O.Z T.-II"C·l ~ I.' 5Ii I.. ...... ./' '/ 111.1 I. 'Z.O 'D.D L...... ]'jo. , oJ 1.1 ~lIIl.v'-"Z.IV "III' -II .111 No'T. :t:1Z.oV_ Supply Current -.00 ~,UV••.JJll o • I • 10 12 •• 16 .. 20 sum vVOL TAGE IXVI TUH/5560-7 2-7 g r----------------------------------------------------------------------------, ~ 3 IfINational Semiconductor ~ 8 3 LH0033/LH0063 Fast and Ultra Fast Buffers General Description LH0063C are specified from - 25·C to + 85·C. The LH0033 is available in either a 1.5W metal TO-8 package or an 8-pin ceramic dual-in-line package. The LH0063 is available in a 5W 8-pin TO-3 package. The LHOO33 and LH0063 are high speed, FET input, voltage followerIbuffers designed to provide high current drive at frequencies from DC to over 100 MHz. The LH0033 will provide ± 10 mA into 1 kO loads (± 100 mA peak) at slew rates of 1500VI p.s. The LH0063 will provide ± 250 mA into 500 loads (± 500 mA peak) at slew rates up to 6000VI p.s. In addition, both exhibit excellent phase linearity up to 20 MHz. Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffers for driving reactive loads and high impedance input buffers for high speed A to Ds and comparators. In addition, the LH0063 can continuously drive 500 coaxial cables or be used as a yoke driver for high resolution CRT displays. For additional applications information, see AN-48. These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033 is specified for operation from - 55·C to + 125·C; the LH0033C and the Features • • • • • • • Ultra fast (LH0063): 6000 VI p's .Wide range single or dual supply operation Wide power bandwidth: DC to 100 MHz High output drive: ± 10V with 500 load Low phase non-linearity: 2 degrees Fast rise times: 2 ns High input resistance: 10100 Advantages • Only 10V supply needed for 5 Vp-p video out • Speed does not degrade system performance • Wide data rate range for phase encoded systems Connection Diagrams LHOO33G Metal Can Package LHOO33J Dual-In-Llne Package NC IllPUT~+--.., Y+ OffSET PRESET OFFSET ADJUST OUTPUT Vc+ -.;+-----' Y- TOPYIEW TLlK/5507 -2 Order Number LH0033J or LH0033CJ -See NS Package Number HY08A TOP VIEW LH0063K Metal Can Package TLlK/5507 -1 Case Is electrically isolated Ve- Order Number LHOO33G, LHOO33G-MIL orLH0033CG See NS Package Number G12B Y•. y+ .......__• ___--.DFfIfI ADJUST OUTPUT OFFSET PRESET TL/K/5507-3 Top VI_ Case is electrically Isolated Order Number LHOO63CK See NS Package Number K08A 2-8 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V+ -V-) 40V Power Dissipation (See Curves) LH0063C LH0033/LH0033C Junction Temperature Input Voltage Continuous Output Current LH0063C LH0033/LH0033C Peak Output Current LHOO63C LH0033/LH0033C Lead Temp. (Soldering, 10 seconds) ±500mA ±250mA 300"C Operating Temperature Range 5W 2.2W 175'C LH0033 - 55'C to ±Vs + 125'C - 25'C to + 85'C -65' to + 150"C LH0033C and LH0063C Storage Temperature Range ESD rating to be determined. ±250mA ±100mA DC Electrical Characteristics Vs = ± 15V, TMIN ~TA ~TMAX, unless otherwise specified, (Note 1) Parameter LHOO33 Conditions Min LHOO33C Typ Max Rs=1000,TJ=25'C, VIN=OV (Note 2) Rs=1000 5.0 10 Average Temperature Coefficient of Offset Voltage Rs=1000, VIN=OV (Note 3) 50 Input Bias Current VIN=OV TJ = 25'C (Note 2) TA = 25'C (Note 4) TJ=TA=TMAX VO= ±10V, Rs=1000, RL=1.0kO Output Offset Voltage Voltage Gain Min Max 12 20 15 100 50 250 2.5 10 0.97 0.98 1010 1011 1.00 Units Typ 0.96 0.98 1010 1011 mV 25 mV 100 p.VI'C 500 5.0 20 pA nA nA 1.00 VIV Input Impedance RL=1 kO Output Impedance VIN= ±1.0V, RL = 1.0k Output Voltage Swing VI= ± 14V, RL = 1.0k VI= ±10.5V, RL =1000, TA=25'C Supply Current VIN=OV (Note 5) 20 22 21 24 mA Power Consumption VIN=OV 600 660 630 720 mW 6.0 10 ±12 6.0 0 10 ±12 ±9.0 0 V ±9.0 V AC Electrical Characteristics TJ=25'C, Vs= ±15V, Rs=500, RL=1.0 KO (Note 6) Parameter LHOO33 Conditions Min Typ 1000 1500 LHOO33C Max Min Typ 1000 1400 Units Max Slew Rate VIN= ±10V Bandwidth VIN = 1.0 Vrms BW=1.0Hzt020 MHz 100 100 VllJos MHz 2.0 2.0 degrees Rise Time aVIN=0.5V 2.9 3.2 ns Propagation Delay aVIN= 0.5V f>1 kHz 1.2 1.5 ns <0.1 <0.1 % Phase Non-Linearity Harmonic Distortion Note 1: LH0033 is 100% production tested as specified at 25" C. 125"C, and-55'C. LH0033AC/C are 100% production tested at25"C only. Specifications at temperature extremes ere verified by sample testing, but these limtted are not used 10 calculate outgoing quality level. Note 2: Specification is at 25'C iunction temperature due 10 requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at TJ ~ 25'C. When supply voltages are ± t5V, no-load operating JunctiOn temperature may rise 40·60"C above ambient, and more under Iced conditions. Accordingly, Vos may change one 10 several mV, and Ie will change significantiy during warm·up. Refer to Ie VB temperature graph for expected values. Note 3: LH0033 is t 00% productiOn tested for this parameter. LH0033C is sample tested only. LlmttB are not used 10 calculate outgoing quality levels. IJ.VosllJ.T Is the average value calculated from measurements at 25"C and TMAX. Note 4: Measured in still air 7 minutes after application of power. Guaranteed through correlated automatic pulse testing. Note 5: Guaranteed through correlated aulOmatic pulse _ng at T J = 25"C. Note 8: Not 100% production tested; verified by sample testing only. UmttB are not used 10 calculate outgoing qualtiy level. Note 7: Reter 10 RETSOO33 for the LH0033G mllttary specifications. 2-9 fII DC Electrical Characteristics Vs= ±15V, TMIN~TA~TMAXunlessotherwisespecified (Note 1) " Parameter LHOO63C Conditions Min Output Offset Voltage Rs ~ 1OOkO, TJ = 25"C, RL = 1000 (Note 2) Average Temperature Coefficient of Output Offset Voltage Rs~100kO Input Bias Current TJ = 25°C (Note 2) Units Typ Max 10 50 100 300 mV mV p.VI"C 10 30 nA 100 nA Voltage Gain VIN= ±10V, Rs~100 k~, RL =1 kO 0.94 0.96 1.0 V/V' Voltage Gain VIN= ±10V, Rs~100 kO, RL ",,500 TJ = 25°C 0.91 0.93 0.98 VIV Input CapaCitance Case Shorted to Output 8.0 Output Impedance VOUT= ±10V, Rs~100 kO, RL =500 1.0 Output Current Swing VIN= ±10V, RS~100 kO 0.2 0.25 pF 4.0 0 A Output Voltage Swing RL=500 ±10 ±13 V Output Voltage Swing VS= ±5.0V, RL =500, TJ = 25°C 5.09 7.0 Vp-p Supply Current TJ=25°C, RL = Supply Current Vs=±5.0V Power Consumption TJ=25~C, Power Consumption VS=±5.0V RL = 00, Vs= ± 15V 65 50 40 00, Vs= ± 15V 1.5 rnA rnA 1.95 400 W mW AC Electrical Characteristics TJ = 25°C, Vs= ±15V, Rs=500, RL =500 (Note 3) Parameter LHOO63C Conditions Min Slew Rate RL =1.0 k~, VIN= ±10V Typ Units Max 6000 V/p.S 2400 V/p.s Slew Rate RL =500, VIN= ±10V, TJ=25"C Bandwidth VIN = 1.0 Vrms 200 MHz Phase Non-Linearity BW=1.0 Hz to 20 MHz 2.0 degrees Rise Time AVIN=0.5V 1.9 ns AVIN=0.5V 2.1 ns <0.1 % Propagation Delay Harmonic Distortion 2000 Note 1: LI:i0063C is 100% prodUction tested at 25"C only. Spec~ications at temperature extremes,are verified by sample testing, but these limits are not used to calculate outgoing quality level. Note 2: Spe~lcaUon Is at 25"C luncUon tempereture due to requirements of high spiled automatic testing. Actual values at operating temperalUre will exoeed the value at TJ=25"C. When supply voltages are ± 15V, no-load operating junction temperature may rise 4O-6O'C above ambient, and more under load conditIOns. Accordingly, Vos may change one to sevaral mV, and Ie will change signHicantly during warm-up. Refer to Ie VB temperature graph for expected values. Note 3: Not 100% producttOn tested; velilied by sample testing only. Limits are not used to calculate outgOing quality level. , .' 2-10 Typical Performance Characteristics LH0033 Power Dissipation ...- "- 2.0 , i' i 1.5 ~ 1.0 :g 0.5 o I & I CASE_ I' "- ........ ~ !100 :::0 ....... 75 100 125 150 TEMPERATURE ('C) o 25 50 75 ~-100 '" ........ 50 co_ 200 LH0033 Supply Current vs Supply Voltage -" LH0063 Supply Current vs Supply Voltage :!:!. I-+-+-~~~r--I 20 LHOO33 Output Voltage vs 119 i .. ~ _ 15 55 ~~-t--+--+--t-4 iiJ __~~__~~ 10 r2~~~+--+--t-4 E !!; 18 bfi~-t--+--+--t---I 5 80 ~ I-#-"""'''''''-I.::--''i-''';''''t---i 17L--L~ ;; :!:!. i co -~=1~ 20 5 LH0063 Output Voltage vs Supply Voltage 18 ;; +I ! Ii! ~ co 1II.=5OD Rs=lk ±VtN= ±V8 Tc=25'C 14 , 12 10 ./ ./ & ~ 10 15 SUPPLY VOLTAGE (±V) -2 -4 8 & ~ / 10 E i !i i5 co l ~ -10 ~ a! 20 12 r- 40 '--~I=±15V ;; ~ 1.0 ~ 0.1 i!! 0.& §! 0., !:i Av 30 20 INPUT" "OUTPU7 2 0 i, I 1.0 2.0 01020304050&0 TIME (••) :!:!. - 2 0 1\=500 1\=1 ~ -4 co -6 -8 -10 o -50 4 !:i i -2 I, 100 8 6 ... I /.: - 5.0 10.0 20.0 50 FREOUENCY (MHz) Vs=±I5V Tc=25'C 18 io-" ~ ~ LH0063 Large Signal Pulse 12 Response ;; ..... p"'" r-- 4 80 Vs-±I5V R8=500 RL=1 k I( ~ 50 LH0033 Rise and Fall Time vs Temperature 8.0 r 0.2 40 Vs=±ln 1\=1 kO.Rs=IOD Tc= +2I'C 10 TIME(ns) LHOO33 Frequency Response Rs=500 -RL=11 ;';""--1r--- OUlPUT OPERATION WITHIN AN OP AMP LOOP Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LM6218, LM6361 or LH0032. An isolation resistor of 470 should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required. 0.01 ,,1 HARDWARE In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to the system chassis. - ...-_---15V TLIK/5507-10 FIGURE 5. LH0033 Current Limiting Using Current SOurces DESIGN PRECAUTION Power supply bypassing is necessary to prevent oscillation with both the LH0033 and LHOO.63 in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within <% to Yz" of the device package) to a ground plane. Capacitors should be one or two 0.1 ,...F in parallel for the LH0033; adding a 4.7 ,...F solid tantalum capacitor will help in troublesome instances. For the LH0063, two 0.1 ,...F ceramic and one 4.7 ,...F solid tantalum capacitors in parallel will be necessary o.n each supply lead. TLlKf5507-11 FIGURE 6. LHOO63 Curreot limiting Using Current SOurces 2-14 Schematic Diagrams LH0033/LHOO33A LH0063 2 V· ... 12 V" 1 ~ r----------.----.-------~, ') NORMALLY INl'UT SHORTED 1 " NORMALLY ~I SHORTED Vc" 9 8 Vc- ... Vc- "I ~ NORMALLY " NORMALLY SHORTED 7 10 ., V- 6 \ ...... ~ I SHORTED V_ I NORMAllY SHORTED TUK/55D7-12 TL/K/55D7-13 Pin numbers shown for TQ.8 ("G" package. Typical Applications High Speed Automatic Test Equipment Forcing Function Generator ~E~o---t---~-~-----------, V+o-~~~~ COc,:'T~={ INPUT TEST MTTERN __---------, ------ ~-:f~)--~>o..JLj .~ TUK/55D7-14 2-15 ~ :8 C) :5 ..... r---------------------------------------------------------------------------------, Typical Applications (Continued) Gamma Ray Pulse Integrator ~ g +15V :5 50 SCINtiLLATION PHCI11IMULTIPUER TUBE TLlK/5507 -15 Nuclear Particle Detector Ilea' High Input Impedance AC Coupled Amplifier V+ 150V PARTICLE .'~ . - - -....--+15V OUTPUT 0.1,.,' L-",---15V 1M fH~100MHz TLlK/5507-16 TL/K/5507 -17 2-16 !i Typical Applications (Continued) 8w Isolation Buffer w ..... r- Coaxial Cable Driver :::c OVERALL FEEDBACK 8 at +15V W 51 INPUT -/lAo"","... >:.g.......jlh OUTPUT 5011 REACTIVE C LOAD -15V TUK/5507 -19 -'5V ":' TLlK/5507-'8 Coaxial Cable Driver V+ INPUT -/IAoI\rO"'I 5011 VTL/K/5507-20 'Selec1 Cl for optimum pulse response High Input Impedance Comparator with Offset Adjust Instrumentation Shield/Line Driver V· V· 51 INPUT-........M-~ No go-logic "'" Go-logic "0" OffSET ADJUST V- Vu. VTL/Kl5507 -21 2·17 VTUK/5507 -22 • ~ g :s r---------------------------------------------------------------------------------, Typical Applications (Continued) 1W CW Final Amplifier r - - -....-+ 3DV ~ ~ g :s 2M TLlK/5507-23 Single Supply AC Amplifier 4.5 MHz Notch Filter Vcc=12.OV y+ OUTPUT 1 fO=21TR1Cl Rl=2R2 TL/K/5507-24 HI HI 22011 22l1li y- Cl=~ 2 TL/K/5507-25 High Speed Sample and Hold y+ ANALOG OUTPUT INPUT y- y5.0Y r ..l!2 'Polycarbonate or TeflonTM LOGIC~--r""", INPUT ....;;..r--......J L~ - - 14 1/20Hoo34 Y- TL/K/5507 -26 2·18 ,-------------------------------------------------------------------------,r :c 8 ..... tflNational Semiconductor LH4001 Wide band Current Buffer General Description Features The LH4001 is a high speed unity gain buffer designed to provide high current drive capability at frequencies from DC to over 25 MHz. It is capable of providing a continuous output current of ± 100 mA and a peak of ± 200 mAo The LH4001 is designed to fulfill a wide range of applications such as impedance transformation. high impedance input buffers for AID converters and comparators. as well as high speed line drivers. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased to ± 100 mA. • • • • • DC to 25 MHz bandwidth 125 V/",s slew rate Drives ± 10V into 50n Operates from ± 5 to ± 20V supplies Output swing approaches supply voltage Applications • • • • Boost op amp output Buffer amplifiers Isolate capacitive loads Drive long cables Typical Applications and Connection Diagram !!tOAD TLlK/8628-1 Dual-In-Llne Package 10(NOTE) 9 (NOTE) 8 VOUT 7 (NOTE) 6 (NOTE) TLlK/8628-2 Top View 'Note: Electrically connected In,,!rnally. No connection should be made to these pins. Order Number LH4001CN See NS Package Number N10A 2-19 ..- 8 3 Absolute Maximum Ratings , If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage, Vs ±22V Continuous Output Current, '10 ± 100' mA Peak Output Current, 10(Peak) (50 ms On/1 Sec Off) ±200mA Input Voltage Range, VIN ±Vs Power Dissipation 500mW Storage Temperature Range, TSTG Junction Temperature, TJ Lead Temp. (Soldering, < 10 seconds) ESD rating is to be determined., -6S·G,to ' +,1S0·C 15O"C 260·C Operating Ratings COG to +7COC 12COC/W Temperature Range, TA Thermal Resistance 8JA Electrical Characteristics (Note 1) Min Typ Av Voltage Gain Rs =10ka,RL = 1 kO VIN = ±10V 0.95 " 0.97 RIN Input Impedance Rs ~ 200 kO, RL = 1kO VIN = ±1,.OV 180 :i00 ROUT Output Impedance Rs =10 kO, RL = 500 VIN = ±1.0V Va Output Swing Vs = ±15V, RS = 500 RL = 1000, VIN = ±12V Parameter Symbol Conditions Max VIV kO 10 6 ±10 Units 0 ± 11 V ," ±10 ±50 18 Input Sias Current Rs = 10 kO, RL = 1 kO tr SR Rise Time RL = 1000, ~VIN = 100 mV Slew Rate VIN = ±SV, RL = 1000 Is Supply Current Rs = 10kO ±6 ±10 mA Vas Offset Voltage Rs = 3000, RL = 1 kO ±10 ±SO mV Note 1: Specification applies for TA = 25"C with + 12V on Pins I ,,' IJA 7 ns 125 V/ILS & 2; -12V on Pins 4 & 5 unless otherwise specified. Typical Performance Characteristics Frequency Response Input Offset Current 1.1 i 7 ! • II G :;; i 5 ~ T. ,ZS'C_ 5 T.~O'&-'. 1 1 I ~ • " " « " sumY VOLTAGE ltV) • 1.1 " a 2.11 i 4.0 '~- iii 2.11 1 11.0 20.. FREDUEICY 1lIH.) s.o 1.0 G /1 ./ 0.1 o 4 ;:: '.a !l I: ~ ~ r...-' ,. I' Z 1 I"r - :-- T. = 70'& .... 1 To' Zi"C. L..... tl"' ..... " ... 11.0 rcto7O"C V.. -1 V,_ RL·1I(l VI- t12.av To'ZS"C ~ t/' ~ ~ I' 3 ~ ~ ~ I' {.AVI- ~ 0.' Supply Current 12.1 • 100 ./ • 1.1 , ... ./ ./ '" lU Pulse Response TOP TRAC£ = INPUT BOTTOM TRACE = OUTPUT TlIK/8628-IO VIN = ± 2.5V. RS = RL = 5011 2·20 11.1 SU"L Y VOLTAGE ItVI Tl/K/8628-3 ,-----------------------------------------------------------------------------, r % ~ Applications Information Figure 1 shows a simple implementation of a non-inverting buffer amplifier of unity gain. Popular industry standard operational amplifiers such as LF156, LF351, LF411, LF441, LM11, LM741, etc. can be used in this configuration. Due to the high bandwidth of the LH4001, it is suitable for use with most monolithic op amps. Figure 3 shows a co-axial cable drive circuit. The 43.0 resistor matches the driving source to the cable, however, its inclusion rarely will result in substantial improvement in pulse response into a terminated cable. If the 43.0 resistor is included, the output voltage to the load is about half what It would be without the near end termination. Figure 2 shows an implementation of an inverting amplifier with output current capability in excess of ± 100 rnA. The gain of this amplifier is determined by the values of RF and RIN. The resistor between the non-inverting input and ground is used to minimize the output offset voltage resulting from the input bias current. Figure 4 shows a non-inverting amplifier with gain and output current capability in excess of ± 100 rnA. It is capable of providing ±10 rnA into a 1 kn load or ±100 rnA into a loon load (± 10V swing). Figures 5 and 6 show two different methods of providing current limit or short circuit protection for the LH4001. In Figure 6, the Ion resistor limits the output current to approximately 70 rnA. This Circuit is highly recommended if there is a potential for a short circuit to occur. Because of its high current drive capability, the LH4001 buffer amplifier is suitable for driving terminated or unterminated co-axial cables, and high current or reactive loads. +15V +15V TL/K/862B-4 FIGURE 1. Non-Inverting Buffer Amplifier +15V +15V -15V -15V FIGURE 2. Inverting Buffer Amplifier with Current Limit 2-21 TUK/862B-6 g .... i Applications Information (Continued) 3 y+ RUM = 1oon~ 1W INPUT o--=i lH400I1>:'-JII'.'lv-H Y- TUK/8628-7 FIGURE 3. Coaxial Cable Drive Circuit +15Y I~~~""OYOUT Rl TL/K/8628-5 VOUT=VIN(l+~) FIGURE 4. Non-Inverting Buffer Amplifier with Gain y+ O.OI~F Y- TUK/8628-8 FIGURE 5. LH4001 Using Resistor Current LImIting = 2N2905 Ca. C4 = 2N2219 01.02 TLlK/8628-9 FIGURE 6. Current Umlt Using Current Sources 2-22 r-------------------------------------------------------------------------, r::c ! t!lNational Semiconductor LH4002 Wideband Video Buffer General Description Features The LH4002 is a high speed voltage follower designed to drive video Signals from DC up to 200 MHz. At voltage supplies of ± 5V, the LH4002 will provide up to 40 mA into 50n at slew rates in excess of 1000 V IlLS. The device is intended to fulfill a wide range of high speed applications including video distribution, impedance transformation, and load isolation. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased. • DC to 200 MHz Bandwidth with Vs = ±5V • 1250 VIlLS Slew Rate into 50n • 150 MHz Bandwidth with Vs = ±5V, RL = 50n and Voltage Swing = 2 Vp_p Applications • Wideband Amplifier Buffer • Wideband Line Driver Schematic and Connection Diagrams +VCCI +VCC2 R3 5004 R<4 2A INPUT OUTPUT TLIK/8686-15 ~ Dual-ln-L1ne Package +VCC2 +VCCI INPUT Ne -VCCI Ne OUTPUT 6 -Vea I He TLIK/8666-2 Top View Order Number LH4002CN See NS Package Number N10A 2-23 N ! :5 Absolute Maximum Ratings ; If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ±6V Supply Voltage, Vs Input Voltage Range, VIN Continuous Output Current, 10 Storage Temperature Range, TSTG Operating Temperature Range, TA LH4002C ±Vs ±60mA -65°C to - 25°C to + 85°C Junction Temperature, TJ Lead Temperature (Soldering, 10 sec) ESD rating is to be determined. 150°C 3000C + 150°C v DC Electrical Characteristics Vee = Symbol Vas Parameter Input Offset Voltage ±5V, Tmin~ TA ~ Tmaxunlessotherwisestated. Conditions , Min TA = TJ = 25°C<, Rs,= 150.0., RL = 50.0. Ie Input Bias Current RS= 1k.o.,RL= 50.0. DC Voltage Gain Rs = 10k.o., RL = 1.0k.o., VIN = ±2V Vo Output Voltage Swing Rs = 150.0., VIN = ±2.5V Is Supply Current fls = 10k.o., VIN = OV,RL = 1 k.o., TA = TJ = 25°C ROUT Output Resistance Rs = 10 k.o., RL = 50.0. RIN Input Resistance Rs = 10 k.o., RL = 50.0. I RL = 1 k.o. ITA = 25°C, RL ='50.0. Symbol SR Slew Rate 20 50 mV 100 200 p,A 0.97 VIV ±2.2 ±2.4 V ±2.0 ±2.2 V 20 35 6 10 mA .0. 18 k.o. ±5V, TA = 25°C. RL = 50.0., Rs = 50n VIN = ±2V Bandwidth, -3 dB (Note 2) Rs = 50.0. RL = 50.0. Phase Non·Linearity BW = 1.0-20 MHz tr Rise Time td Propagation Delay THO Harmonic Distortion f3de Units 0.95 10 Conditions Parameter Max " Av AC Electrical Characteristics Vee = Typ " Min Typ 1000 1250 V/p.S 125 MHz 150 MHz VOUT = 4Vp.p VOUT = 2Vp.p 100 Max Units 200 MHz 2.0 degrees 4VIN = 0.5V 3 ns 4VIN = 0.5V' 1.2 ns f = 1 kHz 0.1 % VOUT = 100 mVp.p Nota 1: Under normal operating conditions +VCC1 and +VCC2 should be connected together, and -VCC1 and -VCC2 should be connected together. Note 2: Guarantaad by design. This parameter is sample tested. 2·24 Typical Performance Characteristics 1.1 1.0 I 0.9 Iii ;s G.5 z ~ e; ~ OJ! o:T OJ! Maximum Power Dissipation Dual-In-Line Package Supply Current 40 ~8~=lioacj.. --,- ! I~ I 1M 30 /' 20 ~1=25CC RL =lk.Il vlN=ov- !:i IU D.2 D.2 H-++H+!!!-+++++IHI--+-HflIlll135 ~ 10 0.1 o 0.0 01020304050607011090 i3 FREQUENCY, (Mllz) 1E\IPERATURE (CC) TUK/8686-5 TUK/6668-12 U is i6 i7 SUPPLY VOLTAGE (V) TL/K/8686-6 Pulse Response TOP TRACE ~INPUT BOTTOM TRACE ~ OUTPUT Vs ~ AL ~ ±5V 5O1l TUK/8886-7 TUK/8686-8 2·25 Typical Applications VOUT TL/K/8686-11 FIGURE 1. Wldeband Unity Gain Amplifier Using LH4002CN . '\'1'" , ill -- 'TUKl8686-9 TLlK/8686-10 FIGURE 2. Compensation for Capacitive loads FIGURE 3. Compensatl~n fOr Capacitive Loads where Iso S; 100 mAo The inclusion of 500 limiting resistors in the colleCtQrs of the output. transistors limits the short circuit current to ~proximately 10!> mA without reducing the output voltage sWing. Applicatl~ns Inf,ormatlon The high. speed performance of the LH4002 ca!,! only be realiz~ by taking· certain precautions' in circuit layout and power supply decoupling. Low inductance ceramic chip or disc power supply decoupling capacitors of 0.01 I£F in parallel with 0.1 I£F should be connected with the shortest practical lead length between device supply leads and a ground plane. Failure to follow these rules can result in oscillations. When driving a ~citive load such as inputs to flash converters, the circuits in Figure 2 and 3 can be used to minimize the amount of overshoot and ringing at the outputs. F/f/IJre 2 indicates that a 500 should be placed in parallel with the load and Figure 3 recommends that a 1000 resistor be placed in series with the input to the LH4002. +5V +VCCI >--"OUTPUT INPUT Short Circuit Protection In order to optimize transient response and output swing, output current limits have been omitted from the LH4002. Short circuit protection may be added by inserting appropriate value resistors between +VCC1 and +V002 pins and between -VCC1 and -VCC2 pins as illustrated in Rgurs 4. Resistor values may be predicted by: +V001 -VCC1 Iso Iso -5V TUK/8686-20 FIGURE 4. LH4002 Using Resistor Current Umltlng RLIM=--=-- 2-26 t!lNational Semiconductor LM102/LM302 Voltage Followers General Description The LM102 series are high-gain operational amplifiers designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the devices incorporate advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. The LM102, which is designed to operate with supply voltages between ± l2V and ± l5V, also features low input capaCitance as well as excellent small Signal and large signal frequency response--all of which minimize high fre- quency gain error. Because of the low wiring capaCitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption. Features • • • • • Fast slewing - 10Vl,.s Low input current - 10 nA (max) High input resistance - 10,000 MO No external frequency compensation required Simple offset balancing with optional 1 kO potentiometer • Plug-in replacement for both the LM10l and LM709 in voltage follower applications Schematic Diagram (II IALANCE (II -+---------..- ...V. r---+--::-RI-....~... HO R2 " (JI HO RJ II t-4.....W""". .~...--'OUTPUT "I . .----IOOSTER (II -----4. . . ---_....________....____ v_ L - -.... 2-27 (41 TL/HI7753-1 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6) ±18V Supply Voltage Power Dissipation (Note 1) 500mW ±15V Input Voltage (Note 2) Output Short Circuit Duration (Note 3) Indefinite Operating Free Air Temperature Range LM102 -55'Cto +125'C LM302 OOCto +70'C Storage Temperature Range -6,5'Cto + 1500C Lead Temperature (Soldering, 10 sec.) 3000C ESD rating to be determin.ed. , Electrical Characteristics (Note 4) Parameter LM302 LM102 Conditions Min Typ Max Min Type Units Max Input Offset Voltage TA = 25'C 2 5 5 15 mV Input Bias Current TA == 25'C 3 10 10 30 nA Input Resistance TA = 25'C 1010 109 '1012 Input Capacitance 3.0 1012 11 3.0 pF Large Signal Voltage Gain TA = 25'C, Vs ±15V, VOUT = ±10V, RL = 8 kll Output Resistance TA = 25'C 0.8 2.5 0.8 2.5 11 Supply Current TA = 25'C 3.5 5.5 3.5 5.5 rnA 20 mV 0.999 0.9996 0.9985 0.9995 ' 7.5 Input Offset Voltage Offset Voltage Temperature Drift 20 6 Input Bias Current TA = TAMAX TA = TAMIN Large Signal Voltage Gain Vs = ±15V,VOUT = ±10V, RL = 10kll Output Voltage Swing Vs = ±15V, RL = 1(i'kll (Note 5) Supply Current TA = 125'C 3 30 1.0 10 100 3.0 20 VIV /J-Vl'C 15 50 nA nA 0.999 ±10 ±10 2.6 4.0 V rnA Supply Voltage ±12V s: Va s: ±15V 60 60 dB Rejection Ratio Note 1: The maximum iunction temperature Qf the LM102 is t 50'C, while that 01 the LM302 is 85"C. For operating at elevated temperatures, devices in the HOS package must be derated based on a thermarresistance 01 15O'C/W, junction to ambient, or 2O'C/W, junction to case. Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the 'supply voltage, Note 3: It is necessary to Insert a resistor (at least 5k and preferably 10k) in series with the input pin when the amplHier is driven from low impedance sources to prevent damage when the output is shorted and to ensure stability, Note 4: These specHications apply for ±12V ,;; Vs ,;; ±15Vand -55"0 ,;; TA ,;; 125'C for the LM102 and O'C ,;;TA ,;; 70'C for the LM302 unless otherwise specified, Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V- tennlnals. See curve. Note 6: Refer to RETS102X for the LM102H military specifiCations. : APPLICATION HINT The input must be driven from a source impedance of typically 10 kll (5 kll Min) ,to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a 10 kll resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation. 2-28 Guaranteed Performance Characteristics LM102 Input Current Output Swing 100 Supply Current 8 & Vs '" :t:1SV You, '" ~IOV " 0 ~ MAXIMUM, I 0 -55 -35 -15 "_ & " TYPICAL ri-~' I- APlC~l -.......... 4 ~ 3 51 2 I: -'1;'''C~l ..... 100" .... -. vrT -&& -3& -15 -55 -35 -15 -& 25 45 6& 8& 105 125 TEMPERATURE I CI 5 25 45 851 85 105 125 TEMPERATURE I CI ~ B 1A~'/.\IAU'" ~ .1xIM~M i 6 1"-0 §5 0 5 25 45 65 85 105 125 TEMPERATURE (aC) TL/H/n53-7 Typical Performance Characteristics LM102 Voltage Gain and Phase Lag 0.1186 Voltage Gain and Phase Lag 0.11 ~0.199 0.1 ...~ ...c . ~ 0.11 > ~~l~,,~v I 270 ! i -5 225 ~ C -II 180 135 ...• .. . ;; !i ~ II: w Output Resistance 100 .....,...,........-'"T"1rTT-r-r"TT,.-, 10 w -15 ~ -20 > -25 c DO 45 -311 ! !i.... =: I -35 10 D.9 lk 10k 10Dk 1M ~,,~.-LLU~,O~.~UU~,±OO~.~~~,M -40 lOOk 1M 10M 100M FREOUENCY IHII FREOUENCY 1Hz) FREOUENCY (Hz) Positive Output Swing Negative Output Swing 1& Output Swing 109~~~=I=p=l J- VOUT " ~10V -15 Ys" ~15Y Rs ~ 10K Vs" !15Y -10 -5 LOAD CURRENT ImAl LOAD CURRENT lmAl Large Signal Frequency Response 12 Large Signal Pulse Response 15 14 Vs= ~15V TA = 25 C ~ 10 DISTORTION .~5'-, o 10. lOOK FREQUENCV 1Hz) ·5 -10 1M -15 ~ &0 0 f..,"25 C I-0IOOE ~ .11101 I' '='8' TIME l"w Maximum Power Dissipation ~s-I,,:V III WI~H Cl~Mf 10 , TEMPERATURE I CI ~ !4OO " ;: "'1'1. ~300 ..... 10 ~ 200 ~ ~ 100 4& 65 85 105 125 AMBIENT TEMPERATURE I CI TLlHI7753-8 2-29 Guaranteed Performance Characteristics LM302,' I. Input Current .. r.. o Supply Current Output SWing • I""oMAXIMtl~- I I I o v.....vl - 'lOUT· t11V r0- 0 I _ TYPICAL • I J MA~'MJI!. ooII!~ 1 I ,-""""," ... .. MAXIMUM I ... ." , TYPICAL 1 ... , ~, - ~;~~ tV.ICAL !!!..I ~ I V. -:15'1 1 • 20 40 .. TEMPERATURE I'C) zo 40 II TEMPERATURE I'C) '0 • 10 II 40 II 10 TEMPEAATUR'E COC) , TL/H/775S-9 Typical Performance Characteristics LM302 Voltage Gain and Phase Lag o.a.. Voltage Gain and Phase Lag ILI1 11 6 :I! ~ ... ~o.aBB 0.1 C '" ;: CD~w !Ii . .. ..~ i w e ~ co OJ' ;; :> lk 10k 10 1M lOOk ~ -5 -10 R•• -16 -10 co :> -15 ,-'-38 TA ·15"C..I1 -4G ITO 3k~ ~ ~ II '_-I :5 100M 10M FREQUENCY 1Hz) Positive Output Swing -.•Negative Output Swing • v, -t1IV S l~ ,a 135 LR •• 30 kll 111111111 1M lOOk FREOUENCY 1Hz) 1111 ~~. ··.5V TA "25 C 115 m 180 ,.. R. "0ksl-l PHASE 111111111 R~, :,~ kll .i»!III Va' '15~'1I -35 ti:..~~.~i 0.9 ~ ;;; "Output Resistance .00 i '" .. 1.0 ••• I. TA -ZloC II,-"X , -I 0 0 Output Swing I 'lOUT· :!:1OY y"~v ..... - . I .. .. Large Signal Frequency Response II ~ 10 i ~ .. .• o 1I1IRZ5 LOAO CURRENT IlIA) lOX I 3 • LOAO CURRENT llIAl .0 Large Signal Pulse Response _I-"" ... I""'" : 0 .... i""" .r-.... -- \. I - Rio" ie!l ~II II • 01 TEMPERATURE re) Maximum Power Dissipation III 15 'Is· :l:11V ...+-........+-r=M TA • 25~C OtlforliDn < 5'" II Hf-t~ "'" i'. i'. \.. 100X 1M lOOK FREOUENCY 1Hz) V,0111V l.-aoc • "K ..... i'. -'8 ..... ' 0 .M 2& 35 15 55 15 15 AllIIENT TEMPERATURE I'C) FREOUENCV 1Hz) TLlH/77SS-10 2-30 Typical Applications Low Pass Active Filter CI' t48pF >;""-411- OUTPUT INPUT -~IAI"'.J\j"""',""MIr'"f RI RZ Z4K 14K 'Values are for 10 kHz outoff. Use silvered mioa oapacitors for good tern· perature stability. TLIHI7753-3 Sample and Hold with Offset Adjustment INPUT >':---OUTPUT f 'Polyosrbonate-dieleotrio oapacitor. V' TLlHI7753-4 High Pass Active FIRer CI D.OIIlF >;.....-4~ OUTPUT I.PUT...., 'Values are for 100Hz cutoff. Use metalized poiyosrbonate capacitors for good temperature stability. TLIHI7753-5 High Input Impedance AC Amplifier CI o.OlllF INPUT -1 .......""""'. >;""'''''''4I-0UTPUT RZ ~ lOOK j RI lOOK I TLIHm53-6 2-31 I Connection Diagram Metal Can Package Top View. NO CONNECTION vTl/HI7753-2 Order Number LM102H/883 See NS Package Number H08C 2-32 ~-------------------------------------------------------------------------------. r- i: ..... ..... tflNational Semiconductor ~ E N ..... <:» LM110/LM210/LM310 Voltage Follower ..... General Description ..... The LM11 0 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing. The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is sufficiently better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offer- !i: w ing lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range. <:» The LM11 0 is specified over a temperature range - 55'C s; TA S; + 125'C, the LM21 0 from - 25'C S; TA S; + 85'C and the LM310 from O'C S; TA S; + 70'C. Features • • • • 10 nA max over temperature 20 MHz 30 V//J-s ±5Vto ±18V Input current Small signal bandwidth Slew rate Supply voltage range Schematic Diagram (') BAlANCE (8) ~~~~~~1------------~~~ ~(7) D. -+--t--t---1 INPUT (3) J---AIII'v--Ir..--- , OUTPUT (6) ! R7 SK r I, ~ ·,--1-------1---------11 Q'4 aooSlER (5) Rt3 R.2 R1t 3K 1.5K 200 .....----v_ '--.. . . I-----~----------- 2-33 (~) TLlH/n61-1 o ..... CO) ::& ..... C; ..... C"I ::& ..... C; ..... ..... ... ::& Absolute Maximum Ratings -65'Cto ;.: 15O"C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) 260"C Soldering Information . Dual·ln·Une P~ckage Soldering (10'sec.) 260"C Small Outline Package Vapor Phase (SO sec.) '215'C Infrared (15 sec.) 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD rating to be determined. If Military/Aerospace specified devices are required, please contact the National Semiconductor Seles Office/Distributors for availability and specifications. (Note 6) ±1SV Supply Voltage Power Dissipation (Note 1) 500mW ±15V Input Voltage (Note 2) Output Short Circuit Duration (Note 3) Indefinite Operating Temperature Range LM110 - 55'C to + 125'C LM210 - 25'C to + S5'C LM310 O'Cto +70"C Electrical Characteristics (Note 4) Parameter LM110 Conditions Min Input Offset Voltage Input Bias Current Input Resistance = 25'C TA = 25'C TA = 25'C TA 1010 Input Capacitance Max 1.5 4.0 1.0 3.0 1012 Min 1010 1.5 Large Signal Voltage TA = 25'C, Vs = ±15V Gain VOUT = ±10V,RL = SkO Output Resistance TA Supply Current TA = 25'C = 25'C Max 1.5 4.0 1.0 3.0 0.999 0.9999 Units Typ Max 2.5 7.5 mV 2.0 7.0 nA 1012 0 1.5 pF 0.999 0.9999 VIV 0.75 2.5 0.75 2.5 0.75 2.5 0 3.9 5.5 3.9 5.5 3.9 5.5 mA 6.0 6 12 10 6 mV p.VI"C p.VI'C 10 Input Bias Current 10 = ±15V, VOUT = ±10V = 10kO Vs = ±15V, RL = 10kO Min 1010 1012 6.0 -55'C S; TA S; +S5'C +S5 S; TA S; 125'C O'C S; TA S; +70"C LM310 Typ 1.5 0.999 0.9999 Input Offset Voltage Offset Voltage Temperature Drift LM210 Typ 10 p.VI"C 10 nA Large Signal Voltage Vs Gain RL 0.999 0.999 0.999 VIV Output Voltage Swing (Note 5) ±10 ±10 ±10 V Supply Current TA = 125'C 2.0 4.0 2.0 4.0 mA Supply Voltage ±5V S; Vs S; ±18V 70 70 80 SO dB 80 70 Rejection Ratio Note 1: The maximum junction temperature of the LM110 is 150"<:, 01 the LM210 is 100'C, and of the LM310 is 85"C. For operating at elevated temperatures, devices in the Hoe package must be derated based on a thermal reslstsnce of 1El6"C/W, junction to ambient or 2Z'C/W, juncUon to case. The thennal resistance of the dual~".line package is 1Ort'C/W, iunctlon to ambient. Note 2: For supply voltages less than ± 15V, the absolute maximum Input Yoltege Is equal to the supply voltsge. Note 3: Continuous short circuit lor the LM11 0 and LM21 0 is allowed lor case temperatures to 125"C and ambient temperatures to 7C1'C, and for the LM310, 7rt'C cass temperature or 55'C ambient temperature. It is necessary to insert a resistor greater than 2 k.!l in series with the input when the amplHier is driven from low impadance sources to prevent damage when the output is shorted. As = 5k min, 10k typical is recommended lor dynamic stability In all applications. Note 4: Thees specificetions apply for ±5V,,; Vs',,; ±18Vand -55"C"; TA 125'Cfor the LM110, -25"C"; TA"; 85'ClortheLM210,andrt'C"; TA"; 7rt'Cfor the LM310 unless oIherwise specified. Note 5: Increased output swing under load can be obtained by connecting an eXtemal resistor between the booster and V- _nals, Sse CUfV8. Note 8: Refer to RETS110X lor LM110H, LM110J military specifications. Application Hint The input must be driven from a source impedance of typically 10 kO (5 kO min.) to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capaCitance at the input pin. In these cases, a 10 kO resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation. 2·34 !i.....i : ..... Typical Performance Characteristics (LM110/LM210) Input Current ~ V.-'II!= ~ t I 1. ~ ~ ~~'IM ..=iii -t-... ...~ ~ ~""I- i = i= D. I '--L.-.i.-.i.-.i.-...L.....L..................... -IIi -31 -15 5 25 45 6 15 16 125 !'"' \ -II II III I. I. I'" FREQUENCY (HzI 1M 11M TIME .... Voltage Gain and Phase Lag - Voltage Gain . 11 1.01 Z10 ~O.'" z us i! 131 ~ II ~ 4S I. 0.9 1. loa. 1M " 1M FREQUENCY (HzI ~ i 1" I I_ - II l,;; """ '" T~RATURE fREOUENCY (H,I Large Signal Frequency Response ~ , -1'\ II I II: ..... 1M fREQUENCY IHzI I. T" ....SoC •o iiii I. ~ l"'iii 3D II • ~ V,-±&V : I---i-H ZD 31 CURRENT(IIAI Supply Current ; :~~~~~~===t==~ ; t15V rTA • Zl"C rei Power Supply Rejection V. -.JI~' "'~:J.J.ij TA DISTORTlDN< ! ..... ~ '""..... _/ i--"t-IDln ~ v.- ~ -S5 -31 -I. I ZI 41 .. 15 lit 115 1M 4S . . . . las 18 1-0 ,.- :-- T. -IH"I: ..... ~ ~ t....- ~ 1. 8 Positive Output Swing VOUT -:t11V Vs .. t11V ,. I T_ERATURE rCI II I- .......... ~ ..... V~-~V -II -35 -IS Symmetrical Output Swing 1-'-.1...1_ ........ - Vo- "IV ~D." c ..... 11M 11 11 '-ZIIIIHz - ~ fREQUENCY (H.I Output Resistance 14 ~'~DII .. I ..=. ;! III M C CD ~ .. .... .... C) V. '" t15V TA -2&<11: -10 II Voltage Gain and Phase Lag r-rn'TTTl1nr-rrnml"""1"'TT E w 1\ -I -I TE_RATURE rCI ••_ N ..... C) ...... 10 T.-I.oC_ ! !iii E II _1Il00 i ~ Large Signal Pulse Response Output Noise Voltage ~~ Vo-dSV ~ I---i--+- I---i--+--+-~~~ ~~ T.-IloC-+--+-+~:'I V. - UIV -+_+-_+-~ .11 ......--''-----'-........- - ' - -..... IDO Ik I. I'" 1M I. fREOUEIICY (H.I • -iii -31 -I' • II 45 II .. TEMPERATURE (OCI I" 121 TLlH17761-28 2-35 .... r---------------------------------------------------------------------------------, C) C') :!..... Typical Performance Characteristics 1LM310)' I. ~. N ::E .... .... .... .... C) :i Input Current 15 v: i V"""5!= T.·2t"t_ .:t11V II i ~ B i Large SIgnal Pulse Response Output Noise Voltage I , T-;"'" \ ~ ~ Siii:E~"1IIHI r-~ u ~~"M II ~ V•• ""tV .. -I ·IGII 1.1 T•• Zft \. -10 I -15 111.3IClIIIIIIII _HATURE rc) TIME - .. 0.11 10 :1! ~D... D.I i i .. .. .. .. i .. c , !:;D.II I. '-ZI -3D ZZ5 110 R, • R""kS1" -15 ~ ~ !:; '-ZI = ZIO 3ifl ! ! -5 ;; -1' ~ .. , 5 !i: - Voltage Gain and Phase Lag Voltage Gain and Phase Lag Vo~:t.lv'lI -35 T•• 10 ,. l'R o'31'1I zn . 11 I" 1M FREQUENCY CHo) 41 ... ·,OR ,-2IU. T. I~!i: ..... lDaM L I-- I Output Reslstanee 15 " FREQUENCY CHo' Positive Output SWing "~~ 15 V.=:tI1V You, -i1DV V.-:I:IIV i II i t=r~ . I. "' 112131.1111 1M o Jail TE_RATURE re) Large $Ignal Frequency Response , " 1-,\ lZ !co • i II ±l5;Jill! II~' T. -- 2t"t OI8fORTIDN < Ill' .. . ;. I. • JD .......... 1M il 4D FHEOUEIICY UII' TA -7ft II • 31 ZI CUMUTC.A) Supply Current I: ZI 11 0 ,. 'v•• -Jj~ ...."' T. - ZI't V.cJ:1IV Ii 1Il10 I. I. FREQUENCY 'M CHII .' ~ • lI! 31 ·10 10M , 1.. • ~ Z . T. ·z f-T.-ft II ;;; 3 !:... ZI _LY VOLTAGE C-V) Symmetrical Output Swing III ·zn ~ :I.... ""I 10M Voltage Gain is; ~ 135 co 10 R~ifla r-- (Po' F::: . I • • - ~ ~':I:IIV r-: II ZI 31 4D II II II II 'TE_RATURE rC) TL/H17761-29 2-36 r-----------------------------------------------------------------------------~~ ...... i: Auxiliary Circuits Offset Balancing Circuit Increasing Negative Swing Under Load AI ~ ~ i: ... ...ow N IK .-+---v· 10k INPUT--\l\j"""...;.e >"-OUTPUT HZ" 5.lk 10k INPUT OUTPUT ~ ~ i: AI> 188 vTLlH/7761-3 'May be added to reduce internal dissipation TLlH/7761-2 Typical Applications Differential Input Instrumentation Amplifier 'j RZ _ lINe INPUTS 3 i'l R4 lOOK 0.1% IK 0.1% I, r--t--v· >-.--OUTPUT R4 . ."""""'. . BALANCE AI R5 Fi2="Ra IK R3 IK 0.1% Av=~ R2 A5 lOOK 0.1% . TLlH17761-4 Fast Integrator with Low Input Current c, INPUT -~~-4"'"'Vv\;"'" - CI HI 10pF 5K >-_-J\I\j"""'-.---i I---.-OUTPUT CZ ISO pF TLlH17761-5 '-------------------_._-- - " . _ - - - - - - - - - - - - - - - - - ' 2·37 I o ~ C; r-----------------------------------------------------------------------------~ Typical Applications (Continued) Fast Inverting AmplHler with High Input Impedance .,.. CI C'I 5 pF :IE .... ..I $! ,..., :IE R2 10k ..I '" INPUT-'V\j"""'ot >~I--OUTPUT C2 150 pF TlIH/7761-6 Comparator for Signals of Opposite Polarity RI VI 10K V2 02 INII. - - TLlH17761-7 Zero Crossing Detector RI lOOK 10K V,N 01 INBI. 02 INBI. VOUT TlIH/7761-9 2-38 Typical Applications (Continued) Driver for AID Ladder Network +15V Rl 3.6K R2 1.5K 1% R3 3K 6 01 IN4611 &.6V R4 21K 1% 5V REFERENCE TO REMAINING SWITCHES R5 20K 10K RI R1 5K DIGITAL SWITCH -'\II""-t DRIVE SK DIGITAL SWITCH -'llr/Y'-"'"i DRIVE TUH/7761-8 Buffer for Analog Switch' V· ANALOG INPUTS ~------~~--------~ 01 MM4&1 Rl 41K • CI 0.01,* """"'""-~"-_ ~ ______ ~~~ ANALOG OUTPUT ______- J DIGITAL DRIVE TL1H17761-10 'Switch substrates are boot-strappad to reduce output capacitance of switch. 2-39 C) ( II) :i r-------------------------------------------------------------------------------------, Typical Applications (Continued) -I :- Comparator for AC Coupled Signals C; N :I ..... C) Rt VOUT tOOK TL/H/n61-11 HIgh Input Impedance AC Amplifier Ct a.ot "F INPUT ~ ......_IVI,A,........ >&--....~- OUTPUT TLlH17761-12 Comparator for AID Converter UsIng a BInary-WeIghted Network R4 18K R3 40K R2 ZOK TO FROM SWITCHES LOGIC TL/H17761-13 2-'40 Typical Applications (Continued) Bilateral Current Source HZ ,GaK 0.1% I R3 VIN OUT - R1 R5 R3-R4+R5 R1 - R2 TLlHI776'-14 Comparator for AID Converter Using a Ladder Network V' .6 A7 A5 10K 10K .Z A4 5K 5K 11K 5K .3 10K TO LOGIC FROM SWITCHES Rl 10K OZ '.14 ANALOG INPUT Tl/H/7761-15 Sine Wave Oscillator cz _.F C3 110pF SINE OUTPUT 1% '" R3 lOOK R4 1% 5K t - -...- COSINE OUTPUT Rl ZZOK 1% C6 1&1pF AI Z21K ,% R5 01 '.3. OZ 1.3. ZK 10 - 10 kHz TLlHI7761-16 2-41 .... r-------------------------------------------------------------------------------------, Typical Applications (Continued) ....:II!! Low Pass Active Filter C) CO) ~ ,.. CI' 940pF C'I :II!! ..... ~ ,.. ,.. ~ RZ Z4k RI 24k ...J\iM_.-\lV""''""4 INPUT -J\j""~ >6_"'~_OUTPUT TLfH17761-18 'Values are for 10kHz cutoff. Use silvered mica capacitors for good temperature stability. High Pass Active Filter RI 110K INPUT CI' CZ' O.OZ p.F 0.01 p.F --I .........- 10K .. "-"'-,\;M"';'~ >·~""I---OUTPUT RZ 110K TLfHfn61-19 'Values are for 100Hz cutoff. Use matalizad poIycarbonate capacitors for good temperature stsbilily. Simulated Inductor R2 lk R2 Cl 0.1 J.lF' R[ 10M 1% TLfHfnS1-21 2·42 .-----------------------------------------------------------------------------'r i: .... Typical Applications (Continued) .... .... Adjustable Q Notch FIlter r i: .... Q ~ .... E Q .... Co) RI R2 10M 10M Q >...;6;...._~...._ V,N VOUT C3 540pF f = __1__ o 2 ...R1Cl C2 210pF Rl = R2 = 2R3 Cl CI = C2 = C3/2 6 210pF TL/HlnSI-22 Bandpass Filter R2 IK >&;..... .-OUTPUT INPUT TL/HlnSI-23 Sample and Hold SAMPLE-----4....- " I RI lSOK & >--OUTPUT INPUT-,,_ _01 TL/HI7761-24 fUse capacitor with polycarbonate teflon or polythylene dietetric 2·43 o .-----------------------------------------------------------------------------, .ell) Typical Applications (Continued) ~ ..... o Buffered Reference Source .- _----~. .- CN ....:::E..... V' =15V RI o ..:::E 3.8K .... R2 1.5K '" >-'..~- 01 IN4811 OUTPUT R4 271 I" TL/H17761-25 Low Drift Sample and Hold· V' INPUT OUTPUT tTellon polyethylene or polycarbonate dielectric capacitor 'Worst cose drift less than 3 mY/sac TUHI7761-26 Variable Capacitance Multiplier RI R2 II 10K R3 21 10k - CI 0.1 ~F TUH17761-27 2·44 r-----------------------------------------------------------------------------~ ~ ........ CI i: Connection Diagrams .... ~ Metal Can Package i: I\) .... CI BALANCE ..... ~ i: w .... CI TUHI7761-30 Package Is ccnnected to Pin 4 (V-) Top View Order Number LM110H, LM210H or LM310H LM110H/883* See NS Package Number HOBC Dual-In-Llne Package Dual-In-Une Package BALANCE 1 14 8 BALANCE 7 y' NC 2 12 BALANCE 11 Y' INPUT 3 6 OUTPUT 10 OUTPUT • Y- B y- 4 BOOSTER 5 BOOSTER TUH/7761-32 Top View TLlH/7761-31 Order Number LM310M, LM310N or LM 11OJ-8/883* See NS Package Number J08A, M08A or N08E Top View Order Number LM110J, LM21OJ, LM310J or LM11OJ/883* See NS Package Number J14A • 'Available per SMD* 5962-8760601 2·45 '"" r--------------------------------------------------------------------------------, tJ1 .... ~ CD ~ ., Nat ion a I S e m i con due t or '"" ~ CD LM6121/LM6221/LM6321 High Speed Buffer ::3 ..... '"" General Description '"" Features N CD ::; These high speed unity gain buffers slew at 800 VI P.s and have a small signal bandwidth of 50 MHz while driving a 500 load. They can drive ± 300 rnA peak and do not oscillate while driving large capacitive loads. The LM6121 family are monolithic ICs which offer performance similar to the LH0002 with the additional features of current limit and thermal shutdown. These buffers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation. • • • • • • • • • • 800 V/p.s 50 MHz High slew rate Wide bandwidth Slew rate and bandwidth 100% tested Peak output current High input impedance LH0002H pin compatible No oscillations with capacitive loads 5V to ± 15V operation guaranteed Current and thermal limiting Fully specified to drive 500 lines ±300 rnA 5MO Applications • Line Driving • Radar • Sonar Simplified Schematic Connection Diagrams Plastic DIP Metal Can TLlH/9223-2 VOUT *Heel-sinking pins. See Application section on heet sinking require- TLlH/9223-3 ments. Top View Order Number LM6221N, LM6321N or LM6121J/883 See NS Package Number J08A or N08E Note: Pin 6 connected to case. Order Number LM6221H or LM6121H/883 See NS Package NumberHOBC Plastic SO HiS" HiS" 1 iNPUT TLlH/9223-1 HIs" HiS" Numbers in () are for a-pin N DIP. HiS" HiS" 13 4 12 OUTPUT 11 V-' Nle 14 2 5 HiS" a HiS" TLlH/9223-7 'Pin 3 must be connected to the negalive supply. "Heat-sinking pins. Sea Application section on heel-sinking requirements. These pins are at V- potential. Order Number LM6321M See NS Package Number M14A 2-46 r- Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 36V(±18) Input to Output Voltage (Note 2) ±7V ±Vsupply Input Voltage Output Short-Circuit to GND (Note 3) Continuous Storage Temperature Range Lead Temperature (Soldering, 10 seconds) Power Dissipation -65°C to + 150"C ESD Tolerance (Note 8) ±2000V 150"C Junction Temperature (TJ(max») N ..... ..... r- i: Operating Ratings ~ N Operating Temperature Range LM6121H/883 LM6221 LM6321 Operating Supply Range - 55°C to + 125°C -40"Cto +85°C O"Cto +70"C 4.75 to ±16V Thermal Resistance (8JAl, (Note 4) H Package N Package M Package 260"C (Note 10) I: ..... ..... ..... r- i: en ~ N ..... 150"C/W 47"C/W 69"C/W 17°C/W Thermal Resistance (8Jcl, H Package DC Electrical Characteristics The following specifications apply for Supply Voltage = ±15V, VCM = 0, RL ~ 100 kO and Rs = 500 unless otherwise noted. Boldface limits apply for TA = TJ = T MIN to TMAX; all other limits TA = TJ = 25°C. Symbol AVl AV2 AV3 Vos la Parameter Voltage Gain 1 Voltage Gain 2 RL = 1 kO, VIN = ±10V RL = 500, VIN = ±10V Voltage Gain 3 (Note 6) RL = 500, V+ = 5V VIN = 2Vpp (1.5Vpp) Offset Voltage RL = 1 kO Input Bias Current RIN Input Resistance CIN Input capacitance Ro Output Resistance ISl Supply Current 1 RL = RL = 1k PSSR Output Swing 4 Power Supply Rejection Ratio 3 00 Output Swing 1 V04 LM6221 LM6321 Umlt (Notes 5,9) Limit (Note 5) Limit (Note 5) 0.980 0.980 0.970 0.970 0.950 0.950 0.860 0.860 0.850 0.800 0.820 0.820 0.780 0.780 0.750 0.750 0.700 0.700 30 30 50 50 60 100 4 4 5 7 7 7 5 lOUT = ±10mA VOl Output Swing 3 0.840 LM6121 00, 15 V+ = 5V 14 13.5 RL = 1000 12.7 RL = 500 RL = 500, (Note 6) 12 V+ = 5V 1.8 V± = ±5Vto ±15V 70 2-47 Units VIV Min mV Max p.A Max MO pF 3.5 RL = V03 0.900 1 RL = 500 Supply Current 2 Output Swing 2 0.990 15 RL = 1 kO, RS = 10 kO IS2 V02 Typ COnditions 5 5 5 10 10 6 0 Max 18 18 20 20 20 22 mA 16 16 18 Max 18 18 20 13.3 13.3 13.2 13 13 13 11.5 11.5 11 10 10 10 11 11 10 9 9 9 1.6 1.6 1.6 1.3 1.4 1.5 60 60 60 55 50 50 ±V Min Vpp Min dB Min • .... C'II ~ ::::Ii! ....... AC Electrical Characteristics ". .... ....C'II The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ~ 100 kO and Rs = 500 unless otherwise noted • Boldface limits apply for T A = T J =. T MIN to T MAX; all other limits T A = T J = 25°C • ::::Ii! .... ....... ....C'II .... CD ::::Ii! .... Symbol C'II CD LM6121 Parameter Typ ConClltlons Slew Rate 1 VIN = ±11V, RL = 1 kO SR2 Slew Rate 2 VIN = ± 11,V, RL = 500 Limit Limit . Limit (Note 5) (Note 5) 1200 550 550 550 800 550 550 550 50 550 550 550 50 30 30 30 (Note 7) SRs Slew Rate 3 -3 dB Bandwidth VIN = ± 100 mVpp, RL = 500 CL ~ 10pF t r, tf ipd as Rise Time RL = 500, CL ~ 10 pF Fall Tiroe Vo = 100mVpp Propagation RL = 500,CL ~ 10pF Delay Time Vo = 100mVpp Overshoot Units Vlp.s Min VIN = 2 Vpp, RL = 500 V+ = 5V (Note 6) BW LM6321 (Note 5) r" SR1' LM6221 RL = 500,CL ~ 10pF Vo = 100mVpp MHz Min 7.0 ns 4.0 ns 10 % Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device mey occur. DC and AC electrical specifications do not apply when operating ths device beyond its rated operating conditions, Note 2: During current limit. or therrriallimR. the Input current wiihncraese if the input to output dHferenUal voRage exceeds BV. For Input to output dHferential voltages in excess of BV ths input current should be IimRed to ± 20 mAo Note 3: The LM6121 series buffers,contain currant limit and thermal shutdOwn to protect against fault conditions. Note 4: Ths thermal resistance 6JA of the device in ths N package Is measured when solderad diractly to a printed clrcuR board, and the heet-slnking pins (pins I, 4, Sand 8) are connected to 2 square Inches of 2 0:<: copper. When Installed in a socket. the thermal resistance 6JA 01 the N peckage Is 84'C/W. Ths thermal resistance 6JA of the device in the,M package is measured when soldered directly to a prlnjed circuit board, and the heat-sinking pins (pins I, 2. 6. 7. B. 9. 13. 14) are connected to I square inch of 2 oz, copper. . , Note 5: Limits are guaranteed by testing or correlation. Note 6: The Input is biased to 2.SV and VIN swings Vpp about this value. The input swing is 2 Vpp at all temperatures except lor the Av3 test at -SS'C where R is reduced to I.S Vpp. Note 7: Slew rate is measured with a ± ltV input pulse and son source impedance at 2S'C. Since voRage gain is typically 0.9 driving a son load, the output swing will be approximately ±IOV. Slew rate is calculated for. transRions between ±SV levels on both rising and falling edges. A high speed measurement is done to minimize device heating. For slew rate versus iunction temperature see typical performance curves. The input pulse amplRude should be reduced to ± 10V for measurements at temperature extremes. For accurate measurements. the input slew rate should be at least 1700 VI"",. Note 8: The test circuit consists 01 ths human body model of 120 pF in series with I soon. Note 9: For specification limits over the full Militsry Temperature Range. see RETS812IX. Note 10: Ths maximum power dissipation is a function of TJ(max)' 6Jp" and TA. The maximum alloWable power dissipation at any ambient temperature Is Po = (TJ(max)-TI\l/6JA. 248 ~----------------------------------------------------------------------------,~ Typical Performance Characteristics Frequency Response 2 Frequency Response ~ , :1 I/" 1\ 32~ I ~ j 10 1 !: I 20 -6 ~ -6 100 1200 ,... l/ 10 1 1100 i 1000 ~ 900 V \ \ ....N .... ...... 20 50 E .... 800 ' - f- RLf5Cf ,\. o ~ N 1Rt.=li ~ .... 700 100 -50 50 100 150 FREQUENCY (MHz) JUNC110N 1tIIPERAl1JRE (Ge) Large Signal Response RL = 1k0 Large Signal Response RL = 500 FREQUENCI' (MHz) Overshoot vs Capacitive Load ~ en .... N ........ iii: en .,..... ~ I I -4 o 50 Y Rt.=5OA .... 1300 80 -2 1& .. -I' -6 Slew Rate vs Temperature o 80 RL=!! iii: TJ = 25"C. unless otherwise specified 40 RL =CD 35 50 1;\ 1 \ 25 20 15 10 ~ A 10 ~ I ./ \ ~ 5 J ~10 0 1000 100 ~ -5 -10 , i\ I IJ TIllE (20 ..IdlY) TIllE (20no!dIY) -3 dB Bandwidth Supply Current 70 .... .... ~ ~ O 10,000 20 12 I/" -15 LOAD CAPACITANCE (pF) 1& 10 ~ 1\ \ I -5 I; \ 15 ~ -15 o 10 , 15 ~ Slew Rate 1 80 1400 "L~"!l 50 r i;' "" "" RL =5011 8 I 200 o o '20 2 4 8 8 10 12 14 1& 18 20 o SUPPLY VOlTAGE (tv) SUPPl.Y VOlTAGE (tV) Slew Rate i ~ = 1000 800 ,f 800 f 400 ,L. 200 & 8 10 12 14 18 18 20 SUPPLY VOLTAGE (tV) " ""(=- ./ - ! 5 § i 20 1& 12 1\ = 1"'\ Vs~ \1It.= \ ,'- 0 12 16 20 • 24 'll: o o 4 28 1200 ~ 2 Power Bandwidth 1400 1: o o 4 6 8 10 12 14' 1. 18 20 2 24 1 ..PUT AIIPL/lUDE (Vp-p) 5 10 20 50 100 FREQUENCY (MHz) TL/H/9223-4 2-49 ~ ::& ......... -~ -- ~ ..... C'I U) ~ r-~----------~----------~----------------~~~------------------------~ Typical Performance Characteristics Input Return Gain (S11) I , 2 1I-+-I-l--I-l-/~-I---J 64 / ~ 48 1 -11---,-+--+-+-+----,l~_\_l \ 32 ::: I------I--I----I------I--I-II-T-l-/ ;! 7 1 16 '" -2 J ~~~~~WE~~~~~.L~o 1 2 5 10 20' 50 100 , Current LImit 10 I 200 8 I---,-IIAGNJ--.lTU---4-DE-+--I---I--lI80 6 180 4 \ 140 80 1lAGN1IU TJ =' 25"C, unless otherWise specified (Continued) Forward Transmission Gain (S12) I '\ -2 r -4 -6 ~ I 100 ~ 1\80~ T 80 ... 40 1 t:1fiiit2:t:l=t:l2O 400 .po.,j,~-+-+-f-+-I f-+-+-..... 300 1-+-+-+-+-+-+= ......""1,,--1--1 200 1-+-+-+-+-+-+---1-+--1 l00~~~~~~~~~ 0 50100 1251020 F1IEOlJI'Ncy (11Hz) ~ 1 ~12O I I 2o -8 -10 SOO~~~~-r~~~~ -~-25 0 25 50 75 100 125150 JUNCIION 1£IIPERATURE ("C) FREQUENCY (11Hz) TL/H/9223-5 Application Hints If the, buffer's input-to-output differential voltage is allowed to exceed 7V, a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6121 simplified schematic, the transistors involved are 01 and 03 for positive inputs, and 02 and Q4 for negative inputs. If any current is allowed to flow through these junctions, localized heating of the reverse-biased junction will occur, potentially causing damage. The effect of the damage is typically increased offset voltage, increased bias current,' and/or degraded AC performance. Furthermore, this will defeat the short-circuit and over-temperature protection circuitry. 'Exceeding ±7V input with a shorted output will destroy the device. The device is bast protected by the insertion of the parallel Combination of a 100 k.o. resistor (Rl) and a small capaCitor (Ci) in series with the buffer input, and a 100 k.o. resistor (R2) from input to output of the buffer (see Figure 1). This network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and the output has a ground-referred load of significantly less than 100 k.o., a large input-to-output voltage may be prasent. Rl and R2 then form a voltage divider, keeping the input-output differential below the 7V Maximum Rating for input voltages up to 14V. This protection network should be sufficient to protect the LM6121 fro';' the output of nearly any op amp which is operated on supply voltages of ± 15V or lower. POWER SUPPLY DECOUPLING The method of supply bypasSing is not critical for stability of the LM6121 series buffers. However, their high current output combined with high slew rate can result in significant voltage transients on the power supply lines if much inductance is present. For example, a slew, rate of 900 VI,...s into a 50.0. load produces a di/dt of 18 AI,...s. Multiplying this by a wiring inductance of 50 nH (which corresponds to approximately 1 Yz. of 22 gauge wire) result in a 0.9V transient. To minimize this problem use high quality decoupling very close to the device. Suggested values are a 0.1 ,...F ceramic in parallel with one or two 2.2 ,...F tantalums. A ground plane is recommended. ' LOAD IMPEDANCE The LM6121 is stable to any load when driven by a 50.0. source. As shown in the Overshoot vs Csp8citive Load graph, worst case is a purely capacitive load of about 1000 pF. Shunting the load capaCitance with a resistor will reduce overshoot. SOURCE INDUCTANC,E Like any high frequency buffer, the LM6121 can oscillate at high values of source inductance. The worst case condition occurs at a purely capacitive load of 50 pF where up to 100 nH of source inductance can be tolerated. With a 50.0. load, this goes up to 200 nH. This sensitivity may be reduced at the expense of a slight reduction in bandwidth by adding a resistor in series with the buffer input. A 100.0. resistor will ensure stability with source inductances up to 400 nH with any load. 100pF JI 11 OVERVOLTAGE PROTECTION The LM6121 may be severely damaged or destroyed if the Absolute Maximum Rating of 7V b9tween input and output pins is exceeded. VIN -", 'Y' 100k4 " 100k4 ',,- ~-'M TLlH/9223-6 FIGURE 1. LM6121 with Overvoltsge Protection 2-50 !i: Application Hints Figure 3 shows copper patterns which may be used to dissi- HEATSINK REQUIREMENTS A heatsink may be required with the LM6321 depending on the maximum power dissipation and maximum ambient temperature of the application. Under all possible operating conditions, the junction temperature must be within the range specified under Absolute Maximum Ratings. pate heat from the LM6321. G) N N .... ..... !i: G) Co) .... N T H ~u..:....:~~~~~1. ~I'~----- L·------~·~I TLlH/9223-9 14-PlnSO v+ TL/H/9223-8 TUH/9223-10 FIGURE 2 'For best results, use L - 2H FIGURE 3. Copper Heatstnk Patterns The next parameter which must be calculated is the maximum allowable temperature rise, TR(max). This is calculated by using the formula: Table" shows some values of junction-to-ambient thermal resistance (9J-Al for values of Land W for 2 oz. copper: TABLE II TR(max) = TJ(max) - TA(max) where: TJ(max) is the maximum allowable junction temperature TA(max) is the maximum ambient temperature Using the calculated values for TR(max) and P(max), the required value for junction-to-ambient thermal resistance, 9(J-A), can now be found: 9(J-A) = TR(max)/P(max) The heatsink for the LM6321 is made using the PC board copper. The heat is conducted from the die, through the lead frame (inside the part), and out the pins which are soldered to the PC board. The pins used for heat conduction are: TABLE I Package Pins LM6321N 8-PinDIP 1,4,5,8 LM6321M 14-PinSO 1,2,3,6,7, 8,9,13,14 2-51 .... ..... !i: 8·PlnDIP To determine if a heatsink is required, the maximum power dissipated by the buffer, P(max), must be calculated. The formula for calculating the maximum allowable power dissipation in any application is Po = (TJ(max)-TAl/9JA' For the simple case of a buffer driving a resistive load as in Figure 2, the maximum DC power dissipation occurs when the output is at half the supply. Assuming equal supplies, . the formula is Po = Is (2V+) + V+2/2 RL. Part .... N G) Package L(ln.) H(ln.) 8-PinDIP 2 0.5 47 14-PinSO 1 0.5 69 2 1 57 9J-ArC/W) ~ ~--------------------------------------------------------------------------~ ~ I.... iii N t!lNational Semiconductor LM6125/LM62251LM6325 High Speed Buffer ..- General Description Features ....:IE The LM6125 family of high speed unity gain buffers slew at 800 V/p.s and hllve a small signal bandwidth of 50 MHz while driving a 50n load. These buffers· drive ±3oo mA peak and do not osoillate while driving larg!t capacitive loads. The LM6125 contains unique features not found in power buffers; these include· current limit, thermal shutdown, electronic shutdown, and an error flag that warns of fault conditions. These buffers are built with National's VIPTM (Vertically Integrated PNP) process which .provides fast PNP transistors that are true complements to the. already fast NPN devices. This adVanced junction-iSOlated process delivers high speed performance without the need for complex and expensive dielectric isolati.on. • • • • • • • UI High slew rate High output current Stable with large cap8citive loads Curr!tnt and thermal limiting . Electronic shutdown 5V to ± 15V operation guaranteed Fully specified to drive 50n lines 800 V/p.s ±300 mA Applications • Line Driving • Radar • Sonar Simplified Schematic and Block Diagram Pin Configurations SlD 8 GND TUH/e222-3 'Heat sinking pins. Internally oonnectad to V -. Order Number LM8225N orLM8325N See NS Package Number N14A TUH/9222-1 TUH/9222-4 TUH/9222-2 Top VIew Note: Pin 4 connected to case Order Number LM8125H/883* orLM8125H See NS Package Number H08C Numbers in () are for 14-pin N DIP. 'Available per 5982-9081501 2-52 Absolute Maximum Ratings (Note 1) If MIlitary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 36V(±18V) ±7V Input to Output Voltage (Note 2) Input Voltage ESO Tolerance (Note 9) Flag Output Voltage Storage Temperature Range Lead Temperature (Soldering, 10 seconds) 150'C/W 40·C/W H Package N Package Maximum Junction Temperature (TJ) Operating Temperature Range LM6125 LM6225 LM6325 Operating Supply Voltage Range ±Vsupply Output Short-Circuit to GNO (Note 3) Continuous GNO :s;; Vflag :s;; + Vsupply - 65·C to + 150'C 150'C - 55·C to + 125·C -40'Cto +85·C O'Cto +70'C 4.75Vto ±16V 260·C DC Electrical Characteristics The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ~ 100 kO and Rs Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25·C. Symbol ±15OOV 8JA (Note 4) Parameter Conditions Voltage Gain 1 RL = 1kO, VIN = ±10V AV2 Voltage Gain 2 RL = ± 10V AV3 Voltage Gain 3 (Note 6) RL = 500, V+ = 5V VIN = 2Vpp(1.eVpp) Ves Offset Voltage RL = Ie Input Bias Current RL = 1 kO, Rs = 10 kO RL = 500 500, VIN = LM6125 LM6225 LM6325 UmH (Notes 5, 10) Limit (Note 5) Limit (Note 5) 0.990 0.980 0.970 0.980 0.9410 0.970 0.9410 0.900 0.880 0.800 0.860 0.820 0.850 0.820 0.840 0.780 0.7410 0.780 0.700 0.750 0.700 15 30 eo 30 80 50 100 mV Max 1 4 7 4 7 5 7 p.A Max Typ AVl 1 kO RIN Input Resistance qN Input Capacitance Ro Output ReSistance lOUT"" ±10mA ISl Supply Current 1 RL = 00 IS2 Supply Current 2 RL = 00, V+ = 5V ISID Supply Current in Shutdown RL = 00, V± = VOl Output Swing 1 RL V02 Output Swing 2 V03 = 500 unless otherwise noted. 5 Units VIV Min MO 3.5 pF 3 5 10 5 10 5 8 15 18 20 18 20 20 22 14 16 18 16 18 18 20 1.1 1.5 2.0 1.5 2.0 1.5 2.0 = 1 kO 13.5 13.3 13 13.3 13 13.2 13 RL = 1000 12.7 11.5 10 11.5 10 11 10 Output Swing 3 RL = 500 12 11 sa 11 9 10 9 V04 Output Swing 4 RL = 500 1.8 1.6 1.3 1.6 1.4 1.6 1.41 Vpp Min PSRR Power Supply Rejection Ratio V+ = 5V (Note 6) 70 60 4141 60 eo 60 eo dB Min VOL Flag Pin Output Low Voltage V± = VS/D 300 400 300 400 340 400 mV Max Flag Pin Output High Current VOH Flag Pin (Note 7) 10 20 10 20 10 20 Max IOH ±15V ±5Vto ±15V = OV = 15V 0.01 2-53 0 Max mA Max ±V Min p.A DC Electrical Characteristics (Continued) The following specifications apply for Supply Voltage = ±15V, VCM = 0, RL ~ 100kO and Rs =;·500 unless otherwise,noted. Boldface limits apply for TA = TJ = TMIN to TMAX;,all other limits TA = TJ = .25°C. Symbol Parameter Typ Conditions VTH Shutdown Threshold VIH Shutdown Pin Trip Point High VIL Shutdown Pin Trip Point Low IlL Shutdown Pin Input Low Current VS/O Shutdown Pin Input High Current VS/O Bi·State Output Current Shutdown Pin = OV VOUT = +5Vor -5V IIH 10 LM6125 LM6225 LM6325 Limit (Notes 5, 10) Umlt (NoteS) UmH (Note 5) Units 2.0 2.0 2.0 2.0 2.0 2;0 V Min O.B O.B O.B o.a o.a o.a 1.4 = OV V -0.07 = 5V -0.05 1 -10 -10 -10 -20 IJ.A -20. ~20 Max -1'0 -10 -10 -20 -20 -20 50 50 100 2000 100 200 AC Electrical Characteristics The following specifieationsapplyfor Supply Voltage = ±15V, VCM = 0, RL ~ 100 kO and Rs Boldface limits apply for T A ':= TJ = TMIN to T MAX; all other limits T A = TJ = 25°C. Symbol Parameter Typ Conditions = SRl Slew Rate 1 VIN SR2 Slew Rate 2 VIIi! = ±11V, RL (Note B) SRs Slew Rate 3 VIN V+ BW -3 dB Bandwidth ±11V, RL = 1 kO = 500 = 2 Vpp, RL = 500 = 5V (Note 6) VIN = 100 mVpp RL = 500,CL ~ 10pF V Max IJ.A Max I'-A = 500 unless otherwise noted. LM6125 LM6225 LM6325 Limit (Note 5) Umlt (Note 5) Limit (NoteS) Units 550 550 5~ V/p.S Min 30 30 30 1200 BOO 50 50 . MHz Min tr,tf Rise Time Fall Time RL = 500,CL ~ 10pF VO.= 100mVpp B.O ns tpo Propagation Delay Time RL Vo = 500,CL ~ 10pF = 100mVpp 4.0 ns Os Overshoot RL = 500,CL ~ 10pF Vo = 100 mVpp 10 % VFT VIN, VOUT Feedthrough in Shutdown Shutdown Pin = OV VIN = 4 Vpp, 1 MHz RL = 500 -50 dB GoUT Output Capacltance in Shutdown Shutdown Pin 30 pF Iso Shutdown Response Time 700 ns = OV ,. 2·54 \ Electrical Characteristics (Continued) Not. 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. Not. 2: During current ,Iimil, th8rmal limn, or electronic shutdown the input currant will increase H the input to output differantial voltage exceeds 8V. See Overvoltage Protection in Application Hints. Note 3: The LM6125 series buffers contain current limn and thermal shutdown to protect against fauR conditions. II Note 4: For operation at elevated temperature, these devices mUS! be derated based on a thermal reslsiance of 8JA and TJ max, TJ = TA + 8JA Po. 8JC for the LM6125H and LM6225H is 17"CIW. The thermal impedanos BJA of the devios in the N peckage is 4O'C/W when soldered directly to a printed circuR board, and the heat-sinking pins (pins 3, 4, 5, 10, II, and 12) are connected to 2 square inches of 2 oz. copper. When installed in a socket, the thermal impedance 8JA of the N package is 6O'C/W. Note 5: Umits are gueran1eed by testing or correlation. Note 8: The input Is biased to reduced to 1.5 Vpp. + 2.5V, and VIN swings Vpp about this value. The input swing is 2 Vpp at all temperatures except for the Av3 test at - 55'C where n is Note 7: The Error Flag is set (low) during cunent IlmR or thermal fault detection In addition to being set by the Shutdown pin. It Is an open-collector output which requlres an extemal pullup resistor. Note 8: Slew rate Is measured with a ± ltV Input pulse and 500 source impedenos at 25'C. Sinos voRage gain is typically 0.9 driving a 500 load, the output SWing will be approximately ± I OV. Slew rate is calculated for transitions between ± 5V levels on both rising and falling edges. A high speed measurement is done to minimize device heating. For slew rate versus junction temperature see typical performance curves. The input pulse amplitude should be reduced to ± I OV for measurements at temperature extremes. For accurate measurements. the input slew rate should be at Iaast 1700 VI ,.S. Note 8: The test circuR consists of the human body model of 120 pF in series with 15000. Note 10: A military RETS specification is avellable on request. Attha time of printing, the LM6125H/883 RETS spec compiled with the 801df_ limits in this column. The LM6125H/883 may also be procured as Standard Military Drawing specification #5962-908150IMXX. Typical Performance Characteristics TA = Frequency Respol18e 2 25°C, Vs = ± 15V, unless otherwise specified Frequency Response """" II" 1:100 -2 ~i 1: I / J o I fREQU£NC"( «J 20 15 10 5 o --- 10 100 / ./ \ \ .1, V 20 ~ Ii ~ ~ o ..... ....... 1000 900 900 700 100 Large Signal Response (RL = 1 kO) RL =... .!II 25 ~ 1\=1 1100 -- 1\=5011 -50 0 -so 100 ISO (11Hz) Overshoot vs capacitive Load 30 40~ I I 100 10 _k -II ...... ..,....., 1200 1\0:;504 1\ I , I -II Slew Rate vs Temperature o ~ I\-IK /\ / \ 15 g 15 A- 10 g ~ \ i lil -5 -10 I \ I \ -15 1000 10.000 10 r ~ ~ \ Large Signal Response (RL = 500) :-- ~ ~ -5 o -10 , I \ J -15 lIIE (2Ons/dIv) 1IIIE (2Ono/dIY) LOAD CAPACITANCE (pF) TL/H/9222-5 2-55 • U) ~ U) :I;:;; ~~------------------------------------------------------------------------------, Typical Performance Characteristics TA = 25°C. Vs = Supply Current 20 i ::;! U) N .- - -- 12 'SiewAate - 3 dB Bandwidth 70 I ... 16 ± 15V. unless otherwissspecified (Continued) i ~ , 1600 I I I«JO 60 lilt '"GIl ..... r- so I,; ~ )/ L,= ~ 1000 .......... i "'" RL =504 ~ 600 600 «JO RL=504-f- 200 o o 20 2 4 • 8 10 12 14 18 18 20 o SUPPLY VOLTAGE (tV) Slew Aate ~ i ~ 800 600 «JO ..... 1\= Input Aeturn Gain' (811) 28 .,. /I If IL 24 \ \ ....... Vs=fill 16 20 _II!! . "h=5 12 80 2 '1;1'" 200 o o SUPPLY VOLTAGE (tV) Power Bandwidth . 1200 2 4 6 8 10 12 14 16 18 20 SUPPLY VOLTAGE (tV) I«JO ~ 1000 o o 2468101214161820 5 I 10 so 20 I -2 - r\/ A \ \ 1 16 / 100 10 FREQUENCY (MHz) INPUT AMPLITUDE (Vp-p) ./ .,. p...... o 24 I = ./ 20 ' so o 100 FRIXIOENCY (11Hz) Forward Transmission 10 Gain (821) 200 I 8 I 80 I 60 I 4O~ MAGNITUDE \ i 1,.-120 o J\ / \ -2 -4 I -s -8 PIIAS£ -10 I 20 I \ ....... 10 SOD so 1 oo~ Current Limit ~ ...... r--.. ....... :~ " 40 20 o 100 -75-SO-25 0 28 100 FR£QUENCY (11Hz)' so 75 100 125 ISO JUHClIOH TEMPfRATURE (CC) Tl/H/9222-7 2-56 \\ ,-----------------------------------------------------------------------------, r- a: Typical Connection Diagram .... Q) ~ ...... r- (+5 to +15V) y+ i: ~ IO.1 # !i: CIIOS OR m ~ BUFFERED OUTPUT INPUT HIGH TO ENABLE y- (0 to -15V) 47K TL/H/9222-6 Application Hints POWER SUPPLY DECOUPLING OVERVOLTAGE PROTECTION The method of supply bypassing is not critical for stability of the LM6125 series buffers. However, their high current output combined with high slew rate can result in significant voltage transients on the power supply lines if much inductance is present. For example, a slew rate of 900 V/p.s into a 500 load produces a di/dt of 18 Alp.s. Multiplying this by a wiring inductance of 50 nH results in a 0.9V transient. To minimize this problem use high quality decoupling very close to the device. Suggested values are a 0.1 p.F ceramic in parallel with one or two 2.2 p.F tantalums. A ground plane is recommended. The LM6125 may be severely damaged or destroyed if the Absolute Maximum Rating of 7V between input and output pins is exceeded. If the buffer's input-to-output differential voltage is allowed to exceed 7V, a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6125 simplified schematic, the transistors involved are 01 and 03 for positive inputs, and 02 and Q4 for negative inputs. If any current is allowed to flow through these junctions, localized heating of the reverse-biased junction will occur, potentially causing damage. The effect of the damage is typically increased offset voltage, increased bias current, andlor degraded AC performance. The damage is cumulative, and may eventually result in complete device failure. The device is best protected by the insertion of the parallel combination of a 100 kO resistor (R1) and a small capacitor (C1) in series with the buffer input, and a 100 kO resistor (R2) from input to output of the buffer (see FlfJure 1). This network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and the output has a ground-referred load of significantly less than 100 k~, a large input-to-output voltage may be present. R1 and R2 then form a voltage divider, keeping the input-output differential below the 7V Maximum Rating for input voltages up to 14V. This protection network should be sufficient to protect the LM6125 from the output of nearly any op amp which is operated on supply voltages of ± 15V or lower. LOAD IMPEDANCE The LM6125 is stable into any load when driven by a 500 source. As shown in the Overshoot VB Capacitive Load graph, worst case is a purely capacitive load of about 1000 pF. Shunting the load capacitance with a resistor will reduce overshoot. SOURCE INDUCTANCE Like any high-frequency buffer, the LM6125 can oscillate at high values of source inductance. The worst case condition occurs at a purely capacitive load of 50 pF where up to 100 nH of source inductance can be tolerated. With a 500 load, this goes up to 200 nH. This sensitivity may be reduced at the expense of a slight reduction in bandwidth by adding a resistor in series with the buffer input. A 1000 resistor will ensure stability with source inductances up to 400 nH with any load. ERROR FLAG LOGIC l00pF The Error Flag pin is an open-collector output which requires an extemal pull-up resistor. Flag voltage is HIGH during operation, and is LOW during a fault condition. A fault condition occurs if either the intemal current limit or the thermal shutdown is activated, or the shutdown (SID) pin is driven low by extemallogic. Flag voltage retums to its HIGH state when normal operation resumes. If the SID pin is not to be used, it should be connected to l00k4 TL/H/9222-6 V+. FIGURE 1. LM6125 with Overvoltage Protection 2-57 Section 3 Voltage Comparators Section 3 Contents Voltage Comparators Definition ofTerms ............................................ .. Voltage Comparators Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LF111/LF211/LF311 Voltage Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH2111/LH2311 Dual Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM106/LM306 Voltage Comparators.................................. ............... LM111/LM211/LM311 Voltage Comparators .......................................... LM119/LM219/LM319 High Speed Dual Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators LM160/LM360 High Speed Differential Comparators.................................... LM161/LM261/LM361 High Speed Differential Comparators............................. LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators. . . . . . . . . LM612 Dual-Channel Comparator and Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference. . . . . . . . . . . . LM615 Quad Comparator and Adjustable Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM710 Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM760 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM1801 Battery Operated Power Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. LM6511 180 ns 3V Comparator............................................ .......... LMC6762 DuallLMC6764 Quad Micropower, Rail-to-Raillnput and Output CMOS Comparator............ ........... ..... .. ...................... ...... ........... LMC6772 Dual, LMC6774 Quad, Micropower Rail-to-Raillnput and Open Drain Output CMOS Comparator ..................................................................... LMC7211 Tiny CMOS Comparator with Rail-to-Raillnput ................................ LMC7221 Tiny CMOS Comparator with Rail-to-Raillnput and Open Drain Output ........... LP311 Voltage Comparator..................................... ............ ......... LP339 Ultra-Low Power Quad Comparator................... ..... ..................... 3-2 3-3 3-4 3-5 3-14 3-17 3-21 3-35 3-42 3-54 3-58 3-63 3-72 3-80 3-96 3-107 3-111 3-118 3-126 3-131 3-132 3-133 3-144 3-145 3-149 tflNational Semiconductor Voltage Comparators Definition of Terms Input Bias Current: The average of the two input currents. Reaponse TIme: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive. Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value. Input Offset Current: The absolute value of the difference between the tWo input currents for which the output will be driven higher than or lower than specified voltages. Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages. Input Voltage Range: The range of voltage on the input terminals (common-mode) over which the offset specifications apply. Strobe Current: The current out of the strobe terminal when it is at the zero logic level. logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic Circuitry changes its digital state. Negetlve Output Level: The negative DC output voltage with the comparator saturated by a differential input equal to . or greater than a specified voltage. Strobe Output Level: The DC output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state. Strobe "ON" Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage. Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value. Output R....tance: The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage. Strobe "OFF' Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator. Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level. Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions. Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producingil Output Sink Current: The maximum negative current that can be delivered by the comparator. Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value. Power Consumption: The power required to operate the comparator with no output lOad. The power will vary with signal level, but is specified as a maximum for the entire range of input Signal conditions. 3-3 til ~'. National Semiconductor Voltage Comparators Selection Guide Response Tlme(Typ) ns Vos mV(Max) Is 18 mA(Max) nA(Max) Special Features T A = 25"C (Notes 1 and 2) LM6685 LM6687 LM360 LM361 LM306 2.6 2.6 14 14 28 1.9 1.9 5 5 5 23 38 32 20 10 9,000 9,000 20,000 30,000 25,000 LM319 LM6511 LF311 LM311 80 180 200 200 8 5 10 7.5 12.5 3.5 7.5 7.5 1000 130 0.15 250 High Speed Dual . . LH2311 LP311 LM339 LM392 LM393 200 ' 1200 1300 1300 1300 7.5 7.5 5 10 5 7,5 0.3 2.5 1 2.5 250 100 250 400 250 Dua1LM31j· Low Power Single General Purpose.Quad One Comparator Plus One Op Amp General Purpose Dual LM2901 LM612 1300. 1500 7 5 2.5 0.250 250 35 LM613 1500 5 1 35 LM615 1500 5 0.600 35 Automotive Quad Super-Slock™ Dual Comparator + Reference Super-Block™, Dual Comparator + Dual Op Amp + Reference Super-Block™ Qua~ Comparator + Reference Automotive Dual " I' LM2903 Single,. Very High Speed ECL Output Dual, Very High Speed ECL Output High Speed, Complementary Outputs High Speed w/Strobes High Speed, High Drive FETh1put General Purpose Single 1500 7 2.5 250 LP365 LP339 LMC676214 4000 8000 4000 6 5 5 0.275 0.1 0.Q1 75 25 LMC6762 4000 5 20pA 0.02 pA (typ) MicroPower Dual LMC6764 4000 5 4Ol'-A 0.02 pA (typ) MicroPower Quad LMC6772 4000 5 2Ol'-A 0.02 pA (typ) MicroPower Dual, Open Drain Output LMC6774 4000 5 40pA 0.02 pA (typ) MicroPower Quad, Open Drain Output LMC7211 4000 15 7pA 0.02 pA (typ) TinyPak™ SOT23-5 MicroPower Comparator LMC7221 4000 15 71'-A 0.02 pA (typ) TinyPak 8OT23-5 MicroPower Comparator, Open Drain Output '. \ Programmable Quad Low Power Quad MicroPower Rail-to-Raillnput & Output CMOS Comparator Note 1: Datasheet should be referred to for test condHions and more detallad Information. Note 2: This selection guide should be used to select for Responsa Time required. Industrial and Military Temperature Range types are available. The DC specs are for the lowest Commercial Grade available. 3-4 I!fINational Semiconductor E;; ..... ..... ..... ...... LF111/LF211/LF311 Voltage Comparators N ..... ..... ...... r, on General Description The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors. Designed to operate over a 5.0V to ± 15V range the LF111 can be used in the most critical applications. Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents. See the "application hints" of the LM311 for application help. Features The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering. Leakage testing, long time delay circuits' charge measurements, and high source impedance voltage comparisons are easily done. • Eliminates input current errors • Interchangeable with LM111 • No need for input current buffering Schematic Diagram IALANCE/STROI£ • •3 311 IALAIiCE .. • Note: 00 Not Ground Strobe Pin or Balance/Strobe Pin. See Note 7. 301 • v' .,.4. OUTPUT ." 130 ... 210 015 ... ." III 20D R14 2k .n • 4 y- Connection Diagram GNO Tl/H/5703-2 Metal can Package v' 6 BALANCE/ STR08£ v- Tl/H/5703-1 Top View Order Number LF111H, LF111H·MILor LF311H See NS Package Number HOSe 3-5 5.......... ...... ~ ..... ...... ~ ..... ......... ~ Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales OffIce/Distributors for availability and spaclflcatlons. ,. (Note 8) LF111/LF211 LF311 36V 36V Total Supply Voltage (V84) Output to Negative Supply 50V, 40V Voltage (V74) Ground to Negative Supply 30V 30V Voltage (V14) ±30V ±30V Differential Input Voltage ±15V ±15V Input Voltage (Note 1) Power Dissipation (Note 2) 500mW 500mW Output Short Circuit Duration 10 seconds 10 seconds LF111/LF211 Operating Temp . Range LFll1 ' LF211 LF311 Storsge.Temp. Range LF311 - 55°C to + 125°C - 25°C to + 85"C O"Cto +70"C -65°C to + 150"C Lead Temp. (Soldering, 10 seconds) ESD rating to be determined. -65"Cto +15O"C 26O"C 26O"C Electrical Characteristics (LF111/LF211) (Note 3) Parsmeter Condmons Input Offset Voltage (Note 4) TA= 25°C, RS Input Offset Current (Note 4) TA=25~C, Min s: 50k VCM=O (Note 6) Input Bias Current TA=25°C, VCM=O (Nota 6) Voltage Gain TA=:25"C 40 Typ Max Unlta 0.7 4.0 mV 5.0 25 pA 20 50 200 Response Time (Note 5) TA = 25°C 200 saturation Voltage VINS: -5;0 mV,IOUT=50 rnA, TA=25°C 0.75 Strobe On Current TA=25°C 3.0 Output Leakage Current VINS:5.0 mV, VOUT=35V, TA=25"C 0.2 Input Offset Voltage (Note 4) Rs Input Offset Current (Note 4) Vs= ±15V, VCM=O (Note 6) Input Bias Current Vs= ± 15V, VCM=O (Note 6) rnA nA 6.0 mV 2.0 3.0 nA 5.0 7.0 nA ±14 13.0 V 0.4 V 0.1 0.5 /LA TA=25°C 5.1 6.0 rnA TA=,25"C 4.1 5.0 rnA V+ ~4.5V, V- =0 VINS: -6.0 mV, IOUTS:8.0 rnA OutpUt !-eakage Current VIN~5.0 Positive Supply Current Negative SUPllly Current V 0.23 Input Voltage Range saturation Voltage' Note 1: This raUng applies for ns 1.5 10 s: 50k -13.5 pA VlmV rnv, VOUT=35V ±15V supplies. The positive input voltage limit Is 30V above the negative supply. The negative Input voltage limit Is equal to the negative supply voltage or 30V below the positive supply, whichever Is less. Note 2: The maximum iunctlon temperature of the LF111 Is + l5O"C, the LF211 is· + I100C and the LF311 Is +85"C. For operating at elevated temperatures, devices in'the HOB package must be derated based on a thennaI resistance of + 85"C/W junction to ambient (In 400 linear feeIImin air flow), + 185"C1W junction to ambient (in staUc air), or + 20"C/W iunctlon to case. Nota 3: Thess specifications apply for Vs= ±15V, and the Ground pin at ground, and-55'C:<:TA:<: + 125'C for the LFlll, unlessolherwlae alated. With the LF21 \, however, all temperature specifications are limited to -25'C:<:TA:<: ±85'C and for the LF311 O"C:<: TA:<: + 70"C. The offlIet voltage, offlIet currant and bias currant speciflcations apply for any supply voltage from a single 5.0V supPly 'up 10 ± 1fill supplies. Note 4: The offlIet voltages and offlIet currants given are the maximum values required to drive the output within a volt of alther supply with a 1.0 mA load. Thus, thasa perameters define an error band and take into account the worst case effects of voltage gain and Input Impedance. Note 5: The response time specified (see definitions) is for a 100 mV input step .;ru. 5.0 inV ov6Idrive. Nota 6: For Input voltages greater than 15V above the negative supply the bias and offlIet currants will increase-eee typical performance curves. Note 7: This specificelion gives the currant that must be drawn from the strobe pin to ensure the output Is properly disabled. Do not short the strobe pin to grqund; it should be currant driven at 3 to 5 rnA, Note 8: Refer to RETSFlll X for LFlll H military speclficetions. " 3-6 E;; ..... .... Electrical Characteristics (LF311) (Note 3) Parameter Min Conditions Typ Max Units Input Offset Voltage (Note 4) TA=25'C, Rs,;;50k 2.0 10 mV Input Offset Current (Note 4) TA=25'C, VCM=O (Note 6) 5.0 75 pA Input Bias Current TA = 25'C, VCM = 0 (Note 6) 25 150 pA Voltage Gain TA=25"C 200 Response Time (Note 5) TA=25'C 200 Saturation Voltage VIN,;;-10mV, lOUT = 50 mA, TA=25'C 0.75 Strobe On Current TA=25'C 3.0 Output Leakage Current VIN~10mV, VOUT=35V, TA=25'C 0.2 Input Offset Voltage (Nota 4) Rs';;50k Input Offset Current (Note 4) Vs= ± 15V, VCM=O (Note 6) 1.0 nA Input Bias Current Vs=15V, VCM=O (Note 6) 3.0 nA +14 -13.5 V V Input Voltage Range ........r- ." N ..... ......... VlmV ns 1.5 V mA 10 nA 15 mV V+~4.5V,V-=0 Saturation Voltage VIN';; -10 mV, IOUT';;S.O mA Positive Supply Current TA=25'C 0.23 0.4 V 5.1 7.5 mA Negative Supply Current TA=25'C 4.1 5.0 mA _ 1: This rating applies for ± 15V supplies. The positive input voltage limn is 30V above the negative supply. The negative i"l"'l vonBge lim" is equal to the negative supply von&ge or 30V below the poaiIive supply, whichever is less. _ 2: The maximum lunction temperature of the LFll1 is + 15O'C, the LF211 is + 11 O"C and the LF311 is + 85'C. For operating at elevated temperatures, devices In the HOB package ,must be derated based on a thermal resistance of + 165"CIW, junction to ambient, or + 2O"C/W, junction to case. _ 3: These specifications apply for Vs= ±15V and -55'C<:TA<: + 125"C for the LFlll, unless otherwise stated. With the LF211, however, all temperature spaclffcations are limited to -25"C<:TA<: +85"C and for the LF311 O'C<:TA<: +70'C. The offset voltage, offset current and bias current specifications apply for any supply voltage from a singla 5.0 mV supply up to ± 15V supplies. _ 4: The offset voltages and offset currents givan are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters daftna an error bend and take Into aocount the worst case effects of voltage gain and input impedance. _ 5: The response tima specified (see definitions) is for a 100 mV Input step with 5.0 mVoverdrive. _ 8: For input vobges graater than 15V above the negative supply the bias and offset currents will increase-see typical performanos c~rves. _ 7: This specification gives the current that must be drawn from the strobe pin to ensure the output Is properly dissblad. Do not short the strobe pin to ground; H shoUld be current driven al 3 to 5 mAo Auxiliary Circuits / Offset Balancing R2 .f.:: r:: --+ § §Ie ' I~V+ ~)l... 2-V -J & TTL STAOiE INOTE 11 01 2N2222 v' l.~ 1 LFlll 6 LF1H Strobing 2.+ ..... '" 2 Increasing Input Stage Current" ;> 2..._ TVH/5703-15 ·Increases typical common mode slaw from 7.0V/p.s to • AI TLlH/5703-13 18V1,.. ' . 1.1111 Y TLlH/5703-14 Noteo Do Not Ground Strobe Pin. 3·7 E;; W ..... ..... -.... -...._ ....~.... ~ ...... I I. r-------------------------------------------------------------------------------------~ Typical Performance Characteristics Input Bias Current vs Common Mode 10.000 Input Bias Current' vs Temperature Transfer Function ID.DID ~T. -'2S'C , i,.8tMI ~ ! ~o ~~ B 1DB 1/ ", I. V- U 4.D I~PUT = 4.0Ii.D c rrv 1 ~ ~ ,u,.V !; 3.0 . I.' i. . ..~, rl 24 26 I .. !.. . I; > I 0 1i.IV 0 2DrV.; 2.1 U"V z.o .. 1.0 u i: .. ~ 0 o -5.' i -15 y' ,/ lAo '£~ ~ -5D =-1. z.o I~ 3.1 TA .. zloe I II: B .!! . ,.t: 118 41 D•• ~ I-- ,A, f- ~~~ , '~/IICUIT·CURRE.T 11 DUTPUTVDLTADE (VI TI :\ 15 UmV -,2.DmV k- OJ IA . ~~~~ 17 . D.J 5 1.1 o D.I ~~ ~T~'~I'C o ,10 i\" .. UAi ~ o D.2i •• r- 3.' 1.0 , C .! 4.• Iii .. I 3•• 2.1 1.1 0 D 5.1, 11 11 21 IUPPL YVDLTADE IVI 3-8 50 " Supply Current Tl j r1 I.D ~ i •.0 " Ii B i Vo -,15V 1 I 1 1 1 1 4.1 POSITIVE SUPPL,..!:"~ ..... ~UTPUTLDW " "-...I' t-::A~~:E~PPL """" 2.1 t-,UTFr T jlGH 1 o 4.1 Supply Current IiB It 30 I ,I """" 21 31 J-.. i"'" ' I -15 -31 -11 U 21 41 II 15 101 121 TE_RATURE rei 5.0 1.5~ m YOUT Vol. ±1~V T'I'I'~C f1.0 20 OUTPUT CURREIT IonAI ~LFllly_ 50 D.B • rs; f-- 21i!.. 101 1.1 0.1 ... /III TA .. tI5°e :--". 0.7 y' -l-- 0.7 D.3 ZO •• 1 Ii.D 1,0 1.1 5'" D.2 Response Time for Various Input OVerdrives i 4.D ~~, II: i . ~.~ '" II 10 !.. ~ y' Output Limiting Characteristics 121 ·r 1"125"1- r- o -1i.D -11 -15 1 fA V.-'"~t"zloe i i !; 2. LF11I =: • ~ o-"IiV- r- I; You, Z....V -10 140 ; :: Z1mV &.D -u TlME~ Response Time for Various Input Overdrives 1i.0m ~ t-o TIIIEII'~ .. 'ii Output Saturation Voltage ~ You, :F1I1 to -1DO 8.1 10 -1.1 .. ~. ~ VI,. -50 > PI EIUTTER FOLLOWER OUTFUT DIFFERENTIAL INPUT VOLTAGE I.VI I.DV Tl T 4.0 3.0 ..~ • !: ; You, ;'111 50 21 1.1 T &.0 i. ~~ V. III 101 30 Response Time for Various Input Overdrives E vo·. T•• zre 40 TEMPERATURE rei 1 1 2.DmV ~1 0 ~ ZD VI" ±11iV f TA .. 2iO C 1/ 5.1 "v 2.1 0 c 16 COMMON MODE VOLTAGE IVI Response Time for Various Input Overdrives E r; 12 ,-I • o 1.0 -51i -31-11i Ii.o ZIi 41i Ii IS Iii 125 I,D y++-- 18 .. ; _ _ LOUlfUl 18 EVO-ilIiV VCM -0 r-----------------------------------------------------------------------------~r "............ Typical Applications 100 kHz Free RunnIng Multlvlbrator v·· 5.0V Rl Hk ...... r ~ .... .... ...... Crystal Oscillator R5 v·· 5.0V Rl lOOk I.Ok R4 5........ 2.Ok R3 10k SQUARE _ ........-... WAVE OUTPUT" >.;...-.- OUTPUT R2 lOOk RZ 2Dk RJ 50k TL/H/5703-7 'TTL or OTL fanout of two. TL/H/5703-3 10 Hz to 10 kHz Voltage Controlled Oscillator Cl I."f cz 150pF Rl 10k 5.ImV~5.0V 5.• mv~-:.:~ --.. TRIANGULAR >--...~--- WAVE OUTPUT RZ Uk ....~ ----+---~N'Ir_--_4 D3 lN151 R3 33Il10 R4 D4 41k lN151 RI Z!lk' -15V ~-----~------------------------...~--~-----------------. .~ "IV RI SQUARE WAVE OUTPUT 1Il1o 'Adjust for symmetrical aquarewave time when Y,N ~ S.O mY. RIO tMinimum capacitance 20 pF. Maximum frequency SO kHz. I.Ok RII I.Ok -IIV TL/H/5703-5 3-9 .... S .... .... ~ r---------------~~--~------------~------------------------------~~----------~------_, Typical Applications (Continued) Frequency Doubler .... ........~ .... .... 5 v+ . . 6.IV RI 18k 'R3 lNPUT--~~--=-I Uk R4 lOOk RI Uk OUTPUt AI. 111... • Frequency range: Input-5.0 kHz to 50 kHz Output-l0 kHz to 100 kHz TUH/5703-8 Zero Crossing Detector Driving MOS Switch r------e~------_4.--v· Zero Crossing Detector Driving MOS Logic INPUT TUH/S700-9 Y-·-II' Compar~or.and Driving Ground·Referred Load r---"-v· DI IN4III TUH/5703-10 . _. Solenoid Driver V· __.-I.~ _~:"UT TUH/5703-11 'Input polarity is raversad when using. pin 1 as outpUt , TUH/S700-12 3-10 r- .... .... ........ ." Typical Applications (Continued) Switching Power Amplifier !;; r---~~------~----~t-v+ N .... ..... ....r- HI III .. ~ ..... ..... R7 HZ llIk v- ~--------------------------~t-aU~UT OJ 21113735 CI '.bF RS 3lII R4 .7 HI III ...._--t---.. --4.... v- TL/H/5703-16 Switching Power Amplifier .. I RS 510 R4 30Il10 R6 RI 39k R7 RI I5Ic m m REfERENCE RU 3II1II< RI. 510 I"PUT TLlH/5703-17 3-11 9- r-------------------------------------------------------------------------------~--------_, 9- ~ Typical Applications (Continued) ~ ..... Relay Driver with strobe 99- v" 5..... 999- ~ • Absorbs Inductive kickbeck of relay and protects Ie from severe voltage transients on V+ + line. TLlH/5703-18 Note: Do Not Ground Strobe Pin. Positive Peak Detector +15v IN'UT-~,.,... & >-......... OUTPUT HI -15V \.1M 'Solid tantalum TLlH/5703-19 Negative Peak Detector +15V HZ !.1M >~""OUTPUT RI Uk INPUT-.y,~"""'f 'Solld tantalum -I5V TL/H/5703-20 3-12 ,-----------------------------------------------------------------------------, ." .... Typical Applications (Continued) .... ........ ~ 5........ TTL Interface with High Level Logic _--+---.-v· os.ov .... !;; R3 Uk RI w .... .... 248k INPUT·..JIIN\r004"'--"--f~ TO TTL lOGIC RZ 47k R4 12k 'Values shown are for a 0 to aov logic swing and a 15V threshold. tMay be added to control speed and reduca suscaptibillty to noise spikes TLiH/5703-21 Using Clamp Diodes to Improve Response FROM lAOOER_"-"""'4.--"';;'-I NETWORK TTl OUTPUT 01 02 AI ---4....- . - ANALOG INPUT TLiH/5703-6 • 3-13 ,- ,- r-----------------~------------------------------~----------------------------~ CO) ('II :I .,.. IfINational Semiconductor ,,- ,('II 3 LH2111/LH2311 , Dual Voltage Comparators General Description Features The LH2111 series of dual voltage comparators: are two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal. tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information see the LM111 data sheet and National's Linear Application Handbook: . • Wide op~rating supply range • • • • ±15V to a single +5V 8nA Low input currents High sensitivity Wide differential input range High output drive 10,..V ±30V 50 mA, 50V The LH2111 is specified for operation over the - 55°C to' + 125°C military temperature range. The LH2311 is specified for operation over the O"C to 70"C temperature range. Connection Diagram INV INPUT OUTPUT NON-INV INPUT GND (EMITTER) BAL/STROBE 0 - - - ' BALANCE 0 - - - - - ' V-o----.. INV INPUT OUTPUT NON-INV INPUT 10 GND (EMITTER) BAL/STROBE 0 - - - ' BALANCE ~---' TLlK/10116-1 Order Number LH2111D, LH2111D/883 or LH2311D See NS Package Number D16C 3-14 r- :::E: Absolute Maximum Ratings .... .... .... .... N Input Voltage (Note 1) Power Dissipation (Note 2) Output Short Circuit Duration Operating Temperature Range LH2111 LH2311 Storage Temperature Range Lead Temperature (Soldering, 10 sec) If Military/Aerospace specified devices are required, please· contact tbe· National Semiconductor Sales Office/Distributors for availability and specifications. Total Supply Voltage (V+ - V-) 36V 50V Output to Negative Supply Voltage (VOUT - V-) Ground to Negative Supply Voltage (GND - V-) 30V Differential Input Voltage ±30V ±15V 500mW 10 sec - 55'C to + 125'C O"Cto +70'C - 65'C to + 150"C 300"C ~ N .... .... Co) Electrical Characteristics Each Side (Note 3) Parameter limits Conditions Unlta LH2111 LH2311 Input Offset Voltage (Note 4) TA = 25'C, Rs s; 50k 3.0 7.5 mVMax Input Offset Current (Note 4) TA = 25'C TA = 25'C TA = 25'C TA = 25'C 10 50 nAMax 100 250 nAMax 200 200 VlmVTyp 200 200 nsTyp 1.5 1.5 V Max 3.0 3.0 mATyp 10 50 nAMax 4.0 10 mVMax Input Bias Current Voltage Gain Response Time (Note 5) Saturation Voltage VIN s; -5 mV,lOUT TA = 25'C Strobe On Current TA Output Leakage Current VIN ~ 5 mV, VOUT TA = 25'C Input Offset Voltage (Note 4) Rs = 50 mA = 25'C S; = 35V 50k Input Offset Current (Note 4) 20 70 nAMax Input Bias Current 150 300 nAMax Input Voltage Range ±14 ±14 VTyp 0.4 0.4 V Max 6.0 7.5 rnA Max 5.0 5.0 rnA Max Saturation Voltage V+ ~ 4.5V, V- = 0 VIN s; -5 mV,lSINK s; 8 rnA Positive Supply Current TA Negative Supply Current TA = 25'C = 25'C Note 1: This rating applies for ±1SV supplies. The posHive Input voltage limit Is 30V above the negative supply. The negative Input voltage IlmH is equal to the negative supply voltaga or 30V below the positive supply, whlchever Is less. Note 2: The maximum junction temperature Is 1SO"C. For operating at eleveted temperatures. devices in the flat package, the derating is based on a thermal resistance of 185"C/W when mounted on a 'hrinch-thick epoxy glass board with O_03~nch-wide, 2 ounce copper conductor. The thermal resistance of the dual-inline packaga is 100"CIW, junction to ambient Note 3: These specifications apply for Vs - ±1SVend -SS"C <: Til <: 125"C for the LH2111, and O"C <: Til <: 70"C for the LH2311, unless otherwise stated_ The offset voltage, offset current and bias current specifications apply for any supply voltage from a single SV supply up to ± 1SV supplies. For the LH2311, VIN = ±10mV. N_ 4: The offset voltages and offset currents given are the maximum values required to drive the output within a voH of either supply wHh a I mA load. Thus, these parameters deflne an error bend and take into account the worst case effects of voltage galn and input impedance. Note 5: The response time specified Is for a 100 mV Input step with S mVoverdrive. Note 6: RETS21 I 1X for the LH21 1I 0 and LH21 11 F military specifications. 3-15 • ..- r-------------------------------------------------------------------------------------, ~ ::J: Auxiliary Circuits I'. ,. ...I ...... .- ··Incr'easlng Input Stege Cu.rreilt· .Strobing Offset Balancing .1 ~ .- R2 N 3k ::J: ...I TUK/l0116-4 'Increases typical common mode slew from Rl 7.0 V/p.s lk TUK/l0116-2 to 18 V/p.s TLlKl10116-S Using Clamp Diodes to Improve Reepon..s Driving Ground-Referred Load ~--t-V+ FROM LAOOER ~P--....-";;';"-I m NETWORK INPUTS OUTPUT Dl D2 Rl .....- ....- ....- ANAlOG INPUT Tl/K110116-6 Tl/K/l0116-5 Strobing off Both Input· and Output Stages Comparator and Solenoid Driver FROM D/A NETWORK Dl lN4001 ANALOG INPUT m STROBE Tl/K/l0116-7 TLlK110116-8 'TYPlcall~Put current is 50 pA wiU,·lnputs strobed off TTL Interface with High Level Logic r - - - - t - - -.....- v+=5V R5 lk >_15..;.,_8...._ TO 2,10 m LOGIC 'Values shown are for a OV to SOV logic swing and a 15V threshold. tMay be added to control speed and reduca susceptibility to noise spikes. TLlK/l0116-9 tflNational Semiconductor LM 106/LM306 Voltage Comparator General Description The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and drive a digital load. They are equivalent to an LM71 0, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24V at currents as high as 10 mA. The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 series. They can also be operated from any negative supply voltage between -3V and -12V with little effect on performance. The LM106 is specified for oPeration over the -SS·C to + 12S·C military temperature range. The LM306 is specified for operation over O·C to + 70"C temperature range. Features • • • • • • Improved accuracy Fan-out of 10 with DTL or TTL Added logiC or strobe capability Useful as a relay or lamp driver Plug-in replacement for the LM710 40 ns maximum response time Schematic and Connection Diagrams ......eEl """ "'DO Metalean v+ TUH/7756-2 Top View Note: Pin 4 connected to case. Order Number LM106H, LM106H/883t or LM308H See NS Package Number H08A TUH/7756-1 tAvailable per SMD# 8003701 3-17 • Absolute Maximum Ratings Positive Supply Voltage Output Short Circuit Duration 10 seconds Operating Temperature Range LM106 LM306 15V -15V Negative Supply Voltage ," 600mW Power Dissipation (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6) ' TMIN TMAX -55°C to + 125"C O"Cto +70"C " Storage Temperature Range -65°C to + 150"C Output Voltage 24V Lead Temperature (Soldering,' 10 sec.) Output to Negative Supply Voltage 30V ESD rating to be determined. Differential Input Voltage ±5V Input Voltage ±7V 300"C Electrical Characteristics (Note 2) Parameter LM106 Conditions Min Typ LM306 Max Min Units Typ Max Input Offset Voltage (Note 3) 0.5 2.0 1.6 5.0 Input Offset Current (Note 3) 0.7 3.0 1.8 5.0 /LA 10 20 16 25 !LA 28 40 28 40 ns = 100 mA = "100 mA 1.0 1.5 '0.8 2.0 V V VIN ~ 5 mV, 8V :S: VOUT :S: 24V VIN ~ 7 mV, 8V :S: VOUT :S: 24V 0.02 0.02 2.0 /LA /LA 6.5 mV Input Bias Current = = Response Time RL CL Saturation Voltage VIN:S: -5 mV, lOUT VIN:S: -7 mV, lOUT Output Leakage Current 390n to 5V 15pF,(Note4) 1.0 mV THE FOLLOWING SPECIFICATIONS APPLY FOR TMIN :S: TA :S: TMAX (Note 5) Input Offset Voltage (Note 3) 3.0 Average Temperature Coefficient of Input Offset Voltage Input Offset Current h :S: T A :S: 25°C, (Note 3) 25°C:s: TA:S: TH Average Temperature Coefficient of Input Offset Current 25°C:s: TA:S: TH TL:S: TA:S: 25°C Input Bias Current TL:S: TA:S: 25°C 25°C:s: TA:S: TH Input Voltage Range -7V ~ v- ~ -12V Differential Input Voltage Range 3.0 10 5 20 /LV/oC 1.8 0.25 7.0 3.0 2.4 7.5 5.0 !LA !LA 5.0 15 25 75 15 24 50 100 nAloC nAloC 45 20 25 40 25 /LA /LA ±5.0 ±5.0 V ±5.0 ±5.0 V Saturation Voltage VIN:S: -5 mV, lOUT = 50 rnA VIN :S: -8 mV For LM306 1.0 1.0 V Saturation Voltage VIN:S: -5 mV, lOUT = 16 mA VIN :S: -8 mV For LM306 0.4 0.4 V Positive Output Level VIN ~ 5 mV, lOUT = -400/LA VIN ~ 8 mV For LM306 5.5 V Output Leakage Current VIN ~ 5 mV, 8V :S: VOUT :S: 24V VIN ~ 8 mV For LM306 h:S: TA:S: 25°C 25°C < TA:S: TH 2.0 !LA Strobe Current VSTROBE = 2.5 5.5 1.0 100 -1.7 0.4V 3-18 2.5 -3.2 -1.7 100 /LA -3.2 mA ...!!II:r- Electrical Characteristics (Note 2) (Continued) Parameter Condltlona Strobe "ON" Voltage Strobe "OFF" Voltage ISINK s; 16 rnA Positive Supply Current VIN VIN = = 0 LM106 Min Typ 0.9 1.4 -5rnV -SrnVforLM306 Negative Supply Current Max Min Typ 0.9 1.4 Units Max V 1.4 2.2 1.4 2.2 V 5.5 10 5.5 10 rnA -1.5 -3.6 -1.5 -3.6 rnA Nota 1: The rnaxlmum junction temperature 01 LMl06 is 150"C. LM306 is 85"C. For operating at elevated temperatures, davices must be derated _ on a thennal resistance 01 170"CIW, jUncUon to ambient, or 2'S"C/W, junction to case. Nota 2: These spectIIcations apply for -3V ~ V- ~ -12V, V+ = 12V and TA = 25"C unless otherwise specified. All currents into device pins are considered positive. Nota 3: The offset voltages and offset currents given are the maximum values required to drive the output down to O.5V or up to 4.4V (O.5V or up to 4.8V for the LM308). Thus, Ihese parameters actually define an error band and take Into acoount the worst-case effects 01 voltage gain, specHied supply voltage variations, and cornman mode voltage variaticns. Nota 4: The response time specified (see definitions) is for a 100 mV input step with 5 mVoverdrive. Nota 5: All currents Into 'device pins are considered positive. ' Nota 8: Refer to RETS106X I1'f LMl06 miutsry specifIceIICns. Typical Applications Faat Response Peak Detector Level Detector and Lamp Driver y+ V++:524V 01 L1 FO.... OU~T--~---1~ INPUT--t----t Rt ZK ____~______• TLlH/7758-4 TL/HI7758-5 Relay Driver Adjustable Threshold Line Receiver OUTPUT F.O.:S: ID RI· INPUT-<¥II\f........ ct· INPUTS TLlH/7758-6 3-19 I STROBE INPUTS ....rCD LM306 'Optional for response time control. TL/H/7758-7 !!II: w ~ "',.. - Typical Performance Characteristics Transfer Function' Transconductance ""'-1'1- .1 - T... J --src , TA·1I·~6 , . . . . . t p r- " // ';!.'~ , · i · ,r "+·+12V '-- ~T•••we · +, . . ·_oA ~ . _ zo ~ 10 5 8 -7& -II -21 . " " f" .... - .... I Y+ ••,IV "..· ..vVIN· ....' .~ , 0 • -15 ..10 -21 ... n +ID +1& .'• •111+110 +11 +II +75 +1. +t2& TE_ERATURE rei V~'+I~V II 11 " V··-I¥ al~ J- I- 3 r..... i'oo.. • +8 +11 +71 +110 1+1. Short Circuit Output Current JUIICT'ON TE"PERATURE I"~I Response Time for Various Input OVerdrives ~ i " .~ i" I'"000o TEllPERATURE I"Cl YIN -+l.V +J& +II +75 +101 +125 " :---. -71 -II -ZI ,+·.1211 Input Current 30 !'... Iv~""~.I2V TEMPERATURE lOCI 40 ...... I -5 i""'" I=- -- I-,~ •••• • ... ..urVOLTAG1!1nIV) ~ r" -- 1-,;".'"", -75 .... -2& I -2 -3 -, ~ I'. 21 ~ ........ D K u l - f-- ~""V~""~.'IV VI .. --IIIV I-- • ~~ .3V~""~·'IV ~ I V~"~~ ~"IV_ I- ~ 7 v+.+l2y.l;;::; t- +1 I--: 10 Positive Output Level ..., -h~"~1IA Ii;;: .3V~V;;;:'; .' 71,,-H·C '1'"+3 ~ I' 40 -V+"~ -~-t'0 Saturation Voltage IJI I • T... =1HOC -oJ ..., • +1.1 .u +U +IA +U IIIfUT VOLTAGE CIo'II u r 5 'r .. ,r ,rA !u ~ I Voltage Gain • 'I" V+·.,ZV - I~.L &~l ~ 1.111 V+'+I2V "...-1'1 T. '+2&°1 1'11++1+1+ i · ~ I I~ ..~ Response Time for Various Input OVerdrives I .. ! 5 i OFFSET o to+~+H+H-++' 1++1~H+I+H iI i 11140".'.'11 .7& .6IJ..zs 0 Z5 50 75 101 lZ5 TEMPERATURE 1°C} t. TIME 110} Negative Supply Current Positive Supply Cllrrent Power Consumption 'ID III T•• .~ ~'I,.o"" .... !-I;i-F.:.~= ',~~+--1--~--+--1 J+--+---l-' D +1' +11 ..sonVE SUPPLY VOLTAGE IVI +,& .,.. -arc ~ ...... .... TA -"'·C II! ~ I '+.+lIV "-I_V ""'-IV -,.... .... II r--_ • ·,2 IEBATIYE IU..... VOLTAIE IVI ·11 ...... I III 71 -V1N-+I.v i: T... -+1Z1OC . ,': m VIN -71 .... -21 -- ~ ..... - I +IS .... +75 +101 +125 TE_ERATURE I"Cl TLlH17756-6 ~·20 r- iii: .... .... .... ...... tflNational Semiconductor r- iii: .... .... LM111/LM211/LM311 Voltage Comparator N ...... r- General Description The LM111, LM211 and LM311 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from stan· dard ± 15V op amp supplies down to the single 5V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50 rnA. 40 ns) the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710. .... .... The LM211 is identical to the LM111, except that its per· formance is specified over a - 25'C to + 85'C temperature range instead of - 55'C to + 125'C. The LM311 has a tem· perature range of O'C to + 70'C. Features Both the inputs and the outputs of the LM111, LM211 or the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time VB Typical Applications* * i: w • • • • • Operates from single 5V supply Input current: 150 nA max. over temperature Offset current: 20 nA max. over temperature Differential input voltage range: ± 30V Power consumption: 135 mW at ± 15V Strobing ··Note: Pin connections shown on schematic di~ agram and typical applications are for Offset Balan~ng H08 metal can package. •• Increasing Input Stage Current· v' TTl STROlE .". Detector for Magnetic Transducer 'Increaaes typical common mode slew from 7.0VIp.s to 18V1p.s. Digital Transmission Isolator r----.....---....... . . , •• .... Note: Do Not Ground Strobe Pin. Output is turned off when current is pulled from Strobe Pin. "~~·~""'~~~~------~~--~----r-".uv ...., ...••, .•• TTl OUTPUT TTL ourruT MAIIIETIC PltIU' Relay Driver with Strobe v" Strobing off Both Input· and Output Stages c: FROM OlA IElWORK MALOS 'IPU' ......, TTL •••• L STROlE 'Absorbs inductive kickback of relay and protects Ie from severe voltage 'Typical input current Is 50 pA with InpulS strobed off. transients on Note: Do Not Ground Strobe Pin. V++ line. Note: Do Not Ground Strobe Pin. 3·21 TUH/5704-1 • .... .... C") ~ ..... .... .... ....s;..... ........ .... ~ Absolute Maximum Ratings fortheLM111/LM211 . "',' 2600C Lead Temperature '(Soldering, 10 sec) V+-5V Voltage at Strobe Pin Soldering Information Dual-In-Une Package Soldering (10 seconds), ..•.••••....,.••...• ;.: .2600C Small Ol,itline Package , Vapor Phase (60 seconds) ...••••....•••.••..• 215"C Infrar~(15 seconds) •....•..•.., .•.•...•....• 2200C See AN-450 "Surface Mounting Methods and Their Effect on Product F:\eliability" for other methods of sol~ring surface mount devices. ESD Rating (Note 8) 300V If Military/Aerospace specified devices are required, please contact the National Semiconductor Salee OffIce/Distributors for availability and specifications. (Note 7) 36V Total Supply Voltage (V84) 50V .outp~ to Negative SupplX Voltage (V74l 30V Ground to Negative Supply Voltage (V14) Differential Input Voltage ±30V ±15V Input Voltage (Note 1) Output Short Circuit Duration 10 sec -55"C to 125°C Operating Temperature Range LM111 LM211 -25°Ct085"C Electrical Characteristics for the LM111 and LM211 (Note 3) Min Conditions Parsmeter Input Offset Voltage (Note 4) TA=25"C, RS,S:50k Input Offset Current TA=25"C Input Bias Current TA=25"C Voltage Gain TA=25°C Response TIme (Note 5) Typ Max Units 3.0 mV 4.0 10 nA 80 100 ' 0.7 nA 200 VlmV TA=25"C 200 ns Saturation Voltage VINS: -5 mV,IOUT= 50 mA TA=25"C 0.75 1.5 V Strobe ON Current (Note 6) TA=25"C 2.0 5.0 rnA Output Leakage Current VIN~5 mV, VOUT=35V TA = 25"C, ISTROBE= 3 mA 0.2 10 nA Input Offset Voltage (Note 4) RsS:50 k 40 4.0 mV Input Offset Current (Note 4) 20 nA Input Bias Current 150 nA 13.8,-14.7 13.0 V 0.23 0.4 V Input Voltage Range V+ = 15V, V- = -15V, Pin 7 Pull-Up May Go To 5V Saturation Voltage V+~4.5V, V-=O VINS: -6 mV,loUTS:8 mA -14.5 Output Leakage Current VIN~5 0.1 0.5 p.A Positive Supply Current TA=25"C 5.1 6.0 mA Negative Supply Current TA=25"C 4.1. 5.0 mA mV, VOUT=:,35V Note 1: This rating applies for ± 15 supplies. The positive Input wltage limn Is 30V above the negative supply. The negative Input wltage limn is equal to the negative supply wltage or 30V below the positive supply, whichever Is less. Note 2: The maximum junction temperature of the LMlll is 15O'C, while that of the LM211 Is 11O"C. For Op8rating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 165"C/W, junction to ambient, or 2O"C/W, junction to case. The thermal resistance of the dual-in-line package is 11O"C/W, iunctlon to ambient. Note 3: These specHIcaIIons appl~ for Vs= ±15V and Ground pin at ground, and -55"C,;:TA';: + 125"C, unless otherwise ststed. WHh the LM211, hOW8Y1", all temperature specilicatlons are lirriited to -25'C,;:TA';: + 85"C. The offset voltage, offset current and bias current specifICations apply for any supply wllage Iiom a single 5V supply up to ± 15V supplies. Note 4: The offset wllages and offset currents given are the maximum values required to drive t~ buiput wnhln a volt Of eRher supply wfth a 1 mA load. Thus, these parameters define error band and take Into account the worst-case effects of wltage gain and As. Note 5: The response time specified (see definitions) Is for a 100 mV input stsp wnh 5 mV overdrive. Note 8: This speciflcation gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; ft should be current driven at 3 to 5 mAo Note 7: Refer to RETS111X for the LM111H, LM111J and LM111J-8 milHery specilicatlons. Note 8: Human body model, 1.5 kG in seriss _ 100 pF. an 3-22 Absolute Maximum Ratings for the LM311 If Mllltary/Aeroepace specified devices are required, please contact the NatIonal Semiconductor Seles OHlce/Dlatrlbutors for availability and speclflcatlons. Total Supply Voltage (V84) Output Short Circuit Duration Operating Temperature Range Storage Temperature Range Lead Temperature (soldering, 10 sec) 36V Output to Negative Supply Voltage V74) Ground to Negative Supply Voltage Vl4l Differential Input Voltage Input Voltage (Not81) 40V 30V ±30V 2600C V+-5V Voltage at Strobe Pin Soldering Information Dual-In-Une Package Soldering (10 seconds) •••••.•••.•..•••••.•.•. 2600C Small Outline Package Vapor Phase (60 seconds) .................... 215"C I.nfrared (15 seconds) •.•.•...••.••...•.•••.•• 2200C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ±15V Power Dissipation (Note 2) ESD Rating (Note 7) 10 sec 00 to 700C -65°C to 1500C 500mW 300V Electrical Characteristics for the LM311 (Note 3) Typ Max Units Input Offset Voltage (Note 4) TA=25"C, Rs~5Ok 2.0 7.5 mV Input Offset Current (Note 4) TA=25"C 6.0 50 nA Input Bias Current TA=25°C 100 250 Parameter Conditions Min 40 Voltage Gain TA=25"C Response Time (Note 5) TA=25"C Saturation VoIt8ge VIN~ -10 mV,IOUT=50mA TA=25"C Strobe ON Current (Note 6) TA=25"C Output Leakage Current VIN~ 10 mV, VOUT=35V J A = 25"C, ISTROBE= 3 mA nA 200 VlmV 200 ns 0.75 1.S V 2.0 S.O mA 0.2 50 nA V- = Pin 1 = -SV 10 ' mV Input Offset Current (Note 4) .. 70 nA Input Bias Current 300 nA 13.8,-14.7 13.0 V 0.23 0.4 V mA Input Offset Voltage (Note 4) . Rs~50K -14.5 Input Voltage Range SatUration Voltage V+ ~4.5V, V- =0 VIN~ -10 mV,IOUT~8 mA Positive Supply Current TA=25°C 5.1 7.5 Negative Supply Current TA=25°C 4.1 5.0 Note 1: This rating applies for ±15V supplies. The positive Input voltage IImK is 30V aboIHIthe negative supply. The negative Input voltage _ negative supply voltage or 30V below the positive supply. whichever is less. mA is equal to the Note 2: The maximum junction temperature of the LM311 Is 11 O"C. For operaIInIi at elevated temperatura. deW:as In the Hoe package must be derated basad 011 a thermal resist8nce of 165"C/W.lunc\ion to ambient, or 2frC/W.luncIion to C888. The IhanriaI resistance of the duaf..In..Iine package Is l00"ClW. junction to ambient Note 3: Theee specifications apply ·for Vs= ± 15V and Pin 1 at ground. and O'C < TA < + 7O"C. unless otherwis8 specified. The offset voltage, offset current 8nd bias current specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies. Note "'""'" offset voItages.arid offset cum.ms gIVen are the maximum valuee requi'ad to drive the ou1pUt within a volt of _ supply with 1 rnA load. Thus, these parameters define an error ~ and take Into acccunt the worst-case effacts Of,voltage gain and RsNote 5: The response time apecIfied (888 definitions) Is for a 100 mV Input step with 5 mVoverdrive. Note II< This apscificaticn gives the iange of current which must be drawn from the strobe pin to ensure the ou1pUt is properly disabled. Do not short the strobe pin to ground; it ahouId be currant driven at 3 to 5 RIA. Note 7: Human bOdy model. 1.5 kO in series with 100 pF. 3-23 Ii: .... .... .... ...... Ii: .... .... ...... Ii:w .... .... ~ LM111/LM211 Typical Performance Characteristics .... Input Bias Current " Input Offset Current. • v.·tIlV C .s I VI-t.,¥.- ISE 311 ISHO~~'~r::DIi B 201 RAI EO ISHORT.I ~ •• ANO. ~ r-_Al 1\1 ;; I 110 .- - 1IlIjw, I -IS ~. -I' 5 H Q I. .~ • TEMPERATURE 1'1:1 Input Characteristics I. I. i i.. Common Mode Umlts 110 • 1\1 I • I: 21 -I' -12 -II ,- ... • • • 12 II I-" .... ~ _II Re~onse nme for Various Input Overdrives . w i.. 3 " . I. .,. • .... if ~ 21~' I"' f-. j'M1j' I I.! 1.4 ~ " "IIV- -5 -10 50 -15 .! :; c ~ .. • -10 ~ -110 i 5.V 2., / a.& D.t •.3 I 0.' 0.' 0.• 8.2 T. -II5"C ••1 - i j' -""1- - D.I I 10Zl304I1O TIME ....1 II II ..V 5 .. ~ 1 Response nme for Various Input Overdrives ~ 10 !g = LMI11 r" TIMEIJql . ..g~,. .. Output Saturation Voltage ~ ~ I i!! ~ DIFFERENTIAL IN'~T v.au"tIE C.VI VOUf I ~ ... = 1. ,"i ... .~•• VOUT lM111 I. i ! Y- -II -11 ~= ~ 2Oi!.. I .. V 1m' \. !" ;- Y- ,.'-tll, Ty'~C liD !O • t You, 211'_ lM,1t W Y ....5~tTA -2re OUTPUT CURRENT CIllAI ,. Response Time for Various Input Overdrives IS nMEI~'1 .. -.5 -1 " 10 III 2.V ?f?L.n liD .\1 ~_, Y,.Your -\ I,,\Y':: loJ w c l- I ~~ i IV TA ·Irc f- T.'.-~~ '2&OC"'". EMem fOLLOWER OUTPUT R, -10011 I I.J I V.· .. " • H 4S " ig I• 30 10 Response nme for Various Input Overdrives I I c i • -I. TE_RATURE 1'1:1 DIFFERENTIAL IN'UT VOLTAGE (VI ~ ..,. ~ - -1.1 II I- NORM~L O~TPU~ R, II- v++ -ltV ~ i-II ." I 121 B ;; REfElIIIED TO SUfPLY'DLTAGES ~ -4.1 TA • HOC 1M INPUT REIISTMCE IIlI .'1 Ii . y+ J.!%\I~ I. I " .. H •• IH 125 ... TE_RATURE lOCI .... ~ _II I I. 125 8.1 T. - HOC ......~ ~ C 120 .! . !... .. !. ..a !: - Output Umltlng Characteristics ..~ 101 10 .. 10 11.1 H~~ U --., ~ ~ U 1 .. ,C{"CUlt· CUR ENT I.! II • 1.1 0.1 0 II ••'" ! !! ::I' I ! o 11 OIITPUT VOLT"'! (VI TUH/5704-2 3-24 ............ .... E ... ....... E ...... i: LM111/LM211 Typical Performance Characteristics (Continued) Supply Current Supply Current Ir--..,...--,r-..,...--,--r--, VI-·lIV i Ia i ..... i i II d a • I I I I I I POSITIVE 'WI'!:!.-_ 1'00.. I'oo..0UlPUTLOW ...... ~ ,...... _::A~:EA:.... -r'i'i I I I • • Co) ... ,...... - G ", I~~~~~~--~~ 1 ~ I I i I Leakage Currents II I -15-31-111 U 4i H .181121 SU.... YVDLTAGE IVI TE.ERATURE reI TLlH/5704-3 LM311 Typical Performance Characteristics .- Input Bias Current i 411 i.. ~ ~). RAISED ISHDRT PI.NS r-- I--J. .. AND II '" :I .. - -. i iii a ,. i:!i ;;; i • V, .. !11V " PINS t-- """"' =:±-~ t-- ISHDRT J. . AND II r--_ I 411 II ID 11 ID • Input Offset Current r--- NORMAL i I I II I f- NORMAL - 1M I • VI = !:11V I1IU.41SO.1I1D I .. 1 TL/H/5704-B lZS Ii II! 171 ~ -D.5 • 111 r REFERRED TO SUPPLY VOLTAGES NORMAL OUTPUT RL = 1k V++=4IV ID ; -u i. lID Ii'" II V' J.! ZSOC '\5~ TA Transfer Function Common Mode Umlts 125 ....'" i.. 1111 IN.UT RESISTANCE CIll Input Characteristics i 1'" 1l1li TEMPERATURE rCI II . tJ-IOIU GA U I -II -II -I I -I • 4 II EMITTER FOLLOWER OUTPUT II i:.. ID II . I I-- -31 -1.5 V- I .. U • .. 50 ID n 11 -I TEWERATURE COCI DIFFERENTIAL IN'UT VOLTAGE IVI "' I -.S V. - 31V T... _25.lC .5 DIFFERENTIAL INPUT VOLTAGE I.VI TLlH/5704-9 Response Time for Various Input Overdrives ~ ... ..~ ~ c !:; co > .. rr .. .J.! '" co . i ~ > ..'" ~ l. Response Time for Various Input Overdrives .v .. V,-:t1IV T. -II'C - ~ ~ II~V I I I , .v' I I~V'; z,.V . ~-. 1.. VI" - lID "OUy II I J U 1.4 TIME"'' I J u ~ = ~ v~- -II i 1.1 .... I.e ~~ '.1 . i= '.3 r-.I OA V.o:t15V- ~ - i,or~- - -110 I.' E ~ YOUI f-' Output Saturation Voltsge Gl 1.1 I U 1.4 TIME"'" 1.1 1.1 I II za • .. 50 OUTPUT CURRENT I"AI TL/H/5704-10 3-25 • 9- , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , 9- ~ ..... .... :::E ....;:: LM311 Typical Performance Characteristics (Continued) ,.1., 9- C"I 99- ....:::E ReSpoOse 11m. for Various Response Time for Various ~Input Overdrlv88 .Input Overdrives ...~ .. o~ II ~ : ~ .. II '.V / 2.V IJ -5 -II I... -11 y. ' .~. ~ I tl v· & VOUT J i -5 I.. -II -15 lID " Hi!.. l\~ I_V 2., .!.' ~ .. ~ :10 !i! ;i :: II~V 11 i 4 I ".'rtr.~~ - ,.. v.'-:l1L~ - !..... - 1 fl !: co Ty2ljC V.-~~~t'.-H·C !i! ... -110 iii i TIMEfJaI Output Limiting Characteristics 141 _ TIME ",.1 .?2 ~ u Ito~· lID 41 II u ~~ U U U TA ~II·C< UD u - ;L..~"I' C{IICUIT- CURR~ If- -- •• f- 1. u I; . ~ 0 1.2 0_1 • ! I 15 OUT'UT VOLTADE IVI ~~H/5704-11 .. • SUpply Current j I ..Ii! .. .. ... u Supply· Current V.-t1IV 1 1 .1 .... i.. ~ u . 2 I i: II I • I 10 II 2. 21 SU.,I.V VOLTADE IVI POIITIVE _~- - OUTPUTL~ i"'PIISITlVUIiO IIEGATlVEIUPPLY·OUTPUT HI8H 1 1 I 31 ...""" 1 I 1 .. II 31 41 10 • TEJIIERATURE 1'1:1 II • 3I4IH.7I TEMPERATURE 1'1:1 TLlH/5704-12 3-26 !i:..... Application Hints ..... ..... ..... r- CIRCUIT TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS When a high-speed comparator such as the LMlll is used with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that the power supplies have been bypassed (with 0.1 ",F disc capaCitors), and that the output signal is routed well away from the inputs (pins 2 and 3) and also away from pins 5 and 4. When comparator circuits use input resistors (eg. summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words there should be very little lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capaCitors, pots, etc. For example, if = 10 kO, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to damp. Twisting these input leads tightly is the only (second best) alternative to placing resistors close to the comparator. 6. Rs However, when the input signal 'is a voltage ramp or a slow sine wave, or if the signal source impedance is high (1 kO to 100 kO), the comparator may burst into OSCillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LMlll. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Fl{Jure 1 below. 5. Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM 111 Circuitry, for example, one side of a double-layer circuit card. Ground foil (or, positive supply or negative supply foil) should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capaCitive coupling from any high-level Signals (such as the output). If pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located, at most, a few inches away from the LMlll, and the 0.01 ",F capacitor should be installed. If this capaCitor cannot be used, a shielding printed-circuit foil may be advisable between pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM 111. (Some other comparators require the power-supply bypass to be located immediately adjacent to the comparator.) 1. The trim pins (pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a 0.Q1 ",F capacitor Cl between pins 5 and 6 will minimize the susceptibility to AC coupling. A smaller capaCitor is used if pin 5 is used for positive feedback as in Figure 1. 2. Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capaCitor C2 is connected directly across the input pins. 3. When the signal source is applied through a resistive network, Rs, it is usually advantageous to choose an RS' of substantially the same value, both for DC and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wirewound resistors are not suitable. . - - -....- - - -....-o15V 82 JJk 4.7k >;..---41-0 OUTPUT -15V TLIHI5704-29 Pin connections shown are for LMll1 H in the H08 hermetic pacl 3' 4." >.--....-0 OUTPUT 51110 TlIH/S704-30 Pin connections shown are for LMlll H in the H08 hermetic package FIGURE 2. Conventional Positive Feedback r - - 9 - - - -.....-o ll> 3' 4,7, INPUT o-'V+;IY-...."""i >,--+--0 OUTPUT II TlIH/5704-31 FIGURE 3. Positive Feedback with High Source Realatanee 3-28 !iii.... .... Typical Applications (Continued) (Pin numbers refer to HOB package) .... ..... r- Zero Crossing Detector Driving MOS Switch I: I\) 100 kHz Free Running Multlvlbrator r--.......--+-v+ .... .... ..... v+=5V INPUT Rl R5 20K !iiiw lK .... .... R3 10K TUH/5704-13 7 SQUARE I~~~WAVE OUTPUT" R4 39K 'TTL or DTL fanout of two TUH/5704-14 10 Hz to 10 kHz Voltage Controlled OSCillator 5mV-5V INPUT 5 mV TO 5V-.....~:--+--=~IN\f"'1"""='" TRIANGULAR ~~~----- WAVE OUTPUT R3 330K SQUARE L-"':':';';~~-----""--+---_~WAVE OUTPUT 'Adjust for symmetrical square wave lime when YIN = 5 mY tMlnimum capacitance 20 pF Maximum frequency 50 kHz -15V Driving Ground-Referred Load TUH/5704-15 Using Clamp Diodes to Improve Response rROl/ r--....... v+ LADDER-~""--9 N£!WORK m OUTPUT + 'Input polarity is reversed when using pin 1 as output. TUH/5704-17 TL/H/5704-16 3-29 ~ ~ CO) :=!I ...... .------------------------------------------------------------------------------------------, Typical Applications (Continued) (Pin numbers refer to HOB package) TTL Interface with High Level Logic ~ ~ ...-......- .....-v+ 5V C'oI ::::E -I ...... ~ ~ TO ~ m for 'Values shown are a 0 10 30V logic swing and a 15V threshold. tMay be added 10 control speed and reduce susceptibility 10 noise spikes. LOGIC :=!I TlIH/5704-18 Crystal Oscillator Comparator and Solenoid Driver Dl lN4001 v+=5V Rl R4 lOOK _.-IIe...._ _...._OUTPUT 2K lA R2 lOOK TL/H/5704-20 TL/H/5704-19 Precision Squarer Low Voltage Adjustable Reference Supply Rl 3.lk Y·· 5.IV RI 3.lk R3t ZDk Y·· 5.0Y R4 500 R3 1l1li R4 Uk RS Uk ~~~~~---I~------_+----DU~UT TTL INPUT 'Solld tanlalum 'Solid tantalum t Adjust 10 set clamp level TL/H/5704-21 3·30 TlIH/5704-22 r- s::: ..... ..... ..... ...... Typical Applications (Continued) (Pin numbers refer to HOe package) Positive Peak Detector Zero Crossing Detector Driving MOS Logic '15V INPUT-I\II'h"t OUTPUT RZ -15V V-· -lOY 1.IM TL/H/5704-24 'Solid tantalum TLlH/5704-23 Precision Photodiode Comparator Negative Peak Detector '5V -15V 'Solid tantalum TLlH/5704-25 TL/H/5704-26 'R2 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing leakages by an order of megnitude. 3-31 ~ ..... ..... ...... ~ W ..... ..... ~ 99CII) .r---------------------------------------------------------------------------------------------~ !..... - Typical Applications (Continued) (Pin numbers refer to HOS package) SwItching Power AmplHler 9- N ~. ..... AI &20 999- ~ Rl 30D A2 lOOk y- ~------------------------------~-OU~UT R3 lOOk Rl 10k ------+----;.e· INPUT ~N...... 02 2N3135 A4 A5 AI 47 301 120 ....- ...... ----+--~ y- TlIH/5704-27 Switching Power Amplifier y+ .,... '::' RS 510 R4 301Ik R6 31k RI 31k R13 3D.. R14 511 Cl 1.22 .F R7 RI 1511 15k REFERENCE INPUT 3-32 TlIH/5704-28 ~ .... .... ........ Schematic Diagram** IALA.CEIST~OBE BALANCE 5 6 R3 3111 ~ N .... .... .... R4 3GO r- r---+---~..--__----+----e~--~--------~--e-------------------~~I~ RI R2 1.311 1.311 !!II: w .... .... RI BOO RIO 411 OUTPUT 1--tf--.7 RI. 401 AIJ IG R11 130 RIS .0 0,15 017 RII RII 250 211 RU BOO 01. RI. 2t RU • • v- 1 GND TLlH/5704-5 "Pin connections shown on schematic diagram are for Hoe package. Connection Diagrams· Metal can Package Dual-In-Une Package Dual-In-Llne Package NC , 14 Ne ONO 2 13 Ne 1 OUTPUT .I'UT 3 12 fit • BALANCEI INPUT V' IV' GROUND' • BALAICEI nROI! 'N.UTZ -""'o..J""'-.. ,NPUT 3 - 0-1;., ....... STROlE SBALANCE V- TLlH/5704-6 n v' 5 10 Ie V- I • I tAUICE 1 Top View Note: Pin 4 connected to case • NC OUTPUT PLAICEI STROlE TL/H/5704-34 Top View TL/H/5704-35 Top View Order Number LM111H, LM111H/883·, LM211H or LM311H See NS Package Number H08e Order Numbar LM111J-8, LM111J8/883·, LM211J-8, LM211M, LM311M or LM311N See NS Package Number J08A, M08A or NOSE 'Also available per JM38510/10304 3-33 Order Number LM111J/883· or LM311N-14 See NS Package Number J14AorN14A &I ~ ~ :2 .......... r------------------------------------------------------------------------------------------, Connection Diagrams (Continued) ~ ~ N GRD V+ :::I! .... ...... ~ INPUT+ ~ :::I! .... v+ GND ~ INPUT- OUTPUT +INPUT -INPUT BALANCE/ STROBE OUTPUT LM111W NC NC BALANCE STROBE v- BALANCE TLlH/5704-33 Order Number LM111W/883' See NS Package Number W10A 'Also available per JM38510/10304 V-----.......J L-_ _ _ _ _ BALANCE TLlH/5704-32 Order Number LM111E/883 See NS Package Number E20A 3-34 ~ .... .... tflNational Semiconductor ~ r!II: N .... CD LM119/LM219lLM319 High Speed Dual Comparator General Description The LMl19 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down,to a single 5V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LMl19 compatible with RTL, OTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA. The LM319A offers improved preciSion over the standard LM319, with tighter tolerances on offset voltage, offset current, and voltage gain. Features ....r- !II: .... CD ~ • Typically 80 ns response time at ± 15V • Minimum fan-out of 2 each side • Maximum input current of 1 /LA over temperature • Inputs and outputs can be isolated from system ground • High common mode slew rate Although designed primarily for applications requiring operation from digital logic supplies, the LMl19 series are fully specified for power supplies up to ± 15V. It features faster response than the LM 111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LMl19 much more versatile than older devices like the LM711. The LMl19 is specified from - 55"C to + 125°C, the LM219 is specified from -25"C to +85°C, and the LM319A and LM319 are specified from O"C to +70"C. • Two independent comparators • Operates from a single 5V supply Connection Diagrams Dual-ln·Llne·Package GND 1 GNDI OUTPUT 1 3 +INPUT 1 4 +INPUT V+ -INPUT -INPUT 2 -INPUT 1 5 V- • • +lNPUT2 OUTPUT 2 7 • GNU Top View ~ ~M2 OUTPUT 2 GND 2 TUH/5705-8 Oreler Number LM119J, LM119J/883', LM219J, LM319J, LM319AM, LM319M, LM319AN or LM319N See NS Package Number J14A, M14A or N14A Order Number LM119E/883 See NS Package Number E20A Meta' Can Package OUTPUT 1 V· V+ GND 1 INPUT 2- INPUT 1+ INPUT 2+ INPUT 1GND2 V- _ _ _ _ _ _ _ _ _- - OUTPUT 2 +INPUT 2 aND2 TUH/5705-9 Oreler Number LM119W/883 See NS Package Number W10A Case is connected to pinS (V-)' V' I 1l./H/5705-7 Top VIew Oreler Number LM119H, L:M119H/883', or LM319H See NS Package Number H10C 'Also available per SMD# 8801401 or JM3851 011 0306 3-35 ~ Absolute Maximum Ratings '/ -65"CtoI50"C If Military/Aerospace specified devices are required, please contact the National Semiconductor Salea Office/Distributors for availability and speclflcetlons. (Note 7) Total Supply Voltage 36V Output to Negative Supply Voltage 36V Storage Temperature Rarige. Ground to Negative Supply Voltage Ground to Positive Supply Voltage 215°C 220"C See AN-450 "Surface Mounting Methods and Their' Effect on Product Reliability" for other methods of solder'ing,surface mount deviCes. Lead Temperature (Soldering, 10 sec.) Soldering Information Dual-In-Line 'PaCkage: Soldering (10 seconds) Srnalroutli~ Package Vapor Phase (60 seconds) Infrared (15 seconds) 25V 18V ±5V Differential Input Voltage Input Voltage (Note 1) ESD rating (1.5 kO in series with 100 pF) ±15V 800V 500mW Power Dissipation (Note 2) Output Short Circuit Duration 260"C 26O"C Operating Temperature Range 10 sec LM119 LM219 - 55"C to 125"C ..:.. 25°C to 85"C Electrical Characteristics (Note 3) Parameter LM119/LM219 . Conditions Min Unlta Typ Max Input Offset Voltage (Note 4) TA = 25°C,Rs'S; 5k 0.7 4.0 mV Input Offset Current (Note 4) TA = 25"C 30 75 'nA 150 500 Input Bias Current Voltage Gain TA = 25°C . TA = 25°C (Note 6) 10 'VlmV 80 ns Response Time (Note 5) TA = 25°C, Vs = ±15V Saturation Voltage VIN s; -5 mV,IoUT = 25 mA TA = 25°C 0.75 Output Leakage Current VIN ~ 5 mV, VOUT = 35V TA= 25°C 0.2 Input Offset Voltage (Note 4) As s; 5k Input Offset Current (Note 4) -12 1 Vs = ±15V V+ = 5V,V- = 0 Saturation Voltage V+ ~ 4.5V. V- = 0 VIN s; -6 mV,lSINK s; 3.2 mA TA ~ O"C TA s; O"C Output Leakage Current .yIN ~ 5 mV, VOUT = 35V, V- = VGND = OV 2 p.A 7 I1)V 100 nA nA +12 3 V V 0.23 0.4 0.6 V V 1 10 piA ±5 TA = 25°C, V+ = 5V, V- = 0 V 1000 Differential Input Voltage Positive Supply Current 1.5 ±13 Input Bias Current Input Voltage Range nA 40 V mA 4.3 Positive Supply Current TA = 25°C, Vs = ±15V 8 11.5 rnA Negative Supply Current TA.= 25"C, Vs = ±15V :3 4.5 mA Note 1: For supply. voltages less than ± 15V \he absolute maximum input voltage is equal to the supply voltage.. Note 2: The maximum iunction temperature 01 the LM119 is 15O"C. while that 01 the LM219 Is 110'0. For operating at elevated temperatures, devices in the Hl0 package must be derated based on a thermal resistance 01 160'CIW. junction to ambient. or 1frC/tN, junction to case. The thermal resistance 01 the J14 and N14 packages is 100'C/W. junction to ambient Note 3: These $pecmcalions apply for Vs '" ±15V, and the Ground pin at ground. and -55"C .: TA .: +125"C, unless otherwles stated. With the LM219. however. au ternparature specfficalions are limltad to - 25"C .: TA .: + 85'0. The offset voltage, offset CUlT8nt and bias current speciflcalions apply fer any supply voltage from a single 5V supply up to ± 15V supplies. Do not operate the device with more than lev from ground to VS. Nota 4: The offset voIteges and offset currents given are \he maximum values required to drive the ·output within a voR 01 either supply with a 1 rnA load. Thus, thees parameters define an error band and take Into account the worst case effects .of voltage gain and input imped~. Note 5: The response time specified (sea definitions) is for a 100 mV input step with 5 mV ~ Nota 8: Output Is pulled up to 15V through a 1.4 kII resistor. Note 7: Refer to RETS119X for LM119H/883 and LM119J/883 spaclflcalions. 3-36 Absolute Maximum Ratings LM319A1319 Storage Temperature Range -65'Cto 150"C Lead Temperature (Soldering, 10 sec.) 260"C Soldering Information Dual-In-Una Package Soldering (10 sec.) 26O"C Small Outline Package Vapor Phase (60 sec.) 215'C 220"C Infrared (15 sec.) See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. If MIlitary/Aerospace specified devices are required, please contact the NaUonal Semiconductor· Sales Office/Distributors for availability and specifications. Total Supply Voltage 36V Output to Negative Supply Voltage 36V Ground to Negative Supply Voltage 25V 18V Ground to Positive Supply Voltage ±5V Differential Input Voltage Input Voltage (Note 1) ±15V 500mW Power Dissipation (Note 2) Output Short Circuit Duration 10 sec ESD rating (1.5 kG In series with 100 pF) 800v Operating Temperature Range LM319A, LM319 O"C to 70"C Electrical Characteristics (Note 3) Parameter LM319A CondlUons Min Input Offset Voltage (Note 4) Input Offset Current (Note 4) Input Bias Current Voltage Gain Response Time (Note 5) Saturation Voltage Output Leakage Current Input Offset Voltage (Note 4) LM319 Min Typ Units Typ Max TA 0.5 1.0 2.0 8.0 mV TA 20 40 80 200 nA 150 500 250 1000 = 25'C, Rs s: 5k = 25'C TA = 25'C TA = 25'C (Note 6) TA = 25'C, Vs = ±15V VIN s: -10 mV,lOUT = 25 rnA TA = 25'C VIN ~ 10 mV, VOUT = 35V, V- = VGND = OV, TA = 25'C Rs 20 40 8 80 Max nA 40 VlmV 80 ns 0.75 1.5 0.75 1.5 0.2 10 0.2 10 p.A 10 mV s: 5k 10 V Input Offset Current (Note 4) 300 300 nA Input Bias Current 1000 1200 nA 3 V V 0.4 V Input Voltage Flange Saturation Voltage Vs = ±15V V+ = 5V, VV+ VIN ±13 =0 ~ 4.5V, V- = 0 s: -10 mV,IslNK 1 3 0.3 Positive Supply Current Negative Supply Current 0.4 1 0.3 s: 3.2 mA ±5 Differential Input Voltage Positive Supply Current ±13 = 25'C, V+ = 5V, V- = 0 TA = 25'C, Vs = ±15V TA = 25'C, Vs = ±15V TA Note 1: For supply voltages 4.3 ±5 4.3 V mA 8 12.5 8 12.5 mA 3 5 3 5 mA less than ± 15 the absolute maximum input voltage is equal to the supply voltage. Note 2: The maximum junction temperature of the LM319A and LM319 Is 85'C. For operating at elevated temperatures, devices In the Hl0 package must be derated besed on a thermal resistance of 16O'CIW,Iunction to ambient, or 19'CIW, iunction to case. The thermal resistance of the N14 and J14 package is l00"CIW, junction to ambient. The thermal resistance of the M14 package Is 11S'C/W, iunction to ambient. Note 3: Theae speclficallOns apply for Vs = ± 15V, and erc :s; TA :s; 7erC, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies. Do not operate the device with more than 16V from ground to Vs. Note 4: The offset voltages and offset cumsnts given are the maximum values required to drive the output within a voH of either supply with almA Iced. Thus, these parameters define an 8n'OI' band and take into account the worst case elf_ of voltage gain and input impedance. Note 5; The response urn.. specified Is for a 100 mV Input step with 5 mV overdrive. Note 8: Output is pulled up to 15V through a 1.4 IdI resistor. 3-37 Typical Performance Characteristics LM119Af.LMl19/LM219 Input Currents Common Mode Umlts" , y+' v,- +.IV I'- .Lr-- r--. • r""" o r-- -~ ~,::'-' .H-±--+=~::t-'T"'l-I;;::I • -1.2 ii=~~ 1--t-t-+-+--1-'-t---t--t--l 1.2 •1 uUl ... ;! s! .. ~ &.0 4.0 U u,I--r-r-r-r-r-r-i~+-i ZDIIV\ 2JI > g ... la I.D ~ 1.1 > • .• ,.I lID D. II lID 110 ZII ZIO 3DI 310 - "T .~·c -- ILl' ·!f'e I I I '" I ,I V,, 'IIV r I I i 1"~':T~~~~~r~r -lID -11 Responae Time for Various Input OVerdrives zamV • .... -r i II IDI III ZIG ZII 3DD 310 1.1 I V•• dav TA T.· ZI·C o .. Input Chara~rls~cs\ ' .... ·an "...·uv A U ..V -1.2 UmV v.-uv RL-Ukl "...·UV ::'-1 I IIJ 'U u'S Uj DiffERENTIAL IIPUT VD~ TAGE (.. VI TIME (III Respoose Time for Various Input Overdrives 1\ \ .~v, \ -1.0 I - L.J i-U"V TlME(MI 1\ • rr Irl Ih.V U'II I. a -10 o U .18 ii 3.' T.·WC a iii -~ l" ~I&.IIIV \ ~ ~i ui ,I S II Response Time for Varloua Input OVerdrives 5.D R.. -18111 "...·LIV v !; .. u:I \j+"LIV Ii ' t~ TA· ZS'"C ZD .g TEMNRATURE I~CI 6.0 I" 1\:"z.o ..1 ~ UI ,. "...;;3IV II -II -31 -Ii i.I ZI C5 HIS lIS 115 Vs -daV v.· t1lV RL -1AIkn ~ ;,. 31 , , Response Time for Various Input Overdrives '1.1 .! ~t:t~t:tjjj v- -65 -35 -15 s.0 2& 4& 85 IS 185 '21 TEMPERATURE ('CI 1---I--+=--r''1-+=....d--+-l ". Transfer FunctlGr\: ,q 31 'E -0.4 --- ,1'1 '" f7 -u -2.D U ... " DIFFERENTIAL i.PUT VOLTAGE IVI Output Saturation ,Voltage "/ I I.OmV III fr u.v UmV I- .IJ VI·LtV R, 'Il10 y++. LIV .T.. 'WC o II 101 110 ZDD ZIO 310 310 TIME (III $upply Current • II lID III ZDI III 301 310 n.E(u) Supply Current " D.Z U U ... OUTPUTVOLTA&ElVI \.0 Outp!lt UmitliIg Characteristics IZr-~'-""T"~-,~r-;-, 1.1--+-~-+--I--+-~-+-2 La \0 II SUPPLY VOLTAGE !>VI 30 o L.-L-I..................-'---'-......... -11-3I-111J1 H 41 15 II TiMPERATURE rei __~~__L-~. • ... II 11 L-~""" DUTPUT VOL TAlE IVI , .: f~ TlIH/5705-2 3-38 r- ........ ....ri: .... i: Typical Performance Characteristics LM319A, LM319 CD Input Currents Jaa :ZSI 1 ia: ZIIII 1:: III i 110 - Supply Currents IZ r-,--r-;r-.--r-,--, Vs -±1IV - 2.0 I.D 5.1 4.0 3.0 2.0 rc, '.0 31 4' V," :t:lIV v I.. RL - 500Il y++·UV "'\cls.omV T.-2S·C· ~a '.0 ~!i ..... os > 3.0 ~V I-i f-5.Omv I.' ..... 'U zsa ~§ CO~ 6.0 5.0 Z.O t - ZOIRV 1.0 "I'··U;C \ , .... y Q o 50 101 .150 280 -i r - 1.0 , A 100 -10 ~; .0 i a !In! -100 0 ..... A " V+ ~-O.' 1.0 ;-I.Z co .. 1D.' 0 to A v, -uv IS ZI -6.11 -Z.II Z.D 6.0 II 15 I / !; II I!: "05.1 10 i~KZ5·C J - - 1/ I V Vs -+1SV m OZ 300 JSO TEMPERATURE I'C) 1.0 120 1.2 l 'OD '.D ::! a.1 ;: •." 10 t;n Ii 10 i D.' 1.4 = .. ::! ~ 40 il I ..~ 1:: I I I 0.1 1.1 Output Limiting Characteristics I v.!.5.0:',Vs~'1 I I I I '0203a401I11 D.' OUTPUT VOLTAOE (VI I--Vs ·J.lIV;Vs• "'1.8V, Y,- "'0 D.4 SUPPLY VOL TAOE (,VI I.AlI~=T ~~~~~~~t1Al j- f - - 1i I I I I I I 1.2 v,D 20 " REFERREO TO SUPPLY VOLTAGES I-z.o 4.11 i output Saturation Voltage ( i ~l - e- -Vr±l5.V I I .... -1.& 1.0 I DIFFERENTIAL INPUT VOLTAGE IVI S.OmV 51 100 ISO 200 - -OA 5.t 300 358 Common Mode Umlts u i zsa AL ·5IOO V"·5.OV T. - Zi'C o 10 I I + -'00-II TIMIE his) C III a: =25·e 2.01lV /I Ir;IoU TIME ".1 12 I • INPut OVERDAIVI s ~. mV II ,01 ISO ZOD ZSO 301 351 Supply Current 1'1 III e- 'f a.v I 2.0 > : -rl'" 25 4.,0 S ... V'. ·5.IV 1.0 .5.0 S; s; ... A ~i +- fA =! 3.0 2.''''Y 0 U O.Z 11$ -±1IiV TA ·2S·C Response Time for Various Input OVerdrives =~ Al -50DIl y++.5.OY 1\ 1\ \ 4.D 3.0 I Input Characteristics TlIIE(.., V. -"IV 2.0 .... W CD OIFFERENTIAL INPUT VOLTAGE ImVI Vs '":.15V TIME 1.1 Response Time for Various Input OVerdrives -0.2 .... soon 50 i • 3DD 3iD ~ UI -I- -u ..U 'f If I I lI, 2.8 ...V 2.• i! 101 liD 2DI • 10 3.' ~ ri: ... -c 400 s; 188• ~.! o so 10 50 Response Time for Various Input OVerdrives 1,0 5.0 .'\ 2.I . \" zo TEMPERATURE I C, ", 20mV I "5.0 la Response Time for Various Input OVerdrives S; . 4" .. 5.0:;;co ~ S II OFFSET II\) co LO~ y++-s.oV " TEMPERATURE - 21 J.I -zrc > 15 !; 010ZD3D4DII&DlG ... 31 ~ y++-38V ~ZI 50 > ~ . a: ... -s; "w I!:lI! "COs... Va" :l:15V RL ·,.4kU T. ~li r-- liAS ... Transfer Function 8.Z ZD 5.' i 10 OUTPUT VOLTAGE IVI TUH/5705-3 3-39 &I LM119/LM219/LM319 o n :::T CD Rl 3 3.5k r----1,~'M , '" '" an y+ , R2 4k c i AI 3 ~r 02 R12 13k R8 2k TO OTHER- t.> a HALF R9 18k II 02 R25 600 'OUTPUT R24 250 R21 900 R17 3 "Do not operate the LM119 with more then 18Y between GND IIJId Y+ • .,. • GND TLlH/5705-1 r-----------------------------------------------------------------------------f~ iC .... .... Typical Applications" Relay Driver ~ ~ Window Detector iC ,---,,--5V IIV v.. N .... SOD >~""-TTl OUTPUT ~ riC w .... CD IIII'UTS TLlHl57D5-5 VOUT = 5V for VLT ,. VIN ,. VUT VOUT = 0 for VIN ,. VLT 'Pin numbers are for metal can package. or VIN ;;, VUT TLIH/5705-6 'j :1, 3-41 ~ r-------------------------------~----------------------------------------------~ ~' ~..... 1fI. N ~ LM 139/lM~39iLM33,9/LM2901/LM3302 .... '0 4 t ion 4, I S e m i con due tor ~ Low p,0w.erLow Offset Voltage Quad Comparators I CO) :& General Description' , I The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four complII"ators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also -possible and the low power supply current drain is independent of the magrRtude of the power supply voltage. These comparators also~ve a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. ..I ~ ~ I.... ~ ' Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TIL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logjc....:... where the low power drain of the LM339 is a distinct advantage over standard comparators. • • • • Features • Wide supply voltage range LM139 series, • • • • • • • Advantages • High precision comparators • Reduced Vos drift over temperature Eliminates need for dual supplies Allows sensing near GND Compatible with all forms of logic Power drain suitable for battery operation 2 Voe to 36 Voe or ±1 Voeto ±18Voe LM139A series, LM2901 2 'ioe to 28 Voe LM3302 or ± 1 Voe to ± 14 Voe Very low supply current drain (0.8 mAl - independent of supply voltage Low input biasing current 25 nA Low input offset current ± 5 nA and offset voltage ±3 mV Input common-mode voltage range includes GND Differential input voltage range equal to the power supply voltage Low output saturation voltage 250 mV at 4 mA Output voltage compatible with TIL. DTL, ECL, MOS and CMOS logic systems Connection Diagrams Dual-In-Llne Package GUlPUT J omUT 4 'M. -.., •• •...., __ IIIPUT 3+ ."UT 3- 0012 OUT 3 OUT 1 our. 14 3 2 IN 1- , IN 1+ .11 20 •• GND LM139E IN4. V. IN410 11 12 13 ~~ ~3+ ~H ~~ TLlH/5706-28 v· ....., 1TO' VIEW .MPU' 1+ INPUT Z- ItlPUT z. TL/H/5706-2 Order Number LM139J, LM139J/883', LM139AJ, LM139AJ/883", LM239J, LM239AJ, LM339J, See NS Package Number J14A Order Number LM339AM, LM339M or LM2901M See NS Package Number M14A Order Number LM339N, LM339AN, LM2901N or LM3302N See NS Package Number N14A Order Number LM139AE/883 or LM139E/883 See NS Package Number E20A OUTPUT 2 OUTPUT 3 OUTPUT 1 OUTPUT 4 V. GND INPUT 1- INPUT,,+ INPUT I. INPUT 4- INPUT 2- INPUT 3+ INPUT 2+ INPUT 3- TL/H/5706-27 "Available per JM38510/11201 ""Available per SMO# 5962-8873901 Order Number LM139AW/883 or LM139W/883' See NS Package Number W14B 3-42 Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 10) LM139/LM239/LM339 LM139/LM239/LM339 LM3302 LM139A/LM239A1LM339A LM3302 LM139A/LM239A1LM339A LM2901 LM2901 Supply Voltage, V+ -40·Cto +85·C Operating Temperature Range 36 VOC or ± 18 VOC 28 Vocor, ±14 VOC O·Cto +70·C LM339/LM339A Differential Input Voltage (Note 8) 36Voc 28Voc - 25·C to + 85·C LM239/LM239A Input Voltage -0.3Vocto + 36Voc -0.3Vocto + 28VoC -40·Cto +85·C LM2901 Input Current (VIN< -0.3 Voc), - 55·C to .+ 125·C LM139/LM139A (Note3j 50mA 50mA Soldering Information Power Dissipation (Note 1) Dual-In-Une Package Molded DIP 1050mW 1050mW 260·C Soldering (10 seconds) 2600C GavityDIP 1190 mW Small Outline Package Small Outline Package 760mW 215·C 215·C Vapor Phase (60 seconds) Output Short-Circuit to GND, Infrared (15 seconds) 2200C 2200C (Note 2) Continuous Continuous See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for -65·Cto + 150·C - 65·C to + 150·C Storage Temperature Range other methods of soldering surface mount devices. Lead Temperature ESD rating (1.5 kO in series with 100 pF) 600V 600V (Soldering, 10 seconds) 260·C 2600C ~ EI~ctrical Characteristics (V+ = 5 VOC, TA = Parameter 25·C, unless otherwise stated) LM139A Conditions I MlnTyp Max LM239A, LM339A Min Typ Max LM139 MinTyp Max LM2901 LM239, LM339 Min Typ Max MlnTyp Max LM3302 MlnTyp Units Max Input Offset Voltage (Note 9) 1.0 2.0 1.0 2.0 2.0 5.0 2.0 5.0 2.0 7.0 3 20 mVOC Input Bias Current 25 100 25 250 25 100 25 250 25 250 25 500 nAoc SO 3.0 SO S SO 3 100 nAoc IIN( +) or IIN( -) with Output in Unear Range, (Note 5), VCM=OV 3.0 Input Offset Current IIN(+)-IIN(-), VCM=OV Supply Current RL = co on all Comparators, RL = co, V+ = 36V, (LM3302, V+ =28 VOC) Voltage Gain RL~1S kO, V+ =1SVOC rvo= 1 VOC to 11 VOC Large Signal Response Time VIN = TTL Logie Swing, VREF= 1.4 VOC, VRL = S VOC, RL = 5.1 kO, Response Time VRL =5 VOC, RL =S.1 kO, (Note 7) 0.8 SO 200 Output Sink Current VIN(-)=1 VoCo VIN(+)=O, 2S V+-1.S Input Common-Mode V+ =30 VOC (LM3302, V+ =28 Voc) 0 (Note 6) Voltage Range S.O V+-1.S 0 0 2.0 0.8 1.0 0.8 1.0 200 SO 200 300 300 1.3 6.0 16 SO 2.0 2.S 6.0 2S V+-1.S 5.0 2.0 2.S 0.8 1.0 SO V+-1.S 0 V+-1.S 0 0 2.0 2.S 0.8 1.0 0.8 1.0 2.0 2.S 2.0 2.S mAoc mAce 30 VlmV 300 300 ns 1.3 1.3 1.3 ,..s 16 6.0 16 6.0 16 200 25 100 300 300 1.3 1.3 16 6.0 16 6.0 V+-1.S Voc 2 mAoc VO~1.SVOC n ~O&&W'/~06~W'/6&&W'/6&ZW'/6&~ .. .~===-oJ.iii . ____ LM139/LM239/lM339/LM2901/LM3302 Electrical Characteristics (V+ = 5 VOC. TA = Parameter Min Typ Max 400 Saturation Voltage VIN(-) = 1 Vee. VIN(+)=O. ISINK:S;4mA 250 Output Leakage Current VIN(+)';'l VOOVIN(-)=O. Vo=5Voe 0.1 Parameter LM239A, LM339A LM139A Condfttona Electrical Characteristics (V+ 25"C. unless otherwise stated) (Continued) Min Max 250 400 Min 0.1 LM239, LM339 Typ Max 250 400 Min LM2901 Typ Max 250 400 Min 0.1 0.1 LM3302 Typ Max 250 400 Min 0.1 Unft8 Typ Max 250 500 0.1 mVoe nAoe = 5.0 Voe. Note 4) LM139A CondWona MlnTyp ~ LM139 Typ Max LM239A, LM339A Min Typ Max LM139 MlnTvp Max LM239, LM339 MinTyp Max LM2901 MlnTyp Max LM3302 MlnTyp Unft8 Max Input Offset Voltage (Note 9) 4.0 4.0 9.0 9.0 9 15 40 mVoe Input Offset CUrrent IIN(+)-IIN(-).VCM=OV 100 150 100 150 50 200 300 nAoe Input Bias CUrrent IIN( +) or IIN( _) with -Output in Unear Range. VCM = OV (Note 5) 300 400 300 400 200 500 1000 nAce Input Common-Mode Voltage Range V+ =30 Voe (LM3302. V+ =28 Vbc) O. (Note 6) Saturation Voltage VIN(-)=l Voe. VIN(+)=O. ISlNK:S;4mA . V+-2.0 0 V+-2.0 0 V+-2.0 V+-2.0 0 V+-2.0 0 V+-2.0 Voe 700 700 mVoe 1.0 1.0 1.0 ",Ace 36 36 28 Vee 700 700 700 700 Output Leakage Current VIN(+)=l Voe. VIN(-)=O. Vo=30Voe. (LM3302. Vo=28 Vocl 1.0 1.0 1.0 Differential Input Voltage Keep all VIN'S~O Voe (or V-. if used). (Note 8) 36 36 36 400 Note 1: For operating at high temperatures, the lM339/lM339A. LM2901, LM3302 must be derated' baaed on a 125"C maximum junction temperature and a thermal resistance of 95"C1W Which applies for the devfce soldered in a characteristic of the outputs keeps the chip printed circuit board, operating in a still air ambient The LM239 and LM139 must be derated baaed on a 150"C maximum junction temperatura. The low bias dissipation and the "ON-OFF" dissipation very small (Po': 100 mW), provided the output transistors are allowed to saturate. Not8 2: Short circuits from the output to V+ can cause excessive heeUng and eventual destruction. When considering short circuits to ground,the maximum output current is approximately 20 mA independent of the magnitude of V+. Note 3: This input current will only exist when the voltage at any of the input leeds Is driven negative. It is due to the collactor-basil Junction of the input PNP transistors becoming forward biesed and thereby acting as input diode clamps. In addition to this diode action. there is also lateral NPN parasIIlc transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to gc to the V+ voltage leval (or to ground for a large overdrive) for the time duration. that an Input is driven negalive. This Is not destructive and normal output states will re-establish when the Input voltage. which was negative, again ratums to a value greater than -0.3 Voc (at 25")C. Note 4: These specifications are limited to -55"C':TA': + 125"C, for the LMI39/LMI39A. With the LM239/LM239A, all temperature specifications are limited to - 25"C':TA': + 85'C, the LM339/LM339A temperature specifications are limited to O"C.:TA': +70"C, and the LM2901 , LM3302 temperature range is -4O"C.:TA:<:+85"C. Note 5: The dtraction of the input current Is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines. Note Ik The input common-mode voltage or eHher input signal voltage should not be allowed to gc negative by more than 0.3V. The upper end of the common-mode voltage range is V+ -1.5V at 25'C, but either or both inputs can gc to +30 Voc without damage (25V for LM3302), independent of the magnbude of V+. Note 7: The response lime specified is a 100 mVinput step with 5 mVoVerdrive. For larger oviIrdrIve signals 300 ns can be obtained, eee typical performance characteristics section. Note 8: Positive excursions of Input voltage may exceed the pow8r supplyleval. As long as the other voItege remslns within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less then -0.3 Voc (or 0.3 Voc below the magnitude of the negative power supply. Hused) (at 25'Cl. Note 8: At output switch:point, VO,,",U Voo Rs=on with V+ from 5 Vocto 30 Voc; and over the full input common-mode range (0 Voc to V+ -1.5 Vocl. at 25'C. For LM3302, V+ from 5 Voc to 28 Voc. Note 10: Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specificaUons. Typical Performance Characteristics LM139/LM239/LM339, LM139A1LM239A1LM339A, LM3302 Supply current u i ~ C-T~~ IA Iii ... ~ ~ ~fc .. Ii .. i Input Current 10 TA ......5,...1-- ~ , IA i.o-" I l!iii •• . .. i c TA -+JrC .... i- ,, , ,. 21 31 rr: 41 , 2G !! TA··1Zre- ". 1.2 o - I I I I Output SaturatIon Voltage ~ v",_·OVoc ...,c.",."'O 1.1 1-+--+-+'745M---4-1---1 S, 1.11 1-t7"io1S~,+-+~-1-t ,. : 'r.:lI"~"" S . K TA.··2~e I I TA··we - ~ f I I " 31 UtI ~~~~-L~~_~ Re8ponse TIme for Varlou8 Input Overdrlv.-Posltlve Tran8itlon ui &.I :II ~~ r"'~= . - + ,, , , 1.1 .. =:: .. " U IIV ·IIII'UT OVERDRIVE '10 .. lao II 10 -'OUTPUT SINK CURRENT (..AI Re8pon8e Time for Varlou8 Input OverdrIve_NegatIve TransItIon 2I~V -is u 1.1 IAI 41 v+ -SUlPlYVDlTABElVocl IUPPl.YVOlTAGECVocl I I-+-+-+++~J+--I ~ co ;:-.~ 41 1.0 =c T:.-~e ~ "'-'--;-"""''''''"':'I'"1IIr-' 4.G ," IIIPUT OVERDRIVE ·110 .V I , I J ,h,V i'\. 3.1 fL L 2.1 == '2ImV U _ "l? ,.. ui CD ~s '10 ".! &I -(-TA·2i·~- ~~ a ~jA !lI"~,""f ~ ·c " TlIH/5706-6 Typical Performan'ce Characteristics LM2901 Supply Current Input Current Output SaturatIon Voltage 10 10 u J Ii II! ~ 10 i 41 ... Ii .. ... 1.1 ~ I !iii II 31 • TAJ!!:; f - A· ....C- f - - r.w"",Y VOLTAGE (VocI .j I • " 41 ~ = S S1.I11-~lIIII5~"'" D.1 21 j 'I ~ TA!rc i u l.1li -;............_ 41 1.1' V'. SU"lYVOL TABE (VocI Response Time for Varlou8 Input OverdrIves-NegatIve TransitIon 2I1I!!. H ..s> ,.ui CD "'1? c ....-= - . '10 .. !;~ !; t ," ,.I 1.1 3.0 2.0 ;!> 110 i~ f U 4.0 1.0 S.! ~ !2I'~- I.D " :; 111 ... ......._ ......._ ..... I " '10 10. OUTPUT liNK CURRENT (IIIAI 1.1 Re8ponse Time for Varlou8 Input OverdrIves-Positive Tran81tlon u .V· IIPUT OVERDRIVE .1. ,..---r---r--,....- , l TA·j""C- f - - • 10 I" IIPVT OVERDRIVE' IDlIIV '\. I , " J I'·v nI 2IIIV ,..~~ ,.- III I-I-TA·lI"~- ' .... U TIME.,.. TL/H/5706-7 3-45 "N , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , I... ..;.I ...... iN ::!I C;; CO) " CO) ::!I ...... ! ::!I ...~ .... ::& Application Hints The differential input voltage may be larger than V+ without damaging the device. Protection should" be provided to pravent the input voltages from going negative more than -0.3 Voc (at 25"C). An input clamp diode can be used as shown in the applications section. The LM139 series are high gain, wide bandwidth devices which, nke most comparators, can easily oscillate if the out., put lead is inadvertently allowed to capacitively couple to the inputs via stray capaCitance. This shows up only d\jring the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-o!Jtput coupling. Reducing this input resistors to < 10 kO reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the Ie and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an Outpllt OR'ing function. An output pull-up resistor can !Je connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is IIPplied to the V + terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V+) and the f3 of this device. When the maximum current limit is reached (approximately 16 mAl, the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is: limited by thEi approximately 600 RSAT of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents. All pins of any unused comparators should "be grounded. The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 Vee to 30 Voc. It is usually unnecessary to use a bypass capaCitor across the power supply line. Typical Applications (V+ = 5.0 VOC) Basic Comparator Driving CMOS V' Driving TTL +1.0 VDC +iVue: Vo TL/H/5706-3 TLlH/5706-5 TL/H/5706-4 AND Gate OR Gate v· y' 3k 3k IIDk lOOk A A llOk llOk llOk :':r ..... "I" Ik C "IOlk I·A" B· C ,. A+8+C C v~=r -=- "g" "I" TL/H/5706-8 TLlH/5706-9 3-46 Typical Applications (V+ = 15 Vee) (Continued) One-Shot Multlvlbrator V' :l o-i .........--.. IDGpF .:::fWl=: --t 10 ,V ,N I m• >-4.....0 Vo '. V· D " O.DOI"F 1M TLlH/5706-10 8i-Stable Multlvibrator V· lOOk 1110 51k lOOk 5 1l:.: 15V V~ n. >-..-oVo R lOOk R 0-""",..".....---1 TL/H/5706-11 One-Shot Multivlbrator with Input Lock Out V' 1110 -VIN o--'IoMII""4"--+---4 --fE '''' .~V· 4O ••..;;:J ~O 10 ., +4V • > ........OVo 82k ":' TLlH/5706-12 3-47 N ! !I.... Typical Applications (V+ = 15 Voc) (Continued) ORlng the Outputs - • v' ~ Uk ~ Large Fan-In AND Gate ~ ~""""ovo v' !I ~ N !I ,. -~ ~ :'y ..... Ao-.....1-4....- -..... VOUT = A·.· C· 0 "1" 10-......... 03 C 0-,,1--. 00-........ I· All DIODES IN914 TLlH/5706-13 Pulee Generator v' 01 Al 1M TUH/5706-15 15. lNI14 * DZ AZ lNI14 110k BO pF ~ Vo 1M 1M 1M - * FDA LAAGE RATIOS OF AlIAI. 01 CAN IE OMITTED. TL/H/5706-17 3-48 Typical Applications (V+ = 15 Voc) (Continued) Time Delay Generator V' I •• I ill 3.0. 111M v, V' 3.0. 51. 10M Ilk ~::r-L I. I. +V.. INPUT GATING SIGNAL V. 51k V' . - - - - - - - - - - , - .. ~ I.. te, V I v, -1-TLlH/5706-14 Non·lnverting Comparator with Hysteresis Inverting Comparator with Hysteresis V' +V ••• 0------1 V' +V,~ 3. 0------1 3. > ....I-'OVo >-4"'-OVo 1M 1M TLlH/5706-18 1M TLlH/5706-19 3·49 Typical Applications (V+ = 15 Voc) (Continued) Comparing Input Voltages of Opposite Polarity Squarewave Oscillator v· V' lDOk 4.3k ,aak 5.1k v' >-4I- -4....0Vo TL/H/5706-20 TL/H/5706-16 Output Strobing V' >-4....-0Vo STROlE INPUT TLlH/5706-21 TLlH/5706-22 'Or open-collector logic gale without pull-up resistor Limit Comparator Crystal Controlled Oscillator V'UZ Vuel V· 2110k 10k +VREF HI z.ak 'ODIc o--""''''''---t > ..-oVo lis 211s 'V... LOW o--"",,,,,,-..--t TLlH/5706-24 TLlH/5706-25 3-50 ~ "CI ~' » "CI '2 c;' ! Two-Decade High-Frequency veo 0' v· :::s (I) Y' '<+ lOOk lOOk (II Uk 5.lk +Yc ; II ~ 500pF FREQUENCY CONTROL. YOLTAGE INPUT 8.01jJF O.I~F ....fU T ~ • • 0 a ~. OUTPUT 1 ! Y+JZ 20k a ~ OUTPUT Z IV'v 18k Y+12 V+=+30Voc +250 mVOC':Vc': +50 Voc 700 Hz': '0': 100 kHz TLlH/S706-23 ~O££W'IJ.06~W'/6££W'/6£~W'/6£~W' II Typical Applications (V+ = 5 Voc) (Continued) Transducer AmplIfier Zero CroaaIng Detector (SIngle Power Supply) yo yo u. 11. VIN MAGNETIC PICKUP II I.'. 1.1. .....---"Yo Yo 20M 1l1li ":' TLlHf5708-30 TLlHf5706-28 Split-Supply Applications (V+ = + 15 Voc and V- = -15 Vee) MOS Clock Driver 3.lk 51k Uk .JI''''---o o. Uk &.8k V' TlfHf5706-31 3-52 ~----------------------------------------------------------------------------, Split-Supply Applications (V+ = + 15 Voc and V- = iii: te -15 Voe) (Continued) Ii: Comparator With a Negative Reference Zero Crossing Detector ...r i8 ..... v+ r iii: ~ UK UK >-411....Ovo >-411....O vo CD ..... r iii: ...8 ..... Ii:w v- ~ vTLlH/5706-32 N TLlH/5706-33 Schematic Diagram y+ +I.UT OUTPUT TL/H/5706-1 3-53 t!lNational Semiconductor LM160/LM360 High Speed Differential Comparator' General Description Features . The LM160/LM360 is a very, high speed differential input, complementary TIL. output voltage comparator with improved characteristics over the p.A7601 ""A760C, for which it is a pin-for-pin replacement. Th~ device has been optimized for greater speed, input impedance and fan-out,. and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 rfiV to 400 mit. . . Complementary outputs h",ving minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in' disk ·file systems. • • • • • • • • Guaranteed high speed 20 ns max Tight delay matching on both butputs Complementary 17TL outputs High input imped~nce Low speed variation with overdrive variation Fan-out of 4 Low input offset voltage Series 74 TIL compatible Connection Diagrams Metal Can Package Dual·ln·Llne Package v· v' OUT I Nt INZ OUU aNa' INI v- vTOP VIEW TLlH/5707-4 Tar VIEW Order Number LM160H/88S* or LM360H See NS Package Number HOSC TLlH/S707 -5 Order NUlT!ber LM160J/88S", LM360M or LMSIlClt Parameter Conditions Operating Conditions Supply Voltage Vee + Supply Voltage Vee Input Offset Voltage Rs ~ Min Typ Max Units 4.5 -4.5 5 -5 6.5 -6.5 V V mV 2000 Input Offset Current 2 5 0.5 3 IJA 5 20 p.A 25 20 ns ns ns Input Bias Current Output Resistance (Either Output) VOUT = VOH 100 Response Time TA = 25°C, Vs = ±5V (Notes 1, 6) TA = 25°C,VS = ±5V(Notes2,6) TA = 25"C, Vs = ±5V (Notes 3,6) 13 12 14 TA = TA= TA = TA = 2 2 2 2 ns ns ns ns Response Time Difference between Outputs (tpd of + V1N1) - (tpd of - VIN21 (tpd of +VIN2) - (tpd of -VIN 1) (tpd of + VIN1) - (lpd of + VIN21 (tPd of -VIN1) - (~of -VIN21 25"C (Notes 1, 6) 25°C (Notes 1, 6) 25°C (Notes 1, 6):" 25°C (Notes 1, 6) 0 Input Resistance f = 1 MHz 17 kO Input Capacitance f = 1 MHz 3 pF Average Temperature Coefficient of Input Offset Voltage RS = 500 8 p.VloC 7 nAloC ±4.5 V 3 V Average Temperature Coefficient of Input Offset Current Common Mode Input Voltage Range Vs = ±6.5V ±4 ±5 Differential Input Voltage Range Output High Voltage (Either Output) Output Low Voltage (Either Output) ISINK = 6.4 mA Positive Supply Current Vs = ±6.5V V 2;4 lOUT = -320 p.A, Vs = ±4.5V 0.25 0.4 V 18 32 mA Negative Supply Current -9 -16 Vs = ±6.5V rnA Note 1: Response time rneesured from the 50% point of a 30 mVPi' 10 MHz sinusoidal Input IQ the 50% pOint of the output Note 2: Response time rneesured from the 50% point of a 2 Vp.p to MHz sinusoidal Input IQ the 50% point of the output. Note 3: Response time rneesured from the start of a 100 mV input step with 5 mV overdrive IQ the Ume when the output crosses the logic threshold. Note 4: Typical thermal impedances are as foflows: Cavity DIP (J): Header (H) 135"C/W (Still Air) IS5'CIW IljA II/A 67"C/W (400 LF/min />Or Flow) Molded DIP (N): 13O'C/W IljA II/c Note 5: The device may be damaged If used beyond the maximum ratings. Note 6: Measurements are made in AC Test Circuit, Fanout = 1 Note 7: Refer IQ RETS 160X lor LMI60H. LMl6OJ·14 and LM160J military specifications. Note 8: Human body model. 1.5 kO In series with 100 pF. 3-55 25'C/W Typical Performance Characteristics . Input Currents va Ambient Temperature Offset Voltage 4 ;; 3.1 .! 3.% .. ....,. ...=~ ~ ~ i! Y+=+IY y-. -5Y I J r- - .... ....m ..= V 2.1 l 2.4 V 1.1 V u E u ...... 2,25 !! ~ 1.2 - ~ 1.75 OJ .... I ariAS I -& -4 -3 -2 -I -iiI -35 -1& & 2& 4& II 8& 11& 12& AMBIENT TE_RATURE rCI II ~ 17 -- II - I '- " II ~ SJE A! TEh C!RCJIT- r- IB ~ ;I ; 40 !it I 30 "DIll r- ~FANij!:!. 48 ~ 1/ / ~ := zo 1-=~'=!::=!::='=-Y~hI -10 "~~LJLL..J...LJ Z8 "DIDI I FANOUT-I II -&5-35 -IS I 21 41 II II lD5 1%1 -&1-35 -1& & II 4& II II llIi 121 AMBIENT TEMPERATURE rCI Common-Mode Pulse Response . 3 4 & J AMBIENT TEMPERATURE I'CI ~ r-r- &0 7 -1&-35 -15 & 25 4& 1& 8& ID512& 2 &0 r-r-r-~~~~~~ 71 Y+'+5Y Y-'-5Y 19 I Delay of Output 1 With Respect to Output 2 va Ambient Temperature Propagation Delay vs Ambient Temperature ID 8 DIFFERENTIAL INPUT YDLTAGE M AMBIENT TEMPERATURE rCI Supply Current vs Ambient Temperature y+=+&y Y-·-5Y I-~ I I 1.& -&&-3& -15 5 1& 4& I. 85 la& IZ& -- ~T .... Y+=+5Y Y-'-IY Input Characteristics 9 AMBIENT TEMPERATURE rCI AC Test Circuit ~ OUTPUT ~ TO y+ ~ ~ !! ! .. ...~ ..S= ~ -::,,. lIB 141 t-- ~' "!' IN.,4 I ' ..,4 "OIT ,AI R .IV" , ''''4 ,.,4 > 131 4G II III TIME lui lIB Tl/H/5707 -2 VIN= ±50 mV FANOUT=1 FANOUT=4 V+=+5V R=2.4k R=6300· V-= -5V C=15 pF C=30 pF 3-56 TlIH/5707-S Schematic Diagram RIO 85 R7 lk 010 ....---0 ~3~UVfER11NG ........----oGNO' Rl 1450 ....-I~-I-o INVER11NG OUTPUT2 +INPUTI -INPUT2 o---+-....J 08 TLlH/5707 -1 3-57 tJ1 Nat i 0 fI, a I Se ~ i c ~ n duct 0 r LM161/LM261/LM361 High Speed Differential Comparators General Description·· Features The LM161 ILM261 ILM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics OVer the SE529/NE529 for which it is a pin-for-pin replacement: The device has been optimized for greater speed performance ilnd lower input offset voltage. Typically delay varies only 3ns fol-" over-drive variations of 5 mV to 500 mV. It may be operated from op amp supplies (± 15V). ," ' • Independent strdbes . 20 ns max • Guaranteed high speed • Tight delay matching on both outputs Ii Complementary TTL outputs ±15V • Operates from op amp supplies • Low speed variation with overdrive variation • Low input offset voltage • Versatile supply voltage range Complementary outputs having maximum' skew are provided. Applications involve high speed analog to digital converters and zero-crossing deteciors in disk file systems. Connection Diagrams ·Metal Can Package Dual-In-Llne Package Yee STROlE I 1. .3 4 Ie 12 OUTPUT I " •••1 II v+ ·IIUJPIIT 2 STROlE 2 I " ,...- I l- OUTPUT I TLlH/S708-3 I y+ Z lie 3, I"PUTI 4 INPUU • 5 Ne V- II Order Number LM161H1883*, on.M361H see NS Package Number H10C lie TL/H/S708-2 Top View Order Number LM161J, LM161J/883*, LM361M or LM361N See NS Package Number J14A, M14A or N14A 'Also available per SMD #5962-8757203 Logic Diagram STROlE'· Vex: OUTPUT I 'Outpulls lowwhen current is drawn from sfrobe pin. OUTPUH VTLlH/S708-4 3-58 Absolute Maximum Ratings (Note 1) Operating Conditions If Military/Aerospace specified devices are required, please contact the National semiconductor Sales Office/Distributors for availability and specifications. (Note 4) Positive Supply Voltage, V+ +16V Negative Supply Voltage, V-16V Gate Supply Voltage, Vee Min Supply Voltage V + LM161/LM261 LM361 Supply Voltage VLM161/LM261 LM361 +7V +7V ±5V ±6V Output Voltage Differential Input Voltage Input Common Mode Voltage Power Dissipation Storage Temperature Range TMAX TMIN - 55"C to + 125·C - 25·C to + 85·C O·Cto +70"C 260·C 15V 15V -6V -6V -15V -15V 5V 5V 5.5V 5.25V 1600V 260"C 215·C 220·C See AN-450 "Surface Mounting Methods and Their Effect on PrQduct Reliability" for other methods of soldering surface mount devices. 0.3V Electrical Characteristics (V+ Max 5V 5V Supply Voltage Vee LM161/LM261 4.5V LM361 4.75V ESD Tolerance (Note 5) Soldering Information Dual-In-Line Package Soldering (10 seconds) Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds) 600mW -65·Cto + 150"C Operating Temperature Range LM161 LM261 LM361 Lead Temp. (Soldering, 10 seconds) For Any Device Lead Below V- Typ = + 10V, Vcc = + 5V, V- = -1 OV, T MIN S; TA S; T MAX, unless noted) Limits Parameter Conditions LM1611LM261 Min Input Offset Voltage LM361 Typ Max 1 3 Min 5 Units Typ Max 1 5 mV 30 p.A p.A 5 p.A 10 Input Bias Current TA=25·C Input Offset Current TA=25·C Voltage Gain TA=25·C 3 3 V/mV Input Resistance TA=25·C, f=1 kHz 20 20 kO Logical "1" Output Voltage Vcc=4.75V, ISOURCE= -0.5 mA 3.3 V Logical "0" Output Voltage Vee = 4.75V, ISINK=6.4 mA 0.4 0.4 V Strobe Input "1" Current (Output Enabled) Vee=5.25V, VSTROBE=2.4V 200 200 p.A Strobe Input "0" Current (Output Disabled) Vee=5.25V, VSTROBE=0.4V -1.6 -1.6 mA Strobe Input "0" Voltage Vcc=4.75V 0.8 0.8 V Strobe Input "1" Voltage VcC=4.75V Output Short Circuit Current Vee=5.25V, VOUT=OV -55 mA 20 2 2.4 3.3 2.4 2 -18 3-59 p.A 2 3 2 -55 -18 V Electrical Characteristics (Continued) (V+ = +10V, Vee = +5V, V- = -10V, TMIN s: TA s: TMAX, unless noted) Umlts Parameter Conditions LM161/LM261 Min Supply Current I + V+ =10V, V-= -10V, Vcc=5.25V, -55°CS:TAS: 125°C Supply Current 1+ V+ =10V, V-",; -10V, Vcc=5.25V, O"C s: TAS: 70"C Supply Current 1- V+ =10V,Y-;= -10V, Vcc=5.25V, -55°CS:TAS: 125°C Supply Current 1- V+=10V,V-=-10V, Vee=5.25V, O"CS:TAS:70"C Supply Current ICC V+ =10V, V-= -10V, Vee=5.25V, -55°CS:TAS:125°C Supply Current ICC V+=10V,V-=-10V, Vee=5.25V, O"C s: TAS: 70"C Transient Response Propagation Delay Time (fpd(O» Propagation Delay Time (fpd(I» Delay Between Output A and B Strobe Delay Time (tpd(O» Strobe Delay Time (tpd(I» Typ 165'CIW (Still Air) 67"C/W (400 U'/Mln NrRow) 112'C/W Units Max mA 5 10 NPackage 105"CIW 2S'C/W 8jC Note 3: Measurements using AC Test circuit. Fanout = 1. The devices are faster at low suppiy voltages. Note.: Refer to RETS161X for LM161H and LM161J military specifications. Note 5: Human body model, 1.5 kn in series with 100 pF. 3·60 20 20 5 mA mA 18 14 14 2 8 8 mA mA 10 Note 1: The device may be damagad by use beyond the maximum ratings. 8jA Max Typ 4.5 VIN = 50 mVoverdrive (Note 3) TA=25"C TA=25"C TA=25°C TA=25°C TA=25°C Note 2: Typical thermal impedances are as follows: HPackage JPackage LM361 Min 14 14 2 8 8 20 mA 20 20 5 ns ns ns ns ns Typical Performance Characteristics u I w Input Currents V8 Ambient Temperature Offset Voltage 7 :::~O:IV -.- 1.1 YCC ·5.2IY- fA e I.' i... - ~ i - - -I-. u u Il. j'l r- V ~ 1.4 ;;;;11"'" V- - or -1.';-- Y---IDV Ycc-UIY I.lI 1.1 C .! e - .l.lJ I I ,- rc rc ~ >- ~ i .- 'I--I~ 1 = j i i 31 2IIH--+-+-I--h~HH II _II t;I!~::t:tft:Ij .... -31-11 I II .. II H 1.118 _ENT TEMPERATURE rCl Propagation Delay, va Supply Voltage . 1 I I • • DIFFERENTIAL IIIPUT YaLTAtE IVI II 1 11 1 1- -t"" .... f- -~ I I' • I I • 71 I !C ! i I . -- J TE~ C'~CU~ .JE l- 31 I- ~ !! • Ill>' E II ~rUT04 30 II II ""'" 'I 'Maur-I 1 I .... -31-11 • II 4' • II 'II 'II _ENT TEtllPl!RATURE rCl Common-Mode Pulse Response ~ I -. ""1Ij ~ r- II II Strobe Delay V8 Ambient Temperature II '(I 5 • cor, 41 riE AlI: T.k C:RC~IT ; :tt ttl i11 tl2 ±13 114 +11 IUPPLY YDLTAIE V-ICYI ...-I"""'1I"""'1r""""'---...",,::""""-, .. ~~~-~~~~~~ ... -4 ..,J ..,J -I I tI :til tJ tl 71 ! I'"" I ICC II Delay of Output 1 WItIT Re8pect to Output 2 V8 Ambient Temperature II i Propagation Delay V8 Ambient Temperature TA -II'C vcc- U1V- I' -15-35-lIi I H 41 H 111115 121 _NT TEMPERATURE rCI • I • I I I • I Supply Current V8 Supply Voltage II r vcc- uav 21 41 II 1& IH III _ENT TEtllPl!RAr.£ rCl ,1.- to-- ..JC 12 f-yLI'.v I II f- ~-. -IIV Vcc- UIV r- ~T "'-IIV r--IIV i -11-3&-11 I Supply Current V8 Ambient Temperature U - .IM """ ii I~ , -,I-JI -II I II 41 H II 1.1 121 A."ENTTEMPERATURE f'CI 14 I""- 1 • I.~ ~ 1 • Input Characterlstlc8 !I I I F~' 1 1 / I ('D(~ It """I "10 ,...,..,...-r .l,... .....,..... FAIDUT-I I .... -31-11 I H .. H H 111111 _lENT TEMPERATURE rCI 1,11 i I i I. 141 H",,,+++-+-,,,~+-t ~-+-+-r~~4-+-~ .. • I. I .. TlME("" TL/H/57D8-5 AC Test Circuit II OUTPUT y+ 71 1 10 .. ~ • ! ..~ E H II ZI II 'PDCII;;;;; lN914 INPUT 1 "jlGr .... .., .... '1"11'12<1"14'" or, y- - SUPPLY VDLTAGE IVI TlfH/5708-7 lN914 YIN = ±50mV V+ = +10V V- = -10V Vee = 5.25V 3-61 FANOUT = 1 FANOUT = 4 R = 2.4k R = 6800 C = 30pF C=15pF lN914 - TlfH/5708-6 i ~ ........ r---------------------------------------------------------------------~ Schematic Diagram LM161 . "1-1--_~-I_---_--1...._-...0-0 STROBEl r ___-.____-+r"_-.-_-_-_-_V/X U) N. ....~.... .... R7 Iii U) ~ 012 y+ 0----......- _ _- _ ....--+-0() NON-INVERTING OUTPUTI 01 02 GNO 03 RI OIl 1450 .STROBE2 04 _____1----1-0 INVERTING OUTPUT2 +INPUTI -INPUT2 0---+_....... D8 ro--~------~---~---__~---------------------~I___~ TL/H/5708-1 R10, R16: 85 R11, R17: 205 3-62 t;tINational Semiconductor LM 193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators General Description • • • • The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. Eliminates need for dual supplies Allows sensing near ground Compatible with all forms of logic Power drain suitable for battery operation Features • Wide supply 2.0V to 36V Voltage range ± 1.0V to ± 18V single or dual supplies • Very low supply current drain (0.4 mAl - independent of supply voltage • Low input biasing current 25 nA • Low input offset current ± 5 nA and maximum offset voltage ± 3 mV • Input common-mode voltage range includes ground • Differential input voltage range equal to the power supply voltage • Low output saturation voltage, 250 mV at 4 mA • Output .voltage compatible with TIL, DTL, ECL, MOS and CMOS logic systems Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TIL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators. Advantages • High precision comparators • Reduced Vas drift over temperature Schematic and Connection Diagrams .. Metal Can Package Dual-ln-L1ne Package .. O,",UT ... v' "-,,-,,,_ _-OUTPUll IIilVERnll •• PUT A IOI.IIIVERTI"1 .IIIUTA J ••• ••• • TD'VIHI TDPVIEW Order Number LM193H, LH193H/883', LM193AH, LM193AH/883, LM293H, LM293AH, LM393H orLM393AH See NS Package Number H08C NOIHNVflllnMl I....TI TUH/5709-1 Order Number LM193J/883', LM193AJ/883, LM393J, LM393AJ, LM393M, LM2903M, LM393N, LM2903J or LM2903N See NS Package Number J08A, M08AorN08E • Also available per JM3851 0/11202 3-63 IMRTII.IiPUTI LM193/LM293/LM393/LM2903 Absolute Maximum Ratings If Military/Aerospace speCified· deylcesare required, please contact the National Semiconductor Sales OffIce/Distributors for ayallabillty and specifications. (Note 10) 36V Supply Voltage, V+ Operating Temperature Range LM393/LM393A LM293/LM293A LM193/LM193A LM2903 Differential Input Voltage (Note 8) Storage Temperature Range Lead Temperature (Soldering, 10 seconds) 36V -0.3Vto +36V Input Voltage 780mW 660mW 510mW Continuous Electrical Characteristics (V+ == 5V, TA = 25·C, unless otherwise stated) 50mA LM293A, LM393A LM193A Conditions Min Typ c.> t + 260"C Soldering Information Dual-In-Line Package Soldering (10 seconds) 26O"C Small Outline Package 215·C Vapor Phase (60 seconds) Infrared (15 seconds} 220"C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount d~ces. ESD rating (1.5 kG in series with 100 pF) 1300V Input Current (VIN < -0.3V) (Note 3) Power Dissipation (Note 1) Molded DIP Metal Can Small Outline-Package Output Short-Circuit to Ground (Note 2) Psrameter O"C to + 70"C - 25·C to + 85·C -55·Cto + 125·C -40"Cto + 85·C -65·Cto + 150"C Max Min Typ Max LM193 Min Typ LM293, LM393 Max Min Typ LM2903 Max Min Typ Units Max Input Offset Voltage (Note 9) 1.0 2.0 1.0 .2.0 1.0 5.0 1.0 5.0 2.0 7.0 mV Input Bias Current IIN( + ) or IIN( - ) with Output In Linear Range, VCM = OV (Note 5) 25 100 25 250 25 100. 25 250 25 250 nA Input Offset Current IIN(+)-IIN(-)VCM = OV Input Common Mode Voltage Range V+ = 30V (Note 6) Supply Current Rl=oo 3.0 IV+=5V IV+=36V Voltage Gain Rl~15kG,V+=15V 50 25 V+ -1.5 0 0.4 1 1 2.5 200 5.0 50 50 v+ -1.5 0 0.4 1 1 2.5 200 3.0 50 25 V+ -1.5 0 0.4 1 1 2.5 200 5.0 50 50 V+ -1.5 0 0.4 1 1 2.5 200 5.0 50 nA V+ -1.5 V 0.4 1.0 rnA 1 2.5 0 25 rnA 100 VlmV 300 ns Vo = Wt01W Large Signal Response Time 300 VIN = TTL Logic Swing, VREF= 1.4V VRl=5V, Rl =5.1 kO Response Time VRl =5V, Rl =5.1 kO (Note 7) Output Sink Current VIN(-)=W, VIN(+)=O, VO:S:1.5V Saturation Voltage VIN(-)=W, VIN(+)=O,ISINK:S:4mA Output Leakage Current VIN(-)=O, VIN(+)=W, VO=5V 300 1.3 6.0 0.1 400 6.0 16 250 0.1 300 1.3 1.3 6.0 16 250 300 400 1.3 16 250 0.1 6.0 400 6.0 16 250 0.1 400 1.5 ,...s 16 rnA 250 0.1 400 mV nA Electrical Characteristics (V+ Parameter = 5V) (Note 4) LM183A Conditions Min Typ LM293A, LM383A Min Typ Max LM193 Min Typ LM293, LM383 Max Min Typ LM2903 Min Typ Max Units Max Input Offset Voltage (Note 9) 4.0 4.0 9 9 9 15 mV Input Offset Current IIN(+)-IIN(-), VCM=OV 100 150 100 150 50 200 nA Input Bias Current IIN( +) or IIN( -) with Output in Linear Range, VCM=OV(Note5) . 300 400 300 400 200 500 nA Input Common Mode Voltage Range V+ = 30V (Note 6) ; Max 0 V+-2.0 0 V+-2.0 0 V+-2.0 0 V+-2.0 0 V+-2.0 V 700 mV 1.0 1.0 p.A 36 36 V Saturation Voltage VIN(-)=1V, VIN(+)=O,ISINK~4mA 700 700 700 700 Output Leakage Current VIN(-)=O, VIN(+)=1V, Vo=30V 1.0 1.0 1.0 Differential Input Voltage Keep All VIN'S~OV (or V-, if Used), (NoteS) 36 36 36 400 Note 1: For operating at high temparalUAls, !he lM393/LM393A and LM2903 must be derated based on a 12SOC maximum junction temperature and a thermal resistance of 17rrCIW which applies for the device soldered In a printed clrcuH board, operating in a stili air ambient The LM193/LM193A1LM293/LM293A must be derated based on a 15O'C maximum junction temperature. The low bias dissipation and the "ON.QFF" characteristic of the outputs keeps the chip dissipation very small (Po 0<: 100 mW), provided the output transistors are allowed 10 saturate. Note 2: Short circuits frcm the output 10 Y+ can cause excessive heating and eventual destructicn. When conaldertng short circuits 10 ground, the maximum output current is approximately 20 mA independent of the magnHude of Y+. Note 3: This Input current will only exist when the voltage at any of the input leads is driven negative. HIs due to !he collector·base luneticn of the Input PNP transistors becoming forward biased and thereby acting as Input dioda clamps. In addlticn to this diode aeticn, there is aloe lateral NPN parssItic transistor aeticn on the IC chip. This transistor action can cause the output voltegas of the comparators 10 go 10 the Y+ voRage level (or 10 ground for a large overdrive) for the time duration that an Input is driven negative. This is not destructive and normal output states will re-establish when the input voRage. which was negative. again raturns to a value greater than -0.3Y. Note 4: Thasa specifications are limfted to - 55"Co<:TAO<: + 125"C. for the LM193/LM193A, With the LM293/LM293A all temperature specifications are limited to - 25"CO<:TAO<: + 8S"C and the LM393/LM393A temparature specifications are limited to rrCo<:TAO<:+7r1'C. The LM2903 is limited to -4O"Co<:TAo<:+85"C. Note 5: The direction of the input current is out of the IC due 10 the PNP Input stage. This current Is eesentiaIly constant, independent of the state of the output oe no loading change exists on the reference or input lines. Note 6: The input cornmon-mode voRage or eHher input signal voHage should not be allowed to go negative by more than 0.3Y. The upper end of the common-mode voHage range is Y+ -1.5Y at 2S"C. but eHtIer or both Inputs can go to 38V without damage. Indepandent of the magnHude of Y+ . Note 7: The response time specified Is for a 100 mY Input step with 5 mY overdrive. For larger overdrive signals 300 ns can be obtained. see typical performance characteristics section. Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the cornmon-mode range. !he comparator will provide a proper output state. The low input voltage state must not be less than -0.3V (or 0.3Y below the magnHude of the negative power supply. nused). Note 9: At output switch point, Yo"'1.4Y. Rs=on with Y+ from 5Y 10 aoy; and over the tuft Input cornmon-moda range (OY 10 Y+-1.5Vl. at 25"C. Note 10: Refer 10 RETS193AX for LM193AH mifllary specifications and 10 RETS193X for LM193H mirllary specifications. --- - - - - - ---- - -------- to"W'/t6tW'/t6~W'/t6~W' Typical Performance Characteristics LM193/LM293/LM393. LM193A1LM293A/LM393A Input Curr~mt Supply Current 1.0 C A I.' ~ I-T~=~c :,....;,-- i!i e i I +- IA U ... ~ a il! .. 2 ili I-- TA '+'ZI'C'- I-- CD i! 20 ~ out I I 10 f-h"Y.~o-l:-I-:-t--+--I 0.•' I '.001 "'''--'--'-.....L--'_'---'--' 0.11 0.1 10 1.0 100 38 y+ -SUPPlV VOLTAGE eVocl 10 - OUTPUT SINK CURRENT emAI Response Time for Various Input Overdrive_Positive Transition ... &.0 I '" INPUT OVERDRIVE = 100 mV 5•• I II 6:; 4.0 I 5IRV >- 3.0 I Z.O ~ 1.0 U mV' I.'UT OVERDRIVE 101 .. r-.t--+-+-+-+.,.-'j'W+-+ ~ ( II 20 Response Time for Various Input Overdrlve&-Negatlve Transition I a f y+ - SUPPlV VOLTAGE Nocl 21i~ 1.0 0.1 f--+-+-+-7I!~'----l-;-,:+--I !!i T '+121'~~ \ ' TA.-+2S'C TA =+70·C._ CD 3D ~ ~ RLi- 21 • Output Saturation Voltage r-'T"""...,--,--,.--.-.........-, !li I ~ I I TA 10 1 V'NtcMl .. Voc AINCMJO!!I.n T1·-~·c 0- T... ·+WC '0 I I J J I .s &0 .... ... ~ fO!!! ~H'C ...L , 0- 10 TA·-t!i·U- I"""" oJ H-'~'= . ....- =:: - 1.& 1.1 co ~l > ~2S'f- ~ 100 III ~~~= r- -~A '~5'~-' !;> ~ ~ 2.1 1.5 '1 "oJ I I I TA "- to I I 1.5 TIMliIodocl '.' I I 1.0 1.5 TIME .....1 2.0 TL/H/5709-3 Typical Performance Characteristics LM2903 . Input Current Supply Current 10 ID 1.2 ! .. .. e ... ~ ID e 0ill 1.' fl TA· ...rc e .... 1 i D.I Output Saturation Voltage r--...,---r--,...,""'" i TA'goc 41 ZI j 1.1 10 20 •• 4D 38 V'.sumv VOlTAGEeVocl &1D1~~-'-_.....L 10 ZI 38 4U V'. SUPPlV VOLTAGE eVocl Response Time for Various Input OVerdrive_Negative Transition 1.0 1.1 i! =- i~ to a 3.0 Z.D i> " U 1?=....-'= 5.8 mV· INPUT OVERDRIVE 2O:"~ --- 3.0 !;:I 2.0 ~ 1.0 :i! to - "oJ .. I I I ~S ~A }t JI--j 25·k 0.5 1.1 1.5 i 2.1 TIMEc.socI J 100 10 '0. OUTPUT SINK CURRENT ConAl ... oJ _ _L-_~ 0.1 8.111 100 &8 Response Time for Various Input Overdrlv.-posltive Transition " INPUT OVERDRIVE -100 mV I I II " II amV 21mV 1?...._ I" II I-~A'12S'~- ' •• I '1 I I u.s ". . 1.0 I I 1.5 2.8 TIME c.-I TL/H/5709.4 3-66 Application Hints The differential input voltage may be larger than V + without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than -0.3 Vee (at 25°C). An input clamp diode can be used as shown in the applications section. The LM193 series are high gain, wide bandwidth devices which, like mos1 comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capaCitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to < 10 kn reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to str~y feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V + terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V+) and the fJ of this device. When the maximum current limit is reached (approximately 16 mAl, the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60n rSAT of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents. All pins of any unused comparators should be grounded. The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2.0 Vee to 30 Vee. It is usually unnecessary to use.a bypass capacitor across the power supply line. Typical Applications (V+='5.0Vee) Basic Comparator .v.pl. . . LMlUA +VIIlf Driving CMOS Driving TTL .. v.. +UYIIC Yo - TUH/5709-2 3-67 Typical Applications (Continued) Squarewave Oaclilator . .. ... ,oa ... ~IlI ,.,...., . y' Crystal CO!'trolled O~lIIator Pulse Genera,tor .. ,." '.'4. . ,. ... ,...... ~n.n rf ,.. Y. C>-"I-..,.,.+--w....--I ,... "- 'For large ratios 01, Rl/R2. 01 can be omitted, Two-Decade High-Frequency yeo .. , ... "of ,. ... I• fllGUlICV COITIIOI. ..... WlLTO • . .. ,... +250 mVee:S:Vc:S: +50 Vee 700 Hz:s:fo:S:l00 kHz > ..........,-0 ...... , ..... -:r ,.. ..I... V'= +30 vee . y' ~--~----------~~ OUTJIIU TLlH/5709-5 Basic Comparator Non-Inverting Comparator with Hysteresis V' V' +V ••• 3./111 o-----of lk > ....I-iOVo II. TL/H/S709-6 TLlH/5709-9 Inverting Comparator with Hysteresis V' >",--oVo 1M V· OO-'lN""'..... 1M 1M TLlH/S709-10 3-68 Typical Applications (Continued) Large Fan-in AND Gate Output Strobing V· v> R4 a >~~_OVo STROlE INPUT ~=r ".. ",. * WITHOUT OR LOGIC GATE PULL·UP RESISTOR A o-+lH~---f 'O-"'~ TLlH/5709-11 AND Gate 00-...","", V· I ALL DIODES TUH/5709-14 'NI'4 Limit Comparator A • ,.... v;:r - "0" "'" I. ZRs C '* +VREFHI TLlH/5709-12 R. ORGate V· - ZRs +VREF LOW 3k A • v;:r ..... ", . TUH/5709-15 ,- Comparing Input Voltages of Opposite Polarity 'Mk '00k ,10k +VIN1 C ,tIGII S.lk -VIN, ":' TUH/5709-13 3-69 TL/H/5709-16 ~ ~ ~ r-----------------------------------------------------------------------------, Typical Applications (Continued) Zero Crossing petector· (Single Power Supply) ORing the Ol/tputs .,,' ~ V' v' I :! i:! 3.•' ~ ..... :! TUH/5709-17 TLlH/5709-21 One-8hot Multlvlbriltor . BI-Stable Multlvlbrator v' v' :=+ ~. PF-1~ . I. 1&11 1II1II ...'-M-.. 1II1II v. I ....::(NEV. Ie', 11. ~. • 11liii0 Ro-~~..----~ TUH/5709-24 TUH/5709-22 One-8hot Multlvlbrator with Input Lock Out y' I. -fE f4V . I", • 1M I. I. .... y' ~. - 6211 to I, TLlH/5709-23 3-70 Typical Applications (Continued) (V+ =Vocl Time Delay Generator or aDak 'ill 'Ik Uk illM 'Ik ~:rL to " -VON v, INPUT GATING SIGNAL Uk '11M ... or ----------a--- t ~'...T. Ve , to 11 I TUH/5709-7 Split-Supply Applications (V+ = + 15 Voc and V- = -15 VOC) Zero Crossing Detector MOS Clock Driver v' Y' 1111 '" I.. " .... z.• Yo 2AJ1 ....--t-t ~........- - o ... ~ Uk ZII ~""'-o .. Comparator With a Negative Reference v' TUH/5709-8 3-71 ~ ..... ~ r----------------------------------------------------------------------------, f}1National Semiconductor LM612 Dual-Channel Comparator and Reference General Description Features The dual-channel comparator consists of two individual comparators, having an input voltage range that extends down to the negative supply voltage V-. The common open-collector output can be driven low by either half of the LM612. This configuration makes the LM612 ideal for use as a window comparator. The ,input stages of the comparator have lateral PNP input transistors which maintain low input currents for large differential input voltages and swings above V+. The 1.2V voltage reference, referred to the V - terminal, is a two-terminal shunt-type band-gap similar to the LM185-1.2 series, with voltage accuracy of ± 0.6% available. The reference features operation over a shunt current range of 17 /LA to 20 mA, low dynamic impedance, and broad capacitive load range. As a member of National's Super-Block™ family, the LM612 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance. COMPARATORS • Low operating current • Wide supply voltage range .. Open-collector outputs • Input common-mode range • Wide differential input voltage 300 p.A 4V to 36V V- to (V+ - 1.8V) ±36V REFERENCE • Fixed output voltage • Tight initial tolerance available • Wide operating current range • Tolerant of load capacitance 1.24V ± 0,6% (25°C) 17 p.A to 20 rnA Applications • Voltage window comparator • Power supply voltage monitor • Dual-channel fault monitor Connection Diagram 1 r!- \J ~ OUTPUT v+ .! ~ REFERENCE .1. v- rL 4 TlIHI11058-1 Top View Ordering Information For information about surface-mount packaging of this device, please contact the Analog Product Marketing group at National Semicon,ductor Corporation headquarters. Reference Tolerances ± 0.6% at 25°C, 80 ppm/DC Max Temperature Range Military Industrial -55"C:S: TJ:S: +125"C -40"C:s: TJ +85"C LM612AMN LM612AIN LM612MN 3-72 NSC Package Number 8-Pin Molded DIP N08E' 8-Pin Ceramic DIP JOBA LM6121N B-Pin Molded DIP NOSE LM6121M 8-Pin Narrow Surface Mount M08A LM612AMJ/883 (Note 13) ±2.0% at 25°C, 150 ppm/DC Max Package Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, pleaae contact the National Semiconductor Sales Office/Distributors for availability and specifications. Voltage on Any Pin Except VR (referred to V- pin) 36V(Max) (Note 2) -0.3V(Min) (Note 3) Current through Any Input Pin and VR Pin Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range Maximum Junction Temperature Thermal Resistance, Junction-to-Ambient (Note 5) 100"C/W N Package Soldering Information N Package Soldering (10 seconds) ESD Tolerance (Note 6) 26O"C ±1 kV ±20mA Operating Temperature Range ±36V (Note 4) -65°C';; TJ';; +150"C -40"C';; TJ ,;; +85°C -55°C,;; TJ ,;; + 125°C LM612AI, LM6121 LM612AM, LM612M 150"C Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = V+ 12, IR = 100 p.A, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the Operating Temperature Range. Parameter Symbol Conditions Typical (Note 7) LM612AM LM612AI Limits (Note 8) LM612M LM6121 Limits (Note 8) Units COMPARATORS Is Vos Vos Total Supply Current 4V,;;V+ ';;36V,RL= 15kO Offset Voltage over VCM Range OV,;; VCM ,;; (V+ -1.8V) V+ = 30V, RL = 15 kO Average Offset Voltage Drift Ie Input Bias Current Av fA ISINK 00, Offset Voltage over V+ Range IJ..Vos IJ..T los V + Current, RLOAD = 3V,;; V+ ,;; 36V 250 300 1.0 3.0 5.0 2.0 6.0 7.0 1.0 3.0 5.0 US 6.0 7.0 5 25 35 8 30 40 0.2 4 4 0.3 5 5 500 50 50 100 Large Signal Response Time V+IN = 1.4V, V-IN = TTL Swing, RL = 5.1 kO 2.0 Output Sink Current V+IN = OV, V-IN = 1V, VOUT = 1.5V 20 10 10 13 8 8 Output Leakage Current V+IN = tV, V-IN = OV, VOUT = 36V 1.5 mVMax mVMax mVMax mVMax nAMax nAMax nAMax nAMax V/mVMin VlmV p.s p.s 2.8 1.0 0.8 2.4 0.5 0.5 0.1 10 10 0.2 p.AMax p.AMax p.VloC RL = 10 kO to 36V, 2V ,;; VOUT ,;; 27V VOUT = 0.4V IL 250 300 15 Input Offset Current Voltage Gain 150 170 rnA Min rnA Min rnA Min mAMin p.AMax p.A ~ I I I I 3-73 Electrical Characteristics These specifications apply for V- = GND = OV, Y+= 5V,VCM ;;. VOUT '" V+'i2; IR = 100 pA unless otherwise specified. Limits in standard typeface are for TJ = 25"C; lir(lits in.!Joldface type apply \>ver the Operating Temperature Range. (Continued) '. Symbol Parameter Typical (Note 7) Conditions LM612AM LM812AI Limits (Note 8) LM812M LM8121 Limits (Note 8) .',' " Units VOLTAGE REFERENCE (Note 9) VR IlVR Reference Voltage 1.244 (Note 10) AT Average Drift with Temperature IlVR kH Average Drift with Time IlVR IlTJ HystereSiS (Note 11) IlVR IlIR VR Change with Current VR[I00 ,..Al - VR[17 ,..Al 18 TJ = 40"C TJ = ,150"C 150 ppm/kH ppm/kH 3.2 ~yrc 0.05 1 1 0.1 1.1 1.1 5 5 5.5 0.2 0.6 0.56 13 VR Change with V+ Change VR[V+ VR[V+ = 5V] = 5V] - VR[V+ -VR[V+ = 36'11 = 3V] BW = 10Hzto10kHz ppm/DC MaX 400 1000 5.5 IlVR lIMi,; YMaJ.( (±2%) 1.5 Il VRll0 mA to 0.1 mAl/9.9 mA IlVR[I00,..A to 17 ,..Al/83 p.A Voltage Noise 1.268~ 2.0 Resistance en 80 ' 1.2191 VR[10 mAl - VR[100,..Al (Note 12) R ;.v+, 1.2365 1.2515 (±0.6%) ,,0.56, 1$, mVMax mVMax mVMax mVMax o Max o Max 0.1 1.2 1.2 ,'mVMax 0.1 1.3 1.3 mVMaX 0.01 1 1 0.01 1.5 1.5 mVMax mVMax 30 .. ",VRMS Note 1: Absolute maximum ratings Indicate limits beyond which dsmage to the component may occur. Electrical specifications do not apply when oparating the device beyond its rated operating conditions. Note 2: Input voltage above V+ Is not allowed. As long as one Input pin voltage remains Inside the common-mode range, the comparator willdelivar the correct output: Mote 3: More accurately. " is excessive current flow, with resulting excess heating, thet limits the voltages on all pins. When any pin Is pulled a dl"'!B drop below V-, a par8sltlc NPN transistor turns ON. No latch·up will occur as long as the current through that pin remains below the Maximum Rating. Operation Is undefined and unpredictable when any perasltic diode or transistor Is conducting. Note 4: Shorting the Output to v- will not cause power disslpeUcn, so it may be cOntinuous. However, shorting the Output to any more posllive voltage ~ncluding V+), will cause 80 mA (typ.) to be drawn through the output transistor. TIlls current multiplied by the applied voltage Is the power dissipation in the output transistor. If this total power causes the junction temperature to exceed 15O"C, degraded rellsbilny or destruclion of'the device may occur. To determine junction temperature, see Note 5. Mote 5: Junction temperature may be calculated using TJ = TA + Po 9JA. The gl~n thermal resistance' is worst-<:ase for packages In sockets in sUll air. For packages soldered to copper·cled board with disslpetlon from one comperator or reference output transistor, nominal 8JA Is 9(J'C/W for the N package. ",ote 6: Human body model, 100 pF discharged through a 1.5 kG resistor. Note 7: Typical values in standard typeface are for TJ = 25'C; values In boldface type apply for the full operating temperature range. These valuas represent the most likaly parametric norm. Note 8: All limits are guaranteed for TJ = 25'C (standard type face) or over the full operating temperature range (bold type t .....). Note 9: VR is the reference output voltage, nominally 1.24V. Note 10: Avarage reference drift is calculsted from the measurement of the reference voltsge at 25'C and at the temperature extrames. The drift, In ppml"C, is foe. AVRIVRI25"Cl • ATJ, where AVR is the lowest value subtracted from the highest, VRI25"Cl is the value at 25'C, and ATJ is the temperature range. This paramefer is guaranteed by design and sample teating. Note 11: HysteresiS Is the change In VR caused by a change In TJ, _r the reference has been "dehysterlzed". To dehysterize the reference; that Is minimize the hystereSiS to the typical value, its juncUcn temperature should be cycled in the following pettem, spiralling in toward 25'C: 25'C, 85iC, -4O'C, 7C1'C, O'C, 25'C. Note 12: Low contact resistance is required for accurate measurement. ' Note 13: A military RETS 612AMX electrical test specfllcaUon Is available on request. The rnilhary screened parts can also be procured as a Standard Military Drawing. 3-74 Simplified Schematic Diagrams Comparator ~------------------------~--~~--~--------------~v+ 7k 39k .. ~--~~~------~~~--~~------~----~--~----~-- ------~--~vTUH/11058-2 Reference RErERENCE OUW~ Bias []----_1~~----~--_1~--------~._, TUH/11058-3 3·75 • ... ,---------------------------------------------------------------------------------, Typical Performance Characteristics (Reference) ~ q) :!l TJ = 25°C, V- = OV, unless otherwise noted Reference Voltage .Drift vs Time Reference Voltage V8 Temp. 1.28 i-"~ Accelerated Reference Voltage Drift VB Time 1.224 0.10 -- .... .. 0.D1I ,0.D1I gOll' -;--. V l.,..oo 1- .... r--.f:: :. 1102 a.: ,~ ......r--, -QII6 ...... ~ 1.23 TJ = 4O"C ~ ~ -0.10 o 1.214 o 2lIO lIDO 780 l00012l101l1D017802POO 11M£ (Hou..) JUIICIION lDIPERAlURE (c) Reference Voltage vs Curtent and Temperature 2.0 !: .1~ r+- _-55"C 25"C 125"C ~ 2 0.2 -1 20 -10 REFERENt[ CURRENT (mA) c ~ I 10 0.: f-'~ if 400 SOD f -~ 1~ . ... - ~~ -~~ -0.5 -1.0 10 J 'j/ o -en) Reference Small·Slgnal Impedance vs Frequency 10000 ~ I ICIII !rA!Y ,. o.s vs .FrequenCY§1111 10000 II 0.01 0.001 1.0 ~ Reference Noise Voltege 1-55~T SI~"C I----Iii z 0.1 J I y;: ~ 1.5 REfERENt[ CURRENT (mA) Reference AC Stability Range 100 ~-we -0.1 to.ool 300 Reference Voltege Change with Supply Voltage Step 5 -511U..----JL...-----JL...-----JL...----' 200 100 llME II1ASEO AT lSO"C (IVI) Reference Voltage vs Reference Current 10r-~r-~r-~r-~ 1102 1.218 -QII6 -60-.40-20 0 20 40 60 60 100120140 D.OO2 1.220 11.218 m -..., - ~ 1.222 1 .5. R- - 1,0-1 e 0 -- J -- i5 Iii" 0.001 0.01 0.1 1 .10 100 10 100 2 ~ .I ~ 1 ~Ea - 125cc 1 200 M(po) 300 10000 10 400 o J I,L .2S' 100 200 300 400 500 800 700 lIME (PO) 100 1000 FJEQUDICY (kHz) Reference Step Response for 100 p.A - 10 mA Current Step Reference Voltege with 100 - 12,...A Current Step Reference Power-Up Time 100 1000 FREQUENCY (Hz) REfERENCE SHUNT cURRENT (mA) 3 !: 1 i !II -2 >1!. -3 ,- ,- I' b I -4 -5 o R,,-AV.. I:""" A~ .. 0.23 .,25"C I,STEPII hoopA lI 'OmA I J II 100 200 300 400 500 800 700 WE (PO) TLlHI11068-4 3-76 Typical Performance Characteristics (Comparators) TJ = 25'C. V+ = 5V. V- = OV Input Bias Current vs Common-Mode Voltage Supply Current vs Supply Voltage 300 ,..... ro:;25OC !200 !z ! ~ ill 50 I +125OC 250 20 1/ :t15V SUPPLIES 15 Y -55OC I V 50 f- - ' -10 ~ ~ 250C 100 15 20 25 I j, ~5OC +25OC -15 V- 10 30 ......-r r -20 10 I-- I +1250(: 1250C 150 o o Input Current vs Differential Input Voltage I '7 -20 -15 20 30 40 50 60 70 -10 -5 15 10 SUPPLY VOLTAGE (V) INPUT VOLTAGE REFERRED TO V- (v) DIFFERENTIAL INPUT VOLTAGE (V) Output Saturation Voltage vs Sink Current Small-8lgnal Response Time_Inverting Input, Negative Transition Small-slgnal Response Time_Inverting Input, Positive Transition •• I I Ir I 1\ \\ " '~k . f', _ o +25OC \ \\ 1 +1250(: I I 5• '~k • .;Y IN ~1-55OC -55OC ~'AI - I +25OC +125OC w ~ +smV ~ -5mV i 0.1 _ _ o.m~-L-L~~-L~~-L~ 0.0 o.s 1.0 1.5 2.D 2.5 3.0 2.D 1.0 TIME (po) OUTPUT VOLTAGE (V) Small-8lgnal Response Tlmee--Non-Invertlng Input, Positive Transition •• . •• \ I, 2.D 1 3D LO ~ Larg~gnalResponse ~ ~£ s -15 " . - " '~k -15.; -55OC ~ 15 !i!s S ~ oS !i!£ 0 s -5 !!5 !!5 o.a liME (p.) 1.2 1.6 15' .'~k .-15'- ; " r, +125OC ~ 0 I I J I I V~ -55OC/~ +25OC .". ." +125'C -55OC +25OC -15 15' .. ~~ . " o.a D.4 -15V .; 1.2 1.6 TIME (p.) ~/ s~ +125OC D.4 ~ Large-8lgnal Response Tlmee--Non-Invertlng Input, Positive Transition 15V +25OC ~ 3D TIME (p.) Tlm.-Jnvertlng Input, Negative Transition- \\1\ 2.D 3D Large-8ignal Response TI_lnverting Input, Positive Transition r.JI TINE (1'.) 0 .- f' '~k " \ 2.D TIME (1") Small-8lgnal Response Tlm.-Non-Invertlng Input, Negative Transition .- ;", ~ '~k LO LO 3D Large-8lgnal Response Tlmes-Non-Invertlng Input, Negative Transition IS' \\1\ +25OC .\ +125OC " . '~k :.•• -'soc f' +5 0 -5 o.a D.4 1.2 1.6 TIME (p.) TUH/ll058-6 3-77 • Nr--------------------------------------------------------------------, ..CD Application Information !I CapaCitors in parallel with· the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from 20 p.A to 3 mA the reference is stable for any value of capaCitance. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering when necessary. VOLTAGE REFERENCE Reference Biasing The voltage reference is. of a shunt regulator topology that models as a simple zener diode. With current IR flowing in the "forward" direction there is the familiar diode transfer function. IR flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. d 17. Reference Hysteresis ~A:5IR:520mA The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the datasheet for any given device. Do not assume that no specification means no hysteresis. Cathode VR = 1.24V COMPARATORS Either comparator or the reference may be biased in any way with no effect on the other sections of the LM612, except when a substrate diode conducts (see Electrical Characteristics Note 3). For example, one. Qr both inputs of one comparator may be outside the input voltage range limits, the reference may be unpowered, and the other comparator will still operate correctly. The inverting input of an unused comparator should be tied, to V":" and the non-inverting tied toV+. Anode committed to VTL/H/11058-8 FIGURE 1. 1.24V Reference is Developed between Cathode and Anode; Current Source IR is External The reference equivalent circuit reveals how VR is held at the constant 1.2V by feedback for a wide range of reverse current. Cathode = vR Hysteresis Any comparator may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresiS, or positiVe feedback, as shown in Figure 1.24V 7V ! 17 JlA 4. V+ Anode = VTL/H/11058-9 FIGURE 2. Reference Equivalent Circuit To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage to the Reference Output pin. Varying that voltage, and so varying IR' has small effect with the equivalent series resistance of less than an ohm at the higher currents; Alternatively, an active current source, such as the LM134 series, may generate IR. TUH/11058-11 FIGURE 4. Rs and RF Add Hysteresis to Comparator The amount of hysteresiS added in Figure 4 is _ VH - V + Rs X (RF + Rs) -;ZV+ X Rs forRF» Rs RF A good rule of thumb is to add hystereSiS of at least the maximum specjfied offset voltage. More than about 50 mV TUH/11058-10 FIGURE 3_ 1.2V Reference 3-78. Application Information (Continued) of hysteresis can substantially reduce the accuracy of the comparator, since the offset voltage is effectively being increased by the hysteresis when the comparator output is high. It is oiten a good idea to decrease the amount of hysteresis until oscillations are observed, then use three times that minimum hysteresis in the final circuit. Note that the amount of hysteresis needed is greatly affected by layout. The amount of hysteresis should be rechecked each time the layout is changed, such as changing from a breadboard to a P.C. board. The guaranteed common-mode input voltage range for an LM612 is V- ,;;; VCM ,;;; (V+ - 1.8V), over temperature. This is the voltage range in which the comparisons must be made. If both inputs are within this range, the output will be at the correct state. If one input is within this range, and the other input is less than (V- + 32V), even if this is greater than V + , the output will be at the correct state. If, however, either or both inputs are driven below V-, and either input current exceeds 10 /lA, the output state is not guaranteed to be correct. If both inputs are above (V + - 1.8V), the output state is also not guaranteed to be correct. Output Stage The comparators have a common open-collector output stage which requires a pull-up resistor to a positive supply voltage for the output to switch properly. When the internal output transistor is off, the output (HIGH) voltage will be pulled up to this external positive voltage. Input Stage The input stage uses lateral PNP input transistors which, unlike those of many op amps, have breakdown voltage BVEBO equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages. To ensure that the LOW output voltage is under the TIL-low threshold, the output transistor's load current must be less than 0.8 mA (over temperature) when it turns on. This impacts the minimum value of the pull-up resistor. Typical Applications v+ 33011 1k 39k /2.;f"ON for V+ 2: S.SV or 2.0V S V+ S 4.0V 6B.7k 20k >-.....- Altarnat. Logic Output: Low for 4.0V S V+ S S.SV TL/H/ll058-12 Power Supply Monitor with Indicator • 3-79 I!INational Semiconductor LM613 D.ual. Operational Amplifiers, Dual Comparators, and Adjustable Reference General Description Features The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems. Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-made-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (10 typical), excellent initial. tolerance (0.6%), and the ability to be programmed from 1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems. As a member of National's Super-BlockTM family, the LM613 is a space-saving monolithic alternative to a multichip solUtion, offering a high level of integration without sacrificing performance. OPA.-P 300 pA • Low operating current (Op Amp) 4Vto 36V • Wide supply voltage range V- to (V+ ...: 1.8V) • Wide common-mode range ±36V • Wide differential input voltage • Available in plastic package rated for Military Temp. Range Operation REFERENCE • Adjustable output voltage • Tight initial tolerance available • Wide operating current range • Tolerant of load capaCitance 1.2V to 6.3V ±0.6% 17 pA to 20 mA Applications • • • • Transducer bridge driver Process and mass flow control systems Power supply voltage monitor Buffered voltage references for AID's Connection Diagrams E Package Pinout ~~~ 1 ..!. COMPARATOR 1 v+ .! .J! Ot' AMP.! 1 rEEDBACK 8 ~~ t!! f! COMPARATOR (I) ~ 13 II. v_ _IN Comp (I) !l v- .!lOt' AMP !.!!. _IN Amp (2) -IN Amp (2) !..CATHODE Top VI_ Comp ..IN "'IN Comp CINnp Out TLlH/8226-1 c.mp Out (4) (I) (.) •••••• 3 2 I 20 II 181 .5 .7•• I I 171 _IN Comp (.) 1·1 v- -.••••••• lsi I 10 II Out F.... ~;f Baok n 12 _IN Amp (3) I. ~ -IN Amp (3) Coth- Out ode ~~f Ordering Information Reference Tolerance & Vos ±0.6% 80 ppm/oC Max. Vos:S; 3.5mV ±2.0% 150 ppml"C Max. Ves :s; 5.0 mV Max. TLlH/9226-48 Temperature Range Military -55"C:s; TA:S; +125"C Industrial Commercial -40"C:s; TA :s; +85°C O"C :s; TA:S; +70"C Package NSC Drawing LM613AMN LM613AIN - 16-Pin Molded DIP N16E LM613AMJ/883 (Note 14) - - 16-Pin Ceramic DIP J16A LM613AME/883 (Note 14) - - 20-Pin LCC E20A LM613MN LM6131N LM613CN 16-Pin Molded DIP N16E - LM6131WM 16-PinWide Surface Mount M16B 3-80 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, plea.. contact the National Semiconductor Sales Office/Distributors for availability and specifications. Voltage on Any Pin Except VR (referred to V- pin) (Note 2) 36V(Max) -0.3V(Min) (Note 3) Current through Any Input Pin & VR Pin ±20mA Differential Input Voltage Military and Industrial ±36V ±32V Commercial Storage Temperature Range -65°C ~ TJ ~ +150"C 150"C Maximum Junction Temperature (Note 4) Thermal Resistance, Junction-to-Ambient (Note 5) N Package 100"C/W 150"C/W WMPackage Soldering Information (10 Seconds) N Package 260"C 220"C WMPackage ±1 kV ESD Tolerance (Note 6) Operating Temperature Range LM613AI, LM613BI LM613AM, LM613M LM613C -40°C to +S5"C - 55°C to + 125°C O"C ~ TJ ~ +70"C Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = 2.5V, IR = 1oo"A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the Operating Temperature Range. Symbol Is Vs Parsmeter Total Supply Current Typical (Noten Conditions RLOAD = 4V ~ V+ 00, ~ 36V (32V for LM613C) Supply Voltage Range LM613AM LM613AI Limits (NoteS) LM613M LM6131 LM613C Limits (NoteS) 450 940 1000 550 1000 1070 2.2 2.S 2.S 2.8 3 3 46 36 32 43 38 32 Units /LA (Max) /LA (Max) V (Min) V (Min) V (Max) V (Max) OPERATIONAL AMPLIFIERS VOS1 V0S2 Vos Over Supply Vos Over VCM VOS3 AT Average Vos Drift fa Input Bias Current los 4V ~ V+ ~ 36V (4V ~ V+ ~ 32VforLM613C) VCM = OV through VCM = (V+ - 1.SV), V+ = 30V, V- = OV (NoteS) 1.5 3.5 5.0 2.0 8.0 7.0 1.0 3.5 5.0 1.5 8.0 7.0 mV(Max) mV(Max) /LV/oC (Max) 15 Input Offset Current mV(Max) mV(Max) 10 25 35 11 30 40 0.2 4 4 0.3 5 5 nA(Max) nA(Max) nA(Max) nA(Max) IOS1 AT Average Offset Current RIN Input Resistance Differential CIN Input CapaCitance Common-Mode 6 pF e" Voftage Noise f = 100Hz, Input Referred 74 nV/JFfi. In Current Noise f = 100 Hz, Input Referred 58 fAlJFfi. CMRR Common-Mode Rejection Ratio V+ = 30V,OV ~ VCM ~ (V+ - 1.SV) CMRR = 20 log (AVCM/AVoS> PSRR Power Supply Rejection Ratio 4V ~ V+ ~ 30V, VCM = V+ 12, PSRR = 20 log (AV+ Nos> Open Loop Voltage Gain RL 5V Av 4 pAloC 1000 MO 95 SO 75 70 80 75 110 SO 75 100 75 70 = 10 kO to GND, V+ = 30V, 500 100 94 ~ SO 40 40 VOUT ~ 25V 3-81 dB (Min) dB (Min) dB (Min) dB (Min) V/mV (Min) • Electrical Characteristics These specifications apply for V- = GND = OV, V+=5V, VCM = VOUT = 2.5V, IR = 100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25°,C; limits in boldface type apply over Operating Temperature Range. (Continued) Symbol Parameter Typical (Note 7) Conditions LM613AM LM613AI Limits (Note 8) LM613M LM6131 LM613C Umits (Note 8) Units OPERATIONAL AMPLIFIERS (Continued) SR GBW Slew Rate Gain Bandwidth V + = 30V (Note 9) 0.70 0.55 0.50 0.85 0.45 0.45 CL = 50pF 0.8 0.5 V01 Output Voltage Swing High RL = 10 kOto GND, V+ = 36V (32V for LM613C) V+ - 1.4 y+ - 1.8' V02 Output Voltage Swing Low RL = 10kOtoV+, V+ = 36V (32V for LM613C) VY- lOUT Output Source Current VOUT = 2.5V, V+IN = OV, V-IN = -0.3V ISINK ISHORT Output Sink Current Short Circuit Current Vlp.s VOUT = 1.6V, V+IN = OV, V-IN'= 0.3V + 0.8 + 0.9 MHz MHz " V+ - 1.7 Y+ - 1.9 VY- + 0.9 + 1.0 V+ - 1.8 Y+ - 1.9 'V (Min) V (Min) + 0.95 + 1.0 V (Max) V (Max) mA(Min) mA(Min) VY- 25 20 16 15 13 13 17 14 13 9 8 8 VOUT = OV,V+IN = 3V, V-IN = 2V 30 50 50 40 80 80 VOUT = 5V, V+IN = 2V, V-IN = 3V 30 60 70 32 80 90 4V ~ V+ ~ 36V(32VforLM613C), RL = 15kO 1.0 3.0 2.0 8.0 OV ~ VCM ~ 36V V+ = 36V, (32V for LM613C) 1.0 3.0 5.0 1.5 8.0 ' '7.0 mA(Min) mA(Min) mA(Max) mA(Max) mA(Max) mA(Max) COMPARATORS VOS Offset Voltage Vos VCM Offset Voltage overVCM Vos aT Average Offset Voltage Drift Ie Input Bias Current los Av tr ISINK IJ-EAK mV(Max) mV(Max) mV(Max) mV(Max) 15 Input Offset Current Voltage Gain 5.0 ' " 7.0 p.VI"C (Max) 5 25 35 8 30 40 0.2 4 4 0.3 5 5 nA(Max) nA(Max) nA(Max) nA(Max) RL = 10 kO to 36V (32V for LM613C) 2V ~ VOUT ~ 27V 100 V/mV V/mV Large Signal Response Time V+IN = 1.4V, V-IN = TTL Swing, RL= 5.1 kO 1.5 p.s 2.0 Output Sink Current V+IN = OV, V-IN = W, VOUT = 1.5V 13 8 8 VOUT = 0.4V 2.8 1.0 0.8 2.4 0.5 0.5 0.1 10 ,10 Output Leakage Current 500 20 V+IN,= ,W, V-IN = OV, VOUT = 36V (32V for LM613C) 3-82 0.2 p.s 10 10 " mA(Min) mA(Min) mA(Min) mA(Min) p.A(Max) p.A (Max) r- Electrical Characteristics These specifications apply for VIR = GND = OV, V+ = 5V, VCM = VOUT = 2.5V, 100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for T J = 25'C; limits in boldface Symbol type = 5; .... Co:! apply over Operating Temperature Range. (Continued) Parameter Conditions LM613M LM6131 Typical (Nots 7) LM613AM LM613AI Limits (Note 8) 1.244 1.2365 1.2191 V (Min) 1.2515 (±0.6%) 1.2689 (±2%) V (Max) 80 150 LM613C Limits (Note 8) Units VOLTAGE REFERENCE VR aVR Voltage Reference (Note 10) Average Temp. Drift (Note 11) Hysteresis (Note 12) VRChange with Current VR(100 pAl - 10 aT aVR 3.2 aT aVR aiR VR(10 mAl (Note 13) R Resistance VR(17 pAl VR(100 pAl aVR(10 -+ 0.1 mAl9.9 mA a VR(l00 -+ 17 1£A)/83p.A ~ aVRO VRChange with High VRO VR VR Change with aV+ V ANODE Change en FEEDBACK Bias Current VR Noise p.VI"C 0.05 1 1 0.1 1.1 1.1 mV(Max) mV(Max) 1.5 5 5 2.0 5.5 5.5 mV(Max) mV(Max) 0.2 o.e 0.5e 13 0.5e 13 o (Max) o (Max) VR(Vro - Vrl - VR(Vro - 6.3VI (5.06V between Anode and FEEDBACK) 2.5 7 7 2.8 10 10 mV(Max) mV(Max) VR.I"+ (V = 32 0.1 1.2 1.2 mV(Max) 0.1 1.3 1.3 mV(Max) 0.01 1 1 0.01 1.5 1.5 mV(Max) mV(Max) m- VR~+ VR(V+ IFB ppml"C (Max) = 5V) - 36V) or LM 13C) - VR(V+ = 3V) VANODE S; VFB S; 5.06V 10 Hz to 10 kHz, VRO = 22 35 50 2. 40 55 30 VR nA(Max) nA(Max) P.VRMS Note 1: Absolute maximum ratings indicate IimHs beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond Rs rated operating conditions. Note 2: Input voltage above V+ Is allowed. As long aa one input pin voltage remains Inside the common-mode range, the compal)ltor will deliver the correct output. Note 3: More accurately, It is excessive current flow, wHh resulting excess heating, that limRs the voHagaa on all pins. When any pin is pulled a diode drop below V-, a parasHic NPN transistor turns ON. No latch.up will occur aa long aa the current through that pin remains below the Maximum Rating. Operation is undefined and unpredicteble when any parasitic diode or transistor is conducting. Note 4: Simulteneous short-circuH of muHlple comparators while using high supply voRages may force Junction temperature above maximum, and thus should not be continuous. Note 5: Junction temperature may be calculated using TJ = TA + Po IIJA. The given thermal resistenC8 Is worst-caae for packages in sockets in still air. For paci E ~. '- -1 -10 -,~ o~J I ,~ -10 Reference AC Stability Range Jil 1-1- --~ 20 REFERENCE CURRENT (rnA) Reference Voltage vs Referenee Current 7 0.2 10000 ~ 1 ! 100 1 10 100 1000 FREQUENCY (Hz) 10000 1 10 100 1000 FREQUENCY (kHz) TLlH/9226-5 3-85 • .... :!i ~ ~------------------------------------------------------~--------------------, CD Typical Performance Characteristics (Reference) (Continued), TJ = 25°C, FEEDBACK pin shorted to V- = OV, unless otherwise note!! R.ference Voltage with FEEDBACK Voltag. St.p R.f.renc. Pow....Up Tim. Reference Voltage with 100 - 12 "A Current St.p 2 FEED8CK-IO-ANODE VOLTAGE '5.0 6 .,.... I 5 100 200 - ,,10- II i !;! -2 >! -3 ,~ - r-- b 1 R,,=6V.. I, STEP -.j -5 o 3~ r-v.. ffip I' 1\ ..... 1 I == d~=O.23 ;::}OC .125"C ~ -55"C II hoopA Ip°mA I' I I II -1.0 100 200300 o4OO!5IlO600 700 1~ - ~~ - .... iWoc . 'i 1 o 100 200 300 0400 500 600 700 nME'(po) Ref.rence Change vs Common-Mode Voltage R.ference Voltag. Change with Supply Voltage Step 2.0 ! 11 nIlE (PO) nME (PO) Reference Step Response for 100 ,J.A - 10 mA Curr.nt St.p ~ fI J/'A 1 II 4 3 \ Vi. 2 1 0 0100200300400500600700 400 300 1,6 ov t---!I!L ..- ! -5~ I 5 i! 5 ~ l00pA 0 ~ I -1 -1 o nME (PO) v+ cv+-2) cv+-l) 0 25"C 1 V+f~ o f-+ I 5 Y"=GNO I 1251 ,~v_ o 5 101520 2530.030.531.031.532.0 R£FEftENCE ANODE -10- v- VOLTAGE (V) TL/H/9226-6 Typical Performance Characteristics (Op Amps) v+ = 5V, v- = GND = OV, VOM = V+ 12, VOUT = Input Common-Mod. Voltage Rang. vs , T.mperature v+ ev+-o.s ~ v+- 1 Input Bias Current vs . Common-Mode Voltage 20 15 r-. .... t--.. ~i--" ~ ~~r"'"" - I,.oo~ "'""'..,: I===Fi"'" .,... -2 NORMAL OPERAnNG RANGE v- SV"-o.s V"- 1 25°C, unless otherwise noted 4 ~ i = Vos vs Junction Temperature OUTPUT GOES LOW 1!IV+-l.5 !i I V+ 12, TJ -1 -W-l--- -3 OUTPUT GOES LOW ;:::::===' 10 ~ -5 125';V ..... -SS' ~, .,... I 10-"' ..... -.j -60 -010-20 0 20 40 60 60 100 120 140 JUNC110H TEMPERATURE (e) JUNCOON TEMPERATURE (e) 250C 1250C -10 -15 -410-40-20 0 20 40 60 60 100120140 6 1 E' 'D! 25"C LI I I I -,-~SOC V+=5V -20 -1 0 1 2 3 4 5 10 20' 40 60 60 I INPUT VOLTAGE (V) Large-5lgnal Step Response 10 20 30 40 V" 50 -60-40-20 0 20 40 60 60 100120140 JUNenON TDlPERAlURE (e) -(PO) TUH/9226-7 3-86 Typical Performance Characteristics (Op Amps) (Continued) V+ = 5V, V- = GND = av, VCM = V+ /2, Your = V+ /2, TJ = 25°C, unless otherwise noted Output Source Current vs Output Voltage and Temp. -----.--( 211 Outpllt Sink Current vs Output Voltage NE~~V;:~~V" 10 I ,\\-r- V+IN =V" + IV ! I - i -20 25"1: -30 -«I V" -40 -3-2-1Y+ SUPPlY REFtRENCED VOUT (V) o Ill' Jr ! / iT 10""I - Ay=-.!'" V 0.01 /' 40 125"C ~\ 10 28 29 I 1000 BD ! 100 IIJ I ~ ~ 60 ~ I!I 40 E 211 Smail-Signal Voltage Gain vs Frequency and Temperature r-rrmmrr-rmmm 140 120 100 t2~ -40 -60 -80 I"- "- ~ 60 100 10k FREQUENCY (Hz) 20 0 -211 -40 -60 -80 "" ~ '" 360 . ~ 450~ 540 lW IiIIo:! 100 10k I!I E V+=1SY Y-=-1SV ~ "\ \ 100 0 -45~ -2 -4 -135~ -6 -8 20 50 100 100 -180 500 1000 2000 FREQUENCY (kHz) IN Common-Mode Input Voltage Rejection Ratio 140 1211 ~ IIIIr.. ~ FREQUENCY (Hz) Follower Small-slgnal Frequency Response S I80 GAIN IIIIr.. PHASE 0.01 10k 4r--r--~~~--~, f'o.. l00pf.21<4 \0 V' I80 f'o... 270~ f'o... ~ 0.01 lk 125C BD E ~ Y+=1SY pf==i t--S5C ~25C- r-t'V-=-1SV FREQUENCY (Hz) "- 10 liNE (PO) 40 L..J..WWJL.J..WWJL...U. I 10 100 I I Y+='1SY Y-=-1SY 50pF ~,-- ~ ",oopF.21<4 \0 V" .. V:-" 10 6OH-HffiIIH-HffiIIi-=!"!' Small-Slgnal Voltage Gain' vs Frequency and Load a. l00pF. 2kll TO y+ -60 100 PFi 21<4 TO I SopF.oolI -80 4 o 1!I,4O 140 1211 100 80 V"=1SY FDI.I.OWER YIN - II FREQUENCY (Hz) Jdsv I I ! 10k I ;;!,.OopF. 21<4 TO y+ 40 80 H-HfllIH-HffiIIH+ lk LL SopF.~~" ~ l00pF. 21<4 TO 'r.- - 60 Op Amp Current Noise vs Frequency 1000 1000 Small-slgnal Pulse Response vs Load 1 II o 100 FREQUENCY (kHz) lIIi: (p.) Op Amp Voltage Noise vs Frequency 100 10 ,-,--:r1 YIN FREQUENCY (kHz) 10 ~ Y+=3OV o 30 y+ I Y+=1SY V"=1SY ~~ , I I II -60 100 Ay=100 -s:k 1/ Ay=1 10 IS ,~ -80 0.1 125"1: 3 I / 5S"I: Small Signal Pulse Response vs Temp. 60 -55"C , 20 OUTPUT VOLTAGE (V) 80 102 I,': 2 V" Y+=,1SV V"=-1SV I I ::1 r iiii 25 r-:- 25~ -20 Output Impedance vs Frequency and Gain 103 lcrZ -- -10 -30 ~~ I -so g i I -55"1: 30 Y+=3OV 10 ! VI -12S~ -10 Output Swing, Large Signal . , ! 5 aJ 60 40 ':p • YO .1 211 o 0.01 100 10k , 1\ IN FREQUENCY (Hz) TUH/9226-8 3-87 • ~ ~------------------------------------------------------------------------------------~ .... ~ Typical Performance Characteristics (Op Amps) (Continued) , v+ = 5V, v- = GND = OV, VOM = V+ 12, VOUT = V+ 12, TJ = 25"C, unless otherwise noted P~UvePowerSUpp~ Power SupPlY Current VB Power SUpply, Voltage 1000 100 I I I I ~: I ::: i.. I I I I I I zoo 100 o -55"1: .:s 80 , 80 ........ .... 0.. ... ~ ~ 0.5 $0.4 .. ri.3 ~D.2 ~ 0. I o IR'.,,;,,, ~0111~ .... 1'00. I I I .I \ Yew = ov I. wont 01.... E~==t-"1I-N-l -20 ,,1 ul -40,0- 2 FR£QUENCY (Hz) , I::::~ -1000 III' ,''' Input Bias Current va Junction Tempereture ,["}j I--' ,,~ II I.I~ -8 -10 -12 -10 -40-20 0 -2000 -80 -40-20 0 20 40 80 80 100120140 JUNCTION TEMPERATURE ("1:) JUNCT'OH TEMPERATURE (Oe) 102 1\ 8 ... 1'1"- .... f-, .. FlIEQUENCY (Hz) Input Offset Current VB Junction Temperature 1000 lOV -80-40-ZO 0 ZO 40 80 80 100120140 ~"5; ~ ~ 20 zo r- *foom~ 60 II 40 K! I .. ""- '- 10 .:s 40 Slew Rata VB Temperature 0.7 100 'i1 t-t-+-t--+--t-'''d-+-I I 2 3 45102030405010 TOTAL SUPPLY YOLTAGE (V) 0.8 140 120 'i1 ~ -25"1: 300 .--.-r.,..::.,-......--.-~ 1 2°t:EEtt:t!!j 100~ ... n: 400 140 U +125°C NegatIve Power SUpply Voltage Rejection R.atlo Voltage Rejection Ratio j ~ zo 40 10 10lOOlZOl40 JUNCT1011 TEMPERATURE ("1:) TLiH/9228-9 Typical Performance Characteristics (Comparators) Output Sink Current 50 l00~~ Input BlaB Current va ComlllC)n,.Mode Voltage V 40 10_~ ~ .... is '" '":::>u ... S iii 0.1 _ _ 30 125"C 20 10 0 -10 ,0.01 L-J--L....L....L-.l-L....L-I.....L....L-.L...I 0.0 D.5 1.0 1.5 2-D 2.5 3.0 / -20 vINPUT OUTPUT VOLTAGE (V) 25"C ~ I -- ~,r ~ I 10 20 30 40 50 60 70 REFERREO TO y- (V) VO~TAGE TLlH/9226-11 TLiH/9228-IO 3-88 ,-----------------------------------------------------------------------------, Typical Performance Characteristics (Comparators) (Continued) Comparator Reaponse Tlme~nvertlng Input, Positive Transition £ 5 II ~ " +125"C t-- 3 I J II 2 1 Comparator Response Tlm~nvertlng Input, Negative Transition £ + 2 ~ ~ ...... 0 :~ ~ +SmV ~ 0 -SmV o o.s ~vo + +125"C 1 .~~ +SmV ~ 0 -SmV II - 3 ~ I ... 1 1.5 2 2.5 3 3.5 " TIme (}.&s) o o.s 1 1.5 2 2.5 3 3.5 " TIme U.s) TLlH/9226-12 TLlH/9226- 13 Comparator Response Tlmes-Non-Invertlng Input, Positive Transition £ S II 3 2 -Ssocj 1 ~ LV j JI £ I +~ - I I ~Vo 2 -SS"C +12S"C 1 +25"C ~ :~ """I 0 :~ ~ +5mV ~ 0 -5mV 0 o o.s 5V l\ +2S"C II I :~ -SmV , VII~K S 3 ~vo +SmV ~ Comparator Response TIme&-Non-lnvertlng Input, Negative Transition ~liPf - I II +125"C 0 sv I o o.s 1 1.5 2 2.5 3 3.5 " TIme (}.&s) 1 1.5 2 2.5 3 3.5 " TIm. (}.&s) TLlH/9226-14 TLlH/9226-15 Comparator Response Tlme~nverting Input, Positive Transition £ IS ~ 10 ~ S ~ ::> 0 ~ ... 0 -5 0 > -10 -15V 5V z >" 0 -SV ~15V +25"C -sS"C Comparator Response Time_Inverting Input, Negative Transition LL £ ... '1 VI~K , II +" Vo J 1 ~ Ii ....w 11 - v ~5.1K +2S"C J +2S"C 0 S !v-4- vl~KVo " -SS"C ~ .J . -1SV I ~ .... ~_ 0 5 ~. 0 I 0 l~ o ~MMM1DI21Al~IB TIm. U.s) 1\ \ +25"C -5 > -10 -15V 5V ~ 0 -5V ~ 1SV 10 >. :::> 0 +12S"C 15 I I + lPt Vo VI -1SV ~ -55"C l--- \-+125"C l \. o ~MMM1DI21Al~IB TIme U.s) TL/H/9226-1a TL/H/9226- I 7 3-89 • ~ r-----------~--------------------------------------------------------------------, ~ Typical Performance Characteristics (Comparators) (Continued) Comparator Response Tlme.-Non-Inyertlng Input, POsitive Transition £ IS W 15V v.~K ...~ 10 ~ 5 I- ::>- 0 ... § _ /t rt > -10 -55OC ~ 5 5 0 0 I ~ ~~~MlnI2IAI~IB nme (ps) I I i9-'15V ~ IN l . -S , - 1-10 -ISV +25OC 5V ~ 0 -5V o 02 V) o 10 5 +25OC IS £... ~ .... rJ / , +125OC/i -S 0 ~. """ l V -~Yo -15V -ISV 5V ~ 0 -5V I) I-I Comparator Response Tlme.-Non-Inyertlng Input, NegatlYeTransition + _ - ' -15V 5.1K ,. Yo ~ +125OC v-55OC . ~ ~ M In 12 U I~ IB -nme (}.Is) TL/H/9226-18 TUH/9226-19 Typical Performance Distributions vaS Average Vas D~ft Military Temperature Range Average Drift" . Industrial Temperature Range ~~----------------~ v.;s DRln (PV/C) Vos ORin (PV/C) TL/H/9226-20 TUH/9226-21 Average Vos Drift Commercial Temperature Range Average los Drift _ MIlitary Temperature Range Vos ORin (PV/C) los DRln (pA/e) TL/H/9226-23 TUH/9226-22 3-90 r-----------------------------------------------------------------------------, ~ !!: G) .... Typical Performance Distributions (Continued) Co) Op Amp Voltage Noise Distribution Average los Drift Industrial Temperature Range 20,------------------, 30 100Hz Amps I, 2, 3, 4 15~------------------~ 20 ~ 10~------------------~ => 10 5~~~--------------~ ~ o 00 81624324048566472808896 VOLTAGE NOISE (nVRIlS /'IilZ) los ORin (pA/C) TLlH/9226-24 TL/H/9226-27 Op Amp Current Noise Distribution Average los Drift Commercial Temperature Range 30 2,3,4 10 ~ z => 10 10 10 0 0 CURRENT NOISE (f~1IS /'IilZ) los ORin (pA/C) TLlH/9226-25 TL/H/9226-28 Voltage Reference Broad-Band Noise Distribution 30,-----------, 10:Sf:Sl0,OOOHz Application Information VOLTAGE REFERENCE Reference Biasing The voltage reference is of a shunt regu~tor topology that models as a simple zener diode. With current Ir flowing in the "forward" direction there is the familiar diode transfer function. Ir flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V- to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V reference with V+ = 3V is allowed. 20+-----------~------_l 10+----------ra-------/ 0"'"0..-4.......8...,...2..-,'"'6.... 20...2....4..-28323640 44 48 VOLTAGE NOISE (}'VRlIsl TUH/9226-26 Anodo committed to VTUH/9226-29 FIGURE 1. Voltage Associated with Reference (current source Ir is external) 3-91 ~ r-----------------------------------------------------------------------------~ ~ ~ Application Information (Continued) The reference equivalent circuit reveals how Vr is held at the constant 1.2V by feedback, and how the FEEDBACK pin passes little c!)rrent. . 15V lOOk To generate the required reverse current, typically a, resistor is connected from a supplY voltage higher than the reference voltage. Varying that voltage, and so varying Ir, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate Ir. e.thade TUH/9226-32 FIGURE 4. Thevenln Equivalent of Reference with 5V Output Rl 39k ""I---t Anade=V- II = 32pA R2 TUH/9226-30 ~_ _.... FIGURE 2. Reference Equivalent Circuit 118k TL/H/9226-33 R1 R2 = Vr/l = 1.24/32,. = 39k = R1 {(Vro/Vr) - 1) = 39k ((5/1.24) - 1)) = ,118k FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5V Understanding that Vr is fixed and that voltage sources, re8istors, and capacitors may be tied to the FEEDBACK pin, a range of Vr temperature coefficients may be synthesized. TUH/9226-31 FIGURE 3. 1.2V Reference Capacitors in parellel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from 20 pA to 3 mA any capaCitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering. Adjustable Reference The FEEDBACK pin allows the reference output voltage, Vro, to vary from 1.24V to s.av. The reference attempts to hold Vr at 1.24V. If Vr is above 1.24V, the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. if FEEDBACK is connected to Anode, then Vro ,,;.', Vr = 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode---say 3.1sv for Vro = 5V. Connecting a resistor across the constaint Vr generates a currerit 1= R1IVr flowing from Cathode into FEEDBACK node. A Thevenin'equivalent 3.7SV is generated from FEEbBACK to Anode with R2=3.7S/1. Keep I greater than one thousand times larger than FEEDBACK bias current for <0.1% error-I~32 pA for the' military grade over the military temperature range (I ~ 5.5 pA for a 1% untrimmed error for a commercial part). TUH/9226-34 FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) If R2 has Negative TC TUH/9226-35 FIGURE 7. Output Voltage has Positive TC " R1 has Negative TC 3-92 Application Information (Continued) Reference Hysteresis The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products varyalways check the data sheet for any given device. Do not assume that no specification means no hysteresis. OPERATIONAL AMPLIFIERS AND COMPARATORS Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, except when a substrate diode conducts (see Electrical Characteristics Note 1). For example, one amp input may be outside the common·mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying inverting input to output and non·inverting input to V- on unused amps is preferred. Unused comparators should have non·in· verting input and output tied to V+, and inverting input tied to V-. ChOOSing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided. TUH/9226-36 FIGURE 8. Diode In Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT) Connecting a resistor across cathode-to·FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized. Op Amp Output Stage These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability: 1) Output Swing: Unloaded, the 42 pA pull-down will bring the output within 300 mV of V- over the military temperature range. If more than 42 /LA is required, a resistor from output to V- will help. Swing across any load may be improved Slightly if the load can be tied to V+, at the cost of poorer sinking open-loop voltage gain. 2) Cross-Over Distortion: The LM613 has lower cross-over distortion (a 1 VBE deadband versus 3 VBE for the LM124), and increased slew rate as shown in the char· acteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion. 3) capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the current limit 250. 200 pF may then be driven without oscillation. TUH/9226-37 I = Vr/R1 = 1.24/R1 FIGURE 9. Current Source Is Programmed by R1 v Comparator Output Stage The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the output voltage will be this external positive voltage. For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor. The offset voltage may increase when the output voltage is low and the output current is less than 30 /LA. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than 30 pA. TUH/9226-38 FIGURE 10. Proportlonal-to-Abaolute-Temperature Current Source v R Op Amp and comparator Input Stage The lateral PNP input transistors, unlike those of most op amps, have BVEBO equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common·mode voltages. TL/H/9226-39 FIGURE 11. Negatlve-TC Current Source 3-93 &I ~ ..- :I .... r---------------------------------------------------------------------------------, Typical Applications +Vo----------.----.----------, TLlH/9226-40 FIGURE 12. High Current, High Voltage SWitch +vo---t--------1~.-------~----------------, 0.11'~ 5004 5004 lN914 L-_~O-V TLlH/9226-41 FIGURE 13. High Speed Level Shifter. Reaponse time Is approximately 1.5".., where outputis eitherapproxlmately + V or - V. VI8VN o--"'-4~----""------. 3.5k 0.11'£1:. 7004 LM813 REF ....----------IVV~~-o VOUT 10k 5.0V 50mA 4.71'F TLlH/9226-42 FIGURE 14. Low Voltage Regulator. Dropout voltage is approximately O.2V. VIN o--t--1~----------., 12V 10k 7.5k 10.000V 3324 15k LII813 REF' 10k' '10k must be low TLlH/9226-43 I.e. trirnpot ,t;IGURE 15. Ultra Low Nolse,10.00V Reference. Total output noise Is typiCally 14 ""VRMS. 3-94 Typical Applications (Continued) +Vo------, v ~ > + - - - - 0 VOUT 3k : Cl Strobe VOUT TLlH/9226-44 TLlH/9226-45 FIGURE 17. BasIc Comparator with External Strobe FIGURE 16. Basic Comparator 15Vo-----IP-----.., +V TTL Output lk 1M lk TLlH/9226-47 TL/H/9226-46 FIGURE 18. Wide-Input Range Comparator with TTL Output FIGURE 19. Comparator with Hysteresis (aYH = +Y(1k/1M)) 3-95 .... r--------------------------------------------------------------------------------, U) ~ ttlNational Semiconductor LM615 Quad Comparator and Adjustable Reference General Description Features The comparators have an input range which extends to the negative supply, and have open-collector outputs. Improved over the LM 139 series, the input stages of the comparators have lateral PNP input transistors which enable low input currents.' for large differential input voltages and' swings above V+. COMPARATORS • Low operating current • Wide supply voltage range • Open-collector outputs • Input common-mode range • Wide differential input voltage The voltage reference is a three-terminal shunt-type bandgap, and is referred to the V- terminal. Two resistors program the reference from 1.24V to 6.3V, with accuracy of ± 0.6% available. The reference features operation over a shunt current range of 17 p,A to 20 mA, low dynamic impedance, broad capacitive load range, and cathode terminal voltage ranging from a diode-drop below V- to above V+. REFERENCE • Adjustable output voltage • Tight initial tolerance available • Wide operating current range • Tolerant of load capaCitance As a member of National's' Super-Block™ family, the LM615 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrifiCing performance. 600 p.A 4V to 36V V- to (V+ - 1.8V) ±36V 1.24V to 6.3V ± 0.6% (25°C) 17 p.A to 20 mA Applications • • • • • Adjustable threshold detector Time-delay generator Voltage window comparator Power supply monitor AGB level detector ' Connection Diagram MPackage NPackage FEEDBACK REFERENCE ...,;5+--+. . OUTPUT VRO 6 t:::::....:=::r- 9 REFERENCE OUTPUT VRO y- TUH/ll057-24 TUH'11057-1 Top View Top View Ordering Information For information about surface-mount packaging of this device, please contact the Analog Product Marketing group at National Semiconductor Corp. headquarters. Reference Tolerances ± 0.6% at 25°C, 80 ppm/DC max Temperature Range Industrial -40"C ~ TJ ~ +85"C Package LM615AMN LM615AIN 16-Pin Molded DIP N16A 16-Pin Ceramic DIP J18A LM6151N 16-Pin Molded DIP N16A LM6151M 18-Pin Narrow Surface Mount M16A LM615AMJ/883 (Note 13) ± 2.0% at 25°C, 150 ppml"C max NSC Package Number Military -55°C ~ TJ ~ + 125"C LM615MN 3-96 ' ~ Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, Maximum Junction Temperature please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Thermal Resistance, Junction-to-Ambient (Note 5) NPackage .95"C/W Soldering Information N Package Soldering (10 seconds) 260"C ESD Tolerance (Note 6) ±1 kV Voltage on Any Pin Except VRO (referred to V - pin) (Note 2) (Note 3) Current through Any Input Pin and VRO Pin Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range 36V(Max) -0.3V(Min) -65°C S; TJ S; 15O"C Operating Temperature Range ±20mA ±36V (Note 4) + 150"C -40"C LM615AI, LM6151 LM615A, LM615M -55°C S; S; TJ TJ S; S; +85°C + 125°C Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = V+ /2, IR = 100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the Operating Temperature Range. Symbol Parameter Typical (Note 7) Conditions LM615AM LM615AI Limits (Note 8) LM615M LM6151 Limits (Note 8) Units COMPARATORS Is Vos Vos t:.vOS AT Is los Total Supply Current V+ Current, RLOAD = 3V S; V+ S; 36V V+ 00, Offset Voltage over V+ Range 4V Offset Voltage over VCMRange OV S; VCM S; (V+ -1.8V) V+ = 30V, RL = 15 kO S; S; 36V, RL = 15 kO Average Offset Voltage Drift 250 550 600 350 800 850 1.0 3.0 5.0 2.0 8.0 7.0 1.0 1.IS 3.0 5.0 6.0 7 .•0 15 -. -5 Input Bias Current Input Offset Current Av Voltage Gain RL = 10 kO to 36V, 2V S; VOUT S; 21V tR Large Signal Response Time V+IN = 1.4V, V-IN = TIL Swing, RL = 5.1 kO Output Sink Current V+IN = OV, V-IN = 1V, 25 35 30 40 0.2 4 4 0.3 5 5 500 50 50 1.5 20 VOUT =.0.4V IL Output Leakage Current V+IN = 1V, V-IN = OV, VOUT = 36V 13 3-97 10 • mVmax mVmax nAmax nAmax nAmax nAmax V/mV min V/mV 10 mAmin mAmin mAmin mAmin • 2.8 1.0 0.8 2.4 0.5 0;5 0.1 10 10 0.2 mVmax mVmax p's p.s 2.0 VOUT = 1.5V p.Amax p.Amax p.VI"C 1'00 ISINK .... CII en p.Amax p.A Electrical Characteristics These specifications apply for V-; = GND,= OV • .v+ = 5V. VCM = VOUT = V+ /2. IA = 100 pA. FEEDBACK pin shorted to GND; unless otherwise specified. Umits in standard typeface are for TJ = 25~C; limits in bq.ldface type apply over the Operating Temperature Range. (Continued) Symbol Typical Conditions Parameter (Note 7) LM615AM LM615M LM615AI LM6151 Limits Umits (Note 8) (Note 8) Units VOLTAGE REFERENCE (Note 9) VA Reference 1.244 Voltage AVA AT AVA Average Drift (Note 10) 18 with Temperature 1.2365 1.2191 V min 1.2515 1.2689 V max (±0.6%) (±2%) 80 150 ppm/'C max Average Drift TJ = 40'C 400 ppm/kH kH with Time TJ = 150'C 1000 ppm/kH AVA Hysteresis (Note 11) 3.2 p.V/'C AVA VA Change VA[IOO /'A] AlA with Current aTJ VA[IO mAl (Note 12) R Resistance - - VA [17 /'A] VA[IOO,.AJ AVA[IO mAto 0.1 mAl/9.9 mA AVA[IOO u,Ato 17 JAA]/83 AVA VA Change AVAO withVAO AVA VA Change AV+ with V+ Change VA[VAO VA[V+ VA[V+ IFB' = VA] - = 5V] = 5V] - - pA VA[VAO VA[V+ VA[V+ = 6.3V] = 36V] = 3V] Bias CUrrent en BW = 10Hzto10kHz Voltage Noise 1 1 mVmax 0.1 1.1 1.1 mVmax 1.5 5 5 mVmax 2.0 5.5 5.5 mVmax 0.2 0.58 13 0.58 13 o max o max 0.6 V- S; VFB S; 5.06V FEEDBACK 0.05 2.5 5 5 mVmax 2.8 10 10 mVmax 0.1 1.2 1.2 mVmax 0.1 1.3 1.3, mVmax 0.01 1 1 mVmax 0.01 1.5 1.5 mVmax 22 35 50 nAmax 29 40 55 nAmax 30 P.VAMS Note I: Absolute maximum ratings Indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond Its reted operating conditions. Note 2: Input voltage above V+ is allowed. As long ~(lne input pin voltage remains inside the common-mode range. the comparetor will deliver the correct output Note 3: More accuretely, n Is excessive current flow, with 'resulting excess heating, that limns the voltages on all pins. When any pin is pulled a diode drop below V-, a paresltic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operetion Is undefined and unpredictable when any parasitic diode or transistor is conducting. Note 4: Shorting an Output to V- will not cause power dissipation, so It may be continuous. However, shorting an Output to any mOre posHIve voltage (including V+), will cause 80 rnA (typ.) to be drewn through the output transistor. This current multiplied by the applied voltage Is the power dissipation In the output transistor. II the total power lrom all shorted outputs causes the junction temperature to exceed 15O'C, degraded reilabliHy or destruction 01 the ckivice may occur. To determine junction temperature, see Nets 5. Note 5: Junction temperature may be calculated using TJ = TA + Po BJA. The given thermal resistance Is worst-case lor packages in sockets in still air. For packages soldered to copper-clad board with dissipation lrom one comparator or reference output transistor. nominal BJA Is SO 'CIW for the N package, Note 6: Human body model, 100 pF discharge through a 1.5 kO resistor. Note 7: Typical values in standard typeface are lor TJ = 25"C; values in boldlace type apply lor the lull operating temperature renge. These values represent the mcst likely parametric norm. Note 8: All limns are guaranteed lor TJ = +25'C (standard type lace) or over the lull operating temperature renge (bold tJpe face). Note 9: VRO Is the reference output voltage, which may be set lor 1.2V to 6.3V (see Applicaticn Information). VR is the VRo-to-FEEDBACK voltage (nominally 1.244V). Note 10: Average reference drift is calculated from the measurement 01 the reference voltage at 25"C and at the temperature extremes. The drift, In ppm/"C, is 1()6. AVR/VRI25'C] • ATJ, where AVR Is the lowest value subtracted from the highest, VRI25'CI is the value at 25'C, and ATJ Is the tamperature range. This parameter Is guaranteed by design and sample testing. Note II: Hystaresls is the change In VRO caused by a change In TJ, after the relerence has been "dahysterlzed." To dehysterlze the reference; that Is minimize the hysteresis to the typical value, no junction temperature should be cycled In the lollowing pattern, spiraling in toward 25'C: 25'C, 85"C, - 4O"C. 70'C, O"C, 25'C. Note 12: Low contact resistance is required lor accurete measurement, Note 13: A military RETS electrical _ spaciflcation Is avaHable on request. The LM615AMJ/883 may also be procured as a Standard Military Drawing. 3-98 r- 5; ..... Simplified Schematic Diagrams U'I Comparator r--------------------------.--~~--~--------------~v+ 7k 39k TUH/ll057-2 Reference Bias REFERENCE I OUTPUT' I I v- v- Tl/H/ll057-3 3-99 ~ ~ U) :IE ...;I r-----------------------------------------------------------------------------, Typical Performance Characteristics (Reference)·· TJ = 2SoC, FEEDBACK pin shorted to V- = OV, unless otherwise noted. Reference Voltage Drift va Time Reference Voltage va Temperature 1.26 ~~ - - ..... i-'" 0.10 CIII8 CIII8 g Q04 • o.m .... ~ ~+ r--. . . . ... ~ r--., &-am ~ a; ;; JI-II04 -0.116 -0.116 -0.10 1.23 -10-.40-20 0 20 «I 60 80 1001201«1 1.224 C:::j:::~~::r:~ I r--. TJ ~ 4O'C o.CIO 1.;0 Accelerated Reference Voltage Drift va Time ~ I~~-+--+-~--~~ .~ ; .!II I I I o 11,.216 2lIO 5110 7!!0 10II012lI015II017!!02IIIIO lIIIE(Hours) JUIICI10M 1DIPERAlURE (e) I~i~~~~~~~:r 1.218 Reference Voltage Reference Voltage va Current va Current and Temperature and Temperature ~-+--+-~--~~ 1.214 '--.....I.._-'--.l._~~ o 100 200 5110 400 5110 11ft: 8lASED AT 15O'C (hrs) Reference Voltage va Reference Current 10~~~~r-~r--' V,.=Y, !'~ --+- f--55"C 25"C ~- 125"C ~ o.m -55"C I 0.2 2 G.02 20 2 0.2 -10 20 REFERENCE CURRENT (RIA) REFERENCE CURII£Mr (mA) -0.1 10.001 0.1 ~ 10 REFERENCE CURRENT (mA) FEEDBACK Current Reference Voltage va Reference Current 100 f-f- ,~ ~It I -10 -0.1 10.001 13': --~ 10 o.CIOl ~ I I 25"C rom IOOV '~ -20 -~ -60 I 10 100 -.40 -10123451102060 «I ~DE-TO-FEED8ACK VOLTAGE h -.40 -101234511020 60 «I M M Reference Small-5lgnal Reaistance va Frequency 100lI0 ~ II ANOOE - TO - FEED8ACK VOLTAGE 0.1 II b I' IIA Reference Noise Voltage va Frequency -55"C -10 0.01 1 R IOOV I REFERENCE SIIUIIf CURRENT (IlIA) FEEDBACK Current va FEEDBACK-to-VVoltage 10 iJ1 ~ -= I I I~ ~~ REFERENCE CURII£Mr (RIA) 20 I KooIM 0.1 Voltage 20 1-55~T sl:lscrc , I.2s(,.St.3V --,~ r-r- va FEEDBACK-to~V Reference AC Stability Range 100lI0 • • I! ~ I 0.1 10 100 1000 fREQUENCY (Hz) 100lI0 0.1 10 100 1000 fREQUENCY (kHz) TLlHlll057 -4 3·100 r- 5; -. Typical Performance Characteristics (Reference) (Continued) TJ = 25"C. FEEDBACK pin shorted to V- = OV. unless oth8lWise noted. Reference Voltage with FEEDBACK Voltage Step Reference Power-Up Time r11 p8£IW£D ~ ~ I 1.0 \. 0 0 zoo 100 ~ & "I- I 5 4 I Q.5 30D ov - \ \ v.. 3 2 1 0 0 400 100 zoo 1 '/ ~~ k ~ I ~i; -55"C t- 0 m.c I" -1 0 30D 400 50D &DO 700 2 ! 1 liME (PI) Reference Voltage Change with SUpply Voltage Step ! -1 -2 . -3 -5 0 ~ """ R,,=IIV.. 1I~=0.u ',STEPTr j,00j,A -::=b:- Q.5 I .125"1: lOrnA II I -o.s _:IlL 1~"C ... - v~ tl 0 ~ v+SlEP 1.0 ~ 0 ~ 2.G 1.5 It 1\ b .... 100 20D 30D 40D 50D &DO 700 TIlE (PI) 3 IlL I ~ J Reference Stap Response for 100 p. - 10 mA Current Step J I "'- lIIIE (PO) !i 2 ! 5.CI8V ~ '--- Reference Voltage with 100 - 12 p.A Current Step fEEDB -10 -ANOIIE YOLTAIIE ~ v+'=ovIr v+ AND CAlHODE ~ (II -~~ lj/ -1.0 100 20D 30D 40D 50D &DO 700 1 0 lIME (PO) 2 4 3 5 & lIME (1M) TUH/11057-5 Typical Performance Characteristics (Comparators) TJ = 25"C. v+ = 5V. v- = OV. unless otherwise noted Input-Bias Current va COmmon-Mode Voltage SUpply Current va SUpply Voltage 30D 50 I +125"C ~200 -55"1: ,... ---+25"C i 20 a 10 i 0 1150 Ii 100 i 50 0 0 -10 -20 5 10 15 20 SUPPlY VOLTNlE (V) 25 50 15 Y A 50 "i 125"1: V' If 25"1: ~ I- ~ :t15V SUPI'I.IES 1 II 10 j : r ,...,.. I a ~ ;& +125"C -5 +25"C -10 Yo 10 20 50 40 50 10 10 INPUT VOLTNlE R£fEIIRED 10 yo (V) II ~"C -15 """ - 20 I 40 250 Input Current V8 Differential Input Voltage '7 -20 -15 -10 I -5 D1FmEN1W. 0 5 10 15 INPUT VOLTNlE (V) TL/HI11057-6 3-101 .! ... Typical Performance Characteristlcs'(Comparators) (Contin~). i Small-8ignal Response Tlme,,!nvertlng.lnput, Negative Transition Output Saturatlo.n Vo~ge vs Sink Current ,. 100 1: 10 II ~ '!l .~ 1 I 0.1 ~ om i ~ 0.0 1.0 D.5 1.5 2.0 2.5 I I I 3 +25"1: 2 +125"1: 1 0 H ~ ~ ~ i I 3 ~ ~ 0 i -5"* 0 III 2 ~ ~ , ~ +5"* 0 '. ' -5"* 0 III 2.0 3D i I I i ~\I~ 0 • -IS ... +5 i ~ +25"1: , + Vo - -,SY -55"1: +125"1: §!~ 0 04 D.lI 11IIE (pa) 1.2 -55"1: 0 III 1.6 2.0 411 3D Large-8lgnal Response Tlmes-lnvertlng Input, Positive Transition .. 'I I 15 J -550f,/ 0 ,. ~~ i III 2.0 3D 15 .. iti·* o - -'IV '71£ ~/ +125"1: ~ .55"1: i I~ 15 I -5 i -5 ~.~ 1~ .. US . " 0 -IS D.lI +25"1: .125"1: .. I ~ ~'. + - -,SY * 1.2 1.8 -55"1: Vo +5 0 .., 0 04 Q8. lIME (pa) i 3-102 1.6 ,SY ~ 11IIE (pa) 1.2 D.lI Large-8lgnal Response Times-Non-Invertlng Input, Negative Transition +25"1: .:lW 04 nME (pa) +5 0 * -'IV 0 .. -15 • 0 .' '.!l Vo V.~ • Yo ..... ~ -5. '411 'IV ,/'." +25"1: ~ bi' +125"1: '~15 large-Signal Response Tlme_Non-lnverting Input, Positive Transition i!l +125"1: . -5"* ~. : '+5 -5"* §!~ :t +5"* ~ .-;: ~~ o . 0 I~0 ~8 Vo .... 0 ~ I I'"'- +25"C nME (pa) 11IIE (pa) "iti"* ~'A + 0 ."~. .,* L\ \ 411 'SY 15 3 411 ~ ,0 Large-8lgnal ResponSe Times-Inverting Input, Negative Transition I _ ~'k 5~ ;-0, IV 5 4 3 2 1 0 nME (pa) ~ ~~ 3D Small-Signal Response Tlme_Non-lnverUng,lnput, Negative Transition ~ 'I 1 0 2.0 .... 4" 11IIE (pa) ~. ~,:o - ~ . ' -55"1: ~ +5"* 3D IV : . ~" ~ V.~. ~~ . . • ;-0 II 4 Small-8lgnal Response Times Non-Inverting Input,. POSitive Transition .' ~ Smail-Signal Response Time_Inverting Input, Positive Transition IV 5 OUIPIJT 'IOI.TAGE (V) ~ .. ,,) TUH/l1057-8 Application Information VOLTAGE REFERENCE Reference Biasing Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from 20 p.A to 3 mA any capaCitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering. The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I, flowing in the "forward" direction there is the familiar diode transfer function. I, flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from ~ diode drop below V- to the reference voltage or tO,the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V reference with V+ = 3V is allowed. Adjustable Reference The FEEDBACK pin allows the reference output voltage, Vro , to vary from 1.24V to 6.3V. The reference attempts to hold Vr at ,1.24V. If Vr is above 1.24V, the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then Vro = Vr = 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode--say 3.7FN for Vro = 5V. Connecting a resistor across the constant Vr generates a current 1= R1IVr flowing from,Cathode into FEEDBACK node. A Thevenin equivalent 3.76V is generated from FEEDBACK to Anode with R2 = 3.76/1. Keep I greater than one thousand times larger than FEEDBACK bias current for <0.1 % error-I ~ 32 p.A for the military grade over the military temperature range (I ~ 5.5 p.A for a 1% untrimmed error for an industrial temperature range part). Anode committed to VTLlH/11057-9 FIGURE 1. Voltage Associated with Reference (Current Source I, Is External) The reference equivalent circuit reveals how Vr is held at the constant 1.2V by feedback, and how the FEEDBACK pin " passes little current. tSV tOOk To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying Ir, has sma" effect with the equivalent series resistance of less than an ohm at the' higher currents. Alternatively, an active current source, such as the LM134 series, may generate Ir. Cathode =Vro TLlHI11057-12 FIGURE 4. Thevenln Equivalent of Reference with SV Output Rt 39k M - -... !1=32/o1A Anod.=V- 3.76V TLlH/11057-10 F __..I FIGURE 2. Reference Equivalent Circuit R2 ttlik sv , TLlH/11057-13 100J.iA~38K Vro=Vr= I.2V Al A2 ~ ~ 39k Al (V",IV,) - II ~ 39k [(511.24) - 1] V,/I ~ 1.24/32,. ~ ~ 118k FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be SV vTl/H/11057-11 FIGURE 3. 1.2V Reference 3-103 .... ~ ~ ~----------------------------------------------------------------------------~ Application Information (Continued) Understanding that Vr is fIXed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of Vr temperature coefficients may be synthesized. Connecting a resistor across VRo-to-FEEDBACKcreates a o TC current source, but a range of TCs may be synthesized. v 15V 10k TLlH/ll057-14 TLlH/l1057-17 FIGURE 8. Output Voltage has Negative Temperature Coefficient (TC) If R2 has Negative TC I = V,/RI = 1.24/Rl FIGURE 9. Current Source.l. Progremmed by R1 v TLlH/ll057-15 TLlHI11057 -16 FIGURE 7. Output Voltage has Positive TC If R1 has Negative TC FIGURE 10. Proportional-to-Absolllle-Temperature CUrrent Source 15V v 10k R TLlHI11057-19 FIGURE 11. Negative-TC Current Source Reference Hysteresis TL/H/ll057-16 FIGURE 8. Diode In Serle. with R1 Cau.es Voltage Acroas R1 and R2 to be Proportional to Absolute Temperature (PTAT) The reference voltage depends, slightly, on tha thermal history of the die. Competitive micro-power products vary-aiways check the data sheet for any given device. Do not assume that no specification means no hysteresis. 3-104 Application Information (Continued) It is often a good idea to decrease the amount of hysteresiS until oscillations are observed, then use three times that minimum hysteresis in the final circuit. Note that the amount of hysteresis needed is greatly affected by layout. The amount of hysteresis should be rechecked each time the layout is changed, such as changing from a breadboard to a P.C. board. COMPARATORS Any of the comparators or the reference may be biased in any way with no effect on the other sections of the LM615, except when a substrate diode conducts (see Electrical Characteristics Note 3). For example, one ()r both inputs of one comparator may be outside the input voltage range limits, the reference may be unpowered, and the other comparators will still operate correctly. Unused comparators should have inverting input and output tied to V- , and non-inverting input tied to V+. Input Stage The input stage uses lateral PNP input transistors which, unlike those of many op amps, have breakdown voltage BVEBO equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages. Hystere818 Any comparator may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresiS, or positive feedback, as shown in Fl{Jure The guaranteed common-mode input voltage range for an LM615 is V- :;;; VCM :;;; (V+ - 1.8V), over temperature. This is the voltage range in which the comparisons must be made. If both inputs ara within this range, the output will be at the correct state. If one input is within this range, and the other input is less than (V- + 32V), even if this is greater than V+, the output will be at the correct state. If, however, either or both inputs are driven below V -, and either input current exceeds 10 ,.,.A, the output state is not guaranteed to be correct. If both inputs are above (V+ - 1.8V), the output state is also not guaranteed to be correct. 12. v+ Output Stage Rr , The comparators have open-collector output stages which require a pull-up resistor from each output pin to a, positive supply voltage of the output to switch properly. When the internal output transistor is off, the output (HIGH) voltage will be pulled up to this external positive voltage. TL/H/ll 057-20 FIGURE 12. Rs and RF Add Hysteresis to Comparator The amount of hysteresis added in Figure 12 is To ensure that the LOW output voltage is under the TIL-low threshold, the output transistor's load current must be less than 0.8 mA (over temperature) when it turns on. This impacts the minimum value of the pull-up resistor. :::: V+ xRs forRF> Rs RF A good rule of thumb is to add hysteresis of at least the maximum specified offset voltage. More than about 50 mV of hysteresis can substantially reduce the accuracy of the comparator, since the offset voltage is effectively being increased by the hysteresiS when the comparator output is high. 3-105 U) i.... r-----------------------------~----------------------------------------------~--, Typical Applications Power Supply Monitor v+ (!IV ~~nat) ,,(' rV ON ........_ - - VOUll . 10k for v+ :t, S.sV I , 12;lk (U .ON for 2.0V:S v+ :$ 4.0V . 10k >~~VOUT2, 10k ~.OV VOUTI and V0UT2 are optional digital 26.7k outputs. and are LOW when the corresponding LED i. ON, All resistors 1 % tolerance or better. .. Tracking CORlparator TLlH/ll057-21 4·Threshold level Detector V+ 5V 5V C2 . V O.22pF ,lk ~. 2k. 10.0k Rl 75k I 5V .'. Cl' 10.1k 2.2p~,. 2k TLlH/II057-22 Rl-Cl removes the Iow·frequency signal component, so that through R2-C2 the higher· frequency component Is detected. 5V 2k I.SV ......;..-t-.... 10k SV 1.0V ""-1--1 2k 20k TLlH/ll057-23 3·106 .-------------------------------------------------------------------------, t!lNational Semiconductor LM710 Voltage Comparator General Description The LM710 series are high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic. The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minority-carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low stray and wiring capaCitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels. The LM710 series are useful as pulse height discriminators, voltage comparators in high-speed AID converters or go, no-go detectors in automatic test equipment. They also have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests them for applications replacing relatively simple discrete component circuitry. Schematic and Connection Diagrams ~------~----~--~--~ R4 R5 2.Sk Metal can Package y+ 3.9k D2 INPUlS 6.2Y .-+-----; TlIH/1D410-2 OUTPUT Top View Note: Pin 4 is connected to case. Order Number LM710AMH/883*, LM710H, LM710H/883 or LM710CH See NS Package Number HOSC GROUND--------t--_-l Dual-In-Une Package NC '-------4>---v- GND TL/H/1D410-1 +IN -IN Ceramic Flatpak Package Ne GND He 'INPUT NC -INPUT y. NC He VNC TL/H/1D410-3 Y- - - - . . . . _ _ _ _.1""-- OUTPUT Top View TL/H/10410-9 Order Number LM710AMW/883* See NS Package Number W10A 'Also available per JM3B510/10301 3-107 Order Number LM710AMJ/883* or LM710CN See NS Package Number N14A or J14A ~ I: .... .... c> Absolute Maximum Ratings Power Dissipation T0-99 (Note 1) 700mW Plastic Dual-In-Line Package (Note 2) 950,mW Operating Temperature Range LM710 -55"Cta + 125°C LM710C O"Cto +70"C Storage Temperature Range -65°C to + 150"C If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Positive Supply Voltage +14V -7V Negative Supply Voltage Peak Output Current Output Short Circuit Duration 10mA 10seconlls ±5V ±7V Differential Input Vollage Input Voltage Lead Temperature (Soldering, 10 sec.) 26O"C Electrical Character~stlcs (Note 3) Panimeter , LM710 Conditions Min Typ LM710C Max Min Units Typ Max Input Offset Voltage Rs:S: 200,0, VCM = OV, TA = 25°C 0.6 2.0 1.6 5.0 mV Input Offset Current VOUT = 1.4V, TA = 25°C 0.75 3.0 1.8 5.0 p.A Input Bias Current TA = 25°C 13 20 16 25 p.A Voltage Gain TA = 25°C Output Resistance TA = 25°C Output Sink Current VOUT = 0, TA = 25°C AVIN ~ 5 mV AVIN ~ 10mV 1250 1700 1000 200 2.0 1.6 Response Time TA = 25°C (Note 4) Rs:S: 200,0, VCM = OV Averag~ Temperature Coefficient of Input Offset Voltage TMIN :S: TA :S: TMAX Rs:S: 500 3.0 10 Input Offset Current TA = TAMAX TA = TAMIN 0.25 1.8 3.0 7.0 Average Temperature Coefficient of Input Offset Current 25°C:s: TA:S: TMAX TMIN:S: TA:S: 25°C 5.0 15 25 75 27 45 Input Bias Current TA = TMIN V-.= -7V Common-Mode Rejection Ratio .Rs 200 ,0 2.5 mA mA 2.5 Input Offset Voltage Input Voltage Range 1500 40 40 3.0 ±5.0 s: 2000 80 ns 6.5 mV 20 p.VloC 7.5 7.5 p.A 15 24 50 100 nArC nAloC 25 40 p.A 5.0 ±5.0 100 70 p.A V 98 dB Differential Input Voltage Range ±5.0 ±5.0 V Voltage Gain 1000 800 VIV Positive Output Level Negative Output Level Output Sink Current· -5mA:S: IOUT:S: 0 "IN ~ 5.mV VIN~ 10mV 2.5 VIN ~ 5mV VIN ~ 10mV -1.0 VIN ~ 5 mV, VOUT = 0 TA = 125°C TA = -55°C 0.5 1.0 VIN ~ 10 mV, VOUT = 0 O°C:s: TA:S: +70"C 3.2 -0.5 4.0 2.5 3.2 4.0 V V -1.0 -0.5 0 V V 0 1.7 2.3 mA mA 0.5 3-108 mA ra: ....., .... Electrical Characteristics (Note 3) (Continued) (:) Parameter LM710 Conditions Typ Max VIN ~ SmV VIN ~ 10mV S.2 9.0 VIN ~ SmV VIN:?; 10mV 4.6 Min Positive Supply Current Negative Supply Current Power Consumption LM710C lOUT = 0 VIN:?; SmV VIN ~ 10mV 90 Min Units Typ Max S.2 9.0 mA mA 4.6 7.0 mA mA ISO mW mW 7.0 150 Note 1: Rating applies for ambient temparatures of 25"C; derate linearly at 5.B mWrC for ambient temperatures above 25"C. Note 2: Derate linearly at 9.5 mWrC for ambient temperatures above 25'C. Note 3: These specifications appy for V+ = 12V, V- = -BV, -55'C ,;; TA ,;; + 125'C for LM710 and O'C ,;; TA ,;; +70'C for LM710C unless otherwise specified: The input offsaI voltaga and input offset ourrent (sea dafinHions) are specified for a logic threshold voltage of 1.BV at -55"C, 1.4V at 25"C, and 1V at 125'C for LM710 and 1.5V at O'C, 1.4V at 25"C, and 1.2V at 70'C for LM710C. Nota 4: The response time specified (see definitions) is for a 100 mV Input step with 5 mV overdrive (LM710) or a 10 mVoverdrive (LM710C). Typical Applications Une Receive with Increased Schmitt Trigger Output Sink Current INPUT-~ ~ ~i>-""I-OUlPUT +12V OUlPUT Rl 10k INPUT Rl -LImo Ql 2N2906 ~+ R2 2k TUH/l0410-4 -- -== Pulse Width Modulator Level Detector with Lamp Driver yt MA-~ DC~ TUH/l0410-5 +12V ~.JUUL L1 Rl . ~~ TUHI10410-6 :+LI_01:;;yO INPUT-+--Iy R2 .~ Ql ~2N2222 R4 TUHI10410-7 3-109 c> .... :1 r---------------------------------------------------------------------------------, Typical Performance Characteristics Transfer Function 40 I V"=-6.OV1 I I Voltage Gain J. .... 1l 'V TA=-5e"C -5.D -lD TJ"k TA=25"C yt=I2V ~ 1700 I ~~ "" r-r-- -1.0 1.0 \. r""" o -75 -liD -2S 0 - Response Time for Various Input Overdrives 40 ~ 7IInN 3D 10nN'1- I ': II ...'" II, II 5.DmY 2.OnN ~ I yt=l2V , 'f=-6JN TA=,:!! I 0711 «J 6D 6D 1110,1711 II : 5.D /'Os; ~ ~ ~ i ~ v+=12V V" =-6.11 TA=25CC ~OYour -r-- I -r- y, 504 20 «J 6D ' I I I I I 6D 1110 120 I I yt=l2V I I V7=-6.OV '"5~~I_r- ~ "'K. ~+tI '" Jva I-- lEIIPfIIATURE ('C) -- ," , ~"O~_ IT~ 25 50 75 1110 125 1.0 -75 -liD -25 0 180 Maximum Power Dissipation lDOD I I I I I I I I I 1 -1.0 1711 nIlE (no) yt=l2V 'I":=-6.OV ~ I I 80 «I Output Sink Current 3.5 , ....l .,2V V" =-6.11 TA=:zsac -1110 OA Common Mode Pulse Response II II -50 o o.z 0 2.OmV 5.DmV I -1!1GrC -75 -liD -2S 0 o.z -CJ.4 nllE(..) n..~~~ MEGAlIVE iJUlPIIT 4 INPUT VOlTAGE (V) :! Output Voltage Level , - r-.. ['\1\ 1.0 10mY 7IImV -1.0 lIIIE (no) 4.D yt=12V V"=",.oy , 1ouT=0 'A=:m<'C Response Time for Various Input Overdrives .J. I I 14 Supply Current lEIIPEIIATURE ('C) 40 13 10 -75 -liD -2S 0 25 50 75 1110 125 :! 12 11 ·~aJnvI:- "" o 25 50 75 1110 125 - POSI1lVE SUPPLY VOLTAGE (V) yt=12V 'I":=-8.11t lEIIPEllATURE ('C) :! "" 10 Input Offset Current " ZJ~ ~~ ..(,)J~... po. -- 1000 . / 25 50 75 1110 125 2.D .,- 1/ -' i>' .,- :lOD yt=l2V V"=-I.I1t ...... I- 17 I'\. lEIIPEllATURE (CC) Input Bias Current "-I' I-- t-- 1500 -75 -liD -2S 0 «I 2.0 ~ 1:lOD 5j) 3D .,.. TA":zsac :I 1«X1 -1.0 :10lIO '1":=-6.11 " 1800 INPUT VOlTAGE (mY) !l! Voltage Gain 1800 I yt=I2V 25 50 75 1110 125 lEIIPEIIATURE (CC) ,, "" ~, ~",, -METAL CAN PACKAGE o 5 ••••• PWltC DP 25 45 65 , '"I 65 105 125 AMBIENT lEIIPEIIATURE (CC) TLfHI10410-8 3-110 r-------------------------------------------------------------------------, r i: i! f}1National Semiconductor LM760 High Speed Differential Comparator General Description Features The LM760 is a differential voltage comparator offering considerable speed improvement over the LM710 family and operates from symmetric supplies of ±4.5V to ±6.5V. The LM760 can be used in high speed analog-ta-digital conversion systems and as a zero crOSSing detector in disc file and tape amplifiers. The LM760 output features balanced rise and fall times for minimum skew and close matching between the complementary outputs. The outputs are TTL compatible with a minimum sink capability of two gate loads. • • • • • Guaranteed high speed- 25 ns response time Guaranteed delay matching on both outputs Complementary TTL compatible outputs High sensitivity Standard supply voltages Applications • High speed A-to-D • Peak or zero detector Connection Diagram 8·LeadDIP '-/ NC....J. IN2 INI 2 3 > I v_....J !.....v+ 7 6 OUT 1 OUT2 L-GND TL/H/l0067-3 Top View Ordering Information Temperature Range Commercial O"Cto +70"C Package Type NSC Package Drawing LM760CN 8-lead Plastic DIP N08E 3-111 Absolute Maximum Ratings POsitive Supply Voltage, If Military/Aerospace speclfled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and speclflcaUona. Storage Temperature Range Metal Can and Caramic DIP Molded DIP - 65'C to + 175'C -65'Cto + 150'C Operating Temperature Range Military (LM760) Commercial (LM760C) -55'C to + 125'C O'Cto +70'C Lead Temperature· Metal Can and Ceramic DIP (Soldering, 60 sec.) Molded DIP (Soldering, 10 sec.) -+8.0V '. . -8.0V Negative Supply Voltage Peak Output Current Differential Input Voltage V+~ In"ut Voltage ESD Susceptibility 300'C 265'C 10mA ±5.0V VI ~ VTBD , LM760 Electrical Characteristics Vee = ±4.5V to ± 6.5V, TA = - 55'C to + 125'C, TA = 25'C for typical figures, unless otherwise specified Symbol Parameter Typ Max Units 1.0 6.0 mV Input Offset Current 0.5 7.5 p.A liB Input Bias Current 8.0 60 p.A Ro Output Resistance (Either Output) tpD Response Time VIO Input Offset Voltage 110 Conditions Min Rs:S; 2000 100 Vo = VOH TA = 25'C (Note 3) 18 TA = 25'C (Note 4) 25 (Note 5) ~tPD 0 30 ns 16 Response Time Difference between Outputs (Note 1) (tpDof +Vll) - (tpDof -VI:!! TA = 25'C 5.0 (tpDof +VI:!!- (tpDof -VII) TA = 25'C 5.0 (tPD of + VII) - (tpo of + VI:!! TA = 25'C 7.5 (tpDof -VII) - (tpDof -VI:!! ns 7.5 RI Input Resistance TA = 25'C f = 1.0 MHz 12 kO CI Input Capacitance f = 1.0 MHz 8.0 pF ~Vlo/~T Average Temperature Coefficient of Input Offset Voltage Rs = 500, TA= -55'Cto+125'C 3.0 jJ.VI'C ~llolaT Average Temperature Coefficient of Input Offset Current TA = + 25'Cto + 125'C 2.0 TA = + 25'Cto -55'C 7.0 VIR Input Voltage Range Vee = ±6.5V VIDR Differential Input Voltage Range VOH Output Voltage HIGH (Either Output) ornA :s; 10H:S; 5.0mA Vee = +5.0V 10H = 80 p.A, Vee = ±4.5V ±4.0 nAI'C ±4.5 V ±5.0 V 2.4 3.2 2.4 3.0 V VOL Output Voltage LOW (Either Output) 10L = 3.2 rnA 0.25 0.4 V 1+ 1- Positive Supply Current Vee = ±6.5V 18 32 Negative Supply Current Vee = ±6.5V 9.0 16 rnA rnA 3-112 LM760C Electrical Characteristics Vee = ±4.SV to ±6.SV, TA = O"C to +70"C, TA = 2S"C for typical figures, unless otherwise specified Parameter Symbol VIO 110 liB Ro tpo Atpo RI CI AVlo/AT Allo/AT VIR VIOR VOH Input Offset Voltage Input Offset Current Conditions Input Bias Current Output Resistance (Either Output) Response lime Typ Max Units 1.0 6.0 7.S mV 60 /'oA O.S 8.0 Va = VOH TA = 2S"C (Note 3) 100 18 TA = 2S"C (Note 4) (Note S) 16 0 2S TA = 25"C S.O TA = 2S"C S.O (tpool +VI1) - (tpool +VI2) TA = 25"C (tpool -Vll) - (tpool -VI2) Input Resistance TA = 2S"C 1= 1.0 MHz 10 10 Input Capacitance 1= 1.0 MHz Average Temperature Coefficient 01 Input Offset Voltage Average Temperature Coefficient 01 Input Offset Current Input Voltage Range Differential Input Voltage Range Output Voltage HIGH (Either Output) ".A 30 Response TIme Difference between Outputs (Note 1) (tpool +Vll) - (tpoof -VI21 (tpool +VI2) - (tpool -Vll) ns ns 12 8.0 kO Rs = SOO, TA = O"Cta +70"C 3.0 ".VI"C TA = +2S"Cto +70"C s.o nAI"C TA = +2S"CtoO"C Vee = ±6.SV 10 omA :s: 10H :s: S.O mA Vee = +S.OV IOH = 80 /'oA, Vee = ±4.SV VOL Output Voltage LOW (Either Output) 10L = 3.2mA 1+ 1- Positive Supply Current Vee = ±6.SV Negative Supply Current Vee = ±6.SV Note 1: TJ Max Min Rs:S: 2000 ±4.0 pF ·±4.S ±S.O 2.4 3.2 2.S 3.0 V V V 0.2S 0.4 V 18 9.0 34 mA mA 16 = 150'C. Ratings apply to ambient temperature at 25'C. Response lime measured from the 50% point of a 30 mVp_p 10 MHz sinusoidal input to the 50% point of the output. 1\Iote 4: Response time measured from the 50% point of a 2.0 Vp_p 10 MHz sinusoidal input to the 50% point of the output. Note 5: Response time measured from the start of a 100 mY input Slap with 5.0 mY overdrive to the time when the output crosses the logic threshold. Note 2: Note 3: 3-113 Typical Performance Characteristics Response Time tor Various Output Overd~lves' I 4 3 2 ~my-. Vcc=*5V TA=25'C IJ 0 ... ~ «I VCC=UV TA=25'C f-r;-r- ~r..~:~~E WAVE INPUtS f-+- T=25~ 2O~:0111 ~2mV 10mV_ r-~mY 2 .... I "- mV ...Ij I 4 3 mVr- Om r.... ~ I Response Time vs Input Voltage Response Time tor Various Input Overdrives 0 Y .... , ; 1'00' 0 10 05101520253035 1IIIE-no ~ t-... r I- ~ 10 20 Vcc = *5.ov , JIod.'- /v~ :;r .,.-r-- .J :I.·\cc~*~5V 50 100 200 500 1000 2000 o ~ r- Voltage Gain vs Supply Voltage - TAi'~- TA=55'C" o -I -2 INPUT VOLTAGE- mY INPUT VOLTAGE - mV,., ... ~y25'C I -I -2 12 6 Vcc " U.5V IJ o 10 Voltage Transfer Characteristic ITA·I~_ vcc=uv 10 MHz SIIE WAVE INPUTS TA=25'C I- 4 INPUT VOLTAGE - mYPOP Voltage Transter Characteristic 6 l- 2 05101520253035 liME-no Response Time vs Input Voltage 30 INPUT VOLTAGE - mV Input Bias Current vs Temperature Voltage Gain vs Temperature 12 9000 TA=~ «100 .,. Vcc=UV -r-- ./ i'. I'" '" 15.0 *5.5 *11.0 SUPPLY VOLTAGE-V , -60 *6.5 '1-o.a -20 20 140 I 60 TEMPERATURE - 'C 100 1«1 .... ~ ~D.2 20 -20 20 60 100 TEMPERATURE- 'C 140 4 - r--20 -60 vcc=U.5V TO U.5V VI=50mY~~ f=IOMHz 25 0,4 o Output Voltage Levels vs Temperature 30 == Y -60 100 Response Time vs Temperature io.a o 60 TEMPERAruRE - 'C vcc =*6.5V ~ ~ I' Input Offset Current vs Temperature 1.0 " " 1/ U.5 Vcc = U.5V I, "- ;'" ~ r'IIG 50 0 5 -60 -20 vOII % - Vcc=UV =5.0mA -~ ~ I I I R.-. 20 60 TEMPERATURE - 'C 100 1«1 ~~~r. GCr-rI"- .... I o -60 VOlOSil " .2mA -20 20 60 r-r- 100 140 TEMPERATURE - 'C TUH/l0067-5 3-114 Typical Performance Characteristics (Continued) Rise Time vs Fall Time vs Capacitive Load Capacitive Load 30 Vcc =*5V TA=25'C 25 Vcc =*5V 10 o 1 - 5 '0 TA=25OC 25 l- I '5 18 30 I- " 20 Input Bias Current vs Dlfterentlallnput Voltage 1- 20 10 1 B 8 ! 6 i 5 , o 50 100 200 ITA:!~'::;;~ 12 ~ '0 50 100 200 o 1m I"......J. I 20 ~ 1"-1-50 -~ 50 100 OIFFER£NlIAL INPUT VOlTAGE - mY CAPACIIlVE LOAD - pF CAPAaIIYE LOAD - pF I ..... 4 o 5 1;;"1 i' '0 1 15 Ivcc=uV 1. Common Mode Range vs Supply Voltage 6 TA=25"C ~ ~ 0- V/- 0 ~~ ~ ~ 0 ~ V/. 0- I'l: 0 ~ ~0 ~ W. 0- I'l: ~ ~ V/- 0 ~ I/j ~ 10 ~ 'iJ 'iJ'iJ 'iJ~ 'iJ 'iJ'iJ 'iJ 'iJ 'iJ'iJ V/. 'iJ V/'iJ 'iJ -a ""'" *~ ::.::; *5.0 SUP~LY US *6.0 VOlTAGE-V US TLlH/l0067-8 Equivalent Circuit v+ Rl 1k1l R2 lk4 R15 5kll R16 82DA R17 1004 RIB 82DA R20 ,0011 OUT 1 GIlD IN2 OUT 2 R3 35011 R5 35DA R7 R8 35011 10DA R12 30011 R13 4kll R14 35DA vTLlH/l0067-4 3-115 • o~----------------------------------------------------------------------. ~ .... Typical Applications (Note 1) Line Receiver with High Common M~ Range :~? :G .~o.:7~' It- --:: -1 J- ~ Rs SOnl TLlH/l0067-10 Common mode range = ±4 x TL/H/l0097-7 Differential Input Sensitivity Level Detector with Hyaterelll ~V = 5 x ~ mV PI must be adjusted for optimum common mode rejection. For As = 20011: Common mode range = ± 16V Sensitivity = 20 mV l00kA I I I I I I I ~ I I I o TLlH/l0097-8 Zero Crossing Detector (Note 2) v+ 5.0k IN--..----...:=...j ""'I:""'"---OUT ~r;;....-_..... OUT 50 Tl/H/l0067-9 Totardelay - 30 n8 InpUt Frequency = 300 Hz to 3.0 MHz Minimum input voltage - 20 mVp_p Note 1: Lead numbers shown are for Metal Package only. Note 2: All ....Istor values in ohms. 3-116 Typical Applications (Note 1) (Continued) High Speed 3·Blt AID Converter IN IIS8 INI Rl 504 IN2 0.25V R2 1004 0.75V R3 1004 1/4x9002 1.25V Rot 1DOD. 1.75V R5 1004 RIO INI 2.25V 1M2 R6 1DOD. 1/4 x 9002 2.75V R7 1004 Rll INI 3.25V 1M2 R8 3504 SOD. +5.0V Tl/H/10067-11 Input voltage range ~ 3.5V Typical conversion speed = 30 ns 3·117 ~ ~ ,--------------------------------------------------------------------------------, ~ ~National Semicondu~tor rrf'··" LM 1S'01 Battery Operated ·Power Comparator General Description Feat,..res The LM1801 is an extremely low power comparator with a high current, open-collector output stage. The typical supply current is only 7 /LA, yet in its switched state the comperator can source or sink O.5A. The LM1801 is designed to operate in a standby mode for 1 year, powered by a 9V alkaline battery. Provision is made. for operation from supplies of up to 14V. An internal 14.5V zener clamp may be used for supply regulation in line operated applications. .., The low battery detector and stand-by current drain are externally programmed by resistors. A parallel output is provided to "OR" as many as 9 comparators, and a feedback pin allows adding hysteresis or latching functions. Two on-Chip voltage sources can serve as bias points for the comparator inputs or as references for other circuit functions. • • • • • • • • • 8V to 14V operation Direct drive to horn Internal zener for supply regulation Parallel comparator capability· Extremely low stan~,by current drain 2 references on chip Low battery detector O.5A output transistor Output clamp diodes 'on chip Applications • • • • • Intrusion aiarins ., Water I~k detectors Gas leak dlrtectors Qvervoltage crowbars B~ttery operated monitors ;,,' TL/H/9139-1 'Alarm sounds when probe conductors are bridged with water droplets. A suHable probe can be etched In copper Glad board. FIGURE 1. Water Leak Detector Order Number LM1801N See NS Package Number N14A 3-118 Absolute Maximum Ratings Power Dissipation (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 14V Input Voltage -0.3Vto 14V ±14V Input Differential Voltage 1176 mW + 70"C + 125'C O"C to Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec.) ESD rating to be determined. -65'C to 260"C Electrical Characteristics (Note 2) Typ Max Units 5 2 15 10 8 ISINK = 100 p.A 0.5 1.5 mV nA nA 5 Is = 200.mA Is = 500mA 0.7 1.9 100 1.3 Parameter Conditions Comparator Input Offset Voltage Input Bias Current Input Offset Current Pin 6 Output Low Output Stage (Pin 8) Leakage Current Saturation Voltage Saturation Voltage Common Alarm Line (Pin 10) Drive Capabilities Output Voltage High Output Current Driver Requirements Input Voltage Input Current Regulator Pin 2 Reference Voltage Temperature Coefficient Pin 3 Reference Voltage Temperature Coefficient Battery Check Oscillator Threshold Voltage (Pin 12) Period Beep Pulse Width Supply Current (Note 3) Zener Clamp Voltage, V9 Min V nA V V V4> V5 . V 6.8 6.5 V10 = O.OV V5>V4 V8 = 1.5V,ls = 200 mA mA 3.6 V 0.4 mA 5.8 V 5 mV/'C 7 mVl'C 5.2 5.5 V+ V+ = 7.5V, C1 = 10,."F =: 7.5V, C1 = 10,."F 6:0 40 6.5 50 60 6 19= 1 rnA V 14.5 V s ms 8 p.A V Note 1: For operating at elevated temperatures, the device must be derated based on a 125"C maximum junction temperature and a thermal rasistance of 85"C/W junction to ambient. Note 2: RSET = 10 Mil, V+ Note 3: output OFF. = 9V, TA = 2S"C, (Figure t). 3·119 LM1801 TIWING LOW BATTERY DElECTOR SENSE PARALLEL v· CAPACITOR INPUT OUTPUT OUTPUT 11 BIAS STRING IiiiI COLLECTOR DARLINGTON OUTPUT Ii1 D7 DB 1D9 I I !" Dl0 SUPPLY ZENER ~ I - '..ok 3 LOW BATTERY GROUND DETECTOR COMPARATOR BIAS 5.8V 5.2V REfERENCES STEERING LOGIC + 15 INPUTS COMPARATOR EMITTER OUTPUT TLlH/9139-2 FIGURE 2. LM1801 Internal Schematic Applications Hints The output transistor is normally operated with the emitter grounded. Under these conditions the collector is guaranteed to saturat.e no higher than 1.3V at 200 mAo 1.9V saturation voltage is typical at 500 rnA. The emitter may also be used as an output, and it can swing from ground potential up to 5V on a 9V supply. Emitter swing in the positive direction is limited in the parallel output mode. A low battery detector with a 6V threshold is also included on chip. This circuit consists of 016, 017, 011, and 012. When pin 12, the battery sense input, is higher than 6V, 012 clamps the emitter of 016 to 6.6V, and the output ,rom the current source flows through the zener to ground. If pin 14 drops below 6V, 016 is biased ON, and current is drawn away from the zener and into 016. The SeR formed by 016 and 017 is triggered when 016 is biased ON. The capacitor at pin 14.is discharged, part of its charge flows to the steering logic to pulse the output transistor, and the remainder holds the SeR in its ON state. When the timing capaCitor has discharged, conduction in 016 and 017 is commutated. Note that the output from the current source is less than the sustaining current required by the SeR. The current source slowly charges the capacitor until the voltage across it rises 0.6V above pin 12, where the cycle repeats itself. If pin 12 rises above 6V, the zener clamps the voltage at pin 14 and the low battery detector remains OFF. Pin 12 is biased from an external resistive divider. The divider should be designed to detect at no lower than V + = 7V. The detector will continue to work at lower voltages providing pin 12 is at least 1V below the supply. For a 9V alkaline battery a threshold of 8.2V is common. A resistive divider of 2.7 Mn and 7.5 Mn provides the appropriate threshold. CIRCUIT OPERATION The LM1801 includes a bias string, comparator, steering logic, output transistor, supply clamp, low voltage detector, and reference. An internal schematic is shown in Figure 2. The chip is biased by a group of current sources that are controlled externally by a fixed resistor, Rsat. In normal, or standby operation the supply current drain is nominally 6 times the set current at pin 1. The voltage at pin 1 is two forward diOde potentials (01 + 02 = 1.2V typical) IEiss than the positive supply voltage. Practical values of Rset range from 100 kO to 10 MO. Higher currents are useful where speed is important, while lower currents promote long battery life. The total standby current drain of the LM1801 will include in addition to the above, the current drawn by the exte~al circuits connected at pins 2, 3, and 12. These are the resistive dividers used to set the low battery threshold and comparator threshold. The voltage comparator consists of devices 01 through 010. The input features a common mode range from less than 300 mV to V+ - 1.2V. If the non-inverting input is ~in this range, the output state remains valid for inverting Inputs of OV to V +. If the inverting input is within the common mode range, valid comparisons hold for non-inverting inputs of 300 mV to V+. The comparator may not switch low if the positive input is grounded. With a set resistance of 10 MO, comparator input bias curre~ of 2 nA are typical. This allows the use of high-value resistors (10 MO) at the comparator inputs which help minimize total supply current The comparator's output is available through a steering diode (03) for latching or hysteresis functions. The comparator output is also coupled internally to the steering logic (011-013). The comparator, low battery detector, and parallel output (pin 10) functions are OR'd in the logic circuit. In addition, the comparator output is steered to the parallel output. If the parallel outputs (pin 10) of two or more chips ere wired together along with a common ground, the comparator on anyone chip can cause all of the other output stages to switch, as well as its own output. Outputs are switched when the inverting comparator input is positive with respect to the non-inverting input. Low battery func-· tions are coupled to the steering logic via 012, and therefore do not affect the perallel output (013). If the sense outputs (pin 11) of two or more chips are wired together, the comparator and low battery detector will cause all outputs to switch. In many applications the on-chip references can provide bias points. The references are driven from 013, and buffered by 018 and 019. If only one bias point is needed the first reference (pin 2) should be used, and the unused output (pin 3) may be left open. The tiny leakage currents in 018 can cause 019 (pin 3) to drift upward if a 10 MOload resistor is not included at pin 2. The combined output current from pins 2 and 3 should not exceed 1 mAo If neither reference output is used, pins 2 and 3 should be left open. The last section of the LM1801 is the supply zener. It is built from a series combination of two diodes and two zeners. The breakdown voltage at 1 mA is 14.5V, and the series resistance is about 2000.. In line operated applications the zener may be used for supply regulation or transient protection. The zener is designed to carry up to 10 rnA. The output transistor is a 0.5A Darlington. Included in this structure are two clamp diodes. D4 clamps positive collector voltage excursions to the supply, and 05 clamps negative excursions to ground. • 3-121 i iii.... , Applications Hints (Continued) DESIGN,HINTS ; The output stage can drive lamps, LEOs, buzzers, beepers, r~la~, motQrs, and solenoids. However, the low battery detector is not, cOlI)pl!'~ble with eyery, load. Since the lo,w ~t tery.detector, generates only a sh!>rt pulse (60 ms. typical), it is in~ended for use with buzzers and beepel'll. DePending on the resPRn~e time Ilnd re~nant frequencY,. some buzzers may Orllt produCe a~ingle click. ,Self-o~illating beepers usually start Instantly and produce a recognizable "tweet" When a lOw l:1attely Condition is, detected. Incandescent lamps, large relays and solenoids will do absolutely nothing when pulsed by the low battery deteCtor. If the comparator inputs are subjected to electrostatic di&charges (ESO), a'series resistanCe]$' recommended to provide protection. Given the low input bias currents, 100 kO resistors can be added without affecting, circuit performance; yet' they' greatly enhance static' protection. The LM1801 is not designed to withstand reVerse battery. WIth' a 10 Mil" R~ the' LM'1801 responds tei an 'input in approximately 2.5 p.s, and rurns OFF in' 200 'p.s. Higher set currents decrease the response time. With Rsei = 1 MO, the output switches low in 0.5 ".s, and high in 50 p.s,ariC! with RBet ,,;, 100 kO, the response times are reduced to 0.2 p.s and 12 ".s. '. self:aSCill~ting beepers ar~ readily available, such as .the Sonalert SNP428 and the Panasonic EAL-069A. These units are g,uaran~~d, to Sllif-start when power is applied. When ,the ,circuit is il) the sWiQby state (V5 > V4), ,the 'current consumption in 'a tYPical application such lis Figure 1is less than apProximately 7 p.A. However, when the. comparator sWitches LOW (V4 > V5), the supply current increases to 3 mA owing to the Darlington baSe current. Therefore, to realize milximum battery life, any application shOUld be devised so that V5 ~,V4'!n'the stlindbyor resting stllte. To defeat the low battery detector, short pi(ls 12 and 14 together, and do not connect them to an~hing else. ' Circuit board assembly procedures should include a thorough cleaning to remove flux and other residues. The input pins are often biased by very high impedance sources and even,a 1P t.l!O leakage path can ,upset circuit operation. "', 2 tt 6 N.C. SEI\SE INPUr S.8V t-....;..-..;....~...,..J R1 101014 R2 ~.' " TLlHi9139-3 '1"'1. Rl + R2 = 10 MO VlRlP = (Rl :2R2) 5.BV Minimum trip voltage ' = 5,BV 'Use series resistor for supplies> 14V. Select for IZENER = 5 mAo ··Reverse connections and add 1 MO resistor for overvoltage Indication. tOplional filter capacitor. 1 nF to 100 nF, ttPush to reset. Eliminate pin 6 connection for non-latching operation. FIGURE 3. Under (Over) Voltage Indicator 3-122 Ii: ..... Q) o ..... Applications Hints (Continued) y+ • + 10 14 9 8 SENSE INPUT 2 RI R2 6 CROWBAR t 7.5MA I TUH/9139-4 Rl + R2 ~ 10 Mil Rl + R2) VTRIP ~ ( --;:;;- 5.8V 'Use series resistor for supplies > 14V. tOpiional flRer capacitor. 1 nF to 100 nF. FIGURE 4. avervoltage Crowbar 3·123 Applications Hints (Continued) !PF j + - 9V I I I I I I 51k4 r-+_~20k4 !!sENSOR 1100nF : WYlAR ._----I ponm -------- SENSOR TUH/9139-5 To set trip pOint,trim VREF to 4.5V. Trim RSENSOR at room tempsratura (23"C) for: VSENSOR 273 + 23) = 4.5 ( Tx + 273 where TX is the desired trip point temperature in ·C. As shown, the alarm is activated for over tempsrature conditions. Reverse the comparator connections for under tempsreture alarm. The 20 kO potentiometer allows an adjustment range of - 55'C to + 6O'C. Add a 10k fixed resistance in series with the potentiometer for a + 5O"C to + 125"C adjustment range. RSENSOR can be replaced by a fixed resiator once the desired value Is found. VAEF Is used as a final adjustment. FIGURE 5. Over (Under) Temperature Alarm 3·124 Applications Hints (Continued) 1114 , ..a RES£T SWITCH (N.C.) 4.7114 7.5114 ALARM SWITCH (N.c.) 7.5 ..a !:U ALARM QlSWlTCH ~(N.O.) TL/H/9139-6 FIGURE 6. Simple Alann CIrcuIt Rsu 10114 10114 • NORIIAL ~ ALARIoI OJ SWITCH ..t (N.C.) TLlH/9139-7 FIGURE 7. FUII-Featurecllntruslon Alarm 3-125 ..- ~ r-------------------------------------------------------------------------------~ t!lNational Semiconductor LM6511 180 ns 3V Comparator . Features (Typical unless otherwise noted) General Description • Operates at +2.7V, +3V, +3.3V, +5V • Low Power consumption <9.45 mW @ V+ = 2.7V The LM6511 voltage comparator is ideal for analog-digital interface circuitry when only a + 3V or + 3.3V supply is available. The open-collector output permits signal compatibility with a wide variety of digital families: + 5V CMOS, + 3V CMOS, TIL and so on. Supply voltage may range from 2.7V to 36V between supply voltage leads. The LM6511 operates with little power consumption (Pdiss' < 9.45 mW at V+ = +2.7V and V- = OV). (max) • Fast Response Time of laO ns Applications • Portable Equipment • Cellular Phones • Digital Level Shifting This voltage comparator offers many features that are available in traditional sub-microsecond comparators: output sync strobe, inputs and output may be isolated from system ground, and wire-ORing. Also, the LM6511 uses the indUStry-standard, Single comparator pinout configuration. Connection Diagram S-Pin PIP/SO GROUND -!. NON-INVERTING INPUT 2 -1"1- ~. INVERTING INPUT 3 ~ ~ - -7 - 6 OUTPUT BALANCE/STROBE 1.... BALANCE TL/H111888-1 Ordering Information r-----------.------------------.--------~ Package I Industrial Temperature Range -40"Cto +S5"C NSCPackage Drawing a-Pin Molded Oil' LM65111N NOSE a-Pin Small Outline LM65111M MOBA 3-126 Absolute Maximum Ratings (Note 1) Power Dissipation If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. -0.3 to +36V Supply Voltage Output to Negative Supply Voltage 50V Ground to Negative Supply Voltage Differential Input Voltage Input Voltage Storage Temperature Range = 1.5kO) 300V Supply Voltage 2.5Vt030V -400C Temperature Range s: TJ s: Thermal Resistance (6JAl DIP Package SO Package 2600C 215·C 2200C DC Electrical Characteristics = Operating Ratings (Note 1) - 65°C to + 1500C limits apply at the temperature extremes. V+ specified Symbol Junction Temperature ESDRating(C = +100pF,R 30V ±30V (Note 2) Soldering Information: DIP Package (Soldering in 10 sec) SO Package (Vapor Phase in 60 sec) SO Package (Infrared in 15 sec) 500mW 10s 150·C Output Short Circuit Duration 1100C/W 1700C/W Unlesss otherwise specified, all limits guaranteed for TJ = 25°C. Boldface 2.7V, V- = OV, 500 s: RL s: 50kO, and IL = 1.0 mA unless otherwise Parameter Typical Conditions LM65111 Umlt Vos IB los Is Offset Voltage Rs s: 50 kO (Note 3) 1.5 Input Bias Current Input Offset Current 38 Rs s: 50 kO (Note 3) 1.5 Positive Supply Current 2.7 Negative Supply Current VSAT Saturation Voltage Av Large Signal Voltage Gain CMRR Common Mode Rejection Ratio ISTROBE Strobe ON Current VIN Input Voltage Range Output Leakage Current +85·C 1.5 VIN s: 10 mV ISINK = 8mA AVOUT = 0.23 5 8 20 VIN ~ 10mV, VOUT ISTROBE = 3 mA 3-127 2.0 = 35V, 0.2 nA max 50 3.5 5 2.0 mA max 2.' 0.4 0.4 V max VlmV 72 (Note 5) mV max 130 200 40 2V' Units (Limits) dB 5.0 mAmax 0.50 V min V+ -1.25 V max nA max AC Electrical Characteristics Unlesss otherwise specified, alllim,its guaranteed for TJ = 25°C. Bol~ce limits apply at the temperature extremes. V+ - ,2.7V, V- = OV, 500 ~ RL 50 kO, and I,L= 1.0 mA unless'otherwise specified. , . , " :s: SymbOl Parameter Response TIme Conditions (Note 4) Typical LM65111 Units Limit (Limits) 180 ns Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur. Operating ratings Indicate condillons,the devica Is intended to be functional. but do not guarantee specHic performance limits. For guaranteed specifications and test condmons, sea the Electrical Characteristics. The guaranleed spaciflcations apply only for the test condmons listed. Note 2: The positive input voltage limit is 30V above ,the n~, supply voltage. The negative Input voltage limit is equal to the negative 'supply voltage or 30)/ below 1I1e positive supply voltage. whichever is lass. "ote 3: The offset voltage and offsat current limits are the maximum values required to drive the output within a von of either supply wHh a 1 rnA load. Therefore. lhasa parameters define an IIfI'Or band and lake into account the worst-case effects QI voltage gain and Input impedance. Note 4: This spaciflcetion is for a 100 mV Input step with a 25 mV overdrive. Note 5: This specification gives the range of currant which must be drawn from the strobe pin to ensure the output is property disabled. Do not short the strobe pin to ground; R should be currant driven at 3 rnA to 5 mAo Schematic Diagram &ALANCEISTROBE BALANCE • & R3 3BI 14, 3111 HI R2 1.311 1.311 HI R5 71 100 RI. 4/! OUTPUT ......-1_..1 RIZ II1II RI3 4 4 V· .NO TlIH/II888-5 3·128 LM6511 Typical Performance Characteristics Vs = Input Bias Current 3V unless otherwise noted Input Current vs Input Voltage Input Offset Current 60 -5 1: \ 50 !z I . '-.... 40 " "'" ~ i 30 20 -50 50 \ :! \ ~ \ 50 ~ REFERRED TO SUPPLY VOLTAGES ~ -1.5 !i! !:3 g I. ~ Ii! DA D.2 V· m ~ U M • 1.5 Ii 100 l!1 a 80 I 40 60 V 20 0 -'0 -45 lOUT = 8 mA 0.5 0.25 ............ :; ,:t' 0.2 . 0.1 so -so I........ 1.4 1. 0 ~ 0 .8 ti 0 .6 0 .4 Output Leakage Current 10 3.5 :g is i -;; 3.0 ~ ~ 2.5 2.0 1.5 0 .2 r--. ...... -- ....... t- 1.0 -40 -20 0 0 123456789101112131415 ! ....... .5- i 100 50 TEMPERATURE Supply Current vs Temperature 1.2 .... 0.15 rDIFFERENTIAL INPUT VOLTAGE ("V) 1.6 F -35 0.3 0.0 -50-40-30-20-10 0 10 20 30 40 n " 160 .5- -30 Output Saturation Voltage / 1.0 I- -25 0.35 i::- Output Current Limiting 140 - II 2.0 TEMPERATURE lOC) -;; 120 l- -20 INPUT VOLTAGE (mV) ..... /~ 2.5 E -1.1 I D -15 INVERTING -50 -100~B0060~400200 0 200400600806000 100 Transfer Function 3.0 I I I NON1NVERTIf'{G TEMPERATURE Common Mode Limits ·U r--- -50 V· iE ~ "~ TEMPERATURE i i o 100 I -10 0 20 --r--. 40 60 i r-. V ~ - /V ~ ~ 6 I- 0.1 20 80 100 120 TEMPERATURE (Oc) OUTPUT VOLT AGE (V) I '" ,/ 30 ,/ 40 50 60 70 80 90 TEMPERATURE TUH/11BBB-2 , ""' Propagation Delay vs Overdrive 250 \. 225 ]: 200 ~ "'" ~ 175 150 125 i~}';-T'ii +~V ~ 100 1 10 100 1000 OVERDRIVE (mV) TUHI1 1 88B-3 3-129 ..... ..... II) CD Typical Application :I Universal Logic Level Shifter 10k LOGIC A IN ~~>7 02 Y8 2 ....---=1+ _____... LOGIC BOUT 1 TL/H/II88B-4 Nates: Because of the very wide operating and ouIput voltage range, the LM6511 may be used to shift logic levels from 3V to TTL or CMOS to the other wsy around. By biasing the input to % of the input logic supply C'IpJ, this assures that this Input remains within the Input voltage range. The oulputlogic supply C'lel. 3-130 pul~up resistor should go to the ; r-----------------------------------------------------------------------~ ~ IfINational Semiconductor ~ LMC6762 DuallLMC6764 Quad, MicroPower, Rail-To-Rail Input and Output CMOS Comparator General Description Features (Typical unless otherwise noted) The LMC6762/4 is an ultra low power dual/quad comparator with a maximum supply current of 10 pA/comparator. It is designed to operate over a wide range of supply voltages~ from 2.7V to 15V. The LMC6762/4 has guaranteed speCs at 2.7V to meet the demands of 3V'digital systems. • Low power consumption (Guaranteed) Is .. 10 p.A/comp 2.7V to 15V • Wide range of supply voltages • Rail-to-rail input common mode voltage range • Rail-to-rail output swing 2.7V, and (Within 100 mV of the supplies, @ V+ ILOAD = 2.5 rnA) • Short circuit protection 40 mA • Propagation delay (@ v+ = 5V,'100 mVoverdrive) 4 pos The LMC6762/4 has an input common-made voltage range which exceeds both supplies. This is a significant advantage in low-voltage applications. The LMC6762/4 also features a push-pull output that allows direct connections to logic devices without a pull-up resistor. A quiescent power consumption of 50 poW/amplifier (@ V+ = 5V) makes the LMC6762/4Ideal for applications in portable phones and hand-held electronics. The ultra-!ow supply current is also independent of power supply voltage. Guaranteed operation at 2.7V and a rail-to-~I performance makes this device ideal for battery-powered applications. Refer to the LMC6772/4 datasheet for an open-drain' version of this device. I: ~ ' Applications • • • • Laptop computers Mollil.,. phones Metering systems Hand-held electronics • RCtimers • Alarm and monitoring circuits • WindOw comparators, multivibrators Connection Diagrams ,a-Pin DIP/SO 14·Pln DIP/SO OUT B OUT A TUH/I2320-1 TUH/I2320-2 Top View Top View Ordering Information, Package Temperature Range - 40"C to + a5"C NSCDrawlng Transport , Media S-Pin Molded DIP LMC6762AIN, LMC6762BIN NOSE Rails S-Pin Small Outline LMC6762AIM, LMC6762BIM LMC6762AIMX, LMC6762BIMX MOSA MOSA Rails Tape and Reel 14-Pin Molded DIP LMC6764AIN, LMC6764BjN NOsE RililS 14-Pin Small Outline LMC6764AIM, LMC6764BIM ' LMC6762AIMX, LMC6762BIMX M14A M14A Rails Tape and Reel " 3-131 i ~ I tfI ADVANCE INFORMATION National S em i co n,d u c tor LMC6772 Dual, LMC677.4 Quad, Micro-Power Rail-To-Rail Input and' Open Drain Output CMOS Comparator General Description Features (Typical unless otherwise' noted) The LMC6772/4 is an ultra low power d,ual/quad comparator with a maximum 10 ,.,A/comparator power supply current. It is designed to operate over a wide range of supply voltages, from 2.7V to 15V. The LMC6772/4 has guaranteed specs at 2.7V to meet the demands of 3V digi~1 systems. The LMC6772/4 has an input common-Illode voltage range which exceeds both rails. This is a significant advantage in low-voltage applications. The LMC6772/4 also features an open-drain output. This architecture is ideal for mixed supply voltage systems as an external resistor can be used to pull the output up to + 15V, regardless of the supply voltage. A quiescent power consumption of 50 ,.W/Amplifier (@Vs = 5V) makes the LMC6772/4 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of the power supply voltage. Guaranteed operation at 2.7V. and rail-to-rail performance make the device ideal for battery-powered applications. • • • • • • • Is = '10 ,.A/comp Low power consumption 2.7Vto 15V Wide range of supply voltages Rail-to-Rail Input Common Mode Voltage Range Open-drain output stage 40mA Shor:! circuit protection Propagation delay (@Vs = 5V, 100 mVoverdrive) 5,.s Refer to the LMC6762/4 datasheet for a device with similar specs and a push-pull output stage " Applications • • • • • • Laptop computers Mobile Phones Metering systems Hand-held electronics RC timers, Window Comparators, Multivibrators Alarm and monitoring circuits Connection Diagr2Jms a-Pin DIP/SO '-../ 1 OUT" IN ,,-.!. IN ,,+ v- 2- ...!. ~ ~ 14-Pln DIP/SO ~v+ OUT B OUT" ~ OUT B IN ~IN 5 2. y+2. 7 ,,-.!. IN A+":" B- IN e+ '-../ 1 IN B- ~ IN B+ 7 Package OUT C 13 ~,I~ft,:~ ~OUT D ~vr!..!.IN D+ ,.!! IN D- 9 IN c+ 8 IN C- TLlHI12347-1 Top View 14 TL/H/12347-2 Top View Temperature Range Industrial, - 40"C to + WC 8-Pin Molded'DIP LMC6772AIN, LMC6772BIN 8-Pin Small Outline LMC6772AIM, LMC6772BIM NSC Drawing Transport Media N08E Rails M08A LMC6772AIMX, LMC6772BIMX 14-Pin Molded DIP LMC6774AIN, LMC6774BIN 14-Pin Small Outline LMC6774AIM, LMC6774BIM LMC6774AIMX, LMC6774BIMX 3-132 Rails Tape and Reel N14A M14A Rails Rails Tape and Reel ttl PRELIMINARY Nation'a I Semiconductor LMC7211 Tiny CMOS Comparator with Rail-to-Raillnput General Description Features The LMC7211 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes the comparator ideal for space and weight critical designs. The LMC7211 is available in S0-8 surface mount packages and in conventional 8-pin DIP packages. The LMC7211 is supplied in two offset voltage grades, 5 mVand 15 mV. The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The rail-to-rail input voltage makes the LMC7211 a good choice for sensor interfacing, such as light detector circuits, optical and magnetic sensors, and alarm and status circuits. The Tiny Comparator's outside dimensions (length x width x height) of 3.05mm x 3.00mm x 1.43mm allow it to fit into tight spaces on PC boards. • • • • • • • • Tiny SOT 23-5 package saves space Package is less than 1.43 mm thick Guaranteed specs at 2.7V, 5V, 15V supplies Typical supply current 7 IJA at 5V Response time of 8 I£s at 5V LMC7211-push-pull output Input common-mode range beyond V- and V + Low input current Applications • • • • • • • Battery Powered Products Notebooks and PDAs PCMCIA cards Mobile Communications Alarm and Security circuits Direct Sensor Interface Replaces amplifiers used as comparators with better performance and lower current Connection Diagrams 8-Pln DIP/S0-8 NC..! INVERTING INPUT.l NON-INVERTING 1 INPUT y-.l '-' ~ 5-Pln SOT23-5 '"W"'w' l!.NC Ly+ y+ 2 !.OUTPUT NON-INVERTING 3 INPUT l..NC ' + - TLlH/12337-1 TLlH/12337-2 TopYl_ Package Ordering Information 4 INVERTING INPUT TopYI_ NSCDrawing Number Package Marking Transport Media 8-Pin DIP LMC7211AIN N08E LMC7211AIN rails 8-PinDIP LMC7211BIN N08E LMC7211 BIN rails 8-PinSO-8 LMC7211AIM M08A LM7211AIM rails 8-PinS0-8 LMC7211BIM M08A LM7211BIM rails 8-PinS0-8 LMC7211AIMX M08A LM7211AIM 2.5k units tape and reel 8-PinS0-8 LMC7211 BIMX M08A LM7211BIM 2.5k units tape and reel 5-Pin SOT 23-5 LMC7211AIM5 MA05A COOA 250 units tape and reel 5-Pin SOT 23-5 LMC7211BIM5 MA05A COOB 250 units tape and reel 5-Pin SOT 23-5 LMC7211AIM5X MA05A COOA 3k units tape and reel 5-Pin SOT 23-5 LMC7211 BIM5X MA05A COOB 3k units tape and reel 3-133 ...._ ~ r---------------------------------------------------------------------------------~ ~::~I~:g Ra~in~~ (Note 1) , 2.'7 jl~&;f ,15V , Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. ESD Tolerance (Note 2) 2 kV DifferentiallnputVoltage (VOO +0.3Vto(-VOO-0.3V Voltage at Input/Output ,Pin (vccl + Q.3V to (-Vccl,:-0.3V Supply Voltage (V+ -V-) 16V ±5mA Current at Input Pin ±20mA Current at Output Pin (Note 3) Current at Power Supply Pin , 40mA Lead Temperature (soldering, 10 sec) 2600C Storage Temperature Range -65°0to + 1500C ,. , ~500C Junction Temperature (Note 4) 2.7V Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ apply at the temperature extremes. Symbol Parameter Junction Temperature Range LMC7211AI, LMC7211BI -400C Thermal Resistance (8JAl N Package, S-pin Molded DIP , So-a Package, S-,f!jn Surface Mount· , M05A Package, 5-Pin Surface Mount Input Offset Voltage Temperature Drift TCVos LMC7211AI Limit (Note 6) 3 ' 115°C/W , H!5°C/W 325"C/W = OV, VCM b'VO = V+/2., "~Idf.c.limits =2.7V, V- Typ (NoteS)". Input Offset Voltage Vos +S5°C " 'I = 25°C, V+ Co,:,dltlons " s: TJ s: , LMC7211BI limit . (Note6) 5 15 8 18 .. :1 ' ,. , 'Units 0 ,', inv max /JoVloC 1.0 Input Offset Voltage Average Drift 3.3 Ie Input Current 0.04 pA los Input Offset Current 0.02 pA CMRR Common Mode Rejection Ratio s: VCM s: 2.7V 75 dB s: V+ s: 5V SO dB 100 dB PSRR ., OV 2.7V Power Supply Rejection Ratio , j Av Voltage Gain CMVR Input Common-Mode Voltage Range CMRR> 55 dB 3.0 -0.3 CMRR> 55dB Output V 55dB 5.3 V+ = 5.0V OMRR> 55 dB dB 5.2 5.0 5~0 V min -0.3 -0.2 0.0 -0.2 0.0 V max V+ ... 15.0V CMRR> 55 dB 15.3 15.2 15.0 15.2 15.0 V max V+ = 15.0V CMRR> 55dB -0.3 -0.2 0.0 -0.2 0.0 V max V+ = 5V lload = 5mA 4.8 4.6 4.45 4.6 4.45 mV max V+ = 15V lload = 5mA 14.8 14.6 14.45 14.6 14.45 mV max V+ = 5V lload = 5 mA 0.2 0.40 0.55 0.40 0.55 mV min V+ = 15V lload = 5mA 0.2 0.40 0.55 0.40 0.55 mV min Your = low 7 14 1. 14 1. p.A max Sourcing 30 mAmin Sinking 45 mAmin 3-135 5.2 ........ N ..... o ~ AC Electrical Characteristics Unless otherWise specified, all limits guaranteed for TJ = 2SoC, V+ =, SV, Vapply at the temperature extreme. Symbol Parameter =; Typ (NoteS) Conditions OV, VCM = Vo = V+ 12. BoIcItece limits UlC7211AI Umlt (NoteS) LMC7211BI Umlt (NoteS) Units tnse Rise Time f = 10 kHz, CI = SO pF, Overdrive = 10 mV 0.3 ,...s tfafl Fall Time f = 10 kHz, CI = SO pF, Overdrive = 10 mV 0.3 ,.... tpHL Propagation Delay (High to Low) f = 10kHz, CI=SOpF 10 ,.... tpLH Propagation Delay (Low to High) 10mV 100mV 4 10mV 10 100mV 4 10mV 6 100mV 4 V+ = 2.7V, f = 10kHz, CI=SOpF f = 10kHz, CI = SOp 10mV 7 100mV 4 V+ = 2.7V, f = 10kHz, CI = SOpF ,.... ,...s ,.... Note 1: Absolute Maximum ,Ratings indicate limits beyond which damage to the device may occur. Operating Ratings incfocate conditions lor which the device is intended to be functional, but specific performanos is not guaranteed. For guaranteed specifications and the test conditions, see the ElectrIcal Characteristics. Note 2: Human body modal, 1.5 kn in series with 100 pF. Note 3: Applies to both single-supply and spllt-supply operation. Continuous short circuH operation at elevated ambient temperature can resuH in exceeding the maximum allowed Junction temperature 01 150'C. Note 4: The maximum power dissipation is a function 01 TJ(rnax)o 6JAo and TA. The maximum alloWable power dissipation at any ambient temperature is Po = (TJ(max) - TAlf9JA. All numbers apply for packages soldered directly Into a PC board. Note 5: Typic8t values represent the most likely parametric norm. Note 6: All limits are guaranteed by testing or statistical analysis. 3-136 Typical Performance Characteristics Single Supply TA = Supply Current vs Supply Voltage 10 25"C unless specified Supply Current vs Temperature while Sinking Supply Current vs Temperature while Sourcing 10 IS pos INPUT = ov NEG INPUT O.1V II = IPOs INPUT = OV NEG INPUT = O. I V IPOs INPUT= OV NEG INPUT = O. I V 13 II +85 0 C I J:!.. II II II ~55 -35 -IS 5 25 45 65 65 lOS -45 -25 -5 15 35 55 75 95 Ce.. Temperature (Oe) Cu. Temperatur. (Oe) Supply Voltog. (v) Output Sourcing Current vs SUpply Voltage Output Sinking Current vs Supply Voltage 100 95 90 85 80 75 POS INPUT = O. I V NEG INPUT = OV ~ ~ ~g IS +85 O C 15 '8 o +25 OC 40 35 3 +25 0 C . f I o 1 2 3 4 5 6 7 8 9 10 " 12 900 800 S 700 600 400 300 100 400 I +1:;:P~...I--' I-"" :J.i"1...-i~I:::: ~- -"DOC o ",1""' o I 2 3 5 6 """"'" I 2 700 j 600 I 400 7 8 1/ 300 /.~ 200 ~;....~ 100 o 1 2 Output Current (rnA) 3 .. S e L40'~ 7 8 Response Time for Vartous Input OVerdrtves -tpLH 700 j 500 600 I 200 ~ o JIII!IF" o 1 2 3 9 10 I 9 10 +85 0 C .... ~ .... J.......... -.tOoC I I 4 5 6 7 8 9 10 Output Current (rnA) Response Time for Various Input OVerdrtves -tpHL =2.7V J Vs = 2.7V I o 20mV o 20mV 7 o 10mY 2 I 8 "\.Y[ 300 o In~t OYerdrlve =100 mY 1 0 1 +2S0C-.. 400 o Input Overdrive = 100 mY 7 0 7 800 ~ Output Current (mA) Vs 6 900 100 o ~JJi' 9 10 .... 5 Output Sinking Current vs Output Voltage @ 15V S r{~ ./ 4 1000 +j5j1 500 3 Output Current (rnA) I 600 ~ I I 4 I..- o 2 3 4 5 6 7 8 9 10 " 12 ~c 1'1 "..-: .... '"" 200 o I ..........r I;" 300 Output Sourcing Current vs Output Voltage @ 15V 1000 +25°P, I I +25 OC 500 Supply Voltag. (V) 900 500 IY II 100 8 1000 200 600 1O Output Sinking Current vs Output Voltage @ 5V ~ 700 j ~ +85 0 C Supply Voltog. (v) S ~ I +85 OC 800 S - .. DoC 18 ig -40°C I 900 60 45 Output Sourcing Current vs Output Voltage @ 5V 1000 POS INPUT = OV NEG INPUT = O. IV ~g ~ II } II c3 II II ~55 -35 IS 5 25 45 65 85 105 -45 -25 -5 15 35 55 75 95 - 0123456789101112131415 ~ 2.7V II II ~ 'II ~ ~ - .. DoC 5 15V ""Sv 5V +25 OC o 10 mV 5mV 0 5 mV 0"'8r riye I I I 1 0 OVerdrive 12 Tim. (".) Input Overdrive Referenced to 16 Tim. (".) Vos Input Overdrive Referenced to Vos TL/HI12337-3 3-137 ~ ~ ~ i.... ,------------------------------------------------------------------------------------------, Typical Performance Characteristics R,spCinse nme for Various Response nme for Various Input OvetdriveS'-'-tPHL Ifqj.ii OVerdrIVes '-- tpLH ",-. Input Overdrive = 100 mY ::1 l..f- __ .0 11/', 'J .0 .0 ~ 1 2 Ys =5Y / 1 20mV II- 10mY f- '/ .0 '10OnV .Q SmV / 'I 1 1 1 L "4 1\ ~ Overdrive 1 0 8 12 Vos Response Time for Various Input OVerdrives -tpHL Input Overdrive = 100mV Ys = 5V ,\ \ 20~V 1---'( ~ 10mV f-..-,i\"" '0r- 5mV 0 i-o" 1\ 1\ ,\ 12 Input Overdrive Referenced to Vos Input Overdrive Referenced to Input Bias Current vs Common Mode Voltage "100".,--"--..,--,,..,,;-:-= 100 ~rt~~-rt4-r~-r~ 60 10 15 VS=5V ~ 40H--t-I+H+H--t-I+-l 20 0 -20 ~ 40 ~' 20 "" .... 1' .... 3 ! -20 l' -60 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Common Mode Voltage (V) Vos Input Bias Current va Common Mode Voltage Input Bias Current vs T~perature ,~~~~:;:~~~:;:~~~;~~~;+V"'s-:=,-;1...5V'" 1500 vCM=1 vs 1250 250 H--hH-+-i-r+-i-r+-i-r+-i ~ '~~~ f"i'.c-;H-+-i-r+-i!-++-i-r+-i ~ = -50 CD -100• J .= 1~ -, ", -~ Common Mode Voltag, (Y) Input Overdrive Referenced to .... -40 -100 o -IOO0o.l.40.6o.8 1 1.21.41•61.8 2 2.22.42•6 20 Vos InputSlas Current vs Common Mbde Voltage 80rt-r~r+~t4-r~V~sr=~2._7V, Time (1'.) 16 lIm. (1'.) -60 "-80 ~f!rdrv. ,, 1 16 12 -40 'I 1 0 v.r rive 1 2 nm. (1'.) Input Overdrive Referenced to 1 5mV .0 .0 0 1\ \ ,4 Tim. (1'.) .0 .0 .0 .0r- .0 10mV 1\ OVerdrl¥e 16 Vs =5V 1 '-' \ Input Ov:erdrive= 100'mV .0 Lf.-L-. .0 20 mV Hr-->J " 1\ \1.-0 Ir\ ,-" Response Time for Various Input OVerdrive. -tpLH Vs=5V Input Overdrtve= 100mV .0 14.0 1 0\ .0 20 mV 5mV .-'l SlngleSLipply. TA'" 25"C unless Sp8cified'(Contlnued) ',," , : • ~ :~~~ 1 -250H--hH-+-iH-+-iH-+-i-r-t\l -3W 0°l-ljjjIttltttttij -350 0123456789101112131415 1000 Vs =5V, 750 Vs = 15V./ 500 250 -250 35 Common Mode Voltage (V) V 45 55 ,r / ~ .,.,.,V - ",- / 65 vs=r v75 85 Case Temperature (ae) TUH/12337-4 3-138 r- Application Information is close to the power supply voltage. The wide input range can also be useful for sensing the voltage drop across a current sense resistor for battery chargers. Zero Crossing Detector. Since the LMC7211's common mode input range extends below ground even when powered by a single positive supply, it can be used with large input resistors as a zero crossing detector. 1.0 Benefits of the LMC7211 Tiny Comparator Size. The small footprint of the SOT 23-5 packaged Tiny Comparator, (0.120 x 0.118 inches, 3.05 x 3.00 mm) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products. a:: o..... .... .... ~ Low Input Currents and High Input Impedance. These characteristics allow the LMC7211 to be used to sense high impedance signals from sensors. They also make it possible to use the LMC7211 in timing circuits built with large value resistors. This can reduce the power dissipation of timing circuits. For very long timing circuits, using high value resistors can reduce the size and cost of large value capacitors for the same R-C time constant. Height. The height (0.056 inches, 1.43 mm) of the Tiny Comparator makes it possible to use it in PCMCIA type III cards. Simplified Board Layout. The Tiny Comparator can simplify board layout in several ways. First, by placing a comparator where comparators are needed, instead of routing Signals to a dual or quad device, long pc traces may be avoided. Direct Sensor Interfacing. The wide input voltage range and high impedance of the LMC7211 may make it possible to directly interface to a sensor without the use of amplifiers or bias circuits. In Circuits with sensors which can produce outputs in the tens to hundreds of millivolts, the LMC7211 can compare the sensor signal with an appropriately small reference voltage. This may be done close to ground or the positive supply rail. Direct sensor interfacing may eliminate the need for an amplifier for the sensor Signal. Eliminating the amplifier can save cost, space, and design time. By using multiple Tiny Comparators instead of duals or quads, complex signal routing and possibly crosstalk can be reduced. DIPs available for prototyping. LMC7211 comparators packaged in conventional 8-pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages. Low Supply Current. The typical 7 ,.A supply current of the LMC7211 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications. 2.0 Low Voltage Operation Comparators are the common devices by which analog signals interface with digital circuits. The LMC7211 has been deSigned to operate at supply voltages of 2.7V without sacrificing performance to meet the demands of 3V digital systems. Wide Voltage Range. The LMC7211 is characterized at 15V, 5V and 2.7V. Performance data is provided at these popular voltages. This wide voltage range makes the LMC7211 a good choice for devices where the voltage may vary over the life of the batteries. At supply voltages of 2.7V, the common-mode voltage range extends 200 mV (guaranteed) below the negative supply. This feature, in addition to the comparator being able to sense Signals near the positive rail, is extremely useful in low voltage applications. Digital Outputs Representing Signal Level. Comparators provide a high or low digital output depending on the voltage levels of the (+) and (-) inputs. This makes comparators useful for interfacing analog signals to microprocessors and other digital circuits. The LMC7211 can be thought of as a one-bit atd converter. Push-Pull Output. The push-pull output of the LMC7211 is capable of both sourcing and sinking milliamp level currents even at a 2.7 volt supply. This can allow the LMC7211 to drive multiple logic gates. Driving LEOs (Ught Emitting Diodes). With a 5 volt power supply, the LMC7211's output sinking current can drive small, high efficiency LEOs for indicator and test point circuits. The small size of the Tiny package makes it easy to find space to add this feature to even compact deSigns. A4 O.OI5V I Input range to Beyond Rail to Rail. The input common mode range of the LMC7211 is I1lightly larger than the actual power supply range. This wide input range means that the comparator can be used to sense signals close to the power supply rails. This wide input range can make deSign easier by eliminating voltage dividers, amplifiers, and other front end circuits previously used to match Signals to the limited input range of earlier comparators. This is useful to power supply monitoring circuits which need to sense their own power supply, and compare it to a reference voltage which 5V 500mV 201'" TlIH/12337-5 FIGURE 1. Even at Low-SUpply Voltage of 2.7V, an Input Signal which Exceeds the Supply Voltages Produces No Phase Inversion at the Output At V+ = 2.7V propagation delays are tpLH tpHL = 4,.s with overdrives of 100 mY. = 4 ,.S and Please refer to the performance curves for more extensive characterization. 3-139 ~ ....,.. ~ o ~ r-------------------------------------------------------------------------------------~ Application Information (Continued) 3.0 Shoot.;.Through Current The capacitor needs to supply 100 picocolumb. To avoid large shifts in the comparator threshold due to changes in the voltage level, the voltage drop at the bypass capaCitor should be limited to 100mV or less. The charge needed (100 picocolumb) and the allowable voltage drop (100 mV) will give us the minimum capacitor value required. AQ = C(AV) C = AQ/AV = 100 picocolumb/100 mV C = 10.10/10. 1 = 10-9 = 1 nF = 0.001 p.F 10.9 = 1 nF = 0.001 p.F The voltage drop of -100 mV will cause a threshold shift in the comparator. This threshold shift will be reduced by the power supply rejection ratio, (PSRR). The PSRR which is applicable here is not the DC value of PSRR (- 80 dB), but ,a transient PSRR which will be usually about 20 dB-40 dB, depending on the circuit and the speed of the transient. This will result in an effective threshold shift of about 1 mV to 10 mY. For precision and level sensing circuits, it is generally a good goal to reduce the voltage delta on the power supply to a value equal to or less than the hysteresis of the comparator circuit. If the above circuit was to be used with 50 mV of hysteresis, it would be reasonable to increase the bypass capacitor to 0.Q1 p.F to reduce the voltage delta to 10 mY. Larger values may be useful for obtaining more accurate and consistent switching. Note that the switching current of the comparator can spread to other parts of the board as noise. The bypass capacitor reduces this noise. For low noise systems this may be reason to make the capacitor larger. For non-precision circuits, such as using a comparator to determine If a push-button switch is on or off, it is often cheaper and easier to use 'a larger value of hysteresis' and a small value or bypass capacitance. The low shoot-through current of the LMC7211 can allow the use of smaller and less expensive bypass capacitors in non-critical circuits. The shoot-through currerit is defined as, the current surge, above the quiesc;ent supply current, between the positive and' negative supplies of a device. The current surge occurs whe!1 the output of the device switches states. The shootthrough current re~ults in glitches in the supply voltages. Usually, glitches inthe supply lines are prevented by bypass capaCitors. When'the glitches are minimal, the value of the bypass capacitors can be reduced. ~~ SV LMC7211 -./,,~".-----o .... RS= 1 kll VOUT TLfHf12337-6 FIGURE 2. CIrcuIt for Measurement of the Shoot-Through Current A4 0.42SV Il.V2 184mV I I 20 us 100 mV 4.0 Output Short Circuit Current TlfHf12337-7 The LMC7211 has short circuit protection of 40 rnA. However, it is not designed to withstand continuous short circuits, transient voltage or current spikes, or shorts to any voltage beyond the supplies. A resistor in series with the output should reduce the effect of shorts. For outputs which send signals off PC boards additional protection devices, such as diodes to the supply ralls, and varistors may be used. FIGURE 3. Measurement of the Shoot-Through Current From Flf}ure 3, tlie shoot-through current for the LMC7211 can be calculated to be 0.2 mA (typical), ,and the duration is 1 p.s. The values needed for the bypass capacitors can be calculated as follows: IShoot-Through 5.0 Hysteresis ~ Supply Linos I\. ~A~_ ~ " I If the input Signal is very slow or very nOisy, the comparator output might trip several times as the input signal passes through the threshold. Using positive feedback to add hysteresis to the switching can reduce or eliminate this pr0blem. The positive feedback can be added by a high value resistor (RF)' This will result in two switching thresholds, one for increasing signals and one for decreasing Signals. A capacitor can be added across RF to increase the switching speed and provide more short term hysteresiS. This can result in greater noise immunity for the circuit. See FIf}Uf8S 4. 5 and 6. 1200 JAA I Time TlfHf12337-8 Area of Il. = % (1 ,.S x 200 ,.A) = 100 pC 3-140 r-----------------------------------------------------------------------------, Application Information (Continued) Note that very heavy loading of the comparator output, such as LED drive or bipolar logic gates, will change the output voltage and shift the voltage thresholds. 6.0 Input Protection If input signals are like to exceed the common mode range of the LMC7211, or it is likely that signals may be present when power is off, damage to ,the LMC7211 may occur. Large value (100 kG to MOl input resistors may reduce the likelihood of damage by limiting the input currents. Since the LMC7211 has very low input leakage currents, the effect on accuracy will be small. Additional protection may require the use of diodes, as shown in Figure 7. Note that diode leakage current may affect accuracy during normal operation. The R-C time constant of RIN and the diode capaCitance may also slow response time. vIN----I , ,Cr .- .... -. I • I I ~ iii: (') I I ......~ TL/H/I2337-9 RF> R, and RF> R2 FIGURE 4_ Positive Feedback for Hysteresis Without PoslUve Feedback (No Hysteresis) v+-,.-------::::;....._ _""'I YOUT TL/HI12337-12 FIGURE 7 GROUND _ 7.0 Layout Considerations ...._ _ _~=_~_ _ _ _ _..J The LMC7211 is not an especially fast comparator, so high speed design practices are not required. The LMC7211 is capable of operating with very high impedance inputs, so precautions should be taken to reduce noise pickup with high impedance (- 100 kG and greater) deSigns and in electrically noisy environments. Inputs Equal TUHI12337-10 FIGURES Keeping high value resistors close to the LMC7211 and minimizing the size of the input nodes is a good practice.. With multilayer designs, try to avoid long loops which could act as inductors (COils). Sensors which are not close to the comparator may need twisted pair or shielded connections to reduce noise. With Positive Feedback (Hysteresis or Memory) v+ - r-----::::;iiiI""""--.,..--, 8.0 Open Drain Output, Dual and Quad Versions YOUT GROUND - The LMC7221 is a comparator similar to the LMC7211, but with an open drain output which allows the output voltage to be different (higher or lower) than the supply voltage. The open drain output is like the open collector output of a logic gate. This makes the LMC7221 very useful for mixed voltage systems. Many systems will have different voltages for the analog and microprocessor sections. Please see the LMC7221 datasheet for details. ..._ . ._ _ _....I!!!!:_ _ _ _ _.J vr I LOW, Inpuls Equal I , Vr HIGH YIN TUH/I2337-11 The performance of the LMC7211 is available in dual devices. Please see the LMC6762 datasheet for details on a dual push-pull output device. For a dual device with open drain outputs, please see the LMC6772 datasheet. FIGURE 6 3-141 • ..~ ~ ,---------------------------------------------------------------------------------, Application Information (Continued) LMC7101 1 MHz gain-b!lndwidth rail-to-rail input and output amplifier-high input impedance and high gain 700 p.A typic8l current 2.7V, 3V, 5Vand 15V specifications. LMC7111 Low power 50 kHz gain-bandwidth rail-to-rail input and output amplifier with 25 p.A typical current specified ~t 2.7V, 3.0V, 3.3V, 5Vand 10V. LM7131 Tiny Video amp with 70 MHz gain bandwidth 3V, 5V and ± 5V specifications. LP2980 Micropower SOT 50 mA Ultra Low-Dropout Regulator. LM4040 Precision micropower shunt voltage reference. Fixed voltages of 2.500V, 4.096V, 5.000V, 8.192Vand 10.000V. LM4041 Precision micropower shut voltage reference 1.225V and adjustable. Contact your National Semiconductor representative for the latest information. Rall-to-Rallinput Low Power Comparator.Push-Pull Output Tiny, SOT23-5, DIP SO-8, DIP ~MC6762 . Single Dual Open Drain Output Tiny, SOT23-5, DIP SO-8, DIP Single Dual LMC7211 LMC7221 LMC6772 9.0 Additional SOT23-5 Tiny Devices National Semiconductor has additional parts available in the space saving SOT23 Tiny package, including amplifiers, voltage references, and voltage regulators. These devices include- 10.0 Spice Macromodel A Spice M!lcromodel is available for the LMC7211 comparator on the National Semiconductor Amplifier Macromodel disk. Contact your National Semiconductor representative to obtain the latest version. REEL DIMENSIONS TAPE SLOT r N A 'L DETAIL X SCALE: 3X TUHI12337-13 8mm Tape Size 7.00 0.059 0.512 0.795 2.165 0.331 + 0.059/-0.000 0.567 W1+ 0.078/-0.039 14.40 W1 + 2.00/-1.00 330.00 1.50 13.00 20.20 55.00 8.40 + 1.501-0.00 A B C D N W1 3-142 W2 W3 SOT-23-5 Tape and Reel Specification TAPE FORMAT Tape Section # Cavities Cavity Status Cover Tape Status Leader (Start End) o (min) Empty Sealed 75 (min) Empty Sealed Carrier 3000 Filled Sealed 250 Filled Sealed 125 (min) Empty Sealed o (min) Empty Sealed Trailer (Hub End) TAPE DIMENSIONS 0' 0.06ltO.002 TYP. [ I.SS±O.OS) BAT TANGENT POINTS -I-..:r===r~IIiI!!tr-_ RO.012 TYP [0.3) 0' 0.04 aO.002 TYP. [1.04:1:0.05) : ~ I ALL INSIDE RADII ~_~_. DIRECTION or rEED - - - GAGE LINE L 0.012 [0.3) SECTION B-B \ ~i R 1.181 MIN. I' [30) ----~ BEND RADIUS NOT TO SCALE TL/H/12337-14 8mm 0.130 (3.3) 0.124 (3.15) 0.130 (3.3) 0.126 (3.2) Tape Size DIMA ·DIMAo DIMB DIMBo 0.138 ± 0.002 0.055 ± 0.004 (1.4±0.11) (3.5 ± 0.05) DIMF 3-143 DIMKo 0.157 (4) 0.315 ±0.012 (8 ± 0.3) DIMP1 DIMW til ADVANCE INFORMATION National Semiconductor LMC7221 Tiny CMOS Comparator with Rail-To-Rail Input and Open Drain Output. General Description Features The LM7221 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes this comparator ideal for space and weight critical designs. For easy prototyping, the LMC7221 is available in a conventional S-pin DIP package. The LMC7221 is supplied in two offet voltage grades, 4 mVand 9 mY. • • • • • • • • The open drain output can be pulled up with a resistor to a voltage which can be higher or lower than the supply voltage-this makes the part useful for mixed voltage systems. For a tiny comparator with a push-pull output, please see the LMC7211 datasheet. Tiny SOT 23-5 package saves space Package is less than 1.43 mm thick Guaranteed specs at 2.7V, 5V, 15V supplies Typical supply current 10 IJA at 5V Response time of 7 jIos at 5V LMC7221-open drain output Input common-mode range beyond V - and V + Low ·Input current Applications • Mixed voltage battery powered products • Notebooks and PDAs .pCMCIA cards • Mobile communications • Alarm arid security circuits • Driving low current LEDs • Direct sensor interface Connection Diagrams &-pIn SOT23-5 8·PlnDIP NC J . INVERTING INPUT.z NON-INVERTING .1 INPUT '{"oJ '-.-/ ~ ·"~~W~ ~NC ~Y+ ~OUTPUT ~NC y+ 2 NON-INVERTING 3 INPUT + - • INVERTING INPUT TUH/12346-1 TL/H/12346-2 Top View Top View Ordering Information Package Ordering· Information NSCDrawing Number Package Marking Transport Media 8-PinDIP LMC7221AIN N08E LMC7221AIN 8·Pin DIP LMC7221 BIN N08E LMC7221 BIN Rails 5·Pin SOT 23-5 LMC7221AIM5 MA05A C01A 250 Units on Tape and Reel 5-Pin SOT 23·5 LMC7221BIM5 MA05A C01B 250 Units on Tape and Reel 5-Pin SOT 23-5 LMC7221AIM5X MA05A C01A 3k Units Tape and Reel 5-Pin SOT 23-5 LMC7221 BIM5X MA05A C01B 3k Units Tape and Reel 3-144 Rails r-------------------------------------------------------------------------,r ~ ........ I!J1National Semiconductor LP311 Voltage Comparator General Description Features The LP311 is a low power version of the industry-standard LM311. It takes advantage of stable high-value ion-implanted resistors to perform the same function as an LM311, with a 30:1 reduction in power drain, but only a 6:1 slowdown of response time. Thus the LP311 is well suited for batterypowered applications, and all other applications where fast response is not needed. It operates over a wide range of supply voltages from 36V down to a single 3V supply, with less than 200 p.A drain, but it is still capable of driving a 25 mA load. The LP311 is quite easy to apply without any oscillation, if ordinary precautions are taken to minimize stray coupling from the output to either input or to the balance pins (as described in the LM311 datasheet Application Hints). • • • • Low power drain, 900 p.W on 5V supply Operates from ± 15V or a single supply as low as 3V Output can drive 25 mA Emitter output can swing below negative supply • • • • Response time: 1.2 '""S Same pin-out as LM311 Low input currents: 2 nA of offset, 15 nA of bias Large common-mode input range: -14.6V to 13.6V with ± 15V supply Applications • Level-detector for battery-powered instruments • Low-power lamp or relay driver • Low-power zero-crossing detector Schematic Diagram BALANCE BALANCEI STROlE 5 r-~_.--1---,_,_.-_1----~~--+__1----------,_-----bv+ R1 .. UK UK UK 7 CDLlECTOR OUTI'tIT III '.21 R13 4.8. R30 R31 I ~__",2.,.K..-___<~1 EMmER ~....._______~---<~------------_t------------...;..4 :~TPUT TI.IHf571'-7 Connection Diagram Dual-In-Line Package EMITTER OUTPUT 1 8 v+ 7 CDLLECTOR INPUT OUTPUT Order Number LP311M or LP311N See NS Package Numbers M08A or N08E 6 BALANCEI STBOIE v- 8ALMCE TI.IHf5711-4 Top View 3-145 .... .... ~ Absolute Maximum Ratings Power Dissipation (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. 36V Total Supply Voltage (V8-4) 40V Collector Output to Negative Supply Voltage (V7 -4) 40V Collector Output to Emitter Output ±30V Emitter Output to Negative Supply Voltage (V1-4) Differential Input Voltage 500mW Output Short Circuit Duration 10 sec Operating Temperature Range O"Ct070"C Storage Temperature Range -65'C to 150"C Lead Temperature (Soldering, 10 seconds) 260"C ±30V ±15V Input Voltage (Note 1) Electrical Characteristics These specifications apply for Vs = ± 15V and O"C ~ TA ~ 70"C, unless otherwise specified. Conditions Parameter Min .. Typ Max Units mV Input Offset Voltage (Notes 3, 4) TA=2SOC, Rs~100k 2.0 7.5 Input Offset Current (Notes 3, 4) TA=25'C 2.0 25 nA Input Bias Current (Note 3) TA=2SOC 15 100 nA Voltage Gain TA = 25'C, RL =5k Response Time (Note 5) TA=2SOC 1.2 Saturation Voltage (Note 6) VIN~ 0.4 1.5 V 200 300 ~ 0.2 100 nA 40 V/mV 200 -10 mV,IOUT=25 mA its TA=2S'C Strobe Current (Note 7) TA=25'C 100 Output Leakage Current VIN;:,10 mV, VOUT=35V TA=25'C Input Offset Voltage (Notes 3, 4) Rs~l00k Input Offset Current (Notes 3, 4) Input Bias Current (Note 3) mV nA 150 nA + 13.7, -14.7 V+-l.5 V V+;:'4.5V, V-=OV VIN~ -10 mV,lsINK~1.6 mA 0.1 0.4 V V-+0.5 Input Voltage Range Saturation Voltage (Note 6) 10 35 Positive Supply Current TA = 25'C, Output on 150 300 itA Negative Supply Current TA=25'C 80 180 ~ Minimum Operating Voltage TA=25'C 3.0 3.5 V Note 1: This rating applies for ± 1SV supplies. The positive inpu1 voltage lim" is 30V above the negstive supply. The negstive input voltage limit is equsl to the negative supply voltage or SOV below the positive supply, whichever is less. Note 2: The maximum junction tempsrature of the LP311 Is 8S'C. For operating at eleveted temperatures, devices in the dual-in-line package must be derated based on a thermal resiBlence of 16C1'CIW, junction to ambient Note 3: The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 4V supply up to ± 1SY supplies. Note 4: The offset voItsges and offset currents given are the maximum values required to drive the output wRhin a voH of either supply wRh 1 rnA load. Thus, these parameters datine an error band and take into account the worst-case effects of voltage gain and input impedance. Note 5: The response time specified is for a 100 mY input step with S mV overdrive. Note 6: Saturation voltage specification applies to collector-emitter voltage (V7-1) for YCOLlECTOR S; (Y+ - SV). Note 7: This specification gives the range of current which must be drawn from the strobe pin to ensure the output Is properly disabled. Do not short the strobe pin to ground. It should be current driven, 100 pA to soo pA. 3-146 r-----------------------------------------------------------------------------~ ~ ...... 'V Typical Performance Characteristics Input Characteristics W Input Bias Current Input Offset Current Ys = i15Y Y~ :! (SHOllY PM 5. 8 NIl) 8) - -- 12 H-t+H++++++++++--1 10 t:::~F-j;;;;;t::::t-H 5r-+--r-t~--r-+---1 -II ~ ~ i O~~-L~~--~~~ ~~~~~~~~~~ -16 -12 I 0 4 8 12 16 ""-- = t15Y -r-_ I -. i"o-.. (SHORT PINS 5. 8 AND 8 RA!fD OA - 02r4- ~-_'~I+-+-4-~~~ O~~~~~~~~~ 010203040506070 010203040506070 TEMPERATURE (ae) TEMPERATURE (ae) DIFFERENTW. INPUT VOLTAGE (V) Output ~turatlon Voltage (Collector Output) Transfer Function o.&r---~~-....-...., Ys = 3fIY +-+-+-+-+--1 = 25ae 60 50 TEST aRCUIT 1 TA TA = 25"C r-+--+--+--+--Il-= 40 1\=5k • r-+--+--+--H-l- V+ = SOY 20 10 +'-"forl-t-1-1 EMITTER ~R-t-..'~-t-1-1 Ot!I\~=:!lk.1~:j~,~j:j -1.0 D.5 0 -0.5 o 1.0 5 DlFltRENTW. IIPUT VOLTAGE (mY) Response Time for Various Input Overdrives 10 15 20 25 OUTPUT CURRENT (mA) Response Time for Various Input Overdrives Output Saturation Voltage (Emitter Output) 8r--,--'-~~==--, ~=1T2 41----+--4---1----+--~ lr-5~~~t~/~~~~+--r-1 !:~ --- dF--+-+--+--+--+-....:r ~ -::~~-t--r-~-t---l I OL--L_~~_~~ 4 3 TIME (pS) 4 o 5 Response Time for Various Input Overdrives W 5 ~ 20 25 OUlPUT CURRENT (mA) lIIE (pS) Response Time for Various Input Overdrives Output Limiting Characteristics 2OO~~~--~-r--r-, !I 10151-:::±-+7Io-l...,I-+--i 2OmY" ... ~ 5 SmY- iO 0 5 :i~ ~ i H '+- --f Ys = il5Y_ 2mY - T =25ae -S 1---+-,-1+-,J-I--I-ltsJ aRaJlT 4 -10 Jj -15,bo-+-t'-r-+--r-t-.L ,,--+-+-+-+-+-+"1" If"cfl. -so Lt--t--t-t-t-t-t--I -100 t-+--r-t~--r-+---1 o 2 4 8 TIME (pS) 8 ! Ii l00h/~ ! __ ~4--+~~ 5OH--r~--+--t--r---1 10 12 OUTPUT VOLTAGE (V) TL/H/5711-5 3·147 • .- r-------------------------------------------------------------------------------------, g.- Typical Performance Characteristics Supply Cl,lrrent 350 ; 200 !i .. 150 ~ ~ ~UPPL~ io"" . " POSIITIVE OUTPUT lOw ! k"" " ~ o I I YS=30Y POSITIVE SUPPLY 1 300 r-- ~ -...1UTPUT lOW ..",. ii 100 50 Leakage Currents SIIPP'Y Cllrrent 400 TAz25°C 3tIO 1 250 (Continued) POSITIVE AND NEGATIVE SUPPLY . OUTPUT HIGH g 10-8 Hrl-+-+++-HH __ . Ii15 10-9 . I r~:::. 200 f.,--,- r- 100 POSITIYEANO NEGATIVE SUPPLY OUTPUT HIGH ! 10-10 Hba-+'I!!!F++-HH !... 10-11 -- I I I o I~U~~~~~~~~ 2530 35 40 45 50 55 60 8570 TEMPERATURE (OCI 01020 30 40 50 6070 TEMPERATURE (OC) 051015202530 SUPPLY VOLTAGE (VI TUH/57"-6 Applications Information For applications information and typical applications, refer to the LM311 datasheet. Auxiliary Circuits Strobing Offset Balancing R2 15k Y' TL/H/5711-2 TLlH/5711"':1 Note: Do not ground strobe pin. Test Circuits Test Circuit 1 (Collector Output) Test Circuit 2 (Emitter Output) V+ +15V +15V SOmV 50mV -15V -= -15V V- TUH/57"-B TLII'I/5711-9 Test Circuit 3 (Collector Output) . Test Circuit 4 (Emitter Output) V+ 5V SOOA VOUT VTUI'l/57"-'0 V- 3-148 TUH/S711-11 ttlNational Semiconductor LP339 Ultra-Low Power Quad Comparator General Description The LP339 consists of four independent voltage comparators designed specifically to operata from a single power supply and draw typically 60 p.A of power supply drain current over a wide range of power supply voltages. Operation from split supplies is also possible and the ultra-low power supply drain current is independent of the power supply voltage. These comparators also feature a common-mode range which includes ground, even when operated from a single supply. Applications include limit comparators, simple analog-to-digital converters, pulse, SQuare and time delay generators; VCO's; multivibrators; high voltage logic gates. The LP339 was specifically designed to interface with the CMOS logic family. The ultra-low supply current makes the LP339 valuable in battery powered applications. Advantages • UHra-low power supply drain suitable for battery applications • • • • Single supply operation Sensing at ground Compatible with CMOS logic family Pin-out identical to LM339 Features • Ultra-low power supply current drain (60 p.AHndependent of the supply voltage (75 Il.w/comparator at +5 Voc) • • • • • • Low input biasing current 3 nA Low input offset current ±0.5 nA Low input offset voltage ±2 mV Input common-mode voltage includes ground Output voltage compatible with MOS and CMOS logic High output sink current capability (30 mA at Vo=2 Vee) • Supply Input protected against reverse voltages Schematic and Connection Diagrams OUTPUT 3 DUlI'\IT4 V· GNO INPUT4+ INPUT4- INPUT3+ INPUT 3- 14 10 9 B n-=.....-DIITPIIT +INI'UT TLlH/5226-1 TLlH/5226-2 Order Number LP339M tor S.O. Package See NS Package Number M14A Order Number LP339N tor Dual-In-Une Package See NS Package Number N14A Typical Applications (V+ = 5.0 Vocl Driving CMOS BasIc Comparator y. y. +VIN~30k 1/4 LP339 +'IaEF TL/H/5226-3 TLlH/5226-4 3-149 Absolute Maximum Ratings " ';:',50mA Input CUrrent VIN < - 0.3 Voo (Note 3)' Operating Temperature Range oot to'+ 700C -65" to + 1500C Storage Temperature Range Soldering Information: , "':,j.i'2~OOC Dual·lri~une Package (10 Sec.) , 5.0. Package: Vapor Phase (60 sec.) +215"C Infrared (15 sec.( '+2200C See AN-450 "Surtac~ Mounting MethOds and ThSir Effect on ProduCt Reliability" for other methods of soldering sur· face mount devices~ , ,, ' , ,:' " If Military/Aerospace specified devices are required; please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 36 Voc or ± 18 Voc Differential Input Voltage ± 36Voc Input Voltage -0.3 Voc to 36 Voc Power Dissipation (Note 1) Molded DIP 570mW Continuous Output Short Circuit to GND (Note 2) ,. Electrical Characteristics (V + =5 Voc, Note 4) , Paremeter ,Conditions Min , Typ Max Units ±2 ±5 m'Voc Input OffSet Voltage TA= 25"C (Note 9) Input Bias Current IIN(+ ) or IIN{ -) with the , Output i,n th~ Unear Range, TA = 25"C (Note 5) ,2.5 25 .. ' nAoc Input Offset Current IIN(+)-IIN(-), TA=25"C, ±0.5 ±5 nAoc Input Common Mode Voltage- Range TA= 25"C (Note 6) V+ -1.~ Voc Supply Current RL = lilfinite on all Comparators, TA= 25"C ,100 !£Aoc 0 60 " Voltage Gain Vo = 1 Vocto 11 Voc, RL =15kO, V+ =15Voc, TA=25°C Large Signal Response Time VIN = TIL LogiC SWing, VREF= 1.4 Voc, VRL =5 Voc, RL =5.1 k~, TA=25"C Response Time VRL == 5 Vee, RL = 5.1 kO, TA= 25"C (Note 7) Output Sink Current VIN(-) = 1 VOC, VIN(+)=O, VO= 2Voc, TA=25"C (Note 11) VIN(+)=1 Voc, VIN(-)=O, Vo=5Voc, TA=25°C Input Offset Voltage (NoteS) Input Offset Current IINH)-IIN(-) Input Bias Current IIN( + ) or IIN( -) with butput in Linear Range ' Single !;iupply ' 15 Output Sink Current VIN(-)=1 VOC, VIN(+)=O, Vo=2Voc Output Leakage Current VIN(+)=1 VOC. VIN(-)=O, Vo=30Voc ",.: ",Sec 30 mAoc 0.70 ,: " ",Sec 8 ' 0.1' 0 , "V/mV 1.~ 0.20 Vo=0.4Voc Output Leakage Current Input Commofl MoejEi Voltage Range ' 500 mAoc nAoc ...... ±S: mVoc ±1 ±15 nAoc 4 40 nAoc V+ -2.0 Voc 10 mAoc 1.0 !£Aoc Differential Input Voltage , '" All VIN's~ 0 Voc (or V - on split supplies)(Note 8) 36 Voc Note 1: For elevated temperature op~n,TJ max 's125'C for !he LP339. 8\8 ijunctlon to ambient) is 175"C/W for !he LP339N and 12O"C/W for the LP339M when eHher device is soldered in a prt"1&d circutt poard in a still air environment. Tha low bias dissipation and the "ON·OFF" charactertstic of !he outputs keeps the chip dissipation very small (Po';; 100 mW). prOvided the output transistors are allowed to saturate, Note 2: Short ci.cuns from the output to V+ can ceuse excessive heating and evantual destruction, The maxin'lum output C\lrrent is I\PprQXimately 5Q rnA, Note 3: This Input current will only exist when the voltage at any of !he input leads Is driven negative. It is due to !he collector-b8sa iunction of the input PNP transistors becoming forward biased and lbereby acting as input clamp diodes, In addition to this diode 8O)lon, t~er" ", also lateral NPN parasitic transistor aeticn on !he IC chip. This transistor action can cause !he output voltage of the comparators to go to the V+ voltage level (or to ground for a large input overdrive) for the time duration that an Input is driven negative. This Is not destructive and normal output states will re-establish when the Input voltege, which Is negative. again returns to a vsIue greater than -0.3 Voc (TA -25"C). Note 4: These specHications apply for V+ =5Voc and O'C,;;TA,;;70' C. unless otherwise stated. The temperature extremes are guaranteed but not 100% production tested. These paramaters are not used to csIculate outgOing AOL Note 5: Tha direction of !,he input current Is CJI!I of the IC due to !he PNP Input stage. This current Is essentially 9otIlItent, lnd8pendent of the state of the ~ so no loading Change 8xlstS on the reference '6< the input lines as long as the common-mode range is not exceeded. ' ' Note 6: The input eoml\lOn,mode voltage or etther Input voltage should not be allowed to go negative by more than 0.3V. :the upper end of the common-mode voltage range Is V+ -1.5V'(TA=25"C). bul either or both inputs can go to 30 Voc without damage, ' Note 7: The response time specified Is for a 100 mV input stap with 5 mV overdrive. For larger overdrive signals 1,3 p.s can be obtained. See Typical Performance Charapteristics section. 3·150 Electrical Characteristics + (V = 5 Voe. Note 4) (Continued) Note 8: POII"1ve excursions of Input vo""ge may exceed the power supply level. As long es the other vo~ ramalns wRhln the common-mode range, the comparator will provide a proper output state. The low input yo~ state must not be less than -0.3 Vee (or 0.3 Vee balow the magnitude of the negative power supply, H used) at TA= 25"C. Note 9: At output switch point, Vo=1.4V, Rs=On wRh V+ from 5 Vee; and ovar the full input common-mode range (0 Vee to V+ -1.5 Vocl· Note 10: For input signals that exceed V +, only the ovardriven comparator is affected. With a 5V supply, VIN should ba limited to 25V maximum, and a limiting resistor should ba used on ali inputs that might exceed the positive supply. Note 11: The output sink currant is a function of the output yo~. The LP339 has a bi-modal output section which allows Rto sink large cumsnts via a Darlington connection at output YO""g9S greater than approximately 1.5 Vee and sink lower cumsnts below this poin!. (See typicsl characteristics section and applicstions section). Typical Performance Characteristics Output Sink Current Input Current Supply Current 5 1110 RL=" 1.0 VtN(I:MI=OVue RINICMI =10;'0 II i l..ooO' TA=ZS'C I' ~ ~ TA~70'C r- - TAI-O'C I-- = lA=2Ii'C r- -= f-~.,. D•• 1. TA=O'C 6 ! " Ir~ J,001''''""lTA=ZS'C ,-TA-70'C I ,• TA=70'C 0.4 0.2 o o 10 ZO 3G SUPPU' YDI1AOE (Vue) o 40 I I 1 TA=25'C TT ~=h~ ~ f!I I.... o ~~'C I I TT ~ e 5.0 4.0 I 3.0 1110mV I !:l Z.O I ~i 1.0 ZOm .. !II o izi- 0 Il~: 1 2 4 OUTPUT VOI1AOE (Vue) 0.0 .J D.Z 0.4 0.6 D.. DUT1'UT VOI1AOE (Vue) 0.0 1 ill I ~L ZO~Y hE ! I I I I I TA-25"C 28 H:V~~ I I I I -~... ~~:~,- 10 15 TIME(,..) 1.0 Response Times for Various Input Overdrives Positive Transition -~.... (Ii J o 010 ZO 3040 Y+ - SUPPLY VOI1AIIE (Vue) Response Times for Various Input OVerdrives Negative Transition Output Sink Current 1110 I TA=2&"C 5 10 15 nME(,..) ZO TUH/5226-10 3-151 Application Hints All pins of any unused comparators should be grounded. Notice that the output section is configured in a Darlington connection (ignoring Q3). Therefore, if the output voltage is held high enough (Vo~1 Vocl, Q1 is not saturated and the output current is limited only' by the product of the betas of Q1, Q2 and 11 (and the 600 RSAT of Q2). The LP339 is th.~ capable of driving LED's; relays, etc. in this mode while maintaining an ultra-low power supply current of typically 60/LA. If transistor were omitted, and the output voltage allowed to drop below about 0.8 Voc, transistor Q1 would saturate' and the output current would drop to zero. The circuit WOUld, therefore, be unable to 'pull' low current loads down to ground (or the negative supply, if used). Transistor Q3 has been included to bypass transistor Q1 under these conditions and apply the current 11 directly to the base of Q2. The output sink current is now approximately 11 times the beta of Q2 (700 /LA at Vo = 0.4 Vocl. The output of the LP339 exhibits a bi-modal characteristic with a smooth transition between modes. (See Output Sink Current graphs In Typical Performance Characteristics section.) The bias network of the LP339 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 Voe to 30 Voe. It is usually unn~cessary to use a bypass capacitor across the power supply line. The differential Input voltage may be larger than V + without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 Voe (at 25"C). An input clamp diode can be used as shown in the application section. as The output section of the LP339 has two distinct modes of operation-a Darlington mode and a grounded emitter mode. This unique drive circuit permits the LP339 to sink 30 rnA at Vo=2 Voe (Darlington mode) and 700 /LA at Vo=0.4 Voc (grounded emitter mode). Figure 1 is a simplified schematic diagram of the LP339 output section. -4_-----V&& It is also important to note that in both cases the output is an uncommitted collector. Therefore, many collectors can be tied together to provide an output OR'ing function. An , output pull-up resistor can be connected to any available power supply voltage within the permitted power supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V + terminal of the LP339 package. r.::---.... VOUT TlIH/5226-11 FIGURE 1 Typical Applications (V+ = 15 Voe) One-8hot MultMbrator y+ 100 pf V;:L +VII.., ~~-_""-I to V+:rL Vo ~ I-~ 10 n 0.001,.F Tl/H/5226-13 3-152 Typical Applications (V+ = 15 Vocl Time Delay Generator Y+ 10k 15k - 30k 10M 1011 Y" Y;=r 1 1 V3 10 t3 30Jc 51k 10M 1l1li V" v" v;::r V;:r-L +vw V2 to t4 INPUT BATING SIGNAL Y+ ,,' V3 i 10M Slk - ~ k 10k V2 V" VI v+::r°1 1 Y1 10 " 61k 11 12 t4 TlIH/5226-15 ORlng the Outputs Y+ 30k V, TlIH/5226-16 3-153 Typical Applications (Continued) (V+ = 15 Vee> Pulse Generator Squarewave OscIllator V+ V+ ~~PF~~__~I~OOk~__-t HI 10k 1M 01 lNa14 16k ":' Vo V+::n.r' lOOk lOOk V+--~~"----~~--~ lOOk TUH/5226-17 1M TL/H/5226-18 Three Level AudIo Peak Indicator -t----------~~--~~+Q BJ..Stable Multlvlbrator IV 1I11III 15k Slk 1I11III lOOk TLlH/5226-21 TLlH/5226-19 LED Driver Relay DrIver 12V (10mA) RELAY COIL +VIN TL/H/5226-23 -VIN TUH/5226-22 3·154 ~----------------------------------------------------------------------------~~ ~ Typical Applications (Continued) (Single Supply) Co) CD Buzzer Driver Comparator With 60 mA Sink Capability 12V ...._ - - - -..._ ...._ _...._ _.... 12V RL=l00 lW BUmR -20mA TUH/5226-24 1M TUH/5226-25 Non-Inverting Comparator with Hysteresis Inverting Comparator with Hysteresis v+ Y+ +VW-----I +YIN-----I Yo 10k Vo 1M y+-Yll'Ir-...... 1M TUH/5226-26 1M TUH/S226-27 BasiC Comparator Output Strobing Comparing Input Voltages of Opposite Polarity V+ +Y'N~30k lOOk 1/4 LP339 +Yw lOOk - Y'N2 -Yll'Ir-'" V+ Yo - > .....--Vo STROBE INPUT Vo TUH/5226-29 TUH/S226-30 TL/H/5226-28 3-155 ~ I i!i~ Typical Applications (Continued) (Single Supply) Transducer AmplHler Zero CroaaIng Detector (Single Power Supply) Y· V· lOOk lOOk 11k 5.1k YIN Vo MAGNmc11 PICKUP 20M 10k TUH/5226-32 TUH/5226-31 Spilt-SUpply Applications Zero Crossing Detector Comparator With a Negative Reference V· V· Vo TUH/5226-34 TL/H/5226-33 3-156 Section 4 Active Matrix/LCD Display Drivers • Section 4 Contents LM61 04 Quad Gray Scale Current Feedback Amplifier .................................. LM8305 STN LCD Display Bias Voltage Source ........................................ LMC6008 8 Channel Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4-3 4-7 4-8 ~-------------------------------------------------------------------------------, I.... o tflNational Semiconductor ~ LM6104 Quad Gray Scale Current Feedback Amplifier General Description Features (Typical unless otherwise noted) The LM6104 quad amplifier meets the requirements of bat· tery operated liquid crystal displays by providing high speed while maintaining low power consumption. Combining this high speed with high integration, the LM6104 conserves valuable board space in portable systems with a cost effective, surface mount quad package. Built on National's advanced high speed VIPTM (Vertically Integrated PNP) process, the LM6104 current feedback ar· chitecture is easily compensated for speed and loading con· ditions. These features make the LM61 04 ideal for buffering grey levels in liquid crystal displays. • • • • • • Low power Slew rate -3dB bandwidth (RF = 1 ko.) High output drive Wide operating range High integration Is = 875,..A/amplifier 1OOVII's 30 MHz ± 5V into 1000. Vs = 5V to ±12V Quad surface mount Applications • • • • Grey level buffer for liquid crystal displays Column buffer for portable LeOs Video distribution amplifiers, video line drivers Hand·held, high speed signal conditioning Typical Application LCD Buffer Application for Grey Levels TUH/11979-1 Connection Diagram 14 OUTPUT 4 OUTPUT 1 INVERTING INPUT 1....::..0.........,.NON-INVERTING 3 INPUT 1 V+ NON-INVERTING 5 INPUT 2 INVERTING INPUT 2 13 INVERTING INPUT 4 12 NON-INVERTING 11 INPUT 4 V10 NON-INVERTING INPUT 3 9 INVERTING INPUT 3 8 OUTPUT 3 OUTPUT 2 TL/H/11979-2 Order Number LM6104M See NS Package Number M14A 4-3 r- Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage Oifferentiallnput Voltage Input Voltage Inverting Input Current Storage Temperature Range Maximum Junction Temperature ESO Rating (Note 2) 24V ±6V ± Supply Voltage Electrical Characteristics av, V ~ 4.75Vto24V Junction Temperature Range (Note 3) LM6104M -20" s: TJ s: = - 5V, RL = RF "" 2 kO and 0" Parameter +8O"C .' s: Conditions s: TJ , Symbol -f'15O"C 150"C Operating Ratings 21 SOC 220"C The following specifications apply for V + = s: 2000V Supply Voltage Range 15mA Soldering Information Vapor Phase (60s) Infrared (15s) -65"C S! TJ 8O"C unless otherwise noted. LM6104M Typical (Note 4) Limits (Note 5) Units mVmax Vas Input Offset Voltage 10 30 Ie Inverting Input Bias Current 5.0 20 p.Amax Non-Inverting Input Bias Current 0.5 2 ILAmax mAmax Is Supply Current Vo=OV 3.5 4.0 Isc Output Source Current Vo= OV IIN(-) = -100 p.A 60 45 Vo= OV IIN(-) = 100 p.A 60 45 Output Sink Current Vo PSRR Positive Output Swing IIN(-) = -100 ILA Negative Output Swing IIN(-) = 100 p.A Power Supply Rejection Ratio Vs = ±4to ±10V 100 mV pp @ 100 kHz rnA min mA min 6.5 6.1 Vmin -3.5 -3.1 V max 70 60 dB min 40 30 dB min 10 5 MOmin RT Transresistance SR Slew Rate (Note 6) 100 55 V/p.a min BW Bandwidth Av =-1 RIN = RF = 2kO 7.5 5.0 MHz Amp-to-Amp Isolation RL = 2kO F = 1 MHz 60 dB V+ - 1.4V V- + 1.4V V 60 dB 240 ns CMVR Common Mode Voltage Range CMRR Common Mode Rejection Ratio ts Settling Time 0.05%, 5V Step, Av = -1 RF';' Rs = 2kO, Vs = ±5V Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical Specifications do not apply when operating the device beyond its rated operating conditions. Operating ratings indicate conditions the device Is intended to be functional. but device parameter specifications may not be guaranteed under the condHions. Note 2: Human body model 1.5 kfi and 100 pF. This is a class 2 device rating. Note 3: Thermal resistance of the SO package Is 98'C/W. When operating at TA = 8O"C, maximum power dissipation is 700 mW. Note 4: Typical values represent the most likely perametric"norm. Note 5: Aillimlts guaranteed at operating temperature extremes. Note6:Av = -1 wHh RIN = RF = 2kO. Slew rate is calculatedlrom Ihe 25% to the 75% poIntonbolh rising and falling edgss. Output swing Is -O.6Vto +5.6V and 5.6V to O.av. 4-4 Typical Performance Characteristics Frequency Response vs Cloud Loop Gain 70 ~ ,= :'0.0 .0 .... '=. 30 '=. ,= .=- 20 10 0 100 ~ -20 -3D 0.01 Am lified"'" 80 IIII~ II 0.1 1 10 ~ !:i l\! ~ is 10 !z -10 ~ -20 l\! -25 R,Hkll !:i -30 -35 -40 R,=2kO 200 &00 1000 • 2 ,.00 1800 ; e -2 I -3 0.1 1 --- , .... +7.5mA LOAD '>~ 1•• w> ~o " ~~ g~ 1.2 ~o ~~ 10 Curve, apply to both posltl." end negative output volt8gn. 1.0 -25 0 25 50 75 100 TEMPERATURE (OC) ~ e " 3 .2:- 2 I !; ~ ~ Vs = t5V 10 20 30 14 4 ~ 0 12 LM6104 Output Voltage vs Sink Current !; -. 10 1.6 ~ d~ N =5.1 kO LM6104 OUtput Voltage vs Source Current .... 8 VOUT Referred to SUpplies Vs = ±5V liN = ±100p.A FREQUENCY (MHz) -1 & SUPPLY VOLTAGE (tV) lit = 10kJl V+=8V 111111 V-=5V TA =+25 OC 111111 TIME (ns) .2:- 0 R,= 1 kJl -15 -2 -200 1 1000 -5 ~ -- it: Oil -25°C .~.=2kJl 5 0 R,= 10kJl R,=lkO-o 100 10 2 0 2 Frequency Response VB RF Ay = -1,RF = RG V+=8Y V- = -5V TA = 25°C • +25 OC FREQUENCY (kHz) Large Signal Pulse Response Av =-1 E +85 OC 0 1 FREQUENCY (MHz) & I 50 100 1111 1111 3 ~ 60 III III • 'C' E !t 70 111111 III IIi -10 5 Am Iifler#2 end # 90 ~~ Supply Current va SUpply Voltage Ay=-I~~ R,= 2kO Am lifier # 1 DrlYen 110 1.= 1IIIIIft I 50 ~ 120 111111 60 .... Amplifier to Amplifier Isolation .0 50 1 0 60 OUTPUT SOURCE CURRENT (mA) -- ~ 10 20 30 Ys = .t5V 40 50 60 OUTPUT SINK CURRENT (mA) TL/H111979-3 4-5 ~ r-------------------------------------------------------------------------------~-- Q ..... CD ....::E __, Applications Information CURRENT FEEDBACK TOPOLOGY Bandwidth and slew rate are inversely proportional to the value of RF (see typical curve Frequency Response vs RF). This makes the amplifier especially easy, to compensate for a desired pulse response (see typical curve Large Signal Pulse Response). Increased capacitive load dr,iving capability is also achieved by increasing the' value of,RF. The LM6104 has guaranteed performance with a feedback resistor of 2 kG. " ., The small-signal bandwidth of conventional voltage feedback amplifiers is inversely proportional to the closed-loop gain based on the gain-bandwidth concept. In contrast, the ' current feedback amplifier topology, such as the LM6104, enables a signal bandwidth that is relatively independent of the amplifier's gain (see typical curve Frequency Response vs Closed Loop Gain). ' FEEDBACK RESISTORSEL,ECTION: RF CAPACITIVE FEEDBACK , It is common to place a sma)lle~d capacitor in parallel with feedback resistance to compensate voltage feedback amplifiers. Do not place a capacitor acr6,ss'RF to limit the bandwidth of current feedback amplifiers. The dynamic impedance of capacitors in the feedback path of the LM6104, as with any current feedback amplifier, will cause instability. Current feedback amplifier bandwidth and slew rate are controlled by RF. RF and the amplifier's internal compensation capacitor set the dominant pole in the frequency response. Tl1e amplifier, "therefore, always requires a feed-, back resistor,even in unity gain. 4-6 tt/National Semiconductor LM830S-STN LCD Display Bias Voltage Source General Description Features The LM8305M contains five buffered voltage sources to provide the voltage ratios required to drive a standard STN LCD display panel using a time-multiplexed voltage waveform to activate, or deactivate, a pixel once every picture frame. The internal resistor array features a binary weighted array to allow the user to select the proper ratio for the display being driven. The user can use an external resistor to set the ratio, if desired. The LM8305 has a maximum operating supply voltage of 50V to support higher multiplexing rates. The LM8305 also features an internal high side PNP switch, and an independent voltage comparator with an internal bandgap reference. • • • • • • High operating voltages, 50V maximum Internal resistor array with binary weighting Ratios from 1/6 to 1/37 Optional external resistors High-side PNP switch from Vee Separate voltage comparator circuit with band-gap voltage reference • Surface mount 24-pin package Typ'ical Application Connection Diagram Gnd Vee Switch Out On/Off Ve2 VREF1 VIN2 VREF2 RXI VO RX2 VI RX3 V2 RX4 V3 RX5 V4 RX6 Reset Vel 11 14 VSense Gnd 12 13 VDD TLlH/I2345-2 Top View See NS Package Number M24B Order Number LM8305M 4-7 ( IIfINatiOnal Semiconductor LMC6008 8 Channel Buffer General Description The LMC600B octal buffer is designed for use in an active matrix liquid-crystal display (AMLCO), specifically to buffer the gray-level voltages going to the inputs of the column driver integrated circuits. In an B-gray-Ievel (512 color) or 16-gray-level (4096 color) AM LCD, the function of the column drivers is to switch the gray-level voltage inputs to the AM LCD columns. Thus, the voltage buffers must be able to drive the column capacitance of the entire display panel. The LMC600B AC characteristics, including settling time, are specified for a capacitive load of 0.1 ,...F for this reason. The LMC600B contains 4 high-speed buffers and 4 lowpower buffers. The high-speed buffers can provide an output current of at least 250 rnA (minimum), and the low-power buffers can provide at least 150 rnA (minimum). The highspeed buffers are intended to be used for the highest graylevel voltages (VO, V1, V2, V3 in an B-gray AMLCD). By including the 2 types of buffers, the LMCSOOB is able to provide this function while consuming a supply current of only 6.5 mA (maximum). The buffers are a rail-to-rail design, which typically swing to within 30 mV of either supply. The LMC600B also contains a standby function which puts the buffer into a high-impedance mode. The supply current in the standby mode is a low 500 ,...A max. Also, a tharmal limit circuit is included to protect the device from overload conditions. Features • High Output Current: High Speed Buffers Low Power Buffers • Slew Rate: High Speed Buffers Low Power Buffers • SeWing Time, CL = 0.1 p.F • Wide Input/Output Range • Supply Voltage Range • Supply Current • Standby Mode Current 250 mA min 150 rnA min 1.7 V/,...s 0.B5V1,...s 16 ,..s max O.W to Vee - O.W min 5V to 16V 6.5 rnA max 500,...A Applications • AMLCD voltage buffering • Multi-voltage buffering Ordering Information Connection Diagram Package 24-P1nSO 24 Vee 23 INI 22 IN2 21 IN3 20 IN4 19 STD-BY 18 NC 17 IN5 16 15 IN7 14 IN8 13 Vee Temperature Range NSC Transport -40"C to +85"C Drawing Media 24-Pin LMCSOOBIM Surface Mount LMCSOOBIMX GND OUT1 OUT2 OUT3 OUT4 NC PGNO OUTS OUT6 OUT7 OUT8 GND TUHI12321-1 Top View Note: Buffers 1. 3. 5 and 7 are High Speed and Buffers 2. 4, 6 and 8 are Low Speed. 4-B M24B Rail M24B TaPe & Reel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1) If Military/Aerospace specified devices are required, plesse contact the National Semiconductor Seles Offfce/Dlstributors for availability and specifications. ESD Tolerance (Note 2) 2000V V+ + 0.4V, V- - 0.4V Voltage at Input Pin V+ + 0.4V, V- - 0.4V Voltage at Output Pin Supply Voltage (V+ - V-) 16V Supply Voltage Temperature Range Lead Temperature (soldering, 10 sec.) 4.5V s; V+ s; 16V - 20"C to + 1OO"C Thermal Resistance (8JN M Package, 24-Pin Surface Mount 50"C/W 260"C Storage Temperature Range Junction Temperature (Note 4) Power Dissipation (Note 4) - 55'C to + 150"C 150"C Internally Limited DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25'C, Vee = 14.5Vand RL = O. Symbol Parameter Vas Input Offset Voltage Av Va = 10Vpp Conditions Typ (NoteS) Rs = 10kO LMC6008 Limit (Note 6) Units 25 mVmax 0.985 VIV IB Input Bias Current ILP Peak Load Current Hi Speed Buffers Va = 13Vpp 300 nAmax -250 mAmax ILP Peak Load Current Lo Speed Buffers Va = 13Vpp VERR Output Voltage Difference (Note 9) VIH Standby Logic High Voltage 3.30 V min VIL ISTANDBY Logic Low Voltage 1.80 V max IIH Standby High Input Current 1.0 pAmax 1.0 pAmax +250 mAmin -150 mAmax +150 mAmin mVmax 35 IlL Standby Low Input Current 10 (SlO-By) Output Leakage Current VSTD-BY = High lee Supply Current ISTD.BY PSRR Va Voltage Output Swing 5 pAmax VIL = Low, VIN = 7.25V 6.5 mAmax Standby Current VSTD-BY = High 500 pAmax Power Supply Rejection Ratio 5V 55 dB min < Vee < 14.5V 4·9 0.1 V min Vee - 0.1 V max ., AC Electrical Characteristics Unless otherwise specified, all limits guaranteed fo~ TJ Symbol SR Parameter ts Settling Time 14.5Vand Conditions Fi L = 00. Typ LMC600a.·· . Limit (NoteS) Units Buffers 1, 3, 5, 7 (Note 3) 1.70 Vlp.smin Buffers 2, 4, 6, 8 (Note 3) 0.85 Vlp.smin , Slew Rate = 25"C, Vee := 16 p.s max toN Standby Response Time ON 10 p.smax toFF Standby Response Time OFF 10 p.smax PBW Power Bandwidth 45 KHz min 0.1 p.Fmax CL (Notes3,7) (Note 5) Vo = 10 Vpp for Hi-Speed Vo = 5 Vpp for Lo-Speed (Note 3) Load Capacitance Note 1: Absolute Maximum Ratings Indicate Umlts beyond which damage to the device may occur. Opsraling ratings Indicate conditions for which the devica Is intended to be functional. but specific performance is not guerantesd. For guaranteed specifications and the test conditions. 888 \he EIectricsI Characteristics. Note 2: Human body model, 1.5 kO in serias with 100 pF. Note 3: The Loed is a series connection of a 0.1 ,.F capacitor and a 10 resistor. Note 4: The maxlmum power dissipation is a function of TJ(max), 8.lAo and TA. The maximum allowable power dissipation at any ambient temperature Is Po = CTJ(max) - TAlI8JA, where the junction-to-ambient thennaI resistance 8JA = &1'CIW. If the maximum allowable power dissipation Is exceeded, the thermal limH clreuH wilillmH \he die temperatura to approximately l6O'C. All numbers apply for packages soldered directly Into a PC beard. Note 5: Typical Values repre8em \he most likely parameIric norm. .' Note 6: All limits. are guaranteed by testing or statistical anaJysIs. Note 7: The eetUlng time is measured from the Input 1rsn8lt1on to a point 50 mV of the final value, for both rising and failing tranSitions. The Input swing Is 0.5V to 13.5V for buffers 1, 3, 5, 7 and 3.75V to 10.25V for buffers 2, 4, 6, 8. Input rise time should be less than 1 ,... Note 8: High-Spasd Buffers are 1, 3, 5, 7 and Low-Spesd Buffers are 2, 4, 6,' 8. Nott! 9: Output Voltage Oiffensnce Is the difference between \he higheSt Il!1d lowast buffer output voltage when all buffer inputs are atldenticsl voltages. , 4-10 Section 5 Special Functions I Section 5 Contents DH0006/DH0006C Current Drivers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DH0034 High Speed Dual Level Translator.. ... . . . . . .. . .. . . . . . . . .. . . . . . . .. .. . . . . . .. . .. DH0035/DH0035C Pin Diode Driver .................................................. LH0094 Multifunction Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM194/LM394 Supermatch Pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM195/LM395 Ultra Reliable Power Transistors ........................................ LM3045/LM3046/LM3086 Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM3146 High Voltage Transistor Array................................................ LP395 Ultra Reliable Power Transistor .,.............................................. 5·2 5·3 5·7 5·11 5·14 5·23 5·31 5·42 5·47 5·52 tflNational Semiconductor DH0006/DH0006C* Current Drivers General Description Features The DHOOOS/DHOOO6C is an integrated high voltage, high current driver designed to accept standard DTL or TTL logic levels and drive a load of up to 400 mA at 28V. AND inputs are provided along with an Expander connection, should additional gating be required. The addition of an external capacitor provides control of the rise and fall times of the output in order to decrease cold lamp surges or to minimize electromagnetic interference if long lines are driven. Since one side of the load is normally grounded, there is less likelihood of false tum-on due to an inadvertent short in the drive line. • Operation from a Single + 10V to + 45 Power Supply • Low Standby Power Dissipation of only 35 mW for 28V Power Supply • 1.5A, 50 ms, Pulse Current Capability ·PreviOuSIy called NHOO06INHOOO6C Schematic and Connection Diagrams 1 --.-----~~------~~----~--~~ov~ R3 R4 Rl 10 ....--+-0 OUTPUT R2 2 9 8 0--+"""" 3 INPUT 0--+"""" 4 EXPANDER 0--------1 INPUT C} RESPONSE '------0() B TillE CONTROL 6 ...--.......j~--+-------------o GROUND TlIKllDl20-1 Metal Can Package OUTPUT RESPONSE 'I"'o<~--TIIIE CONTROL INPUT INPUT N.C. TopYI_ Order Number DHOOO6H or DHOOO6CH See NS Package Number H10F 5-3 TLlKllDl20-2 Absolute Maximum Ratings If Military/Aerospace specified devices are requlreci, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Peak Power Supply Voltage (for 0.1 sec) 60V Continuous Supply Voltage 45V 5.5V Input Voltage Input Extender Current 5.0mA Peak Output Current (50 ms Onll sec Off) Operating Temperature DH0006 DHOO06C Storage Temperature ", 1.5A -55DC to + 125DC Co ODC to' :.. 70"C - 65DC to + 150"C Electrical' Characteristics (Note 1) Parameter Conditions Typ (Note 2), Min ! = 45Vtol0V = 45Vtol0V Vee = 28V, VIN = 2.0V, lOUT = 400 mA Vee = 45V, VIN = 0.8V, RL = ~k Vee = 10V, VIN = 2.0V, lOUT = 150 mA Vee = 45V, VIN = 0.4V " Vee = 45V, VIN = 2.4V Vee = 45V, VIN = 5.5V Vee = 45V, VIN = 0.8V Vee = 45V, VIN = 2.0V, lOUT = 0 mA Vee = 28V, RL = 820 Logical "1" Input Voltage Vee Logical "0" Input Voltage Vee Logical "1" Output Voltage Logical "0" Output Voltage Logical "1" Output Voltage Logical "0" Input Current Logical "1" Input Current "Off" Power Supply Current "On" Power Supply Current Rise Time 0.8 26.5 27.0 0.001 8.8 9.2 -1.0 mA 0.5 5.0 100 p.A 1.6 2.0 mA 8 mA 0.10 0.8 0.26 Toft 2.2 Nole 1: Unless otherwise specified. Umlts shown applylrom -55'C \0 + 125'C for DH0Q06 and'O'C \0 +70'C for DHOOO6C. Note 2: Typical values are lor 25"C ambient. Nole 3: Power ratings for the T0-5 based on a maximum junction temperature of + 175"C and 9JA of 210'C/W• - t,.1--tt . - PULSE INPUT 50% , 10% ---' , - t, . - tt ~ 90% .TON 10% ~ ~T"~\ PULSE OUTPUT TLlK/l0120-6 , I 5-4 V 0.01 -0.8 Ton 90% Units 2.0 Fall Time Switching Time Waveforms Max p.s Typical Performance Characteristics Maximum Continuous Output Current for TO-S Input Threshold Voltage vs Temperature ~.-r-r-~~~~~, 2.2 ~2.0 ~ 1.8 f-: ~ 1.11 I :~ ~ 200 G 600 ~ j l"iIIII~ +IOVVcx: I JIG 1i3 I +45VVcx: os I I 1200 10lIl i f- ...... f:::::: to-.. ...... r-- r-- +25'C 800 P ''O~~=-'~~ 1.0 600 I: I "OFF" Supply Current Drain o 10 -- "ON" Supply Current Drain Tum On and Rise Time G is 'A ~ -<:: o 10 ~ +125'C +25'C 20 -55'C ! 6 5 E iil +25'C 5 4 ~ Turn Off and Fall Time 1 ~~~~bJ-b~ ~ vlN = 3.OV PUlSE 1/ y +125'C 1 1 1 - I i-" 1 -75 -50 -25 0 25 50 75 100 125 TENPEllAnJRE ("C) o Output Saturation Voltage g 1.8 is 1.& 1.3 ~ ~ 1.2 u !i Gl Il11O Il11O l l L 1 1 1 1 ~ /{. I I I I I I Tc = 25'C I o o 1000 I ... ''OM"-'100 ... "aFF"- Tc = -55'C .. D.2 I I I I I I 10203040 SUPPl.Y VOLTAGE, Vceo (V) 50 Turn On Control 1,.= 10na I .,.!GOpF Co/_pi OI---1I--+-+--o--+--I 30 1--+--+---1 I I,. ::510 IIS...L,.... J J y.1? OUTPUT CURRENT, 110-a' (mA) ~2.0I--+--+-I--I---+--I ~ vlN = 3.OY PUlSE C1. = 10pF 1.4 Tc = 125'C.A ,. PULSE CONDITION 1.2 I: I :~~-W~__~~~~ 3JO = 28V RL = 68A I I I I I I I~ ~ ~~~~~~~~~ ~ 0.8 1-0'1'71'''''''-1-+ o ..". Available Output Current 2.0 1.8 I"""1""'T"-'-"'''''''""'T''-' IS~-+~~~~~~~ 1A J U. vee -75 -50 -25 0 25 50 75 100 125 lfJIPERAnJRE ('C) ~ Turn Off Control i RtS£ 11UE IOD 1.1 HJlf+:;;jooo'''F-I:..!lI;;;S;; vAll-- o ~ o 1 1 r-~l~ 1 1 SUPPLY VOLTAGE (V) 4JI t,:SIOlll ~V 20 10 SUPPLY VOLTAGE (V) Vcx:=28V ,."" f>' ...o!V r-- l.oIIII! ~ o ~ 1/ ~ ~V 3 2 +125'C 50 1 1 ....... ~ /.::;.' l.;' P '" SUPPLY VOlTAGE (V) 8 ~~ ..... 20 ,,~ -55'C k:::: h. ~ ~ ~ ~~ -55'C -50 -25 0 25 50 75 100 125 AIIBIENT TENPEllAnJRE ("C) 800 MAXlIIUII CON11NUOUS OU1P\lf CURRENT (mA) 2.0 Logical "0" Input Current 1600 I I I ~"~,~~~ ~ 201-~~~~~-+--I 5 5 10I--II---'lr-p.,d o 200 20 10 Co =9' ~~ III .....r l Vee = 2IV .... IIA TA= .... c". 10pF o 2.0 250 , 4JI 8.0 8.0 10 TIME (PO) TUK/IOI20-7 5·5 Typical Applications Lamp Driver with Expanded Inputs Relay Driver Yee Vee +28Y DTl/TTL{ IN= ---I ...........-r EXPANDER INPUT - - - - ' RELAY Dll/TlL COIL 327 LAMPS LOGIC INPUTS TUK/l0120-4 TUKll0120-5 5-6 f}1National Semiconductor DH0034 High Speed Dual Level Translator General Description Features The DHOO34 is a high speed level translator suitable for interfacing to MaS or junction FET analog switches. It may also be used as a universal logic level shifter capable of accepting TILlDTL input levels and shifting to CML, MaS, or SLT levels. • • • • Fast switching, tpdO: typically 15 ns; tpdl: typically 35 ns Large output voltage range: 25V Input is TIL/DTL compatible Low output leakage: typically 0.1 p.A Schematic and Connection Diagrams Dual-In-Line Package Ne A, 8, Ne I/" 1 14 2 13 OUTPUT 2 Ne GND GND A2 82 Ne I/" OUTPUT 1 Yo CircuH Shown Vee TLlK/l0122-3 I/" Top View TUK/l0122-1 Order Number DH0034D-MIL orDHOO34CD See NS Package Number D14D • 5-7 •g ::I: Q Absolute Maximum Ratings Input Voltage Operating Temperature Range DH0034D·MIL DH0034CD Storage Temperature Range .Lead Temperature (Soldering, 10 sec.) If Military/Aerospace specified devices are required, please contact the National Semiconductor Salea Office/Distributors for availability and specifications. Vee Supply Voltage Negative Supply Voltage Positive Supply Voltage Differential Supply Voltage Maximum Output Current Power Dissipation 7.0V -30V +25V 25V 100mA (Note 4) +5.5V - 55·C to + 125·C O"C to. + 85·C -55·Cto 150"C 300"C Electrical Characteristics (See Notes 1 and 2) Parameter DHOO34 Conditions Min = = = = = = = = = = = = Typ Units Max Logical "1" Input Voltage Vee Vee Logical "0" Input Voltage Vee Vee Logical "1" Input Current Vee Vee Logical "1" Input Current Vee Vee Logical "0" Input Current Vee Vee Power Supply Current LogiC "·0" Vee 5.5V, VIN = 4.5V 5.25V, VIN = 4.5V Vee (Note 3) 30 38 mA Power Supply Current Logic "1" Vee = 5.5V, VIN = OV Vee = 5.25V, VIN = OV (Note 3) 37 48 mA Logical "0" Output Voltage = = Vee = V- + 0.50 V- + 0.3 V- + 0.50 5.5V, VIN V+ - V- = 25V 0.1 5.0 Vee = 5.0V, V3 = OV, TA = 25·C V- = 25V, RL = 5100 15 25 Output Leakage Current Transition Time to Logical "0" Vee Vee 2.0 4.5V 4.75V V 5.5V 5.25V 0.8 5.5V, VIN = 2.4V 5.25V, VIN = 2.4V 40 5.5V, VIN = 5.5V 5.25V, VIN = 5.5V 1.0 5.5V, VIN = 0.4V 5.25V, VIN = 0.4V -1.5 = 100 mA = 50 mA = 0.8V 4.5V, lOUT 4.5V, lOUT V p.A mA mA V p.A ns 75 Transition Time to Vee = 5.0V, TA = 25·C 35 ns Logical "1" V- = -25V, RL = 5100 Note 1: The specifications apply over the temperature range -55'e to + 125"C for 1he DHOQ34IJ.MIL and over the tempsrature range -25'C to +85'C for DHOO34CD with a 5101) resistor connected between output and ground, and V- connected to -25V, unless otherwise specified. Note 2: All typical values are for TA = 25"C. Note 3: Current measured is total drawn from Vrx; supply. Note 4: Power rating for the Cavity DIP based on a maximum junction temperature of 175'C and 8JA = lSO'C/W. 5-8 2. Recommended Output Voltsge Swing Theory of Operation The graph shows boundary conditions which govern proper operation of the DH0034. The range of operation for the negative supply is shown on the X axis and must be between - 3V and - 25V. The allowable range for the positive supply is governed by the value chosen for V-. V+ may be selected by drawing a vertical line through the selected value for V- and terminated by the boundaries of the operating region. For example, a value of V- equal to -6V would dictate values of V+ between -5V and +19V. In general, it is desirable to maintain at least 5V difference between the supplies. When both inputs of the DH0034 are raised to logic "1" the input AND gate is turned "on" allowing 01's emitter t~ become forward biased. 01 provides a level shift and constant output current. The collector current is essentially the same as the emitter which is given by Vee - VBE R1 Approximately 7.0 mA flows out of 01's collector. About 2 mA of 01's collector current is drawn off by pull down reSistor, R2. The balance, 5 mA, is available as base drive to 02 and to charge its associated Miller capaCitance. The output is pulled to within a VSAT of V-. When either (or both) input to the DH0034 is lowered to logic "0", the AND gate output drops to 0.2V turning 01 off. Deprived of base drive 02 rapidly turns off causing the output to rise to the V3 supply voltage. Since 02's emitter operates between 0.6V and 0.2V, the speed of the DH0034 is greatly enhanced. ~~~~~-,~~~~ ~ v+V'"_<-3V V'" :525V'-+-+-+I-,I ~,£jl--l >" 20 III ~ 10r-+-~~~~~~~}-+-~ 5~+-~~-+-4~--}-+-~ 0 ~ OPERATING REGION '---- ~ ~ ~ 15~+-~-+-+-4~~~-+-t~ ./ ~ -5ri+-~-r-+-4--~~~~~ : -10 H+-~-r-+-4~~V-+-4~ ~ -15I--t1H-+~'/~-+-+--I---l ~ -20 H+-~~~"""'-+-4---j~}--l-~ Applications Information 1. Paralleling the Outputs _~~~~-L~~~-L~ The outputs of the DH0034 may be paralleled to increase output drive capability or to accomplish the "wire OR". In order to prevent current hogging by one output transistor or the other, resistors of 20/100 mA value should be inserted between the emitters of the output transistors and the minus supply. -24 -18 -12 -6 0 NEGATIVE SUPPLY VOLTAGE (-V) TLfKf10122-6 Switching Time Waveforms INPUT ,--5V t - f- 50" 1-50" o--i -, OUTPUT I/---OV ........ 50" -j~ 50" Il"_-I-JII -----25V TLlKf10122-7 • 5-9 ~ CO) r---------------------------------------------------------------------------------, 0, o :c Typical Applications Q TTL to IBM (SLT) Log,lc Lavels 5 MHz Analog SWitch ANALOG~_.., IN- .. _______ 1______ . 5V ANALOG OUT 5V -----------. 1/2 DH0034 INPUT 2 >4o-......-1-0UTPUT 2 I I 510 -15 I -------:1:-----DH0034 I 510 +10V TL/K/l0122-4 TUK/l0122-5 5-10 ttlNational Semiconductor DH0035/DH0035C PIN Diode Driver General Description The DH003S/DH003SC is a high speed digital driver designed to drive PIN diodes in RF modulators and switches. The device is used in conjunction with an input buffer such as the DM7830/DM8830 or DMS440/DM7440. Features • Large output voltage swing-30V • Peak output current in excess of 1A • Inputs TTUDTL compatible • Short propagation delay-10 ns • High repetition rate-5 MHz The DHOO3S/DH0035C is capable of driving a variety of PIN diode types including parallel, serial, anode grounded and cathode grounded. For additional information, see AN-49 PIN Diode Drivers. The DH003S is guaranteed over the temperature range - SSOC to + 12SOC whereas the DHOO35C is guaranteed from O"C to + 8S·C. Schematic and Connection Diagrams 8 yo Metal Can Package 9 R3 500 INPUT A COUP Rl 6 7 --'\11250,.,...+""""", INPUT A 0 CR2 R2 INpUT B ().3_\II3k,.,................. CR3 TUK/l0124-2 Top View ly-2 TUKll0124-1 S-11 Order Number DHOO35G-MIL or DHOO35CG See NS Package Number G12B Absolute Maximum Ratings Power Dissipation (Note 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. V- Supply Voltage Differential (Pin 5 to Pin 1 or 2) 40V Storage Temperature Range Operating Temperature Range DH0035 DH0035C Lead Temperature (Soldering, 10 sec.) V+ Supply Voltage Differential (Pin 1 or 2 to Pin 8 or 9) 30V Input Current (Pin 3 or 7) ±75mA Peak Output Current ,,' 1.5W :,' -S5·C to of 150·C -,55~C to + 125·C O"Cto +85·C 300"C ±1.0A Electrical Characteristics (Notes 1 and 2) Parameter Limits Conditions Units Min Typ Max 1.0 2.0 0.4 O.S 7.0 +8.0 Positive Output Swing = -8V, RL = 1000 VOUT = +8V, RL = 1000 lOUT = 100mA Negative Output Swing lOUT = 100 mA Positive Short Circuit Current VIN = OV, RL = 00 (Pulse Test, Duty Cycle :s; 3%) 400 800 mA Negative Short Circuit Current VIN = 1.5V,IIN = 50 mA, RL = 00 (Pulse Test, Duty Cycle :s; 3%) 800 1000 mA Tum-On Delay VIN Input Logic "1 " Threshold VOUT Input Logic "0" Threshold Turn-Off Delay On Supply Current Note 1: Unless otherwise specilted, these specifications apply for V+ the DH0035. and O'C to + 8SOC for the DH0035C. V V -7.0 ~8.0 = 1.5V, VOUT = -3V VIN = 1.5V, VOUT = +3V VIN = 1.5V V 10 15 15 30 ns 45 SO mA = 1a.av. V = - I a.av. pin 5 grounded. over the temperature range - ns WC to + I 25'C for Note 2: All typical values are for TA = 25'C. Note 3: Derate linearly at I mWrC for ambient temperatures above 25'C. a Typical Applications Grounded cathode Design v+= 10V _----!J------. I I I I I I I I I I 1/2 6--------- 1.J:i 200 r I I ~ p '1"_ 71 I I -- :0 IN I I I I .-----.1-----DM8830 - ~c~ ~ 62~ 5.0V L t.I I I 20pr* t! 250 pr I :11 I :12 1 1.----- 31 " --. PIN DIODE ~,. :: SWITCH - ~ II DHOO35 I I I I h~-mrr·;:.~{ O.l~r V-=-10V _ - Note: Cathode grounded PIN diode: Rp = 62ll. limits diode forward current to 100 mAo Typical switching for HP33604A. RF tum-on 25 ns. tum-oti5 ns. C2 = 250 pF. Rp = all.. CI = O.IF. 5-12 V TLlK/l0124-3 Typical Applications (Continued) Grounded Anode Design S.OV .____ 1J______ . LOGIC INPUT V-7"1 1 1 1 """L_' 1/2 1lM7830/D1I8830 II PIN :: DIODE 20pF...,... .: ------.1.------ 1 Ir----- 1 1 '-'l_~_~~';_ ;Jl~_J 1 RII 564 C2_ 1200 pF - V-=-10V Note: Anode Grounded PIN diode: RM = 56n limits diode forward current to 100 rnA. Typical switching for HP33622A, RF tum-on 5 ns; tum-off 4 os. Cl = 470 pF, C2 = 0.1 I'F, RM = on. Alternate Current Limiting y+ TO >C:>-H~IN\,.-4~PIN DIODE v+ - 2 Iv-I-2 R=--or--If ~ TL/K110124-5 5-13 TL/K/l0124-4 •~. r------------------------------------------------------------------------, !. dNational Semiconductor ~p LH0094 Multifunction Converter General Description The LH0094 multifunction converter generates an output voltage per the transfer function: Eo = Vy (~~)m, 0.1 :S:m:S:10, m continuously adjustable • Minimum component count • Internal matched resistor pair for setting m = 2 and m=O.5 Applications m is set by 2 resistors. • Precision divider, multiplier· Features • • • • • • • • • • Low cost Versatile High accuracy-O.05% Wide supply range- ±5V to ±22V Square root Square Trigonometric function generator Companding Unearizatlon Control systems • Log amp Block and Connection Diagrams Dual-In-Une Package AI- aND Y- RA V, V. Vy Order Number LHOO94CD See NS Package Number D16D Eo Yy Ye - ReD_. R. TOP VIEW Simplified Schematic 12 I'" I'" 1lI0II 18 I E. IGllk TlIH/5695-1 5-14 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales OHlce/Dlstrlbutors for availability and specifications. Supply Voltage Input Voltage Output Short-Circuit Duration Operating Temperature Range LHOO94CD Storage Temperature Range LH0094CD ±22V ±22V Continuous - 25°C to -55°C to Lead Temperature (Soldering, 10 seconds) + 85°C + 125°C 260"C Electrical Characteristics Vs = ±15V, TA = 25°C unless otherwise specified. Transfer function: Eo = Vy V:;; 0.1 Parameter s: m s: 10; OV s: Vx, Vy, Vz s: LHOO94C Conditions Min 10V Units Typ Max 0.45 0.1 0.2 0.9 0.45 0.1 0.2 0.9 % F.S. %F.S. mVI"C 0.45 0.15 0.9 % F.S. % F.S. 2.0 % F.S. % F.S. ACCURACY Eo = VZVy (0.03S:VyS:l0V; 0.01 S:VzS:1 oVj (Fl[Jure2) (Fl[Jure3) vs. Temperature Eo=10VzlVx (Figure 4), 0.5 s: Vx s: 10; 0.01 s: Vz s: 10) (Fl[Jure5), (0.1 S:VxS:10; 0.01 S:VzS: 10) vs. Temperature Eo=l0NZ7f0 (FigureS), (0.03S:VzS:l0 (FlfJUre 9), (0.01 S:Vz s: 10 Eo= 10 (Vz/l0)2 (0.1 S:VzS:l0) (Fl[Jure6) (Fl[Jure7) Eo=,/10Vz; 5.0mVS:VzS:l0V, (Figure 10) Multiply Untrimmed ExtemalTrim Divide Untrimmed External Trim Square Root Untrimmed External Trim Square Untrimmed External Trim Low Level Square Root Exponential Circuits 1.0 0.15 m=0.2, Eo= 10 (Vz/l0)2 (Figure 11), (0.1 S:VzS:l0) m=5.0, Eo=10 (Vz/l0)5 (Fl[Jure 11), (1.0S:VzS:l0) % F.S. (10V) %F.S. mVloC 0.05 % F.S. 0.08 0.08 % F.S. % F.S. OUTPUT OFFSET I 3 dB Bandwidth Noise I I Vx=10V, Vy=VZ=O AC CHARACTERISTICS m=1.0, Vx=10V, Vy=O.l Vrms 10Hzto 1.0 kHz, m=1.0, Vy=Vz=OV Vx=10V Vx=O.1V 5.0 I 10 I mV 10 kHz 100 300 p.V/rms p.Vlrms EXPONENT m I I INPUT CHARACTERISTICS Input Voltage Input Impedance (For Rated Performance) (All Inputs) 0.2 to 5.0 0 98 I 0.1 to 10 I I 10 100 V kn OUTPUT CHARACTERISTICS Output Swing Output Impedance Supply Current (RLS:l0k) 10 (VS= ±15V)(Note 1) Note 1: Refer to RETSO094D drawing for specifications of the military LHOO94O version. 5-15 12 1.0 3.0 V n 5.0 rnA Applications Information (b)m<1 GENERAL INFORMATION Power supply bypass capacitors (0: 1 ,...F) are recommended for all applications. Tile LH0094 series is designed for positive input 'signals only. However, negative input up to the supply voltage will not damage the device. A clamp diode (F/flUfB 1) is recommended for those applications in which the inputs may be subjected to open circuit or negative input signals. For basic applications (multiply, divide, square, square root) it is possible to use the device without any external adjustments or components. Two matched resistors are provided internally to set m for square or square root When using external resistors to set m, such resistors should be as close to the device as possible. m=~Rl+R2"'200n R1+R2 (c)m>1 ~3 TL/H/5695-4 ACCURACY (ERROR) The accuracy of the LH0094.is specified for both externally adjusted and unadjusted cases. Although it is customary to specify the errors in percent of full-scale (10V), it is seen from the typical performance curves that the actual errors are in percent of reading. Thus, the specified errors are overly conservative for small input voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is 0.25% of fullscale (25 mV). As seen from the curve, the unadjusted error is ~ 25 mV. at 10V input, but the error is less than 10 mV for inputs up to 1V. Note also that if either the multiplicand or the multiplier is at less than 10V, (5V for example) the unadjusted error is less. Thus, the errors specified are at fullscale-"the worst case. The LH0094 is designed such that the user is able to externally adjust the gain and offset of the device-thus trim out all of the errors of conversion. In most applications, the gain adjustment is the only external trim needed for super accuracy-except in division mode, where a denominator offset adjust is needed for small denominator voltages. SELECTION OF RESISTORS TO SET m Internal Matched Resistors AA and As are matched internal resistors. They are 1000±10%, but matched to 0.1%. (a)m=2* a Ra 18 14 7 RA 8 3 {b)m=O.S· 10 14 8 RA Ra R1+R2 m=-R2 8 EXPONENTS The LHOO94 is capable cif performing roots to 0.1 and powc ers up to 10. HoWeVer, care should be taken when applying these exponent-otherwise, results may be misinterpreted. For example, consider the Y10th power of a nLimber: i.e., 0.001 raised to 0.1 power is 0.5011; 0.1 raised to the 0.1 power is 0.7943; and 10 raised to the 0.1 power is 1.2589. Thus, it is seen that while the input has changed 4 decades, the output has only changed a little more than a factor of 2. It is also seen that with as little as 1 rriV of offset, the output will also be greater than zero with zero input. TUH/5695-2 'No external resistors required, strap as indicated i:xtemal Realstors The exponent is set by 2 external resistors or it may be continuously varied by a Single trim pot. (A1 + A2S:5000. (a) m= 1 TLlH/5695-3 5-16 Applications Information (Continued) 1. CLAMP DIODE CONNECTION Va V+ DI IN914 --*--+--.. V.~-------i---~-, Vz "-u=Vy LHOD94 (~) m O.I"m,,10 Note. This ctamp diode connection is recommended for those applications in which the inputs may be subject to ED open circuit or negative signals. Vyo---~ rlGURE 1. Clamp Diode Connection 2. MULTIPLY V+ 0.4 MULTIPLY ED = VyVz 10 WITHOUT EXTERNAL ADJUSTMENTS 0.3 V. 10.00V ~-+-------f---+..., Zi ... _+-OV. ~ a: C> a: a: II 0.2 VY"OV ... LH0094 1/ 0.1 l.,..oo Eo = Vy V. 10 o 0-+--' VyO-+--.... I,...- o ~ -SV {lllill 0.1 10 Vz(V) FIGURE 2a. LH0094 Used to Multiply (No External Adjustment) FIGURE 2b. Typical Performance of LH0094 in Multiply Mode Without External Adjustment Dl lN914 r--*- 10V REF (LH0010 OR ~-------------------....- - . LH0075) RI 2M LH0094 RA E • Vy Vz o 10 HB. Trim ~rocedure 0-----------+-+-... R2 SetVz=Vy=10V 1l1li Adiust R2 until output= 10.0ODV TUH/5695-5 FIGURE 3. PreCision Multiplier (0.02% Typ) with 1 External Adjustment 5-17 Applications Information a.DIVIDE (Continued) 01 lN914 r---t+-- II v· I Vz L0094 ED. 10 Vz V. Vy ' 10V REF o ~~!::I:::!::tt!m:::."'.LIJJlJUJjll1LlllI..l.llJ IllliW o 0.1 10 0-+..... VzIV) 0----.... FIGURE 4b. Typical Performance, Divide Mode, Without External Adjustments FIGURE 48. LHOO94 Used to Divide (No External Adjustment) Trim Procedures Apply 10V to Vy, O.1V to Vx and Vz. Adjust R3 until Eo= 10.000V. Apply 10.000V to all Inputs. Adjust R2 until Eo';'10.000V Repeat proc9dure. Rl 2M m=1 Eo' 10 ~ 0----++ ..... R2 V. 10V REF ILH0070 OR LH0075) 10k 0-.....""""'...- - -..... FIGURE 5. Precision Divider (0.05% Typ) 4. SQUARE 01 lN914 - -; (Vz) 2 Eo=Vy Vx 0.5 ------+---t+-V.o------1-"I SQUARING 2 Eo= 10 OA _+-oVz ~ ~ II (~:) ,J WITHOUT EXTERNAL ADJUSTMENT 0.3 a: i III I 0.2 0.1 ·'.,' E~ Vyo---" -- V ~~ o • 1 2 ~ I'" 3 4 & • 7 • • 10 VzIV) TLlH/5695-6 FIGURE 6&. Basic Connection of LHOO94 (m = 2) without External Adjustment Usln'! Internal ~eslstors to Set m FIGURE 6b. Squaring Mode without External Adjustment Applications Information (Continued) Dl lNI14 4. SQUARE (Continued) --* ---4 ~ V. 10V REF V+ r- HI. Y15 14 112 13 Rl .~ 2M .~ LHOOl4 Eo 2 3 14 - [I> .~RA A4- Vy 11 Eo 10 II Vz 11 v. A3 RS • • • ~~ 7 "':~ VR2 1l1li TrimProcedure Apply 10V to Vz wL Adjust R2 for 10.00llV at output FIGURE 7. Precision Squaring Circuit (0. 15% Typ) 5. SQUARE ROOT 0.4 V.~---------~---~., 0.3 Vz ... Uj ~ II: co '" IJ Vz)'At Eo-vy (V;; FIGURE 8a. Basic Connection of LHOO94 (m '" 0.5) without External Adjustment Using Intemal Resistors toSetm V 0.1 o Eo~-+""" Vyo--+--'" I 0.2 II: II: LHOO94 o 0.1 10 VzIV) FIGURE ab. Typical Performance Curve Square Root, No External Adjustment 01 V. SQROOJ1i Eo·l0 ~ 10 WITHOUT EXTERNAL ADJUSTMENT r- c....________.,lNll. . + 10VREF ~-+-oVz EO=l~uVffi fYi HI 2M Eo 10V trim Procedure Apply 10V to all inputs. 0----------.....R2 101r Adjust R2 unUl Eo=10.00llV R~~ 0--.,...,.,....-_... TL/H/5695-7 FIGURE 9. Precision Square Rooter (0.15% Typ) 5-19 Applications Information (Continued) 6. LOW LEVEL SQUARE ROOT Dl lNI14 r--*-- ED~--~------------+-~ m=1 EO=10~ LH0094 Eo E02=10 Vz V- :. EO=,Ii'OiiZ 5mVS:VZS:10V "'-+-----4--'" R2 10V 10k (LHOO70 o-~""~~---' DR LHOO7&1 TrIm Procedure Set VZ=10V Adjust R2 until output = 10.000V FIGURE 10. 3-Decade Precision Square Root Circuit Using the LH0094 with m = 1 Typical Applications 01 lN914 VxO~ ______________ 10V m ED- 10 (~) r--*-- ~~~ ..-++-oV. r-:I:~~....L';';"..a.;,;~L.::.~':""L,.;,;;,...&.:j Eo=10 m) m . Trim Procedure Apply 10V to all inputs Adjust R2 for output of 10.000V ED Vy~~~~-t~__--' ,.kR2 10V Form=0.2 ~'0 ~'4 Rl Form=5 ~3 ... R2 R2 ~ ~'0 Rl ~'4 ~3 ~ TL/H/5695-8 R2 m=fi1'+"Fi2' Choose RI =2000 :.R2=500 m= RI + R2. Choose R2= 500 R2 • :.RI=2000 FIGURE 11. Precision Exponentlator (m = 0.2 to 5) 5·20 Typical Applications (Continued) (m= 1) R >_.....-oVO IV11 o--1~-IVy LHOO94 E. ~-......",,..,....- ...~... VIZ . .- - - - - t - O O I V Z I R VO+VZ R R Note. The LH0094 may be used to generate a voltage equivalent to: VO -JVi2+V2'l V1 2 VO=V2+-VO+V2 VQ2+VO V2=V2 VO+V22+VI2 VQ2=VI2+V22 :. vo =JVi2+V2'l VI, V2 0 -> 10V R:::: 10k National Semiconductor resistor array RA08-10k is recommended FIGURE 12. Vector Magnitude Function (m= 11 (m = 11 E•• '0~ VT Vy 10 Vz Vp LHOO94 Vx Vap Vz VT TL/H/5695-9 Note. The LH0094 may be used in direct measurament of gas floW. Flow = k,f!¥. Eo=10~XVAP VT """-OE. Eo E02=10 VpVAP VT Eo=Jl0 VP;AP P = Absolute pressure T = Absolute temperature ap= Pressure drop FIGURE 13. Mass Gas Flow Circuit 5·21 ..§ :z:: ...I Typical Applications (Continued) Vx 13 ":' lOOk R Vz , 9 lOOk - R2 10 Rl 14 VB" ELOG - VA VB" ELOG Rl V+ - Ex R2 Ez - LHD094 V- TLIH/5695-10 Note. lhe LH0094 may also be used to generate the Log 01 a ratio 01 2 voltages. The output Is taken from pin 14 01 the LH0094 for the Log application. ELOG=K1~/n~ q Vx whereK1=R1+R2 ' R2 1 If K1 = KT/ql n10 then ELOG = Log10 ~ R1=15.9 R2 R2:::: 4000 R2 must be a thermistor with a tampco 01 :::: 0.33%rC to be compensated over temperature. FIGURE 14. Log Amp Application 5-22 I!fINational Semiconductor LM 194/LM394 Supermatch Pair General Description The LM194 and LM394 are junction isolated ultra wellmatched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure. Electricai characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are gUl\ranteed over a current range of 1 poA to 1 mA and OV up to 40V collector-base voltage, ensuring superior performance in nearly all applications. To guarantee long term stability of matching parameters, internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation due to reverse biased emitter current-the most common cause of field failures in matched devices. The parasitiC isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices. The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical. The LM194 and LM394/LM394B/LM394C are available in an isolated header 6-lead TO-5 metal. can package. The LM394/LM394B/LM394C are available in an B-pin plastiC dual-in-line package. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range. Features • • • • • Emitter-base voltage matched to 50 p.V Offset voltage drift less than 0.1 poVI'C Current gain (hFEl matched to 2% Common-mode rejection ratio greater than 120 dB ·Parameters guaranteed over 1 p.A to 1 rnA collector current • Extremely low noise • Superior logging characteristics compared to conventional pairs • Plug-in replacement for presently available devices Typical Applications Low Cost Accurate Square Root Circuit Low Cost Accurate Squaring Circuit lOUT = 10- 5 • bo VIN lOUT = 10- 6 (VIN)2 3DpF INPUT 0"; vlN ";+IOV lOOk" I" 10""A !.s. I" '''; vlN ~~~~ >-....1511\o1Jll1\lo·_-=-i ---- ..... \ 2k 75pF LM394 5" 3DOk I" IN457 ,. -- J -=r/ I \ LM394 '~_?-~~'~__~~-M~~: 112 LM394 IDOk- I" - - - - 150k lIZ LM394 '" 1.2k 5!1 -I5V 30pF REGULATED TL/H/9241-1 'Trim for full scale accuracy 5-23 -15V REGULATED TUH/9241-2 Absolute Maximum Ratings ' Base-Emitter Current " ±10mA 500mW Power Dissipation Junction Temperature LM194 :- 55°C to + 125°C LM394/LM394B/LM394C - 25°C to. + 85°C Storage Temperature Range - 65°C to + 15O"C Soldering Information Metal Can Pack!lge (10 sec.) 2600C Dual-In-,Line Package (10 se,e.) 2600C Small Outline Package Vapor Phase (60 sec.) 215°C Infrared (15 sec.) 220°C See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices. If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4) Collector Current 20mA Collector-Emitter Voltage VMAX Collector-Emitter Voltage 35V LM394C 20V Collector-Base Voltage 35V LM394C 20V Collector-Substrate Voltage 35V LM394C 20V Collector-Collector Voltage 35V LM394C 20V Electrical Characteristics (TJ = Parameter Current Gain (hFEl 25°C) Vee = OV to VMAX (Note 1) le=1mA Ie = 100/J-A Ie = 10 IJ-A Ie = 1/J-A LM394 LM194 Conditions Min Typ 350 350 300 200 700 550 450 300 Max Min Typ 300 250 200 150 700 550 450 300 LM394B/394C Max' Min Typ 225 200 150 ,100 500 400 300 200 Units Max Current Gain Match, (hFE Match) = 100 [.:).le1 [hFEIMIN)1 Ie Vee = OVtoVMAX le=10/J-At01mA Ie = 11J-A Emitter-Base Offset Voltage Vee = 0 Ie = 1IJ-At01 mA Change in Emitter-Base Offset Voltage vs Collector-Base Voltage (CMRR) (Note 1) Ie = 1 /J-At01 mA, Vee = OVtoVMAX Change in Emitter-Base Offset Voltage vs Collector Current Vee = OV, Ie = 1/J-AtoO.3mA Emitter-Base Offset Voltage Temperature Drift Ie = 10 /J-A to 1 mA (Note 2) leI = le2 Vos Trimmed to 0 at 25°C Logging Conformity Ie = 3 nA to 300 IJ-A, Vee = 0, (Note 3) 150 Collector-Base Leakage Vee = VMAX 0.05 0.25 0.05 0.5 0.05 0.5 nA Collector-Collector Leakage Vee = VMAX 0.1 2.0 0.1 5.0 0.1 5.0 nA Input Voltage Noislil Ie = 1()O,/J-A, Vee, = OV, f= 100 Hz to 100kHz 1.8 0.5 1.0 2 0.5 1.0 4 1.0 2.0 5 % % 25 100 25 150 50 200 /J-V 10 25 10 50 10 100 /J-V 5 25 5 50 5 50 /J-V 0.08 0.3 0.08 1.0 0.2 1.5 /J-vrc 0.03 0.1 0.03 0.3 0.03 0.5 /J-vrc 150 1.8 150 1.8 /J-V nVl.JHz Collector to Emitter Ie = 1 mA, Ie = 10 p.A 0.2 0.2 0.2 V 0.1 0.1 0.1 Saturation Voltage Ie = 1 mA, Ie = 100 IJ-A V Note 1: Coliector.IJase VOltage is swept from 0 to VMAX at a collector current of 1 I'A. 10 "A. 100 "A. and 1 rnA. Note 2: Offset voltage drift with Ves ~ 0 at TA ~ 25"C is valid only when the ratio of let to 102 is adjusted to give the initial zero offsel This ratio must be held to within 0.003% over the entire temperature range. MeasurementS taken at + 25"C and temperature extremes. Note 3: Logging conformity Is measured by computing the best fit to a true exponential and expressing the error as a base-emiller voltage deviation. Note 4: Refer to RETS194X drawing of military LM194H version for Specifications. 5-24 ,--------------------------------------------------------------------------, Typical Applications (Continued) ..... ~ Fast, Accurate Logging A'!'pllfier, VIN = 10V to 0.1 mV or liN = 1 mA to 10 nA !C r-----------------~~R6~P-VR~ Co) CD 9.76k 1% ~ lOOk lIN 2k TLlH/9241-3 'I kll (±1%) at 25"C. +3500 ppm/'C. Available from Vishay Ultranix. Grand Junction. CO. OBI Series. VOUT =- 10910 VIN ) (VREF Voltage Controlled Variable Gain Amplifier v' +15V R1t 15k t" 10k ZERO R3 10k C3 3pF v' R& 5Dk R4 5 C4 0.1 '::" R7 5Dk Dl lN457 '::" Cl 30pF ~ R8* ZOO INPUT ~r - f- DZ lN457 R9 : ltS RIO Uk -15V TLlH/9241-4 'RB-RI0 and 02 provide a temperature Distortion < 0.1 % independent gain control. Bandwidth> 1 MHz G = - 336 VI (dB) 100 dB gain range 5·25 ~ iii: .... CD •. ~ ::::& .... r-----------------------------------------------------------------------------~ Typical Applications (Continued) ~ PreCision Low Drift Operational Amplifier .... ~ + ~~--------------~~{]o~ Common-mode range 10V IBIAS25 nA las 0.5 nA Vas (untrimmed) 125 ",V (b.Vas/b.T) 0.2 ",VIC CMRR 120 dB AVOL 2,500,000 'C 200 pF lor unity gain C 30 pF lor Ay 10 C 5 pF lor Ay 100 C 0 pF for Ay 1000 TLlH/9241-5 High Accuracy One Quadrant Multiplier/Divider .s ... •% (X. INPUT IV".PUT n--W..-4~ !-=-4.....W..-UizI,.PUT TLlH/9241-6 (Xl M posiIiv'e,npu . Is on. Iy VOUT=~ 'Typical linearity 0.1 % Typical Applications (Continued) High Performance Instrumentation Amplifier r-------~.-----_4~()15V Rl 80k 0.1% >~_OOUTPUT Rll 18k 0.1% INPUTS R3 18k 0.1% RIO R4 2k 0.1% 2k '0.1% R5 2k 5% 'Gain = 1()6 As 01 LM113 12V 02 lN457 L-____...._ _ _ _ _.... ~ -15V TL/H/9241-7 Performance Characteristics G = 10,OOOG = I,OOOG = 100 G = 10 Linearity of Gain (± 1OV Output) Common-Mode Rejection Ratio (60 Hz) Common-Mode Rejection Ratio (1 kHz) Power Supply Rejection RatiO + Supply -Supply Bandwidth (- 3 dB) Slew Rata Offset Voltage Drift" Common-Mode Input Resistance Differential Input Resistance Input Referred Noise (100 Hz ~ f ~ ~0.D1 ~0.D1 ~0.02 ~0.05 ~120 ~120 ~110 ~90 ~11.0 ~110 ~90 ~70 >110 >110 50 0.3 >110 >110 50 0.3 ~0.25 >109 >3x 10S 10 kHz) Input Bias Current Input Offset Current Common-Mode Range Output Swing (RL = 10 kO) "Assumes ,; 5 ppml'C tracking of I8sislors 5 75 1.5 ±11 ±13 5-27 % dB dB >110 >110 dB >90 >70 dB 50 50 kHz 0.3 0.3 V/pos ~0.4 2 ~10 poV/'C >109 >109 >109 0 >3x1OS >3x1OS>3x1OS 0 nV 6 12 70 75 1.5 ±11 ±13 75 1.5 ±11 ±13 75 1.5 ±10 ±13 JRi nA nA V V • Typical Performance Characteristics Small Signal Current Gain vs Collector Current z 100II : ~ 118 ~ rT"'TT.,..-,r-rnr.,...,rm-rTTTt :~;;05:,++fHH-Ht-+-l1tH T, • 2S"C -tffHH-Ht-+-l':1.lol &OIJ ~~H-t1~..'f'HH-HtH ..a 400 """'Tttt-H-ttt-'++l-II-f-++H i zoo~~tt-H-ttt-++l-II-f-++H ,---,,--.--.--r--i ~ 1DOD ~~~~~~~~~~ t--'c ~ 1 100 tOmA ~ 'O I:=l'i:~i:~"~I~ ~'~f~ l 1201 ~ ~ 1400 :! ~~H-t1f*-t+i~FttH ~ Unity Gain Frequency (fd vs Collector Current OCCurrent Gain vs Temperature &10 l--'pA ;\! ~ 408 200 I Va "'5V o -15 Ie - COLLECTOR CURRENT (mA) 'r-r-r-'-T"""'T""-r-r-, a D.s rt--+--+-t-r+---b"q ~ a.~r-t-1-~-+-4--~ t.' 1-+-+-t-+-I--J.,.oI!J---I rt--+--+-t/---'''''/'"-+--1f--1 • r+-+-+""7I......t-+-+-I ~ .., -u 1---t..."'I--t--l-+-+-t-4 § ~ ~ ; 0.2 ~ -1.2 , j _IL-~~L-L-L-L-~~ a 100 16 125 0.7 VeE =5V +-Htlf-t-tiit-+-I-t.J,i T, ' 2S·C H-t1ftt-+-1Hfl-+~*",'Fio"+l-H 200 10 ~ 1 i 5'0"1111 ~ O.S 11.11 ~ OA ............w....L..JCW-l-...u................... 0.801 0.81 0.1 1 10 D~1 ttjj~tjitt:tjjtt:tifD D.GGI ~~ iii::: ~z U .. j~ Input Voltage NOise vs Frequency le. ,a I. -- ~ III "" 0.101 Ie - COLLECTOR CURRENT ImAI 0.01 0.1 "" 1 Ie" 100pA 1 10 0.01 12 ... .S , 4 w ~ ~ z li f - FREIlUENCV IkH.1 100 11111 a r- R. ':\~'r- ~ 2 0 0.001 0.81 1 10 100 Collector to Collector CapaCitance vs Reverse Bias Voltage r;:r;rw 1I1il 10 0.1 f - FREQUENCY (11Hz) Noise Figure vs Collector Current 10 ~"".II.~..'e;;,=_';,;m;;.A;,{,I,I,-'-.I..I.II Ie - COLLECTOR CURRENT ImAI ~ 10 "-I! Ie ,:! . 1 • II '~ B~ 10 0.1 0.01 Ie - COLLECTOR CURRENT (mA) Collector-Emitter Saturation Voltage vs Collector Current Small Signal Output Conductance vs Collector Current 0.1 1l1i Vc"'5V '=100Hz i Ie - COLLECTOR CURRENT (mAl =~ tic> w> 0.01 0.1 1 10 Ie - COLLECTOR CURRENT (lIlA) Small Signal Input Resistance (hie) vs Collector Current ",.,m-T"'1rT11-r"TT"'-T"'T"TTI INITIAL OFFSET VOLTAGE !PVI 0.1 0.1 0.001 115 Base-Emitter On Voltage vs COllector Current 0.6 ~ -1.1 """+-+-~-+-+-Ir---H -D.• r+-+-+-+-t-T,-2S"C -100 25 ~ l-t-to'f--+-4-1r---H -200 -25 f,-JUNCTION TEMPERATURE rC) Offset Voltage Drift vs Initial Offset Voltage ii 10 .: I WI '.1 Ie - COLLECTOR CURRENT ImAl 10 I o I. 20 30 4D SO COLLECTOR T~ COLLECTOR VOLTAGE !VI TUH/9241-8 5·28 Typical Performance Characteristics Collector to Collector Capacitance vs Collector-6ubstrate Voltage 30 f-Vcc- O- .e ~ z Emitter-Base Capacitance vs Reverse Bias Voltage -~: :fv~ 20 ;! ~ :- ...... ~ u Z 5 50 40 2D 30 40 50 o .e . - ...... 0.2 0.1 COLLECTOR TO SUBSTRATE VOLTAGE (V) 0.3 0.4 30~ 20 ~ ~ 5 § 0.& 10 11 0.1 Collector to Collector Leakage va Temperature ~ , 1/ 1.1 ~ ... ..~ ~ 0.01 25 50 75 100 ,. ~ co j! 11.1 0.01 VeE "COV ~ L ~, 1/ 25 125 T,-JUNCTION TEMPERATURE rC) 50 75 100 12& -& -10 o 200 T, - JUNCTION TEPM'ERATURE ('C) 0.5 t-Le.'-O~-+--+++-+-HI I-HH-t-l--+++-I+I D~I-HH-t-l--+++~ 0.1 I-HH-t-l--++--I7'9-f Hrl-+-+-+--++++-t ~ -0.3 -0.4 I-HH-t-l--++++-I I-HH-t-l--++++-I ffi g -02 HH-t-+-++++-H -1.5 L...J'--J.-L...J.....L.....L...J.....J....L.....I 10-' 10-' 10-8 10-1 10-4 10-3 Ie - COLLECTOR CURRENT (A) TLlH/9241-10 Low Frequency NOise of DIHerentlal Pair' YCE4 IV, Ie= 100 )'A, !lsT= loon ,....- . ... I.... - ~ I'"P BW=0-10Hz t= 1 SEC DIY .... -f' ~ '-BW- 0-1 Hz t = 10 SEciolV l.ao. 100nV rr'- IBW=O-~i~ Hz t= 1 SEC DIV TIME (SEE GRAPH) 'Unit must be in still air environment so that differential (ead tempereture is held to leas than 0.0003'C. 5-29 &00 800 1DOD TUH/9241-9 Emitter-Base Log Conformity '-r-""lr-r-,....,....,......,...,...,-, ~ -D.l g 400 TIME (HRS) 0.3 0.4 ! &0 T,.'2&"C Ic ·6OtJA ~ ./ 10 ~ ./ ~, j ! ./ 10 40 10 ;; .5 ! 30 Offset Voltage Long Term Stability at High Temperature 100 ~\re.-20V 20 REVERSE BIAS VOLTAGE (Vea ) REVERSE BIAS VOLTAGE (V) Collector-Base Leakage va Temperature 100 , Ii: § 10 J 10 Collector-Base Capacitance vs Reverse Bias Voltage &0 !l ~, (Continued) TLlH/9241-11 I :!5 r-----------~------------------------------------------------~-----, Connection Diagrams ~ ... G» Dual-In-Llne and Small Outline Packages Metal Can Package :!5 1 • TUH/9241-12 TL/H/9241-13 Top View Top View Order Number LM194H/883·, LM394H, LM394BH or LM394CH See NS Package Number H06C Order Number LM394N or LM394CN See NS Package Number N08E 'Avallable per SMD #5962-8777701 5-30 r-----------------------------------------------------------------------~ r iii: .... fO t!lNational Semiconductor ..... CJI ~ LM195/LM395 Ultra Reliable Power Transistors General Description The LM195/LM395 are fast, monolithic power transistors with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard T0-3 transistor power package, the LM195 will deliver load currents in excess of 1.0A and can switch 40V in 500 ns. The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting Circuitry to turn off the device preventing excessive heating. tions. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply bypassing is recommended. For low-power applications (under 100 mAl, refer to the LP395 Ultra Reliable Power Transistor. The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous. The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source imped- , ance, it is necessary to insert a 5.0k resistor in series with' the base lead to prevent possible emitter follower oscilla- • • • • • • • ., The LM195/LM395 are available in standard T0-3 power packages and solid Kovar TO-5. The LM195 is rated for operation from - 55°C to + 1500C and the LM395 from O°C to + 125°C. Features Internal thermal limiting Greater than 1.0A output current 3.0 /LA typical base current 500 ns switching time 2.0V saturation Base can be driven up to 40V without damage Directly interfaces with CMOS or TIL 100% electrical burn-in Simplified Circuit ---, I I I I I I I I I I I I I IL _ _ _ _ _ _ _ _ _ TLIH/6009-1 5-31 ~ Connection Diagrams TO·3 Metal Can Package To-220 Plastic Package TLlHI6009-3 case is Emitter Top View TLlHI6009-2 Bottom View Order Number LM395T See NS Package Number T03B Order Number LM195K/883 See NSPackage Number K02A T0-5 Metal Can Package O--....,~-- EMITTER CASE IS EMITTER TLlHI6009-4 Bottom View Order Number LM195H/883 See NS Package Number H03B 5·32 r- I: ..... Absolute Maximum Ratings Base to Emitter Voltage (Reverse) Collector Current Power Dissipation Operating Temperature Range LM195 LM395 Storage Temperature Range Lead Temperature (Soldering, 10 sec.) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Collector to Emitter Voltage LM195 42V LM395 36V Collector to Base Voltage LM195 42V LM39S 36V Base to Emitter Voltage (Forward) LM195 42V LM39S 36V 20V Internally Limited Internally Limited 100% Burn-In In Thermal Umlt Electrical Characteristics (Note 1) LM195 Conditions Min Collector-Emitter Operating Voltage (Note 3) Ie ~ Ic ~ IMAX Base to Emitter Breakdown Voltage o ~ VCE ~ VCEMAX Collector Current TO·3, T0-220 TO-S VCE VCE Saturation Voltage Base Current Quiescent Current (Ie) Base to Emitter Voltage Switching Time. Thermal Resistance Junction to Case (Note 2) ~ ~ Typ LM395 Max Min Typ 42 42 1.2 1.2 1SV 7.0V Ic ~ 1.0A, TA = 2S·C o ~ Ic ~ IMAX o ~ VCE ~ VCEMAX Vbe = 0 o ~ VCE ~ VCEMAX IC = 1.0A, TA = +2S·C VCE = 36V, RL = 360, TA = 2S·C 2.2 1.8 Units Max 36 V 36 60 V 1.0 1.0 2.2 1.8 A A 1.8 2.0 1.8 2.2 V 3.0 S.O 3.0 10 p.A 2.0 S.O 2.0 10 mA 0.9 0.9 V 500 500 ns TO-3 Package (K) 2.3 3.0 2.3 3.0 ·C/W TO-5 Package (H) 12 15 12 15 ·C/W 6 ·C/W TO-220 Package (T) 4 Note 1: Unless otherwise specified. these specifications apply for -55'C ,; Tj ,; + 150'C for the LM195 and O'C ,; + 125'C for the LM395. Note 2: W"hout a heat sink. the thermal reslslence of the TOooS peckege is about + 15O'C/W, whUe that of the T0-3 peckege is +35'CIW. Note 3: Selected devioes with higher breakdown available. Note 4: Refer to RETS195H and RETSI95K drawings of military LM195H and LM195K versions for specifications. 5-33 Ii:w CD en - 55·C to + 1500C OOC to + 12S·C -6S·C to + 1S00C 2600C Preconditioning Parameter CD en ..... Typical Performance Characteristics (for K and T Packages) Collector Characteristics S ~ .. .. ~ to ::8 Bias Current '. Short Circuit Current Z.4 2.5 .2.4 T0-3 S z.a Z.8 . II! 1.6 ~ t: . .. 1.2 ~ ;:; d•• Ii 0.4 iii 5.8 10 15 20 25 30 ~ TA =+12Ii"C 1.5 1.8 TA .~ C ~5:'......:: i-55"1" 1.5 .lI ~ ; 35 5.D 10 IS ZD 25 30 ~ .. I E e"' 1.8 I-+-+--'k-~~-+--I 1.1 U 1-+"-"1-+--+-+--+--1 U 10 IS ZD 25 3D .. ~ 1.2 .."'~ .... !i.. '" z.t t-t--t--t--+-+- ~ = 20 1.8 .~ D.5 - : -0.. -0.4 0.4 D.. I .2 ZI 41 Response Time J T..,=lS"C ~-Y+'35Yr~ .. . 20 E "' ~ ~ , Y+"0V 3.8 TIME,",) 0 'ASE EMtnER VOLTAGE (V) I COLLECTOR CURRENT (A) I v 10 IT... " _HoC I .. ,-5.0 Response Time 3D fj rt-!A=+WC I -4.• -1.0 , ,. - I ~ -3.0 !I~ 1-+-+-+-++-+-+"-"1f--1 "' 1.5 E-2.0 TEMPERATURE rc) E I I I TA = +12rc' l-t.o • L.......L......J--L--L......L.,-J-.....L.......L..-l 4D ~ 5 ·It COLLECTOR CURRENT IAl .....8 Saturation Voltage I 1A0.IU1.B2.' -55 -35 -15 5.0 25 45 IS '5 IDS ;25 2.5 I d t-t-t-t-I---"I---"I---"t-H d.. 1oo.±-+=1"''"+o..l::c-=F''"''''''''''t-'-I 0.2 35 \ Base Current 1.0 F"';...C::+--F""'-+....:.!:~ I :; '" D•• 1.0 COLLECTOR VOLTAGE (V) E I f--- T. '+125"~\ Base Emitter Voltage z.a 0.4 ~ -T.~-55..t~ 1.8 35 1A u ) •• +zs.!C_ 1.2 COLLECTOR·EMITTER VOLTAGE (V) Quiescent Current := .. _ IA COLLECTOR·EMITTER VOLTAGE (V) ! - Z.8 Ii I.D .. 4.D TAI=+Jc Ifr-- 12 c- .. ~ Y+=35V " ~rv+rVI ' = rlJ~ .. OA - ~0.1 ~ 1.2 TIME,",) TLIH/6009-6 5·34 Typical Performance Characteristics (for K and T Packages) (Continued) 10V Transfer Function 2.0 36V Transfer Function -,-'-1""- V+=10~ 1.2 i TA = +25"C y+ = 36V TJ.J1c I 0.6 ~ ; l I JI) 0.4 8 OA 0.1 1.2 1.6 0.6 OA BASE·EMITTER VOLTAGE IVI 1.2 1.6 BASE·EMITTER VOLTAGE IVI TL/H/6009-7 TL/H/6009-8 Transconductance 10 I. iI Small Signal Frequency Response ~=~T~A~-1+~Z5~'~c~~II~~~1I ='=50kHz 3.0 1.0 TA = +ZS"C ;; -201 :5 ..~ -100 §RII~II~mll ~ =~ 0 c w ~~ -10 U IrH+ttIlll--+-++ttttll-+-I+HtIH 'II PHASE T 1--I-+-H-1-H i~=I.aA .... ,J,!""rTTm 1i ~; ~""'l 1FaD.1A .. e Ilr~~~O.1A !: Ie :2!A.. . GIM l ~ti !C: .... z 0.1 L-.l-L.LJ.IJIIL-J....u.J..LLIII.-.J-I.........LW 0.1 1.0 10 0.01 -20 ~B COLLECTOR CURRENT IAI lOOk 1.11M 10M FREQUENCY IHzl TUH/60D9-9 TUH/Boo9-10 II 5-35 LM195/LM395 W :z CD 3 ! 0' c COLLECTOR ~' iii 3 03 6.3V Cl ~I I IL R2 2DOk 01 6.3V R24 500 EMITIER R22 0.1 R21 30 BASE TLlH/6009-'=\-1 Typical Applications 1.0 Amp Voltage Follower C4 r------------~~--+15V R, 10k Rs 10k .... OUTPUT '-¥~_1.---t_- ' - - - - - - - - - -....---15V TL/H/6009-12 PowerPNP RI Uk' Time Delay --,---",-+15V .........--4._-EMITIER BASE -'V\~-4'_--1 SOO pF** OUTPUT oz LMI95 01 LMI95 HZ 10k CI II1pF ' - -....._-COLLECTOR TUH/6009-13 ·Protects against excessive base drive TUH/6009-14 "Needed for stability 1.0 MHz OSCillator 1.0 Amp Lamp Flasher 3~:~t--------------------~ '* Cl -.-o.1",F ." C2 O.01~F 1~:-t-------------, R& 25 RI 510k RZ 150k I-...--~---------__-t-0UTPUT RI Uk QI LMI95 01 IN914 R3 41k 1003 BULB TUH/6009-15 TlIH/6009-16 5·37 Typical Applications (Continued) 1.0 Amp Negative Regulator R6 Uk + ll1pFt }-~ ______~__~___ O~~:T 1.0A R2 2.4k 01 LM195 tSoIld Tantalum ~--------------~-------VTLlH/6009-17 1.0 Amp Positive Voltage Regulator V,N 3av TLlH/8009-18 Fast Optically Isolated SWItch Optically Isolated Power Transistor ...---....-v+ d~ q--- OUTPUT ....---....--+ 01 LM19S Rl 3311 - . .- - _....--VTLlH/6009-20 TLlH/6009-19 5-38 r-----------------------------------------------------------------------------, Typical Applications (Continued) CMOS or TTL Lamp Interface ~ i: ..... ~ ...... Two Terminal Current Limiter ~ 40YSwitch --+--+12V -~""'-40V + ~ ii OUTPUT DRIVE" TUH/6009-22 TLiH/6009-23 TUH/6009-21 '~rive Voltage OV to "' tOV :s;; 42V Two Terminal 100 mA Current Regulator 6.0Y Shunt Regulator with Crowbar + Rs V,N -#\I4""-1---t----1-- VOUT 02 LM195 Cl 50 pF TL/H/6009-25 TL/H/6009-24 Low Level Power Switch Power One-9hot y+ 12V r - -. .- - - - -. .- lZV r--"'--VVIor--'- OUTPUT Cl 0.22pF Q2 LM196 01 LM195 Tum ON = 350 mV = 200 mV OUTPUT TUH/6009-26 Tum OFF RL~12{l T = RtC R2 = 3Rt R2:S;; 82k ':' TUH/6009-27 5·39 II Typical Applications (Continued) Emitter Follower High Input Impedance AC Emitter Follower - -....~-V+ - -....I---·+15V Cl Rl 5.Ok' INPUT -M""---l"-l Ql INPUT-1 LM195 OUTPUT I--+--OUTPUT 'Need for Stability --"'---15V TLlH/6009-28 TL/H/6009-29 Fast Follower - -....~-V+ Rl 5.0k INPUT -JVV\~"""" Ql LM195 .....~H~OUTPUT V- TL/H/6009-SO 'Prevents storage with fast fall time square wave drive PowerOpAmp A, lOOk +15V AZ 10k + C4 11M' A4 5.1k L1 Z2TUANS ON Ai OUTPUT R5 10 R6 -1.0 2W 'Adjust for 50 mA quiescent current tSolid Tantalum -15V TLlH/6009-31 5·40 r-----------------------------------------------------------------------------'r .... Typical Applications (Continued) == CD ~ 6.0 Amp Variable Output Switching Regulator !i: v+ ~ 36V - . - - - - - - - - - - . . , R9 DI LMI03 100 3.9V + TUH/6009-32 'Slxty turns wound on Arnold Type A·083081·2 core. "Four devices in parallel tSolid tantalum • 5-41 t!lNational Semiconductor LM3045/LM3046/LM3086 Transistor Arrays General Description Features The LM3045, LM3Q46 and LM3086 each consist of· five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transi~ors are internalJy connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14-lead cavity dualin-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14-lead molded dUal-in-line package for applications requiring only a limited temperature range. • Two matched pairs of transistors VBE matched ± 5 mV Input offset current 2 p.A max at Ie = 1 mA • Five general purpose monolithic transistors • Operation from DC to 120 MHz • Wide operating current range • Low noise figure 3.2 dB typ at 1 kHz • Full military temperature range (LM3045) - 5S"C to + 12S"C Applications • General use in all types of Signal proceSSing systems operating anywhere ii, the frequency range from DC to VHF • Custom designed differential amplifiers • Temperature compensated amplifiers Schematic and Connection Diagram Dual-In-Une and Small Outline Packages SUBSTRATE 14 13 12 11 10 Q3 4 TUHI7950-1 Top View Order Number LM3045J, LM3046M, LM3046N or LM3086N See NS Package Number J14A, M14A or N14A 5-42 Absolute Maximum Ratings (TA = 25°C) If Mllltary/Aerospsce specHlecI devices sre required. please contact the National Semiconductor Sales Offlcel Distributors for availability and specifications. LM3045 LM3046/LM3086 Each Total Each Total Units Trenslstor Package Transistor Package Power Dissipation: 300 300 750 750 mW TA = 25"C TA = 25°C to 55"C 300 750 mW mW/oC Derate at 6.67 TA> 55"C 300 750 mW TA = 25°C to 75"C mW/oC Derate at 8 TA> 75°C 15 15 V Collector to Emitter Voltage, VOEO 20 V 20 Collector to Base Voltage, VCSO 20 V Collector to Substrate Voltage, VOIO (Note 1) 20 5 5 V Emitter to Base Voltage, VEBO 50 50 mA Collector Current, 10 Operating Temperature Range - 55°C to + 125°C -400Cto +85°C Storage Temperature Range -65°C to +1500C -65°C to +85°C Soldering Information Dual-In-Line Package Soldering (10 Sec.) 2600C 2600C Small Outline Package Vapor Phase (60 Seconds) 215°C Infrared (15 Seconds) 2200C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Electrical Characteristics (TA = Parameter 25"C unless otherwise specified) CondHlons Limits Limits LM3045; LM3046 LM3086 Collector to Base Breakdown Voltage (V(BR)OBO) 10 = 10 pA, IE = 0 20 Collector to Emitter Breakdown Voltage (V(BRIOEO) 10=1mA,IB=0 15 Typ 60 24 Collector to Substrate Breakdown Voltage (V(BR)OIO) 10 = 10 pA, 101 = 0 20 60 IE 10 pA. 10 = 0 5 7 0.002 Min Emitter to Base Breakdown Voltage (V(BR)EBO) Collector Cutoff Current (lOBO) VOB = 10V,IE = 0 Collector Cutoff Current (IOEO) VOE = 10V, IB = 0 Static Forward Current Transfer Ratio (Static Beta) (hFEl VCE = 3V Input Offset Current for Matched Pair Q1 and Q21101 - 11021 Base to Emitter Voltage (VBEl Magnitude of Input Offset Voltage for Differential Pair IVBE1 - VBE21 Magnitude of Input Offset Voltage for Isolated Transistors IVBE3 - VBE41, IVBE4 - VBESI. IVBES - VBESI Temperature Coefficient of Base to EmltterVoltage (~~~E) . fO = 10mA 10=1mA 10 = 10pA VOE = 3V, 10 = 1 mA Typ 20 60 V 15 24 V 20 60 V 5 7 0.002 40 0.5 100 40 Max 100 V nA 5 pA 100 100 40 54 0.3 Units Min 100 54 2 p.A VOE = 3V {IE = 1 mA IE = 10mA 0.715 0.715 0.800 0.800 VOE = 3V, 10 = 1 mA 0.45 5 mV 0.45 5 mV V VOE = 3V, Ie = 1 mA VCE = 3V, Ie = 1 mA Collector to Emitter Saturation Voltage (VOE(SAn) IB = 1 mA, Ie = 10 mA Temperature Coefficient of Input Offset Voltage (~ VCE = 3V, Ie = 1 mA :;0) Max -1.9 -1.9 mV/oC 0.23 0.23 V 1.1 p.VloC Note 1: The collector of each transistor of the LM3045. LM3046. and LM3086 Is Isolated from the substrate by an Integral diode. The substrate (terminal 13) must be connected to the most negative point In the external clrcuR to maintain isolation between transistors and to provide ler normal transistor action. 5-43 • U) ~ ~ ..... ~ U) :J.... i:J r---------------------------------------------------------------------------------, ., Electrical Characteristics (Continued) Parameter Conditions Low Frequency Nois~ Figure (NFl , ~ Mill Max . Units Typ f = 1 kHz, VCE = 3V, Ic = 100 p,A, Rs = 1 kO 3.25 dB LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS 110 (LM3045, LM3046) (LM3086) f'= 1 kHz, VCE = 3V, Ic=lmA Forw8rd Current Tran/lfer Ratio (hIe> Short Circuit Input Impednace (hie> 3.5 kO Open Circuit Output Impedance (hoe) 15.6 pomho 1.8x10- 4 Open Circuit Reverse Voltage Transfer Ratio (hre> ADMITTANCE CHARACTERISTICS 31-j1.5 f = 1 MHz, VCE = 3V, Ic=lmA Forward Transfer Admittance (VIe) Input Admittance (Vie> 0.3+JO.04 0.001 + j 0.03 Output Admittance (Veel See Curve Reverse Transfer Admittance (Vra) 300 550 Gain Bandwidth Product (for) VCE = 3V, Ic = 3 mA Emitter to Base Capacitance (CEe) VEe = 3V,IE = 0 0.6 pF Collector to Base Capacitance (Cce) Vee = 3V, Ic = 0 0.58 pF Collector to Substrate Capacitance (cCl) Ves = 3V, Ic = 0 2.8 pF Typical Performance Characteristics Typical Collector To BaSIl Cutoff Currant vs Ambl~nt Temperatura for Each' Transistor !1tJ2 ~ ~ 1. ,·;"II E Typical Collector To Emitter Cutoff Current vs Ambient Temperatura for Each , Transistor i UP IZO 1.=0 E i 10' VeE '3V, a: ;"a: El I: Ifltllfliill~i ~'~= ~ 10 ~ Ii! Vce =10V "!:i IV ~ 1 =~ 9 10. Typical Static Forward Current·Transfer .l:iatlo and Beta Ratio for Transistors Q1 and Q2 vs Emitter Current TAI·IZl~~'II!. I 100 IhFE' 1 hFE2 , o ~5 III 75 1111 125 - ~ 1~ T. - AMBIENT TEMPERATURE I'CI 0 10 25 50 III 75 125 100 hFE 70 3 r= ") 80 In ~ 1''''1 "F~ 90 I j I." OR 1.1 I I I' 110 .01 III ;: '-.",\~ I I I' 0.• .1 T. - AMBIENT TEMPERATURE I CI I 1 10 Ie - EMITTER (mAl TLlHI7950-2 Typical Static Base To Emitter Voltage Characteristic and Input Offset Voltage for Differantlal Pair and Paired Isolated . Transistors vs Emitter Current . Typical 'Input Offset Current for Matched Transistor Pair 10 :1 Q2.VSCOllect::.~::rent .1 TA _21°C ! .7 ~ 1 § i .1 t- ... f= Vc.- 3V T. =21'C Ht-,++ lttl//tr"",-b1'Flt1Hl f- ;:.r.t:Io!1l111t--+-I-tffifll ~ INPUT OFFSET VOLTAIiE I 1 .I...L1.UJillI. II 111m..- ' .4~mmll 1 L.....J...LJ.JJ.wL.....L..J.Jwll.wL...IIII.L..U. .11 .1 3 2 f:: ,g .01 4 1 10 .01 Ie: - COLLECTOR ""'" .1 1 $ 0 I ....~ ... ",' ..~ . ".$ 0 ,I" •. , 10 I. - EMITTER ImAI ' TLlHI7950-3 5-44 .' , ,-----------------------------------------------------------------------------, r Typical Performance Characteristics ~ .1 e .7 ! ~~ ~ ~eo ~~ .. ~~~ ~. .6 - r--1.·3mA lmA . I ~ ..... s; .§ "'" ~ O.~mA .5 ~I -15 -50 -25 0 26 50 15 100 125 ~ .1 IRA .26 I o .4 - -' 2 > -15 -50 -25 0 Z5 As' 510" T.-2I"C 21 ..!i! . im 20 ~ !!j eo II '·0.1 kHz 10 ~ ;' 1kHz IDkHz o 50 15 '08 126 .1 .01 Ie - COLLECTOR b.A) T. - AMIIENT TEMPERATURE I'CI T. - AMBIENT TEMPERATURE I'CI m ..... ~ Vee' 3V ! I~A .50 Typical Noise Figure vs Collector Current -~ IE ""0jA .15 ~ w g 30 l VeE ::3V VeE'" 3V .9 0: 2 ~ Typical Input Offset Voltage Characteristics for Differential Pair and Paired Isolated Transistors vs Ambient Temperature Typical Base To EmlHer Voltage Characteristic for Each Transistor vs Ambient Temperature ~ i: (Continued) TUH17950-4 Typical Noise Figure vs Collector Current Typical Noise Figure vs Collector Current 30 30 VeE e3V Vee "3V As-'''''' 25 ! .. . 0: !!j eo As-'I,a.! ZI T. =Z5"C T. =2I"c I I ;0 ZB 3 .. ..!II.. ~ g; Typical Normalized Forward Current Transfer Ratio, Short Circuit Input Impedance, Open Circuit Output Impedance, and Open Circuit Reverse Voltage Transfer Ratio vs Collector Current Z8 ~ g; II f·O.' kHz 0: iI' - I. 10' =:.;;;: 'i}. -Lffi a .01 I,! o.IkH•. / II 1kHz - 10 ,/ i-" o lM "II .1 Ie - COLLECTOR (mA) .01 Ie - COLLECTOR ImAI 10 .1 Ie - COLLECTOR (..AI TL/H17950-5 . Typical Forward Transfer Admittance vs Frequency 0: ~ ~ ... g1 i!i.§ ,. ..~ u... 40 ~~ 3G Typical Input Admittance vs Frequency T. =25"C i" TA .. VeE -3V Ie -l .. A ~~cE .. 3V Ic"1mA 20 Ii " -11 f I .. -20 .... ,~:;/, ~ ~I , T. =Z5"C 25-C VeE a3V Ie = ImA 0: . . ~~ .... Typical Output AdmiHance vs Frequency ~ .1 I' \ ~! I..::: 11111 o 10 f - FREQUENCY IMH.) 100 .1 10 f - FREOUENCY (MH.) 108 ~ o .1 10 ... 100 '-FREQUENCY IMH.) TUH/7950-6 5·45 II I / • U) ~ CO) .........::::E I:I ~ :I r---------------------------------------------------------------------------------, Typical Performance Characteristics Typical Reverse Transfer Admittance vs Frequency :: . w u ~I .5 ~I =5 -.5 co E s: ;w"= Typical Gain-Bandwidth Product vs Collector Current .... !s W!~!I~T f~ElJE~J!~S .sao LESS THAN I t; MHz \ " f ...'"co -2 ~ ~ !'"C .. TA =ZS·C VeE =lV I Ie "'1 mA 101 ~eE ~ 3J f-TA = 2S·C "... 500 4GII 300 II 200 loa ~ 100 f- 100 co 601 co -1 ~ I. ~ AI -1.5 I (Continued) 10 fREQUENCY IMH.1 1 2 3 4 5 6 1 8 9 10 Ie - COLLECTOR ImAI TL/H/7950-7 5-46 t!lNational Semiconductor LM3146 High Voltage Transistor Array General Description Features The LM3146 consists of five high voltage general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the dc through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3146 is supplied in a 14-lead molded dual-in-line package for applications requiring only a limited temperature range. • High voltage matched pairs of transistors, VSE matched ± 5 mV, input offset current 2 p.A max at Ie = 1 mA • Five general purpose monolithic transistors • Operation from dc to 120 MHz • Wide operating current range • Low noise figure 3.2 dB typ at 1 kHz Applications • General use in all types of signal processing systems operating anywhere in the frequency range from dc to VHF • Custom designed differential amplifiers • Temperature compensated amplifiers Connection Diagram Dual-In-Llne and Small Outline Packages SUBSTRATE 14 13 12 11 4 • 10 6 TL/H/7959-1 Top View Order Number LM3146M or LM3146N See NS Package Number M14A or N14A • 5-47 Absolute Maximum Ratings i. Soldering Information Dual-In-Line Package Soldering (10 seccnds) If Military/Aerospace specified devices are required, please contact the National Semiconductor Salea Office/Distributors for availability and specifications. LM3146 Power Dissipation: Each transistor mW TA = 25°C to 55°C 300 Derate at 6.67 mWI"C TA> 55°C Power Dissipation: Total Package 500 . mW TA = 25"C Derate at 6.67 mWI"C TA> 25°C 30 V Collector to EmillerVoltage, VCEO 40 V Collector to Base Voltage, VCBO Collector to Substrate Voltage, 40 V VCIO (Note 1) Emiller to Base Voltage, VEBO (Note 2) Collector to Current, Ic Operating Temperature Range Storage Temperature Range 5 50 -40 to +85 V mA °C -65 to +150 °C DC Electrical Characteristics TA = Symbol 26O"C Small Outline Package Vapor Phase (60 secondS)' Infrared (15 seccnds) Units 215°C 2200C See AN-450 "Surface .Mounting Methods an!! Their Effect on Product ReliabilitY'~ for other methods of soldering surface mount devices: 25°C Parameter Limits Conditions Min Typ Units Max V(BR)CBO Collector to Base Breakdown Voltage Ic = 10 ,.A,IE = 0 40 72 V V(BR}CEO Collector to Emiller Breakdown Voltage Ic=1mA,IB=0 30 56 V V(BR)CIO Collector to Substrate Breakdown Voltage ICI = 10 ",A, IB =0, IE =0 40 72 V V(BR)EBO Emiller to Base Breakdown Voltage (Note 2) Ic = O,IE = 10 ",A 5 7 V ICBO Collector Cutoff Current VCB = 10V, IE = 0 0.002 100 nA ICEO Collector Cutoff Current VCE = 10V,Ia = 0 (Note 3) 5 ",A hFE Static Forward Current Transfer Ratio (Static Beta) Ic = 10mA, VCE = 5V Ic = 1 mA, VCE = 5V Ic = 10,.A, VCE = 5V IB1-IB2 Input Offset Current for Matched Pair 01 and 02 IC1 = 1C2 = 1 mA, VCE = 5V 0.3 2 ",A VBE Base to Emiller Voltage Ic = 1 mA, VCE = 3V 0.73 0.83 V VBE1-VBE2 Magnitude of Input Offset Voltage for Differential Pair VCE = 5V,IE ,'" 1 mA 0.48 5 mV AVBE/AT Temperature Coefficient of Base to Emiller Voltage VCE = 5V, IE = 1 mA VCE(SAn Collector to Emiller Saturation Voltage Ic = 10 mA,lB = 1 mA AV10/AT Temperature Coefficient of Input Offset Voltage Ic = 1 mA, VCE = 5V 30 0.63 85 100 90 -1.9 mVI"C 0.33 V 1.1 ",VloC Note 1: The collector of each transistor Is Isolated from the substrate by an integral diode. The substrate must be connected to a witage which is more/negalive than any collector voltage In order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the subetrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to esteblish a Signal ground. Note 2: If the transistors are foroed Into zaner breakdown (V(BR)EBOl, dagredatlon of forward transfer currant ratio (hFEl can occur. Note 3: See curve. 5-48 AC Electrical Characteristics Symbol Parameter Limits Conditions Typ Min NF low Frequency Noise Figure f = 1 kHz, VCE = 5V, Ic = 100 p.A, Rs = 1 kO fT Gain Bandwidth Product VCE = 5V, Ic = 3 mA 300 Units Max 3.25 dB 500 MHz pF CEB Emitter to Base Capacitance VEB = 5V, IE = 0 0.70 CcB Collector to Base Capacitance Vcs = 5V, Ie = 0 0.37 pF CCI Collector to Substrate Capacitance VCI = 5V,Ic = 0 2.2 pF 100 Low Frequency, Small Signal Equivalent Circuit Characteristics hje Forward Current Transfer Ratio f = 1 kHz, VCE = 3V"lc = 1 mA hie Short Circuit Input Impedance f = 1 kHz, VCE = 3V, Ic = 1 mA 3.5 kO hoe Open Circuit Output Impedance f = 1 kHz, VCE = 3V, Ic = 1 mA 15.6 p.mho hre Open Circuit Reverse Voltage Transfer Ratio f = 1 kHz, VCE = 3V, Ic=1mA 1.8x 10-4 Admittance Charactsrlstics = 1 mA Vie Forward Transfer Admittance f = 1 MHz, VCE = 3V, Ic Vie Input Admittance ' f = 1 MHz, VCE = 3V, Ic = 1 mA Voe Output Admittance f = 1 MHz, VCE = 3V, Ic = 1 mA Reverse Trans~er Admittance 31 - j 1.5 mmho + jo.o4 0.001 + j 0.03 mmho 0.3 mmho (Note 3) f = 1 MHz, VCE = 3V, Ic = 1 mA mmho substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collectorwltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass cspacijor can be used to establish a signal ground, Note 2: "",e transistors are forced into zener breakdown (V(BR)Eeol, degradation of forward transfer current ratio (hFEl can occur. Note 3: See' curve. Vre Note 1: The collector 01 each transistor Is isolated !rem the " 5-49 ~ ;,; ~ Typical Performance Characteristics va ICEO va T A for Any Translator c.s ....... I" ~ II ill 1 m II' 10 ., .. I" B i .. Il! '" IIl!... ... .... .." ! ICBO TA for Any Transistor I" B hFEvslC for Any Transistor III 140 121 lDO :I! Vco'IIV It W I IV . s I 10·' ew " ,lJ .... o 25 18 II 125 lDO i 0.1 VeE ! -sv D.I / V I J 1.5 o.c -15 -50 -25 a 25 50 15 III 125 !.. ~ il! iii I 1 -".,. Ie: .'DjA I~A ) 1..0 -".,. • l.'mA I -15 -50 -25 • ~ 0.1 I .j .. NF vSlc 30 25 50 15 III 125 T. - AMIIENT TEMPERATURE ('Cl t eli IS; ~ i i . J .. !l: 0.0 101" .! sili :; ,. 1.5 = 10 I. - EMITTER (mAl ....... @ Rs = 5000 VCII'SV 25 I 0.1 ... 10 D.1 Ie - COLLECTOR CURRENT (mAl VBE and VIO VB IE for Q1 and Q2 I I j u& I 0.0 I 1.15 "" .....~ .... 10 11213041 VIO VB T A for Q1 and Q2 Vce·5V c Ie - COLLECTOR CURRENT (111AI T. - AMBlE.TTEMPERATURE I"CI 4 110 va Ic (Q1 and Q2) V IE.~ ~ II c COLLECTOR CURREIT (mAl 10 TA;; 25°e ~ ~'3~ I:! I~ VCE(SAT) va Ic for Any Transistor VBEvsTA for Any Transistor ~~ 1 T. - AMIIENT TEMPERATURE rCI I 1.1 I T. - AMlIEIT TEMPERATURE ( CI ~ ... 18 40 i ... TA ·2ID C 20 :I! i 15 . f ....'kHz II ~ I a 0.01 I" ~ II 'HI 0.1 Ie - COLLECTOR (mAl TUH/7958-2 5-50 Typical Performance Characteristics NFvsIC@RS= 1kO NFvslC = Rs = 10kO 3D H.'"',.n 25 .... ..!!!'" ~ h'e. hie. hoe. h,. vs IC 3D VeE" IV ",'11._' T"ZS'C II VeE'" IV ; (Continued) Z5 Ta· 25~C ! .. ZI ZD \! 1.1U./, II! 1& ~ f'I.UH'~ 10 V" -Rtf o D.Dl .'" ill lj) 15 UHI II V- ~ i--"" o 0.1 0.01 Im "II 0.1 Ie - COLLECTOR CURRENT ImAI II 0.1 Ie - COl:lEtTOA CURRENT (mA) Ie - COLLECTOR CURRENT ImAI Vie VS f ~~ TA '"25 C VeE I"" TA -2S'C =5V le'" I I TAo "'25'C VeE =3V .t- Ve, · IV Ie "'mA Ie ·'.A lOA ~t1 ~il It' 1\ e-ii ,... II 100 10 ~"i 10 8.1 1.0 i ~ .... ..i U S 1U0 1111 f - FREQUENCY IMHz! CEB. CCB. CCI vs Bias Voltage e-.r. ='I~ i!: II S-D.S 25~C =1-1.0 2~ ! .J -1.5 i, T., 25'C VeE = IV Ie -, mA I J .: 10 100 f - FREQUENCY IMH.I ..... o 1 Z 3 4 S • J Ie - COLLECTOR ImAI • 9 10 Co, r--- C,. j j 210 co 180 -2.8 1 301 "" ..... 501 401 T.· ZS'C Ve• co '81 II: 110 11 Q.1 fyvslc =1 .... J o 180 •• ~ f - FREQUENCY IMHz! !!5 1i1 .., II 11111 o f - FREQUENCY IMHz! ... ; ~ c.=: o ~ l- 1 Z 3 4 Cc. I & 1 I 9 10 BIAI VOLTAGE IVI TL/H/7959-3 5-51 ~ r-----------------~--------------------------------------------------~ ~ t!lNational Semiconductor LP395 "Ultra Reliable Power Transistor , '\" General Description TlJe LP395 is a fast monolithic transistor with complete overload prot~ion. This Very high gain transistor has illeluded on, the chip, current limiting, 'power limiting, and thermal overload protection, making it difficult to destroy from almost any'type of overload. Available in an epoxy TO-92 transistor package this device is guaranteed to deliver 100 mAo Thermal limiting at the chip level, a feature not available in discrete designs, provides comprehensive protection against overload. Excessive power diSSipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive die temperature. The LP395 offers a significant increase in reliability while simplifying protection Circuitry. It is especially attractive as a small incandescent lamp or solenoid driver because of its low drive requirements and ~Iowout-proof design. The LP395 is easy to use and only a few precautions need be observed. ExcesSive collector to emitter voltage can destroy the LP395 as with any transistor. When the device is used as an emitter foilower 'wjth a low source impedance, it is necessarY to insert a 4.7 kO resistor..in series" with the base lead to prevent possible emitter foilower oscillations. Also since it has good high frequency response, supply bypassing is reQOmmended. Connection Diagram Areas where the LP395 differs frorT,l'a standard NPN transistor are in saturation voltage, leakage (quiescent) current and in base current. Since the internal protection circuitry requires voltage and current to function, the minimum voltage across the device in the on condition (saturated) is typically 1.6 Volts, while in the off condition the quiescent (leakage) current is typically 200 IJ-A. Base current in this device flows out of the base lead, rather than into the base as is the case with conventional NPN transistors. Also the base can be driven positive up to 36 Volts without damage, but will draw current if driven negative more than 0.6 Volts. Additionally, if the base lead is left open, the LP395 will turn on. The LP395 is a low-power version of the 1-Amp LM195/LM295/LM395 Ultra Reliable Power Transistor. The LP395 is rated for operation over a - 400C to range. + 125°C Features • • • • • Intemaltherrnallimiting Internal current and power limiting Guara,nteed 1pO mA output current 0.5p.A typical base current Directly interfaces with TTL or CMOS '., :l:' 36 Volts on base causes no damage • 2 p's switching time Typical Applications TD-92 Package Fully Protected Lamp Driver v+ EMInEft~COllECTOR INCANDES~~ ( ~ BASEz.;! BOTIOM VIEW :chK~ 4 TL/HI5525-1 Order Number, LP395Z See NS PackageZ03A 5-52 TLlH/6525-3 Absolute Maximum Ratings Internally Limited Collector to Emitter Voltage 36V Collector Current Limit Collector to Base Voltage 36V Power Dissipation Base to Emitter Voltage (Forward) 36V Operating Temperature Range -40"Cto + 125·C Base to Emitter Voltage (Reverse) 10V Storage Temperature Range -65·C to + 150"C Base to Emitter Current (Reverse) 20 rnA Internally Limited Lead Temp. (Soldering, 10 seconds) 26O"C Electrical Characteristics Parameter Symbol Conditione VCE Collector to Emitter Operating Voltage 0.5mA:s; Ic:S; 100mA ICL Collector Current Limit (Note 4) VBE VBE VBE = = = Tested Limit {Note 2) De81gn Limit {Not. 3) 36 36 (Note 1) V(Max) 45 90 130 25 60 100 20 50 100 mA(Min) rnA(Min) mA(Min) -0.3 -2.0 -2.5 p.A(Max) 0.24 0.50 0.60 mA(Max) 1.82 2.00 2.10 V(Max) 36 36 V(Min) 0.79 0.90 1.40 V(Max) V (Max) Typical 2V, VCE = 36V 2V, VCE = 15V 2V,2V :s; VCE :s; 6V Unite (Limit) IB Base Current OS; Ic:S;100mA 10 Quiescent Current VBE VCE(SAn Saturation Voltage VBE BVBE Base to Emitter Breakdown Voltage (Note 4) o :s; VCE :s; 36V, IB = 2 p.A VBE Base to Emitter Voltage (Note 5) Ic = 5mA Ic - 100 rnA (Note 4) ts Switching Time VCE VBE 8JA Thermal Resistance Junction to Ambient 0.4" leads soldered to printed circuit board 150 180 ·C/W (Max) 0.125" leads soldered to printed circuit board 130 160 ·C/W = = OV,O :s; VCE :s; 36V 2V,Ic = 100 mA 0.69 1.02 = 2OV, RL = 2000 = OV, +2V, OV Note 1: Parameters identified wHh boldface type apply at temp. Note 2: Guarenteed and 100% production tested. extre~. 2 ,...s (Max) All other numbers, unless noted epply at + 25"C. Note 3: Guarenteed (but not 100% production tested) oyer the operating temperature and supply voHage ranges. These IimHs are not used to calculate outgoing quality levels. Note 4: These numbers apply for pulse tasting with a low duty cycle. Note 5: Base positive wHh respect to emitter. Simplified Circuit r-------------, I I I ... = I I I I I I I 8 1 5l1li ... '" J ~K ~. Applications Information One failure mode incandescent lamps may experience is one in which the filament resistance drops to a very low value before it actually blows out. This is especially rough on most solid-state lamp drivers and in most cases a lamp failure of this type will also cause the lamp driver to fail. Because of its high gain and blowout·proof deSign, the LP395 is an ideal candidate for reliably driving small incandescent lamps. Additionally, the current limiting characteristics of the LP395 are advantageous as it serves to limit the cold filament inrush current, thus increasing lamp life. ~ -U ~iI' CIRCUITRY 1.5 I IL. _ _ _ _ _ _ _ _ _ _ _ _ _ _ - EII~ ! TLIH/5525-5 5:53 Typical Performance Characteristics 5 Volt Transfer Fun~n 36 Volt Transfer Function 8D 1&0 ('IGIi= VI F: '40 i-120 1 TA=1 5° ,00 G 80 I: I ITr~oC t =_25°C 10 .JJ o 0, 0.20.4 D.• 0.81.01.2 1.4 1•• '.8 2 14~ (VaEa2V1 ~ !. 120 II 100 B 80 I" ~ I: 20 o '" n .. L- I"- - r- ~ I...;. ['0".. ~ r- 125° - 25O"f'~~ oyARANTEED GUARANTEED '" Ii 100 o 1 0.8 I 0.4 ~ 0.3 , 0.2 0.1 I I I I I 1111 GUARANTEED I I I I I 0.5 e -... Ir o Il DB 10152025303540 COLLECTOR-EMITTER VOIJAGE (VI 0110152025303540 COLLECTOR-EMITTER VOIJA8E (VI , '" I'- o.~ l' o.rt DV- .OV .; - o a 1011202530 3540 coLLEl:ToR.EMITrm VOIJAGE (VI 0.20.4 O.B D.B 1.0 1.2 1.4 ' .• '.8 (VaE=OI " I U.IV 20 Quiescent Collector Curreni O.B _ 0.7 I.DV 80 BAlE-EMITTER VOIJA8E (VI Available Collector Current ,.. 140 -120 ! ' '. r"~l., 1.1V i ~'1. o BASI:·EMITTSI VOIJA8E (VI 1&0 Collector CharacterlsUca 1&0 I: i: J I( o ,'j I I 6D 50 G'40 ~A=isod ... TA- -2!l°C ... 20 '70 i I'I-t-l~o!- (¥cE-3BV1 Saturation Voltage i 2.2 2.0 1.8 !:j1.B §! i!5 1.4 I I .--~ ,,'" i1.2 i - 1. =_25°C ~ - ~~ iooo( ~ ~ .... T~.25°C .... " -llaoc 1.0 D.8 0.' o 20 40 80 80 100 120 140 COLLECTOR CURRENT (mAl TL/H/5525-4 Collector Current Threshold i i 2.0 1.8 LVc=+ IV 11 SoC I .• 1.4 '" 1.2 1.0 In ....,.•. '" G I :: B 0.4 I-H .,. PJ J ~ 0.2 o ',." a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BAlE-EMlnER VOIJAIII: (VI TUH/5525-9 Typical Applications (Continued) Lamp'Flasher (Short Circuit Proof) Optically Isolated Switch .....- - - t - - - V + V+2:12V 0U1PUT ....._ -.....--VTUH/5525-7 TUH/5525-6 5·54 r- "a w Typical Applications (Continued) CC) Two TermInal Current LImIter + ~ - en ComposIte PNP Uk BASE r2N2907 ~~. 1 EMITTER ~P395 10k ~ 1 COLlECTOR TL/H/5525-2 TL/H/5525-8 5-55 Section 6 Surface Mount Section 6 Contents Packing Considerations (Methods, Materials and Recycling) ........•...••.•.........•.•. Board Mount of Surface Mount Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Soldering Profiles-Surface Mount •....•............•...........•...... AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • Land Pattern Recommendations ..................................................... 6-2 6-3 6-19 6-23 6-24 6-35 tflNational Semiconductor Packing· Considerations (Methods, Materials and Recycling) Transport Media All NSC devices are prepared, inspected and packed to insure proper physical support and to protect during transport and shipment. All assembled devices are packed in one or more of the following conteiner formHmmediate cOnteiners, intermediate conteiners and outerI shipping containers. An example of each conteiner form is illustrated below. INTERMEDIATE CONTAINER Tape" R..I Box IMMEDIATE CONTAINER Reel TLlP/11809-4 . TLlP/11809-1 IC Device ~L_\ _~~---,\ \ ~ Label 1:~O \ Rail/Tub. TLlP/11809-5 Rail/Tube TLlP/11809-2 IC Oeyice Trays TLlP/11809-6 OUTER/SHIPPING CONTAINER TLlP/11809-3 TLlP/11809-7 6-3 Methods of immediate carrier packing include insertion of components into molded trays and rails/tubes, mounting of . components onto tape and reel or placement in corrugated cartons. The immediate containers are then packed into intermediate containers (bags or boxes) which specify quantities of trays, rails/tubes or tape and reels. Outer/shipping containers are then fill.ed or partially filled with intermediate containers to meet order quantity requirements and to further insure protection from transportation hazards. Additional dunnage filler material is required to fill voids within the intermediate and outer/shipping containers. Ease of handling-it should be easy to assemble •. load and unload products in and from it; and - Impacts to the environment-it shall be reusable and recyclable.· . Levels of Product Packing IMMEDIATE CoNTAINER The first level of product packing is the immediate container. The immediate container type varies with the product or package being packed. In addition, the materials used in the immediate container depend on the fragility, size and profile of the product. The four types of immediate containers used by NSC are rails/tubes, trays, tape and reel,' and Corrugated and chipboard containers. General Packing Requirements NSC packing methods and materials are designed based on the following considerations: - - Rails/tubes are generally made of acrylic or pOlY,vinyl chloride (PVC) plasticS. The electrical.characteristics of the meterial are altered by either intrinsically adding carbon fillers, and/or topically coating it with antistatic solution. Refer to Table I for rail/tube material and recyclabillty Intormation. Optimum protection to the products-it must provide adequate protection from handling (electrostatic discharge) and transportation hazards; TABLE I. Plastic Rail/Tube and Stopper Requirements Rail Package Type Material Code/Symbol (Note 1) DIP's Plastic Ceramic Sidebraze Polyvinyl chloride Polyvinyl chloride Polyvinylchloride OS/PVC OS/PVC OS/PVC Type Stopper Material Code/Symbol (Note 1) Recyclability Pin Pin Pin Polyamide Polyamide Polyamide 07/PA 07lPA 07/PA Yes Yes Yes PLCC Polyvinylchloride OS/PVC Plug Rubber 07/SSR Yes TapePak Polyvinyl chloride OS/PVC Plug Rubber 07lSSR Yes Flatpack Polyvinylchloride OS/PVC Pin Polymide 07lPA Yes Cerpack Polyvinylchloride O.S/PVC Pin Polymide 07/PA Yes TO-220/202 Polyvinylchloride OS/PVC Pin Polymide 07/PA Yes TO-5/S (in Carrier) Polyvinylchloride OS/PVC Pin Polymide 07lPA Yes SOP Polyvinylchloride OS/PVC Plug Rubber 07/SSR Yes LCC 1SL-44L Polyvinylchloride OS/PVC Plug Rubber 07/SSR Yes Note 1: ISO 1043-1 International Standards-P1astiC Symbols. SAE JI344 Marking of Plastic Parts. ASTM D 1972-91 Standard Practice for Generic Marking of Plastic Products. DIN 6120. Gennan Recycling Systems, RESY for paperbased and VGK for plastic packing materials. "" 6-4 Molded injection and vacuum formed trays can be either conductive or static dissipative. Molded injection trays are classified as either low·temperature or high·temperature depending on the material type. Vacuum formed trays are only used in ambient room temperature conditions. Refer to Table II for tray material and recyclability information. TABLE II. Tray Requirements Tray Package Type Class PQFP(AII) Material Recyclabillty (Note 1) CodelSymbol (Note 1) High Temperature Polyethersulfone Ves Low Temperature Acrylonitrilebutadiene Styrene Ves PGA,LDCC CERQUADs andLCC (48leads-125 leads) Low Temperature Only ABS/PVC Ves 07/ABS·PVC Wire Tie PPGA Low Temperature Only Polyarytsulfone Ves 07lPAS Wire Tie Tape and reel is a multi·part immediate container system. The reel is made of either polystyrene (PS) material coated with antistatic solution or chipboard. The embossed or cavi· ty tape is made of either PVC or PS material. The cover tape 07/PES Binding Type 07/ABS Wire Tie or Nylon Strap Wire Tie or Nylon Strap is made of polyester (PEn and polyethylene (PE) materials. Refer to Table III for tape and reel material and recyclability Information, TAB.LE III. Tape and Reel RequIrements Reel Package Type Material Cover Type Codel Symbol (Note 1) Codel Symbol (Note 1) . Material carrier Tape Material Codel Symbol (Note 1) Paper. Tape Recyclabillty (Note 1) TO·92 Chipboard Resy N/A SOP·23 Polystyrene Chipboard 06/PS Resy Polystyrene 06/PS PVC 03/PVC Ves SOP,SSOP andPLCC Polystyrene Polyethylene 06/PS Polyester 07lPET·PE PVC 03/PVC Ves Nota 1: 150 1043·1 International Standards-Plastic Symbols. SAE J1344 Marking 01 Plastic Parts. ASTM D 1972-91 Standard Practioe for Generic Marking 01 Plastic Products. DIN 6120. German Recycling Systems, RESY for paparbased and VGK for plastic pacl -46/5, Shielding TQ-39/220, Bag T0-202/12B, TQ-3/237 PoIyethJene Alum. Laminant OUTER/SHIPPING CONTAINERS The third level of product packing is the outer/shipping container. The outer/shipping containers use by NSC are similar to the corrugated containers used for immediate and intermediate packaging, but are heavier in faCing thickness. The style generally used is the regular slotted container (RSC) box and can be single, double or triple wall, depending on the total weight of products being transported or shipped. Refer to Table IV for material and recyclability information. TABLE VI. Drypack Bag Requlrementa Mat'l PecIaIge Type ContaIner Type Material Type end Mat'l Symbol Racyclabillty (Note 1) TapePak PLCC (52-64L) PQFP Drypack Bag StratoguardTM 4.6 N/A OTHER PACKING MATERIALS No Additional dunnage and void filler materials are required to fill voids within the intermediate and outer/shipping containers. Two types of dunnage/filler material are Padpack and bubble pack. Padpak is a machine procassed, 3-p1y kraft paper sheet dunnage system. Refer to Table IV for material and recyclability information. Nota 1: ISO 1043-1 Intamationel Standarde-Ptasllc Symbols. SAE J1344 Marking of Plastic Par1s. ASTM 01972-91 Standard Practice for Gensric Marking of Plastic Bubble pack is made of polyethylene plaslic sheets with air pockets trapped in between the plastiC layers and can be either static dissipative or conductive. Refer to Table IV for material and recyclability information. ProducI8. DIN 6120, German Recycling Systems. RESY lor pspEIIbaeed end VGK for plastic packing materials 6-7 Immediate Oontainer Pack Methods The following table identifies the primary imniedlatecontaJner pack method for all herinelrc and plastic Nationa' Semiconductor. A secondary)mm~iate container pack method is identified where applicable. " packa~es offered by Immediate Packing Method for CeramiC Packages , Package 'Type (Code) ' Package Marketing Drawing Primary Immediate Container 'Method Ceramic Sidebrazed ' Dual-In-Une , Package (SB) \ Ceramic Leadless Chip Carrier (LCC) ! Quantity D08C Rail/Tube 35, D14D Rail/Tube 25 D18C Rail/Tube 20 D18A Rail/Tube 20 ", D20A Rail/Tube 18 D20B Rail/Tube 18 D24C Rail/Tube 15 D24H Rail/Tube 15 D24K ,Rail/Tube 15 D28D Rail/Tube 13 D28G Rail/Tube 13 D28H Rail/Tube 13 D40C Rail/Tube' 9 D40J ' Rail/Tube 9 D48A Rail/Tube 7 D52A Rail/Tube 7 E20A Rail/Tube 50 EA20B Rail/Tube 50 E24B Tray 25 E28A Tray 28 EA028C Tray 100 Rail/Tube 35 E32A '. Seco"dary , Immediate' Container E32B Rail/Tube 35 E32C Rail/Tube 35 E40A Rail/Tube 35 E44A Rail/Tube 25 25 E48A Tray E68B Tray 48 E68C Tray 48 E84A Tray 42 E84B Tray 42 .: 6-8 Method Quantity , Immediate Packing Method for Ceramic Packages (Continued) Package Type (Code) Package Marketing Drawing Primary Immediate Container Method Ceramic Quad J-Bend (CQJB) Ceramic Quad Flatpack (CQFP) Ceramic Flatpack Secondary Immediate Container Quantity EL28A Tray 96 EL44A Tray 80 EL44B Tray 80 EL44C Tray 80 EL52A Tray 50 EL68A Tray 44 EL68B Tray 44 EL68C Tray 44 EL84A Tray 42 EL28B Rail 15 EL64A Box 36 EL100A Tray 12 ELl16A Tray 12 EL132B Tray 20 EL132C Tray 20 EL132D Tray 20 EL164A Tray 12 EL172B Tray 12 EL172C Tray· 12 Method Quantity Fl0B Carrier/Rail 19 Carrier/Box 200 F14C carrier/Rail 19 carrier/Box 200 19 Carrier/Box 200 F16B carrier/Rail 6-9 I J I Immediate Packing Method for Ceramic Packagali (Continued) Package Type (Code) Ceramic Dual-InUnePackage (Cerdip) Ceramic Small Outiine Package, Wide Package Marketing Drawing ' Primary immediate Container Secondary Immediate Container Method Quantity J08A Rail/Tube 40 J14A Rail/Tube 25 J16A Rail/Tube 25 J18A Rail/Tube 20 J20A Rail/Tube 20 J22A Rail/Tube 17 J24A Rail/Tube 15 J24AQ Rail/Tube 15 J24B-O Rail/Tube 15 J24CQ Rail/Tube 15 J24E Rail/Tube 16 J24F Rail/Tube 15 J28A RaillTube 12 J28AQ Rail/Tube 12 J28B Rail/Tube 12 J28BQ Rail/Tube 12 J28CQ RaillTube 13 J32B Rail/Tube 11 J32AQ Rail/Tube 11 J40A Rail/Tube 9 J40AQ Rail/Tube 9 J40BQ Rail/Tube 9 MC16A Rail/Tube 45 MC20A Rail/Tube 36 MC20B Rail/Tube 36 MC24A Rail/Tube 30 MC28A Rail/Tube 26 MC28B Rail/Tube 26 6-10 Method Quantity Immediate Packing Method for Ceramic Packeg.. (Continued) Package Type (Code) Ceramic Pin Grid Array (CPGA) Primary Immediate Container Package Marketing Drawing Method Quantity U44A Tray 80 U68B Tray 42 U68C Tray 42 U68D Tray 42 U68E Tray 42 U75A Tray 35 U84A Tray 42 U84B Tray 42 U84C Tray 42 U99A Tray 25 U100A Tray 30 U109A Tray 25 U120A Tray 30 U120C Tray 30 U124A Tray 30 U132A Tray 30 U132B Tray 30 U144A Tray 20 U156A Tray 20 U156B Tray 20 U169A Tray 20 U173A Tray 20 U175A Tray 20 U180A Tray 20 U223A Tray 20 U224A Tray 20 U257A Tray 12 U259A Tray 12 U299A Tray 12 U301A Tray 12 U303A Tray 12 U323A Tray 12 6-11 secondary Immediate Container Method Quantity Immediate Packing Method fOr Ceramic Package., (Continued) Package Type (cOde) Package Marketing Drawing , Cerpack Cerquad Primary Immediate' Container Secondary Immedla~e Contalne,r Method' Quantity Method Quantity Carrier/Rail 19, Carrier/Box 200 W14B Carrier/Rail 19 Carrier/Box 200 W14C Carrier/Rail 19 Carrier/Box 200 W16A Carrier/Rail 19' Carrier/Box 200 W10A W20A Carrier/Rail 19 Carrier/Box 200 W24C Carrief/Rail 15 Carrier/Box 80 W28A Carrier/Rail 15 Carrier/Box 80 WA28D Carrier/Rail 15 Carrier/Box 80 W24B Rail/Tube 15 W56B Tray, 20 W64A Tray 20 W68A Tray 12 Tray 12, W84A Cerquad, EIAJ " , , , WA80A Tray 84 WA80AQ Tray 84 ' W120A Tray 12 W144A Tray 12 W144B Tray 12 W160A Tray 12 W208A Tray 12 6·12 Immediate Packing Method for Metal Cans Package Type (Code) Package Marketing Drawing PrImary Immediate Container Method T0-5 TO·18 T0-39 T0-46 H06C Tray H08A H08C Quantity Secondary Immediate Container Method Quantity 100 Carrier/Rail 18 Tray 100 Carrier/Rail 18 Tray 100 Carrier/Rail 18 H10C Tray 100 Gerrier/Rail 18 H03C Box 1800 Tray 100 18 H03A Tray 100 Carrier/Rail H03B Tray 100 Carrier/Rail 18 HA04E Tray 100 Carrier/Rail 18 Tray 100 H02A Box 1800 H03H Box 1800 Tray 100 H04A Box 1800 Tray 100 H04D Box 1800 Tray 100 TO-52 H03J Box 1800 Tray 100 TO·72 H04C Box 1800 Tray 100 6·13 Immediate Packing Method for Plastic Packages Package Type (Code) Small Outline Transistor (SOT-23) . Small Outline Package, JEDEC (SOP) Package Marketing Drawing Shrink Small Outline Package, JEDEC (SSOP) Shrink Small Outline Package, EIAJ (SSOP) Secondary Imme'dlate Container Method Quantity Method Quantity M03A Tape and Reel 3000/ 10000 Bulk/Bag 500 M03B Tape and Reel 3000/ 10000 Bulk/Bag 500 M08A Rail/Tub$ 95 Tape and Reel 2500 M14A RailiTube 55 Tape and Reel 2500 M14B Rail/Tube 50 Tape and Reel 1000 M16A Rail/Tube 48 Tape and Reel 2500 Rail/Tube . 45 Tape and Reel 1000 M20B Rail/Tube 36 Tape and Reel 1000 M24B Rail/Tube 30 Tape and Reel 1000 M28B Rail/Tube 26 Tape and Reel 1000 M14D Rail/Tube 47 Tape and Reel 1000 M16D Rail/Tube 47 Tape and Reel 1000 M20D Rail/Tube 37 Tape and Reel 1000 . M16B Small Outline Package, EIAJ (SOP) Primary Immediate Container MQA20 Rail/Tube 54 Tape and Reel 2500 MQA24 Rail/Tube 54 Tape and Reel 2500 1000 MS48A Rail/Tube 29 Tape and Reel MS56A Rail/Tube 25 Tape and Reel 1000 MSA20 Rail/Tube 65 Tape and Reel 1000 MSA24 Rail/Tube 58 Tape and Reel 1000 MS40A Rail/Tube 34 Tape and Reel 1000 Very Small Outline Package (VSOP) M40A Rail/Tube 34 Tape and Reel 1000 Thin Small Outline Package, EIAJ (TSOP) MBH32A Tray 156 Thin Shrink Small Outline Package, EIAJ (TSSOP) MTA20 Tape and Reel 2500 i Immediate Packing Method for Plastic Package. (Continued) Package Type (Code) Package Marketing Drawing Primary Immediate Container Method Molded Dual-In-Line Package (MDIP) T0-202 TO-237 T0-226 ::I CO Secondary Immediate Container Quantity Method g Quantity a. CD iii - N08E Rail/Tube 40 N14A Rail/Tube 25 N16A Rail/Tube 20 N16E Rail/Tube 25 N16G Rail/Tube 20 N18A Rail/Tube 20 N20A Rail/Tube 18 N22A Rail/Tube 15 N22B Rail/Tube 15 N24A Rail/Tube 15 N24C Rail/Tube 15 N24D Rail/Tube 15 N24E Rail/Tube 15 N28B Rail/Tube 13 N40A Rail/Tube 9 N48A Rail/Tube 7 P03A Rail/Tube 45 Box 300 P03B Rail/Tube 45 Box 300 P03C Rail/Tube 45 Box 300 P03D Rail/Tube 45 Box 300 P03E Rail/Tube 45 Box 300 P03F Rail/Tube 45 Box 300 P03G RaillTube 45 Box 300 P03H Rail/Tube 45 Box 300 P03J Rail/Tube 45 Box 300 P04A Rail/Tube 45 Box 300 P11A Rail/Tube 15 R03A Box 1500 Tape and Reel 2000 R03B Box 1500 Tape and Reel 2000 R03C Box 1500 Tape and Reel 2000 R03D Box 1500 Tape and Reel 2000 RC03A Box 1500 Tape and Reel 2000 RC03B Box 1500 Tape and Reel 2000 RC03C Box 1500 Tape and Reel 2000 RC03D Box ,1500 Tape and Reel 2000 6-15 !e. o· i \tIJ .--------------~--------------------------..., t Immediate Packing Method for Plastic Packages (Continued) c :2 tIJ 8 01 C Package Type (Code) TO-22O I Package Marketing Drawing Primary Immediate Container Secondary Immediate Container Method Quantity Method Quantity TA02A Rail/Tube 45 Box 300 T02D Rail/Tube 45 Box 300 TA03A Rail/Tube 45 Box 300 TA03B Rail/Tube 45 Box 300 TA03D Rail/Tube 45 Box 300 T03A Rail/Tube 45 Box 300 T03B Rail/Tube 45 Box 300 T03D Rail/Tube 45 Box 300 T03F Rail/Tube 45 Box 300 T05A Rail/Tube 45 Box 300 T05B Rail/Tube 45 Box 300 T05C Rail/Tube 45 Box 300 T05D Rail/Tube 45 Box 300 T05E Rail/Tube 45 Box 300 T05F Rail/Tube 45 Box 300 TA05A Rail/Tube 45 Box 300 TA05B Rail/Tube 45 Box 300 TA11A RaillTube 20 Box 300 TA11B Rail/Tube 20 Box 300 TA11C Rail/Tube 20 Box 300 TA11D Rail/Tube 20 Box 300 TA11E Rail/Tube 20 Box 300 TA12A Rail/Tube 20 Box 300 TA15A Rail/Tube 20 Box 300 TA23A Rail/Tube 15 Box 300 TapePak@> TP40A Coinstack Tube 100 Flat Rail 25 Plastic Pin Grid Array (PpGA) UP124A Tray 30 UP159A Tray 20 UP175A Tray 20 Plastic Leaded Chip Carrier (PLCC) V20A Rail/Tube 40 Tape and Reel 1000 V28A Rail/Tube 35 Tape and Reel 750 V32A Rail/Tube 30 V44A Rail/Tube 25 Tape and Reel 500 V52A Rail/Tube 22 Tape and Reel 500 V68A Rail/Tube 18 Tape and Reel 250 V84A Rail/Tube 15 Tape and Reel 250 6-16 Immediate Packing Method for Plaatic Packages (Continued) Package Type (Code) Primary Immediate Container Package Marketing Drawing Quantity Method Plastic Quad Flatpack (PQFP) T0-92 Secondary Immediate Container VEF44A Tray 96 VBG48A Tray 60 VHG80A Tray 60 VJE80A Tray 84 VCcaOA Tray 50/66 VCE100A Tray 84 VLJ100A Tray 50 Method Quantity VJG100A Tray 60 VNG144A Tray 60 VUL160A Tray 24 VQL160A Tray 24 VUW208A Tray 24 VF132A Tray 36 VF196A Tray 21 Z03A Box 1800 Tape and Reel 2000 Z03B Box 1800 Tape and Reel 2000 Z03C Box 1800 Tape and Reel 2000 Z03D Box 1800 Tape and Reel 2000 Z03E Box 1800 Tape and Reel 2000 Z03G Box 1800 Tape and Reel 2000 Z03H Box 1800 Tape and Reel 2000 Z03J Box 1800 Tape and Reel 2000 Labeling National Semiconductor offers 3 standard bar code labels; reel and intermediate container labels for Tape and Reel; intermediate container label other than for Tape and Reel; and outer/shipping container labels. The tape and reel, and intermediate container labels are National's own format while the outer/shipping container label is based on the EIA-556-A label standard. NSC Standard Tape and Reel Label CP) CPN: CPN 123456789B12 n: PO ca) aTY: 1000 CD) O/C: P9236 III1IIIII II1IIIIII I PO 123456789012 NSID: DM74FLS253t1 ~C: ~C~~~5678912 TLlP/11809-8 This label is placed on the reel (immediate container) as well as on the intermediate box. 6-17 NSC Standard Intar'madlata Container Label XYZ CO"Pftt( ( P) CPIi. CPH 1234~67Bge I (O)o.c. P9236 (a) aTV Ieee 11111 II (A) P.O. po 1234567Bge12 IIIIIIIII IIIIII NSID I Df1'7~ FIN CPT : SPEC1 : LOT 12 456789 LOT P. L. : A..1234 REQA : RV1234 OOX 01 CF 03 I'RTICN=!I_ SEMICCNXJCTOR TLlP/11809-9 NBC Standard Outer/Shipping Contalnar Labal FROM: iiiiliiiiiiil .....,... TO: II ~~ N 5 C CIt _OSI xyz_ SHI~ TO NX)RESS I SHIP TO ~s a SHIP TO NlDRESS It SHIP TO ADaRlESS 4 SHIP TO NXIfiIIISS • 10000 EA PA Wing pages. Usual variations encountered by users of SO packages are: • Single-sided boards, surfaCe-mounted components only. • Single-sided boards, mixed-lead inserted and, surfacemounted components. • Double-sided boards, surfaee-mounted compOnents only. • Double-sided boards, mixed-lead inserted and surfacemounted components. I,n consideration of ,these varia~ions, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique. I TL/F/8766-2 Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated. SO packages at National were int!lrnally. qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure A is.a summary of accelarated bias moisture test performance on 30V bipolar and 15V CMOS product assembled in SO and DIP (control) packages. PRODUCTION FL9W , Basic Surface-Mount Production Flow V+=15VCMOS 30V BIPOLAR 85% RH/85"C TEST CONDmON DIP o 2000 .woo 6000 TEST llME (HRS) TLlF/8766-3 FIGURE A TLlF/8766-4 6-24 Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure B illustrates package temperature versus wave soldering dwell time for surface mounted 'packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder). ' Mixed Surface-Mount and Axial-leaded Insertion Component. Production Flow SOLDER TEMPERATURE 2600c o 1 2 3 4 5 6 7 8 9 10 SEC. DWELL TIME TL/F/8766-6 FIGUREB '".' For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound. Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching 1600C, Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (Tg) of epoxy (typically 160-165"C), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface. TL/F/8766-5 al 100 110 120 130 1<40 150 160 :170 180 T9 T(OC) FIGUREC 6-25 TLlF/8766-26 The basic, component-placement systems available are classified as: (a) In-line placement When this happens during 'a conventional wave soldering process using flux and acid cleaners, process residues and even solder can ente~ the cavity created by the separation and become entrappEllij when the material cools. These contaminants can eventually diffuse into the interior of ,the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws. - Boards indexed under head and respective components placed (b) Sequential placement - Either a X-V moving table system or a 9, X-V moving pickup system used Most soldering processes involve temperatures ranging up to 26O"C, which far exceeds the glass-transition temperature of epoxy. Cleariy, circuit boards containing SMD packages require tighter prc:icess controls than those used for boards populated solely by DIPs. Figure 0 is a summary of accelerated bias moisture test performance on the 30V bipolar process. Group 1 Group 2 - -Individual components picked and placed onto boards (c) Simultaneous placement - Multiple pickup 'heads - Whole array of components placed onto the PCB at the same time (d) Sequential/simultaneous plaCement Standard DIP package SO packages vapor-phase reflow soldered on PC boards - X-V moving table, multiple pickup heads system - Components placed on PCB by sucCessive or simultaneous actuation of pickup heads The SO package Is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board. ' Pick and Place Action Group 3-6 SO packages wave soldered on PC boards Group 3 - dwell time 2 seconds 4 - dwell time 4 seconds 56- 0 dwell time 6 seconds dwell time 10 seconds " o 2000 " <1000 A Fixed placement stations - #3(2 SEC) #2 'V-PH) l-STD 6000 TEST nM~ (HRS) TUF/8786-7 FIGURE,D It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow pr0cess have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process. When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes Ell:e highly recommended. PICK AND PLACE The choice of automatic (all generally programmable) pickand-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication. Tl,IF/8786-8 BAKE This is recommended, despite claims made by some solder paste suppliers that this step be omitted. The functions of this step are: • Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls. 0 • Acts as an adhesive to hold the components in place during ha~dling bet,ween placement to reflow soldering. , • Holds components in position when a double-sided surface-mounted board is held upside down gOing into a vapor-phase reflow soldering operation. o • Removes solvents which might otherwise contaminate , other equipment. • Initiates activator cleaning of surfaces to be soldered• • Prevents moisture absorption. 6-26 The process is moreover very simple. The usual schedule is about 20 minutes in a 65·C-95·C (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons: • The flux will degrade and affect the characteristics of the paste. • Solder globules will begin to oxidize and cause solderability problems. • The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems. VAPOR-PHASE REFLOW SOLDERING Currently the most popular and consistent method, vaporphase soldering utilizes a f1uoroinert fluid. with excellent heat-transfer properties to heat up compon~nts until the solder paste reflows. The maximum temperature Is limited by the vapor temperature of the fluid. . The commonly used fluids (supplied by 3M Corp) are: • FC-70, 215·C vapor (most applications) or FX-38 • FC-71 , 253·C vapor (low-lead or tin-plate) HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options: • Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid. • In-line conveyorized systems, where boards are placad onto a continuous belt which transports them IIlt9 a concealed tank wh,ere they are subjected to an enviro.,ment of hot vapor. Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the, mass of the boards and the loading gensity of boards on the belt). REFLOW SOLDERING Thera are various methods for reflowing the solder paste, namely: • Hot air reflow • Infrared heating (furnaces) • Convectional oven heating • Vapor-phase reflow soldering • Laser soldering For SO applications, hot air reflow/infrared furnace may be usad for low-volume production or prototypa work, but vapor-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. laser soldering is more for specialized applications and requires a great amount of investment. Vapor-Phaae Profile RECOIIIIENDED R (m 20 Dro C/soc ) A HOT GAS REFLOW/INFRARED HEATING A hand-held or table-mount' air blower (with appropriate orifice mask) can be usad. The boards are preheated to about 100"C and then subjected to an air jet at about 260"C. This is a slow process and results may be inconsistent due to various heat-sink properties of passive components. T U R E o 20 40 80 80 100 120 1«1160 160 TillE TL1F/8768-28 INFRARED REFLOW SOLDERING Use of an infrared furnace is currenUy the most popular method to automate mass reflow, the heating is promoted by use of IA lamps or panels. Early objections to this method wera that certain materials may heat up at different rates under IA radiation and could result in damage to those components (usually sockets and connectors). This has been minimized by using far-infrared (non-focused) systems and convected air. Infrared Profile In-Une Conveyortzed Vapor-Phaae Soldering . RECOIIIIENDED /Ji'=========w 250 II 200 150 (m TlIF/8786-9 1 DEG C/IOC 100 ) The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to 215"C. SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, matsl cans and TD-5 cans with glass seals, have also been tested. A T TIllE TLlF/8788-27 6-27 Batch-Fed Production Vapo....Phase Soldering Unit , TLlF/8766-10 Solder Joints ona 80-14 Package oli',PCB " Solder Jojnla on a SO-14 p,ackage on PCB, .,1 TLlF/8766-13 .' : ':.' common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen. The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are: • Use stainless-steel, wire-mesh screens, #80 or #120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5-5 times larger than the average particle size of paste material. PRINTED CIRCUIT BOARD The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates. The package can be reliably mounted onto substrates such as: • G10 or FR4 glass/resin • FR5 glass/resin systems for high-temperature applications • Polymide boards, also high-temperature applications • Use squeegee of Durometer 70. • Experimentation with squeegee travel speed is recommended, if available on machine used. • Ceramic substrates General requirements for printed circuit boards are: • Use solder paste of mesh 200-325. • Emulsion thickness of 0.005" usually used to achieve a solder paste thickness (wet) of about 0.008" typical. • Mounting pads should be solder-plated whenever applicable. • Solder masks are commonly used to prevent solder bridging of fine lines during soldering. The mask also protects circuits from processing chemical contamination and corrosion. If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reilow, leading to possible reliability failures. • Mesh pattern should be 90 degrees, square grid. • Snap-off height of screen should not exceed damage to screens and minimize distortion. SOLDER PASTE Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production: • Particle sizes (see following photographs). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for lead less components (LCC). The larger particles can easily be used for SO packages. Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder. General requirements for solder mask: - 'Is" , to avoid Good pattern resolution. - Complete coverage of circuit lines and resistance to flaking during soldering. - Adhesion should be excellent on substrate material to keep off moisture and chemicals. - Compatible with soldering and cleaning requirements. • Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 x magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites. SOLDER PASTE SCREEN PRINTING With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste. • CompoSition, generally 60/40 or 63/37 Sn/Pb. Use 62/36 Sn/Pb with 2% Ag in the presence of Au on the soldering area. This formulation reduces problems of metal leaching from soldering pads. The typical lithographic "footprints" for SO packages are illustrated below. Note that the 0.050" lead center-center spaCing is not easily managed by commercially-available air pressure, hand-held dispensers. Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most • RMA flux system usually used. • Use paste with aproximately 88-90% Solids. 6-29 RECOMMENDED SOLDER PADS FOR SO PACKAGES 50-8, S0-14, SO-16 SO-16L, 50-20 1111_ 0.045" :1:0.005" r····~ 0.245" 1 l--l•••• r I-- -I 0.030" :1:0.005" l •••• :~ !-0.050"TYP TLlF/8766-14 S01"-23 0.030" :1:0.005"1 "]- ._." 0.160" I 0.030" :l:0.005"~ ~ ~ 1_:r.TYP TLlF/8766-15 il---l.... ·r.-1·.~ TLlF/8766-16 Comparison of Particle SlzelShape of Various Solder Pastes 200 X Alpha (62/36/2) 200 X Kester (63137) TL/F/8766-17 TLlF/8766-18 6·30 . r--------------------------------------------------------------------,~ Z Comparleon of Particle Size/Shape of Various Solder Pastes (Continued) ::g 200 x Fry Metal (6S/S7) Solder Paste Screen on Pads TL/F/8766-19 TL/F/8768-20 "I 200 ESL (6S/Sn TLlF/8766-21 6-31 Hot-Air Rework Machine CLEANING The most critical process in $lIrf/!.ce mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering. Important considerations in cleaning are: • Time between soldering and cleaning to be as, ,short as possible. Residue should riot be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge. • A low surface tension solvent (high penetration) should be employed. CFC solvents are being phased out as they are hazardous to the environment. Other approaches to cleaning ara commercially available and should be investigated on an individual basis considering local and government e,nvironmental rules. Prelete or 1,1,1-Trichloroethane Kester 5120/5121 • A deffuxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure lIpray lance are the basic requirments for low-volume production. • For volume ,prOduction, a conveyorizec;l, multiple hot solvent spray/jet system is recommended. • Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS' solvent, has been developed. This should be explored where permissible. The dangers of an inadequate cleaning cycle are: • Ion contamination, where ioniC residue left on boards would cause corrosion to metallic components, affecting the performance of the board. • Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spaCing traces on the substrate, ' resulting in failures (shorts). TUF/8766-23 lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the 'solder is reflowed by a hot-air jet or even a standard soldering iron. WAVE SOLDERING In a case, where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-solderil1g operation in the process flow. Two options are used: • Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered. • Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding 25% width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder. Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade. The controls required for wave soldering are: • Solder temperature to be 240-260"C. The dwell time of components under molten solder to be short (preferably kept under 2 secpnds), to prevent damage to most components and semiconductor devices. • RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended . • Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about 100"C just before entering the solder wave. • Due to the closer lead spacings (0.050· vs 0.100' for dual-in-Iine packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadOWing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems. REWORK Should there be a need to replace a component or re-aJign a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used. When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the Hot·Alr Solder Rework Station RETRACT POSITION ----c------. ... '/' HEAT SHIELD //:-@ ---- ..-"- ~~;~~~~~B:OA:R:D:ON X-Y TABLE HOT AIRTL/F/8788-22 6-32 Mixed Surface Mount and Lead Insertion ADHESIVE PIA (b) Opposite Sides (a) Same Side - tttt PREHEAT SOLDER FLOW TLlF/8766-24 A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder bumps. Dual Wave AQUEOUS CLEANING • For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature 130"C), a final spray rinse (water temperature 45-55°C), and a hot (120"C) air/air-knife drying section. • For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process. • Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used. TL/F/8766-25 CONFORMAL COATING Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture. Requirements: • Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material. • Complete coating over components and solder jOints. • Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion. • Compatibility and possess excellent adhesion with PCB material/components. • Silicones are recommended where permissible in application. 6-33 o~~------------------------------------------------~ z~ cc SMD La~ Support Technlque-oevelop techniques for handling different materials and processes in surface mounting. Equipment-In conjunction with equipment manufacturers, develop customized equipments to ha.ndle high denSity, new technology packages developed by National. In-House Expertl_Avaiiability of in-house expertise on semiconductor research/development to assist users on packaging queries. . FUNCTIONS Demonstration-Introduce first-time users to surfacemounting processes. Servi_lnvestigl!lte problel)1s experienced by u~ers on surface mounting. Reliability Build_Assemble surface-mounted units for reliability data acquisition. 6-34 tfI ~ National Semiconductor i.... ::::II :rJ Land Pattern Recommendations CD 8 3 3 CD ::::II The following land pattern recommendations are provided as guidelines for board layout and assembly purposes. These recommendations cover the following National Semiconductor packages: PLCC, PQFP, SOP, SSOP and TSOP. For SOT-23 (5-Lead) and TO-263 (3- or 5-Lead) packages, refer to land patterns shown in the Physical Dimensions for MA05A and TS3B or TS5B packages, respectively. Plastic Leaded Chip Carriers (PLCC) • ~nnnnnnnnnnn } ·r ~ ~ 11 ~oooooooooooo ~:t 1 0' t:::I t:::I t:::I t:::I t:::I t:::I t:::I 1:1 1:1 ~ ~f I ~ ~ FI ~ F ~-1 ~ ~ p~ ~uuuu ~ :(c L' A' B' X I:I...J... I, 1,000000:000000 I ~ ~:I;::I;: *~ c ~ ~ ~ TUPlllBl1-1 D' A' D L' W P A B X L B' Lead Lead Tip Lead Tip Lead Lead/Pad Inner Pad Inner Pad Outer Pad Body Body Outer Pad Land Count Size Size to Tip to Tip Width Pitch to Pad Edge to Pad Edge to Pad Edge to Pad Edge Width No. (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 8.89 8.89 11.43 11.43 20 10.03 10.03 0.53 1.27 6.73 6.73 10.80 10.80 0.63 28 12.57 12.57 0.53 1.27 9.27 9.27 13.34 13.34 0.63 11.43 14.05 32 12.57 15.11 0.53 1.27 9.27 12.00 13.34 16.00 0.63 16.51 16.51 44 17.65 17.65 0.53 1.27 14.35 14.35 18.42 18.42 0.63 0.63 19.05 19.05 52 20.19 20.19 0.53 1.27 16.89 16.89 20.96 20.96 24.13 24.13 68 25.27 25.27 0.53 1.27 21.97 21.97 26.04 26.04 0.63 29.21 29.21 84 30.35 30.35 0.53 1.27 27.05 27.05 31.12 31.12 0.63 6-35 !o ::::II UJ Plastic Quad Flat Packages (PQFP) RRRRRRRRRRR ~ ~ ~ ~ ~ =tj 0 = c::::::J D' L' ~~ !=I= I.l,~~~~~~~ ~~ -. - c:::::::I c:::::::I c:::::::I c:::::::I c:::::::I c:::::::I c:::::::I c:::::::I c:::::::I c:::::::I ~~~~~~~~~~~ ~=t 1 c:::::::I c:::::::I c:::::::I c:::::::J I.I,~~~~~~~ A' . B' X -±. ~t TUP!11811-2 D D' L A' B x L' W P A a' Lead Body Body Lead Tip Lead Tip Lead Lead/Pad Inner Pad Inner Pad Outer Pad Outer Pad Land Count Size Size to Tip to Tip Width Pitch to Pad Edge to Pad Edge to Pad Edge to Pad Edge Width No. '. (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 7 7 40 9.29 9.29 0.26 0.50 7.50 7.50 9.78 9.78 7 7 48 9.40 9.40 0.27 0.50 6.88 6.90 10.42 10.40 0.32 10 10 44 13.35 13.35 0.45 0.80 10.53 10.53 14.47 14.47 0.55 0.43 0.30 10 10 52 14.15 14.15 0.38 0.65 9.08 9.08 15.17 15.17 12 12 64 14.00 14.00 0.38 0.65 11.48 11.48 15.02 15.02 0.43 14 14 80 18.15 18.15 0.38 0.65 13.08 13.08 19.17 19.17 0.43 14 20 80 17.80 23.80 0.35 0.80 13.50 19.50 18.50 24.50 0.40 14 14 100 17.45 17.45 0.30 0.50 13.08 13.08 18.47 18.47 0.35 14 20 100 17.80 23.80 0.30 0.65 13.50 19.50 18.50 24.50 0,35 20 20 100 24.30 18.30 0.40 0.65 21.28 15.28 25.32 19.32 0.45 24 24 132 24.21 24.21 0.30 0.64 21.67 21.67 25.23 25.23 0.40 28 28 120 32.15 32.15 0.45 0.80 27.88 27.88 33.17 33.17 0.55 28 28 128 31.45 31.45 0.45 0.80 28.03 28.03 32.47 32.47 0.55 28 28 144 32.15 32.15 0.38 0.65 28.03 28.03 33.17 33.17 0.43 28 28 160 32.40 32.40 0.38 0.65 29.48 29.48 33.42 33.42 0.43 28 28 208 30.60 30.60 0.30 0.50 28.08 28.08 31.62 31.62 0.35 6-36 JEDEC Small Outline and Shrink Slnall Outline Packagea (SOP and SSOP) R RR R R R RRTIl 0 o j p~ ~ 0 0 00 0 DD frO ~ L C B A U~~ ~ DDO D'D 0 ~ ~ ~ ~ ~ J~~w Jx~ -ipi- TUP/11811-3 0 Body Size (in) Lead Count No. Shoulder to Shoulder (In) L Lead Tip to Tip (In) W Lead Width (In) P Lead/Pad Pitch (In) A Inner Pad tollad'Edge (In) C B X OuterPlid to Pad Edge (In) Pad WIdth (In) SOP 0.150 8 0.144 0.244 0.020 0.050 0.094 0.294 0.028 0.150 14 0.144 0.244 0.020 0.050 0.094 ,0.294 ,0.028 0.150 16 0.144 0.244 0.020 0.050 0.094 0.294 0.028 ", 0.300 14 0.3300 0.4100 0.0190 0.0500 0.2800 0.4600' 0.300 16 0.3300 0.4100 0.0190 0.0500 0.2800 0.46C1O 0:0270 0.300 20 0.3300 0.4100 0.0190 0.0500 0.2800 0.4600 0.0270 0.300 24 0.3300 0.4100 0.0190 0.0500 0.2800 0.4600 0.0270 0.300 28 0.3300 0.4100 0.0190 0.0500 0.2800 0.4600 0.0270 SSOP 0.0270 ., 0.150 20 0.185 0.241 0.010 0.025 0.145 0.281 ,0.014 0.150 24 0.185 0.241 0.010 0.025 0.145 0.281 0.014 0.300 48 0.340 0.420 0.012 0.025 0.300 0.460 0.016 0.300 56 0.340 0.420 0.012 0.025 0.300 0.460 0.016 6-37 • I EIAJ Small Outline, Shrink Small Outline, and Thin Small Outline Packages (SOP, SSOP and TSOP) RRRRRRRRm ,is E E § o j ~ o p C ~ II: I" ~ L rrDDDDDDDD B A Ut:ruruDDDDDD ~ ~,~ ~ ~ ~ ~~~w -l p ~x~ I- TUP/11811-4 D to Shoulder (mm) L LeedTlp to Tip (mm) W Lead Width (mm) P Lead/Pad Pitch (mm) Inner Pad to Pad Edge (mm) B Outer Pad to Pad Edge (mm) X Pad Width (mm) 14 6.280 8.000 D.400 1.270 5.010 9.270 o.aOO 5.300 16 6.280 8.000 0.400 1.270 5.010 9.270 0.600 '5,300 20 6.280 8.000 D.400 1.270 5.010 9.270 o.aOO C Lead Count No. Body Size (mm) Shoulder A SOP TYPE II 5.300 SSOPTYPEII; 5.300 20 6.600 8.100 0.400 0.650 5.584 9.116 0.451 5.300 24 6.800 8.100 0.400 0.650 5.584 9.116 0.451 SSOP TYPE III 7.500 I I 40 TSOPTYPEI 18.500 32 I I 8.900 19.000 I I 10.500 20.200 I I 0.350 0.250 I I . 6-38 0.650 0.500 I I 7.884 17.984 I I 11.516 21.216 I I 0.452 0.301 Section 7 Appendicesl Physical Dimensions I I ~ Section 7 Contents Appendix A General Product Marking and Code Explanation .................•........... Appendix B Devicel Application Literature Cross-Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix C Summary of Commercial Reliability Programs ............................... Appendix D Military Aerospace Programs from National Semiconductor .....•............. Appendix E Understanding Integrated Circuit Package Power Capabilities. .. .. . . . . . . . . . . . .. Appendix F How to Get the Right Information from a Datasheet....... ................ .... Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bookshelf Distributors 7·2 7-3 7-4 7-10 7-11 7-21 7-26 7-30 tfI Nat ion a I S e m LF 11 356 i con du c to r Appendix A General Product Marking & Code Explanation N IA+ I Package Type A.~~(Refer _ _ to Appendix C) D E F G H H-05 H-46 J J-8 J-14 GlasslMetal DIP Ceramic Leadless Chip Carrier (LCC) GlasslMetal Flat Pak ('4" x '4") 12 Lead T0-8 Metal Can (M/C) Multi-Lead Metal Can (M/C) 4 Lead MIC (T0-5) } Shipped with 4 Lead MIC (TO-46) Thermal Shield La-Temp Ceramic DIP 8 Lead Ceramic DIP ("MiniDIP") 14 Lead Ceramic DIP (-14 used only when product is also available in -8 pkg). TO-3 MIC in Steel, except LM309K K which is shipped in Aluminum TO-3 MIC (Aluminum) KC KSteel TO-3 MIC (Steel) M Small Outline Package 3-Lead Small Outline Package M3 M5 5-Lead Small Outline Package N Molded DIP (EPOXY B) Molded DIP (Epoxy B) with Staggered Leads N-01 8 Lead Molded DIP (Epoxy B) ("Mini-DIP") N-8 N-14 14 Lead Molded DIP (Epoxy B) (-14 used only when product is also available in -8 pkg). P 3 Lead TO-202 Power Pkg Q Cerdip with UV Window 3,5,11, & 15 Lead TO-263 Surf. Mt. Power Pkg S T 3,5,11,15 & 23 Lead TO-220 PWR Pkg (Epoxy B) V Multi-lead Plastic Chip Carrier (PCG) Lo-Temp Ceramic Flat Pak W WM Wide Body Small Outline Package Package Type (See Right) . Device Number (Generic Type) and Suffix Letter (Optional) A or B: Improved Electrical Specification C, I, E or M: Temperature Range Device Family (See Below) Device Family ADC AF AH ·DAC DM HS LF LH LM LMC LMD LP LPC MF LMF Data Conversion Active Filter Analog Switch (Hybrid) Data Conversion Digital (Monolithic) Hybrid Linear (BI-FEDM) Linear (Hybrid) Linear (Monolithic) Linear CMOS LinearDMOS Linear (Low Power) Linear CMOS (Low Power) Linear (Monolithic Filter) Linear Monolithic Filter DATE CODE 1ST DIGIT - CALENDAR YEAR 2ND DIGIT - 6-WEEK PERIOD IN CALENDAR YEAR 3RD &: 4TH DIGITS - WAFER LOT CODE DATE CODE NON-MILITARY 2ND DIGIT - CAl.ENDAR YEAR 3RD.4TH DIGITS - CALENDAR WORK WEEK MILITARY - 8831: M38510 lSU 2ND DIGITS - CALENDAR YEAR 3RD.t4TH DIGITS-CALENDAR WORK WEEK (EXAMPlE: 9201 = 1ST WEEK OF 1892) INDICATES PLANT OF MANUFACTURE MILITARY ONLY ESD (ELECTROSTATIC DISCHARGE) SENSITIVITY INDICATOR INDICATES PLANT OF MANUFACTURE LOGO PART NUMBER PIN 1 ORIENTATION PART NUMBER TL/XX/OO27 -3 PIN 1 ORIENTATION Tl/XX/OO27 -2 7-3 tt}National Semiconductor Appendix B Device/Application LiteratureCross.;Ref.erence Device Number AppllcaUon Uterature ADCXXXX •.••.••..•••••.••.•.••.•.•••.•..•.•...•.•....•...••..•..•.•..••.•..•..•... , ..••..•..•••.•.••...•••.• AN-156 ADC80 ............................................... ; ••••.•••.•••••••••••••••..••.••••..••••.•.•••.•.••.••• AN-360 ADC0801 •.......••.•......•...•.•.•.•.•....•••..•..•..•.•..• AN-233, AN-271, AN-274; AN-280, AN-281, AN-294, LB-53 ADC0802 ....•.••....••••.••.,' •.••.•.•..••.•..•..•.••.•..••.••.••.•..•.•..•. AN-233, AN-274, AN-280, AN-281, LB-53 ADC0803 ....•.•........•....•....... : ..•.••.••..........•....••.•.....•..•.. AN-233, AN-274, AN-280, AN-281 , LB-53 ADC08031 .................................................................................................AN-460 ADC0804 .••.....•.•.••••...•.•••••••..•••••••...•••• AN-233, AN-274, AN-276, AN-280, AN-281, AN-301, AN-460, LB-53 ADC0805 .....•.•...........••........•..•....•....•.......•.•......•.•..•.•AN-233, AN-274, AN-280, AN-281, LB-53 ADCOB08 ...................................................................................AN-247, AN-280, AN-281 ADC0809 .........................................................................................AN-247, AN-280 ADC0816 ..........................................................................AN-193, AN-247, AN-258, AN-280 ADC0817 .•••••.•.••••. , •••••.••.••••.•••••••.••.•.•.•.••..•..••.•.••.•..••.•..•..•..•....•. AN-247, AN-258, AN-280 ADC0820 ........................................................................................ : •••••••• AN-237 ADC0831 ......................................................................... ; ••...•.•••.•.•. AN-280,.AN-281 ADC0832 .•.••.••..•.••.•..•..•.•••••.•..•.•••••••••••.••.•.••.••.•.••••••••.•••••.••.•.••..•.•••• AN-280,AN-281 ADC0833 ...........................................................................................AN-280, AN-281 ADC0834 .......................................'.•.••..•.•••.•.•••...••.•..•..•.•••.•.....••....... AN-280, AN-281 ADCOS38 ...•......•..•....•..••..•.•..•.••••••••.•..•.••.••.•••.•••••••••••••••.••••.•••••.•••••• AN-280, AN-281 ADC1001 ..................................................................................AN-276, AN-280, AN-281 ADC1005 .•.••.•.••.••..•.•••.•••.••..•.••••..••.•.••.•••••.••.••••..•..•.•••••.••.••.••.•.....•....••.•.• AN-280 ADC10461 ..................................................................................................AN-769 ADC10462 ...•.......•...•..•...•.•......••..•.•••••....•.•.....••.....•.••.•.••..•••••••••.•.•.••.••••.•••AN-769 ADC10464 .••.••..•.•.••.•.•.•.••.•..••.•..•.•........•..•..••.•.•..•...•.••.•••••.•..••.•..•....••.•....•.••AN-769 ADC10662 ...•• " .......•..•.••.•..••.•..•..••••.••.••.•.••.••.••.••.••.••••••••••.•••••••.••.••.•..•.••.••. AN-769 ADC10664 .••.••.•..••.•.••.••.••.•.••..•.........•...•.•.•.•..........•.••.•••..•.•..••....•.•..•.•••••••AN-769 ADC12030 ...................................................................................................AN-929 ADC12032 ..•.....••.•...•.••.•..•..•..•••.••.••.•••••••..••••.••••••••••.••.••.•••••.••.••.•..•....••.•.. AN-929 AOC12034 ..•.•...•...•..•..•.•.....•.•••••.••..•.••.••.•.••..•.••.••.••..•.•.•••.•..•••••••.••••.••••.••• AN-929 ADC12038 .................................................................................................AN-929 ADC12H030 ...............................................................................................AN-929 ADC12H032 •......•.•....•..•.••..•.•.•.•.....•.....•.•.••....••........••••.•.•.....•.•••..•••..•.••.•.•• AN-929 ADC12H034 ••..••.•.••. , •...•••.•. , ................................... ; .... " .•...............•.••.•.••••• AN-929 ADC12H038 ••.••.••. : ..••••.•.••...•.••.•..•..••.•.•••••.•.••..••.•..•.•••••.•..••.•..•...•.•.••.....••..• AN-929 ADC12L030 ..•..•..•..•.••.••.•.••....••.•••••••••••••.••.••••••••••..••••..••••.•.•••.••.••.•.•.•••••.••. AN-929 ADC12L032 .•............•......••.•.•.•............ ; .....•...•......•••....•.•.......•.•..•..••••.•.••.•• AN-929 ADC12L034 ••..••.••.•.•.••.•••.••.•..••••.•.....•.••.••••..•.••..••.•.•••••••••••.•••••••..•..•.•..•...•. AN-929 ADC12L038 ••.•••................•....•......•.....•..•...•.•..........•............•...•.••..•..•.•.••..•AN-929 ADC1210 ...................................................................................................AN-245 ADC12441 .•.••.....••.•..•.••.••.••.••.•..•..•..•.••.•..••.••••.....••••.••.••.••.•.••..•....•.••..•.•.: .• AN-769 ADC12451· •..•.••.•. , .•.••.•..•..••••.••.•.•..••.•••••.•. , ..................................................AN-769 D~CXXXX .................................................................................................AN-156 DACOSOO ..•.•...•..••..•...•..••.•..•..•.• , .•.•.......•...•.•.•....•.•....•.•.•.•... ~'.................... AN-693 DAC0830 ..•.•...•......•............••.•....•.•.•.••.•..•.•...•..•.•••...••.•.•.•.•..••.....•.....•...•.•AN-284 7-4 Device/Application Literature Cross-Reference (Continued) Application Literature Device Number DAC0831 00 00 00 0 00 00 00 0 00 00 00 000 0 00 00 0000 00 000 00 000 00 00 00 00 00 0 000 0 00 000 0 00 000 0 000 000 00 000 0 00 000 0 0oAN-271. AN-284 DAC0832 00 0 000 0 00 00 00 0 00 00 00 00 00 00 00 0000 0 000 00 000 0 00 00 00 00 00 0 00 00 00 00 00 00 00 000 00 00 000 00 00 00 00 00 00AN-271. AN-284 DAC1oo6 00 00 00 00 0 00 00 00 00 0 00 000 00 00 00 00 000 000 0 000 00 0 00 00 00 00 00 0 000 0 000 00 0 000 00 000 oAN-271. AN-275. AN-277. AN-284 DAC1007 0 00 0 000 0 00 00 00 0 00 00 0 000 0 00 000 00 000 00 000 00 00 0 00 00 00 00 00 0 00 00 000 0 00 00 000 000 0AN-271. AN-275. AN-277. AN-284 DAC1oo8 0 00 0 00 00 00 0 00 00 00 00 00 00 00 00 00 000 00 000 00 00 0 00 0 000 00 00 0 00 00 00 00 00 00 00 000 00 00AN-271. AN-275. AN-277. AN-284 DAC1020 0 00 0 000 0 000 0 00 00 0 00 00 000 0 000000000000000000000000000000000000000 oAN-263. AN-269. AN-2293. AN-294. AN-299 DAC1021 0 00 00 00 0 00 00 0 00 00 00 00 00 000 00 00 000 00 000 0 000 0 00 00 00 00 00 0 000 00 00 0 00 000 00 00 000 00 000 00 0 00 000 00 00 0 00 0 00AN-269 DAC1022 0000000000000000000000000000000000000000000000000000 0 0 00 00 00 00 00 000 00 00 000 00 00 000000000000000000 oAN-269 DAC1208 0000000000000000000000000000000000000000000000000000 0 0 000 00 00 00 00 00 00 000 00 000 00 00 00 00 00 ooAN-271.AN-2B4 DAC1209 0000000000000000000000000000000000000000000000000000 0 0 000 00 00 00 00 00 00 000 00 00000000000000 oAN-271.AN-284 DAC1210 00 0 00 00 00 0 00 00 00 00 00 0 000 00 00 000 00 00 000 00 00 0 000 0 00 00 00 0 000 00 00 0 000 00 00 000 00 000 00 00 00 00 00 0 oAN-271. AN-284 DAC1218 0 00 00 0 00 00 00 0 00 00 0 000 00 00 00 000 00 00 000 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 000 00 000 00 00 00 00 00 000 00 0 00 00 0AN-293 DAC1219 0 00 00 00 00 0 00 00 00 00 00 00 0 0 000 000 00 000 00 00 00 00 0 000 0 00 00 0 000 0 000 00 00 00 00 000 00 00 000 00 00 00 00 000 00 00 0 00 0AN-693 DAC1220 00 0 000 0 00 00 00 0 00 00 000 0 00 000 00 000 00 000 0 000 0 00 0 00 00 00 00 0 00 00 000 0 00 000 00 000 00 00 00 00 000 0 00 00 oAN-253. AN-269 DAC1221 0000000000000000000000000000000000000000000000000000 0 0 00 00 000 0 00 00000000000000000000000000000000 oAN-269 DAC1222 0000000000000000000000000000000000000000000000000000 0 0 000 0 00 00 00 00000000000000000000000000000000 oAN-269 DAC1230 0000000000000000000000000000000000000000000000000000 0 0 00 00 00 00 00 000 0 0000000000000000000000000000 oAN-284 DAC1231 0000000000000000000000000000000000000000000000000000 0 0 000 00 00 00 00 00 000000000000000000000 oAN-271.AN-284 DAC1232 0000000000000000000000000000000000000000000000000000 0 0 00 00 000 0 00000000000000000000000000 oAN-271.AN-284 DAC1280 0 00 00 00 00 0 00 00 00 0'0 0 000 0 000 00 000 00 000 00 00 00 0 00 00 00 00 0 000 0 00 000 0 000 00 00 000 00 000 0 000 0 000 000 0AN-261. AN-263 DH00340 0 0 00 0 00 00 00 0 00 00 00 00 00 00 00 00 000 00 000 00 00 00 00 0 000 0 00 00 00 00 00 0 00 00 00 000 000 00 00 00 000 00 00 00 0 00 00 0 00 00 0AN-253 DH00350 0 00 00 0 00 00 00 0 00 00 00 00 00 0 00 00 000 000 00 00 00 000 0 0 000 00 0 00 00 00 00 00 00 00 00 00 000 00 000 0 000 00 00 00 000 00 0 00 00 0 oAN-49 INS8070 0000000000000000000000000000000000000000000000000000 0 00 00 0 000 0 00 000000000000000000000000000000000 oAN-260 LF111 00 00 00 00 0 00 00 00 0 00 00 0 000 00 00 00 000 00 000 000 0 00 00 00 00 00 00 0 00 00 0 000 00 00 00 00 000 0 000 00 00 00 00 00 00 000 00 0 00 00 0 0LB-39 LF155 0000000000000000000000000000000000000000000000000000 0 00 0 00 00 00 00 0 0000 00 00 000 00 00 00 00 00 00 0 00 oAN-263.AN-447 LF198 0000000000000000000000000000000000000000000000000000 0 00000000000000000000000000000000000000 oAN-245.AN-294 LF311 0000000000000000000000000000000000000000000000000000 00 0 00 00 00 000 0 00 00 00 000 00 00000000000000000000000 oAN-301 LF347 0 00 00 000 0 0 000 0 00 0 00 000 0 00 00 000 00 000 00 00AN-256. AN-262. AN-263. AN-265. AN-266. AN-301. AN-a«. AN-447. LB-44 LF351 000 00 00 000 000 0 00 00 0 00 00 00 00 000 00 000 0 000 00 oAN-242. AN-263. AN-266. AN-271. AN-275. AN-293. AN-447. Appendix C LF351A 000 00 0 00 0 00 0000000000000000000000000000000000000000000000000000 0 00 00 00 000 0000000000000000000000000 oAN-240 LF351B 0000000000000000000000000000000000000000000000000000 0 0 0000000000000000000000000000000000000000 oAppendix 0 LF353 0 00 000 00 0 00 00 00 0 00 0 oAN-256. AN-258. AN-262. AN-263. AN-266. AN-271. AN-285. AN-293. AN-447. LB-44. Appendix 0 LF356 000 00 0 00 00 000 00 00 000 000 00 0 000 00 000 00 00 00 000 00 0 00 00 00 oAN-253. AN-258. AN-260. AN-263. AN-266. AN-271. AN-272. AN-275. AN-293. AN-294. AN-295. AN-301. AN-447. AN-693 LF357 0 00 00 00 00 0 00 00 0 00 00 00 00 00 00 000 00 00 00 000 00 00 00 0 00 00 00 00 00 0 00 00 00 00 00 00 00 000 00 000 00 000 0 0AN-263. AN-447. LB-42 LF398 000 00 0 00 00 00 00 0 00 00 00 00 00 00 00 00 000 00 00 000 00 0 00 00 00 000000000000 oAN-247. AN-258. AN-266. AN-294. AN-298. LB-45 LF411 0 00 00 000 0 00 00 00 0 0 00 000 00 0 00 000 00 000 000 0 00 000 0 0 00 00 00 00 00 0 00 00 00 00 00 000 00 00 00 0AN-294. AN-301. AN-344. AN-447 LF412 00 00 00 00 00 0 00 00 00 0 00 00 00 00 000 0 0000 00 00 00 000 0 00 0 00 00 00 00 0 00 00 00 00 00 000AN-272. AN-299. AN-301. AN-344. AN-447 LF441 0000000000000000000000000000000000000000000000000000 0 00 0 00000000000000000000000000000000000 oAN-301.AN-447 LF13006 0 00 00 00 00 00 0 00 0000000000000000000000000000000000000000000000000000 00 00000000000000000000000000000 oAN-344 LF13007 0 00 00 00 0 00 00 00 0 00 00 00 00 00 000 00 00 000 00 00 00 00 0 00 00 00 0 00 0 000 0 00 00 0 000 00 000 00 00 000 0 000 0 00 00 00 00 0 0 00 00 0AN-344 LF13331 0000000000000000000000000000000000000000000000000000 0 00 00 00 00 00 00 000 00 00 00 000000000000000 oAN-294.AN-447 LHOOO2o 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 000 00 000 00 0 0000000000000000000000000000 oAN-13. AN-227. AN-263. AN-272. AN-301 LH0024 0 0 00 00 00 0000000000000000000000000000000000000000000000000000 0 00 00 00 0000000000000000000000000000000 oAN-253 LH0032 0 00 0000 0 00 00 000 00 00 00 00 00 00 00 000 00 000 0 000 000 00 00 0 00 00 000 00 00 00 00 00 00 000 00 00 000 00 00 0 00 0000 0oAN-242. AN-253 LH0033 0 0 000 0 00 00 00 0 00 0 00 00 00 00 00 000 000 0 000 00 00 00 0 00 00 00 00 0 00 00 0 00 00 00 00 000 00 00 000 00 00 00 00 0AN-48. AN-227. AN-253 LH0063 0 00 0 00 00 00 0 00 00 00 0 00 00 00 00 000 00 00 000 00 00 00 0 00 00 00 00 0 00 0 00 00 00 00 00 00 000 000 0 00 000 00 00 0 000 0 00 0 00 0 00 00 0AN-227 LH0070 00 00 00 0 00 00 00 00 0 00 0 00 00 0000000000000000000000000000000000000000000000000000 00 00 00 00 0 00000000000000 oAN-301 LH0071 0000000000000000000000000000000000000000000000000000 00 00 000000000000000000000000000000000000000000 oAN-245 LHoo94 0 00 0 00 00 00 0 00 0000000000000000000000000000000000000000000000000000 00 00 00 00 00 00 00 00 00 0 000 0 00 00000000 oAN-301 LH0101 0000000000000000000000000000000000000000000000000000 0 00 00 00 000000000000000000000000000000000000000 oAN-261 7-5 • DevicelApplication Literature Cross"Reference (Conlinued)\ Device Number' . > .' Application Uterature LH1605 " ... , ........ , ......•.....•.......... " ..•..•.... " ., ..... " ., .............. , ........ , ••... , •.•... AN-343 LH2424 ...................................................................................................AN-867 LM10 '............ , ................•.•..•..• AN-211.AN-247. AN-258. AN-271. AN-288. AN-299. AN-300. AN-460. AN-693 LMll .............•.................................. '...................... AN-241. AN-242. AN-260. AN-266. AN-271 LM12 '.......... ; ...........................................................................AN-446. AN-693. AN-706 LM101 .................. : ...................•........•................ AN-4. AN-13. AN-20. AN-24. LB-42. Appendix A LM101A .......•.....•.... AN-29. AN-30. AN-31. AN-79. AN-241 AN-711. LB-l. LB-2. LB-4. LB-8. LB-14. LB-16. LB-19. LB-28 LM102 .........................•.•......................................AN-4.AN-13. AN-30. LB-l. LB-5. LB-il. LB-ll L:Ml03 .: .........................•....................................•...............................AN-l10.LB-41 LM105 ....•..................•.•.........•..... '..... '.......•.... '.............................. AN-23. AN-ll'O. L8-3 LM106 ..............•.........•............................ , ................................... AN-41. LB-6. LB-12 LM107 .•........•..•......... '..•........•......................... > •••• AN-20. AN-31. LB-l. LB-12. LB-19. Appendix A LM108 ............................................... AN-29.AN-30. AN-31. AN-79. AN-211. AN-241. LB-14. LB-15. LB-21 LM108A ..•..............•...........• '......................................................... AN-260. LB-15. LB-19 LM109 ...................•..........•......•..•........•............................................AN-42. LB-15 LM109A ....•..•.....•......•....................•...........................•.....•...................'...... LB-15 LM110 ..........•.•.................................................................................• LB-ll. LB-42 LM111 ...•. , ...•..•...•..•..•.....•..•..........•••....•........•......... AN-41. AN-l 03. LB-12. LB-16. LB-32. LB-39 LM1'12 .................•..•.............•..•.....................................•..•........•..............LB-19 LMI13 ... .'.................................................................. AN-56. AN-II O. LB-21. LB-24. LB-28. LB-a7 LM117 ..............•.....••..•...•.•.....•..........•..•.........••.•..•.... AN-178. AN-181. AN-182. LB-46. LB-47 LM117HV ....................................•.•..........................•........................... LB-46.LB-47 LMI18 .........•...............•.....•..•..........•........................• LB-17. LB-19. LB-21. LB-23. Appendix A LM119 ........•........................•...................................•.•.......................•.....'LB-23 LMI20 ....................................................................................................AN-182 LM121 .; ..............•..............•......•....................•............ AN-79. AN-l 04. AN-184. AN-260. LB-22 LMI21A .......................•............................................................................. LB-32 LM122 ....•.............•..••.......•.....•..••....• c ••••.•.•.•••••.•...•••••••.••.•••.•..•••..••.••• AN-97. LB-38 LMI25 ...... ', ...............................................•...............................................AN-82 LMI26 .............................•.................•..................................................•..AN-82 LM129 •..•.....•.•.•...••.•..•..•.•...•..•..•..•.••.••.......•........•........•.. AN-173. AN-178. AN-262. AN-266 LMI31 .. , ......................................................... .'.....•................ AN-210.AN-460. Appendix 0 LM131A .••.......•.....•..•• ; ...•... '•.•..•.•... " .......•..... , .. " .•..... , .. " .......... " . " ........... AN-210 LMf34 ......... ,: ......•......................................•..•..•..............•..........•.... LB-41. AN-460 LM135 .•. ; ................................................................. AN-225. AN-262. AN-292. AN-298. AN-460 LM137 •...................•..................••.•.........•...••...••...•..•........•..........•........... LB-46 LM137HV .....•..•..•.....•..•..•.....•..•.......................•..............•..........................LB-46 LM138 .•..................•...............................................................................•I:.B-46 LM139 ••.•..•........•..•.. , ..... , .. , .....•.. , .. " ....•..•........ " ., .. " ..... , " . " ....... , ................ AN-74 LMI43 .•.•...•.......................................•.........................................•..AN-127,AN-271 LMI48 •••.•. " .. " ..•.....•..•.....•..•.•............. , " ........•..•..•...........•............... , .. , •.. AN-260 LM150 .•.•...........•..............................................................•................... :~.LB-46 LMI58 •.•..••..•.........•• , .: .................................................................................AN-116 LM160 •.•.•.•.............•..........•..........................•.................................. , " " .•. AN'87 LM161 ... , .........................................................................................AN-87. AN-266 LMI63 •..•.•.•.... " ., •. , .. , .....................................................•....................... iAN-295 LM194 .•......•....•..........•....................... " .... , .........•...•......•.•... , " .•.•...... AN-222. LB-21 LMI95 •••••..•...•... , .. , .• , .•..• , .•.................•.....•....•.....•........................•... , ..... ;AN-110 LMI99 ..•.•...•.•.•....................................•.........•...........................•....AN-161.AN-260 LM199A ...•.•.......•..•...•.....•..•.....••.•....••.•........•.........•..•.....•........•...•..........AN-161 LM211 •..•.•........•...•.•...•..•............•..........•..•........•..•...............................•... LB-39 7-6 Device/Application Literature Cross-Reference (Continued) Device Number ApplIcation Uterature LM231 .....,...............................................•.............•...•.............•.•.............AN-210 LM231A •..•..........•..•...••.....•...........•.....•.•.........•...........•.•.•.......................AN-210 LM235 ..............................................................................................•.••..AN-225 LM239 ...........................................•.........................................................AN-74 LM258 .......................................................................................•............AN-116 LM260 .•.........................................•.........................................................AN-87 LM261 ...................................................................................•.................AN-87 LM34 ..•..........................................•..........•............•...............................AN-460 LM35 .................•..........•..........•................•.•..........•...•.•...•.......•.............AN-460 LM301 A ..•.•...•...................................................•...........•..........AN-178, AN-181, AN-222 LM308 ........................••.•.•..........•..•.......•......... AN-88, AN-184, AN-272, LB-22, LB-28, Appendix 0 LM308A ..••..........•....•................•.•.•.•.•..•..........•..........•..........•......•..••AN-225, LB-24 LM309 .........•...•...............................................•...•..•...•...................AN-178, AN-182 LM311 •.................... AN-41 , AN-1 03, AN-260, AN-263, AN-288, AN-294, AN-295, AN-307, LB-12, LB-16, LB-18, LB-39 LM313 ...........•........•••....................•......••.•....•..•......•.............................•.AN-263 LM316 .....................•............................................•..........•......•..•.......•....AN-258 LM317 •.......•.............................•..•..•....................•.....••......•....... AN-178, LB-35, LB-46 LM317H ..............•.............•...•.•.............................•...............•..........••....... LB-47 LM318 ................•...............•.•..•..•.......••.......•.•..••...•.....•..•....•...........AN-299, LB-21 LM319 ...•............•......................................................•............AN-828,AN-271,AN-293 LM320 •••......•..•......••.•.••.......•..•.......•......•..........•.••.••...•.......•.••.•..•••........• AN-288 LM321 .........•...•.••••.....................•..................•...................•....................•LB-24 LM324 ....•.......................•...••••.••....•. AN-88, AN-258, AN-274, AN-284, AN-301, LB-44, AB-25, Appendix C LM329 ............•......•..................................•.•.••.•......AN-256, AN-263, AN-284, AN-295, AN-301 LM329B .......••.............•.•.....•.•..•.....•..............•.............•.•...........••....•.......AN-225 LM330 ...•.•..................•..•.............•....•..••.•..•.••..•......•.••.........•........•.•••.•..•AN-301 LM331 ..................•..•.......... AN-210, AN-240, AN-265, AN-278, AN-285, AN-311, LB-45, Appendix C, Appendix 0 LM331A ...•....•...........................•..•.•........•.....•.••••..•..•.•..•..•..•.•......AN-210, Appendix C LM334 .......•..........•..........•...•......•..........•..........•..................•..AN-242, AN-256, AN-284 LM335 .......•..........•..........•............•.......................................••AN-225, AN-263, AN-295 LM336 •....•........•.....•...•......•.•.......•..•..•...•...•.....••...•.•.....•.....•...AN-202, AN-247, AN-258 LM337 ....•......................•.................•...................•.................................•.LB-46 LM338 ••.........•.•..•.•..............•.....•.....•....•.....•..........•.......•................... LB-49, LB-51 .LM339 .............................•.•..•.•.................•..............................AN-74, AN-245, AN-274 LM340 ...............•............•.••..............•.•....•••.........•.........••...............AN-103,AN-182 LM340L. •..........•.....................•.•.......••..........•.........••••...•...•..•.....•.•.....•.... AN-256 LM342 ........•........................•.•.....................................•.•........•..•...•.•......AN-288 LM346 ....•.....•....•....•.••..•.........••.......•..•........•...........•...............•.......AN-202, LB-54 LM348 ...•...••.........•...•.•.....•....••.•.••..•....•...•.••....•.......•....•.....•..•.......•. AN-202, LB-42 LM349 ..•.•....................•....................•.......•..•.......•..•..........•..................•.. LB-42 LM358 .................•................•........•..... AN-116, AN-247, AN-271, AN-274, AN-284, AN-298, Appendix C LM358A ..•..•••..........•.....•...••..•......•••.........•...•..•....•..•..•...........•...••.•...... Appendix 0 LM359 ..•.....•.•................•.......•.......•...•......•..•..........•..•.......•....•.....•..AN-278, AB-24 LM360 .....•...•...•.•.•.•..........•...............•..........................................•..........•AN-87 LM361 ..•.......•.......•.........••.•.••••..•.....•..........•.............•..........•........•.•AN-87, AN-294 LM363 .........•..•..........................•.....•...•...•••...••..•...•...•.....................•..•...AN-271 LM380 ...... ~ ...•..................... .'..•..................•..........•.•.•.•..•.....•............AN-69, AN-146 LM385 ..........•....•.....•..•.... ; .......•..•....•..•.... AN-242, AN-256, AN-301, AN-344, AN-460, AN-693, AN-777 LM386 '...•••..•.•..•...•...•...•.•....•..•..•....••.••..•...••..•..•...•...••..•........•••......•.•.••..•• LB-54 LM391 .............................................•........•...........•......•......•...................AN-272 LM392 ..•....•..•...........•.•.•..•.•.....•....•.....•..•... : ........••...............•........•. AN-274, AN-286 7-7 DevicelApplication Literature Cross-Reference (Continued) Appll~on,!Jtereture Device Number LM393 .•....•..•.•...•.....•..•.•................•.•..•.••..•..•..•.•••.••.••.••.•AN-271, AN-274, AN-293, AN-694 LM394 •..•.••.••.....•.••.••.•...•.•..••..••.•.••....•..•..• AN-262, AN-263, AN-271, AN-293, AN-299, AN-311, LB-52 LM395 •.........•..•...................••.•..•..•... AN-H8, AN-181, AN-262, AN-263, AN-266, AN-301, AN-460, LB-26 LM399 •.•.•.••••..•••.••••••.•.•..••..•.••..•.••.••..•.••.••••••....•••••••••••••••••••.••..••••..•.••.••• AN-164 LM555 .........•.....•...........•..•.....•..•.•.•....•........•.•......•..•...............•....•.••AN-694, AB-7 LM556 .••.••.••..•.••.••.•.....••.•..•..•.•••.••.••.••••..•..••.••.••..•..•..•..•.••.•.•.•.••.•••••.••.••.•. AB-7 LM565 .•........•......•......•..•........•.....•..•..•.......•......•.•.•....•.•...•.•••.••.••..•. AN-46, AN-146 LM566 ..•..•.••..•.••.•..••.••.•..••....•••••.•••••.••.•••••.••.••.••••••.••••.••.••..•••••••.••..••••.••. AN-146 LM604 ....•..•....•••............•.•......•...•...•....•.....•........................•.....•........•..•.AN-460 LM628 ....•...•......•...•.............•..............•...•.•..•..•..•..•..••.••.•.•••.•....•••.•.AN-693;AN-7OS LM629 .....................................................................................AN-693, AN-694, AN-70s LMr09 •.........•.•...........•..•.................•.•............•.•.••••.•.............•...•...... AN-24, 'AN-30 LM710 ., •..•. '.•..•..•.....•....••.•••••.••.••..•.••.••.••.••...•••••••••.••.••.••••••••••.•••..•••..• AN-41, LB-12 LM725 : ..•.....•.•. , .•..•..•..•..•..•..•..•.••..•.•.••.•.•.•.••.....•....•......•...•.•.••.................LB-22 LM741 ................•...•.................•.•......•.•...••.•............•..•.......•.•..•.•AN-79, LB-19, LB-22 LM833 •.•..••.•...•••.••.••..•.•..••.•.....••.•..•.••••.•.••.••.••••••.••••..•.••.••.••.•..••••..••.•••••• AN-346 LM1036 •.••..•..•.••..•................•..••.•.•••..•.•..•.......•...•....•..•.•.•.........•.............•AN-390 LM1202 .......•.••••..••.••.•..••.•..•.••..•..••.••.••.••.••.•..•••••••.••.•••••••••••.••.••.••.••..•..••• AN-667 LM1203 •..••••..•.••.•..........•••.••.•..••.•.....•.....•..•..•.•...•.......•.•.•.........•.....•......•.AN-661 LM1204 ...............•...........•..•.•..••.....•..•.•...•......•......•....•.•.•...•.....•.......•......AN-9;34 LM1458 .•.....•.••.•..••.••••..••.•..••.••.•..•..••.••.••.••..•.••••.•••••••••.••.••.•.••••..••.••.•••••.• AN-116 LM1524 ..•..••.•..•.••••••••.••.•• : ••.••••••••••.••..••••.•••.•..•........••....•• AN-272, AN-288, AN-292, AN-293 LM1558 ••.....•..•••.•.••......•.........•.•....•...•........•....•..•....••'..••.•..••.•.....•..•..•..•..• AN-1·16 LM1578A •••••••.••••.••..•.•..••.••.••..•••.•• .' .••••••••••••••..•..•..•.••.••.••.••.••.•.••••••••.•••••.•• AB-30 LM1823 •.••.••..•..•.•. .' .......•.•....••............•....•...........•..•..•..••.•..•..•..•...•.......•...AN-391 LM1830 ••.•..•..•.••..•..•..•..•..••.•.....••.•..•.•••••••.••••.••.•••••.•••••.••.•••••.•..•••••••.••.••.•• AB-10 LM1865 •.••..•..•..•.......•..••.•.....•..•..•..•..•..•.••..••.•.•...•....•............•.•..•.•...•...•.•.AN-390 LM1886 •....•....•....•.••............•....•........•..•.••..•..•.•••••••••.•..••.•.•..••.•.•••••..•..••.• AN-402 LM1889 .••.••.•..•.••..••.•..•..•..•.••..•..•.•••.••..•.••..•.••.••.••.•..•...........••.•..•.••.••..••••. AN-402 LM1894 .•••....•..•...•....•.....•..•..•..•...•.•.••............•.•..•..... : ....••........ AN-384, AN-386, AN-390 LM2419 .....................................................................................................AN-861 LM2577 ....•.••.••••..••.••.•..••..•.•.•••.••.•••...•••.••••••••.•.••.••.••.••••••••.••••.••.••••• AN-776,AN-777 LM2876 •.••.••.••..•.•..•...•.•..•....•...•.••..•..•........•.....•.••.•.•.•..•.•...•.....•....•..•..•.•.. AN-898 LM2889 .•.......•.•......•......•....•........•.....•.••••..•••.•..•••••••..•..•..•.•••••.•••••.•. AN-391, AN-402 LM2907 •••.•..•..••••.•••.•..•.••..••....•.•••.••.••.••..•.••..••••.•..•..••....•..••....••.••.•.••.••.••• AN-162 LM2917 •..•..•.••....•....•......•......•.•.•...•......... '..•.....•..........•..•.......•••.••••.••..•.••. AN-162 LM2931 .....••...........•...•...•........•..•......•.•..•..••.•..•.....•..•.....•..•..•.••.•...•....•.••.•AB-12 LM2931CT •..•..•..••.••.••.••••..•.••••••.•••••..••••••••••.••.••.•••••.••.••.••.••.•.••••••••.••.• .'.••••• AB-11 LM3045 •••..••.•••••.••.•.••.••.••..•..•..•.....••.•....••..•....••..•..............•....•..•..••.•..•..•. AN~286 LM3046 •.••..•• : •..•...•...••..•.....••....•..•.•••.•.••.••••••••••••••.••.•••••.••.•..••.••••..•• AN-146, AN-299 LM3089 ••••.•.•••••••••••.•••••..•.••.•..•••••.••.••..•..•..•..•.....•.•..•....•...•.••..•..•.••.••.••.••• AN-147 LM3524 ••.••••••••.••.•••.•..••••..•..•••••.•..•..•..•...••...••..........•..•.••• AN-272, AN-288, AN-292, AN-293 LM3525A ...••.•..............•........•.....•.•.•.••..•..•..•.•••••.•••••.•••••••••••.•••••.•.••..•..••.• AN-694 LM3578A ••••••.••••••.••••••••••••••••••••••.•••.••..•.•...•.•.....••.•..•..•..••.•.••..•.••.••.•.••••••.• AB-30 LM3875 ...•.••.••.•....•.....•..........•..•.....•.....•..••.•.•. : ••.••.•..•••••.••.•..•..••....•.....•..• AN-898 LM3876 .•....•..••.••••..••.••.•..••.•••.••••..•..••.••.•••••.••.•.....••.•..•..••.•..•.••••••••••••••••.• AN-8~8 LM3886 ....•.......••••••.••.•..•..•.•••.•..••.••.••..•..••••..•..........•.....•..•.•••••..•..•.••.••.••• AN-898 LM3900 •.•..•..•.••..•.••..•..•.•......•...•........•....•.•....•. : ..• AN-12, AN-263, AN-274, AN-278, LB-20, AB~24 LM3909 ..•.•....•..•..••.•.....•.....•..•..••.••.•••••.••.••.••••••••••••••.•••••••..••••.••••.••..•.•••.• AN-154 LM3914" ••••••.••••..•.••.••.••..•••...•.••.••..•.••.....••.•..•.....•......•.....'•......••.• AN-460, LB-48, AB-25 LM3915 ..•.•.•..•....•....•.•........•.•.......•••.•..•.....•..•..•..•..•..•........•......•.•..•.........AN-386 LM3999 .••••....•..•••••.••.•...•.•..•..•..•.••••••.•••••.•••• '••.••.•.••.•..••.•.•••.•............•...•... AN-161 7-8 DevicelApplication Literature Cross-Reference (Continued) Device Number Application Wterature LM4250 .•.........•.....•...•.•.......•..•................•.........................................AN-88, LB-34 LM6181 .....•....................................•..•......•..•.........•...•.....•.............•.AN-813, AN-840 LM7800 ...•......................................•........................................................AN-178 LM12454 .....•..•.....•.......•.•...•.....•..•...•.........••...•............•.......•.... AN-906, AN-947, AN-949 LM12458 ..................................................................................AN-906, AN-947, AN-949 LM12H454 •........•..•.....................................•.........•..............•.... AN-906, AN-947, AN-949 LM12H458 ..............................................................................•.AN-906, AN-947, AN-949 LM12L458 .........•....................................................•..••..•.....•••.•.AN-906, AN-947, AN-949 LM18293 •...•.........•.........•......•..•......•••...•...•.................•..••.••...........•.....•.. AN-708 LM78L12 •.•.•.•.••.•.•.•.....•...........•...........................................................•...AN-146 LM78S40 ••.........•.........•.....•......•..••..••.....•..•..••..•............•..•...•....•....•........AN-711 LMC555 ...............•.•..••..........•.•.................................•..........•..........AN-460,AN-828 LMC660 •.•..•..••..••.•.•.•...•..•...•..•..•..... : •.••......••........••..•......•..•......•............. AN-856 LMC835 .•......•...•.....•...•.........••.•.•.•..•••....•...•.....•..........•.....••..•...•.•..•...•..•.AN-435 LMC6044 •..........•.•.......•...•........•..........•.•.......•.....................•..•.•..............AN-856 LMCS062 ••...•..•..•..••..•..•...•..•...•......•.••..•..•......••..•.........•..••..•......•..•.......... AN-856 LMC6082 •..........................................•....•......•....•...........•....••..................AN-856 LMC6484 •.•..••..•..•..•.......•...................•...........•......................••..•••............ AN-856 LMD18200 .••...............••..•...•.........•.•.•..•.•.•..•.......•..•.......•....•..••.•....... AN-694, AN-828 LMF40 .•....•••.•.•.••.................•....................................•.............................AN-779 LMF60 .•..•...•.....••.••..••......••....•...•.....••.....•...•.........................•...•......•......AN-779 LMF90 ..•.•...................•........•.........•...•..•...••.....•..•...•..••..••.•..••.•.•.•....••.....AN-779 LMF100 •.•.•..•..•.....••....•.•..•.............•..................................•.•.•......•...•......AN-779 LMF380 ........•....•....•..•..•...•......•...•..•......•..•..........•...•.••..••.........•.•...........AN-779 LMF390 ...•..•......•.•.....•.........••.....••.•......•..••.••.........••..•.....••...•....•...•..•...•.AN-779 LP324 .•..•...••.....•..••.•...••.••..•.••...••.•...•..•......•..•........•................•..............AN-284 LP395 .•....•................•...•.....••...•....••..•..•..••..••.•••.•..•...•......•.••.....•......•...•. AN-460 LPC660 ••.....••.....•..••..•..••..•....•••..•......•.....•.............•........•...•.•••.•.............. AN-856 MF4 •.••••..........•.••...•...•..•..•..•...•......•.••••••.•••.•..••.•••.••.....••.••.•...••.•...•..••..• AN-779 MF5 •.•.•••....•••.•...•.••...•..•..•.••...•......•......•..•....•.••.•••.••.....••..••.•..••.••..•...•... AN-779 MF6 .......••..•.................•......•..................•...................•...•..•....•.....•..•..•..AN-779 MF8 •..•..•.•.•.....••.••..•...•..••..•......•..•..••.••...............••.•...............................AN-779 MF10 •..........•...............•......•..•..•...•..•.•.•..•..•...•..•..••...••.•.••......•..•.... AN-307,AN-779 MM2716 •......••.•................••..................•.•.................................................LB-54 MM541 04 ..•..••..... , '" •..•... '" •..••.••.•..........•............•....................... AN-252, AN-287, LB-54 MM57110 .................................................................................................AN-382 MM74COO ..••..•.....••.••.....••...........•.•....•..................•......•.................•...•......•AN-88 MM74C02 ••.....•..•...••.•••••..•..••..•.••..••.••.••••.•..••..•......••..•..•......••.•...•.••....•.•.... AN-88 MM74C04 .•...............•.•........................•.•....•.•.•.•..•...•..••..•.••..••.•...••.••..•.•.... AN-88 MM74C948 •.....•..••.•.•.•..••••.• " '" •. " •..••.•.•.••.•••.•..••..•..•..........•...........•........•.• AN-193 MM74HC86 ......•..........••..•......••.•...•..••.••..••.•..•••.••..•.••...•.........•.....•....AN-861,AN-867 MM74LS138 •...•.....•...•.........•.....•..••..•..•...•................................................... LB-54 MM53200 ••.••..••.••..•••••..•..••..•..•..••.••..•••.•..•......•.•.•..•...•......•..•..•...•.•..........• AN-290 2N4339 ..•..•...............•........•..•.......••...•..•...•.......••..••.••..••.••...•..•.••...••.•..••.. AN-32 7-9 •E r-----------------------------------------------------------------------------, f!! Q e t!lNational Semiconductor Go ~ I'ii £E: ~ AppendixC Summary of Commercial Reliability Programs CD E a '0 i E :::a P + Product Enhancement The P+ product enhancement program involves dynamic tests that screen out assembly related and silicon defects that can lead to infant mortality and/or reduce the surviva- Package Types Device (n I o .~ '0 C !. ~ bility of the device under high stress conditions. This program includes but is not limited to the following power devices: To-3 KSTEEL To-39 (H) LM12 LM109/309 X LM117/317 LM117HV/317HV LM120/320 X X X X X X lM123/323 X X TO-220 (T) SO (M) To-263 (S) X X X X LM133/333 X lM137/337 lM137HVl337HV lM138/338 X X X X X X lM140/340 X X lM145/345 lM150/350 lM195/395 X X X X DIP (N) X X X X lM2930/2935/2984 X X lM2937 X X lM2940/2941 X X lM2990/2991 lM2575/2575HV X lM2576 X lM2577 lMD18200/18201 X X X 7-10 X X X X X X X X tflNational Semiconductor Appendix 0 Military Aerospace Programs from National Semiconductor This appendix Is Intended to provide a brief overview of military products available from National Semiconductor. The process flows and catagorles shown below are for general reference only. For further Information and availability, please contact the Customer Response Center at 1-800-272-9959, Military/Aerospace Marketing group or your local sales office. Process Flows (Integrated Circuits) National Semiconductor's Military/Aerospace Program is founded on dedication to excellence. National offers com· plete support across the broadest range of products with the widest selection of qualification levels and screening flows. These flows include: 7-11 Description JANS QML products processed to MIL-I-38535 Level S or V for Space level applications. JANB QML products processed to MIL-I-38535 Level B or Q for Military applicationf. SMD QML products processed to a Standard Microcircuit Drawing with Table I Electricals controlled by DESC. 883 QML products processed to MIL-STD-883 Level B for Military applications. MLP Products processed on the Monitored Line (Program) developed by the Air Force for Space level applications. -MIL Similar to MIL-STD-883 with exceptions noted on the Certificate of Conformance. MSP Military Screening Products for initial release of advanced products. MCP Commercial products processed in a military assembly. Electrical testing performed at 25°C, plus minimum and maximum operating temperature to commercial limits. MCR Commercial products processed in a military assembly. Electrical testing performed at 25°C to commercial limits MRP Military Ruggedized Plastic products processed to avionics requirements. MRR Commercial Ruggedized plastic product processed in a commercial assembly with electrical testing at 25°C. MPC Commercial plastic products processed in a commercial assembly with electrical testing at 25°C. ,. National offers both 883 Class Band 883 Class S product. The screening requirements for both classes of prod' uct are outlined in Table III. As with SMDs a manufacturer is allowed to use his standard electrical tests provided that all critical parameters are tested. Also, the electrical test parameters, test conditions, test limits and test temperatures must be clearly documented. At National Semiconductor, this information is aVliilable via our Table I (formerly RETS, Reliability Electrical Test Specification Program). The Table I documentis a complete 'description of the electrical tests performed and is controlled by our QA department. Individual copies are available upon request. Some of National's products are produced on a flow similar to MIL-STD-883. These devices are screened to the same stringent requirements as 883 product, but are marked as -MIL; ,specific reasons for prevention of compliancy are clearly defined in the Certificate of Conformance (C of C) shipped with the product. ' • Monitored Une Program (MLP): is a non JAN Level S program developed by the Air Force. Monitored Line product usually provides the shortest cycle time, and is acceptable for application in several space level programs. Lockheed Missiles and Space Company in Sunnyvale, California, under an Air Force contract, provides "on-site" monitOring of product processing, and as appropriate, program management. Monitored Line orders generally do not allow "customizing", and most flows do not include quality conformance inspection. Drawing control is maintained by the Lockheed Company. • Military Screening Program (MSP): National's Military Screening Program was developed to make screened versions of advanced products such as gate arrays and microprocessors available more quickly. Through this program, screened product is made available for prototypes and breadboards prior to or during the QM L activities. MSP products receive the 100% screening of Table III, but are not subjected to Group C and 0 quality conformance testing. Other criteria such as electrical testing and temperature range will vary depending upon individual device status and capability. • QML: The purpose of the QML program, which is administered by the Defense Electronics Supply Center (DESC), is to provide the military community with standardized products that have been manufactured and screened to the highest quality and reliability standards in facilities that have been certified by the government. To achieve QML status, manufacturers must submit their facilities, quality procedures and design philosophies to a thorough audit aimed at confirming their ability to produce product to the highest design and qu~!ity standards. They must be listed on PESC's Qualified Manufacturer List (QML) before devices can be marked and shipped as QML product. Two processing levels are specified within MIL-I-38535, the QML standard: Class S (typically specified for space and strategic applications) and Class B (used for tactical missile, airborne, naval and ground systems). The requirements for both classes are defined within MIL-STD-883. National is one of the industry's leading suppliers of both classes. • Standard Microcircuit Drawings (SMD). SMDs are issued to provide standardized versions of devices offered under QML. MIL-STD-883 screening is coupled with tightly controlled electrical test specifications that allow a manufacturer to use his standard electrical tests. TablE;lI explains the marking of JAN devices, and Table II outlines current marking requirements for QMLI SMD devices. Copies of MIL-I-38535 and the QML can be obtained from the Naval Publications and Forms Center (5801 Tabor Avenue, Philadelphia, PA 19120, 212/697-2179. A current listing of National's SMD offerings can be obtained from our authorized distributors, our sales offices, our Customer Response Center (Arlington, Texas, 817/468-6300), or from DESC. • MIL-STD-883. Originally intended to establish uniform test methods and procedures, MIL-STD-883 has also become the general specification for non-SMD military product. MIL-STD-883 defines the minimum requirements for a device to be marked and advertised as 883-compliant. Design and construction criteria, documentation controls, electrical and mechanical screening requirements, and quality control procedures are outlined in paragraph 1.1.2 of MIL-STD-883. 7-12 ~ TABLE I. JAN S or B Part Marking ~~8~O/X~X_XXYYY [ TABLE I-A. JAN Package Codes JAN Lead Finish A "Solder Oi pped B = Tin Plate C = Gold Plate X Any lead finish above is acceptabl. = Davice Package (s•• Tabl. II) - Screening Lev.1 5 or B " - - Device Number on Slash Sheet - Slash She.t Number I..----ror radiation hard devices this slash is replaced by the Radiation Hardness Assurance Package Designation Microcircuit Industry Description A B C 0 E F G H I 14-pin 1h" x 1h" (Metal) Flatpak 14-pin 0/..' x V.." (Metal) Flatpak 14-pin 1h" x %" Dual-In-Line 14'pin 1h" x %" (Ceramic) Flatpak 16-pin 1h" x?fa" Dual-In-Line 16-pin 1h" x %" (Metal or Ceramic) Flatpak 8-pin TO-99 Can or Header 10-pin 1h" x 1h" (Metal) Flatpak 10-pin TO-100 Can or Header 24-pin Yz" x 11h" Dual-In-Line 24-pin %" x %" Flatpak 24-pin 1h" x 11h" Dual-In-Line 12-pin TO-1 01 Can or Header (Note 1) 8-pin 1h" x %" Dual-In-Line 4O-pin 0/.." x 2V!8" Dual-In-Line 20-pin 1h" x 1V!8" Dual-In-Line 20-pin 1h" x Yz" Flatpak (Note 1) (Note 1) 18-pin %" x Isli." Dual-In-Line 22-pin %" x 1Va" Dual-In-Line (Note 1) (Note 1) (Note 1) 20-terminal 0.350" x 0.350' Chip Carrier 28-terminal 0.450" x 0.450" Chip Carrier J Designator (W, 0, R, or H of K L M N P MIL-I-38535) '-----IIIL-M-38510 ' - - - - - - - J A N Prefix TL/XX/OOSO-l Q R 5 T U V W X Y Z 2 3 Note 1: These letters are assigned 10 packages by individual detail specifi. cations and may be assigned 10 diff......nt packages in different specifica· tions. 7-13 "a "a CD :::J iCL >i. r ~ ::;: III ~ ~ ...0CD fIJ "a III n CD ...0"U ... CO III 3fIJ - .0.. 3 Z III o· :::J !!. en CD 3 0· 0 :::J iCL c n S" ... • TABLE II. Standard Mllltary'Drawlng (SMD) Marking , SMD Package Designation .;' 5962-~02MXA' C"~ TABLE II-A. SMD Package CodeS' Load finish . (Soldar) 14~pin Flatpak 14-pin C DIP 16-pinC DIP 16-pin Flatpak B-pin T0-99 Can 10-pin (Metal) Flatpak 10·pin TO·1 00 Can (Note 2) (Note 2) B-pinCDIP 20-pin LCC 20·PinDIP C D E F G H I Packaga Codas (.aa Tabla IIA) Class Dasignator , M = MIL-STD-BB3 BorQ = Class B SorV=ClassC - Microcircuit Industry Description X Device Number y Drawing Numbar - P 2 Year of Issue Th. "/" and ~'-" can ba raplaced by RHA designations D = 10 krad R = 100 krad R Note 2: These letters are assigned to peckages by Individual doteil specifications and may be ..signed to different peckages in different specHlca· tions. fod.ral stock Class TLlXX/OO30-2 TABLE 111.100% Screening Requirements ClassS Scraen Method 1. ClassB Reqmt Wafer Lot Acceptance 5007 All Lots Method Reqmt 2. Nondestructive Bond Pull (Note 14). 2023 100% 3. Internar Visual (Note 1) 2020, Condition A 100% 2010, Condition B 100% 4. Stabilization Bake (Note 16) 100B, Condition C, Min 24 Hrs. Min 100% 100B, Condition C, Min 24Hrs. Min 100% 5. Temperature Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100 0"- 6. Constant Acceleration 2001, Condition E Min y 1 Orientation Only 100% 2001, Condition E Min y 1 Orientation Only 100% 2010, Condition A (Note 4) 100% 7. Visual Inspection (Note 3) B. Particle Impact Noise Detection (PIND) 9. 100% 100% Serialization (NoteS) 100% 10. Interim (Pre-Bum-In) Electrical Parameters Per Applicable Device Specification (Note 13) 100% Per Applicable Device Specification (Note 6) 11. Burn-In Test 1015 240 Hrs. @ 125"C Min (Cond. F Not Allowed) 100% 1015 160 Hrs. Per Applicable Device Specification (Note 3) 100% 12. Interim (Post Burn-In) Electrical Parameters 7-1'4 100% @ 125°C Min TABLE III. 100% Screening Requirements (Continued) ClassB ClassS Screen Method Reqmt 13. Reverse Bias Burn-In (Note 7) 1015; Test Condition A, C, 72 Hrs. @ 150"C Min (Cond. F Not Allowed) 100% 14. Interim (Post-Bum-In) Electrical Parameters Per Applicable Device Specification (Note 13) 100% 15. PDA Calculation 5% Parametric (Note 14), 3% Functional 16. Final Electrical Test (Note 15) a) Static Tests 1) 25°C (Subgroup 1, Table I, 5005) 2) Max & Min Rated Operating Temp. (Subgroups 2, 3, Table I, 5005) b) Dynamic Tests or Functional Tests 1) 25°C (Subgroup 4 or 7) 2) Max and Min Rated Operating Temp. (Subgroups 5 and 6 or 8, Table I, 5005) c) Switching Tests 25°C (Subgroup 9, Table I, 5005) Per Applicable Device Specification Seal Fine, Gross 1014 17. All Lots Method Per Applicable Device Specification 5% Parametric (Note 14) Reqmt 100% All Lots Per Applicable Device Specification 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% (Note 8) 18. Radiographic (Note 10) 2012 Two Views 100% 19. Qualification or Quality Conformance Inspection Test'Sample Selection (Note 11) Samp. 20. External Visual (Note 12) 2009 100% 1014 (Note 11) 100% (Note 9) Samp. 100% Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or following internal visual (Method 5004), prior to sealing provided all other specHication requirements are satisfied (e.g., bond strength requirements shall apply to each inspection lot, bond failures shall be counted even if the bond would have failed internal visual). Note 2: For Class B devices, this test may be replaced V'/ith thennal shock Method 1011, Test Condition A, minimum. Note 3: At the manufacturer's option, visual inspection for catastrophiC failures may be conducted after each of the thermal/mechanical screens, after the sequence or after seal test CatastrophiC failures are defined as missing leads, broken packsges, or lids off. Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL·I-38585 paragraph 40.6.3. Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements. Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations. Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in may be inverted. Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming operations on the terminals. Note 9: For Class B devices, the fine and gross seal tests shall be performed separately or together in any sequence and order between step 6 and step 20 except that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming (e.g., ltatpaks and chip carriers) the seal screen shall be done 100% prior to these operations and a sample tast (LTPD - 5) shall be performed on each inspeCtion lot following these operations. If tbe sample fails, 100% rescreening shall be required. Note 10: The radiographic screen may be performed in any sequence after step 9. Note 11: Samples shall be selected for testing in accordance wHh the specific device class and lot requirements of Method 5005. Nole 12: External Visual shall be performed on the lot any time after step 19 and prior to shipment. Note 13: Read and record is required, at steps 10 'and 12 only for those parameters for which post·burn·in delta measurements are specHied. All parameters shall be read and recorded at step 14.' Note 14: The PDA shall apply to all subgroup 1 parameters at 25'C and all delta parameter.. Note 15: Only one view is required for flat packages and leadless chip carriers with leads on all four sides. Note 16: May be performed at any time prior to step 10. 7-15 • Military Analog Products Available from National Semiconductor Device Package Styles (Note 1) Process F1o_ (Note 2) Description SMD/JAN (Note 3) HIGH PERFORMANCE AMPLIFIERS AND BUFFERS LF147 LF155A LF156 LF156A LF157 LF157A LF411M LF412M LF441M LF442M LF444M D,J H H H H H H H,J H H Wide BW Quad JFET Op Amp JFET Input Op Amp JFET Input Op Amp JFET Input Op Amp JFET Input Op Amp JFET Input Op Amp Low Offset, Low Drift JFET Input Low Offset, Low Drift JFET Input-Dual Low Power JFET Input Low Power JFET Input-Dual Low Power JFET Input-Quad SMD/JAN 883 883 883 883 883 883/JAN 883/JAN 883 883 883 LHOO02 LH0021 LH0024 LH0032 LH0041 LH0101 H ".. MIL" -'- "-MIL" - K Buffer Amp 1.0 Amp Power Op Amp High Slew Rate Op Amp Ultra Fast FET-Input Op Amp 0.2 Amp Power Op Amp Power Op Amp LM10 LM101A LM108A LM118 LM124 LM124A LM146 LM148 LM158A LM158 LM611AM LM613AM LM614AM LM709A LM741 LM747 H J,H,W J,H,W J,H J,E,W J,E,W J J,E J,H J,H J J,E J H,J,W J,H,W J,H Super-Block™ Micropower Op Amp/Ref General Purpose Op Amp Precision Op Amp Fast Op Amp Low Power Quad Op Amp Low Power Quad Quad Programmable Op Amp Quad 741 Opamp Low Power Dual Op Amp Low Power Dual Op Amp Super-Block Op Amp/Reference Super-Block Dual Op Amp/Dual Comp/Ref Super-Block Quad Op Amp/Ref General Purpose Op Amp General Purpose Op Amp General Purpose Dual Op Amp 883/SMD 883/JAN 883/JAN 883/JAN 883/JAN 883/JAN 883 883/JAN 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/JAN 883/JAN LM6118 LM6121 LM6125 LM8161 LM6162 LM6164 - LM6165 LM6181AM LM6182AM J,E H,J H J,E,W J,E,W J,E,W J,E,W J J VIP Dual Op Amp VIP Buffer VIP Buffer with Error Flag VIP Op Amp (Unity Gain) VIPOpAmp(Av> 2, -1) VIP Op Amp (Av > 5) VIP Op Amp (Av > 25) VIP Current Feedback Op Amp VIP Current Feedback Dual Op Amp 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 5962-91565 5962-90812 5962-90815 5962-89621 5962-92165 5962-89624 5962-89625 5962-9081802 5962-9480301 J 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 5962-9209301 5962-9209401 5962-9209302 5962-9209402 5962-9453401 5962-9453402 883 - 0 K H G G LMC660AM LMc682AM LPC660AM LPC862AM LMC6482AM LMC6484AM J J J Low Power CMOS Quad Op Amp Low Power CMOS Dual Op Amp Micropower CMOS Quad Op Amp Micropower CMOS Dual Op Amp Rail to Rail CMOS Dual Op Amp Rail to Rail CMOS Quad Op Amp OP07 H Precision Op Amp J J 7-16 "_MIL" "_MIL" "-MIL" "-MIL" " " .,; : /11906 - -/11904 /11905 I - 5962-87604 /10103 /10104 /10107 /11005 /11006 -/11001 5962-8771002 5962-8771001 -7800701 /10101 110102 Military Analog Products Available from National Semiconductor (Continued) Device Package Styles (Note 1) Description Process Flows (Note 2) SMD/JAN (Note 3) COMPARATORS LFlll LH2111 LM106 LM111 LM119 LM139 LM139A LM160 LM161 LM193 LM193A LM612AM LM613AM H J,W H,W J,H,E,W J,H,E,W J,E,W J,E,W J,H J,H,W J,H J,H J J,E LM615AM LM710Ao LM711Ao LM760 J J,H,W J,H,W J,H Voltage Comparator Dual Voltage Comparator Voltage Comparator Voltage Comparator High Speed Dual Comparator Quad Comparator Precision Quad Comparator High Speed Differential Comparator High Speed Differential Comparator Dual Comparator Dual Comparator Dual-Channel Comparator/Reference Super·Block Dual Comparatorl Dual Op Amp/ Adj Reference Quad ComparatorlAdjustable Reference Voltage Comparator Dual LM710 High Speed Differential Comparator "·MIL" 883/JAN 883/SMD 883/JAN 883/JAN 883/JAN 883/SMD 883/SMD 883/SMD 883 883/JAN 883/SMD 883/SMD 883 883/JAN 883/JAN 883/SMD - 110305 8003701 110304 110306 111201 5962·87739 8767401 5962·87572 /11202 5962·93002 5962·93003 -110301 110302 5962·87545 'Fonnet1y manufactured by Fairchild Semiconductor as part numbers ,.A710 and p.A711. LINEAR REGULATORS Positive Voltage Regulators LM105 LM109 LM109 LM117 LM117HV LM117HV LM123 LM138 LM140·5.0 LMl40·6.0 LMl40·8.0 LM140-12 LM140-15 LM140·24 LM140A·5.0 LM140A·12 LM140A·15 LM140K·5.0 LM140K·12 LM140K·15 LMl40LAH·5.0 LMl40LAH·12 LMl40LAH·15 LM150 LM2940·5.0 LM2940·8.0 LM2940·12 LM2940·15 LM2941 LM431 LM723 LP2951 LP2953AM H H K H,E,K H K K K H H H H H H K K K K K K H H H K K K K K K H,K H,J,E H,E,J J Adjustable Voltage Regulator 5V Regulator, 10 = 20 mA 5V Regulator,lo = 1A Adjustable Regulator Adjustable Regulator, 10 = 0.5A Adjustable Regulator, 10 = 1.5A 3A Voltage Regulator 5A Adjustable Regulator 0.5A Fixed 5V Regulator 0.5A Fixed 6V Regulator 0.5A Fixed 8V.Regulator 0.5A Fixed 12V Regulator 0.5A Fixed 15V Regulator 0.5A Fixed 24V Regulator 1.0A Fixed 5V Regulator 1.0A Fixed 12V Regulator 1.0A Fixed 15V Regulator 1.0A Fixed 5V Regulator 1.0A Fixed 12V Regulator 1.0A Fixed 15V Regulator 100 mA Fixed 5V Regulator 100 mA Fixed 12V Regulator 100 mA Fixed 15V Regulator 3A Adjustable Power Regulator 5V Low Dropout Regulator 8V Low Dropout Regulator 12V Low Dropout R~gulator 15V Low Dropout Regulator . Adjustable Low Dropout Regulator Adjustable Shunt Regulator Precision Adjustable Regulator Adjustable Micropower LDO 250 rnA Adj. Micropower LDO 883/SMD 883/JAN 883/JAN 883/JAN 883/SMD 883/SMD 883 "·MIL" 883/JAN 883 883 883/JAN 883/JAN 883 883 883 883 883/JAN 883/JAN 883/JAN 883 883 883 883 883/SMD 883/SMD 883/SMD 883/SMD 883/SMD 883 883/JAN 883/SMD 883/SMD 5962-89588 110701BXA /10701BYA /11703, '111704 7703402XA 7703402YA - -110702 - -110703 /10704 - -- /10706 110707 /10708 - 5962·89587 5962·90883 5962·90884 5962·90885 TBD - /10201 5962·38705 5962·9233601 II 7·17 -~ .. Military Analog Products Available from National Semiconductor (Continu~!lJ " , , beYij:e ,, .),1 Package, Description, Stylea (Note 1) , - ",.t: Process! Flows (Note 2) .. SMD/JAN (Note 3) UNEAR REGULATORS (Continued) .. Negative Voltage Regulators 883/J~N LM120-5.0 LM120-8.0 LM120-12 LM120-15 H H H H Fixed 0.5A Regulator, Vo.UT = ,-f,Y Fixed 0.5A Regulator, VOUT = -8V Fixed 0.5A Regulator, VOUT ,= ~ 12V Fixed 0.5A Regulator, VOUT "" ~15V 883 883/JAN 883/JAN - LM120-5.0 LM120-12 LM120-15 K K K Fixed 1.0A Regulator, VOU"= -5V Fixed 1.0A Regula~or, VOUT= -12V Fixed 1.0A Regulator, VOUT = -15V 883/JAN' 883/JAN'" 883/JAN /11505 /11506 /11507 LM137A LM137A LM137 LM137HV LM137HV H K H,K H K Precision Adjustable Regulator Precision Adjustable Regulator Adjustable Regulator Adjustable (High Voltage) Regulator Adjustable (High Voltage) Regulator 883/SMD 883/SMD 883/JAN, 883/SMD 883/SMD 7703406XA 7703406YA /11803\/11804 7703404XA 7703404YA LM145-5.0 LM145-5.2 K K Negative 3 Amp Regulator Negative 3 Amp R~gulator 883/$MD 883 - /11501 /11502 /11503 5962-90645 SWITCHING REGULATORS LM1575-5 LM1575-12 LM1575-15 LM1575-ADJ LM1575HV-5 LM15751-jV-12 LM1575HV-15 LM1575HV-ADJ LM1577-12 LM1577-15 LM1577-ADJ J,K J,K J,K J, K K K K K K K K ". Simple SwitcherTM Step-Down, VOUT = 5V Simple Switcher Step-Down, VOUT = 12V Simple Switcher Step-Down, VOUT = 15V Simple Switcher Step-Down, Adj V6UT Simple Switcher Step-Down, VOUT = 5V Simple Switcher Step-Down, \tOUT ..' 12V Simple Switcher Step-Down, VOUT = ,15V Simple Switcher Step-Down, Adj VOUT Simple Switcher Step-Up, VOUT ;= 12V Simple Switcher Step.-Up, VOUT = 15V , Simple Switcher Step"Up, Adj VOUT 883/SMD 883/SMD 883/SMb 883/SMD 883 883 883 883 883/SMD 883/SMD, 883/SMD - 5962-9167201 , 5962-9167301 5962-9167401 5962-9167101 - 5962-9216701 5962-9216801 5962-9216601, LM1578 H 750 mA Switching Regulator 883/SMD, 5962-89586 LM78S40· J Universal Switching Regulator Subsystem 883/SMD 5962-88761 883/SMD 883/SMD 883/SMD 883/SMD 7702806 7702807 7702808 7702809 883/SMD 883/SMD 883/SMD 5962-8671101 5962-8671102 5962-8671103 883/SMD 883/SMD 883 883/SMD, 883 883 5962-8992101 XA 5962-8992102XA 'Formerly manufactured by Fairchild Semiconductor as the ,.A78S40DMQB. VOLTAGE REFERENCES LM103-3.0 LM103-3.3 LM103-3.6 LM103-3.9 H H H H LM113 LM113-1 LM113-2 H H H LM129A LM129B H H H H H H LM136A:2.~ LM136A-5.0 LM136-2.5 LM136-5.0 Reference Diode, Reference Diode, Reference Diode, Reference Diode, BV = 3.0V BV "" 3.3V BV .,; 3.~V BV = 3.9V Reference Diode with 5% Tolerance" ' Reference Diode with 1 % Tolerance Reference Diode with 2% Tolerance Precision Reference, 10 ppml"C Drift Precision Reference; 20 ppml"C Drift 2.5V Reference Diode, 1 % VOUT Tolerance 5V Reference Diode, 1 % VOUT Tolerance 2.5V RefElrence Diode, 2°A, VOUT Tolerance 5V Reference Diode, 2% VOUT ToleranCE! - 84180'01 , - - '; Military Analog Products Available from National Semiconductor (Continued) Device Package Styles (Note 1) Description Process Flows (Note 2) SMD/JAN (Note 3) VOLTAGE REFERENCES (Continued) -5962-9041401 LM169 LM185B LM185BX2.5 LM185BY LM185BY1.2 LM185BY2.5 LMI85-1.2 LMI85-2.5 H H,E H H H H H,E H,E 10V Precision Reference, Low Tempco 0.05% Tolerance Adjustable Micropower Voltage Reference 2.5V Micropower Reference Diode, Ultralow Drift Adjustable Micropower Voltage Reference 1.2V Micropower Reference Diode, Low Drift 2.5V Micropower Reference Diode, Low Drift 1.2V Micropower Reference Diode, Low Drift 2.5V Micropower Reference Diode, Low Drift 883 883/SMD 883/SMD 883 883/SMD 883/SMD 883/SMD 883/SMD LM199 LM199A LM199A-20 H H H Precision Reference, Low Tempco Precision Reference, Ultralow Tempco Precision Reference, Ultralow Tempco 883/SMD 883/SMD 883 LM611AM LM612AM LM613AM LM614AM LM615AM J J J, E J J Super-Block Op Amp/Reference Super-Block Dual-Channel Comparator/Reference Super-Block Dual Op Amp/DuaIComp/Dual Ref Super-Block Quad Op Amp/Reference Super-Block Quad Comparator/Reference 883 883/SMD 883/SMD 883/SMD 883/SMD - LH0070-0 LH0070-1 LH0070-2 H H H Precision BCD Buffered Reference Precision BCD Buffered Reference Precision BCD Buffered Reference "-MIL" "_MIL" "-MIL" - ADC08020L ADC0851 J J 883/SMD 883/SMD 5962-90966 TBD ADC0858 J 883/SMD TBD ADC08061CM ADCl 0061 CM ADC10062CM J J J 883/SMD 883/SMD 883/SMD TBD TBD TBD ADC10064CM J 883/SMD TBD ADC1241CM J 883/SMD 5962-9157801 ADCI2441CM ADC1251CM J J 883/SMD 883/SMD 5962-9157802 5962-9157801 ADC12451CM DAC0854CM J J 883/SMD 883/SMD TBD TBD DAC1054CM J 883/SMD TBD LM12458M LM12H458M EL,W EL,W 8-Bit poP-Compatible 8-Bit Analog Data Acquisition & Monitoring System 8-Bit Analog Data Acquisition & Monitoring System 8-Bit Multistep ADC 10-Bit Multistep ADC 1O-Bit Multistep ADC w/Dual Input Mutiplexer 1O-Bit Multistep ADC w/Quad Input Multiplexer 12-Bit Plus Sign Self-Calibrating with Sample/Hold Function Dynamically-Tested ADC1241 12-Bit Plus Sign Self-Calibrating with Sample/Hold Function Dynamically-Tested ADC1251 Quad 8-Bit 0/ A Converter with Read Back Quad 10-Bit 0/ A Converter with Read Back 12-Bit Data Acquisition System 12-Bit Data Acquisition System 883/SMD 883/SMD 5962-9319501 5962-9319502 5962-8759404 5962-8759405 5962-8759406 5962-8759401 5962-8759402 5962-8856102 5962-8856101 - 5962-9300201 5962-9300301 5962-9300401 TBD DATA ACQUISITION 7-19 • Military Analog Products Available from National Semlconduptor (CQntinued) Package Styles , (Note 1) Device Description Process Flows (Note 2) SMD/JAN (Note 3) DATA ACQUISITION SUPPORT Switched Capacitor Flit rs LMF6.oCMJ5.o LMF6.oCMJ1.o.o LMF9.oCM LMF1.o.oA Sample and Hold LF198 Motion Control LMD1B2.o.o-2 I I J J 6th Order Buttesworth Lowpass 6th Order Butterworth Lowpass 883/SMD BB3/SMD 5962-9.0967 5962-9.0967 J J,E 4th Order Elliptic Notch Dual 2nd Order General 'Purpose 883/SMD BB3/SMD 5962-9.o96B 5962-91533.01 H 0 I I Monolithic sample and Hold Dual 3A, 55V H-Bridge I I SMD/JA BB3/JAN I I , 5962-B76.oB /125.01 5962-92325.01 Note 1: D: Side-Brazed DIP Note 2: p~ Flows, E: Leadless Ceramic Chip carrter J.AN = JM3S510, Level B G: Metal can (TO-S) SMD = Standard Military Drawing H: Metal can (TO-39, TO-5, TO-99, TO-lOO) 883 = MIL-8TD-S83 Rev C J: C8ramic DIP -MIL = Exceptions to 883C noted on K: Metal can (T0-3) " cartificate of Conformance W: Flatpak Note 3: Please call your local sales office to determine price and availability of space-Ieval products. .A1I "LM" prefix products in this guide are avallble with spacelevel processing. 7-2.0 f!J1National Semiconductor Appendix E Understanding Integrated Circuit Package Power Capabilities INTRODUCTION The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanicall environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions. However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note. Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related: MTBF= Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-tinie during the flat portion of the curve. This area, called the useful life, extends between tl and t2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system. FACTORS AFFECTING DEVICE RELIABILITY Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout. Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life. n 10 EARLY UFE FAILURE RATES VB TIME AND TEMPERATURE The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation: 12 USEFUL UFE .1 Failure Rate WEAHOUT TIME _.!..)] TLIH/9312-1 F = Xl = exp [~(.!.. X2 KT2 Tl Where: Xl = Failure rate at junction temperature Tl FIGURE 1. Failure Rate vs Time Infant mortality, the high failure rate from time to to tl (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note. X2 = Failure rate at junction temperature T2 T = Junction temperature in degrees Kelvin E = Thermal activation energy in electron volts (ev) K = Boltzman's constant 7-21 • However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30' rise in junction temperature, say from 130'C to 160'C, results in a 10 to 1 increase in failure rate. flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding pack'age material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air. Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is: ~100111l III ~ 100k ~-+--+--4~~~~-4 I 1~ Ci TJ = TA + Po (9JAl Where: TJ = Die junction temperature lk t-+-1r--~'-::;ItIF-+-1 ~ ~ '" :::l ;;; 100 t-+~~~~ir+-1 TA = Ambient temperature in the vicinity device Po = Total power dissipation (in watts) 10 ~~j,;E'+--:JI:L-+'IF''f---4 If 9JA = Thermal resistance junction-to-ambient 9JA, the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions-these package power ratings directly relate to thermal reSistance junctionto-ambient or 9JA. Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using Ie components. 60 90 120 150 160 210 JUNCTION TEMPERATURE (OC) TLlH/9312-2 FIGURE 2. Failure Rate as a Function of Junction Temperature DEVICE THERMAL CAPABILITIES There are many factors which affect the thermal capability of an' integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figures 3 and 4. Rgure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board. Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit DEVICE LEAD TL/H/9312-3 FIGURE 3. Integrated Circuit Soldered Into a Printed Circuit Board (Cross-Sectional View) DIE JUNCTION (ENERGY SOURCE) --+ DIE ~ .DIE ATIACH PAD --+ PACKAGE MATERIAL r-+ LEAD FRAME ~ PRINTED CIRCUIT BOARD AIRFILM AROUND PACKAGE --. AMBIENT --+ AMBIENT TL/H/9312-4 FIGURE 4. Thermal Flow (Predominant Paths) 7-22 r--------------------------------------------------------------------,~ DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, 8JA, worst-case ambient operating temperature, T A(max), the only unknown parameter is device power dissipation, Po. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different. The junction temperature of a device with a total package power of 600 mW at 70°C in a package with a thermal resistance of 63°C/W is 10SoC. TJ = 70°C + (63°C/W) x (0.6W) = 10SoC MAXIMUM ALLOWABLE JUNCTION TEMPERATURES en is a: 150"C-25°C 63.C/W = I lS-PlN 2.0 1II!"-:--+--t---+-_.Lt---+--1 1.2 I-"'~--'MAXIMUM PACbGE ~ i~ THERMAL CAPABILITY OPERATlNG~ LINE AREA '" ~ ~ 1'O-600mw 0.4 ~ - SLOPE= _~_ BJA I' 75 100 125 150 TEMPERATURE (OC) CI. !'!' c: :::::II CI. CD iI» :::::II CI. S' ea i ~ a.. g' ;::;: I» O~~~--~~·I~~'~~~ 50 :::::II "V - r-- OPERATING '"POINT ITA=70.C,_-t~-7"'Irl--; 25 -g o I--+--t--+-MO~OED PACKAGE ~ 0.8 175 TUH/9312-5 FIGURE 5. Package Power Capability va Temperature n =~ ea CD .. CD o ig; ;::;: i' The thermal capabilities of all integrated circuits are expressed as a power capability at 25·C still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above 25·C, reduce the package power capability stated by the derating factor which is expressed in mWrC. For our example-a 8JA of 63°C/W relates to a derating factor of 15.9 mWrC. Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16-pin molded package, the maximum allowable temperature is 150"C; at this point no power dissipation is allowable. The power capability at 25°C is 1.9SW as given by the following calculation: ± 2.4 ;,;,; National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is 150"C. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is 175·C. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material. TJ(max)-TA 8JA 1 Derating Factor = - - 8 JA As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16-pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature (70·C in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below 150°C--the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be 150"C. Any intersection that occurs above this line will result in a junction temperature in excess of 150·C and is not an appropriate operating condition. ;C' ~ 1.6 What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates. = '0 ! The next obvious question is, "how safe is 10S·C?" Po@25°C The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor. FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, 'best overall reliability. W 1.9S 7-23 • o CD r---------------------------------------------------------------------------------~ ~ :a B ... ~ Ole Size Figure 6 shows graph of our 16-pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases-this relates directly to having a larger area with which to dissipate a given power. w 90 IE "' 1 ~ TUH/9312-8 AirFlow 1 2 3 4 5 6 78910 When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of Figure 9 illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normaized to the still air condition for our 16-pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air' environment. DIE SIZE IkMIL2) TUH/9312-6 FIGURE 6. Thermal Resistance va Die Size Lead Frame Material Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same ,16-pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 42 type lead frame-these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively. w 150 !2ii5 130 "'ei Iz;.) 110 :a- iii C>. zi:; 7!!§ ... ~::!. 3 4 5 6 7 8910 , DIE SIZE (kMIL2) FIGURE 8. Thermal Resistance vs Board or Socket Mount 50 Ii 70 60 . . . r-... 60 170 .. :!$::!' 90 f ,100 ~ ;!i ;!!, .~ ~ "iii • ... 1-;-1 "SOCKET .i'o, iii 1'' ' ' ' ... 100 CD 110 .. ii a: ~ 1.1 il : i 16-P1N MOLDED DIP ~ BDAHD MOUNT-STILL AIR ---- AL~ "- KOVAR 50 1 0.8 ~ 0.7 • ,,~ 1'"" I I III~~N 1II0LDEDffl DIEflZf= IkMILI ~-;ri ~ 0.6 III o 500 l_ AIR FLOW (UNEAR FEETIMINUTE) TUH/9312-9 FIGURE 9. Thermal Resistance vs AIr Flow "- 70 0.9 ~ ~ 0.5 -- 90 i ~ .... 1.0 Other Factors A number of other factors influence thermal resistance. The most important of these is using thermal epoxy In mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications. Some confusion exists between the difference in thermal resistance junction-to-ambient (8JAl and thermal resistance junction-to-case (8JC)' The best measure of actual junction temperature is the junction-ta-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note. 2 3 4 5 6 78910 DlESIZE IkMIL2) TUH/9312-7 FIGURE 7_ Thermal Resistance vs Lead Frame Material Board vs Socket Mount One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figu~ 8 comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a print~d circuit board (board mount) compared to the same package placed in a socket (socket mount)~ Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%. NATIONAL SEMICONDUCTOR PACKAGE CAPABILITIES Figures 10 and 11 show compOSite plots of the thermal characteristics of the most common package types in the National Semiconductor Linear Circuits product family. Figure 10 is a compOSite of the copper lead frame molded 7-24 package. Figure 11 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious. The package power ratings are specified as a maximum power at 25'C ambient with an associated derating factor for ambient temperatures above 25'C. It is easy to determine the power capability at an elevated temperature. The power specified at 25'C should be reduced by the derating factor for every degree of ambient temperature above 25·C. For example, in a given product data sheet the following will be found: RATINGS ON INTEGRATED CIRCUITS DATA SHEETS In conclusion, all National Semiconductor Linear Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from ± 10% to ± 15% due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the linear data sheets reflect a 15% safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum. Maximum Power Dissipation" at 25'C 1509 mW Cavity Package Molded Package 1476 mW , Derate cavity package at 10 mW I'C above 2S'C; derate molded package at 11.8 mWI'C above 2S'C. If the molded package is used at a maximum ambient temperature of 70'C, the package power capability is 945 mW. Po@ 70'C= 1476 mW-(11.8 mWI'C)X (70'C-25'C) = 945mW Cavity (J Package) DIp· Poly Die Attach Board Mount-Stlll Air Molded (N Package) DIp· Copper Leadfra'rl~TP Die Attach .Board MountSt"IAlr 20 '--_--'_..............L...L..J'-'-"u 1 3 4 5 578910 DIE SIZE (kMIL') 'Packages from B- to 20-pin 0.3 mil width TL/H/9312-11 22-pin 0.4 mil width 10 '--_-'---,-J..-.L...JL...J....LJ...u 1 2 3 4 5 6 7 8910 DIE SIZE (kMIL') 'Packages from 8- to 20·pin 0.3 mil width 24· to 4B-pin 0.6 mil width FIGURE 11. Thermal Resistance vs Ole Size vs Package Type (Cavity Package) TL/H/9312-10 22-pin 0.4 mil width TO·263 (S Package) Board Mount, Still Air 24- to 40",in 0.6 mil width FIGURE 10. Thermal Resistance vs Ole Size vs Package Type (Molded Package) 80 'i' 180 'i' "'<.> ~ .,- 120 < SO-16-N 1"1. 160 140 ~:'·4:~ ""I. 60 (NARROW BODY) ...'" ~ :"""" ~ .... \ \ 50 ...«'" 40 (f) ... iii 2 ........ =-- 1\ <.> ...'" ~ 100 ...z.,< ~~:!::: (WIDE SO-20-W BODY) 50- 8-N 70 ~ Surface Mount (M, MW Packages), Board Mount, Stili Air ......... "'<.> ... \. "" 30 ~ :J: SO-1~-N 20 SO-16-N a 1 2 3 COPPER FOIL AREA (SQ. IN.) SO-14-W ~ SO-16-W SO-20-W 80 TL/H/9312-13 60 'For products wilh high current ratings (>3A), thermal resistance may be lower. Consult product datasheet for more infonmetion. lk 10k lOOk FIGURE 13. Thermal Resistance (typ.O) for 3·, 5-, and 7·L TD-263 packages mounted on 1 oz. (0.036mm) PC board foil TL/H/9312-12 FIGURE 12. Thermal Resistance for "SO" Packages (Board Mount) 7-25 • ~ ,---------------------------------------------------------------------~ .!S i ~ tflN ~ ,t io n a I S em i con d.u c tor APPENDIX F How to Get the Right Information From a Data Sheet Not All Data Sheets Are Created Alike, and False Assumptions Could Cost an Engineer Time and MOfl8Y By Robert A. P!!aae Every year, for the last 20 years, manufacturers have been trying to explain, with varying SLrccess, why they do not measure the Zin Per se, even though they do guarantee it. When a.new product arrives in the marketplace, it hopefully will have a good, clear data sheet with it. ., The data sheet can show the prospective user how to apply the device, what performance specifications are guaranteed and various typical applications and characteristics. If the data-sheet writer has done a good job, the user can decide if the product will be valuable to him, exactly how well it will be of use to him and what precautions to take to avoid problems. In other cases, the manufacturer may specify a test that can be made only on the die as it is probed on the wafer, but cannot be tested after the die is packaged because that signal is riot accessible any longer. To avoid frustrating and confusing the customer, some manufacturers are establishing two classes of guaranteed specifications: • The teste~ limit represents a test that cannot be doubted, one that is actually performed directly on 100 percent of the devices, 100 pereent of the time. SPECIFICATIONS The most important area of a data sheet specifies the characteristics that are guaranteed-and the test conditions that apply when the tests are done. Ideally, all specifications that the users will need will be spelled out clearly. If the product is similar to existing products, one can expect the data sheet to have a format similar' to other devices. • The deSign limit coverS'other tests that may be indirect, implicit or simply guaranteed by the inherent design of the device, and is unlikely to cause a failure rate (on that test), even as high as one part per thousand. Why was this distinction made? Not just because customers wanted to know which specifications were guaranteed by testing, but because the quality-assurance group insisted that it was essential to separate the tested guarantees from the design limits so that the AQL (assurance-quality level) could be improved from 0.1 percent to down below 100 ppm. But, if there are Significant changes and improvements that nobody has seen before, then the writer must clarify what is meant by each specification. Definitions of new phrases or characteristics may even have to be added as an appendix. For example, when fast-settling operational amplifiers were first introduced, some manufacturers defined settling time as the time after slewing before the output finally enters and stays within the error-band; but other manufacturers included the slewing time in their definition. Because both groups made their definitions clear, the user was unlikely to be confused or misled. Some data sheets guarantee characteristics that are quite expensive and difficult to test (even harder than noise) such as long-term drift (20 ppm or 50 ppm over 1,000 hours). The data sheet may not· tell the reader if it is measured, tested or estimated. One manufacturer may perform a 100percent test, while another states, "Guaranteed by sample testing." This is not a very comforting assurance that a part is good, especially in a critical case where only a long-term test can prove if the device did meet the manufacturer's specification. If in doubt, question the manufacturer. However, the reader qught to be on the. alert. In a few cases, the data-sheet writer is playing a specsmanship game, and is trying to show an inferior (to some users) aspect of a product in a light that makes it look superior (which it may be, to a couple of users). ' GUARANTEES TYPICALS When a data sheet specifies a guaranteed minimum value, what does it mean? An assumption might be made that the manufacturer has actually tested that specification and has great confidence that no part could fail that test and still be shipped. Yet that is not always the case.. Next to a guaranteed specification, there is likely to be another in a column labeled "typical". It might mean that the manufacturer once actually saw one part as good as that. It could Indicate that half the parts are better than that speCification, and half will be worse. But it is equally likely to mean that, five years, ago, half the parts were better and half worse. It could easily signify that a few parts might be slightly better, and a few parts a lot worse; after all, if the noise of an amplifier'ls extremely close to the theoretical limit, one cannot expect to find anything much better than that, but there will always be a few noisy ones. For instance, in the early days of op amps (20 years ago), the differential-input impedance might have been guaranteed at 1 MO-but the manufacturer obviously did not measure the impedance. When a customer insisted, "I have to know how you measure this impedance," it had to be explained that the impedance was not measured, but that the base current was. The correlation between Ib and Zin per· mitted the substitution of this simple dc test for a rather messy, noisy, hard.to-interpr~t .test. If the specification of interest happens to be the bias current (Ib) of an op amp, a user can expect broad variations. For example, if the specification is 200 nA maximum, there might be many parts where Ib is 40 nA on one batctt (where the beta is high), and a month later, many parts where the Ib is 140 nA when the beta is low. Reprinted by permission from Electronic Engineering TImes. 7-26 Absolute Maximum Ratings (Note 11) If Military/Aerospace specified devices are required, please contact the' National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage Output Voltage Output Current Storage Temperature, Lead Temp. (Soldering, 4 seconds) TO-46 Package +300"C TO-92 Package +35Vto -O.2V +6Vto -1.0V 10mA TO-46 Package TO-92 Package * + 260"C Specified Operating Temp. Range (Note 2) - 76'F to + 356'F -76"Fto +300'F LM34, LM34A TMINtoTMAX -50'Fto +300'F LM34C, LM34CA LM34D -40'Fto +230'F +32'Fto +212"F DC Electrical Characteristics (Note 1, Note 6) LM34A Parameter Accuracy (Note 7) Conditions 'Typical Tested Limit (Note 4) +77"F O'F TMAX TMIN ±O.4 ±0.6 ±O.B ±O.8 Nonlinearity (Note 8) TMIN ,,; TA ,,; TMAX ±0.35 Sensor Gain (Average Slope) TMIN ,,; TA"; TMAX +10.0 +9.9, +10.1 Load Regulation (Note 3) TA = +77'F TMIN ,,; TA"; TMAX 0,,; IL"; 1 mA ±0.4 ±O.& ±1.0 Line Regulation (Note 3) TA = +77"F 5V,,; Vs"; 30V ±0.01 ±0.02 ±0.O5 75 131 76 132 90 +0.5 +1.0 2.0 Quiescent Current (Note 9) Change of Quiescent Current (Note 3) TA TA TA TA Vs Vs Vs Vs = = = = = = = = +5V, +77"F +5V +30V, +77"F +30V 4V ,,; Vs ,,; 30V, + 77"F 5V,,; Vs"; 30V Temperature Coefficient of Quiescent Current LM34CA Design Limit (Note 5) ±1.0 Typical ±0.4 ±0.6 ±0.8 ±O.B ±2.0 ±2.0 ±0.7 Tested Limit (Note 4) ±1.0 ±2.0 ±2.0 ±3.0 'F +10.0 +9.9, +10.1 mVl'F, min mVI"F,max ±3.0 mV/mA mV/mA ±O.1 mVIV mVIV ±1.0 ±O.O1 ±0.02 ±0.O5 ±O.1 90 183 75 118 76 117 2.0 3.0 0.5 1.0 +0.30 +0.5 +5.0 Minimum Temperature for Rated Accuracy In circuit of Figure 1, IL = 0 +3.0 Long-Term Stability Tj = T MAX for 1000 hours ±0.16 'F 'F 'F 'F ±0.8 ±0.4 ±O.& 92 Units (Max) ±0.30 ±3.0 180 Design Limit (Note 5) p.A 139 142 p.A p.A ",A 3.0 ",A ",A +0.30 +0.5 ",AI'F +3.0 +5.0 'F ±O.16 92 'F Note 1: Unless otherwise noted, these specifications spply: -50"F ,;; Tj ,;; + 300"F for the LM34 and LM34A; -40"F ,;; Tj ,;; +23O"F for the LM34C and LM34CA; and +32"F,;; Tj ,;; + 212"Fforthe LM34D. Vs = +5 Ydcand ILOAD = 50 p.A in the circu~of Figure2; +6 Ydcfor LM34 and LM34A for 230"F ,;; Tj';; 300"F. These specifications also apply from + 5'F to TMAX in the circuit of Figure 1. Nota 2: Thermal resistsnce of the T0-46 package Is 292"F/W junclion to ambient and 43'F/W junction to case. Thermal resistance of the TO·92 package is 324'FIW junction to ambient. Note 3: Regulation is measured at constsnt junction temparature using pulse testing with a low duty cycle. Changes in output due to heating effeela can be computed by muttiplying the internal dissipation by the thermal resistance. Nota 4: Tested limits are guaranteed and 100% tested in production. Note 5: Design limits are guaranteed (but not 100% production tested) over the indicated temparature and supply voilage ranges. These limits are not used to calculate outgoing quality levels. Nota 8: Specification in BOLDFACE TYPE spply over the full rated temperature range. Nota 7: Accuracy is defined es the error between the output voltege and 10 mY!'F times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in 'F). Nota 8: Nonline~ is defined as the deviation.of the output·vollage-versus·temperature curve from the best·fit straight line over the device's rated temperature range. Note 9: Quiescent current is defined in the circu~ of FtgUte Note 10: Contacl factory for availability of LM34CAZ, 1. *'* Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions (see Note 1). 7-27 I ~ Another example is the application hint for the LF156 family: A Point-By-Point Look "Exceeding the negative common-mode limit on eHher input will cause a reverllal of the phase to output and force, the amplifier ou!put to, the corresponding high or low state: Ex, ceeding the negative common-mode 'limit on both inputs will force the amplifier output to a high state. In neittier case does a latch occur, since raising the input back within 'the common-mode range again puts the input stage and, thus the amplifier, in a normal operating mode,." Let's look a little more closely at the data sheet of the National Semiconductor LM34, which happens to be a temperature sensor. Note 1 lists the nominal test conditions and test circuits in which all the characteristics are defined. Some additional test c6hdHions are listed in the column "Conditions", but Note 1 helps minimize the clutter. Note 2 gives the thermal impedance, (which may also be shown in a chart or table). That's the kind of information a manufacturer should really give to a data-sheet reader because no one could ever guess H. Note 3 warns that an output impedance test, if done with a long pulse, could cause significant self-heating and thus, error. Sometimes, a writer slips a quirk into a characteristic curve~ but it's Wiser to draw attention to it with a line of text. This is because it's better to make the user sad before one gets started, rather than when one goes into production. Conversely, if a user is going to spend more than 10 minutes using a new product, one ought to spend a full five minutes reading the entire data sheet. Note 6 is intended to show which specs apply at all rated temperatures. Note 7 is the definition of the "Accuracy" spec, and Note 8 the definition f,or non-linearity. Note 9 states in what test circuit the quiescent current is defined. Note 10 indicates that one model of the family may not be available at the time of printing (but happens to be available now), and Note 11 is the definition of Absolute Max Ratings. • FINE PRINT What other fine print can be found on a data sheet? Sometimes the front page may be marked "advance" or "preliminary." Then on the back page, the fine print may say something such as: Note-the "4 seconds" soldering time is a new standard for plastic packages. •• Note-the wording of Note 11 has been revised-this is the best wording we can devise, and we will use it on all future datasheets. "This data sheet contains preliminary limits and design specifications. Supplemental information will be published at a later date. The manufacturer reserves the right to make changes in the products contained in this document in order to improve design or performance and to supply the best possible products. We also assume no responsibility for the use of any circuits described herein, convey no Iicerise under any patent or other right and make no representation that the circuits are free from patent infringement." APPLICATIONS Another important part of the data sheet is the applications section. It indicates the novel and conventional ways to use a device. Sometimes these applications are just little ideas to tweak a reader's mind. After looking at a couple of applications, one can invent other ideas that are useful. Some applications may be of no real interest or use. In fact, after a device is released to the marketplace' in a preliminary status, the engineers love to make small improvements and upgrades in speCifications and characteristics, and hate to degrade a specification from its first published value-but occasionally that is necessary. In other cases, an application circuit may be the complete definition of the system's performance; it can be the test circuH in which, the specification limHs are defined, tested and guaranteed. But, in all other instances, the performance of a typical application circuit is not guaranteed, it is only typical. In many circumstances, the performance may depend on external components and their precision and matching. Some manufacturers have added a' phrase to their data sheets: Another Hem in the fine print is the manufacturer's telephone number. Usually it is best to refer questions to, the local sales representative or field-applications engineer, because they may know the answer or they may be best able to put a questioner in touch with the right person at the factory. "Applications for any circuits contained in this document are for illustration purposes only and the manufacturer makes no representation or warranty that such applications will be suHable for the use indicated without further testing or modification." OccaSionally, the factory's applications engineers have all the information. Other times, they have to bring in product engineers, test engineers or marketing people. And sometimes the answer can't be generated quickly-data have to be gathered, opinions solidified or policies formulated before the manufacturer can answer the question. Still, the telephone number is the key to getting the factory to help. In the future, manufacturers may find it necessary to add disclaimers of this kind to avoid disappointing users with circuits that work well, much of the time, but cannot be easily guaranteed. ORI~INS OF DATA SHEETS Of course, historically, most data sheets for a class of prod- The applications section is also a good place to look for advice on quirks-potential drawbacks or little details that may not be so little when a user wants to knoVl( if a device will actually deliver the expected performance. ucts have been closely modeled on the data sheet of the forerunner of that class. The first data sheet was copied to make new versions. For example, if a buffer can drive heavy loads and can handle fast signals cleanly (at no load), the maker isn't dOing anybody any favors if there is no mention that the distortion goes sky-high if the rated load is applied. That's the way it happened with the UA709 (the first monolithic op amp) and all its copies, as well as many other similar families of circuits. " ' 7-28 .-----------------------------------------------------------~~ Even today, an attempt is made to build on the good things learned from the past and add a few improvements when necessary. But, it's important to have real improvements, not just change for the sake of change. So, while it's not easy to get the format and everything in it exactly right to please everybody, new data sheets are con· tinually surfacing with new features, applications ideas, specifications and aids for the user. And, if the users com· plain loudly enough about misleading or inadequate data sheets, they can help lead the way to change data sheets. That's how many of today's improvements came aboutthrough customer demand. Who writes data sheets? In some cases, a marketing per· son does the actual writing and engineers do the checking. In other companies, the engineer writes, while marketing people and other engineers check. Sometimes, a commit· tee seems to be doing the writing. None of these ways is necessarily wrong. For example, one approach might be: The original designer of the product writes the data sheet (inside his head) at the same time the product is designed. The concept here is, if one can't find the proper ingredients for a data sheet-good applications, convenient features for the user and nicely tested specifications as the part is being designed-then maybe it's not a very good product until all those ingredients are completed. Thus, the collection of raw materials for a good data sheet is an integral part of the design of a prod· uct. The actual assembly of these materials is an art which can take place later. WHEN TO WRITE DATA SHEETS A new product becomes available. The applications engi. neers start evaluating their application circuits and the test engineers examine their production test equipment. But how can the users evaluate the new device? They have to have a data sheet-which is still in the process of being written. Every week, as the data sheet writer tries to polish and refine the inCipient data sheet, other engineers are reo porting, "These spec limits and conditions have to be reo vised," and, "Those application circuits don't work like we thought they would; we'll have one running in a couple of days." The marketing people insist that the data sheet must be finalized and frozen right away so that they can start printing copies to go out with evaluation samples. These trying conditions may explain why data sheets always seem to have been thrown together under paniC conditions and why they have so many rough spots. Users should be aware of the conflicting requirements: Getting a data sheet "as completely as possible" and "as accurately as possi· ble" is compromised if one wants to get the data sheet "as quickly as possible." The reader should always question the manufacturer. What are the alternatives? By not asking the right question, a mis. understanding could arise; getting angry with the manufac. turer is not to anyone's advantage. '0 g ~ 'TI Robert Pease has been staff scientist at National Semicon· ductor Corp., Santa Clara, Calif., for eleven years. He has designed numerous op amps, data converters, voltage reg. ulators and analog-circuit functions. fI 7-29 o r---------------------------------------------------------------------------------~ C "I C ~ £a. tflNationalsemiconductor 8 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D08C All dimensions are in inches (millimeters) ~ (1~~B)~ MAX 8 7 • 5 f 0.298 (7.569) . MAX I~=-==-=-.::::.,.....'I-'~ l'2 3 4 I--- 0.485 : _ PIN NO.l ...... IDENT (1~~~9) 0.054 (1.372) r::===:::t:t:l,TYP II 0.020-0.0BO (0.508-1.524) j 0.008-0.015 (0.203-0.381) I 0.300 1--(7.620iREF 0.100 >0.010 (2.540 '0.254) -I ~ I- 0.015-0.023 (0.381-0.584) 0.125 (3.175) MIN DOSCiREVCj 14 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D14D All dimensions are in inches (millimeters) C~~1098 0.710:-:] (18.03) ~.".-]~ ~ ~ ~ II~~ 1234567 0.050±0.005 (1.270±0.127) 0.180 (4.572) MAA -t-----:!=::r.;;;;::i:==::;;;;;;::;;;:::;;::;;:i-bh 0.020-0.060 .I (0.508 -1.524) ... ..", +~~ - (0.203-0.381) I. ~I 0.290 - 0.320 (7.366-8.128) 0.098 (2.489) MAX lL =.r- 7-30 t ~~ (3.810) MIN t ~.J1 JL=~ O.IOU±O.DlO (2.540±0.254) TVP D14D (REV G) -a ::r 14 Lead Hermetic Dual-in-Line Package NS Package Number D14E ':i All dimensions are in inches (millimeters) ~ c 3' CD ::l !!. o ::l UI PIN NO.1 IDENT - - ; . . . (7.569) MAX ~~~~~~~~~ 0.485 (12.319) MAX ~ ~ T I 0.300 ---l I 0.180 (4.572) MAX ~ 0.020-0.060 0.Ooa-O.015 0" . . -.., ' (0.203-0.3811 0.015_0.023 II 0.125 (0.381-0.5841 -j j-- (3.1751 I ~ I-- (7 .620) --l REF 0.100 ±O.Olo (2.540 ±0.2541 MIN 014E(REV EI 16 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D16C All dimensions are in inches (millimeters) PIN ND.l IDENT fIt .0.Ooa-0.015 (0.203-0.381) 1....1 0.290-0.3Z0 (7.366-8.128) (0'1~7) MIN r- 0485 0.050 ±0.005 TVP 0.180 - ' - ---j(1.270±0.127l (4.572) (12.3191 MAX MAX 0.020-0.060 0.005 0.080 (Z.032) MAX TVP L 0.015-0.0Z3 (0.381-0.584) .JL 0.100 ±0.010 (Z.540 ±0.254) (0.100((2.540) ISC TVP REL TO LEADS 1 AND 16) 7-31 0.125-O.Z00 (3.175-5.080) 0.150 (3.810) MIN 016C(REVHI ,. o C o '!CD r-------------------------------------------------------------------------------------~ 16 Lead Hybrid Metal Can Oual-in-Line Package NS Package Number 0160 E All dimensions are in inches is 1j ~ a.. 0.080 RAD TYP 1 2 3 4 5 6 7 8~ 0 0 0 0 0 0 0 0 ---'i-- " 0 0 0 0 0 0 0 0 16 15 14 13 12 11 10 9 .,6. (.EV CJ ../ 20 Lead Ceramic Leadless Chip Carrier, Type C NS Package Number E20A All dimensions are in inches (millimeters) .... 0.350+0.008 1 (B.890±0.203) - I j _I 0.015 1 - 0.063~0.075 I'.D-'. •' ~ 'If (D.381).../ MIN TYP I f 'lMo~"M"""':r-.! 1-- LDETAILA Top View Side View 45' x 0.015+0.010 (0.381±0.254) 0.007-0.011 (0.178-0.279) R TYP t 0.045-0.055 (1.143 1.397) TYP 45' x 0.040±0.010 (1.016±0.254) 3 PLes BoIIomVlew 0.003 (0.076)~ 0.015 (0 381) ----.r--MAX TYP MINTYP~-= '''If 0.022" 'T MAX TYP (0.152) MIN TYP a_ Detail A E20AtREVDI 7-32 ,-----------------------------------------------------------------------------, 48 Lead Ceramic Leadless Chip Carrier, Type C NS Package Number E48A All dimensions are in inches ~ =1. ~ o 3' CD i b ."o::g.~ 0.515 TYP. 0' ~ fn 0.003 ~~~:~O.OI5 MAX. TYP. 00'. ' t'l ~O.022 MAX TYP. .'N. TYP. DETAIL: "A" 0.012 R. TYP. (,xl UBA(REV.C) BOTTOM VIEW TOP VIEW 12 Lead (0.400" Square Pattern) TO-8 Metal Can Package NS Package Number G 12B All dimensions are in inches (millimeters) (1:::-~4~J- 0.148 -0.1'1 -U97) ~ 0.030 (0.7I2J DIA - r- - - ~t-l0.l13li (0.112) 0.lIII0 ( 12.111) T MAX UIICOIITIItILLED LEAIIDIA D.018-1.811 U8Ii-1.4I3J DIA TYP I" I-j G1211(REYC) 7-33 • o C o 'iii c II» r---------------------------------------------------------------------------------, 3 Lead (0.200" Diameter P.C.) TO..39 MetaJ Can Package, High Profile NS Package Number H03S E All dimensions are in inches (millimeters) Q ! ~ a. 0.240-0.260 (6.096-6.604) ~I-I (:::=:::) DlA 1 0.315-0. 335 (8.001oIA8•109) O'045Q (1.143) MU •. _ L T - ~ ~ ~ t:.:.SYm~ ~.635) LEADD~ -l '--(0.40&-0.483) 0.016-0.019 DIA TYP 6 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package NS Package Number H06C All dimensions are in inches (millimeters) 0.350-0.370 (8.890-9.388) OIA 0.315-0.335 (8.001-8.589) DIA 0.015-0.040 (0.381-1.016) r =~====~~~~~~~=m~~Mf~~~E PLANE -,SEATl~ 0.025 (0.835) ~~ MU UNCONTROLlED LEAD DIA 0.018-0.019 (0.40&-0.483) DIA TYP 0.115 -0.145 (2.921-3.&83) O~ HOeCjREVD! 7-34 ,-----------------------------------------------------------------------------, a Lead (0.230" Fl Diameter P.C.) TO-5 Metal Can Package NS Package Number HOaA All dimensions are in inches (millimeters) 0.350-0.370 (8.890-9.3981 OIA· 0.165 -0.185 ~ c 3' CD se. o 0.315-0.335 (8.001 -8.5091 ::;, (II 0:'015_0.040 .L.r- (0.381-1.0161 ~ REFERENCE PlANE -! ::;, 1~ (4.191-4.6991 ~ +----.-- • t (1.0161 0.040 (I~PI MAX nn n nn 0.500 , UU U 0.225-0.235 (5.715-5.9891 DlA PC -iT --'-1... SEATING PlANE _ ~~~~CONTROLLED L U~ -+-__. - j LEAO DIA 0.016-0.019 (0.406 0.4831 D1A TYP 0.115 -0.145 (2.921-3.6831 DIA 45° TYP -. tGlA(REVC) a Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number HOaS All dimensions are in inches (millimeters) 0.350 - 0.370 (8.890 - 9.3981 OIA I 0.180-0.210 (4.5n-5.3341 0.30&-0.335 J (7.74:~!5091 -L ~ l. L 0.&00 -- (l~r 0.035 (0.8891 MAX ~~ ~ ~~ --II-- 0.015 - 0.019 DIA TVP 0.225 _ 0.235 (D.381 - OA83) (5.715 - 5.969) P.C. HOBB(REVAI 7-35 ,. o C o CD c CD E r---------------------------------------------------------------------------------, 8 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package NS Package Number H08C All dimensions are in inches (millimeters) is 0.350-0.370 (8.8911-9.398) OIA 1j I 0.315-0.335 (8.001-8.509) DlA i'ii.6351 LEAD OIA --±.l .I. ...L- 0.165-0.115 (4.191-4.6991 RfFERENCE PLANE - - 0.500 - ft (:::1 (I~L=-~~ ~ ~~ SEATING PLANE 0.015-0.040 (0.381-1.0161 ..l k 0.016 -0.019 OIA TYP (0.406-0.493) + 0.195-0.205 j.-___ ..!:!!!!. TYP OIA (4.953-5.2011 P.C. (2.5401 H08C(FlEYE) 8 Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number H08D All dimensions are in inches (millimeters) 0.350-0.370 (8.99 - 9.401 OIA 0.165 -0.185 (4.191-4.6991 I--------++_ +----t+----..... 0.315-0.335 (8.001-8.5091 DIA L R~R~EPLANE~~=~~~~~~~ f ~. . If_~)___~_:x_16_1~~ ~ ~k~ 0.040 0.225-0.235 (5.715-5.9691 DIA PC 0.016-0.019 (0.406-0.4831 OIA TVP 0.025 (0.6351 MAX UNCONTROlLED LEAD OIA +-----1 .... !REVAI 7-36 ." 10 Lead (0.230" Diameter P.C.) TO-5 Metal Can Package NS Package Number H 1OC All dimensions are in inches (millimeters) r 1 DIA f(:.::) +--~-.---- ~ = = U) 0' 0.315-0.335 (1.001-1.509) U) ::ONTROLLEO LEAD DIA • __ _ _ T 0.500 0.035 (12.70) (D.8B1) , MIN MAX m ill ~ ~ 0.016-0.019 OIA (0.406-0.483) ' o 3" CD 0.350-0.370 (8.890 -9.391) OIA 0.165-0.185 (4.111-4.699) I REfERENCE PLANE SEATING PLANE 0.015-0.040 (0.381-1.016) TYPJ I..- 0.029-0.045 (0.737 1.143) H10C (REV E) 10 Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number H10F All dimensions are in inches (millimeters) 0.155-0.185 (3.937-4.899) ~ 0.350-0.370 (8.190-9.398) 0.315-0.335 t(8.001-8.5G9)1 (0.8B1) 0.035Q MAX SEATING JPLANE L D.sao (1~t:) ill ~ ~ rn 0.015-0.019 0 A (0.38HIA83) I TYP --II-$/' ~ 0.028-11.034 36' TYP (0.861-11.884) 0.029-11.045 (0.137-1.143) P.C. Hl0FIREVA) 7·37 • 10 Lead (0.230" Diameter,P.C.) Metal Can Package NS Package Number H10G - - (B.OO1-B.aG9) 0,315-0.335. , DlA J . All dimensions are in inches (millimeters) .---~ 0.280-0.210 (6.60(-7..3&8) . ' 0 . D 3 5 MAX . (UBI) t- . (~~lIlO om . I ~(O,401-0.46II) I. - . T-"'-SEATlN8 PlANE D.Oll-0.011 DIA TVP 0.026-0.0U (1.881-0.1184) 0.021-0.0(8 (0.737-1.1(3) H1OG(AEV8) 12 Lead (0.400" Square Pattern) Metal Can Package NS Package Number H 128 All dimensions are in inches (millimeters) r-I . 0.6(5-0.866 113.M3-14.Dl7)----j DIA I 0.030 MAX .i (0762) UNCDNTRDLLED LEAD DIA t 115.113-15.367) OIA ..L-_~_ 0.1126-0.031 (0.610-11.114) ~ H128(F1EVA) 7-38 .-----------------------------------------------------------------------------,~ ::::r 8 Lead Dual-in-Line Hybrid Package NS Package Number HY08A ~ ';i rr ::::::::::1l All dimensions are in inches ~ c 3' CD :::J (II 0' :::J (II I 0.470:!: 0.005 0.490:t 0.005 ~L=..!4====~. ~ I-- HY08A (REV C) 0.900:l:0.010---.l 8 Lead Ceramic Dual-in-Line Package NS Package Number J08A All dimensions are in inches RO.Ol0 TYP RO.025 TYP j 7-39 0.220 0.310 MAX 0.291 GLASS 1 1 JOBA (REV K) • !o "iii c CD E 14 Lead Ceramic Dual-in-Line Package NS Package Number J 14A All dimensions are in inches (millimeters) is 0.185 1j ,..1·----(I~~I----·1 "!!. 0.025 (0.6351 f. f0.220-0.310 RAD (5.568-1.8141 ~~:T"'I"':'T"T':"I"'T~""""~ 0.290-0.320 (1.366-8.1281 l 0180 (4.512) -'-MAX j; I I 0.060 to.o06 "I 0.126-0.200 (3.115-5.080) (2.489) 0.100 to.OIO (2.640 ±0.264) MAX BOTH ENDS 0.160 (3.811 MIN J''''I"EV OJ 16 Lead Ceramic Dual-in-Line Package NS Package Number J 16A All dimensions are in inches [millimeters] ~ [19.94] MAX - ~ 16 9 0.785 ,m)::::::: :I~m R [0.64] t 1 8 \ ~R 0.005-0.020 TYP [0.13-0.51] 0.037 t 0.005 TYP [O.9H 0.13] 0.055 t 0.005 TYP [1.40 t 0.13] 0.005 [0.13]1 MIN TYP 0.290-0.320 [7.37-8.13] -+_---1 GLASS SEALANT 0.200 [5.08] MAX TYP 0.125-0.200 TYP [3.18-5.08] 0.080 MAX [2.03] BOTH ENDS 0.010 t 0.002 TYP [0.25 t 0.05] , J 95ot5° ..... TYP I-Jj ' , , 0.310-0.410 [7.87-10.41] 0.100tO.Ol0 TYP [2.54 t 0.25] 7-40 L , J16A (REV L) 2 Lead TO-3 Metal Can Package NS Package Number K02A All dimensions are in inches [millimeters) [~im:~2~~~]--+---~-f+--~+- ~8~~~:~:m 0.060-0.070 [1.52-1.78] -r- [""[' 0.660-0.670 1.177-1.197 ["'[----UNCONTROLLEJ LEAD DIA rO?6~ WAX ~2.~~~ MAX SEATING PLANE '0,. (REV 0) 8 Lead TO-3 Metal Can Package NS Package Number K08A All dimensions are in inches (millimeters) 0.880-0.9Z& (2Z.3&-Z3.58) ~ 0.760-0.77& (19.304-11.&15) ~ 0.025 ~ (0.&35) 0.345-0.385 MAX UNCONTROLLED (8.79310.033 LEAD -0.210 0.085-0.100 -7.112) (Z.I58-Z.&4) ~ L ! t ~n u --II-- 0.038-0.044 (0.914-1.118) ~ (3.1191) MAX TVP OAIO.....&10 (1Z.448-1Z.854) LEAD CIRCLE f 0.122f ~ 10° (14.8&1-1&.24) 1.177-1.181 (Z9.89&-30AD4) 40"(7.) KOBA(AEVC) 7-41 fI o ,-----------------------------------------------------------------------------, f5 "0 :Ii 8 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M08A E All dimensions are in inches (millimeters) is •. 189-0.197 B (4.880-5.004) "j!. .c a.. l::!~-::~) ~r 0.010 0.020 x4S. 10.254 -0.508) r D.0&3-I.089 (1.348-1.7&3) S· MAX ryp ..b 3r~ I. 4 (8.356) ..!!:!!!.J . . (1.270) TVP ~~~L~~ m ALL !£ADS ~ 0.014 0 0 1&_0050 lum 0.254) 0.1104-0.010 ) -;:J~::1~~1l~l~(8:·,O:2rD.254: + ~ lemiNG PlANE ALL LEADS .!!!!!!!.m _ (0.203) 0.014-0.020 TVP (D.358-D.50S) .... ,FEy H) 14 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M14A All dimensions are in inches (millimeters) 30" :r:=n=:n=n~~ 3 4 7-, ~MAX 10.254) (D.254 0.010-0.020 -8.508) 0.053-0.069 (1.346 1.753) x45" S" MAXTYP cI. + SEAliNG PLANE f (0.408-1.270) TVP ALL LEADS 7-42 + o.t (0.356) 14 Lead (0.300" Wide) Molded Small Outline Package, JEDEC NS Package Number M 148 All dimensions are in inches (millimeters) If ~~ (8.788-9.195) 14 13 12 11 10 9 8 0.394 - 0.419 ~ 0.027 __ (0.686) 0.009-0.013 (0.229-0.330) TYP ALL LEADS (~:::=~::1):t.!!!!!. rr---.==-- 0.093-0.104 x45' t 8' MAX TVP ALL LEADS L.~""""""","""'7"""~~~ t ~ h8'8L d t n nnn ~ ,(0.432) ~ t (0.102-0.305) J L JL t T ..!:!!. . (0.II4G-l.118) 0.037-0.044 SEAlING PLANE .!!:!!!!=!!:!!! TVP (1.270) TVP (0.356-0.483) M14B (REV 0) 16 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M16A All dimensions are in inches (millimeters) ~ 0.010-0.020 )(4811' 811' MAX TYP L ----JL-=r~ 0.004-0.010 (1.346 -1.753) (0.254 -0.808) + t t 0.0118-0.010 (8.203-0.254) TVP ALL LEADS 1.050 i1.21Ui PLANE 0.014-0.020 TVP (0.3115-0.5111) TYP Ml8AIAeYH) 7-43 ,. • r---------------------------------------------------------------------------------, .~. "ii i 16 Lead (0.300" Wide) Molded Small Outline Package, JEDEC NS Package Number M16B E All dimensions are in Q .il~Ches mllmeters If. LEAD NO I IDENTIFICATION ~ TVP ALL LtAOS 0,0926-0.1043 2.35-2.i5 ~ L~ [~'-•. SEATING PLANE l 0.0040-0.0118 NAXTYP~ 3 r--r=-=:-r- t~ 0.014 ""D.i5 8 ALL LEAOS Al.l. LEAD TIPS o.~~::~:~;oo TYP ALL LEADS 111181 (REV F) 24 Lead (0.300"Wide) Molded Small Outline Package, JEDEC NS Package Number M24B All dimensions are in t I .il~Ches mllmeters 0.4190 ~.~~:g 0.2992 10.00 0.2914 LEAD NO 1 IDENTIFICATION 7.6 7.4 m ~~;;;;:;:=;;:~~;;;::;;;;II~ 0.0125 0.1043 0.0926 2.65 .., 2.,35 SEATING ... . . 0.0118 L-~l!o.g~:o .' . . . . 01 * PLANE.~ o. t _. - 0.029 45°.0.010 TIS 0.25 ~I ALL LEAD TlP~ 0.014 5 7-44 W'" ~''] ill 8° hlAXTYP¥ 0.0500 ALL LEADS 0.0160 TYP ALL LEADS 1.27 0.40· .'48 (REV F) r-------------------------------------------------------------------------~~ :::r 5 Lead Molded SOT-23-5 NS Package Number MA05A r All dimensions are in inches [millimeters] 0.016-0.018 TYP ~ [0.41-0.46] I I ~ ~G 0.075 [1.90] I...,1., .. F====F===== -----+----- I 0.027 [0.69]1 no 8 0.039 [1.00].. [2.59-3.00] 1C:;:::!::;===;::I=i==:;::::!::i::!>I~ .rI- 0.0375~ TYP [0.953] [1.78-2.03] -I 10· ALL AROUND - - \ I 0.0375 [0.953] 0.028-0.035 TYP [0.71-0.90] fiijiJ] . . 10. ~ V- UI LAND PATTERN RECOMMENDATION ~ 0.070-0.080 TYP .......; 1- I· 1 1.~.7 0.059-0.070 [1.50-1.78] [O~!~:~:~~l-+----l c ~. +_ L,','i. I H .. 'm ALL A R O U N o J [0.05-0.13] 0.0035-0.0056 TYP [0.089-0.142] 0.110-0.120 [2.79-3.05] nl~ j '1 dJ 1.. J J It 0.021-0.026 ~ TYP [,"039-0.051 30 ] IlSo.9T· ~.=t-L. [0.53-0.66] MAOSA (REV D) 8 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N08E All dimensions are in inches (millimeters) O'032±O'0II5~7 0.Dl2 (2.337) DlA (O.813±0.127) RAO PIN NO.1 IDENT PlNND.110ENT~ 1 0.1109-0.015 (0.229-0.381) ~ (1.143±0.381) NOIE(REV Fl 7-45 ,. o C o 'ii i r-------------------------------~--------------------~------------------------------~ 10 Lead Molded Dual-in-Line. Package NS Package Number N1OA E All dimensions are in inches (millimeters) C 11 ia. 0.075 (1.905) NOM t 0.250±0.005 (6.350 ± 0.127) I .!.'-------F!.¥""""'Io.!..!.I....!..y-i PIN NO.1 IDENT f L -j 0.0119-0.015 (0.229-o.3Bl) O.2BO (7.112) - o.olU 0.003 (0,457 ± 0.076) TYP TYP MIN 0.325~~:: (B.255 ~ ~:~~) (1.016) TYP NIOAIREVA) 7-46 r--------------------------------------------------------------------------, :::r 14 Lead (0.300" Wide) Molded Dual-in-Line Package 1. ~ NS Package Number N14A All dimensions are in inches (millimeters) ~ c 3' CD ~ rn o· ~ rn INDEX AREA PIN NO. 1 IDENT OPTION 1 omON D2 0.135±0.1III5 (3.421 ±0.12T) 0.300-0.320 (7.620-8.1211 4' TYP OPTIONAL ~ (~:::) MIN O.I2li-O.lla I (3.175-3.810) 1O'±4' TVP II 0.014-0.023 TYP- _ (0.358 -0.584) t ~ -'l-- I I - _ ___ 0.05UO.01D lYP (1.270-0.2541 L O.075±O.IIIS (1.905±0.381) 0.1165 (1.&51) 0.008-0.016 lYP (0.203-0.406) O.290 (7.112) ..... MIN 0.100±G.Ol0 TYP (2.540±8.254) O.:us:::: f8 2li6 +1.016\ ~ . -0.3811 16 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N 16A All dimensions are in inches (millimeters) 0.092 (2.337) DIANDM (2X) PIN NO.1 IDENT 0.280 0.065 95'±5' 0.009-0.015 tJ NI6A(REV EJ 7-47 ,. 4 Lead Molded TO-202 NS Package Number P04A t :L i. All dimensions are in inches (millimeters) 0.150 ±0.Ol0 (3.810 ±0.2541 0.395±D.015 (10.03±O.3811 I 0.385 ±0.020 (9.779 ±0.50S1 0.125 ±0.Ol0 (3.175 ±0.2541 f 0.143±0.003 DIA (3.&aHO.07&1 0.250 ±O.015 .§~ 0.515 ±0.025 "L 0.023-0.030 (0.584 -0.7821 0.032 ±0.005 (0.813 ±0.1271 0.1110±8.010 (2.540±0.2541 0.021±0.003 (0.533±0·0781 ~ 0.053±0.015 \ . - (1.34&±0.3811 ~A(REVA) 7·48 ---------------------------------------------------------------------------------1 r 11 Lead Molded TO-202 NS Package Number P11A All dimensions are in inches (millimeters) 0.110±0.OO5 (22.352±0.127) ~ 1. i c 3· CD :::J rn o· :::J 0.121-0.132 (3.251-3.353) 0.034 x45· (Pl1A-2) OIA (0.164) ~_ _ _ _ 0.050 x45. (P11A.l) (1.270) ~ x45· (P11A·2) (3.404) 0.090 x45. (P11A.l) (2.211) 0.062 rn EJECTOR PINS 0.0111-0.009 I + - ± - - - r (0.025 0.229) (1.575) RAO 0.050±0.015 (1.270±0.381) 0.025±0.OO3 (0.635 ±0.076) (Pl1A·2) 0.011±0.OO3 (0.457±0.076) (P11A·l) P"AtHI:Vfo! 3 Lead Molded TO-220 NS Package Number T03B All dimensions are in inches [millimeters] 0.330-0.350 ~ [8.38-8.89) 0.100-0.120 [2.54-3.05) 0.149-0.153 fIJ [3.78-3.89) C t 0.400 -0.005 [10.16 ~~:~;) L --,--u 0.13~--0-.1-60-TY L--I--..... -P- [3.30-4.06) PIN #1 ID 1+------- 0.190-0.210 [4.83-5.33) 0.048-0.055 [ 1.22-1.40) TYP 0.027-0.037 [0.69-0.94) TYP 1.005-1.035 [25.53-26.29) ?\ ~ IE I--±.I 0.175~-~0~.1:8:-5-.L:-----tt----'b:::::I======:::ti ~ [4.45-4.70) 7 0 ( 0.525-0.555 ) [13.34-14.10) ....._---,,....., fTL...--'--"--r~-::--: . L 0.048-0.052 [1.22-1.32) --I ~ +0.007 [0 38 +0.18) • -0.03 0.015 -0.001 0.105 ~~:~:g [2.67~~:~:) SEATING PLANE TAPERED SIDES 10 TO'. (REV L) 7·49 i ~ I !o !CD 5 Lead Molded TO-220 NS Package Number T05B E All dimensions are in inches (millimeters) is ~ ~ .c a. 0.110±t.I.0 ii.lii'±o:ii4i J. np J--r---~~~ PlNNO.' 0.3411:1.010 tf,13I±0.254) IDSf1lfICATION x,.•,) ,I I _.u D.llllxO.015 (1.317 1EA1I.. PUlE T058(REVf) 11 Lead Molded TO-220 NS Package Number TA 11 B All dimensions are in inches (millimeters) o.m (4.496) y 0.689 (17.50) r°f) 0.421 l ( o o 0.860 (21.84) 0.866 (22.00) 5x (~8:j;::::)ill 6x 0.860±O.020 (21.84±0.50B) l1x (:::j-~. ~ ~ ~-J: y-+==~~ -l _lOx (~::~) [t;f-i:::::::::) I • 0.670 ---:-----'l~~1 (17.02) O.200±O.OIO (5.08D±D.254) _ 7-50 .. :::::::~) TYP TA1181REVA) 11 Lead Molded TO-220 NS Package Number TF11 B All dimensions are in inches [millimeters] 0.783-0.793 ~ [19.89-20.14] 2 450 0.110-0.114 x x [2.79-2.90] O. 172-0.182 -t--~ [ 4.37-4.62] 0.125-0.135 [3.18-3.43] III 0.149-0.153 [3.78-3.89] 0.187-0.197 ~ ~'I",l -I~- 5x 0.851-0.881 [21.62-22.38] L T~· 6 x 0.845-0.875 [21.46-22.23] 0.414-0.424 [10.52-10.77] 0 ( 0.866 ) [22.00] """'"11-+ '~TYP 0.660-0.680 [16.76-17.27] 0.690-0.710 [17.53-18.03] [I~ .-....=- ~ I 0.057-0.077 TYP [1.45-1.96] 0.766-0.776 [19.46-19.71] ( 0.860) 170 TYP '¥i=;:;::;=;:;:~I;:;=;:;::;=;=;;;;:FF;D PIN #1 IDENT -~ - J --=i \ -I L II 0.014-0.0 17 TYP [0.36-0.43] 0.035-0.040 TYP , [0.89-1.02] 0.190-0.210-+_ _-1-_ _1-- 0.159-0.179 [4.83-5.33] [4.04-4.55] TFl 18 (REV c) 10 Lead Cerpack NS Package Number W10A All dimensions are in inches 0.270 MAX 0.080 0.055 0.050:1: 0.005 TYP 0.035 0.026 TYP 0.005 MIN TYP , I 10 0.370 0.250 ----t 1 0.270 MAX GLASS 0.260 0.238 ----t Y.,,, 0.008 DETAIL A 0.370 0.250 0.006 0.004 TYP L- w.o> 5 J 7-51 0.045 WAX TYP (REV E) · c .~ CD ,-----------------------------------------------------------------------------, 14 Lead Ceramic Flatpack NS Package Number W14B E All dimensions are in inches is i .c a. 0.080 0.050 0.385 MAX 0.045 0.026 TYP -j 0.050 :t 0.005 TYP 14 I 0.005 MIN TYP 8 I I, I, 0.370' 0.250 I I I~-t 0.260 0.235 I , PIN #1 IDENT 0.006 0.004 TYP -t U I, 1 0.019 TYP..J 0.015 I- 0.370 0.250 1"" 0.008 DETAIL A 7 0.045 MAX TYP W14B (REV J) 3 Lead Molded TO-92 NS Package Number Z03A All dimensions are in inches [millimeters] 1 - 5 0 2 PLCS t::==:::J-.l r----i 'L J ~'2.70]MIN •.-.' SEATING PLANE I a 0.175-0.185 0.500 .", ------,, ,, [4.45-4.70]" L~ EJ ECTION MARK I/J 0.065 ,, : 0.0145-0.0155 [0.368-0.394] BEFORE LEAD FINISH I+------+\-- 0.135-0.145 [3.43-3.68] 0.090 MAX [2.29] (UNCONTROLLED LEAD DIA) f E---. E---. 0.045-0.055 [1.14-1.40] 0.045-0.055 TYP [1.14-1.40] -..1 -0.016-0.02~ [0.41-0.53'] TYP J R 0.090 [2.29] 10 0 2 PLCS [1.65] O•015 MAX r [0.38] Z03A (REV r) 7·52 /fINational Semiconductor Bookshelf of Technical Support Information National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature. This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book. For datasheets on new products and devices still in production but not found in a databook, please contact the National Semiconductor Customer Support Center at 1-800-272-9959. We are interested in your comments on our technical literature and your suggestions for improvement. Please send them to: Technical Communications Dept. M/S 16-300 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 ADVANCED BiCMOS LOGIC (ABTC, IBF, BiCMOS SCAN, LOW VOLTAGE BiCMOS, EXTENDED TTL TECHNOLOGY) DATABOOK-1994 ABTC/BCT Description and Family Characteristics. ABTC/BCT Ratings, Specifications and Waveforms ABTC Applications and Design Considerations • Quality and Reliability. Integrated Bus Function (IBF) Introduction 54174ABT3283 Synchronous Datapath Multiplexer. 74FR900/25900 9-Bit 3-Port Latchable Datapath Multiplexer 54174ACTQ3283 32-Bit Latchable Transceiver with Parity Generator/Checker and Byte Multiplexing SCAN18xxxA BiCMOS 5V Logic with Boundary Scan. 74LVT Low Voltage BiCMOS Logic VME Extended TIL Technology for Backplanes ALS/AS LOGIC DATABOOK-1990 Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky. Advanced Schottky APPLICATION SPECIFIC ANALOG PRODUCTS DATABOOK-1995 Audio Circuits • Video Circuits. Automotive. Special Functions • Surface Mount ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELL5-1987 SSI/MSI Functions. Peripheral Functions. LSIIVLSI Functions. Design Guidelines • Packaging CMOS LOGIC DATABOOK-1988 CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC MM54HCT /MM7 4HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount CLOCK GENERATION AND SUPPORT (CGS) DESIGN DATABOOK-1994 Low Skew Clock Buffers/Drivers • Video Clock Generators • Low Skew PLL Clock Generators Crystal Clock Generators COP8™ DATABOOK-1994 COP8 Family • COP8 Applications • MICROWIRE/PLUS Peripherals • COP8 Development Support CROSSVOLTTM LOW VOLTAGE LOGIC SERIES DATABOOK-1994 LCX Family. LVX Translator Family. LVX Bus Switch Family. LVX Family • LVQ Family • LVT Family DATA ACQUISITION DATABOOK-1995 Data Acquisition Systems. Analog-to-Digital Converters. Digital-to-Analog Converters. Voltage References Temperature Sensors. Active Filters. Analog Switches/Multiplexers. Surface Mount DATA ACQUISITION DATABOOK SUPPLEMENT-1992 New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook. DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989 Selection Guide and Cross Reference Guides. Diodes. Bipolar NPN Transistors Bipolar PNP Transistors. JFET Transistors • Surface Mount Products. Pro-Electron Series Consumer Series. Power Components. Transistor Datasheets • Process Characteristics DRAM MANAGEMENT HANDBOOK-1993 Dynamic Memory Control. CPU Specific System Solutions. Error Detection and Correction Microprocessor Applications EMBEDDED CONTROllERS DATABOOK-1992 COP400 Family. COP8ll0 Family. COPS Applications. HPC Family. HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals. Microcontroller Development Tools FOOl DATABOOK-1994 Datasheets • Application Notes F100K ECl lOGIC DATABOOK & DESIGN GUIDE-1992 Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets • 11 C Datasheets Design Guide. Circuit Basics. Logic Design. Transmission Line Concepts. System Considerations Power Distribution and Thermal Considerations. Testing Techniques. 300 Series Package Qualification Quality Assurance and Reliability. Application Notes FACTTM ADVANCED CMOS lOGIC DATABOOK-1993 Description and Family Characteristics • Ratings, Specifications and Waveforms Design Considerations. 54AC174ACXXX • 54ACT174ACTXXX • Quiet Series: 54ACQI74ACOXXX Quiet Series: 54ACTQ174ACTQXXX • 54FCT174FCTXXX • FCTA: 54FCTXXXA174FCTXXXA/B FAST® ADVANCED SCHOTTKY TTL lOGIC DATABOOK-1990 Circuit Characteristics. Ratings, Specifications and Waveforms • Design Considerations. 54F174FXXX FAST® APPLICATIONS HANDBOOK-1990 Reprint of 1987 Fairchild FAST Applications Handbook Contains application information on the FAST family: Introduction. Multiplexers. Decoders. Encoders Operators. FIFOs • Counters. TTL Small Scale Integration. Line Driving and System Design FAST Characteristics and Testing .Packaging Characteristics HIGH-PERFORMANCE BUS INTERFACE DATABOOK-1994 QuickRing. Futurebus+ IBTL Devices. BTL Transceiver Application Notes. Futurebus+ Application Notes High Performance TTL Bus Drivers. PI-Bus. Futurebus+ IBTL Reference . IBM DATA COMMUNICATIO~S HANDBOOK-1992 IBM Data Communications. Application Notes INTERFACE: DATA TRANSMISSION DATABOOK-1994 TIAIEIA-232 (RS-232) • TIAIEIA-422/423. TIAIEIA-485. Line Drivers. Receivers. Repeaters Transceivers. Low Voltage Differential Signaling. Special Interface. Application Notes LINEAR APPLICATIONS HANDBOOK-1994 The purpose of this handb09k is to provide·a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor. Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index. lOCAL AREA NETWORKS DATABOOK-1993 SECOND EDITION Integrated Ethernet Network Interface Controller Products • Ethernet Physical Layer Transceivers Ethernet Repeater Interface Controller Products. Token-Ring Interface Controller (TROPIC) Hardware and Software Support Products. FOOl Products. Glossary and Acronyms LOW VOLTAGE DATABOOK-1992 This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time Clocks, and Clock Generation and Support (CGS). MASS STORAGE HANDBOOK-1989 Rigid Disk Pulse Detectors. Rigid Disk Data Separators/Synchronizers and ENDECs Rigid Disk Data Controller. SCSI Bus Interface Circuits. Floppy Disk Controllers. Disk Drive Interface Circuits Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide MEMORY DATABOOK-1994 FLASH • C~OS EPROMs • CMOS EEPROMs • PROMs • Application Notes MEMORY APPLICATIONS HANDBOOK-1994 FLASH. EEPROMs • EPROMs • Application Notes OPERATIONAL AMPLIFIERS DATABOOK-1995 Operational Amplifiers. Buffers. Voltage Comparators. Active Matrix/LCD Display Drivers Special Functions. Surface Mount PACKAGING DATABOOK-1993 Introduction to Packaging. Hermetic Packages. Plastic Packages. Advanced Packaging Technology Package Reliability Considerations. Packing Considerations. Surface Mount Considerations POWER IC's DATABOOK-1995 Linear Voltage Regulators. Low Dropout Voltage Regulators • Switching Voltage Regulators Motion Control. Surface Mount PROGRAMMABLE LOGIC DEVICE DATABOOK AND DESIGN GUIDE-1993 Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology PLD Desi!ln Development Tools. Fabrication of Programmable Logic. Application Examples REAL TIME CLOCK HANDBOOK-1993 3-Volt Low Voltage Real Time Clocks. Real Time Clocks and Timer Clock Peripherals. Application Notes RELIABILITY HANDBOOK-1987 Reliability and the Die, • Internal Construction. Finished Package. MIL-STD-883. MIL-M-38510 The Specification Development Process. Reliability and the Hybrid Device. VLSIIVHSIC Devices Radiation Environment. Electrostatic Discharge • Discrete Device. Standardization Quality Assurance and Reliability Engineering. Reliability and Documentation. Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor. The Total Military/Aerospace Standardization Program 883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-38510 Class B Products Radiation Hardened Technology. Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages. Glossary of Terms • Key Government Agencies. AN/ Numbers and Acronyms Bibliography. MIL-M-38510 and DESC Drawing Cross Listing SCANTM DATABOOK-1994 Evolution of IEEE 1149.1 Standard. SCAN BiCMOS Products. SCAN ACMOS Products. System Test Products Other IEEE 1149.1 Devices TELECOMMUNICATIONS-1994 COMBO and SLiC Devices. ISDN • Digital Loop Devices • Analog Telephone Components. Software. Application Notes VHC/VHCT ADVANCED CMOS LOGIC DATABOOK-1993 This databook introduces National's Very High Speed CMOS (VHC) and Very High Speed TTL Compatible CMOS (VHCT) designs. The databook inCludes Description and Family Characteristics • Ratings, Specifications and Waveforms Design Considerations and Product Datasheets. The topics discussed are the advantages of VHCIVHCT AC Performance, Low Noise Characteristics and Improved Interface Capabilities. NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS A!-ABAMA Huntsville Anthem Electronics (205) 890-0302 Future Electronics Corp. (205) 830·2322 Hamillon/Hailmark (205) 837·8700 Pioneer Technology (205) 837·8300 Time Electronics (205) 721·1134 ARIZONA Phoenix Future Electronics Corp. (602) 968·7140 Hamilton/Hailmark (602) 437·1200 Scottsdale Alliance Electronics Inc. (602) 483·9400 Tempe Anthem Electronics (602) 988-6600 Bell Industries (602) 968-3600 Pioneer Standard (602) 350-9335 Time Electronics (602) 967·2000 CAUFORNIA Agoura Hills Bell Industries (818) 865-7900 Future Electronics Corp. (818) 865-0040 Pioneer Standard (818) 865·5800 Time Electronics (818) 707·2890 Calabasas FIX Electronics (818) 591·9220 Chatsworth Anthem Electronics (818) 775-1333 Costa Mesa HamiRon/Hallmark (714) 641-4100 Irvine Anthem Etectronics (714) 768-4444 Bell Industries (714) 727-4500 Future Electronics Corp. (714)453·1515 Pioneer Standard (714) 753·5090 Zeus Elect. an Arrow Co. (714) 581·4622 Rocklin Anthem Electronics (916) 624-9744 Bell Industries (916) 652-0418 Roseville Future Electronics Corp. (916) 783-7877 Hamlllon/Halimark (916) 624-9781 San Diego Anthem Electronics (619) 453-9005 Bell Industries (619) 576-3294 Future Electronics Corp. (619) 625-2800 Hamillon/Hallmark (619) 571·7540 Pioneer Standard (619) 514-7700 Time Electronics (619) 674-2800 San Jose Anthem Electronics (408) 453·1200 Future Electronics Corp. (408) 434·1122 Hamillon/Hallmark (408) 435-3500 Pioneer Technology (408) 954·9100 Zeus Elect. an Arrow Co. (408) 629-4789 Sunnyvale Bell Industries (408) 734-8570 Time Electronics (408) 734·9890 Tustin Time Electronics (714) 669-0216 Woodland Hills Hamillon/Hailmark (818) 594-0404 Time Electronics (818) 593·8400 COLORADO Denver Bell Industries (303) 691·9270 Englewood Anthem Electronics (303) 790-4500 Hamlllon/Halimark (303) 790-1662 Pioneer Technology (303) 773-8090 Time Electronics (303) 799-5400 Lakewood Future Electronics Corp. (303) 232·2008 CONNEC11CUT Cheshire Future Electronics Corp. (203) 250-0083 Hamllton/Hailmark (203) 271·2844 Meriden Bell Industries (203) 639-6000 Shellon Pioneer Stendard (203) 929·5600 Wallingford Advent Electronics (800) 982·0014 Waterbury Anthem Electronics (203) 575·1575 FLORIDA. Altamonte Springs Anthem Electronics (407) 831-0007 Bell Industries (407) 339-0078 Future Electronics Corp. (407) 865-7900 Pioneer Technology (407) 834-9090 Deerfield Besch .Future Electronics Corp. (305) 428-4043 Pioneer Technology (305) 428-8877 Fort Lauderdale Hamilton/Hailmark (305) 484-5482 Time Electronics (305) 484-1864 Indialantic Advent Electronics (800) 975-8869 Lake Mary Zeus Elect. an Arrow Co. (407) 333·9300 Largo Future Electronics Corp. (813) 530·1222 Hamiiton/Hailmark (813) 541·7440 Orlando Chip Supply "Die Distributor" (407) 298-7100 Time Electronics (407) 841-6588 Winter Park Hamllton/Hallmark (407) 657-3300 GEORGIA Duluth Anthem Electronics (404) 931·9300 HamUton/Hailmark (404) 623-4400 Pioneer Technology (404) 623·1003 Time Electronics (404) 623-5455 Norcross Future Electronics Corp. (404) 441·7676 ILLINOIS Addison Pioneer Standard (708) 495-9880 Bensenville Hamilton/Hailmark (708) 860-7780 Des Plaines Advent Electronics (800) 323-1270 Elk Grove Village Bell Industries (708) 640-1910 Hoffman Estates Future Electronics Corp. (708) 882·1255 ltascs Zeus Elect. an Arrow Co. (708) 595-9730 Schaumburg Anthem Electronics (708) 884-0200 Time Electronics (708) 303-3000 INDIANA Fort Wayne Bell Industries (219) 422-4300 Indianapolis Advent Electronics Inc. (800) 732·1453 Bell Industries (317) 875-8200 Future Electronics Corp. (317) 469-0447 Hamiiton/Hailmark (317) 872-8875 Pioneer Standard (317) 573-0880 IOWA cedar Rapids Advent Electronics (800) 397-8407 Hamiiton/Hailmark (319) 393-0033 KANSAS Lenexa Hamiiton/Hailmark (913) 898-4747 Overland Park Future Electronics Corp. (913) 649-1531 KENTUCKY Lexington Hamillon/Halimark (608) 268-4911 MARYLAND Columbia Anthem Electronics (410) 995-6640 Bell Industries (410) 290-5100 Future Electronics Corp. (41Q) 290-08OQ Hamllton/Hailmark (410) 988·9800 Seymour Electronics (410) 992·7474 Time Electronics (410) 720-36!l0 Gaithersburg Pioneer Technology (301) 921-0660 MASSACHUSETTS Andover Bell Industries (508) 474-8880 Bolton Future Electronics Corp. (508) 779-3000 Lexington Pioneer Standard (617) 661·9200 Newburyport Rochester Electronics "Obsolete Products" (508) 462·9332 Norwood Gerber Electronics (617) 769-eooo Peabody Hamillon/Halimark (508) 532·3701 Time Electronics (508) 532·9777 Tyngsboro Port Electronics (508) 849-4690 Wilmington Anthem Electronics (508) 657-5170 Zeus Elect. an Arrow Co. (508) 658-0900 MICHIGAN Farmington Hills Advent Electronics (800) 572·9329 Grand Rapids Future Electronics Corp. (616) 698-6800 Pioneer Standard (616) 698·1800 Livonia Future Electronics Corp. (313) 261-5270 O'Fallon Advent Electronics (800) 888-9568 Plymouth Hamilton/Hailmark (313)418-5800 Pioneer Standard (313) 416-2157 Wyoming R. M. Electronics, Inc. (616) 531·9300 MINNESOTA Bloomington Hamliton/Hailmark (612) 681·2800 Eden Prairie Anthem Electronics (612) 944-5454 Future Electronics Corp. (612) 944-2200 Pioneer Standard (612) 944-3355 Minnetonka Time Electronics (612) 931·2131 NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued) MINNESOTA (Continued) Thief River Falls Digi-Key COrp. "Catalog sales Only" Syracuse Future Electronics COrp. (315) 451-2371 Time Electronics (800) 344-4539 (315) 434-9837 MISSOURI Earth City Hamilton/Hallmark Woodbury Pioneer Standard (314) 291-5350 Manchester Time Electronics (314) 230-7500 SI. Louis Future Electronics Corp. (314) 489-6805 NEW JERSEY Camden Advent Electronics (800) 255-4771 Cherry Hill Hamilton/Hallmark (609) 424-0110 Fairfield Bell Industries (201) 227-6080 Pioneer Standard (201) 575-3510 Marlton Future Electronics Corp. (609) 598-4080 Time Electronics (609) 596-1286 Mount Laurel Seymour Electronics (809) 235-7474 Parsippany Future Electronics COrp. (516) 921-9700 Seymour Electronics (516) 496-7474 NORTH CAROUNA Charlotte Future Electronics COrp. (704) 547-1107 Morrisville Pioneer Technology (919) 460-1530 Raleigh Anthem Electronics Hamilton/Hallmerk (505) 828-1058 NEW YORK Binghamton Pioneer Standard (607) 722-9300 Buffalo Summtt Distributors (716) 887-2800 Commack Anthem Electronics (919) 790-7111 Haminon/Hallmark (919) 872-0712 OHIO Beavercreek Future Electronics Corp. (513) 426-0090 Cleveland Pioneer Standard (216) 587-3600 COlumbus Time Electronics (614) 794-3301 Dayton Bell Industries (513) 435-5922 (513) 439-6735 Pioneer Standard (513) 236-9900 Maylield Heights Future Electronics COrp. (216) 449-6996 Solon Bell Industries (216) 498-2002 Hamllton/Hallmerk (216) 496-1100 Worthington Haminon/Hallmar!< (614) 888-3313 OKLAHOMA Tulsa Haminon/Hallmar!< (918) 254-6110 Pioneer Standard (918) 665-7840 Radio Inc. (918) 587-9123 Fairport Pioneer Standard OREGON Beaverton Anthem Electronics Hauppauge Future Electronics Corp. (503) 643-1114 Time Electronics Bell Industries (503) 644-3444 Future Electronics COrp. (503) 645-9454 Hamllton/Hallmar!< (516) 273-01 00 (503) 526-6200 (516) 234-4000 Hamilton/Hallmark (516) 434-7400 Port Chester Zeus Elect. an Arrow Co. (914) 937-7400 Rochester Future Electronics COrp. (716) 387-9550 Hamilton/Hallmark (800) 475-9130 Summit Distributors (716) 334-8110 CANADA WESTERN PROVINCES Burnaby Hamilton/Hallmark Future Electronics COrp. (512) 502-0991 Hamilton/Hallmar!< (512) 258-8848 Minco Technology Labs. "Die Distributor" (512) 834-2022 Pioneer Standard (800) 500-0441 (604) 420-4101 Semad Electronics Ltd. (804) 451-3444 Calgary Electro Sonic Inc. (403) 255-9550 (518) 864-6800 (716) 381-7070 (512) 388-0049 Future Electronics COrp. Hamilton/Hallmark (505) 292-2700 (414) 547-8879 West Allis Advent Electronics (512) 219-3773 (201) 515-1641 NEW MEXICO Albuquerque Bell Industries (215) 953-2800 TEXAS Austin Anthem Electronics (512) 835-4000 (513) 434-6231 (201) 785-8250 (414) 790-7200 Waukeshe Bell Industries Time Electronics Bell Industries-Military (201) 227-7960 Trevose Bell Industries New Be"in Hamilton/Hallmerk (919) 782-3550 (201) 299-0400 Wayne Time Electronics (412) 782-2300 Future Electronics COrp. Hamllton/Hallmar!< Pine Brook Anthem Electronics Pittsburgh Pioneer Standard Pioneer Technology (503) 626-7300 PorUand Time Electronics (503) 664-3780 PENNSYLVANIA Horsham Anthem Electronics (215) 443-5150 Pioneer Technology (215) 674-4000 Carrollton Zeus Elect. an Arrow CO. (214) 380-6464 Dallas Hamilton/Hallmar!< (214) 553-4300 Pioneer Standard (214) 386-7300 Houston Future Electronics Corp. (713) 785-1155 Hamilton/Hallmar!< (713) 781-6100 Pioneer Standard (713) 495-4700 Richardson Anthem Electronics (214) 238-7100 Bell Industries (214) 690-9096 Future Electronics Corp. (214) 437-2437 Time Electronics (214) 480-5000 UTAH Midvale Bell Industries (801) 255-9691 Salt Lake City Anthem Electronics (801) 973-8555 Future Electronics COrp. (801) 487-4448 Hamilton/Hallmark (801) 266-2022 West Valley City Time ElectroniCS (801) 973-0208 WASHINGTON Bellevue Bell Industries (206) 646-8750 Pioneer Technology (206) 644-7500 Bothell Anthem Electronics (206) 483-1700 Future Electronics COrp. (206) 489-3400 Kir! e!JI Cedex France Tel: (1) 69183700 Fax: (1) 6918 37 69 BRAZIL National Semlconductores Do Brazil Ltd•• Rue Deputado Lacorda Franco 12()'3A Sao Paulo-SP Brazil 05418'()OO Tel: (55.11) 212·5066 Fax: (55·11) 212·1181 GERMANY National Semiconductor GmbH Uvry.Gargan-Strasse. 10 D-82256 FOrstenfeldbruck Germany Tel: (0~1-41) 35'() Fax: (0~1-41) 35·15'()6 CANADA National Semiconductor (canada) 5925 Airport Road, Suite 615 Mississauga, Ontario L4V lWI Tel: (416) 678-2920 Fax: (416) 678·2837 NaUonal Semiconductor (canada) 39 Robertson Road, SuRe 101 Nepean, Ontario K2H 8R2 Tel: (613) 596-0411 Fax: (613) 596-1613 Nallonal Semiconductor (canada) 1870 Boul Des Sources, Suite 101 Pointe Claire, Quebec H2R 5N4 Tel: (514) 426-2992 Fax: (514) 426-2710 HONG KONG Nalional Semiconductor Hong Kong Ltd. 13th Floor, Straight Block Ocean Centre 5 Csnton Road Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737·1600 Fax: (852) 2736-9960 INDIA Nallonal Semiconductor India Uaison Office 26 Cunningham ROad Bangalore 560052 India Tel: 80·226-7272 Fax: 80·225·1133 ISRAEL CHINA National Semiconductor Belling China LIaison Office Room 1930 New Century Hotel, No.6 Southern Road CapRalGym Beijing 100046, PRC Tel: 10-849-1331 Fax: 10-849·1332 FINLAND Nallonal Semiconductor (U.K.) Lid. Mekaanlkonkatu 13 SF.Q0810 Helsinki Finland Tel: (0) 759·1855 Fax: (0) 759·1393 Nallonal Semiconductor Ltd. MliskHSiraet PO Box 3007 Herzlia B. 46104 Israel Tel: (09) 59 42 55 Fax: (09) 55 83 22 ITALY NaUonai Semiconductor S.p.A. Strada 7, Palazzo R/3 1·20089 Rozzano·Milanofiori Italy Tel: (02) 57 50 03 00 Fax: (02) 57 50 04 00 JAPAN National Semiconductor Japan Lid. SumHomo Chemical Engineering Centar Bldg. 7F 1·7·1, Nakass, Miharna·Ku Chibs-City, Chiba Prefecture 261 Japan Tel: (043) 299-2300 Fax: (043) 299-2500 KOREA National Semiconductor (Far East) Lid. 13th Floor, Dai Han Ufe Insurance 63 Building 60 Yoido·Dong , Youngdeungpo-KU Seoul Korea 150·763 Tel: (02) 784·8051/3 (02) 785'()696/8 , Fax: (02) 784~054 MALAYSIA Nailonal Semiconductor SdnBhd Bayan Lepas Free Trade Zone 11900 Penang Malaysia Tel: 4·644-9061 Fax: 4-644-9073 MEXICO Electronlca NSC de UexlcoSA Juventino Rosas No. 118·2 Col Guadalupe Inn Mexico, 01020 D.E. Mexico Tel: (525) 661·7155 Fax: (525) 661~905 PUERTO RICO National Semiconductor (Puerto Rico) La Electronlca Bldg. SuRe 312, A.D. #1 KM 14.5 Rio Piedias Puerto Rico 00927 Tel: (609) 758·9211 Fax: (609) 763-6959 SINGAPORE National Semiconductor Asiia Pacific Pte. Lid. 200 Cantonment Road # 13·01 Southpoint Singapore 0208 Tel: (65) 225·2226 Fax: (65) 225·7080 SPAIN, NatIonal Semiconductor GmbH. Calle Agustin de Foxa, 27 (9'0) E·26036 Madrid Spain Tel: (01) 7·33·29-54 Fax: (01) 7-33-60·18 SWEDEN Nalional Semiconductor AB P.O. Box 1009 Grosshandlarvllgen 7 S·12123 Johanneshov, Sweden Tel: (06) 7 22 80 50 Fax: (08) 7 22 90 95 SWITZERLAND Nallonal Semiconductor (U.K.) Lid. Alte Winterthurerstrasse 53 CH·8304 Wamsellen·ZOrich Switzerland Tel: (01) 8-30·27·27 Fax: (01) 8-3()'19-OO TAIWAN National Semiconductor (Far Eaal) Ltd. ' 9/F, No. 44 Section 2 Chungshan North Road Taipei, Taiwan, A.O.C. Tel: (02) 521-3288 Fax: (02) 561·3054 U.K. AND IRELAND National Semiconductor (U.K.) Lid. The Maple, Kembrey Park Swindon, Wiitehire SN2 6YX UnHed Kingdom Tel:(07·93)614141 Fax: (07·93) 52 21 80 Telex: 444674 UNITED STATES Nallonal Semiconductor Corporallon 1111 West Bardin Road Arlington, TX 76017 Tel: (800) 272·9959 Fax: (800) 737·7018
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:18 15:44:21-08:00 Modify Date : 2017:06:18 16:39:15-07:00 Metadata Date : 2017:06:18 16:39:15-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:ef678e89-c1b2-5c4b-8367-3598cb120d15 Instance ID : uuid:d85db80e-4d41-1e45-9b18-136fac479ad1 Page Layout : SinglePage Page Mode : UseNone Page Count : 1386EXIF Metadata provided by EXIF.tools