1995_National_Operational_Amplifiers_Databook 1995 National Operational Amplifiers Databook

User Manual: 1995_National_Operational_Amplifiers_Databook

Open the PDF directly: View PDF PDF.
Page Count: 1386

Download1995_National_Operational_Amplifiers_Databook 1995 National Operational Amplifiers Databook
Open PDF In BrowserView PDF
OPERATIONAL
AMPLIFIERSr
DATABOOK
1995 Edition

Operational Amplifiers
Buffers
Voltage Comparators
Active Matrix/LCD Display Drivers
Special Functions \'
Surface Mount
Appendices/Physical Dimensions

•Ell
••
•
•

[II

TRADEMARKS
Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.
ABiCTM
Abuseable™ )
AirShara™
Anadig™
APPSTM
ARi 1TM
ASPECTTM
AT/LANTICTM
Auto-Chem DeflasherTM
BCPTM
BI-FETTM
BI-FET IITM
BI-LiNETM
BIPLANTM
BLCTM
BLXTM
BMACTM
Brite-Lite™
BSITM
BSI-2TM
CDDTM
CDLTM
CGSTM
CIMTM
CIMBUSTM
CLASICTM
COMBOGD
COMBOITM
COMBOIITM
COPSTM microcontrollers
COP8TM
CRDTM
CROSSVOL TTM
CSNITM
CTITM
CYCLONETM
DA4TM
DENSPAKTM
DIBTM
DISCERNTM
DISTILLTM
DNR"
DPVMTM
E2CMOSTM
ELSTARTM

Embedded System
Processor™
EPTM
E-Z-LINKTM
FACTTM
FACT Quiet Series™
FAIRCADTM
FairtechTM
FASTFASTr™
GENIXTM
GNXTM
GTOTM
HEX3000TM
HiSeCTM
HPCTM
HyBal™
13LGD
ICMTM
IntegraiiSETM
IntelisplayTM
Inter-LERICTM
Inter-RICTM
ISETM
ISE/06TM
ISE/08TM
ISE/16TM
ISE32TM
ISOPLANARTM
ISOPLANAR-ZTM
LERICTM
LMCMOSTM
M2CMOSTM
Macrobus™
Macrocomponent™
MACSITM
MAPLTM
MAXI-ROMMicrobus™ data bus
MICRO-DACTM
p.Pot™
p.talker™
Microtalker™
MICROWIRETM
MICROWIRE/PLUSTM

MOLETM
MPATM
MSTTM
Naked-8TM
National GD
National SemiconductorNational Semiconductor
Corp.GD
NAX800TM
NeuFuz'rM
Nitride Plus™
,Nitride Plus Oxide™
/ NMLTM
NOBUSTM
NSCSOOTM
NSCISETM
NSX-16™
NS-XC-16TM
NTERCOMTM
NURAMTM
OPALTM
Overture™
OXISSTM
p2CMOSTM
Perfect WatchTM
PLANTM
PLANARTM
PLAYERTM
PLAYER+TM
PLLatinum™
Plus-2TM
Polycrafl™
POPTM
Power + Control™
POWERplanar™
QSTM
QUAD3000TM
Quiet Series™
QUIKLOOKTM
RATTM
RICTM
RICKITTM
RTX16TM
SCANTM
SCENICTM

-,;

SC)(TM
SERIES/800TM
Series 32000 GD
SIMPLE SWITCHERGD
SNITM
SNICTM
SofChekTM
SONICTM
SPiKe™
SPIRETM
Staggered RefreshTM
STARTM
StarlinkTM
STARPLEXTM
ST-NICTM
SuperATTM
Super-Block™
SuperChipTM
SuperilO™
SuperScriptTM
SYS32TM
TapePakGD
TDSTM
TeleGate™
The National Anthem"
TinyPaKTM
TLCTM
Trapezoidal™
TRI-CODETM
TRI-POLYTM
TRI-SAFETM
T~I-STATEGD

TROPICTM
Tropic Pele'TM
Tropic ReefTM
TURBOTRANSCEIVERTM
TWISTERTM
VIPTM
VR32TM
WATCHDOGTM
XMOSTM
XPUTM
ZSTARTM
883B/RETSTM
883S/RETSTM

PALGD is a registered trademark of and used under"license from Advanced Micro Devices, Inc.
StratoguardTM 4.6 is a trademark of National Metallizing Co.
Teflon GD is a registered trademark of E.I. DuPont de Nemours Company.

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITIEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body,
device or system whose failure to perform can be reasonor (b) support or sustain life, and whose failure to perably expected to cause the failure of the life support deform, when property used in accordance with instructions
vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
NatlonalSemlconductorCorporatlon 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-9090 1·800-272·9959
TWX (910) 339-9240
National does not essume any responsibility for Use of any circuitry descrtbed,' no circuH patent licenses are implied, and National reserves the right, at any time
without noUce, to change said clrcuHry or spacillcations.

tflNational Semiconductor

Product Status Definitions
Definition of Terms
This data sheet contains the design speCifications for product
development. Specifications may change in any manner without notice.
Production

This data sheet contains preliminary data, and supplementary data will
be published at a later date. National Semiconductor Corporation
reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product

Full
Production

This data sheet contains final specifications. National Semiconductor
Corporation reserves the right to make changes at any time without
notice in order to improve design and supply the best possible product.

Not In Production

This data sheet contains specifications on a product that has been
discontinued by National Semiconductor Corporation. The data sheet
is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability ariSing out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

iii

Table of Contents
Alphanumeric Index .......................................................... .
viii
Additional Available Linear Devices ............................................ .
xiii
xxviii
Industry Package.Cross Reference Guide ........................ :,' ............. .
Section 1 . Operational Amplifiers
Operational Amplifiers Definition ofTerms ...................................... .
1-5
1-6
Operational Amplifiers Selection Guide ......................................... .
1-22
lF147/lF34 7 Wide Bandwidth Quad JFET Input Operational Amplifiers ............ .
lF155/lF156/lF157 Series Monolithic JFET Input Operational Amplifiers .......... . , 1-31
lF351 Wide Bandwidth JFET Input Operational Amplifier ......................... .
1-46
lF353Wide Bandwidth Dual JFET Input Operational Amplifier...................... " . 1-54
lF411 low Offset, low Drift JFET Input Operational Amplifier ..... ; ............... .
1-63
lF412 low Offset', low Drift Dual JFET Operational Amplifier ...................... .
1-70
1-77
lF441 low Power JFET Input Operational Amplifier ..............•................
1-84
lF442 Dual low Power JFET Input Operational Amplifier ......................... .
lF444 Quad low Power JFET Input Operational Amplifier ........................ .
1-93
lF451 Wide-Bandwidth JFET Input Operational Amplifier .........•................
1-100·
1-106 .
lF453 Wide-Bandwidth Dual JFET Input Operational Amplifier ..................... .
lH0003 Wide Bandwidth Operational Amplifier ..................•................. 1-113
1-116
lH0004 High Voltage Operational Amplifier' ..................................... .
LH0021/lH0021 C 1.0 Amp Power Operational Amplifier ..............' ............ .
1-120
lH0041/lH0041 C 0.2 Amp Power Operational Amplifier .......................... .
1-120
lH0024 High Slew Rate Operational Amplifier ................................... .
1-131
lHo032 Ultra Fast FET-Input Operational Amplifier .............................. . 1-135
1-143
lH0042Low Cost FET Operational Amplifier .................................... .
lH0101 Power Operational Amplifier ........................................... . 1-153
1-164
lM10 Operational Amplifier and Voltage Reference .............................. .
lM101A1lM201A/lM301A Operational Amplifiers ............................... . 1-180
1-190
lM1 07/lM207/lM307 Operational Amplifiers ................................... .
lM108/lM208/lM308 Operational Amplifiers ................................... .
1-196
lM118/lM218/lM318 Operational Amplifiers ................................... .
1-203
lM124/lM224/lM324/lM2902 low Power Quad Operational Amplifiers ........... .
1-213
lM143/lM343 High Voltage Operational Amplifiers .............................. .
1-226
lM146/lM246/lM346 Programmable Quad Operational Amplifiers ................ .
1-236
lM148/lM248/lM348 Quad 741 Operational Amplifiers; lM149/lM349 Wide Band
Decompensated (Av(MIN) = 5) ............................................. .
1-248
lM158/lM258/lM358/lM2904 low Power Dual Operational Amplifiers ........... .
1-261
lM221/lM321 Precision Preamplifiers ......................................... .
1-274
1-283
lM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier .......... .
lM392/lM2924 low Power Operational AmplifierlVoltage Comparators ........... .
1-301
lM611 Operational Amplifier and Adjustable Reference .......................... .
1-305
lM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference ..... .
1-317
lM614 Quad Operational Amplifier and Adjustable Reference ..................... .
1-333
lM675 Power Operational Amplifier .........•...................................
1-346
1-353
lM709 Operational Amplifier .................................................. .
1-358
lM725 Operational Amplifier .................................................. .
1-366
lM741 Operational Amplifier .................................................. .
lM747 Dual Operational Amplifier ............................................. .
1-370
lM748 Operational Amplifier .................................................. . 1-375
1-379
lM759/lM77000 Power Operational Amplifiers ................................. .
lM1558/lM1458 Dual Operational Amplifiers ................................... .
1-390
lM1875 20 Watt Power Audio Amplifier ......................................... .
1-392

iv

Table of Contents (Continued)
Section 1 Operational Amplifiers (Continued)
LM1877 Dual Power Audio Amplifier.... . .. ........ .... ...... ................ ...
LM 1896/ LM2896 Dual Power Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2877 Dual 4 Watt Power Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2878 Dual 5 Watt Power Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2879 Dual 8 Watt Audio Amplifier ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2900/LM3900/LM3301 Quad Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3045/LM3046/LM3086 Transistor Arrays.. ...... ... . ..... ..... ......•...... ..
LM3080 Operational Transconductance Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3303/LM3403 Quad Operational Amplifiers. . . .. .. . ... ... .. ... ........ .... ... .
LM3875 High Performance 40 Watt Audio Power Amplifier ....................... , .
LM4250 Programmable Operational Amplifier ... . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .
lM6104 Quad Gray Scale Current Feedback Amplifier ............... " . . . . . . . . . . . .
LM6118/LM6218 Fast Settling Dual Operational Amplifiers ........................
LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Raill/O
Operational Amplifiers ......................................................
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail
Input-Output Operational Amplifiers ..................................... '.' . . . .
LM6152 Dual/LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raillnput-Output
Operational Amplifiers.. ...... ...... ........... ... ...... ............ ........
LM6161 /LM6261 /LM6361 High Speed Operational Amplifiers .....................
LM6162/LM6262/LM6362 High Speed Operational Amplifiers .....................
LM6164/LM6264/LM6364 High Speed Operational Amplifiers. ... ......... ..... ...
LM6165/LM6265/LM6365 High Speed Operational Amplifiers.... .. ....... ..... . ..
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier ..... : . . . .
LM6181 100 mA, 100 MHz Current Feedback Amplifier...... ..... ............... ..
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier .... . . . . . . . .
LM6313 High Speed, High Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier. . . . . . . . . . . . . .
LM7131 Tiny High Speed Single Supply Operational Amplifier.............. ..... . ..
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier ..........
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and
Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM13700/LM13700A Dual Operational Transconductance Amplifiers with Linearizing·
Diodes and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .
LMC660 CMOS Quad Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC662 CMOS Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . .
LMC6001 Ultra Ultra-Low Input Current Amplifier .................................
LMC6022 Low Power CMOS Dual Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6024 Low Power CMOS Quad Operational Amplifier..........................
LMC6032 CMOS Dual Operational Amplifier .....................................
LMC6034 CMOS Quad Operational Amplifier .............................. , . . . . . .
LMC6041 CMOS Single Micropower Operational Amplifier... ..... .... ..... ...... ..
LMC6042 CMOS Dual Micropower Operational Amplifier ..........................
LMC6044 CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6061 Precision CMOS Single Micropower O~rational Amplifier ................
LMC6062 Precision CMOS Dual Micropower Operational Amplifier. . . . . . . . . . . . . . . . . .
LMC6064 Precision CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . .
LMC6081 Precision CMOS Single Operational Amplifier. ....•... ...... .... ...... ..
LMC6082 Precision CMOS Dual Operational Amplifier ....... ~ . . . . . . . . . . . . . . . . . . . . .
LMC6084 Precision CMOS Quad Operational Amplifier. . . . . . . . . . .. . . . . . . . . . . . . . . . .

v

1-398
1-403
1-411
1-418
1-425
1-432
1-450
1-455
1-459
1-466
1-482
1-490
1-494
1-503
1-504
1-515
1-516
1-523
1-531
1-539
1-546
1-560
1-577
1-598
1-607
1-608
1-630
1-631
1-649
1-669
1-6.79
1-689
1-699
1-711
1-722
1-732
1-742
1-753
1-763
1-773
1-783
1-793
1-803
1-813
1-823

Table of Contents (Continued)

f"',

Section 1 Operational Amplifiers (Continued)

h, '

LMC6462 DuaI/LMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS:
Operational Amplifier •.......................................... '.. ; ..... , ... ".'
LMC6482 CMOS Dual Rail-to-Raillnput and Output Operational Amplifier. '. "......... ,C '
LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier .........•.
LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Raillnput and Output Operational'
Amplifier .......................................... ,' ..... '......... '... '........ ;
LMC6574 Quad/LMC6572 Dual Low Voltage (2.7Vand 3V) Operational Amplifier ....•
LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-to-Raillnput and Output CMOS
Operational Amplifier .................................' ................... ': ..
LM'C6681 Singie/LMC6682 Dual/LMC6684 Quad'Low Voltage,\Rail-to-Raillnput and
qutput CMOS Amplifier with Powerdown .......... " ........................... .
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Raillnput and Output ..•.
I::.MC7111 Tiny CMOS Operational Amplifier with Rail-to~Ra:illnput and Output, ....... .
LPC660 Low Power CM0S Quad Operational Amplifier ........................ '.... .
LPC661 Low Power CMOS Operational Amplifier ................................ .
LPC662 Low Power CMOS Dual Operational Amplifier ............................ .
OP07 Low Offset, Low Drift Operational Amplifier .........................•'..•...•
TL081 Wide Bandwidth JFET Input Operational Amplifier .... : . :.........•. ;'....... .
1'L082 Wide Bandwidth Dual JFET Input Operational Amplifier ..................... .

1-833
1-847
1-864
1-880
1-893
1-902
1-903
1-904
1-920
1-921
1-933
1-945
1-957
1-962
1-969

Section 2 Buffers

Buffers Definition ofTerms ...... : ... ~ ...... ; ............................... ; . . . ' 2~3
Buffers Selection Guide .................... : '~ .................. ~ ... ,c•• ' •••••• : '•• ~
2-4
LH0002 Buffer .................. :'.':' ................. '............... ," ... ',........
2-5
LH0033/LH0063 Fast and Ultra Fast Buffers .... '...................... : ....... : . .'
2-8
LH4001 Wideband Current Buffer ................ :...............................
2-19
LH4002 Wideband Video Buffer ...................................' .. ~". . . . . . . . . .
2-23
LM102/LM302 Voltage Followers ............................... ;': ... : ...... ;'..
2-27
LM110/LM210/LM3'10 Voltage Followers................ ... ... ... .. ... ..........
2-33
2-46
LM6121/LM6221/LM6321 High Speed Buffers .................. ; .......... :.....
LM6125/LM6225/LM6325 High Speed Buffers ........... : ....................... " 2-'52

Section 3 Voltage Comparators
Voltage Comparators Definition of Terms ........ .' ; .................. ',' ., . . . .. . . .
3-3
Voltt:ige Comparato'rs Selection Guide ........... : .........................•. , . . .
3-4
LF111 ILF211 ILF311 Voltage Comparators .............. , .......... ; . . . . . . . . .. . .
3-5
3-14
LH2111/LH2311 Dual Voltage Comparators ............ .... ... ..... .............
LM1 06/LM306 Voltage Comparators ........................ " .... '. . . . . . . . . . . .. . .
3-17
LM11,1 ILM211 ILM311 Voltage Comparators ... : .. ,.............................
3-21
LM119/LM219/LM319 High Speed Dual Comparators .............. ; ......... : . . .3-,35
LM139/LM239/LM339/LM2901 ILM3302 Low Power Low Offset Voltage Quad
Comparators ...... ; ................. ; ........... : ............. :: ......... ,'.".,..
3-42
LM160/LM360 High Speed 'Differential Compariltors ........ : .......... :; ... , .... :
3-54
l,M161 ILM261 ILM361 High Speed Differential 'Comparators: ................. ,: ~ . . .
3-58
Lt..1193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators. . . 3-63
LM61.2 Dual-Channel Comparator and ReferEmce ................ : : ............. , .
3-72
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference . . . . . .
3-80
ui"615 Quad Comparator and Adjustable Reference ........................... :..
3-96
LM710 Voltage Comparator. .......... ~ ..•....... : .. '.'........ " ...... _ .. . . . . . . . . 3-107
~M760 High Speed Differential Comparator ........ : ........... " ....... : . . . . .. . . 3~ 111
LM1801 Battery Operated Power-Comparator ................... , ................ ' 3-'118
LM6511 180 ns 3V Comparator.: ........ : ............. ; .......... : ...... ::: .. :' 3-126

vi

Table of Contents (Continued)
Section 3 Voltage Comparators (Continued)
LMC6762 Dual/LMC6764 Quad Micropower, Rail-to-Raillnput and Output CMOS
Comparator ........................................... :....................
LMC6772 Dual, LMC6774 Quad, Micropower Rail-to-Raillnput and Open Drain Output
CMOS Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC7211 Tiny CMOS Comparator with Rail-to-Raillnput ..........................
LMC7221 Tiny CMOS Comparator with Rail-to-Raillnput and Open Drain Output .....
LP311 Voltage Comparator.. ..... ... .. .. . . ... .... . .. .. .. .... .. ... ..... .. ......
LP339 Ultra-Low Power Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 4 Active Matrix/LCD Display Drivers
LM61 04 Quad Gray Scale Current Feedback Amplifier. . . . . . . . . . . . . . . . . . . . . . • . . . . . .
LM8305 STN LCD Display Bias Voltage Source................................... .
LMC6008 8 Channel Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 5 Special Functions
DH0006/DH0006C Current Drivers .............................................
DH0034 High Speed Dual Level Translator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DH0035/DH0035C Pin Diode Driver .......................... :.................
LH0094 Multifunction Converter .............................. ; . . . . . . . . . . . . . . . . .
LM194/LM394 Supermatch Pair... . .. ...... ........ ...... ... . .. .. ... .. ... ..... .
LM195/LM395 Ultra Reliable Power Transistors..... ... ........ .. ..... ..... .. ....
LM3045/LM3046/LM3086 Transistor Arrays. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
LM3146 High Voltage Transistor Array. ... ... ... ..................... .. ... ... ....
LP395 Ultra Reliable Power Transistor ..........................................
Section 6 Surface Mount
Packing Considerations (Methods, Materials and Recycling) ....................... .
Board Mount of Surface Mount Components .................................... .
Recommended Soldering Profiles-Surface Mount .............................. .
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and
Their Effect on Product Reliability ................... , ......................... .
Land Pattern Recommendations .............................................. .
Section 7 Appendices/Physical Dimensions
Appendix A General Product Marking and Code Explanation ...........•...........
Appendix B Devicel Application Literature Cross-Reference ....................... .
Appendix C Summary of Commercial Reliability Programs ......................... .
Appendix D Military Aerospace Programs from National Semiconductor ............. .
Appendix E Understanding Integrated Circuit Package Power Capabilities ........... .
Appendix F How to Get the Right Information from a Datasheet .................... .
Physical Dimensions .......................................... '.' ............. .
.
Bookshelf
Distributors

vii

3-131
3-132
3-133
3-144
3-145
3-149
4-3
.4-7
4-8
5-3
5-7
5-11
5-14
5-23
5-31
5-42
5-47
5-52
6-3 •
6-19
6-2~,

6-24
6-35
7-3
7-4
7-10
7-11
7-21
7-26
7 i 30

Alpha-Numeric Index
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their
Effect on Product Reliability .•...... '..................... ; •......•........ , .............. : .. 6-24
Board Mount of Surface Mount Components ................................................. 6-19
DH0006 Current Driver .. : ... : ... ;' .................................... .'... ;.; .................... 5-3
DH0034 High Speed Dual Level Translator ........................................•....•...... 5-7
DH0035 Pin Diode Driver .....' ............... ; ............ :' .. ; .....................:........ 5-11
Land Pattern Recommendations ...................... '............... ; .............. ~ ...... 6-35
LF11l Voltage Comparator ............•...................................•................ 3-5
LF147 Wide Bandwidth Quad JFET Input Operational Amplifier ................................. 1-22
LF155 Series Monolithic JFET Input Operational Amplifiers ............•....................... 1-31
LF156 Series Monolithic JFET Input Operational Amplifiers ... , ....•................••......... 1-31
LF157 Series Monolithic JFET Input Operational Amplifiers .....•.............................. 1-31
LF211 Voltage Comparator •....••..•..........•........................•.......•............. 3-5
LF311 Voltage Comparator ................................................................. 3-5
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier .................. :............... 1-22
LF351 Wide Bandwidth JFET Input Operational Amplifier ...................................... 1-46
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier ...........................•...... 1-54
LF411 Low Offset, Low Drift JFET Input Operational Amplifier .........•.....•.......•.......... 1-63
LF412.Low Offset, Low Drift Dual JFET Operational Amplifier ................ , ................. 1-70
LF441 Low Power JFET Input Operational Amplifier .................. ; ........................ 1-77
LF442 Dual Low Power JFET Input Operational Amplifier ...........................•.......... 1-84
LF444 Quad Low Power JFET Input Operational Amplifier .........,....... '..... , .............•. 1-93
LF451 Wide-Bandwidth JFET Input Operational Amplifier .....••...••..•.•.................... 1-100
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier ................./ .............. 1-106
LHD002 Buffer ...................•.....•........................•.......................... 2-5
LHOO'03 Wide Bandwidth Operational Amplifier ................................................ 1-113
LH0004 High Voltage Operational Amplifier ...•......•................... , .................. 1-116
LH0021 1.0 Amp Power Operational Amplifi~f ............................................... 1-120
LH0024 High Slew Rate Operational Amplifier ........•...................................... 1-131
LH0032 Ultra Fast FET-Input Operational Amplifier .....•.............•...................... 1-135
LH0033 Fast and Ultra Fast Buffers ..............................•.........................•. 2-8
LH0041 0.2 Amp Power Operational Amplifier ............................................... 1-120
LH0042 Low Cost FET Operational Amplifier ..........................................'...... 1-143
LH0063 Fast and Ultra Fast Buffers .......................................................... 2-8
LH0094 Multifunction Converter ................................. ~ ......•...................... 5-14
LH0101 power Operational AmpUfier. : ...... ; ............................... ~ .............. 1-153
LH2111 Dual Voltage Comparator ........................................................... 3-14
LH2311 Dual Voltage Comparator ............... ; ... : ...................................... 3-14
LH4001 Wideband Current Buffer ........................................................... 2-19
LH4002 Wideband Video Buffer ......................................................... '... 2-23
LM10 Operational Amplifier and Voltage Reference .......................................... 1-164
LM101A Operational Amplifier ............................................................ 1-180
LM102 Voltage Follower ...........................•.........•............................• 2-27
LM106 Voltage Comparator ........................................................•....... 3-17
LM 107 Operational Amplifier ..........•...............................••.................. 1-190
LM 108 Operational Amplifier ..•........................................................... 1-196
LfI/!110 Voltage Follower .....................................•............................. 2-33
LM111 Voltage Comparator ................................................................ 3-21
LM 118 Operational Amplifier .............................................................. 1-203
LM119 High Speed Dual Comparator ........................................................ 3-35
LM124 Low Power Quad Operational Amplifier .............................................. 1-213

viii

Alpha-Numeric

Index(continUed)

LM139 Low Power Low Offset Voltage Quad Comparator ................ .' ..................... 3-42
LM143 High Voltage Operational Amplifier .................................................. 1-226
LM146 Programmable Quad Operational Amplifier ........................................... 1-236
LM 148 Quad 741 Operational Amplifier ...................................•................. 1-248
LM149 Wide Band Decompensated (Av(MIN) = 5) ................•......................... 1-248
LM158 Low Power Dual Operational Amplifier ............................................... 1-261
LM160 High Speed Differential Comparator .......................•.....................•.... 3-54
LM161 High Speed Differential Comparator .................................................. 3-58
LM193 Low Power Low Offset Voltage Dual Comparator ....................................... 3-63
LM194 Supermatch Pair ................................................................... 5-23
LM195 Ultra Reliable Power Transistor ....................•................................. 5-31
LM201 A Operational Amplifier ............................................................ 1"180
LM207 Operational Amplifier ......... '..................•.................................. 1-190
LM208 Operational Amplifier .......................................•...................... 1-196
LM210 Voltage Follower ................................................................... 2-33
LM211 Voltage Comparator ................................................................ 3-21
LM218 Operational Amplifier .•....................•....................................... 1-203
LM219 High Speed Dual Comparator ...........................•...................•........ 3-35
LM221 Precision Preamplifier •............................................................ 1-274
LM224 Low Power Quad Operational Amplifier .............................................. 1-213
LM239 Low Power Low Offset Voltage Quad Comparator ...................................... 3-42
LM246 Programmable Quad Operational Amplifier ........................................... 1-236
LM248 Quad 741 Operational Amplifier ........................................•....•....... 1-248
LM258 Low Power Dual Operational Amplifier ............................................... 1-261
LM261 High Speed Differential Comparator .....•............................................ 3-58
LM293 Low Power Low Offset Voltage Dual Comparator ....................................... 3-63
LM301A Operational Amplifier ............................................................ 1-180
LM302 Voltage Follower .................................. '......................... , ....... 2-27
LM306 Voltage Comparator ................•............................................... 3-17
LM307 Operational Amplifier ............................................................... 1-190
LM308 Operational Amplifier .................................................•.........•.. 1-196
LM310 Voltage Follower ........................................ _.......................... 2-33
LM311 Voltage Comparator ................................................................ 3-21
LM318 Operational Amplifier ...........................................................•.. 1-203
LM319 High Speed Dual Comparator ......................•................................. 3-35
LM321 Precision Preamplifier ............................................................. 1-274
LM324 Low Power Quad Operational Amplifier .............................................. 1-213
LM339 Low Power Low Offset Voltage Quad Comparator ...................................... 3-42
LM343 High Voltage Operational Amplifier .......................................•.......... 1-226
LM346 Programmable Quad Operational Amplifier ........................•.................. 1-236
LM348 Quad 741 Operational Amplifier ................................................ ; ... /. 1·248
LM349 Wide Band Decompensated (Av(MIN) = 5) .............................. ; •.......... 1·248
LM358 Low Power Dual Operational Amplifier ......................................... : ..... 1·261
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier ...................... 1-283
LM360 High Speed Differential Comparator .................................................. 3·54
LM361 High Speed Differential Comparator .............•...................•...... ~ ......... 3-58
LM392 Low Power Operational AmplifierlVoltage COIT1~arator ....................•............ 1·301
LM393 Low Power Low Offset Voltage Dual Comparator ....................................... 3-63
LM394 Supermatch Pair .......................................•........................... 5-23
LM395 Ultra Reliable Power Transistor ...................................................... 5·31
LM611 Operational Amplifier and Adjustable Reference ...•........... ;............. . . . . . . . . . 1-305

ix

Alpha-Numeric Index (Continued)'
LM612 Dual-Channel Comparator and Reference ..•....•....•. ,.............. ': ........ ',' ... , ... 3-72
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference ........•......•.. 3-80.
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference ...•............. 1-317
LM614 Quad Operational Amplifier and Adjustable Reference ......... , .••. , .•..•.. ; .......... 1-333
LM615 Quad Comparator and Adjustable Reference ..........•........ : ...................... 3-96
LM675 Power Operational Amplifier ........................'..................•............. 1-346
LM7o.9 Operational Amplifier .........•....................' ......'. ; ..... 0', ••••••• , ••••••••• 1-353
LM71 0. Voltage Compar.ator ........................................................ ,..... : ... 3-10.7
LM725 Operational Amplifier .................. '; ...........................................' .1-358
LM741 Operational Amplifier •..................................................... :; ....... ,1-366
LM747 Dual Operational Amplifier ....................................... ~' ................. 1-370.
LM748 Operational Amplifier •.......................................... ; .....•..... ,....... 1-375
LM759 Power Operational Amplifier ..............•..................•...................... 1-37:9
LM76o. High Speed Differential Comparator .............................. '" ............... ; .. 3-111
LM1458 Dual Operational Amplifier ........................................................ 1-390.
LM1558 Dual Operational Amplifier ................................................ " ....... 1-390.
LM18o.1 Battery Operated Power Comparator ...... '......................................... ,3-118
LM1875 20. Watt Power Audio Amplifier ............................ " ....................... 1-392
LM1877 Dual Power Audio Amplifier ......................................................... 1-398
LM1896 Dual Power Audio Amplifier .....................................' ................... 1-40.3
LM2877 Dual 4 Watt Power Audio Amplifier ..•......... ,................... ~ .................. 1-4;/ 1
LM2878 Dual 5 Watt Power Audio Amplifier ........... ; ...,................................... 1-418
LM2879 Dual 8 Watt Audio Amplifier .................................... ; ............. ; .... 1-425
LM2896 Qual Power Audio Amplifier ....................................................... 1-403
LM29o.o. Quad Amplifier ....................................... , .... '.............. , ........ 1-432
LM29o.1 Low Power Low Offset Voltage Quad Comparator .•........•..•..... '., ................. 3-42
LM29o.2 Low Power Quad Operational Amplifier ..................................... ; ........ 1-213
L:M29o.3 Low Power Low Offset Voltage Dual Comparator .............................•... " ... 3-63
LM29o.4 Low Power Dual Operational Amplifier ..•.......•................................... 1-261
LM2924 Low Power Operational Amplifier/Voltage Comparator ............................... 1-30.1
LM3o.45 Transistor Array ....•.............•.............................................. 1-450.
LM3o.45 Transistor Array ............................•........................... '...... , ... 5-42
LM3o.46 Transistor Array ................................................. '....... ~ ..•..•.... 5-42
LM3o.46 Transistor Array .....•..............•.....................•......... ~ ............. 1-450.
LM3o.8o. Operational Transconductance Amplifier .................. :..•............. '.....' .... 1-455
LM3o.86 Transistor Array ............ ; ................................... '.................. 1"450.
LM3086 Transistor Array ..........................................................,•........• 5-42
LM3146 High Voltage Transistor Array ........ ; .................:.. ; ....................,..... 5-47
LM33o.1 Quad Amplifier •............................................... ,....•....... '...... 1-432
LM33o.2 Low Power Low Offset Voltage Quad Comparator ............... '................. : ....• 3-42
LM33o.3 Quad Operational Amplifier ............•..............•.... , , .' .................... 1-459
LM34o.3 Quad Operational Amplifier .............................. , ..•.......• ; •........... 1-459
LM3875 High Performance 40. Watt Audio Power Amplifier .....................•;...•...... , ... 1-466
LM39o.o. Quad Amplifier ....•... ,',,,.,,;"...........•.. :............ ',' •.......... : ................. 1-432
LM425o. Programmable Operational Amplifier .................... , .................... : ..... 1-482
LM61o.4 Quad Gray Scale Current Feedback Amplifier ......................................... 1-490.
LM61 0.4 Quad Gray Scale Current Feedback Amplifier ... ';' .; ....•" ..•..•. " ..................... 4-3'
LMS118 Fast Settling Dual Operational Amplifier •.••• i ............ .•.•.•.•. 0' • • • • • • • • • • • • • • • • • 1-494
LM612,1 High Speed Buffer •.•..........•........•......................... '......•........ 0' 2-46'
LM6125 High Speed Buffer, ........................................•'..........'.,; ........... 2-52
LM6132 Dual High Speed/Low Power 7 MHz Rai,l-to-RaiIIlO Operational Amplifier ............... ' 1-50.3

x

Alpha-Numeric

Index(continUed)

LM6134 Quad High Speed/Low Power 7 MHz Rail·to-Raill/O Operational Amplifier ............. 1-503
LM6142 Dual High Speed/Low Power 17 MHz Rail-to·Raillnput-Output Operational Amplifier. '.... 1-504
LM6144 Quad High Speed/Low Power 17 MHz Rail,-to-Raillnput-Output Operational Amplifier .... 1-504
LM6152 Dual High Speed/Low Power 45 MHz Rail-to-Raillnput-Output Operational Amplifier ..... 1-515
LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raillnput-Output Operational Amplifier .... 1-515
LM6161 High Speed Operational Amplifier .................................................. 1-516
LM6162 High Speed Operational Amplifier .................................................. 1-523
LM6164 High Speed Operational Amplifier. ................. , ............................... 1-531
LM6165 High Speed Operational Amplifier .................... ; ..............•.............. 1-539
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier .................... 1-546
LM6181 100 mA, 100 MHz Current Feedback Amplifier ....................................... 1·560
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier ......................• 1-577
LM6218 Fast Settling Dual Operational Amplifier ............................................ 1-494
LM6221 High Speed Buffer .........................................................•...... 2-46
LM6225 High Speed Buffer ........•....................................................... 2-52
LM6261 High Speed Operational Amplifier ....................................... '" ......... 1-516
LM6262 High Speed Operational Amplifier ................... ; .............................. 1-523
LM6264 High Speed Operational Amplifier .................................................. 1-531
LM6265 High Speed Operational Amplifier. ................................................. 1-539
LM6313 High Speed, High Power Operational Amplifier ....................................... 1-598
LM6321 High Speed Buffer '...............................................•................ 2-46
LM6325 High Speed Buffer ................................................................ 2-52
LM6361 High Speed Operational Amplifier .................................................. 1-516
LM6362 High Speed Operational Amplifier .................................................. 1·523
LM6364 High Speed Operational Amplifier .................................................. 1·531
LM6365 High Speed Operational Amplifier ..............................................•... 1-539
LM6511 180 ns 3V Comparator ..........•................................................ 3-126
LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier ......................... 1-607
LM7131 Tiny High Speed Single Supply Operational Amplifier ...................•............'. 1-608
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier .. : .................. 1-630
LM8305 STN LCD Display Bias Voltage Source ........... ; ....... : ...............•............ 4-7
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers ...... 1·631
LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers ...... 1-649
LM77000 Power Operational Amplifier ..................................................... 1-379
LMC660 CMOS Quad Operational Amplifier ................................................. 1-669
LMC662 CMOS Dual Operational Amplifier ................................................. 1-679
LMC6001 Ultra Ultra-Low Input Current Amplifier ............................................ 1-689
LMC6008 8 Channel Buffer ................................................................. 4-8
LMC6022 Low Power CMOS Dual Operational Amplifier ...................................... 1-699
LMC6024 Low Power CMOS Quad Operational Amplifier ..................................... 1-711
LMC6032 CMOS Dual Operational Amplifier ................................................ 1·722
LMC6034 CMOS Quad Operational Amplifier ............................................... 1-732
LMC6041 CMOS Single Micropower Operational Amplifier .................................... 1-742
LMC6042 CMOS Dual Micropower Operational Amplifier ..................................... 1-753
LMC6044 CMOS Quad Micropower Operational Amplifier ..................................... 1-763
LMC6061 Precision CMOS Single Micropower Operational Amplifier ........................... 1-773
LMC6062 Precision CMOS Dual Micropower Operational Amplifier ............................. 1-783
LMC6064 Precision CMOS Quad Micropower Operational Amplifier ............................ 1-793
LMC6081 Precision CMOS Single Operational Amplifier ...................................... 1-803
LMC6082 Precision CMOS Dual Operational Amplifier ........................................ 1-813
LMC6084 Precision CMOS Quad Operational Amplifier ....................................... 1-823

xi

Alpha-Numeric Index(ContinUed)'
LMC6462 Dual Micropower, Rail-to-Raillnput arid Output CMOS Operational Amplifier .. ; .. ~ ... ,. 1-833
LMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS Operational Amplifier ....... ; .. 1-833
LMC6482 CMOS Dual Rail-to-Raillnput and Output Operational Amplifier .... ; ........•... ; •.... 1-847
LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier .......•....•.... ; .... 1-864
LMC6492 Dual CMOS Rail.to-Raillnput and ,Output Operational Amplifier ..... ; .... ; ..•... , ..... 1-880
LMC6494 Quad CMOS Rail-to-Raillnput and Output Operational Amplifier ........., .............. 1-880
LMC6572 Dual Low Voltage (3V) Operational Amplifier .... , . , ............ , ................. , " 1-893
LMC6574 Quad Low Voltage (2.7V) Operational Amplifier .. , .......................... : ....... 1-893
LMC6582 Dual Low Voltage, Rail-to-Raillnput and Output CMOS Operational Amplifier ...•.... , .. 1~902
LMC6584 Quad Low Voltage, Rail-to-Raillnput and Output CMOS Operational Amplifier .......... 1-902
LMC6681 Single Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown ..... 1-903
LMC6682 Dual Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown ...... 1-903
LMC6684 Quad Low Voltage, Rail-to-Raillnput and Output CMOS Amplifier with Powerdown .... " 1-903
LMC6762 Dual Micropower, Rail-to-Raillnput and Output CMOS Comparator ...•............... 3-131
LMC6764 Quad Micropower, Rail-to-Raillnput and Output CMOS Comparator .................. 3-131
LMC6772 Dual Micropower Rail-to-Raillnput and Open Drain Output CMOS Comparator ',' ... : ... 3-132
LMC6774 Quad Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator ......... 3-132
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Raillnput andOutput: •............. 1-904
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Raillnput and Output .......• , .......... 1-920
LMC7211 Tiny CMOS Comparator with Rail-to-Rail.lnput ... , .... ; .........•....... ~' .......... 3-133
LMC7221 Tiny CMOS Comparator with Rail-to-Raillnput and Open Drain Output ... , .•.......... 3-144
LP311 Voltage Comparator ..........................................................•.... 3-145
LP339 Ultra-Low Power Quad Comparator ............... , . , ................•............... 3-149
LP395 Ultra Reliable Power Transistor ..............................•....... ; ............... 5-52
LPC660 Low Power CMOS Quad Operational Amplifier ...... , . , .. , ... .' .. '" ...... " ....... , .. 1-921
LPC661 Low Power CMOS Operational Amplifier ................•.......... , .......... ;~ .... 1-933
LPC662 Low Power CMOS Dual Operational Amplifier ...... , ................................ 1-945
OP07 Low Offset, Low Drift Operational Amplifier .. , ...... , .................................. 1-957
Packing Considerations (Methods, Materials and Recycling) . , ...•............. ; ..•............... 6-3
Recommended Soldering Profiles-Surface Mount ............... ,., .............. ; .......... 6-23
TL081 Wide Bandwidth JFET Input Operational Amplifier .... ,.,., ..... , ...................... 1-962
TL082 Wide Bandwidth Dual JFET Input Operational:Amplifier ............ ; .... ; ............ ; .. 1-969

xii

Additional Available Linear Devices
54ACT715 Programmable Video Sync Generator ...... Section 2
74ACT715 Programmable Video Sync Generator ...... Section 2
ADC0800 8-Bit AID Converter ...................... Section 2
ADC0801 8-Bit,...P Compatible AID Converter ........ Section 2
ADC0802 8-Bit ,...p Compatible AID Converter ........ Section 2
ADC0803 8-Bit ,...p Compatible AID Converter ........ Section 2
ADC0804 8-Bit ,...p Compatible AID Converter ........ Section 2
ADC0805 8-Bit ,...p Compatible AID Converter ........ Section 2
ADC0808 8-Bit ,...p Compatible AID Converter with
8-Channel Multiplexer ........................... Section 2
ADC0809 8-Bit ,...p Compatible AID Converter with
8-Channel Multiplexer ........................... Section 2
ADC0811 8-Bit Serial 1/0 AID Converter with
11-Channel Multiplexer .......................... Section 2
ADC0816 8-Bit,...P Compatible AID Converter with
16-Channel Multiplexer .......................... Section 2
ADC0817 8-Bit ,...p Compatible AI D Converter with
16-Channel Multiplexer .......................... Section 2
ADC0819 8-Bit Serial 1/0 AID Converter with
19-Channel Multiplexer .......................... Section 2
ADC0820 8-Bit High Speed ,...p Compatible AID
Converter with Track/Hold Function ............... Section 2
ADC0831 8-Bit Serial 1/0 AID Converter with
Multiplexer Options ............................. Section 2
ADC0832 8-Bit Serial 110 AID Converter with
Multiplexer Options ............................. Section 2
ADC0833 8-Bit Serial 1/0 AID Converter with
4-Channel Multiplexer ........................... Section 2
ADC0834 8-Bit Serial 1/0 AID Converter with
Multiplexer Options ............................. Section 2
ADC0838 8-Bit Serial 1/0 AID Converter with
Multiplexer Options ............................. Section 2
ADC0841 8-Bit,...P Compatible AID Converter ........ Section 2
ADC0844 8-Bit ,...p Compatible AID Converter with
Multiplexer Options ............................. Section 2
ADC0848 8-Bit ,...p Compatible AID Converter with
Multiplexer Options ............................. Section 2
ADC0851 8-Bit Analog Data Acquisition and Monitoring
System ........................................ Section 1
ADC0852 Multiplexed Comparator with 8-Bit
Reference Divider ............................... Section 2
ADC0854 Multiplexed Comparator with 8-Bit
Reference Divider. .............................. Section 2
ADC0858 8-Bit Analog Data Acquisition and Monitoring
System ........................................ Section 1
ADC08031 8-Bit High-Speed Serial 1/0 AID Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ............................ Section 2
ADC08032 8-Bit High-Speed Serial 1/0 AID Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ............................ Section 2

xiii

Application Specific Analog Products
Application Specific Analog Products
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Data Acquisition

Data Acquisition

Additional Available Linear Devices (COntinued)
ADC08034 8-Bit High-Speed Serial 110 AID Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ......................•..... Section 2
AD008038 8-Bit High-Speed Serial I/O AID Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ...•........................ Section 2
ADC08061 500 ns AID Converter with S/H Function
and Input Multiplexer ............................ Section 2
ADC08062 500 ns AID Converter with S/H Function
and Input Multiplexer ............................ Section 2
ADC08131 8-Bit High-Speed Serial I/O AID Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ............................ Section 2
ADC08134 8-Bit High-Speed Serial I/O A/D Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ............................ Section 2
ADC08138 8-Bit High-Speed Serial I/O AID Converter
with Multiplexer Options, Voltage Reference, and
Track/Hold Function ............................ Section 2
ADC08161 500 ns AID Converter with S/H Function
and 2.5V Bandgap Reference .................... Section 2
ADC08231 8-Bit 2 ,...S Serial 110 AID Converter with
MUX, Reference, and Track/Hold .................. Section 2
ADC08234 8-Bit 2 ,...S Serial 110 AID Converter with
MUX, Reference, and Track/Hold ................. Section 2
ADC08238 8-Bit 2 ,...S Serial 110 AID Converter with
MUX, Reference, and Track/Hold ................. Section 2
ADC12H030 Self-Calibrating 12-Bit Plus Sign Serial
I/O AID Converter with MUX and Sample/Hold ..... Section 2
ADC12H032 Self-Calibrating 12-Bit Plus Sign Serial
I/O AID Converter with MUX and Sample/Hold ..... Section 2
ADC12H034 Self-Calibrating 12-Bit Plus Sign Serial
110 AID Converter with MUX and Sample/Hold ..... Section 2
ADC12H038 Self-Calibrating 12-Bit Plus Sign Serial
110 AID Converter with MUX and Sample/Hold ..... Section 2
ADC12L030 3.3V Self-Calibrating 12-Bit Plus Sign
Serial 110 AID Converter with MUX and
Sample/Hold ........•.......................... Section 2
ADC12L032 3.3V Self-Calibrating 12-Bit Plus Sign
Serial I/O AID Converter with MUX and
Sample/Hold ..............•.................... Section 2
ADC12L034 3.3V Self-Calibrating 12-Bit Plus Sign
Serial I/O AID Converter with MUX and
Sample/Hold ................................... Section 2
ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign
Serial 110 A/D Converter with MUX and
Sample/Hold ................................... Section 2
ADC1001 10-Bit,...P Compatible AID Converter ....... Section 2
ADC100510-Bit,...P Compatible AID Converter ...•... Section 2
ADC1031 10-Bit Serial I/O A/D Converter with Analog
Multiplexer and Track/Hold Function ......•....... Section 2

xiv

Data Acquisition

Data Acquisition
Data Acquisition
Data Acquisition

Data Acquisition

Data Acquisition

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data AcquisitiQn
Data Acquisition

Data Acquisition

Data Acquisition

Data Acquisition

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Additional Available Linear Devices (Continued)
ADC1034 1O-Bit Serial I/O AID Converter with Analog
Multiplexer and Track/Hold Function .............. Section 2
ADC1038 10-Bit Serial I/O AID Converter with Analog
Multiplexer and Track/Hold Function .............. Section 2
ADC106110-Bit High-Speed ,...P-Compatible AID
Converter with Track/Hold Function ............... Section 2
ADC1205 12-Bit Plus Sign,...p Compatible AID
Converter ...................................... Section 2
ADC1225 12-Bit Plus Sign ,...p Compatible AID
Converter ............................. '......... Section 2
ADC1241 Self-Calibrating 12-Bit Plus Sign
,uP-Compatible AID Converter with Sample/Hold ... Section 2
ADC124212-Bit Plus Sign Sampling AID Converter ... Section 2
ADC1251 Self-Calibrating 12-Bit Plus Sign AID
Converter with Sample/Hold ..................... Section 2
ADC10061 1O-Bit 600 ns AID Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC10062 1O-Bit 600 ns AID Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC10064 1O-Bit 600 ns A/D Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC1 0154 1O-Bit Plus Sign 4 ,...S ADC with 4- or
8-Channel MUX, Track/Hold and Reference ........ Section 2
ADC1 0158 10-Bit Plus Sign 4 ,...S ADC with 4- or
8-Channel MUX, Track/Hold and Reference ........ Section 2
ADC10461 10-Bit 600 ns AID Converter with Input
Multiplexer and Sample/Hold ......•.............. Section 2
ADC10462 1O-Bit 600 ns AID Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC10464 1O-Bit 600 ns AID Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC10662 1O-Bit 360 ns AID Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC10664 1O-Bit 360 ns AID Converter with Input
Multiplexer and Sample/Hold ..................... Section 2
ADC10731 10-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ............ Section 2
ADC10732 10-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ............ Section 2
ADC10734 10-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ............ Section 2
ADC1073810-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ............ Section 2
ADC10831 10-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ...........• Section 2
ADC10832 1O-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ............ Section 2
ADC10834 10-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ............ Section 2
ADC10838 10-Bit Plus Sign Serial 110 AID Converter
with MUX, Sample/Hold and Reference ....•......• Section 2

xv

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Additional Available Linear ,Devices (Continu~d)
ADC12030 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/DConverter with MUX and Sample/Hold ........ Section 2
Data Acquisition
ADC12032 Self-Calibrating 12-Bit Plus Sign Serial 1/0
A/D Converter with MUX and Sample/Hold ........ Section 2
Data Acquisition
ADC12034 Self-Calibrating 12-Bit Plus Sign Serial 1/0
AID Converter with MUX and Sample/Hold .•...... Section 2
Data Acquisition
ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O
AID Converter with MUX and Sample/Hold ........ Section 2
Data Acquisition
ADC12062 12-Bit, 1 MHz, 75 mW AID Converter with
Input Multiplexer and Sample/Hold ................ Section 2
Data Acquisition
ADC12130 Self-Calibrating 12-Bit Plus Sign Serial 110
AID Converter with MUX and SamplelHold ........ Section 2
Data Acquisition
ADC12132 Self-Calibrating 12-Bit Plus Sign. Serial I/O
AID Converter with MUX and Sample/Hold ........ Section 2
Data Acquisition
ADC12138 Self-Calibrating 12-Bit Plus Sign Serial 110
AID Converter with MUX and Sample/Hold ........ Section 2 '
Data Acquisition
ADC12441 Dynamically-Tested Self-Calibrating 12-Bit
Plus Sign AID Converter with Sample/Hold ........ Section 2
Data Acquisition
ADC12451 Dynamically-Tested Self-Calibrating 12-Bit
Plus Sign AID Converter with Sample/Hold ........ Section 2
Data Acquisition
ADC12662 12-Bit, 1.5 MHz, 200 mW AID Converter
with Input Multiplexer and Sample/Hold ............ Section 2
Data Acquisition
ADC16071 16-Bit Delta-Sigma 192 kil/s
Analog-to-Digital Converter ....................... Section 2
Data Acquisition
ADC1647116·8it Delta-Sigma 192 ks/s '
Analog-to-Digital Converter ................•...... Section 2
Data Acquisition
AH0014 Dual DPDT-TIUDTl Compatible MOS
Analog Switch .................................. Section 8
Data Acquisition
AH0015 Quad SPST-TIUDTl Compatible MOS
Analog Switch .................................. Section 8
, 'Data Acquisition
AH0019 Dual DPST-TIUDTl Compatible MOS"
Analog Switch .................................. Section 8
Data Acquisition
AH5010 Monolithic Analog Current Switch ............ Section 8
Data Acquisition
AH5011 Monolithic Analog Current Switcl} ............ Section 8
Data Acquisition
AH5012 Monolithic Analog Current
h ....•....... Section 8
Data Acquisition
AH5020C Monolithic Analog Curre
itch .......... Section 8
Data Acquisition
AN~450 Small Outline (SO) Pac f,
ace Mounting
Methods-Parameters and Their Effect on Product
Reliability . : .................................... Section 9
Data Acquisition
AN-450 Small Outline (SO) Package Surface Mounting
Methods-Parameters and Their Effect 'On Product
PowerlCs
Reliability ...................................... Section 5
AN-450 Small Outline (SO) Package Surface MOUnting
Methods-Parameters and Their Effect on Product
Reliability ..•.............•..................... Section'5
Application Specific Analog Products
Board Mount of Surface Mount Components .......... Section 5
Application Specific Analog Products
Board Mount of Surface Mount Components .......... Section 5
PowerlCs
Data Acquisition
Board Mount of Surface Mount Components .......... Section 9
DAC0800 8-Bit 0/ A Converter ...................... Section 3
Data Acquisition
Data Acquisition
DAC0801 8-Bit 0/ A Converter ....................•. Section 3 '
DAC0802 8-Bit 0/ A Converter ...................... Section 3
Data Acquisition

I

xvi

Additional Available Linear Devices (Continued)
DAC0806 8-Bit 01 A Converter .............. ; ....... Section 3
DAC0807 8-Bit 01 A Converter ...................... Section 3
DAC0808 8-Bit 01 A Converter ...................... Section 3
DAC0830 8-Bit p,P Compatible Double-Buffered 01 A
Converter ...................................... Section 3
DAC0831 8-Bit p,P Compatible Double-Buffered 01 A
Converter ...................................... Section 3
DAC0832 8-Bit p,P Compatible Double-Buffered 01 A
Converter ................. '..................... Section 3
DAC0854 Quad 8-Bit Voltage-Output Serial 01 A
Converter with Readback ........................ Section 3
DAC0890 Dual 8-Bit p,P-Compatible 01 A Converter ... Section 3
DAC1006 p,P Compatible, Double-Buffered 01 A
Converter ...................................... Section 3
DAC1007 p,P Compatible, Double-Buffered 01 A
Converter ...................................... Section 3
DAC1008 p,P Compatible, Double-Buffered 01 A
Converter ...................................... Section 3
DAC1020 10-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1021 10-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1022 10-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1054 Quad 1O-Bit Voltage-Output Serial 01 A
Converter with Readback ........................ Section 3
DAC1208 12-Bit p,P Compatible Double-Buffered 01 A
Converter ...................................... Section 3
DAC1209 12-Bit p,P Compatible Double-Buffered 01 A
Converter ...................................... Section3
DAC1210 12-Bit p,P Compatible Double-Buffered 01 A
Converter ...................................... Section 3
DAC1218 12-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1219 12-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1220 12-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1222 12-Bit Binary Multiplying 01 A Converter ..... Section 3
DAC1230 12-Bit p,P Compatible Double-Buffered 01 A
Converter ................................•..... Section 3
DAC1231 12-Bit p,P Compatible Double-Buffered Of A
Converter ...................................... Section 3
DAC1232 12-Bit p,P Compatible Double-Buffered 01 A
Converter ...................................... Section 3
DP731 0 Octal Latched Peripheral Driver ............. Section 3
DP7311 Octal Latched Peripheral Driver ............. Section 3
DP8310 Octal Latched Peripheral Driver ............. Section 3
DP8311 Octal Latched Peripheral Driver ............. Section 3
DS0026 5 MHz Two Phase MOS Clock Drivers ..•..... Section 4
DS1631 CMOS Dual Peripheral Driver ............... Section 3
DS1632 CMOS Dual Peripheral Driver ............... Section 3
DS1633 CMOS Dual Peripheral Driver ............... Section 3
DS1634 CMOS Dual Peripheral Driver ............... Section 3
DS2003 High CurrentlVoltage Darlington Driver ....... Section 3
DS2004 High CurrentlVoltage Darlington Driver ....... Section 3
DS3631 CMOS Dual Peripheral Driver ............... Section 3

xvii

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
, Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products

Additional Available Linear Devices'(Continued)
DS3632 CMOS Dual Peripheral Driver ........•...... Section 3
DS3633 .CMOS Dual Peripheral Driver ............... Section 3
D83634 CMOS Dual Peripheral Driver ..•..•......... Section 3
DS3658 Quad High Current Peripheral Driver ....•... ~ Section 3
DS3668 Quad Fault Protected Peripheral Driver ....... Section 3
DS3680 Quad Negative Voltage Relay Driver ........• Section 3
DS9667 High CurrentIVoltage Darlington Driver ....... Section 3
DS55451 Series Dual Peripheral Driver ........•..... Section 3 .
DS55452 Series Dual Peripheral Driver .•............ Section 3
DS55453 Series Dual Peripheral Driver .............. Section 3
DS55454 Series Dual Peripheral Driver .............. Section 3
DS75451 Series Dual Peripheral Driver .............. Section 3
DS75452 Series Dual Peripheral Driver .............. Section 3
DS75453 Series Dual Peripheral Driver .....•........ Section 3
DS75454 Series Dual Peripheral Driver .............. Section 3
DS75491 MOS-to-LED Quad Segment Driver ........• Section 4
DS75492 MOS-to-LED Hex Digit Driver: ............. Section 4
DS75494 Hex Digit Driver .......................... Section 4
Land Pattern Recommendations ..................•. Section 5
Land Pattern Recommendations ..........•......... Section 5
Land Pattern Recommendations .........••......... Section 9
LF198 Monolithic Sample and Hold Circuit ............ Section 6
LF298 Monolithic Sample and Hold Circuit ..•.....•... Section 6
LF398 Monolithic Sample and Hold Circuit ............ Section 6
LF11201 Quad SPST JFET Analog Switch ....•...... Section 8
LF11202 Quad SPST JFET Analog Switch •.......... Section 8
LF11331 Quad SPST JFET Analog Switch ..........• Section 8
LF11332 Quad SPST JFET Analog Switch .........•. Section 8
LF11333 Quad SPST JFET Analog Switch ........... Section 8
LF13006 Digital Gain Set. ..........•......•........ Section 6
LF13007 Digital Gain Set ............•............•. Section 6
LF13201 Quad SPST JFET Analog Switch ........... Section 8
LF13202 Quad SPST JFET Analog Switch ..•........ Section 8
LF13331 Quad SPST JFET Analog Switch .........•. Section 8
LF13332 Quad SPST JFET Analog Switch .•......•.. Section 8
LF13333 Quad SPST JFET Analog Switch ........... Section 8
LF13508 8-Channel Analog Multiplexer .............. Section 8
LF13509 4-Channel Differential Analog Multiplexer .... Section 8
LH0070 Series BCD Buffered Reference ............. Section 4
LH0071 Series Precision Buffered Reference ..•...... Section 4 .
LH1605 5 Amp, High Efficiency Switching Regulator ... Section 3
LM12 80W Operational Amplifier ........•. , ••..•.•.. Section 4
LM12H454 12-Bit + Sign Data Acquisition System
with Self-Calibration .•...•....•.........•..•..... Section 1
LM12H45812-Bit + Sign Data Acquisition System .
with Self-Calibration ......•....•....•..•......•.. Section 1
LM12L438 12-Bit + Sign Data Acquisition System with
Serial 110 and Self-Calibration .........•...•...... Section 1
LM12L454 12-Bit + Sign' Data Acquisition System with
Self-Calibration ........ ; ........................ Section 1

xviii

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific AnalQg Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
. "PowerICs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data AcquiSition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs
.Power ICs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Additional Available Linear Devices (Continued)
LM 12L458 12-Bit + Sign Data Acquisition System with
Self-Calibration ................................. Section 1
LM34 Precision Fahrenheit Temperature Sensor ...... Section 5
LM35 Precision Centigrade Temperature Sensor ...... Section 5
LM45 SOT-23 Precision Centigrade Temperature
Sensor ........................................ Section 5
LM50 Single Supply Precision Centigrade Temperature
Sensor ........................................ Section 5
LM78LXX Series 3-Terminal Positive Regulators ...... Section 1
LM78MXX Series 3-Terminal Positive Regulator ....... Section 1
LM78S40 Universal Switching Regulator Subsystem ... Section 3
LM78XX Series Voltage Regulators ................. Section 1
LM79LXXAC Series 3-Terminal Negative Regulator .... Section 1
LM79MXX Series 3-Terminal Negative Regulators ..... Section 1
LM79XX Series 3-Terminal Negative Regulators ...... Section 1
LM105 Voltage Regulator .......................... Section 1
LM109 5-Volt Regulator ............................ Section 1
LM 113 Reference Diode ........................... Section 4
LM 117 3-Terminal Adjustable Regulator ............. Section 1
LM117HV 3-Terminal Adjustable Regulator ........... Section 1
LM120 Series 3-Terminal Negative Regulator ......... Section 1
LM122 Precision Timer ............................ Section 4
LM123 3-Amp, 5-Volt Positive Regulator ............. Section 1
LM125 Dual Voltage Regulator ..................... Section 1
LM129 Precision Reference ........................ Section 4
LM131 Precision VOltage-to-Frequency Converter ..... Section 2
LM133 3-Amp Adjustable Negative Regulator ......... Section 1
LM 134 3-Terminal Adjustable Current Source ......... Section 4
LM134 3-Terminal Adjustable Current Source ......... Section 5
LM135 Precision Temperature Sensor ............... Section 5
LM136-2.5V Reference Diode ...................... Section 4
LM136-5.0V Reference Diode ...................... Section 4
LM137 3-Terminal Adjustable Negative Regulator •.... Section 1
LM137HV 3-Terminal Adjustable Negative Regulator
(High Voltage) .................................. Section 1
LM138 5-Amp Adjustable Regulator ................. Section 1
LM140 Series 3-Terminal Positive Regulator .......... Section 1
LM140L Series 3-Terminal Positive Regulator ......... Section 1
LM 145 Negative 3-Amp Regulator ................... Section 1
LM 150 3-Amp Adjustable Regulator ................. Section 1
LM 169 Precision Voltage Reference ................. Section 4
LM185 Adjustable Micropower Voltage Reference ..... Section 4
LM 185-1.2 Micropower Voltage Reference Diode ..... Section 4
LM185-2.5 Micropower Voltage Reference Diode ..... Section 4
LM199 Precision Reference ........................ Section 4
LM205 Voltage Regulator .......................... Section 1
LM231 Precision VOltage-to-Frequency Converter ..... Section 2
LM234 3-Terminal Adjustable Current Source ......... Section 4
LM234 3-Terminal Adjustable Corrent Source ......... Section 5
LM235 Precision Temperature Sensor ............... Section 5
LM236-2.5V Reference Diode ...................... Section 4

xix

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs
Power ICs
PowerlCs
Power ICs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
Data Acquisition
PowerlCs
PowerlCs
PowerlCs
Application Specific Analog Products
PowerlCs
PowerlCs
Data Acquisition
Data Acquisition
PowerlCs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Additional Available Linear Devices (Continued)
LM236-5.0V Reference Diode ...................... Section 4
LM285 Adjustable Micropower Voltage Reference ..... Section 4
LM285-1.2 Micropower Voltage Reference Diode ..... Section 4
LM285-2.5 Micropower Voltage Reference Diode ..... Sectiori 4
LM299 Precision Reference ............ '............ Section 4
LM305 Voltage Regulator .......................... Section 1
LM309 5-Volt Regulator ............................ Section 1
LM313 Reference Diode ........................... Section 4
LM317 3-Terminal Adjustable Regulator ....•........ Section 1
LM317HV 3-Terminal Adjustable Regulator ........... Section 1
LM317L 3-Terminal Adjustable Regulator ...........• Section 1
LM320 Series 3-Terminal Negative Regulator ......... Section 1
LM320L Series 3-Terminal Negative Regulator ........ Section 1
LM322 Precision Timer ............................ Section 4
LM323 3-Amp, 5-Volt Positive Regulator ............. Section 1
LM325 Dual Voltage Regulator ..................... Section 1
LM329 Precision Reference ........................ Section 4
LM330 3-Terminal Positive Regulator ................ Section 2
LM331 Precision Voltage-to-Frequency Converter ..... Section 2
LM333 3-Amp Adjustable Negative Regulator ......... Section l'
LM334 3-Terminal Adjustable Current Source ......... Section 4
LM334 3-Terminal Adjustable Current Source ......... Section 5
LM335 Precision Temperature Sensor ......-......... Section 5
LM336-2.5V Reference Diode ...................... Section 4
LM336-5.0V Reference Diode ...................... Section 4
LM337 3-Terminal Adjustable Negative Regulator ..... Section 1
LM337HV 3-Terminal Adjustable Negative Regulator
(High Voltage) .................................. Section 1
LM337L 3-Terminal Adjustable Regulator ............ Section 1
LM338 5-Amp Adjustable Regulator ................. Section 1
LM340 Series 3-Terminal Positive Regulator .•........ Section 1
LM340L Series 3-Terminal Positive Regulator ......... Section 1
LM341 Series 3-Terminal Positive Regulator .......... Section 1
LM345 Negative 3-Amp Regulator .........••........ Section 1
LM350 3-Amp Adjustable Regulator ................. Section 1
LM368-2.5 Precision Voltage Reference ....•........ Section 4
LM368-5.0 Precision Voltage Reference ............. Section4
LM368-10 Precision Voltage Reference .............. $ection 4
LM369 Precision Voltage Reference ........•........ Section 4
LM376 Voltage Regulator .......................... Section 1
LM380 Audio Power Amplifier ................•....... Section 1
LM383 7W Audio Power Amplifier ................... Section 1
LM384 5W Audio Power Amplifier ................... Section 1 .
LM385 Adjustable Micropower Voltage Reference ..... Section 4
LM385-1.2 Micropower Voltage Reference'Diode .. ~ .. Section 4
LM385-2.5 Micropower Voltage Reference Diode ..... Section 4
LM386 Low Voltage Audio Power Amplifier ........... Section 1
LM387/LM387A Low Noise Dual Preamplifier ......... Section 1
LM388 1.5W Audio Power Amplifier .......•......... Section 1
LM389 Low Voltage Audio Power Amplifier with NPN
Transistor Array ................................ Section 1

·xx

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
PowerlCs
PowerlCs
Data' Acquisition
Power ICs
Power ICs
PowerlCs
PowerlCs
PowerlCs
Application Specific Analog Products
PowerlCs
PowerlCs
Data Acquisition
Power ICs
Data Acquisition
PowerlCs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs
Power ICs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
PowerlCs
Application Specific Analog Products
Application Specific Analog Products
Application. Specific Analog Products
Data Acquisition
Data Acquisition
Data Acquisition
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Produc;:ts

Additional Available Linear Devices (Continued)
LM390 1W Battery Operated Audio Power Amplifier ... Section 1
LM391 Audio Power Driver ......................... Section 1
LM399 Precision Reference ........................ Section 4
LM431 A Adjustable Precision Zener Shunt Regulator .. Section 3
LM555 Timer ..................................... Section 4
LM555C Timer .................................... Section 4
LM556 Dual Timer ................................ Section 4
LM556C Dual Timer ............................... Section 4
LM565 Phase Locked Loop ........................ Section 4
LM565C Phase Locked Loop ....................... Section 4
LM566C Voltage Controlled Oscillator ............... Section 4
LM567 Tone Decoder ............................. Section 4
LM567C Tone Decoder ............................ Section 4
LM628 Precision Motion Controller .................. Section 4
LM629 Precision Motion Controller .................. Section 4
LM723 Voltage Regulator .......................... Section 1
LM831 Low Voltage Audio Power Amplifier ........... Section 1
LM833 Dual Audio Operational Amplifier ............. Section 1
LM837 Low Noise Quad Operational Amplifier ........ Section 1
LM903 Fluid Level Detector ........................ Section 3
LM1036 Dual DC Operated TonelVolume/Balance
Circuit ....... '.................................. Section 1
L:M1042 Fluid Level Detector ....................... Section 3
LM1131 Dual Dolby B-Type Noise Reduction
Processor ...................................... Section 1
LM 1201 Video Amplifier System .................... Section 2
LM1202 230 MHz Video Amplifier System ............ Section 2
LM1203 RGB Video Amplifier System ................ Section 2
LM1203A 150 MHz RGB Video Amplifier System ...... Section 2
LM1203B 100 MHz RGB Video Amplifier System ...... Section 2
LM1204150 MHz RGB Video Amplifier System ....... Section 2
LM1205 130 MHz RGB Video Amplifier System with
Blanking ....................................... Section 2
LM1207 85 MHz RGB Video Amplifier System with
Blanking ....................................... Section 2
LM1208 130 MHz RGB Video Amplifier System with
Blanking ....................................... Section 2
LM1209100 MHz RGB Video Amplifier System with
Blanking ....................................... Section 2
LM1212 230 MHz Video Amplifier System with OSD
Blanking ....................................... Section 2
LM1281 85 MHz RGB Video Amplifier System with On
Screen Display (OS D) ........................... Section 2
LM1291 Video PLL System for Continuous Sync
Monitors ....................................... Section 2
LM 1295 DC Controlled Geometry Correction System
for Continuous Sync Monitors .................... Section 2
LM 1391 Phase-Locked Loop ....................... Section 2
LM1496 Balanced Modulator-Demodulator ........... Section 4
LM1575 SIMPLE SWITCHER 1A Step-Down Voltage
Regulator ...................................... Section 3

xxi

Application Specific Analog Products
Application Specific Analog Products
Data Acquisition
Power ICs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
PowerlCs
PowerlCs
Power ICs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog
Application Specific Analog
Application Specific Analog
Application Specific Analog
Application Specific Analog
Application Specific Analog
Application Specific Analog

Products
Products
Products
Products
Products
Products
Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
PowerlCs

Additional Available Linear Devices(cOntinlUld)
LM1575HV SIMPLE SWITCHER 1A Step-Down
Voltage Regulator .......... ; , ~' ................. Section 3
.·Powe('ICs
LM1577 SIMPLE SWITCHER Step-Up Voltage
Regulator ...................................... Section
'. Pbwer ICs
LM1577 ~IMPLE SWITCHER Step-Up Voltage
Regulator .. , ................................... Section 3
Application Specific Analog Products
LM 1578A Switching Regulator ...................... Section 3
PowerlCs
Application Specific Analog Products
LM1596 Balanced Modulator-Demodulator ........... Section 4
LM1815 Adaptive Variable Reluctance Sensor
Amplifier ............................. ; ......... Section 3
Application Specific Analog Products
Application Specific Analog Products
LM1819 Air-Core Meter Driver ...................... Section 3
LM1823 Video IF Amplifier/PLL Detector System ..... Section 2
Application Specific Analog Products
Application Spe.cific Analog Products
LM1830Huid Detector ............................. Section 3
LM1851 Ground Fault Interrupter .................... Section 4
Application Specific Analog Products
LM1865 Advanced FM IF System ..........•........ Section 4
Application Specific Analog', Products
LM1868 AM/FM Radio System ..................... Section 4
Application Specific Analog Products
LM1875 2.0W Audio Power Amplifier ................. Section 1
Application Specific Analog Products
LM1876 'Dual 20W Audio Power Amplifier with Mute
and Standby Modes . ; ......... : ................. Section 1
Application Specific Analog Products
Application Specific Analog Products
LM1877 Dual Audio Power Amplifier .......••........ Section 1
LM 1881 Video Sync Separator ...................... Section 2
Application Specific Analog Products
LM1882 Programmable Video Sync Generator ........ Section 2
Application Specific Analog Products
Application Specific Analog Products
LM1893 Carrier-Current Transceiver ................. Section 4
LM1894 Dynamic Noise Reduction System DNR® ..... Section 1
Application Specific Analog Products
Application Specific Analog Products
LM1896 Oual Audio Power Amplifier .........•....... Section 1
LM1921 1 Amp Industrial Switch .........' ........... Section 3
Application Specific Analog PrOducts
LM1946 OverIUnder Current Limit Diagnostic Circuit .. Section 3
Application Specific Analog Products
Application Specific Analog Products
LM1949 Injector Drive Controller .................... Section 3
LM1950 750 rnA High Side Switch ................... Section 3
Application Specific Analog Products
LM1951 Solid State 1 Amp Switch ................... Section 3 . Application Specific Analog Products
LM1971p.Pot 62 dB Digitally Controlled Audio
Attenuator with Mute ............................ Section 1
Application Specific Analog Products
LM1972 p.Pot 2-Channel 78 dB Audio Attenuator with
Mute .......................................... Section 1
ApplicaUon Specific Analog Products
LM1973 p.Pot 3-Channel 76 dB Audio Attenuator with
Mute .......................................... Section 1
Application Specific Analog Products
LM2416 Triple 50 MHz CRT Driver .................. Section 2
Application Specific Analog PrQducts
LM2416C Triple 50 MHz CRT Driver ................. Section 2
Application Specific Analog PrOducts
Application Specific Analog Products
LM2418 Triple 30 MHz CRT Driver .................. Section 2
Application Specific Analog Products
LM2419 Triple 65 MHz CRT Driver .................. Section 2
LM2427 Triple 80 MHz CRT Driver .................. Section 2
Application Specific Analog Products
LM2524D Regulating Pulse Width Modulator ....... :. Section 3
PowerlCs
LM2574 SIMPLE SWITCHER 0.5A Step-Down Voltage
PowerlCs
Regulator ...................................... Section 3
LM2574HV SIMPLESWITCHER 0.5A Step-Down
Power ICs
Voltage Regulator ............................... Section 3
LM2575 SIMPLE SWITCHER 1A Step-Down Voltage
PowerlCs
Regulator .... ; ..............•....•............. Section 3
LM2575HV SIMPLE SWITCHER 1A Step-Down
PowerlCs
Voltage Regulator ............................... Section 3

a.

xxii

Additional Available Linear Devices (Continued)
LM2576 SIMPLE SWITCHER 3A Step-Down Voltage
Regulator ...............•...................... Section 3
LM2576HV SIMPLE SWITCHER 3A Step-Down
Voltage Regulator ............................... Section 3
LM2577 SIMPLE SWITCHER Step-Up Voltage
Regulator .........•............................ Section 3
LM2577 SIMPLE SWITCHER Step-Up Voltage
Regulator ...................................... Section 3
LM2578A Switching Regulator ...................... Section 3
LM2587 SIMPLE SWITCHER 5A Flyback Regulator ... Section 3
LM2876 High-Performance 40W Audio Power Amplifier
with Mute ...................................... Section 1
LM2877 Dual4W Audio Power Amplifier ............. Section 1
LM2878 Dual 5W Audio Power Amplifier ............. Section 1
LM2879 Dual 8W Audio Power Amplifier ............. Section 1
LM2889 TV Video Modulator ....................... Section 2
LM2893 Carrier-Current Transceiver ................. Section 4
LM2896 Dual Audio Power Amplifier ................. Section 1
LM2907 Frequency to Voltage Converter ............. Section 3
LM2917 Frequency to Voltage Converter ............. Section 3
LM2925 Low Dropout Regulator with Delayed Reset ... Section 3
LM2925 Low Dropout Regulator with Delayed Reset ... Section 2
LM2926 Low Dropout Regulator with Delayed Reset ... Section 2
LM2926 Low Dropout Regulator with Delayed Reset ... Section 3
LM2927 Low Dropout Regulator with Delayed Reset ... Section 3
LM2927 Low Dropout Regulator with Delayed Reset ... Section 2
LM2930 3-Terminal Positive Regulator ............... Section 2
LM2931 Series Low Dropout Regulators ............. Section 2
LM2931 Series Low Dropout Regulators ............. Section 3
LM2935 Low Dropout Dual Regulator ................ Section 3
LM2935 LowDropout Dual Regulator ................ Section 2
LM2936 Ultra-Low Quiescent Current 5V Regulator .... Section 2
LM2936 Ultra-Low Quiescent Current 5V Regulator .... Section 3
LM2937 500 mA Low Dropout Regulator ............. Section 3
LM2937 500 mA Low Dropout Regulator ............. Section 2
LM2940/LM2940C 1A Low Dropout Regulators ....... Section 2
LM2940/LM2940C 1A Low Dropout Regulators ....... Section 3
LM2941 I LM2941 C 1A Low Dropout Adjustable
Regulators ....................; ................. Section 2
LM2984 Microprocessor Power Supply System ....... Section 2
LM2984 Microprocessor Power Supply System ....... Section 3
LM2990 Negative Low Dropout Regulator ............ Section 2
LM2991 Negative Low Dropout Adjustable Regulator .. Section 2
LM3001 Primary-Side PWM Driver ................... Section 3
LM3101 Secondary-Side PWM Controller ............ Section 3
LM3411 Precision Secondary Regulator I Driver ....... Section 3
LM3420-4.2, -8.4, -12.6 Lithium-Ion Battery Charge
Controller ...................................... Section 2
LM3524D Regulating Pulse Width Modulator ......... Section 3
LM3578A Switching Regulator ...................... Section 3

xxiii

PowerlCs
Power ICs
PowerlCs
Application Specific Analog Products
PowerlCs
PowerlCs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
PowerlCs
PowerlCs
Application Specific Analog Products
Application Specific Analog Products
PowerlCs
Power ICs
Power ICs
Application Specific Analog Products
Application Specific Analog Products
PowerlCs
Power ICs
Application Specific Analog Products
Application. Specific Analog Products
Power ICs
Power ICs
Application Specific Analog Products
PowerlCs
PowerlCs
Application Specific Analog Products
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs
PowerlCs

Addi~ional

Available Linear Devices(Contlnued)

LM3875 High Performance 56W Audio Power
Amplifier ....................................... Section 1 . Application Specific Analog Products
LM3876 High Performance 56W Audio Power Amplifier
. with Mute ........................... , .......... Section 1
Application Specific Analog Products
LM3886 High-Performance 68W Audio Power Amplifier
with. Mute ............................•......... Section 1
Application Specific Analog Products
LM3905 Precision Timer ........................... Section 4
Application Specific Analog Products
LM3909 LED Flasher/Oscillator ..................... Section 4
Application Specific Analog Products
LM3914 Dot/Bar Display Driver ..................... Section 4
Applicatior:1 Specific Analog Products
Application Specific,Analog Products
LM3915 Dot/Bar Display Driver .............•....... Section 4
LM3916 Dot/Bar Display Driver ..................' ... Section 4
Application Specific Analog Products
LM3940 1A Low Dropout Regulator for 5V to,3.3V
Conversion .............................. '....... Section 2
,PowerlCs
Data Acquisition
LM3999 Precision Reference ..... '.................. Section 4
LM4040 Precision Mioropower Shunt Voltage
Reference ..................................... Section 4
Data Acquisition
LM4041 Precision Micropower Shunt Voltage
Reference ..........................•.•.••..... Section 4
Data Acquisition
LM4431 Micropower Shunt Voltage Reference ........ Section 4
Data Acquisition
LM4700 Overture™ 30W Audio Power Amplifier with
Mute and Standby Modes ...................... ;. Section 1
Application Specific Analog Products
LM4860 1W Audio Power Amplifier with Shutdown
Mode ................................... '....... Section 1
Application Specific Analog Products
LM4861 %WAudio Power Amplifier with Shutdown
Mode ...•..' ...................................•Section '1
Application Specific Analog Products
LM4862 350 mW Audio Power Amplifier with Shutdown
Application Specific Analog Products
Mode .......................................... Section 1
LM4880 Dual 200 mW Audio Power Amplifier with
Shutdown Mode ................................ Section 1
Application Specific Analog Products
LM61 04 Quad Gray Scale Current Feedback
Amplifier ....................................... Section 2
Application SpecificAnalog Products
Application Specific Ahalog Products
LM6121 High Speed Buffer ......................... Section 2
Application Specific Analog Products
LM6125 High Speed Buffer ......................... Section 2
LM6142 Dual High Speed/Low Power 17 MHz
Application Specific Analog Products
Rail-to-Raillnput-Output Operational Amplifier ...... Section 1
LM6144 Quad High Speed/Low Power 17 MHz
Application Specific Analog Produets
Rail-to-Raillnput-Output Operational Amplifier' ....•. Section 1
LM6152 Dual High Speed/Low Power 45 MHz
Rail-to·Raill/O Operational Amplifier .............. Section 2
Application Specific Analog Products
LM6154 Quad High Speed/Low Power 45 MHz
Rail-to-Raill/O Operational Amplifier .... : ......... Section 2
Application Specific Analog Products
LM6161 High Speed Operational Amplifier ........... Section 2
Application Specific Analog Products
LM6162 High Speed Operational Amplifier ........... Section 2
Application Specific Analog Products
LM6164 High Speed Operational Amplifier ........... Section 2
Application Specific Analog Products
Application Specific Analog Products
LM6165 High Speed Operational Amplifier ........... Section 2
LM6171 Voltage Feedback Low Distortion Low Power
Operational Amplifier ............................ Section 2
Application Specific Analog Products
LM6181 100 mA, 100 MHz Current Feedback
Amplifier ..................•.................... Section 2
Application 'Specific Analog Products
LM6182 Dual 100 mA Output, 100 MHz Dual Current
Application Specific Analog Products
Feedback Amplifier ............................. Section 2

xxiv

Additional Available Linear Devices (Continued)
LM6221 High Speed Buffer ......................... Section 2
LM6225 High Speed Buffer ......................... Section 2
LM6261 High Speed Operational Amplifier ........... Section 2
LM6262 High Speed Operational Amplifier ........... Section 2
LM6264 High Speed Operational Amplifier ........... Section 2
LM6265 High Speed Operational Amplifier ........... Section 2
LM6321 High Speed Buffer ......................... Section 2
LM6325 High Speed Buffer ......................... Section 2
LM6361 High Speed Operational Amplifier ........... Section 2
LM6362 High Speed Operational Amplifier ........... Section 2
LM6364 High Speed Operational Amplifier ........... Section 2
LM6365 High Speed Operational Amplifier ........... Section 2
LM7131 Tiny High Speed Single Supply Operational
Amplifier ....................................... Section 2
LM7171 Very High Speed High Output Current Voltage
Feedback Amplifier ............................. Section 2
LM7800C Series 3-Terminal Positive Regulator ....... Section 1
LM8305 STN LCD Display Bias Voltage Source ....... Section 2
LM9044 Lambda Sensor Interface Amplifier .......... Section 3
LM9061 Power MOSFET Driver with Lossless
Protection ...................................... Section 3
LM9140 Precision Micropower Shunt Voltage
Reference ..................................... Section 4
LM 12434 12-Bit + Sign Data Acquisition System with
Serial 110 and Self-Calibration .................... Section 1
LM 12454 12-Bit + Sign Data Acquisition System with
Self-Calibration ................................. Section 1
LM12458 12-Bit + Sign Data Acquisition System with
Self-Calibration ................................. Section 1
LM18293 Four Channel Push-Pull Driver ............. Section 4
LMC555 CMOS Timer ............................. Section 4
LMC567 Low Power Tone Decoder .................. Section 4
LMC568 Low Power Phase-Locked Loop ............. Section 4
LMC835 Digital Controlled Graphic Equalizer ......... Section 1
LMC1982 Digitally-Controlled Stereo Tone and Volume
Circuit with Two Selectable Stereo Inputs .......... Section 1
LMC1983 Digitally-Controlled Stereo Tone and Volume
Circuit with Three Selectable Stereo Inputs ......... Section 1
LMC1992 Digitally-Controlled Stereo Tone and Volume
Circuit with Four-Channel Input-Selector ........... Section 1
LMC6008 8 Channel Buffer ......................... Section 2
LMC7660 Switched Capacitor Voltage Converter ...... Section 3
LMD18200 3A, 55V H-Bridge ....................... Section 4
LMD18201 3A, 55V H-Bridge ....................... Section 4
LMD18245 3A, 55V DMOS Full-Bridge Motor Driver ... Section 4
LMD18400 Quad High Side Driver ................... Section 3
LMF40 High Performance 4th-Order Switched
Capacitor Butterworth Low-Pass Filter ............. Section 7
LMF60 High Performance 6th-Order Switched
Capacitor Butterworth Low-Pass Filter ............. Section 7
LMF90 4th-Order Elliptic Notch Filter ................ Section 7

xxv

Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application

Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog
Specific Analog

Products
Products
Products
Products
Products
Products
Products
Products
Products
Products
Products
Products

Application Specific Analog Products
Application Specific Analog Products
PowerlCs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Data Acquisition
Data Acquisition
Data Acquisition

Application
Application
Application
Application

Data Acquisition
Power ICs
Specific Analog Products
Specific Analog Products
Specific Analog Products
Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Power ICs
PowerlCs
Power ICs
Power ICs
Application Specific Analog Products
Data Acquisition
Data Acquisition
Data Acquisition

Additional Availabl,e 'Linear Devices (~ntinued)
LMF100 High Performance Dual Switched Capacitor
Filter .......... ' •. , ..........•.......•.......... Section 7
LMF380 Triple One-Third Octave Switched Capacitor
Active Filter ... ,\ ............................... Section 7
LP2950/ A-XX Series of Adjustable Micropower
Voltage Regulators, ," •.......•.......•.......... Section 3
LP2950/ A-XiX Series of Adjustable, Micropower
Voltage Regulators. " ....................•....•.. Section 2
LP2951 / A-XX Series of Adjustable Micropower
Voltage Regulators .............................. Section 2
LP2951 I A-XX Series of Adjustable Micropower
Voltage Regulators ...........•.......• : ......... Section 3
LP2952 Adjustable Micropower Low-Dropout Voltage
Regulator ...................................... Section 2
LP2953 Adjustable Micropower Low-Dropout Voltage
Regulator ............................... ; ...... Section 2
LP2954 5V Micropower Low-Dropout Voltage
Regulator ................. ~ . ; , ................. Section 2
LP2956 Dual Micropower Low-Dropout Voltage
Regulator ...................................... Section 2
lP2957 5V;Low-Dropout Regulator for ""p
Applications .•.......................•.......... Section 2
LP2980 Micropower SOT, 50 rnA Ultra Low-Dropout
Regulator ...................................... Section 2
MF4 4th Order Switched Capacitor Butterworth
Lowpass Filter .................................. Section 7
MF5 Universal Monolithic Switched Capacitor Filter .... Section 7
MF6 6th Order Switched Capacitor Butterworth
Lowpass Filter .................................. Section 7
MF8 4th Order Switched Capacitor Bandpass Filter .... Section 7
MF10 Universal Monolithic Dual Switched Capacitor
Filter ..................... '.............. '........ Section 7
MM5368 CMOS Oscillator Divider Circuit ............. Section 4
MM536917 Stage Oscillator/Divider ................ Section 4
MM5450 LED Display Driver ........................ Section 4
MM5451 LED Display Driver ........................ Section 4
MM5452 Liquid Crystal Display Driver ................ Section 4
MM5453 Liquid Crystal Display Driver ....... '......... Section 4
MM5480 LED Display Driver ........................ Section 4
MM5481 LED Display Driver ........................ Section 4
MM5483 Liquid Crystal Display Driver .....•....>•••••• Section 4
MM5484 16-Segment LED Display Driver ; •.......... Section 4
MM5486 LED Display Driver ............. : .......... Section 4
MM58241 High Voltage Display Driver ............... Section 4
MM58341 High Voltage Display Driver ....•.......... Section 4
MM58342 High Voltage Display Driver ......•........ Section 4
Packing Considerations (Methods, Materials and
Recycling) ...................................... Section 5
Packing Considerations (Methods, Materials and
Recycling) ..................................... Section 5

xxvi

Data Acquisition
Data Acquisition
Application Specific Analog Products
PowerlCs
Power ICs
Application Specific Analog Products
PowerlCs
Power ICs
Power-ICs
PowerlCs
Power ICs
PowerlCs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application SpecifiC Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog F!.rodiJcts
PowerlCs

Additional Available Linear Devices (Continued)
Packing Considerations (Methods, Materials and
Recycling) ..................................... Section 9
Recommended Soldering Profiles-Surface Mount .... Section 9
Recommended Soldering Profiles-Surface Mount .... Section 5
Recommended Soldering Profiles-Surface Mount .... Section 5

xxvii

Data Acquisition
Data Acquisition
Power ICs
Application Specific Analog Products

tfI
)

..

National Semiconductor

....

"

,

~

,

Industry Package Cross-Reference Guide

:

NSC

CJ
MW

~=lfiil
lin

@

CJ

NSC

/-fA

Signetics

Motorola

TI

AMD

Sprague

0

R

4/16 Lead
Glass/Metal DIP

0

0

I

L

Glass/Metal
Flat Pack

F

F

Q

F

F,
S

F

TO-99, TO-100, TO-5

H

H

T,
K,
L,
DB

G

L

H

8-,14- and 16-Lead
Low Temperature
Ceramic DIP

J

F

U

J

0

H

P

A,
B,
M

R,
0

'W\fWW

?

0

D

m

(Steel)
K
TO-3

KS

KC

K

OA

N

T,
P

N,

K

K

(Aluminum)

8-,14- and 16-Lead
Plastic DIP

xxviii

V

P

P,

N

NSC

90
~~

t=
~
mill

TO-263
3-&5-Lead

TO-220
3-&5-Lead
TO-220
11-,15- & 23-Lead

NSC
p,A

Signetics

Motorola

TI

AMD

Sprague

8

T

U

KC

U

T

Low Temperature
Glass Hermetic
Flat Pack

W

F

T0-92
(Plastic)

Z

W

80

M

8

8

F

W

F

P

LP

D

D

L

OW

LW

0

0

WJJUJJ

RRRRRRRRRR
~

(Narrow Body)
(Wide Body)

WM

•

I::fl::fl::fl::fl::fl::fl::fl::fl::fl::f

ltiiUUtCJtFtq]j

~

80T-23··
5-Lead

M5

xxix

8,

D

CI>

'a

NSC

NSC
,..A

Signetics

Motorola

TI

AMD

Sprague

PCC

V

a

A

FN

FN

L

EP

LCC
Leadless Ceramic
Chip Carrier

E

L1

G

U

FKI
FG/FH

L

EK

"S

~
CI>

()

C

;

';

a::

=
.
0

(.)
CI>

m
as

~

()

as

a.

~
1i)
~

'a

~

.5

IIBBBBBBBII

xxx

Section 1
Operational Amplifiers

Section 1 Contents
Operational Amplifiers Definition of Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operational Amplifiers Selection Guide. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers . . . . . . . . . . . . . . . . . . .
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers.................
LF351 Wide Bandwidth JFET Input Operational Amplifier........... ................ ... ..
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF411 Low Offset, Low Drift JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF412 Low Offset, Low Drift Dual JFET Operational Amplifier......................... ...
LF441 Low Power JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF442 Dual Low Power JFET Input Operational Amplifier .......................... . . . . . .
LF444 Quad Low Power JFET Input Operational Amplifier ...............................
LF451 Wide-Bandwidth JFET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier ...........................
LH0003 Wide Bandwidth Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0004 High Voltage Operational Amplifier............................................
LH0021/LH0021 C 1.0 Amp Power Operational Amplifier ................................
LH0041 I LH0041 C 0.2 Amp Power Operational Amplifier ................................
LH0024 High Slew Rate Operational Amplifier... ....... ................. ...............
LH0032 Ultra Fast FET-I nput Operational Amplifier .....................................
LH0042 Low Cost FET Operational Amplifier. . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .
LH0101 Power Operational Amplifier. . . .. . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . .
LM10 Operational Amplifier and Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM101A1LM201A1LM301A Operational Amplifiers........... ................. .........
LM107lLM207lLM307 Operational Amplifiers..... ....... .............................
LM108/LM208/LM308 Operational Amplifiers ............. :.................. .........
LM118/LM218/LM318 Operational Amplifiers .........................................
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers .................
LM143/LM343 High Voltage Operational Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM146/LM246/LM346 Programmable Quad Operational Amplifiers.......................
LM148/LM248/LM348 Quad 741 Operational Amplifiers; LM149/LM349 Wide Band
Decompensated (Av(MIN) = 5) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers................ ..
LM221/LM321 Precision Preamplifiers................................................
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier . . . . . . . . . . . . . . . . .
LM392/LM2924 Low Power Operational Amplifier !Voltage Comparators ..................
LM611 Operational Amplifier and Adjustable Reference.. ..... ................ ..........
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference. . . . . . . . . . . .
LM614 Quad Operational Amplifier and Adjustable Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM675 Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .
LM709 Operational Amplifier. . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM725 Operational Amplifier. . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
LM741 Operational Amplifier. . . . . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
LM747 Dual Operational Amplifier................ ... ...... . ...... ................. ...
LM748 Operational Amplifier. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM759/LM77000 Power Operational Amplifiers ........................................
LM1558/LM1458 Dual Operational Amplifiers................................ ..........
LM1875 20 Watt Power Audio Amplifier..... .............. ....... .....................
LM1877 Dual Power Audio Amplifier ....................... , ..........................
1-2

1-5
1-6
1-22
1-31
1-46
1-54
1-63
1-70
1-77
1-84
1-93
1-100
1-106
1-113
1-116
1-120
1-120
1-131
1-135
1-143
1-153
1-164
1-180
1-190
1-196
1-203
1-213
1-226
1-236
1-248
1-261
1-274
1-283
1-301
1-305
1-317
1-333
1-346
1-353
1-358
1-366
1-370
1-375
1-379
1-390
1-392
1-398

Section 1 Contents (Continued)
LM1896/LM2896 Dual Power Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2877 Dual 4 Watt Power Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ..
LM2878 Dual 5 Watt Power Audio Amplifier. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .
LM2879 Dual 8 Watt Audio Amplifier . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2900/LM3900/LM3301 Quad Amplifiers ............ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3045/LM3046/LM3086 Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3080 Operational Transconductance Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3303/LM3403 Quad Operational Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3875 High Performance 40 Watt Audio Power Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .
LM4250 Programmable Operational Amplifier .......................... ; . . . . . . . . . . . . . . . .
LM61 04 Quad Gray Scale Current Feedback Amplifier .................................. ~.
LM6118/LM6218 Fast Settling Dual Operational Amplifiers . . . . . . • . . . . . .. . . . . . . . . . . . . . . . .
LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Raill/O Operational
Amplifiers .................................... ; . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .. ..
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Raillnput-Output
Operational Amplifiers ............................................................
LM6152 Dual/LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Raillnput-Output
Operational Amplifiers............................................................
LM6161/LM62611LM6361 High Speed Operational Amplifiers ...........................
LM6162/LM6262/LM6362 High Speed Operational Amplifiers.... .. .. .. .............. ...
LM6164/LM6264/LM6364 High Speed Operational Amplifiers ... . . . . . . . . . . . . . . . . . . . . . . ..
LM6165/LM6265/LM6365 High Speed Operational Amplifiers...... .. ................ ...
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier ...............
LM6181100 mA, 100 MHz Current Feedback Amplifier..................................
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier . . . . . . . . . . . . . . . . . .
LM6313 High Speed, High Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier. . . . . . . . . . . . . . . . . . . .
LM7131 Tiny High Speed Single Supply Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier .. . . . . . . . . . . . . . .
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers.
LM13700/LM13700A Dual Operational Transconductance Amplifiers with Linearizing Diodes
and Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC660 CMOS Quad Operational Amplifier. . .. .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
LMC662 CMOS Dual Operational Amplifier ............................................
LMC6001 Ultra Ultra-Low Input Current Amplifier. ... ... .. ... ........... .. ... . .. ........
LMC6022 Low Power CMOS Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6024 Low Power CMOS Quad Operational Amplifier ........ . . . . . . . . . . . . . . . . . . . . . . ..
LMC6032 CMOS Dual Operational Amplifier ...........................................
LMC6034 CMOS Quad Operational Amplifier. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6041 CMOS Single Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6042 CMOS Dual Micropower Operational Amplifier ................................
LMC6044 CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6061 Precision CMOS Single Micropower Operational Amplifier .. . . . . . . . . . . . . . . . . . . ..
LMC6062 Precision CMOS Dual Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . ..
LMC6064 Precision CMOS Quad Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . ..
LMC6081 Precision CMOS Single Operational Amplifier..... ..... .. .... ....... .. ... ... ..
LMC6082 Precision CMOS Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6084 Precision CMOS Quad Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6462 DuallLMC6464 Quad Micropower, Rail-to-Raillnput and Output CMOS
Operational Amplifier ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMC6482 CMOS Dual Rail-to-Raillnput and Output Operational Amplifier. . . . . . . . . . . . . . . . . .
LMC6484 CMOS Quad Rail-to-Raillnput and Output Operational Amplifier. . . . . . . . . . . . . . . . .

1-3

1-403
1-411
1-418
1-425
1-432
1-450
1-455
1-459
1-466
1-482
1-490
1-494
1-503
1-504
1-515
1-516
1-523
1-531
1-539
1-546
1-560
1-577
1-598
1-607
1-608
1-630
1-631
1-649
1-669
1-679
1-689
1-699
1-711
1-722
1-732
1-742
1-753
1-763
1-773
1-783
1-793
1-803
1-813
1-823
1-833
1-847
1-864

Section 1 Contents (Continued)

.

LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Raillnputand Output Operational Amplifier. .•
LMC6574 Quad/LMC6572 Dual Low Voltage (2.7V and 3V) Operational Amplifier... . . . . . . • . .
LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-to-Raillnput and Output CMOS .
. Operational Amplifier ..............•..•................• ;: ..••........•• :...........
LMC6681 Singie/LMC6682 Dual/LMC6684 Quad Low Voltage, Rail-to-Raillnput and Output
CMOS Amplifier with Powerdown . . . . . . . . . . . . • . . • . . . . . • •• . . • . . . . • . • . . . . . . . . . . . . . . . . .
LMC7101 Tiny Low Power Operational Amplifier with Rail-to.RaiUnput and Output. . .. . . • . . . •
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Raillnput and Output. . . . . . . . . . . . . .
LPC660 Low Power CMOS Quad Operational Amplifier ........•...... ; ...; •...•.•... ; . . • .
LPC661 Low Power CMOS Operational Amplifier .......•... ; .......•....'. • . . . . . . . . . . . . .
LPC662 Low Power CMOS Dual Operational Amplifier ....•....••...•.•..................'
OP07 Low Offset, Low Drift Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . ... .
TL081 Wide Bandwidth JF,ET Input Operational Amplifier ..•.......••....• : . . . . . . . . . . . . . .
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier... .•. .•. ... . .. . ..•. .. . . . .. .

1-4

1-880
1-893
1-902
1-903
1-904
1-920
1-921
1-933
1-945
1..957
1-962
1-969

ttlNational Semiconductor

Operational Amplifiers
Definition of Terms
Bandwidth: That frequency at which the voltage gain is reduced to 1/J2 times the low frequency value.
Common·Mode Rejection Ratio: The ratio of the input
common-mode voltage range to the peak-to-peak change in
input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the
root-mean-square (rms) sum of the harmonics to the fundamental. % harmonic distortion =
(V22 + V32

Large-5ignal Voltage Gain: The ratio of the output voltage
swing to the change in input voltage required to drive the
output from zero to this voltage.
Output Impedance: The ratio of output voltage to output
current under the stated conditions for source resistance
(Rs) and load resistance (Ru.
Output Resistance: The small signal resistance seen at the
output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate
of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input
offset voltage to the change in power supply voltages producing it.

+ V42 + .. .)1f2 (100)
V1

where V1 is the rms amplitude of the fundamental and V2,
V3, V4, ... are the rms amplitudes of the individual harmonics.
Input Bias Current: The average of the two input currents.

Settling Time: The time between the initiation of the input
step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output
voltage with a large-amplitude step function applied to the
input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.

Input Common·Mode Voltage Range (or Input Voltage
Range): The range of voltages on the input terminals for
which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current
under the stated conditions for source resistance (Rs) and
load resistance (Ru.
Input Offset Current: The difference in the currents into
the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied
between the input terminals through two equal resistances
to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage
to the change in input current on either input with the other
grounded.

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the
frequency where the amplifier open loop gain rolls off to
one.
Voltage Gain: The ratio of output voltage to input voltage
under the stated conditions for source resistance (Rs) and
load resistance (Ru.

1-5

::
"CI

"S

Co'
c

tflNational S e m i con due t o,r

'"

o

t;

CD

..

j
'

General' Purpose Operational
Amplifier' Selection: Guide

CD

!E

a

E

c(

1o

!

Xo

Automotive Temperature Range (- 400C to

Part #

Is
nA{Max)

Vos
mV{Max)

+ 8S·C) Specs at TA =

. GBW
MHz (Typ)

2S·C (Note 1)

Slew
Rate
V/",s (Typ)

Supply
Current
(Note 3)
mA(Max)

Specified
Supply
; Voltage
Min
,V

Max

Special
Features

V

LM6142A

1

250

17

25

O.B

2.7

24

R-R In-Out Dual

LM6144A

1

250

17

25

O.B

2.7

24

R-R In-Out Quad

LM6142B

2.5

300

1~

25

O.B

2.7,

:14

R-R In-Out Dual

LM6144B

2.5

300

17

25

O.B

2.7

24

R-R In-Out Quad

LMB33

5

1000

15

7

4

10

30

Dual Low Noise

LP2902

4

20

0.1

0.05

0.031

3

26

Quad

LM2902

7

250

1

0.5

0.75

5

26

Quad

LM2904

7

250

1'

0.5

1.0

5

26

Dual

5

,26

LM2924

250

7

1

Industrial Temperature Range (-2SOC ,to

Part #

Vos
mV{Max)

.-

' Is
nA{MlIl\)

0.5

+ 8S·C) Specs at TA
GBW

MHz (Typ)

1.0

Comparator

+ ,Op Amp

= 2SOC (Note 1)

Slew
Rate
V/",s (Typ)

Supply
Current
(Note 3)
mA{.,.ax)

Specified
Supply
Voltage
Min
V

Max
V

10

40

,

Special
Features

LM20BA

0.5

2

1

0.3

0.6

LM10B(L)

2

20

0.09'

0.1

0.4

LM201A

2

75

1

0.5

2.5

10

40

L~207

,2

75

1

0.5

2.5

10

40

LM20B

2

2

1

0.3

0.6

10

40

LM224A

3

BO

1

0.5

0.75

5

30

Quad

LM25BA

3

BO

1

0.5

1.0

3

32

Dual

LF255

5

0.1

2.5

5

4

30

40

LF256

5

0.1

5

12

7

30

40

LF257

5

0.1

20

50

7

30

40

Minimum Gain of 5

LM224

5

150

1

0.5

0.75

5

30

Quad
Dual

(Note 4)

Op Amp' + Reference

Compensated LM201A

LM25B

5

150

1

0.5

1.0

5

30

LM246

6

250

1.2

0.4

0.625

3

30

(Note 5)

LM24B

6

200

1

0.5

1.13

10

30

Quad

LH0042C

20

0.05

1

3

4

10

40

LM6132

0.25

110

7

22

0.4

2.7

24

R-R In-Out Dual

LM6134

0.25

110

7

22

0.4

2.7

24

R-R In-Out Quad

1-6

General Purpose Operational Amplifier Selection Guide (Continued)
Commercial Temperature Range (lrC to

Part #

Vos
mV(Max)

la
nA(Max)

+ 7lrC) Specs at TA
GBW

MHz (Typ)

= 25°C (Notes 1 and 2)

Slew
Rate
V/p.s (Typ)

Supply
Current
(Note 3)
mA(Max)

Specified
Supply
Voltage
Min
V

Special
Features

Max
V

LF411A

0.5

0.2

4

15

2.8

10

40

LF441 A

0.5

0.05

1

1

0.25

10

40

LM308A

0.5

7

1

0.3

0.8

10

40

LM11C

0.6

0.1

0.8

0.3

0.8

5

40

LF412A

1

0.2

4

15

2.8

12

40

Dual

LF442A

1

0.05

1

1

0.2

10

32

Dual

LM604AC

1

50

7

3

9

10

32

Multiplexed Op Amp

LF355A

2

0.05

2.5

5

4

30

36

LF356A

2

0.05

5

12

10

30

36

LF357A

2

0.05

20

50

10

30

36

LF411

2

0.2

4

15

3.4

10

30

LF412

3

0.2

4

15

3.3

12

30

Dual

Minimum Gain of 5

LM324A

3

100

1

0.5

0.75

5

30

Quad

LM358A

3

100

1

0.5

1.0

5

30

Dual

LM604C

3

80

7

7

4.5

10

32

Multiplexed Op Amp

LM741E

3

80

1.5

0.7

2.8

10

40

LM10C(L)

4

30

0.09

0.1

0.5

LP324

4

10

0.1

0.05

0.0375

(Note 4)
5

Op Amp

+ Reference

30

LF347B

5

0.2

4

13

2.8

10

30

LF355B

5

0.1

2.5

5

4

30

40

LF356B

5

0.1

5

12

4

30

40

LF357B

5

0.1

20

50

7

30

40

LF441

5

0.1

1

1

0.25

10

30

LF442

5

0.1

1

1

0.25

10

30

LM11CL

5

0.2

0.8

0.3

0.8

5

40

LF451

5

0.2

4

13

3.4

10

32

LF453

5

0.2

4

13

3.25

10

32

SOPkg Dual

LM611

5

35

0.8

0.7

0.35

2.8

32

OpAmp

LM613

5

35

0.8

0.7

0.25

2.8

32

20pAmps +
2 Comparators

1-7

Quad

Dual

SOPkg

+ Ref
+ Ref

General Purpose Operational Amplifier Selection Guide (Continued)
Commercial Temperature Range (O'C to

Part '"

Vos
mV(Max)

18
nA(Max)

+ 70'C) (Notes 1 and 2) (Continued)
GBW

MHz (Typ)

-

Slew
Rate
V/I£8 (Typ)

Supply
Current
(Note 3)
mA(Max)

Specified
Supply
Voltage
Min
V

Max
V

LM614

5

35

0.8

0.7

0.25

2.8

32

LM392

5

250

1

0.5

1

5

30

LM346

6

250

1.2

0.4

0.63

3

30

LM346

6

200

1

0.5

1.13

10

30

LM349

6

200

4

2

1.13

10

30

LM741C

6

500

1.5

10

40

6

500

.

2.8

LM1458

.

0.5

2.8

30

30

Special
Features

Quad Op Amp

+ Ref

(Note 5)

LM4250C

6

75

0.2

0.2

0.1

3

30

(Note 5)

LM324

7

250

1

0.5

0.75

5

30

Quad, Low Cost

LM358

7

250

1

0.5

1.0

5

30

Dual

LM301A

7.5

250

1

0.5

3

10

30

VCMtoV+

LM307

7.5

250

1

0.5

3

10

30

Compensated LM301A

LM308

7.5

7

1

0.3

0.8

10

36
68

LM343

8

40

1

2.5

5

56

LF347

10

0.2

4

13

2.75

10

30

LF351

10

0.2

4

13

3.4

10

30

LF353

10

0.2

4

13

5.4

10

30

LF355

10

0.2

2.5

5

4

30

30

LF356

10

0.2

5

12

10

30

30

LF357

10

0.2

20

50

10

30

30

Minimum Gain of 5
Quad

LF444

10

0.1

1

1

0.25

10

30

TL081C

15

0.2

4

13

2.8

10

30

TL082C

15

0.2

4

13

2.8

12

30

Quad

Dual

Dual

*NotSpecified.
Nole I: Datasheet should be referred to for test conditions and more detailed information.
Note 2: Those looking for a oommercial part should also look at the Industrial Temp Range guide as many Hybrids are listed there.
Nole 3: Supply current is per amplifier.
Nole 4: The LMIO has 2 versions: one a high voltage part, good to 45V and a low voltage part, good to 7V. Refer to the datasheet for more information.
Note 5: The LMI46 and LM4250 are programmable amplHiers. The data shown is for Vs

1-8

= ± 15V and ISET = 10 "A Reier to the datasheets for more information.

General Purpose Operational Amplifier Selection Guide (Continued)
Military Temperature Range (-S5"C to

Part #

Vos
mV(Max)

18
nA(Max)

+ 12S0C) Specs at TA
GBW

MHz (Typ)

= 25"C (Note 1)

Slew
Rate
V/,..s (Typ)

Supply
Current
(Note 3)
mA(Max)

Specified
Supply
Voltage
Min
V

Special
Features

Max
V

LF411AM

0.5

0.2

4

15

2.S

10

40

LF441AM

0.5

0.05

1

1

0.2

10

40

LM10SA

0.5

2

1

0.3

0.6

10

40

LF412A

1

0.2

4

15

2.S

12

40

LF442A

1

0.05

1

12

40

Dual

1

100

10

.

0.2

LHOO04

0.15

10

SO

High Voltage
Multiplexed Op Amp

1

LM604A

1

50

7

2

4.5

10

32

LF155A

2

0.05

2.5

5

4

30

40

LF156A

2

0.05

5

12

7

30

40

LF157A

2

0.05

20

50

7

30

40

LF411M

2

0.2

4

15

3.4

10

30

Dual

Minimum Gain of 5

+ Reference

LM10

2

20

0.09

0.1

0.4

1.2

40

Op Amp

LM101A

2

75

1

0.5

3

10

40

VCMtoV+

LM107

2

100

1

0.5

3

10

40

Compensated LM101A

LM10S

2

2

1

0.3

0.6

10

40

LM124A

2

50

1

0.5

0.75

5

30

LM15SA

2

50

1

0.5

0.5

5

30

Dual

LP124

2

4

0.1

0.05

0.035

5

30

Quad

LF412

3

0.2

4

15

3.25

12

30

Dual

LM741A

3

SO

1.5

0.7

2.S

10

40

LF155

5

0.1

2.5

5

4

30

40

LF156

5

0.1

5

12

7

30

40

LF157

5

0.1

20

50

7

30

40

Minimum Gain of 5
Quad

Quad

LF147

5

0.2

4

13

2.75

10

40

LF442

5

0.1

1

1

0.25

10

40

Dual

LF444A

5

50

1

1

0.20

10

40

Quad

LM124

5

150

1

0.5

0.75

5

30

Quad

1-9

•

General Purpose Operational Amplifier Selection Guide (C~ntinued)
Military Temperature Range (- S5"C to

Part #

LM143

Vos
mV(Max)

5

la
. nA(Max)

20

+ 12S C) Specs at TA
D

GBW
MHz (Typ)

1

= 25"C (continued)

Slew
Rate
VllJ-s (Typ)

Supply
Current
(Note 3)
mA(Max)

2.5

4

Specified
Supply
Voltage

Special
Features

Min
V

Max
V

56

80

High Voltage

LM146

5

100

1.2

0.4

0.55

3

30

(Note 5)

LM148

5

100

1

0.5

0.9

10

30

Quad

LM149

5

100

4

2

0.9

10

30

Minimum Gain of 5, Quad

LM158

5

150

1

0.5

1

5

30

Dual

LM741

5

500

1

0.5

2.8

10

40

LM1558

5

500

•

.

2.5

30

30

Dual

LM4250

5

50

0.2

0.2

0.1

3

30

(Note 5)

LH0042

20

0.025

1

3

3.5 .

10

40

1-10

f}1National Semiconductor

Low Input Current Selection Guide

<25 fA

I

<100fA

I

:>:5pA*

I

:>:20pA

I

:>:50pA

I

:>:100pA

I

:>:200pA

I

:>:500pA

TA = 25"C
LMC6001A*'

LMC60018'*

LMC660*

LHOO42

LH0032A

LH0032

TL081

LH0032C

LMC662*

LH0042C

LF155A1156A

LF155/156

LH0032AC

LH4004

LMC6041*

LF157A

LMC6042'

LF355A1356A

LMC6044*
LMC6062'

LF357A
LF441 A

LF157
LF255/256
LF257

LF351
LF411A1411
LF355/356

LF3558/3568

LF357

LF3578

LF147/3478/347

LMC6082*

LF442A

LPC660'

LF444A

LF441

LF353

LPC661'

LM11

LF442

LF412A1412

LPC662*

LF444

LM11CL

LMC6061*

LM11C

LMC6022*

LMC6081 *

LH0101

LMC6024*

LMC6064*

LMC6032*

LMC6084*

LMC6034*

LMC6482*

LH41 04

LMC6484'

LH4104C

LMC6001C
LMC6462
LMC6464
LMC6492
. LMC6494
LMC6572
LMC6574
LMC6584
LMC6681
LMC6682
LMC6684
LMC7101
LMC7111
Note: Datasheet should be referred to for oondHions and more detailed infonnation.
'Guaranteed over industrial temperature range (- 40'C to

+ 85'C). Typical value is

"100 percent tested and guaranteed.

1·11

,; 40 fA.

tfI

National Semiconductor

High Speed Operational
Amplifier Selection Guide

Part '"

Slew Rate
V/p.s (Typ)

GBW
MHz(Typ)

Vas
mV(Max)

Is
mA(Max)
(Note 1)

Notes

High Output Current, Voltage Feedback

GBW;;, 4 MHz, TA = 2SoC

,

LM7171 A

4100

;!OO

1

8.5

LM6171A

3600

100

3

4

LM7171

4100

200

3

8.5

LM6171

3600

100

6

4

Low Power, Voltage Feedback

LM6172

3600

100

1

4

Dual Low Power, Voltage Feedback

LM6181

2000

100

7.0

10

Current Feedback, VIP

LM7121A

1000

200

3

5

Low Power, Voltage Feedback

LM7121

1000

200

6

5

Low Power, Voltage Feedback

LH0024

500

70

4

15

LH0032

500

70

5

20

FETlnput

LM6161

300

50

7

6.8

Unity Gain Stable, VIPTM

LM6162

300

100

5

6.8

Min Gain 01 2, VIP

LM6164

300

175

4

6.8

Min Gain 015, VIP

LM6165

300

725

3

6.8

Min Gain of 25, VIP

LM6313

250

35

20

11.5

Hi Speed Hi Power, Dual
Fast Settling Dual, VIP

Low Power, Voltage Feedback
High Output Current, Voltage Feedback

LM6218A

140

17

1

3.5

LM6218

140

17

3

3.5

Fast Settling Dual, VIP

LHOO03

2-70

10-30

3

3

External Compensation

LM118

70

15

4

7

LF157A

50

20

2

Min Gain of 5, JFET

30

30

.

7

LM359

11

Oljal Current Mode (Norton) Amp

LM6152

30

45

2.5

1.5

R-R In-Out, Dual

LM6154

30

45

2.5

1.5

R-R In-Out, Quad

LM6142A

25

17

1.0

0.8

Low Power, R-R In-Out, Dual

LM6144A

25

17

1.0

0.8

Low Power, R-R In-Out, Quad

LF411A

15

4

0.5

1.4

JFET

LJ=412A

15

4

1.0

2.8

DualJFET

LF147

13

4

5

2.75

QuadJFET

LF451

13

4

5

3.4

SOPkg

LF453

13

4

5

3.25

SOPkgDual

LF351

13

4

10

3.4

JFET

LF353

13

4

10

3.3

LF156A

12

5

2

7

JFET

LM833

7

15

5

4

Dual Low Noise

'Not specHied.
Note 1: Supply current is per amplifier in a package.

1-12

DualJFET

tfI National

Semiconductor

Precision Operational Amplifier Selection Guide

nA(Max)

GBW
MHz (typ)

Slew
Rate
VllJ-s(Typ)

Supply
Current
(Note 1)
mA(Max)

0.35

0.00001'

1.3

1.5

0.750

Low power

0.35

0.00001"

0.1

0.035

0.024

Micropower

0.5

7

1

0.3

0.8

Vos
mV(Max)

LMC6081A
LMC60S1A
LM308A

Part

'*'

Is

Notes

Singles

LM208A

0.5

2

1

0.3

O.S

LM108A

0.5

2

1

0.3

O.S

LF441 A

0.5

0.05

1

1

0.2

LF411A

0.5

0.2

4

15

2.8

LM11C

O.S

0.1

0.8

0.3

0.8

LMCS081

0.8

0.00001'

1.3

1.5

0.750

Low power

LMCSOS1

0.8

0.00001'

0.1

0.035

0.032

Micropower

LMCS082A

0.35

0.00001'

1.3

0.75

0.75

Dual LMC6081A

LMCSOS2A

0.35

0.00001'

0.1

0.019

0.019

Dual LMCS061A

LMCS482A

0.5

0.00002'

1.3

1

0.50

Rail to RaillnpullOutpul

LMC6082

0.8

0.00001"

1.3

1.5

0.75

Dual LMCS081

LMC6062

0.8

0.00001'

0.1

0.035

0.023

Dual LMCSOS1

Duals

Quads

LMCS084A

0.35

0.00001'

1.3

1.5

0.75

Quad LMCS081A

LMCSOS4A

0.35

0.00001'

0.1

0.035

0.019

Quad LMCSOS1A

LMCS484A

0.5

0.00002'

1.3

1

0.50

Rail to RaillnpullOutput

LMCS084

0.8

0.00001'

1.3

1.5

0.75

Quad lMCS081

LMCS064

0.8

0.00001'

0.1

0.35

0.029

Quad LMCS061

'Typical Value
Note 1: Supply current is per amplifier.

1·13

tfI

National Semiconductor

MicroPower/Low Power Operational
Amplifier Selection Guide

Is
Part #

p.A
Typ

(per Amp)

Vos
mV
Max

Output Swing

18

VCM

fA
Typ

V

V

Typ

TypwithRL=100kO

GBW
MHz
Typ

Specified
Supply
Voltage
Min

Max

V

V

. Specs atTA = 25"C and Vs = +5V
Singles
LMC6C41A

14

3

2

-.0.4 to 3.1

.0..0.04 to 4.987

.0..075

5

15

LMC6C41

14

6

2

-.0.4 to 3.1

.0..0.04 to 4.987

.0..075

5

15

LMC6D61A

2.0

.0.35

1.0

-.0.4 to 3.1

.0..0.05 to 4.995

0.1

5

15

LMCSC61

2.0

.0.8

1.0

-.0.4 10 3.1

.0..0.05 to 4.995

.0.1

5

15

LPC661A

55

3

2

-.0.4103.1

.0..0.04 10 4.987

.0.35

5

15

LPC661

55

6

2

-.0.4103.1

.0..0.04 10 4.987

.0.35

5

15

LMCSC81A

45.0

.0.35

1.0

-.0.4103.1

.0..02104.98

1.3

5

15

LMCSC81

45.0

.0.8

1.0

-.0.4 to 3.1

.0 ..02104.98

1.3

5

15

LMC6681A

7.0.0

1

8.0

-.0.3 to 5.3

.0..05104.9

1.2

1.8

1.0

LMC6681

7.0.0

3

8.0

-.0.3 to 5.3

.0..05104.9

1.2

1.6

1.0

LMCSC42A

1.0

3

2

-.0.4103.1

.0..0.0410 4.987

.0.1

5

15

LMC6C42

1.0

6

2

-.0.4103.1

.0..0.0410 4.987

.0.1

5

15

LMC6C62A

16

.0.35

1.0

-.0.4103.1

.0..0.05104.995

.0.1

5

15

LMC6C62

16

.0.8

1.0

-.0.4103.1

.0..0.05 10 4.995

.0.1

5

15

LMC6462A

2.0

.0.5

15.0

-.0.2105.3

.0..0.05 10 4.995

.0..05

73

15

LMC6462

2.0

3

15.0

-.0.2105.3

.0..0.0510 4.995

.0..05

3

15

LPC662A

43

3

2

-.0.4103.1

.0..0.04 10 4.987

.0.35

5

15

LPCS62

43

6

2

-.0.4 10 3.1

.0..0.04 10 4.987

.0.35

5

15

LMC6C22

43

9

4.0

-.0.4 to 3.1

.0..0.04 10 4.987

.0.35

5

15

LMC662A

375

3

2

-.0.4103.1

.0..02104.98

1.4

5

15

Duals

LMC662

375

6

2

-.0.4103.1

.0..02104.98

1.4

5

15

LMC6C32

375

9

4.0

-.0.4103.1

.0..02104.98

1.4

5

15

LMCSC82A

45.0

.0.35

1.0

-.0.4103.1

.0..02104.98

1.3

5

15

LMC6C82

45.0

.0.8

1.0

-.0.4 10 3.1

.0 ..02104.98

1.3

5

15

LMC6482A

5.0.0

.0.5

2.0

.0105

.0..03104.97

1.3

3

15

LMC6482

5.0.0

3

2.0

Ct05

.0..03104.97

1.3

3

15

5.0.0

3

15.0

-.0.3105.3

.0..02104.98

1.5

2.5

15.5

5.0.0

6

15.0

-.0.3 to 5.3

.0..02104.98

1.5

2.5

15.5

LMC6492A
\LMCS492

1-14

MicroPower/Low Power Operational Amplifier Selection Guide (Conlinued)

Part #

Is
/-LA
Typ
(per Amp)

Vos
mV
Max

Specified
Supply
Voltage

18
fA
Typ

VCM
V
Typ

Output Swing
V
Typ with RL= 100 kO

GBW
Typ

Min
V

Max
V

1.8

10

MHz

SpecsatTA = 25"Cand Vs = +5V
Duals Conlinued
LMC6582A

700

1

80

-0.3105.3

0.05 to 4.9

1.2

LMC6582

700

3

80

-0.3 to 5.3

0.05 to 4.9

1.2

1.8

10

LMC6682A

700

1

80

-0.3 to 5.3

0.05 to 4.9

1.2

1.8

10

LMC6682

700

3

80

-0.3 to 5.3

0.05 to 4.9

1.2

1.8

10

LMC6142A

650

1

170·

0.005 to 4.995

17

2.7

24

LMC6044A

10

3

2

-0.4103.1

0.004 to 4.987

0.1

5

15

LMC6044

10

6

2

-0.4 to 3.1

0.004 to 4.987

0.1

5

15

LMC6064A

16

0.35

10

-0.4 to 3.1

0.005 to 4.995

0.1

5

15

LMC6064

16

0.8

10

-0.4 to 3.1

0.005 to 4.995

0.1

5

15

Quads

LMC6464

20

3

150

-0.2 to 5.3

0.05 to 4.995

0.05

3

15

LMC6464A

20

0.5

150

-0.2 to 5.3

0.05 to 4.995

0.05

3

15

LPC660A

40

3

2

-0.4 to 3.1

0.004 to 4.987

0.35

5

15

LPC660

40

6

2

-0.4 to 3.1

0.004 to 4.987

0.35

5

15

LMC6024

40

9

40

-0.4 to 3.1

0.004 to 4.987

0.35

5

15

LMC660A

375

3

2

-0.4 10 3.1

0.02104.98

1.4

5

15

LMC660

375

6

2

-0.4 to 3.1

0.02 to 4.98

1.4

5

15

LMC6034

375

9

40

-0.410 3.1

0.02 to 4.98

1.4

5

15

LMC6084A

450

0.35

10

-0.4 to 3.1

0.02 to 4.98

1.3

5

15
15

LMC6084

450

0.8

10

-0.4103.1

0.02104.98

1.3

5

LMC6484A

500

0.5

20

Ot05

0.03104.97

1.3

3

15

LMC6484

500

3

20

Ot05

0.03 to 4.97

1.3

3

15

LMC6494A

500

3

150

-0.3 to 5.3

0.02 to 4.98

1.5

5

15

LMC6494

500

3

150

-0.3 to 5.3

0.02 to 4.98

1.5

5

15

LMC6144A

650

1

170·

-0.25 to 5.3

0.005 to 4.995

1.7

2.7

24

LMC6584A

700

1

80

-0.3 to 5.3

0.05104.9

1.2

1.8

10

LMC6584

700

3

80

-0.3105.3

0.05104.9

1.2

1.8

10

LMC6684A

700

1

80

-0.3 to 5.3

0.05104.9

1.2

1.8

10

LMC6684

700

3

80

-0.3 to 5.3

0.05 to 4.9

1.2

1.8

10

'nA

1-15

"

IfINational Semiconductor
.

.

Medium and High Power Operational Ampl·ifier
Selection Guide (2 0.1 A Output)
(TA = 25°C, Note 1)

Part iF

lOUT
A (Typ)

Vos
mV(Max)

mA(Max)

Slew Rate
V/p,S (Typ)

PBW(Typ)

Is

LM6181

0.1

7.0

10

2000

60 MHz

LM6182

0.1 (Dual)

7.0

20

2000

60 MHz

LH0041

0.2

3

3.5

3

20kHz

LH0101A

2.2

3

35

Hi

300kHz

LH0101

2.2

10

35

10

300kHz

LM675

3

10

50

8

•

LM12(L)

(Note 2)

7

80

9

60kHz

LM12C(L)

(Note 2)

15

120

9

60kHz

LM7171A

0.1

1

8.5 .

4100

33 MHz

LM7171

0.1

3

8.5

4100

33 MHz

LM6171A

0.1

3

4

3600

28 MHz

LM6171

0.1

6

4

3600

28 MHz

'Not Specified
Note 1: Refer to Datasheet for conditions and more detailed information.
N_ 2: lOUT for the LM12 Is dependent on the amount of power dissipated in ths output transistor. The datasheet should be referred to, to determine amount of
current available.

1-16

ttl

National Semiconductor

Low Voltage Selection Guide

Part II

Minimum
Supply Voltage

Typical Supply
Current (per Device)

LMC6482

3V

500 IJ.A

Dual 1 MHz Rail-to-Rail Amp

LMC6484

3V

500 IJ.A

Quad 1 MHz Rail-to-Rail Amp

LMC7101

2.7V

500 IJ.A

Tiny PakTM SOT23 1 MHz
Rail-to-Rail Amp

LMC7111

2.2V

251J.A

Tiny Pak SOT23 35 kHz
Rail-te-Rail Amp

LMC6582

1.8V

700

Dual Low-Voltage, 1.2 MHz
Rail-to-Raillnput and Output
CMOS Amplifier

LMC6584

1.8V

700

Quad Low-Voltage, 1.2 MHz
Rail-to-Raillnput and Output
CMOS Amplifiers

LMC6681

1.8V

700 IJ.A

Single Low-Voltage, 1.2 MHz
Rail-to-Raillnput and Output
CMOS Amplifier with Powerdown

LMC6682

1.8V

700 p.A

Dual Low-Voltage, 1.2 MHz
Rail-to-Raillnput and Output
CMOS Op Ampwith Powerdown

LMC6684

1.8V

700 IJ.A

Quad Low-Voltage, 1.2 MHz
Rail-to-Raillnput and Output
CMOS Amplifiers with Powerdown

LM6142

1.8V

650 IJ.A

Dual 17 MHz Gain-Bandwidth
Rail-to-Rail Amp

LM6144

1.8V

650 IJ.A

Quad 17 MHz Gain-Bandwidth
Rail-to-Rail Amp

LM7131

3V

7mA

Video Amp in SOT23 Tiny Pak,
70 MHz Gain-Bandwidth

LM6132

1.8V

360 IJ.A

Dual 7 MHz Gain-Bandwidth
Rail-te-Rail Amplifier

LM6134

1.8V

360 p.A

Quad 7 MHz Gain-Bandwidth
Rail-to-Rail Amplifier

LM6152

1.8V

1500 IJ.A

Dual 45 MHz Gain-Bandwidth
Rail-to-Rail Amplifier

LM6154

1.8V

1500 IJ.A

Dual 45 MHz Gain-Bandwidth
Rail-to-Rail Amplifier

1-17

Description

~
I

I.

.,

li!

!;,

&

f}1National Semiconductor,

c

o

J

AudioOp Amp Selection Guide

',ai

:5
'is.
E
011(

Part

1&

D~sc~~pti.Qn

c

#

Precision Op Amp

~CP

o

LM833

CI.

o

':t,
"','

Dual Audio Amplifier

THO

4.5;'V/JiZ"

0.002%

SliIIW
Rate

GBW

PSRR

i

7V/p,S 15MHz 100dB

Supply
Range
±18V

Singlel , Package
Dual/Quad (Pin Count)
Dual

50(8),
DIP(8)

"

"

LM837

Input Referred
Noise Voltage

Quad Audio Amplifier

.

'

, "

L~347

Wide Bandwiath JEET

LF3'Sl

Wide Bandwidth JFET

4.5nVlJiZ"

0.0015% 10V/po8 25 MHz 100dB

±18V

Quad

50(14),
DIP(14)

20nV/JiZ"

0.02%' 13V/pos 4MHz 100dS

±18V

Quad

DIP(14),
. 50(14)

25nVlJiZ"

0.02%' 13V/po5 4 MHz 100dS

±18V

Single

50(8),
DIP(8)

16nV/JiZ"

0.02%

13V/pos 4 MHz 100dS

±18V

Dual

50(14),
DIP(14)

~

."
,.,

'"

LF353

Dual LF351

--

,-,'

LF411

Low Offset, Low Drift JFET· .

LF412

Dual LF4.11

25nVlJiZ"

0.02%

15V1pos 3 MHz 100dB

±18V

Single

DIP(8)

25nvlJiZ" ,

0.02%

15V/pot; 3 MHz 100 dB

±18V

, Pual

DIP(8)

LF444

Low Power JFET Quad

35nV/JiZ"

0.02%

±18V

Quad

DIP(14),
50(14)

LM6142 High-Speed/Low Power Dual

16nV/JiZ"

0.03%

5V/",s 17MHz 87dB ±1.8Vto24V

'Oual

PIP(8),
50(8)

LM6144 High-Speed/~ow Power Qu~d

16nV/JiZ"

0.03%

5V/pos 17MHz 87dS ±1.8Vto24V

Quad

DIP(14),
50(14)

"

..

W/pos

,

1 MHz 100dB

,.,

,

"

"

,.

<

..

"

"

,',

"

:1'
"

1-18

..

t!lNational Semiconductor
Audio Power Amp Selection Guide

Users Supply
Voltage

Part
#

Power [THO,;; 1% (Typ)]
Power Specified as Continuous RMS

Power [THO,;; 10% (Typ)]
Power Specified as Continuous RMS

40

80

160

40

80

160

LM1896

.O.7W

O.45W

NA

1.1W

1.3W

NA

12V

LM1877
LM2877
LM2878

1.5W
1.5W
1.5W

1.0W
1.0W
1.0W

O.55W
O.55W
O.55W

1.75W
1.75W
2.0W

1.3W
1.3W
1.3W

O.75W
O.75W
O.75W

14V

LM1877
LM2877
LM2878
LM2879

2.0W
2.0W
2.0W

1.3W
1.3W
1.3W
1.25W

O.85W
O.85W
O.85W

2.5W
2.75W
2.75W

1.0W
1.0W
1.0W

NA

NA

1.75W
1.75W
1.75W
2W

LM1877
LM2877
LM2878
LM2879
LM1875
LM3875
LM3876
LM3886

2.0W
2.5W

NA

2.5W
3.7

5V
(Vs= 611)

20V
and Above
(VS = 20V)
(VS = 2011)
(VS = 20V)
(Vs= 28V)
(Vs= ±2511)
(Vs= ±3511)
(Vs= ±3511)
(Vs= ±3511)

NA

NA
NA
20W
45W (115 = ±25V
45W (115 = ±25V
68W (Vs = ±28V

2.0W
3.0W
4.0W
7.0W
20W
56W
56W
63W

1.75W

NA
NA
NA
30W
30W
33W

1-19

NA
NA
25W
56W (115 = ±25V)
56W (115 = ±25V)
87W (115 = ±28V)

3.0W
4.25W
4.75W
8W
30W
70W
70W
78W

NA

NA
2.3W

NA
NA
NA
39W
39W
41W

tfI

National Semiconductor

Typical THO Ratings
Typical THO
Ratings

THO Mea8urements
Conditlon8

. SUpply
',' Range (V)

Pa~kage

Singlel
Dual

(Plneount)

0.72%
0..45%

Po = lW@Vs= 5V
Po = 0.5W @Vs = 5V

2.7Vt05.5V
2.7Vto5.5V

Single
Single

SO(16)
SO(8)

0.72%
0..45%
0.11%

Po = lW@Vs= 5V
Po = 0.5W @Vs = 5V
Po = 0.5y..} @Vs = 6V

2.7Vto5.5V
2.7Vt05.5V
3Vto 10V

Single
Single
Dual

SO(16)
SO(8)
DIP(14)

lW@Vs= 14V
lW@Vs= 14V
2W@Vs=22V
lW@Vs= 12V

6Vto 24V
6Vf024V
6Vto 32V
3Vto15V

Dual
Dual
Dual
Dual

DIP(14), SO(14)
SIP(ll)
SIP(ll)
SIP(ll)

lW@VS=14V
1W@Vs= lW
2W@Vs= 22V
lW@Vs= 12V
20W@Vs = ±25V
25W@Vs = ±30V
40W@Vs= ±35V
4OW@Vs = ±35V
SOW@Vs = ±28V

6Vt024V
6Vt024V
6Vt032V
6Vt032V
16Vto 60V
20VtoSOV
20Vt084V.
20Vt084V
20Vto 84V

Dual
Dual
Dual
Dual
Single
Sin,!!le
Single
Single
Single

DIP(14), SO(14)
SIP(ll)
SIP(.ll)
T0-220(11)
. T0-220(5) .
TO-220(1.1)· •
TO-220(11 ) ••
TO-220(11 ) ••
TO-220(11 ) ••

0.055%
0.07%
.0.14%
0.14%
0.055%
0.07%
0.15%
0.05%
0.02%
0.06%
0.06%
0.06%
0.03%

Po
Po
Po
Po

=
=
=
=

Po=
Po =
Po =
Po =
Po =
Po =
Po =
Po =
Po =

"Isolated packages avaUable.

1-20

tJ1

National Semiconductor

Special Amplifier Selection Guide
Amplifiers with Added Functions
Featuring the new Super-Block™ family, these amplifiers have additional special functions within their packages which help
minimize the number of components required in an application. These devices are often used in control circuits, power supplies,
and automatic test systems.
LM10

Op Amp and Adjustable Voltage Reference

LM392

Op Amp and Comparator

LM611

Super-Block Op Amp and Adjustable Voltage Reference

LM613

Super-Block Dual Op Amp, Dual Comparator, and Adjustable Voltage Reference

LM614

Super-Block Quad Op Amp and Adjustable Voltage Reference

Transconductance Amplifiers (Voltage In, Current Out)
These amplifiers provide a transconductance (gm) proportional to their bias current, which is controlled externally. This programmable gain makes the amplifiers useful in applications such as voltage-controlled amplifiers, current-controlled amplifiers, AGC
circuits, and voltage multipliers.
LM3080

Operational Transconductance Amplifier

LM13600

Dual Operational Transconductance Amplifier
with Linearizing Diodes and Buffers

LM13700

Improved Dual Operational Transconductance
Amplifier with Linearizing Diodes and Buffers

Transimpedance Amplifiers (Current In, Voltage Out)
Transimpedance amplifiers are widely used to amplify photo-diode signals, and. to ground-reference differential voltage Signals
which have high common-mode voltages. The LH0082 was designed to receive and amplify analog and digital Signals transmitted by fiber optics. Like the LM359, the LHOO82 can also be used as a video amplifier. The LM2900 series has found popularity
in filter applications, as well as general-purpose amplifiers.
LM359

Dual Current Mode (Norton) Amplifier

LM2900
LM3900
LM3301
LM3401

Quad Current Mode (Norton) Amplifier

1-21

... r----------------------------------------------------------------------------,

~

CO)

~
t:: t;tINational Semiconductor

::
Ii.;.

...J

LF147/LF347 Wide Bandwidth
Quad JFET Input Operational Amplifiers
General Description

Features

The LF147 is a low cost, high speed quad JFET input operational amplifier with IlIl internally trh:nmed input offset voltage. (BI-FET IITM technology) .. The, device requires a low
supply current and yet maintains a large gain bandwidth
.product and a fast slew rate. In addition, well matched high
voltage JFET input devices provide very low input bias and
offset currents. The LF147 is pin compatible with the standard LM148 .. This feature allows designers to immediately
upgrade the overall performance of existing LF148 and
LM124 designs.

5 mV max
Internally trimmed offset voltage
50pA
Low input',bias current
O.O~ pAlv'Hz
Low input .noise current
4 MHz
Wide gain bandwidth
13 V//Ls
High slew rate
7.2 mA
Low supply' currElnt·
1012.0.
High inpl;Jt impedance
<0.02%
Low total harmonic distortion Av= 10,
AL =10k;Vo=20 Vp:.p, BW=20 Hz-20 kHz
50 Hz
• Low 1/1 noise corner
Ii Fast settling time to 0.01 %
2/LS

The LF14imay be used in applications such as high speed'
integrators, fast 01 A converte~, sample-and-hold circuits
and many other circuits requiring low input offset voltage,
low input bias current, high input impedance, high slew rate
and wide bandwidth. The device has low noise .and offset
voltage drift.

•
•
•
•
•
•
•
•

)".

Simplified Schematic

Pual-ln-L1ne Package

-%Quad

v-

V~O-------__--~------~-----,

INTfRIIJILLV
TRIMMED
-VEE

,

Connection Diagram
IN 3'

IN 3-

IU-

------411_------....----.. . .

OUT3

DUT2

TL/H/5647 -1

0---....

TLlH/5647 -13

Top View
Order Number LF147J, LF347M.LF347BN,
LF347N,LF147D/883 or LF147J/883*
See NS Package Number D14E, J14A, M14A or N14A

"Available per SMD #8102306, JM38510/11906.

1-22

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
LF347B/LF347
LF147
Supply Voltage
±22V
±18V
Differential Input Voltage
±38V
±30V
±19V
±15V
Input Voltage Range
(Note 1)
Output Short Circuit
Continuous
Continuous
Duration (Note 2)
Power Dissipation
900mW
1000mW
(Notes 3 and 9)
150·C
150"C
Tjmax

Operating Temperature
Range
Storage Temperature
Range
Lead Temperature
(Soldering, 10 sec.)
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

80·c/W
70"C/W

Parameter
Input Offset Voltage

IJ.vos/b.T Average TC of Input Offset

260·C

260·C

260·C
215·C
220"C

900V

85·C/W

(Note 5)
LF147

Conditions
Min

VOS

-65·CS:TAS: 150·C

ESD Tolerance (Note 10)

75·C/W
100·C/W

DC Electrical Characteristics
Symbol

LF347B/LF347
(Note 4)

See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.

lljA

Cavity DIP (D) Package
Ceramic DIP (J) Package
Plastic DIP (N) Package
Surface Mount Narrow (M)
Surface Mount Wide (WM)

LF147
(Note 4)

Typ

Rs=10kO, TA=25·C
Over Temperature

1

Rs=10kO

10

Tj=25·C, (Notes 5, 6)
Over Temperature

25
50

LF347B
Max Min
5
8

Typ
3

LF347
Max Min
5
7

10

Units

Typ

Max

5

10
13

mV
mV

p.V/·C

10

Voltage
los

Input Offset Current

Ie

Input Bias Current

Tj = 25·C, (Notes 5, 6)
Over Temperature

RIN

Input Resistance

Tj=25·C

AVOL

Large Signal Voltage Gain

Vs= ±15V, TA=25·C
Vo= ± 10V, RL =2 kO
Over Temperature

Vo

Output Voltage Swing

VS= ±15V, RL = 10 kO ±12 ±13.5

VCM

Input Common-Mode Voltage
Range

100
25

25

200
50

50

200
8

50

1012

100

50

25

± 11

Vs= ±15V

25

4

1012
50

100

100

25

25

pA
nA

0
V/mV

±11

+15
-12

VlmV

±12 ±13.5
± 11

V
V
dB

Common-Mode Rejection Ratio RsS:l0 kO

80

100

80

100

70

100

80

100

80

100

70

100

Is

Supply Current

7.2

11

V

+15
-12

Supply Voltage Rejection Ratio (Note 7)

1-23

200
8

100

CMRR

11

pA
nA

1012

PSRR

7.2

4

15

±12 ±13.5

+15
-12

100

7.2

dB
11

mA

•

.....'"
C')

......
LL

,.........

AC Electrical Characteristics (Note S)

"

.-

Symbol

Parameter

LF147

Conditions
Min

~

, Amplifier to Amplifier Coupling

LF347B
Max Min

-120

TA=2So C,
f= 1 Hz-20 kHz
(Input Referred)

SR

Slew Rate

Vs= ±1SV, TA=,2SoC

GBW

Gain-Bandwidth Product

en

Equivalent Input Noise Voltage TA = 2So C, RS = 100n,
f= 1000 Hz

in,

Equivalent Input Noise Current Tj=2So C, f=1000 Hz

Vs= ±1SV,

Typ

TA=2SoC

8
2.2

"

Typ

LF347
Max Min 'Typ

-120

13

8

4

2.2

13

8

4

2.2

Units
Max

-120

dB

13

V/p.s

4

MHz

20

20

20

nV/-/Hz

0.01 '

0.01

0.Q1

pAl-/Hz

Note I: Unless otherwise specified the absolute maximum negative input voltage Is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indelinRely. however. more than one should not be simultaneously shorted as the maximum junction
temperature will be exceeded.
Note 3: For operating at elevated temperature. these devices must be derated based on a thermal resistance of BiA.
Note 4: The LF147 is avalleble In the military temperature range - 55·Cs; TAS; I 25'C. while the LF347B and the LF347 are availeble In the commercial temperature
range O"CS;TAS;70"C. Junction temperature can rise to TJ max = 15O'C.
Note 5: Unless otherwise specified the specifications apply over the full temperature range and for Vs= ±20V for the LFI47 and for VS= ±15V lor the LF347Bf
LF347. Vos. Ie. and los are measured at VCM=O.
Note 6: The Input bias currents are Junction leakage currents which approximately double for every IO"C inc,rease in the junction ":'mperature. TI. Due to limHed
production test time. the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises ebove the ambient
temperature as a result of Internal power disslpetion. Po. Tj = TA+ BjA Po where BjA js the thermal resistance from junction to ambient Use of a heat si~k is
recommended II Input bias cu~nt is to be kept tp a minimum.
Note 7: Supply voltage rajection ratio is measured for both supply magnibJdes increasing or decreasing simultanaously in accordance with common practice from
Vs = ±5Vto ±15V lor the LF347 and LF347B and from Vs = ±20Vto ±5Vforthe LF147.
Note 8: Refer to RETS147X for LF147D and LF147J military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate
'
outside guaranteed IImHs.
Note 10: Human body model., 1.5 kn In serieswHh 100 pF.

1-24

,-----------------------------------------------------------------------------, ."
....
.,..
Typical Performance Characteristics
~

:::!
Input Bias Current

,.

i

I

r._~_~±~ft¥~'-'--r-r-r-'

DO

I-+-+-+--+--+--+-_--+:i"""=-I

411 I---+-t--t-I---+-t-+--I

i

III 1--1--1--1--1--11--11--1---1

H--+-+-+--holf-HH-I

10

H-+-+-h",o'f-+-HH-I
~

!E5H--f-H-+-+-+-+-t-I
5

10
15
III
POIITIYE SUPPlY
VO\l'AIIE (V)

1~-20
.~

i! -15

!i

Ii

1"='"

II

!

!

I

-10

-15 -20

-25

C\_550 \

250

I-++--t---l\-+-+-+-H

40

It

30

iii!

III

0 L......JL..-JL..-JL..-JL....I.J'--III.....J'-I.I

o

i

5.5

~

5
4.5
4
3.5

3

10
III
30
OUTPUT SINI CURRENT (IlIA)

r'\

0

40

I

° III

1-t-+-+-+-trT- ~ d

10
20
31
40
OUTPUT SOURCE CURRENT (mA)

Output Voltage Swing

a
111- III
~:
!i!e 15

0-1

~I

10

I

/

5

•

,.

5

0
15

20

25

0.1

iul'IU vaLTAIE (±V)

1
Rl-OUTPUT LOAD (1IfI)

10

26 Slew Rate

e~

18

I:

"- ....... r-...

°

30

Rl=211
TA=25°C

Gain Bandwidth

\

I-t-+-+-+-tiii- ii
5

I

10

6

I
!
i.

H-I-¥-+-+-+-+-~

Output Voltage Swing

~I

-5

!

-10 H--t-I-+-¥-H-+-if--l

60

I

1250C

~

!i!
-5

Va= ±15V

~~"

NEIIA1lYE SUI'IU
vaLlASE (V)

r" ...... ~~

;-10

Positive Current Limit

III 10 HHHr-I-+t-iH-I

I-+-+-+-+-I-+-I~L-+-t

-5

Va- ±15Y

I!o..-

_~

15 !!!!!o

I

H-+-+1-+-Hr+-t~

25

_ -15 Negative Current Limit

!:

~

-25 -5I"CsTAs125'C

15

II"

H-+++-H-t-++-I

Negative Common-Mode
Input Voltage Umit

III_ III H--+-+-+--+-+-ho'IH-I
It;"
"

E IP

6

-55°C, 25 0 C_ r - -

051.,52025
SUPPlY vaLlAIIE (±V)

-550 CsTAS1WC

Il!i!

r+- -_

5L......L...L.-'--'-L-I-.L....J......L..J

Positive Common-Mode
Input Voltage Limit

n

7

125°C

0'--.1.--'-""'-...............--'---'--'
-10
-5
•
5
10
CIIMIIOII-MOIIE VO\l'AIIE (V)

a

I

-

-50 -25 0 25 50 75 100 125
TEMPERATURE (OC)

~
.,..

.....

TA=aoC
DO H--t-f--++-+-t--I

I

*!

~

Supply Current

,. ,....:,..;....,.-.-......-r--r-,.....,....,......

0 I-10

r-

-20 I-30

:)

Ii
~
-1t11

L......L~~--L~~-L~WW_I60

0.1

1

10

FREQUEIICY (1Hz)

100

24
22

_=±I5Y
ftl-2. -j-t-+--+--j
At=1

III

1--t--1f-+-1--t-t-l

11

l:=H~FA~W~N6~::::i=1

~:ES;tt-~
M

16
141=
12 1-+-+-+-1-+-+--1
10 '---'---'---'---'_.L-..l-...1
-50 -25 0 25 50 75 100 125
TElPEMTURE (OC)
TUH/5647-2

1-25

•

... r---------------------------------------------------------------------------------,
Typical Performance Characteristics
~

CO)

LL.

(Contiriued)

~

Undlstorted Output Voltage
Swing

:::!.

1.2

5

Distortion vs Frequency
.

31

,.

Va~±I"

140

.... "'2k

I

I\,

lA",25°C

•

Av-l

~n' DIST

0.1

is 0.0&

o
100
1k
ll1k
FREQUENCY (Hz)

I.

10k

140

1··~~------~v~I-_~±I:"~
IIL=2k

TA = 25°C
CMRR= 20 LOG VCII +
1-+-,,,,,..;;::
Vo

I-+-+--p..... OPEN
LOOP
VGIJME

,.

100

I.

lk 10k
1M 11M
FRElIIIENCY (Hz)

..- ..-

1'0...
1'0...

.....

o

1M

I

8.. I

-,

III

..........+su....Y
......
........

I

100

•

....

,

.... "
,IUWLr ....

Ii •

~

o
10

1111

"

~

1k
10k I .
FllEllUENCY (Hz)

,

10 100 Ik ll1k I . 1M 10M
FREQUENCY (Hz)

Equivalent Input Noise
7D Voltage

VI'" ±15V
TA=25"C

Open Loop Voltage Gain
1\7"211
-·IIII°C:sTA:sI25°C

r-.....

20

Power Supply ReJection
Ratio

I :

OL..--'--'----''---'----'---'
10

1--1-0..

l'e 1•

FREQUENCY (Hz)

Common-Mode ReJection
Ratio
140

120

'i
I :•

,.

I-'-Ht--IH--I-:i-tH-l

Open Loop Frequency
Response

1M

;

i~
II

ID
ID

40

I'

31
2D

I.

lD
0
10

lk
100
10k
FIIEIIUENCY(Hz)

10 Inverter SeHling Time

II III III I

--

10111V '/Ir111

, . ., [\1111V

-18

ll1k
5

10
15
SUPPlY VIIIJAIIE (± V)

2D

FRBIUENCY (Hz) .

I Ull\\1
D.l

1
SEnUN8 TIME iI&I)

10
TLlH/5647 -3

r-

....

'TI

Pulse Response RL=2kO,CL=10pF

~

Small Signal Inverting

.....
.....
r-

Small Signal Non-Inverting

>
~E

'TI

~
a

W

~

.....

>E

co

e

!CD

Ii...
CD

Ii...

~

CI

...~

CD
Z

z

CD

...

CI

>

..
>

l::0

S

I::0
CI

::0
CI

==

nME (0.2 ""DIV}

nME (0.2 ,..,DIV}
TL/H/5647-4

TUH/5647-5

Large Signal Inverting

Large Signal Non-Inverting

>
is
~CD

>
is
~
CD

Ii...

Ii...

I-

...

l-

Q

CI

z

Z

CD

CD

...
C

C

.
>

>

I::0
I::0
Q

l::0
::0
CI

==

TIME (2 j.lS/DIV}

nME (2 /lSIDIV}
TL/H/5647-6

TUH/5647-7

>

~
CD

z

i...
CD

~

~

I::0

~

CI

TIME (6j.1S/DIV}

TL/H/5647 -8

Application Hints
The LF147 is an op amp with an internally trimmed input
offset voltage and JFET input devices (BI-FET IiTM). These
JFETs have large reverse breakdown voltages from gate to
source and drain eliminating the need for clamps across the
inputs. Therefore, large differential input voltages can easily
be accommodated without a large increase in input current.
The maximum differential input voltage is independent of
the supply voltages. However, neither of the input voltages

should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed
unit.
Exceeding the negative common-mode limit on either input
will force the output to a high state, potentially cauSing a
reversal of phase to the output. Exceeding the negative
common-mode limit on both inputs will force the amplifier

1-27

Application Hints (Continued)
output to a high state, In neith.er case, does a latch occur
since raising the.,iRPut back within the common-mode range
again p~ the input stage ~1)!:Ithus th~ ,a~lifier in a hormal
operating m,Ode. ',,,' ',r:' ,', ,,',,,,, "''':, ';
,

larity or that the unit is not inadvertently installed backwards
in a soqket as an unlimited qurrent.surge through the resulting forward dlbd8 withiA, the It; co'uld caUS$ fusing 'of the
internal ?Onductcirs ar'\rl r66ulfina:d stroy$d u,nit

e

Excee!;ling the ~sitiJ~ cO~mo~-mode limit ona single input
will not ch!lnge the phas~'c>f ,t~ output; 1)6wever, if both
inputs ~xceed~lJe limit, 'the oLitpi.\f of ,the:~amplifier will be
'" " ,
' ',,
forced to a high 'state. ,"

As with 'most ampli,iers"fGllreshould bE! ,taken with lead
dress,coml>0nentplaceme.ot,,~n~, supply decpupling in order to ensure ,stabilitY.' For example; resistors from the output to an input should be, placed iNith the bOcty close to the
input to miniinize' "plck,up""atid 'in~mize the frEiquency of
the feedb~ ,pole, by minilJlizjrig the C$PacitSnce from the
,
input to ground.
, ' ';, " , '
A feedback pole is ~r~at6dWhim the,f~back around any
amplifier ;is" resistive. Tile pa~lIliel resistance arid capacitance from the input Of the device (usually the inverting input) to AC ground set, the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected 3 dB frequency of the closed loop gain and
consequently there is negligible effect on stability margin.
However, if the feedback pole is less than approximately 6
times the eiqlepted 3 d~ frequericy a lead capaqitor should
be placed ttom t~e output to the Ip,put of the opamp. The
value of 'the addeq,capacitor should be such that the RC
time constaril cif ,this Capacitor and the resistance it parallels
is greater.tharior~ual to the Original feedback pole time
constant \::, ,"" ,"
'" '
, " ,
'

The aniplifie~ Will op~rate ,with 'a corriniol'].mode input voltage eq\Jal to the positive supplY; however, the' gain bandwidth and !llew rate 'may be decreased: in this condition.
When ttie neg,litive 'C9!"rI)Oo.-modli VOltage swings to within
3V of the negatiVe s~pply, an increase in input offset voltage

may occur.

'.~"

').

Each amplifier is individually, biased by a zener reference
which allows normal circuit operation on ±4.5V power supplies. Supply voltages less than these may result in lower
gain bandwidth and slew ra~a.
The LF147 will drjve a 2 kO load resistance t() ± 10V over
the full temperature range.' If the amplifier is forced to drive
heavier load c!Jrrents, however, an incrElaSE! in input offset
voltage may occurOli the:negathfe voltage ~ng and ,finally
reach an a,ctive current limitotl both positive and negative
swings,
,",'
" ,
Precautions shoull!be taken to ensure Jtllit the power supply for ,t~e integratedci~GUit nil~~r beCol1)eSrevE1,rsed,in po-

,:'

Detailed Sch~matic

TLlH/S647-9

1-28

Typical Applications

Digitally Selectable Precision Attenuator

Vo

V,.

.

HI

"

All resistors 1% tolerance

A1 A2 A3

0
0
0
0

0
0

0
0

Vo
Attenuation

0
1
0

."

0
-1 dB
-2dB
-3dB
-4dB
-5dB
-6dB
-7dB

0
0

••

.nEIUAnOI SELeCT INftUTS

TL/H/5647-10

• Accuracy of better than 0.4% with standard 1 % value resistors
• No offset adjustment necessary
• Expandable to any number of stages
• Very high input Impedance

Long Time Integrator with Reset, Hold and Starting Threshold Adjustment

.... --..,

v,.
Vour

-15V

====:.._J

L____
VTN

LF13331
AIALDe
SWITCHES

t----------o~:a

o SETTHRESHOLD

I5V

o-"""",""""'''''''''YI/Iwo-o -.IV
tlk

11J1

VOLTAGE

1111

THRESHOLD
,f;DJUST

TL/H/5647-11

• Vour starts from zero and Is equal to the integral of the input voltage with respect to the threshold voltage:

VOUT=~
r (VIN-VTH)dt
RCJo
.
• Output starts when VIN;;: VTH
• Switch 51 permits stopping and holding any output value
• Switch 52 resets system to zero

1-29

5...
.......r:::
r.:.

Typical Applications (Continued)

~

Universal State Variable Filter.
lUll

1001

. . ."""'

INPUT o-~""

LOWPASS
OUTPUT

llIk

NOTCH
OUTPUT

TUH/5647 -12

For circuit shown:
fo ~ 3 kHz, fNOTCH ~ 9.5 kHz
Q~3.4

Passband gain:
Highpas~.1

Bandpass-I

l.Owpas&-l
Notch-IO
• 'oxQS;200 kHz
• IOV peak sinusoidal output swing without slew limiting to 200 ,kHz
• See LMI48 data sheet for design equations

1-30

r-------------------------------------------------------------------------,
t!lNational Semiconductor

""
g:

.....
......
~

"".....

.....
en

General Description

Advantages
• Replace expensive hybrid and module FET op amps
• Rugged JFETs allow blow-out free handling compared
with MOSFET input devices
'. Excellent for low noise applications using either high or
low source impedance-very low 1If corner
• Offset adjust does not degrade drift or common-mode
rejection as in most monolithic amplifiers
• New output stage allows use of large capacitive loads
(5,000 pF) without stability problems
• Internal compensation and large differential input voltage capability
,

Common Features
(LF155A, LF156A,LF157A)
• Low input bias current
• Low Input Offset Current
• High input impedance
• Low input offset voltage
• Low input offset voltage temp. drift
• Low input noise current
• High common-mode rejection ratio
• Large dc voltage gain

Precision high speed integrators
Fast DI A and AID converters
High impedance buffers
Wideband, low noise, low drift amplifiers
Logarithmic amplifiers

30 pA
3 pA
10120.
1 mV

3,...VrC
0.01 pAlJRZ
100 dB
106 dB

Uncommon Features
LF157A
LF155A LF156A (Ay=5)
1.5

1.5

,...s

5

12

50

V/,...s

• Wide gain
bandwidth

2.5

5

20

MHz

• Low input
noise voltage

20

12

12

nVlJRZ

Simplified Schematic
(J)

.-----~~------~~~--~------~-o~"

(II

OUT

&0

'3 pF in LF157 series.

Units

4

0.01%
• Fast slew
rate

Applications
•
•
•
•
•

• Photocell amplifiers
• Sample and Hold circuits

• Extremely
fast settling
time to

(41
'----......- - - - - - - - - -.....- -____~----___4_+-___4'_O-vE£ ,;

1-31

"......g:
~

LF155/LF156/LF157 Series Monolithic
JFET Input Operational Amplifiers
These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the
same chip with standard bipolar transistors (BI-FETTM Technology). These amplifiers feature low input bias and offset
currentsllow offset voltage and offset voltage drift, coupled
with offset adjust which does not degrade drift or commonmode rejection. The devices are also designed for high slew
rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1If noise comer.

~

.....

TLlH/5646-1

Absolute Maximum Ratings

I

If MilitarylAerospace specified devices are required, contact the National Semiconductor Sales Offlce/Dl8trlbutQrs for
availability and specifications.
(Note 8)
\
LF355/6/7
'LF355B/(iBI7B
LF155A/6A17A
LF155/617
LF255/617
LF355A/6A17A
±22V
±22V
±18V
Supply Voltage
±22V ".
"
Differential Input Voltage
±40V
±40V
±40V
±30V
Input Voltage Range (Note 2)

±20V

±20V

±20V

±16V'

Output Short Circuit Duration

Continuous

Continuous

Continuous

Continuous

150"C

1fSOC
100"C
1000C

115'C
100"C
10o-C

560mW
1200mW

400mW
1000mW
670mW
380mW

400mW
1000mW
670mW
380mW

16O"C/W
65'C/W

160"C/W
6SOC/W
130"C/W
19SOC/W

160"C/W
65'C/W
130"C/W
195'C/W

TJMAX
H-Package
150"C
N-Package
M-Package
Power Dissipation at TA = 25'C (Notes 1 and 9)
H-Package (Still Air)
560mW
H-Package (400 LF/Min Air Flow)
1200mW
N-Package
M-Package
Thermal Resistance (Typical) {)JA:
H-Package (Still Air)
16O"C/W
H-Package (400 LF/Min Air Flow)
65'C/W
N-Package
M-Package
(Typical) ()JC
H-Package
Storage Temperature Range

23'C/W
-65'Cto + 150"C

2SOC/W
- 6SOC to

23'C/W

+ 15O"C

-65'Cto

2SOC/W

+150"C

-65'Cto

+ 150"C

Soldering Information (Lead Temp.)
Metal Can Package
Soldering (10 sec.)

300"C
300"C
300"C
300"C
DUal-ln-Une Package
26O"C
26O"C
Soldering (10 sec.)
260"C
Small Outline Package
Vapor Phase (60 sec.)
215'C
215'C
Infrared (15 sec.)
220"C
220"C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface
mount devices.
ESD tolerance
1000V
(100 pF discharged through 1.5 kO)
1000V
1000V
1000V

DC Electrical Characteristics (Note 3) TA =
Symbol

Parameter

,
Tj = 2SOC
LF155A/6A17A

Conditions

Min

Vos

Input Offset Voltage

RS = 500, TA=2S'C
OVer Temperature

AVos/AT

Average TC of Input
Offset Voltage

Rs=500

ATC/AVos

Change in Average TC
with Vos Adjust

RS=500, (Note 4)

los

Input Offset Current

Tj = 25'C, (Notes 3, 5)

Max

1
3

3

Input Bias Current

Tj = 25'C, (Notes 3, 5)

30

Tj s: THIGH

2
2.5

1

2
2.3

mV
mV

5

3

5

p.VI'C

Input Resistance

Tj=25'C

Large Signal Voltage
Gain

Vs= ±15V, TA=25'C
Vo= ± 10V, RL =2k
OVer Temperature

Output Voltage Swing

VS=±15V,RL=10k
Vs=±15V,RL=2k

1-32

50

200

25
±12
±10

10
10

3

10
1

pA
nA

50

30

50
5

pA
nA

50

1012

0

200

VlmV

25
±13
±12

p.VI'C
permV

0.5

1012

RIN

Vo

Max

25

AVOL

Units

Typ

Min

0.5

Ti,S:THIGH
Ie

LF355A16A17A

Typ

±12
±10

VlmV
±13
±12

V
V

DC Electrical Characteristics (Note 3) TA =
Symbol

Parameter
Input Common-Mode
Voltage Range

CMRR

Common-Mode Rejection
Ratio

PSRR

Supply Voltage Rejection
Ratio

Vs= ±15V

(Note 6)

AC Electrical Characteristics TA =
Symbol
SR

Parameter
Slew Rate

LF155A/6A17A

CondHlons

VCM

Tj = 25°C (Continued)

Min

Typ

±11

LF355A/6A17A
Max

Units

Min

Typ

Max

+15.1
-12

±11

+15.1
-12

V
V

85

100

85

100

dB

85

100

85

100

dB

Tj = 25°C, Vs= ±15V

Conditions
LF155A16A; Av= 1,
LF157A; Av=5

LF155A1355A
Min

Typ

3

5

LF156A/356A

Max

Min

Typ

10

12

LF157A/357A

Max

Max

Units

Min

Typ

40

50

V/p,s
V/p,s

15

20

MHz

GBW

Gain Bandwidth
Product

is

Settling Time to 0,01 %

(Note 7)

4

1.5

1.5

p,s

en

Equivalent Input Noise
Voltage

Rs=100n
f=100Hz
f=1000Hz

25
20

15
12

15
12

nV/,fHZ
nV/,fHZ

in

Equivalent Input
Noise Current

f=100Hz
f=1000Hz

0,01
0,01

0,01
0,01

0.01
0.01

pAl,fHZ
pAl,fHZ

C'N

Input CapaCitance

3

3

3

pF

2.5

4

4.5

DC Electrical Characteristics (Note 3)
Symbol

Parameter

Min
Vos

Input Offset Voltage

Rs=50n, TA=25°C
Over Temperature

l:.vos/aT

Average TC of Input
Offset Voltage

Rs=50n

LF255/8/7

LF155/817

Conditions

Typ
3

aTC/aVos Change in Average TC RS = 50.0, (Note 4)
with Vos Adjust

LF365/617

LF355B/8B17B

Max Min
5
7

Typ
3

Max Min
5
6.5

Units

Typ

Max

3

10
13

mV
mV

5

5

5

p,VI"C

0.5

0.5

0.5

p,VloC
permV

los

Input Offset Current

Tj = 25°C, (Notes 3, 5)
Tj'S:THIGH

3

20
20

3

20
1

3

50
2

pA
nA

Ie

Input Bias Current

Tj = 25"C, (Notes 3, 5)
Tj:S:THIGH

30

100
50

30

100
5

30

200
8

pA
nA

1012

RIN

Input Resistance

Tj = 25°C

AVOL

Large Signal Voltage
Gain

Vs= ±15V, TA=25°C
Vo= ±10V, RL =2k
Over Temperature

50

Vo

Output Voltage Swing

Vs= ±15V, RL =10k
Vs';' ±15V, RL =2k

VCM

Input Common-Mode
Voltage Range

Vs= ±15V

CMRR

Common-Mode RejeetionRatio

PSRR

Supply Voltage Rejeetion Ratio

(Note 6)

1012

200

50

±12
±10

±13
±12

±11

1012

.0

200

VlmV

200

25

±12
±10

±13
±12

±12
±10

±13
±12

V
V

+15.1
-12

±11

±15.1
-12

+10

+15.1
-12

V
V

85

100

85

100

80

100

dB

85

100

85

100

80

100

dB

25

1-33

25

15

VlmV

,...
....

II)

DC Electrical Characteristics TA= Tj =

II;;

.....
...I

m

'r

..-

Parameter'

........;
I&-

Typ

II)
II)

..I&-

LF155AJ155,
!-17~55, '
LF355A1355B

Supply Current

2

1 Max

,I

4

"

2/i'C, Vs = ±15V

"

LFa55,

LF156A1156,
LF256/356B

LF~56A/356

Typ 1 Max

Typ 1 Max

Typ

2

1 4

5

1

7

5

l

:

",

LF157A/151
LF257/a57B

,"

LF357A1357

1 Max",' ,.yp'l M~
5 .1 10
1 I

Typ

Max

1 10

,,;

5

"
"",

Units,

mA

...I

AC ElectricatCharacteristics TA =
Symbol

Parameter
'Sl,e\'l( Rate

LF155/6: Av =1,
LF157:Av=5

GBW

Gain Bandwidth
Product

ts
en

.

LF155/2551 LF156/256, LF156/2561 LF157/257; LF157/2571
355/355B
35713578
LFa56B
356/356B:" ' "lF351B

Conditions
':1.,";1

Sf:!

'

Tj = 25'C, Vs = ±15V

typ

Min

Typ

5

7.5

12

Units

Min

Typ

30

50

V/lkS
V/lkS.

2.5

5

20

MHz

Settling Time to 0.Q1 % (NOte 7)

4

1.5

1.5,

Iks

Equivaler:tt Input Noise Rs=100n
Voltage
f=100Hz
f=100qHz
,

25
20

15
12

15
12

nV/,JHz
nV/,JHz

0.01
0.01

0.01
,0.01

0.Q1
0.Q1

pAl,JHz
pAl,JHz

3

3

3

pF

in

:Equivalent Input
Current Nqille,

Cn~

Input CapaCitance

f=100Hz,
f= 1000 Hz

Notes for Electrical Characteristics
Note 1: The maximum power dissipation for these devices must be derated at elevated terpperatures arid is d,icIated by T)MAX, ~JA' anilthe,ambientt~peratui~
TA. The maximum available power dissipation at any temperature is Pd = (TjMAX - T,vIOJA or the 25'C PdMAX, whichever is less.
Note 2: Unless otherwiSe specJlIed the absolut" ,maximum negative inW' voltage is aqualto the negative power supply voltage.
Note 3: Unle,ss otherwise stated, these toM conditions apply:
LF155A/6A17A
LF15511617

'LF25511617

LF355A/6A17A

1.F355B/6B/78 ,

LF35511617

± 15VS;VsS:± 18V ±15VS:Vs±20V Vs= ±15V
,Supply Voltage, Vs ±15VS:VsS:±20V
± 15VS:VsS: ±20V
-55'CS:TAS: + 125'C -?5'CS:TAS: + 85'C O'CS:TAS: + 70'C
O'CS:TIiS: + 70'C O'CS:TAS: + 70'0'
TA
+ 85'C
+70'C
+ 125'C
+70'C
+WC
THIGH
..
'and Vos, Ie an~ lOS are measured atVCM=O.
, Note 4: The Temperature Coefficient of l!1e adjusted input offset voltage changes only a small amount (0.5".v/'C typically) for a.ilih mV of adiUstment from its
Original unadjustBd value, 'COmmon-modS rejectiori and open IQop voltage gain are also ynaffected by offset adjustment. , '
' ,,
NOte 5: The input bias currents are JunctIOn leakage currents which approximately doubl~ ior every 1~C Inc~e In the ju~ctIon temperature, TJ. Due to limited
production test time, the input bias currents ,measured are cooelated 10 junction temperature. In normal operatfon t"" jJnC\ion temperature rises above the ambient ,
tempera",re as a result of intemal power dissipation, Pd. T) '" TA+ OJA Pd where OJA is ,the thermal res~nce from Junction to ambient., Use ¢ a heat sink is "
recommended if input bias CUrTEUlt. is to be kept to a minimum.

.

,

Note 6: Supply, Voltage Rejection ds measured for both supply magnitudes Increasing or decreasing simultaneously, ,In acco

11

Z1i

Positive Current Limit

-II

....

1/

~~A'.II'"L ~

7

I
I

V

~:~~""

~

Supply Current

V
/

"

Co_N..,ooE VOLTASE (VI

Supply Current

•

RL -Zk
TA-2re

J
'7

E;;
.....
en

V

Ullin

CAlE TEII'ERATURE rCl

48

~

V.-±lIV
TA-zrc
RL-Ift .

•-1. ...

1211

iii

-Z&

II

i

i 10r--+~*,~~~~--i

l'

Input Bias Current

JI

11111 I-+-+-+-+-+~

."
.....

\

&

/

V
l'

5

5101&2OZ&313548
OUTPUT SOURCE CURRENT (IlIA)

20

PGllTlVElUPPLYVOLJS IV)
TUH/5646-2

Negative Common-Mode
Input Voltage Limit
-ID

I-T~'_&5lc

,
,.
,..

I--_TA-I&'C TA'I~&'e ":::

...

o

, -1'

,

k

Open Loop Voltage Gain
11M

RL ·n
RS'50

~

TA- ...re

a.

..
iii

-

/

If?

TA-zre=

Output Voltage Swing

=='

~ ~TA'115'e

..
....

...
S
c

Ie

..e
c

NEGATIVE SUPPLY VOi.TS IVI

-20

Ie

I

11k
-15

5

10

21

24

SUPPLY VOLTAGE I.V)

10

i,..;-

zo
1•
II

'. V
4

1&

VS·±1SV

TA-Ire

•

1.11
OUTpUT LOAD RL IIeO)

10

TUH/5646-3

1,35

~

II)
.-

....~

r---------------------------------------------------------------------------------,
Typical AC Performance Characteristics

~
.-

Gain Bandwidth

...I

~

1.8

U.

Hi
5

Normalized Slew' Rate

Gain Bandwidth

I

, I

~

~

~

I

1"'lII

!
• ,z
c'

,~ r-

LF111

_r-- VS '±1DV- .....,
VS"IIV_
~ :-VS·,zDV

"

1.Z

1!~

LF1&B

~

Ill!! ....

CD

1.4

I I

II.\.

-

I.B

LF1&7 CURVES IDENTICAL
8UTMULTlPLIED BY 4

~

1""'11 ~

.IDY

r-

~V r-

r

1

~

-55 -31,-11 5 25 48 8& .. IDS 125
TEMPERATURE rc}

-1& -31 -11 5 25 48 .. B5 115 125
TEMPERATURE (OC)

~~

I.B

.2 V

-F"'"

V;. ,JIV

J

~ ~IJn

D.'
IA

,

'.2

o

_1& -3& -1& & Z&

48 8& I. 10& 125

TEIoI'ERATURE

rc}
TL/H/5646-4

Output Impedance

g

•~~
~

Output Impedance"

1111

g

lD

I
Ii
~
co

..
I;
~

co

lD

11.1

0."

D.l

CIliii1ii::nr-....:......................tJ
1l1li

1k

Output Impedance

1I11III

1M

11M
FREQUENCY (H.)

FREQUENCY (Hz)

FREQUENCY (H.)

TLlH/5646-12

LF155 Small Signal Pulse
Response,Ay= +1

LF156 Small Signal Pulse
Response,Ay=+1
.

TIME (ll.5I'1iDIV)

TIME IIId1D1V}

TIME (l.lId1DIV)

TL/H/S646-6

TLlH/S646-S

LF,155 Large Slgn\ll Pulse
Response,Ay= + 1

LF156 Large Signal Pulse
ResponSe, Ay= + 1

TLlH/5646-7

LF157 Large Signal Pulse
,Response, Ay = + 5

TIME 1II.51d1D1V}

TIME (1Id1DIV)

TLlH/S646-6

Small Signal Pulse
Response, Ay = + 5

TLlH/5646-9

TLlH/5646-10

Typical AC Performance Characteristics
Inverter SeHllng Time

•..
~

"

Lfli5
TA,zrc
Vs' ±15V

Open Loop Frequency
Response

Inverter Settling Time
"8

111

III

..

" ..y /:,mV

e:

..
..;i=
..

(Continued)

j

~

lDooV,\, ll1V

\.\,1

1111
o

:II -15
co

-20
-25
-3D

II
VS'±l5V

DAIN

-5

Ii -10
:!!

&I

Z5

I
I

-rp'
-.

-

-10

~

-75

~

I

I

Ii

~

10
II

,

"

a

~

..
RI

-1'

~ -15

-ZI
-31
-35

-1Z5

40

,,
r\'
'\.

zo

'\

lID

r\.

Undlstorted Output Voltage
Swing
ZI

~

zo

I-LFI

lZ i--

•

10k

:-- '---.LF15~ ~

...,

i..

;....
t

ill

i

'

'"

FREQUENCY (H.I

10

Z5

~

-21

-71
-I.
-1Z5

20 I-GAI'N

:II

!

j

.. ..
ll!

i

~

.. '"

"

n

1111<

i..

101

i

lZ0

~

100

Z

E
!!

~

~

ZI

1111111

o
I

""-

-175

lID

40

TA'Z5'C
VSe±15Y-

{~F~~SUPPLY-

,,

"

"-

~~;;:
LF,1 .. ,
.....

ZD ;-- NEBATIVESUPPL Y .....
,I
'"
1M

n

1111<

I.

'"
.....
.....

1M

10M

lk

Equivalent Input Noise
Voltage (Expanded Scale)
TA-Z5'C._
VS··,5V

~~

a•

!..

41 ~\

i

2D

~

•

!

111M

"FREIIUENCY (Hz)

-125
-III

! ..

I
1M

-1& ;::;

--... ........

10

~ lao

II

LF15B17

..

a

FREQUENCY (H.I

TA - Z5'C
VS' ±l5V

40

-25

-liD!!!

1111

II

1M

Equivalent Input Noise
Voltage

..

!

Power Supply Rejection Ratio
lZ'

i

,_

:II

o

-liD :::

E~

0
-5
-II
-15
-20

;

!

zo

51

Z5

15

"
FREIIUENCY (MH.I

41

'"75

LF157
VS' "5V
",PHASE

""""J.

Z5

10
FREIIUENCY (MHzI

II

~

..
11M

3D

-50 ill

1111'

III

10k 111ft nil 1l1li

35

FREIIUENCY (Hz)

~

LF157
AV'5

~

vs' mv

10

10

...,...

l'

o
10 100 1l

fI aa

L155

,.l

~

10

121
100
75

~

~ 140

VS' ±l5V
RL ,a
TA'Z5"C
Av"
<1"OIST

II

31

-10

101

1l I,. 110l '" 10M
FREIIUENCY (HI)

Z4

~

LF157

~~ LF151

Power Supply Rejection Ratio

..

I\.

iii,

I

!

TA'Zr-

LF111

Il'IoPHASE -

r--

--40

100

LFI5~ "\ I\.LFJ51
'\.

10

z

"'.,!'IX

FREnUENCY (HI)

~~

co -21

!!!

-III

~S' .,'5V
RL ,a

"\

'\.

I

..
Ii.
..~
..~
..l=

50

Vs' ±15V-

......:

Bode Plot

11111

-

-5

Common,Mode Rejection
Ratio

I.

......

II

-21 ~

III
II
FREIIUENCY (MH.I

-31

~

!..~

,

~~

Bode Plot
15

100
75

~Jskl- I- L~'5~

•

Ii]

11

'ft'o

SEnLiNG TIME l1'li

"'0)

Bode Plot
10

..
..Ii...
i...
..
..".

:II
::

10

10

1.1

D.I

SEnUNG TIME

Ii
:!!

n

>

~

-5

-10

..

;

10k

~

\

\'\.
'\.

LF155
LF151il
11II1II

10
FREIIUENCY (HzI

TUH/5846-11

1-37

~
.....
u..

....
.....
CD
....u..an

Detailed Schematic
r-~----------1---------~-----------4~----~~-----------OW~
III
, :.,

.........
an
an

....

~

.....-+--~M,.......-o

,.

"7

L....--...- - - - ' - - -...-

OUT

("

.

RI

....--......I_ _-:-4-__~4-+_-+__+__J-~--__

is

i

Z""DIV

1~IV

1 ""DIV
TL/H/5646-17

TUH/5646-18

Low Drift Adjustable Voltage Reference

• a. Vour/a.T= ±O.002%I'C'
• All resistors and po1entiometers should be wire-wound
• PI: drift adjust
•

•

P2: VOUT adjust
Use LF155 for
• Low Ie

"Low drift
• Low supply current

R3

118k

TUH/5846-20

1-40

TUH/5848-19

Typical Applications

(Continued)
Fast Logarithmic Converter
.-----t---'\oYII-=:-O V"Ef-W

.."

•

Dynamic range: 100 ".A ,; II ,; 1 mA (5 decades), Ivol~IV/decade

•

Transient response: 3 tJS for .6.lj = 1 decade

•

Cl, C2, R2, R3: added dynamic ccmpensation

•

Vos adjust the LF156 to minimize quiescent error

•

R-r: Tel Labs type 081

+

0.3%I"C

TL/H/5646-21

R2] -lnV;
kT
[R
1 R2 ~ 15.7k,RT ~ lk,0.3%I"C(forlemperalurecompensation)
.
IVOUTI ~ [ 1 + -R
V
r ] ~ logV;-RI
T q
REFRI
Ir

Precision Current Monitor

••

v'O-+_""'~

..

•

VO~5

•

Rl, R2, R3: 0.1% resislors

•

Use LF155 for
o Common-mode range 10 supply range

Rl/R2 01/mA of Is)

o Low Is
o LowVos

o Low Supply Currenl
Va

.••
TL/H/5646-31

8-Blt 01 A Converter with Symmetrical Offset Binary Operation

.

••

Ii•

YREF"'1av

III

EO

-IIV

TL/H/5646-32

•

Rl, R2 should be malched within ±0.05%

•

Full~scale

response time:

3",,8

EO

B1

B2

B3

B4

B5

B6

B7

B8

Comments

+9.920
+0.040
-0.040
-9.920

1
1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

Positive Full-Scale
(+ ) Zero-Scale
(-) Zero-Scale
Negative Full-Scale

0
0

1-41

Typical Applications (Continued)

..

Wide BW Low Noise, Low Drift Amplifier

Isolating Large Capacitive Loada

C2

1.1.

r - - - - - - t - - ' l M..........-o vo ..

.
,

v,.o-oI\II""........"""t
v-

.o Power BW: IMAX

~ ...§:.... ..
2'11"Vp

o Overshoot 6%

TLlH/5646-22

ols 10 p.s

191 kHz

o When driving large CL, lhe VOUT slew rate determined by CL and

IOUT(MAX):

o Parasitic input capacitance CI '" (3 pF lor LFI55, LFI56 and LFI57 plus
any additional layout capacitance) interacts with leedback elements and
creates undesirable high lrequency pole. To compensate add C2 such
that: R2 C2 .. RI CI.

AVOUT
lOUT
0.02
.
AT
~ CL '" o:sV/p.s ~ O.04V1p.s (with CLshown)

..

Low Drift Peak Detector
Boosting the LF156 with a Current Amplifier

.,

••
u.

v....

u.

v,.
o By adding 01 and Rt, VOl ~ 0 during hold mode. Leakage

of 02 provided

by leedback path through Rt.
o Leakage

o IOUT(MAX) "'150 mA (will drive RL ;" 10011)
o AVOUT

AT

01 circuit is essentially Ib (LF155, LF156) plus capacitor leakage

olCp.

0.15
.
~ 10-2 V/p.s (with CLshown)

o Diode 03 clamps VOUT (AI)

to VIN-V03 to improve speed and to IimR

reverse bies of 02.
o No addRional phase shift addad by the current amplifier

o Maximum Input frequency should be
shunt capecitance of 02.

<<

Y.'II"RtC02 where C02 is the

3 Decades YCO
Non-Inverting Unity Gain Operation for LF157

••

I
RIC;" (2'11") (5 MHz)

RI~R2+Rs

4
AV(DC)

~

I

l-adB'" 5 MHz

Inverting Unity Gain tor LF157

I
RIC;" (2'11") (5 MHz)

RI~~
4

AV(DC)

VC(R8+R7)
I ~ (8 VPU R8 RI) C' O:<:Vc:<:30V,IO Hz:<:I:<:IO kHz

~

-I

I-a dB'" 5 MHz
TL/H/5646-25

RI, R4 matched. Unearity 0.1% over 2 decades.

1-42

r-

Typical Applications

....

."

(Continued)

en

~

!;;
....

High Impedance, Low Drift Instrumentation Amplifier
+15V

~
r-

....

+

."
R3

~

+1&V
-15V

~-4-0VOUT

+IIV

R3 [2R2
=R
R1 + 1

1/lV, v- + 2V ,;; VIN

TL/H/5646-26

v+

•

VOUT

•

System Vos adjusted via A2 Vos adjust

•

Trim R3 to boost up CMRR to 120 dB. Instrumentation ampl~ier
resistor array recommended for best accuracy and lowest drift

1-43

common-mode,;;

Typical Applications

(Continued)

Fast Sample and Hold

+tlV
+f5V

">=--....-oVOUT

-1SV

TLlH/5646-33

• Both amplifiers (A1, A2) have feedback loops Individually closed with stable responses (overshoot negligible)
• Acquisition time TAo estimated by:

1

TA '" [2RON~~IN' Ch Yo provided that:
VIN < 2".8, RON ~ and TA > VIN Ch , RON is of SWI
IOUT(MAX)
If inequality not satisfied: TA .. VIN CAh
20m

• LFI56 develops full S, ouIput capability tor VIN" IV
• Addition of SW2 improves accuracy by putting the voltage drop across SWI inside the feedback loop
• Overall accuracy of system dete,,!,ined by the accur~cy of

bOth amplifieni, AI -and A2

High Accuracy Sample and Hold
HI
5Ik

+15V
+1iV

>'-....-OVOUT

-15V
-1&V

TL/H/5646-27
• By closing the loop through A2, the VOUT accuracy will be determined uniquely by AI.
No Vos adjust required for A2.
• TA can be estimated by same considerations as previously but, because of the added
propagation delay in the feedback loop (A2) the overshoot is not negligible.
• Overall system slower then fast sample and hold
• RI,

Cc: additional compensation

• Use LFI56 for
o Fast settling time
o Low Vos

1.44

r-

Typical Applications

."
....

(Continued)

U'I

U'I
......
!;;

....

U'I

High Q Band Pass Filter

Q)
......
r."

Cl
• .oat"..F

....

I,F

• By adding positive feedback (R2)
Q increases to 40

U'I

......

• fep~ 100 kHz
Rl

&2'

VIN

--+-f

VOUT

o--'IIYo...

-

~ 10.'0

VIN

• Clean layout recommended

• Response to a 1 Vp-p tone burst:
300,..s

RI

-IIV

TL/H/5646-28

High Q Notch Filter

.,.
• 2Rl ~ R
2C ~ Cl

~
~

10 Mil
300pF

• Capacitors should be matched to obtain high Q
• fNOTCH ~ 120 Hz, notch ~ -55 dB, Q >
100
• Use LF155 for
o Low Ie
o Low supply current

TLlH/5646-34

•
1·45

,- r---------------------------------------------------------------------------~--_,
II)

~

I!J1National Semiconductor

LF351 Wide Bandwidth JFET Input Operational Amplifier
General

Descripti~n

The LF351 is a low cost high speed JFET input operational
amplifier with an internally trimmed input offset voltage
(BI-FET IITM technology). The device requires a low supply
current and yet maintains a large gain bandwidth product
and a fast slew rate. In addition, well matched high voltage
JFET input devices provide very low input bias and offset
currents. The LF351 is pin compatible with the standard
LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the
overall performance of existing LM741 designs.
The LF351 may be used in applications such as high speed
integrators, fast 01 A converters, sample-and-hold circuits
and many other circuits requiring low input offset voltage,
low input bias current, high input impedance, high slew rate
and wide bandwidth. The device has low noise and offset
voltage drift, but for applications where these requirements
are critical, the LF356 is recommended. If maximum supply

Typical Connection

current is important, however, the LF351 is the better
choice.

Features
10 mV
Internally trimmed offset voltage
50 pA
Low input bias current
25 nV/.JHz
Low input noise voltage
0.01 pAl.JHz
Low input nqise current
4 MHz
Wide gain bandwidth
13 V/p-s
High slew rate
1.8mA
Low supply current
1012{}
High input impedance
<0.02%
Low total harmonic distortion Av= 10,
RL =10k, Vo=20 Vp-p, BW=20 Hz-20 kHz
50 Hz
• Low 1If noise corner
2 p-s
• .Fast settling time to 0.01 %
•
•
•
•
•
•
•
•
•

Simplified Schematic
Rr

Vee

Ri

5

INTERNALLY
TRIMMED
TLlH/5648-11

-VEE o---..--..-------~_--'

TLlH/S848-12

Connection Diagrams
Dual-In-Llne Package
8

BALANCE

NC

INPUT
INPUT

OUTPUT
BALANCE
TL/H/5648-13

Order Number LF351M or LF351N
See NS Package Number MOSA or NOSE

1-46

5
....

Absolute Maximum Ratings

U1

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
±18V
Power Dissipation (Notes 1 and 6)
670mW
O"Cto +70"C
Operating Temperature Range
11S'C
Tj(MAX)
±30V
Differential Input Voltage
±lSV
Input Voltage Range (Note 2)
Output Short Circuit Duration
Continuous
Storage Temperature Range
-6S'Cto +lSO"C
Lead Temp. (Soldering, 10 sec.)
Metal Can
300"C
DIP
260"C

6jA
N Package
M Package

120"C/W
TBD

Soldering Information
Dual-ln·Line Package
Soldering (10 sec.)
260"C
Small Outline Package
Vapor Phase (60 sec.)
21S'C
Infrared (lS sec.)
220'C
See AN·4S0 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering sur·
face mount devices.
ESD rating to' be determined.

DC Electrical Characteristics (Note 3)
Symbol

Parameter

LF351

Conditions
Min

Units

Typ

Max

S

10
13

Vos

Input Offset Voltage

Rs = 10kn, TA = 2S'C
Over Temperature

IlVos/IlT

Average TC of Input Offset
Voltage

Rs=10kn

loS

Input Offset Current

Tj = 2S'C, (Notes 3, 4)
Tj s; 70"C

2S

100
4

pA
nA

18

Input Bias Current

Tj = 2S'C, (Notes 3, 4)
Tj s; ±70"C

SO

200
8

pA
nA

10

mV
mV
/LvrC

1012

n

100

V/mV

RrN

Input Resistance

Ti=2S'C

AVOL

Large Signal Voltage Gain

Vs= ±lSV, TA=2S'C
Vo= ±10V, RL =2 kn
Over Temperature

2S

Vo

Output Voltage Swing

Vs= ±lSV, RL =10 kn

±12

VCM

Input Common-Mode Voltage
Range

Vs= ±lSV

±11
-12

V

CMRR

Common-Mode Rejection Ratio

RsS;10 kn

70

100

dB

PSRR

Supply Voltage Rejection Ratio

(NoteS)

70

100

dB

Is

Supply Current

V/mV

lS
±13.S

V

+lS

V

1.8

,

3.4

mA

..-

II)
COl)

u..
....

AC Electrical Characteristics (Note 3)
c

Symbol

Parameter

LF351

Conditions
Min

Typ

Units
Max

SR

Slew Rate

Vs= ±15V, TA=25°C

13

V/p.s

GBW

Gain Bandwidth Product

Vs= ±15V, TA:=25°q

4

MHz

en

Equivalent Input Noise Voltage

T A = 25"C, Rs = 100O,
f=1000Hz

25

nV/~

in

Equivalent Input Noise Current

Tj=25°C, f= 1000 Hz

0.01

pAl~

Note 1: For operating at elevated temperature, the'devica must be derated based on the !hennal resistance, 8JA'
Note 2: Unless otherwise specified the absolute milxlmum negative InpUt voltage Is equel to the ,negative power supply voltage,
Note 3: These specifications apply for VS= ±15V and O"C,.TA" +70"C. VOS, Is and los are meesured at VCM=O.
Note 4: The input bias currents are junction leakage currents which approximately double for every 1000C increase in the junction temperature, TI' DUe to the limited
production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient
temperature as a result of internal power dissipation, Po. Tj = TA+ 8jA Po where 8jA is the thermal resistance from junction to ambient. Use of a heat sink Is
recommended if input bias current is to be kepi to a minimum.
Note 5: Supply voltage rejection ratio Is measured for both supply magnitudes increasing or decreasing slmultaneo~sly in accordance with common practios. From
±15V to ±5V.
Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate
outside guaranteed limits.

1-48

...

~
en

...

Typical Performance Characteristics
Input Bias Current
III

i

I-

~

co
co

G

:t

Ii

,. Input Bias Current

VS' ,15V
T " 25"C

Supply Current

z.z
D"STAS+lI'C

VCM"O
VS·±1IV

••

....

II

./V

V

V

.....

48

!;

~

21

-I

-10

COMMON,MOOE VOLTAGE (VI

TEMPERATURE rCI

Positive Common-Mode
Input Voltage Limit

Negative Common-Mode
Input Voltage Limit

O'CSTA$+IO"C

I-

=::~

U
,,~

Ii
"!:i

15

/

w"
i!::>

/

w"

I
15

" VOLTAGE (VI
PIISITIVESUPPLY

2.

=

11

o L--J.......L...L....I-...l-...l-...L...J
D
10
15
2.

D

°

NEGATIVE SUPPLY VOLTAGE (V)

Voltage Swing

Output Voltage Swing

-a

..'"

~

~ -1a
~

2D

1---l-+-f-hI'+-++---l

-I
10'C

o

10

2.

'"
•::I
:c'co"'

.

>

30

II

r.-

f'..1oo.

,.
&I

PHASE
BAlN
-10

ID20

3148

liD

TEMPERATURE rc)

1118

IS

J

~

-II

14

~

.

c
=
co

a

;I

!

~

l

13

Vs" .15V
RL"n
AV"1

....

I
FALLING

,.....

RIsING

i:l i!i

12

-108

,.

-3D

o

10

Slew Rate

150

-ZD

!iii

3

I

RL - OUTPUT LOAD Cln)

lD

•~

i'-

I

V
D,1

RL"n
CL "IDO,F

if
:!!

V

D

15

11I1'~s" '15V

1

_

CL"I.,F-

u

11

SUPPLY VOLTAGE ltV)

Bode Plot
RL .. a

" l"-

15

:>

...

,.

o

40

3D

V~""~V

I

20

:II
c

DL-..1......I.......I.....J.---'_L-.J......J

Gain Bandwidth

!! 4.5

i'"'

VS" ,!IV
TA"zrc

to

OUTPUT •• K CURRENT (IlIA)

i

Z5

f

O'C

!i

lil
•
-8

~

!:i
co

H'C

!::

3D

10

OUTPUT SOURCE CURRENT (lOA)

3D

-III

iw

D'C

,/

Ii!

I

j'rzrc
ID"C

/

Negative Current Limit

2

r-. t....

/

e"

i

I-

1/

,,~

Ii
"!:i

25

~~

/

!I ,.

l-

°

~~

15

"
IS
ZD
SUPPLY VOLTAGE (.VI

Positive Current LImit
15

O"CSTA$+1rC

~

V

/

10

.

20

to

/

o

010213040&08110

10

20

~

1.2

10

°

8.1

FREIIUENCY IMHz)

-150
III

11
DII2I2I485DIIII
TEMPERATURE ('C)

TUH/5648-2

1-49

~

I

..-

~

u..

...I

Typical Performance Characteristics (Continued)
Undistorted Output
Voltage Swing

Distortion vs Frequency
I.Z

Vs-.IIV

1.171

T~-Z~C

1.15

I

'

1.1

....

..
I
..
.~..,..

U2S

•

I.

I.

.
..=:..
I.
0:
c
co

51

I:l
;j
co

~

w

II r f v E 1 v o
II
VCM
ai

..

- I

"

I.

I.

21

1.1.

,.

VOllASE ~AIN

•

11

lk

I

"

0:

~I5V

co

II

"

~

411

1M 11M

I

a

.

C
w

c

: 111.
~
I!;

~~

......

TA-rCTO-WC

TA -11°C

I.

-

9

is

i.
~

•...

I.

1M .1l1li

.

..iii

~.

..tr

15

. SUPPlYVOlTAGE(.V!

II

101

lk

l11k

lUI

Inverter Settling Time

f

~

II

~

5

I
IlmV

I'

rt

VS-"IV
TA'25"C

'IIV

Ii!

~~-I!!!! ~
f

I..,

11K

,.

lUI

FREIIUENCY (Hz)

AV-ID

~. •.1

9

I.

I.

i •,.
~

~

1

r

I

~

5

~

20,

ZI

ill

VS" .,IV
TA-2S'C

I
~AV-ID.

'-

10001.,M 111M

1

Output Impedance
101

RL -211

....

Ilk

,.

110

'1 ,

FREIIUENCY (H.I

Open Loop Voltage
Galn(V/V)
~

lK

II

III

I'-

lUI

w

c

-SUPPLY'\

,.

~,..
.!!

I~UPPLY

co

1M
.~

,.

Equivalent Input
Noise Voltage
11

..
.,..= .
...
I.

.. r--.. '"
I.. ......
.. z.
" i"- "-

,

I,

1

FREIIUEllCY (Hz)

Vs'
TA-ZSoC

IZI

;! III

~

I J

I. I .

'"'"..

FREQUENCY (III'

':.

•

1M

1411

II

'

CMRR - 20 LOG Va. + OPfN lOOP
Vo

VS-±lIVTA' ZS'C

,It

FREQUENCY (HrI

vI' .,IV
Rl -Zk
TA,zrc

I,I~

,.

w

I

Power Supply
Rejection Ratio

r--+-.-.. ''

128

C

Z8

~

Common-Mode
Rejection Ratio

'.."

R~'n'
.... - "
..~
..,.. • " ''..iii .
'118

9

.

FREIIUEIICY (Hz)

:a

12.

i

I!;

II

~

I!:

I.

I.

28

w

Av-I'~+J
Ik

RL"ZII
TA-Z5°C
AV-I
,, Vo

Parasitic input capacitance Cl .. (3 pF for LF351
plus any additionallaycUi capacitance) interacts
with feedback elements and creates undesirable
high frequency pole. To compensate, add C2 such
that: R2C2 '" R1Cl.

Ultra-Low (or High) Duty Cycle
Pulse Generator

lNB14

Rl

lNB14

H2

Long Time Integrator

V'

V'

1M

V'
1M

1

VOUT = ftc

ftz

VIN OIT

'1
1M

y-

4.8 - 2Vs
o toUTPUT HIGH'" RIC In 4.8 _ Vs
o toUTPUT lOW '" R2C

where Vs

= V+

+

VTUH/5648-IO

In 2Vs - 7.8

'Low leakage capacitor

Vs - 7.8

lv-I

o

'low leakage capacitor

1-53

50k pot used for less sensitive Ves adjust

~

~.

I!J1National Semiconductor

LF353 Wide Bandwidth Dual
JFET Input Operational Amplifier
General Description

Features

These devices are low,cost, high speed, dual JFET input
operational amplifiers with an int~rnally trimmed input offset
voltage (BI-FET IITM technology). They require low supply
current yet maintain a large gain bandwidth product and fast
slew rate. In· addition, well matched higb voltage JFET input
devices provide very low input bias and offset currents. The
LF353 is pin compatible with thelltandard LM1558 allowing
designers to immediately upgrade the overall performance
of existing LM1558 and LM358 designs.

•
•
•
•
•
•
•
•
•

These amplifillrs may be used in applications such as high
speed integrators, fast 01 A converters, sample and hold
circuits and many other circuits requiring low input offset
voltage, low. input bias current, high input impedance, high
slew rate arlll wide bandWidth. The devices also exhibit low
noise and offset voltage drift.

Typical Connection

10 mV
Internally trimmed offset voltage
50pA
Low input bias current
25 nV/JFfi.
Low input noise voltage
0.01 pAlJFfi.
Low input noise current
4 MHz
Wide gain bandwidth
13 V/p.s
High slew rate
3.6 mA
Low supply current
10120.
High input impedance
<0.02%
Low total harmonic distortion Av=10,
RL=10k, Vo=20Vp-p, BW=20 Hz-20 kHz
50 Hz
• Low 1/f noise corner
2 p's
• Fast settling time to 0.01 %

Connection Diagrams.

Metal Can Package (Top View)

R;

V·

6

INVERTING
INPUT B

-VU
V·

Order Number LF353H
See NS Package Number H08A

Simplified
Schematic
,
:;
112 Dual

ycco----....- - - - -...-,.....,...
Dual-In-Line Package (Top View)
OUTPUT A

Vo

'MVEHlING INPUT A
NOI-INVERTING
INPUT A
y-

INTERNALLY

TAIMMED
-VEE

INT£RHALLY
TRIMMED

3

INVERnNa INPUT.

- ' - f - -....

Order Number LF353M or LF353N
See NS Package Number MOSA or NOSE

o--....- -...- - - -....__.J

TUH/5649-1

1-54

r-

'T\

Absolute Maximum Ratings

Co)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±18V
Supply Voltage
(Note 1)
Power Dissipation
O'Cto +70'C
Operating Temperature Range
150'C
Tj(MAX)
±30V
Differential Input Voltage
±15V
Input Voltage Range (Note 2)
Output Short Circuit Duration
Storage Temperature Range

Lead Temp. (Soldering, 10 sec.)
260"C
Soldering Information
Dual-In-Line Package
Soldering (10 sec.)
260'C
Small Outline Package
Vapor Phase (60 sec.)
215'C
Infrared (15 sec.)
220'C
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 7)
1700V
(JJA M Package
TBD

Continuous
- 65'C to + 150'C

DC Electrical Characteristics (Note 4)
Symbol

Parameter

LF353

Conditions
Min

Units

Typ

Max

5

10
13

Vas

Input Offset Voltage

Rs= 10kO, TA=25'C
Over Temperature

AVos/AT

Average TC of Input Offset Voltage

Rs=10kO

10

los

Input Offset Current

Tj = 25'C, (Notes 4, 5)

25

100
4

pA

50

200
8

pA
nA

Tj~70'C

Tj = 25'C, (Notes 4, 5)

mV
mV
p.VI'C

nA

18

Input Bias Current

RIN

Input Resistance

Tj=25'C

AVOL

Large Signal Voltage Gain

Vs= ±15V, TA=25'C
Vo= ± 10V, RL =2 kO
Over Temperature

25

Va

Output Voltage Swing

Vs= ± 15V, RL = 10kO

±12

±13.5

V

VCM

Input Common-Mode Voltage
Range

±11

+15
-12

V
V

CMRR

Common-Mode Rejection Ratio

Rs~

70

100

dB

PSRR

Supply Voltage Rejection Ratio

(Note 6)

70

100

Is

Supply Current

Tj~70'C

Vs=±15V
10kO

1012

0

100

V/mV

15

V/mV

3.6

dB
6.5

mA

AC Electrical Characteristics (Note 4)
Symbol

Parameter

LF353

Conditions
Min

Amplifier to Amplifier Coupling

TA=25'C, f=1 Hz-20 kHz
(Input Referred)

Typ

Units
Max

-120

dB

SR

Slew Rate

Vs= ±15V, TA=25'C

B.O

13

Vlp.s

GBW

Gain Bandwidth Product

Vs= ±15V, TA=25'C

2.7

4

MHz

en

Equivalent Input Noise Voltage

TA= 25'C, Rs = 1000,
f=1000Hz

16

nV/,/Hz

in

Equivalent Input Noise Current

Tj=25'C, f= 1000 Hz

0.01

pA/,/Hz

1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of 115'C/W typ iunction to ambient for the Npackage,
and 15S'CIW typ junction to ambient for the H package.
Nota 2: Unless otherwise spacified the absoluta maximum negative Input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation lim", however, cannot be exceeded.
Note 4:,These specifications apply for Vs~ ±15V and O'C<:TA<: +70'C. Vos, Ie and los are measured at VCM~O.
Note 5: The input bias currents are Junction leakage currents which approximately double for every 100C increase In the junction temperature, Tj. Due to the limited
production test time, the input bias currents measured are correlated to junction temperature. In normal oparation the junction tempamture rises above the ambient
temparature as a resu" of internal power dissipation, Po. TJ ~ TA+ 9JA Po where 9jA is the thermal resistance from junction to ambient Use of a heat sink is
Note

recommended

jf

input bias current is to be kept to a minimum.

Supply voltage rejection ratio is measured for both supply magnitudes increaSing or decreasing simultaneously in accordance with common practice.
Vs ~ ±6Vto ±15V.
Note 7: Human body model, 1.5 kO in series with 100 pF.
Nota 6:

1-55

CIt
Co)

C')

gan

Typical Performance Characteristics
Input Bias Current

Input Bias Curlent

"

108 I-Vs' '15V
TA· IS C

i...

...~

80

~

,'"'"~

10

!...

,40

!!!

10

-

.....

...
~
'"'"~

100

~

!;

iii

.~

-10

-5

10

..

/

B~

/

~'"

~>

a

TO

Positive Current Limit

/

H

I

r- ....... ~

'i~

10

I

2r C

/

10

/

26

5101620
SUPPLY VO.LTAGE ('VI

~

15

/

/

10

,."

,.~

68

50

J'C ",TA" +7r c

15

"'~

40

20
ac"TA,,+7a'c

liP:~

2.8

Negative Common-Mode Input
VoHage Umlt

20

2

3,2

TEMPERATURE ( C)

Positive Common-Mode Input
Voltage Limit
.

!!!
~~

30

10

""

V ...

3.1

2A
10

a

10

COMMON·MOOE VOLTAGE WI

O'C

70"C

/

/

t:

L

2

a

.0

a

10

15

20

,

-15

i

~

~ -1.

10

15

10

Voltage Swing

..
i.
....

~

-5

7lrC

~>

!;

..S

J'C

:i

~

-0

a

10

20

30

~

>

i

~

a

30
_

~

20

r"',

:;

r--..

3,5

.

~

.......

10

IS

....

.:Ie. 41

58 .60

TEMPERATURE ('CI

/

a

r--.

JW~E

'0
GAIN

70

15

10

Slew Rate
VS",5V'
RL '2'.
AV'I

100

RL '2'
CL·,OOpF

10

.,'

0,1

160

I'~S' -IIV

1-0.

~

58

~

~

l~

a

'"
~

..

~

:D'

-50

~

14

13

I
FALLING

-

""-

RIsING

12

-100
-158 .

-30
20

10

RL - OUTPUT LOAD (kill

-20

O' 10

IS

10

Bode Plot

-10

3

",..

20

SUPPLY VOLTAGE ('VI

RL '2.
CL 'IOOpF-

4,5

~

ii

'"

OL-.l-....I-...I--'--'-...L......L...~

40

Gain Bandwidth

V~-iIJv

~

10 ~~-+~--t-~-r-t-1

OUTPUT SINK CURRENT (mAl

6

VS·,HV
TA·25'C

25

~

~

'"

40

30

Output Voltage Swing

.
25"C

10

30

1
~

'"

10

OUTPUT SOURCE CURRENT (mAl

41 ,...-.,.-..,...-',-,-.,.-.,.-.,.--,

>

!::

a

NEGATIVE SUPPLY VOLTAGE (VI

Negative Current Umlt

.

~

o

a

POSITIVE SUPPLY VOLTAGE (VI

~

.!

,-

:i

aL-.l-..l-....I--l-...L.......L...-'---'

c

C

ii

iI!

..
....
....c
.

J'STA,,+7J'C

vs· '15V

~

'"
~

Supply Current

~;c~;:t:--' f"'-

0,1

1

.10

FREOUENCY'(MHzI

100

11

a

10203040

SOH

TO

TEMPERATURE rCI

TUJi/5649-2

1-56

r-

."

Typical Performance Characteristics

Co)

(Continued)

en
Co)

Undlstorted Output Voltage
Swing

Dlstortl,on vs Frequency
0.2

..

0:1S

..t;'"
;::

;:;

I I

~

~VOilorp"p

;- 0.125

0.1150

I

0.015
10

100

!:;
>

Ay'10~'rJ

'"

ID

10k

..
'"ti
5.
..'"
..
I

1211
100'

r-hJ I

10

9

&II

~

~

8

VC~

40

. 2kl

I.

~

I

.!!!. + OPEN LOOP

CMRR·28 LOG

VCM

10

VOLjAGE jAIN 1

I I

0
I.

100

lk

10k

~

80

~

&II

r\.

40

" I'-

20

lOOk

I

1M

10

100

lOOk

'"
~

..'"..

1M

10M

i

i.

i

lk

10k lOOk 1M 10M

FREQUENCY IHzI

Power Supply Rejection
Ratio
iii
3

VS' '1SVTA'IS'C

0
10k

ti

"

,I.

R~'2k1

~

FREQUENCY (HzI

RFvo

~

~

c
!:;

-

100

0

lOOk

VS'ilIV
RL "2k
TA'IS'C

I~

I

C

•~

Common-Mode Rejection
Ratio

'"~

...
'"2i>

FREOUENCY (Hz)

iii
3

iz

10

'"

,.

0

vS' !IIV
RL-Zk
TA' 2S"C
AV'1
\<1"OIST

c

AV' 100

I

~

..
..i
'"...
..~
~

' 10k

0.1

0.015,

'120

3D

I

vS' ,nv
T~ ;21;"C

0.176.

Open Loop Frequency
Response

ECluivalent Input !\Ioise
Voltage
TO

140
VS'i15V
TA' 21'C

120
100

r--...
10

.........

sa

.......

r'\.

20

I",

0
lK

100

FREQUENCY (Hz)

10k

lOOk

1M

40

§!

30

Ii
lil

f'

50

E"

i5!

i"'-:SUPPLY

-SUPPLY'\

10

'&0

!~

~
'\

4D

...
!Ii!

"

20
10
0

111M

10

lk

100

10k

lOOk

FREQUENCY (Hz)

FREOUENCY IHzI

I

i:

Ii

I'
1

I
Open Loop Voltage Gain (V/V)

Output Impedance

1M
TA' O"C TO +21'C

~

~

~

!:i

tOOK

~~

",.

..

'"~

.-:
TA' 70'C

10

~ .AV'100
.1

c

i...'"

'">

.'"

2i
9

~

..~

10K
. 10

IS

SUPPLY VOLTAGE ('VI

20

II

.r

I

.

AV" 10

L

0.1

~~'1~ ~

.•:::'"
i
~

~

,.'"

/

..'"

10

,.

10k

lOOk

FREQUENCY (Hz)

1M

111M

~

~

VS'ilIV
TA'21'C

lmV

0

I:
!

lmV
-I

I!:

100

III II
10mV

5

!;

0.01
5

~
~

Vs' !15V
TA' 21"C

~RL'2k

..~

Inverter Settling Time

100

10mV

II

l\

\\

II

-I'

0.1

I

10

SEnUNG TIME ""I
TL/H/5649-S

1·57

CO)

in
CO)

LL.

...I

Pulse Response
Small Signal Non-Inverting

Small Signaling Inverting

:;E

~
CI

">E
CD

~
!CD

i

i

co
!!!

z

.Z
III

III

CD

CD

·c

...~

...

I-

'0

0

>

>

l::0
a.
l::0
0

I::0

a.

I::0
0

TIME (0.2 jlS/DIV)

TIME (O.2Il11DIV)
TLlH/5649-4

TL/H/5649-5

Large Signal Non-Inverting

Large Signal Inverting

TIME (2 IJS/DIV)

TIME (2jJS/1lIV)
TLlH/5649-6

TLlH/5649-7

Current Limit (RL = 1000)

CD

z

i

III

CD

~

o
>

~

o

TIME (5 jlS/DIVl
TLlH/5649-8

Application Hints
These devices are op amps with an internally trimmed input
offset voltage and JFET input devices (BI-FET II). These
JFETs have large reverse breakdown voltages from gate to
source and drain eliminating the need for clamps across the
inputs. Therefore, large differential input voltages can easily
be accommodated without a large increase in input current.
The maximum differential input voltage is independent of
the supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed
unit.

Exceeding the negative common-mode limit on either input
will force the output to a high state, potentially causing a
reversal of phase to the output. Exceeding the negative
common-mode limit on both inputs will force the amplifier
output to a high state. In neither case does a latch occur
since raising the input back within the common-mode range
again puts the input stage and thus the amplifier in a normal
operating mode.

1-58

r-----------------------------------------------------------------------------'r
."
Application Hints (Continued)

Exceeding the positive common-mode limit on a single input
will not change the phase of the output; however, if both
inputs exceed the limit, the output of the amplifier will be
forced to a high state.

in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.

W
~"""'OOUT

+20

11111111

1

(NOTE 4)

\

.... (NOTEZ)

+15

1'1

11,

+10

ii

+5

os
z

...;;:..

-5

I"

-10
-15
-20

rtls
10

lk

100

~t
III
10k

lOOk

FREQUENCY (Hz)
TL/H/5649-10

Note 1: All control. flat.
Note 2: Bass

a~d

treble boost, mid flat.

Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat.
Note 5: Mid cut, bass and treble flat.

• All potentiometers are linear .taper
•

Use the LF347 Quad for stereo applications

1-60

Typical Applications

(Continued)
Improved CMRR Instrumentation Amplifier
Vs

i'iDt-t---+-IH

••

Vo

-Vs

Vs

Vs'

1.
-

1.
-

h
h
!

!

-Vs'

-'s
SEPARATE

2R2
AV~ (

)
+1

R1

rh

?

and

R5
R4

are separate isolated grounds

Matching of R2'" R4', and R5's control CMRR
With AVT
•
•

= 1400, resistor matching = 0,01 %: CMRR = 136 dB

Very high input impedance
Super high CMRR

Fourth O'rder Low Pass Butterworth Filter
C

D.DI

•

VOUT

.3
11k

-15V

••

lOOk
.3'
11k

•
•
•
•
•
•

Corner frequency (fc)

=

j

1
R1R2CCl

•

-16V

R.'
lOOk

1

2"

Passband gain (HO) = (1 + R4/R3) (1 + R4'/R3')
First stage Q = 1.31
Second stage Q = 0.641
Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
Offset nulling necessary for accurate DC performance
TL/H/5649-11

1·61

~

~
....

Typical Applications

(Continued)

Fourth Order High Pass ButterWorth Filter

"3'
211110

rr-l
~1
° Cornerfrequency(fcl =VRi"ii2C2°2; = V~02;
° Passband gain (HO=(1+R4/R3) (1 +R4'/R3')

° First stage Q =

1.31

°

= 0.541

Second stage Q

° CircuH shown uses closest 5% tolerance resistor values for a fiRer with a corner frequency of 1 kHz and a passband gain of 10.

Ohms to Volts Converter

I"

L..--"-o-ISV

Vo = _1_V_ x RX
RLADDER
Where'RLADDER is the resistance from swilch SI pole 10 pin 7 of Ihe LF353.

1-62

TL/H/5649-13

r-------------------------------------------------------------------------, r"TI

.....
"".....

ttlNational Semiconductor

LF411 Low Offset, Low Drift
JFET Input Operational Amplifier
General Description

Features

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply
current yet maintain a large gain bandwidth product and fast
slew rate. In addition, well matched high voltage JFET input
devices provide very low input bias and offset currents. The
LF411 is pin compatible with the standard LM741 allowing
designers to immediately upgrade the overall performance
of existing designs.
These amplifierS may be used in applications such as high
speed integrators, fast Of A converters, sample and hold
circuits and many other circuits requiring low input offset
voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

•
•
•
•
•
•
•
•
•

Typical Connection

0.5 mV(max)
Internally trimmed offset voltage
10/LV/'C(max)
Input offset voltage drift
50 pA
Low input bias current
0.01 pAl.'Hz
Low input noise current
3 MHz(min)
Wide gain bandwidth
1OVf /Ls(min)
High slew rate
·1.8 mA
Low supply current
1012.0
High input impedance
<0.02%
Low total harmonic distortion Av= 10,
RL =10k, VO=20 Vp-p, BW=20 Hz-20 kHz
50 Hz
• Low llf noise corner
• Fast settling time to om %
2/Ls

Ordering Information

'"

X

Vec

Y

indicates temperature range
"M" for military
"C" for commercial

Z

indicates package type
"H" or liN"

Hi

Connection Diagrams

LF411XYZ
indicates electrical grade

Metal Can Package
NC

V-

TUH/5655-5

Top View
Nota: Pin 4 connected to case.
Order Number LF411ACH
or LF411MH/883·
See NS Package Number H08A

TLlH/5655-1

Simplified Schematic
Vee

0----""------,,,---,

Dual-ln-Une Package
BALANCE

INPUT

Vo

INPUT

y-

TUH/5655-7

INTERNALLY
TRIMMED
-VEE

INTERNALLY
TRIMMEO

0--...---...----....---'

TUH/5655-6

Top View
Order Number LF411ACN,
LF411CN or LF411MJ/883·
See NS Package Number
N08EorJ08A
'Available per JM385101119D4

1-63

....-

~

Absolute Maximum Ratings
If Mllitary/Aer08pace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 8)
LF411A
LF411
±22V
±18V
Supply Voltage
Differential Input Voltage
±38V
±30V
Input Voltage Range
(Note 1)
±19V
±15V
Output Short Circuit
Duration
Continuous. .ConJinuous

Power Dissipation
(Notes 2 and 9)
Tjmax

NPa~e

670mW
150"C
162"C/W (Still Air)
65°q/W (400LF/min
AirFlow)
20"C/W

670mW
115°C
120"C/W

I,

/ljA

/ljC
Operating Temp.
Range,

-

HPackage

(Note 3)
(Note 3)
Storage Temp.
Range
-65°C~TA~150"C
-65°C~TA~15O"C
Lead Temp.
. (Soldering, 10 sec.)
26O"C '
260"C
ESD Tolerance
Rating to be determined.

DC Electrical Characteristics (Note 4)
Symbol

.Parameter

LF411A

Conditions
Min

Vos

Input Offset Voltage

l:.vos/ll.T Average TC of Input
Offset Voltage
los

.Input Offset Current

Input Bias Current

18

RIN

Input Resistance

,,",OL

Large Signal Voltage
Gain

Rs=10kO, TA=25°C

Max

0.3

0.5

Rs=10 kO (Note 5)
Vs= ±15V
(Notes 4, 6)

Tj=25°C

Vs= ±15V
(Notes 4, 6)

LF411

Typ

Min

Unlta

Typ

Max

0.8

2.0

mV

20
(Note 5)
'.. 100'

p'vrc

7

10

7

25

100

25

pA

Tj=70"C

2

2

nA

Tj= 125°C

25

25

nA

200

pA

Tj.=25°C

50

·50

200

Tj=70"C

4

4

nA

Tj=125°C

50

50

nA

1012

. l',=25°C

1012

0

Vs= ±15V, Vo= ±10V,
RL =2k, TA=25°C

50

200

25

200

V/mV

Over Temperature

25

200

15

200

VlmV

Vo

Output Voltage Swing Vs= ±15V, RL =10k

±12

±13.5

±12

±13.5

V

VCM

Input Common-Mode
Voltage Range

±16

+19.5

±11

+14.5

V

-11.5

V

-16.5

CMRR

Common-Mode
Rejection Ratio

Rs~10k

PSRR

Supply Voltage
Rejection Ratio

(Note7)

Is

Supply Current

80

100

70

100

dB

80

100

70

100

dB

1.8

AC Electrical Characteristics (Note 4)
Symbol

Parameter

2.8

1.8

3.4

rnA

,
LF411A

Conditions
Min

Typ . Max

LF411
Min

Typ

Units
Max

SR

Slew Rate

Vs= ±15V, TA=25°C

10

15

8

15

Vlp.s

GBW

Gain-Bandwidth.Product

Vs= ±15V, TA=25°C

3

4

2.7

4

MHz

en

Equivalent Input Noise Voltage

TA=25°C, Rs=1000,
f= 1 kHz

25

2!;i

nVlV\/RZ

in

Equivalent Input Noise Current

TA=25°C, f= 1 kHz

0.01

0.01

pAl'V~

1-64

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: For operating at elevated temperature, these devices must be derated based on a tliermal resistance of 8JA.
Note 3: These devices are available in both the commercial temperature range O'C:<:TA:<:70'C and the military tempereture range -SS'C:<:TA:<:12S'C. The
temperature range is designated by the position just before the package typa in the device number. A "C" Indicates the commercial temperature range and an "M"
Indicates the military temperature range. The military temperature range Is available in "H" package only.
Nota 4: Unless otherwise spaclfled, the spacHications apply over the full temperature range and for Vs~ t20V for the LF411A and for Vs~ ± ISV for the LF411.
Vas, Ie, and las are measured at VCM~O.
Note 5: The LF411A is 100% tested to this specHication. Tha LF411 is sample tested to insure at least 90% of the units meet this specificstlon.
Note 6: The input bias currents are junction leakage currents which approximately double for every 100C increase in the junction temperature, TI. Due to lim~ed
production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient
temparature as a result of internal power diSSipation, Po. TI ~ TA+ 81A Po where 81A is the thermal resistsnce from junction to ambient. Use of a heat sink is
recommended H input bias current Is to be kept to a minimum.
Note 7: Supply vo~ rejection ratio Is measured for both supply magnitudes increasing or decreasing simultaneously In accordance with common practice, from
± ISV to ± 5V for the LF411 and from ± 20V to ± SV for the LF411 A.
Note 8: RETS 411 X for LF411 MH and LF411 MJ military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Oparating the part near the Max. Power Dissipation may cause the part to operate
outside guaranteed IIm~.

Typical Performance Characteristics
Input Bias Current
100

i

Ii

..... 1"""

-10

-5
COMMOII-MODE VOIlAaE (V)

1

100

I~

",.. :I
lEw

i!!i!
~!

10

o

:a
Ii
25

....... ::"" t-:=:

t\

o

50

125'C

o

-5

-10 -15 -20
NE&A11VE SUWLY
VOIlAaE(Y)

o

o

o

~

.......

o

-55"C

10
2D
30
OUTPUT SOURCE
CURRENT (mA)

40

Output Voltage Swing
25

10
15
20
SUPPLY VOLTAGE (± V)

~f

20

..!;!!i!1

10

!i!~ 15

25'C

40

--~

±15Y

30

RL=2k
TA=ZSoC

~ -55'C

10
20
30
OUTPUT SINK CURRENT (mA)

25

ZSOC

-25

10

o

Ys~

125"C

10'

o

I::;;; 1;::=0

Output Voltage Swing

V =±115V

10
15
20
SOWLY VDIlAGE (±V)

Positive Current Limit

-5

10
15
20
POSITIVE SUI'PLY
VOIlAGE (V)

~

o

t-t-+-1H--¥1-t-+-t-l

-10

Negative Current Limit
-15

I
I
I

I~

~

.....

f;;r.c

15

1-1-1-1-1-1-1-1-1-1-1

"I::

i"'"

i!i !l -15 hH-t-t-l--+--;,I...._,K'"---,r--

INVERTING IN~T A
NON.INVERTING
INPUT A

3

"

V-

INTERNAllY
TRIMMED
-VEE

OUTPUT B

INVERTING INPUT.

.

-i-----'

6

NON.INVERTING
INPUT B

TOP VIEW
TL/H/5656-1

o---.....-----....--------....-----J
Ortler Number LF412ACN, LF412CN or LF412MJ/883'
See NS Package Number JOSA or NOSE

'Available per JM38510/11905

1-70

r-

."

....

Absolute Maximum Ratings

~

If Military/Aerospace specified devices are required, please contact the National semiconductor Sales Office/
Distributors for availability and specifications.
(Note 9)
NPackage
H Package
LF412A
LF412
Power Dissipation (Note 10)
(Note 3)
670mW
±18V
Supply Voltage
±22V
115"C
Tjmax
1500C
±38V
±30V
Differential Input Voltage
152"C/W
115"C/W
8jA (Typical)
Input voltage Range
Operating Temp. Range
(Note 4)
(Note 4)
(Note 1)
±19V
±15V
Storage Temp.
-65"C:5:TA:5: 150"C-65"C:5:TA:5: 1500C
Output Short Circuit
Range
Duration (Note 2)
Continuous
Continuous
Lead Temp.
(Soldering, 10 sec.)
260"C
260"C
ESO Tolerance (Note 11)
1700V
1700V

DC Electrical Characteristics (Note 5)
LF412A
Symbol

Parameter

Conditions

Vos

Input Offset Voltage

Rs=10 kO, TA=25"C

/iVoslIH

Average TC of Input
Offset Voltage

Rs= 10 kO (Note 6)

los

Input Offset Current

Vs= ±15V
(Notes 5 and 7)

18

Input Bias Current

Min

Max

0.5

Tj=25"C

Vs= ±15V
(Notes 5 and 7)

LF412

Typ

Min

Max

1.0

1.0

3.0

mV

7

10

7

20

p'vrc

25

100

25

100

pA
nA

Tj=700C

2

2

Tj=125"C

25

25

nA

200

pA

Tj=25"C

50

200

50

Tj=700C

4

4

nA

Tj= 125"C

50

50

nA

1012

RIN

Input Resistance

Tj=25"C

AVOL

Large Signal Voltage
Gain

Vs= ±15V, Vo= ±10V,
RL =2k, TA=25"C

Vo

Output Voltage Swing

VCM

Input Common·Mode
Voltage Range

50

Over Temperature
Vs= ±15V, RL =10k

200

Common·Mode
Rejection Ratio

Rs:5:10k

PSRR

Supply Voltage
Rejection Ratio

(Note 8)

Is

Supply Current

Vo = OV, RL =

1012

0

200

V/mV

25

25

200

15

200

V/mV

±12

±13.5

±12

±13.5

V

±16

+19.5

±11

+14.5

V

-11.5

V

-16.5

CMRR

Units

Typ

80

100

70

100

dB

80

100

70

100

dB

3.6

00

5.6

3.6

6.5

mA

AC Electrical Characteristics (Note 5)
, Symbol

Parameter

LF412A

Conditions
Min

Amplifier to Amplifier
Coupling

TA = 25"C, f = 1 Hz-20 kHz
(Input Referred)

Typ

LF412
Max

Min

-120

Typ

Units
Max

-120

dB

SR

Slew Rate

Vs= ±15V, TA=25"C

10

15

8

15

V/p.s

GBW

Gain-Bandwidth Product

VS= ±15V, TA=25"C

3

4

2.7

4

MHz

en

Equivalent Input Noise
Voltage

TA=25"C, Rs= 1000,
f=1 kHz

25

25

nVl.JHz

in

Equivalent Input Noise
Current

TA=25"C, f=1 kHz

0.Q1

0.01

pA/.JHz

1·71

N

.-.
N

II.

..J

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltag~.
,
Nota 2: Any of the amplifier outputs can be shorted to ground indeflntely. however. more then one should not be simultaneously shorted as the maximum junction
temperature will ,be exceeded.
Nota 3: For operating at elevated temperature. these devices must be derated based on a thermal resistance of BIANota 4: These devices are available in both the commercial temperature range O'C<:TA<:70"C and the military temperature range -55'C<:TA<:125"C. The
temperature range is designated by the position just before the package type in the devica num~,er. A "C" indicates the commercial temperature range and an "M"
indicetes the mmtary temperature range. The military temperature range is available in "H" pack8ge only. In all cases the maximum operating temperature is limited
by internal junction temperature Tj max.
"
'
Note 5: Unless otherwise specHied, the specifications apply over the full temperature range and for Vs~ ±20V for the LF412A and for Vs"" ± 15'y for the LF412.
Ves. lB. and los are measured at VCM~O.
'
"
Note 6: The LF412A is 100% tested to this speciflcetion. The LF412Is sample tested on a per amplifier basis to insure at least 65% of the amplifiers meet this
specification.
'
Note 7: The Input bias currents are junction leakage currents which approximately'double for every 1000C increase in the junction temperature. Tj. Due to limitad

production test time, the Input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises abov.e the ambient
temperature as a result of internal power dissipation, Po. Tj = TA + 6jA Po where 6jA is the thermal resistance from junction to ambient. Use of a heat sink is
recommended if input bias current is to be kept to a minimum.
Note 8: Supply voltage rejection ratio Is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.
Vs ~ ±6Vto ±15V.
Note 9: Refer to RETS412X for LF412MH and LF412MJ military specificetions.
Note 10: Max. Power Dissipation is defined by the package characteristics. Operating the pari near the Max. Power Dissipation may cauSe the part to operale
outside guaranteed limns.
'
Nota 11.: Human body model. 1.5 kG in series wnh 100 pF.

Typical Performance Characteristics
Input Bias Current
100

Input Bias Current
1111<

Vs~±15V
T.~25'C

-

Vs~

~

lk

~

100

i
!

-18

-5

±15V

10'

10

1
-50 -25

positive Common-Mode
Input Voltage Limit

.. -

~>
.!:

10

V

;;-

V
o

10

15

20

o

25,

-

Negative Current Limit

...... ~ "'=::

-55'C

-5

I

Ie
z

JO

5

10

20

30

OUTPUT SINK CURRENT (mAl

40

1520

25

Positive Current Limit

"

Vs±15V

~

K ~i'-..

1\
I-

o

-5. -10 -15 -20
NEGATIVE SUPPLY
VOLTAGE (VI

o

-25

Output Voltage Swing
1It.~2k

r---

25'C

-1

-56'C

:1

..
010203040

Output Voltage Swing
25

I!I-

20

......

15

1-t-t-t-t-t-t7f-t-H

~t

20

HH-f--+:.A-+++-H

.U

H!-IA-+-+-+-+-+-H
10
15
2D
SUPPLY VOIJAGE (± VI

'1

30

TA~25'CI-H-+-+++-l

5,

125"C

OUTPUT SOURCE CURRENT (mAl

30

10

I

o

~~
~~

..U

25"1:

125'C

50

VS-±115V

'" ~

\

-10

o

125"C

"'"

o

z!!: -5

=>i!

'"
iii

15

-55'CsTAsl25'C

iii!

~;;

:;:!

.....!"'"
SUPPlY VOLTAGE (± VI

8!:!i
!I!~ -10

V

POSITIVE SUPPLY
VOIJAOE (VI

....

~ ~C'

!~ -15

. i! ~

~

25 50 75 100 125
TEMPERATURE ('CI
0

IE!:

-1,5

I'

3.2

~;;--2O

~

o

~..-:

3.6

.z.•-

20

z!!

11I
~

4.8

2.8

Negative Common-M,ode
Input Voltage Limit
-25

:& ... 15

!~
.....
,..,..
St-

.

E
=>

10'

18

-55'CsTAsI25"C

i.
=>

COMMON-MODE VOLTAGE (VI

25

1 4.4
L

Ii!i!

o

Supply Current
4.8

YeM OV

25

~!:.

I

10

I

,,'

0.1

1
RL-OUTPUT LOAO'(kllf

o
18
TLlH/5656-2

1-72

Typical Performance Characteristics (Continued)
Bode Plot

Gain Bandwidth
5.5

.,

5

'~

N

:z: 4.5
z:E

iii'
>-6

iiI
:::0 2

:I

4

20
iii
!!.
z

3

0

~

z

~
co

0.1

~

Iii
is

".

10

100
lk
10k
FREQUENCY (Hzl

140
iiilZO

!!i~

:Eli

Ii'"'

I~

100

~

:::: ~

60
60

~I

~ VeM

20

U
co

10

~LTAGE
~GAIN

':'

•
2

U

I

100

......

60

I'-.

60
40

"',

.......'
':-..

1SUPPLr

"'

ZO
0

100

lk 10k lOOk 1M 10M
FREQUENCY (Hzl

10

Open Loop Voltage Gain
1M

RL=2k
55'C

Av 10
1

100

Inverter Settling Time

co

10
15
SUPPLY VOLTAGE (± VI

1\

40

10

:::0

5

50

0

C

....O!

10k

60

1M

§:
z

"

10 100 lk 10k lOOk 1M 10M
FREQUENCY (Hzl

7tJ
w
!!!

Vs -±15V
TA- 25'C

co
~

"-

Equivalent Input Noise
Voltage

Output Impedance
100

--

100

r-...

20
1

Va= ±15V
TA=25"C

t'·......,+SUPPLY

5!

Iii
'"'!I!l
..,'-'co

Ul-

r-...

40

1M

lOOk
FREQUENCY (Hz,

120

i'.

0

140
2

I -~

60

Power Supply Rejection
Ratio

0
10

Open Loop Frequency
Response

9;i

Vs= ±15V
RL=2k
TA=25"C
Av=1
<1% DIST

0
10k

lOOk

2k

':!'

Va- ±15V
12 RL=2t<
AIr=1
10
-50 -25 0 25 511 75 100 125
TEMP£RATUR£ ('CI

! 120
sm100
......
... - 60
coz

\

... -

Vs- ±15V
RL=2k
TA=25'C
CMRR = 20 LOG VeM +
Vo
-......,...
OP£NLOOf'

~-

B~ 40

'"'

r--

~ISIN~

16

160

ZO

Common-Mode Rejection
Ratio
160

14

co'"

..1-\-'

I I I I

0

-50 III ~
!! ..

......

140
w

-

-

20
18

30

Av-l0{

1 1

10
1
FREQUENCY (MHzl

0.1

I.

-

Ii
!B

~LU~G

22

o ~

-150
100

-30

~=ioo

10k

~

0.05

I

I~

.Undlstorted Output Voltage
Swing

rn,-..J

0.15

1

I

2&
'24

'-100

-20

Distortion vs Frequency
Vs- ±15V 1

50

-10

2.5
-50 -25 0 25 50 75 100 125
TEMP£RATURE ('CI

TAj25"j

......

j

I"-

0.2

150
Va= ±15
RL=2k 100
,CL=I00 pF

10

I",~

3.5

Slew Rate

30

V8- ±15Y
RL=2t<
CL=I00 pf

"' , '"'

lk
10k
lOOk
FREQUENCY (Hzl

1M

.

0

-5

10 mY

l\'mY

I ,\

-10
0.1

1

10

SEnUNG TIME (ps,
TLIH/5656-3

1-73

...

N

•u..

....I

Pulse Response RL=2kO,CL=10pF
Small Signal Inverting

Small Signal Non-Inverting

I

CD

z

Ii

ii

.. >-

:,1
~,

I~
~&l

~l

~-

~!!

0

0'

'"

TIME (0.2 poI/llIY)

TIllE (0.2 poI/llIY)

Large Signal Inverting

Large Signal Non-Inverting

..
..~~
~

CD

!il

z

ii

!

I~

~~

!l

0

0

~

'"

nME (2 poI/DlY)

r-\
/
\

i

TIllE (2 poI/DlY)

Current Limit (RL = 1000)

TIME (5 poI/DlV)

TLlH/5656-4

Application Hints
Exceeding the negative common-mode limit on both inputs
will force the amplifier output to a high state. In neither case
does a latch occur since raising the input back ,within the
common-mode range again puts the input stage and thus
the amplifier in a normal operating mode.

The LF412 series of JFET input dual op amps are internally
trimmed (BI-FET IITM) providing very low input offset voltages and guaranteed input offset voltage drift. These JFETs
have large reverse breakdown voltages from gate ,to source
and drain eliminating the need for clamps across the inputs.
Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The
maxim4m differential input voltage is independent of the
supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed
unit.
Exceeding the negative common-mode limit on either input
will cause a reversal of the phase to the owtput and force
the amplifier output to the corresponding high or low state.

Exceeding the positive common-mode limit on a single input
will not change the phase of the output, however, if both
inputs exceed the limit, the output of the amplifier may be
forced to a high state.
',
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition.
When the negative common-mode voltage swings to within
3V of the negative supply, an increase in input offset voltage
may occur.

1-74

r-

."

Application Hints (Continued)

.....
N
oIiIIo

Each amplifier is individually biased by a zener reference
which allows normal circuit operation on ± 6.0V power supplies. Supply voltages less than these may result in lower
gain bandwidth and slew rate.
The amplifiers will drive a 2 kO load resistance to ± 10V
over the full temperature range. If the amplifier is forced to
drive heavier load currents, however, an increase in input
offset voltage may occur on the negative voltage swing and
finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the Integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead
dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pick-up" and maximize the frequency of
the feedback pole by minimizing the capacitance from the
input to ground.
A feedback pole is created when the feedback around any
amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected 3 dB frequency of the closed loop gain and
consequently there is negligible effect on stability margin.
However, if the feedback pole is less than approximately 6
times the expected 3 dB frequency a lead capacitor should
be placed from the output to the input of the op amp. The
value of the added capacitor should be such that the RC
time constant of this capacitor and the resistance it parallels
is greater than or equal to the original feedback pole time
constant.

•
1-75

C'I

·ii.... .

Typical Application
Single Supply Sample and Hold

----uVo

1

Detailed·schlte:m~a:t:ic:"""_"""
_ _ _I_I_I____
Vee <>

Vo

03

-VEEo-j-jL":L.---"'-"_'-~_--4~_"'__" __
TUH/5656-9

1-76

r-------------------------------------------------------------------------, r
....~
....
Nat io n a I S em i con due to r

tJ1

LF441 Low Power JFET
Input Operational Amplifier
General Description
The LF441 low power operational amplifier provides many
of the same AC characteristics as the industry standard
LM741 while greatly improving the DC characteristics of the
LM741. The amplifier has the same bandwidth, slew rate,
and gain (10 kO load) as the LM741 and only draws one
tenth the supply current of the LM741. In addition, the well
matched high voltage JFET input devices of the LF441 reduce the input bias and offset currents by a factor of 10,000
over the LM741. A combination of careful layout design and
internal trimming guarantees very low input offset voltage
and voltage drift. The LF441 also has a very low equivalent
input noise voltage for a low power amplifier.
The LF441 is pin compatible with the LM741, allowing an
immediate 10 times reduction in power drain in manyapplications. The LF441 should be, used where low power

dissipation and good electrical characteristics are the major
considerations.

Features
•
•
•
•
•
•
•
•
•
•

1/10 supply current of a LM741
Low input bias current
Low input offset voltage
Low input offset voltage drift
High gain bandwidth
High slew rate
Low noise voltage for low power
Low input noise current
High input impedance
High gain Va = ± 10V, RL = 10k

200 p.A (max)
50 pA (max)
0.5 mV (max)
10 p.V/oC (max)
1 MHz
1 V/p.s
35 nVlyHz
0.01 pAlyHz
10120
50k (min)

Ordering Information

Typical Connection

LF441XYZ

X
Y

VCC

indicates electrical grade
indicates temperature range
"M" for military,

Ri

"C" for commercial
Z

indicates package type

"H" or "N"

TLIHI9297 -1

Connection Diagrams

Dual-In-Line Package

Metal Can Package
BALANCE

NC

NC

INPUT

INVE~~t~~ z

OUTPUT

BALANCE

v-

TLlHI9297-2

Top View

TLlHI9297-4

Note: Pin 4 connected to case.

Top View
Order Number LF441ACN,
LF441CM or LF441CN
See NS Package Number M08A or N08E

Order Number LF441MH/883
See NS Package Number H08A

1-77

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Differential Input Voltage

LF441A
±22V
±38V

8jC
Operating Temp. Range
Storage Temp. Range

±19V

±15V

Output Short Circuit
Duration

Continuous

Continuous

NPackage

670mW

670mW

150"C

115"C
130"C/W

MPackage

185"C/W

165"C/W
65"C/W
25"C/W
(Note 3)
-65"C

Lead Temperature
(Soldering, 10 seconds)
Soldering Information
Dual-In-Line Package
Soldering (10 sec.)
Small Outline Package
Vapor Phase (60 sec.)
Infrared (15 sec.)

LF441

HPackage
Power Dissipation
(Notes 2 and 9)
Tjmax
8jA(Typical)
Board Mount in still air
Board Mount in 400 LF/
min airflow

LF441
±18V
±30V

LF441A
Input Voltage Range
(Note 1)

s: TA s:

-65"C

150"C

300"C

(Note 3)
s: TA s: 150"C
260"C

LF441A

LF441

260"C

260"C

215"C
220"C

215"C
220"C

See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 10)
Rating to be Determined

DC Electrical Characteristics (Note 4)
Symbol

Parameter

LF441A

Conditions
Min

Vos

Input Offset Voltage

Rs = 10kO, TA = 25"C

IlVos/IlT

Average TC of Input
Offset Voltage

Rs = 10 kO (Note 5)

los

Input Offset Current

Vs = ±15V
(Notes 4 and 6)

LF441

Typ

Max

0.3

0.5

Min

Max

1

5

mV

7.5

mV

Over Temperature

18

Input Bias Current

Vs = ±15V
(Notes 4 and 6)

Tj = 25"C

7

10

10

5

25

5

Tj = 70"C

1.5

Tj = 125"C

10
10

Tj = 25"C
Tj = 70"C

Tj = 25"C

AVOL

Large Signal Voltage
Gain

Vs = ±15V, Vo = ±10V,
RL = 10 kO, TA = 25"C

50

Over Temperature

25

VCM

Input Common-Mode
Voltage Range

CMRR

Common-Mode
Rejection Ratio

Vs= ±15V,RL= 10kO

±12
±16

Rs

s:

10kO

80

1-78

50

pA"

1.5

nA

10

100

pA

3

nA

20

Input Resistance

Output Voltage Swing

50

nA

1012

RIN

Va

/LV/"C

nA

3

Tj = 125"C

Units

Typ

100

25

1012

0

100

V/mV
V/mV

15
±13
+18,.-17
100

±12
± 11
70

±13

V

+14,-12

V

95

dB

r-

....t

DC Electrical Characteristics (Note 4) (Continued)
Symbol

Parameter

PSRR

Supply Voltage
Rejection Ratio

Is

Supply Current

LF441

LF441A

Conditions
(Note 7)

Min

Typ

BO

100

Min

Max

70

150

Units

Typ

Max

90

dB

150

200

250

fJ-A

AC Electrical Characteristics (Note 4)
Parameter

Symbol

LF441A

Conditions

SR

Slew Rate

GBW

Gain-Bandwidth Product

en

Equivalent Input Noise Voltage

in

Equivalent Input Noise Current

= ±15V, TA = 25'C
= ±15V, TA = 25'C
TA = 25'C, Rs = 1000,
f = 1 kHz
TA = 25'C,f = 1 kHz
Vs
Vs

Min

Typ

O.B
O.B

LF441
Max

Units

Min

Typ

Max

1

0.6

1

1

0.6

1

V/ILS
MHz

35

35

nV/,JRZ

0.01

0.01

pAl,JRZ

Note 1: Unless otherwise Specified the absolute maximum negative input voltage Is'equal to the negative power supply voltage.
Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of 8jA.
Note 3: The temperature range is designated by the position just before the package type in the device number. A "C" indicates the commercial temperature range
and an "M" indicates the military temperature range. The military temperature range is available in "H" package only.
Note 4: Unless otherwise specified the specifications apply over the full temperature range and forVs
Vos, IB, and lOS are measured at VCM ~ O.

~

±20V for the lF441 A and for Vs

~

± 15V for the lF441.

Note 5: The LF441 A is 100% tested to this speCification.
Note 6: The input bies currents are junction leakage currents which approximately double for every 100C increase in the junction temperature, Tj. Due to limited
producti'," test time, the input bias currents measured are correlated to junction temperature. In nonnal operation the junction temperature riSes above the ambient
temperature as a resun of internal power dissipation, Po. Tj ~ Til + 8jA Po where 8JI\ is the thermal resistanca from junction to ambient. Use of a heat sink is
recommended H Input bias current Is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudas increasJng or decreasing simultaneously in accordance with common practice. From
± 15V to ± 5V for the lF441 and from ± 20V to ± 5V for the lF441 A.
Note 8: Refer to RETS441 X for lF441 MH military specHications.
Note 9: Max. Power Dissipation is defined by the peckage characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate
outside gueranteed limila.
Note 10: Human body modeJ, 1.5 kll in series with 100 pF.

Typical Performance Characteristics
Input Bias Current
40

I

Ii!

!i

!

i

T.,=2I°C

30

./

/

20

."

......

0

-10
-10

I

I

f

~

•

-5
5
COMM_OIIE VOIJAOE (V)

1

25

0 25 &0 75 100 125
mlPEIIA1URE (-C)

-25

.::1
U

!iii

..I~i

5

0
0

5
10
1&
20
25
POSITIVE SUPPlY VDI1ADE (V)

I

5
10
15
211
SIIl'PLY VOLTAlIE (±V)

25

Positive Current Limit
1&

-55°C:sTA:s126°~_

!!il_

I!I- -20

10

0

Input Voltage Limit

I~

1&

il25;C

Negative Common-Mode

-55°C:sTAS125°C
20

25-C

130
.. 120
110
100

-&0 -25

10

Js-d-

170
160
158
u 140

Ii!
§

i

10

5

2tI Input Voltage Limit

III~2

ll80

!

"

Positive Common-Mode

Ie
"'ii
i::l

190

::'~~5V

lk

B 100

/'

10

200 Supply Current

1l1li Input Bias Current

Vs~±ISV

-1&

II'

Ii
II

-10
-5

0
0

-5 -10 -16 -20 -25
NEOATIVE SUPPlY VOI1_ (V)

10

....

V.~±I5V

~~
IS-C.""""
~

-Ili-C

&

0

\
0 1 I 3 4 5 6 7
OUTfOT SOURCE CUIIIIEIIT (IlIA)

•
TLlH/9297 -5

1-79

,

~

:::

u.

....

,-------------------------------------------------------------------------------------,
Typical Performance Characteristics (Continued)
Output Voltage Swing
50
40

...

!~
~£

~~
sa
'"
5111520

ziN' 1.25

o '-'-'--'-...L...-'--'--'--'--L...J

25

o

r:=Z'lO

........

1.0

......

......

!lo.75

20

!

r--.. '-

"

0

i -10

!

1.5

!.
~

l!!

1--1---

,..

1 J

1--

1.0

Ya- ±15V
Ta-ZS'C --+-.......
Av---:1OG!:;'~/

0.5

I
1-+-I---+--+-7.!Av!L_-:l,..lo

Ill.
!:!i ...

180
lk
FREQUENCY (Hz)

lOG

U
i
~

80
80

j'"

~

1.5

Av=1

Ii

1..0

S

,"'"

""'I

Vs=±I5Y
RL-l0k --+--+""""d---I
40 Ta-ZS'C --&--+--'1--1
20 eMRR = ~ LOG V:, + OPEN LOOP
VOLTAGE GAIN 0
OL..:..;:.:.;.;.;:;;;..;;.:.:;;.:...------'
10 .1110 1k 11111 lOOk 1M 10M
FREQUENCY (Hz)

0.5

180
140

II

11111
FREQUENCY (Hz)

1_
il,

ii

100
80

~-

i'.."

I--I--+'--"',<"""+-+--;

20

I--+---t--I-+"~~

o L......JL......JL......JL......JL......JL-~
....
1

u
I:

:

+sumv-

I'... "

",SUPPLY ' lOG

lk
11111 lOOk
FREQuENCY (Hz)

!~ ~~

1110 1k 10k ltJG1c 1M
FREQUENCY (Hz)

1M

8OHr~-+-~~+#~+m

~+ttt-++t1It-t-HtHf-Hrti

50
40

Ii:
i

"

o L.......l---L_-L---L..r---..=
10

10

Equivalent Input
MHOlse Voltage

1"- '-

80

80 I---II~
'~--t--t--I

lOOk

VI= ±15Y
1a=25'C

,,1

1--+--+--1f--f'RL=~Ok

Vs-±15V
120 1-+--+---1I--f'Ta=25'C

II :

Power Supply
Rejection Ratio

r-.....

r-~~--~-r~~~

iii 1110 1-"--+'1'",.-t~I--t---+--l

OL-L..J...J.J.J.LIJ''--..L..J...LJ.J.lJJJ

·140
120

0 25 50 75 lOG 125
TEMPERATURE ('C)

Open Loop Frequency
Response

ill. ~tttt---+-+-If¥HfI

Common-Mode
ReJection Ratio .

F~LlNGI-RISING

0
-50 -25

10

i!'!.

.-'-r....,---r--r--,..---,

I

--

!'!.

-150
1
FREQUENCY (MHz)

lk

100

-100

30 .-T"1rT1"TTTrr-~y~s-=.,..±~15rnV
t=:t:t:j:j:lm~-l- RL=IOk'
\
Ta=25'C
20 I-+-+j-H-H#-Jir.
Av-l
1\<111 DlST

10k

!; Ii :: f-~__'l'''''''''"1-- ~"·'~·l
~
!;;

-50

's±15V
RL=IDk

V

10

10
RL -GUTP\IT .LOAD (kO)

2.0

Undlstorted Output
Voltage Swing

O~~~

liD

1

a:

GA~ '"

0.1

2'5~. !:._...... ~=
T

oL-L..J....u.I.I.W'--..L..J...LJ..I.I.W

Vs. ±15V 150
RL=10k
100
pF
CL1=if
50 :I!
t
PHASE
m
0 iii

-3~

0 25 50 75 100 125
TEMPalATURE ('C)

1-T-i+litl1lt-+++tt+tH

5

Slew Rate

~I'o,

10

Distortion vs Frequency

2.0

10 1-+-1-+++1+111--+-+++++111

25

-20

0.25
-50 -25

20;
15

Bode Plot

D.D

-

~
15
20
SUPPLY VOLTAGE (±V)

6

3D

Vs= ±15V
RL=10k
CL=IOG pF
"

~!

"'......
EZ
~I
'"

10' H--I:.A-++-H-+-+--l

Gain Bandwidth

UD

111-

H-++-t7"1-H-+-+--l

20

Vs=±15V

Ta=Z5'C~~=t:t::j:l:1ttII

25

30 H-++++-M,--+-+--l

OIIII'IIT SINK CURRENT (IlIA)

1.75

Output \toltage Swing
30

RL.=10k
-5&'CsTasI25'C -f--f---

H-l'~:H+lf-I-H#-+++H

H-tttH-I-fiH-ttlt-t-ttH

ou....u.uu...u.uu..J..J.LL...L..LW
10

1110

lk
10k
FREQUENCY (Hz)

lOOk

TLlH/9297-6

1-80

s.......

Typical Performance Characteristics (Continued)
Open Loop Voltage Gain
1M

Output Impedance
1k

RL=1Ok

>

~

!i!1oo

i

~ 100k

!i:

I

125j

z
~
co

0.1

10k

5

~

!I

Ii

10
15
SUPPLY VOLTAGE (± VI

~!!

W'"

~im

20

1k

-

II-

~

i

~ 5"C

"co

!:!

~~

110 ~1~
.u.I

-55"C

II!

L1 ~

Inverter Settling Time
10

VS-±15V
Tl=n"C

10k
100k
FREQUENCY (Hz)

1M

I I I[ Vss ±15V
I I
1_
Tl=25"C
1·0 RNWlttt=n'=-+'+lI+H-HI

~,~

-5

-10 1

rrrrt1lffset voltage drift
High gain bandwidth
High slew rate
Low noise voltage for low power
Low input noise current
High input impedance
High gain Vo = ±10V, RL = 10k

Metal Can Package'
V+

vTL/H/9155-2

Top View

TL/H/9155-1

Note: Pin 4 connected to case

Simplified Schematic

Order Number LF442AMH
or LF442MH/883
See NS Package Number H08A

% Dual
V e e o - - - - t - - - - - -.....--..,

Dual-In-Une Package
Vo

v+

OUTPUT A

INVERTING INPUT A
NON.INVERTING
INPUT A

A-_~--r-

3

INVERTING INPUT B

INTERNALLY
TRIMMEO
-VEE

OUTPUT B

TUH/9155-4

0--"'--"----""--""

Top View

TL/H/9155-3

1-84

'Order Number LF442ACN or LF442CN
See NS Package Number NOSE

Absolute Maximum Ratings
If Military/Aerospace specified devices al1l required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 9)
LF442A
LF442
±22V
±18V
Supply Voltage
Differential Input Voltage
±38V
±30V
±19V
±15V
Input Voltage Range
(Note 1)
Output Short Circuit
Continuous
Continuous
Duration (Note 2)

Tlmax
(JJA (Typical)
(Note 3)
(Note 4)

HPackage
150"C

NPackage
115'C

65'C/W
165'C/W
21'C/W

1WC/W
152"C/W

260"C

260"C

9 JC (Typical)
Operating Temperature
(Note 4)
(Note 4)
Range
Storage
- 65'C s: TAS: 150"C - 65'C s: TAS: 150'C
Temperature Range
Lead Temperature
(Soldering, 10 sec.)
ESD Tolerance

Rating to be determined

DC Electrical Characteristics (Note 6)
Symbol

Parameter

LF442A

Conditions
Min

=

10 k~, TA

Vos

Input Offset Voltage

t..Voslt..T

Average TC of Input
Offset Voltage

Rs

los

Input Offset Current

Vs = ±15V
(Notes 6 and 7)

Rs

=

25'C

LF442

Typ

Max

0.5

1.0

Min

Max

1.0

5.0

mV

7.5

mV

Over Temperature

Ie

Input Bias Current

=

10kO

7

Vs = ±15V
(Notes 6 and 7)

=

RIN

Input Resistance

Tj

AVOL

Large Signal Voltage
Gain

Vs
RL

Vo

Output Voltage Swing

Vs

VCM

Input Common-Mode
Voltage Range

=
=

25

5

=

25'C

=

70'C

1.5

Tj

=

125'C

10

Tj

=

25'C

Tj

=

70"C

Tj

=

125'C

5

10

10

=

10kO

s:

Common-Mode
Rejection Ratio

Rs

10kO

PSRR

Supply Voltage
Rejection Ratio

(Note 8)

Is

Supply Current

50

200

100

pA

3

nA

25

1012

0

200

V/mV

25

200

15

200

VlmV

±12

±13

±12

±13

V

±16

+18

±11

+14
-12

V
V

80

100

70

95

dB

80

100

70

90

dB

300

1-85

pA
nA

nA

-17

CMRR

50
1.5

20
1012

±15V, Vo = ±10V,
10 k~, TA = 25'C

p.VI'C

nA

50
3

25'C

±15V,RL

7

Tj

Over Temperature

=

10

Tj

Units

Typ

400

400

500

p.A

C"I

••
....
LL.

'

.

AC Electrical Characteristics (Note 6)
Symbol

Parameter

.,

Min,
Amplifier to Amplifier
Coupling

TA = 25°C, f = 1 Hz-20 kHz
(Input Referred)

= ±15V, TA = 25°C
= ±15V, TA ";25°C
TA = 25°C, Rs = 1000,

SR

Slew Rate

GBW

Gain-Bandwidth Product

en

'Equivalent Input Noise
Voltage

in

Equivalent Input Noise
Current

LF442 ,

LF442A

Conditions

Typ

Ma~(

"Min

-120

Typ,

Units
Max

-120

dB

Vs

0.8

1

0.6

1

Vlp.s

Vs

0.8

1

0.6

1

MHz

35

nVl.JHz

0.01

pAl.JHz

f=

1 kHz

TA

= 25"C, f = 1 kHz

35

'

,

0.01

Note 1: Unless otherwise specified the absolute maximum negative Input voltage Is equal to the negative power supply voltage.

Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one ~ould not be simultaneously shorted as the maximum junction
temperature will be exceeded.
'
Note 3: The value given is in 400 linear feet/min air flow.

Note 4: The value given is in static air.
Nole 5: These devices are available in both the commercial temperature ranga,O"C ,; TA ,; 70"C and the military temperature ranga -55"C ,; TA ,; 125"C. The
temperature range is designated by the position iust before the package type In the device nU'llber. A "C" indicates the commercial temperature range and an "M"
indicates the military temperature range. The military temperature ranga is available in "H" package only.
'
Note 6: Unless otherwise specified, the specifications apply over the full temperature ranga and tor Va '.. ± 20V for the LF442A and for Vs ~ ± 15V for the LF442.
Vas. 'IB' and loa are measure\! at VOM = O.
Note 7: The input bias currents are junction ieakage currents which approximately double for every irc incr8ase in the junction temperature, Tj. Due to limiiad
production test time, the Input bias currents measured are correlated to junction temperature. in normal operation the junction temperature rises above the ambient
temperature as a resuR of Internal power dissipation, Po. TI ~ TA + 91APO where 9jA is the thermal resistance from Junction to ambient Use of a heat sink is
recommended ff input bias current is to be kept to a minimum.
,
Note 8: Supply voltage rejection ratio is measured for both supply magnRudes Increasing or decreasing slmuReneously In accordance wiih common ,practica from
± 15V to ± 5V forthe LF442 and ± 20V to ± 5V for the LF442A.
'

1

Note 9: Refer to RETS442X for LF442MH military specffications.

1-86

Typical Performance Characteristics
Input Bias Current

:;

i..
:::>
u

;/

...

Input Bias Current

Supply Current

10k

40

400

Vs= ±15V
TA=25·C

30

;

./

./

U

1/

10

100

i

i--'"

1
1

~360

,

,

i

V-

~

iE

/

1

./

20

VCM-OV
Vs= ±15V

lk

I
:::>
u
~

.

lJ.C . . .

320

..... -I

I:
:::>

10
1

-W

-5

0

5

W

200

-50 -25

0 25 50 T5 100 125
TEMPERATURE (·CI

COMMON-MOOE VOLTAGE (VI

Positive Common-Mode
Input Voltage Limit

Negative Common-Mode
Input Voltage Limit

.... -rT

1
1 1
5
10
15
20
Sl(PPlY VOLTAGE (± VI

..~~........ -.....co
8!!i

-55·CsTAS125·C
20

.1::

~~

V

15
10

ili~

V

2iE

o

o

"
"
"

..
;ii
.:::1

-15

u'"

-10

~~
.....
......

i~
ziE

...~

-10

"" ~

~E
!;~

~!

~

~

~

~
..,
~i\t~
r-...
~

z

2

4

o

6

8

-5

!h
!:I do.

30

... '"
iiE

20

..

!;!

Vs- ±15V

~ i\..
I

til..,

V
-10

-15

-20

25

1\ 1\ ';j.- r-

V

,\

o

-25

~

~~

r-

\

012345678
OUTPUT SOURCE CURRENT (mAl

Output Voltage Swing
50

~~

~~r-...'~~ Io

/

Output Voltage Swing
3G

RL=10k
-55·CsTAS12S·C

40

-5

o

V

NEGATIVE SUPPlY VOLTAGE (VI

Vs= ±15V

..

/

o

Negative Current Limit

:::: ~

1/

-5

10
15
20
25
POSITIVE SUPPLY VOLTABE (VI

-15

:II

15
-55·CsTAS125·C

llI-20
~

"

o

Positive Current Limit

-25

25

....

-55·C

240

./

-10

.....

-

..... '2'5-I·C

280

...

Vs= ±15V
25 TA=25·C

1/

"'.....
... -'" 1/
~t

...
E!:

..s!

10

20

15

10

(;t

W U

W ffi

OUTPUT SINK CURRENT (mAl

o

o

10
15
20
SUPPLY VOLTAGE (± VI

25

o

1

10
RL-OUTPUT LOAD (kOI

100

TUH/9155-5

1-87

II

......

'('11

it

Typical Performance Characteristics
Gain Bandwidth
Vs= ±15V
Rl=10k
Cl=l00 pF

1.50

~;'1.25 r-....

i;>-r;

iii

::)!

1.0

r---. I'-..

~

0.75

r

0.5
0.25
-50 -25

20

"""~

10

-

!z

0 25 50 75 100 125
TEMPERATURE (OC)

r'-.

!..to
5

150
1

10

\

20

..

10

100
lk
FREQUENCY (Hz)

o

10k

~!
i'~

f'
~

~'
'=' Va.

.......

100

"

80

Vs= ±15V
Rl=10k
T.=25°C

60

40

z

e
..,.
~~

10k

r-...

20 CMRR' = 2~ LOG VCM + OPEN LOOP
VOIJAGE BAIN Vo

o

10

100

lk 10k lOOk 1M 10M
FREQUENCY (Hz)

Open Loop Voltage Gain
1M

100

lOOk

10k
FREDUENCY (Hz)

I

Vs= ±15V
TA=25°C

" '"""" "
" "- ".

~

.....

lk

........

120

UlGe'l!i
·80

.

60

I
+SU~Y":'"

"-

40

-SUPPlY

20

o

..........

10

100

lk
10k lOOk
FREQ.UENCY (Hz)

1M

o

1

" '""-.

1""-.
100 lk 10k lOOk 1M
FREQUENCY (Hz)

'10

70

,...,.....,.,,.,.....r-rTTr-.--TTrr-r-n,,

60.rr+Ht+1+~-H#-r+~

50

i'

40
30
20
10
0

10

100

lk
10k
FREQUENCY (Hz)

lOOk

Inverter settling Time
10

I

_io.:.v

~

['-.,

Equivalent Input Noise
Voltage

~

....
9
..

"

40

Output Impedance

Rl -10k

>

~i 100

Power Supply Rejection
.Ratio
140

~

Rl=JOk
Vs= ±15V
TA=25°C

120

20

160
120

14l!
~

~

10

Common-Mode Rejection
Ratio

~

160

g~ 80
.... 

-55°C

~ 5°C
lmY

-5

125°f

z

-

Vs= ±15V
T.=25°C

~

10k

5

10
15
SUPPl.Y VOLTAGE (±V)

20

O.OIIOO~:'-'...LU'k--'-.J...JJ'"':Ok-'-.LI.1'OJ...Ok-,-u..u'M
FREQUENCY (Hz)

-10
1

10mY~11
111111
10
SETTLING TIME (pS)

100
TUH/9155-6

1-88

r-----------------------------------------------------------------------------, ."
r
........
Pulse Response RL = 10 kfi, CL = 10 pF
N
Small Signal Inverting

",

...

,;'

l
I
'"

'\

(

1\

f

,\
\

,

".,

Small Signal Non-Inverting

1
i'--.

.. ,

\

J

TL/H/9155-7
TIWE(O.5 ,../DIY)
TL/H/9155-8

Large Signal Inverting

Large Signal Non-Inverting

"

I

!

I
~
~

5

§

\

/

J

I

\,

,' ..

!

!i1
~

~~
5

1\

(

§

..

"

"

f

1\

\
\,

II

/
",.

.,"

"

.,.,

"

.,',

""

,,"

nWE(IOps/lllV)
TUH/9155-9

TL/H/9155-10

1-89

II

N

"III'
"III'

...u..

r--------------------------------------------------------------------------,
Application Hints
The amplifiers will drive a 10 kn load resistance to ± 10V
over the full temperature range.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
intemal conductors and result in a destroyed unit.

This device is a dual low power op amp with internally
trimmed input offset voltages and JFET input devices
(BI-FET II). These JFETs have large reverse breakdown
voltages from gate to source and drain eliminating the need
for clamps across the inputs. Therefore, large differential
input voltages can easily be accommodated wit\:lout a large
increase in input current. The ,maximum differential input
voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the
negative supply as this will cause large currents to flow
which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input
will force the output to a high state, potentially causing a
reversal of phase to the output. Exceeding the negative
common-mode limit on both inputs will force the amplifier
output to a high state. In neither case does a latch occur
since raising the input back within the common-mode range
again puts the input stage and thus the amplifier in a normal
operating mode.
Exceeding the positive common-mode limit on a single input
will not change the phase of the output; however, if both
inputs exceed the limit, the output of the amplifier will be
forced to a high state.

As with most amplifiers, care should be taken with lead
dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pick-up" and maximize the frequency of
the feedback pole by minimizing the capacitance from the
input to ground.
A feedback pole is created when the feedback around any
amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected 3 dB frequency of the closed loop gain and
consequenty there is negligible effect on stability margin.
However, if the feedback pole is less than approximately 6
times the expected 3 dB frequency a lead capaCitor should
be placed from the output to the input of the op amp. The
value of the added capacitor should be such that the RC
time constant of this capacitor and the resistance it parallels
is greater than or equal to the original feedback pole time
constant.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition.
When the negative common-mode voltage swings to within
3V of the negative supply, an increase in input offset voltage
may occur.
Each amplifier is individually biased to allow normal circuit
operation with power supplies of :f3.0V. Supply voltages
less than these may degrade the common-mode rejection
and restrict the output voltage swing. '

Typical Applications
Battery Powered Strip Chart Preamplifier
TIME CONSTANT
1
SEC

5
SEC

10
SEC

sa
SEC

1111
SEC

Runs from 9v batteries (± 9V supplies)
Fully setteble galn and time constant
Battery powered supply allows direct plug-in interface to strip chart recorder without commonmode problems

2D.4k

0

Xl

1 i1
250k 110k

Xi

Xl0

X50

IJUll'UTTO

> ....+:' ) STRIP
CHART

lilt

-BY

Xloa

IWN
TLlH/9155-11

1-90

..
r-

Typical Applications

."

(Continued)

N

"No FET" Low Power V -

F Converter

D3

''''

Trim 1M pot for 1 kHz full·scale out·
put
15 mW power drain

No integrator reset FET required
Mount 01 and 02 in close proximity
1% linearity to 1 kHz

15V

TL/H/9155-12

High Efficiency Crystal Oven Controller
15V

15V

• Tcontrol = 75'C
• AI's ou1pu1 represents the amplified difference between the LM335
temperature sensor and the crystal

oven's temperature
• 112, a free running duty cycle mod·

1.2M

100k

-,

1.2M

LMI85-1.2

I
I
I
I
I

ulator, drives the LM395 to complete a servo loop
100k

• Switched mode operation yields
high efficiency
lOOk

• 1% metaJ film resistor

~D.,

''''

15Vo--'IIIfIr-....'

,.

LMI3&
TIMP
SENSOR

L ________

I
1.
T'!!..RMA.LFE2..~

I
I
I
_ _ _ _ _ _ _ .J
TUH/9155-13

Conventional Log Amplifier
5'

lOOk

r-'lN~""'''II'\fIr--15Y
1201<*

•

lM394

15V

fIN! O+--'Y~_"'f

OF:~i-""""""-'W'Io--""'I

VOlTAGE
AOJUST

-15V

TL/H/9155-14

EOUT

=-

[lOg 10

(~::) + 5]

AT = Tel Labs type 081
Trim 5k for 10".A through the 5k-120k combination

'I % film resistor

1·91

Typical Applications (Continued)
01, 02, Q3 are included on LM389
amplHier chip which is temperaturestabilized by the LM389 and 02-03,

Unconventional. Log Amplifier

which act as a heater-sensor pair.

12V

01, the logging transistor, is thus immune to ambient temperature variaticn and requires no temperature
compensation at all.

lOOk
SCALE

LM329

FACTOR
ADJUST

75k·

15V
IN914

2.2k.

tk

300 pF

50k
ZERO
ADJUST
-15V

TLlH/9155-15

Detailed Schematic
Y.Oual

~--~~----------------------------------t-OV+

Vo

019

TLlH/9155-16

1-92

,-------------------------------------------------------------------------, r

.,..
.,..
.,..

."

t!lNational Semiconductor

LF444 Quad Low Power JFET
Input Operational Amplifier
General Description

Features

The LF444 quad low power operational amplifier provides
many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics
of the LM148. The amplifier has the same bandwidth, slew
rate, and gain (10 kO load) as the LM148 and only draws
one fourth the supply current of the LM148. In addition the
well matched high voltage JFET input devices of the LF444
reduce the input bias and offset currents by a factor of
10,000 over the LM148. The LF444 also has a very low
equivalent input noise voltage for a low power amplifier.

• % supply current of a LM148
•
•
•
•
•
•
•

200 ,.AIAmplifier (max)

Low input bias current
High gain bandwidth
High slew rate
Low noise voltage for low power
Low input noise current
High input impedance
High gain Va = ±10V, RL = 10k

50 pA (max)
1 MHz
1 VI,.s

35nV/Fz
0,01 pAlFz
10120
50k (min)

The LF444 is pin compatible with the LM148 allowing an
immediate 4 times reduction in power drain in many applica,
tions. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations.

Simplified Schematic

Connection Diagram

% Quad
Vee

Dual·ln·Llne Package

0----""-----",,,----,

OUT4

IN4-

IN 4+

y-

INf'

IN 3-

IN 2+

INZ-

OUT3

Vo

-VEE

..

OUTI

O--....--~._.---_

I.(

15

/

5

V

~~
....

V

5~
zi!!

5

10

15

20

POSmVE SUPPlY VOLTAGE (VI

200

0

75 100 125

50

5

25

..
.......~~

....

1lI

1/

-15

/

-10

/

1/

i

/
0

-5

-10

~

>-

>

1/

-5

-15

-20 -25

NEGATIVE SUPPlY
VOLTAGE (VI

15

25

20

Positive Current Limit

15
f--55°C:sTA:s125°C

-20

10

SUI'Pt.Y VOLTAGE (± VI

-25

0

0

0

25°C
-55°C

400

Negative Common-Mode
Input Voltage limit

... -••
i:::l

-55°C:sTA:5125°C

•=
l!i

600

TEMPERATURE (OCI

25
20

lJoC

0

25

0

COMMON-MODE VOLTAGE (VI

gE

..Ei...'"
..'"

""

10

i!!

I

_BOO
~

/

:5

Supply Current
~

I"':i!

Vr±115V

~

-..-~, ~o~

\~~
$... ~f--

10

~

5

0

,\
0

1

2

3

4

5

6

7

8

OUTPUT SOURCE CURRENT (mAl
TLlH/9156-3

1-95

r-------------------------------------------------------------------------------------.

5

.~

Typical Performance Characteristics (Continued) ,
Negative Current Umlt
-15

I

~

-&

o

-&5'CSTaSl2&'~

~f
co'"

i\~~

..

"'"I

~ ~
t- rf--j\J ~

h

o

h: 1/
20

30

~e
. . CD

1;!
co

D
20

il1

l .0

o

18

Slew Rate

CLi~~

"""

10

1'\

! -10

_ 2.0
~
z
Ii! 1.5

Ii

lID

Iii
iiil"

'i
•
!

~

140
120
100

Av=18
lk

80
611
20

o

1111

......

~ LOG Vt:II+ OPEN LOOP

VOLTAGE GAIN Vo

10 100

1k

11k'. 1M 10M

FREQUENCY (Hz)

II!

!It.=JOk
V8= ±15V
Ta=2&'C

128

Ii 811 I"
'28

lk

z
co

10k

o

lOOk

1

10

~

ii

i,.Ii
.....e
...

i

ID

+su,l,y-

"-r-.... I'...

ID
40

-SUPPLY

20

o

10

100

lk

100

1k

"1"-

10k lOOk 1M

FREQUENCY (Hz)

Vs.= ±15V
Ta-j'C

"- i'..
~

100

"' "

Equivalent Input
7D Noise Voltage

~

120

25 50 75 100 125

i i 100

Power Supply

.T

. _=

0

1611
140

140 Rejection Ratio

......

Vs= ±15V
!It.=lOk
Ta=25'C

•

-50 -2&

FREQUENCY (HzI

N
Val'

0:&

I :

o

10k

Common-Mode
Rejection RatiO

:,

RISING

Open Loop
Frequency Response

V.=± 15V
!It.= 10k
Ta= H'C
Av=l
DlST
Xl"

\

n

r- FA~LlN81-

TEMP£RATURE ('C)

10

Av=loo

,.........

!

I I

1.0

Undlstorted Output
Voltage Swing

FREQUENCY (Hz)

Ii

-50 ~

~
...

-150
10

2.5

100

2!

~

1.5

-100

30

D
10

iI:
m

Vs- ±15V
RL=10k
Av=l

FREGUENCY (MHzl

Distortion vs Frequency

D.5

:!

.

0.1

TEMP£RATURE ('CI

E 1.0
'ii'

2.0

;;;

III
III

-30

75 100 125

50

PHASE

8AI~

-28

100

10

1

RL-OUTPUT LOAG (1<0)

150
V8= ±15V
RL=lGk
pF 100

28

,- - -

25 50

o

2&

Bode Plot

0.5
0.25
-50 -25 0

28

15

30

~

0.75

10

SUPPLY VOLTAGE (± V)

Va=±15V
RL=lOk
C!.=loo pF

~~

15

"'z

20

Gain Bandwidth
1.5

i;'

10

15

10

"-

Vs= ±15V
25 Ta-2&'C

f--f-

co

f\ l'

1.75

'i

_

w

OUTPUT SINK CURRENT (IIIAI

I~ 1.25

OLitput Voltage Swing
30

!It.-10k

40

~

~_-10

IIi

,

Output Voltage Swing
50

Va-±l.V

"'

I"-

10k

FREQUENCY (Hzl

"'

'-1M

1.

III

50

i~

50

II,.

30

h.
51

r-

40

28
10
0

10

100

1k

10k

lOOk

FREQUENCY (HzI
TL/H/9156-4

1-96

r-----------------------------------------------------------------------------, ."
r
Typical Performance Characteristics
Open Loop Voltage Gain
1M

Output Impedance
~-;

.Ll111

~...

~1v

-55°C

~ lOOk
co

:>

"E- 15°·
lzsof

z

co

10

5

I I
_lImY

15

0.01

20

100

It

SUPPlY VOIJAGE (±V)

III

Vs=±15V
TA=ZSoC

lmY

,1~

~rm

~

10k

i-'

~,-

co

9

Inverter Settling Time
10

~

.
.

~
~

lk

RL-l0k

;;

~

(Continued)

10k

lOOk

ll11
111111

--

Vs=±15V
TA=ZSOC
-10

1M

10mY

1

10

FREQUENCY (Hz)

100

SETTLING TIME (pi)
TL/H/9156-5

Pulse Response RL =

10 kn. CL = 10 pF

Small Signal Inverting

'"

..

"

".

'"

/

,,"

Small Signal Non-Inverting

..

"

r

""

"

"

",.

".,

,\
\

I
II
II

I

\

'"
nWE (0.5 ",/DIY)

nWE (0.5 "./DIV)

TL/H/9156-6

/.

~

~
g

I

/

., .. ,.,.

,

.. ,

~

!

\\

!

!;l

~

~

/

\

~

I

1\

(

TL/H/9156-7

Large Signal Non-Inverting

\

/

e!;l

\

.I

Large Signal Inverting

~

'\

(

1\

",.

/
""

nWE(,o",/DIY)

""

.,'

"',

""

"',

'"

\

"',

""

.,

"

IIII£('O",/DIV)
TLlH/9156-8

TLlH/9156-9

1-97

Application Hints
The amplifiers will drive a 10 kG load resistance to ± 10V
over the full temperature range. If the amplifier is forced to
drive heavier load currents, however, an increase in input
offset voltage may oCcur on the negative voltage swing and
finally reach an active current limit on both positive and negative swings.

This device is a quad low power op amp with JFET input
devices (BI-FETTM). These JFETs have large reverse breakdown \(oltages from gate to··source and drain eliminating the
need for clamps across the inputs. Therefore, large differential input'voltages can easily be accommodated without a
large increase in input current. The maximum differential input voltage is independent of the supply voltages. However,
neither of the input voltages should be allowed to exceed
the negative supply as this will cause large currents to flow
which can result in a destroyed unit.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead
dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pick-up" and maximize the frequency of
the feedback pole by minimizing the capaCitance from the
input to ground.

Exceeding the negative common-mode limit on either input
will force the output to a high state, potentially causing a
reversel of phase to the output. Exceeding the negative
common-mode limit on both inputs will force the amplifier
output to a high state. In neither case does a latch oCcur
since raising the input back within the common-mode range
again puts the input stage and thus the amplifier in a normal
operating mode.
Exceeding the positive common-mode limit on a single input
will not change the phase of the output; however, if both
inputs exceed the limit, the output of the amplifier will be
forced to a high state.

A feedback pole is created when the feedback around any
amplifier is resistive. The parallel resistance and capaCitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected a dB frequency of the closed loop gain and
consequently there is negligible effect on stability margin.
However, if the feedback pole is less than approximately 6
times the expected dB frequency a lead capacitor should
be placed from the output to the input of the op amp. The
value of the added capaCitor should be such that the RC
time constant of this capacitor and the resistance it parallels
is greater than or equal to the original feedback pole time
constant.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition.
When the negative common-mode voltage swings to within
av of the negative supply, an increase in input offset voltage
may occur.

a

Each amplifier is individually biased to allow normal circuit
operation with power supplies of ± a.ov. Supply voltages
less than these may degrade the common-mode rejection
and restrict the output voltage swing.

Typical ApplicatIon
pH Probe Amplifier/Temperature Compensator

"'For R2 ~ 50k, R4 ~ 330k ±1%
For R2 ~ lOOk, R4 ~ 75k ±1%
For R2 ~ 2OOk, R4 ~ 56k ±1%
, 'Polystyrene

pH OUT

. OV-l0V=

'Film resistor type RN60C
To calibrate, Insert probe in pH ~7 s0lution. Set the ''TEMPERATURE AD·
JUST" pot, R2, to correspond to the
solution temperatura: full clockwise for
O"C, and proportionately for intermedi·
ate temperatures, using a tum...count·
ing dial. Then set "CALIBRATE" pot SO
0111II1II reads 7V.
Typical probe ~ Ingold Electrodes

~PH-10PH

"'cw
TEMPERATURE
ADJUST
R3 1.0Ofc*

ft4-··

10k*
R8

3.3M

15V
TUH/9156- t 0

#465-35

1-98

.-----------------------------------------------------------------------,
Detailed Schematic
% Quad

r-----t-------------------------------------~-ov+

",-",-oVD

RI
4110

019

TUH/9156-11

1-99

....
~

."

.-

.-------------------------------------------------------~------------~--~-----.

~d
- pNational

Semiconductor

LF451 Wide-Bandwidth
JFET-Input Operational Amplifier
General Description

Features

The LF451 is a low-cost high-speed JFET-input operational
amplifier with an intemally trimmed input offset voltage (81FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a
fast slew rate. In addition, well matched high voltage JFET
input devices provide very low input bias and offset currents. The LF451 is pin compatible with the standard
LM741, allowing designers to upgrade the overall performance of existing designs.
The LF451 may be used in such applications as high-speed
integrators, fast 01 A converters, sample-and-hold circuits
and many other circuits requiring low input'bias current, high
input impedance, high slew rate and wide bandwidth.

•
•
•
•
•
•
•
•

Connection Diagram
s.o. Package-

Typical Connection

Internally trimmed offset voltage
5.0 mV (max)
Low input bias current
50 pA (typ)
Low input noise current
0.01 pAl,fFiZ (typ)
Wide gain bandwidth
4 MHz (typ)
High slew rate
13 V//J-s (typ)
Low supply current
3.4 mA (max)
High input impedance
10120 (typ)
Low total harmonic distortion Av = 10, <0.02% (typ)
RL = 10k, Vo = 20 Vp_ p, f = 20 Hz~20 kHz
• Low 1/f noise corner
50 Hz (typ)
• Fast settling time to 0.01 %
2 /J-s (typ)

Rf

v+
Ne

BALANCE

- INPUT

v+

+ INPUT
v-

OUTPUT

RI

BALANCE
TLlH/9660-2

TOp View
Order Number LF451CM
See NS Package Number M08A

vTLlH/9660-1

Simplified Schematic
~o-------~----------------~--_,

INTERNALLY
lRlt.IMED

INTERNALLY
lRlMMED

~o-----~--~--------------~--~

1-100

TLlH/9660-3

Absolute Maximum Ratings (Note 1)
ESD Tolerance
Soldering Information (Note 5)
SO Package: Vapor Phase (60 sec)
Infrared (15 sec)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
36V
Supply Voltage (V+ - V-)
Input Voltage Range
V- s: VIN s: v+
Differential Input Voltage (Note 2)
±30V
Junction Temperature (TJ MAX)
1500C
Output Short Circuit Duration
Continuous
Power Dissipation (Note 3)
500mW

TBD
215'C
2200C

Operating Ratings (Note 1)
TMIN s: TA s: TMAX
O'C s: TA s: +700C
125'C
10Vto 32V

Temperature Range
LF451CM
Junction Temperature (TJ max>
SupplyVoltage(V+ -V-)

DC Electrical Characteristics The following specifications apply for V+ = + 15V and Vface limits apply for T MIN to T MAX; all other limits TA = TJ = 25·C.

=

-15V. Bold-

LF451CM
Symbol

Parameter

Conditions

Typical
(Note 6)

Tested
Limit
(Note 7)

Vos

Maximum Input Offset Voltage

Rs = 10 kO, (Note 10)

0.3

5

los

Maximum Input Offset Current

(Notes 9, 10) TJ = 25'C
TJ = 70'C

25

100

(Notes 9, 10) TJ = 25'C
TJ = 700C

50

18

Maximum Input Bias Current

RIN

Input Resistance

TJ =.25·C

1012

AVOL

Minimum Large Signal
Voltage Gain

Vo= ±10V,RL=2kO
(Note 10)

200

Vo

Minimum Output Voltage Swing

RL = 10k

VCM

Minimum Input Common Mode
Voltage Range

s:

CMRR

Minimum Common·Mode
Rejection Ratio

Rs

10kO

PSRR

Minimum Supply Voltage
Rejection Ratio

(Note 11)

Is

Maximum Supply Current

Design
Limit
(Note 8)

Units

mV

2

pA
nA

4

pA
nA

200

0
50

25

VlmV

±13.5

±12

±12

V

+14.5
-11.5

+11
-11

+ 11

-11

V
V

100

80

80

dB

100

80

80

dB

3.4

3.4

mA

AC Electrical Characteristics The following specifications apply forV+ = +15VandV- = -15V.Boldface limits apply for T MIN to TMAX; all other limits TA = TJ = 25·C.
LF451CM
Symbol

Parameter

Conditions

Typical
(Note 6)

Tested
Limit
(Note 7)

Design
Limit
(Note 8)

Units

SR

Slew Rate

Av= +1

13

8

V/jJ-s

GBW

Minimum Gain-Bandwidth Product

f = 100kHz

4

2.7

MHz

en

Equivalent Input Noise Voltage

Rs = 1000,f = 1 kHz

25

nV/Jiz

in

Equivalent Input Noise Current

Rs = 1000,f = 1 kHz

0.01

pA/Jiz

Note 1: Absolute Maximum Ratings indicate limits bayond which damage to the device may occur. DC and AC electricalspacifications do not apply when operating
the device beyond its specified operating ratings.
Note 2: When the input voltage exceeds the power supplies, the current should be limited to 1 mAo
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ MAX, 9JA and the ambient temperature, TA. The maximum
allowable power dissipetion at any temperature is Po = {TJ MAX - Tp,)/9JA or the number given in the Absolute Maximum Ratings, whichever is lower. For
guaranteed operation TJ max = 125'C. The typical thermal resistance (9Jp,) of the lF451CM when bosrd·mounted is 170'C/W.
Note 5: See AN-450 "SUrface Mounling Methods and Their Effect on Product Reliability" (Appendix OJ for other methods of soldering surface mount devicee.
Note 6: Typical. are at TJ = 25'C and represent most likely parametric norm.

10101

Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Dasign limits are guaranteed to National's AOQL. but not 100% _ .
'Note 9: The Input bias currents are junction leakage currents which approximately double for every IO"C incr..a.e·ln the junction tempe..ature TJ.· Due to liMited
production test time, the input bias dUrrents are ccrrelated to junCllion "temperature. In normal operation the junction temperature rises abcv~ the ambient
temperature as a result of Internal pqwer41ssipatlon, Po. TJ.~ TA+ 8JAPO where 8JA Is the thermal resistance from junction to ambient.
Note 10: Vos,le, AVOL, and los are meaSured at VCM = OV.
.
'.,.' .
Note 11: Supply voltage rejection .ratio is measured for both supply magnHudes Increasing or decreasing simultaneously in accordance with ocmm~~ practice.

Typical Performance Characteristics

1.2

T~'a;C

I.If

.30

I I

1

I I II

..
..~

~

~V.!21t"

!1.I21
co

i

I

V.·.IIV

1.175

I

I AV'IN
- I I II
I I. AY· tI-j'rl

I.'

I._
IIJI2I

°tl

"

21

,

10

~

:0

co

~

'"~

18

~
o:

0:

•..
i

5

II
~

f?FV.
VCII _ ZI

;,

i

I

CIIRR - 20 lOG!!!l + OPEN UJOf
Vo
VOLTAGEGAIN

21

i

I

10

IN

Ik

Ilk IIOk

ID

40

i

zo

-

'"'"
'"co

.........
1""'
0
I.
......
II

"

21

['..
IDO

IK

10k

lOOk

~

5!:;
!;

"

III

10M

!!

~

:;

100

:0

•

10

-

71

50

40
30

20
11

0
lID

10

10

~

~

C
", 5 1--+-+-+1+0"~VifiI''''-HTA-i'H2I"+H+I

\_V

-5r-~~IOr·nV~~-I-~~~

co -10

I...

lOOk

~

~

0.1

Ilk

10k

Ii

AV'I

FREQUENCY CHII

Ik

r-T"'"I"'I"Tln111'nr"11""'"...."lvs..,•..,..ITTSVm

l:

Ik

Ilk IIOk III 10M

Inverter Settling Time

1111
20

II

ID

:ll

i

~

15

'\..
10

FREOUENCY CHz)'

C

co

10

!

.'"

r'\.

-IUPPLY'\

~
§!
~

' \ .+sUPPLY

"

41

I
VS' .IIV
TA' 2'"C

u

•~.

SUPPLY VOLTAGE CtV)

I\.
I

Output Impedance

TA·.r:~lO+~"C

TA'WC

\.

FREQUENCY CH,)

IDO

I

:!i
9

FREQUENCY CHz)

1M

-

r\.

ID

Equivalent Input
Noise Voltage
',:

IDO

Open Loop Voltage
Gain (V/V)

~ :;..--

!\.

80

III

141

°10

III 1011

FREQUENCY CHz)

j-RL"a

~

Power Supply
Rejection Ratio
co 121

I

C

co

R~ 'ZII
V"'"VTA'2S"C

t\.

FREQUENCY CHz)

;

41

~

o

III

110

l!:

..

o

110

120

i •

.

31 '100

!:;
co
>

Common-Mode
Rejection Ratio
31
co

IZO
Ii

c

FREQUENCY CHz)

Ii

VI W ! IIV
RL·a
TA' ft"c',
AV·'

~

Ilk

I".m
;;

OP~!1 Loop Freque~cy
Response

Undlstorted Output
Voltage Swing

Distortion vs Freq!lency

III

1011

I

II

~\

L.-.L...J..I......
I..u.w..1~~\'I-.J...J..L.I.LW
D.I

11

BEnUNG TillE c...t
TUH/9660-5

1-102

Typical Performance Characteristics
Input Bias Current
120

Input Bias Current

Supply Current

I'

Vs =±15V
TA -25'C

C 100

(Continued)

5~~---r--'---r-~

VCM-'
VS- 

V

••
2'

;

,.

II,

~
III

a

!

~

5

o

za

I'

-20

ca

3D

i!

:•

..

i

r-.....

I I J
I , I

•
i
i:.

Nega1iveSWlng

>

5

3Ji

..
~

10

15

31
flI

.....

~

....

T_HATURE rCl

1171

I

I
a,1

..

l\

FREDUENCY IMH.I

~

ill
-10 ill

Ii

-151
II

;!!
S

-III

LI

II

III

RL-a
CL -IUD,F
PHASE

-Ia

Slew Rate

lID

II

GAIN

la

RL - OUTPUT LOAD II

r-. lo..

,~

/

/

I
I

r\ jlC

/

JI"C

/

/

woo

i

1121

20

20

Ii
.

o

TEIIPERATURE "CI

Poslti,ve Common-Mode Input
Voltage Limit

.1
oo~

61--+-+--+--+-,,-1

'"

II

-15 -10

.1:

L'"

lID

~

20

i
;a

8f--f---+--I--+----I

i-

,"'

60

10 O'C n

"'II

100

~

50

Ii 1~

o
50

-20

3.0

o

10 20 30 40 50 60 70
TEIiPERATURE rCI

1,0

-30
0.1

I e~

!

100,1
1,0

10

RL - OUTPUT LOAD 'kill

SI!'wRate
VB

Vs =±I'!."

4,0

20

Bode Plot
30

i

IS

SUPPLY VOLTAOE '-VI

OUTPUT SINK CURRENT ,.,AI

Gain Bandwidth

•~
I..

Output Voltage Swing

""'" 1 1 1
111
.....

-5

-20

30

1 1J
.J.o1" 1

RL = 2kll
15 TA=25'C

11~
H'C

21

OUTPUT SOURCE'CURRENT ,..AI

Voltage Swing
20

!:

i

10

&
"
15
211
NEGAnVE SUPPLY VOLTAGE 'VI

,10

FREOUENCY '1I~.zI

150
100

;oj

20
18
16
14
12
10
8

=~:~t-;:::AV _+1

'---- --'-Failing

RisIng

-

==

6

4

o

o

10 20 30 40 ,50 60 70
TEIlPERATURE, ,'CI
}lIH/9710-4

HOB

Typical Performance Characteristics

s

(Continued)

Ut

Co:!

Undistorted Output
Voltage Swing

. Distortion vs Frequency

u
T~"ZI;'C

1.11

I

,I I

co

~VOi2l~H

!I.IZI

.a..

121

311

VI- ,IIV

1.111

!

..

I:;

I.

11.1

,

tWI

_'

.'"
...=:

"'

II

"V"I'~'rJ

i..
~

..
!..
~
:!:

I

I_

.

VS"'IIV
Rl -n
I~ fA-noc

.

, ~ iI, " "

S

fvE1k
I,

ZI
VOlfAGE rAIN

:.!! + OPEILOOP
VCII

1

I

I
II

III

:a

!

V

I

.
:i..

Ii

•

CIIRR" ZI LOG

Ik

Ilk IIIk

IlIk

1
1M 11M

i
i

Open Loop Voltage Gain (V/V)

~

rero +2I"C

1.1

~

i'-..

10

' "+Sumy

-SU"lY'\

2D

0

lID

II

"- ~
"-

IIIk

I.

IK

c

!:;

'\

41

....
~

"lA"WC
~~

II

i

.~

Ii

9

~

1M

11M

11K
II

SUPPLY VOLTAGE C.V)

lID Ik

VI- ,IIV
fA" H"C

I

!;;

70

~'!~

'60

50
40
30

i

20

~c

10

t-

I

0

10

100

~AV"III

r

I

AV"IO

I

f

r ~~"I!!! ~

L

1.1

II

III

Ik

I.

I.

fREQUENCY CHz)

Ik

lOOk

10k

Inverter Settling Time

E

10

I

I

II

iii:

r

t\.

1110 IIIkIM 11M

fREQUENCY CHI)

1.11
II

10

Equivalent Input
Noise Volb!-ge

Output Impedance

c

t-

S

..
..
i..'"

!

VS"
f,.";soC

. ....... ...... "-

III

lID

S

......-r:

co

I

fREClUENCY CHz!

~I5V

III

Rl -a

~

.
..,.
....
:I

'-

fREQUENCY CHz)

1M
flo -

'-

1M

140

fREQUENCY CHz)

~

'-

0

Power Supply
Rejection Ratio

II

41

'-

.

II

fREQUENCY CHI)

-hJ.

Rl"a
VS-'IIVfA"WC

iii

Ilk

ID

I.

Ik

~

ZI

Common-Mode
Rejection Ratl(l
III

..
..'"

'i!:;

-

III

9

fREOUENCY CHI)

121

:a
~

I

lID

10

.

Ii

.a •

II

!;;

'0

:a

v." 'IIV
Rl-a
fA-ZIOC
AV"I
I\

5

S
CI

TIME (0.2 I'I/DIV)

TIME (0.2 jlS/DIV)
TL/H/9710-7

TLlH/9710-8

Large Signal Non-Inverting

Large Signal Inverting

s
~
e.,.

s

i

CD

z

z

i

i

.,.

'III

CI
.>,

CI

III,

~
>
5
......

~

~

=
CI

CI

TIME (2I'1/DIV)

TIME (2I'1/DIV)
TL/H/97'10:8

TLlH/9710-9

Current Umit (RL = 1000)

s

~.,.
z

i

.,.
III

...

;!

CI

>

....
~
=
CI
TIME. (5 j,CI/OIV)
TL/H/971 0-1 0

1-110

Application Hints
These devices are op amps with an internally trimmed input
offset voltage and JFET input devices (BI-FET II). These
JFETs have large reverse breakdown voltages from gate to
source and drain eliminating the need for clamps across the
inputs. Therefore, large differential input voltages can easily
be accommodated without a large increase in input current.
The maximum differential input voltage is independent of
the supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed
unit.
Exceeding the negative common-mode limit with the non-inverting input, or with both inputs, will force the output to a
high state, potentially causing a reversal of phase to the
output. In neither case does a latch occur since raising the
input back within the common-mode range again puts the
input stage and thus the amplifier in a normal operating
mode.
Exceeding the positive common-mode limit on a single input
will not change the phase of the output; however, if both
inputs exceed the limit, the output of the amplifier will be
forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition.
When the negative common-mode voltage swings to within
3V of the negative supply, an increase in input offset voltage
may occur.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead
dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pick-up" and maximize the frequency of
the feedback pole by minimizing the capacitance from the
input to ground.
A feedback pole is created when the feedback around any
amplifier is resistive.The parallel resistance and capacitance
from the input of the device (usually the inverting input) to
AC ground set the frequency of the pole. In many instances
the frequency of this pole is much greater than the expected
3 dB frequency of the closed loop gain and consequently
there is negligible effect on stability margin. However, if the
feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed
from the output to the input of the op amp. The value of the
added capacitor should be such that the RC time constant
of this capacitor and the resistance it parallels is greater
than or equal to the original feedback pole time constant.
The benefit of the SO package results from its very small
size. It follows, however, that the die inside the SO package
is less protected from external physical forces than a'die in
a standard DIP would be, because there is so much less
plastic in the SO. Therefore, not following certain precautions when board mounting the LF453CM can put mechanical stress on the die, lead frame, and/or bond wires. This
can cause shifts in the LF453CM's parameters, even causing them to exceed limits specified in the Electrical Characteristics. For recommended practices in LF453CM surface
mounting refer to Application Note AN450 "Surface Mounting Methods and Their Effect on Product Reliability" and to
the section titled "Surface Mount" found in any Rev 1. linear Databook volume.

Each amplifier is individually biased by a zener reference
which allows normal circuit operation on ± 5V power supplies. Supply voltages less than these may result in lower
gain bandwidth and slew rate.
The amplifiers will drive a 2 kO load resistance to ± 10V
over the full temperature range of O"C to + 70"C. If the amplifier is forced to drive heavier load currents, however, an
increase in input offset voltage may occur on the negative
voltage swing and finally reach an active current limit on
both positive and negative swings.

1-111

!

'I

~

Detailed Schematic
~O--------'-----------------'-------------------1~------~------~----~

R9
'2211

....--------~.....-o Vo
RIO
300

R6
204

R8
1604

~o-----+---------~--~--~~~~----~------~------~--~------~~
SUBS'lRATE
'TLlH/9710-11

1·112

r---------------------------------------------------~~

I

tflNational Semiconductor

LH0003
Wide Bandwidth Operational Amplifier
General Description
The LH0003/LH0003C is a general purpose operational
amplifier which features: slewing rate up to 70 VI ,...s, a gain
bandwidth of up to 30 MHz, and high output currents. Other
features are:

Features
• Very low offset voltage
• Large output swing

>

Typically > 90 dB
50 kHz to 400 kHz depending on compensation

• High CMRR
• Good large signal
frequency response

The LH0003 is specified for operation over the - 55"C to
+ 125"C military temperature range. The LH0003C is specified for operation over the O"C to + 85"C temperature range.

Typically 0.4 mV
±10V into 1000 load

Schematic and Connection Diagrams
y+ 9
R2
2k

Cl

Rl
200k
7

BIAS

4

INPUTS
2

+
caMP
TLlK/l0123-2

5

caMP

Top View

R3

R4

R5

10k

10k

lk

Order Number LHOOO3H,
LHOO03H·MIL or LH0003CH
See NS Package Number H10G

L---~__--------~__--------._~~3
TLlK/l0123-1

1·113

Absolute Maximum Ratings

Equ~rto supply
Input Voltage
Load Current
120, rnA
Operating Temperature Range LHOO03 - 55·C to + 125·C
LHOO03C
o·eta +85·C
-65·Cto + 150"C
Storage Temperature Range
, 300"C
. ~.ad TemperatIJre(SOldering, 10 sec.)

If Military/Aerospace specified devices are required,
please contact the NatIonal Semiconductor Sales
Office/DIstributors for availability and specifications.
Supply Voltage
±20V
Power Dissipation
See curve
Differential Input Voltage
.±7V

Electrical Characteristics (Notes 1 & 2)
Parameter

Conditions.

: '

Typ

Max

Units

0.4

3.0

mV

Input Offset Current

0.02

0.2

/LA

Input Bias Current

0.4

2.0

/LA

1.2

3

rnA

Input Offset Voltage

Rs

Min

< 1000

Supply Current

Vs = ±20V

Voltage Gain

RL = 100k, Vs = ±15V, VOUT = ±10V

20

70

VimV

Voltage Gain

RL = 2k, Vs = ±15V,VOUT =. ±10V

15

40

VlmV

Output Voltage Swing

Vs = ±15, RL = 1000

±10

±12

V

100

kO

4

/Lvrc

8

nArC

70

90

dB

70

90

dB

1'.8

/LVrms

Input Resistance
Average Temperature
Coefficient of Offset Voltage

Rs

< 1000
'.

Average Temperature
Coefficient of Bias Currerit

< 1000, Vs= ±15V, VIN = ±10V
< 1000, Vs= ±15V,aV = 5Vt020V

CMRR

Rs

PSRR

Rs

Equivalent Input
Noise Voltage

Rs = 1000, f = 10 kHz to 100 kHz
Vs = ±15V

Note 1: These specifIcations apply for Pin 7 grounded, lor ±5V < Vs < ±20V, with capacitor Cl = 90 pF from pin 1 to pin 10 and C2 = 90 pF from pin Ii to
ground, over the specified operating temperature range, upless otherwise specified.
Note 2: Typical values are for tAMBIENT = 25'C unless otherwise specified,
Note 3: See # RETSOO03X for the LMOOO3H military specifications.
!

Typical Performance Chara~teristics
1000

1

MaXimum Power Dissipation

800 1-

z

ii

;i!8OO

::iii
!!I
~

400 I- AMBIENT

I\.

,
.... " ,

'"iiiz

~
0

f200
0

S
.!!.

25

75 tOO
TEMPERATURE ("C)
50

125

16
14
12
10

;

Large SIgnal Frequency
Response
I111

I

IlIh,~

15pF
C2=
6
1\i30 PF
4 ct =90"':\11

8

Open Loop Frequency
Response

JsIJ~~~v

-m-,I00'

tU1il-

.~

iilll
1\11111

2 C21=liinlil N
Nlil
0
104
105
loB
107
FREQUENCY (Hz)

~
l!;

~

!S!

BO
BO

RL = lOOk,

Ct =~L:- RL =2004 . ~ "'C2=0

J

r----rI

40 1--- ct
20

1'?!it~VI A=25"C

I

t2O·

TA=25"C

o

I'\[

=9,OpF, _I, \
i=jOPF I

I

I"- \

I....

100 10' 102 103 104 105 loB 107 108
FREQUENCY (Hz)
TUKll0123-5

1-114

Typical Applications
High Slew Rate Unity Gain Inverting Amplifier
Cl

TLlK/lD123-2

'Previously called NH0003INH0003C

Typical Compensation
Circuit
Gain

C1
pF

C2
pF

Slew Rate
RL> 2000,
V/p.s

;"40
;,,10
;,,5
;,,2

0
5
15
50
90

0
30
30
50
90

70
30
15
5
2

;,,1

Full Output
Frequency
RL = 2000
VOUT';' ±10V

~}
350
250
100
50

kHz

Unity Gain Follower

INPUT -

....w......"'"

)----f--OUTPUT

lk'
l00pF
TLlK/lDl23-4

1-115

~~

:: ~National Semiconductor

LH0004 High Voltage Operational Amplifier
General Description
The LH0004 is a general purpose operational amplifier designed to operate from supply voltages up to ±40V. The
device dissipates extremely low quiescent power, typically 8
mW at 2SoC and Vs = ±40V.
The LH0004's high gain and wide range of operating voltages make it ideal for applications requiring large output
swing and low power dissipation.
The LH0004 is specified for operation over the - SsoC to
+ 12SoC military temperature range. The LH0004C is specified for operation over the O"C to + 8SoC temperature range.

.• Low input offset voltage typically 0.3 mV
• Frequency compensation with 2 small capacitors
• Low power consumption 8 mW at ± 40V

Applications
•
•
•
•

High voltage power supply
Resolver excitation
Wideband high voltage amplifier
Transducer power supply

Features
• Capable of operation over the range of ± SV to ± 40V
• Large output voltage typically ± 3SV for the LH0004
and ± 33V for the LH0004C into a 2 kO load with
± 40V supplies

Schematic and Connection Diagrams

R2

UK

COMPENSATION
TUH/5559-2

COMP.!__~~____~____' -____~::~---1--~10~~~~MP
COMPENSATION

Nota: Pin 7 must be grounded or connected to a
voltage at least 5V mora negative than the positive
supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby currant will be Increased. A resistor may be Inaerted in aertas with
Pin 7 to Pin 9. The value of the resistor should be a
maximum of 100 kG par voit of potential between
Pin 3 and Pin 9.

Order Number LHOOO4H,

COMP .,;;5__""______. .__-1

LHOO04H-MILor LHOOO4CH
See NS PaCkage Number H10G

R3
30GK

R4
311K

RS

&GK

L.____-t~------~--------~~~3~VTL/H/5559-1

1-116

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 2)
Supply Voltage
±45V
Power Dissipation (see Curve)
400mW
±7V
Differential Input Voltage
Equal to Supply
Input Voltage

Short Circuit Duration

3 sec

Operating Temperature Range
LHOO04
LHOO04C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)
ESD rating to be determined.

- 55'C to + 125'C
O'Cto +85'C
-65'C to + 150'C
260'C

Electrical Characteristics (Note 1)
Parameter

Min

=

LHOOO4C

LHOO04

Conditions

Max

0.3

Min

Units

Typ

Max

1.0
2.0

0.3

1.5
3.0

mV

Input Offset Voltage

Rs:<;; 1000., TA
Rs:<;; 1000.

Input Bias Current

TA

=

25'C

20

100
300

30

120
300

nA

Input Offset Current

TA

=

25'C

3

20
100

10

45
150

nA

Positive Supply Current

Vs
Vs

±40V, TA
±40V

=

25'C

110

150
175

110

150
175

p.A

Negative Supply Current

Vs
Vs

±40V, TA
±40V

=

25'C

80

100
135

80

100
135

/LA

Voltage Gain

=
=
=
=
=

Vs
±40V, RL
VOUT = ±30V

=

100k, TA

Vs = ±40V, RL
VOUT = ±30V

=

100k

=

10k

=

25'C

Typ

=

25'C

30

60

30

10

60

VlmV
V/mV

10

Output Voltage

Vs

CMRR

Vs = ±40V, Rs:<;; 5k
VIN = ±33V

70

90

70

90

dB

PSRR

Vs = ±40V, Rs:<;; 5k
I:N = 20V to 40V

70

90

70

90

dB

Average Temperature
Coefficient Offset Voltage

Rs:<;; 1000.

4.0

4.0

p.VI'C

0.4

0.4

nAl'C

3.0

3.0

p.Vrms

±40V, RL

±35

Average Temperature
Coefficient 01
Offset Current
Equivalent Input
Noise Voltage

Rs = 1000., Vs = ±40V
1 = 500 Hz to 5 kHz, TA = 25'C

±30

±33

Note 1: These specifications apply for ±5V :s; Vs :s; ±40V. Pin 7 grounded. with cspacilors Cl = 39 pF between Pin 1 and Pin 10. C2
ground. - 55'C to +125'C for the LHOO04. and O'C to +85'C for the LHOOO4C unless otherwise specified.
Note 2! Refer to RETSO004X for LH0004H military speciflcstions.

1-117

±30

V

= 22 pF between Pin 5 and

~ ~-----------------------------------------------------------------------------------------,

§
:::E:

Typical Applications

..J

Input O~fset
Voltage Adjust

Voltage Follower
RI-

y+

>-_..........-

OUTPUT
5M

I

C2
22

PF

·May be zero or equal
to source resistance tor
minimum offset

5M

TL/H/5559-3

y-

External Current
Limiting Method
01

TL/H/5559-4

High Compliance
Current Source
10K

02
+40

03

04
10K

•
>--41"'--

~--~~---t~-OUTPUT
'V,

±E'N

10 = 10K

= average forward
voltage drop of
diodes 01 to D4

at 20 p.A to 50 /lA

10K

22PF~

Tl/H/5559-5

10K

-

1·118

TUH/5559-6

r-----------------------------------------------------------------------------, r:::J:
Typical Performance Characteristics
Input Voltage Range

8o

-

T. _-IIDC t-I I

--

~

~~

r-

~

l-

••

I I
I I

,

5

15

25

II

4i

J5

SUPPLY VGlTAIIl (.v.

Negative Supply Current

.
...:
...
•

T.-Zl"e

--

T,. _125°1:

II

I"""'

i--'

2

Ii

•,

I"""'

..

"
1) ~ ;;;

-- ~ i31

SUfPLYVGlTAIIE(>V!

..
.
.:

!

IZI

iI

;:

;:

II

•

2

,,

•
,

1.1

II

31

II

Large Signal
Frequency Response

~

III

" ,,
'"

FREDUEIICV (Hz1

1\ I I I
111131.

SUPPLY VDLTAGE ('V!

~

I..
...
~

31

HM-1-1-+ +-+-1--1

Ii

H~---tO'§ ""-'--'-"'--1--1

IS

41

VslII:t48V

i

~

.

TrZfC

\'
31

-,

Package Power Dissipation

,

\

'.1

II

I.

~

IOIIfAT_

\

o

_HEAT_

, '" "1\
1, 1, " "

CI-31.F ,\CI-a-,
ZI r- t- a - ZZ • F

"

I"\,

,\

'JC - 125' Ct.

l\

31

_YVGllAGE('V!

SUPPLY VGlTAIIE ('V)

VI- ±4IV

""'1'\ el·CZ·' I- CI!3I~ ......
-...... .
- r - ajzzr
RL " III

-

41

I

R."IOOkTD"-

Output Voltage

D ~ ....
....- .e!
~
~ .~
.- >
~

.

4'x..

41 r;rlrI-r-.-.~~~

T.-IZI"C_

iii

•

R."I_

C

,.~

.•

•

T. -!l°C_

1211

41

I I
I I
I I

III

:;

31

T. "-IIi"C-6,

Open Loop Frequency
Response

.

, I

I

.,

-

I I

"

r-

Positive Supply Current

e
.a

,....,

T,. =-II°C

III

iI

ie

I- ~

2D

-

~
". T.-we
T.-.a"C ..T.-IZS"e

II

III

1

iii

-

T.~I~Oe

1J

.

T.I_2li~- - r-

SUPPLY VUlTAIEI'VI

III

Iii

,,

~.l

....

Voltage Gain

.. Input Bias Current

4i

'",-_ct.

'1\

.\

FREOUEIOCY IIbI

.~

,

•

SI

110

III

TEWERATURE (OCI
TL/H/5559-7

1-119

o
.,..
'Of'

g

:::J:

..J

tJ1Nati~nal

Semiconductor

......
.,..
'Of'

o
o

:s......o
.,..
N

LH0021lLH0021C 1.0 Amp Power Operational Amplifier
LH0041/LH0041 C 0.2 Amp Power Operational Amplif,ier

g

General Description

:::J:

The LH0021/LHOO21C and LH0041/LH0041C are general , 12 pin TO-8 (2.5 watts with clip on heatsink) and a power 8
purpose operational amplifiers capable of delivering large
pin ceramic DIP (2 watts with suitable heatsink). The
output currents not usually associated with conventional IC
LH0021 and LH0041 are guaranteed over the temperature
Op Amps. The LH0021 will provide output currents in exrange of -55'C to +125'C while the ,LH0021C and
cess of one ampere at voltage levels of ± 12V; the LH0041
LH0041 C are guaranteed from - 25'C to + 85'C.
delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the
Features
inputs and outputs are protected against overload. the de• Output' current
vices are compensatei:t with a single external capacitor and
LH0021
1.0 Amp
are free of any unusual oscillation or latch-Up problems.
LH0041
0.2 Amp
The excellent input characteristics and 'high output capabili• Output voltage swing
ty of the LH0021 make it an ideal choice for power applica- '
, LH0021
±12V into 100.
tions such as DC servos, capstan drivers, deflection yoke
± 14V into 1000.
LH0041
'
drivers, and programrhable power supplies.
, • :Wide full power bandwidth
15 kHz
The LH0041 is particularly suited for applications such as
100mW,i!t ±15V'
• Low standby power
torque driver for inertial 'guidance systems, diddle yoke driv• Low il)put offset
er for alpha-numeric CRT displays, cable drivers, and ,provoltage and current
1 mV and 20 nA
grammable power supplies for automatic test equipment.
3.0V/Ji-s
• High slew rate
The LH0021 is supplied in a 8 pin TO-3 package rated at 20, • High open loop gain
100 dB
watts with suitable heatsink. The LH0041 is supplied in both

..J

......
.,..
N

o
o

:s

Schematic Diagram

COMP

C(00) 3000 pF
OUT

TLIH/9298-1

'Rse external on "G" and "K" packages. Rse
internal on "J" package. Offset Null connections available only on "G" package.

1-120

Output Short Circuit Duration (Note 3)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±18V

Supply Voltage
Power Dissipation

See Curves

Continuous

Operating Temperature Range
LH0021/LH0041
LH0021C/LH0041C

- 55°C to + 125°C
- 25°C to + 85°C

Storage Temperature Range

- 65°C to + 150"C

Differential Input Voltage

±30V

Lead Temperature (Soldering, 10 sec.)

Input Voltage (Note 1)

±15V

ESD rating to be determined.

Peak Output Current (Note 2)
LH0021/LH0021C
LH0041/LH0041 C

300°C

r-

o
o

Conditions

Voltage Drift with Temperature

Rs

= 25°C

Offset Voltage Drift with Time
Input Offset ~urrent

Te = 25°C

Offset Current Drift with Temperature
Offset Current Drift with Time
Te = 25°C

Input Resistance

1.0

3.0
5.0

3.0

6.0
7.5

3

25

5

30

5

Te = 25°C

0.3

Rs1000,aVeM= ±10V

Input Voltage Range

Vs = ±15V

Power Supply Rejection Ratio

Rs';; 1000, avs = ± 10V

Voltage Gain

Vs
RL
Vs
RL

70

p.V/oC
p.V/week

5

15

5

20

p.V/W

100
300

50

200
500

nA
nA

0.1

1.0

0.2

1.0

2
300
1.0
0.3

1.0
90

±12

500
1.0

1.0

70

nArC
nAlweek

200

3

Common Mode Rejection Ratio

mV
mV

30

100

Input Capacitance

Units

Typ Max

2

Input Bias Current

Output Voltage Swing

LHOO21C

Typ Max Min

5

Offset Voltage Change with Output Power

nA
p.A
MO

3

pF

90

dB

±12

V

80

96

70

90

dB

100

200

100

200

V/mV

= ±15V, Vo = ±10V
= 1 kO, Te = 25°C
= ±15V, Vo = ±10V

= 1000

25

V/mV

20

±13.5 14
±11.0 ±12

Vs = ±15V, RL = 1000
Vs = ±15V, RL = 100, Te = 25°C

±13 ±14
±10 ±12

V
V

Output Short Circuit Current

Vs = ±15V, Te = 25°C, Rse = 0.50

1.2

1.6

1.2

1.6

Power Supply Current

Vs = ±15V, VOUT = 0

2.5

3.5

3.0

4.0

mA

Power Consumption

Vs = ±15V, VOUT = 0

75

105

90

120

mW

AC Electrical Characteristics for LHOO21/LHOO21 C (TA =

0.8

0.8

Amps

25°C, Vs = ± 15V, Cc = 3000 pF)
Umlts

Parameter

Conditions

Slew Rate

Av = +1, RL = 1000

Power Bandwidth

RL = 1000

LHOO21
Typ

0.8

3.0

LHOO21C
Max

20

Small Signal Transient Response
Small Signal Overshoot
Settling Time (0.1 %)

Min

1.0

3.0

Units
Max
V/p.s

20

kHz

0.3

1.5

5

20

10

30

Harmonic Distortion

f = 1 kHz, Po = 0.5W

Input Noise Voltage

Rs = 500, B.W. = 10 Hz to 10 kHz

Input Noise Current

B.w. = 10 Hz to 10 kHz
1-121

Typ

1.0

4

Overload Recovery Time

Min

0.3
aVIN = 10V,Av = +1

....
o
~

LHOO21
Min

< 1000, Te
< 1000
< 1000

Q

::::E:
Limits

Rs
RS

2....
~

DC Electrical Characteristics forLH0021/LH0021C(Note4)
Parameter

N

5:
o
o
....
......

2.0 Amps
0.5 Amps

Input Offset Voltage

5:
....
......
5:
g

Absolute Maximum Ratings

p.s

%

4

JLS

3

3

p.s

0.2

0.2

%

5

5

p.V/rms

0.05

0.05

nA/rms

DC Electrical Characteristics for LH0041/LH0041C (Note 4)
Limits
Parameter

, Conditions

LHOO41
Min

< 1000. TA =
< 1000
Rs < 1000

Input Offset Voltage

Rs
Rs

Voltage Drift with Temperature

25°C

Offset Voltage Drift with Time

LI::IOO41C

Typ

Max

1.0

3.0
5.0

Min

Units

Typ

Max

3.0

6.0
7.5

3

5

5

5

p.V/oC
p.V/week
p.v/W

15

15

Offset Voltage Adjustment Range

(Note 5)

20

20

Input Offset Current

TA = 25°C

30

100
300

50

200
500

0.1

1.0

0.2

1.0

Offset Voltage Change with Output Power

Offset Current Drift with Temperature
Offset Current Drift with Time '
Input Bias Current
Input Resistance

2
TA = 25°C

100

TA = 25°C

0.3

Input Capacitance
RS1000. aVCM= ±10V

Input Voltage Range

Vs = ±15V

70

300
1.0

200

1.0

0.3

90

70

+12

Power Supply Rejection Ratio

Rs ~ 1000. avs = ±10V

Voltage Gain

Vs=
RL =
Vs=
RL =

±15V.VO= ±10V
1 kO. TA = 25°C
±15V.Vo= ±10V
1000

mV

2

3

Common Mode Rejection Ratio

mV
mV

nA
nA
nArC
nA/week

500
1.0

nA

p.A

1.0

MO

3

pF

90

dB
'V

+12

80

96

70

90

dB

100

200

100

200

V/mV

14

±13

25
±13

Vs = ±15V. RL = 1000

Output Short Circuit Current

Vs= ±15V.TA='25°C
(Note 6)

200

Power Supply Current

Vs = ±15V. VOUT = 0

Power Consumption

Vs = ±15V. VOUT = 0

AC Electrical Characteristics for LH0041/LH0041C(TA =

' V/mV

20

Output Voltage Swing

±14

V

300

200

300

mA

2.5

3.5

3.0

4.0

mA

75

105

90

120

mW

25°C. Vs = ±15V. Cc = 3000pF)
Limits

Conditions

Parameter

Slew Rate

Av = +1. RL = 1000

Power Bandwidth

RL = 1000

LHOO41

Typ

1.5

3.0

LHOO41C
Max

20

Small Signal Transient Response
Small Signal Overshoot
Settling Time (0.1 %)

Min

Min

Typ

1.0

3.0

Units
Max

V/p.s

20

kHz

0.3

1.0

0.3

1.5

5

20

10

30

%

p.s
p.s

aVIN = 10V.Av = +1

4
3

3

Harmonic Distortion

f = 1 kHz. Po = 0.5W

0.2

0.2

%

Input Noise Voltage

Rs = 500. B.W. = 10 Hz to 10 kHz

5

5

p.V/rms

Overload Recovery Time

4

p.s

B.W. = 10Hzt010kHz
Input Noise Current
0.05
0.05
nA/rms
Note 1: Rating applies for supply voltages above ± lSV. For supplies less than ±lSV, rating is equal to supply voltage.
Note 2: Rating applies for LH0041 G and LH0021 K with FIsc = on.
Note 3: Rating applies as long as package power rating is not exceeded,
Note 4: Specifications apply for ±SV ,;; Vs ±18V, and -S5"C ,;; Te = ,;; 125"C for LHOO21K and LH0041G, and -2S'C ,;; Te ,;; +85'C for LHOO21CK,
'LH0041CG and LH0041CJ unless otherwiss'spacifted. Typical values are for 25"C only.
Note 5: TO-a "G" packagGs only.
" Note 6: Rating applies for "J" DIP package, and lor TQ-a ",G" package with Rse = 3.3 ohms.
Note 7: See Typical Performance Charactaristics.
1-122

r-----------------------------------------------------------------------------~r

%

g

Typical Performance Characteristics

....
......
N

Safe Operating Are_LH0021

Power Deratlng-LH0021

-

2.0

50

8JC=2°C/W

1.5

~
::II

IN INIfE EAT SINK
~

:s

I

IS
10

~

-N-+8JA=2So C/W
NO HEAT SINK

o
o

so

25

75

lOll

125

0.5

0.0

z

~

-0.5

-1.0
-1.5

l~ I-"'"
-IS -10

ISO

14

10

IA

~ '/
/

2

4

6

V

A
I~-_o.15V

Rl
&19.
1%

R3

>~",_o-15V

15K
1%

VOUT2

= -VOUT

R3' R4

R4

15K
1%

-18TO -38V
TUH/9298-10

t-126

r-

%

Typical Applications (Continued)

S
....

CRT Deflection Yoke Driver
+1SV

......

5:
S
....
o

"!

.......__:"f.7f
3000pf

.....
r%

YIN

g
....

......

OEfLECTlON YOKE

lOUT '"

5:

g
....
o

~

AI
10hm
lW
TUH/9298-11

Two Way Intercom
+15Y

r----I
I

-----,

I
I

I

I

I

I
I
-15V

STATION
1

lOOK
STATION
2
20nF

TUH/9298-12

Programmable High Current Source/Sink
A2
lK

TL/H/9299-13

1-127

u.-------------------------------------------------------~--------------,

....

,

"'g"

Typical Applications (Continued)

....:::E:......

....
"'g"
:3
oN....

DC Servo Amplifier

Power Comparator

11K

+15V

INPUT

o-Jl,iV\t--t
IK

o
o

.........
:::E:

...

N

g

ZIK

....:::E:

-15Y

SIZE ISERYO MOTOR

18

'Type 327 Lamp
TUH/9298-14
Y-

TL/H/9298-15

Auxiliary Circuits
LH0021 Unity Gain Circuit with Short Circuit limiting

LH0041G Unity Gain with Short Circuit Limiting

Y'

Y'

>.:.:...........0 OUTPUT

> -........0 OUTPUT
INPUT

ISC~~

IOC

Rsc

~

1.4 amps

~ 0.7

Rsc

~

Y-

210 mA

yTLIH/9298-16

TUH/9298-17

LH00411LHOO21 Offset Voltage Null Circuit
(LH0041CJ Pin Connections Shown)"

LH0041G Offset Voltage Null Circuit"
HZ

HZ

3nF
3 nF

HI
INPUT o-.J\M~"'Of

Rl

>~""OOUTPUT
>~""OOUTPUT

10K

R3
V'

RI

H3

Av~

lOOK
Z8K

>IIII......WI\r-.

R3
R2

-Fi1

Y-

RI
Y-

~

1lIII0

~

TUH/9298-19

R3

Av~ -~
RI

TUH/9298-18

1-128

--------------------------------------------------------------------------------------l ~
Auxiliary Circuits (Continued)

........r-

Operation from Single Supplies
POSITIVE
3&V

V·

::::E:

g

IOV

N
....

o
....

5:
g
A
....
....
5:
~
....
o

V'-IV:S:VouT :S:1V

C)

TLlH/9298-20

NEGATIVE

:;:,: . {o-----,

•
TL/H/929B-21

1-129

(.)

.,...
'OIl'

g

3.....
.,...

Auxiliary Circuits (Continued)
Operation from Non:Symmetrlcal Supplies
V' < +3&V - V-

V' ~+liV

'OIl'

g

3

Q
~

8
::c

'-.c:...o......,.. OUTPUT

">~~O OUTPUT

...I
.....
.,...

V· -IV >VQU1'>v- +IV

8
::c
...I

V-~-3IV+V'

V-<-IV
TLlH/9298-22

TLlH/9298-23

'For additional offset null circuit techniques see National Linear Applications Handbook.

1-130

I!J1National Semiconductor

LH0024 High Slew Rate Operational Amplifier
General Description
The LH0024/LH0024C is a very wide bandwidth, high slew
rate operational amplifier intended to fulfill a wide variety of
high speed applications such as buffers to A to D and D to A
converters and high speed comparators. The device exhibits useful gain in excess of 50 MHz making it possible to use
in video applications requiring higher gain accuracy than is
usually associated with such amplifiers.
The LH0024/LH0024C's combination of wide bandwidth
and high slew rate make it an ideal choice for a variety of
high speed applications including active filters, oscillators,
and comparators as well as many high speed general purpose applications.

The LH0024 is guaranteed over the temperature range
-55·C to + 125·C, whereas the LH0024C is guaranteed
- 25·C to + 85·C.

Features
•
•
•
•
•
•

Very high slew rate-500 V/p.s at Av = +1
Wide small signal bandwidth-70 MHz
Wide large signal bandwidth-15 MHz
High output swing-± 12V into 1k
Low input offset-2 mV
Pin compatible with standard IC op amps

Schematic and Connection Diagrams
COMP/NULl
5

Metal Can Package
COMP/NULL

r---~~--~~-t~------------~---ov+
RI
R5

•

---+--{

I OUTPUT
COMP

r-------+---G

COMPlNULLo-----. . .

y-

TL/K/5552-2

INPUTS

Top View
Note: For heat sink use Thermalloy 2230-5
series.

Order Number LH0024H,
LH0024H-MIL or LH0024CH
See NS Package Number H08B
R4

4

~---------t-----4~~~-4~-ovTL/K/5552-1

1-131

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 2)

Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)

Supply Voltage
Input Voltage
Differential Input Voltage

Operating Temperature Range

260'C

ESD rating to be determined.

±18V
Equal to Supply
±5V

Power Dissipation

- 65'C to + 150'C

LH0024
LHOO24C

- 55'C to + 125'C
- 25'C to + 85'C

600mW

DC Electrical Characteristics (Note 1)
Parameter

LHOO24

Conditions
Min

Max

2.0

4.0
6.0

Input Offset Voltage

Rs = 50n, TA = 25'C
Rs = 50n

Average Temperature
Coefficient of Input
Offset Voltage

Vs = ±15V, Rs = 50n
- 55'C to 125'C

-20

Input Off$et Current

TA = 25'C

2.0

Input Bias Current

TA = 25'C

Supply Current
Large Signal Voltage
Gain

Vs = ±15V, RL = 1k, TA = 25"C
Vs = ±15V, RL = 1k

LHOO24C

Typ

Min

Units

Typ

Max

5.0

8.0
10.0

-25
5.0
10.0

4.0

15

30
40

12.5

15

mV
mV

/LV/'C
15.0
20.0

!LA

18

40
50

/LA
/LA

12.5

15

/LA

mA

4
3

5

3
2.5

4

V/mV
V/mV

Input Voltage Range

Vs = ±15V

±12

±13

±12

±13

V

Output Voltage
Swing

Vs = ±15V, RL = 1k, TA = 25"C
Vs = ±15V, RL = 1k

±12
±10

±13

±10
±10

±13

V
V

Slew Rate

Vs = ±15V, RL = 1k,
C1 = C2 = 30pF,
Av = +1, TA = 25"C

400

500

250

400

VI/Ls

60

60

dB

60

60

dB

Common·Mode
Rejection Ratio

Vs = ±15V, aVIN = ±10V,
Rs = 50n

Power Supply
±5V ~ Vs ~ ±18V,
Rejection Ratio
Rs = 50n
Note 1: These specHications apply for Vs = ±15Vand -55'C 10
Nole 2: Refer to RETSOO24 for LH0024H military specHicalions.

+ 125'C forthe LHOO24 and -25'C 10 +85'C for the LHOO24C.

Frequency Compensation
Frequency Compensation Circuit

TABLE I
Closed
Loop Gain

C1

Cz

riC,

C3

100

0

0

0

20

0

0

0

10

0

20pF

1 pF

1

30pF

30pF

3pF

Rl

I

'ISV

t

RZ

01 JIof

I~

Z~I

-!.CZ·'

IJlD024

RI

•

OUTPUT

5

l

~~.~
. , "I

-ISV

1·132

I

":"

':"

TL/K/5552-6

r-

:::z:::

Typical Performance Characteristics

o
o
N

Maximum Power Dissipation
IIIG

I"-

1.
.IDO
co

...

INFINITE IlEAT SlNKl

8.., - 18O"C/W

I\.

~4011

NO HEAT SINK

,.

~310

I

D

0

25

l

15

co

l

II

lOOK

10K

10M
1M
fREOUENCY IH,I

0
1111

110M

:>
Z
C

C

II:

~ +5

~

co

~

..

0

lDO

lID
3011
TlMEIIII!

TA ·25·C

./

...
iii

~ 15

,.

~

~
5co

5

V

~

...

0

SDO

5

10

20

IS

25

Tol.-H!C

!!
!
l

>

.

12

.

/:

.

t.

1/

••

I

~zo
z

~.'25·e I - 1

i+"""

.

n-

0

11

V

V

S

V
5

0

SUPPLY VOLTAGE I'VI

I.

~

10

0

0

Supply Current vs
Supply Voltage
13

I

1

1

I
10

12

I

I.

II

11

SUPPLY VOLTAGE I-VI

20

- r- rTl· -sJ'e

-

..~ ..

-

l

_ ...

5
0

15

Input Bias Current
vsVoltage

;

~

10

SUPPLY VOLTAGE I'VI

~ 15

I
~12I'C- r-

•

lDOM

Output Voltage Swing

co

D

10M

20

co

,

1M

R" ·IK
;; 15

-10

I.

FREQUENCY IHd

20

Cl=C2-3hf
r-TAI:.Z5·~- c--t-~L 'IK
Ay=+l

"co -5

2D

Input Voltage vs Supply
Voltage

i+"
~

Av··:i.1

D

150

co

Vs" ·l1V
&1 "'C2:3O,F
Rl " lK

5

Vs· ttl

..

..

co

Voltage Follower Pulse
Response

:>

=
40
~

~

15 101 125
50
TEMPERATURE rCI

'"

C

c

..
~

RL • , .
f ... ,,2S·C

.

. ,.

~

I"vs·:t'i

!ID

~

I,r'\

8". - 250"C/W

1210

II

20

Ii

""

Open Loop Frequency
Response

25

~..

"'- c--.."' ~

~5OD

Large Signal Frequency
Response

I

t ..~e f--- f--~o·J,Z5'C- r1

e

I

•

1

10

12

I.

II

II

SUPPLY VOLTAGE I'VI
TLlK/5552-7

Applications Information
LAYOUT CONSIDERATIONS

quire adjustment in order to perfectly cancel the input capacitance of the device.

The LH0024/LH0024C, like most high speed circuitry, is
sensitive to layout and stray capacitance. Power supplies
should be by-passed as near the device as is practicable
with at least 0.01 p.F disc type capacitors. Compensating
capacitors should also be placed as close to device as possible.

The case of the LH0024 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in
order to minimize stray capacitances.

COMPENSATION RECOMMENDATIONS
Compensation schemes recommended in Table 1 work well
under typical conditions. However, poor layout and long
lead lengths can degrade the performance of the LH0024 or
cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout.
In particular, when operating at a gain of -1, C3 may re-

The LH0024/LH0024C is specified for operation without the
use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved
offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink such as the Thermalloy
22288 or equivalent.

When operating the LH0024/LH0024C at a gain of
the value of R1 should be at least 1 kG.

+ 1,

HEAT SINKING

1-133

•

Typical Applications
TTL Compatible Comparator

I.
I.

Offset Null

10K

I pF .

+I5V

RI

+I5V

RZ
101C

~20PF
RI

V... o--~""--,,

IIC

INPUT o--"'\j'V\~""""

-

>'~..~~ OUTPUT

TL/K/5552-3

TLlK/5552-4

Video Amplifier
·IZV

Rl
101C
ZpF

O.I.F

.........-J

llC

INPUT - - , . . . . ."'\j"""',...t--.....;~
RI

~

R2

~

R3

~

R4

R4

101C

A ~ R5 + (R3R4) ~ 5
v
(R3) (R4)
TLlK/5552-5

1-134

r-

:::z::

8

ttJNational Semiconductor

w
N

LH0032
Ultra Fast FET-Input Operational Amplifier
General Description

Features

The LH0032 is a high slew rate, high input impedance differential operational amplifier suitable for diverse applications
in fast signal handling. The high allowable differential input
voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may
be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region.

•
•
•
•

500 VI IJ-s slew rate
70 MHz bandwidth
10120 input impedance
As low as 2 mV max input offset voltage

• FET input
• Peak output current to 100 mA

The LH0032's wide bandwidth, high input impedance and
high output capacity make it an ideal choice for applications
such as summing amplifiers in high speed 0 to A converters, buffers in data acquisition systems and sample and
hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 is guaranteed for
operation over the temperature range - 55'C to + 125'C,
the LH0032C is guaranteed for - 25'C to + 85·C.

Schematic
v·o-----_e~--~----_e~------~--------------_,
RI

R2

R3

11

Ij

M,gw{

I,
II
Ii,I

COMPENSATION

I;

ii

OUTPUT
COMPENSATION
INVERT
INPUT

111

NON·INVERT
INPUT
RS

R5

R7
117

III

R6

OUTPUT
RI

III
R4

V-o---------~--------t_----_e~--_4~----------~
TUK/5265-1

1-135

Absolute Maximum Ratings
Supply Voltage, Vs
Input Voltage, VIN
Differential Input Voltage
Power Dissipation, Po

Operating Ratings

(Note 9)
±18V

Temperature Range, TA
LH0032G
LH0032CG

±Vs
±30Vor ±2Vs
(Note 10)

Steady State Output Current
Storage Temperature Range

L

Junction Temperature, TJ
LH0032G
Thermal Resistance, (Note 8)
8JA G Package
8JC G Package

±1.00mA
65~C to .; 50'C

t

Lead Temp. (Soldering, 10 seconds)

- 55'C to -+ 125'C
- 25'C to + 85'C

300'C

+ 175'C
{OO'C/W
70'C/W

"

DC Electrical Characteristics
Symbol

Parameter

Vs = :f:15V, TMIN';; TA';; TMAX unless otherwise noted (Note 2) (TA = TJ)

Test Conditions
Min

LHOO32
Typ

LHOO32C'
Max

Min

TYP' Max

Units

Vos

Input Offset
Voltage

TA=TJ=25'C
(Note 3)

2

5
10

2

15
20

mV

I:..vosl

Average Offset
Voltage Drift

(Note 4)

15

50

15

50

",VI'C

~T

los

Input Offset
Current

Ie

Input Bias
Current

'VINCM

Input Voltage
Range

CMRR

Common Mode
Rejection
Ratio

AVOL

Open-Loop.
Voltage
Gain

VIN=O

TJ = 25'C (Note 3)
TA = 25'C (Note 5)

25
250
25

50
500
5

pA
pA
nA

TJ = 25'C (Note 3)
TA = 25'C (Note 5)

100
1
50

500
5
15

pA
nA
nA

~VIN= ±10V

' VO= ±10V,
f=1 kHz
RL = 1 kO
(Note 6)

Vo

Output Voltage
Swing

RL = 1 kO

Is

Power Supply
Current

TA=25'C,
10 = 0 (Note 5)

PSRR

Power Supply
Rejection
Ratio

(±5to ±15V)

TJ=25'C

±10

±12

±to

±12

V

50

60

50

60

dB

60

70

60

70

dB

±13

V

57
±10

57
±13.5
18

~Vs=10V

50

'Guaranteed by CMRR test condnion.

,.

1-136

60

±10
20

20
50

60

22

rnA
dB

r

AC Electrical Characteristics Vs =
Symbol

Parameter

Conditions

SR

Slew Rate

ts

Settling Time to 1% of Final Value

ts

Settling Time to 0.1 % of Final Value

tR

Small Signal Rise Time

tD

Small Signal Delay Time

::c
0

±15V, RL = 1k!l, TJ = 25°C(Note7)

Av = +1
Av = -1,

0

Min

Typ

350

500

V/p.s

100

ns

AVIN = 20V

Max

300
Av = +1, AVIN = 1V

Units

w

N

ns

8

20

10

25

Note 1: In order to limit maximum iunclion temperature to + I 75·C, it may be necessary to operate with VS < ± 15V when TA or TC exceeds specific values
depending on the Po wHhin the device package. Total Po is the sum of quiescent and load·related dissipation. See applications notes AN·277, "Applications of
Wide-Band Buffer Amplniers" and AN-253, "High·Speed Operational-Amplifier Applications" for a diSCUSSion of load-related power dissipation.
Note 2: LH0032G is 100% production tested as specified at 25·C, 125"C, and -55·C. LH0032CG is 100% production tested at 25·C only. Specifications at
temperature extremes are verified by sample testing. but these limits are not used to calculate outgoing quality level.
Note 3: Specification is at 25·C junction temperature due to requirements of high-speed automatic testing. Actual values at operating temperature will exceed the
value at TJ ~ 25 C. When supply voltages are ± 15V. no-load operating junction temperature may rise 4O-60"C above ambient, and more under load conditions.
Accordingly. Vas may change one to several mV. and Ie and los will change significantly during warm·up. Refer to Ie and los vs. temperature grsph for expected
values.
Note 4: LH0032G is 100% production tested for this parameter. LH0032CG is sample tested only. LlmHs are not used to calculate outgoing qualHy levels. !J.Vosl
!J.T is the average value calculated from measurements at 25·C and TMAX.
Nole 5: Measured in still air 7 minutes after application of power. Guaranteed thru correlated automatic pulse testing.
Nole 6: Guaranteed thru correlated automatic pulse testing at TJ

~

25"C.

Nole 7: Not 100% production tested; verified by sample testing only. LimHs are not used to calculate outgoing qualily level.
Nole 8: For operating at elevated tarnperatures,the device must be derated besed on the thermal resistance 6JA and TJ max. TJ

= TA + P06JA.

Nola 9: Absclute Maximum Ratings indicate IimHs beyond which damage to the device may occur. Operating Ratings indicate condHions for which the device is
intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
The guaranteed specifications apply, only for the test condHions listed.
Note 10: The maximum power dissipation Is a function of maximum junction temperature TJ max, total thermal resistance 8JA, and, ambient temperature TA. The
maximum allowable power dissipation at any ambient temperature is Po ~ (TJ max - TpJI8JA.
Note II: See RETSOO32X for LH0032G military specnications.

Connection Diagram
OUTPUT
COMPENSATION

8ALANCE/~

COMPENSATION

HC

-L

~

00
v+
70
@
INV~
n I '
+
@
0 0T 1'9'
v\!I.
1

INPUT!/
'

LOUT

6

NON·INV
INPUT

NC

T

NC

NC

TOP VIEW

Order Number LH0032G,
LH0032G/883 or LH0032CG
See NS Package Number G128

1-137

TLlK/5265-23 '

•

Typical Performance Characteristics
Input Voltage Range and Output

22

1 m f=~--+-~~-t--+--1
~
Ii

18

13

161:;0,,",,"""+--1::;;_1""'==1---(

BO,dePlot
80 (Uncompensated)

mVoltage va. SUpply Voltage

24 r~...;.:;r:;--,--.--,

;;
+1

j

RL=lk
Tc = 25'C --+----+---.~
15 1----+--+----1'---1

~

1----+---JoI'~y---I

10

GAIN

~

IIIIm

12 ~-t--t--t--+-~--1
10 '---'-__"---'-__. l - - I . _ . J
5
10
15
20
SUPPlY VOLTAGE I tV)

o

26 Response

Iv=±,

-i1f
-titm

i
I
1.m I
'"

:

135

....

J

J

1M

10M

40
30

~

10

RL=lk

o

100M

10k

1M
10M
FREQUENCY 1Hz)

lOOk

1 1

...~

~

-5

::I

100M

Vs=±15V
""=+10
RL=lk

~
"§!

0

100M

Normalized Input Bias and Offset
104 Current va. Junction Temperature

10

...

270

1-

FREQUENCY (Hz)

~

~

100

Large Signal Pulse
Response

~ +5
l!I
~

::I

.........w.......u.

~u.w

10

Vs= ±15V
""=+1
RL =Ik

I

~ 20

10

Large Signal Pulse
Response

+10

.

g

12

100M

10

-

14

225

~~I~ +iJv

;:

16

6

lOOk
1M
10M
FREQUENCY 1Hz)

90
80

i

18

135 c;
180

COmmon Mode Rejection
Ratio va. Frequancy

51

~ m

o LU.IlIIWL...U.IlIIWUJ.i
10k

lOOk
1M
10M
FREQUENCY 1Hz)

!

24
22

kttffi~~~~~~-+H#~

20

10k'

Large Signal Frequency

~~~h;rmnr.........mn

60

r

m

10
15
SUPPLY VOLTAGE I± V)

45
90

1111111

o

O ' - -.........----'-_--'_-.J

Bode Plot (Unity Gain

80

!

PHASE

~

E 14

i

'I

-5

0

-10

-10

~

100

200

300

400

10"

500

100

TIME Ins)

200

300

400

500

25 45 65 85 105 125 145 165
JUNCTION TEMPERATURE I'C)

TIME Ins)

NormaUzed Input Blaa ,
100 Current During Warm-Up

Ii
":;

1

Vs ±15V
TA-25'C

tZO

Total Input Noise
Voltage va. Frequency'

118

10G
gO

.0
10

60

RS-l."

sa I-40
]0
20

1

1

I--

......
AS 101

10

1

o

11111

o
2

4

10

10

TIME FROM POWER TURN·ON IMINUTES)

101

.

10'

FREQUENCY (Hz)
TlIK/5265-2
'Noise vollage includes contribution

from source resistance.

1-138

r::r::
Q

Auxiliary Circuits

Q
Co)

N

Output Short Circuit Protection

Offset Null

,....-....--v+

v+
LM113
11

6211

-j
v-

v-

TL/K/5265-15

TUK/5265-16

Typical Applications
Unity Gain Amplifier

10X Buffer Amplifier
5 pF

8 pF-l0 pF

2k
INPUT-..J\oM-"'I
11
>--.-OUTPUT

v_10

J

OUTPUT

9k

l00pF

100
TUK/5265-17

TL/K/5265-18

100X Buffer Amplifier

Non-Compensated Unity Gain Inverter

v+

v+
10k

+
10k

v-

OUTPUT

270

10k
OoOI

100

TLlK/5265-19

T

v
TLlK/5265-20

1-139

Typical Applications

(Continued)

High Speed Sample and Hold
l00ll

VuuT

v+----~~~--

__

LOGIC .....
CONTROL
.....___'Use polystyrene dielectric for minimum drift

. TLlK/5265-21

v-

r----*----.,I

High Speed Current Mode MUX

I

3.8 pF

R5

11

12

14

TL/K/5265-22

Applications Information
POWER SUPPLY DECOUPLING
The LHOO32/LH0032A, like most high speed circuits, is sensitive to layout and stray capacitance. Power supplies
should be by passed as near to pins 10 and 12 as practicable with low inductance capacitors such as 0.01 ",F disc
ceramics. Compensation components should also be
located close to the appropriate pins to minimize stray
reactances.

INPUT CURRENT
Because the input devices are FETs, the input bias current
may be expected to double for each 11'C junction temperature rise. This characteristic is plotted in the typical performance characteristics graphs. The device will self-heat due to
internal power dissipation after application of power thus
raising the FET junction temperature 40-60'C above freeair ambient temperature when supplies are ± 15V. The de1-140

.-------------------------------------------------------~r

%

g

Applications Information (Continued)
Compensating the LH0032
With the LH0032, two compensation schemes may be used,
depending on the designer's specific needs.

vice temperature will stabilize within 5-10 minutes after application of power, and the input bias currents measured at
that time will be indicative of normal operating currents. An
additional rise would occur as power is delivered to a load
due to additional internal power dissipation.
There is an additional effect on input bias current as the
input voltage is changed. The effect, common to all FETs, is
an avalanche-like increase in gate current as the FET gateto-drain voltage is increased above a critical value depending on FET geometry and doping levels. This effect will be
noted as the input voltage of the LH0032 is taken below
ground potential when the supplies are ±15V. All of the
effects described here may be minimized by operating the
device with Vs~ ±15V.
These effects are indicated in the typical performance
curves.

The first technique is shown in Figure 14. It offers the best
0.1 % settling time for a ± 10V square wave input. The compensation capacitors Cc and CA should be selected from
Figure 15 for various closed-loop gains. Figure 16 shows
how the LH0032 frequency response is modified for different value compensation capacitors.
Although this approach offers the shortest settling time, the
falling edge exhibits overshoot up to 30% lasting 200 to
300 ns. Figure 17 shows the typical pulse response.
R3

R2

INPUT CAPACITANCE
The input capacitance to the LH0032/LH0032C is typically
5pF and thus may form a significant time constant with high
value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a
small capacitor across the feedback resistor. The value is
strongly dependent on layout and closed loop gain, but will
typically be in the neighborhood of several picofarads.
In the non-inverting configuration, it may be advantageous
to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents
away from the non-inverting input and to reduce the effective input capacitance. A unity gain follower so treated will
have an input capacitance under a picofarad.

DUTPIIT

INPUT 1_"o'llRl",""_"'I

-15V
TLlK/5265-27

,

FIGURE 14. LHOO32 Frequency Compensation Circuit

I

810

iii;$

II

HEAT SINKING
While the LH0032/LH0032A is specified for operation without any explicit heat sink, internal power dissipation does
cause a significant temperature rise. Improved bias current
performance can thus be obtained by limiting this temperature rise with a small heat sink such as the Thermalloy No.
2241 or equivalent. The case of the device has no internal
connection, so it may be electrically connected to the sink if
this is advantageous. Be aware, however, that this will affect
the stray capacitances to all pins and may thus require adjustment of circuit compensation values.

l'\cC

5

!il

I

ill

1111

C

I

o
1

10

100

CLOSED LOOP GAIN
TL/K/5265-28

FIGURE 15. Recommended Value of.
Compensation Capacitor vs. Closed-Loop
Gain for Optimum Settling Time

For additional applications information request Application Note AN-253.

1-141

Co)

N

~ r-----------------------------------~----------------------------------------------------_,
CO)

g

Applications Information (Continued)

:::E:

H-iMA~V0N.L e~m=~p~~ll~~I-~

..:.I

Btl

=

6D I:::IoI~N'H!IIII;Cc 1 pF
"'... ee=6pF
0
~
~~
~
=10 F
z 40
-45

~

t\

~.

~

i~

i!jm_-

~

~

~

!ilE

"iiF!::::=~I'MfIN~~.N-HIIIH -90 i

I=11~t~·=~mlOPFl

20 eC

PIIAS
111111
I..""
VS=",16V
I[C~C=lrFi"'"''-'--'''.,...-135
RL=lk
1m I II '"
TA=250C
Cc=Ii.j: 1-'\
-20 L...1..LJ"JJ.""Wl-m.LJJ.WUL...J....L'.LWI
~iL.J.~WU-1Bt1
10k
lOOk
1M
10M
100M

o

FREQUENCY (Hz)

CLOSED LOOP GAIN
TLlK/5265-29

TL/K/5265-31

FIGURE 16. The Effect of Various
Compensation Capacitors on LHOO32
Open Loop Frequency Response

FIGURE 18. Recommended Value of
Compensation Capacitor vs. Closed-Loop
Gain for Optimum Slew Rate

10V

I

10V

\

\

10V

\

I\I.·~'
V

I

/

\

10llns

\
~

10V

SOns

TL/K/5265-30

TLlK/5265-32

FIGURE 17. LHOO32 Unity Gain Non-Inverting
Large Signal Pulse Response:
TA = 2SoC,Cc = 10pF,CA = 100pF

FIGURE 19. LHOO32 Unity Gain Non-Inverting
Large Signal Pulse Response:
Cc = 5 pF, CA =1000 pF

If obtaining minimum ringing at the falling edge is the primary objective, slight modification to the above is recommended. It is based on the same circuit as that of Figure 14.
The values of the unity gain compensation capacitors Cc
and CA should be modified to 5 pF and 1000 pF, respectively. Figure 18 shows the suitable capacitance to use for various closed-loop gains. The resulting unity gain pulse response waveform is shown in Figure 19. The settling time to
1% final value is actually superior to the first method of
compensation. However, the LH0032 suffers slow settling
thereafter to 0.1 % accuracy at the falling edge, and nearly
four times as much at the rising edge, compared to the previous scheme. Note, however, that the falling edge ringing is
considerably reduced. Furthermore, the slew rate is consistently superior using this compensation because of the
smaller value of Miller capacitance Cc required. Typical im·
provement is as much as 50%. A more detailed discussion
of this effect is provided in the Slew Response section of
this Application Note.
'

schematic, in which a 2700 resistor and a 0.01 p.F capacitor
are shunted across the ,inputs of the device. This lag compensation introduces a zero in the loop modifying the response such that adequate phase margin is preserved at
unity gain crossover frequency. Note that the circuit requires
no additional compensation.

a

INPUT

I~~lk~~lk~5~~
~
f--'~
270

lk

0.01,...

~.

tJ

LH0D32 >1.;..1
6,;/

~10

OUTPUT

..

-l:V 0.01'"f-=
TL/K/5265-33

FIGURE 20. LH0032 Non-Compensated
Unity Gain Compensation

The second compensation scheme works well with both inverting or non-inverting modes. Figure 20 shows the circuit

1·142

r-------------------------------------------------------------------------.r%
8

ttlNational Semiconductor

~

N

LH0042
Low Cost FET Op Amp
General Description
The LH0042 is a FET input operational amplifier with very
high input impedance and low input currents with no compromise in noise, common mode rejection ratio, open loop
gain, or slew rate. The LH0042 is internally compensated
and is free of latch-up.
The LH0042 is specified for operation over the - 55'C to
+ 125'C military temperature range. The LH0042C is specified for operation over the - 25'C to + 85'C temperature
range.

The LH0042 op amp is intended to fulfill a wide variety of
applications for process control, medical instrumentation,
and other systems requiring very low input currents. The
LH0042 provides low cost high performance for such applications as electrometer and photocell amplification, picoammeters, and high input impedance buffers.

Features
• High open loop gain-100 dB typ
• Internal compensation
• Pin compatible with standard IC op amps
(TO-99 package)

Connection Diagram
Metal Can Package

Ne

v-

TUKl5557-3

Top View
Order Number LH0042H-MIL, LH0042H or LH0042CH
See NS Package Number H08D

1-143

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
±22V
Power Dissipation (see Graph)
SOOmW
Input Voltage (Note 1)
±1SV
±30V
Differential Input Voltage (Note 2)
Voltage Between Offset Null and V-

Short Circuit Duration
Operating Temperature Range
LH0022,LH0042,LHOOS2
LH0022C, LH0042C, LHOOS2C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)

Continuous
- SS·C to + 12S·C
- 2S·C to + 8S·C
-6S·Cto +1S00C
3000C

±o.sv

DC Electrical Characteristics for LH0022/LH0022C (Note 3) TA =

TJ(Max)

Limits
Parameter

Conditions

LH0022
Min

Input Offset Voltage

Rs ~ 100 kn, TA= 2S·C
Vs = ±1SV

Max

2.0

4.0

Rs

~

100kn

10

Offset Voltage Drift with Time
Input Offset Current

Units

Typ

Max

3.S

6.0

mV

7.0

mV

1S

3
TA = 2S·C (Note 4)

/LVrC

4
2.0

1.0

/LV/week
S.O

pA

2.0

O.S

nA

Doubles Every 10·C

Doubles Every 100C

0.1

0.1

0.2

Temperature Coefficient of
Input Offset Current
Offset Current Drift with Time
Input Bias Current

Min

S.O

Rs';; 100kn, Vs = ±1SV
Temperature Coefficient of
Input Offset Voltage

LH0022C

Typ

TA = 2S·C (Note 4)

pAlweek
2S

pA

10

2.S

nA

Doubles Every 100C

Doubles Every 10·C

Differential Input Resistance

1012

1012

Common Mode Input Resistance

1012

1012

n

4.0

4.0

pF

S

Temperature Coefficient of
Input Bias Current

Input Capacitance

10

10

n

Input Voltage Range

Vs = ±1SV

±12

±13.S

±12

±13.S

V

Common Mode Rejection Ratio

Rs';; 10 kn, VIN = ±10V

74

90

70

90

dB

Supply Voltage Rejection Ratio

Rs';; 10kn, ±SV ~ Vs ~ ±1SV

74

90

70

90

dB

Large Signal Voltage Gain

RL=2kn,VOUT= ±10V
TA = 2S·C, Vs = ±1SV

7S

100

7S

100

V/mV

RL = 2kn, VOUT = ±10V
Vs = ±1SV

30

Output Voltage Swing

Output Current Swing

RL = 1 kn, TA = 2S·C
Vs = ±1SV

±10

RL=2kn,Vs= ±1SV

±10

VOUT = ±10V, TA = 2S·C

±10

V/mV

30
±12.S

±10

±12

V

±1S

mA

±10
±1S

±10

V

Output Resistance

7S

7S

n

Output Short Circuit Current

2S

2S

mA

Supply Current

Vs = ±1SV

Power Consumption

Vs = ±1SV

2.0

2.S
7S

1·144

2.4

2.8

mA

8S

mW

DC Electrical Characteristics for LH0042/LH0042C (Note 3)
Limits
Parameter

Conditions

LHOO42
Min

Input Offset Voltage

Rs"; 100k!l

Temperature Coefficient of
Input Offset Voltage

Rs"; 100k!l

LHOO42C

Typ

Max

5.0

20

Min

10

Offset Voltage Drift with Time

Units

Typ

Max

6.0

20

15

7.0

mV
/LV/'C

10

/LV/week

Input Offset Current

TA = 25'C (Note 4)

1.0

5.0

2.0

10

pA

Input Bias Current

TA = 25'C (Note 4)

10

25

15

50

pA

Temperature Coefficient of
Input Bias Current

Doubles Every 10'C

Doubles Every 10'C

Differential Input Resistance

1012

1012

Common Mode Input Resistance

1012

1012

!l

4.0

4.0

pF

Input Capacitance

!l

±12

±13.5

±12

±13.5

V

Common Mode Rejection Ratio

Rs"; 10k!l, VIN = ±10V

70

86

70

80

dB

Supply Voltage Rejection Ratio

Rs"; 10k!l, ±5V,,; Vs"; ±15V

70

86

70

86

dB

Large Signal VOltage Gain

Rs"; 2 k!l, VOUT = ±10V,
TA = 25'C

50

100

25

100

V/mV

±12.5

±10

Input Voltage Range

30

RS";2k!l,VOUT= ±10V
Output Voltage Swing

Output Current Swing

RL = 1 k!l, TA = 25'C

±10

RL = 2k!l

±10

VOUT = ±10V

±10

25

V/mV
±12

V

±15

mA

±10
±15

±10

V

Output Resistance

75

75

!l

Output Short Circuit Current

20

20

mA

Supply Current

Vs = ±15V

Power Consumption

Vs = ±15V

2.5

3.5
105

1·145

2.8

4.0

mA

120

mW

DC Electrical Characteristics for LH0052/LH0052C (Note 3) (Continued)
Limits
Parameter

Conditions

LHOO52
Min

Input Bias Current

TA = 25°C (Note 4)

Typ

Max

0.5

2.5

Min

Typ

Max

1.0

5.0

pA

0.5

nA

2.5
Temperature Coefficient of
Input Bias Current

Units

LHOO52C

Doubles Every 1COC

Doubles Every 1COC

Differential Input Resistance

1012

1012

n

Common Mode Input Resistance

1012

1012

n

4.0

pF

Input Capacitance

4.0
±12

±13.5

±12

±13.5

V

Input Voltage Range

Vs = ±15V

Common Mode Rejection Ratio

Rs:S; 10 kn, VIN = ± 10V

74

90

70

90

dB

Supply Voltage Rejection Ratio

Rs:S; 10 kn, ±5V:S; Vs:S; ±15V

74

90

70

90

dB

Large Signal Voltage Gain

RL = 2 kn, VOUT = ±10V
Vs = ±15V, TA = 25°C

75

100

75

100

V/mV

RL = 2 kn, Your = ±10V
Vs = ±15V

30

Output Voltage Swing

RL = 1 kn, TA = 25°C
Vs = ±15V

±10

RL = 2kn, Vs = ±15V

±10

Output Current Swing

Your =

±10

±10V, TA = 25°C

Output Resistance

30
±12.5

±10

Output Short Circuit Current

±10

25
Vs = ±15V

Power Consumption

Vs = ±15V

±12

V

±15

mA

75

n

±10
±15
75

Supply Current

V/mV

V

3.5

3.0

105

AC Electrical Characteristics for all amplifiers (TA =

mA

25

3.0

3.8

rnA

114

mW

25°C, Vs = ±15V)

Limits
Parameter

Conditions

Slew Rate

Voltage Follower

Large Signal Bandwidth

Voltage Follower

LHOO22/42/52

Min

Typ

1.5

3.0

Units

LHOO22C/42C/52C

Max

Min

Typ

1.0

3.0

Max
V/p.s

40

40

kHz

Small Signal Bandwidth

1.0

1.0

MHz

Rise Time

0.3

1.5

0.3

1.5

Overshoot

10

30

15

40

Settling Time (0.1 %)

aVIN = 10V

Overload Recovery

p.s

%

4.5

4.5

p's

4.0

4.0

p.s

I

,
1-146

AC Electrical Characteristics for all amplifiers (TA = 25°C, Vs =

± 15V) (Continued)
Limits

Parameter

Conditions

LHOO42
Min

Input Noise Voltage

Rs
Rs
Rs
Rs

=
=
=
=

10 kO, fo
10 kO, fo
10 kO, fo
10kO,fo

=
=
=
=

Typ

LHOO42C
Max

Min

Units

Typ

Max

150

150

nV/yHz

100 Hz

55

55

nV/yHz

1 kHz

35

35

nV/yHz

10kHz

30

30

nV/yHz

12

12

",Vrms

10 Hz

BW = 10 Hz to 10kHz, Rs

=

10 kO

Note I: For supply vo~ages less than ± 15V, the absolUle maximum inpUl vo~e is equal to the supply voltage.
Note 2: Rating applies for minimum source resistance of 10 kll, far source resistances less thsn 10 kll, maximum differential input voltage is ± 5V.
Note 3: Unless atherwise specHied,these speciflCatians apply far ±5V,;; Vs';; ±20Vand -55'C,;; TA';; +125'CfortheLH0042and -25'C,;; TA';; +85'C
for the LH0042C. Typical values are given for TA = 25'C.
Not. 4: Input currents are a strang function of temperature. Due ta high speed testing they are specified at a junction temperature Tj = 25'C. Self heating will
cause an increase in current in manual tests. 25"C spec is guaranteed by testing at 12SOC.

Note 5: See RETS0042X for the LHOO42H military specifications.

Auxiliary Circuits (S~own for TO-99 pin out)
Offset Null

INPUT

Protecting Inputs from

r~·.
~;r:

± 150V Transients
V'

......
......
lOOK

m,

"Mt

10K

','

2~1
~,

-'-

~

~

lOOK
y

LH0042

3y

6

OUTPUT

4

....

V-

~

Note: All diodes are ultra low leakage.

TLlK/5557-5

V'
TL/K/5557-6

Boosting Output Drive to

± 100 mA

·-r~~
l~;Y ~

4

OUTPUT

VTLlK/5557 -7

1-147

LH0042

en

()

V'

:::r
CD
3

!

c;"

c

i"

ca

INVERT
INPUT

;

+
NONIr::

0

_F

•

3

A~

=14

11

01
RS
40K

OUTPUT
RI

II
Cl
]0 pF

.

....
....
&

OlD

RI1

R4

•

OFFSET
NULL

••

10K POT (EXTERNAL)

•

SDK

• •

•• -.

••

0 V-

OFFSET

NUll
Tl/K/5557 -1

Typical Applications
Precision Voltage Comparator

v·

-sv
INPUT Oo..J\M_"t

01
IN914

..-o TTL
OUTPUT

>~~\/--

RZ

10K
REFERENCE o-~Nv-'"

vTL/K/5557 -9

Subtractor for Automatic Test Gear

y+

'IN1~

I

I

I

:

I
I

-,

I
I

"':~O IL ~
LfU
____
AHD~

·Low ......g•

--{ II

_±...1

• IN20-_ _ _ _ _ _ _ _ _ _.....

TUK/5557-11
SOI1T ~ lOX (SIN1 - sIN21

Sensitive Low Cost "VTVM"
19K

'15V

INPUT

lK
8M

",
>~"""OOUTPUT

1M

lOOK
1%

O"1'F

811K
1%

]

lOW LEAKAGE
POLVSlYRENf

-15V
10K
1%

-

TUK/57n-12

1-149

~

8

,---------------------------------------------------------------------------------,
Typical Applications (Continued)

3

Ultra Low Level Current Source
"SV
10K

1

lOUT • III nA

ZN4111

lM113
,V, • 1,llV

JK

-ISV

TLlK/5777-13

Sample and Hold

I
I
I
I

M~G

INPUT

SAM~EIHOW

r---.J

>-411.....0 OUTPUT

1:1 D-I>-.J
~

L __

~15L

_ _ .J
'Polystyrene dielectric.
TLlK/5557 -16

Re-Zerolng Amplifier
R2
100M
V'

INPUT

Rl

O------..

10M

---J\JY\_---.~

rI
REZERD

COMM~

I

>';'&.-0 OUTPUT

I
I

o-rO-C>-.J
L _

',!!!11D.!!!, _

-.J

vCl---{).Ol p.F polystyrene.

1-150

TLlK/5557 -17

Typical Performance Characteristics
Input Offset Current
vs Temperature

Maximum Power Dissipation
III

1....

111

--

I

.11

!•

co

a:

I

,

lao

i

II

l-

.o·IIfAT_

TD·I .... DIP

I ...

!
'oM -

IID'C/W

.,/

~co

i

V
0.1

0.01

150

III

25

zao

Input Offset Voltage
vs Temperature

65
85
105
T- TEMPERATURE ('CI

125

45

g

5DI

.

S

1/

1:

E
co

~

l-

!!! -500
!!!
~

V

-111D

I'

V

L

-60

-21

~

10

~

20

6D

101

148

~

III

1011

101M

II

Rs·ll1n

II

I'

ZI

11

FREDUUCY (Hz)

o

Il

12

I

4

a:
~

i

11

V
./

•

..3

=
~

111

.i

lDB

rffifIrl """!
1"

I-

1111<

·IM

11M

41

e
!:;

31

i

za

T.=25'C
Vs .. t15

PREVIOUS Vas" 1 .V

~

i!!!

~

....ill

18

'...

~

11

10

-18

I'I'

1

20

TIME FROM POWER APPLICATION (MIN)

Itl

co

i!

..3

I-

su....y VOLTAGE ('V)
Change in Input Offset
Voltage Due to Thermal
Shock vs Time
2I"C wcl

;;

..

I

;;

g

V
V
:/

lJ.Ut'

Stabilization Time of
Input Offset Voltage from
Power Turn-On

=

T. =25'C

.=e
g
i

7

SOURCE RESISTANCE ((I}

Common Mode Input Voltage
vs Supply Voltage

=

1..

1_

fa' 1 kHz

50

I-

~

111111 "
¥S-.I&V
TA-zre

.

INPUT SOURCE RESISTANCE IU}

Total Input Noise Voltage'
vs Frequency
~

lDB

I-

1M

'~i~

111

I;;!

~

TEMPERATURE ('C)

m

'A "'25°C

-

l-

.1
1Il0l(

16

210

i

I-

lH1M2

310

e
!:;
co

I-

;!
;;;

"

VS~~";IV

.. 3.
..
;,

III

l-

1/

i!

~

e
l-

I-

411

fi

~

Vos

12

14

"

100

90

T..... UOC

~~

V

T•.

~ r-

!ZS'C

I
10

6

"

~

28

!
..~

1--+-+t+fjf'!t---+-+-++ttHi
n 1--+-+HlftH+---+-+-++ttHi

e

Vs' ,ISVt+HttI--+--HH-tttll

T.· 25'C H-l-H-fb"""""'!"'IFFfml

24

20 1--+-+~I+H+---+-+-++ttHi

1--+--bI'H-I+H+---+-+-++ttHi
I&I-+>f-H-I+H+---+++++++Il

18

14

1--¥-H-ttt+tt-+-t-++tI#I

Z.O

-

~

10

........ t - .......

..
l!:;_

Vs=

6.0

A

4

1/
1

o

5

10

..
i..
.~
.~

~

,:.l.-zsi:

Vs" "5V

14

H-1ffit1tt--1+H1lIII-+tt+ R, ZK
0

IZ H+t!I.+tffflllH+t+"T:,~A Z5 C
0

10

>

0

3.

ZS
ZO
10
OUTPUT CURRENT (. mAl

Ik

10k

1M

lOOk

Frequency Characteristics vs
Ambient Temperature
1.4

."

10

...

."

INPUT

~

OUTPUT
-4

'RESPONSE

r- .....

-5

T:!';,..

0:

U

Vs= !lSV

-I

...

1.0

~

OUTPUT

TIR~JSIE~T

1.2

;;!
>
>

INPUT

.!

...~

I Vs= ~15V

15

S

...-r'"'l

r-.. :JLEiRAiE

~.R.

I""N.

CLOSED LOOP

RL =211

-10

BArilDTt

C, -IOOpF
D.6

-Il

10

o

.ZOO

.400 .100 .100

TIME ",.1

T... -+25C C

140

..

1.2

~

.~

1.0

5

=

100

ii

10

5

10

""'''

.."
I!;

D.I

IIIIIII~

D.I

II

15

SUPPLY VOLTAGE ItVI

40
Zo

o
20

100

I.

III'

. '"''''

f1:3;

0:

5

-ZO

ID"
10'

~,~~.1

10z

Av-IO

UHIL

10

1IIIlJII.-

~

Av

Av·'
10k

zo

60

100

140

TEMPERATURE rCI

Output Resistance vs
Frequency

110

.:: IZO

;;!
>

!::

-60

T!i<.1

Frequency Characteristics vs
Supply Voltage

1.4

!!:

10M

FREOUENCY 1Hz)

Transient Response

T... "25 C

ZO

15

16

-,sv

'.5

10

Vs" -'5V
RL -ZK

.
~

.."

12

V"
L"OUTPUTVOLTAGE_
SWING - VII.

SUPPLY VOLTAGE (·VI

"

'\

I

Voltage' Follower Large
Signal Response

~

~

16

./

,.

Output Voltage SWing vs
Frequency

T. 0125 C

LOAD RESISTANCE Ik"l

IZ

=
It:
20

'"

1.0

20

'"c

c
It:
0.5

24

~

Current Limiting

15

c
It:

~

./

1
1
1

SUPPLY VOLTAGE I'VI

Output Voltage Swing
vs Load Resistance

..

TA"'ZSC

Z8

It:

15

RL ~2K!!

3&
3Z

e

I

SUPPLY VOLTAGE (,VI

Z8

~

Tl.-66~ ~

110

80

10

40

I

..

iii

0:
0:

.

Output Swing vs
Supply Voltage

Voltage Gain

3.0

lOOk

FREQUENCY (HzI

1M

ur'

Open Loop Transfer
Characteristics vs Frequency

-

Vs· t15V

T.· Z5'C
RL ,..,.2 KH

~AIN

"'\

PHl~

~

10

I

-45 Ii:

~

SHltT

I'\.
100

lk

46

,

"- \

-10

-135

~

~

-III

10k IIOk 1M 10M

FREQUENCY (HzI

TlIK/5557 -19

\
1-152

.-:::J:

o.....

tflNational Semiconductor

o
.....

LH0101 Power Operational Amplifier
General Description

Features

The LH0101 is a wideband power operational amplifier featuring FET inputs, internal compensation, virtually no crossover distortion, and rapid settling time. These features make
the LH0101 an ideal choice for DC or AC servo amplifiers,
deflection yoke drives, programmable power supplies, and
disk head positioner amplifiers. The LH0101 is packaged in
an 8 pin TO-3 hermetic package, rated at 60 watts with a
suitable heat sink.

•
•
•
•
•
•
•
•

5 Amp peak, 2 Amp continuous output current
300 kHz power bandwidth
850 mW standby power (± 15V supplies)
300 pA input bias current
10 V/",s slew rate
Virtually no crossover distortion
2
settling time to 0.010/0
5 MHz gain bandwidth

"'S

Schematic and Connection Diagrams

v+
CASE IS
/OUTPUT

SC+

FEEDBACK

+

3

OUTPUT (CASE)
TL/K/5558-2

Top View
Order Numbers LH0101K,
LH0101K-MIL, LH0101CK,
LH0101AK,
LH0101AK·MIL or LH0101ACK
See NS Package Number K08A
Note: Electrically connected internally. no
connection should be made to pin.

SC-

vTL/K/5558-1

1-153

....
o
....
o

Absolute Maximum Ratings

....::E:

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 5)
±22V
Supply Voltage, Vs
5W
Power Dissipation at T A = 25°C, Po
Derate linearly at 25°C/W to zero at 150°C,
Power Dissipation at TC = 25°0
Derate linearly at 2"C/W to.zero at 1500C
Differential Input Voltage, VIN

Peak Output Current (50 ms pulse), IO(PK)

62W

±40V.but

±20Vbut
Input Voltage Range, VCM
Thermal ResistanceSee Typical Performance Characteristics

Parameter

- 25°C to + 85°C
- 55°C to + 125°C

Storage Temperature Range, TSTG

- 65°C to + 1500C

Lead Temperature (Soldering

±Vs

Typ Max

1

5

Units
Max
10

mV

15

150

300

p.V/W

10

10

p.V/oC

VCM = 0

Input Offset Voltage
with Temperature
Input Bias Current

.I

LH0101 C/AC
T
T
A!> MAX
'I
LH0101/A
los

3

Typ

(Note 2)

Input Offset Voltage
with Dissipated Power

Is

Min

7

TMIN !> TA!> TMAX \

I:Noslb.T Change in

LH0101C
LH0101

LH0101AC
LH0101A

Conditions

Input Offset Voltage

I:Noslb.Po Change in

2600C

±15V, TA = 25°C unless otherwise noted

Min
Vos

1500C

< 10 sec.)

ESD rating to be determined.

DC Electrical Characteristics (Note 1) Vs =
Symbol

Continuous

Operating Temperature Range, T A
LH0101AC,LH0101C
LH0101A, LH0101.
Maximum Junction Temperature, TJ

< ±Vs
<

5A

Output Short Circuit Duration
(within rated power dissipation,
Rsc = 0.350., T A = 25°C)

Input Offset Current
T

A!>

T

.ILH0101C/AC
MAX
LH0101lA

. ·1

Vo = ±10VRL = 100.

AVOL

Large Signal
Voltage Gain

Vo

Output Voltage Swing Rsc = 0

RL = 1000.

50

200

±12

±12.5

300

1000

60

60

300

1000

75

250

15

15

75

250
50

200

±12

±12.5

Av = +1

RL = 100.

±11.25 ±11.6

±11.25 ±11.6

Note 3

RL = 50.

±10.5

±11

±10.5

±11

CMRR

Common Mode
Rejection Ratio

b.VIN = ±10V

85

100

85

100

PSRR

Power Supply
Rejection Ratio

b.Vs = ±5Vto ± 15V

85

100

85

100

Is

Quiescent Supply
Current

pA
nA
pA
nA

V/mV

V

dB

28

1·154

35

28

35

mA

r-

AC Electrical Characteristics (Note 1), Vs =
Symbol

Parameter

%

LH0101
LH0101A

Conditions
Min

en

Equivalent Input

f = 1 kHz

Input Capacitance

f = 1 MHz

Power Bandwidth, -3 dB
SR

Slew Rate

7.5

Small Signal Rise or

AV =

Fall Time

+1

Small Signal Overshoot
GBW

Gain·Bandwidth Product

Is

Large Signal Settling

Max

Min

Typ
25

Units
Max
nV.JHz

3.0

3.0

pF

300

300

kHz

10

10

V/p,s

200

200

ns

(Note 4)

RL = 100
t r , tf

Typ

o.....

LH0101C
LH0101AC

25

Noise Voltage
CIN

o.....

±15V, TA = 25'C

4.0

10

10

%

5.0

5.0

MHz

2.0

2.0

p,s

0.008

0.008

%

(Note 4)

RL = co
Time to 0.Q1 %
THO

Total Harmonic Distortion

Po = 1 OW,

f = 1 kHz

RL = 100

Note 1: Specification is at TA ~ 25'C. Actual values at operating temperature may differ from the TA ~ 25'C valUe. When supply voltages are ±15V, quiescent
operating junction temperature will rise approximately 2TC>TS>TA

-=- AMBIENT TEMP. TA
TUK/5558-8

TL/K/5558-9

FIGURE 2. Semiconductor-Heat Sink Thermal Circuit
The junction-to-case thermal resistance 8JC specified in the
data sheet depends upon the material and size of the package, die size and thickness, and quality of the die bond to
the case or lead frame. The case-to-heat sink thermal resistance 8es depends on the mounting of the device to the
heat sink and upon the area and quality of the contact surface. Typical8cs for a TO-3 package is 0.5 to 0.7·C/W, and
0.3 to 0.5·C/W using silicone grease.

FIGURE 3. Driving Inductive Loads
Capacitive loads may be compensated for by traditional
techniques. (See "Operational Amplifiers: Theory and Practice" by Roberge, published by Wiley):
V+
Cc

The heat sink to ambient thermal reSistance 8SA depends
on the quality of the heat sink and the ambient conditions.
COoling is normally required to maintain the worst case operating junction temperature TJ of the device below the
specified maximum value TJ(MAX). TJ can be calculated
from known operating conditions. Rewriting the above equation, we find:

HC

TL/K/5558-10

8JA = TJ - TA· C/W
Po
TJ = TA + P08JA·C
Where: Po (Vs - VOUT)IOUT
for a DC Signal

+ Iv+ -

8JA = 8JC + 8es + 8SA and Vs
8JC for the LH0101 is about 2"C/W.

FIGURE 4. Rc and Cc Selected to
Compensate for Capacitive Load
A similar but alternative technique may be used for the
LH0101:

(V-)lla

V+

= Supply Voltage

Stability and Compensation
As with most amplifiers, care should be taken with lead
dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pickup" and maximize the frequency of
the feedback pole by minimizing the capacitance from the
input to ground.

YlN~W""'-I

A feedback pole is created when the feedback around any
amplifier is resistive. The parallel resistance and capacitance from the input device (usually the inverting input) to ac

TL/K/5558-11

FIGURE 5. Alternate Compensation for Capacitive Load

1-159

o
.....
o.....

~

C)
~

C)

:::E:

....I

r-------------------------------------------------------------------------------------,
Application Hints (Continued)
Output SWing Enhancement
When the feedback pin is connected directly to the output,
the output voltage swing is limited by the driver stage and
not by output saturation. Output swing can be increased as
shown by taking gain in the output stage as shown in High
Power Voltage Follower with Swing Enhancement below.
Whenever gain is taken in the output stage, as in swing
enhancement, either the output stage, or the entire op amp
must be appropriately compensated to account for the additional loop gain.

Output Resistance
The open loop output resistance of the lH0101 is a function
of the load current. No load output resistance is approximately 100. This decreases to under 10 for load currents
exceeding 100 mAo

Typical Applications
See AN261 for more information.
+15

YIN

TL/K/5558-12

TL/K/5558-13

FIGURE 6. High Power Voltage Follower

FIGURE 7. High Power Voltage Follower
with Swing Enhancement

v+

v-

TLIKl5558-14

FIGURE 8. Restricting Outputs to Positive Voltages Only
Following is a partial list of sockets and heat dissipators for use with the lH0101. National assumes no responsibility for their
quality or availability.
8-lead TO-3 Hardware
SOCKETS
Keystone 4626 or 4627
Keystone Electronics Corp.
AAVID Engineering
Robinson Nugent 0002011
30 Cook Court
49 Bleecker St.
Azimuth 6028 (test socket)
laconia, New Hampshire 03246
New York, NY 10012
HEAT SINKS
Azimuth Electronics
Robinson Nugent Inc.
Thermalloy 2266B (35°C/W)
2377 S. EI Camino Real
800 E. 8th St.
IERC LAIC3B4CB
San Clemente, CA 92572
New Albany, IN 47150
IERC HP1-T03-33CB (7"C/W)
IERC
Thermalloy
AAVID 5791B
135 W. Magnolia Blvd.
P.O. Box 34829
MICA WASHERS
Dallas, TX 75234
Burbank, GA 91502
Keystone 4658

1-160

Typical Applications (Continued)
v+-t----~--------~

TUK/5558-15

FIGURE 9. Generating a Split Supply from a Single Voltage Supply

TL/K/5558-16

FIGURE 10. Power DAC

lk

as:!

2k

-20
TUK/5558-17

FIGURE 11. Bridge Audio Amplifier

1·161

~ r---------------------------------------~------------------------------------------------_,

o
C;

Typical Applications (Continued)

::I:
..J

1k

6.9V
LM199

t----

rt----

+5 TO +35

SNO

-5 TO -35

TUK/5558-18

FIGURE 12. ± 5 to ± 35 Power Source or Sink

+15

TL/K/5558-19

FIGURE 13. Remote Loudspeaker via Infrared Link

+15

YIN

lOUT = RIENIE

YIN

0EfLECT10N
YOKE

TL/KJ5558-20

FIGURE 14. CRT Deflection Yoke Driver

1-162

,-----------------------------------------------------------------------------, r
::::t:
Q
Typical Applications (Continued)
....

....
Q

SERVO
MOTOR

TUK/5558-21

FIGURE 15. DC Servo Amplifier

-15
TL/K/5558-22

FIGURE 16. High Current Source/Sink

1·163

...

o

~

r-----------------------------~----------------------------------------_.

t!lNational Semiconductor

LM10 Operational Amplifier and Voltage Reference
General Description
The circuit is recommended for portable equipment and is
The LM10 series are monolithic linear ICs consisting of a
precision reference, an adjustable reference buffer' and an . completely specified for operation from a Single power cell.
In contrast, high output-drive capability, both voltage and
independent, high quality op amp.
current, along with thermal overload protection, suggest it In
The unit can operate from a total supply voltage as low as
demanding general-purpose applications.
1.1 V or as high as 4OV, drawing only 270pA A complementary output stage swings within 15 mV of the supply terminals or will deliver ±20 mA output current with ±0.4V saturation. Reference output can be as low as 200 mY. Some
other characteristics of the LM 10 are
2.0 mV (max)
• input offset voltage
0.7 nA (max)
• input offset current
20 nA (max)
• input bias current
0.1% (max)
• reference regulation
2p.VI"C
• offset voltage drift
0.002%I"C
• reference drift

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for
analog Signals, delivering the processed signal on the same
line used to supply power. It is also suited for operation in a
wide range of voltage- and current-regulator applications,
from low voltages to several hundred volts, providing greater precision than existing ICs.
This series is available in the three standard temperature
ranges, with the commercial part having relaxed limits. In
addition, a low-voltage specification (suffix "L") is available
in the limited temperature ranges at a cost savings.

Connection and Functional Diagrams
Metal Can Package (H)

Dual-In-Une Package (N)

REFERENCE
FEEDBACK

v-

REFERENCE
OUTPUT

1

OPAMP
INPUTI-)

Z

OPAMP
INPUT (+1

3

•

REFERENCE
FEEDBACK
y+

OPAMP
OUTPUT

V-

BALANCE

TOP VIEW
TL/H/5652-1

TOP VIEW

Order Number LM10BH, LM10CH,
LM10CLH or LM10H/883
available per SMA# 5962-8760401
See NS Package Number H08A

TLlH/5652-15

Order Number LM10CN or LM10CLN
See NS Package Number N08E
BALANCE

Small Outline Package (WM)
NC
NC
REF OUTPUT
Op AIIP INPUT (-)
Op AIIP INPUT (+)

1

14

2

13

3

12

4

11

5

OUTPUT

REFERENCE
FEEDBACK

NC
NC
REF FEEDBACK
Op AMP OUTPUT

V-

BALANCE

Ne

Ne

1

INPUTS

V·

REFERENCE
OUTPUT

REFERENCE

~--------~----~~~v­
TL/H/5652-16
TL/H/5652-17

Order Number LM10CWM
See NS Package Number M14B

1-164

Ii:...

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales'
Office/Distributors for availability and speclflcatlons_
(Note 7)
LM10/LM10B/ LM10BU
LM10CL
LM10C
7V
Total Supply Voltage
45V
±7V
±40V
Differential Input Voltage (note 1)
Power Dissipation (note 2)
internally limited
Output Short-circuit Duration (note 3)
continuous
-55'C to + 150"C
Storage-Temp. Range
Lead Temp. (Soldering, 10 seconds)
Metal Can
300"C
Lead Temp. (Soldering, 10 seconds) DIP 260"C
Vapor Phase (60 seconds)
215'C
Infrared (15 seconds)
220"C

See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD rating is to be determined.
Maximum Junction Temperature
LM10
150"C
LM10B
100"C
LMHic
85"C

Operating Ratings
Package Thermal Resistance
8JA
H Package
N Package
WM Package

150"C/W
87'C/W

90'C/W

8JC
H Package

45'C/W

Electrical Characteristics
TJ=25'C, TMINS:TJS:TMAX (note 4) (Boldface type refers to limits over temperature range)
Parameter

LM10/LM10B

Conditions

LM10C
Max

2.0
3.0

0.5

4.0
5.0

mV
mV

0.25

0.7
1.5

0.4

2.0
3.0

nA
nA

10

20
30

12

30
40

nA
nA

Max

Input offset voltage

0.3

Input offset current
(note 5)
Input bias current
Input reSistance

Units

Typ

Typ

Min

Min

250
150

500

120
80
50
20
1.5
0.5

400

1.2V (1.3y)S:VOUTS:40V,
RL =1.1 kO
0.1 mAS:IOUTS:5mA
1.5VS:V+ S:40V, RL =2500
0.1 mAS: lOUTS: 20 mA

14
8
8
4

Common-mode
rejection

-20VS:VCMS:19.15V (19y)
Vs= ±20V

93
87

102

90
87

102

dB
dB

Supply-voltage
rejection

-0.2V~V-~ -39V
V+=1.0V(1.1V)
1.0V (1.1V)S:V+ S:39.8V
V-=-0.2V

90
84
96
90

96

87
84
93
90

96

dB
dB
dB
dB

Large signal voltage
gain

Shunt gain (note 6)

Vs= ±20V,IOUT=0
VOUT= ±19.95V
Vs= ±20V, VOUT= ± 19.4V
IOUT= ±20 mA(± 15 mAl
Vs= ±0.6V (0.85Y),IOUT= ±2 mA
VOUT= ±0.4V (±0.3V), VCM= -0.4V

150
115

400

kO
kO

80

400

VlmV
VlmV
VlmV
V/mV
V/mV
V/mV

SO
130

25
15
1.0
0.75

130

33

10

33

VlmV

25

8
6
4

25

V/mV
V/mV
V/mV

3.0

106

3.0

106

Offset voltage drift

2.0

5.0

",V/'C

Offset current drift

2.0

5.0

pArC

60

90

Bias current drift

Tc<100"C

Line regulation

1.2V (1.3V)S:VsS:40V
0S:IREFS:1.0 mA, VREF=200 mV

Load regulation

0S:IREFS:1.0 mA
V+ -VREF~1.0V (1.1V)

1-165

pArC

0.001

0.003
0.008

0.001

0.008
0.01

"Io/V
"Io/V

0.Q1

0.1
0.15

0.01

0.15
0.2

"10
"10

o

-

Electrical Characteristics
')::=25°C, TUINS:TJS:TI/IAX, (note 4) (Boldface type refers to limits over temperatu", range) (Continued)

Par~meter
Amplifier gain

LM10C

LM10/LM10B

Conditions
0.2VS:VREFS:35V

Feedback sense
voltage

Min

Typ

50
23

75

195
194

200

205
208

20

50
85

Feedback current

Max

Units
"Max

Min

Typ

25
15

70

190
188

200

210
211

mV
mV

22,

75
80

nA
nA

V/mV
V/mV

0.003

%rc

Reference drift

0.002

Supply current

270

400
500

300

500
570

15

75

15

75

Supply current change

Parameter

1.2V(1.3V)S:VSS:40V

LM10BL

Conditions
Min

LM10CL

2.0
3.0

0.5

4.0
5.0

mV
mV

0.1

0.7
1.5

0.2

2.0
3.0

nA

10

20
30

12

30
40

nA
nA

0.3

I,nput offset current
(note 5)
Input bias cur.rent

'"

Inpl!t resistance
Large signal voltage
gain

Vs= ±3.25V,IOUT=0
VOUT=±3.2V
Vs= ±3.25V,IOUT=10 mA
VOUT=±2.75V
Vs= ±0.6V (0.85V),IOUT= ±2 mA
VOUT= ±0.4V (±0.3V), VCM= -0.4V

Units
Max

Max

,,'1.

p.A
p.A

Typ

Typ

Input offset voltage

p.A

Min

nA

250
150

500

150
115

400

ko.
ko.

60
40
10
4
1.5
0.5

300

40
25
5
,3
1.0
0.75

300

V/mV
V/mV
VlmV
VlmV
V/mV
VlmV

8
4

30

6
4

30

VlmV
V/mV

25
3.0

25
3.0

Shunt gain (note 6)

1.5Vs:V+ ::;:6.5V, RL =5000.
0.1 mAS:IOUTS:10mA

Common-mode
rejection

-3.25VS:VCMS:2.4V (2.25V)
Vs= ±3.25V

89
83

102

80
74

102

dB
dB

Supply-voltage
rejection

-0.2V:?V-':?, -5.4V
VT=1.0V(1.2V)
1.0V(1.1V)S:V+ S:6.3V
V-=0.2V

86
80
94
88

96

80
74
80
74

' 96

dB
dB
dB
dB

106

106

Offset voltage drift

2.0

5.0

p'vrc

Offset current drift

2.0

5.0

pArC

Bias current,drift

60

90

pArC

Line regulation

1.2V (1.3V) S:Vs S:6.5V
0S:IREFS:0.5 mA, VREF=200 mV

0.001

0.Q1
0.02

0.001

0:02
0.03

%IV
%IV

Load regulation

0S:IREFS:0,5 mA
V+ -VREF:?1.0V (1.1V)

0.01

0.1 '
0.15

0.Q1

0.15
0.2

%
%

Amplifier gain

0.2V S:VREFS:5.5V

30
20

1-166

70

20
15

70

V/mV
V/mV

Electrical Characteristics
TJ=25'C, TIIIN"T""TII.u:. (note 4) (Boldface type refer. to limits over temperature range) (Continued)
Parameter

LM10BL

Conditions

Feedback sense
voltage

Min

Typ

195

200

194

Feedback current

20

LM10CL
Max

Min

Typ

205

190

200

206

189

50

Reference drift

0.002
260

210

211
22

65
Supply current

Units
Max

75

90

500

280

nA
nA
%I"C

0.003
400

mV
mV

500

570

p.A
p.A

Note 1: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential
input voltage and excess dissipation is accounted for when VIN 

~

.!!'~!...

--20

I

-40
D.I

1.0

10

-- ~'

ZiO

:!!

'"...

100

~

., ..
., ..~
a ;..

zoo ~
150

,

I~

lk

§;

j

40

Typical Stability Range

Output Impedance

T•• Z5'C

~

IE

C

10

I-

11:

1111

......

50
100

lk

10k lOOk 1M

10k

IIOk

1M

FREOUENCY (H,)

Large Signal Response
16

..

~

Vs· :tlSV
fA ~Z5°C

=5mY

VOD

1 \

\

12

I

~
..~

I

I

lk

50

>

......
10k

lOOk

i

t I

VREP "

~

co

-10

>

¥I

~'

18

..

100

IE

n

~~

~.

R\=470 I~

!;

==-~..,o....:~MRR",

80

'"

60
40

0.&

0.8

1.0

1

i

'~

10

100

1k

.
~

10

..
..
..
>

10k

" LINE REJlULATION

4Vos

,

"-

I ,
!!

NPN
...... IOUT=-20mA

....

-c- ~

~
PNP
lOUT" zamA

Vs :!:20V
Y~UT' 0

-1.1

-ZO

ZO

40

TlME(...)

~

60

\
1M

80

~~:
i.

.

lOUT =0

I

NPM

,'ouj" i20 jA
I

~

lOUT- 0

if

\

0.08

I I

~

\

lOOk

Thermal Gradient
Feedback
0.1

\,

PSRII"f

Supply Current

I-

~

,'

\

Rejection Slew Limiting
100

FIIEOUENCY IH,)

C
.!
0.3

-0.2 0 0.2 0.4 8.8 0.8 1.0 1.2 1.4 1.6 1.8

FREQUENCY (Hz)

~

Ili

v- =0
T. - Z5'C

TIME(ms)

0.4

...

1.

LiNE

T

20

D.4

V' = iY

50

i -so

!

",~EGULATION

PSR~ \

IE

-10

IJ

zoo mV

120 -PSt,

I

1Z5'C
Z5'C
---55'C

IQ:'

1

~ 100

!;

TIME I...)

Noise Rejection

10

~r-- RL <:IOk

5 ..~-r-

~

TlME(ms)

140

a

rr-

-50
-0.2 0 O.Z 0.4 0.6 D.ll.0 I.Z 1.4 1.6 1.8

Follower Pulse
Response'

/
If

J

~ 100

c;

1

110"Y

V+ = 5V
V- =0
T. -25'C

FREOUENCY (Hz)

~

50mY

1\
1\.

100

I-

"

\

10mV

~

o

~

VOD

1 \

&OmV

>

.
....
.

Comparator Response
Time For Various
Input Overdrives

Comparator Response
Time For Various
Input Overdrives

I I

PNP
lOUT· zamA

I

1/

VI tHV

$

-iI.05
-20

c-

vou,- a
20

40

80

80

TIME 1m.)

TUH/5652-3

1-169

CI

~

Typical Performance Characteristics (Op Amp)

(Continued)

.ShuntGain

Shunt Gain

w

CD

I

G -0.10

..e

1-+-+-+-+-

w

-0.1&

~

l-

E -0.20
!Ii
-0.25

CI::J=-LJ:=C:i:J

I

I

OUTPUT VOLTAGE (VI

OUTPUT VOLTAGE (VI

OUTPUT VOLTAGE (VI
TL/H/5652-4

Typical Performance Characteristics (Reference)
Load Regulation

Line Reg\llatlon
0.1

IIII
IIII

it

:- D.DS
CD

"-

I..

TA =121°C

I......

~-

l

;

ffi

.
~

III
III

-0.1
10

~

'

CD

~

r"'ttl

~-O.05

.
-

~

,

I

25°C

TA"mc

co
>

.~

r"""~-""....r-+-+~

...

-0.3

:

r-1--1~+--+--~~~

1.0

~

II!

10
10

..

r--.

:i

lOOk

10k

Typical Stability Range

~~

~4

o.s

1k

.l.V REF = 0.1%

g

10-1

CD

~

9 10-

1

'" ........

~

:0
I-

I

100

FREQUENCY (HzI

~~
b-". ~/",...
....... r......1, ..4~ -..-V"

0.8

=

~

I

l

~

>

z

co

lA

100

w

!i!

Output Saturation
~

1.2

z

i

1.2

~

w

co

-0.2

Minimum Supply Voltage

~O.2V

~

LOAD CURRENT (mAl

1.4

VRE.

!!!

!

0

lk

!

I

-0.1

•

100

VO =1.5V
V- -0

TA:..:!~~I--~
.... TA =25'C i

TOTAL SUPPL V VOLTAGE

..
~
.

Reference Noise Voltage

0.1

...........

;~ 1D~ ~TttHmr-rTH~~rt~ffl

.. 10-' 1n~«l:IIH"q.+-H:tmI-I+f.H!1lI

... '-=___......_.1--'-.;:::I100I
-50 -25

0

25

50

7&

TEMPERATURE rCI

10D 121

D.4

-50

-25

25

50

75

TEMPERATURE ('CI

100 12&

10-1• L-.L...1..L.LLWL..-L-.LU.LWII-..JL-J..WlW
0.01
0.1
1.0
10

LOAD CURRENT (mAl
TL/H/5652-5

1-170

r-----------------------------------------------------------------------------,
Typical Applications tt

(Pin numbers are for devices in 8-pin packages)

~

3:
....
o

Op Amp Offset Adjustment

Limited Range

Standard

Limited Range With Boosted
Reference
V+

v+

VREF
VREF

VAEF

Rt

v-

vv-

Positive Regulatorst

Low Voltage

Zero Output

Best Regulation

V1N >11V

~

Your
tOV

I!

Vour

OVT05V

I
I
I

!

VOUT

3V
R2
3.9K

RI
2K

TUH/5652-6

tUse only eleclToly1ic output capacitors.
ttCircuH descriptions available in application note AN-211.

1-171

o
.....

:=i

Typical Applications t t

(Pin numbers are for devices in B-pin packages)

Current Regulator

(Continu~d)

Shunt Regulator
CI'
D.01~f

....---+-+

....-..,.,.,..-+---.._+V

.,

I
OUT

OUT "

(1·. . ~) VII!F

• Ift2 + R31 VaiE
R1R3
HI

••

,

.,
'Required For capacitive Loading

Negative Regulator

Precision Regulator

r----__1~---__1r··OU.O

CI'
2hf

>''+-+-VOUT = -IItV

'--t--.....-----+---4-VOUT =&OV

.,.

1%

' - + - - - - VUII :s-1G.&V

CI
I.DD1/1F

'Electrolytic

' - -. . .- - - - - - - - - -. . .-

GROUND

Laboratory Power Supply

r-------~-_1~-.._v~

RID

"

3."

o.01",F

...
'M

.,

,..
AI

"'
C'

1.GI1",F

...

,01 ,

---v.'"

' - -...- - - - 4....- - -.....

."

co

.,'

''''

D-!IV
0-IA

L--4~6-----4~--__6------------------~------C~
TUH/5652-7
'VOUT= 10- 4 R3 .
ttCircuit descriptiOns available in application note AN-211.

1-172

Typical Applications tt

(Pin numbers are for devices in B-pin packages) (Continued)

HV Regulator

Protected HV Regulator

r--------....--....----....

--ZIIIVS;VIN~.UV

.--_t---t--VIN"'ZDlV

I--+_ _...._ _ _......

~

___

~-VOUT"ZOOV

.,.

1M

L-____' -__________

~~----

__

,~

"

"pF

----G••

I-Wlr-<~------...- - - - - - - - -.....

Flame Detector

Light Level Sensor
,...--....-+

or

'v
.. --l

PLATINUM*
RHODIUM

. -rTOU.SO.

",DIE

.,"
,.

TTl LOGIC

AI

.,

'DO

-

'800-C Threshold Is Established By Connecting Balance To VREF.

..

.,

,. "
·Provides HysteresiS

Remote Thermocouple Amplifier
Remote Amplifier

..

'11M

.,1

..

lUll

v'

l

.,t

"",.

...,

lIS

vo.,

4Vo<:VOUT,;;20V
200-C,;;Tpo<:700-C
tSpan Trim

CHRDMEL
ALUM£L
PROlE

ILevel-sh1lt Trim

..,.

...

'DO

,"
'"

ttClrcuit descriptions available in application note AN-211.

1·173

.

'Cold-junction Trim

,..,
,

TL/H/5652-8

Typical Applications .t t

(Pin numbers are for deviees in a-pin packages) (Continued)
Transmitter for Bridge Sensor

,

if

V"EF·

',1\

I

81

llOk
1%

..

lOOk

V'N

U

".

::X;COUT .

I.
I

85

138k .
,%'

J

81

A6
51

"I,.
,%

1%

8ES'Sl'VEJ
18'DGE

Precision Thermocouple Transmitter

83
311k

Al

383k

Ihvrc
PLAT'NUM
RHODIUM

".

,%

+
~--~I---+--....:.t

PAOBE

AI"
IUk
1%

A5

.

t

38311
,%

Vour>IV

312to

10 mA"IOUT,;50 mA

I

AID

'"

Ik
,%

500'C';Tp ';1500'C
AI
10

,%

SiE

·Gain Trim

Optical Pyrometer

'APASS~, ~'ASlOP
,
Resistance Thermometer Transmitter

01

0'

03

ttLevel-shifl Trim

1N41i7

'Scale Factor Trim
tCopper Wire Wound

1 mA,;Iour';5 mA

V·

----' ;

---r--AI

81

0,01 ';11 02 ';100
01

OUT

V

A'1

A4

lk

'"
HZ

411
,%

ttCircun descriptions available in applicalion note AN-211.

R3t"

u

".
TLIH/S652-9

1-174

Typical Applications t t

(Pin numbers are for devices in B-pin packages) (Continued)

Thermocouple Transmitter

Logarithmic Light Sensor

-

r-------~----.-+

l OUT

01
1N457

CHROMEl
ALUMEL
PROBE

200'C S:TPs: 700"C

1 mAs: lOUTS: 5 mA

01
USk

".

tGain Trim

1 mAS: lOUTS: S mA

*50 pAs:loS:500 pA
02
100
1%

oz

COLD
JUNCTION

03

50

CD'"

ost
U7
1%

Battery-threshold Indicator

Battery-level Indicator

-

ttCenter Scale Trim
tScale Factor Trim
'Copper Wire Wound

RBt*
84
1%

499
1%

+

~-------.----~~--+

02
290k

....

01

R4

03
&10k

VTH "'6V

ID,-5mA

01

.-z.,

R2
12k
R3
11k

Single-cell Voltage Monitor

81
U

Double-ended Voltage Monitor

.-----1--v·
O.

..

02

2k

10k

3.311

r-~~W'lr-+--"'-"""" vTH'-nv
Cl
ZbF

VTM "IV

01

"010

Flash Rate Increases
Above 6V end Below 15V

Flashes Above 1.2V
'::'

Rate Increases With

'::'

03
lOOk

Voltage
TUH/5652-10
ttCircuH descriptions available in application note AN-2".

1-175

o..-

:I

r---------------------------------------------------------------------~------,

Typical Applications t t

(Pin numbElrs are for devices in8-pin packages) (Continued)

Meter Amplifier

..

Thermometer

....
HZ

A'

III

r--------""""I~----

INPUT

........,' ..e

10mV,100nA
FULL-SCALE

...

,,
DI

I

r-....- -.....---'I.I
D2

UMI1

V">'v

...

'"

LII'"

IU

1M

AI

~

+

j

At

.,
!.IV

'Trim For Span

I12t
1.&.

,%

110

....
At

tTrim For Zero

~--~-~~--~II

Light Meter

RI
12k

~

R3
4IIk

,

01

Microphone Amplifier

,...--------.. .

-~.,v

AI

III

R'

c.

UII

."),,,

,.

112

',-100 Hz
12-5 kHz

RL -500

'Max Gain Trim

TLIH15652- "

ttCircuH descriptions available In application note AN-2".

1-176

Typical Applications t t

(Pin numbers are for devices in B-pin packages) (Continued)

Isolated Voltage Sensor
R&

50

ocr

R'

47.1.
1%

fEEDBACK TO

<:.-

1..

FADM

R3

REGULATED
OUTPUT

210

SWITCH
CONTROLLER

R.

1.11.

III

tControls "Loop Gain"
'Optional Frequency Shaping

Ught·level Controller

L1
~

,

01

115VAC

RI
11k

TL/H/5652-12

ttClrcuit descriptions available in application note AN-2".

Application Hints
With heavy amplifier loading to V-. resistance drops in the V- lead can adversely affect reference regulation. Lead resistance
can approach 10. Therefore. the common to the reference circuitry should be connected as close as possible to the package.

1-177

b

'~

~~------------~~--------------~------------~----------------------------I
I

Operational Amplifier Schematic (Pin numbers ara for 8-pin packages)

.

.

.

'I.~

.- .

.

\orw
•
'

Cjt~IV- -, -*n!~
I!!

i!

i~

~

••

,I
',.--

U"i

• Ii

~

iI,

t- ~,

ea

;!

~

II
U

~.

0-

r-

p- rt:.
ii!;

'-

i!

U

\.~

~
;;

~
••

EOr

::=

'k

~.

l:!

"

u

t--

.:; =

~i

0"

+

.y-

u
r-

.-

.?

I\.~,r

c,

e!

"

~~

ill

>
),,5

U

~

~

W

'<.

, 1i1V---

;U

51!

.

i~

u

C-~

.~

11

l'

: ,_'

II

••

of

_.

lie

-!.~~

.:1"<..

J'
ffi

'IiI"<..

•

.<
Ii::

",~

1Io~

=.
:~

iii

•
'l.r'

_...•;t ill +ii

"

"

'l.ar-

••

·af[J.2

))
•

.. •

..

,.

1-178

.

..~' ,

• F'

•
LY..

•••

iii

"r;&-

"

~
it

ii.

'I..~

£IT

••

+"

~,~

.ii
1\
.i
II

~

.7
V - - - - - 'AII I
&k

BIAS
BUSS

I

All
lAS!
ZOk

15k

,

IAI'
4k

,

n~

I

IA6J

lUll

All
ZOk

IAJl
ZOk

I

::D

CD
.....
CD
CD
;:,

lAIC
Ilk

...
n

, ,

I

I

I I I

,

I,

CD
S»

~iGik

,[all.,

;:,

a.
5'

...

All
Ik

~I

U

REFEAENCE 1
OUTPUT

II

n(;1 Lsj I
4011

.

1

01('

Ir I I

10k

-::D

S»
!

!A19

AIO

. I." If,'"
10k

~:!k V~

+11

...;:,CD

(

All
t91k

CD

co
c
iii'

......
0

3!
:::l
:::l

I:

3

CT



Voltage Gain

28

'--

~
;...o~

~
\I~,

5

rt:>;T.90'C
II

SUPPLY VOLTAGE (tV)

i...

10

0

I

14

..
.... ::;
. .....
.. ... r-~
".i'f. lAIII~'
\~

-

~

I I
. I I I

I

\I

•

,\l! ~\~..

~

~

100·

15

•

~

j,

.!...

e

II

lAIllliaII!
IZ

..,i""

0

>

11

I I

10
10

SUPPLY VOLTAGE ('VI

15

I I
I .
O'C;T.:>;JI'1:
5

....

~

5

\I

I
II

SUPPLY VOLTAGE (tVI
TLlH/7752-6

1-182

Typical Performance Characteristics
Voltage Gain

Supply Current

u

- ~T!.-Il·C

.--

......

..:::
~

-

'"'

a

'"

..

'"

~
..

liAS. LMIIIAlLM2IIA

I

~
~

~FF~i.L~A

3

~I'-o ...Jl!.F8ri. Ll.nOIAILM2IIA

2

-10

IitI

110

III

.......

-

II

I

=
i=
•:I 1.--

II

I

o
25

II

45

65

10&

15

12&

AMlIENT TEMPERATURE rCI

Input Noise Voltage
40

VI- ,dlY

1'00.

"

~

30

:1

i
\

TA =11°1:

•

I
..
..
zt zt
OUTPUT CURRENT ( - .

•

10K

IK

Common Mode Rejection

lOOK

-

lUI

i,.
•!i!
I:i

..
=:

"

l!i

...
••

i8

TA -2I"c

i

II

>-

I

40

zt

I ....

a

:s

II

..

-

Power Supply Rejection

IZO

III
n
I.
FREQUENCY tHz)

""

FRECIUEI«:\' (Hz>

~
III

I

10

Input Noise Current

I1.--

"-

1

T.-12I"C

o

200

METAL CAN

T.·,zloe

II

I

TEMPERATURE (·C)

.. ,r"'

-

~

T. -21 C

Current Limiting
Ii

J~BIASLM30IA~

21
=
~ II
i •

T!·b

.-

SUPPLY VOLTAGE ttV)

Input Current,
LM101A/LM201A1LM301A

...

?"'"

II

"
II
'-'YVOLTA8E(-~U~T
-1_1

i'-'

~

ii-z.

..,.s

\
\

•

'

i

D.A.Jr, 1-1-

~-

4

I! :

CI·.,f

cz·."

111 • • 4110.,• •

TI.IH/7752-11

T.-ZSOC

1-184

-I
-I

-II

V. ->lIV

ro'

-~t-

fEEDfDRWARD

I

,

I

"2341.,.
TIlE"",

TI.IH/7752-15

"Pin connections shown are for B-pin packages.

~-I

.... ~I'""

I-I-"IPOT

-I

T.-WC
V. ·tliV

-I
-I

-I'

Inverter Pulse Response
II

f"'rfl~E

-I

,.

fREllUllCYOIII

fREIlUDlCY (HI'

';'"",:

TIME ...

II

~I

•

I
"'Out.uT I
I I
T.I_~·c :

TLlH/7752-17

11

CI-.,f
cz-."

1\

II

--

I . I . I. I . I .

Large Signal Frequency
Response

TA -R'"C

TI.IH/7752-10

11
I I

,.

fREllUEI" 0lIl

lWOPOLE

Voltage Follower Pulse
Response
II

II I .

V. J±I~vl

,

12

j

I.K

fEEDFDRWARD
-II

TL/H17752-13

1'+t'IM"'*'It+-HJU.'~. !WI:

11K,

,,'

Large Signal Frequency
Response

IIrT~'-nmrrTft~~m-,

'I

.r'l S"'"r-...

,., I . I . I. I .

TLlH/7752-9

IIIJ'N...

J. ~

I

.REQUEICY IHII

Large Signal Frequency
Response

• 111111

I

T~ -Zl'~ rV, -±,~,;-

~

[\.

F

fREllUEICY (HI'

/

,.,. '"

Open Loop Frequency
'Response
'

Open Loop Frequency
Response

TL/H17752-19

Typical Applications* *
Variable Capacitance Multiplier

Simulated Inductor
R2
100

C= 1

R3
10M

+~Cl
R.

.£.-------It----....;.;.;;.:;;..---'

L" Rl R2Cl
RS
Rp

= R2
= Rl
TL/H17752-21

Fast Inverting Amplifier
with High Input Impedance

Inverting Amplifier
with Balancing Circuit
Rl
H2
INPUTo-.J\NIr-"--"""'M~-"""""I

....-o

>~

OUTPUT

OUTPUT

tMay be zero or equal
to parallel combina·
tion of Rl and R2 lor

R3

5Gill

minimum offset.

TUH/7752-23

TUH/7752-22

Integrator with Bias Current
Compensation

Sine Wave Oscillator

cz

.--_.u---..-

III,F
Ufo

COSINE OUTJUT

HI

HI

v,.-"""'M~.-------,

ZIlK

'"
VOUT

e.

II1,F
HI

IlIK

I"

TUH/7752-25

HI
IK

10= 10kHz

TL/H/7752-24

"Pin connections shown are for 8-pin packages.

1-185

"Adjust lor zero integralQr drift. Current drift typically
0.1 ~AI'C over - 55'.C to + 125'C temperature range.

•

Application Hints**
Protecting Against Gross
Fault Conditions

Compensating for Stray Input Capacitances
or Large Feedback Resistor

_-~N_-.-.OUTPUT

C2

R3

C2

Ri*

RI
II'UT'~'V\I~~

OUTPUT
RI·

C2

TESTrollT
R3

'Protects input
tProtects output

= AI Cs
A2

I.PUT~"",....""'::f

CI
TUH17752-26
TL/H17752-27

tProtects output-nol needed when A4 is used.

Isolating Large Capacitive Loads
_-~N_-.-t~OU'lPUT

R3
M

C2

TL/H/n52-28

Although the LM1 01 A is designed for trouble free operation,
experience h,as indicated, that it is wise to observe certain
precautions given below to prote.ct the devices from abnormal operating conditions. It might be "pointed out that the
advice given here is applicable to practically any IC op amp,
although the exact reason why may differ with different devices.
When driving either input from a low-impedance source, a
limiting resistor should be placed in series with the input
lead to limit the peak instantaneous output current of the
source to something less than 100 rnA. This is especially
important when the inputs go outside a piece of equipment
where they could accidentally be connected to high voltage
sources. Large capacitors on the input (greater than 0.1 ""F)
should be treated as a low 'source impedance and isolated
with a resistor. Low impedance sources do not cause a
problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned
off, so the isolation is usually needed.
The output circuitry is protected against damage from shorts
to ground. However, when the amplifier output is connected
to a test pOint, it should be isolated by a limiting resistor, as
test pOints frequently get shorted to bad places. Further,
when the amplifer drives a load external to the equipment, it
is also advisable to use some sort of limiting resistance to
preclude mishaps.

"Pin connections shown are for a-pin packages.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversedeven under transient conditions. With reverse voltages
greater than 1V, the IC wHi conduct excessive current, fusing internal aluminum interconnects. If there is a possibility
of this happening, clamp diodes with a high peak current
rating should be installed on the supply lines. Reversal of
the voltage.between Y+ and Y- will always cause a problem, although reversals with respect to ground may also
give difficulti&s in many circuits.
The minimum values given for the frequency compensation
capacitor are stable only for source resistances less than
10 kO, stray capaCitances on the summing junction less
than 5 pF and capacitive loads smaller than 100 pF. If any
of these conditions are not met, it becomes necessary to
overcompensate the amplifier with a larger compensation
capaCitor. Alternately, lead capaCitors can be used in the
feedback network to negate the effect of stray capaCitance
and large feedback resistors or an RC network can be added to isolate capaCitive loads.
Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is
necessary to bypass the supplies to ground at least once on
eyery circuit card, and more bypass points may be required
if more than five amplifiers are used. When feed-forward
compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance
capacitors because of the higher frequencies involved.

Typical Applications**

(Continued)

Standard Compensation and
Offset Balancing Circuit

FastSumming Amplifier
CZ
3 pF

RZ

30K

Rl

30K

Power Bandwidth: 250 kHz
Small Signal Bandwlidth: 3.5 MHz
Slew Aate: lOYI p.s
.-~W'\r-- y-

TlIH/7752-30
TlIH/7752-29
I

-

Fast Voltage Follower

Bilateral Current Source

R1

.....

>..;.....~YOUT

Slew Aate: WI"..

i

R3

50K
0.1%

C2
300PF

R5
500
1%
A3YIN
IOUT=AiR5

Cl
30 pF

Rl

A3=A4+A5

10K

-

Al

= A2

~--~~~-------4t---loUT

R4

HZ
II1II

.....

4UK

1.1,.

TL/H/7752-31

TlIHI7752-32

Fast AC/DC Converter'
RS

CZ

20K

10 "F

1%
RZ

R3

ZOK
1%

10K
1%

r--4"''''''''''.~''-~N~~''-~~",",--.- OUTPUT
INPUT ......JVv\O..........

C3"

·Feedforward compensation
can be used to make a fast full
wave rectifier without a fiRer.

30 pF
TL/H/7752-33

"Pln connection. shown are for 8-pln packages.

1-187

~

Typical Applications'" '" (Continued)
Instrumentation Amplifier
RI*

R3 t
10K
0.1%

1M
0.1%

"

>-"~DUTPUT
RI

= R4;R2';'

R3

" Rl
Av=I+Fi2

'. tMatching determin~ CMRR.
-~"----INPUTS - - - _
.....

+

Integrator with Bias Current Compensation
R3
20K

TUH/7752-34

Voltage Comparator for Driving RTL Logic or
High Current Driver

R4
"75K

AI

v.

-~M_.-------.,

el
TUH/7752-37

>~""-vour
• Adjust for zero integrator
drift. Current drift typically
0.1 nArC over O'C to + 70'C
temperature range.
TLlHI7752-35

Low Frequency Square Wave Generator
AI
1M

r-----1....,---~
R4

LOW IMPEDANCE
OUTPUT

"5K

...~~_._._.'

">~

CLAMPED
OUTPUT

01 ""

6.2V
02

6"2~
TL/H/7752-36

"Pin connections shown are for 81>in pacI- r----<

~

R1

II(

RZ
2QK

R8

B50

Q20::r

R3

10K

M

liD

0

v-

'Pin connections shown are lor metal can,
>

,

1-192

TUH17757-1

....a:::

...

Guaranteed Performance Characteristics LM107/LM207
Input Voltage Range

I.Voltage Gain

II Output Swing

m~-r~~~~~r-,

o....
....
....
a:::
N
o
....
.....
....
a:
o....

14

!= " 1--+-1--'

ii
S

I

~~

I

..•c

"

•

_

Co)

~

II

I-- -LM1IJ: ...."C,;;T. ';;IU'C
I-- _"-:o8"C';;T.';;II"C

7t
SUPPLY VOLTAGE (±VI

.......
~~

12

I

I

I

1

1

21

"

YVOLTAGE (tV)

SUPPLY VOLTAGE (tV)
TL/H/1757 -4

Guaranteed Performance Characteristics LM307
Input Voltage Range

Output Swing

Voltage Gain

20

II

f->-

..,.

-~~
.....,. "

..,.

I,;'

.,. ..,.

14

15

II

i

~F'

II"I:ST.Slrc

1

~
-"""~I~

f-f--

g

1"'"11

"~ ~t::;
~
... i"- r-r--

10

~

,,~

i""

~

101

I
!

... •
~

:

1"1: ST. 91"1:

1
I.

"

;;;;..r

~i"'"

1

I

II

I"I:

20

!:;

T.I.Z5·l_
v.

""" .~

10

18

:I:1IV

(Continued).

Large Signal
Frequency Response

,~

: 12

z

il

-20

110

IK

4 ~
1\'
2

co

f\..
IK

,

~.

S
>

1.
1
1 -~~

'IIPUT+\

I

"'~

I
",j.,

OUTPUT

.1

\
~-

TAl. 2~'C

vY'l

-8

-II

IOIK

11K

-4
-8

I'

FREQUENCY (Hz)

81

=:c -z

\

10K IIDK 1M 10M

.1
1
1

'I

'

1\
10

18

T.'2S·i:"
VI- ±15V

I\.
I

Voltage Folrower
Pulse Response

iV

'0 \I 21 3D 40 50 10 10 II

FREQUENCY {Hz!

TIME~

TLlH17757-7

Typical Applications**
, .
Inverting Amplifier

Non-Inverting AC Amplifier

R2 .

RI

R2
10M

1M

You,

R3
"OK
Cl .......
I"" I

TL/H17757-8

RIN

TLlH17757-9

Non-Inverting Amplifier
RI

R2

TLlH/n57 -10

"Pin connections shDWT'! are for ,netal can.

1-194

= R3

R3 = Rl11R2

Typical Applications* * (Continued)
Turntable Notch Filter
RI

lOOK
0.1%

R2

>--"--VOUT

lOOK
G.I%

CI
500 pF

Al = A2 = A3
A4=A5=.!:!!
2

10

21r.JC, C2 A4 A5

= 60Hz

TL/H17757 -11

Differential Input Instrumentation Amplifier

a

R4

lK
0.1"

lOOK
0.1"

v·

INPUT

a
OUTPUT

RI
lK

+

R2

BALANCE

R3

3

a

lK
0.1"

II

R5

lOOK
0.1"

TL/H17757-12

"Pin connections shown are for metal

can.

1-195

I

:I d N.a t ion a I
~p
:&

~
~

....

:!I

S e m i con due tor

LM108/LM208/LM308 Operational Amplifiers
General Description
The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers
over a - 55'C to + 125'C temperature range.
The devices operate with supply voltages from ± 2V to
± 20V and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and
uses the same compensaticm as the LM101A, an alternate
compensation scheme can ,be used to make it particularly
insensitive to power supply nOise and to make supply bypass capacitors unnecessary.
The low current error of the LM108 series makes possible
many designs that are not practical with conventional amplifiers. In fact, it operates from 10 MO source resistances,

introducing less error than ,devices like the 709 with 10 kO
sources. Integrators with drifts less than 500 p.VI sec and
analog time delays in excess of one hour can be made using capacitors no larger than 1 p.F.
The LM108 is guaranteed from -55'C to +125'C, the
LM208 from ~ 25'C to + 85'C, and the LM308 from OOC to
, +700C.

Features
•
'.
•
•

Maximum input bias current of 3.0 nA over temperature
Offset current less than 400 pA over temperature
Supply current of only 300 /LA, even in saturation
Guaranteed drift characteristics

Compensation Circuits
Standard Compensation Circuit
RI
-VON

Alternate' Frequency Compensation
RI

R2

-JVV\,-.---,\NIr---...,

R2

-VON

-JVv\'~.--~M_--..,

+VON

--¥""---t

>-"-V

> - * - VOUT

RJ

OUT

R3

B

RI C
Ct:;, RI + ~2

T

Co = 30pF

c,**

c.
100 PF

TUH17758-1

TL/H/n58-2

"Bandwidth and slew rate are proportional to I/Ct

'Improves relection of power supply noise by 8 factor of ten.
"Bandwidth and slew rale are proportional to I/Cs

Feedforward Compensation

cz
5 pF

, INPUT -"",."....-1

>;.e- OUTPUT
R3 •

3K

Cl
500 pF

TUH17758-3

1-196

Absolute Maximum Ratings
If Mllltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Offlcel
Distributors for availability and specifications.
(Note 5)
LM108/LM208
±20V
Supply Voltage
Power Dissipation (Note 1)
500mW
±10mA
Differential Input Current (Note 2)
Input Voltage (Note 3)
±15V
Output Short-Circuit Duration
Continuous
- 55·C to + 125·C
Operating Temperature Range (LM1 08)
(LM208)
- 25·C to + 85·C
Storage Temperature Range
-65·Cto + 150"C
Lead Temperature (Soldering, 10 sec)
DIP
260"C
H Package Lead Temp
(Soldering 10 seconds)
300·C
Soldering Information
Dual-In-Une Package
260·C
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
215·C
220"C
Infrared (15 seconds)
See AN-450 "Surface Mounting Methods and Their Effect on Product
Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 6)
2000V

LM308
±18V
500mW
±10mA
±15V
Continuous
O·Cto +70"C
- 65·C to + 150·C
260"C
300"C

Electrical Characteristics (Note 4)
Parameter

LM108/LM208

Condition
Min

=
=
=
=
=
=

Input Offset Voltage

TA

Input Offset Current

TA

Input Bias Current

TA

Input Resistance

TA

Supply Current

TA

Large Signal Voltage
Gain

TA
25·C, Vs = ±15V
VOUT = ±10V, RL ~ 10kO

Typ

Min

Max

0.7

2.0

2.0

7.5

mV

25·C

0.05

0.2

0.2

1

nA

25·C

0.8

2.0

1.5

7

25·C

30

25·C

0.3
50

10

70
0.6

300

Input Offset Voltage

40
0.3

25

3.0

Input Offset Current

15

6.0

0.4

Average Temperature
Coefficient of Input
Offset Current

0.5

2.5

0.15

0.4

Input Bias Current

2.0

3.0

=
Vs =

TA

Large Signal Voltage
Gain

RL

~

Vs

=

+125·C
±15V, VOUT
10kO
±15V, RL

=

=

±10V

10 kO

25
±13

1-197

0.8

rnA
VlmV

10

mV

30

p'vrc

1.5

nA

10

pArc

10

nA
rnA

15
±14

nA
MO

300

3.0

Supply Current

Units

Typ

25·C

Average Temperature
Coefficient of Input
Offset Voltage

Output Voltage Swing

LM308
Max

±13

V/mV
±14

V

•

co
0

(II)

:i
.....
~
N
::IE

....
.....
co
0

i...J

Electrical Characteristics (Note 4) (Continued)
Typ

Min
Input Voltage Rarige

Max

±13.5

Vs = ±15V

i.

I,.M3Oa

LM108/LM208

Condition

Parameter

, >:,

Min

Typ

Units
Max

±14

V

Common Mode
Rejection Ratio

85

100

80

100

dB

Supply Voltage
Rejection Ratio

80

96

80

96

dB

Note 1: The maximum junction temperature of the LM108 Is lSO'C, forthe LM208, 100'C and for the LM308, 8S"C. For operating at elevated temperatures. devices
in the H08 package musi be dereted based on a thenrnal resistance of .160'C/W, junction to ambient, or 20'C/W, junction to case. The thenmal resistance of the
dual-In-line package Is 100'C/W,junction to ambient.
Note 2: The Inputs are shunted with back-to-beck diodes for overvoltage protection. Therefore, excessive current will flow H a differential input voltage in excess of
1V is applied between the inputs unless some limiting resistance is ueed.
Note 3: For supply yqltages less than ±lSV, the absolute maximum Input voltage Is equal to the supply Yoltege.
Note 4: These specifications apply for ±SV s: Vs s: ±20Vand -SS"C s: TA s: + 12S"C, unless otherwise specHled. WHh the LM208, however, all temperature
speclflcations are limijed to - 2S"C s: TA s: 8S"C, and for the LM308Jhey are limited to O'C s: T A s: 70'C.
Nota 5: Refer to RETS108X for LM108 milital)' specifications and RETs 108AX for LM108A milHa/)' specifications.
Nota 6: Human body model, 1.S kfl in series with 100 pF.

Schematic Diagram
COMPENSATION

r-________~--~1~.-~~
R4
20K

RS
20K

COMPENSATION

__--~~8~--_.~----------------~~------~7

V+

R6
10K

11-_"-,\NH~6 OUTPUT

INPUTS

+-----+------~.,

"'--+~\IV-+-~I 020
R13
20K

R12
820

4

L...--'W"..--41~""'I'\r-"-"''''''''''''''''-~''-41~---e_---V-,
TL/H/7758-8 .

1-198

Typical Performance Characteristics LM108/LM208
Input Currents

u
u

i

-

.... r-.,

I.

Iii U

I

u

-

~

i..

!; 1.1&

I

• I.,'

~

o.
,

I

-IIi -35 -11 I

H 41 •

p

a~111'1111
~

"
1.1

i

'OFFSET

""'"

Drift Error

Offset Error

c
!:;

I!" - r- r--_

1.1

,.

.. , . 125

TEIiftRATURE C'CI

Input Noise Voltage

,. ,.

...ti
.t~

l

!'11

~1:IIIIIEt=t

i

iii

II

1. ,.

L..J...L.IIIIL..JL.J.

II

.REDUENCY

11K

II

!
~= ,~

48

20

ID

~

i

"

....
....~
C

I'

.

H

I ' ....::

...

~q-.,.

- ,,
'""r---

41

SAl.

·21

1

11

lID

lK

-

~. -125'C

~.:25JC
, ,
I

,.

,'-, L---L_-'--'_"';;_ _~
10 lID ,. 11K IIOK ,. , .

10M

.REOUENCY 1111'

-

•

I. ,

I.
131

ID

;;r

Ii

... ~

!

.. Ii
\:

t ..~

12

r-'

I--

IE:

41

11K '.K 1M 10M

• REQUENCY 1Hz'

Supply Current

V.-t"V

'\

T... --HOC

""
o

5

OUTPUT CURRENT I,..A,

1t1
C,-3"

, ••

.REOUENCY IHII

fA" 121"C

11

11

21

III

I
I

•

~

i..

-Hp.

10K

= 25~C

Voltage Follower
Pulse Response

,,,o2SoC
V... .!:ISY

'-

TA

SU"LY VOLTAGE I'V'

10

I-I-lK

-

.--I"""'"

~

Large Signal
Frequency Response

Co-'~~
ct-., ~

-21

IIOK

,.,..

21

ct- 3oF-t- c"3'.m, ,Co-'ll,h 'V-

....

f..,: -II·C

'-IHIIz

121

i

II' I--t--~'<-I

,/"

I

Open Loop
Frequency Response

~~

11K

II

IU"LY VOLTAIE ltV,

III

lK

Output Swing
11

I I
I I ct-,

II

l--flrl'PIrlf--+>.;-if--;

.HEOUENCY CH.,

~'25'C

I

11'

~ ,,-, I--+r+--+-

l1li,

......-1;':-IIi·C

r

ii
lID

I I

"

.

.--,--.,.---r-..,....--,=.

S 1.' I---jjr-ho<-f--¥-if--;

-20

,.K

'A .aJc

; 1"

10'

I

II

Voltage Gain
C2I

Closed Loop
Output Impedance

Vs ",.t15V
T... -ZIOt
Av='

;;;
:!!

INPUT RESISTANCE (Ill

Power Supply Rejection

1.

~

lD11111

~
'.&1111
,. ,.

1

_PUT RDISTANCE 1'-

120

I.

i10:

I.

~

I.'UT
~om T

\

0

..~ ...
....
-2

J I I

.-~I·J -

...., 1\

-·'II!._
ct-.,·

Vo

~

-II

I

211 411 . . .11. '21'41'11

TI.E ....
TL/H/7758-6

1-199

Typical Performance Characteristics LM308

•

. z
~

:i

~

BIAS,

'I

I

....... [00..;..

i o.i.

UG

l-

100

i.

~SET--:- tJ I
I I

0.10

o
o

~

10

~

~
~

a " " m U

H •

1.0 L.....L:.l..LJLUII......L..LJ.
100K
I.
11M

TEMPERATURE ('C)

UL...L.;J.J..IJJIJII..-L..LJ.
IIIK
I.

100
FREQUENCY (H.)

,Ii:"

IK

11K

I.

lOOk

,.

II

Voltage Gain

Output Swing

..
.

' - r""

w

TA =1I"e

C

!:; I..

-

~

T.!O"~

ISO

~

11

i

TA-2S'C

T: -a!c

!

C,'D
t-llOHz

I.

Supply Current

T.·WC"

I

TA = zs"e

I.

11K lOOk

,au

Vs" +1SY

I Jllll;fO':
--I:

,

Ik

FREIIUENCY tH.1

15

110

1111

FREQUENCY (Hz)

,IZI

!!
c
co

101.

Closed Loop
Outnut hnpedance
'10'

i

I.

INPUT RESllTANeE 1111

INPUT RESISTANCE U.

Input Noise Voltage

TA·lrC

Error

=
~ '~MIII~
',~

I

0.25

Drlt~

>IOIO'~ml
.!
f.:I
~.

t
I,

"3

!

,.()ffset Error

Input· Curr,ents

-25"C

310

..... f..- r-

250

"il

200

iiii

150

.

T.-WC

~

100
51

a

ao
21

II
15
SUPPLY VOLTAGE (.V)

5

Large Signal:
Frequency Response

121

.
...

ii
:!!

10

~

8D

~

.0

or

!:;

"

Ct- ~PF+-CI.lprilr
" Cs' loo,F----,.!"! rI-

10

.,

i'---

m

GAIN
PHASE - - -

90
4&

Cs~ lOD:~
c,- JD,.

-ZO
1

10

lDO

IK

~

10K ll11k 1M

FREQUENCY (H.,

... il.
I "~.
~

~

0-

C,-30,F

za

111111

liD

10M

!

\

12

1111111

TA " HOC

..

a

i

,I

w

~
!:;

-30pF,

g

tlOOK

FREIIUENeY tHz)

1M

r-

r-r-

J

IfOUTPUT
I

INPUT
0

~

-2

...

-I
-10

I:::::
111(

r-

-I

lIK

Voltage Follower
Pulse Response

I

VB - illY

C,-3,.

o

zo

11

SUPPLY VOLTAGE (iVl

11

~~

'I

OUTPUT CURRENT t'lIIA)

Open Loop
Frequency Response
III

5

'1

....
o

1\

21

TA-~SJVs - "5~_
C,'JD,F

~

10 II 100 12110150
TI.Et"~

TL/H/775B-7

1-200

Typical Applications
Sample and Hold

v'

AI
1M

INPUT

SAMPLE

OUTPUT

tTeflon polyethylene or
polycarbonete dielectric
capec~or

Worst case drift less than
2.5 mY/sec

C2
30 pF

TL/H/7758-4

High Speed Amplifier with Low Drift and Low Input Current
R,•
INPUT -~N\,--"-----"----'V\""'----.- OUTPUT

.002""

150K

.002"F

TL/HI7758-5

1-201

•

Typical Applications (Continued)
Fastt, Summing Amplifier

Rs
INPUT-JVIAI~"'----------"-"'1

C3

0.002 p.F

OUTPUT

R2
1M
'In addition to increasing
speayf>assed ~Ith 0.1 p.F disc capacitors.
Note 5: Slew rate is tested with Vs ~ ± 15V, The LM118 is In a unHy·galn non-lrTVertlng configuration, VIN is stepped from -7.5V to + 7.5V and vice versa, The
slew rates between - 5.0V and + 5.0V and vice.versa are tested and guaranteed to exceed 50VI p.s.
Not. 6: Refer to RETS118X forUA118H and LMII8J military speCifications.
Note 7: Human body model, 1.5 kllin series With 100 pF.
1-204

Typical Performance Characteristics LM11 e, LM21 e
Input Current
200
150

Voltage Gain

;;;;;;~ls

100

1

'0

!

10

!

~

~
~
~

~

8

,,0

i""'"- ~5JC....... T

A

105 -T.·m"C

-55 -J5 -15 5

25 45 65 15 10' 125

JOO
100

J8
10

.
5:;:
.
..
Ii!

i

10

20

10k

.
w
u

-

10'

~

5

~ 10. 1

..

TA '" 2S'C

i'\.

10'

~

'0- 2

-

~

10-3
1.

180

12

,.rJ

V Av=y

~

i

i!

22

I.
.
.

"~
i

::I

.

20

-

i

1&

e

14

~
ii

12

..

I I
I I

8
-55 -J5 -15

5

680

I"- :::-;;:i:::::

r-.. .....
......

25 45 85 15 105 125

TEMPERATURE rCI

20

Input Current

T
TA =125'C

15

10

20

1-+--+-+--1-+--+--++1

-BOD ' - " -.............--'_"--'--'-....
-D.B -0.6 -u -D.2 0 0.2 0.4. U D••

25

130
120

r-- r-~sli'YE ~LE~

,,0 ~

I

..
..
70

NEGAT1YE SLEW

it'{....

.

E
w

l00r

~>
~

..=
==

Vs "';:I:1SY
TA =25-C

-5

25 45 15 II 105 125

TEMPERATURE rCI

uo

lmY

~
lmY

~.5k11

R,.
-ID
-1&

-55 -J5 -15 5

lD~Y

I

lD

......
I"

Vs ·::tISV
As-Rf-'OkO
C,·S.f

Inverter Settling Time
15

100

~ 9.

II

DIFFERENTIAL INPUT IVI

Voltage Follower Slew Rate

J' ~"±1D~_

Vs"::t5V

10

SUPPLY VOLTAGE I±VI

OUTPUT CURRENT (mAl

...... ~I::--

...... -.J

~

VS'±ISV

1M

I
..... t--t"~ JS.~15~t+-

10

5

-

15

4.0

10M

-400

100k

V

iii

./
10k

T•• m~

.~

/'
1k

I--

~

~ ~s=:t20V

I'-

"

/1'

~

~ r- T.'25"C-

TA " Z5"C

Unity Gain Bandwidth

i

4.5

>

1M

10

FREQUENCY IH'I

24

E

Current Limiting
14

Vs":t15V

Av ' • ,oOO

lOOk

.~

5.0

S

~

.....

T.'~

~

FREQUENCY IHII

Closed Loop Output
Impedance

10'

til

10M

Supply Current

.!

\.
100

lOOk

1M

T.·21"C_

60

:E

too.

tOk

FREQUENCY tHri

5.5

-

FREQUENCY 1Hz!

g

1k

Rs"'2I1R

o

10>

'~

100

20

15

~

80

40

'-

'\

'-;

100

~
:E

SU~

-20

120

8
lk

NEGATIVE

20

Common Mode Rejection

1010

100

40

~..,,~_OSITIVE SUPPLY

SUPPLY VOLTAGE !±VI

P+1llIII=:m1ll1=mt;;2iiC1lll

10

!

TA '" 25'C

~,

iii

5

Input Noise Voltage

~

60

I:

TEMPERATURE reI

Jooo

z

>

.,

a

...

..-

=25'C

,...,

§: 100

I

~:;

80

~

OFFSET

~

Power Supply Rejection
100

115
Vs .. :tISV

lDOrY

C.,,'Opf
!1omv
Ca." D.l,."
",i
O.OJ

D.l

D.J

TlMEI,a)
TL/HI7766-4

1-205

Typical Performance Characteristics LM118, LM218 (Continued)

,.

Large Signal Frequency
Response

i.

T.~Jcl

,

12

V.·~IV

\

II

i

I.

i

!

~

i

II

Open Loop Frequency
Response

-

,

II

i~

T!'
zJc
v•• ~.v-

II

PHASe

I

K' ~

10

II

22'

I. ,
, I
ii

48

~

Voltage Follower Pulse
Response

'II!
I:

.~

41

. • l- \
..I...~ \

.... 1M III

..

11M lIM

-a

IiIII

111 "

FREDUENCY IHI)

-

14

12

j

121

T.'zr~'

'111

V.·~IV

i

II

..

i

I

i!
c

II

III

48

~
co
FEEOFOR.ARO

......

I

'M

-I

-11

~::~::.-

-II

-211

1ft I . ,. '1M , ...

-1.2

J I III

Open Loop Frequency
Response

1.2

,.

......

.,

~

-a

10

"

~-I-'

II!

Ii '4a
III

·c
!:;
co

'"

FEfDFOI_'O

,311
FR£QUEIICY IHII

II

DB

10

lAIN'

1.1

Inverter Pulse Response

,
PMJV'
'S..
T.'IIjC -

I"

IA

...
".
TIIIEc.sJ

zo

v~.~Jv

~

II

I'-OIlTPUT

-4

~

FREDUENCY !HI)

Large Signal Frequency
Response.

,

-t-

!!

I'
11

I I

E

GA.."

•

n
r,-M-

lJ

12

,,'

.,.OUTPUT

-I

.
-~.

-11

I

I

t.Z

...

-

T.·zrc

FEEOFO_RO
0.1

I

'I-t-

-4

-II
-I.I

I . I . 1M 11M I .
FREQUENCY IHII

I . It

r\1

INPIIT";"

\.

-11

•

I

-r1-

V.·~.V

t.7

0.9

TIME"",
TUH17766-5

Typical Performance Characteristics LM318
.. Voltage Gain

Input Current
200

I

'10

i:l

i

....
...

iii 110

!!!

=
.0
ill •

..

.

BIAS

i'"

'" 105

;. :

~

31
3

OFFSET

o

T.-7rc

,. 100

I
I

95
'0

120

-""
'\

.. lao
~ •
::..
.....
.'.."

a;

30

,t

I. ,.

FREQUENCY IHzI

I.

411

.
II
II

20

o
100

Ik

10k

lOOk

FREQUENCY IHd

'k

10k

lOOk

1M

'OM

FREQUENCY IHII

u

i... 6.0

.
..f.5
ill

I\.

60

! e!1(!B!~~~!:

20

Ro-2kO
T. ~2rc_

3,

100

15

Common Mode Rejection

Input NOise Voltage

~3111

1--t--t---1f-~--f

SUPPL YVOLTAGE ItVI

TEMPfRATURE rCI

I=I+mlII=+rnIll=Pn:::a;:;mr

20

~O~--~--~~~~--~

5

01033114110.70

I.

i

T•• 25'C

~

II

l

T.-rc

C

>-

48

3000
1I11III

Power Supply Rejection
100

115

i:l

"

'M

10M

Supply Current

.J•• r~

~ ~-". [ k'"
/ T :1'2IC \

--

TA.iJft

,
4.0
5

II

I.

20

SUPPL Y VOLTAGE ItVI
TL/H/n66-6

1-206

r-

....
....
co

i:

Typical Performance Characteristics LM318 (Continued)

......
rClosed Loop Output Impedance

~

S

.,c

rl

.

,.

10-2
10"

Ay l=l_

",-

"- V

1'"

i!
... lit'

T" ,,2S·C

-

10'

co

I...

"

V.·~5V

III'

10

lID

i

Ay-V

T. I'25'C

E&
g

iC

\

o
lOll

1M

I"

20

I~

1.~~~~~.~~~

\
..011

o

II
15
10
DUTPUT CURRENT ImAI

Z5

-I.....&-U-II.20I.ZUILI0'.

DIFFERENTIAL INFUT IVI

Voltage Follower Slew Rate

15 r-r-TT'I'TTT"--,r-r-n"TTT"--"'-'

r-

1

I'OSITIVESLEW

1--+--+-+

III

..:: ,.

~
co

,.
s
,.e:

NEGATIVE SLEW
II

,.ii

L-..i--L_l-J----'_..i-...J

r-

-15

14~~~~I~m--ron

T.~2~C'

\
I
V'i~~
1-H+H~\t+-++1rtttIt-+-+j+t

iS · 1-ttftI---\--r-rtttIt--r1
+Hi
HtHl--i~-\t-+++ltt+--+-+-.y
g

I
I! !
Htftt---l--!'\I-t+Htl--+J-+-j

4

I Nl·,

I

120

i

1'\.1

lID

..

i

ID

C

60

..~

CD

,."

2M

5M

r •• Z5'~ _

"-

E

a
!;

..~

L

1

PHASE

~ -'

SlIM

\

II

1011

Ik

f-

~
I

8

"'

...

•

1M

II

3M

Ir~

C

10

w

,."~

.
I ~' FfEDFDRWARD

I

;:

10

..

, ,

Jill

10M
30M
FREDUENCY IHzI

111

:I 'I
il 1 r-

-1&

T. =25'C -

\

I
I

V.=:t:15V

0.1

0.2

1.4

1.0

1.1

T'MElpd

Inverter Pulse Response

.
i
10

b..

i'-

I

"-

40

....... V

ZI

11

V.=:tIBV
r.=Z5'C-

~

FEIE DFDIRWA~D

12

1

PHAbr I

"-

-211
1.

111

lk

10k lDDk 1M 10M IOIIM

FREIlUENCY IHd

~

..
i~

-12

~

1

~- ~.

w

GAIN'
10l1li1

-Mo-

-OUTPUT

'NPUT-

-4

-211
-0.2

11k 1... 1M 10M I _

Open Loop Frequency
Response

, :\J ',1
i

1\

FREaUENCY IHd

T."rc
V.=:tIIV

I

.

I

1

n

~ -I
",. -IZ

120

II

..
i

12

w

GAIN,\
-211

a

co

I

I
I

15

2Z5

ZI

Large Signal Frequency
Response

12

j

~

41

FREaUENCY IHd

14

Vrtl~V

I II

10M 20M

Voltage Follower Pulse
Response
ZD

w

I 11.J,JB,.....L...J...lJ
o LJ.LW.-L....L...J..L.J
0.5M 1M

TlME~

Open Loop Frequency
Response

r-

D,3

••1

D.I3

TEMPERATURE rCI

Large Signal Frequency
Response

..

-ID

I1DZ03D4I&GIDID

TEMPERATURE I'CI

8

I.V

-I

"

II

010203841H&01.

11

h,v

~

.. 16

C

11

a

V••':tI5V I
Rs=R,=111Ul
1:,=5...,

RfFIPH-t+ttl-ttt-

Inverter Settling Time

110

:i

i

w
....
CO

1\

V.=:tI5V

i

12

~

4

./

Unity Gain Bandwidth
22.--.----y---,--r-.----y--,

12

N

r-

--

T.=lrc

. FREDUENCY IH.)

..

....

12

lID

/'
Ik

iC

Input Current
80D

!l •

\j

--- -

.........

Current Limiting

-1-'1-

I~OUTPUT

,NPUT-

:/
,/

1\
\

\

-f-"

~-

FEEOFORWARD

-18

-z,-0.1

I

'H-

I
0.1

I
1.3

D.5

-

T. = 25'C
V.=:tlBV
0.1

8.9

TlMEI/IIl
TL/H/7766-7

1-207

co
.-

CO)

~

r-~----~----------------------------------------------------~--------~~----------,

Auxiliary Circuits

~
.-

Feedforward Compensation
for Greater Inverting Slew Ratet

N

::I....

Compensation for Minimum Settlingt Time

5K

5pF

co
..-

JK,

::I

tOK

v'

>:.........~-OUTPUT

10K
INPUT - " "_ __

tSlew rate typically 150Vl,..s.

'Balance circuij necessary fOr'
increased slew.

~----.,~OUTPUT

27K

'"
•

UK ,
_ _ _ _..1 BALANCE-

TL.lHln66-8

TLlHI7766-9

Offset Balancing

Isolating Large Capacitive Loads

vi"

Overcompensation

!If

r---"""'--...--.........

OUTPUT

100

tUpF

SK
INPUT

-""""'''-f
TLlHln66-12

TlIHln66-10

TLIHI7766-11

Typical Applications
Fast Voltage Follower"

Integrator or Slow Inverter

5pF

AI

10K

5pF

OUTPUT
CF = Large
(CF:;' 50 pF)

IN'UT ......W""'"~

TL.lHln66-14

'00 not hard-wire as infegrator or slow inverter, insert a
IOk-5 pF network in series wnh the input, to prevent oscillation.

TLIHln66-13

1-208

Typical Applications (Continued)
Differential Amplifier

Fast Summing Amplifier

10K

5 pF

10K
10K

INPUT-~""''''I-'''t

OUTPUT

5K
INPUT_",,_ __

10K
INPUT-~,..,....~

OUTPUT
10K

TL/H/7766-16

TUH/7766-15

Fast Sample and Hold
IOpF

5K

OUTPUT
INPUT~""---,

SAMPLE

TUH/7766-18

D/A Converter Using Ladder Network
5pF

5K

5K

5K

OUTPUT

FROM SWITCHES

TV·

0.1 ~F·
'Optional-Reduces settling time.
TUH/7766-19

1·209

LM118/LM218/LM318

;J

"g'
»

Four Quadrant Multiplier

""2-g'

ISV

0'
~

50K
1%

SDK
1%

38K

30K
1%

1%

120K
1%

til

3pF

5K*

i

::>

1

IIOK

50pF

1%

120K
1%

":)6 ~

~

~

o

x
INPUT

,

121K

'W\;
1%
•

•

~

-I
ISV

~""".<~IOKII
IK

280

200

-ltV

INI14

zero.
·"Y"zero
+ "X" zero

~Ou1put

*Full scale. adjust.

.

.

ISOK

1%
~
TL/H/776Ef-17

Typical Applications

......r....
r...~
r...
!!I:

(Continued)

CD

CIA Converter Using Binary Weighted Network

Fast Summing Amplifier with Low Input Current

5,.

s"

!!I:

N

R,

OUTPUT

INPUT

...

10K

.

.DD2IJF

CD

,.

OUTPUT

lOOK

1&DK

_

FROM SWITCHES

!:
Co)

"Optio~Aeduces settling time.

T

":'

'.1uF·

.OD1j.1F

V·

5K

TUH/7766-20

TL/H/7766-21

Weln Bridge Sine Wave Oscillator

Instrumentation Amplifier

AI
750

lGa1<

",

lZK

",

lie
NULL

lZK
1%

>--"'--OUT'UT

AZ

ZOK

-'.'UT~W_H

1%

"ll-10V-14 rnA bulb ElDEMA 1869
Al ~ A2
TL/HI7766-22
Cl ~ C2
1~

... ,
.
200K
) "Ga,n ;" -A-lor 1.SK ,;; Ag ,;; 200K

__
1_

2".A2Cl

.,

9

"'--~~--"---'5V
TL/H/7766-23

1-211

I

Schematic Diagram

~~--------------------~~a~~-'

~----.-+-+-----------~&.-~~

1-212

t!lNational Semiconductor

LM 124/LM224/LM324/LM2902
Low Power Quad Operational Amplifiers
General Description

Advantages

The LM124 series consists of four independent, high gain,
internally frequency compensated operational amplifiers
which were designed specifically to operate from a single
power supply over a wide range of voltages. Operation from
split pOwer supplies is also possible and the low power supply current drain is independent of the magnitude of the
power supply' voltage.
Application areas include transducer amplifiers, DC gain
blocks and all the conventional op amp circuits which now
can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard + 5V power supply voltage which is
used in digital systems and will easily provide the required
interface electronics without requiring the additional ± 15V
power supplies.

• Eliminates need for dual supplies
• Four internally compensated op amps in a single
package
• Allows directly sensing near GND and VOUT also goes
to GND
• Compatible with all forms of logiC
• Power drain suitable for battery operation

Unique Characteristics
• In the linear mode the input common-mode voltage
range includes ground and the output vol1age can also
swing to ground, even though operated from only a single power supply voltage
• The unity gain cross frequency is temperature
compensated
• The input bias current is also temperature
compensated

Features
• Internally frequency compensated for unity gain
100 dB
• Large DC voltage gain
1 MHz
• Wide bandwidth (unity gain)
(temperature compensated)
• Wide power supply range:
Single supply
3V to 32V
or dual supplies
± 1.5V to ± 16V
• Very low supply current drain· (700 JJA)-essentially independent of supply voltage
45 nA
• Low input biasing current
(temperature compensated)
2mV
• Low input offset voltage
and offset current
5 nA
• Input common-mode voltage range includes ground
• Differential input voltage range equal to the power supply voltage
OV to V+ - 1.5V
• Large output voltage Swing

Connection Diagram
Dual-In-Une Package
OUTPUT' .N'UT 4-

INPUT

,+

GND

INPUT 3+

INPUT 3-

OUT 1:==:;~~l,III""!:::i;:===OUU

OUTPUT 3

IN1-

IN4-

IN 1+

IN4+

y.

GNO

IM2+

IN3+

1"2OU12

IM3OUT!

TUH/9299-32
INPUT r

OUTPUT 1 INPUT'-

Order Number LM124AE/883 or LM124E/883
See NS Package Number E20A

ounUT 2

TL/H/9299-1

Top View
Order Number LM124J, LM124AJ, LM124J/883··,
LM124AJ/883·, LM224J, LM224AJ, LM324J, LM324M,
LM324AM, LM2902M, LM324N, LM324AN or LM2902N
See NS Package Number J14A, M14A or N14A

OUTPUT 1

OUTPUT"

INPUT 1-

INPUT.4-

INPUT 1+

INPUT"+

y.
INPUl2+

GOD
INPUT 3+

INPUT 3OUTPU12

OUTPUT .3

TUH/9299-33
'LM124A available per JM3851 0/11 006
"LM124 available per JM38510/11005

Order Number LM124AW/883 or LM124W/883
See NS Package Number W14B

1-213

LM 124/LM224/LM324/LM2902

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 9)
LM124/LM224/LM324
LM124/LM224/LM324
LM2902
LM2902
LM124A1LM224A1LM324A
LM124A1LM224A1LM324A
SupplY Voltage, V+
-65·C to + 150"C
32V
26V
Storage Temperature Range
-65·Cto + 150"C
'Differential Input \joltage
32V
26V
Lead Temperature (Soldering, 10 seconds) 260·C
26O"C
'·-O.sVto +32V
Input Voltage
-0.3Vto +26V
Soldering Information
Dual-In-Une Package
Input Current
Soldering (10 seconds)
260·C
260"C
50mA
(VIN < -0.3V) (Note 3)
50mA
Small Outline Package
,
-", .
Power Dissipation (Note 1)
215·C
215·C
VaPor Phase (60 seconds)
Molded DIP
1130mW
1130mW
Infrared (15 seconds)
220·C
220"C
Cavity DIP
1260mW
1260mW
See AN-450 "Surface Mounting Methods and Their Effect on Product ReliabilitY" for
Small Outline Package. ,
800mW
800mW
oth~r methods of soldering surface mount devices.
Output Stiort-'Circuit to GND
. .:. .
, ESD Tolerance (Nole 10)
250V
250V
(One Amplifier) (Note 2)
;-'
V+ s: 15Vand TA = 25·C
Continuous
Continuous'
-40"Cto +85·C
Operating Temperature Range
LM324/LM324A
O"Cto +70"C
- 25·C to + 85·C
LM224/LM224A
- 55·C to + 125·C
LM124/LM124A

~

.....

Electrical Characteristics v+ =
Parameter

I
i
I
I

i
I

i
i

I
I
,

0

I

+5.0V, (Note 4), unless otherwise stated
LM124A

COnditions

Min Typ
Input Offset Voltage

(Note 5) TA = 25·C

Input Bias Current
(Note 6)

IIN(+)or IIN(-), VCM
TA = 25"C

=

OV,

Input Offset Current

IIN(+) -IIN(-), VCM
TA = 25"C

=

OV,

Input Common-Mode
Voltage Range (Note 7)

V+ = 30V, (LM2902, V+
TA = 25·C

Supply Current

Over Full Temperature Range
R't- = 00 .On All Op Amps
V = 30V (LM2902 V+ = 26V)
V+ = 5V

=

26V),

LM224A

Max

Min Typ

LM124/LM224

'LM324A

Max

Min Typ

Max

Min Typ

Max

Min Typ

I

LM2902

LM324
Max

Min Typ

Units

Max

1

2

1

3

2

3

2

5

2

7

2

7

mV

20

50

40

80

45

100

45

150

45

250

45

250

nA

2

10

2

15

5

30

3

30

5

50

5

50

nA

V+ -1.5

V

V+-l.S

,0

V+-l.5

0

V+-l.S

0

V+-l.5

0

V+ -l.S

0

0

I

1.5
0.7

1.5
0.7

3
1.2

3
1.2

1.5
0.7

1.5
0.7

3
1.2

3
1.2

1.5
0.7

1.5
0:7

3
1.2

Large Signal
Voltage Gain

V+ = 15V,RL:<: 2kO,
(Vo = 1Vto llV), TA = 25·C

50 100

50 100

25 100

50 100

25 100

25 100

Common-Mode
Rejection Ratio

DC, VCM = OVtoV+ -1.5V,
TA = 2S·C

70

70

65 '8S

70

6S

50

Power Supply
Rejection Ratio

V+ = SVt030V
(LM2902, v+ = SV to 26V),
TA = 2S·C

6S 100

65 100

65 100

85

85

65 100

85

8S

65 100

70

50 100

3
1.2

mA
I

VlmV
'dB

dB

i

Electrical Characteristics v+
Parameter

= + 5.0V (Note 4) unless otherwise stated (Continued)

LM124A

Conditions

Min Typ
Amplifier-to-Amplifier
Coupling (Note 8)

f = 1 kHz to 20 kHz, TA = 25'C
(Input Referred)

-120

Output Current Source VIN+ = 1V,VIN- = OV,
V+ = 15V, Vo = 2V, TA = 25'C
Sink

-120

LM324

Max Min Typ

-120

LM2902

Max Min Typ

20

40

20

40

20

40

20

40

20

40

VIN = 1V, VIN + = OV,
V+ = 15V, Vo = 2V, TA = 25'C

10

20

10

20

10

20

10

20

10

20

10

20

VIN - = 1V, VIN + = OV,
V+ = 15V, Vo = 200 rnV, TA = 25'C

12

50

12

50

12

50

12

50

12

50

12

50

(Note2)V+ = 15V, TA = 25'C
{Note 5)

Input Offset
Voltage Drift

Rs= 00

Units

Max

-120

-120

40

Input Offset Voltage

dB

rnA

40

60

40

4
7

20

7

IIN(+) - IIN(-), VCM = OV

...

Rs= 00

U1

Input Bias Current

IIN(+) or IIN(':')

Input Common-Mode
Voltage Range {Note

V+ = +30V
(LM2902, V+ = 26V)

0

V+-2 0

Large Signal
Voltage Gain

V+ = +15V
(VoSwing = 1Vto11V)
RL ~ 2kO

25

25

Output Voltage VOH
Swing

V+ = 30V
(LM2902, V+ = 26V)

30

IRL = 2kO
IRL = 10 kO

V+ = 5V, RL = 10 kO

60

40

5

20

7

30

30

200

10

300

10

40

100

40

100

40

200

40

26
28

27
20

V+-2 0

5

27
20

5

27
20

40

V+-2 0

500

5

20

40

V+-2 0

rnV

200

500

nA

V+-2

V

V/mV

22
28
5

V

23

24

20

5

-

nA
pAl'C

15

26
27

rnA

10

10

15

28

60

,..VI'C

45

150

300

,..A

7

10

26
28

40

7

25

26
28

60
9

100

10

15

40

7

75

V+-2 0

60
7

200

5

-

40

10

26
27

60
4

Input Offset
Current Drift

VOL

LM124/LM224

Max Min Typ

20

Short Circuit to Ground

n

Max Min Typ

-120

Input Offset Current

~

LM324A

LM224A

Max Min Typ

---

-

100

-

mV

--------

~06~W'/t~£W'/t~~W'/t~~W'

LM124/LM224/LM324/LM2902

Electrical Characteristics v+
Parameter
Output Current

Source

Sink

= + 5.0V (Note 4) unless otherwise stated (Continued)
LM124A

LM224A

LM324A

LM124/LM224

Min

TyP

Min

Typ

Min

Typ

Min

Typ

10

20

10

20

10

20

10

10

15

5

8

5

8

5

Conditions
Vo= 2V

VIN+ = +1V,
VIN- = OV, V+ = 15V

Max

Max

Max

LM324
Min

Typ

20

10

20

8

5

8

Min

Typ

20

10

8

5

Max

LM2902
Max

rnA

-

VIN = +1V,
VIN+ = OV, V+ = 15V

Units

Max

Note 1: For operating at high temperatures, the LM324/LM324A1LM2902 must be derated based on a + 12S"C maximum junction temperature and a thermal resistance of 88"C/W which applies for the device soldered in a printed
board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a' + ISO"C maximum junction temperature. Tha dissipation is the total of all four amplifiers-use external resistors,
whare pOSSible, to allow the'limpllfler to satUrate of to reduce the power which Is dissipated in the Integrated circuit
'
'
,
circu~

Note 2: Short cirpuits from the OUtput to y+ can cause excessive heating and eventual destruCtion. When ~sldering short circu~ to ground, the maximum output current is approximately 40 rnA inde~e~rof the niagn~da of
Y+. At values of sU(Jply voltage in exCess of + ISY, continuous short-circu~ can exceed the power dlssipetion ratings and cause eventual destruction. Destructive dlsslpetion can result from simultaneous shorts on all amplifiers.
, 'Note 3: This input current will only exist when the voltege at any of the 'Input leads Is driven negative. It is due to the collector-base junction of the input PNP transistors becoming iorward biased and thereby acting as input diode
'clamps. In addition to this diode action, there Is also lateral NPN parasitic transistor action on the IC chip. This transistor action can CIluse the output volteges of the op ampS to go to the y+ voltage level (or to ground for a}arge
overdrive) for the time duration that an il'lpUt is driven n~e. Thi,1s not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3Y (at 2S"C).,
Note 4: Th";'" specifications are limltad to -S5"C ,; TA ,; + 125"C for the LMI24/LMI24A. With the LM224/LM224A, all temperature specifications are limned to -25"C ,; TA ,; +85"C, the LM324/LM324A temperatil;&
specifications are limited to O"C ,; TA ,; +70"C, and the LM2902 specifications are limited to -4O"C ,; TA ,; + 85"C.
'Note 5: ito .. ,1.4V, As = Oil with it+ from SY to 301i; and over the lull input cOmmon.mode range (OY to y+ - I.SV) for LM2902, i/+ from SY to 28Y.
, Note 6: The directiO(1 of the Input current is out of the IC due to the PNP il'lpUt stage. This current is essentially constai;~ independent of the state of the output SO no loading change exists on the input lines.
Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3Y (at 2S"C). The upper end of tha'common-mode voltage range is y+ - 1.5V (at 25"C), but either or both
lriputs can go to + 32Y whhOut damage (+ 26Y for LM2902), Indapendent of the magnHude of y+ .
. .
,
.

i\)

c;;

via

.NOIe 8: Due to proximity of external cOmponents, insure that coupling is not Originating
stray CapacitanCe betWeen these external parts. This typically can be detected as this type of capacitanca increases at higher frequencies.
Note'a:Refer to RETS124AX for LMI24A mil~ specHications and refer to RETS124X for LM124 mil~ specifications.
Note 10: Human body model, I.S kll in series whh 100 pF.

Schematic Diagram (Each Amplifier)
v'

<,'

...

-[

;

OUTPUT

-=TLlH/9299-2

.,

'-

Typical Performance Characteristics
Input Voltage Range

Supply Current

Input Current

15

90

1

I

80

I
Jp

70
80

-

f- f- .,. = +15VDC

-

f--

20
10

r-

I

Open Loop Frequency
Response

;!!.

~z

1\ = 20kll
~

'r30

120
100

!

~
1\ = 2k11

i-

Common Mode ReJection
RatiO

'iii'

110

TA

~

55

10
2D
.,. - SUPPLY VOLTAGE (Vocl

TA - 1EIIPERAlIJRE (COC)

Voltage Gain

-I

r

I

-55 -35 -15 5 25 45 65 85 105125

5
10
15
.,. OR .,. - POWER SUl'PLY VOlTAGE (tVocl

~

r- TA 1= ood 10 +125COC ~

--

"'1 = ~5VDC
I

3

I

--

30

o

o

1I

IVCII=OVDC

I I I
.,. = +30Voc

I :~

I

80

I
I

,.'"~
8

10

20

30

100 1.Dk 10k lOOk 1.011 1011

40

.,. - SUPPLY VOLTAGE (Vocl

Voltage Follower Pulse
Response
4

8!

i!

I

2

Voltage Follower Pulse
Response (Small Signal)

Large Signal Frequency
Response
20
~

"'=15VoC'

\

II
1,....

1M

lOOk

f - FREQUENCY (Hz)

1\:S2.Ok

3

10k

lk

f - FREQUDlCY (Hz)

i

\

15

I

0

i

3

10

I

1

-

~
250~~~~~~--~~

10

20

o

30

1

\ - TIME (j.o)

2

3 4 5, 6
\ - TIME (j.o)

7

8

10k

Output Characteristics
Current Sinking

10mw~~.n

I

1

10+ -

0.1

1

10

100

OUTPUT SOURCE CURRDIT

(mAocl

1

I
5

40

5

30

50

I

c-cc- C-

I

I

I

~

l""'- i'--,

o

-

;-- ,--

........

20
~ 10

b6b1:I!d::I::I:II::I::::I:I!I:I:::tm...llW
0J)1

Current Limiting
90

80
70
80

0
I

0.1.

~

D.OO1

1M

lOOk

f - FREQUENCY (Hz)

ccI""'-

o

10

10 -

OUTPUT SINK CURREHT

100

(mAocl

-55 -35 -15 5 25 45 85 85 105125,

TA - TEMPERAlIJRE ("C)
TL/H/9299-3

1-217

Typical Performance Characteristics (LM2902 only)
Input Current

Voltage Gain

~

'}

.s

1~

ai'

~

75

z

rs

II<
II<

:::>

u

50

I

~
....
g

V

!:i
a..
3!;

i§
l!J

_...--' "TA=+25"C

25

~

....~

3!;

o

RL =20k4

120

, ~

RL~2.0~_

80

«l

o

o

10

20

o

30

10

20

30

y+- SUPPLY VOLTAGE (VOC>

Y+-SUPPLY VOLTAGE (Voc)

TL/H/9299-4

Application Hints
Where the load is directly coupled, as. in dc applications,
there is no crossover distortion.
Capacitive loads which are applied directly to the output of
the amplifier reduce the loop stability margin. Values of
50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or
resistive isolation should be used if larger load capacitance
must be driven by the amplifier.
The bias network of the LM124 establishes a drain current
which is independent of the magnitude of the power supply
voltage over the range of from 3 Voc to 30 Voc.
Output short circuits either to ground or to the pOSitive power supply should be of short time duration. Units can be
destroyed, not as a result of the short circuit current causing
metal fusing, but rather due to the large increase in IC chip
dissipation which will cause eventual failure due to excesslye juncb'On temperatures. Putting direct short-circuits on
more than one amplifier at a time will increase the total IC
power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series
with the output leads of the amplifiers. The larger value of
output source current which is available at 25°C provides a
larger output current capability at elevated temperatures
(see typical performance characteristics) than a standard IC
op amp.
The circuits presented in the section on typical applications
emphasize operation
only a Single power supply voltage.
If complementary power supplies are available, all of the
~dard op amp circuits can be usee;!. In general, introducing a pseudo-ground (a bias voltage reference of V+ 12) will
allow operation above .and below this valUe in single power
supply systems. Many application circuits are shown which
take advantage of the wide input common-mode voltage
range which includes ground. In most cases, input biasing is
not required and input voltages 1ft(hicb range to ground can
. easily be accommodated.

The LM124 series are op amps which operate with only a
single power supply voltage, have true-differential inputs,
and remain in the linear mode with an input common-mode
voltage of 0 Voc.· These amplifiers· operate over a wide
range of power supply lioltage with lillie change in performance characteristics. At 25°C amplifier operation is possible
down to a minimum supply· voltage of 2.3 Voc.
The pinouts of the package have been designed to simplify
PC board layouts. Inverting inputs are adjacent to outputs
for all of the amplifiers and the outputs have also been
placed at the corners of the package (pins 1, 7, 8, and 14).
Precautions should be taken to insure that the power supply
for the integrated circuit never becomes reversed in polarity
or that the unit is not Inadvertently installed backwards in a
test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit. \
Large differential input voltages can be easily accommodated and, as input differential voltage protection dioqes are
not needed, no large input currents result from large differential input· voltages. The differential input voltage ·may be
larger than V+ without damaging the device. Protection
should be provided to prevent the input voltages from going
negative more than -0:3 Voc (at 25°C). An input clamp
diode with a resistor.to the IC input terminal can be used.
To reduce the power supply drain, the amplifiers have a
class A output stage for small signal levels which converts
to class B in a large signal mode. This allows the amplifiers
to both source and sink large output currents. Therefore
both NPN and PNP external current boost transistors can
be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-Chip vertical PNP
transistor for output current sinking applications.
.

on

For ac applications, where the load is capacitively coupled
to the output of the amplifier, a resistor should be used, from
the output of the amplifier to ground to increase the class A
bias current and prevent crossover distortion.

1-218

Typical Single.;Supply Applications

ry+ = 5.0 Voc)

Non-Inverting DC Gain (OV Input = OV Output)
+5V

RI
10k

------

• 101 (ASSHOWNI
'R not needed due

to temperature

independent liN

V,N (mV)
TL/H/9299-5

DC Summing Amplifier
(VIN'S ~ 0 Voc and Vo ~ Voc)

Power Amplifier
RI
91 Ok

R
lOOk

• ..........~....-oVo

Vo

= o Voc for V,N = OVOC
Ay= 10

R
lOOk

TL/H/9299-7
TL/H/9299-6
Where:Vo
(V,

= v, + V2 +

Vi) :;, (V3

va - V4
V41 to keep Vo

+

> 0 Voc

LED Driver

"BI-QUAD" RC Active Bandpass Filter
RI
lOOk

CI

NSLIOZ

330pF
R5
470k

RZ

TL/H/S29S-8

V,N o-...J\jI",OOk"""+"-I

CZ
330pF

R3

lOOk

R6
470k

~",,~~~------------~------oVo

R7
lOOk

~------~------------'-JV~--oV+
fo=lkHz
Q

= 50

R6

lOOk

IOPFl
C3

Ay = 100 (40 dBI
TUH/S299-S

1-219

Typical Single-Supply Applications (V+

= 5.0 Voc)

(~ntinuedl
Lamp Driver

Fixed Current Sources

If

+
2V

TL/H/9299-11

ImA
TUH/9299-10

Current Monitor
RI*

Driving TTL

IL

0.1

-

R2

100

TUH/9299-13

R3
Ik

VL';:

v+ -

2V

'(Increase RI for IL small)
TLlH/9299-12

Voltage Follower

Pulse Generator

>,,-ovo

TL/H/9299-14

RI
1M

IN914

RZ
10DIc

IN914

ii'"
R3
lOOk

TL/H/9299-15

1-220

r-----------------------------------------------------------------------------,
Typical Single-Supply Applications

(V+ = 5.0 Voc)(Continued)

:t

Pulse Generator

Squarewave Oscillator
Ht

Ht

tUGk

!

IN9t4

30k

~

....
N

i:

~

~

i:
Co)
R2

>-4HOVo

t58k

:JLIL

H2

tUGk

~

~

i:

~

N

H3
tOOk

H3
lOOk

HS
tOOk

TLlH/9299-16
TL/H/9299-17

High Compliance Current Sink

I.

I

+V'N

Low Drift Peak Detector

-

I
!IO

-

>",--oVo
ZOUT

+
R,

I
10 = 1 amp/voK VIN
(Increase Re for 10 smalQ

C

"'1"M

(POLYCARBONATE OR ...L
POL YETHYLENEI":'

2N92..

"hi p AT 100 nA
TL/H/9299-18

21.

HIGHZIN

~

LOWZoUT

-

R

I.

1M

INPUT CURRENT
COMPENSATION

TL/H/9299-19

Comparator with Hysteresis
+V'N

, Ground Referencing a Differential Input Signal

o-----...f
Ht
'tM
Ht

tOk

>-,,-oVo
V.

H
H3
tM

TLlH/9299-20

-

+VCM

TL/H/9299-21

1·221

Typical Single-Supply Applications (V+

=

5.0Vo c> (Continued) .

Voltage Controlled Oscillator Circuit
O.Os"F

Rn

lOOk

+Vc*
51k

> ....-0 OUTPUT I

RI2
50k

L...----------If-O
OUTPUT 2
10k

TL/H/9299-22

'Wide control voltage range: 0 Voc ,; Vc ,; 2 (V+ -1.5 Vocl

Photo Voltalc-Cell Amplifier
R,
1M

ICELL

~

> ...-ovo

(CELL HASav

ACROSS ITI

TUH/9299-23

AC Coupled Inverting Amplifier
II,
lOOk

,. f

~':

1\./\
V

RL

10k

RZ
lOOk

Ay

1
3Vpp

T

At

= R1 (As shown. Ay = 10)
TLlH/9299-24

1-222

r-------------------------~--------------------------------------------------.~

Typical Single-Supply Applications

(v+

!!II:
.....

= 5.0 Voc) (Continued)

N

",.
.....

!iNi :

AC Coupled Non-Inverting Amplifier

N

RZ

HI
lOOk

I\.

,·r

~
~
!!II:

1M

1
1\

N

....

3Vpp

V

C'N

w

",.

T

~

!!II:

8
N

H5

CZ

AV~I+~

I DIlle

IOPFT

RI

Av

=

11 (As shown)
TL/H/9299-25

DC Coupled Low-Pass RC Active Filter
Cl
o.OlpF

Rl

16k

>-,,-oVo

R4
lOOk

fO=lkHz

Q=I
Av

~

2
TLlH/9299-26

High Input Z, DC Differential Amplifier
HZ
lOOk

>,,-oVo
For ~
Vo

= ~ (CMRR depends on this resistor ratio match)

~ I + ~(V2
R3

As shown: Vo

VI)

= 2(V2

- Vtl

1-223

TUH/9299-27

~ r-------------------------------------------------------------------------------~

~

Typical Single-Supply Applications (V+

= 5.0 Voc) (Continued)

High Input Z AdJustable·Galn
DC Instrumentation. Amplifier

~

RI
lOOk

!I

~
~

R3
lOOk

~
.~

R4
lOOk

+V,

>+-oVo

If RI

R6

R1

lOOk

lOOk

= RS & R3 = R4 = R6 = R7 (CMRR depends on match)

TLlH/9299-28

Vo = I + 2Rl (V2 - V,)
R2

AsshownVo = 101 (V2 - V,)

Using Symmetrical Amplifiers to
Reduce Input Current (General Concept)

Bridge Current Amplifier

R,

-

>+-OWo

',N

+V'N

> ..-oVo

o-.....I - - - - t
I.

~

For8«landR,»R

Vo"

VREFm~
TL/H/9299-30

R
1.5M

-

I.

INPUT CURRENT
COMPENSATION

TL/H/9299-29

1-224

Typical Single-Supply Applications

(V+ = 5.0 Voc) (Continued)

Bandpass Active Filter

HI
31..

V,N
H4

&20

>-..-ovo

':'
H3

820.
C3

IOPF1'

R1

H8

10010

10010
fO=lkHz
Q

=

25

TlIH/9299-31

1-225

t;tJNational Semiconductor

LM143/LM343 High Voltage
Operational Amplifier
Features'

General Description

• Wide supply voltage range
±4.0V to ±40V
The LM1431s a gener~lpurpose high voltage operational
amplifier featuring operation to ± 40V, complete input over• Large output voltage swi(lg
± 37V
voltage protection up to ±40V and input currents compara- . • Wide input common-mode range
± 38V
ble to those of other super-13 op amps. Increased slew rate,
• Input overvoltage protection
Full ±40V
together with higher common-mode and supply rejection,
• Supply current is virtually independent of supply voltage
insure improved performance at high supply voltages. Operand temperature
ating characteristics, in particular supply current, slew rate
and gain, are virtually independent of supply voltage and
Uni'que Characteristics
temperature. Furthermore, gain is unaffected by output
• Low input bias ,current
8.0 nA
loading at high supply voltages due to thermal symmetry on
• Low input offset current
1.0 nA
the die. The LM143 is pin compatible with general purpose
• High slew rate-essentially independent of temperature
op amps and has offset null capability.
and supply voltage
2.Sv/ p.s
Application areas include those of general purpose op
• High voltage gain--virtually independent of resistive
amps, but can be extended to higher voltages and higher
loading, temperature, and supply voltage
100k min
output power when externally boosted. For example, when
• Internally compensated for unity gain
used in audio power applications, the LM143 provides a
power bandwidth that covers the entire audio spectrum. In
• Output short circuit protection
addition, the LM143 can be reliably operated in environ• Pin compatible with general purpose op amps
ments with large overvoltage spikes on the power supplies,
where other internally-compensated op amps would suffer
catastrophic failure.
The LM343 is similar to the LM143 for applications in less
severe supply voltage and temperature environments.

Connection Diagram
Metal Can Package
Top View
NC

INVERTING
INPUT

2

OUTPUT

VTL/H17783-1

Order Number LM143H, LM143H/883* or LM343H
See NS Package Number H08C

'Available par SMD# 7800303

1-226

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 4)
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage (Note 2)
Input Voltage (Note 2)
Operating Temperature Range
Storage Temperature Range
Output Short Circuit Duration
Lead Temperature (Soldering, 10 sec.)
ESD rating to be determined.

LM143
±40V
680mW
80V
±40V
- 55'C to +- 125'C
-65'C to + 150'C
5 seconds
300'C

LM343
±34V
680mW
68V
±34V
O'Cto +70'C
- 65'C to + 150'C
5 seconds
300'C

Electrical Characteristics (Note 3)
Parameter

LM143

Conditions
Min

Input Offset Voltage

TA = 25'C

LM343

Typ

Max

2.0

5.0

Min

Units

Typ

Max

2.0

8.0

mV

Input Offset Current

TA = 25'C

1.0

3.0

1.0

10

nA

Input Bias Current

TA = 25'C

8.0

20

8.0

40

nA

Supply Voltage
Rejection Ratio

TA = 25'C

10

100

10

200

p.VIV

Output Voltage Swing

T A = 25'C, RL :2: 5 kG

large Signal Voltage
Gain

TA = 25'C, VOUT = ±10V,
RL:2: 100 kG

Common-Mode
Rejection Ratio

TA = 25'C

22

25

20

25

V

100k

180k

70k

180k

VIV

80

90

70

90

dB

±24

±26.

±22

±26

Input Voltage Range

TA = 25'C

Supply Current (Note 5)

TA = 25'C

2.0

Short Circuit Current

TA = 25'C

20

20

mA

Slew Rate

TA = 25'C, Av = 1

2.5

2.5

V/p.s

Power Bandwidth

TA = 25'C, VOUT = 40Vp-p,
RL = 5 kG, THO s: 1 %

20k

20k

Hz

Unity Gain Frequency

TA ="25'C

1.0M

1.0M

Hz

Input Offset Voltage

TA = Max
TA = Min

Input Offset Current

TA = Max
TA = Min

0.8
1.8

4.5
7.0

Input Bias Current

TA = Max
TA = Min

5.0
16

35
35

Large Signal Voltage
Gain

RL:2: 100 kG, TA = Max
RL:2: 100 kG, TA = Min

50k
50k

150k
220k

50k
50k

150k
220k

VIV

Output Voltage Swing

RL:2: 5.0 kG, TA = Max
RL:2: 5.0 kG, TA = Min

22
22

26
25

20
20

26
25

V

4.0

2.0

6.0
6.0

V
5.0

mA

10
10

mV

0.8
1.8

14
14

nA

5.0
16

55
55

nA

Note 1: Absolute maximum ratings are not necessarily concurrent, and care must be taken not to exceed the maximum junction temperature of the lM143 (1500C)
or the LM343 (IOO'C). For operating at elevated temperatures, devices in the HOB package must be derated based on a thermal resistance of 155'C/W, junclion to
ambient, or 20'C/W, junction to case.
Note 2: For supply voltage less than ±40V for the LMI43 and less than ±34V for the LM343, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for Vs = ±2BV. For LMI43, TA = max = 125"C and TA = min = -55'C. For LM343, TA = max = 70'C and TA = min =
O'C.
Note 4: Refer to RETSI43X for LMI43H and LMI536H military specifications,
Note 5: The maximum supply currenta are guaranteed at Vs - ±40V for the LMI43 and Vs = ±34V for the LM343.

1-227

LM143/LM343

tn

n

!..oy>

::T
CD

3

!.

n'
c
cZ'
D;

3

,t ,

R1Z
20
t'OOUTPUT

RI3

Z7 "

CI
10pF

~

05

RZI S RZZ
11k ~ 31k

,

RU

Uk

,

"

OFfSET

OFFSET

NULL

NULL

,

,

,

i

,

,

'·OV-

TUHm83-2

Typical Performance Characteristics
Voltage Follower Slew Rate
5.1

I

4.0

.,.

UNREGULATED
'OUTPUT VOLTAGE
AOJU!:ENT

Rl
22k

0.1,4
CERAMICT

10k

":'

T

~.

1O,.F
l00V

):.
"a

':'

'2.
Cl

lo,.F;""
50V..L

~.

A6
1.Ok

+

S·
:::J

(I)

R3
22k

-1+

R4
lOOk

i

::::I

!

C2 +
lo,.F ;,...
Z5V..L

~
3

o

CD
~

• • 1.

~

•

•

•

0..

Ov+

[

Co>

tlSV
REGULATED
OUTPUT

R2
3.6k
2.OW

•

~

•

•

•

iB
>

!:

~

• Or

08
lN5230
tPut on common heat sink.
All resistors are y. watt, 5%, except as noted.

t

C8

O.lpF

TCERAMIC

Hhe 38V supplies allow for a 5% voltage tolerance. All resistors are

V. watt,

--

except as noted.

•

:::t

0
C4

ii~~~GULATED

':F :~~

--

TLfH17783-11

£t£W'I£t~W'

II

Typical Applications :j:

(Continued)(For more detail see AN-127)

90W Audio Power Amplifier with Safe Area Protection
RI
ZMEG

y.=

....---_,

.3.Yo-...._--...._------~~oooo4

C5

O.I"F

"I'"":, CERAMIC

I

+10 •

RIZ
0.Z5
2.OW

U*

lo,.H

>._-1 1--....,...-+---...- -....--+.......r"....r"I""'-...- - o ( ) OUTPUT

RZ
lOOk

Rl6

0.Z5
2.0W

'!'

R3
lOOk

C7

D.O,,"F

R7
2.7k

Ra
2.7k
C&
tPut on common heat sink

*34 turns of no. 20 Wire on a %" form
•• Adjust RS to

set 10

Y-

= -3ay

D.I"F
TCERAMIC

= 100 rnA

*lhe 3aV supplies allow for a 5% voltage tolerance. All resiStors are

TLlH17783-12

Y. watt, except as noted.
1,-234

Typical Applications :j:

(Continued) (For more detail see AN-127)

1 Amp Power Amplifier with Short Circuit Protection
Y· : .J8Y

RII
lOOk
1%

CJ
O.I,.F
TCERAMIC

...- - - I

>~_~

"'-~.--...- . .- -. ._o

YOUT

Y'No----1H
RI
10k

tPut on common heat sink.
All Diodesare 1N3193.

C4
O.I"F

CERAMlC~

Y- = -JIY
TUH/7783-13

Hhe 38V supplies allow for a 5% voltage tolerance. All resistors are

I

y. walt, except as noted.

I
I

~

I:

I'
!

1-235

tflNational Semiconductor

LM 146/LM246/LM346 Programmable Quad
Operational Amplifiers
General Description

Features (ISET=10 Il-A)

The LM146 series of quad op amps consists' of four ,independent, high gain, internally compensated, low power, programmable amplifiers. Two: external resistors (RSET) allow
the user to program the gain bandwidth product, slew rate,
supply current, input bias current, input offset current and
input noise. For example, the user can trade-off supply Current for bandwidth or optimize noise figure for a given
source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for'the
two programming pins at the end, of the package, the
LM146 pin-out is the same as the LM124 and LM148.

•
•
•
•
•
•
•
•
•
•

Programmable electrical characteristics
Battery-powered operation
Low supply current
350 Il-Alamplifier
Guaranteed gain bandwidth product
0.8 MHz min
Large DC voltage gain
120 dB
Low noise voltage
28 nV/.JHz
Wide power supply range
± 1.5V to ± 22V
Class AS output stage-no crossover distortion
Ideal pin out for' Biquad active filters
Input bias currents are temperature compensated

Connection Diagram (Dual-In-Line ~ackage, Top View)
PROGRAMMING EQUATIONS
Total Supply Current

=

Gain Bandwidth Product

v-

Slew Aata

1.4 mA (ISET/l0 pAl

=

l' MHz (ISET/l0 pAl

= 0.4V/,.. (ISET/l0 pAl

Input Bias Current .. 50 nA (ISET/l0 pAl
ISET

= CUrrent Into pin 8, pin 9 (see schematic-

diagram)

V+ -V- - O.BV
ISEl' =, "

SETC

ASET

TL/H/5654-1

Order Number LM146J, LM146J/883,
LM246J, LM346M or LM346N
See NS Package Number J16A, M16A or N16A

Schematic Diagram

r-----------.....----....------<)v·,41

t--+--+---<>.UT
v'

TO OTHER
OPAIIPS

v'

RSEl

'SET
SET A.

III

V-I131

1-236

a. 0,

TLlH/5654-2

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 5)
LM146
LM246
LM346
Supply Voltage
±22V
±18V
±18V
±30V
±30V
Differential Input Voltage (Note 1)
±30V
±15V
±15V
CM Input Voltage (Note 1)
±15V
Power Dissipation (Note 2)
900mW
500mW
500mW
Output Short-Circuit Duration (Note 3)
Continuous
Continuous
Continuous
- 25·C to + 85·C
Operating Temperature Range
- 55·C to + 125·C
O"Cto +70"C
Maximum Junction Temperature
150·C
110"C
100"C
-65·Cto + 150·C
-65·C to + 150"C
-65·Cto + 150·C
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
260"C
260"C
26O"C
Thermal Resistance (6]Al, (Note 2)
Cavity DIP (J)
Pd
900mW
900mW
900mW
100"C/W
100"C/W
100"C/W
6jA
115·C/W
Small Outline (M) 6jA
Molded DIP (N) Pd
500mW
90"C/W
6jA
Soldering Information
Dual-In-Une Package
Soldering (10 seconds)
+ 260"C
+ 260"C
+ 260·C
Small Outline Package
+215·C
+215·C
+215·C
Vapor Phase (60 seconds)
+ 220·C
+ 220·C
Infrared (15 seconds)
+ 220"C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount
devices.
ESD rating is to be determined.

DC Electrical Characteristics (Vs= ± 15V, ISET= 10 J.LA, Note 4)
Parameter

LM146

Conditions
Min

Typ

LM246/LM346
Max

Min

Typ

Units

Max

Input Offset Voltage

VCM= OV, Rs:S:50G, TA=25"C

0.5

5

0.5

6

mV

Input Offset Current

VCM=OV, TA=25·C

2

20

2

100

nA

Input Bias Current

VCM=OV, TA=25·C

50

100

50

250

nA

Supply Current (4 Op Amps)

TA=25·C

1.4

2.0

1.4

2.5

mA

Large Signal Voltage Gain

RL =10 kG, aVOUT= ±10V,
TA=25·C

100

1000

50

1000

V/mV

Input CM Range

TA=25·C

±13.S

±14

±13.S

±14

V

CM Rejection Ratio

Rs:S:10 kG, TA=25·C

80

100

70

100

dB

Power Supply Rejection Ratio

RsS:10 kG, TA=25·C,
Vs = ±Sto ±1SV

80

100

74

100

dB

±12

±14

S

20

O.S

1.2

Output Voltage Swing

RL~10

±12

±14

Short-Circuit

TA=2S·C

S

20

0.8

1.2

kG, TA=25"C

3S·

V
3S

mA

Gain Bandwidth Product

TA=25·C

Phase Margin

TA=2S·C

60

60

Deg

Slew Rate

TA=2S·C

0.4

0.4

V/J.Ls

MHz

Input NOise Voltage

f=1 kHz, TA=25·C

28

28

nV/JHz

Channel Separation

RL=10 kG, aVOUT=OVto
±12V, TA=2S·C

120

120

dB
MG

Input Resistance

TA=25·C

1.0

1.0

Input Capacitance

TA=25·C

2.0

2.0

Input Offset Voltage

VCM= OV, RS:S:SOG

O.S

Input Offset Current

VCM=OV

2

25

Input Bias Current

VCM=OV

SO

100

1.7

2.2

1.7

Supply Current (4 Op Amps)
1-237

6

0.5

pF
7.5

mV

2

100

nA

50

250

nA

2.5

mA

DC Electrical Characteristics
Parameter

(Continued) (Vs = ± 1SV, ISET= 10 ",A; Note 4)
LM146

Conditions
RL =10 kO, ~VOUT= ±10V

Large Signal Voltage Gain

Power Supply Rejection Ratio
.131

Output Voltage Swing

Typ

LM246/LM346
Max

Min

Typ

Units
.

Max

SO

1000

2S

1000

±13.S

±14

±13.S

±14

V

RsS:SOO

70

100

70

100

dB

RsS:SOO,
Vs = ±SVto ±1SV

76

100

74

100

dB

±12

±14

±12

±14

V

Input CM Range
CM Rejection Ratio

Min

RL;;'10kO

V/mV

DC Electrical Characteristic (Vs= ±1SV, ISET=1 ",A)
Parameter

LM146

Conditions
Min

Input Offset Voltage

VCM= OV, RsS:SOO,
TA=2SoC

LM246/LM346

Typ

Max

O.S

S

Min

. Units

Typ

Max

O.S

7

mV

Input Bias Current

VCM= OV, TA=2SoC

7.S

20

7.S

100

nA

Supply Current (4 Op Amps)

TA=2SoC

140

2S0

140

300

",A

Gain Bandwidth Product

TA=2SoC

SO

100

SO

100

kHz

DC Electrical Characteristics (Vs= ±1.SV, ISET=10",A)
Parameter

LM146

Conditions
Min

Input Offset Voltage

VCM= OV, RsS:SOO,
TA=2SoC

Input CM Range

TA=2SoC

CM Rejection Ratio

Rs s: son, TA = 2SoC

Output Voltage Swing

RL;;,10 kO, TA=2SoC

LM246/LM346

Typ

Max

O.S

S

Min

±0.7.

Units

Typ

Max

O.S

7

mV

V

±0.7
SO

SO

±0.6

dB

±0.6

V

Note 1: For supply voltages less than ± 15V, the absolute maximum Input voltage is equal to the supply voltage.
Note 2: The maximum power disslpetion for these devices must be derated at elevated temperatures and is dictated bY TiMAJ(, 91A' and the ambient temperature,
TA. The maximum available power dissipation at any temperature is Pd=(TIMAJ(' TAl/9jA or the 25"C PdMAXo whichever is less.
Nota 3: Any of the amplHier outputs can be shorted to ground IndefinHely; however, more than one should not be simuHanecusly shorted as the maximum iunction
..
temperature will be exceeded.
Note 4: These specHications apply over the absalute maximum operating temperature range unless otherwise noted.
Nota 5: Refer to RETSI46X for LMI46J mllHary specHicatlons.

Typical Performance Characteristics

10".
1
2
0
II

Input Bias Current vs ISET

Supply Current vs ISET

OPen Loop Voltage Gain
vsISET"

~ 148

I~

IInl 111111111

illB

~

,=

~co
>

D.l

1.1

10

ISET !pAl

IDD

811

~
~

6D

'"

4D

.~
1.0

108

zo S:nIS:n18v~s:·±~1~5V1

o ~~~~~~~T~A~'~W~C~
0.1

I

10

ISETt.AI

110
TL/H/5654-3

Typical Performance Characteristics
Gain Bandwidth Product
vslSET

Slew Rate vs ISET
11M

I.

~

i

:i.

..!.
~

..!i!
..
I

1M

f

~

t

:z

;I

1.11

:

I.

i..
i

Common-Mode Rejection
Ratio vs ISET

-f-

I

.,.

I.'
a.'

f-

11.3

f-

u

rys- .. IV

a.1

10

..

l!l

40

I"
z·

TA-n

~

~

21

i

VS"':t:15V

TA-2!/'C

1.

0.1

100

10

I..

II

IDO

~

RL " 10k!!
t~jtttij:ttt~~SET~-~'~.IIA~
10 12

,.
12

~

Ii
::!

14

18

Vs- .,IV

~

..5

:1
~

II
11
ID

50

40
311
21

11

f-- f-- f--

'SET" '0 11A

Vs -"IV
TA.-25"C

21

•

10

101

Input Bias Current vs
Input Common-Mode
Voltage

'sn' lallA

S
c

'SET -I IIA

10

c

a

..

i

o

TA - 2rc
'SET -IDIIA
•

2

4

8

8

10

1% 14

'sn" 0.1 IIA

i

Vs= :tllV

TA'Z5OC

8.1
-15

11

-10

-5

10

15

'NPUT COMMON·MOOE VOLTAGE IVI

SUPPLY VOLTAGE (±VI

Input Bias Current vs
Temperature
H

40

:1

SUPPLY VOLTAGE «VI

101

,

80

C

~

TA - 2!/'C

8

II

So

!
I

:0f-

100

I.

Input Voltage Range vs
Supply Voltage

i

4

120

0.1

II

2

101

Isn~1

Output Voltage Swing vs
Supply Voltage

o

,.

VS-"IV

~

Power Supply Rejection
Ratio vs ISET

i

'SET~I

o

40

0.1

..

~
l5c

~

i'-'

8.1

....

•

§

121

~
c

r--

'.1
1.1

•

J

31
21

.. I.

i

f-

1.5
IA

f-

lDO

10

Input Offset Voltage
vslSET

..~

r-

111

ISET~I

IsuiloAl

i..

II

:iI

It

III

10

II

9 .10 fIi &I

=
bl.

'.1

Phase Margin vs ISET
110

Input Offset Current vs
Temperature

Supply Current vs
Temperature
10

10

•

t:~'SET = lDIIA

f-- f- ~SET=I11A

I I

I I

'SET-IlIA

8
-55 -35 -IS 5 25 45 8J 85 Itl 12S

TEIIPERATURE C"CI

VS"*15V

I

Vs=:tllV

'SET,'IIIA

•

-55 -35 -II 5 Z5 q

15 IS 105 125

TE_RATURE lOCI

0.0'
-55 -35 -15 5

25 45 85 Ii 185 125

TEMPERATURE (OCI
TL/H/5654-4

1,239

Typical Performance Characteristics
Open Loop Voltage Gain
VII Temperature
Iii

:s

.•...
~
.
..i!i
C

co
>
co

9

,140

Gain Bandwidth Product
, vs Temperature
I

i

~
=>

..'"
co
co

100

.1

106

l~

'SET·,.A- I--

ico

II:

:Ii

41

iii

.•c

VS' .IIV

-IS -3& -IS S 2& 4& IS II 115 121

'SET·D.hA

104

~
!...

~

10

.....
..

IS~T~151~1

»l

0.1

I;

D.4

!!!

1111111

100
Ik
FREQUENCY (Hz)

=>

D.'

S'

ISET·ZO.A

1.2

10k

18

..

~
II:

•

i...

4

~

-4

co

~

,..--r-...--.--r--,..--.

~ 100 ~.r--~-+-1--r--i

..
=
fi

ISET" lOoAISET=loA ::

f

-8

SD

.!

~

-12

!! -&D

-II
-20

lao

200

It

10k

lOOk

1M

Voltage Follower Transient
Response
'

ISET' lIMA
VS·±ISV
TA=WC

I
II

100

FREQUENCY (HzI

FREQUENCY 1Hz)

I
I
I
INPUT

rc)

3

\ISET·ZO.A

~
-

I

Power Supply Rejection
RatiO vs Frequency

Voltage Follower Pulse
Response
20
11
12

II

;;; liD

1.2

Iii...

ISET" ID.A

I

~ EISET' p.I,.A

TEMPERATURE

.!!

IS~T ~ Izl!~1

•

•

~

ISET ""~A'

...

E

VS··,5V
I I I
0.001
-55 -35 -16 I Z5 4S IS IS lOS IZI

VS=±IIV
TA' ZI'C

1.4

I

~ EISET·'.A

;:;: DJ1

Input Noise Current vs
Frequency'
111111

I

E

TEMPERATURE rCI

Input Noise Voltage vs
Frequency
100
II
81
10 1-0
80
co
1'000
> 50
IIIco 40
30
'20
VS··,IV
1O TA =ZI'C

-

Vs = +15V
103
-IS -35 -1& S ZI 4S 1& IS 105 125

TEMPERATURE I'C)

110

~ISET=ID~

I

0.1

iiii

I; 101

10

EE

'SET·'o-A- I--

II:

°

i

Slew Rate vs
Temperature

101

r: ISET' ~ I .A TO II.A

120

,
(Continued)

..
-

-

I

I

\

\
~

ISET"lIoA
VS'±IIV
TA·2S'C
CL"OIpF
RL -Iaka

300
TIMEw,1

TIME"")

TLlH/5654-5

,Transient Response Test Circuit

TL/H/5654-6

1·240

Application Hints
Avoid reversing the power supply polarity; the device will
fail.

Isolation Between Amplifiers: The LM146 die is isothermally layed out such that crosstalk between all 4 amplifiers
is in excess of -105 dB (DC). Optimum isolation (better
than -110 dB) occurs between amplifiers A and D, Band
C; that is, if amplifier A dissipates power on its output stage,
amplifier D is the one which will be affected the least, and
vice versa. Same argument holds for amplifiers Band C.

Common-Mode Input Voltage: The negative commonmode voltage limit is one diode drop above the negative
supply voltage. Exceeding this limit on either input will result
in an output phase reversal. The positive common-mode
limit is typically 1V below the positive supply Voltage. No
output phase reversal will occur if this limit is exceeded by
either input.

LM146 Typical Performance Summary: The LM146 typical behaviour is shown in Figure 3. The device is fully predictable. As the set current, ISET' increases, the speed, the
bias current, and the supply current increase while the noise
power decreases proportionally and the Vos remains constant. The usable GBW range of the op amp is 10 kHz to
3.5-4 MHz.

Output Voltage Swing vs ISEt= For a desired output voltage swing the value of the minimum load depends on the
positive and negative output current capability of the op
amp. The maximum available positive output current,
(lCL +), of the device increases with iSET whereas the negative output current (lCL -) is independent of ISET. Figure 1
illustrates the above.

Ill11l11a

...
=
..t;

21

C ..

-

.!

!

21

=
I l'

+CURREIY LIMIT IICL.I

12

.~

..
..

- "CUR RElIT LIMIT IICL_I-

...

-

DA

1M

II:

'.14

i

~

f

11k

D.5

1.

VS-:t1&V
YA"we

•

&8

§

11IDk

I

D

;

lDD

BUPPL Y CUR RElIT IpA)

I I 11111111
L1
,

lD

I 11111111
,D

•

ISEyc.A1
ISEylPA1

I T"[ •..z(-::)

TLlH/5654-7

FIGURE 1. Output Current Limit vs ISET

I I

In)Z

Input Capacitance: The input capacitance, CIN, of the
LM146 is approximately 2 pF; any stray capaCitance, Cs,
(due to external circuit circuit layout) will add to CIN. When
resistive or active feedback is applied, an additional pole is
added to the open loop frequency response of the device.
For instance with resistive feedback (Figure 2), this pole
occurs at %"IT (R1IiR2) (CIN + Cg). Make sure that this pole
occurs at least 2 octaves beyond the expected -3 dB frequency corner of the closed loop gain of the amplifier; if not,
place a lead capaCitor in the feedback such that the time
constant of this capacitor and the resistance it parallels is
equal to the RI(Cs + CIN), where RI is the input resistance
of the circuit.

(O)Z

(O)Z

I-

1i"
TL/H/5654-B

FIGURE 3. LM146 Typical Characteristics
Low Power Supply Operation: The quad op amp operates
down to ± 1.3V supply. Also, since the internal circuitry is
biased through programmable current sources, no degradation of the device speed will occur.
Speed vs Power Consumption: LM146 vs LM4250 (Single
programmable). Through Figure 4, we observe that the
LM146's power consumption has been optimized for GBW
products above 200 kHz, whereas the LM4250 will reach a
GBWof no more than 300 kHz. For GBW products below
200 kHz, the LM4250 will consume less power.
11M

1M

TLlH/5654-9

10k

FIGURE 2
Temperature Effect on the GBW: The GBW (gain bandwidth product), of the LM146 is directly proportional to ISET
and inversely proportional to the absolute temperature.
When using resistors to set the bias current, ISET' of the
device, the GBW product will decrease with increasing temperature. Compensation can be provided by creating an
ISET current directly proportional to temperature (see typical
applications).

I'

lID

SUPPLY CURRENT ..AI

TL/H/5654-10

FIGURE 4. LM146 vs LM4250

1-241

Typical Applications
Dual SUPPIYO~N~gatlve Supply Blasing

SI!lgle (Po"ltive) Supply Biasing

y.

RSET

SET 9 HSET

RsET • lET

1111346

V+-O.6V
ISET ~ ..:.....,:--".;.:,..:c
RSET

ISET~ iV-i-o.6V
RSET '

Current Source Biasing
with Temperature Compensation

Biasing a" 4 Amp"flers
with $Ingle Current Source ,

LM334Z
y'

y'
RSET,

-

, ISET
RI
, LM34I
HZ

67.7mV
I
'SET=--RSET

'~B

SET

-

ISETZ

ISETI R2 I
I
67.7 mV
- - = - , SETI + SET2=--ISET2 R1
RSET

• The LM334 provides an '!SET direcUy propoo:lional"to
absolute temperature. this ~'tha'slight GBW product
Temperalure coefficient pi tha LM346.

• For ISET1 "" ISET2 resistors Rl and R2 are not required
H a slight elTOr between tha 2 set currents can be tolerated.
If not, then use ':11 .. R2 to create a 100 mV drop across
these resisters.

1-242

TLlH/5654-11

Active Filters Applications
Basic (Non-Inverting "State Variable") Active Filter Building Block
10Gk
1111<

TLlH/5654-12
• The LMI46 quad programmable op amp is especially suRed lor active fi~ers because 01 their adequate GBW product

.I

and low power consumption.
Circuil synthesis equations (lor circuit analysis equations,

consu~

1

with the LMI46 data sheet).

Need to know desired: 10 = center Irequency measured at the BP output

1
,

0 0 = quality lactor measured at the BP output
Ho = gain at the output of interest (BP or HP or LP or all of them)
• Relation between different gains: Ho(BP) = 0.316 x
• R

xC=

00 x

I

I

Ho(LP); Ho(LP) = 10 x Ho(Hp)

5.033 X 10- 2 (sec)
10

II

• F BP
. R = (3.47800 - HolBPl _
HoIBP)
or
output. a
105
105 X 3.746
,

x 00

) -1. R =
,IN

III:

( 3.47800_ 1 )
HOIBPl
I
. RO + 10-5

I:

~-I

.ForHPouputRa=

'R _~
HO(HP)' IN + 10- 5
RO

1.1 x lOS
3.47800 (1.1
Ho(HP»

..2..

Note. All resistor values are given in ohms.

II
11 X 10.
-Ho-ILP)--I
• For LP output: Ra = ::3.-:4=78;:-0~0-(::171-'7.H:-'0(:"'LP)l-:--:H-;--;' RIN = I
o(LP)
RO + 10- 5
• For BR (notch) output: Use the 4th amplifl9r of the LMI46 to sum the LP and HP outputs 01 the basic li~er.

LPOO..J\M........

HP o-""VV'v--

TL/H/5654-13
Determine RF according to the desired gains: Ho(BRj

I

f«fnotch

=-RRF Ho(LP), Ho(BR)
L

I

f»fnotch

=~RRFo(HPJ
H.

• Where 10 use amplilier C: Examine the above gain relations and determine the dynamics 01 the litter. Do not allow slew rate IimHing in any output (VHP, VBP,

VLP), thai Is:
VIN(peakJ <83.66

ISET

I

x 103 x 10 p.A x 10 x Ho (Vo~)

If necessary, use amplifier C, biased at higher ISET' where you get the largest output swing.
Oevlallon from Theoretical PredIctlons: Due to the linRe GBW products of the op amps the 10 , 0 0 will be slightly different Irom the theoretical predictions.
I

10

0

real"'~' real"'
1+ GBW

00
321 xO
1- . G~W 0

1-243

Active Filters Applications (Continued)
A Slmple-tOoDe8lgn BP, LP Filter Bu"dlng Block

3.8k

3...

Rn

Tl/H/5654-14
oil resistive biasing Is usad to set the LM346 performance, the 0 0 of this filter building block Is new1y insensitive to the op amp's GBW product temperature drift; H
has also better noise performance than the state variable filter.

Circuit Synthe818 Equatlon8

0.159
' RO
R
Ho(BP) = QoHo(LP); R X C = - - ; Ra=Qo X R; RIN = - - = - fo
Ho(BP)
Ho(LP)
o For the eventual use of amplifier C, see comments on the previous page.

A 3-Amp"fler Notch Filter (or E"lptlc F"ter Bu"dlng Block)

3.8k
Uk

Rn

>~""OVOUT C8R)

TLlH/5654-1S

Circuit Synthe81s Equations

0.159

RX C=
HO(BR)I

0.159 X fo

T; Ro=Qo X R; RIN = C' X f2notch
C'

R

f<  >fnotch

C

oFor nothing but a notch output RIN=R, C'=C.

1-244

Active Filters Applications (Continued)
Capacltorless Active Filters (Basic Circuit)

R3

Vs -tt5V

~---.

HZ
RID

RI

BR
RI

R7

"='

"='

TLfHf5654-16

• This is a BP, LP, BA filter. The filter characteristics are created by using the tunable frequency responsa of the LM346.
• UmltaUons: 0 0

<

to, fo X

.
.
• Design equations: a
fo(BR)

= fo(BP). (1

A6

00 < 1.5 MHz, output voltage should not exceed Vpaak(out)

+

A5

A2

A3

= ~,b = Rl + A2' c = R3 +

-~)

'" fo(Bp) (C

R7

R4' d

63.66 X 1()3 Ism,.A)
,; - - fo- - X 10,.A

Al0
Al0' fo(BP)

= RS + A7' e = R( +

< < 1) provided that d = HO(BP) X

e, Ho(BR) =

f6

(V)

c

= fUV .: HO(BP) = a X c, HO(LP) = ii' 0 0 = .f8Xfi

~~.

• Advantage: foOo, Ho can be independently edjusted; that Is, the filter Is extremely easy to tune.
• Tuning procedure (ex. BP tuning)
1. Pick up a convenient value for b; (b

<

1)

2. Adjust 00 through A5
3. Adjust Ho(Bp) through R4
4. Adjust fo through RBET. This adjusts the unily gain frequency (fu) of the op amp.

A 4th Order BuHerworth Low Pass Capacltorless Filter

i

~

R4

VI.

1110

Ex: fe

= 20 kHz, Ho (gain of the filter) =

TLfHf5654-17

I, 001

= 0.541, 0 0 2 = 1.308.

• Since for this fi~er the GBW product of all 4 amplifiers has been designed to be the same (-1 MHz) only one currant source can be used to bias the clroun. Fine
tuning can be further accomplished through Ab'

1-245

Miscellaneous Applications
A Unity Gain Follower
with Bias Current Reduction

VIN

Circuit Shutdown

0-+-----1
>-P-OVOUT

VS=:!:1&V

&VOri")

~.V

• By pulling the SET pin(s) to V- the op amp(s) shuts down and its output

• For better P!'rformance, use a matched NPN pair.

goes to a high impedance state. According to this property, the LM346
can be used as a very low speed anaiog switch.

Voice Activated Switch and Amplifier
V·

y+
D.1.F

1&V

?i H ....-~·

MICI...

CONTROL

.-c--.;--...-- AUDIO OUT

D.iM

TUH/5654-18

1-246

Miscellaneous Applications (Continued)
X10 Mlcropower Instrumentation Amplifier with Buffered Input Guarding

R3

m

R4
21l

•

21k

•

21k

• Power dissipation: 0.4 mW
H3
III

TLlH/5654-19

1-247

tfI

Nat ion a I S em icon due tor

LM148/LM149 Series Quad 741 Op Amp
LM148/LM248/LM348 Quad 741 Op Amps
LM149/LM349 Wide Ban~ Decompensated (Av (MIN) - 5)
General Description

Features

The LM 148 series is a true quad 741. It consists of four
independent, high gain, internally compensated, low power
operational amplifiers which have been designed to provide
functional characteristics identical to those of the familiar
741 operational amplifier. In addition the total supply current
for all four amplifiers is comparable to the supply current of
a single 741 type op amp. Other features include input offset currents and input bias current which are much less than
those of a standard 741. Also, excellent isolation between
amplifiers has been achieved by independently biasing each
amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as
the LM148 plus a gain bandwidth product of 4 MHz at a gain
of 5 or greater.

•
•
•
,
•
•
•
•

741 op amp operating characteristics
LoY' $upply current drain
0.6 mAl Amplifier
Class AB output.stage-no crossover distortion
Pin compatible with the LM124
1 mV
Low input offset voltag~
4 nA
Low input offset current
30 nA
Low input bias current
Gain bandwidth product
LM148 (unity gain)
1.0 MHz
LM149 (Av;" 5)
4 MHz
120 dB
• High degree of isolation between amplifiers
• Overload protection for inputs and outputs

The LM148 can be used anywhere multiple 741 or 1558
type amplifiers are being used and in applications' where
amplifier matching or high packing density is required.

Schematic Diagram
~---------1~--------------------~-O.V~

OUT

tOOk
75k

34U

~--"'----""'--""----------+--"'--------""--""-o-v"
'1 pF In the LM149

1-248

TUH/7786-1

r-

Absolute Maximum Ratings

.......a:

....rCD

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 4)
LM148/LM149
LM248
LM348/LM349
Supply Voltage
±22V
±18V
±18V
±44V
Differential Input Voltage
±36V
±36V
Continuous
Output Short Circuit Duration (Note 1)
Continuous
Continuous

...........a:

Power Dissipation (Pd at 25'C) and

CD
....
r-

Thermal Resistance (9jAl. (Note 2)
Molded DIP (N) Pd
9jA
Cavity DIP (J) Pd
9JA
Maximum Junction Temperature (TjMAX)
Operating Temperature Range

-

-

- 65'C to + 1500C
3000C

800mW
1100C/W
110'C
-25'C';: TA ,;: +85'C
-65'Cto + 1500C
300'C

750mW
1000C/W
700mW
1100C/W
1000C
O'C,;: TA';: +700C
-65'C to + 1500C
300'C
2600C

2600C

2600C

2600C

-

1100mW
1100C/W
1500C
-55'C';: TA';: +125'C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec.) Ceramic
Lead Temperature (Soldering, 10 sec.) Plastic
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

215'C
215'C
215'C
2200C
2200C
2200C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount
devices.
ESD tolerance (Note 5)

500V

500V

500V

Electrical Characteristics (Note 3)
Parameter

LM148/LM149

Conditions

Min
Input Offset Voltage
Input Offset Current
Input Bias Current
Input Resistance
Supply Current All Amplifiers
Large Signal Voltage Gain
Amplifier to Amplifier
Coupling

LM248

LM348/LM349

Units

Typ

Max Min

Typ

Max Min

Typ

Max

TA

1.0

5.0

1.0

6.0

1.0

6.0

mV

TA

4

25

4

50

4

50

nA

30

100

30

200

30

200

= 25'C, Rs';: 10 kO
= 25'C
TA = 25'C
TA = 25'C
TA = 25'C, Vs = ±15V
TA = 25'C, Vs = ±15V
Your = ±10V, RL ~ 2 kO
TA = 25'C,f = 1 Hz to 20 kHz

0.8

2.4
50

(Input Referred) See Crosstalk
Test Circuit

Small Signal Bandwidth
TA

=

LM148 Series
25'C
LM149 Series

Phase Margin

LM148 Series (Av
TA = 25'C
LM149 Series (Av

Slew Rate

LM148 Series (Av
TA = 25'C
LM149 Series (Av

Output Short Circuit Current

TA

Input Offset Voltage

Rs,;:10kO

=

2.5

0.8

2.4

3.6

160

2.5

25

0.8
4.5

160

2.5
2.4

25

nA
MO

4.5

mA

160

V/mV

-120

-120

-120

dB

1.0

1.0

1.0

MHz

4.0

4.0

4.0

MHz

60

60

60

degrees

=

1)

=
=

5)

60

60

60

degrees

1)

0.5

0.5

0.5

V/p.s

=

5)

2.0

2.0

2.0

V/p.s

25

25

25

25'C

Input Offset Current
Input Bias Current

1-249

mA

6.0

7.5

7.5

mV

75

125

100

nA

325

500

400

nA

CD

r-

a:
~

a:
~

~

....r-

...a:
~

CD

Electrical Characteristics (Note 3) (Continued)
Parameter

LM148/LM149

Conditions

Min
Large Signal Voltage Gain Vs = ±15V, VOUT = ±10V,
RL> :?kO
Output Voltage Swing
Vs = ±15V, RL = 10kO
RL = 2kO

Typ

Max

25
±12
±10

= ±15V

Input Voltage Range

Vs

Common-Mode Rejection
Ratio

Rs"; 10kO

Supply Voltage Rejection

Rs"; 10kO, ±5V,,; Vs"; ±15V

Typ

LM348/LM349
Max

15
±13
±12

±12
±10

Min

Typ

15
±13
±12

±12
±10

±12

±12

Note 1: Any of the amplifier outputs can be shorted to ground indefinitely;

LM248
Min

Units

Max
V/mV

±13
±12

±12

V
V
V

70

90

70

90

70

90

dB

77

96

77

96

77

96

dB

however, more than one should not be simultaneously shorted as the maximum junction

temperature will be exceeded.
Note 2: The maximum power dissipation for thesa devices muat be derated at elevated temperatures and is diceted by TiMA)(, 8jA. and the ambient temperature.
TA. The maximum available power dissipation at any temperature is Pd = (TiMAX - TpJI9/A or the 25"C PdMAX. whichever is less.
'.
Note 3: Thesa specifications apply for Vs = ,±15V and over the absolute maximum,operating temperature range (TL ,;; TA ,;; TH) unless otherwisa noted.
Note 4: Reier to RETS 148X for LMl48 military specHlcations and refer to RETS 149X for LM149 military specifications.
Note 5: Human body model. 1.5 kn in series with 100 pF.

.

Cross Talk Test Circuit

..

1k

Ow

1

,~

(V'

,
'00

.....

J..

C1DVPEAIC)

TLlH/7786-6

113I~

1••••

I'f+V

UNDER

"OUT

11.'.101

TL/H/7786-7

Crosstalk = - 20 log
Vs

=

e'OUT (dB)
101 x aour

±15V

Application. Hints
The lM148 series are quad low power 741 op amps. In the
proliferation of quad op amps, these are the first to offer the
convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op
amps have been employed, the LM148 series op amps can
be employed directly with no change in circuit performance.
The lM149 series has the same characteristics as the
LM148 except it has been decompensated to provide a
wider bandwidth. As a result the part requires a minimum
gain of 5.
The package pin-outs are such that the inverting input of
each amplifier is adjacent to its output. In addition, the amplffier outputs are located in the corners of the package
which simplifies PC board layout and minimizes package
related capacitive coupling between amplifiers.
The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In
addition, if either of the input voltages is within the operating
common-mode range, the phase ·of the output remains correcto If the negative limit of the operating common-mode
range is exceeded at both inputs, the output voltage will be
positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode,
resistors should be placed in series with the inputs to limit
the current.
like the LM741 , these amplifiers can easily drive a 100 pF
capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive
loads must be driven by a non-inverting unity gain amplifier,

a resistor should be placed between the output (and feedback connection) and the capacitance to reduce the phase
shift resulting from the capacitive loading.
The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the
power supplies will not destroy the unit. However, if multiple
output shorts occur simultaneously, the time duration should
be short to prevent the unit from being destroyed as a result
of excessive power dissipation in the IC chip.
As with most amplifiers, care should be taken lead dress,
component placement and supply decoupling in order to
ensure stability. For example, resistors from tile output to an
input should be placed with the body close to the input to
minimize "pickup" and maximize the frequency of the feedback pole which' capacitance from the input to ground creates.
A feedback pole is created when the feedback around any
amplifier is resistive. The parallel reSistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected 3 dB frequency of the closed loop gain and
consequently there is negligiole effect on stability margin.
However, if the feedback pole is less than approximately six
times the expected 3 dB frequency a lead capaCitor shQuld
be placed from the output to the input of, the op amp. The
value of the added capaCitor should be such that the RC
time constant of this capaCitor al)d the resistance it parallels
is greater than or equal to the original feedback pole time
constant.
1-250

Typical Performance Characteristics
Supply Current

Input Bias Current

aa

Voltage Swing
51

+25·~~

/

;:r;. :>-'

~

.iii

f.::::: :::::: ~
-1

8a

'"
il

58

'"

-

Ja

5

i

4a

iii

20

=
'"

8

~ ....:.,Z8Vs

....

'~VS,

10

-15

~~

'"

~ -1'
~

~

, \-5&'C

co

\~

15

-5

Ii

10

I.

Ik 1110 1DO
FREQUENCY IH.I

41
H

-z&
-3D
-31

_

It

25

Ik

3D

..
E
c

Ii ~

..,..

LMI4S
LM1

llil

5
-S

(~?

-15
-28
-.'ID

Ik

11k

1D11o

::

~

I

..

- =: ;

:: !

-4Ii
-II

-'HASE

-JI
-10

'.1

10

FREQUEICY IMH-,,-oVOUT
R/2

VOUT
Vs
R

~

~

~ 2 (iii + 1 ) , 'Is -

TL/HI77B6-9
3V ,; VIN eM ,; Vs +

-

3V,

±15V
R2, trim R2 to boost CMRR

1-253

Typical Applications-LM 148 (Continued)
Low Drift Peak [)eteetor with Bias Current Compensation
Zilc

>-""-0 v....
V'N

Adjust A lor'rriinimum drift
D3 low leakage diode

RZ
2M

01 added to improve speed

Vs

=

-

±15V

I.

R
1M

m
3

TLIH17786-10

Universal State-Variable Filter
R5
lOOk

CI
0.001

R6
10k

Rl
R3

V'N O-......NV'-...-t

RO

R4

R,

>~"""OV."

Tune Q through AO.

s:

For predictable results: 10 Q

4 x 104

Use Band Pass output to tune lor Q

~=~.
VIN(s)

NHP(S)
I

o

O(s)

= 82 +

= S2 HOHP.

Q

NBp(s) =

-""'0Q HOBP

=.2.. ~ fT = A-f'. Q = ('
2". VFi5Vi1i2' ~
....,.
1 (

TLIHln86-11

80>0+ 0>02

O(S)

AH
'NOTCH = 2;; Al I, 12

NlP = 0>02 HOlP·

+ A41A3 + A4IAO)
1 + AsIA5

(~!!)'h
A5t2

)'h • HOHP = 1 + A31AO
1 + AalA5
H
1 + A41A3 + R41AO
+ R3iA4' OBP = 1 + A31AO + R31A4

H
_
1 + A51AS
OlP - 1 + A31AO + A3iA4

,1·254

Typical Applications-LM 148 (Continued)
A 1 kHz 4 Pole Butterworth
lOOk

50.3k
liOk

50.3k

>-.....-OVoun

lOOk
lOOk
lOOk
10k

50.3k
50.3k

>-....-oV

39.4k

OUT2

lOOk
TUH/77S6-12
Use general equations, and tune each section separately
O,stSECTION

= 0.541,

02ndSECTION

= 1.306

The response should have 0 dB peaking

A 3 Amplifier BI-Quad Notch Filter
R7

RI
RI
C2

Ct

RZ
R3

Re
RS

R4

V,N(s)

00-4""-------------"'-------------"
TLlH/7786-13

O

fR8
RICI
= \fA? x JR3C2R2CI'

,

fR8
0 = 2; \fA? x

..

Necessary condItion for notch:
Ex: 'NOTCH

= 3 kHz,

0

= 5,

I

I

As

RI
= R4R7

RI

= 270k,

I
,
JR2R3CI C2' NOTCH

R2

= R3 = 201<,

R4

I

= 2;

= 27k,

R6
R3R5R7CI C2

R5

= 2Ok,

Better noise performance than the state-space approach.

1-255

R6

= RS =

10k, R7

= lOOk,

Cl

= C2 = 0.001

poF

Typical Applications-LM 148 (Continued)
A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros)

RICI = R2C2 = t
R'IC'I = R'2C'2 = t'
R"

R'I

'e

=I
I

kHz, 's

fR6

= 2 kHz,
I

'p = 0.543, Iz = 2.14,
I

/Rii

I

= 2.T VAs x 'j" Iz = 2.T VAL x 'j"
Rp = RHRL
RH + RL

Ip

Q

=

TLlH17786-14

= 0.841, I' p ~ 0.987, I' Z = 4.92, Q' = 4.403, normalized to ripple BW
+ R4iR3 + R4iRO)
fR6 , JR'6
I + R'4iR'0
I + R61R5
x VAs' Q = VAs I + .R'6iR'5 + R'6iRp

Q

(I

Use the BP outputs to tune Q, Q', tune the 2 sections separately

RI
R'I

= R2 = 92.61<, R3 = R4 = R5 = lOOk, R6 = 10k, RO = 107.ak, RL = lOOk, RH = 155.11<,
= R'2 = 50.9k, R'4 = R'5 = lOOk, R'6 = 10k, R'O = 5.78k, R'L = lOOk, R'H = 248.121<, R'I =

lOOk. All capacitors are 0.001 ,.F.

Lowpass Response

-1'

•..

-

-20

C

\

\

:!!

-30

co -4G

-58

r-'-

-ID ~
-18

I.

lOG

lOOl

FREQUENCY (Hz)
TLlHI7786-15

1·256

Typical Applications-LM 149
Minimum Gain to Insure LM149 Stability

The LM149 as a Unity Gain Inverter
4R

R
VIN -_,.".,...-...oooot

VIN

-_M.,...-t--I
4R

>-"-OV

>-"-OV

R

OUT

TL/HI7786-16

Acl(SJ = VOUT =
VIN

-4

(1 +_5_)
"ol(s)

OUT

TL/H17786-17

'" -4

VOUT
( --1 - ) "'-1
Acl(s)=--=
VIN
1 +_6_
"oL(s)

.. ± 5 Vos
VIN =0
Power BW = 40 kHz

Vol

'" ± 5 Vos
VIN = 0
Small Signal BW = G BW/5
vol

Small Signal BW = G BW/5

Non-Invertlng-Integrator Bandpass Filter
R
R&

Ro

R7

R5

R

R'N

>.....jI"-_)BP

TLlHln66-16

For stability purposes: R7 = R6/4. lORe =. R5. Cc = 1DC
1

JR5

1

Ra

JR5

= 2; \fRii x RC' Q = R \fRii'
fO(MAX). QMAl( = 20 kHz. 10

fo

Ra

Ha8P

= RIN

Better Q sensitivity with respect to open loop gain variations than the state variable fiRer.
R7.

Cc added for compensation

1-257

Typical Appllcations-LM 149 (Continued)
Active Tone Control with Full Output Swing (No Slew Limiting at 20 kHz)
lOOk
BOOST

CUT

RI
11k

CI
O.05.F

Rl
11k
R5
3.6k

>-4.....0V

OUT

C3
O.OO5pF

R5
3.6k

·R4

500k
TREBLE
Vs

~

fMAX

±15V, VOUT(MAX)
~

20 kHz, THO

s:

~

9.1 YAMS,
fH

1%

~

1
211'R5C3' fHB

~

+ 2R7) C3
+ R2)/RI
(Rl + 2R7)/R5
211'(Rl

Duplicate the above circuit for stereo

Max Bass Gain"" (Rl

1
1
fL ~ 211'R2Cl ' fLB ~ 211'R1Cl

as shown: fL .. 32 Hz, fLB '" 320 Hz

Max Treble Gain '"

iH '"

TUH/n86-19

1

11 kHz, fHB'" 1.1 Hz

Triangular Squarewave Generator
CI
D.ODI"F

R'2
1l1li

,

R2
111ft

~,

211ft

RI
IIJIc

v+o-....- . ,
21J1c

2l1li

211ft

,........-oVZDk

TL/H/n86-20

K X Y,N

,2V,

f~8V+C1Rl,K~R2/R2'KS:25V,V

+_

~V ,Vs~±15V

Use LM125 for ± 15V supply
The circuit can be used as a low frequency V IF for process control.
Ql, Q3: KE4393, Q2, Q4: Pl087E, 01-04

~

lN914

~
"0

ir
en

LM148, LM149, LM741 Macromodel for Computer Simulation
Vee

3'

1 c
iii'

-=-1.8D3V

0'
~

C2"
lo pF

::JJ

Vb

L:J
v.
OGom
"

UnU

~

1

1

t

~ lOOk
R2

¢Va

G.

15O.&,.U

II

1



30

o

15

I

I I I
v+ = +30Voe

70

1 - TA 1=

I

I I I

oed TO +125"C ~

I

-'"

TA - TEl/PWTURE ("C)

I

160

2D

v+ - SUPPLY VOLTAGE

Open Loop Frequency
Response
1<40 ,.-..,--,-..,---,--0::::-........,

Voltage Gain

~

T. = -55"C-

10

-55 -35 -15 5 25 45 65 85 105 125

v+ OR'" POWER SUPPLY VOLTAGE (noe)

,

Supply Current

Input Current
90

i

Common-Mode
Rejection Ratio

-

120 r-rmrrl1l'""1-rmmr-n-

30

(Vocl

RL = 20kA

~

"""'jo...,
RL = 2kA

~~
I

J

100

80
60
40
20
0

10

20

30

v+ - SUPPLY VOLTAGE

<40

1.0 10 100 1.I1k 10k lOOk 1.11.. 10M

(Vocl

Voltage Follower Pulse
Response

lk

~

v+=15VOO"

\

Large Signal Frequency
Response
2O~,"--~~OM~mm

!450

15

~.j()Q
!i!

i ~r--~+-4-4-~-H-+~
1

10 H-ttlftttfII:-+tt

:0 30D 1--1+...-+-+:-"-:+..;;;-1---1
f10

20

30

<40

7

8

10k

1- nME (PO)

Output Characteristics
Current Sourcing

i::!5

c:.

!i! '!>
sS
5!!l
Dill

Output Characteristics
Current Sinking

Current Limiting
90

1:

7
6

I:

5

I:

4

~~

1 bIdd~:H:!±±±II:::!::t::IILWlJ
0.001 0.01
0.1
1
10
100

10· - OUTPUT SOURCE GURRENT (mAocl

1M

lOOk

f - fREQUENGY (Hz)

8rr~TTrrnrrr~Tm~om

~'8

1M

Voltage Follower Pulse
Response (Small Signal)
500,--,--~~~,---,---,....,

J

lOOk

f - FREQUENGY (Hz)

~~2.0k

I
1_

10k

f - FREQUENGY (Hz)

I

20

+.s>

10

I

f- f-

f- f-

I

I

I

. ~

ro- i"--

;--

f-

- f-

r-. ....

I""'-

o

-55 -35 -15 5 25 45 85 85 105 125

10 - OUTPUT SINK CURRENT (mAoc)

TA - TEl/P£JIATURE ("C)
TUH/7787-4

1-265

~

~

....

::::E

~

,-----------------------------------------------------------------------------,
Typical Performance Characteristics (Continued) (LM2902 only)
Input Current

Voltage Gain

lao

liD

.
..

;;;
'" 110

C")

........
:g
::::E

i/

!:i

~ ,....T.·+2I"C

J

N

....
::::E

co
.....
::::E
....

~
::!

R L-2010

~

RL-Z.~_

10

~
I

40

II)

10

21

30

10

y+ -SUPPLY VOLTAGE (Vocl

20

y+ - SUPPLY VOLTAGE (Vocl
TUH/nS7-5

Application Hints
The LM158 series are op amps which operate with only a
single power supply voltage, have true-differential inputs,
and remain in the linear mode with an input common-mode
voltage of 0 Voc. These amplifiers operate over a wide
range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible
down to a minimum supply voltage of 2.3 Voc.

Capacitive loads which are applied directly to the output of
the amplifier reduce the loop stability margin. Values of 50
pF can be accomodated using the worst-case non-inverting
unity gain connection. Large closed loop gains or resistive
isolation should be used if larger load capacitance must be
driven by the amplifier.
The bias network of the LM158 establishes a drain current
which is independent of the magnitude of the power supply
voltage over the range of 3 Voc to 30 Voc.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be
destroyed, not as a result of the short circuit current causing
metal fusing, but rather due to the large increase in IC chip
dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on
more than one amplifier at a time will increase the total IC
power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series
with the output leads of the amplifiers. The larger value of
output sourCe current which is available at 25°C provides a
larger output current capability at elevated temperatures
(see typical performance characteristics) than a standard IC
op amp.

Precautions should be taken to insure that the power supply
for the.integrated circuit never becomes reversed in polarity
or that the unit is not inadvertently installed backwards in a
test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.
Large differential input voltages can be easily accomodated
and, as input differential voltage protection diodes are not
needed, no large input currents' result from large differential
input voltages. The differential input voltage may be larger
than V+ without damaging the device. Protection should be
provided to prevent the input voltages from going negative
more than -0.3 Voc (at 25°C). An input clamp diode with a
resistor to the IC input terminal can be used.
To reduce the power supply current drain, the amplifiers
have a class A output stage for small signal levels which
converts to class B in a large Signal mode. This allows the
amplifiers to both source and sink large output currents.
Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the
basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

The circuits presented in the section on typical applications
emphasize operation on only a single power supply voltage.
If complementary power supplies are available, all of the
standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+ /2) will
allow operation above and below this value in single power
$upply systems. Many application circuits are shown which
take advantage of the wide input common-mode voltage
range which includes ground. In most cases, input biasing is
not required and input voltages which range to ground can
easily be accommodated.

For ac applications, where the load is capacitively coupled
to the output of the amplifier, a resistor should be used, from
the output of the amplifier to ground to increase the class A
bias current and prevent crossover distortion. Where the
load is directly coupled, as in dc applications, there is no
crossover distortion:

1-266

Typical Single-Supply Applications (V+

= 5.0 Vocl

Non-Inverting DC Gain (OV Input = OV Output)
.5V

~---...~+Vo

GAIN = I.
RI
10le

'R not needed due to
temperature independent liN

RZ

iii

= 101 (AS SHOWN)

TL/HI7787 -6
TLlH/7787 -7

DC Summing Amplifier
(VIN'S :<: 0 Voc and Vo :<: 0 Voc)

Power Amplifier
RI
910k

R
100II

.V,OO--illN\r-..
• V2 OO--illN\r-..
R
lOOk

>-4I,....OVo

R

. .-

100le
+V3 OO--illN\r-..

Vo

R
lOOk
Where: Vo
(V1

.....l-oQVo

= oVOCforVIN = oVoc
Ay = 10

TLlH/7787 -8

TL/H/7787 -9

= V1 + V2 + Va + V.
+ Vi) ., (Va + V41 to keep Vo > 0 Voc
"BI-QUAD" RC Active Bandpass Filter
RI
100II

CI
330 pF
RS
470k

C2

R3
lOOk

330pF
R6
470k
~~~~r-~------

fO=lkHz
a = 50
Ay

___

~---OVo

R7
lOOk

~---~~------~~~r-<>V'

= 100 (40 dB)

C3

+

10~Fr
TL/H/7787 -10

1-267

Typical Single-Supply Applications (V+

= 5.0 Voe> (Continued)

Lamp Driver

Fixed Current Sources
y+

+
R2

2V

TL/H17787 -12

1
1
•

-

(~) 11

12=

-

Current Monitor
RI·
0.1

IL

VL
TLlH/n87 -11

R2
100'

LED Driver

20mA ..

-

82
Vo = 1V(ILl

lA

Vo

-=

'(Increase RI for IL smalQ

R3
Ik

TLlH17787 -13

VL';; V+ -2V

-

Driving TTL

TL/H/n87 -14

Pulse Generator
RI

-=

1M

IN914

R2
lOOk

IN914

o.oOlpF

TLlH/7787 -15

P

Voltage Follower

Vo

:SLIl.

R~

ll1Qk
V'

Vo
Vo = VIN

+VIN

-=

TL/H17787-17

1-268

TLlH/n87-18

r-----------------------------------------------------------------------------~

Typical Single-Supply Applications
Squarewave Oscillator

Pulse Generator

CD
.....
r

IN914

N

HI

R1
lOOk

r

....
==
en

(V+ = 5.0 Vocl (Continued)

311!

==
en

CD
....

E
~

HZ

CD
....
r

Vo

150k

==

N

R2
lOOk
R3
lOOk

R3
lOOk

I
HS
lOOk

TL/H17787 -18

TL/H/7787-19

Low Drift Peak Detector

1.

-

>""4""-0 Va
ZoJJT

+

c

(POL YCARBONATE OR
POLYETHYLENE)

"...1pF
..L
":'

2N929*

°hi ~ AT 100 nA
HIGH ZIN

LOWZOUT

21.

~
R
1M

-

I.

INPUT CURRENT
COMPENSATION
TLlH/7787 -20

High Compliance Current Sink

Comparator with Hysteresis
+VON

o------f
HI
10k

TL/H17787 -22

10 ~ 1 amp/volt VIN
(Increase RE for 10 small)
":'"

TL/H17787 -21

1-269

~

~

r---------------------------------------------------------------------------------,
Typical Single-Supply Appllcations(v+

~

Yoltage Controlled Oscillator (YCO)

~

O.Os"f

(f)

....~

R
lOOk

f8
C'I
~

~
....

= 5.0 Vee) (Continued) .

+Vc*

51k

>-11--0 OUTPUT I

....
::::&

V·,2 51k

L-----------t--o OUTPUT Z

10k

TL/H17787-23

'WIDE CONTROL VOLTAGE RANGE: 0 Vee ,;; Vc ,;; 2"",+ -1.5Vocl

AC Coupled Inverting Amplifier
R,
lOOk

'1':

1\./\
V

RL

1
JVpp

T

':' 10k

•

RJ
lOOk

Ay

Rf
= A1

(As shown. Ay

= 10)
TUH17787 -24

Ground Referencing a Differential Input Signal

RI
1M

>,,-oVo
VR

R
RJ
1M

TL/H17787 -25

1·270

r-----------------------------------------------------------------------------~ ~

Typical Single-Supply Applications (V+

....i!I:

= 5.0 Vee> (Continued)

g:

AC Coupled Non-Inverting Amplifier
Rl
100le

~

i!I:

R2
1M

~

1

¥

E
w

~
.....

3Vpp

T

~

i!I:
N

!

R4 ,

lOOk

R2

" - -• ..J\N~-o V·

Av=I+Ri"

R5

Av

l00Jc

=

11 (As Shown)

TUH/7787 -26

DC Coupled Low-Pass RC Active Filter
Cl
O.DI~F

, HI
"I&k

> ...........oVo

fO=lkHz
Q =1

R4
lOOJc

10

Av = 2
TL/H/7787 -27

Bandpass Active Filter
CI
o.OI~F

Rl
380.

> ..........oVo
R3
fO=lkHz
Q = 25

&201e

V'
TL/H17787 -28

1-271

Typical Single-Supply Applications (V+

= 5.0 Voc)(Continued)

High Input Z, DC Differential Amplifier
R2
lOOk

R.4

tOOk

>,,-0 va

+v,o-----t
+V2o---------------~
For !!! ~ ~ (CMRR depends an Ihis
R2
R3 resistor ratio match)
Vo

~ I +~
R3

As Shawn: Vo

TLlH17787-29

(V2 - VI)
~

2 (V2 - VI)

Photo VOltalc-Cell Amplifier
R,

Bridge Current Amplifier

1M

R,

ICElL

~
>-..-0 va

(CELL HASOV

ACROSS III

FarB«

I andR,»

Vo '" VREF

(2"8) RR,

R

TLlH/7787-33

High Input Z AdJustable-Galn
DC Instrumentation Amplifier
RI
tlOk

R3

tOOk

R4
t ...

+v,
>+-0 va
R&
tOOk

R7

tOO.

+v.
TL/H/7787-31

If Rt

= R5 & R3 = R4 ~ RS ~ R7 (CMRR depends on match)
Vo = 1 + 2Rl ~2 - Vtl
As shown Vo

R2
= 101 (V2 - VI)

1-272

Typical Single-Supply Applications (V+

= 5.0 Voc)(Continued)

Using Symmetrical Amplifiers to
Reduce Input Current (General Concept)

-

+V'No-..........- -...

I
1
R
1.5M

-

I.

'j

I

'1

jl

INPUT CURRENT
COMPENSATION

I

~

TUH/7787-32

Schematic Diagram (Each Amplifier)

il
I,

TUH/7787-3

1-273

~

~

~

......
....
CIoI

;...I

,-------------------------------------------------------------------------------------,

tfI

Nat ion a I S e m i con d.u c t 0 "r

LM221/LM321 Precision PreampUfiers
General Description
The LM221 series are precision preamplifiers' designed to
operate with general purpose operational amplifiers to drastically decrease dc errors. Drift, bias current, common mode
and supply rejection are more than a factor of 50 better than
standard op amps alone. Further, the added dc gain of the
LM221 decreases the closed loop gain error.
The LM221 series operates with supply voltages from ±3V
to ± 20V and has sufficient supply rejection to operate from
unregulated supplies. The operating current is programmable from 5 ",A to 200 ",A so bias current, offset current, gain
and noise can be optimized for the particular application
while still realizing very low drift. Super-gain transistors are
used for the input stage so input error currents are lower
than conventional amplifiers at the same operating current.
Further, the initial offset voltage is easily nulled to zerO.
The extremely low drift of the LM221 will improve accuracy
on almost any precision dc circuit. For example, instrumentation amplifier, strain gauge amplifiers and thermocouple
amplifiers now using chopper amplifiers can'be made with

the LM221. The full differential input and high commonmode rejection are another advantage over choppers. For
applications where low bias current is more important than
drift, the operating current 'can be reduced to low values.
High operating currents can be used for low voltage noise
with low source resistance. The programmable operating
current of the LM221 allows tailoring the input characteristics to' match those of specialized op amps.
The LM221 is specified over a -25°C to + 85°C range and
the LM321 over a COC to + 7COC temperature range.

Features
•
•
•
•
•
•
•

Guaranteed drift of LM321A-O.2 ",vrc
Guaranteed drift of LM221 series-1 ",vrc
Offset voltage less than 0.4 mV
Bias current less than 10 nA at 10 ",A operating current
CMRR 126 dB minimum
120 dB supply rejection
Easily nulled offset voltage

Typical Applications
Thermocouple Amplifier wIth Cold JunctIon Compensation
+15V

R8
365k

R5
BB6k

~:~.-~~~t-----------------~~~-----OO-P-F--------,
LM113

RIO

4.99k
1%

+15V

7

OUTPUT

LMhlA

>++-110 invtcl

CHROMEL·
ALUMEL

T

',50 PF

T·

Il10pF

":'

.~ fol'2.98V at output with LM113

a......,..--oooo4~-15V

shorted. Output should equal ambient temperature at 10 mVI"K.
tAdjust for output reading In ·C.

1-274

TLlH/n69-1

Absolute Maximum Ratings
±20V

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage (Notes 2 and 3)

Operating Temperature Range
LM321A
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)
ESD rating to be determined.

500mW
±15V
±15V

Input Voltage (Note 3)

O"Cto +70"C
-65°C to + 150"C
300"C

Electrical Characteristics (Note 4) LM321A
LM321A
Conditions

Parameter

Unlta
Min

=

Input Offset Voltage

TA

Input Offset Current

TA = 25°C,
RSET = 70k
RSET = 6.4k

Input Bias Current

Input Resistance

25°C, 6.4k s;: RSET s;: 70k

TA = 25°C,
RSET = 70k
RSET = S.4k
TA = 25°C,
RSET = 70k
RSET = 6.4k

2
0.2

Max

0.2

0.4

mV

0.3

0.5
5

nA
nA

5
50

15
150

nA
nA

8

Mo.
Mo.

Supply Current

TA = 25°C, RSET

0.8

2.2

mA

Input Offset Voltage

6.4k s;: RSET s;: 70k

0.5

0.65

mV

Input ~ias Current

=
=
RSET =
RSET =
RSET =

70k
6.4k

15
150

25
250

nA
nA

70k
6.4k

0.5
5

1
10

nA
nA

70k

3

Input Offset Current
Input Offset Current Drift

RSET
RSET

=

Typ

70k

Average Temperature

Rs s;: 2000., 6.4k s;: RSET s;: 70k

Coefficient of Input Offset
Voltage

Offset Voltage Nulled
0.07

Long Term Stability

0.2

1
Vs = ±15V, (Note 5)
RSET = 70k
RSET = 6.4k

±13
+7, -13

",vrc
",V/yr

3

Supply Current
Input Voltage Range

pAloC

3.5

mA
V
V

Common-Mode Rejection
Ratio

RSET
RSET

=
=

70k
6.4k

126
120

140
130

dB
dB

Supply Voltage Rejection
Ratio

RSET
RSET

=
=

70k
6.4k

118
114

126
120

dB
dB

Voltage Gain

TA = 25°C, RSET
RL> 3Mo.

12

20

VIV

8

nVl.JHz

Noise

RSET

=

=

70k,

70k, RSOURCE

=

0

Note 1: The maximum junction temperature 01 the LM321 A is 8S'C. For operating at elevated temperature, devices In the HOS package must be derated based on
a thermal resistance 01 150'C/W, junction to ambient, or 18'C/W, Junction to case.
Note 2: The inputs are shunted with back-to-back diodes In series with a soon resistor for overvoltage protection. Therefore, excessive current will flow ~ a
differenlial'input voltage in excess of IV is applied between the inputs.
Note 3: For supply' voltages less than ± ISV, the absolute maximum Input voltage Is equal to the supply voltage.
Nota 4: These specifications apply for ±5 ,;; VS';; ±20Vand -55"C ,;; TA ,;; + 125'C, unless otherwise specified. WHh the LM221A, however all temperature
specifications are Iimltad to -25'C ,;; TA ,;; +85"C, and for the LM321A the specifications apply over a O'C to '+70'C temperature range.
Note 5: External precision resistor -0.1 %- can be placed from pins 1 and 8 to 7 Increase positive' common-mode range.
Note 6: See RETS121X for LM121H/883 military specs and RET121 AX for LM121AH/883 military specs.

1-275

...
......
...~

.~

....:::E

Operating Temperature Range
LM221 , LM121A (-883), LM121 (-883) - 25°C to + 85°C
LM321 , LM321 A
O"Cto +70"C
Storage Temperature Range
-65°C to + 150"C
Lead Temperature (Soldering, 10 sec.)
260"C
ESD rating to be determined.

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability an.d specifications..
Supply Voltage
±20V

Power Dissipation (Note 1)
Differential Input Voltage (Notes 2 and 3)
Input Voltage (Note 3)

,

.,

Absolute Maximum Ratings

500mW
±15V
±15V

Electrical Charact~ristlcs (Note 4) LM221 , LM321
LM221

CondlUons

Parameter

Min

Typ

:s: RSET :s: 70k

LM321
Max

Min

Typ

Units
Max

Input Offset Voltage

TA ;" 25°C, 6.4k

0.7

1.5

mV

Input Offset Current

TA = 25°C,
RSET = 70k
RSET = 6.4k

1
10

2
20

nA
nA

TA = 25°C,
RSET = 70k
RSET = 6.4k

10
100

18
180

nA
nA

Input Bias Current

Input Resistance

TA = 25°C,
RSET = 70k
RSET = 6.4k

4
0.4

2
0.2

MO
MO

Supply Current

TA = 25°C, RSET = 70k

1.5

2.2

mA

Input Offset Voltage

6.4k

:s: RSET :s: 70k

1.0

2.5

mV

Input aias Current

RSET = 70k
RSEr = 6.4k

30
300

28
280

nA
nA

Input Offset Current

RSET = 70k
RSET = 6.4k

3
30

4
40

nA
nA

Input Offset Current Drift

RSET = 70k

Average Temperature
Coefficient of Input
Offset Voltage

Rs :s: 2000, 6.4k :s: RSET
Offset Voltage Nulled

3
1

Long Term Stability

1

5

Supply Current
Input Voltage Range

pAloC

3

:s: 70k

Vs= ±15V, (Note 5)
RSET = 70k
RSET = 6.4k

p.V/yr

5
2.5

p.VloC

3.5

mA

±13
+7, -13

±13
+7, -13

V
V

Common-Mode Rejection
Ratio

RSET = 70k
RSET = 6.4k

120
114

114
114

dB
dB

Supply Voltage Rejection
Ratio

RSET = 70k
RSET = 6.4k

120
114

114
114

dB
dB

Voltage Gain

TA = 25"C, RSET = 70k,
RI,>3MO

16

Noise

RSET = 70k, RSOURCE = 0

12
8

VIV
8

nV/,fHz

Note 1: The maximum junctton temperature of the LM221 is 100'C. The maximum Junction temperature of the LM321 is 85'C. For operating at elevated
temperature, devices In the H08 package must be derated based on a thermal ~eslstance of 1&1'C/W, Junction to ambient, or 18'CIW, junctton to case.
Note 2: The Inputs are shunted with back·to-back diodes in series wilh a. 5000 resistor for overvollage protection. Therefore, excessive current will flow If a
differential input voltage In excess of 1V Is applie~between the iriputs.
.
.
Note 3: For supply voltages less than ±.15V, the absolute maximum input voltage is equal to the supply vollage.
Note 4: These specifications apply for ±5 " Vs " ±2OV and -55'C " TA " + 125'C, unless ~erwise specified. With the LM221, howevsr all tamparature
specifications are limited to - 25'C " TA " + 85'C, and for the LM321 the specifications apply over a O'C to + 70'C temperature range.
Note 5: External precision resistor -0.1 %- can be placed from pins 1 and 8 to 7 Increase positive common-mode range.

1-276

JiC

Typical Performance Characteristics

N
N

Distribution of Offset
Voltage Drift (Nulled)

Input Bias Current

1

~co

i..

11

i

.

r-

... ,.70 .... -

"""

1

-55

-15

Z5
I'
TEMPERATURE rCI

sof-+-+--Eliil-++-+-i
30

HH-+-

21

HH-+-

~

I..

~.

i

30

10

10
-11.4

105

'.Z

-0.2

.
...

!

51

t;

'.r---+---t-3~+-~~

110

;;i

lZ0

I;

100

>=

~
~

68

Vs "i15V
TA

=-zre

148

~ ........
~
Rsn '" latA

II

10k

"

tDOIt

10

100

c

~>

'"

m

"

30

m

f".:: ........

FREQUENCV (Hd

Input Noise Current

~

!

~fisET ;; 1.4 leO

II

FREOUENCY (Hz)

Input Noise Voltage
lDO

~

01

u

0.1

VOLTAGE DRIFT ,"vrcl

Negative Power Supply
Rejection

I-_-+-~'+_~~_~

168

-G.l

D.4

VOLTAOE DRIFT ,"vrcl

140 ......::"''1--...z:,---+--~
1H

48

ZO

Positive Power Supply
Rejection
~

Co)

111-+--+--+--+-+-1-1--1

!

ii

a:

71I.-T""""""'""T'""""'~--'-T"""""1

AuT ....4Idl- f-

;

r-

Distribution of Offset
Voltage Drift (Nulled)

101

.~

....
......

RaET;; lOlA

10

=

~

R,,,·U ...

=

1

ii
110

10

1l1li'

Ok·

ll1k

1Dlk

FREQUENCY 1Hz)

Voltage Drift

Differential Voltage Gain

11

RsET"I.41&8
Vs "':l15V

./

"

1.2

FREQUENCY Ubi

OA

U

Set Resistor and Set Current

v'

1.•

-2

B

1.2
1.0

=
§ • .....

10k

Ii

SET CURREIT/SlDE (,.AI

,.

I

....

.........

~

;
.
ill

.....

~

0.8
.6

.--

I

-15

Z5

.5

TEMPERATURE reI

101

lis" ·78kD

-&

RIET '"

-8

-10

-12

.-

-55

.1

JREF~RR!DT~-

-

co

0••

•.2
-15

58 , . -

Common-Mode Limlta

1.1

Ii! u

i

~,.

168

.,021

lET CURREITII1DE foAl

Set Current
:

,.

1.0

...

OFFSETVOLTAOE (..VI

1M

a:

V

V

O.Dl L-_...L_....J._ _.1-_...J
1110
1.
lOll
101k

i

./'

V

SUPPLVVDLTAGES
6.• wa l""-

I'--.

1 1 1
1 1 1

I'-...,

Aln -lll1A

L Ll
-15

RslT-Uta
25

65

105

TEMPERATURE ( el

TlIH17769-9

1-277

N
....

Y- . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

.~

~
.....

Typical Performance Characteristics

Y-

~

~

.,~z

~
~ -4

~
i!i

~

-1

. c

-2

~

-3

~
~

-B

-8

!

I

-10

1,,0

-;1

I

-7

8
&8

101

. lin-I

-5

v. -:t1&V

1!i;

I

R.,.

ill 1.1
B u
0,1

_r-

I
J

DA
U

-55

-15

25

!

~

~

u
u

Ii!

1.1

i:!;

12

15

~
\\:
c

I I I

Ii!

5,

~

II I

10

21

.1

110 200

,/

u

~

1,0

f-"

O,g

....

-55

V

/

V

~

lIZ

v-

1.4
....T

1.8

U

..

~ ::

It

1

1.2

101

rC)

/

25

85

105

110

,
i
"

V

:/

-1&

Common-Mode Rejection
Ratio
;

V

,

"'

TE_RATURE I CI

T. =2rC

U

IA

TEMPERATURE

II I

12

Offset Voltage Adjustment

u

-u"!!- ........
f-"
~
LT-701111 "':'1--

.

iiii

u

j

12

1111

'VI -:lIIV
'-3110Hz

1,3

SET CURRENTISIDE (PAl

Supply Current
1,4

"z

T. -+121'1:

REFERRED'yo
2

I
!!

-8 . 'PSITIVESUPPLY

201

Differential Voltage Gain
1.4

1111

-I

SET CURfiENT/SIDE tuA)

1,6

,

~

TA -+21 C

". -4

Ii.,

..

Output Common-Mode Voltage
<111111
~
J llill
T --Irc

S·r
...

It..

(ContinUed)'

u

Vs -:tlIY
flo •

arc

~~
~ ~T;;lAltn

I:

AsET =llwa"'"

~

~

4D

18

RATIO R2IRI

100

lk

11k

1_

FREGUENCY (H.I
TL/HI7769-10

Connection Diagram
Metal Can Package
OUTPUT 1

V'

Top View
NO~:

Pin 4 connected to case,

Order Number LM121AH/883, LM121H/883,
LM221H, LM321H or LM321AH
See NS Package Numb~r H08C
Note: Outputs are inverting from the input of the same number,

1-278

TLlH/n69-7

~

Schematic Diagram

N
N

....
......

....
....N

i:

Co)

>

;~

......

;:!

-...
N

a: ...

lI!'::

.....
a: ..

-'"

...

...
a:_

+

>

l-

...'"

I-

'"'"

co

I-

...

=>

!!

1-279

I-

...'"~

.ill

a:

...
j

I

>

~ r---------------~----------------------------------------------------------------,

~

:::E

........I
~
~

~

Frequency Compensation
Table I shows typical values for the two compensating capaCitors for various gains and operating currents.

UNIVERSAL COMPENSATION
The additional gain of the LM321 preamplifier when used
with an operational amplifier usually necessitates additional
frequency compensation. When the closed loop gain of the
op amp with the LM321 is less than the gain of the LM321
alone, more compensation is needed. The worst case situation is when there is 100% feedback-such as a voltage
follower or integrator-and the gain of the LM321 is high.
When high closed loop gains are used-for example Av =
100o-and only an addition gain of 200 is inserted by the
LM321 , the frequency compensation of the op amp will usually suffice.
The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the
basic configuration of frequency stabilizing network. In operation the output of the LM321 is rendered single ended by a
0.01 p.F bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor
around the op amp.
Bandwidth at unity-gain ""

TABLE I
Closed
Loop
Gain
Av = 1
Av = 5
Av = 10
Av = 50
Av = 100
Av = 500
Av = 1000

120kO

6OkO

30kO

12kO

6kO

68

-

130
27
15
3
1

270
56
27
5
3
1

680
130
68
15
5
1

1300
270
130
27
10
3

-

-

-

-

-

15
10
1

-

-

This table applies for the LM108, LM101A, LM741, LM118.
CapaCitance is in pF.
DESIGN EQUATIONS FOR THE LM321 SERIES

2'/T~:E,.c

~ 1.~ X

106
SET
Null Pot Value should be 10% of RSET
.
2 x 0.65V
Operating Current ~
R
SET
GainAv

06~SET

for 0.5 MHz bandwidth C = 1

For use with higher frequency op amps such as the LM118
the bandwidth may be increased to about 2 MHz.
If the closed loop gain is greater than unity, ..
may be
decreased to:
.

c..

C=

Current Set Resistor

..
. .
[0.65V X 50k]
Positive Common-Mode Limit ~ V+ - 0.6RSET

4

106 ACLRSET

ALTERNATE COMPENSATION
The two compensation capaCitors can be made equal for
improved power supply rejection. In this case the formula for
the compensation capscitor is:

C=

8
1Q6AcLRsET

Typical Applications

__~~OUTPUT

R3
10k

Cl
30 pF

·Offset adjust.
tSee table for frequency compensation.

~--~~------~-v-

FIGURE 1. Low Drift Op Amp Using the LM321A as a Preamp

1-280

TL/HI7769-2

.-----------------------------------------------------------------------------,~

iii:

Typical Applications (Continued)

....~
....

Gain of 1000 Instrumentation Amplifier:/:

Ii:
....

RU

3M

Co)

N

0.111

INPUT

OUTPUT

LM321A

Rl
SOk
1%

R2
SOk
1%

R3
10k

tBeller than I % linearity for input signals up to ± 10 mV gain stability typical +2% from -55 to + I 25'C.

':"

Match of R5 and R6 effect power
supply rejection

R4
2Dkt

vTL/H/7769-3

High Speed· Inverting Amplifier with Low Drift
LII1D3-1 ••

2SOpF

Uk

INPUT-_...."""i

3pF
>~-""_OUTPUT

lM321A

•

5
12k

'Bandwidth
Slew Rate

v-

= 10 MHz
= 40 VI p..
TUH17769-4

Medium Speed· General Purpose Amplifier

-[

LM321A

~---,.--

OUTPUT

'Bandwidth
Slew Rate

v-

= 3.5 MHz
= 1.1 VI p.s

TLlH/7769-5

1-281

~

~

~
......
~

~

r-------------------------------------------------------------------------------------,
Typical Applications (Continued)
Increased Common-Mode Range at HIgh Operating Currents

or

v·

:i
Z5k*

Z5k*

> -....-OUTPUT

LM321A

5

4

v 1 kHz

Applications
•
•
•
•
•

General purpose video amplifiers
High frequency, high Q active filters
Photo-diode amplifiers
Wide frequency range waveform generation circuits
All LM3900 AC applications work to much higher
frequencies

Typical Application

Connection Diagram
0.5pF

Dual-In-Llne Package

'SET(OUT)-t---,
0.01 "F

~~~+

VOUTA
COMPA
GND A -~!..i::i>~H'!ii.!r+- GND B

>~""O·OUT

20k

~-+-IIN(+)B

IIN(-IA
IIN(+)A....;.,t--...

IZV o-~'V\o""'"

L-_-F- ISET(lN)

20k
TUH/7788-2

Top View
TUH/7788-1
o Av

= 20 dB

o -3 dB bandwidth
o Differential

=

2.5 Hz to 25 MHz

phase error

o Differential gain error

< I' at 3.58 MHz

< 0.5% at 3.58 MHz

1-283

Order Number LM359J, LM359M or LM359N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings

"

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
22Voc
or ±IINoc
Power Dissipation (Note 1)
J Package
'IW
750mW
N Package

Maximum TJ
JPackage
N Package
Thermal Resistance

Input Currents, IIN(+) or IIN(-)

1OmAoc
Set Currents, ISET(IN) or ISET(OUT)
' 2mAoc
Operating Temperature Range
LM359
O"Cto +70·C
-65·C to + 150"C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)
, ,260"C
Soldering Information
Dual-In-Une Package
260·C
Soldering (10 sec.)
Small Outline Package
Vapor Phase (60 sec.) ,
215·C
Infrared (15 sec.)
220·C
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods bf soldering sur'
face mount devices.

+ 150"C
+ 125·C

,\

J Package
IIjA 147"C/W still air
110·C/W with 400 linear feet/min air flow
NPackage
IIjA 100"C/W still air
75·C/W with 400 linear feet/min air flow

E~m rating to be determined.

Electrical Characteristics ISET(IN) =

ISET(OUT)

= 0.5 mA, Vsupply = 12V; TA = 25·C unless otherwise noted

,0

Parameter

LM3~9

Conditions

Open Loop Voltage
Gain

Vsupply = 12V, RL
TA = 125·C

Bandwidth
Unity Gain

RIN

= 1 kO, Ccomp = 10 pF

Gain Bandwidth Product
Gain of 10 to 100

RIN

= 500 to 2000

Slew Rate
Unity Gain
Gain of 10 to 100
Amplifier to Amplifier
Coupling
Mirror Gain
(Note 2)

aMirror Gain
(Note 2)
Input Bi~ Current
Input Resistance (pre)
Output Resistance
Output Voltage Swing
VOUTHigh
VOUTLow
Output Currents
Source
Sink (Linear Region)
Sink (Overdriven)
Supply Current

0,

=, lk, f = 100 Hz

Typ

62

72
68

dB
dB

15

30

MHz

200

400

MHz

30
60

V/p.s

RIN = 1 kO, Ccomp = 10 pF
RIN < 2000
f = 100 Hz to 100 kHz, RL = lk

V/fLS

1.0

1.1

p.A/p.A

0,9

1.0

1.1 ,

p.A/fLA

0.9

1.0

1.1

fLAlp.A

3

5,

%

8

15
30

p.A

= 15 mA rms, f = 1 MHz

RL = 6000
IIN( -) and IIN( + ) Grounded
IIN(-) = 100 fLA, IIN(+) = 0

9.5

p.A

2.5

kO

3.5

0

10.3
2

50

V
mV

16

40
4.7

mA
mA

1.5

3

mA

Vcom~-0.5V

"

dB

0,9

at 20 p.A to 0.2 mA IIN( + )
Over Temp, ISET = 5 fLA
Inverting Input, TA = 25·C
Over Temp.
Inverting Input

IIN(-) and IIN(+) Grounded, RL = 1000
= VOUT = tv, IIN(+) = 0
IIN(- = IOOfLA,IIN(+) = 0,
VOUT Force = tv
Non-Inverting Input
Grounded, RL = 00

Max

-80

at 2 mA IIN( +), ISET = 5 p.A, TA = 25·C
at 0.2 mA IIN( + ), ISET = 5 p.A
'Over Temp.
at 20 p.A IIN( + ), ISET = 5 p.A
Over Temp.

lOUT

Units

Min

18.5

22

mA

Power Supply Rejection
f = 120 Hz, IIN( + ) Grounded
40
50
dB
(Note 3)
Note 1: See Maximum Power Dissipation graph.
Note 2: Mirror gain Is the current gain of the current mirror which is used as the non·lnverting input. ( AI = :IN~ -:) 

'"

5

-90

lDO

,.

MIRROR OFF••VIE BIASING

lOOk

1M

10M

6DO f--+-+~
SDO I-+--+-I~
~O I-+--+-I~
300 I-+--+--!~
200 I-+--+-Iffl~
lDO f--+-+--e:~~~+-+-I
0L-L-~~~~~~~

0
10k

10M

liDO MM!aX~i~m~u~m~p~o~w~e~r~~~1on
r1100
Ii lDOO
! 900 r.p:"F~~'f7.:~+-+-I

~

!w

.~

SOURCE AMP LOAD -I kn

1M

lOOk

FREOUENCY (Hz)

Y+=5V

-100

10k

1k

-50

.....
.

1M

0.01

111M 100M

TA·2S'C

-40

1.0

~

\
ll111k

~

...

FREQUENCY (Hz)

Amplifier to Amplifier
Coupling (Input Referred)

~

__- '

1oa.

,•

!
\

0

'".

1011

w

SET CURRENT (IIA)

-10
;;; -20
co -30

1k

Output Impedance

/

V

1DO

lOG

;;

0.'
0.0,

t.

Y+· 12VOC + 0.11 Vrml
POSITIVE INPUT AT GNO

L..---'~-'-'';';''''-''''",---'-

FREQUENCY (Hz)

II
TA=IS·C
DAIN' -,0
V~UT = VCOMP - O.sV· 'V
V -'IV
/

~

o

SET CURRENT (mA)

Output Sink Current

1.0

I-::---I-:---~--~--f-----t
TA'IS"C

20

OL..-.................................-----................w

10

.....,

I

TA"IS C
V+ ... 12VOC + 0.11 V,ml
'0.1 kHz
POSITIVE INPUT AT GNO

SET CURRENT (..A)

...
ill
'"'"

~--~--~--~--~-4

>

10

TA = 2SoC
V+-12V
~m
PQSlllrE INPUT AT GNO

1.01

C
.!

H ~~~~~~~~~~

10

I.

FREQUENCY (Hz)

lk

I.

111ft

tM

10M

-75 -50 -25

0

25

511

75 100 125

TEMPERATURE (0 C)
Nota: Shaded area refers to. LM359J/LM359N

FREOUENCY (Hz)

TLlHmSS-5

Application Hints
The LM359 consists of two wide bandwidth, decompensated current differencing (Norton) amplifiers. Although similar
in operation to the original LM3900, design emphasis for
these amplifiers has been placed on obtaining much higher
frequency performance as illustrated in Figure 1.

1211
LFJ57
,08 I 80

1\

iii

'".

This significant improvement in frequency response is the
result of using a common-emitter/common-base (cascode)
gain stage which is typical in many discrete and integrated
video and RF circuit designs. Another versatile aspect of
these amplifiers is the ability to externally program many
internal amplifier parameters to suit the requirements of a
wide variety of applications in which this type of amplifier
can be used.

~

~

r\.LM359
60

LMHIIO ,

,\

I\.

40

'1\.\

211

~

\,\

o
,11 ,110 'k

,ote

,18k 'M ,OM '1I11M ,G

FREIIUENCY (Hz)

TL/HI7788-6

FIGURE 1

1-287

Application Hints (Continued)
DC BIASING
The LM359 is,ititendE!d for single supply voltage operation
which requires DC biasing of the, output. The current mirror
circuitry which provides the non-inverting input for the amplifier also facilitates DC biasing the output. The basic operation of this current mirror is that the current (both DC and
AC) flowing into the non-invertirrg input will force an equal
amount of current to flow into the inverting input. The mirror
gain (AI) specification is the measure of how closely these
two currents match. For more details see National Application Note AN-72.

>-4HOVO

DC biasing of th",output is accomplished by establishing a
reference DC current into the (+) input, IIN( +), and requiring the output to provide the (-) input current. This forces
the output DC level to be whatever value necessary (within
the output voltage swing ofthe amplifier) to provide this DC
reference current, Figure 2.

-

Rr

v,
AV(AC)

= +~

VO(DCl

= VBE(-) +

Rs

TUHI7788-9

+ re

v+ - VBE(+)
Rf [
Rb
+ Ib(-)

1

FIGURE 4. Biasing a Non-Inverting AC Amplifier

IFB

v'

> ......-oVo
>_t-OVo
vo(DC) = VBE(-) + IFa

= IIN(+) At
IIN(+) = v~ IFa

At

TL/H/778B-7

_!!t

AV(AC)'

=

VO(DC)

= VBEH

R.

+ 11>1-)

V~(+)

Rb

Ib( -) is the inverting input bias current
FIGURE 2

-'

(1

+

:~) + Ib~-)Rf

TL/H/7788-10

FIGuRE 5. nVBE Biasing

The DC input voltage at' each input' is a tral)sistor VSE
("" 0.6 Vee) and must be considered for DC biasing. For
most applications, the supply voltage, v+, is suitable and
convenient for establishing IIN( +). The inverting input bias
current, Ib( -), is a direct function of the programmable input
stage current (see current programmability section) and to
obtain predictable output DC biasing set IIN(+) ~ 10Ib(-).
Tl)e following figures illustrate typical biasing schemes for
AC amplifiers using the LM359:
Rr

The nVSE biasing configuration is most useful for low noise
applications where a reduced input impedance can be accommodated (see typical application!! section).
'.

,

,i) "

OPERATING CURRENT PROGRAMMABILITY (ISET)
The input bias current, slew rate, gain' bandwidth product,
output drive capability' and total device power consumption
of both amplifiers can be simultaneously controlled and optimized via the two programming pins ISET(OUT) and ISET(IN).
ISET(OUT)
The output set current (lSET(OUl) is equal to the amount of
current sourced from pin 1 and establishes the class A biasing current for the Darlington emitter follower output stage.
Using a, single resistor from pin 1 to ground, as shown in
Figure 6, this current is equal to:

> ......-oVo
AV(AC) =

Vo(DC)

_!!t

= VBEI-) +

FIGURE 3. Biasing

I
SET(OUT)

TL/HI7788-B

R.

V+ - VBE(+)
Rf [
' Rb
+ Ib(-)

v+ - VBE '
5000

= RSET(OUn +

1

an Inverting AC Amplifier
TUH/7788-11

FIGURE 6_ Establishing the Output Set Current

Application Hints (Continued)
ture of 25°C is assumed (KT/q = 26 mV and (Jtyp = 150).
ISET(IN) also controls the DC input bias current by the expression:

The output set current can be adjusted to optimize the
amount of current the output of the amplifier can sink to
drive load capacitance and for loads connected to V+. The
maximum output sinking cunent is approximately 10 times
ISET(OUT} This set current is best used to reduce the total
device supply current if the amplifiers are not required to
drive small load impedances.

Ib( -) = 31SET '" ISET for NPN,8 = 150
,8
50
which is important for DC biasing considerations.
The total device supply current (for both amplifiers) is also a
direct function of the set currents and can be approximated
by:

ISET(lN)
The input set current ISET(IN) is equal to the current flowing
into pin 8. A resistor from pin 8 to V + sets this current to be:

Isupply '" 27 X ISET(OUT) + 11 X ISET(IN)
with each set current programmed by individual resistors.
PROGRAMMING WITH A SINGLE RESISTOR

ISET IN
()

=

v+ RSET(IN)

Operating current programming may also be accomplished
using only one resistor by letting ISET(IN) equal ISET(OUT)'
The programming current is now referred to as ISET and it is
created by connecting a resistor from pin 1 to pin 8 (Figure

VeE

+ 500n

8).
V+ - 2VSE
ISET = RSET + 1 kG where VSE '" 0.6V

v+

TLlH/nSS-12

~'SET

FIGURE 7. Establishing the Input Set Current
ISET(IN) is most significant in controlling the AC characteristics of the LM359 as it directly sets the total input stage
current of the amplifiers which determines the maximum
slew rate, the frequency of the open loop dominant pole, the
input resistance of the (-) input and the biasing current
Ib( -). All of these parameters are significant in wide band
amplifier design. The input stage current is approximately 3
times ISET(IN) and by using this relationship the following
first order approximations for these AC parameters are:
Sr(MAX) = max slew rate
frequency of
dominant pole

9!!

9!!

RSET

TLlH/n88-1S
ISET(IN)

FIGURE 8. Single Resistor Programming of ISET
This configuration does not affect any of the internal set
current dependent parameters differently than previously
discussed except the total supply current which is now
equal to:

3ISETON) (10-6) (VI",s)
Ccomp

3 ISET(IN)
(Hz)
21T Ocomp AVOL (0.026V)

..
Input resistance = (Jre

= ISET(OUl) = ISET

Isupply '" 37 X ISET
Care must be taken when using resistors to program the set
current to prevent significantly increasing the supply voltage
above the value used to determine the set current. This
would cause an increase in total supply current due to the
resulting increase in set current and the maximum device
power dissipation could be exceeded. The set resistor value(s) should be adjusted for the new supply voltage.

150 (0.026V)
31
(0)
SET(IN)
where Ccomp is the total capacitance from the compensation pin (pin 3 or pin 13) to ground, AVOL is the low frequency open loop voltage gain in V IV and an ambient tempera9!!

1-289

Application Hints (Continued)
One method to avoid this is to use ,an 'adjustable current
source which has voltage' compliance to generate the set
current as shown in Figure 9.

ISET
,

= ~ i1125;C

COMPENSATION
The LM359 is internally compenSated for'stability with
closed loop inverting gains of 10 or more.' For an inverting
gain"otIEiss than 10 and ail non-invertingamplil1ers (the
amplifier always has 1'00% negative current feedback regardless of the gain in the non-inverting eonfiguration) some
external frequency compensation is required because the
stray capacitance to ground from the (-) input and thEi
feedback, resistor add additional lagging phase within the
feedback loop. The value of the input ca~citancewill typically be in the range of 6 pF to 10 pF for a reasonably
constructed circuit board. When using a feedback resistance of 30 kO or iess, the best method of compensation,
without sacrificing slew rate, is to add a lead capaCitor in
parallel with the feedback resistor with a value on the order
of 1 pFto 5 pF as shown in Figure 10.

TLltjln88-1~

RSET,

FIGURE 9. Current souri:e Programming of ,ISET

c,

This circuit allows ISET to remain constant over the entire
supply voltage range of the ,LM359, which also improve~
power supply ripple rejection as illustrated in the Typical
Performance Characteristics. It should be noted, however,
that the current through the LM334 as shown will change
linearly with temperature but this can be compensated for
(see LM334 data sheet).
Pin 1 must never be shorted to ground or pin 8 never shorted to V+ without limiting the current t6 2' mA or less to
prevent catastrophic device failure.

>~~O'OUT

CONSIDERATIONS FOR HIGH FREQUENCY
OPERATION
The LM359 is intended for use in relatively high frequency
applications and many factors external to the amplifier itself
must be considered. Minimization of stray capacitances and
their effect on circuit operation, are the prim/afY, requirements. The following list contains some general guidelines
to help, accomplish this end:

v+

Gt -

1 pF to 5 pF for stability
TLlHI7788-15

1. \: 2 ") but if necessary, use
shielded wire.
7. Bypass the supply close to the device with a low inductance, low value capacitor (typically a 0.01 ".F ceramic) to
create a good high frequency ground. If long supply leads
are unavoidable, a small resistor (-100) in series with
the bypass capaCitor may be needed and using shielded
wire for the supply leads is also recommended.

>_~'V\,,,,,+-o'OUT

TLlHln88-16

FIGURE 11. Isolating Large capacitive Loads
1-290

,-----------------------------------------------------------------------------, r
i:
w
Application Hints (Continued)
UI
3. Determine maximum value for R, to provide stable DC
biasing

In most applications using the LM359, the input signal will
be AC coupled so as not to affect the DC biasing of the
amplifier. This gives rise to another subtlety of high frequency circuits which is the effective series inductance (ESL) of
the coupling capacitor which creates an increase in the impedance of the capacitor at high frequencies and can cause
an unexpected gain reduction. Low ESL capacitors like solid
tantalum for large values of C and ceramic for smaller values are recommended. A parallel combination of the two
types is even better for gain accuracy over a wide frequency
range.

31SET _ 100 ",A minimum DC
I'(MIN) ;;, 10 x -(J- feedback current
Optimum output DC level for maximum symmetrical swing
without clipping is:
VoOC(oPt) =

Vo(MAX) - Vo(MIN)
2
+ Vo(MIN)

_ (V+ - 3VSE) - 2mV

-

AMPLIFIER DESIGN EXAMPLES
The ability of the LM359 to, provide gain at frequencies higher than most monolithic amplifiers can provide makes it
most useful as a basic broadband amplification stage. The
design of standard inverting and' non-inverting amplifiers,
though different than standard op amp design due to the
current differencing inputs, also entail subtle design differences between the two types of amplifiers. These differences will be best illustrated by design examples. For these
examples a practical video amplifier with a passband of 8
Hz to 10 MHz and a gain of 20 dB will be used. It will be
assumed that the input will come from a 750. source and
proper signal termination will be considered. The supply
voltage is 12 Voc and single resistor programming of the
operating current, ISET' will be used for simplicity.

2

12 - 1.8V 10.2V
VoOC(opt) ""
2
= -'-2- = 5.1 Voc
R'(MAX) can now be found:
R
VoOC(opt) - VSE(-)
'(MAX) =
, If(MIN)

5.1V - 0.6V
100 ",A
= 45 ko.

This value should not be exceeded for predictable DC
biasing.
4. Select Rs to be large enough so as not to appreciably
load the input termination resistance:
Rs ;;, 7500. Let Rs = 7500.
5. Select R, for appropriate gain:
R,
Ay= --so;R,=10R s =7.5ko.
Rs
7.5 ko. is less than the calculated R'(MAX) so DC predictability is insured.

AN INVERTING VIDEO AMPLIFIER
1. Basic circuit configuration:

6. Since R, = 7.5k, for the output to be biased to 5.1 VOC,
the reference current IIN( +) must be:
5.1V - VSE(-) , 5.1V - 0.6V
6 0 A
I ()
IN + =
= 0 '"
R,
'=
7.5 ko.

12Y

Now Rb can be found by:

Cj

Rb = V+ - VSE(+) = 12 - 0.6 = 19ko.
IIN( + )
600 ",A
7. Select C; to provide the proper gain for the 8 Hz minimum
input frequency:

"N~

175
-

>-+-oeOUT

C.;;,

1
1
=26F
27T Rs (flow)
27T (7500.) (8 Hz)
'"
A larger value of Cj will allow a flat frequency response
down to 8 Hz and a 0.01 ",F ceramic capaCitor in parallel
with Cj will maintain high frequency gain accuracy.
8. Test for peaking of the frequency response and add a
feedback "lead" capaCitor to compensate if necessary.
I

Th/H/nes-17

2. Determine the required ISET from the characteristic
curves for gain bandwidth product.
GBWMIN = 10 X 10 MHz = 100 MHz
For a flat response to 10 MHz a closed loop response to
two octaves above 10 MHz (40 MHz) will be sufficient.
Actual GBW = 10 x 40 MHz = 400 MHz
ISET required = 0.5 mA
V+ - 2 VSE
10.8V
RSET
- 1 ko. = - - - - - 1 ko. = 20.6 ko.
ISET
0.5mA

1-291

CD

Application Hints (Continued)
• The amplifier always has 100% current feedback so external compensation is required. Add a small (1 pF-5 pF)
feedback capacitance to leave the amplifier's .open loop
response and slew rate unaffected.

Final Circuit Using Standard 5%
Tolerance Resistor Values:
0.5pF

• To prevent saturating the mirror stage the total AC and
DC current flowing into the amplifier's (+)input should
be less than 2 mAo
• The output's maximum negative swing is one diode
above ground due to the VBE diode clamp at the (-)
input.

I • ."F

DESIGN EXAMPLE:
e'N = 50 mV (MAX), fiN = 10 MHz (MAX>, desired circuit
BW = 20 MHz, Av = 20 dB, driving source impedance =
750, V+ = 12V.

>-+oO'OUT

1. Basic circuit configuration:

TLlH/7788-18

12V

Circuit Performance:
30

1111111

25

..
...

WITHC .~

iii

:!!

~
WITH~·"

28

C

...

JITUJ~
C

~

~

.'N~

~

10

175
-

o
1M

10M

100M

2. Select ISET to provide adequate amplifier bandwidth so
that the closed loop bandwidth will be determined by Rf
and Cj. To do this, the set current should program an
amplifier open loop gain of at least 20 dB at the desired
closed loop bandwidth of the circuit. For this example, an
ISET of 0.5 rnA will provide 26 dB of open loop gain at
20 MHz which will be sufficient. Using single resistor programming for ISEIV+ - 2VBE
RSET =
-1 kQ = 20.6kO

TLlHm88-19

= 5.IV
< I' for 3.58 MHz liN
< 0.5% for 3.58 MHz liN

Differential phase error
Differential gain error
I-a dB

12V
TLlHI77B8-20

FREQUENCY (Hz)

Vo(OC)

>--,,-0 'OUT

C,

C -I pF

15

CII

low = 2.5 Hz

A NON-INVERTING VIDEO AMPLIFIER
For this case several design considerations must be dealt

with.

ISET

• The output voltage (AC and DC) is strictly a function of
the size of the feedback resistor and the sum of AC and
DC "mirror current" flowing into the (+) input.

3. Since the closed loop bandwidth will be determined by
Rf and Cj (f-3dB = 211'

1-292

~f Cj)

Application Hints (Continued)
to obtain a 20 MHz bandwidth, both Rt and C, should be
kept small. It can be assumed that C, can be in the range
of 1 pF to 5 pF for carefully constructed circuit boards to
insure stability and allow a flat frequency response. This
will limit the value of Rt to be within the range of:
1
2'11" 5 pF 20 MHz

~Rt~

For gain accuracy the total AC and DC mirror current
should be less than 2 mAo For this example the maximum
AC mirror current will be;
±Eljnpaak = ±50mV = ±66pA
Rs + ra
7500
therefore the total mirror current range will be 574 pA to
706 pA which will insure gain accuracy.
8. Rb can now be found:

1
2'11" 1 pF 20 MHz

or1.6kO ~ Rt:S; 7.96kO
Also, for a closed loop gain of + 10, Rt must be 10 times
Rs + ra where ra is the mirror diode resistance.
4. So as not to appreciably load the 750 input termination
resistance the value of (Rs + rel is set to 7500.
5. For A., = 10; Rt is set to 7.5 kO.
6. The optimum output DC level for symmetrical AC swing
is:
VoCC(opt) =

Rb = V+ - Vse(+) = 12 - 0.6 = 17.8 kO
IIN(+)
640pA
9. Since Rs + ra will be 7500 and ra is fixed by the DC
mirror current to be:
KT
26mV
ra = - - = - - "" 400 at 25°C
q IIN(+)
640 pA
Rs must be 7500-400 or 7100 which can be a 6600
resistor in series with a 300 resistor which are standard
5% tolerance resistor values.
10. As a final deSign stap, Ct must be selected to pass the
lower passband frequency corner of 8 Hz for this example.

VO(MAlQ - Vo(MIN)
2
+ Vo(MIN)

= (12 -

1.8~V - 0.6V + 0.6V = 5.4 Vcc

7. The DC feedback current must be:
I
FS

= VoDC(optl - Vse(-) = 5.4V - 0.6V
Rt
7.5k

2'11" (7500) (8 Hz) = 26.5 p.F
A larger value may be used and a 0.01 p.F ceramic capacitor in parellel with Ct will maintain high frequency
gain accuracy.

= 640 pA = IIN(+)
DC biasing predictability will be insured because 640 pA
is greater than the minimum of ISET/5 or 100 pA.

Final Circuit Using Standard 5% Toferane4 R....tor Values
I,F

12V

lOOI'F

>--"'0 'OUT
810

30

"iN

12V

TLlHI7788-21

1-293

en .---------------------------------------------------------------------------------,
an
C")
Application Hints (Continued)
:&
u
GENERAL PRECAuTIONS
.' ::,;, ,
'~ Clr:cuit PerfQ~anCe
, ?
..;'
'.

1-c-++++ItH'I---++#HffI

:,25

a
, :!l,
z

...
......
:>
'"

.J'

15

,fJ:

.,

C

,10

'.,I,

,

oL---'-...L-JL...I,1J..UJ__..I-.L..J..J..I..IUJJ

IbM '

1M

1000M

FR'E~i1ENCY
(Hz)
,
'~

VO(DCl .. 5,4V '

:'1

,~.'

.~'n::;("

to

' "

The supply voltage must never be reversed to the device;
however, plugging the de,viee into' a socket backwards
would then connect the positive supply voltage to the pin
that has no internal connection (pin 5) which may prevent
inadvertent device failure.'
,

. :"",

Diflerentiar~~ ~rrOr « 0,5Dlfferential'~ain errOl' <'2%

i_a'dB low ,;, 2.5 Hz

~.

niA~

" TUHI7788-22

.;

I

The total device 'pe kept in
mind when selectIng an operating supply VOltage, the programming current, ISET' arid the load resistance, particularly
when DC coupling the output ~oa succeeding, stage._,To
prevent damaging the current mirror inpllI! diode, ,,\he l)1irror
.current should always be ,Iimi~ed to 10 mA, or,less, lIYhiCh is
important ,if. thEl input is susceptible. to' high voltage trimsients. ilie voltage at any of the inputs must not be forced
more negative than -O:TV without limiting the current 10

20"

C

co
co

,~,.t'

Th~ LM:35!1 is pesigned primarily for. Single ,i\UPPIYQ,RElration
but ~plit$uppJle!llT1ay be u~!1 if the', negative ~ppl~ v91tage
is .wel!regulated aS,the arpplifi~I'l!)'av~no'neiiatil/!l slJPply
reJection.
'

"

Typical Applicaticms,
DC Coupled Inputs
Inverting ,.,.
RI

R.

"''0'' VIN(DClo-..J\t,M,..-j~
14

2 "

>~""OVDUT

~-"'OVOUT

y+o-,.,..,.VVo-+I

TI.IH/7788-23

VBE(+)
[ v+ - Rb
Vo(DCl =
AV(AC)

=

~
Rs

v~ei--')'],' Rf":'I- "V~(-)
Rs f

VIN(DC)-

,

TL/H/7788-24

VO(DC)

= VSE(-)

+ (VIN(DC)- VBE(+)) Rf

Rs

p ....

' _ + __R_f__
V(Ae) -,
Fls + r.(+)

A

• Eliminates the need for art'lnpUt coupling eapacitqr
• Input DC level must be stable and can exceed the supply voltage 01 the LM359 provided that maximum input
currents are not exceeded.
\"
';', .,> \ . ' •• ' \,': , .''-.. ",
, ' t . :',

r

V294

Application Hints (Continued)
Noise Reduction using nVBE Biasing

nVBE Biasing with a Negative Supply
10k

Uk

r----4""""--+--4""""-o12V
C

' IN

o-1

-r",::, O.DI~F
..L

RSETUNI

1-'''''".,.....-'''1
CI

>;",,-+-oVo

.INo1l-¥"iY-4~-~

RSETIoun

>~""'OVOUT

TLlHI77B8-25

-15V
TLlH/77B8-26

• RI and C2 provide additional filtering of the negative biasing supply

Typical Input Referred Noise Performance

Adding a JFET Input Stage

v+

32
nVBE BIASING-

2B

24

~
>

oS

IS:

20 \: ISETUNI" 2 mA
16
ISETUNI" 0.5 mA\
12 ~
ISETUNI = 0.85 mA

(-I

~

(+Io-----ll----+-......

4

o
10

100

lk

10k

lOOk

1M
VOUT

FREQUENCY (Hz)
TL/HI77B8-27

TL/H/7788-28

• FET Input voijage mode op amp

• For Av
• For AV

= +1; BW = 40 MHz. Sr = 60 VI,..; Cc = 51 pF
= +11; BW = 24 MHz. Sr = 130 V/,.s; Cc = 5 pF
= + 100; BW = 4.5 MHz. Sr = 150 VI,..; Cc = 2 pF

• For Av
• Vos is typically <25 mY; 10011 potentiometer allows a Vos adjust range
of:=: ±200 mV
• Inputs must be DC biased for single supply operation

1-295

Typical Applications

(Continued)

Photo Diode Amplifier

WO-~---------------------------1~-t--~--,
ZpF

11k

Ilk

Uk

01

10

Uk

..------~

6NOo-----~~------~----------------------------

TLlH17788-29

01 - RCA N·Type Silicon P·I·N Photodiode
o

F~uency

response of greeter than 10 MHz

0" slow rise and fall times can be tolerated the gate on the output can be removed. In
this case the rise and the fall time of the LM359 Is 40 ns.
45 ns, T PDH - 50 ns - T2L output

o T POL -

Balanced Line Driver

vo

v·

R5

RL

BOD

R4

RZ

CI

.......-.I

liN.

RI

I-"VI.,.,.. .-----....

TLlHI7788-30
V+
R3
V+-2';
~_V+-2';where"'::::06V
ForVol-V02-T' Fi2-2(V+-';)' R 5 ' ;
....

Av-~(~+
1)
RI R4
o I MHz-3 dB bandwidth with gain of 10 and 0 dbm Into 600n

00.3% distortion at full bandwidth; reduced to 0.05% with bandwidth of 10 kHz
o Will drive CL - 1500 pF wHh no additional compensation, ± 0.01 p.F with Coomp - 180 pF
o 70 dB signal to noise ratio at 0 dbm into 600n, 10kHz bandwidth

1·296

Typical Applications (Continued)
Difference Amplifier

Voltage Controlled Oscillator

...

.,

.,

C
..,F

••
Vo

Vo{DC)
Av

R4

= R3 (V+

- cf» where cf>

= 0.6V

10

TL/H/7788-31

= ~forRI = R2
Rl

R6 :::

=

I

o

'CMRR is adjusted lor max at expected CM input signal

V'N-cf>
4CAVRI

= 2Rl
= amplifier input voltage = 0.6V

where: R2

R5

5' lorR5 = 100 kfl

cf>

=

DM7414 hysteresis, typ IV

• Wide bandwidth

AV

• 70 dB CMRR typ

• 5 MHz operation

• Wide CM input vo~age range

• T2L output

Phase Locked Loop
5vO-------.-____________--,

r l.....------.---~.....""""D"V

Vcc
1/2 DM1414

....~P-I

aH~

Cl.

• Up to 5 MHz oparation

ps

eLR

PS

eLA

101pF

• T2L compatible input

CLK
All diodes

=

2hF
'OY

lN914

"I,

ADJUST

25kHz
LOW PASS
FILTER

....

Ia.
GAIN
ADJUST

...
TL/H/7788-33

1-297

Typical Applications (Continued)
Squarewave Generator
AI
Zk

&V

.....ovo

>~

1401c
TL/H/7788-34

' - I MHz
Output is TTL compatible
Frequency Is adjusted by R1 & C (RI

< R2)

Pulse Generator
AI

zze
OUtput Is TTL compatible

5V

Duty cycle is adjusted by RI
Frequency is adjusted by C

lek

>z;"'+-oVo3,ZV

JUL'

OV

11k

'-IMHz

7.5.

5Vo--'IIV'Y...--..J\j'VW--....

Duty cycle - 20%

TUH/7788-36

Crystal Controlled Sinewave Oscillator
5pF

11k

Vo - 500 mVPll
, - 9.1 MHz
THO

<

2.5%

L...--tDt---......
9.1 MHz
(FUNDAMENTAl)
TUH/7788-37

1·298

Typical Applications (Continued)
High Performance 2 Amplifier Biquad Fllter(s)

lei

.....---t"I---....,
RQ

v+

L.
TL/H/nOO-35

• The high speed of the LM359 allows the center frequency 0 0 product of the filter to be:
foX 0 0 ,; 5 MHz
• The above filter(s) maintains performance over wide temperature renge
• One haW of LM359 acts as a true non-inverting integrator so only 2 amplifiers (instead
of 3 or 4) are needed for the biquad filler structure

DC Biasing Equations for Y01(DC) "" Y02(DC) "" y+ 12

Type I
Type II

1

1

R

Ra

- + -., =

2

- ; R1 = 2R

Rb

Type III

Analysis and Design Equations
Type

Qo

fz(notch)

Y01

Y02

Ci

RI2

RI1

fo

I

BP

LP

0

Ri2

00

'/:z'lTRC

Ra/R

II

HP

BP

C.

00

00

'/:z'lTRC

Ra/R

-

III

Notchl

-

Ci

00

Ri1

'/:z'lTRC

Ra/R

'/:z'lT4RRiC

BR

c.

Ho(LP)

Ho(BP)

Ho(HP)

Ho(BR)

R/Ri2

Ra /R i2

-

-

RaCi/RC

Ci/C

-

-

-

-

Hal = CjlC
1_00

.-

II
!
I

Hal

= C/Ri

1-0

1-299

Typical Applications

(Continued)

Triangle Waveform Generator
,

'

C
Z50pF

Uk

RI
8.8k

~~----------~VI
~
vcc' 5V

>1~4"~V23.ZV-...,
OV"" U

HZ
Uk

r-

V2 output Is TIL compatible

R3
'Uk

R2 adjusts for symmeby of the triangle waveform
Frequency Is adjusted with R5 and C

TL/HI7788-38

1-300

ttlNational Semiconductor

LM392/LM2924
Low Power Operational Amplifier/Voltage Comparator
General Description

Features

The LM392 series consists of 2 independent building block
circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage
comparator. Both the operational amplifier and the voltage
comparator have been specifically designed to operate from
a single power supply over a wide range of voltages. Both
circuits have input stages which will common-mode input
down to ground when operating from a single power supply.
Operation from split power supplies is also possible and the
low power supply current is independent of the magnitude
of the supply voltage.

• Wide power supply voltage range
Single supply
3Vt032V
±1.5Vto ±16V
Dual supply
• Low supply current drain-essentially independent of
.
600,..A
supply voltage
50 nA
• Low input biasing current
2mV
• Low input offset voltage
5 nA
• Low input offset current
• Input common-mode voltage range includes ground
• Differential input voltage range equal to the power supply voltage

Application areas include transducer amplifier with pulse
shaper, DC gain block with level detector, VCO, as well as
all conventional operational amplifier or voltage comparator
circuits. Both circuits can be operated directly from the standard 5 Voe power supply voltage used in digital systems,
and the output of the comparator will interface directly with
either TTL or CMOS logic. In addition, the low power drain
makes the LM392 extremely useful in the design of portable
equipment.

Advantages
• Eliminates need for dual power supplies
• An internally compensated op amp and a precision
comparator in the same package
• Allows sensing at or near ground
• Power drain suitable for battery operation
• Pin-out is the same as both the LM358 dual op amp
and the LM393 dual comparator

ADDITIONAL OP AMP FEATURES
• Internally frequency compensated for unity gain
100 dB
• Large DC voltage gain
1 MHz
• Wide bandwidth (unity gain)
OV to V+ - 1.5V
• Large output voltage SWing
ADDITIONAL COMPARATOR FEATURES
• Low output saturation voltage
250 mV at 4 mA
• Output voltage compatible with all types of logic systems

Connection Diagram (Top View)
(Amp"fler A = Comparator)
(AmplifIer B = OperatIonal AmplIfIer)
Dual·ln·Llne Package
OIJ1l'lJTA
ICOMPARATOR)

1

INVERTING INPUT A

INVERTING INPUT B
GilD __4+-_ _..
TL/HI7793-1

Order Number LM392M or LM2924M
See NS Package Number MOSA
Order Number LM392N or LM2924N
See NS Package Number NOSE

1-301

Absolute Maximum Ratings
If MllitarylAerospace specified devices are required, please contact the National Semiconductor Sales 'Offlcel
Distributors for availability and specifications.'
"
,
LM392
32Vor ±16V

LM2924
26Vor ±13V

32V
-0.3Vto +32V

26V
-0.3Vto +26V

820mW
530mW

820mW
'530mW

Output Short-Circuit to Ground (Note 2)

Continuous

Continuous

Input Current (VIN < -0.3 Voc) (Note 3)
Operating Temperature Range

50mA
O°Cto +700C

50mA
-400Cto +85°C

- 65°C to + 1500C
2600C

-65°C to + 1500C

2600C

2600C

Supply Voltage, V+
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP (LM392N, LM2924N)
Small Outline Package (LM392M, LM2924M)

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
ESD rating to be determined.
Soldering Information
Dual-in-Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

2600C

215"C
215°C
2200C,
2200C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering
surface mount devices.

Electrical Characteristics (V +

= 5 Voc; specifications apply to both amplifi,ers unless otherwise stated)

(Note 4)
'Parameter

LM392

Conditions
Min

LM2924

Typ

Max

.. Min

Units

Typ

Max

Input Offset Voltage

TA = 25°C, (Note 5)

±2

±5

±2

±o7

mV

Input Bias Current

IN(+) or IN(-), TA =25°C,
(Note 6), VCM = OV

50

250

50

250

nA

Input Offset Current

IN(+) - IN(-), TA = 25°C

±S

±SO

±S

±SO

nA

Input Common-Mode Voltage
Range

V+ = 30Voc, TA = 2SoC,
(Note 7) (LM2924,
V+ = 26Voc)

V+-1.S

V

Supply Current

RL = 00, V+ = 30V,
(LM2924, V + = 26V)

Supply Current

RL =

Amplifier-to-Amplifier Coupling

f = 1 kHz to 20 kHz,
TA = 2SoC, Input Referred,
(Note 8)

00,

V+-1.S

0

V+ = SV

,0

1

2

1

2

mA

O.S

1

O.S

1

mA

-100

-100

dB

Input Offset Voltage

(NoteS)

±7

±10

mV

Input Bias Current

IN(+) or IN(-)

400

SOO

nA

Input Offset Current

IN(+) - IN(-)

1S0

200

nA

Input Common-Mode Voltage
Range

V+ = 30Voc,(Note7)
(LM2924, V+ = 26 vo6f

V+-2

V

Differential Input Voltage

Keep All VIN'S ~ 0 Voc
(or V-, if Used), (Note 9)

26

V

V+-2

0

0

32

OPAMPONLY
Large Signal Voltage Gain

V+ = 1S VOC, Va swing =
1 Vocto 11 VOC,
RL = 2 kn, TA = 2SoC

25

1-302

100

25

100

VlmV

Electrical Characteristics (V+

= 5 Voc; specifications apply to both amplifiersur:lless otherwise stated)

(Note 4) (Continued)

Parameter

LM2924

LM392

Conditions
Min

Typ

Max

Min

V+ -1.5

0

Typ

Units
Max

OPAMPONLY
Output Voltage Swing

RL = 2 kO, T A 'k: 25'C,
(LM2924, RL;;" 10 kO)

0

Common-Mode Rejection
Ratio

DC, TA = 25'C, VCM =
OVoctoV+-1.5Vec

65

70

5'0

70

dB

65

100

50

100

dB

20

40

20

40

mA

10

20

10

20

mA

12

50

12

50

p.A

TA =

~5'C

Power Supply Rejection Ratio

DC,

Output Current Source

VIN(+) = 1 Vec,
VIN(-) = OVoc,
V+ = 15Vec, Vo =
2 Voc, TA = 25'C

Output Current Sink

"

VIN(-) = 1 Voc,..
"VIN(+) = aVec,
V+ = 15 Vec, Vo =;
. 2 VOC, T A = 25'C

:

VIN(-) = 1 Vec,
VIN(+) = aVec,
V+ =,15 Voc, Vo =
200 mV, T A = 25'C

V+-1.5

V

Input Offset Voltage Drift

Rs= 00 '

7

7

p.V/'C

Input Offset Current Drift

Rs = 00

10

10

pAec/'C

100

V/mV

COMPARATOR QNLY
Voltage Gain
Large Signal Response Time

RL;;" 15 kO, V+ = 15'Voc,
,TA=25'C

50

200

25

VIN = TIL Logic Swing;' ,
VREF = 1.4 Vee
VRL = 5 Yec, RL = 5.1 kO,
TA = 25'C

300

300

ns

Response Time

VRL = 5 Voc, RL = 5.1 kO,
T A = 25'C, (Note 10)

1.3

1.5

/':S

Output Sink Current

VIN(-) = 1"voc, , "
VIN(+) = aVec,
Vo;;" 1.5 Vec, TA = 25'C

16

mA

Saturation Voltage

6

VIN(-) ;;" 1 Voc,
VIN(+) = 0,
ISINK oS: 4 mA, T A = 25'C

250

VIN(-);;" 1 Vec,
VIN(+) = 0,
ISINK oS: 4mA
Output Leakage Current

VIN(-) = 0,
VIN(+);;" 1 VOC,
Vo = 5Vec, TA = 25'C

6

16

400

400

mV

700

700

mV

0.1

VIN(-) = 0,
VIN(+);;" 1 Voc,
Vo = 30VOC

nA

0.1

1.0

1.0

p.A

Note 1: For operating at temperatures above 25'C, the LM392 and the LM2924 must be derated based on a 125'C maximum iunction temperature and a thermal
resistance 01 12'Z'CIW which applies lor the device soldered in a printed circuit board, operating in still air ambient The dissipation is the Iotal of both amplifiersuse external resistors, where poSSible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits Irom the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output
current is approximately 40 rnA lor the op amp and 30 rnA lor the comperator independent 01 the magnitude of V+. At values 01 supply voltage in excess of 15V,
continuous short circuits can exceed the power dissipation retings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the inpulleads is driven negalive. II is due 10 the collector-base Junction 01 the Input PNP
transistors becoming forward biased and thereby acting as input diode clamps. In addHlon 10 Ihls diode action, Ihere Is also lateral NPN paresitic transistor action
on the IC Chip. This transistor action can cause the output voIteges of the amplifiers to go to the V+ voltage level (or to ground lor a large overdrive) for the time
duration thai an input is driven negative. This is not destructive and normal output states will re-eslablish when the input voltage. which was negative, again returns
to a value greater than -0.3V (aI25"C).

1-303

Note 4: These apecHicatIons apply far V+ = 5V, unless otharwIse stated. For the 1.M392, temparslU'e apeoifIcatIona are limited \0 O'C " TA " -t 7O'C and th8
LM2924 temperature specifications are limited \0 -4O'C " TA'" + 85'C.
.
Note 5: At output switch point, Vo .. UV, As = on with V+ from 5V \0 3OV; and over ths lull Input common-mode range (OV \0 V+ - 1.svi.
Note 8: The direction of th8 input current Is out of th8 IC duB \0 \he PNP Input stage. ThIs current Is esse~1y constant, Independent of th8 state of ths output 80
no losdIng change exists on ths Input lines.
. '

Note 7: The Input Comrnon-mode voltage or either Input signal voltage should not be allowed \0 go nag_ by more than 0.3V. The upper and of th8 commonmode voltage range Is V+ - 1.5V, but eIIher or both Inputs can go \0 32V without damage (28V far LM2924).
Note 8: Due \0 proximity of external componants, Insure that coupUng Is not originating via ths stray capecItanoa between theae external parts. ThIs typiCally can be
dstactad as. this type of capacitive Increasas at higher frequencies.
.
Note I: PosItIve excursions of input voltage may axcaed th8 power supply level. As long as the other Input voltage remains within ths common-mods range, ths
comparator will provide a proper output state. The Input voltage \0 \he op amp should not axcaed ths power supply level. The Input voltage state muat not be 1888
than -0.3V (or 0.3V below ths magnltuds of the naga1IYe power supply, H used) on eIIher amplifier.

Note 10: The responss time specified Is far a 100 mV inpUt step with 5 mVoverdrIve. For larger overdrive signals 300 ns can be obtained.

Schematic Diagram

Comparator A

Amplifier B
TLlHI7783-2

Application Hints
Please refer to the application hints section of the LM193 and the LM158 datasheets.

1-304

tfI

National Semiconductor

LM611
Operational Amplifier and Adjustable Reference
General Description

Features

The LM611 consists of a single-supply op-amp and a programmable voltage reference in one space saving 8-pin
package. The op-amp out-performs most single-supply opamps by providing higher speed and bandwidth along with
low supply current. This device was specifically deSigned to
lower cost and board space requirements in transducer,
test, measurement and data acquisition systems.
Combining a stable voltage reference with a wide output
swing op-amp makes the LM611 ideal for single supply
transducers, signal conditioning and bridge driving where
large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains
low dynamic output impedance (10 typical), excellent initial
tolerance (0.6%), and the ability to be programmed from
1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large caPacitive
loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-Block™ family, the
LM611 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

OPAMP
300 IJA (op amp)
• Low operating current
4V to 36V
• Wide supply voltage range
V- to (V+ -1.8V)
• Wide common-mode range
±36V
• Wide differential input voltage
• Available in low cost 8-pin DIP
• Available in plastic package rated for MilitaJy Temperature Range Operation
REFERENCE
1.2V to 6.3V
• Adjustable output voltage
±0.6%
• Tight initial tolerance available
17 /LA to 20 rnA
• Wide operating current range
• Reference floats above ground
• Tolerant of load capacitance

Applications
•
•
•
•

Transducer bridge driver
Process and Mass Flow Control systems
Power supply voltage monitor
Buffered voltage references for AID's

i1

Connection Diagrams

I'

N/c...l •

_J~'-'t-~'

-'

ful--

CAlIIODE.!

_

V-..!~1E

\..J"'t- tl!v+

N/c..!

~N/c

ANODE.!

~N/c

f'EEDIIACK ..!

,!.-IN

CATHODEl

5+1N

N/C.!

Tl/H/9221-1

BZ.¢u-

V-!. ~1E

I:

'j

!l

il-I

11 OUT

I'

~-IN

Ii

9 +IN

~N/C
Tl/H/9221-2

Ordering Information
Reference
Tolerance & Vos
±0.6%@
80 ppm/DC max
Vos = 3.5 mV max

±2.0%@
150 ppm/DC max
Vos = 5mVmax

Temperature Range

NSC
Drawing

Military
-SsoCS;TAS; + 125"C

Industrial
-40"CS;TAs; +8SoC

Commercial
O"CS;TAS; +70"C

Package

LM611AMN

LM611AIN

-

8-pin
molded DIP

N08E

LM611 AMJ/883 (Note 12)

-

-

8-pin
ceramic DIP

J08A

LM611MN

LM611 BIN

LM611CN

8-pin
molded DIP

N08E

-

LM6111M

LM611CM

14-pin Narrow
Surface Mount

M14A

1-305

Absolute Maximum Ratings (Note 1)

,

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Voltage on Any Pins Except VR
36V(Max)
(referred to V- pin)
(Note 2)
-0.3V(Min) .
,I.;:

Current through Any Input PIn and VR Pin
Differential Input Voltage
Military and Industrial
Commercial
Storage Temperature Range
Maximum Junction Temperature

±2omA"

. Thermal Resistance, Junction-to-Ambierit (Not6;~V'\tl
N Package
,~ '1 fjtrC/W
150"C/W
M Package
Soldering Information Soldering (10 seconds)
, ',260"C
N Package
,"
220"C
.... "
. M Package.
. ",
ESO Tolerance (Note'4)"
±1 kV

.:±36V

Operating Temperature Range.:

±~2V

-65°C:s;:TJ'" + 150:'C
150"C

I.M611AI.I.M6111,I.M6111;l1
I.M611AM.. LM611M . ,
LM611C

.. ,"

",

-40"C':stTJ:S:: +S5°C
-55°C:S::TJ:S:: -+;125°C
O°C '" Tj:S:: 70"C

"

Electrical Characteristics
.=

These specifications apply for V,GND= OV. V+ = 5V, VcNi= Your = 2.SV. IR = 100 pA, FEEDBACK pin shorted to
GNp, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the
Operating Temperature Range.

Symbol

Parameter

LM611AM
LM611AI
. Typ!.pal
(Note 5),
.l;Imlts
' . (Note 6)

Conditions

,
.,.,

Total Supply Current

Is

RLOAD = co,
4V:S:: V-t::.:s:: ~6V (32Vfor LM611C)

Supply Voltage Range

Vs

,.
'"

LM611M
LM611BI
LM6111
i.M611C
Limits
(Note6)

210

300

350

2,21

320

370

2.2

2.S

2.9

3

46

43

p.Amax
p.Amax

2.S

Vmin
'V min

'3

36

32

3.

Units

V max
V max

.32

OPERATIONAL AMPLIFIER
Vos Over Supply

VOS1

Vos Over V<;:M

VOS2
VOS3
aT

Average Vos Drift

Ie

Input Bias Current
. "I'
,

4V:s:: V+ :s:: 36V
(4V :s:: V+ :s:: 32V for LM611C)

1.5

3.5

5.0 .

2.0

8.0

7.0

VCM = OV through VCM =
(V+ - 1.SV). V+ = 30V, V- = OV

1.0

3.5

5.0

US

8.0

7.0

(Note 6)

Average Offset Drift
Current

10Sl

n

Input Resistance

RIN
.,.

Input CapaCitance

,CIN

'0.2

4

4

0 ••

5

5

nAmax
nAmax
nAmax
nAmax
pAloC

.. ,.
,

lS00

MO

. Cpmmon-Mode ..

5.7

pF

',-oltage Noise .

f = 100 Hz, Input Referred

CMRR

C.ommbri-Mode
Rejection-Ratio

V+ = 30V,OV:S:: YCM:S:: (V+ -1.SV)
CMRR = 20 log (aVCM/aVOs)

SR

35

40

3S00

Current Noise .

:

25

30

Differential

In

Av

10

: 11

Common-Mode

en

Reje~i~

-3

I,STEPII

-.4

hooPA

1.0

'~

: ~"

Ro=.b.Yro A~=O~A. ',121"1:'

I!,OmA I

"'-.",

t

,II
I
II I
-50 100 200 300 «lO 500 600 700 ,,"

, 1-3C!L

~

l,s 'Y+' iiEP

!

''''

tt:: ~

1

2.0

I'

J
,

,Js.c

o.s

25'C

'-

-55I'C
-0.5

-~O
125"1

-

~1,o

°

TIME (PO)

, ""

6

TlME(ms)

TUH/9221-7

Typical P,rf,9r~an.ce Characteristic~ (Op Amps),

, "

v+:= sv,V-:- = GNb,,~ OV"YpM = V+/2, VOUT = V+/2,TJ = 2SOC, unless otherwise noted,:,
Input Common-Mode Voltage
.,..Ra!\ge ~s Temperature
, ':yt
,
,
OUTP.UT GOES

E;yt-o.s

~

yt- I

~'

!'!yt-I~
:.
,
V"

i

"

,~, '

V"-o.s
V"- I

I

,~~ f:"'i"'"

l.OlY

~

,,;' ~-2O

°

20

"

" .....

r--i'-o

1-0.

-~rj

l~
0UlPIIT 00Es LOW

-I

-2

'"3

i-"

5

-5

iii

..... 1:'"

-20
JUNC;IIOII1EM~1U,RE (e)

I~

~

I
25"1:

~,
,25'C

I

,I LI.l '

1
V+=5V

!1-~5"1: I I I

'"

INPUT '/OWIGE (V)

':,

':, "~rge-Slgna", '
"s.'!'rs"ponee ,
6',

10' -55"1:

-,1,01,2 3 ,,~,~ IP, 20 40 60 60

-10-.40-2119; 20,,40 60 60 100120140

JUIjClIOIj~~w(e)

'~I

"10

-15

-.4
~ ~,~ 60 100120140

~

1O

I6:

fo-""'"' ki:::=

~F~

1

15

11

"

NORMAl. OPERATING,i!ANCE

J

, Input,.!I!as Current vs
Common-Mode
Voltage ,
,

Vas vs JunctIon
Temperature,

ouiput Voltage Swing

vtwaYn."-,~.,andcurrent .

'

.

'

"",

E; vt-I,'

; , ,,'

~ vt-2

"

ii'

o~ LO.\D

I V"~2

"
,

",

.

,

,

".
• ,"

I

5O~ LOAD

"

~ i.OAu
"

V"+I
."

'"
10
REltRENCE ANODE -10- V" VOLTAGE (V)

20

30

TIME (PO)

1-310

40

50

':

V"
-10-40-20

° 2040

~ ~10012014O

JUNCIION lEMPERATURE (e) TLlH/9221-8

.-----------------------------------------------------------------------------.~

i:

Typical Performance Characteristics (Op Amps) (Continued)

CD
-a.
-a.

V+ = 5V, V- = GND = OV, VCM = V+ 12, VOUT = V+ 12, TJ = 25°C, unless otherwise noted

Output Source Current vs
Output Voltage and Temp.

Output Sink Current vs
Output Voltage

2D .--2~.8-:S'r:-!:SI-36V~-r-...,-r-.
10 NEGATIVE INPUT=If"I-+-+--lA
1
]:

0

Y... =If"+IY

Output Swing,
Large Signal

2Dnn_r...,-rllr;-r""
1\
r=3OY
10 I ,

lJ

"

!I -~:t--~-~,1!~·~:~I~~~~
6
30

-h,

Or

102

~

FREQUENCY (Hz)

4r--r--~~-.---r-~

Y+=ISY
Y-=-ISY
~~~OpF.2k41o If"
I"".IOOpl".2k41o y" 180

is:

103

Follower Small-Signal
Frequency Response

r==.....
f--

102

FREQUENCY (Hz)

Smail-Signal Voltage Gain
va Frequency and Load

360 i

·'*'1-1--+-1450

-60H ~~~

FREQUENCY (Hz)

1.tO
12D
100

2OOlI;

i-

~

100~~+-~~~~-+~
80

HH-+-+-+I\~-t--+--l

I :

H'-+\+t--l

!

'lP-

o

10-' 100

102

10'

10&

FREOUENCY (Hz)
TLlH/9221-IO

1-311

99-

~

r------------------------------------------------------------------------------------------,
Typical Performance Characteristics COp Amps) (Continued)
V+

=

=

5V. V- Q GND

OV. VCM

=

V+ /2.

Your = V+ 12. TJ = 25°C. unless otherwise noted

Power Supply Current vs
Power Supply Voltage
1000
1100

I I

aoo

!

.
..~
il

I-'"

iT

soo
4DD
300
200
100

..2'SoC

L
I
o

-55°C

..~

0.7

a 0.5

Riling

I I
I I

~

i

..
~

CIA

D.3

.0.2
0.

1

o

':'"I~g
r-- ..... r--

~-

;;..

Veil! = DV I. wor.t oue.

~'

.:!I

,

BO

iii 40
~

,

40

-80-.40-20 0 20 40

ao

JUNCTION TEMPERATURE (OC)

20
-20
-40

"p
FREQUENCY (Hz)

,

~

t\..

.,~ YO

\

-15

10-2

IfP

102

10'

FREQUENCY (Hz)

Input Offset Current vs
Junction Temperature

Input Bias Current vs
Junction Temperature

1000

8

I'r-.

-

")j~

.....

"<

.5-

§

I~~ ~ ~ ~

I/ V
80 100120140

60

51:

20

-1000

*im~

r-..

BO

BO I-t-t-t-t-J-"ool---t-I

1\ .-

10V

~

!

Slew Rate vs Temperature

0.8

100 10-10-

100~

12°t::tt:ttljjj

1 2 3 4 5 10 20 30 40 SO 60
TOTAL SUPPLY VOLTAGE (v)

D.8

Negative Power Supply
Voltage Rejection Ratio
140
120

i""'I

I-'"

i"'"

+125 OC

~ aoo

iii

II

I I

700

Positive Power Supply
voltage Rejection Ratio

140 .--.,--...,...,--,---r--r.,....,----r--,

-2

II

11 -4
~

Iii
:

6 Rlpr.lntativi Unit.
-2000
-60 -40-20 0 20 40 60 80 100 120140
JUNCTION TEMPERATURE (OC)

-8
-8
-10

j
/

-12
-80 -40-20 0 20 40 80 80100120140
JUNCTION TEMPERATURE (OC)
TL/H/9221-11

Typical Performance Distributions
Average Vos Drift
Military Temperature Range

Average Vos Drift
Industrial Temperature Range

Vos DRIFT (/oIVIC)

Average Vos Drift
Commercial Temperature
Range

Vos DRIFT (/oIVIC)
TL/H/9221-12

r-----------------------------------------------------------------------------~ ~

iii:
G)

....
....

Typical Performance Distributions (Continued)
Average los Drift
Industrial Temperature Range

Average los Drift
Military Temperature Range

Average los Drift
Commercial Temperature Range

20~--------------~

los DRIFT (pA/C)

Voltage Reference Broad-Band
Noise Distribution
30

I.. DRIIT (pA/c)

los DRIFT (pA/C)

Op Amp Voltage
Noise Distribution

Op Amp Current
Noise Distribution

o 100Hz

10:S f::!i10.000 Hz

20

0

10

I

0 0 4 812162024283236-404448

0

o8

VOLTAGE NOISE (pYRIIS)

L

m

162432 -40 48 56 &.4 72 80 88 96
CURRENT NOIS[ (fAmlsf/Ri)

VOLTAGE NOISE (nYRIIS/IIli)

TUH/9221-13

Application Information
VOLTAGE REFERENCE

ence voltage. Varying that voltage, and so varying Ir, has
small effect with the equivalent series resistance of less
than an ohm at the higher currents. Alternatively, an active
current source, such as the LM 134 series, may generate Ir.

Reference Blasing
The voltage reference is of a shunt regulator topology that
models as a simple zener diode. With current Ir flowing in
the 'forward' direction there is the familiar diode transfer
function. Ir flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The
applied voltage to the cathode may range from a diode drop
below V- to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V
reference with V+ = 3V is allowed.

Cathad.

TL/H/9221-15

FIGURE 2. Reference Equivalent Circuit

Anode
TUH/9221-14

FIGURE 1. Voltages Associated with Reference
(Current Source Ir is External)
The reference equivalent circuit reveals how Vr is held at
the constant 1.2V by feedback, and how the FEEDBACK pin
passes little current
To generate the required reverse current, typically a resistor
is connected from a supply voltage higher than the refer-

TLlH/9221-16

FIGURE 3. 1.2V Reference

1-313

~ r---------------~--------------------------------------------------------------------~
~

CD

::I

Application Information

(Continued)
Capacitors in parallel with the reference are allowed. See
the Reference AC Stability Range curve for capacitance values-from 20 p,A t03 mA any capacitor value is stable. With
the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform
noise filtering.

15V

Adjustable Reference
The FEEDBACK pin allows the reference output voltage,
Vro , to vary from 1.24V to 6.3V. The reference attempts to
hold Vr at 1.24V. If Vr is above 1.24V, the reference will
conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then Vro ~ Vr ;" 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode-say
3.76V for Vro = 5V. Connecting a resistor across the constant Vr generates a current 1= R1IVr flowing from Cathode
into FEEDBACK node. A Thevenin equivalent 3.76V is generated from FEEDBACK to Anode with R2=3.76/1. Keep I
greater than one thousand times larger than FEEDBACK
bias current for <0.1 % error-I;;,,32 p,A for the military
grade over the military temperature range (I;;" 5.5 p.A for a
1 % untrimmed error for a commercial part.)

TL/H/9221-19

FIGURE 6. Output Voltage has Negative Temperature
COefficient (TC) If R2 has Negative TC
15V

TUH/9221-20

FIGURE 7. Output Voltage has Positive TC
If R1 has Negative TC
15V
10k

TUH/9221-17

FIGURE 4. Thevenln Equivalent of
Reference with SV Output
15V

Rl

TL/H/9221-21

39k

FIGURE 8. Diode In Series with R1 causes
Voltage Across R1 and R2 to be Proportional
to Absolute.Temperature (PTAn
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be
synthesized.

.~-""~1=32PA
t--.....I

R2
118k

TL/H/9221-1 B

R1 = Vr/l = 1.24/32p. = 39k
R2 = R1 !(VrolVr) -

11

v

= 39k ((5/1.24) - 1)1 = 118k

FIGURE S. Resistors R1 and R2 Program
Reference Output Voltage to be SV '
Understanding that Vr is fixed and that voltage sources, resistors, and capacitors lT1ay be tied to the FEEDBACK pin, a
range of Vr ,temperature coefficients may be synthesized.

TUH/9221-22

1= Vr/R1 = 1.24/R1
FIGURE 9. CUrrent Source Is Programmed by R1

r-

iii:
en

Application Information (Continued)
2) Cross-over Distortion: The LM611 has lower cross-over
distortion (a 1 VeE deadband versus 3 VeE for the
LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force
class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.

Y

3) Capacitive Drive: Limited by the output pole caused by
the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the
current limit 250. 200 pF may then be driven without oscillation.

TL/H/9221-23

FIGURE 10. Proportional-to-AbaoluteTemperature Current Source

Op Amp Input Stage

v

The lateral PNP input transistors, unlike those of most op
amps, have BVEeo equal to the absolute maximum supply
voltage. Also, they have no diode clamps to the positive
supply nor across the inputs. These features make the inputs look like high impedances to input sources producing
large differential and common-mode voltages.

Typical Applications
+V =

10k

12V

11'~

TUH/9221-24

FIGURE 11. Negative - TC Current Source

10k
7.Sk
10.000Y

Hysteresis
The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not
assume that no specification means no hysteresis.

332Jl
15k

+
51'F

10k·

LY811

REF

OPERATIONAL AMPLIFIER
The amp or the reference may be biased in any way with no
effect on the other, except when a substrate diode conducts
(see Guaranteed Electrical Characteristics Note 1). The
amp may have inputs outside the common-mode range,
may be operated as a comparator, or have all terminals
floating with no effect on the reference (tying inverting input
to output and non-inverting input to V- on unused amp is
preferred). Choosing operating points that cause oscillation,
such as driving too large a capacitive load, is best avoided.

'10k must be low
le. trim pol

TUH/9221-28

FIGURE 12. Ultra Low Noise 10.DOV Reference.
Total Output Noise is Typically 14 /L VRM&
Adjust the 10k pot for 10.000V.

5-3:1:- - -.......--------;:.

VOOT

+sv

:$50mA

lOOk

Op Amp Output Stage
The op amp, like the LM124 series, has a flexible and relatively wide-swing output stage. There are simple rules to
optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

SOOk
1.2Y .....JWIr-_--I
O.OOlI'F
LM811

REF
317k

1) Output Swing: Unloaded, the 42 /LA pull-down will bring
the output within 300 mV of V- over the military temperature range. If more than 42 /LA is required, a resistor from
output to V- will help. Swing across any load may be
improved slightly if the load can be tied to V + , at the cost
of poorer sinking open-loop voltage gain.

TL/H/9221-30

FIGURE 13. Simple Low Quiescent Drain Voltage
Regulator. Total Supply Current is approximately
320 /LA when VIN = 5V, and output has no load.

1-315

....
....

..
....
CD
~
...I

r-------------------------------------------------------------------------------------~

Typical Applications (Continued)

;.'

+V = 15V

~I~ 0--1.......,..---..,..-----,

-i .0.

O. IP

O"I'-i

'D.

VREF

1.2.4Y

U18t1
REF

0.01 HF

.1.111611
REF

YOuT

R1

t------"IIf¥1~-O VOUT

'V
SOmA

S.OY for 3500.

17k

T~.n~uctr B~ldlI •

. TL/H/9221-29

VOUT ~ (RI/R2 + I) VREF.
RI, R2 should be 1% metal film.
R3 should be low I.e. trim pot .

TUH/9221-31

FIGURE 15. Low Drop-Out Voltage Regulator Circuit.
Drop out voltage Is typically 0.2V.

FIGURE 14. Slow Rise-Time Upon Power-Up,
Adjustable Transducer Bridge Driver.
Rise-time Is approximately 0.5 ms•

.

VO-~---------------------_.--~--_,

.r

4700
0 1PF
•

LIII811
REF

'0.

,L/H/9221-32

FIGURE 16. Nulling Bridge Detection System. Adjust sensitivity via 400 kfi pot.
Null offset with R1, and bridge drive with the 10k pot.

1-316

t!lNational Semiconductor

LM613 Dual Operational Amplifiers,
Dual Comparators, and Adjustable Reference
General Description

Features

The LM613 consists of dual op-amps, dual comparators,
and a programmable voltage reference in a 16-pin package.
The op-amps out-performs most single-supply op-amps by
providing higher speed and bandwidth along with low supply
current. This device was specifically designed to lower cost
and board space requirements in transducer, test, measurement, and data acquisition systems.

OPAMP
300 ,..A
• Low operating current (Op Amp)
4V to 36V
• Wide supply voltage range
V- to (V+ - 1.8V)
• Wide common-mode range
±36V
• Wide differential input voltage
• Available in plastic package rated for Military Temp.
Range Operation

Combining a stable voltage reference with wide output
swing op-amps makes the LM613 ideal for single supply
transducers, signal conditioning and bridge driving where
large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains
low dynamic output impedance (1 n typical), excellent initial
tolerance (0.6%), and the ability to be programmed from
1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive
loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-BlockTM family, the
LM613 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

REFERENCE
• Adjustable output voltage
• Tight initial tolerance available
• Wide operating current range
• Tolerant of load capaCitance

1.2V to 6.3V
±0.6%
17 ,..A to 20 mA

Applications
•
•
•
•

Transducer bridge driver
Process and mass flow control systems
Power supply voltage monitor
Buffered voltage references for AID's

Connection Diagrams

......
E Package Pinout
-IN Comp

1

COMPARATOR 2
3
V+ •

s

OP AMP 6

1
fEEDBACK 8

~~~

i~

!!
!! COMPARATOR
!i

3

+,N

+IN

t!.!!.
~ CAT1iODE

Amp (2)

-IN

Amp (2)

(4)

(4)

20

18

'

• a
_a

'51
,. I

Comp (1) •
V+

2

,

,a_
171
,al

.4

13 V-

!!
.!! OP AMP

Top View

Camp -IN
Out Comp

CompOul
(,) (,)

S

.7

•

'0

"

'3

'2

+'N

Comp (4)

v+IN

Amp (3)

-IN

Amp (3)

•••••••

TL/H/9226-1

Out

FHd

~~f

Sock

calh- Qui
ode

~;f

Ordering Information
Reference
Tolerance" Vos
±0.6%
80 ppml"C Max.
Vos S; 3.5mV

±2.0%
150 ppml"C Max.
Vos :s;: 5.0 mV Max.

TLiH/9226-48

Temperature Range

NSC
Drawing

Military
-SSDC S; TA S; + 125"C

Induatrlal
-40"C S; TA :s;: +85"C

Commercial
O"C S; TA S; +70"C

Package

LM613AMN

LM613AIN

-

16-Pin
Molded DIP

N16E

LM613AMJ/883
(Note 14)

-

-

16-Pin
Ceramic DIP

J16A

LM613AME/883
(Note 14)

-

-

20-Pin
LCC

E20A

LM613MN

LM6131N

LM613CN

16-Pin
Molded DIP

N16E

-

LM6131WM

16-PinWide
Surface Mount

M16B

1-317

Absolute Maximum Ratings (Note 1)
Thermal Resistance, Junction-to-Ambient (Note 5)
N Package
l00"C/W
WMPackage
150"C/W
Soldering Information (10 Seconds)
N Package
26O"C
WMPackage
220"C
ESD Tolerance (Note 6)
±1 kV

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Voltage on Any Pin Except VR (referred to V- pin)
(Note 2)
36V(Max)
-0.3V(Min)
(Note 3)
±20mA
Current through Any Input Pin & VR Pin
Differential Input Voltage
±36V
Military and Industrial
±32V
Commercial
storage Temperature Range
-65'C,;; TJ';; +150"C
Maximum Junction Temperature (Note 4)
150"C

Ope.rating Temperature Range
LM613AI, lM613BI
LM613AM, LM613M
LM613C

-40'Cto +85'C
- 55'C to + 125'C
O"C';; TJ';; +70'C

Electrical Characteristics These specifications apply for V- = GND = OV. V+ = 5V, VCM =. VOUT = 2.5V,
IR = 100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25'C; limits
in boldface type apply over the Operating Temperature Range.
Symbol

Is
Vs

Parameter

Total Supply Current

Conditions

RLOAD = 00,
4V ,;;V+ ,;; 36V (32Vfor LM613C)

Supply Voltage Range

Typical
(Note 7)

LM613AM
LM613AI
Limits
{Note 8)

LM613M
LM6131
LM613C
Limits
(Note 8)

450

940

1000

S50

1000

1070

2.2

2.8

2.8

2.9

3

3

46

36

32

43

36

32

Units

p.A (Max)
jJA(Max)
V (Min)
V (Min)
V (Max)
V (Max)

OPERATIONAL AMPLIFIERS
VOS1
VOS2

Vos Over Supply
VosOverVCM

Vas3
aT

Average Vas Drift

18

Input Bias Current

los

4V,;; V+ ,;; 36V
(4V,;; V+ ,;; 32VforLM613C)
. VCM = OV through VCM =
. (V+ - 1.8V), V+ = 30V, V- = OV
(Note 8)

Average Offset Current

RIN

Input Resistance

3.5

5.0

6.0

7.0

1.0

3.5

5.0

1.5

6.0

7.0

Differential

mV(Max)
mV(Max)
mV(Max)
mV(Max)
p.V/'C
(Max)

15

Input Offset Current

10Sl
aT

1.5

2.0

10

25

35

11

30

40

0.2

4

4

0.3

5

5

nA(Max)
nA(Max)
nA(Max)
nA(Max)

4

pAI'C

1000

MO

CIN

Input Capacitance

Common-Mode

6

pF

en

Voltage Noise

f = 100 Hz, Input Referred

74

nV/,[Hz

In

Current Noise

f = 100 Hz, Input Referred

58

fAl.}Hz

CMRR

Common-Mode
Rejection Ratio

V+ = 30V,OV ,;; VCM ,;; (V+ - 1.8V)
CMRR =,20 log (aVCM/aVOS)

95

80

75

90

75

70

Power Supply
Rejection Ratio

4V ,;; V+ ,;; 30V, VCM = V+ 12,
PSRR = 20 log (aV+ !Vos)

110

80

75

100

75

70

Open Loop
Voltage Gain

RL = 10 kO to GND. V+ = 30V,
5V ,;; VOUT ,;; 25V

500

100

94

50

40

40

PSRR
Av

1-318

dB (Min)
dB (Min)
dB (Min)
dB (Min)
V/mV
(Min)

Electrical Characteristics These specifications apply for V- = GNO '= OV, V+' = 5V, VCM "" ,VOUT '= 2.5V,

IR = 100 ,.,.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are 'for TJ
in boldface type apply over Operating Temperature Range. (Continued)
"

Symbol

Parameter

' Conditions

SR
GBW

Slew Rate
Gain Bandwidth

LM613AM
LM613AI
Limits
(Note 8)

0.70

0.55

0.50

0.85

0.45

0.45

= 50pF

VOl

Output Voltage
Swing High

RL = 10 kO to GND,
V+ = 36V (32V for LM613C)

V+ - 1:4
y+ - 1.8

V02

Output Voltage
Swing Low

RL = 10kOtoV+,
V + = 36V (32V for Lt.1613C)

VY-

lOUT

Output Source Current

= 2.5V, V+,N = OV,
= -0.3V
VOUT = 1.6V, V+,N = OV,
V-'N = 0.3V
VOUT = OV,V+ IN = 3V,
V-'N = 2V
VOUT = 5V, V+,N =:' 2V,
V-'N = 3V

ISHORT

Output Sink Current
Short Circuit Current

V/,.,.s

O.B

0.5

ISINK

Units'

,,'

V+ = 30V (Note 9)
CL

LM613M
LM6131
LM613C
Limits
(Note 8)

Typical
(Note 7)

OPERATIONAL AMPLIFIERS (Continued)

= 25°C; limits

VOUT
V-'N

+ O.B
+ 0.9

MHz
MHZ

..
V+ - 1.7
Y+ - 1.9
VY-

+ 0.9
+ 1.0

V+ - 1.B
Y+ - 1.9

V (Min)
V (Min)

+ 0.95
+ 1.0

V (Max)
V (Max)

VY-

25 '

20

16

US

13

13

17

14

13

9

8

8

30

50

50

40

80

eo

30

60

70

32

80

90

mA(Min)
mA(Min)
mA(Min)
mA(Min)
mA(Max)
mA(Max)
mA(Max)
mA(Max)

COMPARATORS
VOS
Vos
VCM

Offset Vqltage
Offset Voltage
overVCM

AT

Average Offset
Voltage Drift

18 '

Input Bias Current

Vos

los
Av
t,
ISINK

ILEAK

4V ,;; V+ ,;; 36V (32V for LM613C),
RL = 15kO

1.0

3.0

5.0

2~0

8.0

7.0

OV,;; 'itCM ';; 36V
V+ = 3i3V, (32V for (M613C)

1.0

3.0

5.0

1,,5

8.0

7.0

mV(Max)
mV(Max)
mV(Max)
mV(Max)

p'vrc

15

(Max)

Input Offset Current

5

25

35

8

30

40

0.2

4

4

0.3

5

I

IIA (Max)
nA(Max)
nA(Max)
nA(Max)

"

RL = 10 kOto36V(32VforLM613C)
2V';; VOUT';; 27V

100

Large Signal
Response Time

V+,N = 1.4V, V~'N
RL = 5.1 kO

1.5

jiS

2.0

p.s

Output Sink Current

,V+ IN
VOUT

Voltage Gain

Output Leakage
Current

= OV, V-'N""
= 1.5V
VOUT = 0.4V

V+,N
VOUT

=
=

=

TTL Swing,

1V,

500

20

10

13

8

' 10
8

' mA(Min)
mA(Min)
mA(Min)
' mA(Min)

' 1.0

O.B

2.4

0.5

'0.5

0.1

10

2.8'

1V, V-'N = OV,
36V (32V for LM613C)

VlmV
V/mV

0.2

"

10

,.,.A (Max)
. ,.,.A(Max)
,

'

..

1-319

Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = 2.5V,
IR == 100 pA, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25"C; limits
in boldface type apply over Operating Temperature Range. (Continued)
LM613AM
LM613A1
Umlta
(Nole8)

LM613M
LM6131
LM613C
Umlta
(Nole8)

1.244

1.2365
1.2515
(±0.6%)

1.2191
1.2689
(±2%)

10

80

1.0

"

Symbol

Typical
(Nole7)

Conditions

Parameter

Units

VOLTAGE REFERENCE
VR

Voltage Reference

(Note 10)

AVR
AT
AVR
AT
AVR
AIR

Average Temp. Drift

(Note 11)

Hysteresis

(Note 12)

VRChange

VR(l00 pAl - VR(17 pAl

3.2

with Current
VR(10 rnA) - VR(100 pAl
(Note 13)

R

Resistance

AVR(10 -+ 0.1 mAI/9.9 rnA
AVRf100-+17 uAl/83 pA

~
AVRO

VRChange
with High VRO

VR(Vro = vr) - VR(Vro = 6.3V)
(5.06V between Anode and
FEEDBACK)

VR
AV+

VR Change with
VANODE Change

VR.j.V+ - ~ - V~~+ - 36V)
(V = 32 orL 13C)
VR(V+

IFB
en

= 5V) -

VR(V+

= 3V)

:s: VFB :s: 5.06V

FEEDBACK Bias
Current

VANODE

VRNoise

10 Hz to 10kHz,
VRO = VR

1

1

0.1

1.1

1.1

1.5

5

5

2.0
0.2
0 ••

••5
0.5.
13
7
10

••5
0 •••
13
7
10

2.5

0.1

1.2

1.2

0.1

1.3

1.3

0.01

1

1

0.01

1 ••

1 ••

22

35

50

28

40

5S

30

ppmrc
(Max)
p'vrc

0.05

2.8

V (Min)
V (Max)

mV(Max)
mV(Max)
mV(Max)
mV(Max)

o (Max)
o (Max)
mV(Max)
mV(Max)
mV(Max)
mV(Max)
mV(Max)
mV(Max)
nA(Max)
nA(Max)
P.VRMS

Note 1: Absolute maximum ratings Indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the
device beyond its reted operating conditions.
Note 2: Input voltage above V+ is allowed. As long as one Input pin voilsge remains inside Ihe commono/Tlode range. the comparator will deliver the correct output.
Note 3: More accurately, His excessiva etnenI flow, with resulting excass healing, thailimils the voltages on an pins. When any pin is pulled a diode drop below
Y-, a parasitic NPH transistor turns ON. No latch-up will occur as long as the cunant through that pin remains below the Maximum Rating. OparaUon is undefined
and unpredictable when any parasitic diode or transistor Is conducting.

Note 4: Simultaneous short-clrcuH of multiple comparators while using high supply voilsges may force junction tempareture above maximum, and thua should not
be continuous.

Note 10 Junction lempareturs may be calculated using TJ - TA + Po 9JA. The given thermal reaiatance Is worst-caaa for packages In sockets In stili air. For
dissIpatIOn from one comparator or reference output transistor, nominal 9JA is 9f1'C/W for the N package, and

packages soIderad to coppijr-clad board with
lSSOC/W for the WM package.

Note 8: Human body model, 100 pF discharged through a 1.5 kO resistor.
Note 7: Typical valuas in standard typsface are for TJ = 25"C; values in bold face type apply for the fun operating temperature range, Thesa valuas represent the
most Ukaly paramatrIc norm.
Note e: AJllimils are guaranIaad at room temperature (standard type face) or at operating tempareture _ a s (bold type face).
Note 8: Slew rate 18 measured with the op amp In a voltage followw configuration. For rising slew rete, the Input voilsge Is driven from 5V to 25V, and the output
voltage tranl!illon Is sampled at lfN and 0 2OV. For failing slaw rete, the Input voltage is driven from 25V to 5V, and the output voltage transition Is sampled 8I2OV
and lOY.
Note 10: YR Is the Cathode-fo.faadback voltaga, nominally 1.244V.
Note 11: Average raferenca drift is calculated from the measurement of the reference voltage at 25"C and at the temperatura extremas. The drift, in ppmI"C, is
l()8e"'YR/(VRI25"C]·.UJ}, where "'VR is the lowest value subtracted from the highest, YRI25'C] Is the value at 25"C, and "'TJ is the temperatura range. ThIs
~ Is guaraniaad by design and sample testing.
Note 12:Hysterasis Is the chengs in VR caused by a change In TJ, altar the raferance has bean "dahyatarized". To dehystariza the reference; that is minimize the
hysteresis to the typical value. its junction tamparatura should be cycled in the following pattern, spIreIing in toward 25"C: 25"C, 85"C, -4O'C, 7O'C, O'C, 25"C.
Note 13: Low contact rasisIance Is required for accurate measuramant
Note 14: A milltsry RETS 613AMX eIactrIcal _ spacification is available on raquast. The MUItsry scraanad parts can aleo be procured as a Standard MIIiIsry
Drawing.

1-320

Simplified Schematic Diagrams
OpAmp

TlfHf9226-2

Comparator

~------------------~~-----------------t~V+
OUT

TUHf9226-3

Reference

Bias

TLfHf9226-4

1-321

~

.-

CD

~

r---------------------------------------------------------------------------------,

Typical Performance Characteristics (Reference)
TJ = 25°C, FEEDBACK pin shorted to v- = OV, unless otherwise noted
Reference Voltage.vs Temp.

....

VI--' -~

r-- .....

l.,.-

i-":

1.224

i""'o
1- .... .... r-.
r--. .....

a.:
JI-G.04

-o.os
-0.10

1.23
-60-.40-20 0 20 40 60 ,60 100120140

~
~

o

---

.1.220

S

1.218

m1.216

I
I
I

-o.os

1.214

2lIO 500 750 lOOO12l10150017502IIlO

o

TIlE (Houra)

JUNCTION TEMPERATURE (e)

vro=vr

200

300

400

500

Reference Voltage vs
Reference Current

10~0-~-0~~---'---'---'

10r---r-~r-~--~

100

1I11E BIASED AT 15O"C (hll)

Reference Voltage vs
Current and Temperature

Reference Voltage vs '
Current and Temperature

--..

~ 1.222

-

& om

r--. ......

=.woe

. TJ

gOJM

I--'

Accelerated Reference
Voltage Drift vs nme

Refere"ce Voltage Drift
0.10
0.06
0.06

1.26

I
I

Vro=V,

125~

I

- ' - 1--55"C
25"C
l250C
~

-5 .......__'-----J'-----J'-----J
0Jl02
om
0.2
2
20

1
0.02

REFERENCE CURRENT (mA)

100

I
I'
1--

25"C

1--

Ii

I
I

ON1~

E

~~

12r"C

1.211

4.8811

-1

-10

-0.1 :tO.ool

0.1

~
lj

~
l;i

l-'i

ml~

0.001

12~5"C

-r

c

-40

I

~0123456

b

~

W 20 M 40

10

100

10000

~

ANODE - TO - FEEDI!ACK VOlTAGE (V)

1

1!

I

-1'01234561020 M

40

ANOOE-TO-FE£Dl!ACK VOLTAGE (V)

Reference Noise Voltage
vs Frequency

m

1~11

0.1

b

-r

REFERENCE SHUNT CURRENT (mA)

-55"C
25"C

0.01

1~11

125
[j"C

-«l

10

10

-55"C
25"C

I

3-36V

11)"11

f

1"C

I~

111)"10

FEEDBACK Current vs
FEEDBAC~-to·Anode Voltage
1

I

0.1 - 1
=>
0.01

REFERENCE CURRENT (mA)

20

20

1.2:S .. :S 6.3V

~o.oo1

c5

-0.1 :to.ool,' 0.1

FEEDBACK Current vs
FEEDBACK·to·Anode Voltage

1-5S:S~:S125"C

10

-10"

REFEREMCE CURRan (mA)

Reference AC
Stability Range

7

-15"C

20

2

REFERENCE CURRENT (mA)

Reference Voltage vs
Reference Current

1--

0.2

~-

-55"C

Reference Small·Slgnal
Resistance vs Frequency
10000

~ =6.3V ~= 100

t

1M° mA

1000

~

I'I=IWIO

I

"'~lIl

J111111

100
1

10

111111111100

1000

FREQUENCY (Hz)

10000

10

100

1000

FREQUENCY (kHz)
TlIH/9226-5

1-322

Typical Performance Characteristics (Reference) (Continued)
TJ

=

2SoC, FEEDBACK pin shorted to Y- = OY, unless otherwise noted
Reference Voltage with
100 - 12 p.A Current Step

Reference Voltage with
FEEDBACK Voltage Step

Reference Power-Up Time

-ro-_

~

2

VOlTAG£
5.D8V

ov
6i~ 105

,

/
/

2

2110

100

;!OIl

1
0
o

@

2.0

i
liI

-2

>~

-3
-5

o

Reference Change va
Common-Mode Voltage

1l.c

.125"C

?~'"

-55"1:

',STEPII hoo;" 1'llomA
II I
II I

...

I
~

r- f--

~

I

~

25"C.-:/'

-1.0

25"i:'

~=

-5'YOf
1001
125"C

*v._I

-10

I

V"=GND

-15

o

V+

-~

!

. 125"C'
1-

100 200 ;!OIl <100 1500 &00 700

(V"-2) (V"-1)

10

-~

~

ry; imo

It:: ..",
R,,=AV.. A~=O.2S

-.4

100 200 ;!OIl <100 500 &00 700

liME (!
on
on
I

/V
~ ~ I-"
v-

10 20 30 <10 50 60 70

INPUT VOLTAGE REFERRED TO y- (V)

OUTPUT VOlTAGE (V)

TLIH/9226-11

TLIH/9226-10

1-325

--~
~

r-----~------~~----~~--------~~

!:j '.

!i!

~

5

.1
'-0

>

--~~--------------

__

--~~~

__

~--

. fl
"

"

-55OC

2

I

J +25OC

()

.*

'~K-'

+~5OCI

VII

+1~5~

. !

-

Vo

+

2
1

~

. i"""oo

0

.*

~

:.

o o.s

3

I

!VO

+

'r]

1

""
' 0
-5mV

+5mV
~ 0
-5mV

o o.s

1 1.5 2 2.5 3 3.5 "
nme (ps)

~;

"

1 1.5 2 2.5 3 3.5 "

nme (pa)
TL/H/9226-13

TLlH19226-12

Comparator
Response Tlmo-Non-Inv.rtlng
Input, Positive Transition
5

'- 'I

,

II
. -ssocj
f

I}

II I

+125OC

0

/"

V~

I

5V

Comparator
. .
Respon...Tlm....-Non-lnv.rtlng
Input,·Negltlye TransHion '

~

I

Pf
5.IK

+

-

!VO

~

I

I

\ VII~K
-

3

Vo

"

+25"C
-55OC

!

+125"<:

1

......

0

,!>

'.

F~

+5mV
0
-5mV

..
o.s

5V

\

"
2

g

+25OC

F~
·0

5

~.
!:l
!i!

~~

+5mV
~ 0
-5mV

~=

"i"'~

1 1.5 2 2.5 3 3.5 "

o o.s

1 1.5 2 2.5 3 3.5 "

'nme (pa)

nme CPs)·

"

TLlH/9226-14

TLlH/9226-15

Comparator
ResPor1se Tlme&-lnvertlng
Input, Positive TransHion

~

...

~.

;I,!l.

!:l

!i!

S·

§
1

15V

,

,

5
+25OC
0

-10
-15V
5V
~ 0

-5V

-55OC

JI

J. I( , ~15V
') .125oC

..11

Vo

+

1~

~

f1ir l

10

~

Comparator.
,
.
R.sponse Tlm.....-.lnvertlng
Input, N.uatlv. Transition

'+IIJ VI~K

15

-S

~__,

I .

~55Oc" .5'1 I

11

"

I II V~~K
I}
r- -I

+125OC"

3

" " - ' ',', ;'"

f1T !~4

+5mV

~

__

Comparator'
R.sponse Tlm.&-Inv.rtlng
Input, PosHive Transition

£5
.~

__

~

10.

~

5.

:>

1\

\

... '

!_

.

J

~

0

1

-S

,!> -10
-15V
5V
~ 0

'.I)

-5V

o ~~MMlnI21Al£IB

+25OC

,~.
II

-

-15V'

,,~

Vo

!

-55"C

.~ ~+125OC

1 ,\
o ~~MMlnI21Al£IB
nme (ps)

nme (ps)
TLlH/9226-16

TLlH/9226-17

1-326

Typical Performance Characteristics (Comparators) (Continued)
Comparator
Response Tlmes-Non-Invertlng
Input, Positive Transition

~

IS

'"

10

...

;:!

-I

J

I

~

Y~~f~

S _

g

....:::>

I

15Y
-

0

0

+12SOC/J

-S
0

> -10

-15V
SV
0
-SV

V,

;;;--

rr f

~

IS

'"

10

...

h I
'I I

Vo

-15V

I!:
:::>

~

Comparator
Response Times-Non-Invertlng
Input, Negative Transition

;:!
-I

g

....
:::>

I!:
:::>

'I -ssOC

0

+25"C

¥j9K..

S

_I

-15Y

0

0

~

Vo

+12S"C

-s

> -10

-S5"C

)

-15V +2S"C
J
SV
0
>
-SV

z
,;-

I I

15Y

iE

o

o ~ OA M

~MMM1D121Al~lB

TIme (ps)

OB lD 12 U

1~

lB

TIme (ps)
TLlH/9226-19

TL/H/9226-18

Typical Performance Distributions
Average Vos Drift
Industrial Temperature Range

Average Vos Drift
Military Temperature Range

40r-----------------~

30

10

o
Vas ORin (pv/e)

Vas ORin (pV/C)
TLlH/9226-20

TLlH/9226-21

Average Vos Drift
Commercial Temperature Range

Average los Drift
Military Temperature Range

1

Vas ORin (pv/e)

36 42

las ORin (pA/C)
TL/H/9226-22

TL/H/9226-23

1-327

...

~ ~--------------------------------------------------------------------------------,

~

Typical Performance Distributions (Continued)
Op Amp Voltage
Noise Distribution

Average los Drift
Industrial Temperature Range
20~------~---------,

30

100Hz
Amps I, 2, 3, 4

15~----------------~

20

i

::>

10~----------------~
10
5~~~~----------~

o

o
o

~

81624324048566472808896
VOLTAGE NOISE (nVRWS /'1HZ)

los DRIFT (pA/C)
TLlH/9226-24

TL/H/9226-27

Op Amp Current
Noise Distribution

Average los Drift
Commercial Temperature Range

Amps I, 2, 3, "

CURRENT NOISE (fARMS /'1HZ)

los DRIFT (pA/C)
TLlH/9226-25

TLlH/9226-26

Voltage Reference Broad-Band
Noise Distribution

Application Information

30~------------------~

VOLTAGE REFERENCE·

10:S f :S10,DOO Hz

Reference Biasing
The voltage reference is of a shunt regulator topology that
models as a simple zener diode. With current Ir flowing in
the "forward" direction there is the familiar diode transfer
function. Ir flowing in the reverse direction forces the reference voltage to be developed from ·cathode to anode. The
cathode may swing from a diode drop below Y- to the reference voltage or to the avalanche voltage of the parallel
protection diode, nominally 7Y. A 6.3Y reference with Y+ =
3Y is allowed.

20+---------~~----~

10+---------~~----~

0+,...,...,...,..,...,...,..,...,,......,..,..,..

o4

812162024283236404448
VOLTAGE NOISE (PVRwS>
TL/H/9226-26

Anode committed to VTLlH/9226-29

FIGURE 1. Voltage Associated with Reference
(current source Ir is external)
1-328

Application Information (Continued)
The reference equivalent circuit reveals how V, is held at
the constant 1.2V by feedback, and how the FEEDBACK pin
passes little current.
To generate the required reverse current, typically a resistor
is connected from a supply voltage higher than the reference vOltage. Varying that voltage, and so varying I" has
small effect with the equivalent series resistance of less
than an ohm at the higher currents. Alternatively, an active
current source, such as the LM134 series, may generate I,.

15V

100,k

cathode

TL/H/9226-32

FIGURE 4. Thevenln Equivalent of Reference
with SV Output

Rl
39k

.I---...

Anode=VTl/H/9226-30

3.76V

FIGURE 2. Reference Equivalent Circuit

~----'

!

1= 32soA

R2
118k

Tl/H/9226-33

A1

~

V,/I

~

1.24/32"

~

39k

A2 ~ A1 l(VrolVr) - 11 ~ 39k 1(5/1.24) - 1)1 ~ 118k

FIGURE S. Resistors Rl and R2 Program Reference
Output Voltage to be 5V
Understanding that V, is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a
range of V, temperature coefficients may be synthesized.

TUH/9226-31

FIGURE 3. 1.2V Reference
capacitors in parallel with the reference are allowed. See
the Reference AC Stability Range typical 'curve for capacitance values-from 20 ,...A to 3 mA any capacitor value is
stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values
will perform noise filtering.

15V

Adjustable Reference
The FEEDBACK pin allows the reference output voltage,
Vro, to vary from 1.24V to 6.3V. The reference attempts to
hold V, at 1.24V. If V, is above 1.24V, the reference will
conduct current from Cathode to Anode; FEEDBACK cur·
rent always remains low. If FEEDBACK is connected to Anode, then V,o = V, = 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode-say
3.76V for V,o = 5V. Connecting a resistor across the constaint V, generates a current 1= R1IV, flowing from cathode
into FEEDBACK node. A Thevenin equivalent 3.76V is gen·
erated from FEEDBACK to Anode with R2=3.76/1. Keep I
greater than one thousand times larger than FEEDBACK
bias current for <0.1% error-I~32 p.A for the military
grade over the military temperature range (I ~ 5.5 ,...A for a
1% untrimmed error for a commercial part).

TL/H/9226-34

FIGURE 6. Output Voltage has Negative Temperature
Coefficient (TC) If R2 has Negative TC
15V
10k

TUH/9226-35

FIGURE 7. Output Voltage has Positive TC
if Rl has Negative TC

1-329

~
.....
u:I

::s

r--------------------------------------------------------------------------,
Application Information

(Continued)
Referance Hysteresis
The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary,....,
always check the data sheet for any given device. Do not
assume that no specificatiori means no hysteresis.
OPERATIONAL AMPLIFIERS AND COMPARATORS
Any amp, comparator, or the reference may be biased in
any way with no effect on the other sections of the LM613,
except when a substrate diode conducts (see Electrical
Characteristics Note 1). For example, one amp input may be
outside the common-mode range, another amp may be operating as a comparator, and all other sections may have all
terminals floating with no effect on the others. Tying inverting input to output and noncinverting input to Y- on unused
amps is preferred. Unused comparators should have non-inverting input and output tied to Y +, and inverting input tied
to Y-. Choosing operating points that cause oscillation,
such as driving too large a capacitive load, is best avoided.

TL/H/9226-36

FIGURE 8. Diode in Series with R1 Causes Voltage
Across R1 and R2 to be Proportional to Absolute
Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be
synthesized.

Op Amp Output Stage
These op amps, like the LM124 series, have flexible and
relatively wide-swing output stages. There are simple rules
to optimize output swing, reduce cross-over distortion, and
optimize capaCitive drivs capability:
1) Outp~t Swing: Unloaded, the 42 pA pull-down will bring
the output within 300 mY of Y- over the military temperature range. If more than 42 p.A is required, a resistor
from output to Y- will help. Swing across any load may
be improved slightly if the load can be tied to Y + , at the
cost of poorer sinking open-loop voltage gain.
2) Cross-Over Distortion: The LM613 has lower cross-over
distortion (a 1 YBe deadband versus 3 YBe for the
LM124), and Increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force
class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) Capacitive Drive: Limited by the output pole caused by
the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the
current limit 250. 200 pF may then be driven without
oscillation.

v

TL/H/9226-37

I = Vr/R1 = 1.24/R1
FIGURE 9. Current Source Is Programmed by R1

Comparator Output Stage
The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from
each output pin to a positive voltage for the output transistor
to switch properly. When the output transistor is OFF, the
output voltage will be this external'positive voltage.
For the output voltage to be under the TTL-low voltage
threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor.
The offset voltage may Increase when the output voltage Is
low and the output current is less than 30 pA. Thus, for best
accuracy, the pull-up resistor value should be low enough to
allow the output transistor to sink more than 30 pA.

TLlH/9226-3B

FIGURE 10. Proportlonal-to-Absolute-Temperatura
Current Source

Op Amp and Comparator Input Stage
The lateral PNP input transistors, unlike those of most op
amps, have BYeBO equal to the absolute maximum supply
voltage. Also, they have no diode clamps to the positive
supply nor across the inputs. These features make the inputs look like high impedances to input sources producing
large differential and common-mode voltages.

TL/H/9226-39

FIGURE 11. Negative-TC Current Source

1-330

I....

Typical Applications

W

+Vo----------.--~~--------_,

TL/H/9226-40

FIGURE 12. High Current, High Voltage Switch
+VO---t_-------1~t_------._----------------,

50011

0.1 P£:[

50011

'--~_O-Y

TL/H/9226-41

FIGURE 13. High Speed Level Shifter. Response time ia approximately
1.5 p.1, where output la either approximately + V or - V.

YIN
0---t_-1""'""------.....--------......,
BV

....----------WIr-4--o VOUT
10k

5.0V
50mA

4.7 pF

TL/H/9226-42

FIGURE 14. Low Voltage Regulator. Dropout voltage la approximately O.2V.

YIN 0--,t_-1""'""--------------.,

12V

10k

10.000V
33211
LIof613
REF

'10k must be low

TL/H/9226-43

I.e. trimpot

FIGURE 15. Ultra Low Noiae, 10.00V Reference. Total output noise la typically 14 P.VRMS.

1-331

II

~

i.....

,-----------------------------------------------------------------------------,
Typical Applications (Continued)
+vo------,

>+----0 Your
Strobe
: TLlH/9226-44
TLlH/9226-45

FIGURE 17. Basic Comparator with External Strobe

FIGURE 16. Basic Comparator

1 5 V o - - - - -....- - - - - - ,

+V
7.5k

TTL
output

4.7k

lk

TLlH/9226-47
Tl/H/9226-46

FIGURE 18. Wide-Input Range
Comparator with TTL Output,

FIGURE 19. Comparator with
Hysterasls(aYH = +Y(1k/1M»

1·332

tJ1

National Semiconductor

LM614 Quad Operational Amplifier
and Adjustable Reference
General Description

Features

The LM614 consists of four op-amps and a programmable
voltage reference in a 16-pin package. The op-amp out-performs most single-supply op-amps by providing higher
speed and bandwidth along with low supply current. This
device was specifically designed to lower cost and board
space requirements in transducer, test, measurement and
data acquisition systems.

OpAmp
300/LA
• Low operating current
4V to 36V
• Wide supply voltage range
V- to (V+ - 1.8V)
• Wide common-mode range
±36V
• Wide differential input voltage
• Available in plastic package rated for Military Temperature Range Operation

Combining a stable voltage reference with four wide output
swing op-amps makes the LM614 ideal for single supply
transducers, signal conditioning and bridge driving where
large common-mode-signals are common. The voltage reference consists of a reliable band-gap deSign that maintains
low dynamic output impedance (1 n typical), excellent initial
tolerance (0.6%), and the ability to be programmed from
1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive
loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's new Super-BlockTM family, the
LM614 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Reference
• Adjustable output voltage
• TIght initial tolerance available
• Wide operating current range
• Tolerant of load capaCitance

1.2V to 6.3V
±0.6%
17 /LA to 20 mA

Applications
•
•
•
•

Transducer bridge driver and signal processing
Process and mass flow control systems
Power supply voltage monitor
Buffered voltage references for A/D's

Connection Diagram
..!.

1
1
v+~
~

.!

1
FEEDBACK 8

!!

j£j.~~ !!
!!

~~

13 v_

g
.!l
!!!.
!.CAlHODE
TL/H/9326-1

Ordering Information
Reference
Tolerance" Vos
±0.6%@
80 ppml"C max
Vos S; 3.5 mV max

±2.0%@
150 ppm/'C max
Vos S; 5.0mV

Temperature Range

NSC

Military
-S5"C S; TA S; + 125"C

Industrial
- 40"C S; TA S; + 8SoC

Commercial
O"C S; TA S; + 70"C

Package

LM614AMN

LM614AIN

-

16-pin
Molded DIP

N16E

LM614AMJ/883
(Note 13)

-

-

16-pin
Ceramic DIP

J16A

LM614MN

LM614BIN

LM614CN

16-pin
Molded DIP

N16E

-

LM614WM

LM614CWM

16-pinWide
Surface Mount

M16B

1-333

Drawing

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
plesse contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Voltage on Any Pins except VR
(referred to V- pin)
(Note 2)
(Note 3)

150"C
100"C
150"C

Soldering Information (Soldering, 10 seconds)
N Package
WMPackage

260"C
220"C

ESD Tolerance (Note 5)

±1kV

36V(Max)
-0.3V(Min)
±20mA

Current through Any Input Pin & VR Pin
Differential Input Voltage
Military and Industrial
Commercial
Storage Temperature Range

Maximum Junction Temperature
Thermal Resistance, Junction-to-Ambient (Note 4)
N Package
WMPackage

Operating Temperature Range

±36V
±32V
,-65°C

S;

TJ

LM614AI, LM6141, LM614BI
LM614AM, LM614M
LM614C

+ 150"C

S;

Electrical Characteristics

These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT
GND, unless otherwise specified. Limits in standard typeface are for TJ
Operating Temperatura Range.

Symbol

Is
Vs

Parameter

Total Supply
Current

Conditions

RLOAD =00,
4V S; V+ S; 36V (32Vfor LM614C)

Supply Voltage Range

-40°C S; TJ S; +85°C
-55°C S; TJ S; + 125°C
,O"C S; TJ S; +70"C

= 2.5V, IR = 100 ,..A, FEEDBACK pin shorted to
= 25°C; limits in boldface type apply over the

Typical
(Note 6)

LM614AM
LM614AI
Limits
(Note 7)

LM614M
LM614BI
LM6141
LM614C
Limits
(Note 7)

Unlta

450

940

1000

550

1000

1070

,..A max
,..Amax

2.2

2.8
3

2.8
,3

V min
V min
V max
V max

2 .•
46

36

32

43

38

32

OPERATIONAL AMPLIFIER
VOS1
V0S2

Vas Over Supply
VOsOverVCM

VOS3
aT

Average Vas Drift

Ie

Input Bias Current

los

4V S; V+ S; 36V
(4V S; V+ S; 32V for LM614C)

1.5

3.5

5.0

2.0

8.0

7.0

VCM = OV through VCM =
(V+ - 1.8V), V+ = 30V

1.0

3.5

5.0

1.5

8.0

7.0

(Note 7)

10Sl
aT

Average Offset
Drift Current

RIN

Input Resistance

mVmax
mVmax
,..vrc
max

15

Input Offset Current

mVmax
mVmax

10

25

35

11

30

40

0.2

4

4

0.3

5

5

4

nAmax
nAmax
nAmax
nAmax
pArc

Differential

1800

MO

Common-Mode

3800

MO

CIN

Input CapaCitance

Common-Mode Input

5.7

pF

en

Voltage Noise

= 100 Hz, Input Referred
.f = 100 Hz, Input Referred
V+ = 30V,OV S; VCM S; (V+ - 1.8V),
CMRR = 20 log (aVCM/aVas)
4V S; V+ S; 30V, VCM = V+ 12,
PSRR = 20 log (aV+1aVos)
RL = 10 kO to GND, V+ = 30V,

74

nVl.JHz

In

Current Noise

CMRR

Common-Mode
Rejection Ratio

PSRR
Av

Power Supply
Rejection Ratio
Open Loop
Voltage Gain

f

5V

S;

VOUT

S;

25V
1-334

fAl.JHz

58
95

80

75

80

75

70

dB min
dB min

75
7.0

dB min
dB min
VlmV
min

110

80

100

75

500

100

94

50

40

40

r-

Electrical Characteristics

,

,

(Continued)
These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = ,2.5V, IR = 100 /l-A, FEEDBACK pin shorted to
GND, unless otherwise specified. Limits in standard typeface are for TJ = 25"C; limits In boldface type apply over the
Operating Temperature Range.
LM614AM
LM614AI
Symbol

Parameter

Conditione

SR

Slew Rate

V + = 30V (Note 8)

GBW

Gain Bandwidth

CL=50pF

Typical
(Note 6)

(Note 8)

±0.70
±0.85

±0.55
±0.45

LIInlte

LM614M
LM614BI
LM6141
LM614C
Umlta
(Note 8)

Unite

±0.50
±0.45

V//l-S

0.8
0.52

;

MHz
,MHz

V01

Output Voltage ,
Swing High

RL = 10kOtoGND
V+ = 36V (32Vfor LM614C)

V+ - 1.4
y+ - US

,V+ -1.7
Y+ - 1;.

V+ -1.8
Y+ -1 ••

'v min

V02

Output Voltage
SWing Low

RL ='10kOtoV+
V+ = 36V (32V for LM614C)

VY'-

+ 0.8
+ 0 ••

V:- + 0.9
Y- + 1.0

V- + 0.95,
Y- + 1.0

V max
V'max

lOUT

Output Source

VOUT = 2.5V, V + IN = OV,
V-IN = -0.3V

25
15

20
13

16
13

mAinli.
mAmin

ISINK

Output Sink
Current

VOUT = 1.6V, V+IN = OV,
V-IN = 0.3V

17

14
8

13
8

'mAlnin
mAmin

ISHORT

Short Circuit Current

VOUT = OV, V +IN = 3V,
V-IN = 2V,Source

30
40

50
eo

50
eo

mAmax
mAmax

30
32

60
80

70
.0

mAmax
mAmax

•

-

VOUT = 5V, V +IN = 2V,
V-IN = 3V,Sink

,'.

V min

VOLTAGE REFERENCE
VR

Voltage Reference

(Note 9)

1.244

1.2365
1.2515 "
(±0.60/0)

1.2191
1.2689
(±2.00/0)

V min
V max'

.1VR
aT

Average Temperature
Drift

(Note 10)

10

80

1S0

PPM/DC
max

.1VR

Hysteresis

(Note 11)

VRChange
with Current

VR(100 pA) - VR(17 pA)

3.2

.1TJ
.1VR
aiR

VR(10mA) - VR(100"A)
(Note 12)
R

Resistance

..

/l-vrc

0.05
0.1

1
1.1

1
1.1

mVmax
mVmax

1.5
2.0

5
5.5

5
5.5

mVmax
mVmax

0.5e
''13

0.5e
13

o max
o max

.1VR(10-+0.1 mA)/9.9mA
.1VR(100 -+ 17 pA)/83 JJ-A

0.2
o.e
2.5
2.8

7
10

7
10

mVmax
mVmax

1.2
1.3

mVmax
mVmax

't"

.1VR
b.VRO

VRChange
with High VRO

VR(Vro = Vr) - VR(Vro = 6.3vi
(5.06V between Anode and
FEEDBACK)

.1VR
b.V+

VR Change with
V+ Change

VR(V + = 5V) - VR(V + = 36V)
(V+ = 32VforLM614C)

0.1
,0.1

1.2
1,.3

VR(V, + ,= 5V) - VR(V '+ = 3V)

0.Q1
0.01

1

1

US

·1.5

mVmax
mVmax

22
2.

35
40

, 50
SS

nAmax
nAmax

s: VFB s: 5.06V

IFS

FEEDBACK Bias
Current

VANODE

en

Voltage Noise

BW= 10 Hz to 10'kHz.
VRO = VR

1-335

30

P.VRMS

Ii
.......

•.... r-----------------------------------------------------------------------------,
Electrical Characteristics (Continued)
rating.
to
~
'
Nottr 1: Absolute maximum
indicate limits beyond which darn8ge the component may oCcur. Electilcal specifications do not apply. whsn operating the
diMce beyond its'raIe!I operating COIIdIti~~.
Note 2: Input voltage above V+ I. allowed.
Note 3: More accurately, tt is excessive current 1Iow, with resulting excess heating, that limits the voltages on all pins. When any pin is puDed a diode drop below
V-, a P8I'8fiItic iIIPN tranlllstor tums ON. No latch-up will occur as long as the current through that pin remains beloW the Maximum Rating. Operation i. undefined
and unpredictable when any parasitic; diode ,or transistor is conducting.
Note 4: Ju~ction temperature may be calpulated using TJ - TA + P09JA. The given thermal ._nos i. worst-case for packages in sockets in still air. For
p&Ckages soIder8d to c;oppe.-cted bo8nd With dlsslpation from one comparetor or .eferenoe output transistor, nominal 9JA are '9fJ'CIW for the N packag8, WM
packags.
'
'
'

Note 5: Human body model, 100 pF discharged through a 1.5 kG reslstor.
Note 8: Typical values In 'standard typeface are lor TJ = 25"0, values In lIoIcIfa•
tha most likely parametric norm.

.,... apply for the lull operating temperature range. These values repreesnt

.

Note 7: All limits are guaranteed at room temperature (standard type lace) or at operating temperature extremes

<_ .,... face).

Note 8: Slew rate is measured with oii amp In a voltage foIlowe. configuration. For ~slng slew rate, the input vollage is driven lrom 5V to 25V, and the output
voltage _ o n is sampled at '1 OV and fl2OV. For lalOng slew rate, the Input vollage Is driven from 25V to 5V, and the output voltage transltion Is sampled at 20V
and 10V.

Note 9: VR,is the Cathode-feedback voltage, nominally 1.244V.
Note 111: Average reierenos drift is calculated from the measurerbsnt 01 the reference.VoIIage at 25"C and at the temperature extremes. The drift, in ppmrc, is
1080AVR/(VRI25"CI oATJl, where AVR is the lowest value subtracted from the highest, VRI25'Clis the value at 25"C, and ATJ is the temperature range. This
parameter is gueranteed by deslgn and sample _ng.
Note 11: HystaresIBIs the change In VR caused by a chailge in TJ, alter the reIerenoe has been "dehysterized". To dehysterlze the reference; that Is mlnlmize,the
~ to the typical value. cycle its junction tempe",ture in the following patl8m, spiraling in toward 25"C: 25"C, 85"C, -4O'C, 7O'C, fJ'C, 25"C.
Note 12: low contact resistance is required for accurate measurement.

Note 13: A military RETSLM614AMX electrfcal testspaciflcallon Is available on request. The lM614AMJ/88a can also be procured as a Stendard Military DraWIng.

Simplified Schematic Diagrams
OpAmp

v+

OUT

vTLlH/932S-2

Reference

Bias

TLlH/932S-3

1-336

Typical Performance Characteristics (Reference)
TJ = 25"C, FEEDBACK pin shorted to V- = OV, unless otherwise noted
Reference'Voltage
va Temperature
on 5 Repre8entatlve Unlta
1.2S

V~

-

--

-

V

......

t::=~ -r-. r-. ...

,

r-.~ ...... ......
......

1.25
-eD-«I-2O 0 20 40 60 80 100120140

Accelerated Reference
Voltage Drift V8 Time

Reference Voltage Drift
0.10
0IIII

I

1J

0IIII

gD.D4
~

= 4O'C

J!~

~
~

-

1.2Z0

B

1.218

~

I
I
I

o

_ 6 ~RESOOA11VE UN"'
I POINT AI'F£CIED BY
H'/S'IERDIS HISIORY

~ 1.222

-

D.II2

&-o.oz
CIllO

-D.OII
-D.OII
-0.10

1.224

1.214

o

100

1IIIE (Houn)

Reference Voltage V8
Current and Temperature

-

1.216

250 500 7l!O 1000 1250 1500 17l!O 2IXJO

JUNCIlON lDIPERATURE (e)

P

200

300

400

500

TIlE BIASED AT 15O"C (h..)

Reference Voltage V8
Reference Current

Reference Voltage V8
Current and Templ!lrature
5

10

I
I

Vro=Vr

125"Cj
- I - 1--55"C
25"C
125"C
....t="'

IJ
~-

-55"C

I
-10-2 -10-4 *10""1 10-4

Reference Voltage vs
Reference Current

-,~

ONIOOV

'-l-

f

I

E

IIr

-10-2 _11)"4 t 10-'

IOOV

I

-40
ANODE - TO -

FEEDIIAa(

25"C

-i5~

"

I I

b

..

40

ANODE - TO- FEEDIIAa( VOI.TAGE (VI

Reference Noise Voltage
V8 Frequency

Reference Small-5lgnal
Resistance vs Frequency
10000

I I

b

o,ll:;!m1m

'

-101234561020

l00v
1

-10123451102030

'/1

I

I

I~

-40

'-55"C
25'1:
I

;~
I

m~

REFERENCE CURRENT (A)

20

I

10-2

FEEDBACK Current vs
FEEDBACK-to-Anode
Voltage

20

3-W

4.88Y

I

s'J. S 125'1:
us .. suv

'-55

-i

Ir~ 1.211

I~'-

FEEDBACK Current V8
FEEDBACK·ta-Anode
Voltage

Reference AC
Stability Range
10-4

o

10-2

REFERENCE CURRENT (A)

R£FERENCE CURRENT (A)

1-1- --~
'
I
25"C
f-+-

~

30

40

VOI.TAGE (VI

10

100

1000

FREQUENCY (Hz)

1·337

10000
FREQUENCY (Hz)

TL/H/9326-4

.-

.-----------------------------------------------------------------------------,

~

Typical Performance Characteristics (Reference) (ContinuEia)

¥', '

TJ = 25°C, FEEDBACK pin shorted to v- = OV, unless otherwise noted
Reference Voltege with
FEEDBACK Voltage Step

Reference "ower-Up TIme

~

-

2

-All ~,YOLTAf1E

",

J~

S.IIIY

IN

,..

, I - _A
I
5 11
,
4
3
2,

Reference Voltage wIth
100- 12, p.A Current Step

1
1

-

hb

~9.

....

-

rz;

I
0

100:100 300 <100 500

eoo

I

o

7110

Reference Step Response
for 100 p.A - 10 mA
Current Step

I

i

b

I

!II

-2

>!

-3

"""
125"C

"SID'

IIOOMA

lP'mA

o

~~

?l25"C

1!.~=G.23'

-5

Reference Voltege Change
with Supply Voltage Step

2.0

~ i'iiP

iR,=l!.v

-4

-(PO)

IJ

1\

J

100:100 300 400 500

eoo

~

100:100 300 400 500 100 7110

lIIIE (PO)

3

"

I

_\ v..

o

.r ~r

~

-zace-:1

'-

12"t/

-1.0
7110

o

2

111[ (PO)

-

3

lIIE(. .)

TLlH/9326-8

Typical P.rformance Characterlstics(Op Amps)
v+

5V, v-

=

='

GND

=

av, VCM = V+ 12, VOUT = V+ /2, TJ = 25"C, unless otherwise noted

input Commo~Mode
Voltage Range va
V' Temperature

, 4

Vosva Junction
Temperetllre on 9 ,
RepresentatIve Unite

20

OUTPUT GOE3 LOW

SV'-0.5

~

,~

_...

V'- I

~'

r-

:!lV'-I.5

i

,

;

~

, SV- -0.5
V-~ I

NOIIIIAL OPEIATINCRANGE

-I

..w.."1

-:/..

...

opTPrTM LOW

..
~
~

,~

0.8

6

I FA

",

0.5

Ii... -oy IS

U

WOQT,~i:

0.2

.~
..fL.,

o. i

tiOOmY

0.3

o

'10

~6.-4O-20

-

I

1\\

.

~

~

I!:

I

0 20 40 80 1\0.100120140

JUNCTION, TEMPERATURE (e)

~

•

"I.
-15

r£r

a

,

i~

~ V-+2
i\\

.,'

20

V'- I

~ V'-2

-55~

10

Output Voltage SwIng
,V' va Temp. and Current

~

fj F-F:~~~
..
-2
3
-4
-5
-8
, 0

m

, nUE (pI)

40

fo--

!'

I.~ LOAD! \

r- -

II). LOAD

5}if, IL. .

.. V-+ I

,"

30

I

e

INPUT VOLTAGE ('I)

,FOLLOWER

,

,
e

-20
-I 0 I 2 3 4 5 10 20 40 60 60

/=~~::

/
/ '/

3

~, -~

~o~

+,

ill

5

1250

,t::r:t rI
0

large-Signal
Step Response

5

~:--'
1

-5

~

1"'-55

JUNCTION TEMPERATUR£ (e)

....!.

' ...

I

-4
-80-40-20. 20 40 60 80 100120140

Slew Rate Va Temperature
and Output SInk Current
RlSlI!G,"";

125jy

10

:!

~

'~i"

, JUNCTIoN TEMPERATuRE (e)

0.7

15

1
'1

~ ..... ~ ~p I,.;~

~F""

-3

-60-40-20 0 20 40 60 60 100120140

0"

r--r--

,f..,.

Input BIas Current va
Common-Mode Voltage

50

v"

-60-40-20,0 20 40 10 10, 100l~I4O
~YNel1ON TEMPElATUR£ (e)

TLlH/9326-S

1-338

Typical Performance Characteristics (Op Amps) (COntinued)
V+ = 5V, V- = GND = OV, VCM = V+ /2, VOUT = V+ /2, TJ = 25°C, unless otherwise noted
Output Source Current vs
Output Voltage and Temp,
20

50

2.8:S V" :S 36V
10 NEGATIVE INPUT=V"

40

5

§

A

V• .,=V".IV

1

I

Output Sink Current vs
Output Voltage and Temp.

,I.

r-- -ll"C i

-10
-20

1

I

25"C I.

-~

nl
-50 III

-5 "C

~

i

J

I

s:

I

_ "p

1/

103

J~

.,-

80

i(

80

I V"=I5V
V"=ISV
~~

125"C

ft,

60

-80
-80

10', 101

~

~

II

o

-80
-80

10

~

\

i!I

E

60

1,20
100
80
60

103

10

--SSC

V+=15V
V-=-15V

p~ ~25C- I125C

" " """"- ""-

180

"-

lib..

90

~

-90

~
~

~

~~YO

FREQUENCY (Hz)

Small"slgnal Voltage Gain
vs Frequency and Load

120
100

==

lD"80
~ 80

~

4

V+=ISV
V-=-ISV
5011f '
I'-I00pF,ZkA to V" 1
80
'-100",.ZkA to 'I'

~

"

I'- ~

~~

"

90
0

10'

FREQUENCY (Hz)

101

Follower Small-51gnal
Frequency Reaponse

Common-Mode Input
Ratio

".,

i55C~

lD"

~

.
t:

:E

~

0

V+=15V
V-=-15V

I

120

'--Me nlludt

-4S~

p-~ ~

I!l -2
E

125C/

25V

-4
C1oed= 10pF
-6 V+=15Y

.Al

-SSC

,,

..

..go!

-IM~

V-=15V

-6

Follower
20

50

l'
100 200

~80

500 1000 2000

FREQUENCY (kHz)

101

140 Voltage Rejection

125C

~J.25C

-90~
-180

-80

102

102
FREQUENCY (Hz)

10'

140

lrP

~~F~-~-

-180
102

FREQUENCY (Hz)

10-2

li"'j

o

40

2:

-40
-60

lao

100pF, 2kA TO V"

20

1.

-20

V"=15V

FOLLOWER

Op Amp Current Noise
vs Frequency
100
60

i~

I

Jdv

I
I

I

4

l

IV.,-;-

J

!.

pF, 2kA TO~2kA TO

~pF,

TII/£ (PI)

Op Amp Voltage Noise
VB Frequency

"

;;:-ill

!.L 1~

1000

101

r-

J55~

'rl~

FREQUENCY (Hz)

lrP

Small-Slgnal Pulse
Response vs Load
~ 50t,-A L

I I

II,

105

FREQUENCY (Hz)

Small-Slgnal Pulae
Response vs Temp.

Ay-l

10'

10'

V"'
V"
OUlPllT VOLTAGE: (V)

./

10

~

2829~3132

-10123

'/

Ay=~

102

Ay= 100

10

J

/

10-2101

i!l~~~

.J

80

/
J.-"'"'

'- I-

,

15

V" = 30V

102
10

-55"C

25"C
11~
-55"C

-10

V"=15V
V"=-I5V

1

,

~

r20 rZ5

A~r-

10

Output Impedance vs
Frequency and Gain
103

~

.i. ~=3OV
+25"C

20

-101-3-2-101
V"
V"
SUPPLY REl'EREIICQ) VOUT (V)

10'

Output SwIng,
Large Signal

~

100
lD" 80
~

~

80
40

20

1\

'1P

010"2

•

r\

YO

lrP

102

1\

\

vi

10'

101

FREQUENCY (Hz)
TL/H/9326-6

1-339

...•
CD

:E
..;.I

r-----------------------------------------------------------------------------~

Typical Performance Characteristics (Op Amps) (Col'1tinulkt)
v+

= 5V, v- = GND = OV, VCM

= V+ 12, VOUT

'."1'

= V+ 12, TJ = 25°C. unless otherwise noted

Power SUpply CUrrent vs
Power Supply Voltage
1000
900
800
~
.3 700
....z 600 '+125 OC
500
~

...

'I

""""
u

'\

400
300
200
100

~

0~

en

II

....

-25°C

,.f""

i-" r' -55°C

~

.,

o

o

.... ~

~ jIIIIi

I 2 3 4 5 10 20 30 40 50 60
TOTAL SUPPLY VOLTAGE (V)
TLlH/9326-7

Positive Power Supply
Voltage Rejection Ratio
140

140

120

120

--

100

~80

~

Negative Power Supply
Voltage ReJ~lon Ratio

60

~
,

40

\.

~
~

~

Ii
en

,

0-

r\

vi

:

20

100

YO

I

11)""2

~

20

•

IV51~F~
-15V

-20
-40

102

lcP

60
40
0

-15V

o

i'...

80

10-2

FREQUENCY (Hz)

IcP

r'\.

r"\..

,

r\.
YO

1\
10"

106

"FREQUENCY (Hz)
TLlH/9326-21

TUH/9326-22

Input Offset Current va
Junction Temperature

1000
I ....

r--

o

I~ ~
-1000

-

~

~.,.

.",

~~

6
4

",.

,

x

~

is

~
~

1,1 ~

2
0

::>

""""
u

-2
-4

~
ID

-6

-a
-10

6 Representative Units
-2000
-60-40-20 0 20 40 60 80100120140

I
)

l.-'

-12
-60 -40-20 0 20 40 60 80 100120140

JUNCTION TEMPERATURE (OC)

JUNCTION TEMPERATURE (OC)
TLlH/9326-24

TL/H/9326-38

1-340

r-----------------------------------------------------------------------------, rI....
Typical Performance Distributions
~

Average Vos Drift
Military Temperature Range

Average Vos Drift
Industrial Temperature Range

Vo. DRIFT (jlVIC)

Vas DRIFT (jlVIC)
TUH/9326-28

TL/H/9326-30

Average Vos Drift
Commercial Temperature Range

Average los Drift
Military Temperature Range

los DRIFT (pl.jC)

Vas DRIFT (jlVIC)
TLlH/9326-31

TUH/9326-32

Average los Drift
Industrial Temperature Range

Average los DrIft
Commercial Temperature Range

20~----------------,

15~----------------~

5~~r-------------;

o
los DRIFT (pA/c)

los DRIFT (pA/C)

TLlH/9326-34
TLlH/9326-33

1·341

Typical Performance Distributions (Continued),
Voltage Reference Broad-Band
Noise Dlstributlo~ ,:
' ,
30

Op Amp Voltage
Noise Distribution
30

"

10sisl0,OOOHz

.,'
Op Amp Current
, Nol,e DlstJ1butlon

100Hz

.2,3, :4

Amps 1, 2, 3, 4

20

20

..

~

"

10

o

o"

I

,--

,,10

"

8121620242832364044'18
VOLTAGE NOISE

z~

:::>

l~

0 0 81624324048566472808896

&V~)

VOLTAGE NOISE (nVRIIS tv1fz")

' ' TL/H/iI326-35

CU.ENT NOISE (fArlt.ts f\'iIi)

,.;

TUH/9326-'S6

TUH/9328-37

Application Information
Cathode

VOLTAGE REFERENCE
Reference Bluing
The voltage reference is of ii, shuntr9l;lulator topology that
models as a simple zllher diode: Witll eurrent I. flowing in
the ·forwar.d~ direction there Is the familiar diode transfer
function. Ir flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The
cathode may Swing from a diode drop below V- to the reference voltage or, to the avalanche voltage of the parallel
protection diode, nominally 7V. A 6.3V refE!rence with V+ =
3V is allowed.

Anode = v,-

",

TUH/9326-10

FIGURE 2. Refetenere EqUlvldent Circuit
5Y

10~14$'t3aK
,Vro=Vr'=
o

"

uv

'

y-

~

Anode committed to V-

TUH/9328-11
TUH/9326-9

FIQURE 3. 1.2V Reference

FIGURE 1. Voltages Associated with Reference
(Current S,ource Ir Is External)

Adjustable Reference

The refen~nce eql,liy~!e~t~ir~~it ~~~'~,how V. is held at
the consia'nt 1.2V by feedback, iind how the FEEDBACK pin
passes little 'current.

The FEEDBACK pin alloWS the reference output voltage,
V.o, to vary,from 1.24V to,6.3V: The reference attempts to
hold V. at 1.24V.lf V. is above 1.24V, the reference will
conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then Vro = V. = 1.24V. For, high~r voltages FEEDBACK is held at a constant voltage above Anode-say
3.76V for V.o = 5V. Connecting a resistor across the constaint V. generates a current I = R 1IV. flowing from Cathode
into FEEDBACK node. A Thevenin equivalent 3~ 76V is generated from FEEDBACK to Anode V#th R,2 = 3.76/1. Keep I

To generate the required reverse current, typically a resistor
is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I., has
small effect with the equivalent series resistance of less
than an ohm at the higher currents. Alte\'n,ativiliy, an active
current source, such as the LM134 series, may generate I••
CapaCitors in parallel with the refJrence are allowed. See
the Reference AC Stability Range typi~aI curve for capacitance values-from 20 p.A to 3, rnA,any, capacitor value is
stable. With the reference's wide stability range with resistive and capaCitiVeiCiads, a wid6' range of RC filter values
will perform noise filtering.

,I

10-342

.:.

Application Information (COntinued)
greater than one thousand times larger than FEEDBACK
bias current for <0.1 % error-I:?: 32 p.A for the military
grade over the military temperature range (I:?: 5.5 p.A for a
1% untrimmed error for a commercial part.)

15V
10k

15V

lOOk

TLlH/9326-15

FIGURE 7. Output Voltage has Positive TC
It R1 has Negative TC
TL/H/9326-12

FIGURE 4. Thevenln' Equivalent
of Reterence with 5V Output

Rl
39k

........- ... !'=32!'A
3.76V
R2
~;""-_..J 118k
TL/H/9326-16

FIGURE 8. Diode In Series with R1 Causes Voltage
across R1 and R2 to be Proportional to Absolute
Temperature (PTAT)

TL/H/9326-13

R1 = Vr/I = 1.24/32p. = 39k
R2 = R1 {(VrolVr) -11 = 39k {(5/1.24) - 1)1 = 118k
FIGURE 5. Resistors R1 and R2 Program
Reterence Output Voltage to be 5V
Understanding that V, is fixed and that voltage sources, resistorS, and capacitors may be tied to the FEEDBACK pin, a
range of V, temperature coefficients may be synthesized.

Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be
synthesized.

TL/H/9326-17

I
TL/H/9326-14

= Vr/R1 = 1.24/R1

FIGURE 9. Current Source Is Programmed by R1

FIGURE 6. Output Voltage has Negative Temperature
Coefficient {TCI If R2 has Negative TC

1-343

Application Information (Continued)
mon-mode range, another amp may be operated as a comparator, another with· all terminals floating with no effect on
the others (tying inverting inpu\ to output .and non-inverting
input to V- on unused amps is preferred). Choosing operating points that cause oscillation, such as driving too large a
capacitive load, is best avoided ..

_VL'
R
~,

. rRl

": ~

-r

I

v-

~

Op Amp Output Stage
These op amps, like their LM124 series, have flexible and
relatively wide-swing ou\put stage~. There are simple rules
to optimize ou\put s~ng, reduce cross-ever distortion, and
optimize capacitive /lrive capability:
1) Output Swing: Unloaded, the 42 IJ-A pull-down will bring
the ou\put within 300 mV of V- over the military temperature range. If more than 42 IJ-A is required, a resistor from
output to V- win help. Swing across any load may be
improved slightly if the load can be tied to V + , at the cost
of poorer sinking open-loop voltage gain

0-5V

TuHI9326-18

FIGURE 10. Proportlonal-to-Absolute-Temperature
Current Source
_Vr"

R

2) Cross-over Distortion: The LM614 has lower cross-over
distortion (a 1 VeE deadband versus 3 VeE for the
LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force
class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-ever distortion
3) Capacitive Drive: Limited by the output pole caused by
the ou\put resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the
current limit 250. 200 pF may then be driven without oscillation.

THERMISTOR

NTC

P

Rl

'::~

r-

I
V-

~

0-5V

~7
TLlHI9326-19

FIGURE 11. Negative-TC Current Source
Hysteresis
The reference voltage depends; slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not
assume that no specification means no hysteresis.

Op Amp Input Stage
•
The latera(.··PNP input transistors, unlike most op amps,
have BVEeo equal to the absolute maximum supply voltage.
Also, they have no diode clamps to the positive supply nor
across the inputs. These features make the inputs look like
high impedances to input sources prodUCing large differential and common-mode voltages.

OPERATIONAL AMPLIFIERS
Any amp or the reference may be biased in any way with no
effect on the other amps or reference, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). One amp input may be outside the com-

1-344

Typical Applications
+Y·15V

v,.

v.."

5-36V

+SV

~SOmA.

~pr

O.I"'~

100k

SOOk

5Dk
,.k

"au

1.2V

1.24V
0,001

"r

l.1li114
IIU

lillI' 4
REf

O.OlpF
Rl
27k

VOUT

TLlH/9326-42

(R, IPs + 1) VREF

TLlH/9326-44

R,. R2 should be 1 % metal film
PfJ should be low T.C. trim pot

FIGURE 12. Simple Low Quiescent Drain Voltage
Regulator. Total supply current approximately 320 pA,
when VIN = +5V.

"'"

~

YOUT
S.OY for 3504
Trantducer Bridg.

FIGURE 14. Slow Rise Time Upon Power-Up,
Adjustable Transducer Bridge Driver.
Rise time Is approximately 1 ms.

10k

12V

II'~

10k
7.5k

10.000V

3324
Uk
LW614

10k'

+

'I'r

REr

t---------~~~-ovoo.

s.ov

TL/H/9326-43

50mA

'10k must be low
I.e. trimpot

FIGURE 13. Ultra Low Noise 10.ODV Reference. Total
output noise is typically 14I'VRM&

TLlH/9326-46

FIGURE 16. Low Drop-Out Voltage Regulator Circuit,
drop-outvoltage Is typically 0.2V.

5V

-¥"l'r t-------.....---t
I:>......w,..,.--t-:--t v"Ef/Z
ADCOI04

D7-DO

DATA
OUT

.>....---------1 v,. (+)

3k

Sob

z.:.: S·I--.....-----t

Cod. Voltag.

'>......-------------------------------------1 V,.(-)

-= ':"

'Full 508.1. Adjust

TLlH/9326-45

FIGURE 15. Transducer Data Acquisition System. Set zero code voltage, then adjust 100 gain adjust pot for full scale.
1-345

~

.~

f}1National Semiconductor
LM675~ower

Operational Amplifier

General Description
The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it
equally suitable for AC and DC applications.
The LM675 is capable of delivering output currents in excess of 3 amps, operatlng at supply voltages of up to 60V.
The device overload protection consists of both internal current limiting and thermal shutdown. The amplifier is also'lnternally compensated for gains of 10 or greater.

Features

•
•
•
•
•
•

1 mV typical offset voltage
Short circuit protection
Thermal protection with parole circuit (100% tested)
16V-60V supply range
Wide common mode range
Internal output protection diodes
III 90 dB ripple rejection
• Plastic power package To-220

Applications
•
•
•
•
•

• 3A current capability
• Avo typicaly 90 dB
• 5.5 MHz gain bandwidth product
• 8 VI p.s slew rate
• Wide power bandwidth 70 kHz

High performance power op amp
Bridge amplifiers
Motor speed controls
Servo amplifiers
Instrument systems

. Typical Applications

Connection Diagram

Non-Inverting Amplifier
TQ-220 Power Package (T)
+Vcc

0
1

1

11

ii

!:~;.

o.I F

...L

T

":'

VIN _ _

+IN

~1~5

TLlH/6739-1

Front View

n

LM675..,
"

2

";/3

22k

Order Number LM675T
See NS Package T05S

-Va;-4

'The tab is Internally connected to pin 3 (-Vee>

O.l pf

--

T

1

_.....

1
-

RL
411- 111

To.22~F
":'

":'

20k

~

lk

V
TL/H/6739-2

1-346

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±30V
Supply Voltage
Input Voltage

O·Cto +70·C

Operating Temperature

-VEEtoVCC

Storage Temperature

-65·C to + 150·C

Junction Temperature

1500C

Power Dissipation (Note 1)

30W
260·C

Lead Temperature (Soldering, 10 seconds)
ESD rating to be determined.

Electrical Characteristics Vs = ± 25V, TA = 25·C unless otherwise specified.
Typical

Tested Limit

Units

Supply Current

Parameter
POUT

Conditions

18

50 (max)

mA

Input Offset Voltage

VCM

1

10 (max)

mV

0.2

2 (max)

/Jo A

50

500 (max)

nA

90

70 (min)

dB

Input Bias Current

VCM

Input Offset Current

VCM

Open Loop Gain

RL

= OW
= OV
= OV
= OV

= 000
=

PSRR

INs

±5V

90

70 (min)

dB

CMRR

Y,N = ±20V

90

70 (min)

dB

±21

±1S(min)

Output Voltage Swing

RL

Offset Voltage Drift Versus Temperature

Rs

= SO
< 100 kO

25

Offset Voltage Drift Versus Output Power

25

Output Power

THO

Gain Bandwidth Product

fa

=

= 1%, fa =

1 kHz, RL

20 kHz, AVCL

=

=

SO

1000

Max Slew Rate

/JoV/W

25

20

W

5.5

MHz

8

V//Jos

Input Common Mode Range
Nota t: Assumes

V
/JoV/·C

±22
±20 (min)
V
TA equal to 70'C. For operation at higher tab temperatures, the LM675 must be derated based on a maximum junction temperature of 150'C.

Typical Applications (Continued)
Generating a Spilt Supply From a Single Supply
+18¥ -+ +8OV

v+
Vs

Hk

=

±8V ..... ±30V

~
1k

2211

,,7

~
15k

GND
1

f"' ,

v-

1·347

TUH/6739-3

Typical Performance Characteristics

~

z

i

~

0.1 ~

•i

::;

~ 0.01

S

:!!

I
i

,.~

;f.

~

m

0.1

H
20

...

!

58

./

100

•

5

I N

.
i

!:
z

POSmn SUPPLY -1 ""
t-I-I- N+rm SUPP\.;" ~

30 11M IlUERR~

..
i

:::>

15 20 H
SUPPlY VOI1AllE It VI

20
10 RL = 4n
IV... I I
0
20 51 100 200 500 lk Zk 511 10k ZIIII
Fll£QUENCY (HzI

liN

J
I

~
~

300

I
::>

u

i
ii!

TA=25"1:

5' IWHY SINK

I

r-

5 l°rWI"jSI,K
0

,...

5

1:

I
Iii

·v

~

3

I•
i

~

""""

s-

30

i

20

..

:!!

r-

I

100

.

~
8

50

Z

r\

II

1

D

\

5 10 ' 15 20 2S
OUTPUT VOIJME (t VI
'Vs = t25V

0

2S
RL=BIl
~

15

,....L V

10
5

30

20

25

0

30

SUPPLY VOLTAGE (t VI

j...oo"
i"'"
~RL=4lJ

"""

0

0

15

30

35

150

10

5 10 15 20 2S
SUPPLY VOlTAGE (t VI

Output Voltage
Swing vs Supply Voltage

~O"C

T.=O"C--

5

a

Current Limit vs
Output Voltage"

01020304051 50 TO 80
TA-AMBIENT TEMPElIATURE ('CI
, t81NTERFACE = I' C/W.
See Application Hints.

.... ~ r- r-

200

0

a

,...... I'
I'o!.

18 vs Supply Voltage
250

5

30

Z'C/W
IS.!'EATSINK

I'C/W HEAT SINK

30

15
10

I

lis = an

!

."
~

15

B 10

INFINITE HEAT SINK

40
S5
Z5
20

!

J

Ie 40

i

20

Device Dissipation vs
Ambient Temperaturet

i"'"

V

1

10

45

"

L

./

5

a

1.0
10
POWER DuTM (WI

L

./

10

PSRR vs Frequency
100
00
10
TO
10

2S

30

15

IB

.,

Supply Current vs
Supply Voltage

35

=
-

So!

I

"

Input Common Mode
Range vs Supply Voltage

THO vs Power Output
!:1.0

"

5

19

15

20

2S

30

SUPPlY VOI1AIIE (t VI
TL/H/6739-4

~I'

1-348

W
::r
CD

Rl
1112

~:

R8
1117

R23
2tIII

R21

Rll
lk

3D

013

Q1~

t*

02

~D

R18
2117

r-t:

012

014

Q23~

V"

311

"'t"

HZ
3k3

-INPUT

R3
3k3

04

05),

~

~

~15
~ZI

Cl
4 pF

Rll

~-~

~-~ tt;
C4

Z3~~

..... 1Q36

'-I

ita7
6k5

a36~

p;:

~

'-t
Q7J11'"

OI~
1""01,...t

'-II

HI

t'" 011

'-II

5IIk

84
IIIdI

HI
8112

R7
5IIk

HI
4..

RUO~

ZOO

841
,
10k ZID

JM 038
..... 4DX

~01'

R25
1112

Z12'

R15
3k3

::

,aza

'1

Q32

R17
110

'-1 031

12

~ZI

~,

zn' ~

R16
6112

~

R32

~~

017

lk

ZO ~I 12

OUTPUT
R30

Z13~

'-II 010

R31 tl '32

R36
5DO

..,.03D

~

R12
450

3

~~ Z8

t'" 025

V"

Z2'~

~d

h~
RID
3k5

+INPUT

016l,.

D1

034, ~
40X ~ZT

:)T

"'021
r-- ~

iii'
ea

~

1

JII'"

R2I
COk

R~L

2SO

n'
c

~~ Z5

'~Z6

... 024

,...t

-

Vee

~~ Z4

R38
10k

R22
3D

022~

,...t

3

RZG

3
D)

037r

..,.t"'Q33

V"

30

~

R4D
Ik5

a

---

1131
24
V"

R38
lk

R2I

71
SlDNAL

~

R~

C2

W
TLlH/6739-S

Sl9W1

Application Hints
,type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These
are part of the internal circuitry of the LM675, and needn't
be added externally when standard reactive loads are
driven.

STABILITY
The LM675 is designed to be stable when operated at a
closed-loop' gain of 10 or greater, but, as with any other
high-current amplifier, the LM675 can be made to oscillate
under certain conditions. These usually involve printed circuit board layout or output/input coupling.

THERMAL PROTECTION

When designing a printed circuit board layout, it is important
to return the load ground, the output compensation ground,
and the low level (feedback and input) grounds to the circuit
board ground point through separate paths. Otherwise,
large currents flOwing along a ground conductor will'generate voltages on the conductor which can effectively act as
Signals at the input, resulting in high frequency oscillation or
excessive distortion. It is advisable to keep the output compensation components and the 0.1 p.F supply decoupling
capacitors as close as possible to the LM675 to reduce the
effects of PCB trace resistance and inductance. For the
same reason, the ground return paths for these components should be as short as possible.

The LM675 has a sophisticated thermal protection scheme
to prevent long-term thermal stress to the device. When the
temperature on the die reaches 170"C, the LM675 shuts
down. It starts operating again when the die, temperature
drops to about 145°C, but if the temperature again begins to
rise, shutdown will occur at only 150"C. Therefore, the device is allowed to heat up to a relatively high temperature if
the fault condition is temporary, but a sustained fauit will
limit the maximum die temperature to a lower value. This
greatly reduces the stresses imposed on the IC by thermal
cycling, which in turn improves its reliability under sustained
fauit conditions. This circuitry is 100% tested without a heat
sink.

Occasionally, current in the output leads (which function as
antennas) can be coupled through the air to the amplifier
input, resulting in high-frequency oscillation. This normally
happens when the source impedance is high or the input
leads are long. The problem can be eliminated by placing a
small capacitor (on the order of 50 pF to 500 pF) across the
circuit input.

Since the die temperature is directly dependent upon the
heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached
during normal operaton. Using the best heat sink possible
within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor.

POWER DISSIPATION AND HEAT SINKING

Most power amplifiers do not drive highly capacitive loads
well, and the LM675 is no exception. If the output of the
LM675 is connected directly to a capacitor with no series
resistance, the square wave response will exhibit ringing if
the capacitance is greater than about 0.1 p.F. The amplifier
can typically drive load capacitances up to 2 p.F or so without OScillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 10) should be
placed in series with the output of the LM675. A method
commonly employed to protect amplifiers from low impedances at high frequencies is, to couple to the load through a
100 resistor in parallel with a 5 p.H inductor.

The LM675 should always be operated with a heat sink,
even though at idle worst case power dissipation will be only
1.8W (30 rnA x 6OV) which corresponds to a rise in die temperature of 97"C above ambient assuming 6jA = 54°C/W
for a T0-220 package. This in itself will not cause the thermal
protection circuitry to shutdowntheamplifierwhen operating at
roomtemperature,butamereO.9Wofadditionalpowerdissipationwill shuttheamplifierdown since TJ will then increase from
122"C (97"C + 25°C) to 170"C.
In order to determine the appropriate heat sink for a given
application, the power dissipation of the LM675 in that application must be known. When the load is resistive, the maximum average power that the IC will be required to diSSipate
is approximately:

CURRENT LIMIT AND SAFE OPERATING AREA
(SOA) PROTECTION
A power amplifier'S output transistors can be damaged by

Vs2

excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the
design of the external power supply, while the maximum
current passed by the output devices is usually limited by
internal circuitry to some fixed value. Short-term power disSipation is usually not limited in monolithic operational power amplifiers, and t/1is can be a problem when driving reactive loads, which may draw large currents while high voltages appear on the output transistors. The LM675 not only
limits current to around 4A, but also reduces the value of the
limit current when an output transistor, has a high voltage
across it.

Po (MAX) ::::: 2'IT2RL

+ Po

,where Vs is the' total power supply voltage across the
LM675, RL is the load resistance and Po is the quiescent
power dissipation of the amplifier. The above equation is
only an approximation which assumes an "ideal" class B
output stage and constant power dissipation in all other
parts of the circuit. As an example, if the LM675 is operated
on a 50V power supply with a resistive load of 80, it can
develop up to 19W of internal power dissipation. If the die
temperature is to remain below 150"C for ambient temperatures up to 70"C, the total junction-to-ambient thermal resistance must be less than

When driving nonlinear, reactive loads such as motors or
loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load
whose terminal voltage may attempt to swing beyond the
power supply voltages applied to the amplifier. This can
cause degradation of the output transistors or catastrophic
failure of the whole circuit. The standard protection for this

150"C - 70"C =
C/W
19W
4.2".
Using 6JC = 2"C/W, the sum of the case-to-heat sink interface thermal resistance and the heat-sink-to-ambient

1-350

~----------------------------------------------------------------Ir

Application Hints (Continued)
thermal resistance must be less than 2.?!C/W. The case-toheat-sink thermal resistance of the TO-220 package varies'
with the mounting method used. A metal-to-metal interface
will be about 1·C/W if lubricated, and about 1.?!C/W if dry.
If a mica insulator is used, the thermal resistance will be
about 1.ftC/W lubricated and 3.4·C/W dry. For this example, we assume a lubricated mica insulator between the
LM675 and the heat sink. The heat sink thermal resistance
must then be less than

sink can be isolated from the chassis so the mica washer is
not needed. This will change the required heat sink to a
1.?!C/W unit if the case-to-heat-sink interface is lubricated.
The thermal requirements· can become more difficult when
an amplifier is driving a reactive load. For a given magnitude
of load impedance, a higher degree of reactance will cause
a higher level of power dissipation within the amplifier. As a
general rule, the power diSSipation of an amplifier driving a
60· reactive load will be roughly that of the same amplifier
driving the resistive part of that load. For example, some
reactive loads may at some frequency have an impedance
with a magnitude of 80 and a phase angle of 60·. The real
part of this load will then be 80 x cos 600 or 40, and the
amplkier power dissipation will roughly follow the curve of
power dissipation with a 40 load.

4.?!C/W - 2·C/W - 1.ftC/W = 0.ft.C/W.' .
This is a rather large heat sink and may not be practical in
some applications. If a smaller heat sink is required fo~ r!ilasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be restricted ..10
500C (12?!F), resulting in a 1.6·C/W heat sink, or the heat

Typical Applications (Continued)
Non-Inverting Unity Gain Operation
y+

1
RIC "' 2".500 kHz

Rs + R2
R1':-10-

~D.22PF

Av(llC)

=1

UNITY GAIN BANDWIDTH'" 50 kHz

TLlH/S7S9-S .

Inverting Unity Gain Operation
Hz
y+

1
R1C",~

R2
Rl .: 10

,*O.22 F
P

Av(DC) = -1

UNITY GAIN BANDWIDTH" 50 kHz

TLlH/6739-7

1-351

~

~ r-------------------------~------------~--------------------------------~

~

Typical Applications (Continued)
Servo Motor Control

.'

Vee
4

1Ic~.-+..,

V

1M

a•22 • F M

1M

~a.22'F
TUH/6739-6

TlIH/8739-9

1-352,

tflNational Semiconductor

LM709
Operational Amplifier
General Description
The LM709 series is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used
for these devices. The design, in addition to providing high
gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability
with minimum power drain.

External components are used to frequency compensate
the amplifier. Although the unity-gain compensation network
specified will make the amplifier unconditionally stable in all
feedback configurations, compensation can be tailored to
optimize high-frequency performance for any gain setting.
The LM709C is the commercial-industrial version of the
LM709. It is identical to the LM709 except that it is specified
for operation from O"C to + 70"C.

Connection Diagrams
Metal can Package

Dual-In-Llne Package
INPUT fREQUENCY
COMPENSATION (A)

1

8

INPUT fREQUENCY
COMPENSATION (a)

INVERTING
INPUT

2

7

v+

NON-INVERTING
INPUT

3

INPUT
FREQUENCY
COMPENSATION

(Al

OUTPUT
5

v-

OUTPUT fREQUENCY
COMPENSATION
TL/H/11477-6

OUTPUT
FREQUENCY
COMPENSATION

Order Number LM709CN-8
See NS Package Number NOSE

Tl/H/11477-4

Dual-In-Une Package

Order Number LM709AH, LM709H or LM709CH
See NS Package Number H08C

INPUT fREQUENCY
COMPENSATION (A)

3

INPUT FREQUENCY
COMPENSATION (a)

INPUT

v+

INPUT

OUTPUT
9

7

OUTPUT fREQUENCY
COMPENSATION

8

Tl/H/11477-5

Order Number LM709CN
See NS Package Number N14A

1-353

...

......

Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
LM709/LM709A1LM709C
±1SV
Power Dissipation (Note 1)
LM709/LM709A
300mW
LM709C
250mW
Differential Input Voltage
±!;iV
LM7Q9/LM709~/LM709C
Input Voltage.
±10V
LM709/LM709A1LM709C
. Output Short-Circuit Duration ,ItTA = + 25°C)
LM709/LM709A/LM709C
5 seconds
,

'. $torag(l Temperature Range;'.
'.
LM709/LM709A1LM709C
Lead Temperature (Soldering, 10 sec.)
LM709/LM709A1LM709C

-

"

"

-65°Cta + 1500C

..

3000C

Operatlng:Ratings (Note 3)·
Junction Thmperature'Range (Note 1)
- 55°C to + 1500C
LM709/LM709A
LM709C
OOC to + 1000C
:rhermal F;lesistance (11JA>
H Pa.ckage
1500C/W, (I1JC> 45°C/W
S-Pin N Package
134°C/W
1.4-Pin N Package
1090C/W

"j

Electri.cal Characteristics (N~te 2)
Parameter

LM709A

Conditions
Min
~

10 kO

Typ

LM709
Max

Min

Typ

LM709C
Max

Min

Typ

Units
Max

Input Offset Voltage

TA = 25°C, Rs

0.6

2.0

1.0

5.0

2.0

7.5

mV

Input Bias Current

TA = 25°C

100

200

200

500

300

1500

nA

InputQffset Current

TA = 25°C

10

50

50

200

100

500

Input Resistan~

TA = 25°C

Output Resistance

TA = 25°C

150

Supply Current

TA = 25~C, Vs = ±W/

2.5

Transient Response
Risetin'le
Overshoot

VIN = 20 mV, CL
TA = 25°C

Slew Rate

TA = 25°C

Input Offset Voltage

Rs'~

,

350

~

TA
TA
. TA
. TA

=
=
=
=

1.S
1.S
2.0
4.S

25°C to TMAX
25°C to TMIN
25°C to TMAX
25°C to TMIN

Output Voltage Swing

Vs = ±1~V, RL = 10 kO
Vs = ±15V, RL = 2kO

±12
±10

Input Voltage Range

Vs = ±15V

±S

Common-Mode
Rejection Ratio

Rs

~

10kO

Rs

~

10kO

TA =TMAX
'TA == TMIN

Input Bias Current

TA = TMIN

Input Resistance

TA = TMIN

50

~50

nA
kO

150

0

3.6

2.6

5.5

2.6

6.6

,mA

1.5:
30

'. 0.3
10

1.0
30

0.3
10

1.0
30

p's

0.25
3.0

Vs= ±15V,Ri:;;,2kO
VOUT = ±10V'

, Input Offset Current

400
150

0.25

Large Signal
Voltage Gain

"

150

100 pF

10kO

Average Temperature Rs = 500
Coefficient of
Input Offset Voltage
Rs ".10kO

Supply Voltage
Rejection Ratio

700

25

SO

85

6.0

10
10
15'
25
70

±14
±13

110

10

3.0
6.0

25

45

±12
±10

6.0
12

70

%

V/p.s

0.25

mV

.
p'vrc

15

45

VlmV

±14
±13

±12
±10

±14
±13

V

±S

±10

±S

±10

V

70

90

65

90

dB

40

100

25

150

25

200

p.VIV

3.5
40

50
250

20
100

200
500

75
125

400
750

nA

0.3

0.6

0.5

1.5

0.36

2.0

p.A

170

40

100

50

250

kO

Note 1: For operating at elevated temperatures, the device must be derated baaed on a 15O"C maximum junction temperatura for LM709/LM709A and 100"C
maximum for L709C: For operating at elevated temperatures, the device must be derated baaed on thermal resistance 8JA, TJ(MAX) and TA.
Note 2: These specHlcations apply for - 55'C s: TA s: + 125"C for the LM709/LM709A and O'C s: TA s: + 70'C for the LM70ec with the following conditions:
±9V s: Vs s: ±15V, C1 ~ 5000 pF, R1 ~ 1.5 kIl, C2 = 200 pF and R2 ~ 510.
Note 3: Absolute Maximum Ratings indicate limits which if exceeded may rasu~ in damage. Operating Ratings are condRions where the device is axpected to be
functional but not necessarily within the guaranteed performance limits. For guaranteed specifications and test conditions, see 1ha Electrical Characteristics.
1-354

r-

i:

.....
Q

Schematic Diagram**

CD

INPUT FREQUENCY CQMPENSATION

r-____-1~~I~(A~)----~8~(~B)--~--------~--~----~~~
R6
10k'

R7

R15

lk

30k

...----..---.......w,........--'- OUTPUT
Q6

R9
10k

5 OUTPUT

t---t-----t-- FREQUENCY

CQMPENSATION

R13

75
TL/H/11477-1

Typical Applications * *
Unity Gain Inverting Amplifier

FET Operational Amplifier

R4

CI
5000 pf

20k

....------Yvl\r---....-

OUTPUT

CI
2700 pf

R3
20k
INPUT .....W ..........

R2'
51
:~--.....-'V\,."..- OUTPUT

R2'
51

BALL-vTUHI11477-3
TL/H/11477-2

Voltage Follower
VCM(MAX)

Offset Balancing Circuit

R3t

R5

~~"'------~i'r---1~- OUTPUT

160k

01

R4
lOOk

v-~v+

CI
5000 pf

R2'
51
R2'
51

INPUT----i
INPUTS

C2
200pf
'To be used with any capacitive loading on output

>----...."""'IM..- OUTPUT
C2
200 pf

TUH/11477-7

··Pin connections shown are for metal can package.

TUH/11477-8

tShould be equal to DC source resistance on input.

1-355

•

Guaranteed Performance Characteristics

15

s~

T01.:O:T.:O:TO..
13

MINIMUM

11

~

!

111

~
~
~

...

I\. • 10k
....I""

..-1"'"11 L'"

~

:;

S
o

10 Voltage

1111
1111

IL LLLL

!;!

iii

Input Common-Mode
Range

Output Voltage Swing

7

~I

,

MINIMUM
I I I

I

II8

2k
I

111111

5
9

I\. •

10

11

12

13

14

100Voltage Gain

TYIN :S TA:S TMAX

!

9

~

7

MINIMUM

5

4

15

9

10

SUPPLY VOLTAGE (tV)

11

12

13

14

15

10

~

85

Supply Current

(L~70~A~:~~
TA • 25°C

".j.o1"

...,.. 1 1 1 1 1 1 1
MINIIlN (LM709/LM701A)

1 1 u..-r
....r--JI 1 1

80

NNMUM (LM70IC)

75

111111
9

10

11

12

13

14

15

SUPPLY VOLTAGE (tv)

SUPPLY VOLTAGE (tV)

I

~

i

•

_MUM (Ul709/LM~

as

.

~

...,..

TYPICAL

-M'
1

o
9

10

11

12

13

14

15

SUPPLY VOLTAGE (tV)
TL/H/I1477-9

1-356

Typical Performance Characteristics

Input Offset Current

200

Vs = tl5V

120

'\ LM709C

I'. LM709 1\.
80 I---I-''''Nri'-,...
1,+-+--+--1

~

"'

~

Supply Current

:; 0.81--11+-+-+-1>--+--1-'1

~ f-++-t"'~:'::::+-+-I
t;
~

4

1--+-+--+-+-1

Vs' tl5V

1160 f-++-+-I--I-+-+-I

:::

Input Bias Current

I

1--+-+--+-+-1
..

:::

! !~

0.61-:':=
1:+-+-1--1-+-+-1
LM709

;

0.4

~ 02
!i'

~ 40f-~~~+-~L~M7~0~9A~~~r~-+-I

2r-+-+-+-+-+-+-1-~

......
I---I-'..r--+-lf-+-+-+--I
~
LM70lC -f........
.....

Ir-+-+-+-+-+--J--J-~

......i"'--.

~

o L...Jc...-J._.Lr-;-......L.:=_oI.....J

Otr-:j~LM~7~09~A~t:!:~~~

0~~~~~~~...1-~

-75 -50 -25 0

-75 -50 -25 0

-75 -50 -25 0

25 50 75 100 125

TEMPERATURE (OC)

81_ Rete as a Function 01
CloeacI-Loop Gain Using
Recommendad CompenasUon Networks

25 50 75 100 125

TEMP£RATURE (OC)

Frequency Response for
Various Closed-Loop Gains
80rrrnrrTrnrrTrnr~~~~

100 .-----"T"'1rT'1'-r-r'T'T1r"'1

C...~ 10 ~F:
60 R1 • D. C2

Vs = tl5V

TA = 25°C

L1llLL Vs = mv

.3PiT TA. = 25°C

CI • 100'prJ 1111 I lin
40 RI=l.Skn,C2'3pFII

HI-+t+-H-H....,I....+-t-tt--I

10

25 50 75 100 125

TEMPERATURE (OC)

CI • 500 pF, 1111 U II[
20 R1 .. 1.Skn, C2 == 20pF

o

I

10

100

~llIoII.-!l~"±-i~iH

= 200pF

III
III 1111
III
-20 UJ,1u...J..1I.J,;lluw
1I...11.J.JJ...11IWJ.1u...J..II.J.J]I...J

L-L..J..U-.l-.L..LJ..L-L....l..J.J.L..J

0.1

CI = 5000 pF,

Rl = 1.5kJl, C2

100

Ik

lk

10k

lOOk

1M

FREQUENCY (Hz)

Input Bias Current
as a Function of
Supply Voltage

Output Voltage Swing

!

105 """T'''T'''T''"T''''1-;"''T''''T'"T''"''

Vs .. :l:15V
12
= 25°C
1
5 TA
_

!i!
ijj

10M

FREQUENCY (Hz)

CLOSED-LOOP GAIN

9

:11&
o

10

20

30

40

:!

100

i

95

TA. == 25°C

~

il

9OH-++-H-+++-IH-+-i

85 I-+-J-H++-t+-HI-+'1
80

50

L..J.....I-J.....I.....L...J.....L-'-...L...JL..J....J
9

OUTPUT CURRENT (tmA)

10

II

12

13

14

15

SUPPLY VOLTAGE (tV)
TL/HI11477-10

1-357

U) , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

~

~

f}1National Semiconductor

LM725 Operational Amplifier
Generall, Description

Features

The LM725/LM725A1LM725C are operational amplifiers
featuring superior performance in applications where low
noise, low drift,'and accurate closed-loop gain are required.
With high common mode rejection and offset null capability;
it is especiallY suited for Ic;>w level instrumentation applications over a Wide supply voltage range.
The LM725A lias tightened' electrical performance with
higher input accuracy and like the LM725, is guaranteed
over a -55°C to + 125°C temperature range. The LM725C
has slightly relaxed specifications and has its performance
"
guaranteed over a O"C to 70"C temperature range.

•
•
•
•
•
•
.,

3,000,000
• 0.6 p.VI"C

High open loop gain
Low input voltage drift
High common mode rejection
Low input ,noise current
Low input offset current '
High input voltage range
Wide power supply range

120 dB
0.15 pAl-'Hz
,
2 nA

'±14V
±3V to ±22V

• Offset null capability
• Output short circuit protection

Conoectidn Diagrams and Ordering Information
Dual-In-Line Package
OFFSET NULL

OFFSET NULL

V·

INVERTING INPUT

2

NON-INVERTING INPUT

3

6

OUTPUT

V-

4

5

COMP

INVERTING
INPUT

TLlH/10474-2

Order Number LM725CN
See NS Package Number N08E

vTOP VIEW
TL/H/10474-1

Order Number LM725H/883, LM725CH
or LM725AH/883
See NS Package Number H08C

1-358

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±22V
Supply Voltage
Internal Power Dissipation (Note 1)
500mW
±5V
Differential Input Voltage
Input Voltage (Note 2)

Storage Temperature Range

-65"Cto + 150"C

Lead Temperature (Soldering, 10 Sec.)

260"C

Maximum Junction Temperature

150"C

Operating TemperaturErRange T A(MIN)
-55"C
LM725
-55"C
LM725A
LM725C
O"C

±22V

to
to
to

TA(MAX)
+125"C
+ 125"C
+70"C

Electrical Characteristics (Note 3)
Parameter

LM725A

Conditions
Min

Input Offset Voltage
(Without External Trim)

TA = 25"C,
Rs:S: 10kO

Input Offset Current

= 25"C
= 25"C
TA = 25"C
to = 10 Hz
to = 100 Hz
to = 1 kHz
TA = 25"C
to = 10Hz
to = 100 Hz
to = 1 kHz
TA = 25"C
TA = 25"C
TA = 25"C,

Input Bias Current
Input Noise Voltage

Input Noise Current

Input Resistance
Input Voltage Range
Large Signal Voltage Gain

LM725C

LM725
Typ

Max

0.5

0.5

Max

Min

Units

Typ

Max

1.0

0.5

2.5

mV

Min

TA

2.0

5.0

2.0

20

2.0

35

nA

TA

42

80

42

100

42

125

nA

RL ~ 2kO,
VOUT = ±10V
Common-Mode
Rejection Ratio

TA = 25"C,
Rs:S:10kO

Power Supply
Rejection Ratio

TA = 25"C,
Rs:S: 10kO

Output Voltage Swing

TA = 25"C,
RL ~ 10kO
RL ~ 2kO

=

Power Consumption

TA

Input Offset Voltage
(Without External Trim)

Rs:S: 10kO

Average Input Offset
Voltage Drift
(Without External Trim)

Rs

Average Input Offset
Voltage Drift
(With External Trim)

Rs

Input Offset Current

TA
TA

=

=

=
=

25"C

TA
TA

15
9.0
8.0

15
9.0
8.0

15
9.0
8.0

nV/~
nV/~
nV/~

1.0
0.3
0.15

1.0
0.3
0.15

1.0
0.3
0.15

pAl~
pA/~
pAl~

1.5

1.5

1.5

MO

±13.5

±14

±13.5

±14

±13.5

±14

V

1000

3000

1000

3000

250

3000

V/mV

110

120

94

120

dB

120
2.0

±12.5
±12.0

5.0

±13.5
±13.5
80

2.0

±12
±10
105

10

±13.5
±13.5
80

0.7

2.0

±12
±10
105

35

±13.5
±13.5
80

1.5

p.VIV

V
V
150

mW

3.5

mV

500
2.0

2.0

5.0

2.0

p.V/"C

0.6

1.0

0.6

0.6

p.V/"C

1.2
7.5

4.0
18.0

1.2
7.5

20
40

1.2
4.0

35

90

35

150

10

20
80

70
180

20
80

100
200

500

TMAX
TMIN

Average Input Offset
Current Drift
Input Bias Current

Typ

= TMAX
= TMIN

1-359

35
50

nA
nA
pAI"C

125
250

nA
nA

In
~

.....
:::&

....

Electrical Characteristics (Note 3) (Continued)
Parameter

LM725A

Conditions
Min

Large Signal Voltage Gain

Typ

LM725
Max

Min

Typ

LM725C
Max

Min

Typ

Units
Max

RL: 4_ _ _ Vo

l50pF

TL/HI10474-8

1.362

r-----------------------------------------------------------------------------,~

i:

.....
N

Auxiliary Circuits

U'I

Voltage Offset
Null Circuit
V+

~

TUH/1D474-3

Frequency Compensation
Circuit

Compensation Component Values
R1
(0)

(~F)

10,000

10k

50pF

1,000

470

0.001

100

47

0.01

10

27

1

10

Ay
R3

6

R2

I

R1C1

TLlH/10474-4

1·363

C1

R2
(0)

(~F)

C2

0.05

270

0.0015

0.05

39

0.02

~

N

.....
~

r---------------------------------------------------------------------------------,
Typical Applications
Photodlode Amplifier

R.

Cl

1000 (NOTE 1)
,--""""'-10.000

....---.JV..,..,.--....--....- ........

R5

.,."fv--l.000
GAIN
1 kA
RANGE
(NOTE 1) ~ELECT

-=

~w..-l00

R7
200A

220pF

I

our

R8

C2

-15V

R6
R3
10kA
10
100 kA (NOTE 1)
(NOTE 1) CALIBRATE

TO
RECORDER

RIS

9.1kA
2kA
(NOTE 1)(NOTE 1)

Rl.
1000
(NOTE 1)

C3
'00 PF

RIO
510A

TL/HI10474-9
DC Galns - 10.000; 1.000; 100; and 10
Bandwidth - Determined by value of Cl

± 100V Common Mode Range Differential Amplifier

Thermocouple Amplifier
Cl
500pF

Rl

R3

50kA

5kA

6

R2

511kA

(NOTE 1)

39A

R3
R4

IN

2000

5kA

C2
l00pF

REFERENCE
THERMOCOUPLE

R3
511 kA
(NOTE 1)

R6I~PF

R7
50kA

+.....-""""'--...

5100

TLlH/l0474-10

> .......~,.....-OUT
39A

~
- ~forbestCMR
R5
R7
Rl

R6
50kA

5kA

= R4

R2 - R5

Gain-~+

(2:;)
TLlH/l0474-11

DC Gain - 1000
Bandwidth - DC to 540 Hz
Equivalent Input Noise - 0.24 poVrms

Note 1: Indicates ± 1% metal film resistors recommanded for temperature
stabilily.

1-864

,-----------------------------------------------------------------------------'r
Typical Applications

i:

~

(Continued)

Instrumentation Amplifier with High
Common Mode Rejection
R2
10kA

3
6

2

39A

R6
100kA

Rl
47kA

IN
R3
10kA
RS
10kA
+-I--~

R7
l00kA

39A

TLlH/l0474-12

!:!:!.
= ~ for best CMRR
R6
R4
R3

= R4

RI

= R6 = 10 R3

Galn=~
R7

Precision Amplifier AVCL
SOMA

=

1000
10kA

90kA
500kA

II

6

>-.....- - £ 0

TLlHI10474-13

1-365

~

"II'

~

,--------------------------------------------------------------------------------,
t!lNational

Semicond~ctor

LM741 Operational Amplifier
General Description
The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements
for the 709C, LM201, MC1439 and 748 in most applications.
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up whim the common mode range is exceeded, as well as freedom from oscillations.
The LM741C/LM741E are identical to the LM741/LM741A
except that the LM741C/LM741E have their performance
guaranteed over a O·C to + 700C temperature range, instead of - 55·C to + 125·C.

Schematic Diagram
7 y+

NON-IIIVER11NG 3
INPUT

R9
25

6OUTPUT

RIO
50

020

022

5 OFFSET
NULL

OFFSET NUU
Rl
1K

R3
50K

R2
1K

R4
5K

R12
50K

Rll
50

4yTL/H/9341-1

Offset ,.,ulling Circuit

OUTPUT

TUH/9341-7

1-366

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Oftlce/
Distributors for availability and specifications.
(Note 5)
LM741A
LM741E
LM741
LM741C
±22V
±22V
±22V
±18V
Supply Voltage
Power Oissipation (Note 1)
500mW
500mW
500mW
500mW
±30V
±30V
±30V
Differential Input Voltage
±30V
Input Voltage (Note 2)
±15V
±15V
±15V
±15V
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Junction Temperature
Soldering Information
N·Package (10 seconds)
J. or H·Package (10 seconds)
M·Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

Continuous
- 55'C to + 125'C

ContinL!ous

Continuous

- 65'C to + 150"C
150"C

O"Cto +70'C
- 65'C to + 150'C
100"C

- 55'C to + 125'C
- 65'C to + 150'C
150"C

Continuous
O"Cto +70"C
- 65'C to + 150"C
100"C

260"C
300"C

26O"C
300"C

26O"C
300'C

260"C
300"C

215'C
215'C

215'C
215'C
215'C
215'C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering
surface mount devices.
ESD Tolerance (Note 6)
400V
400V
400V

215'C
215'C

"400V

Electrical Characteristics (Note 3)
Conditions

Parameter

LM741A1LM741E
Min

Input Offset Voltage

TA = 25'C
Rs s: 10kO
Rs s: 500
TAMIN s: TA
Rs s: 500
Rs s: 10 kO

Typ

Max

0.8

3.0

TA = 25'C, Vs = ±20V

Input Offset Current

TA = 25'C
TAMIN

5.0

Units

Typ

Max

2.0

6.0

6.0

7.5

±10

±15
3.0

s: TA s: TAMAX

TA = 25'C

30

±15

30

20

200

70

85

500

s: TA s: TAMAX
1.0

TAM IN s: TA s: TAMAX,
Vs = ±20V

0.5

6.0

mV
mV

20

mV
200

nA

300

nA
nArC

80

80

500

80

1.5

0.210

TA = 25'C, Vs = ±20V

0.3

2.0

0.3

2.0

500

nA

0.8

p..A
MO
MO

±12

TA = 25'C
TAMIN

mV
mV

p'vrc

0.5

TAMIN

Large Signal Voltage Gain

1.0

Min

4.0

Average Input Offset
Current Drift

Input Voltage Range

Max

15

Input Offset Voltage
Adjustment Range

Input Resistance

LM741C

Typ

s: TAMAX

Average Input Offset
Voltage Drift

Input Bias Current

LM741
Min

s: TA s: TAMAX

±12

±13

50

200

±13

V
V

TA=25'C,RL~2kO

Vs = ±20V, Vo = ±15V
Vs = ±15V, Vo = ±10V
TAMIN s: TA s: TAMAX,
RL ~ 2kO,
Vs = ±20V, Vo = ±15V
Vs = ±15V, Vo = ±10V
Vs = ±5V, Vo = ±2V

50
20

32
25
10

1·367

15

200

V/mV
'-IImV

V/mV
VlmV
V/mV

Electrical Characteristics (Note 3) (Continued)
Parameter

Conditions

LM741A1LM741E
Min

Output Voltage Swing

Vs = ·i20V
RL~ 10kn
RL~ 2kn

Typ

Max

±12
±10

Output Short Circuit
Current

TA = 25°C
TAMINS: TA

10
10

25

Common-Mode
Rejection Ratio

TAMIN
Rs s: 10kn, VCM = ±12V
Rs s: 50n, VCM = ±12V

80

95

86

96

s: TAMAX
s: TA s: TAMAX

TAMIN s: TA s: TAMAX,
Vs = .±20VtoVs = ±5V
Rs s: 50n
Rs s: 10kn

Transient Response
Rise Time
Overshoot

TA = 25°C, Unity Gain
0.25
6.0

Bandwidth (Note 4)

TA = 25°C

Slew Rate

TA = 25°C, Unity Gain

Supply Current

TA = 25°C

Power Consumption

TA = 25°C
Vs = ±20V
Vs = ±15V

LM741E

Max

Min

Typ

Units
Max
V
V

RL~2kn

LM741 A

Typ

±16
±15

Vs = ±15V
RL.~ 10kn

Supply Voltage Rejection
Ratio

LM741C

LM741
Min

0.437

1.5

0.3

0.7

80

35
40

0.8
20

±14
±13

±12
±10

25

±14
±13

V
V

25

rnA
rnA
dB
dB

70

90

70

90

77

96

77

96

dB
dB

0.3
5

0.3
5

p.s
%

0.5

0.5

V/p.S

MHz

1.7

2.8

1.7

2.8

rnA

50

85

50

85

mW
mW

150

Vs = ±20V
TA = TAMIN
TA = TAMAX

165
135

mW
mW

Vs = ±20V
TA = TAMIN
TA = TAMAX

150
150

mW
mW

LM741

Vs= ;±15V
60
100
mW
TA = TAMIN
75
45
mW
TA = TAMAX
Note 1: For operation at elevated temperatures. these devIcea must be derated based on thermal resistance, and Tj max. (listed under "Absolute Maximum
Ratings"). TJ = TA + (8", Po).
Thermal Re8latanoe

CerdIp(J)

8", (Junction to AmbienU

100"CIW

8JC (Junction to Case)

N/A .

DIP(N)
100"CfW

HOI (H)
17fJ'C/W

so-a(M)

N/A

25"C/W

N/A

195"CfW

For supply voltages less than ± 15V, the absolute maximum Input voltage is equal to the supply voltsge.
Unless otherwise specIfled, these specifications apply lor Vs = ±15V, -55"C s: TA s: + 125"C (LM741/LM741A). For the LM741C/LM741E, these
specIflcations are limltsd to O'C s: TA s: + 70'C.
Note 4: Cslculeted value from: BW (MHz) = O.35/Rise Time(}£s).
Note S: For military specifications see RETS741X lor LM741 and RETS741AX lor LM741A.
Note 8: Human body model, 1.5 kll in series wtth 100 pF.
NDte 2:

Note 3:

1-368

Connection Diagrams
Metal Can Package

Ceramic Dual-In-Une Package

NC
NC

14

Ne

Ne

2

13

NC

+ OFFSET NULL

3

12

Ne

"

11

v+

+IN

10

OUT

v-

6

9

- OFFSET NULL

Ne

7

8

Ne

-IN

INVERTING INPUT 2

5

TLlH/9341-2

TLlH/9341-5

Order Number LM741H, LM741H/883',
LM741AH/883 or LM741CH
See NS Package Number H08C

Order Number LM741J-14/883', LM741AJ-14/883"
See NS Package Number J14A
'also available per JM38510/10101
"also available per JM38510/10102

Dual-In-Une or 5.0, Package
OFF'SET NUU

INVERnNG INPUT

8
2

NON-INVERnNG
INPUT

7

Ceramic Flatpak

NC

v+
OUTPUT

NC

NC

+OFFSET NULL

Ne

-INPUT

V+

tlNPUT

OUTPUT

v- __-,._____.r---OFFSET NULL
OFFSET NULL

TLlH/9341-6

Order Number LM741W/883

TLlH/9341-3

See NS Package Number W10A

Order Number LM741J, LM741J/883,
LM741CM, LM741CN or LM741EN
See HS Package Number J08A, M08A or N08E

'LM741H 18 available per JM38510/10101

1-369

~ r-~--------------~--~--------~------------~--------------------~--~

~

~

ttlNational Semiconductor
I"~

'j."

!

LM747
Dual Operational Amplifier
General Description

Features

The LM747 is a general purpose dual operational amplifier.
The two amplifiers share a common bias network and power
supply leads. Othe(Wise, their operation is completely independent.
.'"

•
•
•
•
•
•

Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package fle~bility. .'
The LM747C/LM747E is''identical··to the LM747/LM747A
except that the LM747C/LM747E has its specifications
guaranteed over the temperature range from O·C to .+ 70"C '
instead of - 55·C to + 125·C.

No frequency compilnsation required
Short-circuit protection
Wide common-mode and differential voltage ranges
Low power consumption
No latch-up
Balanced offset null

Connection Diagrams
,,
c

Metal Can Package,

Dual-In-Llne Package

Ne
INVERTING INPUT A
NON-INVERTING INPUT A
OffSET NULL A

VINVERTING
INPUT A

ItI'<:ERTING
INPUl, B

OffSET NULL S

rsO

NON-INVERTING INPUT S
INVERTING

I~PUT

OffSET NULL S

S

TOP VIEW
TL/H/11479-5

TOP VIEW
TLlH/11479-4

Order Number LM747H
See NS Package Number H10C
'V+A and V+B are internally connec1ad.

1-370 '

Order Number LM747CN or LM747EN
See NS Package Number N14A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
±22V
LM747/LM747A
LM747C/LM747E
±1BV
Power Dissipation (Note 1)
BOOmW
Differential Input Voltage
±30V

±15V

Input Voltage (Note 2)
Output Short-Circuit Duration

Indefinite

Operating Temperature Range
LM747/LM747A
LM747C/LM747E
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)

- 55·C to + 125·C
O"Cto +70"C
-65·Cto + 150"C
300"C

Electrical Characteristics (Note 3)
Parameter

LM747A/LM747E

Conditions

Min
Input Offset Voltage

TA = 25·C
Rs s; 10kn
Rs s; 500.

Typ

Max

O.B

3.0

LM747
Min . Typ
1.0

Rs s; 50n
Rs s; 10kn

=

25·C, Vs

Input Offset Current

TA

=

25·C

=

±20V

2.0

6.0

7.5

±15

±15
3.0

30

20

70

=
=
TA =

30
S;

TA

25·C, Vs

Vs

±20V

TAMAX

=

±20V

1.0

85

. 200

20

500

=
=
Vs =

nAI"C

80
0.210

BO

6.0

0.3

2.0

±13

±12

±13

25·C

25·C, RL ~ 2 kn
±20V, Vo = ±15V
±15V, Vo

Vs
Vs
Vs

=
=
=
=

=

500
1.5

80
0.3

2.0

±12

±13

50
50

= ±15V
±15V, Vo = ±10V
±5V, Vo = ±2V
±20V, Vo

200

20

200

32

Common-Mode
Rejection Ratio

Rs

Mn

V

VlmV

V/mV

.15

10

V/mV

±16
±15

V

=

±15V
10kn
RL ~ 2kn

TA

nA

p.A

V/mV
25

RL~

Output Short
Circuit Current

500
0.8

V/mV

±10V

Vs
±20V
RL ~ 10kn
RL ~ 2kn
Vs

,
nA

300

RL~2kn

Output Voltage Swing

200

0.5

±12
TA
Vs

mV

mV

0.5
TA = 25·C
TAMIN S; TA

mV

p,VI"C

±10

Average Input Offset
Current Drift

Large Signal
Voltage Gain

Max

15
TA

Input Voltage Range

5.0

Units

Typ

6.0

Input Offset Voltage
Adjustment Range

Input Resistance

Min

4.0

Average Input Offset
Voltage Drift

Input Bias Current

LM747C
Max

=

±12
±10

25·C

10

25

10
S;

10 kn, VCM

Rs":S; 50 kn, VCM

=
=

±12V
±12V

35
40

95

1-371

±12
±10

25
70

80

±14
±13

90

±14
±13
25

70

90

V
mA
dB

I,

I'.1

Electrical Characteristics (Note 3) (Continued)
Parameter

LM747A/LM747E

Condition.

Supply Voltage
Rejection Ratio

Vs= ±20VtoVs= ±5V
Rs s: 500
RsS:10kO

Transient Response
Rise Time
Overshoot

TA = 25'C, Unity Gain

Bandwidth (Note 4)

TA = 25'C

Slew Rate

TA = 25'C, Unity Gain

Min

Typ

86

96

Max

0.25
6.0

Supply Current!Amp

TA = 25'C

Power Consumption!Amp

TA = 25'C
Vs = ±20V
Vs = ±15V

LM747A

LM747E

LM747

0.437

1.5

0.3

0.7

LM747
Min

Typ

77

96

0.8
20

LM747C

Max

Min

Typ

77

98

Unite
Max

dB

0.3
5

0.3
5

,.s
%

0.5

0.5

V/,.s

MHz

2.5
80

1.7'

2.8

1.7

2.8

50

85

50

85

150

mA

mW

Vs = ±20V
TA = TAMIN
TA = TAMAl<

165
135

mW

Vs = ±20V
TA = TAMIN
TA = TAMAl<

150
150
150

mW

Vs = ±15V
TA = TAMIN
TA = TAMAl<

80
45

100
75

mW

Note 1: The maximum junction temperature of the LM747C/LM747E Is l00'C. For operating at elevated temperatures, davies In the T0-6 peckage must be
derated based on a thermal resistance of 150'C/W, junction to ambient, or 45"C/W, junction to case. The thermal resistanoe of the dual~n-llne packega Is l00'CI
W, junction to ambient
Note 2: For supply voltages less than ± 15V, the absclute maximum Input voltage Is equal to the supply voltage.
Note 3: These speclflcallons apply for ±5V s: Vs s: ±20Vand -55'C s: TA s: 125"C for the LM747A and O'C s: TA s: 70'CfortheLM747EunieBBotherwise
specified. The LM747 and LM747C are specified forVs = ±15Vand -55"C s: TA s: 125'C and O'C s: TA s: 7O'C, respectively, unless otherwise specified.
Note 4: Calculated value from: O.35/Rlse Time (,..a).

Schematic Diagram (Each Amplifier)

~

~

'"

I
2(6)
NOIHNVERrlNG
INPUT

J"

Q1

Q2

Q3,.....t

I....;

INVERrING
INPUT

....
~16

Q~

QI

~~
R1
lk

""

....... 04

~7

~
R3
50k

14(8)

"~,,

~

-r

Cl
30pr
R8
7.5k

Q14

Q~

R7
Uk
R5
30k

J.

~15

.~

Ql~

RI
25

....

12(10)
OUTPUT

RIO
50

"':'7
QZ;--'

~20

;...t

~
R2
1k

R4
5k

R12
50k

Rl1
50
4

v-

TLlH/11479-1

Note: Numbers in parentheses are pin numbers for amplifier B. DIP only.

1-372

Typical Performance Characteristics
Input Bla8 and Off8et
Currenta V8 Ambient
Temperature
200

DC Parameter8
V8 Supply Voltage

Lb~/LW7i7C OH~Y- Vs .~~

180
110

!

iB
~

120

r-...

100
80

"- I"

SO

"-iI-I-

40
20

o

-~ I::::::

-so

INPUT BIAS
~RRENT -

r-

OF~ ~""I'-

~

i

INPUT
CURRENT

-20

20

~

1.4

...
~

140

1.2

;

100

36
~

28

a

I~--

140

I..
~

:€
~

a

~
~

..

I.

~

12

g

~

g

~

o
Ik

10k

lOOk

O. I 0.2

...
~

~

i

40
36

!i!

32

~

I.
~

g

~

'i

,

0.6

iii"
SHO~T~~~UIT -

0.2

CYRRfNT

o
-60

-20

20

60

2.0

5.0

r--

20
t6

~

..

140

~

Vs =*15V
'\. =2k
G. -100 pF
o

0.200 0.400 0.&00 0.800

Output Re818tance
V8 Frequency

o

~

JRAJSIE~T

RESPONSE

...100-1'"

1""" ...
1.0

~,.

.....

~~EW, RATE

1"bJ.

""$.R.

0.8

CLOSED LOOP

r

'jN,WI1H
-20

20

"

Ii'
10<

""\

PHA}.
SHIFT

10'
10

0.8

I

20

80

100

Ik

10k

140

Vs =*15V
TA = 25 0 C 45
'\. =;,:2kll

lOOk

FREQUENCY (Hz)

1M

I

"

-45

f'\..

10 100 Ik

:l!

~

~'N

f'\..

10" I

o
100

20

IVS=lI5V

1.2

10'

SUPPLY VOLTAGE (*V)

15

Open Loop Transfer
1r1 Characteri8tlcs V8 Frequency

I---I---::±C=l",-+-+--I

20

12

TEMPERATURE (oc)

T" =+25 0 C

15

14

10
INPUT VOLTAGE
RANGE l V - 8

10

0.8
-80

I

IAr--r--r--r--~~~

10

IS

Lo

o

T (I's)

__~~__-L_~~

.

.L

5

...

-5

Frequency Characterl8t1cs
V8 Supply Voltage

5

A

..

18

A

Frequency Characteristics
V8 Ambient Temperature

OUTPUT

AMBIENT TEMPERATURE (oc)

~6~-L

OUTPUT VOLTAGE
SWING-Vpp

24

12

20

I

SUPPLY VOLTAGE (lV)

INPUT

-10

i -

100

I

'\. -2kll

28

10

10

I

1""':':::: ~-

0.4

1.0

10k lOOk 1M 10M

15

'>
.5

r-'~~

,-

1.0
0.8

0.5

Ik

1.4

P~I-

'-1kHz
SUPPLY
1.4 -::-~~ER
CURRENT
,
1.2

1.2

:€

Tran81ent Re8ponse

-f-INP~ Rb,bAJCE Vs·~~

1.6

10 100

LOAD RESISTANCE (kll)

Normalized DC Parameter8
V8 Ambient Temperature
1.8

"

I

FREQUENCY (Hz)

,

1M

~

Output Swing and
Input Range V8
Supply Voltage

30
Vs =:i:15V
28
TA = 25 DC
26
24
22
20
IB
16
14
12
10

FREOUENCY (Hz)

2.0

-"

o

20

6

100

TA:'~

Output Voltage Swing
V8 Load Re8i8tance

1\

20

15

10

YS =:l:15Y

110

SUPPLY VOLTAGE (*V)

TA = +25 OC
Vs =*15V
'\. = 10kll

24

'oS--

vos - - -

Output Voltage Swing
V8 Frequency
32

"'-----

~

TEMPERATURE (Oc)

:€

IJI

1,--

0.8

120
100
10
80
70
60
50
40
30
20
10

1.0

O.S
80

Common Mode ReJection
Ratio V8 Frequency

,..

-90

~

-180

-135

~

~
~

.a

!

10k lOOk 1M 10M

FREQUENCY (Hz)
TL/HII 1479-2

1·373

•

........

~ ~~--~--------------------------~----~--~------------------------------------~

:!l

Typical Performance Characteristics
Input Resistance and
.'Input Capacitance
vs Frequency

:s
...!l'
B

i

lOll

100

1M

10

liDO
~.

~

~,

,10k

10

!

f:l

S
Ik

Broadband Noise for
Various Bandwidths

~

!;c'
lOOk

:/

(Continued)

III

i

~

lOOk

Ik

FREQUENCY (Hz)

10k

SOURCE

Inpllt Noise Voltage
and ,Current
vs Frequency

Voltage Follower Large
Signal Pulse Response

Ik

5i1~

II:

100

100

~.

o>~

Ib

10

~

~~

1.0

1.0

:II

100

Ik

10k

OUTPUT

5

!3

~

~

-5

0.1
lOOk

LM7.7 SLEW RATE
Vs·tlSV
T.' 25 0 C

INPUT

E

I!l

!!II,

III
<>
z;
~

lOOk

RESIST~NCE

~~.
20

.0

60

80

100

120

TIME ()'t)

FREQUENCY (Hz)

TLIH111479-3

1-374

IJ1National Semiconductor

LM748 Operational Amplifier
General Description

Features

The LM748 is a general purpose operational amplifier with
external frequency compensation.

•
•
•
•

The unity-gain compensation specified makes the circuit
stable for aU feedback configurations, even with capacitive
loads. It is possible to optimize compensation for best high
frequency performance at any gain. As a comparator, the
output can be clamped at any desired level to make it compatible with logic circuits.
The LM748C is specified for operation over the O'C to
+ 70'C temperature range.

Frequency compensation with a single 30 pF capacitor
Operation from ± 5V to ± 20V
Continuous short-circuit protection
Operation as a comparator with differential inputs as
high as ±30V
• No latch-up when common mode range is exceeded
• Same pin configuration as the LM101

Connection Diagram
Dual-In-Une Package
caMP

COMP
INPUT'

OUTPUT

INPur

V"

4

BALANCE
TUH/11,47B-2

Top View

Order Number LM748CN
See NS Package Number N08B

1-375

CD

~

:::&

"""

r---------------------------------------------------------------------------------,
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National $emlconductor Sales
OffIce/Distributors for availability and specifications.
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage

± 22V
500 mW
±30V

Input Voltage (Note 2)
Output Short·Circuit Duration (Note 3)
Operating Temperature Range:
LM74SP, .. '
Storage r emperature 'Range
Lead Temperature (Soldering. 10 sec.)

O"Cto +70C
- 65·C to +'150·C
+300·C

Electrical Characteristics (Note4)
Parameter

, .Conditions

Min

Typ

Max

Units

Input Offset Voltage

TA = 25·C. Rs:S;: 10 kO

1.0

5.0

mV

Input Offset Current

TA = 25·C

40

200

nA

Input Bias Current

TA = 25·C

120

500

Input Resistance

TA = 25·C

Supply Current

TA = 25·C. Vs = ±15V

Large Signal
Voltage Gain

TA = 25·C, Vs = ±15V
VOUT = ±10V. RL ~ 2 kO

Input Offset Voltage

RS:S;: 10kO

Average Temperature
Coefficient of Input
Offset Voltage
Input Offset Current

Input Bias Current

300

SOO
1.S

50

160

Large Signal
Voltage Gain
Output Voltage
Swing

mA
V/mV

6.0

mV

",vrc

6.0

TA = O·Cto +70·C

300

nA

TA = -55·Cto + 125·C

500

nA

TA = O"Cto +70"C

0.8

TA = -55·Cto + 125·C
Supply Current

2.S

3.0
RS:S;: 10kO

nA
kO

1.5

TA = + 125·C. Vs = ±15V

1.2

2.25

mA

TA = -55·Cto + 125·C

1.9

3.3

mA

Vs = ±15V, VOUT = ±10V
RL~2kO

25

VlmV

Vs = ±15V, RL = 10kO

±12

±14

V

Vs= ±15V,RL=2kO

±10

±13

V

±12

Input Voltage Range

Vs = ±15V

Common-Mode
Rejection Ratio

RS:S;: 10kO

Supply Voltage
Rejection Ratio

RS:S;: 10kO

V

70

90

dB

77

90

dB

Note 1: For operating at elevated temperatures, the device must be derated based on a maximum Junction to case thermal resistance of 45'C per wall. or 150'C
per wall junction to ambient. (See Curves).
Note 2: For supply voltages less than ± 15V, the absolute maximum Input voltage is equal to the supply voltage.
Note 3: Continuous short circuR is allowed for case temperatures to + 125'C and amblenttemperaturas to + 70'C.
Note 4: These specifications apply for ± 5V ,;; Vs ,;; + 15V and O'C ,;; TA ,;; + 70'C, unless otherwise specHied.

. 1-376

.-----------------------------------------------------------------------------, r
s::::
......
Typical Applications

ct

Inverting Amplifier with Balancing Circuit

Voltage Comparator for Driving
DTL or TTL Integrated Circuits

R2

Rl

INPUT o-~M....-4'--~M,....---.,
OUTPUT
6
>-.....
-0 OUTPUT

RS
S.llo1ll
TL/H/11478-4

R3
SOkll
iMay be zero or equal to parallel
combination of Rt and R2 for minimum offset.

TLlH/11478-3

Voltage Comparator for Driving
RTL Logic or High Current Driver
OUTPUT

INPUTS

TLlH/11478-5

Guaranteed Performance Characteristics (Note 4)
Output Swing

Input Voltage Range

Voltage Gain

20

">'
~

l!l
z

;:;

100

18

94
'01
.:!!.

"..

./

12

!;

./

l!l

~
g

i

./

~

V

o
5

88

<1

/»~+
~~

82

'7

10

15

20

10

15

SUPPLY VOLTAGE (.v)

20

'"

J

78

I
I

70
SUPPLY VOLTAGE (.v)

~\","",

5

10

15

20

SUPPLY VOLTAGE (.v)

TL/H111478-6

1-377

!:Ii
....

Typical Performance Characteristics
Supply Current
2.5

-;;:

2.0

~
a

1.5

..s
~

I

I

--

T• • _5S oC

1.0

i

lAo

it

iil

I
I

-":i"". 2S oC _
A

--

liD

.3
z

~

g

-

>"

"

.:!:!. 10.0

li1
~

TA = 12soe

~

~

5

TA

"""-

1 300

=25°C

is
ili
a

~

I
5

l

W

g

~

"

200

100

i'-

;i

60

~

40

g

"'

~

~

-75 -50 -25

--

0

"-

-

25

50

""c,

20

c, •

I

I

10

100

Ik

c,

li1
~

~

30pF

~

c, •

-

:E
'"z

III
• 3pF

Ik

~

~

-2

g

-4

!::;

FREQUENCY (Hz)

I~

'M

10~

-,...

p

,
--

INPUT -

I

~

"(

,-

TA .IZ51oc
'Is

o

OUTPUT

I

I

-8
-10
lOOk

I~

I~

1\

~

30 pF

'" 'Ok

~

10

= 25°C

-6

o
10~

~

Voltage Follower
Pulse Response

\

\

"'
AMBIENT TEMPERATURE (Oe)

~

'\.

FREQUENCY (Hz)

12

LM748

o

Vs = :t1SV

>"

·3pF

10k lOOk 1M

'00

75 100125

TA

.:!l

\

-20

200

:<

:-

"'

300

Large Signal
Frequency Response

"""- ""
"" "'\.\
I

20

15

400

(Oc)

16

--- ""-

10

500

"
~

r-...

TE~PERATURE

TA = 25°C
Vs • ±1SV

1250ck I--

600

~
i:i

BIAS

OFFSET

TA =

I--

Maximum Power
Dissipation
~

o

120

80

_

~ 1250C _

SUPPLY VOLTAGE (OV)

..s

Open Loop
Frequency Response
100

5

20

'Is = .tlSV

OUTPUT CURRENT (OmA)

!z

15

400

= :I::15V

5.0

o
o

-IT.

'0

Input Current

'Is

-

SUPPLY VOLTAGE (OV)

Current Umiting
"""=: :::---

I I

I
I

10

20

1.---1'"

= 25°C
1

i-..

80

IS

I I
_ITA' :5soCI

= 12So c

1'A,

SUPPLY VOLTAGE (OV)

15.0

1

;;..-"

90

400

T'~~

~

100

!::;

I
I
I

10

...
;i

-

125°C

I
I
I

0.5

-

-

I

:=

Input Bias Current

Voltage Gain
120

= :ttSV

'0 20 30 40 50 60 70 80
TIME (,,5)
TUH/11478-7

1-378

t!lNational Semiconductor

LM759/LM77000
Power Operational Amplifiers
General Description

Features

The LM759 and LM77000 are high performance operational
amplifiers that feature high output current capability. The
LM759 is capable of providing 325 mA and the LM77000
providing 250 mAo Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers
are designed to operate from a single or dual power supply
with an input common mode range that includes the negative supply. The high gain and high output power provide
superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making
the LM759 and LM77000 essentially indestructible.

• Output current
LM759-325 mA minimum
LM77000-250 mA minimum
• Internal short circuit current limiting
• Internal thermal overload protection
• Internal output transistors safe-area protection
• Input common mode voltage range includes ground or
negative supply

Applications
•
•
•
•

Voltage regulators
Audio amplifiers
Servo amplifiers
Power drivers

Connection Diagrams and Ordering Information
He

ff]

OUT

v-

!=
-IN

TUH/l0075-2

Top View

vTL/H/l007S-1

Lead 4 connected to case.

Top View

Order Number LM759MH, LM759CH or LM759H/883
See NS Package Number H08C

1-379

Order Number LM759CP or LM77000CP
See NS Package Number P04A

Absolute Maximum Ratings
Internal Power Dissipation (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature Range
Metal Can
- 65°C to + 175°C
Plastic Package
- 65°C to + 150°C
Operating Junction Temperature Range
Military (LM759M)
-55°C to + 1500C
Commercial (LM759C, LM77000C)
O~C to + 125°C
Lead Temperature
Metal Can (soldering, 60 sec)
300°C
265°C
Plastic Package (soldering. 10 sec)

Inte;nally Limited
'

,

Supply Voltage

±18V

Differential Input Voltage

30V
±15V

Input Voltage (note 2)

,

LM759
Electrical Characteristics TJ
Symbol

= 25°C, Vcc = ± 15V, unless otherwise specified

Parameter

Conditions

Min

Rs S; 10kn

Typ

Max

Units

VIO

Input Offset Voltage

1.0

3.0

mV

110

Input Offset Current

5.0

30

nA

liB

Input Bias Current

50

150

ZI

Input Impedance

Icc

Supply Current

0.25

1.5
12

V+ - 2VtoV-

nA
Mn

18

mA

V+ -2VtoV-

V

±200

mA

VIR

Input Voltage Range

los

Output Short Circuit Current

Ivcc-vol = 30V

10 PEAK

Peak Output Current

3.0V S; Ivcc-vol S; 10V

±325

±500

mA

Avs

Large Signal Voltage Gain

RL ~ 50.0., Vo = ±10V

50

200

V/mV

TR

Transient Response

300

ns

I Rise Time

RL = 50.0.. Av = 1.0

" 5.0

lOvershoot
SR

Slew Rate

RL = 50.0., Av = 1.0

BW

Bandwidth

Av = 1.0

The following specifications apply for -55°C S; TJ S;
VIO

Input Offset Voltage

110

Input Offset Current

.'

%

0.6

V//Jos

1.0

MHz

+ 150°C

RsS;10kn

liB

Input Bias Current

CMRR

Common Mode Rejection Ratio

Rs s; 10kn

PSRR

Power Supply Rejection Ratio

Rs S; 10kn

Avs

Large Signal Voltage Gain

RL

VOP

Output Voltage Swing

RL = 50.0.

4.5

mV

60

nA

300

~

80

50.0., Vo = ±10V

\

1-380

100

nA
dB

80

100

dB

25

200

V/mV

±10

±12.5

V

LM759C
Electrical Characteristics TJ = 25°C, Vee =
Parameter

Symbol
VIO

Input Offset Voltage

110

Input Offset Current

liB

Input Bias Current

ZI

Input Impedance

±15V, unless otherwise specified

Conditions

Min

Rs';: 10kn

lee

Supply Current

VIR

Input Voltage Range

los

Output Short Circuit Current

IVee-vol

10 PEAK

Peak Output Current

3.0V,;: IVee-vol ,;: 10V

Avs

Large Signal Voltage Gain

RL:;' 50n, Vo

TR

Transient Response

Typ

Max

Units

1.0

6.0

mV

5.0

50

nA

50

250

1.5

V+ -2VtoV-

V+ - 2VtoV-

V

±200

rnA

12

I Rise Time
I Overshoot

RL

SR

Slew Rate

RL

BW

Bandwidth

Av

The following specifications apply for 0" ,;: TJ ,;:

=
=
=

=

30V

50n,Av

50n,Av

=

±10V

=

1.0

=

nA

0.25

Mn
18

rnA

±325

±500

rnA

25

200

V/mV

300

ns

10

%

0.5

V/p.s

1.0

MHz

1.0

1.0

+ 125°C

VIO

Input Offset Voltage

7.5

mV

110

Input Offset Current

Rs';: 10kn

100

nA

liB

Input Bias Current

400

CMRR

Common Mode Rejection Ratio

Rs';: 10kn

70

PSRR

Power Supply Rejection Ratio

Rs';: 10kn

Avs

Large Signal Voltage Gain

RL:;' 50n, Vo

VOP

Output Voltage Swing

RL

=

=

50n

1-381

±10V

100

nA
dB

80

100

dB

25

200

V/mV

±10

±12.5

V

LM77000
Electrical Characteristics TJ =
Symbol

25°C, Vee = ± 15V, unless otherwise specified

Parameter

VIO

Input Offset Voltage

110

Input Offset Current

Conditions

Min

Rs s; 10kO

liB

Input Bias Current

ZI

Input Impedance

lee

Supply Current

VIR

Input Voltage Range

los

Output Short Circuit Current

IVee-vol = 30V

10 PEAK

Peak Output Current

3.0V s; IVee-vol s; 10V

±250

RL;;;' 500, Vo = ±10V

25

Typ

Max

1.0

8.0

mV,

5.0

50

nA

50

250

0.25

1.5

+ 13 to V-

+13toV-

12

Avs

Large Signal Voltage Gain

TR

Transient Response

I
I

Rise Time

RL = 500, Av = 1.0

Overshoot

Units

nA
MO

18

mA
V

±200

mA

±400

mA

200

VlmV

300

ns

10

%

SR

Slew Rate

RL = 500,Av = 1.0

0.5

VIILs

BW

Bandwidth

Av = 1.0

1.0

MHz

The following specifications apply for 0°

S;

TJ

S;

+ 125°C

VIO

Input Offset Voltage

110

Input Offset Current

Rs

100

nA

liB

Input Bias Current

400

nA

CMR

Common Mode Rejection

S;

10kO

10

Rs

S;

10kO

70

S;

10kO

80

100

dB

25

200

VlmV

±10

±12.5

V

PSRR

Power Supply Rejection Ratio

Rs

Avs

Large Signal Voltage Gain

RL;;;' 500, Vo = ±10V

VOP

Output Voltage Swing

RL = 500

100

mV

dB

Nota 1: A~hough the internal power dissipation is limited, the iunction temperature must be kept below the maximum specified temperature in order to meet data
sheet spscilications. To calculate the maximum iunction temperature or heat sink required, use the thermal resietance values which follow the Equivalent Circuit
Schematic.
Nota 2: For a supply voltage less than 30V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage.
Nota 3: For military electrical specifications RETS759X are available for LM759H.

I:,

\

1·382

m

.a
c
C!'
C»

RI

v+

CD
~

0

Z3

~'

n
c

;::;

Q28
RI4

1M
ISO
RI6
2

-IN

OUT

RI7
+IN

2

I

RIB

1M
ISO

~

""

I

,t

----J:..

032

R22
30

Q6

ZI

I

H..QU QI5 . .J--'--{..QI6 L..{..QI7

L-.[.QIS

I

Z4

R20
Uk

v-OFFSET
NULL

+ OFfSET
NULL
TUH1I0075-3

Note: All resistor values in ohms.

OOOL.lW1/6SL.W1

Typ
Package

Max
8JC

Typ

8JC

8JA

Max
8JA

·C/W

·C/W

·C/W

·C/W

Plastic Package (P)

8.0

12

75

80

Metal Can (H)

30

40

120

150

Mounting Hints
Metal can Package (LM759CH/LM759MI1)
The LM759 in the 8-Lead TO-99 metal can package must
be used with a heat sink. With ± 15V power supplies, the
LM759 can dissipate up to 540 mW in its quiescent (no
load) state. This would result In a 1000C rise in chip temperature to 125·C (assuming a 25"C ambient temperature). In
order to avoid this problem, it Is advisable to use either a slip
on or stud mount heat sink with this package. If a stud
mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the
case of the LM759 is internally connected to the negative
power supply terminal.
PlastiC Package (LM759CP/LM77000CP)
The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either
one of the many heat sinks which are commercially available, a piece of metal such as the. equipment chassis, or a
suitable amount of copper foil as on a double sided PC
board. The important thing to remember is that the negative
power supply connection to the op amp must be made
through the tab. Furthermore, adequate heat sinking must
be provided to keep the chip temperature below 125·C under worst case load and ambient temperature conditions.

P M = TJMax-TA or
D ax
8JC + 8CA
= TJ Max - TA (without a heat sink)

8CA = 8cs

+

8JA
8SA

SolvingTJ:
TJ =
=
Where:
TJ
TA
PD
8JA
8JC
8CA
8cs
8SA

TA + PD (8JC + 8cA> or
TA + PD8JA (without a heat Sink)
= Junction Temperature
= Ambient Temperature
= Power Dissipation
= Junction to ambient thermal resistance
= Junction to case thermal resistance
= Case to ambient thermal resistance
= Case to heat sink thermal resistance
= Heat sink to ambient thermal resistance

1-384

Typical Performance Characteristics
Frequency Response for
Various Closed Loop Gains

100
,

10

,

I
~

~

...

Open Loopvs
Frequency Response

100
10

"

80

70
80
110

"

:

~=

....
'" I '

...

1(p 10'

102 103 104 105 10' 107

Vex: = tl5V

1

,

>

["'J

~

a

IIJ
IIIf

TJ = l5O'C

V

II

10

0
-2 I-4

I-

-e

I
100

f-

2

10
Vee = tl5V
~ = 50A
20Vp.p

I

40
20

Ay = 20dB

10

§

....
103

~

•

.,

r

~-

10

•

Yc:c = t15V
TA = 25"C

1

RISE TIllE 0.22 jill

r- ~- r- II
TIlE

Vee = tl5V
~=5OA C1. = lOOpF
TA = 25"C

-P'

Input Noise Voltage
vs Frequency
103

=
=

Vc:c t15V
TA 25"C

RL
1

W

o.oz 0.D5 0.1 0.2

0.5 1.0 2

5 10

FREOUENCY - Hz

Short Circuit Current
vs Junction Temperature

Noise Current

'0' vs Frequency

I
II

0Q2Q.4111l1lll1.o1.2U

jill

Vee • t IIY (324)
Yee = tin (1111,111)
f= 1kHz
1.0 Ay = I

11-

10'

80lI

10

i

105

Voltage Follower
Transient Response

·1\

I

104

FREQUENCY - Hz

POWER OUTM - W

Peak Output Current
vs Output Voltage

800

8OOr.=~~~~~rT~

700

1, 500 1-t--r-r--r':"'-r-t:..II""FF=t-I

'800

1500
6400

=::~H~_

......

:'" ro....

.......

§ 400 I-t--t-+-t-:.I"'++-++-+-I-l
~

'" ...... ......

i

300
lli200
ili 100

tl 300 H7flC-H-+-H-++-H--f
5
~
o 200 I-+-Hrl-+-t-+-+-+-t-H

~100r+++~rl-+-+~~
110

FREQUENCY - Hz

1\

15

Total Harmonic Distortion
vs Power Output

0.001
0.01

10-2 1
10

~ ~

~

INM

TIllE -

1

....

20

~

01020304011060

Ay = OdS

"

~

102

BA

1

'

25

.l

0U1PUT

I

1000

Total Harmonic Distortion
vs Frequency

I
1

Vee = t15V-t
~=5OA I •
TA = 25"C

LOAD RESISIANCE - II

.,

:

,

Voltage Follower Large
Signal Pulse Response

TJ = 25"C

10

I J.

Vee = tl5V
RL=5OATA = 25"C

102 103 104 105 10' 107

IIII

25

15

I

J III

30

20

"

120
100

35

FREQUENCY - Hz

Output Voltage vs
Load Resistance

~

r-

~20

FREQUENCY - Hz

~

P1fASE

",

1(p 10'

J,

GoIIN

"

! -1:

Output Voltage
vs Frequency
180
160
140

100

JUNCTION TEllPERA1UR£ - "C

1110

12

18

:u

30

36

OUTPUT VOLTAGE - V
TUH/l0075-4

1·385

Applications

" '~

Offset NUll Circuit

Paralleling LM759 Power Op Amps

D.~

D.•SA

Audio Applications

TLlH/10075-6

Low Cost Phono Amplifier
C2.
10pF

R3
25k

Speaker
Output
Impedance Power
. (Watts)
(Ohms)

I

4
8
16
32

Cl

Rl
47k

CRYSTALi.~
-

CARTRIDGE

PI 0.05 I'F
25k

P2
10k

VOL
CONT

TONE
CONTROL

. TLlH/10075-7

1-386

0.18
0.36
0.72
1.44

MI~
Supply VOp_p
. (Volts)
(VoIW) .,

9.
12
15
25

2.4
4.8
9.6
19.2

,-----------------------------------------------------------------------------,
Applications (Continued)

~

Bi-DirecJlonallntercom System Using the LM759 Power Op Amp
+12V

§
+12V
BALANCE
16.0.

XTAL
MIKE

VOLUME
25k

-12V

,, ),1 1

2.7k

TONE
CONTROL
(OPTIONAL)

,, ),1 1
+12V
BALANCE

16.0.

XTAL
MIKE

~

a:
.......
en
CD
.....
a:
.......

VOLUME
2.7k

1k

-12V
TONE
CONTROL
(OPnoNAL)
TLlH/l0075-9

Features:
Circuit Simplicity
1 Watt of Audio Output
Duplex operation with only on,e two-wire cable as 'interconnect.
Note 1: All resistor values in ohms.

1-387

Applications (Continued)

Servo Applications

High Sl~w Rate Power Op AmplAudio Amp

AG Servo Ampllfler-Brldge Type
C

30n

VI

SOk

-;i E--'lAfv-......---'W~.,

10 pF

10k
5.1 k '

+~V--~~--~---t

t-----vo

v..J..AJ

o

5. f k

....---If--'w...-..

2 PHASE
SERVOMOTOR

L - - - - - - - < l I - - -.....--vs

.I

0.47 J.\F

10k
TL/H/fOO75-fO

Features:
High Slew Rate 9 V/,...s
High 3 dB Power Bandwidth 85 kHz
18 Watts Output Power into an 80 'load.
Low Distortion---Q.2%, 10 Vrms, 1 kHz into 80
Design Consideration
Av ~ 10

TL/H/fOO75-fl

Features:
Gain of 10
Use of LM759 Means Simple Inexpensive Circuit
Design Considerations:
325 rnA Max Output Current
DC Servo Amplifier
Sk

SOk

+15V
O.II'F

..ri

1
Features:
Circuit Simplicity
One Chip Means Excellent Reliability
Design Considerations
10 ~ 325 mA
Note 1: All resistor values in ohms.

1·388

SERVOMOTOR

TL/H/l0075-12

Regulator Applications
Adjustable Dual Tracking Regulator

+~---------------,

+7V TO +35V

~----------~~--'---+Vo

5.6k
1%

2J1.f
-VI

5.6k
1%

--il_--I

-7V TO -35V

t-.....- -.....-

.....--Vo
TUH/1OO75-13

Features:
Wide Output Voltage Range (±2.2V to ±30V)
Excellent Load Regulation I:.vO < ±5 mV for ~Io = ±O.2 A
Excellent Line Regulation ~Vo < ±2 mV for ~VI = 10V
Note 1: All resistor values in ohms.

10 Amp -

12 Volt Regulator

VI

15-25V - -.....- -.....- - - - - - - - - - .
Rl
12

Q.4

2N2612
+

I

Vo

15J1.f
@25V

=12V

R5

9.1 k

R6

3k

R7
100

6.2V

Features:
Excellent Load and Line Regulation
Excellent Temperature Coefficient-Depends
Largely on Tempco of the Reference Zener
Note 1: All resistor values In ohms.

I
TUH/1OO75-14

1-389

~ ~-------------------------------------------------------------------------------.

~

dNational
....:g~ VI'

Semiconductor

II)

~ LM 1558/LM 1458 Dual Operational Amplifier
General Description

Features·
•
•.
•
•
•
.•

The LM1558 and the LM1458 are general purP9se dual operational amplifiers. The two amplifiers share a common
bias network and power supply leads. otherwise, their operation is completely independent.
The LM1458 Is identical to the LM1558 except that the
LM1458 has its specifications guaranteed over the temperature range from O'C to + 70'C instead of - 55'C to
+ 125'C.

No frequency compensation required
Short-circuit protection
Wide common-mode and differential voltage ranges
Low-P9wer consumption
8-lead can and 8-lead.mini DIP
No latch up when input common mode range is
exceeded
.

Schematic and Connection Diagrams
r-~--------~,-----,,--------------~,---------~--r

..
2&

1171

Rli
lUK

...----....--1. .--1. .- ....-

117

OUTPUT

Rl.
&I

a.
011

Rl
1.

AI
1.

R3

n.

1M

Rl1

R12

saK

5.

sa

vNote: Numbers in parentheses are pin

TLlH/7886-1

~u"'bers for amplnier 8.
Dual-In-Une Package

Metal Can Package
v+

v+

OUTPUT A

~-t~- OUTPUT B

INVERTING INPUT A

'--+-INVERTING INPUT B

vTL/HI7886-2

Top View
Order Number LM1558H,
LM1558H/883 or LM1458H
See NS Package Number H08C

V---t-------'
TL/HI7a86-:i

Top View
Order Number LM1558J, LM1558J/883, LM1458J, LM1458M or LM1458N
See NS Package Number J08A, M08A or N08E
1-390

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 4)
Supply Voltage
±22V
LM1558
LM1458
±18V
Power Dissipation (Note 1)
LM1558H/LM1458H
500mW
LM1458N
400mW
Differential Input Voltage
±30V
±15V
Input Voltage (Note 2)
Output Short-Circuit Duration
Continuous

Operating Temperature Range
LM1558
- 55°C to + 125°C
LM1458
O"Cto +70"C
Storage Temperature Range
-65°C to + 150"C
Lead Temperature (Soldering, 10 sec.)
260"C
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
260"C
Small Outline Package
Vapor Phase (60 seconds)
215°C
Infrared (15 seconds)
220"C
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 5)
300V

Electrical Characteristics (Note 3)
Parameter

LM1558

Conditions

=
=
=
=
=

LM1458

Typ

Max

1.0

5.0

25°C

80

200

25°C

200

500

Min
Input Offset Voltage

TA

Input Offset Current

TA

Input Bias Current

TA

Input Resistance

TA

Supply Current Both
Amplifiers

TA

Large Signal Voltage Gain

TA = 25°C, Vs = ±15V
VOUT = ±10V, RL ~ 2 kO

Input Offset Voltage

Rs s; 10kO

25°C, RS

S;

10 kO

0.3

25°C
25°C, Vs

= ±15V

1.0
3.0

50

Min

0.3
5.0

160

Max

1.0

6.0

mV

80

200

nA

200

500

1.0
3.0

20

Units

Typ

nA
MO

5.6

160

mA
V/mV

6.0

7.5

Input Offset Current

500

300

nA

Input Bias Current

1.5

0.8

p.A

Large Signal Voltage Gain

Vs = ±15V, VOUT
RL ~ kO

Output Voltage Swing

Vs

= ±10V

25

15

mV

V/mV

= ±15V, RL = 10 kO
RL = 2 kO

±12

±14

±12

±14

V

±10

±13

±10

±13

V

= ±15V

±12

Input Voltage Range

Vs

Common Mode
Rejection Ratio

Rs s; 10kO

70

±12
90

70

V
90

dB

Supply Voltage
Rs s; 10kO
77
96
77
96
dB
Rejection Ratio
Note 1: The maximum junction temperature of the LM1558 is 150'C, while that of the LM1458 is l00'C. For operating at elevated temperatures, devices In the HOS
package must be derated based on a thermal resistance of 150'C/W, junction to ambient or 20'C/W, junction to case. For the DIP the device must be derated
based on a thermal resistance of 187"C/W, junction to ambient.
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the suppiy voltage.
Note 3: These specifications apply for Vs = ± 15V and - 55'C ,;; TA ,;; 125'C, unless otherwise specHied. Wijh the LM1458, however, all specifications are limited
toO'C';; TA';; 70'CandVs = ±15V.
Note 4: Refer to RETS 1558V for LM1558J and LM1558H military speCifications.
Note 5: Human body model, 1.5 kG in series wijh 100 pF.

1-391

U)

IX;

~

r--------------------------------------------------------------------------------,

tfI

Nat ion a I S e m. i con d uc tor

LM 1875 20W Audio Power Amplifier
General Description

Features

The LM1875 is a monolithic power ,amplifier offering very
low distortion and high quality performance for consumer
audio applications.

•
•
•
•
•
•
•
•
•
•
•

The LM1875 delivers 20 watts into a 40. or 80. load on
± 25V supplies. Using an 80. load and ± 30V supplies, over
30 watts of power may be delivered. The amplifier is designed to operate with a minimum of external components.
Device overload protection consists of both internal current
limit and thermal shutdown.
The LM1875 design takes advantage of advanced circuit
techniques and processing to achieve extremely low distortion levels even at high output power levels. Other outstanding features include high gain, fast slew rate and a wide
power bandwidth, large output voltage swing, high current
capability, and a very wide supply range. The amplifier is
internally compensated and stable for gains of 10 or greater.

Up to 30 watts output power
AvO typically 90 dB
Low distortion: 0.015%, 1 kHz, 20 W
Wide power bandwidth: 70 kHz
Protection for AC and DC short circuits to ground
Thermal protection with parole circuit
High current capability: 4A
Wide supply range 16V-60V
Internal output protection diodes
94 dB ripple rejection
Plastic power package TO-220

Applications
•
•
•
•
•

High performance audio systems
Bridge amplifiers
Stereo phonographs
Servo amplifiers
Instrument systems

Typical Applications

Connection Diagram

+ Vee
C3

411-811

p

O.Iid'r
Cl
'='

VIN

10 1 il!! ::~T

,2.2 PF
Rl

1M

+IN

'='
TLiH/5030-1

-VEE ....- - - . C6
C4

Front View

O.l pF

T

'![iOO"F

'='R4

'='

20k

R3
lk

Order Number LM1875T
see NS Package Number T05B

+ C2
T22 p F

'='
TLiH/5030-2

1-392

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage

60V

Input Voltage

-65·Cto

Storage Temperature

-VEE to Vee

+ 150"C

Junction Temperature

150"C

Lead Temperature (Soldering, 10 seconds)
8Je
8JA

26O"C
3·C
73·C

Electrical Characteristics
Vcc=

+ 25V,

-VEE= -25V, TAMBIENT=25·C, RL =8.0, Av=20 (26 dB), fo= 1 kHz, unless otherwise specified.
Typical

Tested Limits

Units

Supply Current

Parameter

POUT = OW

Conditions

70

100

mA

Output Power (Note 1)

THD=1%

25

THD(Note 1)

POUT = 20W,
POUT = 20W,
POUT=20W,
POUT=20W,

fo=1 kHz
fo=20 kHz
RL =4.0, fo= 1 kHz
RL =4.0, fo=20 kHz

Offset Voltage
Input Bias Current
Input Offset Current

0.Q15
0.05
0.022
0.07

W

0.6

%
%
%
%

±1

±15

mV

±0.2

±2

poA

0

±0.5

poA

Gain-BandWidth Product

fo=20 kHz

5.5

Open Loop Gain

DC

90

PSRR

Vee, 1 kHz, 1 Vrms
VEE, 1 kHz, 1 Vrms

95
83

Max Slew Rate

20W, 8.0, 70 kHz BW

8

Current Limit

VOUT = VSUPPLY -10V

4

Equivalent Input Noise Voltage

Rs=600.o, CCIR

3

0.4

MHz
dB
52
52

dB
dB
V/pos

3

A
poVrms

Note 1: Assumes the use of a heat sink having a thermal resistance of I·C/W and no insulator with an ambient temperature of 25·C. Because the output limiting
circuitry has a negative temperature coeIIicient, the maximum output power delivered to a 40 load may be slightly reduced when the tab temperature exceeds

55·C.

Typical Applications

(Continued)
Typical Single Supply Operation
Rl
22k

..J!:.. C2

.J:.

hi: 7
-

,

Cl

-

C4
Vee 0.1 ""

R2
22k

Tl0/'F

R4
1M

Jb.
I

:~

ft~OO/'F

1~5

"='
4

LM1B75

~

_

V

R7
1

3

C6

~~

I': -

C5-1...
0.22""T

C3
10 /,F

p~+

R5
10k

""=' R6
200k

TUH/5030-3

,

1-393

.... r-------------------------------------------------------------------------------------,
.- Typical Performance Characteristics
Power Output vs Supply
:!
THD vs Power Output
THD vs Frequency
Voltage
~

CD

1.0

0.1

g

35

Vs = :t25V

o.os
o.os

vs:t 25V

Po = lOW

1\=84
tHD = 111

30

om

I~

:

~

0.11:;i

0.1

= 44

-- -~

1\=84

i..;'

RL

G.02 ""-

/

,/

0.01

I 111111

0.01

\.

0J)3

It ~I~I~

1

o

1.0

10

50 100 200 500 lk 2k

20

100

POWER OUTPUT (W)

o
o

5k 10k 20k

Supply Current vs Supply
Voltage

45r-r-r-~~~~~,

so

.."

4OF=~IN~~~~H~~+J~~+NK~~_1

I~

1 1

80
POSIIIVE SUPPLY
70

.."
~

-

60
50

f--

/1 l'..
N~1lVE SUPPLY"i"o
1

35~~~~~-+-+~

I

30~~~~~~~

! 15~~~~~~~~,

1

o L-...L-...L.-L.-L.-L.-L.::

50 100200 500 lk 2k

20

SUPPLY VOLTAGE (:tV)

HEAT ~

5 1O'C

1 Vnno

o

051015202530

g

•

«l
30 INPUTllfFEllRml
20 lis = 0
10 RL = 4

o

30

Device Dissipation vs
Ambient Temperaturet

PSRR vs Frequency
100

,,""

10 15 20 25
SUPPLY VOLTAGE (:tV)

FREQUENCY (Hz)

100

/

/

g0JJ6

o

5k 10k 2IIk

20 «l 80 80 100120140180
TA - AMIIIEIIT 1BIP£RAlURE (Ge)

F1I£QUENCY (Hz)

tINTERFACE = l·C/W.
See Application Hints.

Power Dissipation vs
Power Output
Vs = UOV

g:
I
45

.:
30

III 15
~

-

.

50

50

.:
~

Vs •

nov

~ ~=:tl~
1 1
o

III
~

10

o

10

15

RL = 44
10= 1kHz

20

25

35
30

o

Vs = :t25V

/.

~ ~Vs=*15VF 10 15
20 25
POWER OUTPUT (W)

POWER OutPUT (W)

Open Loop Gain and
Phase vs Frequency

30

=~~

20

15
10

'"

135

15200

so

~

OUTPUT VOLTAGE (V)

TA

-45

~ ill 100

-90

-151-~t+Htttt-+-H+++PII-135

-180
1Il0l

~

---

r-::: ~ ......
= riC'

150

~

111

30

~25D r--

~

lOOk

,. . . r-. .;' ~"

-8
-25-20-15-10 -5 0 5 10 15 20 25

~7O'C

~I

180

45

-20

I-

Input Bias Current

5

-10

,

500 vs Supply Voltage

P:'"~;:~

25

1\

1\

Vs =:t2DV ' -

o

30

!-I-'~

Vs =:t3OV

[...000'"

15
'F
10

5

,," -.... \
[,

10= 1kHz

g40

Vs = :t25V

.....

8

45 1\=84

-- -- ...,q:.. -- -1
-- ~-,. -~- -.....1--- -/

lOUT vs Vo~urrent Llmltl
Sate Operating Area Boundary

Power Dissipation vs
Power Output

50

o
o

5

10

15

20

25

30

SUPPLY VOLTAGE (:tV)

FREQUENCY (Hz)

TL/H/5030-4

'Thermal shutdown with infinite heat sink
"Thermal shutdown wilh I'C/W heat sink

1-394

r-----------------------------------------------------------------------------~ ~

....
CD

!:::

Schematic Diagram

.....

UI

III

1·395

"'
r---------------------------------------------------------------------------------,
r...
~
:::E

....

Application Hints

STABILITY

CURRENT LIMIT AND SAFE OPERATING AREA (SOA)
PROTECTION

The LM1875 is designed to be stable when operated at a
closed-loop gain of 10 or greater, but, as with any other
high-current amplifier, the LM1875 can be madjjto oscillate
under certain conditions. These usually involve printed circuit board layout or output/input coupling.

A power amplifier'S output transistors can be damaged by
excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the
design of the external power supply, while the maximum
current passed by the output devices is usually limited by
internal circuitry to some fixed value. Shorl-term power dissipation is usually not limited in monolithic audio power amplifiers, and this can be a problem when driving reactive
loads, which may draw large currents while high voltages
appear on the output transistors. The LM1875 not only limits
current to around 4A, but also reduces the value of the limit
current' when an output transistor has a high voltage across
it.

Proper layout of the printed circuit board is very important.
While the LM1875 will be stable when installed in aboard
similar to the ones shown in this data sheet, it is'sometimes
necessary to modify the layout somewhat to suit the physical requirements of a particular application. When designing
a different layout, it is important to return the load ground,
the output compensation ground, and the low level (feedback and input) grounds to the circuit board ground point
through separate paths. Otherwise, large currents flowing
along a ground conductor will generate voltages on the conductor' which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion.
It is advisable to keep the output compensation components and the 0.1 JLF supply decoupling capacitors as close
as possible to the LM1875 to reduce the effects of PCB
trace resistance and inductance. For the samereasori, the
ground return paths for these components should be as
.
short as possible.

When driving nonlinear reactive loads such as motors or
loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load
whose terminal voltage may attempt to swing beyond the
power supply voltages applied to the amplifier. This can
cause degradation of the output transistors or catastrophic
failure of the whole circuit. The standard protection for this
type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These
are pari of the internal circuitry of the LM1875, and needn't
be added externally when standard reactive loads are driven.

Occasionally, current in the output leads (which function as
antennas) can be coupled through the air to the amplifier
input, resulting in high-frequency oscillation. This normally
happens when the source impedance is high or the input
leads are long. The problem can be eliminated by placing a
small capacitor (on the order of 50 pF to 500 pF) across the
circuit input.

THERMAL PROTECTION
The LM1875 has a sophisticated thermal protection scheme
to prevent long-term thermal stress to the device. When the
temperature 'on the die reaches 17O"C, the LM1875 shuts
down. It starts operating again when the die temperature
drops to about 145°C, but if the temperature again begins to
rise, shutdown will occur at only 150"C. Therefore, the device is allowed to heat up to a relatively high temperature if
the fault condition is temporary, but a sustained fault will
limit the maximum die temperature to a lower value. This
greatly reduces the stresses imposed on the IC by thermal
cycling, which in turn improves its reliability under sustained
fault conditions.

Most power amplifiers do not drive highly capacitive loads
well, and the LM1875 is no exception. If the output of the
LM1875 is connected directly to a capacitor with no series
resistance, the square wave response will exhibit ringing if
the capacitance is greater than about 0.1 JLF. The amplifier
can typically drive load capacitances up to 2 ,...F or so without oscillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 10) should be
placed in series with the output of the LM1875. A method
commonly employed to protect amplifiers from low imll'ldances at high frequencies is to couple, to the load through a
10n resistor in parallel with a 5 ,...H induct,or.

Since the die temperature is directly dependent upon the
heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached
during normal operation. Using the best heat sink possible
within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor
device.

DISTORTION
The preceding suggestions regarding circuit board grounding techniques will also help to prevent excessive distortion
levels in audio applications. For low THO, it is alsonecessary to keep the power supply traces and wires separated
from the traces and wires connected to the inputs of the
LM1875. This prevents the power supply currents, which
are large and nonlinear, from inductively coupling to the
LM1875 inputs. Power supply wires should be twisted together and separated from the circuit board. Where these
wires are soldered to the board, they should be perpendicular to the plane of the board at least to a distance of a
couple of inches. With a proper physical layout, THO levels
at 20 kHz with lOW output to an 8n load should be less
than 0.05%, and less than 0.02% atl kHz.

POWER DISSIPATION AND HEAT SINKING
The LM1875 must always be operated with a heat sink,
even when it is not required to drive a load. The maximum
Idling current of the device is 100 mA, so that on a 60V
power supply an unloaded LM1875 must dissipate 6W of
power. The 54°C/W junction-to-ambient thermal resistance
of' a TO-220 package would cause the die temperature to
rise 324°C above ambient, so the thermal protection circuitry will shut the amplifier down if operation without a heat
sink is attempted.

1-396

Application Hints (Continued)
In order to determine the appropriate heat sink for a given
application, the power dissipation of the LM1875 in that application must be known. When the load is resistive, the
maximum average power that the IC will be required to dissipate is approximately:

If a mica insulator is used, the thermal resistance will be
about 1.S'C/W lubricated and 3.4'C/W dry. For this example, we assume a lubricated mica insulator between the
LM1875 and the heat sink. The heat sink thermal resistance
must then be less than
4.2"C/W-2'C/W-1.S'C/W=0.6'C/W.

VS2
PO(MAX) ::::: 21T2RL + Po

This is a rather large heat sink and may not be practical in
some applications. If a smaller heat sink is required for reasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be reduced to
50"C (122"F), resulting in a 1.S'C/W heat sink, or the heat
sink can be isolated from the chassis so the mica washer is
not needed. This will change the required heat sink to a
1.2"C/W unit if the case-to-heat-sink interface is lubricated.

where Vs is the total power supply voltage across the
LM1875, RL is the load resistance, and Po is the quiescent
power dissipation of the amplifier. The above equation is
only an approximation which assumes an "ideal" class B
output stage and constant power dissipation in all other
parts of the circuit. The curves of "Power Dissipation vs
Power Output" give a better representation of the behavior
of the LM1875 with various power supply voltages and resistive loads. As an example, if the LM1875 is operated on a
50V power supply with a resistive load of 80, it can develop
up to 19W of internal power dissipation. If the die temperature is to remain below 150"C for ambient temperatures up
to 70"C, the total junction-to-ambient thermal resistance
must be less than
150"C-70"C
19W

Note: When using a single supply, maximum transfer of heat away from the

LMt875 can be achieved by mounting the device directiy to the heat
sink (tab is at ground potential); this avoids the use of a mica or other
Iypa insulator.

The thermal requirements can become more difficult when
an amplifier is driving a reactive load. For a given magnitude
of load impedance, a higher degree of reactance will cause
a higher level of power dissipation within the amplifier. As a
general rule, the power dissipation of an amplifier driving a
SO' reactive load (usually considered to be a worst-case
loudspeaker load) will be roughly that of the same amplifier
driving the resistive part of that load. For example, a loudspeaker may at some frequency have an impedance with a
magnitude of 80 and a phase angle of SO'. The real part of
this load will then be 40, and the amplifier power dissipation
will roughly follow the curve of power dissipation with a 40
load.

C
4.2" /W.

Using 8Jc=2'C/W, the sum of the case-to-heat-sink interface thermal resistance and the heat-sink-to-arnbient thermal resistance must be less than 2.2'C/W. The case-toheat-sink thermal resistance of the TO-220 package varies
with the mounting method used. A metal-to-metal interface
will be about l'C/W if lubricated, and about 1.2"C/W if dry.

Component Layouts
Spilt Supply

Single Supply

GNU
TLlH/5030-7

TL/H/5030-6

1-397

~

~

~

,----------------------------------------------------------------------------,
t!lNational Semiconductor

LM 1877 Dual Audio Power Amplifier
General Description
The LM1877 is a monolithic dual power amplifier designed
to deliver 2W/channel continuous into 80 loads. The
LM1877 is designed to operate with a low number of exter·
nal components, and still provide flexibility for use in stereo
phonographs, tape recorders and AM·FM stereo receivers,
etc. Each power amplifier is biased from a common internal
regulator to provide high power supply rejection, and output
Q point centering. The LM1877 is internally compensated
for all gains greater than 10.

Features
• 2W/channel
• - 65 dB ripple rejection, output referred
• - 65 dB channel separation, output referred

•
•
•
•
•

Wide supply range, 8V-24V
Very low cross·over distortion
Low audio band noise
AC. short circuit protected
Internal thermal shutdown

Applications
•
•
•
•
•
•
•

Multi-channel audio systems
Stereo phonographs
Tape recorders and players
AM·FM radio receivers
Servo amplifiers
Intercom systems
Automotive products

Connection Diagram
Dual-In-Llne Package
or Surface Mount Package
14

BIAS

y+

,3 OUTPUT2

OUTPUT,

'Z GNO

GNO

Order Number LM1877M-9 or LM1877N-9
See NS Package Number M14B or N14A

BND
GND
INPUT,

INPUTZ

UEOBACKI

FEEDBACKZ
TL/H17913-1

Top View

Equivalent Schematic Diagram

..

,

.

+1NI'UT2

1·398

•

-FEEDBACK!

TUH17913-2

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
26V
Input Voltage
±0.7V
Operating Temperature
OOCto +700C
- 65'C to + 1500C
Storage Temperature
Junction Temperature

Lead Temperature
N-Package Soldering (10 sec.)
M:Package Inlared (15 sec.)
M-Package Vapor Phase (60 sec.)

260'C
220'C
215'C

Thermal Resistance
8JC (N-Package)
8JA (N-Package)
8JC (M-Package)
8JA (M-Package)

1500C

30'C/W
79"C/W
27'C/W
114'C/W

Electrical Characteristics
Vs = 20V, TA = 25'C, (See Note 1) RL = 80, Av = 50 (34 dB) unless otherwise specilied

Parameter

Conditions

Total Supply Current

Po= OW

Output Power
LM1877

THD = 10%
Vs = 20V, RL = 80
Vs = 12V, RL = 80

Min

Typ

Max

Units

25

50

mA

1.3

W/Ch
W/Ch

Po = 50 mW/Channel

0.075

%

Po = 500 mW/Channel

0.045

%

Po"'; 1 W/Channel

0.055

%

Output Swing

RL = 80

Vs-6

Vp-p

Channel Separation

CF = 50 p.F, CIN = 0.1 p.F,
I = 1 kHz, Output Relerred
-70

dB

-60

dB

-65

dB

-40

dB

Rs = 0, CIN = 0.1 p.F,
BW = 20 Hz-20 kHz, Output Noise Wideband

2.5

p.V

Rs = 0, CN = 0.1 p.F, Av 200

0.80

mV

Total Harmonic Distortion
LM1877

2.0

I = 1 kHz, Vs = 14V

-50

Vs = 20V, Vo = 4 Vrms
Vs = 7V, Vo = 0.5 Vrms
PSRR Power Supply
Rejection Ratio

CF = 50 p.F, CIN = 0.1 p.F,
I = 120 Hz, Output Relerred
. Vs = 20V, VRIPPLE = 1 Vrms

-50

Vs = 7V, VRIPPLE = 0.5 Vrms
Noise

Open Loop Gain

Equivalent Input Noise

Rs = 0, 1= 100 kHz, RL = 80

70

dB

Input Offset Voltage

15

mV

Input Bias ClJrrent

50

nA

Input Impedance

Open Loop

DC Output Level

Vs = 20V

4

9

10

MO
11

V

Slew Rate

2.0

V/p.s

Power Bandwidth

65

kHz

1.0

A

Current Limit
Note 1: For operation at ambient temperature greater than 2S'C. the

LM1Sn must be derated based on a maximum

1-399

ISO'C junction temperature.

II

~
~

co
....

:Ii

r-----------------------------------------------------------------------------,
Typical Performance Characteristics

.....

,Power Supply ReJe~on Ratio
. (Fleferred to the Output) va
Frequency

Device Dissipation va
Ambient Temperature
12.1

.."

I

I"""'"

" t~~l""'''''·''''·' .~~ r...
If~J,:f;~;~:A!1 c:
I
y.
1=

1.8

If

~

tA . . .,. . . "'OIU.Ci.IIAMI

4.0

is

I!l z.o

70

111

1."lTlIK~T ...J ,J't~

i ' 1.8

flEEtll jCIW

10

I : ~~~~Ht
II:

~

30~~~.-++tmffi-~rlff~

I

ZD

i

II

o

l1ZD3I4I.BllIlD

II

TA - .IIENTTEMPERATURE rCl

Power Supply Rejection Ratio
(Referred to the Output) vs
Supply Voltage
ID

I:
Ii

~ ~VR"'LE"

:5

V...

V~I~LE ~ G.3:V~
CI.· ..,.F

I

•

YRIPPLE -1 V_

"IZD Hz
AV'ID

•

If

II

III

~'VPASS'

II

•
"51

71

iii

_

-

•

ID

!
i..

i

.

!

..g"

/.

V

Ic

11~

H

IYPAIiI ' ,.F

fliTllllll

to
IoF

·11111111 I

10

10k

lID
lk
FREIIUENCY (Hz)

Channel Separation (Referred
to the Output) vs Frequency
C.VPAIiI· ... F
VCC'7V

•co

.IJ ~1 ~

i

10

vo· ...v...
AV""

51

I.

I~'~'~,~:, 11111
lk

CJ.· .....

-f

30

I Ill!

I. ,.

VRlmE'1 Vrn
7.F
AV· •

100.F

40

71

.ililliWll

11

Average Supply Current vs
POUT

,.

40

ll11k

10

lID

FREIIUENCY (Hz!

lk
FREIIUENCY (Hz)

Total Harmonic Distortion
va Frequency

Total Harmonic Distortion
va Frequency

10Fv:.~.'

E¥:::;':';iv'3l.3lJ

10

Iii

i...o" i-""

10-"

"

I;;
15

~

I"
:I!

...

V

G.1

c

Ii!

0.1

D.ll
10

1.5

lID

Power DIssipation (W)
Both Channels Operating

Z2V

1.00"

zev

flV

~~4V

L41n1~o 7 T

LI
3!lTHO

1~llvv

••

10k

I I
POWER OUTFUT lWICHAN.EU

. .,

IRk

10

,.

;;

Output Swing va Supply

VS"mv
RL 'In

iii

..

II

,.~

41

"

IZ

E

~

ZD
I

,.

101k

FREIIUENCY (Hz)

111

~

t

./

~

I

r...
lk

~

I

"-

,.

,.

,.

I. Voltage

:a

•

1k

FREIIUENCY (HzI

Open· Loop Gain vs
Frequency
III

I\-In

/-

11

FREflUENCY (Hz!

POWER OUTPUT (w/CHANNELI

•

11
II

o

S

VOUy-4V,..

II

11

-

ID

co

;;

CIYPAIS
VCC'ZIV

41

II
II
14
III....YVOLTAGE (VI

:5

II

~~

II:

VRIPPLE • a.& V,..

;;

Channel Separation (Referred
to the Output) va Frequency
;;

1I.'j,.

,.

100
1k
FREIIUENCY (Hz)

ID

"Ift~

!

Power S'!pply RejeCtIon Ratio·
(Referred to the Output) va
Frequency

'f'

I'
o

o

I

\I

II

H

II

SUPPLY VOLTASE (VI
TLlH17913-3

1-400

Typical Applications
Stereo Phonograph Amplifier with Bass Tone Control

+

IDhF~
51k
51.

'j
i

~:~.
~

.

STEREO
CERAMIC
CARTRIDGE

I
I
I

I'1
ij

"I
Ij

~

I

I

+)

I

50hF

ft

I

I
I

2.7n

TO" PF

510k

51k

!

8n

100.

~

I'

~

"

':

U3pF

I,
Ik

!

TL/H/7913-4

Frequency Response of Bass Tone Control
ii

:a
...

:i!
!i!
B

55

::

35

BOOST
- S; ~ESPONSE

,/

L.,.;
25

>

15

10Dk

TONE.I.'
CONTROL FLAT

III

=
~
co

MAXIMUM

;;;;;;;

45

c

Vs

85

II!

...~

Inverting Unity Gain Amplifier

'"
20

1/
~AXIMUM

10k

CUT
RESPONSE

I

IPF

I I

5D 100 200 500 1. 2k

+

T

&Ie 1. 20k

FREQUENCY (HzI
TLlH17913-5
TL/H/7913-6

1-401

~

~

co
.-

::&

r-----~~--~------=-------~~------~----~--~------------------~~------~__,

Typical Applications (Continued)

.....

'Stereo Amplifier with Ay

= "200

!OIJ"l
F

RL

2.~U

In

TO.1 f ':",
I3.'.5. -.~
I . .,¥A8GND
I.1

I

llOk

TUH/7913-7

Non-Inverting Amplifier Using Spilt Supply
2k

Typical Spilt Supply

lOOk

TL/H17913-9

'i!'·

2k

lOOk

TL/HI7913-B

1-402

tflNational Semiconductor

LM 1896/LM2896 Dual Audio Power Amplifier
General Description

Features

The LM1896 is a high performance 6V stereo power amplifier designed to deliver 1 watt/channel into 40 or 2 watts
bridged monaural into 80. Utilizing a unique patented compensation scheme, the LM1896 is ideal for sensitive AM
radio applications. This new circuit technique exhibits lower
wideband noise, lower distortion, and less AM radiation than
conventional designs. The amplifier's wide supply range
(3V-9V) is ideal for battery operation. For higher supplies
(Vs> 9V) the LM2896 is available in an 11-lead single-in-line package. The LM2896 package has been redesigned, .
resulting in the slightly degraded thermal characteristics
shown in the figure Device Dissipation vs Ambient Temperature.

•
•
•
•
•

Low AM radiation
Low noise
~V, 40, stereo Po = 250 mW
Wide supply operation 3V -15V (LM2896)
.Low distortion
.

•
•
•
•

No, turn on "pop"
Adjustable voltage gain and bandwidth
Smooth waveform clipping
Po = 9W bridged, LM2896

. Applications
• Compact AM-FM radios
• Stereo tape recorders and players
• High power portable' stereos

Typical ApplicatiOn!
1"=-"....- -. . .00 +Vs

&In

an
HI

I.

SPEAKER

CI
.,IpI'

>Vs

2k

In
&lpF

TUH17920-1

FIGURE 1. LM2896 in Bridge Configuration (Ay = 400, BW = 20 kHz)
Order Number LM1896N
Order Number LM2896P
See NS Package Number N14A
See NS Package Number P11A

1-403

Absolute Maximum Ratings
If Military/Aerospace specHled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
LM1896
Vs == 12V
LM2896
Vs = 18V
Operating Temperature (Note 1)
OOCto +700C
-65·Cto +l'500C
Storage Temperature

' Junction Temperature
Lead Temperature (Soldering, 10 sec.)
Thermal Resistance
8Jc(DIP}
,;
8JA(DIP}
8JC(SIP}
8JA(SIP}

1500C
26O"C
300C/W
137"C/W
l00C/W
5ffC/W

Electrical Characteristics
Unless otherwise specified, TA = 25·C, Av = 200 (46 dB). For the LM1896; Vs "" 6Vand RL = 40. For, LM2896,
TTAB = 25·C, Vs = 12Vand RL = SO. Test circuit shown in Figure 2.
'
Parameter

LM1896

Conditions
Min

Supply Current

Po = OW, Dual Mode

Operating Supply Voltage
THO = 10%,f = 1 kHz
Vs = 6V, RL = 40 Dual Mode }
Vs = 6V, RL = 80 Bridge Mode
Vs = 9V, RL = 80 Dual Mode

LM2896p·l
LM2896p·2

V, - 12V,.< - . . " " ' _ }

Distortion

Max

15

25

3

Output Power
LM1896N-l
LM1896N·2

Vs = 12V, RL = 80 Bridge Mode
Vs = 9V, RL = 40 Bridge Mode
Vs = 9V, RL = 40 Dual Mode

0.9
TA = 25·C

LM2896

Typ

10
1.1
1.8
1.3

Min

Max

25

40

mA

15

V

3

2.5
9.0
7.8
2.5

W/ch
W
W/ch
W/ch
W
W
W/ch

0.09
0.11
0.14

%
%
%

2.1
2.0
7.2

TTAB = 25·C

f=lkHz
Po = 50mW
Po = 0.5W
Po = lW

Units

Typ

0.09
0.11

Power Supply Rejection
Ratio (PSRR)

CBY = 100 j.LF, f = 1 kHz, CIN = 0.1 j.LF
Output Referred, VRIPPLE = 250 mV

-40

-54

-40

-54

dB

Channel Separation

CBY = 100 j.LF, f = 1 kHz, CIN = 0.1 j.LF
Output Referred

-50

-64

-50

-64

dB

Noise

Equivalent Input Noise Rs ;= 0,
CIN = 0.1 j.LF, BW = 20 - 20 kHz
CCIR/ARM
Wideband

1.4
1.4
2.0

j.LV
j.LV
j.LV

1.4
1.4
2.0

DC Output Level

2.8

3

3.2

5.6

6

6.4

V

Input Impedance

50

100

350

50

100

350

kO

Input Offset Voltage
Voltage Difference
between Outputs

5
LM1896N-2, LM2896p·2

10

Input Bias Current

120

5
20

10
120

mV
20

mV
nA

Note 1: For operaUon at ambient temperature greater than 25'C, the LMI896/LM2896 must be derated based on a maximum 15O'C junctton temperature using a
thermal resistance which depends upon mounting techniques.

1-404

Typical Performance Curves
Lllla96 Maximum Device
Dlulpat10n 'va Ambient
Temperature

LM2896 Device DI_patlon
VB Ambient Temperature

t8
9

!:

II

Z.B

1--·""... 1
1 )Ct.::;~/;"
u;~;:::::~

......
~
21"1:/.

.

~

FMEIIIII.·CIW

I I

D

1.1

1A

is

::J

r-

~

;--

:!

D.4

a

II
50
4B
31

,0

8.1
1.1

1/

DA

/

I'.,.,.

1.2

o

;

i

ZO 311 4D

!

II

50
4a
3G

i!

5k 10k IDk

-D..

1.0

.

i!
i':

..i
co

i!

....:z:"

"

o

4D

1.1

....

50 1l1li zoa 510 Ik Ik

l

8.1
8.5

j!:

IA

P"'F
1--1-

1

0.4
02

51 11112110 lao Ik Zk

~

II!
!!j

-II

"Ii
IE.

-20

i~
.
.is='
'

c

n 2k 5k IDk ZOk

-3~

-40
-&B

~

50 1l1li 2l1li 108

-80

~

D.It

Hr++fIIII--+WI

i

I!i

i

i

3D

!II

AV-zao
POUT' 0.5W

20

..
~

c

G
11k

i

50

~~:~?I:FIIIII.F

100

10

AL -an
BRIDGE

..~
..
~

Ilk

lOOk

I-

RL-4(j
I'DUAL
RL -an
"j'OUAL
..If.
8

lk

FREQUENCY IHzI

H+t~L'4n7
BRIDGE

LM289tI

II
10

10

1

Power Output VB
Supply Voltage
12

40

0.1

FIELD STRElant ,,"VIMI

Channel Separation (Referred
to the Output) va Frequency
10

5k IDk ZOk

~

FREClUENCY IHzl

10

lk

RL -40
DUAL MODE

1.0
0.8
0.1

20

~
20

.. ,-,,..,..,.....r-rrr

lID

PO-O.M

:;:

r-r- :b~:::OOE

•

Power Supply Rejection Ratio
(Referred to the Output)
va Frequency

FREQUENCY IHzI

3G

All Recovered Audio and Nolas
VB Flekl S1rengllt for Different
Speaker Lead Placement

0.2

5k 10k ZtIk

---

LMI898
VS-IV

FREClUENCY IHzI

LMI8!16
VS-BV
PO-O.III/

FREQUENCY IHzl

50

I I

50
4D

&k 10k ZOk

I I
I I I

50

r-I-

..

-

20

80

I

50 1111 zao SOU Ik Zk

80

3D

OJ
D.2

1---:

0.8
8..
I.Z
D
20

1-1-:

D.8

DA

.
:!

Ii
3

THD and GaIn V8 Frequency
Ay = 34dB,BW = 50kHz

:c

LMI191
VS'IV
PD
RL -40
DUAL MODE

THD and Gain V8 Frequency
Ay = 46dB,BW = 50kHz

FREQUENCY IHzl

I

,.,

AytvlVl

- r-~

LMI_
Ys-IV
Po-uw RL -40
DUAL MODE

40
3D

THD and Gain VB Frequency
Av = 4QdB,BW = 20kHz

:a

IIIIIZ• • 40115111111111

81 18 10

81
50

FREQUENCY IHzI

;;

"

I.B
G.I

"~

./

51 I. 2l1li 5IHI Ik 2k

211

10

TA - AMBIENT TEMPERATURE t'CI

THD and GaIn V8 Frequency
Ay = 54dB,BW = 5kHz

LMtl81
-r- tV.·IV
po-a.sw -r- IRL=4n
DUALMDDE

I.a

...i!...

...... .....

1.2

THD and Gain va Frequency
Av = 54dB,BW = 30kHz

z

F::'~~R_ r-

8.1
1.8

010203040&11&1178 80
TA-AMlJaT TEMPERATURE ('CI

Ii
3

r-....

I.Z
S
Ii 1.0

......

\,

4

...

i

1Io e/.

1x3111.·C/.~'

I
II

1.1

..J..,.~.!..-

- 3 dB Bandwidth V8 Voltage
GaIn lor Stable Operation

•

-

•
10
SUPP1.Y VOLTAGE IVI

12

TL/H17920-2

1-405

Typical Performance Curves (Continued)
Total Harmonic Distortion
vs Power Output
10

Power Dissipation vs
Power Output Ik = 40

Power Dissipation vs
Power Output Rl,: = 80
3.0 r-1--r...,...,...,...,--r--r-T"""1

. .

a .............,...........'-''-'.........................

o

POWER' OUTPUT ClY/CHANIELI

3,

0 ..............-'--'.......................................

4

I

POWER OUTPlJT ClYICHAINELI

O.i

1.0

1.6

z.a

POWER OUTPUT tw/CHANNELI

TlIHI7920-3

Equivalent Schematic
BOOTSTRAP 2

BOOTSTRAP,1

12(31

3191

~--;-~--------~------~--~---------1--------;-~----'-O~
1111<

OUTPUT 1

o-+-HI-t

lOOk

lOOk

5(101

10k

L-------..--~~~----~~~~~~~----~~~-----t--_+.~~------~~GNO
1(71

1(11)

+INpUT 1 BYPASS

, +INPUT 2

-INPUTZ

6, 9 No connection on LM1896

TLlH/7B20-4

() indicates pin number for \,.M2896

CQollection Diagrams
Single-In-Une Package,
+Vs

Dual-In-Une Package

•

OUTPUTZ

+lNl

o

BOOTSTRAP 2

-INI
-IN2

ONo

+1.2

LM188B

OUTPUT 1

aiD
+IN 1

o

-IN 1

TLlH/7920-5

BOOTSTRAP 1

To~Vlew
OUTPUT 1
, BYPASS

TLlHI7920-6

Top View

1·406

r-----------------------------------------------------------------------------, r
iii:
....
Typical Applications (Continued)
I

~
r
iii:

Cs

~O~~:~--~e-----~.Rl02 v,

~

CD

G)

510

R2

5100
C2 +
10~FT
TL/H17920-8
TLiH/7920-7

6,9 No oonnection on LM1896
() Indicates pin number for LM2896

FIGURE 2. Stereo Amplifier with AV = 200, BW = 30 kHz

External Components (Figure 2)
Components
1. R2, R5, R10, R13
2. R3, R12
3.Ro
4. C1, C14

Comments
Setsvoltagegain,Av = 1 + R5/R2 for one channel and Av = 1 + R10/R13
for the other channel.
Bootstrap resistor sets drive current for output stage and allows pins 3 and 12 to
goaboveVs·
Works with Co to stabilize output stage.
Input coupling capacitor. Pins 1 and 14 are at a DC potential of Vs/2. Low
frequency pole set by:

1

5. C2, C13

fL = -::--~-::::-c:2'ITRINC1
Feedback capacitors. Ensure unity gain at DC. Also a low frequency pole at:

1
6.C3,C12

7.C5,C10
8.C7

fL = 2'ITR2C2
Bootstrap capacitors, used to increase drive to output stage. A low frequency
pole is set by:
1
fL = 2'ITR3C3
Compensation capacitor. These stabilize the amplifiers and adjust their
bandwidth. See curve of bandwidth vs allowable gain.
Improves power supply rejection (See Typical Performance Curves). Increasing
C7 increases turn·on delay.
Output coupling capacitor. Isolates pins 5 and 10 from the load. Low frequency
pole set by:

1

10. Co

11.Cg

fL = - - - - 2'ITCcRL
Works with Ro to stabilize output stage.
Provides power supply filtering.

1-407

~r-------------------------------------------------------------------~

~
:2
.....
(r;

....~
:=i

Application Hints
Amp 1 has a voltage gain set by 1 + RS/R2. The output of
amp 1 drives amp 2 which is configured as, an inverting
amplifier with unity gain. Because of this phase inversion in
amp 2, there is a 6 liB increase in voltage gain referenced to
Vi. The voltage gain in bridge is:

AM Radios
The LM1896/LM2896 has been designed fo fill a wide
range of audio power applications. A common problem with
IC audio power amplifiers has been poor signal-ta-noise performance when used in AM',~adio applications. In a typical
radio application, the loopstick antenna is in ,close proximity
to the audio amplifer. Current flowing in the' speaker and
power supply leads can cause electromagnetic coupling to
the loopstick, resulting in system oscillation. In addition,
most audio power amplifiers are not optimized for lowest
noise because of compensation requirements. If noise from
the audio amplifier radiates into the AM section, the sensitivity and signal-ta-noise ratio will be degraded.
The LM1896 exhibits extremely low wideband noise due in
part to an external capaCitor CS which is used to tailor the
bandwidth. The Circuit shown in Figure 2 is capable of a
signal-to-noise ratio in excess of 60 dB referred to SO mW.
Capacitor CS not' only limits the closed loop bandwidth, it
also provides overall loop compensation. Neglecting C2 in
F/{Jure 2, the gain is:

2(1

Vo =
+ RS)
Vi
R2
CB is used to prevent DC voltage on the output of amp 1
from causing offset in amp 2. Low frequency response is
influenced by:
fL=-_1_,2'ITRBCB
Several precautions should be observed when using the
LM1896/LM2896 in bridge configuration. Because the amplifiers are driving the load out of phase, an 80. speaker will
appear as ,a 40. load, and a 40. speaker will appear as a 20.
load. Power dissipation is twice as severe in this situation.
For eXample, if Vs= 6V and RL = 80. bridged, then the
maximum diSl!ipation is:

,V~
2
62
Po=---X
=--x2

Av(S) = S + AvCIJo
S + ClJo
R2+RS
1
where Av =~, ClJo = RSCS

20RL

A curve of -3 dB BW (ClJo) vs All is shown in the Typical
Performance Curves.
Figure 3 shows a plot of recovered audio as a function of
field strength in p,V/M. The receiver section in this example
is an LM3820. The power amplifier is located about two
inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are 118 inch from it. Referenced to a
20 dB SIN ratio, the improvement in noise performance
over conventional designs is about 10 dB. This corresponds
to an increase in usable sensitivity of about 8.S dB.

BW = 0.707
2'ITRC
where R = feedback resistor
C = feedback capaCitor
To measure the output voltage, a floating or differential mater should be used because a prolonged output short will
over diSSipate the package. Figure 1 shows the complete
bridge amplifier.

Bridge Amplifiers
The LM1896/LM2896 can be used in the bridge mode as a
monaural power amplifier. In addition to much higher power
output, the bridge configuration does not require output coupling capacitors. The load is connected directly between the
amplifier outputs as shown in Figure 4.
dB

o-

!!l

-10

-30

get -40
CI "

RECOVERED
NOISE AT

-50

II:

~

u

lI!

-80

/
~.

l-

'"",

f'.

=rr~ER

-r

C14

~
R13
C1D

T

RI

C2

T

C13

TLlH17920-l0

Figure 4. Bridge Amplifier Connection

Printed Circuit Layout
less than 50 kO to prevent an input-output oscillation. This
oscillation is dependent on the gain and the proximity of the
bridge elements Rs and Cs to the (+) input. If the bridge
mode is not used, do not insert Rs, Cs into the PCB.
To wire the amplifer into the bridge configuration, short the
capacitor on pin 7 (pin 1 of the LM 1896) to ground. Connect
together the n\ldes labeled BRIDGE and drive the capacitor
connected to pin 5 (pin 14 of the LM1896).

Printed Circuit Board Layout
Figure 5 and Figure 6 show printed circuit board layouts for
the LM1896 and LM2896. The circuits are wired as stereo
amplifiers. The Signal source ground should return to the
input ground shown on the boards. Returning the loads to
power supply ground through a separate wire will keep the
THD at its lowest value. The inputs should be terminated in

~

~

COMPONENT sIDe

FIGURE 5. Printed Circuit Board Layout for the LM1896
1-409

TL/HI7920-ll

Printed Circuit Layout (Continued)

VIN1
BRIDGE
INPUT

INPUT
GROUND

COMPONENT SIDE
TLlH/7920-12

FIGURE 6. Printed Circuit Board Layout for the LM2896

1-410

t!lNational Semiconductor

LM2877 Dual4W Audio Power Amplifier
General Description
The LM2877 is a monolithic dual power amplifier designed
to deliver 4W/channel continuous into 8n loads. The
LM2877 is deSigned to operate with a low number of external components, and still provide flexibility for use in stereo
phonographs, tape recorders and AM-FM stereo receivers,
etc. Each power amplifier is biased from a common internal
regulator to provide high power supply rejection and output
Q point centering. The LM2877 is internally compensated
for all gains greater than 10, and comes in an 11-lead single-in-line package.

Features
• 4W/channel
• - 68 dB ripple rejection, output referred
• - 70 dB channel separation, output referred

•
•
•
•
•

Wide supply range, 6-24V
Very low cross-over distortion
Low audio band noise
AC short circuit protected
Internal thermal shutdown

Applications
•
•
•
•
•
•
•

Multi-channel audio systems
Stereo phonographs
Tape recorders and players
AM-FM radio receivers
Servo amplifiers
Intercom systems
Automotive products

Connection Diagram
(Slngle-ln-Llne Package)
BIAS...!. •
OUTPUT

'-./

,..!.

GNO....!

0

INPUT'....!
FEEDBACK

,2

*TAB"'!'

7

FEEOBACK2-

0

INPUT2...!
GNO...!
OUTPUT2

..!!!.

".....!.!.
TL/HI7933-1

Top View
Order Number LM2877P
See NS Package Number P11A

'Pin 6 musl be connected 10 GND.

1-411

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
26V

Supply Voltage
Operating Temperature

O"Cto +70"C

Electrical Characteristics Vs =
Parameter
Total Supply Current

150"C

Lead Temperature (Soldering, 10 sec.)

260"C

Thermal· Resistance
9JC
8JA

H.7V

Input Voltage

Distortion, THO

Conditions

1 kHz, THO = 100/0, TTAB = 25·C
= 20V
= l8V
= 12V, RL = 40.
= 12V, RL = 80

f =
Po
Po
Po
f =
Po
Po
Po

1 kHz, Vs = 20V
= 50 mW/Channel
= .1W/Channel
= 2W/Channei
1 kHz, Vs = 12V, RL = 40
= 50 mW/Channel
= 500 mW/Channel
= lW/Channel

Channel Separation

CF = 50 p.F, CIN = 0.1 p.F~ f = 1kHz,
Output Referred
Vs = 20V, Vo = 4 Vrms
Vs = 7V, Vo = 0.5 Vrms

Noise

Open Loop Gain

4.0
1.5

o~herwise specified.
,

Typ

Max

25

50

mA

24

V

6
f =
Vs
Vs
Vs
Vs

RL= 80

PSRR Power Supply

Min

PO=OW

Output Swing

Rejection Ratio

10"C/W
55·C/W

20V, TTAB = 25·C, RL = 80, Av = 50, (34 dB) unless

Operating Supply Voltage
Output Power/Channel

-65·Cto + 150"C

Storage Temperature
Junction Temperature

4.5
3.6
1.9
1.0
0.1
0.07
0.07
0.25
0.20
0.15

Units

W
W
W
W

1

1

0/0
0/0
0/0
0/0
0/0
0/0

Vs-4

Vp_p

. -50

-70
-60

dB
dB

-50

-68
-40

dB
dB

2.5

p.V

0.80

mV

70

dB

15

mV

CF = 50 p.F, CIN = 0.1 p.F, f = 120 Hz
, Output Referred
Vs = 20V, VRIPPLE = 1 Vrrns
Vs = 7V, VRIPPLE = 0.5 Vrms
Equivalent Input Noise
Rs = 0, CIN = 0.1 p.F, BW = 20 Hz-20 kHz
Output Noise Wideband
Rs = 0, CIN = 0.1 p.F, Av = 200
Rs

'= 0, f

= 1 kHz, RL = 80

Input Offset Voltage
Input Bias Current

".

Input Impedance

Open Loop

DC Output Level

Vs = 20V

9

50

nA

4

MO

10

11

V

Slew Rate

2.0

V/p.s

Power Bandwidth

65

kHz

Current Limit

1.0

A

Note 1: For operation at ambient temperature greater than 25"C. the LM2sn must be derated based on a maximum 150'C junction temperature using a thermal
resistance which depends upon device mounting techniques.

1-412

Equivalent Schematic Diagram

::

...
N

"C

,...-;;"";"--il-O ::::

......
w
I

N

..

-~
+'

.. ..

r-----~I-O~

+'

...

"'C

...--~-+--o::::

..

~-----~ ~

1-413

~
I

r-

~

~

r-------~----------------------------------------------------------------------__,

Typical Performance Characteristics
Power Supply Rejection Ratio
(Referred to the Output) vs
Frequency

Device Dissipation vs
Ambient Temperature
71

I ALUMIN. . 'IICkNElI_1/111NCH I

1K1~=~';'-

.~.... !...r.!..-

l&OCIW

1.4~~::::::~~

r-....I

1

o

...

..,.

~

hellN28° C/ • .\"

.-e/w
~ ~~
L- ~ f;::: ~
I

lIIIe

I

i.. . ~~~~+f~~~~ffH
10

~

31

5

20

i

elW

111

II

'"

10

HHiIltHlI-t-tt

'"..

28

..

i

10

c

58

..'"=

AV=50
10

!

lDh~~~~HHffi-~+ffi~

14

110

I~I,r D.O~I~,i,F
10

IS

IIIII

I.--"

.... zoo
~

c:~~lr~J!f
10

Total Harmonic Distortion
vs Frequency

tOO

""Ii~lk

"I

I.

10te

Total Harmonic Distortion
vs Frequency

..
..

i!

n

10~~• •

z

....

~
In

is

ii

iii!

, II'"

c

50

r...

I-ICI~I;I:·l ~fl

FREQUENCV (HI)

",

...

~

lOOk

/.".

4D0

&D

Va .. 60G mVnns

AV'50

FREOUENCV (H.)

I -r -

I-

i=

CB~;;W = 5O.F
VCC - 7V

4D

10k

110

'"..S!

70

..
=

10

RL -In
BOTH CHANNELS DRIVEN

!

l-m

10te

Channel Separation (Referred)
to the Output) vs Frequency
ii

j~ilillj IIIII

SUPt'LV VOLTAGE IV)

...il sao

1~'~~D.l~

VOUT=4Vrml

Average Supply Current vs
Power Output

i

vcc'zov

40

12

lk
100
FREOUENCY (Hz)

10

J~! ~

CBYPASS -

~

-

t= 120 Hz

•

!

70

~

V~IP~LE ~ I.3:V"":,
vRIPPU. a.6 v .....
"BYPASS -5 •
C'N-O.I.F
_
VRIPt'LE"1V ...

40

o

ZO

Channel Separation (Referred)
to the Output) V$ Frequency
ii

~~tRIPPLE -I V,..

I

iill

3D

10k

lk

100

10

-:....

I

III

o

i

FREQUENCY (Hz)

NOISE~

ii

III

~~+HI~~HH~~+ffi~

40

i

~I+HtlIIII-++

010203040506070 60

10

iiii

~

I

Power Supply Rejection RatiO
(Referred to the Output) vs
Supply Voltage

5..

§ 10 hl-H+HIlt-t~ 50~~iWt-~~m.~~~

..

lA-AMBIENT TEMPERATURE ('C)

'".'"

Power Supply Rejection Ratio
(Referred to the Output) vs
Frequency
r--,""T"T1rrmr-r-rTTrmr-.rrn1'111

c

D.t

'"

~

~

I-

a

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

~

1J~4V

"f~

•a

I

I I
I I

28V

THD-3%

lBY

~

J7" t:>n
f'rHD - 10K

11
I I

POWER DUTPUT !WICHANNEL)

11k

a.D'

lOOk

10

100

FREQUENCY (Hz)

Power Dissipation vs
Power Output
RL - In

I.

lOa

POWER OUTPUT (wICHANNEL)

Open Loop Gain vs
Frequency

loa

Vs - ZDV

RL 'In

.........:c
.~
>

I

.

r-.

·60

"

40

0

loa

1/
1/

12

V

i
..~

"

zo

~

II'"
o

lk

10fc

lOOk

FREQUENCY (Hz)

tOOk

10k

Output Swing vs Supply
Voltage
18
RL .,an
/

10

I

Ik

FREQUENCY IH,)

1M

4

a

I ro u ~ n
SUPPLY VOLTAGE (V)

" "
TLlHI7933-3

1-414

Frequency Response of Bass Tone Control
iii

65

...

~

:i1

!iii
co

......z

~

55

-

3&

L

1/

;;:

...
co

CD

2&

>

15

~
co

~ESPONSE

45

~

z

MAXIMUM
BOOST

TONE.l"
CONTROL FLAT

"-

co

S;

l/

"'"
20

/MliXIMUM
CUT
RESPONSE

I

50 100 ZOO 500 lk Zk

5k lDk 20k '

FREQUENCY (Hz)
TL/HI7933-5

1·415

~.r---------------------------------------------------------------------~

ii
~

Typical Applications (Continued)
Stereo Amplifier with AV

=

200

vso;.,....--.

T

D.lpF

~

ll11k

TUHI7933-6

Non-Inverting Amplifier Using Split Supply
2k

lOOk

Y+~~

r; -&

D.1 pF ':"

11

--,
I

2k

.&

TYPICAL SPLIT SUPPLY
TUH/7933-7

1-416

Typical Applications (Continued)
Window Comparator Driving High, Low Lamps

r---.---------.-----.---O+v

ZIt

VIN

10

TL/HI7933-8

Truth Table
YIN

High

Low

<%V+
%V+ to%V+
>%V+

Off
Off
On

On
Off
Off

Application Hints
The LM2877 is an improved LM377 in typical audio applications. In the LM2877, the internal voltage regulator for the
input stage is generated from the voltage on pin 1. Normally,
the input common-mode range is within ±O.7V of this pin 1
voltage. Nevertheless, the common-mode range can be increased by externally forcing the voltage on pin 1. One way
to do this is to short pin 1 to the positive supply, pin 11.

The only special care required with the LM2877 is to limit
the maximum input differential voltage to ± 7V. If this differential voltage is exceeded, the input characteristics may
change.
Figure 1 shows a power op amp application with Av = 1.
The 100k and 10k resistors set a noise gain of 10 and are
dictated by amplifier stability. The 10k resistor is bootstrapped by the feedback so the input resistance is dominated by the 1 MO resistor.

lOOk
12V

Z

10k

>-+--OVOUT

un
1M

-12V

TO.

'IlF
TL/H/7933-9

FIGURE 1

1-417

I!!!

:5~d
pNational

Sem,icon~uctor

LM2878 Dual 5 Watt power Audio Amplifier
~"

;,

'.

.:'

General Description

Features

The LM2878 is a high voltage stereo power amplifier designed to deliver 5W/channel continuous into 80 loads. The
amplifier is ideal for use with low regulation power supplies
due to the absolute maximum rating of 35V and its superior
power supply rejection. The LM2878 is designed to operate
with a low number of extemal components, and still provide
flexibility for use in stereo phonographs, tape recorders, and
AM-FM stereo receivers. The flexibility of the LM2878 allows it to be used as a power operational amplifier, power
comparator or servo amplifier. The LM2878 is internally
compensated for a" gains greater than 10, and comes in an
11-lead single-in-line package (SIP). The package has been
redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

•
•
•
•
•
•
•

Wide op~rating range 6V-32V
5W/chanrialoutput
60 dB ripple rejection, output referred
70 dB channel separation, output referred
Low crossover distortion'
AC shorl circuit protected
In~rnal thermal s~utdown

Applications
'. Stereo phonographs
•. AM-FM radio' receivers
• Power op amp, power comparator
• Servo amplifiers

Typical Applications
Frequency Response
of Bass Tone Control

I.

iii

&5

~

.,-'a;

§
.,
::

5111k

:;

..c

..f r~}4~
":'

STEREO
CERAMIC
CARTRIDGE

I
I
I

55

i

45

::

35

.~

25

CONT1~~EFI~ ......
1/
"7 ~

AAXIMUM

f-- CUT

RESr.O~.E

1

15
20

I

50 100 200 SOO Ik 2k

5. 10k 20k

FREQUENCY (Hz)
TL/HI7934-2

":'

I

I
I

n
51.
D.33.F

I.

+

T

MAXIMUM

BOOST
I-- ~ ~E~PONSE

'--

~

~

~

'OO F
•
TL/H/7934-1

FIGURE 1. Stereo Phonograph Amplifier with Bass Tone Control
1-418

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
35V
Input Voltage (Note 1)
±0.7V
Operating TemPerature (Note 2)
O"Cto +70·C

Electrical Characteristics Vs =
Parameter
Total Supply Current

Storage Temperature
Junction Temperature

-65·Cto + 150"C
+ 150"C
+ 260"C

Lead Temperature (Soldering, 10 sec.)
Thermal Resistance
8JC
8JA

10"C/W
55·C/W

22V, TTAB = 25·C, RL = 80, Av = 50 (34 dB) unless otherwise specified.

Conditions

Min

Po= OW

Operating Supply Voltage

Typ

Max

Units

10

50

mA

6

32

V

5.5
1.3

W
W

f = 1 kHz, RL = 80
Po = 50mW

0.20

%

Po = 0.5W

0.15

%

Output Power/Channel

f = 1 kHz, THO = 10%, TTAB = 25·C
f = 1 kHz, THO = 10%, Vs = 12V

Distortion

5

Po= 2W

0.14

%

Output Swing

RL = 80

Vs - 6V

Vp·p

Channel Separation

CBYPASS = 50 p.F, CIN = 0.1 p.F
f = 1 kHz, Output Referred
Vo = 4Vrms

-50

-70

dB

CBYPASS = 50 p.F, CIN = 0.1 p.F
f = 120 Hz, Output Referred
VrfpPle = 1 Vrms

-50

-60

dB

-60

dB

±13.5

V

PSRR Power Supply
Rejection Ratio
PSRR Negative Supply

Measured at DC, Input Referred

Common·Mode Range

Split Supplies ± 15V, Pin 1
Tied to Pin 11

,

Input Offset Voltage
Noise

Open Loop Gain

10

mV

Equivalent Input Noise
Rs = 0, CIN = 0.1 p.F
BW=20-20kHz

2.5

p.V

CCIR-ARM

3.0

p.V

Output Noise Wideband
Rs = 0, CIN = 0.1 p.F, Av = 200

0.8

mV

70

dB

Rs = 510, f = 1 kHz, RL = 80

Input Bias Current
Input Impedance

Open Loop

DC Output Voltage

Vs = 22V

10

Slew Rate
Power Bandwidth

3 dB Bandwidth at 2.5W

Current Limit
Note 1: ±O.7V applies

100

nA

4

MO

11

12

V

2

V/p.S

65

kHz

1.5

A

to audio applications; for extended range, see Application Hints.

Note 2: For operation at ambient temperature greater than 25"C, the LM2878 must be derated based on a maximum 15O'C junction temperature using a thermal
reSistance which depends upon device mounting techniques.

1-419

Typical Performance Characteristics
Power Supply Rejection
Ratio (Referred to the
Output) va Frequency

Device Dlaalpatlon va
Ambient Temperature
10

Power Supply Rejection
Ratio (Referred to the
Output) va Frequency
7D

I AWIIIHIUM THlClNEIS - 11'11.8
~
1

;

..
§..

..I... !.., J..-

Xl-:-'::'~/;'-

11"1:/.

1.4~~;=:::~:~

I'--.JJ

~~ .J...~
"'.IW.....
r- ~ ~ 1:50.

3dlll.-C/• .\"

Nl

iiii

i

FlEtAlII"C/W

1

o

I I

o

10 20 30 40 50 60 70 BO
TA-AMBIENT TEMPERATURE ('C)

i

l!i

t

..
~.

50
40

?:i

31

I

ttl

..
..
.....

;

1.3 V"'~.SIV{.,1 I-- f-

co

:f

III

I

DO

50

li

CI
40

6

10

14

11

22

I.

30

34

"

SUPPLY VOLTAGE (VJ

Total HarmoniC Distortion
va Frequency
10.0

l

I ~::
r:::I

~

'I
~--oVOUT

10k
TL/HI7934-5

2.m

Top View
'Pin 6 must be connected 10 GND.

1M

Order Number LM2878P
See NS Package Number P11A

-,
-

T O . ' /AF
TLlH17934-6

FIGURE 2. Operational Power Amplifier, Av = 1

1-422

,-----------------------------------------------------------------------------, r
i:
N
External Components (Figure 3)
CD
6.C4,C8
1. R2, R5, R7, R10 Sets voltage gain Av = 1 + R2/R5 for
Input coupling capacitor. Pins 4 and 8
.....
CD
one channel and Av = 1 + R10/R7 for
are at a DC potential of Vs/2. Low fre2.R4,R8
3.RO
4.C1
5. C11

the other channel.
Resistors set input impedance and supply bias current for the positive input.
Works with Co to stabilize output stage.
Improves power supply rejection (see
Typical Performance Characteristics).
Stabilizes amplifier, may need to be larger depending on power supply filtering.

quency pole set by:
1
fL = 21TR4C4

7.C5,C7

Feedback capacitors. Ensure unity gain
at DC. Also low frequency pole at:

8. Co
9. C2, C10

Works with RO to stabilize output stage.
Output coupling capacitor. Low frequency pole given by:

1
fL = R1TRLC2

Typical Applications (Continued)
15V

r--t---1"~
10Dlc

1ft

2.m

2m
MOTOR

lOOk

2.m
R1

510

TLlHI7934-8

FIGURE 4. LM2878 Servo Amplifier In
Bridge Configuration

TLlHI7934-7

FIGURE 3. Stereo Amplifier with Ay = 200

1-423

co

iij
~

r---------------------------------------------------------------------------------,
Typical Applications (Continued)
r---t---------t-----t-~+v

Truth Table

lk

VIN
"

<~V+
%V+ to 3/4V+
>3/4V+

18

TUH17934-9

FIGURE 5. Window Comparator Driving High, Low Lamps

1·424

High
Off
Off
On·

Low
On
Off
Off

,-------------------------------------------------------------------------,

~

a:::
.....
CD

N

CI)

f}1National Semiconductor
LM2879 Dual 8W Audio Amplifier
General Description
The LM2B79 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape
players, recorders, AM-FM stereo receivers, etc.
The LM2B79 will deliver BW/channel to an Bn load. The
amplifier is designed to operate with a minimum of external
components and contains an internal bias regulator to bias
each amplifier. Device overload protection consists of both
internal current limit and thermal shutdown.

Features
•
•
•
•

Avo typical 90 dB
9W per channel (typical)
60 dB ripple rejection
70 dB channel separation

•
•
•
•

Self-centering biasing
4 Mn input impedance
Internal current limiting
Internal thermal protection

Applications
•
•
•
•
•
•
•

Multi-channel audio systems
Tape recorders and players
Movie projectors
Automotive systems
Stereo phonographs
Bridge output stages
AM-FM radio receivers

• Intercoms
• Servo amplifiers
• Instrument systems

Connection Diagram and Typical Application

Stereo Amplifier

PlastiC Package

o

11
10
9
8
7
6
5
4

3
2
1

,...

Y·
OUTPUT 2
GIlD
INPUT 2
FEEDBACK 2
Ne
FEEDBACK 1
INPUT 1
GND
OUTPUT 1
BIAS

,.

III

,"""'-11----_-9--=++
a,,,
+c,

TOPYIEW
TL/H/5291-1
"""TI

Order Number LM2879T
See NS Package Number TA 11 B

Till" '''''
-f t--='---6--9-"i+
u,.,

,.
2.70

'TAB must be connected to. GND.

o.ll'f

r
'='
TL/H/5291-2

FIGURE 1

1-425

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
35V
Input Voltage (Note 1)
±0.7V
Operating Temperature (Note 2)
O"Cto + 70"C

Storage Temperature
Junction Temperature
Lead Temp. (Soldering, 10 seconds)
ESD rating to be determined.
Thermal Resistance
OJC
OJA

Electrical Characteristics Vs=28V, TTAB =
Parameter

25°C, RL =

so., AV =

Conditions

Total Supply Current
Operating Supply Voltage
Output Power/Channel

Typ
12

6
6

f=1 kHz, THD=100/0, TTAB~25°C

Distortion

f=1 kHz, RL =80.
Po=1 W/Channel

Output Swing
Channel Separation

RL=8n
CBYPASS=50 ,...F, CIN=0.1 ,...F
f = 1 kHz, Output Referred
Vo=4Vrms

CBYPAss=50 ,...F, CIN=0.1 ,...F

PSRR Negative Supply

f = 120 Hz, Output Referred
VriDDle=1 Vrms
Measured at DC, Input Referred
Split Supplies ± 15V, Pin 1
Tied to Pin 11

Units
mA
V
W

1

0/0

8

Vs-6V

Vp-p

-50

-70

dB

-50

-60

dB

-60

dB

±13.5

V

10

mV

2.5
3.0
0.8

,...V
,...V
mV
dB
nA
Mn

Input Offset Voltage
Equivalent Input Noise
Rs=O,CIN=0.1,...F
BW=20 -20 kHz
CCIR-ARM
Output Noise Wideband
Rs=O, CIN=0.1 ,...F, Av=200
Rs=51O, f= 1 kHz, RL =80.

Open Loop Gain
Input Bias Current
Input Impedance

Max
65
32

0.05

PSRR Positive Su'pply

Noise

1°C/W
43°C/W

50 (34 dB), unless otherwise specified.

Min

PO=OW

Common-Mode Range

- 65°C to +.150"C
. 150"C
260"C

Open Loop

70
100
4

DC Output Voltage
Slew Rate

Vs=28V

14

V

Power Bandwidth

3 dB Bandwidth at 2.5W

2
65

VI,...s
kHz

Current Limit
1.5
A
Note 1: The input voltage range is normally limited to ±O.7V with respect to pin 1. This range may be extended by shorting pin 1 to the positive supply.
Note 2: For operation at ambient temperature greater than 25"C, the LM2879 must be derated based on a maximum 150"C lunctlon temperature. Thermal
reslstanoe, lunctlon to case, is 3'C/W. Thermal resistance, case to ambien~ is 4IY'C/W.

Typical Performance Characteristics
22
"

20

Device Dissipation vs
Ambient Temperature
INAW HEAT SINK

1.
l! 1.
14
iii 12
1.

!:

.a

.oC/W
HfATSIHII

.... ......

i

r&

ii

ii
3

.......
R

C

•

HEAT SINK

[""'01

.........

I

2
0 10 20 3040l1lil1li7010
lA-AMBIENT TEMI'EllATURE (OCI

!:;

10

Power Dissipation vs
Power Output
11
1.

I~s-zzv

RL -m

10

c

8 10·C/W

4

Open Loop Gain vs
Frequency
110

U

Iial

'"

4G

Ii

~

~
ZI

D
110

rJ:.:1
•• ze
17 11;"
...
"zzv
•
f-++4
3
2

1
0

It

IIIIc

lillie

FREOUENCY (HzI

1M

UV

7

5

D

2&V

II

THD

1",00 __

;~.~2OV
4V

J

L

I

'=11cHz
RL=ID

All-III

I 1 234 5 • 7 • • W
POWER OUTPUT fW/CHAllNEL)
TUH/5291-3

1-426

Typical Performance Characteristics
Supply Current vs Output
Power
800

l!i!
.... ;:;
ifi:!i
U

700
800

~

~

l..oo" i""'"

Uco

ii
400
ill!

r

300

I~

200
100

~i

I

o

80

!

,.~

i~

Mv=50,

iool~~

70

Ei

/
Va = 28V, RL=8D,I=1 kHz

I
I

50

Il.
i

0.5
0.2
0.1

~ 0.05

!i2

D.D2

Av=50
RL=8D
vee=r

~ Krr
"-l\...
.!

~

~

~"

~

z

I

2D
10

10.0
5.0

Ii

II

0.5

"

I! 0.02

i""o~

Avj

t

100

lk
10k
FREOUENCY (Hz)

lOOk

15

....

10

I

I-"

~

1

1=1 kHz
RL=8D

20

COl

",

V
L

V

5

o

20 50 100 200 500 lk 2k 5k 10k 20k

10

15

20

25

30

35

y SUPPLY (V)

FREOUENCY (Hz)

Power Output/Channel vs
Supply Voltage
10

~

11.0~.1~~

RL=B11

9 THO=10%

I
..~

0.1

1.0
POWER OUT (W/CHANNEL)

~

Output Swing vs Vs

~

1/
"'" ,

E=i1¥z"B§m

0.1

10

25

Av=2OO~

III I II

40

lOOk

Total Harmonie Distortion
vs Power Output

0.01
0.01

:Ii!
z:

CmMS =50 ~F
Vee=28V
50
Av=50
Your =4 VlIDS
RL=B11

U

100
lk
1l1li
FREOUENCY (Hz)

",

0.01

~
....

80

C VALUES ARE RIPPLE FIIIER

~

0.2

1 1l'K..."
N=~.~Y,.f",

Il

'"

§
!i!

RL=8D
Po=O.5W
Vee =28V

!:. ~::

20 50 100 200 500 lk 2k 5k 10k 2Dk
FREOUENCY (Hz)

Iii

h'"'kII.. i

Total Harmonic Distortion
vs Frequency

0.01

10

r- ~~ !IJ.ll~F'

111

5!

II
.JVs=2OV,
I. Av=50

0.1
~ 0.05

POio.rr-1II'

'r1

1 ~F

30

10

~

1

80
;;;

11

40

o

01234567
OUTPUT POWER (W/CHANNEL)

I

60 2D,.f

Total Harmonic Distortion
vs Frequency
10

Channel Separation
(Referred to the Output)
Frequency

Supply Rejection vs
Frequency

!~
fillE
oa ..
"' ....

500

(Continued)

I

10

~

"

4

1

o

.,

~

6 8 10 12 14 16 18 20 22 24 26 28
SUPPLY YOIIAGE (V)
TLlH/5291-4

1-427

LM2879

m

J2
C

~'

..
{('
CD

:::J

:::r

CD

3

!.

C:;'

5k

c

i'
ca
ji;

3
30k

...
~

5k

!!sUB

GND03

06
NC

.. 01 08

5
-FEEDBACK 1

TAB

+INPUT 1"+INPUT2

7

GND09

-FEEDBACK 2
TUH/5291-5

Typical Applications
Two-Phase Motor Drive

o

C2
0.1,.,.

NC

AI
27k

C5

q

R3

Uk
2.7

R4
27110

A7

10k

1'5,.,.
+ C7

2.7

TO.

1 I'F

TL/H/5291-6

12W Bridge Amplifier
0.1 ,.,.

SlaNAL
INPUT

----III----~~---------___.

1M

1M

0.47,.,.

10k
TUH/5291-7

1-429

Typical Applications (Continued)
Simple Stereo Amplifier with Bass Boost
8.OZ""

2.7

1lI0II

11

r

211

+

~

y.

-,

TO.,,.F
":'

'1"""

811

":'

INPUT1~
C,

1lI0II

0.1 ""

+

'1'2III~F

IllPUTZ~

1lI0II

":'

CF

..,""

I1
I
I •
I

L

211

+

1lI0II

T5~F

2.7

1lI0II

-:r

":'

0.1,.F

Power Op Amp (Using Spilt Supplies)
lOOk
y+

10k

2.7

TO.,,.F
y-

'I

0.1""
TUH/5291-9

1·430

TUH/5291-8

Typical Applications (Continued)
Stereo Phonograph Amplifier with Bass Tone Control
+

T

'oo ,.F

0.33,.F

lk

51k

510k
lOOk
0.033 ,.F

10k

}~m

~.
I
'='

STEREO
CERAMIC
CARTRIOOE

I
I
I
I
I

500pF

1M

'='

TO.,

Vs

,.F-

+

1

50

,.F
5OO,.F

ffL"

:'TO.,lm

1M

,.F-

510k
lOOk

lk

+

r

'oopF
TLlH/5291-10

Frequency Response of
Bsss Tone Control
m
:!!.

65~~~~~~--~~

;

55

....

..

~ 451-~~~a~

:s

~
~
~

35 bl"'-H-ilO<.
25...,...jI9H-

~ 15~~~~~~~~~
20 50 100 200 500 lk 2k 5k 10k 20k
FREQUENCY (Hz)
TL/H/5291-11

1-431

.- r--------------------------------------------------------------------------------,

~

i=s

~

=s

IfINational Semiconductor

LM2900/LM3900/LM3301 Quad Amplifiers
General Description

Features

The LM2900 series consists of four independent, dual input,
internally compensated amplifiers which were designed
specifically to operate off of a single power supply voltage
and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: ac amplifiers,
RC active filters, low frequency triangle, squarewave and
pulse waveform generation circuits, tachometers and low
speed, high voltage digital logic gates.

• Wide single supply voltage
4 Voc to 32 Voc
Range or dual supplies
±2 Voc to ±16 Voc
• Supply current drain independent of supply voltage
• Low input biasing current
30 nA
• High open-loop gain
70 dB
• Wide bandwidth
2.5 MHz (unity gain)
• Large output voltage swing
(V+ - 1) Vp-p
• Internally frequeney compensated for unity gain
• Output short-circuit protection.

Schematic and Connection Diagrams
v·

Dual-In-Llne and S.O.

"'-"-0

0--_.-.. . . .

OUTPUT

IIN-

-INPUT

1.3mA

.INPUT

TL/HI7936-2

Top View
CURRENT
MIRROR
TLlH/7936-1

Order Number LM2900N, LM3900M, LM3900N or LM3301N
See NS Package Number M14A or N14A

1-432

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
LM2900/LM39oo
LM3301
Supply Yoltage
28Yoc
32Yoc
± 16Yoc
± 14Yoc
Power Dissipation (TA = 25'C) (Note 1)
Molded DIP
1080mW
1080mW
S.O. Package
765mW
Input Currents, liN + or liN 20mAoc
20mAoc
Output Short-Circuit Duration-One Amplifier
Continuous
Continuous
T A = 25"C (See Application Hints)
Operating Temperature Range
-40"C to +85'C
LM2900
-40"Cto +85'C
LM3900
O'Cto +70'C
Storage Temperature Range
-65'Cto + 150"C
-65'Cto + 150"C
Lead Temperature (Soldering, 10 sec.)
Soldering Information
Dual-In-Line Package
Soldering (10 sec.)
Small Outline Package
Vapor Phase (60 sec.)
Infrared (15 sec.)

26O"C

260"C

260"C

260"C

215'C
215'C
220"C
220"C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount
devices.
ESD tolerance (Note 7)
2000Y
2000Y

Electrical Characteristics TA = 25'C, y+ = 15 Yoc, unless otherwise stated
Parameter
Open
Loop

Yoltage Gain
Yoltage Gain

LM2900

Conditions

LM3900

LM3301

Min Typ Max Min Typ Max Min Typ Max

Over Temp.
AYo = 10Yoc
Inverting Input

Units

Y/mY
1.2

2.8

1.2

2.8

1.2

2.8

Input Resistance

1

1

1

MG

Output Resistance

8

8

9

kG

Unity Gain Bandwidth

Inverting Input

Input Bias Current

Inverting Input, y+
Inverting Input

Slew Rate

Positive Output Swing
Negative Output Swing
RL

Output
Yoltage
Swing

RL = 2k,
y+ = 15.0Yoc

YOUTLow
YOUTHigh

Output
Source
Current
Sink
Capability
ISINK

30

y+ = Absolute
Maximum Ratings

6.2

30

200

30

0.5
20
10

6.2

MHz
300

0.5
20
10

nA
Vlp.s

6.2

10

0.09

0.2

mAoc

-

= 0,
=0
liN = 10 p.A,
IIN+ = 0
liN = 0,
IIN+ = 0
RL = 00,
liN
IIN+

(Note 2)
VOL

2.5

2.5
200

0.5
20

= 00 On All Amplifiers

Supply Current
VOUTHigh

2.5

= 5 Yoc

= W,IIN - = 5p.A

13.5

13.5
0.09

29.5

0.09

29.5

0.2

18

6

10

5

18

0.5

1.3

0.5

1.3

0.5

1.3

5

5

~

I

Yoc

26.0

6

5

1-433

0.2

13.5

i

mAce

Electrical Characteristics (Note 6), V+ = 15 Voc, unless otherwis~ 'stated (Continued)
.. ' ..'
,

Pa~ameter

Conditions

Power Supply Rejection

TA

Mirror Gain

@

LM29bO
Min

Typ

0.90
, 0.90

= 25°C, f = 100 Hz

''''

LMa90!)

Max

Min

Typ

1.0
1.0

1.1
1.1

0.90
0.90

2
10

"

"".!,

Min

1.0
1.0

1.1
1.1

0.90
0.90

5

2

500

10

70

70

@

~Mirror Gain

@

20 p,A to 200 p,A (Note 3)

Mirror Current

(Note 4)

Negative Input Current

TA = 25°C (Note 5)

1.0

1.0

Input Bias Current

Inverting Input

300

300

.':{

>

, .!:-M3301

Max

20 p,A (Note 3)
200 p,A (Note 3)

",!'!

Typ

Max

70

dB

1
1

1.10
1.10

5

2

5'

500

10

,500

1.0

Units

p.A/p,A
%
/lAoc
mAoc
nA

Note 1: For operating at high temperatures, the device must be derated based on a 125"C maximum lunction temperature and a thermal reslstanoe 019Z'C1W
which applies lor the device soldered In a printed circuR board, operating in a still air ambient. Thermal reslstanoe lor the S.O. package is 131~C/W.
Note 2: The output'current sink capability can be increased lor 18fIle signal conditions by overdriving the inverting inpul This is shm." in the 'section on Typical
Charecteristics.
"
Note 3: This spec indicates the current gain 01 the current mirror which Is used as the non-inverting input.
"
Note 4: Input VBE match between the non-Inverting and the Inverting Inputs occurs lor a mirror current (non-inverting input current) 01 approximately 10 pA. This is
therelore a typical design center lor many 01 the application ci'rcuRs.
Note 5: Clamp transistors are included on the IC to prevent the input voltages Irom swinging balow ground more than approximately - 0.3 Voc.TIlI> ~egative input
currents which may result lrom large signal overdrive wRh capecilance input coupling need to be externally limited to values 01 approximately 1 ,rnA. Negative input
currents in excess 014 rnA will cause the output voltage to drop 10 a low voltage. This maximum current applies to anyone 01 the input terminals. II more than one
01 the inpuf terminals are Simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative
input voltages; ..... lor example, the "Dilierentiator Circuif' in the applications section.
Note 6: These specs apply lor -4O'C ,;; TA ,;; +B5"C, unless otherwise steted.
Note 7: Human body model, 1.5 kfl in series with 100 pF.

Application Hints
When driving either input from a low-impedance ,source, a
,limiting resistor should be placed in, series with the input
lead' to limit the peak input current. Currents as large as
20 rnA will not damage the device, but the current mirror on
the, non-inverting input will saturate and cause a loss of mirror gain at rnA current levels-especially. at high operating
temperatures.
Precautions should be taken to insure that the power supply
for the integrated circuit never becomes reversed in polarity
or that the unit is not inadvertently installed backwards in a
test socket as im unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.
Output short 'circuits either to ground or to the positive power supply should be of short time duration. Units can be
destroyed, not as a result of the short circuit current causing
metal fusing, but rather due to the large increase in IC chip
diSSipation whIch will cause eventual failure due to excessive junction temperatures. For example, when operating
from a well-regulated +5 Voe power supply at TA = 25°C
with' a 100 kO shunt-feedback resistor (from the output to
the inverting input) a short directly to the power supply will
not cause catastrophic 'failure but the current magnitude will
be approximately 50 rnA and the junction temperature will '
be above TJ max. Larger feedback 'resistqrs will reduce the
current, 11 MO provides apprOximately 30 rnA, an open circuit provides 1.3 ,rnA, and a direct connection from the output to the non-inverting input will result in catastrophiC fllilure when the output is shorted to V + as this then places ·the
base-emitter junction of the input transistor directly across
the power supply. Short~circuits to grouncj will have magni:
tudes of approximately 30 rnA and will not cause catastrophic failure at TA = 25°C.
0,

•

•

•

1-434

Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is. likely only in
breadboard hook-ups with long component leads and can
be prevented by a more ,careful lead dress or by locating the
non-inverting input biasing resistor close to. the IC. A quick
check of this condition is to bypass the"non,inverting input
to ground with a capacitor.. High impedance biasing resistors used in the non-inverting, input circuit make this input
lead highly susceptible to unintentional AC signal pickup.
'Operation of this amplifier can be best understood by noticing that input currentS are differenced at the inverting-input
terminal and this difference, current then flows thrQugh the
external feedback resistor to' produce the output voltage.
Common-mode current biasing is generally useful to allow
operating with signal levels near ground or even negative as
this maintliins the inputs' biased at + VSE. Internal clamp
tran~istors, (see note 5) catc~-riegat~ve input VOltages 11t approXImately 0.3 Voc but the magnitude of current flow has
to be limited by the external input network. For operation at
high tel11perature, this limit should be approximately 100'p.A.
This neY; "Norton" current-differencing amplifier can be
used in most of the applications of a standard Ie op amp.
Performance as a DC amplifier using only a single supply is
not as precise' as a standard·IC op amp operating with split
supplies but is"adequate,in many less critical applications.
New functions are made possible with this amplifier which
are useful in single power supply systems: For example,
biasing can be designed separately from the AC gllin as was .
shown in the "inverting amplifier," the "diffe~!lnce integrator"allows contrOlling the charging and the discharging of
the integrating capaCitor with pOSitive voltages"and the "frequency doubling tachometer'" provides Ii simple circuit
which reduces the ripple voltage on a tachometer output DC
voltage.

-

Typical Performance Characteristics
Open Loop Gain

Voltage Gain

llU

...

i

II

C

..~
...
~

NloLDAJ

.

i

~=5".

III

'R:

4Q

'Zk

I

J

20

.

4Q

>

111'

la"

la"

lU'

I - FREOUENCV 1Hz)

Input Current

~

2G

II

15

RI. --

IT.'

.
...5
co

"\
i'- .....

I

I'-

.i'j

,

,"

~

35

5t

TA - TEMPERATURE

It

liS

lU

re)

.!

.
...~
.5

5

III

!;
I

5U
4Q

~

31

11N~·'.uA

T~ '~5"~
II

ill

110
10
U

10'

......~

15

~

15

TA -12&"C
IU

IS

i""'...

lD"

..i
~

co

·AI

I

<
111"

ID"

lD'

1.04
l.ao

T. -2S'C 1
TA =85"C

~115'C
I
A

I
lU

v" -

1&

15

ZQ

30

SUPPLY VOLTAGE IVn.,)

Maximum Mirror Current
II

1.12

!! !.UI
C

"

I - FREQUENCV 1Hz)

V

31

"

!!!C

e

IIN+

.!

II

..

12

....
;0

co

\,

10M

TA~
1A.' O'C

10

Mirror Gain

I..

1M

~

1.1.

tl

1"

2U

v" -SUPPLV VOLTAGE IV.d

Supply Rejection

J.

.!

I

"

v+ -SUPPLY VOLTAGE (VDCI

10lk

....

TA =2S2 C

r

I

11k

Output Source Current

....

11.15101530

68

lk

1- FREQUENCV 1Hz)

e

I'N·"1h,A

.1

100

IS

TA " -a5"C

lao

I\...

o

30

20
lU

\

4

Output Class-A Bias Current

U

.
5
..:il
t

II

I

~

I

IU

tOkSRLS""

I

.!

Ld::C ~

/

125

lZ

v" -SUPPLVVULTAGEIV.cl

Output Sink Currerit

e

II

95

14

co

U

-56 -21

Ii

1&
T. ,Irc

, T. -m'c
f... T·'II5"C T.'15'C
'(-I

5

35

--25

TA - TEMPERATURE I'C)

II

~

......

-&&

3Q

Large Signal Frequency
Response

~i5'C

.!

I

25

ZQ

V+ -SUPPLY VOLTAGE (Vod

1.

10
4Q

o L-.....L.__- ' - - - '__....I.........__.....

•

e

10

....
~

r-~--+-_+--~-+--,

10

Supply Current

110

....

IUI----+-+-I----f.-+--i

zu
U

lU'

j

I

J

"\
III'

-

f- r-

110

~
!:;

""\

-

Btl

~

U

!
5

Voltage Gain

lUI

-

G.l1
-55

-It

~

i:l

""'-

r--... ~O,BtI -

i

liN "'l11J,iA

I

~

35

65

15

TA - TEMPERATURE I'C)

115

..........

o
-5t

--25

35

IS

r--....

IS

125

T. - TEMPERATURE I'C)

TUH/7936-9

1-435

~

I

:5

I:5

r------------------------------------------------------------------------------------------,
Typical Applications (V+

= 15 VDc)

Inverting Amplifier

Triangle/Square Generator

--.l1M

V' Oo-,\N'II-""""

~

:5
2RZ
2M

Ay"

V'

va.

y+

YOCC="2
-~
AI
TL/H/793B-3

TL/H/7936-4

Frequency-Doubling Tachometer

Low VIN - VOUT Voltage Regulator
,-------------~----~~VO·VZ·VH

+

39k

Vz

Ts"F

>_._-oVODC

TLlHI7936-5

510

TLlHI7936-6

Non-Inverting Amplifier

Negative Supply Bla81ng

Rl

>-tHOVo

f·

y+

vocc="2
V+

Av"~
A1
TL/H/7935-7

1-436

-

RZ

Typical Applications (V+

= 15 Vee) (Continued)

Low-Drift Ramp and Hold Circuit
RAMP DOWN

JL

lOOk

>-4......0vo

RAMP UP

JL

lOOk

2M

ZERO

DRIFT

10M

AoJ

TLlH/7936-10

BI-Quad Active Filter
(2nd Degree State-Variable Network)

lOOk

lOOk
V,N o---+-""",M,-"'~
(_7 Voel
lOOk

470k

10M

470k

V'

1M

Q=5O
10

= 1kHz

V'
Tl/HI7936-11

1-437

Typical Applications

(V+

=

;, ,.:'t".'

15 Vocl (Continued)

Voltage-Controlled Current Source
(Transconductance Amplifier)
V'

lk

1M
1M

+V'N

o-..J\M_"---1
-'OOk

I
I

1M

l

I 10 =1 mAIVOL T V'N
TUHI7936-12

HI VIN, Lo (VIN - YO) Self-Regulator

-

10-t.....o+Vo
Vo

=v ,N

1M

TLlHI7936-18

TLlH/7936-17

Tachometer
V·

180k

flNfl-.Sl.

>~~I--"'-O +vooe

+V'N o-~N","""~-------4~

200k

TLlH/7936-19

1-439

'Allows Vo to go to zero.

~

~

:I
..J

r-----------------------------------------------------------------------------------------------,
Typical Applications

(V+ = 15 Vocl (Continued)

Low-Voltage Comparator

C;

Power Comparator

v+

g

v+
No negative voltage limn if
properly biased .

;

..J

I:i

LAMP
lOOk

+0.2 Vee
TLlH/7936-21

TLlHI7936-20

Comparator

Schmitt-Trigger

1M

No positive voltaga limit

TL/HI7936-22
TL/HI7936-23

Square-Wave Oscillator

Pulse Generator
30k

JOk

>-....-oVo

JL.J"L

JL.rU
1= 1 kHz

TL/HI7936-24

TL/H/7936-25

Frequency Differencing Tachometer'
J9k

~---"'~D
, 20k,

VODe
Voce

= A (f, -

TL/H/7936-26

1-440

Iv

Typical Applications (V+

= 15 Vee) (Continued)

Frequency Averaging Tachometer
39k

I,rLJ"1.
r1 r1 r
L..J L..J

>-4.....-0

20k

Voce

20k
o-.II,/'l,~

12 .J

Yo

= A (1, + 12l

VIN2

TL/H17936-27

Squaring Amplifier (WIHysteresls)

BI-5table Multivibrator
y'

y'

RESET

5M

'\f\

..f"L

200k

150k

200k

150k

SET

YARIABLE
RELUCTANCE
TRANSDUCER

..f"L

5M

TLlH/7936-29

10M

Y'

TLlH/7936-28

Dlfferentlator (Common-Mode
Biasing Keeps Input at + YaE)

"OR"Gate
150k

y'
15k

A

o--JW'\r-..,
15k

Bo---"",.."...._ - -. .

30k

15k

15k

TL/H/7936-31

v'
o

AV

..IlJl

=2.
2

TL/H/7936-30

"AND" Gate
y.

Difference Integrator

Uo--"",..,._

1M

+Y, 0--,.".,"'. .-4

24k
A 0-........"""'"_
24k

1M

24k

'Y 2
TLlHI7936-32

1-441

o--.J\oM_"

Typical Applications (V+

= 15 Voc) (Continued)

Low PasS Active Filter
1M

270k

1M

~

300 pF

fO=lkHz

y+

OUTPUT
BIAS
ADJUST
TL/H17936-34

Staircase Generator

VBEBiasing

-

RESET

.J1..
>-,,-oVo

f·

+
V1NILn
"2 Step/cycle
TL/H17936-35

Vo

- -

YB. ' 0.5 Yoc

YODe • YB• (1 +

J\

R2

Rl

3k

R2

Av'" -Fi1

~)
TUH/7936-36

Bandpass Active Filter
D.lpF

39k

fo=lkHz
Q

= 25

TUHI7936-37

1·442

.-----------------------------------------------------------------------------, r
!:
Typical Applications 01+ = 15 Voc} (Continued)

i.....

Low-Frequency Mixer

Q

r-

!:
w

8.....

1M

r

y+

!:

........---11 (f. - f,)

w

....~
v,

~o Pt-F""",""'~.-t"

+

Vo

I

y. ~o ..PF-,\lf1,OO.,.k~~
y, >y.

TL/HI7936-38

Free-Running Staircase Generator/Pulse Counter

JDk

15Dk

>-t....-oyo

to

S.lk

PULSE GENERATOR

1M

.IL

RESET
PULSE

51Dk

ONf.SHOTWI
INPUT COMPARATOR
1.2M

t--w",,"--oy+
TUH/7936-39

1-443

Typical Applications (V+

= 15 Vee) (Continued)

Supplying liN with Aux. Amp
(to Allow Hi-Z Feedback Networks)

10M

TL/HI7936-40

One-Shot Multlvlbrator
1M

2M

lOOk

PW '" 2

x loee

30k

n

1.2M

'SpeedS recovery.

TL/HI7936-41

Non-Inverting DC Gain to (0,0)
OFFSETADJ
250k
1.5M
1M

1.5M

TL/HI7936-42

1-444

r-------------------------------------------------------------------------------------~

Typical Applications (v+

=

r-

i:

rgo

15 Voe) (Continued)

Channel Selection by DC Control (or Audio Mixer)

.....
r-

i:

:i.....o
r-

lOOk

i:
Co)
Co)

....

o

lOOk
10M

y'

Vo

i
V+/2

lOOk

y+

TLlHI7936-43

1.445

.-

I

,-------------------------------------------------------------------------------------,
Typical Applications (V+

= 15 Vee) (Continued)

POWer Amplifier

I

y•

....

10M

~

10M
10M

....

:E

y•

1M

.Y'N

0--"1"",...... .- - - -. .

TUH/7936-44

One-5hot with DC Input Comparator
y.

on
y.

'1

12

>-41.....-0 DUll
SlOt

:-u+ '1

12

OUTPUT 1

o-..-c~

1M

I.ZM
Trips at Y,N .. 0.8 y+

Y,N must fall 0.8 y+ prior to 12
TUHI7936-45

High Pass Active Filter
410 pF

TL/H/7936-46

1·446

Typical Applications

(V+ = 15 Voc) (Continued)

Sample-Hold and Compare with New

+ VIN

39k

~

1~

51k

>~""-----4""-O

VD, =V,N (HOLOI
FOR I, < 1<;;1.

CONTROL

INPUT

:..r-L
HOLD

SAMPLE

ZERO

DRIFT

10M

AOJ
1M

20•

._----oV+

--------0

1M

VO• = AOL IV ,N1tI - V'NIHOLDli
FOR I,:;: t :;:12

TL/HI7936-47

Sawtooth Generator

rL
RESET

3k

>-41.....0

Vo

TUHI7936-49

1-447

~ r---------------------~--------------------------------------------------------------,

~
CO)

Typical Applications (V+

= 15 Voc) (Continued)

:5

Phase-Locked Loop

~

:i

~

12k

30k

f'N

;SU

:i

V0'/\/V
Vo,o-~~<

fo

30k

30k

>-1I.....- - -..-oQY02

y+

:.Jlf
'0
TL/HI7936-49

Boosting to 300 mA Loads
y+ (15VDC)

ON

:.s-L
OFF

Rl
420

OFF

1/:.: 10

I'N 2:0.1 mA

+V'N

-

~ 300mA

R

LAMP

TLlH/7936-50

1-448

Split-Supply Applications ry+

=

+ 15 Voc & V-

= -15 Voc)

Non-Inverting DC Gain
+15.00 VDC*

1M

2M

,-01\1""'-............

200k

1M

> ........-o±vo
Av = 10

-15.00 VDC*

·Complementary
Ir••king

-

TUHI7936-51

ACAmplHier
+15Voc
1M

!:~"

1M

-15 VDC

-

fUM

HL

Vo

TLlHI7936-52

1-449

t!lNational Semiconductor

LM3045/LM3046/LM3086 Transistor Arrays
Features ;'

General Description

• Two matched pairs of transistors
VSE matched ± 5 mV
Input offset current 2 p,A max at Ie = 1 mA
monolithic substrate. Two of the transistors are internally ',\
connected to form a differentially-connected pair. The tran• Five general purpose monolithic transistors
sistors are well suited to a wide variety of applications in low
• Operation from DC to 120 MHz
power system in the DC through VHF range. They may be
• Wide operating current range
used as discrete transistors in conventional circuits howev• Low noise figure
3.2 dB typ at 1 kHz
er, in addition, they provide the very significant inherent inte- .
.. Full military
grated circuit advantages of close electrical and thermal
temperature range (LM3045)
-55°C to + 125°C
matching. The LM3045 is supplied in a 14-lead cavity dualin-line package rated for operation over the full military temApplications
perature range. The LM3046 and LM3086 are electrically
• General use in all types of signal processing systems
identical to the LM3045 but are supplied in a 14-lead mold.' operating anywhere in the frequency range from DC to
ed dual-in-line package for applications requiring only a limVHF
ited temperature range.
.
• Custom designed differential amplifiers
• Temperature compensated amplifiers
The LM3045, LM3046 and LM3086 each consist of five
general purpose silicon NPN transistors on a common

Schematic and Connection Diagram
Dual-In-Line and Small Outline Packages
SUBSTRAl;~

14

13

12

11

10

OJ

4
TLlHI7950-1

Top View
Order Number LM3045J, LM3046M, LM3046N or LM3086N
See NS Package Number J14A, M14A or N14A

1-450

Absolute Maximum Ratings (TA =

25°C)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Power Dissipation:
TA = 25°C
TA = 25°C to 55°C
TA> 55°C
TA = 25°C to 75°C
TA> 75°C
Collector to Emitter Voltage, VCEO
Collector to Base Voltage, VCSO
Collector to Substrate Voltage, VCIO (Note 1)
Emitter to Base Voltage, VEBO
Collector Current, Ic
Operating Temperature Range
Storage Temperature Range
Soldering Information
Dual-In-Une Package Soldering (10 Sec.)

LM3045
Each
Total
Transistor
Package
300

LM3046/LM3086
Each
Total
Transistor
Package

750

Units

mW
mW
mW/oC
mW
mwrc

300
750
300
750
Derate at 6.67

750

300
Derateat8
15
20
20
5
50
- 55°C to
-65°C to

15
20
20

V
V
V

5
50

V
mA

+ 125"C
+ 150"C

-40"C to
- 65°C to

260"C

+ 85°C
+ 85°C

260"C

Small Outline Package
Vapor Phase (60 Seconds)
215°C
Infrared (15 Seconds)
220"C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount
devices.

Electrical Characteristics (TA =
Parameter

25°C unless otherwise specified)

Conditions

Limits

Limits

LM3045, LM3046

LM3086

Min

Typ

Max

Min

Typ

Units
Max

Collector to Base Breakdown Voltage (V(SR)CSO)

IC = 10 ",A, IE = 0

20

60

20

60

V

Collector to Emitter Breakdown Voltage (V~SRlCEO)

Ic = 1 mA, Is = 0

15

24

15

24

V

Collector to Substrate Breakdown
Voltage (V(SR)Clb)

Ic = 10 ",A, ICI = 0

20

60

20

60

V

Emitter to Base Breakdown Voltage (V@RLeBO)

Ie 10 p.A, Ic = 0

Collector Cutoff Current (ICBO)

VCB = 10V, Ie = 0

Collector Cutoff Current (ICEO)

Vce = 10V, Is = 0

Static Forward Current Transfer
Ratio (Static Beta) (hFE)

VCE = 3V

{'C = 10mA
Ic=1mA
Ic = 10 ",A

Input Offset Current for Matched
Pair Q1 and Q21101 - 11021

VCE = 3V, Ic = 1 mA

Base to Emitter Voltage (VSE)

VCE = 3V

{'E = 1 mA
'E = 10mA

Magnitude of Input Offset Voltage for
Differential Pair IVBE1 - VSE21

VCE = 3V, Ic = 1 mA

Magnitude of Input Offset Voltage for Isolated
Transistors IVBE3 - VBE41, IVSE4 - vSEsl,
IVSES - VBE31

VCE = 3V, Ic = 1 mA

Temperature Coefficient of Base to
~~E )
Emitter Voltage

VCE = 3V, Ic = 1 mA

(a

Collector to Emitter Saturation Voltage (VCE(SAT)

Is = 1 mA, Ic = 10 mA

Temperature Coefficient of
Input Offset Voltage

VCE = 3V, Ic = 1 mA

(a:;o)

5

7
0.002

5
40

7
0.002

0.5
100
40

nA

5

",A

100

100

40

54
0.3

V
100

100
54

2

p.A

0.715

0.715

0.800

0.800

V

0.45

5

mV

0.45

5

mV

-1.9

-1.9

mvrc

0.23

0.23

V

1.1

",V/oC

Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is Isolated from the substrate by an integral diode. The substrate (terminal 13) must
be connected to the most negative point in the external circuH to maintsin isolation between transistors and to provide for normal transistor action.

Electrical Characteristics (Continued)
Parameter' ,

r

Conditions

Low Frequency Noise Figure (NFl

Min

Typ

f =,1 kHz, VCE = 3V,
Ic = 100 pA, Rs = ,1 kO

Max

Units

3.25

dB

LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS
Forward Current Transfer Ratio (hje>

110 (LM3045, LM3046)
(LM3086)

f = 1 kHz, VCE = 3V,
Ic=1mA

Short Circuit Input Impednace (hie>

3.5

kO

Open Circuit Output Impedance (hoe)

15.6

"mho

1.8x10-4

Open Circuit Reverse Voltage Transfer Ratio (hrel
ADMITTANCE CHARACTERISTICS
Forward Transfer Admittance (Vtel

31 - j 1.5

f = 1 MHz, VCE = 3V,
Ic=1mA

Input Admittance (Vie>

0.3+JO.04

Output Admittance (veel

0.001 + j 0.03
See Curve

Reverse Transfer Admittance (Vrel
Gain Bandwidth Product (for)

VCE = 3V, Ic = 3 rnA

Emitter to Base Capacitance (~s)

VES = 3V, IE = 0

0.6

Collector to Base Capacitance (CCS)

VCS = 3V, Ic = 0

0.58

pF

Collector to Substrate Capacitance (Cel)

Ves = 3V,Ic = 0

2.8

pF

300

550
pF

Typical Performance Characteristics
Typical Collector To Base
Cutoff Current vs Ambient
Temperature for Each
Transistor

..
;.:.
1

102

~..

il. -I'

!'~~

..

e

II"'

~

9, 1.-

i...
ill
'"'"il

...
"5

10'

128

I. =0

Veo -

111'

c

.,;::

110

;

~

100

....~ ~

11

..'"
"~

Typical Static Forward
Current-Transfer Ratio and
Beta Ratio for Transistors Q1
and Q2 vs Emitter Current

Typical Collector To Emitter
Cutoff Current vs Ambient
Temperature for Each
Transistor

lit'

,

10
88

O

10

2&

7&

12&
'00
T. - AMBIENTTEMPERATURE 1°C)

JiliJ4

50

0

2&

&0

12&

100

15

1

;;

:..r

;;:

0.9 ~

h"

'0

jl..-

/

"FET

80

~=
~il

&V

8, 10"2

3

11111111!. I,
Ih,. 'lOR Ih'ul

90

=~
'i5

t====$ Ve• - 'OV

1.1

I

3v:'1II

,,!s·c

hFU

;::c

1

TA

V
.01

I

D.!

C-

1

.1

TA - AMBIENT TEMPERATURE I C)

.,

rr-

I

10

I. - EMITTER (mAl
TLlH/7950-2

Typical Input Offset Current
for Matched Transistor Pair
Q1 Q2 vs C!)llector Current
10 ~

F

c

5

~
I,

f::

I~

F

,co

...

~

f::

11111rt~

F

.0'

.,

~
is

,

~
i,
J

,.

r-

.7

.1

[).

4

...

I

.I

J

.S

.a,

IIIIIIIIIIIIIIIJ..,.;
111111111 111111111

.,

,

3

~

2

!...

,

III

, i'5!

INPUT OFFSET VOLTAGE

.4

Ie _ COLLECTOR IIOA)

I

VeE -3V

T. -zrc

~

Fi

"§
t::
~
.01

..

Typical StatiC Base To Emitter
Voltage Characteristic and Input
Offset Voltage for Differential
Pair and Paired Isolated
Transistors vs Emitter Current

11

•

I. - EMlmR (mAl
TLlH17950-3

1·452

r-------------------------------------------------------------------------------------~

Typical Performance Characteristics

riii:

~

(Continued)

~

UI
.......
r-

Typical Input Offset Voltage

Typical Base To Emitter
Voltage Characteristic for
Each Transistor vs Ambient
Temperature

..

~

~

!

~~

.B

~

•6

I

.J

~ to.....

IE =3mAF.5
ImA
O.,mA

I --

~

~

...

~~

I""'" ~

.5

.4
-75 -50 -25 0

,--

C>

25 50

--

~I

.}

I

-75 -50 -25 0

25

~

15

. .. ~
III

f-0.1kHz

i-'"

I kHz
10kHz

o

50 75 lOB 125

.01

TA - AMBIENT TEMPERATURE C·CI

TA - AMBIENT TEMPERATURE {-CI

I

20

C>

.1mA

o

75 100 125

,.,;

lis = &aD"
lA "ZS·C

25

.
'"

I~A

.25

riii:

VeE" 3V

I

I

.50

~

Typical Noise Figure vs
Collector Current

i.--"

IE"tOlt

.75

iii:
3D

I

VeE =3V

.5

~

e .1
•

,.

VeE'" 3V
.9

Characteristlca for Differential
Pair and Paired Isolated
Transistors vs Ambient
Temperature

Ie - COLLECTOR ConAl
TL/H17950-4

Typical Noise Figure vs
Collector Current

Typical Noise Figure vs
Collector Current

Typical Normalized Forward
Current Transfer Ratio, Short
Circuit Input Impedance,
Open Circuit Output Impedance,
and Open Circuit Reverse
Voltage Transfer RatiO vs
Coftector Current

30

Veli"' 3V
lis -IO,OOon
TA '25"C II

VeE ~3V

25

!

ZG

lis = 1~+++Ht--t-+t+1fttt1
TA =21i"C

1-++I-tttHt-+-t+t-tt.LH

25

.

!

20

§

\! D.lkHz/

15

~

I kHz

!..

10

V

~

~

a
.1

'm

"II

10

.1
Ie - COLLECTOR CmAI

.01

Ie - COLLECTOR CmAl

Ie - COLLECTOR I..AI

TL/H17950-5

40

Typical Forward Transfer
Admittance vs Frequency
T. =21i"C

~~

,Ie

Va; -3V

"'lmA

Typical Input Admittance
lA·2S-C

:1
::!.!

TA -WC

I- VeE '3V

VeE = 3V

Ie -1 mA

Ic"lmA

U E

1; ..

,~:;J.

",u

r-ii

r\

l""-

i~

","

I:~
I

~

I

!

.~

11111

o
1- FREOUENCY CMHz!

100

L

~

D.

10

"'./

I'

u ..

... u
-

II

Typical Output Admittance
vs Frequency

vs Frequency

.1

10

1- FREOUENCY CMHzl

100

o
.1

~
10

a..
100

I-FREQUENCY CMHzl
TL/H17950-6

1-453

Typical Performance Characteristics
Typical Reverse Transfer' .
AdmlHance vs Frequency

"l;l'"
w

~ i

~1

.5

!e

Typical Gain-Bandwidth
Product vs Collector Current

.J W1~!I~TFJEJJEWWL-

"~'"
'"
!"
I-

== ~J ":1

w"I

~ .J -1.5
I

..

10

1
f -

'"..!::

100

I

100

i-'"

5DD

.
..
C

Ie "lmA

-2

T.· 2i"C

6DD

400

~

TA =25·C
V~E "'3V

...

..

_~e. '3~

I:;

~

-.5

1011

i

~ liD

,LE~ THAN 500 MHz \

,

B:
~i

(Continued)

3DD

I

2DD

12345618910

FREQUENCY (MHzl

Ie -

COLLECTOR (mAl
TL/H17950-7

1-454

,-------------------------------------------------------------------------,
t!lNational Semiconductor

LM3080
Operational Transconductance Amplifier
General Description

Features

The LM3080 is a programmable transconductance block intended to fulfill a wide variety of variable gain applications.
The LM3080 has differential inputs and high impedance
push-pull outputs. The device has high input impedance and
its transconductance (gml is directly proportional to the amplifier bias current (IASel.

•
•
•
•
•

Slew rate (unity gain compensated): 50 V / /JoS
Fully adjustable gain: 0 to gm • RL limit
Extended gm linearity: 3 decades
Flexible supply voltage range: ± 2V to ± 18V
Adjustable power consumption

High slew rate together with programmable gain make the
LM3080 an ideal choice for variable gain applications such
as sample and hold, multiplexing, filtering, and multiplying.
The LM3080N and LM3080AN are guaranteed from O"C to

+70·C.

Schematic and Connection Diagrams
r----1~---.------------_t~O+v

(+/INPUTOO---------+--------.....
3

AMPLIFIER

00---1_-<

D4

BIAS INPUT 5

L -____- - - - - - - - - - - -__~__~~-v

4

Dual-In-Line Package

NC

NC

HINPUT

v+

(+/ INPUT

OUTPUT

5

v-

AMPLIFIER

BIAS INPUT
TL/HI7148-2

Top View
Order Number LM3080AN, LM3080M or LM3080N
See NS Package Number M08A or N08E
1-455

TL/HI7148-1

~

I

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Otflce/Distributors for availability and specifications.
Supply Voltage (Note 2)
LM3080
LM3080A

DC Input Voltage

Power Dissipation

Output Short Circuit Duration

Differential Input Voltage

" O"C to + 70"C

Storage;Temperature'Range

250mW

-65'Cto + 150"C

Lead Temperature (Soldering, 10 sec.)

±5V

2mA

+Vsto -Vs
Indefinite

Operating Temperature Range
LM3080N or LM3080AN

±18V
±22V

,

"

Amplifier Bias Current (IABC)

260"C

Electrical Characteristics ,(Note 1)
Min
Input Offset Voltage
Over Specified Temperature Range
IABC = 5poA
Input Offset Voltage Change

LM3080A

LMao"O

Conditions

Parameter

Typ

Max

0.4

5
6

Min

0.3

Max

0.4

2
5
2"

mV
mV
mV

0.3

0.1

Units

Typ

0.1

3

mV

Input Offset Current

0.1

0.6

0.1

0.6

poA

Input Bias Current

0.4
1

5
7

0.4
1

5
8

poA
poA

9600

13000

7700
4000

9600

12000

pomho
pomho

5
500

650

3
350

5
500

7
650

poA
poA

5 poA ,;; IABC ,;; 500 poA

Over Specified Temperature Range
Forward Transconductance (gm)
Peak Output Current

Over Specified Temperature Range

6700
5400

RL = 0, IABC
RL';'; 0

350

=

5 poA

RL = 0
Over Specified Temperature Range
Peak Output Voltage
Positive
Negative

RL
RL

=
=

00,5 poA ,;; IABC';; 500 p.A
00,5 poA,;; IABC';; 500 p.A

"

300

+12
-12

Amplifier Supply Current
Input Offset Voltage Sensitivity
Positive
Negative

+14.2
-14.4

+12
-12

1.1
20
20

aVOFFSET/aV+
aVOFFSET/aV-

Common Mode Rejection Ratio
Common Mode Range
Input Resistance
Magnitude of Leakage Current

IABC

Differential Input Qurrent

IABC

=
=

=

1.1

mA

20
20

150
150

poVIV
poVIV

110

80

110

±12

±14

V

10

26

10

26

kO

Unity Gain Compensated '

Note 1: These specifications apply for Vs = ± ISV and TA = 2S'C, arnplHier bias current (lABel
Note 2: Selection to supply voltage above ±22V. contect the faCtory.

1·456

V
V

±14

±4V

..

+14.2
-14.4

80

0
O,lnput

150
150

poA

±12

Open Loop Bandwidth
Slew Rate

300

dB

0.2

100

0,2

5

0.02

100

0.02

5

nA
nA

2

2

MHz

50

50

V/pos

= soo p.A. unless otherwise specifled.

Typical Performance Characteristics
Input Offset Voltage
5

Input Offset Current
103~~fi

vS"~li v

Input Bias Current
104

.!

+lzrc

w

.
.~...
CD

!:;
>

~

-1
-Z
-3

JII'

10 . . . .

+1~~F

-5
-7

1111111

-I
0.1

1.0

laoO

III

'.1

;;;

...

10

1.8

1110

, I"
10

1.0
1.1

lDOD

1.0

10

11100

100

IABC-AMPLIFIER BIAS CURRENT (,.AI

'AIC-AMPLIF'ER lIAS CURRENT (,.AI

Peak Output Voltage and
Common Mode Range

Peak Output Current
15

104

....
...
......
,.

11110

103

:l!

B

102

~

c

~

IIIIIY

1

0.1

1.0

IIiDI

1.

""III

..

~~

J.

-

ww

~,
""'I "'"
,..

111111

....
:!=

VOUT
VCMR

14

.

...~~

13
D

VS=·,5V
RLOAO··
TA·,zrc

...

~1-13
..II

VCMR

~5 -14

VOUT

1111111

laoO

1.0

•. 1

'ABC-AMf'lIFIER ,BIAS CURRENT Wli

1111111
10

100

lD1D

1.0

IABC-AMI'L1FIER BIAS CURRENT Wli

Total Power Dissipation

Input Leakage

Vs''''V

-Vz· VI' vp 3BV

~w

..~..
.....

I/,

c

w

ov= =

CD

C

10

::

+12&OC

/

183



!

101

w

CD

~

~

1.0

=

t;

.

!i

~

102

c

8DO
7ao

II.

-

400

i

300

11111
1~I.\~c

1l1IIr
.z~

IIIIll

SOD

iii

~

0.1

1000
100

~~i,'c

200

100
0.01

1.0

10

lao

1000

'AIC-AMPLIFIER lIAS CURRENT (pAl

0.1

1.0

10

lao

'ABC-AMPLlFIER BIAS CURRENT Wli

1000

o

1.1

1.0

10

lao

lDOD

'AIC-AMPLIFIER BIAS CURRENT Wli
TL/HI7148-3

1-457

Typical Performance Characteristics

(Continued)

Input and Output Capacitance

Output Resistance
104

'

11IIII

'8

III~I

""

CiN
COUT

VS 7 ±IIV I

• iniitici
0.1

1.0

1. . . .

10

100

lao

111110
IABC-AMPLlFIE~

'ABC-AMPLlF'ER BIAS CURRENT (pAl

111110

BIAS CUR,RE,NT (pAl

TLlH17148-4

TLlHI7148-5

Leakage Current Test Circuit

Unity Gain Follower
+15

+38 V

INPUT o--4I~"'VV\I-~-'"

TL/H17148-8

Differential Input Current Test Circuit

-15 '

10k

0.001

~F

TL/HI7148-8

TLlHI7148-7

1-458

r-------------------------------------------------------------------------,
I!J1National Semiconductor

~

~
w

LM3303/LM3403
Quad Operational Amplifiers
General Description
The LM3303 and LM3403 are monolithic quad operational
amplifiers consisting of four independent high gain, intemalIy frequency compensated, operational amplifiers designed
to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode
input range includes the negative supply, thereby eliminating the necessity for external biasing components in many
applications.

Features
• Input common mode voltage range includes ground or
negative supply
• Output voltage can swing to ground or negative supply

Connection Diagram

~

!!:
w
~

S
• Four internally compensated operational amplifiers in a
single package
• Wide power supply range single supply of 3.0V to 36V
dual supply of ± 1.5V to ± l8V
• Class AB output stage for minimal crossover distortion
• Short circuit protected outputs
• High open loop gain 200k
• LM741 operational amplifier type performance

Applications
• Rlters
• Voltage controlled oscillators

Order Information

14-Lead DIP and SO-14 Package

TL/H/l0064-1

Device
Code

Package
Code

Package
Description

LM3303J
LM3303N

J14A
N14A

Ceramic DIP
Molded DIP

LM3303M
LM3403J
LM3403N
LM3403M

M14A
J14A
N14A
M14A

Molded Surface Mount
Ceramic DIP
Molded DIP
Molded Surface Mount

Top View

Equivalent Circuit ('14 of Circuit)
OUT

.-----------~--------~----~--~----~--_r~--_4~--~

•

+IN-I--------++------.

-IN

L--4~----~~~~--~~--~~--~--~----~~~----4_--~~~~
TUH/l0064-2

1-459

Absolute Maximum Ratings

,i~

",
,"

If Military/Aerospace specified devices ara required,
please contact the National Semiconductor Sales
Office/Distributors for availability and speclflcetlons.
Storage Temperature Range
Ceramic DIP
-65·C to + 175·C
-65·Cto + 150·C
Molded DIP and SO-14

Internal Power Dissipation (Notes 1, 2)
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage between V t and VDifferentiallnput,Voltage (Note 3)

Operating Temperature Range
Industrial (LM3303)
, Commercial (LM3403)

Input Voitage
ESD Tolerance

-400Cto +85·C
O·Cto +700C

Lead Temperat\lre
Ceramic DIP'(Soldering, 60 sac.)
Molded DIP and SO-14
(Soldering, 10 sec.)

,,'1.36W
1.04W
0.93W
S6V
±30V
(V-) - 0.3VtoV+
(To Be Determined)

3000C
265·C
"

LM33()3 and LI\II3403
Electrical Characteristics TA =
Symbol

Parameter

25"C, Vee = ± 15V, unless otherwise specified
LM3303

Conditions
Min

LM3403

Typ

Max

Min

Units

' Typ

Max

VIO

Input Offset Voltage

2.0

8.0

2.0

8.0

mV

110

Input Offset Current

30

75

30

50

nA

118

Input Bias Current

200

500

200

500

ZI

Input Impedance

lee

Supply Current

Vo =OV, RL =

CMR

Common Mode Rejection

Rs';: 10kO

VIR

Input ,,91tage Range

PSRR

Power Supply
Rejection Ratio

los

Output Short Circuit Current
(Per Amplifier) (Note 4)

Avs

Large Signal Voltage Gain

VOP

Output Voltage Swing

TR
"

Transient
Response

"";"

0.3

1.0
2.8

00

0.3
,7.0

1.0
2.8

nA
MO

7.0

rnA

70

90,

70

90

dB

+12V
toV-

+ 12.5V
tQV-

+13V
toV-

+ 13.5V
toV-

V

30

150

p,VN

±10

±30

±45

rnA

200

20

200

±12

12.5

±12

+13.5

±10

12

±10

±13

30

150

±10

±30

±45

Vo = ±10V,
RL ~ 2.0 kO

20

RL = 10 kO
RL = 2.0kO'

V/mV
V

Rise Timel
Fall Time

Vo = 56mV,
Av = 1.0, RL = 10 kO

0.3

0.3

p,s

Overshoot

Vo = 5OmV,
Av= 1.0,RL= 10kO

5:0

5.0

%

BW

Bandwidth

Vo = 50mV,
Av ~ 1.0,RL = 10kO

1.0

1.0

MHz

SR

SleYi,Rate

VI = -10Vto +10V,
'Av = 1.0

0.6

0.6

V/p,s

: ,.

,
.,

1-460

LM3303 and LM3403 (Continued)
Electrical Characteristics TA = 25'C, Vee = ± 15V, unless otherwise specified
The following specifications apply for -40'C :;;: TA :;;: + 85'C for the LM3303, and O'C :;;: TA :;;: + 70'C for the LM3403
Symbol

Parameter

LM3303

Conditions
Min

VIO

Input Offset Voltage

t:NIOIIH

Input Offset Voltage
Temperature Sensitivity

110

Input Offset Current

alIO! aT

Input Offset Current
Temperature Sensitivity

Typ

LM3403
Max

Min

Typ

10

10

10

10
250

liB

Input Bias Current
Large Signal Voltage Gain

Vo = ±10V,
RL ~ 2.0kO

VOP

Output Voltage Swing

RL

50
1000

=

2.0kO

mV
/LvrC

200

50

Avs

Units
Max

nA
pAl'C

800

nA

15

15

V/mV

±10

±10

V

LM3303 and LM3403
Electrical Characteristics TA = 25'C, V + = 5.0V, V - = GND, unless otherwise specified
Symbol

Parameter

LM3303

Conditions
Min

Typ

LM3403
Max

Min

Units

Typ

Max

2.0

8.0

mV
nA

VIO

Input Offset Voltage

110

Input Offset Current

75

30

50

lIB

Input Bias Current

500

200

500

nA

Icc

Supply Current

7.0

2.5

7.0

mA

PSRR

Power Supply
Rejection Ratio

150

/LVN

8.0

2.5

150

Avs

Large Signal Voltage Gain

RL ~ 2.0kO

VOP

Output Voltage Swing
(Note 5)

RL

CS

Channel Separation

=

20

200

20

10kO

3.3

3.3

5.0V:;;: V+ :;;: 30V,
RL = 10kO

(V+)
-2.0

(V+)
-2.0

1.0 Hz :;;: f :;;: 20 kHz
(Input Referenced)

mW

Note 3: For supply voltage less than SOV between V + and V -, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Output will SWing to ground.

1·461

dB

rc, the 14L·Molded DIP at B.S mW rc, and

the 80-14 at 7.5 mW/'C.
Note 4: Not to exceed maximum package power dissipation.

V!mV
V

-120

-120

Note I: TJ Max - 15O"C for the Molded DIP and 80-14, and 1 75'C for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 14L-Ceramic DIP at 9.1

200

•

Typical Performance Characteristics
Open Loop
Frequency Response
~

Vcc=i15V
120 H
nm:m+mlm~:;i11w]
100 1-+I0000000HH-+H!-f+HIl+ TA =25tC

~

~
~

"

Ifl III I'.

_

IV IV V IV IV

~
~

~

,..

... .......
~

.....

M01E:QulAB~""'produ

-20WWUU~~~~~~U

10

30

Ay=I00

~

1.0

Output Voltage
vs Frequency

Sine Wave Response

i

20

~

15

~

10

i

M

1"-....

_

-M

50JII/IYN

100 1.0k 10k lOOk 1.0W

Vcc=i15V
TA=25OC
1\ =,10k4

25

1.0k

FREQUENCY (Hz)

10k

lOOk

lJl1j

,F1IEQUENCY (Hz)

Output Swing vs
Supply Voltage

Input Bias Current
vs Supply Voltage

Input Bias Current
vs Temperature
TA =25"C

«10

Vcc':!.~

160

r-r....,...,..,..-.-r-r-;-..."

300

200
/
1/

o

o

2.0 4Jl6.0 6.0 10 12 14 16 18 20
SUPPLY VOLTAGE (tV)

......... ....

100

o

-75-55-35-15 5 25 45 65 65 105125

TEWPEftATURE (OC)

150 '---'--"--'--'-J.....'---'--"--'--'
o 2.O,,4JI 6.0 6.0 10 12 14, 16 18 20
SUPPLY VOLTAGE (tV)

TLlH/l0064-3

1·462

Typical Applications
Multiple Feedback Bandpass Filter

Comparator with Hysteresis
R2
R1

vl----I

Rl
VIL ~ R1 + R2 (VOL - VREF) + VREF
TL/H/10064-4

10

~

Rl
VIH ~ Rl + R2 (VOH - VREF) + VREF

center frequency

BW ~ Bandwidth
R in kll
Cin f'F

Q

Rl
H - Rl + R2(VOH - You

~.i< 10
BW

High Impedance Differential Amplifier

Cl

~ C2~9

Rl

~ R2 ~

3

1 R3

~ 902 -

1 } Using scaling lactors in these expressions.

If source impedance is high or varies, filter may be preceded with voltage
follower buffer to stabilize filter parameters.
Design example:
given: Q ~ 5, fo ~ 1 kHz
Let Rl ~ R2 ~ 10 kll
then R3 ~ 9(5)2 - 10
R3 ~ 215 kll

R3
R4

C~~-16nF
3
.

R5

R7

Wein Bridge Oscillator
50k4

TLlH/10064-7

VOUT ~ C(1 + a + b)(V2 - VI)

~
'" ~ lor best CMRR
R5 R7

10kll

Rl - R4
R2 - RS
.'

R6 (
2Rl )
1+RS
R3

GalO~-

~C(I+a+b)

AC Coupled Non-Inverting Amplifier
Rl

lOOkll

TL/H/10064-5

R2
1 Mil

10 - _1-forlo -1 kHz
2".RC
R - 16 kll
C ~ 0.01 f'F

TL/H/1OO64-9

AV-l+~
Rl

Av - 11 (as shown)

1·463

•

Typical Applications

(Continued)

AC Coupled InverDng Amplifier

Voltage Reference

~

V+

l00ko.

y,r

R2
10ko.

Co

Vo

1~

Rl
10ko.

10ko.

R2
l00ko.

R

V+
0

+

Cl
10J.'F

.I.

00
V

~

TUH/l0064-10

2Vp..p

vo _ _R_l_ ( _ v+ asshown)
Rl + R2

T

2

vo-!v+
2

TUH/l0064-8

AV-l!.
Rl
Av - 10 (as shown)

Ground Referencing a
Differential Input Signal

Pulse Generator

30R~0.

Rl
1110.

lN91.

R2
1110.

R3
1110.

+VCII

R.
1 MJI;

-

I

VI-~IIr-""""'_-"\I¥r-"'"

I

R3
100ko.

I

TUH/l0064-11

:J1.IL
TL/H/l0064-14

Voltage Controlled Oscillator

Rl
100ko.

+Voo--~~~-'--~~

(NOTE 1)

ru-

51 k.D.

10 ko.

OUT 1

R2
50k.D.

AA.
OUT2

51ko.

10ko.
TUH/l0084-12

Note 1: Wide Control voltage Range:

ov.: Veo': 2 (V ±1.5V)

1-464

r-----------------------------------------------------------------------------'r
~

Typical Applications (Continued)

w
~

....w

Function Generator
TRIANGLE WAVE
OUT

E

R2
300k.o.

~

,.....--'lM-....-SQUARE WAVE

Q

OUT

R3
75k.o.

W

Rl

c

100k.o.

Rf
(NOTE 2)
Rl + R2.

TL/H/l0064-13

R2Rl
+ Rl

Nota 2: 1= 4CRtRi II R3 = R2

BI·Quad Filter
R
R
C

100kD.

R3

Rl
R2

Cl

__~---. E- NOTCH OUT
TL/H/l0064-15

Example:

O=BW
10

= Center Frequency Gain
TN = Bandpass Notch Gain

TBP

10

= _1_

2"RC'

Rl -OR

= 1000 Hz
BW = 100 Hz
TBP = 1
TN = 1
R = 160 kll
Rl = 1.6 Mil
R2 = 1.6 Mil
R3 = 1.6 Mil
C = 0.001 ",F

10

where:

VREF

= .!.vcc
2

R2=~

TBP

R3
Cl

~

I
I

= TNR2
= 10C

1-465

~ r---------------------------------------------------------------------~

~d
~ pNational

Semiconductor

LM3875 Overture™ Audio Power Amplifier Series
High-Performance 56W Audio Power Amplifier
General Description

Features

The LM3875 is a high-performance audio power amplifier
capable of delivering 56W of continuous average power to
an 80 load with 0.1% (THO + N) from 20 Hz-20 kHz.

•
•
•
•

The performance of the LM3875, utilizing its Self Peak Instantaneous Temperature ("Ke) (SPIKe) Protection Circuitry, puts it in a class above discrete and hybrid amplifiers by
providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe Protection means that these parts
are completely safeguarded at the output against overvoltage, undervoltage, overloads, including shorts to the supplies, thermal runaway, and instantaneous temperature
peaks.
The LM3875 maintains an excellent Signal-to-Noise Ratio of
greater than 95 dB(min) with a typical low noise floor of
2.0 /LV. It exhibits extremely low (THO + N) values of
0.06% at the rated output into the rated load over the audio
spectrum, and provides excellent linearity with an IMO
(SMPTE) typical rating of 0.004%.

56W continuous average output pOwer into 80
100W instantaneous peak output power capability
Signal-to-Noise Ratio > 95 dB (min)
Output protection from a short to ground or to the
supplies via internal current limiting circuitry
• Output over-voltage protection against transients from
inductive loads
• Supply under-voltage protection, not allowing internal
biasing to occur when !VEE! + !Vee! ,;; 12V, thus eliminating turn-on and turn-off transients
• 11 lead TO-220 package

Applications
•
•
•
•
•

Component stereo
Compact stereo
.Self-powered speakers
Surround-sound amplifiers
High-end stereo TVs

Typical Application

Connection Diagram
V+

Plastic Package (Note 8)
INPUT

:1~

11
10

I

Re 1 kn

1ft

10knl

0

"""

CD
('I)

:i!

....

.:E

4
3

VRf1 20

Ne
Ne
Ne
VIN VIN +
Ne
Ne
VOUTPUT
Ne
V+
TL/H/II449-2

Top View

kn

Order Number LM3875T or LM3875TF
See NS Package NumberTA11B for
Staggered Lead Non-Isolated
Package or TF11B for Staggered
Lead Isolated Package

Ri

lkn

TUH/I14~9-1

FIGURE 1. Typical Audio Amplifier Application Circuit
'Optional componen1S dependent upon specific design requiremen1S. Refer to the External Compo.
nents Description section for a component function description.

1-466

Absolute Maximum Ratings (Notes 1,2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage Iv+1 + lv-I (No Signal)
94V
84V
Supply Voltage Iv+1 + lv-I (Input Signal)
(V+ or V-I and
Common Mode Input Voltage
Iv+1 + lv-I:;:; 80V
60V
Differential Input Voltage
Output Current
Power Dissipation (Note 3)
ESD Susceptibility (Note 4)

Junction Temperature (Note 5)
Soldering Information
T package (10 seconds)

150"C
260"C
-40·Cto + 150"C

Storage Temperature
Thermal Resistance
8JC
8JA

1·C/W
43"C/W

Operating Ratings (Notes 1, 2)

Internally Limited
125W

Temperature Range
-20"C:;:; TA:;:; +85"C
TMIN:;:; TA:;:; TMAX
Supply Voltage Iv+1 + lv-I
20Vto84V
Note: Operation is guaranteed up to 84V, however, distortion may be introduced from the SPIKe Protection Circuitry when operating above 70V
if proper thermal considerations are not taken into account. Refer to
the Thermal Considerations section for more information. (See SPIKe
Protection Response)

2500V

Electrical Characteristics

(Notes 1, 2) The following specifications apply for V+ = + 35V, V- = -35V with
RL = 80 unless otherwise specified. Limits apply for TA = 25·C.
LM3875
Symbol

Parameter

Conditions

Typical
Limit
(Note 6) (Note 7)

Iv+1 + lv-I Power Supply Voltage
""PO

Output Power (Continuous Average)

THO + N = 0.1% (Max)
f=1kHz,f=20kHz

Peak Po

Instantaneous Peak Output Power

THO + N

Total Harmonic Distortion Plus Noise

40W, 20 Hz :;:; f :;:; 20 kHz
Av = 26 dB

"SR

Slew Rate (Note 9)

VIN = 1.414 Vrms, f = 10 kHz
Square-wave, RL = 2 kO

"1+

Total Quiescent Power Supply Current VCM = OV, Vo = OV, 10 = 0 rnA

56

Units
(Limits)

20
84

V (Min)
V (Max)

40

W(Min)

100

W

0.06

%

11

5

V/,..s(Min)

30

70

rnA (Max)

1

10

mV(Max)

Input Offset Voltage

VCM = OV, 10 = 0 rnA

Ie

Input Bias Current

VCM = OV, 10 = 0 rnA

0.2

1

,..A(Max)

los

Input Offset Current

VCM = OV, 10 = 0 rnA

0.01

0.2

,..A(Max)

10

Output Current Limit

Iv+1 = lv-I = 10V, ton = 10 ms, Vo = OV

"Vod

Output Dropout Voltage (Note 10)

Iv+ - vol, V+ = 20V, 10 = +100 rnA
Ivo - v-I, V- = -20V, 10 = -100 rnA

·PSRR

Power Supply Rejection Ratio

V+ =
Vern =
V+ =
Vern =

"Vos

'CMRR

40Vto 20V, V- = -40V,
OV,lo = 0 rnA
40V, V- = -40Vto -20V,
OV, 10 = 0 rnA

6

4

A (Min)

1.6
2.7

5
5

V (Max)
V (Max)

120

85

120

85

dB (Min)

Common Mode Rejection Ratio

V+ = 60Vto 20V, V- = -20Vto-60V,
Vern = 20Vto -20V, 10 = 0 rnA

120

80

dB (Min)

120

90

dB (Min)

8

2

MHz (Min)

2.0

8.0

,..V(Max)

"AvOL

Open Loop Voltage Gain

Iv+ I = lv-I = 40V, RL = 2 kO, l! Vo = 60V

GBWP

Gain-Bandwidth Product

Iv+1 = lv-I = 40V
fo = 100 kHz, VIN = 50 mVrms

··eIN

Input Noise

IHF - A Weighting Filter
RIN = 6000 (Input Referred)

'cc Electricat Test; refer to Test Circu~ #f.
"AC Electrical Test, refer to Test Circu~ #2.

1-467

I

U)

Ii
....::::IE

r------------------------------------------------------------------------------------------,
Electrical Characteristics (Notes 1, 2) The following specifications apply for V+ = +35V;.V- .,;. -35Viwfth
RL = ao unless otherwise specified. l.imits apply for TA = 25°C. (Continued)
LM3875
Symbol

SNR

IMD

Parameter

Signal-to-Noise Ratio

Intermodulation Distortion Test

Conditions

Typical
(Note 6)

Umit
(Note 7)

Units
(Umits)

Po = 1W, A-Weighted,
Measured at 1 kHz, Rs = 250

9adB

dB

Po = 40W, A-Weighted,
Measured at 1 kHz, Rs = 250

114dB

dB

Ppk = 100W, A-Weighted,
Measured at 1 kHz, Rs = 250

122dB

dB

60 Hz, 7 kHz, 4:1 (SMPTE)
60 Hz, 7 kHz,1:1 (SMPTE)

0.004
0.006

%

'DC Electrical Test; refer to Test Circun #1.
"AC Electrical Test; refer to Test Circun #2.
Note 1: All von&ges are measured with respect to supply GND, unless otherwise sPecified.
Note 2: Absolu/6 Msxfmum Ratings indicate limns beyond which darnege to the device may occur. Opsralfng Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limns. EI6cITicsl ChsracIerisIics state DC and AC electrical specifications under particular test conditions
which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guarenteed for perameters where
no limn Is given, however, the typical valua Is a good Indication of device performance.
Note 3: For opsreting at case temperatures above 25'C, the device must ba derated based on a 15O"C maximum junction tempsrature and a !hannal resistance of
8JC = l.IJ'C/W Ounction to case). Refer to the Thermal Resistance figure in the Application Information section under Thennal Conelderatlona.
Note 4: Human body model, 100 pF discharged through a 1.5 kll resistor.
Note 5: The opsreting junction tempsreture maximum Is 15O"C, however, the instantaneous Sate Opsreting Area tempsreture is 25O"C.
Note 6: Typlcals are measured at 25'C and representlhe parametric norm.
Note 7: Limits are guaranteed to National's AOQL (Average Outgoing ,aualny LeveQ.
Note 8: The LM3875T package TAllB is a non-isolated package, setting the tab of the device and the heat sink at V- potential when the LM3875 is directiy
mounted to the heat sink using only thermal compound. If a mica washer is used in addition to thermal compound, 8cs (case to sink) is increased, but the heat sink
will ba isolated from V-.
Note 9: The feedback compensation network limns the bandwidth of the closed-loop response and so the slew rate will be reduced due to the high frequency roli·
off. Wrthout feedback compensation, the slew rate Is typically 18V1,....

Note 10: The output dropout von&ge is the supply voltage minus the clipping voltege. Refer to the Clipping Von&ge VB. Supply Vonege graph in the TypIcal
Performance CharaCterIstIca section.

1-468

Test Circuit # 1 '(DC Electrical Test Circuit)
24.9 kll

200kll

OUTPUT

49.91l

50kll

49.91l

SOURCE
TL/H/11449-3

Test Circuit # 2 (** AC Electrical Test Circuit)
Rtl

Ri 1 kll

C, 50 pI

20 kll

Rt2

20 kll

v+

OUTPUT

Cc 220 pF
SOURCE

R 101l

v-

1-469

1\
2kll

TUH/11449-4

~ r-------------------------------------------------------------------------~--~__,

I;;
CI)

Single Supply Application Circuit

:i

v+
r-----------~~+

INPUT

RA 100 kn

,~~'~~-+----~--~
lit,

20 kn
"RSN
2.7n

Ri
1 kn

"Ci
10j.£FI

"S

50 pi "1It2 20 kn

"CSN
IO.lj.£F
TUH/11449-5

FIGURE 2. Typical Single Supply Audio Amplifier Application Circuit
'Optional components dependent upon specific design requirements. Refer to the External Components Description section lor a component function description.

Equivalent Schematic (Excluding active protection circuitry)

0.45

+INo----tH

OUTPUT

-IN

0.45

vTUH/11449-6

1-470

External Components Description
Components
1.
2.
3.
4.
5.

RIN
RA
CA
C
Rs

6.

°Cc

7.

Ri
°Ci

B.

9.
10.

Rfl
°Rf2

11.
12.
13.

°RSN
*CSN

14.
15.

°L
*R

16.

Cs

OCt

(Figures 1 and 2)

Functional Description
Acts as a volume control by selting the voltage level allowed to the amplifier's input terminals.
Provides DC voltage biasing for the single supply operation and bias current for the positive input terminal.
Provides bias filtering.
Provides AC coupling at the input and output of the amplifier for single supply operation.
Prevents currents from entering the amplifier's non-inverting input which may be passed through to the load
upon power-down of the system due to the low input impedance of the circuitry when the under-voltage
circuitry is off. This phenomenon occurs when the supply voltages are below 1.5V.
Reduces the gain (bandwidth of the amplifier) at high frequencies to avoid quasi-saturation oscillations of the
output transistor. The capacitor also suppresses extemal electromagnetic switching noise created from
fluorescent lamps.
Inverting input resistance to provide AC Gain in conjunction with Rfl.
Feedback capacitor. Ensures unity gain at DC. Also a low frequency pole (highpass roll-off) at:
fe = 1/(271' Ri Ci).
Feedback resistance to provide AC Gain in conjunction with Ri.
At higher frequencies feedback resistance works with Ct to provide lower AC Gain in conjunction with Rfl
and Ri. A high frequency pole (Iowpass roll-off) exists at:
fe = [Rfl Rf2](s + 1/Rf2 Ct11 [(Rn + Rf2l (s + 1/Ct (Rfl + Rf2))]·
Compensation capaCitor that works with Rfl and Af2 to reduce the AC Gain at higher frequencies.
Works with CSN to stabilize the output stage by creating a pole that eliminates high frequency oscillations.
Works with RSN to stabilize the output stage by creating a pole that eliminates high frequency oscillations.
fe = 1I(271'RSN CSN)·
Provides high impedance at high frequencies so that R may decouple a highly capaCitive load and reduce the
Q of the series resonant circuit due to capacitive load. Also provides a low impedance at low frequencies to
short out R and pass audio signals to the load.
Provides power supply filtering and bypassing.

"Optional ccmponents dependent upon specific design requirements. Refer to the Application Infonnation section for more infonnation.

OPTIONAL EXTERNAL COMPONENT INTERACTION
Although the optional external components have specific desired functions that are deSigned to reduce the bandwidth and
eliminate unwanted high frequency oscillations they may cause certain undesirable effects when they interact. Interaction may
occur for components whose reactances are in close proximity to one another. One example would be the coupling capacitor,
Cc, and the compensation capacitor, Ct. These two components act as low impedances to certain frequencies which will couple
signals from the input to the output. Please take careful note of basic amplifier component functionality when designing in these
components.
The optional external components shown in Figure 2 and described above are applicable in both single and split voltage supply
configurations.

1-471

Typical Performance Characteristics
" SPIKe
Protection Response

Safe Area

,

"

Vs"

:uov

1\ '"

SA

Supply Current vs
Supply Voltage

""'I

(\~c =

~,

,101kHz

I...

\

1\

\

.

J H

\1"

\

\.

Sm.

10,

O~~~~~~~_~I

O~~~~--~~~~~

o

20

40

60

o

80

COLLECTOR-EMITTER VOLTAGE (V)

10

Pulse Thermal Resistance

30

40

50

Supply Current vs
Output Voltage

Pulse Th.rmal Resl,stanc,e

TJ = 250 0 C

20

SUPPLY VOLTAGE (tV)

TIME (ms)

TC = 25°C

1-+-+-1-+-+ tv, = lOOms

TJ = 250°C,
TO-220

7

6~+-+_I-+-+~T~0-r2~20~~

,-+++H!lIf--H-+++lIII

TC =

, Vs .. +20V +30V +-tOY
oL-~~W-~~~~~~

OL-~~~--~~~~~

o

20

40

80

0,1

80

COLLECTOR-EMITTER VOLTAGE (V)

TJ = 250 0 C

lOOms
10-220

80

\

z

2

£

iiiQ

i

60

~=

-'-

25 0 C

40

125°C

I
I

o

o

20

60

40

~

120

~

80

~

40

Te =

0.1

i

,J

Y

':t 0.4

.3

§
~

-50

100

~

~

0,3
0.2

SUPPLY VOLTAGE(OV)

35

40

I

100

150

Peak Output Current
AT = +5.000 mil

-50

1\\
\'-..

3:

"- ['.
I'--.

0.1

o
30

50

CASE TEMPERATURE ('C)

1\
\

~

2

= 020V_

L J

o

=

= t30V

10

8

, :/"
25

hs

20

Vs = 030V

V.,.... (-V,,)

= 040V

VS

40

Vs

12~~~1

10

60

Input Bias Current vs
Case Temperature

;?'

20

i8

PULSE WIDTH (ms)

.j7
15

~

I'

o

= OA

80

-5

0.5

Clip ing Voltage(-tVcc )

10

II
II
Tc ~ 2,5~~,
Tc '" 75 0 C

Clipping Voltage
vs Supply Voltage

'\ =811

Vo - OV
~

':t

LI

COLLECTOR-EMITTER VOLTAGE (V)

~ ellpp'"

40

100

~

80

20

TJ '" 250°C
10-220

180 l\
, ..\

~

0

Supply Current vs
Case Temperature

200

g

'",

75 0 C

20

-20

OUTPUT VOLTAGE (V)

Pulse Power Limit

tw ..

g

-40

100

PULSE WIDTH (ms)

Pulse Power Limit
100

10

'OV

-5

/,.-

30V
20V

Iff ,....

15V

I,.....

so

-10
100

CASE TEMPERATURE ('C)

150

20V
30V
.OV

i8
I-

veE ::'
I 5V

o.sv

O.SlftS

o
TIME (mo)

TL/H/11449-7

1-472

Typical Performance Characteristics
THO

(Continued)

THO + Nvs
Output Power

+ N vs Frequency

THO + Nvs
Output Power

~

E
z

E
z

@

i!:

~

c+

100

10k

lk

c+
%

lOOk

(w)

Output Power (W)

THO Distribution

Output Power vs
Load Resistance

FREQUENCY (Hz)

Output Power

THO Distribution
100

E

~

~
~

~

80

f O =20Hz

90

I I
I I

80
70

I

80

I

T.=_25 0 C
Vce - t 35V

~-¥+-

IAvo:o.06824103
SIGMA: 0.000280711

50
40
20
10

~

o
o

64

VCC=:l35V

i

48

~

>

l

30

E

IAVG:O.0393161

40

SIGt.lA:O.OO7on03
toIAX:O.O&4

32

1111":0.023

~

I I I I
I I I I
II L L

24
16
8

o

0.004 0.008 0.012 0.016 0.020
0.002 0.00& 0.010 0.01. 0.018

50

~~-pf-

56

_I

LL

I
I
I

I
I
I

- -

=:::s;

.......

.............

10
5

10

15

20

25

R..

(n)

30

THO+N (\II)

50

60

70

80

90

100

1.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 90 - - - - 50 - - 1.0

96

1.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 102' - - - 40 - - -

2.4

1.9

1.7

1.4

1.1

2.5

2.1

1.8

1.5

3.8

3.2

2.8

2.4

2.0

1.6

1.2

5.1

4.3

3.8

3.3

2.8

2.3

1.8

7.1

6.1

5.5

4.8

4.1

3.5

2.8

2.1

1.5

132

11.3

9.8

8.B

7.B

6.8

5.B

4.B

3.B

2.8

138----10---

108

I

35

I

15

:

~

g

iI:

~

i

50

~

2iis

10 20 30 40 50 60 70 80 90

~
el

40

~

30

~
~
~

el 20
~

10
0

§

10

10

20

30

40

OUTPUT POWER (w)

50

60

0.'"

... =4n

40

10

20

30

40

OUTPUT POWER (w)

50

60

... =

sn

en

/

1/
1/

V. /

30

/, ~
/.~

20

o
0

... =

1

60
50

10

0
0

THD+N.:sO.03"
f=lkHz
THO + N.:s
20HzStS 2 kHZ

70

..

20

.

Output Power vs
Supply Voltage

80

~

30

:

TUH/11449-15

50

40

I

vcc.lv+i+lv-I

Power Dissipation vs
Output Power

60

I

V,,:
o

Nota: The maximum heat sink thermal resistance values. 0 SA. in the table above
were calculated using a 0cs = O.2'C/W due to thermal compound.

Power Dissipation vs
Output Power

II
/

:

I

/ :

/

25

1.3 - - - - - - - -. 126 - - - - 20 - - -

:

6n

I

1.1 - - - - - - - -- - - - - - - - - - - 114- - - -30--120

80.:

4n

45

3.0

60

.40

Maximum Power Dissipation
vs Supply .Voltage

110

1.2

1.3

35

TL/H/11449-8

1.3

1.6

\.

20

1.6
1.9

;~D=+:t:5~D~.08%

r:E 30

Max Heawlnk Thermal Resistance ("C/W)
at the Specified Ambient Temperature rC)
40

f0- r-

t-- I- 20Hz:s f:S 20kHz

40

~

-0.025 0.025 0.075 0.125 0.175
-6.946E-19 0.05
0.1
0.15
0.2

THO+N (lI)

~

=25°C

TA

~

MAX: 0.0086
MIN: 0.0072

80

fO =20kHz

72

o

~
10

15 20 25 30 35 40

SUPPLY VOLTAGE (tV)
TL/H/11449-16

1-473

~

Typical Performance Characteristics

IMD 60 Hz~ 7 kHz, 4:1

IMD 60 Hz, 4:1 ,
I

12.000
1,a.l62 '-1-59.35
-8.308

20.0000k~

:=10.00882

~
rr--

IMD 60 Hz, 7 kHz, 4:1
50

i\.1.06000k]' AP

10

-1a.~6

1\. = an

I

~

..:.!

-~.92

'-59.08
-69.23
-79.38
1'"89.s.t.
-99.7
~lp9.8

0.00 I
2k'

10k

•

;' -28.62
-38,77

3

~.

~: ' 0.1

.~

1'1'"

ill
0.010
0.001
0.0005
0.1

-120.0
6.ook UOk 6.8Ok 7.2Ok 7.60k 8.ook
6.2Ok 6.6Ok 7.00k 7.~Ok 7.8Ok

20k

10

100

Output Power (W)

FREQUENCY (Hz)
FREQUENCY (Hz)

IMD 60 Hz, 1:'1
1
gO.020S6

E

I I

O. 1

IMD 60 Hz, 7 kHz, 1:1
20.000

2 •• 0000~
1111\.=

sn

I

-20.00

~

-~.OO

.

3

I I

0.010

I.

I~AP

I-54.i7l

0.0

IMD 60 Hz, 7 kHz, 1:1
50

lit..,...-- I

0.1

-60.00

:.!

11111.

-80.00

0.01.

-1,00.0
0.00 11
'2k

I I I

I

11111
10k

0.001
0.0005
0.1

-120.0
6.00k 6.40k 6.8Ok 7:2Ok 7.60k a.OOk
6.2Ok 6.60k 7.0Ok 7.~ 7.80k

20k

10

100

Output Power (W)

FREQUENCY (Hz)
FREQUENCY (Hz)

Power Supply Rejection
Ratio

Common-Mode Rejection
Ratio

120 r-rrmmrrrmnrnrmmrr~~""'1
Vs = :t!SV
Tc = 25°C
100
80

~

60

40

1\. =.n

100

>Q.

+PSRR

'iD
3

-PSRR

i'!

11
~

60

20LL~UUIDm~~~WLLW.

100

Ik

10k

lOOk

30

20

i

~O

40

10

20

1M

THO = 10,.

~

80

:l!

10

Vs = :t30V

Vs = :t35Y
TC = 25 0 C

IlIIli I

'iD
3

Large Signal Response

120

0
10

100

FREQUENCY (Hz)

Ik

10k

lOOk

100

1M

Ik

FREQUENCY (Hz)

20

100

Ys = :l:40V
1\. = sn
.,=20dB

90
80

1\

. 70

OUTPUT

CHI

I

-20

lOOk

IN

Open Loop
Frequency Response

Pulse Response
~O

10k

FREQUENCY (Hz)

INPUT
CH2

'iD
3
z

:c

'"

60

Vs = :t35V
Tc = 25°C

1
III! I
lUi I

IIIl1m I

GAIN

IllIIm I

-60
~

PHASE

50
~O

~

-120

~

30
20

-,.... i-'

10

-180

0
10

100

20

TIME (1' ...)

Ik

10k

lOOk

1M

ION

FREQUENCY (Hz)
TUHI11449-9

1-474

Application Information
GENERAL FEATURES
Under-Voltage,Protectlon: Upon system power-up the un-

Since a semiconductor manufacturer has no control over
which heat sink is used in a particular amplifier design, we
can only inform the system designer of the parameters and
the method needed in the determination of a heat sink. With
this in mind, the system designer must choose his supply
voltages, a rated load, a desired output power level, and
know the ambient temperature surrounding the device.
These parameters are in addition to knOwing the maximum
junction temperature and the thermal resistance of the IC,
both of which are provided by National Semiconductor.

der-voltage Protection Circuitry allows the power supplies
and their corresponding caps to come up close to their full
values before turning on the LM3875 such that no DC outpu~ spikes occur. Upon tum-off, the output of the LM3875 is
brought to ground before the power supplies such that no
transients occur at power-down.

Over-Voltage Protection: The LM3875 contains overvoltage protection circuitry that limits the output current to approximately 4Apeak while also providing voltage clamping,
though not through intemal clamping diodes. The clamping
effect is quite the same, however, the output transistors are
designed to work alternately by sinking large current spikes.

As a benefit to the system designer we have provided Maximum Power Dissipation vs Supply Voltages curves for various loads in the Typical Performanca Characteristics
section, giving an accurate figure for the maximum thermal
resistance required for a particular amplifier deSign. This
data was based on 9JC = 1°C/Wand 9cs = O.'Z'C/W. We
also provide a section regarding heat sink determination for
any audio amplifier design where 9cs may be a different
value. It should be noted that the idea behind dissipating the
maximum power within the IC is to provide the device with a
low resistance to convection heat transfer such as a heat
sink. Therefore, it is necessary for the system designer to be
conservative in his heat sink calculations. As a rule, the lower the thermal reSistance of the heat sink the higher the
amount of power that may be dissipated. This is, of course,
guided by the cost and size requirements of the system.
Convection cooling heat sinks are available commercially,
and their manufacturers should be consulted for ratings.

SPIKe Protection: The LM3875 is protected from instantaneous peak-temperature stressing by the power transistor
array. The Safe Operating Area graph in the Typical Performance Characteristics section shows the area of device operation where the SPiKe Protection Circuitry is not
enabled. The waveform to the right of the SOA graph exemplifies how the dynamic protection will cause waveform distortion when enabled.

Thermal Protection: The LM3875 has a sophisticated thermal protection scheme to prevent long-term thermal stress
to the device. When the temperature on the die reaches
165°C, the LM3875 shuts down. It starts operating again
when the die temperature drops to about 155"C, but if the
temperature again begins to rise, shutdown will occur again
at 165°C. Therefore the device is allowed to heat up to a
relatively high temperature if the fault condition is temporary, but a sustained fault will cause the device to cycle in a
Schmitt Trigger fashion between the thermal shutdown temperature limits of 165°C and 155°C. This greatly reduces the
stress imposed 0':1 the IC by thermal cycling, which in tum
improves its reliability under sustained fault conditions.

Proper mounting of the IC is required to minimize the thermal drop between the package and the heat sink. The heat
sink must also have enough metal under the package to
conduct heat ffom the center of the package bottom to the
fins without excessive temperature drop~
A thermal grease such as Wakefield type 120 or Thermalloy
Thermacote should be used when mounting the package to
the heat sink. Without this compound, the thermal resistance will be no better than 0.5°C/W, and probably much
worse. With the compound, thermal resistance will be
0.2°C/W or less, assuming under 0.005 inch combined flatness runout for the package and heat sink. Proper torquing
of the mounting bolts is important and can be determined
from heat sink manufacturer's specification sheets.

Since the die temperature is directly dependent upon the
heat sink, the heat sink should be chosen as discussed in
the Thermal Considerations section, such that thermal
shutdown will not be reached during normal operation. Using the best heat sink possible within the cost and space
constraints of the system will improve the long-term reliability of any power semiconductor device.

Should it be necessary to isolate V - from the heat sink, an
insulating washer is required. Hard washers like berylum oxide, anodized aluminum and mica require the use of thermal
compound on both faces. Two-mil mica washers are most
common, giving about O.4°C/W interface resistance with the
'
compound.

THERMAL CONSIDERATIONS
Heat Sinking
The choice of a heat sink for a high-power audio amplifier is
made entirely to keep the die temperature at. a level such
that the thermal protection circuitry does not operate under
normal circumstances. The heat sink should be chosen to
dissipate the maximum IC power for a given supply voltage
and rated load.

Silicone-rubber washers are also available. A 0.5°C/W thermal resistance is claimed without thermal compound. Expe:rience has shown that these ~ubber washers deteriorate and
must be replaced should the IC be dismounted.

With high-power pulses of longer duration than 100 ms, the
case temperature will heat up drastically without the use of
a heat sink. Therefore the case temperature, as measured
at the center of the package bottom, is entirely dependent
on heat sink design and the mounting of the IC to the heat
sink. For the deSign of a heat sink for your audio amplifier
application refer to the Determining the Correct Heat Sink
section.

Determining Maximum Power Dissipation
Power dissipation within the integrated circuit package is a
very important parameter requiring a thorough understanding if optimum power output is to be obtained. An incorrect
maximum power diSSipation (Po) calculation may result in
inadequate heatsinking, causing thermal shutdown circuitry
to operate and limit the output power.

1-475

Application Information (Continued)
Equations (1) and (4) are the only equatiQns naeded in ,the
determination of the maximum heat. sink thermal resistance.
This i~: p1 course, given that the syste(li'designer knows the
tequirEl~ supply ,voltages to drive his rated, load at ~!!{licu­
lar poweroljtput level' arid the parameters provided by the
semiconductor manufacturer. These p~ran\eters are" the
junction to case thermal resistance, 8JC, TJmax = 150"C,
and the recommended ihermalloy, Thermacote thermal
compound resistance, 8cs.

Th,efollowing equations can be l,lsed, to accurately calculate
the maximum and a~Elrage integrate~, circuit power diSllipation fo[ your amplifier dE!sign, given the supply voltage,: ra~ed
load, ,and output power. These equations can be directly
applied to the PowE1r Dissipation vs Output Power ,curves in
the Typical pe.ri'orroance Ch8racterlstlca section.

a:

Equation (1) exemplifies the maximum power dissipation of
the Ie and equations (2) and (S) exemplify the average IC
power dissipatio[l expressed in different forms.
POMAX = Vcc2/2'11"2 RL
where Vee is the total supply voltage

(1)

SIGNAL-TO-NOISE,RATIO
In the measurement of the signal-to-noise,ratio. misinterpretations of the numbers actually measured are, common. One
amplifier may sound much quieter than another, but due to
improper testing techniques, they appear. equal in measurements. This is often the case when comparing integrated
circuit designs to discrete amplifier designs. Discrete transistor amps often "run out of gain" at high frequencies and
therefore have small bandwidths to noise as indicated below.

POAVE = (VOPk/RL> IVcc/'11" :..- VOpk/2]
(2)
where Vee is the total sUpply voltage and \/Opk = vcci'11"
POAVE = Vee VOpk/'11" RL - VOpk2/2 RL
where Vee is the total supply voltage.

(S)

"

Determining the Correct Heat Sln,k
Once the maximum IC power dissipation is known for a given supply voltage, rated load, and the desired rated output
power the maximum thermal resistance (in ·C/W) of a heat
sink can be calculated. This calculation is madE! using equation (4) and is based on the fact that thermal heat flow,pa-,
ramE1ters are analogous to electrical current flow properties.

~
315'

It is also known that typically the thermal resistance, 8JC
Ounctlon to case), of the LM3875 is 1·C/W and that using
Themalloy Thermacote thermal compound provides a thermal reSistance, 8cs (case to heat sink), of about 0.2·C/W
as explained in the Heat Sinking section.

~
,

,iNTEGRAJ.EDCIRCUIT

~..

<
,/"
.,
- - -....
-

'.

\'

20 200 2k 20k 200k 2M

FREQUENCY (Hz)
" TL/H/11«9~11

Integrated circuits have additional open loop gain allowing
additional feedback loop gain iii Order to lower harmonic
distortion and improve frequenCy response. It is this adllitional bandwidth that can lead to erroneous signal-to-noise
measurements if not considered during the measurement
process. In the typical example above, the difference in
bandwidth appears small ona log scale but the factor of 10
in bandwidth, (200 kHz to 2 MHz) can result in a 10 dB
theoretical difference in the signal-to-noise ratio (white
noise is proportional to the' square root of the bandwidth in a
system).

TAmb

~
f1lJC
f1lcs
f1ls~

In comparing audio amplifiers it is necessary to measure the
magnitude of noise in the audible, bandwidtll by using a
"weighting" filter.1 A "weighting" filter alters the frequency
response in order to compensate for the average human
ear's sensitivity to the frequency spectra. The weighting filters at the same time provide the bandwidth limiting as discussed in the previous paragraph.

-PDIIAX

~-~~~------.
TL/H/11449~10

But since we know POMAX, 8JC, and 8sc for the application
and we are looking for '8SA, we have the following:
,8SA"" [(TJmax - TAmb) - POMAX (8JC

DISCRETE

,

POMAX = (TJmax - TAmbl/8JA
where 8JA = 8JC + 8cs + 8SA

..

f\

60

<5 ...'0

Referring to the figure below, it is seen that the thermal
resistance from the die Ounction) to the outside air (ambient)
is a combination of 'three thermal resistances, two of which
are known, 8JC and tics. Since convection heat flow (powar
dissipation) is analogous to current flow, thermal resistance
is analogous to electrical resistance, and temperature drops
are analogous to voltage drops, the power dissipation out of
the LMS875 is equal ,to the following:

TJmax

80

In addition to noise filtering, differing meter types give different lioise readings. Meter responses include:

+ 8cs)]/PDMAX(4)

1. RMS reading,

Again it must be noted that the valJe of 8SA i~ dep~ndent
upon the system deSigner's amplifier application and 'its corresponding parameters as described previously. If the ambient temperature that the audio amplifier is to be working
under is higher than the normal 25°C, then ,the thermal resistance for the heat sink, given all other things are equal,
wUl need to be smaller.

2. average respo!1dirlg~,
S. ~k reading, and
4. quasi peak reading.

Reference 1: CCIRIARM: A Practical Noise Measurement M9Ihod; by Ray
Dolby, David Robinson and Kenneth Gundry, AES Preprinl No. 1353 (F-3).

1-476

r-----------------------------------------------------------------------------,~

i:

Application Information (Continued)
current amplifier, the LM3875 can be made to oscillate under certain conditions. These usually involve printed circuit
board layout or output/input'coupling.

Although theoretical noise analysis, is derived using true
RMS based calculations, most actual measurements are
taken with ARM (Average Responding Meter) test equipment.
Typical signal-te-noise figures are listed for an A-weighted
filter which is commonly used in the measurement of noise.
The shape of all weighting filters is similar, with the peak of
the curve usually occurring in the 3 kHz-7 kHz region as
shown below.

When designing a layout, It is important to return the load
ground, the output compensation ground, and the low level
(feedback and input) grounds to the circuit board common
ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor which can effectively act as signals
at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the 0.1 /l-F supply decoupling capacitors as close as possible to the LM3875 to reduce the effectsof PCB trace resistance and inductance. For the same
reason, the ground return paths should be as short as possible.

...o

E
...
0-

...'"

In general, with fast, high-current circuitry, all sorts of problems can arise from improper grounding which again can be
avoided by returning all grounds separately to a common
point. Without isolating the ground signals and returning the
grounds to a common pOint, ground loops may occur.

20
FREQUENCY (Hz)
TL/H/II449-12

"Ground Loop" is the term used to describe situations occurring in ground systems where a difference in potential
exists between two ground pOints. Ideally' a ground is a
ground, but unfortunately, in order for this to be true, ground
conductors with zero resistance are necessary. Since real
world ground leads possess finite resistance, currents running through them will cause finite voltage drops to exist. If
two ground return lines tie into the same path at different
points there will be a voltage drop between them. The first
figure below shows a common ground example where the
positive input ground and the load ground are returned to
the supply ground point via the same wire. The addition of
the finite wire resistance, R2, results in a voltage difference
between the two points as shown below.

SUPPLY BYPASSING
The LM3875 has excellent power supply rejection and does
not require a regulated supply., However, to eliminate possible oscillations all op amps and power op amps should have
their supply leads bypassed with low-inductance capacitors
having short leads and located close to the package terminals. Inadequate power supply bypassing will manifest itself
by a low frequency oscillation known as "motorboating" or
by high frequency instabilities. These instabilities can be
eliminated through multiple bypassing utilizing a large tantalum or electrolytic capacitor (10 /l-F or larger) which is used
to absorb low frequency variations and a small ceramic capacitor (0.1 /l-F) to prevent any high frequency feedback
through the power supply lines.

~,

If adequate bypassing is not provided the current in the supply leads which is a rectified component of the load current
may be fed back into internal circuitry. This signal causes
low distortion at high frequencies requiring that the supplies
be bypassed at the package terminals with an electrolytic
capacitor of 470 /l-F or more.

'"""
GROUN~f---J

LEAD INDUCTANCE
Power op amps are sensitive to inductance in the output
lead, particularly with heavy capacitive loading. Feedback to
the input should be taken directly from the output terminal,
minimizing common inductance with the load.
Lead inductance can also cause voltage surges on the supplies. With long leads to the power supply, energy is stored
in the lead inductance when the output is shorted. This energy can be dumped back into the supply bypass capacitors
when the short is removed. The magnitude of this transient
is reduced by increasing the size of the bypass capacitor
near the IC. With at least a 20 /l-F local bypass, these voltage surges are important only if the lead length exceeds a
couple feet (> 1 /l-H lead inductance). TWisting together the
supply and ground leads minimizes the effect.

R2

VI =(11 +IL)R,

V2 =IL(R2 +V,)

LAYOUT, GROUND LOOPS AND STABILITY
The LM3875 is designed to be stable when operated at a
closed-loop gain of 10 or greater, but as with any other high-

TUH/II449-13

1-477

~

~ r-------------------------------------------------------------~--------------------------_,

r-

CD

I....

Application Information (Continued)
leads are .long. The problem can be eliminated by plaCing a
small capacitor, Ce, (on the order 01.50 pF-500 pI;) acrQSS
the LM3875 input terminals. Refer to the External Components Description section relating to component interaction with Cr.

The load current IL' will be much larger than input bias current 11, thus V1 will follow the output voltage directly, i.e., in
phase. Therefore the voltage appearing at the,non-inverting
input is effectively positive feedback and the circuit may 0scillate. If there were only one device to worry about then the
values of R1 a,l)d R2 would probably be small enough to be
ignored; however, several devices normally comprise a total
system. Any ground return of a separate (levice, whose output is in phase, can feedback in a similar manner and cause
instabilities. Out of phase grDund loops also are trouble'
some, causing unexpected gain and phase errors.

REACTIVE LOADING
It is hard for most power amplifiers to drtve highly capacitive
loads 'very effectively and normally results in oscillations or
ringing on the square wave response. If the output of the
LM3875 is connected directly to a capacitor with no series
resistance, the square wave response will exhibit ringing if
the capacitance is greater than about 0.2 ,...F. If highly capacitive loads are expected due to long speaker cables, a
method commonly employed to protect amplifiers from low
impedances at high frequencies is to couple to the load
through a 1on resistor in parallel with a 0.7 ,...H inductor.
The inductor-resistor combination as shown in the Typical
Application Circuit isolates the feedback amplifier from the
load by providing high output impedance at high frequencies
thus allowing the 10n resistor to decouple the capacitive
load and reduce the Q of the series resonant circuit. The LR
combination also provides low output impedance at low frequencies thus shorting out the 10n resistor and allowing the
amplifier to drive' the series RC load (large capacitive load
due to long speaker cables) directly.

The solution to most ,ground loop problems is to always use
a single-point ground system, although this is sometimes
impractical. The third figure above is an example of a singlepoint ground system.
The single-point ground concept should be applied rigorous:
Iy to all components and all circuits when possible. Violations of single-point grounding are most common among
printed circuit board designs, since the circuit is surrounded
by large ground areas which invite the temptation to run a
device to the closest groul'ld spot. As a final rule; make all
ground returns low resistance and low inductance by using
large wire and wide traces.
. .
Occasionally, current in the output leads (which function as
antennas) can be coupled through the air to the amplifier
input, resulting in high-frequency oscillation. This normally
happens when the source impedance is high or the input

1-478

Application Information (Continued)
GENERALIZED AUDIO POWER AMPLIFIER DESIGN

DESIGN A 40w/sn AUDIO AMPLIFIER

The system designer usually knows some of the following
parameters when starting an audio amplifier design:
Input Level
Desired Power Output
Load Impedance
Input Impedance
Maximum Supply Voltage
Bandwidth
The power output and load impedance determine the power
supply requirements, however, depending upon the application some system designers may be limited to certain maximum supply voltages. If the designer does have a power
supply limitation, he should choose a practical load impedance which would allow the amplifier to provide the desired
output power, keeping in mind the current limiting capabilities of the device. In any case, the output signal swing and
current are found from (where Po is the average output
power):
.

Given:
Power Output
Load Impedance
Input Level
Input Impedance
Bandwidth
Equation (1) and (2) give:

Vopeak = ~

40W

sn

1V(max)
100kn
20 Hz-20 kHz ±0.25 dB

40W/Sn
Vopeak = 25.3V
lapeak = 3.16A
Therefore the supply required is: ±30.3V @3.16A
With 15% regulation and high line the final supply voltage is
± 38.3V using equation (3). At this point it is a good idea to
check the Power Output vs Supply Voltage to ensure that
the required output power is obtainable from the device
while maintaining low THO + N. It is also good to check the
Power Dissipation vs Supply Voltage to ensure that the device can handle the internal power dissipation. At the same
time designing in a relatively practical sized heat sink with a
low thermal resistance is also important. Refer to Typical
Performance Characteristics graphs and the Thermal
Considerations section for more information.
The minimum gain from equation (4) is: Av ~ 18

(1)

lapeak = ~(2 PO)/RL
(2)
To determine the maximum supply voltage the following parameters must be considered. Add the dropout voltage
(5 volts for LM3875) to the peak output swirlg, Vapeak, to get
the supply rail value, (i.e. + Vapeak + Vod) at a current of
lapeakl. The regulation of the supply determines the unloaded voltage, usually about 15% higher. Supply voltage will
also rise 10% during high line conditions. Therefore, the
maximum supply voltage is obtained from the following
equation:

We select a gain of 21 (Non-Inverting Amplifier); resulting in
a sensitivity of S94 mY.
Letting RIN equal 100 kn gives the required input impedance, however, this would eliminate the "volume control"
unless an additional input impedance was placed in series
with the 10 kn potentiometer that is depicted in Figure t.
Adding the additional 100 kn reSistor would ensure the minimum required input impedance.
For low DC offsets at the output we let Rn = 100 kn.
Solving for Ri (Non-Inverting Amplifier) gives the following:

max. supplies z ± (Vapeak + Vod(1 + regulation)(1.1) (3)
The input sensitivity and the output power specs determine
the minimum required gain as depicted below:
AV ~ (~Po RL )/(VIN) = VarmslVinrms
(4)
Normally the gain is set between 20 and 200; for a 40W, 8n
audio amplifier this results in a sensitivity of 894 mV and
89 mY, respectively. Although higher gain amplifiers provide
greater output power and dynamic headroom capabilities,
there arl! certain shortcomings that go along with the so
called "gain". The input referred noise floor is increased
and hence the SNR is worse. With the increase in gain,
there is also a reduction of the power bandwidth which results in a decrease in feedback thus not allowing the amplifier to respond as quickly to nonlinearities. This decreased
ability to respond to nonlinearities increases the THO + N
specification.

Ri = Rn/(Av - 1) = 100k/(21 - 1) = 5 kn; use 5.1 kn
The bandwidth requirement must be stated as a pole, i.e.,
the 3 dB frequency. Five times away from a pole give
0.17 dB down, which is better than the required 0.25 dB.
Therefore:
fL = 20 Hz/5 = 4 Hz
fH = 20kHz x 5 = 100kHz
At this pOint, it is a good idea to ensure that the Gain Bandwidth Product for the part will provide the designed gain out
to the upper 3 dB pOint of 100 kHz. This is why the minimum
GBWP of the LM3875 is important.

The desired input impedance is set by RIN. Very high values
can cause board layout problems and DC offsets at the output. The value for the feedback resistance, Rll, should be
chosen to be a relatively large value (10 kn-100 kn), and
the other feedback resistance, Ri, is calculated using standard op amp configuration gain equations. Most audio amplifiers are designed from the non-inverting amplifier configuration.

GBWP

= Av x 13 dB = 21 X 100 kHz = 2.1 MHz
GBWP = 2.0 MHz (min) for LM3875

Solving for the low frequency roll-off capacitor, Ci, we have:
Ci

1-479

> 11(21T Ri fLl

= 7.S IJ.F; use 10 IJ.F.

In'

i::E
...I

r----------------------------------~

Definition of Terms
Input Offset Voltage: The absolute value of th!l voltage
which must be applied between the'input terminals through
two equal resistances to obtain zero output voltage and current.
Input Bias Current: The absolute value of the average of
the two input currents with the output voltll!!e and current at
zero.
Input Offset Current: The absolute value of the difference
in the two input currents with the output voltage and current
at zero.
Input Common-Mode Voltage Range (or Input Voltage
Range): The range of voltages'on the input terminals for
which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Headroom: The margin between an actua, signal qperating
level (usually the power rating of the amplifier with partiCular
supply voltages, a' rated load value, and a rated THO + N
figure) and the level just before clipping distortion occurs,
expressed'in decibels.
Large Signal Voltage Gain: The ratio of the output voltage
swing to the differential input voltage required to drive the
output from zero to either swing limit. The output swing limit
is the supply voltage less a specified quasi-saturation voltage. A pulse ot short enough duration to minimize thermal
effects is used as a measurement signal.
Output-Current Umlt: The output current with a fIXed output voltage aryd"a large input overdrive. The limiting current
drops with time once SPiKe protection circuitry is activated.

Common-Mode Rejection: The ratio of the input commonmode voltage range to the peak-to-peak change in input
offset voltage over this range.

Output Saturation Threshold (Clipping Point): The output
swing limit for a specified input drive beyond that required
for zero output. It is measured with respect to the supply to
which the output is swinging.

Power Supply ReJection: The ratio of the change in input
offset voltage to the change in power supply voltages producing it.

Output Resistance: The ratio of the change in output voltage to the change in output current with the output around
zero.

Quiescent Supply Current: The current required from the
power supply to operate the amplifier with no load and the
output voltage 'and current at zero.

Power Dissipation Rating: The power that can be dissipated for a specified time interval without activating the protec:
tion circuitry. For time intervals in excess of 100 ms, dissipation capability is determined by heat sinking of the Ie package rather than by the IC itself.

Slew Rate: The internally limited rate of change in output
voltage wltl'l :a large amplitude step' function applied to the
input.
'
Class B' Amplifier: The most commQn type of audio power
amplifier that consists of two output devices each of which
conducts for 180" of the input cycle. The LM3875 is a
Quasi-AB type amplifier.
Croasover Distortion: Distortion caused in the output
stage of a class B amplifier. It can result from inadequate
bias current providing a dead zone where the output does
not respond to the input as the input cycle goes through its
zero crossing point. Also for ICs an inadequate frequency
response ,of the output PNP device can cause a turn-on
delay giving crossover distortion on the negative going transistion through zero crossing at, the higher audio frequencies.
THD + N: Total Harmonic Distortion plus Noise refers to
the measurement technique in which the fundamental component is removed by a bandreject,(notch) filter and all remaining energy is measured including harmonics and noise.
Signal-to-Noise RatiO:, The ratio of a system's output signal
level to the system's output noise level obtained in the absence of a signal. The output reference signal is either
specified or measured at a specified distortion level.
Continuous Average Output Power: The minimum sine
wave continuous average power output in watts (or dBW)
that can be delivered into the rated load, over the rated
bandwidth, at the rated maximum total harmonic distortion.
Music Power: A measurement of the peak output power
capability of an amplifier with either a signal duration sufficiently short that the amplifier power supply does not sag
during the measurement, or when high quality external power supplies are used. This measurement (an IHF standard)
assumes that with normal music program material the amplifier power supplies will sag insignificantly.
Peak Power: Most commonly referred to as the power output capability of an amplifier that can be delivered to the
load; specified by the part's maximum voltage swing.

Thermal'Reslstance: The peak, junction-temperature rise,
per unit of internal power dissipation (units in ·C/W), above
the case temperature as measured at the center 'of the
package bottom.
The DC thermal resistance applies when one output transistor is operating continuously. The AC thermal resistance applies with the output transistors conducting alternately at a
high enough frequency that the peak capability, of neither
transistor is exceeded.
Power Bandwidth: The power bandwidth of an audio amplifier is the frequency range over which the amplifier voltage gain does not fall below 0.707 of the flat band voltage
gain specified for a given load and output power.
Power bandwidth also can be measured by the frequencies
at which a,specified level of distortion is obtained while the
amplifier delivers a power output 3dB below the rated output. For example, an amplifier rated at 60W with ';;;0.25%
THO + N, would make its power bandwidth measured as
the difference between the upper and lower frequencies at
which 0.25% distortion was obtained while the amplifier was
delivering 30W.
Galn:Bandwldth Product: The Gain-Bandwidth Product is
a way of predicting the high-frequency usefulness of an op
amp. The Gain-Bandwidth Product is sometimes called the
unity-gain frequency or unity-gain cross frequency because
the open-loop gain characteristic passes through or crosses
unity gain at this frequency. Simply, we have the following
relationship:
AcL1 X f1 = AcL2 X f2
Assuming that at unity-gain
(AcL1 = 1 orO dB) fu = f1 = GBWP,
then we have the following:
GBWP = ACL2 X f2

Definition of Terms (Continued)
This says that once fu (GBWP) is known for an amplifier,
then the open-loop gain can be found at any frequency. This
is also an excellent equation to determine the 3 dB point of
a closed-loop gain, assuming that you know the GBWP of
the device. Refer to the diagram below.
BI-ampllflcation: The technique of splitting the audio frequency spectrum into two sections and using individual
power amplifiers to drive a separate woofer and tweeter.
Crossover frequencies for the amplifiers usually vary between 500 Hz and 1600 Hz. "Biamping" has the advantages of allowing smaller power amps to produce a given
sound pressure level and reducing distortion effects produced by overdrive in one part of the frequency spectrum
affecting the other part.

C.C.I.R'!A.R.M.:
Literally: International Radio Consultative Committee
Average Responding Meter
This refers to a weighted noise measurement for a Dolby B
type noise reduction system. A filter characteristic is used
that gives a closer correlation of the measurement with the
subjective annoyance of noise to the ear. Measurements
made with this filter cannot necessarily be related to unweighted noise measurements by some fixed conversion
factor since the answers obtained will depend on the spectrum of the noise source.
S.P.L.: Sound Pressure Level-usually measured with a microphone/meter combination calibrated to a pressure level
of 0.0002 ""Bars (apprOximately the threshold hearing level).
S.P.L. = 20 Log 1OP/0.0002 dB
Where P is the R.M.S sound pressure in microbars.
(1 Bar = 1 atmosphere. = 14.5 Ib.lin2 = 194 dB S.P.L.).

DOMINATE POLE OF
(THE OPEN-LOOP RESPONSE

t

- - - - DC GAIN
I

OPEN-LOOP VOLTAGE GAIN
A (dB)
A_

I

"I;L2

I

_ _ _ 1__

:

f

AC GAIN

_
I

LOSS = -20 dB/DECADE

I

I

I
UNITY-GAIN FREQUENCY
0F THE OP AMP
Acu - - -I- - - -I - - ...J
I
I-I
(UNITY GAIN) 0 dB ...........--"'T'"--T"""~-.....
Ip
12
11
lu
INPUT FREQUENCY, F(LOG SCALE)
TL/H/11449-14

1-481

~

~

IfINational Semiconductor

LM4250 Programmable Operational Amplifier
General Description

Features

The LM4250 and LM4250C are ,extremely v~rsatile programmable monolithic operati9f1al amplifiers. A single external master bias current setting resistor programs the input
bias current, input offset current, quiesc~nt power consumption, slew rate, input noise,: and the gain-bandwidth product..
The device is a truly general purpose operational amplifier..

• ± 1v to ± 1SV power supply operation

The LM4250C is identical to the LM4250 except that the
LM4250C has its performance guaranteed over a O"C to
+ 70"C temperature range instead of the - 55°C to + 125°C
temperature range of the LM4250.

•
•
•
•
•
•
•

3 nA input offset current
Standby power consumption as low as 500 nW
No frequency compensation required
Programmable electrical charaCteristics
Offset voltage nulling capability
Can be powered by two flashlight batteries
Short circuit protection

Connection Diagrams
Metal Can Package

Dual-In-Line Package

QUIESCENT
CURRENT SET

8 QUIESCENT
CURRENT SET

OFFSET 1
NULL
INVERTING 2
INPUT

INVERTING
INPUT

7 V·

NON-INVERTING 3
INPUT

6 OUTPUT

V- "

5 OFFSET
NULL
TUHI9300-5

Top View

TUHI9300-2

Top View

Ordering Information
Temperature Range
Military
-55"C:;;; TA:;;; + 125°C

Commercial
O"C :;;; TA :;;; +70"C

Package

NSC
Package
Number

LM4250CN

S-Pin
Molded DIP

NOSE

LM4250CM

S-Pin
Surface Mount

MOSA

S-Pin
Ceramic DIP

JOSE

S-Pin
Metal Can

HOSC

LM4250J
LM4250J-MIL
LM4250H
LM4250H-MIL

LM4250CH

1-4S2

Absolute Maximum Ratings
If Mllltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Offlcel
Distributors for availability and specifications.
(Note 2)
Supply Voltage
Operating Temp. Range
Differential Input Voltage
Input Voltage (Note 1)
ISET Current
Output Short Circuit Duration

LM4250
±1SV
-55·C ~ TA ~ +125"C
±30V
±15V
150nA
Continuous

LM4250C
±1SV
O"C ~ TA ~ +70"C
±30V
±15V
150nA
Continuous

150·C

100"C
100"C
100"C
100"C

TJMAX
H-Package
N-Package
J-Package
M-Package

150"C

Power Dissipation at TA = 25"C
H-Package (Still Air)
(400 LF/Min Air Flow)
N-Package
J-Package
M-Package

500mW
1200mW

300mW
1200mW
500mW
600mW
350mW

1000mW

Thermal Resistance (Typical) 8JA
H-Package (Still Air)
(400 LF/Min Air Flow)
N-Package
J-Package
M-Package

165"C/W
65·C/W

165·C/W
65·C/W

10S·C/W

130·C/W
10S·C/W

19O"C/W

(Typical) 8JC
H-Package

21·C/W

21·C/W

-65·Cto + 150"C
Storage Temperature Range
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
26O"C
Small Outline Package
Vapor Phase (60 seconds)
215·C
220·C
Infrared (15 seconds)
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 3)
SOOV
Note 1: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply Yoltage.

- 65·C to + 15O"C

Note 2: Refer to RETS4250X lor military specifications.
Note 3: Human body model, 1.5 kll in series with 100 pF.

Resistor Biasing
Set Current Setting Resistor to YISET
YS

0.1 Jl-A

0.5J1-A

1.0 !l-A

±1.5V

25.6MO

5.04MO

2.5MO

±3.0V

55.6MO

11.0 MO

5.5MO

1.09MO

544kO

±6.0V

116MO

23.0MO

11.5 MO

2.29MO

1.14MO

5!l-A
492kO

10 !l-A
244kO

±9.0V

176MO

35.0MO

17.5MO

3.49MO

1.74 MO

±12.0V

236MO

47.0MO

23.5MO

4.69MO

2.34MO

±15.0V

296MO

59.0MO

29.5MO

5.S9MO

2.94MO

1-4S3

Electrical Characteristics LM4250 (- 55°C 5: TA 5:

+ 125°C unless otherwise specified.) TA = TJ

Vs =±1.5V
Parameter

Conditions

ISET = 1 p.A
Min

ISET = 10p.A

Max

Min

SmV

Max

Vos

Rs 5: 100 kO, TA = 25°C

5mV

los

TA = 25°C

SnA

10nA

Ibias

TA = 25°C

7.5nA

50nA

Large Signal Voltage
Gain

RL = 100 kO; TA = 25°C
Vo = ±0.6V, RL = 10 kO

Supply Current

TA = 25°C

7.5 p.A

80 p.A

Power Consumption

TA = 25"C

2Sp.W

240p.W

40k
50k

Vos

Rs 5: 100 kO

4mV

6mV

los

TA = +125°C
TA = -55°C

5nA
SnA

10nA
10nA

7.5nA

Ibias
±0.6V

Input Voltage Range

50nA
±0.6V

Large Signal Voltage
Gain

Vo = ±0.5V, RL = 100 kO
RL = 10kO

SOk

Output Voltage SWing

RL = 100kO
RL = 10kO

±0.6V

Common Mode Rejection Ratio

Rs 5: 10kO

70dS

70dS

Supply Voltage Rejection Ratio

Rs 5: 10kO

76dS

76dS

SOk
±0.6V

Supply Current

90 p.A

8p.A
Vs = ±15V

Parameter

ISET = 1 !LA

Conditions

Min
Vos

Rs 5: 100 kO, TA = 25°C

Max

ISET = 10 !LA
Min

SmV

Max
5mV

los

TA = 25°C

SnA

10nA

Ibias

TA = 25°C

7.5nA

50nA

Large Signal Voltage
Gain

RL = 100 kO, TA = 25°C
Vo = ±10V, RL = 10 kO

Supply Current

TA = 25°C

10p.A

90 p.A

Power Consumption

TA = 25°C

SOOp.W

2.7mW

100k
100k

Vos

Rs 5: 100 kO

4mV

6mV

los

TA= +125°C
TA = -55°C

25nA
SnA

25nA
10nA

7.5nA

Ibias
±1S.5V

Input Voltage Range
Large Signal Voltage
Gain

Vo = ±10V, RL = 100kO
RL = 10kO

Output Voltage Swing

RL = 100kO
RL = 10kO

±12V

Common Mode Rejection Ratio

Rs 5: 10kO

70dS

Supply Voltage Rejection Ratio

Rs5:10kO

76dS

50nA
±1S.5V

50k
50k
±12V

Supply Current
Power Consumption

1-484

70dS
76dB
11 p.A

100 p.A

SSOp.W

SmW

Electrical Characteristics LM4250C (O"C s: TA s: + 70"C unless otherwise specified.) TA =

TJ

Vs = ±1.5V
Conditions

Parameter

Min
Vos

Rs

s:

ISET = 10,..,A

ISET=1,..,A

100 kO, TA = 25°C

Max

Min

5mV

Max
6mV

los

TA = 25°C

6nA

20nA

Ibias

TA = 25°C

10nA

75nA

Large Signal Voltage
Gain

RL = 100 kO, TA = 25°C
Vo = ±0.6V, RL = 10 kO

Supply Current

TA = 25°C

S p.A

90p.A

Power Consumption

TA = 25°C

24p.W

270 p.W

Vos

Rs

6.5mV

7.5mV

s:

25k
25k

10kO

los

SnA

25nA

Ibias

10nA

SOnA

Input Voltage Range

±0.6V

±0.6V

Large Signal Voltage
Gain

Vo = ±0.5V, RL = 100 kO
RL = 10kO

Output Voltage Swing

RL = 100kO
RL = 10kO

±0.6V

Common Mode Rejection Ratio

RsS:10kO

70 dB

Supply Voltage Rejection Ratio

Rs

s:

25k
25k
±0.6V

10 kO

70 dB

74 dB

Supply Current
Power Consumption

74 dB
Sp.A

90 p.A

24p.W

270p.W

Vs = ±15V
Parameter

Conditions

ISET = 1 p.A
Min

Vos

Rs

s:

100kO, TA = 25"C

Max

ISET = 10,..,A
Min

5mV

Max
6mV

los

TA = 25°C

6nA

20nA

Ibias

TA = 25°C

10nA

75nA

Large Signal Voltage
Gain

RL = 100 kO, TA = 25°C
Vo = ±10V, RL = 10 kO

Supply Current

TA = 25°C

11 p.A

Power Consumption

TA = 25°C

330p.W

3mW

Vos

Rs

6.5mV

7.5mV

s:

60k
60k

100 kO

100 p.A

los

SnA

25nA

Ibias

10nA

SOnA

Input Voltage Range

±13.5V

Large Signal Voltage
Gain

Vo = ±10V,RL = 100kO
RL=10kO

Output Voltage Swing

RL = 100kO
RL=10kO

Common Mode RejectionRatio

Rs

10kO

70 dB

Supply Voltage Rejection Ratio

RsS:10kO

74 dB

s:

±13.5V

50k
50k
±12V
±12V

Supply Current
Power Consumption

1-4S5

.70 dB
74 dB
11 p.A

100 p.A

330 p.W

3mW

Typical Performa!,:,ce Characteristics
Input Bias Current VII
Temperature

Input Bias Current vs ISET
,1000

-«l
-30

100
Ys=t15Y

Ys=tl.5Y

10

I
1sEr=10)

S

3

!

2,

~

!;

~

Vs = O5V
0

10

20

30

40

14

LM6104 Output Voltage
vs Sink Current

>§

-.

1,2

and negative output voltag8s.
1.0
-25
0
25
50
75

100

LM6104 Output Voltage
vs Source Current

~

i~

FREQUENCY (MHz)

-I

10'

+7.5mA LOAD

is

I III
I III

I

TIME (n.)

1.4

'/

=5.1 kn
R,= 10kn

-25

1600

8

1.6

~
"'d~
'>~

.
i;

N:

-20

-35 V-=5V
-40 TA = +25 0 C
600

6

VOUT Referred to Supplies
Vs = ±5V
lIN = ± 100 !lA

I".

-15

-30 v+ =8V

R,=2kn

200

4

SUPPLY VOLTAGE (OV)

R,= I kn

0

R,= 10kR

--

2

R,=2kn

5

4

0

0

1000

Frequency Response vs RF
Av = -1,RF = RG

V+= BV
v- = -5V
TA = 25°C

R,= lkn--

100

FREQUENCY (kHz)

Large SIgnal Pulse Response
Av =-1

' -25°C

O.
I

FREQUENCY (MHz)

6

"

I

50

100

"25°C'

2

i

60

1111

1-1..

+85 O C

3

iB

Am llfier."

70

II.

0.1

e

~

m Ifler.: and #

90

z

III

4

~

11111

100

~

5

Ay'-1~~
R,=2kn
Am lifl,r # 1 Driven

110 r""

LCH,Jl.

'C,::
,C,:

10

Supply Current vs
Supply Voltage

Amplifier to
Amplifier Isolation
120

50

I
,0

60

OUTPUT SOURCE CURRENT (mA)

--

..-

10

20

30

Vs =05V
40

50

60

OUTPUT SINK CURRENT (mA)

TL/H/I1979-3

1-492

Applications Information
CURRENT FEEDBACK TOPOLOGY

Bandwidth and slew rate are inversely proportional to the
value of RF (see typical curve Frequency Response vs RF).
This makes the amplifier especially easy to compensate for
a desired pulse response (see typical curve Large Signal
Pulse Response). Increased capacitive load driving capability is also achieved by Increasing the value of RF.
The LM61 04 has guaranteed performance with a feedback
resistor of 2 kfi.

The small-signal bandwidth of conventional voltage feedback amplifiers is inversely proportional to the closed-loop
gain based on the gain-bandWidth concept. In contrast, the
current feedback amplifier topology, such as the LM61 04,
enables a signal bandwidth that is relatively independent of
the amplifier's gain (see typical curve Frequency Response
vs Closed Loop Gain).

FEEDBACK RESISTOR SELECTION: RF
Current feedback amplifier bandwidth and slew rate are
controlled by RF. RF and the amplifier's internal compensation capacitor set the dominant pole in the frequency response. The amplifier, therefore, always requires a feedback resistor, even in unity gain.

CAPACITIVE FEEDBACK
It is common to place a small lead capacitor in parallel with
feedback resistance to compensate voltage feedback amplifiers. Do not place a capaCitor across RF to limit the bandwidth of current feedback amplifiers. The dynamic impedance of capacitors in the feedback path of the LM6104, as
with any current feedback amplifier, will cause instability.

1-493

r-------------------------------------------------------------------------,
-N'til
~.
- LM6118/LM6218
~

. National Semiconductor

~

,

~

Fast Settling Dual Operational Amplifiers
General Description

Features

TheLM6118 series are monolithic fast-settling unity-gaincompensated dual operational amplifiers with, ±20 mA output drive capability. The PNP input stage has a typical bias
current of 200 nA, and the operating supply voltage is ± 5V
to ±20V.

•
•
•
•
•
•
•

These dual op amps use slew enhancement with special
mirror Circuitry to achieve fast response and high gain with
low total supply current.
The amplifiers are built on a junction-isolated VIPTM (Vertically Integrated PNP) process which produces fast PNP's
that complement the standard NPN's.

Typical
0.2mV
400 ns
140 V/lJ.s
75 V/IJ.S

Low offset voltage
0.Q1 % settling time
Slew rate Av .. -1
Slew rate Av = +1
Gain bandwidth
Total supply current
Output drives 50n load (± 1V)

17 MHz
5.5 mA

Applications
• D/A converters
• Fast integrators
• Active filters

Connection Diagrams and Order Information
Ceramic Leadless Chip Carrier (E)

Dual·ln·Llne Package (J or N)

OUTPUTA

Y+

A INPUT-

OUTPUT B

A INPUH

BINPUT-

TLlH/10254-4

Top View
Y-

Order Number LM6118N, LM6118J/883*,
LM6218AN or LM6218N
See NS Package Number JOSA or N08E

BINPUT+

TLlH/10254-24

Order Number LM6118E/883*
See NS Package Number E20A

Typical Applications
Small Outline Package (WM)

R1

4.3k
Nt
OUTPUT

R2

Nt

4.99k

INPUT(-)
INPUT(+)

R4

4.99k

He

VOUT

YTL/HI10254-3

R6

4.3k

Top View ,
Order Number LM6218AWM or LM6218WM
See NS Package Number M14B

Single ended input to differential output
Av = 10, BW = 3.2 MHz
40 Vpp Response = 1.4 MHz

Vs
'Available per SMD #5962-9156501

=

±15V

Wide-Band, Fast-8ettllng
40 Vpp Amplifier
1-494

TLlH/10254-1

Absolute Maximum Ratings (Note 1)
±2kV
ESD Tolerance (C = 100 pF, R = 1.5 kG)
150"C
Junction Temperature
-65·Cto + 150·C
Storage Temperature Range
300"C
Lead Temperature (Soldering, 10 sec.)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Total Supply Voltage
42V
(Note 2)
Input Voltage
Differential Input Current (Note 3)
±10mA
Output Current (Note 4)
Intemally Limited
Power Dissipation (Note 5)
500mW

Operating Temp. Range
- 55·C to + 125·C
-40"Cto +85°C
-40"Cto +85·C

LM6118
LM6218A
LM6218

Electrical Characteristics ± 5V s: Vs s: ± 20V, VCM = OV, VOUT = OV, lOUT = OA, unless otherwise
specified. Limits with standard type face are for TJ = 25·C. and Bold Face Type are for Temperature axtrame••
Parameter
Input Offset Voltage
Input Offset Voltage
Input Offset Current
Input Bias Current

Typ
25"C

Conditions
Vs = ±15V
V- + 3V
V
V

+ 3V
+ 3V

0.2

s: VCM s: V+
s: VCM s: V+
s:

VCM

s: V+

- 3.5V
- 3.5V
- 3.5V

0.3
20
200

Input Common Mode
Rejection Ratio

V + 3V s: VCM
Vs = ±20V

Positive Power Supply
Rejection Ratio

V = -15V
5V s; V+ s; 20V

100

Negative Power Supply
Rejection Ralio

V+ = 15V
-20V s: V-

100

Large Signal
Voltage Gain.

Vout = ±15V
Vs = ±20V

RL = 10k

Vout = ±10V
Vs = ±15V

RL = 500
(±20mA)

Vo Output Voltage
Swing

Supply = ± 20V

RL = 10k

Total Supply Current

Vs = ±15V

s:

s: V+

- 3.5V

100

-5V
500
200
17.3
5.5

LM6118
Umlts
(Notes 6 & 7)

LM6218A
Limits
(Note 6)

LM6218
Umlts
(Note 6)

1

1

3

2

2

4

1.5

1.5

3.5

2.5

2.5

4.5

50

50

100

250

100

200

350

350

500

.50

.50

1250

90

90

80

85

85

75

90

90

80

85

85

75

90

90

80

85

85

75

150

150

100

100

100

70

50

50

40

30

30

25

±17

±17

±17

7

7

7

7.5

7.5

7.5

Units
mV(max)
mV(max)
nA(max)
nA(max)
dB (min)
dB (min)
dB (min)
VlmV(min)
V/mV(min)
V (min)
mA(max)

Output Current Limit

Vs = ±15V,Pulsed

65

100

100

100

Slew Rate, Av = -1

Vs= ±15V,Vout= ±10V
Rs = Rt = 2k,Ct = 10pF

140

100

100

100

50

50

50

Vs = ±15V, Vout = ±10V
Rs = Rt = 2k,Ct = 10pF

75

Gain-Bandwidth Product

Vs = ±15V,fo = 200kHz

17

0.01 % Settling Time
Av =-1

AVout = 10V, Vs = ±15V,
Rs = Rt = 2k,Ct = 10pF

·400

ns

Inverter

5

pF

Follower

3

pF

Slew Rate, Av = + 1

Input capacitance

50

50

50

30

30

30

14

14

13

mA(max)
V/",s(min)
VI,... (min)
MHz (min)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrfcal speciflcatlons do iIot apply wheli operating
the device beyond its rated operating conditions.
Note 2: Input voltage range is (V+ - 1V) to (V-j.
Nole 3: The inputs are shunted w~h three series-connected diodas back-1o-back tor input ·differential clamping. Ti1efetore differential input wltages greater than
about t .8V will cause excessive current to flow unless limited to· less than 10 mAo
Note 4: Current IimHing protects the output from a short to ground or any wltage less than the supplies. Wrth a continuous overload, the package dissipation must
be taken into account and heal sinking provided when necessary.
Note 5: Devices must be derated using a thermal resistance 01 fN'C/W for the N, J and WM packages.
Note 6: Umits are guaranteed by lesling or correlation.
Note 7: A military RETS spacification is available on request. AI the time ot printing, LM8118J/883 and LM6118E/883 RETS spec complied ~ the Boldface
limits in this column.

1-495

co'r-----------------~-----------------------------------------------------------------------,

~

....~

Typical Performance Characteristics
Input Noise Voltage

Input Bias Current

...~

1000

U)

YS R i15Y
YCII=GV

500

:!

-...;,

~ ..
!

r-.

~

z

1000

(V'10

500

I

~

~

100

~

50

8

10

10
10

50

100

150

POSII1VE

t:

20

o

UY:SYs:SUGV

~

200

20

-so

Common Mode Umlts

100

mlPERAlUR£ «1:)

lk

10k

~

:~

r- p,

Nri

I

50

lOCk

100

150

1EIIPERAlURE ('1:)

rREQUENCY (Hz)
i" .

Common Mode Rejection
120

TA =25'1:

100

120 r--r---,----r-c--.-_,

60

100 f""'i~....,.-t--i-Rs =5004
R,=500l1
80 I---+......:+'-..-+- TA = 25'1:

50

Ay=+1

~

201---+---+---+--i~"

,.,.V/oC

170

S

OV';;: VCM';;: 5V
PSRR

=

2.2

52.
Input Offset Current

CMRR

Vo

3

OV,;;: VCM';;: 5V
los

115°C/W
19SoC/W
81°C/W
126°C/W

±25mA

Unless otherwise specified, all limits guaranteed forTJ = 25°C, V+
V + /2. Boldface limits apply at the temperature extremes.

Symbol

-40'C ,;;: TJ ,;;: +85°C

Thermal Resistance (6JA)
N Package, 8-Pin Molded DIP
M Package, 8-Pin Surface Mount
N Package,14-Pin Molded DIP
M Package, 14-Pin Surface Mount

S5V
±10mA

Current at Input Pin

1.8V,;;: V+ ,;;: 24V

0.1

0.1

0.133

0.133

4.86

4.86

4.80

4.80

V
max
V
min

5.0V DC Electrical Characteristics

.

'. .

.o.

o..

o.o.,

'

Unless Otherwise Specified, All Umits Guaranteed forTJ = 25°C, V+ = 5.0V, y- = OV, VCM = Vo = V+12 and RL ? 1 MO
'.,'
to V+ 12. Boldface limits apply at the temperature extremes. (ContinlJed)

Symbol

Isc

Parameter.

Conditions

Output Short
Circuit Current
LM6142

' Sourcing

13

Sinking

ISC

Output Short
Circuit Current
LM6144

I.:M6144AI
LM6142AI
Limit
(Note 6) ,

Typ
(Note 5)

24

Sourcing

8

LM61441!11
LM6142BI

Limit,
(Note 6)

10

8

4.9

4

35

35

,

UnitS

,

'

.

mA
min
inA
max

10

10

5.3

5.3

mA
min

35

35

rnA
, max

6

6

3

3

35

35

mA'
min
mA
max

'/

Sinking

22

"'

Is

Supply Current

Per Amplifier

650

8

8

4

4

35

35

mA
"min

800

800

880

880

mA
max
, p,A
max

5.0V AC Electrical Characteristics
Unless Otherwise Specified, All UmitS Guaranteed for TJ = 25°C, V+ = 5.0V, V- = OV, VCM = Vo = V+ 12 and RL > 1 MO
to Vs/2. Boldface limits apply at the temperature extremes.

Symbol

SR
GBW

Parameter

Slew Rate
Gain-Bandwidth Product

Conditions

Typ
(Note 5)

8 Vp_p@Vee12V
Rs>1kfi

25

f=50kHz

17

LM6144AI
l.M6142AI
Limit

LM6144BI
LM6142BI
Limit

(Note 6)'

(Note 6)

;

"'m
en
in
T.H.D.

15

13

13

11

10

10

8

8

Units

V/p,s
min
MHz
min

Phase Margin

38

Deg

Amp-to-Amp Isolation

130

dB

Input-Referred
Voltage Noise

f = 1 kHz

Input-Referred
Current Noise

f = 1 kHz

Total Harmonic Distortion

f = 10 kHz, RL = 10 kO,

nV

16

[Hz
pA

"

0.22

1-506

0.003

"

[Hz
%

2.7V DC Electrical Characteristics
Unless Otherwise Specified, All Limits Guaranteed for TJ = 25·C, V+ = 2.7V, V- = OV, VCM = Vo = V+ 12 and RL
to V+ 12. Boldface limits apply at the temperature extreme

Symbol

Vos

18
los

Parameter

Typ
(Note 5)

Conditions

Input Offset Voltage

0.4

Input Bias Current

150

Input Offset Current

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

PsRR

Power Supply
Rejection Ratio

VCM

Input Common-Mode
Voltage Range

4

Large Signal
Voltage Gain

RL = 10k

Vo

Output Swing

RL = 10kO

1.B

2.5

4.3

4.3

250

300

526

526

30

30

80

80

mV
max
nA
max
nA
max
MO

dB
min

76
79
-0.25

0

0

V min

2.95

2.7

2.7

V max
V/mV
min

0.019

510

O.OB

0.08

0.112

0.112

2.66

2.66

2.25

2.25

BOO

BOO

880

880

2.7V AC Electrical Characteristics
Unless Otherwise Specified, All Limits Guaranteed for TJ = 25°C, V+ = 2.7V, V- = OV, VCM = Vo = V+ 12 and RL
to V+ 12. Boldface limits apply at the temperature extreme

Parameter

Conditions

GBW

Gain-Bandwidth Product

f = 50kHz

m

Phase Margin

Gm

Gain Margin

Symbol

Units

55

Per Amplifier

Typ
(Note 5)

1-507

1 MO

90

2.67
Supply Current

LM6144BI
LM6142BI
Limit
(Note 6)

12B

s: VCM s: 1.BV
OV s: VCM s: 2.7V
3V s: V+ s: 5V
OV

Av

Is

LM6144AI
LM6142AI
Limit
(Note 6)

>

LM6144AI
LM6142AI
limit
(Note 6)

LM6144BI
LM6142BI
limit
(Note 6)

V
max
V
min
p.A
max

>

1 MO

Units

9

MHz

36

Oeg

6

dB

24V Electrical Characteristics

Unless Otherwise Specified, All Umits Guaranteed for TJ = 25'C; V+
to Vs/2. Boldface limits apply at the temperature extreme

Symbol

Vas

Parameter

Conditions

Input ,Offset Voltage

= 24V, VTyp
(Note 5)
1.3

MO

Input Resistance

CMRR

Common Mode
Rejection Ratio

OV ~ VCM ~ 23V

114

OV ~ VCM ~ 24V

100

PSRR

Power Supply
Rejection Ratio

OV ~ VCM ~ 24V

VCM

Input Common-Mode
Voltage Range

Output Swing

RL

= 10kO

GBW

Supply Current
Gain-Bandwidth Product

-0.25

0

0

V min

24.25

24

24

V max
V/mV
min

500
0.07

Per Amplifier
f

dB
min

87

23.85
Is

750

= 50kHz

mV
max

288

RIN

Va

3.8

4.8

nA
max

Input Offset Current

= 10k

2

4.8

Units

5

los

RL

LM6144BI
LM6142BI
Umlt
(Note 6)

nA,
max

Input Bias Current

Large Signal
Voltage Gain

LM6144AI
LM6142AI
Umlt
(Note 6)

= v+ 12 and RL > 1 MO

174

Ie

Av

= OV, VCM "" Va

18

0.15

0.15

0.185

0.185

23.81

23.81

23.82

23.82

V
max
V
min

1100

1100

p.A

1150

1150

max
MHz

Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur; Operating Ratings indicate conditions for which llie device is
Intended to be functional, but specific performance Is not guaranteed. For guarantaed speclf'rcations a,nd the test conditions, see the Electricsl Charactenstics.
Note 2: Human body model, 1.5 kO In series with 100 pF.
Note 3: Applies to both single-supply and spllt....pply operation. Continuous short clrcuH operation at elevated ambient temperature can reBUn in exceeding the
maximum allowed Junction temperature of 15O'C.
Note 4: The maximum power dissipation is afuriction of TJ(m&><)' 6JA, and TA. The maximum allowable power diSsipation at any ambient temperatura Is Po
(Tj(m&><) - TAJI6JA. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values rapresent the most likely paramelric norm.
Note 6; All limits are guaranteed by testing or statisticsl analysis.
Note 7: For guaranteed military specifications see military datesheel MNLM6~ 42AM-X.

1-508

=

r-----------------------------------------------------------------------------~~

Typical Performance Characteristics TA =
el

1.0

'~"

0.8

Ii!
~

0.6

Supply Current vs
Supply Voltage

II I " "
i~1 L lJ."bl"
1"1

§

- ... OoC

">
-S

2.'
2.1

~

I.S

~

+25 0 C -550C

0.•

I

2.7

+85 0 C +125 0 C

-S

Offset Voltage vs
Supply Voltage

3.0

t;;

IL
+2·S c

B

0.2

~

0.0

~

1.2

....

* ,.
0.6
0.0
4

a

8 12 16 20 24 28 32 36

4

Offset Voltage vs VCM

~

0.8

0.6

">
-S

-40 o e
~ .L.

0.2

+!sOC

-0.2

~

~

:';;SOC

-0.4

II
A

-1.0
-2 -1.5 -1 -O.S 0

I
+25°C
1

1.5

r.

a -100
~

-200

-300

It

'"

:!

.....

....

ia
i

+25 OC

80

20

~

Offset Voltage vs VCM
Vs = :t:5V

.J

+asoc'
-'OoC

-2

a

-1

+25 0 C

-1.0

1

-6-5-4-3-2-10123456

COMMON MODE VOLTAGE (V)

Bias Current vs VCM
500

Ys = :12.SV

400

300
200

,

100

Iiii='

0

+85 OC

-100

-200
-300

+25°C

..
-=~

il1

-2

-1

0

Ys = :i:5V

300
200
100

to

a

i':l

-100

i

-200

-40 oe
-3

2

+85 OC

-300
-400

:

,

+25 0 C

-40 o C

I I

-500 I R
-6 -S -4 -3 -2 -1 0 1 2 3 • S 6

1

Open-Loop Transfer
Function

Open-Loop Transfer
Function

vSr,
I

.......

lOOk

-.0

......,
~lok
2k l"\

-60

I \
I I

-80
-100
0.5

1

1.5

2

OUTPUT VOLTAGE (V)

2.5

35

1.0

Open-Loop Transfer
Function

........

a

30

. COMMON MODE VOLT AGE (v)

~ -20
!'i

25

COMMON MODE VOLTAGE (v)

~

~

1.5

20

COMMON MODE VOLTAGE (V)

1
I
............

"> 40

..3
~

1

15

-0.5

-0400
0.5

II

60

10

SUPPLY VOLT AGE (V)

-sao

-2 -1.5 -1 -0.5 0

100

-350

Bias Current vs VCM

-"ooc
-400 il
-SOO

r-- -.~oc

">
-S
~

.00

/f_

+25 0 C

-300

COMMON MODE VOLTAGE (V)

200

olio

0.5

500

+85 OC

T'-

12 16 20 24 2a 32 36

0.2

-3

Vs = :l:1.5V

100

-2S0

0.4

Bias Current vs VCM

il1

~

I I
I I

-1.0

500

....
~

i':l

-200

H-+-++++-+- Vs = ±2.SV

COMMON MODE VOLTAGE (v)

400

-ISO

0.6

2

300

....
olio

-0.8

+85°C ~

0.5

L

0.0
~
-0.2
t;;
~ -0.4
~ -0.8

.\\ -",oDe

I
I
1

-0.6
-o.a

.1

-40 o C

-S5°C

~

il1

Offset Voltage vs VCM
1.0

Vs = :t:1.SV

0.4

1 -100

SUPPLY VOLTAGE (V)

1.0
o.a

~

~ ~\

~

a

SUPPLY VOLTAGE (V)

">
-S

./

~

a::
en

+a~oc

~

..."f:""'f'.

0.3

o

-so

Y

./

;' ;'

~

I
+125 0 C

l-V
~ ........
V

0.9

en
....

Bias Current vs
Supply Voltage

o

l.a

i:

25°C, RL = 10 kO Unless Otherwise Specified

100
Vs

80

">

..3
~

L
I
I

60
.0
20

~

~

~ -20

~

lOOk
10k

-40

2k

-60

250

= SV
">

..3

100

~

SO

~

0

10k

\

~ -100

!'i

2k

-150
-200
-2S0

OUTPUT VOLT AGE (V)

I
I

lOOk

-50

-100

0.5 1 1.5 2 2.5 3 3.5 4 <1.5 5

I

150

-80

a

Vs = IOV

200

I
I
a

1 2

3

4

5

6

7

8

9 10

OUTPUT VOLTAGE (V)
TL/H/12057-3

1-509

Typical Performance Characteristics.
TA = 25·C, RL = 10 kO Unless Otherwise Specified (Continued)
Output Voltage va
Source Current

Output Voltage vs
Source Current

10

Output Voltage vs
Source Current

100
F==t=-40·C

~

.5-

':c

z

I
~

~

+85·C====!·

§
a

Iff

o. 1

10

.5-

A¥-+25·C

11 Vs = 3V

~

~
~

0.1

L

0.0 1
1

10

1000

100

100

10000

OUTPUT SWING fROM V+ (mV)

Output Voltage vs
Sink Current

.5-

OUTPUT SWING fROM V+ (mV)

Output Voltage vs
Sink Current

100

':c

10

.5-

§

100 , - - , . - - , - - , - - - - ,

10

Ia

g;

a

"'.

10000

Output Voltage vs
Sink Current

100

':c

1000

OUTPUT SWING FROM V+ (mV)

vs'

Olf

i

0.01

'"inz

i

0.001

0.1

0.1

~

0.01

10

100

0.1

1000 10000

O.OIJ--f-I---+----+---I
0.001 '-_L..L_ _" , - _ - J ._ _...J

0.001
0.1

f---H--+---i-:---i

~

OUTPUT SWING FROM V- (mV)

10

100

1

1000 10000

OUTPUT SWING FROU V- (mV)

10

Ido

1000

10000

OUTPUT SWING fROM V- (m¥)

TL/H/12057-4

Gain and Phase vs Load
120
100

Distortion + Noise
vs Frequency

Gain and Phase vs Load
120 =--r-...,.--.,--,,---..,

180

F""....+ - + - J - - - + - - - j

-66

Vs = 24V
-68 VO= 10Vpp'
-70

100 1-"IIr+"'-+-+--If--+--I

.

80J--+"~__l-~nr~rr4

60.J--+--f"-~.&-+\

~

if
20f--+-+~+--If-~~rl

~

-72

%

-74

3

~

~

-76
-78
-80

./

-82
100

lk

10k

lOOk

100

IN

lk

fREQUENCY (Hz)

10k lOOk

1M

fREQUENCY (Hz)

-8" lk

2k

4k

"

8k
20k 40k 8Dk
6k 10k
60k lOOk

fREQUENCY (Hz)

GBW vs Supply
25.00
GBWat 100kHz

'i

20.00

I"

.3

'l

~~

~o~

~~'~
I"

V
0.00 1
6

8204080
10
60 100

SUPPLY VOLTAGE (V)

TUH/12057-11

1-510

Typical Performance Characteristics
TA = 25°C, RL

10 kG Unless Otherwise Specified (Continued)

=

Open Loop Gain vs
Load, 3V Supply
120
10~

~

r---- ./"

.... 'M

'00

').

r-

80

z

~

&0

!

'~

40
....
20

:-::-. kof~

80

z

'~
"":'k 1-"'"' ,:~

.... 'Ok

~

9
~

Open Loop Gain vs
Load, 5V Supply
120

~

&0

§

40

~

20

'~

0

'20 .....

.... 'M

100"~
a;- 80
/ ,,~

.;~

;

~

'~

.... 'Ok

~

'00

'0

,Ok lOOk

'k

'20

!

i

~

V

t5~-+-+--+~+--+--1
/V
'0 f--I-V--i>'<--+-", • 'k
5

~..-

L...-~

o

5

~

a;3

~

'00

__~-L__L - J

'0

'5

20

25

140

1---FFttoIOlll--I-tttttHr-+-H1-ttt11

!

130

1-f-HH+HIf-H"IoHi1I11-++t+lttH

~

1201-f-HH+HIf-r+Hffi~T+t+lttH

~

110

~

50.0 ~-+-+-;.-+-=c::::i

1"-.

NEG PSR

40.0
"'
A
30.0 r-~~--+-~~'--JJ.-l

~~:~ t==t==t~PO~St~PS~R!:-"l~~:~::j

~H1fttttH-t+HflIIlf--,t-PtItllll

100 ~H1fttttH-t+HflIIli'-+++H1~
10

30

70.0
"
60.0 Vs' 3V -I-"I"'.-t----1I-_+_~

0.0

Crosstalk vs Frequency
150 r-r-nrTTTTn-,...,...rrmrn-rTTITTT1I

80
100

Ik

10k

lOOk

rREQUENCY (Hz)

PSRR vs Frequency

~

rREQUENCY (Hz)

\.
'\

95
90

100.0 Vs' 'ov
,
90.0 ~ Vs .' 5V -I---r--l
80.0 ~

-

'ON

"""-

105

SUPPLY VOLTAGE (V)

~

I'

85

oL-~-J

,,~

0~-r--r--r-1---r~

vs' 10V

110

'~

fI!.

-20 '---'-_J.---L_-'-----'_...J
10 100 'k 'Ok 'OOk ,. 10M

115

20r-~~--+--+~F~~

I.

'Ok
60~-+-+-~~+-~-,
.... lk p.~
40~-+~+--+~~~-1

CMRR vs Frequency

Unity Gain Freq vs Vs

.... ;':'Ok

'"

rREQUENCY (Hz)

... •

O~ '20~-+-+--+-+-~~1

-20

rREQUENCY (Hz)

~

9

J-- '~
'~

.... 'k
0

-20 '--'-_J.---L_-'-----'--'
'0 '00 lk ,ok 'OOk '" 'ON

Open Loop Gain V8
Load, 24V Supply

rREQUENCY (kHz)

Noise Voltage vs Frequency

~".5
li~
g

~

'"
~

L-...L.......L__- ' - - ' -__'-''.......
10
tOO
Ik
10k tOOk 1M
10M

1000
800
600
400
200

~"-

'\.

,;

"

'00
80
&0
40

§

~

.~

20
'0
0.01

NOise Current va Frequency

t--

'"~

10
8
6
4
2

,

0.8
0.&
0.4
0.2
0.'

0.1

rREQUENCY (Hz)

1

10

100

'000

0.1

rREQUENCY (Hz)

1

'0

100

1000 10000

rREQUENCY (Hz)

TUHI12057 -s

NE vs R Source
20
18
,&

a;- 14

3

~

i;!
~

~

12
10
8
6
4
2

a
'00

'k

'Ok

lOOk

'N

10.

RsOUoeE (n)

TLlH/120S7-12

1·511

•

LM6142/44 Application Ideas
Slew Rate va I!>. VIN
Vs = ±5V

The LMS142 brings a new level of ease of use to opamp
system design.
With greater than rail-to-rail' input voltage range concern
over exceeding the common-mode voltage range is eliminated.
Rail-ta-rail output Swing provides the maximum possible ,dynamic range at the ,output. This is particularly impor\ant
when operating on low supply voltages.
The high gain-bandwidth with low supply current opens new
battery powered applications, where high power consumption, previously reduced battery life to unacceptable levels.
To take advantage of these features, some ideas should be
kept in mind.

'in

.....'"
.:::.

...

=<

'"
~
VI

55
50
45
40
35
30
25
20
15
10

",

:
+SLEW

f..

--= ,...., ~

Ih
"

..

"

:

-

-SLEW

o
0.0 0.5 1.0 1.5 2.0 2.5 3,0 3.5 4.0

ENHANCED SLEW RATE

DiffERENTIAL INPUT VOLTAGE, (V)

Unlike most bipolar opamps, the unique phase reversal preventionl speed-up circuit in the input stage causes the slew
rate to be very much a function of the input signal amplitude.
Figure 1 shows how excess Input Signal, is routed around
the input collector-base junctions, directly to the current mirrors.
The LMS142/44 input stage converts the input voltage
change to a current change. This current change drives the
current mirrors through the collectors of 01-02, Q3-04
when the input levels are normal.
If the input signal exceeds the slew rate of the input stage,
the differential input voltage rises above two diode drops.
This excess signal bypasses the normal input tranSistors,
(01-04), and is routed in correct phase through the two
additional transistors, (05, OS), directly into the current mirrors.
This rerouting of excess signal allows the slew-rate to increase by a factor of 10 to 1 or more. (See Figure 2.)
As the overdrive increases, the opamp reacts better than a
conventional opamp. Large fast pulses will raise the slew'
rate to around 30V to SOVI /Ls.

+IN

TLlH/I2057-7

FIGURE 2
This effect is most noticeable at higher supply voltages and
lower gains where incoming signals are likely to be large.
This new input circuit also eliminates the phase reversal
seen in many opamps when they are overdriven.
This speed-up action adds stability to the system when driving large capacitive loads.
DRIVING CAPACITIVE LOADS

Capacitive loads decrease the phase margin of all opamps.
This is caused by the output resistance of the amplifier and
the load capacitance forming an R-C phase lag network.
This can lead to overshoot, ringing and oscillation. Slew rate
limiting can also cause additional lag. Most opamps with a
fixed maximum slew-rate will lag further and further behind
when driving capacitive loads even though the differential
input voltage raises. With the LM6142, the lag causes the
slew rate to raise. The increased slew:rate keeps the output
following the input much better. This effectively reduces
phase lag. After the output has caught up with the input, the
differential input voltage drops down and the amplifier settles rapidly.

-IN
OUT

TL/H/I2057-6

FIGURE 1

1-512

r-------------------------------------------------------------------------------------, r-

.....==

LM6142/44 Application Ideas

en

(Continued)
These features allow the LM6142 to drive capacitive loads
as large as 1000 pF at unity gain and not oscillate. The
scope photos (Figure 3a and 3b) above show the LM6142
driving a 1000 pF load. In Figure 3a, the upper trace is with
no capacitive load and the lower trace is with a 1000 pF
load. Here we are operating on ± 12V supplies with a 20
Vp-p pulse. Excellent response is obtained with a C, of
10 pF. In Figure 3b, the supplies have been reduced to
±2.5V, the pulse is 4 Vp-p and Cj is 39 pF. The best value
for the compensation capacitor is best established after the
board layout is finished because the value is dependent on
board stray capacity, the value of the feedback resistor, the
closed loop gain and, to some extent, the supply voltage.

N
.....

r-

........en==

11nr
~

TLlH/12057-10

FIGURE 4

Typical Applications

Another effect that is common to all opamps is the phase
shift caused by the feedback resistor and the input capacitance. This phase shift also reduces phase margin. This effect is taken care of at the same time as the effect of the
capacitive load when the capacitor is placed across the
feedback resistor.

FISH FINDER! DEPTH SOUNDER.
The LM6142/44 is an excellent choice for battery operated
fish finders. The low supply current, high gain-bandwidth
and full rail to rail output swing of the LM6142 provides an
ideal combination for use in this and similar applications.

The circuit shown in Figure 4 was used for these scope
photos.

ANALOG TO DIGITAL CONVERTER BUFFER
The high capacitive load driving ability, rail-to-rail input and
output range with the excellent CMR of 82 dB, make the
LM6142/44 a good choice for buffering the inputs of A to 0
converters.

3 OPAMP INSTRUMENTATION AMP WITH RAIL-TORAIL INPUT AND OUTPUT
USing the LM6144, a 3 opamp instrumentation amplifier with
rail-to-rail inputs and rail to rail output can be made. These
features make these instrumentation amplifiers ideal for single supply systems.
Some manufacturers use a precision voltage divider array of
5 resistors to divide the common-mode voltage to get an
input range of rail-to-rail or greater. The problem with this
method is that it also divides the signal, so to even get unity
gain, the amplifier must be run at high closed loop gains.
This raises the noise and drift by the internal gain factor and
lowers the input impedance. Any mismatch in these preCision resistors reduces the CMR as well. Using the LM6144,
all of these problems are eliminated.

TLlHI12057-8

FIGURE3a

In this example, amplifiers A and B act as buffers to the
differential stage (Figure 5). These buffers assure that the
input impedance is over 100 MO and they eliminate the
requirement for preCision matched resistors in the input
stage. They also assure that the difference amp is driven
from a voltage source. This is necessary to maintain the
CMR set by the matching of R1-R2 with R3-R4.

TLlH/12057-9

FIGURE3b

+

R3

R4

TLlHI12057-13

FIGURES
1-513

~

~
.-

CD

:J......
C'\I

~
.-

CD

:Ii!

....

r------------------------------------------------------------------------------------------,
past the supplies so the cqmbined common mode voltage
plus the signal should not be greater than the supplies or
limiting will occur.

The gain is set by the ratio of R2/R1 and R3 should equal
R1 and R4 equal R2. Making R4 slightly smaller than R2
and adding a trim po, equal to twice the difference between
R2 and R4 will allow the CMR to be adjusted for optimum.

SPICE MACROMODEL

With both rail to rail input and output ranges, the inputs and
outputs are only limited by the supply voltages. Remember
that even with rail·to-rai~ output, the output can not swing

A SPICE macromodel of this and many other Natiol")al Semiconductor opamps is aVl\ilable at no qharge from the NSC
Customer ResPonse Group at 800-272-9959.

,;,'

,',

1-514

,-------------------------------------------------------------------------, r

PRELIMINARY

ttlNational Semiconductor

==
....
G)

UI
N

......

r
3:
G)

....

LM6152 Dual and LM6154 Quad
High Speed/Low Power
45 MHz Rail-to-RaiitlO Operational Amplifiers
General Description

Features (For 5V Supply)

Using patent pending circuit topologies, the LM6152/54
provides new levels of speed vs power performance in applications where low voltage supplies or power limitations
made compromise necessary. With only 1.5 rnA/amp supply current, the 45 MHz bandwidth of this device supports
new portable applications where higher power devices unacceptably drain battery life.
In addition, the LM6152/54 can be driven by voltages that
exceed both power supply rails, thus eliminating concerns
over exceeding the common-mode voltage range. The railto-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The
LM6152/54 can also drive capacitive loads without oscillating.

•
•
•
•
•
•
•

Operating on supplies of 1.SV to over 24V, the LM6152/54
is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to
high speed instrumentation.

Rail-to-rail input CMVR
Rail-to-rail output swing
Wide gain-bandwidth:
Slew rate
Low supply current
Wide supply range
Fast settling time:
-Gain

• PSRR

~

-0.25V to 5.25V (maxImin)
0.01V to 4.99V (maxImin)
45 MHz (typ) @ 50 kHz
30 VI /Ls (typ)
1.51 Amp (typ)
1.SV to 24V
10S dB (tYp) with RL = 10k
S7 dB (typ)

Applications
•
•
•
•

Portable high speed instrumentation
5V signal conditioning amplifierslADC buffers
Bar code scanners
Wireless communications

Connection Diagrams
8-Pln DIP/SO

14-Pln DIP/SO

v·

OUT A

.IN A

-IN A

2

14.
OUT D

OUT A

2

13
12

.IN A
-IN A

v-

-IN D

OUT B

-IN B

4

y. 4

11

5

10

.IN B

.IN B
TUH/12350-1

-IN B

6

.IN D

y.IN C
-IN C

Top View

8

OUT B

OUT C
TL/H/12350-2

Top View

Ordering Information
Temperature Range
Package

Industrial
-40"Cto +85"C

NSC
Drawing

S-Pin Molded DIP

LM6142AIN, LM6142BIN

NOSE

S-Pin Small Outline

LM6142AIM, LM6142BIM

MOSA

14-Pin Molded DIP

LM6144AIN, LM6144BIN

N14A

14-Pin Small Outline

LM6144AIM, LM6144BIM

M14A

1-515

9-

:a:IE
...I

......
9-

r-----------------------------------------------------------------------------------~

tflN at ion a I S e m i con due tor

CD

C'\I

CD

:IE

...I

.....
9-

CD

LM6161 ILM6261 ILM6361
High Speed Operational Amplifier

9-

CD

:IE

...I

General Description

Features

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 VI p.s and
SO MHz unity gain stabilitY with only S mA of supply current
Further power savings and application convenience are
possible by taking advantage of the wide dynamic range in
operating supply voltage which extends all the way down to
+SV.
These amplifiers are built with National's VIPTM (Vertically
Integrated PNP) process which provides fast-PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high
speed performance without the need for complex and expensive dielectric isolation.

•
•
•
..
•
•
•
•
•

High slew rate
High unity gain freq
Low supply current
Fast settling
Low differential gain
Low differential ph~e
Wide supply range
Stable with unlimited capacitive load
Well behaved; easy to apply

300 V/p.s
50 MHz
SmA
120 ns to 0.1%
<0.1%
0.1·
4.7SV to 32V

Applications
• Video amplifier
• High-frequency filter
• Wide-bandwidth signal conditioning
• Radar
• Sonar

Connection Diagrams
2G-LeadLCC

r------vos

VUIS ADJUST------,

AO.IUST

10·Lead Flatpak
3

Me
Yos ADJUST

tNV INPUT
NON-tHY INPUT

211120

~~

Me
Vos ADJUST

INV.IMPLIT_

VOUTPUT

18

5

NOM-IMV.

INPUT ----j

r-r-

11

L118t8tE

V+

V-~-t._ _ _. j__~NC

,.

7

'6
15

t

10

11

12

y+

VOUT

1314

TUH/9057-13

See NS Package'Number W10A
TUH/9Q57 -14

See NS Package Number E20A

Vos
Adjust

INY
Input

NI
Input

vTL/H/9057 -5

Temperature Range

NSC

Industrial
-25"C s: TA s: +85"C

Commercial
Cl"CS:TAS: +7C1"C

Package

LM6261N

LM6361N

8-Pin
Molded DIP

NOBE

LM8361J

8-Pin
Ceramic DIP

J08A

LM8361M

8-Pin Molded
SuriacaM!.

MOBA

LM6161 E/883
5962-89621012A

20-Lead
LCC

E20A

LM6161 W1883
5962-8962101 HA

10·Pin
Ceramic Fla1pak

Wl0A

MUItary
-55"C s: TA s: +125"C

LM6161 J/883
5962-8962101PA
LM6261M

1-S16

Drawing

See NS Package Number J08A,
NoaEor M08A

Absolute Maximum Ratings

(Note 12)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
SupplyVoltage(V+ -V-)
36V
±8V
Differential Input Voltage (Note 8)

See AN-4S0 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods. cif soldering sur~
face mount devices.
-6SoC to + 1SO"C
Storage Temp Range
Max Junction Temperature
ESD Tolerance (Notes 6 and 7)

Common-Mode Voltage Range
(V+ - 0.7V) to (V- - 7V)
(Note 10)
Output Short Circuit to GND (Note 1)
Soldering Information
Dual-In-Line Package (N, J)
Soldering (10 sec.)
Small Outline Package (M)
Vapor Phase (60 sec.)
Infrared (1S sec.)

1SO"C
±700V

Operating Ratings (Note 12)

Continuous

Temperature Range (Note 2)
LM6161
LM6261
LM6361

260"C
21 SoC
220"C

-SsoC ,;;: TJ ,;;: + 12SoC
-2SoC';;: TJ ,;;: +8SoC
O°C,;;: TJ ,;;: +70"C

Supply Voltage Range

4.75Vt032V

DC Electrical Characteristics
The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ;" 100 kO and Rs = 500 unless otherwise noted.
Boldface limits apply for TJ = TMIN to TMAX; all other limits TJ = 2SoC.

Symbol

Parameter

Vas

Input Offset Voltage

Vas
Drift

Input Offset Voltage
Average Drift

Ib

Input Bias Current

los

Conditions

Typ

5

Input Offset Current
Average Drift

LM6261

LM6361

Limit
(Notes 3, 11)

Limit
(Note 3)

Limit
(Note 3)

Units

7
10

7
8

20
22

mV
Max

p'vrc

10

Input Offset Current

los
Drift

LM6161

3
6

3
5

5
6

Max

1S0

350
800

350
600

1500
1800

Max
nAloC.
kO

RIN

Input Resistance

Differential

32S

Input Capacitance

Av = +1 @10MHz

1.5

AvaL

Large Signal
Voltage Gain

VaUT = ±10V,
RL = 2 kO (Note 9)

750

RL = 10 kO (Note 9)

2900

VCM

Input Common-Mode
Voltage Range

Supply = ± 15V

-10V';;: VCM';;: +10V

PSRR

Power Supply
RejeCtion Ratio

±10V,;;: V± ,;;: ±16V

Va

Output Voltage
Swing

Supply = ± 15V
andRL = 2kO

pF
SSO
300

S50 .
400

400
350

VIV
Min

+14.0

+13.9
+13.8

+13.9
+13.8

+13.8
+13.7

Volts
Min

-13.2

-12.9
-12.7

-12.9
-12.7

-12.8
-12.7

Volts
Min

4.0

3.9
3.8

3.9
3.8

3:8
3.7

Volts
Min

1.8

2.0
2.2

2.0
2.2

2.1
2.2

Volts
Max

94

80
74

80
76

12
70

dB
Min

90

80
74

80
76

72
70

dB
Min

+14.2

+13.5
+13.3

+13.5
+13.3

+13.4
+13.3

Volts
Min

-13.0
-12.7

-13.0
-12.8

-12.9

-12.8

Volts
Min

Supply = +5V
(Note 4)

Common-Mode
Rejection Ratio

nA

0.4

CIN

CMRR

p.A

2

-13.4

1-S17

VIV

.-

!

-~
~

.-

.CD.CD

DC Electrical Characteristics

(Continued)
"
specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ~ 100 kO and Rs = 500 unless otherwise noted.
~Idfa_limits apply for TJ '"' TMIN tq TW.x; all other limits TJ = 25'C.

;r~efollowjng

,.'1

Symbol

Parameter

Conditions

Vo (Continued)

Output Voltage
Swing (Continued)

Supply = +5V
andRl=2kO
(Note 4)

~

Typ
4.2
1.3

Output Short
Circuit Current

Source
Sink

IS

Supply Current

65
65
5.0

LM6161

LM6261

LM6361

Limit
(Notes3,11)

LImit
(Note 3)

LImit
(Note 3)

Units
Volts
Min

3.5

3.5

3.4

3.3

3.3

3.3

1.7

1.7

1.8

2.0

1.9

1.9

30

30

30

20

25

25

30

30

30

20

25

25

6.5

6.5

6.8

••8

•• 7

•••

Volts
Max
mA
Min
mA
Min
mA
Max

AC Electrical Characteristics
The following specifications apply for Supply Voltage = ± 15V, VCM = 0, Rl ~ 100 kO and Rs = 500 unless otherwise noted.
Boldface limit!! apply for TJ = TMIN to T MAX; all other limits TJ = 25'C.

Symbol
GBW

Parameter
Gain-Bandwidth
Product

Conditions

LM6161

LM6261

LM6361

Typ

LImit
(Notes 3,11)

Umlt
(Note 3)

Limit
(Note 3)

Units

50

40

40

35

30

35

32

MHz
Min

200

200

200

180

180

180

@f= 20 MHz
Supply = ±5V

SR

Slew Rate

Av = + 1 (Note 8)

35
300

MHz
Vlp.s
Min

Supply = ± 5V (Note 8)

200

Vlp.s

PBW

Power Bandwidth

VOUT = 20Vpp

4.5

MHz

Is

Settling Time

10V Step to 0.1%
Av = -1, Rl = 2 kO

120

ns

cf>m

Phase Margin

45

Deg

AD

Differential Gain

NTSC,Av = +4

<0.1

%

~D

Differential Phase

NTSC,Av = +4

0.1

Ceg

enD-D

Inp!Ji Noise Voltage

f = 10kHz

15

inD-il

Input Noise Current

f = 10kHz

1.5

nV/JHz
pAlJHz

Note 1: Continuous short-circuit operation at elevated ambient temparature can result In exceeding the maximum allowed junction temparature of lSO"C.
Note 2: The typical junclion·to-ambianl thermal resistance of the molded plastic DIP (N) is 105"CIW, the molded plastic SO (M) package is lS5"C/W, and the
ceidip (J) pacIiaga is 125'C/W:AII numbers apply for packages soldered d~ectly into a printed circuR board.
Note 3: UmRs are guaranteed by _ng or, correlation.
Note 4: For single supply operation, the following conditions apply: V+ ~ SV, V- ~ OV, VCM ~ 2.SV, VOUT ~ 2.5V. Pin 1 & Pin B (VOS Adiust) are each
cOnnected to Pin 4 (V-) to realize maximum output swing. This connection will degrada Ves, Ves Drill, and Input Voltage Noise.
Note 5: Cl .: SpF.
Note 8: In order to actiieve optimum AC performance, 1/la input stage was designed without protective clamps. Exceeding the maximum differential Input vol1age
results In revelSS breakdown of the bas&-emltler junction of one of the input transistors and probable degradation of the Input parameters (especially Vos, los, and
Noise).
Note 7: The average voltage that the weakaet pin combinations (those involving Pin 2 or Pin 3) can wRhstand and atill conform to the datasheet limits. The test
circuR used consists of the human body modal of 100 pF in series with 15000,
'
Note S: VIN ~ BV step. For supply~ ±SI(, VIN ~ SV step.
Note 9: Voitage Galil is 'the total output swing (2OV) dMded by the input signal reqUired to produce that swing.
Note 10: The voltage between V+ and _Input pin must not exceed 36V.
Note 11: A military RETS electrical test specification is available on request. Althe ~me of p~nting, the RETS6161 Xapees complied with all Boldlacelimlts In this
column.
Note 12: Absolute Maximum Ratings indicate limRs beyond which damage to the davioa may occur. Operating Ratings indicate conditions for whi<:h the device Is
intandad to be functional, but do not guarantee apecffic performanoa limits. For guaranteed specillcatlons and test condRions, see the Elemrlcal Characteristics.
The QU8rarteed specifications apply only for the test conditions listed.,

1-518

,-----------------------------------------------------------------------------,
Typical Performance Characteristics (RL =
Supply Current vs
Supply Voltage

+~

2

4

iI

!:

~

~

10

lOll

lk 10k lOOk
FREQUENCY (Hz)

+/- SUPPLY VOLTAGE (V)
Gain-Bandwidth
Product

~
~

~

-

8 W tt

246

+/-

If!

]:

~

!po

~

30

"= r- -

~

0.1
10pF l00pF I ri

30

Vs =tlSV
I.y =+1

,

/1\.

,r-....

V

o

10ri l00nF 1J'I"

10pF

1\
c.-=I' pF

Slew Rate

V~~
~=+1

\cr

/
10 V /

-5SOC

~

RFj21eA

~~
~ ~ ....... ~
~ i;o"

= Olpf

LOAD CAPACITANCE

1nF

10ri

o

2

l00ri

~
§!
§

t

80

.&
40

I

I,,,,,,
"''''''
25"C,'25~

~

""

+125"C

r_ ......

-5SOC

~

0.1

Vs = t15V
I
10
LOAD RE51STANCE (leA)

8 W tt

~

~

~

SUPPLY VOLTAGE (V)

o

2

lOll

L

+25"C
I

---

-ssoc

IJ'"

2D l-

o L-

I

..,...j.ooo1""

V'

e-

6

Gain vs Supply Voltage

80
z

4

+/-

Voltage Gain
vs Load Resistance

3

"
1'1

CAPACIIlVE LOAD

ii'

+~
+125"C

/

'\ \
"- ~

l00pF

"

10nF l00ri 1J'I"

LOAO c.\PAClTANCE

Overshoot vs
Capacitive Load

2D

10pF l00pF I ri

"-:--...

1l:MPERATURE ("C)

Neg.tMt~

o

r-... .......

10

I

-55 -35-15 5 25 -45 115 115 105 125

~

\

~

Vs=tlSV
Vo = tlOV

Slew Ratevs
Load Capacitance

,
,

t; lOll

.... i--'

o

~

1M

Vs =t15V

£

2D

~

1\

lOll lk 10k lOOk
FREQUENCY (Hz)

1000

50

~

....
.....
~

Gain-Bandwidth Product
vs Load capacitance

oo"!!: ~ i===

If

SUPPLY VOLTAGE (V)

~P-

10

I

70
10

10

o

o

10M

Propagation Delay
Rise and Fall Times

I .1 J,+-,,,,"'- ~
.......
~OC

1-1- -55OC

1M

-

~

l\.
\

o

~

~

iii:
en

N.tMt
....... I\.

r-- -

'\

I:

8 W tt

6

Power Supply
Rejection Ratio

!120
a lOll

...!
+125"C

IT-S5OC

o

Common-Mode
Rejection Ratio

I
I
I

4

6

8 W tt

lit. = 21eA
~

~

~

+/- SUPPLY VOLTAGE (V)
TUH/9057-6

1-519

~

iii:
en
en

....
....
.....

10 kO, TA = 25°C unless otherwise specified)

iii:
en

~

....

.. ,------------------------------------------------------------------------------------------,
~

CD

~
.....

..

Typical Performance· Characteristics

(RL = 10 kG, TA = 25°C unless otherwise specified) (Continued)

~

Differential Phase (Note) .

Dlffer,ntlal,Galn (Note)

CD

~
.....
....
~

CD

~

TL/H/9057 -8
Note: Differential gain and differential phase measured for four senes
LM6361 op amps configured as unily-gain followers, in senes with an
LM6321 buffer. Error added by LM6321 is negligible. Test performed using
Tektronix Type 520 NTSC lest system.

TL/H/9057 -7

Step Response; Av =

+1

TLlH/9057-1

(50 ns/div)

Input Noise Voltage

Input Noise Current

10,000

~

~
~

Vs

=i15V

Av =+1
< U:

"

"

~ 1000

,5-

§!

Power Bandwidth

1000

THD

"'-

100

z

r--

10
1

10

100

lk

FREQUENCY (Hz)

10k

lOOk

1

10

100

lk

FREQUENCY (Hz)

-

10k

lOOk

1'\

4

o

0.1

10

100

FREQUENCY (11Hz)

TLlH/9057 -9

1-520

Typical Performance Characteristics
(RL = 10 kn, TA = 25"C unless otherwise specified) (Continued)
Open-Loop
Frequency Response

Open-Loop
Frequency Response

Output Impedence
(Open-Loop)

80

80
1
1
GAIN

" 'I
"'

60

:I!
180

'\..
I"-

20

~

PHASE
1
1

"

111

1011 100II

-20
lk

10k lOOk

1\

~

3

40

'" ~
:!I

~

10

:!s

-10

:f

360

1

~

if;

'"

270

360

l

-20
111

1011

FREQUENCY (Hz)

.eo

100II

lG

1

-21-+-+-+-+--+--+--+--I

-2

1~+-+-+-+-+-+-+-,

W

~

.... 1-0

100

0

o
lk

10k

M

~

+/- SUPl'LY VOLTAGE (V)

~

lOOk

111

1011

100II

FREQUENCY (Hz)

Bias Current vs
Common-Mode Voltage

I

--

-55"1:

?
1

1

1\ = 21d1
~~~~~~~~~~

8

1

lk

~

1 ~~H-+-+-+-+-I

6

I

'"
=I
5
~
.a 5

10k

Output Saturation Voltage

~~~~~~~,-,-~

4

~en

'"
So

FREQUENCY (Hz)

Common-Mode Input
Saturation Voltage

2

i

180

20 ~

lG

-

lOOk

50

30

en

270

~

~

~

2

4

6

8

W

~

M

+f- SUPPlY VOLTAGE (y)

~

~

o

+Js.c

--

-15 -10

-

+125"1:

-5

0

10

COII~-IIODE

VOLTAGE (V)

15

TUH/9057-12

Simplified Schematic

TUH/9057-3

1-521

~

~

r------------------------------------------------------------------------------------------,

~
.....
~

CD
~,

~

;::
CD
~

~

Applications Tips
The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the ,op, amp's input stage, the openloop gain was reduced as the stability increased. Gain error
due to reduced AVOL is most apparent at high gains; thus,
for gains between 5 and 25, the less-compensated LM6364'
should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and
LM6365 have the same high slew rate, regardless of their
compensation.
The LM6361 is unusually tolerant of capacitive loads. Most
op amps tend to oscillate when 'their load capacitance is
greater than about 200 pF (especially in low-gain circuits).
The LM6361's compensation is effectively increased with
load capacitance, reducing its bandwidth and increasing its
stability.
Power supply bypassing is not as critical for the LM6361 as
it is for other op amps in its speed class. Bypassing will,

however; improve the stability and transient response and is
recommended for every design. 0.01 p.F to 0.1 p.F ceramic
capacitors should be used (from each supp,ly "rail" to
ground); if the device is far away fr!Jm its power supply
source, an additional 2.2 p.F to 10 p.F of tantalum may provide extra noise reduction. '
Keep all leads short to reduce ,stray capaCitance and lead
and make sure ground paths are low-impedance, especially where heavier currents will be flowing.
Stray capacitance in the circuit layout can, cause signal cou, piing across adjacent nodes and can cause gain to uninten'
tionally vary ""ith frequency.
Breadboarded circuits will work best if they are built using
generic PC boards with a good ground plane. If the op amps
are used with sockets, as opposed to being soldered into
the circuit, the additional input capaCitance may degrade
circuit performance.
indu~nce,

Typical Applications
Offset Voltage Adjustment

1 MHz Low-Pass Filter

V+

~,

lli-

IS0pr" ....- - - - 1
Cl

>-....-VOUT
10kA'

v-

lOOK

TUH/9D57-4

TUH/9057-'O

tl % tolerance
'Matching determines liRer precision

Ie

= (27T4(RI R2Cl C2))-1

Modulator with Dlfferential-to-Single-Ended Converter
+12V
IAODULATlON
BALANCE
2k
10k
0.1 p.F

50k

51

10k

11.

+12V

51
3.9k

7
CARRIER
IAODULATION
INPUT

I

0.01 p.F'

8

3.9k

6
OUTPUT

LlA1496

-12

10k
9.1k

TUH/9057-11

1-522

tfI

National Semiconductor

LM6162/LM6262/LM6362
High Speed Operational Amplifier
General Description
The LM6362 family of high-speed amplifiers exhibits an excellent speed-power product, delivering 300 V /".s and
100 MHz gain-bandwidth product (stable for gains as low as
+ 2 or -1) with only 5 mA of supply current. Further power
savings and application convenience are possible by taking
advantage of the wide dynamic range in operating supply
voltage which extends all the way down to +5V.
These amplifiers are built with National's VIPTM (Vertically
Integrated PNP) process which provides fast transistors that
are true complements to the already fast NPN devices. This
advanced junction-isolated process delivers high speed performanee without the need for complex and expensive dielectric isolation.

•
•
•
•
•
•
•

5mA
120 ns to 0.10/0
<0.10/0
<0.1·
4.75V to 32V

Low supply current
Fast settling time
Low differential gain
Low differential phase
Wide supply range
Stable with unlimited capacitive load
Well behaved; easy to apply

Applications
• Video amplifier
• Wide-bandwidth Signal conditioning for image processing (FAX, scanners, laser printers)
• Hard disk drive preamplifier
• Error amplifier for high-speed switching regulator

Features
• High slew rate
• High gain-bandwidth product

300 VI".s
100 MHz

Connection Diagrams
2D-LeadLCC

10-Pin Ceramic Flatpak

YOSADJUST

VOIIADJUST

·,
·,

3

!ltv.IMM-

IIOII-INY.INPUT-

·

2

:':.20

" ;--v.
"
" ;--"'"
17

LII8182E

110

v-

18

II

12

13

.

I

,

INVINPUT~

NON-INV

INPU~~

Yos

pNC

VosADJU:~ •

~VOSADJUST

LM8182W

Y'

PV
t::::=

OUTPUT
NC

Y-

TLlH/ll061-15

Top View
See NS Package Number W10A

~\'"

,i .r :1
Your

P~
~~

2~

Adfull

Inpllf.

'! '!

'.....

TL/H/ll061-2

See NS Package Number N08E,
M08Aor J08A

TLlH/ll061-14

Top View
See NS Package Number E20A
Temperature Range
Military
-SsoC S; TA S; +12SoC

Industrial
-2SoC S; TA S; +8SOC

Commercial
O"C S; TA S; +70"C

LM6162N

LM6262N

LM6362N

LM6162J/883
5962-9216501 PA

NSC
Drawing

8-Pin Molded DIP

N08E

8-Pin Ceramic DIP

J08A

8-Pin Molded Surface Mt.

M08A

,LM6162E/883
5962-92165012A

20-LeadLCC

E20A

LM6162W/883
5962-9216501 HA

1O-Pin Ceramic Flatpak

W10A

LM6262M

LM6362M

Package

1-523

II

Absolute Maximum Ratings

(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (V+-V-)
36V
±8V
Differential Input Voltage (Note 2)
(V+ -0.7V) to
Common-Mode Input Voltage
(V- - 0:3V)
(Note 3)
Output Short Circuit to GND (Note 4)
Soldering Information
Dual-In-Une Package (N)
Soldering (10 seconds)
Sma,Il Outline Package (M)
Vapor Phase (60 seconds)
Infrared (15 seconds)

' See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of sOldering surface mount devices.
-65"C,;; TJ';; +150"C
Storage Temperature Range
Max Junction TemperatUre
150"C
±1100V
ESD Tolerance (Note 5)

Operating Ratings .

Continuous

Temperature Range (Note 6)
LM6162
LM6262
LM6362
Supply Voltage Range

260"C
215"C
220"C

-55"C';; TJ';; +125"C
-25"C ,;; TJ ,,; +85"C
O"C"; TJ"; +70"C
4.75Vt032V

DC Electrical Characteristics
These limits apply for supply voltage = ± 15V. VCM = OV, and RL ~ 100 kO, unless otherwise specified. Limits in standard
typeface are for TA = TJ = 25"C; limits in boldface t¥pe apply over the OperaUng Temperature Range.

Symbol

'Parameter

Typical
(Note 7)

Conditions

Input Offset Voltage

±3

,Hemp

Input Offset Voltage
Average Drift

7

Ibias

Input Bias Current

Vos
!;.VOS

2.2

'LM6162
Umlt
(Note 8)

LM6262
Umlt
(Note 8)

LM6362
Limit
(Note 8)

Units

±5
±8

±5
±8

±13
±15

mV
max
p,V'"C

3
8

3
5

4
8

max

±350
±800

±350
±.OO

±1500
±1800

nA
max

p.A

los

Input Offset Current

±150

alos
aTemp

Input Offset Current
Average Drift

0.3

nAl"C

180

kO

RIN

Input Resistance

CIN

Input Capacitance

Differential

AVOL

Large Signal
Voltage Gain

VOUT = ±10V, RL = 2 kO
(Note 9)
RL = 10kO

6500

VCM

Input Common-Mode
Voltage Range

Supply = ± 15V

2.0

Supply = +5V
(Note 10)

pF
1000
500

1000
700

800
850

+14.0

+13.9
.+13.8

+13.9
+13.8

+13.8
+13.7

V
min

-13.2

-12.9
-12.7

"'-12.9
-12.7

-12.9
-12.8

V
max

4.0

3.9
3.8

3.9
3.8

3.8
3.7

V
min

1.6

1.8
2.0

1.8
2.0

1.9
2.0

V
max

1400

VIV
min
VIV

CMRR

Common-Mode
Rejection Ratio

-10V"; VCM"; +10V

100

83
78

83
78

76
74

dB
min

PSRR

Power Supply
Rejection Ratio

±10V,;; Vs';; ±16V

93

83
78

83
78

76
74

dB
min

Vo

Output Voltage
Swing

Supply = ±15V, RL = 2 kO

+13.5
+13.3

+13.5
+13.3

+13.4
13.3

V
min

-13.0
-12.7

-13.0
-12.8

-12.9
-12.8

V
max

+14.2
-13.4

1-524

DC Electrical Characteristics

(Continued)
These limits apply for supply voltage = ±15V, VCM = OV, and RL ~ 100 kO, unless otherwise specified. Limits in standard
typeface are for T A = TJ = 25'C; limits in boldface type apply over the Operating Temperature Range.

Symbol
Vo

Typical
(Note 7)

Parameter

Conditions

Output Voltage Swing

Supply = + 5V and
RL = 2 kO (Note 10)

4.2
1.3

losc

Output Short
Circuit Current

Sourcing

65

Sinking
Is

65

Supply Current

5.0

LM6162
Umit
(Note 8)

LM6262
Limit
(Note 8)

LM6362
Limit
(Note 8)

3.5

3.5

3.4

3.3

3.3

3.3

1.7

1.7

1.8

2.0

1.9

1.9

Units
V
min
V
max

30

30

30

rnA

20

25

25

min
mA
min

30

30

30

20

25

25

6.5

6.5

6.8

6.8

6.7

6.9

mA
max

AC Electrical Characteristics
These limits apply for supply voltage = ± 15V, VCM = OV, RL ~ 100 kO, and CL S; 5 pF, unless otherwise specified. Limits in
standard typeface are for T A =' TJ = 25'C; limits in boldface type apply over the Operating Temperature Range.

Symbol
GBW

Parameter
Gain-Bandwidth Product

Typical
(Note 7)

Conditions
f=20MHz

100

Supply = ±5V
SR

Slew Rate

Av = +2 (Note 11)

LM6262
Limit
(Note 8)

LM6362
Limit
(Note 8)

80

80

75

55

65

65

200

200

200

180

180

180

70
300

Supply = ±5V

LM6162
Limit
(Note 8)

Units
MHz
min
MHz
V/JJ.s
min

200

V/JJ.s

PBW

Power Bandwidth

VOUT = 20Vpp

4.5

MHz

ts

Settling Time

10V step, to 0.1 0/0
Av = -1,RL = 2kO

100

. ns

m

Phase Margin

Av= +2

45

deg

Differential Gain

NTSC,Av = +2

<0.1

0/0

Differential Phase

NTSC,Av = +2

<0.1

deg

en

Input Noise Voltage

f = 10 kHz

10

nV/y'Hz

in

Input Noise Current

f = 10kHz

1.2

pAly'Hz

Nota 1: Absolute maximum ratings indicate limits beyond which damage to the compcnent may occur. Electrical specifications do not apply when operating the
device beyond its rated operating conditions.
Nota 2: The ESD protection circuitry between the inputs will begin to conduct when the differential input voltage reaches av.
Nota 3: a) In addHion. the voltage between the V+ pin and e~her Input pin must not exceed 36V.
b) When the voltage applied to an Input pin is driven more then 0.3V below the negative supply pin voltage. a substrate diode begins to conduct. Current
through this pin must then be kept less than 20 mA to limit damage from se~-heeting.
Nota 4: Although the output current Is internally lim~ed, continuous short-clrcu~ operation at elevated ambient temperature can result in exceeding the maximum
allowed junction temperature of 150'C.
Nota 5: This value is the average voltage that the weakest pin combinations can withstand and still conform to the datasheel lim~s. The test circu~ used consists of
the human body model. 100 pF in series with 15000.
Nota 6: The typical thermal resistance.junction·to-ambient. of the molded plastic DIP (N package) is 105'C/W. For the molded plastic SO (M package). use
155'CIW. All numbers apply for packages soldered directly into a printed circuit boord.
Nota 7: Typical values are for TJ = 25'C. and represent the most likely parametric norm.
Nota 8: Limits are guaranteed. by tasting or correlation.
Note 9: Voltage Gain Is the total output swing (20V) divided by the magn~ude of the input Signal required to produce that swing.
Nota 10: For single-supply operation. the following conditions apply: V+ = 5V. V- = OV. VCM = 2.5V. VOUT = 2.5V. Pin 1 and Pin 8 (VOS Adjust pins) are each
connected to pin 4 (V-) to realize maximum output swing. this connection will increase the offset voltage.
Nota 11: VIN = 10V stap. For ± 5V supplies. VIN = 1V stap.
Note 12: A military RETS electrilcal test specification is available on request.
1-525

~

!:::E

,---------------------------------------------------------------------------------,
Typical Performance Characteristics

....

Supply Current vs
Supply Voltage

i....

Common-Mode
Rejection Ratio

6

:::E

....

CD

!

CD

:5
o

2

4

6

+/-

n u a m

W

8

,

100

~

.-l
+l25CC

'-5SOC

'"

90

80

I

70

I

6

8

10

12

'\.

lk

10k

lOOk

1M

14

16

~

...... ~
+l25CC

1~

i "
0.1
10 pF 100 pF 1 ~

,,

o

2

4

6

8

W

n u m

'\

Ipp
20

\

10

o

10 rf 100 rf 1 II

\

\

100

TEIIPEllATURE (CC)

Overshoot vs
Load Capacitance
80,---,---,---,---,

,
.........

o
10pF

l00pF

1~

10""

O~--~--~--J---~

-

lOOk

1M

F1lEQUEMCY (Hz)

111M

,

7000
8000

10'.

110

~

-ssoc

ip

I

,

50

~~

2000
1000
100M

10000

100000

8000

::;;-

-

--

+125'1:

.....-r

~
-55'1:

o

;j()

10k

1000

Voltage Gain vs
Supply Voltage

+~25"C

70

lk

100·

lOAD CAPAC1TANCE (PF)

90

o

10

l00rf

Voltage Gain vs
Load Resistance
80

....

-55 -35 -15 5 25 45 65 85 105 125

lOAD CAPAC1TANCE

.....

-

'\.

Output Impedance
(Open-Loop)

\.

It!

\.

300

~

+/- SUPPlY VOLTAGE (V)

lOOk

111M

It-

400

~

1M

r--.

10

-;:

lOOk

50

!ij 200

!J

100

10k

Propagation Delay,
Rise and Fall Times

lOAD CAPAC1TANCE

...-~
~

!ij2OO

lk

80

1000

i

~
~

FR£QUENCY (Hz)

i'

oc...

~

100

111M

Slew Ratevs
Load Capacitance

~~

;j()

20

100

+25
-5SOC~

Nogatfn

40

Gain-Bandwidth Product
vs Load Capacitance

a

I\.\. _
~

50

40

Slew Ratevs
. Supply Voltage

-;:300

.......~
~

110

\.

+/- SUPPLY VOLTAGE (V)

400

90

70

50

1

4

100

FR£QUENCY (Hz)

~~~

2

~

\.

SIIPPlY VOLTAGE (V)

~
,.~ i,..oo" ~
/~ ~ ~ ~

o

!:

80

110

Gain-Bandwidth Product
vs Supply Voltage
120

Power Supply
Rejection Ratio

110

!

+J.c

~.

RL = 10kO, TA= 25°C unless otherwise noted

0.1

1

10

lOAD RES1STANCE (1<4)

100

2

4

6

8

.10

12

14

16

+17 SIIPP~Y.ytlLTAGE (V) .
TL/H/l1 061-3

1-526

Typical Performance Characteristics

(Continued)

RL = 10 kO, T A = 25D C unless otherwise noted

Differential Gain (Note)

Differential Phase (Note)

TUH/ll06l-5
Note: DHierentiai gain and dHierenliai phase
measured for four series LM6362 op amps configured with gain of + 2 each, in series with a
1:16 a11enua1or and an LM6321 buffer. Error
added by LM6321 is negligible. Test performed
USing Tektronix Type 520 NTSC lest system.
TLlH/ll06l-4

Step Response; Av =

+2

Tl/H/ll06l-6

TIME (50 ns/div)

Input Noise Voltage

Input Noise Current

1000

Power Bandwidth
3Z

100

~
~

.........

I

.......

"10

t
~

r\.

Ys

2B

'-

24

20

12

~

z:

100

lk

FREQUENCY (Hz)

10k

lOOk

1

10

100

lk

FREQUENCY (HI)

10k

1\

4

......... ~

1
10

*15Y

16

u

1

=

I.v= .,
< 1:1

THO

o
lOOk

0.1

1

10

100

FREQUENCY (MHz)
TUHl1l06l-7

1-527

~ r-----------------------------------------------------------------------------~

!

~

Typical Performance Characteristics

(Continued)

RL = 10 kG, TA = 25°C unless otherwise noted

~

Open-Loop
High-Frequency Response' ,

~

<40

~
....

~

30

z

~

0

20

<40
~
~

"-

20
0

~
~

10

3

0

I'

45

PHASE

l'\

100

lk

10k lOOk

-30

200
10M 100M

1M

1

FREQUENCY (Hz)

225
270

1000

100

10

FREQUENCY (MHz)
TLlH/ll061-8

Common-Mode Input
Voltage Limits

~.

'-1

.Ii!z

-2

ill

.... '~"
1~r-r-+-+-+-+-+-,
v-~~~~~~~~~

6

8

W

~

U

~

+/- SUPPLY VOLTAGE (V)

~

5

~
, ~'

4

Bias Current vs
Common-Mode Voltage

.~

~r-r-r-~~~~'-~

2

TL/H/ll061-9

Output S.turatlon Voltage

II--""HH-f-+-+-+--I

...'"

en
135 en
~
180 IL

\

-20

-<40

90

r-.... ..0

-10

-20

[:
!;;;

GAIN

!

Ii -

·2

!;.

~

v-

I

lit. = 2k4'
2

4

6

8

10 12 14 16 18

+/- SUPPLY VOLTAGE (V)

-55'C_ ~ f-

+~5'C

--

~

o

-15 -10

I-

+125'C

-5

0

10

15

OOMMON-MODE VOLTAGE (V)
TLlH/ll061-10

Simplified Schematic

TLlH/ll061-1

1-528

!i:

Application Tips
The LM6362 has been decompensated for a wider gainbandwidth product than the LM6361. However, the LM6362
still offers stability at gains of 2 (and -1) or greater over the
specified ranges of temperature, power supply voltage, and
load. Since this decompensation involved reducing the emitter-degeneration resistors in the op amp's input stage, the
DC precision has been increased in the form of lower offset
voltage and higher open-loop gain.

Power supply bypassing is not as critical for LM6362 as it is
for other op amps in its speed class. However, bypassing
will improve the stability and transient response of the
LM6362, and is recommended for every design. 0.01 ,..F to
0.1 ,..F ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power
supply source, an additional 2.2 p.F to 10 ,..F of tantalum
may be required for extra noise reduction.

Other op amps in this family include the LM6361, LM6364,
and LM6365. If unity-gain stability is required, the LM6361
should be used. The LM6364 has been decompensated for
operation at gains of 5 or more, with corresponding greater
gain-bandwidth product (125 MHz, typical) and DC precision. The fully-uncompensated LM6365 offers gain-bandwidth product of 725 MHz, typical, and is stable for gains of
25 or more. All parts in this family, regardless of compensation, have the same high slew rate of 300 V I,..s (typ).

Keep all leads short to reduce stray capacitance and lead
inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing.
Stray capaCitance in the Circuit layout can cause signal coupling from one pin, input or lead to another, and can cause
circuit gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using
generiC PC boards with a good ground plane. If the op amps
are used with sockets, as opposed to being soldered into
the circuit, the additional input capaCitance may degrade
circuit frequency response. At low gains (+2 or -1), a
feedback capacitor Cj from output to inverting input will
compensate for the phase lag caused by capaCitance at the
inverting input. Typically, values from 2 pF to 5 pF work well;
however, best results can be obtained by observing the amplifier pulse response and optimizing Cj for the particular
layout.

The LM6362 is unusually tolerant of capacitive loads. Most
op amps tend to oscillate when their load capacitance is
greater than about 200 pF (in low-gain circuits). However,
load capacitance on the LM6362 effectively increases its
compensation capaCitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is
not ideal, though, and ringing may occur in low-gain circuits
with large capacitive loads.

Typical Applications
Inverting Amplifier, 30 MHz Bandwidth

Offset Voltage Adjustment

+5V

V+

2_

~
76

+
8
1"

lOOk

O.Olp.F

I
5pF

V-

TLlH/11061-11

2k

Operation on ± 15V
supplies results in wider
bandwidth, 50 MHz

0.01 p.F

(typ).

I
-5V
TLlH/11061-12

1-529

CD
.....
CD

N
......
r-

a:::::

CD

~

N
......
r-

i:

~

CD
N

N

~

:I
....
.....

~---------------------------------------------------------------------.

Typical Applications

Video Cable Driver

~

:5....

...

&t

(Continued)

+15V

O.OIP.f

I
2k

CD

:5
>-~~1C==~~VM
500.

tOO pI'"
O.OIP.F

'Network required whenoperating on supply voltege
over ± 5V. tor overvoltege protection 01 LM6321. II
± 5V supplies are used. omit network and connect
output of LM6362 directly to input of LM6321.

I
-t5V

TUH/ll061-13

1-530

tflNational Semiconductor

LM6164/LM6264/LM6364
High Speed Operational Amplifier
General Description

Features

The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300V per ILs and
175 MHz GBW (stable down to gains as low as + 5) with
only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of
the wide dynamic range in operating supply voltage which
extends all the way down to + 5V.
These amplifiers are built with National's VIPTM (Vertically
Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high
speed performance without the need for complex and expensive dielectric isolation.

•
•
•
•
•
•
•
•

High slew rate
High GBW product
Low supply current
Fast settling
Low differential gain
Low differential phase
Wide supply range
Stable with unlimited capacitive load

300 V/p.S
175 MHz
5mA
100 ns to 0.10/0
<0.10/0
<0.1"
4.75V to 32V

Applications
• Video amplifier
• Wide-bandwidth signal conditioning
• Radar
• Sonar

Connection Diagrams
Vas
Adjust

a'l

)

2D-LeadLCC

v+

11

VOUT

61

~

'Vos
1 ~l
Input

Adjust

3

J,

"" .......

VosJdlJUST

Nle

5'1

·,

:s

INV.INpur-

MON-INV.INPUT-

·
·

41

10 "
" r17

LU8184E

"IS

7

•

,.

z ~I!

10

II

12

13

.

1D-Lead Flatpak

"13"

Yas ADJUST

Vos ADJUST

LII11MW

INY INPUT
Y+

NON~INV INPUT

VOUTPUT
NO

TL/H/9153-15

E---VOUT

TopVlew
NS Package Number W10A
TL/H/9153-14

V-

Top View

input

TL/H/9153-B
NS Package Number
J08A, M08A or N08E

NS Package Number E20A

Temperature Range
Military
-S5"C';; TA';; + 12S"C

y+

•

y-

Industrial
-2S"C ,;; TA ,;; +85"C

Commercial
O"C';; TA';; +70"C

LM6264N

LM6364N

LM6164J/883
5962-8962401 PA
LM6364M

Package

NSC
Drawing

8-Pin Molded DIP

NOSE

8-Pin Ceramic DIP

J08A

8-Pin Molded Surface Mt.

M08A

LM6164E/883
5962-89624012A

20-Lead LCC

E20A

LM6164W/883
5962-8962401 HA

10-Pin
Ceramic Flatpak

Wl0A

1-531

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and speclflcatlons_
SupplyVoltage(V+ - V-)
36V
±8V
Differential Input Voltage (Note 6)

See AN-4S0 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
Storage Temperature Range
-6S·Cto +1SO"C
Max Junction Temperature (Note 2)
ESDTolerance (Notes 6 & 7)

Common-Mode Input Voltage
(V+ - 0.7V) to (V- - 7V)
(Note 10)
Output Short Circuit to Gnd (Note 1)
Continuous

150"C
±700V

Operating Ratings
Temperature Range (Note 2)

Soldering Information
Dual-In-Line Package (N, J)
Soldering (10 sec.)
, Small Outline Package (M)
Vapor Phase (60 sec.)
Infrared (15 sec.)

'-55·C,;; TJ';; +125·C
-2S·C';; TJ ,;; +8S·C
O·C,;; TJ';; +70"C

LM6164
LM6264

260"C

LM63~

21S·C
220·C

Supply Voltage Range

4.75Vt032V

DC Electrical, Characteristics
RL ;;" 100 kO and Rs
TA = TJ = 25·C.

Symbol

= son

The following speCifications apply for Supply Voltage = ±15V, VCM = 0,
unless otherwise noted. Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits

Parameter

Vas

Input Offset Voltage

Vas
Drift

Input Offset Voltage
Average Drift

Ib

Input Bias Current,

Conditions

2

LM6264

LM6364

Limit
(Notes 3, 11)

Limit
(Note 3)

Limit
(Note 3)

Units

4
8

4
8

9
11

mV
max

6

lOS

' Input Offset Current

los
Drift

Input Offset Current
Average Drift

RIN

Input Resistance

CIN

Input CapaCitance

AVOL

Large Signal
Voltage Gain

VOUT = ±10V, RL
(Note 9)

VCM

Input Common-Mode
Voltage Range

Supply

Differential

RL
"

Typ

LM6164

=

=

2 kO

± 1SV

Supply = +5V
(Note 4)

CMRR

Common-Mode
Rejection Ratio

-10V';; VCM';; +10V

PSRR

Power Supply
Rejection Ratio

±10V,;;V±,;; ±16V

2.5

3
8

3
5

S
8

max

1S0

350
800

350
800

1500
1900

mA
max

p.A

0.3

nAI"C

100

kO

3.0

pF
1.8
0.9

1.8
1.2

1.3
1.1

+14.0

+13.9
+13.8

+13.9
+13.8

+13.8
+13.7

V
min

-13.5

-13.3
-13.1

-13.3
-13.1

-13.2
-13.1

V
min

4.0

3.9
3.8

3.9
3.8

3.8
3.7

V
min

1.S

1.7
1.9

1.7
1.9

1.8
1.9

V
max

105

86
80

86
82

80
78

dB
min

96

86
80

86
82

80
78

dB
min

2.5

VlmV
min

9

10kO

=

p.VI"C

1-532

DC Electrical Characteristics
AL
TA

~

=

The following specifications apply for Supply Voltage = ±15V, VCM = 0,
100 kO and As = 500 unless otherwise noted.·Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits
TJ = 25D C. (Continued)

Symbol
Vo

LM6264

LM6364

Limit
(Notes 3,11)

Limit
(Note 3)

LlmH
(Note 3)

Units

Parameter

Conditions

Typ

Output Voltage
Swing

Supply = +5V
andAL = 2kO

+14.2

+13.5
+13.3

+13.5
+13.3

+13.4
+13.3

V
min

-13.4

-13.0
-12.7

-13.0
-12.8

-12.9
-12.8

V
min

4.2

3.5
3.3

3.5
3.3

3.4
3.3

V
min

1.3

1.7
2.0

1.7
1••

1.8
1••

V
max
mA
min

Supply = +5V
andAL = 2kO
(Note 9)

Output Short
Circuit Current

Source
Sink

Is

LM6164

Supply Current

65
65
5.0

1-533

30

30

30

20

25

25

30

30

30

20

25

25

mA
min

6.5
8.8

6.5
8.7

6.8
8 ••

mA
min

AC ,Electrical Characteristics

The following specifications apply for SuPPlY Voltage =

±15V, VCM =0,

RL:~ 100 kO and Ft8= 500 unless otherwise noted. Boldface limits apply fOf· TA = Til = TMIN to TMAX; all other limits
TA = TJ = 25·C.

,
Symbol

GBW

LM6164

.

.Parameter

Conditions

"

(Notes 3, 11)
F=20MHz

Gain-Bandwidth

• Limit

Typ

175

Product

LM6264

LM6364

Limit

Limit

(Note 3)

(Note 3)

140

140

120

100

120

100

Units

MHz
min

Supply =
SR

Slew Rate

±5V

120

Av = + 5 (Note 8)

Supply =

300

±5V

PBW

Power Bandwidth

VOUT = 20Vpp

T8

Settling Time

10V Step to 0.1 %

200

200

200

180

180

180

V/p.a
min

200
4.5

MHz

100

ns

45

O8g

...

Av = -4, RL = 2 kO
m

Phase Margin

Av= +5

AD

Differential Gain

NTSC,Av =

+10

<0.1

%

0

Differential Phase

NTSC,Av =

+10

<0.1

Deg

enp-p

. Input Noise Voltage

F=10kHz

8

nV/-/Hz

i np_p

Input Noise Current

F=10kHz

1.5

pAl-/Hz

Nota 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the mllldmum allowed junction temperature of 15O'C.
Nota 2: The typical junction-to-amblent thermal resistance of the molded plastic DIP (N) is 10S'C/Wall, the molded plastic SO (M) pacte'

~

~
z

lI!

II

3.0

iI

~

~~

~
lis

~

6

+/- SUPPLY VOLTAGE M

LOAD CAPACITANCt:

~

1pi'

Slew Rate

= t15V

Rr = 2k4

Cr=lpF

l00pF

10nF loonf

Ay = +5

t---

I(

10pF

1of

LOAD CAPACITANCE

400

~

10M

Vs

Vs = t15V
Vo = tlOV

Vs

111

~

Overshoot vs
Load Capacitance
30

Vs = t15V

10pF loopF

-

1000

lEMPERATURE ("1:)

,'i

o

IIIe lOOk

Gain-Bandwidth Product
vs Load Capacitance

.... .--

o-55 -35 -15

m

Slew Rate vs
Load Capacitance
400

\

lk

\po

+/- SUPPLY VOLTAGE M

\

100

20

W 12 U

8

10

FREQUEIICY (HI)

~~

Ir

60

10

2

10M

FMllUEHCY (Hz)

40

o

1M

Propagation Delay
Rise and Fall Time

-5,.. ~

....

o

10

i,...-'

~

20

o

70

160

60

20

240

~

, NEGATIVE'

\

Gain-Bandwidth
Product

!3

80

60

+/- SUPPLY VOLTAGE

!2OO

120
~OSmvE

\

80

I

I

lii'
~.

i

.L-

+125"1: l -

Power Supply
Rejection Ratio

120

~

+25~
IT-55"C

(RL = 10 kO, TA = 25°C unless otherwise specified)

I

20
0

0.1

Vs

= tlSV

10

I......

,. ~ t--+2S"I:

/. V

2.0

I~

-Sj I-

fJ.~

1.0

r

I
I

0

0
2

100

4

6

8

10 12 14 16 18

+/- SUPPLY VOLTAGE M

LOAD RfSISTANCE (1<4)

TL/H/9153-5

1·535

~

~

CD

~

.---------------------------------------------------------------------------------,
Typical Performance Characteristics
(RL = 10 kG, TA = 25°C unless otherwise specified) (Continued)

i

Differential Gain (Note)

~
....~
:!I

Differential Phase (Note)

CD

TUH/9153-7

Note: Differential gain and differential phase
measured for four seriao LM6364 op amps in series with an LM6321 buffer. Error addad by
LM6321 is negligible. Tao! performed using Tektronix Type 520 NTSC test system. ConflQured
with a gain of + 5 (each output attenuated by
80%)

TL/H/9153-6

Step Response; Av =

.

+5

TL/H/9153-1

TIME (50 ns/dlY)

Input Noise Voltage

Input Noise Current

1Il00

.,

~

32

28

~
..s

100

§!

10

"'-

1

~

~
z

Power Bandwidth

1Il00

1

1

.1"-

1

1

'-

24

II~slW~
tHO < Ill:

20

16

.........

12

1

I
I

10

100

lk

FREQUENCY (Hz)

ICIk

lOOk

10

100

Ik

FlIEQUENCY (Hz)

ICIk

-

lOOk

'\
o

0.1

1

10

100

FREQUENCY (11Hz)
TL/H/9153-9

1-536

•

Typical Performance Characteristics
(RL = 10 kfl, TA = 25°C unless otherwise specified) (Continued)

Open-Loop
Frequency Reaponse

Open-Loop
Frequency Reaponse

1110
110

!

Output Realatance
Open-Loop
10C1c

10

"

10

50

~ J

50

~ ~~

'\

~

'\

'A:

10

PHf ~
~

~

lk

1i'
~

CAiH

10k 10C1c

1M

10M lQOU

180

2ro

1I

.......

40

""'~

10

PHASE

0

II

-10

II

-20
1M

lG

10M

-I-

1

1\
~

m

lQOU

lG

10
lk

10k

10C1c

1M

10M

lQOU

FREQUENC'f (Hz)

F'R£QII£NCY (Hz)

.,. Output Saturation Voltage

Blaa Current va
Common-Mode Voltage

FREQUENCY (Hz)

Common-Mode Input
.,. Saturation Voltage

,

~GAJN

20

5
1

1

I

-

:~

-5SOC

-

25"1:

r-

1

1

v-

2

4

18m u

u

~

+/- SUPPLY VOLTAGE (V)

~

v-

1

lit. =2k4
2

4

6

8

mu u

+/- SVPPLY VOLTAGE (V)

~

~

o

-15 -10

125"1:

--

-5
0
5
10
COIIMOIHIODE VOLTAGE (V)

15

TUH/9153-13

Simplified Schematic

•
TL/H/9153-3

1-537

Applications Tips

'. ~r:

The LM6364 has been compensated for gains of 5 or greater (over specified ranges of temperature, power supply voltage, and load). Since this compensation involved adding
emitter-degeneration resistors in the op amp's input stage,
the open-loop gain was reduced as the stability increased.
Gain error due to reduced AVOL is most apparent at high
gains; 'thus, the uncompensated LM6365 is appropriate for
gains of 25 or more. If unity-gs!n operation is desired, the
LM6361 should be' used. The LM6361, LM6364, and
LM6365 have the same high slew rate (typically 300 V/ ",,8),
regardless of their compensation.
The LM6364 is unusually tolerant of capacitive loads. Most
op amps tend to oscillate when their load capaCitance is '
greater than about 200 pF (in low-gain circuits). However,
load capacitance on the LM6364 effectively increases its
compensation capacitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is
not ideal, though, and ringing or oscillation may occur in
low-gain circuits with large capacitive loads. To overcompensate the LM6364 for operation at gains less than 5, a

series resistor-capacitor network should be addei;l between
the input pins (as shown in the Typical Applications, Noise
Gain Compensation) so that the high-frequency noise gain
rises to at least 5.
, Power supply bypassing will improve the stability and transient response of the LM6364, and is rec6mmellded for everydesign.O.Ol ""F to 0.1 ""F ceramic capacitors should be
used (from each supply "rail" to grou~); if the device is far
away from its power supply source; an additional 2.2 ""F to
. 10 ",F (tantalum) may .•be required for extra nois~.!eduction.
Keep all leai;ls short to reduce stray capacitance and'iead
inductance, ,and make' sur~. ground paths are low-impedance, , especially where hiiavier currents will be flowing.
Stray capacitance in the clrcuit,layout can cause signal coupling between adjacent nodes, .,so that circuit 'gain unintentionally varies with frequency.
Breadboarded circuits will work best if they are built using
generic PC boards with a good ground plane. If the op amps
are used with sockets, as oppo~ to.being soldered into
the circuit, the additional input capacitance may degrade
circuit performance.

Typical Applications
Offset Voltage Adjustment

Noise-Gain Compensation for Gains :s;; 5

y+

2.

~

Rr

76

3.

" 8

100k

y>~~YOUT
TL/H/9153-10

Video-Bandwidth Amplifier

Y·
TUH/9153-11

RxCx :. (2"..25 MHz)-1
5 'Rx = R1 + RF(1 + R1/R2)

Your
. :',

tflNational Semiconductor

LM6165/LM6265/LM6365
High Speed Operational Amplifier
General Description

Features

The LM61 1\5 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300- VI /-Ls and
725 MHz GBW (stable for gains as low as + 25) with only
5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the
wide dynamic range in operating supply voltage which extends all the way down to + 5V.
These amplifiers are built with National's VIPTM (Vertically
Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high
speed performance without the need for complex and expensive dielectric isolation.

•
•
•
•
•
•
•
•

300 V//-Ls
725 MHz
5 mA
80 ns to 0.1%
<0.1%
<0.1°
4.75V to 32V

High slew rate
High GBW product
Low supply current
Fast settling
Low differential gain
Low differential phase
Wide supply range
Stable with unlimited capacitive load

Applications
• Video amplifier
• Wide-bandwidth signal conditioning
• Radar
• Sonar

Connection Diagrams
10-Lead Flatpak
Top View

NCt::::::::;.

.

VOSADJUST~

INPUT~

INV
NON-IMV IMPUTt:::::::::i

20-Lead LCC
Top View

?NC

'los ADJUST

VosADJIIST

~Vos"'DJUST

LM8185W

V-~

~,V'

VOUTPUT

"
IMY.INPUT---;

NO

TLlH/9152-14

Order Number LM6165W/883
See NS Package Number W10A

l

1112.0"

~~

I.
~v+

17

I

NON-INV.IIIPIfT~

2.

S

LII818ISE

15

11011111.5

.

.
7

IS

r--VOI/T

~!s ~~

,____..JT
TL/H/9152-15

Order Number LM6165E/883
See NS Package Number E20A

Adjust

Input

3JI

4.1

y-

Input
TLlH/9152-S

Order Number LM6165J/883
See NS Package Number J08A
Temperalure Range

NSC

Industrial
-25"C ,; TA ,; +85"C

Commercial
O"C,;TA'; +70"C

Package

LM6265N

LM6365N

8-Pin
Molded DIP

NOSE

8-Pin
Ceramic DIP

J08A

8·Pin Molded
SurfaceMl

MOSA

LM6165E/863
5962-89625012A

20-Lead
LCC

E20A

LM6165W883
5962-8962501 HA

10-Pin
Ceramic Flatpak

W10A

MlUtary
-SS'C ,; TA ,; + 125"C

LM6165J/883
5962·8962501 PA
LM6365M

1-539

Order Number LM6365M
See NS Package Number M08A

Drawing

Order Number LM6265N or
LM6365N
See NS Package Number N08E

Absolute Maximum Ratings
11 Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (V+ - V-I
36V
Differential Input Voltage (Note 6)
±8V
Common-Mode Voltage Range
(V+ - 0.7V) to (V- - 7V)
(Note 10)
Output Short Circuit to GND (Note 1)
Continuous
Soldering Information
Dual-In-Line Package (N, J)
Soldering (10 sec.)
260"C
Small Outline Package (M)
Vapor Phase (60 sec.)
215°C
Infrared (15 sec.)
220"C

See AN-450 "Surface.Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
Storage Temp Range
-65°C to + 150"C
Max Junction Temperature (Note 2)
150"C
ESD Tolerance (Notes 6 and 7)
±700V

Operating Ratings
Temperature Range (Note 2)
LM6165, LM6165J/883
LM6265
LM6365
Supply Voltage Range

DC Electrical Characteristics

The following specifications apply for Supply Voltage = ±15V, VOM = 0, RL ~ 100 kO and Rs
Boldfac. limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25"C.

Symbol

Parameter

Vos

Input Offset Voltage

VOS
Drift

Input Offset Voltage
Average Drift

Ib

Input Bias Current

los

Conditions

Typ

1

Input Offset Current
Average Drift

= 500 unless otherwise noted.

LM6165

LM6265

LM6365

Limit
(Notes 3, 11)

Limit
(Note 3)

Limit
(Note 3)

Units

3
4

3
4

8
7

my
Max

p.V/oC

3

, Input Offset CUrrent

loS
Drift

-55°C s: TJ s: + 1~5°C
-25°C s: TJ s: +85°C
O"C s: TJ s: + 70"C
4.75Vt032V

RIN

Input Resistance

CIN

Input Capacitance

AVOL

Large Signal
Voltage Gain
(Note 9)

VOUT = ±10V,
RL = 2kO

VOM

Input Common-Mode
Voltage Range

Supply

Differential

3
8

3
5

5
8

Max

150

350
800

350
800

1500
1900

nA
Max

0.3

nA/oC

20

kO

6.0

RL

7.5
8.0

5.5
5.0

+14.0

+13.9
+13.8

+13.9
+13.8

+13.8
+13.7

V
Min

-13.6

-13.4
-13.2

-13.4
-13.2

-13.3
-13.2

V
Min

4.0

3.9
3.8

3.9
3.8

3.8
3.7

V
Min

1.4

1.6
1.8

1.6
1.8

1.7
1.8

V
Max

s: VCM s:

Common-Mode
Rejection Ratio

-10V

102

88
82

88
84

80
78

dB
Min

PSRR

Power Supply
Rejection Ratio

±10VS:V±

Vo

Output Voltage
Swing

Supply = ±15V,
RL = 2kO

s:

104

88
82

88
84

80
78

dB
Min

+14.2

+13.5
+13.3

+13.5
+13.3

+13.4
+13.3

V
Min

-13.4

-13.0
-12.7

-13.0
-12.8

-12.9
-12.8

V
Min

VlmV
Min

~8

Supply = +5V
(Note 4)

CMRR

pF
7.5
5.0

10.5

= 10kO
= ± 15V

p.A

2.5

+10V
±16V

1-540

DC Electrical Characteristics

(Continued)
The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ;;, 100 kO and Rs = 500 unless otherwise noted.
Boldface limits apply for TA = TJ = T MIN to TMax; all other limits TA = TJ = 25'C.

Symbol

Parameter

Conditions

Typ

Vo
(Continued)

Output Voltage
Swing (Continued)

Supply = +5V
RL = 2 kO (Note 4)

4.2
1.3

Output Short
Circuit Current

Source

65

Sink
Is

65

Supply Current

5.0

LM6165

LM6265

LM6365

Limit
(Notes 3, 11)

Umlt
(Note 3)

Limit
(Note 3)

Units

V
Min

3.S

3.S

3.4

3.3

3.3

3.3

1.7

1.7

1.8

2.0

1.9

1.9

30

30

30

20

25

25

30

30

30

20

25

25

6.5

6.5

6.8

6.8

6.7

8.9

AC Electrical Characteristics
The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL;;' 100 kO and Rs =
Boldface limits apply for TA = TJ = TMIN to T MAX; all other limits TA = TJ = 25'C. (Note 5)

Symbol
GBW

Parameter
Gain Bandwidth

Conditions

F = 20 MHz

Typ
725

SR

Supply = ±SV

SOO

Slew Rate

Av = + 25 (Note 8)

300

LM6165

LM6265

LM6365

Limit
(Notes 3, 11)

Limit
(Note 3)

Limit
(Note 3)

575

575

500

200

200

200

180
Supply = ±5V
PBW

Power Bandwidth
Product

Your = 20Vpp

ts

Settling Time

10V Step to 0.1 0/0
Av = -25, RL = 2 kO

mA
Min
mA
Min
mA
Max

son unless otherwise noted.

350
Product

V
Max

Units

MHz
Min

Vlp.s
Min

200
4.5

MHz

80

ns

45

Deg

m

Phase Margin

Av = +25

Ao

Differential Gain

NTSC, Av = + 25

<0.1

0/0

<1>0

Differential Phase

NTSC, Av = + 25

<0.1

Deg

enp-p
inp_p

Input Noise Voltage

F = 10kHz

5

nV/.JHz

Input Noise Current

F = 10kHz

1.5

pAl.JHz

Note 1: Continuous short-circuit operation at elevated ambient temperature can resuH in exceeding the maximum allowed junction temperature of 15O'C.
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105"C/Walt. and the molded plastic SO (M) package Is lSS·C/Walt. and
the cerdip (J) package is 12S·C/Watl. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: All limits guaranteed by tesUng or correlation.
Note 4: For Single supply operation, the following conditions apply: V+ = SV, V- = OV, VOM = 2.SC, VOUT = 2.SV. Pin 1 & Pin 8 (VOS Adjust) are each
connected to Pin 4 (V -) to realize maximum output swing. This connection will degrade Vos.
Note 5: CL ,s; SpF.
Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exeeding the maximum differential input voHsge
resuHs in reverse breakdown of the base-emitter junction of one of the input transistors and probable dagradatlon of the Input parameters (especially Vos, los, and
Noise).
Note 7: The average voHsge that the weakast pin combinations (those involving Pin 2 or Pin 3) can withstand and sUil conform to the datasheet limits. The test
circuH used consists of the human body model of 100 pF in series with 15000.
Note 8: VIN = O.8V step. For supply = ± SV, VIN = O.2V step.
Note 9: Voftage Gain is the total output swing (20V) divided by the input signal required to produce thet swing.
Note 10: The voHsge between V+ and either Input pin must not exceed 36V.
Note 11: A military RETS electrical test specification is available on requast. At the time of printing, the LM6165J/883 RETS spec complied with the Boldf....
limits in this column. The LM6165J/663 may also be procured as Standard MilRary Drawing #5962-8962601PA.
1-541

U)

~

CD

r-------------------------------------------------------------------------------------,
Typical Performance Characteristics RL =

:!I.....

Supply Current vs
Supply Voltage

;
U)

+25~

......
U)

Common-Mode
Rejeetlon Ratio

i

~

!

100

!

+125OC

I

~
\

80
60

2

4

o

10

1100

t;

-ssOC.....

i
*
;Ii

800

/

+2SOC

800

f..-o"

I

sao / /

+12S"C

.-r .

400
300
200
100

I
I

1/

-

040

~

30

HEllATIV£

80

I :

10M

10 . 100

I

L,...o

'PO

-

"

"
I

lOp!" lOOp!"

Cr =

20

I
OJ'; ~

/1

\\

VI
o

lOp!"

~SS..\

~

,

I
I
1 nF

_

~ ::;.-r+2SOC

~ F"" ...... ......+125OC

~ ,/

II /
1'/

\

lOOp!"

10nF l00nF 11'1"

Slew Rate

Vs = tlSV
Ay = +25
RF = 2k4

\

f/~=1PF

NEGAM\

I nF

LOAD CAPACITANCE

Overshoot vs
Capacitive Load

10nF l00nF 11'1"

1M

Vs = tlSV

Vs = tlSV
Vo = tlOV

30

r-....

10. lOOk

1000

~

TEMPERATURE (OC)

\

lk

Gain-Bandwidth Produet vs
Load Capacitance

-55 -35 -15 S 25 45 65 85 105 125

g

~

FREQUENCY (Hz)

Itt

o

a

25

lnF

1M

~~

10

"POSmvt
"""\.'(
\

POSmvt

20

Vs = tlSV

lOp!" lOOp!"

10k lOOk

tr

50

!

Slew Ratevs
Load Capacitance

o

lk

60

-

246 8 W ~ ~ "
t SUPPLY VOLTAGE (V)

400

100

Propagation Delay,
Rise and Fall Times

......-r

700

100

70

I I
I I

1000
.!,. 900

l'l

FREQUENCY (Hz)

Gain-Bandwidth
Product

1

120

60

a

6 8 W ~ M "
t SUPPLY VOLTAGE

1040

i

!

20

o

~

Power Supply
Rejeetlon Ratio

120

!

-r-

[-SSOC

CD
..-

10 kG, TA == 25°C unless otherwise specified

10nF

o

l00nF

2

4

6

8

W ~

~

"

a

t SUPPLY VOLTAGE (V)

LOAD CAPACITANCE

Output Impedance
. (Open-Loop)

-

lOOk

10
10k

14

Ii

12
10

~

'\

§!

......
lk

t

i'

lOOk

1M

Gain vs Supply Voltage

la

.....

~

I

j.....

i--"

8

1/

.6

2

.JI

I

2

o

...... +25OC

-55OC ' -

r~

§4
\
10M 100M

.... ~ -

...... ....

1\ = 2k4
4

6

8

W ~ ~

"

~ ..

t SUPPLY volTAGE (V)

FREQUENCY (Hz)

TL/H/9152-S·

1-542

~----------------------------------------------------------------------------, ~

Typical Performance Characteristics

ill:
G)

....

(Continued)

RL = 10 kG, TA = 25°C unless otherwise specified

G)

en
.....

Differential Gain (Note)

~

Differential Phase (Note)

I

~

en
.....
~

I

!
TL/H/9152-7

Note: Differential gain and differential phase measured far four series
LM6365 op amps configured with gain of + 25 (each output attenuated by
96%), In series wHh an LM6321 buffer. Error added by LM6321 is negligible.
Test performed using Tektronix Type 520 NTSC test system.

TL/H/9152-6

Step Response; Av =

+ 25

TLlH/9152-1

TIME (50 (ns/dlY)

Input Noise Voltage

Input Noise Current

1000

~

!

~§!

I

Power Bandwidth

1000

32

2B
100

.r-...

"I

~

24

I
I

1

....

1

1

1

100

Ik

F1I£QUEI4CY (Hz)

I

lOIe

lOOk

< IX

211

L
10

,

12

1

10

THO

1

16
10

II~s Jm~

"-"i
100

Ik

FREQUEI4CY (Hz)

lOIe

lOOk

o
0.1

10

100

F1I£QUENCY (MHz)
TLlH/9152-9

1-543

Typical Performance Characteristics
RL = 10 kG, TA = 25°C unless otherwise specified
Open-Loop'
Frequency ~ponse
100
"
ii'

~

110

~

110

~~

40

,~

110

,~

~

..... i'...

20

~

Open-Loop
Frequency Response

r- K

~

.........

0
-20
lk

lOOk

10k

1M

(Continued)

1

i\

40

~
~'
:!;'

20

" 1\

-

:,~

I
I

50

I

~O

......

Voltage Gain vs
Load Resistance

180

..... GAiN

10

PHASE

1\
380

1111 I
1111 I

-10
-20

1011 ,100M

270 : ~

.....

1M

1011

FREQUEHCY (Hz)

•

,v+

~

-1

~

-2

~

j;!

0

10

0L....J.~"'"--+-'..LWw....J..L.L.ww

ru

~

W

1

, , ',~~O RESISTANCE (k4)

Bias Current vs
Common-Mode Voltage

Output Saturation Voltage
5

1

-

"

I-t-+-+-+---+-+-t'-;-i

1

1

RL = 2kA

V'"'--'--'--'--'--'--'--L..,.-J
2

4

6

8 W tl U

* SUPPlY VOLTAG£ (V)

~

~

* SUPPLY VOLTAGE

o

-....

-Jete

---

:
21-1-1-1-1-I-HH

i:i

~

-ssoIl'

110 1r'~!!5o't"Hf!!lfI--+-H-If!!lfI--++HfI!H

Common-Mode Input

E

+25"t,

i ' 80 H-tHfttfI/;,--:;t-:-"HttfHI-t+1-ItIfI!

FREQUENCY (Hz)

v+ Saturation Voltage

I:A

~f~ 1 :H+tttHtt-+l-ItHllt-ttittHIl
H+tttHtt-+l-ItHllt-ttittHIl

~
480'
100II

"

+l~~~tll

90

'.'!' ': " ,
'" ~lL

30

llJ()""

25"C

1

125ete

oS
0
5
10
COIIIION-MOOE VOLTAGE (V)

-15 -10

15

TLlH/9152-10

Simplified Schematic

TL/H/9162-3

1-544

r-----------------------------------------------------------------------------,~

Applications Tips
used (from each supply "rail" to ground); an additional
2.2 ",F to 10 ",F (tantalum) may be required for extra noise
reduction.
Keep all leads short to reduce stray capacitance and lead
inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing.
Stray capacitance in the circuit layout can cause Signal coupling between adjacent nodes, and can cause circuit gain to
unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using
generic PC boards with a good ground plane. If the op amps
are used with sockets, as opposed to being soldered into
the circuit, the additional input capaCitance may degrade
circuit performance.

The LM6365 is stable for gains of 25 or greater. The
LM6361 and LM6364, specified in separate datasheets, are
compensated versions of the LM6365. The LM6361 is unitygain stable, while the LM6364 is stable for gains as low as
5. The LM6361, and LM6364 have the same high slew rate
as the LM6365, typically 300 V I "'S.
To use the LM6365 for gains less than 25, a series resistorcapacitor network should be added between the input pins
(as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least
25.
Power supply bypassing will improve stability and transient
response of the LM6365, and is recommended for every
design. 0.01 ",F to 0.1 ",F ceramic capacitors should be

Typical Applications
Noise-Galn Compensation

Offset Voltage Adjustment

Rr

y+

~
_76

3+

'I 8

v+
y>-~-VOUT

lOOk

TL/H/9152~11

TL/H/9152-12

Rx ex :2: 1/(2".' 25 MHz)
[Rl + RF (1 + Rl/R2)l ~ 25 Rx

1 MHz Voltage-to-Frequency Converter
(fOUT = 1 MHz for VIN = 10V)
l00pF
240k

4pF

0-10V INPUT ....J\M,-WIr-....- .........

>-+-'\M...-"'--*-- Output

14.2k

LM385-2.5
Offset
Adjust

10k

2.2~F

lk lk

y-~y+

lOOk
All diodes 1N914

1-545

TL/H/9152-13

...enena::::

CI'J
.....
~

!:
en
~

CI'J
~

!:
en
w
en
CI'J

til

' "",

Nat ion a ISe m i con d uc tor

LM6171 High Speed Low Power Low Distortion Voltage·
Feedback Amplifier
General Description·

Features (Typical Unless Otherwise Noted)

The LM6171 is a high speed unity-gain stable voltage feedback amplifier. It offers a·high slew rate of 3600V/p.S and a
unity-gain bandwidth of 100 MHz while consuming only 2.5
mA of supply current. The LM6171 has very impressive AC
and DC performance which is a great benefit for high speed
signal processing and video applications.
The ± 15V power supplies allow for large signal swings and
give greater dynamic range and signal-to-noise ratio. The
LM6171 has high output current drive, low SFDR and THO,
ideal for ADC/DAC systems. The LM6171 is specified for
± 5V operation for portable applications.
The LM6171 is built on National's advanced VIPTM III (Vertically Integrated PNP) complementary bipolar process.

•
•
•
•
•
•
•
•

Easy-To-Use Voltage Feedback Topology
Very High Slew Rate
Wide Unity-~ain-Bandwidth Product
-3 dB Frequency @ Av = + 2
Low Supply Current
HighCMRR
High Open Loop Gain
Specified for ± 15V and ± 5V Operation

3600V/,...s
100 MHz
62 MHz
2.5 mA
110 dB
90 dB

Applications
•
•
•
•
•
•
•
•
•

Multimedia Broadcast Systems
Line Drivers, Switchers
Video Amplifiers
NTSC, PALI8 and SECAM Systems
ADC/DAC Buffers
HDTV Amplifiers
Pulse Amplifiers and Peak Detectors
Instrumentation Amplifier
Active Filters

Typical Performance Characteristics
Large Signal
Pulse Response
Ay = + 1, Vs = ± 15

Closed Loop Frequency Response
vs Supply Voltage (Ay = + 1)

I
Ys = :1:15,

I

>

~
>

'Ii>
~

0

c:

';;

'"

e...

!:::" v

r--

...
:::>

Ys =:l:2.7
Ys =:1:10
-, Vs =:1:5

-10

Q.

II
~

:::>
0

-20
1M

10N

lOON

Frequency (Hz)

Connection Diagram

TIME (20 ns/div)

Ordering Information
Temperature Range

a-Pin DIP/SO
N/cl
- IN l
+INl

y-.!

\.J

0

Package
!.N/C
L y+

!. OUTPUT
.2.N/C
TL/H/12336-1

TUH/12336-9

TUH/12336-5

Industrial
-4O"Cto +a5"C

Transport
Media

NSC
Drawing
NOBE

B-Pin
Molded DIP

LM6171AIN
LM6171BIN

Rails

B-Pin
Small Outline

LM6171 AIM, LM6171 BIM

Rails

LM6171 AIMX, LM6171 BIMX

Top VIew

1-546

Tape and Reel

MOBA

Absolute Maximum Ratings (Note 1)

Operating Ratings (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Supply Voltage

ESD Tolerance (Note 2)
Supply Voltage (V+ -V-)

Thermal Resistance (6JN
N Package, 8-Pin Molded DIP
M Package, 8-Pin Surface Mount

2.75V,;;; V+ ,;;; 18V

Junction Temperature Range
LM6171 AI, LM6171 BI

2.5kV
36V
±10V

Differential Input Voltage (Note 11)
Common-Mode
V+ -1.4VtoV- + 1.4V
Voltage Range
Output Short Circuit to Ground (Note 3)
Continuous
-65°C to + 150"C
Storage Temperature Range
Maximum Junction Temperature (Note 4)
150"C

-40"C ,;;; TJ

s:

+85°C

108°C/W
172°C/W

± 15V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C,
V+ = + 15V, V- = -15V, VCM = OV, and RL = 1 kO. Boldtace limits apply at the temperature extremes
Symbol
Vos

Parameter

Conditions

Input Offset Voltage

TCVos

Input Offset Voltage Average Drift

18

Input Bias Current

lOS

Input Offset Current

RIN

Input Resistance

6

8

1

3
4

3
4

/l-A
max

0.03

2
3

2
3

/l-A
max

Common Mode

40
4.9

Common Mode
Rejection Ratio

VCM = ±10V

Power Supply
Rejection Ratio

Vs = ±15V-±5V

VCM

Input Common-Mode
Voltage Range

CMRR ~ 60dB

Av

Large Signal Voltage
Gain (Note 7)

RL = 1 kO

RL = 1 kO

110
95

MO
0

83
13.3
-13.3

RL = 1000

11.6
-10.5

1-547

80

75

75

70

85

80

80

75

±13.5
90

mV
max
/l-V/oC

14

RL = 1000

Units

3

Differential Mode

CMRR

Output Swing

LM6171BI
Limit
(Note 6)

6

Open Loop
Output Resistance

Vo

LM6171AI
Limit
(Note 6)

5

1.5

RO

PSRR

Typ
(Note 5)

dB
min
dB
min
V

80

80

70

70

70

70

80

80

12.5

12.5

12

12

-12.5

-12.5

-12

-12

9

9

8.5

8.5

-9

-9

-8.5

-8.5

dB
min
dB
min
V
min
V
max
V
min
V
max

±

15V DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for
TJ = 25°C, V+ = + 15V, V- = -15V, VCM = OV, and RL = 1 kO. B!I)ldfacelimits apply at the temperature extremes
Symbol

Parameter

Conditions

Continuous Output Current
(Open Loop) (Note 8)

Sourcing, RL = 1000
Sinking, RL = 1000

Continuous Output Current
(in Linear Region)
Isc

Output Short
Circuit Current

Is

Supply Current

Typ
(NoteS)
116
105

LM6171AI
Umlt
(Note 6)

LM6171BI
Umlt
(Note 6)

90

90

85

85

90

90

85

85

Units
mA
min
mA
max

Sourcing, RL = 100

100

rnA

Sinking, RL = 100

80

mA

Sourcing

135

mA

Sinking

135

mA

2.5

4

4

rnA

4.5

4.5

max

±

15V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C,
V+ = + 15V, V- = -15V, VCM = OV, and RL = 1 kO. Boldface limits apply at the temperature extremes
symbol
SR

GBW

Parameter
Slew Rate (Note 9)

Conditions
Av = +2, VIN = 13 Vpp

3600

Av = +2, VIN = 10Vpp

3000

Unity Gain-Bandwidth Product
-3 dB Frequency

Typ
(NoteS)

100

LM6171AI
Umlt
(Note 6)

LM6171BI
Umlt
(Note 6)

Units

V/p,s

MHz

Av= +1

160

MHz

Av= +2

62

MHz

cf>m

Phase Margin

40

deg

is

Settling Time (0.1 %)

Av = -1, VOUT = ±5V
RL = 5000

35

ns

Propagation Delay

VIN = ± 5V, RL = 5000,
Av= -2

6

ns

AD

Differential Gain (Note 10)

cf>D

Differential Phase (Note 10)

en

Input-Referred
Voltage Noise

f = 1 kHz

InPllt-Referred
Current Noise

f=1kHz

in

0.03

%

0.5

deg

12
1

1-548

nV

.Hz
pA

.Hz

± 5V DC Electrical Characteristics

Unless otherwise specified. all limits guaranteed for TJ = 25°C.
V+ = +5V. V- = -5V. VCM = OV. and RL = 1 kO. Boldface limits apply at the temperature extremes

Symbol
Vos

Parameter
Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

18

Input Bias Current

los
RIN

Conditions

1.2

1
0.03
Common Mode

40

Differential Mode

4.9

Ro

Open Loop
Output ReSistance

CMRR

Common Mode
Rejection Ratio

VCM = ±2.5V

Power Supply
Rejection Ratio

Vs = ±15Vto ±5V

VCM

Input Common-Mode
Voltage Range

CMRR

Av

Large Signal Voltage
Gain (Note 7)

RL = 1 kO

PSRR

Output Swing

~

60 dB

105
95

84
80

RL = 1 kO

3.5

RL = 1000

3.2
-3.0

Sourcing. RL = 1000
Sinking. RL = 1000

Isc

Is

Output Short
Circuit Current

Units

3

6
8

mV
max

5

p'vrc
2.5

2.5

3.5

3.5

32
30

Sourcing

130

Sinking

100

Supply Current

2.3

1-549

p.A
max

1.5

1.5

p.A

2.2

2.2

max
MO

0
80

75

75

70

85

80

80

75

±3.7

-3.4

Continuous Output Current
(Open Loop) (Note 8)

LM6171BI
Limit
(Note 6)

14

RL = 1000
Vo

LM6171AI
Limit
(Note 6)

4

Input Offset Current
Input Resistance

Typ
(Note 5)

dB
min
dB
min
V

75

75

85

85

70~

70

80

80

3.2

3.2

3

3

-3.2

-3.2

-3

-3

2.8

2.8

2.5

2.5

-2.8

-2.8

-2.5

-2.5

28

28

25

25

28

28

25

25

dB
min
dB
min
V
min
V
max
V
min
V
max
mA
min
mA
max
mA
mA

3

3

3.5

3.5

mA
max

r!!:

.........en
....

± 5V AC Electrical Characteristics
V+ =

+5V, V- =

Symbol

-5V, VCM = OV, and RL = 1 kn.

Conditions

Parameter

SR

Slew Rate (Note 9)

GBW

Unity Gain-Bandwidth

UnleS!! otherwise specified, all limits guaranteed for
limits apply atthe temperature extremes

Av= + 2, VIN = 3.5 Vpp

Product
-3 dB Frequency

TJ

=

25·C,

Boldface

Typ
(Note 5)

LM6171AI
Umit
(Note 6)

LM6171BI
Limit
(Note 6)

Units

750

V/p.s

70

MHz

Av= +1

130

Av = +2

45

MHz
m

Phase Margin

ts

Settling Time (0.1 %)

Av= -1,VOUT= +1V,
RL = 5000.

Propagation Delay

VIN =

±1V, RL = 50qO,

Av= -2
AD

Differential Gain (Note 10)

D

Differential Phase (Note 1 0)

en

Input-Referred

f = 1 kHz

Voltage Noise
in

Input-Referred

f = 1 kHz

Current Noise

57

deg

48

ns

8

ns

0.04

%

0.7

deg

11

Mz""

1

Mz""

nV

pA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate oondltions for which the device is
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test oonditions, see the Electrical Characteristics.
Note :to Human body model, 1.5 kO In series with 100 pF.
Note 3: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 15O"C.
Note 4: The maximum power dissipation is a function of TJ(max)' 8JA, and TA. The maximum allowable power dissipation at any ambient temperature is Po (TJ(max) - TAl/8JA· All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are

g~ranteed

by testing or statistical analysis.

Note 7: Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. ForVs - ±15V, VOUT +5V, VOUT - ±1V.
Note 8: The open loop output current is the output swing with the 1000 loed resistor divided by that resistor.

±5V. For Vs -

Note 9: Slew rate is the average of the rising and falling slew rates.
Note 10: Differential gain and phase are measured with Av '7 + 2, VIN - 1 Vpp at 3.58 MHz and both input and output 750 terminated.
Note 11: Differential input voltage is measured at Vs -

±15V.

"

1-550

Typical Performance Characteristics
Supply Current va
Supply Voltage
3.5

rJ 125"C

r-..-

"<

.5

2.5

1
iJ:

1.5

I.---'

Supply Current va
Temperature

~

-:;;

~

10

~

15

12.5

1.5

17.5

"<

20

.3

1
=

iii

1.1
1.0

f

I'- r-....

".......

0.9

J

rrl

Vs=:l:1SV

'"

r-., .......
.......
. . . r-., ......

25

1.2

1

1.1

.5

11 0

Vs"5V~

1: -120
Vs

/

L

= t15V

" -140

.....

-150

,

./

"<

t

8

-5

•

Q

~

/
Vs '·15V-'

60

~

100

1k

""IIi

.,..

~50C f---

0

30

Frequency (Hz)

v·

~

60

~

50

~
~

"

Positiv• ..../

60

..f
~

-

-1

-2

10

100

lk

-4r C

t\
Tr"'"' ;;;;;.

-3
-4

1 85 0 e 25°C
V-40 -30 -20 -10 0 10

90 120

Frequency (Hz)

20

30

40

Output Current (mA)

PSRR vs Frequency
.I.

80

"'

\..

"'

10k lOOk

Vs' '5V

~

70

30

75 100 125

.l.~Jc \2~OC f-

E

Ys = :I::15V
VIN = lVpp

40

25 50

=b

/

70

"'

3

10M

[""'II

850C{.

90

1 rNogaUv.
90
80

10k tOOk 1t.1

"

Output Voltage
vs Output Current

P08itiv~

60

~

50

~

1M

10M

=0.5Vpp

I~
~
~

30
20
'10

Vs=:t:5V

'\t\

ILNegative

3

" " VIN

~

20
10

I?

Temperature (Oe)

L - 4OoC

100

'\

"f'.. l'.

VS' HI/..../

~OC\

85°C
-1 5
-120 -90 -60 -30

17

1\

20

.......

110

PSRR vs Frequency

~

.0

15

-iOo~- ~

-1 1
-1 2

CMRR vs Frequency

80

130

Output Current (mA)

V.'.5V

lrVS' .15V

-<
~ r-

80
-55 -40 -25 0

Vs" '15V

:E'

2S 50 75 100 125

100

10

85°C

1
3
2
11
10

-1 3
-1

120

.- I-. ........

"0 120

Output Voltage
va Output Current

v,

Temperature (Oe)

"'"

150

0.9

•

-16 0
-55 -40 -25 0

25 45 65 85105125

100

-IS· -10

i

V

1'\

Short Circuit Current
va Temperature (Sourcing)

.5

.!!
"0
> -1

,/

""

90

1/

/

V

= t5Y

I>

~

Common Mode Voltage (V)

-8 0

-10 0

Vs

0.8

Ys =:l:1SV

......"

.......

1.0

140

'-

0

~

V

Temperature (Oe)

--

~

~

""<;

1.2

160

~

65 85 105 125

-90

r-...

0.4
-55_ 35 -15 5

0.8

.s

1.4

I.......

-I'-

0.6

Ys =.t15V

">

.Short Circuit Current
vs Temperature (Sinking)

~

}

1.3

Temperature (Oe)

"'3

~

I'-

0.7
-55 -35 -15 5

~ -13 0

i

1.6

Input Offset Voltage va
Common Mode Voltage

0.8

:1-

..... I-""

1.6

">
.5

Temperaiure (Oe)

vi ••~V

. . . r-.,

..... ~

2.0

1
-55 -35 -15 5 25 .5 65 85 105 125

Input Bias Current
va Temperature
1.2

~

Input Offaet Voltage vs
Temperature

..... ~
~

"-1J 1

Supply Voltage (:tV)

1.3

..... 7

~

Y

T'-55"C

7.5

~~

1I

T=250C

2.5

2.S

.5

I..... ...... ..... ~ :1 A~
I...... ..... I.--' ~

V r

Unless otherwise noted, TA = 25"C

100

lk

10k lOOk

1M

10M

Frequency (Hz)

TUH/12336-3

1-551

•

Typical Performance Characteristics Unless otherwise noted, TA = 25'C (Continued)
Open Loop
Frequency Response
110

60
~

60

r-.:

20

;j

90

roo

0

1

I

,",

-20

0;~

~

45

.110

Vs = :l:SV

~
.3
]

i"-

80

I"-

40

0;-

100

Vs =±15V

I"-

80

Gain Bandwidth Product
vs Supply Voltage

Open Loop
Frequency Response

.......

40

i"-

20 .

lOOk

1M

"0lIl

. 0 .

\

-20

10k

lOOk

Gain Bandwidth
Productvs.
. Load Capacitance

r\

~
.3
]

ION

.IM

45

0;-

c

50

~

~

30
20

!
!

-

'"

60

500

\

1

c

!

"-

100

10k

60

100k

I
0

500

1500

f '\.

i.

V,=;ill

10

" ............. to-.
1

il

... - .

~
1

:

i

"

0.10
10k

lk

100

1

lOOk

10

Input Current Noise
vs Frequency

100

lk

10k

Slew Ratevs
Supply Voltage.

Slew Rate vs
Input Voltage

4000

3000

vs.=MY
3500

~

";j'

!

/

~2500

............

1

3000

.! 2000

1

~ 1500

:

Cij

~
0.10
1

10

100

,Ik

frequency (Hz)

10k

lOOk

0
0

1.....

2000

$

1500

~

1.000

/' -'.

...vr
v,l= tl5V

.::.

,

II

.l!

/

1000

500

2500

/

/

.l!

lOOk

frequency (Hz)

frequency (Hz)

frequency (Hz)

2000

Input current Noise
vs Frequency

t

10

toOO

Load Resistor (n)

~

I

25°C
.. 55°C

15
2000

~.....

'10
lk

12soe

10

:

10

-

Vs = t5V

Vs=:UV

i'

11.5

-

$

r\

20

15

12.5

..., .....-

~

C

1500

100

~.....

10

~

.s

Input Voltage Noise
vs Ffequency

Vs=:l:1SV

f

1000

65

Load R~sistor (n)

Input Voltage Noise
vs Frequency

I

~

c

(

r
~

0;-

'-12S 0 e

r'

0

10.

1.5

Supply Voltage (:tV)

/' , - ,\..2rC

Capacitive Load (pr)

$

5

2.5

i

,,..-r-

85

0 20 40 60 80 100'2°'40'6°'80200

100

at -55iC
0

90

90

12Soe

II

40

Vs=:l:1SV

~

I'

40

50

1~8.t

'I'

vaL~~

80

I

~

at 215'C ::,.

Large Signal
Voltage Gain
vsLoad

95

Vs = :l:15V

"-

~

~\

A~

;

"

10
60

Large Signal
.. Voltage Gain

10
60

'Ii

'A ~

100M

90

!

•

~

90
SO

Frequency (Hz)

F"requ'ehcy (Hz)

100

I

0

100M

lOW

!

90 -

0
10k

t

l.....-

1?0

II

500

i'-'

/

0
5

10

Supply Voltage (.V)

IS

I .2

3

4

5

6

1

8

9 10

Input'Voltage (V,_,)

TUHI12336-4

1-552

Typical Performance Characteristics Unless otherwise noted, TA =

2500

!.

25

~=+2

.........

25"C (Continued)

Open Loop Output
Impedance vs Frequency

Slew Ratevs
Load Capacitance

r!!I:
en

Open Loop Output
Impedance vs Frequency
25

Vs - 'ISV

"Is

= iSV

VOUT = 20Vp _ p

200

'[

--~
~

~

Vs =±15V
0'1

ISO

o

1000
500

20

5

\

Sinking

li

---

'\.... r-.

0
100

200

300

400

500

~l!

5
Ii

20

IS

~l!

.-

10

Sfi'I'IW,?,

10
10k

100k

1M

10M

15

srl111~[

r

5
100M

10k

100k

10M

100M

LOAD CAPACITANCE (prJ

FREQUENCY (Hz)

FREQUENCY (Hz)

Large Signal
Pulse Response
Av = -1, Vs = ±15V

Large Signal
Pulse Response
Av = -1,Vs = ±5V

Large Signal
Pulse Response
Av = +1, Vs = ±15V

\

I

I

I
IJ

\

TIME (20 ns/dr,)

TIME (20 ns/dl,)

Large Signal
Pulse Response
Av = + 1, Vs = ±5V

Large Signal
Pulse Response
Av =+2, Vs = ±15V

II

TIME (20ns/dr,)

Large Signal
Pulse Response
Av = + 2, Vs = ± 5V

,.-

I

:\

1\

TIME (2 n./dr,)

Small Signal
Pulse Response
Av = -1, Vs =, ±15V

TIME (20 ns/dl,)

SmaUSlgnal
Pulse Response
Av = -1, Vs = ± 5V

1\

1\

TIME (20 ns/dr,)

1\

TIME (20 n./dl,)

SmaUSignal
Pulse Response
Av = + 1, Vs = ± 15V

J

TIUE (20 n./dl,)

TIME (20 ns/dr,)

TL/H/12336-6

1-553

....

.... .------------------------------------------------------------------------------------------,
Typical Performance Characteristics Unless otherwise noted, tA = 25°0 (Continued)
:I
...I
~
~

.Small Signal
Pulse Response
Ay = + 2, Vs = ± 15V

Small Signal

Pulse Response .
Ay= +1,Vs;= ±5V

Small Signal

Pulse Response
Ay = +2, Vs = ±5V

~

I

TIME (20 n./dly)

L

I"""'I~

z

rt

~

Vs ·i2·7S - vs =i:l0
-I Vs=iS

-10

-20

-

rt

VS =i2.7S f.-VS =:i:l0
-I Vs=iS

~

100M

10M

FREQUENCY (Hz)

I

VS

I III

15

-

I\.

-20

- _ I\.

1\..

1\
\

SOpF

\
\
\

-1

100M

1M

300M

Total Harmonic Distortion
vs Frequency

1

"~

o. 1

10M

iSV I
1
2.Skll
sVp_ p

.Total Harmonic Distortion
vs Frequency

g
"'"

frequency (Hz)

10M

100M

o. 1

'1

~

0.0 1

0.001
1M

I

VS =ilSVI
Av = 2
1\ = ·2.SkR
Vo = 20 Vp_ p

J

0.01

0.00 I

100M 200M

10
Vs =
Av =
1\ =
'10 =

0.0 1

10M
FREQUENCY (Hz)

I

lOOk

\
..1
1M

100M 200M

0.1

10k

-1
-3

10

Yo.• 20Vp_'

g

,I
1.S pF

S

Total Harmonic Distortion
vs Frequency

Av = 1
1\ = 2.Skll

10

~

FREQUENCY (Hz)

= :l:15V II

50pF

-S

FREQUENCY (Hz)

Vs

l

v..~

'iii'
3

-5

10M

1M

IY

100pF I

z

-3

I III

100

so F
1.SpF

I VS=iSV

III
220pFI

13
11

~

= I.S pF-

IS

100pF

'iii'
3
z

100M

Closed Loop'Frequency
Response vs Capacitive
Load (Ay = + 2)

VS=iI5V

J
I Ylil

11

= 100pf

-

II
220 pF

13

J J UJ
1\.1 = ~2ci :FI....., III

-10

10M

FREQUENCY (Hz)

Closed Loop Frequency
Response vs Capacitive
Load (Ay = + 2)

= :l:SV

I

I\. = 220 pF·T:!I+""Itft-t--i

1M

100M

FREQUENCY (Hz)

Closed Loop Frequency
Response vs Capacitive
Load (Ay = + 1)

F-,

I H+&+-I
-201--t-..,II-+--:tII

L

I
1M

I VS=iI5V

'-r-~ ~~~~~F+-I+IH-"

-10

-20
I
10M

I

1--t--hf-!1. = 1.5

I
I

10

'iii'
3

1M

Closed Loop Frequency
Response vs Capacitive
Load (Ay = + 1)

I
, VS · i l , S ,

I

\

TIME (20 n./dly)

Closed Loop Frequency
Response vs Supply
Voltage (Ay = + 2)

Vs = i l S ,

-10 -

I

co
co

N

TIME (20 "Idly)

Closed Loop Frequency
Response vs Supply
Voltage (Ay = + 1)

i

~E

\

10k

lOOk

1M

frequency (Hz)

10M

100M

0.00 1
10k

lOOk

1M

10M

100M

Frequency (Hz)

TUH/I2336-7

1-554

.-----------------------------------------------------------------------------'r
Typical Performance Characteristics Unless otherwise noted, TA =
Undlstorted Output Swing
vs Frequency

Total Harmonic Distortion
vs Frequency

I

5:
.....
.....
.....

25°C (Continued)

Undlstorted Output Swing
vs Frequency

10~~--~mr"nmrTTm~

Ys = '5Y
1

'" = 2

v

1\ = 2.5 kn ttttIIt-+tttIIH-tffi!lll
Vo

= 5Vp_p

0.1

H+ttttlll--tttttlllt:lHttttIIH+tttHil

0.01

HtHlllll-hI1-Hllll--HttllIHtHlHB

21

f-

,

1\

it

I IIIIII

4

3~~~-+~~~~~
Vs = :tsv
'" =
2
,%
Maximum

2

Distortion

1~~~~~~-U~~

0.001 L...LJ.llJJ"'--LJ.U.IJW.....Ll.LWIIL...J..J..Ll.UW
10k
100k
10M
100M
1M

lOOk

Frequency (Hz)

Undlstorted Output Swing
VB Frequency

::

~

It

:::

-0

5

I

1.8

2%hle.x.

IN I
I""'-J

1.6

TmTJ·/Dislortion

l_t~~-l-n"""-I+!+IIIH-+I++HlI
+++++HlAr\,,++-I+HHI

'" = 1

\:

O~------~~~~llllW

lOOk

1M

10M

Frequency (Hz)

100M

Total Power
DIssipation VB
Ambient Temperature
f".,.
II

-Tl'(J

Ys = .15Y
1\ = 70Dn

10M

Frequency (Hz)

30~rn~~rMmm~~~

Frequency (Hz)

1M

Frequency (Hz)

Undlstorted Output SWing
vs Frequency

~

= IDOl!

100M

1.4
1.2 f-,*"+~"'-t--+~r--1
~
8 Pin DIP""

I'-....

e;

~

1

0.8
0.6

I"N-..I "
1\ I l""--.
.......

0.4

f--t--'8t-p-'in-'sf-'0-+_+.........
~fo.-I

0.2

f---t-+-I+I-t--i--I---l

o L-L-L-IL......JIL......JL-L......l
-40 -20

0

20

40

60

80

100

TEMPERATURE (Oe)
TL/H/12336-8

~

I

I
I

i

1-555

_
.....

CD

.

r-----------------------------------------------------------------------------~

LM6171 Simplified Schematic

:I

TLlH/12336-10

1-556

r-----------------------------------------------------------------------------,
Application Information
LM6171 Performance Discussion

~

iC

....
en

duce errors in measurement. Instead, the probes can be
grounded directly by removing the ground leads and probe
jackets and using scope probe jacks.

The LM6171 is a high speed, unity-gain stable voltage feedback amplifier. It consumes only 2.5 mA supply current
while providing a gain-bandwidth product of 100 MHz and a
slew rate of 3600V I /Ls. It also has other great features such
as low differential gain and phase and high output current.
The LM6171 is a good choice in high speed circuits.

COMPONENTS SELECTION AND FEEDBACK RESISTOR

It Is important in high speed applications to keep aU component leads short b,ecause wires are inductive at high frequency. For discreteicomponents, choose carbon composition-type resistors. arid mica-type capacitors. Surface mount
components ~e preferred over discrete components for
minimum inductive effeCt.

The LM6171 is a true voltage feedback amplifier. Unlike current feedback amplifiers (CFAs) with a low inverting input
impedance and a high non-inverting input impedance, both
inputs Of.,;voltage feedback amplifiE!rs (VFAs) have high impedance nodes. The 10w'impe9ance inverting.inp\Jt in CFAs
will couple with feedback capacitor 4nd cause oscillation.
As a result, CFAs canoot'be used in· traditional op amp circuits such as photodiode amplifiers, I-to-V co.nverters and
integrat?rs.

Large values of feedback resistors can couple with parasitic
capacitance and cause undesirable effects suoh as ringing
or oscillation in high speed amplifiers. For LM6171 , a feedback resistor of 5100 gives optimal performance.

Compensation for Input
Capacitance

LM6171 'Circuit Operation

The combination of an amplifier's input capacitance with the
gain setting resistors adds a pole that can cause peaking or
oscillation. To solve this problem, a feedback capacitor with
a value

The class AB input stage in LM6171 is fully symrillltrical and
has a similar slewing characteristic to the cl,lrrent feedback
amplifiers. In the LM6171 SimplfiQd Schematic;.Q1 through
04 form the equivalent of the current feedback input buffer,
RE the equivalent 6f the feedback resistor, and stage A buffers the inverting input. The triple-buffered output stage isolates the' gain stage from the load to provide low output
impedance.

CF > (RG X C,N)/RF
can be used to cancel that pole. For LM6171, a feedback
capaCitor of 2 pF is recommended. F/{Jure 1 illustrates the
compensation circuit.
'.
.

LM6171 Slew Rate Characteristic
The slew rate of LM6171 is determined by the current available to charge and discharge an internal high impedance
node capaCitor. The current is the differential input voltage
divided by the total degeneration resistor RE. Therefore, the
slew rate is proportional to the input voltage level, and the
higher slew rates are achievable in the lower gain configurations.

V'N -"'M..--•.....,....,,---.4........

VOUT

:::= GN
.......•

When a very fast large signal pulse is applied to the input of
an amplifier, some overshoot or undershoot occurs. By
placing an external series resistor such as 1 kO to the input
of LM6171, the bandwidth is reduced to help lower the overshoot.

TL/H112336-11

FIGURE 1. Compensating for Input Capacitance

Power Supply Bypassing
Bypassing the power supply is necessary to maintain low
power supply impedance across frequency. Both positive
and negative power supplies should be bypassed individually by plaCing 0.01, /LF c,eramic capacitors directly to power
supply pins and 2.2 /LF tantalum capacitors close to the
power supply pins.

Layout Consideration
PRINTED CIRCUIT BOARDS AND HIGH SPEED OP
AMPS
There are many things to consider)Nhen designing PC
boards for high speed op amps. Without proper caution, it is
very easy and frustrating to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the'signal traces should be short and wide
to provide low inductance and low impedance paths. Any
unused board space needs to be·grounded to reduce stray
signal pickup. Critical components should also be grounded
at a col'flmon point to eliminate voltage drop. Sockets add
capacitance to the board and can affec'! frequency performance. It is better to solder the amplifier directly into the PC
board without using any socket.
USING PROBES.
Active (FEn probes are ideal for taking high frequency
measurements because they have wide bandwidth, high input impedance and low input capaCitance. However, the
probe ground leads provide a long ground loop that will pro-

TL/H/12336-12

FIGURE 2. Power Supply Bypassing
1-557

.....
....

Application Information (Continued)
Termination'
In high frequency applications, refl!'lctions occur if signals
are not properly terminated. Figure 3 shows a proPerly terminated Signal while F/{JUf8 4 shows an improperly terminat·
ed signal.

,
,

TlIH/12336-13

FIGURE 5. Isolatloo Resistor Osed
, to Drlvecapa'cluve Load

Tl/H/12336-14

FIGURE 3. Properly terminated Signal

TlIHI12336-16

FIGURE 6. The LM6171 Driving a 200 pFLoad
with a SOO Isolation Resistor

Power Dissipation
The maximum power allowed to dissipate in a device is defined as:
'
Po = (TJ(max) - TpJ/9JA
Where Po is the power dissipation in a device
TJ(max) is the maximum junction temperature
T A is the ambient temperature
9JA il! the thermal resistance of a particular package
For example, for the LM6171 in a S0-8 package, the maximum power dissipation at 25°C ambient temperature is
730 mW.

TLlH/12336-15

FIGURE 4. Improperly Terminated Signal

."

....

To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The
other end of the cabllil shquldbe terminated with the same
value terminator or' rssistor. For the commonly used cables,
RG59 has 750 characteristic imPedance,' and RG58 has
500 characteristic impedance.

Thermal resistance, 9JA, depends on parameters such as
die size, package size and package material. The smaller
the die size and package, the higher 9JA becomes. The.8pin DIP package has a lower thermal resistance (108"C/W)
than that of 8-pin
(172"C/W). Therefore, for higher dissipation capability, use an 8-pin DIP package.

so

Driving Capacitive Load$ ,

T~e total power diSiiipated in 'a device can' be calculated as:

Amplifiers driving capacitive loads can osciliate or have Ijnging at the output. To eliminate oscillation or reduCe ringing,
an isolation resistor can be placed as shown below in Figure
5. The combination of the isolation resistor and the load
capacitor forms a pole to increase stablility by adding more
phase margin to the overall system. The desired performance depends on the value of the isolation resistor; the bigger the isolation resistor, the more damped the pulse response becomes. For LM6171, a 500 isolation resistor is
recommended for initial evaluation. Figure 6 shows the
LM6171 driving a 200 pF load with the 500 isolation resistor.

Po

';;Pa +

PL

'

Po is the quiescent power dissipated in a device with no
load connected ,at the output. PL is, the power dissipated in
the device with a load, connected at the output; it is not the
power dissipated by the load.
Furthermore, '
Po = sup~ly current X total supply voltage
, with no load
\

'

PL = output current X (voltage difference
between supply voltage and output
voltage of the same supply)
, '

1-558

ri:
Q)

.........
....

Application Information (Continued)
Pulse Width Modulator

For example, the total power dissipated by the LM6171 with
Vs = ± 15V and output voltage of 10V into 1 kO load resistor (one end tied to ground) is
Po=Pa+PL
= (2.5 mAl x (30V) + (10 mAl
= 75mW + 50 mW
= 125 mW

Rl
R4

x (15V - 10V)

SlaA
>-.._~~_,....-

Your

R3

Application Circuits
Fast Instrumentation Amplifier

R2

sian

S10A
VI

RI

R2

R6

I kn

Ikn

TLlH/12336-19

sian

Design Kit

R3

A design kit is available for the LM6171. The design kit contains:
• High Speed Evaluation Board
• LM6171 in a-pin DIP Package
• LM6171 Datasheet
• Pspice Macromodel Diskette With the LM6171 Macromodel
• An Amplifier Selection Guide

Vour

sian
R4

sian
V2

RS

R7

Ikn

I kn
TL/H/I2336-17

Pitch Pack

V,N=V2-Vl

A pitch pack is available for the LM6171. The pitch pack
contains:
• High Speed Evaluation Board
• LM6171 in a-pin DIP Package
• LM6171 Datasheet
• Pspice Macromodel Diskette With the LM6171 Macromodel

if R6 = R2, R7 = RS and Rl = R4

VOUT = ~ (1 + 2!!! ) = 3
Y,N
R2
. R3

Multlvlbrator
Rl

Contact your local National Semicqnductor sales office to
obtain a pitch pack.

>-..-~~-.---

YOUT

TUH/I2336-18
f=---~---

2(RlCln(1+2~))
f

= 4 MHz

1-559

I

j

i

.r--------------------------------------------------------------------------------,
CD

~

tflNationa" Semiconductor
LM6181 100 mA, 100 MHz Current Feedback Amplifier
General Description

Features (Typical unless otherwise noted)

The LM6181 current-feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. The amplifier can directly drive up to 100 pF capacitive
loads without oscillating and a 10V signal into a 500 or 750
back-terminated coax cable system over the full industrial
temperature range. This represents a radical enhancement
in output drive capability for an 80pin DIP high-speed amplifier making it ideal for video applications.
Built on National's advanced high-speed VIPTM II (Vertically
Integrated PNP) process, the LM6181 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at Av = -1, 60 MHz at Av =
-10. With a slew rate of 2000VI ,..s, 2nd harmonic distortion
of -50 dBc at 10 MHz and settling time of 50 ns (0.1 %) the
LM6181 dynamic performance makes it ideal for data acquisition, high speed ATE, and precision pulse amplifier applications.

•
•
•
•
•
•
•

Slew rate
2000 V/,..s
50 ns
Settling time (0.1 %)
Characterized for supply ranges
± 5V and ± 15V
Low differential gain and phase error
0.05%,0.04'
High output drive
± 10V into 1000
Guaranteed bandwidth and slew rate
Improved performance over EL2020, OP160, AD844,
LT1223 and HA5004

Applications
•
•
•
•
•

Coax cable driver
Video amplifier
Flash ADC buffer
High frequency filter
Scanner and Imaging systems

Typical Application

Vin -

...- -....

VIN

SO.n

(2V/div)
820.n
820.n

SO.n

VOUT

(2V/div)
TLlH/11328-1

cable Driver

TIME (SOns/div)
TLlH/11328-2

Connection Diagrams (For Ordering Information See Back Page)
16-Pln Small Outline Package (M)

8-Pln Dual-In-Llne Package (N)I
Small Outline (M-8)

16

Nle
INVERTING INPUT

8

• VINVERTING INPUT

Nle

NON-INVERTING INPUT

V+

• VNON-INVERTING INPUT

V-

OUTPUT

Nle
TLlH/11328-3

Order Number LM61811N, LM6181AIN,
LM6181AMN, LM6181AIM-8, LM61811M-8
or LM6181AMJ/883
See NS Package Number J08A, M08A or N08E

'Heat sinking
pins (Note 3)

Nle
Nle
Nle
• V-

V- •

Nle
Nle
Nle
Nle
V+
OUTPUT

v- •
TLlH/11328-4

Order Number LM61811M or LM6181AIM
See NS Package Number M16A

1-560

r-

!!I:

Absolute Maximum Ratings

(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
±18V
±6V
Differential Input Voltage
± Supply Voltage
Input Voltage
Inverting Input Current
Soldering Information
Dual-In-Line Package (N) Soldering (10 sec)
Small Outline Package (M)
Vapor Phase (60 seconds)
Infrared (15 seconds)

Output Short Circuit
Storage Temperature Range

-65°C

S;

TJ

(Note 7)
+150"C

S;

m
.....

CO

.....

150"C
±3000V

Maximum Junction Temperature
ESD Rating (Note 2)

Operating Ratings

15mA

Supply Voltage Range

26O"C

Junction Temperature Range (Note 3)
LM6181AM
-55°C S; TJ S; + 125°C
LM6181AI, LM61811
-40°C S; TJ S; +85°C

215"C
220"C

7Vt032V

Thermal Resistance (6JA, 6Jcl
8-pin DIP (N)
8-pin SO (M-8)
16-pin SO (M)

102"C/W, 42"C/W
153°C/W, 42"C/W
70"C/W, 38°C/W

± 15V DC Electrical Characteristics
The following specifications apply for Supply Voltage = ± 15V, RF = 8200, and RL = 1 kO unless otherwise noted. Boldface
limits apply at the temperature extremes; all other limits TJ = 25°C.
LM6181AM
Symbol

Vos

Parameter

Conditions

LM6181AI

Input Offset Voltage

2.0

3.0

2.0

4.0
TCVOS Input Offset Voltage Drift
la

5.0

Inverting Input Bias Current

2.0

Non-Inverting Input Bias Current

0.5

5.0
5.0

2.0

1.5

0.5

5.0

5.0

1.5

2.0

3.0
30

10

10

10

0.3

Vs = ±4.5V. ± 16V

0.5

0.3

3.0
0.05

Inverting Input Bias Current
Common Mode Rejection

0.5

S;

+10V

0.3

Non-Inverting Input Bias Current -10V
Common Mode Rejection

S;

VCM

S;

+10V

0.1

CMRR

Common Mode Rejection Ratio

-10V

S;

PSRR

Power Supply Rejection Ratio

Vs = ±4.5V. ±16V

0.5

0.05
0.3

S;

+10V

60

50

60

70

Vo

Output Voltage Swing

Av = -1. f = 300kHz

0.2

12
11

12

130

10
100

75
1-561

70

11

11

10
100

85

0.75

p.AIV
max

0.5

0.5
60

50

50
80

70

85

dB
min
dB
min

0.2

0

10

MO
min

12

11

11
11

8.0
130

0.5

1.0
0.1

11

7.5
Output Short Circuit Current

50

10
11

0.3

70

11
RL = 1000

0.5

0.2

10
RL=1kO

0.5

0.75

3.0

50
80

70
Non-Inverting Input Resistance

p.A
max

4.5
0.05

0.5

50
80

0.5

0.75
0.1

0.5
VCM

0.3

1.5

0.75
0.5

0.5

3.0

1.5

VCM

Output Resistance

3.0

nAI"C

Non-Inverting Input Bias Current Vs = ±4.5V. ±16V
Power Supply Rejection

RIN

10

5.0

30

Ro

mV
max
p.VI"C

17.0

30

S;

Isc

5.0

Non-Inverting Input Bias
Current Drift
Inverting Input Bias Current
Power Supply Rejection

5.0

5.5

Inverting Input Bias Current Drift

-10V

la
CMR

3.5

12.0

3.0

la
PSR

3.0

3.5

12.0

TCla

LM61811

Typical Umlt Typical Limit Typical Limit Units
(Note 4) (Note 5) (Note 4) (NoteS) (Note 4) (Note 5)

10

V
min

8.0
130

100

85

mA
min

~
I

±

,\.'
15V DC Electrical Characteristics (Continued) "
, "
The following specifications apply for Supply Voltage = t,15V, RF = 8200, and RI..; '" " kO unless otherwise noted. Boldface
limi~ apply at the temperature extremes; all other limi~s TJ = 25°C.

..

'

,LM6181AM
Symbol

Parameter

Transimpedance

ZT

Conditions

Typical
(Note 4)

RL = 1,kO

LM6181AI

Typical

Limit
(Note 5)

(~ote.4)

1.0

1.8

1.8

0.5
RL = 1000

1.4

Supply Current

No Load, Vo = OV

0.8

1.4
7.5

LImit

Units

(Not~5)

0.8

0.4
lA

0.7

MO
min

0.35,

10

7.5

10

10

V+ - 1.7V
V- + 1.7V

Input Common Mode
Voltage Range

1.8,

0.8

10
VCM

1.0

0.4

1()

7.5

Typical
(Note 4)

0.5

0.4
Is

lNUi1811

Limit
(Note 5)

10
V+ -1.7V
V- + 1.7V

V+ - 1.7V
V- + 1.7V

mA
max
V

± 15V AC Electrical Characteristics
The following specifications apply for Supply Voltage = ± 15V, RF = 8200, RL = 1 kO unless otherwise noted. Boldface
limits apply at the temperature extremes; all other limits TJ = 25°C.
LM6181AM
Symbol

BW

Parameter

Closed Loop Bandwidth
-3dB

COnditions

Ay= +2

100

100

Ay = +10

80

80

Ay =-1

100

Ay = -10

60

PBW

Power Bandwidth

Ay = -1, Vo = 5Vpp

SR

Slew Rate

Overdriven

Rise and Fall Time

Vo = 1 Vpp

5

f = 1 kHz

in(_)

Inverting Input Noise
Current Density

f=lkHz

Input Noise Voltage Density f = 1 kHz

60

1000
"

1400

80

MHz
min

60
60

1" tf

Non-Inverting Input Noise
Current Density

100

2000

50

in(+)

80
80

60

Ay = -1, Vo = ±5V
RL = 1500

Vo = 1 Vpp

100

2000

Settling Time (0.1 %)

Propagation Delay Time

80

Units

100

60

ts

tp

LM61811

2000

Ay = -1, Vo = ±10V,
,1400
RL = 1500 (Note 6)

en

LM6181AI

Typical Limit Typical
Limit Typical
Limit
(Note 4) (Note 5) (Note 4) (Note 5) (Note 4) (Note 5)

1000

1400

50

1000

V//,-s
min

50

5

5
"

ns

6

6

6

3

3

3

pA/,!Hz

16

16

16

pAlJiZ
nV/JiZ

4

4

4

Second Harmonic Distortion 2Vpp,10MHz

-50

-50

-50

Third Harmonic Distortion

2Vpp,10MHz

-55

-55

"":50

Differential Gain

RL = 1500
Ay= +2
NTSC

0.05

0.05

0.05

%

RL = 1500
Ay' = +2
NTSC

0.04

0,04

0.04

Deg

Differential Phase

,

,

1-562

dBc

± 5V DC Electrical Characteristics
The following specifications apply for Supply Voltage = ± 5V, RF = 8200, and Rl = 1 kO unless otherwise noted. Boldface
limits apply at the temperature extremes; all other limits TJ = 25°C.
LM6181AM
Symbol

Vos

Parameter

·Condltlons

Input Offset Voltage

Typical
(Note 4)
1.0

LM6181AI

Limit
(Note 5)

Typical
(Note 4)

2.0

1.0

3.0
TCVos Input Offset Voltage Drift
IB

TCIB

IB
PSR

2.5

Inverting Input
Bias Current

5.0

Non-Inverting Input
Bias Current

0.25

5.0

22
1.5

0.25

1.5

0.25

1.5

3.0

3.0

3.0

/LA
max

nArC

Inverting Input Bias Current Vs = ±4.0V, ±6.0V
Power Supply Rejection
Vs = ±4.0V, ±6.0V

0.3

0.5

0.3

0.5
0.05

0.5

s: VCM s:

+2.5V

CMRR Common Mode
Rejection Ratio

-2.5V

s: VCM s:

+2.5V

PSRR

Power Supply
Rejection Ratio

Vs = ±4.0V, ±6.0V

Ro

Output Resistance

Av = -1, f = 300 kHz

RIN

Non-Inverting
Input Resistance

Vo

Output Voltage Swing

0.3

0.5

0.05

0.5

0.3

50

0.12

70

80

0.12

70

0.5

0.5
57

50

47
80

64

dB
min

64
0

8

8

8

MO
min

2.6

2.25

2.6

2.2

2.0
75

1.4

0.75

1.0

0.5

2.2

8.5

1-563

2.0
75

1.4

0.75

2.2

0.5
8.5

1.0

V
min

1.0

inA
min

0.6

0.3
0.4

MO
min

0.2
6.5

8.5
V+ - 1.7V
V- + 1.7V

75

70

0.25
6.5

2.0

2.0
100

0.4
1.0

2.25

2.25

70

8.5
V+ - 1.7V
v- + 1.7V

2.6

2.0
100

0.25
6.5

2.25

2.25

0.35

No Load, Vo = OV

1.5

70

70

Rl = 1000

50

/LAN
max

0.25

100
Rl = 1 kO

0.5

1.0

0.25

2.0
Output Short
Circuit Current

0.3

0.25

2.2
Rl = 1000

0.5

0.5

0.5

47

70

Rl = 1 kO

0.05

0.5
57

47
80

0.5

1.0

1.0

1.0

1.0
57

0.3

0.5

1.0
0.12

0.5

0.5

0.5

-2.5V

Input Common Mode
Voltage Range

17.5

5.0

3.0

Supply Current

mV
max
/Lvrc

27.0

Non-Inverting Input
Bias Current Drift

Non-Inverting Input
Bias Current
Common Mode Rejection

VCM

5.0

50

+2.5V

Is

10

50

Transimpedance

3.0

2.5

50

s: VCM s:

ZT

Limit Units
(Note 5)

3.5

22

1.5

Inverting Input Bias Current -2.5V
Common Mode Rejection

Isc

1.0

Inverting Input Bias
Current Drift

Non-Inverting Input
Bias Current
Power Supply Rejection
IB
CMR

2.0

2.5
2.5

10

LM61811

Limit
Typical
(Note 5) (Note 4)

8.5

8.5
V+ - 1.7V
V- + 1.7V

mA
max
V

~
I

± 5V AC Electrical Characteristics

The'following specifications apply for Supply Voltage = ,± 5V, RF = 8200, and RL = 1 kO unless otherwise noted. Boldface
limits apply at the temperature extremes; all other limits TJ = 25°C.
LM6181AM
Symbol

BW

Parameter

Conditions

LM6181AI

LM81811

Units
Typical Limit Typical Limit Typical Limit
(Note 4) (Note 5) (Note 4) (Note 5) (Note 4) (Note 5)

Closed Loop Bandwidth - 3 dB Av= +2

50

50

50

Av = +10

40

40

40

Av = -:-1

55

35

55

35

55

35

MHZ
min

,375

V/p.s
min

Av = -10

35

35

35

PBW

Power Bandwidth

Av= -l,Vo=4Vpp

40

40

40

SR

Slew Rate

Av = -1, Vo = ±2V,
RL = 1500 (Note 6)

500

ts

Settling Time (0.1 %)

Av=-l,Vo=±2V
RL = 1500

50

50

50

4, tf

Rise and Fall Time

Vo = 1 Vpp

8.5

8.5

8.5

tp

Propagation Delay Time

Vo = 1 Vpp

8

8

8

in(+)

Non-Inverting Input Noise
Current Density

f = 1 kHz

3

3

3

pAl-'Hz

in(_)

Inverting Input Noise
Current Density

f = 1 kHz

16

16

16

pAl-'Hz
nVl-'Hz

en

375

500

375

500

ns

Input Noise Voltage Density

f = 1 kHz

4

4

4

Second Harmonic Distortion

2Vpp,10MHz

-45

-45

-45

Third Harmonic Distortion

2Vpp,10MHz

-55

-55

-55

Differential Gain

RL = 150n
Av= +2
NTSC

0.063

0.063

0.063

%

RL = 1500
Av= +2
NTSC

0.16

0.16

0.16

Deg

Differential Phase

dBc

Note 1: Absolute Maximum Ratings indicate limitS beyond which damage to the device may occur. Operating ratings indicata conditions the devica is Intanded to
be functional, but device parameter spaclficatlons may not be guaranteed under these conditions. For guerantaed speciflcations and tast conditions, See the

Electrical Charactaristics.
Note 2: Human body model 100 pF and 1.5 kG.
Note 3: The typical iunction·to-ambient thermal resistancs of the molded plastic DIP(N) package soldered. directly into a PC board is 102"C/W. The junction-to-ambiant thermal resistancs of the S,O. stJrfacs mOllnt (M) package mounted flush to the PC board is 70'C/W when pins 1, 4, B, 9 and 16 are soldered to a total 2 in2
1 oz. copper tracs, Thalli-pin S.O, (M) package must have pin 4 and at least one of pins 1,8.9, or 16 connectad to v- for proper operation. The typical junctiOnto-amblent thermal reslstancs of the S,O. (M-B) package soldered dlrectiy into a PC board Is 153'C/W.
Note 4: Typical values represent the most likely parametric norm.
Note 6: All limitS guaranteed at room tamperature (standard type lacs) or at operating tamperature extremes (bold face type).
Note 6: Measured from + 25% to + 75% of output wavetorm.
Note 7: Continuous short c1rcu~ operation at elevated ambient tamperature can result in exceeding the maximum allowed junction temperature of 15O"C. Output
currents in excess of ± 130 rnA over a long tarm basis may adversely affect rellabll~.
Note 8: For guarantaed MllitSry Temperature Range parameters see RETS8181X.

1-564

Typical Performance Characteristics

Ii:
....

G)

T A = 25'C unless otherwise noted

....

CD

CLOSED-LOOP
FREQUENCY RESPONSE
Vs = ± 15V; RI = 820n;
RL= lkn

CLOSED-LOOP
FREQUENCY RESPONSE
Vs = ± 15V; R, = 82Dn;
RL = 150n

c-

UNITY GAIN
FREQUENCY RESPONSE
Vs = ±15V;Ay = +1;
lit = 820n

·~U~l~

!

I- _I~ 111~1~
I- _I~ I~I~IJ

~

III
1M

10M

100W

UNIT GAIN
FREQUENCY RESPONSE
Vs = ±5V;Ay = +1;
R, = 820n

c1

~

~

OdB

~

1

1M

'\ = lk---'\ =100
'\ =150
10M

100M

1M

~

o·

OdB

1M

10M

t-

~,

J. I.lH~J

Vs = :tf5V

Vs - *12.5V

Vs = :l:12.5V
Vs
Vs

"'
"'

m

10M

100M

t!

i

t:

iii

l!l

~

m

10M

100M

~

if

z

~

OdB

~
!:;

i'-

~

0'

'\ = lk"
'\ = 150
'\ • 100

iii

">
15

~
z

~

180 0

IdB

c-

-1M

'\ • lk

'\ = 150
'\ = 100
10M

I"i

I II

lOW

100W

1M

10M

100M

INVERTING GAIN
FREQUENCY RESPONSE
Vs = ±5V;Ay = -10;
R, = 820n
1

180'

1

135° ~
90° ~

45°
~ 20dB

~

!: 20dS

'\ = lk
'\ • 150

'\ = 100
1M

O'



~

1M

135° ~
90 0 ~

i"

NON-INVERTING GAIN
FREOUENCYRESPONSE
Vs = ±5V;Ay = +2;
R, = 820n

"

100M

= :tIOV
= ::I:7.SV
Vs = :t5V

tlOV

= *7.5V
Vs = ::I:SV

~
~

100M

~

'"

180'

135' ~
45'

10M

11111111
11111111
11111111

INVERTING GAIN
FREQUENCY RESPONSE
Vs = ±5V;Ay = -1;
R, = 820n

90'

~

1M

~

~,

FREQUENCY RESPONSE
vs SUPPLY VOLTAGE
Ay = -l;RI = 820n;
RL = 150n

180 0

i"'""'-

'\ = lk
'\ =150
'\ = 100

100M

11111111
11111111

vs"

:\

"
~
~

10M

iii

f-

'\ • 150
'\ • 100

Vs

INVERTING GAIN
FREQUENCY RESPONSE
Vs = ±15V;Ay = -1;
R, = 820n

">

i

180° t;:

'\ = lk

FREQUENCY RESPONSE
V8 SUPPLY VOLTAGE
Ay = -1; R, = 820n;
RL = 1kn
0'

~

"'

lV

45° ~
90 0 ~
135°

OdB

~~

I- _I~'!'~:

O'

:-

10M

~
t
100M

~

cc-

r-

1M

'\ = lk
'\ = 150'"
'\ = 100~
10M

~

!

t:

iii

~

t100M
TLlHI11328-5

1-565

.CD
.-

I....I

Typical Performance Characteristics
NON-INVERTING GAIN
FREQUENcy RESPONSE
Vs = ±,15V;Av = +10;
Rf = 8200

TA = 25·Cunless otherwise noted (Continued)

NON-INVERTING GAIN
FREQUENCY RESPONSE
Vs = ±5V;Av = +10;
Rf = 8200

NON-INVERTING GAIN
FREQUENCY COMPENSATION
Vs = ±15V;Av = +2;
RL = 1500

- ~ ~I.~!~~

.....

-~ ~I/!~r-I

1

I\. =

l-

I\.

11111
1M

-

;:!

g

1\

10M

120
100

:E
!;l

~

20 Vs =:tSV

I\. •
I\. =

...,. ~ 1=I~i~~I,

lkn
150
100

11111
10M

~

.N..

130

12

120
110

9 = ' -ssoe
8 +25 OC
3 =~125OC

100

i

=
=

-3

-6 _
-9

!r

+125OC
+25OC

50
40

-15
0.5

1.0

1.5

2,0

2,5

Rf'

Ro (kll)

3.0

3.5

10

100

30
Ik

1000

TRANSIMPEDANCE
,va FREQUENCY
Vs = ±5V
RL= 1kO
130

130

120

120
110

120
110

110
100

100

90

g

10

g

.5

80

.5

80

.5

it-

10

;:t

10

;r

80

60

50

,50

40

4~

30
10M

25mY

FAWNG
EDGE 10mV

+0.2" FALLING
EDGE 5mV

lOOk

I.

10.

Ik

100M

11

180..(n.

START

-0,'55

Vs' '~.J..1'"

1000

+0.25%

~

-0.,5"

~

RISING
EDGE

-,a.8ns

I.

SdB PEAKING

+0.25%

-25mV

20ns/drv

lOOk

SUGGESTED fit and Rs lor CL
Ay = -1;RL = 1500

ST'"

+0.2%

10k

10000

/~V

-0.2"

-0,'"

-43 mY
-fS.8ns

10k

SETTLING RESPONSE
Vs = ±5V;RL = 1500;
Vo = ±2V;AV = -1'

57mV

RISING
EDGE

100M

30
Ik

100M

SETTLING RESPONSE
Vs = ±15V;RL = 1500;
Vo = ±5V;Av = -1

r--.

10M

80

40
30

/T1N

100M

10

60

1M

10M

10

50

lOOk

1.

100

g

10k

lOOk

TRANSIMPEDANCE
va FREQUENCY
Vs = ±5V
RL= 1000

130

Ik

10k

R LOAO (n)

TRANSIMPEDANCE
va FREQUENCY
Vs= ±15V
RL = 1000

'>l .•

10
80
10
60

-55OC

-u

'0

100M

10M

TRANSIMPEp"NCE
va FREQUENCY
Vs = ±15V
RL = ao

15

~

=:t15Y

11111
11111

1.

100..

OUTPUT SWING va
RLOADPULSED, Vs = ±15V,
liN = ±200 pA, VIN+ = OV

BANDWIDTH V8 fit &. Rs
Av= -1,RL= 1kO

f\:~s

Ri..

1.

100M

-~ ~I/~~~

I

lli

~

Ik

= 150 a 100

1
~ 20dB

1/7

100

Ys =: :t15Y

10
20na/dlv

180.4ns

0.5

1.0

1.5

2.0

'.5

3.0

3.5

RI , Ro (knl

TLlH/I1328-6

1-566

Typical Performance Characteristics

TA = 25°C unless otherwise noted (Continued)

SUGGESTED RI

SUGGESTED RI

and RsFORCL
Ay= -1

and RsFOR CL
Ay = +2;RL = 150n
10000

10000

Ys = :l:5Y

and Rs FOR CL
Ay= +2
10000

Sd8 PEAKING

5dB PEAKING

1000

SUGGESTED RI

Vs = :l:5V

1000

~

S

$
~

~~

100

Ys

I

10
0.5

1.0

1.5
Rf

~

= :l:15Y-

9

I
2.0

Ys

100

I

10

2.5

3.0

3.5

O.S

1.0

a Ro (kll)

1.5

~

= :i:15V

I I
2.0

Sd8 PEAKING

Vs

1000

I:

3.0

3.5

= .t15Y

I I

10

2.5

0.5

1.0

Rf & Ro (kll)

OUTPUT IMPEDANCE va FREQ
Vs= ±15V;Ay=-1
RI = 820n

Vs

,/

100

i-"

:I::5V

OUTPUT IMPEDANCE vs FREQ
Vs = ±5V;Ay = -1
RI = 820n

1.5

2.0

Rf

a R.

I
2.5

3.0

3.5

(kll)

PSRR (Vs+) yS FREQUENCY
70
80
50

:soS'

:soS'

4 H-ItHffil-ftHltflI-+ttHitII--i

40

Vs·

.0

4 H-ItHffil-+..t'HttIII-+ttHitII--i

:l:15V

20
10

Vs

=

*SV
0.2S ~'ttHffil-fffiltlll-+ttHitII--i
20

111111

D.2SIo'i-ltHffil-fttittlll-+ttHitII--i

200

20

FREQUENCY (MHz)

200

Ik

10k

FREQUENCY (MHz)

PSRR (Vs-) va FREQUENCY

111111
,M

lOOk

UI..

100M

FREQUENCY (Hz)

INPUT VOLTAGE NOISE
va FREQUENCY

CMRR va FREQUENCY
100

70
60
50

01
~

~

01

40
30
20
10

~

I

70
80
SO
40
30
20
10

~
Vs

!

=

*SV

~

10

~
I

Ik

10k

lOOk

1M

lOW

Ik

100M

FREQUENCY (Hz)

10k

lOOk

1M

10M

0.01

100M

FREQUENCY (Hz)

~

;:
-..

!

1000

~

1000

i

~
~

B

i

SLEW RATE
POSITIVE

10

FREQUENCY (kHz)

100

.....

SLEW RATE
NEGATIVE

~

~

SLEW RATE
POSITIVE

100

~

100

" 1111111111111111

0.1

100

SLEW RATE va
TEMPERATUREAy = -1;
RL = 150n, Vs = ±5V

10000

ftSLEW RATE'
NEGATIVE

10

FREQUENCY (kHz)

SLEW RATE va
TEMPERATUREAy = -1;
, RL = 160n, Vs = ±15V

INPUT CURRENT
NOISE va FREQUENCY

0.1

10
-80 -40 -20 0 20 40 80 80 100 120
TEMPERATURE (oc)

10
-80 -40-20 0 20 40 80 80 100 120
TEMPERATURE (Oc)
TUHII1328-7

1-567

~

I
1

Typical Performance Characteristics
-3dB BANDWIDTHVB TEMPERATURE

-1

Ay~

10

140
Vs

-120

'i

a

,100

i
=

=:i15V

1\=1k

]

=:l:ISV
,"- =1000
I
Vs •
Vs

80

• 0b1:t1

Vs=:l::SV

-eo -40 -20

9

'9,

FALL TIME -

5

:!

7

"

2

6
PROPAGATION DElA.Y

5
• KMLITlwlE

-eo -40 -20

9

8

7
~

i!!

i.I"

5

~

SMALL SIGNAL PULSE
RESPONSE VB TEMP, Ay
Va ~ ±6V; RL ~ 1000

-1
9

;R~~~~~~ ~UJ:;l:

7

FALL TlilE

'~

8

!ii

RISE,miE

RISE TIME

;:

5

4-

4
3
-80 -40 -20 0 20 40 60 80 100 120
TE\I~RATURE

TEMPERATURE (Oc)

~

SMALL SIGNAL PULSE
RESPONSE vsTEMP, Ay
Vs ~ ± 15V; RL ~ 1000

+2

~

13

-13

13

12

12

11

11

11

10

10

10

,
PROPAGATiON OELAY

8

]:

9

~
;:

8-

!
PROPAGATION DELAY

FALL TIME
4
-'0 -40 -20 0 20 .jo 60 80 100 120
TEMPERATURE (Oc)

!ii
;:

7

9
'8

~

+2

PROPAGATION O£LA!.J.IFALL TIME
RIS~'TIME

7

RISE"TIME

6
RISE TIME

(Oc)

SMALL SIGNAL PULSE
RESPONSE vs TEMP, Ay
: Vs'~ ±5V;RL = 1 kO

+2

12

5

RISE TIM~

6

5

3
-80 -.40 -20 0 20 40 60 60 100 120

0 20 '40 80 80 100 120

SMALL SIGNAL PULSE
RESPONSE vs TEMP, Ay
Vs = ±15V;RL ~ 1 kO

7

-1

FALL TIME

TEMPERATURE (Oc)

9

~

PROPAGATION DELAY
FALL TIME
J.t'

8

X

7

]:

!ROPAGATION Ii£LAY

TEMPERATURE (flC)

SMALL~NALPULSE

RESPONSE vs TEMP, Ay
Vs ~ ±5V; RL ~ no

8

8

RISE TIME
3
-80 -40"20 0 20 40 80 80 100 120

0 20 40 80 80 100 120

TEMPERATURE (Oc)

9

-eo -.40 -20

'"

~

7

~

3

;:

..-

RISE TIME

i!!

2
'-60 -40 -20 0 20 40 60 80 100 120

8

-1

8

5

3

•

~

~

- FALL TIME

.s

3

;:

!

PROPAGATION DELAY

8

SMALL SIGNAL PULSE
RESPONSE vs TEMP, Av ~ -1
Vs ~ ± 15V; RL ~ 1000

~

SMALL SIGNAL PULSE
RESPONSEvsTEMP,Ay
Vs ~ ±15V;RL ~ 1 kO

i!!

TEMPERATURE (ot)_

..-

TEMPERATURE (oc)

~

•

FALL TIWE

9

8

RI~t nME

6

RISE TIME

2
-60 -.40 -20 0 20 40 60 80 100 120

0 20 40 .0 60-,100 120

SMALL SIGNAL PULSE
RESPONSE ~ TEMP, Ay ~ + 1
VB ~ ±5V; RL ~ 1000

+1

PROrAGA110N DELA ~

7

~

TEMPERATURE (oc)

~

+1

6 PROPAGATION DELAY

3

FALL TINE

~

"

7

•

RISE TIWE

10

8

.s

~

'"

;:

2

10

i!!

..-.s

PROPAGATION DELAY

3

TEMPERATURE (Oc)

:!

lp

7

•

SMALL SIGNAL PULSE
RESPONSE vs TEMP,Ay
VB ~ ±16V;RL = 1000

+1

9

5

40
-eo -.40 -20- 0 20 40 60 60 100 120

SMALL SIGNAL PULSE
RESPONSE vs TEMP, Ay
Vs ~ ±5V;RL ~ 1 kO

~

8

~

1\ -lOOn.

SMALL SIGNAL PULSE
RESPONSE vs TEMP,Ay
"s~ ±15V;RL~ 1kO

9 -'

'"

;:

= 25°C unless otherwise noted (Contin~ed)

8

6

:t~V

TA

FALL TIME

5

4
-eo -.10 -20 0 20 40 80 80 100 120
TEMPERATURE (Oc)

,-

,5'
4
-60 -40 -20 0 20 40 80 80 100 120
TEMPERATURE (oc)

TL/H/I1328-29

1-568

Typical Performance Characteristics

SMALL SIGNAL PULSE
RESPONSE ¥II TEMP, Ay = -10
Vs = ±15V:RL = 1k0

SMALL SIGNAL PULSE
RESPONSE ¥II TEMP, Ay = + 2
Vs = ±5V: RL = 1000
13

12
II

FALL TIME

~

RISE TIME

9

:!
,.;:
~

8

7

12

II

II

10

10

9

]:

8

~

7
6

5

5

4

4

-60 -40 -20 0 20 40 80 80 100 120

-60 -40 -20 0 20 40 80 80 100 120

~

;:

12

II

II
PROPAGATION DELAY

RISE TIME

7

....s
!

RISE TIMEt-

4

-80 -40 -20 0 20 40 60 80 100 120
TEMPERATURE (DC)

SMALL SIGNAL PULSE
RESPONSE vs TEMP, Ay = +10
Vs = ±15V:RL = 1 kO
13
12

FALL TIME

II
10

10
RISE TIME
9

]:

~PAOATIOH DElAY

a

~

7

9

8
7

PROPAGATION DELAY
FALL TlME-H;

6

6

.6
5

5

5

4

4

4

3
-60

-60 -40 -20 0 20 40 60 80 100 120

-60 -40 -20 0 20 40 80 80 100 120

TEMPERATURE (DC)

13
12
II FALL TIME

:~ -tttt PROPAGATION DELAY

II

10
9

PROPAGATION DELAY

FALL nME

]:

9 FALL TIME
8

~

7

RISE TIME

10 RISE TIME

]
w

~

PROPAGATIOM DELAY

9

8

7

6

6

6

5

5

5

RISE TIME

0 20 40 60 80 100 120

SMALL SIGNAL PULSE
RESPONSEvsTEMP,Ay = +10
Vs = ±5V: RL = 1000

13
12

12

7

-.0 -20

TEMPERATURE (DC)

SMALL SIGNAL PULSE
RESPONSE V8 TEMP, Ay = +10
Vs= ±5V;RL= 1kO

13

8

RISE TIME

TEMPERATURE (oc)

SMALL SIGNAL PULSE
RESPONSE ¥II TEMP, Ay = + 10
Vs = ±15V:RL = 1000

:;
!

FM.L lI\lE
RfS[ TIME

5

SMALL SIGNAL PULSE
RESPONSE V8 TEMP, Ay = -10
Vs = ±5V: RL = 1000

12

8

[-I PROPAGATION D~

7

TEMPERATURE (DC)

SMALL SIGNAL PULSE
RESPONSE ¥II TEUP, Ay = -10
Vs = ±5V:RL = 1 kO

9 FALL TIME

9

8

8

FALL T~

TEMPERATURE (DC)

....s

;:

PROPAGATION DELAY

8

10

SMALL SIGNAL PULSE
RESPONSE vs TEMP, Ay = -10
Vs = ±15V:RL = 1000

12

-t+H-t PROPAGATION DElAY

10

]:

TA = 25DC unless otherwise noted (COntinued)

4

4

4

3
-60 -.to -20 0 20 40 60 80 100 120

3
-60 -40 -20 0 20 -'0 60 80 100 120

3
-60 -40-20 0 20 40 80 80 100 120

TEMPERATURf (DC)

TEMPERATURE (DC)

OFFSET VOLTAGE
¥II TEMPERATURE
4.0

OFFSET VOLTAGE
Y8 TEMPERATURE
4.0

Vs = :t:fSV

3.5

3.5

3.0

3.0

'>
-5

2.5

;

1.5

2.0

1.0

....

TEMPERATURE (DC)

-- -

0.5

!

2.5

;

1.5

Vs

TRANSIMPEDANCE
¥II TEMPERATURE
5.0

=:i:5V

4.5

....

d

= .t1SV

3.0

~2.5

2.0

..t2.0
1.5

1.0
0.5

Vs

3.5

-I-

""'"

0
-55 -35 -15 5 25 45 65 85 105 125

0
-55 -3$ -15 5 25 45 65 85 105 125

TEMPERATURE (DC)

TEMPERATURE (DC)

~;:::
-- - "'~::-- ....

I-""
1.0
0.5 ~::::: f-

",~nl_ - -

0.0
-55 -3$-15 5 25 45 65 85105125
TEMPERATURE (DC)

TL/HII1328-8

1-569

.. r-----------------------------------------------------------------------------------------------------,
~

~

Typical Performance Characteristics
TRANSIMPEDANCE va
TEMPERATURE
5.0
~

4.0
3.S

<>

1.0

;.;

'\.

"-.........

'\

"

0.4
0.2
0.0
-60

= 38°C/W

0JC

'" "-

1.2

"""
iii
0

I

= 70 o e/w

-40

-20

0

W

~

~

00

100

lW

1~

TA AMBIENT TEMP (Oe)
TL/HI11326-31

M-Package
'9JA

= Thermal Resistance with 2 square inches of 1 ounce Copper tied to Pins 1. 8. 9 and 16.

2.0

I

1.8

:§:

1.6

z

1.4

~
0-

1.2

0

iii

...'"
...;;:

1.0

0

0.8

u

0.6

0

0••

0JC = 42°C/W

/

..................

0JA = 153 o e/w

..... ~
...........

\
~

"'-

0.2
0.0
-60

-40

-20

'\

""

.......... .......

20
TA AMBIENT TEMP (Oe)
TL/H/1132B-33

M-SPackage

1-571

~

co
~

:E

r---------------------------------------------------------------------------------,
Typical Performance Characteristics (Contint,led}

.....

Simplified Schematic

....--t--(,I~ OUTPUT

TLlH/11328-32

1-572

r-

......

iii:

Typical Applications

en
co

CURRENT FEEDBACK TOPOLOGY
For a conventional voltage feedback amplifier the resulting
small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gainbandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6181, transcends this limitation
to offer a signal bandwidth that is relatively independent of
the closed-loop gain. Figures 1a and 1b illustrate that for
closed loop gains of -1 and -5 the resulting pulse fidelity
suggests quite similar bandwidths for both configurations.

V..t

TUH/11328-14

FIGURE 2. Rs Is Adjusted to Obtain
the Desired Closed Loop Gain, AVCL
POWER SUPPLY BYPASSING AND LAYOUT
CONSIDERATIONS'
A fundamental requirement for high-speed amplifier design
is adequate bypassing of the power supply. It is critical to
maintain a wideband low-impedance'to ground at the amplifiers supply pins to insure the fidelity of high speed amplifier
transient signals. 10 poF tantalum and 0.1 poF ceramic bypass capacitors are recommended for each supply pin. The
bypass c!!pacitors should be placed as close to the amplifier
pins as possible (0.5" or less).

VOUT
IO.1V/div)

FEEDBACK RESISTOR SELECnON: Rt
Selecting the feedba~k resistor,
is a dominant factor in
compensating the lM6181. For general applications the
LM61,81will maintain specified performance with an 8200.
feedback resistOr. Although thls'value will provide good results for most applications, it may ~ adVantageous to adjust this value slightly. Consider, for instance, the effect on
~Ise responses With tWo different' configu!'8tions where
both the closed-loop gains are 2 and the feedback resistors
are 8200., and 16400., respectively, Figures 3a arid 3b illustrate the effect of increasing
while maintaining the same
closed-loop gain-the amplifier bandwidth decreases. Accordingly, larger feedback resistors can be used to slow
down the LM6181 (see -3 dB bandwidth vs Rf typical
curves) and reduce overshoot in the time domain response.
Conversely, smaller feedback resistance values than 8200.
can be used to compensate for the reduction of bandwidth
at high closed loop gains, due to 2nd order effects. For
example Flf}ure 4 illustrates redUCing Rf to 5000. to establish the desired small signal response in an amplifier configured for a closed loop gain of 25.

Ri,

TL/H/11328-12

1a

R,

Your
IO.1V/div)
IIME 15 Ds/div)
TL/H/11328-13

1b
FIGURES 1a, 1b: Variation of Ciosed Loop Gain
from ,~1 to -;:5 Yields Similar Responses

Your

The closed-loop bandwidth of the Uv16181 depends on the
feedback resistance, Rf. therefore, Rs and not Rf, must be
varied to adjust for the desir9d closed~loop gain as in
Ftgure2.

IO.5V/div)

IO.5V/div)
IIME 120 Ds/div)
TUH/11328-15

3a:Rt = 8200.

1-573

_

:5
CD
CD

r---------------------------------------------------------------------~

Typical Applications (Continued)
Figure 6 illustrates the improvement c;>btained
470 isolation resilltor.
820tl

with

using a

Your

(0.5V/div)

5a

VIN
(0.5V/div)

TL/H/11328-16

3b: Rf = 16400
. FIGURES Sa, b: Increasing Compensation

-=

TLlHI11328-18

Your

(UV/div) .

with Increasing Rf .

VIN
(0.2V/div)

Your

TIME (20 ns/div)

(0.5V/div)

5b

TLlH111328-19

FIGURES 58, b: Ay = -1, LM8181 ca.t Directly
Drive 50 pF of Load Capacitance With 70 ns
of Ringing Resulting In Pulse Response

VIN
0.05V/div)

82M

nME (20 ns/div)
FIGURE 4: Reducing Rf for Large
Closed Loop Gains, R, = 5000'

TLlHI11328-17

SLEW RATE CONSIDERATIONS
The slew rate characteristics of current feedback amplifiers
are different than traditional voltage feedback amplifiers. In
voltage feedback amplifiers slew rate limiting or non-linear
amplifier behavior is dominated by the finite avsilability of
the 1st stage tail.current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast.
is not constant. Transient currE!nt at the inverting input determines slew rate for. both inverting and' non-inverting
gains. The non-invertingconfigura~on sleW (ate is also determinedby input stage limitations. Accordingly. variations
of slew rates Occur for different circuit topologies.

8a

TLlHI11328-20

Vour
(0.2V/div)
VIN
'10.2V/div)

DRIVING CAPACITIVE LOADS
The LM6181 can drive significantly larger capacitive loads
than many· current feedback amplifiers. Although the
LM61'81 can dir~ly drive as I'n~ch 8lI.10QpF Without oscillating. the resultll)g response will bea ~nction of the feedback resistor. value. Figure 5 illustrates the small-signal
pulse response of the LM6181 while driving a 50 pF load.
Ringing persiSts for approximately 70 ns. To achieve pulse
responses with less r!nging either the feedback resistor can
be increased (see typical curves Suggested Rt and Rs for
or resistive isolation can be used (100-510 typically
works well). Either technique. however. results in lowering
the system bandwidth.

TIME 120 ns/div)
6b

TL/H/11328-21

FIGURES 8a, b: Resistive Isolation of CL
Provides Higher Fidelity Pulse Response. R,
and Rs Could Be Increased to Maintain Ay = -1
and Improve Pulse Response Characteristics..

Cu.

1-574

r-

Typical Applications (Continued)

I:

Typical Performance
Characteristics

CAPACITIVE FEEDBACK
For voltage feedback amplifiers it is quite common to place
a small lead compensation capacitor in parallel with feedback resistance, Rt. This compensation serves to reduce
the amplifier's peaking in the frequency domain which
equivalently tames the transient response. To limit the
bandwidth of current feedback amplifiers, do not use a capacitor across R,. The dynamic impedance of capaCitors in
the feedback loo~ reduces the amplifier's stability. Instead,
reduce~ peaking In the frequency response, and bandwidth
limiting can be accomplished by adding an RC circuit, as
illustrated in Figure 7b.

en
.....

CD

.....

OVERDRIVE RECOVERY
When the output or input voltage range of a high speed
amplifier is exceeded, the amplifier must recover from an
overdrive condition. The typical recovery times for openloop, closed-loop, and input common-mode voltage range
overdrive conditions are illustrated in Figures 9, 11 and 12,
respectively.
The open-loop circuit of Figure 8 generates an overdrive
response by allowing the ± O.5V input to exceed the linear
input range of the amplifier. Typical positive and negative
overdrive recovery times shown in Figure 9 are 5 ns and
25 ns, respectively.

v+

vin-....- - - I

50n

~~--",,-oVOUT

lkn

TL/H/11328-24

FIGURE 8

v820n

820n
f-3dB=_121TRC

7a

YiN
(0.5V/div)

TUHI11328-22

VOUT

(2V/div)
TIME (50 Ds/div)
TUH/11328-25

Vour

FIGURE 9. Open-Loop Overdrive Recovery Time of 5 ns,
and 25 ns from Test Circuit in Figure 8

(0.2V/div)

TIME (50 ns/div)
7b

TUH/11328-23

FIGURES 7a, b: RC Limits Amplifier
Bandwidth to 50 MHz, Eliminating
Peaking in the Resulting Pulse Response

1-575

~ r-------------------------------------------------------------------------------~

CD
~

I-I

Typical Performance
Characteristics (Continued)
The large closed-loop gain configuration in FigurB 10 forc.es
the amplifier output, into overdrive. FigurB 11 displays the
typical 30 ns recovery time. to a linear output value.

8200.

The common-mode input of the circuit in FigurB 10 is exceeded by a 5V pulse resulting in a typical recovery time of
310 ns shown in FigurB 12. The LM6181 supply voltage is
±5V.

1500.

500.

TLlH/11328-28

FIGURE 10

TL/H/11328-28

YOUT

FIGURE 12. Exceptional Output
Recovery from an Input that
Exceeds the Common-Mode Range

(5Y/div)

YIN

(0.5V/div)

TIME (50 ns/div)
'TL/H/11328-27

FIGURE 11. CloSed-Loop Overdrive Recovery
Time .of 30 ns from Exceeding Output
Voltage Range from Circuit in Figure 10

Ordering Information
Temperature Rlillge
Package

8-Pin
Molded DIP

Military
-55"Cto + 125"C

Industrial'
~40"Cto +H"C

LM6181AMN

NSC
Drawing

LM6181AIN
LM61811N

N08E

8-Pin Small Outline
Molded Package

LM6181AIM-8
LM61811M-8

M08A

16-Pin
Small Outline

LM6181AIM
LM61811M

M16A

8-Pin
Ceramic DIP

LM6181 AMJ/883

J08A

1-576

IfINational Semiconductor

LM6182 Dual
100 mA Output, 100 MHz Current Feedback Amplifier
General Description

Features (Typical unless otherwise noted)

The LM6182 dual current feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output
current. Each amplifier can directly drive a 2V signal into a
500 or 750 back-terminated coax cable system over the
full industrial temperature range. This represents a radical
enhancement in output drive capability for a dual 8-pin highspeed amplifier making it ideal for video applications.

•
•
•
•

Built on National's advanced high-speed VIP IITM (Vertically
Integrated PNP) process, the LM6182 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at Av = -1,60 MHz at Av =
-10. With a slew rate of 2000 V / ",sec, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of 50 ns
(0.1%), the two independent amplifiers of the LM6182 offer
performance that is ideal for data acquisition, high-speed
ATE, and precision pulse amplifier applications.

See the LM6181 data sheet for a single amplifier with these

•
•
•
•

Applications
•
•
•
•
•

Coax Cable Driver
Professional Studio Video Equipment
Flash ADC Buffer
PC and Workstation Video Boards
Facsimile and Imaging Systems

same features.

Typical Application
1/2 LN6182

7S11 Cable
82011

Vour

82011

7S11
Video Cable Driver
TlIH/11926-1

VIN
(0.5V1D1V)

V OUT
(O.5V/DIV)

TIME (SOns/DIV)
TLlH/11926-2

1-577

.

"'S

Slew Rate
2000 V/
Closed Loop Bandwidth
100 MHz
Settling Time (0.1%)
50 ns
Low Differential Gain and Phase Error
0.05%, 0.04·
RL = 1500
Low Offset Voltage
2 mV
High Output Drive
± 1OV into 1500
Characterized for Supply Ranges
± 5V and ± 15V
Improved Performance over OP260 and LT1229

~ .-----------------------------------------------------------------------~~------,

co
~

~
....I

Connection Diagrams

NC
-IN A
+I~ A,

4

y-

+IN B

5

-IN B

YOUT B
8 NC

NC

TL/HI11926-51

Order Number LM6182AMJ/883
See NS Package Number J14A

Small Outline Package (M)
16 Y- •

• YINVERTING INPUT

2

,OUTPUT

'N/c

NON-INVERTING INPUT
• Y-

4

y+

N/c

N/C
N/c

NON-INVERTING INPUT
INVERTING INPUT
• Y-

OUTPUT
Y- •
TL/H/11926-4

'Heat Sinking Pins (Note 3)

Order Number LM61821M or LM6182AIM
See NS Package Number M16A

Dual-In-Line Package (N)
OUTPUT A ~1--'lL
INVERTING INPUT A """"11-...;;.1
NON-INVERTI.NG I,NPUT

~,

8

y+

OUTPUT B
INVERTING INPUT B

.......:----Ir-- NON-INVERTING

INPUT B

:!'.
TLlH/11926-3

Order Number I.,MS1'l12IN; I.,M6182AIN or I.,M6182AMN
See 'NS Package Number N08E

1-578

Absolute Maximum Ratings (Note 1)
Small Outline Package (M)
Vapor Phase (60s)
Infrared (15s)
Storage Temperature Range

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±18V
Supply Voltage
±6V
Differential Input Voltage
Input Voltage
Inverting Input Current
Output Short Circuit

-65·C:s: TJ :s: + 150"C

Junction Temperature
ESD Rating (Note 2)

± Supply Voltage
15mA
(Note 4)

Soldering Information
Dual-In-Line Package (N) Soldering (1 Os)

215·C
220·C
150"C
±2000V

Operating Ratings
Supply Voltage Range
7Vto 32V
Junction Temperature Range (Note 3)
-55·C:s: TJ:S: + 125·C
LM6182AM
-40·C :s: TJ :s: +85·C
LM6182AI, LM61821

260"C

± 15V DC Electrical Characteristics

The following specifications apply for supply voltage = ± 15V,
Vcm = Vo = OV, Rf = 8200, and RL = 1 kO unless otherwise noted. Boldtacelimits apply at the temperature extremes; all
other limits TJ = 25·C.
Symbol

Vos

Parameter

Conditions

Input Offset Voltage

TCVos

Input Offset Voltage Drift

Is

Inverting Input Bias Current

2.0

Is
PSR

Is
CMR

CMRR
PSRR

2.0
0.75

Inverting Input Bias Current Drift

30

Non-Inverting Input Bias Current Drift

10

Inverting Input Bias Current
Power Supply Rejection

±4.5V:S: Vs:S: ±16V

Non-Inverting Input Bias Current
Power Supply Rejection

±4.5V:S: Vs:S: ±16V

Inverting Input Bias Current
Common Mode Rejection

-10V:S: VCM:S: +10V

Non-Inverting Input Bias Current
Common Mode Rejection

-10V:S: VCM:S: +10V

Common Mode Rejection RatiO

-10V:s: VCM:S: +10V

Power Supply Rejection Ratio

Ro

Output Resistance

RIN

Non-Inverting Input Resistance

Vo

Output Voltage Swing

LM6182AM

LM6182AI

LM61821

Limit
(Note 6)

Limit
(Note 6)

Limit
(Note 6)

Units

mV
max

3.0

3.0

5.0

4.0

3.S

S.5

p'vrc

5.0

Non-Inverting Input Bias Current
TCls

Typical
(Note 5)

±4.5V:S: Vs:S: ±16V
Av =-1
f = 300kHz

RL = 1 kO

0.1
0.05
0.15
0.1
60
80

10.0

17.0

p.A

2.0

2.0

3.0

max

4.0

4.0

5.0
nArC

0.5

0.5

0.75

3.0

3.0

4.5

0.5

0.5

0.5

1.S

1.S

3.0

p.A1V

0.5

0.5

0.75

max

1.0

1.0

1.S

0.5

0.5

0.5

1.0

1.0

1.S

50

50

50

47

47

47

70

70

70

87

87

8S

dB
min
dB
min
0

10

MO

11

1-579

5.0

12.0

0.2

12

RL = 1500

5.0

12.0

11

11

11

10

10

10

9.5

9.5

9.5

S.8

6.0

6.0

V
min

~
....
CD
:::E
....

± 15V DC Electrical Characteristics

(Continued) The following specifications apply for supply voltage =
±15V, Vcm = Vo = OV, R, = 8200, and RL = 1 kO unless otherwise noted. Boldfecelimits apply at the temperature
extremes; all other limits TJ = 25°C.
Symbol

Parameter

Conditions
,

Ise

ZT

Typical
(Note 5)

Output Short Circuit Current
Transimpedance

Supply Current

VCM

LM6182A1

LM61821

Limit
(Note 6)

Umlt
(Note 6)

Limit
(Note 6)

100
RL = 1 kO

1.8

RL = 1500
Is

LM6182AM

1.4

No Load, VIN = OV
Both Amplifiers

15

70

70

70

mA

37.5

40

'40

min

1.0

1.0

0.8

0.4

0.5

0.4

0.8

0.8

0.7

0.3

0.35

0.3

20

20

20

22

22

22

V+-1.7V
V-+1.7V

Input Common Mode Voltage Range

Units

MO
min
mA
max
V

± 15V AC Electrical Characteristics

The following specifications apply for supply voltage = ±15V,
Vcm, = Vo = ov, RI = 8200, and RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all
other limits TJ = 25"C.
Parameter

Symbol

Conditions

Typical
(Note 5)

Xt

Crosstalk Rejection

(Note 7)

93

BW

Closed Loop Bandwidth -3 dB

Av= +2

100

Closed Loop Bandwidth
0.1 dB Flat, RSOURCE = 2000

Av = +10

75

Av= -1

100

Av = -10

60

Av = +2, RL = 1500

LM6182AM LM6182AI LM61821
Limit'
(Note 6)

Limit
(Note 6)

Limit
(Note 6)

Units
dB

MHz

35

PBW

Power Bandwidth

Av = -1, Vo = 5Vpp

SR

Slew Rate

Overdriven

2000

Av = -1, Vo = ±10V
RL = 1500, (Note 8)

1400
50

60

1000

1000

1000

V/",s
min

ts

Settling Time (0.1 %)

Av = -1, Vo = ±5V
RL = 1500

t" t,

Rise and Fall Time

Vo = 1 Vpp

5

tp

Propagation Delay Jime

Vo = 1 Vpp

6

in(+)

Non-Inverting Input Noise Current Density f = 1 kHz

3

pA/v'Hz

in(-)

Inverting Input Noise Current Density

f=1kHz

16

pA/v'Hz

en

Input Noise Voltage Density

f=1kHz

4

nV/v'Hz

Second Harmonic Distortion

Vo = 2Vpp,f = 10MHz
Av= +2

-50

Third Harmonic Distortion

Vo = 2Vpp,f = 10MHz
Av= +2

-55

Differential Gain

RL = 1500
Av = +2, NTSC

0.05

%

Differential Phase

RL = 1500
Av = +2, NTSC

0.04

O8g

Total Harmonic Distortion

Vo = 2Vpp,Av = +2,
f = 10 MHz, RL = 1500

0.58

%

THO

1-580

ns

dBc

±

5V DC Electrical Characteristics The following specifications apply for supply voltage = ± 5V,
Vcm = Vo = ov, Rf = 8200, and RL = 1 kO unless otherwise noted. aoldfae.limits apply at the temperature extremes; all
other limits TJ = 25"C.
Symbol

VOS

Parameter

Conditions

Input Offset Voltage

TCVos

Input Offset Voltage Drift

la

Inverting Input Bias Current

1.0

la
PSR

la
CMR

CMRR
PSRR

5.0
0.25

Inverting Input Bias Current Drift

50

Non-Inverting Input Bias Current Drift

3.0

Inverting Input Bias Current
Power Supply Rejection

±4V,;; Vs';; ±6V

Non-Inverting Input Bias Current
Power Supply Rejection

±4V,;; Vs';; ±6V

Inverting Input Bias Current
Common Mode Rejection

-2.5V';; VCM ,;; +2.5V

Non-Inverting Input Bias Current
Common Mode Rejection

-2.5V';; VCM ,;; +2.5V

Common Mode Rejection Ratio

-2.5V,;; VCM ,;; +2.5V

Power Supply Rejection Ratio

Ro

Output Resistance

RIN

Non-Inverting Input Resistance

Vo

Output Voltage Swing

±4V,;; Vs';; ±6V
Av = -1
f = 300 kHz

RL = 1 kO

ZT

Is
VCM

0.3
0.12
57
80

Umlt
(Note 6)

Limit
(Note 6)

Umlt
(Note 6)

Units

mV
max

2.0

2.0

3.0

3.0

2.&

3.&

p.VI"C

RL=1kO

p.A

1.5

1.5

3.0

max

3.0

3.0

&.0
nAloC

0.5

0.5

0.75

1.0

1.0

1.&

0.5

0.5

0.5

1.0

1.0

1.&

0.5

0.5

1.0

1.0

1_0

1.&

0.5

0.5

0.5

1.0

1.0

1.&

50

50

50

47

47

47

70

70

64

87

87

80

p.AIV
max

dB
min

MO

13
V+-1.7V
V-+1.7V

1-581

17.5

27.0

8

1.0

Input Common Mode Voltage Range

10

22

0

1.4

No Load, VIN = OV
Both Amplifiers

10

22

0.25

100

RL = 1500
Supply Current

0.05

2.2

Output Short Circuit Current
Transimpedance

0.3

2.6

RL = 1500
ISC

LM6182AM LM6182AI LM61821

2.5

Non-Inverting Input Bias Current
TCla

Typical
(Note 5)

2.25

2.25

2.25

2.0

2.0

2.0

2.0

2.0

2.0

1.8

1.8

1.8

65

65

65

3&

40

40

0.75

0.75

0.6

0.3

0.3&

0.3

0.5

0.5

0.4

0.2

0.2&

0.2

17

17

17

18.&

18.5

18.5

V
min

mA
min
MO
min

mA
max
V

±5VAC Electrical Characteristics The ',following specifications' apply for supply voltage = ±5V,
Vcm '="Vo= OV. R,,= 8200, and RL = 1 kO unless otherwise noted. Boldface limits apply at the temperature extremes; all
other limits TJ = 25°C.
Symbol

Parameter

Conditions

Typical
(NoteS)

Xt

Crosstalk Rejection

.(Note7)

92

BW

CI~d Loop gahdwidth -3 dB

Av"'; +2

50

;

Av = +10

40

Av= -1

55

Av = -10

35

Closed Loop Bandwidth
0.1 dB Flat, RSOURCE = 2000

Av = +2, RL = 1500

LM6182AM LM6182AI LM61821
Limit
(Note 6)

Limit
(Note 6)

limit
(Note 6)

Unltli

dB

MHz

15

PBW'

Power Bandwidth

Av = -1, VO= 4 Vpp

40

SR

Slew, Rate

Av = -1, Vo = ±2V
RL = 1500, (Note 8)

500

ts

Settling Time (0.1 %)

Av = -1, Vo = ±2V
RL = 1500

50

t r, t,

Rise and Fall Time

Vo = 1 Vpp

8.5

tp

Propagation Delay Time

Vo = 1 Vpp

8

375

375

375

Vlll-s
min

ns

in(+)

Non-Inverting Input Noise Current Density f = 1 kHz,

3

pAlYHz

in(-J

Inverting Input Noise Current Density

f=1kHz

16

pAlYHz

en

Input Noise Vciltage Density

f=1kHz

4

nV/yHz

Second Harmonic Disfortion

Vo = 2Vpp, f = 10 MHz
Av= +2

-45

Vo = 2Vpp, f = 10 MHz
, AV = +2

-.55

Third Harmonic Distortion

THO

dBc

Differential Gain

RL = 1500
Av = +2,NTSC

0.06

%

Differential PhaSe

RL = 1500
Av = +2,NTSC

0.16

Deg

Total Harmonic Distortion

Vo = 2Vpp,Av = +2,
f = 5 MHz, RL = 1500

0.36

%

Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur. Operating ratings indicate oondilions for which the device Is
intended to be functional, but device parameter Specifications may not be guaranteed under these conditions. For guaranteed specifICations and test oondillons,
see the E I _ Characteristics.
Note 2: Human body model 100 pF and 1.5 kll.
Note 3: The typical junc!ion-to-ambientthermal resistance of the molded plastic DIP(N) soldered directly into a PC board is 95"CIW. The junction·t~ambient
thermal resistance of the S.O. surface moun! (M) package mounted flush to the PC board is 7rrC/W when pins 1.4,8,9 and 16 are soldered to a total of 21n2 1 oz
copper trace. The S.O. (M) packags must have pin 4 and at least one of pins 1,8,9, or 16 connected to V... for proper operation.
Note 4: Continuous short circuit operation at el8l!ated ambient temperature can resuR in exceeding the maximum allowable Junction temperature of 15(1'C. Each
amplifier of the LM6182 Is short clrcuH currentlimHed to 100 mA typical.
Note 5: Typical values rep,resent the most likely perametric norm.
Note 8: All limits are guaranteed at room temperature (standard type face) or at operati,;g temperature extremes (bol_... bpa).
Note 7: Each amp excited In tum wHh 100 kHz to produce Vo = 2 Vpp. Resulls are input referred.
Note 8: Measured from + 25% to + 75% of output waveform.
Note 9: Also available per the Standard Military Drawing, 5962·9460301 MCA.
Note 10: For guaranteed military specllications see military datasheet MNLM6162AM·X.

1.582

Simplified Schematic 112 LM6182

INY-INPUT
t--~

__

~>OUTPUT

TL/H111926-6

1·583

i~

Typical Performance Characteristics'

....I

MAXIMUM POWER DERATING CURVES
N-Package
3.5
3.3
3.0
~ 2.7
c 2.4
0
:; 2.1 .!!o"
.~ 1.8 1.5
0
1.2
~
it
0
0.9
"0.5
0.3

I
I\"

0jc = 3S oC/W

/

"

S OJ. = 950C/~X \..

""

......

"-

r-.... .....

'!I
11

o

-50 -40 -20 0 20 40 60 80 100120 140

TA - Ambienl Temperalure (OC)
TL/H/11926-7
M~Package

3.6
3.3
3.0
~ 2.7 ~
c
2.4
0
:;c. 2.1
1.8
1.5
0
1.2
it
0
0.9
"0.5
0.3

I

I
•

~.'

~jC ~ 3120~/W

= 70 oC/W "'. /

'J
\.

'=

.

\.

~

I

..I

o

-50 -40 -20 0 20 40 50 80 100120140

TA - Ambienl Temperalure (OC)
TUHI11926-8

OSlo - Thermal Resistance with 2 square Incheo of 1 ounce copper tied to pins 1, 8, 9 and 16

1-584

Typical Performance Characteristics

(Continued)

TYPICAL PERFORMANCE TEST CIRCUITS
Non-Inverting:
Small Signal Pulse Response,
Slew Rate, - 3 dB Bandwidth

Inverting:
Small Signal Pulse Response,
Slew Rate, - 3 dB Bandwidth
y'

y'

S 111
0.' JAF

s,n

t
TL/H/11926-9

TlIH/11926-10

Ampllfler-to-Ampllfler Isolation
820n

Input Voltage Noise

v'

8200

0.'

t
820n

-=-

820n

0.'

t

JAF

'OOk

JAr

TlIHI11926-12

TlIHI11926-11

XT (Crosstalk Rejection)

~ ~:

Resistors

CMRR
y'

PSRR(VS+)
y'

Matched to :1:0.02%

8200

8200

TL/H111926-13

TlIH111926-14

1-585

~

:b
~

Typical Performance Characteristics
Inverting Gain
Frequency Response
Vs = ±15V;Ay ~ -1, R, = 8200

.~

I 80
135
90,
45

C
z

~

~

OdB

~

£

~

~

1\ = IkO
1\ = 150n
1\ = loon
1M

Vs = ±5V,Ay = -1,R, = 8200

Vs= ±15V,'Ay= +2,R,=8200

~

I+I1I!1111-++1fH!111l\

~

lOOk

~

10M

1M

B

~
lOOk

c

6dB

45

"N'100.0

90 0
I 35 ~
I 80 ~

! SO.O
S

~

if

10M

100M

rREQUENCY (Hz)

Inverting Gain vs
- 3 dB Bandwidth

Rf = 8200

1111111111111
1M

~

60~~-+-r~~

Js~>Jv ~ ~ I nI

~
~

~~~~
40~~~~~T-~~~~

7

1.0

1.5

..

fir

O~~~~~~~~~~

2.0

3,0

2.5

o

3.5

Translmpedanpe vs
Frequency

Supply Voltage
Ay =-1

R, = 8200

RL=1k,0

100

160

130 =="T"'1mrTTI1M.,."rrrTlTT-.
120 FF:mt~'HI-++HH-H1H++HI~

140

~

80

~

60

!o,~~ ·~11~
"
,~

~lkll

~

·'S.!--

--{Sf~~~ :1. = I

1\=lknl'

60

~
~

~s.~
II::

110 1+~-H'tiI:-++HH-H1H+++H~

80

V)

lOOk

1M

10M

100M

rREQUENCY (Hz)

Settling Response

Vs = ± 15V,RL = 1500
Ay = -1, Vo = ±5V

RL = 1500

!r

90 1+++H+lftil-HR!.I-:
80

I-HfltHHliilllllIHI-tlffi

Translmpedance vs
Frequency

3

!f
§

100 1++HI-H~~HH-H1H++HI-i

30~~~awlll~III~~~~

NON-INVERTING GAIN

.,

3

20

o

10
INVERTING GAIN

& Rs (kn)

- 3 dB Bandwidth vs

Non-Inverting Gain vs
-3 dB Bandwidth

S 100

20~~-+-r4-+-~-+~~

.,,!s, = >5V 1\ = 150n

rREQUENCY (Hz)

~
15~ 1\ = 1150n

~

0.5

100M

80~~~4-~~~

115T1\ =1 1 klnt

40.0

7 20•0

1\ = 100
lOOk

Vs

~ 60.0

:

1\ = 150

§!

,

\

:;;

~

1\ = IkO

7

1M

120.0

..~

~

t:

iJi

IIilB
100M

- 3 dB Bandwidth vs
R,andR.,Ay = +2

Vs = ±5V, Ay = +2, R, = 8200

0

~

1\ = Ikn
1\ = 150
1\ = 100
1'1111

rREQUENCY (Hz)

Non-Inverting Gain
Frequency Response

~

kn~'

tttt~l-tt!tlflf~ I~I ;I~ f

,100M

rREQUENCY, (Hz)

z

=I

45
90
I 35
I 80

0

~

OdB

~
~

10M

Non-Inverting Gain
FrequenCy Response

Ht~-H~~~I111-~~~90
H+~~~~~1111-~~~45

~

z

Inverting Gain
Frequency Response

HtHHII--HTijj/lI-Io.w.!lIlll-H+HHII--I180
Htt!llll--+tttttflHtffiHfl""-Htt!llll--I135

I

11111I1U
lOOk

.~

(Contiilued) Vs =±15VandTA =2~Clihlessotherwisenoted.

130
120
110
',100

~>

90
80
70
60
50
40
30

E

Vs = >15V

0

~
"

10k

u;

'"

lOOk

1M

If-HH-t-+-+-+-r-l--i -0.1"

l;1

,~s = >5V

"'

1111 11111
1111 11111
lk

~HH-t-+~-+-r-l--i +0.1"

10M

"32 ns

100M

218

ns

TIME (25 n./DIV)

rREQUENCY (Hz)

TLlH/11926-15

1-586

r-----------------------------------------------------------------------------~

Typical Performance Characteristics
Settling Response
Vs = ±5V, RL = 1500
Ay = -1, Vo = ±2V

(Continued) Vs = ±1SVandTA = 2So Cunlessotherwisenoted.

r-

a:

....

G)

~

Long Term Settling Time
Response Vs = ± 15V,
RL= 1500,Ay= -1,Vo= ±5V

Suggested Rf and
R.forCL;Ay = -1

>"
Q

1\

~
E

+0.'"

+0.'%

Q

~
~

-0. I~

~

-o.'~

1':
-52 n8

1.0

198 na

TIME (25 n./DIV)

Suggested Rf and
R.forCL.oAy = +2
10000

Rr

128

m LL
III IIIII
~ ~~~I

64

6 db Peskin

32

1\

16
10001rlJl.

5
~

2

2.5

3.0

3.5

70
~

V/
Vs

= >l5V_

60

..
3

~

~

~

1.0

2.0

& Rs (kn)

PSRR(Vs+)vs
Frequency, Ay = 2,
Rf = R. = 8200

Output Impedance va Frequency
Ay = -1, RL = 8200

'~;~~'II'~
~or

t.5

TIME (20 "./DIV)

. SO

Vs = :t5V

40

YS =i15V

30
20
1O

0.5
0.25
1.0

1.5

Rr

2.0

2.5

3.0

~

Vs

40

=:l:5V

.....
3

30

11

20
10

60
SO

1M

10M

100M

Input Voltage Noise
VB Frequency

I

Vs=:l:1SV

Vs = :t5Y

40

lOOk

100

I

70
Vs=:l:1SV

10k

FREQUENCY (H,)

CMRR va Frequency
Rf .= R. = 8200

60
SO

Ik

100

FREQUENCY (MHz)

70

3

10

& Rs (kn)

PSRR (Vs-) VB
Frequency, Ay = 2,
Rf = R. = 8200

.....

-10

0.125
0.3

3.5

~

30
20

~
g

10

w

10

~

°

-10

I
Ik

10k

lOOk

1M

10M

100M

Ik

10k

lOOk

1M

10M

10

100M

FREQUENCY (Hz)

FREQUENCY (Hz)

lao

Ik

10k

lOOk

FREQUENCY (Hz)

.I

Input Current Noise
vs Frequency

Slew Rate vs Temperature
Ay == -1,RL = 1500

100

10000

~.

1\

INVERTING INPUT

10

ia

NON-INVERTING INPUT

I 1IIIIIm IIIII

I

100

Ik

10k

FREQUENCY (Hz)

lOOk

~
~

"'

POSITIVE~

"-

~

:z

10

POSITIVE SLET RArE

"J
"-

"Q

10000
VS,=:t15V

.!
Il:

Slew Rate vs Supply Voltage
Ay = --t,RL = 1500

100O

NEGAri~;:~:: RAul Ivs=:tsv
POSITIVE SLEW RATE
Vs"':tSV

rrni'i"lnl I II

100
-60 -40 -20 a 20 40 60 80 100120
TEMPERATURE (Oc)

"~

i

1000
NEGATIVE SLEW RATE

~
100
4

10

12

14

16

SUPPLY VOLTAGE (tV)

TLlHI11926-16

1-S87

Typical Performance Characteristics

-20

Distortion va Frequency

Distortion va Frequency

Distortion va Frequency

Vs = ±15V,Ay = +2,
RL = 151).0, Vo ;= 2Vp-p "

Vs = ±15V,Ay = -1,
RL = 1500., Vo = 2Vp-p

Vs = ±5V,Ay = +2,
, RL = 1500., Vo = 2Vp-p

11111

-20

1111111

-30 H-+tHl::lII--:::++rJ,IIHttt-IIII--r11+H'1IH

!

(COntinued) Vs = ±15VandTA'';'' 25"Cunlessotherwisenoted.

2n::,.d:;:HA:rRM."O;;;:NICITAf-ttttHll
-40 H-+tfImT

z

~

-50 H-+tH1*-+fflOOhI4-1It1tIlH

~

-60 H-+tH1*-+-lltIW-:-H1tlt1lH

lIlU

-20 r--l"TTmllnr-IIITTrmr......-,r-rrmm

11111

-30 H-+tHl::lII--:::++HttfHf-ttttHll

-30 H-+tHl::lII--:::++I+:Httt-::::--r11t1t1lH

!

2n::,.d:;:HA:rRMrrO;;;:NICrJ'IY-11t1t1lH
-40 H-+tfImT

I
i!l

-50

H-++H1*-+ffi~'-H1tlt1lH

-60 H-+tH1*-+-hlll-I*--H1tlt1lH

!

2n1ir
d ~HA:rRMTOiTNICi'nI!--HftH!1IH
-40 H-+tm

I -~H-+tH1*-+~~~~~
is

H-+tH!filHttr~iiirIllidir'H"iARi'iMi'T0NiTll~lInti

-70 H-+tH1*-+l-II'Y:
3r"::-d""HA~RM~O~NIC~

-70

-80 L-J...J..LWJ,II,--./LLLIWlL
IIII...J..JL.J.J.LWJ
0.1.
I
10
100

-80 L-J'-WllI'--LJ.J.J.LULIIIII...J..JL.J.J.LIIIWJI
0.1
I
10
100

-60

H-+tH1*~II'It,iii31111rlSV t+HttfHf-ttttHll

Ay " +2

I~.~Jl"'c:rNttttr-t-tffiHlH

f\. I"

-70 H-+tfHlll4fflHttt--H1tlt1lH

Vs

lll'lm

80

-60 H-+tH1*~'H+Httt--HftltllH

- 3 dB Bandw.ldth
vs Temperature, Ay

Maximum Output Voltage
Swing vs Frequency
(THO ~ 1%)
,
''''~.

10

== -1

100

FREQUENCY (WHz)

. FREQUENCY (MHz)

- 3 dB Bandwidth
vs Temperature, Ay =

~

0.1

100

Small Signal Pulse Reaponse
vs Temperature, Ay = -1,

+2

Vs = ± 15V, RL = 1 ko.

100

10
9HH~++~HH4+++~H
aHH~++~HH4+++~H

!
!

7HH~+++rHH4+++~H

~

PROPAGATION

DE~

)AlL TIME

S

v." .sv l\. " 150Jl
L.U.:.!..L..w-II.L.L
II..J...L-lI "I.L..L
11.J...J....1..
IL.J...J

20

'O~L.J...JWU~~~~L.J...JL.J...J

-60 -40 -20 0 20 40 60 80 100 I 20
T~MPERATURE

(Oc)

i!!61111
~

RISE TIM~1tttt"

!

:4
3

3.

-60 -40 -20 0 20 40 60 80100120
TEMPER,ATURE (Oc)

Vs = ± 15V, RL = 1500.
10

7

~

FALL TIME

5
4

Small Signal Pulse Response
va Temperat.,.re, Ay = + 2,

Vs = ± 15V, RL = 1 ko.

:!

!IPROiP1'~GA~TlO~"~tl£iL.Ai'lll~
RISE TIlliE

FALL TlWE

·-60-40 -20 0 20 40 60 80100120
TEMPERATURE (Oc)

aD 100120

TEMPERATURE (oc)

Small Signal Pulse Response
vs Tempereture, Ay = + 2,

1:111 1:p~Or1Gtj'~

-60 -40 -20 0 20 40 60

TEMPERATURE (Oc)

Vs = ± 15V, RL = 1500.

7

RISE TIME

3'L..J..JU-J...L..L..1...1..L.J...J-L..J..J....I..J...L.JU

-60-40 -20 0 20 40 60 80100120

Smail Signal Pulse Response
. vs Temperature, Ay = -1,

!~

4

.,.

!
;::

6

7
S
4

~ ~'PI'iP'~fA~ 'AT~IO~N~f~LA~YI ~
FA~L ITI~E

h'

RISE TIME

3
-60-40 -20 0 2040 60

aD 100120

TEMPERATURE (Oc)
TL/H/11926-17

1-588

Typical Performance Characteristics
Settling Time vs
Output Step, RF = 8200.
RL = 150n,Ay = -1
Vs ;:: :l:5V

'/

(Continued) Vs = ±15VandTA = 25°Cunlessotherwisenoted.

Settling Time vs
Output Step, RF = 8200.
RL = 150n,Ay = -1

-t-I:-:

' 'IL'"

0.1%

Vs

=:t15V

'"

Small Signal Pulse Response
vs Closed-Loop Gain
RL = 1k

'0

tld.'"

Vs

= :l:15V

9

Rr

8

;OIU~

= 820n

71:l:11~OmV

PROPAGATION DELAY

,....

d.'"

'"
I

-2

,,,'-

f--4
-6

-3
~

10

~

~

~

~

10

~

W

Small Signal Pulse Response
vs Closed-Loop Gain
RL = 1500.

Rr

~

::IE

;::

81~IOUI~I~I:I'~1:01:1~I'YI I I I I

2

10

15

20

15

20

CLOSED-lOOP GAIN

Vos vs Temperature
,0.0

'~s ='.5J- r-

-0.5
10

-1.0

-1.5

RISE TINE

1

10

~

12

= 820/1

7

~

Small Signal Pulse Response
vs Supply Voltage
Ay = +2,RL = 1k

'0 ~~w+mmID!:u:J
~vs = t15V
9

~

TIME (n.)

TlWE (n.)

:!

0.'%

PROPAGATION DELAY
RISE TIME
fAll TIME

o
o

:1:5

CLOSED-lOOP GAIN

:1:10

-2.0

......
r--- ....

E

- -2.5
vs=:ttSV
:P -3.0
-3.5
-4.0
-4.5
-5.0
-55 -35 -15 5 25 45 65 85 105 125

~

::IE

;::

>"

:1:15

r---

SUPPLY VOLTAGE (V)

TEMPERATURE (DC)

Zt vs Temperature

Zt vs Temperature

Is vs Temperature

1\.'= l~oa

1\.'= 1~I\

I.

1

,
o

....

::

i=="

'"'"

vrr

-55 -35 -15 5 25 .5 65 85 'OS 125

L'

vS='y ~ .....

~

~

1-1-""

-55 -35 -15 5 25

PSRR vs Temperature

'4

.s

,. I-V

--

v.l J5V

I-

13

.5
_VI

-::: ~ ~='5V

o

TEMPERATURE (DC)

I

15

12

~

-

Vs = '5V

11

,....,

-

10
-55 -35 -15 5 25 45 65 85 105 '25

65 85 105125

TEMPERATURE (oC)

TEMPERATURE (DC)

CMRR vs Temperature

Ib (+ ) vs Temperature

68
66

....i'vsl:t,!sv
:--.."

......
60
58
78L-L-L-L-L-L-~~~~

-55 -35 -15 5 25 .5 65 85 105125
TEMPERATURE (DC)

.......

vrr

r--- ......

Vs

,!.

i' t-...

~

-2

......

56
-55 -35 -15 5 25 45 65 85 105125
TEMPERATURE (DC)

-1

-3

-.
-5

I-

= t5V

l'"""~s=i'5r- - I
I

-55 -35 -15 5 25 45 65 85 105125
TEMPERATURE (DC)
TL/H/I1926-18

1-589

Ir
I

~

I

~ .~------------------------------------------------------------------------------~

CIO

;;;

:!

Typical Performance Characteristics
Vs = ±15V and TA = 25°C unless otherwise noted. (Continued)

Ib (-) VB Temperature

Ib (+ ) PSR VB Temperature

10

-=<
.3

,

'"

/.
_'I

0 f- f- ~Vs=:t15V
-2

~

-~

l.- I--

-6
-8

~v~

~

0.5

0.4

o.~

v..

S
.3

0.3

+

0.2

f-

'"

I
1

0.1

v:ttsv-

o

0.3

" , ......
r-- N

~~

~

'"

.

~
.3

0.2

'"~
:!:

~

0.1

o

-55 -35 -15 5 25

~5

1~0

130
120

..s

\

0.2
0.1

70

o

TEMPERATURE (Oc)

~
i!'

12
9

f- Vs = :t5V
-1

-2

-3
-~

-5
-55 -35 -15 5 25

l

I

I\. = 1 kn
I I
~5

TE~PERATURE

~5

65 85 105 125

TEMPERATURE (DC)

I\. = 1 kR

I\. = 150n -=

~
i!'

I\. = 150a
I I
I I
I\. = 150n

r-..

,

Output Swing VB Temperature
15

II\. = 1 ka

~

,

50
-55 -35 -15 5 25

-55 -35 -15 5 25 45 65 85 105 125

J I I

~

100

60

Vsrr

Output Swing VB Temperature

1::

110

80

1"'- ...... ..... l"'- I"'-

..8'

~ ~!=+5V

.l'o..
l- i-- l"'.
Vs =:t5V
["'111
J! 90

"<

'\.

TEMPERATURE COc)

"

65 85 105 125

18C( ±) VB Temperature

=:t5V

i\

0.3

65 85 105 125

~5

TEMPERATURE (Oc)

150

0.4

Vsj:t15V

~~ ./V
v~ ~

-55 -35 -15 5 25

(Oc)

0.5

o.~

--

~

o

0.6
Vs

,!.

0.2

Ib (-) CMR VB Temperature

Ib (+ ) CMR VB Temperature

~

:1:

85 85 105 125

~5

TEMPERAT~RE

0.5

S
.3

0.3

i--'"

-55 -35 -15 5 25

(Oc)

S
.3

'" o. lr--

IlI;vs='SV

-10
-55 -35 -15 5 25 45 65 85 105125
TE~PERATURE

Ib (-) PSR VB Temperature

0.5

-

f- Vs=:l:15V
-3
-6
-9
-12

I\. = 150n

= ....

I\. = 1 kn

-15
-55 -35 -15 5 25 45 65 85 105 125

65 85 105125

TE~PERATURE

(Oc)

(Oc)
TLIH111926-19

1-590

Typical Applications
CURRENT FEEDBACK TOPOLOGY
For a conventional voltage feedback amplifier the resulting
small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gainbandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6182, transcends this limitation
to offer a Signal bandwidth that is relatively independent of
the closed loop gain. Figures 1A and 18 illustrate that for
closed loop gains of -1 and - 5 the resulting pulse fidelity
suggests quite similiar bandwidths for both configurations.

TL/H/11926-22

FIGURE 2. Rf Sets Amplifier Bandwidth and Rs is
Adjusted to Obtain the Desired Closed-Loop Gsln, Ay.
Although this R, value will provide good results for most
applications, it may be advantageous to adjust this value
Slightly. ConSider, for instance, the effect on pulse responses with two different configurations where both the closedloop gains are + 2 and the feedback resistors are 8200,
and 16400,. respectively. Figures 3A .and 38 illustrate the
effect of increasing Rt while' maintaining the same closedloop gain - the amplifier bandwidth decreases. Accordingly,
larger feedbaCk resistors can be used to slow down the
LM6182 and reduCe overshoot in the time domain response. Conversely, smaller feedback resistance values
than 8200 can be used to compensate for the reduction of
bandwidth at high closed,loop gains; due to 2nd order effects.FOr example FfgUifM 4A,.and 48. iII\lstrate redUCing Rt
to 500n ,to 8lItabiish'1he desired small signal response in an
amplifier configured for a closed-loop gain of + 25.

Vour

(O.1V/DIV)

TIME (5nsJDIV)
TUH/11926-20

1A.Ay = -1

Vour
(0.5V/D1V)

Vour

(0.1V/D1V)

VIN
(0.5V/DIV)
TIME (5nsJD1V)

TIME (20nsJDIVj
TUH/11926-21
TUH/11926-23

1B.Ay = -5

3A.Rf = 8200.

FIGURE 1A, 1B. Variation of Closed-Loop Gain from -1
to - 5 Yields Similar Responses.
FEEDBACK RESISTOR SELECTION: Rf
Selecting the feedback resistor, R" is a dominant factor in
compensating the LM6182. For general applications the
LM6182 will maintain specified performance with an 8200
feedback resistor. The closed-loop bandwidth of the
LM6182 depends on the feedback reSistance, R,. Therefore, Rs, and not R" is varied to adjust for the desired
closed-loop gain as demonstrated in Figure 2.

~

I

I

Vour
(0.5V/DIV)

VIN

(0.5V/DIV)
TIME' (~sJDlV)
TUH/11926-24

3B. Rf = 16400
FIGURE 3A, 3B. Increase Compensation by Increasing
R"Ay = +2
1-591

Typical Applications (Continued)
is specified for a feedback resistance of 8200. Decreasing
the feedback impedance below 8200 extends the amplifier's bandwidth leading to possible instability. CapacitiVe
feedback should therefore not be usee! because the impedance of a capacitor decreases with increasing frequency.
VOUT
(0.5V/DIV)

VIN
(5OmV/DIV)
TIME (2nS/DIV)
TLlH/ll1l26-25

4A.Rt = 8200

•

VIN
(50mV/DIV)

TLlH/I1928-26

4B.Rt = 5000
FIGURE 4A, 4B. Reducing Rt to Increase. Bandwidth for
Large Closed-Loop Galna, Av = + 25
The extent 61 the ,amplifier's dependence on .At is displayed
in Figure 5.1(j( one particular closed-loop gain.
120.0

1 L 1J
1 1 1 1

"N '00.0

\

'"

~ 80.0
~ 60.0

40.0

'"I

20.0

..,

i

k

~s ~ tdv ~ 1 ~ll

~oI\: .1 1
~~
~s.=t5V

0.,5:

1.0

I\. = 15011
1.5

. "Rr
.:

1

I' t l1Si , =1 1 kill

l\

0.0

J

~ ",Vs tlSi ~ = I'S~ll

S
~..

Vs

TL/H/I1926-28

FIGURE 6. Current Feedback Amplifiers are Unstable
with Capacitive Feedback
For voltage feedback amplifiers it is quite common to place
a small lead compensation capacitor in parallel with feedback resistance, RI. This compensation serves to reduce
the amplifier's'peaking. One application ofthe lead compensation capacitor is to counteract the effects of stray capacitance from the inverting input to g~bund'.in circuit board layouts. The LM6182 cUlTent feedback amplifier does not require thiS lead compensation capacitor and has an even
Simpler, inore elegant, solution.
To limit the bandwidth and peaking.of theLM6182 current
feedback amplifier, do not use a capaCitor across RI as in
Figuf'9 7. This actually. has the opposite effect and extends
the bandwidth··of ttieamplifier leading to possible instability.
Instead, simply inCrease the value of the feedback resistor
as shdwn in Figuf'9 3.
Non-inverting applications can also reduce peaking and limit
bandwidth by adding an RC circuit as illustrated in Figuf'9 8.

VOUT
(O.5V/DIV)

.

:.'

2.0

2.5 :'3.0

3.5

8< Rs(kll)
.

".

TLlH/I1926-27

, ·,fIGURE 5. ~'dB Bandwidth I. Determined By
, ''-''
.. : Selecting Rt•. ,
'
CAPACI,TIVE FEEDBACK,
Current feedback amplifiers rely on feedback impedance for
proper compensation. Even in unity gain current feedback
amplifiers require a feedback resistor. LM6182 performance

TLlH/11926-29

FIGURE 7. Compensation CapaCitors Are Not Used with
the LM6182, Instead Simply Increase Rt to Compensate

1-592

Typical Applications (Continued)
pensation capacitor. The current feedback amplifier is
therefore not traditionally slew rate limited. This enables
large slew rates responses of 2000 VI ,""S. The non-inverting
configuration slew rate is also determined by input stage
limitations. Accordingly, variations of slew rates occur for
different circuit topologies.

+15V

10l'F

1.1.-

0.1 ).IF

DRIVING CAPACITIVE LOADS
The LM6182 can drive significantly larger capacitive loads
than many current feedback amplifiers. This is extremely
valuable for simplifying the design of coax-cable drivers. Although the LM6182 can directly drive as much as 100 pF of
load capacitance without oscillating, the resulting response
will be a function of the feedback resistor value. Figure 98
illustrates the small-signal pulse response of the LM6182
while driving a 50 pF load. Ringing persists for approximately 100 ns. To achieve pulse responses with less ringing either the feedback resistor can be increased (see Typical
Performance Characteristics "Suggested Rf and Rs for
CL"), or resistive isolation can be used (100-510 typically
works well). Either technique, however, results in lowering
the system bandwidth.

>----1- Your

-15V

820a

820a

'-3dB = 2.1RC

Figure 108 illustrates the improvement obtained by using a
470 isolation resistor.

TL/H/11926-30

SA

820n
+15V

820n

V OUT

>----.--

(O.5VIDIV)

VOUT

50n
-15V

VIN

TUH/11926-32

(O.5VIDIV)

9A

TIME (2Ons/DIV)
TL/HI11926-31

SB
FIGURE SA, SB. RC Limits Amplifier Bandwidth to 50
MHz, Eliminating Peaking In the Resulting Pulse
Response as Compared to Figure 3A

VOUT

(0.2V1D1V)

SLEW RATE CONSIDERATIONS

~

VIN
(O.2VIDIV)

The slew rate characteristics of current feedback amplifiers
are different than traditional voltage feedbaCk amplifiers. In
voltage feedback amplifiers, slew rate limiting or non·linear
amplifier behavior is dominated by the finite availability of
the 1 st stage tail current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast,
is not constant. Transient current at the inverting input is
proportional to the current available to the amplifier's com·

I

TIME (20ns/DIV)
TUH/11926-33

9B
FIGURE 9A, 9B. Av = -1, LM61S2 Can Directly Drive
50 pF of Load CapaCitance with 100 ns of Ringing
Resulting in Pulse Response

1-593

~ r---------------------------------------~------------------------------------------------_,

....

CD
CD

~

Typical Applications (Continued)
nal power dissipation can be minimized by operating at reduced power supply volta~es, such as ±5V.
Optimum heat dissipation Is acllieved by using wide circuit
board traces and soldering the part directly onto the board.
Large power supply and ground planes will improve power
dissipation. Safe Operating Area (S.O.A.) Is determined using the Maximum Power Derating Curves.
The 16-pin small outline package (M) has 5 V- heat sinking
pins that enable a junction-to-ambient thermal resistance of
70"C/W when soldered to 2 in2 1 oz. copper trace. A Vheat sinking pin is located on each corner of the package
for ease of layout. This allows high output power and/or
operation at elevated ambient temperatures without the additional cost of an integrated circuit heat sink. If the heat
sinking capabilities of the S.O. 'package are not needed, pin
4 and at least one of pins 1,8,9, or 16 must be connected to
V - for proper operation.
Figure 11 shows recommended copper patterns used to
dissipate heat from the LM6182.

820n

820n
4711

:>----'-...-'10II1II-....5011

YOUT .

I

50 PF

-15Y

TLlH/11926-34

10A

VOllT
(O.2V/DIV)

. Y,N

1"'---------.,

(O.2V/DIV)

I

I

1. _ _ _ ,

r---~

7

2

TIME (20nS/DIV)

...

TL/H/11926-35

10B
FIGURE 10A, 10B. Resistive Isolation of CL Provides
Higher Fidelity Pulse Response. Rf and Rs Could Also
Be Increased to Maintain Ay = -1 and Improve Pulse
Response Characteristics.

5

-

I4
I
'I
.:

..

5

,

,
.. _--,

.._:....._ ... ':...._:.:.. __ J

TL/H/11926-36

8"p'1I1 DI~(N)

1"'------------.,
I"
I

POWER SUPPLY BYPASSING AND LAYOUT
CONSIDERATIONS
A fundamental requirement for high-speed amplifier design
is adequate bypas$ing of the power ,supply. It is critical to
maintain a wi~eband fow-impedance to.ground at the amplifierssupply pins to insure the fidelity of high speed amplifier
transient signals. 0.1 ,..F ceramic bypass capaCitors at each
supply pin are sufficient for many applications. Typically
10 ,..1= tantalum capacitors are alsprequired if large current
transients are deliv,ered to the ioad. The bypass capacitors
should be placed as close to the amplifier pins as pOSSible,
such as 0.5" orless..
,
Applications requiring high output pow~r, cable dr~ers for
exampl~, cause increased internal power dissipation. Inter-

I
I 1

I
16 I

L.._

__..I

2

15

,.-3

14

I 4

15

5

12

~-

6

..I -8
7

11
oJ

..

10

-.,
9 I
I
I

I
I

L _ _ _ _ .-.;. _ _ _ _ _ _ _ ..I

TL/H/11926-37

1~pln

S,O. (M)

FIGURE 11. Copper Heatsink Layouts

1-594

Typical Applications

~

en
.....

(Continued)

CROSSTALK REJECTION

OVERDRIVE RECOVERY
The LM6182 is an excellent choice for high speed applications needing fast overdrive recovery. Nanosecond recovery times allow the LM6182 to protect subsequent stages
from excessive input saturation and possible damage.
When the output or input voltage range of a high speed
amplifier is exceeded, the amplifier must recover from an
overdrive condition. The non-linear output voltage remains
as long as the overdrive condition perSiSts. Linear operation
resumes after the overdrive condition is removed. Overdrive
recovery time is the delay before an amplifier returns to linear operation. The typical recovery times for exceeding
open loop, closed loop, and input commom-mode voltage
ranges are illustrated in Figures 14, 15, and 16.
The open-loop circuit of Figure 14 generates an overdrive
response bY!1l1owing the ±0.5V input to exceed the linear
input range of the amplifier. TYPical positive and negative
overdriVe'recovery times are 5 ns and 30 ns, respectively.

The LM6182 has an excellant crosstalk rejection value of
62 dB at 10 MHz. This value is made possible because the
LM6182 amplifiers share no common circuitry other than
the supply. High frequency crosstalk that does appear is
primarily caused by the magnetic and capacitive coupling of
the internal bond wires. Bond wires connect the die to the
package lead frame. The amount of current flowing through
the bond wires is proportional to the amount of crosstalk.
Therefore, crosstalk rejection ratings will degrade when
driving heavy loads. Figure 12 and shows a 10 dB difference
for two different loads.
120

I~s =1 ~i~~

II 11111

'iii
3
z

100

...;:::iJ
<..>

80

'"

..."""'"

60

'"

40

1=1: I~~I

~IIIIII

..J

Av

=+2

HJ.~

0

I\'='l~

i'o

+sv

i'o

VI
VI
0

<..>

VIN

'"

-+------1

son

>--....-VOUT
1 kll

20
0.1

10

,250il

100

FREQUENCY (MHz)
TLlH/11926-38
TLlH/I192B-41

FIGURE 12. CroSstalk Rejection
The LM6182 crosstalk effect is minimized in applications
that cascade the amplifiers by preceding amplifier A with
amplifier B.

GNO

START-UPTIME
Using the circuit in Figure 13, the LM6182 demonstrated a
start-up time of 50 ns.

v+

= :l:5V

> - - - 1 - VO
TIME (SOnS/OIV)

820n

TLlHI1192B-42

FIGURE 14. Open Loop OVerdrive Recovery Times of
5nsand30ns
The large,closed-IOOP gain configuration in F/{/ure 15forces
the amplifier output into overdrive. The typicel recovery time
to a linear output value is 15 ns.

0.1 J.lF

t
t

10 J.lF

-SV = V"
TLlH/I192B-39

FIGURE 13. Start-Up Test Circuit

1-595

CD

N

N

GO
..-

CD

....:::E

Typical Applications (Continued)
+15V

SPICE MACROMODEL
A spice macrorilodelis available for the LM6182. Contact
your'local National Semiconductor sales office to obtain an
operational amplifier spice model library disk.

Typical Application Circuits

-15V

820n

UNITY GAIN AMPLIFIER
The LM6182 current feedback amplifier is unity gain stable.
The feedback resistor, RI, is required to maintain the
LM6182's dynamic performance.

50n

TLlH/11926-43

>--41-- Your
TLlH/11926-47

FIGURE 17. LM6182Is Unity Gain Stable
NON·INVERTING GAIN AMPLIFIER
Current feedback amplHiers can be used in non-inverting
gain and ,level shHting functions. The same basic closedloop gain equation used for voltage feedback amplHiers applies to current feedback amplifiers: 1 + RI/Rs.

TLlH/11926-44

FIGURE 15. 15 ns Closed Loop Output Overdrive
Recovery Time Generated by Saturating tI:Ie Output
'
Stage of the LM6182
The COm!Tll)n-mode input range of a unity-gain circuit is exceeded by a 4V pulse resulting in' a typical recovery time of
20 ns shown in Figur9,16.
'

>-~~Vour
TLlH/11926-46

FIGURE 18. Non·lnverting Closed Loop Gain Is
Determined with the Same Equation Voltage Feedback
Amplifiers Use: 1 + Rt/Rs

, , +5V

INVERTING GAIN AMPLIFIER
The inverting closed loop gain equation used with voltage
feedback amplifiers also applies to current feedback amplHiers.

TLlH/11926-45

TLlH/11926-49

Vour

(2V/DIV)

FIGURE 19. Current Feedback Amplifiers Can Be Used
for Inverting Gains, Just Like a Voltage Feedback
Amplifier: - Rt/Rs

GNO

VIN
(2V1D1V)

GNO

TIME COOnS/OIV)
TLlH/11926-46

FIGURE 16. Output Recovery from an Input that
Exceeds the Common-Mode Range

1-596

r-

Typical Application Circuits (Continued)

...

i:

en
co

Ordering Information

SUMMING AMPLIFIER
The current feedback topology of the LM6182 provides significant performance advantages over a conventional voltage feedback amplifier used in a standard summing circuit.
Using a voltage feedback amplifier, the bandwidth of the
summing circuit in Figure 20 is limited by the highest gain
needed for either Signal Vl or V2. If the LM6182 amplifier is
used instead, wide circuit bandwidth can be maintained relatively independent of gain requirements.

Temperature Range
Package
Military
-SsoC to + 125"C
8-pin
Molded
DIP
16-pin
Small
Outline

LM6182AMN

Industrial
-400Cto
+8SoC

~

NSC
Drawing

LM6182AIN
LM61821N

N08E

LM6182AIM
LM61821M

M16A

If MilitarylAerospace specified devices are required, contact the National
Semiconductor Sales Office or Distributors for availability and specifications.

TUH/11926-50

FIGURE 20. LM6182 Allows the Summing Circuit to Meet
the Requirements of Wide Bandwidth Systems
Independent of Signal Gain

i

III

1-597

~

r----------------------------------------------------------------------------.

--~d
[)II' National

~

Semiconductor

LM6313 High Speed,
High Power Operational Amplifier
General Description

Features

The LM6313is a high-speed, high-power operational amplifier. This operational amplifier features a 35 MHz small signal bandwidth, and 250 V/,..s slew rate. A compensation pin
is included for adjusting the open loop bandwidth. The input
stage (A1) and output stage (A2) are pinned out separately,
and can be used independently. The operational amplifier is
designed for low impedance loads and will deliver
±300 mA. The LM6313 has both overcurrent and thermal
shutdown protection with an error flag to signal both these
fault conditions.
These amplifiers are built with National's VIPTM (Vertically
Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high
speed performance without the need for complex and expensive dielectric isolation.

•
•
•
•
•
•
•
•

Connection Diagram

Typical Application

Applications
•
•
•
•
•
•

Dual-In-Une Package
+Vs

250 V/,..s
High slew rate
35 MHz
Wide bandwidth
Peak output current
± 300 mA
Input and output stages pinned out separately
Single or dual supply operation
Thermal protection
Error flag warns of faults
Wide supply voltage range
± 5V to ± 15V

High speed ATE pin driver
Data acquisition
Driving capacitive loads
Flash A-D input driver
Precision 500-750 video line driver
Laser diode driver

1.1 k
A2 INPUT

A2 OUTPUT

COMP.

-Vs

AI OUTPUT

o-Vs

o-Vs

o-Vs
N/C

o-Vs
-INPUT

FlAG

'----+';";'" +INPUT

GND

N/c"
TLlHI10521-2
TL/H/10521-1

Top View

Order Number LM6313N
See NS Package Number N16A
r! Temperature (CC)

J,...-

-

~

'i--'" i-"""

-so -25

U

Overahoot vs

."r

1\ = 500

800

.Capacltlve Load

90

~

900

Input ArnpIItudo (:t V)

Bandwidth vi
Supply Voltage.

...... r-...

1\=11<4

II

1100


.! OUTPUT
.2. NC

v- 2

NON-INVERTING 3
INPUT

TUH/12313-1

Top View

Package

Ordering
Information

+.

4 INVERTING
INPUT

Top View
NSCDrawing
Number

Package
Marking

Supplied as

8-PinDIP

LM7131ACN

N08E

LM7131ACN

rails

8-PinDIP

LM7131BCN

N08E

LM7131BCN

rails

8-PinS0-8

LM7131ACM

M08A

LM7131ACM

rails

8-PinSO-8

LM7131BCM

M08A

LM7131BCM

rails

8-PinSO-8

LM7131 ACMX

M08A

LM7131ACM

2.5k units tape and reel

8-PinSO-8

LM7131 BCMX

M08A

LM7131BCM

2.5k units tape and reel

5-Pin SOT 23-5

LM7131ACM5

MA05A

A02A

250 units on tape and reel

5-Pin SOT 23-5

LM7131BCM5

MA05A

A02B

250 units on tape and reel

5-Pin SOT 23-5

LM7131ACM5X

MA05A

A02A

3k units tape and reel

5-Pin SOT 23-5

LM7131 BCM5X

MA05A

A02B

3k units tape and reel

1-608

TUH/12313-2

Absolute Maximum Ratings (Note 1)
Lead Temperature (soldering, 10 sec)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Oltlce/Dlstrlbutors for availability and specifications.
2000V
ESD Tolerance (Note 2)
±2.0
Differential Input Voltage
(V+)+O.1V, (V-) - 0.3V
Voltage at Input/Output Pin
SupplyVoltage(V+ -V-)
12V

Storage Temperature Range
Junction Temperature (Note 4)

Operating Ratings
O"C';; TJ';; + 70"C

Thermal Resistance (9JN
N Package, 8-Pin Molded DIP
SO-8 Package, 8-Pin Surface Mount

±80mA
±80mA

Current at Power Supply Pin

2.7V,;; V,;; 12V

Supply Voltage (V+ - V-)
Junction Temperature Range
LM7131AC, LM7131BC

±5mA

Current at Input Pin
Current at Output Pin (Note 3)

260"C
- 65"Cto + 150"C
150"C

115"C/W
165"C/W
325"C/W

M05A Package, 5-Pin Surface Mount

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C, V+
3V, VSymbol

Vas

=

OV, VCM

=

Va

=

V+ 12 and RL

Parameter

Input Offset Voltage
Average Drift

Ie

Input Bias Current

CMRR
CMRR
+PSRR
-PSRR
VCM

Conditions

Typ
(Note 5)
0.02

20

Input Offset Current

0.35

Common Mode
Rejection Ratio

OV ,;; VCM ,;; 0.85V
(Video Levels)

75

Common Mode
Rejection Ratio

0.85V';; VCM ,;; 1.7V
(Mid-Range)

70

Positive Power Supply
Rejection Ratio

V+ = 3V, V- = OV
V+ = 3Vto 6.5V

75

Negative Power Supply
Rejection Ratio

V- = -3V, V+ = OV
V- = -3Vto -6.5V

75

Input Common-Mode
Voltage Range

V+ = 3V
For CMRR

0.0

C,N

Voltage Gain

LM7131AC
Limit
(Note 6)

LM7131BC
Umit
(Note 6)

2

7

4

10

10

~

50 dB

2.0
AVOL

=

1500. Boldface limits apply at the temperature extremes.

Input Offset Voltage

TCVos

los

=

RL = 1500, Va = 0.250V
to 1.250V

Common-Mode
Input CapaCitance

60
2

1-609

Units
mV
max

",V/"C
30

30

40

40

3.5

3.5

5

IJ-A

5

max

60
55

60

55

dB
min

55

55

50

SO

65

65

60

60

65

65

60

60

0.0

0.0

0.00

0.00

1.70

1.70

1.60

1.60

55

55

50

50

",A
max

dB
min
dB
min
dB
min
V
min
V
max
dB
pF

3V DC Electrical Characteristics Unless otherwise specified,alllimitsguaranleed forTJ= 25~C,V+ =,'
3V, v- = OV, VCM = Vo = .y+ 12 and RL = 1500.. Boldface limits apply atthe temperature extremes. (Continued)
Symbol
Va

Parameter

Typ

Conditions

(Note 5)

Output Swing
High

V+ = 3V, RL = 1500
terminated at OV

2.6

Low

V+ = 3V, RL = 1500
terminated at.OV

0.05

V+ = 3V, RL = 1500.
terminated a1'1.5V

2.6

V+ = 3V, RL = 1500
terminated at 1.5V

0.5

High
Low

,LM7131AC
Limit
(Note 6)

LM7131Bc
LllI1it
(Note 6)

Units

2.3

2.3

V

2.0

2.0

min

0.15

0.15

0.20

0.20

V
max

2.3

2.3

2.0

2.0

0.8

0.8

1.0

1.0

'V
min
V
max

Va

Output Swing
High

V+ = 3V, RL = 6000
terminated at OV

2.73

V
max

Va

Output Swing
Low

V+ = 3V, RL = 6000
terminated at OV

0.06

V
max

Isc

Output Short Circuit
Current

Sourcing, Va = OV

65

Sinking, Va = 3V

Is

Supply Current

40

V+ = + 3V

6.5

45

45

40

40

25

25

20

20

8.0

8.0

8.5

8.5

mA
min
mA
min
mA
max

3V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ =
3V, V- = OV, VCM = Va = V+ 12 and RL = 1500. Boldface limits apply atthe temperature extremes.
Symbol
T.H.D.

Parameter
Total Harmonic Distortion

Conditions
F=4MHz,Av= +2
, RL = 1500, Va = 1.0Vpp

Typ
(Note 5)

LM7131AC
Limit
(Note 6)

LM7131BC
Limit
(Note 6)

Units

0.1

%
%

Differential Gain

(Note 10)

0.45

Differential Phase

(Note 10)

0.6

SR

Slew Rate

RL = 1500,CL = 5pF
(Note 7)

120

SR

Slew Rate

RL = 1500, CL = 20 pF
(Note 7)

100

V/p.S

Gain-Bandwidth Product

70

MHz

Closed-Loop - 3 dB
Bandwidth

90

MHz

GBW

1-610

°
Vlp.S

5V DC Electrical Characteristics Unless otherwise specified. all limits guaranteed for TJ =

25'C. V+ =

5V. V- = OV. VCM = Vo = V+ /2 and RL = 1500. Boldface limits apply at the temperature extremes.

Symbol

VOS

Parameter
Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

18

Input Bias Current

los
CMRR
CMRR
+ PSRR
- PSRR
VCM

Conditions

Typ
(Note 5)
0.02

20

Input Offset Current

0.35

Common Mode
Rejection Ratio

OV:5; VCM:5; 1.85V
(Video Levels)

75

Common Mode
Rejection Ratio

1.85V :5; VCM :5; 3.7V
(Mid-Range)

70

Positive Power Supply
Rejection Ratio

V+ = 5V. V- = OV
V+ = 5Vto 10V

75

Negative Power Supply
Rejection Ratio

VV-

Input Common-Mode
Voltage Range

V+
For CMRR

= - 5V. V+ = OV
= - 5Vto -10V
= 5V
~

50 dB

75
0.0

Voltage Gain

RL = 1500. Vo =
0.250V to 2.250V

70

CIN

Common-Mode
Input Capacitance

Vo

Output Swing
High

V+ = 5V. RL = 1500
terminated at OV

4.5

Low

V+ = 5V. RL = 1500
terminated at OV

0.08

V+ = 5V. RL = 1500
terminated at 2.5V

4.5

V+ = 5V. RL = 1500
terminated at 2.5V

0.5

High
Low

LM7131BC
Limit
(Note 6)

2

7

4

10

Units
mV
max
p,VI'C

30

30

40

40

3.5

3.5

5

5

65

65

60

60

55

55

50

50

65

65

60

60

65

65

60

60

- 0.0

- 0.0

0.00

0.00

3.70

3.70

3.60

3.60

60

60

55

55

2

p,A
max
p,A
max
dB
min
dB
min
dB
min
dB
min
V
min
V
max
dB
min
pF

4.3

4.3

4.0

4.0

0.15

0.15

0.20

0.20

4.3

4.3

4.0

4.0

0.8

0.8

1.0

1.0

V
min
V
max
V
min
V
max

Vo

Output Swing
High

V+ = 5V. RL = 6000
terminated at OV

4.70

V
max

Vo

Ouptut Swing
Low

V+ = 5V. RL = 6000
terminated at OV

0.07

V
max

Isc

Output Short Circuit
Current

Sourcing. Vo
Sinking. Vo

Is

Supply Current

V+

=

=

=

OV

5V

+5V

65
40
7.0

1-611

....
....

Co)

10

4.0
AVOL

LM7131AC
Limit
(Note 6)

riii:
......

45

45

40

40

25

25

20

20

8.5

8.5

9.0

9.0

mA
min
mA
min
mA
max

5V AC Electrical Characteristics unleSSOthe~isespeCified,alllimitsguaranteedfortJ =

25°C,Y+ =

5Y, Y- = OY, YCM = Yo = Y+ 12 and RL = 1500. Boldface limits apply at the temperature extremes.
Symbol

Typ

Parameter

Conditions

Total Harmonic Distortion

F = 4MHz,Av = +2
RL = 1500, YO = 2.0Ypp

Differential Gain
Differential Phase
SR

T.H.D.

(Note 5)

LM7131AC
Limit
(Note 6)

LM7131BC
Umlt
(Note 6)

Units

0.1

%

(Note 10)

0.25

%

(Note 10)

0.75

°

Slew Rate

RL = 1500, CL = 5 pF
(Note B)

150

V/JA-s

SR

Slew Rate

RL = 1500, CL = 20 pF
(Note 8)

130

V/JA-S

GBW

Gain-Bandwidth Product

70

MHz

Closed-Loop -3 dB
Bandwidth

90

MHz

11

nY
--

en

Input-Referred
Yoltage Noise

f=1kHz

in

Input-Referred
Current Noise

f = 1 kHz

~
pA

3.3

~

±

5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25°C, Y+
= 5Y, Y- = 5Y, YCM = YO = OY and RL = 1500. Boldface limits apply at the temperature extremes.
Symbol

Yos

Parameter

Input Offset Yoltage
Average Drift

18

Input Bias Current

CMRR
+PSRR
-PSRR
VCM

(Note 5)

Input Offset Yoltage

TCYos

los

Typ

Conditions

0.02

20

Input Offset Current

0.35
~

YCM

~

Common Mode
Rejection Ratio

-5Y

Positive Power Supply
Rejection Ratio

Y+ = 5Y, Y- = OY
Y+ = 5Yto 10Y

75

Negative Power Supply
Rejection Ratio

Y- = -5Y, Y+ = OY
Y- = -5Yto -10Y

75

Input Common-Mode
Yoltage Range

Y+ = 5Y, Y- = -5Y
For CMRR ~ 60 dB

-5.0

Yoltage Gain

LM7131BC
Umlt
(Note 6)

2
4

10

7

10

3.7Y

75

4.0
AVOL

LM7131AC
Umlt
(Note 6)

RL = 1500,
Yo = -2.0 to +2.0

1-612

70

Units
mY
max
JA-YI"C

30

30

p.A

40

40

max

3.5

3.5

p.A

5

5

max

65

65

80

80

dB
min

65

65

80

80

65

65

80

80

-5.0

-5.0

-5.0

-5.0

3.70

3.70

3.80

3.80

55

55

50

50

dB
min
dB
min
Y
min
Y
max
dB

± 5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C, V+

=

5V, V-

=

5V, VCM

Symbol

=

Vo

=

OV and RL

=

1500. Boldface limits apply at the temperature extremes. (Continued)

CIN

Common-Mode
Input Capacitance

Vo

Output Swing
High

Sourcing, Vo
Sinking, Vo

=

V+

Supply Current

Is

LM7131BC
Limit
(Note 6)

=

=

-5V

4.5

65

5V

+5V, V-

=

40
-5V

Units

pF

-4.5

Output Short Circuit
Current

LM7131AC
Limit
(Note 6)

2
V+ = 5V, V- = -5V
RL = 1500
terminated at OV

Low

Isc

Typ
(Note 5)

Conditions

Parameter

7.5

4.3

4.3

4.0

4.0

-3.5

-3.5

-2.5

-2.5

45

45

40

40

25

25

20

20

9

9

10

10

V
min
V
max
mA
min
mA
min
mA
max

± 5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ = 25"C, V+

=

5V, V-

=

5V, VCM

=

Vo

=

OV and RL

=

1500. Boldface limits apply atthe temperature extremes.
LM7131AC
Limit
(Note 6)

LM7131BC
Limit
(Note 6)

Parameter

Conditions

Typ
(Note 5)

Total Harmonic Distortion

F = 4MHz,Av = -2
RL = 1500, Vo = 4.0Vpp

1.5

%

Differential Gain

(Note 10)

0.25

%

Differential Phase

(Note 10)

1.0

"

SR

Slew Rate

RL = 1500,CL
(Note 9)

=

5pF

150

V/IJ-s

SR

Slew Rate

RL = 1500, CL
(Note 9)

=

20 pF

130

V/IJ-s

Gain-Bandwidth Product

70

MHz

Closed-Loop -3 dB
Bandwidth

90

MHz

Symbol

T.H.D.

GBW

Units

Note 1: Absolute maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional. but spacific performance is not guaranteed. For guarantesd specifications and the test conditions, ses the Electrical characteristics.
Note 2: Human body model, 1.5 kn in series with 100 pF.
Note 3: Applies to both single·supply and spin-supply operation. Continuous short circuit operation at elevated ambient temperature can result in excesding the
maximum allowed junction temperature of 150"C.
Note 4: The maximum power dissipation is a function of TJ(max), 9JA, and TA. The maximum allowable power dissipation at any ambient temparature is Po =
(TJ(max) - TAl/IIJA. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Nota 7: Connacted as voltage follower wnh 1.5V step input. Number specified is the slower of the positive and negative slew rates. V+ = 3V and RL = 150n
connected to 1.5V. Amp excned wnh 1 kHz to produce Vo = 1.5 Vpp.
Note 8: Connected as Voltage Follower with 4.0V step input. Number specified is the slower of the positive and negative slew rates. V+ = 5V and RL = 150n
connected to 2.5V. Amp excited wnh 1 kHz to produce Vo = 4 Vpp.
Note 9: Connacted as Voltage Follower wnh 4.0V step input. Number specified is the slower of the positive and negative slew rates. V+ = 5V, V- =' -5Vand
RL = 150n connacted to OV. Amp excited wnh 1 kHz to produce Vo = 4 Vpp.
Note 10: Differential gain and phase measured wnh a 4.5 MHz signal into a 150n load, Gain = + 2.0, between 0.6V and 2.0V output

1-613

..-

C'I)

~

~

Typical Performance Characteristics
LM7131 Supply Current va
Supply VoHage

LM7131 Input Current va
Temperature @ 3V
o

10

I

-3

'1

-9
::: -12

,

}-21
-24
-27

1

o
3

4

5

6

7

8

."

Input Voltage @ 5V

3V

_

3

10~-+~1-+-~-+~+-~

7

30
25
20
15

..3

10

1
-5~-+~1-+-~-t.A-+-t1
1.

Ia

0
-5

=

-10

~-+~1-+-~---v~+-t1

.E -15
-20

rt:~~~!=tt=t1
I.-

~

= 150_

m~

~

o

0.5 1 \.5 2 2.5 3 3.5 4 4.5 5

150 I-+HftllH-ffIlIIf-HfHIIIIf-H4llIIIf-HitIIII
100 I-+HltIIN-ffIlIIf-HfHIIIIf-H'ItlIIf-H~

~

1000

10k

~

525
450

:

~ = 15011
YOUT = IV

m-

3

50

~
~

~

40

225

30

150

20

75

10
0
1

10

100

1000

10k

10 100 1000 10k lOOk 1M ION lOON

tOOk

Frequenc)' (Hz)

Frequency (Hz)

LM7131 cable Driver
Ay = +1@ +3V
= 150

VOUT =IV

LM7131 Cable Driver
Ay = +2@ +3V

5V

2.5V

INPUT

INPUT

5}~,~V

SOOmV

/div

I@
>

50

~E

40

0
0

80

OUTPUT
SOOmV

10

/div

0
10 100 1000 10k lOOk 1M

10M 100M

,,

I

30

OV 1-'- ...
rIi

~E

'-1--

~-

on

20

10M

70
60

0

70

~

=5k

300

~

1M

"~s ~';3V]

80

375

-5

lOOk

'~s~'~;~~
~

100
gO

~S'~'~2.'dJ

600

LM7131 PSRR va
Frequency @ 5V

~
~

100 1000 10k lOOk

LM7131 PSRR va
Frequency @ 3V

IlIlIIm III

675

frequency (Hz)

m-

10

LM7131 Voltage Noise va
Frequency @ 5V

o Wl1llllllllJll..lllll~~!±H

3

1]1I"IIIIIUII
Vs = +1-2. 5V ftttIIN-I1fIII--tttI1III
V'N = IvP~:-:P~.-j-HlllI-I'I.tHllI

Frequency (Hz)

750

80

110
100
90
80
70
60
50
40
30
20
10
0

3

LM7131 Voltage Noise va
Frequency @ 3V

90

~

V'N (v)

200rP~H-ffIlIIf-HfHIIIIf-H4llIIIf-H~

I-

LM7131 CMRR va
Frequency @ 5V

VS=+5V-

V'N (v)

350 rrrmmr"'T'TTl111ll"TTTlTIIII"'TI""'"
11111111nT"'T'1l l mnlnl l
300 Il+H!!IIl-+ffIlIIf-HfHIIIIl-Y4llIIIl-'-'.lllIII
YS=:l:l.SV
250 I+HltIIH-ffIlIIf-HfI!!IIII ~ = 5k

-

1..0- r-

-30
-40 -20 0 20 40 60 80 100120140

.!: -15

-20
-25
-30

-+-

=VOUT =tV

-12

~ -15

1- 10

-25 H-+1--t--1-+~+-H-+-l
-30 '-'-'--L.L.JL.L--'---'-'-'-'--'
o 0.5
1.5
2.5

100

VIN

= 150

Case Temperature (e)

LM7131 Input Current va

100

-9

!

Input VoRage

10

~

~ -18
-21

LM7131 Input Current va
30ro~-r'-r-ro-r.-'-~

1

I
Vs=+5V

-6

Case Temperature (e)

25 ~-t-r~t-~-+~+-~
20 ~-t-r~t-~_Vs +3V
15
~=150

5V

-27

Supply Volt.g. (v)

I

'.E'

I-

-30
-40 -20 0 20 40 60 80 100120140

9 10 11 12

@

'1

-

.... r-

-15

o -18

@

-3

VS =+3V+
~ = 150
Y,N =YOUT = 1V

-6

~

LM7131 Input Current va

Temperature

,,~-

50 "s/dlv

III

"""1--

.... 1-'

0
0

on

OUTPUT

5}~,~V
-2.5V

-I"-

'"1-50 ns/div

Frequency (Hz)
TUH/12313-3

1-614

Typical Performance Characteristics

E

.....
.....
.....

(Continued)

Co)

LM7131 Driving 5'
RG-59Av = +2@ +3V

LM7131 Driving 75'
RG-59Av = +2@ +3V

LM7131 Cable Driver
Av = +10@ +3V

2V

2V

5V

INPUT

INPUT

iNPUT

l~~V

200mV

200mV
/diY

/div

r-I-

-r-.-

CABLE

I

OUTPUT

OUTPUT

200mV

/div
OV

1--

F- ,..-1-

-l-

1--:--

OV~

..... ~

...... r-'

5~~I:'V

OV

Ji -r-

I-

50ns/div

SO ns/div

LM7131 Cable Driver
Av = +1 @ +5V

LM7131 cable Driver
Av = +2@ +5V

5V

LM7131 Driving 5' RG-59
Av = +2@ +5V

5V

2V

iNPUT
500 mV

INPUT
SOOmV

iNPUT
200mV

/div

IdiY

1--

\
\

/div

-

r--r-

i-I-r-

-r-

-ICABLE

OUTPUT

OUTPUT
SOOmV
/div

200mY

OVr

r--

-r-

OVr

-,..-

""-f-

50na/dly!ill

/div
OV~

-r-

1-1-

50 na/dlY !ill

LM7131 Driving 75' RG-59
Av = +2@ +5V

50 n./dlY !ill

LM7131 Cable Driver
Av = +10@ +5V

2V

LM7131 Driving Flash
AID LoadAv = -1 @ +5V

5V

5V

iNPUT

iNPUT
SOOmV

1~~V

/div

II
OVr

1--"'"

1..... -

OVr

\

1--

-I-

50 naldly !ill

50 "IdlY !ill

LM7131 Driving Flash
AID LoadAv = +1@ +5V

LM7131 Driving Flash
AID LoadAv = +2@ +5V

5V

OV ~ l.-I..-JI..-J....J.--I.-'--::'::--'-..L...J

50 n./dlY

Irrl

LM7131 Driving Flash
AID LoadAv = +5@ +5V

5V

5V

iNPUT
SOOmY
/div

iNPUT

l~~V

,.

"""-I-

1--

OUTPUT
SOOmV

OUTPUT

5~~i~V

/div

OVr

OVr

50 "/diY !ill

50 "IdlY

Irrl
TLlH/12313-4

1-615

.-

r-----------------------------------------------------------------------------~--~--~

CO)

.....

Typical Performance Characteristics (Continued)

',,'.

:i
LM7131 Driving Flash
AID LoadAy = +5@ +5V
With 2 pF Feedback Capacitor

LM7131 Driving Flash
AID LoadAy = +10@ +5V

SOOmV

5V

INPUT

10pmV
Idly

INPUT

10pmV

/div
~

I

I
I

5~~r.V

l
OVE
50ns/dlv

I

,

OUTPUT
OUTPUT

500mV
Idly

l-

\

-500mV
50 ns/dly

IITl

IITl
TLlH/12313-6

TLlH/12313-5

LM7131 Bode Plot
@ 3V. 5Vand 10V
Ref Level 0.000 dB IDlY 1.000 dB
5V.,..

3V

.JI'

-Od8

spin Supplies
Ay = +1
RL = 1500

10V

-3d8
3V

lOOk

1M

10M

START 100 000.000 Hz

100M

STOP 200 000.000 Hz

TLlH/12313-7

LM7131 Single Supply
Bode Plot @3V. 5V and 10V
Ref Level 0.000 dB IDlY 1.000 dB

3V_
Single Supplies
Ay = +1
RL = 1500

~

Od8

10V

-3d8

3V

5V

lOOk

IN

10M

START 100 000.000 Hz

1-616

\.

~\

100M

STOP 200 000.000 Hz

TLlH/12313-8

r-

i:
.....

Application Information
and disk drive write heads. The small size of the SOT23-5
package can allow it to be placed with a pre-amp inside of
some rotating helical scan video head (VCR) assemblies.
This avoids long cable runs for low level video signals, and
can result in higher signal fidelity.

GENERAL INFORMATION
The LM7131 is a high speed complementary bipolar amplifier which provides high performance at single supply voltages. The LM7131 will operate at ±5V split supplies, +5V
single supplies, and + 3V single supplies. It can provide improved performance for ± 5V designs with an easy transition to +5V single supply. The LM7131 is a voltage feedback amplifier which can be used in most operational amplifier circuits.

Additional space savings parts are available in tiny packages from National Semiconductor, including low power amplifiers, preCision voltage references, and voltage regulators.

The LM7131 is available in three package types: DIPs for
through hole designs, SO-8 surface mount packages and
the SOT23-5 Tiny package for space and weight savings.

Notes on Performance Curves and
Datasheet Limits

The LM7131 has been designed to meet some of the most
demanding requirements for single supply amplifiers-driving analog to digital converters and video cable driving. The
output stage of the LM7131 has been specially designed for
the dynamic load presented by analog to digital converters.
The LM7131 is capable of a 4V output range with a +5V
single supply. The LM7131's drive capability and good differential gain and phase make quality video possible from a
small package with only a + 5V supply.

SUPPLY CURRENT vs SUPPLY VOLTAGE

BENEFITS OF THE LM7131

This curve is relatively flat in the 200 mV to 4V input range,
where the LM7131 also has good common mode rejection.

The LM7131 can make it possible to amplify high speed
signals with a single + 5V or + 3V supply, saving the cost of
split power supplies.

COMMON MODE VOLTAGE REJECTION

EASY DESIGN PATH FROM

Important:
Performance curves represent an average of parts, and are
not limits.

Note that this curve is nearly straight, and rises slowly as
the supply voltage increases.

INPUT CURRENT vs INPUT VOLTAGE

Note that there are two parts to the CMRR specification of
the datasheet for 3V and 5V. The common mode rejection
ratio of the LM7131 has been maximized for signals near
ground (typical of the active part of video Signals, such as
those which meet the RS-170 levels). This can help provide
rejection of unwanted noise pick-up by cables when a balanced input is used with good input resistor matching. The
mid-level CMRR is similar to that of other single supply op
amps.

±5V to + 5V SYSTEMS

The DIP and SO-8 packages and similar ± 5V and single
supply specifications means the LM7131 may be able to
replace many more expensive or slower op amps, and then
be used for an easy transition to 5V single supply systems;
This could provide a migration path to lower voltages for the
amplifiers in system designs, reducing the effort and expense of testing and re-qualifying different op amps for each
new design.

BODE PLOTS (GAIN vs FREQUENCY FOR Ay =

+ 1)

The gain vs. frequency plots for a non-inverting gain of 1
show the three voltages with the 1500 load connected in
two ways. For the single supply graphs, the load is connected to the most negative rail, which is ground. For the split
supply graphs, the load is connected to a voltage halfway
between the two supply rails.

In addition to providing a design migration path, the three
packages types have other advantages.
The DIPs can be used for easy prototyping and through hole
boards. The SO-8 for surface mount board deSigns, and
using the SOT23-5 for a smaller surface mount package can
save valuable board space.

DRIVING CABLES

SPECIFIC ADVANTAGES OF S0T23-5 (TINY PACKAGE)

Pulse response curves for driving 750 back terminate cables are shown for both 3V and 5V supplies. Note the good
pulse fidelity with straight 150 loads, five foot (1.5 meter)
and 75 foot (22 meter) cable runs. The bandwidth is reduced when used in a gain of ten (Av = + 10). Even in a
gain of ten configuration, the output settles to < 1 % in
about 100 ns, making this useful for amplifying small signals
at a sensor or signal source and driving a cable to the main
electronics section which may be located away from the
Signal source. This will reduce noise pickup.

The SOT23-5 (Tiny) package can save board space and
allow tighter layouts. The low profile can help height limited
deSigns, such as sub-notebook computers, consumer video
eqUipment, personal digital assistants, and some of the
thicker PCMCIA cards. The small size can improve Signal
integrity in noisy environments by plaCing the amplifier closer to the signal source. The tiny amp can fit into tight spaces
and weighs little. This makes it possible to design the
LM7131 into places where amplifiers could not previously
fit.

Please refer to Figures 1-5 for schematics of test setups
for cable driving.

The LM7131 can be used to drive coils and transformers
referenced to virtual ground, such as magnetic tape heads

1-617

....
....

w

~

COl)

~

:5

r-----------------------------------------------------------------------------------------------,
Application Information

(Continued)

+V.

rok
P6204 I GHz
FET Xl0
10~11 1.7)pF
{1.12 pF

.t----.,.....;::........---I

+O.3V
to IN
+2V

75

75
TL/H/12313-9

Numbers in parentheses ars measured
fIXture capacitances w/o OUT and load.

FIGURE 1. Cable Driver Ay =

+1

~Tek

,.....Wlr-....- -......W\r-......<;....., P6204 I GHz
FET Xl0

+V.

rek
P6204 I GHz
FET Xl0

10~ 111.7)PF

{1.12 pF

10~111.7)PF

{1.t2 pF

+O.15V

@-

..L----""....- - t

+Il'v IN

75

75
TL/H/12313-10

Numbers In parentheses ars messured
fixture capacitances w/o OUT and load.

FIGURE 2. Cable Driver Ay = +2

+Vs

rok
P6204 I GHz
FET Xl0

10~111.7pF

(1.12pF)

.t

+O.15V
10 IN
+1V

---~....---I

>~~~E:::I7-1.~TOk
RL

75

P6204 I GHz
rET Xl0

10~111.7)PF

{1.12pF

TL/H/12313-1'

Numbers in parentheses are maasurad
fixture capacitances w/o OUT and load.

FIGURE 3. Cable Driver 5' RG·59

1·618

Application Information (Continued)

2k

+v.

Tok
P62D4 I GHz
rET XID
IDlAi/1.7pr
(1.12 prj

1:

+D.15V
to IN
+IV

---..,.,.,.....---1

TUHI12313-12

Numbers in parentheses are measured
fixture capecilances wlo OUT and loed.

FIGURE 4. cable Driver 75' RG-59

220

2k

T8k
P62D4 I GHz
rET XID
IDlAi/1.7pr
(1.12 prj

~T.k

P62D4 I GHz
r~ X1D
lD~
1.7 pr
1. 2 prj

I:

+v.

1:

RL
(0.15 prj

+D.3V
to IN
+2V

-

-

• 0.1 }Or, CH~PTm
47~r TANT

TUH112313-13

Numbers in parentheses are measured
fixture capacitances wlo OUT and load.

FIGURE 5. Cable Driver Gain of 10 Ay =

1·619

+ 10

~
CO)

,...
.....

~

r-------------------------------------------------------------------------------------,
Application Information

(Continued)

DRIVING TYPE 1175 FLASH AID LOADS
The circuits in Figures 6-11 show a LM7131 in a voltage

ad range) capacitor across the feedback resistor. See FigureS 9 and 10 for schematics and respective performance

follower configuration driving the passive equivalent of a
typical flash AID input. Note that there is a slight ringing on
the output, which can affect accurate analog-ta-digital conversion. In these graphs, we have adjusted the ringing to be
a little larger than desirable in order to better show the settling time. Most settling times at low gain are about 75 ns to
< 1 % of final voltage. The ringing can be reduced by adding a low value (approximately 5000) feedback resistor from
the output to the inverting input and p!acing a small (picofar~

curves for flash AID driving at Av =
2 pF feedback capacitor.

+ 5 with and without a

See section on feedback compensation. Ringing can also
be redl,lced by placing an isolation resistor between the output and the analog-to-digital converter input-see sections
on driving capacitive loads and analog-to-dlgital converters.
Please refer to Figures 6-11 for schematics of test setups
for driving 'flash AID converters.

2k

+vs

50

>tL
__....._~__.,~kl

GHz

FET Xl0
10~// 1.7pF
(1.72 pF)

·0.1 pF1 CHrTm
47~F TANT
20pF

30n

I
TlIH/12313-14

Numbers in parentheses are measured
fix1ure capaCitances wlo OUT and load.

FIGURE 6. Flash AID Av = -1

Tak
P6204 1 GHz
FET Xl0

+vs

>tL_-__...._E----,~kl

10~//1.7pF

(1.12 pF)

(2.2 pr)

GHz

FET Xl0
1O~ / / 1.7)pF
(1.72 pF

/

50

• O. 1 pF1CH~PTm

47~F

TANT

20pF

I
TLlH/12313-15

Numbers in parentheses are messured
fix1ure capaCitances wlo OUT and load.

FIGURE 7. Flash AID Av =

1-620

+1

r-----------------------------------------------------------------------------, r
Application Information

......

i:
~

(Continued)

Co)

r-'!JV'v-......Tek
P6204 1 GHz

~~eklGHZ

........A{IjI\--.....L-.,

FET Xl0
/11.7 pF
l1.72pF)

10~

+VS

FET Xl0

10~1/ 1.7pF

lU2pF)

(2.2 pF)

I

50

30n

• 0.1 /'Fl CH~PT~~~

47~F

TANT
20pF

I
TUH/12313-16

Numbers in parentheses are measured
fixture capacitances wlo OUT and load.

FIGURE 8. Flash AID Ay =

510
Tek
P6204 1 GHz

+2

2k

+Vs

FET Xl0

10~/11.7pF

(1.72 pF)

+O.IV
\0

+0.5V
50

CHrT~~~
47~F TANT

3M

• 0.1 /'Fl

20pF

I
TL/H/12313-17

Numbers in parentheses are measured
fixture cepecitances wlo OUT end load.

FIGURE 9. Flash AID Ay =

1-621

+5

•

Application Information

(Continued)

T8k
P6204 1 GHz

FET Xl0

10~//1.7pF

(1.12 pF)

+O.lV

to

+0.5V
50

• 0.1 I'FI CHrTX~~

47~F

TANT

20 PF

I
TL/H/12313-18

Numbers in parentheses are measured
fixture capacitances wlo OUT and load.

FIGURE 10. Flash AID Ay =

+ 5 with Feedback Capacitor

220

2k

~TOk

....---.y,f'v--""'::;--,

r-'W~

Tok
P6204 1 GHz

FET Xl0

(1.12 pF

+VS

FET Xl0

P6204 1 GHz

10~ / / 1.7)pF

10~//1.7pF

(1.12pF)

+0.5V

to

+2.5V

IN

@-

..L
3M

I

20PF
TUH/12313-19

Numbers in parentheses are measured
fixture capacitances wlo OUT and load.

FIGURE 11. Flash AID Ay =

1-622

+ 10

r-----------------------------------------------------------------------------,~

No load powerNo load LM7131 supply current - 9.0 mA
Supply voltage is 5.0V
No load LM7131 power - 9.0 mA x 5.0V = 45 mW
Power with loadCurrent out is 2.0V/1S0 n = 13.33 mA
Voltage drop in LM7131 is 5.0V (supply) - 2.0V
(output) = 3.0V

LIMITS AND PRECAUTIONS
Supply Voltage
The absolute maximum supply voltage which may be applied to the LM7131 is 12V. Designers should not design for
more than 10V nominal, and carefully check supply tolerances under all conditions so that the voltages do not exceed the maximum.
Differential input voltage is the difference in voltage between the non-inverting (+) input and the inverting input
(-) of the op amp. The absolute maximum differential input
voltage is ± 2V across the inputs. This limit also applies
when there is no power supplied to the op amp. This may
not be a problem in most conventional op amp designs,
however, designers should avoid using the LM7131 as comparator or forcing the inputs to different voltages. In some
designs, diode protection may be needed between the inputs. See Figure 12.

Junction temperature at 400 ambient = 40 +
27.625 = 67.6225°.
This device is within the 00 to 700 specification limits.
The 325°/W value is based on still air and the pc board land
pattern shown in this datasheet. Actual power dissipation is
sensitive to PC board connections and airflow.

Gain of +2

SOT23-5power dissipation may be increased by airflow or
by increasing the metal connected to the pads, especially
the center pin (pin number 2, V -) on the left side of the
SOT23-5. This pin forms the mounting paddle for the die
inside the SOT23-5, and can be used to conduct heat away
from the die. The land pad for pin 2 can be made larger
andlor connected to power planes in a multilayer board.

7S,n

Input
Protection

!

w
.....

Power dissipation 13.33 mA x 3.0V = 40 mW
Total Power = 4S mW + 40 mW = 85 mW =
0.085
Temperature Rise = 0.085 W x 325°/W = 27.625
degrees

Differential Input Voltage

Diodes

.........

i:

Using the LM7131

Additionally, it should be noted that difficulty in meeting performanee specifications for the LM7131 is most common at
cold temperatures. While excessively high junction temperatures will degrade LM7131 performance, testing has confirmed that most specifications are met at a junction temperature of 85°C.

Rt
249,n

TL/H/12313-20

See "Understanding Integrated Circuit Package Power Capabilities", Application Note AN-336, which may be found in
the appendix of the Operational Amplifier Databook.

FIGURE 12
Output Short Circuits
The LM7131 has output short circuit protection, however, it
is not designed to withstand continuous short circuits, very
fast high energy transient voltage or current spikes, or
shorts to any voltage beyond the power supply rails. Designs should reduce the number and energy level of any
possible output shorts, especially when used with ± SV supplies.
A resistor in series with the output, such as the 7S0 resistor
used to back terminate 750 cables, will reduce the effects
of shorts. For outputs which will send signals off the PC
board additional protection devices, such as diodes to the
power rails, zener-type surge suppressors, and varistors
may be useful.

Layout and Power Supply Bypassing
Since the LM7131 is a high speed (over 50 MHz) device,
good high speed circuit layout practices should be followed.
This should include the use of ground planes, adequate
power supply bypassing, removing metal from around the
input pins to reduce capaCitance, and careful routing of the
output signal lines to keep them away from the input pins.
The power supply pins should be bypassed on both the negative and positive supply inputs with capacitors placed close
to the pins. Surfaee mount capaCitors should be used for
best performance, and should be placed as close to the
pins as possible. It 'is generally advisable to use two capacitors at each supply voltage pin. A small surface mount capaCitor with a value of around 0.01 microfarad (10 nFl, usually a ceramic type with good RF performance, should be
placed closest to the pin. A larger capaCitor, in usually in the
range of 1.0 IJ.F to 4.7 IJ.F, should also be placed near the
pin. The larger capaCitor should be a device with good RF
characteristics and low ESR (equivalent series resistanee)
for best results. Ceramic and tantalum capaCitors generally
work well as the larger capacitor.
For single supply operation, if continuous low impedance
ground planes are available, it may be possible to use bypass capaCitors between the + 5V supply and ground only,
and reduce or eliminate the bypass capacitors on the Vpin.

Thermal Management
Note that the SOT23-S (Tiny) package has less power dissipation capability (32S0/W) than the SO-8 and DIP packages
(11so/W). This may cause overheating with ± S supplies
and heavy loads at high ambient temps. This is less of a
problem when using +5V single supplies.
Example:
Driving a 1S00 load to 2.0V at a 40°C (104 OF) ambient
temperature. (This is common external maximum temperature for office environments. Temperatures inside equipment may be higher.)

1-623

II

I

y- , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,
CO)
y-

....
::E
....

Using the LM7131

(Continued)

Capacitive Load Driving
The phase margin of the LM7131 is reduced by driving large
capacitive loads. This can result in ringing and slower settling of pulse signals. This ringing can be reduced by placing
a small value resistor (typically in the range of 22.11-100.11)
between the LM7131 output and the load. This'resistor
should be placed as close as practical to the LM7131 output. When driving cables, a resistor with the same value as
the characteristic impedance of the cable may be used to
isolate the cable capacitance from the output. This resistor
will reduce reflections on the cable.

Driving Flash AID Converters (Video Converters)
The LM7131 has been optimized to drive flash analog to
digital converters in a + 5V only system. Different flash AID
converters have different voltage input ranges. The LM7131
has enough gain-bandwidth product to amplify standard video level signals to voltages which match the optimum input
range of many types of AID converters.
For example, the popular 1175 type 8-bit flash AID converter has a preferred input range from 0.6V to 2.6V. Iflhe input
signal has an active video range (excluding sYnc levels) of
approximately 700 mV, a circuit like the one in Figure 13 can
be used to amplify and drive an AID. The 10 p.F capacitor
blocks the DC components, and allows the + input of the
LM7131 to be biased through R clamp so that the minimum
output is equal to VRB of the AID converter. The gain of the
circuit is determined as follows:
Output Signal Range = 2.6V (V top) = 0.6V (V bottom) = 2.0V
Gain = Output Signal Rangellnput Signal = 2.857
= 2.00/0.700

Input Current
The LM7131 has typical input bias currents in the 15 p.A to
25 p.A range. This will not present a problem with the low
input impedances frequently used in high frequency and video circuits. For a typical 75.11 input termination, 20 p.A of
input current will produce a voltage across the termination
resistor of only 1.5 mY. An input impedance of 10 k.l1, however, would produce a voltage of 200 mV, which may be
large compared to the signal of interest. Using lower input
impedances is recommended to reduce this error source.

Gain = (RI/R1) +1 = (249.11/133.11) +1
R isolation and Cj will be determined by the designer based
on the AID input capacitance and the desired pulse response of the system. The nominal values of 33.11 and 5.6
pF shown in the schematic may be a useful starting pOint,
however, signal levels, AID converters, and system performance requirements will require modification of these
values.
The isolation resistor, R isolation should be placed close to
the output of the LM7131, which should be close to the AID
input for best results.
R clamp is connected to a voltage level which will result in
the bottom of the video signal matching the Vrb level of the
AID converter. This level will need to be set by c;:lamping the
black level of the video signal. The clamp voltage will depend on the level and polarity of the video signal. Detecting
the sync signal can be done by a circuit such as the LM1881
Video Sync Separator.

Feedback Resistor Values and Feedback Compensation
Using large values of feedback resistances (roughly 2k) with
low gains (such gains of 2) will result in degraded pulse
response and ringing. The large resistance will form a pole
with the input capacitance of the inverting input, delaying
feedback to the amplifier. This will produce overshoot and
ringing. To avoid this, the gain setting resistors should be
scaled to lower values (below 1k) At higher gains (> 5)
larger values of feedback resistors can be used.
.
Overshoot and ringing of the LM7131 can be reduced by
adding a small compensation capacitor across the feed
back resistor. For the LM7131 values in pF to tens of pF
range are useful initial values. Too large a value will reduce
the circuit bandwidth and degrade pulse response.
Since the small stray capacitance from the circuit layout,
other components, and specific circuit bandwidth requirements will vary, it is often useful to select final values based
on prototypes which are similar in layout to the production
circuit boards.

Important Note: This Is an illustration of a conceptual use of the LM7131,
not a complete design. The clrcun designer will need to modify this for Input
protection, sync, and possibly some Iype of gain control for varying signal
levels.

Reflections

Some AID converters have wide input ranges where the
lower reference level can be adjusted. With these converters, best distortion results are ·obtained if the lower end of
the output range is about 250 mV or more above the Vinput of the LM7131 more. The upper limit can be as high as
4.0V with good results.

The output slew rate of the LM7131 is fast enough to produce reflected signals in many cables and long circuit
traces. For best pulse performance, it may be necessary to
terminate cables and long circuit traces with their characteristic impedance to reduce reflected signals.
Reflections should not be confused with overshoot. Reflections will depend on cable length, while overshoot will depend on load and feedback resistance and capacitance.
When determining the type of problem, often removing or
drastically shortening the cable wjll reduce or eliminate reflections. Overshoot can exist without a cable attached to
the op amjJ output.

Driving the ADC12062 + 5V 12-BIT AID Converter
Fl{}ure 14 shows the LM7131 driving a National ADC12062
12 bit analog to digital converter. Both devices can be powered from a Single + 5V supply, lowering system complexity
and cost. With the lowest signal voltage limited to 300 mV
and a 3.8V peak-to-peak 100 KHz Signal, bench tests have
shown distortion less than - 75 db, signal to noise ratios
greater than !i6 db, and SINAD (Signal to noise + distortion)
values greater than 65 db. For information on the latest single supply analog-ta-digital converters, please contact your
National Semiconductor representative ..

1-624

r-----------------------------------------------------------------------------, r
Using the LM7131

i:

.........w

(Continued)

....

Rclamp

Video

1

O.&V

2.0V

VRB
VRT
Bottom
Top
Reference Reference

Risolation

>---4~""",.,.--t VIN T~C1175

10 J'F

Flit

7511

Converter

5.& pF
TL/H/I2313-21

FIGURE 13

r------------------------------I

ADC12062

I

VIN1 :

Input signal

>>--------------...;;.;.~:t--

ilt;ux

VIN2 I

(Through Multiplexer)

~------------------------~~I----~
I
I

MUX OUT I
I
I
I
I
I

+5V
Input signal> ___ _
(Direct)

ADC INI
I

I
I
I
I
I

RSW

I'1N

slH ~To
Switch

Comparators

I

._-----------------------------_.

TL/HI12313-22

FIGURE 14. Buffering the Input with an LM7131 High Speed Op Amp

1-625

.-

C")
......

:I

r---------------------------------------------------------------------------~------------_,

Using the LM7131

(Continued)
For additional space savings, the LM4040 precision voltage
reference is available in a tiny SOT23-3 package.

CCD Amplifiers
The LM7131 has enough gain bandwidth to amplify low level signals from a CCD or similar image sensor and drive a
flash analog-to-digital converter with one amplifier stage.
Signals from CCDs, which are used in scanners, copiers,
and digital cameras, often have an output signal in the 100
mV-300 mV range. See Figure 15 for a conceptual diagram. With a gain of 6 the output to the flash analog-todigital converter is 1.8V, matching 90% of the converter's
2V input range. With a -3db bandwidth of 70 MHz for a
gain of + 1, the bandwidth at a gain of 6 will be 11.6 MHz.
This 11.6 MHz bandwidth will result in a time constant of
about 13.6 ns. This will allow the output to settle to 7 bits of
accuracy within 4.9 time constants, or about 66 ns. Slewing
time for a 1.8V step will be about 12 ns. The total slewing
and settling time will be about' 78 ns of the 150 ns pixel valid
time. This will leave about 72 ns total for the flash converter
signal acquisition time and tolerance for timing signals.
For scanners and copiers with moving scan bars, the
SOT23-5 package is small enough to be placed next to the
light sensor. The LM7131 can drive a cable to the main
electronics section from the scan bar. This can reduce
noise pickup by amplifying the signal before sending on the
cable.

Video Gain of + 2
The design of the LM7131 has been optimized for gain of
+ 2 video applications. Typical values for differential gain
and phase are 0.25% differential gain and 0.75 degree differential phase. See Figure 12.
Improving Video Performance
Differential gain and phase performance can be improved
by keeping the active video portion of the signal above
300 mY. The sync signal can go below 300 mV without affecting the video quality. If it is possible to AC couple the
signal and shift the output voltage slightly higher, much better video performance is possible. For a + 5V single supply,
an output range between 2.0V and 3.0V can have a differential gain of 0.07% and differential phase of 0.3 degree when
driving a 1500 load. For a + 3V single supply, the output
should be between 1.0V and 2.0V.
cable Driving with + 5V Supplies
The LM7131 can easily drive a back-terminated 750 video
cable (1500 load) when powered by a + 5V supply. See
Figures 2, 3 and 4. This makes it a good choice for video
output for portable equipment, personal digital devices, and
des)dop video applications.
The LM7131 can also supply + 2.00V to a 500 load to
ground, making it useful as driver in 500 systems such as
portable test equipment.

AID Reference Drivers
The LM7131's output and drive capability make it a good
choice for driving analog-to-cligital references which have
suddenly changing loads. The small size of the SOT23-5
package allow the LM713t to be placed very close to the
AID reference pin, maximizing response. The small size
avoids the penalty of increased board space. Often the
SOT23-5 package is small enough that it can fit in space
used by the large capacitors pr!Wiously attached to the AID
reference. By acting as a buffer for a reference voltage,
noise pickup can be reduced and the accuracy may be increased.

Cable Driving with + 3V Supplies
The LM7131 can drive 1500 to 2.00V when supplied by a
3V supply. This 3V performance means that the LM7131 is
useful in battery powered video applications, such as camcorders, portable video mixers, still video cameras, and portable scanners.

Black
AV",300mV

o

Rclamp

.----.

0+--- Vclamp

r-..J\IO'iv-_li-O'~
.. _ _ _ _ 01

cco

RisoJation

30n

Data
Out

TLlH/12313-23

FIGURE 15. CCD Amplifier

1-626

r-----------------------------------------------------------------------------,
Using the LM7131

(Continued)
Good AC performance will require keeping the output further away from the supply rails. For a + 5V supply and relatively high impedance load (analog-to-digital converter input) the following are suggested as an initial starting range
for achieving high (> 60 dB) AC accuracy
Upper output levelApproximately O.BV to 1V below the positive (V +) rail.
Lower output levelApproximately 200 mV-300 mV above the negative rail.

Audio and High Frequency Signal Processing
The LM7131 is useful for high fidelity audio and signal processing. A typical LM7131 is capable of driving 2V across
1500 (referenced to ground) at less than 0.1 % distortion at
4 MHz when powered by a single 5V supply.
Use with 2.SV Virtual Ground Systems
with + 5V Single Supply Power
Many analog systems which must work on a single + 5V
supply use a 'virtual ground' - a reference voltage for the
signal processing which is usually between + 5V and OV.
This virtual ground is usually halfway between the top and
bottom supply rails. This is usually + 2.5V for + 5V systems
and + 1.5V for + 3V systems.
The LM7131 can be used in single supply/virtual ground
systems driving loads referenced to 2.5V. The output swing
specifications in the data sheet show the tested voltage limits for driving a 1500 load to a virtual ground supply for
+ 3V and + 5V. A look at the output swing specifications
shows that for heavy loads like 150 ohms, the output will
swing as close as one diode drop (roughly, 0.7V) to the
supply rail. This leaves a relatively wide range for + 5V systems and a somewhat narrow range for + 3V systems. One
way to increase this output range is to have the output load
referenced to ground-this will allow the output to swing
lower. Another is to use higher load impedances. The output
swing specifications show typical numbers for swing with
loads of 6000 to ground. Note that these typical numbers
are similar to those for a 1500 load. These typical numbers
are an indication of the maximum DC performance of the
LM7131.
The sinking output of the LM7131 is somewhat lower than
the amplifier's sourcing capability. This means that the
LM7131 will not drive as much current into a load tied to 2.5
V as it will drive into a load tied to OV.

r

a:
......

....
....

~

The LM7131 very useful in virtual ground systems as an
output device for output loads which are referenced to OV or
the lower rail. It is also useful as a driver for capacitive
loads, such as sample and hold circuits, and audio analog to
digital converters. If fast amplifiers with rail-to-rail output
ranges are needed, please see the National Semiconductor
LM6142 datasheet.

01 A Output Amplifier
The LM7131 can be used as an output amplifier for fast
digital-to-analog converters. When using the LM7131 with
converters with an output voltage range which may exceed
the differential input voltage limit of ± 2V, it may be necessary to add protection diodes to the inputs. See Figure 16.
For high speed applications, it may be useful to consider low
capacitance schottky diodes. Additional feedback capacitance may be needed to control ringing due to the additional
input capaCitance from the 0/A and protection diodes.
When used with current output 0/As, the input bias currents
may produce a DC offset in the output. This offset may be
canceled by a resistor between the positive input and
ground.
Spice Macromodel
A SPICE macromodel of the LM7131 and many other National Semiconductor op amps is available at no charge
from your National Semiconductor representative.

I

f
DfA CONVERTER
lout

1--'111,.,.-......1 - - -....-

v.ry-S-m-a-II-r.~s;;.;ist..or~

~

....--1

Optional,

cancels bias current

low capacitance /
Schott~y

diodes

TL/H/12313-24

FIGURE 16. OIA Ouput Amplifier

1-627

........... ,---------------------------------------------------------------------------------,
SOT-23-5 Tape and Reel Specification
CI)

~

TAPE FORMAT
Tape Section

#cavatles

cavity StatuI

Cover Tape StatuI

Leader
(Start End)

o(min)

Empty

Sealed

75 (min)

Empty

Sealed

3000

Filled

Sealed

250

Filled

Sealed

125 (min)

Empty

Sealed

o(min)

Empty

Sealed

Carrier
Trailer
(Hub End)

TAPE DIMENSIONS
~0.061:1:0.002 TYP.

[ 1.55:0.05]

8 AT
TANGENT
POINTS +-....,::==;,.. r-~~

RO.012 TYP

[0.3]

.

ALL INSIDE RADII·

~ 0.041:1:0.002 TYP.

[ 1.04±0.05]

DIRECTION Of fEED - - - - - - GAGE LINE

:

~

L
0.012

. /_~_:

[0.3]

SECTION 8-8

\

Ki
R 1.181 MIN. I'

[30]

----~
8END RADIUS
Nor TO SCALE

TLlH112313-25

8mm

0.130
(3.3)

0.124
(3.15)

0.130
(3.3)

0.126
(3.2)

Tape Size DIMA DIMAo DIMS DIM So

0.138 ±0.002 0_055 ± 0.004
(3.5 ±0.05)
(1.4 ±0.11)
DIMF

1-628

DIMKo

0.157
(4)

0.315 ±0.012
(8 ±0.3)

DIMP1

DIMW

,-----------------------------------------------------------------------------,

.....
Co)

REEL DIMENSIONS

TAPE SLOT

A

C

DETAIL X
SCALE: 3X

TLlH/12313-26

8mm
Tape Size

~

!iI:

.....
.....

SOT-23-5 Tape and Reel Specification (Continued)

7.00 0.059 0.512 0.795 2.165 0.331 +0.059/-0.000 0.567 W1 + 0.078/-0.039
330.00 1.50 13.00 20.20 55.00 8.4 + 1.50/-0.00 14.40 W1 + 2.00/-1.00

A

B

C

0

N

W1

1-629

W2

W3

ttl

'ADVANCE INFORMATION

National Semiconductor

LM7171 Very High Speed High Output Current
Voltage Feedback Amplifier
General Description

Features (Typical Unless Otherwise Noted)

The LM7171 is a voltage feedback amplifier optimally designed for AV > 1 operation. It provides a very high slew
rate at 41 OOV/ p's and a wide gain-bandwidth product bandwidth of 200 MHz while consuming only 6.5 mA of supply
current. It is ideal for video and high speed signal processing applications such as ultrasound and pulse amplifiers.
With 100 mA output current, the LM7171 can be used for
video distribution, transformer driver and laser diode driver.

•
•
•
•
•
•
•
•
•

The ± 15V power supplies allow for large signal swings and
give greater dynamic range and signal-to-noise ratio. The
LM7171 offers low SFDR and THO, ideal for ADC/DAC systems. In addition, the LM7171 is specified for ±5V operation for portable applications.

Applications
•
•
•
•
•
•
•
•

The LM7171 is built on Nationals advanced VIPTM III (Vertically integrated PNP) complementary bipolar process.

Typical Performance

16-Pin Wide Body SO

8-Pln DIP/SO

Hie

e

HDSL and ADSL Drivers
Multimedia Broadcast Systems
Professional Video Cameras
Video Amplifiers
Copiers/Scanners/Fax
HDTV Amplifiers
Pulse Amplifiers and Peak Detectors
CATV/Fiber OptiCS Signal Processing

Connection Diagrams

Large Signal Pulse Response
Av = +2, Vs = ±15V

-;~

Easy-To-Use Voltage Feedback Topology
41ooV/p.s
Very High Slew Rate
200 Ml-jz
Wide Gain-Bandwidth Product
220 MHz
-3 dB Frequency @ Av = +2
6.5 mA
Low Supply Current
85 dB
High Open Loop Gain
100 mA
High Output Current
0.01 %, 0.02"
Differential Gain and Phase
Specified for ± 15V and ± 5V Operation

..!..

2
-IN3
+IN-

!\

v- ..!.

~

g

\.J

~N/e

~ r:-

~v+
~ OUTPUT

\.J

~N/e

Hie

~v+

~OUTPUT

,!.!- Hie

~N/e

,!...N/e
TLlH/I2351-2

TIME (20ns/div)

TL/H/12351-7

Top View

Ordering Information
Temperature Range
Package

8-Pin DIP

,!!- Hie

~~ ~N/e

TLlH/12351-1
Top View

N/e ...!..
Hie 2.
-IN 2.
N/e ..!.
+IH2. f-+
Hie ..!.
v- .!....
N/e ..!.

Industrial
- 40"C to + 85D C

Military

NSC
Drawing

Rails

N08E

-55"Cto + 125"C

LM7171AIN, LM7171BIN
5962-9553601 QPA"

8-PinCDIP

Transport
Media

Rails

J08A

Rails

M08A

8-Pin
Small Outline

LM7171AIM, LM7171BIM
LM7171AIMX, LM7171BIMX

Tape and Reel

16-Pin
Small Outline

LM7171AIWM, LM7171BIWM

Rails
Tape and Reel

LM7171AWMX, LM7171BWMX

'For the militaly temperature grede, please refer to the Military Datasheet MNLM7171 AMJ/883

1-630

M16B

f}1National Semiconductor
LM 13600 Dual Operational Transconductance
Amplifiers with Linearizing Diodes and Buffers
General Description
The LM 13600 series consists of two current controlled
transconductance amplifiers each with differential inputs
and a push-pull output. The two amplifiers share common
supplies but otherwise operate independently. Linearizing
diodes are provided at the inputs to reduce distortion and
allow higher input levels. The result is a 10 dB signal-tonoise improvement referenced to 0.5 percent THO. Controlled impedance buffers which are especially designed to
complement the dynamic range of the amplifiers are provided.

•
•
•
•

Excellent matching between amplifiers
Linearizing diodes
Controlled impedance buffers
High output signal-to-noise ratio

Applications
•
•
•
•
•

Current-controlled
Current-controlled
Current-controlled
Current-controlled
Multiplexers

amplifiers
impedances
filters
oscillators

• Timers
• Sample and hold circuits

Features
• grn adjustable over 6 decades
• Excellent grn linearity

Connection Diagram
Dual·ln-Une and Small Outline Packages
AMP
BIAS
INPUT

DIODE
BIAS

18

15

AMP
BIAS
INPUT

DIODE
BIAS

INPUT
(+1

INPUT
H

OUTPUT
12

INPUT
(+1

INPUT
H

OUTPUT

BUFFER
OUTPUT

v+
11

V-

BUFFER
INPUT

BUFFER
0 UTPUT
TL/HI7980-2

Top View
Order Number LM13600M, LM13600N or LM13600AN
See NS Package Number M16A or N16A

1-631

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (Note 1),
LM13600
36 Voc or ± 18\1
LM13600A
44 VOcor ±22V
Power Dissipation (Note 2) T A = 25°C
570mW
Differential Input VoltagE!
±5V
Diode Bias Current (10)
2mA
2mA
Amplifier Bias Current (lABC)
Output Short Circuit Duration
Continuous
20mA
Buffer Output Current (Note 3)

Operating Temperature Range

O"Cto +70"C

DC Input Voltage

+Vsto -Vs
-65°C to + 150"C

Storage Temperature Range
Soldering Information
Dual·ln·Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 secQnds)
Infrared (15 seconds)

260"C
215°C
220"C

See AN·450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods 'of soldering sur·
face mdunt devices.

Electrical Characteristics (Note 4)
Parameter

LM13600

Conditions
Min

Input Offset Voltage (Vos)
Over Specified Temperature Range
IABC = 51JA
Vos Including Diodes

Diode Bias Current (lD)

Input Offset Change

5 fl-A s; IABC s; 500 fl-A

=

500 IJA

LM13600A
Max

4

0.4

0.3

4

0.3

1
2
1

mV
mV
mV

0.5

5

0.5

2

mV

Max

0.4

Min

Units

Typ

Typ

0.1

3

0.1

1

mV

Input Offset Current

0.1

0.6

0.1

0.6

Input Bias Current

0.4
1

5

5
7

IJA
IJA

8

0.4
1

9600

13000

9600

12000

p.mho
p.mho

7
650

IJA
IJA

Over Specified Temperature Range
Forward
Transconductance (gm)
Over Specified Temperature Range

6700
5400

gm Tracking

0.3
RL
RL
RL

=
=
=

0, IABC = 51JA
0, IABC = 500 IJA
0, Over Specified Temp Range

350
300

Peak Output Voltage
Positive
Negative

RL
RL

=
=

00,5 p.A S; IABC S; 500 fl-A
00,5 p.A S; IABC S; 500 fl-A

+12
-12

Supply Current

IABC

Vos Sensitivity
Positive
Negative

AVos/AV+
AVoslAV-

Peak Output Current

7700
4000

=

Common Mode Range
Referred to Input (Note,5)
20Hz -2

103

I

~
Ii

fi~

°

10'

&II

II:
II:
:::0

... 10

'e

:::a-5...

~
II.

a

!; ...
~ -7

...

!;
z

-I
.111A lIlA

10liA

lDOpA

1000pA - 0.1 .lpA

~_

1!Z 10'

15
14.5
14

III

c c:
......
~ 113.5

u 102

>0

II:
II:
:::0

!:i
~
a",

13

~

~i

-13

a

-

c

100pA

1I00pA

.1pA lIlA

AMPLIFIER BIAS CURRENT (lABCI

!i; 10'

I

a:
a:

1

r-- +121°

~

I

III

'"~'02
c

r-ofi

...

~

!! 1
2345&

7

'"~

"'"
laOIlA

-51"c -2&OC rc 25°C ..oC 71°C 110°C 125°C
AMBIENT TEMPERATURE ITAI
Input Resistance

III'

a-~ 10'

I
~

.lpA

~1800

~1400

200
c
0

III

Z
C

...
!!! 10

C T

~

'II ;

2

...
II:

~

,'

.lpA IpA

lOOpA lOOOpA

ilD'
...

i-"

CI

10pA

AMPLIFIER BIAS CURRENT (lABCI
Output Resistance

+12

ffi 600
;: 400 i--'

O.lpA lpA

10'

6

;;: 1000

aoo

.01

lOOp A IOOOIiA

v =± 15 v:;)" A=+2i;"'c

25°

~1200

lallA

Input and Output capacitance

-

1~55b

lilA

.1

AMPLIFIER BIAS CURRENT (lABCI

Amplifier Bias Voltage vs
2000 Ampllfler Bias Current

;;:; 1600

/.

10
lDOOpA

10'

INPUT DIFFERENTIAL VOLTAGE

II I

Iv

.....

'-

lapA

/

c 10'

III

10'

I

/

...§W

10'L-L....IIIIL...I.J.1J.

U

~

a:

~1D'

-

~IO

~

Z

III

~

'"~

/

..9- 10'

Transconductance

Input Leakage

+ /VIN-\-/vIN-VOUT- ~ ~

"'...

AMPLIFIER BIAS CURRENT (lABCI

10'

100pA lOOOIlA

Leakage Current

I-

IIII

I

IOpA

III

vOUT

~ "'-14.5

III

lpA

AMPLIFIER BIAS CURRENT "ABC)
10'

v JII
1111

c a

10pA

lo.lpA

VCMRIlIl I
Vs ,.!'f1'5 II
RlOAO = 00
TA= °c

a:E
:.=:E -14

lpA

IOOIlA

Vouilm I

!; ~-13.5

iii: 10'

:.=

.111A

lUpA

Peak Output Voltage and
Common Mode Range

Peak Output Current

lit'

....

lpA

AMPLIFIER BIAS CURRENT (lABC)

AMPLIFIER BIAS CURRENT (lABCI

10'

:::0
CI
I

lapA

lDOIlA lOOOpA

AMPLIfiER BIAS CURRENT (lABCI

o

1

.111A lilA

10llA

100pA

1000llA

AMPLIfiER BIAS CURRENT (lABCI

,L.J...l.UII.III-u,u,

O.lpA lilA

IOIlA

100IlA,1000IlA

AMPLIFIER BIAS CURRENT (lABcl
TL/H17980-3

1-634

,-----------------------------------------------------------------------------'r
i:
....
Typical Performance Characteristics (Continued)
~

8

Distortion vs Dllfetentlal
Input Voltage

i

Output Noise va Frequency

Voltage VB Ampllller Bias Current

20

l°°~~_RII
~R:

VS~±15~~
R = 10K
.~

o

:....

z

i

~500

.

i-400

~ ~
v..
,\\

co
~

a:

~co

600

iB

300

[/

1

~

MC= ~1l11

200

co

~

O.OII'-...............I"='O.............":',00~.......~,OOO

-100 .1~A

DIFFERENTIAL INPUT VOLTAGE (mVpp)

I~A

10~A

~ 100

~
~

co

100~A

lDOOpA

IABC AMPLIFIER BIAS CURRENT (PA)

11111

o

10

1

11111

IA~,C;= 1

,iAA

100
lK
10K
FREOUENCY (Hz)

lOOK

TUH/7980-4

Unity Gain Follower
+16V

INPUTo-....-'\N\r-.------I

510

.,'

......_ - - f t OUTPUT

6K

10K
-16V

0.0011lf
TUHI798O-5

Leakage Current Test Circuit

Differential Input Current Test Circuit

.!lV

.,5V

-15 V
TL/H/7980-7

TUHI7980-6

1-635

Circuit Description
other. The remaining transistors and diodes form three current mirrors that produce an output current equal to 15 minus
14 thus:

The differential transistor pair 04 and 05 form a transconductance stage in that the ratio of their collector currents is
defined by the differential input voltage according to the
transfer function:

(S)
(1)

The term in brackets, is then the tranSCQnductance of the
amplifier and is proportional to IABC.

where VIN is ·the differential input voltage, kTIq is approximately 2~ mV at 2SoC and 15 and 14 are the 'collector currents of transistors 05 and 04 respectively. With the exception of 03 ~nd 013, all transistors and diodes are identical in
size. Transistors 01 and 02 with Diode 01 form a' current
mirror which forces the sum of currents 14 and 15 to equal
IABC;

Linearizing Diodes
For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates hoW
the internal diodes can linearize the transfer function of the
amplifier. For convenience assume the diodes are biased
with current sources and the input Signal is in the form of
current Is. Since the sum of 14 and 15 is IABC and the difference is lOUT, currents 14 and 15 can be written as follows:

(2)

where IABC is the amplifier bias current applied to the gain
pin.
For small differential input voltages the ratio of 14 and 15
approaches unity and the Taylor series of the In function
can be approximated as:
kT In ~ ::: kT 15 - 14
q
14
q
14

14 = IABC _ lOUT 15 = IABC
2
2'
2

+ lOUT
2

Since the diodes and the input transistors have identical
geometries and are subject to similar voltages and temperatures, the following is true:

(3)

(4)
Collector currents 14 and 15 are not very useful by themselves and it is necessary to subtract one current from the

(6)

ID

-

ID-IS

10+IS

2"

T

lOUT

=15-14

-

ID

2'
-Vs

-vs
TLlHI7980-8

FIGURE 1. linearizing Diodes

1-636

~------------------------------------------------------~~E

Linearizing Diodes (Continued)

Applications-Voltage Controlled
Amplifiers

Notice that in deriving Equation 6 no approximations have
been made and there are no temperature-dependent terms.
The limitations are that the signal current not exceed 10/2
and that the diodes be biased with currents. In practice,
replacing the current sources with resistors will generate
insignificant errors.

Figure 2 shows how the linearizing diodes can be used in a
voltage-controlled amplifier. To understand the input biasing, it is best to consider the 13 kG resistor as a current
source and use a Thevenin equivalent circuit as shown in
Figure 3. This circuit is similar to Figure 1 and operates the
same. The potentiometer in Figure 2 is adjusted to minimize
the effects of the control signal at the output.

Controlled Impedance Buffers
The upper limit of transconductance is defined by the maximum value of IABC (2 rnA). The lowest value of IABC for
which the amplifier will function therefore determines the
overall dynamic range. At very low values of IABC, a buffer
which has very low input bias current is desirable. An FET
follower satisfies the low input current requirement, but is
somewhat non-linear for large voltage swing. The controlled
impedance buffer is a Darlington which modifies its input
bias current to suit the need. For low values of IABC, the
buffer's input current is minimal. At higher levels of IABC,
transistor 03 biases up 012 with a current proportional to
IABC for fast slew rate. When IABC is changed, the DC level
of the Darlington output buffer will shift. In audio applications where IABC is changed suddenly, this shift may produce an audible "pop". For these applications the LM13700
may produce superior results.

For optimum signal-to-noise performance, IABC should be
as large as possible as shown by the Output Voltage vs.
Amplifier Bias Current graph. Larger amplitudes of input signal also improve the SIN ratio. The linearizing diodes help
here by allowing larger input signals for the same output
distortion as shown by the Distortion vs. Differential Input
Voltage graph. SIN may be optimized by adjusting the magnitude of the input signal via RIN (Figure 2) until the output
distortion is below some desired level. The output voltage
swing can then be set at any level by selecting RL.
Although the noise contribution of the linearizing diodes is
negligible relative to the contribution of the amplifier's internal transistors, 10 should be as large as possible. This minimizes the dynamic junction resistance of the diodes (re) and
maximizes their linearizing action when balanced against
RIN. A value of 1 rnA is recommended for 10 unless the
specific application demands otherwise.
30K

+Vs

GAIN

. - -...."fV·v---~ CONTROL

RS

......-'---.. OUTPUT

5K

-VS

FIGURE 2. Voltage Controlled Amplifier

TUHI7980-9

-VS

FIGURE 3. Equivalent VCA Input Circuit
1-637

TL/HI7980-10

....

§

Stereo Volume Control
The circuit of Figure 4 uses the excellent matching of the
two LM13600 amplifiers to provide a Stereo Volume Control
with a typical channel-ta-channel gain tracking of 0.3 dB. Rp
is provided to minimize the output offset voltage and may be
replaced with two 5100 resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figure 2 as being:

If Vc is derived from a second signal source then the circuit
becomes an amplitude modulator or two-quadrant multiplier
as shown in Figure 5, where:
10 = - 218 (IABC> = -2 18 VIN2 _ 21 8 (V- + 1.4V)
10
10 Rc
10
Rc.·

Vo

-V = 940 X IABC
IN

.,IV

10K

VIN,
RIN

r-::- Rp

15 K

IK

AD

30K

Vc
-15V

RC
VIN2

10K

RIN

r

lK

-::- Rp

TUH/7980-11

FIGURE 4. Stereo Volume Control

-

IABC
VINZ
MDDULATION

o------....J"'''''----------o
RC

VIN, o-~.t'v'\r....------. At frequencies above cut-off the circuit provides a
single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,

Additional amplifiers may be used to implement higher order
filters as demonstrated by the two-pole Butterworth La-Pass
Filter of F/{Jure 13 and the state variable filter of Figure 14.
Due to the excellent gm tracking of the two amplifiers and
the varied bias of the buffer Darlingtons, these filters perform well over several decades of frequency.
3D K

Iii K

o---"V'v'\r--oO Vc
+15V

TL/HI7980-16

FIGURE 9. Voltage Controlled Resistor with Linearizing Diodes
lOG K

100 K

TUHI7980-17

FIGURE 10. Floating Voltage Controlled Resistor
38 K
ft--.....I\JVv--__l

Vc

lOG K

......-o---OVo
f •• RA '"

(R+RAIZ1lC

1. K

-1& V

TUH/7980-18

FIGURE 11. Voltage Controlled Low-Pass Filter

1-640

Voltage Controlled Filters (Continued)
30 K
220K

10 K

>..o-J1l/\f\r....-oO---1

(vos)
\NULL

.......-o-OVO

f ~

o

RAIlm
(R+RAl2 ..C

10 K

-15 V
TlIHI7980-19

FIGURE 12. Voltage Controlled Hi·Pass Filter
15 K

f _
RAgm
o - (R + RAl2..c

vco-----------------Avv\r~

Vo

100 pi

10 K

-15 V

TL/HI7980-20

FIGURE 13. Voltage Controlled 2·Pole Butterworth La-Pass Filter
15 K

o----77.----------~~-AV~r_-ovc
10 K

1K

LO-PASS

r

1K

BOOpl

OUT

ZOK

21 K

BANDPASS OUT
TL/H17980-21

FIGURE 14. Voltage Controlled State Variable Filter

1-641

C)

~

(II)

..-

...I
==

r------------------------------------------------------------------------------------------,
Voltage Controlled Oscillators
The classic Triangular/Square Wave VCO of Figure 15 is
one of a variety of Voltage Controlled Oscillators which may
be built utilizing the LM13600. With the component values
shown, this oscillator provides signals from 200 kHz to below 2 Hz as Ie is varied from 1 mA to 10 nA. The output
amplitudes are set by IA X RA. Note that the peak differential input voltage must be less than 5V to prevent zenering
the inputs.
A few modifications to this circuit produce the ramp/pulse
vee of Figure 16. When V02 is high, IF is added to Ie to

increase amplifier A 1's bias current and thus to increase the
charging rate of capacitor C. When V02 is low, IF goes to
zero and the capacitor discharge current is set by Ie.
The VC Lo-Pass Filter of Figure 11 may be used to produce
a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13600 packages, with three of the amplifiers
configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the
loop phase-shift is 360" or 180" for the inverter and 60" per
filter stage. This VCO operates from 5 Hz to 50 kHz with
less than 1% THO.

Vc

V02

10 K

-15 V
lose

=

Ie
4CIARA

TL/H17980-22

FIGURE 15. Triangular/Square-Wave veo

-Ie

IF

veo-~IV~-.-J~~--------------------------------~
510K

30 K

&1 K

-tl+tH

U

9--o-----0~ tL IV02
(V+ - O.8V)R2
VPK

100 K '

tL

FIGURE 16. Ramp/Pulse veo

1-642

=

R1

+ R2

tH::: 2Vp~
IF

= 2VPKC

Ie
Ie
10::: 2Vp~lorle

TUHI7980-23

-< IF

,-----------------------------------------------------------------------------, a:
~

.....

Voltage Controlled Oscillators (Continued)

w

g

30 K

820n

10 K

2Zl11l

-15 V

lDO K
vcO---~~VVv-_1~------------------------__9

THD

LM13700A

Typ

Max

0.4

Min

Max

4

0.4

mV

0.3

4

0.3,

1
2
1'

Over Specified Temperature Range
IABC

=

5pA

Vas Including Diodes

Diode Bias Current (10)

Input Offset Change

5 p.A

=

0.5

5

0.5

2

mV

s: 500 pA

0.1

3

0.1

1

mV

0.1

0.6

0.1

0.6

p.A

Over Specified Temperature Range

0.4

5

0.4

5

1

8

1

7

9600

13000

9600

12000

s:

IABC

500 pA

Input Offset Current
Input Bias Current

Forward
Transconductance (gm)

6700

7700

p.A

p.mho
Over Specified Temperature Range

5400

4000
0.3

gm Tracking
Peak Output Current

Units

Typ

=
RL =
RL =
RL

=
0, IABC =
0, IABC

Peak Output Voltage
Positive
Negative

RL
RL

Supply Current

IABC

Vos Sensitivity
Positive
Negative

Il.Yos/Il.Y+
Il.Yos/Il.Y-

=
=

350

500 p.A

0" Over Specified Temp Range
"",5 pA
"",5 pA

=

s: IABC s: 500 p.A
s: IABC s: 500 p.A

500 p.A, ·Both Channels

Differential Input Current

IABC

Leakage Current

IABC

O,lnput

=

5

7

350

500

650

+14.2
-14.4

+12
-12

2.6

Common Mode Range
Referred to Input (Note 5)
20Hz0 D
!; i -13

~co2
=-13.&
..::IE

Cco

-14

~"'-14.5

'8.1IlA, '1lA 10jtA
lBOjtA
AMPLIFIER BIAS CURRENT (lABel
Leakage Currant

lUi

Vl!.IIT.1III I
VeMR!. I
VS= '±'f~ Ii
RLOAO= ..
TA· ·C
V III

fl + "'IN"\-I YIIt"YOUT7 ~ ~
/

V
./ DV

VO~

- r=
1-=-=

II

.11lA lIlA 10jtA
IOOIlA 1000jtA
AMPLIFIER BIAS CURRENT (lABCI

f,
10
-SloC -25°C goc 25°C 50°C 75°C 100°C 'Z&OC
AMBIENT TEMPERATURE (TAl

100Input Laakage

i F==f+'2&0
...a:IiiIQll
a:

,

~

:;:'02
~

r-- 1--1<

..:
C

C

~IO

...

~

.!! I
8 I
2 3 4 5 &, 7
INPUT DIFFERENTIAL VOLTAGE
Ampllfl.r Bias Voltage va

2000

7

s:-'800
.!.1600

6

.,4DO

ii:s

.!!-

1200

S

A=+

i"c
".

CI

...c
...~2

_ 800

ii!

-

:::4
'"'
~3

i!!I'DOO
Ii!

Output Realstance

Input and Output Capacitance

Amplifier BIas CUrrant

600
400

I

200
lOOOIlA

a

1
.IIlA lilA

lallA

lGOIlA

lGOallA

AMPLIFIER BIAS CURRENT (lABCI

a.lllA lilA

10llA

l00IlA l000IlA

AMPLIFIER BIAS CURRENT (lABCI
TL/HI7981-3

1-652

Typical Performance Characteristics
Distortion vs Differential
Input Voltage

1

(Continued)

Voltage vs Amplifier
Bias Current

Output Noise vs Frequency

20 r-rmmr.:"'"""'!lr.:'rTTTI1IIrTTTmm
Vs = ±tS V+Jl-ltHtlllllLlI:>.\,!U!lI1III
R • 10 Knll~~

lIUO~~_ _

e

z

~! -20 I-+~*-H.II"~ f>~"

1-

~!:.

»J

co

~

.

co

"'>

:.... ~

:::1-40
cu,

Iii

~

~~ -80

r

co

-10

~

&UO

'> 500

i

400
300

i

~".

I-HttttlIt--H-t\'\'I~'OL~I.··t 12

lIl-C =

200

m

1111

IA':~ =1 I~~

1100

co -100 L,.ljlJ..Al:-IJJJllIILjI""A......I~OlLjlA~ 1Ii8;;A l000jlA
IABC AMPLIFIER BIAS CURRENT ("AI

010

100

lK

10K

lOOK

FREQUENCY (Hz)
TlIHI7981-4

Unity Gain Follower
+16V

O.UI,.F

.----+--...... ~
10K
INPUTo-....-I\N\,.....-----G--f

.

.,

......_-DOUTPUT

&K
10K
-15V

UDI,.F
TL/HI7981-5

Leakage Current Test Circuit

Differential Input Current Test Circuit
+15V

+3& V

-15V

TlIHI7981-8

TL/H17981-7

1-653

Circuit Description

Linearizing Diodes '

The differential transistor pair Q4 and Qs form a transconductance stage in that the ratio of their collector currents is
defined by the differential input voltage according to the
transfer' :function:

For differential voltages greater than a few millivolts, Equation 3 ,becomes less valid and the transconductance be,comes increasingly nonlinear. Figure 1 demonstrates how
the internal diodes can linearize the transfer function of the
amplifier. For convenience assume the,diodes are biased
with current sources and the input signal is in the form of
current Is. Since the sum of 14 and Is is IABC and the difference is lOUT, currents 14 and 15 can be written as follows:

Is
kT
(1)
VIN=-In q
14
where VI\'~ is the differential input voltage, kT Iq is approximately 26 mV at 25°C and Is and 14 are the collector currents of transistors Qs and ~ respectively. With the exception of Q3 ,and Q13, all transistors and diodes ara ,identical in
size. Transistors Ql and Q2 with Diode 01 form a current
mirror whiqh forces the sum of currents 14 and 15 to equal
IABC;
14 + Is = IABC
(2)
where IABC is the amplifier bias current applied to the gain
pin.

14 = IABC _ loUT Is = IABC
2
2 '
2

!Q + Is
IABC + lOUT
kT In_2_ _ = kT In 2
2
Is
q
IABC _ lOUT
q
2
2
2

!!2 _

I I <"2
10

2IABC)
:. lOUT = IS ( I
i ) for Is

(3)

VIN

[IABCQ]
=
2kT

(4)

15 - 14

Collector currents 14 and Is are not very useful by themselves and it is necessary to subtract one current from the
other. The remaining transistors and diodes form three current mirrors that produce an output current equal to Is minus
14 thus:
'
(5)

The term in brackets is then the transconductance of the
amplifier and is proportional to IABC.

(6)

Notice that in deriving Equation 6 no approximations have
been made and there are no temperature-dependent terms.
The limitations are that the signal current not exceed 10/2
and that the diodes be biased with currents. In practice,
replacing the current sources with reSistors will generate
insignificant errors.

I - I _IABC

4- S-""2

2

Since the diodes and the input transistors have identical
geometries and are subject to similar voltages and temperatures, the following i,s true:

For small differential input voltages the ratio of 14 and Is
approaches unity and the Taylor series of the In function
can be approximated as:
kT In ~ z kT 15 - 14
q
14
q,
14

+ lOUT

Applications:
Voltage Controlled Amplifiers
, Figure 2 shows how the linearizing diodes can be used in a
voltage-controlled amplifier. To understand the input biasing, it is best to consider the 13 kO resistor as a current
source and use a Thevenin equivalent circuit as shown in
Figure 3. This circuit is similar to Flflure 1 and operates the
same. The potentiometer in Figure 2 is adjusted to minimize
the effects of the control signal at the output.

lOUT

= 15-14

-

10
Z

-Vs

-Vs
TLlHI7981-8

FIGURE 1. LInearizing Diodes

1~654

Applications:
Voltage Controlled Amplifiers (Continued)
For optimum signal-to-noise performance, IABC should be
as large as possible as shown by the Output Voltage vs.
Amplifier Bias Current graph. Larger amplitudes of input signal also improve the SIN ratio. The linearizing diodes help
here by allowing larger input signals for the same output
distortion as shown by the Distortion vs. Differential Input
Voltage graph. SIN may be optimized by adjusting the magnitude of the input signal via RIN (Figure 2) until the output

distortion is below some desired level. The output voltage
swing can then be set at any level by selecting RL.
Although the noise contribution. of the linearizing diodes is
negligible relative to the contribution of the amplifier's internal transistors, 10 should be as large as possible. This minimizes the dynamic junction resistance of the diodes (rel and
maximizes their linearizing action when balanced against
RIN. A value of 1 mA is recommended for 10 unless the
specific application demands otherwise.
30 K

+Vs

GAIN

.---J"'Vv----G CONTROL

.....--""--"" OUTPUT

5K

-vs

TUH/7981-9

FIGURE 2. Voltage Controlled Amplifier

10

ID-IS

2"

-

lOUT· 15-14

ID+IS

-

lOUT = IS e.1:BC)

T

~

I
I

TUHI7991-10

FIGURE 3. Equivalent VCA Input Circuit

1-655

!

Stereo Volume Control
The circuit of Figuf9 4 uses the excellent matching of the
two LMt3700 amplifiers to provide a l)tereo Volume Control
with a typical channel-to-channel gairi tracking of 0.3 dB. Flp
is provided to minimize the output offset voltage and may be
replaced with two 5100 resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figuf9 2 as being:
Vo
-V = 940 X IABC

If Vc is derived from a second signal source then the ,circuit
becomes an amplitude modulator or two-quadrant multiplier
as shown in Fl[}uf9 5, where:
'
- 21S (I
)
- 21s v',N2 21s (V- + lAY)
0=1ti ABC = I o R c - 1 ;
Rc

I

The constant teml in tlie above equation may be cancelled
by feeding Is x loRcl2(V- + 1.4Y) into 10. The circuit of
FigUf9 6 adds RM to provide this current, resulting in a fourquadrant multiplier where Rc is trimmed such that Vo ;." OV
for V,N2 = OV. RM also serves as the load resistor for 10.

IN

+15V

10 K

VINI

RIN

..r
7

IK

ISK
RD

Rp

........-e--aVOl

S.1K

Vc

3D K

-ISV

RC
10K

VINZ
RIN

r
7

lK

.............-oVoz

Rp

5.1 K

-ISV
TL/H17981-11

FIGURE 4. Stereo Volume Control

VINZ
MODULATION

'ABC

lO'K_

(l01-------'VV\;..._---------000
RC

VIN I
CARRIER

o--""""'...- - - - - C l H

•......--. At frequencies above cut-off the circuit provides a
single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,
where gm is again 19.2 X IABC at room tem~rature. Figure

Additional amplifiers may be used to implement higher order
filters as demonstrated by the two-pole Butterworth Lo-Pass
Filter of Figure 13 and the state variable filter of Figure 14.
Due to the excellent gm tracking of the two amplifiers, these
filters perform well over several decades of frequency.

100 K

100 K

TLlHI7981-17

FIGURE 10. floating Voltage Controlled Resistor
30 K
o---~~~----ovc

100 K

VIN o---4Nv-. .---O-.....

.......-c~.avo

fo·RAIm
(R+RA)2wC

10 K

-15 V
TLlH17981-18

FIGURE 11. Voltage Controlled Low-Pass Filter

1·659

Voltage Controlled Filters (Continued)

30 K

220 K

10 K

(vos)
\NULL

>...-'lII'v"v_....-G--f

'\'·1

1K

10 K

I K

I _
0-

RA9m

(R

+ RAl2...C

-15 V

FIGURE 12. Voltage Controlled HI-Pasa Filter

TLlH/7981-19

VCo---------~II'v"v_~

Vo

100 pi

10 K
-1& V

FIGURE 13. Voltage Controlled 2-Pole Butterworth Lo-Pasa Flltar

TLlHI7981-20

IS K
o----~----------~-~~v_-ovc
10 K

I K

LO-PASS
OUT

I K

20 K
BANDPASS OUT

FIGURE 14. Voltage Controlled State Variable Filter

1-660

TL/HI7981-21

Voltage Controlled Oscillators
The classic Triangular/Square Wave veo of Figure 15 is
one of a variety of Voltage Controlled Oscillators which may
be built utilizing the LM13700. With the component values
shown, this oscillator provides signals from 200 kHz to below 2 Hz as Ie is varied from 1 mA to 10 nA. The output
amplitudes are set by IA X RA. Note that the peak differential input voltage must be less than 5V to prevent zenering
the inputs.

increase amplifier A 1's bias current and thus to increase the
charging rate of capacitor C. When V02 is low, IF goes to
zero and the capacitor discharge current is set by Ie.
The VC Lo-Pass Filter of Figure 11 may be used to produce
a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13700 packages, with three of the amplifiers
configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the
loop phase-shift is 360" or 180· for the inverter and 60· per
filter stage. This VCO operates from 5 Hz to 50 kHz with
less than 1 % THO.

A few modifications to this circuit produce the ramp/pulse

veo of Figure 16. When V02 is high, IF is added to Ie to

Vc

VOl

10 K

FIGURE 15. Triangular/Square-Wave veo

-Ie

TUHI7981-22

IF

veo-~IV~~~~~--------------------------------,
510 K
30 K

%

51 K

VOl

Vpt(

~ (V+ ±O.8V) R2
R,

+ R2

tH '" 2VpI(C
IF
tL ~ 2VpI(C

Ie
10'" --Lforle«

2vPKe

IF

~
I

100 K

HI

FIGURE 16. Ramp/Pulse veo

1-661

TL/HI7981-23

Voltage Controlled Oscillators (Continued)
30'K

6200
300

22110

30K

vco----+~~~~~--------------------------~

THO (Note 11)
14-Pin Ceramic DIP
14-Pin Molded DIP
14-PinSO
14~Pin Side Brazed Ceramic DIP

90"C/W
85·C/W
115·C/W
9O"C/W

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed' for TJ = 25·C. Boldface limits apply at the temperature extremes.
V+ = 5V, V- = OV, VCM = 1.5V, Va = 2.5Vand RL > 1M unless otherwise specified.

Parameter

Conditions

Input Offset Voltage

Typ
(Note 4)

LMC660AI

LMC660C

LMC660E

Limit
(Notes 4, 9)

Limit
(Note 4)

,Limit
(Note 4)

LImit
(Note 4)

1

Input Offset Voltage
Average Drift

Units

3

3

6

6

3.S

3.3

8.3

8.S

20

0.002

Input Offset Current
Input Resistance

4

2

80

pA
max

100

2

1

80

pA
max

7ei

70

63

63

88

88

82

80

100
20

0.001
>1

Common Mode
Rejection Ratio

OV s: VCM s: 12.0V
V+ = 15V

83

Positive Power Supply
Rejection Ratio

5V s: V+ s: 15V
Va = 2.5V

83

Negative Power Supply
Rejection Ratio

OV

Input Common-Mode
Voltage Range

V+=5V&15V
For CMRR ~ 50 dB

s: V- s:

-10V

Sinking
, RL = 6000 (Note 5)
Sourchlg
Sinking

70

70

63

63

88

88

82

80

dB
min
dB
min

84

84

74

74

82

83

73

70

-0.1

-0.1

-0.1

-0.1

0

0

0

0

V
max

V+ ...: 2.3
Y+ - 2.8

V+ - 2.3
V+ - 2.5

V+ - 2.3
Y+ - 2.4

V+ - 2.3
Y+ - 2.8

V
min

200

VlmV
min

-0.4
V+ - 1.9

RL = 2 kO (Note 5)
Sourcing

TeraO

94

"

mV
max

p'vrc

1.3

Input Bias Current

Large Signal
Voltage Gain

LMC680AMD
LMC660AMJ/883

2000
500
1000
250

1-670

400

440

,300

300

400

200

100

180

180

90

90

70

120

80

40

200

220

150

100

150

200

100

7S

100

100

50

50

35

80

40

20

dB
min

VlmV
min
V/mV
min
V/mV
min

Electrical Characteristics

DC
(Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes.
V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified.
Parameter

Output Swing

Conditions

V+ = 5V
RL = 2kOtoV+/2

Typ
(Note 4)

4.87
0.10

V+ = 5V
RL = 6000 to V+ 12

4.61
0.30

V+ = 15V
RL = 2 kO to V+ /2

14.63
0.26

V+ = 15V
RL = 6000toV+/2

13.90
0.79

Output Current
V+ = 5V

Sourcing, Vo = OV
Sinking, Vo = 5V

Output Current
V+ = 15V

Supply Current

Sourcing, Vo = OV

22
21
40

Sinking, Vo = 13V
(Note 12)

39

All Four Amplifiers
Vo = 1.5V

1.5

LMC660AMD
LMC660AMJ/883

LMC660AI

LMC660C

LMC660E

Umlt
(Notes 4, 9)

Limit
(Note 4)

Limit
(Note 4)

Umlt
(Note 4)

Units

4.82

4.82

4.78

4.78

4.77

4.79

4.76

4.70

0.15

0.15

0.19

0.19

0.19

0.17

0.21

0.25

4.41

4.41

4.27

4.27

4.24

4.31

4.21

4.10

0.50

0.50

0.63

0.63

0.63

0.56

0.69·

0.75

14.50

14.50

14.37

14.37

14.40

14.44

14.32

14.25

0.35

0.35

0.44

0.44

0.43

0.40

0.48

0.55

13.35

13.35

12.92

12.92

13.02

13.15

1.2.76

12.60

1.16

1.16

1.45

1.45

1.42

1.32

US8

1.75

16

16

13

13

12

14

11

9

16

16

13

13

12

14

11

9

19

28

23

23

19

25

21

15

19

28

23

23

19

24

20

15

2.2

2.2

2.7

2.7

2.9

2.6

2.9

3.0

1·671

V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
mA
max

AC Electrical Characteristics
Unless otherwise specified. all limits guaranteed for T J = 25'C. Boldtace.limits apply at the temperature extremes. Y +
Y- = OY. YCM = 1.5Y. Yo = 2.5Y and RL > 1 M unless otherwise specified.
"\j
LMC660AMD
Parameter

Conditions

Typ

LMC660AMJ/883

(Note 4)

Umlt

1.1

(Note 6)

LMC660AI

LMC660C

LMC660E

Umlt

Umlt

Umlt
(Note 4)

5Y.

Units
. (Notes 4,

Slew Rate

=

9)

(Note 4)

(Note 4)

0.8

0.8

0.8

0.8

0.5

0.6

0.7

0.4

0.5

VlILS
min

Gain-Bandwidth Product

1.4

Phase Margin

50

Deg

Gain Margin

17

dB

Amp-to-Amp Isolation

(Note 7)

Input Referred Voltage Noise

F=

Input Referred Current Noise
Total Harmonic Distortion

MHz

130

dB

1 kHz

22

nVl.JHz

F=

1 kHz

0.0002

pAl.JHz

F=

10 kHz. Av =:' -10
0.Q1

%

. RL = 2 kO. Vo
Y+

=

=

8 Vpp

15V

Note 1: Applies to both single supply and spl~ supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts
can result in exceeding the maximum allowed junction temperature of 150'C. Output currents in excess of ±30 rnA over long term may adversely affect reliability.
Note 2: Tt1e maximum power dissipation is a function of TJ(max)' 9JA, and TA. The maximum !lilowable power dlssipation at any ambient temperature Is
Po = (TJ(max)1 - TIJ/9JA·
Nota 3: Absolute Maximum Ratings indicate lim~ beyond which damage to the device may occur..Operating Ratings indicate conditions for which the device Is
intended to be functional, but do not guarantee specific perionnance limits. For guaranteed specifications and tast condHions, see the Electrical Characteristics.
The guaranteed specilications apply only for the test condilions listed.
Note 4: Typical values represent the most likely parametriC nonn.

Um~

are guaranteed by tasting or correlation.

= 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V ,. Vo ,. tl.5V. For Sinking tests, 2.5V ,. Vo ,. 7.5V.
Note 6: V+ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. V+ = 15V and RL = 10 kfl connected to V+ /2. Each amp excHad In turn with 1 kHz to produce Vo = 13 Vpp.

Note 5: V+

Nota B: Human body model, 1.5 kfl in serles with 100 pF.
Nota 9: A military RETS electricel test specification Is available on J(9JA.

,-----------------------------------------------------------------------------'r
Typical Performance Characteristics Vs =
Supply Current
vs Supply Voltage

Offset Voltage

4.0

'<
5

100

TJ = 1250C

ii:

t

1.0

I'.

~

1
12

11

-150
-50

20

100

Output Characteristics
Current Sinking

Output Characteristics
Current Sourcing

I

~ I'

o. 1

,/. r

o

2S

SO

75

100

125

150

TEMPERATURE (DC)

10~~

V

Input Voltage Noise
vs Frequency
120 ,.--,r-n1T11l,.--,r-n1T11l,.--,r-nmm
~

!

il!

d
"w
0:a

1

150

TEMPERATURE (DC)

I

~r7: V
/. ~+

0.0 1

so

TOTAl. SUPPLY VOLTAGE (vae)

I

~>

i

-100

10~~
WI

iil

~

TJ = "S5OC

o
o

E

."

~

!

V

TJ =25OC

,

~

It

10

3.0

2.0

§

Input Bias Current

150

is

Ii
il

:=

± 7.5V, T A = 25°C unless otherwise specified

100
80 ~l-HtItflHl-HtItflHI-H-HItII

O"_~

0.1

0.01
0.001

0.01

0.1

10

o L-l...LJ.JJIIIL-L.I.J.LLIJII.....J...L.L

0.01==--'---'---'----'
0.001 0.01
0.1
10
100

100

OUTPUT SINK CURRENT (mAl

10

Open-Loop Frequency
Response

CMRR vs Frequency
140

27

90

120

24

100

at

~

80

!

50

...

......

80
&0

~ ...

30

~

~

~

15
12

I,
I'"

-20
100

lk

ll1k

lOOk

1

1M

FREQUENCY (Hz)

0

8

8

4121-

='"

'I V

I.

~~

TIME (1'.)

c

I

=TA=~50,C=

12

$

9

~TA·1!iOOC

Tftr-

_,""_IIM:1~::II1"'"
~
••-'.IODIIf',OUTM_I.

o

._c;, -ltopT.Ml'UTSINIOM111111

-3

lOOk

~
1&

1,000

10
1

20

!iI

UNSTABLE

1000
100
10

L L

1

-10-1-0.1-0.01-0.00100.0010.010.1 1 10

SINKING

10,00 0

9

"'"

1Oil OVERSHOOT

SOURCING

LOAD CURRENT (mA)

i

20
1

;:J~

1M

100,00 0

~

100

_

w

5M

Stability vs
Capacitive Load

I I

~

40

30

FR£QUENCY (Hz)

A., = +1

10,000

~i=

'"

Stabllltyvs
Capacitive Load
100,00 0

:: I

\
. "\

I'.. '. '

10 100 lk 10k lOOk 1M 1011

5

80
70

1\\

FREQUENCY (Hz)

Non-Inverting Large Signal
Pulse Response

to

R:

~~~~
rN.
21
1\ .......
18 -~ ol,~
,\

20

20
10

10k

Frequency Response
vs Capacitive Load

100
80
70

It

100

FREQUENCY (Hz)

OUTPUT SOURCE CURRENT (mAl

I 1

I 1

ltv. +10or-10

..

.~

UNSTABLE

~

I
I

1011 OVERSHOOT

211 OVERSHOOT

1

LL

J

-10-1-0.1-0.01-0.00100.0010.010.11 10

SINKING

SOURCING

LOAD CURRENT (mAl
TLlH/B767-3

Note: Avoid resistive loads of less than 500n, as \hey may cause instability.

1·673

Application Hints

!'

Amplifier Topology

is generally less than 10 pF. If .the frequency of the feedback pole is much higher than'the "ideal'~ closed-loop bandwidth (the nominal closed"loOp bandwidth in the absence of
Cs>, the pole will have a negligible effect on sWlility, as it
will add only a small amount of phase shift.

The topology chosen for theLMC660, shown in Fif/ure 1, is
unconventional (compared to general-purpose op' amps) in
that the traditional unity-gain buffer output stage is not used;
instead, the output is taken directly from the output of- the
integrator, to allow rail~to-rail output swing. Since the buffer.
traditionally delivers the power to the load, while maintaining
high op amp gain and stability, and must withstand shorts to
either rail, these tasks now fall to the integrator.

Howev~r; if the feedback polE.! is less than approximately 6
to 10 times tne "ideal" -3 dB frequency, a feedback capaCitor, CF, should be cqnnecte.d between the output and
the inverting input of the op amp. This condition can also be
stated, in terms of the amplifier's low-frequency noise gain:
To maintain stability a feedllack capacitor will probably be
needed if'
,

As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via Cj and Cff) by a dedicated unity-gain compensalion driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path consists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
forward.

(RF + 1)
RIN

~ ~6 X

2'11" X GBW X RF X Cg

where ',(:F + 1) is the amplifier's low-frequency noise
IN
.
gain and GBW is the amplifier's gain bandwidth product. An
amplifier'S low-frequency noise gain is represented by the
formula

(~~ +

1) regardless cif whether the amplifier is

being used in inverting or non:inverting mode. Note that a
feedback capacitor is more likelY to be needed when the
noise gain is low and/or the feedback resistor is large.
If the above COndition is met'(indicating a feedback capacitor will probably be needed), and the noise gain is large
en()ugh that:

(~~ +

2~GBW x RF X eg,

1) ::<:

TL/H/8787 -4

FIGURE 1. LMC660 Circuit Topology (Each Amplifier)

the following value of feedback capacitor is recommended:

The large Signal voltage gain while sourcing is comparable
to traditional bipolar op amps, even with a 6000 load. The
gain while sinking is higher than most CMOS op amps, due
to the additional gain stage; however, under heavy load
(6000) the gain will be reduced as indicated in the Electrical
Characteristics.

CF = .......=-Cs-=---:2(:F+1)
IN .
If

(:I~ +1)::: 2~~~W x RF XCs

Compensating Input CapaCitance
The high input .resistance of the lMC660 op amps allows
the use of large feedback and source resistor values without
losing gain accuracy due to loading. However, the circuit will
be especially sensitive to its layout when these large;value
resistors are used,
Every amplifier has some capaCitance between each input
and AC ground, and also some differential capacitance between the inputs. When tha feedback network around an
amplifier is resistive, this input capaCitance (along with any
additional capacitance due to circuit board traces, the soeket, etc.) and the feedback resistors create a pole in the
feedback path. In the following General Operational Amplifier circuit, Figure 2 the frequency of this·pole is

the feedback capaCitor should be:

.

ICg

CF = \(GBW X RF
Note that these capacitor values are usually Significant
'. smaller than those given by the older, more conservative
formula:

1.
fp = 2'11"CgRp
where Cg is the·total capaCitance at the inverting input, including amplifier input capcitance and any stray capacitance
from the IC socket (if one is used), circuit board traces, etc.,
and Rp is the parallel combination of RF and RIN. This formula, as well as all formulae derived below, apply to inverting and non-inverting 'op-amp configurations.

CsI

---.,.:.t~---lit! 'Cr
TLlH/8767-6

FIGURE 2. General Operational Amplifier Circuit
Cs consists of the amplifier's input capacitancs plus any stray capacitance

When the feedback resistors are smaller than a few kO, the
frequency of the feedback pole will be quite high, since Cg

from the circuR board and socket.
Cs and the 'feedback resiStors.

1-674

~

compensatas for the pole caused by
.. '.
'

,-----------------------------------------------------------------------------'r
Application Hints (Continued)
Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be
necessary in any of the above cases to u,se a somewhat
larger feedback capacitor to allow for unexpected stray capacitanee, or to tolerate additional phase shifts in the loop,
or excessive capacitive load, or to decrease the noise or
bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray
capacitance may be larger or smaller than the breadboard's, so the actual optimum value for CF may be different
from the one estimated using the breadboard. In most cases, the values of CF should be checked on the actual circuit,
starting with the computed value.

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH·IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC662, typically
less than 0.04 pA, it is essential to have an excellent layout.
Fortunately, the techniques for obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.
To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC660's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs. See Figure 4. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, sinee no leakage current can flow between two pOints at the same potential. For
example, a PC board trace-to-pad resistance of 1012n,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
an input. This would cause a 100 times degradation from
the LMC660's actual performance. However, if a guard ring
is held within 5 mV of the inputs, then even a resistance of
1olIn would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier'S performance. See Figures 5a" 5b, 50 for typical connections of
guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be
tied to ground and still provide some protection; see Figure
5d.

Capacitive Load Tolerance
Like many other op amps, the LMC660 may oscillate when
its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration
most sensitive to oscillation is a unity-gain follower. See
Typical Performance Characteristics.
The load capacitance interacts with the op amp's output
resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase
margin so that the amplifier is no longer stable at low gains.
As shown in Figure 3a, the addition of a small resistor (50n
to 100n) in series with the op amp's output, and a capacitor
(5 pF to 10 pF) from inverting input to output pins, returns
the phase margin to a safe value without interfering with
lower-frequency circuit operation. Thus larger values of capacitance can be tolerated without oscillation. Note that in
all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.
100kn

Cx{10 pF)
Rx (lOon)

IC;oad
TUH/8767-5

FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Figure 3b). Typically a pull up resistor
conducting 500 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).
V+

~"O~l

t.Guard Ring
TUH/8767-16

FIGURE 4. Example, using the LMC660,
of Guard Ring in P.C. Board Layout

TUH/8767 -23

FIGURE 3b. Compenaatlng for Large Capacitive Loads
with a Pull Up Resistor

1-675

~
Q

Application Hints (Continued)
have to forego some of the advantages of PC board"construction, but the advantages are sometimes well worth the
effort of using point-ro-point up-in-the-air wiring. See
Figure 6.

Cl

Rl
INPUT JVl,M....t-Io---JW\~-.

CAPACITOR

-+e

r_

Guard Ring

FEEDBACK

I
I
I
I

OUTPUT

I

TLlH/6767 -17

(a) Inverting Amplifier
TLlH/8767-21

R2

(Input pins are lifted out of PC board and soldered directly to componsms.
All other pins connected to PC board.)

FIGURE 6. Air WIring

OUTPUT

BIAS CURRENT TESTING
The test method of Figure 7 is appropriate for bench-testing
bias current with reasonable accuracy. To understand its
operation, first close switch S2momentarily. When S2 is
opened, then

TLlH/8787-18

(b) Non-Inverting Amplifier

S2

(~ush-rod

operated)

OUTPUT
C2
TLlH/8767- I 9

(c) Follower

R3

Rl

V,
100M

L

-=

R2

V2

•
I

100M
TLlH/8767-22

FIGURE 7. Simple Input Blaa Current Teat Circuit
A suitable capacitor for C2 would be a 5 pF or 10 pF silver
mica, NPO ceramic, or air-dielectric. When determining the
magnitude of Ib -, the leakage of the capacitor and socket
must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the
capacitor C2 could cause errors.

TLlH/8767-20

(d) Howland Current Pump

Similarly, if Sl is shorted momentarily (while leaving S2
shorted)

FIGURE 5. Guard Ring Connections
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may

Ib + = dVOUT
dt
where

1-676

x (Cl + C,.)

Ox is the stray capacitance at the +

input.

Typical Single-Supply Applications (V+

= 5.0 VDC)

Additional single-supply applications ideas can be found in
the lM324 datasheet. The lMC660 is pin-for-pin compatible
with the lM324 and offers greater bandwidth and input resistance over the lM324. These features will improve the
performance of many existing single-supply applications.
Note. however. that the supply voltage range of the
lMC660 is smaller than that of the lM324.

Sine-Wave Oscillator
C2
200pF

»-...... VOUT

+5V

Low-Leakage Sampl_nd-Hold

20k
20k

Input

9.1k
20k

5/H

TLlH/8767-7

TLlH/8767-9

Oscillator frequency is determined by R1. R2. C1. and C2:
fosc = 112'ITRC. where R = R1 = R2 and
C = C1 = C2.

Instrumentation Amplifier

( ..
-

"

R3

R4

10k

lOOk

This circuit. as shown. oscillates at 2.0 kHz with a peak-topeak output swing of 4.SV.
1 Hz Square-Wave Oscillator

Rl.44.2k

R4

R2

t--t~~

R5,44.2k

R6
10k

R7

Rl

91k 20k pol

+5V~--~~----~--~~--~

470k
TLlH/8767 -8

If R1 = RS. R3 = R6. and R4 = R7; then
VOUT = R2 + 2R1 x R4
VIN
R2
R3
.'. Av ~ 100 for circuit shown.
For good CMRR over temperature. low drift resistors should
be used. Matching of R3 to R6 and R4 to R7 affect CMRR.
Gain may be adjusted through R2. CMRR may be adjusted
through R7.

TLlH/8767 -10

•

Power Amplifier
R4

.....-t

+5V ~---M..--

....-~.VOUT

TLlH/8767 -11

1-677

Typical Single-Supply Applications

(V+ = 5.0 VDC) (Continued)

10 Hz Bandpass Filter

10 Hz High-Pass Filter

Vour

c,

. YfN--t
YOUT

0.015)01" 0.015j.1F

R2

2.711
R2
10M

R3

8.8M

-

R3
390k

fa - 10 Hz
Q - 2.1
Gain - -8.8

fe - 10 Hz
d - 0.895·
Gain - 1
2 dB passband ripple

TUH/8767 -12

High Gain Amplifier with Qffaet
Voltage Reduction

.
1 Hz Low-Pass Filter
(Maximally Flat, Dual Supply Only)
Rl.

TL/H/8767-13

R3

R4

UI0560.:>-+-..Vour

Gain -

Ie - 1 Hz
d = 1.414
Gain - 1.57

-46.8

Output offset

TLlH/8767-14

voltage reduced
to the level Of
the input offset
voltage Of the
bottom amplifier
(typically 1 mV).

TUH/8767-15

1-678

t;tINational Semiconductor

LMC662
CMOS Dual Operational Amplifier
General Description
The LMC662 CMOS Dual operational amplifier is ideal for
operation from a single supply. It operates from + 5V to
+ 15V and features rail-to-rail output swing in addition to an
input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the
past are not a problem with this design. Input Vas, drift, and
broadband noise as well as voltage gain into realistic loads
(2 kO and 6000) are all equal to or better than widely accepted bipolar equivalents.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC660 datasheet for a Quad CMOS operational
amplifier with these same features.

Features
•
•
•
•
•

Rail-to-rail output swing
Specified for 2 kO and 6000 loads
High voltage gain
Low input offset voltage
Low offset voltage drift

126 dB
3 mV
1.3 ILvrc

•
•
•
•
•
•
•

Ultra low input bias current
2 fA
Input common-mode range includes VOperating range from + 5V to + 15V supply
Iss = 400 /AA/amplifier; independent of V+
Low distortion
0.01% at 10 kHz
Slew rate
1.1 V/ILS
Available in extended temperature range (-4O"C to
+ 125D C); ideal for automotive applications
• Available to a Standard Military Drawing specification

Applications
•
•
•
•
•
•
•
•

High-impedance buffer or preamplifier
Precision current-to-voltage converter
Long-term integrator
Sample-and-hold circuit
Peak detector
Medical instrumentation
Industrial controls
Automotive sensors

Connection Diagram
8-Pln DIP/SO
OUTPUT A ...!

~u ~ v-

I
INVERTINGINPUTA- ~A
NON·INVERTING
INPUT A

3

v-

4

-

1a\

7
OUTPUT

a

T+ +L!.... INVERTING INPUT a
, - - _..6...... NON-l.VERTING

INPUT a

TLlH/9763-1

Ordering Information
Temperature Range

Package
Military
8-Pin
Ceramic DIP

Extended

Industrial

NSC
Commercial Drawing

LMC662AMJ/883

Transport
Media

J08A

Rail

8-Pin
Small Outline

LMC662EM LMC662AIM

LMC662CM

M08A

Rail,
Tape and Reel

8-Pin
Molded DIP

LMC662EN LMC662AIN

LMC662CN

N08E

Rail

D08C

Rail

a-Pin
Side Brazed
Ceramic DIP

LMC662AMD

1-679

Operating Ratings (Note 3)

Absolute Maximum Ratings

(Note 3)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
± Supply Voltage
Differential Input Voltage
Supply Voltage (V+ - V-I
16V
(Note 12)
.output Short Circuit to V +
.output Short Circuit to V-

Temperature Range
LMC662AMJ/883,
LMC662AMD
LMC662AI
LMC662C
LMC662E
Supply Voltage Range

(Note 1)

Power DiSSipation
Thermal Resistance (6JIV (Note 11)
8·Pin Ceramic DIP
8·Pin Molded DIP
8·PinSQ
8·Pin Side Brazed Ceramic DIP

Lead Temperature (Soldering, 10 sec.)
260"C
.,.. 65"C to + 150"C
Storage Temp. Range
(V+) +0.3V, (V-) -0.3V
Voltage at Input/.output Pins'
Current at .output Pin
±18mA
±5mA
Current at Input Pin
Current at Power Supply Pin

-55"C S; TJ S; + 125"C
-40"C S; TJS; +85"C
~,c S; TJ S; +70"C
-40"G S; TJ S; + 125"C
4.75Vto 15.5V
(Note 10)
100"C/W
101"C/W
165"C/W
100"C/W

35mA
(Note 2)

Power Dissipation

150"C

Junction Temperature
ESD Tolerance (Note 8)

1000V

DC Electrical Characteristics
unless otherwise specified, all limits guaranteed for TJ = 25"C.·Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.

Parameter

Conditions

Input Offset Voltage

Typ
(Note 4)

LMC662A1

LMC662C

LMC662E

Limit
(Note 4, 9)

Limit
(Note 4)

. Limit
(Note 4)

Limit
(Note 4)

1

Input .offset Voltage
Average Drift

Units

3

3

6

6

3.5

3.3

6.3

6.5

20

0.002

Input Offset Current

4

2

60

pA
max

100

2

1

60

pA
max

70

70

63

63

68

68

62

60

100
~O

0.001
>~

Input Resistance
Common Mode
Rejection Ratio

OV S; VCM S; 12.0V
V+ = 15V

83

Positive Power Supply
Rejection Ratio

5V S; V+ S; 15V
Vo = 2.5V

83

Negative Power Supply
Rejection Ratio

OV S; V- S; -10V

Input Common·Mode
Voltage Range

V+=5V&15V
For CMRR :?! 50 dB

RL = 2 ka (Note 5)
S9urcing
Sinking
RL = 6000 (Note p)
Sourcing
Sinking

Teraa

70

70

63

63

68

68

62

60

dB
min
dB
min

84

84

74

74

82

83

73

70

-0.1

-0.1

-0.1

-0.1

0

0

0

0

V
max

'V+ - 2.3
Y+ -'2.6

V+ - 2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.4

V+ - 2.3
Y+ - 2.6

V
min
V/mV
min

94
-0.4
V+ - 1.9

mV
max

p'vrc

1.3

Input Bias Current

Large Signal
Voltage Gain

LMC662AMJ/883
LMC662AMD

2000
500
1000
250

1·680

400

440

300

200

300

400

200

100

180

180

90

90

70

120

80

40

200

220

150

100

150

200

100

75

100

100

50

50

35

60

40

20

dB
min

VlmV
min
VlmV
min
V/mV
min

DC Electrical Characteristics

(Continued)
unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldlace limits apply at the temperature extremes. V + = 5V,
V- = OV, VCM = 1.5V, Va = 2.5Vand RL > 1M unless otherwise specified.

Parameter

Output Swing

Conditions

V+ = 5V
RL = 2kOtoV+/2

Typ
(Note 4)

4.87
0.10

V+ = 5V
RL = 6000 to V+ /2

4.61
0.30

V+ = 15V
RL = 2kOtoV+12

14.63
0.26

V+ = 15V
RL = 6000 to V+ /2

13.90
0.79

Output Current
V+ = 5V

Sourcing, Va = OV
Sinking, Va = 5V

Output Current
V+ = 15V

Sourcing, Va = OV
Sinking, Va = 13V
(Note 12)

Supply Current

Both Amplifiers
Va = 1.5V

22
21
40
39
0.75

LMC662AMJ/883
LMC662AMD

LMC662AI

LMC662C

LMC662E

Limit
(Note 4, 9)

Umlt
(Note 4)

Limit
(Note 4)

Umlt
(Note 4)

Units

4.82

4.82

4.78

4.78

4.77

4.79

4.78

4.70

0.15

0.15

0.19

0.19

0.19

0.17

0.21

0.25

4.41

4.41

4.27

4.27

4.24

4.31

4.21

4.10

0.50

0.50

0.63

0.63

0.83

0.58

0.89

0~75

14.50

14.50

14.37

14.37

14.40

14.44

14.32

14.25

0.35

0.35

0.44

0.44

0.43

0.40

0.48

0.55

13.35

13.35

12.92

12.92

13.02

13.15

12.78

.12.80

V
min
V
max
V
min
V
max
V
min
V
max
V
min

1.16

1.16

1.45

1.45

1.42

1.32

1.58

1.75

V
max

13
9

mA
min

13
9

mA
min
mA
min

16

16

13

12

14

11

16

16

13

12

14

11

19

28

23

23

19

25

21

15

19

28

23

23

19

24

20

15

1.3

1.3

1.6

1.6

1.8

1.5

1.8

1.9

mA
min
mA
max

•
1-681

AC Electrical Characteristics
unless otherwise specified, all limits guaranteed for TJ
Y-

=

OY, YCM

=

1.5Y, Yo

=

2.5Yand RL

>

I
Parameter

Slew Rate

=

25°C. Boldface limits apply at the temperature extremes. y+

=

5Y,

1M unless otherwise specified.

Typ

Conditions

LMC662AMJ/883
LMC662A1 LMC662C LMC662E
LMC662AMD

(Note 4)

(Note 6)

1.1

Units

Umlt

Umlt

Umlt

Umlt

(Note 4, 9)

(Note 4)

(Note 4)

(Note 4)

O.B

O.B

,O.B

O.B

Vlp,s

0.5

0.8

0.7

0.4

min

Gain-Bandwidth Product

1.4

MHz

Phase Margin

50

Deg

Gain Margin

17

dB

130

dB

Amp-to-Amp Isolation

(Note 7)

Input-Referred Yoltage Noise

= 1 kHz
= 1 kHz
F = 10kHz,Ay = -10
RL = 2 kO, YO = 8 Ypp
Y+ = 15Y

Input-Referred Current Noise
Totsl Harmonic Distortion

F

22

nY/./Hz

F

0.0002

pAl./Hz

0.01

%

Note 1: Applies to both single-supply and splR-supply operation. Continuous short circuR operation at elevated ambient temperature and/or multiple Op Amp shorts

can result in exceeding the maximum allowed junction temperature of 15O"C. Output currents in excess of ±30 mA 9V<'r long term may adversely affect reliabilRy.
Note 2: The maximum power dissipation Is a function of TJ(mox), BolA> and TA. The maximum allowable power dissipation at any ambient temperature Is Po =
(TJ(mox)-TAl/BJA·
Note 3: Absolute Maximum Rati~gs indicate limits beyond which damage to lIIe device may occur. Operating Ratings Indicete conditions for which the device Is
Intended to be functional, but do not guarantee specific performance limits. For guaranteed spsciflCBtlons and test ccndltions, see the Electrical Characteristics.
The guaranteed specHications apply only for the test ccnditions listed.

Note 4: Typical values represent the most likely parametric norm. UmRs are guaranteed by testing or correlation.

= 15V, VOM = 7.5Y and RL connected to 7.5V. For Sourcing tests, 7.5V ,.; Vo ,.; 11.5V. For Sinking tests, 2.5V ,.; Vo ,.; 7.5V.
= 15V. Connected as Voltege Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. V+ = 15Vand RL = 10 kG connected to y+ 12. Each amp ex_In tum with 1 kHz to produce Vo = 13 Vpp.
Note 5: V+
Note 8: V+

Note 8: Human body model, 1.5 kG in series with 100 pF.
Note 9: A military RETS electrical test specification is availeble on request. At the time of printing, the LMC882AMJ/883 RETS spec ccmplied fully with the
boldface IimRs in this cclumn. The LMC882AMJ/883 may also be procured to a Stendard Military Drawing specification.
Note 10: For oparating at elevated temperatures the device must be derated besed on the thermal resistenca BJA with Po
Note 11: All numbers apply for packages solderad directly Into

a PC board.

Note 12: Do not ccnnect output to V+ when V+ is greater than 13V or reilabilRy may be adversely affected.

1-.682

= (TrTAl/BJA.

Typical Performance Characteristics Vs =
Supply Current vs
Supply Voltage
1600

3.

I
E
~

,~

TJ
-400

o

""

o

1

"I

,}

-S5OC

~


dt
is the stray capacitance at the + input.

r-----------------------------------------------------------------------------~~

Typical Single-Supply Applications

(V+

i:

= 5.0 Vocl

!

Low-Leakage Sample-and-Hold

Additional single-supply applications ideas can be found in
the LM358 datasheet. The LMC662 is pin-for-pin compatible
with the LM358 and offers greater bandwidth and input resistance over the LM356. These features will improve the
performance of many existing single-supply applications.
Note, however, that the supply voltage range of the LM662
is smaller than that of the LM358.

OUTPUT
INPUT

s/H

TL/H/9763-15

Instrumentation Amplifier

r
t

TUH/9763-7

If AI = A5, Aa = Ae, and ~ = A7; then

1 Hz Square-Wave Oscillator

VOUT = A2 + 2A1 x A4
VIN
A2
A3
:. Av :::: 100 for circuit shown.
For good CMAA over temperature, low drift resistors should
be used. Matching of A3 to A6 and A4 to A7 affects CMAR.
Gain may be adjusted through A2. CMAA may be adjusted
through A7.

R4

Rl

Sine-Wave OSCillator

R2

470k

R3

470k

470k

R2

C2

392k

200pF

TUH/9763-9

Power Amplifier
+5V

R4

20k
20k

20k

9.1k

lN914

ex
30DpF
TUH/9763-10
TUH/9763-6

Oscillalorfrequency is determined by Rl, R2, Cl, and C2:
lose = 1/2".RC
where R = Rl = R2 and C = Cl = C2.

This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V
1-687

•

Typical Single-Supply Applications (V+

= 5.0 Voc) (Continued) .

·10 Hz Hlgh-Pa.. Filter

10 Hz Bandp&ss Filter
C2
O.00681&F

+5V
R4

Your
V
VIN

:"'t---i~t-""'--I

Rl

Vour

560k

Cl

O.OI5I&F

O.OI5I&F

+5V +J.J>Jv-.......

R2
2.7M
R3

fe = 10 Hz

d

= 10 Hz
Q = 2.1
Gain = -8.8
fO

= 0.895

390k

Gain = 1

1 Hz Low-Pa.. Filter (Maximally Flat, Dual Supply Only)
Rl

R4

470k

270k

TUH/9763-12

2 dB passband ripple

TL/H/9763-11

High Gain Amplifier with Offset Voltage Reduction
R3

Vour
VIN

R2

=
=
=

fe 1 Hz
d 1.414
Gain 1.57
TL/H/9763-13

R5

O.II&F
R6

+5V +,",,",M...-4~WIr-"
22k

15k
TUH/9763-14

Gain

=

-46.8
Output offset voltage reduced to the
level of the input offset voltage of
the bottom amplHler (typically 1 mV).

1-688

tflNational Semiconductor

LMC6001 Ultra Ultra-Low Input Current Amplifier
General Description
Featuring 100% tested input currents of 25 fA max., low
operating power, and ESO protection of 2000V, the
LMC6001 achieves a new industry benchmark for low input
current operational amplifiers. By tightly controlling the
molding compound, National is able to offer this ultra-low
input current in a lower cost molded package.
To avoid long turn-on settling times common in other low
input current opamps, the LMC6001A is tasted 3 times in
the first minute of operation. Even units that meet the 25 fA
limit are rejected if they drift.
Because of the ultra-low input current noise of 0.13 fAl-/HZ,
the LMC6001 can provide almost noiseless amplification of
high resistance signal sources. Adding only 1 dB at 100 kO,
0.1 dB at 1 MO and 0.01 dB or less from 10 MO to 2,000
MO, the LMC6001 is an almost noiseless amplifier.
The LMC6001 is ideally suited for electrometer applications
requiring ultra-low input leakage such as sensitive photoda-

tection transimpedance amplifiers and sensor amplifiers.
Since input referred noise is only 22 nV/-/HZ, the LMC6001
can achieve higher signal to noise ratio than JFET input
type electrometer amplifiers. Other applications of the
LMC6001 include long interval integrators, ultra-high input
impedance instrumentation amplifiers, and sensitive electrical-field measurement circuits.

Features (Max limit, 25°C unless otherwise noted)
•
•
•
•
•

Input current (100% tested)
Input current over temp.
Low power
Low Vos
Low noise

25 fA
2 pA
750 ,..A
350 ,..V
22 nV/,JHZ" @1 kHz Typ.

Applications
•
•
•
•

Electrometer amplifier
Photodiode preamplifier
Ion detector
A.T.E. leakage testing

Connection Diagrams
8-PlnDIP

a-Pin Metal Can
8

NC

CAN
NC

v+

INVERTING INPUT

6

NON-INVERTING 3
INPUT
V- 4

5

OUTPUT
INVERTING INPUT

NC

2

TL/H/11887-1

Top View

TL/H/11887-2

Top View

Ordering Information
Package

Industrial Temperature Range
- 40"C to + asoc

NSCPackage
Drawing

a-Pin
MoidedOIP

LMC6001AIN, LMC6001BIN,
LMC6001CIN

NoaE

a-Pin
Metal Can

LMC6001AIH, LMC6001BIH

1-689

HOaC

Absolute Maximum Ratings (Note 1)
Current at Output Pin

If MIlitary/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage (V+

- V-)

Output Short Circuit. to V-

(Note 2)

Lead Temperature (Soldering. 10. Sec.)

Temperature Range
LMC60.0.1AI, LMC60.0.1BI, LMCOO0.1CI
-40"C ~ TJ ~ +S5·C

260"C

Storage Temperature

-65·Cto + 150.·C

Junction Temperature

150.·C
±·10. mA

Current at Input Pin

2kV

Operating Ratings (Note 1)

-0.,3Vto +16V
(Notes 2: 10.)

(Note 3)

ESD Toleram;e (Note 9)

(V-f.- O:3V

Output Short Circuit to V +

40mA

Power Dissipation

± Supply Voltage
(V+) + 0.,3V,

, ±30.mA

Current at Power Supply Pin

4.5V

Supply Voltage

~

~

V+

Thermal Resistance (Note 11)
6JA. N Package
6JA, H Package
6JC, H Package

15.5V

100"C/W

145·C/W
45·C/W

PO,wer Dissipation

(NoteS)

DC Electrical Characteristics

Limits in standard typeface guaranteed for TJ = 25·C and limits in boldf._ type apply at the temperature extremes, Unless
otherwise specified, V+ = 5V, V- = o.V, VCM = 1.5V, and RL > 1M.
Symbol

18

Parameter
Input Current

lOS

Input Offset Current

Vos

Input Offset Voltage

Either Input, VCM
Vs = ±5V

= o.V,

= ±5V, VCM = o.V

Input Offset
Voltage Drift

2,5

RIN

Input Resistance

CMRR

Common Mode
Rejection RatiO

o.V ~ VCM ~ 7,5V
V+ = 10.V

Positive Power Supply
Rejection Ratio

5V

Negative Power Supply.
Rejection Ratio

o.V~

Large Signal
Voltage Gain

Sourcing, RL
(Note 6)

+PSRR
-PSRR
Av

10. .
5

Vs
TCVos

Typical
(Note 4)

Conditions

Umlts (Note 5)
LMC6001AI

LMC6001BI

Units
LMC6001CI

25

10.0.

1000.

2000

4000

4000

1000

2000

2000

0..35

1.0.

1.0.

1.0

1.7

2.0

0..7

1.35

1.35

1.35

2.0

10.

10.

75

72

66

72

68

63

~

V+
V-

~

15V
-10.V

~

Sinking, RL
(Note 6)

=

=

2 kn

2 kn

S3
94
140.0.
350.

1·690.

mV

p,V/·C

>1
83

fA

Teran

73

66

66

70

63

63

So.

74

74

77

71

71

dB
min

40.0.

30.0.

30.0.

300

200

200

VlmV

1SO.

90.

90.

min

100

60

60

DC Electrical Characteristics

Limits in standard typeface guaranteed for TJ = 25°C and limits in boldface type apply at the temperature extremes. Unless
otherwise specified, V+ = 5V, V- = OV, VCM = 1.5V, and RL > 1M. (Continued)
Symbol

VCM

Typical
(Note 4)

Conditions

Parameter

Input Common-Mode Voltage V+ = 5V and 15V
For CMRR ;?; 60 dB

-0.4
V+ - 1.9

Vo

Output Swing

V+ = 5V
RL = 2 kO to 2.5V

4.87
0.10

V+ = 15V
RL = 2 kOto 7.5V

14.63
0.26

10

Output Current

Sourcing, V+
Sinking, V+

=

Sourcing, V+
Sinking, V+
(Note 10)
Is

Supply Current

V+
V+

=
=

=

5V, Vo

=

=

5V, Vo

5V, Vo

=

15V, Vo

15V, Vo

=

15V, Vo

=

5V

=

=

1.5V

=

OV

7.5V

22
21

OV

13V

30
34
450
550

Limits (Note 5)

Units

LM6001AI

LM6001BI

LM6001CI

-0.1
0

-0.1
0

-0.1
0

V+ - 2.3 V+ - 2.3 V+ - 2.3
Y+ - 2.5 Y+ - 2.5 Y+ - 2.5
4.80

4.75

4.75

4.73

4.67

4.87

0.14

0.20

0.20

0.17

0.24

0.24

14.50

14.37

14.37

14.34

14.25

14.25

0.35

0.44

0.44

0.45

0.56

0.58

16

13

13

10

8

8

16

13

13

13

10

10

28

23

23

22

18

18

28

23

23

22

18

18

750

750

750

900

900

900

850

850

850

950

950

950

V
max
V
min
V
min
V
max
V
min
V
max

mA
min

/LA
max

•
1-691

AC Electrical Characteristics
Limits in standard typeface guaranteed for TJ =' 25'C and limits in boldface Qpe apply at the temperature extremes. Unless
otherwise specified, V+ = 5V, V- = OV, VCM = 1.5Vand RL > 1M..
Symbol
SR

Parameter
Slew Rate

Typical
(Note 4)

Conditions
(Note 7)

1.5

Limits (Note 5)
LM6001AI

LM6001BI

Units
LM6001CI

0.8

0.8

0.8

0 ••

0 ••

0 ••

V/,,"s
min

GBW

Gain-Bandwidth Product

1.3

MHz

4>l m

Phase Margin

50

Deg

GM

Gain Margin

17

dB

en

Input-Referred Voltage Noise

F = 1 kHz

22

nV/VHz

in

Input-Referred Current Noise

F = 1 kHz

0.13

IA/VHz

THO

Total Harmonic Distortion

F= 10kHz,Av= -10,
RL = 100 kn, Vo = 8 Vpp

0.Q1

0/0

Nota 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate oonditions for which the device Is
intended to be functional but do not guarantee specific performance limits. For guaranteed specifications and test oonditions, see the Electrical Characteristics.
The guaranteed specifications apply only for the test oondHions Il8Ied.
Note 2: Applies to both slngle supply and splH supply operation. Continuous short circuK operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150"C. Oulput currents in excess of ±30 mA over long term may adversely affect reliability.
Note 3: The maximum power dlsslpation Is a function of TJ(max). 8JA. and TA. The maximum allowable powar dlsslpetion at any ambient temperature is
Po ~ (TJ(max) - TtJI8JA·
Nota 4: Typical values represent the most likely paramstric norm.
Note 5: All limits are guaranteed by testing or statistical analysis.
Nota 6: V+
Nota 7: V+

= 15V. VCM ~ 7.5V and RL oonnected to 7.5V. For Sourcing tests, 7.5V ,;; Vo ,;; 11.5V. For Sinking tests, 2.5V ,;; Vo ,;; 7.SV.
= 15V. Connected as Voltage Follower with 10V step input. Umit specified Is the lower of the positive and negative slew rates.

Note 8: For operating at elevated temperatures the device must be derated bssed on the thermal resistance 8JA with Po
Nota 9: Human body model, 1.5 kG in series with 100 pF.
Nota 10: Do not oonnect the ouiput to V+, when V+ is greater than 13V or reliabHlty will be adversely affected.
Note 11: All numbers apply for packages soldered dlrectiy Into a printed ciralK board.

1-692

~

(TJ - TtJI8JA.

r-----------------------------------------------------------------------------~~

Typical Performance Characteristics Vs =

± 7.SV, TA

B:

~
....

= 25°C, unless otherwise specified

C)

Input Current
va Temperature

Input Current
vs VCM Vs = ±5V
25

100pA
10pA

/'

~

z

~

lpA

i3
~

IOOfA

"'~

lOlA

./

/'

V

20

i

10

..... r-

z

"

o

100aA
o

25

50

75

100

125

-3
~

lao

30

90

~

-10

-

'\.tk

-20

~
~, ~
lO'l

I
I

0.1

I
I

0.01

0.001
0.001

OUTPUT SINK CURRENT(mA)

100

Ik

0.1

10

100

Gain and Phase
Response vs Capacitive Load
with RL = 500 kO

1
""

,

Phase

-20
10

0.01

OUTPUT SOURCE CURRENT(mA)

90

15

0.1

lOOk

... '2k

Gain

§
0.01

10k

+

I

:!;

0.001
0.001

Ik

>

Gain and Phase Response
va Temperature
(-55"Cto + 125"C)

100

IDa

Output Characteristics
Sourcing Current

SOURCE RESISTANCE (n)

Output Characteristics
Sinking Current

!l1

10

I

1\
0.001

100

"
I

J
'J

z 0.01

~

\

FREQUENCY (Hz)

V

:

FREQUENCY (Hz)

"z

lOOk

Noise Figure
vs Source Resistance

~

10

~

10k

FREQUENCY (Hz)

0

E

Ik

\
I\..

r\

~

20

~

\

~

40

10

16

1---

V-, IpPIY

60

~

10

60

14

"'j"

80
~
~

100
80

12

~UPPJ1

1"""'_ ....


,....Ii-

1\

V

I

\

v

TI~E

(1 Ju/D;v)

"- :'-

fTI~E(1

JOs/D;v)

-

I

1\.,= 1,.n Un~t.JI' rcill~n ~
AV=+l

140
120
100
80
60

25" qyarshoot

40
20
-6-5-4-3-2-10 1 2 345 6
OUTPUT VOLTAGE (V)
TL/H/11887-4

1-694

I"'"

i:

Applications Hints
AMPLIFIER TOPOLOGY

Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an oscillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 2a.

The LMC6001 incorporates a novel op-amp design topology
that enables it to maintain rail-to-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional op-amps. These features make the LMC6001
both easier to design with, and provide higher speed than
products typically found in this low power class.

§
....

+V

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the
LMC6001.

20n

Although the LMCS001 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors with even small
values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.

G.OAD

1000 pr
90k

~------------~~

When high input impedances are demanded, guarding of
the LMCS001 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capaCitance as well.
(See Printsd-Circuit-Board Layout for High Impedance
Worlc).

TL/H/11887-8

FIGURE 28. LMC6001 Nonlnvertlng Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads
In the circuit of Ftgure 2a, R1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

1

---~---

27TR1CIN 27TRM
or

R1 CIN ~ R2Cj
Since it is often difficult to know the exact value of CIN, Cj
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and LMCS62 for
a more detailed discussion on compensating for input capaCitance.

Capacitive load driving capability is enhanced by using a
pullup resistor to V+ (Ftgure 2b). Typically a pullup resistor
conducting 500 p.A or more will significantly improve capacitive load responses. The value of the pullup resistor must be
determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pullup
resistor (see Electrical Characteristics).
V+

~',

R2
R1

VIN

O--M""'--,--....--I
,
GN=
I

---

I

10k

The effect of input capacitance can be compensated for by
adding a capacitor, Cj, around the feedback resistors (as in
Figure 1) such that:

1

VOUT

> ......-oVOUT

I
I

I

TL/H/11887-7

FIGURE 2b. Compensating for Large capacitive
Loads with a Pu"up Resistor

TUH/11887-5

FIGURE 1. Cancelling the Effect of Input capacitance
CAPACITIVE LOAD TOLERANCE

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is
normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load
on the amplifier. Capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see Typical Curves).

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6001, typically
less than 10 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are
quite simple. First, the user must not ignore the surface
1-695

~

~ r-----------------------------------------------------------------------------------------~

~

::E
...I

Applications Hints (Continued)
leakage of the PC board, even though it may sometimes
appear acceptably IQw, because under conditions of l1igh
humidity or dust or contamination, the surface leakage will
be appreciable.
To minimize the effect of any surface leakage, lay out a ring
of foil completely surrounding the LMC6001's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc., connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120.,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input.
This would, cause a 500 times degradation from the
LMC6001's actual performance. If a guard ring is used and
held within 1 mV Of the inputs, then the same resistance of
10120. will only cause 10 fA of leakage current. Even this
small amount of leakage will degrade the extremely low input current performance of the LMC6001. See Figures 4a,
4b, 4c for typical connections of guard rings for standard opamp configurations.

R2

OUTPUT

TLlH/II887-10

(b) Non-Inverting Amplifier

OUTPUT

TLlH111887-11

(c) Follower
FIGURE 4. Typical Connections of Guard Rings
The designer should be aware tl:1at when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an'excellent insulator. In this case you may
have to forego some of the advantages of PC board cdnstruction, but the advantages are sometimes well worth
the effort' of using pOint-to-point up-in-the-air wiring. See
Figure 5.
'

a

~ " rn" rn° [1'
,

"-INI

'0

+INI

y-"

FEEOBACK
CAPACITOR

0' '0

l

t.Guard Ring
T,LlH/11887 -8

FIGURE 3. Examples of Guard
Ring In PC Board llIyout

TL/H/11887-12

(Input pins are lifted out of PC board and soldared directly to components.
All other pins connecmd to PC board),

Cl

FIGURE 5. Air Wiring
INPUT

Another potential source of leakage that might be overlooked is the device package. When the LMC6001 is manufactured, the device is always handled with conductive finger cots. This is to assure that salts and skin oils do not
cause leakage paths on the surface of the package. We
recommend that these same precautions be adhered to,
during all phases of inspection, test and assembly.

JVI,.,.....-4......---'IIVv--..
I
I

Guard Ring ........

i_

OUTPUT

TLlH/II887-9

(a) Inverting Amplifier

1-696

placed in the feedback loop. This cancels the temperature
dependence of the probe. This resistor must be mounted
where it will be at the same temperature as the liquid being
measured.
The LMC6001 amplifies the probe output providing a scaled
voltage of ±100 mV/pH from a pH of 7. The second
opamp, a micropower LMC6041 provides phase inversion
and offset so that the output is directly proportional to pH,
over the full range of the probe. The pH reading can now be
directly displayed on a low cost, low power digital panel
meter. Total current consumption will be about 1 mA for the
whole system.
The micropower dual operational amplifier, LMC6042, would
optimize power consumption but not offer these advantages:
1. The LMC6001 A guarantees a 25 fA limit on input current
at 25'C.

Latchup
CMOS devices tend to be susceptible to latchup due to their
internal parasitic SCR effects. The (110) input and output
pins look similar to the gate of the SCR. There is a minimum
current required to trigger the SCR gate lead. The LMC6001
is designed to withstand 100 mA surge current on the I/O
pins. Some resistive method should be used to isolate any
capacitance from supplying excess current to the 110 pins.
In addition, like an SCR, there is a minimum holding current
for any latchup mode. Limiting current to the supply pins will
also inhibit latchup susceptibility.

Typical Applications
The extremely high input resistance, and low power consumption, of the LMC6001 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, electrostatic field detectors
and gas chromotographs.

2. The input ESD protection diodes in the LMC6042 are only
rated at 500V while the LMC6001 has much more robust
protection that is rated at 2000V.

Two Opamp, Temperature
Compensated pH Probe Amplifier

The setup and calibration is simple with no interactions to
cause problems.
1. Disconnect the pH probe and with R3 set to about midrange and the noninverting input of the LMC6001 grounded, adjust R8 until the output is 700 mV.
2. Apply -414.1 mV to the noninverting input of the
LMC8001. Adjust R3 for and output of 1400 mV. This
completes the calibration. As real pH probes may not perform exactly to theory, minor gain and offset adjustments
should be made by trimming while measuring a precision
buffer solution.

The signal from a pH probe has a typical resistance between 10 MO and 1000 MO. Because of this high value, it is
very important that the amplifier input currents be as small
as possible. The LMC6001 with less than 25 fA input current
is an ideal choice for this application.
The theoretical output of the standard AglAgCI pH probe is
59.16 mVlpH at 25'C with OV out at a pH of 7.00. This
output is proportional to absolute temperature. To compensate for this, a temperature compensating resistor, R 1, is

C1

R9

+5
R4

>-.....-.OUT
pH
PROBE

II h
-V

01

R1 100k + 3500 ppmrC'
R268.1k
R3, 8 5k

R4,9100k

TLlH/11887-15

FIGURE 6. pH Probe Amplifier

R538.5k

R6619k
R797.6k
01 LM404001 Z-2.5

C1 2.2 "F
'(Micro-ohm style 144 or similar)

1-697

.- r-------------------------------------------------------------------------------------,

I

CJ

~

Ultra;;Low Input Current Instrumentation Amplifier
F/{/urs 7 shows an instrumentation amplifier that features

R2 provides a simple means of adjusting gain over a wide
range Without degrading CMRR. Ai is an initial trim llsed to
maximize CMRR Without using super precision matched reo
sistors. For good CMRR over'temperature, low drift resistors
should be used.

high differential and common mode input resistance
(>10140),0.01% gain accuracy at Av = 1000, exceller:Jt
CMRR with 1 MO imbalance,in source resistance. Input cur·
rent is less than 20 fA and offset drift is less than 2.5 p.Vrc.

R3

R4

10k

lOOk

R6
10k

91k
TLlH/11887-13

:.AV '" 100 for circuR shown (R2 = 9.85k).

FIGURE 7. Instrumentation Amplifier

1·696

r-------------------------------------------------------------------------,

~

f}1National Semiconductor

N
N

LMC6022
Low Power CMOS Dual Operational Amplifier
General Description
The LMC6022 is a CMOS dual operational amplifier which
can operate from either a single supply or dual supplies. Its
performance features include an input common-mode range
that reaches V-, low input bias current, and voltage gain
(into 1OOk and 5 kO loads) that is equal to or better than
widely accepted bipolar equivalents, while the power supply
requirement is less than 0.5 mW.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6024 datasheet for a CMOS quad operational
amplifier with these same features.

Features
•
•
•
•

Specified for 100 kO and 5 kO loads
High voltage gain
Low offset voltage drift
Ultra low input bias current

•
•
•
•
•

Input common-mode range includes VOperating range from + 5V to + 15V supply
Low distortion
0.01 % at 1 kHz
Slew rate
0.11 V/p.s
Micropower operation
0.5 mW

Applications
•
•
•
•
•
•
•

High-impedance buffer or preamplifier
Current-to-voltage converter
Long-term integrator
Sample-and-hold circuit
Peak detector
Medical instrumentation
Industrial controls

120 dB
2.5 p.V/oC
40 fA

Connection Diagram
8-Pln DIP/SO
OUTPUT A -

1

8

I--

V+

f1- - OUTPUT B

k.

2
INVERTING INPUT A- ~

;tJr...-1If:...

7

B
\

NON-INVERTING INPUT A 3

-

+

+

!

INVERTING INPUT B

L-_+-5 NON-INVERTING INPUT B
V--+--.....
"
TL/H/11236-1

TOp View

Ordering Information
Temperature Range

NSC
Drawing

Transport
Media

8-Pin
Molded DIP

N08E

Rail

8-Pin
Small Outline

MOSA

Rail
Tape and Reel

Industrial
-40"C"; TJ ~ +85"C

Package

LMCS0221N
LMC60221M

1-699

~

a:

N
N
Q

B
~

Absolute Maximum Ratings (Note 1)
Differential Input Voltage
Supply Voltage (V+ - V-)

± Supply Voltage

Lead Temperature (Soldering. 10 sec.)
Storage Temperature Range
Junction Temperature
150'C
"
'1000V
ESD Tolerance (Note 4)
Voltage at OutpuVlnput Pin
(V+) +0.3V.(V-)-0.3V
Current at Output Pin
Current at Power Supply Pin
Power Dissipation

,Operating Ratings
Temperature Range
Supply Voltage Range

35mA
(Note 3)

Thermal Resistance (IIJA>. (Note 11)
8-PinDIP
8-PinSO

Is

Input Bias Current

los

Conditions

Input Offset Voltage
Input Offset Voltage
Average Drift

0.04

Input Offset Current

0.01

Input Resistance
Common Mode
Rejection Ratio

OV s: VCM s: 12V
V+ = 15V

Positive Power Supply
Rejection Ratio

5V

Negative Power Supply
Rejection Ratio

OV

Input Common-Mode
Voltage Range

V+ = 5V& 15V
For CMRR ;;, 50 dB

VCM

Large Signal
Voltage Gain

1M unless otherwise noted.
LMC60221
Limit .
(Note 6)
9

11

s: V+ s:
s: V- s:

15V
-10V

83
83
94
-0.4

RL = 100 kn (Note 7)
Sourcing
Sinking

1000
500

RL = 5 kn (Note 7)
Sourcing
Si,nking

1000
250

1-700

Units
mV
max
/J-VI'C

200

pA
max

100

pA
max

>1

V+ -1.9
Ay

=

101'C/W
165'C/W

2.5

RIN

-PSRR

Typical
(Note 5)
1

CMRR
+PSRR

4.75)( to 15.5V
(Note 10)

±18mA

Parameter

I:Nosll:J.T

-40'C s: T,is: +85'C

Power Dissipation

DC Electrical Characteristics

Vos

(Note 2)
(Note 12)

Output Short Circuit to V+

The following specifications apply for V+ = 5V. V- = OV. VCM = 1.5V. Vo = 2.5V. and RL
Boldface limits apply at the temperature extremel!; all other limits TJ = 25'C.
Symbol

,±5mA

Current at Input Pin
Output Short Circuit to V-

16V
260'C
-65'C to + 15O'C

Teran

63

81
63

81
74

73
-0.1

dB
min
dB
min
dB
min

0

V
max

V+ - 2.3
Y+ - 2.&

V
min

200

V/mV
min

100
90

40
100

7&
50

20

V/mV
min
V/mV
min
VlmV
min

'.

ri:

DC Electrical Characteristics (Continued)
The following specifications apply for V+ = SV, V- = OV, VCM = 1.SV, Vo = 2.SV, and RL
Bolclfacelimits apply at the temperature extremes; all other limits TJ = 2S"C.
Symbol

Vo

Parameter

Conditions

Typical
(Note 5)

Output Voltage Swing

V+ = SV
RL = 100 kfl to 2.SV

4.987
0.004

V+ = SV
RL = 5 kfl to 2.SV

4.940
0.040

V+ = 1SV
RL = 100 kfl to 7.SV

14.970
0.007

V+ = 15V
RL = 5 kflto 7.5V

14.840
0.110

'0

Is

Output Current

Supply Current

V+ = 5V
Sourcing, Vo

22

Sinking, Vo
(Note 2)

21

= OV
= SV

V+ = 1SV
Sourcing, Vo

40

Sinking, Vo
(Note 12)

39

= OV
= 13V

Both Amplifiers
Vo = 1.SV

1-701

86

=

1M unless otherwise noted.

~

N
N

LMC60221
Limit
(Note 6)
4.40

4.43
0.06

0.09

Units
V
min
V
max

4.20

V·

4.00

min

0.25

V
max

0.35
14.00

13.90
0.06

0.09
13.70

13.50
0,32

0.40
13

9
13

9
23

15
23

15
140

165

V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
p.A
max

\

....,:

'

AC Electrical Characteristics
=

=

=

The following specifications apply for V+
SV, VOV, VCM
1.SV, Vo
noted. Boldface limits apply at the temperature extremes; all other limits TJ

Symbol

SR

GBW

Parameter

Slew Rate

Conditions

(NoteS)

Gain-Bandwidth Product

= 2.SV, and RL = 1M unless other otherwise
= 2S"C.
Typical
(Note 5)

0.11

LMC60221
Umlt

Units

(Note 6)
O.OS

0.03

V/ILS
min

0.3S

MHz

M

Phase Margin

50

Deg

GM

Gain Margin

17

dB

130

dB

Amp-ta-Amp Isolation

(Note 9)

en

Input-Referred Voltage Noise

F

in

Input-Referred Current Noise

F

= 1 kHz
= 1 kHz

42

nV/.JHz

0.0002

pAl.JHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damags to component may occur. Operating Ratings indicate conditions for which the _
is
intended to be functional. but do not guarantee specific performance limits. For guaranteed specifications and test conditions. see tihe Electrical Characteristics.
The guaranteed specifications spply only for tihe test condijions listed.
Note 2: Applies to both slngl&-supply and splij-supply operation. Continuous short clreuij operation at elevated ambient temperature and/or multiple Op Amp shorts
can result in exceeding tihe maximum allowed junction temperature of 150'C. Output currents in excess of ± 30 mA over long term may adversely affect reliability.
Note 3: The maximum PQW8r dissipation is a function of TJ(max). 8JA and TA. The maximum allowable power dissipation at any ambiant temperature is Po
[TJ(max) - TN/8JA·
Note 4: Human body model. lOD pF discharged through a 1.5 kO resistor.
Note 5: Typicel values represent tihe most likely pararnebic norm.
Note 6: All limits are guaranteed by testing or correlation.
Note 7: V+ = 15V. VOM = 7.5V. and RL connected to 7.5V. For Sourcing tests. 7.5V ,; Vo ,; 11.5V. For Sinking tests, 2.5V ,; Vo ,; 7.5V.
Note 8: V+ = 15V. Connected as Voltage Follower w"h 10V step InpuL Number specified Is the slower of the positive and nagstive slew rates.
Note 9: Input referred. V+ = 15Vand RL = 100 kO connected to 7.5V. Each amp excited in tum wHh 1 kHz to produce Vo = 13 Vpp.
Note 10: For operating at elevated temperatures tihe _
must be derated based on tihe tihermal resistance 8JA wijh Po = [TJ- TN/8JA.
Note 11: AM numbers aPPly for packagss soldered directiy Into a PC board.
Note 12: Do not connect output to V+ when V+ is greater than 13V or reliability may be adversely affected.

1-702

=

Typical Performance Characteristics Vs =
Supply Current
vs Supply Voltage

± 7.5V, TA = 25°C unless otherwise specified
Input Common-Mode
VoRage Range vs
Temperature

Input Bias Current
vs Temperature
:li ~

200 f-+-++-+-t-I-t-I

1!i

1501--1--+-+-1-+-+-+-1

::

~"

11-+-+-+-l-+-+~I'-l--l
-r-

PACKAGE

V

V

/

~ O.OII-+-+~V'-t-irl-+-+-l
50f-+V~-t-+-++-+--l

0./
o

2

4 6 8 10 12 14 16

1-±-~'-'t-t7~,:;t:I~ r-

., 0.0011-+-+-,-1::>4-+-++-+--1
1
1
O.0001 L .l.'-''-L....L......l..._L..
.L..l......J

-75-50-250 255075100125150

SUPPLY VOLTAGE (V)

~~
~

-3.0 I-t-t-+-+-+-+-+-l:

+0.51-+-+-1-+-+-1-+--1
GU RAN EEO

-o~t!j~~~~~3i~~
-75

~s=+!5V

L~

V

0'0001'-___'-_'-...JL--'
0.001 0.01 0.1
10 100

OUTPUT SINK CURRENT (mA)

100 I-+-+_I-+-~I'I-:+-+--l

rt

Rc = ',WI\ = lOOk
12°1-~;j;;;:;p-r-TTTI

125

I"r-..

40f-+-~~~~--~~

201-+-+-1-+--+-i-+--l
oL-L-L-~~~~...I-...J

10

OUTPUT SOURCE CURRENT (mA)

Crosstalk Rejection
vs Frequency

801--1--+-+-1-+-+-+-1

75

1001\--+-+-+-f-+-+-+--l
80 \
ao \

O.OO01L_"-_..L...._..l...--'-_...J
0.001 0.01
0.1
10

100

25

1201-+-+-1-+--+-i-+--l

0.001 r.:f"-+-+--I---l

~=+5V

-25

1A~\+15V

0.1f--t1---l-:7f--I---l
0.01'

/

-

160 """"'''''''-''''--T""-r-,--.--,
1401-+-+-+-f-+-+-+--l

~O.OO11"":::""-I/C---I--+-+--l

S
5

V~=+!5~

GUARAN 'EED I--

10....---.----.----,-----,rr---.

/

1/
O.11--+--+--..y.'-+--I

~ ~01

~3~~~TY~P!~"CA~~~~~~

Input Voltage Noise
vs Frequency

vs =I+ 5V 'III
ll-_I_-I_~I_V~~~_l

~
1

-2.5

TEMPERATURE (oc)

Output Characteristics
Current Sourcing

"z

g

-1.5
-2.0

TEMPERATURE (OC)

Output Characteristics
Current Sinking

isfl

0 ....---r--'--'-I'--T""""T""-'---'

-0.51-+-++-+1 +-+-+-1
-1.0 f-+-++-+-t-I-t-I

HERMETlC,-t-;",I''-1hH

O.II-H'--I-+.....".'-+/--Ji<+-l

~

~'>

100

lk

10k

lOOk

FREQUENCY (Hz)

CMRR vs Frequency

CMRR vs Temperature

100 r-r-;---,--.-.-.-r-,-....--,

140 r-.--.-,-...,----,-r-T"""'"l

s:a;jjjj=ttj

1301-+-+-1--I--+-i-+--l

80

aOI-t-t-+--I--I-'~\-ir-r-l

120 f-+-++-+-t-I-t-I
1101-+-+-+--if-+-+-+--1
1001-+-+-1-+--+-i-+--l

40f-r-l-t-l-+-+~~-l-l

90H-t:t~jj
80~
701-+--1-+-+-t-1-+--1

140 '--'---'-_'--'---'--'_.1-....1
100
10k
lOOk
10
Ik
FREQUENCY (Hz)

0'-'-'-'-'-'-'-'-'--'

10

100

lk

10k lOOk

1M

FREQUENCY (Hz)

60~-'---'---'--'---'---'--.l-....I

-75

-25

25

75

125

TEMPERATURE (Oc)

Power Supply Rejection
Ratio vs Frequency

140....--r-r-T"""T"""T""T""......""T'"-,
120 I-I-I-I-r-lr-lr-l_l_l-l

10°t:t:~~~t!tt!j
80~
aOf-f-f-~~,,~~~~_s~U_PP,L_Y-1

40 H-+-+++I\""",,<+'Id--H
201-t-t-+-~t-S~U~PP~L~Y~~~-l

Ol-t-t-+-+-+-+-+'~-i;~:~

-20 L...J-'-1....l....l....L.....L.....L...L...I
10 100 lk 10k lOOk 1M
FREQUENCY (Hz)
TL/H/11236-2

1-703

•

Typical Performance Characteristics Vs =
Open-Loop Voltage Gain
vs Temperature

Open-Loop
Frequency Response
180 r-r-r-,-,-,-,-.......,.,

150

l::r-::I--I--+-+-+-+-+-+-l

'at
.3 104,0

1\.

~

~rL..

~, 130

~

± 7.5V, TA = 25°C unless otherwise specified (Continued)

= lOOk

n-,

;; 1001-1-~d-+-+-+--t-+-l

f'" ~

~

801-~~~d-+-+--t-+-l

~

60 H-+-+-+Ood--+-+-+-t
401-~+-+-+-~d-+-+-l

'Z ~

120

-I"'C 'Gi

§
110
~

'1\. •

I

'at

5k

~~

~ :?zi

~

!i!

-25

25

75

125

-90
10M

1M

25
20
15
10

1\.

1\.

..'"

-"

I
I
I
2.5

0.25

~

0.20

~

0.05

2

0.00

0

75

-

125

V

!
~
i

\
-f-

o

ro~~~W~2~4~8~~

25

75

125

Non-Inverting Small
Signal Pulse Response
(Ay = +1)
100

~
~
!i!

50

~

0

I
o

I

~

!!:

~ 100

~

l

i

:

!

'\..
I\.

o

2 4 8 8 10 12 14 16

Inverting Smail-Signal
Pulse Response

.5

Rr·~N=20k

,I

\
TIME (I's)

s

I

6V
4V
2V
OV

100

TIME (pI)

Inverting Large-5ignal
Pulse Response

~

I

-25

~

TEMPERATURE (Oc)

~
>

0.10

!

~

6

~

I-

i!E

RISING

~

-

RISING

-75

~

V

8

25

FALLING

0.15

TEMPERATURE (oc)

FALLING

-25

0.20

7.5 10

v

0.10

-75

~

0.00

5

Large-5ignal Pulse
Non-Inverting Response
(Ay = +1)

Rr·~N=5k

0.15

0.25

0.05

0.40

~

0.30

~
~
;;l

= 5k

0.35

vou, (VOLTS)

Inverting Slew Rate
vs Temperature

1M

0.40

I

-5

lOOk

Non-Inverting Slew Rate
vs Temperature

= lOOk

5

FREQUENCY (Hz)

1

10k

FREQUENCY (Hz)

I
I I

-10
-15
-20
-25
-10 -7.5 -5 -2.5 0

-45

0.30

~

(Vos vs VOUT)

j

0.35

20 Hl-HfttHlI-tttHlllII"!;oId-ttHfll

Gain Error

~ !
i ~

90

lOOk

,~

FREQUENCY (Hz)

Gain and Phase Responses
vs Temperature

10k

i!

201-~t-+-+-+-~v-+-l

TEMPERATURE (Oc)

lk

~

-20 1..-"--"--.1..-.1..--'--'--'-.........,
0.010.1 1 10 100 lk 10k lOOk 1M 10M

100
-75

140
120 I-~:I-+-+-+-+-+-+-l

Gain and Phase Responses
vs Load Capacitance

~

-

~

5

20 40 80 80 100 120 140
TINE (pI)

~N=Rr=5k

100
50

1\

II
o 2 4 6 8 10 12 14 16 18
TIME (pI)
TUH/11236-3

1-704

r-----------------------------------------------------------------------------~ ~

Typical Performance Characteristics Vs =

± 7.SV, TA

a::

= 2SoC (Continued)

o

Stability va Capacitive Load

N
N

Stability va Capacitive Load

~

100,000

10,000

10,000

-;::-

-;::-

..e
CI

~
....

1,000

w

~

~

CI

~~

~ ~ LlLJNsT1BLE

>

5

..e

Ay=+1

100

I L~

r

~

~

>

E
0

~

~

~

1,000

....I

W

100

~

5" OVERSHOOT
10

10

1
-10

-0.1

-1

-0.001
0.001
0.1
-0.01
0
0.01
1
SINKING
SOURCING
LOAD CURRENT (mA)

1
-10

10

-1

TUH/II236-4

-0.1
-0.001
0.001
0.1
-0.01
0
0.01
1
SINKING
SOURCING
LOAD CURRENT (mA)

10

TL/H/I1236-5

Note: Avoid resistive loads of less than 500n, as they may cause instability.

Application Hints
AMPLIFIER TOPOLOGY
The topology chosen for the LMC6022 is unconventional
(compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the
output is taken directly from the output of the integrator, to
allow rail-to-rail output swing. Since the buffer traditionally
delivers the power to the load, while maintaining high op
amp gain and stability, and must withstand shorts to either
rail, these tasks now fall to the integrator.

The large signal voltage gain while sourcing is comparable
to traditional bipolar op amps for load resistance of at least
S kO. The gain while sinking is higher than most CMOS op
amps, due to the additional gain stage; however, when driving load resistance of S kO or less, the gain will be reduced
as indicated in the Electrical Characteristics. The op amp
can drive load resistance as low as SOOO without instability.
COMPENSATING INPUT CAPACITANCE
Refer to the LMC660 or LMC662 datasheets to determine
whether or not a feedback capacitor will be necessary for
compensation and what the value of that capaCitor would
be.

As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via Cr and Crt) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path consists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
forward.

RZ

CAPACITIVE LOAD TOLERANCE
Like many other op amps, the LMC6022 may oscillate when
its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration
most sensitive to oscillation is a unity-gain follower. See the
Typical Performance Characteristics.
The load capacitance interacts with the op amp's output
resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase
margin so that the amplifier is no longer stable at low gains.
The addition of a small resistor (SOO to 1000) in series with
the op amp's output, and a capaCitor (S pF to 10 pF) from
inverting input to output pins, returns the phase margin to a
safe value without interfering with lower-frequency circuit

,Cc

TL/H/11236-6

FIGURE 1. LMC6022 Circuit Topology (Each Amplifier)

1-70S

Application Hints (Continued)
operation. Thus, larger values of capacitance can be tolerated without oscill~tio!l. Note that in all casell, the output will
ring heavily when the load capacitance is near the threshold
for oscillation.
'

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDA~CE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantag\! of the ultra-low bias current of the LMC60~, typically
less than 0.04 pA, it is essential to have an excellent layoul
Fortunately, the techniques for obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though it may sometimes
appear acceptably I,ow, :because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.

100kll
Cx(10pF)

Rx(100ll)

To minimize the effect of any surface leakage, layout a ring
of foil, cOmpletely surrounding the LMC6022's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
an input. This would cause a 100 times degradation from
the LMC6022's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current, or
perhaps a minor (2:1) degradation of the amplifier's performance. See Figuf'BS 48, 4b, 4c for typical connections of
guard rings for standard op-amp configurations. If both in~
puts are active and at high impedance;' the guard can be
tied to ground and still provide some protection; see

TLlH/11236-7

FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance
capacitive load driving capability is enhanced by using a pull
up resistor to V+ (FlfJuf'B 2b). Typically a pull up resistor
conducting 50 p.A or more will significantiy improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

TLIHI11236-26

FIGURE 2b. Compensating for Large
Capacitive Loads with a Pull Up Resistor

Figuf'B 4d.

rJ

UI I
_~_.:~_~
_____
o
1°O~UT44 1

-O~IN,+

1+':'41

LGuard Ring

TLlH/11236-8

FIGURE 3. Example of Guard Ring in P.C. Board Layout (Using the LMC6024)

1-706

Application Hints (Continued)
Cl
R2

Rl
INPUT JVII'Y-~"'.&..-""""M-"'"
I
I
I
I

Guard Ri"9 -+J

r

OUTPUT

OUTPUT

I
TLlH/11236-10

TUH/11236-9

(a) Inverting Amplifier

(b) Non-Inverting Amplifier
R3

OUTPUT
INPUT ~--+-I
10M
TLlH/11236-11

TLlH/11236-12

(c) Follower

(d) Howland Current Pump
FIGURE 4. Guard Ring Connections

The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the.
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point·to-point up-in·the-air wiring. See
Figure 5.

BIAS CURRENT TESTING
The test method of Figure 6 is appropriate for bench-testing
bias current with reasonable accuracy. To understand its
operation, first close switch 52 momentarily. When 52 is
opened, then

1- = dVOUT X C2.
dt
S2 (~u.h-rod operated)

FEEDBACK
CAPACITOR

C2

TLlH/11236-13

(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board.)

TL/H/11236-14

FIGURE 6. Simple Input Bias Current Test Circuit

FIGURE 5. Air Wiring

1-707

Application Hints (Continued)
A suitable capacitor for C2 would be a 5 pF or 10 pF silver
mica, NPO ceramic, or air-dielectric. When determining the
magnitude of 1-, the leakage of the capacitor and socket
must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the
capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2
shorted)

1+ = dVOUT x (C1

where

Typical Single-Supply Applications (V+

+ ex>

dt
is the stray capacitance at the

ex

+

input.

= 5.0 VOC)

Photodlode Current-to-Voltage Converter

Micropower Current Source

+5V

LM385 (1.2V)

C2

Vour
R2
_ 1.23V
'OUT-liZ

L

1.5V TO 2.4V

TL/H/II236-16

TUH/II236-15

(Upper limit of output range dictated by input common·mode range; lower
limn dictated by minimum current requirement of LM385.)

Note: A 5V bias on the photodiode can cut i18 capacitance by a faclor of 2 or
3, leading to improved response and lower noise. However, this bias on the
photodiode will cause photodiode leakage (also known as its dark current).

Low-Leakage Sampl_nd-Hold

C>-......

OUTPUT

INPUT

S/H

~C04066
TUH/II236-17

Instrumentation Amplifier

(
-

VIN

I

....

R3

R4

10k

lOOk
H R1

R2
2k

~

\,-------.

~

R5, RS

~

R6, and R4

~

R7;

Then Your ~~x~
YIN
R2
RS
:. Av :::: 100 for circuit shown
For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and
R4 to R7 allecis CMRR. Gain may be adjusted
through'R2. CMRR may be adjusted through R7.

R5,44.2k

R6
10k

91k

TL/H/I1236-18

1·708

r-----------------------------------------------------------------------------, r
Typical Single-Supply Applications (V+

N
N

R4

C2

R2

392k

~

1 Hz Square-Wave Oscillator

Sine-Wave Oscillator
Cl

i:

= 5.0 VDC) (Continued)

200pr
10M

200pr

Your

:.:>-.... Your

+5V

Rl

R2

+5V +-JV\"""--4~-",",y.,-_..J

470k

20k

R3

470k

470k

20k

TLlHI11236-20

Power Amplifier
lN914

R4

ex
300pr
TLlH/11236-19

Oscillator lrequency is determined by RI. R2. Cl. and C2:

lose = 1/2".RC
where R = Rl = R2 and C = Cl = C2.

+5V ......JY\I\ro...- I

Your

This circuit. as shown. oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V.

TL/HI11236-21

1-709

Typical Single-Supply Applications (V+

= 5.0 Voe) {Continued) :

10 Hz Bandpass Filter
C2
O.0068I'F

10 Hz High-Pass Filter (2 dB Dip)
+5V

R4
Cl

V:..., 1--.--11---'-4---1

Rl
560k
+5V

+-IVV\ro.............
R3
fe = 10 Hz

d = 0.895

= 10 Hz
Q = 2.1
Gain = -8.8
fO

Gain

390k

= 1

TL/HI11236-23

TLlH/11236-22

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)
Rl
R4
470k

High Gain Amplifier with Offset Voltage Reduction
R3

270k

Your

O.02I'F

fo = 1 Hz
d = 1.414
Gain = 1.57
TL/HI11236-24

O.lI'F
R5

+5V

22k
Gain

= -46.8

Output offset voltage reduced to the
level of the input offset voltage of
the bottom amplifier (typically 1 mV).
referred to VBIAS.

1·710

R6

+....JW\l---......I\IVv-......
15k

-

TL/H/11236-25

t;tINational Semiconductor

LMC6024
Low Power CMOS Quad Operational Amplifier
General Description
The LMC6024 is a CMOS quad operational amplifier which
can operate from either a single supply or dual supplies. Its
performance features include an input common-mode range
that reaches V-, low input bias current and voltage gain
(into 100 kG and 5 kG loads) that is equal to or better than
widely accepted bipolar equivalents, while the power supply
requirement is less than 1 mW.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6022 datasheet for a CMOS dual operational
amplifier with these same features."

Features
• Specified for 100 kG and 5 kG loads
• High voltage gain

120 dB

2.5 p.VI"C
Low offset voltage drift
40 fA
Ultra low input bias current
Input common-mode range includes VOperating range from + 5V to + 15V supply
Low distortion
0.01 % at 1 kHz
0.11 V/p.s
• Slew rate
1 mW
• Micropower operation
•
•
•
•
•

Applications
•
•
•
•
•
•
•

High-impedance buffer or preamplifier
Current-to-voltage converter
Long-term integrator
Sample-and-hold circuit
Peak detector
Medical instrumentation
Industrial controls

Connection Diagram
14-Pln DIP/SO
14 OUTPUT 4

OUTPUT 1 1
INVERTING INPUT 1 2

13 INVERTING INPUT -4

NON-INVERTING INPUT 1 3

12 NON-INVERTING INPUT"

V+
l O NON-INVERTING INPUT 3

NON-INVERTING INPUT 2 5
INVERTING INPUT 2 6

9 INVERTING INPUT 3

OUTPUT 2 7
TUH/11235-1

TopYlew

Ordering Information
Temperature Range

NSC
Drawing

Transport
Media

14-Pin
Molded DIP

N14A

Rail

14-Pin
Small Outline

M14A

Rail
Tape and Reel

Industrial
-40"C S; TJ S; +85"C

Package

LMC6024IN
LMC60241M

1-711

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Seles
Office/Distributors for availability and specifications.
Differentiallnpu1 Voltage
Supply Voltage (V+ - V-I

15O"C

ESD Tolerance (Note 4)

1000V
(Note 3)

Power Dissipation

± Supply Voltage

Operating RatinQs

16V

Lead Temperature (Soldering, 10 ~.) " '
Storage Temperature Range
Voltage at Outputllnput Pin

Junction Temperature

26O"C
-65·Cto +15O"C

Supply Voltage Range

(V+) + O.3V, (V-) - 0.3V

Current at Input Pin

±5mA
±18mA

Current at Ou1put Pin
Current at Power Supply Pin
Outpu1 ShOrt Circuit to V +

35mA
(Note 12)

Outpu1 Short Circuit to V-

(Note 2)

~40"C:s:

Temperature Range,.

TJ :s: +85"C

4.75Vto 15.5V

Power Dissipation

(Note 10)

Thermal Resistanqe (8JN, (Note 11)
14·Pin DIP
14·PinSO

115·C/W

85·C/W

DC Electrical Characteristics
The following specifications apply for V+ = 5V, V- = OV, VCM = 1.5V, Vo = 2.5V, and RL = 1M unless otherwise noted.
Boldface limits apply at the temperature extremes; all other limits TJ = 25·C.

Symbol
Vos

Conditions

Input Offset Voltage

l:,vosl!:.T

Input Offset Voltage
Average Drift

18

Inpu1 Bias Current

lOS

OV:s: VCM:S: 12V
V+ = 15V

+PSRR

Positive Power Supply
Rejection Ratio

5V:S: V+ :S: 15V

-PSRR

Negative Power Supply
Rejection Ratio

O'"':S: V- :S: -10V

"

V+ ='5Vand15V
For CMRR ~ 50 DB

pA
Max

100

pA
Max

RL = 100 kO (Note 7)
Sourcing
Sinking

63
81

dB
Min

83

63
81

dB
Min

74

dB
Min

94
-0.4

1000
500

RL = 5 kO (Note 7)
Sourcing
Sinking

1000
250

1·712

TeraO

83

V+ - 1.9
Large Signal Voltage Gain

mV
Max

200

>1

Common Mode
Rejection Ratio

Units

p.VI"C

0.01

Input Resistance

Av

9

11

0.04

Inpu1 Offset Current

Input Common·Mode
Voltage Range

LMC60241
Limit
(Note 6)

2.5

R'N

•

Typical
(NoteS)
1

CMRR

VCM
.l,

Parameter

73
-0.1

0

V
Max

V+ - 2.3
Y+ - 2.5

V
Min

200

V/mV
Min

100
90

40
100

75
50

20

V/mV
Min
VlmV
Min
V/mV
Min

DC Electrical Characteristics (Continued)
The following specifications apply for V+ = SV, V- = OV, VCM = 1.SV, Vo = 2.SV, and RL
Boldface limits apply at the temperature extremes; all other limits T J = 2SoC.

Symbol

Vo

Parameter

Conditions

Typical
(Note 5)

Output Voltage Swing

V+ = 5V
RL = 100 kO to 2.5V

4.987
0.004

V+ = 5V
RL = S kO to 2.SV

4.940
0.040

V+ = lSV
RL = 100 kO to 7.SV

14.970
0.007

V+ = lSV
RL = SkOto7.SV

14.840
0.110

10

Output Current

V+ = SV
Sourcing, Vo
SinkingVo
(Note 2)

Is

Supply Current

=

=

OV

SV

22
21

V+ = lSV
Sourcing, Vo

40

Sinking, Vo
(Note 12)

39

= OV
= 13V

All Four Amplifiers
Vo = 1.SV

1-713

160

=

1M unless otherwise noted.

LMC60241
Umlt
(Note 6)
4.40

4.43
0.06

0.09
4.20

4.00
0.2S

0.35
14.00

13.90
0.06

0.09
13.70

13.50
0.32

0.40
13

9
13

9
23

15
23

15
240

280

Units
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
mA
Min
mA
Min
mA
Min
mA
Min
p,A
Max

AC Electrical Characteristics
The following specifications apply for V+ = SV, V- = OV, VCM = 1.SV, Vo = 2.SV, and RL
Boldface limits apply at the temperature extremes; all other limits T J = 2SoC.

Symbol

SR

GBW

Parameter

Slew Rate

Conditions,

(NoteS)

Gain-Bandwidth Product

Typical
(Note 5)

0.11

=

1M unless otherwise noted.

LMC60241
Umlt
(Note 6)

Units

O.OS

Vlp.s
Min

0.03

0.3S

MHz

8M

' Phase Margin

SO

Deg

GM

Gain Margin

17

dB

Amp-to-Amp Isolation

(Note 9)

130

dB

en

Input-ReferrEjd Voltage Noise

F

1 kHz

42

nVl./Hz

in

Input-Referred Current Noise

=
F=

1 kHz

0.0002

pAl./Hz

Note 1: Absolute Maximum 'Ratings Indicate limits beyond which damage to the component may occur. Operating Ratings Indicate conditions for which the device
is intended to be functional. but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Iha Electrical Characteristics.
The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and spllt-supply oparation. Continuous short circuH oparation at elevated ambient temparature and/or multiple Op Amp shorts
can resuH in 9Xl'89ding the maximum allowed junction temperature of 150'C. Output currents in excess of ±30 rnA over long lerm may adversly affect reliability.
Note 3: The maximum power dissipation Is a function 01 TJ(max), 9JAo and T.... The maximum allowable power dissipation at any ambient temparalUre is
Po = (TJ(max) - TAl/9JA·
Note 4: Human body model, 100 pF discharge through a 1.5 kll resistor.
Note 5: Typlcal values represent the most likely parametric norm.
Note 8: All limits are guaranteed by testing or correlation.
Note 7: V+ = 15V, VCM = 7.5V, and RL connected to 7.5V. For Sourcing tests. 7.5V ,,; Vo ,,; I L5V. For Sinking t8sts, 2.5V ,,; Vo ,,; 7.SY.
Note 8: V+ = 15V. Connected as Voltage Follower wHh IOV step input. Number spacHled Is the slower of the positive and negative slew retes.
Note 9: Input referred, V+ = 15V and RL = 100 kll connected to 7.5V. Each amp excRed in turn wHh I kHz to produca Vo = 13 Vpp.
Note 10: For operating at elevated temparalUres the'device must be derated based on the thermal resistance 9JA wHh Po = (TJ - TAl/9JA.
Note 11: All numbers apply for packages soldered dlrecUy into a PC board.
Note 12: 00 not connect output to V+ when V+ is greater than 13V or reliRbIlHy may be adversely affected.

1-714

Typical Performance Characteristics Vs =
Supply Current
va Supply Voltage

Input Bias Current
va Temperature

~

400 1-+-+-++-+-+--+-1

is

m 1-+-+-+--+--+--+-+-1

~

iill

~

I

.!;

__~i:l

-55 to "25DC

200 r:::t=t~~

f-

is

§
iii
5

r!!
a

4

6

8

10 12 14 16

l-+-t---Il_t-lI-+:7f-~+--l
_,-

V

O.Oll-l-h",.E-+--bl'+--+-+--I

I-:I:7'F'-'l-l7"Ih:=~ t-

O.OOII-I-I-~-b04-+-ILHI-I-I

'--L."-'--'--'--'-...J1L-J1L-J--'

-75 -50-25 a 25 50 75 100 125150

SUPPLY VOLTAGE (V)

TEMPERATURE (DC)

,

~

~

;

~
~

~i
w"

ill';.
15

U

Vs +sy.JI

8>
f~
i5!ll

i!!

.::

/

~K!
~ 0.0001
Vs ='5V

0.1

+O.5f-HH-t-t-t-+-l
0

-0.5

t:!:t;;f13
GU.RA~N~rE~EE035ii~

-75

Ii!

-25

75

25

125

TEMPERATURE (DC)

140 1-1-+-+-+-+-+-+-1
120
1001\-1-+-+-+-+-+-+-1
80

1

60

\

40

~1~~~-+---+---+--I

0.001 0.01

GUAM

'I' -3.01--+-+-+++-+-+-1
I~
:~

~

1/
~

-2.0

Input Voltage Noise
va Frequency

11---1--+--=+---.1--1

0.01

-1.0 1-1-+-+-+-+-+-+-1

~ i -2.5
-U~l~~T~YP~~ICA~~~~~~
>

10 r--r--r-,-..,-.,.,.,.....-.--.
Ys "5":

0.1

I
I

a
-0.5

Output Characteristics
Current Sourcing

Output Characteristics
CUrrent SInking
~

HERMET1CM~'-++-I

O. I 1--f--+--fPAC_K-fN;-:Er/F-I.I'"'-+-l'-'/-f--1

0.0001

2

Common-Mode Voltage
Range vs Temperature

10 ,.-,-.,.--,Ir-I...-r--r-r....,

500 r--r--r-..,--r-r-,----.--.

~

±7.5V, TA = 25"Cunless otherwise specified

1'-

201-+-+-+--+--+--+-+-1
1

10

100

0.0001 '-----'---"---'----'
0.001 0.01 0.1
I
10 lOa

OUTPUT SINK CURRENT (mA)

10

100

lk

10k

lOOk

FREQUENCY (Hz)

OUTPUT SOURCE CURRENT (mA)

Crosstalk Rejection
vs Frequency
OOr--r--r-..,--r-r-,----.-,

o'---'---'---'--~~~-"-...J

CMRR vs Frequency

CMRR vs Temperature
140

l00~~-'--r-r"'--r--r-~

130 1-+-+-++-+-+--+-1
1201-+-+-+--+--+--+-+-1
~

Ii'

l00I-+-+-+-+-~V~--I--I

1101-+-+-++-+-+--+-1
100 1-+-+-+--+--+--+-+-1

80H-E:tfl:tl

':tY"'-

"'- =
-lOOk
12°!o;;;;~;t;:;;l;;;-rII-t1

80~

60'--~~~-'--'--L~--'

lOa
F1I£QUENCY (Hz)

Ik

10k

lOOk

1M

-75

-25

25

75

125

TEMP£RATURE (DC)

FREQUENCY (Hz)

Power SUpply Rejection
Ratio vs Frequency
140 ,.....,r-r-,--r-r..,-,.....-r-~
120HH-+-+--+-+-+-+-H

lOO~stt!jtu
801=1=

60r-l--t-+-+~~~r~SrUP_PLrY'

40

1-+-+--I-+-+.......-l'Ic-if\.~-I-I

Hr-I--t-+_~~SFUPPL~Y~~--t

OHH-+-+--+-+-+-r'-r;:~

_HL....J~-L.-'-~~~-L....J

10

100

Ik

10k

lOOk

1M

FREQUENCY (Hz)

TUHI11235-2

1-715

..
1

701-+-+-++-+-+--+-1

~ r-----------------------------------------------------------------------------~

~

Typical ,Performance Characteristics Vs =

~

Open-Loop Voltage

Open-Loop
Frequency Response

, :'-Galn vs Temperature
150

160
140

'iD'

,

.3 1'0

~

~
~
I

r- ~

ZL

120

'7:

I\. •

110
",

= lOOk

'iD'
~

-

~ ,130

i

-I\.

~

~
5k

.

~

-25

25

75

Gain and Phase Responses
va Load Capacitance

-

100

c1

80

~~

60

I\..

40

~e

~m
~e

20

-20
0.010.1 1 10 100 lk 10k lOOk 1M 10M

100
-75

120

i!E

~~

'G: ~

±7.SV. TA = 2S0 Cuniess otherwise specified (Conlinued)

125

Gain and Phase
ResponSes vs Temperature

lk

~~

:I!

~

I l
e

I

I\. = lOOk

'.3

s

~
~

10

s

-5

I\.

-10
-15

-45

-20
-25
-10 -7.3 -5 -2.5 0

Iii

Inverting Slew Rate
vs Temperature

j
~

0.20

0

11r=~N=5k

>-

!

FAlUNG

0.25

j
~

0.20

FALLING

r- -

0.15

RISING
0.10

0.00
5

7.3 10

-75

-25

25

75

125

TEMPERATURE (oc)

!
i~

6V
IV

Non-Inverting Small
Signal Pulse Response
(Ay = +1)
0
10

:

:

~

0.15

~

RISING

~

0.05
-25

0

~

0.10

0.00
-75

2.5

0.30

~

0.05

~

!:l

0.30
Q.25

I
I
I

"
5k

Large-Slgnal Pulse
Non-Inverting Response
(Ay = +1)

~

0.40

~

~

0.35

Vour (VOLTS)

FREQUENCY (Hz)

.'"

.'"

I I
I I

15
90

1M

G.4O

20

~

lOOk

Non-Inverting Slew Rate
ve Temperature

25

0.35

10k

FREQUENCY (Hz)

(Vos vs VOUT)

~

lOOk

P~...

-45

Gain Error

'iD'

10k

45

FREOUENCY (Hz)

TEMPERATURE (Oc)

lk

90

:IS

8

75

125

-

I
o

1\

~~

I

~

~

2

4

8

8 10 12 14 16

nME (}Is)

Inverting Smail-Signal
,Pulse Response
0

I

I

-:

11r=~N=20k

iii

~

o

nME (}IS)

Inverting Large-Slgnal
Pulse Response

~

11

r-

2O~6060W012~4~8~60

TEMPERATURE (Oc)

I

0

~
-~H=I1r=5k

6V

/

4V

~

2V

I

OV

ro

0

~

\

I

~

o

20 40 60 80 100 120 140

TIME (}II)

2

4

6

8 10 12 14 16 18

TIME (}II)
TLlHI11235-3

1-716

Typical Performance Characteristics Vs =

± 7.5V, TA = 25°C unless otherwise specified (Continued)

Stability vs Capacitive Load

Stability va Capacitive Load

100,000

10,000
"i:"

.5co

~
.....

1,000

5

100

...2!!:
~

~

~

Ay=+1

~~

co

9

,~

~~

J..LJNSTlaLE
III

!:!

J.l!! V"

~

~

~

100r--r~r-~-+~T-~~r--r~r-;

~

5" OVERSHOOT

10r-;--+~r-+--r-i--t-;--+-;

10

1~~~~~~~~~~~~~

-0.1

~10

-1

-0.001
0.001
0.1
-0.01
0
0.01

10

-10

1

-0.1
-1

SINKING
SOURCING
LOAD CURRENT (mA)

-0.001
0.001
0.1
-0,01
0
0.01

10
1

SINKING
SOURCING
LOAD CURRENT (mA)
TUHI11235-5

TUH/11235-4

_ : Avoid resistive loads of less than soon. as they mey cause instability.

Application Hints
AMPLIFIER TOPOLOGY

The large signal voltage gain while sourcing is comparable
to traditional bipolar op amps, for load resistance of at least
5 kO. The gain while sinking is higher than most CMOS op
amps, due to the additional gain stage; however, when driving load resistance of 5 kO or less, the gain will be reduced
as indicated in the Electrical Characterisitics. The op amp
can drive load resistance as low as 5000 without instability.

The topology chosen f,or ,the LMC6024 is unconventional
(compared to general-purpose op amps) in Jhat the traditional unity-gain buffer output stage is not used; instead, the
output is taken directly from the output of the integrator, to
allow rail-to-rail output Swing. Since the buffer traditionally
delivers the power to the load, while maintaining high op
amp gain and stability. and must withstand shorts to either
rail, these tasks now fall to the integrator.

COMPENSATING INPUT CAPACITANCE
Refer to the LMC660 or LMC662 datasheets to determine
whether or not a feedback capaCitor will be necessary for
compensation and what the value of that capaCitor would
be.

As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via Ct and Ctt) by a dedicated unity-gain compensa~
tion driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path consists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
forward.'

CAPACITIVE LOAD TOLERANCE
Like many other op amps, the LMC6024 may oscillate when
its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration
most sensitive to oscillation is a unity-gain follower. See the
Typical Performance Characteristics.
The load capacitance interacts with the op amp's output
resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase
margin so that the amplifier is no longer stable at low gains.
The addition of a small resistor (500 to 1000) in series with
the op amp's output, and a capaCitor (5 pF to 10 pF) from

Cc

TUH/11235-6

FIGURE 1. LMC6024 Circuit Topology (Each Amplifier)

1-717

Application Hints (Continued)
inverting input to output pins, returns the phase margin to a
safe value without interfering with lower-frequency circuit
operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will
ring heavily when the load capcitance is near the threshold
'
for oscillation.
100 kll

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WOAK
'
It Is generally recognized that any circuit which must operate with less than 1000 pA of leakage currant requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the lMC6024, typically
less than 0.04 pA, it is e~sential to have an excellent layout.
Fortunately, the, techniques for obtaining low leakage~ are
quite simple. First, the user must not i,gnore the surface
leakage of the PC 'board, even though it may sometimes
appear accep~bly low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.

Rx (10011)

I

To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the lMC6024's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs. See Rgure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 1012 ohms,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
an input. This would cause a 100 times degradation from
the lMCS024's actual performance. However, if Ii guam
ring is held wlthin 5 rOVof the inputs, then 'even a resistance
of 1011 ohms would cause only 0.05 pA of'leakage current,
or perhaps Ii minor (2:1) degradation of the amplifier'S performance.' See F/{/ures 48, 4b, 4c for typical corinections of
guard rings for standard op.amp configurations. If both inputs are active and at high impedance, the guard can' be
tied to grouOd and still provide some protection; see
Figure4d.

Goad

TUH/11235-7

FIGURE 2a. Ax, Cx Improve Capacitive load Tolerance
Capacitive load driving capability is enhanced by using a
pull up resistor to V+ (Figure 2b). Typically a pull up resistor
conducting 50 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the currant sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

v+

,,,E5Ji,
TL/H/11235-26

FIGURE 2b. Compansating for large
Capacitive loads with a Pull Up Resistor

~
~1

'
rn rn [l

()()

()

()

~1

~1

v+

,

L

t.GUard Ring
TLlH/11235-8

FIGURE 3. Example 01 Guard Ring in P.C. Board layout (Using the LMC6024)

1-716

Application Hints (Continued)
R2

Cl

Rl
INPUT

JV

ex is the stray capacitance at the + input.

(V+ = 5.0 Vocl

Photodiode Current-to-Voltage Converter

Micropower Current Source

+5V

LWl85 (1.2V)

C2
1 pF
Rl

Your
L

_

1.2lV

"ur -""ii2

TL/H/11235-16

TL/H/II235-15

(Upper limit of output range dictated by InpU1 common·mode range; lower
limit dictated by minimum current requirement of LM385.)

Note: A 5V bias on the photodiode can cU1 its cap_ce by a factor of 2 or
3. leading to improved response and lower noise. However. this bias on the
photodiode will couse photodlode leakage (also known as its clark current).

Low-Leakage Sampl_nd-Hold

OUTPUT
INPUT
S/H

~CD4088
TUH/II235-17

Instrumentation Amplifier

r

VIN

~.

R3

R4

10k

lOOk

If Rl

= RS, RS = R6, and R4 = R7;

Then

VOUT=~X~
R2

VIN

9.1k

RS

:. Av '" 100 for circuit shown.

R2
2k

Your

pot
RS,44.2k

R6

tOk

R7
91k

20k pot

TL/H/II235-18

1-720

over

For good CMRR
temperature, low drift resi..
tors should be used. Matching of R3 to R6 and
R4 to R7 affects CMRR. Gain may'be adjusted
through R2. CMRR may be adjusted through R7,

Typical Single-Supply Applications (V+

= 5.0 Voe> (Continued)

10 Hz Bandpass Filter

10 Hz High-Pass Filter (2 dB Dip)
+5V

C2

0.0068 J.'r
Cl

V,

~I--.-...n---4~-t

VOUT

56 Ok

+5V ...oItIVIr.....-I
Ie
10 = 10Hz
Q = 2.1
Gain

=

Gain

-8.8

II

R3

= 10 Hz

d = 0.895

390k

=1

TUH/II235-20

TL/H/11235-19

!

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)
Rl

R4

470k

270k

,i

High Gain Amplifier with Offset Voltage Reduction
R3

VOUT

R2

0.02J.'r

fe = 1 Hz
d = 1.414
Gain = 1.57
TL/H/II235-21

R5

0.1 J.'r
R6

+5V ....~WIr---. .oItIv+r.....
22k
Gain

=

-46.8

Output offset voltaga reduced to the
level of the Input offset vonage of
the bottom amplifier (typically 1 mV),

referred to VSIAS.

15k

-

TL/HI11235-22

..

I

I

1·721

Nr-------------------------------------------~------------------~

(II)

O~ ~ National

Semiconductor

:I

LMC6032
CMOS, Dual Operational Amplifier
General Description
The LMC6032 is a CMOS dual operational amplifier which
can operate from either a single supply or dual, supplies. Its
performance features include an input common-mode range
that reaches ground, low input bias current, and high voltage gain into realistic; loads, such as 2 kO and 6000.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6034 datasheet for a CMOS quad operational
amplifier with these same features. For higher performance
characteristics refer to the LMC662.

Features
• Specified for 2 kO and 6000 loads
• High voltage gain
• Low offset voltage drift

•
•
•
•
•
•
•

Ultra low input bias current
40 fA
Input common-mode'ral)ge i(1cludes VOperating range from +5V to +15Vsupply
Iss = 400 /J-A/amplifier; independent of v+'
Low distortion
0.01 % at 10kHz
Slew rate
1.1 V//J-s
Improved performance over TLC272

Applicatio'ns
•
•
•
•
•

High-impedance buffer or preamplifier
Current-to-voltage converter
Long-term integrator
Sample-and-hold circuit
Medical instrumentation

126 dB
2.3/J-VrC

Connection Diagram
8-Pln DIP/SO
8

1

OUTPUT A - ____

A-*, rz
2

INVERTING INPUT

......,

r1- ~

OUTPUT B

B

+ +

-

NON-INVERTING INPUT A 3

V_..;4+-_ _.J

7

1.'" -

A

-

V+

INVERTING INPUT B

5

L-_-I- NON-INVERTING INPUT B
TUH111135-1

Top View

Ordering Information
r-------------.---------r-----~--------~

Temperature Range

Package

NSC
Drawing

Transport
Media

LMC60321N

8-Pin
Molded DIP

N08E

Rail

LMC6032IM

8-Pin
Small Outline

M08A

Rail
Tape and Reel

Industrial

-40"C

s: TJ s: +85"C

1-722

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
± Supply Voltage
Supply Voltage (V+ - V-)
16V
Output Short Circuit to V+
Output Short Circuit to VStorage Temperature Range
Junction Temperature
ESD Tolerance (Note 4)

(V+) + 0.3V.
(V-) - 0.3V
±18mA
±5mA
35mA

Current at Output Pin
Current at Input Pin
Current at Power Supply Pin

(Note 10)
(Note 2)

Lead Temperature (Soldering. 10 sec.)

(Note 3)

Power Dissipation
Voltage at Output/Input Pin

Operating Ratings (Note 1)

260"C

-40"C ,,;; TJ ,,;; +85°C

Temperature Range
Supply Voltage Range
Power Dissipation

-65°C to + 150"C
150°C
1000V

4.75Vto 15.5V
(Note 11)

Thermal Resistance (OJAl. (Note 12)
8-Pin DIP
8-PinSO

101°C/W
165°C/W

DC Electrical Characteristics
Unless otherwise specified. all limits guaranteed for TJ = 25°C. Boldtace limits apply at the temperature extremes.
V+ = 5V. V- = GND = OV. VCM = 1.5V. VaUT = 2.5V and RL > 1M unless otherwise specified.

Symbol

Vas

Parameter
Input Offset Voltage

l:,vasll1T

Input Offset Voltage
Average Drift

Ie

Input Bias Current

los

Conditions

Typical
(Note 5)
1

0.04

Input Offset Current

0.01

RIN

Input Resistance
Common Mode
Rejection Ratio

OV,,;; VCM";; 12V
V+ = 15V

83

Positive Power Supply
Rejection Ratio

5V,,;; V+ ,,;; 15V
Va = 2.5V

83

Negative Power Supply
Rejection Ratio

OV,,;; V- ,,;; -10V

Input Common-Mode
Voltage Range

V+ = 5V& 15V
For CMRR ;<;: 50 dB

-PSRR
VCM

Av

Large Signal
Voltage Gain

9

11

Sinking

200

pA
max

100

pA
max

Sinking

60
63

60

dB
min

-0.4

-0.1
0

V
max

V+ - 1.9

V+ - 2.3
Y+ - 2.6

V
min

200

V/mV
min

2000

1000

74

dB
min

dB
min

250

1-723

TeraO
63

70

94

500

RL = 6000 (Note 7)
Sourcing

mV
max
",V/oC

>1

RL = 2 kO (Note 7)
Sourcing

Units

(Note 6)

2.3

CMRR
+PSRR

LMC60321
Limit

100
90

40
100

75
50

20

VlmV
min
V/mV
min
VlmV
min

I,
!

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for. TJ = 25"C. Boldface limits apply at the temperature extremes.
V+ = 5V, V- = GND = OV, VCM = 1.5V, VOUT = 2.5Vand RL > 1M unless otherwise specified.
Symbol

Vo

Parameter

Conditions

Typical
(NoteS)

Output Voltage Swing

V+ = 5V
RL = 2 kn to 2.5V

4.87
0.10

V+ = 5V
RL = 6000. to 2.5V

4.61
0.30

V+ = 15V
RL = 2 knto 7.5V

14.63
0.26

V+ = 15V
RL = 6000. to 7.5V

13.90
0.79

10

Output Current

V+ = 5V
Sourcing, Vo
Sinking, Vo

IS

Supply Current

= OV
= 5V

22
21

V+ = 15V
Sourcing, Vo

40

Sinking, Vo
(Note 10)

39

= OV
= 13V

Both Amplifiers
Vo = 1.5V

1-724

0.75

LMC60321
Limit
(Note 6)

4.20

4.00
0.25

0.35
4.00

3.80
0.63

0.75
13.50

13.00
0.45

0.55
12.50

12.00
1.45

1.75
13

9
13

9
23

15
23

15
1.6

1.9

Units

V
min
,V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min

rnA
max

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for T J = 2SoC. Boldface limits apply at the temperature extremes.
V+ = SV, V- = GND = OV, VCM = 1.SV, VOUT = 2.SVand RL > 1M unless otherwise specified.

Symbol

SR

Parameter

Slew Rate

Conditions

Typical
(Note

(NoteS)

5)

LMC60321
Limit

Units

(Note 6)
O.S

1.1

0.4

V/lJos
min

GBW

Gain-Bandwidth Product

1.4

MHz

4>M

Phase Margin

SO

Deg

GM

Gain Margin

17

dB

Amp-to-Amp Isolation

(Note 9)

130

dB

en

Input-Referred Voltage Noise

F=

1 kHz

22

nV/.JHz

in

Input-Referred Current Noise

F=

1 kHz

0.0002

pAl.JHz

THD

Total Harmonic Distortion

F=

10kHz,Av

0.01

%

RL

=

2 kO, Vo

= -10
= S VPP

±SVSupply
N_ 1: Absolute Maximum Ratings indicate limits beyond which damage to component may occur. Operating Ratings indicate cond~ions for which the device is
intended to be lunctional, but do not guarantee specific performance lim~. For guaranteed specifications and test cond~ns, see the Electrical Characteristics.
The guaranteed specifications apply only lor the test con~ns listed.
Note 2: Applies to both single-supply and spl~-supply operation. Continuous short c~cu~ operation at elevated ambient temperature andlor multiple Op Amp shorts
can result in exceeding the maximum allowed junction temperature 01 150'C. Output currents in excess 01 ± 30 mA oyer long term may adversely affect reliabilItY.
N_ 3: The maximum power dissipation is a lunction 01 TJ(max), 9JA, and TA. The maximum allowable power dissipation at any ambient temperature is Po
(TJ(max) - TAl/9JA·
Note 4: Human body model, 100 pF discharged through a 1.5 kO resistor.
N_ 5: Typical vaJuesrepresent the most likely parametriC norm.
Note 6: All limits are guaranteed at room temperature (standard type lace) or at operating temperature extremes (bold type f ....).

= 15V, VCM = 7.5V, and RL connected to 7.5V. For Sourcing tests, 7.5V " Vo " 11.5V. For Sinking tests, 2.5V " Vo " 7.5Y.
= 15Y. Connected as Voltage Follower ~h lOY step input Number specified is the slower 01 the positive and negative slew rates.
N_ 9: Input referred. Y+ = 15Yand RL = 10 kn connected to Y+ 12. Each amp excited in turn with 1 kHz to produce YO = 13 Ypp.
N_ 7: V+

N_ 8: Y+

N_ 10: Do not connect output to Y+, when Y+ is greater than 13Y or reliabilItY may be adversely affected.
Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance 9JA ~h Po
Note 12: All numbers apply lor packages soldered directly into a PC bosrd.

1-72S

= (TJ

- TAl/9JA.

=

Typical Performance Characteristics Vs =
Supply Current
vs Supply Voltage

1600

±7.5V. TA= 25°C unless citherwise specified
Output Characteristics
Current Sinking

Input Bias Current

r-r-r-,....,,.....,,.....,,.....,,.....,,.....,,.....,

10~~
/.V

0.1

O~

O"~m

~V

0.01'----''----'_....1._-'-_-"
0.001 0.01 0.1
10
100

O.OI'-....I.-...L..---''---'---'---'

o

12

o

18

25

TOTAL SUPPLY VOLTAGE (v DC)

50

75

100 125 150

TEMPERATURE (OC)

Output Characteristics
Current Sourcing

OUTPUT SINK CURRENT (mA)

Input Voltage Noise
vs Frequency

CMRR vs Frequency
100

120 r-rrmrnrTl-rnmr-rTT

90

~

100

=

80

~

80~~H*m-~+H~~++

I

60

70
60
50

I-HIoH*m-~+H~~++

~

30

20
10

o <-u..............L..I.J..J.IJ.W..-L..LJ.
10

100

OUTPUT SOURCE CURRENT (mA)

100

10k

Ik

Open-Loop Frequency
Response

10k

Ik

FREQUENOY (Hz)

lOOk

IN

FREQUENCY (Hz)

Frequency Response
vs Capacitive Load

Non-Inverting Large Signal
Pulse Response

1201-+~-+--+-1-+~

100 .......
80

"

60I-+-+",rl---il-t__i

~O 1-~-I--1If---:!"~+-+---I
1-+-+-+--t[-----'1,~t__i

20

10 100 Ik 10k lOOk 1M 10M

12

5M

FRl:QUENCY (Hz)

Stability vs
Capacitive Load
100.000

~
-

i

V'

!:!

lOll OVERSHOOT

"

l°l-HH-t-t-++++-I

\

"Oor-'O
\

lo.ooor-H~--+-+-'
\t-\HH~

~\~~+~~~~++-i
• !-lJ
UNSTABLE

\

1001-t-1t+.'±-±::±:±+++-I
10

lOll OVERSHOOT

211 OVERSHOOT

\

\

\

\

-10-1-0.1-0.01-0.00100.0010.010.1 1 10

SINKING

20

~ lOOO~~~~~~~~~~~J

~ 1.00°1-'lI"I;!o+...;U;.::N;:;ST,:.:AB=iL;=.E+++~

\

\ \
\Ay =

10.000f-I-I-I-HHf-Ay-'r-=-,+,'+-i

,,1,

~r16

Stabilltyvs
Capacitive Load

100.000..-.-..--..--,.....,,.....,,.....,,.....,\--.--.

~

r-r1-1-

TIME (,.8)

FREQUENOY (Hz)

100

'A" 1500 C

2r-'f '= T'I Tor

"

-~~~~~~--~~~

I

7;

6

~ 1-~P"'FT.=~50~=

\

-10-'-0.1-0.01-0.00'00.0010.010.11 10

SOURCING

SINKING

LOAD CURRENT (mA)

SOURCING

LOAD CURRENT (mA)
TUH/III35-2

Note: Avoid resistive loads of less than 500n. as they may cause Instability.

1-726

Application Hints
AMPLIFIER TOPOLOGY

tance from the IC socket (if one is used), circuit board
traces, etc., and Rp is the parallel combination of RF and
RIN. This formula, as well as all formulae derived below,
apply to inverting and non-inverting op-amp configurations.

The topology chosen for the LMC6032, shown in FlfJure " is
unconventional (compared to general-purpose op amps) in
that the traditional unity-gain buffer output stage is not used;
instead, the output is taken directly from the output of the
integrator, to allow a larger output swing. Since the buffer
traditionally delivers the power to the load, while maintaining
high op amp gain and stability, and must withstand shorts to
either rail, these tasks now fall to the integrator.

When the feedback resistors are smaller than a few kO, the
frequency of the feedback pole will be quite high, since Cs
is generally less than 10 pF. If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of
CS), the pole will have a negligible effect on stability, as it
will add only a small amount of phase shift.

As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via Ct and Cn) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path consists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
forward.

RZ

However, if the feedback pole is less than approximately 6
to 10 times the "ideal" -3 dB frequency, a feedback capacitor, CF, should be connected between the output and
the inverting input of the op amp. This condition can also be
stated in terms of the amplifier'S low-frequency noise gain:
To maintain stability, a feedback capacitor will probably be
needed if

Cc

( RF
RIN

+ 1) :s: 46 x

211"

x GBW X RF X Cs

where

(~I~ + 1)
is the amplifier's low-frequency noise gain and GBW is the
amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula

(~I~ + 1)
regardless of whether the amplifier is being used in an inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low
and/or the feedback resistor is large.

Tl/H/11135-3

FIGURE 1. LMC6032 Circuit Topology (Each Amplifier)
The large signal voltage gain while sourcing is comparable
.to traditional bipolar op amps, even with a 6000 load. The
gain while sinking Is higher than most CMOS op amps, due
to the additional gain stage; however, under heavy load
(6000)·the gain will be reduced as indicated in the Electrical
Characteristics.

If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large
enough that:

(~I~ + 1) :

ex is the stray capacitance at the + input.

•

I

N

~

::!

~----------------------------------------------------------------------------~

Typical Single-Supply Applications

(V+ = 5.0 VOC)

Additional single-supply applications ideas can be found in
the LM358 datasheet. The LMC6032 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input
resistance over the LM358. These features 'will improve the
performance of many existing single-supply applications.
Note, however, that the supply voltage range of the
LMC6032 is smaller than that of the LM358.

Low-Lea",ge Sample-and-Hold

0UlPUT

INPUT

S/H

Instrumentation Amplifier
R3

r

10k

TVH/11135-13

lOOk

1 Hz Square-Wave OSCillator
R4

t

Voor

>--+-...
R6

R7

10k

Ilk

Rl

20k pol

+5Y

+---'W.---.....-"'II\/V-_-I

TL/H/I1135-14

VOUT = R2 + 2R1
VIN
R2

ifR1 = R5;
R3 = R6,
andR4 = R7.

x R4
R3

TL/H/11135-16

= 100 for circuit shown.

For good CMRR over temperature, low drift resistors should
be used. Matching of R3 to R6 and R4 to R7 affects CMRR.
Gain may be adjusted through R2. CMRR may be adjusted
through R7.

Power Amplifier
R4

Sine-Wave Oscillator
R2

C2

392k

200pF

+5Y +-JVl/V-..........

R3
Voor

+5V

TVH/III35-17

-

10k

20k

9.1k

20k

-

ISDk

lN914
1101

ex
300pF
Tl/H/I I 135-15

Oscillator Irequency is de1errnined by Rl, R2, Cl, and C2:
lose = 1/2".RC
whereR = Rl = R2 and C = Cl = C2.

This circuit, as shown, oscillates at 2.0 kHz with a peak-tQpeak output swing of 4.0V.
'

Typical Single-Supply Applications w+

= 5.0 Voc) (Continued)

10 Hz High-Pass Filter

10 Hz Bandpass Filter

+SV

C2

O.OO68pF

R-'
VOUT

V

Cl

~1---4,......-j I---+--~

S60k

O.OISpF

O.OISpF

+SV ...-"I\,..,......-f

R2
2.7101
R3

10
Q

I. = 10 Hz
d = 0.895

= 10Hz
= 2.1

Gain

Gain

= -8.8

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)
R-'

-'70k

270k

390k

1

TLlH/11135-20

2 dB passband ripple

TLlH/11135-18

Rl

=

High Gain Amplifier with Offset Voltage Reduction
R3

Rl
VOUT

Uk

VOUT

..L~

R2

-=

=1 Hz
d =1.-'14
Geln =1.57

O.lpF
R2

f.

TL/H/11135-19

TLlH/11135-21

Gain = -46.8
Output offset voltage reduced to the
level of the input offset voltage of
the bottom amplifier (typically 1 mV).

1-731

•

~

r----------------------------------------------------------------,

21f1
~

U

National Semiconductor

LMC6034
CMOS Quad Operational Amplifier
General Description
The LMC6034 is a CMOS quad operational amplifier which
can operate from either a single supply or dual supplies. Its
performance features include an input common-mode range
that reaches ground, low input bias current, and high voltage gain into realistic loads, such as 2 kO and 6000.
This chip is built with National's advanced Double-Poly
Silicon-Gate CMOS process.
See the LMC6032 datasheet for a CMOS dual operational
amplifier with these same features. For higher performance
characteristics refer to the LMC660.

Features
•
•
•
•

Specified for 2 kO and 6000 loads
High voltage gain
Low offset voltage drift
Ultra low input bias current

•
•
•
•
•
•

Input common-mode range includes V~
Operating Range from + 5V to + 15V supply
Iss = 400 p.A/amplifier; independent of V+
Low distortion
0.01 % at 10kHz
Slew rate
1.1 V/p.s
Improved performance over TLC274

Applications
•
•
•
•
•

High-impedance buffer or preamplifier
Current-to-voltage converter
Long-term integrator
Sample-and-hold circuit
Medical instrumentation

126 dB
2.3 p.V/oC
40 fA

Connection Diagram
14-Pln DIP/SO
1~

OUTPUT 1

13

INVERTING INPUT 1 2

INVERTING INPUT 4

12 NON-INVERTING INPUT 4

NON-INVERTING INPUT 1 3
V+

OUTPUT  1M unless otherwise specified.
Symbol

Parameter

Vos

Input Offset Voltage

I:Nos/t.T

Input Offset Voltage
Average Drift

Ie

Input Bias Current

los

Conditions

Typical
(Note 5)

LMC60341
Limit
(Note 6)

Units

1

9
11

mV
max

2.3
0.04

Input Offset Current

0.Q1

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

OV';: VCM';: 12V
V+ = 15V

83

Positive Power Supply
Rejection Ratio

5V,;: V+ ,;: 15V
Vo = 2.5V

83

Negative Power Supply
Rejection Ratio

OV';: V- ,;: -10V

Input Common-Mode
Voltage Range

V+ = 5V& 15V
For CMRR :2: 50 dB

+PSRR
-PSRR
VCM

Av

Large Signal Voltage Gain

/JoV/·C

200

pA
max

100

pA
max
Teran

>1

RL = 2 kn (Note 7)
Sourcing
Sinking
RL = 600n (Note 7)
Sourcing
Sinking

1-733

63

80
63

80

dB
min

70

dB
min

-0.4

-0.1
0

V
max

V+ - 1.9

V+ - 2.3
Y+ - 2.8

V
min

200

V/mV
min

94

2000
500
1000
250

74

dB
min

100
90

40
100

75
50

20

VlmV
min
V/mV
min
VlmV
min

DC Electrical Characteristics (Continued)
Unle$s otherwise specified. all limits guaranteed for TJ = 25°C. 80ldtace limits apply. at thf,! temperature e)!tremes.
V+ = 5V. V- = GND = OV. VCM = 1.5V. VOUT = 2.5V. and RL > 1M unless otherwise specified.
.,'.

Symbol
Vo

Parameter

Conditions

Output Voltage Swing

V+:,; 5V
"
RL = 2kOt02.5V

Typical
(Note 5)
4.87
0.10

V+ = 5V
RL = 6000 to 2.5V

4.61
0.30

V+= 15V
RL = 2 kO to 7.5V

14.63
0.26

V+ = 15V
RL = 6000 to 7.5V

13.90
0.79

10

V+ = 5V
Sourcing. Vo = OV

Output Current

Sinking. Vo = 5V

Is

Supply Current

I

22
21

V+ = 15V
Sourcing. Vo = OV

40

Sinking. Vo = 13V
(Note 10)

39

All Four Amplifiers
Vo = 1.5V

1.5

I

1·734

"LMC60341
Limit

"

Units

(Note 6)
4.20

4.00
0.25

0.35
4.00

3.80
0.63

0.75
13.50

13.00
0.45

0.55
12.50

12.00
1.45

1.75

..
..

V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max

13

mA
min

13

mA
min

23

mA
min

15
23

15
2.7

3.0

mA
min
mA
max

AC Electrical Characteristics
=

Unless otherwise specified, all limits guaranteed for T J
V+

=

5V, V-

Symbol

=

GND

=

OV, VCM

=

1.5V, Your

=

25"C.

2.5V, and RL

Parameter

Boldface

>

limits apply at the temperature extremes.

1M unless otherwise specified.

Conditions

LMC60341

Typical

Limit

(Note 5)

Units

(Note 6)
SR

Slew Rate

(Note 8)

1.1

0.8

V/p.s

0.4

min

GBW

Gain-Bandwidth Product

1.4

MHz

cf>M

Phase Margin

50

Deg

GM

Gain Margin

17

dB
dB

Amp-to-Amp Isolation

(Note 9)

130

en

Input-Referred Voltage Noise

F

22

nVlJRZ

in

Input-Referred Current Noise

0.0002

pAlJRZ

THO

Total Harmonic Distortion

= 1 kHz
F = 1 kHz
F = 10kHz,Av = -10
RL = 2 kn, Vo = 8 Vpp

0.01

%

±5VSupply
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings Indicate conditions for which the device
is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test condHions, see the Electrical Characteristics.
The guaranteed spscifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply opsraticn. Continuous shert circuit operation at elevated ambient temperature and/or multiple Op Amp shorts
can result in exceeding the maximum allowed juncticn tempsrature of 15O'C. Output currents in excess of ±30 rnA over long term may adversely affect rellabliHy.
Note 3: The maximum power dissipaticn Is a function of TJ(max)' 8JA, TA. The maximum allowable power dlsslpaticn at any ambient temperature is Po ~ (TJ(max)-

TAl/8JA:
Note 4: Human body model, 100 pF discharged through a 1.5 kll rasistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room tempsrature (standard type face) or at operating tempsrature extremes (bold IJ"pe , .....).
Note 7: V+ ~ 15V, VCM ~ 7.5V, and RL connected to 7.5V. For Sourcing tests, 7.5V .: Vo .: 11.5V. For Sinking tests. 2.5V .: Vo .: 7.5V.
Note 8: V+ ~ 15V. Connected as Voltage Follower wHh 10V step input. Number specified is the slower of the positive and negallve slew rates.
Note 9: 1npu1 referred. V+ ~ 15Vand RL ~ 10 kll connected to V.f./2. Each amp excited in tum wHh 1 kHz to produce Vo ~ 13 Vpp.
Note 10: Do not connect output to V +, when V + is greater than 13V or reliability may be adversely affected.
Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance 6JA wHh Po
Note 12: All numbers spply for packages soldered directly into a PC board.

1-735

~

(TJ - TAlI6JA.

~

~

,---------------------------------------------------------------------------------,
Typical Performance Characteristics Vs =

~

Supply Current
vs Supply Voltage

±7.5V, TA = 25°C unless otherwise speclfied

10

4.0

~

:;

3.0

ifl

TJ .,250C
2.0

TJ = 25°C

I

t
,Y

1.0

!5

1 1
1 1

o

/. ~~/. V
,/.V

o. 1

i

IOn!.

!sf?::V

I

i

TJ ·-ss~c

o

Output Charecterlstlcs
Current Sinking

Input Bias Current

0'1~1I
0.01L.......JL.....--'_.....J.._....L_.J
0.001 0.01
0.1
10
100

0.0 I

12

25

o

20

16

50

75

100

125

150

TEMPERATURE (eoc)

TOTAL SUPPLY VOLTAGE (VDC)

Output Characteristics
Current Sourcing

OUTPUT SINK CURRENT (mA)

Input Voltage Noise
vs Frequency

~.s

100

I

60

!il

20

rr-

80

~

0'1~1I

CMRR vs Frequency

,

120

70
10

0;;;-

.:!!.

50

II
~

40

.jO

30
20
10

I......

o
0.01

0.1

10

100

10

100

Open-Loop Frequency
Response
27

120

24
I

.........

""-

80
80
.jO

"-

18
15

"-

20

-20
I

10 100 lk

~~~R:t
......
1'1.
-~ 01~

.

""

80
80
70

.......

io
50
40
30
20
10

"\

"a \ \

-3

__ q" .... -hIAS":s11M
~
- •• ct,.'OD .... OUTPUTIOIEINI''''''
._q,.,01pF,ovrMSI_tllA

lOOk

~~

1M

~

i!
-~

11

!il

I

o-~

~

"w

==~

iE

5i

=1-

~=

V

8
8
4

2

II.

~~

~

i

100

10,000

10
I

~

UNSTABLE

tlh

I-"

10

I I

JJ

I

-10"'-0.'-0.01"0.00100.00'0.010.1'

SINKING

JJ

r---

~16

20

to

I I I I I

Ay = +IOor-IO

I I

"

.~,~

1000
100

10" OVERSHOOT

I
1

"1

-55oC
12

100,000

I I

~

TA;z

Stabilltyvs
Capacitive Load

Ay = +1

rill

TA-'5~~","

e:T.=25·C=

nNE (1")

$
1,000

1M

5

5N

Stabllltyvs
Capacitive Load
10,000

lOOk

0

FREQUENCY (Hz)

100,000

10k

Non-Inverting Large Signal
Pulse Response

\.

9

FREQUENCY (Hz)

c:!

Ik

FREQUENCY (Hz)

\
'\i

12

10k lOOk IN ION

:;

100

10k

Frequency Response
vs Capacitive Load

140

100

Ik

FREQUENCY (Hz)

OUTPUT SOURCE CURRENT (mA)

UNSTABLE

~

I
I

10" OVERSHOOT

I
I I I

2" OVERSHOOT

I
1

IIJ

""0-'-0.100(1.0'-0.00100.0010.010.1 1 10

SOURCING

SINKING

LOAO CURRENT (mA)

SOURCING

LOAD CURRENT (mAl
TLlH/11134-2

Note: Avoid resistive loeds of less than 5000, eo they may cause Instability.

1-736

Applications Hint
Amplifier Topolgy

is generally less than 10 pF. If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of
Cg), the pole will have a negligible effect on stability, as it
will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6
to 10 times the "ideal" -3 dB frequency, a feedback capaCitor, CF, should be connected between the output and
the inverting input of the op amp. This condition can also be
stated in terms of the amplifier's low-frequency noise gain:
To maintain stability a feedback capaCitor will probably be
needed if

The topology chosen for the LMC6034, shown in Figure 1, is
unconventional (compared to general-purpose op amps) in
that the traditional unity-gain buffer output stage is not used;
instead, the output is taken directly from the output of the
integrator, to allow a larger output swing. Since the buffer
traditionally delivers the power to the load, while maintaining
high op amp gain and stability, and must withstand shorts to
either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via C4 and Off) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path consists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
forward.

(RRF + 1) :s;
IN
where

(=I~ +

~6 X

2'IT X GBW X RF X CS

1) is the amplifier's low-frequency noise

gain and GBW is the amplifier's gain bandwidth product. An
amplifier's low-frequency noise gain is represented by the
formula

(:,~ +

1) regardless of whether the amplifier is

being used in inverting or non-inverting mode. Note that a
feedback capaCitor is more likely to be needed when the
noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capaCitor will probably be needed), and the noise gain is large
enough that:

(=I~ +

1)

~ 2~GBW X RF X Cs,

the following value of feedback capacitor is recommended:
CF =

TL/H/11134-3

FIGURE 1_ LMC6034 Circuit Topology (Each Amplifier)
The large signal voltage gain while sourcing is comparable
to traditional bipolar op amps, even with a 6000 load. The
gain while sinking is higher than most CMOS op amps, due
to the additional gain stage; however, under heavy load
(6000) the gain will be reduced as indicated in the Electrical
Characteristics.

Cs

2(=1~ + 1)

If

(=I~ +1) < 2~GBW X RF X Cs
the feedback capacitor should be:

CF=~GB~~ RF

Compensating Input Capacitance
The high input resistance of the LMC6034 op amps allows
the use of large feedback and source resistor values without
losing gain accuracy due to loading. However, the circuit will
be especially sensitive to its layout when these large-value
resistors are used.

Note that these capacitor values are usually significant
smaller than those given by the older, more conservative
formula:

Every amplifier has some capaCitance between each input
and AC ground, and also some differential capacitance between the inputs. When the feedback network around an
amplifier is resistive, this input capaCitance (along with any
additional capacitance due to circuit board traces, the socket, etc.) and the feedbaCk resistors create a pole in the
feedback path. In the following General Operational Amplifier circuit, Fl!Jure 2 the frequency of this pole is

----~I-----

1
fp=--2'ITCsRp
where Cs is the total capacitance 'at the inverting input, including amplifier input capcitance and any stray capacitance
from the IC socket (if one is used), circuit board traces, etc.,
and Rp is the parallel combination of RF and RIN. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.

cf

TUH111134-4

FIGURE 2_ General Operational Amplifier Circuit

Cs consists of the amplHier's input capacitance plus any stray capacitance
from the circutt board and socket. CF ccmpensates for the pole caused by

When the feedback resistors are smaller than a few kO, the
frequency of the feedback pole will be quite high, since Cs

Cs and the feedback resistors.
1-737

Applications Hint (Continued)
USing the smaller capacitors win give much higher bandwidth with little. degradation of .transient response. II may be
necessary in any of the above cases to !lse a somewhat
larger feedback capaCitor to allow .for unexpected stray capaCitance, or to tolerateadditio!1a1 phase shifts in the loop,
or ex~ssive capacitive load, or to decr!lase the noise or
bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray
capaCitance 'may be larger or smaller than the breadboard's, so the actual optimum value for CF may be different
from the one estimated using the breadboard: In most eases, the values of CF should be checked on the actual circuit,
starting with the computed value.

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK
It is generally recognized that anY'circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultriJ.~low· bias current of the LMC6034.· typically
less than 0.04 pA, it is essential to have an excellent layout.
Fortunately, the techniques for obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC bOjird, even though. it may sometimes
appear acceptably low, because under !X)nditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.
To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6034's inputs and the
terminals of capacitors; diodes,' conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs. See Fig- "
ure 4. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad .resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
an inpul. This,would cause a 100 times degradation from
the LMC6034's actual' performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current, or
perhaps a minor (2:1) degradation of the amplifier'S performance. See Figures 58, 5b, 5c for typical connections of
guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be
tied to ground and still provide some protection; see Figure

Capacitive Load Tolerance
Like many other op amps, the LMC6034 may oscillate when
its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration
most sensitive to oscillation is a unity-gain follower. See
Typical Performance Characteristics.
The load capacitance interacts with the op amp's output
resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase
margin so that the amplifier is no longer stable at low gains.
As shown in Figure 3a; the addition of a small resistor (500
to 1000) in series with the op amp's output, and a capaCitor
(5 pF to 10 pF) from inverting input to output pins, returns
the phase margin to a safe value without interfering with
lower-frequency circuit operation. Thus larger values of capaCitance can be tolerated without oscillation. Note that in
all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

5d.
Rx (lOOn)

ICroad
WH/l.1134-5

FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Rgure 3b). Typically a pull up resistor
conducting 500 poA or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

v+

~l:

~

'LGuard Ring
WH/III34-6

FIGURE 4. Example of Guard Ring In P.C. Board Layout

TUH/III34-22

FIGURE 3b. Compensating for Large Capacitive Loads
with a Pull Up Resistor

1-738

Application Hints (Continued)
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-to-point up-in-the-air wiring. See

Cl

Figure 6.

Rl
INPUT

JIIW,.......' - - - ¥ ( \ r -....

,,
,
Guard Ring ......
,

FEEDBACK
CAPACITOR
OUTPUT

1:
TUH/11134-7

(a) Inverting Amplifier

TL/H/11134-11

R2

(Input pins are lifted out of PC board and 001_ directly to components.
All other pins connected to PC boB"'.)

FIGURE 6. Air Wiring
OUTPUT

BIAS CURRENT TESTING
The test method of Ftgure 7 is appropriate for bench-testing
bias current with reasonable accuracy. To understand its
operation, first close switch 52 momentarily. When 52 is
opened, then

TL/H/11134-8

(b) Non-Inverting Amplifier

- dVOUT C2
1b - dt"X
.
52 (push-rod opera led)

OUTPUT

C2
TL/H/11134-9

(c) Follower

R3

Rl
Vl
100M

L

-

R2

•,

V2
100M
TL/H/11134-12

FIGURE 7. Simple Input Bias Current Test Circuit
A suitable capacitor for C2 would be a 5 pF or 10 pF silver
mica, NPO ceramic, or air-dielectric. When determining the
magnitude of Ib -, the leakage of the capaCitor and socket
must be taken into account. Switch 52 should be left shorted most of the time, or else the dielectric absorption of the
capaCitor C2 could cause errors.

TUH/11134-1D

(d) Howland Current Pump
FIGURE 5. Guard Ring Connections

Similarly, if 51 is shorted momentarily (while leaving 52
shorted)

The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few Circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may

Ib+ = dVOUT X (C1
dt
where

1-739

+ Cxl

c" is the stray capacitance at the +

input.

Typical Single-Supply Applications (V+

= 5.0 VDC)

Sine-Wave Oscillator

Additional single-supply applications ideas can be found in
the LM324 datasheet. The LMC6034 is pin-for-pin compatible with the LM324 and offers greater bandwidth and Input
resistance over the LM324. These features will improve the
performance of many existing single-supply applications.
Note. however. that the SUpply voltage range of the
LMC6034 is smaller than that of the LM324.

C2
200 pF

+5V

Low-Leakage Sampl_nd-Hold

603-...... VOUT

20k

3O....._0ulpul
Inpul

20k
S/H

TLlH/11134-13

TLlH/11134-15

Oscillator frequency is determined by Rt. R2. C1. and C2:

Instrumentation Amplifier

r

9.1k
R2

fosc = t/2'ITRC. where R = Rt = R2 and
C=C1=C2.

R3

R4

10k

lOOk

This circuit. as shown. oscillates at 2.0 kHz with a peak-topeak output swing of 4.0V.

1 Hz Square-Wave OSCillator
Rl.44.2k

R4
.".-- --~-VOUT

VIN

(,

~>--+_VOUT

Rl

R6

+5V~--~~----~--~~--~

R7

470k
10k

91k

20k pol
TL/H/11134-14

V
R2 + 2Rt
OUT =
VIN
R2

R4 if Rt = R5
x- R3=R6
R3 and R4 = R7.

TL/H/11134-16

Power Amplifier

= 100 for circuit as shown.
For good CMRR over temperature. low drift resistors should
be used. Matching of R3 to R6 and R4 to R7 affect CMRR.
Gain may be adjusted through R2. CMRR may be adjusted
through R7.

R4

. . . -..... VOUT

TLlH/11134-17

1-740

Typical Single-Supply Applications (V+

= 5.0 VDe) (Continued)

10 Hz Bandpass Filter

10 Hz High-Pass Filter

3O-....... VOUT

,4>-...... V

OUT

+5V ..."""""""'-_..........
R2
10M

R3

6.8M

R3

'a0 =

10Hz
= 2.1
Gain = -8.8

390k

Ie = 10 Hz
d = 0.895

TLlH/11134-18

Gain

TLlH/11134-20

=1

2 dB passband ripple

1 Hz Low-Pass Filter
(Maximally Flat, Dual SUpply Only)

RI

High Gain Amplifier with Offset
Voltage Reduction
R3

R4
Rl

nt-.. .

3O-+-" VoUT

_

o.lpr

Gain = -46.8

Ie = 1 Hz
d = 1.414
Gain

Output offset
voltage reduced
to the level of

TLlHI11134-19

>--+_VOUT

--1·

R2

R4

10M

22k

C2

o.ll'r

the input offset
voltage 01 the
bottom amplifier
(typically 1 mV).

= 1.57

TLlH111134-21

1-741

y-

r---------~--------~----------------------------------------~----------------_.

(.)2 ~ National

:!

Semiconductor

LMC6041
CMOS Single Micropower Operational Amplifier
General Description

Features·

Ultra-low power consumption and low input-leakage current
are the hallmarks of the LMCS041. Providing Input currents
of only 2 fA typical, the LMCS041 can operate from a single
supply, has output swing extending to each supply rail, and
an input voltage range that includes ground.

•
•
•
•
•

The LMC6041 is ideal for use in systems requiring ultra-low
power consumption. In addition, the insensitivity to latch-up,
high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.

Low supply current
., .
14 pA (Typ)
Operates from 4.5V to 15.5V single supply
Ultra low input current
2 fA (Typ)
Rail-to-rail output swing
Input common-mode range includes ground

Applications
•
•
•
•
•
•
•

Other applications for the LMCS041 include bar code reader
amplifiers, magnetic and electric field detectors, and handheld electrometers.
This device is built with National's advanced Double-Poly
Silicon-Gate CMOS process.

Battery monitoring and power conditioning
Photodiode and infrared detector preamplifier
Silicon based transducer systems·
Hand-held analytic instruments
pH probe buffer amplifier
Fire and smoke detection systems
Charge amplifier for piezoelectric transducers

See the LMC6042 for a dual, and the LMC6044 for a quad
amplifier with these features:

Connection Diagram
8-Pln DIP/SO

NC"'!"
INVERTING INPUT

!..NC

2. - ~ Z- V+

NON-INVERnN~ 2.
INPUT

+

v-'!'

.!.. OUTPUT
':"NC
TL/HI11136-1

Ordering Information
Temperature Range
Package

Industrial
-40"Cto +85"C

NSC
Drawing

Transport
Media

a-Pin
Small Outline

LMC6041 AIM
LMCS0411M

MOSA

Rail
Tape and Reel

S-Pin
Molded DIP

LMCS041AIN
LM6041IN

NOSE

Rail

1-742

,~

i't

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
± Supply Voltage
Differential Input Voltage
Supply Voltage (V+ - V-I
16V
Output Short Circuit to v(Note 2)
(Note 11)
Output Short Circuit to V +

Current at Power Supply Pin
Voltage at Input/Output Pin

Lead Temperature (Soldering, 10 sec.)

Supply Voltage
Power Dissipation

Storage Temperature Range
Junction Temperature
ESD Tolerance (Note 4)

(Note 3)

Power Dissipation

Operating Ratings
Temperature Range
LMC6041 AI, LMC6041I

2600C
-65·Cto +1500C

-40·C';: TJ ,;: +85·C
4.5V ,;: V+ ,;: 15.5V
(Note 9)

Thermal Resistance (8JN (Note 10)
8-PinDIP
8-PinSO

1100C
500V
±5mA

Current at Input Pin
Current at Output Pin

35mA
(V+) + 0.3V, (V-) - 0.3V

101·C/W
165·C/W

±18mA

Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TA = TJ = 25·C. Boldface limits apply at the temperature extremes.
V+ = 5V, V- = OV, VCM = 1.5V, Vo = V+ /2, and RL > 1M unless otherwise specified.

Symbol

Parameter

Typical
(NoteS)

Conditions

VOS

Input Offset Voltage

1

TCVos

Input Offset Voltage
Average Drift

1.3

18

Input Bias Current

0.002

los

Input Offset Current

0.001

LMC6041AI

LMC6041I

Umit
(Note 6)

Limit
(Note 6)

3
3.3

6
8.3

Units
(Umit)
mV
max

p'vrc
4

4

pA
max

2

2

pA
max

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

OV,;: VCM ,;: 12.0V
V+ = 15V

75

68
88

62
80

dB
min

+PSRR

Positive Power Supply
Rejection Ratio

5V,;: V+ ,;: 15V
Vo = 2.5V

75

68
ee

62
eo

dB
min

-PSRR

Negative Power Supply
Rejection Ratio

OV,;:V-';:-10V
Vo = 2.5V

94

84
83

74
73

dB
min

CMR

Input Common-Mode
Voltage Range

V+ = 5Vand 15V
for CMRR ~ 50 dB

-0.4

-0.1
0

-0.1
0

V
max

V+ - 1.9V

V+ - 2.3V
Y+ - 2.SY

V+ - 2.3V
Y+ - 2.4Y

V
min

Sourcing

1000

400
300

300
200

V/mV
min

Sinking

500

180
120

90
70

V/mV
min

Sourcing

1000

200
1eO

100
80

V/mV
min

Sinking

250

100
80

50
40

VlmV
min

Av

Large Signal
Voltage Gain

>10

RL

=

100 kO (Note 7)

RL = 25 kO (Note 7)

1-743

TeraO

Electrical Characteristics

"

Unless otherwise specified, all limits guaranteed for T A = TJ = 25"C. Boldr.ce limits apply at the temperature extremes.
V+ = 5V, V- = OV, VCM = 1.5V,Vo = V+/2, and RL > 1M unless otherwise, specified.

Symbol

Va

Parameter
Output Swing

Typical
(Note 5)

Conditions
V+ = 5V
RL = 100kOtoV+/2

4.987
0.004

V+ = 5V
RL = 25kOtoV+/2

4.980
0.010

V+ = 15V
RL = 100 kO to V+ /2

14.970
0.007

V+ = 15V
RL = 25kOtoV+/2

14.950
0.022

Isc

Outpu1 Current
V+ = 5V

Sourcing, Va
Sinking, Va

Isc

Outpu1 Current
V+ = 15V

Is

Supply Current

=

Sourcing, Va
Sinking, Va
(Note 11)
Va
V+

=
=

= OV

22

5V

21

= OV

=

40

13V

39
14

1.5V
15V

18

LMC6041AI

LMC6041I

Limit
(Note 6)

Limit
(Note 6)

4.970

4.940

4.850

4.810

0.030

0.060

0.050

0.080

4.920

4.870

4.870

4.820

0.080

0.130

0.130

0,1.0

14.920

14.880

14.880

14.820

0.030

0.060

0.050

0.090

14.900

14.850

14.850

14.800

0.100

0.150

0.150

0.200

16

13

10

8

16

13

8

8

15

15

10

10

24

21

8

8

Unite
(Limit)
V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min

20

26

pA

24

30

max

26

34

pA

31

38 '

max

:

,
1-744

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for T A = T J = 25°C. Boldface limits apply at the temperature extremes. V + =
5V, V- = OV, VCM = 1.5V, Va = V+ 12, and RL > 1M unless otherwise specified.

Typ
Symbol

sR

GBW

Parameter
Slew Rate

Conditions
(Note 8)

Phase Margin

en

Input-Referred

LMC6041I

Limit
(Note 6)

Limit
(Note 6)

0.02

Gain-Bandwidth Product

m

LMC6041AI

(Note 5)

0.015

0.010

0.010

0.007

Input-Referred

60

Deg

F = 1 kHz

83

F=1kHz

0.0002

Total Harmonic;

F = 1 kHz, Av =

Distortion

RL = 100kO, Va = 2Vpp

min
kHz

nV/yHz

pAlyHz

Current Noise
T.H.D.

V/p.S

75

Voltage Noise
in

Units
(Limit)

-5

%

0.01

±5Vsupply
Note 1: Absolute Maxium Ratings indicate limits beyond which damage to the device may occur. Operating conditions indicate conditions for which the device is
intended to be functional, but do not guarantee specific performance IImils. For guaranteed specifications and test conditions, see the Electrical Characteristics.
The guaranteed specmcations apply only for the test cond~lons listed.

Note 2: Applies to IIQth single-supply and spl~-supply operation. Continuous short circu~ operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of II O'C. Output currents in excess of ± 30 rnA over long term may adversely affect reliability.
Note 3: The m"'!imum power dissipation is a function of TJ(max), 8JA, and TA' The maximum allowable power dissipation at any ambient temperature is Po ~
(TJ(max) - TAlI6JA·
Note 4: Human body model, 1.5 kIl in series w~ 100 pF.
Note 5: Typical Values repi"esent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: y+

= 15V, YCM

~ 7.5Vand Rl connected to 7.5V. For Sourcing

tests, 7.5V ,,; Vo ,,; 11.5V. For Sinking tests, 2.5V ,,; Vo ,,; 7.5Y.

Note 8: Y+ ~ 15Y. Connected as Yoltage Follower with lOY step input Number specijied in the slower of the po~ive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance 6JA with Po
Note 10: Ail numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V+ when Y+ is greater than 13V or reliability may be adversely affected.

1-745

= (TJ

- .TAlI8JA'

..~

~ ~------------------------------------------------------------------------------------,

Typical Performance Characteristics Vs =

~

Offset Voltage va
Temperature of Five
Representative Units

Supply Current va
Supply Voltage

~

2.5 ...-,.--,.--~~.,.-.,.-..,.-.,

35

~ ~tt~$;S;tlj

30

~

15

~

10

~~

0-;

+25"C

+85'C

;4IJOC

-

F-

5

i

l.oetittE

QlI

0.0

::-eot1±±::±::t:B=:1
-eo
-20 0

SUPPLY VOLTAGE (V)

1

dO

-7~

-3D

!>+0.5

. . ... . .

~12

-1-4.5-3-1.5 0 1.5 3 4.5 8 7.5
CONMON-IIOOE VOLTAGE (V)

iii

1-GlI-50

0

,25

210

i

i

120

~

80

0.0001
100

50

50

75

100

100

0.1

o.ot

lo.oooto.ooto.ot

0.1

1

10

100

OUTPUT SilK CURRENT (mA)

Power Supply Rejection
RatiO va Frequency
120

!,

100

I""r- .....

80

90

!

80

~

«I

.,. SUPPLY

i' I'\.
V>SUPPL~

20

,
.... ~

30

0
1

75

o.oot

~

150

I

~

0.001

180

25

10

Input Voltage Noise
vs Frequency
2«1

OUTPUT SOURCE CUIIR£NT (mA)

-25

0

Output Characteristics
Current Sinking

lEIIPEIIATUR£ ("C)

10

10

~

GUARANTEED

0

Output Characteristics
Current Sourcing

0.1

I

I
I
I

_

0.001 0.01

-25

12

-

GUARANIUJ) -

B~ -2.5

ii

I

TtPtCAL

~;:

,

~

I
I

~12 ~.o
1 ,

0.001

-50

1DIP£RATURE ('Ie)

Input Common-Mode
Voltage Range vs
Temperature

i~ -o.!I

,,

--

0AI001

20 40 80 80 100

V'

..

TEllPERATURE ('Ie)

Input Bias Current
vs Input Common-Mode
Voltage

,

~

~~I--+-+-+-+-+-+-+--I

024881012141.

1

1

Iii -o.!I1---H~~~
IS -1.0 1--+-+-+-+-+-+-+--1

o~

II
Ie
I

Input Bias Current
vs Temperature

«I

I:

~

± 7.5V, TA = 25°C unless otherwise specified

10

100
FREQUENCY (Hz)

lk

lC1c

-20
10

100

lk

~

ICIc

lUCIe

III

FREQUENCY (liz)

TL/H/11136-2

1-746

Typical Performance Characteristics Vs =

100
90
80
70

..,.

~

l!

~

80

I

50
40
30

ISO

ttO

'iii'140

tOO

~ 130

0
Ik

10k

i"""-

-

...... ,

80

160

~

z

120

80

~

10

Ii>

'-

100

-25

0

25

50

75

100

TEMPERATURE (OC)

Gain and Phase
Responses vs
Temperature

I'\.

!
'-

I

I'\.
~.

to tOO tk tOk tOOktM

tk

tOk

tOOk

I\. ~25~

..

- r-

~

~=Z r-

~

lOOk

1
I
I

-t5
-20

-25
2.5

VOl" (VOLTS)

5

-

I

150
100
50

0
-50

-200
-250
7-' to

lOOk

1M

Non-Inverting
Slew Rate

vs Temperature
D.04O
0.035

I-

/

:-

v-

/

-tOO

8 -t50

10k

FREQUENCY (Hz)

200

-to -7-' -5 -2.5 0

iE

-45
lk

1M

i

!

~

~

Common-Mode Error vs
Common-Mode Voltage of
Three Representative Units
~

-to

45

~

250

I\. •

90

~
~
!l

FREQUENCY (Hz)

I I

.1.

~

0

Gain Error
(VOS vs VOUT)

!
l-s

80

aD
70
-50

~

FREOUENCY (Hz)

10

80

90

~

'-

-20
0.0010.0t 0.1 I

t5

~

li1

40

20

~

80 r-r-TTTTm"--'..".

20

25

40

~,

~

100

~

20

110

.. 100

Gain and Phase
Responses vs
Load CapaCitance

Open-Loop
Frequency Response

li1

0

i

/

1\..' 25';-:

TEMPERATURE (Oc)

FREQUENCY (Hz)

140

:-111

~ 120

90

50
-40 -20

1M

lOOk

I\. = lOOk

~

10

10
100

Open-Loop Voltage Gain
vs Temperature

120

70

20

10

= 2S'C unless otherwise specified (Continued)

CMRR vs Temperature

CMRR va Frequency

li1

± 7.SV, TA

,V

/

~

0.030

.....

0.G25

~

~

JALLIJG

i-

0.020

lo.

0.01 5

iil

0.01 0

RISING

0.005

-1-1-.4-202418
COMMON MODE VOLTAGE (V)

-40 -20

0

20

40

10

80

too

TEMPERATURE (Oc)

TLlHI11136-3

1-747

Typical Performance Characteristics Vs ==
Inverting Slew Rate
vs Temperature
0Jl45
~

'"!'III

~D.035
~'

~IOO~-r~~-+~~~

~

~ I'--

~

I

~

FALLI4G

====

io.mo

Non'-Invertlng' l!m~il' " ,
]: , Signal Pulse'Response '

~

.. Rr=RIN=3Jk

O.IMO~

Non-Inverting Large
Signal Pulse Response
(Av = +1)

~

0JI!i0

± 7.5V. T A = 25~Cunless otherwise sPecified (Contit\ued)

:

~

/
1/

0.D15

--

~

o:m

-«1-20

«I

60

60

o lOOZlO:500«I0500600700800800

100

mtPERA:r'IRE (oe)

i~IOOrt~~~~rf~
I-+..,.,../~~~-\-/--t-I
~
~

50

0 L......L......L-'-l-J.......J......\....l..-l-I
1

0102030«150607060
!lME (pS)

nUE (PS)

Inverting Large-Slgnal
Pulse Response

Stability VII
eapacltlve Load
(Av = +1)

Inverting Smail Signal
Pulse Response

]:

,I

100,000

~IOO

r

i

, 1
Rf = Rill = lOOk'<

:

RtN =Rr =lOOk

s

'''\I

~
UNSTABLE

:!.

'\.

~

Ay = +1

0

i

~

/

~!
]:

~0JI2S
.. o.mo
0.D10

O~~~~~~~

~

100

S

0

§

o lOOZlO:lOO«I0500600700800900

I
I

1\

~ 50

~-

o

10

:m

30 «I 50 60 70 60 90

nME (pS)

,nME (pS)

'Stability vs
Capacitive Load
(Av';' ±10)

I
-10

-0.1 -0.001 0.001 0.1
10
-I
-0.01
0
0.01
SIliIaNG
SOURCING
LOAD CURRENT (mA)

100,000

1:' 10,000

.e

Ay = tlO

!'\I

~ 1.000

I

100

JJJ

N.J

'IJ.

.... w JlIIIIIIUJo

ill

10

I
-10

-0.1 -0.001 0.001 0.1
10
-I
-0.01
0
0.01
SINKING
SOURCING
LOAD CURRENT (mA)
TUH/11136-4

1.748

Applications Hints
AMPLIFIER TOPOLOGY
The LMC6041 incorporates a novel op-amp design topology
that enables it to maintain rail-to-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional micropower op-amps. These features make the
LMC6041 both easier to design with, and provide higher
speed than products, typically found in this ultra-low power
class.

CAPACITIVE LOAD TOLERANCE
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an oscillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in F/{Jure 28.
+V

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance with amplifiers with ultra-low input current, like the
LMCS041.
Although the LMC6041 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large 'feedback resistors and even small
values of input capacitance, due to transducers, photodiodes, and circuits board parasitics, reduce phase margins.

2011

CLOAD
1000pF
90k

+-------------~~

When high input impedance are demanded, guarding of the
LMC6041 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capacitance as well.
(See Prlnted-Clrcult-Board Layout for High Impedance
Work.)

10k

TUH/11136-6

FIGURE 2a. LMC6041 Nonlnvertlng Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads
In the circuit of Figure 28, Rl and Cl serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

R2

RI

VIN

o--J\M--4,_-........

,

Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Figure 2b). Typically a pull up resistor
conducting 10 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

CIN ::::
I
I
I

......
TL/H/11136-5

FIGURE 1. Cancelling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by
adding a capaCitor. Adding a capaCitor, ~, around the feedback resistor (as in Figure 1) such that:

1

I

V+

~~,

1

---~---

27TRI CIN 27TR2 ~ ,
or

R1 CIN';; R2~
Since it is often diffICult to know the exact value of CIN, ~
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and the
LMC662 for a more detailed discussion on compensating
for input capaCitance.

TUH/11136-16

FIGURE 2b_ Compensating for Large
Capacitive Loads with a Pull Up Reslator

1-749

Application Hints (Continued)
PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMCS041, typically
less than 2fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.
To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6041's inputs and the
terminals of capaCitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifer inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6041's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would 'cause only 0.05 pA of leakage current. See
FIgUf8S 48, 4b, 4c for typical connections of guard rings for
standard op-amp configurations.

I O~,44

III

I I +o!JN44 I

Cl

Rl

INPUT

,,
,
Guard Ring -+t
,

OUll'UT

r

TUH/11136-8

(a) Inverting Amplifier

OUll'UT

TUHI11136-9

, (b) Follower
R2

OUll'UT

TLlH/11136-10

I

(c) Non-Inverting Amplifier
FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator: In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-Io-point up-in-the-air wiring. See
Figure 5.

_l2J_U
l!J_~_~
-!4

""'fY'-,9041......-~.,.,..-..

f'EEIl8ACK
CAPACITOR

LGuard Ring
TUH/III36-7

FIGURE 3. Example of Guard Ring In P.C. Board Layout
Tl/H/11138-11

(Input pins are liflEid out of PC board end soIdensd direcUy to components.
All other pins connected to PC boerd.)

FIGURE 5. Air Wiring

1-750

r-----------------------------------------------------------------------------,~

Typical Single-Supply Applications
(V+ = 5.0 VOC)
The extremely high input impedance, and low power consumption, of the LMC6041 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these type of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.
0.047F
10k

Rejection of the common-mode component of the input is
accomplished by making the ratio of R1JR2 equal to R3J
R4. So that where,
R3
R2
R1
R4
R4 (
R3
R2 + R3)
VOUT=- 1 + - + - - - Vo
R3
R4
Ro
A suggested design guideline is to minimize the difference
of value between R1 through R4. This will often result in
improved resistor tempco, amplifier gain, and CMRR over
temperature. If RN = R1 = R2 = R3 = R4 then the gain
equation can be simplified:

R.

R2

Your

VOUT = 2 (1

+ :~) Vo

Due to the "zero-in, zero-out" performance of the
LMC6041, and output swing rail-rail, the dynamic range is
only limited to the input common-mode range of OV to Vs2.3V, worst case at room temperature. This feature of the
LMC6041 makes it an ideal choice for low-power instrumentation systems.
A complete instrumentation amplifier designed for a gain of
100 is shown in F/{Jure 7. Provisions have been made for
low sensitivity trimming ofGMRR and gain.

TlIH/11136-12

FIGURE 6. Two Op-Amp Instrumentation Amplifier
The circuit in Figure 6 is recommended for applications
where the common-mode input range is relatively low and
the differential gain will be in the range of 10 to 1000. This
two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection
trim, and a total quiescent supply curre,nt of less than 28 /LA.
To maintain ultra-high input impedance, it is advisable to
use ground rings and consider PC board layout an important
part of the overall system design (see Printed-Circuit-Board
Layout for High Impedance Work). Referring to Figure 6, the
input voltages are represented as a common-mode input
VCM plus a differential input Vo.

Ion
Gain

191n
9.95k

Trim

10k. 0.1%

son
CMPR

Trim

Vour

=

100VO

TlIH/11136-13

FIGURE 7. Low-Power Two-Op-Amp Instrumentation Amplifier

1-751

~....

.-

~

~------------------~----------------------------------------------------------------,

Typical Single-Supply Applications (V+

= 5.0 Voci) (Continued)

r

OUTPUT
INPUT

YIN

s/H

YOU!

10k:

\.----t

TUH/III36-14

FIGURE 8. Low-Leakage sample and Hold

TLlH/III36-15

FIGURE 9. Instrumentation Amplifier

R4

R4

+SV'-W_H
Rl

R2

+SV +---'IM.------1--W_-01
470k

R3

R3

470k

1501<

4701<
Tl/H/III36-17

FIGURE 11. AC Coupled Power Amplifier

TL/H111136-16

FIGURE 10. 1 Hz Square-Wave Oscillator

1-752

,-------------------------------------------------------------------------,

~

a:

!

tflNational Semiconductor

N

LMC6042
CMOS Dual Micropower Operational Amplifier
General Description

Features

Ultra-low power consumption and low input-leakage current
are the hallmarks of the LMC6042. Providing input currents
of only 2 fA typical, the LMC6042 can operate from a single
supply, has output swing extending to each supply rail, and
an input voltage range that includes ground.
The LMC6042 is ideal for use in systems requiring ultra-low
power consumption. In addition, the insensitivity to latch-up,
high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.
Other applications for the LMC6042 include bar code reader
amplifiers, magnetic and electric field detectors, and handheld electrometers.
This device is built with National's advanced Double-Poly
SIlicon-Gate CMOS process.
See the LMC6041 for a single, and the LMC6044 for a quad
amplifier with these features.

•
•
•
•
•

Low supply current
10 fJ-AI Amp (typ)
Operates from 4.5V to 15V single supply
2 fA (typ)
Ultra low input current
Rail-to-rail output swing
Input common-mode range includes ground

Applications
•
•
•
•
•
•
•

Battery monitoring and power conditioning
Photodiode and infrared detector preamplifier
Silicon based transducer systems
Hand-held analytic instruments
pH probe buffer amplifier
Fire and smoke detection systems
Charge amplifier for piezoelectric transducers

Connection Diagram
II-Pln DIP/SO
OUTPUT A 1
INVERTING INPUT A 2
NON-INVERTING
INPUT A

'-/

~- ~
A+

2.

V" "
'-

r!- V"

B

+

OUTPUT B

r!- !NVERTING
INPUT B

-

5 NON-INVERTING
INPUT B
TL/H/11137-1

Ordering Information

r------,----------r----.--------,
Package

Temperature
Range

NSC

Drawing
Industrial
- 40"C to + 85"C

Transport
Media

S-Pin
Small Outline

LMC6042AIM
LMC6042IM

MOSA

Rail
Tape and Reel

S-Pin
Molded DIP

LMC6042AIN
LMC60421N

NOSE

Rail

1-753

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
± Supply Voltage
Supply Voltage (V+ - V-)
16V
Output Short Circuit to V+
(Note 12)
Output Short Circuit to V-

ESD Tolerance (Note 4)
Voltage at Input/Output Pin

±5mA

Current at Output Pin
Current at Power Supply Pin

ll00C
500V
(V+) + 0.3V. (V-) - 0.3V

Operating Ratings
Temperature Range
LMC6042AI. LMC60421

2600C

Current at' Input Pin

-65°C to + 1500C

Junction Temperature (Note 3)

(Note 2)

Lead Temperature
(Soldering. 10 seconds)

(Note 3)

Power Dissipation
Storage Temperature Range

-400C

. Supply Voltage

±-18mA
35mA

4.5V

s: tJ s: +85°C
s: V+ s: 15.5V

Power DiSSipation

(Note 10)

Thermal Resistance (8JAl. (Note 11)
8-PinDIP
8-PinSO

101°C/W
165°C/W

Electrical Characteristics

Unless otherwise specified. all limits guaranteed for TA = TJ = .25°C. Boldface limits apply at the temperature el\tremes.
V+ = 5V. V- = OV, VCM = 1.5V. Vo = V+ 12 and RL > 1M unless otherwise specified.

Symbol
Vas

Parsmeter

Typical
(NoteS)

Conditions

Input Offset Voltage

1

TCVos

Input Offset Voltage
Average Drift

Ie

Input Bias Current

los

Input Offset Current

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

OV s: VCM s: 12.0V
V+ = 15V

75

Positive Power Supply
Rejection Ratio

5V s: V+ s: 15V
Vo = 2.5V

75

Negative Power Supply
Rejection Ratio

OV

s: V- s:

Vo

== 2.5V

Input Common-Mode
Voltage Range

V+ = 5Vand15V
For CMRR ~ 50 dB

+PSRR
-PSRR
CMR

Large Signal
Voltage Gain

LMC60421

Umlt
(Note 6)

Umlt
(Note 6)

3

6

3.3

8.3

,

RI:

= 100 kO (Note 7)

4

4

pA(Max)

0.001

2

2

pA(Max)

94
-0.4

Sourcing
Sinking

RL

= 25 kO (Note 7)

Sourcing
Sinking

1-754

mV
Max

0.002

>10

-10V

.Units
. (Limit)

p.VloC

1.3

V+-l.9V

Av

LMc6042AI

1000
500
1000
250

TeraO
68

62

88

80

68

62

ee

eo

dB
Min
dB
Min

84

74

83

73

dB
Min

-0.1

0

-0.1
0

V
Max

v+- 2.3V
Y+- 2.SY

v+- 2.3V
Y+- 2.4Y

V
Min

400

300

300

200

V/mV
Min

180

90

120

70

200

100

1eo

80

100

50

eo

40

VlmV
Min
V/mV
Min
V/mV
Min

Electrical Characteristics
Unless otherwise specified. all limits guaranteed for TA = TJ = 25°C. Boldface limits apply at the temperature extremes.
V+ = 5V. V- = OV. VCM = 1.5V. Vo = V+ /2 and RL > 1M unless otherwise specified. (Continued)

Symbol

Vo

Parameter

Output Swing

Typical
(Note 5)

Conditions

V+ = 5V
RL = 100 kO toV+/2

4.987
0.004

V+ = 5V
RL = 25kOtoV+/2

4.980
0.010

V+ = 15V
RL = 100kOtoV+/2

14.970
0.007

V+ = 15V
RL = 25kOtoV+/2

14.950
0.022

Isc

Output Current
V+ = 5V

Sourcing. Vo
Sinking, Vo

Isc

Output Current
V+ = 15V

Is

Supply Current

=

Sourcing, Vo
Sinking, Vo
(Note 12)

=

22
21

5V

=

=

OV

OV

40

13V

39

Both Amplifiers
Vo = 1.5V

20

Both Amplifiers
V+ = 15V

26

LMC6042AI

LMC60421

Limit
{Note 6)

Umlt
{Note 6)

4.970

4.940

4.850

4.810

0.030

0.060

0.050

0.080

4.920

4.870

4.870

4.820

0.080

0.130

0.130

0.180

14.920

14.880

14.880

14.820

0.030

0.060

0.050

0.080

14.900

14.850

14.850

14.800

0.100

0.150

0.150

0.200

Units
(Umlt)

V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max

16

13

rnA

10

8

Min

16

13

8

8

mA
Min

15

15

10

10

24

21

8

8

mA
Min
mA
Min

34

45

p.A

38

50

Max

44

56

p.A

51

85

Max

~

I

i

II

1-755

AC Electrical Characteristics
Unless otherwise specified, an limits guaranteed for TA = TJ = 25D C. BolcH.c.limits apply at the temperature exltemes.
Y+ = 5V, Y- = OV, VCM = 1.5V; Vo = V+ 12 and RL > 1 M unless otherwise specified.

Symbol
SR
GBW

m

Conditions

Parameter
Slew Rate

(Note 8)

LMC6042Aj

LMC60421

Limit
(Note 6)

Limit
(Note 6)

0.02

Gain-Bandwidth Product
PhaSe Margin
Amp-ta-Amp Isolation

(Note 9)

en

Input-Referred
Voltage Noise

f

in

Input-Referred
Current Noise

f=1kHz

T.H.D.

Total Harmonic Distortion

f = 1 kHz.Av = -5
RL = 100kO, Vo = 2Vpp
±5YSupply

=

Typ
(Note 5)

1 kHz

0.015

0.010

0.010

0.007

Units
(Limit)

Y/p.S
Min

100

kHz

60

O9g

115

dB

83

nY/y'Hz

0.0002

pAly'Hz

0.01

%

Note 1: Absolute Maximum Ratings Indicate ~mlts beyond which damage to tha _
may occur. Operating Conditions Indicate conditions for which the _ I s
Intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, sae tha EIecIricaI Characteristics.
The guaranteed speclflcations apply only for tha test condH/Ons listed.
Note,2: Applies to both single-supply operation. Continuous short clrcuH operation at elevated ambient temperature can resuH In exceeding the maximum allowed
junction tempereture of 110"C. Output currents in excess of ±30 rnA over long tenn may adversely affect rellabilHy.
Note 3: Tha maximum power disslpetion Is a function of TJ(Max)' 8oJA, and TA. The maximum allowable power' dissipation at any ambient temperature 18
Po ~ (TJ(Max) - TNI8JA·
Note 4: Human body model, 1.5 kll in series with 100 pF.
"ote 5: Typical values represent the most likely parametric norm.
Note 8: All 6mits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bofd 1ace type).
Note 7: V+ ~ 15V, VCM - 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V " Vo " 11.5V. For Sinking tests, 2.SV " Vo " 7.5V.
Note 8: V+ - 15V. Connected as Voltage follower with 10V step Input Number specified 18 tha slower of tha positive and negaUva slew reIae.
Note 9: Input referred V+ - 15Vand RL - 100 kll connected to V+'/2. Each amp excited In tum with 100 Hz to produce Vo - 12 Vpp.
Note 10: For operating at elevsted temperatures the device must be derated based on the thermal resistance 8JA with Po - (TJ - TNI8JA.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V+ when V+ is greater than 13V or reliabilHy may be adversely affected.

1-756

Typical Performance Characteristics Vs =

Offset Voltage vs
Temperature of Five
Representative Units

Supply Current vs
Supply Voltage
40

~

I:
~

15

iii

10

~

..,

+25CC

~

+85"C

i

Jj

o

"

o

4 6 8 W U U
SUl'PLY VOLTAGE (V)

2

tt;;l~:r::~jj

lD
Q5

; ~t=e:~~t:==4:~j

"

~

-50 -25

-05
~~ -ID

il:

,,

~

~~

. -- - -

0001
-7!l-B-45-3-1!l 0 1!l 3 45 6 7!l
INPUT COIIIIO....MOIlE VOLTAGE (V)

Output Characteristics
Current Sinking

I---

GUARANltED -

I
I
I

-3.0

Ii ~50
+Q5

Output Characteristics
Current Sourcing

GUAIWITEED

-25

25

0

75

50

100

I

0D1I01 0001 0JI1

0.1

1

240rTnm~~~Tm~~

110

~

~ l00~~~~~+*~~

i

100

Crosstalk Rejection
vs Frequency

210 I\i-tttffliHtltHlIHtHtlllH-f

.s

10

OUTPUT S1HK CURRENT (mA)

1IIIPERATURE ("C)

Input Voltage Noise
vs Frequency

10

100

lYP1CAL

-25

ii

\

75

50

10

I
I

i\.

25

0

lEIIPEIIATUJlE (CC)

Input Common-Mode
Voltage Range
vs Temperature

do

I"

ODOO1

20 «I 110 110 1110

1IIIPERATURE ("C)

1

\

.
.... .

1

== 1:j;;±:±:::E::t::I::I:::::l
-60 -40-20 0

,

1

-1.51-+-+-+-+-+--!-+--I

~

Input Bias Current
vs Input Common-Mode
Voltage

1

1

! ~ t=t:~~t;;j;;;!::1=~

-Jc
,

!O

Input Bias Current
vs Temperature

25 ...--.--...-...-...--.--.-..,-..,

I

35

= 25°C unless otherwise specified

±7.5V. TA

150 I-+HIIHI~~~+*~~

~

120~~~~~~

~
~

o .......WJlJIL....I..I.WIUL.....\......UII-J.I.
1

100

CMRR vs Frequency

....
::!.

eo
50

I

40
!O

20
10
0
10

lk

1«1
1

111<

10

120

110

100

100

80

.........

80
70

r--- f-'

lk

!

V

-....

60

i"'- .,.. SUPPLY

~

....

V" SUPPLY

I\.
i'~
~

110
100

lk

111<

F1IIQUENC'(

(Hz)

lOOk

1M

50
-40 -20

111<

Power Supply Rejection
Ratio vs Frequency

120

90

100

FREQUENCY (Hz)

CMRR vs Temperature

100
90
80
70

I

100

FREQUENCY (Hz)

0U1PUT SOURCE CURREIIT (mA)

~

10

0

20

40

eo

1IIIPERAlIJII[ ("C)

80 100

-20
10

100

lk

111<

F1I[QU£NCY

lOOk

1M

(Hz)
TL/H111137-2

1-757

Typical Performance Characteristics
Vs = ±7.5V, TA = 25°C unless otherwise specified (Continued)

Open-Loop Voltage
Gain vs Temperature
110

150
~

140

!!;

130

3

~,

~I

6'
>

~
~

Gain and Phase
Responses vs
Load CapaCitance

Open-Loop
Frequency Response

1\ •

~100

~

1\=~ ~

lID

"

120

~

=-~

120

80

140
lOOk

90

~

80

~~

100

~

3

~

""

40
20

80
-20
0.0010.010.1 I

TEMPERATURE (OC)

15

,..

10

S

.3

Ik

1\ ~25~

1\ •

Li

0
-5
-10

-25
-10 -7.5 -5 -2.5 0

1M

-~'2~ -1
1
1

O.oso

0.035

'0.045

•

~

0.01 5

~

~ 0.035
RISING

i

0.030

•

0.025

;;!

0.01 0

0

20

40

10

10

100

a

50

I -5:
~

-100

-

/

-

/

,. V

7.5 10

~

~

V
~

10 20 30 40 50 60 70 80
TIME (1'.)

4

I

8

~

~ I'-1/
1/

-40 -20

20

0

40

10

80

100

-o

r--

100200300400500800700800900
TIME (1")

TEMPERATURE (Oc)

Inverting large-Signal
Pulse Response

1
1
1

Inverting Small Signal
Pulse Response"

1 1
1
,I 1

= RoN

= lOOk

/

o

0, 2

Non-Inverting Large
Signal Pulse Response
(Av = +1)

~N

1\

~

FALLING

'=::::::

i!r

I

""

COMMON MODE VOLTAGE (V)

0.020

TEMPERATURE (oc)

Non-Inverting Small
Signal Pulse Reaponse

100

-250

5

2.5

0.01 0

-40 -20

150

..

-200

0.01 5

0.005

.

1Ir·~N·33k

..

.. ,,0.D40

JALLlJG

~

8 -150

Inverting Slew Rate
vs Temperature

0.040

~ 0.020

f-

lOOk

VOUT (VOLTS)

FREQUENCY (Hz)

Non-Inverting Slew
Rate vs Temperature

1M

200

Ik '

lOOk

lOOk

Common-Mode Error vs
Common-Mode Voltage of
3 Representative Units

1

-20

--

10k

FREQUENCY (Hz)

250

t--1-tl'lffiIt-t+ttlllIII-H'I'lttIII

~ 0.025

l

-20

10100 IklOklOOklM

-15

10.030

~

Gain

~

Gain Error
(Vos vs VOUT)
20

10k

e

~
I'..

'iii'

~

20

25

-20

90

FREQUENCY (Hz)

Gain and Phase
Responsevs
Temperature

o.o!

Ph...

40

~~

60

70L--L__L--L__~~~
-50 -25
0
25
50
75 100

60

z

i1

"

~

-~

o 100200300400500600700800900
TIME (1'1)

1\
o

= Rr = lOOk

I
II
10 20 30 40 50 60 70 80 90
TIME (1")

TLIH/I I 137-3

1-758

Typical Performance Characteristics
Vs

=

±7.5V, TA

= 25°C unless otherwise specified (Continued)
Stability vs Capacitive Load

I

100,000

Iii:

-

Stability vs Capacitive Load

I

100.000

Iv = +1

lv=tlO

LJ

10,000 tll,r+-+"h--++++-H

"'~ 1,ooo~~~+UN~~~~~-+-a~

I'oo~~~
~

101-\-+-+-+-1-+-+++-1
I~~~~~~~~~

I~~~~~~~~~

-10
-I

-0.1 -o.oo! OJIOI 0.1
10
-0.01
0
0.01
I

SINKING

-10
-I

SOURCING

-0.1 -0.001 OJIOI 0.1
10
-0.01
0
0.01
I

stNKINC

LOAD CURRENT (RIA)

SOURCING

LOAD CURRENT (mA)
TLlH/11137-4

Applications Hints
AMPLIFIER TOPOLOGY
The LMCS042 incorporates a novel op-amp design topology
that enables it to maintain rail-te-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional micropower op-amps. These features make the
LMC6042 both easier to design with, and provide higher
speed than products typically found in this ultra-low power
class.

The effect of input capacitance can be compensated for by
adding a capacitor. Place a capacitor, Ct, around the feedback resistor (as in Figure 1) such that:

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance with amplifiers with ultra-low input curent, like the
LMC6042.
Although the LMCS042 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capaCitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of
the LMC6042 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capaCitance as well.
(See Prlnted-Clrcuit-Board Layout for High Impedance
Work).

CAPACITIVE LOAD TOLERANCE
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crosSover frequency of the amplifier resulting in either
an OSCillatory or underdamped pulse response. With a few
external cOmPonents, op amps can easily indirectly drive
capacitive loads, as shown in Fl{Jure 28.

__1=---_ :;,; __
1_
2'ITR1 CIN 2'ITR2 Ct
or
R1 CtN s; R2 Ct
Since it is often difficult to know the exact value of CIN, Ct
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and the
LMC662 for a more detailed discussion on compensating
for input capacitance.

+Y

200

C,

Your

II

Ir--

CwAD

R2

__ ~OOOpF

Rl

90k

I

10k

TLlH/11137-5

TLlH/11137-6

FIGURE 1. Cancelling the Effect of Input CapaCitance

FIGURE 28. LMC6042 Nonlnvertlng Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads

1-759

I

~ r-----------------~--~----------------------~~--------------------------------~--~

~

:J

Applications Hints (Continued)
In the circuit of Figure 2a, R 1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margi,n in the overall
feedback loop.
Capacitive load driving capability is enhanced by using a
pull up resistor to V+ (Figure ~b). Typically a pull up resistor
conducting 10 p.A or more will signi,icantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of th&
amplifier with respect to the desired ol,llput, swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).
V+

~~,

t.Guard Ring

TL/H/11137-1B

,TLlH/11137-7

FIGURE 2b. Compensating for Large
Capacitive Loads with a Pull Up Resistor

FIGURE 3. Example of Guard Ring
In P.C. Board Layout

PRINTED-CIRCUIT-BOARD LAYOUT FOR
HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pAof leakage current' requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6042, typically
less than 2 fA, it is essential to have, an excellent layout.
Fortunately, the techniques of obtaining low leakages are
quite simple. First, the user must not Ignore, the surface
leakage of the PC board, even though it may sometimes
appear acceptably 'lOW, because under 'conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable. "
,

Cl

Rl
INPUT Jtl.tN....+-II---~I\r--..
I
I
I
I

Guard RIng - . .

OUTPUT

.r
I

TLlH/11137-B

To minimize the effect of any jlurface leakage, layout II ring
of foil completely surrounding the LMC6042's inputs and the
terminals of capaCitors, diodes, conductors, resistors, relay
terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two pOints at the same potential. For
example, a PC board trace-to-pad resistance of 10120.,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6042's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0. would cause only 0.05 pA of leakage current. See
Figures 48, 4b, 4c for typical connections of guard rings for
standard op-amp configurations.

(a) Inverting Amplifier
R2

OUTPUT

TL/H/11137-10

(b) Non-Inverting Amplifier

OUTPUT

TLlH/11137-9

(c) Follower

FIGURE 4. Typical Coimectlons of Guard Rings

1-760

r-----------------------------------------------------------~~

The circuit in Figure 6 is recommended for applications
where the common-mode input range is relatively low and
the differential gain will be in the range of 10 to 1000. This
two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection
trim, and a total quiescent supply current of less than 20 pA
To maintain ultra-high input impedance, it is advisable to
use ground rings and consider PC board layout an important
part of the overall system design (see Printed-Circuit-Board
Layout for High Impedance Work). Referring to Figure 6, the
input voltages are represented as a common-mode input
VCM plus a differential input Vo.

Application Hints (Continued)
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-to-point up-in-the-air wiring. See
Figure 5.

Rejection of the common-mode component of the input is
accomplished by making the ratio of R1/R2 equal to
RS/R4. So that where,

FEEDBACK
CAPACITOR

RS

R2

R4

R1

R4 (
VOUT = RS 1

RS

R2

+ RS)

+ R4 + ----;:w-

Vo

A suggested design guideline is to minimize the difference
of value between R1 through R4. This will often result in
improved resistor tempeo, amplifier gain, and CMRR over
temperature. If RN = R1 = R2 = RS = R4 then the gain
equation can be simplified:

TLlH/11137-11

(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board.)

VOUT = 2 (1

FIGURE 5. Air Wiring

+ :~) Vo

Due to the "zero-in, zero-out" performance of the
LMC6042, and output swing rail-rail, the dynamic range is
only limited to the input common-mode range of OV to
Vs - 2.SV, worst case at room temperature. This feature of
the LMC6042 makes it an ideal choice for low-power instrumentation systems.

Typical Single-Supply Applications
(V+ = 5.0 Voc)
The extremely high input impedance, and low power consumption, of the LMC6042 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.

A complete instrumentation amplifier designed for a gain of
100 is shown in Figure 7. Provisions have been made for
low sensitivity trimming of CMRR ~nd gain.

O.047F
10k

R2

TL/H111137-12

FIGURE 6. Two Op-Amp Instrumentation Amplifier

1-761

i:

i

Typical Single-Supply Applications (V+

= 5.0 Vocl (Continued).

104
Gain

1914
9.95k

Trim

10k. 0.1%

504
CMPR

Trim

>-+- VOUT =l00VD
TL/H/11137-13

FIGURE 7. Low-Power Two-Op-Amp
Instrumentation Amplifier

> __

OUTPUT

INPUT

S/H

!CD4066
4
TL/H/11137-14

FIGURE 8. Low-Leakage Sample and Hold

r

R4

10k

lOOk

> ........ VOUT

R2
10k pot

VIN

~

R3

R6
10k

• -------.j

TL/H/11137-15

FIGURE 9. Instrumentation Amplifier
R4

R4

10M
Cl
O.068 /1oF

VOUT

I

Vour

+5V
Rl

R2

+5V
470k

R3
470k

R3

470k

150k

TLlH/11137-17

FIGURE 11. AC Coupled Power Amplifier
TL/H111137-16

FIGURE 10. 1 Hz Square Wave Oscillator
1-762

r-------------------------------------------------------------------------,~

ill:

~National

~

Semiconductor

LMC6044 CMOS Quad
Micropower Operational Amplifier
General Description

Features

Ultra-low power consumption and low input-leakage current
are the hallmarks of the LMC6044. Providing input currents
of only 2 fA typical, the LMC6044 can operate from a single
supply, has output swing extending to each supply rail, and
an input voltage range that includes ground.

•
•
•
•
•

The LMC6044 is ideal for use in systems requiring ultra-low
power consumption. In addition, the insensitivity to latch-up,
high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.

Low supply current
10 p.A/ Amp (Typ)
Operates from 4.5V to 15.5V single supply
Ultra low input current
2 fA (Typ)
Rail-to-rail output swing
Input common-mode range includes ground

Applications
•
•
•
•
•
•
•

Other applications for the LMC6044 include bar code reader
amplifiers, magnetic and electric field detectors, and handheld electrometers.
This device is built with National's advanced Double-Poly
Silicon-Gate CMOS process.

Battery monitoring and power conditioning
Photodiode and infrared detector preamplifier
Silicon based transducer systems
Hand-held analytic instruments
pH probe buffer amplifier
Fire and smoke detection systems
Charge amplifier for piezoelectric transducers

See the LMC6041 for a single, and the LMCS042 for a dual
amplifier with these features.

Connection Diagram
14-Pln DIP/SO
14

13

12

11

10

9

B

2

3

4

5

6

7

TUH/11138-1

Ordering Information
Temperature Range

NSC

Transport
Media

Package

Industrial
- 40"C to + 85"C

Drawing

14-Pin
Small Outline

LMC6044AIM
LMC6044IM

M14A

Rail
Tape and Reel

14-Pin
Molded DIP

LMC6044AIN
LMC6044IN

N14A

Rail

1-763

Absolute Maximum Ratings

(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availabilIty and specifications.
± Supply Voltage
Differential Input Voltage
Supply Voltage (V+ - V-)
16V
(Note 12)
Output Short Circuit to V +
Output Short Circuit to V-

(Note 2)

Lead Temperature (Soldering, 10 sec.)
Current at Input Pin

260"C
;tSmA
±18mA
3SmA
(Note 3)

Current at Output Pin
Current at Power Supply Pin
Power Dissipation
Storage Temperature Range

;

. Junction Temperature (Note 3)
ESD Tolerance (Note 4)
Voltage at 1/0 Pin (V+)

Operating Ratings

'\ ..110"C
SOOV
+0.3V, (V-) -0.3V

.,

TemperjltureRl!/lg~

:(.
LMC6044AI, LMC60441
Supply Voltage

-4&c,,; TJ"; +8SoC
4.SV,,; V+ ,,; 1S.SV

Power Dissipation

(Note 10)

Thermal Resistance (8JAl. (Note 11)
14-PinDIP
14-PinSO

8soC/W
11soC/W

·-65°C to+1Scr.C

Electrical Characteristics
Unless otherwise specified. alilimits:9uaranteed for TA = Tj' = 2Soc. Boldface limits apply at the temperature extremes.
V+ = SV. V- = OV. VCM= 1.SV. Va = V+/2, and RL > 1M unless otherwise specified.
.
.

Symbol

Parameter

Typical
(N6te 5)

Conditions

LMC6044AI

. LMC60441

Limit
(Note 6)

Limit
(Note 6)

3
3.3

6
e.3

Unita
(Umit)

Vas

Input OffSet Voltage

1

TCVos

Input Offset Voltage
Average Drift

1.3

Ie

Input Bias Current

los

Input Offset Current

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

OV ,,; VCM ,,; l2.0V
V+ = 1SV

7S

68
ee

62
eo

dB
min

+PSRR

Positive Power Supply
Rejection Ratio

SV,,; V+ ,,; 1SV
Vo = 2.SV

7S

68
ee

62
eo

dB
min

-PSRR

Negative Power Supply
Rejection RatiO

OV"; v-,,; -10V
Va = 2.SV

94

84
83

74
73

dB
min

CMR

Input Common-Mode
Voltage Range

V+ = SV& 1SV
For CMRR ~ SOdB

-0.4

-0.1
0

-0.1
0

V
max

V+ - 1.9V

V+ - 2.3V
Y+ - 2.SY

V+ - 2.3V
Y+ - 2.4Y

V
min

Sourcing

1000

400
300

300
200

V/mV
min

Sinking

SOO

180
120

90
70

V/mV
min

Sourcing

1000

200
180

100
80

V/mV
min

Sinking

2S0

100
eo

SO
40

VlmV
min

Av

Large Signal
Voltage Gain

/J-V/oC
"'.

0.002

4

4

pA
max

0.001

2

2

pA
max

>10

RL = 100 kO (Note 7)

RL = 2S kO (Note 7)

1-764

mV
max

TeraO

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T A = TJ = 25°C. Boldface limits apply at the temperature extremes. V +
= 5V, V- = OV, VCM = 1.5V, Vo = V+ /2, and RL > 1M unless otherwise specified. (Continued)

Symbol

Vo

Parameter
Output Swing

Typical
(Note 5)

Conditions
V+ = 5V
RL = 100 kO to 2.5V

4.987
0.004

V+ = 5V
RL = 25 kO to 2.5V

4.980
0.010

V+ = 15V
RL = 100kOtoV+/2

14.970
0.007

V+ = 15V
RL = 25 kOtoV+/2

14.950
0.022

Isc

Output Current
V+ = 5V

Sourcing, Vo
Sinking, Vo

Isc

Output Current
V+ = 15V

Is

Supply Current

=

Sourcing, Vo
Sinking, Vo
(Note 12)

=

22
21

5V

=

=

OV

OV

40

13V

39

Four Amplifiers
Vo = 1.5V

40

Four Amplifiers
V+ = 15V

52

1-765

LMC6044AI

LMC60441

Limit
(Note 6)

Umit
(Note 6)

4.970

4.940

4.950

4.910

0.030

0.060

0.050

0.090

4.920

4.870

4.870

4.820

0.080

0.130

0.130

0.180

14.920

14.880

14.880

14.820

0.030

0.060

0.050

0.090

14.900

14.850

14.850

14.800

0.100

0.150

0.150

0.200

16

13

10

8

16

13

8

8

15

15

10

10

24

21

8

8

65

75

72

82

85

98

94

107

Units
(Limit)
V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
p.A
max
p.A
max

AC Electrical Characteristics

Unlessotherwisespecified,alllimitsguaranteedforTA;: TJ = 2S'C.8old·
fac.limits apply atthe temperature extremes. v+ = SV, v- = OV, VCM = 1.5V, Vo = V+ 12, and RL > 1M unless otherwise
specified.

Typical
Symbol

5R

GBW


is 0.001

~

0.001 0.01

0.1

10

100

Crosstalk Rejection vs
Frequency
1IIIIm II
1111111111
RL = 25k

180
ISO

..

120
90
II)

30

OUTPUT SOURCE CURRENT (mA)

1«1

10

CMRR vs Frequency

70
60
SO
040

!

I

30

120
100

100

80

90
80

I"

......

lk

10k

FREQUENCY (Hz)

lOOk

-

!

[.....-

~

-4D -20

0

20

040

1-1- ....

60

TEMPERATURE (OC)

10k

60
040

.,. SUPPLY

i' r-..
v+ SUPPL~ r\

~:\

20

SO
1M

lk

100

Power Supply Rejection
Ratio VI Frequency

110

60
100

10

FREQUENCY (Hz)

120

70

10

1

10k

CMRR vs Temperature

II)

20
10
0

lk

100
FREQUENCY (Hz)

100
90

100

60

0
1

'" 0.0001

10

OUTPUT SINK CURRENT (mA)

2«l

I

100

g

e

210

bI~
~I

75

Output Characteristics
Current Sinking

-

I
I

25

0

25

TEMPERATURE (OC)

GUARANTEED

0

-os

m -50

10

'"'"
l'

...

Input Voltage Noise
vs Frequency

~

;!!.

I

0.1

10

~"!> -os
l!Ig -1.0

Output Characteristics
eurrent Sourcing

S

%

Input Common-Mode
Voltage Range vs
Temperature

lr<~-r'-~r<~-r,

0l'l

II)

1

TEMPERATURE (OC)

Input Bias Current vs
Input Common-Mode
Voltage

§

2D «I 60

Input Bias Current
vs Temperature

II)

100

-20
10

100

lk

~

lDk

lDDk

1M

FREQUENCY (Hz)
TUH/III38-2

1-767

•

Typical Performance Characteristics
=

Vs

= 25"C unless otherwise specified (Continued)

±7.5V, TA

Open-Loop Voltage Gain
vs Temperature
160

150

....
3

1~0

z

130

~

~
~

~

Gain and Phase
Responses vs Load
capacitance

Open-Loop
Frequency Response

lOOk

....
3

:-11

120

~

I\. = 25k" ~

110

80

1~0

I\. •

~~

100
90

i\..

120
100

60

i\..

'-

80
60

i\..

~o

0

25

75

50

TEMPERATURE (Oc)

25
15

z

~

~~

~5

§

i
~

I

i

'>'

.3

I

lOOk

-5

~

2.5

-50

~ -100

-150
-200

0.1150
O.NS

7.5 10

~

JALLlJG

F"'=== ~

;A 0.020

~

0.005

0.815

5

60

80

100

6

-2

0

2

TEMPERATURE (Oc)

-20

0

20

~

60

60

100

S
o

2
0

Inverting Large-8lgnal
Pulse Response

I-

1-1-

o

,

Inverting Small Signal
Pulse Response

~
~N = Rr= lOOk

,

1/

100200300~00500600700800900

~

I

\

II

~o

TIME (1'8)

50 60 70 BO

8

TIME (1'.)

Rr = ~N = lOOk.

10 20 30

6

1/

TEMPERATURE (Oc)

~

\

4

/

!i! 4

-~

Non-Inverting Small
Signal Pulse Response

~

~

0.810

o

~

!.-

0.010

~O

/

,V

FALLING

ut

20

..........

.......

Non-Inverting Large
Signal Pulse Response
(Ay = +1)

~ 0.825

0

/

COMMON MODE VOLTAGE (V)

~

~ 0.830

RISING

/

..... ~

Rr·~N=33k

a.8M)

~ 0.035

-20

-

~

~ 0.015

-M)

V
-10-.

-250

5

Inverting Slew Rate
vs Temperature

O.MO

~ 0.020

I
I
I

50

VOUT (VOLTS)

0.035

Oil

100

~=2t l -

-25
-10 -7.5 -5 -2.5 0

Non-Inverting Slew
Rate vs Temperature

~

'"

~

-20

FREQUENCY (Hz)

~ 0.025

150

~

-15

1M

~

- r-

1\ = lOOk

-10

-~5

.

200

L1.

0

1M

250

1\ ~ 25~

10
90

lOOk

Common-Mode Error vs
Common-Mode Voltage of
Three Representative Units

I I
I

20

'{ 0.030

10k

FREQUENCY (Hz)

Gain Error
(VOS vs VOUT)

....
3

10k

lk

FREQUENCY (Hz)

Gain and Phase
Responses vs
Temperature

lk

~

-20

-20
0.0010.010.1 1 10 100 lk 10k lOOk 1M

100

~

I
GAIN

"'
i'.

-25

90

20

~

20

BO
70
-50

PHASE

~O

I--

l-

o 100200300~00500600700B00900
TIME (1'.)

o

10 20 30

~O

50 60 70 80 90

TIME (1'0)

TL/H/11138-3

1-768

Typical Performance Characteristics
Vs = ±7.5V, TA = 25°C unless otherwise specified (Continued)

Stability vs Capacitive Load
100,000

Ay

$; 10,000

~

1,000

I

~

~

=+1

Stability vs Capacitive Load

100,000 ,...,.....,.-;'..,.--r--i-,-,--,-,

$; 10,000
~ 1,000

UNSTABLE

I

100
10

=*10

Ay

" N.t

IJ,I

ti

I\ij
f"'I'lI.ll

100
10

1~~~~~-L~~

I~~~~~-L~~

-10

-10

-0.1 -0.001 0.001 0.1
10
-1 -0.01
0
0.01
1
SINKING

-1

SOURCING

-0.1 -0.001 0.001 0.1
10
-0.01
0
0.01
1

SINKING

LOAD CURRENT (mA)

SOURCING

LOAD CURRENT (mA)

TL/H/11138-4

Application Hints
- -1- ; ; , - 1- -

AMPLIFIER TOPOLOGY
The LMC6044 incorporates a novel op-amp design topology
that enables it to maintain rail to rail output swing even when
driving a large load. Instead of relying on a push-pull unity
gain outupt buffer stage, the output stage is taken directly
from the intemal integrator, which provides both low output
impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability
over a wider range of operating conditions than traditional
micropower op-amps. These features make the LMC6044
both easier to design with, and provide higher speed than
products typically found in this ultra-low power class.

2wR1 CIN 2wR2 ~
or

R1 CIN s; R2~
Since it is often difficult to know the exact value of qN, ~
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and the
LMC662 for a more detailed discussion on compensating
for input capacitance.
CAPACITIVE LOAD TOLERANCE
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the'combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an OScillatory or underdamped pulse response. With a few
extemal components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 2a.

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance with amplifiers with ultra-low input current, like the
LMC6044.
Although the LMC6044 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capacitance, due to transducers, photodiodes, and circuits board parasitics, reduce phase margins.
When high input impedance are demanded, guarding of the
LMC6044 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capacitance as well.
(See Printed-Clrcult-Board Layout for High Impedance
Work.)

+v

•

!r-

.-----I
..

R2
10k

TL/H/I1138-8

FIGURE 2a. LMC6044 Nonlnverting Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

TUH/III38-5

FIGURE 1. Canceling the Effect of Input capaCitance
The effect of input capaCitance can be compensated for by
adding a capacitor. Adding a capaCitor, ~, around the feedback resistor (as in Figure 1) such that:

1-769

Application Hints (Continued)
which is normally considered a very' large resistance, could
leak 5 pA if the trace wE!re a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6044's actual performance. However, if a guard
ring is held within 5 'mY of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current. See
FigUres 48. 4b. 4c for typical connections of guard rings for
standard op-amp configurations.

capacitive load driving capability is enhanced by using a pull
up resistor to V+ (FigUf'82b). Typically, a pull up resistor
conducting 10 p.A or niore will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).
V+

Cl

INPUT

Rl
.y,""""
..........-....JW,....-t
I,
I
I
I

Guard Ring - . .

OUTPUT

I

TL/H/11138-18

1:

FIGURE 2b. Compensa~ng for Large
Capacitive Loads with a Pull Up Realator
PRINTED-CIRCUIT-BOARDLAYOUT
FOR HIGH-IMPEDANCE WORK.
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6044, typically
'less' than 2 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.

(a) Inverting Amplifier
R2

OUTPUT

Tt/H/11138-10

(~)

To minimize the effect of any surface leakage, lay out a ring
of foil completely surrounding the LMC6044's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a Significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifer inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-ta-pad resistance of 10120,

OUTPUT

TlIH111138-9

(C) Follower
FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-to-point up-in-tha-air wiring. See
Figuf'85.

TlIH/11138-7

FI~URE

Non-Inverting Amplifier

3. Example of Guard Ring In P.C. Board Layout

1-770

~------------------------------------------------------~r

Typical Single-Supply Applications

i:

(V+ = 5.0Vocl
use ground rings and consider PC board layout an important
part of the overall system design (see Printed-Circuit-Board
Layout for High Impedance Work). Referring to Figure 6, the
input voltages are represented as a common-mode input
VCM plus a differential input Vo. Rejection of the commonmode component of the input is accomplished by making
the ratio of R1/R2 equal to R3/R4. So that where,

fEEDBACK
CAPACITOR

R3
R4
R4 (
VOUT = R3 1

R2
R1

R3
R2 + R3)
+ R4 + ~

Vo

A suggested design guideline is to minimize the difference

TLlH/11138-11

of value between R1 through R4. This will often result in
improved resistor tempco, amplifier gain, and CMRR over
temperature. If RN = R1 = R2 = R3 = R4 then the gain
equation can be simplified:

(Input pins are IHIed out of PC board and soldered directly to components.
All other pins connected to PC board.)

FIGURE 5. Air Wiring
The extremely high input impedance, and low power con·
sumption, of the LMC6044 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these type of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.

VOUT = 2 (1

+ :~) Vo

Due to the "zero-in, zero-out" performance of the
LMC6044, and output swing rail-rail, the dynamic range is
only limited to the input common-mode range of OV to Vs2.3V, worst case at room temperature. This feature of the
LMC6044 makes it an ideal choice for low-power instrumentation systems.

The circuit in Figure 6 is recommended for applications
where the common-mode input range is relatively low and
the differential gain will be in the range of 10 to 1000. This
two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection
trim, and a total quiescent supply current of less than 40 pATo maintain ultra-high input impedance, it is advisable to

A complete instrumentation amplifier designed for a gain of
100 is shown in Figure 7. Provisions have been made for
low sensitivity trimming of CMRR and gain.

TL/H/III38-12

FIGURE 6. Two Op-Amp Instrumentation Amplifier

Ion
Gain

1910

9.95k

Trim

10k, 0.1%

CMPR

Trim

VOUT

=

100VD

TLlH/11138-13

FIGURE 7. Low-Power Two-Op-Amp
Instrumentation Amplifier

1-771

~
~
~

~

Typical Single-Supply Applications C'I +

= 5.0 Voc) (Continued)

::&

.....

> .......... OUTPUT
INPUT

S/H

!CD4066
4
TUH/11198-14

FIGURE 8. Low-Leakage Sample-and-Hold

r

VIN

R3

R4

10k

lOOk

> ....._Vour

R2
10k pot

(.------

R6
10k
TUH/11138-15

FIGURE 9. Instrumentation Amplifier
R4

R4

lOW

Vour
+5V

+-"'V\,..,.......-t

R2

Rl

+5V +----Wv--....-~fIIIr----'
470k

R3
470k

..70k

TUH/lll38-17

FIGURE 11. AC Coupled Power Amplifier
TL/H/11138-16

FIGURE 10. 1 Hz Square-Wave Oscillator

1-772

t!lNational Semiconductor

LMC6061 Precision CMOS Single
Micropower Operational Amplifier
General Description

Features (Typical Unless Otherwise Noted)

The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low
input bias current, high voltage gain, rail-to-rail output swing,
and an input common mode voltage range that includes
ground. These features, plus its low power consumption,
make the LMC6061 ideally suited for battery powered applications.

•
•
•
•
•
•
•
•

Other applications using the LMC6061 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits' and true instrumentation amplifiers.
This device is built with National's advanced double-Poly
Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC60S1
precision single operational amplifier.
For a dual or quad operational amplifier with similar features, see the LMC6062 or LMC6064 respectively.

100 /LV
Low offset voltage
20/LA
Ultra low supply current
Operates from 4.5V to 15V single supply
Ultra low input bias current
10 fA
Output swing within 10 mV of supply rail, 100k load
Input common-mode range includes V140 dB
High voltage gain
Improved latchup immunity

Applications
•
•
•
•
•
•
•

Instrumentation amplifier
Photodiode and infrared detector preamplifier
Transducer amplifiers
Hand-held analytic instruments
Medical instrumentation
D/A converter
Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram
S-Pln DIP/SO
NC..!

INVERTING INPUT J.
NON-INVERTING .1
INPUT-

'-../

~NC

~ ~ v+
+

!.. OUTPUT
,-

~NC

v-..i

TL/H/11422-1

Top View

Ordering Information
Package
S-Pin
Molded DIP

Temperature Range
NSC
Military
Industrial
Drawing
-55°C to + 125"C - 4lrC to + S5"C
LMC6061AMN

S-Pin
Small Outline
S-Pin
Ceramic DIP

Transport
Media

LMC6061AIN
LMC6061IN

NOSE

Rail

LMC6061 AIM
LMC6061IM

MOSA

Rail
Tape and Reel

JOSA

Rail

LMC6061AMJ/SS3

1-773

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
"± Supply Voltage
(V+) +0.3V,
Voltage at Input/Output Pin
(V-) -0.3V
SupplyVoltage(V+ - V-)

Lead Temperature (Soldering, 10 sec.)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)

40mA
(Note 3)

Power Dissipation

Operating Ratings (Note 1)

16V
(Note 10)
(Note 2)

Output Short Circuit to V+
Output Short Circuit to V-

±10mA
±30mA

Current at Input Pin
Current at Output Pin
Current at Power Supply Pin

Temperature Range
LMC6061AM
LMC6061AI, LMC60821
Supply Voltage

2600C
-65·Cto + 1500C
150·C

-55·C';; TJ ,;; +125·C
-400C';; TJ ,;; +85·C
4.5V';; V+ ,;; 15.5V

Thermal ReSistance (9JA) (Note 11)
N Package, 8-Pin MOlded DIP
M Package, 8-Pin Surface Mount

2kV

115·C/W
193·C/W
(Note 9)

Power Dissipation

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed.for TJ = 25·C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise sp~cified.
Symbol
Vos

Parameter
Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

18

Input Bias Current

los

Typ
(Note 5)

Conditions

100

Input Resistance
OV';; VCM ,;; 12.0V
V+ = 15V

85

Positive Power Supply
Rejection Ratio

5V,;; V+ ';;,15V
Vo = 2.5V

85

Negative Power Supply
Rejection Ratio

OV';;V-';;-10V

100

Input Common-Mode
Voltage Range

V+ = 5Vand 15V
for CMRR :?: 60 dB

Large Signal
Voltage Gain

350

800

900

1300

-0.4

RL = 100kO
(Note 7)

Sourcing

4000

Sinking
RL=25kO
(Note 7)

3000

Sourcing
Sinking

3000
2000

1-774

Units
/lV
Max
/lVrC

100

4

4

pA
Max

100

2

2

pA
Max

75

75

66

70

72

63

>10

V+ - 1.9
Av

350

1200

0.005

Input Offset Current

Common Mode
Rejection Ratio

VCM

LMC6061I
LImit
(Note 6)

0.010

RIN

-PSRR

LMC6061AI
Limit
(Note 6)

1.0

CMRR
+PSRR

LMC6061AM
LImit
(Note 6)

TeraO

75

75

66

70

72

63

dB
Min
dB
Min

84

84

74

70

81

71

-0.1

-0.1

-0.1

0

0

0

V
Max

V+ - 2.3
Y+ - 2.6

V+ - 2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.5

V
Min
V/mV
Min

400

400

300

200

300

200

180

180

90

70

100

60

400

400

200

1110

150

80

100

100

70

35

50

35

dB
Min

V/mV
Min
V/mV
Min
V/mV
Min

DC Electrical Characteristics

(Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified.
Symbol
Vo

Parameter
Output Swing

Typ

Conditions

(Note 5)

V+ = 5V
RL = 100 kO to 2.5V

4.995
0.005

V+ = 5V
RL = 25 kO to 2.5V

4.990
0.010

V+ = 15V
RL = 100 kO to 7.5V

14.990
0.010

V+ = 15V
RL = 25 kO to 7.5V

14.965
0.025

'0

Output Current
V+ = 5V

Sourcing, Vo
Sinking, Vo

10

Output Current
V+ = 15V

Is

Supply Current

=

Sourcing, Vo
Sinking, Vo
(Note 10)
V+
V+

=
=

=

OV

22

5V

21

= OV

=

25

13V

+5V, Vo

=

+15V, Vo

35
1.5V

=

7.5V

20
24

1-775

LMC6061AM
Limit
(Note 6)

LMC6061AI
Limit
(Note 6)

LMC60611
LimIt
(Note 6)

4.990

4.990

4.950

4.970

4.980

4.925

0.010

0.010

0.050

0.030

0.020

0.075

4.975

4.975

4.950

4.955

4.985

4.850

0.020

0.020

0.050

0.045

0.035

0.150

14.975

14.975

14.950

14.955

14.985

14.925

0.025

0.025

0.050

0.050

0.035

0.075

14.900

14.900

14.850

14.800

14.850

14.800

0.050

0.050

0.100

0.200

0.150

0.200

16

16

13

8

10

8

16

16

16

7

8

8

15

15

15

9

10

10

24

24

24

7

8

8

24

24

32

35

32

40

30

30

40

40

38

48

=

5V,

Units
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
mA
Min
mA
Min
mA
Min
mA
Min
p.A
Max
p.A
Max

I
,1
I

,j

AC Electrical Characteristics
Unless otherwise specified; all limits guaranteed for TJ '" 25°C. Boldface limits apply at the temperature extremes. V+ = 5V.
V- = OV. VCM = 1.5V. Vo = 2.5V and RL > 1M unless otherwise specified.
,

Symbol

SR

Parameter

Slew Rate

GBW

Gain-Bandwidth Product

em

Phase Margin

en

Input-Referred Voltage Noise

.

Typ

Conditions

(Note 5)

(Note 8)

35

LMC6061AM

LMC6061AI

Umlt

Limit

LMC6061I
Limit

{Note 6)

{Note 6)

{Note 6)

20

20

15

8

10

7

100

Input-Referred Current Noise 'F=1kHz

T.H.O.

Total Harmonic Distortion

Vlms
Min
kHz

50

Oeg

83

nV/y'RZ

0.0002

pAly'RZ

0.01

%

F = 1 kHz

in

Units

F = 1 kHz.Av = -5
RL = 100 kG. Vo = 2 Vpp
±5VSupply

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate cond"ions for which the device is
intended to be functional. but do nof guarantee specific performance 11m"". For guaranteed specifications and test conditions. see the Electrical Characteristics.
The guaranleed specifications apply pnly for the test conditions listed,
Note 2: Applies to both single-supply and spin-supply operation. Continous short circuR operation at elevated ambient temperature can resuR in exceeding the
maximum allowed iunctlcn temperature of 15O"C. Output currenls in excess of ±30 mA over long toon may adversely affect rellabilRy.
Note 3: The maximum power dissipation is a function of TJ(Max)' 9JA, and TA' The maximum allowable power dissipation at any ambienl temperature is Po
(TJ(Max) - TAl/9JA·
Note 4: Human body model, 1.5 kG in series with 100 pF.
lIota 5: Typical values represent the mosllikely parametric norm.
Note 6: All 11m"" ara guaranteed by testing or statistical analysis.

= 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V s; Vo s; 11.5V. For Sinking tests, 2.5V s; Vo s; 7.5V.
= 15V. Conn!""ed as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance 8JA wRh Po = (TJ-TAl/8JA.
Note 7: V+
Note 8: V+

Note 10: Do not connect output to V+, when V+ is greater than 13V or rellabilRy willi be adversely affected.
Note 11: All numbers apply for packages soldered directly inlo a PC board.
Note 12: For guaranteed Military Temperature Range parameters see RETsMC6061X.

1-776

=

Typical Performance Characteristics Vs = ± 7.5V. T A = 25°C. Unless otherwise specified
Distribution of LMC6061
Input Offset Voltage
(TA = +25°C)

Distribution of LMC6061
Input Offset Voltage
(TA = -55°C)

2~

~
S
eo

21
15
12

~

10pA

100fA
10fA

1fA
1000A

/

.' .l/
o

y~ y

.3

i

V

i
75

100

20
15
10

125

0

m

•

=

,
~

12

10k

60

\'"

100

Output Characteristics
Sourcing Current

Output Characteristics
Sinking Current

~

I

0.001
0.001

0.1

-10

[

I

tI

~

0.01

10

OUTPUT SOURCE CURRENT (mA)

100

~

-~

-2 0

2

~

6

8 10

I

150
120

"""' .......

90

~

~

60

>

30

10

-- -- -100

"Oi"
3

..

~o

10k

~

90

I""'"

z

,

~

20

g

45

§
I'

is

:!;
0.001
0.001

Ik

Gain and Phase Response
vs Temperature
(- 55"C to + 125°C)
'I. =500k

:c

0.1

... 1.sJ•• -I"i

r-

... =2k

fREQUENCY (Hz)

10

I
g
0.01

-

-5

10k

lk

fREQUENCY (Hz)

~

N

G

o
10

1

i

G

... = •••

0

fREQUENCY (Hz)

10

~

Input Voltage Noise
vs Frequency

~
".5

oj'-..

40

lOOk

100

0.01

~

lk

N

~...J.

-20
-10 -8 -6

IsupJJ

20

100

10

.3

0
10

G

N.

OUTPUT VOLTAGE (V)

j\.,

..,.

•

000 0

180
V+

~
~

~

0

15

">

14 16

r---. '{-'suP 1,\
"Oi"
3

N

~

20

~

80

30

6

-

....
.... ......

-15
10

•

•

~

Y~

Input Voltage
vs Output Voltage

g

8

~

N

OffSET VOLTAGE (mV)

~

50

~

~

i!i

i"I

~o

G

~

II

b..

60

>

N

~

100

0

70

0.1

•

~

.Power Supply Rejection
Ratio vs Frequency

~

80

I

N

N.

TOTAL SUPPLY VOLTAGE(V)

100

+
>
~

15
12

0 0 0 0

~~o;.- f-""

o

150

Common Mode
Rejection Ratio
vs Frequency

F

N

T,t=25 0 C

fl

TEMPERATURE (oC)

90

•

I

"<

i3

50

~

TJ = I25~C

25

o
25

~

N

~

30

:/

V

lpA

~

G

Supply Current
vs Supply Voltage

100pA

E

18

OffSET VOLTAGE (mV)

Input Bias Current
vs Temperature

'"

21

i:!

OffSET VOLTAGE (mV)

u

2~

!;i

~

ili

27

g
~
"
~

18

!

"Oi"
3

30

from 3 Waftr LoU

27

g

Distribution of LMC6061
Input Offset Voltage
(TA = + 125"C)

-45

-20
0.01

0.1

10

OUTPUT SINK CURRENT (mA)

100

Ik

10k

lOOk

1M

fREQUENCY (Hz)
TL/H/11422-2

1-777

....

I....

Typical Performance Characteristics Vs =
Gain and Phase
Response vs Capacitive Load
with RL = 20 kO
50
'01

~

~~

~

20 10-

Il-

O~

§

~;~~
'=,,~I

~

30

I

-10..-

~

-20..-

90

....

~....

10k

lOOk

I-

20

is

:!;

::: 1\.

q:

OOk

-30
lk

IN

FR£QUENCY (Hz)

10k

~

'lOOk

,

:\

E

;

"

~~

TINE(100 jOs/DIv)

1"\

20

~

0

1\ -20k

'

10,000

~

40

!:Cii

Non-Inverting Large
Signal Pulse Response

r-r--

60

tt

:;l

TIME(10 jOs/Dlv)

r-r-

~

if §

U"\
1\ =2Okl,,\

~

0

~

100
, 80

~

Inverting Large Signal
Pulse Response

!:">'

If

!&

j...1\ =500k
~

FREQUENCY (Hz)

~

~

1

1M

!;

~-;-

~

120

I

-45

i"'

!1!5iS

140

FR£QUENCY (Hz)

Inverting Small Signal
Pulse Response

i..

0

'01
~

~

pF

~IOOpF

I

-45

i f..'~

o

45

~

f-... -o

10

~ §

90

~
~.,

30

1 ~
~

Open Loop
Frequency Response
160

~

40

~

~

0

~i Irlrl

-30 1

'01

~

45

= 25°C, Unless otherwise sPecified

Gain and Phase
Response vs Capacitive Load
with RL = 500 kO
50

1\ ~~~

40

~

± 7.5V, TA

1.000

100

~~

~i"'i"-

r:.N

~:~!
1I
~:'~I.'

1\

10~ ~ hoot

Stability vs Capacitive
LoadRL = 1 MO
70

...

~
9

1·"1"'

60

~

~

50
/Ol .....hoot

~

10

'.,
~~

I 0 illatle"

III

40
"

1
-8-5-4-3-2-10 1 2 3 4 5 6

-8 -5-4-3-2 -10 1 2 3 4 5 6

OUTPUT VOLTAGE (V)

OUTPUT VOLTAGE (V)

TUHI11422-3

1·778

Applications Hints
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an OSCillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 2a.

AMPLIFIER TOPOLOGY
The LMC6061 incorporates a novel op-amp design topology
that enables it to maintain rail-ta-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional micropower op-amps. These features make the
LMC6061 both easier to design with, and provide higher
speed than products typically found in this ultra-low power
class.

+V

0.1 jJF

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the
LMC6061.
Although the LMC6061 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of
the LMC6061 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capaCitance as well.
(See Printed-Clrcult-Board LByDUt for High Impedance
Worlr).
The effect of input capaCitance can be compensated for by
adding a capacitor. Place a capacitor, Ct, around the feedback reSistor (as in Figure 1) such that:

VIN

20ll

Your

R1

20pF

c;,OAD

1000 pF

I

90k
10k

TL/H/11422-4

FIGURE 2a. LMC6061 Nonlnvertlng Gain of 10 Amp"fler,
Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.
capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Figure 2b). Typically a pull up resistor
conducting 10 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see electrical characteristics).

1
1
---;;;,--21TR1CIN 21TR2Ct
or

R1 CIN:S;: R2Ct
Since it is often difficult to know the exact value of CIN, Ct
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and the
LMC662 for a more detailed discussion on compensating
for input capacitance.

V+
R

R2

TUH111422-14

,

FIGURE 2b. Compensating tor Large
Capacitive Loads with a Pull Up ResIstor

TL/H/11422-5

FIGURE 1. CancelIng the Effect of Input Capacitance

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6061, typically
less than 10 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are

CAPACITIVE LOAD TOLERANCE
All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is
normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load
on the amplifier. capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see typical curves).

1-779

Applications Hints (Continued)
quite simple. First,
leakage of the PC
appear acceptably
humidity or dust or
be appreciable.

Cl

the user must not ignore the surface
board, even though. it. may sometimes
low, because under conditions of high
contamination, the surface leakage will

Rl

INPUT

To minimize the effect of any surface leakage, lay out a ring
of foil completelY surrounding the LMC6061's inputs and the
terminals of capacitors, diodes, condLictors, resistors, relay
terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
whicl"J is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6061's actual performance. HolNever, if a guard
ring is held within 5 mV of the inputs, thel) even a resistance
of 1011 0 would cause only 0.05 pA of leakage current. See
Figures 48, 4b, 4C for typical connections of guard rings for
standard op-amp configurations.

Jt,Ii-N-........,._......WIr--.

OUTPUT

TUH/11422-7

(a) Inverting Amplifier
R2

OUTPUT

TUH/11422-8

(~)

Non-Inverting Amplifier

OUTPUT
INPUT

--!--+....

-.'. '
TUH/11422-9
(c) Follower
FIGURE 4. Typical ,?onnectlons of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC beard: 'Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-to-point up-in-the-air wiring. See
Figure 5.

LGUard Ring
TUH/11422-6

FIGURE 3. Example of Guard Ring In P.C. Boai'd Layout

rEEDBACK
C~PACITOR

TUH/11422-10

(Input pins are li!t9d out of PC
All other pins 'connectsd to PC

bOard and iloidered directfy io compo~ents.
boai-dJ.

FIGURE 5. Air Wiring

1-780

.

Typical Single-Supply
Applications (V+ = 5.0 Voe)

Latchup
CMOS devices tend to be susceptible to latchup due to their
internal parasitic SCA effects. The (I/O) input and output
pins look similar to the gate of the SCA. There is a minimum
current required to trigger the SCA gate lead. The LMC6061
and LMC6081 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used
to isolate any capaCitance from supplying excess current to
the I/O pins. In addition, like an SCA, there is a minimum
holding current for any latchup mode. Limiting current to the
supply pins will also inhibit latchup susceptibility.

The extremely high input impedance, and low power consumption, of the LMC6061 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features
high differential and common mode input resistance
(>10140), 0.01% gain accuracy at Av = 100, excellent
CMAA with 1 k!l imbalance in bridge source resistance.
Input current is less than 100 fA and offset drift is less than
2.5 p.VI"C. A2 provides a simple means of adj~sting. ~~in
over a wide range without degrading CMRA. R7 IS an Initial
trim used to maximize CMAA without using super precision
matched resistors. For good CMAA over temperature, low
drift resistors should be used.

r~;.

VIN

R3

R4

25k

250k

>-.... VOUT

2k

~

I

R6

\

....- - t

25k

224k
rUH/11422-11

If A1

=

A5, As

= Ae, and A. =

Vour = A2 +
VIN

2A1
A2

A7; then

X~
As

= 9.822k).
FIGURE 6. Instrumentation Amplifier

:.Av '" 100 for circuit shown (A2

1-781

Typical Single-Supply Applications (y+

= 5.0 Vee) (Continued)

> ....._

OUTPUT

INPUT

5/H

tC04066
TUH/11422-12

FIGURE 7. Low-Leakage Sample and Hold
R4
lOll

R2

Rl
470k

R3
470k

470k

TUH/11422-13

FIGURE 8. 1 Hz Square Wave Oscillator

1-782

t!lNational Semiconductor

LMC6062 Precision CMOS Dual
MicropowerOperational Amplifier
General Description

Features (Typical Unless Otherwise Noted)

The LMC6062 is a precision dual low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low
input bias current, high voltage gain, rail-to-rail output swing,
and an input common mode voltage range that includes
ground. These features, plus its low power consumption,
make the LMC6062 ideally suited for battery powered applications.
Other applications using the LMC6062 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.

•
•
•
•
•
•
•
•

This device is built with National's advanced double-Poly
Silicon-Gate CMOS process.

•
•
•
•
•

Low offset voltage
100 p.V
Ultra low supply current
16 pAl Amplifier
Operates from 4.5V to 15V single supply
Ultra low input bias current
10 fA
Output swing within 10 mV of supply rail, 100k load
Input common-mode range includes VHigh voltage gain
140 dB
Improved latchup immunity

Applications
Instrumentation amplifier
Photodiode and infrared detector preamplifier
Transducer amplifiers
Hand-held analytic instruments
Medical instrumentation
• DIA converter
• Charge amplifier for piezoelectric transducers

For designs that require higher speed, see the LMC6082
precision dual operational amplifier.

PATENT PENDING

Connection Diagram
B-Pln DIP/SO

OUTPUTA-!~U ~y+
2
INVERTING INPUT A -

NON·INVERTING
INPUT A

~

3

-

+

Y- ....;.41-_---'

'~
+

7

IE-- .!....

OUTPUT B

INVERTING INPUT B

L.-_~5;.... NON·INYERTING
INPUTB
TUH/11298-1

Top View

Ordering Information
r-------r---------------------.----,------~

Temperature Range

Package
8-Pin
Molded DIP

LMC6062AMN

8-Pin
Small Outline
8-Pin
Ceramic DIP

NSC

Transport
Media

LMC6062AIN
LMC60621N

N08E

Rail

LMC6062AIM
LMC60621M

M08A

Rail
Tape and Reel

J08A

Rail

Industrial
Military
Drawing
- SS'C to + 12S'C -40'C to + SS'C

LMC6062AMJ/883

1-783

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
± Supply Voltage
Voltage at Input/Output Pin
(V+) +0.3V,
(V-) -0.3V
Supply Voltage (V+ - V-)
Output Short Circuit to V +

16V
(Note 11)

Output Short Circuit to V~

(Note 2)

Lead Temperature (Soldering, 10 sec.)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)

±10mA
±30mA

Current at Power Supply Pin
Power Dissipation

40 rnA
(Note 3)

Operating Ratings (Note 1)
Temperature Range
LMCS062AM
LMCS062AI, LMC60B21

-55"C ~ TJ ~ +125°C
-400C ~ TJ ~ +85°C
4.5V ~ V+ ~ 15.5V

Supply Voltage
Thermal Resistance (6JAl (Note 12)
B-Pin Molded DIP
8-PinSO
Power Dissipation

2800C
-65°C to

Current at Input Pin
Current at Output Pin

+150°C
1500C
2kV

115°C/W
193°C/W
(Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified.
Symbol
Vos

Parameter
Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

18

Input Bias Current

los

Typ
(Note 5)

Conditions

100

Input Offset Current
Input Resistance
OV ~ VCM ~ 12.0V
V+ = 15V

85

Positive Power Supply
Rejection Ratio

5V ~ V+ ~ 15V
Vo = 2.5V

85

Negative Power Supply
Rejection Ratio

OV

Input Common-Mode
Voltage Range

V+ = 5Vand15V
for CMRR ~ 60 dB

Large Signal
Voltage Gain

350

800

900

1300

~

V-

~

-10V

100
-0.4

RL = 10Q kn
(Note 7)

Sourcing

4000
3000

Sinking
RL = 25kn
(Note 7)

Sourcing
Sinking

3000
2000

1-784

5V,

Unlta
p.V
Max
p.VI"C

100

4

4

pA
Max

100

2

2

pA
Max

75

75

66

70

72

83

>10

V+ - 1.9
Av

350

1200

0.005

Common Mode
Rejection Ratio

VCM

LMC60621
Limit
(Note 6)

0.010

RIN

-PSRR

LMC6062AI
Umit
(Note 6)

1.0

CMRR
+PSRR

LMC6062AM
Umlt
(Note 6)

=

Tera n

75

75

66

70

72

83

dB
Min
dB
Min

84

84

74

70

81

71

-0.1

-0.1

-0.1

0

0

0

V
Max

V+ - 2.3
Y+ - 2.8

V+ - 2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.5

V
Min
V/mV
Min

400

400

300

200

300

200

180

180

90

70

100

80

400

400

200

150

150

80

100

100

70

35

50

35

dB
Min

V/mV
Min
V/mV
Min
V/mV
Min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Va = 2.5V and RL > 1M unless otherwise specified.
Symbol

Va

Parameter

Output Swing

Typ

Conditions

(Note 5)

V+ = 5V
RL = 100 kO to 2.5V

4.995
0.005

V+ = 5V
RL = 25 kO to 2.5V

4.990
0.010

V+ = 15V
RL = 100 kO to 7.5V

14.990
0.010

V+ = 15V
RL = 25 kO to 7.5V

14.965
0.025

la

Output Current
V+ = 5V

Sourcing, Va
Sinking, Va

la

Output Current
V+ = 15V

Is

Supply Current

=

Sourcing, Va
Sinking, Va
(Note 11)

=

21

5V

=

=

22

OV

OV

25

13V

Both Amplifiers
V+ = +5V, Va

35
32

=

Both Amplifiers
V+ = +15V, Va

1.5V
40

=

7.5V

1-785

LMC6062AM
Limit
(Note 6)

LMC6062AI
Limit
(Note 6)

LMC60621
Limit
(Note 6)

4.990

4.990

4.950

4.970

4.980

4.925

0.010

0.010

0.050

0.030

0.020

0.075

4.975

4.975

4.950

4.955

4.985

4.850

0.020

0.020

0.050

0.045

0.035

0.150

14.975

14.975

14.950

14.855

14.885

14.825

0.025

0.025

0.050

0.050

0.035

0.075

14.900

14.900

14.850

14.800

14.850

14.800

0.050

0.050

0.100

0.200

0.150

0.200

16

16

13

8

10

8

16

16

16

7

8

8

15

15

15

8

10

10

24

24

24

7

8

8

=

5V,

Units

V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
mA
Min
mA
Min
mA
Min
mA
Min

38

38

46

pA

80

48

58

Max
p.A
Max

47

47

57

70

55

88

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ ';= 25°C, Boldfa!!e limits apply at the temperature extremes. V'" =, 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.
Symbol
SR

Parameter

Typ

Conditio!).

Slew Rate

(Note 5)

(Note 8)

35

LMC6062AM LMC6062AI LMC60621
Limit
Umit
Limit
(Note 6)
(Note 6)
(Note 6)
20

8

20
10

15

7

Units
V/ms
Min

GBW

Gain-Bandwidth Product

100

kHz

8m

Phase Margin

50

Deg

(Note 9)

Amp-to-Amp Isolation
en

155

dB

83

nV/VHz

0.0002

pAlVHz

0.01

%

Input-Referred Voltage Noise F = 1 kHz

in

Input-Referred Cwrrent Noise

F = 1 kHz

T.H.D.

Total Harmonic Distortion

F = 1 kHz,Av

= -5

RL = 100kn, Va = 2Vpp
±5VSupply

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to \he device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional, but do nol guarantee speCific performance limits. For guaranteed specifications and test condRlons, see the Electrical Characteristics.
The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can resuR in exceeding the
maximum allowed junction temperature of 15O"C. Output currents in excess of ±30 mA over long term may edversely affect reliability.
Note 3: The maximum power dlssipstion is a function of TJ(Max)' 8JA, and TA.The maximum allowable power dissipstion at any ambient temperature is Po
(TJ(Max) - TpjI8JA·
Note 4: Human body model, 1.5 kll in series with 100 pF.
Note 5: Typical values represent the most likely psrametric norm.
Note 6: All limits ere guerenteed by testing or statistical analysis.
Note 7: V+

~

ISV, VOM

Note 8: V+

~

15V. Connected as Voilsge Follower with 10V step inpul. Number specified is the slower of the positive and negative slew rates.

Note 9: Input referred V+

~

~

7.SV and Rl connected to 7.SV. For Sourcing testa, 7.SV ,;; Vo ,;; 11.5V. For Sinking testa, 2.5V ,;; Vo ,;; 7.5V.
15V and RL

~

100 kll connected to 7.5V. Each amp excited in turn with 100 Hz to produce Vo

Note 10: For operating at elevated tempsreturesthe device must be derated based on the thermal resistance 8JA with Po
Note 11: Do nol connect oulpulto V+, when V+ is greater than 13V or reliability Willi be adversely affected.
Note 12: All numbers apply for psckeges soldered directly into a PC board.
Note 13: For guaranteed Military Temperature Range parameters, see RETSMC6062X.

1-786

~

~

12 Vpp.

(TJ':'TpjI8JA.

~

Typical Performance Characteristics Vs =

± 7.5V, T A = 25°C, Unless otherwise specified

Distribution of LMC6062
Input Offset Voltage

Distribution of LMC6062
Input Offset Voltage

Distribution of LMC6062
Input Offset Voltage

(TA = +25°C)

(TA = -55°C)

(TA = +125°C)

.....

~
~

o
I

OFFSET VOLTAGE (mV)

1pA

il
~

/

,OOfA

l/

N

V

,/

iil

i

"

1fA

o

50

"<
3

,V

lOlA

100aA

~

0

~

G

25

50

75

100

N

N.

~

0 0 0

60

10pA

~

~

•

•

N

•

~

N

?

~ ~

•

0

125

TJ=12'~

.0
30

1.1'"

20
10

I

I

-

150

I,..

TJ =-S5

l-

N

0

y

•

G

N

N.

~

0 0 0

•

N

•
0

20
15

S

10
... =600

3

~~
~

!!

8

•

Input Voltage
vs Output Voltage

f:5o IIooo!.
-

-5
-10

......I- ...

1
-20
-10 -8 -6 -. -2 0

10 12 1. 16

. . . . iiiiij

1•• Ok

I

-15

o
o

TEMPERATURE (oC)

-I-'"

TJ =2! C

G

•

~

OFFSET VOLTAGE (mV)

Supply CUrrent
vs Supply Voltage

100pA

.

~

0I 0I 0I

OFFSET VOLTAGE (mV)

Input Bias Current
vs Temperature

§

N

TOTAl SUPPLY VOLTAGE(Vdc)

2 •

6

8 10

OUTPUT VOLTAGE (V)

Common Mode
Rejection Ratio
vs Frequency

Power Supply Rejection
RatiO vs Frequency

100

!\. =1

100

0

90

so

....

01

II!

...'"

01

70

3

~

I'

80

v+ ISUPPI

60

\

90

lk

100

10k

30

10

100

lk

10k

10

100

FREQUENCY (Hz)

Output Characteristics
Sourcing Current
+

>

01

....

20

,

~

~

0.01

~

~ 0.001
0.001

~

0.1

0.01

0.1

10

OUTPUT SOURCE CURRENT (mA)

100

~

0.01

~

0.001

5

0.001

§

Gain

i

III
III

-20
0.01

0.1

10

OUTPUT SINK CURRENT (mA)

100

i\. =500k

Ph ...

.0

~
~

g

10k

lk

Gain and Phase Response
vs Temperature
(- 55°C to + 125"C)
3

10

0.1

-- --

FREQUENCY (Hz)

Output Characteristics
Sinking Current

10

--

o
1

lOOk

FREQUENCY (Hz)

~

60

i'. .....

0
10

,

.0
20

30

'\.
.....

120

f'..

50
•0

150

.~ I"{J sup 1,\

80
3

Input Voltage Noise
vs Frequency
160

lk

90

,
I'
-.s

10k

lOOk

1M

FREQUENCY (Hz)

TLlH/I1298-2

1-787

~

~

r------------------------------------------------------------------------------------------,
Typical Performance Characteristics Vs =

:5

Gain and Phase
Response VII Capacitive Load
with RL = 20 kO
50

m-

3
z

~

30

~
~

20

~

§,
~

Ph~

oIG

.....

"

II

10
Gain

...

-10
-20

iim~

-30
I

10k

m-

90

-,

,..611

~

Gain and Phase
Response vs Capacitive Load
with RL = 500 kO
50

'I. j2.

~.r.~

,
)--

45

~

3

~

1 ~
K
~

~

E
-45

~

§

lOOk

40
30

10

-10

~
0

-20
-30

:""':,l!

w'

H- ··\1111

if

1

'I.,'

10k

lOOk

140

~

120

1~
K
~

-45

m-

3

100

j...'1. =5 Ok

~

\ 1"-

'I. -20k

80

~

60

§,

40

'\
'\

"-

20

~
0

-20
0.01 0.1

1M

,

II

Non-Inverting Large
Signal Pulse Response
180

160

If

"""r-

\

I

1

~

140

iil

120

~u:

IDO

Stability vs Capacitive
Load, RL = 20 kO
10,000

~r--

~ 1.000

~
...

I

80
80
ID

100

Ik

,REQUENCY (Hz)

TIME(IOOI'./Dlv)

1\

TIME(IO I'./O'v)

r-

3

r-r-

I'" I

Non-Inverting Small
Signal Pulse Response

Crosstalk Rejection
vs Frequency
"ii'

kG

1\ -20k 1-'1'1,

TlME(IOO I'o/D'v)

TlME('OI'./D;v)

'I. '.0

FREQUENCY (Hz)

Inverting Large Signal
Pulse Response

II

!"-

I 10 100 Ik 10k lOOk 1M 10M

FREQUEIICY (Hz)

Inverting Small Signal
Pulse Response

,

45

.>

Open Loop
Frequency Response
ISO

90

lfflr~·pF
DOli

,REQUENCY (Hz)

\

~tl
G. -,

"

Ik

1M

'OpF!

PhoN",.

20

I

F

G."

±7.5V, TA = 25°C, Unless otherwise specified

u .....

iulru.

-"'l~

r

100
'0

~:~\O

~~I"rn-

...

10

I
-6-5-4-3-2-10 I 23456

OUTPUT VOLTADE(V)

Stability vs Capacitive
LoadRL = 1 MO
70

~:.~A

~

""l'bI

o II ill

o ..........

III
-6-5-4-3-2-10 I 2 3 4 5 6
OUTPUT VOLTAGE (V)
TUH/I1298-3

1-788

r-----------------------------------------------------------------------------~ ~

a::::

Applications Hints
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an oscillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Rgure 2a.

AMPLIFIER TOPOLOGY
The LMC6062 incorporates a novel op-amp design topology
that enables it to maintain rail-to-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional micropower op-amps. These features make the
lMC6062 both easier to design with, and provide higher
speed than products typically found in this ultra-low power
class.

+v

COMPENSATING FOR INPUT CAPACITANCE
20.n

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the
lMC6062.

G.OAD

Although the lMC6062 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.

90k

.-------------~~
10k

When high input impedances are demanded, guarding of
the lMC6062 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capaCitance as well.
(See Prlnted-Clrcult-Board Layout for High Impedance
Wont).

TUH/II298-5

FIGURE 2a. LMC6062 Nonlnvertlng Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads

The effect of input capacitance can be compensated for by
adding a capacitor. Place a capacitor, Ct, around the feedback resistor (as in Figure 1) such that:

In the circuit of F/{Jure 2a, R1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

1
1
---;,,--2'ITR,CIN 2'ITR2Ct
or

Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (F/{Jure 2b). Typically a pull up reSistor
conducting 10 /LA or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).
V+

R, CIN:S: R2Ct
Since it is often difficult to know the exact value of CIN, Ct
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the lMC660 and the
lMC662 for a more detailed discussion on compensating
for input capacitance.

~~,

R2

Rl

VIN

O-""""'M,......-,-.............

,

GN=
I

I

'ODD pF

> ....-oVOUT

TL/H/II298-14

FIGURE 2b. Compensating for Large Capacitive Loads
with a Pull Up Resistor

I
I

........

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK

TUH/II298-4

FIGURE 1. Canceling the Effect of Input CapaCitance

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires specia/layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the lMC6062, typically
less than 10 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are

CAPACITIVE LOAD TOLERANCE
All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is
normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load
on the amplifier. Capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see typical curves).

1-789

n
0)

!

Applications Hints (Continued)

Cl

quite simple. First; the user must not ignore the surface
leakage ,of the PC board, even though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.
To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6062's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two pOints at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6062's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current. See
Figures 48, 4b, 4c for typical connections of guard rings for
standard op-amp configurations.

Rl
INPUT

.J\I<1/Ir"-+......,;...-.lltAI'v--..
1
1
"I
, 1

Guard Ri ng -+1

OUTPUT

t:

TUH/11288-7

(a) Inverting Amplifier
R2

OUTPUT

TL/HI11288-8

(b) Non-Inverting Amplifier

OUTPUT
INPUT

-!---+-I
TL/H/11288-9

(c) Follower
FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-ta-point up-in-the-air wiring. See
Figure 5.

t..Guard Ring
TL/H/11298-6

FIGURE 3. Example of Guard Ring in P.C. Board Layout

1-790

Typical Single-Supply
Applications

Latchup
CMOS devices tend to be susceptible to latchup due to their
internal parasitic SCR effects. The (1/0) input and output
pins look similar to the gate of the SCA. There is a minimum
current required to trigger the SCR gate lead. The LMC6062
and LMC6082 are designed to withstand 100 rnA surge current on the 1/0 pins. Some resistive method should be used
to isolate any capacitance from supplying excess current to
the 1/0 pins. In addition, like an SCR, there is a minimum
holding current for any latchup mode. Limiting current to the
supply pins will also inhibit latchup susceptibility.

(V+ = 5.0 Voc)

The extremely high input impedance, and low power consumption, of the LMC6062 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features
high differential and common mode input resistance
(>10140), 0.01% gain accuracy at Av = 100, excellent
CMRR with 1 kO imbalance in bridge source resistance.
Input current is less than 100 fA and offset drift is less than
2.5 /JoV/'C. R2 provides a simple means of adjusting gain
over a wide range without degrading CMRR. R7 is an initial
trim used to maximize CMRR without using super precision
matched resistors. For good CMRR over temperature, low
drift resistors should be used.

fEEDBACK
CAPACITOR

SOLDER CONNECTION
TUH/I1298-10

(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board).

FIGURE 5. Air WIring

r
l.

9.1k

R3

R4

2Sk

2S0k

Rl,44.2k

R2

VIN

If Rl

~

2k

YOUT

pot

RS,44.2k

R6
2Sk

R7
224k
TLlH/tl298-11

R5. R3 ~ R6. and R4 ~ R7; then

&

YOUT ~ R2 + 2Rl X
YIN
R2
R3

:. Av '" 100 for circuR shown (R2

~

9.822k).

FIGURE 6. Instrumentation Amplifier

1-791

III

~

~

B
::!i

r---------------------------------------------------------------------------------,
Typical Single-Supply Applications (V+

= 5.0 Voe) (Continued)

~"""_OUTPUT

INPUT
, '~,

5tH

~CD4066
rL/H/1129B-12

FIGURE 7. Low-Leakage Sample and Hold
R4
10M
VOUT

I

Cl
O.068J.1 F

Rl
+5V

470k

TLlH/1129B-13

FIGURE 8. 1 Hz Square Wave..OSClllator

1-792

I!J1National Semiconductor

LMC6064 Precision CMOS Quad
Micropower Operational Amplifier
General Description

Features (Typical Unless Otherwise Noted)

The LMC6064 is a precision quad low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low
input bias current, high voltage gain, rail-to-rail output swing,
and an input common mode voltage range that includes
ground. These features, plus its low power consumption
make the LMC6064 ideally suited for battery powered applications.

•
•
•
•
•
•
•
•

Other applications using the LMC6064 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.
This device is built with National's advanced double-Poly
Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6084
precision quad operational amplifier.
For single or dual operational amplifier with similar features,
see the LMC6061 or LMC6062 respectively.

Low offset voltage
100 ",V
16 ",AI Amplifier
Ultra low supply current
Operates from 4.5V to 15V Single supply
Ultra low input bias current
10 fA
Output swing within 10 mV of supply rail, 100k load
Input common-mode range includes VHigh voltage gain
140 dB
Improved latchup immunity

Applications
•
•
•
•
•
•
•

Instrumentation amplifier
Photodiode and infrared detector preamplifier
Transducer amplifiers
Hand-held analytic instruments
Medical instrumentation
D/A converter
Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram
14-Pln DIP/SO
14 OUTPUT 4

OUTPUT 1
INVERTING INPUT 1

INVERTING INPUT 4
12 NON-INVERTING INPUT 4

NON-INVERTING INPUT 1

v-

V+
10

NON-INVERTING INPUT 2

NON-INVERTING INPUT 3

'9 INVERTING INPUT 3

INVERTING INPUT 2

8 OUTPUT 3

OUTPUT 2

TLlHI11466-1

Top View

Ordering Information
Temperature Range
Package

14-Pin
Molded DIP

14-Pin
Ceramic DIP

Transport
Media

LMC6064AIN
LMC60641N

N14A

Rail

LMC6064AIM
LMC6064IM

M14A

Rail
Tape and Reel

J14A

Rail

Industrial
-40"Cto +85"C

LMC6064AMN

14-Pin
Small Outline

NSC
Drawing

',Military
-55"Cto + 125"C

LMC6064AMJ

,1-793

•

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
Voltage at Input/Output Pin

± Supply Voltage
(V+) +0,3'i1,
(V-) -0.3V

Supply Voltage (V+ - V-)

16V

Output Short Circuit to V +

Current at Power Supply Pin
Power Dissipation

40mA
(Note 3)

±30mA

Operating Ratings (Note 1)

260"C
- 65"C to + 1SO"C
15O"C
2kV

Junction Temperature
ESD Tolerance (Note 4)

±10mA

Temperature Range
LMC6064AM
-55"C ~ TJ ~ + 125"C
LMCS064AI, LMC60641
-40"C ~ TJ ~ + 85"C
Supply Voltage
4.SV ~ V+ ~ 1S.5V
Thermal Resistance «(IJAl (Note 12)
14-Pin Molded DIP
81"C/W
14-PinSO
126"C/W
Power Dissipation
(Note 10)

(Note 11)
(Note 2)

Output Short Circuit to VLead Temperature (Soldering, 10 sec.)
Storage Temp. Range

Current at Input Pin
Current at Output Pin

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 2S"C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Va = 2.5V and RL > 1M unless otherwise specified.
Symbol
Vos

Parameter
Input Offset Voltage

TeVos

Input Offset Voltage
Average Drift

Is

Input Bias Current

los

Typ
(Note 5)

Conditions

100

Input Offset Current

Common Mode
Rejection Ratio

OV ~ VCM ~ 12.0V
V+ 7' 15\l

85

Positive Power Supply
Rejection Ratio

5V ~ V+ ~ 15V
Va = 2.SV

85

Negative Power Supply
Rejection Ratio

OV

Input Common-Mode
Voltage Range

V+ = 5Vand15V
for CMRR ~ 60 dB

Large Signal
Voltage Gain

350

800

8«)0

1300

~

V-

~

-10V

100
-0.4

RL = 100kO
(Note 7)

Sourcing

3000

Sinking
RL = 25kO
(Note 7)

4000

Sourcing

3000

Sinking

2000

1-794

5V,

Units
p,V
Max
p,VI"C

100

4

4

pA
Max

100

2

2

pA
Max

75

75

66

70

72

83

>10

V+ - 1.9
Av

350

1200

0.005

CMRR

VCM

LMC60641
Limit
{Note 6)

0.010

Input Resistance

-PSRR

LMC6064AI
Limit
(Note 6)

1.0

RIN

+PSRR

LMC6064AM
Limit
{Note 6)

=

TeraO

75

75

66

70

72

83

dB
Min
dB
Min

64

84

74

70

81

71

-0.1

-0.1

-0.1

0

0

0

V
Max

V+ - 2.3
Y+ - 2.8

V+ - 2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.5

V
Min

dB
Min

400

400

300

200

300

200

VlmV
Min

V/mV

180

180

90

70

100

80

Min

400

400

200

150

150

80

VlmV
Min

100

100

70

35

50

35

VlmV
Min

DC Electrical Characteristics

(Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.
Symbol
Vo

Parameter

Conditions
V+ = 5V
RL = 100 kO to 2.5V

Output Swing

Typ
(Note 5)
4.995
0.005

V+ = 5V
RL = 25 kO to 2.5V

4.990
0.010

V+ = 15V
RL = 100 kO to 7.5V

14.990
0.010

V+ = 15V
RL = 25 kO to 7.5V

14.965
0.025

10

Output Current
V+ = 5V

.
10

Is

Output Current
V+ = 15V

Supply Current

Sourcing, Vo = OV
Sinking, Vo = 5V
Sourcing, Vo = OV

22
21
25

Sinking, Vo = 13V
(Note 11)

35

All Four Amplifiers
V+ = +5V, Vo = 1.5V

64

All Four Amplifiers
V+ = + 15V, Vo = 7.5V

80

1·795

LMC6064AM
LImit
(Note 6)

LMC6064AI
Limit
(Note 6)

LMC60641
LImit
(Note 6)

4.990

4.990

4.950

4.970

4.980

4.925

0.010

0.010

0.050

0.030

0.020

0.075

4.975

4.975

4.950

4.955

4.985

4.850

0.020

0.020

0.050

0.045

0.035

0.150

Units
V
Min
V
Max
V
Min
V
Max

14.975

14.975

14.950

V

14.955

14.985

14.925

Min
V
Max

0.025

0.025

0.050

0.050

0.035

0.075

14.900

14.900

14.850

14.800

14.850

14.800

0.050

0.050

0.100

0.200

0.150

0.200

16

16

13

8

10

8

16

16

16

7

8

8

15

15

15

9

10

10

24

24

24

7

8

8

V
Min
V
Max
mA
Min
mA
Min
mA
Min
mA
Min

76

76

92

p,A

120

92

112

Max

94

94

114

p,A

140

110

132

Max

AC Electrical Characteristics

:'

."

Unless otherwise speeified. all limits guaranteed for TJ =- 25·C. 'Soldface limits al1ply at the temperature extremes. V+=- 5V.
V- =- OV. VCM =- 1.5V. Vo =- 2.5V and RL > 1M unless'otherwise spe6if~.

Symbol

SR'

GBW

8m
en

Parameter

Slew Rate

Typ

Conditions

(NoteS)

(Note 8)

35

Gain-Bandwidth Product
Phase Margin

LMC6064AM

LMC6064AI

Limit

Limit

LMC60641
Limit

(Note 6)

(Note 6)

(Note 6)

20

20

15

8

10

7

Units

V/ms
Min

100

kHz

50

Deg

Amp-to-Amp Isolation

(Note 9)

155

dB

Input-Referred Voltage Noise

F=-1kHz

83

nV/VHz

0.0002

pAlVHz

0.01

%

in

Input-Referred Current Noise

F =- 1 kHz

T.H.D.

Total Harmonic Distortion

F =- 1 kHz.Av =- -:5
RL

= 100kO. Vo = 2Vpp

±5VSupply
Note 1: Absolute Maximum Ratings Indicale limits beyond which damage Ie the device may occur. Operating Ratings Indicale condHions for which the device is
intended 10 be funcllonal. but do not guarantee specific psrformance limits. For guaranteed spsclilcetions and test conditions, see !he Electrical Characteristics.
The guaranteed specHicatlons apply only for !he lest condHions Iisled.
Note 2: Applies Ie both single-supply 'and splH-supply opsration. Continous short ci,cuH operation at elevate9 ambient tempsrature can result in exceeding the
maximum allowed iunction temperature of 15O"C. Output currents in excess of ± 30 rnA over long term may adversely affect rellabilHy.
Nole 3:'The maximUm pewer dissipation is a function of TJ(Max), BJA, arid TA. The maximum allowable power dissipation at eny ambient temperature Is Po
(TJ(Max).- TN/BaA.. '
Nole 4: Human body model, 1.5 kG in series wHh 100 pF.
Nole 5: Typical values represent the most likely parametric norm.
Note 8: All limits are. guaranteed by testing or sletiatical analysis.

= 15V, VCM = 7.5Vand RL connacted Ie 7.5V. For Sourcing tests, 7.5V ,; Vo ,; 11.5V. For Sinking lests, 2.5V ,; Vo ,; 7.5V.
= 15V. Connacted as Voltage Follower with 10V step input Number specified is the slower of the positive and negative slew rates.
Nole 9: Input referred V+ = 15V and RL = 100 kG connacted to 7.5V. Each amp,exciled in tum wHh 100 Hz to produce Vo = 12 Vpp.
Nole 10: For opsrating at elevaled lempsratures the device must be derated based on the thermal reslslence 6JA wHh Po = (TJ-TN/BJA.
Note 7: V+

Nole 8: V+

Nole 11: Do not connect output Ie V+, when V+ is greater !hen 13V or reliability witll be adversely affected.
Note 12: All numbers apply for packages soldered directly Into a PC board.
Note 13: For guaranteed Military Tempsrature Range parameters see RETSMC6064X.

\

1-796

=

Typical Performance Characteristics Vs = ± 7.5V, TA =
Distribution of LMC6064
Input Offset Voltage
(TA = +25"C)

25"C, Unless otherwise specified
Distribution of LMC6064
Input Offset Voltage
(TA = + 125°C)

Dlstrlblltlon of LMC6064
Input Offset Voltage
(TA = -55°C)
30
27

30~~~~~~~~~-.
570 A.mpllflers from 3 Waftr lots
27 V+=5V

g

~A;';:;;

24

g

~
S
:::

S

!::!

>

~
~

~

~
~

:

~ ~

? Y? ~

Q

~

~

:

N

:

G

N

~

?

~

?Y

~

0 0 0 0

OFFSET VOLTAGE (mV)

~

a

i

~

/

100fA

10fA

,.'

<'
..3

Ia

V

l/

~

~

50

75

100

125

80

150

...
.:!!.

70

II!
::IE

60

U

60

1/ f-

'0
20

~~

60

~

'0

.:!!.

~

-

8

10

~

~

16

-

-5

\

r--..

-10

I
I

10

100

1k

90

~

60

i

FREQUENCY (Hz)

Output Characteristics
Sourcing Current

Output Characteristics
Sinking Cu"ent

'\..

120

'~

--

o
10

100

.:!!.

~

0.001
0.001 0.01

0.1

10

OUTPUT SOURCE CURRENT (mA)

100

~O

i"""

z

~~

0.1

20

:!;

Gain

i

I
I

s

0.01
0.001
0.001

-20
0.01

0.1

10k

10

OUTPUT SINK CURRENT (mA)

100

'I. =500k

Ph ...
~

~

I

1k

Gain and Phase Response
vs Temperature
(-55"Cto + 125"C)

...

10

0.01

-- '--

r--

FREQUENCY (Hz)

+

~

6 8 10

30

10k

>

g
5

2 ,

150

III

iii

"""
1

... ~

I- 1\'.' Ok

1\=2k

Input Voltage Noise
vs Frequency

~
"!

FREQUENCY (Hz)

0.1

N

180

~ "l:Jsupl, \

0
lOOk

=

OUTPUT VOLTAGE (V)

I,

I

20

10k

~

:

~,.J.

-20
-10 -8 -6 -, -2 0

v+ sIIPP

'0
30

~

0000

I

1\ -100

..3

i

10 12 "

50

lk

...

"-"

S

-15

~

...

I

OFFSET VOLTAGE (mV)

/

80

100

I

Input Voltage
vs Output Voltage

100

!'L= Ok

'"
10

I

TOTAL SUPPLY VOLTAGE(Vdo)

!-o

0

100c:ici

Power Supply Rejection
Ratio vs Frequency

100

80

~

0

I-

TJ =25 0 C

Common Mode
Rejection Ratio
vs Frequency
~

o~ : ~ : ~

N

~

~

15

TEMPERATURE (DC)

90

N

~

N.

TJ =125 C

o
o

10DaA

25

•

000

20

100

IfA

0

0

N

120

v

V

1pA

•

9

Supply Current
vs Supply Voltage

100pA

~

~

15
12

OFFSET VOLTAGE (mV)

Input Bias Current
vs Temperature
10pA

~

2'
21
18

1k

90

,
'\
-,"

10k

lOOk

1M

FREQUENCY (Hz)

TL/H/I1466-2

1-797

•

Typical Performance Characteristics Vs =
Gain and Phasa
Responsa vs Capacitive Load
with RL = 20 kG .

± 7.5V, TA

= 25°C, Unless otherwise sj>ecified

Gain and Phasa
Responsa vs Capacitive Load
with RL = 500 kG

y'"

50 r-r-!'phm_"'IT"I"I.-rTTTT1T1T.oTp,TT1mn
'0 ~,,~t-H1I1f11o'l:rf+tHlll'-++H-ItHIIO

,

G,;; OpF

30

I\,G. =,

20

LV

10
O

160
"0 XI

~

~

p

Open Loop
Frequency Responsa

~

120I-'t'\d'"",:-+-+-+-+-+-+-+--;

'".~ t:

-G.=OP;ftIIIPH~ttitll'rn\ftttt1rt1fl
i ~'. oF'
f-H-+T~'rtfllilF-l-bl'!iR.w-titirtifl 0

100",=.0.1'

e ~

801-'-+-+-'''''".+.-+-+-+-+-1
60

~ §
w

Invertll!g Small Signal
Pulse Responsa

,

lOOk

_::

1M

' ,

... ='0 • .0

~=.L.:.:;O.;J.:~-L. :.~

L-L-L-L-.l....

0.01 0.1 1 10 100 lk 10k lOOk '" lOW

FREQUENCY (Hz)

FREQUENCY (Hz)

\

10k

"

40

~: ~~fi-tffiIllr~+l'MttI-'5 ~
lk

-.00.

-"TOol

FREQUENCY (Hz)

Inverting Large Signal
Pulse Response

Non-Inverting Small
Signal Pulsa Response

II

II

TIWE(100 "./Di.)

TI"E(10 "./Di.)

Non-Inverting Large
Signal Pulse Responsa

TIME(10"./DI.)

Crosstalk Rejection
vs Frequency

StabUlty vs Capacitive
Load, RL = 20 kG
10,000 ""'-'-"T""T""1"""T-r--.-r-r-,--,

~

~
~~

9

--~

w

100

\

f-++-I-ttfttl--+-IH-1ftH-H

80f--~+++H~-H"tH-H

I

~~+4~~-+~:~~

1,000

:u. ill<

~

'".m""I,
\[

I

11 .•

t-

~~ .tlon

100 H-++t+-l~4-+-H-+-I
10K

rahoot

10 H-+~+-I-+++-H-+-I
1~-L~-L~-L~~~

100
TI"E(100 "./Di.)

1k

-6-5-'-3-2-10 1 2 3 , 5 6
OUTPUT VOLTAGE (V)

FREQUENCY (Hz)

Stability vs Capacitive
LoadRL = 1 MG

+,

... =t.ff-'
on

70 P"'IItJt--r-,H~+H~·
nstable

0101I8t1on

-8 -5 -, -3 -2 -1 0 1 2 3 , 5 6

OUTPUT VOLTAGE (V)
TLlH/11466-3

1-798

Applications Hints
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an oscillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 28.

AMPLIFIER TOPOLOGY
The LMC6064 incorporates a novel op-amp design topology
that enables it to maintain rail-to-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional micropower op-amps. These features make the
LMC6064 both easier to design with, and provide higher
speed than products typically found in this ultra-low power
class.

+V

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the
LMC6064.
Although the LMC6064 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capaCitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.

20n

'1.0AD

1000 pr
90k

.-------------~~

When high input impedances are demanded, guarding of
the LMC6064 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capacitance as well.
(See Printed-Clrcult-Board Layout for High Impedance
Work).

TL/H/I1466-5

FIGURE 2a. LMC6064 Nonlnvertlng Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads

The effect of input capaCitance can be compensated for by
adding a capacitor. Place a capacitor, Gj, around the feedback reSistor (as in Figure 1) such that:

1

I

In the circuit of Figure 28, R1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

1

---;;,--2'1TRICIN 2'1TR2Gj
or

Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Figure 2b). Typically a pull up resistor
conducting 10 /LA or more will significantly'improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

Rl CIN';;; R2 C,
Since it is often difficult to know the exact value of CIN, Gj
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the. LMC660 and the
LMC662 for a more detailed discussion on compensating
for input capacitance.

V+

,"o~t

R2

VIN

RI

O---'\M_ _,-_~-I
I

GN=
I

--

.I

> ......-oVOUT

TLlH/II466-6

FIGURE 2b. Compensating for Large Capacitive Loads
with a Pull Up Resistor

I
I

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6064, typically
less than 10 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are

TLlH/11466-4

FIGURE 1. Canceling the Effect of Input CapaCitance
CAPACITIVE LOAD TOLERANCE
All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is
normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load
on the amplifier. Capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see typical curves).

1-799

Applications Hints (Continued>
quite simple. First,
leakage of the PC
appear acceptably
humidity or dust or
be appreciable.

Cl

the user must not ignore the surface
board, even though it may sometimes
low, because under conditions of high
contamination, the surface leakage will

-.ItI\,.,.-..

Rl
INPUT

To minimize the effect of any surface leakage, lay out a ring
of foil completely surrounding the LMC6064's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leaka~e current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6064's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current. See
Figures 48, 4b, 4c for typical connections of guard rings for
standard op-amp configurations.

-¥N............

OUTPUT

TL/H/11466-8

(a> Inverting Amplifier
R2

OUTPUT

TL/H/11466-9

(b) Non-Inverting Amplifier

OUTPUT
INPUT

-!--+-I
TLlH/11466-10

(e) Follower
FIGURE 4. Typical Connections of Guard Rings
t.GUard Ring

The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using pOint-ta-point up-in-the-air wiring. See
Figure 5.

TLlH/11466-7

FIGURE 3. Example of Guard Ring In P.~. Board Layout

1-800

Latchup

Typical Single-Supply
Applications

CMOS devices tend to be susceptible to latchup due to their
internal parasitic SCA effects. The (1/0) input and output
pins look similar to the gate of the SCA. There is a minimum
current required to trigger the SCA gate lead. The LMC6064
and LMC6082 are designed to withstand 100 mA surge current on the 1/0 pins. Some resistive method should be used
to isolate any capacitance from supplying excess current to
the 1/0 pins. In addition, like an SCA, there is a minimum
holding current for any latchup mode. Limiting current to the
supply pins will also inhibit latchup susceptibility.

(V+ = 5.0 VOC)
The extremely high input impedance, and low power consumption, of the LMC6064 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features
high differential and common mode input resistance
(>10140), 0.01% gain accuracy at Av = 100, excellent
CMRR with 1 kO imbalance in bridge source resistance.
Input current is less than 100 fA and offset drift is less than
2.5 p.VloC. R2 provides a simple means of adjusting gain
over a wide range without degrading CMRA. R7 is an initial
trim used to maximize CMAA without using super precision
matched resistors. For good CMRR over temperature, low
drift resistors should be used.

FEEDBACK
CAPACITOR

TLlH/II466-11

(Input pins are lifted out of PC board end soldered direcUy to components.
All other pins connected to PC bosrd).

FIGURE 5. Air Wiring

r
l.

R3

R4

25k

250k

9.1k
R2
2k

VIN

If Rl

~

O -..... VOUT

pot

Rs. R3

R5,44.2k

R6
25k

R7
224k
TLlH/I1466-12

~

Re. end

~ ~

R7; then

VoUT = R2 + 2Rl X &
VIN
R2
Rs
:.Av '" 100 for circuit shown (R2

= 9.822k).

FIGURE 6. Instrumentation Amplifier

1-801

~ r-------~--------------------------------------------------------~--------------,

!

Typical Single-Supply Applications (V+

= 5.0 Vee) (Continued)

(.)

~
> ......... OUTPUT
INPUT

S/H

TL/HI11466-13

FIGURE 7. Low-Leakage Sample and Hold
R4

1011
VOUT

I

Cl
O.068J.1 F

R2

Rl
+5V

470k

R3
470k

470k

TUH/11466-14

FIGURE 8. 1 !iz Square Wave Oscillator

1·802

f:}1National Semiconductor
LMC6081 Precision CMOS Single Operational Amplifier
General Description

Features (Typical unless otherwise stated)

The LMC6081 is a precision low offset voltage operational
amplifier, capable of single supply operation. Performance
characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an Input common
mode voltage range that includes ground. These features,
plus its low offset voltage, make the LMCS081 ideally suited
for precision circuit applications.

•
•
•
•
•
•
•

Other applications using the LMC6081 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits.
This device is built with National's advanced Double-Poly
Silicon-Gate CMOS process.
For designs with more critical power demands, see the
LMC6061 precision micropower operational amplifier.
For a dual or quad operational amplifier with similar features, see the LMCS082 or LMCS084 respectively.

Low offset voltage
150 ",V
Operates from 4.5V to 15V single supply
Ultra low input bias current
10 fA
Output swing to within 20 mV of supply rail, 100k load
Input common-mode range includes VHigh voltage gain
130 dB
Improved latchup immunity

Applications
•
•
•
•

Instrumentation amplifier
Photodiode and infrared detector preamplifier
Transducer amplifiers
Medical instrumentation
• DIA converter
• Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram
8-Pin DIP/SO

'-./ !.. NC
~ 2.. If'"
NON-INVERTIN~ 1.
+
.!... OUTPUT
INPUT
V-.!
1. Ne
NC

..!.

INVERTING INPUT 2.

TL/H/11423-1

Top View

Ordering Information
r--------.-------------------------.------.---------~

Package

8-Pin
Molded DIP
8-Pin
Small Outline

Temperature Range
NSC
Military
Industrial
Drawing
- S5"C to + 12SOC - 40"C to + 8SOC
LMC6081AMN

Transport
Media

LMCS081AIN
LMC6081IN

N08E

Rail

LMCS081 AIM
LMCS0811M

M08A

Rail
Tape and Reel

1-803

Absolute Maximum Ratings (Note 1)
If Military/Aerospace speclfled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
± Supply Voltage
Voltage at Input/Output Pin
(V+) +0.3V,
(V-) -0.3V
Supply Voltage (V+ - V-)

ESD Tolerance (Note 4)
Current at Input Pin
Current at Output Pin
Current at Power Supply Pin
Power Dissipation

16V
(Note 10)

Output Short Circuit to V +
Output Short Circuit to v-

40mA
(Note 3)

Operating Ratings (Note 1)
Temperature Range
LMC6081AM
LMC6081AI, LMC6081I
Supply Voltage

(Note 2)

Lead Temperature (Soldering, 10 Sec.)
Storage Temp. Range
Junction Temperature

2kV
±10mA
±30mA

26O"C
-65"C to + 150"C
150"C

-55°C,;;; TJ';;; + 125°C
-40"C';;; TJ ,;;; +85°C
4.5V,;;; V+ ,;;; 15.5V

Thermal Resistance (8JAl, (Note 11)
N Package, 8-Pin Molded DIP
M Package, 8-Pin Surface Mount
Power Dissipation (Note 9)

115°C/W
193°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteect for TJ = 25°C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified.
Symbol
Vos

Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

Ie

Input Bias Current

los

Conditions

Parameter

Typ
(NoteS)
150

Input Offset Current
Input Resistance
OV ,;;; VCM ,;;; 12.0V
V+ = 15V

85

Positive Power Supply
Rejection Ratio

5V,;;; V+ ,;;; 15V
Vo = 2.5V

85

Negative Power Supply
Rejection Ratio

OV';;;

v-,;;;

94

Input Common-Mode
Voltage Range

V+ = 5Vand15V
for CMRR ~ 60 dB

Large Signal
Voltage Gain

350

800

800

1300

-10V

-0.4

RL = 2kO
(Note 7)

Sourcing
Sinking

RL = 6000
(Note 7)

Sourcing
Sinking

1400
350
1200
150

1-804

5V,

Units
p.V
Max
p.V/oC

100

4

4

pA
Max

100

2

2

pA
Max

75

75

66

72

72

83

>10

V+ -1.9
Av

350

1000

0.005

Common Mode
Rejection Ratio

VCM

LMC6081 I
Limit
(Note 6)

0.010

RIN

-PSRR

LMC6081AI
Umlt
(Note 6)

1.0

CMRR
+PSRR

LMC6081AM
Limit
(Note 6)

=

TeraO

75

75

66

72

72

83

dB
Min
dB
Min

84

84

74

81

81

71

-0.1

-0.1

-0.1

0

0

0

V
Max

V+ - 2.3
Y+ - 2.8

V+-'2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.5

V
Min

VlmV

dB
Min

400

400

300

300

300

200

Min

180

180

90

VlmV

70

100

80

Min

VlmV

400

400

200

150

150

80

Min

100

100

70

35

50

35

V/mV
Min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25'C. Boldtace limits apply at the temperature extremes. V + = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.
Symbol
Vo

Parameter

Conditions

Output Swing

V+ = 5V
RL = 2 kO to 2.5V

Typ
(Nota 5)
4.87
0.10

V+ = 5V
RL = 6000 to 2.5V

4.61
0.30

V+ = 15V
RL = 2 kO to 7.5V

14.63
0.26

V+ = 15V
RL = 6000 to 7.5V

13.90
0.79

10

Output Current
V+ = 5V

Sourcing, Vo = OV
Sinking, Vo = 5V

10

Output Current
V+ = 15V

Sourcing, Vo = OV
Sinking, Vo = 13V
(Note 10)

Is

Supply Current

V+ = +5V, Vo = 1.5V
V+ = + 15V, Vo = 7.5V

22
21
30

34
450
550

1-805

LMC6081AM
Limit
(Nota 6)

LMC6081AI
Umlt
(Note 6)

LMC6081I
Limit
(Note 6)

4.80

4.80

4.75

4.70

4.73

4.87

0.13

0.13

0.20

0.19

0.17

0.24

4.50

4.50

4.40

4.24

4.31

4.21

0.40

0.40

0.50

0.83

0.50

0.83

14.50

14.50

14.37

14.30

14.34

14.25

0.35

0.35

0.44

0.48

0.45

0.58

13.35

13.35

12.92

12.80

12.88

12.44

Units
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min

1.16

1.16

1.33

1.42

1.32

1.58

16

16

13

mA

8

10

8

Min
mA
Min

16

16

13

11

13

10

28

28

23

18

22

18

28

28

23

19

22

18

750

750

750

900

900

900

V
Max

mA
Min
mA
Min
",A
Max

850

850

850

".A

950

950

950

Max

....

CD

AC Electrical Characteristics

CI

CD

o
~

Unless otherwise specified, all limits guaranteed for TJ
V-

=

OV, VCM

Symbol

SR

GBW

=

1.5V, Vo

=

>

2.5Vand RL

Parameter

Slew Rate

=

25"C, Boldtacelimits apply at the temperature extremes. V+

=

5V,

1M unless otherwise specified.

Typ

Conditions

(Note 5)

(NoteS)

1.5

Gain-Bandwidth Product

LMC6081AM

LMC6081AI

Limit

Umlt

LMC6081
Umlt

(Note 6)

(Note 6)

(Note 6)

O.S

0.8

O.S

0.5

0 ••

0 ••

1.3

Units

V/p.s
Min
MHz

'
.3

'"

~~
~

50

75

100

125

o

150

Common Mode
Rejection Ratio
vs Frequency

100

!

70

~
~

~

60

i:l

2

4

6

8

10 12 14 16

50

-r-. V_~~'~

1-t-+-!-++'--J"o.:I-t-'-'t--I

" r\

40~~-+-t-+-r-r~~

~

40

20~~-+-t-+-r-r~~

30

O'-L:...JL......J~L......J~~~-'~

10

100

lk

10k

1

lOOk

10

100

lk

10k

FREQUENCY (Hz)

FREQUENCY (Hz)

Output Characteristics
Sourcing Current

Output Characteristics
Sinking Current

I
o>~

~
"$

80

'"iii

60

~~

...... ~
~ ...1=5

Ok

... =2k

2 4

o.OOt
0.001 0.01

0.1

10

OUTPUT SOURCE CURRENT (mA)

100

\
r'\..

40
20

r--....

~

10

100

lk

o~

10k

Gain and Phase Response
vs Temperature
(-55·C to + 125"C)

...

60

1"4

z

40

~

... =2k

,

~

20

,

§
is

0.01

.. 0.001
0.001

6 8 10

o

~

0.1

~

g

- . 'I. l.Jo

~

~

!';
-20
0.01

0.1

0

120

~

0.01

N

~

m

100

~

10

0.1

N

~

FREQUENCY (Hz)

+

10

m

000

Input Voltage Noise
vs Frequency

lOOk

>

S!

•

N.

I
I

~

60

0

OUTPUT VOLTAGE (V)

"'1"
~d=:::j:::H~=t.st;;;t1

80

N

-40
-10 -8 -6 -4 -2 0

120 r-lr-T---r-r--r-r...,-r:-"""'7.""I

=

F

80

~

r-

-10

-20

Power Supply Rejection
Ratio vs Frequency

100

...

10

TOTAL SUPPLY VOLTAGE (V)

TEMPERATURE (·C)

90

r-

20

-30

25

•

Input Voltage
vs Output Voltage

OE-~~~~--~~~~

o

~

•

40

1fA
100aA

~

OFFSET VOLTAGE (mV)

/'

1pA

N

? 1? Y

000 0

/

10pA

~ tOfA

N

800.-'-.-~-'--.-.--r-'

~

~

•

OFFSET VOLTAGE (mV)

100pA

i

~

•

~

? ? ??

000 0

10

OUTPUT SINK CURRENT (mA)

100

lk

10k

lOOk

1M

90

45

-45
10M

FREQUENCY (Hz)

TL/H/II423-2

1-807

Typical Performance Characteristics (Continued)
Vs = ±7.5V, TA = 25°C, Unless otherwise specified
Gain and Phase
Response vs Capacitive Load
with RL = 6000
60 r-

I\. =60

r40

....3

20

~

Open Loop
Frequency Reli!ponse
'ai'

r:--

90

I-

z

Gain and Phase"
Response vs Capacitive Load
with RL = 500 kO

rr-

45

OI-

0

3
z

40

1
!

~

....
3

~

",-SOOkA

",1\.='.

120 ---r-< r-..

100~~+F=r~~~-+-+~~~
80
80

0

40

~

~ ~ 80Q"-I'-'.3I.--I--I--I-+-I
~

H-+-+--+-+I"-'k~i "t ..

20r-r-r-+-+-+-+-~~~

l-20

140

20

z

iE

160 r-r-r-r--r--r--r--r--r--,

r-

o f-I-I-f-,-If-II\. •• ooM..
.......O~

-20

-45

-20

"10k

lOOk

1M

10k

10M

FREQUENCY (Hz)

Inverting Small Signal
Pulse Response

0.010.1 1 10100 lk 10k 100klM 10M

'FREQUENOY (Hz)

FREQUENCY (Hz)

Inverting Large Signal
Pulse Response

Non-Inverting Small
Signal Pulse Response

\

v
TlUE(lps/Dlv)

TlME(lp,/Dlv)

Non-Inverting Large
Signal Pulse Response

TIME (lps/Div)

Stability vs Capacitive
Load, RL = 6000
10000

..9

u .....

l:: 1000

~

~

~

I

100

~:tJ

J;t

aU ",.

....

••

..hoot ...

180

160

"'~1 .• 0 '"~ • .!.
AY=+

ptcll.to•.••
Unstablai_
P"

~

140

~

120~-+1-~~~+-~-+1

~

100~-+1-~f-+~+-~-+~

~

80~-+1'-5~~f-"+h-~If-+~~~

~ 4080~:$~~~:E~~=t~
~

10

1~~~~~~~~~~

TIME (lpo/Div)

Stability vs Capacitive
LoadRL = 1 MO

20~~~~~~~~~~

-6-5-4-3-2-10 1 2345 8

-8-5-4-3-2-10' 23458

OUTPUT VOLTAGE (V)

OUTPUT VOLTAGE (V)

TLlHI11423-3

1-808

Applications Hints
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an OSCillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 2a.

AMPLIFIER TOPOLOGY
The LMC6081 incorporates a novel op-amp design topology
that enables it to maintain rail-to-rail output swing even
when driving a large load. Instead of relying on a push-pull
unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low
output impedance and large gain. Special feed-forward
compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than
traditional micropower op-amps. These features make the
LMC6081 both easier to design with, and provide higher
speed than products typically found in this ultra-low power
class.

+V

0.1 ).IF

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the
LMC6081.
Although the LMC6081 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of
the LMC6081 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capacitance as well.
(See Printed-Circuit-8oard Layout for High Impedance

20n

G.OAD
1000 pF

t-______________~9AOAk~

TL/H/11423-5

FIGURE 2a. LMC6081 Noninvertlng Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

Work).

1

1

2'ITR2C,

:r:

10k

The effect of input capacitance can be compensated for by
adding a capacitor, c" around the feedback resistors (as in
Agure 1) such that:
2'ITR1C'N

VOUT

---~---

Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Figure 2b). Typically a pull up resistor
conducting 500 p,A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see electrical characteristics).

or
Rl C,N s: R2 C,
Since It is often difficult to know the exact value of C,N, C,
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and LMC662 for
a more detailed discussion on compensating for input capacitance.

V+

~',

R2

Rl
Y,N O--J.>M _ _•_ _"'''''

•
GN~

~_""'OVOUT

I

TLlH111423-14

I

I
..-.

FIGURE 2b: Compensating for Large
Capacitive Loads with a Pull Up Resistor

TL/H/11423-4

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6081, typically
less than 10 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are
quite Simple. First, the user must not ignore the surface

FIGURE 1. Cancelling the Effect of Input Capacitance
CAPACITIVE LOAD TOLERANCE
All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is
normally included in this integrator stage. The frequency location of the dominant pole is affected by the reSistive load
on the amplifier. Capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see typical curves).
1-809

~.

~
:::&

...I

,------------------------------------------------------------------------------------------,
Applications Hints (Continued)
C1

leakage of the PC board, eve.n though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.
To minimize the effect of ariy surface leakage, layout a ring
of foil completely surrounding the LMC6081's inputs and the
terminals .of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-ta-pad resistance of 10120,
which is normally considered a very large resistance, could
. leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6081's actual perforl)1ance. However, if a guard
ring is held within 5 mV of the inputs, then even·a resistance
. of 1011 0 would cause only 0.05 pA of leakage current. See
Figures 48, 4b, 40 for typical connections of guard rings for
standard op-amp configurations.

R1
INPUT """,W~"""""--'IJ\fV--"
I
I

I
I

Guard Ring -+I

r

OUTPUT

I

TLlH/II423-7

(a) Inverting Amplifier
R2

OUTPUT

TLlHI1142S-8

(b) Non-Inverting Amplifier

OUTPUT

TLlH/II423-9

t.Guar~

(c) Follower
FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth
the effort of using point-to-point up-in-the-air wiring. See Figure5.

Ring
TL/H/II423-6

FIGURE 3. Example of Guard Ring in P.C. Board Layout

rEEDBACK
CAPACITOR

TLlHI1142S-10

(Input pins ara lifted out of PC board and soldered diracUy to components.
All other pins connected to PC board).

FIGURE 5. Air Wiring

1-810

Typical Single-Supply
Applications

Latchup
CMOS devices tend to be susceptible to latchup due to their
internal parasitic SCR effects. The (1/0) input and output
pins look similar to the gate of the SCA. There is a minimum
current required to trigger the SCR gate lead. The LMC6061
and LMC6081 are designed to withstand 100 mA surge current on the 1/0 pins. Some resistive method should be used
to isolate any capacitance from supplying excess current to
the 1/0 pins. In addition, like an SCR, there is a minimum
holding current for any latchup mode. Limiting current to the
supply pins will also inhibit latchup susceptibility.

(V+ = 5.0 Vocl
The extremely high input impedance, and low power consumption, of the LMC6081 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features
high differential and common mode input resistance
(>10140),0.01% gain accuracy at Av = 1000, excellent··
CMRR with 1 kO imbalance in bridge source resistance.
Input current is less than 100 fA and offset drift is less than
R2 provides a simple means of adjusting gain
2.5
over a wide range without degrading CMRA. R7 is an initial
trim used to maximize CMRR without using super precision
matched resistors. For good CMRR over temperature, low
drift resistors should be used.

p.vrc.

r
l,

9.1k

VIN

R3

R4

10k

lOOk

Rl,44.2k

R2
2k
pot

>-.... VOUT

R6
10k

R7
91k
TUH/11423-11

:. Av '" 100 for circu~ shown (R2

= 9.822k).

FIGURE 6. Instrumentation Amplifier

1-811

I
....

Typical Single-Supply Applications

(V+ = 5.0 Voc) (Continued)

....
> ....._

OUTPUT

INPUT

S/H

~CD4066
TUH/11423-12

FIGURE 7. Low-Leakage Sample and Hold
R4
10M

I

Cl
0.068 PF

R2

Rl

470k

R3

470k

470k
TL/H/11423-13

FIGURE 8. 1 Hz Square Wave Oscillator

1-812

r--------------------------------------------------------------------------------.r-

i

f}1National Semiconductor

LMC6082 Precision CMOS Dual Operational Amplifier
General Description

Features (Typical unless otherwise stated)

The LMC6082 is a precision dual low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high
voltage gain, rail-to-rail output swing, and an input common
mode voltage range that includes ground. These features,
plus its low offset voltage, make the LMC6082 ideally suited
for precision circuit applications.
Other applications using the LMC6082 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits.
This device is built with National's advanced Double-Poly
Silicon-Gate CMOS process.
For designs with more critical power demands, see the
LMC6062 precision dual micropower operational amplifier.

•
•
•
•
•
•
•

Low offset voltage
150 ,..V
Operates from 4.5V to 15V single supply
Ultra low input bias current
10 fA
Output swing to within 20 mV of supply rail, 100k load
Input common-mode range includes VHigh voltage gain
130 dB
Improved latchup immunity

Applications
•
•
•
•
•
•

Instrumentation amplifier
Photodiode and infrared detector preamplifier
Transducer amplifiers
Medical instrumentation
D/A converter
Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram

I
a-Pin DIP/SO

U

OUTPUT A...2

,w~~.~ • ~
...!

NON~NVERTING
INPUT A

3

-

~ yo
,

++IE- ~

4
v--t-----' .._ - tS_

'''"'''
INVERTING INPUT a
NON~.VERTING

INPUT a

TL/H/11297-1

TopYlew

Ordering Information

r---------r-------------------------r------r---------,
Temperature Range
Package

8-Pin
Molded DIP
8-Pin
Small Outline

NSC

Industrial
Military
Drawing
- 55'C to + 125'C - 40'C to + 85'C
LMC6082AMN

LMC6082AIN
LMC60821N
LMC6082AIM
LMC6082IM

Transport
Media

N08E

Rail

M08A

Rail
Tape and Reel

For MIL-sTD-aa3C qualified products, please contact your local National
Semiconductor Sales Office or Distributor for availability and specification
Information.

1-813

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
OHlce/Dlstributors for availability and specifications.
Differential Input Voltage
± Supply Voltage
(V+). +0.3V,
Voltage at Input/Output Pin
(V-) -0.3V
Supply Voltage (V+ - V-)
Output Short Circuit to V-,
Lead Temperature (Soldering, 10 Sec.)
Storage Temp. Range
Junction Temperature
ESD Tolerance (Note 4)

±10mA

Current at Power Supply Pin
Power Dissipation

40mA
(Note 3)

±30mA

Operating Ratings (Note 1)

16V
(Note 11)
(Note 2)

Output Short Circuit to V +

Current at Input Pin
Current at Output Pin

Temperature Range
LMC6082AM
LMC6082AI, LMC60821
Supply Voltage

260'C
- 65'C to + 150'C
150'C
2kV

-55'C ,s;; TJ ,s;; + 125'C
-40'C,s;; TJ ,s;; +85'C
4.5V,s;; V+ ,s;; 15.5V

Thermal Resistance (6JAl (Note 12)
8-Pin Molded DIP
8-PinSO

115'C/W
193'C/W

Power Dissipation

(Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25'C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified.

Symbol
Ves

Parameter
Input Offset Voltage

TCVes

Input Offset Voltage
Average Drift

18

Input Bias Current

los

Conditions

Typ
(Note 5)
150

Input Offset Current
Input Resistance
Ov,s;; VCM ,s;; 12.0V
V+ = 15V

85

Positive Power Supply
Rejection Ratio

5V,s;; V+ ,s;; 15V
Vo = 2.5V

85

Negative Power Supply
Rejection Ratio

OV,s;;V-,s;;-10V

94

Input Common-Mode
Voltage Range

V+ = 5Vand 15V
for CMRR ~ 60 dB

Large Signal
Voltage Gain

350

800

800

1300

-0.4

RL = 2kO
(Note 7)

Sourcing
Sinking

RL = 6000
(Note 7)

Sourcing
Sinking

1400
350
1200
150

1-814

5V,

Units
p.V
Max

p.V/'C

100

4

4

pA
Max

100

2

2

pA
Max

75

75

66

72

72

83

>10

V+ - 1.9
Av

350

1000

0.005

Common Mode
Rejection Ratio

VCM

LMC60821
Limit
(Note 6)

0.010

RIN

-PSRR

LMC6082AI
Limit
(Note 6)

1.0

CMRR
+PSRR

LMC6082AM
Limit
(Note 6)

=

TeraO

75

75

66

72

72

83

dB
Min
dB
Min

84

84

74

81

81

71

-0.1

-0.1

-0.1

0

0

0

V
Max

V+ - 2.3
Y+ - 2.8

V+ - 2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.5

V
Min
VlmV
Min

400

400

300

300

300

200

180

180

90

70

100

80

400

400

200

150

150

80

100

100

70

35

50

35

dB
Min

V/mV
Min
V/mV
Min
V/mV
Min

DC Electrical Characteristics

(Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.

Symbol
Vo

Parameter

Conditions

Output Swing

V+ = 5V
RL = 2 kO to 2.5V

Typ
(Note 5)
4.87
0.10

V+ = 5V
RL = 6000 to 2.5V

4.61
0.30

V+ = 15V
RL = 2kOt07.5V

14.63
0.26

V+ = 15V
RL = 6000 to 7.5V

13.90
0.79

10

Output Current
V+ = 5V

Sourcing, Vo = OV
Sinking, Vo = 5V

10

Output Current
V+ = 15V

Sourcing, Vo = OV
Sinking, Vo = 13V
(Note 11)

IS

Supply Current

22
21
30

34

Both Amplifiers
V+ = +5V, Vo = 1.5V

0.9

Both Amplifiers
V+ = +15V, Vo = 7.5V

1.1

1-815

LMC6082AM
Umlt
(Note 6)

LMC6082AI
Limit
(Note 6)

LMC60821
Limit
(Note 6)

4.80

4.80

4.75

4.70

4.73

4.87

0.13

0.13

0.20

0.19

0.17

0.24

4.50

4.50

4.40

4.24

4.31

4.21

0.40

0.40

0.50

0.83

0.50

0.83

14.50

14.50

14.37

14.30

14.34

14.25

0.35

0.35

0.44

0.48

0.45

0.58

13.35

13.35

12.92

12.80

12.8.

12.44

1.16

1.16

1.33

1.42

1.32

1.58

16

16

13

8

10

8

16

16

13

11

13

10

28

28

23

18

22

18

28

28

23

19

22

18

1.5

1.5

1.5

1.8

1.8

1.8

1.7

1.7

1.7

2

2

2

Units
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
mA
Min
mA
Min
mA
Min
mA
Min
mA
Max
mA
Max

AC Electrical Characteristics

=

Unless otherwise specified, all limits guaranteed for T J
25°C, Boldface limits apply at the temperature extremes. V+
VOV, VCM
1.5V, Vo
2.5Vand RL > 1M unless otherwise specified.

=

Symbol

SR

=

=

Parameter

Slew Rate

Typ

Condltlona

(Note 5)

(NoteS)

1.5

LMC6082AM

LMC6082A1

Limit

Limit

Limit

(Note 6)

(Note 6)

(Note 6)

= 5V,

LMC60821

O.S

O.S

O.S

0.5

0 ••

0 ••

Units

VllI-s
Min

GBW

Gain-Bandwidth Product

1.3

MHz

4'm

Phase Margin

50

Deg

Amp-to-Amp Isolation

(Note 9)

140

dB

Input-Referred Voltage Noise

F=

22

nVlVHz

in

Input-Referred Current Noise

F = 1 kHz

0.0002

pAlVHz

T.H.D.

Total Harmonic Distortion

F = 10kHz,Av =

0.01

%

en

RL

1 kHz

-10

= 2 kO, Vo = S Vpp

±5VSupply
Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur. Operating Ratings indicate condittons for which the device Is
Intended to be functional. but do not guarantee specffic performance limits. For guaranteed spectfications and test conditions, see the Electrical Characteristics.
The guaranteed specifications epply only for the test conditions listed.
Note 2: Appllas to both single-supply and spill-supply operation. Continuous short clrcuH operation at elevated ambient temperature can reouR in exceeding the
maximum allowed junction temperatura of 15O'C. Output currents In excess of ± 30 rnA over long term may adversely affect reliability.
Note 3: 'The maximum power disslpetion is a function of TJ(Max). 8JA, and TA. The maximum allowable power dissipation at any ambient temperature is
Po = (TJ(Max) - TAl/8JA.
Note 4: Human body model. 1.5 kG In series wHh 100 pF.
Note 5: Typical values represent Iha mosi likely parametric norm.
Note 6: All limits are guaranteed by testing or atatisticaJ analysis.
Note 7: V+ = 15V. VCM = 7.5Vand RL connected to 7.5V. For Sourcing tests. 7.5V s; Vo s; 11.5V. For SInking tests, 2.5V s; Vo s; 7.5V.
Note 8: V+ = 15V. Connecled as VoHage Follower wHh 10V step Input Numbar spectfied Is the slower of the positive and negative slew rates.
Note 9: Input re1erred V+ = 15V and RL = 100 kG connected to 7.6V. Each amp excited in turm wHh 1 kHz to produce Vo = 12 Vpp.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resiatance 8JA with Po = (TJ - TAl/8JA' All numbers apply for
packages soldered directly into a PC board.
Note 11: Do not connecl output to V+ • when V+ is greater than 13V Or reliability will be adversely affected.
Note 12: All numbers apply for packagas soldered directiy into a PC board.

1-S16

Typical Performance Characteristics Vs =
Distribution of LMC6082
Input Offset Voltage
(TA = +25·C)

~
~

~

N

~

y

~

•

•

N

0

~?

~

•

N

N.

~

~
~

Distribution of LMC6082
Input Offset Voltage
(TA = -55·C)

~

N

•

OFFSET VOLTAGE (mV)

Input Bias Current
vs Temperature

lOlA

,"

IfA

100aA

TO. •
N

N.

N

r-,--r-....,.--,r--r--r--,---,

1.75

1-+-+-+---1f-+-+-+--l

o

25

50

75

30

'>

20

~

10

I\L.J.
'I T

f-

f-:-:

-10
§ -20 1\-"

125

150

1-"'I-+-+---1f-+-+-+--l

TEMP£RATURE(·C)

ci

I'-.::::.L

§!

100

=~

40

.3

0/
o 246 8 W

~ ~ ~
0 ci ci

Input Voltage
vs Output Voltage

2.00

0.25

0

OFFSET VOLTAGE(mV)

""'"

:/

:? ~; ;?
~ =

N

~

•

~

0000

Supply Current
vs Supply Voltage

/

~ 100lA

~

•

/'

1pA

a

•

Distribution of LMC6082
Input Offaet Voltage
(TA = +125"C)

OFFSET VOLTAGE (mV)

100pA

§

N

~

y;~y

0 0 0 0

10pA

± 7.5V, TA = 25"C, Unless otherwise specified

~

'I.1"~.k

I

-30

I

-40
-10 -8 -6 -4 -2 0 2 4

N "

TOTAL SUPPLY VOLTAGE (Voc )

6

8 10

OUTPUT VOLTAGE (V)

Common Mode

Rejection Ratio
vs Frequency

Power Supply Rejection
Ratio vs Frequency

100

90

=

?

==

80

120

r-r-r-1r-1r-1r.,....,,,,;,.,......,,,.,

100

~d:~+:::~j;"t;t1
t_~I'-.
.........+ s•.,ly

80

70
60
60

I\j'"

H-++"N-

·ppl~f-+-

I-t-+-l-++~....p..,.l-t-I\+-l

'" 1\r-..

50

40~f-1f-1-+-+~~~~

40

20~f-1f-1-+-+~~1-~

30
10

100

Ik

10k

Input Voltage Noise
vs Frequency
120

~

!

80

~

ii

80

~

40

i

FREQUENCY (Hz)

FREQUENCY (Hz)

Output Characteristics
Sourcing Current

Output Characteristics
Sinking Current

10

10

I

0.1

0.1

!
>

~
~

§!

~
~

0.001
0.001

0.01

0.1

10

OUTPUT SOURCE CURRENT (mA)

100

~O

Ik

10k

Gain and Phaae Response
vs Temperature
(-55"C to + 125"C)
Gain
~

~

40

!:i
§!

20

90

~

0.01

0.1

10

OUTPUT SINK CURRENT (mA)

100

45

Ph...

IE

~
-20

I
~

§
~

0.01
0.001
0.001

100

3

~

0.01

r--... r-

FREQUENCY (Hz)

60
10

~

20

~

I=!

\

o

o I'---'L.....JIoL.....JL.....JIO""O-'--'lk--'-I-'O-k-'-1-'OOk

lOOk

100

-45
Ik

10k

lOOk

1M

10M

FREQUENCY (Hz)
TL/H/11297 -2

1-817

~

~

CD

r------------------------------------------------------------------------------------------,
Typical Performance Characteristics Vs =

± 7.5V. T";

= 25°C. Unless otherwise specified.

(J

~

Gain and Phase
Response vs Capacitive Load
with RL = 600.0.

Gain and Phase
Response vs Capacitive Load
with RL = 500 k.o.

Open Loop
Frequency Response
160

60 r-;r-T"1"TTITrr-T"T"rrT
40

"ii1
3
z

90

20

45

~

40

1"
J.
!1i

45

20

~

lOOk

1M

~
~

40

!1i

-20

-45

10k

10M

lOOk

1M

80

L",=500kll

l"-.

.... 20

~~'O

"

~~

60

~

....
2.~~t
i\ ••••

FREQUENCY (Hz)

Non-Inverting Small
Signal Pulse Response

....

f-

II

II

1\

I\.

!V

~!-

TIUE(l po/Oly)

nUE(l po/Oly)

Non-Inverting Large
Signal Pulse Response

T1NE(1 po/DIY)

Crosstalk Rejection
vs Frequency

Stability vs Capacitive
Load, RL = 600.0.

160

"ii1

10000

140

3

z

r,..~

V
/

,
I'

~

~

iil

~

~

120

~
~
"
if

1"1

100

~

-

I

~'5it·

-20
0.010.1 1 10100 lk 10k 100klU lOU

lOU

Inverting Large Signal
Pulse Response

Inverting Small Signal
Pulse Response

~

20

FREQUENCY (Hz)

FREQUENCY (Hz)

I'1\

1" ...II
~ i,

100

i!:

-4'

10k

i!5

<1

"ii1
3

1M)
120

90

i!:

-20

"ii1
3

80

<'!

1000

100

ui"'~'
~

~:~~o

~~.,Llin-

If r...

2." /Yo ...... i-"

10

60
40
10

100

lk

10k

lOOk

FREQUENCY (Hz)

TIME(1 ps/Dly)

1
-6-5-4-3-2-10 1 23456
QUTPUT VOLTAGE(V)

stability vs Capacitive
LoadRL = 1 M.o.
180
180

$

140

~

120

i
<'!

1\,-1,"n.
U.!..J"r' r~"~
..,,=+

100
80
60

5

OYtrthoot

~

40
20
-6.5-4-3-2-10 1 23456
OUTPUT VOLTAGE (v)

TLlH/11297-3

1-818

Applications Hints
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an oscillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 2a.

AMPLIFIER TOPOLOGY
The LMC6082 incorporates a novel op-amp design topology
that enables it to maintain rail to rail output swing even when
driving a large load. Instead of relying on a push-pull unity
gain output buffer stage, the output stage is taken directly
from the internal integrator, which provides both low output
impedance and large gain. SpeCial feed-forward compensation design techniques are incorporated to maintain stability
over a wider range of operating conditions than traditional
micropower op-amps. These features make the LMC6082
both easier to design with, and provide higher speed than
products typically found in this ultra-low power class.

+v

COMPENSATING FOR INPUT CAPACITANCE
It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the
LMC6082.
Although the LMC6082 is highly stable over a wide range of
operating conditions, certain precautions must be met to
achieve the desired pulse response when a large feedback
resistor is used. Large feedback resistors and even small
values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of
the LMC6082 is suggested. Guarding input lines will not only
reduce leakage, but lowers stray input capacitance as well.
(See Printed-Circuit-8oard Layout for High Impedance
Work).

2011

G.OAD

1000 pF
90k

.-------------~~

TL/H/11297-5

FIGURE 2a. LMC6082 Nonlnverting Gain of 10 Amplifier,
Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, RI and CI serve to counteract
the loss of phase margin by feeding the high frequency
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall
feedback loop.

---:?:--2?TRICIN 2?TR2Gj
or

Rl CIN:;;; R2Gj
Since it is often difficult to know the exact value of CIN, Gj
can be experimentally adjusted so that the desired pulse
response is achieved. Refer to the LMC660 and LMC662 for
a more detailed discussion on compensating for input capacitance.

Capacitive load driving capability is enhanced by using a
pull up resistor to V + (Figure 2b). Typically a pull up resistor
conducting 500 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the cumant sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).
V+

,,,~l

R2

Rl
VIN O-...J.W_ _......_ .........

--

I

10k

The effect of input capacitance can be compensated for by
adding a capaCitor, Gj, around the feedback resistors (as in
F/{Jure 1 ) such that:
1
1

•
'1N::;:

VOUT

I

TL/H/11297-14

I
I

FIGURE 2b. Compensating for Large Capacitive Loads
with a Pull Up Resistor
TLlliI11297-4

PRINTED-CIRCUIT-BOARD LAYOUT
FOR HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6082, typically
less than 10 fA, it is essential to have an excellent layout.
Fortunately, the techniques of obtaining low leakages are
quite simple. First, the user must not ignore the surface

FIGURE 1. Cancelling the Effect of Input Capacitance
CAPACITIVE LOAD TOLERANCE
All rail-ta-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capaCitor is
normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load
on the amplifier. Capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see typical curves).
1-819

.-

i

I

~.....-oVOUT

I

I

~

~
~

,---------------------------------------------------------------------------------,
Applications Hints
Cl

leakage of the PC board, even though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.

Rl
INPUT .I\IW~....a---"\jYY--'
1
1
1
1

To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6082's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 100 times degradation from
the LMC6082's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current. See
Figures 48, 4b, 40 for typical connections of guard rings for
standard op-amp configurations.

Guard Ring -+1

OUTPUT

1

1:
TUH'11297-7

(a) Inverting Amplifier
R2

OUTPUT

TUHI11297-8

(b) Non-Inverting Amplifier

OUTPUT
INPUT -!--f-i
TUH/11297-9

(e) Follower
FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth
the effort of using point-ta-point up-in-the-air wiring. See Figure5.

t..Guard Ring
Tl/H/11297-6

FIGURE 3. Example of Guard Ring In P.C. Board Layout

1-820

Typical Single-Supply
Applications

Latchup
CMOS devices tend to be susceptible to latchup due to their
internal parasitic SCA effects. The (1/0) input and output
pins look similar to the gate of the SCA. There is a minimum
current required to trigger the SCA gate lead. The LMC6062
and LMC6082 are designed to withstand 100 mA surge current on the 1/0 pins. Some resistive method should be used
to isolate any capacitance from supplying excess current to
the 1/0 pins. In addition, like an SCA, there is a minimum
holding current for any latchup mode. Limiting current to the
supply pins will also inhibit latchup susceptibility.

(V+ = 5.0 Voc)
The extremely high input impedance, and low power consumption, of the LMC6082 make it ideal for applications that
require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes,
analytic medical instruments, magnetic field detectors, gas
detectors, and silicon based pressure transducers.

Figure 6 shows an instrumentation amplifier that features
high differential and common mode input resistance
(>10 140),0.01% gain accuracy at Av = 1000, excellent
CMAA with 1 kO imbalance in bridge source resistance.
Input current is less than 100 fA and offset drift is less than
2.5 ",VfOC. A2 provides a simple means of adjusting gain
over a wide range without degrading CMAA. A7 is an initial
trim used to maximize CMAA without using super preCision
matched resistors. For good CMAA over temperature, low
drift resistors should be used.

FEEDBACK
CAPACITOR

TLfH/11297-10

(Input pins are lilted out of PC board and soldered directly to components.
All other pins connected to PC board).

FIGURE 5. Air Wiring

(
VIN

R3

R4

10k

lOOk

9.lk
R2
2k

~........._VOUT

pot

l.

I
I

R5,U.2k

R6

10k

91k
TL/H/II297-11

VOUT R2 + 2 Rl
- = - R2
- - x R.!
VIN
Ra

:.Av :::: 100 for circuit shown (R2

= 9.822k).

FIGURE 6. Instrumentation Amplifier

1-821

Typical Single-Supply Applications

(V+ = 5.0 VOC)

~~~

OUTPUT

INPUT

5/H

~CD4066
TL/H/11297-12

FIGURE 7. Low-Leakage Sample and Hold
R4

1011
VOUT

Cl
O.068} 1M unless otherwise specified.

Symbol
Vos

Parameter

Input Offset Voltage
Average Drift

Ie

Input Bias Current

Typ
(Note 5)
150

Input Offset Voltage

TCVos

los

Conditions

Input Offset Current

Common Mode
Rejection Ratio

OV s: VCM s: 12.0V
V+ = 15V

85

Positive Power Supply
Rejection Ratio

5V s: V+ s: 15V
Vo = 2.5V

85

Negative Power Supply
Rejection Ratio

OV

Input Common-Mode
Voltage Range

V+ = 5Vand 15V
for CMRR ~ 60 dB

Large Signal
Voltage Gain

350

800

800

1300

s: V- s:

-10V

94
-0.4

RL = 2kn
(Note 7)

Sourcing
Sinking

RL'= 600n
(Note 7)

Sourcing
Sinking

1400
350
1200
150

1-824

Units
/LV
Max
/LVloC

100

4

4

pA
Max

100

2

2

pA
Max

>10

V+ - 1.9
Av

350

1000

0.005

CMRR

VCM

LMC60841
Limit
(Note 6)

0.Q10

Input Resistance

-PSRR

LMC6084AI
Limit
(Note 6)

1.0

RIN

+PSRR

LMC6084AM
Limit
(Note 6)

Teran
75

75

66

72

72

63

75

75

66

72

72

63

dB
Min
dB
Min

84

84

74

81

81

71

-0.1

-0.1

-0.1

0

0

0

V
Max

V+ - 2.3
Y+ - 2.6

V+ - 2.3
Y+ - 2.5

V+ - 2.3
Y+ - 2.5

V
Min
V/mV
Min

400

400

300

300

300

200

180

180

90

70

100

60

400

400

200

150

150

80

100

100

70

35

50

35

dB
Min

V/mV
Min

VlmV
Min
V/mV
Min

DC Electrical Characteristics

(Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.

Symbol
Vo

Parameter

Conditions

Output Swing

V+ = 5V
RL = 2 ko. to 2.5V

Typ
(Note 5)
4.87
0.10

V+ = 5V
RL = 6000. to 2.5V

4.61
0.30

V+ = 15V
RL = 2 ko. to 7.5V

14.63
0.26

V+ = 15V
RL = 6000. to 7.5V

13.90
0.79

10

Output Current
V+ = 5V

Sourcing, Vo
Sinking, Vo

10

Output Current
V+ = 15V

IS

Supply Current

=

Sourcing, Vo
Sinking, Vo
(Note 11)

=

5V

=

=

OV

OV

22
21
30

13V
34

All Four Amplifiers
V+ = +5V, Vo = 1.5V

1.8

All Four Amplifiers
V+ = +15V, Vo = 7.5V

2.2

LMC6084AM
Limit
(Note 6)

LMC6084AI
Limit
(Note 6)

LMC60841
Limit
(Note 6)

4.80

4.80

4.75

4.70

4.73

4.67

0.13

0.13

0.20

0.19

0.17

0.24

4.50

4.50

4.40

4.24

4.31

4.21

0.40

0.40

0.50

0.63

0.50

0.63

14.50

14.50

14.37

14.30

14.34

14.25

0.35

0.35

0.44

0.48

0.45

0.56

13.35

13.35

12.92

12.80

12.86

12.44

1.16

1.16

1.33

1.42

1.32

1.58

16

16

13

8

10

8

16

16

13

11

13

10

28

28

23

18

22

18

28

28

23

19

22

18

3.0

3.0

3.0

3.6

3.6

3.6

3.4

3.4

3.4

4.0

4.0

4.0

=

5V,

Units
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
mA
Min
mA
Min
mA
Min
mA
Min
mA
Max
mA
Max

•
1-825

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C, Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified.

Symbol

SR

GBW
m

Parameter

Typ

Conditions

Slew Rate

(Note 5)

(NoteS)

1.5

Gain-Bandwidth Product
Phase Margin
Amp-to-Amp Isolation

(Note 9)

LMC6084AM

LMC6084AI

Umit

Limit

LMC60841
Limit

(Note 6)

(Note 6)

(Note 6)

O.S

O.S

O.S

0.5

0.8

0.8

Units

V//Jos
Min

1.3

MHz

50

Deg

140

dB

en

Input-Referred Voltage Noise

F = 1 kHz

22

nV/YHz

in

Input-Referred Current Noise

F=1kHz

0.0002

pAlYHz

T.H.D.

Total Harmonic Distortion

F = 10kHz,Av = -10
0.01

%

RL = 2 kG, Vo = S Vpp
±5VSupply

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate condttions for which ths device is
intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both s1ngle·supply and split-supply operation. Continuous short circuR oparation at elevated ambient temperature can result in exceeding ths
maximum allowed Junction temperature of t 50'C. Output currents in excess of ±30 mA over long term may advereely affect reliabiltty.
Note 3: Ths maximum power dissipation is a function of TJ(Max), 8JA, and TA' The maximum aliowable power dissipation at any ambient temperature is
Po = (TJ(Max) - TAl/8JA.
Note 4: Human body model, 1.5 kO in ssries with 100 pF.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by _ng or statistical analysis.
Note 7: V+

= 15V, VCM = 7.5Vand RL connected to 7.5V. For Sourcing tests, 7.5V s:

Vo

s:

11.5V. For Sinking tests, 2.5V

s:

Vo

s:

7.5V.

Note 8: V+ = 15V. Connected as Vottage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred V+

= 15Vand RL

= 100 kO connected

to 7.5V. Each amp excited in turm with 1 kHz to produce Vo

= 12 Vpp.

Note 10: For operating at elevated temperatures the device must be derated besed on the thermal resistance 8JA with Po = (TJ - TAl/8JA. All numbers apply for
packages soldered directiy into a PC bosrd.
Note 11: Do not connect output to V+, when V+ is greatar thsn 13V or reliability will be adVereely affected.
Note 12: All numbers apply for peckages soldered directly into a PC board.

1-826

Typical Performance Characteristics Vs =
Distribution of LMC6084
Input Offset Voltage
(TA = +25"C)

± 7.5V, TA = 25°C, Unless otherwise specified
Distribution of LMC6084
Input Offset Voltage
(TA = + 125°C)

Distribution of LMC6084
Input Offset Voltage
(TA = -55"C)

g

i

~w

20
18
1&
14

g
~

12
10

::0

~
w

~
Y~

:

I

:
I

~
I

0

~

~

S~ ~ ~

~

~

OFFSET VOLTAGE (mV)

.

1pA

",,""

100fA
10fA

1fA

G

~

N

_

: ~ S~

N

~d~:;

I

..'

/'

I

/'
'<

3.00

15

2.50

i'l

2.00

.t
li!

/'

iil

T~

T~~

.
I

1.50

TJ--S

".-

1.00

~

--

30

S

20

I

10

.3

-

f--'

~

- 1\.l.J.

r-

'II
-~I
_ 'l.1'5~.' r- ....

r- 1\.=2k

-10
-20

I
I

-30

o ./

o

TEMPERATURE (OC)

2

4

8

-40
-10 -8 -6 -4 -2 0 2 4

10 12 14 16

TOTAL SUPPLY VOLTAGE(Voc )

Common Mode
Rejection Ratio
vs Frequency
120

........

80

:!
~

. V+ .....r

-S~-r-

.....

60

'\
~

40

o

f\
.....

20
1

10

100

lk

10k

Input Voltage Noise
vs Frequency

~
~

I

~

FREQIIENCY (Hz)

Output Characteristics
Sourcing Current

Output Characteristics
Sinking Current

80 ~

_\

&0

\..

40

10

-

100

lk

10k

FREQUENCY (Hz)

Gain and Phase Response
vs Temperature
(- 55°C to + 125"C)
60

1\. =2.

Gain

~

10

10

I
o>~
~O

.......

20

o

lOOk

FREQUENCY (Hz)

100

"01

e

~

40

90

~

!:l
0.1

~

0.1

~
~

0.01

0.01

0.1

10

OUTPUT SOURCE CURRENT (mA)

100

~
O

0.001
0.001

'"

20

Ph,..

§
~

0.01

~

0.001
0.001

8 10

120

'l.t

100

6

OUTPUT VOLTAGE (V)

Power Supply Rejection
Ratio vs Frequency

100 ,....,,,,,,,..-nmnm-TTl"lTlmrTTTt...

S~ : ~

~

Input Voltage
vs Output Voltage

0.50

100lA '---'-_...l..-_'----'-_-'---I
o 25 50 75 100 125 150

0

I

40

3.50

.!§.

I

OFFSET VOLTAGE (mV)

4.00

10pA

i

0

8

Supply Current
vs Supply Voltage

100pA

~

•

12
10

OFFSET VOLTAGE (mY)

Input Bias Current
vs Temperature

ii'l

~

~~;~

20
18
16
14

-20
0.01

0.1

10

OUTPUT SINK CURRENT (mA)

100

lk

10k

lOOk

45

"

1M

-45
10M

FREQUENCY (Hz)
TLlH/11467 -2

1-827

Typical Performance Characteristics
Vs = ±7.5V, TA = 25°C, Unless otherwise specified (Continued)

Gain and Phase
Response vs Capacitive Load
with RL = 6000
80

r-

11m .....

40
'oD'
.:!!.
z

IltI

20

r-

~

IJ~~ll

J!I~./

0

"i~~r
~-50

-20

lOOk

80

,II ... =80

'O~l~
"y~'0

45

V"

0

~

)

1
~
~

20

-

,

0
-45

111. - • Opl

10k

10M

, 1
45

.\
I-.iI

'H
11."

-20

90

~';'

~

<~

I

40

ili

20

~

~

I'

-

~

I"

~

~
E

I-

V'

~"
<",

1/\

~

II

18

r'-'!-

v
TINE(I!'s/Dlv)

Stability vs Capacitive
Load, RL = 6000
10000

'oD'
.:!!.

140 ..

Iiil

120

"

I~rlt°'·

R" ='00
t
-20
0.010.1 1 10 100 lk 10k lOOk 1M 10M

Crosstalk Rejection
vs Frequency

i
I-

. ."2.~A-

~"';'
!5l5

160

~

,

0

TINE(I!'s/Dlv)

Non-Inverting Large
Signal Pulse Response

!

1'\

I

""

TIME(I!'s/Dlv)

-

~~80

Non-Inverting Small
Signal Pulse Response

I

\

~ §

60

Inverting Large Signal
Pulse Response

-

~i:i

II

80

!i!

!:i

FREQUENCY (Hz)

-

!;

E

w

;I

~

e"

L... =500'"

-,..... . . -HA

100 ~ ~

~

10M

IN

;I

!

120

'REQUENCY (Hz)

'REQUENCY (Hz)

Inverting Small Signal
Pulse Response

lOOk

140

'oD'
.:!!.
z
~

~

~

~~i~I./,

0

i:

O.

~=10

Il1tIk

~

-4.

IN

I/c"i

Ililf

'oD'
.:!!.
z

Open Loop
Frequency Response
160

• P
1I11~m

- ~!l~~
40

90

1"1~~

~'IPP:

10k

Gain and Phase
Response vs Capacitive Load
with RL = 500 kO

U~

-;;: 1000

~

.5

~

r-..

100

~

100

 10140), 0.01 % gain accuracy at Av = 1000, excellent
CMRR with 1 kO imbalance in bridge source resistance.
Input current is less than 100 fA and offset drift is less than
2.5 p,VI"C. R2 provides a simple means of adjusting gain
over a wide range without degrading CMRA. R7 is an initial
trim used to maximize CMRR without using super preCision
matched resistors. For good CMRR over temperature, low
drift resistors should be used.

FEEDBACK
CAPACITOR

TUH/II467-11

(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board).

FIGURE 5. Air Wiring

r
l.

/

VOUT

R4

10k

lOOk

Rl,44.2k

9.1k

VIN

R3

R2
VOUT

2k
pot
R5,44.2k

R6
10k

R7
91k
TUH/11467-12

R2

+

2Rl
R2

R4
R3

--~---x-

VIN

:. Av '" 100 for circu~ shown (R2 ~ 9.822k).

FIGURE 6. Instrumentation Amplifier

1-831

~

Typical Single-Supply Applications

(V+ = 5.0 Voe) (Continued)

:J
I>........ OUT~UT
INPUT

S/H

TLlH/11467-13

FIGURE 7. Low-Leakage Sample and Hold

R4
10M

Your

R2

Rl
470k

R3
470k

470k

TLlH/11467-14

FIGURE 8. 1 Hz Square Wave Oscillator

1-832

t!lNational Semiconductor

LMC6462 Dual/LMC6464 Quad
Micropower, Rail-to-Raillnput
and Output CMOS Operational Amplifier
General Description

Features (Typical unless otherwise noted)

The LMC6462/4 is a micropower version of the popular
LMC6482/4, combining Rail-to-Raillnput and Output Range
with very low power consumption.
The LMC6462/4 provides an input common-mode voltage
range that exceeds both rails. The rail-to-rail output swing of
the amplifier, guaranteed for loads down to 25 kO, assures
maximum dynamic sigal range. This rail-to-rail performance
of the amplifier, combined with its high voltage gain makes it
unique among rail-to-rail amplifiers. The LMC6462/4 is an
excellent upgrade for circuits using limited common-mode
range amplifiers.
The LMC6462/4, with guaranteed specifications at 3V and
5V, is especially well-suited for low voltage applications. A
quiescent power consumption of 60 ",W per amplifier (at Vs
= 3V) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage
of 0.25 mY, and 85 dB CMRR maintain accuracy in batterypowered systems.

•
•
•
•

20 ",AIAmplifier
Ultra Low Supply Current
Guaranteed Characteristics at 3V and 5V
Rail-to-Rail Input Common-Mode Voltage Range
Rail-to-Rail Output Swing
(within 10 mV of rail, Vs = 5V and RL = 25 kn)
150 fA
• Low Input Current
0.25 mV
• Low Input Offset Voltage

Applications
•
•
•
•
•

Battery Operated Circuits
Transducer Interface Circuits
Portable Communication Devices
Medical Applications
Battery Monitoring

Connection Diagrams
B-Pln DIP/SO
OUT A

1

2
IN A-IN A+"":'
y-...!

'-../

t

14·Pln DIP/SO

.!..v>

OUT A-1..

7

IN A-.2.
3
IN A+
4
y+5
IN B+

-OUT B
6
-IN B5 IN B+

IN B-...!
TUH/12051-1

OUT B..2.

Top View

OUT 0
~~fu r!!~IN D-

~

0_

12

IN 0+

l.!.. y_
10

IN C+

:Y~ ~OUT
1... IN

CC
TL/H/12051-2

Top View

Ordering Information
Temperature Range
Package

8-Pin Molded DIP

14-Pin Molded DIP
14-Pin 50-14

Transport
Media

LMC6462AIN, LMC6462BIN

N08E

Rails

LMC6462AIM, LMC6462BIM
LMC6462AIMX, LMC6462BIMX

M08A
M08A

Rails
Tape and Reel

LMC6464AIN, LMC6464BIN

N14A

Rails

LMC6464AIM, LMC6464BIM
LMC6464AIMX, LMC6464BIMX

M14A
M14A

Rails
Tape and Reel

Industrial
-40"Cto +85"C

LMC6462AMN

8-Pin 50-8
LMC6464AMN

NSC
Drawing

Military
-55"Cto + 125"C

1·833

Absolute Maximum Ratings (Note 1)

Operating Ratings (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
ESD Tolerance (Note 2)
2.0kV
Differential Input Voltage
± Supply Voltage
(V+) + 0.3V, (V-) - 0.3V
Voltage at Input/Output Pin

Supply Voltage
Junction Temperature Range
LMC6462AM, LMC6464AM
LMC6462AI, LMC6464AI
LMC6462BI,. LMC6464BI

Supply Voltage (V+ - V-)
Current at Output Pin (Notes 3, 8)
Current at Power Supply Pin
Lead Temp. (Soldering, 10 sec.)
Storage Temperature Range
Junction Temperature (Note 4)

s: V+

,;; 15.5V

-55°C s: TJ s: +125°C
-40"C s: TJ s: +85°C
-40°C s: TJ s: +85°C

Thermal Resistance «(lJN
N Package, 8·Pin Molded DIP
M Package, 8·Pin Surface Mount
N Package, 14·Pin Molded DIP
M Package, 14·Pin Surface Mount

16V
±5mA
±30mA

Current at Input Pin (Note 12)

3.0V

'"

115°C/W
193°C/W
81°C/W
126°C/W

40mA
260"C

"

- 65°C to + 15O"C
150"C

5V DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M.
Boldface limits apply at the temperature extremes.

Symbol

Vos

Parameter

Conditions

Typ
(Note 5)

Input Offset Voltage

0.25

LMC6462A1
LMC6464AI
Limit
(Note 6)

LMC6462BI
LMC6464BI
Limit
(Note 6)

LMC6462AM
LMC6464AM
Limit
(Note 6)

0.5

3.0

0.5

1.2

3.7

1.5

Units

mV
max

TCVos

Input Offset Voltage
Average Drift

18

Input Current

(Note 13)

0.15

10

10

200

pAmax

(Note 13)

0.075

5

5

100

pAmax

",vrc

1.5

los

Input Offset Current

CIN

Common-Mode
Input Capacitance

3

pF

RIN

Input Resistance

>10

Teran

CMRR

Common Mode
Rejection Ratio

OV s: VCM s: 15.0V,
V+ = 15V
OV s: VCM
V+ = 5V

+PSRR
-PSRR
VCM

s:

85

5.0V

85

Positive Power Supply
Rejection Ratio

5V s: V+ s: 15V,
V"7 = OV, Vo = 2.5V

85

Negative Power Supply
Rejection Ratio

-5V s: V- s: -15V,
V+ = OV, Vo = -2.5V

85

Input Common-Mode
Voltage Range

V+ = 5V
For CMRR ~ 50 dB

-0.2
5.30 ..

V+ = 15V
For CMRR ~ 50 dB

-0.2
15.30

1-834

70

65

70

67

62

65

70

65

70

67

62

65

70

65

70

67

62

65

70

65

70

67

62

65

-0.10

-0.10

-0.10

0.00

0.00

0.00

5.25

5.25

5.25

5.00

5.00

5.00

-0.15

-0.15

-0.15

0.00

0.00

0·00

15.25

15.25

15.25

15.00

15.00

15.00

dB
min

dB
min
dB
min
V
max
V
min
V
max
V
min

5V DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+
Boldface limits apply at the temperature extremes. (Continued)

Symbol

Av

Parameter

Large Signal
Voltage Gain

Typ
(Note 5)

Conditions

RL = 100kO
(Note 7)

Sourcing
Sinking

RL = 25kO
(Note 7)

Sourcing
Sinking

Vo

Output Swing

=

V+ = 5V
RL = 100kOtoV+/2

Output Short Circuit
Current
V+

Isc

5V

Output Short Circuit
Current
V+

Is

=

=

15V

Supply Current

=

Sourcing, Vo
Sinking, Vo

=

Sourcing, Vo
Sinking, Vo
(Note 8)

=

=

V/mV
min

14.965

27
27
38

12V

Dual, LMC6462
V+ = +5V, Vo

=

75
40

V+/2

Quad, LMC6464
V+ = +5V, Vo = V+/2

80

Dual, LMC6462
V+ = +15V, Vo

=

V+/2

50

Quad, LMC6464
V+ = +15V, Vo

=

V+/2

·90

1-835

Units

200

14.990

OV

LMC6462AM
LMC6464AM
limit
(Note 6)

1M.

V/mV
min

4.990

5V

LMC6462BI
LMC6464BI
Limit
(Note 6)

>

2500

4.995

OV

V+/2 and RL

Vo

V/mV
min

0.025

Isc

LMC6462AI
LMC6464AI
Limit
(Note 6)

=

400

0.010
V+ = 15V
RL = 25kOtoV+/2

=

OV, VCM

V/mV
min

0.010
V+ = 15V
RL = 100 kO toV+/2

=

3000

0.005
V+ = 5V
RL = 25kOtoV+/2

5V, V-

4.990

4.950

4.990

·4.980

4.925

4.970

0.010

0.050

0.010

0.020

0.075

0.030

4.975

4.950

4.975

4.985

4.850

4.955

0.020

0.050

0.020

0.035

0.150

0.045

14.975

14.950

14.975

14.985

14.925

14.955

0.025

0.050

0.025

0.035

0.075

0.050

14.900

14.850

14.900

14.850

14.800

14.800

0.050

0.100

0.050

0.150

0.200

0.200

19

19

19

15

15

15

22

22

22

17

17

17

24

24

24

17

17

17

55

55

55

45

45

45

55

55

55

70

70

75

110

110

110

140

140

150

V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
/LA
max
/LA
max

60

60

60

!LA

70

70

75

max

120

120

120

!LA

140

140

150

max

5V AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ

=

25°C, V+

=

5V, V-

=

OV, VCM

=

Vo

=

V+/2 and RL

>

1M.

Boldface limits apply at the temperature extremes.

Symbol

SR

Parameter

Typ
(Note 5)

Conditions

Slew Rate

(Note 9)

GBW

Gain-Bandwidth Product

cf>m
Gm

Phase Margin

V+

=

LMC6462AI
LMC6464AI
Limit
(Note 6)

LMC6462BI
LMC6464BI
Limit
(Note 6)

LMC6462AM
LMC6464AM
'Limit
(Note 6)

15

15

15

8

8

8

28

15V

Gain Margin

Units

Vlms
min

50

kHz

50

Deg

15

dB

Amp-to-Amp Isolation

(Note 10)

130

dB

en

Input-Referred
Voltage Noise

f = 1 kHz
VCM = 1V

80

nVl.JFiZ

in

Input-Referred
Current Noise

f

0.03

pA/.JFiZ

=

1 kHz

3V DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ
Boldface limits apply at the temperature extremes.

Symbol

Vas
TeVas

Parameter

=

25°C, V+

=

Typ
(Note 5)

Conditions

Input Offset Voltage

0.9

Input Offset Voltage
Average Drift

3V, V-

=

OV, VCM

LMC6462AI
LMC6464AI
Limit
(Note 6)

=

Vo

=

LMC6462BI
LMC6464BI
Limit
(Note 6)

V+ /2 and RL

LMC6462AM
LMC6464AM
Limit
(Note 6)

2.0

3.0

2.0

2.7

3.7

3.0

>

1M.

Units

mV
max
p.VloC

2.0

Ie

Input Current

(Note 13)

0.15

10

10

200

pA

las

Input Offset Current

(Note 13)

0.075

S

S

100

pA

CMRR

Common Mode
Rejection RatiO

OV:S; VCM:S; 3V

74

60

60

60

dB
min

PSRR

Power Supply
Rejection Ratio

3V:s; V+ :s; 15V, V-

80

60

60

60

dB
min

VCM

Input Common-Mode
Voltage Range

For CMRR ~ 50 dB

-0.10

0.0

0.0

0.0

V
max

3.0

3.0

3.0

3.0

V
min

2.95

2.9

2.9

2.9

V
min

0.15

0.1

0.1

0.1

V
max

p.A

Vo

Is

Output Swing

Supply Current

RL

=

25 kOtoV+/2

=

OV

Dual, LMC6462
Vo = V+/2

40

Quad, LMC6464
Vo = V+/2

80

1-836

55

55

55

70

70

70

110

110

110

140

140

140

p.A
max

3V AC Electrical Characteristics
Unless otherwise specified, V+ = 3V, V- = OV, VCM = Vo = V+ 12 and RL
ture extremes.

Symbol

Parameter

SR

Slew Rate

GBW

Gain-Bandwidth Product

Conditions

(Note 11)

Typ
(Note 5)

> 1M. Boldfaeellmlts apply at the tempera-

LMC6462A1
LMC6464AI
Umit
(Note 6)

LMC6462BI
LMC6464BI
Limit
(Note 6)

LMC6462AM
LMC6464AM
Limit
(Note 6)

Units

23

V/ms

50

kHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Nota 2: Human body model, t.5 kG in ssries with tOO pF. All pins rated per method 3015.6 of MIL-STD-863. This Is a class 2 device rating.
Nota 3: Applies to both single supply and split-supply operaficn. Continuous short cireuH operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150"C. Output currents in excess of ± 30 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of TJ(max). 8JA. and TA. The maximum allowable powar dlsslpetion at any ambient temperature is
Po = (TJ(max) - TAl/8JA. All numbers apply for peckages soldered dlrectiy into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Nota 8: All limits are guaranteed by testing or statistical analysis.
Note 7: V+

= 15V. VCM = 7.5Vand Rl connected to 7.5V. For Sourelng tests. 7.5V ,;

Vo ,; 1t.5V. For Sinking tests. 3.5V ,; Vo ,; 7.5V.

Note 8: Do not short circuit output to V+. when V+ is greater than 13V or reliability will be adversely affected.
Note 9: V+

= 15V. Connected as Voltage Follower with 10V step input. Number specified Is the slower of eHher the posHive or negative slew rates.

Note 10: Input referred. V+ = 15V and Rl = 100 kG connected to 7.5V. Each amp excited in tum wHh 1 kHz to produce Vo = 12 Vpp.
Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of eHher the positive or negetive slew rates.
Not. 12: Umlting input pin current is only necessary for input voltages that exceed absolute meximum Input voltage ratings.
Note 13: Guaranteed limits are dictated by testar limitations and not device performance. Actual performance is reflected in the typical value.
Nota 14: For guaranteed Military Temperature Range paramatars see RETSMC6462/4X.

1-837

Typical Performance Characteristics
Vs = +5V, Single Supply, TA

=.

25°C unless otherwise specified

Supply Current vs
Supp,y Voltage

SourCing Current vs
Output Voltage

Sourcing Current vs
Output Voltage

50~~~-'~-r-r-r'-'

100

100

,I

'5~r-r-+-+-+-~4-4--r~

Vs = 3V
10

i-'

~

.5

~

.5

t!
-~

1.1
0.01
OWLL-L-L-~~~~~-J

o

2

..

6

SUPPLY VOLTAGE (V)

0.01

Q,l

0.001
0.001

10

OUTPUT VOLTAGE REFERENCED TO Vs (V)

Sourcing Current vs
Output Voltage

10

0.1

Sinking Current vs
Output Voltage
100

100 rTTTT1TI1T""T111TTnrrrrTT11"~=""
Vs = 3V

Vs = 15V

0.01

OUTPUT VOLTAGE REFERENCED TO Vs (V)

Sinking Current vs
Output Voltage

100 rTTTT1TI1T""T111TTnrrrr=--,."""

I.!

O.l!r
0.01

0.001'
0.001

8 10 12 14 16 18 20"

/

~

II

0,1

Jl

= 5V

Vs

10

Vs = 5V
~

10

)
~

I

~

0.1 H+tIltIII---t1-tlltIll-t-HftIIII-++ttI1III

0,1

f-+-l7ltIllfI.l--t1fttt11H+ttHIII-+tittttll

H-HfIlllf-++IltIIIf-ttHllllf-+tI'1t1111

0.01

F-1I++tHtlll-+ttflllll-+HHtlIff-HtIHII

0,01

0,001 Ll..LlllWL...l..J.J.lllIJLLJ.JlllW.....l..llU1IW
0,01
0,1
10
100

0.111
0.01
0.001

0,001

OUTPUT VOLTAGE REFERENCED TO eND (V)

Sinking Current vs
Output Voltage

V "=1 \~I~II

10~+tIltIII-~1mIll-t-H~.....,.Tffi~

1I

240 r--,--,--,--r--r-..,
220 ~-t--r-+--t Vs =1 lSV
I~ 200
180 ~-t--r-+--~-t-~
">- 160 ~-t--r-+--~-t-~
..s 140 ~-t--r-+--~-t-~

.s;

0.0 1 ~+tIltIII---t1-tlltIll-t-HftIIII-++ttI1III

~

100

~-tr-....::::!....o;;;::I--~-t-~

~ :~~-t--r-~-t~--r,,~~~

g 40~-t--r-+--~-t-~

..... 140 ~r-+-+-+-~~4--r-r~
120 ~r-+-+-+-~4-4--r-r~

!

:5

~ ~+-+-+-+-~4-4--r-r~

~§!

W~r-+-+-+-~~4--r-r~

~ 80~~~f-+-+-~4-4--r-i

~ :~r-+-+-+-+-~4-4--r-i

lk

o

10k

COMMON MODE INPUT VOLTAGE (V)

AVosvsCMR

200
180

'"
~

:

120 1-1-+-+-+-+-+-+-++-1

~ 100 ~r-+-+-::04-....
10

~
~

~

120

=

±2.5V
= 25 kn

100

-10

E= =0::

80

~

0

!:;

I\.

I\.

70
= 100kn

~ t..o-

Vs

= 15V

Vs = 5V
20

~~

0

1

2

20

PH~

I
~

~25

10

I
I

50

-30
10

100

lk

'iD

3D

z

20

3

ij

~

0
-10

~~:

1

I

r:::;

G~

10

Supply VOltage
30

Vs = 5V •.
135
= lOOk

I

\.

= 4001(r

+++ I~
lk

I

1M

=1 0

~F

90

4Jo lpF 0

~

I
Inl' I

27

E

"-

~

45

I

lOOk

FALLING EDGE

29
28

C\. 1= ri p~

~ I~ ,;-

10k

~

i

-=.

rl

26 /
25

S

.
E

:>
~
>

..
E

0
0

22

-67.5

20

21

I
II
SOOm~ 500m'¥

115 JJs

Non-Inverting Small
Signal Pulse Response

I
TA = +25°C

II

~

~

:>
~

:;i

0
0

>

E

= 100kll

I

II

r-

TA = -55°C

I\.

~

~

1\

~

11S}n

>

E

= 100kO

~ e

SOOm; 500mv

!J

~
"0
N

lISps

II
fA

=+125 0 C

I\.

= 100kO

I
I
1151"9

20my 20mV'

TINE (115"s/0IV)

TIME (115 "./DIV)

TIME (115 "./DIV)

Non-Inverting Small
Signal Pulse Response

Non-Inverting Small
Signal Pulse Response

Inverting Large
Signal Pulse Response

I rr-

II
II

E

tr-

0
N

20my 20my

115 ".

TIME (115 "./DlV)

-67.5
1M

3 4 5 6 7 8 9 10 1112 13 14 15

Non-Inverting Large
Signal Pulse Response

TA = +25 OC
1\.=100kO

-22.5

I
I

Non-Inverting Large
Signal Pulse Response

I\.

0

- r r-

TIME (115I's/DIV)

SGOmy SDOmv

~

TA = +125 0 C
I\. = 100kn

SUPPLY VOLTAGE (V)

1\

">

r-

FREQUENCY (Hz)

r-

.

~
~

l

'I
:1

RISING EDGE

23

-22.5

1M

:>
Q
0
0

lOOk

.y
..I-

~

24

~
;;l

~

.

~

J
10k

~

45

Non-Inverting Large
Signal Pulse Response

Slew Rate vs

I\.

PHASE

40

~515

I
I
L

-20

90

FREQUENCY (Hz)

Gain and Phase vs
Capacitive Load
60

~

-55

0

10 100 lk 10k lOOk

l~l~t

125

OUTPUT VOLTAGE

70

Vs = 5V I
135
= lOOk

I\.

I\,' No.GAIN

-10

-40
0.0010.01 0.1 1

3

z

~

0

-1

30

ij

-20
-2

40

'iD

3

40

-30

60
50

I~

60

-20

-3

Open Loop Frequency
Response vs Temperature

Open Loop
Frequency Response

..

~

~
:;i

~

~

0

~
E

....0

II
II
TA

= -55°C

I\.

= 100kn

20mv 20my

~
~
>

..
E

0
0

1151'S

TIME (1151'./DIV)

II
II
0
f - - 1A = +125 C

I\.

= 100kn

II
J
500my SDOmy

I
\
115 JJI

TIME (115I's/DIV)

TUH/12051-4

1-839

Typical Performance Characteristics

(Continued)
Vs = +SV, Single Supply, TA = 2SoC unless otherwise specified

Inverting Large Signal
Pulse Response

Inverting Large Signal
Pulse Response

~

I

~'"

e'"

I

-i-

TA

= +2S

~

OC

'\ = 100ka

II

\
\

W
500m'V 500my

~

1;1

~

I
~
.....
>
E

I·

-r-

!

i

115/.-'1

Inverting Small SIgnal
Pulse Response

TA = -55°C

'\ =

100ka

II
I

TI~E (115"./DIY)

~

TA

;;I

'"

'\1 =

E

N

i

~
115 p.s

500mv 500m'V

sis

~

I

II
II

~

~

TA = +25 0 C
1\. 100ka

=

~

I
I

20m; 20m';

20m, 20my

115 JU

TINE (115 "./DIY)

115 Jl.9

TINE (115 "./DIY)

r
~
E

'"N

I

TA

= -55°C

'\ =

100ka

I

~

~
g

I

Inverting Small Signal
Pulse Response

.~

I
I

ioya
I

TI~E (115 "./D1Y)

Inverting Small Signal
Pulse Response

= +125 0 C

I
20mv 20m'V

115 JJS

TINE (115"./DIY)

TUH/I2051-29

1-840

,-----------------------------------------------------------------------------, r

Application Information

a:

2.0 Rail-to-Rail Output
The approximated output resistance of the LMC6462/4 is
1800 sourcing, and 1300 sinking at Vs = 3V, and 1100
sourcing and 830 sinking at Vs = 5V. The maximum output
swing can be estimated as a function of load using the calculated output resistance.

1.0 Input Common-Mode Voltage
Range
The LMC6462/4 has a rail-to-rail input common-mode voltage range. Figure 1 shows an input voltage exceeding both
supplies with no resulting phase inversion on the output.

3.0 Capacitive Load Tolerance
The LMC6462/4 can typically drive a 200 pF load with Vs =
5V at unity gain without OScillating. The unity gain follower is
the most sensitive configuration to capacitive load. Direct
capacitive loading reduces the phase margin of op-amps.
The combination of the op-amp's output impedance and the
capacitive load induces phase lag. This results in either an
underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using
resistive isolation as shown in Fl{JUre 4. If there is a resistive
component of the load in parallel to the capacitive component, the isolation resistor and the resistive load create a
voltage divider at the output. This introduces a DC error at
the output.

3V

OV
TL/H/12051-5

FIGURE 1. An Input Voltage Signal Exceeds
the LMC6462/4 Power Supply Voltage
with No Output Phase Inversion
The absolute maximum input voltage at V + = 3V is 300 mV
beyond either supply rail at room temperature. Voltages
greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the
input pins, possibly affecting reliability. The input current can
be externally limited to ± 5 mA, with an input resistor, as
shown in Figure 3.

TLlH/12051-6

FIGURE 4. Resistive Isolation of
a 300 pF capacitive Load

TL/H/12051-9

TLlH/12051-6

FIGURE 5. Pulse Response of the LMC6462
Circuit Shown In FIgure 4

FIGURE 2. A ± 7.5V Input Signal Greatly Exceeds
the 3V Supply In FIgure 3 Causing
No Phase Inversion Due to RI

Fl{}ure 5 displays the pulse response of the LMC6462/4
Circuit in Figure 4.
Another circuit, shown in Figure 6, is also used to indirectly
drive capacitive loads. This circuit is an improvement to the
circuit shown in Figure 4 because it provides DC accuracy
as well as AC stability. Rl and Cl serve to counteract the
loss of phase margin by feeding the high frequency component of the output signal back to the amplifiers inverting
input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 should be experimentally determined by the system designer for the desired
pulse response. Increased capacitive drive is possible by
increasing the value of the capacitor in the feedback loop.

>-+-00 Your

TLlHI12051-7

FIGURE 3. Input Current Protection for Voltages
El(ceedlng the Supply Voltage

1-841

E

~

5:

i

~

~

::5

~

B
~

....I

,---------------------------------------------------------------------------------,
Application Information (Continued)
or

10kn

R1 C,N ~ R2CF
which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or
smaller than that of a breadboard, so the actual optimum
value for CF may be different. The values of CF should be
checked on the actual circuit. (Refer to the LMC660 quad
CMOS amplifier data sheet for a more detailed discussion.)

= 100 pr
Rt = 300n

c;, =330 pr

'\ = 100kD.

I

5.0 Offset Voltage Adjustment
Offset voltage adjustment circuits are illustrated in F/{/ures 9
and 10. Large value resistances and potentiometers are
used to reduce power consumption while providing typically
± 2.5 mV of adjustment range, referred to the input, for both
configurations with Vs = ±5V.

TUH/12051-10

FIGURE 6. LMC6462 Non·lnvertlng Amplifier,
Compensated to Handle a 300 pF Capacitive
and 100 kG Realstlve Load

R4

V+

500 kD.
>~--VOUT

nD. ~<4I------I

500 kD.

V-

TLlH/12051-13

FIGURE 9. Inverting Configuration
Offset Yoltage Adjustment

TUH/12051-11

FIGURE 7. Pulse Response of
LMC6462 Circuit In Figure 6

R4

V+

....;~

The pulse response of the circuit shown in Figure 6 is
shown in Figure 7.

4.0 Compensating for Input
Capacitance

V-

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like
the LMC6462/4. Large feedback resistors can react with
small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins.

Rl
200 kD.

R3
R2

VOUT

100D. VIN

VOUT
v;=

1+

R4

R3 ; R2«R3
TLlH/12051-14

FIGURE 10. Non-Inverting Configuration
Offset YoltageAdJustment

6.0 Spice Macromodel
A Spice macromodel is available for the LMC6462/4. This
model includes a simulation of: .
• Input common-mode voltage range
• Frequency and transient response
• GBW dependence on loading conditions
• Quiescent and dynamic supply current

> .....--QVOUT

• Output swing dependence on loading conditions
and many more characteristics as listed on the macromodel
disk.
Contact the National Semiconductor Customer Response
Center to obtain an operational amplifier Spice model library
disk.

TL/H/12051-12

FIGURE 8. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by
adding a feedback capacitor. The feedback capacitor (as in
F/{/ure 8), CF, is first estimated by:

1
1
------:;;,--2'11'R1 C,N

2'11'R2 CF

1-842

Application Information (Continued)
Cl

7.0 Printed-Circuit-Board Layout
for High-Impedance Work

Rl
INPUT JVVIr!,!-+"'~-J,l.""'--"

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6462/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite
simple. First, the user must not ignore the surface leakage
of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or
dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6462's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs, as in Figure 11. To have a significant effect, guard rings should be
placed in both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two pOints at the same potential. For
example, a PC board trace-to-pad resistance of 1012n,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 30 times degradation from the
LMC6462/4's actual performance. However, if a guard ring
is held within 5 mV of the inputs, then even a resistance of
1011 n would cause only 0.05 pA of leakage current. See
Figures 128, 12b and 12c for typical connections of guard
rings for standard op-amp configurations.

I
I
I

Guard Ring

-+:

OUTPUT

I

t:
TL/H/I2051-16

(a) Inverting Amplifier
R2

OUTPUT

TUH/I2051-17

(b) Non-Inverting Amplifier

i'
OUTPUT

TL/H/I2051-16

(c) Follower
FIGURE 12. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier'S input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-ta-point up-in-the-air wiring. See
Figure 13.
FEEDBACK
CAPACITOR

~

I

i
i
I
l.Guard Ring

I
TL/H/I2051-15

FIGURE 11. Example of Guard Ring In P.C. Board Layout

TUH/I2051-19

(Input pins are lilted out of PC board and soldered direc1ly to components.
All other pins connected to PC board.)

FIGURE 13. Air Wiring

1-843

Application Information (Continued)
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers.

8.0 Instrumentation Circuits
The LMC6464 has the high input impedance, large common-mode range and high CMRR needed for designing instrument~tion circuits. Instrumentation circuits designed
with the LMC6464 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6464 an excellent choice
for noisy or industrial environments. Other applications that

A small valued potentiometer is used in series with Rg to set
the differential gain of the three op-amp instrumentation circuit in Figure 1~ This combination is used instead of one
large valued potentiometer to increase gain trim accuracy
and reduce error due to vibration.

10kll
C4

3-20 pF

AC CMR ADJUST
SOkll,O.I%

0.1%
SOkll

Your

48.HIl
DC CMR ADJUST

+ -"".,,,.,..--1

R2 SOOIl

L - - - O VREFERENCE
TUH/12051-20

FIGURE 14. Low Power Three Op-Amp Instrumentation Amplifier
A two op-amp instrumentation amplifier designed for a gain
of 100 is shown in Figure 15. Low sensitivity trimming is
made for offset voltage, CMRR and gain. Low cost and low
power consumption are the main advantages of this two opamp 'circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumemation
amplifier.

1011
Gain

19111

9.9Sk

Trim

10k, 0.1%

SOil
CMRR

> ....._

Trim

Your

=

100VD

TUH/12051-21

FIGURE 15. Low-Power Two-Op-Amp Instrumentation Amplifier

1-844

~----------------------------------------------------------~~

Application Information (Continued)
Typical Single-Supply Applications

i

V+

TRANSDUCER INTERFACE CIRCUITS

rr=~i

______

~

i:

~10~M~.!l~__- ,

10k.!l
>-t~--VOUT

:>....-oVOUT
TL/H/12051-25
Tl/H/12051-22

FIGURE 16. Photo Detector Circuit

FIGURE 19. Full-Wave Rectifier
with Input Current Protection (RI)

Photocells can be used in portable light measuring instru·
ments. The LMC6462, which can be operated off a battery,
is an excellent choice for this circuit because of its very low
input current and offset voltage.

In Figures 18 and 19, RI limits current into the amplifier
since excess current can be caused by the input voltage
exceeding the supply voltage.
PRECISION CURRENT SOURCE

LMC6462 AS A COMPARATOR

V+
VIN

0--------1
R

TUH/12051-23

FIGURE 17. Comparator with Hysteresis
lOUT

Figure 17 shows the application of the LMC6462 as a com·
parator. The hysteresis is determined by the ratio of the two
resistors. The LMC6462 can thus be used as a micropower
comparator, in applications where the quiescent current is
an important parameter.

TLlH112051-26

FIGURE 20. Precision Current Source
The output current lOUT is given by:

V+ - VIN)
lOUT = (
R

HALF-WAVE AND FULL-WAVE RECTIFIERS
V+

OSCILLATORS

>--.-.-

C,

VOUT

VOUT

R,

R2
5V

TL/H/12051-24

475k.!l

FIGURE 18. Half-Wave Rectifier with
Input Current Protection (RI)

R3

475k.!l

475 k.!l

TUH/12051-27

FIGURE 21. 1 Hz Square-Wave Oscillator

1·845

i

~

';

r-------------------------------------------------------------------------------------,

CD .

~

~

Application Information (Continued)
For single supply 5V operation. the output of the circuit will
swing from OV to 5V. The voltage divider set up R2. R3 and
R4 will cause the non-inverting input of the LMC6462 to
move from 1.67V (113 of 5V) to 3.33V (% of 5V). This voltage
behaves as the threshold VOltage,

LOW FREQUENCY NULL

R1 and C1 determine the time constant of the circuit. The
frequency of OSCillation. fose is

(2:t)'

where

~t is the time

the amplifier input takes to move from 1.67V to 3,33V, The
calculations are shown below.
1,67 = 5 (1 - e
where

'T

-~)

= RC = 0.68 seconds

- t1 = 0,27 seconds.
and

3.33=5(1_e-~)
-

t2 = 0.75 seconds

Then. fose = C:t)

1
2 (0.75 - 0.27)

25kn

= 1 Hz

25kn
TLlH/12051-28

FIGURE 22. High Gain Amplifier
with Low Frequency Null
Output offset voltage is the error introduced in the output
voltage due to the inherent input offset voltage Vos. of an
amplifier.
Output Offset Voltage = (Input Offset Voltage) (Gain)
In the above configuration. the resistors Rs and Rs determine the nominal voltage around which the input Signal, VIN
should be symmetrical. The high frequency component of
the input signal VIN will be unaffected while the low frequency component will be nulled since the DC level of the output
will be the input offset voltage of the LMC6462 plus the bias
voltage. This implies that the output offset voltage due to
the top amplifier will be eliminated,

1-846

t!lNational Semiconductor

LMC6482 CMOS Dual
Rail-To-Rail Input and Output Operational Amplifier
Features (Typical ul]less otherwise noted)
• Rail-to-Rail Input Common-Mode Voltage Range
(Guaranteed Over Temperature)
• Rail-to-Rail Output Swing (within 20 mV of supply rail,
100 kO load)
• Guaranteed 3V, 5V and 15V Performance
82 dB
• Excellent CMRR and PSRR
20 fA
• Ultra Low Input Current
130 dB
• High Voltage Gain (RL = 500 kO)
• Specified for 2 kO and 6000 loads

General Description
The LMC6482 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes
it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require
a large input signal range. The LMC6482 is also an excellent upgrade for circuits using limited common-mode range
amplifiers such as the TLC272 and TLC277.
Maximum dynamic signal range is assured in low voltage
and single supply systems by the LMC6482's rail-to-rail output swing. The LMC6482's rail-ta-rail output swing is guaranteed for loads down to 600!1..

Applications
•
•
•
•
•

Data Acquisition Systems
Transducer Amplifiers
Hand-held AnalytiC Instruments
Medical Instrumentation
Active Filter, Peak Detector, Sample and Hold, pH
Meter, Current Source
.
• Improved Replacement for TLC272, TLC277

Guaranteed low voltage characteristics and low power dissipation make the LMC6482 especially well-suited for batteryoperated systems.
See the LMC6484 data sheet for a Quad CMOS operational
amplifier with these same features.

3V Single Supply Buffer Circuit
Rall-To-Raillnput

Rail-To-Rall Output
+3V

3V

1\\

ov

I

/

'>-.--0 YOUT

""-~

ov

TLlH/11713-1

Connection Diagram

INVERTING INPUT A

v-

OUTPUT B
6

INVERTING
INPUT B

5

NON-INVERTING
INPUT B
TLlH/11713-4

TLlH/11713-3

Tl/H/11713-2

Ordering Information

V'

OUTPUT A

NON-INVERTING 3
INPUT A

3V

O.1I'F

Temperature Range
Package

8-Pin
Molded DIP

Military
-S5"Cto + 125"C
LMC6482MN

8-pin
Small Outline
8-pin
Ceramic DIP

LMC8482AMJ/883

1-847

NSC
Drawing

Transport
Media

LMC6482AIN
LMC84821N

N08E

Rail

LMC6482AIM
LMC84821M

M08A

Rail
Tape and Reel

J08A

Rail

Industrial
-40"C to +8S'C

Operating Ratings

Absolute Maximum Ratings

(Note 1)
3.0V ~ V+ ~ 15.5V
Supply Voltage
Junction Temperature Range
LMC6482AM
-55'C ~ TJ ~ + 125'C
LMC6482AI, LMC64821
-40'C ~ TJ ~ +85'C
Thermal Resistance (9JAl
N Package, 8-Pin Moldeq DIP
90'C/W
155'C/W
M Package; 8-Pin Surface Mount

(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
OHlce/Distrlbutors for availability and specifications.
ESD Tolerance (Note 2)
Differential Input Voltage
Voltage at Input/Output Pin
Supply Voltage (V+ - V-)

1.5kV
± Supply Voltage
(V+) +0.3V, (V-) -0.3V
16V
±5mA

Current at Input Pin (Note 12)
Current at Output Pin (Notes 3, 8)

±30mA

Current at Power Supply Pin
Lead Temperature (Soldering, 10 sec.)
Storage Temperature Range
Junction Temperature (Note 4)

40mA
260'C
-65'C to + 15O'C
150'C

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25'C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M.

Boldface limits apply at the temperature extremes.
Symbol
Vos

Parameter

Typ
(NoteS)

Conditions

Input Offset Voltage

0.11

TCVos

Input Offset Voltage
Average Drift

18

Input Current

(Note 13)

los

Input Offset Current

(Note 13)

CIN

Common-Mode
Input Capacitance

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

+PSRR Positive Power Supply
Rejection Ratio

Input Common-Mode
Voltage Range

LMC64821 LMC6482M
Umlt
Umlt
(Note 6)
(Note 6)

0.750

3.0

3.0

1.35

3.7

3.8

4.0

4.0

10.0

pA
max

0.01

2.0

2.0

5.0

pA
max
pF

>10
OV ~ VCM ~ 15.0V
V+ = 15V

82

OV ~ VCM
V+ = 5V

82

5.0V

5V ~ V+ ~ 15V, V- = OV
Vo = 2.5V

82
82
V- - 0.3

V+ = 5Vand 15V
For CMRR ;;, 50 dB

TeraO
70

65

65

87

82

80

70

65

65

87

82.

80

70

65

65

87

82

eo

70

65

65

87

82

80

- 0.25

- 0.25

- 0.25

0

0

0

V+ + 0.3V V+ + 0.25 V+ + 0.25 V+ + 0.25
y+
y+
y+
Av

Large Signal
Voltage Gain

RL = 2kO
(Notes 7, 13)

Sourcing
Sinking

RL = 6000
(Notes 7,13)

666
75

Sourcing
Sinking

300
35

1-848

mV
max

0.02

3

~

Units

p,V/'C

1.0

-PSRR Negative Power Supply -5V ~ V- ~ -15V, V+ = OV
Rejection Ratio
Vo = -2.5V
VCM

LMC6482AI
Limit
(Note 6)

dB
min

dB
min
dB
min
V
max
V
min

V/mV

140

120

120

84

72

80

min

35

35

35

V/mV

20

20

18

min

V/mV

80

50

50

48

30

2&

min

20

15

15

V/mV

13

10

8

min

DC Electrical Characteristics

(Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL
Boldface limits apply at the temperature extremes.

Symbol

Vo

Parameter

Output Swing

Typ
(Note 5)

Conditions

V+ = 5V
RL = 2kOtoV+/2

4.9
0.1

V+ = 5V
RL = 6000 to V+ /2

4.7
0.3

V+ = 15V
RL = 2kOtoV+/2

14.7
0.16

V+ = 15V
RL = 6000 to V+ /2

14.1
0.5

ISC

Isc

Is

Output Short Circuit
Current

Sourcing, Vo = OV

V+ = 5V

Sinking, Vo = 5V

20
15

Output Short Circuit
Current

Sourcing, Vo = OV

V+ = 15V

Sinking, Vo = 12V
(Note 8)

30

Both Amplifiers
V+ = +5V, Vo = V+/2

1.0

Both Amplifiers
V+ = 15V, Vo = V+/2

1.3

Supply Current

30

LMC6482AI
Limit
(Note 6)

LMC64821
Limit
(Note 6)

>

LMC6482M
Limit
(Note 6)

4.8

4.8

4.8

4.7

4.7

4.7

0.18

0.18

0.18

0.24

0.24

0.24

4.5

4.5

4.5

4.24

4.24

4.24

0.5

0.5

0.5

0.85

0.85

0.85

14.4

14.4

14.4

14.2

14.2

14.2

0.32

0.32

0.32

0.45

0.45

0.45

13.4

13.4

13.4

13.0

13.0

13.0

1.0

1.0

1.0

1.3

1.3

1.3

16

16

16

12

12

10

11

11

11

9.5

9.5

8.0

28

28

28

22

22

20

30

30

30

24

24

22

1.4

1.4

1.4

1.8

1.8

1.9

1.6

1.6

1.6

1.9

1.9

2.0

1M.

Units

V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
mA
max
mA
max

~
ii

1-849

,

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 2SoC, V+ = SV, V- = OV, VCM
Boldface limits apply at the temperature extremes.
Symbol
SR

Parameter
Slew Rate

Typ

Conditions

(Note 5)

(Note 9)

1.3

"

V+ = 15V

LMC6482AI
Umlt
(Note 6)

=;

Vo = V+ /2, and RL

LMC64821
Limit
(Note 6)

LMC6482M
Umit
(NoteS)

1.0

0.9

0.9

0.7

0.83

0.54

>

1M.

Units
V/p.s
min

GBW

Gain-Bandwidth Product

1.5

MHz

m

Phase Margin

50

Deg

Gm

Gain Margin

15

dB
dB

Amp-to-Amp Isolation

(Note 10)

1S0

en

Input-Referred
Voltage Noise

F=1kHz
Vem = 1V

37

in

Input-Referred
Current Noise

F = 1 kHz

0.03

T.H.D.

Total Harmonic Distortion

F= 10kHz,Ay=-2
RL = 10 kO, Vo = 4.1 Vpp

0.01

F= 10kHz,Ay=-2
RL = 10 kO, Vo = 8.5 Vpp
V+ = 10V

,

1-850

0.01

nVly'Hz
pAly'Hz

0/0

0/0

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for T J = 25D C, V + = 3V, V- = OV, VCM = Vo = V+ 12 and RL

Symbol

Vos

TCVos

Parameter

Typ

Conditions

(Note 5)

Input Offset Voltage

0.9

Input Offset Voltage

Input Bias Current

los

I nput Offset Current

CMRR

Common Mode

LMC64821

>

Limit

Limit

Limit

(Note 6)

(Note 6)

(Note 6)

Power Supply

2.0

3.0

3.0

mV

3.7

3.8

max

",vrc

0.02

pA

0.01
OV:S; VCM:S; 3V

pA

74

64

60

60

Input Common-Mode

dB
min

3V:S; V+

:s; 15V, V- = OV

80

68

60

60

Rejection Ratio
VCM

Units

2.7

Rejection Ratio
PSRR

1 M.

LMC6482M

2.0

Average Drift

18

LMC6482AI

dB
min

For CMRR ~ 50 dB

V- -0.25

0

0

0

Voltage Range

V
max

+ 0.25

V+

V+

V+

V+

V
min

Vo

Output Swing

RL = 2kntoV+/2

RL = 600n to V+ 12

2.8

V

0.2

V

2.7

2.5

2.5

2.5

V
min

0.37

0.6

0.6

0.6

V
max

Is

Supply Current

Both Amplifiers

0.825

1.2

1.2

1.2

mA

1.5

1.5

1.6

max

AC Electrical Characteristics
Unless otherwise specified, V + = 3V,

Symbol

SR

Parameter

Slew Rate

GBW

Gain-Bandwidth Product

T.H.D.

Total Harmonic Distortion

v-

= OV,VCM = Vo =

V+/2,

and RL

Typ

Conditions

(NoteS)

(Note 11)

F = 10 kHz, Av = -2
RL = 10kn, Vo = 2Vpp

>

1M.

LMC6482AI

LMC64821

Limit

Limit

LMC6482M
Limit

(Note 6)

(Note 6)

(Note 6)

Units

0.9

V/",s

1.0

MHz

0.01

%

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Rating. Indicate conditions for which the device is
intendad to be functional, but specific performance is not guaranteed. For guaranteed specHicstions and tho test conditions, see the Electrical Characteristics.
Note 2: Human body model, 1.5 kll in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a Class 1 device rating.
Note 3: Applies to both singl....upply and .pllt-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150"C. Output currents in excess of ±30 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of TJ(max)' 8JA, and TA. The maximum allowable power diSSipation at any ambient temperature is Po
CTJ(max) - T,j18JA. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametriC norm.
Note 8: All limits ans guaranteed by testing or statistical analysis.
Note 7: V+

= 15V, VCM = 7.5Vand RL connected to 7.5Y. For Sourcing tests, 7.5V

,;; Vo ,;; 11.5V. For Sinking tests, 3.5V ,;; YO ,;; 7.5V.

Note 8: Do not short circuit output to V+, when V+ is greater than 13V or nsiiabillty will be adversely affected.
Note 9: y+

= 15V. Connected as Voltage Follower with 10V step input Number specified i. the slower of either the positive or negative slew rates.
= 15V and RL = 100 kll connected to 7.5V. Each amp .excited in tum with 1 kHz to produce Yo = 12 Vpp.

Note 10: Input referred, V+

Note 11: Connected as voltage Follower with 2V step input Number specified is the slower of either the positive or negative slew rates.
Note 12: Umiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits ans dicteted by tester limitations and not device performance. Actual performance is nsflected in tho typical value.
Note 14: For guaranteed Military Temperature parameters see RETS6482X.
1-851

=

Typical Performance Characteristics
Vs = +15V, Single Supply, TA = 25"C unless otherwise specified

Supply Current vs
Supply Voltage
2.0

'<
.!.

!
i

+125OC~

1.6

+8SoC

1.4
1.2

+25 0 C

..... ,~/

10

.0

-= ~ ....,

'<
.!.
~

1.0

-55°C

o.a

0.1

,

0.4
0.0

~

""'"

0.8
G.2

o

2

D.O' 1"-""'1
4

8

8

.0

12

14

.8

25

50

75

100

.25

150

Sourcing Current va
Output Voltage
.00

100

10

.0

10

!

'<
.!.

...c

!

~

D.'

iii

0.1
0.01

0.01

0.01

D.'
0.01

10

D.'

0.01

0.1

10
Output Volleg. _

Oulpul Voltag. _roncod to Vs (V)

OUtput Voltage Referlnoed to Vs (V)

Sinking Current vs
Output Voltage

Sinking Current vs
Output Voltage

100

'00

'0

10

'<
.!.

I I

in

1/

0.1

I

D.O'

F-0.00.

.0

Oulpul Voltag. Rof....n..d to GND (v)

0.01

0.1

Input Voltage Noise
vs Frequency

~

!

I

~~

Vs

.80

80

= .5V

1\
\.
120

..0
.00
&0

~

IIII

80

Vs = .5V
F=1kHz

I

50

~

40

~

30

:!

40

I--

20

.5

SUPPLY VOLTAGE (v)

70

!

'\..

80

.00kll

Input Voltage Noise
vs Input Voltage

I·

.80

I I I
1\=

.2

10

Oulpul Voltogo Ref....oed 10 GND (v)

200

I

NEG SWING

LL L

0.00'
0.1

l-

~~::;;

•

...c

D.O'

..nood 10 GND (v)

Output Voltage Swing vs
Supply Voltage

'<
.!.
D.'

'00

Sinking Current vs
Output Voltage

100

'<
.!.

.0

D.'

Output Voltag. Ref.renced to Vs (v)

TEMPERATURE (oe)

Sourcing Current vs
Output Voltage

~
in

D••
D.O'

SUPPLY VOLTAGE (v)

J

Sourcing Current vs
Output Voltage
100

I

1.8

Input Current vs
Tempereture

~LL~~~~~-LLL~

00

10

.00

lk

o

.Ok

1 2.., .. 5 8 7 8 IIOI112,3"t51'
COMMON MODE INPUT VOLTAGE (v)

FREQUENCY (Hz)

TL/H/11713-5

1-852

Typical Performance Characteristics
Vs = +15V, Single Supply, TA = 25°C unless otherwise specified (Continued)

Input Voltage Noise
vs Input Voltage

Input Voltage Noise
vs Input Voltage
80

~"-

.5

80

~

50

~

40

~

30

~

~"-

Vs = SV F=lkHz

...

r-- 1-1-

60

~

50

~~

40

V

o

~

~

150

1.5

2

2.S

0.1

'iD'

80

~

50

3

130
120

1.0

90

=ISkll

'iD'

80

~

50

3

~

~

20

20

10

10
lk

10k

120

M..

70

111111

I\.

100

i1'H

Vs = lSV
I\. • Skll

SO

=15kll

~

10

100

lk

10k

lOOk

FREQUENCY (Hz)

120

Vs = i7.SV
F=10kHz
= Skll

II

80

I\.

"(

0
1

lOOk

CMRRvs
Input Voltage

60

Vs = 3V

"-\.

40
30

100

-

70

30

10

Vs ='sv_

80

FREQUENCY (Hz)

IIIIIN

90

I\.

.0

CMRRvs
Frequency

10.0

Negative PSRR
vs Frequency

~

0
1

10.0

100

1.0
FREQUENCY (kHz)

"-

1Vs = 3V

FREQUENCY (kHz)

.."

120

100

70

........

140

0.1

~
~

1

80

100

'iD'

130

100
0.5

Vs = 5V- I--

90

110

3

;

100
Vs = 5V
I\. = Skll

160

........

1.0

z

Positive PSRR
vs Frequency

170

i:l

lS0

'iD'

3

COWIION WODE INPUT VOLTAGE (V)

Crosstalk Rejection
vs Frequency

'iD'

-

I\.

110

COWMON MODE INPUT VOLTAGE (V)

3

V"

V

.....

Vs = 15Y
= Skll

180

vJ = 3) F = 1 kHz

30

20

o

170

70

.5
~

/

~

20

80

I I I

70

Crosstalk Rejection
vs Frequency

-

.0

CMRRvs
Input Voltage
,..,,..,-,.--,.--.---r-----,

HH-t-t+--t ~s==l~!;ZV
I\.

100

= Skll

~ 80

HH-t-t++++-H

=
t!

HH-t-t++++-H

80

30

4OHH--+-+-+-+-+--+--+-l

20
10

o

20 L....L-L-L..-L.l-L....L-L-L....J

20

10

100

lk

10k

lOOk

INPUT VOLTAGE (V)

FREQUENCY (Hz)

120

Vs = tl.SV
F= 10kHz
= Skll

I\.

I'

1.0

1.0

s-

Js ! ~2.~V

0.6

.5

O••

.}

>'8

0.2

0

!:

0

-0.2

ii...

-D.2

0

-0.8
-1.5-1.2-iU-D.8-D.3o.00.3

o.a

INPUT VOLTAGE (v)

G.9 1.2 1.5

s-

0.4

-0.&

-1.0
-3

I

0.6

0.2

-OA

vsCMR

0.8

.5

I0

40

aVos

vsCMR

0.8

;!;

20

INPUT VOLTAGE (v)

avos

CMRRvs
Input Voltage

100

-2.5-2.0-1.5-1.0-0.50.00.5 1.0 1.5 2.0 2.5

-7.5 -6.0 -.4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 '"0 1.5

Vs = tl.5V

,/

-OA

-0.6
-0.8

-2

-1

0

V,N (V)

-1.0
-2 -1.5 -1 -0.5 0

0.5

1

1.5

2

V,N (v)

Tl/H/11713-6

1-853

Typical Performance Characteristics
Vs

= + 15V, Single Supply, TA = 25°C unless otherwise specified (Continued)
Input Voltage vs
Output Voltage

Input Voltage vs
Output Voltage
160

~
S!

i

14.

160

ttf

120

'>
-3

~~"Q

80

~~
• 50kll

40

120

I - Vs ';

t7.5V

'>
-3

!
>

-40

~

-80

!;

~
~*"
~

40

-(0

-120
-160

80

....
3
~

60

.....

~

... = 60011

40

3
z

~

20

~

I'\

-20

-2

-1

60
50
(0

IJ 1111

....3

r-..

,II'""
7R
'II"-

~

20
10

GAl.

~

-10
-20
-30
-40

-5. 10k

~~:

11111111
11111111
lOOk

50

45

£
~

iE

....3
z

~

45

~

700
600

l!

500
(00

~

!

IN

40
30
20
10
0
-10
-20

~

200
100

1.50
1.(5
1.(0
1.35

.LlIIIIII'PHAs[

~

!
o

-(5

0.1

10

c,. • SOO'~F
c,. = 1000pF

Open Loop Output
Impedance vs Frequency
1000

Vs = 15V

LGAI,"IJ11iL

.
.

f'~
~
~

"

"j

c,. = 0
c,. • 500 pF
c,. = ,.0.pF

90

11111
lOOk

1000 10000

Ay = .,

I\. = 10kn
V,N = lVpp

§

£
~

tJ
z
;l!

~ ~

!

900 H-Ifi-Hffllll-+IIlIa-vs = 15V
800
700
600
500
400
300
200
100
0

10M

1M

0.1

10

I
. I

100

1000 10.00

FREQUENCY (kHz)

Non-Inverting Large
Signal Pulse Response

I
I

.111.1#11.10"

,~\.\.\\IG~"

T...

1.15
1.10
1.05

100

FREQUENCY (kHz)

... = 60011 9.

'N.1lTI!"'ii

1.30
1.25
1.20

1.00

0
FREQUENCY (kH.)

~

Vs = 15V
= 2kll
THD = 3'1

I\.

10

10M

lOOk

Slew Ratevs
Supply Voltllge .

i

300

100

iE

l!E

FREQUENCY (Hz)

..
~
III

(5

11111111 -Ssoc
10k

10k

10M

~

0.1

£

1111111 85 0 C

-30
-40
-50

90

Vs = 5V

900
800

Ay = .,

1111
8S OC 111111
90
1111111

Gain and"Phase vs
Capacitive Load

Open Loop Output
Impedance vs Frequency

§

15

135

125°C

FREQUENCY (H.)

1000

180

12S C

lk

90

"'

Maximum Output Swing
vs Frequency

FREQUENCY (Hz)

mtl~
IIIII~
G. .........
G. • • 00';;

z

Vs = 15V

20
0
-10
-20

III v.=,.V
III 1\ = •••• 11

"' "'

10 100 lk 10k lOOk 1M 10M

I\. = 2kll

30

10 100 lk 10k lOOk 1M 10M

'" "

FREQUENCY (H.)

Q

Gain and Phase vs
Capacitive Load
40
30

0.1 1

-;~~~

FREQUENCY (H.)

50

0

1I11111L
11111111

JGAIN

10

-40
0.1 1

40

-20

80
70
Vs = 5V

Vs • 15V

Q

60

Open Loop Frequency
Response MS Temperature

= 500kll

1\.=2~

80

OUTPUT VOLTAGE (V)

Open Loop
Frequency Responce

.to<',f

"

1\ = ••• ;;-<:!

20

OUTPUT VOLTAGE (V)

I\.

1-.lt:

100

0
6 0"

-1\='.k4

-3

-8-6-4-202468

100

r-- Vs = U.5V

-80

-160

~

120

80

-120

120

·.OpenLoop
Frequency Response

t'ifo ~
,~\S~
t

~

I

I

= +125 O C.

-~ 1-1\. = 2kll 1-'r1\
V
1~

'r.

II'S

3 4 5 6 7 8 9 10 1112 13 ,. 15 16
SUPPLY VOLTAGE (V)

TINE (l.p./OIV)
TL/H/11713-7

1-854

Typical Performance Characteristics
Vs =

+ 15V, Single Supply, T A =

25·C unless otherwise specified (Continued)

Non-Inverting Large
Signal Pulse Response

Non-Inverting Large
Signal Pulse Response

Non-Inverting Small
Signal Pulse Response

:;;!
~

in
~

~

- f - I-- TA = +2S o C. f - - f 1-1\.=2kll

-",. 1.

~-r-

-, I I

I ~ -t\

-f- -

i

jJ

1\

, )'0

~

S'

_

,

T. = -SS·C, - - f 1\.=2kll_

, I I I 7'1-

1, 1,i

E

~ e"

i

1A'
, po

O
- f - TA = +125 C.

I\.

= 2kll

1\
1\
, po

SOm\ SOm'V

TIME (l),s/DIV)

TIME (1 pl/DIV)

TIME (ll'l/DIV)

Non-Inverting Small
Signal Pulse Response

Non-Inverting Small
Signal Pulse Response

Inverting Large
Signal Pulse Response

~

~

~

1\.=2kll

~e
:;;!

If'

~

1\
SOmV'

e

~
~

1\
som\l

~

~

T = +25 O C,
-f- A

l)'s

~

TA = -5S o C,
:-f1\.=2kll

1\
1\
Som\l

SOmy

O!

If'

:;;!

II

~

Inverting Large Signal
Pulse Response

I\.

= 2kll

1\

II

,. I.
A

/

\.

i

1 po

Inverting Small Signal
Pulse Response

~
~

~

-'-

~

~

TA = -5S0 C,
= 2kll

I\.

A

5

, 1'0

1\

II

Inverting Large Signal
Pulse Response

i

= +25 OC.

TA = +125°C.
= 2kll
r- - f -

I\.

TIME (, po/DIV)

~
TA

- f - f-

,. ,.

i

1 ps

~

-

I

TIME (1 ps/DIV)

TIME (ll's/DIV)

'.

"

TIME (1 pB/DIV)

"

,

lps

i
i

S'

~E
e"

TA = +f25OC.

-1-1-

I\.

= 2kll

1\
SOmy " SOmy

1 ps

TIME ('ps/DIV)

Inverting Small Signal
Pulse Response

Stabilltyvs
Capacitive Load
'0000

r~~~v

:;;!

I
1 - --

~

TA = +25 OC.
= 2kll - 1 - -

~

I\.

I

..

1\
SOmy SOmy

i

~

'po

TIWE (1 ps/DIV)

~

i

~

~e
e"

-l-

~

II

TIWE (, I'I/DIV)

Inverting Small Signal
Pulse Response

~
e"

f'

1111"
TA = -55 OC,
1 - -1-1- I\. = 2kll
~
I

II

1
1\

SOm; 50my

-:-

lp.~

TIME (, po/DlV)

. 25" OIER:iHC IT

I

10
-6 -5 -4 -3 -2 -I 0 1 2 3 • 5 6
VOU1

(v)
TL/HI1' 713-8

1-855

Typical Performance Characteristics
Vs = + 15V, Single Supply, TA = 25°C unless otherwiSE! specified (Continued)
.Stability vs
Capacitive Load

Stabllltyvs
capacitive Load
.0000

.0000

~===-~-.

.0000

'v' •

Stability vs
capacitive Load
~

Vs = i7.5V

I\.

$
~

.000

~

.00

ill

L

.s

~

25" OVERSHOOT

JILl J Ifill

.0,I
-6 -5 -4 -3 -2 -. 0 • 2 3 4 5 6

~

~
-.1...-- Your

t---------"

lkn ~ ...

Your

9.0 Data Acquisition Systems

R4
R3

v;;- = -

500kn

Low power, single supply data acquisition system solutions
are provided by buffering the ADC12038 with the LMC6482
(Figure 14). Capable of using the full supply range, the
LMC8482 does not require input signals to be scaled down
to meet limited common mode voltage ranges. The
LMC4282 CMRR of 82 dB maintains integral linearity of a
12-bit data acquisition system to ± 0.325 LSB. Other rail-torail input amplifiers with only 50 dB of CMRR will degrade
the accuracy of the data acquisition system to only 8 bits.

vTlIH/II713-25

FIGURE 12.lnvenlng Configuration
Offset Voltage Adjustment
R4

V+

'.... f
v-

Rl

R3

200kA

R2
loon VIN

Your

Your
v;;=

R4

1

+ R3 ; R2«R3
TLlH111713-26

FIGURE 13. Non-Invenlng Configuration
Offset Voltage Adjustment
5V

r--------.------------t-------~~+
1000 pF
YIN

---11--+----+---.~Yv-~

AOC12038

> .....-ICHO

C>--~-----iroM

2kA

2.048V

200kn

33n

0.47 ",F

130kn

-+__

L-______.....______.....________

~

10 ",F

AGND

TLlH/I1713-28

FIGURE 14. Operating from the same
Supply Voltage, the LMC6482 buffers the
ADC12038 maintaining excellent accuracy
1-860

,-----------------------------------------------------------------------------'r
Application Information (Continued)
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased tranducers.
A small valued potentiometer is used in series with Rg to set
the differential gain of the 3 op-amp instrumentation circuit
in Figure 15. This combination is used instead of one large
valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

10.0 Instrumentation Circuits
The LMC6482 has the high input impedance, large common-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed
with the LMC6482 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6482 an excellent choice
of noisy or industrial environments. Other applications that
10kn

C4

3-20 pF
AC CMR ADJUST

so kn,

0.1%

VOUT

48.7 kn
DC CMR ADJUST

R2 soon

L---o VREFERENCE
TUH/11713-29

FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier
A 20p-amp instrumentation amplifier designed for a gain of
100 is shown in F/flure 16. Low sensitivity trimming is made
for offset voltage, CMRR and gain. Low cost and low power
consumption are the main advantages of this two op-amp
circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation
amplifier.

Ion
Gain
Trim

191n
9.9Sk

10k, 0.1%

son
CIoIRR
Trim

.~~~

VOUT = 100VD
TL/H/11713-30

FIGURE 16. Low-Power Two-Op-Amp Instrumentation Amplifier

1-861

i

Application Information (Continued)
11.0 Spice ,Macromodel

V+

A spice macromodel is available for the LMC6482. This
model includes accurate simulation of:
• Input common-mode voltage range
,10 kll

• Frequency and transient response

• GBW dependence on loading conditions
• Quiescent and dynamic supply current
• Output swing dependence on loading conditions
and many more characteristics as listed on the macromodel
disk.
TLlH111713-33

Contact your local National Semiconductor sales office to
obtain an operational amplifier spice model library disk.

FIGURE 18. Full Wave Rectifier
with Input Current Protection (RI)

Typical Single-Supply Applications
V+=3V

>-....-VOUT

TL/H/II713-31

FIGURE 17. Half·Wave Rectifier
with Input Current Protection (RI)

TLlH/I1713-34

FIGURE 18A. Full Wave Rectifier Waveform
V+

t
loUT
TLlH/11713-32

loUT"

FIGURE 17A. Half·Wave Rectifier Waveform
The circuit in Figure 17 uses a single supply to half wave
rectify a sinusoid centered about ground. RI limits current
into the amplifier caused by the input voltage exceeding the
supply voltage. Full wave rectification is provided by the circuit in Figure 18.

V+ - VIN)
(-RTL/H/11713-35

FIGURE 19. Large Compliance Range Current Source

1-862

Typical Single-Supply Applications

Your
1 kll

Your = 1 kll (R 1/R2) IL
R1 « R2
TUH/11713-36

FIGURE 20. Positive Supply Current Sense
20kll

Your

TUH/11713-37

FIGURE 21. Low Voltage Peak Detector with Rall-to-Rall Peak Capture Range

In F/{Jure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate
is primarily determined by the value of CH and diode leakage current. The ultra-low input current of the LMC6482 has a
negligible effect on droop.
20kll

Your
'~~~~: e---e-~~--~

1
I

~CD4066BM

SAMPLE

TLiH/11713-38

FIGURE 22. Rall-to-Rall Sample and Hold

The LMC6482's high CMRR (82 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range.
C1

TL/H/11713-27

Rl

=

R2, Cl

=

C2; f

=

1
2'11'Rl Cl; DF

fC2fR2
= V.VC;VR;

FIGURE 23. Rail-ta-Rail Single Supply Low Pass Filter

The low pass filter circuit in Figure 28 can be used as an anti-aliasing filter with the same voltage supply as the AID converter.
Filter designs can also take advantage of the LMC6482 ultra-low input current. The ultra-low input current yields negligible offset
error even when large yalue resistors are used. This in turn allows the use of smaller valued capacitors which take less board
space and cost less.
1-863

i

B
:I

t!lNational Semiconductor

LMC6484 CMOS Quad
Rail-to-Raillnput
and Output Operational Amplifier
General Description
The LMC6484 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes
it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require
a large input signal range. The LMC6484 is also an excellent upgrade for circuits using limited common-mode range
amplifiers such as the TLC274 and TLC279.
Maximum dynamic signal range is assured in low voltage
and single supply systems by the LMC6484's rail-to-rail output swing. The LMC6484's rail-to-rail output swing is guaranteed for loads down to 6000.
Guaranteed low voltage characteristics and low power dissipation make the LMC6484 especially well-suited for batteryoperated systems.
See the LMC6482 data sheet for a Dual CMOS operational
amplifier with these same features.

Features (Typical unless otherwise noted)
• Rail-to-Rail Input Common-Mode Voltage Range
(Guaranteed Over Temperature)
• Rail-to-Rail Output Swing
(within 20 mV of supply rail, 100 kO load)
• Guaranteed 3V, 5V and 15V Performance
82 dB
• Excellent CMRR and PSRR
20 fA
• Ultra Low Input Current
130 dB
• High Voltage Gain (RL = 500 kO)
• Specified for 2 kO and 6000 loads
Applications
•
•
•
•
•

Data Acquisition Systems
Transducer Amplifiers
Hand-held Analytic Instruments
Medical Instrumentation
Active Filter, Peak Detector, Sample and Hold,
pH Meter, Current Source
• Improved Replacement for TLC274, TLC279

3V Single Supply Buffer Circuit
Rall-ta-Rallinput
3V

/

/

Rall-ta-Rall Output

+3V
3V

~\

\

'

\

> ....--oVOUT

\

\
OV

\.......... //

/

ov
TUH/lln4-2
TLIH/11714-3

TL/H/11714-1

Connection Diagram
14

13

12

11

Ordering Information
Temperature Range

10
Package

Industrial
-40"Cto +85"C

Drawing

Transport
Media

LMC6484MN

LMC8484AIN
LMC8484IN

N14A

Rail

LMC6484AIM
LMC8484IM

M14A

Rail
Tape and Reel

Jl4A

Rail

14-pin
Molded DIP
14-pin
SmaliOulline
14-pin
Ceramic DIP

NSC

MllHary
- 55"C to + 125"C

LMC8484AMJ/883

TL/H/11714-4

1-864

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
ESD Tolerance (Note 2)
2.0kV
± Supply Voltage
Differential Input Voltage
(V+) + 0.3V, (V-) - 0.3V
Voltage at Input/Output Pin
Supply Voltage (V+ - V-)
16V
Current at Input Pin (Note 12)
±5mA
±30mA
Current at Output Pin (Notes 3, 8)
Current at Power Supply Pin
40mA
Lead Temp. (Soldering, 10 sec.)
260"C

Storage Temperature Range
Junction Temperature (Note 4)

-65°C to + 150"C
150"C

Operating Ratings (Note 1)
3.0V ~ V+ ~ 15.5V

Supply Voltage
Junction Temperature Range
LMC6484AM
LMC6484AI, LMC64841

-55°C ~ TJ ~ +125°C
-40"C ~ TJ ~ +85°C

Thermal Resistance (8JN
N Package,14-Pin Molded DIP
M Package, 14-Pin Surface Mount

70"C/W
110"C/W

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL > 1M.
Boldface limits apply at the temperature extremes.

Symbol
Vos

Parameter

Typ
(Note 5)

Conditions

Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

0.110

LMC6484AI
Limit
(Note 6)

LMC64841
Umit
(Note 6)

LMC6484M
Limit
(Note 6)

0.750

3.0

3.0

1.35

3.7

3.8

Units
mV
max
p,VloC

1.0

Is

Input Current

(Note 13)

0.02

4.0

4.0

100

pAmax

los

Input Offset Current

(Note 13)

0.01

2.0

2.0

50

pAmax

CIN

Common-Mode
Input capaCitance

RIN

Input Resistance

CMRR

Common Mode
Rejection Ratio

>10
OV ~ VCM ~ 15.0V,
V+ = 15V
OV ~ VCM
V+ = 5V

+PSRR
-PSRR
VCM

Av

82

s: 5.0V

82

Positive Power Supply
Rejection Ratio

5V ~ V+ ~ 15V,
V- = OV, Vo = 2.5V

82

Negative Power Supply
Rejection Ratio

-5V ~ V- s: -15V,
V+ = OV, Vo = -2.5V

82

Input Common-Mode
Voltage Range

V+ = 5Vand15V
For CMRR ~ 50 dB

Large Signal
Voltage Gain

pF

3

RL = 2kO
(Notes 7, 13)

65

65

87

82

80

70

65

65

87

82

80

70

65

65

87

82

80

dB
min

dB
min

70

65

65

87

82

80

dB
min

V- - 0.3

-0.25
0

-0.25
0

-0.25
0

V
max

V+ + 0.3

V+ + 0.25
y+

V+ + 0.25
y+

V+ + 0.25
y+

V
min

140

120

120

84

72

80

VlmV
min

Sourcing
Sinking

RL = 6000
(Notes 7, 13)

TeraO
70

Sourcing
Sinking

1-865

666
75
300
35

35

35

35

20

20

18

V/mV
min

80

50

50

48

30

25

V/mV
min

20

15

13

10

15
8

V/mV
min

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V~ V- = OV, VCM = Vo.= V+/2 and RL
Boldface limits apply at the temperature extremes. (Continued)
Symbol
Vo

Parameter
Output Swing

Typ
(Note 5)

Conditions
V+ = 5V
RL = 2kOtoV+/2

4.9
0.1

V+ = 5V
RL = 6000 to V+ /2

4.7
0.3

V+ = 1.5V
RL = 2kOtoV+/2

14.7
0.16

V+ = 15V
·RL = 6000 tq V+ /2

14.1
0.5

Isc

Isc

Is

Output Short Circuit
Current

Sourcing, Vo = OV

V+ = 5V

Sinking, Vo = 5V

20
15

Output Short Circuit
Current

Sourcing, Vo = OV

V+ = 15V

Sinking, Vo = 12"
(Note 8)

30

All Four Amplifiers
V+ = +5V, Vo = V+ /2

2.0

All Four Amplifiers
V+ = +15V, Vo = V+/2

2.6

Supply Current

30

LMC6484AI
Limit
(Note 6)

LMC64841
Limit
(Note 6)

LMC6484M
Umit
(Note 6)

4.8

4.8

4.8

4.7

4.7

4.7

0.18

0.18

0.18

0.24

0.24

0.24

4.5

4.5

4.5

4.24

4.24

4.24

0.5

0.5

0.5

0.85

0.85

0.85

14.4

14.4

14.4

14.2

14.2

14.2

0.32

0.32

0.32

0.45

0.45

0.45

13.4

13.4

13.4

13.0

13.0

13.0

1.0

1.0

1.0

1.3

1.3

1.3

16

16

16

12

12

10

11

11

11

8.5

8.5

8.0

28

28

28

22

22

20

30

30

30

24

24

22

2.8

2.8

2.8

3.8

3.8

3.8

3.0

3.0

3.0

3.8

3.8

4.0

AC Electrical Characteristics
Unless otherwise specified, all Umits guaranteed for TJ = 25°C, V+ = 5V, V- = OV, VCM = Vo = V+/2 and RL
Boldface limits apply at the temperature extremes.
Symbol
SR

Parameter
Slew Rate

Typ
(Note 5)

Conditions
(Note 9)

1.3

V+ = 15V

LMC6484A
Limit
(Note 6)

LMC64841
Limit
(Note 6)

>

LMC6484M
Limit
(Note 6)

1.0

0.9

0.9

0.7

0.83

0.54

1M.

Units
V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
mA
max
mA
max

>

1M.

Units
V/p.s
min

GBW

Gain-Bandwidth Product

1.5

MHz

m
Gm

Phase Margin

50

Deg

Gain Margin

15

dB

Amp-to-Amp Isolation

(Note 10)

150

dB

en

Input-Referred
Voltage Noise

f = 1 kHz
VCM = 1V

37

nV/,fFfZ

in

Input-Referred
Current Noise

f = 1 kHz

0.03

pAl,fFfZ

T.H.D.

Total Harmonic Distortion

f = 1 kHz, Av = -2
RL = 10 kO, Vo = 4.1 Vpp

0.01

%

f = 10 kHz, Av = -2
RL = 10 kO, Vo = 8.5 Vpp
V+ = 10V

0.01

%

1-866

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25'C, V+ = 3V, V- = OV, VCM = Vo = V+/2 and RL

Symbol

Ves

TCVos

Parameter

(Note 5)

Input Offset Voltage

Input Offset Voltage

0.02
0.01
OV s; VCM s; 3V

Input Common-Mode For CMRR ~ 50 dB

Output Swing

Supply Current

pA

80

68

60

60

V- - 0.25

0

'0

0

V+

V+

RL = 2 kn to V+ /2

RL = 600n to V+ /2

Is

mV
max

60

V+
Vo

3.0

3 ••

60

3V S; V+ S; 15V, V- = OV

Voltage Range

3.0

3.7

64

Rejection F!alio
VCM

2.0

2.7

74

Rejection Ratio

All Four Amplifiers

Units

pA

Input Bias Current
Input Offset Current

Power Supply

Limit
(Note 6)

p.VI'C

los

PSRR

Limit
(Note 6)

2.0

Ie

CMRR' Common Mode

Limit
(Note 6)

0.9

Average Drift

1M

LMC6484AI LMC64841 LMC6484M

Typ

Conditions

>

+ 0.25

V+

dB
min
dB
min
V
max
V
min

2.8

V

0.2

V

2.7

2.5

2:5

2.5

0.37

0.6

0.6

0.6

V
min
V
max

2.5

2.5

2.5

mA

3.0

3.0

3.2

max

LMC6484AI

LMC64841

Limit

Limit

Umlt

(Note 6)

(Note 6)

(Note 6)

1.65

AC Electrical Characteristics
Unless otherwise specified, V + = 3V,

Symbol

SR

Parameter

Slew Rate

GBW

Gain-Bandwidth Product

T.H.D.

Total Harmonic Distortion

v-

= OV, VCM= Vo = V+/2 and RL

Typ

Conditions

(Note 5)

(Note 11)

f = 10 kHz, Ay = -2
RL = 10kn, Vo = 2Vpp

>

1M
LMC6484M
Units

0.9

Vlp.s

1.0

MHz

0.D1

%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is
Intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and tihe test conditions, see the Electrical Characteristics.
Note 2: Human body model, 1.5 kll in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.
Note 3: Applies to both single supply and spin-supply operation. Continuous short circun operation at elevated ambient temperature can resuR In exceeding the
maximum allowed iunctlon temperature of 15O"C. Output currents in excess of ± 30 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of TJ(max)' 9JA, and TA. The maximum allowable power dissipation at any ambient temperatura Is
Po = (TJ(max) - T/J19JA. All numbers apply for packages SOldered directly into a PC board.
Note 5: Typical Values represent tihe most likely perametric norm.
Note 6: All limits are guaranteed by testing or stetisticaJ analysis.
Note 7: V+

= 15V, VCM = 7.5V and RL connected to 7.5V. For Sourcing tests, 7.5V

,;: Vo ,;: 11.5V. For Sinking tests, 3.5V ,;: Vo ,;: 7.5V.

Note 8: Do not short circuit output to V+, when y+ Is greater than 13V or reliability will be adversely affected.
Note 9: V+

= 15V. Connected as VOI~ Follower with 10V step Input Number specified Is tihe slower of _the positive or negative slew rates.
= 15V and RL = 100 kll connected to 7.5V. Each amp excHed in tum with 1 kHz to produce Vo = 12 Vpp.

Note 10: Input referred, V+

Note 11: Connacted as VoRage Follower wRh 2V step Input. Number specilled Is the slower of either the positive or negative slew rates.
Note 12: Umlting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: ~uaranteed limits are dictated by tester limitetlons and not device performance. Actual performance is reflected in the typical value.
Note 14: For guarantesd Military Tempersture Range parameters see RETSMC6484X.
1-867

Typical Performance Characteristics
+ 15V; Single Supply. TA =

Vs =

25"C unless otherwise specified

Supply Current va
Supply Voltage

Input Current vs
Temperature

Sourcing Current va
Output Voltage

100

3.5

100

+t250C

3.0

!

iil

i

.85~

f---

2.5

+150 C

j

2.0

-~h-

1.5

iil

1.0

~

10

10

~

.x

!!

0.1

0.1

'0.01

o.s
0.0

o

246

W a

8

u

0.01
~

~

2~

SUPPLY VOlTAGE (v)

75

100

125

1~

0.1

Sourcing Current vs
Output Voltage

10

100

Output Voltage Roforonced to Vs (V)

TEIIPERATURE (Oe)

Sourcing Current vs
Output Voltage

Sinking Current VB
Output Voltage·

100

0.001
0.001

0.01

0.1

10

Output Voltage RoI...nced to Vs (V)

Outpul Voltage Refe..nced to Vs (V)

Sinking Current vs
Output Voltage

Sinking Current vs
Output Voltage

Output Voltag. _ced to GND (V)

s

100

.!.

27

~

24

~
,.

;:
0.1

30

III
;5

10

Output Voltage Swing
va Supply Voltage

~

I I
I I

18
15

If

12

fi!

0.01

iii

I

0.001
0.01

0.1

10

Output Voltag. Roforoncod to GND (V)

200

~.....
!

160
140

~

100

~

60

~

40

z

!:i

Ys

III

80
15Y

~

\.

"

120
8D

!

~

20
00
10

0'·

100

-

lk

6

S"ff\NG

NEG

1\ = 100kll
12

15

SUPPLY VOLTAGE (V)

Input Voltage Noise
vslnpUt Voltage

I

180

I

F--I-

Output Voitag. Rof...nced t. GND (V)

Input Voltage Noise
vs Frequency

II-

~r-t;;

21

70

IIII

80

VS'!= 15V
F=lkHz

!II

50

~~

40

i

30
~~~~~~~~~~

o

10k

FR~QUENCY (Hz)

1 2 3 4 5 • 7 8 9101112131.,51.

COMMON MODE INPUT VOLTAGE (V)

TLlH/117t4-5

1-868

Typical Performance Characteristics
Vs

= + 15V, Single Supply, TA = 25"C unless otherwise specified (Continued)
Input Voltage Noise
vslnput Voltage
80

~"-

I I I

70

.5

60

I

50

~

40

~

30

Input Voltage Noise
vslnputVoltage

Ys = 5Y F=1kHz

~
~

~

I

~

~~

-i- i- ....

!:i
20

70

YS' = 3 ) F=lkHz

80

'/

50
40

4

o

140

!

Vs = 5V
= 5kll

80

'it

10

~

50

~

130

I\.

"
100

lk

10k

lOOk

80

40

60

"

30
20

~

1

10

100

lk

10k

lOOk

FREQUENCY (Hz)

CMRR vslnput Voltage
120

Ys = *7.SV
r -= 10kHz
I\. = Skll

100

II!
::II

......

0
10

CMRR vslnput Voltage

~

,

10
1

'it

"'\.

40

FREQUENCY (Hz)

Ys = 15Y
I\. = Skll

Ys = 3V

50

=ISkll

30

0

120

"

~

10

I\.

20

CMRRvsFrequency

II!
::II

!

~

FREQUENCY (kHz)

50

-

70

Ys = 3V

40

10.0

10.0

Ys =ISV_

80

.........

10

100

10

90

.ISkll

20

110

~

1.0
FREQUENCY (kHz)

Negative PSRR
vs Frequency

30

120

'it

0.1

100

-

I

70

r-....

1.0

120

2.S

1.S

Ys = SY-

90

I\.

0.1

130

100
O.S

100

.:!.

iil

r--....

140

PosHIve PSRR
vs Frequency

170

'it

~

150

COII_ MODE INPUT VOLTAGE (v)

Crosatalk Rejection
vs Frequency

rlS0

z

110

COIIWON MODE INPUT VOLTAGE (v)

110

'it
~

I-'

V

I........

,...

Ys = 1SV
I\. = 5kll

180

30
20

o

Cro88talk Rejection
vsFrequency
170

80

Vs = u.sv
Fe; 10kHz

1\.. Skll

100

40

40

10
0
10

100

lk

10k

20
-7.s"",,-.t.5-3.0-1.50.01.5

lOOk

CMRR vslnput Voltage

100

'it
~

I

Vs

20
-2.5-2.0-1.5"1.0-0.50.00.5 1.0 t.5 2.0 2.5

6.0 7.5

INPUT VOLTAGE (v)

FREQUENCY (Hz)

120

3.O.u

:t:l.5V
r = 10kH2:
I\. = Skll

80

!

,!l

0.8
0.1

~s ~ ~2.~V

0.4

I:

20

-1.D

!!

t:
z

-o.a
INPUT VOLTAGE (v)

-3

1.0
0.8
0.8

Vs • .:I:l.SV

OA
0.2

.."

0
-0.2

c
~
G -0.1

-0.1

-1.5-1.2-o.I--o.a-G.30.o0.3 D.6 G.l1.2 1.5

S

.5
,!l

0.2

40

80

AVosvsCMR

AVos vs CMR
1.0

.=

1'0

INPUT VOLTAGE (V)

-0.8

-1.D
-2

-1

0
Y,N (v)

-2 -1.5 -1 -0.5 0

0.5

1

1.5

2

V,N (Y)
TL/H/11714-6

1·869

~

I

r------------------------------------------------------------------------------------------,
Typical Performance Characteristics

,.

Vs = +15V, Single Supply, TA = 25°C unless otherwise specified (Continued)
In~ut Voltage
vs Output Voltage

. Input Voltage:·
vs Output Voltage

~f

120

~"'1

f- Ys = :l:7.SV

~1 ~.,

80

~

S

80

...~

40

.3

1.~
'$Ok

40

~
>

-40
-80

~

0

2

4

•

-3

8

-2

-1

..

....
~

~

80
60

1It.=2~
lit.

70

--

= 60011 .;

-20

60
50

~

'iD'

40

~

·20

~

"I'

20

111111
JGAIN

11111111

p£tI

-~~~~

~
Ik

10k

'iD'
~

......

!II'•••

ao

tnF=::

20

1""-

GA'.

10

~

-10
-20

III Vs "" 15V
IILI\. =SOOkO

~:±

11111111
10k

lOOk

20

45

£

'iD'

~

z

f

~

~

10

S

I
~
,...

~

90

10

l\

-40 -

45

(}

~;!

c;,=o Io"J
c;,. 500pF'
c;, =.1000 pF
"L ·11111111
lOOk

900

S
t!

600
500
400

1-H-tflIIt-+tlfll-tHlII-Vs = 15V

700
600
500
400

45

~ 300
o· ·200

90

100
0

1M

0.1

10M

10

200

1000 10000

Non-Inverting Large Signal
Pulse Response

1.50
1.45
1.40
1.35

~

1.30

S

1.20

"" = +1

lit. =
VIN

=

10kll,
1Vpp

I I

I

I I

I

I~~~
~~~ ;...

1.1

~

i' s

IS

1.26
1.15
1.10

lOll

1.05

0

1.00
1000 10000

100

FREQUENCY (kHz)

Slew Ratevs
Supply Voltage

~

300

100

800

FREQUENCY (Hz)

1..

FREQUENCY (kHz)

0.1

90

~

10k

= SV

100

o

1000

f'~

c;, = 500pF
c;,.= 1000pF

-50

700

10

~

Open Loop Output
Impedance vs Frequency

Vs = 15V

I~'!'IJ'!HI...

-20
_30

45

800

0.1

THO = 3"

. FREQUENCY (kHz)

lit. = 6 0011

-10

10M

1M

Vs

i

-45
10M

1M

l"N.IllTIT'IIil

30

Open Loop Output
Impedance. vs Frequency
900

lOOk

I IIIIIII"HAS[

FREQUENCY (Hz)

1000

~

Y. = 15V
lit. =2kll

10

0

50
40

90

IIIUlil

-50

£

"" = +1

l

Gain and Phase
vs Capacitive Load

-30
-40

90

FREQUENCY (Hz)

1lItL. ....
IIIII~
G. •• .-G. .50DpF

z

15

135

45

1111I1U85°C ~
1111110 -55°C

-20
10 100 Ik 10k lOOk 1M 10M

~

10 100 lk ·IOk lOOk 1M 10M

Maximum Output Swing
vs Frequency·

180

125°C

0
-10

Gain and Phase
vs capacitive Load
40

11IlliLLUIli
65°C 111111
125°C

30

FREQUENCY (Hz)

50

~

FREQUENCY (Hz)

IIIV•. = 15V
1111\. = 2kll

11111111

10

\

-40
0.1 1

0.1 1

80
Vs == 3V

40

0

Open Loop Frequency
Response .vs·Temperature

lit. = 500k"

'" "

= 15V

~

OUTPUT VOLTAGE (v)

Open Loop Frequency
Response
100

60

V.

-20

OUTPUT VOlTAGE (v)

120

2~.,

20

-160
~

80 I\. = •••~

-80

-180

'·2~., ~'1

100

-DD.,

40

-120
~

v• • n.5V

-40

-120
~

~,
~

f---

_I\. -SOk"

~

,

~. .

120

120

~

~

. -140

150

160

s·
.3
~

Open Loop
Frequency Response

I
I

,,1~~
I I

I

~

~

1-,\

!5
I!:

5

TA == +125 0 C,
lit. = 2kll

r\
I;

~

fro-. ~

'V
11'8

3 4 5 6 7 8 9 1011 12 13 14 15 16

SUPPLY VOLTAGE (V)

T1M~

(1I's/DIV)
TUH/11714-7

Typical Performance Characteristics
Vs

= + 15V, Single Supply, TA = 25·C unless otherwise specified (Continued)
Non-Inverting Large Signal
Pulse Response

Non-Inverting Large Signal
Pulse Response

H- - T" = +25 0 C,
_ I\. = 2kQ

f--f-- -

Non-Inverting Small Signal
Pulse Response

i!
III

~ s-is
;I

is

"-

.=.

in

!

I-~

w

f--~f--

1-1'\

I I I /'"'"1-

'\

I I I I

-f-7'~

Tlls

Tv

TIME (TIIS/DIV)

~
!;

= +2SoC,
I\. = 2kQ I,..
II

i'

~

TA,

E

·1 e
in

!

Til'

~!;

r-r-

TA = -5S oC,

.=.

TA

-r- I\.

II

1\
1\

= 2kQ

;I

Tv

T'

:z

TIIS

II

so mY'

l
1\

SOm'V

TII8

Tv

-

!;

i

I

TIIS

Tv

T'

~
E

TA • +125 0 C.

r-r-- I\.

= 2kll

,I

~

TII8

T'

-r-

l
1\

5

A

SOmy SOmy

TII8

TIME (T "./DIV)

Inverting Small Signal
Pulse Response

~

S-

1\

J

e
III

i!

Stabllltyvs
Capacitive Load

TOOOO~na

i
I

1/

-r-

Inverting Small Signal
Pulse Response

~

~ r-r- TA = -,soc.
I\. = 2kll

"-

TIME (TIIS/DIV)

i

r-

TIME (TIIS/DIV)

.=.

Inverting Small Signal
Pulse Response

!

~.

TIIS

= +125O C,
= 2kll

!o!!

TIME (TIIS/DIV)

..

TA

-I\.

..i!

!

\

+2S·C.
~E f--- f--f- I\.TA == 2kQ
~
e

r-

in

III

1\

II

I

Inverting Large Signal
Pulse Response

i

= +25 O C,

V

!

I

is

~

III

~

;;!

;I

~
;I
z

I"

1\.=2kll

5Dm' SOmy

Inverting Large Signal
Pulse Response

~

Inverting Large Signal
Pulse Response

TIME (Ill./DIY)

;I

TIIS

i..

TIME (TIIS/DIV)

~

1\
1\
50m' SOmy

Non-Inverting Small Signal
Pulse Response

~

50m' SOmV'

O

TIME (TIIS/DIY)

;I

1\
1\

TA = +125 C,
f---f-f--f-- I\.
= 2kll,..

TIME (TII./DIV)

Non-Inverting Small Signal
Pulse Response

r-r-

E

5

TIIS

Tvl

i

~.

e

~

" I I A'

J/

Tv

TA = -55·C, 1\.=2kll _

_

~

..
e

E

TA =
= 2kll

-f--f-- I\.

-5S OC,
I

II
SOmy

1
1\

so mY'

TIIS

-f--

'"'~
~~ TODO ,~,~~'!~!~
~

I TDO~~~~~~~~~~
TO~......L~~~-L~~......L~

-6 -5 -4 -3 -2 -T 0 I 2 3 4 5 6

TIME (TIII/DIV)

TIME (Till/DIY)

You, (v)
TLlH/117T4-8

1-871

Typical Performance Characteristics
Vs =

+ 15V, Single Supply, TA

= 25°C unless otherwise specified (Continued)

. . Stability 'vs
Capacitive Load

Stabillty"va
.
CapaCltrve Loa.d
10000

..

:i

1000

1I

I

~
e:!

2kA
I I,

~

UNSTABLE~

~

~

I

+10
10000.~

l000°mll~

. . . +1
. Ys.= 67.5V

Rl •

Stab,llfy va
CapaciUve Load

~

~.

!

1000

EO

~
e:!

H
I I I I

~

~ 100'1.11~
f:f

10d.

!;!

25" OVERSHOOT

10

-a -5 -4 -~ -2 -1

0 1 2

~

1\='''0

§ 1000."

~'C

LJ..I-t"'

100

Vs • *7.SV

10~~~~~~~~~

10~~~~~-L~~~

-8-5-4-~-2-1

4 5 8

Vour (V)

0 1 2

~

-8 -5 -.4 -~ -2 -1 0 1 2

458

Vour (V)

Stability vs
Capacitive Load
1.0000

10000

~.

Vs

.

~.

+10

Vs

';I

I\. •

..

1000

i

100

'i::"

.,s..

4 5 8

Stability va
Capacitive Load

= .o7.5V

1\..2kll

~

Vour (V)

+10
t.7.SV

60011

~

I I I I

e:!

.I I I I I I 25" OVERSHOOT

10
-8 -5 -4

-~

-2 -1 0 1 2

~

H

25" OVERSHOOT

I I II I

10
-8-5-4-~-2-1

4,.5 8

Vour (V)

0 1 2

~

4 5 8

Vour (V)

TLlHf11714-9

1-872

Application Information (Continued)
1.0 Amplifier Topology
The LMC6484 incorporates specially designed wide-compliance range current mirrors and the body effect to extend
input common mode range to each supply rail. Complementary paralleled differential input stages, like the type used in
other CMOS and bipolar rail-to-rail input amplifiers, were not
used because of their inherent accuracy problems due to
CMRR, cross-over distortion, and open-loop gain variation.
The LMC6484's input stage design is complemented by an
output stage capable of rail-to-rail output swing even when
driving a large load. Rail-to-rall output swing is obtained by
taking the output directly from the internal integrator instead
of an output buffer stage.
TLlH/11714-12

FIGURE 2. A ± 7.SV Input Signal Greatly
Exceeda the 3V Supply In Rgure 3 Causing "
No Phase InY8r81on Due to R,

2.0 Input Common-Mode Voltage
Range
Unlike Bi-FET amplifier designs, the LMC6484 does not exhibit phase inversion when an input voltage exceeds the
negative supply voltage. Figure 1 shows an input voltage
exceeding both supplies with no re"ulting phase inversion
.
on the output.

Applications that exceed this rating must extemally limit the
maximum input current to ± 5 mA with an input resistor as
shown in F/{Jure 3.
.

3V
I~"'--VOUT

TLlH/11714-11

FIGURE 3. R,lnput Current Protection for
Voltages Exceed~ng the Supply Voltage

3.0 Rail-To-Rail Output
ov

The approximated output resistance of the LMC6484 is
1800 sourcing and 1300 sinking at Vs = 3Vand 1100
sourcing and 830 sinking at Vs = 5V. Using the calculated
output resistance, maximum output voltage Swing can be
estimated as a function of load.

TLIH/11714-10

FIGURE 1. An Input Voltage Signal Exceeds the
LMC6484 Power Supply Voltages with
No Output Phase Inversion

4.0 Capacitive Load Tolerance

The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can
cause excessive current to flow in or out of the input pins
possibly affecting reliability.

The LMC6484 can typically directly drive a 100 pF load with
Vs = 15V at unity gain without oscillating. The unity gain
follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The
combination of the op-anip's output impedance and the capacitl\ie I~d induces phase lag. This results In either an
underdamped pulse response or QScIllatJon.
Capacitive load cOlTJpensation can be 8cOOmpiished using
resistive isolation
shown in F/gute 4. This Simple technique is useful for isolating the c/ilpacitive input of multiplexers and A(O converters.
.,

as

TLlH/II714-17

'FiGURE 4. Resistive Isolation
of a 330 pF Capacitive Load

1-873

Application Information (Continued)

5.0 Compensating .or Input
Capacitance
"
It is quite common to Use large values of feedback resist·
anCe 'with amplifiers that have ultra·low input current, like
the LMC6484. Large feedback resistors can react with small
values of input capacitance due t6 transducers, photOcii·
odes, and 'circuit board parasities to reduce phase margins.
Cf

, R2

Rl
VIN-.J/J\I\ro-...
I

-+-I

I

CIN :::::::
I
I

.......

TUH/II714-18

I

FIGURE 5. Pulse Response of
the LMC6484 Circuit In F1gurtl4
Improved frequency response is achieved by indirectly driv·
ing capacitive loads as shown in Figure 6.

, 'TUH/11714-19

FIGURE 8. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated' for by
adding a feedback, caPacitor. The feedback capaCitor (as in
Figure 8), Cr. is fl1;8l estimated by.

lOkI!

__1__

~

_'_1_

,21TRI GIN 21TR2 Cr
or
Rl GIN:S; R2Cr,"
which typically',prOviQS" significant Elvercompensation.
Printed' circtJi(bo~ 'stray ~citanCe may ;bEl larger or
smaller than t~!lt of a breadboard, so the actual optimum
value for Cr may' be different. The values of Cr should be
checked on the actual circuit. (Refer to the LMC660 quad
CMOS amplifier data sheet for a more detailed discussion.)

V,N

TUH/11714-15

FIGURE 6. LMC6484 Non-Inverting Amplifier,
Compensated to Handle a 330 pF Capacitive Load
R1 and G1 serve to counteract the loss of phase margin by
feeding forward the high frequency component of the output
signal back to the amplifier's inverting input, thereby pre·
serving phase margin in the overall feedback loop. The,val·
ues of R1 and G1 are experimentally,determined for the
desired pulse response. The resulting' pulse response can
be seen in, Ftgure 7.

Tl/H/11714-16

FIGURE 7. Pulse Response of
LMC6484 Circuit In Flgurtl6

1·874

Application Information

(Continued)

6.0 Printed-Circuit-Board Layout

Cl

for High-Impedance Work
Rl

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speciallayout of the PC board. when one wishes to take advantage of the ultra-low input current of the LMC6484, typically
I'ess than 20 fA, it is essential to have an excellimt layout.
Fortunately, the techniques of obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though it may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.

INPUT

Jr,I.W,.!-++-!--Jr,I.i\r--.

•
••
Guard Ring ....:
•

OUTPUT

r:

TUH/11714-21

(a) Inverting Amplifier

To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6484's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs, as in Figure 9. To have a significant effect, guard rings should be
placed in both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
the input. This would cause a 250 times degradation from
the LMC6484's actual performance. However, if a guard
ring is held within 5 mV of the inputs, then even a resistance
of 1011 0 would cause only 0.05 pA of leakage current. See
Figures 10a, 10b and 10e for typical connections of guard
rings for standard op-amp configurations.

R2

OUTPUT

TUH/11114-22

(b) Non-Inverting Amplifier

OUTPUT

Tl/HI11714-23

(c) Follower
FIGURE 10. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-ta-point up-in-the-air wiring. See
Figure 11.
FEEDBACK
CAPACITOR

LGUard Ring
Tl/H/11114-20

FIGURE 9. Example of Guard Ring In P.C. Board Layout

TL/H/11714-24

(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board.)

FIGURE 11. Air Wiring
1-875

Application Information (Continued)
7.0 Offset Voltage Adjustment

8.0 Upgrading Applications

Offset voltage adjustment circuits 'are illustrated in Figures
13 and 14. Large value resistances and potentiometers are
used to reduce power consumption while providing typically
± 2.5 mV of adjustment range, referred to the input, for both
configurations with Vs = ±5V..

The LMC6484 quads lind LM~82. duals, hav4ij industry
standard pin outs to retrofit existing applications. System
pe;fOrmance can be greatly increas8d by the LMC6484's
futures. ;rile key 'beneflt of designing il) the LMC6484 is
increaSEid linear sign.al range. Most op-amps liave I.imitec!
input common (!lode. ranges. Signals that exceed tl1isrange
generate a n~n-linellr output respOl)se that PElfSists IO!l\l af;
ter the iilp!,lt- Signal returns to the common niod~' :rilnge.
Unear signal range is vital in. applications such as filters
where Signal peaking can exceed input common mode
ranges resulting in output phase inversion or severe distor~
tion.
.
.

R4

V+
R3

500kll

.>-4-- Vour

~."

lkll ~~~-----I

9~q Dat~ Acq~isitio.,

VTl/H/11714-25

FIGURE 12. Inverting Configuration
Offset Voltage Adjustment
R4

V+

..... f
V-

Rl

R3

200 kll

R2
10011 VIN

Systems

Low power, single supply data acquisition system solutions
are provided by buffering the ADC12038 with the LMC6484
(F"I{/ure 14)•... Capable of using the full supply range, the
LMC6484 does not require input signals to be scaled down
to meet limited common' mode voltage rang9$. The
LMC6484 CMRR .of 82 dB. maintains integral.linearity of a
12-bit data acquisition system to ±0.325 LSB. Other rail-torail input amplifiers with only 50 dB of CMRR will degrade
the accuracy of the data acquisition system to only 8 bits•

500 kll

Your

Your
YiN
=

1+

R4

R3 ; R2«R3
TUH/I1714-26

FIGURE 13. Non-Inverting Configuration
Offset Voltage Adjustment
5V

ADC12Q38
12.1 kll
~""'-I'CHO

. 1000pF

VIN

--II-+----+-...~~...
C>----~--------~oow

200kll

10 l'F
3311

O.471'F

130kll

L------....

-------4~-------t--_I AGND

Tl/H/I1714-26

FIGURE 14. Operating from the same
Supply Voltage, the LMC6484 buffers the
ADC12038 maintaining excellent accurscy
1-876

.-----------------------------------------------------------------------------,~

a=

Application Information (Continued)

~

benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers.

10.0 Instrumentation Circuits
The LMC6484 has the high input impedance, large common-mode range and high CMAA needed for designing instrumentation circuits. Instrumentation circuits designed
with the LMC6484 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6484 an excellent choice
for noisy or industrial environments. Other applications that

!

A small valued potentiometer is used in series with Ag to set
the differential gain of the 3 op-amp instrumentation circuit
in Figure 15. This combination is used instead of one large
valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

10 kl1
C4

3-20 pr

AC CIIR ADJUST

0.1%
50kll

50 kll, 0.1%

VOUT

L - - - O VRErERENCE
TLlH/11714-29

FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier
A 2 op-amp instrument8tion amplifier designed for a gain of
100 is shown in Figure 16. Low sensitivity trimming is made
for offset voltage, CMAA and gain. Low cost and low power
consumption are the main advantages of this two op-amp
circuit.

Higher frequency and 'Iarger ,common-mode range appiications are best facilitated by a three op-amp instrum,entation
amplifier.

.

"

lOll

Gain
Trim

1911l

9.95k

10k, O. '"

~

SOil

CIIRR
Trim

.>........ VOUT = 100VD

I

Tl/H/11714-30

FIGURE 16, Low-Power Two-Op-Amp InstrumentaUon,Ampllfler

I
I
I
I

I

1-877

~ r-----~--------------~----------~------~--------------------------------------~--~

~

Application Information (Continued)
11.0 Spic~Macromo,del '
_

V+ ,

A spice macromodel is avaliable for the L,MCs484. This
model includes accurate Iilimulation of: '
• i,QPut co~~on-modevoltage range
• frequency and transient response
• GBW dependence on loading conditions

10kll

"Rt

• quiescent and dynamic supply current
• output swing dependence on loading conditions
and many more characteristics as listed on the macromodel
disk.
Contact your local National Semiconductor sales office to
obtain an operational amplifier spice 'model If~rary disk.

TLlH/11714-33

FIGURE 18. Full Wave Rectifier
with Input Current Protection (RI)

Typical Single-Supply Applications
V+=3V

~-""'-VOUT

TLlH/11714-31

FIGURE 17. Half-Wave Rectifier with
Input Current Protection (RI)

TLlHI11714-34

FIGURE 18a. Full Wave Rectifier Waveform
V+

R

t
lOUT

_ (V+ lOUT -

TLlH111714-32

R

VIN)
TLlH/11714-35

FIGURE 17a. Half-Wave Rectifier Waveform

"IGURE 19,1,.al1le Compliance Range Current Source

The circuit in Ftgure 17 uses a single supply to hillf wave"
rectify a sinusoid centered about ground. RI limits current
into the amplifier caused by the input voltage exceeding the
supply voltage. Full wave rectification is provided by the circuit in Figure 18.

1-878

r-----------------------------------------------------------------------------,~

~

Typical Single-Supply Applications (Continued)
O.lll RI

~co
~

'L

\o-~~~~........~........--'--,
100ll
R2

Your
Your

= I kll (RI/R2) 'L
RI

«

R2
TLlH/I1714-36

FIGURE 20. Positive Supply Current Sense
20kll

I'

i:

TLlH/11714-37

FIGURE 21. Low Voltage Peak Detector with Rall·to-Rall Peak capture Range
In Figure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate
is primarily determined by the value of CH and diode leakage current. The ultra-low input current of the LMC6484 has a
negligible effect on droop.
20 kll

Your

TLlH/11714-38

FIGURE 22. Rail·to·Rail Sample and Hold
The LMC6484's high CMRR (85 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range.
CI

Your

TL/H/11714-27

AI = A2,CI = C2;f=

2"'~ICl;DF =~~~

FIGURE 23. Rail-to-Rall Single Supply Low Pass Filter
The low pass filter circuit in Figure 23 can be used as an anti-aliasing filter with the same voltage supply as the AID converter.
Filter designs can also take advantage of the LMC6484 ultra-low input current. The ultra-low input current yields negligible offset
error even when large yalue resistors are used. Thi.s in turn allows the use of smaller valued capaCitors which take less board
space and cost less.

1-879

itfl

U

~

National Semiconductor

~

~ LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail

:! Input and Output Operational Amplifier
General Description
The LMC6492/LMC6494 amplifiers were specifically developed for single supply applications that operate from -400C
to + 125°C. This feature is well-suited for automotive systems because of the wide temperature range. A unique design topology enables the LMC6492/LMC6494 commonmode voltage range to accommodate input signals beyond
the ralls. This eliminates non-linear output errors due to input signals exceeding a traditionally limited common-mode
voltage range. The LMC6492/LMC6494 signal range has a
high CMRR of 82 dB for excellent accuracy in non-inverting
circuit configurations.
The LMC6492/LMC6494 rall-to-rail input is complemented
by rail-to-rail output swing. This assures maximum dynamic
signal range which is particularly important in 5V systems.
Ultra-low input current of 150 fA and 120 dB open loop gain
provide high accuracy and direct interfacing with high impedance sources.

Features (Typical u~less otherwise noted)
• Rail-ta-Rail input common-mode voltage range, guaranteed over temperature
• Rail-ta-Rail output swing within 20 mV of supply rail,
100 kG load
• Operates from 5V to 15V supply
82 dB
• Excellent CMRR and PSRR
150 fA
• Ultra low input current
120 dB
• High voltage gain (RL = 100 kG)
500 pAlAmplifier
• Low supply current (@ Vs = 5V)
1.0 ",VloC
• Low offset voltage drift
Applications
•
•
•
•
•

Automotive transducer amplifier
Pressure sensor
Oxygen sensor
Temperature sensor
Speed sensor

Connection Diagrams
14·Pln Dip/so

8-Pln DIP/SO

14
r----t--OUT D

1

OUTA-f---,

INA--:~
INA+-"';;~=;;;...I

~ -~'ND­
~a...;;;;=~1~2_IN D+
.!.2-y-

v+~
IN

11"-...;;5+-_--.

.

TopYlew

OUT B

8-Pin Small Outline

+ 125"C

LMC6492AEM
LMC6492BEM
LMC6492AEMX
LMC6492BEMX

Transport
Media

MOM
Tape and Reel

LMC6492AEN
LMC6492BEN

Rails

14-Pin Small Outline

LMC6494AEM
LMC6494BEM

Rails

LMC6494AEMX
LMC6494BEMX
LMC6494AEN
LMC6494BEN

NSC
Drawing

Rails

8-Pin Molded DIP

14-Pin Molded DIP

c+

TUH/I2049-2

Top View

Temperature Range
Extended -40"C to

IN

OUT C

Ordering Information
Package

10

INr--;~ ~;-INC-

TLlH/I2049-1

NoaA

M14A
.Tape and Reel
Rails
1-880

N14A

Absolute Maximum Ratings (Note 1)

Operating Conditions (Note 1)
2.5V

If Military/Aerospace specified devices are required,

Supply Voltage

please contact the National Semiconductor Sales
Office/Distributors tor availability and specifications.
ESD Tolerance (Note 2)
2OO0V
Differential Input Voltage
±Supply Voltage
(V+) + 0.3V, (V-) - 0.3V
Voltage at Input/Output Pin
Supply Voltage (V+ - V-)
16V

Junction Temperature Range
LMC6492AE, LMC6492BE

±5mA

Current at Input Pin
Current at Output Pin (Note 3)
Current at Power Supply Pin
Lead Temp. (Soldering, 10 sec.)
Storage Temperature Range
Junction Temperature (Note 4)

15.5V

+125°C
+ 125°C

108°C/W
171°C/W
78°C/W
118°C/W

40mA
260'C
-65°C to + 150'C
150'C

DC Electrical Characteristics

Vas

s: TJ s:
s: TJ s:

N Package, 14-Pin Molded DIP
M Package, 14-Pin Surface Mount

±30mA

Unless otherwise specified, all limits guaranteed for TJ
Boldface limits apply at the temperature extremes

Symbol

-40'C

LMC6494AE, LMC6494BE
-40'C
Thermal Resistance (9JAl
N Package, 8-Pin Molded DIP
M Package, 8-Pin Surface Mount

s: V+ s:

Parameter

= 25°C, V+ = 5V, V- = OV, VCM = Va = V+ 12 and RL >
Typ
(Note 5)

Conditions

Input Offset Voltage

0.11

LMC6492AE
LMC6494AE
Umlt
(Note 6)

LMC6492BE
LMC6494BE
Umlt
(Note 6)

3.0

6.0

3.a

8.a

1 MO.

Units

mV
max

TCVOS

Input Offset Voltage
Average Drift

Ie

Input Bias Current

(Note 11)

0.15

200

200

pAmax

lOS

Input Offset Current

(Note 11)

0.075

100

100

pAmax

RIN

Input Resistance

>10

TeraO

CjN

Common-Mode
Input Capacitance

3

pF

CMRR

Common-Mode
Rejection Ratio

1.0

OV s: VCM s: 15V
V+ = 15V
OV

+PSRR
-PSRR
VCM

s:

VCM

s: 5V

82
82

Positive Power Supply
Rejection Ratio

5V s: V+ s: 15V,
Va = 2.5V

82

Negative Power Supply
Rejection Ratio

OV s: V- s: -10V,
Va = 2.5V

82

Input Common-Mode
Voltage Range

V+ = 5Vand15V
For CMRR ~ 50 dB

V- -0.3
V+ + 0.3

Av

Large Signal Voltage Gain

RL = 2 kOSourcing
(Note 7)
Sinking

1-8tH

300
40

/JoV/oC

65

63

80

sa

65

63

80

sa

65

63

80

sa

dB
min

dB
min

65

63

80

sa

dB
min

-0.25

-0.25

0

0

V
max

V+ + 0.25
y+

V+ + 0.25
y+

V
min
VlmV
min

DC Electrical Characteristics

"

Unless otherwise specified, all limits guaranteed f9r TJ = 25D C, V+ = 5V, V- =
Boldface limits apply at the temperature extremes (Continued)

Symbol

Parameter

Output Swing

Vo

' Conditions

,

Typ
'(Note 5)

,

V+ =5V'
,RL =, 2kOtoV+/2

4.9
0.1

V+ = 5V
RL = 6000 to V+ /2

4;7
O.:l

V+ =' 15V
RL = 2 kO to V+ /2

14.7
0.16

V+ = 15V
RL = 600n to V+ /2

14.1
0.5

Output Short Circuit Current

Isc

V+ = 5V

Isc

Sinking, Vo = 5V

Output Short Circuit Current

Sourcing, Vo = OV

V+ = 15V

Sinking, Vo = 5V (Note 8)

Supply Current

Is

Sourcing, Vo = OV

25
22,
30
30

LMC6492
V+ = +5V, Vo = V+/2

1.0

LMC6492
V+ = +15V, Vo = V+12

1.3

LMC641!4
V+ = +5V, Vo = V+12

2.0

LMC641!4
V+ = +15V, Vo = V+/2

2.6

','

1·882

.' VOM =
av,

y'o,= V: /2 andRL ;::, 1 MO:

'LMC64jl2AE
LMC6494AE
Umlt
(Note 6)

LMC6492BE'
LMC6494BE
Umlt'
(Note 6)

4.8

4.8

4.7

4.7

Units

V
min

0.18

0.18

0.24

0.24

i'

,

4.5

4.5

4.24

4.24

0.5

0.5

0.85

0.85

V
max
V
min
V
max

V

14.4

14.4

14.0

14.0

~in

0.35

0.35

0.5

0.5

V
max

13.4

13.4

13.0

13.0

1.0

1.0

1.5

1.5

16

16

10

10

11

11

8

8

28

28

20

20

30

30

22

22

1.75

1.75

2.1

2.1

1.95

1.95

2.3

' 2.3

3.5

3.5

4.02

,4.2

3.1!

3.1!

4.8

,4.8,

V
min
;

V
max

mA
min

mA
max
mA
max
mA
max
mA
max

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, .;- = OV, VCM = Vo = V+/2 and RL
limits apply at the temperature extremes

>

1 MO.

Boldface

Symbol

SR

GBW

Parameter

Slew Rate

Gain-Bandwidth Product

Conditions

{Note 9)

LMC6492AE

LMC6492BE

Typ

LMC6494AE

LMC6494BE

(Note 5)

Limit

Limit

(Note 6)

(Note 6)

1.3

V+ = 15V

0.7

0.7

0.5

0.5

Units

V",smin

1.5

MHz

cf>m

Phase Margin

50

Deg

Gm

Gain Margin

15

dB

150

dB

en

in

Amp-to-Amp, Isolation

(Note 10)

Input-Referred

F=1kHz

Voltage Noise

VCM = 1V

Input-Referred

F=1kHz

Total Harmonic Distortion

lRZ
pA

0.06

Current Noise
T.H.D.

nV

37

F = 1 kHz, Av = -2
RL = 10 kO, Vo = -4.1 Vpp

lRZ

0.Q1

%

F = 10 kHz, Av = -2
RL = 10 kO, Vo = 8.5 Vpp

0.01

V+ = 10V
Note 1: AbsolUte Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate condHions for which the device is
intended to be functlonel, but specific performance is not guaranteed. For guaranteed spaeDications and the test conditions. see the Electrical Choracteristics.
Note 2: Human body model, 1.5 kO in series wHh 100 pF.
Note 3: Applies to both single-supply and splH-supply operation. Continuous short operation at elevated ambient temperature can resuR in exceeding the maximum
allowed junction temperature at 150'C. Output currents in excess of ± 30 mA over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of TJ(max), 8JA and TA. The maximum allowable power dissipation at any ambient temperature is Po =
(TJ(max) - TAl/8JA· All numbers apply for packages scldered directly into a PC board.
Note 5: Typical Valuee represent the most likely parametric norm.
Note 6: All limits """ guaranteed by testing or statistical analysis.
Note 7: V+ = 15V, VCM

= 7.5V and RL connected to 7.5V. For Sourcing testa, 7.5V

,;; Vo ,;; 11.5V. For Sinking testa, 3.5V ,;; Vo ,;; 7.5V.

Note 8: Do not short eircuH output to V+, when V+ is greater than 13V or r~liabilHy will be 'adversely affected.
Note 9: V+ = 15V. Connected as vottage follower wHh 10V Step input. Number specified is the slower of the positive and negative slew rates.
Note 10: Input referred, V+ = 15V and RL = 100 kO connected to 7.5V. Each amp excited in tum wHh 1 kHz to prilduee Vo =12 Vpp.
Note 11: Guaranteed limits are dictated by teeter limits and not device performance.' Actual performance is reflected in the typical value.

'"

-

1-883

Typical Performance Characteristics
Vs

=

+1SV, Single Supply, TA

= 2S C unless otherwise specified
D

SUpply Current va
SUpply Voltage
2.0

"<

1.6

+125 O C

..s

u

+85 O C

ii3

1.2

+25 0 C -

,/
I

~
~

1.0

-55°C

0.8

"""
..",

0.6

0.0
o

2

.If

1

,

0.4

D.2

O. 11'"
4

6

8

10

12

14

16

25

50

SUPPLY VOLTAGE (V)

75

100

125

150

0.1

Sourcing Current va
Output Voltage

100

100

10

10

"<

100

Sinking Current va
Output Voltage

"<

..s

..s
!!

~

0.1
0.01

0.1
0.01

0.01

'10

0.1

0.01

0.1

10

~tput Voltage ~.renCed, to Vs (V)

Output Yoltage Referenced to Vs (V)

SInking Current va
Output Voltage

SInking Current va
Output Voltage

100

!

100

10

~

10

"<

i

"<

..s

..s...
c

in

0.1
0.01

0.1
0.01

Output Voltage Swing va
Supply Voltage
30
27

24

~

18
15

~

12

l;1

9

~

10

0.01

Output Voitag' Referenced to GND (V)

0.1

10

200

:s
l:!

iii

160
140

\

80

~

60
40

~

Vs

100

§!

80

= 15V

\

120

,

20
00
10

~

100

-

~-;;;;
MEG SWING

I

I I I

........ II

I\. =

100kn

I I I
3

6

9

12

15

SUPPLY VOLTAGE (v)

~

70

IIII

60

Vs = 15V
F=lkHz

tl

50

!

lk

l-

Input Voltage Noise
va Input Voltage

I

180

I I
I I

1/

Output Voltage Ref.renced to GND (V)

Input Voltage Noise
va Frequency

~.....

I
I

I

~
0.1

(v)

Output Voltage Ref.renced to GND

w

~
in

10

Output Voltage Rtf,renced to Vs (V)

TEMPERATURE (DC)

Sourcing Current va
Output Voltage

J

Sourcing Current va
Output Voltage

1000

I

1.8

~

Input Current va
Temperature

iii

~

40
30
20

10k

0 1 23" S 6 7 8 9101112t3U·1516

FREQUENCY (Hz)

COMNON MODE INPUT VOLTAGE (V)

TLlH/12049-3

1·884

Typical Performance Characteristics
Vs

= + 15V, Single Supply, TA = 25°C unless otherwise specified (Continued)
Input Voltage Noise
vs Input Voltage

Input Voltage Noise
vs Input Voltage

80

~

v! .'5)-

70

= 1 kHz

F'

~

60

tl

50

~
~

.jQ

...i 1

!

~

I

~

r-- ~ ....

30

~

170

F

50

liD

0.5

1.5

= 5V

BO

'01
3

Negative PSRR
Frequency

Vs

60

=

"

3V

50

'01
3

~

~
~

~

70
60

"-

20
10
0
10

100

Ik

10k

I

lOOk

10

100

120

lit.

= 5kG

10k

lOOk

CMRRva
Input Voltage
120 .-.--,r-1-r-r-r--__,

Vs = :t7.5V
f - 10kHz
lit. = 5kll

100

Ik

FREQUENCY (Hz)

CMRRva
Input Voltage

=

""

30

FREQUENCY (Hz)

Vs

5kG

\.

3V

.0

10
I

D

90

=

SO

20

CMRRva
Frequency
BO

Vs

60

J

lit.

~

I

70

'"

FREQUENCY (kHz)

100

= '5V _ t - -

BO

.jQ

10.0

v.

90

lit. =1 SkI!

0
1.0

10.0

VB

30

100

""

-

-

I

70

K!

0.1

I ••
FREQUENCY (kHz)

100

v. = 5V

90

~

.0

0.1

Positive. PSRR
va Frequency

r-.....

,.0

50

2.5

COMMON MODE INPUT VOLTAGE (v)

lit. = 5kll

ISO ~

g;

120

100

Ys

.........

130

100

liD

'01
3

i;i

ill

20
0

160

120

~

ISO

30

!:i

170

130

-

15V

lit. = SkI!

,.0

~

I.......

Crosstalk ReJection
va Frequency

i;i

.......

V

"....

'01
3

=

Ys

160

.jQ

COMMON NODE INPUT VOLTAGE (v)

ill

= 1kHz

60

0

~

I=3)-

v.

70

~

20

!

Crosatalk ReJection
va Frequency

80

r-

15Y

HH--t-++-t
100

;'lit.==,:!::
=

SkI!

! B°r-HH--t-t-t-+++-t
g;
~

60~~H--t-+-+-t-~+4

30
20
10

o
10

100

Ik

10k

1.0

Vs .. :l:1.5V
F

.....

aVos

vaCMR

1.0

O.B

= 10kHz

lit. = 5kG

!

:'fl

~. ! i'2.~V

0.6

0.4

Lo.I

~

G

I

-0 .•
-0.6
-1.0

0.8 0.9 1.21.5

INPUT VOLTAGE (v)

0.6

0.4
0.2

,/

... -0.2

-0.8
20

J
v. = i1.5V

3!;

-0.2

-3

-2

-I

0
V,N (v)

-0••

-0.6
-0.8
-1.0
-2 -1.5 -I -0.5

0

0.5

I

1.5

2

V,N (v)
TUH/I2049-4

1·885

~

I

vaCMR

O.B

">
..s

:'fl

0.2

3!;

-f.5-1.2-0.9~.8-o.3o.00.3

INPUT VOLTAGE (V)

aVos

CMRRvs
Input Voltage

100

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

INPUT VOLTAGE (v)

FREQUENCY (Hz)

120

~~~~-J-L-L-L-L-L~

20
-7.5-8.0 ......S-3.0-UO'O 1.5 3.0 4.5 6.0 7.5

lOOk

I

Typical Performance Characteristics
Vs = + 15V, Single Supply, TA = 25°C unless othel'Wisespecified (Continued)

160

160

~ '2t

120

s.=,
w

I\-i

~1 •

80

~

140

6'bo

"
.3
~

Vs • '7.5V

>

120

CSi2
~

80

~

-.0

~

~' -80
-120

2,,'1

3
z

~.

60

~

~

0

~

2

.'6

""

I\.'~

z

~

I\.

.~

'600n

-1

,"I'

0.1

1

......

10

60

~

'3
z.
~.

.0

JGAIN

~

\

c,: •

. -30

iE

~

~a!
~

~

~

45

500(,

w

.
3

10k

-55o~-

lOOk

~

10

IGA'f'lmtI..
G. •

10

.\

"

-10

"

G. = 1000pF

90

1111
10k

.

~

a!

800
700

w

~

600

~' 500
.00

i

300
!.

200
100
0

IN

lOOk

g
£
iE

.5

Vs • 15V

900

w

G. • 0
G. • 500 pF /

-50

1000

.5

~

r--

10M

0.1

10

FREQUENCY (Hz)

1.45

l

700
500
.00
300
200

1.40

Ay = +1

1\.'
'V1N

I

10kn

= wpp

1.35

";::.

1.30

~

1.25

~

1.15

10000

Non-Inverting Large
Signal. ~ulse :Response
1.1

I I
I I It\iOt~

I~\.\.\\IG~;'"

I

1.20

.r
~~s~~

1.10

I

1.00
1000 10000

1000

~

1.05

100

100

FREQUENCY (kHz)

Slew Rate vs
Supply Voltage
1.50

100

Open Loop Output
Impedance vs Frequency

f'l+t

S';O'~F

G.'1000pF

10M

600

FREQUENCY (kHz)

0.1

= 15V
90
= 600n

I\.

'N..ITll!I"ii

I-40 I-

90

1M

100

0

FREQUENCY (kHz)

Vs

I 111111I'PHAs.

20

-20

Vs • 5V

10

~
~

-45
10M

1M

z

.5

800

0
·0.1

10

~

ill
:=

111111 85°C

,11111111

30

Open Loop Output
Impedance vs Frequency
900

Vs' 15V
I\. = 2kn
THO' 3%

6

125°C

FREQUENCY (Hz)

1000

£
w

20

-30

lOOk

90

~

40

~

-50

Ay • +1

~

Gain and Phase vs
capacitive Load

IIIII~

11111111

111111

125°C

lk

1l'IIl~

-40

15

111111

asoc

-10

£

11111111

Maximum Output Swing
vs Frequency

180

FREQUENCY (Hz)

G..O""-

10k

1111111

30

"',

10 100 lk 10k lOOk 1M 10M

135

_~I~~~

10

~~!

0

1

FREQUENCY (Hz)

I\. •

·11111111

50

-10

0.1

Vs " 15V
2kn

111111

70

IlIv,=m
'I. = 500kn 90

III'PHAS'
11J1'...
GAIN

20

1

Open Loop Frequency
Response vs Temperature

10 100 lk 10k lOOk 1M 10M

rm:::::

30

0

80

-20

-20

g

"

OUTPUT VOLTAGE (V)

Gain and Phase vs
Capacitive Load

3

",.

-20

-2

FREQUENCY (Hz)

..

~.

20

50

-20

40

Vs • 15V

40

-80

-3

Vs =.3V

20

50

•

60

~.

-40

8

Open Loop
Frequency Response
I\. • 500kn

40

-.0

3

- ' I . = 50kJl

OUTPUT VOLTAGE (v)

..

80 'I.= .. o~

-160
~

80

1 't.l"'lJ .too.fQ

100

. -120

-160

100

I-- Vs' U.5V

(1004

40

~

120

.. ~

120

~~
• SOkQ

.0

~.
~

~

. Open Loop
Fre.quency Response

Input Voltsge vs
Output Voltage

Input Voltage vs
Output Voltage

I

-K
1,

TA = +125 0 C,

~

r\.

'rv

'.2k n

-

1p...

-

J/
II"

3 • 5 6 7 8 9 10111213141518

SUPPLY VOLTAGE (v)

TLlH/I2049-5

1-886

.-----------------------------------------------------------------------------'r
!!:

Typical Performance Characteristics
+ 15V, Single Supply, TA =

Vs =

(")

G)

25°C unless otherwise specified (Continl.>ed)

Non-Inverting Uirge
Signal Pulse Response

~
Non-Inverting Small
Signal Pulse Response

Non-Inverting Large
Signal Pulse Response

r=
~
~

~

~

1;1

...z

~

1;1

-f- r-

-1\

~
~
~

= +25 0 C, I--f-

TA

r-

.1\. = 2kll

I I I

1\

§

1,

l/

t7

-l-

~

~
~

;;~f-

-~

= -55·C. I\. = 2kll _

-

TA

_

1,

:;7'~

~

~

11"

50m~

SOm'Y

11"

~

~
~
~

"

">

~
in

II
1\

E

"

~

i

11"

~
~
~

s:-

z

-f-

TA = -55 0 C,

1\.=2kll

II
II

If'

~

II

~

-'-

I\. = 2 kn

II

1;1

~

1,

1,

~

1\

A

~

V
1,

1,

11"

11"

Inverting Small Signal
Pulse Response
~

ili
in

~

~

-r-

~ s:-o

TA = -55°C,
I\. = 2 kll

~

~
~

"-

A

§

1,

1,

n~E (ll'./OlV)

...z "
1;1 '"
E

1;1

\

1\

TINE (l!'./DlV)

Inverting Large Signal
Pulse Response

~ s:o

C.

~
~
~

§

1/"

TA = +12S o C,
= 2kll

'-r-- I\.

~

I

1\

SOmV' SCmV'

1/"

Inverting Small Signal
Pulse Response

Stabllityvs
Capacitive Load
10000

...z

1;1

~
>
E

~

~
~
~

s:-

~ e"

1;1
5

Av

r--r-

TA = +25 0 C,
I\. = 2kll -

il

'!;

r--

1

VI

5

1\

SOmy SOmV'

11'0

n~E (1 po/OIV)

I'

§

~

s:~
>

."
~

= +1

Vs = :t7.SV

~

1;1
~
~
~

-r-

TIME (lp./DlV)

Inverting Small Signal
Pulse Response

z

r- -f-

= 2kQ

/

6

11"

~

C1

TA = +125 0 C.

r-f- - I\.

~

~
~
in

= +25

~

nNE (1 /,o/OIV)

~
TA

s:o

1;1

II

50m'. SOmV'

Inverting Large Signal
Pulse Response

§

II
11

i

n~E (11'./D1V)

~

I--f-

if'

Inverting Large
Signal Pulse Response

SOm'. SOm';

"-

= 2kll

Non-Inverting Small
Signal Pulse Response

~E -f- TA = +2S 0 C,
I\. = 2kll If'
"

~ s:o

TA = +125 OC.

I\.

Non-Inverting Small
Signal Pulse Response

;;-

~
6

r-f-

T1NE (1 J,,/D1V)

~

~

"

§

...

~

E

~

'"in

l/r

l,l

.e.>

...z

nNE (11'./D1V)

~

~

I I I I

"-

'-f-

n~E (11'./D1V)

~
in

~
~
in

i

i

11"

1,

...

~

~

1;1

~
~
~

z

CD

E

~

Q

-r-r-

TA

= -55°C.

I\.

= 2kll

II

1

1\

SOmy SOmV'

1/"

TINE (1 p./OIV)

-r-

... = 1 wn
1000

JJW W

UNSTABLE

,1,,111

9
~

>
;:

~

100

<'l
25% OVERSHOOT

I I I I I

10
-6 -5 - .. -3 -2 -1 0 1 2 3 .. 5 6

VOUT (V)

TUH/1204S-6

1-887

~

!

to)

~

,---------------------------------------------------------------------------------,
Typical Performance Characteristics
Vs =

I

+ 15V, Single Supply, TA

= 25°C unless otherwise spElcified (Continued)

Stability vs
Capacitive Load

Stabllltyvs
CapaclUve Load
10000

lQOOO

~

~

~

'"
1
Vs ==n.sv
'1.="

1 1 1 1

UNSTABLE .'!>

1000

~

~

~

Stability vs
Capacitive Load
10000

'"
=1
Vs = :I:1.5V

A., = 10
Vs .. i7.5V

It1 UN~~~

1000

-=~

§'"

~

I I

25" OVERSHOOT
10
-6-5-4-3-2-10 1 23 .. 5 6

10

-6-5--4-3-2-10 1 2.3 ... 5 6

VOU, (v)

VOUT (V)

VOUT (V)

Stability vs
Capacitive Load
10000

Stabilltyvs
Capacitive Load
10000

A., = 10
Vs

= 10
=i7.5V
'I. = soon
A.,

= :t:7.SV

Vs

'I. = 2k

C'

!

1000

~

~

~

100

-4

,

GN=:::
,

Your

••
........

TLlH/12049-9

FIGURE 2. A ± 7.SV Input Signal Greatly
Exceeds the SV Supply in FIgure 3 Causing
No Phase Inversion Due to RI
Applications that exceed this rating must extemally limit the
maximum input current to ± 5 mA with an input resistor (RI)
as shown in Ftgure 3.

TLlH/12049-11

FIGURE 4. Cancelling the Effect of Input capacItance
capacitive Load Tolerance
All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is
normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load
on the amplifier. capacitive load driving capability can be
optimized by using an appropriate resistive load in parallel
with the capacitive load (see Typical Curves).
Direct capacitive loading will reduce the phase margin of
many op-amps. A pole in the feedback loop is created by
the combination of the op-amp's output impedance and the
capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either
an OSCillatory or underdamped pulse response. With a few
external components, op amps can easily indirectly drive
capacitive loads, as shown in Figure 5.

TLlH/12049-10

FIGURE 3. Rllnput Current Protection for
Voltages Exceeding the Supply Voltages

1-869

Application Notes (Continued)

CI

+V

O.II'F

INPUT J.,fo,""''f-4~-~Yr-''
I

I

Guard Ring ~

r

G.OAD
330 pF

I
,

OUTPUT

I

'TL/H/12049-14

(a) Inverting Amplifier
R2

TUH/I2049,-12

FIGURE 5. LMC6492/4 Nonlnverting Amplifier,
Compensated to Handle Capacitive Loads
Prlnted-Clrcult-Board Layout
for High-Impedance Work
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires speeiallayout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6492/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite
simple. First, the user must not ignore the surface leakage
of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or
dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, layout a ring
of foil completely surrounding the LMC6492/4's inputs and
the terminals of components connected to the op-amp's inputs, as in Figure 6. To have a signi~cant effect, guard rings
should be placed on both the top and bottom of the PC
board. This PC foil must then be connected to a voltage
which is at the same voltage as the amplifier inputs, since
no leakage current can flow between two points at the same
potential. For example, a PC board trace-to-pad resistance
of 10120, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to
the pad of the input.
This would cause a 33 times degradation from the
LMC6492/4's actual performance. If a guard ring is used
and held within 5 mV of the inputs, then the same resistance of 1011 0 will only cause 0.05 pA of leakage current.
See Figures 78, 7b, 7c for typical connections of guard rings
for star)dard op-amp COnfigurations.

~o
"

OUTPUT

TUH/12049-15

(b) Non-Inverting Amplifier

OUTPUT
INPUT

TL/H/12049-16

(c) Follower
FIGURE 7.Typlcal Connections of Guard Rings
The designer should be aware,that when it Is inappropriate
to layout a PC board for,th'e sake of just!! few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the 'amplifier's input pin into the
board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have, to for.go some of the, advantages of PC board construction, but the advanta!l6s are sometimes well worth
the effort of using point-ta-point up-in-the-air wiring. See
Figure 8.
, FEEDBACK

CAPACITOR'

rn rn ' [1'"
-INI

+IN1

0

0

-+-+--1

_v-

TUH/12049-17

(Input pins are lifted oul of PC boaid and soldered directly to components.
All other pins connected 10 PC board).

L

FIGURE 8_ Air Wiring

t.GUard Ring
TL/HI12049-13

FIGURE 6. Examples of Guard
Ring in PC Board Layout '

1-890

Application Circuits
Instrumentation Amplifier

DC Summing Amplifier
(VIN ~ OVDC and Vo ~ VDC)
R
llJ1111

R3

R4

,Ok

'OOk

Vo

·OUT

1.

+v"o--'II..,."....
R

R6

TLlH/I2049-18

Where: Vo = V, + V2 - V3 - V.
(V, + V2 ;;, (V3 + V41 to keep Vo > OVoc

'Ok

If Rl = RS. R3 = R6. and R4

High Input 1, DC Differential Amplifier

VOUT
V,N

R2
lD110

R7
9,k

20k pot

TLlHI12049-21

= R7; then

= R2 + 2Rl x~
R2

R3

:. Av :::: 100 lor circuit shown (R2

= 9.3k).

Rail-to-Rall Single Supply Low Pass Filter
CI

v.

VOUT

TL/H112049-19

Rl

For R2

R4

.
= R3 (CMRR d_nds on thIS resistor ratio match)
TLlHI12049-22

Vo=I+~(V2-V,)
R3

1

Rl = R2. Cl = C2; I = ~ Damplng Factor =

All shown: Vo = 2(V2 - V,)

fC2fR2
y. 'Ie;
VAl

This low-pass filter circuit can be used as an anti-aliasing
filter with the same supply as the AID converter. Filter designs can also take advantage of the LMC6492/4 ultra-low
input current. The ultra-low input current yields negligible
offset error even when large value resistors are used. This
in turn allows the use of smaller valued capacitors which
take less board space and cost less.

Photo Voltaic-Ceil Amplifier
R,
1M

Low Voltage Peak Detector with
Rail-ta-Rall Peak Capture Range
20 kn

>-"-OVo

(CELL HASOV
ACROSS IT)

V,N

TLlHI12049-20
TLlHI12049-23

Dielectric absorption and leakage is minimized by using a
polystyrene or polypropylene hold capacitor. The droop rate
is primarily determined by the value of CH and diode leakage current. Select low-leakage current diodes to minimize
drooping.

1-891

Application Circuits (Continued)
Pressure Sensor

In a manifold absolute pressure sensor application, a strain
gauge is mounted on the intake manifold in the engine unit
Manifold pressure causes the senSing resistors, R1, R2, R3
and R4 to change. The resistors change in a way such that
R2 and R4 increase by the same amount R1 and R3 decrease. This causes a differential voltage between the input
of the amplifier. The gain of the amplifier is adjusted by Rt.

~~

Spice Macromodel

Vo

A spice macromodel'is available for the LMC6492/4. This
model includes accurate simulation of:
• Input common-model voltage range
• Frequency and transient response
• GBW dependence on loading conditions
• Quiescent and dynamic supply current
• Output swing dependence on loading conditions
and many other characteristics as listed on the macromodel
disk.
Contact your local National Semiconductor sales office to
obtain an operational amplifier spice model library disk.

TL/H/I2049-24

AI ~ Ax
AI» AI. A2. A3. and A4
V _ (~_~)AI(A3+A4)V
0- Al+A2 A4+A3
A3A4
REF

1-892

r-------------------------------------------------------------------------, r

a::::

n

~
.....

ttlNational Semiconductor

~
r

a::::

LMC6574 Quad/LMC6572 Dual
Low Voltage (2.7V and 3V) Operational Amplifier

§

Features

General Description
Low voltage operation and low power dissipation make the
LMC6574/2 ideal for battery-powered systems.
3V amplifier performance is backed by 2.7V guarantees to
ensure operation throughout battery lifetime. These guarantees also enable analog circuits to operate from the same
3.3V supply used for digital logic.
Battery life is maximized because each amplifier dissipates
only micro-watts of power.
The LMC6574/2 does not sacrifice functionality for low voltage operation. The LMC6574/2 generates 120 dB of openloop gain just like a conventional amplifier, but the
LMC6574/2 can do this from a 2.7V supply.
These amplifiers are designed with features that optimize
low voltage operation. The output voltage swings rail-to-rail
to maximize signal-to-noise ratio and dynamic signal range.
The common-mode input voltage range extends from
800 mV below the positive supply to 100 mV below ground.

(Typical unless otherwise noted)·
• Guaranteed 2.7V and 3V Performance
• Rail-to-Rail Output Swing (within 5 mV of supply rail,
100 kG load)
• Ultra-Low Supply Current
40 p.A/Amplifier
•
•
•
•

Low Cost
Ultra-Low Input Current
High Voltage Gain @ Vs=2.7V, RL =100 kG
Specified for 100 kG and 5 kG loads

20 fA
120 dB

Applications
•
•
•
•
•
•

Transducer Amplifier
Portable or Remote Equipment
Battery-Operated Instruments
Data Acquisition Systems
Medical Instrumentation
Improved Replacement for TLV2322 and TLV2324

This device is built with National's advanced Double-Poly
Silicon-Gate CMOS process.

Connection Diagrams
8-Pln DIP/SO
OUTPUT A

-+--,

INVERTING INPUT A -=-+-~
NON-INVERTING INPUT A

14-Pln DIP/SO
INPUT 4-

I{"

v·
OUTPUT B
INVERTING INPUT B

L-_-+";"" NON-INVERTING INPUT B

TL/H/II934-1

Order Number LMC6572AIN, LMC6572BIN,
LMC6572AIM or LMC6572BIM
See NS Package N,umber ND8E or MD8A

INPUT 1-

TL/H/I1934-2

Order Number LMC6574AIN, LMC6574BIN,
LMC6574AIM or LMC6574BIM
See NS Package Number N14A or M14A

Ordering Information
Package

Temperature Range
Industrial, - 40"C to + 85"C

NSCDrawing

Transport
Media

s-Pin Molded DIP

LMC6572AIN, LMC6572BIN

N08E

Rail

8-Pin Small Outline

LMC6572AIM, LMC6572BIM

MOsA

Rail

14-Pin Molded DIP

LMC6574AIN, LMC6574BiN

N14A

14-Pin Small Outline

LMC6574AIM, LMC6574BIM

M14A

LMC6572AIMX, LMC6572BIMX

LMC6574AIMX, LMC6574BIMX
1-893

Tape and Reel
Rail
Rail
Tape and Reel

Absolute Maximum Ratings (Note 1)

Operating Ratings (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor sales
Office/Distributors for availability and specifications.
ESD Tolerance (Note 2)
2000V
± Supply Voltage
Differential Input Voltage
(V+) +0.3V;
Voltage at Input/Output Pin
(V-) -0.3V
SupplyVoltage(V+ - V-I

Storage Temperature Range
Junction Temperature (Note 4)

,

12V
±5mA

Current at Input Pin
Current at Output Pin (Note 3)
Current at Power Supply Pin
Lead Temperature (Soldering, 10 Seconds)

2.7V ii;V~ ~ 11V

Supply Voltage
Junction Temperature Range
LMC6572AI, LMC6572BI
LMC6574AI, LMC6574BI
,

-40"C ~ TJ ~ +85°C
:-40",C ~ TJ ~ +85°C

Thermal "Resistance (9jA>
JI.I Package, 8~Pin Molded DIP
M Package, 8-Pin Surface Mount
N Package,14-Pin Molded DIP
M Package, 14-Pin Surface Mount

115°C/W
193°C/W
81°C/W
12a"C/W

, ±10mA
35mA

260"C
-65°C to + 150°C
150"C

2.7V DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C. V+ = 2.7Y, V- = OV, VCM = YO = V+ 12 and RL > 1MO.
Boldface limits apply at the temperature extremes.

Symbol

Vos

Parameter

Input Offset Yoltage

TCVos

Input Offset Voltage
Average Drift

18

Input Current

los

Typ
(Note 5)

Conditions

V:I' = 2.7Vand3V

0.5

LMC6574AI
LMC6572AI
Limit
(Note 6)

LMC6574BI
LMC6572BI
limit
(Note 6)

3

7

3.5

7.5

1.5

mY
Max
/LVrC

0.02

Input Offset Current

Units

10

10

pA
Max

6

6

pA
Max

0.01

RIN

Input Resistance

>1

TeraO

CIN

Common-Mode
Input Capacitance

3

pF

CMRR

Common Mode
Rejection Ratio

OV ~ VCM
Y+ = 5V

Positive Power Supply
Rejection Ratio

2.7V ~ V+
V- =OV

Negative Power Supply
Rejection Ratio

-2.7V ~ VV+ = OV

Input Common-Mode
Voltage Range

V+ = 2.7Vand3Y
for CMRR ~ 50 dB

+PSRR
-PSRR
VCM

~

3.5V

~

75

5V,
~

75

-5V,

83
-0.1
Y+ - 0.8

Av

Large Signal
Voltage Gain

RL = 100kO
(Note 7)

Sourcing

1000

Sinking

500

,

1-894

63

60

60

57

67

60

65

58

dB
Min
dB
Min

75

67

73

65

dB
Min

-0.05

-0.05

0

0

V
Max

V+ - 1.0
Y+ - 1;3

Y+ - 1.0
Y+ ':"1.3"

V
Min
V/mV
VlmV

2.7V DC Electrical Characteristics (Continued)
=

Unless otherwise specified, all limits guaranteed for TJ
Boldface limits apply at the temperature extremes.

Symbol

Vo

Parameter'

Output Swing

25°C. V+

=

2.7V, V-

Typ
(Note 5)

Conditions

V+ = 2.7V
RL = 100 kO to V+ /2

2.695
0.005

V+ = 2.7V
RL = 5kOtoV+/2

2.66
0.04

V+ = 3V
RL = 100 kO to V+ /2

2.995
0.005

V+ = 3V
RL = 5kOtoV+/2

2.96
0.04

Isc

Output Short
Circuit Current

Sourcing, Vo

Supply Current

6.0

OV

OV, VCM

=

Vo

=

V+ /2 and RL
LMC6574BI
LMC6572BI
Limit
(Note 6)

2.68

2.65

2.88

2.82

0.03

0.06

0.05

0.09

2.55

2.45

2.45

2.35

0.15

0.25

0.25

0.35

2.98

2.95

2.98

2.93

0.03

0.06

0.05

0.09

2.85

2.75

2.75

2.85

0.15

0.25

0.25

0.35

4.0

4.0

Quad Package
V+ = +2.7V, Vo

=

160

Quad Package
V+ = +3V, Vo

V+/2

V+/2
160

=

Dual Package
V+ = +2.7V, Vo

80

=

V+ /2
80

=

V+/2

1-895

>

1MO.

Units

V
Min
V
Max
V
Min
V
Max
V
Min
V
Max
V
Min
V
Max

3.0

rnA

2.0

Min

"

2.7V

Dual Package
V+ = +3V, Vo

=

LMC6574AI
LMC6572AI
Limit
(Note 6)

3.0
Sinking, Vo

Is

=

=

3.0

2.5

rnA

2.0

1.5

Min

240

240

pA

280

280

Max

240

240

/LA

280

280

Max

120

120

/LA

140

140

Max

120

120

/LA

140

140

Max

2.7V AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25°C, Y+ = 2.7V, Y- = OY, YCM = Yo = Y+ 12 and RL
Boldface limits apply at the temperature extremes.

Symbol

SR
GBW

Parameter

Slew Rate
Gain-Bandwidth ProduCt

CondlUons

Y+ = 2.7Yand3Y
(NoteS)

Typ,
(Note 5)
90

Y+ = 3Y

LMC6574AI
LMC6572A1
Umlt
(Note 6)

LMC6574BI
LMC6572BI
Limit
(Note 6)

30

30

10

10

> 1 MO.

Units

Vlms
Min

0.22

MHz

m

Phase Margin

80

Deg

Gm

Gain Margin

12

dB
dB

Amp-to-Amp Isolation

(Note 9)

120

en

Input-Referred
Yoltage Noise

F=1kHz
YCM = 1V

45

in

Input-Referred
Current Noise

F=1kHz

0.002

T.H.D.

Total Harmonic Distortion

F= 10 kHz, Av= -2
RL = 10kO, YO = 1.0Ypp

0.05

nVlVHz
pA/VHz
%

Note 1: Absolute Maximum Ratings indicate-limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is
Intended to be functlonel. but specific performance Is not guaranteed. For Quaranteed specifications and test conditions. see the Electrical Characteristics.
,Note 2: Human body model. 1.5 kn in aeries with 100 pF.
Note 3: Applies to both slngle-supply and splft-supply operation. Continuous short eireuH operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150'C.
Note 4: The maximum power dissipation Is a function of TJ(Max). (JJA. and TA. The maximum allowable power dissipation at any ambient temperature Is
Po = (TJ(Max) - TAl/(JJA. All numbers apply lor packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
~ 8: Aillimils are guaranteed by testing or statistical analysis.
Note 7: V+ = 3V. VCM = 1.5Vand RL connected to 1.5V. For Sourcing tests, 1.5V s: Vo s: 2.5V. For Sinking teste. O.5V s: Vo s: 1.5V.
Note 8: Connected as Voitegs Follower with 1.0V step inpul Number specified Is the slower of the positive and nagalive slew rates.
Note 9: Input referred. V+ = 3V and RL = 100 kG connected to 1.5V. Each amp excited in tum 'Yfth 1 KHz to produce Vo = 2 Vpp.

1-896

Typical Performance Characteristics
Supply Current va
Supply Voltage (Dual Package)
100

I--

90
80

~

r:.:

....

I--

60

1

I
a

~O

,/

,/

"

0.00 I

I

V-

/

o. I
I

30
20
10

Sourcing Current vs
OUtput Voltage

,/

!

50

J

= 25"C. Unless otherwise specified

Input Current vs
Temperature .
10

e.lj;o~

+3V. TA

100

fooo-"t~OC

70

.3

l--

.. 40ot

=

Vs

I

o

o

10

12

25

50

75

100

125

ISO

Temperature (Oc)

Supply Volt.ge (V)

Sinking Current va
Output Voltage

Output Voltage Referenced to Vs (V)

Output Voltage Swing vs
Supply Voltage

Input Voltage Noise vs
Frequency
200

Ii

A

-

lA'"!

~ 140

POSITIVE
SWING

./' N~GATIVE
Sj'NG

180
~ 160

!

120

:

100

I

80

j

60

~

40

I--

10

60

i
u

,

100

-

120

:;

..,.
~

50

~
~

~
~

~o

100

lk

10k

20

10

10

lOOk

0

10

100

lk

10k

.3

50

1

~O

30

W~~

..,.
~

-F"

-2

10~~~~~~~~LW~

Ik

Frequency (Hz)

10k

lOOk

100k

~

90

¢

70

I\. =5kll

30

XI
Jr

20
10

Av.

-~

50
~

= 100kll

30
10

~

£
~

il:

-10

II\. =Skll'"

-10

-8
-2.0 -1.5 -1.0 -0.5 0

10k

IIIII
rRt!

50

-6

20

Ik

Open Loop Frequency
Response

40

I-~

3.

~

60

I
fl

'" rs~
1-1-"

">

80
70

1\

100

Frequency (Hz)

Input Voltage vs
Output Voltage (Vs = ± 1.5)

90

100

10

100k

Frequency (Hz)

110
100

10

~O

20

CMRR vs Frequency

~
u

60
50
30

Frequency (Hz)

::II

70

30

o
10

~

90
80

60

~

10k

Negative PSRR va
Frequency

70

..,.

Ik

Frequency (Hz)

i'-

80

I
I

100

100

90

1~0

..,.

10

100

~

I

12

Positive PSRR vs
Frequency

Crosstalk ReJection vs
Frequency

80

..........

o

Supply Voltage (V)

Output Voltage Referenced to GND (V)

.3

"-

20

l\.i'OO~1I .

..,.

\.
\..

-30

111111111
0.5 1.0 1.5 2.0

Output Voltage (V)

Ik

10k

lOOk

1M

Frequency (Hz)
TLfHfI1934-3

1·897

r---------------------------------------------------------------------------------,

~

ti' Typical Performance Characteristics

';....
~

Open Loop Frequency
Response vs Temperature

'

....

(Continued)Vs = +3V;TA= 25"C,UnlessotheI'WiSe'Specified

Maximum Output SWing
vs Frequency

ZOUT vs Frequency ,
4k

II)

B
....::E

'\ = Skn

90

50
30
10

l
~

~

~

2.Sk

t

2k

.§

I

-10

Vs = :t2.5V

S

3k

t

!

ii
;::

Jllllllm

3.5k

V5 =3V

70

1.5k

i

, lk
500

-30

""

o
lk

10k

to

IN

lOOk

Frequency (Hz)

toO

100

lk

tOk

Non-Inverting Large Signal
Pulse Response

Slew Rate

vs Supply Voltage'

tOOk

IN

Frequency '(Hz)

Frequency (kHz)

Non-Inverting Small Signal
Pulse Response .

0.16

0.15

~

1;;;

.-- /

f~LLlNG

1 0.1.

I ---1~. Vour

• quiescent and dynamiC supply current
• output swing dependence on loading conditions
and many more characteristics as listed on the macromodel
disk.

R2

Rl

+3V _.JVI/Ir-t--JVil~--'
470k
470k

R3
470k

Contact your local National Semiconductor sales office to
obtain an operational amplifier spice model library disk.
TUH/11934-15

FIGURE 8. 1 Hz Square Wave Oscillator
TypIcal Slngl8-Supply Applications

..

,

",.

l1U1

VIo-~W,_....

Trim

R
V2 o-~Wi.,.-"'"

R

CW'
"
Trim

VOUT " 100VD

V3

o--w,.,.--,

>-....-OVOUT

R

TUH/I1934-13

FIGURE 6. Low-Power Two-Op-Amp
Instrumentation Amplifier

..s;:q
~t ~!!Sl+

R

V4o-~W,_'"

R
VOUT "VI +V2 - V3 - V4

20ko.

I

I •

~CD4066BM

...

TUHI11934-16

FIGURE 9. AdderlSubtractor Circuit
Vour
0.47 pF

J,c"OI.D

2.37 kll
SAMPLE

>-....-oVour

TUH/II934-14

FIGURE 7. Sample and Hold
15 kll

15 kll

FeuTorr = 100 Hz
Av" 2
Q" 0.707

TUHI11934-17

FIGURE 10. Low Pass Filter

1-901

m
d
~ (ill' Nat i on a I

O

PRELIMINARY

S e m i con due tor

.......

~

B LMC6582 Dual/LMC6584 Quad
~

Low Voltage, Rall-To-Rall Input
and Output CMOS Operational Amplifier
General Description
The LMC6582/4 is a high pertormance operational amplifier
which can operate over a wide range of supply voltages,
from 1.8V to 10V. It has guaranteed specs at 1.8V, 2.2V, 3V,
5V, and 10V.
The LMC6582/4 provides an input common-mode voltage
range that exceeds both rails. The rail-to-rail output swing of
the amplifier assures maximum dynamic signal range. This
rail-to-rail performance of the amplifier, combined with its
high open-loop voltage gain makes it unique among rail-torail CMOS amplifiers. The LMC6582/4 is an excellent upgrade for circuits using limited common-mode range amplifiers.
The LMC6582/4 has been designed specifically to improve
system performance ,in low voltage applications. Guaranteed operation down to 1.8V means that this family of amplifiers can operate at the end of discharge (EOD) voltages of
several popular batteries. The amplifier's 80 fA input current, 0.5 mV offset voltage, and 82 dB CMRR maintain accuracy in battery-powered systems.
For a single. dual or quad CMOS amplifier with similar specs
and a powerdown mode, refer to the LMC6681/2/4 datasheet.

Features (Typical uniess otherwise noted)
• Guaranteed Specs at 1.8V, 2.2V, 3V, 5V, 10V
• Rail-to-Rail Input COl"(1mon-Mode Voltage Range
• Rail-to-Rail Output Swing
(within 10 mVof supply rail, @ Vs = 3Vand RL = 10 kO)
• CMRR and PSRR
82 dB
• Ultra Low Input Current
80 fA
• High Voltage Gain (VS = 3V, RL = 10 kO)
120 dB
• Unity Gain Bandwidth
1.2 MHz
Applications
•
•
•
•
•
•

Battery Operated Systems
Sensor Amplifiers '
Portable Communication Devices
Medical Instrumentation
Level Detectors, Sample-and-HoldCircuits
Battery Monitoring

Connection, Diagrams
8-Pln DIP/SO

14-Pin DIP/SO
OUT A
IN AIN A+
v+
IN s+
TL/H/12041-1

IN s-

IN C-

OUT B

OUT C

Top View

TL/H/12041-2

Top View

Ordering Information
Package

Temperature Range
Industrial, -40'Cto + 85°C

NSC
Drawing

Transport
Media

8-pin Molded DIP

LMC6582AIN, LMC6582BIN

N08E

Rails

8-pin Small Outline

LMC6582AIM, LMC6582BIM
LMC6582AIMX, LMC6582BIMX

M08A
M08A

Rails
Tape and Reel

14-pin Molded DIP

LMC6584AIN, LMC6584BIN

N14A

Rails

14-pin Small Outline

LMC6584AIM, LMC6584BIM
LMC6584AIMX, LMC6584BIMX

M14A
M14A

Rails
Tape and Reel

1-902

PRELIMINARY

tflNational Semiconductor

LMC6681 Singie/LMC6682 Dual/LMC6684 Quad
Low Voltage, Rail-To-Raillnput and Output CMOS
Amplifier with Powerdown
Features

General Description
The LMC6681 1214 is a high performance operational amplifier which can operate over a wide range of supply voltages,
from 1.8V to 10V. It has guaranteed specs at 1.8V, 2.2V, 3V,
5V, and 10V.
The LMC6681 1214 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output
swing of the amplifier assures maximum dynamic signal
range. This rail-to-rail performance of the amplifier, combined with its high open-loop voltage gain makes it unique
among CMOS rail-to-rail amplifiers. The LMC6681/2/4 is an
excellent upgrade for circuits using limited common-mode
range amplifiers.
The LMC6681/2/4 has a powerdown mode which can be
triggered externally. In this powerdown mode, the supply
current decreases from 1.4 rnA (for two amplfiers) to 1.5 ,...A
(for two amplifiers). The LMC6684 has two powerdown options. Each of the powerdown pins disables two amplifiers.
The LMC6681/2/4 has been designed specifically to improve system performance in low voltage applications. The
amplifier's 80 fA input current, 0.5 mV offset voltage, and
82 dB CMRR maintain accuracy in battery-powered systems.

(Typical unless otherwise noted)
• Guaranteed Specs at 1.8V, 2.2V, 3V, 5V, 10V
• Rail-to-Rail Input Common-Mode Voltage Range
• Rail-to-Rail Output Swing
(within 10 mV of supply rail, @ Vs=3V and RL = 10 kO)
• Powerdown Mode
Is OFF :s; 1.5 ,...AI Amplifier
(Guaranteed at Vs = 1.8V, 2.2V, 3V, and 5V)
80 fA
• Ultra Low Input Current
120 dB
• High Voltage Gain (Vs = 3V, RL = 10 kO)
1.2 MHz
• Unity Gain Bandwidth

Applications
•
•
•
•
•
•

Battery Operated Circuits
Sensor Amplifiers
Portable Communication Devices
Medical Instrumentation
Battery Monitoring Circuits
Level Detectors, Sample-and-Hold Circuits

Connection Diagrams
14·Pin DIP/SO

a·Pin DIP/SO
NC

NC

Y'"

ININ'
I{"

OUT

5

4

OUT A

OUT A

IN A-

IN A-

IN A+

IN A+

.,.

V'
10

NC

PO

TL/H/12042-1

Top View

16·Pin DIP/SO

PO

POB

a+

NC

Ne

IN

Ne

Ne

IN B-

OUT B

TL/H/12042-2

Top View

TUH/12042-3

Top View

Ordering Information

r------------.--------------------r------.~------__,

Package

Temperature Range
Industrial, - 40"C to + 85'C

NSC
Drawing

Transport
Media

8-Pin Molded DIP

LMC6681AIN, LMC6681BIN

N08E

Rails

B-Pin Small Outline

LMC6681AIM, LMC6681BIM
LMC6681AIMX, LMC6681B1MX

M08A
M08A

Rails
Tape and Reel

l4-Pin Molded DIP

LMC6682AIN, LMC6682BIN

N14A

Rails

l4-Pin Small Outline

LMC6682AIM, LMC6682BIM
LMC6682AIMX, LMC6682BIMX

M14A
M14A

Rails
Tape and Reel

l6-Pin Molded DIP

LMC6684AIN, LMC6684BIN

N16A

Rails

l6-Pin Small Outline

LMC6684AIM, LMC6684BIM
LMC6684AIMX, LMC6684BIMX

M16A
M16A

Rails
Tape and Reel

1-903

tJ1

National Semiconductor

LMC7101 Tiny Low Power Operational Amplifier
with Rail.;To-Raillnput and Output
General Description

Features

The LMC7101 is a high performance CMOS operational amplifier available in the space saving SOT 23-5 Tiny package.
This makes the LMC7101 ideal for space and weight Critical
designs. The performance is similar to: a single amplifier of
the LMC6482/4 type, with rail-to-rail input and output, high
open loop gain, low distortion, and low supply currents.
The main benefits of the Tiny package are most apparent in
small portable electronic devices, such as mobile phones,
pagers, notebook computers, personal digital assistants,
and PCMCIA cards. The tiny amplifiers can be placed on a
board where they are needed, simplifying board layout.

• Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO:.s designs
• Guaranteed specs at 2.7V, 3V, 5V, 15V supplies
• Typical supply current 0.5 mA at 5V
• Typical total harmonic distortion of 0.Q1 % at 5V
• 1.0 MHz gain-bandwidth
• Similar to popular LMC6482/4
• Input common-mode,range includes V- andV+
• Tiny package outside dimensions-120 ~ 118 x 56 mils,
3.05 x 3.00 x 1.43 mm

Applications
•
•
•
•

Mobile communications
Notebooks and PDAs
Battery powered products
Sensor interface

Connection Diagrams
8-PlnDIP
NC...!
INVERTING INPUT.l
NON-INVERTING ~
INPUT

".J

'-../

~

'
w
S-Pln SOT23-S

'''M

~NC
~v+
~ OUTPUT

v+

2

+

~

NON-INVERTING 3
INPUT

~NC

4 INVERTING
INPUT
TUHI11991-2

TUH/11991-1

Top View

Package

Ordering Information

Top View

NSC Drawing Number

Supplied As

Package Marking

8-PinDIP

LMC7101AIN

N08E

LMC7101AIN

8-PinDIP

LMC7101BIN

N08E

LMC7101BIN

Rails
Rails

5-Pin SOT 23-5

LMC7101AIM5

MA05A

AOOA

250 Units on Tape and Reel

5-Pin SOT 23-5

LMC7101BIM5

MA05A

AOOB

250 Units on Tape and Reel

5-Pin SOT 23-5

LMC71 01 AIM5X

MA05A

AOOA

3k Units Tape and Ree)

5-Pin SOT 23-5

LMC7101BIM5X

MA05A

AOOB

3k Units Tape and ReS)
"

1-904

r

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Offlce/Dllltrlbutors for availability and specifications.
ESD Tolerance (Note 2)
Difference Input Voltage
Voltage at Input/Output Pin
SupplyVoltage(V+ -V-)

Junction Temperature Range
LMC71 01 AI, LMC7101BI
Thermal Resistance (6JAl
N Package, 8-Pin Molded DIP

16V
±SmA
±3SmA

Current at Input Pin

Storage Temperature Range
Junction Temperature (Note 4)

-40'C

Symbol

Parameter

S;

TJ

S;

+8SoC

11soC/W

32soC/W

3SmA
260'C
-6SoC to + 1SO'C
1SO'C

>

2SoC, V+ = 2.7V,

1 MO. Boldface limits apply at the temperature extremes.

Conditions
V+ = 2.7V

Typ
(Note 5)

LMC7101AI
Umlt
(Note 6)

LMC7101BI
Limit
(Note 6)

Units

0.11

6

9

mV
max

Vos

Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

Ie

Input Bias Current

1.0

84

84

pAmax

los

Input Offset Current

O.S

32

32

pAmax

ILV/oC

1

RIN

Input Resistance

CMRR

Common-Mode
Rejection Ratio

OV S; VCM s; 2.7V
V+ = 2.7V

70

SS

SO

dB
min

VCM

Input Common-Mode
Voltage Range

V+ = V
For CMRR ~ 50 dB

0.0

0.0

0.0

V
min

3.0

2.7

2.7

V
max

60

50

4S

dB
min

PSRR

Power Supply
Rejection Ratio

CIN

Common-Mode Input
CapaCitance

Vo

Output Swing

>1

V+ = 1.3SVto 1.6SV
V- = -1.3SVto -1.6SV
VCM = 0

RL = 2kO

Supply Current

SR

Slew Rate

GBW

Gain-Bandwidth Product

TeraO

pF

3

RL = 10kO

Is

....
....
Q

MOSA Package, S-Pin Surface Mt.

2.7V Electrical Characteristics Unless otherwise specified, all limits guaranteed forTJ =
V- = OV, VCM = Vo = V+ 12 and RL

o
......

2.7V s; V+ s; 1S.SV

Supply Voltage

2000V
± Supply Voltage
(V+) + 0.3V, (V-) - 0.3V

Current at Output Pin (Note 3)
Current at Power Supply Pin
Lead Temp. (Soldering, 10 sec.)

~

Recommended Operating
Conditions (Note 1)

2.4S

2.1S

2.1S

V min

0.2S

O.S

O.S

V max

2.68

2.64

2.64

Vmin

0.02S

0.06

0.06

V max

0.81

0.81

0.95

0.95

mA
max

O.S
(Note 8)

1-90S

0.7

V/ILS

0.6

MHz

•

....
o....

o"

:l

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T.i = :!5"C, V+ =
3V, V- = OV, VCM = 1.5V, Va = V+ /2 and RL = 1 MO. Boldfa_ limits apply at the temperature extremes.
Symbol
Vas

Parameter

Typ

Conditions

(Note 5)

Input Offset Voltage

0.11

LMC7101AI
Limit
(Note 6)

LMC710jBI
Limit
(Note 6)

Units

4

7
8

mV
max

~

TCVos

Input Offset Voltage
Average Drift

18

Input Current

1.0

84

84

IlAmax

los

Input Offset Current

0.5

32

32

pAmax

RIN

Input Resistance

>1

CMRR

Common-Mode
Rejection Ratio

OV,;; VCM';; 3V
V+ = 3V

VCM

Input Common-Mode
Voltage Range

For CMRR

PSRR

Power Supply
Rejection Ratio

CIN

Common-Mode Input
Capacitance

Va

Output Swing

~

50 dB

V+ = 1.5Vto7.5V
V- = -1.5Vto -7.5V
Vo = VCM = 0

Tera 0

74

64

60

db
min

0.0

0.0

0.0

V
min

3.3

3.0

3.0

V
max

80

68

60

dB
min

3
RL = 2 kO

RL= 6000

Is

/Lvrc

1

Supply Current

2.8

2.6

2.6

V min

0.2

0.4

0.4

V max

.2.7

2.5

2.5

Vmin

0.37

0.6

0.6

V max

0.81

0.81

0.88

0.88

mA
max

0.5

1-906

pF

r-

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ =
5V, V- = OV, VCM = 1.5V, Vo = V+ /2 and RL = 1 MO. Boldface limits apply at the temperature extremes.

Symbol
VOS

Parameter
Input Offset Voltage

TCVOS

Input Offset Voltage
Average Drift

18

Input Current

los

Input Offset Current

Typ
(Note 5)

Conditions
V+ = 5V

0.11

64

pAmax

32

pAmax

65

60

60

55

Positive Power Supply
Rejection Ratio

V+=5Vto15V
V- = OV, Vo = 1.5V

82

Negative Power Supply
Rejection Ratio

V- = -5Vto -15V
V+ = OV, Vo = -1.5V

82

Input Common-Mode
Voltage Range

For CMRR ;;, 50 dB

Vo

Output Swing

VCM

S;

5V

82

-0.3

RL = 2kO

4.9

RL = 6000

4.7
0.3

Output Short Circuit
Current

Sourcing, Vo = OV
Sinking, Vo = 5V

IS

70

65

65

62

70

65

65

62

-0.20

-0.20

0.00

0,00

5.20

5.20

5.00

5,00

3

0.1

ISC

TeraO

>1
S;

5.3
Common-Mode
Input Capacitance

",vrc
32

OV

24
19

Supply Current

0.5

......
.....
o
.....

mV
max

64

Input Resistance

CIN

7
9

1

Common-Mode
Rejection Ratio

VCM

3

5

(')

Units

0.5

RIN

-PSRR

LMC7101BI
Limit
(Note 6)

1.0

CMRR
+PSRR

LMC7101AI
Limit
(Note 6)

i:

db
min
dB
min
dB
min
V
min
V
max
pF

4.7

4.7

4.6

4.8

0.18

0.18

0.24

0.24

4.5

4.5

4.24

4.24

0.5

0.5

0.65

0.85

16

16

11

11

11

11

7.5

7.5

0.85

0.85

1.0

1.0

V
min
V
max
V
min
V
max
mA
min
mA
min
mA
max

~

I;
I,
f

1-907

....
........<:»
CJ
:::::E
.....

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ =
5V, V- = OV, VCM = 1.5V, Va = V+ 12 and RL = 1 MO. Boldface limits apply at the temperature extremes.
.Parameter

Symbol
T.H.D.

Conditions

Typ
(Note 5)

F = 10 kHz, Av = -2
RL = 10 kO, Va = 4.0 Vpp

Total Harmonic
Distortion

LMC7101AI
Umit
(Note 6)

LMC7101BI
Limit
(Note 6)

Units

0.Q1

%

SR

Slew Rate

1.0

Vlp.s

GBW

GaiIL-Bandwidth Product

1.0

MHz

15V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for TJ =
15V, VSymbol

=

OV, VCM

=

1.5V, Va

=

V+ 12 and RL

=

25°C, V +
1 MO. Boldtace limits apply at the temperature extremes.

Typ

Conditions

Parameter

(Note 5)

LMC7101AI
Limit
(Note 6)

LMC7101BI
Umlt
(Note 6)

=

Units

Vas

Input Offset Voltage

0.11

mVmax

TCVos

Input Offset Voltage
Average Drift

1.0

p.V/oC

18

Input Current

1.0

los

Input Offset Current'

0.5

RIN

Input Resistance

>1

CMRR

Common-Mode
Rejection Ratio

OV!!:: VCM';; 15V

Positive Power Supply
Rejection Ratio

V+
V-

Negative Power Supply
Rejection Ratio

VV+

Input Common-Mode
Voltage Range

V+
For CMRR :?: 50 dB

+PSRR
-PSRR
VCM

82

= 5Vto 15V
= OV, Va = 1.5V
= -5Vto -15V
= OV, Va = -1.5V
= 5V

82
82
-0.3
15.3

Av

Large Signal
Voltage Gain

RL = 2kO
(Note 7)

Sourcing
Sinking

RL = 6000
(Note 7)
CIN

Input Capacitance

Va

Output Swing

Sourcing
Sinking

340
24
300
15

14.7

V+ = 15V
RL = 6000

14.1
0.5

Output Short Circuit
Current

Sourcing, Va
(Note 9)

=

OV

50

Sinking, Va = 12V
(Note 9)
Is

64
32

70

65

65

60

50

Supply Current

0.8
1-908

pAmax
pAmax
TeraO

70

65

65

82

70

65

85

82

-0.20

-0.20

0.00

0.00

15.20

15.20

15.00

15.00

80

80

40

40

15

15

10

10

34
6

34
6

14.4

14.4

14.2

14.2

3
V+ = 15V
RL = 2kO

0.16

ISC

64
32 .

dB
min
dB
min
dB
min
V
min
V
max

V/mV

V/mV
pF

0.32

0.32

0.45

0.45

13.4

13.4

13.0

13.0

1.0

1.0

1.3

1.3

30

30

20

20

30

30

20

20

1.50

1.50

1.71

1.71

V
min
V
max
V
min
V
max
mA
min
mA
min
mA
max

15V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ =

15V, V- = OV, VCM = 1.5V, Vo = V+ /2 and RL = 1 MO. Bolclfac.limits apply at the temperature extremes.

!C
....o
....
....
CI

Parameter

Symbol

SR

Conditions

V+ = 15V

Slew Rate

LMC7101AI

Typ
(Note

5)

1.1

(NoteS)
V+ = 15V

Limit
(Note

6)

LMC7101BI
Limit

Units

(Note 6)

0.5

0.5

V/p.s

0.4

0.4

min

GBW

Gain-Bandwidth Product

1.1

MHz

m

Phase Margin

45

Deg

Gm

Gain Margin

10

dB

en

Input-Referred

F=

Voltage Noise

VCM = 1V

37

,JRZ

Input-Referred

F=

1.5

,JRZ

0.01

%

in

1 kHz

1 kHz

Current Noise
T.H.D.

Total Harmonic Distortion

F=

10 kHz, Av = -2

RL = 10 kO, Vo = S.5 Vpp

nV

fA

Note 1: Absolute Maximum Ratings indicate "mils beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device is
intended to be functional, but specHic performance Is not guaranteed. For guarantead specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, t.5 kfl In series with 100 pF.
Nota 3: Applies to both single-supply and spl~...upply operation. Continuous short operation at elevated ambient temperature can resuH in excaeding the maximum
allowed iunction temparature at 15O"C.
Note 4: The maximum power dissipation is a function of TJ(max), 8JA ana TA. The maximum allowable power dissipation at any ambient temperature is PO
(TJ(max) - T AJI8JA. All numbers apply for packages soldered dlrecUy into a pC board.

~

Nota 5: Typical Values represent the most likely parametric norm.
Nota 6: Alilimiis are guarantead by testing or statiStical analysis.
Nota 7: V+

~

15V, VCM

~

1.5V and RL connect to 7.5V. For Sourcing teats, 7.5V ,;; Vo ,;; 12.5V. For Sinking tests, 2.5V ,;; Vo ,;; 7.5V.

Note 8: V+ ~ 15V. Connected as a Voltage Follower with a 10V Slap input. Number spacified is the slower of the positive and negative slew rates. RL ~ 100 kfl
connected to 7.5V. Amp excited with 1 kHz to produce Vo ~ 10 Vpp.
Nota 9: Do not short circu~ output to V+ when V+ is greater than 12V or reliability will be adversaly affected.

1-909

Typical Performance Characteristics Vs =

+2.7V. Single Supply. TA

=. 25~C unless specified.

2.7V PERFORMANCE

Open Loop

Input Voltage vs
Output Voltage (2.7V)

Frequency Response (2.7V)

rr.".,.="""..,.

500

9°B

100

1D
3

;j

60

400

1\.=600+++

I\. ~2k

300

80

70
60

Gain and Phase vs
Capacitance Load (2.7V)

fol\.~=«iI2klo.j;j;ll!l;t

~

200

III

100

1

50.=600
40

i

I\. = 500k

50
40 I;:- GAIN

VS=:t1.35V

l-

• 'io pF Htttf

30

90
G.=10pF 67.5
45
22.5

20 PHAS

0

10

-100

o

.= -200

30
20

-300

-10

10

-400

-20

o
100

10k
100k
lk
Frequency (Hz)

-1.5 -1

1M

~

o

1~

PHASE

30

t-tttIt

G.=10pF'

_

67.S,t

S'

~

-10
-20
-30
10k

lOOk

1M

lOOk

....I--t-""I'"

400

-1500

VS =:t1.35V

300
200

~

>~

-1000

-90

10M

dVos vs Common
Mode Voltage (2.7V)

-750

-1250

lN

Frequency (Hz)

-500

-22.5
-45
-67.5

•

I

-90
10k

112.5

~~.5 j .,;:
o ~

10

1.5

. / dVos rr!e~VI~
-

-250

90

20 GAIN

0.5

dVosvs
Supply Voltage

50
G. =510pF

0

Output Voltage (V)

Gain and Phase vs
Capacitance Load (2.7V)

40

-0.5

~

-22.5
-45
-67.5

-30

-500

10

180
157.5
135
1 12.5

100

-100
-200
-300
-400

2.5

10M

3.5

4.5

-500
-1.4 -1 -0.6 -0.2

Supply Voltage (V)

Frequency (Hz)

Sinking Current vs
Output Voltage (2.7V)

0.2

0.6

1

1.4

Common Mode Voltage (V)

Sourcing Current vs
Output Voltage (2.7V)
10

0.01 <...J.-J..U.WJl--U-UW1L...1..u..u......wJWlW
0.001
0.01
0.1
10

Output Voltage (V)

Output Voltage (V)
TL/H111991-15

1-910

rI:

Typical Performance Characteristics

n
.....

....
....

Single Supply. TA = 2SoC unless specified (Continued)
3V PERFORMANCE
Open Loop
Frequency Response (3Y)

400 ~~.600

Vs ·3V

90.....

80 .... 2k

'>
.3

70

60

z

50

-3

~

Input Voltage vs
Output Voltage (3Y)

Input Voltage Noise
vs Input Voltage (3Y)

500

100 -I .... 500k

'iD

«:)

w

~

... ·600

300

100
Vs

= .t1.5V

90

'N

... ·2k

~

200

100

80
60

50

.... 50k

40

!: -100

30

~ -200

30

20

-

20

40

-300

-soo

0
10

100

lk

10k

0.0

0.5

1.0

-1.5

1.5

OUTPUT VOLTAGE (v)

FREQUENCY (Hz)

-1.0 -0.5

0.0

0.1

INPUT VOLTAGE (V)

Output Voltage Raferencad to GND

5V PERFORMANCE
Open Loop
Frequency Response (5Y)

Input Voltage vs
Output Voltage (5Y)

Input Voltage Noise
vslnputVoHage(5y)

100

100

80 r-f--'o,/", • 600r- Ys

'>
3
'iD

~

~

50

g

40

~

30
20

60
40
20
0
-20

=±2.5V
~

f=~ <./r-

~

=-..

~

w

·50k

~

-40

~

-60
-80

10
0
'10

100

.... 5kR

-1,5 -1.2 -0.9 -0.6 -0.30.00.3 0.6 0.9 1.2 1.5

10

Output Voltage Referenced to Vs

z

1.5

20~~~~-L-L-L-L~

0.1 L..Ioo::LUJWL.JLL

-3

1.0

r--r--r-1"""''''''''r-1-CC--:-:-=
f-f-HHHr-f ~s. ·,~~:ZV

100

0.01

0.5

CMRR vs Input Voltage (3Y)
120

0.001

1 kHz

COMMON MODE INPUT VOLTAGE (V)

Sinking Current vs
Output Voltage (3V)

Sourcing Current
vs Output Voltage (3V)

=

o

-1.5 -1.0 -0.5

lOOk

f

10

-400

10

Ys = 3V

10

lk

10k

FREQUENCY (Hz)

lOOk

90

Vs

80

f

=

:t2.5Y

= 1 kHz

70
60
SO
40

30
20

10

-100
-2.5

o
-1.5

-0.5

0.5

1.5

OUTPUT VOLT AGE (v)

2.5

-2.5
-1.5
-0.5
0.5
1.5
2.5
-2.0
-1.0
0.0
1.0
2.0
COMMON NODE INPUT VOLTAGE (V)

120

CMRR va Input Voltage (5V)
f-f-f-f-Hr-f

'00

~s:,~!:zv
..... 5kR

w~~~~-L-L-L-L-L~

-2.5-2.0-1.5-1.0-0.50.00.51.01.5 2.02.5
Output Voltage Referenced to Vs

Output Voltage' Referenced to GND

INPUT VOLTAGE (V)

TUH/II991-S

1-911

o~

:::
~

r---------------------------------------------------------------------------------------------~

Typical Performance Characteristics
Vs = +15V, Single Supply, TA = 25"C unless specified (Continued)
Input Voltage va
Output VoltSge (15V)

Open Loop
Frequctncy ReSponse (15V)
100
90

~OOkHft-

3
z

Vs = 15V

70 .1\ = 800

~

60

...

~

50

~

40

40

II J'I-.I

20

1\ = 50k

;: -20
~
z -40.

20

-

-80

0

-100
100

lk

10k

~

lOOk

f

= :l:7.5V

= 1 kHz

-80

10
10

.Vs

90

Vs .. :t7.5V

1'1-.111

60

30

Input Voltage Nolae
ya Input Voltage (15V)
100

1\,,,2~1\=60011111

80

1\ • 2k

80

..,

100

~

~

~

0

-7 -5 -3 -1

FREQUENCY (Hz)

2
1

4
3

6
5

8
7

OUTPUT VOLTAGE (v)

Sourcing Current va
Output Voltage (15V)

Sinking Current va
Output Voltage (15V)

100

10
~

CMRR va Input Voltage (15V)

100

120

10

100

!,.

.5

li!
5i

z

iii

0.1

!

5

0.1

Vs = t7.5V
F= 10kHz
= 5kll

1\

I'-

80

60
40

0.01

20
0.1

10

-7.5-6,0-4.5-3.0-1.50.01.53.0 4.5 6.0 7.5

100

INPUT VOLTAGE (V)

Output Voltage RefereMed to GND

Output Voltage Referenced to Ys

Supply Current va
Supply Voltage

Input Current va
Temperature

1000

Output Voltage Swing
va Supply Voltage

10000

20

S

..

900
~

.5

800

3700

~ 600

~500
"

400

:;

1000

i13

100

i

~ 200

~

"~

10

100

o
o

1

3

6

12

15

Input Voltage Noise
va FrequenCY~111

I

..,

400

300

i

200

n

~

~O

1~

3

~

no

70
Vs

60

100

1000

FREQUENCY (Hz)

1£4

1£5

,
..,

~

3

40

12

6

15

Negaove PSRR
va Frequency
Vs = 5V

1\ = 5k

80
70
60

Vs

III

3V

t!;

50

~

40

30

30

20

20

10

1,0
10

1\ • lOOk

o

90

1\ = 5k

;,"3;'

y

-~

100

50

1,1/ POI Swing

SUPPLY VOLTAGE (V)

o
10

'0

TEMPERATURE (Oc)

Vs ~";;v

90

500

~

i

W

,

~

80

Vs = 1SV

~

~ ..... I--'

Neg Swing

10

!i1
/

Positive PSRR
va Frequency

100

=1

600

-

~

SUPPLY VOLTAGE (v)

700

15

;:

o
100

lk

10k

FREQUENCY (Hz)

lOOk

10

100

lk

10k

lOOk

FREQUENCY (Hz)

TL/H/11991-4

1-912

Typical Performance Characteristics
Vs = + 15V, Single Supply, TA = 25°C unless specified (Continued)

100

IlllIU1
--III
IIlIlIm
Vs = 15V

90
80

...
~
~
~

~

70
60

I\.

50

Open Loop Frequency
Response @ 25°C

open Loop Frequency
Response@ -4O"C

CMRR vs Frequency

90rnDrnm~mr~----~~

90

80

80

70

70

60H\~~~~Irl~~lHffiI

= 5kR

50rH~~MH~rH~~~fflM 112.5

£

40

~

90

40

30H+~~~~~~~~.

30

20rH~~MM~~~~Itl·~ 45
10H+ffii+ffiMH~H+~~"f,~ 22.5

20

...

BO

135

50

112.5

40

°

z

87.5

if

~

~

30
20

45

10

22.5

~

o~~~~MH~~1rl1l

10

o
10

100

Ik

10k

lOOk

100

Ik

FREQUENCY (Hz)

Open Loop Frequency
Response @85"C

l1li.

~!I:

5V. 15q
•

3V

:

Wi.... JlII

111111 IIIi
111111 1111

3V"SV I V

~ 1111"1
20 Ht/lll-+ffi,.5V'·Tr'5iiiVrtt~:I:f
30

10
-10

PHASE

:~2.5

1..
~

.f

0

i

~

.e.

45

05

22.5
0

LJ.J.WLlllWIIILJJII.lllLIIIB.llJJJIU.UJlII!~
100

Ik

10k lOOk

IN

-22.5
ION

I\.

= 2k THO = 3"-

III II

80

...

50

z

40

~

~

11111011111

1111.

60

II.·
1IL

11111111111

~:'~ O'!~'

PHASE

30

900

157.5

800

135
112.5
90
B7.5
45

10

22.5

CI = 500 pF

0

11111. 1111111
10

100

1k

10k

S

a
~

i

~

1.40

F~lIi~9 ;d9~

I
~

£

BOO
500

l!

400

~

300

0

200
100

lOOk

'M

1.25

!1l
if

Ik

~

45

10k lOOk

0
-22.5
10M

IN

Slew Rste vs
Temperature

r;;-;;-i5v1=H+++=1f=+41

1.80 I\. = 10k
1.70 Ay = + I

1;;:-

~

=

~:~~ ~~~'"~=E'Sov~-P~-PSl~f.~II!;n39EEdI9~.~

Vs = 3V

1.40
-; 1.30
ii 1.20

Vs

ac:

s

1.10

t:::I:tt:t:~:;;j;;;,i:;~Fj::t1

~ ~:: ~:E8~lEsR~i·tin~9~Efd9~.~

5V

Vs = 15V

10k

t-'i::tt:~::t:t=~
I

0.80
0.70

lOOk

1M

ttttiTI:i:ttttjj

0.60
0.50
-40 -20 0
20 40
BO
80
-30 -10 10
30
50 70

CASE TEMP (oC)

Inverting Small Signal
Pulse Response

~ S'

"'"

~

~

1.15
1.05

£

90

~

!;

1.20
1.10

112.5

FREQ (Hz)

Inverting Small Signal
Pulse Response

10~t

135

22.5

IIiLlIIIII!

FREQUENCY (Hz)

I\.
Ay == +1
r-V'N = IV p-p

157.5

67.5

CI = 500pF

100

180

2.00
1.90 I Vs = 15V

Ik

,ON

'Ji": ~'~

.1111111 II III!
10

100.0

0

-22.5

1.35
1.30

30

-10
10.0

11111.11111
11111111111

PHASE

10

700

Slew Ratevs
Supply Voltage
1.45

RI = BOOR

..•

20

FREQ (Hz)

1.50

40

1000

180

20

-10

z

Output Impedance
vs Frequency

Vs = 15V
RI = 500k

GAIN

50

~

202.5
Vs = 15Y

GAIN

ntII
IlIlr

60

...
~

1.0

1M

11111 I

Frequency (kHz)

202.5

10k lOOk

Gain and Phase
vs CSpacltlve Load
70

Vs = 15V_
Ay = +1 _

0.1

Gain and Phase
vs capacitive Load
70

Ik

FREQ (Hz)

80

fREQ (Hz)

90

100

90

15
14
13
12
II
10
9
8
7
6
5
4
3
2
I
0

~

135

67.5

H-HflIH+II"fll+1I1I_lIIlftfIIH
II. 111111
10

1M

Maximum Output Swing
vs Frequency

90 .........."mTnrT"TT1IIIrrr......................... 202.5
II1II 11111 1111111· Temp = 85,~,i 180
80
70
~ GAl. 11111 RI = ~. lIII 157.5
60

10k lOOk
FREQ (Hz)

Vi
~

Riling Edge

~
0

1.00

is

;;:E

1--1-

TA = -""OoC,

I\. = 2kR

1--

1--1-

TA = +2S o C.
= 2kR -

I\.

--

0

on

~

II

1\
I}'.

SOmy 50m'V

~

II

1\

SOm'; SOmy

I".

3 4 5 6 7 8 9 10 II 12 13 14 15
SUPPLY VOLTAGE (V)

TIME (I "./DIV)

TIME (I "./DIV)
TL/H/11991-5

1·913

Typical Performance Characteristics
+ 15V, Single Supply, TA

Vs =

= 25'C unless specified (Continued)

Inverting SmaH Signal
Pulse Response
:;i
z

~"

1;1

~

1;1

~

"-

.. '"'"
~

i~

TA = +85 0 C.
-f-- Rt:f' 2kn --,--f-

z

1".

1,

O

C.

II

'\

'"

= +25

- f - 1\.' 2kn

A"

~

1\

, SOmV' SOmV'

TA

- f - I\. • 2kn

~

.~

I

~
~

TA = -40 0 C,

.~

t"oo.'

"in

g

Inverting Large Signal
\,ulse Response

Inverting Large Signal
Pulse Response

1\

/[

1,

\

1, 1,

11"

,lS'I

TIME (11'./DIV)

Invertlng"Large Signal
Pulse Response

Non-Inverting Small Signal
Pulse Response

Non-Inverting Small Signal
Pulse Response

.
~

:;i
~,

~
~
~
~

~

TA ::=

-;-f- -Ilt. =,2kn
"

\

1, I 1,

1\
1\ '

",

~

g

11"

0 C,

I\. • 2kn

.;'

1;1

= -40

-I-: TA

E

:;i
z

,

If

'"

~

-:-- -f-

~

'>

II'

:;i

II

~

e,
"

'>

z
+85 O C.

'"

~

, ;Om\ SOmV'

'"

~

:-r-

E

1\.'2kll

1\
1\

I

1".

TA = +25 0 C,

II'
II

~Om\ SamV'

11"

TIME (11'./DIV)

Non-Inverting Small Signal
Pulse Response

Non-Inverting Large Signal
Pulse Response

Non-Inverting Large Signal
Pulse Response

:;i

:;i
z

~

~

,
TA = +85 C,
'--r- I\..an
II' -'-r0

....L

1\.' 2kn

r-r-

g

'ty

Non-Inverting Large Signal
Pulse Response

~
c

1\..2'kn -

'\

1, 'rv

1F-- I-

J/
1".

1,

1000

'.U NS"'AB ,E.

I""III

~

JL

'"

11"

1,

~-+\

Vs :: t7.5V

~
c

1\. • 2kn
1000

I

J.J

I

I

I

UNSTABLE .E

9

~

"

7r--

I I I

10000

:r:~·5V
III

= +25 0 C, -r-r1\.' 2kll

TA

_

Stability vs
capacitive Load

~

>

E

~

100

I-

100

~

2;% OIER';HCOT
10

I I I I I

-6 -5 -4 -3 -2 -I 0 1 2 3 4 5 6
. TIME (1j../DlV)

r-~

g

9

r,K;

r-r- -

, stability vs
Capacitive Load
10000

TA = +85 0 C,

~

1'p.

1,1

'"
~,

~

A

'"

'>

:;i

_

-~ , II I I t;11-

~

11"

TA ' ~40oC, -

:-Ic- -

~

;om\l SOmV'

i

s:-~

a
~'

:;i

II

1\
1\

1;1

Vou, (v)

25" OVERSHOOT
10

1111 I

:"6 -5 -4 -3 -2 -I 0 1 2 3 " 5 6

Vou, (V)

TUH/11991-6

1-914

r-

I:

Typical Performance Characteristics
Vs =

+ 15V, Single 'Supply, TA =

Ay _

~

1000

f11

10000

+1

UN;:~~

~

~
~

o
.....

Stabllltyvs
Capacitive Load
Vs

:;:.5

~

Stabllltyvs
Capacitive Load
10000

.., =+10

Vs = :l:7.SV

~

.....
.....

25°C unless specified (Continued)

Stability va
Capacitive Load
10000

(")

It

Vs

= l.n

1000

~

25% OVERSHOOT

i

1000

2:

!:

~

100

100

~
25" OVERSHOOT

25" OVERSHOOT

I

10

= n,5V

It = 2kn

:;:.5

2:

100

.., = +10

= ±7.5V

10

10

-6 -5 -4 -3 -2 -1 0 1 2 3 " 5 6

-6 -5 -4 -3 -2 -1 0 1 2 3 " 5 B

-6 -5 -" -3 -2 -1 0 1 2 3 " 5 6

VOUT (V)

VOUT (v)

VOUT (V)

Stabllltyvs
Capacitive Load
10000

.., = +10
Vs

!
51

It

= :t7.SV

= 600n

1000

9

~

E

~

100

~

25% OVERSHOOT

10

I I I I I
-6 -s -4 -3 -2 -1 0 1 2 3 " 5

e

VOUT (V)

TLlH/II991-7

1·915

~

o

~

p..;,

~

r-------------------------------------------------------------------------------------,
Application Information
1.0 Benefits of the LMC7101
Tiny Amp

3V

SIze. The small footprint' of the SOT 23-5 packaged Tiny
amp, (0.120 x 0.118 inches, 3.05 x 3.00 mm) saves space
on printed circuit boards, and enable the design of smaller
electronic products. Because they are easier to carry, many
customers prefer smaller and lighter products.
Height. The height (0.056 inches, 1.43 mm) of the Tiny amp
makes it possible to use it in PCMCIA type III cards.
Signal IntegrHy. Signals can pick up noise between the
signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to
the Signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the
signal destination, such as a buffer for the reference of an
analog to digital converter.
Simplified Board Layout. The Tiny amp can simplify board
layout in several ways. First, by placing an amp where amps
are needed, instead of routing signals to a dual or quad
device, long pc traces may be avoided.
By using multiple Tiny amps instead of duals or quads, complex signal routing and possibly crosstalk can bEl reduced.
DIPs available for prototyplng. LMC7101 amplifiers packaged in conventional B-pin dip packages can be used for
prototyping and evaluation without the need to use surface
mounting in early project stages.
Tapes of ten for prototyplng. The SOT23-5 packaged devices are available in convenient and economical ten unit
tapes for prototypes, evaluation, and small production runs.
Low THD. The high open loop gain of the LMC7101 amp
allows it to achieve very low audio distortion-typically
0.01 % at 10kHz with a 10 kO load at 5V supplies. This
makes the Tiny an excellent for audio, modems, and low
frequency signal processing.
Low Supply Current. The typical 0.5 mA supply current of
the LMC7101 extends battery life in portable applications,
and may allow the reduction of the size of batteries in some
applications.
Wide Voltage Range. The LMC7101 is characterized at
15V, 5V and 3V. Performance data is provided at these popular voltages. This wide voltage range makes the LMC7101
a good choice for devices where the voltage may vary over
the life of the batteries.

ov
TLlH/11991-B

FIGURE 1. An Input Voltage SIgnal Exceeds the
LMC7101 Power Supply Voltages with
No OUtput Phase Inversion

VIN (±7.5VI

YOUT (lV JtIiv)

TL/H/11991-9

FIGURE 2. A ± 7.5V Input Signal Greatly
Exceeds the 3V Supply In Rgure 3 Causing
No Phase Inversion Due to R,
Applications that exceed this rating must externally limit the
maximum input current to ± 5 mA with an input resistor as
shown in Figure 3.

> .....- VOUT
TLlH/11991-10

FIGURE 3. R,lnput Current Protection for
Voltages Exceeding the Supply Voltage

2.0 Input Common Mode
Voltage Range

3.0 Rail-To-Rail Output

The LMC7101 does not exhibit phase inversion when an
input voltage exceeds the negative supply voltage. FlfJure 1
shows an input voltage exceeding both supplies with no resulting phase inversion of the output.
The absolute maximum input voltage is 300 mV beyond either rail at room temperature. Voltages greatly exceeding
this maximum rating, as in Figure 2, can cause excessive
current to flow in or out of the input pins, adversely affecting
reliability.

The approximate output resistance of the LMC7101 is 1800
sourcing and 1300 sinking at Vs = 3Vand 1100 sourcing
and BOO sinking at Vs = 5V. Using the calculated output
resistance, maximum output voltage swing can be estimated as a function of load.

1-916

The effect of input capacitance can be compensated for by
adding a feedback capacitor. The feedback capacitor (as in
Figure 5), C, is first estimated by:

4.0 Capacitive Load Tolerance
The LMC7101 can typically directly drive a 100 pF load with
Vs = 15V at unity gain without oscillating. The unity gain
follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The
combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an
underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using
resistive isolation as shown in F/(Jure 4. This simple technique is useful for isolating the capacitive input of multiplexers and AID converters.

1
1
---:i!!-2'ITR1 C,N

Ii:

!l
....
o
....

2'ITR2Ct

or
R1 CIN::;;: R2C,
which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or
smaller than that of a breadboard, so the actual optimum
value for CF may be different. The values of CF should be
checked on the actual circuit. (Refer to the LMC660 quad
CMOS amplifier data sheet for a more detailed discussion.)
Cf

R2

Rl

TUH/11991-11

FIGURE 4. Resistive Isolation
of a 330 pF Capacitive Load

VIN

--¥.fIt--.-......-I
•

CIN :::::::
I
I
I

5.0 Compensating for Input
Capacitance when Using Large
Value Feedback Resistors

......
TUH/11991-12

FIGURE 5. Cancelling the Effect of Input CapaCitance

When using very large value feedback resistors, (usually
> 500 kO) the large feed back resistance can react with the
input capacitance due to transducers, photodiodes, and circuit board parasities to reduce phase margins.

.I
I

I
I
I
I

1-917

.-

o.-

t>
~

r-------------------------------------------------------------------------------~

80,-':~~3"~ Tape and R.e~1 $f),ecifica~ion

"

TAPE FORMAT·
Tape Section

*' Cavities

Cavity Status

Cover Tape Status

'Leader
(Start End)

o (min)

EmptY

Sealed

75 (min)

Empty

Sealed

3000

Filled

Sealed

250

Filled

Sealed

125 (min)

Ernpty

Sealed

o (min)

Empty

Sealed

,

'

Carrier
Trailer'
(Hub End) "

'.

TAPE DIMENSIONS

0' 0.061 :to.002 TYP.
[ 1.55:t0.05]

BAT
TANGENT
POINts +-~==;,""'''''''_

,

,Ro.oi2 TYP'

[0.3]

ALL INSIDE RADII

0' 0.0-41 :to.002 TYP.
[ 1.04%0.05]

DIRECTION or rEED - - - - - - GAGE LINE

:'l ','

~

- . / _~_:

0.912.

[0.3]

SECTION B-B

\

~i

R 1.181 MIN. I'

[30]

----~
BEND RADIUS
NOT TO SCALE

TLlH/11991-13

8mm
Tape Size

0.130
(3.3)

0.124
(3.15)

0.130
(3.3)

0.126
(3.2)

DIMA DIMAo DIMB DIMBo

0.138 ±O.o02 0.055 ± 0.004
(3.5 ±0.05)
(1.4 ±0.11)
DIMF

1-918

DIMKo

0.157
(4)

0.315 ±0.012
(8 ±0.3)

DIMP1

DIMW

SOT-23-5 Tape and Reel Specification (Continued)
REEL DIMENSIONS

TAPE SLOT

r

A

N

'L
DETAIL X
SCALE: 3X

TUH/II991-14

8mm
Tape Size

7.00 0.059 0.512 0.795 2.165 0.331 + 0.059/-0.000 0.567 W1+ 0.078/-0.039
330.00 1.50 13.00 20.20 55.00
8.40 + 1.50/-0.00
14.40 W1 + 2.00/-1.00

A

B

C

0

N

W1

W2

W3

6.0 SPICE Macromodel
A SPICE macromodel is available for the LMC7101. This
model includes simulation of:

• Output swing dependence on loading conditions and
many more characteristics as listed on the macro model
disk. Contact your local National Semiconductor sales
office to obtain an operational amplifier spice model library disk.

• Input common-mode voltage range
• Frequency and transient response
• GBW dependence on loading conditions
• Quiescent and dynamic supply current

1-919

....
....
....

~ ttl

PRELIMINARY

National Semiconductor

LMC7111
Tiny CMOS Operational Amplifier with Rail-to-Raillnput
and Output
General Description

Features

The LMC7111 is a micropower CMOS operational amplifier
available in the space saving SOT 23-5 package. This
makes the LMC7111 ideal for space and weight critical designs. The wide common-mode input range makes it easy to
design battery monitoring circuits which sense signals
above the V + supply. For easy prototyping, the LMC7111 is
available in a conventional S-pin DIP package. The
LMC7111 is available in two offset voltage grades, 3 mV
and 7 mY. The main benefits of the Tiny package are most
apparent in smllil portable electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where they are needed,
simplifying board layout.

•
•
•
•
•
•
•
•

Tiny SOT23-5 package saves space
Very wide common mode input range
Specified at 2.2V, 2.7V, 3V, 3.3V, 5V, and 10V
Typical supply current 25 /LA at 5V
50, kHz gain-bandwidth at 5V
Similar to popular LMC6462
Output to within 20 mV of supply rail at 100K load
Low input current 100 fA

Applications
•
•
•
•
•
•

Mobile communications
Notebooks and PDAs
Current sensing for battery chargers
Portable electronics
Sensor interface
Battery monitoring

Connection Diagrams
"

,"'Mw'

8-PinDIP
NC..!
INVERTING INPUT.l
NON-INVERTIN~

,

INPUT

.J

y-.j

'-../

~

5-Pln SOT23-5

~NC
~y+

y+ 2

~OUTPUT

NON-INVERTING 3
INPUT

~NC

+

-

4 INVERTING
INPUT

TLlH/12352-1

TL/H/12352-2

' TopView

Top View

Ordering Information
Package

Ordering
Information

NSCDrawing
Number

Package
Marking

Transport Media

8-Pin DIP

LMC7111AIN

N08E

LMC7111AIN

8-PinDIP

LMC7111BIN

N08E

LMC7111BIN

Rails

5-Pin SOT23-5

LMC7111AIM5

MA05A

A01A

250 Units on Tape and Reel

5-Pin SOT23-5

LMC7111 BIM5

MA05A

A01B

250 Units on Tape and Reel
3K Units on Tape and Reel
3K Units on Tape and Reel

5-Pin 5OT23-5

LMC7111 AIM5X

MA05A

A01A

5-Pin SOT23-5

LMC7111 BIM5X

MA05A

A01B

1-920

Rails

IJ1National Semiconductor

LPC660
Low Power CMOS Quad Operational Amplifier
General Description

•
•
•
•

The LPC660 CMOS Quad operational amplifier is ideal for
operation from a single supply. It features a wide range of
operating voltage from + 5V to + 15V and features rail-torail output swing in addition to an input common-mode
range that includes ground. Performance limitations that
have plagued CMOS amplifiers in the past are not a problem with this design. Input Vos, drift, and broadband noise
as well as voltage gain (into 100 kO and 5 kO) are all equal
to or better than widely accepted bipolar equivalents, while
the power supply requirement is typically less than 1 mW.

High-impedance preamplifier
Active filter
Sample-and-Hold circuit
Peak detector

Features
•
•
•
•
•
•
•
•
•
•
•
•

This chip is built with National's advanced DOUble-Poly Silicon-Gate CMOS process.
See the LPC662 datasheet for a Dual CMOS operational
amplifier and LPC661 datasheet for a single CMOS operational amplifier with these same features.

Applications
• High-impedance buffer
• Precision current-to-voltage converter
• Long-term integrator

Rail-to-rail output swing
Micropower operation
Specified for 100 kO and 5 kO loads
High voltage gain
Low input offset voltage
Low offset voltage drift
Ultra low input bias current
Input common-mode includes VOperation range from + 5V to + 15V
Low distortion
Slew rate
Full military temp. range available

Connection Diagram
14-Pln DIP/SO
OUT'UT 4 IN'r14

INPUT.·
12

13

v·111

INPUTI+ IN'UI~ 3- OUT,un

10

I

~
,.....

Ld
p
~

.......

..h..

~
1

·OUTPUT 1 IN,J;I-

9

3
IN'UT1·

).4

I

~
.1'

INPUTZ· I.PUT Z-

7
OUTPUT Z

TL/H/l0547-1

Top View

Ordering Information
Package
14-Pin
Side Brazed
Ceramic DIP

Temperature Range
Military

Induatrlal

LPC660AMD

NSC
Drawing

Transport
Media

D14E

Rail

14-Pin
Small Outline

LPC660AIM
orLPC660IM

M14A

Rail
Tape and Reel

14-Pin
Molded DIP

LPC660AIN
or LPC660lN

N14A

Rail

J14A

Rail

14-Pin
Ceramic DIP

LPC660AMJ/883

1-921

(1 mW)

120 dB
3 mV
1.3 poVloC
2 fA

0.01 % at 1 kHz
0.11 Vlpos

Absolute Maximum Ratings (Note 3)

Operating Ratings (Note 3)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Differential Input Voltage
± Supply Voltage
SupplyVoltage(V+ -V-)
16V
Output Short Circuit to V+
(Note 11)
Output Short Circuit to V(Note 1)

Temperature Range
LPC660AM
LPC660AI
LPC6601
Supply Range
PowerDjssipation

Lead Temperature (Soldering, 10 sec.)

260"C

Storage Temp. Range
Junction Temperature (Note 2)
ESDRating(C = 100pF,R = 1.5kn)
Power Dissipation

- 65°C to + 150"C
150"C
1000V
(Note 2)
±5mA

Current at Input Pin
Current at Output Pin
(V+)

Voltage at Input/Output Pin
Current at Power Supply Pin

-55°C S; TJ S; + 125°C
-40"C S; TJ S; +85°C
- 4O"C S; TJ S; + 85°C
4.75Vt015.5V
(Note 9)

Thermal Resistance (9JAl. (Note 10)
14-Pin Ceramic DIP
14-Pin Molded DIP
14-PinSO
14-Pin Side Brazed Ceramic DIP

90"C/W
85°C/W
115°C/W
90"C/W

±18mA
- 0.3V

+ 0.3V. (V-)

35 rnA

DC Electrical Characteristics
Unless otherwise specified. all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+
V- = OV. VCM = 1.5V. Vo = 2.5V, and RL > 1M unless otherwise specified.

Parameter

Conditions

Input Offset Voltage

Typ

LPC660AM
LPC660AMJ/883

LPC660AI

LPC6601

Limit
(Notes 4, 8)

Limit
(Note 4)

Limit
(Note 4)

1

Input Bias Current

3

3

6

3.5

3.3

6.3

20

4

4

pA
max

100

2

2

pA
max

70

70

63

6.8

88

81

70

70

63

88

88

61

100
0.001

Input Resistance

20

>1

Common Mode
Rejection Ratio

OV S; VCM S; 12.0V
V+ = 15V

83

Positive Power Supply
Rejection RatiO

5V

83

Negative Power Supply
Rejection Ratio

OV

Input Common Mode
Voltage Range

V+ = 5V& 15V
For CMRR > 50 dB

S;

S;

V+

V-

S;

S;

15V

-10V

mV
max

p'vrc

0.002

Input Offset Current

5V,

Units

1.3

Input Offset Voltage
Average Drift

=

Teran

94

-0.4

V+ - 1.9

1.922

84

84

74

82

83

73

-0.1

. -0.1

-0.1

0

0

0

V+ - 2.3

V+ - 2.3

V+ - 2.3

Y+ - 2.6

Y+ - 2.5

Y+ - 2.5

dB
min
dB
min
dB
min
V
max
V
min

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25'C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V, and RL > 1M unless otherwise specified. (Continued)

Parameter

Large Signal
Voltage Gain

Output Swing

Conditions

Typ

RL = 100 kO (Note 5)
Sourcing

1000

Sinking

500

RL = 5 kO (Note 5)
Sourcing

1000

Sinking

250

V+ = 5V
RL=100kOtoV+/2

LPC660AM
LPC660AMJ/883

LPC660AI

LPC6601

Limit
(Notes 4, 8)

Limit
(Note 4)

Limit
(Note 4)

4.987

0.004

V+ = 5V
RL = 5kOtoV+/2

4.940

0.040

V+ = 15V
RL = 100kOtoV+/2

14.970

0.007

V+ = 15V
RL = 5 kO to V+ 12

14.840

0.110

Output Current
V+ = 5V

Sourcing, Vo = OV

Sinking, Vo = 5V

Output Current
V+ = 15V

Supply Current

Sourcing. Vo = OV

22

21

40

Sinking, Vo = 13V
(Note 11)

39

All Four Amplifiers
Vo = 1.5V

160

1-923

Units

400

400

300

250

300

200

180

180

90

70

120

70

200

200

100

150

180

80

100

100

50

35

80

40

4.970

4.970

4.940

4.950

4.950

4.910

0.030

0.030

0.060

0.050

0.050

0.090

4.850

4.850

4.750

4.750

4.750

4.850

0.150

0.150

0.250

0.250

0.250

0.350

14.920

14.920

14.880

14.880

14.880

14.820

0.030

0.030

0.060

0.050

0.050

0.090

14.680

14.680

14.580

14.800

14.800

14.480

0.220

0.220

0.320

0.300

0.300

0.400

16

16

13

12

14

11

16

16

13

12

14

11

19

28

23

19

25

20

19

28

23

19

24

19

200

200

240

250

230

270

V/mV
min
VlmV
min
VlmV
min
V/mV
min
V
min
V
max
V
min
V
max
V
min
V
max
V
min
V
max
mA
min
mA
min
mA
min
mA
min
/LA
max

AC Electrical Characteristics

Unless otherwise specified, all limits guarantEled for T J = 25°C. Boldface limits apply at the temperature extremes. V +
V- = OV, VCM = 1.5V, Vo = 2.5, and RL > 1 M unless otherwise specified.
LPC660AM

Slew Rate

Typ

Conditions

Parameter

(Note 6)

0.11

Gain-Bandwidth Product

LPC660AI

LPC6601

Limit

Umlt

Umlt

(Notes 4,8)

(Note 4)

(Note 4)

0.07

0.07

0.05

0.04

0.05

0.03

LPC660AMJ/663

=

5V,

Units

Vlp.s
min

0.35

MHz

Phase Margin

50

Deg

Gain Margin

17

dB

Amp-to-Amp Isolation

(Note 7)

Input Referred Voltage Noise

F=

Input Referred Current Noise
Total Harmonic Distortion

130

dB

1 kHz

42

nV/.JHz

F=

1 kHz

0.0002

pA/.JHz

F=

1 kHz,Av

0.01

%

RL

=

=

100kO, Vo

-10

=

8Vpp

Note 1: Applies to both single supply and spiR supply operation. Continuous short clrcuR operation at elevated ambient temperature and/or multiple Op Amp shorts
can resuR In exceeding the maximum allowed junction temperature of 15O'C. Output currents In exoess of ±30 mA over long term may adversely affect reliabllijy.
Note 2: The maximum power dlssipetion is a function of TJ(max). 8JA and TA. The maximum allowable power dissipation at any ambient temperature is Po =
(TJ(max)-TAl8JA·

Note 3: Absolute Maximum Ratings indicate IimRs beyond which dam..ge to the device may occur. Operating Ratings Indicate conditions for which Iha device is
Intended to be functional, but do nol guarantee specific performance IimRs. For guaranteed specHications and teal conditions. see the Electrical Characteristics.
The guaranteed specifications apply only for the test condRlons listed.
Note 4: UmRs are guaranteed by testing or correlation.
Note 5: V+ = 15V. VOM = 7.5Vand RL connected to 7.5V. For Sourcing tests, 7.5V ~ Vo ~ 11.5V. For Sinking tests. 2.5V ~ Vo ~ 7.5V.
Nota 8: V+ = 15V. Connected as VoRage Followar with 10V step Input Number specified is the siower of Iha positive and negative slew rates.
Note 7: Input referred. V+ = 15V and RL = 100 kO connected to V+ /2. Each amp axcRed in turn with 1 kHz to produos Vo = 13 Vpp.
Note 8: A militsry RETS electrical test specification is available on request. At the time of printing. the LPC880AMJ/883 RETS specification compiled fully wnh the
boldface IImRs In this column. The LPC880AMJ/883 may also be procured to a Stsndard Miln&ry Drawing specification.
Nota 9: For operating at elevated temperatures.1ha device must be derated besed on Iha thenmal resistsnee 8JA with Po = (TrTAl/8JA.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V+ when V+ Is greater than 13V or reliabilijy may be adversaiyaffected.

1-924

Typical Performance Characteristics Vs =
Supply Current
vs Supply Voltage

Input Bias Current
vs Temperature

500

10

400

~

1

i

300

I

0.1

iill

200
100

I
I
I

I/'

0/
2
0

•

6

8

10

--

12 14

~

0.01

~

0.001

z

..e

Vs
Vs
1

I
~~

!

0.1
0.01
0.001

/

W

E

'15¥]
+5'1-'

i
ii
.. Ie

1/

will
!ilw
~e

1

10

~

i

se

GU RA '[ED

0
!I; 0
-l;:! -0.5

25 50 75 100125150

-75

m

100

-25

25

75

125

TEMPERATURE ('c)

Input Voltage Noise
va Frequency
160

IALI.15Y
0.1

~s=':SV.....,
0.01

i r.:+-

V

~

.:s

I
~~

I

0.0001
0.001 0.01

140
120
100
80 \
8D

\

40

...... I--...

20
0

0.1

1

10

100

10

OUTPUT SOURCE CURRENT (mA)

100

lk

10k

lOOk

FREQUENCY (Hz)

CMRR va Frequency

60

i:!

I I
I I

1

Crosstelk Rejection
va Frequency

a

:

ij

8\. +0.5

V)'5v-/j

0.001

~=+5V

me- -

~....I -3.0

I--

10

OUTPUT SINK CURRENT (mA)

"iii"
3

PLASTIC
PACKAGE

Ow

0.1

GUARAN

g!a -2.5

=>0

0.0001
0.001 0.01

TYPICA~

~! -2.0

OUtput Characteristics
Current SOurcing

10

0

i

~~ =:::

/

~

TEMPERATUR£ ('c)

Output Characteristics
Current Sinking

E

V

V

"
.. .

SUPPlY VOLTAGE (V)

0

~> -0.5

It'

V

0.0001
-75 -50-25 0

16

~~

HERMETIC
PACKAGE

~

-55°C to +125OC

Common-Mode Voltage
Range vs Temperature

I I

'C"

.3
~

± 7.5V, TA = 25'C unless otherwise specified

CMRR vs Temperature
140

100

130
80

,

80

"iii"
3

If

100

,.g;<.>

rt

Rt.=1~~=100

120

\.

40

,,

20

"

140
10

12D

60

"iii"
3

,.<.>g;

lk

10k

lOOk

100
90
80

,

70

0
100

110

60
10

100

FREQUENCY (Hz)

lk

10k

lOOk

1M

FREQUENCY (Hz)

-75

-25

25

75

125

TEMPERATURE ('c)

Power Supply Rejection
RatiO va Frequency
140
120

,

100

"iii"
3

~

80
60

y+ SUPPLY

f"\.

40

Y" SUPPLY

20

1'-;:

0
-20
10

100

lk

10k

lOOk

1M

FREQUENCY (Hz)

TL/H/l0547-2

1-925

•

~

Typical Performance Characteristics Vs =

.....

Open-Loop Voltage Gain
vs Temperature

± 7.5V, TA

= 25°C unless otherwise specified (Continued)

Open-Loop
Frequency Response
160
140

'01
~

.....

120

Gain and Phase Responses
vs LOad Capacitance

-

100

z

:c

80

~

60

:;
g

t'I...
I\.

40

-25

25

75

125

aOrTTrnm-rrr~"mmrTTmm

25
20

~

15

z

~

10

:!!

90

s

~

~

-20

is

'"

-45

I\.

5

-3

I

§,

-5
-10

~

i,
~

g
~3!;

Rr=~N=5k

0.30
0.25

~

1
1/

~

~

= 5k

1
1
2.5

0

75

RISING
0.10

-25

75

125

Non-Inverting Small
Signal Pulse Response
(Ay = +1)

s.§.

~

100

~

s.§.

125

-

V

1\

o 2040

~

I

~
~ 6V

/

4V

~

~

§.

o 2

o

4

6 a 10 12 14 16

Inverting Small-8ignal
Pulse Response
100

;

;
~N=Rr·Sk

!

... 100

~

~

r-

,..-1('

\

~

g

Rr=~N=20k

OV

I

50

TIME (1'.)

s.§.

1

2V

-r-

100

TIME (1'0)

~
g

~g

~ ~10~2~4~~~0

Inverting Large-Slgnal
Pulse Response

~

0

- f-

g

TEMPERATURE (oe)

~

fALLING

0.20
0.15

TEMPERATURE (OC)

lV

~

0.05

;:::

0.25

0.00
-75

57.5 10

6V

~g

25

0.30

O.DS

<:,
RISING

-25

0.35

3!;

0.10

0.00
-75

....

fALLING

0.20
0•.15

1M

0.4D

Large-Slgnal Pulse
Non-Inverting Response
(Ay = +1)

~

. lOOk

Non-Inverting Slew Rate
vs Temperature

VOur. (VOLTS)

OAO

~

10k

fREQUENCY (Hz)

I

-15
-25
-10 -7.5 -5 -2.5 0

Inverting Slew Rate
vs Temperature

....

lk

= lOOk

I\.

fREQUENCY (Hz)

0.55

0
-45

1 1
1 1
1 1

-20
-90
10M

1M

lOOk

45

Gain Error
(Vas vs VOUT)

'01

10k

iEe
fREQUENCY (Hz)

Gain and Phase Reaponses
vs Temperature

lk

90

-20
0.010.1 1 10 100 lk 10k lOOk lW 10M

TEMPERATURE (OC)

~

... E
!I.!~

20

i

20 40 60 ao 100 120 140

50

,

\
o

2

II
4

6

a 10 12 14 16 la

TIME (1'.)

TIME (1")

TL/H/l0547-3

1-926

Typical Performance Characteristics Vs =

± 7.5V, TA = 25°C (Continued)

Stability va capacitive Load

.....
...

100,000

10,000

10,000

"

..e:
Q

-c

1,000

9

&oJ

~

t:

0

i:"

100

~ ~ J...I.JNST~BLE
r--.

!

~

..e:

Av=+1

~~

:2:

-c
a..

Stability va Capacitive Load

100,000

5% OVERSHOOT

Q

-

9

~

IL ~ V

~

I

I.

I

~I"",,UN~j~~,~ '"'"

H 0% OVERSMoT

II

~ Wllll

,

Z% OVERSHOOT

100

~

10

1
-10

,

1,000

&oJ

if

~

I .1

Ay=+10 or -10

10

1
-0.1

-0.001
0.001
0.1
-1
-om
0
0.01
SINKING
SOURCING
LOAD CURRENT (rnA)

10

-10

-0.1

-1

-0.001
0.001
0.1
-0.01
0
0.01
SINKING
SOURCING
LOAD CURRENT (rnA)

TL/HI10547-4

10

TLlH/l0547-5

Note: Avoid resistive loeds of less than 500n, eo they may cause instability.

Application Hints
AMPLIFIER TOPOLOGY

The large signal voltage gain while sourcing is comparable
to traditional bipolar op amps, for load resistance of at least
5 kn. The gain while sinking is higher than most CMOS op
amps, due to the additional gain stage; however, when driving load resistance of 5 kn or less, the gain will be reduced
as indicated in the Electrical Characteristics. The op amp
can drive load resistance as low as 5000. without instability.

The topology chosen for the LPC660 is unconventional
(compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the
output is taken directly from. the output of the integrator, to
allow rail-to-rail output swing. Since the buffer traditionally
delivers the power to. the load, while maintaining high op
amp gain and stability, and must withstand shorts to either
rail, these tasks now fall to the integrator.

COMPENSATING INPUT CAPACITANCE
Refer to the LMC660 or LMC662 datasheets to. determine
whether or not a feedback capaCitor will be necessary for
compensation and what the vlihie of that capacitor would
be.

As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via Ct and Ctd by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path· consists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
.
forward.

CAPACITIVE LOAD TOLERANCE
Like many other op amps, the LPC660 may oscillate when
its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration
most sensitive to oscillation is a unity-gain follower. See the
Typical Performance Characteristics.
The load capacitance interacts with the op amp's output
resistance to create an additional pole. If this pole frequency is sufficiently lOW, it will degrade the op amp's phase
margin so that the amplifier is no longer stable at low gains.
The addition of a small resistor (500. to lOOn) in series with
the op amp's output, and a capacitor (5 pF to 10 pF) from
inverting input to output pins, returns the phase margin to a
safe value without" interfering with lower-frequency circuit

TL/H/l0547-6

FIGURE 1. LPC660 Circuit Topology (Each Amplifier)

1-927

Application Hints (Continued)
operation. Thus, larger values of capacitance can be tolerated without OSCillation.: Note that in all cases, the output will
ring heavily when the load capacitance is near the threshold
for oscillation.

PRINTED·CIRCUIT·BOARD LAYOUT
FOR HIGH·IMPEDANCE WORK
It is generally recognized that any circuit which must oper·
ate with less than 1000 pA of leakage current requires special ,layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LPC660, typically
less than 0.04 pA, it is essential to have an excellent layout
Fortunately, the techniques for obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though if may sometimes
appear acceptably low, because under conditions of high
humidity or dust or contamination, the surface leakage will
be appreciable.

100 kl}
Cx(10pF)

Rx (100l})

I

Goad

To minimize the effect of any surface leakage, layout a ring

of foil completely surrounding the LPC660's Inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs. See Fig-

Tl/Hf10547-7

FIGURE 2L Rx, Cx Improve Capacitive Load Tolerance

ure 3. To have a significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC

Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (FlfJUre 2b). Typically a pull up resistor
conducting 50 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

foil must then be connected to a voltage which is at the
same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For
example, a PC board trace-to-pad resistance of 1012 ohms,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
an input. This would cause a 100 times degradation from
the LPC660's actual performance. However, if a guard ring
is held within 5 mV of the inputs, then even a resistance of
1011 ohms would cause only 0.05 pA of leakage current, or
perhaps a 'minor (2:1) degradation of the amplifier's performance. See FlfJures 48, 4b, 4c for typical connections of
guard ringS for standard op-amp configurations. if both Inputs are active and at high impedance, the guard can be
tied to ground and still provide some protection; see

v+
R

I

c

Figure4d.

TLlH/l0547-28

FIGURE 2b. Compensating for Large
,Capacitive Loads with A Pull Up Resistor

t. Guard Ring

TLlHf10547-19

FIGURE 3. Example of Guard Ring In P.C. Board Layout using the LPC660

1-928

Application Hints (Continued)
Cl

R2

Rl
INPUT J\I~"",~---,W_"""

OUTPUT

OUTPUT

TUH110547-21

TUH/1 0547-20

(a) Inverting Amplifier

(b) Non-Inverting Amplifier
R3

Rl

--M.---.............
10011
•
.L
R2
Vl

-=

OUTPUT

V2 ---'w,r---..............
10011

1011
Tl/H/10547-22

lit.
TUH/10547-23

(c) Follower

(d) Howland Current Pump
FIGURE 4. Guard Ring Connections

The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a few circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up In the air and use only air as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board con·
struction, but the advantages are sometimes well worth the
effort of using point-to·point up-in·the-air wiring. See
Figure 5.

BIAS CURRENT TESTING
The test method of Figure 6 is appropriate for bench-testing
bias current with reasonable accuracy. To understand its
operation, first close switch S2 momentarily. When S2 is
opened, then

1- = dVOUT X C2.
dt

S2 (push-rod operated)
C2

FEEDBACK
CAPACITOR

SOLDER CONNECTION
TUHI10547-24
TUHI10547-25
(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board.)

FIGURE 6. Simple Input Bias Current Test Circuit

FIGURE 5. Air Wiring

1-929

C) , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

~

Application Hints (Continued)
A suitable capacitor for C2 would be a 5 pF or 10 pF silver
mica, NPO ceramic, or air-dielectric. When determining the
magnitude of 1-, the leakage of the capacitor and socket
must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the
capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2
shorted)

where

Typical Single-Supply Applications (V+

Ox

1+ = dVOUT x (C1 + ex>
dt
is the ,stray capacitance at the + input.

= 5.0 Voe)

Photodlode Current-to-Voltage Converter

Mlcropower Current Source

+5V

Rl

LII385

(1.2V)

C2

111

R2
1

_ 1.23V

R2

our-

TLlH110547-18

TL/H/10547-17

(Upper limn of output range dictated by input common-mode range; lower
limn dictated by minimum current requirement of LM385.)

Note: A 5V bias on the pbotodiode can cut its capacnance by a factor of 2 or
3. leading'lo improved response and lower noise. However, this bias on the
photodiode will cause pholodiode leakage (also known as its dark currant).

Low-Leakage Sample-and-Hold

> ....._

OUTPUT

INPUT

5/H

!CD4066
4
TLlH/10547-8

Instrumentation Amplifier

( ..
-

I

YIN

"

R3

R4

, 10k

lOOk

flRl
Rl,44.2k

R2
2k

For good CMRR over temperature, low drift resis·
tors should be used. Matching of R3 to R6 and
R4 to R7 affects CMRR. Gain may be adlusted
through R2. CMRR may be adlusted through R7.

pot

\+-----.

= R5, R3 = R6, and R4 = R7;

then VoUT = R2 + 2Rl x ~
VIN
Rt
R3
:. Av:::: 100'forcircuitsshown.

R5,44.2k

R6

10k

91k

TLlH/10547-9

1-930

Typical Single-Supply Applications (V+

= 5.0 Voc) (Continued)
1 Hz Square-Wave Oscillator

Sine-Wave Oscillator

Cl
200pf

R2
392k

C2
200pf

R4
10M
Cl
O.068/,f

VOUT

I

> ....._ VOUT

+5V

Rl

R2

+5V
470k

20k

R3
470k

20k

470k

+
20k

TL/H/10547-11

Power Amplifier
R4

TLlH/10547-10

Oscillator frequency is determined by AI. A2. Cl. and C2:
fose ~ 1/2"AC
where A = Al = A2 and C = Cl = C2.

+5V ....-'IIV\ro_~

VOUT

This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V

TL/H/10547-12

1-931

I

Typical Slngle-Supply Appllcallons (V+

-

5.' V""" ~

10 Hz Bandpass FIlter

10 Hz High-Pass FiRer (2 dB Dip)

C2

+5V
R4
VOUT

V

CI

~t---4","""",,I--t---I

560k

0.015 pF

0.015 J.lF

R2
2.7M

+5V ....1\1\,.,...........

R3

10

Ie - 10 Hz
d = 0.895
Gain = 1

= 10Hz

Q = 2.1

Gain = -8.8

390k
TLlHI10547-14

TLlHI10547-13

High Gain Amplifier with Offset Voltage Reduction

1 Hz Low-Pass FIlter (Maximally Flat, Dual Supply Only)
RI

R4

470k

270k

R3

Vour
VOUT
VII

R3

R2

R4

8.2M
CI

=I Hz
=1.414
Gain =1.57

10M

f.

0.02J.1F

o.o2J.IFI

d

0.1 J.lF

TLlH/10547-15

0.1 J.lF
R5

R6

+5V ........,.".,--.......I\jW....
22k
15k
Gain = -46.8
Output offset vol1age reduoad to the
level of the Input offset voltage of
the bottom ampPfter (typically 1 mV).
referred to VBIAS.

1-932

-

TL/H/l0547-16

ttlNational Semiconductor

LPC661
Low Power CMOS Operational Amplifier
General Description
The LPC661 CMOS operational amplifier is ideal for operation from a single supply. It features a wide range of operating supply voltage from +5V to +15V, rail-to-rail output
swing and an input common-mode range that includes
ground. Performance limitations that have plagued CMOS
amplifiers in the past are not a problem with this design.
Input Vas, drift, and broadband noise as well as voltage
gain (into 100 kO and 5 kO) are all equal to or better than
widely accepted bipolar equivalents, while the supply current requirement is typically 55 pA
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LPC660 datasheet for a Quad CMOS operational
amplifier or the LPC662 data sheet for a Dual CMOS operational amplifier with these same features.

Features (Typical unless otherwise noted)
• Rail-to-rail output swing
• Low supply current
• Specified for 100 kO and 5 kO loads

•
•
•
•
•
•
•
•

120 dB
High voltage gain
3 mV
Low input offset voltage
1.3 p.V/oC
Low offset voltage drift
2 fA
Ultra low input bias current
Input common-mode range includes GND
Operating range from + 5V to + 15V
0.01 % at 1 kHz
Low distortion
0.11 V/p.s
Slew rate

Applications
•
•
•
•
•
•
•

High-impedance buffer
Precision current-to-voltage converter
Long-term integrator
High-impedance preamplifier
Active filter
Sample-and-Hold circuit
Peak detector

55 pA

Connection Diagram
S-Pln DIP/SO

NC{38 NC

INVERTING INPUT 2

_

NON-INVERTING 3
INPUT

7

'If"

6 OUTPUT

V- 4

SNe
TLlHI11227-1

Ordering Information
Temperature Range
Package

Military
-ssoC to + 125"C

8-Pin
Small Outline
S-Pin
Molded DIP

lPC661AMN

NSC

Transport
Media

Industrial
-WC to +85"C

Drawing

LPC661 AIM
LPC661 1M

MOBA

Tape and Reel
Rail

LPC661AIN
LPC661IN

NOSE

Rail

1-933

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (V+ - V-)
16V
Differential Input Voltage
± Supply Voltage
, " {Note 9)Output Short Circuit to V +
Output Short Circuit to V(Note 2)
Storage Temperature Range
- 65°C to + 150°C
2600C
J,ead Temperature (Soldering, 10 se~,)
Junction Temperature (Note 3)
1500C
Power Dissipation
(Note 3)
ESD Rating (C= 100 pF, R= 1.qk£l)
1000V

"

Gurrenf at Input Piri
Current at Output Pin
Voltage Input/Output Pin
Current at Power Supply Pin

,

Vas

Parameter

Conditions
"

Input Offset Voltage

TCVos

Input Offset Voltage
Average Drift

Ie

Input Bias Current

,

Typ

'

1

LPC661AM
Limit
(Note 4)

0.002

Input Offset Current

0.001

Input Resistance

CMRR

Common Mode
Rejection Ratio

OV ~ Vct1
,83

V+ - 1.9
Av

1M unless'otherwise noted.
'
,

1.3

RIN

+PSRR

=

3.15

100
los

'35mA

Operating ,Rat~"gs(lI!ote 1)
4.75V ~ V+ ~ 15.5V
Supply Voltage
Junction Temperature Range
LPC661AM
',-55°C ~ TJ ~ +125°C
LPC661AI
-400C ~ TJ ~ +85°C
LPC661 I
-400C ~ TJ ~ +85°C
Pow,er Dissipation
(Note 7)
Thermal Resistance (8JAl (Note,8)
8-PinDIP
101"C/W
8-PinSO
165°C/W

DC Electrical Characteristics '
The following specifications apply for V+ = 5V, V- = OV, VCt7
0.05

0.05
0.03

Units
Limit
' (Limit)
(Note 4)

/

SR

Slew Rate

(Note 6)

0.11

"

V/p.s
min

GBW

Gain-Bandwidth Product

350

kHz

cf>m

Phase Margin

50

Deg

GM

Gain Margin

17

dB

en

Input Referred Voltage ~oise

F=1kHz

42

nVl.JFiZ

in

Input Referred Current Noise

F=1kHz

0.0002

pA/.JFiZ

T.H.D.

Total Harmonic Distortion

F = 1 kHz,Av = -10
RL =100 kG, Vo = 8 Vpp
V+ = 15V

"

0.01
%

Note 1: Absolute Maximum Ratings indicate limits beyond which damaga to the device may occur. Operating Ratings Indicate conditions for which the devlca is
intended to be functional, but do not guarantee specific parfonnance limits. For guaraOteec:t epecifications and test conditions. see the Electrical Characteristics.
The guaranteed specifICationS apply only for the test conditions listed.
Note 2: APplies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result In exceeding the
maximum allowed lunction temperature of 15O'C. Output currents In excess of ± 30 rnA aver long term may adversely affect reNabilIty.
Note 3: The maximum power dissipation is a function of TJ(rn8x). 8JA and TA. The maximum allowable power dissipation at any ambient tempereture Is Po =
(TJ(max)-TAlI8JA.
Note 4: Umlts are guaranteed by testing or correlation.
Note 6: vi; = 15V. YOM = 7.5V and RL connected to 7.5Y. For sourcing tests. 7.5V'';' Yo ,;." 11.5Y. For sinking tests. 2.5V ,;. Yo ,;. 7.5V.
Note 6: y+ = 15V. Connected as Yoltage Follower with lOY step Input. Number specified Is the slower of the positive and negative slew rates.
Note 7: For operating at elevated temperatures the devlca musl be derated besed on the thermal resistence 8JA with Po = (TJ-TAlI8JA.
Note 8: All numbers apply for packages soldered directly il)lo a PC board.
Note 9: Do not Connect output to Y+ when Y+ Is greater then 13Y or reliability may be adversely affected.

"

i

1-936

Typical Performance Characteristics Vs =
Supply Current
YS Supply Voltage

Input Bias Current
vs Temperature

100
~

70

5
Ii

80

il
~

~

10

'0
80

.3

~55

:;
i
i3
;

+ i25'

~~ ~ 0 ~ ~ IJt

50
40
. 30

l
lE

20

I

- r-

a ,I
0

2

4

•

6

HERMETIC
PACKAGE

0.1

V

0.01

10 12 14 16

I!
iii

!II

0.1

~

0.01

~

0.001

Ii!
!:i

I

~

/

0.1

S

1/

~~

10

el!
>"

~~II!

0.01
0.001

v.......

\.

40

100

~z

80

1

80

\

~

AI

~
~

It

10k

FREQUENCY (Hz)

lOOk

1M

75

125

t-

20
a

0.1

1

10

100

10

100

Ik

10k

lOOk

FREQUENCY (Hz)

Power Supply Rejection
Ratio va Frequency
140

'i1
~

Ie
=

90

,

80
eo

1\.'" SUPPLY

I'"

40

V" SUPPLY

80

20

70

a

60
100

I........

40

120

Ii
:a

25

120

!

100

lao

rrr"

140

120
110

"

•

a

-25

...

~

TEMPERATURE (OC)

130

'i1
~

,,

20

10

~

140

60

Iou.

-75

CMRR va Temperature

80

"

;i -o~

OUTPUT SOURCE CURRENT (mAl

100

Ii
:a

8> +0.5

Input Voltage Noise
va Frequency

ls=·r V

0.0001
0.001 0.01

100

CMRR va Frequency

~

-3.0

160

~L\15V

OUTPUT SINK CURRENT (mA)

'i1

I~
:a

II!

Vs.J+5~

I
0.1

o-!j

1

r-

CA~

GUARAN

ill! -2.5

I I

~~

TY

:1-2•0

Output Characteristics
Current Sourcing

~=+5V

0.0001
0.001 0.01

-1.0

I

. .

10

+15Vj
+5'1'"

Vs
Vs

I

a

~I!

TEMPERATURE (OC)

Output Characteristics
Current Sinking

>

~~

~a -1,5

/

/

0.0001
-75 -50-25 a 25 50 75 100125150

SUPPLY VOLTAGE (v)

10

"

PLASTIC
PACKAGE

"

0.001

1/

V

Common-Mode Voltage Range
va.Temperature

i~ -0.5

~

I

10

~

± 7.5V. TA = 25°C unless otherwise specified·

i";~

-20
-75

-25

25

75

1£IIPERATURE (OC)

125

10

100

Ik

10k

lOOk

1M

FREQUENCY (Hz)
TLlHI11227 -2

1-937

....

~

....

Typical Performance Characteristics Vs = .± 7.5V, TA =
Open-Loop Voltage Gain
vs Temperature

Open-Loop
Frequency Response

150

160
140

:!,.fO

1\

i

zz.

~ 130

i

~~

= lOOk

-

Iii'

~

rG: ~ ~
-~
1\ = 5k f' ~ ~

110

~

100

~

80

-25

25

75

w

!:l

:;

~

-20
0.010.1 1 10 100 lk 10k lOOk 1M 10M

125

15

z

i1

~

90

~.

:;

10

S

.3

I

~

~
~

.;.

1\

5
-5
-10
-20

-10 -7.5 -5 -2.5 0

Inverting Slew Rate
vs Temperature

~~

0.35
R,-=Rt.=5k

0.1 5

~

IV

!
~

:;

I

0.00
25

75

125

o

w

20 40 60 80100120140160180

~

0

100

1/

50

\
o

~

/

~
!!;

~

r20 40 60

8 10 12 14 16

100

:
Rt.=R,-=5k

.s 100

r\..

2V

r~ ov
o

4 6

~

s

4V

2

w

R,-=Rt.=20k

6V

125

Inverting Small-8ignal
Pulse Response

.s

I

~

75

TIME (1")

s

I

!:l

50

10

TIME (1")

:;

25

Non-Inverting Small
Signal Pulse Response
(Av = +1)

I

~

Inverting Large-Signal
Pulse Response

E

~~

\

V
~

TEMPERATURE (Oc)

E

-25

i

~

-25

RISING
0.10

!

~

RISING

- f-

TEMPERATURE (Oc)

E

0.05
-75

FALLING

0.15

0.00
-75

7.1; 10

FALLiNG

0.20
0.1 0

0.20

0.05
5

!i

0.25

0.25

~

oj

6V

~

0.30

~

2.5

0.30

~

~,

= 5k

large-Signal Pulse
Non-Inverting Response
(Av = +1)

<:,'

0..40

u:

I
1/

0.35

VOUT (VOLTS)

FREQUENCY (Hz)

i

"-

I
I
I

-25
1M

..

= lOOk

-15

-45

0..40

I
I I
1

1\

1M

Non-Inverting Slew Rate
vs Temperature

(Yos vs VOUT)
20

lOOk

FREQUENCY (Hz)

Gain Error

~

~

10k

FREQUENCY (Hz)

25

~

,0

20

Iii'

lOOk

i

r-...

20 f-l-+1fl!Hfl-H'tcl+HIo'-+++I+I1II

40

~

Gain and Phase Responses
vs Temperature

10k

!

~~

TEMPERATURE (Oc)

lk

Gain and Phase Responses
vs Load Capacitance

-

60

!:l

100
-75

120

~

'/. Z. ~

120

25°C unless otherwise specified (Continued)

I

80 100 120 140

TIME (1")

50

\
II
o

2

4

6 8 10 12 14 16 18
TIME (1'.)
TUH111227-3

1-938

Typical Performance Characteristics Vs =
Stability va Capacitive Load

Stability va capacitive Load

--r-,........--,--r-.

100,000 r-.---,--y-....

100,000

10,000
~

..e;
co

...1!:...

1,000

:.

100

~

....
e:;

± 7.5V, TA = 25"C(Continued)

10,000

~

Ay=+1

~ N.I

JNST1BLE
~ ~ ILJ.U.I

1,000

.~

Ll ~

r

100 r-+-+-r-+~:..;.;:;F+-I-+---I

J

~

5" OVERSHOOT
10r-+-+-r-~~-+-~-I-+---I

10

1~~~~~~~~~~--~~

-10

-0.1

-0.001
0.001
0.1
-1
-0.01
0
0.01
SINKING
SOURCING
LOAD CURRENT (mA)

10

-10

-(1.1

-1

-0.001
0.001
0.1
-0.01
0
0.01
SINKING
SOURCING
LOAD CURRENT (mA)

TL/H/II227-4

10

TLlH/II227-5

Note: Avoid resistive loads of less than 500n, as they may cause instability.

Application Hints
AMPLIFIER TOPOLOGY

The large signal voltage gain while sourcing is comparable
to traditional bipolar op amps, for load resistance of at least
5 kO. The gain while sinking is higher than most CMOS op
amps, due to the additional gain stage; however, when driving load resistance of 5 kO or less, the gain will be reduced
as indicated in the Electrical Characteristics. The op amp
can drive load resistance as low as 5000 without instability.

The topology chosen for the LPC661 is unconventional
(comparec\ to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the
output is taken directly from the output of the· integrator, to
allow rail-to-rail output swing. Since the buffer traditionally
delivers the power to the load, while maintaining high op
amp gain and stability, and must withstand shorts to either
rail, these tasks now fall to the integrator.

COMPENSATING INPUT CAPACITANCE
Refer to the LMC660 or LMC662 datasheets to determine
whether or not a feedback capacitor will be necessary for
compensation and what the value of that capacitor would
be.

As a result of these demands, the integrator is a compound
affair with an embedded gain stage that is doubly fed forward (via C, and c,,) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is
a push-pull configuration for delivering heavy loads. While
sinking current the whole amplifier path conSists of three
gain stages with one stage fed forward, whereas while
sourcing the path contains four gain stages with two fed
forward.

CAPACITIVE LOAD TOLERANCE
Uke many other op amps, the LPC661 may oscillate when
its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration
most sensitiv!l to oscillation is a unity-gain follower. See the
Typical Performance Characteristics.
The load capaCitance interacts with the op amp's output
resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase
margin so that the amplifier is no longer stable at low gains.
The addition of a small resistor (500 to 1000) in series with
the op amp's output, and a capacitor (5 pF to 10 pF) from
inverting input to output pins, returns the phase margin to a
safe value without interfering with lower-frequency circuit

TL/H/11227-6

FIGURE 1. LPC661 Circuit Topology

1-939

-~~----------------------------------~

I

~

Application

Hints'(Continued)

operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will
ring heavily when the load capacitance is near the threshold
for oscillation.

PRINTED·CIRCUIT-BOARD LAYOUT
FOR HIGH·IMPEDANCEWORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires spaciallayout of the PC board. VIIhen one wishes to take advantagll of the ultra-low bias current of the LPC661, typically
less than 0.04 pA,it is essential to have an excellent layout.
Fortunately, the techniques for obtaining low leakages are
quite simple. First, the user must not ignore the surface
leakage of the PC board, even though it may sometimes
appear acceptably law; because under conditions of high
humidity'or dust or contamination, the surface leakage will
be appreciable:

IOOkA
Cx(IOpF)

Rx(IOOAj

To minimize the effect of any surface lelik8ge, layout a ring
of foil completely surrounding the LPC661's inputs and the
terminals of capacitors, diodes, conductors, resistors, relay
terminals, etc. connected to the op-amp's inputs. See Ftgure 3. To have a Significant effect, guard rings should be
placed on both the top and bottom of the PC board. This PC
foil must then be connected to a voltage which is at the
ssme voltage as the amplifier inputs, since no leakage current can flow betWeen two points at the same potential. For
example, a PC board trace-to-pad resistance of 10120,
which is normally considered a very large resistance, could
leak 5 pA if the trace were a 5V bus adjacent to the pad of
an input. This would cause a 100 times degradation from
the LPC660's actual performance. However, if a guard ring
is held within 5 mV of the inputs, then even a resistance ,of
1011 0 would cause only \>.05 pA of leakage currerit, or perhaps a, minor (2:1) degradation of the amplifier's. performance. See Figures 48, 4b, 4c for typical connections of
guard rings for standard op-amp coilfigurations. If both inputs are active and at high ImpSdance, the guard can be
tied to ground and ,still provide some protection; see

TLlHfl1227-7

FIGURE 2a. Rx,

ex Improve Capacitive Load Tolerance

Capacitive load driving capability is enhanced by using a pull
up resistor to V+ (Ftgure 2b). Typically a pull up resistor
conducting 50 p.A or more will significantly improve capacitive load responses. The value of the pull up resistor must
be determined based on the current sinking capability of the
amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up
resistor (see Electrical Characteristics).

v+
R

Ftgure4d.

TLlHfll227-24

FIGURE 2b. Compenaatlng for Large
Capacltlv~ Loada with A Pull Up Resistor

l.Guard Ring
TLfHfll227-8

FIGURE 3. Example of Guard Ring in P.C. Board Layout, Uaing the LPC660

1-940

.-----------------------------------------------------------~~

~
....

Application Hints (Continued)
Cl

R2

Rl

INPUT

-ItJ1M.............-.AJltIY--..

Guard Ring

I
I
I
I

-+t

OUTPUT

OUTPUT

I

1:

TLlH/11227-10

(b) Non-Inverting Amplifier
TLlH/11227-9

(a) Inverting Amplifier
R3

Rl
VI

10011

L
OUTPUT

R2
V2

•
I

10011
1olot

TLlH/11227-11

(e) Follower
TLlHI11W-12

(d) Howland Current Pump
FIGURE 4. Guard Ring Connections
The designer should be aware that when it is inappropriate
to layout a PC board for the sake of just a f$W circuits, there
is another technique which is even better than a guard ring
on a PC board: Don't insert the amplifier's input pin into the
board at all, but bend it up in the air and use only alr as an
insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the
effort of using point-to-point up-in-the-alr wiring. See
FtgUre5.

BIAS CURRENT TESTING
The test method of Figure 6 is appropriate for bench-testing
bias current with reasonable accuracy. To understand its
operation, first close switch S2 momentarily. When S2 is
opened, then

1- = dVOUT X C2.
dt

.-

S2 (push-rod operatsd)

FEEDBACK
CAPACITOR

C2

I

Tl/H/11227-13

(Input pins are lifted out of PC board and soldered directly to components.
All other pins connected to PC board.)

TLlH/11227-14

FIGURE 6. Simple Input Bias Current Test Circuit

FIGURE 5. Air WIring

1-941

Application Hints (Continued)
A suitable capacitor for C2 would be a 5 pF or 10 pF silver
mica, NPO ceramic, or air-dielectric. When determining the
magnitude of 1-, the leakage of the capacitor and socket
must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the
capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2
shorted)

1+ = dVOUT x (C1

+ Cxl

dt .
where Cx is the stray capacitance at the

Typical Sin~le-Supply Applications (V+

+

input.

= 5.0 Vee)

Photodlode Current-to-Voltage Converter

Micropower Current Source

+5Y

LM385 (1.2Y)

C2

1M

I pF
R3

YOUT

R2
L

1.5V TO 2.4V

(Upper limit of output range dictated by Input common-mode range; lowar
IImR dictated by minimum current requirement of LM385.)

Note: A 5V bias on the photodiode can cut its capacitance by a factor of 2 or
3, leading to improved response and lower noise. However, this bias on the
photodiode will cause photodioda leakage (also known as Its dark current).

L!?w-Leakage Sample-and-Hold .

> ....... OUTPUT
INPUT

~CD.4066

I

""i2

TL/H/11227-16

TL/H/11227-15

5/H

~ 1.23V

'OUT -

0.1 I'F POLYPROPYLENE' .
OR POLYSTYRENE
.
,

TUH/11227-17

-I

1-942

'.".

r-----------------------------------------------------------------------------,~

Typical Single-Supply Applications (v+

'1J

=

Sine-Wave Oscillator
R2
392k

(")

5.0 Vee) (Continued)

-

I

1 Hz Square-Wave Oscillator
R-4

C2
200pF

CI

10M

200pF

Your

+5V

>-.... Vour
Rl

R2

+5V.---~~--~----~~--~

470k

20k

R3
-470k

-470k

TlIH/11227-19

Power Amplifier
R4

Tl/H/11227-18

OScIllator frequency is detennined by Rl, R2, Cl, and C2:
whereR

lose = 1/2".RC
= Rl = R2andC = Cl = C2.

Vour

This circuit, as shown, oscillates at 2.0 kHz with a peak-to- .
peak output Swing of 4.5V

TUH/11227-20

1-943

Typical Single-Supply Applications (V+

= 5.0 Voc) (Continued)

10 Hz Band~ Filter

10 Hz High-Pass Filter (2 dB Dip)
+5V

C2

0.0068

,.r

R4

Your
y,

Cl

:...,t--.. . . . . . . . . . . . . .....

560k
+5V +-"'V\fIr-......-t
R3

10
Q

Ie = 10 Hz
d = 0.895
Gain = 1

= 10Hz
= 2.1

Gain = 18.9 dB

390k
TLlH/II227 -22

TLlH/11227-21

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)
Rl
R4
470k

270k

Your

f.
d

= 1 Hz

= 1.414

Gain

= 1.57
TL/H/11227-23

'·944

t!lNational Semiconductor
LPC662
Low Power CMOS Dual Operational Amplifier
General Description
The LPC662 CMOS Dual operational amplifier is ideal for
operation from a single supply. It features a wide range of
operating voltage from +5V to +15V, rail-to-rail output
swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued
CMOS amplifiers in the past are not a problem with this
design. Input Vos, drift, and broadband noise as well as
voltage gain (into 100 kG and 5 kG) are all equal to or better
than widely accepted bipolar equivalents, while the power
supply requirement is typically less than 0.5 mW.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LPC660 datasheet for a Quad CMOS operational
amplifier and LPC661 for a Single CMOS operational amplifier with these same features.

•
•
•
•
•

Features
•
•
•
•

•
•
•
•
•

•

Applications

•
•

• High-impedance buffer
• Precision current-to-voltage converter

Long-term integrator
High-impedance preamplifier
Active filter
Sample-and-Hold circuit
Peak detector

Rail-ta-rail output swing
Micropower operation «0.5 mW)
Specified for 100 kG and 5 kG loads
120 dB
High voltage gain
3mV
Low input offset voltage
1.3 p.v/"C
Low offset voltage drift
2 fA
Ultra low input bias current
Input common-mode includes GND
Operating range from + 5V to + 15V
0.01% at 1 kHz
Low distortion
0.11 Vlp.s
Slew rate
Full military temperature range available

Connection Diagram
8-Pln DIP/SO

'-'-!n,~~~
INVERTING INPUT A....!
NON-lNVERnlG
IN'UTA

WB\

3

-

J

OU1PUT 8

+ +rIINPUT B
I L -L, - INVERnlS
.

•

V-....;.+----' ,--_..5.... NON-INVERTIN.
INPUT I
TLlH/l0548-1

Top VIew

Ordering InfQrmation
Package

Temperature Range
Military

8-Pin
SideBrazad
Ceramic DIP

Industrial

LPC662AMD

NSC
Drawing

Transport
Media

DOSC

Rail

8-Pin
Small Outline

LPC662AIM
orLPC662IM

MOBA

Rail
Tape and Reel

8-Pin
Molded DIP

LPC662AIN
orLPC6621N

N08E

Rail

J08A

Rail

8-Pin
Ceramic DIP

LPC662AMJ/883

1-945

~

I
!

I

Absolute Maximum Ratings (Note 3)

Operating Ratings (Note 3)

If Military/Aerospace specified devices are required;'
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Temperature Range
LPC662AMJ/883
LPC662AM
LPC662A1
LPC6621

Differential Input Voltage
Supply Voltage (V+ - V-)

± Supply Voltage
16V
(Note 11)
(Note 1)

Output Short Circuit to V+
Output Short Circuit to VLead Temperature (Soldering, 10 sec.)'
Storage Temp. Range
Junction Temperature
ESD Rating (C = 100 pF, R
Power Dissipation
Current at Input Pin

=

-400C,:;; TJ~ \l-85°C
4.75Vto 15.5V
" (Note9)

Sup~yRange
',',

Power Dissipation
Thermal Resistance (8JAl (Note 10)
8·Pin Ceramic DIP'
8·Pin Molded DIP
a·PinSO
8·Pin Side Brazed Ceramic DIP

2600C
- 65°C to' + 15!r.'C
1500C
fOOOV
(Note 2)

1.5 kn)

,
-55°C s: TJ s: +125°C
-55°C s: TJ s: + 125°C
-:400C s: :rJ s: +85°C

','

,

"

1000C/W
10:l°C/W
165°C/W
1000C/W

±5mA
±18mA

Current at Output Pin
Current at Power Supply Pin

35mA
(\l+) + 0.3V, ('1-) -0.3V

Voltage at Input/Output Pin

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for TJ = 25°C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and,l;IL > 1M unless otherwise specifie~.

Conditions

Parameter
Input Offset VOI~ge

Typ

LPC662AM
LPC662AMJ/663
Limit
(Notes 4, 8)

LPC662AI'
Umit
(Note 4)

1

3

3

3.5

3.3

"-

,

LP'C6621'
Limit
(Note4) .
6

8.3

1.3

Input Offset Voltage
Average Drift
Input Bias Current

0.001

4

pA
max

2

2

pA
max

20

'100
>1

Common Mode
Rejection Ratio

OV s: VCM s: 12.0V
V+ = 15V

83

Positive Power Supply
Rejection Ratio

5V s: V+ s: 15V
Vo = 2.5V

~3

Negative Power Supply
Rejection Ratio

OV

Input Common·Mode
Voltage Range

V+

Teran

.

s: V- s:

-10V

94

7'0

70

63

88

88

81

70

70

63

88

88

81

84

84

74

82

83

73

-0.1

-0,1

-0.1

0

0

V+ .:.. 2.3

V+ - 2.3

V+ - 2.3

Y+ - 2.8

Y+ -2.5

V+ - 2.5

1.1

=

-0:4

5Vand 15V
50dB

mV
max

4

20

100

Input Resistance

,

/J-vrc

0.002

Input Offset Current

Units

ForCMRR'~

,0
V+ -1.9

\.'

'1·946

dB
min
dB
min
dB
min
V
max
V
min

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ 0= 25°C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5V and RL > 1M unless otherwise specified. (Continued)

Parameter

Large Signal
Voltage Gain

Output Swing

Conditions

Typ

RL = 100 kO (Note 5)
Sourcing

1000

Sinking

500

RL = 5 kO (Note 5)
Sourcing

1000

Sinking

250

V+ = 5V
RL= 100kOtoV+/2

LPC662AM
LPC662AMJ/883
Limit
(Notes 4, 8)

4.987

0.004

V+ = 5V
RL = 5kOtoV+/2

4.940

0.040

V+ = 15V
RL = 100kOtoV+/2

14,970

V+ = 15V
RL = 5kOtoV+/2

0.110

Output Current
V+ = 5V

Sourcing, Vo = OV

Sinking, Vo = 5V

Output Current
V+ = 15V

Supply Current

Sourcing, Vo = OV

400

400

300

300

200

180

180

90

70

120

70

200

200

100

150

180

80

100

100

.50

35

80

40

4.970

4.970

4.940

4.950

4.950

4.910

0.030

0.030

0.060

0.050

0.050

0.090

4.850

4.850

4.750

4.750

4.750

4.850

0.150

0.150

0.250

0.250

0.250

0.350

14.920

14.840

22

21

40

Sinking, Vo = 13V
(Note 11)

39

Both Amplifiers
Vo = 1.5V

86

1·947

LPC6621
limit
(Note 4)

250

14.880
0.007

LPC662AI
Limit
(Note 4)

14.920

. 14.880

14.880

14.820

0.030

0.030

0.060

0.050

0.050

0.080

14.680

14.680

14.580

14.800

14.800

14.480

0.220

0.220

0.320

0.300

0.300

0.400

16

16

13

12

14

11

Units

V/mV
min
V/mV
min
V/mV
min
V/mV
min
V
min
V
max
V
min

V
max
V
min
V
max
V
min
V
max
rnA
min

16

16

13

rnA

12

14

11

min
rnA
min

19

28

23

19

25

20

19

28

23

19

24

18

120

120

140

145

140

180

rnA
min
p.A
max

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25"C. Boldface limits apply at the temperature extremes. V+ = 5V,
V- = OV, VCM = 1.5V, Vo = 2.5Vand RL > 1M unless otherwise specified.

Parameter

Slew Rate

Typ

Conditions

(NoteS)

0.11

Gain-Bandwidth Product
Phase Margin
Gain Margin

LPC662AI
Umlt
(NOte")

LPC6621
Limit
(Note 4)

0.07

0.07

0.05

0.04

0.05

0.03

Units

Vlp-s
min.

0.35

MHz

50

Deg

17

dB

130

dB

F=1kHz

42

nV/.jHz

F = 1 kHz

0.0002

pA/.jHz

0.01

%

Amp-to-Amp Isolation

(Note 7)

Input Referred Voltage Noise
Input Referred Current Noise
Total Harmonic Distortion

LPC662AM
LPC662AMJ/883
Umlt
(Notes 4, 8)

F = 1 kHz,Av = -10, V+ = 15V
. RL = 100kO, Vo = 8Vpp

Note 1: Applies to both single supply and spin supply operation. Continuous short circuit operation at elevated ambient temperature and/or muHlple Op Amp shorts
can result in exoeed;ng the maximum allowed junction temperatura of l5O'C. Output currenta In excess of ± 30 mA over long term may adversely affect reIiabIIHy.
Note 2: The maximum power dissipation is a function of TJ(max), 9JA. and TA' The maximum allowable power dissipation of any ambient temperatura is
Po = (TJ(max) - Tp.}18JA·
Note 3: AbeoIute Maximum Ratings incflCale limns beyond which damage to the device may oCcur. Operating Ratings indicate conditions for which the device Is
Intended to be functional, but do not guarantee specific pe

0.001 t ! ' . _ + - - + - - t - - f
10

.al..

-1.0

a -1.5

~ ! -2.0
GUARA
...
g= -2.5
'I' -3.o! I:-+-+-t-lf-t--t-+-:-L

Input Voltage Noise
vs Frequency

l~s~'!5V

1

0r--r-..,.--r-r--r-r--r-,

output Characteristics
Current Sourcfng

0.01"

0.0011~
0.001 0.01

~~

:\. - 0 . 5 _1

TtMPERATURE (OC)

~1.l.m

5~ 0.0001 r-v~
V$ = .5V

~

Input Common-Mode
Voltage Range vs
Temperature

TEMPERATURE (OC)

Output Characteristics
Current Sinking

~

= 25°C unless otherwise specified

Input Bias Current
vs Temperature

250 r--r-..,.--r-r--r-r--r-,

3

± 7.5V, TA

0.1

1

10

O~-'--'---'---'----'-'-.l-..1

100

10

OUTPUT SOURCE CURRENT (mA)

100

lk

10k

lOOk

FREQUEMCY (Hz)

Crosstalk Rejection
80 vs Frequency

100 CMRR vs Frequency

140

CMRR vs Temperature

,130 f--+-+-+--+-f--t-+--l
801--t-+-+--t--l--t-+--t

120 f--+-+-+--+-f--t-+--l

!

Il'

110

1001--t-+-+--t--lfl-t-+--t

I001--t-+-+--t--l--t-+--t

lit. = 1 ~~ =100k
120 j....~±:;;;p~-r-t--t--j

80

90H-E=fff~
I---'F
70r-+--l--r-+--l--t-~-l

1401--'--'---'---'----'-'-.1-..1
10
100
lk
10k
lOOk

FREQUENCY (Hz)

&o~-'--'---'-~--'

100

lk

10k

lOOk

1M

FREQUENCY (Hz)

-75

-25

25

__L-~..1
75

125

TEMPERATURE (OC)

~
I

Power Supply Rejection
140 Ratio vs Frequency
120I-HH-t-t-+-+-++-t

10°t:SS~;tll!!~
80 i=

I\. y+ SUPPLY
60 H--+-+-+-''40,:-+'~-t-H
40I-HH-t-t~~~+-t

20I-HH-+~~S+U~PfY~~~

ot-H--f'--+-+-+-+--t-~-F4:

-20 L-JL-..J---'---'--'--'-....L.-'--'--'
10 100 lk
10k lOOk 1M
FREQUENCY (Hz)
TL/H/l054B-2

1-949

io

a..
.....

Typical Performance Characteristics Vs ",":t 7iN. TA =
Open-Loop Voltage Gain
vsTemperature "

2S·Cunless Qtherwise specified (Continued)

Open-Loop
Frequency ReSponse

Gain and Phase Responses
vs Load CapacHance

160 r-r-,---,---,-,-,-,--..,---,

!

~

I-+-+-+~-,lc:-:-I-+-I

140

..

120I-j-3I,:f-+-+-+-+-+-+--1

~

801-r-+-~~+-+-+-+--1

I~~
__
=r-+-+-+-+-+-+~~

~

130

3
z

120

~

60~r-r-+-~~+-+-+--1

~

401-t-t-t-+-~v-+-+--i

i

110

"201-r-+-+-+-+-+"od-+--1

100

-20 '---'-'-.1-.1--'--'--'--"--'
0.010.1 I 10 100 Ik 10k 100klM 10M

§r

-75

25

75

1001-t-P,;I-+-+-+-+-+--i

125

Gain and Phase Responses
YS Temperature
80rTTmM-rrrmr~TImrTTmm

25
15
90 "

40

20H+HfIll-"N
-20 H+Hflll-miiim=-I.,j.HIIIIH+Hf1ll -~5
lk

10k

lOOk

~

i

10
~

5

~

-5

I\.

"-10
-15

Non-Inverting Slew Rate
0.-10
D.35

'i

~ 0.25

i!i

0.15

1

u:

0.1 0

..

0.25

~

~

0.00
5

-75

7.5 10

-25

25

75

125

TEMPERATURE (Oc)

Large-Slgnal Pulse
Non-Inverting Response
(Av = +1)

Non-Inverting Small
Signal Pulse Response
(Av = +1)

S'

.s
~

100

~

Rr=R,.=5k

~

~

~

iE

fALLING

S'

0.15

~'100

RISING

\@

"0.10

V

o.os

"--o

0.00
c75

I-

RISING

VOUT (VOLTS)

0.30

0.20

-

0.05

1

2Jl

FALLING

io.2O

1/
= 5k

0.40

~

0.30

I

-25
-10 -7Jl -5 -2Jl 0

1M

lOOk

VB Temperature

= lOOk

-20

1M

Inverting Slew Rate
vs Temperature
0.35

t-t-+l1tlll1t-

0

10k

1 1
1 1
1 1

I\.

fREQUENCY (Hz)

'0'

45 ,--LLJLLlULL

FREQUENCY (Hz)

Gain Error
(VOS va "OUT)

20

~

90 Hl-trlttijH-++++III1;;;;:!

~ lSi!

FREQUENCY (Hz)

TEMPERATURE (oc)

~

,,:iii'

if:!'

-25

25

75

125

~" 50

\

5

2DAO"~~W~2D14016~~

024

TIME (1'0)

Inverting large-Signal
Pulse Response

1

i

Rr = R,N = 20k
~

/
~

.~

~

0

,

'\

~

o

o

20 40 60 80 100 UO 140
TIME (I's)

~ ~

Rt.=Rr=5k
0

"-

8 W U

Inverting Small-Signal
Pulse Response

~ 10~L

1

6

TIME (1'0)

!

1

\

~

-of--

TEMPERATURE (Oc)

I

>

I

I

2 4 6

8 10 12 14 16 18

TIME (1'.)

TL/H/l0548-3

1-950

Typical Performance Characteristics Vs =

= 25°C (Continued)

± 7.5V, TA

Stability vs Capacitive Load

Stability vs Capacitive Load
100,000

100,000

10,000

t:'

..eo
Q

9...
~

§

1,000

10,000

~

100

~f- Ay~+10Ior -110
I

t:'
Q

~

....(§

~

N.

~ ~ J..J.JNsT1BLE

1,000

...

Photodiode Currerit-to-Voltage Converter

Mlcropower Current·Source
LW385 (1.2V)

+5V
Rl

+ ,.. \

,'-'XI

C2

lW

1 pF
R3

l00W

Vour
1_

1.5V TO UV

1.23V

_

'UUT-

R2

TLlH/l0548-18
TL/H/l0548-17

(Upper limR of output range dictated by input common-mode range; lower
IimR dictated by minimum current requirement of LM385.)

Note: A 5V bias on the photodiode can cut Its capaCitance by a factor of 2 or
3, leading to improved response and lower noise. However, this bias on the
photodiode will cause photodiode leakage (also known as its dark current).

Low-Leakage Sampie-and-Hoid

~~~

OUTPUT

INPUT
5/H

TL/H/l0548-8

Instrumentation Amplifier

(

-

R3

R4

10k

lOOk

VOUT=~X~

•. n

VIN

I

R2

R3

:·.Av :::: 100 for circuR shown.

R2
VIN

If Rl = R5, R3 = R6 and R4 = R7; then

> ....._ VOUT

2k

~

\.------.

R6
10k

91k

TLlH/l0548-9

1-954

Fa! good .GMRR over temperature, low drift resi..
tors. ~hould be"used. Matching of R3 to R6 and
R4 to R7 affects CMRR. Gain may be adJustad
through R2. CMRR may be adjusted through R7.

r-----------------------------------------------------------------------------'r
"'D
Typical Single-Supply Applications 0/+
Sine-Wave Oscillator

Cl
200pr

R2
392k

~

= 5.0 VDcl (Continued)

1 Hz Square-Wave Oscillator
C2
200pr

N

R4
10M

Your

.>......-

+5V

Vour
Rl
+5V +--W.".....-.....---W."....._.....

20k
20k

TL/H/I0548-11

Power Amplifier
R4

TL/H/l0548-10

Oscillator frequency is determined by RI, R2, Ct, and C2:
whereR

fose = 1/2".RC
= RI = R2andC = CI = C2.

+5V +.JVVIr..........

This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5V

TL/H/l0548-12

!

~

!

1-955

Typical Single-Supply Applications (V+

= 5.0 Vee) (ContInued)

10 Hz Hlgh-P... Filter (2 dB Dip)

10 Hz Bandpass Filter

C2
0.OO681'F

.

~5V

R4

v

Cl

:...,1-.....-n---4~---f

560k

+5V ....-'YtIV-...........
R3
10
10

= 10 Hz

Gain

Q= 2.1

Gain = -8.8

=1

TLlH/l0548-14

TL/H/l0548-13

1 Hz Low-P... Filter (Maximally Flat, Dual Supply Only)
RI

R4

47Dk

270k

High Gain Amplifier wlth.OHaet Voltage Reduction

R3
VII

p,
-=

R3

R2

RI
Vour

-4.7k

"Vour
VIN

390k

d.= 0.895

= 10 Hz

, O.II'F .

8.211
CI
0.021'F

0.021'~

Ie = I Hz
= t.-414
Geln = 1.57
d

R2

R4

22k

lOll

C2
O.II'F

TLlHI10548-15

R5

O.II'F
R6

+5V ....--'\M,......--4~W_.
22k
15k
Gain

=

-46.8

Ou1pUt offset voltage reduced to !he
level of the Input offset voltage of
!he bottom amplifier (typically 1 mV),
referred to VSIAS.

1·956

TLlH/l0548-18

o

~

I!fINational Semiconductor

OP-07 Low Offset, Low Drift Operational Amplifier
General Description

Features

The OP-07 has very low input offset voltage which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nUlling. The
OP-07 also features low input bias current and high openloop gain. The low offsets and high open-loop gain make
the OP-07 particularly useful for high-gain applications.
The wide input voltage range of ± 13V minimum combined
with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration.
Excellent linearity and gain accuracy can be maintained
even at high closed-loop gains.

•
•
•
•
•
•
•
•

Stability of offsets and gain with time or variation in temperature is excellent.

•
•
•
•

The OP-07 is available in T0-99 metal can, ceramic or
molded DIP.
For improved specifications, see the LM607.

Low Vos
75 "'V Max
Low Vos Drift
0.6 ",VI"C Max
Ultra-Stable vs Time
1.0 ",VI Month Max
Low Noise
0.6 ",Vp-p Max
Wide Input Voltage Range
±14V
Wide Supply Voltage Range
± 3V to ± 18V
Fits 725/108A1308A, 741, AD510 Sockets
Replaces the p.A714

Applications
Strain Gauge Amplifiers
Thermocouple Amplifiers
Precision Reference Buffer
Analog Computing Functions

Connection Diagram
Dual-In-Llne Package

~"-/ r!-vos
TRIM
7

Vos TRIM...1.
2
-IN--i-- -

+IN...! I-- +
V-"'!

~V+

r!- OUT
~N.C.

TUH/10550-1

See NS Package Number N08E

Ordering Information
r-----------~--------_.------------~

TA = 2S"C
VosMax
("'V)

N08E
Plastic

Operating
Temperature
Range

75

OP07EP

COM

150

OP07CP

COM

150

OP07DP

COM

'Also available per SMD #8203602

1-957

Absolute Maximum Ratings
- 65·b to: + 150"C
260"C
-65·Cto + 150"C

Storage Temperature Range
Lead Temperature (Soldering, 60 sec.)
Junction Temperature

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
OffIce/Distributors for availability and specifications.
Supply Voltage
±22V
500mW
Internal Power Dissipation (Note 5)
±30V
Differential Input Voltage
±22V
Input Voltage (Note 6)
Output Short·Circuit Duration
Continuous

Operating Temperature Range
O"C to.. + 70"C

OP·07E, OP-07C, OP·07D

Simplified Schematic
~------~------~--~~--~--~~~--~----~----'---~--T-~

.....,

.-- .

-•

RI •

•
.....

..

RI'
~~-4

____

~

________

...
~~~~

__

~

__

~

__

~

__

~

.....,

TVH/l0550-3

'R2A and R2B are electronically trimmed on chip al1he factory for minimum offset voltage.

1·958

Electrical Characteristics
Unless otherwise specified, Vs = ± 15V, TA = 25·C. Boldface type refers to limits over O'C !> T A !> 70'C
Symbol

Parameter

OP·07E

Conditions
Min

Vas

Input Offset Voltage

(Note 1)

Vasil

Long·Term Vas
Stability

(Note 2)

los

Input Offset Current

OP.07C

Typ

Max

30
45

Units

Typ

Max

75
130

60
85

150
250

p.V

0.3

1.5

0.4

2.0

p.V/Mo

0.5
0.9

3.8
5.3

0.8

i ••

6.0
8.0

nA

±1.2
±1.5

±4.0
±5.5

±1.8
±2.2

±7.0
±9.0

nA

Min

Ie

Input Bias Current

enp-p

Input Noise Voltage

0.1 Hz to 10 Hz (Note 3)

0.35

0.6

0.38

0.65

p.Vp.p

en

Input Noise Voltage
Density

fa = 10 Hz
fa = 100 Hz (Note 3)
fa = 1000 Hz

10.3
10.0
9.6

18.0
13.0
11.0

10.5
10.2
9.B

20.0
13.5
11.5

nV/.JHZ

inp-p

Input Noise Current

0.1 Hzto 10 Hz (Note 3)

in

Input Noise Current
Density

fa = 10Hz
fa = 100 Hz (Note 3)
fa = 1000 Hz

RIN

Input Resistance
Differential·Mode

(Note 4)

RINCM

Input Resistance
Common·Mode

15

IVR

Input Voltage Range
Common·Mode
Rejection Ratio

VCM = ±13V

PSRR

Power Supply
Rejection Ratio

Vs= ±3Vto±1BV
Vs = ±3Vto ±18V

Ava

Large Signal
Voltage Gain

RL;;"
RL;;"
RL;;"
Vs =

Output Voltage Swing

gO

15

35

pAp.p

0.80
0.23
0.17

0.35
0.15
0.13

0.90
0.27
0.18

pA/.JHZ

50

RL;;" 10kO
RL;;" 2kO
RL;;,,2kO
RL;;" 1 kO

GO

±13

±14

V

123
123

100
97

120
120

dB

20
32

7
10

32
51

p.VIV

200
180

500
450

120
100

400
400

150

400

100

400

±12.5
±12.0
±12.0
±10.5

±13.0
±12.8
±12••
±12.0

±12.0
±11.5
±11.0

±13.0
±12.B
±12.6
±12.0

V

0.1

0.3

0.1

0.3

V/p.s

0.4

0.6

0.4

0.6

MHz

RL ;;" 2 kO (Note 3)

BW

Closed·Loop Bandwidth

AVCL =

Ro

Output Resistance

Va = 0,10 = 0

60

Pd

Power Consumption

Vs = ±15V,NoLoad
Vs = ±3V, No Load

75
4

Offset Adj. Range

Rp = 20kO

±4

Average Input Offset
Voltage Drift Without
External Trim
With External Trim

(Note 4)

Rp = 20 kO (Note 4)

TCVOSn

120

±14.0

Slew Rate

+ 1 (Note 3)

MO

106
103

5
7

2 kO, Va = ±10V
2kO
5000, Va = ±0.5V,
±3V(Note4)

33

±13.0

SR

TeVos

B

160

CMRR

Va

14
0.32
0.14
0.12

V/mV

60

0

120
6

BO
4

150
8

0.3

1.3

0.5

1.8

0.3

1.3

0.4

i ••

8

35

12

50

pArC

13

35

18

50

pArC

±4

mW
mV

p.V1·C

TCloS

Average Input Offset
Current Drift

(Note 3)

TCle

Average Input Bias
Current Drift

(Note 3)

1·959

•

Electrical Characteristics
Unless otherwise specified, Vs = ± 15V, T A = 25°C. Boldface type refers to limits over O"C ~ TA ~
Parameter

Symbol

Conditions
Min

Vos

Input Offset Voltage

+ 70"C

OP-07D

(Note 1)

Max

60

150
250

p.V

0.5

S.O

p.V/Mo

0.8
1 ••

8.0
8.0

nA

±2.0
±3.0

±12.0
±14.0

nA

85
(Note 2)

Units

Typ

VOStt

Long-Term Vos Stability

los

Input Offset Current

la

Input Bias Current

enp-p

Input Noise Voltage

0.1 Hz to 10Hz (Note S)

0.38

0.65

p.Vp-p

en

Input Noise Voltage Density

fo = 10Hz
fo = 100 Hz (Note 3)
fo = 1000Hz

10.5
10.3
9.8

20.0
13.5
11.5

nV/.JHz

inp-p

Input Noise Current

0.1 Hz to 10 Hz (Note 3)

in

Input Noise Current Density

fo = 10Hz
fo = 100 Hz (Note 3)
fo = 1000Hz

RIN

Input Resistance Differential-Mode

(Note 4)

RINCM

Input Resistance Common-Mode

7

IVR

Input Voltage Range

CMRR

Common-Mode
Rejection Ratio

VCM = ±1SV

PSRR

Power Supply
Rejection Ratio

Vs = ±3Vto ±18V

Avo

Large Signal
Voltage Gain

RL ~ 2kO, Vo = ±10V
RL=2kO,Vo= ±10V
RL:

.~

I

•

Gain Bandwidth

30

V~">I~

_
RL "ft
cL"laapF-

r-....

II
II
SUPPLY VDLTAI. I.VI

r-....

20

.....

10

I -10
""'"

I

lllza.41I11178

I
I

II

j"C
we

I
II

D

•

rc

• •

41

Output Voltage Swing
Yo" tllV
TA"we

ZI

~

,.
II

V
1,1

It

GAIN

-20

Slew Rate
II

150
Va= ±15
RL=2k 1ao

c..=11~1~

,

""

50

I

1

10

FREQUENCY (MHzl

1~

14

Yo"'11Y

I

RL "a
AV"I

FALLIIS

-~50 I
i!

;I

-

...l.

II

Ii

-100
-150

0,1

II

RL - OUTPUT LDAD 110111

PHASE

-30
TEMPERATURE ret

-r-- ,
II!...

Bode Plot

i

.......

ZI

I

a

.1

ZD

I.~ ·

DUTPIIT ..N. CURRENT I..Al

"-

1

3D

~

II

OUTPIIT SOURCE CURRENT I.Al

>

-5

WC

I

za

II

411

~

-1'

II

Voltage Swing

Negative Current Umlt

II

Positive Current Umlt
II

NEIATIVE IUPPL YVDLTASE IVI

-II

=

I

",

III....YVDLTAIIE I.VI

.~

/

I'III1TIVE SUPPI.YVOLTAIE IVI

I

;

/

iii>
::

E

I.

/

la

S!
!:~

/
a

rCSTAS+7rc

!;

V

I

Negative Common"Mode Input
Voltage Umlt
ZD

V

•

TE_RATURE rCi

C _.....DE VOLTAGE IVI

I

u

II

-II

~

""..

,

ZI
I

E

G"STAS+lI"C

FVCII"a
~VS'±lIV

TA"WC

'C

1aG

II

111

....

111178

TEIlPERATURE'rCi
TUH/8358-5

1-964

Typical Performance Characteristics
Distortion vs Frequency

II

v•• nlV

1.111

T~.-:C ~I

loll

Iii

I.

I

~V'".VH
~

!I.IH
.

~

Av""~~

!.

i

..

lUll

....

=

la

II

RL"a
TA" WC
Av·1
,

",,'

>

...

I-

:::>

I:::0
CI

TIME (Oo2l'slDIV)

TIME (0.2 j4/DIV)

TLlH/B35B-13

TLlH/835B-7

Large Signal Inverting

Large Signal Non-Inverting

s:

is

~
CD
z

i...
CD

C

I-

""CI
>

I-

'~

CI

T,IME (211s/DIV)

TIME (2 ",slDIV)
TL/H/B35B-14

TL/H/B35B-15

Current Limit (RL = 1000)

TIME (5 j4/DIV)
TLlH/835B-16

Application Hints

The TLOIi1 is k~ op amp with an internally trimmed input
offset voltage !!ndJFET input devices (BI-FET II). These
JFETs have large reverse breakdown voltages from gate to
source and drain eliminating the need for clamps across the
inputs. Therefore, large differential input voltages can easily
be accommodated without a large increase in input current.
The maximum differential input voltage is independent of
the supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this

will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input
will force the output to a high state, potentially causing a
reversal of phase to the output.
Exceeding the negative common-mode limit on both inputs
will force the amplifier output to a high state, In neither case
does a latch occur since raising the input back within the

1-966

r--------------------------------------------------------------------------.~

Application Hints (Continued)
common-mode range again puts the input stage and thus
the amplifier in & normal operating mode.
Exceeding the positive common-mode limit on a single input
will not change the phase of the output; however, if both
inputs exceed the limit, the output of the amplifier will be
forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition.
When the negative common-mode voltage swings to within
3V of the negative supply, an increase in input offset voltage
may occur.
The TL081 is biased by a zener reference which allows normal circuit operation on ±4V power supplies. Supply voltages less than these may result in lower gain bandwidth and
slew rate.

resulting forward diode within the IC could cause fusing of
the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET
input op amps they do not require special handling.

Ii
.....

As with most amplifiers, care should be taken with lead
dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pick-up" and maximize the frequency of
the feedback pole by minimizing the capaCitance from the
input to ground.
A feedback pole is created when the feedback around any
amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected 3 dB frequency of the closed loop gain and
consequently there is negligible effect on stability margin.
However, if the feedback pole is less than approximately 6
times the expected 3 dB frequency a lead capaCitor should
be placed from the output to the input of the op amp. The
value of the added capacitor should be such that the RC
time constant of this capacitor and the resistance it parallels
is greater than or equal to the original feedback pole time
constant.

The TL081 will drive a 2 kG load resistance to ± 10V over
the full temperature range of O"C to + 70"C. If the amplifier
is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative
voltage swing and finally reach an active current limit on
both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the

Detailed Schematic
VCCO-----------~------------~--_1~----._----------------_,

•
Vos

ADJUST

TLlH/8358-8

1-967

....

...9

Typical Applications
Supply Current Indicator/Limiter

Hi-ZIN Inverting Amplifier
C2

RS

-

-;...-t----. ~~~:rs~~~~:El~TlON

VSUPPl YO-"'-I\Ni~...
IS

+

INI14

VD

RI

yy-

TLJH/8358-9
• VOUT switches high when Asls

> Vo

Tl/H/8358-10
Parasitic inpul cepecilance Cl '" (3 pF for TLOBI plus any addHlonai
layout capacilance) 1nterac1s with feedback elemenla and creales undesirable high frequency pole. To compensa1e, add C2 such I~
A2C2 '" A1CI.

Ultra-Low (or High) Duty Cycle Pulse
Generator
IN914

Rl

lNI14

R2

Long Time Integrator
y.
RESET
r
-

"'~~r---I\Ni~",-oOUTPUT

1

12

~,
IS
INTEGRATE
1/4lF13333 4

___ ,

2

y-

C*
y.

1M

I '2
VOUT = iii:
Y,N Dil

1M

f

'1
1M

y-

TUH/83S8-ll
4.8 - 2Vs
• IoUTPUT HIGH'" AIC £ n 4.8 - Vs
• IoUTPUTlOW '" A2C £ n 2Vs - 7.8
Vs - 7.8
where Vs

= V+ + lv-I

'low leakage capacitor

y-

TLJH/8358-12

• Low leakage capacitor
• SOk pot used for less sensitive Vas adjust

.------------------------------------------------------------------.~

i

t!lNational Semiconductor

N

TL082 Wide Bandwidth Dual
JFET Input Operational Amplifier
General Description

Features

These devices are low cost, high speed, dual JFET input
operational amplifiers with an internally trimmed input offset
voltage (BI.FET IITM technology). They require low supply
current yet maintain a large gain bandwidth product and fast
slew rate. In addition, well matched high voltage JFET input
devices provide very low input bias and offset currents. The
TL082 is pin compatible with the standard LM1558 allowing
designers to immediately upgrade the overall performance
of existing LM1558 and most LM358 designs.
These amplifiers may be used in applications such as high
speed integrators, fast 0/A converters, sample and hold
circuits and many other circuits requiring low input offset
voltage, low input bias current, high input impedance, high
slew rate and wide bandwidth. The devices also exhibit low
noise and offset voltage drift.

•
•
•
•
•
•
•
•
•

Typical Connection

Connection Diagram

Intemally trimmed offset voltage
Low input bias current
Low input noise voltage
Low input noise current
Wide gain bandwidth
High slew rate
Low supply current
High input impedance
Low total harmonic distortion Av = 10,
RL = 10k, Vo = 20 Vp - p,
BW = 20 Hz-20 kHz

15 mV
50 pA
16nV/yHz
0.D1 pAl yHz
4 MHz
13 V/fJ-S
3.6 mA
10120
<0.02%

50 Hz
2 fJ-s

• Low 1/f noise corner
• Fast settling time to 0.01 %

DIP/SO Package (Top View)

R,
OUTPUT>

R;

. . . . . . . r-_-

INVERTING INPUT A
NON.INVEATING
."'UTA

l

OUTPUTB

INVERTING INPUT I

V-~--"'"

i

NON.INVERTING
'NPUTB

Tl/H/8357 -3

·VEE
TlIH/8357-1

Order Number TL082CM or TL082CP
See NS Package Number M08A or N08E

Simplified SchematiC
VCC<>-----1~----.....~-__.

Vo

INTEANALLY
TFlI.ED

INTERNALLY
TAIMMED

-VEE <>--.....- -.....- - -.......~---I

1·969

TUH/8357-2

(!II

CD

...
9

Absolute Maximum Ratings

"

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±18V
Supply Voltage

Power Dissipation
Operating Temperature Range

Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration
Storage Temperature.Range
Lead Teinp. (Soldering, 10 seconds)
ESD rating to be, determined.

(Note 1)
O"C to ,+ 70"C

±30V
±15V
Continuous
-65°Cto +150"C
26O"C

150"C

Tj(MAX)

DC Electrical Characteristics (Note 4)
Symbol

Parameter

TL082C

Conditions
Min

Units

Typ

Max
15
20

Vos

Input Offset Voltage

Rs = 10 kO, TA = 25°C
Over Temperature

5

l:.voslt.T

Average TC of Input Offset
Voltage

Rs = 10kO

10

los

Input Offset Current

Tj = 25"C, (Notes 4, 5)
Tj:;;: 70"C

25

200
4,

pA
nA

18

Input Bias Current

Tj = 25"C, (Notes 4, 5)
Tj:;;: 70"C

50

400
8

pA
nA

mV
mV
p.VI"C

1012

0

10P

VlmV

RIN

Input Resistance

Ti = 25°C

AVOL

Large Signal Voltage Gain

Vs = ±15V, TA = 25°C
Vo= ±10V,RL=2kO
Over Temperature

25

Vo

Output Voltage Swing

Vs= ±15V,RL= 10kO

±12

±13.5

V

VCM

Input Common-Mode Voltage
Range

Vs = ±15V

± 11

+15
-12

V
V

CMRR

Common-Mode Rejection Ratio

Rs:;;: 10kO

70

100

dB

PSRR

Supply Voltage Rejection Ratio

(Note 6)

70

100

Is

Supply Current

15

V/mV

3.6

dB
5.6

mA

AC Electrical Characteristics (Note 4)
Symbol

Parameter

TL082C

Conditions
Min

Amplifier to Amplifier Coupling

TA = 25°C, f = 1Hz20 kHz (Input Referred)
8

Typ

Units
Max

-120

dB

13

V/p.s

SR

Slew Rate

Vs = ±15V, TA = 25"C

GBW

Gain Bandwidth Product

Vs = ±15V, TA = 25°C

4

MHz

en

Equivalent Input Noise Voltage

TA = 25°C, Rs = 1000,
f=1000Hz

25

nV/YHz

Tj .: 25°C, f = 1000 Hz
pA/yHz
Equivalent Input Noise Current
0.01
in
Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of t 15"CIW junction to ambient for the N package.
Note 2: Unless otherwiss specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation limit, however, cannot be exceeded.
Nota 4: These specifications apply for Vs ~ ±15V and O"C S;TA s; +70"C. Vos, ie and los are measured at VOM ~ O.
Note 5: The input bias currents are junction leakage currents which approximately double for every 1000C Increase In the junction temperature, TI' Due to the IImHed
production test time, the Input bles currents measured are oorrelated to junction temperature. In normal operation the junction temperature rises ebove the ambient
temperature as a result of internal power dissipation, Po. TI ~ TA + BjA Po where BjA Is the thermal resistance from junction to ambient. Uss of a heat sink Is
recommended if input bias current is to be kept to a minimum.
Note 6: Supply voltage rejection ratio is measured for both supply magnHudes increasing or decreasing simultaneously in acoordance with common practice.
Vs ~ ±6V to ±15V.
1-970

Typical Performance Characteristics
Input Bla8 Current
110

I

r- -

.- r-r-

10

!

41

.....

r-

~

)~

110

ii
~

~

7lre

25"C

T
O°C

/
o

o

10

15

o

21

i

I-18

•o

21

1&

,

48

10

21

40

3D

OUTPUT SOURCE CURRENT (lOA)

NEGAnVESUPPLY VOLTAGE (VI

Negative Current Limit
-15

l'

o

POSITIVE SUPPLY VOLTAGE (VI

Voltage Swing

Output Voltage Swing

31

RL -ft
r-YA _ 2&"C

1
..

~

i..

VS·,15V
TA'lrc

25

~

2D

w

~

..~
.
~

2&"C

>

-5

~

w

~'C

IrC

1&
10

/V

co

-I

•

o
20

31

40

o

OUT'UT SIN. CURRENT (lOA)

I

31
_

21

RL -ft
CL -11O,F-

"" r"

10

3.&

0.1

:s
~
co

r-...

.....
....

'Slew Rate
VS' '15V
RL =2k
CL 'l00pF

-10

-

50

X

....

TEMPERATURE (OCI

7.

!

~

IE <:
i $

.. ..iii

14

VS' ,1&V
RL -2k
AV-l

I
FALLING

RlsING-

13

r-

:II

-50

i

oJ

12

-100

-150

-30

3

15

101

.JJlSE
GAIN

10
RL - OUTPUT LOAD (kU)

-20 t-

.10103041

•

2D

150

-..

Ii

r--.

15

Bode Plot

V~"I~V

U

II

SUPPLY VOLTAGE ('VI

Gain Bandwidth

i

i"i

/

~

..

,,~

10

/

2

i
!

-

1&

/

liIi

Iz

25

Positive Current Limit

/

V

21

1&

....... Ih.

~

II

II

SUPPLY VOLTAGE ('V)

"'C~TAS.+1D'C

V

B~

I

o

~

II

V

V

2••

u

~

21

Wco
i!:>

~

V

Negative Common-Mode Input
Voltage Limit

I C$TA$+70"C

~

3.2

TEMPERATURE ('CI

20

~

ill..

81.2130<10&01071

Positive Common-Mode Input
Voltage Limit

~

3.•

10

1.

-&
CO. .ON"OOE VOLTAGE (VI

=~
.!

i

~
iii

io""

i

28

-10

.1=,=

1

1/

:I

o

I

II":S;TA:S;+7lrC

Vs' '15V

::

......

Supply Current

FV~:t

i

.1

ia
:_2

VS' '15VTA' 25 C

Input Bias Current
lk

. 10

0.1

FREQUENCY (MHzI

100

11
'10203148

....

70

TEMPERATURE (OCI

TUH/8357-4

1-971

•

Typical Performance Characteristics (Continued)
)

Distortion va Frequency
0.2

3D

Vs' '11V

0.175

I..

11

T~=25;C

0.15

co

~VO'2OVP'"
~
"I 1

it

.. 0.125
CI

;:: G.l
co
CI
t; 0.075
is
0.010

• 10.
'

i

VS='15V
RL =2.
TA'ZS'C
AV"
1,

10

Ii

~

100

CI

.0

ti

isco

=:

..

r-\-.J..

I;

I8

20

I~

VS"'5V
AL -2.
TA'25 C

Frvo '"
1

i
~ I.

VCM

10
40

40

f$

20

~

2k

I

"

I

100.

0
lID

lk

10k

''''

a3

!c

..
~
is
..
I

1M I,OM

i

Vs' '15Y

120

co 100
10

.......

~
......

10

TA'~5'C

'"I"'\...

10

110

lK

10k

r--..
1M

lH.

VS' '15V
TA,25 C

TA' "CTO <21'C

.

10

"

1

a

..-,:

~AV-IID

~
c

TA,7lrC

~

II

CI

>

~
"

Ii

..:r
~

CI

10K

10M

50

>

40
31
20

"
iil

11

10

•. 1

2G

~

Ii.

•

~
!:

~

10k

IIOk

FREDUENCY IH.)

1M

111M

III II
10mV

I

..•

IE

L

lk

10

II

CI

lDO

100

10k

lOOk

Inverter Settling Time
~

~v·,~ ~

I
AV'II

,.

0

FREDUENCY 1Hz)

D.Ol
SUPPLY VOLTAGE I'V)

~

i

CI

1&

7G

l-

,

1

10k 100. 1M 111M

10

Output Impedance

AL '210

10

~

!

lID

5

...

i

I,

0

~

I•

f'.

-SUPPLY,

20

lk

100

CI

+SUPPLY

"

411

Open Loop Voltage
Galn(V/V)

i!:i ,ooK ~ ~

10

Equivalent Input Noise
Voltage

FREDUENCY 1Hz)

1M

C

\.
1

FREDUENCY 1Hz)

140

FREDUENCY IH.)

....~

I\.

1M

Power Supply Rejection
Ratio

co

CMRR'IO LOG yVO < OPEILOOP
CM
VOL JAGE JAIN 1
1 1
10

\.

FREDUENCY 1Hz)

Common-Mode Rejection
Ratio

•

CI

'\..

0
10k

100.

10k

10
BD

0
100

RL =210
VS' '1IV~
TA'2S'C

III

!:;
CI
>

·

"

FREOUENCY IH.)

120

C

~

CI

10

a

.... - "- '\..
..

I

.

1\

~

0

121

c

I-

AY"0:/

0.025

:5
CI
;::

Open Loop ~recil!ency
Response

UndlBtorted Output
Voltage Swing

-S

-10
1.1

'(f

Ya'"IV
TA'ZI'C

,"IV

,"'V
10llV

~\

\,

1

10

SEnLiNG TIME "',)
TUH/8357-5

1-972

Pulse Response
Small Signal Inverting

Small Signal Non-Inverting

...

...'"~
CI

...
e:=>=>

>

CI

TIME (0.2 JJs/DIV)

TIME (0.2 jJs/DIV)

TLlH/8357-7

TLlH/8357 -6

Large Signal Non-Inverting

Large Signal Inverting

'"z
ii...
...'"<...

...

...'"~

CI

CI

...>=>
e:=>

...>=>

......
=>
CI

CI

TIME (2 jJslDIV)

TIME (2 JJs/DIV)
TLlH/8357 -8

TL/H/8357 -9

Current Limit (RL = 1000)

:;
is

">

'"z

ii...
...'"~
CI

...>=>
e:=>
CI

TL/H/8357-10

Application Hints
These devices are op amps with an internally trimmed input
offset voltage and JFET input devices (BI-FET II). These
JFETs have large reverse breakdown voltages from gate to
source and drain eliminating the need for clamps across the
inputs. Therefore, large differential input voltages can easily
be accommodated without a large increase in input current.
The maximum differential input voltage is independent of
the supply voltages. However, neither of the input voltages

should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed
unit.
Exceeding the negative common-mode limit on either input
will cause a reversal of the phase to the output and force
the amplifier output to the corresponding high or low state.
Exceeding the negative common-mode limit on both inputs
will force the amplifier output to a high state. In neither case

1-973

Application Hints (Continued)
does a latch occur since raising the input back within the
common-mode range again puts the input· stage and thus
the amplifier in a normal.operating mode.
Exceeding the positivecomrTion-mode limit on a single input
will not change the phase of the output; however, if both
inputs exceed. the limit, the output of theamplifief .will be
forced to a hig!"! state.
'
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition.
When the negative common-mode voltage swings to within
3V of the negative supply, an increase in input offset voltage
may occur.
Each amplifier is individually biased by a zener reference
which allows normal.circuit operation on ±6V power supplies. Supply voltages less than these may result in lower
gain bandwidth and slew rate.
The amplifiers will drive a 2 kO load resistance to ± 1OV
over the full temperature range of O"C to + 70"C. If the amplifier is forced to drive heavier load currents, however, an
increase in input offset .voltage may occur on the negative
voltage swing and· finally reach an active current limit on
both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or thatthe.unit is not inadvertently installed backwards

in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result In a destroyed unit.
Because these amplifiers are JFET rather than MOSFET
input op amps they do not require special handling.
As with mOst amplifiers, .care should be taken with lead
dress, 'component placement and supply deC()upling in order to ensure stability. For example, resistors from the output to an input should be placed with thE! body close to the
input to minimize "pick-up" and r'naximize the frequency of
the feedback pole by minimizing the capacitance from the
input to ground.
'
A feedback Pole is created when the feedback around any
amplifier Is resistive. The parallel resistance and. capacitance from the input·of the device (usually the inverting input) to AC ground set the frequency of the pole. In many
instances the frequency of this pole is much greater than
the expected 3 dB frequency of the closed loop gain and
consequently there is negligible effect on stability margin.
However, if the feedback pole is less than approximately 6
times the elCpllcted 3 dB frequency a lead capacitor should
be placed from,the output to the input of the op amp. The
value of the added capacitor should ,be such that the RC
time constant of this capacitor and the resistance it parallels
is greater than or equal to the original fe9dback pole time
.
constant.

Detailed Schematic

..~----------~----~

VCCQ-----------~t_------------~~--~------

Vo

..--_t----t_~~--~~--~--------~~--~

-VEEo---~----~----e_--------

TlIH/8357-11

1-974

r--------------------------------------------------------------------------,

~

i

Typical Applications

~

Three-Band Active Tone Control
BDDST~

CUT

BASS
11k

3.6.

Uk

>~",,"",ODUT

TUH/8357-12

+20

I 111111

(m4

~

.... (NDTE2)

+15
+10

iii

+5

llYll

~lrrJi\

fI'

:s

..
'"

11111 U

....

z

-5

"

-10
-15
-20

~Dfi~1

/

1'~5
10

100

lk

11111
10k

lOOk

FREQUENCY (Hz)
Note 1: All controls Iial.
Note 2: Bass and treble

boost. mid flal.

Note 3: Bass and treble cut, mid flal.
Note 4: Mid boost, bass and treble Iial.
Note 5: Mid cut, bass and treble Ilat.
• All potentiometers are linear taper
• Use the LF347 Quad lor stereo applications

1-975

TLlH/8357-13

~
I

Typical Applications (Continued)
Improved CMRR Instrumentation Amplifier
Vs

(+Ic>ff----t+=f

Vo

Hot-+--+lH
vs

Vs'

l

-Vs

l

-

-

h h
!

!

-·s

-VS'

SEPARATE

TUH/8357-14

AV'= (~+
1)~
R1
R4
m and ... are separate isolated grounds
Matching of R2's, R4's and RS's control CMRR

= 1400, resistor matching = 0,01 %: CMRR = 136 dB
° Very high input impedance

With AVT

° Super high CMRR
Fourth Order Low Pass Butterworth Filter
c

D.ol

R3
11k

-IIV

R4
lOOk
R3'

m

-fiV

R4'

lOOk

TUH/8357-15

~

1

,.,--

1

° Comer frequency (fcl = VR1R2CCi°i; = ,,~0i;
° Passband gain (HoI = (1 +

R4/R31 (1

+ R4'/R3'1

° First stage Q = 1.31
° Second stage Q =

0.541

° ClrcuH shown uses nesrest S% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
o Offset nulling n9C9SSBry lor accurate DC performance

1-976

....

i

Typical Applications (Continued)

N

Fourth Order High Paaa Butterworth Filter
Rl
200>

RI'
14Dk

VINo-f
C

0.001

"'>..:.....-oVDUT
R3
21Gk

R3'

21111k

TUH/8357-16

~1~1
• Comer frequency (fel ~ VR1Fi2C2· 21T ~ V~· 21T
• Passband gain (Ho) ~ (1

+

R4/R3) (1

+

R4'/R3')

• First stage Q ~ 1.31
• Second stage Q ~ 0.541
• Circuit shown uses closest 5% tolerance resistor values for a flltar with a corner frequency of 1 kHz and a passband gain of 10

Ohma to Volta Converter

10M

"OUT"'V
FUll SCALE

1....-_....

-o.15V

Vo ~ _1_V_ x Rx
RLADDER
Whera RLADDER Is the resistance from switch 51 pele to pin 7 of the TL082CP.

1-977

TUH/8367 -17

Section 2
Buffers

Section 2 Contents
Buffers Definition of Terms ..........................................................
Buffers Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0002 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0033/LH0063 Fast and Ultra Fast Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH4001 Wideband Current Buffer ...................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH4002 Wideband Video Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM102/LM302 Voltage Followers....................................................
LM11 O/LM21 O/LM31 0 Voltage Followers ...................•.........................
LM6121/LM6221/LM6321 High Speed Buffers .........................................
LM6125/LM6225/LM6325 High Speed Buffers .... ~... .......... ......................

2-2

2-3
2-4
2-5
2-8
2-19
2-23
2-27
2-33
2-46
2-52

(fINational Semiconductor

Buffers
Definition of Terms
Bandwidth: That frequency at which the voltage gain is reduced to 1/,f2 times the low frequency value.

Output Resistance: The small Signal resistance seen at the
output with the. output voltage near zero.

Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the
root-mean-square (rms) sum of the harmonics to the fundamental.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

% harmonic
(V22
distortion =

Offset Voltage Temperature Drift: The average drift rate
of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

+ V32 + V42 + ... )1/2 (100%)
V1

Power Supply ReJection: The ratio of the change in input
offset voltage to the change in power supply voltages producing it.

where V1 is the rms amplitude of the fundamental and V2,
V3, V4, ... are the rms amplitudes of the indMdual harmonics.

Settling Time: The time between the initiation of the input
step function and the time when the output voltage has settled to within a specified error band of the final output volt-

Input Impedance: The ratio of input voltage to input current
under the stated conditions for source resistance (Rs) and
load resistance (RLl.

age.
Slew Rate: The internally-limited rate of change in output
voltage with a large-amplitude step function applied to the
input.

Input Offset Voltage: That voltage which must be applied
to the input terminal to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage
to the change in input current.

Supply Current: The current required from the power supply to operate the buffer with no load and the output midway
between the supplies.

Input Voltage Range: The range of voltages on the input
terminal for which the buffer operates within specifications.

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.

Large-slgnal Voltage Gain: The ratio of the output voltage
swing to the change in input voltage.

Voltage Gain: The ratio of output voltage to input voltage
under the stated conditions for source resistance (Rs) and
load resistance (RLl.

Output Impedance: The ratio of change in output voltage
to output current under the stated conditions.

2-3

til

~ I.

National Semiconductor

•

Buffer Selection Guide (Notes 1 and 2)

Device
Type

Key Features
,

Slew Rate Bandwidth Gain
(Vlp-s) -3 dB (MHz) (Av)

Output
(V,mA)

Full Power BW
(MHz @Vpp, Ru

Test
Conditions

LH0063

FET Input, Very Fast

2400

200

0.93

±13, ±260

40@20,50

RL = 50, Vs = '±15V

LH0033

FET Input, High Speed

1500

100

0.98

±9, ±90

24@20,1k

RL = 1k, Vs = ±15V

LH4002

Wideband Video ,Buffer

1250

200

0.97

±2.2, ±44

100@4,50

RL = 50, Vs = ±5V

1'200

LH2003/2033

Wideb~nd Video' Buffer

100

0.9

±11.3, ±113

2@20,100

RL= 1k,50,Vs= ±15

LM6121/6125

High Speed VIPTM Buffer

80Q

50

0.90

±12, ±240

10.6 @12, 50

RL = 50, Vs = ±15V

LH0002

Medium Speed

200

30

0.97

±10,±100

3@20,1k

RL = 1k, Vs = ±12V

LH4001

Low Gost LHOO02

125

25

0.97

±10, ±100

4@ 10,100

RL = 100, Vs = ±12V

30

20

0.9999

±10,±10

0.5@ 20, 10k

RL = 10k, Vs = ±15V

LM110, 210, 310 Voltage Follower

Note 1: Datasheet should be referred to for te.rt conditions and more detailed Information.
Note 2: 200'C T~mp Range Parts are available., Cons~.1t local sales office for information.

"

,I

2·4

,:'

r-----------------------------------------------------------------------~ ~

:::c

8

t;tINational Semiconductor

C)

N

LH0002 Buffer
General Description

Features

The LH0002 is a general purpose buffer. Its features make it
ideal to integrate with operational amplifiers inside a closed
loop configuration to increase current output. The symmetrical output portion of the circuit also provides a low output
impedance for both the positive and negative slopes of output pulses.
The LH0002 is available in an 8-lead TO-99 can. The
LH0002C is available in an 8-lead T0-99, and a 10-pin
molded dual-in-line package.
The LH0002 is specified for operation over the - 55"C to
+ 125°C military temperature range. The LHOOO2C is specified for operation over the OOC to + 85°C temperature range.

•
•
•
•

•
•
•
•
•

400 kO
High input impedance
60
Low output impedance
High power efficiency
Low harmonic distortion
DC to 30 MHz bandwidth
Output voltage Swing that approaches supply voltage
400 mA pulsed output current
Slew rate is typically 200 VI IJ-s
Operation from ± 5V to ± 20V

Applications
• Line driver
• 30 MHz buffer
• High speed 01 A conversion

Schematic and Connection Diagrams
Dual-In-Line Package

VI·

1(2)
V2•
VI·
INPUT

EI (10) --'-"--1-1

VIV2-

EI

3

8

<4

7

5

E3
OUTPUT
E4

~
TLlH/5560-2

Order Number LHOOO2CN
See NS Package Number N10A

INPUT 8(3)

5(7) E4

Metal Can Package

~(6)-~H--f

INPUT

TLlH/5S60-1

Pin numbers In parentheses denote pin
connections for dual·in-line peckage.

OUTPUT

Order Number LH0002H,
LH0002H-MIL or LH0002CH
LHOOO2H/883*
see NS Package Number HOOD

• Available per SMD "7801301

2-5

TL/H/5560-3

~

I

Absolute Maximum Ratings

Operating Ratings (Note 3)

(Note 3)

Temperature Range
LHOO02
LH0002C

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 2)

Input Voltage

Thermal Resistance (Note 5)
6JA, H Package
6JC, H Package
6JA, N Package

±22V

Supply Voltage
Power Dissipation (Note 4)

600mW
(Equal to Power Supply Voltage)

Storage Temperature Range

-65·Cto + 150"C

Junction Temperature
N Package
H Package
steady State Output Current

+ 150"C
.+ 175·C

-55"Cto + 125"C
O"Cto +85·C
+ 125·C/W
+ 75·C/W
+ 120"C/W

±100rnA

Pulsed Output Current (50 ms On/1

sec. Off)

±400rnA

Lead Temperature Soldering (10 seconds)
Metal Can
Plastic
ESD Rating (Note 6)

300"C
26Q"C
2kV

Electrical Characteristics (Note 1)
Parsmeter
Voltage Gain

Conditions

Min

Typ

= 10kO, RL = 1.0 kO, VIN = ±10V
Rs = 200 kO, VIN = ± 1.0V, RL = 1.0 kO
VIN = ±1.0V, RL = 500, Rs = 10 kO
RL = 1:0 kO, VIN = ± 12V
Vs = ±15V, VIN = ±12V, Rs = 500, RL = 1000, TA = 25·C
RS = 3000, RL = 1.0 kO
Rs = 1.0 kO, RL = 1.0 kO
VIN = 5.0 Vrms, f = 1.0 kHz
RL = 500, aVIN = 100 mV
RS = 10 kO, RL = 1.0 kO
Rs = 10 kO; RL = 1.0 kO

0.95

0.97

180

400

Rs

Input Impedance
Output Impedance
Output Voltage Swing
Output Voltage Swing .
DC Output Offset Voltage
DC Input Bias Current
Harmonic Distortion
Rise Time
Positive Supply Current
Negative Supply Current

6.0
±10

Max

Units

kO
10

±11

0
V

±10

V
±10

±30

mV

±8.0

±10

JlA

7.0

12

ns

+6.0

+10

mA

-8.0

-10

mA

0.1

%

Note 1: Specfficatton applies for TA - 25"C with + 12V on Pins 1 and 2; -12V on Pins 6 and 7 for the metal can package and + 12V on Pins 1 and 2; -12V on
Pins 4 and 5 for the duaf.in-Une package. unless otherwise specified. The parameter guarantees for LHOOO2C apply over the temperature range of O'C to + 85'C.
while perameters for the L\iOOO2 are guaranm,d over the temperature range -55"C to + 125"C unless otherwise specified.
Note 2: Refer to RETSOOO2X ;.,... LHOOO2 miHIary specHicaHons.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings Indicate conditions for which the device Is
intended to be functional. but do not guarantee speciflc performance limits. For guaranteed spaciflcations and test conditions. see the Electrical Characteristics.
The guaranteed specifications apply only for the test conditions listed.
Note 4: The maximum power dissipation js·a functipn of maximum junction temperature (TJMaxl. totsIthermai resistance (9JAl. and ambient temperature (TAJ. The
maximum allowable power dissipation M any ambient is Po - (TJMax - TAJ/9JA.
Note 5: For operating at elevated temperatur.... the device must be derated based on the thermal resistence 9JA and TJMax. TJ = TA + P09JA.
Note 6: Human body model. 1.5 kn in series With 100 pF.

'.'

2-6

r-

::::J:

g

Typical Applications

N

High Current Operational Amplifier

RI
I.rUT -~..,.,..-=tOUTPUT

TUH/S560-4

LIne DrIver
SELECT CAPACITOR TO ADJUST
r-_tt_.,TIME RESPONSE OF PULSE.

Y..
iIOLOIID

'Previously called NHOOO2/NHOOO2C

TUH/5560-S

Typical Performance Characteristics
Input Impedance
(Magnitude" Phase)

Frequency Responae

,, ,, -.l 11.'- --

1.1

VHf-1 V,_RL -110,.

T.' II"C

v.-'" -241
:I
/,11. -1'

'DOD

1,- ... I

~ PIIAS

./
'.0

I.D

2.1

zu

11.1

R.-lIkn

11

a

I

I.'

Positive Pulse

U

L

~ ...

If

~ 3.0

r-

=2.'
co

e

~

1.•

~

0

OUTPUT \

I

,

\

Ii
a

o

•

5

Negative Pulse
lis -±1ZV
R,.' R,-SIIO
T.-ZI'C

!!!u - INP~T

fl

......

V. "±1ZV
RLaR.-SIIl
T.· Z5"C

..• -

-

-Z.D

~

~

7~UT~UT
_

0'111

TIME I""

ZI

o

.11

I.D

&0

'5.0

SUPPLY VOLTAOE I1VI

fII

Input Bias Current

18'III.ZO

TIME Insl

~

",

~~
~ ~ ~ ~ TA -12S·e
~ c,....-

TA"-H·C~

If

,V

II
48

./

.,. 2.0

II

INPUT

\
o

~

. /i-""'"

T.-ZS"C_~ ~

-3.0
-4.0

I

./

4.•

•

I

-5.0

ZO 48 18

'0

i..

:I:1"' ............ t - - -

-55"Cto'II"C

FREQUENCY IMH.I

FREDUE_CY (MH.I

~

~

-20

O.Z

T.-II"C·l

~ I.'
5Ii I..

......
./'

'/

111.1 I.

'Z.O

'D.D L......

]'jo.

,

oJ

1.1

~lIIl.v'-"Z.IV

"III'
-II
.111 No'T.

:t:1Z.oV_

Supply Current
-.00

~,UV••.JJll

o

•

I

•

10

12

••

16

..

20

sum vVOL TAGE IXVI
TUH/5560-7

2-7

g r----------------------------------------------------------------------------,
~

3 IfINational Semiconductor
~

8

3 LH0033/LH0063

Fast and Ultra Fast Buffers

General Description
LH0063C are specified from - 25·C to + 85·C. The LH0033
is available in either a 1.5W metal TO-8 package or an 8-pin
ceramic dual-in-line package. The LH0063 is available in a
5W 8-pin TO-3 package.

The LHOO33 and LH0063 are high speed, FET input, voltage
followerIbuffers designed to provide high current drive at
frequencies from DC to over 100 MHz. The LH0033 will
provide ± 10 mA into 1 kO loads (± 100 mA peak) at slew
rates of 1500VI p.s. The LH0063 will provide ± 250 mA into
500 loads (± 500 mA peak) at slew rates up to 6000VI p.s.
In addition, both exhibit excellent phase linearity up to
20 MHz.
Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance
transformation, nuclear instrumentation amplifiers, op amp
isolation buffers for driving reactive loads and high impedance input buffers for high speed A to Ds and comparators.
In addition, the LH0063 can continuously drive 500 coaxial
cables or be used as a yoke driver for high resolution CRT
displays. For additional applications information, see AN-48.
These devices are constructed using specially selected
junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033 is specified
for operation from - 55·C to + 125·C; the LH0033C and the

Features
•
•
•
•
•
•
•

Ultra fast (LH0063): 6000 VI p's
.Wide range single or dual supply operation
Wide power bandwidth: DC to 100 MHz
High output drive: ± 10V with 500 load
Low phase non-linearity: 2 degrees
Fast rise times: 2 ns
High input resistance: 10100

Advantages
• Only 10V supply needed for 5 Vp-p video out
• Speed does not degrade system performance
• Wide data rate range for phase encoded systems

Connection Diagrams
LHOO33G
Metal Can Package

LHOO33J
Dual-In-Llne Package

NC

IllPUT~+--..,

Y+

OffSET
PRESET
OFFSET
ADJUST

OUTPUT

Vc+

-.;+-----'

Y-

TOPYIEW
TLlK/5507 -2

Order Number LH0033J or LH0033CJ
-See NS Package Number HY08A
TOP VIEW

LH0063K
Metal Can Package

TLlK/5507 -1

Case Is electrically isolated

Ve-

Order Number LHOO33G, LHOO33G-MIL
orLH0033CG
See NS Package Number G12B

Y•.

y+

.......__• ___--.DFfIfI

ADJUST

OUTPUT

OFFSET

PRESET
TL/K/5507-3

Top VI_
Case is electrically Isolated

Order Number LHOO63CK
See NS Package Number K08A
2-8

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (V+ -V-)
40V
Power Dissipation (See Curves)
LH0063C
LH0033/LH0033C
Junction Temperature
Input Voltage
Continuous Output Current
LH0063C
LH0033/LH0033C

Peak Output Current
LHOO63C
LH0033/LH0033C
Lead Temp. (Soldering, 10 seconds)

±500mA
±250mA
300"C

Operating Temperature Range

5W
2.2W
175'C

LH0033

- 55'C to

±Vs

+ 125'C

- 25'C to + 85'C
-65' to + 150"C

LH0033C and LH0063C
Storage Temperature Range
ESD rating to be determined.

±250mA
±100mA

DC Electrical Characteristics Vs = ± 15V, TMIN ~TA ~TMAX, unless otherwise specified, (Note 1)
Parameter

LHOO33

Conditions
Min

LHOO33C

Typ

Max

Rs=1000,TJ=25'C,
VIN=OV (Note 2)
Rs=1000

5.0

10

Average
Temperature
Coefficient of
Offset Voltage

Rs=1000, VIN=OV
(Note 3)

50

Input Bias
Current

VIN=OV
TJ = 25'C (Note 2)
TA = 25'C (Note 4)
TJ=TA=TMAX
VO= ±10V,
Rs=1000,
RL=1.0kO

Output Offset
Voltage

Voltage Gain

Min

Max

12

20

15
100

50

250
2.5
10
0.97

0.98

1010

1011

1.00

Units

Typ

0.96

0.98

1010

1011

mV

25

mV

100

p.VI'C

500
5.0
20

pA
nA
nA

1.00

VIV

Input
Impedance

RL=1 kO

Output
Impedance

VIN= ±1.0V,
RL = 1.0k

Output
Voltage Swing

VI= ± 14V, RL = 1.0k
VI= ±10.5V,
RL =1000, TA=25'C

Supply Current

VIN=OV (Note 5)

20

22

21

24

mA

Power Consumption

VIN=OV

600

660

630

720

mW

6.0

10

±12

6.0

0
10

±12

±9.0

0
V

±9.0

V

AC Electrical Characteristics TJ=25'C, Vs= ±15V, Rs=500, RL=1.0 KO (Note 6)
Parameter

LHOO33

Conditions
Min

Typ

1000

1500

LHOO33C
Max

Min

Typ

1000

1400

Units
Max

Slew Rate

VIN= ±10V

Bandwidth

VIN = 1.0 Vrms
BW=1.0Hzt020 MHz

100

100

VllJos
MHz

2.0

2.0

degrees

Rise Time

aVIN=0.5V

2.9

3.2

ns

Propagation Delay

aVIN= 0.5V
f>1 kHz

1.2

1.5

ns

<0.1

<0.1

%

Phase Non-Linearity

Harmonic Distortion

Note 1: LH0033 is 100% production tested as specified at 25" C. 125"C, and-55'C. LH0033AC/C are 100% production tested at25"C only. Specifications at
temperature extremes ere verified by sample testing, but these limtted are not used 10 calculate outgoing quality level.
Note 2: Specification is at 25'C iunction temperature due 10 requirements of high speed automatic testing. Actual values at operating temperature will exceed the
value at TJ ~ 25'C. When supply voltages are ± t5V, no-load operating JunctiOn temperature may rise 40·60"C above ambient, and more under Iced conditions.
Accordingly, Vos may change one 10 several mV, and Ie will change significantiy during warm·up. Refer to Ie VB temperature graph for expected values.
Note 3: LH0033 is t 00% productiOn tested for this parameter. LH0033C is sample tested only. LlmttB are not used 10 calculate outgoing quality levels. IJ.VosllJ.T Is
the average value calculated from measurements at 25"C and TMAX.
Note 4: Measured in still air 7 minutes after application of power. Guaranteed through correlated automatic pulse testing.
Note 5: Guaranteed through correlated aulOmatic pulse _ng at T J = 25"C.
Note 8: Not 100% production tested; verified by sample testing only. UmttB are not used 10 calculate outgoing qualtiy level.
Note 7: Reter 10 RETSOO33 for the LH0033G mllttary specifications.
2-9

fII

DC Electrical Characteristics Vs= ±15V, TMIN~TA~TMAXunlessotherwisespecified (Note 1)
"

Parameter

LHOO63C

Conditions
Min

Output Offset Voltage

Rs ~ 1OOkO, TJ = 25"C, RL = 1000 (Note 2)

Average Temperature
Coefficient of Output
Offset Voltage

Rs~100kO

Input Bias Current

TJ = 25°C (Note 2)

Units

Typ

Max

10

50
100

300

mV
mV
p.VI"C

10

30

nA

100

nA

Voltage Gain

VIN= ±10V, Rs~100 k~, RL =1 kO

0.94

0.96

1.0

V/V'

Voltage Gain

VIN= ±10V, Rs~100 kO, RL ",,500
TJ = 25°C

0.91

0.93

0.98

VIV

Input CapaCitance

Case Shorted to Output

8.0

Output Impedance

VOUT= ±10V, Rs~100 kO, RL =500

1.0

Output Current Swing

VIN= ±10V, RS~100 kO

0.2

0.25

pF
4.0

0
A

Output Voltage Swing

RL=500

±10

±13

V

Output Voltage Swing

VS= ±5.0V, RL =500, TJ = 25°C

5.09

7.0

Vp-p

Supply Current

TJ=25°C, RL =

Supply Current

Vs=±5.0V

Power Consumption

TJ=25~C,

Power Consumption

VS=±5.0V

RL =

00,

Vs= ± 15V

65

50

40
00,

Vs= ± 15V

1.5

rnA
rnA

1.95

400

W
mW

AC Electrical Characteristics TJ = 25°C, Vs= ±15V, Rs=500, RL =500 (Note 3)
Parameter

LHOO63C

Conditions
Min

Slew Rate

RL =1.0 k~, VIN= ±10V

Typ

Units
Max

6000

V/p.S

2400

V/p.s

Slew Rate

RL =500, VIN= ±10V, TJ=25"C

Bandwidth

VIN = 1.0 Vrms

200

MHz

Phase Non-Linearity

BW=1.0 Hz to 20 MHz

2.0

degrees

Rise Time

AVIN=0.5V

1.9

ns

AVIN=0.5V

2.1

ns

<0.1

%

Propagation Delay
Harmonic Distortion

2000

Note 1: LI:i0063C is 100% prodUction tested at 25"C only. Spec~ications at temperature extremes,are verified by sample testing, but these limits are not used to
calculate outgoing quality level.
Note 2: Spe~lcaUon Is at 25"C luncUon tempereture due to requirements of high spiled automatic testing. Actual values at operating temperalUre will exoeed the
value at TJ=25"C. When supply voltages are ± 15V, no-load operating junction temperature may rise 4O-6O'C above ambient, and more under load conditIOns.
Accordingly, Vos may change one to sevaral mV, and Ie will change signHicantly during warm-up. Refer to Ie VB temperature graph for expected values.
Note 3: Not 100% producttOn tested; velilied by sample testing only. Limits are not used to calculate outgOing quality level.

,

.'
2-10

Typical Performance Characteristics
LH0033 Power Dissipation

...-

"-

2.0

,

i'

i

1.5

~

1.0

:g

0.5

o

I

&

I

CASE_

I'

"-

........

~

!100
:::0

.......

75 100 125 150
TEMPERATURE ('C)

o

25

50

75

~-100

'"

........

50

co_ 200

LH0033 Supply Current vs
Supply Voltage

-"

LH0063 Supply Current vs
Supply Voltage

:!:!.

I-+-+-~~~r--I

20

LHOO33 Output Voltage vs

119

i

..
~

_

15

55

~~-t--+--+--t-4

iiJ

__~~__~~

10

r2~~~+--+--t-4

E

!!; 18 bfi~-t--+--+--t---I

5

80

~

I-#-"""'''''''-I.::--''i-''';''''t---i

17L--L~

;;
:!:!.

i

co

-~=1~

20

5

LH0063 Output Voltage vs
Supply Voltage
18

;;
+I

!

Ii!

~

co

1II.=5OD
Rs=lk
±VtN= ±V8
Tc=25'C

14

,

12
10

./
./

&

~

10
15
SUPPLY VOLTAGE (±V)

-2
-4

8
&

~

/

10

E

i

!i
i5

co

l

~ -10

~

a!

20

12

r-

40

'--~I=±15V

;;
~ 1.0

~

0.1

i!!

0.&

§!

0.,

!:i

Av

30

20

INPUT"

"OUTPU7

2
0

i,
I

1.0

2.0

01020304050&0
TIME (••)

:!:!.

-

2
0

1\=500
1\=1

~

-4
co -6

-8
-10

o
-50

4

!:i

i -2

I,

100

8
6

...

I

/.: -

5.0 10.0 20.0 50
FREOUENCY (MHz)

Vs=±I5V
Tc=25'C

18

io-" ~

~

LH0063 Large Signal Pulse
12 Response

;;

..... p"'"

r--

4

80

Vs-±I5V
R8=500
RL=1 k

I(
~

50

LH0033 Rise and Fall Time
vs Temperature
8.0

r

0.2

40

Vs=±ln
1\=1 kO.Rs=IOD
Tc= +2I'C

10

TIME(ns)

LHOO33 Frequency
Response
Rs=500
-RL=11;';""--1r--- OUlPUT

OPERATION WITHIN AN OP AMP LOOP
Both devices may be used as a current booster or isolation
buffer within a closed loop with op amps such as LM6218,
LM6361 or LH0032. An isolation resistor of 470 should be
used between the op amp output and the input of LH0033.
The wide bandwidths and high slew rates of the LH0033
and LH0063 assure that the loop has the characteristics of
the op amp and that additional rolloff is not required.

0.01 ,,1

HARDWARE
In order to utilize the full drive capabilities of both devices,
each should be mounted with a heat sink particularly for
extended temperature operation. The cases of both are isolated from the circuit and may be connected to the system
chassis.

- ...-_---15V
TLIK/5507-10

FIGURE 5. LH0033 Current Limiting
Using Current SOurces

DESIGN PRECAUTION
Power supply bypassing is necessary to prevent oscillation
with both the LH0033 and LHOO.63 in all circuits. Low inductance ceramic disc capacitors with the shortest practical
lead lengths must be connected from each supply lead
(within <% to Yz" of the device package) to a ground
plane. Capacitors should be one or two 0.1 ,...F in parallel for
the LH0033; adding a 4.7 ,...F solid tantalum capacitor will
help in troublesome instances. For the LH0063, two 0.1 ,...F
ceramic and one 4.7 ,...F solid tantalum capacitors in parallel
will be necessary o.n each supply lead.

TLlKf5507-11

FIGURE 6. LHOO63 Curreot limiting
Using Current SOurces
2-14

Schematic Diagrams
LH0033/LHOO33A

LH0063
2 V·

...

12

V"

1

~

r----------.----.-------~,

') NORMALLY

INl'UT

SHORTED

1

" NORMALLY
~I SHORTED

Vc"

9

8 Vc-

...

Vc-

"I

~ NORMALLY

" NORMALLY
SHORTED

7

10 .,
V-

6

\

......

~

I

SHORTED

V_

I

NORMAllY
SHORTED

TUK/55D7-12

TL/K/55D7-13
Pin numbers shown for TQ.8 ("G" package.

Typical Applications
High Speed Automatic Test Equipment
Forcing Function Generator
~E~o---t---~-~-----------,

V+o-~~~~

COc,:'T~={
INPUT

TEST
MTTERN

__---------,

------

~-:f~)--~>o..JLj
.~

TUK/55D7-14

2-15

~

:8
C)

:5
.....

r---------------------------------------------------------------------------------,
Typical Applications (Continued)
Gamma Ray Pulse Integrator

~

g

+15V

:5
50

SCINtiLLATION

PHCI11IMULTIPUER
TUBE

TLlK/5507 -15

Nuclear Particle Detector

Ilea'

High Input Impedance AC Coupled Amplifier
V+

150V

PARTICLE

.'~

. - - -....--+15V

OUTPUT

0.1,.,'
L-",---15V

1M

fH~100MHz

TLlK/5507-16

TL/K/5507 -17

2-16

!i

Typical Applications (Continued)

8w

Isolation Buffer

w
.....
r-

Coaxial Cable Driver

:::c

OVERALL FEEDBACK

8
at

+15V

W

51
INPUT -/lAo"","...

>:.g.......jlh

OUTPUT
5011

REACTIVE
C LOAD
-15V
TUK/5507 -19

-'5V

":'
TLlK/5507-'8

Coaxial Cable Driver
V+

INPUT -/IAoI\rO"'I
5011

VTL/K/5507-20

'Selec1 Cl for optimum pulse response

High Input Impedance Comparator
with Offset Adjust

Instrumentation Shield/Line Driver

V·

V·

51
INPUT-........M-~

No go-logic "'"
Go-logic "0"

OffSET
ADJUST

V-

Vu.

VTL/Kl5507 -21

2·17

VTUK/5507 -22

•

~

g

:s

r---------------------------------------------------------------------------------,
Typical Applications (Continued)
1W CW Final Amplifier

r - - -....-+ 3DV

~
~

g

:s

2M

TLlK/5507-23

Single Supply AC Amplifier

4.5 MHz Notch Filter

Vcc=12.OV
y+

OUTPUT
1
fO=21TR1Cl
Rl=2R2

TL/K/5507-24

HI

HI

22011

22l1li

y-

Cl=~

2
TL/K/5507-25

High Speed Sample and Hold

y+

ANALOG

OUTPUT

INPUT

y-

y5.0Y

r

..l!2

'Polycarbonate or TeflonTM

LOGIC~--r""",

INPUT ....;;..r--......J

L~ - - 14
1/20Hoo34

Y-

TL/K/5507 -26

2·18

,-------------------------------------------------------------------------,r
:c

8
.....

tflNational Semiconductor

LH4001 Wide band Current Buffer
General Description

Features

The LH4001 is a high speed unity gain buffer designed to
provide high current drive capability at frequencies from DC
to over 25 MHz. It is capable of providing a continuous output current of ± 100 mA and a peak of ± 200 mAo
The LH4001 is designed to fulfill a wide range of applications such as impedance transformation. high impedance
input buffers for AID converters and comparators. as well
as high speed line drivers. It is also suitable for use in current booster applications within an op amp loop. This allows
the output current capability of existing op amps to be increased to ± 100 mA.

•
•
•
•
•

DC to 25 MHz bandwidth
125 V/",s slew rate
Drives ± 10V into 50n
Operates from ± 5 to ± 20V supplies
Output swing approaches supply voltage

Applications
•
•
•
•

Boost op amp output
Buffer amplifiers
Isolate capacitive loads
Drive long cables

Typical Applications and Connection Diagram

!!tOAD

TLlK/8628-1

Dual-In-Llne Package
10(NOTE)
9 (NOTE)
8 VOUT

7 (NOTE)

6 (NOTE)
TLlK/8628-2

Top View
'Note: Electrically connected In,,!rnally. No connection should be made to these pins.

Order Number LH4001CN
See NS Package Number N10A

2-19

..-

8

3

Absolute Maximum Ratings

,

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage, Vs
±22V
Continuous Output Current, '10
± 100' mA
Peak Output Current, 10(Peak)
(50 ms On/1 Sec Off)
±200mA
Input Voltage Range, VIN
±Vs
Power Dissipation
500mW

Storage Temperature Range, TSTG
Junction Temperature, TJ
Lead Temp. (Soldering, < 10 seconds)
ESD rating is to be determined.,

-6S·G,to

'

+,1S0·C
15O"C
260·C

Operating Ratings

COG to +7COC
12COC/W

Temperature Range, TA
Thermal Resistance 8JA

Electrical Characteristics (Note 1)
Min

Typ

Av

Voltage Gain

Rs =10ka,RL = 1 kO
VIN = ±10V

0.95

" 0.97

RIN

Input Impedance

Rs ~ 200 kO, RL = 1kO
VIN = ±1,.OV

180

:i00

ROUT

Output Impedance

Rs =10 kO, RL = 500
VIN = ±1.0V

Va

Output Swing

Vs = ±15V, RS = 500
RL = 1000, VIN = ±12V

Parameter

Symbol

Conditions

Max

VIV
kO
10

6
±10

Units

0

± 11

V

,"

±10

±50

18

Input Sias Current

Rs = 10 kO, RL = 1 kO

tr
SR

Rise Time

RL = 1000, ~VIN = 100 mV

Slew Rate

VIN = ±SV, RL = 1000

Is

Supply Current

Rs = 10kO

±6

±10

mA

Vas

Offset Voltage

Rs = 3000, RL = 1 kO

±10

±SO

mV

Note 1: Specification applies for TA

= 25"C with + 12V on Pins I

,,'

IJA

7

ns

125

V/ILS

& 2; -12V on Pins 4 & 5 unless otherwise specified.

Typical Performance Characteristics
Frequency Response

Input Offset Current
1.1

i 7
! •
II
G
:;;

i

5

~

T. ,ZS'C_

5

T.~O'&-'.

1

1

I

~

•

" " « "
sumY VOLTAGE ltV)
•

1.1

" a

2.11

i

4.0

'~-

iii

2.11

1

11.0 20..
FREDUEICY 1lIH.)

s.o

1.0

G

/1
./

0.1

o
4

;:: '.a

!l
I:

~

~ r...-'
,. I'

Z

1

I"r -

:-- T. = 70'&

....

1

To' Zi"C.
L..... tl"' ..... " ...
11.0
rcto7O"C

V.. -1 V,_ RL·1I(l VI- t12.av
To'ZS"C

~ t/'

~ ~ I'

3

~
~ ~ I'

{.AVI-

~

0.'

Supply Current
12.1

•

100

./

•

1.1

,

...

./

./

'"

lU

Pulse Response

TOP TRAC£ = INPUT

BOTTOM TRACE = OUTPUT
TlIK/8628-IO
VIN

= ± 2.5V.

RS

=

RL

=

5011

2·20

11.1

SU"L Y VOLTAGE ItVI Tl/K/8628-3

,-----------------------------------------------------------------------------, r
%
~
Applications Information
Figure 1 shows a simple implementation of a non-inverting
buffer amplifier of unity gain. Popular industry standard operational amplifiers such as LF156, LF351, LF411, LF441,
LM11, LM741, etc. can be used in this configuration. Due to
the high bandwidth of the LH4001, it is suitable for use with
most monolithic op amps.

Figure 3 shows a co-axial cable drive circuit. The 43.0 resistor matches the driving source to the cable, however, its
inclusion rarely will result in substantial improvement in
pulse response into a terminated cable. If the 43.0 resistor
is included, the output voltage to the load is about half what
It would be without the near end termination.

Figure 2 shows an implementation of an inverting amplifier
with output current capability in excess of ± 100 rnA. The
gain of this amplifier is determined by the values of RF and
RIN. The resistor between the non-inverting input and
ground is used to minimize the output offset voltage resulting from the input bias current.

Figure 4 shows a non-inverting amplifier with gain and output current capability in excess of ± 100 rnA. It is capable of
providing ±10 rnA into a 1 kn load or ±100 rnA into a
loon load (± 10V swing). Figures 5 and 6 show two different methods of providing current limit or short circuit protection for the LH4001. In Figure 6, the Ion resistor limits the
output current to approximately 70 rnA. This Circuit is highly
recommended if there is a potential for a short circuit to
occur.

Because of its high current drive capability, the LH4001
buffer amplifier is suitable for driving terminated or unterminated co-axial cables, and high current or reactive loads.

+15V

+15V

TL/K/862B-4

FIGURE 1. Non-Inverting Buffer Amplifier

+15V

+15V

-15V

-15V

FIGURE 2. Inverting Buffer Amplifier with Current Limit

2-21

TUK/862B-6

g
....

i

Applications Information (Continued)

3

y+

RUM = 1oon~ 1W

INPUT o--=i lH400I1>:'-JII'.'lv-H

Y-

TUK/8628-7

FIGURE 3. Coaxial Cable Drive Circuit
+15Y

I~~~""OYOUT

Rl
TL/K/8628-5

VOUT=VIN(l+~)
FIGURE 4. Non-Inverting Buffer Amplifier with Gain

y+

O.OI~F

Y-

TUK/8628-8

FIGURE 5. LH4001 Using Resistor Current LImIting

= 2N2905
Ca. C4 = 2N2219

01.02

TLlK/8628-9

FIGURE 6. Current Umlt Using Current Sources

2-22

r-------------------------------------------------------------------------, r::c

!

t!lNational Semiconductor

LH4002 Wideband Video Buffer
General Description

Features

The LH4002 is a high speed voltage follower designed to
drive video Signals from DC up to 200 MHz. At voltage supplies of ± 5V, the LH4002 will provide up to 40 mA into 50n
at slew rates in excess of 1000 V IlLS.
The device is intended to fulfill a wide range of high speed
applications including video distribution, impedance transformation, and load isolation. It is also suitable for use in
current booster applications within an op amp loop. This
allows the output current capability of existing op amps to
be increased.

• DC to 200 MHz Bandwidth with Vs = ±5V
• 1250 VIlLS Slew Rate into 50n
• 150 MHz Bandwidth with Vs = ±5V, RL = 50n and
Voltage Swing = 2 Vp_p

Applications
• Wideband Amplifier Buffer
• Wideband Line Driver

Schematic and Connection Diagrams
+VCCI

+VCC2

R3

5004

R<4
2A

INPUT

OUTPUT

TLIK/8686-15

~

Dual-ln-L1ne Package
+VCC2
+VCCI
INPUT

Ne

-VCCI

Ne

OUTPUT

6

-Vea

I

He
TLIK/8666-2

Top View

Order Number LH4002CN

See NS Package Number N10A

2-23

N

!

:5

Absolute Maximum Ratings

;

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
±6V
Supply Voltage, Vs
Input Voltage Range, VIN
Continuous Output Current, 10
Storage Temperature Range, TSTG

Operating Temperature Range, TA
LH4002C

±Vs
±60mA
-65°C to

- 25°C to

+ 85°C

Junction Temperature, TJ
Lead Temperature (Soldering, 10 sec)
ESD rating is to be determined.

150°C
3000C

+ 150°C
v

DC Electrical Characteristics Vee =
Symbol
Vas

Parameter
Input Offset Voltage

±5V, Tmin~ TA

~ Tmaxunlessotherwisestated.

Conditions

, Min

TA = TJ = 25°C<,
Rs,= 150.0., RL = 50.0.

Ie

Input Bias Current

RS= 1k.o.,RL= 50.0.

DC Voltage Gain

Rs = 10k.o., RL = 1.0k.o., VIN = ±2V

Vo

Output Voltage Swing

Rs = 150.0., VIN = ±2.5V

Is

Supply Current

fls = 10k.o., VIN = OV,RL = 1 k.o., TA = TJ = 25°C

ROUT

Output Resistance

Rs = 10 k.o., RL = 50.0.

RIN

Input Resistance

Rs = 10 k.o., RL = 50.0.

I RL =

1 k.o.

ITA = 25°C, RL ='50.0.

Symbol
SR

Slew Rate

20

50

mV

100

200

p,A

0.97

VIV

±2.2

±2.4

V

±2.0

±2.2

V

20

35

6

10

mA
.0.

18

k.o.

±5V, TA = 25°C.

RL = 50.0., Rs = 50n
VIN = ±2V

Bandwidth, -3 dB
(Note 2)

Rs = 50.0.
RL = 50.0.

Phase Non·Linearity

BW = 1.0-20 MHz

tr

Rise Time

td

Propagation Delay

THO

Harmonic Distortion

f3de

Units

0.95

10

Conditions

Parameter

Max

"

Av

AC Electrical Characteristics Vee =

Typ

"

Min

Typ

1000

1250

V/p.S

125

MHz

150

MHz

VOUT = 4Vp.p
VOUT = 2Vp.p

100

Max

Units

200

MHz

2.0

degrees

4VIN = 0.5V

3

ns

4VIN = 0.5V'

1.2

ns

f = 1 kHz

0.1

%

VOUT = 100 mVp.p

Nota 1: Under normal operating conditions +VCC1 and +VCC2 should be connected together, and -VCC1 and -VCC2 should be connected together.
Note 2: Guarantaad by design. This parameter is sample tested.

2·24

Typical Performance Characteristics

1.1
1.0

I

0.9

Iii
;s

G.5

z

~

e;

~

OJ!
o:T
OJ!

Maximum Power Dissipation
Dual-In-Line Package

Supply Current
40

~8~=lioacj..

--,-

!

I~ I

1M

30

/'

20

~1=25CC
RL =lk.Il

vlN=ov-

!:i

IU
D.2

D.2

H-++H+!!!-+++++IHI--+-HflIlll135

~

10

0.1

o

0.0

01020304050607011090

i3
FREQUENCY, (Mllz)

1E\IPERATURE (CC)

TUK/8686-5

TUK/6668-12

U

is

i6

i7

SUPPLY VOLTAGE (V)

TL/K/8686-6

Pulse Response

TOP TRACE
~INPUT

BOTTOM TRACE
~

OUTPUT

Vs

~

AL

~

±5V
5O1l

TUK/8886-7

TUK/8686-8

2·25

Typical Applications

VOUT

TL/K/8686-11

FIGURE 1. Wldeband Unity Gain Amplifier Using LH4002CN

. '\'1'"

, ill

--

'TUKl8686-9

TLlK/8686-10

FIGURE 2. Compensation for Capacitive loads

FIGURE 3. Compensatl~n fOr Capacitive Loads
where Iso S; 100 mAo The inclusion of 500 limiting resistors
in the colleCtQrs of the output. transistors limits the short
circuit current to ~proximately 10!> mA without reducing the
output voltage sWing.

Applicatl~ns Inf,ormatlon
The high. speed performance of the LH4002 ca!,! only be
realiz~ by taking· certain precautions' in circuit layout and
power supply decoupling. Low inductance ceramic chip or
disc power supply decoupling capacitors of 0.01 I£F in parallel with 0.1 I£F should be connected with the shortest practical lead length between device supply leads and a ground
plane. Failure to follow these rules can result in oscillations.
When driving a ~citive load such as inputs to flash converters, the circuits in Figure 2 and 3 can be used to minimize the amount of overshoot and ringing at the outputs.
F/f/IJre 2 indicates that a 500 should be placed in parallel
with the load and Figure 3 recommends that a 1000 resistor
be placed in series with the input to the LH4002.

+5V

+VCCI

>--"OUTPUT

INPUT

Short Circuit Protection
In order to optimize transient response and output swing,
output current limits have been omitted from the LH4002.
Short circuit protection may be added by inserting appropriate value resistors between +VCC1 and +V002 pins and
between -VCC1 and -VCC2 pins as illustrated in Rgurs 4.
Resistor values may be predicted by:
+V001

-VCC1

Iso

Iso

-5V
TUK/8686-20

FIGURE 4. LH4002 Using Resistor Current Umltlng

RLIM=--=--

2-26

t!lNational Semiconductor

LM102/LM302 Voltage Followers
General Description
The LM102 series are high-gain operational amplifiers designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the devices incorporate
advanced processing techniques to obtain very low input
current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually
eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component
oven to get extremely low input currents and low offset voltage drift.
The LM102, which is designed to operate with supply voltages between ± l2V and ± l5V, also features low input
capaCitance as well as excellent small Signal and large signal frequency response--all of which minimize high fre-

quency gain error. Because of the low wiring capaCitances
inherent in monolithic construction, this fast operation can
be realized without increasing power consumption.

Features
•
•
•
•
•

Fast slewing - 10Vl,.s
Low input current - 10 nA (max)
High input resistance - 10,000 MO
No external frequency compensation required
Simple offset balancing with optional 1 kO
potentiometer
• Plug-in replacement for both the LM10l and LM709 in
voltage follower applications

Schematic Diagram
(II

IALANCE

(II

-+---------..- ...V.

r---+--::-RI-....~...
HO
R2
"

(JI

HO
RJ
II

t-4.....W""". .~...--'OUTPUT "I

. .----IOOSTER (II

-----4. . . ---_....________....____ v_

L - -....

2-27

(41

TL/HI7753-1

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 6)
±18V
Supply Voltage
Power Dissipation (Note 1)
500mW
±15V
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Indefinite

Operating Free Air Temperature Range
LM102
-55'Cto +125'C
LM302
OOCto +70'C
Storage Temperature Range
-6,5'Cto + 1500C
Lead Temperature (Soldering, 10 sec.)
3000C
ESD rating to be determin.ed.

,

Electrical Characteristics (Note 4)
Parameter

LM302

LM102

Conditions
Min

Typ

Max

Min

Type

Units
Max

Input Offset Voltage

TA = 25'C

2

5

5

15

mV

Input Bias Current

TA == 25'C

3

10

10

30

nA

Input Resistance

TA = 25'C

1010

109

'1012

Input Capacitance

3.0

1012

11

3.0

pF

Large Signal Voltage
Gain

TA = 25'C, Vs ±15V,
VOUT = ±10V, RL = 8 kll

Output Resistance

TA = 25'C

0.8

2.5

0.8

2.5

11

Supply Current

TA = 25'C

3.5

5.5

3.5

5.5

rnA

20

mV

0.999

0.9996

0.9985

0.9995

' 7.5

Input Offset Voltage
Offset Voltage
Temperature Drift

20

6

Input Bias Current

TA = TAMAX
TA = TAMIN

Large Signal Voltage
Gain

Vs = ±15V,VOUT = ±10V,
RL = 10kll

Output Voltage
Swing

Vs = ±15V, RL = 1(i'kll
(Note 5)

Supply Current

TA = 125'C

3
30

1.0

10
100

3.0
20

VIV

/J-Vl'C
15
50

nA
nA

0.999
±10

±10
2.6

4.0

V
rnA

Supply Voltage
±12V s: Va s: ±15V
60
60
dB
Rejection Ratio
Note 1: The maximum iunction temperature Qf the LM102 is t 50'C, while that 01 the LM302 is 85"C. For operating at elevated temperatures, devices in the HOS
package must be derated based on a thermarresistance 01 15O'C/W, junction to ambient, or 2O'C/W, junction to case.
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the 'supply voltage,
Note 3: It is necessary to Insert a resistor (at least 5k and preferably 10k) in series with the input pin when the amplHier is driven from low impedance sources to
prevent damage when the output is shorted and to ensure stability,
Note 4: These specHications apply for ±12V ,;; Vs ,;; ±15Vand -55"0 ,;; TA ,;; 125'C for the LM102 and O'C ,;;TA ,;; 70'C for the LM302 unless otherwise
specified,
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V- tennlnals. See curve.
Note 6: Refer to RETS102X for the LM102H military specifiCations.
:
APPLICATION HINT
The input must be driven from a source impedance of typically 10 kll (5 kll Min) ,to maintain stability. The total source
impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a 10 kll resistor
should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent
oscillation.

2-28

Guaranteed Performance Characteristics LM102
Input Current

Output Swing

100

Supply Current
8

&
Vs '" :t:1SV
You, '" ~IOV

"

0

~
MAXIMUM,

I 0

-55 -35 -15

"_

&
"

TYPICAL

ri-~'

I-

APlC~l
-..........

4

~

3

51

2

I:

-'1;'''C~l

..... 100"

....

-.

vrT
-&& -3& -15

-55 -35 -15 -& 25 45 6& 8& 105 125
TEMPERATURE I CI

5 25 45 851 85 105 125
TEMPERATURE I CI

~

B

1A~'/.\IAU'"

~

.1xIM~M

i 6 1"-0
§5

0

5

25 45

65

85 105 125

TEMPERATURE (aC)

TL/H/n53-7

Typical Performance Characteristics LM102
Voltage Gain and Phase Lag
0.1186

Voltage Gain and Phase Lag

0.11

~0.199

0.1

...~
...c

.

~ 0.11

>

~~l~,,~v I

270

!

i

-5

225

~

C -II

180
135

...•
.. .
;;
!i
~
II:

w

Output Resistance
100 .....,...,........-'"T"1rTT-r-r"TT,.-,

10

w

-15
~ -20
> -25

c

DO
45

-311

!

!i....
=:

I

-35

10

D.9
lk

10k

10Dk

1M

~,,~.-LLU~,O~.~UU~,±OO~.~~~,M

-40

lOOk

1M

10M

100M

FREOUENCY IHII

FREOUENCY 1Hz)

FREOUENCY (Hz)

Positive Output Swing

Negative Output Swing

1&

Output Swing

109~~~=I=p=l
J- VOUT " ~10V

-15
Ys" ~15Y
Rs ~ 10K

Vs" !15Y

-10

-5

LOAD CURRENT ImAl

LOAD CURRENT lmAl

Large Signal Frequency Response
12

Large Signal Pulse Response
15

14

Vs= ~15V
TA = 25 C

~

10

DISTORTION .~5'-,

o

10.

lOOK
FREQUENCV 1Hz)

·5

-10

1M

-15

~

&0 0

f..,"25 C

I-0IOOE

~

.11101

I'

'='8'
TIME l"w

Maximum Power Dissipation

~s-I,,:V

III
WI~H Cl~Mf

10

,

TEMPERATURE I CI

~

!4OO
"

;:

"'1'1.

~300

.....
10

~ 200
~

~ 100
4&

65

85

105

125

AMBIENT TEMPERATURE I CI

TLlHI7753-8

2-29

Guaranteed Performance Characteristics LM302,'

I.

Input Current

.. r..

o

Supply Current

Output SWing

•

I""oMAXIMtl~-

I I I

o v.....vl

-

'lOUT· t11V

r0-

0
I

_

TYPICAL

•

I
J
MA~'MJI!. ooII!~

1

I

,-"""","

... ..

MAXIMUM

I

...

."

,

TYPICAL
1

... ,

~,

-

~;~~
tV.ICAL !!!..I ~

I
V. -:15'1
1

•

20
40
..
TEMPERATURE I'C)

zo
40
II
TEMPERATURE I'C)

'0

•

10

II

40

II

10

TEMPEAATUR'E COC) ,

TL/H/775S-9

Typical Performance Characteristics LM302
Voltage Gain and Phase Lag
o.a..

Voltage Gain and Phase Lag

ILI1

11
6

:I!

~

...

~o.aBB

0.1

C

'"
;: CD~w
!Ii

.
.. ..~

i

w

e

~

co OJ'

;;

:>

lk

10k

10
1M

lOOk

~

-5
-10

R••

-16

-10
co
:> -15 ,-'-38

TA ·15"C..I1

-4G

ITO

3k~

~ ~

II

'_-I

:5
100M

10M

FREQUENCY 1Hz)

Positive Output Swing

-.•Negative Output Swing

•

v, -t1IV

S l~ ,a

135

LR •• 30 kll
111111111

1M

lOOk

FREOUENCY 1Hz)

1111
~~. ··.5V

TA "25 C

115 m
180 ,..

R. "0ksl-l
PHASE 111111111
R~, :,~ kll .i»!III

Va' '15~'1I

-35

ti:..~~.~i

0.9

~

;;;

"Output Resistance
.00

i

'"

..
1.0

•••

I.

TA -ZloC
II,-"X

, -I 0

0

Output Swing
I
'lOUT· :!:1OY

y"~v

.....

-

.

I

..

..

Large Signal
Frequency Response

II

~

10

i
~
..

.•
o

1I1IRZ5
LOAO CURRENT IlIA)

lOX

I
3
•
LOAO CURRENT llIAl

.0

Large Signal Pulse Response

_I-""

...

I""'"

:
0

.... i"""

.r-.... --

\.
I

-

Rio" ie!l

~II

II
•
01
TEMPERATURE re)

Maximum Power Dissipation
III

15

'Is· :l:11V

...+-........+-r=M

TA • 25~C
OtlforliDn < 5'"

II Hf-t~

"'"

i'.
i'.

\..
100X

1M

lOOK

FREOUENCY 1Hz)

V,0111V

l.-aoc

•

"K

.....
i'.

-'8

.....

'

0

.M

2&

35

15

55

15

15

AllIIENT TEMPERATURE I'C)

FREOUENCV 1Hz)

TLlH/77SS-10

2-30

Typical Applications
Low Pass Active Filter

CI'
t48pF

>;""-411- OUTPUT

INPUT -~IAI"'.J\j"""',""MIr'"f
RI
RZ
Z4K
14K

'Values are for 10 kHz outoff. Use silvered mioa oapacitors for good tern·
perature stability.

TLIHI7753-3

Sample and Hold with Offset Adjustment

INPUT

>':---OUTPUT

f

'Polyosrbonate-dieleotrio oapacitor.

V'

TLlHI7753-4

High Pass Active FIRer

CI
D.OIIlF
>;.....-4~ OUTPUT

I.PUT....,

'Values are for 100Hz cutoff. Use
metalized poiyosrbonate capacitors
for good temperature stability.

TLIHI7753-5

High Input Impedance AC Amplifier
CI
o.OlllF

INPUT

-1 .......""""'.

>;""'''''''4I-0UTPUT

RZ

~

lOOK

j

RI

lOOK

I

TLIHm53-6

2-31

I

Connection Diagram
Metal Can Package
Top View.

NO CONNECTION

vTl/HI7753-2

Order Number LM102H/883
See NS Package Number H08C

2-32

~-------------------------------------------------------------------------------.

r-

i:

.....
.....

tflNational Semiconductor

~

E
N
.....

<:»

LM110/LM210/LM310 Voltage Follower

.....

General Description

.....

The LM11 0 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers.
They use super-gain transistors in the input stage to get low
bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications,
these devices have internal frequency compensation and
provision for offset balancing.
The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further,
the frequency response is sufficiently better than standard
IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in
replacements for the LM102 series voltage followers, offer-

!i:
w

ing lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

<:»

The LM11 0 is specified over a temperature range - 55'C s;
TA S; + 125'C, the LM21 0 from - 25'C S; TA S; + 85'C and
the LM310 from O'C S; TA S; + 70'C.

Features
•
•
•
•

10 nA max over temperature
20 MHz
30 V//J-s
±5Vto ±18V

Input current
Small signal bandwidth
Slew rate
Supply voltage range

Schematic Diagram
(')

BAlANCE

(8)

~~~~~~1------------~~~ ~(7)

D.

-+--t--t---1

INPUT (3)

J---AIII'v--Ir..---

,

OUTPUT (6)

!

R7
SK

r
I,

~
·,--1-------1---------11

Q'4
aooSlER (5)

Rt3

R.2

R1t

3K

1.5K

200

.....----v_

'--.. . .

I-----~-----------

2-33

(~)

TLlH/n61-1

o
.....
CO)
::&

.....
C;
.....
C"I
::&
.....
C;
.....
.....

...
::&

Absolute Maximum Ratings
-65'Cto ;.: 15O"C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)
260"C
Soldering Information
. Dual·ln·Une P~ckage
Soldering (10'sec.)
260"C
Small Outline Package
Vapor Phase (SO sec.)
'215'C
Infrared (15 sec.)
220"C
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Seles
Office/Distributors for availability and specifications.
(Note 6)
±1SV
Supply Voltage
Power Dissipation (Note 1)
500mW
±15V
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Indefinite
Operating Temperature Range
LM110
- 55'C to + 125'C
LM210
- 25'C to + S5'C
LM310
O'Cto +70"C

Electrical Characteristics (Note 4)
Parameter

LM110

Conditions
Min

Input Offset Voltage
Input Bias Current
Input Resistance

= 25'C
TA = 25'C
TA = 25'C
TA

1010

Input Capacitance

Max

1.5

4.0

1.0

3.0

1012

Min

1010

1.5

Large Signal Voltage TA = 25'C, Vs = ±15V
Gain
VOUT = ±10V,RL = SkO
Output Resistance

TA

Supply Current

TA

= 25'C
= 25'C

Max

1.5

4.0

1.0

3.0

0.999 0.9999

Units

Typ

Max

2.5

7.5

mV

2.0

7.0

nA

1012

0

1.5

pF

0.999 0.9999

VIV

0.75

2.5

0.75

2.5

0.75

2.5

0

3.9

5.5

3.9

5.5

3.9

5.5

mA

6.0

6
12

10

6

mV
p.VI"C

p.VI'C
10

Input Bias Current

10

= ±15V, VOUT = ±10V
= 10kO
Vs = ±15V, RL = 10kO

Min

1010

1012

6.0
-55'C S; TA S; +S5'C
+S5 S; TA S; 125'C
O'C S; TA S; +70"C

LM310

Typ

1.5

0.999 0.9999

Input Offset Voltage
Offset Voltage
Temperature Drift

LM210

Typ

10

p.VI"C
10

nA

Large Signal Voltage Vs
Gain
RL

0.999

0.999

0.999

VIV

Output Voltage
Swing (Note 5)

±10

±10

±10

V

Supply Current

TA

= 125'C

2.0

4.0

2.0

4.0

mA

Supply Voltage
±5V S; Vs S; ±18V
70
70
80
SO
dB
80
70
Rejection Ratio
Note 1: The maximum junction temperature of the LM110 is 150"<:, 01 the LM210 is 100'C, and of the LM310 is 85"C. For operating at elevated temperatures,
devices in the Hoe package must be derated based on a thermal reslstsnce of 1El6"C/W, junction to ambient or 2Z'C/W, juncUon to case. The thennal resistance
of the dual~".line package is 1Ort'C/W, iunctlon to ambient.
Note 2: For supply voltages less than ± 15V, the absolute maximum Input Yoltege Is equal to the supply voltsge.
Note 3: Continuous short circuit lor the LM11 0 and LM21 0 is allowed lor case temperatures to 125"C and ambient temperatures to 7C1'C, and for the LM310, 7rt'C
cass temperature or 55'C ambient temperature. It is necessary to insert a resistor greater than 2 k.!l in series with the input when the amplHier is driven from low
impadance sources to prevent damage when the output is shorted. As = 5k min, 10k typical is recommended lor dynamic stability In all applications.
Note 4: Thees specificetions apply for ±5V,,; Vs',,; ±18Vand -55"C"; TA 125'Cfor the LM110, -25"C"; TA"; 85'ClortheLM210,andrt'C"; TA"; 7rt'Cfor
the LM310 unless oIherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an eXtemal resistor between the booster and V- _nals, Sse CUfV8.
Note 8: Refer to RETS110X lor LM110H, LM110J military specifications.

Application Hint
The input must be driven from a source impedance of typically 10 kO (5 kO min.) to maintain stability. The total source
impedance will be reduced at high frequencies if there is stray capaCitance at the input pin. In these cases, a 10 kO resistor
should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent
oscillation.

2·34

!i.....i :
.....

Typical Performance Characteristics (LM110/LM210)
Input Current

~

V.-'II!=

~
t

I

1. ~

~

~~'IM

..=iii

-t-...

...~

~ ~""I-

i

=
i=
D. I '--L.-.i.-.i.-.i.-...L.....L.....................
-IIi -31 -15 5 25 45 6 15 16 125

!'"'

\

-II

II

III

I. I. I'"
FREQUENCY (HzI

1M

11M
TIME ....

Voltage Gain and
Phase Lag

-

Voltage Gain

.

11

1.01

Z10

~O.'"
z

us

i!

131

~

II

~

4S

I.

0.9

1.

loa.

1M

"

1M

FREQUENCY (HzI

~

i

1"

I

I_

-

II

l,;;

""" '"

T~RATURE

fREOUENCY (H,I

Large Signal
Frequency Response

~

,

-1'\

II

I

II:

.....
1M
fREQUENCY IHzI

I.

T" ....SoC

•o

iiii

I.

~

l"'iii

3D

II
•

~

V,-±&V

: I---i-H

ZD
31
CURRENT(IIAI

Supply Current

; :~~~~~~===t==~
;

t15V

rTA • Zl"C

rei

Power Supply Rejection

V. -.JI~'
"'~:J.J.ij
TA
DISTORTlDN<

!

..... ~
'""..... _/ i--"t-IDln
~

v.-

~

-S5 -31 -I. I ZI 41 .. 15 lit 115

1M

4S . . . . las 18

1-0 ,.- :-- T. -IH"I:

..... ~ ~ t....- ~

1.

8

Positive Output Swing

VOUT -:t11V
Vs .. t11V

,.

I

T_ERATURE rCI

II

I- .......... ~

.....

V~-~V

-II -35 -IS

Symmetrical Output Swing

1-'-.1...1_ ........

-

Vo- "IV

~D."

c

.....

11M

11

11

'-ZIIIIHz -

~

fREQUENCY (H.I

Output Resistance

14

~'~DII

..
I ..=.
;!

III M C
CD

~

.. ....

....

C)

V. '" t15V
TA -2&<11:

-10

II

Voltage Gain and
Phase Lag

r-rn'TTTl1nr-rrnml"""1"'TT

E
w

1\
-I

-I

TE_RATURE rCI

••_

N
.....
C)
......

10

T.-I.oC_

!

!iii

E

II

_1Il00

i

~

Large Signal Pulse
Response

Output Noise Voltage

~~

Vo-dSV

~

I---i--+-

I---i--+--+-~~~

~~

T.-IloC-+--+-+~:'I
V. - UIV -+_+-_+-~

.11 ......--''-----'-........- - ' - -.....
IDO
Ik
I.
I'"
1M
I.

fREOUEIICY (H.I

•

-iii -31

-I' • II

45 II ..
TEMPERATURE (OCI

I"

121

TLlH17761-28

2-35

.... r---------------------------------------------------------------------------------,
C)
C')

:!.....

Typical Performance Characteristics 1LM310)'

I.

~.

N

::E
....
....
....
....
C)

:i

Input Current

15

v:

i

V"""5!=
T.·2t"t_

.:t11V

II

i

~

B

i

Large SIgnal Pulse
Response

Output Noise Voltage

I

,

T-;"'"

\

~

~ Siii:E~"1IIHI

r-~

u

~~"M

II
~

V•• ""tV

..

-I

·IGII

1.1

T•• Zft

\.

-10

I

-15

111.3IClIIIIIIII
_HATURE

rc)

TIME

-

..

0.11

10

:1!

~D...

D.I

i

i

.. ..
.. ..
i ..

c ,
!:;D.II

I.

'-ZI
-3D

ZZ5

110

R, •
R""kS1"

-15

~
~ !:;
'-ZI

=

ZIO

3ifl

! ! -5
;;
-1'
~

..

,

5

!i:

-

Voltage Gain and
Phase Lag

Voltage Gain and
Phase Lag

Vo~:t.lv'lI

-35

T••

10

,.

l'R o'31'1I

zn . 11 I"

1M

FREQUENCY CHo)

41

... ·,OR

,-2IU.
T.

I~!i:

.....

lDaM

L I--

I

Output Reslstanee

15

"

FREQUENCY CHo'

Positive Output SWing

"~~

15
V.=:tI1V

You, -i1DV
V.-:I:IIV

i

II

i t=r~

.

I.

"'

112131.1111

1M

o

Jail

TE_RATURE re)

Large $Ignal
Frequency Response

,

" 1-,\
lZ

!co
•
i

II

±l5;Jill!

II~'
T. -- 2t"t

OI8fORTIDN < Ill'

..

.
;.

I.

•

JD

..........
1M

il

4D

FHEOUEIICY UII'

TA -7ft

II

•

31

ZI
CUMUTC.A)

Supply Current

I:

ZI
11
0

,.

'v•• -Jj~

...."'

T. - ZI't

V.cJ:1IV
Ii

1Il10

I. I.

FREQUENCY

'M
CHII

.'

~

•
lI!

31

·10

10M

,

1..

•

~

Z

.

T. ·z
f-T.-ft

II

;;;
3

!:...

ZI

_LY VOLTAGE C-V)

Symmetrical Output Swing

III

·zn

~

:I....

""I

10M

Voltage Gain

is; ~

135 co
10

R~ifla

r--

(Po'

F:::

.

I

•

•

-

~ ~':I:IIV

r-:

II ZI 31 4D II II II II
'TE_RATURE rC)
TL/H17761-29

2-36

r-----------------------------------------------------------------------------~~

......

i:

Auxiliary Circuits
Offset Balancing Circuit

Increasing Negative Swing Under Load

AI

~
~
i:

...
...ow
N

IK

.-+---v·

10k
INPUT--\l\j"""...;.e

>"-OUTPUT

HZ"
5.lk

10k
INPUT

OUTPUT

~
~
i:

AI> 188

vTLlH/7761-3

'May be added to reduce internal dissipation

TLlH/7761-2

Typical Applications
Differential Input Instrumentation Amplifier

'j

RZ

_

lINe

INPUTS

3

i'l

R4
lOOK
0.1%

IK
0.1%

I,

r--t--v·
>-.--OUTPUT
R4

. ."""""'. . BALANCE
AI

R5

Fi2="Ra

IK
R3
IK
0.1%

Av=~
R2

A5

lOOK
0.1% .

TLlH17761-4

Fast Integrator with Low Input Current

c,

INPUT -~~-4"'"'Vv\;"'"

-

CI

HI

10pF

5K

>-_-J\I\j"""'-.---i I---.-OUTPUT

CZ
ISO pF
TLlH17761-5

'-------------------_._-- - " . _ - - - - - - - - - - - - - - - - - '
2·37

I

o

~
C;

r-----------------------------------------------------------------------------~

Typical Applications (Continued)
Fast Inverting AmplHler with High Input Impedance

.,..

CI

C'I

5 pF

:IE

....

..I

$!
,...,
:IE

R2
10k

..I

'"
INPUT-'V\j"""'ot
>~I--OUTPUT

C2
150 pF
TlIH/7761-6

Comparator for Signals of Opposite Polarity
RI
VI

10K
V2
02
INII.

-

-

TLlH17761-7

Zero Crossing Detector

RI
lOOK

10K

V,N
01
INBI.

02
INBI.

VOUT

TlIH/7761-9

2-38

Typical Applications (Continued)
Driver for AID Ladder Network
+15V

Rl
3.6K

R2
1.5K
1%
R3
3K

6

01
IN4611
&.6V

R4
21K
1%

5V REFERENCE TO
REMAINING SWITCHES

R5
20K
10K

RI

R1

5K
DIGITAL
SWITCH -'\II""-t
DRIVE

SK
DIGITAL
SWITCH -'llr/Y'-"'"i
DRIVE

TUH/7761-8

Buffer for Analog Switch'
V·

ANALOG INPUTS
~------~~--------~
01
MM4&1

Rl
41K

•

CI
0.01,*

""""'""-~"-_

~

______

~~~

ANALOG
OUTPUT

______- J

DIGITAL DRIVE
TL1H17761-10

'Switch substrates are boot-strappad to reduce output capacitance of switch.

2-39

C)

( II)

:i

r-------------------------------------------------------------------------------------,
Typical Applications (Continued)

-I
:-

Comparator for AC Coupled Signals

C;
N

:I
.....
C)

Rt

VOUT

tOOK

TL/H/n61-11

HIgh Input Impedance AC Amplifier

Ct

a.ot "F
INPUT

~

......_IVI,A,........

>&--....~- OUTPUT

TLlH17761-12

Comparator for AID Converter UsIng a BInary-WeIghted Network

R4
18K

R3
40K

R2

ZOK

TO

FROM SWITCHES

LOGIC

TL/H17761-13

2-'40

Typical Applications

(Continued)
Bilateral Current Source

HZ
,GaK
0.1%

I
R3 VIN
OUT - R1 R5
R3-R4+R5
R1 - R2

TLlHI776'-14

Comparator for AID Converter Using a Ladder Network
V'

.6

A7

A5
10K

10K

.Z

A4
5K

5K

11K

5K

.3
10K

TO

LOGIC

FROM SWITCHES

Rl
10K

OZ
'.14
ANALOG
INPUT

Tl/H/7761-15

Sine Wave Oscillator

cz
_.F

C3

110pF

SINE OUTPUT

1%

'"

R3

lOOK

R4

1%

5K

t - -...-

COSINE OUTPUT

Rl
ZZOK
1%

C6
1&1pF
AI
Z21K
,%

R5
01

'.3.
OZ
1.3.

ZK

10 - 10 kHz
TLlHI7761-16

2-41

.... r-------------------------------------------------------------------------------------,
Typical Applications (Continued)
....:II!!
Low Pass Active Filter
C)
CO)

~
,..

CI'
940pF

C'I

:II!!

.....

~
,..
,..

~
RZ
Z4k

RI

24k

...J\iM_.-\lV""''""4

INPUT -J\j""~

>6_"'~_OUTPUT

TLfH17761-18

'Values are for 10kHz cutoff. Use silvered mica capacitors for good temperature stability.

High Pass Active Filter
RI
110K

INPUT

CI'

CZ'

O.OZ p.F

0.01 p.F

--I

.........-

10K
.. "-"'-,\;M"';'~

>·~""I---OUTPUT

RZ
110K

TLfHfn61-19

'Values are for 100Hz cutoff. Use matalizad poIycarbonate capacitors for good temperature stsbilily.

Simulated Inductor
R2
lk

R2

Cl
0.1 J.lF'

R[

10M
1%

TLfHfnS1-21

2·42

.-----------------------------------------------------------------------------'r
i:
....
Typical Applications (Continued)
....
....
Adjustable Q Notch FIlter
r
i:
....
Q

~

....
E
Q

....
Co)

RI

R2

10M

10M

Q

>...;6;...._~...._

V,N

VOUT

C3
540pF

f = __1__
o 2 ...R1Cl

C2
210pF

Rl = R2 = 2R3
Cl

CI

= C2 = C3/2

6

210pF

TL/HlnSI-22

Bandpass Filter
R2
IK

>&;..... .-OUTPUT

INPUT

TL/HlnSI-23

Sample and Hold
SAMPLE-----4....- " I

RI

lSOK
&
>--OUTPUT

INPUT-,,_ _01

TL/HI7761-24

fUse capacitor with polycarbonate teflon or polythylene dietetric

2·43

o .-----------------------------------------------------------------------------,
.ell)
Typical Applications (Continued)

~
.....
o

Buffered Reference Source

.-

_----~. .-

CN

....:::E.....

V'

=15V

RI

o
..:::E

3.8K

....

R2
1.5K

'"

>-'..~-

01
IN4811

OUTPUT

R4

271

I"

TL/H17761-25

Low Drift Sample and Hold·
V'
INPUT

OUTPUT

tTellon polyethylene or polycarbonate dielectric capacitor
'Worst cose drift less than 3 mY/sac

TUHI7761-26

Variable Capacitance Multiplier
RI

R2

II

10K

R3
21

10k

-

CI
0.1 ~F
TUH17761-27

2·44

r-----------------------------------------------------------------------------~ ~

........
CI

i:

Connection Diagrams

....
~

Metal Can Package

i:
I\)

....
CI

BALANCE

.....
~

i:
w

....

CI

TUHI7761-30

Package Is ccnnected to Pin 4 (V-)

Top View

Order Number LM110H, LM210H or LM310H
LM110H/883*

See NS Package Number HOBC

Dual-In-Llne Package

Dual-In-Une Package
BALANCE 1

14

8 BALANCE

7 y'

NC 2

12 BALANCE

11 Y'

INPUT 3

6 OUTPUT

10 OUTPUT

•

Y- B

y- 4

BOOSTER

5 BOOSTER

TUH/7761-32

Top View
TLlH/7761-31

Order Number LM310M, LM310N or LM 11OJ-8/883*
See NS Package Number J08A, M08A or N08E

Top View

Order Number LM110J, LM21OJ,
LM310J or LM11OJ/883*
See NS Package Number J14A

•
'Available per SMD* 5962-8760601

2·45

'"" r--------------------------------------------------------------------------------,

tJ1
....
~

CD

~

.,

Nat ion a I S e m i con due t or

'""

~

CD

LM6121/LM6221/LM6321 High Speed Buffer
::3
.....
'"" General Description
'""

Features

N

CD

::;

These high speed unity gain buffers slew at 800 VI P.s and
have a small signal bandwidth of 50 MHz while driving a
500 load. They can drive ± 300 rnA peak and do not oscillate while driving large capacitive loads. The LM6121 family
are monolithic ICs which offer performance similar to the
LH0002 with the additional features of current limit and thermal shutdown.

These buffers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors
that are true complements to the already fast NPN devices.
This advanced junction-isolated process delivers high
speed performance without the need for complex and expensive dielectric isolation.

•
•
•
•
•
•
•
•
•
•

800 V/p.s
50 MHz

High slew rate
Wide bandwidth
Slew rate and bandwidth 100% tested
Peak output current
High input impedance
LH0002H pin compatible
No oscillations with capacitive loads
5V to ± 15V operation guaranteed
Current and thermal limiting
Fully specified to drive 500 lines

±300 rnA
5MO

Applications
• Line Driving
• Radar
• Sonar

Simplified Schematic

Connection Diagrams
Plastic DIP

Metal Can

TLlH/9223-2

VOUT

*Heel-sinking pins. See Application
section on heet sinking require-

TLlH/9223-3

ments.

Top View

Order Number LM6221N,
LM6321N or LM6121J/883
See NS Package
Number J08A or N08E

Note: Pin 6 connected to case.

Order Number LM6221H or
LM6121H/883
See NS Package
NumberHOBC

Plastic SO

HiS"
HiS"

1

iNPUT

TLlH/9223-1

HIs"
HiS"

Numbers in () are for a-pin N DIP.

HiS"
HiS"

13

4

12 OUTPUT
11

V-'

Nle

14

2

5

HiS"

a HiS"
TLlH/9223-7

'Pin 3 must be connected to the negalive supply.
"Heat-sinking pins. Sea Application section on heel-sinking requirements.
These pins are at V- potential.

Order Number LM6321M
See NS Package Number M14A

2-46

r-

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
36V(±18)
Input to Output Voltage (Note 2)
±7V
±Vsupply
Input Voltage
Output Short-Circuit to GND
(Note 3)

Continuous

Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
Power Dissipation

-65°C to + 150"C

ESD Tolerance (Note 8)

±2000V
150"C

Junction Temperature (TJ(max»)

N
.....
.....
r-

i:

Operating Ratings

~
N

Operating Temperature Range
LM6121H/883
LM6221
LM6321
Operating Supply Range

- 55°C to + 125°C
-40"Cto +85°C
O"Cto +70"C
4.75 to ±16V

Thermal Resistance (8JAl, (Note 4)
H Package
N Package
M Package

260"C
(Note 10)

I:
.....
.....
.....
r-

i:
en
~

N
.....

150"C/W
47"C/W
69"C/W
17°C/W

Thermal Resistance (8Jcl, H Package

DC Electrical Characteristics
The following specifications apply for Supply Voltage = ±15V, VCM = 0, RL ~ 100 kO and Rs = 500 unless otherwise noted.
Boldface limits apply for TA = TJ = T MIN to TMAX; all other limits TA = TJ = 25°C.

Symbol

AVl
AV2
AV3
Vos
la

Parameter

Voltage Gain 1
Voltage Gain 2

RL = 1 kO, VIN = ±10V
RL = 500, VIN = ±10V

Voltage Gain 3
(Note 6)

RL = 500, V+ = 5V
VIN = 2Vpp (1.5Vpp)

Offset Voltage

RL = 1 kO

Input Bias Current

RIN

Input Resistance

CIN

Input capacitance

Ro

Output Resistance

ISl

Supply Current 1

RL =

RL = 1k

PSSR

Output Swing 4
Power Supply
Rejection Ratio

3

00

Output Swing 1

V04

LM6221

LM6321

Umlt
(Notes 5,9)

Limit
(Note 5)

Limit
(Note 5)

0.980

0.980

0.970

0.970

0.950

0.950

0.860

0.860

0.850

0.800

0.820

0.820

0.780

0.780

0.750

0.750

0.700

0.700

30

30

50

50

60

100

4

4

5

7

7

7

5

lOUT = ±10mA

VOl

Output Swing 3

0.840

LM6121

00,

15
V+ = 5V

14
13.5

RL = 1000

12.7

RL = 500
RL = 500,
(Note 6)

12
V+ = 5V

1.8

V± = ±5Vto ±15V

70

2-47

Units

VIV
Min

mV
Max
p.A
Max
MO
pF

3.5

RL =

V03

0.900

1

RL = 500

Supply Current 2

Output Swing 2

0.990

15

RL = 1 kO, RS = 10 kO

IS2

V02

Typ

COnditions

5

5

5

10

10

6

0
Max

18

18

20

20

20

22

mA

16

16

18

Max

18

18

20

13.3

13.3

13.2

13

13

13

11.5

11.5

11

10

10

10

11

11

10

9

9

9

1.6

1.6

1.6

1.3

1.4

1.5

60

60

60

55

50

50

±V
Min

Vpp
Min
dB
Min

•

....

C'II

~

::::Ii!
.......

AC Electrical Characteristics

".

....
....C'II

The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ~ 100 kO and Rs = 500 unless otherwise noted •
Boldface limits apply for T A = T J =. T MIN to T MAX; all other limits T A = T J = 25°C •

::::Ii!
....
.......
....C'II
....
CD
::::Ii!
....

Symbol

C'II
CD

LM6121
Parameter

Typ

ConClltlons

Slew Rate 1

VIN =

±11V, RL = 1 kO

SR2

Slew Rate 2

VIN = ± 11,V, RL = 500

Limit

Limit

. Limit

(Note 5)

(Note 5)

1200

550

550

550

800

550

550

550

50

550

550

550

50

30

30

30

(Note 7)
SRs

Slew Rate 3

-3 dB Bandwidth

VIN = ± 100 mVpp, RL = 500
CL ~ 10pF

t r, tf

ipd

as

Rise Time

RL = 500, CL ~ 10 pF

Fall Tiroe

Vo = 100mVpp

Propagation

RL = 500,CL ~ 10pF

Delay Time

Vo = 100mVpp

Overshoot

Units

Vlp.s
Min

VIN = 2 Vpp, RL = 500
V+ = 5V (Note 6)

BW

LM6321

(Note 5)

r"

SR1'

LM6221

RL = 500,CL ~ 10pF
Vo = 100mVpp

MHz
Min

7.0

ns

4.0

ns

10

%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device mey occur. DC and AC electrical specifications do not apply when operating
ths device beyond its rated operating conditions,
Note 2: During current limit. or therrriallimR. the Input current wiihncraese if the input to output dHferenUal voRage exceeds BV. For Input to output dHferential
voltages in excess of BV ths input current should be IimRed to ± 20 mAo
Note 3: The LM6121 series buffers,contain currant limit and thermal shutdOwn to protect against fault conditions.
Note 4: Ths thermal resistance 6JA of the device in ths N package Is measured when solderad diractly to a printed clrcuR board, and the heet-slnking pins (pins I,
4, Sand 8) are connected to 2 square Inches of 2 0:<: copper. When Installed in a socket. the thermal resistance 6JA 01 the N peckage Is 84'C/W. Ths thermal
resistance 6JA of the device in the,M package is measured when soldered directly to a prlnjed circuit board, and the heat-sinking pins (pins I, 2. 6. 7. B. 9. 13. 14)
are connected to I square inch of 2 oz, copper. .
,
Note 5: Limits are guaranteed by testing or correlation.
Note 6: The Input is biased to 2.SV and VIN swings Vpp about this value. The input swing is 2 Vpp at all temperatures except lor the Av3 test at -SS'C where R is
reduced to I.S Vpp.

Note 7: Slew rate is measured with a ± ltV input pulse and son source impedance at 2S'C. Since voRage gain is typically 0.9 driving a son load, the output swing
will be approximately ±IOV. Slew rate is calculated for. transRions between ±SV levels on both rising and falling edges. A high speed measurement is done to
minimize device heating. For slew rate versus iunction temperature see typical performance curves. The input pulse amplRude should be reduced to ± 10V for
measurements at temperature extremes. For accurate measurements. the input slew rate should be at least 1700 VI"",.
Note 8: The test circuit consists 01 ths human body model of 120 pF in series with I soon.

Note 9: For specification limits over the full Militsry Temperature Range. see RETS812IX.
Note 10: Ths maximum power dissipation is a function of TJ(max)' 6Jp" and TA. The maximum alloWable power dissipation at any ambient temperature Is Po =
(TJ(max)-TI\l/6JA.

248

~----------------------------------------------------------------------------,~

Typical Performance Characteristics
Frequency Response
2

Frequency Response

~

, :1

I/"
1\

32~

I

~

j

10

1

!:
I

20

-6

~

-6

100

1200

,...

l/
10

1

1100

i

1000

~

900

V \

\

....N
....

......

20

50

E
....

800 ' - f- RLf5Cf

,\. o

~

N

1Rt.=li

~
....

700

100

-50

50

100

150

FREQUENCY (MHz)

JUNC110N 1tIIPERAl1JRE (Ge)

Large Signal Response
RL = 1k0

Large Signal Response
RL = 500

FREQUENCI' (MHz)

Overshoot vs Capacitive Load

~

en
....
N
........
iii:
en

.,.....

~

I
I

-4

o

50

Y

Rt.=5OA

....

1300

80

-2

1& ..

-I'

-6

Slew Rate vs Temperature

o

80

RL=!!

iii:

TJ = 25"C. unless otherwise specified

40

RL =CD

35

50

1;\
1 \

25
20
15
10

~

A

10

~

I
./

\

~

5

J

~10

0

1000

100

~

-5
-10

,

i\

I

IJ

TIllE (20 ..IdlY)

TIllE (20no!dIY)

-3 dB Bandwidth

Supply Current
70

....

....

~
~
O

10,000

20

12

I/"

-15

LOAD CAPACITANCE (pF)

1&

10

~

1\
\

I

-5

I;

\

15
~

-15

o
10

,

15

~

Slew Rate

1

80

1400

"L~"!l

50

r

i;'

""
""

RL =5011

8

I
200

o
o

'20
2

4

8 8 10 12 14 1& 18 20

o

SUPPLY VOlTAGE (tv)

SUPPl.Y VOlTAGE (tV)

Slew Rate

i

~

=

1000
800

,f

800

f

400

,L.

200

& 8 10 12 14 18 18 20

SUPPLY VOLTAGE (tV)

"

""(=-

./

-

!

5

§
i

20
1&
12

1\

= 1"'\

Vs~

\1It.=

\

,'-

0
12

16

20

•

24

'll:

o

o

4

28

1200

~

2

Power Bandwidth

1400

1:

o
o

4 6 8 10 12 14' 1. 18 20

2

24

1

..PUT AIIPL/lUDE (Vp-p)

5

10

20

50

100

FREQUENCY (MHz)
TL/H/9223-4

2-49

~
::&

.........

-~
--

~
.....
C'I

U)

~

r-~----------~----------~----------------~~~------------------------~

Typical Performance Characteristics
Input Return Gain (S11)

I

, 2

1I-+-I-l--I-l-/~-I---J 64
/

~

48

1

-11---,-+--+-+-+----,l~_\_l
\ 32 :::
I------I--I----I------I--I-II-T-l-/
;!
7
1 16 '"
-2
J
~~~~~WE~~~~~.L~o
1

2

5

10 20'

50

100

, Current LImit

10
I
200
8 I---,-IIAGNJ--.lTU---4-DE-+--I---I--lI80
6
180
4
\
140

80

1lAGN1IU

TJ =' 25"C, unless otherWise specified (Continued)

Forward Transmission
Gain (S12)

I

'\

-2

r

-4

-6

~

I

100 ~

1\80~

T

80 ...
40

1

t:1fiiit2:t:l=t:l2O

400

.po.,j,~-+-+-f-+-I

f-+-+-.....

300 1-+-+-+-+-+-+=
......""1,,--1--1
200

1-+-+-+-+-+-+---1-+--1

l00~~~~~~~~~

0
50100

1251020

F1IEOlJI'Ncy (11Hz)

~

1

~12O I I

2o

-8
-10

SOO~~~~-r~~~~

-~-25

0 25 50 75 100 125150

JUNCIION 1£IIPERATURE ("C)

FREQUENCY (11Hz)

TL/H/9223-5

Application Hints

If the, buffer's input-to-output differential voltage is allowed
to exceed 7V, a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6121 simplified schematic, the transistors involved are 01 and 03 for positive
inputs, and 02 and Q4 for negative inputs. If any current is
allowed to flow through these junctions, localized heating of
the reverse-biased junction will occur, potentially causing
damage. The effect of the damage is typically increased
offset voltage, increased bias current,' and/or degraded AC
performance. Furthermore, this will defeat the short-circuit
and over-temperature protection circuitry. 'Exceeding ±7V
input with a shorted output will destroy the device.
The device is bast protected by the insertion of the parallel
Combination of a 100 k.o. resistor (Rl) and a small capaCitor
(Ci) in series with the buffer input, and a 100 k.o. resistor
(R2) from input to output of the buffer (see Figure 1). This
network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and
the output has a ground-referred load of significantly less
than 100 k.o., a large input-to-output voltage may be prasent. Rl and R2 then form a voltage divider, keeping the
input-output differential below the 7V Maximum Rating for
input voltages up to 14V. This protection network should be
sufficient to protect the LM6121 fro';' the output of nearly
any op amp which is operated on supply voltages of ± 15V
or lower.

POWER SUPPLY DECOUPLING
The method of supply bypasSing is not critical for stability of
the LM6121 series buffers. However, their high current output combined with high slew rate can result in significant
voltage transients on the power supply lines if much inductance is present. For example, a slew, rate of 900 VI,...s into
a 50.0. load produces a di/dt of 18 AI,...s. Multiplying this by
a wiring inductance of 50 nH (which corresponds to approximately 1 Yz. of 22 gauge wire) result in a 0.9V transient. To
minimize this problem use high quality decoupling very close
to the device. Suggested values are a 0.1 ,...F ceramic in
parallel with one or two 2.2 ,...F tantalums. A ground plane is
recommended.
'
LOAD IMPEDANCE
The LM6121 is stable to any load when driven by a 50.0.
source. As shown in the Overshoot vs Csp8citive Load
graph, worst case is a purely capacitive load of about
1000 pF. Shunting the load capaCitance with a resistor will
reduce overshoot.
SOURCE INDUCTANC,E
Like any high frequency buffer, the LM6121 can oscillate at
high values of source inductance. The worst case condition
occurs at a purely capacitive load of 50 pF where up to
100 nH of source inductance can be tolerated. With a 50.0.
load, this goes up to 200 nH. This sensitivity may be reduced at the expense of a slight reduction in bandwidth by
adding a resistor in series with the buffer input. A 100.0.
resistor will ensure stability with source inductances up to
400 nH with any load.

100pF

JI
11

OVERVOLTAGE PROTECTION
The LM6121 may be severely damaged or destroyed if the
Absolute Maximum Rating of 7V b9tween input and output
pins is exceeded.

VIN

-",

'Y'

100k4
"

100k4
',,-

~-'M
TLlH/9223-6

FIGURE 1. LM6121 with Overvoltsge Protection

2-50

!i:

Application Hints
Figure 3 shows copper patterns which may be used to dissi-

HEATSINK REQUIREMENTS
A heatsink may be required with the LM6321 depending on
the maximum power dissipation and maximum ambient temperature of the application. Under all possible operating
conditions, the junction temperature must be within the
range specified under Absolute Maximum Ratings.

pate heat from the LM6321.

G)

N
N

....
.....

!i:
G)

Co)

....
N

T
H

~u..:....:~~~~~1.
~I'~----- L·------~·~I
TLlH/9223-9

14-PlnSO

v+

TL/H/9223-8

TUH/9223-10

FIGURE 2

'For best results, use L - 2H

FIGURE 3. Copper Heatstnk Patterns

The next parameter which must be calculated is the maximum allowable temperature rise, TR(max). This is calculated by using the formula:

Table" shows some values of junction-to-ambient thermal
resistance (9J-Al for values of Land W for 2 oz. copper:
TABLE II

TR(max) = TJ(max) - TA(max)
where: TJ(max) is the maximum allowable junction temperature
TA(max) is the maximum ambient temperature
Using the calculated values for TR(max) and P(max), the
required value for junction-to-ambient thermal resistance,
9(J-A), can now be found:
9(J-A) = TR(max)/P(max)
The heatsink for the LM6321 is made using the PC board
copper. The heat is conducted from the die, through the
lead frame (inside the part), and out the pins which are soldered to the PC board. The pins used for heat conduction
are:
TABLE I
Package

Pins

LM6321N

8-PinDIP

1,4,5,8

LM6321M

14-PinSO

1,2,3,6,7,
8,9,13,14

2-51

....
.....

!i:

8·PlnDIP

To determine if a heatsink is required, the maximum power
dissipated by the buffer, P(max), must be calculated. The
formula for calculating the maximum allowable power dissipation in any application is Po = (TJ(max)-TAl/9JA' For
the simple case of a buffer driving a resistive load as in
Figure 2, the maximum DC power dissipation occurs when
the output is at half the supply. Assuming equal supplies, .
the formula is Po = Is (2V+) + V+2/2 RL.

Part

....
N

G)

Package

L(ln.)

H(ln.)

8-PinDIP

2

0.5

47

14-PinSO

1

0.5

69

2

1

57

9J-ArC/W)

~ ~--------------------------------------------------------------------------~

~

I....
iii
N

t!lNational Semiconductor

LM6125/LM62251LM6325 High Speed Buffer

..-

General Description

Features

....:IE

The LM6125 family of high speed unity gain buffers slew at
800 V/p.s and hllve a small signal bandwidth of 50 MHz
while driving a 50n load. These buffers· drive ±3oo mA
peak and do not osoillate while driving larg!t capacitive
loads. The LM6125 contains unique features not found in
power buffers; these include· current limit, thermal shutdown, electronic shutdown, and an error flag that warns of
fault conditions.
These buffers are built with National's VIPTM (Vertically Integrated PNP) process which .provides fast PNP transistors
that are true complements to the. already fast NPN devices.
This adVanced junction-iSOlated process delivers high
speed performance without the need for complex and expensive dielectric isolati.on.

•
•
•
•
•
•
•

UI

High slew rate
High output current
Stable with large cap8citive loads
Curr!tnt and thermal limiting
.
Electronic shutdown
5V to ± 15V operation guaranteed
Fully specified to drive 50n lines

800 V/p.s

±300 mA

Applications
• Line Driving
• Radar
• Sonar

Simplified Schematic and Block Diagram

Pin Configurations

SlD
8 GND
TUH/e222-3

'Heat sinking pins.
Internally oonnectad to V -.

Order Number LM8225N
orLM8325N
See NS Package Number N14A

TUH/9222-1

TUH/9222-4
TUH/9222-2

Top VIew
Note: Pin 4 connected to case

Order Number LM8125H/883*
orLM8125H
See NS Package Number H08C

Numbers in () are for 14-pin N DIP.

'Available per 5982-9081501

2-52

Absolute Maximum Ratings (Note 1)
If MIlitary/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
36V(±18V)
±7V
Input to Output Voltage (Note 2)
Input Voltage

ESO Tolerance (Note 9)

Flag Output Voltage
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)

150'C/W
40·C/W

H Package
N Package
Maximum Junction Temperature (TJ)
Operating Temperature Range
LM6125
LM6225
LM6325
Operating Supply Voltage Range

±Vsupply

Output Short-Circuit to GNO
(Note 3)

Continuous
GNO :s;; Vflag :s;; + Vsupply
- 65·C to + 150'C

150'C
- 55·C to + 125·C
-40'Cto +85·C
O'Cto +70'C
4.75Vto ±16V

260·C

DC Electrical Characteristics

The following specifications apply for Supply Voltage = ± 15V, VCM = 0, RL ~ 100 kO and Rs
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25·C.
Symbol

±15OOV

8JA (Note 4)

Parameter

Conditions

Voltage Gain 1

RL

= 1kO, VIN =

±10V

AV2

Voltage Gain 2

RL

=

± 10V

AV3

Voltage Gain 3
(Note 6)

RL = 500, V+ = 5V
VIN = 2Vpp(1.eVpp)

Ves

Offset Voltage

RL

=

Ie

Input Bias Current

RL

= 1 kO, Rs = 10 kO

RL

= 500

500, VIN

=

LM6125

LM6225

LM6325

UmH
(Notes 5, 10)

Limit
(Note 5)

Limit
(Note 5)

0.990

0.980
0.970

0.980
0.9410

0.970
0.9410

0.900

0.880
0.800

0.860
0.820

0.850
0.820

0.840

0.780
0.7410

0.780
0.700

0.750
0.700

15

30
eo

30
80

50
100

mV
Max

1

4
7

4
7

5
7

p.A
Max

Typ

AVl

1 kO

RIN

Input Resistance

qN

Input Capacitance

Ro

Output ReSistance

lOUT"" ±10mA

ISl

Supply Current 1

RL

= 00

IS2

Supply Current 2

RL

= 00, V+ = 5V

ISID

Supply Current
in Shutdown

RL

= 00, V± =

VOl

Output Swing 1

RL

V02

Output Swing 2

V03

= 500 unless otherwise noted.

5

Units

VIV
Min

MO

3.5

pF

3

5
10

5
10

5
8

15

18
20

18
20

20
22

14

16
18

16
18

18
20

1.1

1.5
2.0

1.5
2.0

1.5
2.0

= 1 kO

13.5

13.3
13

13.3
13

13.2
13

RL

= 1000

12.7

11.5
10

11.5
10

11
10

Output Swing 3

RL

= 500

12

11

sa

11
9

10
9

V04

Output Swing 4

RL

= 500

1.8

1.6
1.3

1.6
1.4

1.6
1.41

Vpp
Min

PSRR

Power Supply
Rejection Ratio

V+

= 5V (Note 6)

70

60
4141

60
eo

60
eo

dB
Min

VOL

Flag Pin Output
Low Voltage

V±

=

VS/D

300
400

300
400

340
400

mV
Max

Flag Pin Output
High Current

VOH Flag Pin
(Note 7)

10
20

10
20

10
20

Max

IOH

±15V

±5Vto ±15V

= OV
=

15V

0.01

2-53

0
Max

mA
Max

±V
Min

p.A

DC Electrical Characteristics

(Continued)
The following specifications apply for Supply Voltage = ±15V, VCM = 0, RL ~ 100kO and Rs =;·500 unless otherwise,noted.
Boldface limits apply for TA = TJ = TMIN to TMAX;,all other limits TA = TJ = .25°C.

Symbol

Parameter

Typ

Conditions

VTH

Shutdown Threshold

VIH

Shutdown Pin
Trip Point High

VIL

Shutdown Pin
Trip Point Low

IlL

Shutdown Pin
Input Low Current

VS/O

Shutdown Pin
Input High Current

VS/O

Bi·State Output Current

Shutdown Pin = OV
VOUT = +5Vor -5V

IIH

10

LM6125

LM6225

LM6325

Limit
(Notes 5, 10)

Umlt
(NoteS)

UmH
(Note 5)

Units

2.0

2.0

2.0

2.0

2.0

2;0

V
Min

O.B

O.B

O.B

o.a

o.a

o.a

1.4

= OV

V

-0.07

= 5V

-0.05
1

-10

-10

-10

-20

IJ.A

-20.

~20

Max

-1'0

-10

-10

-20

-20

-20

50

50

100

2000

100

200

AC Electrical Characteristics

The following specifieationsapplyfor Supply Voltage = ±15V, VCM = 0, RL ~ 100 kO and Rs
Boldface limits apply for T A ':= TJ = TMIN to T MAX; all other limits T A = TJ = 25°C.

Symbol

Parameter

Typ

Conditions

=

SRl

Slew Rate 1

VIN

SR2

Slew Rate 2

VIIi! = ±11V, RL
(Note B)

SRs

Slew Rate 3

VIN
V+

BW

-3 dB Bandwidth

±11V, RL

= 1 kO
= 500

= 2 Vpp, RL = 500
= 5V (Note 6)
VIN = 100 mVpp
RL = 500,CL ~ 10pF

V
Max

IJ.A
Max

I'-A

= 500 unless otherwise noted.

LM6125

LM6225

LM6325

Limit
(Note 5)

Umlt
(Note 5)

Limit
(NoteS)

Units

550

550

5~

V/p.S
Min

30

30

30

1200
BOO
50
50

. MHz
Min

tr,tf

Rise Time
Fall Time

RL = 500,CL ~ 10pF
VO.= 100mVpp

B.O

ns

tpo

Propagation
Delay Time

RL
Vo

= 500,CL ~ 10pF
= 100mVpp

4.0

ns

Os

Overshoot

RL = 500,CL ~ 10pF
Vo = 100 mVpp

10

%

VFT

VIN, VOUT Feedthrough
in Shutdown

Shutdown Pin = OV
VIN = 4 Vpp, 1 MHz
RL = 500

-50

dB

GoUT

Output Capacltance
in Shutdown

Shutdown Pin

30

pF

Iso

Shutdown
Response Time

700

ns

= OV

,.

2·54

\
Electrical Characteristics (Continued)
Not. 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its rated operating conditions.
Not. 2: During current ,Iimil, th8rmal limn, or electronic shutdown the input currant will increase H the input to output differantial voltage exceeds 8V. See
Overvoltage Protection in Application Hints.

Note 3: The LM6125 series buffers contain current limn and thermal shutdown to protect against fauR conditions.

II

Note 4: For operation at elevated temperature, these devices mUS! be derated based on a thermal reslsiance of 8JA and TJ max, TJ = TA + 8JA Po. 8JC for the
LM6125H and LM6225H is 17"CIW. The thermal impedanos BJA of the devios in the N peckage is 4O'C/W when soldered directly to a printed circuR board, and the
heat-sinking pins (pins 3, 4, 5, 10, II, and 12) are connected to 2 square inches of 2 oz. copper. When installed in a socket, the thermal impedance 8JA of the N
package is 6O'C/W.

Note 5: Umits are gueran1eed by testing or correlation.
Note 8: The input Is biased to
reduced to 1.5 Vpp.

+ 2.5V, and VIN swings Vpp about this value. The input swing is 2 Vpp at all temperatures except for the Av3 test at - 55'C where n is

Note 7: The Error Flag is set (low) during cunent IlmR or thermal fault detection In addition to being set by the Shutdown pin. It Is an open-collector output which
requlres an extemal pullup resistor.
Note 8: Slew rate Is measured with a ± ltV Input pulse and 500 source impedenos at 25'C. Sinos voRage gain is typically 0.9 driving a 500 load, the output SWing
will be approximately ± I OV. Slew rate is calculated for transitions between ± 5V levels on both rising and falling edges. A high speed measurement is done to
minimize device heating. For slew rate versus junction temperature see typical performance curves. The input pulse amplitude should be reduced to ± I OV for
measurements at temperature extremes. For accurate measurements. the input slew rate should be at Iaast 1700 VI

,.S.

Note 8: The test circuR consists of the human body model of 120 pF in series with 15000.
Note 10: A military RETS specification is avellable on request. Attha time of printing, the LM6125H/883 RETS spec compiled with the 801df_ limits in this
column. The LM6125H/883 may also be procured as Standard Military Drawing specification #5962-908150IMXX.

Typical Performance Characteristics TA =
Frequency Respol18e
2

25°C, Vs = ± 15V, unless otherwise specified

Frequency Response

"""" II"

1:100

-2

~i 1:
I

/

J

o

I

fREQU£NC"(

«J

20

15
10

5

o

---

10

100

/
./

\
\
.1,

V

20

~

Ii

~ ~

o

..... .......

1000

900
900

700

100

Large Signal Response
(RL = 1 kO)

RL =...

.!II

25

~

1\=1

1100

-- 1\=5011
-50

0

-so

100

ISO

(11Hz)

Overshoot vs capacitive Load

30

40~

I

I

100

10

_k

-II

...... ..,.....,

1200

1\0:;504

1\
I ,
I
-II

Slew Rate vs Temperature

o

~

I\-IK

/\
/ \

15

g

15
A-

10

g

~

\

i

lil

-5
-10

I

\

I

\

-15
1000

10.000

10

r

~

~

\

Large Signal Response
(RL = 500)

:--

~
~

-5

o

-10

,

I

\

J

-15
lIIE (2Ons/dIv)

1IIIE (2Ono/dIY)

LOAD CAPACITANCE (pF)

TL/H/9222-5

2-55

•

U)

~
U)

:I;:;;

~~------------------------------------------------------------------------------,

Typical Performance Characteristics TA = 25°C. Vs =
Supply Current
20

i

::;!
U)
N
.-

- --

12

'SiewAate

- 3 dB Bandwidth
70

I

...

16

± 15V. unless otherwissspecified (Continued)

i

~

, 1600

I
I

I«JO

60

lilt '"GIl ..... r-

so

I,;

~
)/

L,=

~ 1000

..........

i

"'" RL =504

~

600
600
«JO

RL=504-f-

200

o

o

20
2 4 •

8 10 12 14 18 18 20

o

SUPPLY VOLTAGE (tV)

Slew Aate

~

i

~

800
600
«JO

.....

1\=

Input Aeturn Gain'
(811)

28

.,.

/I
If
IL

24

\
\

.......

Vs=fill
16

20

_II!!

.

"h=5

12

80

2

'1;1'"

200

o
o

SUPPLY VOLTAGE (tV)

Power Bandwidth

. 1200

2 4 6 8 10 12 14 16 18 20

SUPPLY VOLTAGE (tV)

I«JO

~ 1000

o
o

2468101214161820

5

I

10

so

20

I

-2

-

r\/
A
\
\

1

16

/

100

10

FREQUENCY (MHz)

INPUT AMPLITUDE (Vp-p)

./
.,.

p......

o

24

I

=

./

20 '

so

o

100

FRIXIOENCY (11Hz)

Forward Transmission

10 Gain (821)

200

I

8

I 80
I 60
I 4O~

MAGNITUDE

\

i

1,.-120

o

J\
/ \

-2
-4

I

-s
-8

PIIAS£

-10
I

20

I

\

.......
10

SOD

so

1

oo~

Current Limit
~

......

r--..
.......

:~

"

40
20

o

100
-75-SO-25 0 28

100

FR£QUENCY (11Hz)'

so

75 100 125 ISO

JUHClIOH TEMPfRATURE (CC)
Tl/H/9222-7

2-56

\\
,-----------------------------------------------------------------------------, r-

a:

Typical Connection Diagram

....
Q)

~
......
r-

(+5 to +15V)
y+

i:

~

IO.1 #

!i:

CIIOS
OR

m

~

BUFFERED
OUTPUT

INPUT

HIGH TO
ENABLE

y-

(0 to -15V)
47K
TL/H/9222-6

Application Hints
POWER SUPPLY DECOUPLING

OVERVOLTAGE PROTECTION

The method of supply bypassing is not critical for stability of
the LM6125 series buffers. However, their high current output combined with high slew rate can result in significant
voltage transients on the power supply lines if much inductance is present. For example, a slew rate of 900 V/p.s into
a 500 load produces a di/dt of 18 Alp.s. Multiplying this by
a wiring inductance of 50 nH results in a 0.9V transient. To
minimize this problem use high quality decoupling very close
to the device. Suggested values are a 0.1 p.F ceramic in
parallel with one or two 2.2 p.F tantalums. A ground plane is
recommended.

The LM6125 may be severely damaged or destroyed if the
Absolute Maximum Rating of 7V between input and output
pins is exceeded.
If the buffer's input-to-output differential voltage is allowed
to exceed 7V, a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6125 simplified schematic, the transistors involved are 01 and 03 for positive
inputs, and 02 and Q4 for negative inputs. If any current is
allowed to flow through these junctions, localized heating of
the reverse-biased junction will occur, potentially causing
damage. The effect of the damage is typically increased
offset voltage, increased bias current, andlor degraded AC
performance. The damage is cumulative, and may eventually result in complete device failure.
The device is best protected by the insertion of the parallel
combination of a 100 kO resistor (R1) and a small capacitor
(C1) in series with the buffer input, and a 100 kO resistor
(R2) from input to output of the buffer (see FlfJure 1). This
network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and
the output has a ground-referred load of significantly less
than 100 k~, a large input-to-output voltage may be present. R1 and R2 then form a voltage divider, keeping the
input-output differential below the 7V Maximum Rating for
input voltages up to 14V. This protection network should be
sufficient to protect the LM6125 from the output of nearly
any op amp which is operated on supply voltages of ± 15V
or lower.

LOAD IMPEDANCE
The LM6125 is stable into any load when driven by a 500
source. As shown in the Overshoot VB Capacitive Load
graph, worst case is a purely capacitive load of about
1000 pF. Shunting the load capacitance with a resistor will
reduce overshoot.

SOURCE INDUCTANCE
Like any high-frequency buffer, the LM6125 can oscillate at
high values of source inductance. The worst case condition
occurs at a purely capacitive load of 50 pF where up to
100 nH of source inductance can be tolerated. With a 500
load, this goes up to 200 nH. This sensitivity may be reduced at the expense of a slight reduction in bandwidth by
adding a resistor in series with the buffer input. A 1000
resistor will ensure stability with source inductances up to
400 nH with any load.

ERROR FLAG LOGIC

l00pF

The Error Flag pin is an open-collector output which requires an extemal pull-up resistor. Flag voltage is HIGH during operation, and is LOW during a fault condition. A fault
condition occurs if either the intemal current limit or the
thermal shutdown is activated, or the shutdown (SID) pin is
driven low by extemallogic. Flag voltage retums to its HIGH
state when normal operation resumes.
If the SID pin is not to be used, it should be connected to

l00k4

TL/H/9222-6

V+.

FIGURE 1. LM6125 with Overvoltage Protection
2-57

Section 3
Voltage Comparators

Section 3 Contents
Voltage Comparators Definition ofTerms ............................................ ..
Voltage Comparators Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF111/LF211/LF311 Voltage Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2111/LH2311 Dual Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM106/LM306 Voltage Comparators.................................. ...............
LM111/LM211/LM311 Voltage Comparators ..........................................
LM119/LM219/LM319 High Speed Dual Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators
LM160/LM360 High Speed Differential Comparators....................................
LM161/LM261/LM361 High Speed Differential Comparators.............................
LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators. . . . . . . . .
LM612 Dual-Channel Comparator and Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference. . . . . . . . . . . .
LM615 Quad Comparator and Adjustable Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM710 Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM760 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1801 Battery Operated Power Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM6511 180 ns 3V Comparator............................................ ..........
LMC6762 DuallLMC6764 Quad Micropower, Rail-to-Raillnput and Output CMOS
Comparator............ ........... ..... .. ...................... ...... ...........
LMC6772 Dual, LMC6774 Quad, Micropower Rail-to-Raillnput and Open Drain Output CMOS
Comparator .....................................................................
LMC7211 Tiny CMOS Comparator with Rail-to-Raillnput ................................
LMC7221 Tiny CMOS Comparator with Rail-to-Raillnput and Open Drain Output ...........
LP311 Voltage Comparator..................................... ............ .........
LP339 Ultra-Low Power Quad Comparator................... ..... .....................

3-2

3-3
3-4
3-5
3-14
3-17
3-21
3-35
3-42
3-54
3-58
3-63
3-72
3-80
3-96
3-107
3-111
3-118
3-126
3-131
3-132
3-133
3-144
3-145
3-149

tflNational Semiconductor

Voltage Comparators
Definition of Terms
Input Bias Current: The average of the two input currents.

Reaponse TIme: The interval between the application of an
input step function and the time when the output crosses
the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input
level just barely in excess of that required to bring the output
from saturation to the logic threshold voltage. This excess is
referred to as the voltage overdrive.
Saturation Voltage: The low-output voltage level with the
input drive equal to or greater than a specified value.

Input Offset Current: The absolute value of the difference
between the tWo input currents for which the output will be
driven higher than or lower than specified voltages.
Input Offset Voltage: The absolute value of the voltage
between the input terminals required to make the output
voltage greater than or less than specified voltages.
Input Voltage Range: The range of voltage on the input
terminals (common-mode) over which the offset specifications apply.

Strobe Current: The current out of the strobe terminal
when it is at the zero logic level.

logic Threshold Voltage: The voltage at the output of the
comparator at which the loading logic Circuitry changes its
digital state.
Negetlve Output Level: The negative DC output voltage
with the comparator saturated by a differential input equal to .
or greater than a specified voltage.

Strobe Output Level: The DC output voltage, independent
of input conditions, with the voltage on the strobe terminal
equal to or less than the specified low state.
Strobe "ON" Voltage: The maximum voltage on either
strobe terminal required to force the output to the specified
high state independent of the input voltage.

Output Leakage Current: The current into the output terminal with the output voltage within a given range and the
input drive equal to or greater than a given value.
Output R....tance: The resistance seen looking into the
output terminal with the DC output level at the logic threshold voltage.

Strobe "OFF' Voltage: The minimum voltage on the strobe
terminal that will guarantee that it does not interfere with the
operation of the comparator.
Strobe Release Time: The time required for the output to
rise to the logic threshold voltage after the strobe terminal
has been driven from zero to the one logic level.
Supply Current: The current required from the positive or
negative supply to operate the comparator with no output
load. The power will vary with input voltage, but is specified
as a maximum for the entire range of input voltage conditions.
Voltage Gain: The ratio of the change in output voltage to
the change in voltage between the input terminals producingil

Output Sink Current: The maximum negative current that
can be delivered by the comparator.
Positive Output Level: The high output voltage level with a
given load and the input drive equal to or greater than a
specified value.
Power Consumption: The power required to operate the
comparator with no output lOad. The power will vary with
signal level, but is specified as a maximum for the entire
range of input Signal conditions.

3-3

til

~'.

National Semiconductor

Voltage Comparators Selection Guide

Response
Tlme(Typ)
ns

Vos
mV(Max)

Is

18

mA(Max)

nA(Max)

Special Features

T A = 25"C (Notes 1 and 2)
LM6685
LM6687
LM360
LM361
LM306

2.6
2.6
14
14
28

1.9
1.9
5
5
5

23
38
32
20
10

9,000
9,000
20,000
30,000
25,000

LM319
LM6511
LF311
LM311

80
180
200
200

8
5
10
7.5

12.5
3.5
7.5
7.5

1000
130
0.15
250

High Speed Dual
.
.

LH2311
LP311
LM339
LM392
LM393

200 '
1200
1300
1300
1300

7.5
7.5
5
10
5

7,5
0.3
2.5
1
2.5

250
100
250
400
250

Dua1LM31j·
Low Power Single
General Purpose.Quad
One Comparator Plus One Op Amp
General Purpose Dual

LM2901
LM612

1300.
1500

7
5

2.5
0.250

250
35

LM613

1500

5

1

35

LM615

1500

5

0.600

35

Automotive Quad
Super-Slock™
Dual Comparator + Reference
Super-Block™,
Dual Comparator + Dual Op Amp
+ Reference
Super-Block™
Qua~ Comparator + Reference
Automotive Dual

"

I'
LM2903

Single,. Very High Speed ECL Output
Dual, Very High Speed ECL Output
High Speed, Complementary Outputs
High Speed w/Strobes
High Speed, High Drive

FETh1put
General Purpose Single

1500

7

2.5

250

LP365
LP339
LMC676214

4000
8000
4000

6
5
5

0.275
0.1
0.Q1

75
25

LMC6762

4000

5

20pA

0.02 pA (typ)

MicroPower Dual

LMC6764

4000

5

4Ol'-A

0.02 pA (typ)

MicroPower Quad

LMC6772

4000

5

2Ol'-A

0.02 pA (typ)

MicroPower Dual, Open Drain Output

LMC6774

4000

5

40pA

0.02 pA (typ)

MicroPower Quad, Open Drain
Output

LMC7211

4000

15

7pA

0.02 pA (typ)

TinyPak™ SOT23-5 MicroPower
Comparator

LMC7221

4000

15

71'-A

0.02 pA (typ)

TinyPak 8OT23-5 MicroPower
Comparator, Open Drain Output

'.

\

Programmable Quad
Low Power Quad
MicroPower Rail-to-Raillnput &
Output CMOS Comparator

Note 1: Datasheet should be referred to for test condHions and more detallad Information.
Note 2: This selection guide should be used to select for Responsa Time required. Industrial and Military Temperature Range types are available. The DC specs
are for the lowest Commercial Grade available.

3-4

I!fINational Semiconductor

E;;
.....
.....
.....
......

LF111/LF211/LF311 Voltage Comparators

N
.....
.....
......

r,
on

General Description
The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors. Designed to operate over a 5.0V to ± 15V range the LF111
can be used in the most critical applications.

Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents. See the "application
hints" of the LM311 for application help.

Features

The extremely low input currents of the LF111 allows the
use of a simple comparator in applications usually requiring
input current buffering. Leakage testing, long time delay circuits' charge measurements, and high source impedance
voltage comparisons are easily done.

• Eliminates input current errors
• Interchangeable with LM111
• No need for input current buffering

Schematic Diagram
IALANCE/STROI£

•

•3
311

IALAIiCE

..

•

Note: 00 Not Ground Strobe Pin or
Balance/Strobe Pin. See Note 7.

301

• v'

.,.4.

OUTPUT

."
130

...
210

015

...

."

III

20D

R14
2k

.n

•
4
y-

Connection Diagram

GNO

Tl/H/5703-2

Metal can Package
v'

6

BALANCE/
STR08£

v-

Tl/H/5703-1

Top View

Order Number LF111H, LF111H·MILor LF311H
See NS Package Number HOSe
3-5

5..........

......

~
.....

......
~
.....
.........
~

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
OffIce/Distributors for availability and spaclflcatlons.
,.
(Note 8)
LF111/LF211
LF311
36V
36V
Total Supply Voltage (V84)
Output to Negative Supply
50V,
40V
Voltage (V74)
Ground to Negative Supply
30V
30V
Voltage (V14)
±30V
±30V
Differential Input Voltage
±15V
±15V
Input Voltage (Note 1)
Power Dissipation (Note 2)
500mW
500mW
Output Short Circuit Duration
10 seconds 10 seconds

LF111/LF211
Operating Temp .
Range
LFll1 '
LF211
LF311
Storsge.Temp.
Range

LF311

- 55°C to + 125°C
- 25°C to + 85"C
O"Cto +70"C
-65°C to + 150"C

Lead Temp.
(Soldering,
10 seconds)
ESD rating to be determined.

-65"Cto +15O"C

26O"C

26O"C

Electrical Characteristics (LF111/LF211) (Note 3)
Parsmeter

Condmons

Input Offset Voltage (Note 4)

TA= 25°C, RS

Input Offset Current (Note 4)

TA=25~C,

Min

s: 50k

VCM=O (Note 6)

Input Bias Current

TA=25°C, VCM=O (Nota 6)

Voltage Gain

TA=:25"C

40

Typ

Max

Unlta

0.7

4.0

mV

5.0

25

pA

20

50

200

Response Time (Note 5)

TA = 25°C

200

saturation Voltage

VINS: -5;0 mV,IOUT=50 rnA, TA=25°C

0.75

Strobe On Current

TA=25°C

3.0

Output Leakage Current

VINS:5.0 mV, VOUT=35V, TA=25"C

0.2

Input Offset Voltage (Note 4)

Rs

Input Offset Current (Note 4)

Vs= ±15V, VCM=O (Note 6)

Input Bias Current

Vs= ± 15V, VCM=O (Note 6)

rnA
nA

6.0

mV

2.0

3.0

nA

5.0

7.0

nA

±14

13.0

V

0.4

V

0.1

0.5

/LA

TA=25°C

5.1

6.0

rnA

TA=,25"C

4.1

5.0

rnA

V+ ~4.5V, V- =0
VINS: -6.0 mV, IOUTS:8.0 rnA

OutpUt !-eakage Current

VIN~5.0

Positive Supply Current
Negative SUPllly Current

V

0.23

Input Voltage Range
saturation Voltage'

Note 1: This raUng applies for

ns
1.5

10

s: 50k

-13.5

pA
VlmV

rnv, VOUT=35V

±15V supplies. The positive input voltage limit Is 30V above the negative supply. The negative Input voltage limit Is equal to the

negative supply voltage or 30V below the positive supply, whichever Is less.
Note 2: The maximum iunctlon temperature of the LF111 Is + l5O"C, the LF211 is· + I100C and the LF311 Is +85"C. For operating at elevated temperatures,
devices in'the HOB package must be derated based on a thennaI resistance of + 85"C/W junction to ambient (In 400 linear feeIImin air flow), + 185"C1W junction
to ambient (in staUc air), or + 20"C/W iunctlon to case.
Nota 3: Thess specifications apply for Vs= ±15V, and the Ground pin at ground, and-55'C:<:TA:<: + 125'C for the LFlll, unlessolherwlae alated. With the
LF21 \, however, all temperature specifications are limited to -25'C:<:TA:<: ±85'C and for the LF311 O"C:<: TA:<: + 70"C. The offlIet voltage, offlIet currant and bias
currant speciflcations apply for any supply voltage from a single 5.0V supPly 'up 10 ± 1fill supplies.
Note 4: The offlIet voltages and offlIet currants given are the maximum values required to drive the output within a volt of alther supply with a 1.0 mA load. Thus,
thasa perameters define an error band and take into account the worst case effects of voltage gain and Input Impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step .;ru. 5.0 inV ov6Idrive.
Nota 6: For Input voltages greater than 15V above the negative supply the bias and offlIet currants will increase-eee typical performance curves.
Note 7: This specificelion gives the currant that must be drawn from the strobe pin to ensure the output Is properly disabled. Do not short the strobe pin to grqund;
it should be currant driven at 3 to 5 rnA,
Note 8: Refer to RETSFlll X for LFlll H military speclficetions.

"

3-6

E;;
.....
....

Electrical Characteristics (LF311) (Note 3)
Parameter

Min

Conditions

Typ

Max

Units

Input Offset Voltage (Note 4)

TA=25'C, Rs,;;50k

2.0

10

mV

Input Offset Current (Note 4)

TA=25'C, VCM=O (Note 6)

5.0

75

pA

Input Bias Current

TA = 25'C, VCM = 0 (Note 6)

25

150

pA

Voltage Gain

TA=25"C

200

Response Time (Note 5)

TA=25'C

200

Saturation Voltage

VIN,;;-10mV, lOUT = 50 mA, TA=25'C

0.75

Strobe On Current

TA=25'C

3.0

Output Leakage Current

VIN~10mV, VOUT=35V, TA=25'C

0.2

Input Offset Voltage (Nota 4)

Rs';;50k

Input Offset Current (Note 4)

Vs= ± 15V, VCM=O (Note 6)

1.0

nA

Input Bias Current

Vs=15V, VCM=O (Note 6)

3.0

nA

+14
-13.5

V
V

Input Voltage Range

........r-

."
N

.....

.........

VlmV
ns
1.5

V
mA

10

nA

15

mV

V+~4.5V,V-=0

Saturation Voltage

VIN';; -10 mV, IOUT';;S.O mA
Positive Supply Current

TA=25'C

0.23

0.4

V

5.1

7.5

mA

Negative Supply Current
TA=25'C
4.1
5.0
mA
_ 1: This rating applies for ± 15V supplies. The positive input voltage limn is 30V above the negative supply. The negative i"l"'l vonBge lim" is equal to the
negative supply von&ge or 30V below the poaiIive supply, whichever is less.
_
2: The maximum lunction temperature of the LFll1 is + 15O'C, the LF211 is + 11 O"C and the LF311 is + 85'C. For operating at elevated temperatures,
devices In the HOB package ,must be derated based on a thermal resistance of + 165"CIW, junction to ambient, or + 2O"C/W, junction to case.
_
3: These specifications apply for Vs= ±15V and -55'C<:TA<: + 125"C for the LFlll, unless otherwise stated. With the LF211, however, all temperature
spaclffcations are limited to -25"C<:TA<: +85"C and for the LF311 O'C<:TA<: +70'C. The offset voltage, offset current and bias current specifications apply for
any supply voltage from a singla 5.0 mV supply up to ± 15V supplies.
_
4: The offset voltages and offset currents givan are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus,
these parameters daftna an error bend and take Into aocount the worst case effects of voltage gain and input impedance.
_
5: The response tima specified (see definitions) is for a 100 mV Input step with 5.0 mVoverdrive.
_
8: For input vobges graater than 15V above the negative supply the bias and offset currents will increase-see typical performanos c~rves.
_
7: This specification gives the current that must be drawn from the strobe pin to ensure the output Is properly dissblad. Do not short the strobe pin to ground;
H shoUld be current driven al 3 to 5 mAo

Auxiliary Circuits

/

Offset Balancing
R2

.f.::

r::

--+

§

§Ie

'

I~V+

~)l...

2-V

-J

&

TTL
STAOiE
INOTE 11

01

2N2222

v'

l.~

1

LFlll

6

LF1H

Strobing

2.+

..... '"

2

Increasing Input
Stage Current"

;>

2..._

TVH/5703-15
·Increases typical common

mode slaw from 7.0V/p.s to

• AI
TLlH/5703-13

18V1,..

' . 1.1111

Y
TLlH/5703-14

Noteo Do Not Ground Strobe Pin.

3·7

E;;
W
.....
.....

-....
-...._

....~....
~
......

I I.

r-------------------------------------------------------------------------------------~

Typical Performance Characteristics
Input Bias Current
vs Common Mode
10.000

Input Bias Current'
vs Temperature

Transfer Function

ID.DID

~T. -'2S'C

,

i,.8tMI
~

!

~o

~~

B 1DB
1/

",

I.

V-

U

4.D
I~PUT

= 4.0Ii.D
c

rrv

1

~

~

,u,.V

!; 3.0

. I.'
i.
.
..~,

rl

24

26

I

..
!..
.
I;
>

I

0

1i.IV

0

2DrV.;

2.1

U"V

z.o ..

1.0

u

i:
..

~

0

o

-5.'

i

-15

y'

,/

lAo

'£~

~ -5D

=-1.

z.o

I~

3.1

TA .. zloe

I

II:

B

.!!
.
,.t:

118

41

D••

~
I--

,A,

f- ~~~

,

'~/IICUIT·CURRE.T

11

DUTPUTVDLTADE (VI

TI :\

15

UmV
-,2.DmV

k-

OJ
IA

.

~~~~ 17

.

D.J

5

1.1

o

D.I

~~ ~T~'~I'C
o

,10

i\"

..
UAi
~
o

D.2i

••

r-

3.'

1.0

,

C

.! 4.•

Iii

..

I

3••
2.1
1.1

0

D

5.1,

11

11

21

IUPPL YVDLTADE IVI

3-8

50

" Supply Current

Tl

j

r1

I.D

~

i •.0

"

Ii

B

i

Vo -,15V

1 I
1 1 1 1

4.1

POSITIVE SUPPL,..!:"~
..... ~UTPUTLDW

" "-...I'

t-::A~~:E~PPL """"

2.1 t-,UTFr T jlGH 1

o
4.1

Supply Current

IiB

It

30

I ,I

""""

21

31

J-..
i"'" '

I

-15 -31 -11 U 21 41 II 15 101 121

TE_RATURE rei

5.0

1.5~

m
YOUT

Vol. ±1~V
T'I'I'~C f1.0

20

OUTPUT CURREIT IonAI

~LFllly_

50

D.B

•

rs; f--

21i!..

101

1.1

0.1
...

/III

TA .. tI5°e :--".

0.7

y'

-l--

0.7

D.3

ZO

••

1

Ii.D

1,0

1.1

5'" D.2

Response Time for Various
Input OVerdrives

i

4.D

~~,

II:

i

. ~.~

'"

II

10

!..
~

y'

Output Limiting Characteristics

121

·r
1"125"1- r-

o -1i.D
-11
-15

1 fA
V.-'"~t"zloe

i

i

!;

2.

LF11I

=: •

~

o-"IiV- r-

I;

You,

Z....V

-10

140

; ::

Z1mV

&.D

-u

TlME~

Response Time for Various
Input Overdrives
1i.0m

~

t-o

TIIIEII'~

..

'ii

Output Saturation Voltage
~

You,

:F1I1

to

-1DO

8.1

10

-1.1

..

~.
~

VI,.

-50

>

PI

EIUTTER
FOLLOWER
OUTFUT

DIFFERENTIAL INPUT VOLTAGE I.VI

I.DV

Tl

T

4.0
3.0

..~ •
!:
;

You,

;'111

50

21

1.1

T

&.0

i.

~~

V. III

101

30

Response Time for Various
Input Overdrives

E

vo·.
T•• zre

40

TEMPERATURE rei

1 1

2.DmV ~1

0

~

ZD

VI" ±11iV f TA .. 2iO C

1/

5.1 "v

2.1

0

c

16

COMMON MODE VOLTAGE IVI

Response Time for Various
Input Overdrives

E

r;

12

,-I •

o

1.0
-51i -31-11i Ii.o ZIi 41i Ii IS Iii 125

I,D

y++--

18

..

;

_ _ LOUlfUl

18
EVO-ilIiV
VCM -0

r-----------------------------------------------------------------------------~r

"............

Typical Applications
100 kHz Free RunnIng Multlvlbrator

v·· 5.0V

Rl
Hk

......
r
~
....
....
......

Crystal Oscillator

R5

v·· 5.0V

Rl
lOOk

I.Ok

R4

5........

2.Ok

R3
10k

SQUARE
_ ........-... WAVE
OUTPUT"

>.;...-.- OUTPUT

R2
lOOk

RZ

2Dk

RJ
50k
TL/H/5703-7

'TTL or OTL fanout of two.

TL/H/5703-3

10 Hz to 10 kHz Voltage Controlled Oscillator
Cl

I."f
cz
150pF

Rl
10k
5.ImV~5.0V

5.• mv~-:.:~

--..

TRIANGULAR

>--...~--- WAVE
OUTPUT

RZ
Uk

....~

----+---~N'Ir_--_4

D3
lN151

R3
33Il10

R4

D4

41k

lN151

RI

Z!lk'

-15V

~-----~------------------------...~--~-----------------. .~
"IV

RI

SQUARE
WAVE
OUTPUT

1Il1o

'Adjust for symmetrical aquarewave time when Y,N

~

S.O mY.

RIO

tMinimum capacitance 20 pF. Maximum frequency SO kHz.

I.Ok

RII
I.Ok

-IIV
TL/H/5703-5

3-9

....
S
....
....

~ r---------------~~--~------------~------------------------------~~----------~------_,

Typical Applications (Continued)
Frequency Doubler

....
........~
....
....

5

v+ . . 6.IV

RI
18k

'R3
lNPUT--~~--=-I

Uk R4
lOOk

RI
Uk

OUTPUt

AI.
111... •
Frequency range:

Input-5.0 kHz to 50 kHz
Output-l0 kHz to 100 kHz

TUH/5703-8

Zero Crossing Detector Driving MOS Switch
r------e~------_4.--v·

Zero Crossing Detector Driving MOS Logic

INPUT

TUH/S700-9

Y-·-II'

Compar~or.and

Driving Ground·Referred Load

r---"-v·

DI
IN4III

TUH/5703-10

. _.

Solenoid Driver

V· __.-I.~

_~:"UT

TUH/5703-11
'Input polarity is raversad when using. pin 1 as outpUt

, TUH/S700-12

3-10

r-

....
....
........

."

Typical Applications (Continued)
Switching Power Amplifier

!;;

r---~~------~----~t-v+

N
....
.....

....r-

HI
III

..

~
.....
.....

R7

HZ
llIk

v-

~--------------------------~t-aU~UT

OJ

21113735

CI

'.bF

RS
3lII

R4

.7

HI
III

...._--t---..

--4.... v-

TL/H/5703-16

Switching Power Amplifier

..
I

RS

510

R4
30Il10

R6

RI
39k

R7

RI
I5Ic

m

m

REfERENCE

RU
3II1II<

RI.
510

I"PUT
TLlH/5703-17

3-11

9- r-------------------------------------------------------------------------------~--------_,
9-

~

Typical Applications (Continued)

~

.....

Relay Driver with strobe

99-

v"

5.....
999-

~

• Absorbs Inductive kickbeck of relay
and protects Ie from severe voltage
transients on V+ + line.

TLlH/5703-18
Note: Do Not Ground Strobe Pin.

Positive Peak Detector
+15v

IN'UT-~,.,...

&
>-.........
OUTPUT

HI
-15V

\.1M

'Solid tantalum

TLlH/5703-19

Negative Peak Detector
+15V

HZ
!.1M

>~""OUTPUT

RI
Uk

INPUT-.y,~"""'f

'Solld tantalum

-I5V

TL/H/5703-20

3-12

,-----------------------------------------------------------------------------, ."
....
Typical Applications (Continued)
....
........
~

5........

TTL Interface with High Level Logic

_--+---.-v· os.ov

....

!;;

R3
Uk

RI

w
....
....

248k
INPUT·..JIIN\r004"'--"--f~

TO TTL
lOGIC

RZ
47k
R4

12k

'Values shown are for a 0 to aov logic swing and a 15V threshold.
tMay be added to control speed and reduca suscaptibillty to noise spikes

TLiH/5703-21

Using Clamp Diodes to Improve Response
FROM
lAOOER_"-"""'4.--"';;'-I
NETWORK

TTl
OUTPUT

01

02

AI

---4....- . -

ANALOG INPUT

TLiH/5703-6

•
3-13

,-

,-

r-----------------~------------------------------~----------------------------~

CO)
('II

:I
.,.. IfINational Semiconductor
,,-

,('II

3 LH2111/LH2311

,
Dual Voltage Comparators

General Description

Features

The LH2111 series of dual voltage comparators: are two
LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal. tracking,
lower weight, reduced insertion cost and smaller size than
two singles. For additional information see the LM111 data
sheet and National's Linear Application Handbook: .

• Wide op~rating supply range
•
•
•
•

±15V to a
single +5V

8nA

Low input currents
High sensitivity
Wide differential input range
High output drive

10,..V
±30V
50 mA, 50V

The LH2111 is specified for operation over the - 55°C to'
+ 125°C military temperature range. The LH2311 is specified for operation over the O"C to 70"C temperature range.

Connection Diagram
INV INPUT

OUTPUT

NON-INV INPUT

GND (EMITTER)

BAL/STROBE 0 - - - '
BALANCE 0 - - - - - '

V-o----..
INV INPUT

OUTPUT

NON-INV INPUT

10 GND (EMITTER)

BAL/STROBE 0 - - - '
BALANCE ~---'
TLlK/10116-1

Order Number LH2111D, LH2111D/883 or LH2311D
See NS Package Number D16C

3-14

r-

:::E:

Absolute Maximum Ratings

....
....
....
....
N

Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range LH2111
LH2311
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

If Military/Aerospace specified devices are required,
please· contact tbe· National Semiconductor Sales
Office/Distributors for availability and specifications.
Total Supply Voltage (V+ - V-)
36V
50V
Output to Negative Supply Voltage (VOUT - V-)
Ground to Negative Supply Voltage (GND - V-)
30V
Differential Input Voltage
±30V

±15V
500mW
10 sec
- 55'C to + 125'C
O"Cto +70'C
- 65'C to + 150"C
300"C

~

N

....
....
Co)

Electrical Characteristics Each Side (Note 3)
Parameter

limits

Conditions

Unlta

LH2111

LH2311

Input Offset Voltage (Note 4)

TA = 25'C, Rs s; 50k

3.0

7.5

mVMax

Input Offset Current (Note 4)

TA

= 25'C
TA = 25'C
TA = 25'C
TA = 25'C

10

50

nAMax

100

250

nAMax

200

200

VlmVTyp

200

200

nsTyp

1.5

1.5

V Max

3.0

3.0

mATyp

10

50

nAMax

4.0

10

mVMax

Input Bias Current
Voltage Gain
Response Time (Note 5)
Saturation Voltage

VIN s; -5 mV,lOUT
TA = 25'C

Strobe On Current

TA

Output Leakage Current

VIN ~ 5 mV, VOUT
TA = 25'C

Input Offset Voltage (Note 4)

Rs

= 50 mA

= 25'C

S;

= 35V

50k

Input Offset Current (Note 4)

20

70

nAMax

Input Bias Current

150

300

nAMax

Input Voltage Range

±14

±14

VTyp

0.4

0.4

V Max

6.0

7.5

rnA Max

5.0

5.0

rnA Max

Saturation Voltage

V+ ~ 4.5V, V- = 0
VIN s; -5 mV,lSINK s; 8 rnA

Positive Supply Current

TA

Negative Supply Current

TA

= 25'C
= 25'C

Note 1: This rating applies for ±1SV supplies. The posHive Input voltage limit Is 30V above the negative supply. The negative Input voltage IlmH is equal to the
negative supply voltaga or 30V below the positive supply, whlchever Is less.
Note 2: The maximum junction temperature Is 1SO"C. For operating at eleveted temperatures. devices in the flat package, the derating is based on a thermal
resistance of 185"C/W when mounted on a 'hrinch-thick epoxy glass board with O_03~nch-wide, 2 ounce copper conductor. The thermal resistance of the dual-inline packaga is 100"CIW, junction to ambient
Note 3: These specifications apply for Vs - ±1SVend -SS"C <: Til <: 125"C for the LH2111, and O"C <: Til <: 70"C for the LH2311, unless otherwise stated_
The offset voltage, offset current and bias current specifications apply for any supply voltage from a single SV supply up to ± 1SV supplies. For the LH2311,

VIN = ±10mV.
N_ 4: The offset voltages and offset currents given are the maximum values required to drive the output within a voH of either supply wHh a I mA load. Thus,
these parameters deflne an error bend and take into account the worst case effects of voltage galn and input impedance.
Note 5: The response time specified Is for a 100 mV Input step with S mVoverdrive.
Note 6: RETS21 I 1X for the LH21 1I 0 and LH21 11 F military specifications.

3-15

•

..- r-------------------------------------------------------------------------------------,
~

::J:

Auxiliary Circuits

I'. ,.

...I

......
.-

··Incr'easlng Input Stege Cu.rreilt·

.Strobing

Offset Balancing

.1

~
.-

R2

N

3k

::J:

...I

TUK/l0116-4

'Increases typical common mode slew from

Rl

7.0 V/p.s

lk

TUK/l0116-2

to 18 V/p.s

TLlKl10116-S

Using Clamp Diodes to Improve Reepon..s

Driving Ground-Referred Load
~--t-V+

FROM

LAOOER ~P--....-";;';"-I

m

NETWORK

INPUTS

OUTPUT

Dl

D2
Rl

.....- ....- ....- ANAlOG INPUT
Tl/K110116-6
Tl/K/l0116-5

Strobing off Both Input· and Output Stages

Comparator and Solenoid Driver

FROM D/A NETWORK

Dl
lN4001

ANALOG

INPUT

m

STROBE

Tl/K/l0116-7

TLlK110116-8

'TYPlcall~Put current is 50 pA wiU,·lnputs strobed off

TTL Interface with High Level Logic
r - - - - t - - -.....- v+=5V
R5
lk

>_15..;.,_8...._ TO
2,10

m

LOGIC
'Values shown are for a OV to
SOV logic swing and a 15V
threshold.
tMay be added to control
speed and reduca susceptibility to noise spikes.
TLlK/l0116-9

tflNational Semiconductor

LM 106/LM306 Voltage Comparator
General Description
The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and
drive a digital load. They are equivalent to an LM71 0, combined with a two input NAND gate and an output buffer. The
circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24V
at currents as high as 10 mA.
The devices have short-circuit protection which limits the
inrush current when it is used to drive incandescent lamps,
in addition to preventing damage from accidental shorts to
the positive supply. The speed is equivalent to that of an
LM710. However, they are even faster where buffers and
additional logic circuitry can be eliminated by the increased
flexibility of the LM106 series. They can also be operated
from any negative supply voltage between -3V and -12V
with little effect on performance.

The LM106 is specified for oPeration over the -SS·C to
+ 12S·C military temperature range. The LM306 is specified
for operation over O·C to + 70"C temperature range.

Features
•
•
•
•
•
•

Improved accuracy
Fan-out of 10 with DTL or TTL
Added logiC or strobe capability
Useful as a relay or lamp driver
Plug-in replacement for the LM710
40 ns maximum response time

Schematic and Connection Diagrams
......eEl

"""
"'DO
Metalean

v+

TUH/7756-2

Top View
Note: Pin 4 connected to case.

Order Number LM106H,
LM106H/883t or LM308H
See NS Package Number H08A
TUH/7756-1

tAvailable per SMD# 8003701

3-17

•

Absolute Maximum Ratings

Positive Supply Voltage

Output Short Circuit Duration

10 seconds

Operating Temperature Range
LM106
LM306

15V
-15V

Negative Supply Voltage

," 600mW

Power Dissipation (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 6)

'

TMIN
TMAX
-55°C to + 125"C
O"Cto +70"C
"

Storage Temperature Range

-65°C to + 150"C

Output Voltage

24V

Lead Temperature (Soldering,' 10 sec.)

Output to Negative Supply Voltage

30V

ESD rating to be determined.

Differential Input Voltage

±5V

Input Voltage

±7V

300"C

Electrical Characteristics (Note 2)
Parameter

LM106

Conditions
Min

Typ

LM306
Max

Min

Units

Typ

Max

Input Offset Voltage

(Note 3)

0.5

2.0

1.6

5.0

Input Offset Current

(Note 3)

0.7

3.0

1.8

5.0

/LA

10

20

16

25

!LA

28

40

28

40

ns

= 100 mA
= "100 mA

1.0

1.5
'0.8

2.0

V
V

VIN ~ 5 mV, 8V :S: VOUT :S: 24V
VIN ~ 7 mV, 8V :S: VOUT :S: 24V

0.02

0.02

2.0

/LA
/LA

6.5

mV

Input Bias Current

=
=

Response Time

RL
CL

Saturation Voltage

VIN:S: -5 mV, lOUT
VIN:S: -7 mV, lOUT

Output Leakage Current

390n to 5V
15pF,(Note4)

1.0

mV

THE FOLLOWING SPECIFICATIONS APPLY FOR TMIN :S: TA :S: TMAX (Note 5)
Input Offset Voltage

(Note 3)

3.0

Average Temperature Coefficient of
Input Offset Voltage
Input Offset Current

h :S: T A :S: 25°C, (Note 3)
25°C:s: TA:S: TH

Average Temperature Coefficient of
Input Offset Current

25°C:s: TA:S: TH
TL:S: TA:S: 25°C

Input Bias Current

TL:S: TA:S: 25°C
25°C:s: TA:S: TH

Input Voltage Range

-7V

~

v-

~

-12V

Differential Input Voltage Range

3.0

10

5

20

/LV/oC

1.8
0.25

7.0
3.0

2.4

7.5
5.0

!LA
!LA

5.0
15

25
75

15
24

50
100

nAloC
nAloC

45
20

25

40
25

/LA
/LA

±5.0

±5.0

V

±5.0

±5.0

V

Saturation Voltage

VIN:S: -5 mV, lOUT = 50 rnA
VIN :S: -8 mV For LM306

1.0

1.0

V

Saturation Voltage

VIN:S: -5 mV, lOUT = 16 mA
VIN :S: -8 mV For LM306

0.4

0.4

V

Positive Output Level

VIN ~ 5 mV, lOUT = -400/LA
VIN ~ 8 mV For LM306

5.5

V

Output Leakage Current

VIN ~ 5 mV, 8V :S: VOUT :S: 24V
VIN ~ 8 mV For LM306
h:S: TA:S: 25°C
25°C < TA:S: TH

2.0

!LA

Strobe Current

VSTROBE

=

2.5

5.5
1.0

100
-1.7

0.4V

3-18

2.5

-3.2

-1.7

100

/LA

-3.2

mA

...!!II:r-

Electrical Characteristics (Note 2) (Continued)
Parameter

Condltlona

Strobe "ON" Voltage
Strobe "OFF" Voltage

ISINK s; 16 rnA

Positive Supply Current

VIN
VIN

=
=

0

LM106
Min

Typ

0.9

1.4

-5rnV
-SrnVforLM306

Negative Supply Current

Max

Min

Typ

0.9

1.4

Units

Max

V

1.4

2.2

1.4

2.2

V

5.5

10

5.5

10

rnA

-1.5

-3.6

-1.5

-3.6

rnA

Nota 1: The rnaxlmum junction temperature 01 LMl06 is 150"C. LM306 is 85"C. For operating at elevated temperatures, davices must be derated _
on a
thennal resistance 01 170"CIW, jUncUon to ambient, or 2'S"C/W, junction to case.
Nota 2: These spectIIcations apply for -3V ~ V- ~ -12V, V+ = 12V and TA = 25"C unless otherwise specified. All currents into device pins are considered
positive.

Nota 3: The offset voltages and offset currents given are the maximum values required to drive the output down to O.5V or up to 4.4V (O.5V or up to 4.8V for the
LM308). Thus, Ihese parameters actually define an error band and take Into acoount the worst-case effects 01 voltage gain, specHied supply voltage variations, and
cornman mode voltage variaticns.
Nota 4: The response time specified (see definitions) is for a 100 mV input step with 5 mVoverdrive.
Nota 5: All currents Into 'device pins are considered positive. '
Nota 8: Refer to RETS106X I1'f LMl06 miutsry specifIceIICns.

Typical Applications
Faat Response Peak Detector

Level Detector and Lamp Driver
y+

V++:524V

01

L1

FO....
OU~T--~---1~

INPUT--t----t

Rt
ZK

____~______•

TLlH/7758-4
TL/HI7758-5

Relay Driver

Adjustable Threshold Line Receiver

OUTPUT

F.O.:S: ID

RI·
INPUT-<¥II\f........

ct·

INPUTS

TLlH/7758-6

3-19

I

STROBE
INPUTS

....rCD

LM306

'Optional for response
time control.

TL/H/7758-7

!!II:
w
~

"',.. -

Typical Performance Characteristics
Transfer Function'

Transconductance

""'-1'1-

.1

-

T...

J
--src

,

TA·1I·~6

,

. . . . . t p r-

"
// ';!.'~
,

·
i ·
,r

"+·+12V

'--

~T•••we

· +,

. . ·_oA
~

.

_ zo
~ 10

5
8

-7& -II -21

. "
"
f"

.... - ....

I

Y+ ••,IV

"..· ..vVIN· ....'

.~

,

0

•

-15 ..10 -21 ... n +ID +1& .'• •111+110

+11 +II +75 +1. +t2&

TE_ERATURE rei

V~'+I~V

II

11

"

V··-I¥

al~

J- I-

3

r..... i'oo..

• +8 +11 +71 +110 1+1.

Short Circuit Output Current

JUIICT'ON TE"PERATURE I"~I

Response Time for
Various Input OVerdrives

~

i

"

.~

i" I'"000o

TEllPERATURE I"Cl

YIN -+l.V

+J& +II +75 +101 +125

" :---.

-71 -II -ZI

,+·.1211

Input Current
30

!'...

Iv~""~.I2V

TEMPERATURE lOCI

40

......

I

-5

i""'"

I=- -- I-,~ ••••
•

...

..urVOLTAG1!1nIV)

~ r"

-- 1-,;".'"",

-75 .... -2&

I
-2 -3

-,

~

I'.

21

~

........

D

K

u

l - f-- ~""V~""~.'IV
VI .. --IIIV

I--

•

~~

.3V~""~·'IV

~
I
V~"~~ ~"IV_
I-

~

7

v+.+l2y.l;;::;

t-

+1

I--:

10

Positive Output Level

...,

-h~"~1IA

Ii;;:

.3V~V;;;:';

.'
71,,-H·C

'1'"+3

~

I' 40 -V+"~

-~-t'0

Saturation Voltage
IJI

I

• T... =1HOC

-oJ ..., • +1.1 .u +U +IA +U
IIIfUT VOLTAGE CIo'II

u

r

5 'r
.. ,r

,rA

!u

~

I

Voltage Gain

•

'I"

V+·.,ZV

-

I~.L

&~l

~

1.111

V+'+I2V
"...-1'1
T. '+2&°1

1'11++1+1+

i ·

~

I

I~ ..~

Response Time for
Various Input OVerdrives

I ..

!
5

i

OFFSET

o

to+~+H+H-++'

1++1~H+I+H

iI

i

11140".'.'11

.7& .6IJ..zs 0 Z5 50 75 101 lZ5
TEMPERATURE 1°C}

t.

TIME 110}

Negative Supply Current

Positive Supply Cllrrent

Power Consumption
'ID
III

T••

.~
~'I,.o""

....

!-I;i-F.:.~=
',~~+--1--~--+--1

J+--+---l-'
D

+1'
+11
..sonVE SUPPLY VOLTAGE IVI

+,&

.,..

-arc
~

......
....

TA -"'·C

II!

~

I

'+.+lIV

"-I_V

""'-IV

-,.... ....

II

r--_

•

·,2

IEBATIYE IU..... VOLTAIE IVI

·11

......

I

III
71 -V1N-+I.v

i:

T... -+1Z1OC

.

,':
m

VIN

-71 .... -21

--

~

.....

-

I +IS .... +75 +101 +125
TE_ERATURE I"Cl

TLlH17756-6

~·20

r-

iii:
....
....
....
......

tflNational Semiconductor

r-

iii:

....
....

LM111/LM211/LM311 Voltage Comparator

N

......
r-

General Description
The LM111, LM211 and LM311 are voltage comparators
that have input currents nearly a thousand times lower than
devices like the LM106 or LM710. They are also designed
to operate over a wider range of supply voltages: from stan·
dard ± 15V op amp supplies down to the single 5V supply
used for IC logic. Their output is compatible with RTL, DTL
and TTL as well as MOS circuits. Further, they can drive
lamps or relays, switching voltages up to 50V at currents as
high as 50 rnA.

40 ns) the devices are also much less prone to spurious
oscillations. The LM111 has the same pin configuration as
the LM106 and LM710.

....
....

The LM211 is identical to the LM111, except that its per·
formance is specified over a - 25'C to + 85'C temperature
range instead of - 55'C to + 125'C. The LM311 has a tem·
perature range of O'C to + 70'C.

Features

Both the inputs and the outputs of the LM111, LM211 or the
LM311 can be isolated from system ground, and the output
can drive loads referred to ground, the positive supply or the
negative supply. Offset balancing and strobe capability are
provided and outputs can be wire OR'ed. Although slower
than the LM106 and LM710 (200 ns response time VB

Typical Applications* *

i:
w

•
•
•
•
•

Operates from single 5V supply
Input current: 150 nA max. over temperature
Offset current: 20 nA max. over temperature
Differential input voltage range: ± 30V
Power consumption: 135 mW at ± 15V

Strobing

··Note: Pin connections shown on schematic di~
agram and typical applications are for

Offset Balan~ng

H08 metal can package.

••

Increasing Input Stage Current·
v'
TTl

STROlE

.".

Detector for Magnetic Transducer

'Increaaes typical common
mode slew from 7.0VIp.s
to 18V1p.s.

Digital Transmission Isolator

r----.....---....... . . ,
••
....

Note: Do Not
Ground
Strobe
Pin. Output is
turned off when
current is pulled
from Strobe Pin.

"~~·~""'~~~~------~~--~----r-".uv

....,

...••,

.••

TTl
OUTPUT

TTL

ourruT

MAIIIETIC
PltIU'

Relay Driver with Strobe
v"

Strobing off Both Input· and Output Stages

c:

FROM OlA IElWORK

MALOS

'IPU'

......,
TTL

••••

L

STROlE

'Absorbs inductive
kickback of relay and
protects Ie from
severe voltage

'Typical input current Is
50 pA with InpulS strobed off.

transients on

Note: Do Not Ground Strobe Pin.

V++ line.
Note: Do Not Ground Strobe Pin.

3·21

TUH/5704-1

•

....
....
C")

~
.....

....
....

....s;.....
........
....
~

Absolute Maximum Ratings fortheLM111/LM211
. "',' 2600C
Lead Temperature '(Soldering, 10 sec)
V+-5V
Voltage at Strobe Pin
Soldering Information
Dual-In-Une Package
Soldering (10 seconds), ..•.••••....,.••...• ;.: .2600C
Small Ol,itline Package
,
Vapor Phase (60 seconds) ...••••....•••.••..• 215"C
Infrar~(15 seconds) •....•..•.., .•.•...•....• 2200C
See AN-450 "Surface Mounting Methods and Their Effect
on Product F:\eliability" for other methods of sol~ring surface mount devices.
ESD Rating (Note 8)
300V

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Salee
OffIce/Distributors for availability and specifications.
(Note 7)
36V
Total Supply Voltage (V84)
50V
.outp~ to Negative SupplX Voltage (V74l
30V
Ground to Negative Supply Voltage (V14)
Differential Input Voltage
±30V
±15V
Input Voltage (Note 1)
Output Short Circuit Duration
10 sec
-55"C to 125°C
Operating Temperature Range LM111
LM211
-25°Ct085"C

Electrical Characteristics

for the LM111 and LM211 (Note 3)
Min

Conditions

Parsmeter
Input Offset Voltage (Note 4)

TA=25"C, RS,S:50k

Input Offset Current

TA=25"C

Input Bias Current

TA=25"C

Voltage Gain

TA=25°C

Response TIme (Note 5)

Typ

Max

Units

3.0

mV

4.0

10

nA

80

100

' 0.7

nA

200

VlmV

TA=25"C

200

ns

Saturation Voltage

VINS: -5 mV,IOUT= 50 mA
TA=25"C

0.75

1.5

V

Strobe ON Current (Note 6)

TA=25"C

2.0

5.0

rnA

Output Leakage Current

VIN~5

mV, VOUT=35V
TA = 25"C, ISTROBE= 3 mA

0.2

10

nA

Input Offset Voltage (Note 4)

RsS:50 k

40

4.0

mV

Input Offset Current (Note 4)

20

nA

Input Bias Current

150

nA

13.8,-14.7

13.0

V

0.23

0.4

V

Input Voltage Range

V+ = 15V, V- = -15V, Pin 7
Pull-Up May Go To 5V

Saturation Voltage

V+~4.5V,

V-=O
VINS: -6 mV,loUTS:8 mA

-14.5

Output Leakage Current

VIN~5

0.1

0.5

p.A

Positive Supply Current

TA=25"C

5.1

6.0

mA

Negative Supply Current

TA=25"C

4.1.

5.0

mA

mV, VOUT=:,35V

Note 1: This rating applies for ± 15 supplies. The positive Input wltage limn Is 30V above the negative supply. The negative Input wltage limn is equal to the
negative supply wltage or 30V below the positive supply, whichever Is less.
Note 2: The maximum junction temperature of the LMlll is 15O'C, while that of the LM211 Is 11O"C. For Op8rating at elevated temperatures, devices in the H08
package must be derated based on a thermal resistance of 165"C/W, junction to ambient, or 2O"C/W, junction to case. The thermal resistance of the dual-in-line
package is 11O"C/W, iunctlon to ambient.
Note 3: These specHIcaIIons appl~ for Vs= ±15V and Ground pin at ground, and -55"C,;:TA';: + 125"C, unless otherwise ststed. WHh the LM211, hOW8Y1", all
temperature specilicatlons are lirriited to -25'C,;:TA';: + 85"C. The offset voltage, offset current and bias current specifICations apply for any supply wllage Iiom a
single 5V supply up to ± 15V supplies.
Note 4: The offset wllages and offset currents given are the maximum values required to drive t~ buiput wnhln a volt Of eRher supply wfth a 1 mA load. Thus,
these parameters define error band and take Into account the worst-case effects of wltage gain and As.
Note 5: The response time specified (see definitions) Is for a 100 mV input stsp wnh 5 mV overdrive.
Note 8: This speciflcation gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin
to ground; ft should be current driven at 3 to 5 mAo
Note 7: Refer to RETS111X for the LM111H, LM111J and LM111J-8 milHery specilicatlons.
Note 8: Human body model, 1.5 kG in seriss _ 100 pF.

an

3-22

Absolute Maximum Ratings for the LM311
If Mllltary/Aeroepace specified devices are required,
please contact the NatIonal Semiconductor Seles
OHlce/Dlatrlbutors for availability and speclflcatlons.
Total Supply Voltage (V84)

Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

36V

Output to Negative Supply Voltage V74)
Ground to Negative Supply Voltage Vl4l
Differential Input Voltage
Input Voltage (Not81)

40V
30V
±30V

2600C
V+-5V

Voltage at Strobe Pin
Soldering Information
Dual-In-Une Package
Soldering (10 seconds) •••••.•••.•..•••••.•.•. 2600C
Small Outline Package
Vapor Phase (60 seconds) .................... 215"C
I.nfrared (15 seconds) •.•.•...••.••...•.•••.•• 2200C
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.

±15V

Power Dissipation (Note 2)
ESD Rating (Note 7)

10 sec
00 to 700C
-65°C to 1500C

500mW
300V

Electrical Characteristics for the LM311 (Note 3)
Typ

Max

Units

Input Offset Voltage (Note 4)

TA=25"C, Rs~5Ok

2.0

7.5

mV

Input Offset Current (Note 4)

TA=25"C

6.0

50

nA

Input Bias Current

TA=25°C

100

250

Parameter

Conditions

Min

40

Voltage Gain

TA=25"C

Response Time (Note 5)

TA=25"C

Saturation VoIt8ge

VIN~ -10 mV,IOUT=50mA

TA=25"C
Strobe ON Current (Note 6)

TA=25"C

Output Leakage Current

VIN~ 10 mV, VOUT=35V

J A = 25"C, ISTROBE= 3 mA

nA

200

VlmV

200

ns

0.75

1.S

V

2.0

S.O

mA

0.2

50

nA

V- = Pin 1 = -SV
10 '

mV

Input Offset Current (Note 4) ..

70

nA

Input Bias Current

300

nA

13.8,-14.7

13.0

V

0.23

0.4

V
mA

Input Offset Voltage (Note 4) .

Rs~50K

-14.5

Input Voltage Range
SatUration Voltage

V+ ~4.5V, V- =0
VIN~ -10 mV,IOUT~8 mA

Positive Supply Current

TA=25°C

5.1

7.5

Negative Supply Current

TA=25°C

4.1

5.0

Note 1: This rating applies for ±15V supplies. The positive Input voltage IImK is 30V aboIHIthe negative supply. The negative Input voltage _
negative supply voltage or 30V below the positive supply. whichever is less.

mA
is equal to the

Note 2: The maximum junction temperature of the LM311 Is 11 O"C. For operaIInIi at elevated temperatura. deW:as In the Hoe package must be derated basad 011 a
thermal resist8nce of 165"C/W.lunc\ion to ambient, or 2frC/W.luncIion to C888. The IhanriaI resistance of the duaf..In..Iine package Is l00"ClW. junction to
ambient
Note 3: Theee specifications apply ·for Vs= ± 15V and Pin 1 at ground. and O'C < TA < + 7O"C. unless otherwis8 specified. The offset voltage, offset current 8nd
bias current specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies.
Note "'""'" offset voItages.arid offset cum.ms gIVen are the maximum valuee requi'ad to drive the ou1pUt within a volt of _
supply with 1 rnA load. Thus, these
parameters define an error ~ and take Into acccunt the worst-case effacts Of,voltage gain and RsNote 5: The response time apecIfied (888 definitions) Is for a 100 mV Input step with 5 mVoverdrive.
Note II< This apscificaticn gives the iange of current which must be drawn from the strobe pin to ensure the ou1pUt is properly disabled. Do not short the strobe pin
to ground; it ahouId be currant driven at 3 to 5 RIA.
Note 7: Human bOdy model. 1.5 kO in series with 100 pF.

3-23

Ii:
....
....
....
......
Ii:
....
....
......
Ii:w
....
....
~

LM111/LM211 Typical Performance Characteristics

....

Input Bias Current

" Input Offset Current.

•

v.·tIlV

C

.s

I

VI-t.,¥.-

ISE

311

ISHO~~'~r::DIi

B 201

RAI EO
ISHORT.I
~ •• ANO.
~ r-_Al

1\1

;;

I

110

.- -

1IlIjw,

I

-IS

~.

-I' 5 H

Q

I.

.~

•

TEMPERATURE 1'1:1

Input Characteristics
I.
I.

i

i..

Common Mode Umlts

110

•
1\1
I •

I:

21

-I' -12 -II

,-

... • • •

12

II

I-"

.... ~ _II

Re~onse nme

for Various
Input Overdrives

.
w

i..

3

"

. I.
.,.

•

....

if

~

21~'

I"'

f-.

j'M1j'

I

I.!

1.4

~

" "IIV-

-5
-10

50 -15

.!

:;
c

~

..

•

-10

~ -110

i

5.V
2.,

/

a.&

D.t
•.3

I

0.'

0.'

0.•

8.2

T. -II5"C

••1

- i

j' -""1- -

D.I

I

10Zl304I1O

TIME ....1

II II ..V

5

..
~

1

Response nme for Various
Input Overdrives
~
10

!g
=

LMI11

r"

TIMEIJql

.
..g~,.
..

Output Saturation Voltage

~

~

I

i!!

~

DIFFERENTIAL IN'~T v.au"tIE C.VI

VOUf

I

~

...

= 1.
,"i ...

.~••

VOUT

lM111

I.
i
!

Y-

-II
-11

~=

~

2Oi!..
I .. V

1m'

\.

!"
;-

Y-

,.'-tll,
Ty'~C

liD

!O

• t

You,
211'_

lM,1t

W

Y
....5~tTA -2re

OUTPUT CURRENT CIllAI

,.

Response Time for Various
Input Overdrives
IS

nMEI~'1

..

-.5

-1

" 10 III

2.V

?f?L.n

liD

.\1

~_,
Y,.Your

-\

I,,\Y'::

loJ

w

c

l-

I

~~

i

IV
TA ·Irc

f- T.'.-~~
'2&OC"'".

EMem
fOLLOWER
OUTPUT
R, -10011

I I.J

I

V.· ..

"

• H 4S "

ig

I•

30
10

Response nme for Various
Input Overdrives

I I

c

i •

-I.

TE_RATURE 1'1:1

DIFFERENTIAL IN'UT VOLTAGE (VI

~

..,.

~

-

-1.1

II

I- NORM~L O~TPU~
R,
II- v++ -ltV

~

i-II
."
I

121

B
;;

REfElIIIED TO SUfPLY'DLTAGES

~ -4.1

TA • HOC

1M

INPUT REIISTMCE IIlI

.'1
Ii .

y+

J.!%\I~

I.

I

" .. H •• IH 125 ...
TE_RATURE lOCI

.... ~ _II I

I. 125

8.1

T. - HOC

......~ ~

C 120
.!

.
!...
..
!.
..a
!:

-

Output Umltlng Characteristics

..~

101
10

..
10

11.1

H~~

U

--., ~ ~

U

1

..

,C{"CUlt· CUR ENT I.!

II

•

1.1

0.1

0

II

••'"
!
!!

::I'

I

!

o
11

OIITPUT VOLT"'! (VI

TUH/5704-2

3-24

............
....
E
...
.......
E
......
i:

LM111/LM211 Typical Performance Characteristics (Continued)
Supply Current

Supply Current

Ir--..,...--,r-..,...--,--r--,

VI-·lIV

i

Ia

i

.....

i

i

II

d

a

•

I I I
I I I
POSITIVE 'WI'!:!.-_

1'00..

I'oo..0UlPUTLOW

...... ~ ,......

_::A~:EA:....

-r'i'i
I I I

•

•

Co)

...

,......

-

G
",

I~~~~~~--~~

1

~

I
I

i

I

Leakage Currents

II

I

-15-31-111 U 4i H .181121

SU.... YVDLTAGE IVI

TE.ERATURE reI

TLlH/5704-3

LM311 Typical Performance Characteristics

.-

Input Bias Current

i

411

i..

~

~).

RAISED
ISHDRT PI.NS

r--

I--J. .. AND II

'"
:I

..

- -.

i
iii
a ,.

i:!i

;;;

i

•

V, .. !11V

" PINS
t-- """"'
=:±-~
t-- ISHDRT
J. . AND II
r--_

I

411 II ID 11 ID

•

Input Offset Current

r---

NORMAL

i

I I
II

I

f-

NORMAL -

1M

I

•

VI = !:11V

I1IU.41SO.1I1D

I
..

1

TL/H/5704-B

lZS

Ii
II!

171

~ -D.5

•

111

r REFERRED TO SUPPLY VOLTAGES

NORMAL OUTPUT
RL = 1k
V++=4IV

ID

; -u

i.

lID

Ii'"

II

V'

J.! ZSOC
'\5~

TA

Transfer Function

Common Mode Umlts

125
....'"

i..

1111

IN.UT RESISTANCE CIll

Input Characteristics

i

1'"

1l1li

TEMPERATURE rCI

II

. tJ-IOIU

GA
U

I
-II -II -I

I

-I

•

4

II

EMITTER
FOLLOWER
OUTPUT

II

i:..

ID

II

.

I

I-- -31

-1.5

V-

I

..

U

•

..

50 ID

n

11

-I

TEWERATURE COCI

DIFFERENTIAL IN'UT VOLTAGE IVI

"'

I

-.S

V. - 31V

T... _25.lC
.5

DIFFERENTIAL INPUT VOLTAGE I.VI

TLlH/5704-9

Response Time for Various
Input Overdrives
~

...
..~

~

c
!:;
co
>

.. rr
.. .J.!

'"

co

.

i

~
>

..'"
~

l.

Response Time for Various
Input Overdrives

.v

..

V,-:t1IV
T. -II'C

-

~
~

II~V

I

I I

, .v'

I
I~V';
z,.V

.

~-. 1..

VI" -

lID

"OUy

II

I J
U

1.4

TIME"''

I J

u

~

=

~

v~-

-II

i

1.1

.... I.e

~~ '.1

. i= '.3

r-.I

OA

V.o:t15V-

~

-

i,or~- -

-110

I.' E

~

YOUI

f-'

Output Saturation Voltsge

Gl

1.1
I

U

1.4

TIME"'"

1.1

1.1

I

II

za

•

..

50

OUTPUT CURRENT I"AI

TL/H/5704-10

3-25

•

9- , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,
9-

~
.....
....
:::E
....;::

LM311 Typical Performance Characteristics (Continued)
,.1.,

9-

C"I

99-

....:::E

ReSpoOse 11m. for Various
Response Time for Various
~Input Overdrlv88
.Input Overdrives

...~

..
o~

II

~

:

~

..

II

'.V

/

2.V
IJ

-5

-II

I...

-11

y. '

.~.
~

I

tl

v·

&

VOUT

J

i

-5

I..

-II
-15
lID

"

Hi!.. l\~
I_V

2., .!.'

~ ..

~ :10

!i!

;i ::

II~V

11

i

4

I
".'rtr.~~
- ,..
v.'-:l1L~ - !.....
-

1
fl

!:

co

Ty2ljC

V.-~~~t'.-H·C
!i!
...

-110

iii

i

TIMEfJaI

Output Limiting Characteristics
141

_

TIME ",.1

.?2 ~ u
Ito~·

lID

41
II

u

~~

U
U

U

TA ~II·C<

UD

u

- ;L..~"I' C{IICUIT- CURR~
If- --

••

f-

1.

u

I;
.
~

0

1.2

0_1

•

!

I

15

OUT'UT VOLTADE IVI
~~H/5704-11

..

• SUpply Current

j

I

..Ii!
..

..

...

u

Supply· Current
V.-t1IV

1 1 .1

....

i..

~

u

. 2

I

i:

II
I

•

I

10
II
2. 21
SU.,I.V VOLTADE IVI

POIITIVE _~-

-

OUTPUTL~

i"'PIISITlVUIiO
IIEGATlVEIUPPLY·OUTPUT HI8H

1 1

I

31

..."""

1

I

1

.. II 31 41 10 •
TEJIIERATURE 1'1:1

II •

3I4IH.7I

TEMPERATURE 1'1:1
TLlH/5704-12

3-26

!i:.....

Application Hints

.....
.....
.....
r-

CIRCUIT TECHNIQUES FOR AVOIDING
OSCILLATIONS IN COMPARATOR APPLICATIONS
When a high-speed comparator such as the LMlll is used
with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that
the power supplies have been bypassed (with 0.1 ",F disc
capaCitors), and that the output signal is routed well away
from the inputs (pins 2 and 3) and also away from pins 5 and

4. When comparator circuits use input resistors (eg. summing resistors), their value and placement are particularly
important. In all cases the body of the resistor should be
close to the device or socket. In other words there should
be very little lead length or printed-circuit foil run between
comparator and resistor to radiate or pick up signals. The
same applies to capaCitors, pots, etc. For example, if
= 10 kO, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are
very hard to damp. Twisting these input leads tightly is
the only (second best) alternative to placing resistors
close to the comparator.

6.

Rs

However, when the input signal 'is a voltage ramp or a slow
sine wave, or if the signal source impedance is high (1 kO to
100 kO), the comparator may burst into OSCillation near the
crossing-point. This is due to the high gain and wide bandwidth of comparators like the LMlll. To avoid oscillation or
instability in such a usage, several precautions are recommended, as shown in Fl{Jure 1 below.

5. Since feedback to almost any pin of a comparator can
result in oscillation, the printed-circuit layout should be
engineered thoughtfully. Preferably there should be a
groundplane under the LM 111 Circuitry, for example, one
side of a double-layer circuit card. Ground foil (or, positive
supply or negative supply foil) should extend between the
output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as
possible, and should be essentially surrounded by ground
foil on all sides, to guard against capaCitive coupling from
any high-level Signals (such as the output). If pins 5 and 6
are not used, they should be shorted together. If they are
connected to a trim-pot, the trim-pot should be located, at
most, a few inches away from the LMlll, and the 0.01
",F capacitor should be installed. If this capaCitor cannot
be used, a shielding printed-circuit foil may be advisable
between pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the
LM 111. (Some other comparators require the power-supply bypass to be located immediately adjacent to the
comparator.)

1. The trim pins (pins 5 and 6) act as unwanted auxiliary
inputs. If these pins are not connected to a trim-pot, they
should be shorted together. If they are connected to a
trim-pot, a 0.Q1 ",F capacitor Cl between pins 5 and 6 will
minimize the susceptibility to AC coupling. A smaller capaCitor is used if pin 5 is used for positive feedback as in

Figure 1.
2. Certain sources will produce a cleaner comparator output
waveform if a 100 pF to 1000 pF capaCitor C2 is connected directly across the input pins.
3. When the signal source is applied through a resistive network, Rs, it is usually advantageous to choose an RS' of
substantially the same value, both for DC and for dynamic
(AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wirewound resistors are not suitable.

. - - -....- - - -....-o15V

82
JJk

4.7k

>;..---41-0 OUTPUT

-15V

TLIHI5704-29

Pin connections shown are for LMll1 H in the H08 hermetic pacl
3'

4."

>.--....-0 OUTPUT

51110

TlIH/S704-30

Pin connections shown are for LMlll H in the H08 hermetic package

FIGURE 2. Conventional Positive Feedback
r - - 9 - - - -.....-o ll>
3'

4,7,
INPUT o-'V+;IY-...."""i

>,--+--0 OUTPUT

II

TlIH/5704-31

FIGURE 3. Positive Feedback with High Source Realatanee

3-28

!iii....
....

Typical Applications (Continued) (Pin numbers refer to HOB package)

....
.....
r-

Zero Crossing Detector Driving MOS Switch

I:
I\)

100 kHz Free Running Multlvlbrator

r--.......--+-v+

....

....
.....

v+=5V

INPUT

Rl

R5

20K

!iiiw

lK

....
....

R3
10K
TUH/5704-13

7

SQUARE

I~~~WAVE

OUTPUT"

R4
39K

'TTL or DTL fanout of two

TUH/5704-14

10 Hz to 10 kHz Voltage Controlled OSCillator

5mV-5V
INPUT
5 mV TO 5V-.....~:--+--=~IN\f"'1"""='"

TRIANGULAR
~~~----- WAVE
OUTPUT

R3
330K

SQUARE
L-"':':';';~~-----""--+---_~WAVE

OUTPUT
'Adjust for symmetrical square
wave lime when YIN = 5 mY
tMlnimum capacitance 20 pF
Maximum frequency 50 kHz

-15V

Driving Ground-Referred Load

TUH/5704-15

Using Clamp Diodes to Improve Response
rROl/

r--....... v+

LADDER-~""--9

N£!WORK

m
OUTPUT

+

'Input polarity is reversed
when using pin 1 as output.

TUH/5704-17
TL/H/5704-16

3-29

~
~

CO)

:=!I
......

.------------------------------------------------------------------------------------------,
Typical Applications (Continued) (Pin numbers refer to HOB package)
TTL Interface with High Level Logic

~
~

...-......- .....-v+ 5V

C'oI

::::E
-I

......
~
~

TO

~

m

for

'Values shown are
a 0 10 30V logic swing
and a 15V threshold.
tMay be added 10 control
speed and reduce
susceptibility 10 noise spikes.

LOGIC

:=!I

TlIH/5704-18

Crystal Oscillator

Comparator and Solenoid Driver
Dl
lN4001

v+=5V
Rl
R4
lOOK

_.-IIe...._ _...._OUTPUT

2K

lA

R2
lOOK
TL/H/5704-20

TL/H/5704-19

Precision Squarer

Low Voltage Adjustable Reference Supply
Rl
3.lk

Y·· 5.IV

RI
3.lk

R3t
ZDk

Y·· 5.0Y

R4
500
R3
1l1li

R4
Uk
RS
Uk

~~~~~---I~------_+----DU~UT

TTL

INPUT

'Solld tanlalum
'Solid tantalum
t Adjust 10 set clamp level

TL/H/5704-21

3·30

TlIH/5704-22

r-

s:::
.....
.....
.....
......

Typical Applications (Continued) (Pin numbers refer to HOe package)
Positive Peak Detector

Zero Crossing Detector Driving MOS Logic

'15V

INPUT-I\II'h"t

OUTPUT

RZ
-15V

V-· -lOY

1.IM

TL/H/5704-24

'Solid tantalum

TLlH/5704-23

Precision Photodiode Comparator

Negative Peak Detector

'5V

-15V

'Solid tantalum

TLlH/5704-25

TL/H/5704-26

'R2 sets the comparison level.
At comparison, the photodiode
has less than 5 mV across it,
decreasing leakages by an order
of megnitude.

3-31

~
.....
.....
......
~
W
.....
.....
~

99CII)

.r---------------------------------------------------------------------------------------------~

!.....

-

Typical Applications (Continued) (Pin numbers refer to HOS package)
SwItching Power AmplHler

9-

N

~.
.....

AI
&20

999-

~

Rl
30D

A2
lOOk

y-

~------------------------------~-OU~UT

R3
lOOk

Rl

10k

------+----;.e·

INPUT ~N......

02
2N3135

A4

A5

AI

47

301

120

....- ......

----+--~

y-

TlIH/5704-27

Switching Power Amplifier
y+

.,...
'::'
RS

510

R4
301Ik

R6
31k

RI
31k

R13
3D..

R14

511

Cl

1.22
.F

R7

RI
1511

15k
REFERENCE

INPUT

3-32

TlIH/5704-28

~
....
....
........

Schematic Diagram**
IALA.CEIST~OBE

BALANCE
5

6

R3
3111

~

N
....
....
....

R4
3GO

r-

r---+---~..--__----+----e~--~--------~--e-------------------~~I~
RI

R2

1.311

1.311

!!II:
w

....
....

RI
BOO

RIO
411
OUTPUT

1--tf--.7

RI.
401

AIJ
IG

R11

130

RIS

.0

0,15
017

RII

RII

250

211

RU
BOO
01.

RI.
2t

RU

•

•

v-

1

GND
TLlH/5704-5

"Pin connections shown on schematic diagram are for Hoe package.

Connection Diagrams·
Metal can Package

Dual-In-Une Package

Dual-In-Llne Package
NC

,

14 Ne

ONO

2

13 Ne

1 OUTPUT

.I'UT

3

12 fit

• BALANCEI

INPUT

V'

IV'

GROUND'

•

BALAICEI

nROI!

'N.UTZ

-""'o..J""'-..

,NPUT 3 -

0-1;.,

.......

STROlE
SBALANCE

V-

TLlH/5704-6

n v'

5

10 Ie

V-

I

•
I

tAUICE 1

Top View
Note: Pin 4 connected to case

•

NC

OUTPUT
PLAICEI

STROlE

TL/H/5704-34

Top View

TL/H/5704-35

Top View
Order Number LM111H,
LM111H/883·, LM211H or LM311H
See NS Package Number H08e

Order Numbar LM111J-8, LM111J8/883·, LM211J-8, LM211M,
LM311M or LM311N
See NS Package Number J08A,
M08A or NOSE

'Also available per JM38510/10304

3-33

Order Number LM111J/883· or
LM311N-14
See NS Package Number
J14AorN14A

&I

~
~

:2

..........

r------------------------------------------------------------------------------------------,
Connection Diagrams (Continued)

~

~

N

GRD

V+

:::I!

....
......
~

INPUT+

~

:::I!
....

v+

GND

~

INPUT-

OUTPUT

+INPUT

-INPUT

BALANCE/
STROBE

OUTPUT

LM111W

NC

NC

BALANCE STROBE

v-

BALANCE
TLlH/5704-33

Order Number LM111W/883'
See NS Package Number W10A
'Also available per JM38510/10304

V-----.......J

L-_ _ _ _ _ BALANCE
TLlH/5704-32

Order Number LM111E/883
See NS Package Number E20A

3-34

~
....

....

tflNational Semiconductor

~
r!II:
N
....
CD

LM119/LM219lLM319
High Speed Dual Comparator
General Description
The LMl19 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages
down,to a single 5V logic supply and ground. Further, they
have higher gain and lower input currents than devices like
the LM710. The uncommitted collector of the output stage
makes the LMl19 compatible with RTL, OTL and TTL as
well as capable of driving lamps and relays at currents up to
25 mA.
The LM319A offers improved preciSion over the standard
LM319, with tighter tolerances on offset voltage, offset current, and voltage gain.

Features

....r-

!II:

....
CD
~

• Typically 80 ns response time at ± 15V
• Minimum fan-out of 2 each side
• Maximum input current of 1 /LA over temperature
• Inputs and outputs can be isolated from system ground
• High common mode slew rate
Although designed primarily for applications requiring operation from digital logic supplies, the LMl19 series are fully
specified for power supplies up to ± 15V. It features faster
response than the LM 111 at the expense of higher power
dissipation. However, the high speed, wide operating voltage range and low package count make the LMl19 much
more versatile than older devices like the LM711.
The LMl19 is specified from - 55"C to + 125°C, the LM219
is specified from -25"C to +85°C, and the LM319A and
LM319 are specified from O"C to +70"C.

• Two independent comparators
• Operates from a single 5V supply

Connection Diagrams
Dual-ln·Llne·Package

GND 1
GNDI

OUTPUT 1

3

+INPUT 1 4

+INPUT

V+

-INPUT

-INPUT 2

-INPUT 1 5

V- •

•

+lNPUT2

OUTPUT 2 7

•

GNU

Top View

~

~M2

OUTPUT 2

GND 2
TUH/5705-8

Oreler Number LM119J, LM119J/883', LM219J,
LM319J, LM319AM, LM319M, LM319AN or LM319N
See NS Package Number J14A, M14A or N14A

Order Number LM119E/883

See NS Package Number E20A

Meta' Can Package

OUTPUT 1

V·

V+

GND 1

INPUT 2-

INPUT 1+

INPUT 2+

INPUT 1GND2
V- _ _ _ _ _ _ _ _ _- - OUTPUT 2

+INPUT 2

aND2

TUH/5705-9

Oreler Number LM119W/883
See NS Package Number W10A
Case is connected to pinS (V-)'

V'

I

1l./H/5705-7

Top VIew
Oreler Number LM119H, L:M119H/883', or LM319H
See NS Package Number H10C
'Also available per SMD# 8801401 or JM3851 011 0306

3-35

~

Absolute Maximum Ratings

'/
-65"CtoI50"C

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Salea
Office/Distributors for availability and speclflcetlons.
(Note 7)
Total Supply Voltage
36V
Output to Negative Supply Voltage
36V

Storage Temperature Rarige.

Ground to Negative Supply Voltage
Ground to Positive Supply Voltage

215°C
220"C
See AN-450 "Surface Mounting Methods and Their' Effect
on Product Reliability" for other methods of solder'ing,surface mount deviCes.

Lead Temperature (Soldering, 10 sec.)
Soldering Information
Dual-In-Line 'PaCkage:
Soldering (10 seconds)
Srnalroutli~ Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

25V
18V
±5V

Differential Input Voltage
Input Voltage (Note 1)
ESD rating (1.5 kO in series with 100 pF)

±15V
800V
500mW

Power Dissipation (Note 2)
Output Short Circuit Duration

260"C

26O"C

Operating Temperature Range

10 sec

LM119
LM219

- 55"C to 125"C
..:.. 25°C to 85"C

Electrical Characteristics (Note 3)
Parameter

LM119/LM219 .

Conditions
Min

Unlta

Typ

Max

Input Offset Voltage (Note 4)

TA = 25°C,Rs'S; 5k

0.7

4.0

mV

Input Offset Current (Note 4)

TA = 25"C

30

75

'nA

150

500

Input Bias Current
Voltage Gain

TA = 25°C
. TA = 25°C (Note 6)

10

'VlmV

80

ns

Response Time (Note 5)

TA = 25°C, Vs = ±15V

Saturation Voltage

VIN s; -5 mV,IoUT = 25 mA
TA = 25°C

0.75

Output Leakage Current

VIN ~ 5 mV, VOUT = 35V
TA= 25°C

0.2

Input Offset Voltage (Note 4)

As s; 5k

Input Offset Current (Note 4)

-12
1

Vs = ±15V
V+ = 5V,V- = 0

Saturation Voltage

V+ ~ 4.5V. V- = 0
VIN s; -6 mV,lSINK s; 3.2 mA
TA ~ O"C
TA s; O"C

Output Leakage Current

.yIN ~ 5 mV, VOUT = 35V,
V- = VGND = OV

2

p.A

7

I1)V

100

nA

nA

+12
3

V
V

0.23

0.4
0.6

V
V

1

10

piA

±5
TA = 25°C, V+ = 5V, V- = 0

V

1000

Differential Input Voltage
Positive Supply Current

1.5

±13

Input Bias Current
Input Voltage Range

nA

40

V

mA

4.3

Positive Supply Current

TA = 25°C, Vs = ±15V

8

11.5

rnA

Negative Supply Current

TA.= 25"C, Vs = ±15V

:3

4.5

mA

Note 1: For supply. voltages less than ± 15V \he absolute maximum input voltage is equal to the supply voltage..
Note 2: The maximum iunction temperature 01 the LM119 is 15O"C. while that 01 the LM219 Is 110'0. For operating at elevated temperatures, devices in the Hl0
package must be derated based on a thermal resistance 01 160'CIW. junction to ambient. or 1frC/tN, junction to case. The thermal resistance 01 the J14 and N14
packages is 100'C/W. junction to ambient
Note 3: These $pecmcalions apply for Vs '" ±15V, and the Ground pin at ground. and -55"C .: TA .: +125"C, unless otherwles stated. With the LM219.
however. au ternparature specfficalions are limltad to - 25"C .: TA .: + 85'0. The offset voltage, offset CUlT8nt and bias current speciflcalions apply fer any supply
voltage from a single 5V supply up to ± 15V supplies. Do not operate the device with more than lev from ground to VS.

Nota 4: The offset voIteges and offset currents given are \he maximum values required to drive the ·output within a voR 01 either supply with a 1 rnA load. Thus,
thees parameters define an error band and take Into account the worst case effects .of voltage gain and input imped~.
Note 5: The response time specified (sea definitions) is for a 100 mV input step with 5 mV ~

Nota 8: Output Is pulled up to 15V through a 1.4 kII resistor.
Note 7: Refer to RETS119X for LM119H/883 and LM119J/883 spaclflcalions.

3-36

Absolute Maximum Ratings LM319A1319
Storage Temperature Range
-65'Cto 150"C
Lead Temperature (Soldering, 10 sec.)
260"C
Soldering Information
Dual-In-Una Package
Soldering (10 sec.)
26O"C
Small Outline Package
Vapor Phase (60 sec.)
215'C
220"C
Infrared (15 sec.)
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.

If MIlitary/Aerospace specified devices are required,
please contact the NaUonal Semiconductor· Sales
Office/Distributors for availability and specifications.
Total Supply Voltage
36V
Output to Negative Supply Voltage
36V
Ground to Negative Supply Voltage
25V
18V
Ground to Positive Supply Voltage
±5V
Differential Input Voltage
Input Voltage (Note 1)
±15V
500mW
Power Dissipation (Note 2)
Output Short Circuit Duration
10 sec
ESD rating (1.5 kG In series with 100 pF)
800v

Operating Temperature Range
LM319A, LM319

O"C to 70"C

Electrical Characteristics (Note 3)
Parameter

LM319A

CondlUons
Min

Input Offset Voltage (Note 4)
Input Offset Current (Note 4)
Input Bias Current
Voltage Gain
Response Time (Note 5)
Saturation Voltage
Output Leakage Current
Input Offset Voltage (Note 4)

LM319
Min

Typ

Units

Typ

Max

TA

0.5

1.0

2.0

8.0

mV

TA

20

40

80

200

nA

150

500

250

1000

= 25'C, Rs s: 5k
= 25'C
TA = 25'C
TA = 25'C (Note 6)
TA = 25'C, Vs = ±15V
VIN s: -10 mV,lOUT = 25 rnA
TA = 25'C
VIN ~ 10 mV, VOUT = 35V,
V- = VGND = OV, TA = 25'C
Rs

20

40

8

80

Max

nA

40

VlmV

80

ns

0.75

1.5

0.75

1.5

0.2

10

0.2

10

p.A

10

mV

s: 5k

10

V

Input Offset Current (Note 4)

300

300

nA

Input Bias Current

1000

1200

nA

3

V
V

0.4

V

Input Voltage Flange
Saturation Voltage

Vs = ±15V
V+ = 5V, VV+
VIN

±13

=0
~ 4.5V, V- = 0

s:

-10 mV,IslNK

1

3
0.3

Positive Supply Current
Negative Supply Current

0.4

1
0.3

s: 3.2 mA
±5

Differential Input Voltage
Positive Supply Current

±13

= 25'C, V+ = 5V, V- = 0
TA = 25'C, Vs = ±15V
TA = 25'C, Vs = ±15V
TA

Note 1: For supply voltages

4.3

±5
4.3

V
mA

8

12.5

8

12.5

mA

3

5

3

5

mA

less than ± 15 the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM319A and LM319 Is 85'C. For operating at elevated temperatures, devices In the Hl0 package must be
derated besed on a thermal resistance of 16O'CIW,Iunction to ambient, or 19'CIW, iunction to case. The thermal resistance of the N14 and J14 package is
l00"CIW, junction to ambient. The thermal resistance of the M14 package Is 11S'C/W, iunction to ambient.
Note 3: Theae speclficallOns apply for Vs = ± 15V, and erc :s; TA :s; 7erC, unless otherwise stated. The offset voltage, offset current and bias current
specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies. Do not operate the device with more than 16V from ground to Vs.
Note 4: The offset voltages and offset cumsnts given are the maximum values required to drive the output within a voH of either supply with almA Iced. Thus,
these parameters define an 8n'OI' band and take into account the worst case elf_ of voltage gain and input impedance.
Note 5; The response urn.. specified Is for a 100 mV Input step with 5 mV overdrive.
Note 8: Output is pulled up to 15V through a 1.4 IdI resistor.

3-37

Typical Performance Characteristics LM119Af.LMl19/LM219
Input Currents

Common
Mode Umlts"
,

y+'

v,- +.IV
I'-

.Lr--

r--.

•
r"""

o

r--

-~

~,::'-' .H-±--+=~::t-'T"'l-I;;::I

• -1.2

ii=~~ 1--t-t-+-+--1-'-t---t--t--l
1.2
•1
uUl

...
;!
s!

.. ~

&.0

4.0

U

u,I--r-r-r-r-r-r-i~+-i

ZDIIV\

2JI

>

g

...

la

I.D

~

1.1

> •

.•

,.I lID

D.

II lID 110 ZII ZIO 3DI 310

-

"T .~·c

--

ILl'

·!f'e

I
I

I

'"

I
,I

V,, 'IIV

r

I
I

i
1"~':T~~~~~r~r

-lID

-11

Responae Time for Various
Input OVerdrives

zamV

•

.... -r

i

II IDI III ZIG ZII 3DD 310

1.1

I

V•• dav
TA

T.· ZI·C

o

..

Input Chara~rls~cs\ '

.... ·an
"...·uv

A

U ..V

-1.2

UmV

v.-uv
RL-Ukl
"...·UV

::'-1

I

IIJ
'U

u'S

Uj

DiffERENTIAL IIPUT VD~ TAGE (.. VI

TIME (III

Respoose Time for Various
Input Overdrives

1\ \
.~v, \

-1.0

I

-

L.J i-U"V

TlME(MI

1\

•

rr Irl
Ih.V

U'II
I. a

-10

o

U

.18

ii 3.'

T.·WC

a

iii -~

l" ~I&.IIIV
\

~

~i
ui

,I

S II

Response Time for Varloua
Input OVerdrives
5.D

R.. -18111
"...·LIV

v

!;

..

u:I

\j+"LIV

Ii

'

t~

TA· ZS'"C

ZD

.g

TEMNRATURE I~CI

6.0

I" 1\:"z.o ..1

~

UI

,.

"...;;3IV

II

-II -31 -Ii i.I ZI C5 HIS lIS 115

Vs -daV

v.·

t1lV
RL -1AIkn

~
;,. 31 ,

,

Response Time for Various
Input Overdrives

'1.1

.!

~t:t~t:tjjj

v-

-65 -35 -15 s.0 2& 4& 85 IS 185 '21

TEMPERATURE ('CI

1---I--+=--r''1-+=....d--+-l

".

Transfer FunctlGr\:
,q

31

'E -0.4

---

,1'1

'"

f7

-u -2.D U ... "
DIFFERENTIAL i.PUT VOLTAGE IVI

Output Saturation ,Voltage

"/

I

I.OmV

III

fr u.v

UmV

I- .IJ

VI·LtV
R, 'Il10
y++. LIV
.T.. 'WC

o

II 101 110 ZDD ZIO 310 310
TIME (III

$upply Current

•

II lID III ZDI III 301 310
n.E(u)

Supply Current

"

D.Z

U
U
...
OUTPUTVOLTA&ElVI

\.0

Outp!lt UmitliIg
Characteristics

IZr-~'-""T"~-,~r-;-,

1.1--+-~-+--I--+-~-+-2

La

\0

II

SUPPLY VOLTAGE !>VI

30

o L.-L-I..................-'---'-.........
-11-3I-111J1 H 41 15 II
TiMPERATURE rei

__~~__L-~. •
...
II
11

L-~"""

DUTPUT VOL TAlE IVI

, .: f~

TlIH/5705-2

3-38

r-

........
....ri:
....
i:

Typical Performance Characteristics LM319A, LM319

CD

Input Currents
Jaa

:ZSI
1
ia:

ZIIII

1::

III

i

110

-

Supply Currents
IZ

r-,--r-;r-.--r-,--,

Vs -±1IV

-

2.0

I.D

5.1
4.0

3.0
2.0

rc,

'.0

31

4'

V," :t:lIV
v I.. RL - 500Il
y++·UV
"'\cls.omV T.-2S·C·

~a '.0

~!i

.....
os
>

3.0

~V

I-i f-5.Omv

I.' ..... 'U

zsa

~§
CO~

6.0
5.0

Z.O t - ZOIRV
1.0

"I'··U;C

\

, .... y

Q

o

50 101 .150 280

-i

r

-

1.0
,

A 100

-10

~;

.0

i

a

!In!

-100

0

.....

A

"

V+

~-O.'

1.0

;-I.Z

co

..
1D.'
0

to

A

v, -uv

IS

ZI

-6.11

-Z.II

Z.D

6.0

II

15

I

/

!; II

I!:

"05.1

10

i~KZ5·C

J - -

1/

I

V

Vs -+1SV

m

OZ

300 JSO

TEMPERATURE I'C)

1.0

120

1.2

l 'OD

'.D

::!

a.1 ;:

•."

10

t;n

Ii
10

i

D.'
1.4

=

..

::!

~ 40

il

I

..~

1::

I I

I

0.1

1.1

Output Limiting
Characteristics

I v.!.5.0:',Vs~'1

I
I
I
I
'0203a401I11

D.'

OUTPUT VOLTAOE (VI

I--Vs ·J.lIV;Vs• "'1.8V, Y,- "'0

D.4

SUPPLY VOL TAOE (,VI

I.AlI~=T ~~~~~~~t1Al j- f - -

1i

I I I I I I

1.2

v,D

20

"

REFERREO TO SUPPLY VOLTAGES

I-z.o

4.11

i

output Saturation Voltage (

i

~l
- e- -Vr±l5.V
I I

.... -1.&

1.0

I

DIFFERENTIAL INPUT VOLTAGE IVI

S.OmV

51 100 ISO 200

-

-OA

5.t

300 358

Common Mode Umlts

u

i

zsa

AL ·5IOO
V"·5.OV
T. - Zi'C

o

10

I
I

+

-'00-II

TIMIE his)

C

III
a:

=25·e

2.01lV

/I
Ir;IoU

TIME ".1

12

I
•

INPut OVERDAIVI s ~. mV

II ,01 ISO ZOD ZSO 301 351

Supply Current

1'1

III

e-

'f

a.v I

2.0

>

:

-rl'"

25

4.,0

S

...

V'. ·5.IV

1.0
.5.0

S;

s;

... A
~i

+-

fA

=! 3.0

2.''''Y

0
U

O.Z

11$ -±1IiV
TA ·2S·C

Response Time for Various
Input OVerdrives

=~

Al -50DIl
y++.5.OY

1\
1\ \

4.D
3.0

I

Input Characteristics

TlIIE(..,

V. -"IV

2.0

....

W

CD

OIFFERENTIAL INPUT VOLTAGE ImVI

Vs '":.15V

TIME 1.1

Response Time for Various
Input OVerdrives

-0.2

.... soon

50

i •

3DD 3iD

~

UI

-I-

-u ..U

'f If

I I
lI, 2.8 ...V

2.•

i!
101 liD 2DI

•

10

3.'

~
ri:

... -c

400

s; 188•
~.!

o so

10

50

Response Time for Various
Input OVerdrives
1,0
5.0

.'\ 2.I .
\"

zo

TEMPERATURE I C,

",

20mV

I

"5.0
la

Response Time for Various
Input OVerdrives

S;

.
4" ..

5.0:;;co
~

S II

OFFSET

II\)

co

LO~

y++-s.oV

"

TEMPERATURE

-

21

J.I

-zrc

> 15
!;

010ZD3D4DII&DlG

...

31

~

y++-38V

~ZI

50

>

~

.

a:

... -s;
"w
I!:lI!
"COs...

Va" :l:15V
RL ·,.4kU
T.

~li

r--

liAS

...

Transfer Function

8.Z

ZD

5.'

i

10

OUTPUT VOLTAGE IVI

TUH/5705-3

3-39

&I

LM119/LM219/LM319

o
n

:::T

CD

Rl

3

3.5k

r----1,~'M ,

'"

'"

an

y+

,

R2
4k

c

i

AI

3

~r

02

R12

13k

R8
2k
TO OTHER-

t.>

a

HALF

R9

18k

II

02

R25

600

'OUTPUT

R24

250

R21

900

R17

3

"Do not operate the LM119 with more then 18Y between GND IIJId Y+ •

.,.

•

GND
TLlH/5705-1

r-----------------------------------------------------------------------------f~

iC
....
....

Typical Applications"
Relay Driver

~
~

Window Detector

iC

,---,,--5V

IIV

v..

N
....

SOD
>~""-TTl OUTPUT

~
riC
w

....

CD

IIII'UTS

TLlHl57D5-5
VOUT = 5V for
VLT ,. VIN ,. VUT

VOUT = 0 for
VIN ,. VLT

'Pin numbers are for metal can package.

or VIN

;;, VUT
TLIH/5705-6

'j
:1,

3-41

~ r-------------------------------~----------------------------------------------~

~'

~.....

1fI. N

~

LM 139/lM~39iLM33,9/LM2901/LM3302

....
'0

4 t

ion 4, I S e m i con due tor

~ Low p,0w.erLow Offset Voltage Quad Comparators

I

CO)

:&

General Description' ,

I

The LM139 series consists of four independent precision
voltage comparators with an offset voltage specification as
low as 2 mV max for all four complII"ators. These were designed specifically to operate from a single power supply
over a wide range of voltages. Operation from split power
supplies is also -possible and the low power supply current
drain is independent of the magrRtude of the power supply
voltage. These comparators also~ve a unique characteristic in that the input common-mode voltage range includes
ground, even though operated from a single power supply
voltage.

..I
~

~

I....
~

'

Application areas include limit comparators, simple analog
to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators
and high voltage digital logic gates. The LM139 series was
designed to directly interface with TIL and CMOS. When
operated from both plus and minus power supplies, they will
directly interface with MOS logjc....:... where the low power
drain of the LM339 is a distinct advantage over standard
comparators.

•
•
•
•

Features
• Wide supply voltage range
LM139 series,

•
•
•
•
•
•
•

Advantages
• High precision comparators
• Reduced Vos drift over temperature

Eliminates need for dual supplies
Allows sensing near GND
Compatible with all forms of logic
Power drain suitable for battery operation

2 Voe to 36 Voe or
±1 Voeto ±18Voe
LM139A series, LM2901
2 'ioe to 28 Voe
LM3302
or ± 1 Voe to ± 14 Voe
Very low supply current drain (0.8 mAl - independent
of supply voltage
Low input biasing current
25 nA
Low input offset current
± 5 nA
and offset voltage
±3 mV
Input common-mode voltage range includes GND
Differential input voltage range equal to the power
supply voltage
Low output saturation voltage
250 mV at 4 mA
Output voltage compatible with TIL. DTL, ECL, MOS
and CMOS logic systems

Connection Diagrams
Dual-In-Llne Package
GUlPUT J omUT 4

'M.

-.., ••

•...., __

IIIPUT 3+

."UT 3-

0012

OUT 3

OUT 1

our.

14
3

2

IN 1-

,

IN 1+

.11 20

••

GND

LM139E

IN4.

V.

IN410

11

12

13

~~

~3+

~H

~~

TLlH/5706-28

v·

....., 1TO' VIEW

.MPU' 1+

INPUT Z-

ItlPUT z.

TL/H/5706-2

Order Number LM139J, LM139J/883', LM139AJ,
LM139AJ/883", LM239J, LM239AJ, LM339J,
See NS Package Number J14A
Order Number LM339AM, LM339M or LM2901M
See NS Package Number M14A
Order Number LM339N, LM339AN,
LM2901N or LM3302N
See NS Package Number N14A

Order Number LM139AE/883 or LM139E/883
See NS Package Number E20A
OUTPUT 2

OUTPUT 3

OUTPUT 1

OUTPUT 4

V.

GND

INPUT 1-

INPUT,,+

INPUT I.

INPUT 4-

INPUT 2-

INPUT 3+

INPUT 2+

INPUT 3-

TL/H/5706-27

"Available per JM38510/11201
""Available per SMO# 5962-8873901

Order Number LM139AW/883 or LM139W/883'
See NS Package Number W14B

3-42

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 10)
LM139/LM239/LM339
LM139/LM239/LM339
LM3302
LM139A/LM239A1LM339A
LM3302
LM139A/LM239A1LM339A
LM2901
LM2901
Supply Voltage, V+
-40·Cto +85·C
Operating Temperature Range
36 VOC or ± 18 VOC
28 Vocor, ±14 VOC
O·Cto +70·C
LM339/LM339A
Differential Input Voltage (Note 8)
36Voc
28Voc
- 25·C to + 85·C
LM239/LM239A
Input Voltage
-0.3Vocto + 36Voc
-0.3Vocto + 28VoC
-40·Cto +85·C
LM2901
Input Current (VIN< -0.3 Voc),
- 55·C to .+ 125·C
LM139/LM139A
(Note3j
50mA
50mA
Soldering Information
Power Dissipation (Note 1)
Dual-In-Une Package
Molded DIP
1050mW
1050mW
260·C
Soldering (10 seconds)
2600C
GavityDIP
1190 mW
Small Outline Package
Small Outline Package
760mW
215·C
215·C
Vapor Phase (60 seconds)
Output Short-Circuit to GND,
Infrared (15 seconds)
2200C
2200C
(Note 2)
Continuous
Continuous
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for
-65·Cto + 150·C
- 65·C to + 150·C
Storage Temperature Range
other methods of soldering surface mount devices.
Lead Temperature
ESD rating (1.5 kO in series with 100 pF)
600V
600V
(Soldering, 10 seconds)
260·C
2600C

~

EI~ctrical

Characteristics (V+ = 5 VOC, TA =

Parameter

25·C, unless otherwise stated)

LM139A

Conditions

I

MlnTyp

Max

LM239A, LM339A
Min

Typ

Max

LM139
MinTyp

Max

LM2901

LM239, LM339
Min

Typ

Max

MlnTyp

Max

LM3302
MlnTyp

Units

Max

Input Offset Voltage (Note 9)

1.0

2.0

1.0

2.0

2.0

5.0

2.0

5.0

2.0

7.0

3

20

mVOC

Input Bias Current

25

100

25

250

25

100

25

250

25

250

25

500

nAoc

SO

3.0

SO

S

SO

3

100

nAoc

IIN( +) or IIN( -) with Output in
Unear Range, (Note 5), VCM=OV

3.0

Input Offset Current IIN(+)-IIN(-), VCM=OV

Supply Current

RL = co on all Comparators,
RL = co, V+ = 36V,
(LM3302, V+ =28 VOC)

Voltage Gain

RL~1S kO, V+ =1SVOC
rvo= 1 VOC to 11 VOC

Large Signal
Response Time

VIN = TTL Logie Swing, VREF=
1.4 VOC, VRL = S VOC, RL = 5.1 kO,

Response Time

VRL =5 VOC, RL =S.1 kO,
(Note 7)

0.8

SO 200

Output Sink Current VIN(-)=1 VoCo VIN(+)=O,

2S
V+-1.S

Input Common-Mode V+ =30 VOC (LM3302, V+ =28 Voc) 0
(Note 6)
Voltage Range

S.O

V+-1.S 0

0

2.0

0.8
1.0

0.8
1.0

200

SO 200

300

300

1.3
6.0 16

SO

2.0
2.S

6.0

2S
V+-1.S

5.0

2.0
2.S

0.8
1.0
SO

V+-1.S 0

V+-1.S 0

0

2.0
2.S

0.8
1.0

0.8
1.0

2.0
2.S

2.0
2.S

mAoc
mAce

30

VlmV

300

300

ns

1.3

1.3

1.3

,..s

16

6.0 16

6.0 16

200

25 100

300

300

1.3

1.3

16

6.0 16

6.0

V+-1.S Voc

2

mAoc

VO~1.SVOC

n

~O&&W'/~06~W'/6&&W'/6&ZW'/6&~ ..

.~===-oJ.iii

. ____

LM139/LM239/lM339/LM2901/LM3302

Electrical Characteristics (V+ = 5 VOC. TA =
Parameter

Min

Typ

Max
400

Saturation Voltage

VIN(-) = 1 Vee. VIN(+)=O.
ISINK:S;4mA

250

Output Leakage
Current

VIN(+)';'l VOOVIN(-)=O.
Vo=5Voe

0.1

Parameter

LM239A, LM339A

LM139A

Condfttona

Electrical Characteristics (V+

25"C. unless otherwise stated) (Continued)

Min

Max

250

400

Min

0.1

LM239, LM339

Typ

Max

250

400

Min

LM2901

Typ

Max

250

400

Min

0.1

0.1

LM3302

Typ

Max

250

400

Min

0.1

Unft8

Typ

Max

250

500

0.1

mVoe
nAoe

= 5.0 Voe. Note 4)
LM139A

CondWona

MlnTyp

~

LM139

Typ

Max

LM239A, LM339A
Min Typ

Max

LM139
MlnTvp

Max

LM239, LM339
MinTyp

Max

LM2901
MlnTyp

Max

LM3302
MlnTyp

Unft8

Max

Input Offset Voltage

(Note 9)

4.0

4.0

9.0

9.0

9

15

40

mVoe

Input Offset CUrrent

IIN(+)-IIN(-).VCM=OV

100

150

100

150

50

200

300

nAoe

Input Bias CUrrent

IIN( +) or IIN( _) with -Output in
Unear Range. VCM = OV (Note 5)

300

400

300

400

200

500

1000

nAce

Input Common-Mode
Voltage Range

V+ =30 Voe (LM3302. V+ =28 Vbc) O.
(Note 6)

Saturation Voltage

VIN(-)=l Voe. VIN(+)=O.
ISlNK:S;4mA

. V+-2.0

0

V+-2.0 0

V+-2.0

V+-2.0 0

V+-2.0 0

V+-2.0 Voe

700

700

mVoe

1.0

1.0

1.0

",Ace

36

36

28

Vee

700

700

700

700

Output Leakage Current VIN(+)=l Voe. VIN(-)=O.
Vo=30Voe. (LM3302. Vo=28 Vocl

1.0

1.0

1.0

Differential Input Voltage Keep all VIN'S~O Voe (or V-.
if used). (Note 8)

36

36

36

400

Note 1: For operating at high temperatures, the lM339/lM339A. LM2901, LM3302 must be derated' baaed on a 125"C maximum junction temperature and a thermal resistance of 95"C1W Which applies for the devfce soldered in a
characteristic of the outputs keeps the chip

printed circuit board, operating in a still air ambient The LM239 and LM139 must be derated baaed on a 150"C maximum junction temperatura. The low bias dissipation and the "ON-OFF"
dissipation very small (Po': 100 mW), provided the output transistors are allowed to saturate.

Not8 2: Short circuits from the output to V+ can cause excessive heeUng and eventual destruction. When considering short circuits to ground,the maximum output current is approximately 20 mA independent of the magnitude of V+.
Note 3: This input current will only exist when the voltage at any of the input leeds Is driven negative. It is due to the collactor-basil Junction of the input PNP transistors becoming forward biesed and thereby acting as input diode
clamps. In addition to this diode action. there is also lateral NPN parasIIlc transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to gc to the V+ voltage leval (or to ground for a large
overdrive) for the time duration. that an Input is driven negalive. This Is not destructive and normal output states will re-establish when the Input voltage. which was negative, again ratums to a value greater than -0.3 Voc (at 25")C.
Note 4: These specifications are limited to -55"C':TA': + 125"C, for the LMI39/LMI39A. With the LM239/LM239A, all temperature specifications are limited to - 25"C':TA': + 85'C, the LM339/LM339A temperature specifications
are limited to O"C.:TA': +70"C, and the LM2901 , LM3302 temperature range is -4O"C.:TA:<:+85"C.
Note 5: The dtraction of the input current Is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note Ik The input common-mode voltage or eHher input signal voltage should not be allowed to gc negative by more than 0.3V. The upper end of the common-mode voltage range is V+ -1.5V at 25'C, but either or both inputs can gc
to +30 Voc without damage (25V for LM3302), independent of the magnbude of V+.
Note 7: The response lime specified is a 100 mVinput step with 5 mVoVerdrive. For larger oviIrdrIve signals 300 ns can be obtained, eee typical performance characteristics section.
Note 8: Positive excursions of Input voltage may exceed the pow8r supplyleval. As long as the other voItege remslns within the common-mode range, the comparator will provide a proper output state. The low input voltage state
must not be less then -0.3 Voc (or 0.3 Voc below the magnitude of the negative power supply. Hused) (at 25'Cl.
Note 8: At output switch:point, VO,,",U Voo Rs=on with V+ from 5 Vocto 30 Voc; and over the full input common-mode range (0 Voc to V+ -1.5 Vocl. at 25'C. For LM3302, V+ from 5 Voc to 28 Voc.
Note 10: Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specificaUons.

Typical Performance Characteristics LM139/LM239/LM339, LM139A1LM239A1LM339A, LM3302
Supply current
u

i

~ C-T~~

IA

Iii ... ~ ~ ~fc

..

Ii
..

i

Input Current
10

TA ......5,...1-- ~

,

IA

i.o-"

I

l!iii ••
.

..
i
c

TA -+JrC

.... i-

,, ,

,.

21

31

rr:

41

,

2G

!!

TA··1Zre-

".

1.2

o

-

I I
I I

Output SaturatIon Voltage

~

v",_·OVoc

...,c.",."'O

1.1

1-+--+-+'745M---4-1---1

S, 1.11

1-t7"io1S~,+-+~-1-t

,.

:

'r.:lI"~""

S
.

K TA.··2~e

I I

TA··we -

~

f I I

"

31

UtI

~~~~-L~~_~

Re8ponse TIme for Varlou8
Input Overdrlv.-Posltlve
Tran8itlon
ui

&.I

:II
~~

r"'~=
.
- +
,, ,

,

1.1

..
=::
..
"

U IIV ·IIII'UT OVERDRIVE

'10 ..

lao

II

10 -'OUTPUT SINK CURRENT (..AI

Re8pon8e Time for Varlou8
Input OverdrIve_NegatIve
TransItIon

2I~V
-is

u

1.1

IAI

41

v+ -SUlPlYVDlTABElVocl

IUPPl.YVOlTAGECVocl

I

I-+-+-+++~J+--I

~
co

;:-.~

41

1.0

=c

T:.-~e

~

"'-'--;-"""''''''"':'I'"1IIr-'

4.G

," IIIPUT OVERDRIVE ·110 .V

I , I
J ,h,V

i'\.

3.1

fL L

2.1

==

'2ImV

U

_

"l?
,..

ui
CD

~s '10
".! &I -(-TA·2i·~-

~~ a

~jA !lI"~,""f

~

·c

"

TlIH/5706-6

Typical Performan'ce Characteristics LM2901
Supply Current

Input Current

Output SaturatIon Voltage
10

10

u

J
Ii
II!

~

10

i

41

...

Ii

..
...

1.1

~

I

!iii

II

31

•

TAJ!!:; f - A· ....C- f - -

r.w"",Y VOLTAGE (VocI

.j

I

• "

41

~

=
S
S1.I11-~lIIII5~"'"
D.1

21

j

'I

~

TA!rc

i

u

l.1li -;............_
41

1.1'

V'. SU"lYVOL TABE (VocI

Response Time for Varlou8
Input OverdrIves-NegatIve
TransitIon

2I1I!!.

H

..s>
,.ui
CD

"'1?

c

....-=
-

.

'10 ..

!;~

!;

t ,"

,.I

1.1

3.0
2.0

;!>

110

i~

f

U
4.0

1.0

S.!

~ !2I'~-

I.D

"

:;

111

...

......._

......._

.....

I
"
'10
10. OUTPUT liNK CURRENT (IIIAI
1.1

Re8ponse Time for Varlou8
Input OverdrIves-Positive
Tran81tlon

u .V· IIPUT OVERDRIVE

.1.

,..---r---r--,....- ,

l

TA·j""C- f - -

•

10

I" IIPVT OVERDRIVE' IDlIIV

'\.

I , "

J I'·v
nI
2IIIV

,..~~
,.-

III

I-I-TA·lI"~-

'

....

U

TIME.,..

TL/H/5706-7

3-45

"N , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

I...
..;.I

......

iN

::!I
C;;
CO) "
CO)

::!I
......

!

::!I

...~

....

::&

Application Hints
The differential input voltage may be larger than V+ without
damaging the device. Protection should" be provided to pravent the input voltages from going negative more than -0.3
Voc (at 25"C). An input clamp diode can be used as shown
in the applications section.

The LM139 series are high gain, wide bandwidth devices
which, nke most comparators, can easily oscillate if the out.,
put lead is inadvertently allowed to capacitively couple to
the inputs via stray capaCitance. This shows up only d\jring
the output voltage transition intervals as the comparator
changes states. Power supply bypassing is not required to
solve this problem. Standard PC board layout is helpful as it
reduces stray input-o!Jtput coupling. Reducing this input resistors to < 10 kO reduces the feedback signal levels and
finally, adding even a small amount (1 to 10 mV) of positive
feedback (hysteresis) causes such a rapid transition that
oscillations due to stray feedback are not possible. Simply
socketing the Ie and attaching resistors to the pins will
cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a
pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

The output of the LM139 series is the uncommitted collector
of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an Outpllt OR'ing function. An output pull-up resistor can !Je connected to any
available power supply voltage within the permitted supply
voltage range and there is no restriction on this voltage due
to the magnitude of the voltage which is IIPplied to the V +
terminal of the LM139A package. The output can also be
used as a simple SPST switch to ground (when a pull-up
resistor is not used). The amount of current which the output
device can sink is limited by the drive available (which is
independent of V+) and the f3 of this device. When the
maximum current limit is reached (approximately 16 mAl,
the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is: limited by thEi approximately 600 RSAT of the output
transistor. The low offset voltage of the output transistor (1
mV) allows the output to clamp essentially to ground level
for small load currents.

All pins of any unused comparators should "be grounded.
The bias network of the LM139 series establishes a drain
current which is independent of the magnitude of the power
supply voltage over the range of from 2 Vee to 30 Voc.
It is usually unnecessary to use a bypass capaCitor across
the power supply line.

Typical Applications (V+

= 5.0 VOC)

Basic Comparator

Driving CMOS

V'

Driving TTL

+1.0 VDC

+iVue:

Vo

TL/H/5706-3

TLlH/5706-5

TL/H/5706-4

AND Gate

OR Gate

v·

y'

3k

3k

IIDk

lOOk

A

A

llOk

llOk

llOk

:':r
..... "I"

Ik

C

"IOlk

I·A" B· C

,. A+8+C

C

v~=r

-=-

"g" "I"

TL/H/5706-8

TLlH/5706-9

3-46

Typical Applications (V+ = 15 Vee) (Continued)
One-Shot Multlvlbrator
V'

:l o-i .........--..
IDGpF

.:::fWl=:

--t

10 ,V ,N

I m•

>-4.....0 Vo

'.

V·
D

"

O.DOI"F

1M

TLlH/5706-10

8i-Stable Multlvibrator
V·

lOOk

1110
51k

lOOk

5

1l:.:

15V

V~

n.

>-..-oVo R
lOOk

R 0-""",..".....---1
TL/H/5706-11

One-Shot Multivlbrator with Input Lock Out
V'

1110
-VIN

o--'IoMII""4"--+---4

--fE ''''

.~V·

4O ••..;;:J ~O
10 .,

+4V

•

> ........OVo

82k

":'
TLlH/5706-12

3-47

N

!

!I....

Typical Applications (V+ = 15 Voc) (Continued)
ORlng the Outputs

-

•

v'

~

Uk

~

Large Fan-In AND Gate

~

~""""ovo

v'

!I
~

N

!I

,.

-~
~

:'y
.....

Ao-.....1-4....- -.....

VOUT = A·.· C· 0

"1"

10-.........
03
C

0-,,1--.

00-........

I·
All DIODES

IN914
TLlH/5706-13

Pulee Generator

v'
01

Al
1M

TUH/5706-15

15.

lNI14

*
DZ

AZ

lNI14

110k

BO pF

~
Vo

1M
1M

1M

-

* FDA LAAGE RATIOS OF AlIAI.
01 CAN IE OMITTED.

TL/H/5706-17

3-48

Typical Applications (V+ = 15 Voc) (Continued)
Time Delay Generator
V'

I ••

I ill

3.0.

111M

v,

V'

3.0.
51.

10M

Ilk

~::r-L
I.

I.

+V..

INPUT GATING SIGNAL

V.

51k

V'

. - - - - - - - - - - , - .. ~
I..

te,

V

I

v,

-1-TLlH/5706-14

Non·lnverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

V'

+V •••

0------1

V'

+V,~

3.

0------1

3.

> ....I-'OVo

>-4"'-OVo
1M

1M
TLlH/5706-18
1M

TLlH/5706-19

3·49

Typical Applications (V+ = 15 Voc) (Continued)
Comparing Input Voltages
of Opposite Polarity

Squarewave Oscillator

v·
V'

lDOk
4.3k

,aak

5.1k

v'

>-4I--4....0Vo
TL/H/5706-20

TL/H/5706-16

Output Strobing
V'

>-4....-0Vo
STROlE
INPUT
TLlH/5706-21
TLlH/5706-22

'Or open-collector logic gale without pull-up resistor

Limit Comparator

Crystal Controlled Oscillator
V'UZ Vuel

V·

2110k
10k
+VREF HI

z.ak

'ODIc

o--""''''''---t

> ..-oVo

lis

211s

'V... LOW

o--"",,,,,,-..--t
TLlH/5706-24
TLlH/5706-25

3-50

~
"CI

~'

»

"CI

'2
c;'

!

Two-Decade High-Frequency veo

0'

v·

:::s
(I)

Y'

'<+

lOOk
lOOk

(II

Uk

5.lk

+Yc

;

II

~

500pF

FREQUENCY
CONTROL.
YOLTAGE
INPUT

8.01jJF
O.I~F

....fU

T

~

•

•

0

a

~.

OUTPUT 1

!

Y+JZ
20k

a
~

OUTPUT Z

IV'v

18k
Y+12

V+=+30Voc
+250 mVOC':Vc': +50 Voc
700 Hz': '0': 100 kHz

TLlH/S706-23

~O££W'IJ.06~W'/6££W'/6£~W'/6£~W'

II

Typical Applications (V+ = 5 Voc) (Continued)
Transducer AmplIfier

Zero CroaaIng Detector (SIngle Power Supply)

yo

yo

u.

11.

VIN

MAGNETIC
PICKUP

II

I.'.

1.1.

.....---"Yo

Yo

20M

1l1li

":'

TLlHf5708-30
TLlHf5706-28

Split-Supply Applications (V+ = + 15 Voc and V- = -15 Vee)
MOS Clock Driver

3.lk
51k

Uk

.JI''''---o o.
Uk

&.8k

V'
TlfHf5706-31

3-52

~----------------------------------------------------------------------------,

Split-Supply Applications (V+ = + 15 Voc and V- =

iii:

te

-15 Voe) (Continued)

Ii:

Comparator With a Negative
Reference

Zero Crossing Detector

...r

i8
.....

v+

r

iii:

~

UK

UK

>-411....Ovo

>-411....O vo

CD
.....
r

iii:

...8

.....

Ii:w

v-

~

vTLlH/5706-32

N

TLlH/5706-33

Schematic Diagram
y+

+I.UT
OUTPUT

TL/H/5706-1

3-53

t!lNational Semiconductor

LM160/LM360 High Speed Differential Comparator'
General Description

Features

. The LM160/LM360 is a very, high speed differential input,
complementary TIL. output voltage comparator with improved characteristics over the p.A7601 ""A760C, for which it
is a pin-for-pin replacement. Th~ device has been optimized
for greater speed, input impedance and fan-out,. and lower
input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 rfiV to 400 mit.
. .
Complementary outputs h",ving minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in' disk ·file systems.

•
•
•
•
•
•
•
•

Guaranteed high speed
20 ns max
Tight delay matching on both butputs
Complementary 17TL outputs
High input imped~nce
Low speed variation with overdrive variation
Fan-out of 4
Low input offset voltage
Series 74 TIL compatible

Connection Diagrams
Metal Can Package

Dual·ln·Llne Package

v·

v'

OUT I

Nt

INZ

OUU

aNa'

INI

v-

vTOP VIEW
TLlH/5707-4

Tar VIEW

Order Number LM160H/88S* or LM360H
See NS Package Number HOSC

TLlH/S707 -5

Order NUlT!ber LM160J/88S",
LM360M or LMSIlClt
Parameter

Conditions

Operating Conditions
Supply Voltage Vee +
Supply Voltage Vee
Input Offset Voltage

Rs

~

Min

Typ

Max

Units

4.5
-4.5

5
-5

6.5
-6.5

V
V
mV

2000

Input Offset Current

2

5

0.5

3

IJA

5

20

p.A

25
20

ns
ns
ns

Input Bias Current
Output Resistance (Either Output)

VOUT = VOH

100

Response Time

TA = 25°C, Vs = ±5V (Notes 1, 6)
TA = 25°C,VS = ±5V(Notes2,6)
TA = 25"C, Vs = ±5V (Notes 3,6)

13
12
14

TA =
TA=
TA =
TA =

2
2
2
2

ns
ns
ns
ns

Response Time Difference between Outputs
(tpd of + V1N1) - (tpd of - VIN21
(tpd of +VIN2) - (tpd of -VIN 1)
(tpd of + VIN1) - (lpd of + VIN21
(tPd of -VIN1) - (~of -VIN21

25"C (Notes 1, 6)
25°C (Notes 1, 6)
25°C (Notes 1, 6):"
25°C (Notes 1, 6)

0

Input Resistance

f = 1 MHz

17

kO

Input Capacitance

f = 1 MHz

3

pF

Average Temperature Coefficient of
Input Offset Voltage

RS = 500

8

p.VloC

7

nAloC

±4.5

V

3

V

Average Temperature Coefficient of
Input Offset Current
Common Mode Input Voltage Range

Vs = ±6.5V

±4
±5

Differential Input Voltage Range
Output High Voltage (Either Output)
Output Low Voltage (Either Output)

ISINK = 6.4 mA

Positive Supply Current

Vs = ±6.5V

V

2;4

lOUT = -320 p.A, Vs = ±4.5V

0.25

0.4

V

18

32

mA

Negative Supply Current
-9
-16
Vs = ±6.5V
rnA
Note 1: Response time rneesured from the 50% point of a 30 mVPi' 10 MHz sinusoidal Input IQ the 50% pOint of the output
Note 2: Response time rneesured from the 50% point of a 2 Vp.p to MHz sinusoidal Input IQ the 50% point of the output.
Note 3: Response time rneesured from the start of a 100 mV input step with 5 mV overdrive IQ the Ume when the output crosses the logic threshold.
Note 4: Typical thermal impedances are as foflows:
Cavity DIP (J):
Header (H)
135"C/W
(Still Air)
IS5'CIW
IljA
II/A
67"C/W
(400 LF/min />Or Flow)
Molded DIP (N):
13O'C/W
IljA
II/c

Note 5: The device may be damaged If used beyond the maximum ratings.
Note 6: Measurements are made in AC Test Circuit, Fanout = 1
Note 7: Refer IQ RETS 160X lor LMI60H. LMl6OJ·14 and LM160J military specifications.
Note 8: Human body model. 1.5 kO In series with 100 pF.
3-55

25'C/W

Typical Performance Characteristics

. Input Currents va Ambient
Temperature

Offset Voltage
4

;; 3.1
.! 3.%

..
....,.
...=~
~

~

i!

Y+=+IY
y-. -5Y

I

J

r- -

....

....m
..=

V

2.1

l

2.4

V

1.1

V

u

E

u

......

2,25

!!

~

1.2

-

~

1.75

OJ

....

I
ariAS

I
-& -4 -3 -2 -I

-iiI -35 -1& & 2& 4& II 8& 11& 12&

AMBIENT TE_RATURE rCI

II

~

17

--

II

-

I

'-

"

II

~

SJE A! TEh C!RCJIT- r-

IB

~
;I

;

40

!it

I

30

"DIll

r- ~FANij!:!.

48

~

1/

/

~

:=

zo

1-=~'=!::=!::='=-Y~hI

-10

"~~LJLL..J...LJ

Z8
"DIDI
I
FANOUT-I

II

-&5-35 -IS I

21 41 II II lD5 1%1

-&1-35 -1& & II 4& II II llIi 121

AMBIENT TEMPERATURE rCI

Common-Mode
Pulse Response

.

3 4 &

J

AMBIENT TEMPERATURE I'CI

~

r-r-

&0

7
-1&-35 -15 & 25 4& 1& 8& ID512&

2

&0 r-r-r-~~~~~~

71
Y+'+5Y
Y-'-5Y

19

I

Delay of Output 1 With
Respect to Output 2 va
Ambient Temperature

Propagation Delay vs
Ambient Temperature

ID

8

DIFFERENTIAL INPUT YDLTAGE M

AMBIENT TEMPERATURE rCI

Supply Current vs Ambient
Temperature

y+=+&y
Y-·-5Y

I-~

I I

1.&

-&&-3& -15 5 1& 4& I. 85 la& IZ&

--

~T

....

Y+=+5Y
Y-'-IY

Input Characteristics
9

AMBIENT TEMPERATURE rCI

AC Test Circuit

~

OUTPUT

~

TO y+

~

~

!!

!

..
...~
..S=
~

-::,,.

lIB

141

t--

~'
"!'

IN.,4

I

' ..,4

"OIT

,AI

R

.IV" ,

''''4

,.,4

> 131
4G

II
III
TIME lui

lIB

Tl/H/5707 -2

VIN= ±50 mV FANOUT=1 FANOUT=4
V+=+5V
R=2.4k
R=6300·
V-= -5V
C=15 pF C=30 pF

3-56

TlIH/5707-S

Schematic Diagram
RIO
85

R7
lk

010

....---0 ~3~UVfER11NG
........----oGNO'

Rl
1450

....-I~-I-o INVER11NG
OUTPUT2

+INPUTI
-INPUT2 o---+-....J

08

TLlH/5707 -1

3-57

tJ1

Nat i

0

fI,

a I Se

~ i c ~ n duct 0 r

LM161/LM261/LM361
High Speed Differential Comparators
General Description··

Features

The LM161 ILM261 ILM361 is a very high speed differential
input, complementary TTL output voltage comparator with
improved characteristics OVer the SE529/NE529 for which it
is a pin-for-pin replacement: The device has been optimized
for greater speed performance ilnd lower input offset voltage. Typically delay varies only 3ns fol-" over-drive variations
of 5 mV to 500 mV. It may be operated from op amp supplies (± 15V).
," '

• Independent strdbes .
20 ns max
• Guaranteed high speed
• Tight delay matching on both outputs
Ii Complementary TTL outputs
±15V
• Operates from op amp supplies
• Low speed variation with overdrive variation
• Low input offset voltage
• Versatile supply voltage range

Complementary outputs having maximum' skew are provided. Applications involve high speed analog to digital converters and zero-crossing deteciors in disk file systems.

Connection Diagrams
·Metal Can Package

Dual-In-Llne Package
Yee

STROlE I

1.

.3

4

Ie
12

OUTPUT I " •••1
II

v+

·IIUJPIIT 2 STROlE 2
I

"

,...-

I

l-

OUTPUT I
TLlH/S708-3
I
y+

Z

lie

3,

I"PUTI

4

INPUU

•

5
Ne

V-

II

Order Number LM161H1883*, on.M361H
see NS Package Number H10C

lie

TL/H/S708-2

Top View
Order Number LM161J, LM161J/883*,
LM361M or LM361N
See NS Package Number J14A, M14A or N14A
'Also available per SMD #5962-8757203

Logic Diagram
STROlE'· Vex:

OUTPUT I

'Outpulls
lowwhen
current is
drawn from
sfrobe pin.

OUTPUH

VTLlH/S708-4

3-58

Absolute Maximum Ratings (Note 1)

Operating Conditions

If Military/Aerospace specified devices are required,
please contact the National semiconductor Sales
Office/Distributors for availability and specifications.
(Note 4)
Positive Supply Voltage, V+
+16V
Negative Supply Voltage, V-16V
Gate Supply Voltage, Vee

Min
Supply Voltage V +
LM161/LM261
LM361
Supply Voltage VLM161/LM261
LM361

+7V
+7V
±5V
±6V

Output Voltage
Differential Input Voltage
Input Common Mode Voltage
Power Dissipation
Storage Temperature Range

TMAX
TMIN
- 55"C to + 125·C
- 25·C to + 85·C
O·Cto +70"C
260·C

15V
15V

-6V
-6V

-15V
-15V
5V
5V

5.5V
5.25V
1600V

260"C
215·C
220·C

See AN-450 "Surface Mounting Methods and Their Effect
on PrQduct Reliability" for other methods of soldering surface mount devices.

0.3V

Electrical Characteristics (V+

Max

5V
5V

Supply Voltage Vee
LM161/LM261
4.5V
LM361
4.75V
ESD Tolerance (Note 5)
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)

600mW
-65·Cto + 150"C

Operating Temperature Range
LM161
LM261
LM361
Lead Temp. (Soldering, 10 seconds)
For Any Device Lead Below V-

Typ

= + 10V, Vcc = + 5V, V- = -1 OV, T MIN

S;

TA S; T MAX, unless noted)

Limits
Parameter

Conditions

LM1611LM261
Min

Input Offset Voltage

LM361

Typ

Max

1

3

Min

5

Units

Typ

Max

1

5

mV

30

p.A
p.A

5

p.A

10

Input Bias Current

TA=25·C

Input Offset Current

TA=25·C

Voltage Gain

TA=25·C

3

3

V/mV

Input Resistance

TA=25·C, f=1 kHz

20

20

kO

Logical "1" Output Voltage

Vcc=4.75V,
ISOURCE= -0.5 mA

3.3

V

Logical "0" Output Voltage

Vee = 4.75V,
ISINK=6.4 mA

0.4

0.4

V

Strobe Input "1" Current
(Output Enabled)

Vee=5.25V,
VSTROBE=2.4V

200

200

p.A

Strobe Input "0" Current
(Output Disabled)

Vee=5.25V,
VSTROBE=0.4V

-1.6

-1.6

mA

Strobe Input "0" Voltage

Vcc=4.75V

0.8

0.8

V

Strobe Input "1" Voltage

VcC=4.75V

Output Short Circuit Current

Vee=5.25V, VOUT=OV

-55

mA

20
2

2.4

3.3

2.4

2
-18

3-59

p.A

2
3

2
-55

-18

V

Electrical Characteristics (Continued)
(V+ = +10V, Vee = +5V, V- = -10V, TMIN

s:

TA

s:

TMAX, unless noted)
Umlts

Parameter

Conditions

LM161/LM261
Min

Supply Current I +

V+ =10V, V-= -10V,
Vcc=5.25V,
-55°CS:TAS: 125°C

Supply Current 1+

V+ =10V, V-",; -10V,
Vcc=5.25V,
O"C s: TAS: 70"C

Supply Current 1-

V+ =10V,Y-;= -10V,
Vcc=5.25V,
-55°CS:TAS: 125°C

Supply Current 1-

V+=10V,V-=-10V,
Vee=5.25V,
O"CS:TAS:70"C

Supply Current ICC

V+ =10V, V-= -10V,
Vee=5.25V,
-55°CS:TAS:125°C

Supply Current ICC

V+=10V,V-=-10V,
Vee=5.25V,
O"C s: TAS: 70"C

Transient Response
Propagation Delay Time (fpd(O»
Propagation Delay Time (fpd(I»
Delay Between Output A and B
Strobe Delay Time (tpd(O»
Strobe Delay Time (tpd(I»

Typ

165'CIW (Still Air)
67"C/W (400 U'/Mln
NrRow)

112'C/W

Units
Max
mA

5

10

NPackage
105"CIW

2S'C/W
8jC
Note 3: Measurements using AC Test circuit. Fanout = 1. The devices are faster at low suppiy voltages.

Note.: Refer to RETS161X for LM161H and LM161J military specifications.
Note 5: Human body model, 1.5 kn in series with 100 pF.

3·60

20
20
5

mA

mA

18

14
14
2
8
8

mA

mA

10

Note 1: The device may be damagad by use beyond the maximum ratings.

8jA

Max

Typ

4.5

VIN = 50 mVoverdrive
(Note 3)
TA=25"C
TA=25"C
TA=25°C
TA=25°C
TA=25°C

Note 2: Typical thermal impedances are as follows:
HPackage
JPackage

LM361
Min

14
14
2
8
8

20

mA

20
20
5

ns
ns
ns
ns
ns

Typical Performance Characteristics
u

I
w

Input Currents V8 Ambient
Temperature

Offset Voltage
7

:::~O:IV -.-

1.1

YCC ·5.2IY-

fA

e
I.'
i...

-

~

i

-

-

-I-.

u
u

Il.
j'l r-

V

~ 1.4
;;;;11"'"

V-

-

or -1.';--

Y---IDV
Ycc-UIY

I.lI
1.1

C

.!

e

-

.l.lJ

I
I

,-

rc
rc

~
>-

~
i

.-

'I--I~

1

=
j

i

i

31
2IIH--+-+-I--h~HH

II
_II

t;I!~::t:tft:Ij

.... -31-11 I II .. II H 1.118
_ENT TEMPERATURE rCl

Propagation Delay, va
Supply Voltage
.

1 I I • •
DIFFERENTIAL IIIPUT YaLTAtE IVI

II

1

11

1

1-

-t""

.... f- -~

I
I'

•

I
I

•
71

I
!C

!

i

I

. --

J TE~ C'~CU~

.JE
l-

31

I-

~
!! •
Ill>'
E II ~rUT04

30
II
II

""'"

'I
'Maur-I
1
I
.... -31-11 • II 4' • II 'II 'II

_ENT TEtllPl!RATURE rCl

Common-Mode
Pulse Response

~

I

-.

""1Ij ~ r-

II
II

Strobe Delay V8 Ambient
Temperature
II

'(I

5 •

cor,

41

riE AlI: T.k C:RC~IT

;

:tt ttl i11 tl2 ±13 114 +11
IUPPLY YDLTAIE
V-ICYI

...-I"""'1I"""'1r""""'---...",,::""""-,

.. ~~~-~~~~~~

... -4 ..,J ..,J -I I

tI :til tJ tl

71

!

I'""
I

ICC

II

Delay of Output 1 WItIT
Re8pect to Output 2 V8
Ambient Temperature

II

i

Propagation Delay V8
Ambient Temperature

TA -II'C
vcc- U1V-

I'

-15-35-lIi I H 41 H 111115 121
_NT TEMPERATURE rCI

•

I •

I I

I

•

I

Supply Current V8
Supply Voltage
II

r

vcc- uav

21 41 II 1& IH III
_ENT TEtllPl!RAr.£ rCl

,1.-

to-- ..JC

12 f-yLI'.v I
II f- ~-. -IIV
Vcc- UIV

r- ~T

"'-IIV
r--IIV

i

-11-3&-11 I

Supply Current V8
Ambient Temperature
U

-

.IM

"""

ii I~ ,

-,I-JI -II I II 41 H II 1.1 121
A."ENTTEMPERATURE f'CI

14

I""-

1 •
I.~

~

1

•

Input Characterlstlc8

!I

I

I

F~'
1
1

/

I

('D(~ It """I
"10 ,...,..,...-r .l,... .....,.....

FAIDUT-I

I

.... -31-11 I

H .. H H 111111
_lENT TEMPERATURE rCI

1,11

i

I

i

I.
141

H",,,+++-+-,,,~+-t
~-+-+-r~~4-+-~
..

•

I.

I ..

TlME(""
TL/H/57D8-5

AC Test Circuit

II

OUTPUT

y+

71

1

10

..
~
•

!

..~

E

H

II
ZI

II

'PDCII;;;;;

lN914

INPUT 1

"jlGr
.... .., .... '1"11'12<1"14'"

or, y- - SUPPLY VDLTAGE IVI
TlfH/5708-7

lN914
YIN = ±50mV
V+ = +10V
V- = -10V
Vee

= 5.25V
3-61

FANOUT = 1

FANOUT = 4

R = 2.4k

R = 6800
C = 30pF

C=15pF

lN914
-

TlfH/5708-6

i
~
........

r---------------------------------------------------------------------~

Schematic Diagram
LM161

. "1-1--_~-I_---_--1...._-...0-0 STROBEl
r ___-.____-+r"_-.-_-_-_-_V/X

U)

N.

....~....
....

R7

Iii

U)

~

012

y+ 0----......-

_ _- _

....--+-0() NON-INVERTING
OUTPUTI

01
02

GNO

03

RI

OIl

1450

.STROBE2

04

_____1----1-0 INVERTING
OUTPUT2

+INPUTI
-INPUT2 0---+_.......

D8

ro--~------~---~---__~---------------------~I___~
TL/H/5708-1

R10, R16: 85
R11, R17: 205

3-62

t;tINational Semiconductor

LM 193/LM293/LM393/LM2903
Low Power Low Offset Voltage Dual Comparators
General Description
•
•
•
•

The LM193 series consists of two independent precision
voltage comparators with an offset voltage specification as
low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply
over a wide range of voltages. Operation from split power
supplies is also possible and the low power supply current
drain is independent of the magnitude of the power supply
voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes
ground, even though operated from a single power supply
voltage.

Eliminates need for dual supplies
Allows sensing near ground
Compatible with all forms of logic
Power drain suitable for battery operation

Features
• Wide supply
2.0V to 36V
Voltage range
± 1.0V to ± 18V
single or dual supplies
• Very low supply current drain (0.4 mAl - independent
of supply voltage
• Low input biasing current
25 nA
• Low input offset current
± 5 nA
and maximum offset voltage
± 3 mV
• Input common-mode voltage range includes ground
• Differential input voltage range equal to the power supply voltage
• Low output saturation voltage,
250 mV at 4 mA
• Output .voltage compatible with TIL, DTL, ECL,
MOS and CMOS logic systems

Application areas include limit comparators, simple analog
to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators
and high voltage digital logic gates. The LM193 series was
designed to directly interface with TIL and CMOS. When
operated from both plus and minus power supplies, the
LM193 series will directly interface with MOS logic where
their low power drain is a distinct advantage over standard
comparators.

Advantages
• High precision comparators
• Reduced Vas drift over temperature

Schematic and Connection Diagrams

..
Metal Can Package

Dual-ln-L1ne Package

..

O,",UT ...

v'

"-,,-,,,_ _-OUTPUll

IIilVERnll •• PUT A

IOI.IIIVERTI"1
.IIIUTA

J

•••

•••

•

TD'VIHI

TDPVIEW

Order Number LM193H,
LH193H/883',
LM193AH, LM193AH/883,
LM293H, LM293AH, LM393H
orLM393AH
See NS Package Number H08C

NOIHNVflllnMl
I....TI

TUH/5709-1

Order Number LM193J/883',
LM193AJ/883,
LM393J, LM393AJ,
LM393M, LM2903M, LM393N,
LM2903J or LM2903N
See NS Package Number J08A,
M08AorN08E

• Also available per JM3851 0/11202

3-63

IMRTII.IiPUTI

LM193/LM293/LM393/LM2903

Absolute Maximum Ratings
If Military/Aerospace speCified· deylcesare required, please
contact the National Semiconductor Sales OffIce/Distributors for
ayallabillty and specifications.
(Note 10)
36V
Supply Voltage, V+

Operating Temperature Range
LM393/LM393A
LM293/LM293A
LM193/LM193A
LM2903

Differential Input Voltage (Note 8)

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

36V
-0.3Vto +36V

Input Voltage

780mW
660mW
510mW
Continuous

Electrical Characteristics (V+ == 5V, TA =

25·C, unless otherwise stated)

50mA

LM293A, LM393A

LM193A

Conditions

Min Typ

c.>

t

+ 260"C
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
26O"C
Small Outline Package
215·C
Vapor Phase (60 seconds)
Infrared (15 seconds}
220"C
See AN-450 "Surface Mounting Methods and Their Effect on Product
Reliability" for other methods of soldering surface mount d~ces.
ESD rating (1.5 kG in series with 100 pF)
1300V

Input Current (VIN < -0.3V) (Note 3)
Power Dissipation (Note 1)
Molded DIP
Metal Can
Small Outline-Package
Output Short-Circuit to Ground (Note 2)

Psrameter

O"C to + 70"C
- 25·C to + 85·C
-55·Cto + 125·C
-40"Cto + 85·C
-65·Cto + 150"C

Max

Min Typ

Max

LM193
Min Typ

LM293, LM393
Max

Min Typ

LM2903

Max

Min Typ

Units

Max

Input Offset Voltage

(Note 9)

1.0

2.0

1.0

.2.0

1.0

5.0

1.0

5.0

2.0

7.0

mV

Input Bias Current

IIN( + ) or IIN( - ) with Output In Linear
Range, VCM = OV (Note 5)

25

100

25

250

25

100.

25

250

25

250

nA

Input Offset Current

IIN(+)-IIN(-)VCM = OV

Input Common Mode
Voltage Range

V+ = 30V (Note 6)

Supply Current

Rl=oo

3.0

IV+=5V
IV+=36V

Voltage Gain

Rl~15kG,V+=15V

50

25
V+ -1.5

0
0.4

1

1

2.5

200

5.0

50

50
v+ -1.5

0
0.4

1

1

2.5

200

3.0

50

25
V+ -1.5

0
0.4

1

1

2.5

200

5.0

50

50
V+ -1.5

0
0.4

1

1

2.5

200

5.0

50

nA

V+ -1.5

V

0.4

1.0

rnA

1

2.5

0

25

rnA

100

VlmV

300

ns

Vo = Wt01W
Large Signal Response
Time

300

VIN = TTL Logic Swing, VREF= 1.4V
VRl=5V, Rl =5.1 kO

Response Time

VRl =5V, Rl =5.1 kO (Note 7)

Output Sink Current

VIN(-)=W, VIN(+)=O, VO:S:1.5V

Saturation Voltage

VIN(-)=W, VIN(+)=O,ISINK:S:4mA

Output Leakage Current VIN(-)=O, VIN(+)=W, VO=5V

300

1.3
6.0

0.1

400

6.0

16
250
0.1

300

1.3

1.3
6.0

16
250

300

400

1.3

16
250
0.1

6.0
400

6.0

16
250
0.1

400

1.5

,...s

16

rnA

250
0.1

400

mV
nA

Electrical Characteristics (V+
Parameter

= 5V) (Note 4)
LM183A

Conditions

Min Typ

LM293A, LM383A
Min Typ

Max

LM193
Min Typ

LM293, LM383

Max

Min Typ

LM2903
Min Typ

Max

Units

Max

Input Offset Voltage

(Note 9)

4.0

4.0

9

9

9

15

mV

Input Offset Current

IIN(+)-IIN(-), VCM=OV

100

150

100

150

50

200

nA

Input Bias Current

IIN( +) or IIN( -) with Output in Linear Range,
VCM=OV(Note5) .

300

400

300

400

200

500

nA

Input Common Mode Voltage Range V+ = 30V (Note 6)

;

Max

0

V+-2.0 0

V+-2.0 0

V+-2.0 0

V+-2.0 0

V+-2.0

V

700

mV

1.0

1.0

p.A

36

36

V

Saturation Voltage

VIN(-)=1V, VIN(+)=O,ISINK~4mA

700

700

700

700

Output Leakage Current

VIN(-)=O, VIN(+)=1V, Vo=30V

1.0

1.0

1.0

Differential Input Voltage

Keep All VIN'S~OV (or V-, if Used),
(NoteS)

36

36

36

400

Note 1: For operating at high temparalUAls, !he lM393/LM393A and LM2903 must be derated based on a 12SOC maximum junction temperature and a thermal resistance of 17rrCIW which applies for the device soldered In a printed
clrcuH board, operating in a stili air ambient The LM193/LM193A1LM293/LM293A must be derated based on a 15O'C maximum junction temperature. The low bias dissipation and the "ON.QFF" characteristic of the outputs keeps the
chip dissipation very small (Po 0<: 100 mW), provided the output transistors are allowed 10 saturate.
Note 2: Short circuits frcm the output 10 Y+ can cause excessive heating and eventual destructicn. When conaldertng short circuits 10 ground, the maximum output current is approximately 20 mA independent of the magnHude of Y+.
Note 3: This Input current will only exist when the voltage at any of the input leads is driven negative. HIs due to !he collector·base luneticn of the Input PNP transistors becoming forward biased and thereby acting as Input dioda
clamps. In addlticn to this diode aeticn, there is aloe lateral NPN parssItic transistor aeticn on the IC chip. This transistor action can cause the output voltegas of the comparators 10 go 10 the Y+ voRage level (or 10 ground for a large
overdrive) for the time duration that an Input is driven negative. This is not destructive and normal output states will re-establish when the input voRage. which was negative. again raturns to a value greater than -0.3Y.
Note 4: Thasa specifications are limfted to - 55"Co<:TAO<: + 125"C. for the LM193/LM193A, With the LM293/LM293A all temperature specifications are limited to - 25"CO<:TAO<: + 8S"C and the LM393/LM393A temparature specifications are limited to rrCo<:TAO<:+7r1'C. The LM2903 is limited to -4O"Co<:TAo<:+85"C.
Note 5: The direction of the input current is out of the IC due 10 the PNP Input stage. This current Is eesentiaIly constant, independent of the state of the output oe no loading change exists on the reference or input lines.
Note 6: The input cornmon-mode voRage or eHher input signal voHage should not be allowed to go negative by more than 0.3Y. The upper end of the common-mode voHage range is Y+ -1.5Y at 2S"C. but eHtIer or both Inputs can go
to 38V without damage. Indepandent of the magnHude of Y+ .
Note 7: The response time specified Is for a 100 mY Input step with 5 mY overdrive. For larger overdrive signals 300 ns can be obtained. see typical performance characteristics section.
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the cornmon-mode range. !he comparator will provide a proper output state. The low input voltage state must
not be less than -0.3V (or 0.3Y below the magnHude of the negative power supply. nused).
Note 9: At output switch point, Yo"'1.4Y. Rs=on with Y+ from 5Y 10 aoy; and over the tuft Input cornmon-moda range (OY 10 Y+-1.5Vl. at 25"C.
Note 10: Refer 10 RETS193AX for LM193AH mifllary specifications and 10 RETS193X for LM193H mirllary specifications.

---

-

-

-

-

-

---- -

--------

to"W'/t6tW'/t6~W'/t6~W'

Typical Performance Characteristics LM193/LM293/LM393. LM193A1LM293A/LM393A
Input Curr~mt

Supply Current
1.0

C
A

I.'

~ I-T~=~c
:,....;,--

i!i
e

i
I

+-

IA

U

...

~

a

il!

..
2
ili

I--

TA '+'ZI'C'- I--

CD

i!

20

~

out

I I

10

f-h"Y.~o-l:-I-:-t--+--I

0.•'

I

'.001 "'''--'--'-.....L--'_'---'--'
0.11
0.1
10
1.0
100

38

y+ -SUPPlV VOLTAGE eVocl

10 - OUTPUT SINK CURRENT emAI

Response Time for Various
Input Overdrive_Positive
Transition

...

&.0
I '" INPUT OVERDRIVE = 100 mV
5••
I
II
6:; 4.0
I 5IRV
>- 3.0
I
Z.O
~ 1.0

U mV' I.'UT OVERDRIVE

101 ..

r-.t--+-+-+-+.,.-'j'W+-+

~

( II
20

Response Time for Various
Input Overdrlve&-Negatlve
Transition

I

a

f

y+ - SUPPlV VOLTAGE Nocl

21i~

1.0

0.1 f--+-+-+-7I!~'----l-;-,:+--I

!!i

T '+121'~~ \ ' TA.-+2S'C
TA =+70·C._

CD

3D

~
~

RLi-

21

•

Output Saturation Voltage
r-'T"""...,--,--,.--.-.........-,

!li

I
~

I
I

TA

10

1

V'NtcMl .. Voc
AINCMJO!!I.n

T1·-~·c

0-

T... ·+WC

'0

I I

J J I
.s &0

.... ... ~ fO!!! ~H'C
...L
,
0-

10

TA·-t!i·U- I""""

oJ

H-'~'=
.
....-

=::

-

1.&

1.1

co

~l
>

~2S'f-

~

100
III

~~~=

r- -~A '~5'~-'

!;>

~

~

2.1

1.5

'1

"oJ

I I I
TA

"-

to

I I
1.5

TIMliIodocl

'.'

I

I

1.0
1.5
TIME .....1

2.0
TL/H/5709-3

Typical Performance Characteristics LM2903
. Input Current

Supply Current

10

ID

1.2

!

..
..

e

...
~

ID

e

0ill 1.'

fl

TA· ...rc

e
....

1

i

D.I

Output Saturation Voltage
r--...,---r--,...,""'"

i

TA'goc
41

ZI

j

1.1

10

20

••

4D

38

V'.sumv VOlTAGEeVocl

&1D1~~-'-_.....L

10

ZI

38

4U

V'. SUPPlV VOLTAGE eVocl

Response Time for Various
Input OVerdrive_Negative
Transition
1.0
1.1

i!
=-

i~
to

a 3.0
Z.D

i>
"

U

1?=....-'=

5.8 mV· INPUT OVERDRIVE

2O:"~ --- 3.0
!;:I
2.0
~ 1.0

:i!
to

-

"oJ

..

I I I

~S
~A

}t JI--j
25·k
0.5

1.1

1.5

i

2.1

TIMEc.socI

J

100

10

'0. OUTPUT SINK CURRENT ConAl

...

oJ

_ _L-_~

0.1

8.111

100
&8

Response Time for Various
Input Overdrlv.-posltive
Transition
"

INPUT OVERDRIVE -100 mV

I
I
II

"

II
amV

21mV

1?...._

I"
II

I-~A'12S'~-

' ••

I

'1 I I
u.s

".

.

1.0

I I
1.5

2.8

TIME c.-I
TL/H/5709.4

3-66

Application Hints
The differential input voltage may be larger than V + without
damaging the device (see Note 8). Protection should be
provided to prevent the input voltages from going negative
more than -0.3 Vee (at 25°C). An input clamp diode can be
used as shown in the applications section.

The LM193 series are high gain, wide bandwidth devices
which, like mos1 comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to
the inputs via stray capaCitance. This shows up only during
the output voltage transition intervals as the comparator
change states. Power supply bypassing is not required to
solve this problem. Standard PC board layout is helpful as it
reduces stray input-output coupling. Reducing the input resistors to < 10 kn reduces the feedback signal levels and
finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition
that oscillations due to str~y feedback are not possible. Simply socketing the IC and attaching resistors to the pins will
cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a
pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

The output of the LM193 series is the uncommitted collector
of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any
available power supply voltage within the permitted supply
voltage range and there is no restriction on this voltage due
to the magnitude of the voltage which is applied to the V +
terminal of the LM193 package. The output can also be
used as a simple SPST switch to ground (when a pull-up
resistor is not used). The amount of current which the output
device can sink is limited by the drive available (which is
independent of V+) and the fJ of this device. When the
maximum current limit is reached (approximately 16 mAl,
the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60n rSAT of the output
transistor. The low offset voltage of the output transistor
(1.0 mV) allows the output to clamp essentially to ground
level for small load currents.

All pins of any unused comparators should be grounded.
The bias network of the LM193 series establishes a drain
current which is independent of the magnitude of the power
supply voltage over the range of from 2.0 Vee to 30 Vee.
It is usually unnecessary to use.a bypass capacitor across
the power supply line.

Typical Applications (V+='5.0Vee)
Basic Comparator

.v.pl. . .
LMlUA

+VIIlf

Driving CMOS

Driving TTL
.. v..

+UYIIC

Yo

-

TUH/5709-2

3-67

Typical Applications (Continued)
Squarewave Oaclilator

.

..
...

,oa

...

~IlI
,.,....,

.
y'

Crystal CO!'trolled O~lIIator

Pulse Genera,tor

..

,." '.'4. . ,.
... ,......

~n.n

rf
,..

Y.

C>-"I-..,.,.+--w....--I
,...

"-

'For large ratios 01, Rl/R2.
01 can be omitted,

Two-Decade High-Frequency yeo

..

,

...

"of

,.

...

I•

fllGUlICV

COITIIOI.

.....

WlLTO •

.
.. ,...

+250 mVee:S:Vc:S: +50 Vee
700 Hz:s:fo:S:l00 kHz

> ..........,-0 ...... ,

..... -:r
,..

..I...

V'= +30 vee

.

y'

~--~----------~~

OUTJIIU

TLlH/5709-5

Basic Comparator

Non-Inverting Comparator with Hysteresis

V'

V'

+V •••

3./111

o-----of

lk

> ....I-iOVo
II.
TL/H/S709-6
TLlH/5709-9

Inverting Comparator with Hysteresis
V'

>",--oVo
1M

V· OO-'lN""'.....
1M

1M

TLlH/S709-10

3-68

Typical Applications (Continued)
Large Fan-in AND Gate

Output Strobing
V·

v>
R4

a

>~~_OVo

STROlE
INPUT

~=r
".. ",.

* WITHOUT
OR LOGIC GATE
PULL·UP RESISTOR

A o-+lH~---f

'O-"'~

TLlH/5709-11

AND Gate

00-...","",
V·

I
ALL DIODES
TUH/5709-14

'NI'4
Limit Comparator

A

• ,....

v;:r

-

"0" "'"

I.

ZRs

C

'*

+VREFHI

TLlH/5709-12

R.

ORGate
V·

-

ZRs

+VREF LOW

3k

A

•

v;:r
..... ", .

TUH/5709-15

,-

Comparing Input Voltages
of Opposite Polarity

'Mk
'00k

,10k

+VIN1

C

,tIGII

S.lk

-VIN,

":'
TUH/5709-13

3-69

TL/H/5709-16

~

~

~

r-----------------------------------------------------------------------------,
Typical Applications (Continued)
Zero Crossing petector· (Single Power Supply)

ORing the Ol/tputs .,,'

~

V'

v'

I

:!

i:!

3.•'

~
.....

:!

TUH/5709-17
TLlH/5709-21

One-8hot Multlvlbriltor .

BI-Stable Multlvlbrator
v'

v'

:=+ ~. PF-1~
.

I.

1&11

1II1II

...'-M-..
1II1II

v.

I ....::(NEV.
Ie',

11.

~.

•

11liii0

Ro-~~..----~
TUH/5709-24

TUH/5709-22

One-8hot Multlvlbrator with Input Lock Out
y'

I.
-fE

f4V .

I",

•

1M

I.

I.

....

y'

~.

-

6211

to

I,

TLlH/5709-23

3-70

Typical Applications (Continued) (V+ =Vocl
Time Delay Generator

or

aDak

'ill

'Ik

Uk

illM

'Ik

~:rL
to

"

-VON

v,

INPUT GATING SIGNAL

Uk

'11M

...

or

----------a---

t

~'...T.

Ve ,

to 11

I

TUH/5709-7

Split-Supply Applications (V+ = + 15 Voc and V- = -15 VOC)
Zero Crossing Detector
MOS Clock Driver

v'

Y'

1111

'"

I..

"

....

z.•

Yo

2AJ1

....--t-t ~........- - o ...

~
Uk

ZII

~""'-o

..

Comparator With a
Negative Reference
v'

TUH/5709-8

3-71

~

.....

~

r----------------------------------------------------------------------------,
f}1National Semiconductor

LM612
Dual-Channel Comparator and Reference
General Description

Features

The dual-channel comparator consists of two individual
comparators, having an input voltage range that extends
down to the negative supply voltage V-. The common
open-collector output can be driven low by either half of the
LM612. This configuration makes the LM612 ideal for use
as a window comparator. The ,input stages of the comparator have lateral PNP input transistors which maintain low
input currents for large differential input voltages and swings
above V+.
The 1.2V voltage reference, referred to the V - terminal, is a
two-terminal shunt-type band-gap similar to the LM185-1.2
series, with voltage accuracy of ± 0.6% available. The reference features operation over a shunt current range of 17 /LA
to 20 mA, low dynamic impedance, and broad capacitive
load range.
As a member of National's Super-Block™ family, the
LM612 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

COMPARATORS
• Low operating current
• Wide supply voltage range
.. Open-collector outputs
• Input common-mode range
• Wide differential input voltage

300 p.A
4V to 36V
V- to (V+ - 1.8V)
±36V

REFERENCE
• Fixed output voltage
• Tight initial tolerance available
• Wide operating current range
• Tolerant of load capacitance

1.24V
± 0,6% (25°C)
17 p.A to 20 rnA

Applications
• Voltage window comparator
• Power supply voltage monitor
• Dual-channel fault monitor

Connection Diagram
1

r!-

\J

~ OUTPUT

v+ .!

~

REFERENCE .1.

v-

rL

4

TlIHI11058-1

Top View

Ordering Information
For information about surface-mount packaging of this device, please contact the Analog Product Marketing group at
National Semicon,ductor Corporation headquarters.

Reference
Tolerances
± 0.6% at 25°C,
80 ppm/DC Max

Temperature Range
Military

Industrial

-55"C:S: TJ:S: +125"C

-40"C:s: TJ +85"C

LM612AMN

LM612AIN

LM612MN

3-72

NSC
Package
Number

8-Pin
Molded DIP

N08E'

8-Pin
Ceramic DIP

JOBA

LM6121N

B-Pin
Molded DIP

NOSE

LM6121M

8-Pin Narrow
Surface Mount

M08A

LM612AMJ/883
(Note 13)
±2.0% at 25°C,
150 ppm/DC Max

Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
pleaae contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Voltage on Any Pin Except VR (referred to V- pin)
36V(Max)
(Note 2)
-0.3V(Min)
(Note 3)
Current through Any Input Pin and VR Pin
Differential Input Voltage
Output Short-Circuit Duration
Storage Temperature Range
Maximum Junction Temperature

Thermal Resistance, Junction-to-Ambient (Note 5)
100"C/W
N Package
Soldering Information
N Package
Soldering (10 seconds)
ESD Tolerance (Note 6)

26O"C
±1 kV

±20mA

Operating Temperature Range

±36V
(Note 4)
-65°C';; TJ';; +150"C

-40"C';; TJ ,;; +85°C
-55°C,;; TJ ,;; + 125°C

LM612AI, LM6121
LM612AM, LM612M

150"C

Electrical Characteristics

These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = V+ 12,
IR = 100 p.A, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the
Operating Temperature Range.

Parameter

Symbol

Conditions

Typical
(Note 7)

LM612AM
LM612AI
Limits
(Note 8)

LM612M
LM6121
Limits
(Note 8)

Units

COMPARATORS
Is
Vos
Vos

Total Supply Current

4V,;;V+ ';;36V,RL= 15kO

Offset Voltage over
VCM Range

OV,;; VCM ,;; (V+ -1.8V)
V+ = 30V, RL = 15 kO

Average Offset Voltage
Drift

Ie

Input Bias Current

Av

fA
ISINK

00,

Offset Voltage over
V+ Range

IJ..Vos
IJ..T

los

V + Current, RLOAD =
3V,;; V+ ,;; 36V

250

300

1.0

3.0

5.0

2.0

6.0

7.0

1.0

3.0

5.0

US

6.0

7.0

5

25

35

8

30

40

0.2

4

4

0.3

5

5

500

50

50

100

Large Signal Response
Time

V+IN = 1.4V, V-IN = TTL
Swing, RL = 5.1 kO

2.0

Output Sink Current

V+IN = OV, V-IN = 1V,
VOUT = 1.5V

20

10

10

13

8

8

Output Leakage Current

V+IN = tV, V-IN = OV,
VOUT = 36V

1.5

mVMax
mVMax
mVMax
mVMax

nAMax
nAMax
nAMax
nAMax
V/mVMin
VlmV
p.s
p.s

2.8

1.0

0.8

2.4

0.5

0.5

0.1

10

10

0.2

p.AMax
p.AMax

p.VloC

RL = 10 kO to 36V,
2V ,;; VOUT ,;; 27V

VOUT = 0.4V
IL

250

300

15

Input Offset Current
Voltage Gain

150

170

rnA Min
rnA Min
rnA Min
mAMin
p.AMax
p.A

~

I
I
I
I

3-73

Electrical Characteristics These specifications apply for V-

= GND = OV, Y+= 5V,VCM ;;. VOUT '" V+'i2;
IR = 100 pA unless otherwise specified. Limits in standard typeface are for TJ = 25"C; lir(lits in.!Joldface type apply \>ver the
Operating Temperature Range. (Continued)
'.

Symbol

Parameter

Typical
(Note 7)

Conditions

LM612AM
LM812AI
Limits
(Note 8)

LM812M
LM8121
Limits
(Note 8)

.','

"
Units

VOLTAGE REFERENCE (Note 9)
VR

IlVR

Reference Voltage

1.244

(Note 10)

AT

Average Drift with
Temperature

IlVR
kH

Average Drift with
Time

IlVR
IlTJ

HystereSiS

(Note 11)

IlVR
IlIR

VR Change with
Current

VR[I00 ,..Al - VR[17 ,..Al

18
TJ = 40"C
TJ = ,150"C

150

ppm/kH
ppm/kH

3.2

~yrc

0.05

1

1

0.1

1.1

1.1

5

5

5.5

0.2
0.6

0.56
13

VR Change with
V+ Change

VR[V+
VR[V+

= 5V]
= 5V]

-

VR[V+

-VR[V+

= 36'11
= 3V]

BW = 10Hzto10kHz

ppm/DC
MaX

400
1000

5.5

IlVR

lIMi,;
YMaJ.(

(±2%)

1.5

Il VRll0 mA to 0.1 mAl/9.9 mA
IlVR[I00,..A to 17 ,..Al/83 p.A

Voltage Noise

1.268~

2.0

Resistance

en

80

' 1.2191

VR[10 mAl - VR[100,..Al
(Note 12)
R

;.v+,

1.2365
1.2515
(±0.6%)

,,0.56,
1$,

mVMax
mVMax
mVMax
mVMax

o Max
o Max

0.1

1.2

1.2

,'mVMax

0.1

1.3

1.3

mVMaX

0.01

1

1

0.01

1.5

1.5

mVMax
mVMax

30

..

",VRMS

Note 1: Absolute maximum ratings Indicate limits beyond which dsmage to the component may occur. Electrical specifications do not apply when oparating the

device beyond its rated operating conditions.
Note 2: Input voltage above V+ Is not allowed. As long as one Input pin voltage remains Inside the common-mode range, the comparator willdelivar the correct
output:
Mote 3: More accurately. " is excessive current flow, with resulting excess heating, thet limits the voltages on all pins. When any pin Is pulled a dl"'!B drop below
V-, a par8sltlc NPN transistor turns ON. No latch·up will occur as long as the current through that pin remains below the Maximum Rating. Operation Is undefined
and unpredictable when any perasltic diode or transistor Is conducting.
Note 4: Shorting the Output to v- will not cause power disslpeUcn, so it may be cOntinuous. However, shorting the Output to any more posllive voltage ~ncluding
V+), will cause 80 mA (typ.) to be drawn through the output transistor. TIlls current multiplied by the applied voltage Is the power dissipation in the output transistor.
If this total power causes the junction temperature to exceed 15O"C, degraded rellsbilny or destruclion of'the device may occur. To determine junction temperature,
see Note 5.
Mote 5: Junction temperature may be calculated using TJ = TA + Po 9JA. The gl~n thermal resistance' is worst-<:ase for packages In sockets in sUll air. For
packages soldered to copper·cled board with disslpetlon from one comperator or reference output transistor, nominal 8JA Is 9(J'C/W for the N package.
",ote 6: Human body model, 100 pF discharged through a 1.5 kG resistor.
Note 7: Typical values in standard typeface are for TJ = 25'C; values In boldface type apply for the full operating temperature range. These valuas represent the
most likaly parametric norm.
Note 8: All limits are guaranteed for TJ = 25'C (standard type face) or over the full operating temperature range (bold type t .....).
Note 9: VR is the reference output voltage, nominally 1.24V.
Note 10: Avarage reference drift is calculsted from the measurement of the reference voltsge at 25'C and at the temperature extrames. The drift, In ppml"C, is
foe. AVRIVRI25"Cl • ATJ, where AVR is the lowest value subtracted from the highest, VRI25"Cl is the value at 25'C, and ATJ is the temperature range. This
paramefer is guaranteed by design and sample teating.
Note 11: HysteresiS Is the change In VR caused by a change In TJ, _r the reference has been "dehysterlzed". To dehysterize the reference; that Is minimize the
hystereSiS to the typical value, its juncUcn temperature should be cycled in the following pettem, spiralling in toward 25'C: 25'C, 85iC, -4O'C, 7C1'C, O'C, 25'C.
Note 12: Low contact resistance is required for accurate measurement.
'
Note 13: A military RETS 612AMX electrical test specfllcaUon Is available on request. The rnilhary screened parts can also be procured as a Standard Military
Drawing.

3-74

Simplified Schematic Diagrams
Comparator

~------------------------~--~~--~--------------~v+

7k

39k

..

~--~~~------~~~--~~------~----~--~----~--

------~--~vTUH/11058-2

Reference
RErERENCE

OUW~

Bias

[]----_1~~----~--_1~--------~._,

TUH/11058-3

3·75

•

... ,---------------------------------------------------------------------------------,
Typical Performance Characteristics (Reference)
~

q)

:!l

TJ = 25°C, V- = OV, unless otherwise noted
Reference Voltage
.Drift vs Time

Reference Voltage V8 Temp.
1.28

i-"~

Accelerated Reference
Voltage Drift VB Time
1.224

0.10

--

....

..

0.D1I
,0.D1I

gOll'
-;--.

V
l.,..oo

1- ....

r--.f::

:.

1102

a.:
,~

......r--,

-QII6

...... ~

1.23

TJ

= 4O"C

~

~

-0.10

o

1.214

o

2lIO lIDO 780 l00012l101l1D017802POO

11M£ (Hou..)

JUIICIION lDIPERAlURE (c)

Reference Voltage vs
Curtent and Temperature

2.0

!:
.1~

r+- _-55"C
25"C
125"C
~

2

0.2

-1

20

-10

REFERENt[ CURRENT (mA)

c

~

I

10

0.:

f-'~

if

400

SOD

f

-~

1~ .

... -

~~
-~~

-0.5

-1.0

10

J

'j/

o

-en)
Reference Small·Slgnal
Impedance vs Frequency
10000

~

I
ICIII !rA!Y

,.

o.s

vs .FrequenCY§1111

10000

II

0.01
0.001

1.0

~

Reference Noise Voltege

1-55~T SI~"C

I----Iii
z

0.1

J

I

y;: ~

1.5

REfERENt[ CURRENT (mA)

Reference AC
Stability Range
100

~-we

-0.1 to.ool

300

Reference Voltege Change
with Supply Voltage Step

5

-511U..----JL...-----JL...-----JL...----'

200

100

llME II1ASEO AT lSO"C (IVI)

Reference Voltage vs
Reference Current

10r-~r-~r-~r-~

1102

1.218

-QII6

-60-.40-20 0 20 40 60 60 100120140

D.OO2

1.220

11.218
m

-...,

-

~ 1.222

1
.5.

R- -

1,0-1

e

0

--

J --

i5 Iii"
0.001

0.01

0.1

1

.10

100

10

100

2

~ .I ~

1

~Ea

-

125cc
1

200

M(po)

300

10000

10

400

o

J

I,L

.2S'

100 200 300 400 500 800 700

lIME (PO)

100

1000

FJEQUDICY (kHz)

Reference Step Response
for 100 p.A - 10 mA
Current Step

Reference Voltege with
100 - 12,...A Current Step

Reference Power-Up Time

100

1000

FREQUENCY (Hz)

REfERENCE SHUNT cURRENT (mA)

3

!:

1

i
!II

-2

>1!.

-3

,-

,-

I'
b

I

-4
-5

o

R,,-AV..

I:"""

A~ .. 0.23

.,25"C

I,STEPII hoopA lI 'OmA
I J
II
100 200 300 400 500 800 700

WE (PO)

TLlHI11068-4

3-76

Typical Performance Characteristics (Comparators)
TJ = 25'C. V+ = 5V. V- = OV
Input Bias Current vs
Common-Mode Voltage

Supply Current
vs Supply Voltage
300

,..... ro:;25OC

!200
!z

!
~
ill

50

I

+125OC
250

20

1/

:t15V SUPPLIES

15

Y

-55OC

I

V

50

f- - '

-10

~

~

250C

100

15

20

25

I

j,
~5OC
+25OC

-15

V- 10

30

......-r

r

-20
10

I--

I
+1250(:

1250C

150

o
o

Input Current vs
Differential Input Voltage

I

'7

-20
-15

20 30 40 50 60 70

-10

-5

15

10

SUPPLY VOLTAGE (V)

INPUT VOLTAGE REFERRED TO V- (v)

DIFFERENTIAL INPUT VOLTAGE (V)

Output Saturation
Voltage vs Sink Current

Small-8lgnal Response
Time_Inverting Input,
Negative Transition

Small-slgnal Response
Time_Inverting Input,
Positive Transition

••

I
I Ir
I 1\ \\

" '~k
. f',

_

o

+25OC \ \\
1

+1250(:

I I

5•

'~k
• .;Y
IN

~1-55OC

-55OC

~'AI

-

I
+25OC
+125OC

w

~

+smV

~

-5mV

i

0.1 _ _

o.m~-L-L~~-L~~-L~

0.0

o.s

1.0

1.5

2.D

2.5

3.0

2.D

1.0

TIME (po)

OUTPUT VOLTAGE (V)

Small-8lgnal Response
Tlmee--Non-Invertlng Input,
Positive Transition

••

. ••

\

I,

2.D

1

3D

LO

~

Larg~gnalResponse

~

~£

s

-15

" .
- "
'~k
-15.;

-55OC

~

15

!i!s

S

~

oS

!i!£

0

s

-5

!!5

!!5

o.a
liME

(p.)

1.2

1.6

15'
.'~k
.-15'- ; " r,
+125OC ~

0

I I
J
I I

V~

-55OC/~
+25OC .". ." +125'C

-55OC
+25OC

-15

15'

.. ~~
. "

o.a

D.4

-15V

.;

1.2

1.6

TIME (p.)

~/

s~

+125OC

D.4

~

Large-8lgnal Response
Tlmee--Non-Invertlng Input,
Positive Transition

15V

+25OC ~

3D

TIME (p.)

Tlm.-Jnvertlng Input,
Negative Transition-

\\1\

2.D

3D

Large-8ignal Response
TI_lnverting Input,
Positive Transition

r.JI

TINE (1'.)

0

.- f'
'~k
"

\

2.D
TIME (1")

Small-8lgnal Response
Tlm.-Non-Invertlng Input,
Negative Transition

.- ;", ~
'~k

LO

LO

3D

Large-8lgnal Response
Tlmes-Non-Invertlng Input,
Negative Transition
IS'

\\1\
+25OC .\
+125OC

" .
'~k
:.••
-'soc

f'

+5
0

-5

o.a

D.4

1.2

1.6

TIME (p.)

TUH/ll058-6

3-77

•

Nr--------------------------------------------------------------------,
..CD
Application Information

!I

CapaCitors in parallel with· the reference are allowed. See
the Reference AC Stability Range typical curve for capacitance values-from 20 p.A to 3 mA the reference is stable
for any value of capaCitance. With the reference's wide stability range with resistive and capacitive loads, a wide range
of RC filter values will perform noise filtering when necessary.

VOLTAGE REFERENCE
Reference Biasing
The voltage reference is. of a shunt regulator topology that
models as a simple zener diode. With current IR flowing in
the "forward" direction there is the familiar diode transfer
function. IR flowing in the reverse direction forces the reference voltage to be developed from cathode to anode.

d
17.

Reference Hysteresis

~A:5IR:520mA

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the datasheet for any given device. Do not assume that no specification means no hysteresis.

Cathode

VR

=

1.24V

COMPARATORS
Either comparator or the reference may be biased in any
way with no effect on the other sections of the LM612, except when a substrate diode conducts (see Electrical Characteristics Note 3). For example, one. Qr both inputs of one
comparator may be outside the input voltage range limits,
the reference may be unpowered, and the other comparator
will still operate correctly. The inverting input of an unused
comparator should be tied, to V":" and the non-inverting tied
toV+.

Anode committed to VTL/H/11058-8

FIGURE 1. 1.24V Reference is Developed between
Cathode and Anode; Current Source IR is External
The reference equivalent circuit reveals how VR is held at
the constant 1.2V by feedback for a wide range of reverse
current.
Cathode

= vR

Hysteresis
Any comparator may oscillate or produce a noisy output if
the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input
signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresiS, or positiVe feedback, as shown in Figure

1.24V

7V

!

17 JlA

4.
V+

Anode

= VTL/H/11058-9

FIGURE 2. Reference Equivalent Circuit
To generate the required reverse current, typically a resistor
is connected from a supply voltage higher than the reference voltage to the Reference Output pin. Varying that voltage, and so varying IR' has small effect with the equivalent
series resistance of less than an ohm at the higher currents;
Alternatively, an active current source, such as the LM134
series, may generate IR.

TUH/11058-11

FIGURE 4. Rs and RF Add Hysteresis to Comparator
The amount of hysteresiS added in Figure 4 is

_
VH - V

+

Rs
X (RF

+ Rs)

-;ZV+ X Rs
forRF» Rs
RF
A good rule of thumb is to add hystereSiS of at least the
maximum specjfied offset voltage. More than about 50 mV
TUH/11058-10

FIGURE 3_ 1.2V Reference

3-78.

Application Information (Continued)
of hysteresis can substantially reduce the accuracy of the
comparator, since the offset voltage is effectively being increased by the hysteresis when the comparator output is
high.
It is oiten a good idea to decrease the amount of hysteresis
until oscillations are observed, then use three times that
minimum hysteresis in the final circuit. Note that the amount
of hysteresis needed is greatly affected by layout. The
amount of hysteresis should be rechecked each time the
layout is changed, such as changing from a breadboard to a
P.C. board.

The guaranteed common-mode input voltage range for an
LM612 is V- ,;;; VCM ,;;; (V+ - 1.8V), over temperature.
This is the voltage range in which the comparisons must be
made. If both inputs are within this range, the output will be
at the correct state. If one input is within this range, and the
other input is less than (V- + 32V), even if this is greater
than V + , the output will be at the correct state. If, however,
either or both inputs are driven below V-, and either input
current exceeds 10 /lA, the output state is not guaranteed
to be correct. If both inputs are above (V + - 1.8V), the
output state is also not guaranteed to be correct.
Output Stage
The comparators have a common open-collector output
stage which requires a pull-up resistor to a positive supply
voltage for the output to switch properly. When the internal
output transistor is off, the output (HIGH) voltage will be
pulled up to this external positive voltage.

Input Stage
The input stage uses lateral PNP input transistors which,
unlike those of many op amps, have breakdown voltage
BVEBO equal to the absolute maximum supply voltage. Also,
they have no diode clamps to the positive supply nor across
the inputs. These features make the inputs look like high
impedances to input sources producing large differential
and common-mode voltages.

To ensure that the LOW output voltage is under the TIL-low
threshold, the output transistor's load current must be less
than 0.8 mA (over temperature) when it turns on. This impacts the minimum value of the pull-up resistor.

Typical Applications
v+
33011

1k

39k

/2.;f"ON for V+ 2: S.SV
or 2.0V S V+ S 4.0V

6B.7k

20k

>-.....-

Altarnat. Logic Output:
Low for 4.0V S V+ S S.SV

TL/H/ll058-12

Power Supply Monitor with Indicator

•
3-79

I!INational Semiconductor

LM613 D.ual. Operational Amplifiers,
Dual Comparators, and Adjustable Reference
General Description

Features

The LM613 consists of dual op-amps, dual comparators,
and a programmable voltage reference in a 16-pin package.
The op-amps out-performs most single-supply op-amps by
providing higher speed and bandwidth along with low supply
current. This device was specifically designed to lower cost
and board space requirements in transducer, test, measurement, and data acquisition systems.
Combining a stable voltage reference with wide output
swing op-amps makes the LM613 ideal for single supply
transducers, signal conditioning and bridge driving where
large common-made-signals are common. The voltage reference consists of a reliable band-gap design that maintains
low dynamic output impedance (10 typical), excellent initial.
tolerance (0.6%), and the ability to be programmed from
1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive
loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-BlockTM family, the
LM613 is a space-saving monolithic alternative to a multichip solUtion, offering a high level of integration without sacrificing performance.

OPA.-P
300 pA
• Low operating current (Op Amp)
4Vto 36V
• Wide supply voltage range
V- to (V+ ...: 1.8V)
• Wide common-mode range
±36V
• Wide differential input voltage
• Available in plastic package rated for Military Temp.
Range Operation
REFERENCE
• Adjustable output voltage
• Tight initial tolerance available
• Wide operating current range
• Tolerant of load capaCitance

1.2V to 6.3V
±0.6%
17 pA to 20 mA

Applications
•
•
•
•

Transducer bridge driver
Process and mass flow control systems
Power supply voltage monitor
Buffered voltage references for AID's

Connection Diagrams
E Package Pinout

~~~
1

..!.
COMPARATOR 1

v+ .!

.J!
Ot' AMP.!

1
rEEDBACK 8

~~

t!!
f! COMPARATOR

(I)

~
13

II.

v_

_IN
Comp (I)

!l

v-

.!lOt' AMP

!.!!.

_IN
Amp (2)
-IN
Amp (2)

!..CATHODE

Top VI_

Comp ..IN

"'IN Comp
CINnp Out

TLlH/8226-1

c.mp

Out
(4)

(I)

(.)

••••••
3

2

I

20

II

181

.5
.7••

I
I

171

_IN
Comp (.)

1·1

v-

-.•••••••

lsi

I

10

II

Out F....

~;f Baok

n

12

_IN
Amp (3)

I. ~ -IN
Amp (3)

Coth- Out

ode

~~f

Ordering Information
Reference
Tolerance & Vos
±0.6%
80 ppm/oC Max.
Vos:S; 3.5mV

±2.0%
150 ppml"C Max.
Ves :s; 5.0 mV Max.

TLlH/9226-48

Temperature Range
Military
-55"C:s; TA:S; +125"C

Industrial
Commercial
-40"C:s; TA :s; +85°C O"C :s; TA:S; +70"C

Package

NSC
Drawing

LM613AMN

LM613AIN

-

16-Pin
Molded DIP

N16E

LM613AMJ/883
(Note 14)

-

-

16-Pin
Ceramic DIP

J16A

LM613AME/883
(Note 14)

-

-

20-Pin
LCC

E20A

LM613MN

LM6131N

LM613CN

16-Pin
Molded DIP

N16E

-

LM6131WM

16-PinWide
Surface Mount

M16B

3-80

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
plea.. contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Voltage on Any Pin Except VR (referred to V- pin)
(Note 2)
36V(Max)
-0.3V(Min)
(Note 3)
Current through Any Input Pin & VR Pin
±20mA
Differential Input Voltage
Military and Industrial
±36V
±32V
Commercial
Storage Temperature Range
-65°C ~ TJ ~ +150"C
150"C
Maximum Junction Temperature (Note 4)

Thermal Resistance, Junction-to-Ambient (Note 5)
N Package
100"C/W
150"C/W
WMPackage
Soldering Information (10 Seconds)
N Package
260"C
220"C
WMPackage
±1 kV
ESD Tolerance (Note 6)

Operating Temperature Range
LM613AI, LM613BI
LM613AM, LM613M
LM613C

-40°C to +S5"C
- 55°C to + 125°C
O"C ~ TJ ~ +70"C

Electrical Characteristics These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = 2.5V,
IR = 1oo"A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits
in boldface type apply over the Operating Temperature Range.
Symbol

Is
Vs

Parsmeter

Total Supply Current

Typical
(Noten

Conditions

RLOAD =
4V ~ V+

00,

~

36V (32V for LM613C)

Supply Voltage Range

LM613AM
LM613AI
Limits
(NoteS)

LM613M
LM6131
LM613C
Limits
(NoteS)

450

940

1000

550

1000

1070

2.2

2.S

2.S

2.8

3

3

46

36

32

43

38

32

Units

/LA (Max)
/LA (Max)
V (Min)
V (Min)
V (Max)
V (Max)

OPERATIONAL AMPLIFIERS
VOS1
V0S2

Vos Over Supply
Vos Over VCM

VOS3
AT

Average Vos Drift

fa

Input Bias Current

los

4V ~ V+ ~ 36V
(4V ~ V+ ~ 32VforLM613C)
VCM = OV through VCM =
(V+ - 1.SV), V+ = 30V, V-

= OV

(NoteS)

1.5

3.5

5.0

2.0

8.0

7.0

1.0

3.5

5.0

1.5

8.0

7.0

mV(Max)
mV(Max)
/LV/oC
(Max)

15

Input Offset Current

mV(Max)
mV(Max)

10

25

35

11

30

40

0.2

4

4

0.3

5

5

nA(Max)
nA(Max)
nA(Max)
nA(Max)

IOS1
AT

Average Offset Current

RIN

Input Resistance

Differential

CIN

Input CapaCitance

Common-Mode

6

pF

e"

Voftage Noise

f

= 100Hz, Input Referred

74

nV/JFfi.

In

Current Noise

f

= 100 Hz, Input Referred

58

fAlJFfi.

CMRR

Common-Mode
Rejection Ratio

V+ = 30V,OV ~ VCM ~ (V+ - 1.SV)
CMRR = 20 log (AVCM/AVoS>

PSRR

Power Supply
Rejection Ratio

4V ~ V+ ~ 30V, VCM = V+ 12,
PSRR = 20 log (AV+ Nos>

Open Loop
Voltage Gain

RL
5V

Av

4

pAloC

1000

MO

95

SO

75

70

80

75

110

SO

75

100

75

70

= 10 kO to GND, V+ = 30V,

500

100

94

~

SO

40

40

VOUT

~

25V

3-81

dB (Min)
dB (Min)
dB (Min)
dB (Min)
V/mV
(Min)

•

Electrical Characteristics

These specifications apply for V- = GND = OV, V+=5V, VCM = VOUT = 2.5V,
IR = 100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for TJ = 25°,C; limits
in boldface type apply over Operating Temperature Range. (Continued)

Symbol

Parameter

Typical
(Note 7)

Conditions

LM613AM
LM613AI
Limits
(Note 8)

LM613M
LM6131
LM613C
Umits
(Note 8)

Units

OPERATIONAL AMPLIFIERS (Continued)
SR
GBW

Slew Rate
Gain Bandwidth

V + = 30V (Note 9)

0.70

0.55

0.50

0.85

0.45

0.45

CL = 50pF

0.8

0.5
V01

Output Voltage
Swing High

RL = 10 kOto GND,
V+ = 36V (32V for LM613C)

V+ - 1.4
y+ - 1.8'

V02

Output Voltage
Swing Low

RL = 10kOtoV+,
V+ = 36V (32V for LM613C)

VY-

lOUT

Output Source Current

VOUT = 2.5V, V+IN = OV,
V-IN = -0.3V

ISINK
ISHORT

Output Sink Current
Short Circuit Current

Vlp.s

VOUT = 1.6V, V+IN = OV,
V-IN'= 0.3V

+ 0.8
+ 0.9

MHz
MHz

"

V+ - 1.7
Y+ - 1.9
VY-

+ 0.9
+ 1.0

V+ - 1.8
Y+ - 1.9

'V (Min)
V (Min)

+ 0.95
+ 1.0

V (Max)
V (Max)
mA(Min)
mA(Min)

VY-

25

20

16

15

13

13

17

14

13

9

8

8

VOUT = OV,V+IN = 3V,
V-IN = 2V

30

50

50

40

80

80

VOUT = 5V, V+IN = 2V,
V-IN = 3V

30

60

70

32

80

90

4V ~ V+ ~ 36V(32VforLM613C),
RL = 15kO

1.0

3.0

2.0

8.0

OV ~ VCM ~ 36V
V+ = 36V, (32V for LM613C)

1.0

3.0

5.0

1.5

8.0

' '7.0

mA(Min)
mA(Min)
mA(Max)
mA(Max)
mA(Max)
mA(Max)

COMPARATORS
VOS

Offset Voltage

Vos
VCM

Offset Voltage
overVCM

Vos
aT

Average Offset
Voltage Drift

Ie

Input Bias Current

los
Av

tr
ISINK

IJ-EAK

mV(Max)
mV(Max)
mV(Max)
mV(Max)

15

Input Offset Current
Voltage Gain

5.0 '

" 7.0

p.VI"C
(Max)

5

25

35

8

30

40

0.2

4

4

0.3

5

5

nA(Max)
nA(Max)
nA(Max)
nA(Max)

RL = 10 kO to 36V (32V for LM613C)
2V ~ VOUT ~ 27V

100

V/mV
V/mV

Large Signal
Response Time

V+IN = 1.4V, V-IN = TTL Swing,
RL= 5.1 kO

1.5

p.s

2.0

Output Sink Current

V+IN = OV, V-IN = W,
VOUT = 1.5V

13

8

8

VOUT = 0.4V

2.8

1.0

0.8

2.4

0.5

0.5

0.1

10

,10

Output Leakage
Current

500

20

V+IN,= ,W, V-IN = OV,
VOUT = 36V (32V for LM613C)

3-82

0.2

p.s
10

10
"

mA(Min)
mA(Min)
mA(Min)
mA(Min)
p.A(Max)
p.A (Max)

r-

Electrical Characteristics These specifications apply for VIR

=

GND = OV, V+ = 5V, VCM = VOUT = 2.5V,
100 p.A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for T J = 25'C; limits

in boldface

Symbol

type

=

5;
....
Co:!

apply over Operating Temperature Range. (Continued)

Parameter

Conditions

LM613M
LM6131

Typical
(Nots 7)

LM613AM
LM613AI
Limits
(Note 8)

1.244

1.2365

1.2191

V (Min)

1.2515
(±0.6%)

1.2689
(±2%)

V (Max)

80

150

LM613C
Limits
(Note 8)

Units

VOLTAGE REFERENCE
VR

aVR

Voltage Reference

(Note 10)

Average Temp. Drift

(Note 11)

Hysteresis

(Note 12)

VRChange
with Current

VR(100 pAl -

10

aT
aVR

3.2

aT
aVR
aiR

VR(10 mAl (Note 13)
R

Resistance

VR(17 pAl

VR(100 pAl

aVR(10 -+ 0.1 mAl9.9 mA
a VR(l00 -+ 17 1£A)/83p.A

~
aVRO

VRChange

with High VRO

VR

VR Change with

aV+

V ANODE Change

en

FEEDBACK Bias
Current
VR Noise

p.VI"C

0.05

1

1

0.1

1.1

1.1

mV(Max)
mV(Max)

1.5

5

5

2.0

5.5

5.5

mV(Max)
mV(Max)

0.2
o.e

0.5e
13

0.5e
13

o (Max)
o (Max)

VR(Vro - Vrl - VR(Vro - 6.3VI
(5.06V between Anode and
FEEDBACK)

2.5

7

7

2.8

10

10

mV(Max)
mV(Max)

VR.I"+ (V
= 32

0.1

1.2

1.2

mV(Max)

0.1

1.3

1.3

mV(Max)

0.01

1

1

0.01

1.5

1.5

mV(Max)
mV(Max)

m- VR~+

VR(V+
IFB

ppml"C
(Max)

= 5V)

- 36V)
or LM 13C)
-

VR(V+

= 3V)

VANODE S; VFB S; 5.06V

10 Hz to 10 kHz,
VRO

=

22

35

50

2.

40

55

30

VR

nA(Max)
nA(Max)
P.VRMS

Note 1: Absolute maximum ratings indicate IimHs beyond which damage to the component may occur. Electrical specifications do not apply when operating the
device beyond Rs rated operating conditions.
Note 2: Input voltage above V+ Is allowed. As long aa one input pin voltage remains Inside the common-mode range, the compal)ltor will deliver the correct output.
Note 3: More accurately, It is excessive current flow, wHh resulting excess heating, that limRs the voHagaa on all pins. When any pin is pulled a diode drop below
V-, a parasHic NPN transistor turns ON. No latch.up will occur aa long aa the current through that pin remains below the Maximum Rating. Operation is undefined
and unpredicteble when any parasitic diode or transistor is conducting.
Note 4: Simulteneous short-circuH of muHlple comparators while using high supply voRages may force Junction temperature above maximum, and thus should not
be continuous.
Note 5: Junction temperature may be calculated using TJ = TA + Po IIJA. The given thermal resistenC8 Is worst-caae for packages in sockets in still air. For
paci

E

~.
'-

-1

-10

-,~

o~J I

,~

-10

Reference AC
Stability Range

Jil

1-1- --~

20

REFERENCE CURRENT (rnA)

Reference Voltage vs
Referenee Current
7

0.2

10000

~

1
!

100
1

10

100

1000

FREQUENCY (Hz)

10000

1

10

100

1000

FREQUENCY (kHz)
TLlH/9226-5

3-85

•

....
:!i

~ ~------------------------------------------------------~--------------------,

CD

Typical Performance Characteristics (Reference) (Continued),
TJ = 25°C, FEEDBACK pin shorted to V- = OV, unless otherwise note!!

R.ference Voltage with
FEEDBACK Voltag. St.p

R.f.renc. Pow....Up Tim.

Reference Voltage with
100 - 12 "A Current St.p
2

FEED8CK-IO-ANODE VOLTAGE
'5.0

6 .,....

I

5

100

200

-

,,10-

II

i
!;!

-2

>!

-3

,~

-

r--

b

1

R,,=6V..

I, STEP

-.j

-5

o

3~

r-v.. ffip

I'

1\ .....

1

I

==

d~=O.23

;::}OC
.125"C

~

-55"C

II hoopA Ip°mA
I' I I II

-1.0

100 200300 o4OO!5IlO600 700

1~

-

~~

-

....

iWoc

. 'i

1

o

100 200 300 0400 500 600 700

nME'(po)

Ref.rence Change vs
Common-Mode Voltage

R.ference Voltag. Change
with Supply Voltage Step
2.0

!

11

nIlE (PO)

nME (PO)

Reference Step Response
for 100 ,J.A - 10 mA
Curr.nt St.p

~

fI J/'A

1

II
4
3
\ Vi.
2
1
0
0100200300400500600700

400

300

1,6

ov

t---!I!L

..-

!

-5~

I

5

i!

5 ~ l00pA

0

~

I

-1

-1

o

nME (PO)

v+

cv+-2) cv+-l)

0

25"C 1

V+f~

o f-+

I

5 Y"=GNO

I

1251

,~v_

o

5 101520 2530.030.531.031.532.0

R£FEftENCE ANODE -10-

v- VOLTAGE (V)
TL/H/9226-6

Typical Performance Characteristics (Op Amps)
v+

=

5V, v-

=

GND

=

OV, VOM

=

V+ 12, VOUT

=

Input Common-Mod.
Voltage Rang. vs
, T.mperature

v+
ev+-o.s
~ v+- 1

Input Bias Current vs
. Common-Mode Voltage
20
15

r-. ....

t--..

~i--"

~

~~r"'""

-

I,.oo~

"'""'..,:
I===Fi"'" .,...
-2

NORMAL OPERAnNG RANGE

v-

SV"-o.s
V"- 1

25°C, unless otherwise noted

4

~

i

=

Vos vs Junction
Temperature

OUTPUT GOES LOW

1!IV+-l.5
!i
I

V+ 12, TJ

-1

-W-l---

-3

OUTPUT GOES LOW

;:::::==='

10

~

-5

125';V

..... -SS'

~,

.,...

I

10-"' .....

-.j

-60 -010-20 0 20 40 60 60 100 120 140

JUNC110H TEMPERATURE (e)

JUNCOON TEMPERATURE (e)

250C

1250C

-10
-15

-410-40-20 0 20 40 60 60 100120140

6

1
E'

'D!

25"C

LI

I

I
I

-,-~SOC
V+=5V
-20
-1 0 1 2 3 4 5 10 20' 40 60 60

I

INPUT VOLTAGE (V)

Large-5lgnal
Step Response

10

20

30

40

V"

50

-60-40-20 0 20 40 60 60 100120140

JUNenON TDlPERAlURE (e)

-(PO)

TUH/9226-7

3-86

Typical Performance Characteristics (Op Amps) (Continued)
V+ = 5V, V- = GND = av, VCM = V+ /2, Your = V+ /2, TJ = 25°C, unless otherwise noted
Output Source Current vs
Output Voltage and Temp.
-----.--(

211

Outpllt Sink Current vs
Output Voltage

NE~~V;:~~V"

10

I ,\\-r-

V+IN =V" + IV

!

I
-

i

-20

25"1:

-30
-«I

V"

-40

-3-2-1Y+
SUPPlY REFtRENCED VOUT (V)

o

Ill'

Jr

!

/ iT

10""I

-

Ay=-.!'"

V

0.01

/'

40

125"C

~\

10

28

29

I

1000

BD

!

100

IIJ

I

~

~

60

~

I!I 40

E

211

Smail-Signal Voltage Gain vs
Frequency and Temperature

r-rrmmrr-rmmm

140
120
100

t2~

-40
-60
-80

I"- "- ~

60

100
10k
FREQUENCY (Hz)

20

0
-211
-40
-60
-80

""
~

'"

360

.
~

450~
540

lW

IiIIo:!

100

10k

I!I

E

V+=1SY
Y-=-1SV

~

"\ \

100

0

-45~

-2
-4

-135~

-6
-8

20

50

100 100

-180
500 1000 2000

FREQUENCY (kHz)

IN

Common-Mode Input
Voltage Rejection Ratio
140
1211

~

IIIIr.. ~

FREQUENCY (Hz)

Follower Small-slgnal
Frequency Response

S

I80

GAIN

IIIIr..

PHASE

0.01

10k

4r--r--~~~--~,

f'o.. l00pf.21<4 \0 V' I80
f'o...
270~
f'o...

~
0.01

lk

125C

BD

E

~

Y+=1SY
pf==i t--S5C
~25C- r-t'V-=-1SV

FREQUENCY (Hz)

"-

10

liNE (PO)

40 L..J..WWJL.J..WWJL...U.
I
10
100

I I Y+='1SY
Y-=-1SY
50pF
~,-- ~ ",oopF.21<4
\0 V"

..

V:-"

10

6OH-HffiIIH-HffiIIi-=!"!'

Small-Slgnal Voltage Gain'
vs Frequency and Load

a.

l00pF. 2kll TO y+
-60 100 PFi 21<4 TO
I SopF.oolI
-80
4
o

1!I,4O

140
1211
100
80

V"=1SY
FDI.I.OWER

YIN -

II

FREQUENCY (Hz)

Jdsv

I

I

!

10k

I

;;!,.OopF. 21<4 TO y+

40

80 H-HfllIH-HffiIIH+

lk

LL

SopF.~~"

~ l00pF. 21<4 TO 'r.-

-

60

Op Amp Current Noise
vs Frequency

1000

1000

Small-slgnal Pulse
Response vs Load

1 II

o

100

FREQUENCY (kHz)

lIIi: (p.)

Op Amp Voltage Noise
vs Frequency

100

10

,-,--:r1

YIN

FREQUENCY (kHz)

10

~

Y+=3OV

o

30
y+

I Y+=1SY
V"=1SY
~~
,
I I
II

-60

100

Ay=100

-s:k

1/
Ay=1

10

IS

,~

-80

0.1

125"1:

3

I

/

5S"I:

Small Signal Pulse
Response vs Temp.
60 -55"C

,

20

OUTPUT VOLTAGE (V)

80

102

I,':

2

V"

Y+=,1SV
V"=-1SV

I

I

::1
r

iiii

25

r-:- 25~

-20

Output Impedance vs
Frequency and Gain

103

lcrZ

--

-10

-30

~~
I

-so

g

i

I

-55"1:

30
Y+=3OV

10

!

VI

-12S~

-10

Output Swing,
Large Signal

.

,

!

5

aJ
60

40

':p
•

YO

.1

211

o

0.01

100

10k

,

1\

IN

FREQUENCY (Hz)
TUH/9226-8

3-87

•

~ ~------------------------------------------------------------------------------------~
....

~

Typical Performance Characteristics (Op Amps) (Continued) ,
v+ = 5V, v- = GND = OV, VOM = V+ 12, VOUT = V+ 12, TJ = 25"C, unless otherwise noted
P~UvePowerSUpp~

Power SupPlY Current
VB Power SUpply, Voltage
1000
100

I I
I I

~:

I :::
i..

I I
I I
I I

zoo
100

o

-55"1:

.:s

80

,

80

........

.... 0..

...

~

~ 0.5

$0.4
.. ri.3

~D.2 ~
0. I

o

IR'.,,;,,, ~0111~
.... 1'00.

I I
I .I

\

Yew = ov I. wont 01....

E~==t-"1I-N-l

-20

,,1

ul

-40,0- 2

FR£QUENCY (Hz)

,
I::::~
-1000

III'

,'''

Input Bias Current va
Junction Tempereture

,["}j

I--'

,,~

II

I.I~

-8
-10
-12
-10 -40-20 0

-2000
-80 -40-20 0 20 40 80 80 100120140
JUNCTION TEMPERATURE ("1:)

JUNCT'OH TEMPERATURE (Oe)

102

1\

8

...

1'1"- .... f-,

..

FlIEQUENCY (Hz)

Input Offset Current VB
Junction Temperature
1000

lOV

-80-40-ZO 0 ZO 40 80 80 100120140

~"5; ~
~

20

zo

r-

*foom~

60

II 40
K!
I

..

""- '-

10

.:s

40

Slew Rata VB Temperature
0.7

100
'i1

t-t-+-t--+--t-'''d-+-I

I 2 3 45102030405010
TOTAL SUPPLY YOLTAGE (V)

0.8

140
120

'i1

~

-25"1:

300

.--.-r.,..::.,-......--.-~

1
2°t:EEtt:t!!j
100~

...

n:

400

140

U

+125°C

NegatIve Power SUpply
Voltage Rejection R.atlo

Voltage Rejection Ratio

j
~

zo

40 10 10lOOlZOl40

JUNCT1011 TEMPERATURE ("1:)

TLiH/9228-9

Typical Performance Characteristics (Comparators)
Output Sink Current

50

l00~~

Input BlaB Current va
ComlllC)n,.Mode Voltage

V

40

10_~

~
....
is

'"
'":::>u

...

S

iii

0.1 _ _

30

125"C

20
10
0
-10

,0.01 L-J--L....L....L-.l-L....L-I.....L....L-.L...I
0.0 D.5 1.0 1.5 2-D 2.5 3.0

/

-20

vINPUT

OUTPUT VOLTAGE (V)

25"C

~
I

--

~,r

~

I

10 20 30 40 50 60 70
REFERREO TO y- (V)

VO~TAGE

TLlH/9226-11

TLiH/9228-IO

3-88

,-----------------------------------------------------------------------------,
Typical Performance Characteristics (Comparators) (Continued)
Comparator
Reaponse Tlme~nvertlng
Input, Positive Transition

£

5

II ~

"

+125"C t--

3

I
J II

2

1

Comparator
Response Tlm~nvertlng
Input, Negative Transition

£
+

2

~

~

......

0

:~

~
+SmV
~

0

-SmV

o o.s

~vo

+

+125"C

1

.~~

+SmV
~ 0
-SmV

II -

3

~

I

...

1 1.5 2 2.5 3 3.5 "
TIme (}.&s)

o

o.s

1 1.5 2 2.5 3 3.5 "
TIme U.s)

TLlH/9226-12

TLlH/9226- 13

Comparator
Response Tlmes-Non-Invertlng
Input, Positive Transition

£

S

II

3
2

-Ssocj
1

~

LV

j

JI

£

I

+~

-

I

I

~Vo

2

-SS"C

+12S"C

1

+25"C

~

:~

"""I

0

:~

~
+5mV
~ 0
-5mV

0

o o.s

5V

l\
+2S"C

II I

:~

-SmV

, VII~K

S
3

~vo

+SmV
~

Comparator
Response TIme&-Non-lnvertlng
Input, Negative Transition

~liPf
-

I II

+125"C

0

sv I

o o.s

1 1.5 2 2.5 3 3.5 "
TIme (}.&s)

1 1.5 2 2.5 3 3.5 "
TIm. (}.&s)

TLlH/9226-14

TLlH/9226-15

Comparator
Response Tlme~nverting
Input, Positive Transition

£

IS

~

10

~

S

~
::>

0

~

...
0

-5

0

> -10

-15V
5V
z
>" 0
-SV

~15V

+25"C
-sS"C

Comparator
Response Time_Inverting
Input, Negative Transition

LL

£

...

'1
VI~K
,
II +"
Vo

J
1

~

Ii
....w

11 - v ~5.1K

+2S"C

J +2S"C

0

S

!v-4-

vl~KVo

"

-SS"C

~

.J

.

-1SV
I

~
....

~_

0

5

~.

0

I
0

l~

o ~MMM1DI21Al~IB
TIm. U.s)

1\

\

+25"C

-5

> -10
-15V
5V
~ 0
-5V

~

1SV

10

>.
:::>
0

+12S"C

15

I I

+ lPt
Vo
VI
-1SV ~

-55"C

l--- \-+125"C

l \.
o

~MMM1DI21Al~IB

TIme U.s)
TL/H/9226-1a

TL/H/9226- I 7

3-89

•

~ r-----------~--------------------------------------------------------------------,

~

Typical Performance Characteristics (Comparators) (Continued)
Comparator
Response Tlme.-Non-Inyertlng
Input, POsitive Transition

£

IS

W

15V

v.~K

...~

10

~

5 I-

::>-

0

...
§

_

/t rt

> -10

-55OC

~

5

5

0

0
I

~

~~~MlnI2IAI~IB

nme (ps)

I I

i9-'15V

~

IN

l

.

-S

,

-

1-10
-ISV +25OC
5V
~ 0
-5V
o 02

V)
o

10

5

+25OC

IS

£...
~
....

rJ /

,

+125OC/i

-S

0

~.

"""
l V

-~Yo

-15V

-ISV
5V
~ 0
-5V

I)

I-I

Comparator
Response Tlme.-Non-Inyertlng
Input, NegatlYeTransition

+

_

-

'

-15V

5.1K

,. Yo

~

+125OC

v-55OC .

~ ~

M In 12 U

I~

IB

-nme (}.Is)
TL/H/9226-18

TUH/9226-19

Typical Performance Distributions

vaS

Average Vas D~ft
Military Temperature Range

Average
Drift" .
Industrial Temperature Range
~~----------------~

v.;s DRln (PV/C)

Vos ORin (PV/C)
TL/H/9226-20

TUH/9226-21

Average Vos Drift
Commercial Temperature Range

Average los Drift
_ MIlitary Temperature Range

Vos ORin (PV/C)

los DRln (pA/e)
TL/H/9226-23

TUH/9226-22

3-90

r-----------------------------------------------------------------------------,

~

!!:
G)

....

Typical Performance Distributions (Continued)

Co)

Op Amp Voltage
Noise Distribution

Average los Drift
Industrial Temperature Range
20,------------------,

30

100Hz
Amps I, 2, 3, 4

15~------------------~

20

~ 10~------------------~

=>

10
5~~~--------------~

~

o

00 81624324048566472808896
VOLTAGE NOISE (nVRIlS /'IilZ)

los ORin (pA/C)
TLlH/9226-24

TL/H/9226-27

Op Amp Current
Noise Distribution

Average los Drift
Commercial Temperature Range
30

2,3,4
10

~
z

=>

10
10
10
0

0
CURRENT NOISE (f~1IS /'IilZ)

los ORin (pA/C)
TLlH/9226-25

TL/H/9226-28

Voltage Reference Broad-Band
Noise Distribution
30,-----------,
10:Sf:Sl0,OOOHz

Application Information
VOLTAGE REFERENCE
Reference Biasing
The voltage reference is of a shunt regu~tor topology that
models as a simple zener diode. With current Ir flowing in
the "forward" direction there is the familiar diode transfer
function. Ir flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The
cathode may swing from a diode drop below V- to the reference voltage or to the avalanche voltage of the parallel
protection diode, nominally 7V. A 6.3V reference with V+ =
3V is allowed.

20+-----------~------_l

10+----------ra-------/

0"'"0..-4.......8...,...2..-,'"'6....
20...2....4..-28323640 44 48
VOLTAGE NOISE (}'VRlIsl
TUH/9226-26

Anodo committed to VTUH/9226-29

FIGURE 1. Voltage Associated with Reference
(current source Ir is external)
3-91

~ r-----------------------------------------------------------------------------~

~

~

Application Information (Continued)
The reference equivalent circuit reveals how Vr is held at
the constant 1.2V by feedback, and how the FEEDBACK pin
passes little c!)rrent.
.

15V
lOOk

To generate the required reverse current, typically a, resistor
is connected from a supplY voltage higher than the reference voltage. Varying that voltage, and so varying Ir, has
small effect with the equivalent series resistance of less
than an ohm at the higher currents. Alternatively, an active
current source, such as the LM134 series, may generate Ir.
e.thade

TUH/9226-32

FIGURE 4. Thevenln Equivalent of Reference
with 5V Output

Rl
39k

""I---t

Anade=V-

II =

32pA

R2

TUH/9226-30
~_ _....

FIGURE 2. Reference Equivalent Circuit

118k

TL/H/9226-33
R1
R2

= Vr/l = 1.24/32,. = 39k
= R1 {(Vro/Vr) - 1) = 39k ((5/1.24)

- 1))

= ,118k

FIGURE 5. Resistors R1 and R2 Program Reference
Output Voltage to be 5V
Understanding that Vr is fixed and that voltage sources, re8istors, and capacitors may be tied to the FEEDBACK pin, a
range of Vr temperature coefficients may be synthesized.

TUH/9226-31

FIGURE 3. 1.2V Reference
Capacitors in parellel with the reference are allowed. See
the Reference AC Stability Range typical curve for capacitance values-from 20 pA to 3 mA any capaCitor value is
stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values
will perform noise filtering.
Adjustable Reference
The FEEDBACK pin allows the reference output voltage,
Vro, to vary from 1.24V to s.av. The reference attempts to
hold Vr at 1.24V. If Vr is above 1.24V, the reference will
conduct current from Cathode to Anode; FEEDBACK current always remains low. if FEEDBACK is connected to Anode, then Vro ,,;.', Vr = 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode---say
3.1sv for Vro = 5V. Connecting a resistor across the constaint Vr generates a currerit 1= R1IVr flowing from Cathode
into FEEDBACK node. A Thevenin'equivalent 3.7SV is generated from FEEbBACK to Anode with R2=3.7S/1. Keep I
greater than one thousand times larger than FEEDBACK
bias current for <0.1% error-I~32 pA for the' military
grade over the military temperature range (I ~ 5.5 pA for a
1% untrimmed error for a commercial part).

TUH/9226-34

FIGURE 6. Output Voltage has Negative Temperature
Coefficient (TC) If R2 has Negative TC

TUH/9226-35

FIGURE 7. Output Voltage has Positive TC
" R1 has Negative TC

3-92

Application Information

(Continued)
Reference Hysteresis
The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products varyalways check the data sheet for any given device. Do not
assume that no specification means no hysteresis.
OPERATIONAL AMPLIFIERS AND COMPARATORS
Any amp, comparator, or the reference may be biased in
any way with no effect on the other sections of the LM613,
except when a substrate diode conducts (see Electrical
Characteristics Note 1). For example, one amp input may be
outside the common·mode range, another amp may be operating as a comparator, and all other sections may have all
terminals floating with no effect on the others. Tying inverting input to output and non·inverting input to V- on unused
amps is preferred. Unused comparators should have non·in·
verting input and output tied to V+, and inverting input tied
to V-. ChOOSing operating points that cause oscillation,
such as driving too large a capacitive load, is best avoided.

TUH/9226-36

FIGURE 8. Diode In Series with R1 Causes Voltage
Across R1 and R2 to be Proportional to Absolute
Temperature (PTAT)
Connecting a resistor across cathode-to·FEEDBACK creates a 0 TC current source, but a range of TCs may be
synthesized.

Op Amp Output Stage
These op amps, like the LM124 series, have flexible and
relatively wide-swing output stages. There are simple rules
to optimize output swing, reduce cross-over distortion, and
optimize capacitive drive capability:
1) Output Swing: Unloaded, the 42 pA pull-down will bring
the output within 300 mV of V- over the military temperature range. If more than 42 /LA is required, a resistor
from output to V- will help. Swing across any load may
be improved Slightly if the load can be tied to V+, at the
cost of poorer sinking open-loop voltage gain.
2) Cross-Over Distortion: The LM613 has lower cross-over
distortion (a 1 VBE deadband versus 3 VBE for the
LM124), and increased slew rate as shown in the char·
acteristic curves. A resistor pull-up or pull-down will force
class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) capacitive Drive: Limited by the output pole caused by
the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN re until the output resistance is that of the
current limit 250. 200 pF may then be driven without
oscillation.

TUH/9226-37

I = Vr/R1 = 1.24/R1
FIGURE 9. Current Source Is Programmed by R1

v

Comparator Output Stage
The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from
each output pin to a positive voltage for the output transistor
to switch properly. When the output transistor is OFF, the
output voltage will be this external positive voltage.
For the output voltage to be under the TTL-low voltage
threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor.
The offset voltage may increase when the output voltage is
low and the output current is less than 30 /LA. Thus, for best
accuracy, the pull-up resistor value should be low enough to
allow the output transistor to sink more than 30 pA.

TUH/9226-38

FIGURE 10. Proportlonal-to-Abaolute-Temperature
Current Source

v
R

Op Amp and comparator Input Stage
The lateral PNP input transistors, unlike those of most op
amps, have BVEBO equal to the absolute maximum supply
voltage. Also, they have no diode clamps to the positive
supply nor across the inputs. These features make the inputs look like high impedances to input sources producing
large differential and common·mode voltages.

TL/H/9226-39

FIGURE 11. Negatlve-TC Current Source

3-93

&I

~
..-

:I
....

r---------------------------------------------------------------------------------,
Typical Applications

+Vo----------.----.----------,

TLlH/9226-40

FIGURE 12. High Current, High Voltage SWitch
+vo---t--------1~.-------~----------------,

0.11'~

5004

5004

lN914

L-_~O-V

TLlH/9226-41

FIGURE 13. High Speed Level Shifter. Reaponse time Is approximately
1.5".., where outputis eitherapproxlmately + V or - V.

VI8VN o--"'-4~----""------.
3.5k

0.11'£1:.
7004

LM813
REF

....----------IVV~~-o VOUT
10k

5.0V
50mA

4.71'F

TLlH/9226-42

FIGURE 14. Low Voltage Regulator. Dropout voltage is approximately O.2V.

VIN o--t--1~----------.,

12V

10k

7.5k

10.000V
3324
15k

LII813
REF'

10k'

'10k must be low

TLlH/9226-43

I.e. trirnpot
,t;IGURE 15. Ultra Low Nolse,10.00V Reference. Total output noise Is typiCally 14 ""VRMS.

3-94

Typical Applications (Continued)
+Vo------,
v

~

> + - - - - 0 VOUT

3k

: Cl

Strobe

VOUT
TLlH/9226-44

TLlH/9226-45

FIGURE 17. BasIc Comparator with External Strobe

FIGURE 16. Basic Comparator

15Vo-----IP-----..,

+V

TTL
Output

lk
1M

lk

TLlH/9226-47
TL/H/9226-46

FIGURE 18. Wide-Input Range
Comparator with TTL Output

FIGURE 19. Comparator with
Hysteresis (aYH = +Y(1k/1M))

3-95

.... r--------------------------------------------------------------------------------,
U)

~

ttlNational Semiconductor

LM615 Quad Comparator and Adjustable Reference
General Description

Features

The comparators have an input range which extends to the
negative supply, and have open-collector outputs. Improved
over the LM 139 series, the input stages of the comparators
have lateral PNP input transistors which enable low input
currents.' for large differential input voltages and' swings
above V+.

COMPARATORS
• Low operating current
• Wide supply voltage range
• Open-collector outputs
• Input common-mode range
• Wide differential input voltage

The voltage reference is a three-terminal shunt-type bandgap, and is referred to the V- terminal. Two resistors program the reference from 1.24V to 6.3V, with accuracy of
± 0.6% available. The reference features operation over a
shunt current range of 17 p,A to 20 mA, low dynamic impedance, broad capacitive load range, and cathode terminal
voltage ranging from a diode-drop below V- to above V+.

REFERENCE
• Adjustable output voltage
• Tight initial tolerance available
• Wide operating current range
• Tolerant of load capaCitance

As a member of National's' Super-Block™ family, the
LM615 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrifiCing performance.

600 p.A
4V to 36V
V- to (V+ - 1.8V)
±36V
1.24V to 6.3V
± 0.6% (25°C)
17 p.A to 20 mA

Applications
•
•
•
•
•

Adjustable threshold detector
Time-delay generator
Voltage window comparator
Power supply monitor
AGB level detector
'

Connection Diagram
MPackage

NPackage

FEEDBACK
REFERENCE ...,;5+--+. .
OUTPUT VRO 6

t:::::....:=::r-

9 REFERENCE
OUTPUT VRO

y-

TUH/ll057-24

TUH'11057-1

Top View

Top View

Ordering Information
For information about surface-mount packaging of this device, please contact the
Analog Product Marketing group at National Semiconductor Corp. headquarters.
Reference
Tolerances
± 0.6% at 25°C,
80 ppm/DC max

Temperature Range
Industrial
-40"C ~ TJ ~ +85"C

Package

LM615AMN

LM615AIN

16-Pin
Molded DIP

N16A

16-Pin
Ceramic DIP

J18A

LM6151N

16-Pin
Molded DIP

N16A

LM6151M

18-Pin Narrow
Surface Mount

M16A

LM615AMJ/883
(Note 13)
± 2.0% at 25°C,
150 ppml"C max

NSC
Package Number

Military
-55°C ~ TJ ~ + 125"C

LM615MN

3-96

'

~

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,

Maximum Junction Temperature

please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Thermal Resistance, Junction-to-Ambient (Note 5)
NPackage
.95"C/W
Soldering Information
N Package Soldering (10 seconds)
260"C
ESD Tolerance (Note 6)
±1 kV

Voltage on Any Pin Except VRO
(referred to V - pin)
(Note 2)
(Note 3)
Current through Any Input Pin
and VRO Pin
Differential Input Voltage
Output Short-Circuit Duration
Storage Temperature Range

36V(Max)
-0.3V(Min)

-65°C

S;

TJ

S;

15O"C

Operating Temperature Range

±20mA
±36V
(Note 4)
+ 150"C

-40"C

LM615AI, LM6151
LM615A, LM615M

-55°C

S;

S;

TJ

TJ

S;

S;

+85°C

+ 125°C

Electrical Characteristics
These specifications apply for V- = GND = OV, V+ = 5V, VCM = VOUT = V+ /2, IR = 100 p.A, FEEDBACK pin shorted to
GND, unless otherwise specified. Limits in standard typeface are for TJ = 25°C; limits in boldface type apply over the
Operating Temperature Range.

Symbol

Parameter

Typical
(Note 7)

Conditions

LM615AM
LM615AI
Limits
(Note 8)

LM615M
LM6151
Limits
(Note 8)

Units

COMPARATORS
Is
Vos
Vos

t:.vOS
AT
Is
los

Total Supply Current

V+ Current, RLOAD =
3V S; V+ S; 36V
V+

00,

Offset Voltage over
V+ Range

4V

Offset Voltage over
VCMRange

OV S; VCM S; (V+ -1.8V)
V+ = 30V, RL = 15 kO

S;

S;

36V, RL = 15 kO

Average Offset
Voltage Drift

250

550

600

350

800

850

1.0

3.0

5.0

2.0

8.0

7.0

1.0
1.IS

3.0

5.0

6.0

7 .•0

15

-.
-5

Input Bias Current
Input Offset Current

Av

Voltage Gain

RL = 10 kO to 36V,
2V S; VOUT S; 21V

tR

Large Signal
Response Time

V+IN = 1.4V, V-IN = TIL
Swing, RL = 5.1 kO

Output Sink Current

V+IN = OV, V-IN = 1V,

25

35

30

40

0.2

4

4

0.3

5

5

500

50

50

1.5
20
VOUT =.0.4V

IL

Output Leakage
Current

V+IN = 1V, V-IN = OV,
VOUT = 36V

13

3-97

10

•

mVmax
mVmax

nAmax
nAmax
nAmax
nAmax
V/mV
min
V/mV

10

mAmin
mAmin
mAmin
mAmin

•

2.8

1.0

0.8

2.4

0.5

0;5

0.1

10

10

0.2

mVmax
mVmax

p's
p.s

2.0
VOUT = 1.5V

p.Amax
p.Amax

p.VI"C

1'00

ISINK

....
CII

en

p.Amax
p.A

Electrical Characteristics
These specifications apply for V-; = GND,= OV • .v+ = 5V. VCM = VOUT = V+ /2. IA = 100 pA. FEEDBACK pin shorted to
GND; unless otherwise specified. Umits in standard typeface are for TJ = 25~C; limits in bq.ldface type apply over the
Operating Temperature Range. (Continued)

Symbol

Typical

Conditions

Parameter

(Note

7)

LM615AM

LM615M

LM615AI

LM6151

Limits

Umits

(Note 8)

(Note 8)

Units

VOLTAGE REFERENCE (Note 9)
VA

Reference

1.244

Voltage

AVA
AT
AVA

Average Drift

(Note 10)

18

with Temperature

1.2365

1.2191

V min

1.2515

1.2689

V max

(±0.6%)

(±2%)

80

150

ppm/'C
max

Average Drift

TJ = 40'C

400

ppm/kH

kH

with Time

TJ = 150'C

1000

ppm/kH

AVA

Hysteresis

(Note 11)

3.2

p.V/'C

AVA

VA Change

VA[IOO /'A]

AlA

with Current

aTJ

VA[IO mAl
(Note 12)
R

Resistance

-

-

VA [17 /'A]

VA[IOO,.AJ

AVA[IO mAto 0.1 mAl/9.9 mA
AVA[IOO u,Ato 17 JAA]/83

AVA

VA Change

AVAO

withVAO

AVA

VA Change

AV+

with V+ Change

VA[VAO

VA[V+

VA[V+

IFB'

= VA] -

= 5V]
= 5V]

-

-

pA

VA[VAO

VA[V+

VA[V+

= 6.3V]

= 36V]
= 3V]

Bias CUrrent
en

BW = 10Hzto10kHz

Voltage Noise

1

1

mVmax

0.1

1.1

1.1

mVmax

1.5

5

5

mVmax

2.0

5.5

5.5

mVmax

0.2

0.58
13

0.58
13

o max
o max

0.6

V- S; VFB S; 5.06V

FEEDBACK

0.05

2.5

5

5

mVmax

2.8

10

10

mVmax

0.1

1.2

1.2

mVmax

0.1

1.3

1.3,

mVmax

0.01

1

1

mVmax

0.01

1.5

1.5

mVmax

22

35

50

nAmax

29

40

55

nAmax

30

P.VAMS

Note I: Absolute maximum ratings Indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the
device beyond Its reted operating conditions.
Note 2: Input voltage above V+ is allowed. As long ~(lne input pin voltage remains inside the common-mode range. the comparetor will deliver the correct output
Note 3: More accuretely, n Is excessive current flow, with 'resulting excess heating, that limns the voltages on all pins. When any pin is pulled a diode drop below
V-, a paresltic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operetion Is undefined
and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Shorting an Output to V- will not cause power dissipation, so It may be continuous. However, shorting an Output to any mOre posHIve voltage (including
V+), will cause 80 rnA (typ.) to be drewn through the output transistor. This current multiplied by the applied voltage Is the power dissipation In the output transistor.
II the total power lrom all shorted outputs causes the junction temperature to exceed 15O'C, degraded reilabliHy or destruction 01 the ckivice may occur. To
determine junction temperature, see Nets 5.
Note 5: Junction temperature may be calculated using TJ = TA + Po BJA. The given thermal resistance Is worst-case lor packages in sockets in still air. For
packages soldered to copper-clad board with dissipation lrom one comparator or reference output transistor. nominal BJA Is SO 'CIW for the N package,
Note 6: Human body model, 100 pF discharge through a 1.5 kO resistor.
Note 7: Typical values in standard typeface are lor TJ = 25"C; values in boldlace type apply lor the lull operating temperature renge. These values represent the
mcst likely parametric norm.
Note 8: All limns are guaranteed lor TJ

=

+25'C (standard type lace) or over the lull operating temperature renge (bold tJpe face).

Note 9: VRO Is the reference output voltage, which may be set lor 1.2V to 6.3V (see Applicaticn Information). VR is the VRo-to-FEEDBACK voltage (nominally
1.244V).
Note 10: Average reference drift is calculated from the measurement 01 the reference voltage at 25"C and at the temperature extremes. The drift, In ppm/"C, is
1()6. AVR/VRI25'C] • ATJ, where AVR Is the lowest value subtracted from the highest, VRI25'CI is the value at 25'C, and ATJ Is the tamperature range. This
parameter Is guaranteed by design and sample testing.

Note II: Hystaresls is the change In VRO caused by a change In TJ, after the relerence has been "dahysterlzed." To dehysterlze the reference; that Is minimize the
hysteresis to the typical value, no junction temperature should be cycled In the lollowing pattern, spiraling in toward 25'C: 25'C, 85"C, - 4O"C. 70'C, O"C, 25'C.
Note 12: Low contact resistance is required lor accurete measurement,
Note 13: A military RETS electrical _

spaciflcation Is avaHable on request. The LM615AMJ/883 may also be procured as a Standard Military Drawing.

3-98

r-

5;
.....

Simplified Schematic Diagrams

U'I

Comparator

r--------------------------.--~~--~--------------~v+

7k

39k

TUH/ll057-2

Reference

Bias

REFERENCE

I

OUTPUT'

I

I

v-

v-

Tl/H/ll057-3

3-99

~
~

U)

:IE
...;I

r-----------------------------------------------------------------------------,
Typical Performance Characteristics (Reference)··
TJ = 2SoC, FEEDBACK pin shorted to V- = OV, unless otherwise noted.
Reference Voltage
Drift va Time

Reference Voltage
va Temperature
1.26

~~

-

-

.....

i-'"

0.10
CIII8
CIII8

g

Q04

•

o.m

.... ~

~+

r--. . . .
... ~ r--.,

&-am

~ a; ;;

JI-II04

-0.116
-0.116
-0.10

1.23
-10-.40-20 0 20 «I 60 80 1001201«1

1.224 C:::j:::~~::r:~

I

r--.

TJ ~ 4O'C

o.CIO

1.;0

Accelerated Reference
Voltage Drift va Time
~ I~~-+--+-~--~~

.~

;

.!II

I I
I

o

11,.216

2lIO 5110 7!!0 10II012lI015II017!!02IIIIO
lIIIE(Hours)

JUIICI10M 1DIPERAlURE (e)

I~i~~~~~~~:r

1.218

Reference Voltage

Reference Voltage

va Current

va Current

and Temperature

and Temperature

~-+--+-~--~~

1.214 '--.....I.._-'--.l._~~
o 100 200 5110 400 5110

11ft: 8lASED AT 15O'C (hrs)

Reference Voltage
va Reference Current

10~~~~r-~r--'

V,.=Y,

!'~

--+- f--55"C
25"C
~-

125"C
~

o.m

-55"C

I

0.2

2

G.02

20

2

0.2

-10

20

REFERENCE CURRENT (RIA)

REFERENCE CURII£Mr (mA)

-0.1 10.001

0.1

~
10

REFERENCE CURRENT (mA)

FEEDBACK Current

Reference Voltage
va Reference Current
100

f-f-

,~

~It

I

-10

-0.1 10.001

13':

--~

10

o.CIOl

~

I

I

25"C

rom
IOOV

'~

-20

-~

-60

I

10

100

-.40
-10123451102060 «I
~DE-TO-FEED8ACK VOLTAGE

h

-.40
-101234511020 60 «I

M

M

Reference Small-5lgnal
Reaistance va Frequency
100lI0

~

II

ANOOE - TO - FEED8ACK VOLTAGE

0.1

II

b

I' IIA

Reference Noise
Voltage va Frequency

-55"C

-10

0.01

1 R

IOOV

I

REFERENCE SIIUIIf CURRENT (IlIA)

FEEDBACK Current
va FEEDBACK-to-VVoltage
10

iJ1

~

-=

I

I

I~

~~

REFERENCE CURII£Mr (RIA)

20

I

KooIM

0.1

Voltage
20

1-55~T sl:lscrc
, I.2s(,.St.3V

--,~
r-r-

va FEEDBACK-to~V­

Reference AC
Stability Range

100lI0 • •

I!
~

I
0.1
10

100

1000

fREQUENCY (Hz)

100lI0

0.1

10

100

1000

fREQUENCY (kHz)
TLlHlll057 -4

3·100

r-

5;
-.

Typical Performance Characteristics (Reference) (Continued)
TJ

= 25"C. FEEDBACK pin shorted to V- = OV. unless oth8lWise noted.
Reference Voltage
with FEEDBACK
Voltage Step

Reference
Power-Up Time

r11
p8£IW£D

~
~

I

1.0

\.
0
0

zoo

100

~

& "I-

I

5
4

I

Q.5

30D

ov

-

\
\ v..

3
2
1
0
0

400

100

zoo

1
'/

~~ k

~

I

~i;
-55"C

t-

0

m.c

I"

-1
0

30D 400 50D &DO 700

2

!

1

liME (PI)

Reference Voltage
Change with SUpply
Voltage Step

!

-1

-2

.

-3

-5

0

~

"""

R,,=IIV..

1I~=0.u

',STEPTr

j,00j,A

-::=b:-

Q.5

I

.125"1:

lOrnA

II I

-o.s

_:IlL

1~"C

... -

v~

tl

0

~

v+SlEP

1.0

~

0

~

2.G
1.5

It

1\
b

....

100 20D 30D 40D 50D &DO 700

TIlE (PI)

3

IlL

I

~

J

Reference Stap Response
for 100 p. - 10 mA
Current Step

J

I

"'-

lIIIE (PO)

!i

2

!

5.CI8V

~

'---

Reference Voltage
with 100 - 12 p.A
Current Step

fEEDB -10 -ANOIIE YOLTAIIE

~

v+'=ovIr
v+ AND CAlHODE

~

(II

-~~
lj/

-1.0

100 20D 30D 40D 50D &DO 700

1

0

lIME (PO)

2

4

3

5

&

lIME (1M)
TUH/11057-5

Typical Performance Characteristics (Comparators)
TJ

= 25"C. v+ = 5V. v- = OV. unless otherwise noted
Input-Bias
Current va COmmon-Mode
Voltage

SUpply Current
va SUpply Voltage
30D

50

I

+125"C

~200

-55"1:

,... ---+25"C

i

20

a

10

i

0

1150

Ii

100

i

50
0
0

-10
-20

5

10

15

20

SUPPlY VOLTNlE (V)

25

50

15

Y

A 50

"i

125"1:

V'

If

25"1:

~

I- ~

:t15V SUPI'I.IES

1 II

10

j : r ,...,..
I
a
~

;&

+125"C

-5

+25"C

-10

Yo 10 20 50 40 50 10 10
INPUT VOLTNlE R£fEIIRED 10 yo (V)

II

~"C

-15

"""

-

20

I

40

250

Input Current V8
Differential Input Voltage

'7

-20
-15

-10

I

-5

D1FmEN1W.

0

5

10

15

INPUT VOLTNlE (V)
TL/HI11057-6

3-101

.!

...

Typical Performance Characteristlcs'(Comparators) (Contin~).
i

Small-8ignal Response
Tlme,,!nvertlng.lnput,
Negative Transition

Output Saturatlo.n
Vo~ge vs Sink Current

,.

100

1:

10

II

~

'!l
.~

1

I

0.1

~

om

i

~

0.0

1.0

D.5

1.5

2.0

2.5

I

I I

3

+25"1:
2
+125"1:
1
0

H

~

~
~

i

I

3

~
~

0

i

-5"*
0

III

2

~
~

,

~

+5"*
0

'. '

-5"*
0

III

2.0

3D

i

I

I

i

~\I~

0

•

-IS

...

+5

i

~

+25"1: ,

+

Vo

-

-,SY

-55"1:

+125"1:

§!~ 0
04

D.lI

11IIE (pa)

1.2

-55"1:

0

III

1.6

2.0

411

3D

Large-8lgnal Response
Tlmes-lnvertlng Input,
Positive Transition

..

'I

I

15

J
-550f,/

0

,.

~~

i
III

2.0

3D

15 ..

iti·*

o

-

-'IV

'71£

~/

+125"1: ~

.55"1:

i
I~

15

I

-5

i

-5

~.~
1~ .. US

.

"

0
-IS

D.lI

+25"1:
.125"1:

..

I

~

~'.
+
-

-,SY

*

1.2

1.8

-55"1:

Vo

+5
0

..,
0

04

Q8.

lIME (pa)
i

3-102

1.6

,SY

~

11IIE (pa)

1.2

D.lI

Large-8lgnal Response
Times-Non-Invertlng Input,
Negative Transition

+25"1:

.:lW

04

nME (pa)

+5

0

*

-'IV

0

..

-15

•

0

.'

'.!l

Vo

V.~
•
Yo

..... ~

-5.

'411

'IV

,/'."

+25"1: ~ bi' +125"1:

'~15

large-Signal Response
Tlme_Non-lnverting Input,
Positive Transition

i!l

+125"1: .

-5"*

~. : '+5

-5"*

§!~

:t

+5"*

~

.-;:

~~ o .

0

I~0

~8

Vo

....

0

~

I

I'"'- +25"C

nME (pa)

11IIE (pa)

"iti"*

~'A

+

0

."~.
.,*

L\
\

411

'SY

15

3

411

~
,0

Large-8lgnal ResponSe
Times-Inverting Input,
Negative Transition

I

_
~'k
5~
;-0,

IV

5
4
3
2
1
0

nME (pa)

~
~~

3D

Small-Signal Response
Tlme_Non-lnverUng,lnput,
Negative Transition
~

'I

1
0

2.0

....

4"

11IIE (pa)

~.

~,:o

-

~

.

'

-55"1:

~

+5"*

3D

IV

: . ~"

~

V.~.
~~ . .
• ;-0

II

4

Small-8lgnal Response
Times Non-Inverting Input,.
POSitive Transition .'

~

Smail-Signal Response
Time_Inverting Input,
Positive Transition

IV

5

OUIPIJT 'IOI.TAGE (V)

~

..

,,)

TUH/l1057-8

Application Information
VOLTAGE REFERENCE
Reference Biasing

Capacitors in parallel with the reference are allowed. See
the Reference AC Stability Range typical curve for capacitance values-from 20 p.A to 3 mA any capaCitor value is
stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values
will perform noise filtering.

The voltage reference is of a shunt regulator topology that
models as a simple zener diode. With current I, flowing in
the "forward" direction there is the familiar diode transfer
function. I, flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The
cathode may swing from ~ diode drop below V- to the reference voltage or tO,the avalanche voltage of the parallel
protection diode, nominally 7V. A 6.3V reference with V+ =
3V is allowed.

Adjustable Reference
The FEEDBACK pin allows the reference output voltage,
Vro , to vary from 1.24V to 6.3V. The reference attempts to
hold Vr at ,1.24V. If Vr is above 1.24V, the reference will
conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then Vro = Vr = 1.24V. For higher voltages FEEDBACK is held at a constant voltage above Anode--say
3.7FN for Vro = 5V. Connecting a resistor across the constant Vr generates a current 1= R1IVr flowing from,Cathode into FEEDBACK node. A Thevenin equivalent 3.76V is
generated from FEEDBACK to Anode with R2 = 3.76/1.
Keep I greater than one thousand times larger than FEEDBACK bias current for <0.1 % error-I ~ 32 p.A for the military grade over the military temperature range (I ~ 5.5 p.A
for a 1% untrimmed error for an industrial temperature
range part).

Anode committed to VTLlH/11057-9

FIGURE 1. Voltage Associated with Reference
(Current Source I, Is External)
The reference equivalent circuit reveals how Vr is held at
the constant 1.2V by feedback, and how the FEEDBACK pin
"
passes little current.

tSV

tOOk

To generate the required reverse current, typically a resistor
is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying Ir, has
sma" effect with the equivalent series resistance of less
than an ohm at the' higher currents. Alternatively, an active
current source, such as the LM134 series, may generate Ir.
Cathode

=Vro

TLlHI11057-12

FIGURE 4. Thevenln Equivalent of
Reference with SV Output

Rt
39k

M - -... !1=32/o1A

Anod.=V-

3.76V

TLlH/11057-10

F __..I

FIGURE 2. Reference Equivalent Circuit

R2

ttlik

sv

,

TLlH/11057-13

100J.iA~38K

Vro=Vr= I.2V

Al
A2

~

~

39k
Al (V",IV,) - II ~ 39k [(511.24) - 1]

V,/I

~

1.24/32,.

~

~

118k

FIGURE 5. Resistors R1 and R2 Program
Reference Output Voltage to be SV

vTl/H/11057-11

FIGURE 3. 1.2V Reference

3-103

....
~

~ ~----------------------------------------------------------------------------~

Application Information (Continued)
Understanding that Vr is fIXed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a
range of Vr temperature coefficients may be synthesized.

Connecting a resistor across VRo-to-FEEDBACKcreates a
o TC current source, but a range of TCs may be synthesized.

v

15V
10k

TLlH/ll057-14

TLlH/l1057-17

FIGURE 8. Output Voltage has Negative Temperature
Coefficient (TC) If R2 has Negative TC

I = V,/RI = 1.24/Rl

FIGURE 9. Current Source.l. Progremmed by R1

v

TLlH/ll057-15
TLlHI11057 -16

FIGURE 7. Output Voltage has Positive TC
If R1 has Negative TC

FIGURE 10. Proportional-to-Absolllle-Temperature
CUrrent Source

15V

v

10k

R

TLlHI11057-19

FIGURE 11. Negative-TC Current Source
Reference Hysteresis

TL/H/ll057-16

FIGURE 8. Diode In Serle. with R1 Cau.es Voltage
Acroas R1 and R2 to be Proportional to Absolute
Temperature (PTAT)

The reference voltage depends, slightly, on tha thermal history of the die. Competitive micro-power products vary-aiways check the data sheet for any given device. Do not
assume that no specification means no hysteresis.

3-104

Application Information (Continued)
It is often a good idea to decrease the amount of hysteresiS
until oscillations are observed, then use three times that
minimum hysteresis in the final circuit. Note that the amount
of hysteresis needed is greatly affected by layout. The
amount of hysteresis should be rechecked each time the
layout is changed, such as changing from a breadboard to a
P.C. board.

COMPARATORS
Any of the comparators or the reference may be biased in
any way with no effect on the other sections of the LM615,
except when a substrate diode conducts (see Electrical
Characteristics Note 3). For example, one ()r both inputs of
one comparator may be outside the input voltage range limits, the reference may be unpowered, and the other comparators will still operate correctly. Unused comparators should
have inverting input and output tied to V- , and non-inverting
input tied to V+.

Input Stage
The input stage uses lateral PNP input transistors which,
unlike those of many op amps, have breakdown voltage
BVEBO equal to the absolute maximum supply voltage. Also,
they have no diode clamps to the positive supply nor across
the inputs. These features make the inputs look like high
impedances to input sources producing large differential
and common-mode voltages.

Hystere818
Any comparator may oscillate or produce a noisy output if
the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input
signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresiS, or positive feedback, as shown in Fl{Jure

The guaranteed common-mode input voltage range for an
LM615 is V- :;;; VCM :;;; (V+ - 1.8V), over temperature.
This is the voltage range in which the comparisons must be
made. If both inputs ara within this range, the output will be
at the correct state. If one input is within this range, and the
other input is less than (V- + 32V), even if this is greater
than V+, the output will be at the correct state. If, however,
either or both inputs are driven below V -, and either input
current exceeds 10 ,.,.A, the output state is not guaranteed
to be correct. If both inputs are above (V+ - 1.8V), the
output state is also not guaranteed to be correct.

12.

v+

Output Stage

Rr
,

The comparators have open-collector output stages which
require a pull-up resistor from each output pin to a, positive
supply voltage of the output to switch properly. When the
internal output transistor is off, the output (HIGH) voltage
will be pulled up to this external positive voltage.

TL/H/ll 057-20

FIGURE 12. Rs and RF Add Hysteresis to Comparator
The amount of hysteresis added in Figure 12 is

To ensure that the LOW output voltage is under the TIL-low
threshold, the output transistor's load current must be less
than 0.8 mA (over temperature) when it turns on. This impacts the minimum value of the pull-up resistor.
:::: V+ xRs
forRF> Rs
RF
A good rule of thumb is to add hysteresis of at least the
maximum specified offset voltage. More than about 50 mV
of hysteresis can substantially reduce the accuracy of the
comparator, since the offset voltage is effectively being increased by the hysteresiS when the comparator output is
high.

3-105

U)

i....

r-----------------------------~----------------------------------------------~--,

Typical Applications
Power Supply Monitor

v+ (!IV ~~nat)
,,('

rV

ON
........_ - - VOUll

. 10k

for v+ :t, S.sV
I ,

12;lk

(U .ON for 2.0V:S v+ :$ 4.0V

. 10k

>~~VOUT2,

10k
~.OV

VOUTI and V0UT2 are optional digital

26.7k

outputs. and are LOW when the

corresponding LED i. ON,
All resistors 1 %
tolerance or better.

.. Tracking CORlparator

TLlH/ll057-21

4·Threshold level Detector

V+

5V

5V

C2

. V

O.22pF
,lk

~.

2k.
10.0k

Rl
75k

I

5V

.'. Cl'

10.1k

2.2p~,.

2k
TLlH/II057-22

Rl-Cl removes the Iow·frequency signal component,

so that through R2-C2 the higher·
frequency component Is detected.

5V

2k

I.SV ......;..-t-....
10k
SV

1.0V ""-1--1

2k

20k

TLlH/ll057-23

3·106

.-------------------------------------------------------------------------,
t!lNational Semiconductor

LM710 Voltage Comparator
General Description
The LM710 series are high-speed voltage comparators intended for use as an accurate, low-level digital level sensor
or as a replacement for operational amplifiers in comparator
applications where speed is of prime importance. The circuit
has a differential input and a single-ended output, with saturated output levels compatible with practically all types of
integrated logic.
The device is built on a single silicon chip which insures low
offset and thermal drift. The use of a minimum number of
stages along with minority-carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low

stray and wiring capaCitances that can be realized with
monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.
The LM710 series are useful as pulse height discriminators,
voltage comparators in high-speed AID converters or go,
no-go detectors in automatic test equipment. They also
have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests them for applications
replacing relatively simple discrete component circuitry.

Schematic and Connection Diagrams
~------~----~--~--~
R4
R5
2.Sk

Metal can Package
y+

3.9k

D2

INPUlS

6.2Y

.-+-----;

TlIH/1D410-2

OUTPUT

Top View
Note: Pin 4 is connected to case.

Order Number LM710AMH/883*, LM710H,
LM710H/883 or LM710CH
See NS Package Number HOSC

GROUND--------t--_-l

Dual-In-Une Package

NC
'-------4>---v-

GND

TL/H/1D410-1

+IN
-IN

Ceramic Flatpak Package

Ne

GND

He

'INPUT

NC

-INPUT

y.

NC

He

VNC
TL/H/1D410-3

Y- - - - . . . . _ _ _ _.1""-- OUTPUT

Top View

TL/H/10410-9

Order Number LM710AMW/883*
See NS Package Number W10A

'Also available per JM3B510/10301

3-107

Order Number
LM710AMJ/883* or LM710CN
See NS Package Number N14A or J14A

~

I:

....
....
c>

Absolute Maximum Ratings
Power Dissipation
T0-99 (Note 1)
700mW
Plastic Dual-In-Line Package (Note 2)
950,mW
Operating Temperature Range
LM710
-55"Cta + 125°C
LM710C
O"Cto +70"C
Storage Temperature Range
-65°C to + 150"C

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Positive Supply Voltage
+14V
-7V
Negative Supply Voltage
Peak Output Current
Output Short Circuit Duration

10mA
10seconlls
±5V
±7V

Differential Input Vollage
Input Voltage

Lead Temperature (Soldering, 10 sec.)

26O"C

Electrical Character~stlcs (Note 3)
Panimeter ,

LM710

Conditions
Min

Typ

LM710C
Max

Min

Units

Typ

Max

Input Offset Voltage

Rs:S: 200,0, VCM = OV, TA = 25°C

0.6

2.0

1.6

5.0

mV

Input Offset Current

VOUT = 1.4V, TA = 25°C

0.75

3.0

1.8

5.0

p.A

Input Bias Current

TA = 25°C

13

20

16

25

p.A

Voltage Gain

TA = 25°C

Output Resistance

TA = 25°C

Output Sink Current

VOUT = 0, TA = 25°C
AVIN ~ 5 mV
AVIN ~ 10mV

1250

1700

1000

200
2.0

1.6

Response Time

TA = 25°C (Note 4)
Rs:S: 200,0, VCM = OV

Averag~ Temperature Coefficient
of Input Offset Voltage

TMIN :S: TA :S: TMAX
Rs:S: 500

3.0

10

Input Offset Current

TA = TAMAX
TA = TAMIN

0.25
1.8

3.0
7.0

Average Temperature Coefficient
of Input Offset Current

25°C:s: TA:S: TMAX
TMIN:S: TA:S: 25°C

5.0
15

25
75

27

45

Input Bias Current

TA = TMIN
V-.= -7V

Common-Mode Rejection Ratio

.Rs

200

,0

2.5

mA
mA

2.5

Input Offset Voltage

Input Voltage Range

1500

40

40
3.0

±5.0

s: 2000

80

ns
6.5

mV

20

p.VloC

7.5
7.5

p.A

15
24

50
100

nArC
nAloC

25

40

p.A

5.0

±5.0
100

70

p.A

V
98

dB

Differential Input Voltage Range

±5.0

±5.0

V

Voltage Gain

1000

800

VIV

Positive Output Level

Negative Output Level
Output Sink Current·

-5mA:S: IOUT:S: 0
"IN ~ 5.mV
VIN~ 10mV

2.5

VIN ~ 5mV
VIN ~ 10mV

-1.0

VIN ~ 5 mV, VOUT = 0
TA = 125°C
TA = -55°C

0.5
1.0

VIN ~ 10 mV, VOUT = 0
O°C:s: TA:S: +70"C

3.2
-0.5

4.0
2.5

3.2

4.0

V
V

-1.0

-0.5

0

V
V

0

1.7
2.3

mA
mA
0.5

3-108

mA

ra:
.....,

....

Electrical Characteristics (Note 3) (Continued)

(:)

Parameter

LM710

Conditions

Typ

Max

VIN ~ SmV
VIN ~ 10mV

S.2

9.0

VIN ~ SmV
VIN:?; 10mV

4.6

Min
Positive Supply Current
Negative Supply Current
Power Consumption

LM710C

lOUT = 0
VIN:?; SmV
VIN ~ 10mV

90

Min

Units

Typ

Max

S.2

9.0

mA
mA

4.6

7.0

mA
mA

ISO

mW
mW

7.0

150

Note 1: Rating applies for ambient temparatures of 25"C; derate linearly at 5.B mWrC for ambient temperatures above 25"C.
Note 2: Derate linearly at 9.5 mWrC for ambient temperatures above 25'C.
Note 3: These specifications appy for V+ = 12V, V- = -BV, -55'C ,;; TA ,;; + 125'C for LM710 and O'C ,;; TA ,;; +70'C for LM710C unless otherwise
specified: The input offsaI voltaga and input offset ourrent (sea dafinHions) are specified for a logic threshold voltage of 1.BV at -55"C, 1.4V at 25"C, and 1V at
125'C for LM710 and 1.5V at O'C, 1.4V at 25"C, and 1.2V at 70'C for LM710C.
Nota 4: The response time specified (see definitions) is for a 100 mV Input step with 5 mV overdrive (LM710) or a 10 mVoverdrive (LM710C).

Typical Applications
Une Receive with Increased

Schmitt Trigger

Output Sink Current

INPUT-~
~ ~i>-""I-OUlPUT

+12V

OUlPUT

Rl
10k
INPUT

Rl

-LImo

Ql

2N2906

~+

R2
2k

TUH/l0410-4

--

-==
Pulse Width Modulator

Level Detector with Lamp Driver
yt

MA-~

DC~

TUH/l0410-5

+12V

~.JUUL

L1

Rl

.

~~

TUHI10410-6

:+LI_01:;;yO
INPUT-+--Iy

R2

.~

Ql
~2N2222

R4

TUHI10410-7

3-109

c>

....

:1

r---------------------------------------------------------------------------------,
Typical Performance Characteristics
Transfer Function
40

I
V"=-6.OV1
I I

Voltage Gain

J. ....
1l
'V

TA=-5e"C

-5.D -lD

TJ"k
TA=25"C

yt=I2V

~

1700

I

~~

""

r-r--

-1.0

1.0

\.

r"""
o

-75 -liD -2S 0

-

Response Time for
Various Input Overdrives

40

~

7IInN
3D 10nN'1-

I ':

II

...'"
II,

II

5.DmY
2.OnN

~

I
yt=l2V ,
'f=-6JN
TA=,:!!

I
0711

«J

6D

6D 1110,1711

II :

5.D

/'Os;

~

~
~

i

~

v+=12V
V" =-6.11'
.,-

:lOD

yt=l2V
V"=-I.I1t

......

I- 17

I'\.

lEIIPEllATURE (CC)

Input Bias Current

"-I'

I-- t--

1500

-75 -liD -2S 0

«I

2.0

~

1:lOD

5j)

3D

.,..

TA":zsac
:I

1«X1

-1.0

:10lIO

'1":=-6.11

I

v_....J

!.....v+
7
6

OUT 1
OUT2

L-GND
TL/H/l0067-3

Top View

Ordering Information
Temperature Range
Commercial
O"Cto +70"C

Package Type

NSC
Package
Drawing

LM760CN

8-lead Plastic DIP

N08E

3-111

Absolute Maximum Ratings
POsitive Supply Voltage,

If Military/Aerospace speclfled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and speclflcaUona.
Storage Temperature Range
Metal Can and Caramic DIP
Molded DIP

- 65'C to + 175'C
-65'Cto + 150'C

Operating Temperature Range
Military (LM760)
Commercial (LM760C)

-55'C to + 125'C
O'Cto +70'C

Lead Temperature·
Metal Can and Ceramic DIP
(Soldering, 60 sec.)
Molded DIP (Soldering, 10 sec.)

-+8.0V
'.
. -8.0V

Negative Supply Voltage
Peak Output Current
Differential Input Voltage
V+~

In"ut Voltage
ESD Susceptibility

300'C
265'C

10mA
±5.0V
VI ~ VTBD

,

LM760
Electrical Characteristics
Vee = ±4.5V to ± 6.5V, TA = - 55'C to + 125'C, TA = 25'C for typical figures, unless otherwise specified
Symbol

Parameter

Typ

Max

Units

1.0

6.0

mV

Input Offset Current

0.5

7.5

p.A

liB

Input Bias Current

8.0

60

p.A

Ro

Output Resistance (Either Output)

tpD

Response Time

VIO

Input Offset Voltage

110

Conditions

Min

Rs:S; 2000

100

Vo = VOH
TA = 25'C (Note 3)

18

TA = 25'C (Note 4)

25

(Note 5)
~tPD

0
30
ns

16

Response Time Difference
between Outputs (Note 1)
(tpDof +Vll) - (tpDof -VI:!!

TA = 25'C

5.0

(tpDof +VI:!!- (tpDof -VII)

TA = 25'C

5.0

(tPD of + VII) - (tpo of + VI:!!

TA = 25'C

7.5

(tpDof -VII) - (tpDof -VI:!!

ns

7.5

RI

Input Resistance

TA = 25'C
f = 1.0 MHz

12

kO

CI

Input Capacitance

f = 1.0 MHz

8.0

pF

~Vlo/~T

Average Temperature Coefficient
of Input Offset Voltage

Rs = 500,
TA= -55'Cto+125'C

3.0

jJ.VI'C

~llolaT

Average Temperature Coefficient
of Input Offset Current

TA = + 25'Cto + 125'C

2.0

TA = + 25'Cto -55'C

7.0

VIR

Input Voltage Range

Vee = ±6.5V

VIDR

Differential Input Voltage Range

VOH

Output Voltage HIGH
(Either Output)

ornA :s; 10H:S; 5.0mA
Vee = +5.0V
10H = 80 p.A, Vee = ±4.5V

±4.0

nAI'C

±4.5

V

±5.0

V

2.4

3.2

2.4

3.0

V

VOL

Output Voltage LOW
(Either Output)

10L = 3.2 rnA

0.25

0.4

V

1+
1-

Positive Supply Current

Vee = ±6.5V

18

32

Negative Supply Current

Vee = ±6.5V

9.0

16

rnA
rnA

3-112

LM760C
Electrical Characteristics
Vee = ±4.SV to ±6.SV, TA = O"C to +70"C, TA = 2S"C for typical figures, unless otherwise specified
Parameter

Symbol

VIO
110
liB
Ro
tpo

Atpo

RI
CI
AVlo/AT
Allo/AT
VIR
VIOR
VOH

Input Offset Voltage
Input Offset Current

Conditions

Input Bias Current
Output Resistance (Either Output)
Response lime

Typ

Max

Units

1.0

6.0
7.S

mV

60

/'oA

O.S
8.0
Va = VOH
TA = 2S"C (Note 3)

100
18

TA = 2S"C (Note 4)
(Note S)

16

0
2S

TA = 25"C

S.O

TA = 2S"C

S.O

(tpool +VI1) - (tpool +VI2)

TA = 25"C

(tpool -Vll) - (tpool -VI2)
Input Resistance

TA = 2S"C
1= 1.0 MHz

10
10

Input Capacitance

1= 1.0 MHz

Average Temperature Coefficient
01 Input Offset Voltage
Average Temperature Coefficient
01 Input Offset Current
Input Voltage Range
Differential Input Voltage Range
Output Voltage HIGH
(Either Output)

".A

30

Response TIme Difference
between Outputs (Note 1)
(tpool +Vll) - (tpoof -VI21
(tpool +VI2) - (tpool -Vll)

ns

ns

12
8.0

kO

Rs = SOO,
TA = O"Cta +70"C

3.0

".VI"C

TA = +2S"Cto +70"C

s.o

nAI"C

TA = +2S"CtoO"C
Vee = ±6.SV

10

omA :s: 10H :s: S.O mA
Vee = +S.OV
IOH = 80 /'oA, Vee = ±4.SV

VOL

Output Voltage LOW
(Either Output)

10L = 3.2mA

1+
1-

Positive Supply Current

Vee = ±6.SV

Negative Supply Current

Vee = ±6.SV

Note 1: TJ Max

Min

Rs:S: 2000

±4.0

pF

·±4.S
±S.O

2.4

3.2

2.S

3.0

V
V
V

0.2S

0.4

V

18
9.0

34

mA
mA

16

= 150'C.

Ratings apply to ambient temperature at 25'C.
Response lime measured from the 50% point of a 30 mVp_p 10 MHz sinusoidal input to the 50% point of the output.
1\Iote 4: Response time measured from the 50% point of a 2.0 Vp_p 10 MHz sinusoidal input to the 50% point of the output.
Note 5: Response time measured from the start of a 100 mY input Slap with 5.0 mY overdrive to the time when the output crosses the logic threshold.
Note 2:
Note 3:

3-113

Typical Performance Characteristics
Response Time tor
Various Output Overd~lves'

I

4
3
2

~my-.

Vcc=*5V
TA=25'C

IJ

0

...

~

«I

VCC=UV
TA=25'C

f-r;-r- ~r..~:~~E WAVE INPUtS
f-+- T=25~

2O~:0111 ~2mV
10mV_ r-~mY

2

....

I

"- mV

...Ij

I

4
3

mVr-

Om r.... ~

I

Response Time vs
Input Voltage

Response Time tor
Various Input Overdrives

0

Y ....
,

;

1'00'

0

10
05101520253035
1IIIE-no

~

t-...

r

I-

~

10 20

Vcc = *5.ov

,

JIod.'-

/v~
:;r

.,.-r--

.J

:I.·\cc~*~5V

50 100 200 500 1000 2000

o

~

r-

Voltage Gain vs
Supply Voltage

-

TAi'~-

TA=55'C"

o

-I

-2

INPUT VOLTAGE- mY

INPUT VOLTAGE - mV,.,

...

~y25'C

I

-I

-2

12

6

Vcc " U.5V

IJ

o

10

Voltage Transfer
Characteristic

ITA·I~_

vcc=uv
10 MHz SIIE WAVE INPUTS
TA=25'C

I-

4

INPUT VOLTAGE - mYPOP

Voltage Transter
Characteristic
6

l-

2

05101520253035
liME-no

Response Time vs
Input Voltage
30

INPUT VOLTAGE - mV

Input Bias Current
vs Temperature

Voltage Gain
vs Temperature
12

9000

TA=~

«100

.,.

Vcc=UV

-r--

./

i'.
I'"

'"

15.0
*5.5
*11.0
SUPPLY VOLTAGE-V

,

-60

*6.5

'1-o.a

-20

20

140

I

60

TEMPERATURE - 'C

100

1«1

....

~

~D.2
20

-20

20
60
100
TEMPERATURE- 'C

140

4

-

r--20

-60

vcc=U.5V TO U.5V
VI=50mY~~ f=IOMHz

25

0,4

o

Output Voltage Levels
vs Temperature

30

== Y

-60

100

Response Time
vs Temperature

io.a
o

60

TEMPERAruRE - 'C

vcc =*6.5V

~

~

I'

Input Offset Current
vs Temperature

1.0

"

"

1/
U.5

Vcc = U.5V

I,

"-

;'"

~

r'IIG

50
0

5
-60 -20

vOII %

-

Vcc=UV
=5.0mA

-~
~

I
I
I

R.-.

20

60

TEMPERATURE - 'C

100

1«1

~~~r. GCr-rI"-

....

I

o

-60

VOlOSil " .2mA
-20

20

60

r-r-

100

140

TEMPERATURE - 'C
TUH/l0067-5

3-114

Typical Performance Characteristics (Continued)
Rise Time vs

Fall Time vs

Capacitive Load

Capacitive Load

30

Vcc =*5V
TA=25'C

25

Vcc =*5V

10

o

1

-

5

'0

TA=25OC

25

l-

I

'5

18

30

I-

"

20

Input Bias Current vs
Dlfterentlallnput Voltage

1-

20

10

1
B

8

!

6

i

5

,

o

50 100 200

ITA:!~'::;;~

12

~

'0

50 100 200

o

1m

I"......J.
I
20

~

1"-1-50

-~

50

100

OIFFER£NlIAL INPUT VOlTAGE - mY

CAPACIIlVE LOAD - pF

CAPAaIIYE LOAD - pF

I

.....

4

o
5

1;;"1
i'

'0

1

15

Ivcc=uV

1.

Common Mode Range
vs Supply Voltage
6

TA=25"C
~ ~ 0- V/- 0 ~~ ~
~ 0 ~ V/. 0- I'l: 0 ~
~0 ~ W. 0- I'l: ~ ~
V/- 0 ~ I/j ~
10 ~

'iJ 'iJ'iJ 'iJ~
'iJ 'iJ'iJ 'iJ
'iJ 'iJ'iJ
V/. 'iJ

V/'iJ 'iJ

-a

""'"
*~

::.::;

*5.0
SUP~LY

US
*6.0
VOlTAGE-V

US
TLlH/l0067-8

Equivalent Circuit
v+
Rl
1k1l

R2
lk4

R15
5kll

R16
82DA

R17
1004

RIB
82DA

R20
,0011

OUT 1

GIlD

IN2
OUT 2

R3
35011

R5
35DA

R7

R8

35011

10DA

R12
30011

R13
4kll

R14
35DA

vTLlH/l0067-4

3-115

•

o~----------------------------------------------------------------------.

~

....

Typical Applications (Note 1)
Line Receiver with High Common M~ Range

:~? :G
.~o.:7~'

It-

--::

-1 J-

~

Rs

SOnl

TLlH/l0067-10

Common mode range = ±4 x
TL/H/l0097-7

Differential Input Sensitivity

Level Detector with Hyaterelll

~V

= 5 x ~ mV

PI must be adjusted for optimum common mode rejection.
For As = 20011:
Common mode range = ± 16V
Sensitivity = 20 mV

l00kA
I

I
I

I
I
I
I
~

I

I
I

o
TLlH/l0097-8

Zero Crossing Detector (Note 2)
v+

5.0k

IN--..----...:=...j

""'I:""'"---OUT
~r;;....-_..... OUT

50

Tl/H/l0067-9

Totardelay - 30 n8
InpUt Frequency = 300 Hz to 3.0 MHz
Minimum input voltage - 20 mVp_p

Note 1: Lead numbers shown are for Metal Package only.
Note 2: All ....Istor values in ohms.

3-116

Typical Applications (Note 1) (Continued)
High Speed 3·Blt AID Converter
IN

IIS8

INI

Rl
504

IN2

0.25V
R2

1004

0.75V
R3

1004

1/4x9002
1.25V
Rot
1DOD.

1.75V
R5

1004

RIO
INI

2.25V

1M2

R6
1DOD.

1/4 x 9002
2.75V
R7

1004
Rll

INI

3.25V

1M2

R8
3504

SOD.

+5.0V
Tl/H/10067-11

Input voltage range ~ 3.5V
Typical conversion speed = 30 ns

3·117

~

~

,--------------------------------------------------------------------------------,

~ ~National Semicondu~tor

rrf'··"

LM 1S'01 Battery Operated ·Power Comparator
General Description

Feat,..res

The LM1801 is an extremely low power comparator with a
high current, open-collector output stage. The typical supply
current is only 7 /LA, yet in its switched state the comperator
can source or sink O.5A. The LM1801 is designed to operate in a standby mode for 1 year, powered by a 9V alkaline
battery. Provision is made. for operation from supplies of up
to 14V. An internal 14.5V zener clamp may be used for supply regulation in line operated applications. ..,
The low battery detector and stand-by current drain are externally programmed by resistors. A parallel output is provided to "OR" as many as 9 comparators, and a feedback pin
allows adding hysteresis or latching functions. Two on-Chip
voltage sources can serve as bias points for the comparator
inputs or as references for other circuit functions.

•
•
•
•
•
•
•
•
•

8V to 14V operation
Direct drive to horn
Internal zener for supply regulation
Parallel comparator capability·
Extremely low stan~,by current drain
2 references on chip
Low battery detector
O.5A output transistor
Output clamp diodes 'on chip

Applications
•
•
•
•
•

Intrusion aiarins .,
Water I~k detectors
Gas leak dlrtectors
Qvervoltage crowbars
B~ttery operated monitors

;,,'

TL/H/9139-1

'Alarm sounds when probe conductors are bridged with water droplets. A suHable probe can be etched In copper Glad board.

FIGURE 1. Water Leak Detector
Order Number LM1801N
See NS Package Number N14A

3-118

Absolute Maximum Ratings
Power Dissipation (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
14V
Input Voltage
-0.3Vto 14V
±14V
Input Differential Voltage

1176 mW

+ 70"C
+ 125'C

O"C to

Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)
ESD rating to be determined.

-65'C to

260"C

Electrical Characteristics (Note 2)
Typ

Max

Units

5
2

15
10

8

ISINK = 100 p.A

0.5
1.5

mV
nA
nA

5
Is = 200.mA
Is = 500mA

0.7
1.9

100
1.3

Parameter

Conditions

Comparator
Input Offset Voltage
Input Bias Current
Input Offset Current
Pin 6 Output Low
Output Stage (Pin 8)
Leakage Current
Saturation Voltage
Saturation Voltage
Common Alarm Line (Pin 10)
Drive Capabilities
Output Voltage High
Output Current
Driver Requirements
Input Voltage
Input Current
Regulator
Pin 2 Reference Voltage
Temperature Coefficient
Pin 3 Reference Voltage
Temperature Coefficient
Battery Check Oscillator
Threshold Voltage (Pin 12)
Period
Beep Pulse Width
Supply Current (Note 3)
Zener Clamp Voltage, V9

Min

V
nA
V

V

V4> V5 .

V

6.8
6.5

V10 = O.OV
V5>V4
V8 = 1.5V,ls = 200 mA

mA

3.6

V

0.4

mA

5.8

V

5

mV/'C

7

mVl'C

5.2
5.5
V+
V+

= 7.5V, C1 = 10,."F

=: 7.5V, C1 = 10,."F

6:0

40

6.5
50

60

6
19= 1 rnA

V

14.5

V

s
ms

8

p.A
V

Note 1: For operating at elevated temperatures, the device must be derated based on a 125"C maximum junction temperature and a thermal rasistance of 85"C/W
junction to ambient.
Note 2: RSET = 10 Mil, V+
Note 3: output OFF.

= 9V, TA = 2S"C, (Figure

t).

3·119

LM1801

TIWING
LOW BATTERY
DElECTOR

SENSE PARALLEL

v·

CAPACITOR

INPUT

OUTPUT OUTPUT

11

BIAS STRING

IiiiI

COLLECTOR

DARLINGTON
OUTPUT

Ii1

D7

DB
1D9
I
I

!"

Dl0

SUPPLY
ZENER

~

I

-

'..ok

3

LOW BATTERY

GROUND

DETECTOR

COMPARATOR
BIAS

5.8V 5.2V
REfERENCES

STEERING
LOGIC

+ 15

INPUTS

COMPARATOR

EMITTER

OUTPUT
TLlH/9139-2

FIGURE 2. LM1801 Internal Schematic

Applications Hints
The output transistor is normally operated with the emitter
grounded. Under these conditions the collector is guaranteed to saturat.e no higher than 1.3V at 200 mAo 1.9V saturation voltage is typical at 500 rnA. The emitter may also be
used as an output, and it can swing from ground potential up
to 5V on a 9V supply. Emitter swing in the positive direction
is limited in the parallel output mode.
A low battery detector with a 6V threshold is also included
on chip. This circuit consists of 016, 017, 011, and 012.
When pin 12, the battery sense input, is higher than 6V, 012
clamps the emitter of 016 to 6.6V, and the output ,rom the
current source flows through the zener to ground. If pin 14
drops below 6V, 016 is biased ON, and current is drawn
away from the zener and into 016. The SeR formed by 016
and 017 is triggered when 016 is biased ON. The capacitor
at pin 14.is discharged, part of its charge flows to the steering logic to pulse the output transistor, and the remainder
holds the SeR in its ON state.
When the timing capaCitor has discharged, conduction in
016 and 017 is commutated. Note that the output from the
current source is less than the sustaining current required
by the SeR. The current source slowly charges the capacitor until the voltage across it rises 0.6V above pin 12, where
the cycle repeats itself. If pin 12 rises above 6V, the zener
clamps the voltage at pin 14 and the low battery detector
remains OFF.
Pin 12 is biased from an external resistive divider. The divider should be designed to detect at no lower than V + = 7V.
The detector will continue to work at lower voltages providing pin 12 is at least 1V below the supply. For a 9V alkaline
battery a threshold of 8.2V is common. A resistive divider of
2.7 Mn and 7.5 Mn provides the appropriate threshold.

CIRCUIT OPERATION
The LM1801 includes a bias string, comparator, steering
logic, output transistor, supply clamp, low voltage detector,
and reference. An internal schematic is shown in Figure 2.
The chip is biased by a group of current sources that are
controlled externally by a fixed resistor, Rsat. In normal, or
standby operation the supply current drain is nominally 6
times the set current at pin 1. The voltage at pin 1 is two
forward diOde potentials (01 + 02 = 1.2V typical) IEiss than
the positive supply voltage. Practical values of Rset range
from 100 kO to 10 MO. Higher currents are useful where
speed is important, while lower currents promote long battery life.
The total standby current drain of the LM1801 will include in
addition to the above, the current drawn by the exte~al
circuits connected at pins 2, 3, and 12. These are the resistive dividers used to set the low battery threshold and comparator threshold.
The voltage comparator consists of devices 01 through
010. The input features a common mode range from less
than 300 mV to V+ - 1.2V. If the non-inverting input is
~in this range, the output state remains valid for inverting
Inputs of OV to V +. If the inverting input is within the common mode range, valid comparisons hold for non-inverting
inputs of 300 mV to V+. The comparator may not switch
low if the positive input is grounded.
With a set resistance of 10 MO, comparator input bias curre~ of 2 nA are typical. This allows the use of high-value
resistors (10 MO) at the comparator inputs which help minimize total supply current The comparator's output is available through a steering diode (03) for latching or hysteresis
functions.
The comparator output is also coupled internally to the
steering logic (011-013). The comparator, low battery detector, and parallel output (pin 10) functions are OR'd in the
logic circuit. In addition, the comparator output is steered to
the parallel output. If the parallel outputs (pin 10) of two or
more chips ere wired together along with a common ground,
the comparator on anyone chip can cause all of the other
output stages to switch, as well as its own output. Outputs
are switched when the inverting comparator input is positive
with respect to the non-inverting input. Low battery func-·
tions are coupled to the steering logic via 012, and therefore do not affect the perallel output (013).
If the sense outputs (pin 11) of two or more chips are wired
together, the comparator and low battery detector will cause
all outputs to switch.

In many applications the on-chip references can provide
bias points. The references are driven from 013, and buffered by 018 and 019. If only one bias point is needed the
first reference (pin 2) should be used, and the unused output (pin 3) may be left open. The tiny leakage currents in
018 can cause 019 (pin 3) to drift upward if a 10 MOload
resistor is not included at pin 2. The combined output current from pins 2 and 3 should not exceed 1 mAo If neither
reference output is used, pins 2 and 3 should be left open.
The last section of the LM1801 is the supply zener. It is built
from a series combination of two diodes and two zeners.
The breakdown voltage at 1 mA is 14.5V, and the series
resistance is about 2000.. In line operated applications the
zener may be used for supply regulation or transient protection. The zener is designed to carry up to 10 rnA.

The output transistor is a 0.5A Darlington. Included in this
structure are two clamp diodes. D4 clamps positive collector
voltage excursions to the supply, and 05 clamps negative
excursions to ground.

•
3-121

i

iii....

,

Applications Hints (Continued)
DESIGN,HINTS ;

The output stage can drive lamps, LEOs, buzzers, beepers,
r~la~, motQrs, and solenoids. However, the low battery detector is not, cOlI)pl!'~ble with eyery, load. Since the lo,w ~t­
tery.detector, generates only a sh!>rt pulse (60 ms. typical), it
is in~ended for use with buzzers and beepel'll. DePending on
the resPRn~e time Ilnd re~nant frequencY,. some buzzers
may Orllt produCe a~ingle click. ,Self-o~illating beepers
usually start Instantly and produce a recognizable "tweet"
When a lOw l:1attely Condition is, detected. Incandescent
lamps, large relays and solenoids will do absolutely nothing
when pulsed by the low battery deteCtor.

If the comparator inputs are subjected to electrostatic di&charges (ESO), a'series resistanCe]$' recommended to provide protection. Given the low input bias currents, 100 kO
resistors can be added without affecting, circuit performance; yet' they' greatly enhance static' protection. The
LM1801 is not designed to withstand reVerse battery.
WIth' a 10 Mil" R~ the' LM'1801 responds tei an 'input in
approximately 2.5 p.s, and rurns OFF in' 200 'p.s. Higher set
currents decrease the response time. With Rsei = 1 MO,
the output switches low in 0.5 ".s, and high in 50 p.s,ariC!
with RBet ,,;, 100 kO, the response times are reduced to
0.2 p.s and 12 ".s.
'.

self:aSCill~ting beepers ar~ readily available, such as .the
Sonalert SNP428 and the Panasonic EAL-069A. These
units are g,uaran~~d, to Sllif-start when power is applied.

When ,the ,circuit is il) the sWiQby state (V5 > V4), ,the 'current consumption in 'a tYPical application such lis Figure 1is
less than apProximately 7 p.A. However, when the. comparator sWitches LOW (V4 > V5), the supply current increases
to 3 mA owing to the Darlington baSe current. Therefore, to
realize milximum battery life, any application shOUld be devised so that V5 ~,V4'!n'the stlindbyor resting stllte.

To defeat the low battery detector, short pi(ls 12 and 14
together, and do not connect them to an~hing else. '
Circuit board assembly procedures should include a thorough cleaning to remove flux and other residues. The input
pins are often biased by very high impedance sources and
even,a 1P t.l!O leakage path can ,upset circuit operation.

"',

2

tt

6

N.C.

SEI\SE
INPUr

S.8V t-....;..-..;....~...,..J

R1

101014

R2
~.'

"
TLlHi9139-3

'1"'1.

Rl + R2

= 10 MO

VlRlP = (Rl :2R2) 5.BV

Minimum trip voltage

'

= 5,BV

'Use series resistor for supplies> 14V. Select for IZENER = 5 mAo
··Reverse connections and add 1 MO resistor for overvoltage Indication.
tOplional filter capacitor. 1 nF to 100 nF,
ttPush to reset. Eliminate pin 6 connection for non-latching operation.

FIGURE 3. Under (Over) Voltage Indicator

3-122

Ii:
.....
Q)
o
.....

Applications Hints (Continued)
y+ •
+

10

14

9

8

SENSE
INPUT

2

RI

R2

6

CROWBAR

t

7.5MA

I
TUH/9139-4

Rl

+

R2

~

10 Mil

Rl + R2)
VTRIP ~ ( --;:;;- 5.8V
'Use series resistor for supplies

> 14V.

tOpiional flRer capacitor. 1 nF to 100 nF.

FIGURE 4. avervoltage Crowbar

3·123

Applications Hints (Continued)

!PF j
+

-

9V
I
I
I
I
I

I

51k4
r-+_~20k4

!!sENSOR

1100nF
: WYlAR

._----I

ponm

--------

SENSOR

TUH/9139-5

To set trip pOint,trim VREF to 4.5V. Trim RSENSOR at room tempsratura (23"C) for:
VSENSOR

273 + 23)

= 4.5 ( Tx + 273

where TX is the desired trip point temperature in ·C. As shown, the alarm is activated for over tempsrature conditions. Reverse the comparator connections for
under tempsreture alarm. The 20 kO potentiometer allows an adjustment range of - 55'C to + 6O'C. Add a 10k fixed resistance in series with the potentiometer for
a + 5O"C to + 125"C adjustment range. RSENSOR can be replaced by a fixed resiator once the desired value Is found. VAEF Is used as a final adjustment.

FIGURE 5. Over (Under) Temperature Alarm

3·124

Applications Hints (Continued)

1114

, ..a

RES£T
SWITCH

(N.C.)
4.7114
7.5114
ALARM
SWITCH

(N.c.)

7.5 ..a

!:U ALARM
QlSWlTCH
~(N.O.)
TL/H/9139-6

FIGURE 6. Simple Alann CIrcuIt

Rsu
10114

10114

•
NORIIAL

~ ALARIoI

OJ SWITCH
..t
(N.C.)
TLlH/9139-7

FIGURE 7. FUII-Featurecllntruslon Alarm

3-125

..-

~

r-------------------------------------------------------------------------------~

t!lNational Semiconductor

LM6511
180 ns 3V Comparator
. Features (Typical unless otherwise noted)

General Description

• Operates at +2.7V, +3V, +3.3V, +5V
• Low Power consumption <9.45 mW @ V+ = 2.7V

The LM6511 voltage comparator is ideal for analog-digital
interface circuitry when only a + 3V or + 3.3V supply is
available. The open-collector output permits signal compatibility with a wide variety of digital families: + 5V CMOS,
+ 3V CMOS, TIL and so on. Supply voltage may range
from 2.7V to 36V between supply voltage leads. The
LM6511 operates with little power consumption (Pdiss' <
9.45 mW at V+ = +2.7V and V- = OV).

(max)

• Fast Response Time of laO ns

Applications
• Portable Equipment
• Cellular Phones
• Digital Level Shifting

This voltage comparator offers many features that are available in traditional sub-microsecond comparators: output
sync strobe, inputs and output may be isolated from system
ground, and wire-ORing. Also, the LM6511 uses the indUStry-standard, Single comparator pinout configuration.

Connection Diagram
S-Pin PIP/SO

GROUND

-!.

NON-INVERTING INPUT

2
-1"1-

~.

INVERTING INPUT

3
~
~

-

-7
-

6

OUTPUT

BALANCE/STROBE

1.... BALANCE
TL/H111888-1

Ordering Information
r-----------.------------------.--------~

Package
I

Industrial Temperature Range
-40"Cto +S5"C

NSCPackage
Drawing

a-Pin Molded Oil'

LM65111N

NOSE

a-Pin Small Outline

LM65111M

MOBA

3-126

Absolute Maximum Ratings (Note 1)
Power Dissipation

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
-0.3 to +36V
Supply Voltage
Output to Negative Supply Voltage
50V
Ground to Negative Supply Voltage
Differential Input Voltage
Input Voltage
Storage Temperature Range

=

1.5kO)

300V

Supply Voltage

2.5Vt030V
-400C

Temperature Range

s: TJ s:

Thermal Resistance (6JAl
DIP Package
SO Package

2600C
215·C
2200C

DC Electrical Characteristics

=

Operating Ratings (Note 1)

- 65°C to + 1500C

limits apply at the temperature extremes. V+
specified
Symbol

Junction Temperature
ESDRating(C = +100pF,R

30V
±30V
(Note 2)

Soldering Information:
DIP Package (Soldering in 10 sec)
SO Package (Vapor Phase in 60 sec)
SO Package (Infrared in 15 sec)

500mW
10s
150·C

Output Short Circuit Duration

1100C/W
1700C/W

Unlesss otherwise specified, all limits guaranteed for TJ = 25°C. Boldface
2.7V, V- = OV, 500 s: RL s: 50kO, and IL = 1.0 mA unless otherwise

Parameter

Typical

Conditions

LM65111
Umlt

Vos
IB
los
Is

Offset Voltage

Rs s: 50 kO
(Note 3)

1.5

Input Bias Current
Input Offset Current

38
Rs s: 50 kO
(Note 3)

1.5

Positive Supply Current

2.7

Negative Supply Current
VSAT

Saturation Voltage

Av

Large Signal Voltage Gain

CMRR

Common Mode Rejection Ratio

ISTROBE

Strobe ON Current

VIN

Input Voltage Range

Output Leakage Current

+85·C

1.5
VIN s: 10 mV
ISINK = 8mA
AVOUT

=

0.23

5

8

20

VIN ~ 10mV, VOUT
ISTROBE = 3 mA

3-127

2.0

=

35V,

0.2

nA
max

50
3.5

5
2.0

mA
max

2.'
0.4

0.4

V
max
VlmV

72
(Note 5)

mV
max

130

200

40

2V'

Units
(Limits)

dB
5.0

mAmax

0.50

V min

V+ -1.25

V max
nA
max

AC Electrical Characteristics Unlesss otherwise specified, alllim,its guaranteed for TJ = 25°C. Bol~ce
limits apply at the temperature extremes. V+ - ,2.7V, V- = OV, 500 ~ RL
50 kO, and I,L= 1.0 mA unless'otherwise
specified.
, . , "

:s:

SymbOl

Parameter
Response TIme

Conditions
(Note 4)

Typical

LM65111

Units

Limit

(Limits)

180

ns

Note 1: Absolute Maximum Ratings Indicate limits beyond which damage to the device may occur. Operating ratings Indicate condillons,the devica Is intended to
be functional. but do not guarantee specHic performance limits. For guaranteed specifications and test condmons, sea the Electrical Characteristics. The guaranleed spaciflcations apply only for the test condmons listed.
Note 2: The positive input voltage limit is 30V above ,the n~, supply voltage. The negative Input voltage limit is equal to the negative 'supply voltage or 30)/
below 1I1e positive supply voltage. whichever is lass.
"ote 3: The offset voltage and offsat current limits are the maximum values required to drive the output within a von of either supply wHh a 1 rnA load. Therefore.
lhasa parameters define an IIfI'Or band and lake into account the worst-case effects QI voltage gain and Input impedance.
Note 4: This spaciflcetion is for a 100 mV Input step with a 25 mV overdrive.
Note 5: This specification gives the range of currant which must be drawn from the strobe pin to ensure the output is property disabled. Do not short the strobe pin
to ground; R should be currant driven at 3 rnA to 5 mAo

Schematic Diagram
&ALANCEISTROBE

BALANCE

•

&

R3
3BI

14,
3111

HI

R2

1.311

1.311

HI

R5
71

100

RI.
4/!
OUTPUT

......-1_..1

RIZ
II1II

RI3
4

4

V·

.NO

TlIH/II888-5

3·128

LM6511 Typical Performance Characteristics Vs =
Input Bias Current

3V unless otherwise noted
Input Current vs
Input Voltage

Input Offset Current

60
-5

1:

\

50

!z

I

.

'-....

40

" "'"

~

i

30

20
-50

50

\

:!
\

~

\

50

~ REFERRED TO SUPPLY VOLTAGES

~ -1.5

!i!
!:3
g

I.

~

Ii!

DA
D.2
V·

m

~

U M •

1.5

Ii

100

l!1
a

80

I

40

60

V

20
0

-'0
-45

lOUT = 8 mA

0.5

0.25

............

:;
,:t'

0.2

.

0.1

so

-so

I........

1.4

1. 0

~

0 .8

ti

0 .6
0 .4

Output Leakage Current
10

3.5

:g

is

i

-;; 3.0

~

~

2.5
2.0
1.5

0 .2

r--. ......

--

.......

t-

1.0
-40 -20

0
0 123456789101112131415

!

.......

.5-

i

100

50
TEMPERATURE

Supply Current vs
Temperature

1.2

....

0.15

rDIFFERENTIAL INPUT VOLTAGE ("V)

1.6

F

-35

0.3

0.0
-50-40-30-20-10 0 10 20 30 40

n "

160

.5-

-30

Output Saturation Voltage

/

1.0

I-

-25

0.35

i::-

Output Current Limiting
140

-

II

2.0

TEMPERATURE lOC)

-;; 120

l-

-20

INPUT VOLTAGE (mV)

.....
/~

2.5

E
-1.1

I D

-15

INVERTING

-50
-100~B0060~400200 0 200400600806000

100

Transfer Function
3.0

I
I

I

NON1NVERTIf'{G

TEMPERATURE

Common Mode Limits
·U

r---

-50

V·

iE

~

"~

TEMPERATURE

i

i

o

100

I

-10

0

20

--r--.
40

60

i

r-.

V

~

-

/V

~

~
6

I-

0.1
20

80 100 120

TEMPERATURE (Oc)

OUTPUT VOLT AGE (V)

I

'"

,/

30

,/

40

50

60

70

80

90

TEMPERATURE

TUH/11BBB-2

,
""'

Propagation Delay vs Overdrive
250

\.

225
]: 200
~

"'"

~

175
150
125

i~}';-T'ii +~V

~

100
1

10

100

1000

OVERDRIVE (mV)

TUHI1 1 88B-3

3-129

.....
.....

II)

CD

Typical Application

:I

Universal Logic Level Shifter

10k

LOGIC
A IN

~~>7

02 Y8
2

....---=1+

_____... LOGIC BOUT

1

TL/H/II88B-4

Nates: Because of the very wide operating and ouIput voltage range, the LM6511 may be used to shift logic levels from 3V to TTL or CMOS to the other wsy
around.

By biasing the input to % of the input logic supply C'IpJ, this assures that this Input remains within the Input voltage range. The
oulputlogic supply C'lel.

3-130

pul~up

resistor should go to the

;

r-----------------------------------------------------------------------~ ~

IfINational Semiconductor

~

LMC6762 DuallLMC6764 Quad, MicroPower, Rail-To-Rail
Input and Output CMOS Comparator
General Description

Features (Typical unless otherwise noted)

The LMC6762/4 is an ultra low power dual/quad comparator with a maximum supply current of 10 pA/comparator. It
is designed to operate over a wide range of supply voltages~
from 2.7V to 15V. The LMC6762/4 has guaranteed speCs at
2.7V to meet the demands of 3V'digital systems.

• Low power consumption
(Guaranteed)
Is .. 10 p.A/comp
2.7V to 15V
• Wide range of supply voltages
• Rail-to-rail input common mode voltage range
• Rail-to-rail output swing
2.7V, and
(Within 100 mV of the supplies, @ V+
ILOAD = 2.5 rnA)
• Short circuit protection
40 mA
• Propagation delay
(@ v+ = 5V,'100 mVoverdrive)
4 pos

The LMC6762/4 has an input common-made voltage range
which exceeds both supplies. This is a significant advantage
in low-voltage applications. The LMC6762/4 also features a
push-pull output that allows direct connections to logic devices without a pull-up resistor.
A quiescent power consumption of 50 poW/amplifier
(@ V+ = 5V) makes the LMC6762/4Ideal for applications
in portable phones and hand-held electronics. The ultra-!ow
supply current is also independent of power supply voltage.
Guaranteed operation at 2.7V and a rail-to-~I performance
makes this device ideal for battery-powered applications.
Refer to the LMC6772/4 datasheet for an open-drain' version of this device.

I:

~

'

Applications
•
•
•
•

Laptop computers
Mollil.,. phones
Metering systems
Hand-held electronics

• RCtimers
• Alarm and monitoring circuits
• WindOw comparators, multivibrators

Connection Diagrams
,a-Pin DIP/SO

14·Pln DIP/SO
OUT B
OUT A

TUH/I2320-1

TUH/I2320-2

Top View

Top View

Ordering Information,
Package

Temperature Range
- 40"C to + a5"C

NSCDrawlng

Transport ,
Media

S-Pin Molded DIP

LMC6762AIN, LMC6762BIN

NOSE

Rails

S-Pin Small Outline

LMC6762AIM, LMC6762BIM
LMC6762AIMX, LMC6762BIMX

MOSA
MOSA

Rails
Tape and Reel

14-Pin Molded DIP

LMC6764AIN, LMC6764BjN

NOsE

RililS

14-Pin Small Outline

LMC6764AIM, LMC6764BIM '
LMC6762AIMX, LMC6762BIMX

M14A
M14A

Rails
Tape and Reel

"

3-131

i

~

I

tfI

ADVANCE INFORMATION

National S em i co n,d u c tor

LMC6772 Dual, LMC677.4 Quad,
Micro-Power Rail-To-Rail Input and' Open Drain Output
CMOS Comparator
General Description

Features (Typical unless otherwise' noted)

The LMC6772/4 is an ultra low power d,ual/quad comparator with a maximum 10 ,.,A/comparator power supply current. It is designed to operate over a wide range of supply
voltages, from 2.7V to 15V. The LMC6772/4 has guaranteed specs at 2.7V to meet the demands of 3V digi~1 systems.
The LMC6772/4 has an input common-Illode voltage range
which exceeds both rails. This is a significant advantage in
low-voltage applications. The LMC6772/4 also features an
open-drain output. This architecture is ideal for mixed supply
voltage systems as an external resistor can be used to pull
the output up to + 15V, regardless of the supply voltage.
A quiescent power consumption of 50 ,.W/Amplifier (@Vs
= 5V) makes the LMC6772/4 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of the power supply voltage.
Guaranteed operation at 2.7V. and rail-to-rail performance
make the device ideal for battery-powered applications.

•
•
•
•
•
•
•

Is = '10 ,.A/comp
Low power consumption
2.7Vto 15V
Wide range of supply voltages
Rail-to-Rail Input Common Mode Voltage Range
Open-drain output stage
40mA
Shor:! circuit protection
Propagation delay (@Vs = 5V, 100 mVoverdrive) 5,.s
Refer to the LMC6762/4 datasheet for a device with
similar specs and a push-pull output stage
"

Applications
•
•
•
•
•
•

Laptop computers
Mobile Phones
Metering systems
Hand-held electronics
RC timers, Window Comparators, Multivibrators
Alarm and monitoring circuits

Connection Diagr2Jms
a-Pin DIP/SO

'-../

1
OUT"

IN

,,-.!.

IN ,,+
v-

2-

...!.

~
~

14-Pln DIP/SO

~v+

OUT B
OUT"

~ OUT B

IN

~IN
5

2.

y+2.

7

,,-.!.

IN A+":"

B-

IN e+

'-../

1

IN B-

~

IN B+

7

Package

OUT C

13

~,I~ft,:~

~OUT

D

~vr!..!.IN D+

,.!! IN

D-

9 IN c+
8 IN C-

TLlHI12347-1

Top View

14

TL/H/12347-2

Top View
Temperature Range
Industrial, - 40"C to + WC

8-Pin Molded'DIP

LMC6772AIN, LMC6772BIN

8-Pin Small Outline

LMC6772AIM, LMC6772BIM

NSC
Drawing

Transport
Media

N08E

Rails

M08A

LMC6772AIMX, LMC6772BIMX
14-Pin Molded DIP

LMC6774AIN, LMC6774BIN

14-Pin Small Outline

LMC6774AIM, LMC6774BIM
LMC6774AIMX, LMC6774BIMX

3-132

Rails
Tape and Reel

N14A
M14A

Rails
Rails
Tape and Reel

ttl

PRELIMINARY

Nation'a I Semiconductor

LMC7211
Tiny CMOS Comparator with Rail-to-Raillnput
General Description

Features

The LMC7211 is a micropower CMOS comparator available
in the space saving SOT23-5 package. This makes the
comparator ideal for space and weight critical designs. The
LMC7211 is available in S0-8 surface mount packages and
in conventional 8-pin DIP packages. The LMC7211 is supplied in two offset voltage grades, 5 mVand 15 mV.
The main benefits of the Tiny package are most apparent in
small portable electronic devices, such as mobile phones,
pagers, notebook computers, personal digital assistants,
and PCMCIA cards. The rail-to-rail input voltage makes the
LMC7211 a good choice for sensor interfacing, such as light
detector circuits, optical and magnetic sensors, and alarm
and status circuits.
The Tiny Comparator's outside dimensions (length x width x
height) of 3.05mm x 3.00mm x 1.43mm allow it to fit into
tight spaces on PC boards.

•
•
•
•
•
•
•
•

Tiny SOT 23-5 package saves space
Package is less than 1.43 mm thick
Guaranteed specs at 2.7V, 5V, 15V supplies
Typical supply current 7 IJA at 5V
Response time of 8 I£s at 5V
LMC7211-push-pull output
Input common-mode range beyond V- and V +
Low input current

Applications
•
•
•
•
•
•
•

Battery Powered Products
Notebooks and PDAs
PCMCIA cards
Mobile Communications
Alarm and Security circuits
Direct Sensor Interface
Replaces amplifiers used as comparators with better
performance and lower current

Connection Diagrams
8-Pln DIP/S0-8
NC..!
INVERTING INPUT.l
NON-INVERTING 1
INPUT

y-.l

'-'

~

5-Pln SOT23-5

'"W"'w'

l!.NC

Ly+

y+ 2

!.OUTPUT

NON-INVERTING 3
INPUT

l..NC

'

+

-

TLlH/12337-1

TLlH/12337-2

TopYl_

Package

Ordering
Information

4 INVERTING
INPUT

TopYI_

NSCDrawing
Number

Package
Marking

Transport Media

8-Pin DIP

LMC7211AIN

N08E

LMC7211AIN

rails

8-PinDIP

LMC7211BIN

N08E

LMC7211 BIN

rails

8-PinSO-8

LMC7211AIM

M08A

LM7211AIM

rails

8-PinS0-8

LMC7211BIM

M08A

LM7211BIM

rails

8-PinS0-8

LMC7211AIMX

M08A

LM7211AIM

2.5k units tape and reel

8-PinS0-8

LMC7211 BIMX

M08A

LM7211BIM

2.5k units tape and reel

5-Pin SOT 23-5

LMC7211AIM5

MA05A

COOA

250 units tape and reel

5-Pin SOT 23-5

LMC7211BIM5

MA05A

COOB

250 units tape and reel

5-Pin SOT 23-5

LMC7211AIM5X

MA05A

COOA

3k units tape and reel

5-Pin SOT 23-5

LMC7211 BIM5X

MA05A

COOB

3k units tape and reel

3-133

...._

~

r---------------------------------------------------------------------------------~

~::~I~:g Ra~in~~ (Note 1) , 2.'7 jl~&;f ,15V

, Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
ESD Tolerance (Note 2)
2 kV
DifferentiallnputVoltage
(VOO +0.3Vto(-VOO-0.3V
Voltage at Input/Output ,Pin (vccl + Q.3V to (-Vccl,:-0.3V
Supply Voltage (V+ -V-)
16V
±5mA
Current at Input Pin
±20mA
Current at Output Pin (Note 3)
Current at Power Supply Pin ,
40mA
Lead Temperature (soldering, 10 sec)
2600C
Storage Temperature Range
-65°0to + 1500C
,. , ~500C
Junction Temperature (Note 4)

2.7V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ
apply at the temperature extremes.
Symbol

Parameter

Junction Temperature Range
LMC7211AI, LMC7211BI
-400C
Thermal Resistance (8JAl
N Package, S-pin Molded DIP
, So-a Package, S-,f!jn Surface Mount·
, M05A Package, 5-Pin Surface Mount

Input Offset Voltage
Temperature Drift

TCVos

LMC7211AI
Limit
(Note 6)

3
'

115°C/W
, H!5°C/W
325"C/W

= OV, VCM b'VO = V+/2., "~Idf.c.limits

=2.7V, V-

Typ
(NoteS)".

Input Offset Voltage

Vos

+S5°C

"

'I

= 25°C, V+

Co,:,dltlons "

s: TJ s:

,

LMC7211BI
limit
. (Note6)

5

15

8

18

..

:1 '

,.

,

'Units

0

,',

inv
max
/JoVloC

1.0

Input Offset Voltage
Average Drift

3.3

Ie

Input Current

0.04

pA

los

Input Offset Current

0.02

pA

CMRR

Common Mode
Rejection Ratio

s: VCM s: 2.7V

75

dB

s: V+ s: 5V

SO

dB

100

dB

PSRR

.,

OV

2.7V

Power Supply
Rejection Ratio

,
j

Av

Voltage Gain

CMVR

Input Common-Mode
Voltage Range

CMRR> 55 dB

3.0
-0.3

CMRR> 55dB
Output V 55dB

5.3

V+ = 5.0V
OMRR> 55 dB

dB
5.2
5.0

5~0

V
min

-0.3

-0.2
0.0

-0.2
0.0

V
max

V+ ... 15.0V
CMRR> 55 dB

15.3

15.2
15.0

15.2
15.0

V
max

V+ = 15.0V
CMRR> 55dB

-0.3

-0.2
0.0

-0.2
0.0

V
max

V+ = 5V
lload = 5mA

4.8

4.6
4.45

4.6
4.45

mV
max

V+ = 15V
lload = 5mA

14.8

14.6
14.45

14.6
14.45

mV
max

V+ = 5V
lload = 5 mA

0.2

0.40
0.55

0.40
0.55

mV
min

V+ = 15V
lload = 5mA

0.2

0.40
0.55

0.40
0.55

mV
min

Your = low

7

14
1.

14
1.

p.A
max

Sourcing

30

mAmin

Sinking

45

mAmin

3-135

5.2

........

N
.....
o
~

AC Electrical Characteristics
Unless otherWise specified, all limits guaranteed for TJ = 2SoC, V+ =, SV, Vapply at the temperature extreme.
Symbol

Parameter

=;

Typ
(NoteS)

Conditions

OV, VCM = Vo = V+ 12. BoIcItece limits
UlC7211AI
Umlt
(NoteS)

LMC7211BI
Umlt
(NoteS)

Units

tnse

Rise Time

f = 10 kHz, CI = SO pF,
Overdrive = 10 mV

0.3

,...s

tfafl

Fall Time

f = 10 kHz, CI = SO pF,
Overdrive = 10 mV

0.3

,....

tpHL

Propagation Delay
(High to Low)

f = 10kHz,
CI=SOpF

10

,....

tpLH

Propagation Delay
(Low to High)

10mV
100mV

4

10mV

10

100mV

4

10mV

6

100mV

4

V+ = 2.7V,
f = 10kHz,
CI=SOpF
f = 10kHz,
CI = SOp

10mV

7

100mV

4

V+ = 2.7V,
f = 10kHz,
CI = SOpF

,....
,...s

,....

Note 1: Absolute Maximum ,Ratings indicate limits beyond which damage to the device may occur. Operating Ratings incfocate conditions lor which the device is
intended to be functional, but specific performanos is not guaranteed. For guaranteed specifications and the test conditions, see the ElectrIcal Characteristics.
Note 2: Human body modal, 1.5 kn in series with 100 pF.
Note 3: Applies to both single-supply and spllt-supply operation. Continuous short circuH operation at elevated ambient temperature can resuH in exceeding the
maximum allowed Junction temperature 01 150'C.
Note 4: The maximum power dissipation is a function 01 TJ(rnax)o 6JAo and TA. The maximum alloWable power dissipation at any ambient temperature is
Po = (TJ(max) - TAlf9JA. All numbers apply for packages soldered directly Into a PC board.
Note 5: Typic8t values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.

3-136

Typical Performance Characteristics Single Supply TA =
Supply Current vs
Supply Voltage
10

25"C unless specified

Supply Current vs
Temperature while Sinking

Supply Current vs
Temperature while Sourcing
10

IS

pos

INPUT = ov
NEG INPUT O.1V

II

=

IPOs INPUT = OV
NEG INPUT = O. I V

IPOs INPUT= OV
NEG INPUT = O. I V
13

II

+85 0 C

I

J:!..

II
II

II
~55 -35 -IS 5 25 45 65 65 lOS
-45 -25 -5 15 35 55 75 95

Ce.. Temperature (Oe)

Cu. Temperatur. (Oe)

Supply Voltog. (v)

Output Sourcing Current vs
SUpply Voltage

Output Sinking Current vs
Supply Voltage
100
95
90
85
80
75

POS INPUT = O. I V
NEG INPUT = OV
~

~ ~g
IS

+85 O C

15

'8 o

+25 OC

40
35
3

+25 0 C

.

f

I

o

1 2 3 4 5 6 7 8 9 10 " 12

900

800

S

700
600
400
300
100

400

I

+1:;:P~...I--'

I-"" :J.i"1...-i~I:::: ~- -"DOC

o ",1""'
o I 2 3

5

6

""""'"
I 2

700

j

600

I

400

7

8

1/

300

/.~

200

~;....~

100

o

1

2

Output Current (rnA)

3

..

S

e

L40'~

7

8

Response Time for Vartous
Input OVerdrtves -tpLH

700

j

500

600

I

200

~

o JIII!IF"
o 1 2 3

9 10

I

9 10

+85 0 C

....
~
.... J..........
-.tOoC

I I
4

5

6

7

8

9 10

Output Current (rnA)

Response Time for Various
Input OVerdrtves -tpHL

=2.7V

J

Vs = 2.7V

I

o 20mV

o 20mV

7

o 10mY

2

I

8

"\.Y[

300

o In~t OYerdrlve =100 mY

1
0
1

+2S0C-..

400

o Input Overdrive = 100 mY
7

0

7

800

~

Output Current (mA)

Vs

6

900

100

o ~JJi'

9 10

....

5

Output Sinking Current vs
Output Voltage @ 15V

S

r{~
./

4

1000

+j5j1

500

3

Output Current (rnA)

I

600

~

I I

4

I..-

o

2 3 4 5 6 7 8 9 10 " 12

~c
1'1

"..-: .... '""

200

o
I

..........r

I;"

300

Output Sourcing Current vs
Output Voltage @ 15V
1000

+25°P,

I I
+25 OC

500

Supply Voltag. (V)

900

500

IY
II

100

8

1000

200

600

1O

Output Sinking Current vs
Output Voltage @ 5V

~

700

j
~

+85 0 C

Supply Voltog. (v)

S

~

I

+85 OC

800

S

- .. DoC

18 ig

-40°C

I

900

60

45

Output Sourcing Current vs
Output Voltage @ 5V
1000

POS INPUT = OV
NEG INPUT = O. IV

~g

~

II
} II

c3

II

II
~55 -35 IS 5 25 45 65 85 105
-45 -25 -5 15 35 55 75 95

-

0123456789101112131415

~

2.7V

II

II

~ 'II

~

~

- .. DoC

5

15V

""Sv

5V

+25 OC

o 10 mV

5mV

0

5 mV

0"'8r riye

I
I
I

1
0

OVerdrive
12
Tim. (".)

Input Overdrive Referenced to

16

Tim. (".)

Vos

Input Overdrive Referenced to

Vos
TL/HI12337-3

3-137

~

~

~

i....

,------------------------------------------------------------------------------------------,
Typical Performance Characteristics
R,spCinse nme for Various

Response nme for Various
Input OvetdriveS'-'-tPHL

Ifqj.ii
OVerdrIVes '-- tpLH
",-.
Input Overdrive = 100 mY

::1 l..f- __
.0

11/',
'J

.0
.0

~
1
2

Ys =5Y

/ 1
20mV
II- 10mY
f-

'/

.0 '10OnV
.Q SmV

/

'I 1
1 1
L
"4

1\

~

Overdrive

1
0
8

12

Vos

Response Time for Various
Input OVerdrives -tpHL
Input Overdrive = 100mV

Ys = 5V

,\

\

20~V 1---'( ~
10mV f-..-,i\""

'0r- 5mV
0

i-o"

1\
1\

,\

12

Input Overdrive Referenced to

Vos

Input Overdrive Referenced to

Input Bias Current vs
Common Mode Voltage
"100".,--"--..,--,,..,,;-:-=

100

~rt~~-rt4-r~-r~

60

10

15

VS=5V

~

40H--t-I+H+H--t-I+-l
20
0
-20

~

40

~'

20

""

....
1' ....

3

!

-20

l'

-60

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Common Mode Voltage (V)

Vos

Input Bias Current va
Common Mode Voltage

Input Bias Current vs
T~perature

,~~~~:;:~~~:;:~~~;~~~;+V"'s-:=,-;1...5V'"

1500

vCM=1 vs

1250

250 H--hH-+-i-r+-i-r+-i-r+-i

~ '~~~ f"i'.c-;H-+-i-r+-i!-++-i-r+-i

~

= -50
CD -100•

J
.=

1~

-,

",

-~

Common Mode Voltag, (Y)

Input Overdrive Referenced to

....

-40

-100
o

-IOO0o.l.40.6o.8 1 1.21.41•61.8 2 2.22.42•6

20

Vos

InputSlas Current vs
Common Mbde Voltage

80rt-r~r+~t4-r~V~sr=~2._7V,

Time (1'.)

16

lIm. (1'.)

-60
"-80

~f!rdrv.

,,

1

16

12

-40

'I
1
0

v.r rive

1
2

nm. (1'.)

Input Overdrive Referenced to

1

5mV

.0
.0
0

1\
\

,4

Tim. (1'.)

.0
.0
.0
.0r-

.0 10mV

1\

OVerdrl¥e

16

Vs =5V

1

'-'

\

Input Ov:erdrive= 100'mV

.0 Lf.-L-.
.0 20 mV Hr-->J

" 1\
\1.-0 Ir\

,-"

Response Time for Various
Input OVerdrive. -tpLH

Vs=5V

Input Overdrtve= 100mV

.0 14.0
1 0\
.0 20 mV

5mV

.-'l

SlngleSLipply. TA'" 25"C unless Sp8cified'(Contlnued) ',," , :

•

~ :~~~

1

-250H--hH-+-iH-+-iH-+-i-r-t\l
-3W
0°l-ljjjIttltttttij
-350
0123456789101112131415

1000
Vs =5V,
750
Vs = 15V./
500
250

-250
35

Common Mode Voltage (V)

V

45

55

,r

/

~

.,.,.,V

- ",-

/

65

vs=r v75

85

Case Temperature (ae)

TUH/12337-4

3-138

r-

Application Information
is close to the power supply voltage. The wide input range
can also be useful for sensing the voltage drop across a
current sense resistor for battery chargers.
Zero Crossing Detector. Since the LMC7211's common
mode input range extends below ground even when powered by a single positive supply, it can be used with large
input resistors as a zero crossing detector.

1.0 Benefits of the LMC7211 Tiny
Comparator
Size. The small footprint of the SOT 23-5 packaged Tiny
Comparator, (0.120 x 0.118 inches, 3.05 x 3.00 mm) saves
space on printed circuit boards, and enable the design of
smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.

a::
o.....

....
....
~

Low Input Currents and High Input Impedance. These
characteristics allow the LMC7211 to be used to sense high
impedance signals from sensors. They also make it possible
to use the LMC7211 in timing circuits built with large value
resistors. This can reduce the power dissipation of timing
circuits. For very long timing circuits, using high value resistors can reduce the size and cost of large value capacitors
for the same R-C time constant.

Height. The height (0.056 inches, 1.43 mm) of the Tiny
Comparator makes it possible to use it in PCMCIA type III
cards.
Simplified Board Layout. The Tiny Comparator can simplify board layout in several ways. First, by placing a comparator where comparators are needed, instead of routing Signals to a dual or quad device, long pc traces may be avoided.

Direct Sensor Interfacing. The wide input voltage range
and high impedance of the LMC7211 may make it possible
to directly interface to a sensor without the use of amplifiers
or bias circuits. In Circuits with sensors which can produce
outputs in the tens to hundreds of millivolts, the LMC7211
can compare the sensor signal with an appropriately small
reference voltage. This may be done close to ground or the
positive supply rail. Direct sensor interfacing may eliminate
the need for an amplifier for the sensor Signal. Eliminating
the amplifier can save cost, space, and design time.

By using multiple Tiny Comparators instead of duals or
quads, complex signal routing and possibly crosstalk can be
reduced.
DIPs available for prototyping. LMC7211 comparators
packaged in conventional 8-pin dip packages can be used
for prototyping and evaluation without the need to use surface mounting in early project stages.
Low Supply Current. The typical 7 ,.A supply current of the
LMC7211 extends battery life in portable applications, and
may allow the reduction of the size of batteries in some
applications.

2.0 Low Voltage Operation
Comparators are the common devices by which analog signals interface with digital circuits. The LMC7211 has been
deSigned to operate at supply voltages of 2.7V without sacrificing performance to meet the demands of 3V digital systems.

Wide Voltage Range. The LMC7211 is characterized at
15V, 5V and 2.7V. Performance data is provided at these
popular voltages. This wide voltage range makes the
LMC7211 a good choice for devices where the voltage may
vary over the life of the batteries.

At supply voltages of 2.7V, the common-mode voltage
range extends 200 mV (guaranteed) below the negative
supply. This feature, in addition to the comparator being
able to sense Signals near the positive rail, is extremely useful in low voltage applications.

Digital Outputs Representing Signal Level. Comparators
provide a high or low digital output depending on the voltage
levels of the (+) and (-) inputs. This makes comparators
useful for interfacing analog signals to microprocessors and
other digital circuits. The LMC7211 can be thought of as a
one-bit atd converter.
Push-Pull Output. The push-pull output of the LMC7211 is
capable of both sourcing and sinking milliamp level currents
even at a 2.7 volt supply. This can allow the LMC7211 to
drive multiple logic gates.
Driving LEOs (Ught Emitting Diodes). With a 5 volt power
supply, the LMC7211's output sinking current can drive
small, high efficiency LEOs for indicator and test point circuits. The small size of the Tiny package makes it easy to
find space to add this feature to even compact deSigns.

A4

O.OI5V

I

Input range to Beyond Rail to Rail. The input common
mode range of the LMC7211 is I1lightly larger than the actual power supply range. This wide input range means that the
comparator can be used to sense signals close to the power supply rails. This wide input range can make deSign easier by eliminating voltage dividers, amplifiers, and other front
end circuits previously used to match Signals to the limited
input range of earlier comparators. This is useful to power
supply monitoring circuits which need to sense their own
power supply, and compare it to a reference voltage which

5V

500mV

201'"
TlIH/12337-5

FIGURE 1. Even at Low-SUpply Voltage of 2.7V, an Input
Signal which Exceeds the Supply Voltages Produces No
Phase Inversion at the Output
At V+ = 2.7V propagation delays are tpLH
tpHL = 4,.s with overdrives of 100 mY.

=

4 ,.S and

Please refer to the performance curves for more extensive
characterization.

3-139

~

....,..
~

o
~

r-------------------------------------------------------------------------------------~

Application Information (Continued)
3.0 Shoot.;.Through Current

The capacitor needs to supply 100 picocolumb. To avoid
large shifts in the comparator threshold due to changes in
the voltage level, the voltage drop at the bypass capaCitor
should be limited to 100mV or less.
The charge needed (100 picocolumb) and the allowable
voltage drop (100 mV) will give us the minimum capacitor
value required.
AQ = C(AV)
C = AQ/AV = 100 picocolumb/100 mV
C = 10.10/10. 1 = 10-9 = 1 nF = 0.001 p.F
10.9 = 1 nF = 0.001 p.F
The voltage drop of -100 mV will cause a threshold shift in
the comparator. This threshold shift will be reduced by the
power supply rejection ratio, (PSRR). The PSRR which is
applicable here is not the DC value of PSRR (- 80 dB), but
,a transient PSRR which will be usually about 20 dB-40 dB,
depending on the circuit and the speed of the transient. This
will result in an effective threshold shift of about 1 mV to
10 mY.
For precision and level sensing circuits, it is generally a
good goal to reduce the voltage delta on the power supply
to a value equal to or less than the hysteresis of the comparator circuit. If the above circuit was to be used with
50 mV of hysteresis, it would be reasonable to increase the
bypass capacitor to 0.Q1 p.F to reduce the voltage delta to
10 mY. Larger values may be useful for obtaining more accurate and consistent switching.
Note that the switching current of the comparator can
spread to other parts of the board as noise. The bypass
capacitor reduces this noise. For low noise systems this
may be reason to make the capacitor larger.
For non-precision circuits, such as using a comparator to
determine If a push-button switch is on or off, it is often
cheaper and easier to use 'a larger value of hysteresis' and a
small value or bypass capacitance. The low shoot-through
current of the LMC7211 can allow the use of smaller and
less expensive bypass capacitors in non-critical circuits.

The shoot-through currerit is defined as, the current surge,
above the quiesc;ent supply current, between the positive
and' negative supplies of a device. The current surge occurs
whe!1 the output of the device switches states. The shootthrough current re~ults in glitches in the supply voltages.
Usually, glitches inthe supply lines are prevented by bypass
capaCitors. When'the glitches are minimal, the value of the
bypass capacitors can be reduced.
~~ SV

LMC7211

-./,,~".-----o

....

RS= 1 kll

VOUT

TLfHf12337-6

FIGURE 2. CIrcuIt for Measurement of the
Shoot-Through Current
A4

0.42SV

Il.V2

184mV

I

I
20 us

100 mV

4.0 Output Short Circuit Current

TlfHf12337-7

The LMC7211 has short circuit protection of 40 rnA. However, it is not designed to withstand continuous short circuits,
transient voltage or current spikes, or shorts to any voltage
beyond the supplies. A resistor in series with the output
should reduce the effect of shorts. For outputs which send
signals off PC boards additional protection devices, such as
diodes to the supply ralls, and varistors may be used.

FIGURE 3. Measurement of the Shoot-Through Current
From Flf}ure 3, tlie shoot-through current for the LMC7211
can be calculated to be 0.2 mA (typical), ,and the duration is
1 p.s. The values needed for the bypass capacitors can be
calculated as follows:
IShoot-Through

5.0 Hysteresis

~ Supply Linos

I\.

~A~_

~
"

I

If the input Signal is very slow or very nOisy, the comparator
output might trip several times as the input signal passes
through the threshold. Using positive feedback to add hysteresis to the switching can reduce or eliminate this pr0blem. The positive feedback can be added by a high value
resistor (RF)' This will result in two switching thresholds, one
for increasing signals and one for decreasing Signals. A capacitor can be added across RF to increase the switching
speed and provide more short term hysteresiS. This can result in greater noise immunity for the circuit.
See FIf}Uf8S 4. 5 and 6.

1200 JAA

I

Time
TlfHf12337-8

Area of Il. = % (1 ,.S x 200 ,.A)

= 100 pC

3-140

r-----------------------------------------------------------------------------,
Application Information (Continued)
Note that very heavy loading of the comparator output, such
as LED drive or bipolar logic gates, will change the output
voltage and shift the voltage thresholds.

6.0 Input Protection
If input signals are like to exceed the common mode range
of the LMC7211, or it is likely that signals may be present
when power is off, damage to ,the LMC7211 may occur.
Large value (100 kG to MOl input resistors may reduce the
likelihood of damage by limiting the input currents. Since the
LMC7211 has very low input leakage currents, the effect on
accuracy will be small. Additional protection may require the
use of diodes, as shown in Figure 7. Note that diode leakage current may affect accuracy during normal operation.
The R-C time constant of RIN and the diode capaCitance
may also slow response time.

vIN----I

, ,Cr
.- ....
-.
I

•

I

I

~

iii:

(')

I

I

......~

TL/H/I2337-9

RF> R, and
RF> R2

FIGURE 4_ Positive Feedback for Hysteresis
Without PoslUve Feedback
(No Hysteresis)

v+-,.-------::::;....._ _""'I

YOUT

TL/HI12337-12

FIGURE 7
GROUND _

7.0 Layout Considerations

...._ _ _~=_~_ _ _ _ _..J

The LMC7211 is not an especially fast comparator, so high
speed design practices are not required. The LMC7211 is
capable of operating with very high impedance inputs, so
precautions should be taken to reduce noise pickup with
high impedance (- 100 kG and greater) deSigns and in
electrically noisy environments.

Inputs

Equal

TUHI12337-10

FIGURES

Keeping high value resistors close to the LMC7211 and minimizing the size of the input nodes is a good practice.. With
multilayer designs, try to avoid long loops which could act
as inductors (COils). Sensors which are not close to the
comparator may need twisted pair or shielded connections
to reduce noise.

With Positive Feedback
(Hysteresis or Memory)

v+ - r-----::::;iiiI""""--.,..--,

8.0 Open Drain Output, Dual and
Quad Versions

YOUT
GROUND -

The LMC7221 is a comparator similar to the LMC7211, but
with an open drain output which allows the output voltage to
be different (higher or lower) than the supply voltage. The
open drain output is like the open collector output of a logic
gate. This makes the LMC7221 very useful for mixed voltage systems. Many systems will have different voltages for
the analog and microprocessor sections. Please see the
LMC7221 datasheet for details.

..._ . ._ _ _....I!!!!:_ _ _ _ _.J

vr

I

LOW,

Inpuls

Equal

I

, Vr HIGH

YIN
TUH/I2337-11

The performance of the LMC7211 is available in dual devices. Please see the LMC6762 datasheet for details on a dual
push-pull output device. For a dual device with open drain
outputs, please see the LMC6772 datasheet.

FIGURE 6

3-141

•

..~

~

,---------------------------------------------------------------------------------,
Application Information (Continued)
LMC7101 1 MHz gain-b!lndwidth rail-to-rail input and output amplifier-high input impedance and high
gain 700 p.A typic8l current 2.7V, 3V, 5Vand 15V
specifications.
LMC7111 Low power 50 kHz gain-bandwidth rail-to-rail input and output amplifier with 25 p.A typical current specified ~t 2.7V, 3.0V, 3.3V, 5Vand 10V.
LM7131 Tiny Video amp with 70 MHz gain bandwidth 3V,
5V and ± 5V specifications.
LP2980 Micropower SOT 50 mA Ultra Low-Dropout Regulator.
LM4040 Precision micropower shunt voltage reference.
Fixed voltages of 2.500V, 4.096V, 5.000V,
8.192Vand 10.000V.
LM4041 Precision micropower shut voltage reference
1.225V and adjustable.
Contact your National Semiconductor representative for the
latest information.

Rall-to-Rallinput Low Power Comparator.Push-Pull Output
Tiny, SOT23-5, DIP
SO-8, DIP
~MC6762 .

Single
Dual

Open Drain Output
Tiny, SOT23-5, DIP
SO-8, DIP

Single
Dual

LMC7211

LMC7221
LMC6772

9.0 Additional SOT23-5 Tiny
Devices
National Semiconductor has additional parts available in the
space saving SOT23 Tiny package, including amplifiers,
voltage references, and voltage regulators. These devices
include-

10.0 Spice Macromodel
A Spice M!lcromodel is available for the LMC7211 comparator on the National Semiconductor Amplifier Macromodel
disk. Contact your National Semiconductor representative
to obtain the latest version.

REEL DIMENSIONS

TAPE SLOT

r
N

A

'L
DETAIL X
SCALE: 3X

TUHI12337-13

8mm
Tape Size

7.00 0.059 0.512 0.795 2.165 0.331 + 0.059/-0.000 0.567 W1+ 0.078/-0.039
14.40 W1 + 2.00/-1.00
330.00 1.50 13.00 20.20 55.00
8.40 + 1.501-0.00
A

B

C

D

N

W1

3-142

W2

W3

SOT-23-5 Tape and Reel Specification
TAPE FORMAT
Tape Section

# Cavities

Cavity Status

Cover Tape Status

Leader
(Start End)

o (min)

Empty

Sealed

75 (min)

Empty

Sealed

Carrier

3000

Filled

Sealed

250

Filled

Sealed

125 (min)

Empty

Sealed

o (min)

Empty

Sealed

Trailer
(Hub End)

TAPE DIMENSIONS

0' 0.06ltO.002 TYP.
[ I.SS±O.OS)

BAT
TANGENT
POINTS -I-..:r===r~IIiI!!tr-_

RO.012 TYP

[0.3)

0' 0.04 aO.002 TYP.
[1.04:1:0.05)

:

~
I

ALL INSIDE RADII

~_~_.

DIRECTION or rEED - - - GAGE LINE

L
0.012

[0.3)

SECTION B-B

\

~i

R 1.181 MIN. I'

[30)

----~
BEND RADIUS
NOT TO SCALE

TL/H/12337-14

8mm

0.130
(3.3)

0.124
(3.15)

0.130
(3.3)

0.126
(3.2)

Tape Size DIMA ·DIMAo DIMB DIMBo

0.138 ± 0.002 0.055 ± 0.004
(1.4±0.11)
(3.5 ± 0.05)
DIMF

3-143

DIMKo

0.157
(4)

0.315 ±0.012
(8 ± 0.3)

DIMP1

DIMW

til

ADVANCE INFORMATION

National Semiconductor

LMC7221
Tiny CMOS Comparator with Rail-To-Rail Input and Open
Drain Output.
General Description

Features

The LM7221 is a micropower CMOS comparator available
in the space saving SOT23-5 package. This makes this
comparator ideal for space and weight critical designs. For
easy prototyping, the LMC7221 is available in a conventional S-pin DIP package. The LMC7221 is supplied in two offet
voltage grades, 4 mVand 9 mY.

•
•
•
•
•
•
•
•

The open drain output can be pulled up with a resistor to a
voltage which can be higher or lower than the supply voltage-this makes the part useful for mixed voltage systems.
For a tiny comparator with a push-pull output, please see
the LMC7211 datasheet.

Tiny SOT 23-5 package saves space
Package is less than 1.43 mm thick
Guaranteed specs at 2.7V, 5V, 15V supplies
Typical supply current 10 IJA at 5V
Response time of 7 jIos at 5V
LMC7221-open drain output
Input common-mode range beyond V - and V +
Low ·Input current

Applications
• Mixed voltage battery powered products
• Notebooks and PDAs
.pCMCIA cards
• Mobile communications
• Alarm arid security circuits
• Driving low current LEDs
• Direct sensor interface

Connection Diagrams
&-pIn SOT23-5

8·PlnDIP
NC J

.

INVERTING INPUT.z
NON-INVERTING .1
INPUT

'{"oJ

'-.-/

~

·"~~W~

~NC
~Y+
~OUTPUT
~NC

y+ 2

NON-INVERTING 3
INPUT

+

-

• INVERTING
INPUT

TUH/12346-1

TL/H/12346-2

Top View

Top View

Ordering Information
Package

Ordering·
Information

NSCDrawing
Number

Package
Marking

Transport
Media

8-PinDIP

LMC7221AIN

N08E

LMC7221AIN

8·Pin DIP

LMC7221 BIN

N08E

LMC7221 BIN

Rails

5·Pin SOT 23-5

LMC7221AIM5

MA05A

C01A

250 Units on Tape and Reel

5-Pin SOT 23·5

LMC7221BIM5

MA05A

C01B

250 Units on Tape and Reel

5-Pin SOT 23-5

LMC7221AIM5X

MA05A

C01A

3k Units Tape and Reel

5-Pin SOT 23-5

LMC7221 BIM5X

MA05A

C01B

3k Units Tape and Reel

3-144

Rails

r-------------------------------------------------------------------------,r
~
........
I!J1National Semiconductor
LP311 Voltage Comparator
General Description

Features

The LP311 is a low power version of the industry-standard
LM311. It takes advantage of stable high-value ion-implanted resistors to perform the same function as an LM311, with
a 30:1 reduction in power drain, but only a 6:1 slowdown of
response time. Thus the LP311 is well suited for batterypowered applications, and all other applications where fast
response is not needed. It operates over a wide range of
supply voltages from 36V down to a single 3V supply, with
less than 200 p.A drain, but it is still capable of driving a 25
mA load. The LP311 is quite easy to apply without any oscillation, if ordinary precautions are taken to minimize stray
coupling from the output to either input or to the balance
pins (as described in the LM311 datasheet Application
Hints).

•
•
•
•

Low power drain, 900 p.W on 5V supply
Operates from ± 15V or a single supply as low as 3V
Output can drive 25 mA
Emitter output can swing below negative supply

•
•
•
•

Response time: 1.2 '""S
Same pin-out as LM311
Low input currents: 2 nA of offset, 15 nA of bias
Large common-mode input range: -14.6V to 13.6V
with ± 15V supply

Applications
• Level-detector for battery-powered instruments
• Low-power lamp or relay driver
• Low-power zero-crossing detector

Schematic Diagram
BALANCE

BALANCEI
STROlE

5

r-~_.--1---,_,_.-_1----~~--+__1----------,_-----bv+
R1

..

UK UK UK

7 CDLlECTOR

OUTI'tIT

III

'.21

R13
4.8.

R30

R31
I

~__",2.,.K..-___<~1 EMmER

~....._______~---<~------------_t------------...;..4 :~TPUT

TI.IHf571'-7

Connection Diagram
Dual-In-Line Package
EMITTER

OUTPUT

1

8

v+

7 CDLLECTOR

INPUT

OUTPUT

Order Number LP311M or LP311N
See NS Package Numbers M08A or N08E

6 BALANCEI
STBOIE

v-

8ALMCE

TI.IHf5711-4

Top View
3-145

....
....
~

Absolute Maximum Ratings
Power Dissipation (Note 2)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
36V
Total Supply Voltage (V8-4)
40V
Collector Output to Negative Supply Voltage (V7 -4)
40V
Collector Output to Emitter Output
±30V
Emitter Output to Negative Supply Voltage (V1-4)
Differential Input Voltage

500mW

Output Short Circuit Duration
10 sec
Operating Temperature Range
O"Ct070"C
Storage Temperature Range
-65'C to 150"C
Lead Temperature (Soldering, 10 seconds)
260"C

±30V
±15V

Input Voltage (Note 1)

Electrical Characteristics

These specifications apply for Vs = ± 15V and O"C ~ TA ~ 70"C, unless otherwise specified.
Conditions

Parameter

Min

..

Typ

Max

Units
mV

Input Offset Voltage (Notes 3, 4)

TA=2SOC, Rs~100k

2.0

7.5

Input Offset Current (Notes 3, 4)

TA=25'C

2.0

25

nA

Input Bias Current (Note 3)

TA=2SOC

15

100

nA

Voltage Gain

TA = 25'C, RL =5k

Response Time (Note 5)

TA=2SOC

1.2

Saturation Voltage (Note 6)

VIN~

0.4

1.5

V

200

300

~

0.2

100

nA

40

V/mV

200

-10 mV,IOUT=25 mA

its

TA=2S'C
Strobe Current (Note 7)

TA=25'C

100

Output Leakage Current

VIN;:,10 mV, VOUT=35V
TA=25'C

Input Offset Voltage (Notes 3, 4)

Rs~l00k

Input Offset Current (Notes 3, 4)
Input Bias Current (Note 3)

mV

nA

150

nA

+ 13.7, -14.7

V+-l.5

V

V+;:'4.5V, V-=OV
VIN~ -10 mV,lsINK~1.6 mA

0.1

0.4

V

V-+0.5

Input Voltage Range
Saturation Voltage (Note 6)

10
35

Positive Supply Current

TA = 25'C, Output on

150

300

itA

Negative Supply Current

TA=25'C

80

180

~

Minimum Operating Voltage

TA=25'C

3.0

3.5

V

Note 1: This rating applies for ± 1SV supplies. The positive inpu1 voltage lim" is 30V above the negstive supply. The negstive input voltage limit is equsl to the
negative supply voltage or SOV below the positive supply, whichever is less.
Note 2: The maximum junction tempsrature of the LP311 Is 8S'C. For operating at eleveted temperatures, devices in the dual-in-line package must be derated

based on a thermal resiBlence of 16C1'CIW, junction to ambient
Note 3: The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 4V supply up to ± 1SY supplies.
Note 4: The offset voItsges and offset currents given are the maximum values required to drive the output wRhin a voH of either supply wRh 1 rnA load. Thus, these
parameters datine an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mY input step with S mV overdrive.
Note 6: Saturation voltage specification applies to collector-emitter voltage (V7-1) for YCOLlECTOR

S;

(Y+ - SV).

Note 7: This specification gives the range of current which must be drawn from the strobe pin to ensure the output Is properly disabled. Do not short the strobe pin
to ground. It should be current driven, 100 pA to soo pA.

3-146

r-----------------------------------------------------------------------------~ ~

......

'V

Typical Performance Characteristics
Input Characteristics

W

Input Bias Current

Input Offset Current

Ys = i15Y

Y~

:!

(SHOllY PM 5. 8 NIl) 8)

- --

12 H-t+H++++++++++--1

10 t:::~F-j;;;;;t::::t-H
5r-+--r-t~--r-+---1

-II

~

~

i

O~~-L~~--~~~

~~~~~~~~~~

-16 -12

I

0 4 8 12 16

""--

= t15Y

-r-_

I -. i"o-.. (SHORT PINS 5. 8 AND 8

RA!fD

OA

-

02r4-

~-_'~I+-+-4-~~~
O~~~~~~~~~

010203040506070

010203040506070

TEMPERATURE (ae)

TEMPERATURE (ae)

DIFFERENTW. INPUT VOLTAGE (V)

Output ~turatlon Voltage
(Collector Output)

Transfer Function

o.&r---~~-....-....,

Ys = 3fIY +-+-+-+-+--1
= 25ae

60
50

TEST aRCUIT 1

TA

TA

= 25"C

r-+--+--+--+--Il-=
40

1\=5k

•

r-+--+--+--H-l- V+ = SOY

20
10

+'-"forl-t-1-1

EMITTER

~R-t-..'~-t-1-1

Ot!I\~=:!lk.1~:j~,~j:j
-1.0

D.5

0

-0.5

o

1.0

5

DlFltRENTW. IIPUT VOLTAGE (mY)

Response Time for Various
Input Overdrives

10

15

20

25

OUTPUT CURRENT (mA)

Response Time for Various
Input Overdrives

Output Saturation Voltage
(Emitter Output)
8r--,--'-~~==--,

~=1T2

41----+--4---1----+--~

lr-5~~~t~/~~~~+--r-1

!:~

---

dF--+-+--+--+--+-....:r

~ -::~~-t--r-~-t---l

I

OL--L_~~_~~

4

3

TIME (pS)

4

o

5

Response Time for Various
Input Overdrives

W

5

~

20

25

OUlPUT CURRENT (mA)

lIIE (pS)

Response Time for Various
Input Overdrives

Output Limiting
Characteristics
2OO~~~--~-r--r-,

!I 10151-:::±-+7Io-l...,I-+--i
2OmY"

...

~

5 SmY-

iO

0

5

:i~
~

i

H

'+- --f Ys = il5Y_

2mY -

T =25ae

-S 1---+-,-1+-,J-I--I-ltsJ

aRaJlT 4

-10
Jj
-15,bo-+-t'-r-+--r-t-.L

,,--+-+-+-+-+-+"1"

If"cfl.

-so Lt--t--t-t-t-t-t--I
-100 t-+--r-t~--r-+---1
o

2

4

8

TIME (pS)

8

!

Ii l00h/~
!

__

~4--+~~

5OH--r~--+--t--r---1

10 12
OUTPUT VOLTAGE (V)
TL/H/5711-5

3·147

•

.- r-------------------------------------------------------------------------------------,

g.-

Typical Performance Characteristics
Supply Cl,lrrent
350

;

200

!i
..

150

~

~

~UPPL~
io"" . "

POSIITIVE
OUTPUT lOw

!

k"" "
~

o

I I YS=30Y

POSITIVE SUPPLY
1 300 r-- ~ -...1UTPUT
lOW

..",.

ii

100
50

Leakage Currents

SIIPP'Y Cllrrent
400

TAz25°C

3tIO

1 250

(Continued)

POSITIVE AND
NEGATIVE SUPPLY
. OUTPUT HIGH

g 10-8 Hrl-+-+++-HH

__
.

Ii15 10-9

.

I r~:::.

200
f.,--,-

r-

100

POSITIYEANO
NEGATIVE SUPPLY
OUTPUT HIGH

! 10-10 Hba-+'I!!!F++-HH
!... 10-11

--

I I I

o

I~U~~~~~~~~

2530 35 40 45 50 55 60 8570
TEMPERATURE (OCI

01020 30 40 50 6070
TEMPERATURE (OC)

051015202530
SUPPLY VOLTAGE (VI

TUH/57"-6

Applications Information
For applications information and typical applications, refer to the LM311 datasheet.

Auxiliary Circuits
Strobing

Offset Balancing
R2
15k

Y'

TL/H/5711-2
TLlH/5711"':1

Note: Do not ground strobe pin.

Test Circuits
Test Circuit 1 (Collector Output)

Test Circuit 2 (Emitter Output)

V+

+15V

+15V

SOmV

50mV

-15V

-=

-15V V-

TUH/57"-B

TLII'I/5711-9

Test Circuit 3 (Collector Output)

. Test Circuit 4 (Emitter Output)
V+

5V

SOOA
VOUT

VTUI'l/57"-'0

V-

3-148

TUH/S711-11

ttlNational Semiconductor
LP339 Ultra-Low Power Quad Comparator
General Description
The LP339 consists of four independent voltage comparators designed specifically to operata from a single power
supply and draw typically 60 p.A of power supply drain current over a wide range of power supply voltages. Operation
from split supplies is also possible and the ultra-low power
supply drain current is independent of the power supply voltage. These comparators also feature a common-mode
range which includes ground, even when operated from a
single supply.
Applications include limit comparators, simple analog-to-digital converters, pulse, SQuare and time delay generators;
VCO's; multivibrators; high voltage logic gates. The LP339
was specifically designed to interface with the CMOS logic
family. The ultra-low supply current makes the LP339 valuable in battery powered applications.

Advantages
• UHra-low power supply drain suitable for battery applications

•
•
•
•

Single supply operation
Sensing at ground
Compatible with CMOS logic family
Pin-out identical to LM339

Features
• Ultra-low power supply current drain (60 p.AHndependent of the supply voltage (75 Il.w/comparator at

+5 Voc)
•
•
•
•
•
•

Low input biasing current
3 nA
Low input offset current
±0.5 nA
Low input offset voltage
±2 mV
Input common-mode voltage includes ground
Output voltage compatible with MOS and CMOS logic
High output sink current capability (30 mA at
Vo=2 Vee)
• Supply Input protected against reverse voltages

Schematic and Connection Diagrams
OUTPUT 3 DUlI'\IT4

V·

GNO

INPUT4+ INPUT4- INPUT3+ INPUT 3-

14

10

9

B

n-=.....-DIITPIIT
+INI'UT

TLlH/5226-1

TLlH/5226-2

Order Number LP339M tor S.O. Package
See NS Package Number M14A
Order Number LP339N tor Dual-In-Une Package
See NS Package Number N14A

Typical Applications (V+ =

5.0 Vocl
Driving CMOS

BasIc Comparator

y.

y.

+VIN~30k
1/4 LP339

+'IaEF

TL/H/5226-3
TLlH/5226-4

3-149

Absolute Maximum Ratings
"
';:',50mA
Input CUrrent VIN < - 0.3 Voo (Note 3)'
Operating Temperature Range
oot to'+ 700C
-65" to + 1500C
Storage Temperature Range
Soldering Information:
,
"':,j.i'2~OOC
Dual·lri~une Package (10 Sec.) ,
5.0. Package:
Vapor Phase (60 sec.)
+215"C
Infrared (15 sec.(
'+2200C
See AN-450 "Surtac~ Mounting MethOds and ThSir Effect
on ProduCt Reliability" for other methods of soldering sur·
face mount devices~
,
,,
' , ,:' "

If Military/Aerospace specified devices are required;
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
36 Voc or ± 18 Voc
Differential Input Voltage
± 36Voc
Input Voltage
-0.3 Voc to 36 Voc
Power Dissipation (Note 1) Molded DIP
570mW
Continuous
Output Short Circuit to GND (Note 2)

,.

Electrical Characteristics (V + =5 Voc, Note 4)
,

Paremeter

,Conditions

Min

,

Typ

Max

Units

±2

±5

m'Voc

Input OffSet Voltage

TA= 25"C (Note 9)

Input Bias Current

IIN(+ ) or IIN{ -) with the ,
Output i,n th~ Unear Range, TA = 25"C (Note 5)

,2.5

25 ..

' nAoc

Input Offset Current

IIN(+)-IIN(-), TA=25"C,

±0.5

±5

nAoc

Input Common
Mode Voltage- Range

TA= 25"C (Note 6)

V+ -1.~

Voc

Supply Current

RL = lilfinite on all Comparators, TA= 25"C

,100

!£Aoc

0
60
"

Voltage Gain

Vo = 1 Vocto 11 Voc,
RL =15kO, V+ =15Voc, TA=25°C

Large Signal
Response Time

VIN = TIL LogiC SWing, VREF= 1.4 Voc,
VRL =5 Voc, RL =5.1 k~, TA=25"C

Response Time

VRL == 5 Vee, RL = 5.1 kO, TA= 25"C (Note 7)

Output Sink Current

VIN(-) = 1 VOC, VIN(+)=O, VO= 2Voc,
TA=25"C (Note 11)

VIN(+)=1 Voc, VIN(-)=O, Vo=5Voc, TA=25°C

Input Offset Voltage

(NoteS)

Input Offset Current

IINH)-IIN(-)

Input Bias Current

IIN( + ) or IIN( -) with butput in Linear Range
' Single !;iupply
'

15

Output Sink Current

VIN(-)=1 VOC, VIN(+)=O, Vo=2Voc

Output Leakage Current

VIN(+)=1 VOC. VIN(-)=O, Vo=30Voc

",.:

",Sec

30

mAoc

0.70

,:
"

",Sec

8

' 0.1'

0

,

"V/mV

1.~

0.20

Vo=0.4Voc
Output Leakage Current

Input Commofl
MoejEi Voltage Range

' 500

mAoc
nAoc

......
±S:

mVoc

±1

±15

nAoc

4

40

nAoc

V+ -2.0

Voc

10

mAoc
1.0

!£Aoc

Differential Input Voltage , '" All VIN's~ 0 Voc (or V - on split supplies)(Note 8)
36
Voc
Note 1: For elevated temperature op~n,TJ max 's125'C for !he LP339. 8\8 ijunctlon to ambient) is 175"C/W for !he LP339N and 12O"C/W for the LP339M
when eHher device is soldered in a prt"1&d circutt poard in a still air environment. Tha low bias dissipation and the "ON·OFF" charactertstic of !he outputs keeps the
chip dissipation very small (Po';; 100 mW). prOvided the output transistors are allowed to saturate,
Note 2: Short ci.cuns from the output to V+ can ceuse excessive heating and evantual destruction, The maxin'lum output C\lrrent is I\PprQXimately 5Q rnA,
Note 3: This Input current will only exist when the voltage at any of !he input leads Is driven negative. It is due to !he collector-b8sa iunction of the input PNP
transistors becoming forward biased and lbereby acting as input clamp diodes, In addition to this diode 8O)lon, t~er" ", also lateral NPN parasitic transistor aeticn
on !he IC chip. This transistor action can cause !he output voltage of the comparators to go to the V+ voltage level (or to ground for a large input overdrive) for the
time duration that an Input is driven negative. This Is not destructive and normal output states will re-establish when the Input voltege, which Is negative. again
returns to a vsIue greater than -0.3 Voc (TA -25"C).
Note 4: These specHications apply for V+ =5Voc and O'C,;;TA,;;70' C. unless otherwise stated. The temperature extremes are guaranteed but not 100%
production tested. These paramaters are not used to csIculate outgOing AOL
Note 5: Tha direction of !,he input current Is CJI!I of the IC due to !he PNP Input stage. This current Is essentially 9otIlItent, lnd8pendent of the state of the ~ so
no loading Change 8xlstS on the reference '6< the input lines as long as the common-mode range is not exceeded. ' '
Note 6: The input eoml\lOn,mode voltage or etther Input voltage should not be allowed to go negative by more than 0.3V. :the upper end of the common-mode
voltage range Is V+ -1.5V'(TA=25"C). bul either or both inputs can go to 30 Voc without damage,
'
Note 7: The response time specified Is for a 100 mV input stap with 5 mV overdrive. For larger overdrive signals 1,3 p.s can be obtained. See Typical Performance
Charapteristics section.

3·150

Electrical Characteristics +

(V = 5 Voe. Note 4) (Continued)
Note 8: POII"1ve excursions of Input vo""ge may exceed the power supply level. As long es the other vo~ ramalns wRhln the common-mode range, the
comparator will provide a proper output state. The low input yo~ state must not be less than -0.3 Vee (or 0.3 Vee balow the magnitude of the negative power
supply, H used) at TA= 25"C.
Note 9: At output switch point, Vo=1.4V, Rs=On wRh V+ from 5 Vee; and ovar the full input common-mode range (0 Vee to V+ -1.5 Vocl·
Note 10: For input signals that exceed V +, only the ovardriven comparator is affected. With a 5V supply, VIN should ba limited to 25V maximum, and a limiting
resistor should ba used on ali inputs that might exceed the positive supply.
Note 11: The output sink currant is a function of the output yo~. The LP339 has a bi-modal output section which allows Rto sink large cumsnts via a Darlington
connection at output YO""g9S greater than approximately 1.5 Vee and sink lower cumsnts below this poin!. (See typicsl characteristics section and applicstions
section).

Typical Performance Characteristics
Output Sink Current

Input Current

Supply Current
5

1110
RL="

1.0
VtN(I:MI=OVue
RINICMI =10;'0

II

i

l..ooO'

TA=ZS'C

I'

~

~

TA~70'C

r-

-

TAI-O'C

I--

=

lA=2Ii'C

r- -=

f-~.,.

D••

1.

TA=O'C

6

!

"

Ir~

J,001''''""lTA=ZS'C
,-TA-70'C

I ,•

TA=70'C

0.4

0.2

o

o

10
ZO
3G
SUPPU' YDI1AOE (Vue)

o

40

I I
1
TA=25'C

TT

~=h~
~

f!I

I....

o

~~'C
I I

TT

~

e

5.0

4.0
I
3.0 1110mV
I !:l Z.O
I
~i 1.0
ZOm

.. !II

o

izi- 0
Il~:

1
2
4
OUTPUT VOI1AOE (Vue)

0.0

.J
D.Z 0.4
0.6 D..
DUT1'UT VOI1AOE (Vue)

0.0

1 ill

I

~L

ZO~Y

hE

!

I

I I
I I
TA-25"C

28

H:V~~
I I I I

-~...

~~:~,-

10
15
TIME(,..)

1.0

Response Times for
Various Input
Overdrives Positive Transition

-~....

(Ii

J

o

010
ZO
3040
Y+ - SUPPLY VOI1AIIE (Vue)

Response Times for
Various Input
OVerdrives Negative Transition

Output Sink Current
1110

I

TA=2&"C
5

10
15
nME(,..)

ZO

TUH/5226-10

3-151

Application Hints
All pins of any unused comparators should be grounded.

Notice that the output section is configured in a Darlington
connection (ignoring Q3). Therefore, if the output voltage is
held high enough (Vo~1 Vocl, Q1 is not saturated and the
output current is limited only' by the product of the betas of
Q1, Q2 and 11 (and the 600 RSAT of Q2). The LP339 is th.~
capable of driving LED's; relays, etc. in this mode while
maintaining an ultra-low power supply current of typically
60/LA.
If transistor
were omitted, and the output voltage allowed to drop below about 0.8 Voc, transistor Q1 would
saturate' and the output current would drop to zero. The
circuit WOUld, therefore, be unable to 'pull' low current loads
down to ground (or the negative supply, if used). Transistor
Q3 has been included to bypass transistor Q1 under these
conditions and apply the current 11 directly to the base of
Q2. The output sink current is now approximately 11 times
the beta of Q2 (700 /LA at Vo = 0.4 Vocl. The output of the
LP339 exhibits a bi-modal characteristic with a smooth transition between modes. (See Output Sink Current graphs In
Typical Performance Characteristics section.)

The bias network of the LP339 establishes a drain current
which is independent of the magnitude of the power supply
voltage over the range of from 2 Voe to 30 Voe.
It is usually unn~cessary to use a bypass capacitor across
the power supply line.
The differential Input voltage may be larger than V + without
damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3
Voe (at 25"C). An input clamp diode can be used as shown
in the application section.

as

The output section of the LP339 has two distinct modes of
operation-a Darlington mode and a grounded emitter mode.
This unique drive circuit permits the LP339 to sink 30 rnA at
Vo=2 Voe (Darlington mode) and 700 /LA at Vo=0.4 Voc
(grounded emitter mode). Figure 1 is a simplified schematic
diagram of the LP339 output section.
-4_-----V&&

It is also important to note that in both cases the output is
an uncommitted collector. Therefore, many collectors can
be tied together to provide an output OR'ing function. An
, output pull-up resistor can be connected to any available
power supply voltage within the permitted power supply
voltage range and there is no restriction on this voltage due
to the magnitude of the voltage which is applied to the V +
terminal of the LP339 package.

r.::---.... VOUT

TlIH/5226-11

FIGURE 1

Typical Applications (V+ = 15 Voe)
One-8hot MultMbrator
y+

100 pf

V;:L +VII.., ~~-_""-I
to

V+:rL
Vo ~ I-~
10 n
0.001,.F

Tl/H/5226-13

3-152

Typical Applications (V+

= 15 Vocl

Time Delay Generator

Y+
10k

15k

-

30k
10M

1011

Y" Y;=r
1 1

V3

10

t3

30Jc
51k

10M

1l1li

V"

v" v;::r

V;:r-L +vw
V2

to
t4
INPUT BATING SIGNAL

Y+

,,'

V3

i

10M

Slk

-

~

k

10k

V2

V"
VI

v+::r°1 1

Y1

10 "
61k

11

12

t4

TlIH/5226-15

ORlng the Outputs

Y+
30k
V,

TlIH/5226-16

3-153

Typical Applications (Continued) (V+ = 15 Vee>
Pulse Generator
Squarewave OscIllator

V+
V+

~~PF~~__~I~OOk~__-t

HI

10k

1M

01
lNa14

16k

":'

Vo

V+::n.r'

lOOk

lOOk

V+--~~"----~~--~

lOOk
TUH/5226-17

1M
TL/H/5226-18

Three Level AudIo Peak Indicator
-t----------~~--~~+Q

BJ..Stable Multlvlbrator
IV

1I11III

15k
Slk

1I11III

lOOk

TLlH/5226-21

TLlH/5226-19

LED Driver

Relay DrIver

12V (10mA)
RELAY

COIL

+VIN

TL/H/5226-23
-VIN

TUH/5226-22

3·154

~----------------------------------------------------------------------------~~

~

Typical Applications (Continued) (Single Supply)

Co)

CD

Buzzer Driver

Comparator With 60 mA Sink Capability
12V ...._ - - - -..._

...._ _...._ _....

12V

RL=l00
lW

BUmR
-20mA

TUH/5226-24

1M

TUH/5226-25

Non-Inverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

v+

Y+

+VW-----I

+YIN-----I
Yo

10k

Vo

1M

y+-Yll'Ir-......
1M
TUH/5226-26

1M
TUH/S226-27

BasiC Comparator

Output Strobing

Comparing Input Voltages
of Opposite Polarity
V+

+Y'N~30k

lOOk

1/4 LP339

+Yw

lOOk
- Y'N2 -Yll'Ir-'"

V+

Yo

-

> .....--Vo
STROBE
INPUT

Vo

TUH/5226-29
TUH/S226-30

TL/H/5226-28

3-155

~

I

i!i~

Typical Applications

(Continued) (Single Supply)

Transducer AmplHler

Zero CroaaIng Detector (Single Power Supply)
Y·

V·

lOOk

lOOk

11k

5.1k
YIN
Vo

MAGNmc11
PICKUP
20M

10k

TUH/5226-32
TUH/5226-31

Spilt-SUpply Applications
Zero Crossing Detector

Comparator With a Negative Reference
V·

V·

Vo

TUH/5226-34

TL/H/5226-33

3-156

Section 4
Active Matrix/LCD
Display Drivers

•

Section 4 Contents
LM61 04 Quad Gray Scale Current Feedback Amplifier ..................................
LM8305 STN LCD Display Bias Voltage Source ........................................
LMC6008 8 Channel Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-2

4-3
4-7
4-8

~-------------------------------------------------------------------------------,

I....
o

tflNational Semiconductor

~

LM6104
Quad Gray Scale Current Feedback Amplifier
General Description

Features (Typical unless otherwise noted)

The LM6104 quad amplifier meets the requirements of bat·
tery operated liquid crystal displays by providing high speed
while maintaining low power consumption.
Combining this high speed with high integration, the
LM6104 conserves valuable board space in portable systems with a cost effective, surface mount quad package.
Built on National's advanced high speed VIPTM (Vertically
Integrated PNP) process, the LM6104 current feedback ar·
chitecture is easily compensated for speed and loading con·
ditions. These features make the LM61 04 ideal for buffering
grey levels in liquid crystal displays.

•
•
•
•
•
•

Low power
Slew rate
-3dB bandwidth (RF = 1 ko.)
High output drive
Wide operating range
High integration

Is = 875,..A/amplifier
1OOVII's
30 MHz
± 5V into 1000.
Vs = 5V to ±12V
Quad surface mount

Applications
•
•
•
•

Grey level buffer for liquid crystal displays
Column buffer for portable LeOs
Video distribution amplifiers, video line drivers
Hand·held, high speed signal conditioning

Typical Application
LCD Buffer Application for Grey Levels

TUH/11979-1

Connection Diagram
14 OUTPUT 4

OUTPUT 1
INVERTING INPUT 1....::..0.........,.NON-INVERTING 3
INPUT 1

V+
NON-INVERTING 5
INPUT 2
INVERTING INPUT 2

13 INVERTING INPUT 4
12 NON-INVERTING
11 INPUT 4
V10 NON-INVERTING
INPUT 3
9 INVERTING INPUT 3
8 OUTPUT 3

OUTPUT 2

TL/H/11979-2

Order Number LM6104M
See NS Package Number M14A

4-3

r-

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Oifferentiallnput Voltage
Input Voltage
Inverting Input Current

Storage Temperature Range
Maximum Junction Temperature
ESO Rating (Note 2)

24V
±6V
± Supply Voltage

Electrical Characteristics

av, V ~

4.75Vto24V

Junction Temperature Range (Note 3)
LM6104M
-20"

s: TJ s:

= - 5V, RL = RF "" 2 kO and 0"

Parameter

+8O"C

.'

s:

Conditions

s:

TJ

,
Symbol

-f'15O"C
150"C

Operating Ratings

21 SOC
220"C

The following specifications apply for V + =

s:

2000V

Supply Voltage Range

15mA

Soldering Information
Vapor Phase (60s)
Infrared (15s)

-65"C S! TJ

8O"C unless otherwise noted.

LM6104M

Typical
(Note 4)

Limits
(Note 5)

Units

mVmax

Vas

Input Offset Voltage

10

30

Ie

Inverting Input Bias Current

5.0

20

p.Amax

Non-Inverting Input Bias Current

0.5

2

ILAmax
mAmax

Is

Supply Current

Vo=OV

3.5

4.0

Isc

Output Source Current

Vo= OV
IIN(-) = -100 p.A

60

45

Vo= OV
IIN(-) = 100 p.A

60

45

Output Sink Current
Vo

PSRR

Positive Output Swing

IIN(-) = -100 ILA

Negative Output Swing

IIN(-) = 100 p.A

Power Supply Rejection Ratio

Vs = ±4to ±10V
100 mV pp

@

100 kHz

rnA
min
mA
min

6.5

6.1

Vmin

-3.5

-3.1

V max

70

60

dB min

40

30

dB min

10

5

MOmin

RT

Transresistance

SR

Slew Rate

(Note 6)

100

55

V/p.a min

BW

Bandwidth

Av =-1
RIN = RF = 2kO

7.5

5.0

MHz

Amp-to-Amp Isolation

RL = 2kO
F = 1 MHz

60

dB

V+ - 1.4V
V- + 1.4V

V

60

dB

240

ns

CMVR

Common Mode Voltage Range

CMRR

Common Mode Rejection Ratio

ts

Settling Time

0.05%, 5V Step, Av = -1
RF';' Rs = 2kO, Vs = ±5V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical Specifications do not apply when operating
the device beyond its rated operating conditions. Operating ratings indicate conditions the device Is intended to be functional. but device parameter specifications
may not be guaranteed under the condHions.
Note 2: Human body model 1.5 kfi and 100 pF. This is a class 2 device rating.
Note 3: Thermal resistance of the SO package Is 98'C/W. When operating at TA

= 8O"C, maximum power dissipation is 700 mW.

Note 4: Typical values represent the most likely perametric"norm.
Note 5: Aillimlts guaranteed at operating temperature extremes.
Note6:Av = -1 wHh RIN = RF = 2kO. Slew rate is calculatedlrom Ihe 25% to the 75% poIntonbolh rising and falling edgss. Output swing Is -O.6Vto +5.6V
and 5.6V to O.av.

4-4

Typical Performance Characteristics
Frequency Response vs
Cloud Loop Gain
70

~

,= :'0.0

.0

....

'=.

30

'=.
,=
.=-

20
10
0

100

~

-20
-3D
0.01

Am lified"'"

80

IIII~

II

0.1

1

10

~

!:i

l\!

~

is

10

!z

-10

~

-20

l\!

-25

R,Hkll

!:i

-30
-35
-40

R,=2kO

200

&00

1000

•

2

,.00

1800

;

e

-2

I

-3

0.1

1

---

,

....

+7.5mA LOAD

'>~ 1••
w>

~o

"

~~
g~

1.2

~o

~~
10

Curve, apply to both posltl."
end negative output volt8gn.
1.0
-25
0
25
50
75

100

TEMPERATURE (OC)

~

e
"

3

.2:-

2

I
!;

~

~

Vs = t5V
10

20

30

14

4

~

0

12

LM6104 Output Voltage
vs Sink Current

!;

-.

10

1.6

~
d~

N

=5.1 kO

LM6104 OUtput Voltage
vs Source Current

....

8

VOUT Referred to SUpplies
Vs = ±5V
liN = ±100p.A

FREQUENCY (MHz)

-1

&

SUPPLY VOLTAGE (tV)

lit = 10kJl
V+=8V
111111
V-=5V
TA =+25 OC
111111

TIME (ns)

.2:-

0

R,= 1 kJl

-15

-2
-200

1

1000

-5

~

--

it:
Oil

-25°C

.~.=2kJl

5
0

R,= 10kJl

R,=lkO-o

100

10

2

0

2

Frequency Response VB RF
Ay = -1,RF = RG

V+=8Y
V- = -5V
TA = 25°C

•

+25 OC

FREQUENCY (kHz)

Large Signal Pulse Response
Av =-1

E

+85 OC

0
1

FREQUENCY (MHz)

&

I

50

100

1111
1111

3

~

60

III
III

•

'C'
E
!t

70

111111
III IIi

-10

5

Am Iifler#2 end #

90

~~

Supply Current va
SUpply Voltage

Ay=-I~~
R,=
2kO
Am lifier # 1 DrlYen

110

1.=

1IIIIIft I

50

~

120

111111

60

....

Amplifier to
Amplifier Isolation

.0

50

1
0

60

OUTPUT SOURCE CURRENT (mA)

--

~

10

20

30

Ys = .t5V
40

50

60

OUTPUT SINK CURRENT (mA)
TL/H111979-3

4-5

~

r-------------------------------------------------------------------------------~--

Q

.....
CD

....::E

__,

Applications Information
CURRENT FEEDBACK TOPOLOGY

Bandwidth and slew rate are inversely proportional to the
value of RF (see typical curve Frequency Response vs RF).
This makes the amplifier especially easy, to compensate for
a desired pulse response (see typical curve Large Signal
Pulse Response). Increased capacitive load dr,iving capability is also achieved by increasing the' value of,RF.
The LM6104 has guaranteed performance with a feedback
resistor of 2 kG.
" .,

The small-signal bandwidth of conventional voltage feedback amplifiers is inversely proportional to the closed-loop
gain based on the gain-bandwidth concept. In contrast, the '
current feedback amplifier topology, such as the LM6104,
enables a signal bandwidth that is relatively independent of
the amplifier's gain (see typical curve Frequency Response
vs Closed Loop Gain).
'

FEEDBACK RESISTORSEL,ECTION: RF

CAPACITIVE FEEDBACK
, It is common to place a sma)lle~d capacitor in parallel with
feedback resistance to compensate voltage feedback amplifiers. Do not place a capacitor acr6,ss'RF to limit the bandwidth of current feedback amplifiers. The dynamic impedance of capacitors in the feedback path of the LM6104, as
with any current feedback amplifier, will cause instability.

Current feedback amplifier bandwidth and slew rate are
controlled by RF. RF and the amplifier's internal compensation capacitor set the dominant pole in the frequency response. Tl1e amplifier, "therefore, always requires a feed-,
back resistor,even in unity gain.

4-6

tt/National Semiconductor

LM830S-STN LCD Display Bias Voltage Source
General Description

Features

The LM8305M contains five buffered voltage sources to
provide the voltage ratios required to drive a standard STN
LCD display panel using a time-multiplexed voltage waveform to activate, or deactivate, a pixel once every picture
frame. The internal resistor array features a binary weighted
array to allow the user to select the proper ratio for the
display being driven. The user can use an external resistor
to set the ratio, if desired.
The LM8305 has a maximum operating supply voltage of
50V to support higher multiplexing rates.
The LM8305 also features an internal high side PNP switch,
and an independent voltage comparator with an internal
bandgap reference.

•
•
•
•
•
•

High operating voltages, 50V maximum
Internal resistor array with binary weighting
Ratios from 1/6 to 1/37
Optional external resistors
High-side PNP switch from Vee
Separate voltage comparator circuit with band-gap voltage reference
• Surface mount 24-pin package

Typ'ical Application

Connection Diagram
Gnd

Vee
Switch Out

On/Off
Ve2

VREF1

VIN2

VREF2

RXI

VO

RX2

VI

RX3

V2

RX4

V3

RX5

V4

RX6

Reset

Vel

11

14

VSense

Gnd

12

13

VDD
TLlH/I2345-2

Top View

See NS Package Number M24B
Order Number LM8305M

4-7

(

IIfINatiOnal

Semiconductor

LMC6008
8 Channel Buffer
General Description
The LMC600B octal buffer is designed for use in an active
matrix liquid-crystal display (AMLCO), specifically to buffer
the gray-level voltages going to the inputs of the column
driver integrated circuits. In an B-gray-Ievel (512 color) or
16-gray-level (4096 color) AM LCD, the function of the column drivers is to switch the gray-level voltage inputs to the
AM LCD columns. Thus, the voltage buffers must be able to
drive the column capacitance of the entire display panel.
The LMC600B AC characteristics, including settling time,
are specified for a capacitive load of 0.1 ,...F for this reason.
The LMC600B contains 4 high-speed buffers and 4 lowpower buffers. The high-speed buffers can provide an output current of at least 250 rnA (minimum), and the low-power buffers can provide at least 150 rnA (minimum). The highspeed buffers are intended to be used for the highest graylevel voltages (VO, V1, V2, V3 in an B-gray AMLCD). By
including the 2 types of buffers, the LMCSOOB is able to
provide this function while consuming a supply current of
only 6.5 mA (maximum). The buffers are a rail-to-rail design,
which typically swing to within 30 mV of either supply.

The LMC600B also contains a standby function which puts
the buffer into a high-impedance mode. The supply current
in the standby mode is a low 500 ,...A max. Also, a tharmal
limit circuit is included to protect the device from overload
conditions.

Features
• High Output Current:
High Speed Buffers
Low Power Buffers
• Slew Rate:
High Speed Buffers
Low Power Buffers
• SeWing Time, CL = 0.1 p.F
• Wide Input/Output Range
• Supply Voltage Range
• Supply Current
• Standby Mode Current

250 mA min
150 rnA min

1.7 V/,...s
0.B5V1,...s
16 ,..s max
O.W to Vee - O.W min
5V to 16V
6.5 rnA max
500,...A

Applications
• AMLCD voltage buffering
• Multi-voltage buffering

Ordering Information

Connection Diagram

Package

24-P1nSO
24

Vee

23

INI

22

IN2

21

IN3

20

IN4

19

STD-BY

18

NC

17

IN5

16
15

IN7

14

IN8

13

Vee

Temperature Range NSC
Transport
-40"C to +85"C Drawing
Media

24-Pin
LMCSOOBIM
Surface Mount LMCSOOBIMX

GND
OUT1
OUT2
OUT3
OUT4
NC
PGNO
OUTS
OUT6
OUT7
OUT8
GND
TUHI12321-1

Top View
Note: Buffers 1. 3. 5 and 7 are High Speed and
Buffers 2. 4, 6 and 8 are Low Speed.

4-B

M24B

Rail

M24B TaPe & Reel

Absolute Maximum Ratings (Note 1)

Operating Ratings (Note 1)

If Military/Aerospace specified devices are required,
plesse contact the National Semiconductor Seles
Offfce/Dlstributors for availability and specifications.
ESD Tolerance (Note 2)
2000V
V+ + 0.4V, V- - 0.4V
Voltage at Input Pin
V+ + 0.4V, V- - 0.4V
Voltage at Output Pin
Supply Voltage (V+ - V-)
16V

Supply Voltage
Temperature Range

Lead Temperature
(soldering, 10 sec.)

4.5V s; V+ s; 16V
- 20"C to + 1OO"C

Thermal Resistance (8JN
M Package, 24-Pin Surface Mount

50"C/W

260"C

Storage Temperature Range
Junction Temperature (Note 4)
Power Dissipation (Note 4)

- 55'C to + 150"C
150"C
Internally Limited

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for TJ = 25'C, Vee = 14.5Vand RL = O.
Symbol

Parameter

Vas

Input Offset Voltage

Av

Va = 10Vpp

Conditions

Typ
(NoteS)

Rs = 10kO

LMC6008
Limit
(Note 6)

Units

25

mVmax

0.985

VIV

IB

Input Bias Current

ILP

Peak Load Current

Hi Speed Buffers
Va = 13Vpp

300

nAmax

-250

mAmax

ILP

Peak Load Current

Lo Speed Buffers
Va = 13Vpp

VERR

Output Voltage Difference
(Note 9)

VIH

Standby Logic
High Voltage

3.30

V min

VIL

ISTANDBY Logic
Low Voltage

1.80

V max

IIH

Standby High Input Current

1.0

pAmax

1.0

pAmax

+250

mAmin

-150

mAmax

+150

mAmin
mVmax

35

IlL

Standby Low Input Current

10 (SlO-By)

Output Leakage Current

VSTD-BY = High

lee

Supply Current

ISTD.BY
PSRR
Va

Voltage Output Swing

5

pAmax

VIL = Low, VIN = 7.25V

6.5

mAmax

Standby Current

VSTD-BY = High

500

pAmax

Power Supply Rejection Ratio

5V

55

dB min

< Vee < 14.5V

4·9

0.1

V min

Vee - 0.1

V max

.,

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed fo~ TJ

Symbol
SR

Parameter

ts

Settling Time

14.5Vand

Conditions

Fi L

= 00.
Typ

LMC600a.·· .
Limit
(NoteS)

Units

Buffers 1, 3, 5, 7 (Note 3)

1.70

Vlp.smin

Buffers 2, 4, 6, 8 (Note 3)

0.85

Vlp.smin

,

Slew Rate

= 25"C, Vee :=

16

p.s max

toN

Standby Response Time ON

10

p.smax

toFF

Standby Response Time OFF

10

p.smax

PBW

Power Bandwidth

45

KHz min

0.1

p.Fmax

CL

(Notes3,7)

(Note 5)

Vo = 10 Vpp for Hi-Speed
Vo = 5 Vpp for Lo-Speed
(Note 3)

Load Capacitance

Note 1: Absolute Maximum Ratings Indicate Umlts beyond which damage to the device may occur. Opsraling ratings Indicate conditions for which the devica Is
intended to be functional. but specific performance is not guerantesd. For guaranteed specifications and the test conditions. 888 \he EIectricsI Characteristics.
Note 2: Human body model, 1.5 kO in serias with 100 pF.
Note 3: The Loed is a series connection of a 0.1 ,.F capacitor and a 10 resistor.

Note 4: The maxlmum power dissipation is a function of TJ(max), 8.lAo and TA. The maximum allowable power dissipation at any ambient temperature Is
Po = CTJ(max) - TAlI8JA, where the junction-to-ambient thennaI resistance 8JA = &1'CIW. If the maximum allowable power dissipation Is exceeded, the thermal
limH clreuH wilillmH \he die temperatura to approximately l6O'C. All numbers apply for packages soldered directly Into a PC beard.
Note 5: Typical Values repre8em \he most likely parameIric norm.
.'
Note 6: All limits. are guaranteed by testing or statistical anaJysIs.
Note 7: The eetUlng time is measured from the Input 1rsn8lt1on to a point 50 mV of the final value, for both rising and failing tranSitions. The Input swing Is 0.5V to
13.5V for buffers 1, 3, 5, 7 and 3.75V to 10.25V for buffers 2, 4, 6, 8. Input rise time should be less than 1 ,...

Note 8: High-Spasd Buffers are 1, 3, 5, 7 and Low-Spesd Buffers are 2, 4, 6,' 8.
Nott! 9: Output Voltage Oiffensnce Is the difference between \he

higheSt Il!1d lowast buffer output voltage when all buffer inputs are atldenticsl voltages.

,

4-10

Section 5
Special Functions

I

Section 5 Contents
DH0006/DH0006C Current Drivers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DH0034 High Speed Dual Level Translator.. ... . . . . . .. . .. . . . . . . . .. . . . . . . .. .. . . . . . .. . ..
DH0035/DH0035C Pin Diode Driver ..................................................
LH0094 Multifunction Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM194/LM394 Supermatch Pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM195/LM395 Ultra Reliable Power Transistors ........................................
LM3045/LM3046/LM3086 Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3146 High Voltage Transistor Array................................................
LP395 Ultra Reliable Power Transistor .,..............................................

5·2

5·3
5·7
5·11
5·14
5·23
5·31
5·42
5·47
5·52

tflNational Semiconductor

DH0006/DH0006C* Current Drivers
General Description

Features

The DHOOOS/DHOOO6C is an integrated high voltage, high
current driver designed to accept standard DTL or TTL logic
levels and drive a load of up to 400 mA at 28V. AND inputs
are provided along with an Expander connection, should additional gating be required. The addition of an external capacitor provides control of the rise and fall times of the output in order to decrease cold lamp surges or to minimize
electromagnetic interference if long lines are driven.
Since one side of the load is normally grounded, there is
less likelihood of false tum-on due to an inadvertent short in
the drive line.

• Operation from a Single + 10V to + 45 Power Supply
• Low Standby Power Dissipation of only 35 mW for 28V
Power Supply
• 1.5A, 50 ms, Pulse Current Capability

·PreviOuSIy called NHOO06INHOOO6C

Schematic and Connection Diagrams
1
--.-----~~------~~----~--~~ov~

R3

R4

Rl

10

....--+-0 OUTPUT

R2

2

9
8

0--+""""
3
INPUT 0--+""""
4
EXPANDER 0--------1
INPUT

C} RESPONSE

'------0() B

TillE CONTROL

6

...--.......j~--+-------------o GROUND
TlIKllDl20-1

Metal Can Package
OUTPUT
RESPONSE

'I"'o<~--TIIIE

CONTROL
INPUT
INPUT

N.C.

TopYI_

Order Number DHOOO6H or DHOOO6CH
See NS Package Number H10F

5-3

TLlKllDl20-2

Absolute Maximum Ratings
If Military/Aerospace specified devices are requlreci,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Peak Power Supply Voltage (for 0.1 sec)

60V

Continuous Supply Voltage

45V
5.5V

Input Voltage

Input Extender Current

5.0mA

Peak Output Current (50 ms Onll sec Off)
Operating Temperature
DH0006
DHOO06C
Storage Temperature

",

1.5A

-55DC to + 125DC
Co ODC to' :.. 70"C
- 65DC to + 150"C

Electrical' Characteristics (Note 1)
Parameter

Conditions

Typ
(Note 2),

Min
!

= 45Vtol0V
= 45Vtol0V
Vee = 28V, VIN = 2.0V, lOUT = 400 mA
Vee = 45V, VIN = 0.8V, RL = ~k
Vee = 10V, VIN = 2.0V, lOUT = 150 mA
Vee = 45V, VIN = 0.4V
"
Vee = 45V, VIN = 2.4V
Vee = 45V, VIN = 5.5V
Vee = 45V, VIN = 0.8V
Vee = 45V, VIN = 2.0V, lOUT = 0 mA
Vee = 28V, RL = 820

Logical "1" Input Voltage

Vee

Logical "0" Input Voltage

Vee

Logical "1" Output Voltage
Logical "0" Output Voltage
Logical "1" Output Voltage
Logical "0" Input Current
Logical "1" Input Current

"Off" Power Supply Current
"On" Power Supply Current
Rise Time

0.8
26.5

27.0
0.001

8.8

9.2
-1.0

mA

0.5

5.0
100

p.A

1.6

2.0

mA

8

mA

0.10
0.8
0.26

Toft

2.2

Nole 1: Unless otherwise specified. Umlts shown applylrom -55'C \0 + 125'C for DH0Q06 and'O'C \0 +70'C for DHOOO6C.

Note 2: Typical values are lor 25"C ambient.
Nole 3: Power ratings for the T0-5 based on a maximum junction temperature of + 175"C and 9JA of 210'C/W•

-

t,.1--tt

.

-

PULSE
INPUT

50%
,

10%

---'
,

-

t,

.

- tt

~

90%
.TON

10%

~ ~T"~\
PULSE OUTPUT

TLlK/l0120-6

,

I
5-4

V
0.01

-0.8

Ton

90%

Units

2.0

Fall Time

Switching Time Waveforms

Max

p.s

Typical Performance Characteristics
Maximum Continuous Output
Current for TO-S

Input Threshold Voltage
vs Temperature

~.-r-r-~~~~~,

2.2
~2.0

~

1.8 f-:

~ 1.11

I :~
~
200

G

600

~

j
l"iIIII~

+IOVVcx:

I

JIG

1i3

I

+45VVcx:

os

I I

1200
10lIl

i

f- ...... f:::::: to-..
......
r-- r--

+25'C

800

P

''O~~=-'~~

1.0

600

I:

I

"OFF" Supply Current Drain

o
10

--

"ON" Supply Current Drain

Tum On and Rise Time
G

is

'A ~ -<::

o

10

~

+125'C
+25'C

20

-55'C

!

6

5
E
iil

+25'C

5

4

~

Turn Off and Fall Time
1

~~~~bJ-b~
~

vlN = 3.OV PUlSE

1/

y

+125'C

1 1

1

-

I

i-"

1

-75 -50 -25 0 25 50 75 100 125
TENPEllAnJRE ("C)

o

Output Saturation Voltage

g

1.8

is

1.&

1.3

~

~ 1.2

u

!i

Gl

Il11O

Il11O

l l L

1 1

1 1

~
/{.

I I
I I

I
I

Tc = 25'C

I

o

o

1000

I ... ''OM"-'100 ... "aFF"-

Tc = -55'C

.. D.2

I I
I I
I I

10203040
SUPPl.Y VOLTAGE, Vceo (V)

50

Turn On Control

1,.= 10na

I

.,.!GOpF

Co/_pi

OI---1I--+-+--o--+--I
30 1--+--+---1

I

I,. ::510 IIS...L,....

J J

y.1?

OUTPUT CURRENT, 110-a' (mA)

~2.0I--+--+-I--I---+--I

~

vlN = 3.OY PUlSE

C1. = 10pF

1.4 Tc = 125'C.A ,. PULSE CONDITION

1.2

I:

I :~~-W~__~~~~
3JO

= 28V

RL = 68A

I I
I I
I I

I~

~ ~~~~~~~~~
~ 0.8 1-0'1'71'''''''-1-+
o

..".

Available Output Current
2.0

1.8 I"""1""'T"-'-"'''''''""'T''-'
IS~-+~~~~~~~
1A

J

U. vee

-75 -50 -25 0 25 50 75 100 125
lfJIPERAnJRE ('C)

~

Turn Off Control

i

RtS£ 11UE

IOD

1.1 HJlf+:;;jooo'''F-I:..!lI;;;S;;

vAll--

o

~
o

1 1

r-~l~
1 1

SUPPLY VOLTAGE (V)

4JI

t,:SIOlll

~V

20

10

SUPPLY VOLTAGE (V)

Vcx:=28V

,.""
f>' ...o!V

r--

l.oIIII! ~

o

~

1/

~ ~V

3

2

+125'C

50

1 1

....... ~

/.::;.' l.;'

P

'"

SUPPLY VOlTAGE (V)

8

~~

.....

20

,,~

-55'C

k::::

h. ~ ~ ~
~~

-55'C

-50 -25 0 25 50 75 100 125
AIIBIENT TENPEllAnJRE ("C)

800

MAXlIIUII CON11NUOUS OU1P\lf CURRENT (mA)

2.0

Logical "0" Input Current
1600

I
I
I
~"~,~~~

~

201-~~~~~-+--I

5

5

10I--II---'lr-p.,d

o

200

20
10

Co =9'

~~

III

.....r l

Vee = 2IV

.... IIA

TA= ....

c". 10pF

o 2.0

250

,

4JI

8.0

8.0

10

TIME (PO)

TUK/IOI20-7

5·5

Typical Applications
Lamp Driver with Expanded Inputs

Relay Driver

Yee

Vee

+28Y

DTl/TTL{

IN=

---I

...........-r

EXPANDER INPUT - - - - '

RELAY

Dll/TlL

COIL

327
LAMPS

LOGIC
INPUTS

TUK/l0120-4

TUKll0120-5

5-6

f}1National Semiconductor

DH0034
High Speed Dual Level Translator
General Description

Features

The DHOO34 is a high speed level translator suitable for
interfacing to MaS or junction FET analog switches. It may
also be used as a universal logic level shifter capable of
accepting TILlDTL input levels and shifting to CML, MaS,
or SLT levels.

•
•
•
•

Fast switching, tpdO: typically 15 ns; tpdl: typically 35 ns
Large output voltage range: 25V
Input is TIL/DTL compatible
Low output leakage: typically 0.1 p.A

Schematic and Connection Diagrams
Dual-In-Line Package
Ne

A,
8,
Ne
I/"

1

14

2

13

OUTPUT 2

Ne

GND

GND

A2
82
Ne

I/"

OUTPUT 1

Yo CircuH Shown

Vee

TLlK/l0122-3

I/"
Top View

TUK/l0122-1

Order Number DH0034D-MIL
orDHOO34CD
See NS Package Number D14D

•
5-7

•g
::I:
Q

Absolute Maximum Ratings
Input Voltage
Operating Temperature Range
DH0034D·MIL
DH0034CD
Storage Temperature Range
.Lead Temperature (Soldering, 10 sec.)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Salea
Office/Distributors for availability and specifications.

Vee Supply Voltage
Negative Supply Voltage
Positive Supply Voltage
Differential Supply Voltage
Maximum Output Current
Power Dissipation

7.0V
-30V
+25V
25V
100mA
(Note 4)

+5.5V
- 55·C to + 125·C
O"C to. + 85·C
-55·Cto 150"C
300"C

Electrical Characteristics (See Notes 1 and 2)
Parameter

DHOO34

Conditions
Min

=
=
=
=
=
=
=
=
=
=
=
=

Typ

Units
Max

Logical "1"
Input Voltage

Vee
Vee

Logical "0"
Input Voltage

Vee
Vee

Logical "1"
Input Current

Vee
Vee

Logical "1"
Input Current

Vee
Vee

Logical "0"
Input Current

Vee
Vee

Power Supply
Current
LogiC "·0"

Vee
5.5V, VIN = 4.5V
5.25V, VIN = 4.5V
Vee
(Note 3)

30

38

mA

Power Supply
Current
Logic "1"

Vee = 5.5V, VIN = OV
Vee = 5.25V, VIN = OV
(Note 3)

37

48

mA

Logical "0"
Output Voltage

=
=
Vee =

V- + 0.50
V- + 0.3

V- + 0.50

5.5V, VIN
V+ - V- = 25V

0.1

5.0

Vee = 5.0V, V3 = OV, TA = 25·C
V- = 25V, RL = 5100

15

25

Output Leakage
Current
Transition Time to
Logical "0"

Vee
Vee

2.0

4.5V
4.75V

V

5.5V
5.25V

0.8

5.5V, VIN = 2.4V
5.25V, VIN = 2.4V

40

5.5V, VIN = 5.5V
5.25V, VIN = 5.5V

1.0

5.5V, VIN = 0.4V
5.25V, VIN = 0.4V

-1.5

= 100 mA
= 50 mA
= 0.8V

4.5V, lOUT
4.5V, lOUT

V
p.A
mA
mA

V
p.A
ns

75
Transition Time to
Vee = 5.0V, TA = 25·C
35
ns
Logical "1"
V- = -25V, RL = 5100
Note 1: The specifications apply over the temperature range -55'e to + 125"C for 1he DHOQ34IJ.MIL and over the tempsrature range -25'C to +85'C for
DHOO34CD with a 5101) resistor connected between output and ground, and V- connected to -25V, unless otherwise specified.
Note 2: All typical values are for TA = 25"C.
Note 3: Current measured is total drawn from Vrx; supply.
Note 4: Power rating for the Cavity DIP based on a maximum junction temperature of 175'C and 8JA = lSO'C/W.

5-8

2. Recommended Output Voltsge Swing

Theory of Operation

The graph shows boundary conditions which govern proper
operation of the DH0034. The range of operation for the
negative supply is shown on the X axis and must be
between - 3V and - 25V. The allowable range for the positive supply is governed by the value chosen for V-. V+
may be selected by drawing a vertical line through the selected value for V- and terminated by the boundaries of the
operating region. For example, a value of V- equal to -6V
would dictate values of V+ between -5V and +19V. In
general, it is desirable to maintain at least 5V difference
between the supplies.

When both inputs of the DH0034 are raised to logic "1" the
input AND gate is turned "on" allowing 01's emitter t~ become forward biased. 01 provides a level shift and constant
output current. The collector current is essentially the same
as the emitter which is given by

Vee - VBE
R1
Approximately 7.0 mA flows out of 01's collector.
About 2 mA of 01's collector current is drawn off by pull
down reSistor, R2. The balance, 5 mA, is available as base
drive to 02 and to charge its associated Miller capaCitance.
The output is pulled to within a VSAT of V-. When either (or
both) input to the DH0034 is lowered to logic "0", the AND
gate output drops to 0.2V turning 01 off. Deprived of base
drive 02 rapidly turns off causing the output to rise to the V3
supply voltage. Since 02's emitter operates between 0.6V
and 0.2V, the speed of the DH0034 is greatly enhanced.

~~~~~-,~~~~

~
v+V'"_<-3V
V'" :525V'-+-+-+I-,I
~,£jl--l

>"

20

III
~

10r-+-~~~~~~~}-+-~
5~+-~~-+-4~--}-+-~
0
~ OPERATING REGION '----

~
~

~

15~+-~-+-+-4~~~-+-t~

./

~ -5ri+-~-r-+-4--~~~~~
:

-10

H+-~-r-+-4~~V-+-4~

~ -15I--t1H-+~'/~-+-+--I---l
~ -20 H+-~~~"""'-+-4---j~}--l-~

Applications Information
1. Paralleling the Outputs

_~~~~-L~~~-L~

The outputs of the DH0034 may be paralleled to increase
output drive capability or to accomplish the "wire OR". In
order to prevent current hogging by one output transistor or
the other, resistors of 20/100 mA value should be inserted
between the emitters of the output transistors and the minus
supply.

-24

-18

-12

-6

0

NEGATIVE SUPPLY VOLTAGE (-V)
TLfKf10122-6

Switching Time Waveforms
INPUT

,--5V

t

- f- 50"

1-50"

o--i
-,
OUTPUT

I/---OV

........ 50"

-j~ 50"

Il"_-I-JII -----25V
TLlKf10122-7

•
5-9

~

CO)

r---------------------------------------------------------------------------------,

0,

o

:c

Typical Applications

Q

TTL to IBM (SLT) Log,lc Lavels

5 MHz Analog SWitch
ANALOG~_..,
IN-

.. _______ 1______ .
5V

ANALOG
OUT

5V

-----------.
1/2 DH0034

INPUT 2

>4o-......-1-0UTPUT 2
I
I

510
-15

I

-------:1:-----DH0034

I

510

+10V
TL/K/l0122-4

TUK/l0122-5

5-10

ttlNational Semiconductor

DH0035/DH0035C
PIN Diode Driver
General Description
The DH003S/DH003SC is a high speed digital driver designed to drive PIN diodes in RF modulators and switches.
The device is used in conjunction with an input buffer such
as the DM7830/DM8830 or DMS440/DM7440.

Features
• Large output voltage swing-30V
• Peak output current in excess of 1A
• Inputs TTUDTL compatible

• Short propagation delay-10 ns
• High repetition rate-5 MHz
The DHOO3S/DH0035C is capable of driving a variety of PIN
diode types including parallel, serial, anode grounded and
cathode grounded. For additional information, see AN-49
PIN Diode Drivers.
The DH003S is guaranteed over the temperature range
- SSOC to + 12SOC whereas the DHOO35C is guaranteed
from O"C to + 8S·C.

Schematic and Connection Diagrams
8

yo

Metal Can Package

9

R3
500

INPUT A COUP
Rl
6
7 --'\11250,.,...+""""",
INPUT A 0
CR2

R2
INpUT B ().3_\II3k,.,.................

CR3
TUK/l0124-2

Top View

ly-2
TUKll0124-1

S-11

Order Number DHOO35G-MIL or DHOO35CG
See NS Package Number G12B

Absolute Maximum Ratings
Power Dissipation (Note 3)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
V- Supply Voltage Differential (Pin 5 to Pin 1 or 2)
40V

Storage Temperature Range
Operating Temperature Range
DH0035
DH0035C
Lead Temperature (Soldering, 10 sec.)

V+ Supply Voltage Differential (Pin 1 or 2 to Pin 8 or 9) 30V
Input Current (Pin 3 or 7)
±75mA
Peak Output Current

,,'
1.5W
:,'
-S5·C to of 150·C
-,55~C

to + 125·C
O"Cto +85·C
300"C

±1.0A

Electrical Characteristics (Notes 1 and 2)
Parameter

Limits

Conditions

Units

Min

Typ

Max

1.0

2.0

0.4

O.S

7.0

+8.0

Positive Output Swing

= -8V, RL = 1000
VOUT = +8V, RL = 1000
lOUT = 100mA

Negative Output Swing

lOUT = 100 mA

Positive Short Circuit Current

VIN = OV, RL = 00
(Pulse Test, Duty Cycle :s; 3%)

400

800

mA

Negative Short Circuit Current

VIN = 1.5V,IIN = 50 mA, RL = 00
(Pulse Test, Duty Cycle :s; 3%)

800

1000

mA

Tum-On Delay

VIN

Input Logic "1 " Threshold

VOUT

Input Logic "0" Threshold

Turn-Off Delay
On Supply Current

Note 1: Unless otherwise specilted, these specifications apply for V+
the DH0035. and O'C to + 8SOC for the DH0035C.

V
V
-7.0

~8.0

= 1.5V, VOUT = -3V
VIN = 1.5V, VOUT = +3V
VIN = 1.5V

V

10

15

15

30

ns

45

SO

mA

= 1a.av. V = - I a.av. pin 5 grounded. over the temperature range -

ns

WC to + I 25'C for

Note 2: All typical values are for TA = 25'C.
Note 3: Derate linearly at I mWrC for ambient temperatures above 25'C.

a

Typical Applications
Grounded cathode Design
v+= 10V

_----!J------.

I
I
I
I
I
I
I

I I
I
1/2

6---------

1.J:i
200 r
I
I

~

p

'1"_ 71

I
I

-- :0

IN

I
I
I
I

.-----.1-----DM8830

-

~c~ ~

62~

5.0V

L t.I

I
I

20pr*

t!

250 pr

I

:11

I :12 1

1.-----

31

"

--.

PIN
DIODE ~,.
:: SWITCH - ~

II

DHOO35

I
I
I
I

h~-mrr·;:.~{
O.l~r

V-=-10V

_
-

Note: Cathode grounded PIN diode: Rp = 62ll. limits diode forward current to 100 mAo Typical switching for
HP33604A. RF tum-on 25 ns. tum-oti5 ns. C2 = 250 pF. Rp = all.. CI = O.IF.

5-12

V

TLlK/l0124-3

Typical Applications (Continued)
Grounded Anode Design

S.OV

.____ 1J______ .
LOGIC
INPUT V-7"1

1

1

1

"""L_'
1/2 1lM7830/D1I8830

II
PIN
:: DIODE

20pF...,... .:

------.1.------

1

Ir-----

1

1

'-'l_~_~~';_
;Jl~_J

1

RII
564

C2_
1200 pF

-

V-=-10V
Note: Anode Grounded PIN diode: RM

= 56n limits diode forward current to 100 rnA. Typical switching for

HP33622A, RF tum-on 5 ns; tum-off 4 os. Cl = 470 pF, C2 = 0.1 I'F, RM =

on.

Alternate Current Limiting

y+

TO

>C:>-H~IN\,.-4~PIN

DIODE

v+ - 2 Iv-I-2

R=--or--If
~

TL/K110124-5

5-13

TL/K/l0124-4

•~. r------------------------------------------------------------------------,
!.
dNational Semiconductor
~p
LH0094 Multifunction Converter
General Description
The LH0094 multifunction converter generates an output
voltage per the transfer function:

Eo =

Vy

(~~)m, 0.1 :S:m:S:10, m continuously adjustable

• Minimum component count
• Internal matched resistor pair for setting m = 2 and
m=O.5

Applications

m is set by 2 resistors.

• Precision divider, multiplier·

Features

•
•
•
•
•
•

•
•
•
•

Low cost
Versatile
High accuracy-O.05%
Wide supply range- ±5V to ±22V

Square root
Square
Trigonometric function generator
Companding
Unearizatlon
Control systems

• Log amp

Block and Connection Diagrams

Dual-In-Une Package
AI-

aND

Y-

RA

V,

V.
Vy

Order Number LHOO94CD

See NS Package Number D16D
Eo

Yy

Ye

-

ReD_.

R.

TOP VIEW

Simplified Schematic
12

I'"

I'"

1lI0II

18

I

E.

IGllk

TlIH/5695-1

5-14

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
OHlce/Dlstrlbutors for availability and specifications.
Supply Voltage
Input Voltage
Output Short-Circuit Duration

Operating Temperature Range
LHOO94CD
Storage Temperature Range
LH0094CD

±22V
±22V
Continuous

- 25°C to
-55°C to

Lead Temperature
(Soldering, 10 seconds)

+ 85°C

+ 125°C
260"C

Electrical Characteristics
Vs = ±15V, TA = 25°C unless otherwise specified. Transfer function: Eo = Vy V:;; 0.1

Parameter

s:

m

s:

10; OV

s: Vx, Vy, Vz s:

LHOO94C

Conditions
Min

10V

Units

Typ

Max

0.45
0.1
0.2

0.9

0.45
0.1
0.2

0.9

% F.S.
%F.S.
mVI"C

0.45
0.15

0.9

% F.S.
% F.S.

2.0

% F.S.
% F.S.

ACCURACY
Eo = VZVy (0.03S:VyS:l0V; 0.01 S:VzS:1 oVj
(Fl[Jure2)
(Fl[Jure3)
vs. Temperature
Eo=10VzlVx
(Figure 4), 0.5 s: Vx s: 10; 0.01 s: Vz s: 10)
(Fl[Jure5), (0.1 S:VxS:10; 0.01 S:VzS: 10)
vs. Temperature
Eo=l0NZ7f0
(FigureS), (0.03S:VzS:l0
(FlfJUre 9), (0.01 S:Vz s: 10
Eo= 10 (Vz/l0)2 (0.1 S:VzS:l0)
(Fl[Jure6)
(Fl[Jure7)
Eo=,/10Vz; 5.0mVS:VzS:l0V, (Figure 10)

Multiply
Untrimmed
ExtemalTrim
Divide
Untrimmed
External Trim
Square Root
Untrimmed
External Trim
Square
Untrimmed
External Trim
Low Level
Square Root
Exponential
Circuits

1.0
0.15

m=0.2, Eo= 10 (Vz/l0)2 (Figure 11), (0.1 S:VzS:l0)
m=5.0, Eo=10 (Vz/l0)5 (Fl[Jure 11), (1.0S:VzS:l0)

% F.S.
(10V)
%F.S.
mVloC

0.05

% F.S.

0.08
0.08

% F.S.
% F.S.

OUTPUT OFFSET

I

3 dB Bandwidth
Noise

I

I

Vx=10V, Vy=VZ=O

AC CHARACTERISTICS
m=1.0, Vx=10V, Vy=O.l Vrms
10Hzto 1.0 kHz, m=1.0, Vy=Vz=OV
Vx=10V
Vx=O.1V

5.0

I

10

I

mV

10

kHz

100
300

p.V/rms
p.Vlrms

EXPONENT
m

I

I

INPUT CHARACTERISTICS
Input Voltage
Input Impedance

(For Rated Performance)
(All Inputs)

0.2 to
5.0

0
98

I

0.1 to
10

I

I
10

100

V
kn

OUTPUT CHARACTERISTICS
Output Swing
Output Impedance
Supply Current

(RLS:l0k)

10

(VS= ±15V)(Note 1)

Note 1: Refer to RETSO094D drawing for specifications of the military LHOO94O version.

5-15

12
1.0
3.0

V
n
5.0

rnA

Applications Information
(b)m<1

GENERAL INFORMATION
Power supply bypass capacitors (0: 1 ,...F) are recommended
for all applications.
Tile LH0094 series is designed for positive input 'signals
only. However, negative input up to the supply voltage will
not damage the device.
A clamp diode (F/flUfB 1) is recommended for those applications in which the inputs may be subjected to open circuit or
negative input signals.
For basic applications (multiply, divide, square, square root)
it is possible to use the device without any external adjustments or components. Two matched resistors are provided
internally to set m for square or square root
When using external resistors to set m, such resistors
should be as close to the device as possible.

m=~Rl+R2"'200n
R1+R2
(c)m>1

~3

TL/H/5695-4

ACCURACY (ERROR)
The accuracy of the LH0094.is specified for both externally
adjusted and unadjusted cases.
Although it is customary to specify the errors in percent of
full-scale (10V), it is seen from the typical performance
curves that the actual errors are in percent of reading. Thus,
the specified errors are overly conservative for small input
voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is 0.25% of fullscale (25 mV). As seen from the curve, the unadjusted error
is ~ 25 mV. at 10V input, but the error is less than 10 mV for
inputs up to 1V. Note also that if either the multiplicand or
the multiplier is at less than 10V, (5V for example) the unadjusted error is less. Thus, the errors specified are at fullscale-"the worst case.
The LH0094 is designed such that the user is able to externally adjust the gain and offset of the device-thus trim out
all of the errors of conversion. In most applications, the gain
adjustment is the only external trim needed for super accuracy-except in division mode, where a denominator offset
adjust is needed for small denominator voltages.

SELECTION OF RESISTORS TO SET m
Internal Matched Resistors
AA and As are matched internal resistors. They are
1000±10%, but matched to 0.1%.
(a)m=2*

a

Ra

18

14

7 RA

8

3

{b)m=O.S·

10

14
8

RA

Ra

R1+R2
m=-R2

8

EXPONENTS
The LHOO94 is capable cif performing roots to 0.1 and powc
ers up to 10. HoWeVer, care should be taken when applying
these exponent-otherwise, results may be misinterpreted.
For example, consider the Y10th power of a nLimber: i.e.,
0.001 raised to 0.1 power is 0.5011; 0.1 raised to the 0.1
power is 0.7943; and 10 raised to the 0.1 power is 1.2589.
Thus, it is seen that while the input has changed 4 decades,
the output has only changed a little more than a factor of 2.
It is also seen that with as little as 1 rriV of offset, the output
will also be greater than zero with zero input.

TUH/5695-2

'No external resistors required, strap as indicated

i:xtemal Realstors
The exponent is set by 2 external resistors or it may be
continuously varied by a Single trim pot. (A1 + A2S:5000.
(a) m= 1

TLlH/5695-3

5-16

Applications Information (Continued)
1. CLAMP DIODE CONNECTION

Va
V+

DI
IN914

--*--+--..

V.~-------i---~-,
Vz

"-u=Vy

LHOD94

(~) m

O.I"m,,10
Note. This ctamp diode connection is
recommended for those applications
in which the inputs may be subject to

ED

open circuit or negative signals.

Vyo---~

rlGURE 1. Clamp Diode Connection
2. MULTIPLY
V+

0.4
MULTIPLY
ED = VyVz
10
WITHOUT EXTERNAL
ADJUSTMENTS

0.3

V.

10.00V ~-+-------f---+...,

Zi
...

_+-OV.

~

a:
C>
a:
a:

II

0.2

VY"OV

...

LH0094

1/

0.1

l.,..oo
Eo = Vy V.
10

o

0-+--'

VyO-+--....

I,...-

o

~ -SV
{lllill

0.1

10
Vz(V)

FIGURE 2a. LH0094 Used to Multiply (No External Adjustment)

FIGURE 2b. Typical Performance of
LH0094 in Multiply Mode Without
External Adjustment

Dl
lN914

r--*-

10V REF
(LH0010 OR ~-------------------....- - .
LH0075)

RI
2M

LH0094
RA

E • Vy Vz
o
10

HB.

Trim ~rocedure

0-----------+-+-...
R2

SetVz=Vy=10V

1l1li

Adiust R2 until output= 10.0ODV

TUH/5695-5

FIGURE 3. PreCision Multiplier (0.02% Typ) with 1 External Adjustment
5-17

Applications Information
a.DIVIDE

(Continued)
01
lN914

r---t+--

II

v·

I

Vz

L0094

ED. 10 Vz
V.

Vy ' 10V REF

o ~~!::I:::!::tt!m:::."'.LIJJlJUJjll1LlllI..l.llJ
IllliW
o
0.1
10

0-+.....

VzIV)

0----....
FIGURE 4b. Typical Performance,
Divide Mode,
Without External Adjustments

FIGURE 48. LHOO94 Used to Divide (No External Adjustment)

Trim Procedures

Apply 10V to Vy, O.1V to Vx and Vz.
Adjust R3 until Eo= 10.000V.
Apply 10.000V to all Inputs.
Adjust R2 until Eo';'10.000V

Repeat proc9dure.

Rl
2M
m=1

Eo' 10

~ 0----++
.....
R2

V.
10V REF
ILH0070 OR
LH0075)

10k

0-.....""""'...- - -.....
FIGURE 5. Precision Divider (0.05% Typ)

4. SQUARE
01
lN914

- -; (Vz) 2
Eo=Vy

Vx

0.5

------+---t+-V.o------1-"I

SQUARING 2
Eo= 10

OA

_+-oVz

~
~

II

(~:)

,J

WITHOUT EXTERNAL
ADJUSTMENT

0.3

a:

i

III

I

0.2
0.1

·'.,'

E~

Vyo---"

--

V

~~

o
•

1 2

~

I'"

3 4 & •

7 •

• 10

VzIV)
TLlH/5695-6

FIGURE 6&. Basic Connection of LHOO94 (m = 2) without
External Adjustment Usln'! Internal ~eslstors to Set m

FIGURE 6b. Squaring Mode without
External Adjustment

Applications Information

(Continued)
Dl
lNI14

4. SQUARE (Continued)

--*

---4

~

V.
10V REF

V+

r-

HI. Y15

14

112

13

Rl .~
2M .~

LHOOl4
Eo

2

3

14

-

[I>

.~RA

A4-

Vy

11

Eo

10 II
Vz

11

v.

A3

RS •

•

•

~~

7

"':~

VR2
1l1li

TrimProcedure
Apply 10V to Vz

wL

Adjust R2 for 10.00llV at output

FIGURE 7. Precision Squaring Circuit (0. 15% Typ)
5. SQUARE ROOT
0.4

V.~---------~---~.,

0.3

Vz

...

Uj
~
II:

co

'"

IJ

Vz)'At
Eo-vy (V;;

FIGURE 8a. Basic Connection of LHOO94 (m '" 0.5)
without External Adjustment Using Intemal Resistors
toSetm

V

0.1

o

Eo~-+"""

Vyo--+--'"

I

0.2

II:
II:

LHOO94

o

0.1

10

VzIV)

FIGURE ab. Typical Performance Curve Square Root,
No External Adjustment

01

V.

SQROOJ1i
Eo·l0
~
10
WITHOUT EXTERNAL
ADJUSTMENT

r-

c....________.,lNll. .

+

10VREF

~-+-oVz

EO=l~uVffi
fYi

HI
2M

Eo
10V

trim Procedure
Apply 10V to all inputs.

0----------.....R2
101r

Adjust R2 unUl Eo=10.00llV

R~~ 0--.,...,.,....-_...
TL/H/5695-7

FIGURE 9. Precision Square Rooter (0.15% Typ)
5-19

Applications Information

(Continued)

6. LOW LEVEL SQUARE ROOT

Dl
lNI14

r--*--

ED~--~------------+-~

m=1

EO=10~

LH0094

Eo

E02=10 Vz

V-

:. EO=,Ii'OiiZ
5mVS:VZS:10V

"'-+-----4--'"

R2
10V
10k
(LHOO70 o-~""~~---'
DR LHOO7&1

TrIm Procedure

Set VZ=10V
Adjust R2 until output = 10.000V

FIGURE 10. 3-Decade Precision Square Root Circuit Using the LH0094 with m = 1

Typical Applications
01
lN914

VxO~

______________

10V

m

ED- 10

(~)

r--*--

~~~

..-++-oV.

r-:I:~~....L';';"..a.;,;~L.::.~':""L,.;,;;,...&.:j

Eo=10

m) m .

Trim Procedure
Apply 10V to all inputs
Adjust R2 for output of 10.000V

ED
Vy~~~~-t~__--'

,.kR2

10V

Form=0.2

~'0 ~'4

Rl

Form=5

~3 ... R2

R2

~

~'0

Rl

~'4 ~3

~

TL/H/5695-8

R2
m=fi1'+"Fi2' Choose RI =2000
:.R2=500

m= RI + R2. Choose R2= 500
R2 •
:.RI=2000

FIGURE 11. Precision Exponentlator (m = 0.2 to 5)

5·20

Typical Applications

(Continued)
(m= 1)

R

>_.....-oVO

IV11 o--1~-IVy

LHOO94

E. ~-......",,..,....-

...~...

VIZ
. .- - - - - t - O O I V Z I

R
VO+VZ

R

R

Note. The LH0094 may be used to generate a voltage equivalent to:
VO -JVi2+V2'l
V1 2
VO=V2+-VO+V2
VQ2+VO V2=V2 VO+V22+VI2
VQ2=VI2+V22

:. vo =JVi2+V2'l

VI, V2 0 -> 10V

R:::: 10k
National Semiconductor resistor array RA08-10k is recommended

FIGURE 12. Vector Magnitude Function

(m= 11

(m = 11

E•• '0~

VT
Vy

10
Vz

Vp

LHOO94
Vx

Vap

Vz

VT

TL/H/5695-9

Note. The LH0094 may be used in direct measurament of gas floW.
Flow

= k,f!¥.

Eo=10~XVAP
VT

"""-OE.

Eo

E02=10 VpVAP

VT
Eo=Jl0 VP;AP
P = Absolute pressure

T = Absolute temperature
ap= Pressure drop

FIGURE 13. Mass Gas Flow Circuit

5·21

..§
:z::
...I

Typical Applications

(Continued)

Vx

13

":'

lOOk

R

Vz

, 9
lOOk

-

R2

10

Rl

14
VB" ELOG

-

VA

VB" ELOG

Rl

V+

-

Ex

R2
Ez

-

LHD094

V-

TLIH/5695-10

Note. lhe LH0094 may also be used to generate the Log
01 a ratio 01 2 voltages. The output Is taken from pin 14 01
the LH0094 for the Log application.

ELOG=K1~/n~
q

Vx

whereK1=R1+R2 '
R2
1

If K1 = KT/ql n10
then ELOG = Log10 ~
R1=15.9 R2
R2:::: 4000
R2 must be a thermistor with a tampco 01 :::: 0.33%rC to
be compensated over temperature.

FIGURE 14. Log Amp Application

5-22

I!fINational Semiconductor
LM 194/LM394 Supermatch Pair
General Description
The LM194 and LM394 are junction isolated ultra wellmatched monolithic NPN transistor pairs with an order of
magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure.
Electricai characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter
and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low
noise and theoretical operation over a wide current range.
Most parameters are gUl\ranteed over a current range of
1 poA to 1 mA and OV up to 40V collector-base voltage,
ensuring superior performance in nearly all applications.
To guarantee long term stability of matching parameters,
internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation
due to reverse biased emitter current-the most common
cause of field failures in matched devices. The parasitiC isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.
The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely

matched transistor pair. In many cases, trimming can be
eliminated entirely, improving reliability and decreasing
costs. Additionally, the low noise and high gain make this
device attractive even where matching is not critical.
The LM194 and LM394/LM394B/LM394C are available in
an isolated header 6-lead TO-5 metal. can package. The
LM394/LM394B/LM394C are available in an B-pin plastiC
dual-in-line package. The LM194 is identical to the LM394
except for tighter electrical specifications and wider temperature range.

Features
•
•
•
•
•

Emitter-base voltage matched to 50 p.V
Offset voltage drift less than 0.1 poVI'C
Current gain (hFEl matched to 2%
Common-mode rejection ratio greater than 120 dB
·Parameters guaranteed over 1 p.A to 1 rnA collector
current
• Extremely low noise
• Superior logging characteristics compared to
conventional pairs
• Plug-in replacement for presently available devices

Typical Applications
Low Cost Accurate Square Root Circuit

Low Cost Accurate Squaring Circuit

lOUT = 10- 5 • bo VIN

lOUT = 10- 6 (VIN)2

3DpF

INPUT
0"; vlN ";+IOV
lOOk"

I"

10""A !.s.

I"

'''; vlN ~~~~ >-....1511\o1Jll1\lo·_-=-i

---- ..... \

2k

75pF

LM394

5"

3DOk
I" IN457

,.

--

J

-=r/

I
\

LM394

'~_?-~~'~__~~-M~~:
112 LM394

IDOk- I"

-

- -

-

150k

lIZ LM394

'"

1.2k
5!1

-I5V

30pF

REGULATED
TL/H/9241-1

'Trim for full scale accuracy

5-23

-15V
REGULATED
TUH/9241-2

Absolute Maximum Ratings
' Base-Emitter Current
" ±10mA
500mW
Power Dissipation
Junction Temperature
LM194
:- 55°C to + 125°C
LM394/LM394B/LM394C
- 25°C to. + 85°C
Storage Temperature Range
- 65°C to + 15O"C
Soldering Information
Metal Can Pack!lge (10 sec.)
2600C
Dual-In-,Line Package (10 se,e.)
2600C
Small Outline Package
Vapor Phase (60 sec.)
215°C
Infrared (15 sec.)
220°C
See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface
mount devices.

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 4)
Collector Current
20mA
Collector-Emitter Voltage
VMAX
Collector-Emitter Voltage
35V
LM394C
20V
Collector-Base Voltage
35V
LM394C
20V
Collector-Substrate Voltage
35V
LM394C
20V
Collector-Collector Voltage
35V
LM394C
20V

Electrical Characteristics (TJ =
Parameter
Current Gain (hFEl

25°C)

Vee = OV to VMAX (Note 1)
le=1mA
Ie = 100/J-A
Ie = 10 IJ-A
Ie = 1/J-A

LM394

LM194

Conditions
Min

Typ

350
350
300
200

700
550
450
300

Max

Min

Typ

300
250
200
150

700
550
450
300

LM394B/394C
Max'

Min

Typ

225
200
150
,100

500
400
300
200

Units

Max

Current Gain Match,
(hFE Match)
= 100 [.:).le1 [hFEIMIN)1
Ie

Vee = OVtoVMAX
le=10/J-At01mA
Ie = 11J-A

Emitter-Base Offset
Voltage

Vee = 0
Ie = 1IJ-At01 mA

Change in Emitter-Base
Offset Voltage vs
Collector-Base Voltage
(CMRR)

(Note 1)
Ie = 1 /J-At01 mA,
Vee = OVtoVMAX

Change in Emitter-Base
Offset Voltage vs
Collector Current

Vee = OV,
Ie = 1/J-AtoO.3mA

Emitter-Base Offset
Voltage Temperature
Drift

Ie = 10 /J-A to 1 mA (Note 2)
leI = le2
Vos Trimmed to 0 at 25°C

Logging Conformity

Ie = 3 nA to 300 IJ-A,
Vee = 0, (Note 3)

150

Collector-Base Leakage

Vee = VMAX

0.05

0.25

0.05

0.5

0.05

0.5

nA

Collector-Collector
Leakage

Vee = VMAX

0.1

2.0

0.1

5.0

0.1

5.0

nA

Input Voltage Noislil

Ie = 1()O,/J-A, Vee, = OV,
f= 100 Hz to 100kHz

1.8

0.5
1.0

2

0.5
1.0

4

1.0
2.0

5

%
%

25

100

25

150

50

200

/J-V

10

25

10

50

10

100

/J-V

5

25

5

50

5

50

/J-V

0.08

0.3

0.08

1.0

0.2

1.5

/J-vrc

0.03

0.1

0.03

0.3

0.03

0.5

/J-vrc

150

1.8

150

1.8

/J-V

nVl.JHz

Collector to Emitter
Ie = 1 mA, Ie = 10 p.A
0.2
0.2
0.2
V
0.1
0.1
0.1
Saturation Voltage
Ie = 1 mA, Ie = 100 IJ-A
V
Note 1: Coliector.IJase VOltage is swept from 0 to VMAX at a collector current of 1 I'A. 10 "A. 100 "A. and 1 rnA.
Note 2: Offset voltage drift with Ves ~ 0 at TA ~ 25"C is valid only when the ratio of let to 102 is adjusted to give the initial zero offsel This ratio must be held to
within 0.003% over the entire temperature range. MeasurementS taken at + 25"C and temperature extremes.
Note 3: Logging conformity Is measured by computing the best fit to a true exponential and expressing the error as a base-emiller voltage deviation.
Note 4: Refer to RETS194X drawing of military LM194H version for Specifications.
5-24

,--------------------------------------------------------------------------,
Typical Applications

(Continued)

.....
~

Fast, Accurate Logging A'!'pllfier, VIN = 10V to 0.1 mV or liN = 1 mA to 10 nA

!C

r-----------------~~R6~P-VR~

Co)

CD

9.76k
1%

~

lOOk

lIN

2k

TLlH/9241-3

'I kll (±1%) at 25"C. +3500 ppm/'C.
Available from Vishay Ultranix.
Grand Junction. CO. OBI Series.
VOUT

=-

10910

VIN
)
(VREF

Voltage Controlled Variable Gain Amplifier

v'

+15V

R1t
15k

t"

10k
ZERO

R3
10k

C3
3pF

v'

R&
5Dk
R4
5

C4

0.1

'::"

R7
5Dk

Dl
lN457
'::"

Cl
30pF

~
R8*
ZOO

INPUT

~r
- f-

DZ
lN457

R9

: ltS
RIO
Uk
-15V

TLlH/9241-4

'RB-RI0 and 02 provide a temperature Distortion < 0.1 %
independent gain control.
Bandwidth> 1 MHz
G = - 336 VI (dB)
100 dB gain range

5·25

~

iii:
....
CD

•.
~
::::&

....

r-----------------------------------------------------------------------------~

Typical Applications (Continued)

~

PreCision Low Drift Operational Amplifier

....

~

+

~~--------------~~{]o~

Common-mode range 10V
IBIAS25 nA
las 0.5 nA
Vas (untrimmed) 125 ",V
(b.Vas/b.T) 0.2 ",VIC
CMRR 120 dB

AVOL 2,500,000
'C 200 pF lor unity gain

C 30 pF lor Ay 10
C 5 pF lor Ay 100
C 0 pF for Ay 1000

TLlH/9241-5

High Accuracy One Quadrant Multiplier/Divider
.s

...

•%

(X. INPUT

IV".PUT n--W..-4~

!-=-4.....W..-UizI,.PUT

TLlH/9241-6
(Xl M posiIiv'e,npu
.
Is on.
Iy
VOUT=~

'Typical linearity 0.1 %

Typical Applications (Continued)
High Performance Instrumentation Amplifier
r-------~.-----_4~()15V

Rl

80k
0.1%

>~_OOUTPUT

Rll

18k
0.1%

INPUTS

R3
18k
0.1%

RIO

R4
2k
0.1%

2k
'0.1%

R5
2k
5%
'Gain

= 1()6
As

01
LM113

12V
02
lN457
L-____...._ _ _ _ _....

~

-15V
TL/H/9241-7

Performance Characteristics
G = 10,OOOG = I,OOOG = 100 G = 10
Linearity of Gain (± 1OV Output)
Common-Mode Rejection Ratio (60 Hz)
Common-Mode Rejection Ratio (1 kHz)
Power Supply Rejection RatiO
+ Supply
-Supply
Bandwidth (- 3 dB)
Slew Rata
Offset Voltage Drift"
Common-Mode Input Resistance
Differential Input Resistance
Input Referred Noise (100 Hz

~

f

~

~0.D1

~0.D1

~0.02

~0.05

~120

~120

~110

~90

~11.0

~110

~90

~70

>110
>110
50
0.3

>110
>110
50
0.3

~0.25

>109
>3x 10S

10 kHz)

Input Bias Current
Input Offset Current
Common-Mode Range
Output Swing (RL = 10 kO)
"Assumes ,; 5 ppml'C tracking of I8sislors

5
75
1.5
±11
±13

5-27

%
dB
dB

>110
>110
dB
>90
>70
dB
50
50
kHz
0.3
0.3
V/pos
~0.4
2
~10
poV/'C
>109
>109
>109
0
>3x1OS >3x1OS>3x1OS 0
nV
6
12
70
75
1.5
±11
±13

75
1.5
±11
±13

75
1.5
±10
±13

JRi
nA
nA
V
V

•

Typical Performance Characteristics
Small Signal Current Gain vs
Collector Current

z

100II

:

~

118

~

rT"'TT.,..-,r-rnr.,...,rm-rTTTt
:~;;05:,++fHH-Ht-+-l1tH
T, • 2S"C -tffHH-Ht-+-l':1.lol

&OIJ

~~H-t1~..'f'HH-HtH

..a

400

"""'Tttt-H-ttt-'++l-II-f-++H

i

zoo~~tt-H-ttt-++l-II-f-++H

,---,,--.--.--r--i

~ 1DOD

~~~~~~~~~~
t--'c

~

1

100

tOmA

~ 'O I:=l'i:~i:~"~I~ ~'~f~ l
1201

~

~

1400

:!

~~H-t1f*-t+i~FttH

~

Unity Gain Frequency (fd vs
Collector Current

OCCurrent Gain vs Temperature

&10 l--'pA

;\!
~

408

200

I

Va "'5V

o
-15
Ie - COLLECTOR CURRENT (mA)

'r-r-r-'-T"""'T""-r-r-,

a

D.s rt--+--+-t-r+---b"q

~

a.~r-t-1-~-+-4--~

t.' 1-+-+-t-+-I--J.,.oI!J---I
rt--+--+-t/---'''''/'"-+--1f--1
• r+-+-+""7I......t-+-+-I

~

.., -u 1---t..."'I--t--l-+-+-t-4

§

~
~

;

0.2

~ -1.2

,

j

_IL-~~L-L-L-L-~~

a

100

16

125

0.7

VeE =5V

+-Htlf-t-tiit-+-I-t.J,i

T, ' 2S·C

H-t1ftt-+-1Hfl-+~*",'Fio"+l-H

200

10

~

1

i

5'0"1111
~

O.S

11.11

~

OA ............w....L..JCW-l-...u...................

0.801

0.81

0.1

1

10

D~1 ttjj~tjitt:tjjtt:tifD
D.GGI

~~

iii:::
~z

U

..
j~

Input Voltage NOise vs
Frequency

le. ,a I.
--

~

III

""

0.101

Ie - COLLECTOR CURRENT ImAI

0.01

0.1

""

1

Ie" 100pA

1

10

0.01

12

...

.S

,

4

w

~

~

z

li

f - FREIlUENCV IkH.1

100

11111

a r-

R. ':\~'r-

~

2
0
0.001

0.81

1

10

100

Collector to Collector
CapaCitance vs Reverse
Bias Voltage

r;:r;rw

1I1il

10

0.1

f - FREQUENCY (11Hz)

Noise Figure vs
Collector Current

10

~"".II.~..'e;;,=_';,;m;;.A;,{,I,I,-'-.I..I.II

Ie - COLLECTOR CURRENT ImAI

~

10

"-I!

Ie

,:!

.

1

•
II
'~

B~

10

0.1

0.01

Ie - COLLECTOR CURRENT (mA)

Collector-Emitter
Saturation Voltage
vs Collector Current

Small Signal Output Conductance
vs Collector Current

0.1

1l1i
Vc"'5V
'=100Hz

i

Ie - COLLECTOR CURRENT (mAl

=~
tic>
w>

0.01
0.1
1
10
Ie - COLLECTOR CURRENT (lIlA)

Small Signal Input
Resistance (hie)
vs Collector Current

",.,m-T"'1rT11-r"TT"'-T"'T"TTI

INITIAL OFFSET VOLTAGE !PVI

0.1

0.1
0.001

115

Base-Emitter On Voltage vs
COllector Current

0.6

~

-1.1 """+-+-~-+-+-Ir---H
-D.• r+-+-+-+-t-T,-2S"C
-100

25

~

l-t-to'f--+-4-1r---H

-200

-25

f,-JUNCTION TEMPERATURE rC)

Offset Voltage Drift vs Initial
Offset Voltage

ii

10

.:

I
WI

'.1

Ie - COLLECTOR CURRENT ImAl

10
I

o

I.

20

30

4D

SO

COLLECTOR T~ COLLECTOR VOLTAGE !VI

TUH/9241-8

5·28

Typical Performance Characteristics
Collector to Collector Capacitance
vs Collector-6ubstrate Voltage
30

f-Vcc- O-

.e
~

z

Emitter-Base Capacitance vs
Reverse Bias Voltage

-~:
:fv~

20

;!

~

:-

......

~

u

Z

5

50

40

2D

30

40

50

o

.e

.

-

......

0.2

0.1

COLLECTOR TO SUBSTRATE VOLTAGE (V)

0.3

0.4

30~
20

~

~

5
§

0.&

10

11

0.1

Collector to Collector Leakage
va Temperature

~

,
1/

1.1

~

...
..~
~

0.01
25

50

75

100

,.

~
co

j! 11.1

0.01

VeE "COV

~

L

~,

1/

25

125

T,-JUNCTION TEMPERATURE rC)

50

75

100

12&

-&

-10

o

200

T, - JUNCTION TEPM'ERATURE ('C)

0.5

t-Le.'-O~-+--+++-+-HI
I-HH-t-l--+++-I+I

D~I-HH-t-l--+++~
0.1

I-HH-t-l--++--I7'9-f

Hrl-+-+-+--++++-t

~ -0.3
-0.4

I-HH-t-l--++++-I
I-HH-t-l--++++-I

ffi

g -02 HH-t-+-++++-H

-1.5 L...J'--J.-L...J.....L.....L...J.....J....L.....I
10-' 10-' 10-8 10-1 10-4 10-3
Ie - COLLECTOR CURRENT (A)

TLlH/9241-10

Low Frequency NOise of DIHerentlal Pair'
YCE4 IV, Ie= 100 )'A, !lsT= loon

,....-

.

... I....
-

~

I'"P

BW=0-10Hz
t= 1 SEC DIY

....

-f'

~

'-BW- 0-1 Hz
t = 10 SEciolV
l.ao.

100nV

rr'-

IBW=O-~i~

Hz
t= 1 SEC DIV

TIME (SEE GRAPH)
'Unit must be in still air environment so that differential
(ead tempereture is held to leas than 0.0003'C.

5-29

&00

800

1DOD

TUH/9241-9

Emitter-Base Log Conformity
'-r-""lr-r-,....,....,......,...,...,-,

~ -D.l

g

400

TIME (HRS)

0.3

0.4

!

&0

T,.'2&"C
Ic ·6OtJA

~

./

10

~

./

~,
j

!

./

10

40

10

;;

.5

!

30

Offset Voltage Long Term
Stability at High Temperature

100

~\re.-20V

20

REVERSE BIAS VOLTAGE (Vea )

REVERSE BIAS VOLTAGE (V)

Collector-Base Leakage va
Temperature
100

,

Ii:

§

10

J
10

Collector-Base Capacitance vs
Reverse Bias Voltage

&0

!l

~,

(Continued)

TLlH/9241-11

I

:!5

r-----------~------------------------------------------------~-----,

Connection Diagrams

~

...

G»

Dual-In-Llne and Small Outline Packages

Metal Can Package

:!5

1 •

TUH/9241-12

TL/H/9241-13

Top View

Top View

Order Number LM194H/883·,
LM394H, LM394BH or LM394CH
See NS Package Number H06C

Order Number LM394N or LM394CN
See NS Package Number N08E

'Avallable per SMD #5962-8777701

5-30

r-----------------------------------------------------------------------~

r

iii:
....
fO

t!lNational Semiconductor

.....
CJI

~

LM195/LM395 Ultra Reliable Power Transistors
General Description
The LM195/LM395 are fast, monolithic power transistors
with complete overload protection. These devices, which
act as high gain power transistors, have included on the
chip, current limiting, power limiting, and thermal overload
protection making them virtually impossible to destroy from
any type of overload. In the standard T0-3 transistor power
package, the LM195 will deliver load currents in excess of
1.0A and can switch 40V in 500 ns.
The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting Circuitry to
turn off the device preventing excessive heating.

tions. Although the device is usually stable as an emitter
follower, the resistor eliminates the possibility of trouble
without degrading performance. Finally, since it has good
high frequency response, supply bypassing is recommended.
For low-power applications (under 100 mAl, refer to the
LP395 Ultra Reliable Power Transistor.

The LM195 offers a significant increase in reliability as well
as simplifying power circuitry. In some applications, where
protection is unusually difficult, such as switching regulators,
lamp or solenoid drivers where normal power dissipation is
low, the LM195 is especially advantageous.
The LM195 is easy to use and only a few precautions need
be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the
device is used as an emitter follower with low source imped- ,
ance, it is necessary to insert a 5.0k resistor in series with'
the base lead to prevent possible emitter follower oscilla-

•
•
•
•
•
•
•
.,

The LM195/LM395 are available in standard T0-3 power
packages and solid Kovar TO-5. The LM195 is rated for
operation from - 55°C to + 1500C and the LM395 from O°C
to + 125°C.

Features
Internal thermal limiting
Greater than 1.0A output current
3.0 /LA typical base current
500 ns switching time
2.0V saturation
Base can be driven up to 40V without damage
Directly interfaces with CMOS or TIL
100% electrical burn-in

Simplified Circuit

---,

I
I
I
I
I
I
I
I

I

I
I

I

I

IL _ _ _ _ _ _ _ _ _
TLIH/6009-1

5-31

~

Connection Diagrams
TO·3 Metal Can Package

To-220 Plastic Package

TLlHI6009-3

case is Emitter
Top View

TLlHI6009-2

Bottom View

Order Number LM395T
See NS Package Number T03B

Order Number LM195K/883
See NSPackage Number K02A

T0-5 Metal Can Package
O--....,~--

EMITTER

CASE IS EMITTER
TLlHI6009-4

Bottom View

Order Number LM195H/883
See NS Package Number H03B

5·32

r-

I:
.....

Absolute Maximum Ratings
Base to Emitter Voltage (Reverse)
Collector Current
Power Dissipation
Operating Temperature Range
LM195
LM395
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Collector to Emitter Voltage
LM195
42V
LM395
36V
Collector to Base Voltage
LM195
42V
LM39S
36V
Base to Emitter Voltage (Forward)
LM195
42V
LM39S
36V

20V
Internally Limited
Internally Limited

100% Burn-In In Thermal Umlt

Electrical Characteristics (Note 1)
LM195

Conditions
Min

Collector-Emitter Operating Voltage
(Note 3)

Ie ~ Ic ~ IMAX

Base to Emitter Breakdown Voltage

o ~ VCE ~ VCEMAX

Collector Current
TO·3, T0-220
TO-S

VCE
VCE

Saturation Voltage
Base Current
Quiescent Current (Ie)
Base to Emitter Voltage
Switching Time.
Thermal Resistance Junction to
Case (Note 2)

~
~

Typ

LM395
Max

Min

Typ

42
42
1.2
1.2

1SV
7.0V

Ic ~ 1.0A, TA = 2S·C
o ~ Ic ~ IMAX
o ~ VCE ~ VCEMAX
Vbe = 0
o ~ VCE ~ VCEMAX
IC = 1.0A, TA = +2S·C
VCE = 36V, RL = 360,
TA = 2S·C

2.2
1.8

Units
Max

36

V

36

60

V

1.0
1.0

2.2
1.8

A
A

1.8

2.0

1.8

2.2

V

3.0

S.O

3.0

10

p.A

2.0

S.O

2.0

10

mA

0.9

0.9

V

500

500

ns

TO-3 Package (K)

2.3

3.0

2.3

3.0

·C/W

TO-5 Package (H)

12

15

12

15

·C/W

6

·C/W

TO-220 Package (T)
4
Note 1: Unless otherwise specified. these specifications apply for -55'C ,; Tj ,; + 150'C for the LM195 and O'C ,; + 125'C for the LM395.
Note 2: W"hout a heat sink. the thermal reslslence of the TOooS peckege is about + 15O'C/W, whUe that of the T0-3 peckege is +35'CIW.
Note 3: Selected devioes with higher breakdown available.
Note 4: Refer to RETS195H and RETSI95K drawings of military LM195H and LM195K versions for specifications.

5-33

Ii:w
CD

en
- 55·C to + 1500C
OOC to + 12S·C
-6S·C to + 1S00C
2600C

Preconditioning

Parameter

CD

en
.....

Typical Performance Characteristics (for K and T Packages)
Collector Characteristics

S
~

..
..
~

to

::8

Bias Current '.

Short Circuit Current

Z.4

2.5

.2.4
T0-3

S z.a

Z.8

.
II!

1.6

~
t:

.
..

1.2

~

;:;

d••

Ii

0.4

iii

5.8

10

15

20

25

30

~
TA =+12Ii"C

1.5
1.8

TA

.~

C

~5:'......::

i-55"1"

1.5

.lI

~

;

35

5.D

10

IS

ZD

25

30

~
..

I

E

e"'

1.8 I-+-+--'k-~~-+--I
1.1

U

1-+"-"1-+--+-+--+--1
U

10

IS

ZD

25

3D

..

~

1.2

.."'~
....
!i..
'"

z.t

t-t--t--t--+-+-

~
=
20

1.8

.~

D.5

-

:
-0.. -0.4

0.4 D..

I .2

ZI

41

Response Time

J T..,=lS"C
~-Y+'35Yr~
.. .

20

E
"'
~
~

, Y+"0V
3.8
TIME,",)

0

'ASE EMtnER VOLTAGE (V)

I
COLLECTOR CURRENT (A)

I

v

10

IT... " _HoC

I

.. ,-5.0

Response Time

3D

fj

rt-!A=+WC

I

-4.•

-1.0

,

,. -

I

~ -3.0

!I~
1-+-+-+-++-+-+"-"1f--1

"'

1.5

E-2.0

TEMPERATURE rc)

E

I

I I
TA = +12rc'

l-t.o

• L.......L......J--L--L......L.,-J-.....L.......L..-l

4D

~

5

·It
COLLECTOR CURRENT IAl

.....8

Saturation Voltage

I

1A0.IU1.B2.'

-55 -35 -15 5.0 25 45 IS '5 IDS ;25

2.5

I

d

t-t-t-t-I---"I---"I---"t-H

d.. 1oo.±-+=1"''"+o..l::c-=F''"''''''''''t-'-I

0.2

35

\

Base Current

1.0 F"';...C::+--F""'-+....:.!:~

I :;

'"

D••

1.0

COLLECTOR VOLTAGE (V)

E

I

f---

T. '+125"~\

Base Emitter Voltage

z.a

0.4

~ -T.~-55..t~

1.8

35

1A

u

) •• +zs.!C_

1.2

COLLECTOR·EMITTER VOLTAGE (V)

Quiescent Current

:=
..

_

IA

COLLECTOR·EMITTER VOLTAGE (V)

!

-

Z.8

Ii

I.D

..

4.D

TAI=+Jc

Ifr--

12 c-

..

~

Y+=35V

"

~rv+rVI

'
= rlJ~

..

OA

-

~0.1

~

1.2

TIME,",)

TLIH/6009-6

5·34

Typical Performance Characteristics (for K and T Packages) (Continued)
10V Transfer Function
2.0

36V Transfer Function

-,-'-1""-

V+=10~

1.2

i

TA = +25"C

y+ = 36V

TJ.J1c I

0.6

~

;

l
I
JI)

0.4

8
OA

0.1

1.2

1.6

0.6

OA

BASE·EMITTER VOLTAGE IVI

1.2

1.6

BASE·EMITTER VOLTAGE IVI
TL/H/6009-7

TL/H/6009-8

Transconductance
10

I.

iI

Small Signal Frequency
Response

~=~T~A~-1+~Z5~'~c~~II~~~1I
='=50kHz

3.0

1.0

TA = +ZS"C
;; -201

:5

..~ -100

§RII~II~mll

~

=~

0
c w
~~ -10

U IrH+ttIlll--+-++ttttll-+-I+HtIH

'II

PHASE

T
1--I-+-H-1-H i~=I.aA
....
,J,!""rTTm
1i ~;
~""'l 1FaD.1A

.. e

Ilr~~~O.1A

!:

Ie :2!A..
.
GIM

l

~ti

!C:
.... z

0.1 L-.l-L.LJ.IJIIL-J....u.J..LLIII.-.J-I.........LW
0.1
1.0
10
0.01

-20

~B

COLLECTOR CURRENT IAI

lOOk

1.11M

10M

FREQUENCY IHzl

TUH/60D9-9

TUH/Boo9-10

II
5-35

LM195/LM395

W

:z
CD

3

!
0'
c

COLLECTOR

~'

iii
3

03
6.3V
Cl

~I

I IL
R2
2DOk

01
6.3V
R24
500

EMITIER

R22
0.1

R21
30

BASE
TLlH/6009-'=\-1

Typical Applications
1.0 Amp Voltage Follower
C4

r------------~~--+15V

R,
10k

Rs

10k

.... OUTPUT

'-¥~_1.---t_-

' - - - - - - - - - -....---15V

TL/H/6009-12

PowerPNP
RI
Uk'

Time Delay
--,---",-+15V

.........--4._-EMITIER

BASE -'V\~-4'_--1

SOO pF**

OUTPUT

oz

LMI95

01
LMI95

HZ
10k

CI
II1pF
' - -....._-COLLECTOR

TUH/6009-13
·Protects against excessive base drive
TUH/6009-14

"Needed for stability

1.0 MHz OSCillator

1.0 Amp Lamp Flasher

3~:~t--------------------~

'*

Cl

-.-o.1",F

."

C2

O.01~F

1~:-t-------------,
R&

25

RI

510k
RZ
150k

I-...--~---------__-t-0UTPUT

RI
Uk
QI

LMI95
01
IN914
R3
41k

1003
BULB

TUH/6009-15
TlIH/6009-16

5·37

Typical Applications (Continued)
1.0 Amp Negative Regulator
R6
Uk

+
ll1pFt
}-~

______~__~___ O~~:T

1.0A

R2
2.4k
01
LM195

tSoIld Tantalum

~--------------~-------VTLlH/6009-17

1.0 Amp Positive Voltage Regulator
V,N
3av

TLlH/8009-18

Fast Optically Isolated SWItch

Optically Isolated Power Transistor

...---....-v+

d~

q---

OUTPUT

....---....--+

01
LM19S

Rl
3311

-

. .- - _....--VTLlH/6009-20

TLlH/6009-19

5-38

r-----------------------------------------------------------------------------,
Typical Applications (Continued)
CMOS or TTL Lamp Interface

~

i:
.....

~
......
Two Terminal Current Limiter

~

40YSwitch

--+--+12V

-~""'-40V

+

~

ii

OUTPUT

DRIVE"
TUH/6009-22

TLiH/6009-23
TUH/6009-21

'~rive

Voltage OV to "' tOV :s;; 42V

Two Terminal 100 mA Current Regulator

6.0Y Shunt Regulator with Crowbar

+

Rs

V,N

-#\I4""-1---t----1--

VOUT

02
LM195

Cl
50 pF

TL/H/6009-25
TL/H/6009-24

Low Level Power Switch

Power One-9hot
y+

12V

r - -. .- - - - -. .- lZV

r--"'--VVIor--'- OUTPUT
Cl
0.22pF

Q2
LM196
01
LM195

Tum ON

= 350 mV
= 200 mV

OUTPUT

TUH/6009-26

Tum OFF

RL~12{l

T = RtC
R2 = 3Rt
R2:S;; 82k

':'
TUH/6009-27

5·39

II

Typical Applications (Continued)
Emitter Follower

High Input Impedance AC Emitter Follower

- -....~-V+

- -....I---·+15V
Cl

Rl

5.Ok'
INPUT -M""---l"-l

Ql

INPUT-1

LM195

OUTPUT
I--+--OUTPUT

'Need for Stability
--"'---15V

TLlH/6009-28

TL/H/6009-29

Fast Follower
- -....~-V+
Rl

5.0k
INPUT -JVV\~""""

Ql

LM195

.....~H~OUTPUT

V-

TL/H/6009-SO

'Prevents storage with fast fall time square wave drive

PowerOpAmp
A,
lOOk

+15V

AZ
10k

+

C4

11M'

A4
5.1k

L1
Z2TUANS

ON Ai
OUTPUT

R5
10

R6
-1.0
2W

'Adjust for 50 mA quiescent current
tSolid Tantalum

-15V

TLlH/6009-31

5·40

r-----------------------------------------------------------------------------'r
....
Typical Applications (Continued)
==
CD
~

6.0 Amp Variable Output Switching Regulator

!i:

v+

~

36V - . - - - - - - - - - - . . ,

R9

DI
LMI03

100

3.9V

+

TUH/6009-32
'Slxty turns wound on Arnold Type A·083081·2 core.

"Four devices in parallel
tSolid tantalum

•
5-41

t!lNational Semiconductor

LM3045/LM3046/LM3086 Transistor Arrays
General Description

Features

The LM3045, LM3Q46 and LM3086 each consist of· five
general purpose silicon NPN transistors on a common
monolithic substrate. Two of the transi~ors are internalJy
connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low
power system in the DC through VHF range. They may be
used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal
matching. The LM3045 is supplied in a 14-lead cavity dualin-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically
identical to the LM3045 but are supplied in a 14-lead molded dUal-in-line package for applications requiring only a limited temperature range.

• Two matched pairs of transistors
VBE matched ± 5 mV
Input offset current 2 p.A max at Ie = 1 mA
• Five general purpose monolithic transistors
• Operation from DC to 120 MHz
• Wide operating current range
• Low noise figure
3.2 dB typ at 1 kHz
• Full military
temperature range (LM3045)
- 5S"C to + 12S"C

Applications
• General use in all types of Signal proceSSing systems
operating anywhere ii, the frequency range from DC to
VHF
• Custom designed differential amplifiers
• Temperature compensated amplifiers

Schematic and Connection Diagram
Dual-In-Une and Small Outline Packages
SUBSTRATE
14

13

12

11

10

Q3

4
TUHI7950-1

Top View
Order Number LM3045J, LM3046M, LM3046N or LM3086N
See NS Package Number J14A, M14A or N14A

5-42

Absolute Maximum Ratings (TA =

25°C)
If Mllltary/Aerospsce specHlecI devices sre required. please contact the National Semiconductor Sales Offlcel
Distributors for availability and specifications.
LM3045
LM3046/LM3086
Each
Total
Each
Total
Units
Trenslstor
Package
Transistor
Package
Power Dissipation:
300
300
750
750
mW
TA = 25"C
TA = 25°C to 55"C
300
750
mW
mW/oC
Derate at 6.67
TA> 55"C
300
750
mW
TA = 25°C to 75"C
mW/oC
Derate at 8
TA> 75°C
15
15
V
Collector to Emitter Voltage, VOEO
20
V
20
Collector to Base Voltage, VCSO
20
V
Collector to Substrate Voltage, VOIO (Note 1)
20
5
5
V
Emitter to Base Voltage, VEBO
50
50
mA
Collector Current, 10
Operating Temperature Range
- 55°C to + 125°C
-400Cto +85°C
Storage Temperature Range
-65°C to +1500C
-65°C to +85°C
Soldering Information
Dual-In-Line Package Soldering (10 Sec.)
2600C
2600C
Small Outline Package
Vapor Phase (60 Seconds)
215°C
Infrared (15 Seconds)
2200C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount
devices.

Electrical Characteristics (TA =
Parameter

25"C unless otherwise specified)
CondHlons

Limits

Limits

LM3045; LM3046

LM3086

Collector to Base Breakdown Voltage (V(BR)OBO)

10 = 10 pA, IE = 0

20

Collector to Emitter Breakdown Voltage (V(BRIOEO)

10=1mA,IB=0

15

Typ
60
24

Collector to Substrate Breakdown
Voltage (V(BR)OIO)

10 = 10 pA, 101 = 0

20

60

IE 10 pA. 10 = 0

5

7
0.002

Min

Emitter to Base Breakdown Voltage (V(BR)EBO)
Collector Cutoff Current (lOBO)

VOB = 10V,IE = 0

Collector Cutoff Current (IOEO)

VOE = 10V, IB = 0

Static Forward Current Transfer
Ratio (Static Beta) (hFEl

VCE = 3V

Input Offset Current for Matched
Pair Q1 and Q21101 - 11021
Base to Emitter Voltage (VBEl
Magnitude of Input Offset Voltage for
Differential Pair IVBE1 - VBE21
Magnitude of Input Offset Voltage for Isolated
Transistors IVBE3 - VBE41, IVBE4 - VBESI.
IVBES - VBESI
Temperature Coefficient of Base to
EmltterVoltage (~~~E)
.

fO = 10mA
10=1mA
10 = 10pA

VOE = 3V, 10 = 1 mA

Typ

20

60

V

15

24

V

20

60

V

5

7
0.002

40
0.5

100
40

Max

100

V
nA

5

pA

100

100

40

54
0.3

Units

Min

100
54

2

p.A

VOE = 3V {IE = 1 mA
IE = 10mA

0.715

0.715

0.800

0.800

VOE = 3V, 10 = 1 mA

0.45

5

mV

0.45

5

mV

V

VOE = 3V, Ie = 1 mA

VCE = 3V, Ie = 1 mA

Collector to Emitter Saturation Voltage (VOE(SAn)

IB = 1 mA, Ie = 10 mA

Temperature Coefficient of
Input Offset Voltage (~

VCE = 3V, Ie = 1 mA

:;0)

Max

-1.9

-1.9

mV/oC

0.23

0.23

V

1.1

p.VloC

Note 1: The collector of each transistor of the LM3045. LM3046. and LM3086 Is Isolated from the substrate by an Integral diode. The substrate (terminal 13) must
be connected to the most negative point In the external clrcuR to maintain isolation between transistors and to provide ler normal transistor action.

5-43

•

U)

~
~
.....
~
U)

:J....

i:J

r---------------------------------------------------------------------------------,
.,

Electrical Characteristics (Continued)
Parameter

Conditions

Low Frequency Nois~ Figure (NFl ,

~

Mill

Max . Units

Typ

f = 1 kHz, VCE = 3V,
Ic = 100 p,A, Rs = 1 kO

3.25

dB

LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS

110 (LM3045, LM3046)
(LM3086)

f'= 1 kHz, VCE = 3V,
Ic=lmA

Forw8rd Current Tran/lfer Ratio (hIe>
Short Circuit Input Impednace (hie>

3.5

kO

Open Circuit Output Impedance (hoe)

15.6

pomho

1.8x10- 4

Open Circuit Reverse Voltage Transfer Ratio (hre>

ADMITTANCE CHARACTERISTICS

31-j1.5

f = 1 MHz, VCE = 3V,
Ic=lmA

Forward Transfer Admittance (VIe)
Input Admittance (Vie>

0.3+JO.04
0.001 + j 0.03

Output Admittance (Veel

See Curve

Reverse Transfer Admittance (Vra)

300

550

Gain Bandwidth Product (for)

VCE = 3V, Ic = 3 mA

Emitter to Base Capacitance (CEe)

VEe = 3V,IE = 0

0.6

pF

Collector to Base Capacitance (Cce)

Vee = 3V, Ic = 0

0.58

pF

Collector to Substrate Capacitance (cCl)

Ves

= 3V, Ic = 0

2.8

pF

Typical Performance Characteristics
Typical Collector To BaSIl
Cutoff Currant vs Ambl~nt
Temperatura for Each'
Transistor

!1tJ2
~

~

1.

,·;"II
E

Typical Collector To Emitter
Cutoff Current vs Ambient
Temperatura for Each
, Transistor

i

UP

IZO

1.=0

E
i 10'

VeE '3V,

a:
;"a:

El

I: Ifltllfliill~i ~'~=
~

10

~

Ii!

Vce =10V

"!:i

IV

~

1

=~

9 10.

Typical Static Forward
Current·Transfer .l:iatlo and
Beta Ratio for Transistors Q1
and Q2 vs Emitter Current

TAI·IZl~~'II!. I

100

IhFE'
1
hFE2

,

o

~5

III

75

1111

125

-

~ 1~

T. - AMBIENT TEMPERATURE I'CI

0

10

25

50

III

75

125

100

hFE

70

3

r=

")

80

In

~

1''''1
"F~

90

I

j I."

OR

1.1

I I I'

110

.01

III

;:
'-.",\~

I
I

I'

0.•

.1

T. - AMBIENT TEMPERATURE I CI

I

1

10

Ie - EMITTER (mAl

TLlHI7950-2

Typical Static Base To Emitter
Voltage Characteristic and Input
Offset Voltage for Differantlal
Pair and Paired Isolated .
Transistors vs Emitter Current

. Typical 'Input Offset Current
for Matched Transistor Pair
10

:1

Q2.VSCOllect::.~::rent

.1

TA _21°C

!

.7

~

1

§

i

.1

t-

...

f=

Vc.- 3V
T. =21'C Ht-,++
lttl//tr"",-b1'Flt1Hl

f-

;:.r.t:Io!1l111t--+-I-tffifll

~
INPUT OFFSET VOLTAIiE

I

1

.I...L1.UJillI. II 111m..- '
.4~mmll

1
L.....J...LJ.JJ.wL.....L..J.Jwll.wL...IIII.L..U.
.11

.1

3

2

f::

,g
.01

4

1

10

.01

Ie: - COLLECTOR ""'"

.1

1

$
0

I

....~

...

",'

..~

. ".$

0

,I"

•. ,

10

I. - EMITTER ImAI '
TLlHI7950-3

5-44

.' ,

,-----------------------------------------------------------------------------, r

Typical Performance Characteristics

~

.1

e

.7

!

~~

~

~eo

~~

..

~~~
~. .6 - r--1.·3mA
lmA
.
I
~

.....

s;
.§

"'" ~

O.~mA

.5

~I

-15 -50 -25 0

26 50

15 100 125

~

.1 IRA

.26

I

o

.4

-

-'

2

>

-15 -50 -25

0

Z5

As' 510"
T.-2I"C

21

..!i!
.

im

20

~

!!j

eo

II

'·0.1 kHz

10

~

;'

1kHz
IDkHz

o

50 15 '08 126

.1

.01

Ie - COLLECTOR b.A)

T. - AMIIENT TEMPERATURE I'CI

T. - AMBIENT TEMPERATURE I'CI

m
.....
~

Vee' 3V

!

I~A

.50

Typical Noise Figure vs
Collector Current

-~

IE ""0jA

.15

~

w

g

30

l

VeE ::3V

VeE'" 3V

.9

0:

2

~

Typical Input Offset Voltage
Characteristics for Differential
Pair and Paired Isolated
Transistors vs Ambient
Temperature

Typical Base To EmlHer
Voltage Characteristic for
Each Transistor vs Ambient
Temperature
~

i:

(Continued)

TUH17950-4

Typical Noise Figure vs
Collector Current

Typical Noise Figure vs
Collector Current

30

30
VeE e3V

Vee "3V

As-''''''

25

!

..
.
0:

!!j
eo

As-'I,a.!

ZI

T. =Z5"C

T. =2I"c I I

;0

ZB

3

..
..!II..

~

g;

Typical Normalized Forward
Current Transfer Ratio, Short
Circuit Input Impedance,
Open Circuit Output Impedance,
and Open Circuit Reverse
Voltage Transfer Ratio vs
Collector Current

Z8

~

g;

II
f·O.' kHz

0:

iI'

-

I.

10'
=:.;;;:

'i}.

-Lffi

a
.01

I,! o.IkH•. /

II

1kHz

-

10

,/

i-"
o

lM

"II

.1
Ie - COLLECTOR (mA)

.01

Ie - COLLECTOR ImAI

10

.1

Ie - COLLECTOR (..AI

TL/H17950-5

.

Typical Forward Transfer
Admittance vs Frequency

0:
~

~

...

g1
i!i.§

,. ..~
u...

40

~~

3G

Typical Input Admittance
vs Frequency

T. =25"C

i"

TA

..

VeE -3V

Ie -l .. A

~~cE .. 3V

Ic"1mA

20

Ii

"

-11

f
I

..

-20

....

,~:;/,

~

~I

,

T. =Z5"C

25-C

VeE a3V

Ie = ImA

0: . .

~~
....

Typical Output AdmiHance
vs Frequency

~

.1

I'

\

~!

I..:::
11111

o
10
f - FREQUENCY IMH.)

100

.1

10
f - FREOUENCY (MH.)

108

~

o
.1

10

...

100

'-FREQUENCY IMH.)

TUH/7950-6

5·45

II
I

/

•

U)

~
CO)

.........::::E

I:I
~

:I

r---------------------------------------------------------------------------------,
Typical Performance Characteristics
Typical Reverse Transfer
Admittance vs Frequency

::

.
w

u

~I

.5

~I
=5

-.5

co E

s:
;w"=

Typical Gain-Bandwidth
Product vs Collector Current

.... !s W!~!I~T f~ElJE~J!~S
.sao
LESS THAN

I

t;

MHz \

"
f
...'"co

-2

~

~

!'"C

..

TA =ZS·C
VeE =lV

I

Ie "'1 mA

101

~eE ~ 3J

f-TA = 2S·C

"...

500
4GII

300

II

200

loa

~

100

f-

100

co 601
co

-1

~ I.
~ AI -1.5
I

(Continued)

10
fREQUENCY IMH.1

1

2 3

4 5

6

1

8 9 10

Ie - COLLECTOR ImAI
TL/H/7950-7

5-46

t!lNational Semiconductor

LM3146 High Voltage Transistor Array
General Description

Features

The LM3146 consists of five high voltage general purpose
silicon NPN transistors on a common monolithic substrate.
Two of the transistors are internally connected to form a
differentially-connected pair. The transistors are well suited
to a wide variety of applications in low power system in the
dc through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they
provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The
LM3146 is supplied in a 14-lead molded dual-in-line package for applications requiring only a limited temperature
range.

• High voltage matched pairs of transistors, VSE matched
± 5 mV, input offset current 2 p.A max at Ie = 1 mA
• Five general purpose monolithic transistors
• Operation from dc to 120 MHz
• Wide operating current range
• Low noise figure
3.2 dB typ at 1 kHz

Applications
• General use in all types of signal processing systems
operating anywhere in the frequency range from dc to
VHF
• Custom designed differential amplifiers
• Temperature compensated amplifiers

Connection Diagram
Dual-In-Llne and Small Outline Packages
SUBSTRATE

14

13

12

11

4

•

10

6
TL/H/7959-1

Top View
Order Number LM3146M or LM3146N
See NS Package Number M14A or N14A

•
5-47

Absolute Maximum Ratings

i.

Soldering Information
Dual-In-Line Package
Soldering (10 seccnds)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Salea
Office/Distributors for availability and specifications.
LM3146

Power Dissipation: Each transistor
mW
TA = 25°C to 55°C
300
Derate at 6.67 mWI"C
TA> 55°C
Power Dissipation: Total Package
500 .
mW
TA = 25"C
Derate at 6.67 mWI"C
TA> 25°C
30
V
Collector to EmillerVoltage, VCEO
40
V
Collector to Base Voltage, VCBO
Collector to Substrate Voltage,
40
V
VCIO (Note 1)
Emiller to Base Voltage, VEBO
(Note 2)
Collector to Current, Ic
Operating Temperature Range
Storage Temperature Range

5
50
-40 to +85

V
mA
°C

-65 to +150

°C

DC Electrical Characteristics TA =
Symbol

26O"C

Small Outline Package
Vapor Phase (60 secondS)'
Infrared (15 seccnds)

Units

215°C
2200C

See AN-450 "Surface .Mounting Methods an!! Their Effect
on Product ReliabilitY'~ for other methods of soldering surface mount devices:

25°C

Parameter

Limits

Conditions
Min

Typ

Units
Max

V(BR)CBO

Collector to Base Breakdown Voltage

Ic = 10 ,.A,IE = 0

40

72

V

V(BR}CEO

Collector to Emiller Breakdown Voltage

Ic=1mA,IB=0

30

56

V

V(BR)CIO

Collector to Substrate Breakdown
Voltage

ICI = 10 ",A, IB =0,
IE =0

40

72

V

V(BR)EBO

Emiller to Base Breakdown Voltage
(Note 2)

Ic = O,IE = 10 ",A

5

7

V

ICBO

Collector Cutoff Current

VCB = 10V, IE = 0

0.002

100

nA

ICEO

Collector Cutoff Current

VCE = 10V,Ia = 0

(Note 3)

5

",A

hFE

Static Forward Current Transfer
Ratio (Static Beta)

Ic = 10mA, VCE = 5V
Ic = 1 mA, VCE = 5V
Ic = 10,.A, VCE = 5V

IB1-IB2

Input Offset Current for Matched
Pair 01 and 02

IC1 = 1C2 = 1 mA,
VCE = 5V

0.3

2

",A

VBE

Base to Emiller Voltage

Ic = 1 mA, VCE = 3V

0.73

0.83

V

VBE1-VBE2

Magnitude of Input Offset Voltage
for Differential Pair

VCE = 5V,IE ,'" 1 mA

0.48

5

mV

AVBE/AT

Temperature Coefficient of Base
to Emiller Voltage

VCE = 5V, IE = 1 mA

VCE(SAn

Collector to Emiller Saturation
Voltage

Ic = 10 mA,lB = 1 mA

AV10/AT

Temperature Coefficient of Input
Offset Voltage

Ic = 1 mA, VCE = 5V

30

0.63

85
100
90

-1.9

mVI"C

0.33

V

1.1

",VloC

Note 1: The collector of each transistor Is Isolated from the substrate by an integral diode. The substrate must be connected to a witage which is more/negalive
than any collector voltage In order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors,
the subetrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to esteblish a Signal ground.
Note 2: If the transistors are foroed Into zaner breakdown (V(BR)EBOl, dagredatlon of forward transfer currant ratio (hFEl can occur.
Note 3: See curve.

5-48

AC Electrical Characteristics
Symbol

Parameter

Limits

Conditions

Typ

Min
NF

low Frequency Noise Figure

f = 1 kHz, VCE = 5V,
Ic = 100 p.A, Rs = 1 kO

fT

Gain Bandwidth Product

VCE = 5V, Ic = 3 mA

300

Units
Max

3.25

dB

500

MHz
pF

CEB

Emitter to Base Capacitance

VEB = 5V, IE = 0

0.70

CcB

Collector to Base Capacitance

Vcs = 5V, Ie = 0

0.37

pF

CCI

Collector to Substrate Capacitance

VCI

= 5V,Ic =

0

2.2

pF

100

Low Frequency, Small Signal Equivalent Circuit Characteristics
hje

Forward Current Transfer Ratio

f = 1 kHz, VCE = 3V"lc = 1 mA

hie

Short Circuit Input Impedance

f = 1 kHz, VCE = 3V, Ic = 1 mA

3.5

kO

hoe

Open Circuit Output Impedance

f = 1 kHz, VCE = 3V, Ic = 1 mA

15.6

p.mho

hre

Open Circuit Reverse Voltage
Transfer Ratio

f = 1 kHz, VCE = 3V,
Ic=1mA

1.8x 10-4

Admittance Charactsrlstics

= 1 mA

Vie

Forward Transfer Admittance

f = 1 MHz, VCE = 3V, Ic

Vie

Input Admittance '

f = 1 MHz, VCE = 3V, Ic = 1 mA

Voe

Output Admittance

f = 1 MHz, VCE = 3V, Ic = 1 mA

Reverse Trans~er Admittance

31 - j 1.5

mmho

+ jo.o4
0.001 + j 0.03

mmho

0.3

mmho

(Note 3)
f = 1 MHz, VCE = 3V, Ic = 1 mA
mmho
substrate by an integral diode. The substrate must be connected to a voltage which is more negative
than any collectorwltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors,
the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass cspacijor can be used to establish a signal ground,
Note 2: "",e transistors are forced into zener breakdown (V(BR)Eeol, degradation of forward transfer current ratio (hFEl can occur.
Note 3: See' curve.

Vre

Note 1: The collector 01 each transistor Is isolated !rem the

"

5-49

~

;,;

~

Typical Performance Characteristics
va

ICEO va T A for
Any Translator

c.s

.......

I"

~

II

ill

1
m II'

10 .,

..

I"

B

i

..
Il!
'"
IIl!...
...
....
.."
!

ICBO
TA for
Any Transistor

I"

B

hFEvslC for
Any Transistor
III

140
121
lDO

:I!

Vco'IIV

It

W
I

IV

.

s
I

10·'

ew
"

,lJ ....

o

25

18

II

125

lDO

i

0.1

VeE

!

-sv

D.I

/

V

I

J

1.5

o.c
-15 -50 -25

a

25 50 15 III 125

!..

~

il!

iii
I

1

-".,.

Ie: .'DjA
I~A

) 1..0

-".,.

•

l.'mA

I

-15 -50 -25 •

~

0.1

I

.j

..

NF vSlc
30

25 50 15 III 125

T. - AMIIENT TEMPERATURE ('Cl

t
eli
IS;

~

i
i

.
J

.. !l:

0.0

101"
.!
sili
:;
,.

1.5

=
10

I. - EMITTER (mAl

.......

@

Rs = 5000

VCII'SV

25

I

0.1

...

10

D.1

Ie - COLLECTOR CURRENT (mAl

VBE and VIO VB
IE for Q1 and Q2

I

I

j u&

I

0.0

I

1.15

""

.....~

.... 10

11213041

VIO VB T A for Q1 and Q2
Vce·5V

c

Ie - COLLECTOR CURRENT (111AI

T. - AMBlE.TTEMPERATURE I"CI

4

110 va Ic (Q1 and Q2)

V

IE.~ ~

II

c COLLECTOR CURREIT (mAl

10

TA;; 25°e

~ ~'3~

I:!

I~

VCE(SAT) va Ic
for Any Transistor

VBEvsTA for
Any Transistor

~~

1

T. - AMIIENT TEMPERATURE rCI

I

1.1

I

T. - AMlIEIT TEMPERATURE ( CI

~ ...

18
40

i

...

TA ·2ID C

20

:I!

i

15

.

f ....'kHz

II

~

I

a

0.01

I"
~

II 'HI

0.1

Ie - COLLECTOR (mAl
TUH/7958-2

5-50

Typical Performance Characteristics
NFvsIC@RS= 1kO

NFvslC = Rs = 10kO

3D

H.'"',.n

25

....
..!!!'"
~

h'e. hie. hoe. h,. vs IC

3D
VeE" IV
",'11._'
T"ZS'C II

VeE'" IV

;

(Continued)

Z5

Ta· 25~C

!

..

ZI

ZD

\! 1.1U./,

II!

1&

~

f'I.UH'~
10

V"

-Rtf

o
D.Dl

.'"
ill

lj)

15

UHI

II

V-

~

i--""
o

0.1

0.01

Im

"II

0.1

Ie - COLLECTOR CURRENT ImAI

II

0.1

Ie - COl:lEtTOA CURRENT (mA)

Ie - COLLECTOR CURRENT ImAI

Vie VS f

~~

TA '"25 C
VeE

I""

TA -2S'C

=5V

le'"

I
I

TAo "'25'C
VeE =3V

.t- Ve, · IV

Ie "'mA

Ie ·'.A

lOA

~t1

~il

It'

1\

e-ii ,...
II

100

10

~"i

10

8.1

1.0

i

~

....
..i

U

S

1U0

1111

f - FREQUENCY IMHz!

CEB. CCB. CCI vs Bias
Voltage

e-.r. ='I~

i!:

II S-D.S

25~C

=1-1.0

2~
! .J -1.5

i,

T., 25'C
VeE = IV
Ie -, mA

I

J

.:

10

100

f - FREQUENCY IMH.I

.....

o
1

Z 3

4

S •

J

Ie - COLLECTOR ImAI

•

9 10

Co,

r---

C,.

j
j

210

co 180

-2.8
1

301

""

.....

501
401

T.· ZS'C

Ve•

co '81

II:

110

11

Q.1

fyvslc

=1
....

J

o

180

••

~

f - FREQUENCY IMHz!

!!5 1i1

..,

II

11111

o

f - FREQUENCY IMHz!

...
;

~

c.=:

o

~ l-

1 Z 3 4

Cc.
I

& 1

I

9 10

BIAI VOLTAGE IVI
TL/H/7959-3

5-51

~ r-----------------~--------------------------------------------------~

~

t!lNational Semiconductor

LP395 "Ultra Reliable
Power Transistor
,
'\"

General Description
TlJe LP395 is a fast monolithic transistor with complete
overload prot~ion. This Very high gain transistor has illeluded on, the chip, current limiting, 'power limiting, and thermal overload protection, making it difficult to destroy from
almost any'type of overload. Available in an epoxy TO-92
transistor package this device is guaranteed to deliver 100

mAo
Thermal limiting at the chip level, a feature not available in
discrete designs, provides comprehensive protection
against overload. Excessive power diSSipation or inadequate heat sinking causes the thermal limiting circuitry to
turn off the device preventing excessive die temperature.
The LP395 offers a significant increase in reliability while
simplifying protection Circuitry. It is especially attractive as a
small incandescent lamp or solenoid driver because of its
low drive requirements and ~Iowout-proof design.
The LP395 is easy to use and only a few precautions need
be observed. ExcesSive collector to emitter voltage can destroy the LP395 as with any transistor. When the device is
used as an emitter foilower 'wjth a low source impedance, it
is necessarY to insert a 4.7 kO resistor..in series" with the
base lead to prevent possible emitter foilower oscillations.
Also since it has good high frequency response, supply bypassing is reQOmmended.

Connection Diagram

Areas where the LP395 differs frorT,l'a standard NPN transistor are in saturation voltage, leakage (quiescent) current
and in base current. Since the internal protection circuitry
requires voltage and current to function, the minimum voltage across the device in the on condition (saturated) is typically 1.6 Volts, while in the off condition the quiescent (leakage) current is typically 200 IJ-A. Base current in this device
flows out of the base lead, rather than into the base as is
the case with conventional NPN transistors. Also the base
can be driven positive up to 36 Volts without damage, but
will draw current if driven negative more than 0.6 Volts. Additionally, if the base lead is left open, the LP395 will turn on.
The LP395 is a low-power version of the 1-Amp
LM195/LM295/LM395 Ultra Reliable Power Transistor.
The LP395 is rated for operation over a - 400C to
range.

+ 125°C

Features
•
•
•
•
•

Intemaltherrnallimiting
Internal current and power limiting
Guara,nteed 1pO mA output current
0.5p.A typical base current
Directly interfaces with TTL or CMOS
'., :l:' 36 Volts on base causes no damage
• 2 p's switching time

Typical Applications

TD-92 Package

Fully Protected Lamp Driver

v+

EMInEft~COllECTOR

INCANDES~~ ( ~

BASEz.;!
BOTIOM VIEW

:chK~
4

TL/HI5525-1

Order Number, LP395Z
See NS PackageZ03A

5-52

TLlH/6525-3

Absolute Maximum Ratings
Internally Limited

Collector to Emitter Voltage

36V

Collector Current Limit

Collector to Base Voltage

36V

Power Dissipation

Base to Emitter Voltage (Forward)

36V

Operating Temperature Range

-40"Cto + 125·C

Base to Emitter Voltage (Reverse)

10V

Storage Temperature Range

-65·C to + 150"C

Base to Emitter Current (Reverse)

20 rnA

Internally Limited

Lead Temp. (Soldering, 10 seconds)

26O"C

Electrical Characteristics
Parameter

Symbol

Conditione

VCE

Collector to Emitter
Operating Voltage

0.5mA:s; Ic:S; 100mA

ICL

Collector Current Limit
(Note 4)

VBE
VBE
VBE

=
=
=

Tested
Limit
{Note 2)

De81gn
Limit
{Not. 3)

36

36
(Note 1)

V(Max)

45
90
130

25
60
100

20
50
100

mA(Min)
rnA(Min)
mA(Min)

-0.3

-2.0

-2.5

p.A(Max)

0.24

0.50

0.60

mA(Max)

1.82

2.00

2.10

V(Max)

36

36

V(Min)

0.79

0.90
1.40

V(Max)
V (Max)

Typical

2V, VCE = 36V
2V, VCE = 15V
2V,2V :s; VCE :s; 6V

Unite
(Limit)

IB

Base Current

OS; Ic:S;100mA

10

Quiescent Current

VBE

VCE(SAn

Saturation Voltage

VBE

BVBE

Base to Emitter Breakdown Voltage (Note 4)

o :s; VCE :s; 36V, IB = 2 p.A

VBE

Base to Emitter Voltage
(Note 5)

Ic = 5mA
Ic - 100 rnA (Note 4)

ts

Switching Time

VCE
VBE

8JA

Thermal Resistance
Junction to Ambient

0.4" leads soldered to
printed circuit board

150

180

·C/W
(Max)

0.125" leads soldered to
printed circuit board

130

160

·C/W

=
=

OV,O :s; VCE :s; 36V
2V,Ic

=

100 mA

0.69
1.02

= 2OV, RL = 2000
= OV, +2V, OV

Note 1: Parameters identified wHh boldface type apply at temp.
Note 2: Guarenteed and 100% production tested.

extre~.

2

,...s

(Max)

All other numbers, unless noted epply at + 25"C.

Note 3: Guarenteed (but not 100% production tested) oyer the operating temperature and supply voHage ranges. These IimHs are not used to calculate outgoing
quality levels.
Note 4: These numbers apply for pulse tasting with a low duty cycle.
Note 5: Base positive wHh respect to emitter.

Simplified Circuit

r-------------,

I
I

I

...
=

I
I
I
I
I
I
I

8
1

5l1li

...
'"

J

~K

~.

Applications Information
One failure mode incandescent lamps may experience is
one in which the filament resistance drops to a very low
value before it actually blows out. This is especially rough
on most solid-state lamp drivers and in most cases a lamp
failure of this type will also cause the lamp driver to fail.
Because of its high gain and blowout·proof deSign, the
LP395 is an ideal candidate for reliably driving small incandescent lamps. Additionally, the current limiting characteristics of the LP395 are advantageous as it serves to limit the
cold filament inrush current, thus increasing lamp life.

~
-U

~iI'

CIRCUITRY

1.5

I
IL. _ _ _ _ _ _ _ _ _ _ _ _ _ _

-

EII~

!

TLIH/5525-5

5:53

Typical Performance Characteristics
5 Volt Transfer Fun~n

36 Volt Transfer Function
8D

1&0

('IGIi= VI

F:

'40
i-120

1

TA=1 5°

,00
G 80

I:

I

ITr~oC
t =_25°C

10

.JJ

o

0, 0.20.4 D.• 0.81.01.2 1.4 1•• '.8

2

14~

(VaEa2V1
~

!. 120

II 100
B 80 I" ~

I:
20

o

'"

n .. L-

I"-

- r-

~

I...;. ['0".. ~
r- 125° - 25O"f'~~
oyARANTEED

GUARANTEED

'"

Ii 100

o

1

0.8

I

0.4

~

0.3

,

0.2
0.1

I

I I I I

1111

GUARANTEED I I I I I

0.5

e

-...

Ir

o Il

DB 10152025303540
COLLECTOR-EMITTER VOIJAGE (VI

0110152025303540

COLLECTOR-EMITTER VOIJA8E (VI

,

'" I'-

o.~

l'

o.rt

DV- .OV

.;

-

o a

1011202530 3540
coLLEl:ToR.EMITrm VOIJAGE (VI

0.20.4 O.B D.B 1.0 1.2 1.4 ' .• '.8

(VaE=OI

"

I U.IV

20

Quiescent Collector Curreni
O.B
_ 0.7

I.DV

80

BAlE-EMITTER VOIJA8E (VI

Available Collector Current

,..

140
-120

!

'

'.

r"~l.,
1.1V

i

~'1.

o

BASI:·EMITTSI VOIJA8E (VI

1&0

Collector CharacterlsUca

1&0

I:

i:

J
I(

o

,'j I I

6D

50
G'40

~A=isod ...
TA- -2!l°C ...

20

'70

i

I'I-t-l~o!-

(¥cE-3BV1

Saturation Voltage

i

2.2
2.0

1.8
!:j1.B
§!
i!5 1.4

I I
.--~

,,'"
i1.2

i

-

1. =_25°C

~

-

~~

iooo(

~

~

....

T~.25°C

.... " -llaoc

1.0
D.8

0.' o

20 40 80 80 100 120 140
COLLECTOR CURRENT (mAl
TL/H/5525-4

Collector Current Threshold

i

i

2.0
1.8

LVc=+ IV
11 SoC

I .•

1.4
'" 1.2
1.0

In

....,.•.

'"
G

I ::
B 0.4

I-H

.,.

PJ

J
~

0.2

o

',."

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAlE-EMlnER VOIJAIII: (VI
TUH/5525-9

Typical Applications (Continued)
Lamp'Flasher
(Short Circuit Proof)

Optically Isolated
Switch
.....- - - t - - - V +

V+2:12V

0U1PUT

....._ -.....--VTUH/5525-7

TUH/5525-6

5·54

r-

"a

w

Typical Applications (Continued)

CC)

Two TermInal
Current LImIter
+

~
-

en

ComposIte PNP
Uk

BASE

r2N2907

~~.

1

EMITTER

~P395
10k

~

1

COLlECTOR
TL/H/5525-2

TL/H/5525-8

5-55

Section 6
Surface Mount

Section 6 Contents
Packing Considerations (Methods, Materials and Recycling) ........•...••.•.........•.•.
Board Mount of Surface Mount Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Soldering Profiles-Surface Mount •....•............•...........•......
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their
Effect on Product Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . •
Land Pattern Recommendations .....................................................

6-2

6-3
6-19
6-23
6-24
6-35

tflNational Semiconductor

Packing· Considerations (Methods, Materials and Recycling)
Transport Media
All NSC devices are prepared, inspected and packed to insure proper physical support and to protect during transport
and shipment. All assembled devices are packed in one or
more of the following conteiner formHmmediate cOnteiners, intermediate conteiners and outerI shipping containers.
An example of each conteiner form is illustrated below.

INTERMEDIATE CONTAINER
Tape" R..I
Box

IMMEDIATE CONTAINER
Reel

TLlP/11809-4

.

TLlP/11809-1

IC Device

~L_\
_~~---,\
\
~

Label

1:~O

\ Rail/Tub.

TLlP/11809-5

Rail/Tube

TLlP/11809-2

IC Oeyice

Trays
TLlP/11809-6

OUTER/SHIPPING CONTAINER
TLlP/11809-3

TLlP/11809-7

6-3

Methods of immediate carrier packing include insertion of
components into molded trays and rails/tubes, mounting of .
components onto tape and reel or placement in corrugated
cartons. The immediate containers are then packed into intermediate containers (bags or boxes) which specify quantities of trays, rails/tubes or tape and reels. Outer/shipping
containers are then fill.ed or partially filled with intermediate
containers to meet order quantity requirements and to further insure protection from transportation hazards. Additional dunnage filler material is required to fill voids within the
intermediate and outer/shipping containers.

Ease of handling-it should be easy to assemble •. load
and unload products in and from it; and

-

Impacts to the environment-it shall be reusable and
recyclable.·

. Levels of Product Packing
IMMEDIATE CoNTAINER
The first level of product packing is the immediate container.
The immediate container type varies with the product or
package being packed. In addition, the materials used in the
immediate container depend on the fragility, size and profile
of the product. The four types of immediate containers used
by NSC are rails/tubes, trays, tape and reel,' and Corrugated
and chipboard containers.

General Packing Requirements
NSC packing methods and materials are designed based on
the following considerations:
-

-

Rails/tubes are generally made of acrylic or pOlY,vinyl chloride (PVC) plasticS. The electrical.characteristics of the meterial are altered by either intrinsically adding carbon fillers,
and/or topically coating it with antistatic solution. Refer to
Table I for rail/tube material and recyclabillty Intormation.

Optimum protection to the products-it must provide adequate protection from handling (electrostatic discharge) and transportation hazards;

TABLE I. Plastic Rail/Tube and Stopper Requirements
Rail

Package
Type

Material

Code/Symbol
(Note 1)

DIP's
Plastic
Ceramic
Sidebraze

Polyvinyl chloride
Polyvinyl chloride
Polyvinylchloride

OS/PVC
OS/PVC
OS/PVC

Type

Stopper
Material

Code/Symbol
(Note 1)

Recyclability

Pin
Pin
Pin

Polyamide
Polyamide
Polyamide

07/PA
07lPA
07/PA

Yes
Yes
Yes

PLCC

Polyvinylchloride

OS/PVC

Plug

Rubber

07/SSR

Yes

TapePak

Polyvinyl chloride

OS/PVC

Plug

Rubber

07lSSR

Yes

Flatpack

Polyvinylchloride

OS/PVC

Pin

Polymide

07lPA

Yes

Cerpack

Polyvinylchloride

O.S/PVC

Pin

Polymide

07/PA

Yes

TO-220/202

Polyvinylchloride

OS/PVC

Pin

Polymide

07/PA

Yes

TO-5/S
(in Carrier)

Polyvinylchloride

OS/PVC

Pin

Polymide

07lPA

Yes

SOP

Polyvinylchloride

OS/PVC

Plug

Rubber

07/SSR

Yes

LCC
1SL-44L

Polyvinylchloride

OS/PVC

Plug

Rubber

07/SSR

Yes

Note 1: ISO 1043-1 International Standards-P1astiC Symbols.
SAE JI344 Marking of Plastic Parts.

ASTM D 1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120. Gennan Recycling Systems, RESY for paperbased and VGK for plastic packing materials.

""

6-4

Molded injection and vacuum formed trays can be either
conductive or static dissipative. Molded injection trays are
classified as either low·temperature or high·temperature

depending on the material type. Vacuum formed trays are
only used in ambient room temperature conditions. Refer to
Table II for tray material and recyclability information.

TABLE II. Tray Requirements
Tray

Package
Type

Class

PQFP(AII)

Material

Recyclabillty
(Note 1)

CodelSymbol
(Note 1)

High Temperature

Polyethersulfone

Ves

Low Temperature

Acrylonitrilebutadiene
Styrene

Ves

PGA,LDCC
CERQUADs
andLCC
(48leads-125 leads)

Low Temperature
Only

ABS/PVC

Ves

07/ABS·PVC

Wire Tie

PPGA

Low Temperature
Only

Polyarytsulfone

Ves

07lPAS

Wire Tie

Tape and reel is a multi·part immediate container system.
The reel is made of either polystyrene (PS) material coated
with antistatic solution or chipboard. The embossed or cavi·
ty tape is made of either PVC or PS material. The cover tape

07/PES

Binding Type

07/ABS

Wire Tie or
Nylon Strap
Wire Tie or
Nylon Strap

is made of polyester (PEn and polyethylene (PE) materials.
Refer to Table III for tape and reel material and recyclability
Information,

TAB.LE III. Tape and Reel RequIrements
Reel
Package
Type

Material

Cover Type
Codel
Symbol
(Note 1)

Codel
Symbol
(Note 1) .

Material

carrier Tape
Material

Codel
Symbol
(Note 1)

Paper. Tape

Recyclabillty
(Note 1)

TO·92

Chipboard

Resy

N/A

SOP·23

Polystyrene
Chipboard

06/PS
Resy

Polystyrene

06/PS

PVC

03/PVC

Ves

SOP,SSOP
andPLCC

Polystyrene
Polyethylene

06/PS

Polyester

07lPET·PE

PVC

03/PVC

Ves

Nota 1: 150 1043·1 International Standards-Plastic Symbols.
SAE J1344 Marking 01 Plastic Parts.
ASTM D 1972-91 Standard Practioe for Generic Marking 01 Plastic Products.
DIN 6120. German Recycling Systems, RESY for paparbased and VGK for plastic pacl-46/5,
Shielding
TQ-39/220, Bag
T0-202/12B,
TQ-3/237

PoIyethJene
Alum. Laminant

OUTER/SHIPPING CONTAINERS
The third level of product packing is the outer/shipping container. The outer/shipping containers use by NSC are similar to the corrugated containers used for immediate and intermediate packaging, but are heavier in faCing thickness.
The style generally used is the regular slotted container
(RSC) box and can be single, double or triple wall, depending on the total weight of products being transported or
shipped. Refer to Table IV for material and recyclability information.

TABLE VI. Drypack Bag Requlrementa
Mat'l
PecIaIge

Type

ContaIner
Type

Material

Type

end

Mat'l

Symbol Racyclabillty
(Note 1)

TapePak
PLCC
(52-64L)
PQFP

Drypack
Bag

StratoguardTM 4.6

N/A

OTHER PACKING MATERIALS

No

Additional dunnage and void filler materials are required to
fill voids within the intermediate and outer/shipping containers. Two types of dunnage/filler material are Padpack and
bubble pack. Padpak is a machine procassed, 3-p1y kraft
paper sheet dunnage system. Refer to Table IV for material
and recyclability information.

Nota 1: ISO 1043-1 Intamationel Standarde-Ptasllc Symbols.
SAE J1344 Marking of Plastic Par1s.
ASTM 01972-91 Standard Practice for Gensric Marking of Plastic

Bubble pack is made of polyethylene plaslic sheets with air
pockets trapped in between the plastiC layers and can be
either static dissipative or conductive. Refer to Table IV for
material and recyclability information.

ProducI8.
DIN 6120, German Recycling Systems. RESY lor pspEIIbaeed end
VGK for plastic packing materials

6-7

Immediate Oontainer Pack Methods
The following table identifies the primary imniedlatecontaJner pack method for all herinelrc and plastic
Nationa' Semiconductor. A secondary)mm~iate container pack method is identified where applicable. "

packa~es offered by

Immediate Packing Method for CeramiC Packages
, Package
'Type
(Code)

' Package
Marketing
Drawing

Primary
Immediate
Container
'Method

Ceramic Sidebrazed '
Dual-In-Une
, Package (SB)

\

Ceramic Leadless
Chip Carrier (LCC)

!

Quantity

D08C

Rail/Tube

35,

D14D

Rail/Tube

25

D18C

Rail/Tube

20

D18A

Rail/Tube

20 ",

D20A

Rail/Tube

18

D20B

Rail/Tube

18

D24C

Rail/Tube

15

D24H

Rail/Tube

15

D24K

,Rail/Tube

15

D28D

Rail/Tube

13

D28G

Rail/Tube

13

D28H

Rail/Tube

13

D40C

Rail/Tube'

9

D40J

' Rail/Tube

9

D48A

Rail/Tube

7

D52A

Rail/Tube

7

E20A

Rail/Tube

50

EA20B

Rail/Tube

50

E24B

Tray

25

E28A

Tray

28

EA028C

Tray

100

Rail/Tube

35

E32A

'.

Seco"dary ,
Immediate'
Container

E32B

Rail/Tube

35

E32C

Rail/Tube

35

E40A

Rail/Tube

35

E44A

Rail/Tube

25
25

E48A

Tray

E68B

Tray

48

E68C

Tray

48

E84A

Tray

42

E84B

Tray

42

.:

6-8

Method

Quantity ,

Immediate Packing Method for Ceramic Packages (Continued)
Package
Type

(Code)

Package
Marketing
Drawing

Primary
Immediate
Container
Method

Ceramic Quad
J-Bend (CQJB)

Ceramic Quad
Flatpack
(CQFP)

Ceramic
Flatpack

Secondary
Immediate
Container

Quantity

EL28A

Tray

96

EL44A

Tray

80

EL44B

Tray

80

EL44C

Tray

80

EL52A

Tray

50

EL68A

Tray

44

EL68B

Tray

44

EL68C

Tray

44

EL84A

Tray

42

EL28B

Rail

15

EL64A

Box

36

EL100A

Tray

12

ELl16A

Tray

12

EL132B

Tray

20

EL132C

Tray

20

EL132D

Tray

20

EL164A

Tray

12

EL172B

Tray

12

EL172C

Tray·

12

Method

Quantity

Fl0B

Carrier/Rail

19

Carrier/Box

200

F14C

carrier/Rail

19

carrier/Box

200

19

Carrier/Box

200

F16B

carrier/Rail

6-9

I

J

I

Immediate Packing Method for Ceramic Packagali (Continued)
Package

Type
(Code)
Ceramic Dual-InUnePackage
(Cerdip)

Ceramic Small
Outiine Package,
Wide

Package
Marketing
Drawing

' Primary
immediate
Container

Secondary
Immediate
Container

Method

Quantity

J08A

Rail/Tube

40

J14A

Rail/Tube

25

J16A

Rail/Tube

25

J18A

Rail/Tube

20

J20A

Rail/Tube

20

J22A

Rail/Tube

17

J24A

Rail/Tube

15

J24AQ

Rail/Tube

15

J24B-O

Rail/Tube

15

J24CQ

Rail/Tube

15

J24E

Rail/Tube

16

J24F

Rail/Tube

15

J28A

RaillTube

12

J28AQ

Rail/Tube

12

J28B

Rail/Tube

12

J28BQ

Rail/Tube

12

J28CQ

RaillTube

13

J32B

Rail/Tube

11

J32AQ

Rail/Tube

11

J40A

Rail/Tube

9

J40AQ

Rail/Tube

9

J40BQ

Rail/Tube

9

MC16A

Rail/Tube

45

MC20A

Rail/Tube

36

MC20B

Rail/Tube

36

MC24A

Rail/Tube

30

MC28A

Rail/Tube

26

MC28B

Rail/Tube

26

6-10

Method

Quantity

Immediate Packing Method for Ceramic Packeg.. (Continued)
Package
Type

(Code)
Ceramic Pin Grid
Array (CPGA)

Primary
Immediate
Container

Package
Marketing
Drawing

Method

Quantity

U44A

Tray

80

U68B

Tray

42

U68C

Tray

42

U68D

Tray

42

U68E

Tray

42

U75A

Tray

35

U84A

Tray

42

U84B

Tray

42

U84C

Tray

42

U99A

Tray

25

U100A

Tray

30

U109A

Tray

25

U120A

Tray

30

U120C

Tray

30

U124A

Tray

30

U132A

Tray

30

U132B

Tray

30

U144A

Tray

20

U156A

Tray

20

U156B

Tray

20

U169A

Tray

20

U173A

Tray

20

U175A

Tray

20

U180A

Tray

20

U223A

Tray

20

U224A

Tray

20

U257A

Tray

12

U259A

Tray

12

U299A

Tray

12

U301A

Tray

12

U303A

Tray

12

U323A

Tray

12

6-11

secondary
Immediate
Container
Method

Quantity

Immediate Packing Method fOr Ceramic Package., (Continued)
Package
Type

(cOde)

Package
Marketing
Drawing
,

Cerpack

Cerquad

Primary
Immediate'
Container

Secondary
Immedla~e
Contalne,r

Method'

Quantity

Method

Quantity

Carrier/Rail

19,

Carrier/Box

200

W14B

Carrier/Rail

19

Carrier/Box

200

W14C

Carrier/Rail

19

Carrier/Box

200

W16A

Carrier/Rail

19'

Carrier/Box

200

W10A

W20A

Carrier/Rail

19

Carrier/Box

200

W24C

Carrief/Rail

15

Carrier/Box

80

W28A

Carrier/Rail

15

Carrier/Box

80

WA28D

Carrier/Rail

15

Carrier/Box

80

W24B

Rail/Tube

15

W56B

Tray,

20

W64A

Tray

20

W68A

Tray

12

Tray

12,

W84A
Cerquad, EIAJ

"

,

,

,

WA80A

Tray

84

WA80AQ

Tray

84 '

W120A

Tray

12

W144A

Tray

12

W144B

Tray

12

W160A

Tray

12

W208A

Tray

12

6·12

Immediate Packing Method for Metal Cans
Package
Type

(Code)

Package
Marketing
Drawing

PrImary
Immediate
Container
Method

T0-5

TO·18
T0-39

T0-46

H06C

Tray

H08A
H08C

Quantity

Secondary
Immediate
Container
Method

Quantity

100

Carrier/Rail

18

Tray

100

Carrier/Rail

18

Tray

100

Carrier/Rail

18

H10C

Tray

100

Gerrier/Rail

18

H03C

Box

1800

Tray

100
18

H03A

Tray

100

Carrier/Rail

H03B

Tray

100

Carrier/Rail

18

HA04E

Tray

100

Carrier/Rail

18

Tray

100

H02A

Box

1800

H03H

Box

1800

Tray

100

H04A

Box

1800

Tray

100

H04D

Box

1800

Tray

100

TO-52

H03J

Box

1800

Tray

100

TO·72

H04C

Box

1800

Tray

100

6·13

Immediate Packing Method for Plastic Packages
Package

Type
(Code)
Small
Outline
Transistor
(SOT-23)
. Small
Outline
Package,
JEDEC
(SOP)

Package
Marketing
Drawing

Shrink
Small
Outline
Package,
JEDEC
(SSOP)
Shrink
Small
Outline
Package,
EIAJ
(SSOP)

Secondary
Imme'dlate
Container

Method

Quantity

Method

Quantity

M03A

Tape and Reel

3000/
10000

Bulk/Bag

500

M03B

Tape and Reel

3000/
10000

Bulk/Bag

500

M08A

Rail/Tub$

95

Tape and Reel

2500

M14A

RailiTube

55

Tape and Reel

2500

M14B

Rail/Tube

50

Tape and Reel

1000

M16A

Rail/Tube

48

Tape and Reel

2500

Rail/Tube .

45

Tape and Reel

1000

M20B

Rail/Tube

36

Tape and Reel

1000

M24B

Rail/Tube

30

Tape and Reel

1000

M28B

Rail/Tube

26

Tape and Reel

1000

M14D

Rail/Tube

47

Tape and Reel

1000

M16D

Rail/Tube

47

Tape and Reel

1000

M20D

Rail/Tube

37

Tape and Reel

1000

. M16B

Small
Outline
Package,
EIAJ
(SOP)

Primary
Immediate
Container

MQA20

Rail/Tube

54

Tape and Reel

2500

MQA24

Rail/Tube

54

Tape and Reel

2500
1000

MS48A

Rail/Tube

29

Tape and Reel

MS56A

Rail/Tube

25

Tape and Reel

1000

MSA20

Rail/Tube

65

Tape and Reel

1000

MSA24

Rail/Tube

58

Tape and Reel

1000

MS40A

Rail/Tube

34

Tape and Reel

1000

Very
Small
Outline
Package
(VSOP)

M40A

Rail/Tube

34

Tape and Reel

1000

Thin
Small
Outline
Package,
EIAJ
(TSOP)

MBH32A

Tray

156

Thin
Shrink
Small
Outline
Package,
EIAJ
(TSSOP)

MTA20

Tape and Reel

2500

i

Immediate Packing Method for Plastic Package. (Continued)
Package
Type
(Code)

Package
Marketing
Drawing

Primary
Immediate
Container
Method

Molded
Dual-In-Line
Package
(MDIP)

T0-202

TO-237

T0-226

::I
CO

Secondary
Immediate
Container

Quantity

Method

g

Quantity

a.
CD
iii

-

N08E

Rail/Tube

40

N14A

Rail/Tube

25

N16A

Rail/Tube

20

N16E

Rail/Tube

25

N16G

Rail/Tube

20

N18A

Rail/Tube

20

N20A

Rail/Tube

18

N22A

Rail/Tube

15

N22B

Rail/Tube

15

N24A

Rail/Tube

15

N24C

Rail/Tube

15

N24D

Rail/Tube

15

N24E

Rail/Tube

15

N28B

Rail/Tube

13

N40A

Rail/Tube

9

N48A

Rail/Tube

7

P03A

Rail/Tube

45

Box

300

P03B

Rail/Tube

45

Box

300

P03C

Rail/Tube

45

Box

300

P03D

Rail/Tube

45

Box

300

P03E

Rail/Tube

45

Box

300

P03F

Rail/Tube

45

Box

300

P03G

RaillTube

45

Box

300

P03H

Rail/Tube

45

Box

300

P03J

Rail/Tube

45

Box

300

P04A

Rail/Tube

45

Box

300

P11A

Rail/Tube

15

R03A

Box

1500

Tape and Reel

2000

R03B

Box

1500

Tape and Reel

2000

R03C

Box

1500

Tape and Reel

2000

R03D

Box

1500

Tape and Reel

2000

RC03A

Box

1500

Tape and Reel

2000

RC03B

Box

1500

Tape and Reel

2000

RC03C

Box

1500

Tape and Reel

2000

RC03D

Box

,1500

Tape and Reel

2000

6-15

!e.

o·
i

\tIJ

.--------------~--------------------------...,

t

Immediate Packing Method for Plastic Packages (Continued)

c

:2
tIJ

8
01
C

Package
Type
(Code)
TO-22O

I

Package
Marketing
Drawing

Primary
Immediate
Container

Secondary
Immediate
Container

Method

Quantity

Method

Quantity

TA02A

Rail/Tube

45

Box

300

T02D

Rail/Tube

45

Box

300

TA03A

Rail/Tube

45

Box

300

TA03B

Rail/Tube

45

Box

300

TA03D

Rail/Tube

45

Box

300

T03A

Rail/Tube

45

Box

300

T03B

Rail/Tube

45

Box

300

T03D

Rail/Tube

45

Box

300

T03F

Rail/Tube

45

Box

300

T05A

Rail/Tube

45

Box

300

T05B

Rail/Tube

45

Box

300

T05C

Rail/Tube

45

Box

300

T05D

Rail/Tube

45

Box

300

T05E

Rail/Tube

45

Box

300

T05F

Rail/Tube

45

Box

300

TA05A

Rail/Tube

45

Box

300

TA05B

Rail/Tube

45

Box

300

TA11A

RaillTube

20

Box

300

TA11B

Rail/Tube

20

Box

300

TA11C

Rail/Tube

20

Box

300

TA11D

Rail/Tube

20

Box

300

TA11E

Rail/Tube

20

Box

300

TA12A

Rail/Tube

20

Box

300

TA15A

Rail/Tube

20

Box

300

TA23A

Rail/Tube

15

Box

300

TapePak@>

TP40A

Coinstack
Tube

100

Flat Rail

25

Plastic Pin
Grid Array
(PpGA)

UP124A

Tray

30

UP159A

Tray

20

UP175A

Tray

20

Plastic
Leaded Chip
Carrier
(PLCC)

V20A

Rail/Tube

40

Tape and Reel

1000

V28A

Rail/Tube

35

Tape and Reel

750

V32A

Rail/Tube

30

V44A

Rail/Tube

25

Tape and Reel

500

V52A

Rail/Tube

22

Tape and Reel

500

V68A

Rail/Tube

18

Tape and Reel

250

V84A

Rail/Tube

15

Tape and Reel

250

6-16

Immediate Packing Method for Plaatic Packages (Continued)
Package
Type
(Code)

Primary
Immediate
Container

Package
Marketing
Drawing

Quantity

Method
Plastic Quad
Flatpack
(PQFP)

T0-92

Secondary
Immediate
Container

VEF44A

Tray

96

VBG48A

Tray

60

VHG80A

Tray

60

VJE80A

Tray

84

VCcaOA

Tray

50/66

VCE100A

Tray

84

VLJ100A

Tray

50

Method

Quantity

VJG100A

Tray

60

VNG144A

Tray

60

VUL160A

Tray

24

VQL160A

Tray

24

VUW208A

Tray

24

VF132A

Tray

36

VF196A

Tray

21

Z03A

Box

1800

Tape and Reel

2000

Z03B

Box

1800

Tape and Reel

2000

Z03C

Box

1800

Tape and Reel

2000

Z03D

Box

1800

Tape and Reel

2000

Z03E

Box

1800

Tape and Reel

2000

Z03G

Box

1800

Tape and Reel

2000

Z03H

Box

1800

Tape and Reel

2000

Z03J

Box

1800

Tape and Reel

2000

Labeling
National Semiconductor offers 3 standard bar code labels;
reel and intermediate container labels for Tape and Reel;
intermediate container label other than for Tape and Reel;

and outer/shipping container labels. The tape and reel, and
intermediate container labels are National's own format
while the outer/shipping container label is based on the
EIA-556-A label standard.

NSC Standard Tape and Reel Label

CP) CPN: CPN 123456789B12

n:

PO

ca) aTY: 1000

CD) O/C: P9236

III1IIIII

II1IIIIII

I

PO 123456789012
NSID:

DM74FLS253t1

~C: ~C~~~5678912
TLlP/11809-8

This label is placed on the reel (immediate container) as
well as on the intermediate box.

6-17

NSC Standard Intar'madlata Container Label

XYZ

CO"Pftt(

( P) CPIi. CPH

1234~67Bge

I

(O)o.c. P9236

(a) aTV Ieee

11111 II

(A) P.O. po 1234567Bge12

IIIIIIIII

IIIIII

NSID
I Df1'7~
FIN CPT : SPEC1
: LOT 12 456789
LOT

P. L.
: A..1234
REQA
: RV1234
OOX 01 CF 03

I'RTICN=!I_ SEMICCNXJCTOR
TLlP/11809-9

NBC Standard Outer/Shipping Contalnar Labal

FROM:

iiiiliiiiiiil

.....,...

TO:

II

~~

N 5 C

CIt _OSI

xyz_
SHI~

TO NX)RESS I

SHIP TO

~s

a

SHIP TO NlDRESS It
SHIP TO ADaRlESS 4
SHIP TO NXIfiIIISS •

10000 EA

PAWing pages.
Usual variations encountered by users of SO packages are:
• Single-sided boards, surfaCe-mounted components only.
• Single-sided boards, mixed-lead inserted and, surfacemounted components.
• Double-sided boards, surfaee-mounted compOnents only.
• Double-sided boards, mixed-lead inserted and surfacemounted components.
I,n consideration of ,these varia~ions, it became necessary for
users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

I

TL/F/8766-2

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were int!lrnally. qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under
all accelerated environmental tests. Figure A is.a summary
of accelarated bias moisture test performance on 30V bipolar and 15V CMOS product assembled in SO and DIP (control) packages.

PRODUCTION FL9W ,
Basic Surface-Mount Production Flow

V+=15VCMOS
30V BIPOLAR
85% RH/85"C
TEST CONDmON

DIP

o

2000

.woo

6000

TEST llME (HRS)
TLlF/8766-3

FIGURE A

TLlF/8766-4

6-24

Thermal stress of the packages during surface-mounting
processing is more severe than during standard DIP PC
board mounting processes. Figure B illustrates package
temperature versus wave soldering dwell time for surface
mounted 'packages (components are immersed into the
molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder). '

Mixed Surface-Mount and Axial-leaded Insertion
Component. Production Flow

SOLDER TEMPERATURE 2600c

o

1 2 3 4 5 6 7 8 9 10 SEC.
DWELL TIME
TL/F/8766-6

FIGUREB
'".'

For an ideal package, the thermal expansion rate of the
encapsulant should match that of the leadframe material in
order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup
of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the
epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant
and metal lead frame materials are linear and remain fairly
close at temperatures approaching 1600C, Figure C. At lower temperatures the difference in expansion rate of the two
materials is not great enough to cause interface separation.
However, when the package reaches the glass-transition
temperature (Tg) of epoxy (typically 160-165"C), the thermal expansion rate of the encapsulant increases sharply,
and the material undergoes a transition into a plastic state.
The epoxy begins to expand at a rate three times or more
greater than the metal leadframe, causing a separation at
the interface.

TL/F/8766-5

al

100 110 120 130 1<40 150 160 :170 180
T9

T(OC)
FIGUREC

6-25

TLlF/8766-26

The basic, component-placement systems available are
classified as:
(a) In-line placement

When this happens during 'a conventional wave soldering
process using flux and acid cleaners, process residues and
even solder can ente~ the cavity created by the separation
and become entrappEllij when the material cools. These
contaminants can eventually diffuse into the interior of ,the
package, especially in the presence of moisture. The result
is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws.

-

Boards indexed under head and respective components placed
(b) Sequential placement
- Either a X-V moving table system or a 9, X-V moving
pickup system used

Most soldering processes involve temperatures ranging up
to 26O"C, which far exceeds the glass-transition temperature of epoxy. Cleariy, circuit boards containing SMD packages require tighter prc:icess controls than those used for
boards populated solely by DIPs.
Figure 0 is a summary of accelerated bias moisture test
performance on the 30V bipolar process.
Group 1 Group 2 -

-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup 'heads
- Whole array of components placed onto the PCB at
the same time
(d) Sequential/simultaneous plaCement

Standard DIP package
SO packages vapor-phase reflow soldered on
PC boards

- X-V moving table, multiple pickup heads system
-

Components placed on PCB by sucCessive or simultaneous actuation of pickup heads
The SO package Is treated almost the same as surfacemount, passive components requiring correct orientation in
placement on the board.
'
Pick and Place Action

Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4 - dwell time 4 seconds

56-

0

dwell time 6 seconds
dwell time 10 seconds

"

o

2000

"
<1000

A

Fixed placement stations

-

#3(2 SEC)
#2 'V-PH)
l-STD

6000

TEST nM~ (HRS)
TUF/8786-7

FIGURE,D
It is clear based on the data presented that SO packages
soldered onto PC boards with the vapor phase reflow pr0cess have the best long term bias moisture performance
and this is comparable to the performance of standard DIP
packages. The key advantage of reflow soldering methods
is the clean environment that minimized the potential for
contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components
on the board, the dwell time of the component under molten
solder should be no more than 4 seconds, preferrably under
2 seconds in order to prevent damage to the component.
Non-Halide, or (organic acid) fluxes Ell:e highly recommended.

PICK AND PLACE
The choice of automatic (all generally programmable) pickand-place machines to handle surface mounting has grown
considerably, and their selection is based on individual
needs and degree of sophistication.

Tl,IF/8786-8

BAKE
This is recommended, despite claims made by some solder
paste suppliers that this step be omitted.
The functions of this step are:
• Holds down the solder globules during subsequent reflow
soldering process and prevents expulsion of small solder
balls.
0

• Acts as an adhesive to hold the components in place during ha~dling bet,ween placement to reflow soldering.
, • Holds components in position when a double-sided surface-mounted board is held upside down gOing into a vapor-phase reflow soldering operation.
o

• Removes solvents which might otherwise contaminate
, other equipment.
• Initiates activator cleaning of surfaces to be soldered•
• Prevents moisture absorption.

6-26

The process is moreover very simple. The usual schedule is
about 20 minutes in a 65·C-95·C (dependent on solvent
system of solder paste) oven with adequate venting. Longer
bake time is not recommended due to the following reasons:
• The flux will degrade and affect the characteristics of the
paste.
• Solder globules will begin to oxidize and cause solderability problems.
• The paste will creep and after reflow, may leave behind
residues between traces which are difficult to remove and
vulnerable to electro-migration problems.

VAPOR-PHASE REFLOW SOLDERING
Currently the most popular and consistent method, vaporphase soldering utilizes a f1uoroinert fluid. with excellent
heat-transfer properties to heat up compon~nts until the solder paste reflows. The maximum temperature Is limited by
the vapor temperature of the fluid.
.
The commonly used fluids (supplied by 3M Corp) are:
• FC-70, 215·C vapor (most applications) or FX-38
• FC-71 , 253·C vapor (low-lead or tin-plate)
HTC, Concord, CA, manufactures equipment that utilizes
this technique, with two options:
• Batch systems, where boards are lowered in a basket and
subjected to the vapor from a tank of boiling fluid.
• In-line conveyorized systems, where boards are placad
onto a continuous belt which transports them IIlt9 a concealed tank wh,ere they are subjected to an enviro.,ment
of hot vapor.
Dwell time in the vapor is generally on the order of 15-30
seconds (depending on the, mass of the boards and the
loading gensity of boards on the belt).

REFLOW SOLDERING
Thera are various methods for reflowing the solder paste,
namely:
• Hot air reflow
• Infrared heating (furnaces)
• Convectional oven heating
• Vapor-phase reflow soldering
• Laser soldering
For SO applications, hot air reflow/infrared furnace may be
usad for low-volume production or prototypa work, but vapor-phase soldering reflow is more efficient for consistency
and speed. Oven heating is not recommended because of
"hot spots" in the oven and uneven melting may result. laser soldering is more for specialized applications and requires a great amount of investment.

Vapor-Phaae Profile
RECOIIIIENDED

R

(m 20 Dro C/soc

)

A

HOT GAS REFLOW/INFRARED HEATING
A hand-held or table-mount' air blower (with appropriate orifice mask) can be usad.
The boards are preheated to about 100"C and then subjected to an air jet at about 260"C. This is a slow process and
results may be inconsistent due to various heat-sink properties of passive components.

T
U

R
E

o

20 40 80 80 100 120 1«1160 160

TillE
TL1F/8768-28

INFRARED REFLOW SOLDERING
Use of an infrared furnace is currenUy the most popular
method to automate mass reflow, the heating is promoted
by use of IA lamps or panels. Early objections to this method wera that certain materials may heat up at different rates
under IA radiation and could result in damage to those components (usually sockets and connectors). This has been
minimized by using far-infrared (non-focused) systems and
convected air.
Infrared Profile

In-Une Conveyortzed Vapor-Phaae Soldering

. RECOIIIIENDED

/Ji'=========w 250
II
200
150

(m

TlIF/8786-9

1 DEG C/IOC

100

)

The question of thermal shock is asked frequently because
of the relatively sharp increase in component temperature
from room temperature to 215"C. SO packages mounted on
representative boards have been tested and have shown
little effect on the integrity of the packages. Various packages, such as cerdips, matsl cans and TD-5 cans with glass
seals, have also been tested.

A

T

TIllE
TLlF/8788-27

6-27

Batch-Fed Production Vapo....Phase Soldering Unit ,

TLlF/8766-10

Solder Joints ona 80-14 Package oli',PCB "

Solder Jojnla on a SO-14 p,ackage on PCB,
.,1

TLlF/8766-13

.' :

':.'

common and well-tried method. The paste is forced through
the screen by a V-shaped plastic squeegee in a sweeping
manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement
from that required by other surface-mounted, passive components. Recommended working specifications are:
• Use stainless-steel, wire-mesh screens, #80 or #120,
wire diameter 2.6 mils. Rule of thumb: mesh opening
should be approximately 2.5-5 times larger than the average particle size of paste material.

PRINTED CIRCUIT BOARD
The SO package is molded out of clean, thermoset plastic
compound and has no particular compatibility problems with
most printed circuit board substrates.
The package can be reliably mounted onto substrates such
as:

• G10 or FR4 glass/resin
• FR5 glass/resin systems for high-temperature
applications
• Polymide boards, also high-temperature
applications

• Use squeegee of Durometer 70.
• Experimentation with squeegee travel speed is recommended, if available on machine used.

• Ceramic substrates
General requirements for printed circuit boards are:

• Use solder paste of mesh 200-325.
• Emulsion thickness of 0.005" usually used to achieve a
solder paste thickness (wet) of about 0.008" typical.

• Mounting pads should be solder-plated whenever
applicable.
• Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical
contamination and corrosion.
If coated over pre-tinned traces, residues may accumulate
at the mask/trace interface during subsequent reilow,
leading to possible reliability failures.

• Mesh pattern should be 90 degrees, square grid.
• Snap-off height of screen should not exceed
damage to screens and minimize distortion.
SOLDER PASTE

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers.
In general, the following guidelines are sufficient to qualify a
particular paste for production:
• Particle sizes (see following photographs). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for lead less components (LCC). The larger particles
can easily be used for SO packages.

Recommended application of solder resist on bare, clean
traces prior to coating exposed areas with solder.
General requirements for solder mask:
-

'Is" , to avoid

Good pattern resolution.

- Complete coverage of circuit lines and resistance to
flaking during soldering.
- Adhesion should be excellent on substrate material to
keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

• Uniform particle distribution. Solder globules should be
spherical in shape with uniform diameters and minimum
amount of elongation (visual under 100/200 x magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their
proper sites.

SOLDER PASTE SCREEN PRINTING
With the initial choice of printed circuit lithographic design
and substrate material, the first step in surface mounting is
the application of solder paste.

• CompoSition, generally 60/40 or 63/37 Sn/Pb. Use 62/36
Sn/Pb with 2% Ag in the presence of Au on the soldering
area. This formulation reduces problems of metal leaching
from soldering pads.

The typical lithographic "footprints" for SO packages are
illustrated below. Note that the 0.050" lead center-center
spaCing is not easily managed by commercially-available air
pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an
emulsion image of the substrate pads is by far the most

• RMA flux system usually used.
• Use paste with aproximately 88-90% Solids.

6-29

RECOMMENDED SOLDER PADS FOR SO PACKAGES

50-8, S0-14, SO-16

SO-16L, 50-20

1111_

0.045" :1:0.005"

r····~

0.245"

1

l--l••••
r
I-- -I

0.030" :1:0.005"

l •••• :~

!-0.050"TYP
TLlF/8766-14

S01"-23
0.030" :1:0.005"1

"]-

._."

0.160"

I

0.030"

:l:0.005"~ ~ ~

1_:r.TYP
TLlF/8766-15

il---l....

·r.-1·.~
TLlF/8766-16

Comparison of Particle SlzelShape of Various Solder Pastes
200 X Alpha (62/36/2)

200 X Kester (63137)

TL/F/8766-17

TLlF/8766-18

6·30

.

r--------------------------------------------------------------------,~

Z

Comparleon of Particle Size/Shape of Various Solder Pastes (Continued)

::g

200 x Fry Metal (6S/S7)

Solder Paste Screen on Pads

TL/F/8766-19

TL/F/8768-20
"I

200 ESL (6S/Sn

TLlF/8766-21

6-31

Hot-Air Rework Machine

CLEANING
The most critical process in $lIrf/!.ce mounting SO packages
is in the cleaning cycle. The package is mounted very close
to the surface of the substrate and has a tendency to collect
residue left behind after reflow soldering.
Important considerations in cleaning are:
• Time between soldering and cleaning to be as, ,short as
possible. Residue should riot be allowed to solidify on the
substrate for long periods of time, making it difficult to
dislodge.
• A low surface tension solvent (high penetration) should be
employed. CFC solvents are being phased out as they are
hazardous to the environment. Other approaches to
cleaning ara commercially available and should be investigated on an individual basis considering local and government e,nvironmental rules.
Prelete or 1,1,1-Trichloroethane
Kester 5120/5121
• A deffuxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure lIpray lance are the basic requirments for low-volume production.
• For volume ,prOduction, a conveyorizec;l, multiple hot solvent spray/jet system is recommended.
• Rosin, being a natural occurring material, is not readily
soluble in solvents, and has long been a stumbling block
to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS'
solvent, has been developed. This should be explored
where permissible.
The dangers of an inadequate cleaning cycle are:
• Ion contamination, where ioniC residue left on boards
would cause corrosion to metallic components, affecting
the performance of the board.
• Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic
growth between close spaCing traces on the substrate, '
resulting in failures (shorts).

TUF/8766-23

lead tips or, if necessary, solder paste can be dispensed
onto the pads using a varimeter. After being placed into
position, the 'solder is reflowed by a hot-air jet or even a
standard soldering iron.
WAVE SOLDERING
In a case, where lead insertions are made on the same
board as surface-mounted components, there is a need to
include a wave-solderil1g operation in the process flow.
Two options are used:
• Surface mounted components are placed and vapor
phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder
system and the underside of the board (only lead-inserted
leads) soldered.
• Surface-mounted components are placed in position, but
no solder paste is used. Instead, a drop of adhesive about
5 mils maximum in height with diameter not exceeding
25% width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a
"dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the
latter case, unless the leads of the insertion components
are pre-trimmed or the board specially designed to localize
certain areas for easy access to the trim blade.
The controls required for wave soldering are:
• Solder temperature to be 240-260"C. The dwell time of
components under molten solder to be short (preferably
kept under 2 secpnds), to prevent damage to most components and semiconductor devices.
• RMA (Rosin Mildly Activated) flux or more aggressive OA
(Organic Acid) flux are applied by either dipping or foam
fluxing on boards prior to preheat and soldering. Cleaning
procedures are also more difficult (aqueous, when OA flux
is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended .
• Preheating of boards is essential to reduce thermal shock
on components. Board should reach a temperature of
about 100"C just before entering the solder wave.
• Due to the closer lead spacings (0.050· vs 0.100' for
dual-in-Iine packages), bridging of traces by solder could
occur. The reduced clearance between packages also
causes "shadOWing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

REWORK
Should there be a need to replace a component or re-aJign
a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.
When rework is necessary in the field, specially-designed
tweezers that thermally heat the component may be used to
remove it from its site. The replacement can be fluxed at the
Hot·Alr Solder Rework Station

RETRACT POSITION

----c------.
...
'/'

HEAT SHIELD

//:-@
----

..-"-

~~;~~~~~B:OA:R:D:ON

X-Y TABLE

HOT AIRTL/F/8788-22

6-32

Mixed Surface Mount and Lead Insertion
ADHESIVE

PIA
(b) Opposite Sides

(a) Same Side

-

tttt
PREHEAT

SOLDER FLOW
TLlF/8766-24

A typical dual-wave system is illustrated below, showing the
various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of
the board). This covers areas where "shadowing" occurs. A
second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the
solder is such to reduce "icicles," and is still further reduced
by an air knife placed close to the final soldering step. This
air knife will blow off excess solder (still in the fluid stage)
which would otherwise cause shorts (bridging) and solder
bumps.

Dual Wave

AQUEOUS CLEANING
• For volume production, a conveyorized system is often
used with a heated recirculating spray wash (water temperature 130"C), a final spray rinse (water temperature
45-55°C), and a hot (120"C) air/air-knife drying section.
• For low-volume production, the above cleaning can be
done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water,
are sometimes used to help the drying process.
• Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in
water may be used; the choice depends on the type of flux
used.

TL/F/8766-25

CONFORMAL COATING
Conformal coating is recommended for high-reliability PCBs
to provide insulation resistance, as well as protection
against contamination and degradation by moisture.
Requirements:

• Final rinse water should be free from chemicals which are
introduced to maintain the biological purity of the water.
These materials, mostly chlorides, are detrimental to the
assemblies cleaned because they introduce a fresh
amount of ionizable material.

• Complete coating over components and solder jOints.
• Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder
joints on expansion.
• Compatibility and possess excellent adhesion with PCB
material/components.
• Silicones are recommended where permissible in
application.

6-33

o~~------------------------------------------------~

z~

cc

SMD

La~

Support
Technlque-oevelop techniques for handling different
materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers,
develop customized equipments to ha.ndle high denSity,
new technology packages developed by National.
In-House Expertl_Avaiiability of in-house expertise on
semiconductor research/development to assist users on
packaging queries.
.

FUNCTIONS
Demonstration-Introduce first-time users to surfacemounting processes.
Servi_lnvestigl!lte problel)1s experienced by u~ers on
surface mounting.
Reliability Build_Assemble surface-mounted units for reliability data acquisition.

6-34

tfI

~

National Semiconductor

i....
::::II

:rJ

Land Pattern Recommendations

CD

8
3
3

CD
::::II

The following land pattern recommendations are provided as guidelines for board layout and assembly purposes.
These recommendations cover the following National Semiconductor packages: PLCC, PQFP, SOP, SSOP and TSOP.
For SOT-23 (5-Lead) and TO-263 (3- or 5-Lead) packages, refer to land patterns shown in the Physical Dimensions for MA05A
and TS3B or TS5B packages, respectively.
Plastic Leaded Chip Carriers (PLCC)

•

~nnnnnnnnnnn

}

·r

~

~

11

~oooooooooooo ~:t 1

0'

t:::I
t:::I
t:::I
t:::I
t:::I

t:::I
t:::I
1:1
1:1

~

~f

I

~

~

FI

~
F

~-1

~

~

p~

~uuuu
~ :(c

L'

A'

B'

X

I:I...J...

I, 1,000000:000000 I

~ ~:I;::I;: *~ c ~ ~ ~

TUPlllBl1-1

D'
A'
D
L'
W
P
A
B
X
L
B'
Lead
Lead Tip Lead Tip Lead Lead/Pad Inner Pad
Inner Pad
Outer Pad
Body Body
Outer Pad
Land
Count
Size Size
to Tip
to Tip
Width
Pitch
to Pad Edge to Pad Edge to Pad Edge to Pad Edge Width
No.
(mm) (mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
8.89

8.89

11.43 11.43

20

10.03

10.03

0.53

1.27

6.73

6.73

10.80

10.80

0.63

28

12.57

12.57

0.53

1.27

9.27

9.27

13.34

13.34

0.63

11.43 14.05

32

12.57

15.11

0.53

1.27

9.27

12.00

13.34

16.00

0.63

16.51 16.51

44

17.65

17.65

0.53

1.27

14.35

14.35

18.42

18.42

0.63
0.63

19.05 19.05

52

20.19

20.19

0.53

1.27

16.89

16.89

20.96

20.96

24.13 24.13

68

25.27

25.27

0.53

1.27

21.97

21.97

26.04

26.04

0.63

29.21 29.21

84

30.35

30.35

0.53

1.27

27.05

27.05

31.12

31.12

0.63

6-35

!o

::::II
UJ

Plastic Quad Flat Packages (PQFP)

RRRRRRRRRRR
~
~
~
~
~

=tj

0

=

c::::::J

D'

L'

~~

!=I=

I.l,~~~~~~~

~~ -.

-

c:::::::I
c:::::::I
c:::::::I
c:::::::I
c:::::::I
c:::::::I
c:::::::I
c:::::::I
c:::::::I
c:::::::I

~~~~~~~~~~~ ~=t 1
c:::::::I
c:::::::I
c:::::::I

c:::::::J

I.I,~~~~~~~

A'

.

B'

X

-±.

~t

TUP!11811-2

D
D'
L
A'
B
x
L'
W
P
A
a'
Lead
Body Body
Lead Tip Lead Tip Lead Lead/Pad Inner Pad
Inner Pad
Outer Pad
Outer Pad
Land
Count
Size Size
to Tip
to Tip
Width
Pitch
to Pad Edge to Pad Edge to Pad Edge to Pad Edge Width
No.
'. (mm)
(mm) (mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
(mm)
7

7

40

9.29

9.29

0.26

0.50

7.50

7.50

9.78

9.78

7

7

48

9.40

9.40

0.27

0.50

6.88

6.90

10.42

10.40

0.32

10

10

44

13.35

13.35

0.45

0.80

10.53

10.53

14.47

14.47

0.55
0.43

0.30

10

10

52

14.15

14.15

0.38

0.65

9.08

9.08

15.17

15.17

12

12

64

14.00

14.00

0.38

0.65

11.48

11.48

15.02

15.02

0.43

14

14

80

18.15

18.15

0.38

0.65

13.08

13.08

19.17

19.17

0.43

14

20

80

17.80

23.80

0.35

0.80

13.50

19.50

18.50

24.50

0.40

14

14

100

17.45

17.45

0.30

0.50

13.08

13.08

18.47

18.47

0.35

14

20

100

17.80

23.80

0.30

0.65

13.50

19.50

18.50

24.50

0,35

20

20

100

24.30

18.30

0.40

0.65

21.28

15.28

25.32

19.32

0.45

24

24

132

24.21

24.21

0.30

0.64

21.67

21.67

25.23

25.23

0.40

28

28

120

32.15

32.15

0.45

0.80

27.88

27.88

33.17

33.17

0.55

28

28

128

31.45

31.45

0.45

0.80

28.03

28.03

32.47

32.47

0.55

28

28

144

32.15

32.15

0.38

0.65

28.03

28.03

33.17

33.17

0.43

28

28

160

32.40

32.40

0.38

0.65

29.48

29.48

33.42

33.42

0.43

28

28

208

30.60

30.60

0.30

0.50

28.08

28.08

31.62

31.62

0.35

6-36

JEDEC Small Outline and Shrink Slnall Outline Packagea (SOP and SSOP)

R RR R R R RRTIl
0

o

j p~ ~

0 0 00 0 DD
frO
~

L

C

B

A

U~~ ~ DDO D'D 0

~

~ ~ ~ ~ J~~w

Jx~

-ipi-

TUP/11811-3

0
Body
Size
(in)

Lead
Count
No.

Shoulder
to Shoulder
(In)

L
Lead Tip
to Tip
(In)

W
Lead
Width
(In)

P
Lead/Pad
Pitch
(In)

A
Inner Pad
tollad'Edge
(In)

C

B

X

OuterPlid
to Pad Edge
(In)

Pad
WIdth
(In)

SOP

0.150

8

0.144

0.244

0.020

0.050

0.094

0.294

0.028

0.150

14

0.144

0.244

0.020

0.050

0.094

,0.294

,0.028

0.150

16

0.144

0.244

0.020

0.050

0.094

0.294

0.028
",

0.300

14

0.3300

0.4100

0.0190

0.0500

0.2800

0.4600'

0.300

16

0.3300

0.4100

0.0190

0.0500

0.2800

0.46C1O

0:0270

0.300

20

0.3300

0.4100

0.0190

0.0500

0.2800

0.4600

0.0270

0.300

24

0.3300

0.4100

0.0190

0.0500

0.2800

0.4600

0.0270

0.300

28

0.3300

0.4100

0.0190

0.0500

0.2800

0.4600

0.0270

SSOP

0.0270

.,

0.150

20

0.185

0.241

0.010

0.025

0.145

0.281

,0.014

0.150

24

0.185

0.241

0.010

0.025

0.145

0.281

0.014

0.300

48

0.340

0.420

0.012

0.025

0.300

0.460

0.016

0.300

56

0.340

0.420

0.012

0.025

0.300

0.460

0.016

6-37

•

I

EIAJ Small Outline, Shrink Small Outline, and Thin Small Outline Packages (SOP, SSOP and TSOP)

RRRRRRRRm

,is
E
E

§

o

j

~

o
p

C

~

II:

I"

~

L

rrDDDDDDDD
B A

Ut:ruruDDDDDD

~ ~,~ ~ ~ ~ ~~~w

-l

p

~x~

I-

TUP/11811-4

D

to Shoulder
(mm)

L
LeedTlp
to Tip
(mm)

W
Lead
Width
(mm)

P
Lead/Pad
Pitch
(mm)

Inner Pad
to Pad Edge
(mm)

B
Outer Pad
to Pad Edge
(mm)

X
Pad
Width
(mm)

14

6.280

8.000

D.400

1.270

5.010

9.270

o.aOO

5.300

16

6.280

8.000

0.400

1.270

5.010

9.270

0.600

'5,300

20

6.280

8.000

D.400

1.270

5.010

9.270

o.aOO

C

Lead
Count
No.

Body
Size
(mm)

Shoulder

A

SOP TYPE II
5.300

SSOPTYPEII;
5.300

20

6.600

8.100

0.400

0.650

5.584

9.116

0.451

5.300

24

6.800

8.100

0.400

0.650

5.584

9.116

0.451

SSOP TYPE III
7.500

I
I

40

TSOPTYPEI
18.500

32

I
I

8.900

19.000

I
I

10.500

20.200

I
I

0.350

0.250

I
I

.

6-38

0.650

0.500

I
I

7.884

17.984

I
I

11.516

21.216

I
I

0.452

0.301

Section 7
Appendicesl
Physical Dimensions

I

I

~

Section 7 Contents
Appendix A General Product Marking and Code Explanation .................•...........
Appendix B Devicel Application Literature Cross-Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix C Summary of Commercial Reliability Programs ...............................
Appendix D Military Aerospace Programs from National Semiconductor .....•.............
Appendix E Understanding Integrated Circuit Package Power Capabilities. .. .. . . . . . . . . . . . ..
Appendix F How to Get the Right Information from a Datasheet....... ................ ....
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bookshelf
Distributors

7·2

7-3
7-4
7-10
7-11
7-21
7-26
7-30

tfI Nat ion a I S e m

LF

11
356

i con du c to r

Appendix A
General Product Marking & Code Explanation

N

IA+

I

Package Type

A.~~(Refer
_
_
to Appendix C)

D
E
F
G
H
H-05
H-46
J
J-8
J-14

GlasslMetal DIP
Ceramic Leadless Chip Carrier (LCC)
GlasslMetal Flat Pak ('4" x '4")
12 Lead T0-8 Metal Can (M/C)
Multi-Lead Metal Can (M/C)
4 Lead MIC (T0-5) } Shipped with
4 Lead MIC (TO-46) Thermal Shield
La-Temp Ceramic DIP
8 Lead Ceramic DIP ("MiniDIP")
14 Lead Ceramic DIP (-14 used only when
product is also available in -8 pkg).
TO-3 MIC in Steel, except LM309K
K
which is shipped in Aluminum
TO-3 MIC (Aluminum)
KC
KSteel TO-3 MIC (Steel)
M
Small Outline Package
3-Lead Small Outline Package
M3
M5
5-Lead Small Outline Package
N
Molded DIP (EPOXY B)
Molded DIP (Epoxy B) with Staggered Leads
N-01
8 Lead Molded DIP (Epoxy B) ("Mini-DIP")
N-8
N-14
14 Lead Molded DIP (Epoxy B)
(-14 used only when product is also
available in -8 pkg).
P
3 Lead TO-202 Power Pkg
Q
Cerdip with UV Window
3,5,11, & 15 Lead TO-263 Surf. Mt. Power Pkg
S
T
3,5,11,15 & 23 Lead TO-220 PWR Pkg (Epoxy B)
V
Multi-lead Plastic Chip Carrier (PCG)
Lo-Temp Ceramic Flat Pak
W
WM
Wide Body Small Outline Package

Package Type (See Right)
.

Device Number (Generic Type)
and Suffix Letter (Optional)
A or B: Improved
Electrical
Specification
C, I, E or M: Temperature
Range
Device Family (See Below)

Device Family
ADC
AF
AH
·DAC
DM
HS
LF
LH
LM
LMC
LMD
LP
LPC
MF
LMF

Data Conversion
Active Filter
Analog Switch (Hybrid)
Data Conversion
Digital (Monolithic)
Hybrid
Linear (BI-FEDM)
Linear (Hybrid)
Linear (Monolithic)
Linear CMOS
LinearDMOS
Linear (Low Power)
Linear CMOS (Low Power)
Linear (Monolithic Filter)
Linear Monolithic Filter

DATE CODE
1ST DIGIT - CALENDAR YEAR
2ND DIGIT - 6-WEEK PERIOD
IN CALENDAR YEAR
3RD &: 4TH DIGITS - WAFER LOT CODE

DATE CODE
NON-MILITARY
2ND DIGIT - CAl.ENDAR YEAR
3RD.4TH DIGITS - CALENDAR WORK WEEK
MILITARY - 8831: M38510
lSU 2ND DIGITS - CALENDAR YEAR
3RD.t4TH DIGITS-CALENDAR WORK WEEK
(EXAMPlE: 9201 = 1ST WEEK OF 1892)

INDICATES PLANT
OF MANUFACTURE

MILITARY ONLY
ESD
(ELECTROSTATIC DISCHARGE)
SENSITIVITY INDICATOR

INDICATES PLANT
OF MANUFACTURE

LOGO
PART NUMBER
PIN 1 ORIENTATION

PART NUMBER
TL/XX/OO27 -3

PIN 1 ORIENTATION

Tl/XX/OO27 -2

7-3

tt}National Semiconductor

Appendix B
Device/Application LiteratureCross.;Ref.erence
Device Number

AppllcaUon Uterature

ADCXXXX •.••.••..•••••.••.•.••.•.•••.•..•.•...•.•....•...••..•..•.•..••.•..•..•... , ..••..•..•••.•.••...•••.• AN-156
ADC80 ............................................... ; ••••.•••.•••••••••••••••..••.••••..••••.•.•••.•.••.••• AN-360
ADC0801 •.......••.•......•...•.•.•.•.•....•••..•..•..•.•..• AN-233, AN-271, AN-274; AN-280, AN-281, AN-294, LB-53
ADC0802 ....•.••....••••.••.,' •.••.•.•..••.•..•..•.••.•..••.••.••.•..•.•..•. AN-233, AN-274, AN-280, AN-281, LB-53
ADC0803 ....•.•........•....•....... : ..•.••.••..........•....••.•.....•..•.. AN-233, AN-274, AN-280, AN-281 , LB-53
ADC08031 .................................................................................................AN-460
ADC0804 .••.....•.•.••••...•.•••••••..•••••••...•••• AN-233, AN-274, AN-276, AN-280, AN-281, AN-301, AN-460, LB-53
ADC0805 .....•.•...........••........•..•....•....•.......•.•......•.•..•.•AN-233, AN-274, AN-280, AN-281, LB-53
ADCOB08 ...................................................................................AN-247, AN-280, AN-281
ADC0809 .........................................................................................AN-247, AN-280
ADC0816 ..........................................................................AN-193, AN-247, AN-258, AN-280
ADC0817 .•••••.•.••••. , •••••.••.••••.•••••••.••.•.•.•.••..•..••.•.••.•..••.•..•..•..•....•. AN-247, AN-258, AN-280
ADC0820 ........................................................................................ : •••••••• AN-237
ADC0831 ......................................................................... ; ••...•.•••.•.•. AN-280,.AN-281
ADC0832 .•.••.••..•.••.•..•..•.•••••.•..•.•••••••••••.••.•.••.••.•.••••••••.•••••.••.•.••..•.•••• AN-280,AN-281
ADC0833 ...........................................................................................AN-280, AN-281
ADC0834 .......................................'.•.••..•.•••.•.•••...••.•..•..•.•••.•.....••....... AN-280, AN-281
ADCOS38 ...•......•..•....•..••..•.•..•.••••••••.•..•.••.••.•••.•••••••••••••••.••••.•••••.•••••• AN-280, AN-281
ADC1001 ..................................................................................AN-276, AN-280, AN-281
ADC1005 .•.••.•.••.••..•.•••.•••.••..•.••••..••.•.••.•••••.••.••••..•..•.•••••.••.••.••.•.....•....••.•.• AN-280
ADC10461 ..................................................................................................AN-769
ADC10462 ...•.......•...•..•...•.•......••..•.•••••....•.•.....••.....•.••.•.••..•••••••••.•.•.••.••••.•••AN-769
ADC10464 .••.••..•.•.••.•.•.•.••.•..••.•..•.•........•..•..••.•.•..•...•.••.•••••.•..••.•..•....••.•....•.••AN-769
ADC10662 ...•• " .......•..•.••.•..••.•..•..••••.••.••.•.••.••.••.••.••.••••••••••.•••••••.••.••.•..•.••.••. AN-769
ADC10664 .••.••.•..••.•.••.••.••.•.••..•.........•...•.•.•.•..........•.••.•••..•.•..••....•.•..•.•••••••AN-769
ADC12030 ...................................................................................................AN-929
ADC12032 ..•.....••.•...•.••.•..•..•..•••.••.••.•••••••..••••.••••••••••.••.••.•••••.••.••.•..•....••.•.. AN-929
AOC12034 ..•.•...•...•..•..•.•.....•.•••••.••..•.••.••.•.••..•.••.••.••..•.•.•••.•..•••••••.••••.••••.••• AN-929
ADC12038 .................................................................................................AN-929
ADC12H030 ...............................................................................................AN-929
ADC12H032 •......•.•....•..•.••..•.•.•.•.....•.....•.•.••....••........••••.•.•.....•.•••..•••..•.••.•.•• AN-929
ADC12H034 ••..••.•.••. , •...•••.•. , ................................... ; .... " .•...............•.••.•.••••• AN-929
ADC12H038 ••.••.••. : ..••••.•.••...•.••.•..•..••.•.•••••.•.••..••.•..•.•••••.•..••.•..•...•.•.••.....••..• AN-929
ADC12L030 ..•..•..•..•.••.••.•.••....••.•••••••••••••.••.••••••••••..••••..••••.•.•••.••.••.•.•.•••••.••. AN-929
ADC12L032 .•............•......••.•.•.•............ ; .....•...•......•••....•.•.......•.•..•..••••.•.••.•• AN-929
ADC12L034 ••..••.••.•.•.••.•••.••.•..••••.•.....•.••.••••..•.••..••.•.•••••••••••.•••••••..•..•.•..•...•. AN-929
ADC12L038 ••.•••................•....•......•.....•..•...•.•..........•............•...•.••..•..•.•.••..•AN-929
ADC1210 ...................................................................................................AN-245
ADC12441 .•.••.....••.•..•.••.••.••.••.•..•..•..•.••.•..••.••••.....••••.••.••.••.•.••..•....•.••..•.•.: .• AN-769
ADC12451· •..•.••.•. , .•.••.•..•..••••.••.•.•..••.•••••.•. , ..................................................AN-769
D~CXXXX .................................................................................................AN-156
DACOSOO ..•.•...•..••..•...•..••.•..•..•.• , .•.•.......•...•.•.•....•.•....•.•.•.•... ~'.................... AN-693
DAC0830 ..•.•...•......•............••.•....•.•.•.••.•..•.•...•..•.•••...••.•.•.•.•..••.....•.....•...•.•AN-284
7-4

Device/Application Literature Cross-Reference (Continued)
Application Literature

Device Number

DAC0831 00 00 00 0 00 00 00 0 00 00 00 000 0 00 00 0000 00 000 00 000 00 00 00 00 00 0 000 0 00 000 0 00 000 0 000 000 00 000 0 00 000 0 0oAN-271. AN-284
DAC0832 00 0 000 0 00 00 00 0 00 00 00 00 00 00 00 0000 0 000 00 000 0 00 00 00 00 00 0 00 00 00 00 00 00 00 000 00 00 000 00 00 00 00 00 00AN-271. AN-284
DAC1oo6 00 00 00 00 0 00 00 00 00 0 00 000 00 00 00 00 000 000 0 000 00 0 00 00 00 00 00 0 000 0 000 00 0 000 00 000 oAN-271. AN-275. AN-277. AN-284
DAC1007 0 00 0 000 0 00 00 00 0 00 00 0 000 0 00 000 00 000 00 000 00 00 0 00 00 00 00 00 0 00 00 000 0 00 00 000 000 0AN-271. AN-275. AN-277. AN-284
DAC1oo8 0 00 0 00 00 00 0 00 00 00 00 00 00 00 00 00 000 00 000 00 00 0 00 0 000 00 00 0 00 00 00 00 00 00 00 000 00 00AN-271. AN-275. AN-277. AN-284
DAC1020 0 00 0 000 0 000 0 00 00 0 00 00 000 0 000000000000000000000000000000000000000 oAN-263. AN-269. AN-2293. AN-294. AN-299
DAC1021 0 00 00 00 0 00 00 0 00 00 00 00 00 000 00 00 000 00 000 0 000 0 00 00 00 00 00 0 000 00 00 0 00 000 00 00 000 00 000 00 0 00 000 00 00 0 00 0 00AN-269
DAC1022 0000000000000000000000000000000000000000000000000000 0 0 00 00 00 00 00 000 00 00 000 00 00 000000000000000000 oAN-269
DAC1208 0000000000000000000000000000000000000000000000000000 0 0 000 00 00 00 00 00 00 000 00 000 00 00 00 00 00 ooAN-271.AN-2B4
DAC1209 0000000000000000000000000000000000000000000000000000 0 0 000 00 00 00 00 00 00 000 00 00000000000000 oAN-271.AN-284
DAC1210 00 0 00 00 00 0 00 00 00 00 00 0 000 00 00 000 00 00 000 00 00 0 000 0 00 00 00 0 000 00 00 0 000 00 00 000 00 000 00 00 00 00 00 0 oAN-271. AN-284
DAC1218 0 00 00 0 00 00 00 0 00 00 0 000 00 00 00 000 00 00 000 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 000 00 000 00 00 00 00 00 000 00 0 00 00 0AN-293
DAC1219 0 00 00 00 00 0 00 00 00 00 00 00 0 0 000 000 00 000 00 00 00 00 0 000 0 00 00 0 000 0 000 00 00 00 00 000 00 00 000 00 00 00 00 000 00 00 0 00 0AN-693
DAC1220 00 0 000 0 00 00 00 0 00 00 000 0 00 000 00 000 00 000 0 000 0 00 0 00 00 00 00 0 00 00 000 0 00 000 00 000 00 00 00 00 000 0 00 00 oAN-253. AN-269
DAC1221 0000000000000000000000000000000000000000000000000000 0 0 00 00 000 0 00 00000000000000000000000000000000 oAN-269
DAC1222 0000000000000000000000000000000000000000000000000000 0 0 000 0 00 00 00 00000000000000000000000000000000 oAN-269
DAC1230 0000000000000000000000000000000000000000000000000000 0 0 00 00 00 00 00 000 0 0000000000000000000000000000 oAN-284
DAC1231 0000000000000000000000000000000000000000000000000000 0 0 000 00 00 00 00 00 000000000000000000000 oAN-271.AN-284
DAC1232 0000000000000000000000000000000000000000000000000000 0 0 00 00 000 0 00000000000000000000000000 oAN-271.AN-284
DAC1280 0 00 00 00 00 0 00 00 00 0'0 0 000 0 000 00 000 00 000 00 00 00 0 00 00 00 00 0 000 0 00 000 0 000 00 00 000 00 000 0 000 0 000 000 0AN-261. AN-263
DH00340 0 0 00 0 00 00 00 0 00 00 00 00 00 00 00 00 000 00 000 00 00 00 00 0 000 0 00 00 00 00 00 0 00 00 00 000 000 00 00 00 000 00 00 00 0 00 00 0 00 00 0AN-253
DH00350 0 00 00 0 00 00 00 0 00 00 00 00 00 0 00 00 000 000 00 00 00 000 0 0 000 00 0 00 00 00 00 00 00 00 00 00 000 00 000 0 000 00 00 00 000 00 0 00 00 0 oAN-49
INS8070 0000000000000000000000000000000000000000000000000000 0 00 00 0 000 0 00 000000000000000000000000000000000 oAN-260
LF111 00 00 00 00 0 00 00 00 0 00 00 0 000 00 00 00 000 00 000 000 0 00 00 00 00 00 00 0 00 00 0 000 00 00 00 00 000 0 000 00 00 00 00 00 00 000 00 0 00 00 0 0LB-39
LF155 0000000000000000000000000000000000000000000000000000 0 00 0 00 00 00 00 0 0000 00 00 000 00 00 00 00 00 00 0 00 oAN-263.AN-447
LF198 0000000000000000000000000000000000000000000000000000 0 00000000000000000000000000000000000000 oAN-245.AN-294
LF311 0000000000000000000000000000000000000000000000000000 00 0 00 00 00 000 0 00 00 00 000 00 00000000000000000000000 oAN-301
LF347 0 00 00 000 0 0 000 0 00 0 00 000 0 00 00 000 00 000 00 00AN-256. AN-262. AN-263. AN-265. AN-266. AN-301. AN-a«. AN-447. LB-44
LF351 000 00 00 000 000 0 00 00 0 00 00 00 00 000 00 000 0 000 00 oAN-242. AN-263. AN-266. AN-271. AN-275. AN-293. AN-447. Appendix C
LF351A 000 00 0 00 0 00 0000000000000000000000000000000000000000000000000000 0 00 00 00 000 0000000000000000000000000 oAN-240
LF351B 0000000000000000000000000000000000000000000000000000 0 0 0000000000000000000000000000000000000000 oAppendix 0
LF353 0 00 000 00 0 00 00 00 0 00 0 oAN-256. AN-258. AN-262. AN-263. AN-266. AN-271. AN-285. AN-293. AN-447. LB-44. Appendix 0
LF356 000 00 0 00 00 000 00 00 000 000 00 0 000 00 000 00 00 00 000 00 0 00 00 00 oAN-253. AN-258. AN-260. AN-263. AN-266. AN-271. AN-272.
AN-275. AN-293. AN-294. AN-295. AN-301. AN-447. AN-693
LF357 0 00 00 00 00 0 00 00 0 00 00 00 00 00 00 000 00 00 00 000 00 00 00 0 00 00 00 00 00 0 00 00 00 00 00 00 00 000 00 000 00 000 0 0AN-263. AN-447. LB-42
LF398 000 00 0 00 00 00 00 0 00 00 00 00 00 00 00 00 000 00 00 000 00 0 00 00 00 000000000000 oAN-247. AN-258. AN-266. AN-294. AN-298. LB-45
LF411 0 00 00 000 0 00 00 00 0 0 00 000 00 0 00 000 00 000 000 0 00 000 0 0 00 00 00 00 00 0 00 00 00 00 00 000 00 00 00 0AN-294. AN-301. AN-344. AN-447
LF412 00 00 00 00 00 0 00 00 00 0 00 00 00 00 000 0 0000 00 00 00 000 0 00 0 00 00 00 00 0 00 00 00 00 00 000AN-272. AN-299. AN-301. AN-344. AN-447
LF441 0000000000000000000000000000000000000000000000000000 0 00 0 00000000000000000000000000000000000 oAN-301.AN-447
LF13006 0 00 00 00 00 00 0 00 0000000000000000000000000000000000000000000000000000 00 00000000000000000000000000000 oAN-344
LF13007 0 00 00 00 0 00 00 00 0 00 00 00 00 00 000 00 00 000 00 00 00 00 0 00 00 00 0 00 0 000 0 00 00 0 000 00 000 00 00 000 0 000 0 00 00 00 00 0 0 00 00 0AN-344
LF13331 0000000000000000000000000000000000000000000000000000 0 00 00 00 00 00 00 000 00 00 00 000000000000000 oAN-294.AN-447
LHOOO2o 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 000 00 000 00 0 0000000000000000000000000000 oAN-13. AN-227. AN-263. AN-272. AN-301
LH0024 0 0 00 00 00 0000000000000000000000000000000000000000000000000000 0 00 00 00 0000000000000000000000000000000 oAN-253
LH0032 0 00 0000 0 00 00 000 00 00 00 00 00 00 00 000 00 000 0 000 000 00 00 0 00 00 000 00 00 00 00 00 00 000 00 00 000 00 00 0 00 0000 0oAN-242. AN-253
LH0033 0 0 000 0 00 00 00 0 00 0 00 00 00 00 00 000 000 0 000 00 00 00 0 00 00 00 00 0 00 00 0 00 00 00 00 000 00 00 000 00 00 00 00 0AN-48. AN-227. AN-253
LH0063 0 00 0 00 00 00 0 00 00 00 0 00 00 00 00 000 00 00 000 00 00 00 0 00 00 00 00 0 00 0 00 00 00 00 00 00 000 000 0 00 000 00 00 0 000 0 00 0 00 0 00 00 0AN-227
LH0070 00 00 00 0 00 00 00 00 0 00 0 00 00 0000000000000000000000000000000000000000000000000000 00 00 00 00 0 00000000000000 oAN-301
LH0071 0000000000000000000000000000000000000000000000000000 00 00 000000000000000000000000000000000000000000 oAN-245
LHoo94 0 00 0 00 00 00 0 00 0000000000000000000000000000000000000000000000000000 00 00 00 00 00 00 00 00 00 0 000 0 00 00000000 oAN-301
LH0101 0000000000000000000000000000000000000000000000000000 0 00 00 00 000000000000000000000000000000000000000 oAN-261
7-5

•

DevicelApplication Literature Cross"Reference (Conlinued)\
Device Number' .

>

.'

Application Uterature

LH1605 " ... , ........ , ......•.....•.......... " ..•..•.... " ., ..... " ., .............. , ........ , ••... , •.•... AN-343
LH2424 ...................................................................................................AN-867
LM10 '............ , ................•.•..•..• AN-211.AN-247. AN-258. AN-271. AN-288. AN-299. AN-300. AN-460. AN-693
LMll .............•.................................. '...................... AN-241. AN-242. AN-260. AN-266. AN-271
LM12 '.......... ; ...........................................................................AN-446. AN-693. AN-706
LM101 .................. : ...................•........•................ AN-4. AN-13. AN-20. AN-24. LB-42. Appendix A
LM101A .......•.....•.... AN-29. AN-30. AN-31. AN-79. AN-241 AN-711. LB-l. LB-2. LB-4. LB-8. LB-14. LB-16. LB-19. LB-28
LM102 .........................•.•......................................AN-4.AN-13. AN-30. LB-l. LB-5. LB-il. LB-ll
L:Ml03 .: .........................•....................................•...............................AN-l10.LB-41
LM105 ....•..................•.•.........•..... '..... '.......•.... '.............................. AN-23. AN-ll'O. L8-3
LM106 ..............•.........•............................ , ................................... AN-41. LB-6. LB-12
LM107 .•........•..•......... '..•........•......................... >

••••

AN-20. AN-31. LB-l. LB-12. LB-19. Appendix A

LM108 ............................................... AN-29.AN-30. AN-31. AN-79. AN-211. AN-241. LB-14. LB-15. LB-21
LM108A ..•..............•...........• '......................................................... AN-260. LB-15. LB-19
LM109 ...................•..........•......•..•........•............................................AN-42. LB-15
LM109A ....•..•.....•......•....................•...........................•.....•...................'...... LB-15
LM110 ..........•.•.................................................................................• LB-ll. LB-42
LM111 ...•. , ...•..•...•..•..•.....•..•..........•••....•........•......... AN-41. AN-l 03. LB-12. LB-16. LB-32. LB-39
LM1'12 .................•..•.............•..•.....................................•..•........•..............LB-19
LMI13 ... .'.................................................................. AN-56. AN-II O. LB-21. LB-24. LB-28. LB-a7
LM117 ..............•.....••..•...•.•.....•..........•..•.........••.•..•.... AN-178. AN-181. AN-182. LB-46. LB-47
LM117HV ....................................•.•..........................•........................... LB-46.LB-47
LMI18 .........•...............•.....•..•..........•........................• LB-17. LB-19. LB-21. LB-23. Appendix A
LM119 ........•........................•...................................•.•.......................•.....'LB-23
LMI20 ....................................................................................................AN-182
LM121 .; ..............•..............•......•....................•............ AN-79. AN-l 04. AN-184. AN-260. LB-22
LMI21A .......................•............................................................................. LB-32
LM122 ....•.............•..••.......•.....•..••....• c ••••.•.•.•••••.•...•••••••.••.•••.•..•••..••.••• AN-97. LB-38
LMI25 ...... ', ...............................................•...............................................AN-82
LMI26 .............................•.................•..................................................•..AN-82
LM129 •..•.....•.•.•...••.•..•..•.•...•..•..•..•.••.••.......•........•........•.. AN-173. AN-178. AN-262. AN-266
LMI31 .. , ......................................................... .'.....•................ AN-210.AN-460. Appendix 0
LM131A .••.......•.....•..•• ; ...•... '•.•..•.•... " .......•..... , .. " .•..... , .. " .......... " . " ........... AN-210
LMf34 ......... ,: ......•......................................•..•..•..............•..........•.... LB-41. AN-460
LM135 .•. ; ................................................................. AN-225. AN-262. AN-292. AN-298. AN-460
LM137 •...................•..................••.•.........•...••...••...•..•........•..........•........... LB-46
LM137HV .....•..•..•.....•..•..•.....•..•.......................•..............•..........................LB-46
LM138 .•..................•...............................................................................•I:.B-46
LM139 ••.•..•........•..•.. , ..... , .. , .....•.. , .. " ....•..•........ " ., .. " ..... , " . " ....... , ................ AN-74
LMI43 .•.•...•.......................................•.........................................•..AN-127,AN-271
LMI48 •••.•. " .. " ..•.....•..•.....•..•.•............. , " ........•..•..•...........•............... , .. , •.. AN-260
LM150 .•.•...........•..............................................................•................... :~.LB-46
LMI58 •.•..••..•.........•• , .: .................................................................................AN-116
LM160 •.•.•.•.............•..........•..........................•.................................. , " " .•. AN'87
LM161 ... , .........................................................................................AN-87. AN-266
LMI63 •..•.•.•.... " ., •. , .. , .....................................................•....................... iAN-295
LM194 .•......•....•..........•....................... " .... , .........•...•......•.•... , " .•.•...... AN-222. LB-21
LMI95 •••••..•...•... , .. , .• , .•..• , .•.................•.....•....•.....•........................•... , ..... ;AN-110
LMI99 ..•.•...•.•.•....................................•.........•...........................•....AN-161.AN-260
LM199A ...•.•.......•..•...•.....•..•.....••.•....••.•........•.........•..•.....•........•...•..........AN-161
LM211 •..•.•........•...•.•...•..•............•..........•..•........•..•...............................•... LB-39
7-6

Device/Application Literature Cross-Reference (Continued)
Device Number

ApplIcation Uterature

LM231 .....,...............................................•.............•...•.............•.•.............AN-210
LM231A •..•..........•..•...••.....•...........•.....•.•.........•...........•.•.•.......................AN-210
LM235 ..............................................................................................•.••..AN-225
LM239 ...........................................•.........................................................AN-74
LM258 .......................................................................................•............AN-116
LM260 .•.........................................•.........................................................AN-87
LM261 ...................................................................................•.................AN-87
LM34 ..•..........................................•..........•............•...............................AN-460
LM35 .................•..........•..........•................•.•..........•...•.•...•.......•.............AN-460
LM301 A ..•.•...•...................................................•...........•..........AN-178, AN-181, AN-222
LM308 ........................••.•.•..........•..•.......•......... AN-88, AN-184, AN-272, LB-22, LB-28, Appendix 0
LM308A ..••..........•....•................•.•.•.•.•..•..........•..........•..........•......•..••AN-225, LB-24
LM309 .........•...•...............................................•...•..•...•...................AN-178, AN-182
LM311 •.................... AN-41 , AN-1 03, AN-260, AN-263, AN-288, AN-294, AN-295, AN-307, LB-12, LB-16, LB-18, LB-39
LM313 ...........•........•••....................•......••.•....•..•......•.............................•.AN-263
LM316 .....................•............................................•..........•......•..•.......•....AN-258
LM317 •.......•.............................•..•..•....................•.....••......•....... AN-178, LB-35, LB-46
LM317H ..............•.............•...•.•.............................•...............•..........••....... LB-47
LM318 ................•...............•.•..•..•.......••.......•.•..••...•.....•..•....•...........AN-299, LB-21
LM319 ...•............•......................................................•............AN-828,AN-271,AN-293
LM320 •••......•..•......••.•.••.......•..•.......•......•..........•.••.••...•.......•.••.•..•••........• AN-288
LM321 .........•...•.••••.....................•..................•...................•....................•LB-24
LM324 ....•.......................•...••••.••....•. AN-88, AN-258, AN-274, AN-284, AN-301, LB-44, AB-25, Appendix C
LM329 ............•......•..................................•.•.••.•......AN-256, AN-263, AN-284, AN-295, AN-301
LM329B .......••.............•.•.....•.•..•.....•..............•.............•.•...........••....•.......AN-225
LM330 ...•.•..................•..•.............•....•..••.•..•.••..•......•.••.........•........•.•••.•..•AN-301
LM331 ..................•..•.......... AN-210, AN-240, AN-265, AN-278, AN-285, AN-311, LB-45, Appendix C, Appendix 0
LM331A ...•....•...........................•..•.•........•.....•.••••..•..•.•..•..•..•.•......AN-210, Appendix C
LM334 .......•..........•..........•...•......•..........•..........•..................•..AN-242, AN-256, AN-284
LM335 .......•..........•..........•............•.......................................••AN-225, AN-263, AN-295
LM336 •....•........•.....•...•......•.•.......•..•..•...•...•.....••...•.•.....•.....•...AN-202, AN-247, AN-258
LM337 ....•......................•.................•...................•.................................•.LB-46
LM338 ••.........•.•..•.•..............•.....•.....•....•.....•..........•.......•................... LB-49, LB-51
.LM339 .............................•.•..•.•.................•..............................AN-74, AN-245, AN-274
LM340 ...............•............•.••..............•.•....•••.........•.........••...............AN-103,AN-182
LM340L. •..........•.....................•.•.......••..........•.........••••...•...•..•.....•.•.....•.... AN-256
LM342 ........•........................•.•.....................................•.•........•..•...•.•......AN-288
LM346 ....•.....•....•....•.••..•.........••.......•..•........•...........•...............•.......AN-202, LB-54
LM348 ...•...••.........•...•.•.....•....••.•.••..•....•...•.••....•.......•....•.....•..•.......•. AN-202, LB-42
LM349 ..•.•....................•....................•.......•..•.......•..•..........•..................•.. LB-42
LM358 .................•................•........•..... AN-116, AN-247, AN-271, AN-274, AN-284, AN-298, Appendix C
LM358A ..•..•••..........•.....•...••..•......•••.........•...•..•....•..•..•...........•...••.•...... Appendix 0
LM359 ..•.....•.•................•.......•.......•...•......•..•..........•..•.......•....•.....•..AN-278, AB-24
LM360 .....•...•...•.•.•.•..........•...............•..........................................•..........•AN-87
LM361 ..•.......•.......•.........••.•.••••..•.....•..........•.............•..........•........•.•AN-87, AN-294
LM363 .........•..•..........................•.....•...•...•••...••..•...•...•.....................•..•...AN-271
LM380 ...... ~ ...•..................... .'..•..................•..........•.•.•.•..•.....•............AN-69, AN-146
LM385 ..........•....•.....•..•.... ; .......•..•....•..•.... AN-242, AN-256, AN-301, AN-344, AN-460, AN-693, AN-777
LM386 '...•••..•.•..•...•...•...•.•....•..•..•....••.••..•...••..•..•...•...••..•........•••......•.•.••..•• LB-54
LM391 .............................................•........•...........•......•......•...................AN-272
LM392 ..•....•..•...........•.•.•..•.•.....•....•.....•..•... : ........••...............•........•. AN-274, AN-286
7-7

DevicelApplication Literature Cross-Reference (Continued)
Appll~on,!Jtereture

Device Number

LM393 .•....•..•.•...•.....•..•.•................•.•..•.••..•..•..•.•••.••.••.••.•AN-271, AN-274, AN-293, AN-694
LM394 •..•.••.••.....•.••.••.•...•.•..••..••.•.••....•..•..• AN-262, AN-263, AN-271, AN-293, AN-299, AN-311, LB-52
LM395 •.........•..•...................••.•..•..•... AN-H8, AN-181, AN-262, AN-263, AN-266, AN-301, AN-460, LB-26
LM399 •.•.•.••••..•••.••••••.•.•..••..•.••..•.••.••..•.••.••••••....•••••••••••••••••••.••..••••..•.••.••• AN-164
LM555 .........•.....•...........•..•.....•..•.•.•....•........•.•......•..•...............•....•.••AN-694, AB-7
LM556 .••.••.••..•.••.••.•.....••.•..•..•.•••.••.••.••••..•..••.••.••..•..•..•..•.••.•.•.•.••.•••••.••.••.•. AB-7
LM565 .•........•......•......•..•........•.....•..•..•.......•......•.•.•....•.•...•.•••.••.••..•. AN-46, AN-146
LM566 ..•..•.••..•.••.•..••.••.•..••....•••••.•••••.••.•••••.••.••.••••••.••••.••.••..•••••••.••..••••.••. AN-146
LM604 ....•..•....•••............•.•......•...•...•....•.....•........................•.....•........•..•.AN-460
LM628 ....•...•......•...•.............•..............•...•.•..•..•..•..•..••.••.•.•••.•....•••.•.AN-693;AN-7OS
LM629 .....................................................................................AN-693, AN-694, AN-70s
LMr09 •.........•.•...........•..•.................•.•............•.•.••••.•.............•...•...... AN-24, 'AN-30
LM710 ., •..•. '.•..•..•.....•....••.•••••.••.••..•.••.••.••.••...•••••••••.••.••.••••••••••.•••..•••..• AN-41, LB-12
LM725 : ..•.....•.•. , .•..•..•..•..•..•..•..•.••..•.•.••.•.•.•.••.....•....•......•...•.•.••.................LB-22
LM741 ................•...•.................•.•......•.•...••.•............•..•.......•.•..•.•AN-79, LB-19, LB-22
LM833 •.•..••.•...•••.••.••..•.•..••.•.....••.•..•.••••.•.••.••.••••••.••••..•.••.••.••.•..••••..••.•••••• AN-346
LM1036 •.••..•..•.••..•................•..••.•.•••..•.•..•.......•...•....•..•.•.•.........•.............•AN-390
LM1202 .......•.••••..••.••.•..••.•..•.••..•..••.••.••.••.••.•..•••••••.••.•••••••••••.••.••.••.••..•..••• AN-667
LM1203 •..••••..•.••.•..........•••.••.•..••.•.....•.....•..•..•.•...•.......•.•.•.........•.....•......•.AN-661
LM1204 ...............•...........•..•.•..••.....•..•.•...•......•......•....•.•.•...•.....•.......•......AN-9;34
LM1458 .•.....•.••.•..••.••••..••.•..••.••.•..•..••.••.••.••..•.••••.•••••••••.••.••.•.••••..••.••.•••••.• AN-116
LM1524 ..•..••.•..•.••••••••.••.•• : ••.••••••••••.••..••••.•••.•..•........••....•• AN-272, AN-288, AN-292, AN-293
LM1558 ••.....•..•••.•.••......•.........•.•....•...•........•....•..•....••'..••.•..••.•.....•..•..•..•..• AN-1·16
LM1578A •••••••.••••.••..•.•..••.••.••..•••.•• .' .••••••••••••••..•..•..•.••.••.••.••.••.•.••••••••.•••••.•• AB-30
LM1823 •.••.••..•..•.•. .' .......•.•....••............•....•...........•..•..•..••.•..•..•..•...•.......•...AN-391
LM1830 ••.•..•..•.••..•..•..•..•..••.•.....••.•..•.•••••••.••••.••.•••••.•••••.••.•••••.•..•••••••.••.••.•• AB-10
LM1865 •.••..•..•..•.......•..••.•.....•..•..•..•..•..•.••..••.•.•...•....•............•.•..•.•...•...•.•.AN-390
LM1886 •....•....•....•.••............•....•........•..•.••..•..•.•••••••••.•..••.•.•..••.•.•••••..•..••.• AN-402
LM1889 .••.••.•..•.••..••.•..•..•..•.••..•..•.•••.••..•.••..•.••.••.••.•..•...........••.•..•.••.••..••••. AN-402
LM1894 .•••....•..•...•....•.....•..•..•..•...•.•.••............•.•..•..... : ....••........ AN-384, AN-386, AN-390
LM2419 .....................................................................................................AN-861
LM2577 ....•.••.••••..••.••.•..••..•.•.•••.••.•••...•••.••••••••.•.••.••.••.••••••••.••••.••.••••• AN-776,AN-777
LM2876 •.••.••.••..•.•..•...•.•..•....•...•.••..•..•........•.....•.••.•.•.•..•.•...•.....•....•..•..•.•.. AN-898
LM2889 .•.......•.•......•......•....•........•.....•.••••..•••.•..•••••••..•..•..•.•••••.•••••.•. AN-391, AN-402
LM2907 •••.•..•..••••.•••.•..•.••..••....•.•••.••.••.••..•.••..••••.•..•..••....•..••....••.••.•.••.••.••• AN-162
LM2917 •..•..•.••....•....•......•......•.•.•...•......... '..•.....•..........•..•.......•••.••••.••..•.••. AN-162
LM2931 .....••...........•...•...•........•..•......•.•..•..••.•..•.....•..•.....•..•..•.••.•...•....•.••.•AB-12
LM2931CT •..•..•..••.••.••.••••..•.••••••.•••••..••••••••••.••.••.•••••.••.••.••.••.•.••••••••.••.• .'.••••• AB-11
LM3045 •••..••.•••••.••.•.••.••.••..•..•..•.....••.•....••..•....••..•..............•....•..•..••.•..•..•. AN~286
LM3046 •.••..•• : •..•...•...••..•.....••....•..•.•••.•.••.••••••••••••••.••.•••••.••.•..••.••••..•• AN-146, AN-299
LM3089 ••••.•.•••••••••••.•••••..•.••.•..•••••.••.••..•..•..•..•.....•.•..•....•...•.••..•..•.••.••.••.••• AN-147
LM3524 ••.••••••••.••.•••.•..••••..•..•••••.•..•..•..•...••...••..........•..•.••• AN-272, AN-288, AN-292, AN-293
LM3525A ...••.•..............•........•.....•.•.•.••..•..•..•.•••••.•••••.•••••••••••.•••••.•.••..•..••.• AN-694
LM3578A ••••••.••••••.••••••••••••••••••••••.•••.••..•.•...•.•.....••.•..•..•..••.•.••..•.••.••.•.••••••.• AB-30
LM3875 ...•.••.••.•....•.....•..........•..•.....•.....•..••.•.•. : ••.••.•..•••••.••.•..•..••....•.....•..• AN-898
LM3876 .•....•..••.••••..••.••.•..••.•••.••••..•..••.••.•••••.••.•.....••.•..•..••.•..•.••••••••••••••••.• AN-8~8
LM3886 ....•.......••••••.••.•..•..•.•••.•..••.••.••..•..••••..•..........•.....•..•.•••••..•..•.••.••.••• AN-898
LM3900 •.•..•..•.••..•.••..•..•.•......•...•........•....•.•....•. : ..• AN-12, AN-263, AN-274, AN-278, LB-20, AB~24
LM3909 ..•.•....•..•..••.•.....•.....•..•..••.••.•••••.••.••.••••••••••••••.•••••••..••••.••••.••..•.•••.• AN-154
LM3914" ••••••.••••..•.••.••.••..•••...•.••.••..•.••.....••.•..•.....•......•.....'•......••.• AN-460, LB-48, AB-25
LM3915 ..•.•.•..•....•....•.•........•.•.......•••.•..•.....•..•..•..•..•..•........•......•.•..•.........AN-386
LM3999 .••••....•..•••••.••.•...•.•..•..•..•.••••••.•••••.•••• '••.••.•.••.•..••.•.•••.•............•...•... AN-161
7-8

DevicelApplication Literature Cross-Reference (Continued)
Device Number

Application Wterature

LM4250 .•.........•.....•...•.•.......•..•................•.........................................AN-88, LB-34
LM6181 .....•....................................•..•......•..•.........•...•.....•.............•.AN-813, AN-840
LM7800 ...•......................................•........................................................AN-178
LM12454 .....•..•.....•.......•.•...•.....•..•...•.........••...•............•.......•.... AN-906, AN-947, AN-949
LM12458 ..................................................................................AN-906, AN-947, AN-949
LM12H454 •........•..•.....................................•.........•..............•.... AN-906, AN-947, AN-949
LM12H458 ..............................................................................•.AN-906, AN-947, AN-949
LM12L458 .........•....................................................•..••..•.....•••.•.AN-906, AN-947, AN-949
LM18293 •...•.........•.........•......•..•......•••...•...•.................•..••.••...........•.....•.. AN-708
LM78L12 •.•.•.•.••.•.•.•.....•...........•...........................................................•...AN-146
LM78S40 ••.........•.........•.....•......•..••..••.....•..•..••..•............•..•...•....•....•........AN-711
LMC555 ...............•.•..••..........•.•.................................•..........•..........AN-460,AN-828
LMC660 •.•..•..••..••.•.•.•...•..•...•..•..•..... : •.••......••........••..•......•..•......•............. AN-856
LMC835 .•......•...•.....•...•.........••.•.•.•..•••....•...•.....•..........•.....••..•...•.•..•...•..•.AN-435
LMC6044 •..........•.•.......•...•........•..........•.•.......•.....................•..•.•..............AN-856
LMCS062 ••...•..•..•..••..•..•...•..•...•......•.••..•..•......••..•.........•..••..•......•..•.......... AN-856
LMC6082 •..........................................•....•......•....•...........•....••..................AN-856
LMC6484 •.•..••..•..•..•.......•...................•...........•......................••..•••............ AN-856
LMD18200 .••...............••..•...•.........•.•.•..•.•.•..•.......•..•.......•....•..••.•....... AN-694, AN-828
LMF40 .•....•••.•.•.••.................•....................................•.............................AN-779
LMF60 .•..•...•.....••.••..••......••....•...•.....••.....•...•.........................•...•......•......AN-779
LMF90 ..•.•...................•........•.........•...•..•...••.....•..•...•..••..••.•..••.•.•.•....••.....AN-779
LMF100 •.•.•..•..•.....••....•.•..•.............•..................................•.•.•......•...•......AN-779
LMF380 ........•....•....•..•..•...•......•...•..•......•..•..........•...•.••..••.........•.•...........AN-779
LMF390 ...•..•......•.•.....•.........••.....••.•......•..••.••.........••..•.....••...•....•...•..•...•.AN-779
LP324 .•..•...••.....•..••.•...••.••..•.••...••.•...•..•......•..•........•................•..............AN-284
LP395 .•....•................•...•.....••...•....••..•..•..••..••.•••.•..•...•......•.••.....•......•...•. AN-460
LPC660 ••.....••.....•..••..•..••..•....•••..•......•.....•.............•........•...•.•••.•.............. AN-856
MF4 •.••••..........•.••...•...•..•..•..•...•......•.••••••.•••.•..••.•••.••.....••.••.•...••.•...•..••..• AN-779
MF5 •.•.•••....•••.•...•.••...•..•..•.••...•......•......•..•....•.••.•••.••.....••..••.•..••.••..•...•... AN-779
MF6 .......••..•.................•......•..................•...................•...•..•....•.....•..•..•..AN-779
MF8 •..•..•.•.•.....••.••..•...•..••..•......•..•..••.••...............••.•...............................AN-779
MF10 •..........•...............•......•..•..•...•..•.•.•..•..•...•..•..••...••.•.••......•..•.... AN-307,AN-779
MM2716 •......••.•................••..................•.•.................................................LB-54
MM541 04 ..•..••..... , '" •..•... '" •..••.••.•..........•............•....................... AN-252, AN-287, LB-54
MM57110 .................................................................................................AN-382
MM74COO ..••..•.....••.••.....••...........•.•....•..................•......•.................•...•......•AN-88
MM74C02 ••.....•..•...••.•••••..•..••..•.••..••.••.••••.•..••..•......••..•..•......••.•...•.••....•.•.... AN-88
MM74C04 .•...............•.•........................•.•....•.•.•.•..•...•..••..•.••..••.•...••.••..•.•.... AN-88
MM74C948 •.....•..••.•.•.•..••••.• " '" •. " •..••.•.•.••.•••.•..••..•..•..........•...........•........•.• AN-193
MM74HC86 ......•..........••..•......••.•...•..••.••..••.•..•••.••..•.••...•.........•.....•....AN-861,AN-867
MM74LS138 •...•.....•...•.........•.....•..••..•..•...•................................................... LB-54
MM53200 ••.••..••.••..•••••..•..••..•..•..••.••..•••.•..•......•.•.•..•...•......•..•..•...•.•..........• AN-290
2N4339 ..•..•...............•........•..•.......••...•..•...•.......••..••.••..••.••...•..•.••...••.•..••.. AN-32

7-9

•E r-----------------------------------------------------------------------------,
f!!

Q

e

t!lNational Semiconductor

Go

~

I'ii
£E:

~

AppendixC
Summary of Commercial Reliability Programs

CD

E

a
'0

i

E
:::a

P + Product Enhancement
The P+ product enhancement program involves dynamic
tests that screen out assembly related and silicon defects
that can lead to infant mortality and/or reduce the surviva-

Package Types
Device

(n

I
o

.~
'0
C

!.

~

bility of the device under high stress conditions. This program includes but is not limited to the following power
devices:

To-3
KSTEEL

To-39
(H)

LM12
LM109/309

X

LM117/317
LM117HV/317HV
LM120/320

X

X

X

X

X

X

lM123/323

X

X

TO-220
(T)

SO
(M)

To-263
(S)

X
X

X

X

LM133/333

X

lM137/337
lM137HVl337HV
lM138/338

X

X

X

X

X

X

lM140/340

X

X

lM145/345
lM150/350
lM195/395

X

X

X
X

DIP
(N)

X

X
X

X

lM2930/2935/2984

X

X

lM2937

X

X

lM2940/2941

X

X

lM2990/2991
lM2575/2575HV

X

lM2576

X

lM2577
lMD18200/18201

X

X

X

7-10

X
X

X

X

X

X
X
X

tflNational Semiconductor

Appendix 0
Military Aerospace Programs
from National Semiconductor
This appendix Is Intended to provide a brief overview of
military products available from National Semiconductor. The process flows and catagorles shown below are
for general reference only. For further Information and
availability, please contact the Customer Response
Center at 1-800-272-9959, Military/Aerospace Marketing
group or your local sales office.

Process Flows
(Integrated Circuits)

National Semiconductor's Military/Aerospace Program is
founded on dedication to excellence. National offers com·
plete support across the broadest range of products with
the widest selection of qualification levels and screening
flows. These flows include:

7-11

Description

JANS

QML products processed to
MIL-I-38535 Level S or V for Space
level applications.

JANB

QML products processed to
MIL-I-38535 Level B or Q for
Military applicationf.

SMD

QML products processed to a
Standard Microcircuit Drawing with
Table I Electricals controlled by
DESC.

883

QML products processed to
MIL-STD-883 Level B for Military
applications.

MLP

Products processed on the
Monitored Line (Program)
developed by the Air Force for
Space level applications.

-MIL

Similar to MIL-STD-883 with
exceptions noted on the Certificate
of Conformance.

MSP

Military Screening Products for
initial release of advanced
products.

MCP

Commercial products processed in
a military assembly. Electrical
testing performed at 25°C, plus
minimum and maximum operating
temperature to commercial limits.

MCR

Commercial products processed in
a military assembly. Electrical
testing performed at 25°C to
commercial limits

MRP

Military Ruggedized Plastic
products processed to avionics
requirements.

MRR

Commercial Ruggedized plastic
product processed in a commercial
assembly with electrical testing at
25°C.

MPC

Commercial plastic products
processed in a commercial
assembly with electrical testing at
25°C.

,.

National offers both 883 Class Band 883 Class S product. The screening requirements for both classes of prod'
uct are outlined in Table III.
As with SMDs a manufacturer is allowed to use his standard electrical tests provided that all critical parameters
are tested. Also, the electrical test parameters, test conditions, test limits and test temperatures must be clearly
documented. At National Semiconductor, this information
is aVliilable via our Table I (formerly RETS, Reliability
Electrical Test Specification Program). The Table I documentis a complete 'description of the electrical tests performed and is controlled by our QA department. Individual
copies are available upon request.
Some of National's products are produced on a flow similar to MIL-STD-883. These devices are screened to the
same stringent requirements as 883 product, but are
marked as -MIL; ,specific reasons for prevention of compliancy are clearly defined in the Certificate of Conformance (C of C) shipped with the product. '
• Monitored Une Program (MLP): is a non JAN Level S
program developed by the Air Force. Monitored Line
product usually provides the shortest cycle time, and is
acceptable for application in several space level programs. Lockheed Missiles and Space Company in Sunnyvale, California, under an Air Force contract, provides
"on-site" monitOring of product processing, and as appropriate, program management. Monitored Line orders
generally do not allow "customizing", and most flows
do not include quality conformance inspection. Drawing
control is maintained by the Lockheed Company.
• Military Screening Program (MSP): National's Military
Screening Program was developed to make screened
versions of advanced products such as gate arrays and
microprocessors available more quickly. Through this
program, screened product is made available for prototypes and breadboards prior to or during the QM L activities. MSP products receive the 100% screening of Table III, but are not subjected to Group C and 0 quality
conformance testing. Other criteria such as electrical
testing and temperature range will vary depending upon
individual device status and capability.

• QML: The purpose of the QML program, which is administered by the Defense Electronics Supply Center
(DESC), is to provide the military community with standardized products that have been manufactured and
screened to the highest quality and reliability standards
in facilities that have been certified by the government.
To achieve QML status, manufacturers must submit
their facilities, quality procedures and design philosophies to a thorough audit aimed at confirming their ability to produce product to the highest design and qu~!ity
standards. They must be listed on PESC's Qualified
Manufacturer List (QML) before devices can be marked
and shipped as QML product.
Two processing levels are specified within MIL-I-38535,
the QML standard: Class S (typically specified for
space and strategic applications) and Class B (used for
tactical missile, airborne, naval and ground systems).
The requirements for both classes are defined within
MIL-STD-883. National is one of the industry's leading
suppliers of both classes.
• Standard Microcircuit Drawings (SMD). SMDs are issued to provide standardized versions of devices offered under QML. MIL-STD-883 screening is coupled
with tightly controlled electrical test specifications that
allow a manufacturer to use his standard electrical
tests. TablE;lI explains the marking of JAN devices, and
Table II outlines current marking requirements for QMLI
SMD devices. Copies of MIL-I-38535 and the QML can
be obtained from the Naval Publications and Forms
Center (5801 Tabor Avenue, Philadelphia, PA 19120,
212/697-2179. A current listing of National's SMD offerings can be obtained from our authorized distributors, our sales offices, our Customer Response Center
(Arlington, Texas, 817/468-6300), or from DESC.
• MIL-STD-883. Originally intended to establish uniform
test methods and procedures, MIL-STD-883 has also
become the general specification for non-SMD military
product. MIL-STD-883 defines the minimum requirements for a device to be marked and advertised as
883-compliant. Design and construction criteria, documentation controls, electrical and mechanical screening
requirements, and quality control procedures are outlined in paragraph 1.1.2 of MIL-STD-883.

7-12

~

TABLE I. JAN S or B Part Marking
~~8~O/X~X_XXYYY

[

TABLE I-A. JAN Package Codes
JAN

Lead Finish
A "Solder Oi pped
B = Tin Plate
C = Gold Plate
X Any lead finish above
is acceptabl.

=

Davice Package
(s•• Tabl. II)

-

Screening Lev.1

5 or B
" - - Device Number on
Slash Sheet
-

Slash She.t Number

I..----ror

radiation hard devices

this slash is replaced by the
Radiation Hardness Assurance

Package
Designation

Microcircuit Industry Description

A
B
C
0
E
F
G
H
I

14-pin 1h" x 1h" (Metal) Flatpak
14-pin 0/..' x V.." (Metal) Flatpak
14-pin 1h" x %" Dual-In-Line
14'pin 1h" x %" (Ceramic) Flatpak
16-pin 1h" x?fa" Dual-In-Line
16-pin 1h" x %" (Metal or Ceramic) Flatpak
8-pin TO-99 Can or Header
10-pin 1h" x 1h" (Metal) Flatpak
10-pin TO-100 Can or Header
24-pin Yz" x 11h" Dual-In-Line
24-pin %" x %" Flatpak
24-pin 1h" x 11h" Dual-In-Line
12-pin TO-1 01 Can or Header
(Note 1)
8-pin 1h" x %" Dual-In-Line
4O-pin 0/.." x 2V!8" Dual-In-Line
20-pin 1h" x 1V!8" Dual-In-Line
20-pin 1h" x Yz" Flatpak
(Note 1)
(Note 1)
18-pin %" x Isli." Dual-In-Line
22-pin %" x 1Va" Dual-In-Line
(Note 1)
(Note 1)
(Note 1)
20-terminal 0.350" x 0.350' Chip Carrier
28-terminal 0.450" x 0.450" Chip Carrier

J

Designator (W, 0, R, or H of

K
L
M
N
P

MIL-I-38535)
'-----IIIL-M-38510
' - - - - - - - J A N Prefix
TL/XX/OOSO-l

Q

R
5
T
U
V
W

X
Y

Z
2
3

Note 1: These letters are assigned 10 packages by individual detail specifi.
cations and may be assigned 10 diff......nt packages in different specifica·
tions.

7-13

"a
"a
CD
:::J
iCL

>i.

r
~

::;:
III

~

~

...0CD
fIJ

"a

III

n

CD

...0"U
...

CO
III

3fIJ

-

.0..
3

Z

III

o·

:::J

!!.

en
CD
3

0·

0
:::J
iCL

c

n

S"
...

•

TABLE II. Standard Mllltary'Drawlng
(SMD) Marking

,

SMD
Package
Designation

.;'

5962-~02MXA'

C"~

TABLE II-A. SMD Package CodeS'

Load finish
.
(Soldar)

14~pin Flatpak
14-pin C DIP
16-pinC DIP
16-pin Flatpak
B-pin T0-99 Can
10-pin (Metal) Flatpak
10·pin TO·1 00 Can
(Note 2)
(Note 2)
B-pinCDIP
20-pin LCC
20·PinDIP

C
D
E
F
G
H
I

Packaga Codas
(.aa Tabla IIA)
Class Dasignator
, M = MIL-STD-BB3
BorQ = Class B
SorV=ClassC
-

Microcircuit Industry Description

X

Device Number

y

Drawing Numbar -

P
2

Year of Issue

Th. "/" and ~'-" can
ba raplaced by RHA
designations
D = 10 krad
R = 100 krad

R

Note 2: These letters are assigned to peckages by Individual doteil specifications and may be ..signed to different peckages in different specHlca·

tions.

fod.ral stock Class
TLlXX/OO30-2

TABLE 111.100% Screening Requirements
ClassS

Scraen

Method
1.

ClassB
Reqmt

Wafer Lot Acceptance

5007

All Lots

Method

Reqmt

2.

Nondestructive Bond Pull (Note 14).

2023

100%

3.

Internar Visual (Note 1)

2020, Condition A

100%

2010, Condition B

100%

4.

Stabilization Bake (Note 16)

100B, Condition C, Min
24 Hrs. Min

100%

100B, Condition C, Min
24Hrs. Min

100%

5.

Temperature Cycling (Note 2)

1010, Condition C

100%

1010, Condition C

100 0"-

6.

Constant Acceleration

2001, Condition E Min
y 1 Orientation Only

100%

2001, Condition E Min
y 1 Orientation Only

100%

2010, Condition A (Note 4)

100%

7.

Visual Inspection (Note 3)

B.

Particle Impact Noise Detection (PIND)

9.

100%

100%

Serialization

(NoteS)

100%

10.

Interim (Pre-Bum-In) Electrical Parameters

Per Applicable Device
Specification (Note 13)

100%

Per Applicable Device
Specification (Note 6)

11.

Burn-In Test

1015
240 Hrs. @ 125"C Min
(Cond. F Not Allowed)

100%

1015
160 Hrs.

Per Applicable Device
Specification (Note 3)

100%

12.

Interim (Post Burn-In)
Electrical Parameters

7-1'4

100%
@

125°C Min

TABLE III. 100% Screening Requirements (Continued)
ClassB

ClassS

Screen

Method

Reqmt

13.

Reverse Bias Burn-In (Note 7)

1015; Test Condition A, C,
72 Hrs. @ 150"C Min
(Cond. F Not Allowed)

100%

14.

Interim (Post-Bum-In) Electrical
Parameters

Per Applicable Device
Specification (Note 13)

100%

15.

PDA Calculation

5% Parametric (Note 14),
3% Functional

16.

Final Electrical Test (Note 15)
a) Static Tests
1) 25°C (Subgroup 1, Table I, 5005)
2) Max & Min Rated Operating Temp.
(Subgroups 2, 3, Table I, 5005)
b) Dynamic Tests or Functional Tests
1) 25°C (Subgroup 4 or 7)
2) Max and Min Rated Operating Temp.
(Subgroups 5 and 6 or 8, Table I,
5005)
c) Switching Tests 25°C
(Subgroup 9, Table I, 5005)

Per Applicable Device
Specification

Seal Fine, Gross

1014

17.

All Lots

Method

Per Applicable Device
Specification
5% Parametric (Note 14)

Reqmt

100%
All Lots

Per Applicable Device
Specification
100%
100%

100%
100%

100%
100%

100%
100%

100%

100%

100%
(Note 8)

18.

Radiographic (Note 10)

2012 Two Views

100%

19.

Qualification or Quality Conformance
Inspection Test'Sample Selection

(Note 11)

Samp.

20.

External Visual (Note 12)

2009

100%

1014

(Note 11)

100%
(Note 9)

Samp.
100%

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided all other specHication requirements are satisfied (e.g., bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).
Note 2: For Class B devices, this test may be replaced V'/ith thennal shock Method 1011, Test Condition A, minimum.
Note 3: At the manufacturer's option, visual inspection for catastrophiC failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test CatastrophiC failures are defined as missing leads, broken packsges, or lids off.
Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL·I-38585 paragraph 40.6.3.
Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.

Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.
Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.
Note 9: For Class B devices, the fine and gross seal tests shall be performed separately or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g., ltatpaks and chip carriers) the seal screen shall be done 100% prior to these operations and a sample tast (LTPD - 5) shall be performed on each inspeCtion
lot following these operations. If tbe sample fails, 100% rescreening shall be required.
Note 10: The radiographic screen may be performed in any sequence after step 9.
Note 11: Samples shall be selected for testing in accordance wHh the specific device class and lot requirements of Method 5005.
Nole 12: External Visual shall be performed on the lot any time after step 19 and prior to shipment.
Note 13: Read and record is required, at steps 10 'and 12 only for those parameters for which post·burn·in delta measurements are specHied. All parameters shall
be read and recorded at step 14.'
Note 14: The PDA shall apply to all subgroup 1 parameters at 25'C and all delta parameter..
Note 15: Only one view is required for flat packages and leadless chip carriers with leads on all four sides.
Note 16: May be performed at any time prior to step 10.

7-15

•

Military Analog Products Available from National Semiconductor

Device

Package
Styles
(Note 1)

Process
F1o_
(Note 2)

Description

SMD/JAN
(Note 3)

HIGH PERFORMANCE AMPLIFIERS AND BUFFERS
LF147
LF155A
LF156
LF156A
LF157
LF157A
LF411M
LF412M
LF441M
LF442M
LF444M

D,J
H
H
H
H
H
H
H,J
H
H

Wide BW Quad JFET Op Amp
JFET Input Op Amp
JFET Input Op Amp
JFET Input Op Amp
JFET Input Op Amp
JFET Input Op Amp
Low Offset, Low Drift JFET Input
Low Offset, Low Drift JFET Input-Dual
Low Power JFET Input
Low Power JFET Input-Dual
Low Power JFET Input-Quad

SMD/JAN
883
883
883
883
883
883/JAN
883/JAN
883
883
883

LHOO02
LH0021
LH0024
LH0032
LH0041
LH0101

H

".. MIL"

-'-

"-MIL"

-

K

Buffer Amp
1.0 Amp Power Op Amp
High Slew Rate Op Amp
Ultra Fast FET-Input Op Amp
0.2 Amp Power Op Amp
Power Op Amp

LM10
LM101A
LM108A
LM118
LM124
LM124A
LM146
LM148
LM158A
LM158
LM611AM
LM613AM
LM614AM
LM709A
LM741
LM747

H
J,H,W
J,H,W
J,H
J,E,W
J,E,W
J
J,E
J,H
J,H
J
J,E
J
H,J,W
J,H,W
J,H

Super-Block™ Micropower Op Amp/Ref
General Purpose Op Amp
Precision Op Amp
Fast Op Amp
Low Power Quad Op Amp
Low Power Quad
Quad Programmable Op Amp
Quad 741 Opamp
Low Power Dual Op Amp
Low Power Dual Op Amp
Super-Block Op Amp/Reference
Super-Block Dual Op Amp/Dual Comp/Ref
Super-Block Quad Op Amp/Ref
General Purpose Op Amp
General Purpose Op Amp
General Purpose Dual Op Amp

883/SMD
883/JAN
883/JAN
883/JAN
883/JAN
883/JAN
883
883/JAN
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/JAN
883/JAN

LM6118
LM6121
LM6125
LM8161
LM6162
LM6164
- LM6165
LM6181AM
LM6182AM

J,E
H,J
H
J,E,W
J,E,W
J,E,W
J,E,W
J
J

VIP Dual Op Amp
VIP Buffer
VIP Buffer with Error Flag
VIP Op Amp (Unity Gain)
VIPOpAmp(Av> 2, -1)
VIP Op Amp (Av > 5)
VIP Op Amp (Av > 25)
VIP Current Feedback Op Amp
VIP Current Feedback Dual Op Amp

883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD

5962-91565
5962-90812
5962-90815
5962-89621
5962-92165
5962-89624
5962-89625
5962-9081802
5962-9480301

J

883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD

5962-9209301
5962-9209401
5962-9209302
5962-9209402
5962-9453401
5962-9453402

883

-

0
K
H
G
G

LMC660AM
LMc682AM
LPC660AM
LPC862AM
LMC6482AM
LMC6484AM

J
J
J

Low Power CMOS Quad Op Amp
Low Power CMOS Dual Op Amp
Micropower CMOS Quad Op Amp
Micropower CMOS Dual Op Amp
Rail to Rail CMOS Dual Op Amp
Rail to Rail CMOS Quad Op Amp

OP07

H

Precision Op Amp

J

J

7-16

"_MIL"
"_MIL"
"-MIL"
"-MIL"

"
"

.,; :

/11906

-

-/11904
/11905

I

-

5962-87604
/10103
/10104
/10107
/11005
/11006

-/11001

5962-8771002
5962-8771001

-7800701
/10101
110102

Military Analog Products Available from National Semiconductor (Continued)
Device

Package
Styles
(Note 1)

Description

Process
Flows
(Note 2)

SMD/JAN
(Note 3)

COMPARATORS
LFlll
LH2111
LM106
LM111
LM119
LM139
LM139A
LM160
LM161
LM193
LM193A
LM612AM
LM613AM

H
J,W
H,W
J,H,E,W
J,H,E,W
J,E,W
J,E,W
J,H
J,H,W
J,H
J,H
J
J,E

LM615AM
LM710Ao
LM711Ao
LM760

J
J,H,W
J,H,W
J,H

Voltage Comparator
Dual Voltage Comparator
Voltage Comparator
Voltage Comparator
High Speed Dual Comparator
Quad Comparator
Precision Quad Comparator
High Speed Differential Comparator
High Speed Differential Comparator
Dual Comparator
Dual Comparator
Dual-Channel Comparator/Reference
Super·Block Dual Comparatorl
Dual Op Amp/ Adj Reference
Quad ComparatorlAdjustable Reference
Voltage Comparator
Dual LM710
High Speed Differential Comparator

"·MIL"
883/JAN
883/SMD
883/JAN
883/JAN
883/JAN
883/SMD
883/SMD
883/SMD
883
883/JAN
883/SMD
883/SMD
883
883/JAN
883/JAN
883/SMD

-

110305
8003701
110304
110306
111201
5962·87739
8767401
5962·87572

/11202
5962·93002
5962·93003

-110301
110302
5962·87545

'Fonnet1y manufactured by Fairchild Semiconductor as part numbers ,.A710 and p.A711.

LINEAR REGULATORS
Positive Voltage Regulators
LM105
LM109
LM109
LM117
LM117HV
LM117HV
LM123
LM138
LM140·5.0
LMl40·6.0
LMl40·8.0
LM140-12
LM140-15
LM140·24
LM140A·5.0
LM140A·12
LM140A·15
LM140K·5.0
LM140K·12
LM140K·15
LMl40LAH·5.0
LMl40LAH·12
LMl40LAH·15
LM150
LM2940·5.0
LM2940·8.0
LM2940·12
LM2940·15
LM2941
LM431
LM723
LP2951
LP2953AM

H
H
K
H,E,K
H
K
K
K
H
H
H
H
H
H
K
K
K
K
K
K
H
H
H
K
K
K
K
K
K
H,K
H,J,E
H,E,J
J

Adjustable Voltage Regulator
5V Regulator, 10 = 20 mA
5V Regulator,lo = 1A
Adjustable Regulator
Adjustable Regulator, 10 = 0.5A
Adjustable Regulator, 10 = 1.5A
3A Voltage Regulator
5A Adjustable Regulator
0.5A Fixed 5V Regulator
0.5A Fixed 6V Regulator
0.5A Fixed 8V.Regulator
0.5A Fixed 12V Regulator
0.5A Fixed 15V Regulator
0.5A Fixed 24V Regulator
1.0A Fixed 5V Regulator
1.0A Fixed 12V Regulator
1.0A Fixed 15V Regulator
1.0A Fixed 5V Regulator
1.0A Fixed 12V Regulator
1.0A Fixed 15V Regulator
100 mA Fixed 5V Regulator
100 mA Fixed 12V Regulator
100 mA Fixed 15V Regulator
3A Adjustable Power Regulator
5V Low Dropout Regulator
8V Low Dropout Regulator
12V Low Dropout R~gulator
15V Low Dropout Regulator .
Adjustable Low Dropout Regulator
Adjustable Shunt Regulator
Precision Adjustable Regulator
Adjustable Micropower LDO
250 rnA Adj. Micropower LDO

883/SMD
883/JAN
883/JAN
883/JAN
883/SMD
883/SMD
883
"·MIL"
883/JAN
883
883
883/JAN
883/JAN
883
883
883
883
883/JAN
883/JAN
883/JAN
883
883
883
883
883/SMD
883/SMD
883/SMD
883/SMD
883/SMD
883
883/JAN
883/SMD
883/SMD

5962-89588
110701BXA
/10701BYA
/11703, '111704
7703402XA
7703402YA

-

-110702
-

-110703
/10704

-

--

/10706
110707
/10708

-

5962·89587
5962·90883
5962·90884
5962·90885
TBD

-

/10201
5962·38705
5962·9233601

II
7·17

-~

..

Military Analog Products Available from National Semiconductor (Continu~!lJ " ,

,
beYij:e ,,

.),1

Package,
Description,

Stylea
(Note 1)

,

-

",.t:

Process!
Flows
(Note 2)

..

SMD/JAN
(Note 3)

UNEAR REGULATORS (Continued)

..

Negative Voltage Regulators
883/J~N

LM120-5.0
LM120-8.0
LM120-12
LM120-15

H
H
H
H

Fixed 0.5A Regulator, Vo.UT = ,-f,Y
Fixed 0.5A Regulator, VOUT = -8V
Fixed 0.5A Regulator, VOUT ,= ~ 12V
Fixed 0.5A Regulator, VOUT "" ~15V

883
883/JAN
883/JAN

-

LM120-5.0
LM120-12
LM120-15

K
K
K

Fixed 1.0A Regulator, VOU"= -5V
Fixed 1.0A Regula~or, VOUT= -12V
Fixed 1.0A Regulator, VOUT = -15V

883/JAN'
883/JAN'"
883/JAN

/11505
/11506
/11507

LM137A
LM137A
LM137
LM137HV
LM137HV

H
K
H,K
H
K

Precision Adjustable Regulator
Precision Adjustable Regulator
Adjustable Regulator
Adjustable (High Voltage) Regulator
Adjustable (High Voltage) Regulator

883/SMD
883/SMD
883/JAN,
883/SMD
883/SMD

7703406XA
7703406YA
/11803\/11804
7703404XA
7703404YA

LM145-5.0
LM145-5.2

K
K

Negative 3 Amp Regulator
Negative 3 Amp R~gulator

883/$MD
883

-

/11501
/11502
/11503

5962-90645

SWITCHING REGULATORS
LM1575-5
LM1575-12
LM1575-15
LM1575-ADJ
LM1575HV-5
LM15751-jV-12
LM1575HV-15
LM1575HV-ADJ
LM1577-12
LM1577-15
LM1577-ADJ

J,K
J,K
J,K
J, K
K
K
K
K
K
K
K

".

Simple SwitcherTM Step-Down, VOUT = 5V
Simple Switcher Step-Down, VOUT = 12V
Simple Switcher Step-Down, VOUT = 15V
Simple Switcher Step-Down, Adj V6UT
Simple Switcher Step-Down, VOUT = 5V
Simple Switcher Step-Down, \tOUT ..' 12V
Simple Switcher Step-Down, VOUT = ,15V
Simple Switcher Step-Down, Adj VOUT Simple Switcher Step-Up, VOUT ;= 12V
Simple Switcher Step.-Up, VOUT = 15V
, Simple Switcher Step"Up, Adj VOUT

883/SMD
883/SMD
883/SMb
883/SMD
883
883
883
883
883/SMD
883/SMD,
883/SMD

-

5962-9167201 ,
5962-9167301
5962-9167401
5962-9167101

-

5962-9216701
5962-9216801
5962-9216601,

LM1578

H

750 mA Switching Regulator

883/SMD,

5962-89586

LM78S40·

J

Universal Switching Regulator Subsystem

883/SMD

5962-88761

883/SMD
883/SMD
883/SMD
883/SMD

7702806
7702807
7702808
7702809

883/SMD
883/SMD
883/SMD

5962-8671101
5962-8671102
5962-8671103

883/SMD
883/SMD
883
883/SMD,
883
883

5962-8992101 XA
5962-8992102XA

'Formerly manufactured by Fairchild Semiconductor as the ,.A78S40DMQB.

VOLTAGE REFERENCES
LM103-3.0
LM103-3.3
LM103-3.6
LM103-3.9

H
H
H
H

LM113
LM113-1
LM113-2

H
H
H

LM129A
LM129B

H
H
H
H
H
H

LM136A:2.~

LM136A-5.0
LM136-2.5
LM136-5.0

Reference Diode,
Reference Diode,
Reference Diode,
Reference Diode,

BV = 3.0V
BV "" 3.3V
BV .,; 3.~V
BV = 3.9V

Reference Diode with 5% Tolerance"
' Reference Diode with 1 % Tolerance
Reference Diode with 2% Tolerance
Precision Reference, 10 ppml"C Drift
Precision Reference; 20 ppml"C Drift
2.5V Reference Diode, 1 % VOUT Tolerance
5V Reference Diode, 1 % VOUT Tolerance
2.5V RefElrence Diode, 2°A, VOUT Tolerance
5V Reference Diode, 2% VOUT ToleranCE!

-

84180'01 ,

-

-

';

Military Analog Products Available from National Semiconductor (Continued)
Device

Package
Styles
(Note 1)

Description

Process
Flows
(Note 2)

SMD/JAN
(Note 3)

VOLTAGE REFERENCES (Continued)

-5962-9041401

LM169
LM185B
LM185BX2.5
LM185BY
LM185BY1.2
LM185BY2.5
LMI85-1.2
LMI85-2.5

H
H,E
H
H
H
H
H,E
H,E

10V Precision Reference, Low Tempco 0.05% Tolerance
Adjustable Micropower Voltage Reference
2.5V Micropower Reference Diode, Ultralow Drift
Adjustable Micropower Voltage Reference
1.2V Micropower Reference Diode, Low Drift
2.5V Micropower Reference Diode, Low Drift
1.2V Micropower Reference Diode, Low Drift
2.5V Micropower Reference Diode, Low Drift

883
883/SMD
883/SMD
883
883/SMD
883/SMD
883/SMD
883/SMD

LM199
LM199A
LM199A-20

H
H
H

Precision Reference, Low Tempco
Precision Reference, Ultralow Tempco
Precision Reference, Ultralow Tempco

883/SMD
883/SMD
883

LM611AM
LM612AM
LM613AM
LM614AM
LM615AM

J
J
J, E
J
J

Super-Block Op Amp/Reference
Super-Block Dual-Channel Comparator/Reference
Super-Block Dual Op Amp/DuaIComp/Dual Ref
Super-Block Quad Op Amp/Reference
Super-Block Quad Comparator/Reference

883
883/SMD
883/SMD
883/SMD
883/SMD

-

LH0070-0
LH0070-1
LH0070-2

H
H
H

Precision BCD Buffered Reference
Precision BCD Buffered Reference
Precision BCD Buffered Reference

"-MIL"

"_MIL"
"-MIL"

-

ADC08020L
ADC0851

J
J

883/SMD
883/SMD

5962-90966
TBD

ADC0858

J

883/SMD

TBD

ADC08061CM
ADCl 0061 CM
ADC10062CM

J
J
J

883/SMD
883/SMD
883/SMD

TBD
TBD
TBD

ADC10064CM

J

883/SMD

TBD

ADC1241CM

J

883/SMD

5962-9157801

ADCI2441CM
ADC1251CM

J
J

883/SMD
883/SMD

5962-9157802
5962-9157801

ADC12451CM
DAC0854CM

J
J

883/SMD
883/SMD

TBD
TBD

DAC1054CM

J

883/SMD

TBD

LM12458M
LM12H458M

EL,W
EL,W

8-Bit poP-Compatible
8-Bit Analog Data Acquisition
& Monitoring System
8-Bit Analog Data Acquisition
& Monitoring System
8-Bit Multistep ADC
10-Bit Multistep ADC
1O-Bit Multistep ADC w/Dual
Input Mutiplexer
1O-Bit Multistep ADC w/Quad
Input Multiplexer
12-Bit Plus Sign Self-Calibrating
with Sample/Hold Function
Dynamically-Tested ADC1241
12-Bit Plus Sign Self-Calibrating
with Sample/Hold Function
Dynamically-Tested ADC1251
Quad 8-Bit 0/ A Converter
with Read Back
Quad 10-Bit 0/ A Converter
with Read Back
12-Bit Data Acquisition System
12-Bit Data Acquisition System

883/SMD
883/SMD

5962-9319501
5962-9319502

5962-8759404

5962-8759405
5962-8759406
5962-8759401
5962-8759402
5962-8856102
5962-8856101

-

5962-9300201
5962-9300301
5962-9300401
TBD

DATA ACQUISITION

7-19

•

Military Analog Products Available from National Semlconduptor (CQntinued)
Package
Styles
, (Note 1)

Device

Description

Process
Flows
(Note 2)

SMD/JAN
(Note 3)

DATA ACQUISITION SUPPORT
Switched Capacitor Flit rs
LMF6.oCMJ5.o
LMF6.oCMJ1.o.o
LMF9.oCM
LMF1.o.oA
Sample and Hold
LF198
Motion Control
LMD1B2.o.o-2

I
I

J
J

6th Order Buttesworth Lowpass
6th Order Butterworth Lowpass

883/SMD
BB3/SMD

5962-9.0967
5962-9.0967

J
J,E

4th Order Elliptic Notch
Dual 2nd Order General 'Purpose

883/SMD
BB3/SMD

5962-9.o96B
5962-91533.01

H

0

I
I

Monolithic sample and Hold

Dual 3A, 55V H-Bridge

I
I

SMD/JA

BB3/JAN

I
I

,

5962-B76.oB
/125.01
5962-92325.01

Note 1: D: Side-Brazed DIP
Note 2: p~ Flows,
E: Leadless Ceramic Chip carrter
J.AN = JM3S510, Level B
G: Metal can (TO-S)
SMD = Standard Military Drawing
H: Metal can (TO-39, TO-5, TO-99, TO-lOO)
883 = MIL-8TD-S83 Rev C
J: C8ramic DIP
-MIL = Exceptions to 883C noted on
K: Metal can (T0-3)
" cartificate of Conformance
W: Flatpak
Note 3: Please call your local sales office to determine price and availability of space-Ieval products. .A1I "LM" prefix products in this guide are avallble with spacelevel processing.

7-2.0

f!J1National Semiconductor

Appendix E
Understanding Integrated Circuit
Package Power Capabilities
INTRODUCTION
The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanicall environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress
seen by the integrated circuit. Both of these stress issues
are specifically addressed on every interface circuit data
sheet, under the headings of Absolute Maximum Ratings
and Recommended Operating Conditions.
However, through application calls, it has become clear that
electrical stress conditions are generally more understood
than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but
clearly, a higher focus and understanding must be placed on
thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of
this application note.

Failure rate is the number of devices that will be expected to
fail in a given period of time (such as, per million hours). The
mean time between failure (MTBF) is the average time (in
hours) that will be expected to elapse after a unit has failed
before the next unit failure will occur. These two primary
"units of measure" for device reliability are inversely related:
MTBF=

Although the "bathtub" curve plots the overall failure rate
versus time, the useful failure rate can be defined as the
percentage of devices that fail per-unit-tinie during the flat
portion of the curve. This area, called the useful life, extends
between tl and t2 or from the end of infant mortality to the
onset of wearout. The useful life may be as short as several
years but usually extends for decades if adequate design
margins are used in the development of a system.

FACTORS AFFECTING DEVICE RELIABILITY

Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an
equally important role in triggering the onset of wearout.

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated
circuits conform to this curve. The key issues associated
with this curve are infant mortality, failure rate, and useful
life.

n

10
EARLY UFE

FAILURE RATES VB TIME AND TEMPERATURE
The relationship between integrated circuit failure rates and
time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the
Arrhenius Model assumes the degradation of a performance
parameter is linear with time and that MTBF is a function of
temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence.
This results in a formula for expressing the lifetime or MTBF
at a given temperature stress in relation to another MTBF at
a different temperature. The ratio of these two MTBFs is
called the acceleration factor F and is defined by the following equation:

12
USEFUL UFE

.1
Failure Rate

WEAHOUT TIME

_.!..)]

TLIH/9312-1

F = Xl = exp [~(.!..
X2
KT2
Tl
Where: Xl = Failure rate at junction temperature Tl

FIGURE 1. Failure Rate vs Time
Infant mortality, the high failure rate from time to to tl (early
life), is greatly influenced by system stress conditions other
than temperature, and can vary widely from one application
to another. The main stress factors that contribute to infant
mortality are electrical transients and noise, mechanical
maltreatment and excessive temperatures. Most of these
failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject
of infant mortality in integrated circuits and is beyond the
scope of this application note.

X2 = Failure rate at junction temperature T2
T = Junction temperature in degrees Kelvin
E = Thermal activation energy in electron volts
(ev)
K = Boltzman's constant

7-21

•

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a
plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30'
rise in junction temperature, say from 130'C to 160'C, results in a 10 to 1 increase in failure rate.

flows from the chip to the ultimate heat sink, the ambient
environment. There are two predominant paths. The first is
from the die to the die attach pad to the surrounding pack'age material to the package lead frame to the printed circuit
board and then to the ambient. The second path is from the
package directly to the ambient air.
Improving the thermal characteristics of any stage in the
flow chart of Figure 4 will result in an improvement in device
thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal
capability of an integrated circuit/package/environmental
condition is possible. The equation that expresses this relationship is:

~100111l

III

~ 100k ~-+--+--4~~~~-4

I 1~
Ci

TJ = TA + Po (9JAl
Where: TJ = Die junction temperature

lk t-+-1r--~'-::;ItIF-+-1

~

~

'"

:::l

;;;

100 t-+~~~~ir+-1

TA = Ambient temperature in the vicinity device
Po = Total power dissipation (in watts)

10 ~~j,;E'+--:JI:L-+'IF''f---4

If

9JA = Thermal resistance junction-to-ambient
9JA, the thermal resistance from device junction-to-ambient
temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes
special vehicles and methods to measure and monitor this
parameter. All circuit data sheets specify the thermal characteristics and capabilities of the packages available for a
given device under specific conditions-these package
power ratings directly relate to thermal reSistance junctionto-ambient or 9JA.
Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers
to improve thermal characteristics in the development of his
system using Ie components.

60 90 120 150 160 210
JUNCTION TEMPERATURE (OC)
TLlH/9312-2

FIGURE 2. Failure Rate as a Function
of Junction Temperature
DEVICE THERMAL CAPABILITIES
There are many factors which affect the thermal capability
of an' integrated circuit. To understand these we need to
understand the predominant paths for heat to transfer out of
the integrated circuit package. This is illustrated by Figures
3 and 4.
Rgure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.
Figure 4 is a flow chart showing how the heat generated at
the power source, the junctions of the integrated circuit

DEVICE LEAD

TL/H/9312-3

FIGURE 3. Integrated Circuit Soldered Into a Printed Circuit Board (Cross-Sectional View)

DIE
JUNCTION
(ENERGY
SOURCE)

--+

DIE

~

.DIE
ATIACH
PAD

--+

PACKAGE
MATERIAL

r-+

LEAD
FRAME

~

PRINTED
CIRCUIT
BOARD

AIRFILM
AROUND
PACKAGE

--.

AMBIENT

--+

AMBIENT

TL/H/9312-4

FIGURE 4. Thermal Flow (Predominant Paths)

7-22

r--------------------------------------------------------------------,~

DETERMINING DEVICE OPERATING
JUNCTION TEMPERATURE
From the above equation the method of determining actual
worst-case device operating junction temperature becomes
straightforward. Given a package thermal characteristic,
8JA, worst-case ambient operating temperature, T A(max),
the only unknown parameter is device power dissipation,
Po. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered,
the dissipation within the package due to the external load
must also be added. The power associated with the load in
a dynamic (switching) situation must also be considered.
For example, the power associated with an inductor or a
capacitor in a static versus dynamic (say, 1 MHz) condition
is significantly different.
The junction temperature of a device with a total package
power of 600 mW at 70°C in a package with a thermal resistance of 63°C/W is 10SoC.
TJ = 70°C

+ (63°C/W) x

(0.6W) = 10SoC

MAXIMUM ALLOWABLE JUNCTION TEMPERATURES

en

is
a:

150"C-25°C
63.C/W

=

I

lS-PlN

2.0 1II!"-:--+--t---+-_.Lt---+--1

1.2

I-"'~--'MAXIMUM PACbGE
~ i~ THERMAL CAPABILITY
OPERATlNG~ LINE
AREA

'"

~

~

1'O-600mw

0.4

~

-

SLOPE= _~_
BJA

I'

75 100 125 150
TEMPERATURE (OC)

CI.

!'!'

c:
:::::II
CI.
CD

iI»
:::::II

CI.

S'
ea

i

~

a..

g'
;::;:

I»

O~~~--~~·I~~'~~~
50

:::::II

"V

-

r--

OPERATING
'"POINT ITA=70.C,_-t~-7"'Irl--;

25

-g

o

I--+--t--+-MO~OED PACKAGE

~ 0.8

175
TUH/9312-5

FIGURE 5. Package Power Capability
va Temperature

n

=~

ea
CD

..
CD

o

ig;

;::;:

i'

The thermal capabilities of all integrated circuits are expressed as a power capability at 25·C still air environment
with a given derating factor. This simply states, for every
degree of ambient temperature rise above 25·C, reduce the
package power capability stated by the derating factor
which is expressed in mWrC. For our example-a 8JA of
63°C/W relates to a derating factor of 15.9 mWrC.

Let us use this new information and our thermal equation to
construct a graph which displays the safe thermal (power)
operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are
easily determined. For a 16-pin molded package, the maximum allowable temperature is 150"C; at this point no power
dissipation is allowable. The power capability at 25°C is
1.9SW as given by the following calculation:

±

2.4

;,;,;

National Semiconductor has adopted these industry-wide
standards. For devices fabricated in a molded package, the
maximum allowable junction temperature is 150"C. For
these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is
175·C. The numbers are different because of the differences in package types. The thermal strain associated with the
die package interface in a cavity package is much less than
that exhibited in a molded package where the integrated
circuit chip is in direct contact with the package material.

TJ(max)-TA
8JA

1
Derating Factor = - - 8
JA
As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16-pin molded DIP. As long as the
intersection of a vertical line defining the maximum ambient
temperature (70·C in our previous example) and maximum
device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below 150°C--the limit for a molded package. If the intersection of ambient temperature and package
power fails on this line, the maximum junction temperature
will be 150"C. Any intersection that occurs above this line
will result in a junction temperature in excess of 150·C and
is not an appropriate operating condition.

;C'

~ 1.6

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer.
Many companies have established their own standards
based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the
device package type. These have been well accepted as
numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.

=

'0

!

The next obvious question is, "how safe is 10S·C?"

Po@25°C

The slope of the straight line between these two points is
minus the inversion of the thermal resistance. This is referred to as the derating factor.

FACTORS INFLUENCING PACKAGE
THERMAL RESISTANCE
As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in
overall thermal resistance junction-to-ambient. This section
discusses those components of thermal resistance that can
be influenced by the manufacturer of the integrated circuit. It
also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated
circuit. Understanding these issues will go a long way in
understanding chip power capabilities and what can be
done to insure the best possible operating conditions and,
thus, 'best overall reliability.

W
1.9S

7-23

•

o

CD

r---------------------------------------------------------------------------------~

~

:a

B
...
~

Ole Size
Figure 6 shows graph of our 16-pin DIP thermal resistance
as a function of integrated circuit die size. Clearly, as the
chip size increases the thermal resistance decreases-this
relates directly to having a larger area with which to dissipate a given power.

w

90

IE

"'

1

~

TUH/9312-8

AirFlow
1

2

3

4 5 6 78910

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air
flow in the vicinity of the package. The graph of Figure 9
illustrates the impact this has on thermal resistance. This
graph plots the relative reduction in thermal resistance normaized to the still air condition for our 16-pin molded DIP.
The thermal ratings on National Semiconductor's interface
circuits data sheets relate to the still air' environment.

DIE SIZE IkMIL2)
TUH/9312-6

FIGURE 6. Thermal Resistance va Die Size
Lead Frame Material
Figure 7 shows the influence of lead frame material (both
die attach and device pins) on thermal resistance. This
graph compares our same ,16-pin DIP with a copper lead
frame, a Kovar lead frame, and finally an Alloy 42 type lead
frame-these are lead frame materials commonly used in
the industry. Obviously the thermal conductivity of the lead
frame material has a significant impact in package power
capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.
w

150

!2ii5

130

"'ei
Iz;.)

110

:a-

iii C>.
zi:;

7!!§

...

~::!.

3 4 5 6 7 8910 ,
DIE SIZE (kMIL2)

FIGURE 8. Thermal Resistance vs
Board or Socket Mount

50

Ii

70

60

. . . r-...

60

170

..

:!$::!'

90

f

,100

~
;!i
;!!,
.~ ~ "iii • ... 1-;-1
"SOCKET
.i'o,
iii
1'' ' ' '
...

100

CD

110

.. ii

a:

~ 1.1

il :

i

16-P1N MOLDED DIP
~ BDAHD MOUNT-STILL AIR

----

AL~

"-

KOVAR

50
1

0.8

~

0.7

•
,,~

1'""

I I

III~~N

1II0LDEDffl
DIEflZf=
IkMILI

~-;ri
~

0.6

III
o

500
l_
AIR FLOW (UNEAR FEETIMINUTE)
TUH/9312-9

FIGURE 9. Thermal Resistance vs AIr Flow

"-

70

0.9

~

~ 0.5

--

90

i

~

....

1.0

Other Factors
A number of other factors influence thermal resistance. The
most important of these is using thermal epoxy In mounting
ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.
Some confusion exists between the difference in thermal
resistance junction-to-ambient (8JAl and thermal resistance
junction-to-case (8JC)' The best measure of actual junction
temperature is the junction-ta-ambient number since nearly
all systems operate in an open air environment. The only
situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath
and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in
this application note.

2
3 4 5 6 78910
DlESIZE IkMIL2)
TUH/9312-7

FIGURE 7_ Thermal Resistance vs
Lead Frame Material
Board vs Socket Mount
One of the major paths of dissipating energy generated by
the integrated circuit is through the device leads. As a result
of this, the graph of Figu~ 8 comes as no surprise. This
compares the thermal resistance of our 16-pin package soldered into a print~d circuit board (board mount) compared
to the same package placed in a socket (socket mount)~
Adding a socket in the path between the PC board and the
device adds another stage in the thermal flow path, thus
increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are
specified assuming board mount conditions. If the devices
are placed in a socket the thermal capabilities should be
reduced by approximately 5% to 10%.

NATIONAL SEMICONDUCTOR
PACKAGE CAPABILITIES
Figures 10 and 11 show compOSite plots of the thermal
characteristics of the most common package types in the
National Semiconductor Linear Circuits product family. Figure 10 is a compOSite of the copper lead frame molded

7-24

package. Figure 11 is a composite of the ceramic (cavity)
DIP using poly die attach. These graphs represent board
mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the
number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart,
this trend should, by now, be obvious.

The package power ratings are specified as a maximum
power at 25'C ambient with an associated derating factor
for ambient temperatures above 25'C. It is easy to determine the power capability at an elevated temperature. The
power specified at 25'C should be reduced by the derating
factor for every degree of ambient temperature above 25·C.
For example, in a given product data sheet the following will
be found:

RATINGS ON INTEGRATED CIRCUITS DATA SHEETS
In conclusion, all National Semiconductor Linear Products
define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section
of the data sheet. The thermal information shown in this
application note represents average data for characterization of the indicated package. Actual thermal resistance can
vary from ± 10% to ± 15% due to fluctuations in assembly
quality, die shape, die thickness, distribution of heat sources
on the die, etc. The numbers quoted in the linear data
sheets reflect a 15% safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee
that the maximum junction temperature will not exceed the
package maximum.

Maximum Power Dissipation" at 25'C
1509 mW
Cavity Package
Molded Package 1476 mW
, Derate cavity package at 10 mW I'C above 2S'C; derate molded package
at 11.8 mWI'C above 2S'C.

If the molded package is used at a maximum ambient temperature of 70'C, the package power capability is 945 mW.
Po@ 70'C= 1476 mW-(11.8 mWI'C)X (70'C-25'C)
= 945mW

Cavity (J Package) DIp·
Poly Die Attach Board
Mount-Stlll Air

Molded (N Package) DIp·
Copper Leadfra'rl~TP
Die Attach .Board MountSt"IAlr

20 '--_--'_..............L...L..J'-'-"u
1
3 4 5 578910

DIE SIZE (kMIL')
'Packages from B- to 20-pin 0.3 mil width

TL/H/9312-11

22-pin 0.4 mil width

10 '--_-'---,-J..-.L...JL...J....LJ...u
1
2
3 4 5 6 7 8910
DIE SIZE (kMIL')
'Packages from 8- to 20·pin 0.3 mil width

24· to 4B-pin 0.6 mil width

FIGURE 11. Thermal Resistance vs Ole Size
vs Package Type (Cavity Package)

TL/H/9312-10

22-pin 0.4 mil width

TO·263 (S Package)
Board Mount, Still Air

24- to 40",in 0.6 mil width

FIGURE 10. Thermal Resistance vs Ole Size
vs Package Type (Molded Package)

80

'i'

180

'i'

"'<.>
~

.,-

120

<

SO-16-N

1"1.

160
140

~:'·4:~

""I.

60

(NARROW
BODY)

...'"

~

:"""" ~

....

\
\

50

...«'"

40

(f)

...
iii
2

........ =--

1\

<.>

...'"

~

100

...z.,<

~~:!::: (WIDE
SO-20-W BODY)

50- 8-N

70

~

Surface Mount (M, MW Packages),
Board Mount, Stili Air

.........

"'<.>

...

\.

""

30

~

:J:

SO-1~-N

20

SO-16-N

a

1

2

3

COPPER FOIL AREA (SQ. IN.)

SO-14-W
~ SO-16-W
SO-20-W

80

TL/H/9312-13

60

'For products wilh high current ratings (>3A), thermal resistance may be
lower. Consult product datasheet for more infonmetion.

lk

10k

lOOk

FIGURE 13. Thermal Resistance (typ.O) for 3·, 5-,
and 7·L TD-263 packages mounted on 1 oz.
(0.036mm) PC board foil

TL/H/9312-12

FIGURE 12. Thermal Resistance for "SO" Packages
(Board Mount)

7-25

•

~ ,---------------------------------------------------------------------~

.!S

i

~

tflN ~

,t

io n a I S em i con d.u c tor

APPENDIX F
How to Get the Right Information From a Data Sheet
Not All Data Sheets Are Created Alike, and False Assumptions Could Cost an Engineer Time and MOfl8Y

By Robert A. P!!aae
Every year, for the last 20 years, manufacturers have been
trying to explain, with varying SLrccess, why they do not measure the Zin Per se, even though they do guarantee it.

When a.new product arrives in the marketplace, it hopefully
will have a good, clear data sheet with it.
.,
The data sheet can show the prospective user how to apply
the device, what performance specifications are guaranteed
and various typical applications and characteristics. If the
data-sheet writer has done a good job, the user can decide
if the product will be valuable to him, exactly how well it will
be of use to him and what precautions to take to avoid
problems.

In other cases, the manufacturer may specify a test that can
be made only on the die as it is probed on the wafer, but
cannot be tested after the die is packaged because that
signal is riot accessible any longer. To avoid frustrating and
confusing the customer, some manufacturers are establishing two classes of guaranteed specifications:
• The teste~ limit represents a test that cannot be doubted, one that is actually performed directly on 100 percent
of the devices, 100 pereent of the time.

SPECIFICATIONS
The most important area of a data sheet specifies the characteristics that are guaranteed-and the test conditions that
apply when the tests are done. Ideally, all specifications that
the users will need will be spelled out clearly. If the product
is similar to existing products, one can expect the data
sheet to have a format similar' to other devices.

• The deSign limit coverS'other tests that may be indirect,
implicit or simply guaranteed by the inherent design of
the device, and is unlikely to cause a failure rate (on that
test), even as high as one part per thousand.
Why was this distinction made? Not just because customers
wanted to know which specifications were guaranteed by
testing, but because the quality-assurance group insisted
that it was essential to separate the tested guarantees from
the design limits so that the AQL (assurance-quality level)
could be improved from 0.1 percent to down below
100 ppm.

But, if there are Significant changes and improvements that
nobody has seen before, then the writer must clarify what is
meant by each specification. Definitions of new phrases or
characteristics may even have to be added as an appendix.
For example, when fast-settling operational amplifiers were
first introduced, some manufacturers defined settling time
as the time after slewing before the output finally enters and
stays within the error-band; but other manufacturers included the slewing time in their definition. Because both groups
made their definitions clear, the user was unlikely to be confused or misled.

Some data sheets guarantee characteristics that are quite
expensive and difficult to test (even harder than noise) such
as long-term drift (20 ppm or 50 ppm over 1,000 hours).
The data sheet may not· tell the reader if it is measured,
tested or estimated. One manufacturer may perform a 100percent test, while another states, "Guaranteed by sample
testing." This is not a very comforting assurance that a part
is good, especially in a critical case where only a long-term
test can prove if the device did meet the manufacturer's
specification. If in doubt, question the manufacturer.

However, the reader qught to be on the. alert. In a few cases, the data-sheet writer is playing a specsmanship game,
and is trying to show an inferior (to some users) aspect of a
product in a light that makes it look superior (which it may
be, to a couple of users). '
GUARANTEES

TYPICALS

When a data sheet specifies a guaranteed minimum value,
what does it mean? An assumption might be made that the
manufacturer has actually tested that specification and has
great confidence that no part could fail that test and still be
shipped. Yet that is not always the case..

Next to a guaranteed specification, there is likely to be another in a column labeled "typical".
It might mean that the manufacturer once actually saw one
part as good as that. It could Indicate that half the parts are
better than that speCification, and half will be worse. But it is
equally likely to mean that, five years, ago, half the parts
were better and half worse. It could easily signify that a few
parts might be slightly better, and a few parts a lot worse;
after all, if the noise of an amplifier'ls extremely close to the
theoretical limit, one cannot expect to find anything much
better than that, but there will always be a few noisy ones.

For instance, in the early days of op amps (20 years ago),
the differential-input impedance might have been guaranteed at 1 MO-but the manufacturer obviously did not measure the impedance. When a customer insisted, "I have to
know how you measure this impedance," it had to be explained that the impedance was not measured, but that the
base current was. The correlation between Ib and Zin per·
mitted the substitution of this simple dc test for a rather
messy, noisy, hard.to-interpr~t .test.

If the specification of interest happens to be the bias current
(Ib) of an op amp, a user can expect broad variations. For
example, if the specification is 200 nA maximum, there
might be many parts where Ib is 40 nA on one batctt (where
the beta is high), and a month later, many parts where the Ib
is 140 nA when the beta is low.

Reprinted by permission from Electronic Engineering TImes.

7-26

Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required,
please contact the' National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Output Voltage
Output Current
Storage Temperature,

Lead Temp. (Soldering, 4 seconds)
TO-46 Package

+300"C

TO-92 Package

+35Vto -O.2V
+6Vto -1.0V
10mA

TO-46 Package
TO-92 Package

*
+ 260"C

Specified Operating Temp. Range (Note 2)

- 76'F to + 356'F
-76"Fto +300'F

LM34, LM34A

TMINtoTMAX
-50'Fto +300'F

LM34C, LM34CA
LM34D

-40'Fto +230'F
+32'Fto +212"F

DC Electrical Characteristics (Note 1, Note 6)
LM34A
Parameter

Accuracy (Note 7)

Conditions

'Typical

Tested
Limit
(Note 4)

+77"F
O'F
TMAX
TMIN

±O.4
±0.6
±O.B
±O.8

Nonlinearity (Note 8)

TMIN ,,; TA ,,; TMAX

±0.35

Sensor Gain
(Average Slope)

TMIN ,,; TA"; TMAX

+10.0

+9.9,
+10.1

Load Regulation
(Note 3)

TA = +77'F
TMIN ,,; TA"; TMAX
0,,; IL"; 1 mA

±0.4
±O.&

±1.0

Line Regulation (Note 3)

TA = +77"F
5V,,; Vs"; 30V

±0.01
±0.02

±0.O5

75
131
76
132

90

+0.5
+1.0

2.0

Quiescent Current
(Note 9)

Change of Quiescent
Current (Note 3)

TA
TA
TA
TA

Vs
Vs
Vs
Vs

=
=
=
=

=
=
=
=

+5V, +77"F
+5V
+30V, +77"F
+30V

4V ,,; Vs ,,; 30V, + 77"F
5V,,; Vs"; 30V

Temperature Coefficient
of Quiescent Current

LM34CA
Design
Limit
(Note 5)

±1.0

Typical
±0.4
±0.6
±0.8
±O.B

±2.0
±2.0
±0.7

Tested
Limit
(Note 4)
±1.0

±2.0
±2.0
±3.0

'F

+10.0

+9.9,
+10.1

mVl'F, min
mVI"F,max

±3.0

mV/mA
mV/mA

±O.1

mVIV
mVIV

±1.0

±O.O1
±0.02

±0.O5

±O.1

90

183

75
118
76
117

2.0

3.0

0.5
1.0

+0.30

+0.5
+5.0

Minimum Temperature
for Rated Accuracy

In circuit of Figure 1,
IL = 0

+3.0

Long-Term Stability

Tj = T MAX for 1000 hours

±0.16

'F
'F
'F
'F

±0.8

±0.4
±O.&

92

Units
(Max)

±0.30

±3.0

180

Design
Limit
(Note 5)

p.A
139
142

p.A
p.A
",A

3.0

",A
",A

+0.30

+0.5

",AI'F

+3.0

+5.0

'F

±O.16

92

'F

Note 1: Unless otherwise noted, these specifications spply: -50"F ,;; Tj ,;; + 300"F for the LM34 and LM34A; -40"F ,;; Tj ,;; +23O"F for the LM34C and
LM34CA; and +32"F,;; Tj ,;; + 212"Fforthe LM34D. Vs = +5 Ydcand ILOAD = 50 p.A in the circu~of Figure2; +6 Ydcfor LM34 and LM34A for 230"F ,;; Tj';;
300"F. These specifications also apply from + 5'F to TMAX in the circuit of Figure 1.
Nota 2: Thermal resistsnce of the T0-46 package Is 292"F/W junclion to ambient and 43'F/W junction to case. Thermal resistance of the TO·92 package is
324'FIW junction to ambient.
Note 3: Regulation is measured at constsnt junction temparature using pulse testing with a low duty cycle. Changes in output due to heating effeela can be
computed by muttiplying the internal dissipation by the thermal resistance.
Nota 4: Tested limits are guaranteed and 100% tested in production.
Note 5: Design limits are guaranteed (but not 100% production tested) over the indicated temparature and supply voilage ranges. These limits are not used to
calculate outgoing quality levels.
Nota 8: Specification in BOLDFACE TYPE spply over the full rated temperature range.
Nota 7: Accuracy is defined es the error between the output voltege and 10 mY!'F times the device's case temperature at specified conditions of voltage, current,
and temperature (expressed in 'F).
Nota 8: Nonline~ is defined as the deviation.of the output·vollage-versus·temperature curve from the best·fit straight line over the device's rated temperature
range.

Note 9: Quiescent current is defined in the circu~ of FtgUte
Note 10: Contacl factory for availability of LM34CAZ,

1.

*'* Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when
operating the device beyond its rated operating conditions (see Note 1).
7-27

I

~

Another example is the application hint for the LF156 family:

A Point-By-Point Look

"Exceeding the negative common-mode limit on eHher input
will cause a reverllal of the phase to output and force, the
amplifier ou!put to, the corresponding high or low state: Ex,
ceeding the negative common-mode 'limit on both inputs will
force the amplifier output to a high state. In neittier case
does a latch occur, since raising the input back within 'the
common-mode range again puts the input stage and, thus
the amplifier, in a normal operating mode,."

Let's look a little more closely at the data sheet of the National Semiconductor LM34, which happens to be a temperature sensor.
Note 1 lists the nominal test conditions and test circuits in
which all the characteristics are defined. Some additional
test c6hdHions are listed in the column "Conditions", but
Note 1 helps minimize the clutter.
Note 2 gives the thermal impedance, (which may also be
shown in a chart or table).

That's the kind of information a manufacturer should really
give to a data-sheet reader because no one could ever
guess H.

Note 3 warns that an output impedance test, if done with a
long pulse, could cause significant self-heating and thus,
error.

Sometimes, a writer slips a quirk into a characteristic curve~
but it's Wiser to draw attention to it with a line of text. This is
because it's better to make the user sad before one gets
started, rather than when one goes into production. Conversely, if a user is going to spend more than 10 minutes
using a new product, one ought to spend a full five minutes
reading the entire data sheet.

Note 6 is intended to show which specs apply at all rated
temperatures.
Note 7 is the definition of the "Accuracy" spec, and Note 8
the definition f,or non-linearity. Note 9 states in what test
circuit the quiescent current is defined. Note 10 indicates
that one model of the family may not be available at the time
of printing (but happens to be available now), and Note 11 is
the definition of Absolute Max Ratings.
•

FINE PRINT
What other fine print can be found on a data sheet? Sometimes the front page may be marked "advance" or "preliminary." Then on the back page, the fine print may say something such as:

Note-the "4 seconds" soldering time is a new standard
for plastic packages.

•• Note-the wording of Note 11 has been revised-this is
the best wording we can devise, and we will use it on all
future datasheets.

"This data sheet contains preliminary limits and design
specifications. Supplemental information will be published
at a later date. The manufacturer reserves the right to make
changes in the products contained in this document in order
to improve design or performance and to supply the best
possible products. We also assume no responsibility for the
use of any circuits described herein, convey no Iicerise under any patent or other right and make no representation
that the circuits are free from patent infringement."

APPLICATIONS
Another important part of the data sheet is the applications
section. It indicates the novel and conventional ways to use
a device. Sometimes these applications are just little ideas
to tweak a reader's mind. After looking at a couple of applications, one can invent other ideas that are useful. Some
applications may be of no real interest or use.

In fact, after a device is released to the marketplace' in a
preliminary status, the engineers love to make small improvements and upgrades in speCifications and characteristics, and hate to degrade a specification from its first published value-but occasionally that is necessary.

In other cases, an application circuit may be the complete
definition of the system's performance; it can be the test
circuH in which, the specification limHs are defined, tested
and guaranteed. But, in all other instances, the performance
of a typical application circuit is not guaranteed, it is only
typical. In many circumstances, the performance may depend on external components and their precision and
matching. Some manufacturers have added a' phrase to
their data sheets:

Another Hem in the fine print is the manufacturer's telephone number. Usually it is best to refer questions to, the
local sales representative or field-applications engineer, because they may know the answer or they may be best able
to put a questioner in touch with the right person at the
factory.

"Applications for any circuits contained in this document are
for illustration purposes only and the manufacturer makes
no representation or warranty that such applications will be
suHable for the use indicated without further testing or modification."

OccaSionally, the factory's applications engineers have all
the information. Other times, they have to bring in product
engineers, test engineers or marketing people. And sometimes the answer can't be generated quickly-data have to
be gathered, opinions solidified or policies formulated before the manufacturer can answer the question. Still, the
telephone number is the key to getting the factory to help.

In the future, manufacturers may find it necessary to add
disclaimers of this kind to avoid disappointing users with
circuits that work well, much of the time, but cannot be easily guaranteed.

ORI~INS OF DATA SHEETS
Of course, historically, most data sheets for a class of prod-

The applications section is also a good place to look for
advice on quirks-potential drawbacks or little details that
may not be so little when a user wants to knoVl( if a device
will actually deliver the expected performance.

ucts have been closely modeled on the data sheet of the
forerunner of that class. The first data sheet was copied to
make new versions.

For example, if a buffer can drive heavy loads and can handle fast signals cleanly (at no load), the maker isn't dOing
anybody any favors if there is no mention that the distortion
goes sky-high if the rated load is applied.

That's the way it happened with the UA709 (the first monolithic op amp) and all its copies, as well as many other similar families of circuits.
"
'

7-28

.-----------------------------------------------------------~~

Even today, an attempt is made to build on the good things
learned from the past and add a few improvements when
necessary. But, it's important to have real improvements,
not just change for the sake of change.
So, while it's not easy to get the format and everything in it
exactly right to please everybody, new data sheets are con·
tinually surfacing with new features, applications ideas,
specifications and aids for the user. And, if the users com·
plain loudly enough about misleading or inadequate data
sheets, they can help lead the way to change data sheets.
That's how many of today's improvements came aboutthrough customer demand.
Who writes data sheets? In some cases, a marketing per·
son does the actual writing and engineers do the checking.
In other companies, the engineer writes, while marketing
people and other engineers check. Sometimes, a commit·
tee seems to be doing the writing. None of these ways is
necessarily wrong.
For example, one approach might be: The original designer
of the product writes the data sheet (inside his head) at the
same time the product is designed. The concept here is, if
one can't find the proper ingredients for a data sheet-good
applications, convenient features for the user and nicely
tested specifications as the part is being designed-then
maybe it's not a very good product until all those ingredients
are completed. Thus, the collection of raw materials for a
good data sheet is an integral part of the design of a prod·
uct. The actual assembly of these materials is an art which
can take place later.

WHEN TO WRITE DATA SHEETS

A new product becomes available. The applications engi.
neers start evaluating their application circuits and the test
engineers examine their production test equipment.
But how can the users evaluate the new device? They have
to have a data sheet-which is still in the process of being
written. Every week, as the data sheet writer tries to polish
and refine the inCipient data sheet, other engineers are reo
porting, "These spec limits and conditions have to be reo
vised," and, "Those application circuits don't work like we
thought they would; we'll have one running in a couple of
days." The marketing people insist that the data sheet must
be finalized and frozen right away so that they can start
printing copies to go out with evaluation samples.
These trying conditions may explain why data sheets always
seem to have been thrown together under paniC conditions
and why they have so many rough spots. Users should be
aware of the conflicting requirements: Getting a data sheet
"as completely as possible" and "as accurately as possi·
ble" is compromised if one wants to get the data sheet "as
quickly as possible."
The reader should always question the manufacturer. What
are the alternatives? By not asking the right question, a mis.
understanding could arise; getting angry with the manufac.
turer is not to anyone's advantage.

'0

g

~
'TI

Robert Pease has been staff scientist at National Semicon·
ductor Corp., Santa Clara, Calif., for eleven years. He has
designed numerous op amps, data converters, voltage reg.
ulators and analog-circuit functions.

fI
7-29

o

r---------------------------------------------------------------------------------~

C

"I
C
~

£a.

tflNationalsemiconductor
8 Lead Ceramic Sidebrazed Dual-in-Line Package
NS Package Number D08C
All dimensions are in inches (millimeters)

~ (1~~B)~
MAX

8

7

•

5

f

0.298
(7.569)
. MAX

I~=-==-=-.::::.,.....'I-'~
l'2
3
4
I--- 0.485 : _

PIN NO.l ......
IDENT

(1~~~9)

0.054
(1.372)

r::===:::t:t:l,TYP

II

0.020-0.0BO
(0.508-1.524)

j

0.008-0.015
(0.203-0.381)

I
0.300
1--(7.620iREF

0.100 >0.010
(2.540 '0.254)

-I

~

I-

0.015-0.023
(0.381-0.584)

0.125
(3.175)
MIN
DOSCiREVCj

14 Lead Ceramic Sidebrazed Dual-in-Line Package
NS Package Number D14D
All dimensions are in inches (millimeters)

C~~1098

0.710:-:]
(18.03)

~.".-]~ ~ ~ ~ II~~
1234567

0.050±0.005
(1.270±0.127)

0.180
(4.572)
MAA

-t-----:!=::r.;;;;::i:==::;;;;;;::;;;:::;;::;;:i-bh
0.020-0.060
.I
(0.508 -1.524)

... ..", +~~
-

(0.203-0.381)

I.

~I

0.290 - 0.320
(7.366-8.128)
0.098
(2.489)

MAX

lL
=.r-

7-30

t

~~

(3.810)
MIN

t

~.J1 JL=~
O.IOU±O.DlO
(2.540±0.254)
TVP

D14D (REV G)

-a

::r

14 Lead Hermetic Dual-in-Line Package
NS Package Number D14E

':i
All dimensions are in inches (millimeters)

~

c

3'

CD
::l

!!.

o

::l
UI

PIN NO.1
IDENT - - ; . . .

(7.569)
MAX

~~~~~~~~~
0.485
(12.319)
MAX

~
~
T
I

0.300

---l
I

0.180
(4.572)
MAX

~ 0.020-0.060

0.Ooa-O.015

0" . . -.., '

(0.203-0.3811
0.015_0.023
II
0.125
(0.381-0.5841 -j j-- (3.1751

I

~

I-- (7 .620) --l
REF

0.100 ±O.Olo
(2.540 ±0.2541

MIN
014E(REV EI

16 Lead Ceramic Sidebrazed Dual-in-Line Package
NS Package Number D16C
All dimensions are in inches (millimeters)

PIN ND.l
IDENT

fIt .0.Ooa-0.015
(0.203-0.381)

1....1
0.290-0.3Z0
(7.366-8.128)

(0'1~7)
MIN

r-

0485
0.050 ±0.005 TVP 0.180
- ' - ---j(1.270±0.127l
(4.572)
(12.3191
MAX
MAX

0.020-0.060

0.005

0.080
(Z.032)
MAX TVP

L

0.015-0.0Z3
(0.381-0.584)

.JL

0.100 ±0.010
(Z.540 ±0.254)
(0.100((2.540) ISC
TVP REL TO LEADS
1 AND 16)

7-31

0.125-O.Z00
(3.175-5.080)

0.150
(3.810)
MIN

016C(REVHI

,.

o
C
o

'!CD

r-------------------------------------------------------------------------------------~

16 Lead Hybrid Metal Can Oual-in-Line Package
NS Package Number 0160

E

All dimensions are in inches

is

1j

~
a..

0.080 RAD TYP

1

2

3

4

5

6

7

8~

0

0

0

0

0

0

0

0

---'i--

"

0

0

0

0

0

0

0

0

16

15

14

13

12

11

10

9

.,6. (.EV CJ

../

20 Lead Ceramic Leadless Chip Carrier, Type C
NS Package Number E20A
All dimensions are in inches (millimeters)

.... 0.350+0.008
1
(B.890±0.203) - I

j

_I

0.015

1 - 0.063~0.075
I'.D-'. •'

~

'If

(D.381).../
MIN TYP

I
f

'lMo~"M"""':r-.!

1--

LDETAILA
Top View

Side View

45' x 0.015+0.010
(0.381±0.254)

0.007-0.011
(0.178-0.279)
R TYP

t

0.045-0.055
(1.143 1.397)
TYP

45' x 0.040±0.010
(1.016±0.254)

3 PLes
BoIIomVlew

0.003

(0.076)~

0.015
(0 381)

----.r--MAX TYP

MINTYP~-=

'''If
0.022"

'T

MAX TYP

(0.152)
MIN TYP

a_

Detail A
E20AtREVDI

7-32

,-----------------------------------------------------------------------------,
48 Lead Ceramic Leadless Chip Carrier, Type C
NS Package Number E48A
All dimensions are in inches

~

=1.
~
o

3'
CD
i

b ."o::g.~
0.515
TYP.

0'
~

fn
0.003

~~~:~O.OI5

MAX. TYP.

00'. '

t'l

~O.022 MAX TYP.

.'N. TYP.

DETAIL: "A"

0.012 R.
TYP. (,xl

UBA(REV.C)

BOTTOM VIEW

TOP VIEW

12 Lead (0.400" Square Pattern) TO-8 Metal Can Package
NS Package Number G 12B
All dimensions are in inches (millimeters)

(1:::-~4~J-

0.148 -0.1'1

-U97)
~

0.030
(0.7I2J

DIA

-

r- - -

~t-l0.l13li
(0.112)

0.lIII0

(
12.111)

T

MAX
UIICOIITIItILLED
LEAIIDIA

D.018-1.811
U8Ii-1.4I3J
DIA TYP

I" I-j

G1211(REYC)

7-33

•

o
C

o
'iii
c
II»

r---------------------------------------------------------------------------------,
3 Lead (0.200" Diameter P.C.) TO..39 MetaJ Can Package, High Profile
NS Package Number H03S

E

All dimensions are in inches (millimeters)

Q

!
~
a.

0.240-0.260
(6.096-6.604)

~I-I

(:::=:::)
DlA

1

0.315-0. 335
(8.001oIA8•109)

O'045Q

(1.143)

MU

•. _ L

T

- ~ ~ ~

t:.:.SYm~

~.635) LEADD~

-l '--(0.40&-0.483)
0.016-0.019 DIA TYP

6 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package
NS Package Number H06C
All dimensions are in inches (millimeters)
0.350-0.370
(8.890-9.388)
OIA

0.315-0.335
(8.001-8.589)
DIA
0.015-0.040
(0.381-1.016)

r

=~====~~~~~~~=m~~Mf~~~E
PLANE
-,SEATl~

0.025
(0.835)

~~

MU
UNCONTROLlED
LEAD DIA

0.018-0.019
(0.40&-0.483)
DIA TYP

0.115 -0.145
(2.921-3.&83)
O~

HOeCjREVD!

7-34

,-----------------------------------------------------------------------------,

a Lead (0.230"

Fl

Diameter P.C.) TO-5 Metal Can Package
NS Package Number HOaA
All dimensions are in inches (millimeters)

0.350-0.370
(8.890-9.3981
OIA·
0.165 -0.185

~

c

3'
CD
se.
o

0.315-0.335
(8.001 -8.5091

::;,
(II

0:'015_0.040

.L.r- (0.381-1.0161

~

REFERENCE PlANE

-!
::;,

1~

(4.191-4.6991

~

+----.--

• t (1.0161
0.040
(I~PI MAX nn n nn
0.500

,

UU U

0.225-0.235
(5.715-5.9891
DlA PC

-iT
--'-1...

SEATING PlANE

_

~~~~CONTROLLED

L

U~

-+-__. - j

LEAO DIA

0.016-0.019
(0.406 0.4831
D1A TYP

0.115 -0.145
(2.921-3.6831
DIA

45° TYP

-.

tGlA(REVC)

a Lead (0.230"

Diameter P.C.) Metal Can Package
NS Package Number HOaS
All dimensions are in inches (millimeters)
0.350 - 0.370
(8.890 - 9.3981
OIA

I

0.180-0.210
(4.5n-5.3341

0.30&-0.335

J (7.74:~!5091

-L

~
l.

L

0.&00
--

(l~r

0.035
(0.8891

MAX

~~ ~ ~~
--II-- 0.015 - 0.019 DIA TVP

0.225 _ 0.235

(D.381 - OA83)

(5.715 - 5.969)
P.C.

HOBB(REVAI

7-35

,.

o
C

o

CD

c
CD
E

r---------------------------------------------------------------------------------,
8 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package
NS Package Number H08C
All dimensions are in inches (millimeters)

is

0.350-0.370
(8.8911-9.398)
OIA

1j

I

0.315-0.335
(8.001-8.509) DlA

i'ii.6351 LEAD OIA
--±.l

.I.
...L-

0.165-0.115
(4.191-4.6991
RfFERENCE PLANE

- -

0.500

-

ft

(:::1

(I~L=-~~ ~ ~~

SEATING PLANE

0.015-0.040
(0.381-1.0161

..l k

0.016 -0.019 OIA TYP
(0.406-0.493)

+ 0.195-0.205

j.-___

..!:!!!!. TYP

OIA
(4.953-5.2011 P.C.

(2.5401

H08C(FlEYE)

8 Lead (0.230" Diameter P.C.) Metal Can Package
NS Package Number H08D
All dimensions are in inches (millimeters)
0.350-0.370
(8.99 - 9.401
OIA
0.165 -0.185
(4.191-4.6991

I--------++_

+----t+----.....

0.315-0.335
(8.001-8.5091
DIA

L

R~R~EPLANE~~=~~~~~~~

f
~. . If_~)___~_:x_16_1~~ ~ ~k~
0.040

0.225-0.235
(5.715-5.9691
DIA PC

0.016-0.019

(0.406-0.4831
OIA TVP

0.025
(0.6351
MAX UNCONTROlLED
LEAD OIA

+-----1

.... !REVAI

7-36

."

10 Lead (0.230" Diameter P.C.) TO-5 Metal Can Package
NS Package Number H 1OC
All dimensions are in inches (millimeters)

r 1
DIA
f(:.::)
+--~-.---- ~

=
=

U)

0'

0.315-0.335
(1.001-1.509)

U)

::ONTROLLEO
LEAD DIA

•

__ _ _

T

0.500 0.035
(12.70) (D.8B1)

,

MIN

MAX

m ill
~ ~

0.016-0.019 OIA
(0.406-0.483)

'

o

3"
CD

0.350-0.370
(8.890 -9.391)
OIA

0.165-0.185
(4.111-4.699)

I

REfERENCE PLANE
SEATING PLANE

0.015-0.040
(0.381-1.016)

TYPJ I..-

0.029-0.045
(0.737 1.143)

H10C (REV E)

10 Lead (0.230" Diameter P.C.) Metal Can Package
NS Package Number H10F
All dimensions are in inches (millimeters)

0.155-0.185
(3.937-4.899)

~

0.350-0.370

(8.190-9.398)

0.315-0.335
t(8.001-8.5G9)1

(0.8B1)
0.035Q

MAX

SEATING
JPLANE

L

D.sao

(1~t:)

ill ~ ~ rn

0.015-0.019 0 A
(0.38HIA83) I TYP

--II-$/'

~ 0.028-11.034
36'
TYP

(0.861-11.884)

0.029-11.045
(0.137-1.143)

P.C.
Hl0FIREVA)

7·37

•

10 Lead (0.230" Diameter,P.C.) Metal Can Package
NS Package Number H10G
- - (B.OO1-B.aG9)
0,315-0.335.
,
DlA

J .

All dimensions are in inches (millimeters)

.---~

0.280-0.210
(6.60(-7..3&8) .

' 0 . D 3 5 MAX
.
(UBI)

t- .

(~~lIlO

om

.

I ~(O,401-0.46II)
I.

-

.

T-"'-SEATlN8 PlANE

D.Oll-0.011 DIA TVP

0.026-0.0U

(1.881-0.1184)

0.021-0.0(8

(0.737-1.1(3)

H1OG(AEV8)

12 Lead (0.400" Square Pattern) Metal Can Package
NS Package Number H 128
All dimensions are in inches (millimeters)

r-I .

0.6(5-0.866
113.M3-14.Dl7)----j
DIA

I
0.030 MAX

.i

(0762) UNCDNTRDLLED
LEAD DIA

t

115.113-15.367)
OIA
..L-_~_

0.1126-0.031
(0.610-11.114)

~

H128(F1EVA)

7-38

.-----------------------------------------------------------------------------,~

::::r

8 Lead Dual-in-Line Hybrid Package
NS Package Number HY08A

~

';i

rr ::::::::::1l

All dimensions are in inches

~

c

3'

CD
:::J

(II

0'

:::J
(II

I

0.470:!: 0.005

0.490:t 0.005

~L=..!4====~. ~

I--

HY08A (REV C)

0.900:l:0.010---.l

8 Lead Ceramic Dual-in-Line Package
NS Package Number J08A
All dimensions are in inches
RO.Ol0 TYP

RO.025 TYP

j
7-39

0.220

0.310 MAX

0.291

GLASS

1

1

JOBA (REV K)

•

!o

"iii

c
CD
E

14 Lead Ceramic Dual-in-Line Package
NS Package Number J 14A
All dimensions are in inches (millimeters)

is

0.185

1j

,..1·----(I~~I----·1

"!!.

0.025
(0.6351

f.

f0.220-0.310

RAD

(5.568-1.8141

~~:T"'I"':'T"T':"I"'T~""""~
0.290-0.320
(1.366-8.1281

l
0180
(4.512)

-'-MAX

j;

I I

0.060 to.o06

"I

0.126-0.200
(3.115-5.080)

(2.489)

0.100 to.OIO
(2.640 ±0.264)

MAX BOTH ENDS

0.160
(3.811
MIN

J''''I"EV OJ

16 Lead Ceramic Dual-in-Line Package
NS Package Number J 16A
All dimensions are in inches [millimeters]
~

[19.94] MAX - ~
16
9
0.785

,m)::::::: :I~m

R [0.64]

t

1

8 \

~R

0.005-0.020 TYP
[0.13-0.51]

0.037 t 0.005 TYP
[O.9H 0.13]
0.055 t 0.005 TYP
[1.40 t 0.13]

0.005
[0.13]1
MIN TYP

0.290-0.320
[7.37-8.13]

-+_---1
GLASS SEALANT

0.200
[5.08]
MAX TYP

0.125-0.200 TYP
[3.18-5.08]
0.080 MAX
[2.03]
BOTH ENDS

0.010 t 0.002 TYP
[0.25 t 0.05]

,

J

95ot5°
.....
TYP

I-Jj
'

,

,

0.310-0.410
[7.87-10.41]

0.100tO.Ol0 TYP
[2.54 t 0.25]

7-40

L

,

J16A (REV L)

2 Lead TO-3 Metal Can Package
NS Package Number K02A
All dimensions are in inches [millimeters)

[~im:~2~~~]--+---~-f+--~+- ~8~~~:~:m
0.060-0.070
[1.52-1.78]

-r-

[""['
0.660-0.670

1.177-1.197

["'[----UNCONTROLLEJ
LEAD DIA

rO?6~ WAX

~2.~~~ MAX

SEATING PLANE

'0,. (REV 0)

8 Lead TO-3 Metal Can Package
NS Package Number K08A
All dimensions are in inches (millimeters)
0.880-0.9Z&
(2Z.3&-Z3.58) ~
0.760-0.77&
(19.304-11.&15) ~

0.025 ~
(0.&35)
0.345-0.385
MAX
UNCONTROLLED (8.79310.033
LEAD

-0.210 0.085-0.100
-7.112) (Z.I58-Z.&4)

~

L
!

t

~n u

--II--

0.038-0.044
(0.914-1.118) ~

(3.1191)

MAX

TVP

OAIO.....&10
(1Z.448-1Z.854)
LEAD CIRCLE

f 0.122f

~

10°

(14.8&1-1&.24)
1.177-1.181
(Z9.89&-30AD4)
40"(7.)
KOBA(AEVC)

7-41

fI

o ,-----------------------------------------------------------------------------,

f5

"0

:Ii

8 Lead (0.150" Wide) Molded Small Outline Package, JEDEC
NS Package Number M08A

E

All dimensions are in inches (millimeters)

is

•. 189-0.197

B

(4.880-5.004)

"j!.

.c

a..

l::!~-::~)

~r

0.010 0.020 x4S.

10.254 -0.508)

r

D.0&3-I.089
(1.348-1.7&3)

S· MAX ryp

..b 3r~ I. 4

(8.356) ..!!:!!!.J

.

.

(1.270)
TVP

~~~L~~

m ALL !£ADS

~

0.014

0 0 1&_0050

lum 0.254)

0.1104-0.010

)
-;:J~::1~~1l~l~(8:·,O:2rD.254:
+
~ lemiNG
PlANE

ALL LEADS

.!!!!!!!.m

_

(0.203)

0.014-0.020 TVP
(D.358-D.50S)

.... ,FEy H)

14 Lead (0.150" Wide) Molded Small Outline Package, JEDEC
NS Package Number M14A
All dimensions are in inches (millimeters)

30"

:r:=n=:n=n~~
3

4

7-,

~MAX
10.254)

(D.254

0.010-0.020
-8.508)

0.053-0.069
(1.346 1.753)

x45"
S" MAXTYP

cI.

+
SEAliNG

PLANE

f

(0.408-1.270)
TVP ALL LEADS

7-42

+

o.t

(0.356)

14 Lead (0.300" Wide) Molded Small Outline Package, JEDEC
NS Package Number M 148
All dimensions are in inches (millimeters)

If

~~
(8.788-9.195)

14 13 12 11 10

9

8

0.394 - 0.419

~

0.027 __

(0.686)

0.009-0.013

(0.229-0.330)

TYP ALL LEADS

(~:::=~::1):t.!!!!!.
rr---.==--

0.093-0.104

x45'

t

8' MAX TVP
ALL LEADS

L.~""""""","""'7"""~~~

t

~

h8'8L d
t n nnn ~

,(0.432)

~

t

(0.102-0.305)

J L JL t

T
..!:!!.

. (0.II4G-l.118)
0.037-0.044

SEAlING
PLANE

.!!:!!!!=!!:!!! TVP

(1.270)
TVP

(0.356-0.483)

M14B (REV 0)

16 Lead (0.150" Wide) Molded Small Outline Package, JEDEC
NS Package Number M16A
All dimensions are in inches (millimeters)

~

0.010-0.020 )(4811'
811' MAX TYP

L

----JL-=r~
0.004-0.010

(1.346 -1.753)

(0.254 -0.808)

+

t

t

0.0118-0.010
(8.203-0.254)
TVP ALL LEADS

1.050

i1.21Ui

PLANE

0.014-0.020 TVP
(0.3115-0.5111)

TYP

Ml8AIAeYH)

7-43

,.

• r---------------------------------------------------------------------------------,

.~.

"ii

i

16 Lead (0.300" Wide) Molded Small Outline Package, JEDEC
NS Package Number M16B

E

All dimensions are in

Q

.il~Ches

mllmeters

If.
LEAD NO I
IDENTIFICATION

~ TVP ALL LtAOS

0,0926-0.1043

2.35-2.i5

~

L~ [~'-•.

SEATING
PLANE

l

0.0040-0.0118

NAXTYP~

3 r--r=-=:-r-

t~

0.014

""D.i5

8
ALL LEAOS

Al.l. LEAD TIPS

o.~~::~:~;oo

TYP ALL LEADS
111181 (REV F)

24 Lead (0.300"Wide) Molded Small Outline Package, JEDEC
NS Package Number M24B
All dimensions are in

t

I

.il~Ches

mllmeters

0.4190

~.~~:g

0.2992 10.00
0.2914

LEAD NO 1
IDENTIFICATION

7.6
7.4

m

~~;;;;:;:=;;:~~;;;::;;;;II~
0.0125

0.1043
0.0926
2.65 ..,
2.,35
SEATING

... .

.

0.0118

L-~l!o.g~:o
.' . . . .
01

*

PLANE.~

o.

t

_. -

0.029
45°.0.010

TIS
0.25

~I

ALL LEAD TlP~

0.014

5

7-44

W'" ~'']
ill

8° hlAXTYP¥
0.0500
ALL LEADS
0.0160 TYP ALL LEADS
1.27
0.40·
.'48 (REV F)

r-------------------------------------------------------------------------~~

:::r

5 Lead Molded SOT-23-5
NS Package Number MA05A

r

All dimensions are in inches [millimeters]
0.016-0.018 TYP ~
[0.41-0.46]

I

I

~ ~G

0.075
[1.90]

I...,1., ..

F====F=====
-----+-----

I

0.027
[0.69]1

no

8

0.039
[1.00]..

[2.59-3.00]

1C:;:::!::;===;::I=i==:;::::!::i::!>I~

.rI-

0.0375~

TYP

[0.953]

[1.78-2.03]

-I

10· ALL AROUND - - \

I

0.0375
[0.953]

0.028-0.035 TYP
[0.71-0.90]

fiijiJ]
.
.
10.

~
V-

UI

LAND PATTERN RECOMMENDATION

~ 0.070-0.080 TYP .......;

1-

I·

1

1.~.7

0.059-0.070
[1.50-1.78]

[O~!~:~:~~l-+----l

c

~.

+_

L,','i.

I

H

..

'm

ALL A R O U N o J [0.05-0.13]

0.0035-0.0056 TYP
[0.089-0.142]

0.110-0.120
[2.79-3.05]

nl~

j '1

dJ

1.. J J It 0.021-0.026

~

TYP

[,"039-0.051
30
]

IlSo.9T·
~.=t-L.

[0.53-0.66]

MAOSA (REV D)

8 Lead (0.300" Wide) Molded Dual-in-Line Package
NS Package Number N08E
All dimensions are in inches (millimeters)

O'032±O'0II5~7

0.Dl2
(2.337) DlA

(O.813±0.127)

RAO

PIN NO.1 IDENT

PlNND.110ENT~

1

0.1109-0.015
(0.229-0.381)

~

(1.143±0.381)

NOIE(REV Fl

7-45

,.

o
C

o

'ii

i

r-------------------------------~--------------------~------------------------------~

10 Lead Molded Dual-in-Line. Package
NS Package Number N1OA

E

All dimensions are in inches (millimeters)

C

11

ia.

0.075
(1.905)
NOM

t

0.250±0.005
(6.350 ± 0.127)

I

.!.'-------F!.¥""""'Io.!..!.I....!..y-i
PIN NO.1 IDENT

f

L -j

0.0119-0.015
(0.229-o.3Bl)

O.2BO
(7.112)

-

o.olU 0.003
(0,457 ± 0.076)

TYP

TYP

MIN

0.325~~::
(B.255 ~ ~:~~)

(1.016)

TYP
NIOAIREVA)

7-46

r--------------------------------------------------------------------------, :::r
14 Lead (0.300" Wide) Molded Dual-in-Line Package
1.
~

NS Package Number N14A

All dimensions are in inches (millimeters)

~
c

3'
CD
~

rn
o·
~

rn

INDEX

AREA

PIN NO. 1

IDENT

OPTION 1

omON D2

0.135±0.1III5
(3.421 ±0.12T)

0.300-0.320
(7.620-8.1211

4' TYP
OPTIONAL

~

(~:::)
MIN

O.I2li-O.lla
I
(3.175-3.810)

1O'±4' TVP

II

0.014-0.023 TYP- _
(0.358 -0.584)

t
~
-'l--

I
I

-

_

___ 0.05UO.01D lYP
(1.270-0.2541

L

O.075±O.IIIS
(1.905±0.381)

0.1165
(1.&51)

0.008-0.016 lYP
(0.203-0.406)

O.290

(7.112) .....
MIN

0.100±G.Ol0 TYP
(2.540±8.254)

O.:us::::
f8 2li6 +1.016\
~ .

-0.3811

16 Lead (0.300" Wide) Molded Dual-in-Line Package
NS Package Number N 16A
All dimensions are in inches (millimeters)
0.092
(2.337)

DIANDM
(2X)

PIN NO.1 IDENT
0.280

0.065

95'±5'

0.009-0.015

tJ
NI6A(REV EJ

7-47

,.

4 Lead Molded TO-202
NS Package Number P04A

t :L i.

All dimensions are in inches (millimeters)
0.150 ±0.Ol0
(3.810 ±0.2541

0.395±D.015
(10.03±O.3811

I

0.385 ±0.020
(9.779 ±0.50S1

0.125 ±0.Ol0
(3.175 ±0.2541

f
0.143±0.003 DIA
(3.&aHO.07&1

0.250 ±O.015

.§~
0.515 ±0.025

"L
0.023-0.030
(0.584 -0.7821

0.032 ±0.005
(0.813 ±0.1271
0.1110±8.010
(2.540±0.2541

0.021±0.003
(0.533±0·0781

~
0.053±0.015
\ . - (1.34&±0.3811
~A(REVA)

7·48

---------------------------------------------------------------------------------1
r

11 Lead Molded TO-202
NS Package Number P11A
All dimensions are in inches (millimeters)
0.110±0.OO5
(22.352±0.127)

~

1.
i
c

3·
CD
:::J

rn

o·
:::J

0.121-0.132
(3.251-3.353) 0.034 x45· (Pl1A-2)
OIA
(0.164)
~_ _ _ _ 0.050 x45. (P11A.l)
(1.270)

~ x45· (P11A·2)

(3.404)

0.090 x45. (P11A.l)
(2.211)

0.062

rn

EJECTOR PINS
0.0111-0.009
I + - ± - - - r (0.025 0.229)

(1.575)
RAO

0.050±0.015
(1.270±0.381)
0.025±0.OO3
(0.635 ±0.076)
(Pl1A·2)
0.011±0.OO3
(0.457±0.076)
(P11A·l)
P"AtHI:Vfo!

3 Lead Molded TO-220
NS Package Number T03B
All dimensions are in inches [millimeters]
0.330-0.350 ~
[8.38-8.89)
0.100-0.120
[2.54-3.05)

0.149-0.153
fIJ [3.78-3.89)

C

t

0.400 -0.005

[10.16 ~~:~;)

L

--,--u 0.13~--0-.1-60-TY

L--I--.....

-P-

[3.30-4.06)

PIN #1 ID

1+-------

0.190-0.210
[4.83-5.33)

0.048-0.055
[ 1.22-1.40)
TYP
0.027-0.037
[0.69-0.94)
TYP

1.005-1.035
[25.53-26.29)

?\ ~

IE

I--±.I
0.175~-~0~.1:8:-5-.L:-----tt----'b:::::I======:::ti
~

[4.45-4.70)

7

0

(

0.525-0.555 )
[13.34-14.10)

....._---,,.....,

fTL...--'--"--r~-::--:
. L
0.048-0.052
[1.22-1.32)

--I

~

+0.007 [0 38 +0.18)
•
-0.03

0.015 -0.001

0.105

~~:~:g [2.67~~:~:)

SEATING PLANE

TAPERED
SIDES 10

TO'. (REV L)

7·49

i

~

I

!o
!CD

5 Lead Molded TO-220
NS Package Number T05B

E

All dimensions are in inches (millimeters)

is
~

~
.c
a.

0.110±t.I.0

ii.lii'±o:ii4i J.
np

J--r---~~~

PlNNO.'
0.3411:1.010
tf,13I±0.254)

IDSf1lfICATION

x,.•,) ,I
I _.u
D.llllxO.015

(1.317

1EA1I..
PUlE

T058(REVf)

11 Lead Molded TO-220
NS Package Number TA 11 B
All dimensions are in inches (millimeters)

o.m
(4.496)

y
0.689
(17.50)

r°f)
0.421

l
(

o

o

0.860
(21.84)
0.866
(22.00)

5x

(~8:j;::::)ill

6x 0.860±O.020
(21.84±0.50B)

l1x

(:::j-~.

~

~ ~-J:

y-+==~~

-l

_lOx

(~::~)

[t;f-i:::::::::)
I

•

0.670 ---:-----'l~~1
(17.02)

O.200±O.OIO
(5.08D±D.254)

_

7-50

..

:::::::~) TYP

TA1181REVA)

11 Lead Molded TO-220
NS Package Number TF11 B
All dimensions are in inches [millimeters]
0.783-0.793 ~
[19.89-20.14]
2 450 0.110-0.114
x
x [2.79-2.90]

O. 172-0.182 -t--~
[ 4.37-4.62]
0.125-0.135
[3.18-3.43]

III 0.149-0.153

[3.78-3.89]
0.187-0.197

~

~'I",l

-I~-

5x 0.851-0.881
[21.62-22.38]

L

T~·

6 x 0.845-0.875
[21.46-22.23]

0.414-0.424
[10.52-10.77]

0

( 0.866 )
[22.00]

"""'"11-+

'~TYP

0.660-0.680
[16.76-17.27]

0.690-0.710
[17.53-18.03]

[I~ .-....=- ~

I

0.057-0.077 TYP
[1.45-1.96]

0.766-0.776
[19.46-19.71]

( 0.860) 170 TYP

'¥i=;:;::;=;:;:~I;:;=;:;::;=;=;;;;:FF;D
PIN #1
IDENT

-~

-

J

--=i

\

-I L
II

0.014-0.0 17 TYP
[0.36-0.43]
0.035-0.040 TYP
,
[0.89-1.02]
0.190-0.210-+_ _-1-_ _1-- 0.159-0.179
[4.83-5.33]
[4.04-4.55]
TFl 18 (REV c)

10 Lead Cerpack
NS Package Number W10A
All dimensions are in inches
0.270 MAX

0.080
0.055

0.050:1: 0.005
TYP

0.035
0.026
TYP

0.005 MIN TYP
,

I

10

0.370
0.250

----t

1

0.270 MAX
GLASS

0.260
0.238

----t

Y.,,,

0.008

DETAIL A

0.370
0.250

0.006
0.004
TYP

L-

w.o>

5

J
7-51

0.045 WAX
TYP

(REV E)

·
c

.~
CD

,-----------------------------------------------------------------------------,
14 Lead Ceramic Flatpack
NS Package Number W14B

E

All dimensions are in inches

is

i

.c

a.

0.080
0.050

0.385 MAX

0.045
0.026
TYP

-j

0.050 :t 0.005
TYP
14

I

0.005 MIN TYP

8

I

I, I,

0.370'
0.250

I I

I~-t

0.260
0.235

I
,

PIN #1
IDENT
0.006
0.004
TYP

-t
U

I,

1

0.019 TYP..J
0.015

I-

0.370
0.250

1""
0.008

DETAIL A

7

0.045 MAX
TYP

W14B (REV J)

3 Lead Molded TO-92
NS Package Number Z03A
All dimensions are in inches [millimeters]
1 - 5 0 2 PLCS

t::==:::J-.l

r----i

'L
J
~'2.70]MIN

•.-.'
SEATING PLANE

I
a 0.175-0.185

0.500

.", ------,,
,,

[4.45-4.70]"

L~
EJ ECTION MARK
I/J 0.065

,,

:

0.0145-0.0155
[0.368-0.394] BEFORE LEAD FINISH

I+------+\-- 0.135-0.145
[3.43-3.68]

0.090 MAX
[2.29]
(UNCONTROLLED
LEAD DIA)

f
E---.

E---.

0.045-0.055
[1.14-1.40]
0.045-0.055 TYP
[1.14-1.40]

-..1

-0.016-0.02~
[0.41-0.53']

TYP

J

R 0.090
[2.29]

10 0 2 PLCS

[1.65]
O•015 MAX
r [0.38]

Z03A (REV r)

7·52

/fINational Semiconductor
Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical
literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and
section contents for each book.
For datasheets on new products and devices still in production but not found in a databook, please contact the National
Semiconductor Customer Support Center at 1-800-272-9959.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 16-300
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090

ADVANCED BiCMOS LOGIC (ABTC, IBF, BiCMOS SCAN, LOW VOLTAGE
BiCMOS, EXTENDED TTL TECHNOLOGY) DATABOOK-1994
ABTC/BCT Description and Family Characteristics. ABTC/BCT Ratings, Specifications and Waveforms
ABTC Applications and Design Considerations • Quality and Reliability. Integrated Bus Function (IBF) Introduction
54174ABT3283 Synchronous Datapath Multiplexer. 74FR900/25900 9-Bit 3-Port Latchable Datapath Multiplexer
54174ACTQ3283 32-Bit Latchable Transceiver with Parity Generator/Checker and Byte Multiplexing
SCAN18xxxA BiCMOS 5V Logic with Boundary Scan. 74LVT Low Voltage BiCMOS Logic
VME Extended TIL Technology for Backplanes

ALS/AS LOGIC DATABOOK-1990
Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky. Advanced Schottky

APPLICATION SPECIFIC ANALOG PRODUCTS DATABOOK-1995
Audio Circuits • Video Circuits. Automotive. Special Functions • Surface Mount

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELL5-1987
SSI/MSI Functions. Peripheral Functions. LSIIVLSI Functions. Design Guidelines • Packaging

CMOS LOGIC DATABOOK-1988
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC
MM54HCT /MM7 4HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

CLOCK GENERATION AND SUPPORT (CGS) DESIGN DATABOOK-1994
Low Skew Clock Buffers/Drivers • Video Clock Generators • Low Skew PLL Clock Generators
Crystal Clock Generators

COP8™ DATABOOK-1994
COP8 Family • COP8 Applications • MICROWIRE/PLUS Peripherals • COP8 Development Support

CROSSVOLTTM LOW VOLTAGE LOGIC SERIES DATABOOK-1994
LCX Family. LVX Translator Family. LVX Bus Switch Family. LVX Family • LVQ Family • LVT Family

DATA ACQUISITION DATABOOK-1995
Data Acquisition Systems. Analog-to-Digital Converters. Digital-to-Analog Converters. Voltage References
Temperature Sensors. Active Filters. Analog Switches/Multiplexers. Surface Mount

DATA ACQUISITION DATABOOK SUPPLEMENT-1992
New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook.

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989
Selection Guide and Cross Reference Guides. Diodes. Bipolar NPN Transistors
Bipolar PNP Transistors. JFET Transistors • Surface Mount Products. Pro-Electron Series
Consumer Series. Power Components. Transistor Datasheets • Process Characteristics

DRAM MANAGEMENT HANDBOOK-1993
Dynamic Memory Control. CPU Specific System Solutions. Error Detection and Correction
Microprocessor Applications

EMBEDDED CONTROllERS DATABOOK-1992
COP400 Family. COP8ll0 Family. COPS Applications. HPC Family. HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals. Microcontroller Development Tools

FOOl DATABOOK-1994
Datasheets • Application Notes

F100K ECl lOGIC DATABOOK & DESIGN GUIDE-1992
Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets • 11 C Datasheets
Design Guide. Circuit Basics. Logic Design. Transmission Line Concepts. System Considerations
Power Distribution and Thermal Considerations. Testing Techniques. 300 Series Package Qualification
Quality Assurance and Reliability. Application Notes

FACTTM ADVANCED CMOS lOGIC DATABOOK-1993
Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations. 54AC174ACXXX • 54ACT174ACTXXX • Quiet Series: 54ACQI74ACOXXX
Quiet Series: 54ACTQ174ACTQXXX • 54FCT174FCTXXX • FCTA: 54FCTXXXA174FCTXXXA/B

FAST® ADVANCED SCHOTTKY TTL lOGIC DATABOOK-1990
Circuit Characteristics. Ratings, Specifications and Waveforms • Design Considerations. 54F174FXXX

FAST® APPLICATIONS HANDBOOK-1990
Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction. Multiplexers. Decoders. Encoders
Operators. FIFOs • Counters. TTL Small Scale Integration. Line Driving and System Design
FAST Characteristics and Testing .Packaging Characteristics

HIGH-PERFORMANCE BUS INTERFACE DATABOOK-1994
QuickRing. Futurebus+ IBTL Devices. BTL Transceiver Application Notes. Futurebus+ Application Notes
High Performance TTL Bus Drivers. PI-Bus. Futurebus+ IBTL Reference
.

IBM DATA

COMMUNICATIO~S HANDBOOK-1992

IBM Data Communications. Application Notes

INTERFACE: DATA TRANSMISSION DATABOOK-1994
TIAIEIA-232 (RS-232) • TIAIEIA-422/423. TIAIEIA-485. Line Drivers. Receivers. Repeaters
Transceivers. Low Voltage Differential Signaling. Special Interface. Application Notes

LINEAR APPLICATIONS HANDBOOK-1994
The purpose of this handb09k is to provide·a fully indexed and cross-referenced collection of linear integrated circuit
applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

lOCAL AREA NETWORKS DATABOOK-1993 SECOND EDITION
Integrated Ethernet Network Interface Controller Products • Ethernet Physical Layer Transceivers
Ethernet Repeater Interface Controller Products. Token-Ring Interface Controller (TROPIC)
Hardware and Software Support Products. FOOl Products. Glossary and Acronyms

LOW VOLTAGE DATABOOK-1992
This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets
included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time
Clocks, and Clock Generation and Support (CGS).

MASS STORAGE HANDBOOK-1989
Rigid Disk Pulse Detectors. Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller. SCSI Bus Interface Circuits. Floppy Disk Controllers. Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

MEMORY DATABOOK-1994
FLASH • C~OS EPROMs • CMOS EEPROMs • PROMs • Application Notes

MEMORY APPLICATIONS HANDBOOK-1994
FLASH. EEPROMs • EPROMs • Application Notes

OPERATIONAL AMPLIFIERS DATABOOK-1995
Operational Amplifiers. Buffers. Voltage Comparators. Active Matrix/LCD Display Drivers
Special Functions. Surface Mount

PACKAGING DATABOOK-1993
Introduction to Packaging. Hermetic Packages. Plastic Packages. Advanced Packaging Technology
Package Reliability Considerations. Packing Considerations. Surface Mount Considerations

POWER IC's DATABOOK-1995
Linear Voltage Regulators. Low Dropout Voltage Regulators • Switching Voltage Regulators
Motion Control. Surface Mount

PROGRAMMABLE LOGIC DEVICE DATABOOK AND
DESIGN GUIDE-1993
Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology
PLD Desi!ln Development Tools. Fabrication of Programmable Logic. Application Examples

REAL TIME CLOCK HANDBOOK-1993
3-Volt Low Voltage Real Time Clocks. Real Time Clocks and Timer Clock Peripherals. Application Notes

RELIABILITY HANDBOOK-1987
Reliability and the Die, • Internal Construction. Finished Package. MIL-STD-883. MIL-M-38510
The Specification Development Process. Reliability and the Hybrid Device. VLSIIVHSIC Devices
Radiation Environment. Electrostatic Discharge • Discrete Device. Standardization
Quality Assurance and Reliability Engineering. Reliability and Documentation. Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor. The Total Military/Aerospace Standardization Program
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-38510 Class B Products
Radiation Hardened Technology. Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages. Glossary of Terms • Key Government Agencies. AN/ Numbers and Acronyms
Bibliography. MIL-M-38510 and DESC Drawing Cross Listing

SCANTM DATABOOK-1994
Evolution of IEEE 1149.1 Standard. SCAN BiCMOS Products. SCAN ACMOS Products. System Test Products
Other IEEE 1149.1 Devices

TELECOMMUNICATIONS-1994
COMBO and SLiC Devices. ISDN • Digital Loop Devices • Analog Telephone Components. Software. Application Notes

VHC/VHCT ADVANCED CMOS LOGIC DATABOOK-1993
This databook introduces National's Very High Speed CMOS (VHC) and Very High Speed TTL Compatible CMOS (VHCT)
designs. The databook inCludes Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations and Product Datasheets. The topics discussed are the advantages of VHCIVHCT AC Performance,
Low Noise Characteristics and Improved Interface Capabilities.

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS
A!-ABAMA
Huntsville
Anthem Electronics
(205) 890-0302
Future Electronics Corp.
(205) 830·2322
Hamillon/Hailmark
(205) 837·8700
Pioneer Technology
(205) 837·8300
Time Electronics
(205) 721·1134
ARIZONA
Phoenix
Future Electronics Corp.
(602) 968·7140
Hamilton/Hailmark
(602) 437·1200
Scottsdale
Alliance Electronics Inc.
(602) 483·9400
Tempe
Anthem Electronics
(602) 988-6600
Bell Industries
(602) 968-3600
Pioneer Standard
(602) 350-9335
Time Electronics
(602) 967·2000
CAUFORNIA
Agoura Hills
Bell Industries
(818) 865-7900
Future Electronics Corp.
(818) 865-0040
Pioneer Standard
(818) 865·5800
Time Electronics
(818) 707·2890
Calabasas
FIX Electronics
(818) 591·9220
Chatsworth
Anthem Electronics
(818) 775-1333
Costa Mesa
HamiRon/Hallmark
(714) 641-4100
Irvine
Anthem Etectronics
(714) 768-4444

Bell Industries
(714) 727-4500
Future Electronics Corp.
(714)453·1515
Pioneer Standard
(714) 753·5090
Zeus Elect. an Arrow Co.
(714) 581·4622
Rocklin
Anthem Electronics
(916) 624-9744
Bell Industries
(916) 652-0418
Roseville
Future Electronics Corp.
(916) 783-7877
Hamlllon/Halimark
(916) 624-9781
San Diego
Anthem Electronics
(619) 453-9005
Bell Industries
(619) 576-3294
Future Electronics Corp.
(619) 625-2800
Hamillon/Hallmark
(619) 571·7540
Pioneer Standard
(619) 514-7700
Time Electronics
(619) 674-2800

San Jose
Anthem Electronics
(408) 453·1200
Future Electronics Corp.
(408) 434·1122
Hamillon/Hallmark
(408) 435-3500
Pioneer Technology
(408) 954·9100
Zeus Elect. an Arrow Co.
(408) 629-4789
Sunnyvale
Bell Industries
(408) 734-8570
Time Electronics
(408) 734·9890
Tustin
Time Electronics
(714) 669-0216
Woodland Hills
Hamillon/Hailmark
(818) 594-0404
Time Electronics
(818) 593·8400
COLORADO
Denver
Bell Industries
(303) 691·9270
Englewood
Anthem Electronics
(303) 790-4500
Hamlllon/Halimark
(303) 790-1662
Pioneer Technology
(303) 773-8090
Time Electronics
(303) 799-5400
Lakewood
Future Electronics Corp.
(303) 232·2008
CONNEC11CUT
Cheshire
Future Electronics Corp.
(203) 250-0083
Hamllton/Hailmark
(203) 271·2844
Meriden
Bell Industries
(203) 639-6000
Shellon
Pioneer Stendard
(203) 929·5600
Wallingford
Advent Electronics
(800) 982·0014
Waterbury
Anthem Electronics
(203) 575·1575
FLORIDA.
Altamonte Springs
Anthem Electronics
(407) 831-0007
Bell Industries
(407) 339-0078
Future Electronics Corp.
(407) 865-7900
Pioneer Technology
(407) 834-9090
Deerfield Besch
.Future Electronics Corp.
(305) 428-4043
Pioneer Technology
(305) 428-8877
Fort Lauderdale
Hamilton/Hailmark
(305) 484-5482
Time Electronics
(305) 484-1864

Indialantic
Advent Electronics
(800) 975-8869
Lake Mary
Zeus Elect. an Arrow Co.
(407) 333·9300

Largo
Future Electronics Corp.
(813) 530·1222
Hamiiton/Hailmark
(813) 541·7440
Orlando
Chip Supply
"Die Distributor"
(407) 298-7100
Time Electronics
(407) 841-6588
Winter Park
Hamllton/Hallmark
(407) 657-3300
GEORGIA
Duluth
Anthem Electronics
(404) 931·9300
HamUton/Hailmark
(404) 623-4400
Pioneer Technology
(404) 623·1003
Time Electronics
(404) 623-5455
Norcross
Future Electronics Corp.
(404) 441·7676
ILLINOIS
Addison
Pioneer Standard
(708) 495-9880
Bensenville
Hamilton/Hailmark
(708) 860-7780
Des Plaines
Advent Electronics
(800) 323-1270
Elk Grove Village
Bell Industries
(708) 640-1910
Hoffman Estates
Future Electronics Corp.
(708) 882·1255
ltascs
Zeus Elect. an Arrow Co.
(708) 595-9730
Schaumburg
Anthem Electronics
(708) 884-0200
Time Electronics
(708) 303-3000
INDIANA
Fort Wayne
Bell Industries
(219) 422-4300
Indianapolis
Advent Electronics Inc.
(800) 732·1453
Bell Industries
(317) 875-8200
Future Electronics Corp.
(317) 469-0447
Hamiiton/Hailmark
(317) 872-8875
Pioneer Standard
(317) 573-0880
IOWA
cedar Rapids
Advent Electronics
(800) 397-8407
Hamiiton/Hailmark
(319) 393-0033
KANSAS

Lenexa
Hamiiton/Hailmark
(913) 898-4747
Overland Park
Future Electronics Corp.
(913) 649-1531
KENTUCKY
Lexington
Hamillon/Halimark
(608) 268-4911

MARYLAND
Columbia
Anthem Electronics
(410) 995-6640
Bell Industries
(410) 290-5100
Future Electronics Corp.
(41Q) 290-08OQ
Hamllton/Hailmark
(410) 988·9800
Seymour Electronics
(410) 992·7474
Time Electronics
(410) 720-36!l0
Gaithersburg
Pioneer Technology
(301) 921-0660
MASSACHUSETTS
Andover
Bell Industries
(508) 474-8880
Bolton
Future Electronics Corp.
(508) 779-3000
Lexington
Pioneer Standard
(617) 661·9200
Newburyport
Rochester Electronics
"Obsolete Products"
(508) 462·9332
Norwood
Gerber Electronics
(617) 769-eooo
Peabody
Hamillon/Halimark
(508) 532·3701
Time Electronics
(508) 532·9777
Tyngsboro
Port Electronics
(508) 849-4690
Wilmington
Anthem Electronics
(508) 657-5170
Zeus Elect. an Arrow Co.
(508) 658-0900
MICHIGAN
Farmington Hills
Advent Electronics
(800) 572·9329
Grand Rapids
Future Electronics Corp.
(616) 698-6800
Pioneer Standard
(616) 698·1800
Livonia
Future Electronics Corp.
(313) 261-5270
O'Fallon
Advent Electronics
(800) 888-9568
Plymouth
Hamilton/Hailmark
(313)418-5800
Pioneer Standard
(313) 416-2157
Wyoming
R. M. Electronics, Inc.
(616) 531·9300
MINNESOTA
Bloomington
Hamliton/Hailmark
(612) 681·2800
Eden Prairie
Anthem Electronics
(612) 944-5454
Future Electronics Corp.
(612) 944-2200
Pioneer Standard
(612) 944-3355
Minnetonka
Time Electronics
(612) 931·2131

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)
MINNESOTA (Continued)
Thief River Falls
Digi-Key COrp.
"Catalog sales Only"

Syracuse
Future Electronics COrp.
(315) 451-2371

Time Electronics

(800) 344-4539

(315) 434-9837

MISSOURI
Earth City
Hamilton/Hallmark

Woodbury
Pioneer Standard

(314) 291-5350

Manchester
Time Electronics
(314) 230-7500

SI. Louis
Future Electronics Corp.
(314) 489-6805

NEW JERSEY

Camden
Advent Electronics
(800) 255-4771

Cherry Hill
Hamilton/Hallmark
(609) 424-0110

Fairfield
Bell Industries
(201) 227-6080

Pioneer Standard
(201) 575-3510

Marlton
Future Electronics Corp.
(609) 598-4080
Time Electronics
(609) 596-1286

Mount Laurel
Seymour Electronics
(809) 235-7474

Parsippany
Future Electronics COrp.

(516) 921-9700

Seymour Electronics
(516) 496-7474

NORTH CAROUNA
Charlotte
Future Electronics COrp.
(704) 547-1107

Morrisville
Pioneer Technology
(919) 460-1530

Raleigh
Anthem Electronics

Hamilton/Hallmerk
(505) 828-1058

NEW YORK
Binghamton
Pioneer Standard
(607) 722-9300

Buffalo
Summtt Distributors
(716) 887-2800

Commack
Anthem Electronics

(919) 790-7111

Haminon/Hallmark
(919) 872-0712

OHIO
Beavercreek
Future Electronics Corp.
(513) 426-0090

Cleveland
Pioneer Standard
(216) 587-3600

COlumbus
Time Electronics
(614) 794-3301

Dayton
Bell Industries
(513) 435-5922

(513) 439-6735

Pioneer Standard
(513) 236-9900

Maylield Heights
Future Electronics COrp.
(216) 449-6996

Solon
Bell Industries
(216) 498-2002

Hamllton/Hallmerk
(216) 496-1100

Worthington
Haminon/Hallmar!<
(614) 888-3313

OKLAHOMA
Tulsa
Haminon/Hallmar!<
(918) 254-6110

Pioneer Standard
(918) 665-7840

Radio Inc.
(918) 587-9123

Fairport
Pioneer Standard

OREGON
Beaverton
Anthem Electronics

Hauppauge
Future Electronics Corp.

(503) 643-1114

Time Electronics

Bell Industries
(503) 644-3444
Future Electronics COrp.
(503) 645-9454
Hamllton/Hallmar!<

(516) 273-01 00

(503) 526-6200

(516) 234-4000

Hamilton/Hallmark
(516) 434-7400

Port Chester
Zeus Elect. an Arrow Co.
(914) 937-7400

Rochester
Future Electronics COrp.
(716) 387-9550

Hamilton/Hallmark
(800) 475-9130

Summit Distributors
(716) 334-8110

CANADA
WESTERN PROVINCES
Burnaby
Hamilton/Hallmark

Future Electronics COrp.
(512) 502-0991

Hamilton/Hallmar!<
(512) 258-8848

Minco Technology Labs.
"Die Distributor"
(512) 834-2022

Pioneer Standard

(800) 500-0441

(604) 420-4101

Semad Electronics Ltd.
(804) 451-3444

Calgary
Electro Sonic Inc.
(403) 255-9550

(518) 864-6800

(716) 381-7070

(512) 388-0049

Future Electronics COrp.

Hamilton/Hallmark

(505) 292-2700

(414) 547-8879

West Allis
Advent Electronics

(512) 219-3773

(201) 515-1641

NEW MEXICO
Albuquerque
Bell Industries

(215) 953-2800

TEXAS
Austin
Anthem Electronics

(512) 835-4000

(513) 434-6231

(201) 785-8250

(414) 790-7200

Waukeshe
Bell Industries

Time Electronics

Bell Industries-Military

(201) 227-7960

Trevose
Bell Industries

New Be"in
Hamilton/Hallmerk

(919) 782-3550

(201) 299-0400

Wayne
Time Electronics

(412) 782-2300

Future Electronics COrp.

Hamllton/Hallmar!<
Pine Brook
Anthem Electronics

Pittsburgh
Pioneer Standard

Pioneer Technology
(503) 626-7300
PorUand
Time Electronics
(503) 664-3780

PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150

Pioneer Technology
(215) 674-4000

Carrollton
Zeus Elect. an Arrow CO.
(214) 380-6464

Dallas
Hamilton/Hallmar!<
(214) 553-4300

Pioneer Standard
(214) 386-7300

Houston
Future Electronics Corp.
(713) 785-1155

Hamilton/Hallmar!<
(713) 781-6100

Pioneer Standard
(713) 495-4700

Richardson
Anthem Electronics
(214) 238-7100

Bell Industries
(214) 690-9096

Future Electronics Corp.
(214) 437-2437

Time Electronics
(214) 480-5000

UTAH
Midvale
Bell Industries
(801) 255-9691

Salt Lake City
Anthem Electronics
(801) 973-8555

Future Electronics COrp.
(801) 487-4448

Hamilton/Hallmark
(801) 266-2022
West Valley City

Time ElectroniCS
(801) 973-0208

WASHINGTON
Bellevue
Bell Industries
(206) 646-8750

Pioneer Technology
(206) 644-7500

Bothell
Anthem Electronics
(206) 483-1700

Future Electronics COrp.
(206) 489-3400

Kir!e!JI Cedex
France
Tel: (1) 69183700
Fax: (1) 6918 37 69

BRAZIL
National Semlconductores
Do Brazil Ltd••
Rue Deputado Lacorda
Franco 12()'3A
Sao Paulo-SP Brazil 05418'()OO
Tel: (55.11) 212·5066
Fax: (55·11) 212·1181

GERMANY
National Semiconductor
GmbH
Uvry.Gargan-Strasse. 10
D-82256 FOrstenfeldbruck
Germany
Tel: (0~1-41) 35'()
Fax: (0~1-41) 35·15'()6

CANADA
National Semiconductor
(canada)
5925 Airport Road, Suite 615
Mississauga, Ontario L4V lWI
Tel: (416) 678-2920
Fax: (416) 678·2837
NaUonal Semiconductor
(canada)
39 Robertson Road, SuRe 101
Nepean, Ontario K2H 8R2
Tel: (613) 596-0411
Fax: (613) 596-1613
Nallonal Semiconductor
(canada)
1870 Boul Des Sources,
Suite 101
Pointe Claire, Quebec H2R 5N4
Tel: (514) 426-2992
Fax: (514) 426-2710

HONG KONG
Nalional Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block
Ocean Centre
5 Csnton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737·1600
Fax: (852) 2736-9960

INDIA
Nallonal Semiconductor
India Uaison Office
26 Cunningham ROad
Bangalore 560052 India
Tel: 80·226-7272
Fax: 80·225·1133

ISRAEL

CHINA
National Semiconductor
Belling China LIaison
Office
Room 1930
New Century Hotel,
No.6 Southern Road
CapRalGym
Beijing 100046, PRC
Tel: 10-849-1331
Fax: 10-849·1332

FINLAND
Nallonal Semiconductor
(U.K.) Lid.
Mekaanlkonkatu 13
SF.Q0810 Helsinki
Finland
Tel: (0) 759·1855
Fax: (0) 759·1393

Nallonal Semiconductor Ltd.
MliskHSiraet
PO Box 3007
Herzlia B. 46104
Israel
Tel: (09) 59 42 55
Fax: (09) 55 83 22

ITALY
NaUonai Semiconductor S.p.A.
Strada 7, Palazzo R/3
1·20089 Rozzano·Milanofiori
Italy

Tel: (02) 57 50 03 00
Fax: (02) 57 50 04 00

JAPAN
National Semiconductor
Japan Lid.
SumHomo Chemical
Engineering Centar Bldg. 7F
1·7·1, Nakass, Miharna·Ku
Chibs-City,
Chiba Prefecture 261
Japan
Tel: (043) 299-2300
Fax: (043) 299-2500

KOREA
National Semiconductor
(Far East) Lid.

13th Floor, Dai Han
Ufe Insurance 63 Building
60 Yoido·Dong
,
Youngdeungpo-KU
Seoul Korea 150·763
Tel: (02) 784·8051/3
(02) 785'()696/8 ,
Fax: (02) 784~054

MALAYSIA
Nailonal Semiconductor
SdnBhd
Bayan Lepas Free Trade Zone
11900 Penang Malaysia
Tel: 4·644-9061
Fax: 4-644-9073

MEXICO
Electronlca NSC de
UexlcoSA
Juventino Rosas No. 118·2
Col Guadalupe Inn
Mexico, 01020 D.E. Mexico
Tel: (525) 661·7155
Fax: (525) 661~905

PUERTO RICO
National Semiconductor
(Puerto Rico)
La Electronlca Bldg.
SuRe 312, A.D. #1 KM 14.5
Rio Piedias
Puerto Rico 00927
Tel: (609) 758·9211
Fax: (609) 763-6959

SINGAPORE
National Semiconductor
Asiia Pacific Pte. Lid.
200 Cantonment Road # 13·01
Southpoint Singapore 0208
Tel: (65) 225·2226
Fax: (65) 225·7080

SPAIN,
NatIonal Semiconductor GmbH.
Calle Agustin de Foxa, 27 (9'0)
E·26036 Madrid
Spain
Tel: (01) 7·33·29-54
Fax: (01) 7-33-60·18

SWEDEN
Nalional Semiconductor AB
P.O. Box 1009
Grosshandlarvllgen 7
S·12123 Johanneshov,
Sweden
Tel: (06) 7 22 80 50
Fax: (08) 7 22 90 95

SWITZERLAND
Nallonal Semiconductor
(U.K.) Lid.
Alte Winterthurerstrasse 53
CH·8304 Wamsellen·ZOrich
Switzerland
Tel: (01) 8-30·27·27
Fax: (01) 8-3()'19-OO

TAIWAN
National Semiconductor
(Far Eaal) Ltd.
'
9/F, No. 44 Section 2
Chungshan North Road
Taipei, Taiwan, A.O.C.
Tel: (02) 521-3288
Fax: (02) 561·3054

U.K. AND IRELAND
National Semiconductor
(U.K.) Lid.
The Maple, Kembrey Park
Swindon, Wiitehire SN2 6YX
UnHed Kingdom
Tel:(07·93)614141
Fax: (07·93) 52 21 80
Telex: 444674

UNITED STATES
Nallonal Semiconductor
Corporallon
1111 West Bardin Road
Arlington, TX 76017
Tel: (800) 272·9959
Fax: (800) 737·7018



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:18 15:44:21-08:00
Modify Date                     : 2017:06:18 16:39:15-07:00
Metadata Date                   : 2017:06:18 16:39:15-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:ef678e89-c1b2-5c4b-8367-3598cb120d15
Instance ID                     : uuid:d85db80e-4d41-1e45-9b18-136fac479ad1
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1386
EXIF Metadata provided by
EXIF.tools

Navigation menu