1995_QT_Optoelectronic_Product_Data_Book 1995 QT Optoelectronic Product Data Book

User Manual: 1995_QT_Optoelectronic_Product_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 962

Download1995_QT_Optoelectronic_Product_Data_Book 1995 QT Optoelectronic Product Data Book
Open PDF In BrowserView PDF
~
OP TOELE CT RONICS

OPTOELECTRONIC
PRODUCT

1995-96

DATA

BOOK

1995/96

OPTOELECTRONICS

Optoelectronic
Product Data Book
1995/96

610 North Mary Avenue
Sunnyvale, California 94086

Copyright © 1995 by aT Optoelectronics
All rights reserved. No parts of this book may be
reproduced without the written permission
of aT Optoelectronics

ALL SPECIFICATIONS SUBJECT TO CHANGE

Printed in USA

2

About QT Optoelectronics
Experience
For the last twenty five years-first as Monsanto, then General Instrument and
then Quality Technologies Corporation-we have been a leading manufacturer
of optoelectronic products. As a result of this experience and our leadership in
developing III-V materials technology, we have contributed many firsts to the
field of optoelectronics-in LED Lamps, Displays, Optocouplers and Infrared
Components.

New Company Name
We have changed our name from Quality Technologies Corporation (QTC) to
QT Optoelectronics. This new name reflects the fact that optoelectronics is our
only business. When it comes to companies dedicated exclusively to
optoelectronics, no one in the World has a bigger, broader line.

Reliable Products
At our manufacturing plant extensive reliability testing (see pg. 5) and advanced
manufacturing techniques ensure the highest standards of production. We are
committed to the concept of providing state-of-the-art dependable products at
competitive prices.

Broad Product Range
We offer high performance optoelectronic devices in five major categories;
optocouplers, IfR components, displays, lamps, and light bars and bargraph
arrays. This data book contains detailed specifications on our complete line of
optoelectronic products.

Product Availability
A worldwide network of stocking distributors assures immediate availability of
most standard products. QT Optoelectronics authorized distributors are located
worldwide. In addition, QT Optoelectronics Direct Sales Offices in the United
States and International Sales Offices serving major world markets, provide a
complete range of all QT Optoelectronics products. See "HOW TO ORDER" in
the following section.

Efficient Service
If you have a question or a problem, just pick up the phone and call the nearest
QT Optoelectronics Technical Representative. These highly qualified sales
engineers can offer assistance in design and product selection. The lists on
section 7 will enable you to locate one in your area.
In addition, our staff of factory product engineers can provide information,
discuss specific problems and offer applications assistance. The answer to your
question is only a phone call away.
You can depend on QT Optoelectronics.

3

About This Data Book
This data book describes in detail our complete line of optoelectronic products.
For your convenience, the catalog is divided into five major product groupsoptocouplers, I/R components, displays, lamps, and light bars and bargraph
arrays.

A selection guide will be found at the beginning of each product section. This
provides brief basic information on the product line to assist you in selecting the
device best suited to your requirements.
Full specification sheets are located within each section.
For fast reference, an alphanumeric listing appears on page 19 which lists all
products individually with the appropriate data sheet page number. An
alphanumeric listing also appears at the beginning of each product section.
Application notes provide useful technical information to assist you in
selecting and testing optoelectronic devices.
DATA SHEET CLASSIFICATIONS
CLASSIFICATION
Preview

PRODUCT STAGE
Formative or Design

DATA SHEET

DATA SHEET

Sampling or
Pre-Production

Preliminary

First Production

Advance Information

DATA SHEET

DISCLAIMERS
This document contains the design
specifications for product under
development. Specifications may be
changed in any manner without notice.
This is advance information, and
specifications are subject to change
without notice.
Supplementary data may be published at a
later date.

How to Order
All aT Optoelectronics products may be ordered through any of the
International Sales Offices and Direct Sales Offices listed on the back cover. For
immediate delivery of aT Optoelectronics products, contact any of the stocking
distributors located in your area. See section 7.

Warranties
Seller warrants all items against defects in material and workmanship under
normal use and service for a period of one (1) year from the date of shipment;
provided, however, that Seller's liability under said warranty shall be limited, at
Seller's option, to crediting Buyer's account or replacing or repairing items or
parts thereof which Seller's inspection shall have disclosed to its satisfaction to
have been defective in the form in which it was shipped by Seller, prior to its use
in further manufacture or assembly. This warranty shall not apply to items or
parts thereof that have been (a) subjected to misuse, neglect, accident, damage
in transit, abuse or unusual hazard; (b) repaired, altered or modified by anyone
other than Seller; or (c) used in violation of instructions furnished by Seller. All
requests for return of items must receive the written authorization of Seller.
Seller's warranties extend to the Buyer and to no other person or entity.
Seller's warranties as hereinabove set forth shall not be enlarged, diminished or
affected by, and no obligation or liability shall arise or grow out of, Seller's
rendering of technical advice or service in connection with Buyer's order of the
goods furnished hereunder.
THE FOREGOING ARE IN LIEU OF ALL WARRANTIES, EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY
OTHER WARRANTY OBLIGATION ON THE PART OF THE SELLER.
4

QT Optoelectronics Reliability
At QT Optoelectronics, product dependability is assured through an active program which includes:

New Product
Qualification
All new products evolve through
an orderly design-to-manufacture
flow. At each stage reliability
engineering is present to ensure
that the defined reliability
requirements are met.
The reliability plan is
implemented in the development
stage where actual testing begins.
Stress tests are performed to show
potential problem areas and the
reliability of the new product is
compared directly with that of a
previously qualified product of a
similar generic type.
During limited production, where
components must meet defined
reliability goals, samples from a
minimum of three lots are taken for
extensive testing. These samples
must meet or exceed defined goals
in order for the product to be
considered qualified and
transferred to the reliability
monitoring program.

Quality Control
Quality control is a vital function
at QT Optoelectronics. To minimize
variations in the product and to
maintain quality and hence
reliability, the following in-process
control activities are routinely
performed:
• Incoming inspection of all piece
parts and raw materials.
• Die-attach process control gate.
• Wire-bond control gate.
• Encapsulation control gate.
• 100% final testing.
• Equipment monitors.
• Final Q.A. gate of all lots.
• Finished goods stores monitor.
• Frequent process line audits for
conformance to specification.

Reliability monitoring consists of
the following tests. *
• High Temperature Operating Life
TA=70°C or Higher Temperature
Time=1000 hours minimum
IF=max. rated
• High Temperature Storage
TA=150°C or specified
Time=1000 hours
• Low Temperature Storage
TA= -55°C or specified
Time=1000 hours
• 85/85 No Bias
TA=85°C
RH=85%
Time=1000 hours
• HTRB
TA=100°C or specified
Voltage=80% max. rated
Time=1000 hours
• Thermal Shock per MIl:
STD-883C, Method 1011
TA=O°C to 100°C (Air to Air)
No. of cycles =30
• Temperature Cycle per MILSTD-883C, Method 1010
TA=per device based on storage
temperature (Air to Air)
No. of cycles=50
• Pressure Pot pressure=15 PSI
Time=96 hours
TA=121°C±1°C
• 85/85 and Pressure Pot tests are
not required per MIL-STD-883C
for Hermetic Products.
• Solder Heat Tests (visible
products only) per MILSTD-883C Method 2003.3
TA =260°C±5°C
Duration 10 sec.

Reliability Test
Facilities
The Kuala Lumpur (Malaysia)
test facility is equipped with:
• Automated Testing.
• Life test equipment-High and
Low Temperature.
• Temperature/humidity
chambers.
• High Temperature ovens.
• T/S and T/C equipment.
In addition, the failure analysis
lab facilities have the following
capabilities:
• Electrical testing and verification.
• Pin-to-pin measurements.
• Package dissection and crosssectioning.
• Chemical etching.
• Optical photomicroscopy.
• Micromanipulators.
• Access to scanning electron
microscope with X-ray
spectrometry.
• Access to Augur analYSis.

Failure Analysis and
Qualitative Reliability
When a reliability failure does
occur, a detailed analysis is
performed to provide data for
corrective action, as well as
guidelines for the design of future
new products.
This on-going activity and the
resulting feedback and action are
illustrated in the accompanying
diagram.

Monitor Program
To ensure that qualified products
continue to meet reliability targets,
a monitor program tests generic
device families on a periodic basis
and provides information for the
reliability data bank.
*Not all tests apply to all products.

5

6

OPTOPLANARTM
QT OPTOELECTRONICS' PROCESS TECHNOLOGY
aT OPTOELECTRONICS has developed a new high voltage optocoupler packaging technology
which the company has termed OPTOPLANARTM. The name derives from the coplanarity which is a
primary feature of the new technology, i.e., placing the emitter, detector and, in some cases, the
driver, on the same plane. This does away with leadframe folding or flipping, operations which are
both difficult to control and a potential source of problems.
Benefits of the OPTOPLANARTM process include:
•
•
•
•
•
•

Increased coupling efficiency
Higher tolerance to changes in die position
Less dependence on size of sensitive area on detector
Reduction in assembly-related CTR variations
Enhanced reliability
Improved performance consistency

The improvements in features and performance represented by the new technology are so marked
that aT OPTOELECTRONICS plans to implement the OPTOPLANARTM process across its entire
optocoupler product line.

7

8

FORMER PHILIPS OPTOCOUPLER PRODUCTS
In addition to the optocouplers listed in sections 1 and 2, QT Optoelectronics also supplies the
optocouplers formerly manufactured by Philips Semiconductor. The following part numbers are
available. All devices are available with UL and VDE approval. Please contact your nearest
QT Optoelectronics sales representative for more details.

4N29
4N30
4N31
4N38
CNG35
CNG36
CNG40
CNG82
CNG83
CNW11AV-1
CNW11AV-2
CNW11AV-3
CNW82
CNW83
CNW84
CNW85
CNW135
CNW136
CNW137
CNW138
CNW139

CNW2601
CNW2611
CNW4502
CNX35U
CNX36U
CNX38U
CNX39U
CNX48U
CNX62A
CNX71A
CNX72A
CNX82A
CNX83A
CNY17F-4
CNY17G-1
CNY17G-2
CNY17G-3
CNY17G-4
CNY17GF-1
CNY17GF-2
CNY17GF-3

CNY17GF-4
H11B255
H11D4
H11G3
P040
P044A
SL5500
SL5501
SL5504
SL5505S
SL5511
SL5582
SL5582W
SL5583
SL5583W

9

10

Table of Contents
ALPHANUMERIC PRODUCT LISTING . ....... 19
Page
OPTOCOUPLERS
4N25, 4N27, 4N26, 4N28
4N32,4N33
4N35, 4N36, 4N37
6N137, HCPL-2611, HCPL-2601
6N138,6N139
740L6000, 740 L600 1, 740L601 0,
740L6011
AN1071 (App. Notes)

Phototransistor Optocouplers ..............
Photodarlington Optocouplers .............
Phototransistor Optocouplers ..............
Very High-Speed Logic Gate Optocouplers ..
High Gain Split-Darlington Optocouplers ....

1-23
1-29
1-33
1-45
1-51

High-Speed Logic-To-Logic Optocouplers ...
Optocoupler Input Drive Circuits CNY17 Series

1-57
1-197

AN1074 (App. Notes)
AN1075 (App. Notes)
AN3000 (App. Notes)
CNY17-1, CNY17-3, CNY17-2,
CNY17-4
CNY17F1, CNY17F2, CNY17F3
CSA Approved Couplers
H11A1
H11AA1, H11AA3, H11AA2, H11AA4
H11D1,H11D2,H11D3
H11G1, H11G2
HCPL-2503, HCPL-4502, 6N136,
6N135
HCPL-2530, HCPL-2531
HCPL-2630, HCPL-2631
HCPL-2730, HCPL-2731
MCP3009, MCP3010, MCP3011
MCP3020, MCP3021, MCP3022
MCT2
MCT21 0
MCT2200, MCT2201, MCT2202
MCT270
MCT271
MCT2E
MCT4
MCT4R
MCT5200, MCT5201
MCT5210, MCT5211
MCT6, MCT62, MCT61
MCT9001
MID400
MOC8111, MOC8112, MOC8113
Opto Plus
Surface Mount Options
Tape And Reel
Tape And Reel

Low Current Input Circuit Ideas 6N139/138
Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Mid400 Power Line Monitor ................
Applications And Operation of OPTOLOGICTM

1-203
1-207
1-219

Phototransistor Optocouplers ..............
Phototransistor Optocouplers ..............
CSA Component Acceptance ..............
Transistor Output Optocoupler .............
AC Input/Phototransistor Optocouplers . . . . . .
High-Voltage Phototransistor Optocouplers ..
High Voltage Photodarlington Optocouplers.

1-67
1-73
1-13
1-79
1-83
1-87
1-91

High-Speed Transistor Optocouplers . . . . . . . .
Dual High-Speed Transistor Optocouplers ...
Dual Very High-Speed Logic Gate
Optocouplers ............................
Dual Split-Darlington Optocouplers .........
Non-Zero-Crossing Triacs .................
Non-Zero-Crossing Triacs .................
Phototransistor Optocoupler ...............
Phototransistor Optocoupler ...............
Phototransistor Optocouplers ..............
Phototransistor Optocoupler ...............
Phototransistor Optocoupler ........ ,......
Phototransistor Optocoupler ...............
Phototransistor Optocoupler ...............
Reliability Conditioned Hermetic
Phototransistor Optocoupler ...............
High-Performance AIGaAs Phototransistor
Optocouplers ............................
High-Performance AIGaAs Phototransistor
Optocouplers ............................
Dual Phototransistor Optocouplers .........
Dual Phototransistor Optocoupler ..........
AC Line Monitor Logic-Out Device ..........
Phototransistor Optocouplers ..............
Reliability Conditioned Optocouplers .. . .. . . .
Surface Mount Options .. . . . . . . . . . . . . . . . . . .
6-Pin Surface Mount ......................
8-Pin Surface Mount ......................

1-39
1-95
1-101
1-107
1-113
1-119
1-123
1-135
1-141
1-145
1-149
1-129
1-153
1-157
1-159
1-167
1-173
1-177
1-181
1-187
1-15
1-17
1-19
1-21

11

Page
TIL111
UL Approved Optocouplers
VDE Approved Optocouplers

Phototransistor Optoisolator .............. . 1-193
UL Package Codes ...................... .
1-9
6-Pin Optocouplers ...................... .
1-11

Former Harris Optocouplers Products
4N39, 4N40
Photo SCR Optocouplers ................. .
H11A1, H11A2, H11A3, H11A4,
Phototransistor Optocouplers ............. .
H11A5
H11AG1, H11AG2, H11AG3
Phototransistor Optocouplers ............. .
H11B1,H11B2,H11B3
Photodarlington Optocouplers ............ .
H11C1, H11C2, H11C3, H11C4,
Photo SCR Optocouplers ................. .
H11C5, H11C6
H11F1,H11F2,H11F3
Photo FET Optocouplers ................. .
Microprocessor Compatible GaAs Schmitt
H11L1, H11l2, H11l3
Trigger Optocouplers .................... .
H11N1,H11N2,H11N3
High-Speed AIGaAs Schmitt Trigger
Optocouplers ........................... .
H24A1,H24A2
Phototransistor Optocouplers ............. .
H24B1, H24B2
MOC3009, MOC3010, MOC3011,
Non-Zero-Crossing Triacs
MOC3012
MOC3020, MOC3021 , MOC3022,
Non-Zero-Crossing Triacs
MOC3023
INFRARED COMPONENTS AND ASSEMBLIES
1N6264
GaAs Infrared Emitting Diode ............. .
GaAs Infrared Emitting Diode ............. .
1N6265
1N6266
GaAs Infrared Emitting Diode ............. .
BPW36, BPW37
Hermetic TO-18 Phototransistor ........... .
BPW38
Hermetic TO-18 Photodarlington .......... .
CNY28
Slotted Optical Switch .................... .
CNY29
Slotted Optical Switch .................... .
CNY36
Slotted Optical Switch .................... .
CQX14, CQX16
GaAs Infrared Emitting Diode ............. .
CQX15, CQX17
GaAs Infrared Emitting Diode ............. .
F5D1, F5D2, F5D3
AIGaAs Infrared Emitting Diode ............ .
F5E1, F5E2, F5E3
AIGaAs Infrared Emitting Diode ............ .
F5F1
Plastic GaAs Infrared Emitting Diode ....... .
F5G1
Plastic AIGaAs Infrared Emitting Diode ..... .
Slotted Optical Switch .................... .
H21A1, H21A2, H21A3
H21A4, H21A5, H21A6
Slotted Optical Switch .................... .
H21 B1, H21 B2, H21 B3
Slotted Optical Switch .................... .
H21 B4, H21 B5, H21 B6
Slotted Optical Switch .................... .
H21 L1, H21 L2
Slotted Optical Switch .................... .
H22A 1, H22A2, H22A3
Slotted Optical Switch .................... .
H22A4, H22A5, H22A6
Slotted Optical Switch .................... .
H22B1, H22B2, H22B3
Slotted Optical Switch .................... .
Slotted Optical Switch .................... .
H22B4, H22B5, H22B6
H22L1 , H22l2
Slotted Optical Switch .................... .
H23A 1, H23A2
Plastic Sidelooker Pair ................... .
H23B1
Plastic Sidelooker Pair ................... .
H23L1
Plastic Sidelooker Pair .... ; .............. .
Hermetic TO-18 Phototransistor ........... .
L14C1, L14C2
L14F1 , L14F2
Hermetic TO-18 Photodarlington .......... .
L14G1, L14G2, L14G3
Hermetic TO-18 Phototransistor ........... .
L14N 1, L14N2, L14N3
Hermetic TO-18 Phototransistor ........... .

12

2-7
2-13
2-17
2-21
2-25
2-31
2-35
2-41
2-47
2-51
2-55
2-61

3-127
3-131
3-135
3-193
3-197
3-263
3-267
3-271
3-201
3-205
3-141
3-145
3-149
3-153
3-209
3-213
3-217
3-221
3-241
3-225
3-229
3-233
3-237
3-245
3-249
3-253
3-257
3-165
3-169
3-173
3-177

Page
L14P1, L14P2
L14Q1
L14R1
LED558F, LED55CF, LED56F
LED558, LED55C, LED56
OP8703, OP8704, OP8705
OP8703W, OP8704W, OP8705W
OP8706A, OP87068, OP8706C
OP8804
OP8860N11, OP8860N51,
OP8860N55
OP8860T11, OP8860T51,
OP8860T55
OP8861 N51, OP8861 N55
OP8861T51, OP8861T55
OP8862N51 , OP8862N55
OP8862T51, OP8862T55
OP8865N11, OP8865N51,
OP8865N55
OP8865T11, OP8865T51,
OP8865T55
OP8866N51, OP8866N55
OP8866T51,OP8866T55
OP8867N51, OP8867N55
OPB867T51, OPB867T55
QCK3, QCK4
QEC112, QEC113
QEC121, QEC122
QED121, QED122, QED123
QED221, QED222
QED233, QED234
QED422, QED423
QED522, QED523
QEE113
QEE122, QEE123
QPA1223
QPA8259
QPC1213
QPD1223
QPD5223
QPE1113
QPE1259
QRB1113, QR81114
QRB1133, QRB1134
QRC1113
QRC1133
QRD1113, QRD1114
QRD1313
QSA 156, QSA157, QSA 158, QSA 159
QSC112, QSC113, QSC114
QSC133
QSD122, QSD123, QSD124
QSD128
QSD422, QSD423, QSD424
QSD722, QSD723, QSD724
QSD733

Hermetic TO-18 Phototransistor ............
Plastic Sidelooker Phototransistor ..........
Plastic Sidelooker Photodarlington .. . .. ... ..
GaAs Infrared Emitting Diode ..............
GaAs Infrared Emitting Diode ..............
Reflective Object Sensors .................
Reflective Object Sensors .................
Reflective Object Sensor ..................
Slotted Optical Switch . .. .. .. .. .. .. . .. .. . ..

3-181
3-185
3-189
3-161
3-157
3-95
3-97
3-99
3-101

Slotted Optical Switch.. ....... .. . .. ..... ..

3-103

.. . . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . . . ..
. .. .. .. .. .. .. . .. .. . ..
. . . . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . . . ..

3-115
3-105
3-117
3-107
3-119

Slotted Optical Switch .. . . . . . . . . . . . . . . . . . ..

3-109

Slotted Optical Switch. .... .. .. .. .. . ..... ..
Slotted Optical Switch . . . . . . . . . . . . . . . . . . . ..
Slotted Optical Switch . . . . . . . . . . . . . . . . . . . ..
Slotted Optical Switch . . . . . . . . . . . . . . . . . . . ..
Slotted Optical Switch . .. .. .. .. .. .. . .. .. . ..
Surface Mount Slotted Optical Switch .......
GaAs Infrared Emitting Diode ..............
AIGaAs Infrared Emitting Diode . . . . . . . . . . . . .
AIGaAs Infrared Emitting Diode. .. ... ..... ..
AIGaAs Infrared Emitting Diode. . . . . . . . . . . . .
GaAs Infrared Emitting Diode ..............
AIGaAs Infrared Emitting Diode. .. .. . ..... . .
AIGaAs Infrared Emitting Diode. . . . . . . . . . . . .
GaAs Infrared Emitting Diode ..............
AIGaAs Infrared Emitting Diode. . . . . . . . . . . . .
Hermetic Pair ............................
Hermetic Pair ............................
Plastic T-1 Pair ...........................
Plastic T-1 % Pair . . .. .. .. .. .. .. .. .. . .. .. .. .
Plastic TO-46!TO-18 Pair ..................
Plastic Sidelooker Pair ....................
Plastic Sidelooker Pair ....................
Reflective Object Sensors .................
Reflective Object Sensors .................
Reflective Object Sensors .................
Reflective Object Sensor ..................
Reflective Object Sensor ..................
Reflective Object Sensor ..................
Hermetic OPTOLOGICTM . . . . . . . . . . . . . . . . . . .
Plastic T-1 Phototransistor .................
Plastic T-1 Photodarlington . . . . . . . . . . . . . . . . .
Plastic T-1 % Phototransistor .. . . . . . . . . . . . . . .
Plastic T-1 % Phototransistor .... . . . . . . . . . . . .
Plastic TO-46 Phototransistor ..............
Plastic TO-18 Phototransistor ..............
Plastic TO-18 Photodarlington . . . . . . . . . . . . . .

3-121
3-111
3-123
3-113
3-125
3-67
3-3
3-5
3-7
3-9
3-11
3-13
3-15
3-17
3-19
3-53
3-55
3-57
3-59
3-61
3-63
3-65
3-69
3-71
3-73
3-75
3-77
3-79
3-21
3-25
3-27
3-29
3-31
3-33
3-35
3-37

Slotted
Slotted
Slotted
Slotted
Slotted

Optical
Optical
Optical
Optical
Optical

Switch
Switch
Switch
Switch
Switch

13

aSE113, aSE114
aSEf22, aSE123
aSE133
aSE156, aSE157, aSE158, aSE159
aSE773
aSE973
aVA11123, aVA11124, aVA11223,
aVA11224, aVA11323, aVA11324,
aVA11133, aVA11134, aVA11233,
aVA11234, aVA11333, aVA11334,
aVA21113, aVA21114, aVA21213,
aVA21214,aVA21313,aVA21314
aVB11123, aVB11124, aVB11223,
aVB11224, aVB11323, aVB11324,
aVB11133, aVB11134, aVB11233,
aVB11234, aVB11333, aVB11334,
aVB21113, aVB21114, aVB21213,
aVB21214, aVB21313, aVB21314
aVE11233
aVL21653
aVL25335

DISPLAYS
5082-7650,5082-7651,5082-7653,
5082-7656,5082-7750,5082-7751,
5082-7756,5082-7760
FND310C, FND317C, FND318C
FND350C, FND357C, FND358C,
FND360C, FND367C, FND368C
GMA2875C, GMC2875C,
GMA2975C, GMC2975C,
GMA2475C, GMC2475C,
GMA2675C
GMA7175CA, GMC7175CA,
GMA7475CA, GMC7475CA,
GMA7975CA, GMC7975CA
GMA7175C, GMC7175C,
GMA7475C, GMC7475C,
GMA7975C, GMC7975C
GMA8475C, GMC8475C,
GMA8875C, GMC8875C,
GMA8975C, GMC8975C,
GMA8675C, GMC8675C
MAN3010A, MAN3040A, MAN3020A,
MAN6060, MAN6080, MAN8010,
MAN8040
MAN3210A, MAN3240A, MAN3220A,
MAN6260, MAN6280, MAN8210,
MAN8240
MAN3410A, MAN3420A, MAN3440A,
MAN3610A, MAN3620A, MAN3630A,
MAN3640A, MAN71 A, MAN72A,
MAN73A, MAN74A, MAN3810A,
MAN3820A, MAN3840A
MAN3480A, MAN3680A, MAN78A,
MAN3880A, MAN3980A

14

Plastic Sidelooker Phototransistor ......... .
Plastic Sidelooker Phototransistor ......... .
Plastic Sidelooker Photodarlington ......... .
Sidelooker OPTOLOGICTM ................ .
Plastic Sidelooker PIN Photodiode ......... .
Plastic Sidelooker PIN Photodiode ......... .

Page
3-39
3-41
3-43
3-45
3-49
3-51

Slotted Optical Switch .................... .

3-81

Slotted Optical
Slotted Optical
Slotted Optical
Slotted Optical

.................... .
.................... .
.................... .
.................... .

3-85
3-89
3-91
3-93

0.43-lnch Seven Segment Displays .........
0.362 -Inch 7 - Segment Display ...........

4-61
4-41

0.362-lnch Seven Segment Displays ........

4-45

2.0" 5 x 7 Dot Matrix Displays ..............

4-127

0.7" 5 x 7 Dot Matrix Displays ...............

4-113

Switch
Switch
Switch
Switch

0.7" 5x7 Dot Matrix Displays.......... ..... 4-107

1.2" 5 x 7 Dot Matrix Displays ..............

4-119

Double Heterojunction AIGaAs Red Low
Current Displays................... .......

4-7

Double Heterojunction AIGaAs Red Sunlight
Viewable Displays ........................

4-15

0.300-lnch Seven Segment Displays

4-21

0.300-lnch Seven Segment Displays

4-29

Page
MAN3910A, MAN3920A, MAN3940A,
MAN3980A
MAN4410A, MAN4440A, MAN4610A,
MAN4630A, MAN4640A, MAN4705A,
MAN4710A, MAN4740A
MAN4910A, MAN4940A
MAN5350, MAN5360, MAN5450,
MAN5460, MAN5750, MAN5760,
MAN5950, MAN5960
MAN641 0, MAN6440, MAN6460,
MAN6480
MAN6610, MAN6630, MAN6640,
MAN6650, MAN6660, MAN6675,
MAN6680, MAN6695
MAN6710, MAN6730, MAN6740,
MAN6750, MAN6760, MAN6780
MAN6910, MAN6930, MAN6940,
MAN6950, MAN6960, MAN6980
MAN8410, MAN8440
MAN8610, MAN8640
MAN8910, MAN8940

LIGHT BARS & BARGRAPH ARRAYS
HLMP-2300, HLMP-2400,
HLMP-2500, HLMP-2350,
HLMP-2450, HLMP-2550,
HLMP-2655, HLMP-2755,
HLMP-2855, HLMP-2670,
HLMP-2770, HLMP-2870,
HLMP-2685, HLMP-2785, HLMP-2885
MV53164, MV54164, MV57164
MV53173, MV54173, MV57173
MV5A164, MV5D164, MV5B164,
MV5E164, MV5C164
LAMPS
HLMP-0300, HLMP-0301 ,
HLMP-0400, HLMP-0401,
HLMP-0503, HLMP-0504
HLMP-1440, MV5360, HLMP-1420,
MV53621, MV53622, HLMP-1540,
MV5460, HLMP-1520, MV54624,
HLMP-1521, HLMP-1340, MV5760,
HLMP-1320, MV57620, MV57621,
MV57622, HLMP-1321
HLMP-1700, HLMP-4700,
HLMP-1719, HLMP-4719,
HLMP-1790, HLMP-4740, MV2454
HLMP-3300, HLMP-3315,
HLMP-3301, HLMP-3316, FLV11 0
HLMP-3750, MV3750, HLMP-3950,
MV3450, HLMP-3850, MV3350
HLMP-6600, HLMP-6620,
HLMP-6700, HLMP-6720,
HLMP-6800, HLMP-6820

0.300-lnch Seven Segment Displays

4-37

0.400-lnch Seven Segment Displays
0.400-lnch Seven Segment Displays

4-49
4-57

0.510 Inch (13 Mm) Seven Segment Displays

4-67

0.560-lnch Seven Segment Displays

4-75

0.560-lnch Seven Segment Displays

4-79

0.560-lnch Seven Segment Displays

4-85

0.560-lnch
0.800-lnch
0.800-lnch
0.800-lnch

Seven
Seven
Seven
Seven

Segment Displays
Segment Displays
Segment Displays
Segment Displays

4-89
4-95
4-99
4-103

LED Light Bars .......................... .
Bargraph Displays ....................... .
Panel Indicators ......................... .

5-5
5-15
5-11

Multicolor Bargraph ...................... .

5-19

Rectangular Solid State Lamps .. . . . . . . . . . ..

6-159

Clear Lens T-1 00 Solid State Lamps . . . . . . . . .

6-43

Low Current T-1 00 & T-1 % Solid State Lamps.

6-61

T-1% Solid State Lamps. . . . . . . . . . . . . . . . . . . .

6-81

Ultrabright T-1 % Solid State Lamps . . . . . . . . . .

6-85

Subminiature T-%, 5 - Volt Resistor Lamps. . . .

6-25

15

Page
HLMP-D600, HLMP-D640, HLMP-D400,
HLMP-D401
HLMP-K1 01, HLMP-K105, HLMP-D1 01,
HLMP-D105
HLMP-K150, HLMP-K155, HLMP-D150,
HLMP-D155
HLMP-K600, HLMP-K640, HLMP-K400,
HLMP-K401, HLMP-K402
HLMP-M200, HLMP-M201,
HLMP-M250, HLMP-M251,
HLMP-M300, HLMP-M301 ,
HLMP-M350, HLMP-M351,
HLMP-M500, HLMP-M501,
HLMP-M550, HLMP-M551
HLMP-Q105, HLMP-6305, HLMP-6405,
HLMP-6505
HLMP-Q150, HLMP-7000, HLMP-7019,
HLMP-7040
MP22, MP52
MP65
MR3050/MR3051, MR3750/MR3751,
MR3350/MR3351, MR3450/MR3451
MR5000, MR5310, MR5410, MR5010,
MR5020
MR5060, MR5660, MR5760, MR5761,
MR5360, MR5361, MR5460, MR5461
MV50152, MV50154, MV53152,
MV53154, MV54152, MV54154,
MV57152, MV57154
MV5021A, MV5022A, MV5023A,
MV5024A, MV5025A, MV5026A
MV5052, MV5053, MV5054A-1,
MV5054A-2, MV5054A-3, MV5055,
MV6053
MV50640, MV53640, MV53641,
MV53642, MV54643, HLMP-1503,
MV54644, HLMP-1523, MV57640,
HLMP-1300, MV57641, HLMP-1301,
MV57642, HLMP-1302
MV5074C, MV5075C, MV5374C,
MV5474C, MV5774C
MV5077C, MV5377C, MV5477C,
MV5777C
MV50BL, MV54BL, MV53BL, MV64BL,
MV55ABL, MV57BL
MV5152, MV6152, MV5352, MV6352,
MV5452, MV64520, MV64521 ,
MV5752, MV6752
MV5153, MV6153, MV5154A,
MV6154A, MV5353, MV6353,
MV5354A, MV6354A, MV5453,
MV64530, MV64531, MV5454A,
MV6454A, MV5753, MV6753,
MV5754A, MV6754A

16

T-1% (5 mm) Solid State Lamps. . . . . . . . . . . ..

6-131

AIGaAs High Intensity Red LED Lamps ......

6-63

AIGaAs Low Current Red LED Lamps .......

6-51

T-1 (3 mm) Solid State Lamps...... ........

6-47

4mm FlatTop Lamps...... ................

6-151

Subminiature T-% Non-Diffused Lamps ......
Subminiature T-% Low Current 2 MA Diffused
Lamps ..................................
T-1% Panel Mounting Grommets...... ......
MV5X124 Panel Mounting Grommet ........

6-17
6-19
6-169
6-167

Integrated T-1 % Resistor Lamps, 5-Volt and
12-Volt Series ............................

6-135

Subminiature T-% Resistor Lamps. . . . . . . . . . .

6-21

Integrated T-1 Resistor Lamps, 5-Volt and
12-Volt Series ............................

6-67

Bullet Profile T-1% Solid State Lamps. ... ....

6-77

Tapered Package T-1:y., Solid State Lamps ......

6-73

Standard Red T-1 % Solid State Lamps . . . . . . .

6-89

Diffused T-100 Solid State Lamps...........

6-57

T-1 Solid State Lamps.. ..... ... ...........

6-39

Low Profile T-1 Solid State Lamps .. . . . . . . . . .

6-35

Subminiature T-% Solid State Lamps ........

6-9

Clear Lens T-1 % Solid State Lamps . . . . . . . . . .

6-93

Diffused T-1 % Solid State Lamps . . . . . . . . . . ..

6-127

Page
MV53123, MV54123, MV57123
MV53124A, MV54124A, MV57124A,
MV49124A
MV5437
MV5491A, MV5094A
MV5B54, MV5B66
MV6000, MV6700, MV6300, MV6400
MV6151 , MV6351 , MV6451 , MV6951
MV6461, MV6661
MV81 02, MV81 03, MV81 04
MV8111, MV8112, MV8113, MV8114
MV8132, MV8133, MV8332, MV8333
MV8140, MV8190, MV8141, MV8191
MV8313, MV8314
MV8341, MV8342
MV8410, MV8411
MV8741, MV8703, MV8742, MV8704
MV91 00, MV91 01, MV91 02
QTLP282-2, QTLP282-3, QTLP282-4,
QTLP282-7
QTLP913-2, QTLP912-2, QTLP913-3,
QTLP912-3, QTLP913-4, QTLP912-4,
QTLP913-7, QTLP912-7

TAPE AND REEL

Rectangular Solid State Lamps ..... . . . . . . ..

6-155

Rectangular Solid State Lamps ... . . . . . . . . ..
3 Leads Bicolor T-1 % Solid State Lamps .......
Bicolor and Bipolar T-1 % Solid State Lamps ..
Blue Leds ...............................
Subminiature T-% Solid State Lamps ........
High Contrast T-1 % Solid State Lamps . . . . . ..
Bicolor T-1 Solid State Lamps ..............
Super Bright T-1 % (5 mm) LED Lamps ... . . . .
Super BrightT-1% (5 mm) LED Lamps. .. ....
Super Bright T-1 % (5 mm) LED Lamps ... . . ..
Super Bright T-1 % (5 mm) LED Lamps .......
Super Bright T-1 % (5 mm) LED Lamps . . . . . ..
Super Bright T-1 % (5 mm) LED Lamps . . . . . ..
Super Bright T-1 % (5 mm) LED Lamps . . . . . ..
Super BrightT-1% (5 mm) LED Lamps. .. ....
Super Bright 10 Mm LED Lamps.. .. .. .. ....

6-163
6-145
6-143
6-55
6-13
6-139
6-71
6-97
6-101
6-105
6-109
6-113
6-117
6-121
6-123
6-147

Surface Mount LED Lamp Flat Type .........

6-31

Subminiature T-% (1.9 mm) Solid State Lamps

6-27

LED .....................................

6-171

APPENDIX
North American Technical Representatives ..........................................
North American Authorized Distributors .............................................
European Authorized Distributors ..................................................
Asian Authorized Representatives and Distributors ...................................

7-1
7-3
7-5
7-7

17

18

Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

1-67
1-67
1-73
1-73
1-73

GMA 2985C ................
GMA 2988C ................
GMA 7175C ................
GMA 7175CA ...............
GMA 7475C ................

4-135
4-143
4-107
4-113
4-107

3-263
3-267
3-271
3-201
3-205

GMA 7475CA ...............
GMA 7975C ................
GMA 7975CA ...............
GMA 8475C ................
GMA 8675C ................

4-113
4-107
4-113
4-119
4-119

1N6264 .................... 3-127
1N6265 .................... 3-131
1N6266 .................... 3-135
4N25 ....................... 1-23
4N26 ....................... 1-23

CNY17-3 ....................
CNY17-4 ....................
CNY17F1 ...................
CNY17F2 ...................
CNY17F3 ...................

4N27
4N28
4N32
4N33
4N35

CNY28
CNY29
CNY36
CQX14
CQX15

.......................
.......................
.......................
.......................
.......................

1-23
1-23
1-29
1-29
1-33

....................
....................
....................
....................
....................

4N36 ....................... 1-33
4N37 ....................... 1-33
4N39 ........................ 2-7
4N40 ........................ 2-7
5082-7650 .................. 4-61

CQX16 .................... 3-201
CQX17 .................... 3-205
CSAAPPROVED COUPLERS .. 1-13
F5D1 ...................... 3-141
F5D2 ...................... 3-141

GMA 8875C
GMA 8975C
GMC 2475C
GMC 2485C
GMC 2488C

................
................
................
................
................

4-119
4-119
4-127
4-135
4-143

5082-7651
5082-7653
5082-7656
5082-7750
5082-7751

GMC 2688C
GMC 2875C
GMC 2885C
GMC 2888C
GMC 2975C

................
................
................
................
................

4-143
4-127
4-135
4-143
4-127

..................
..................
..................
..................
..................

4-61
4-61
4-61
4-61
4-61

F5D3
F5E1
F5E2
F5E3
F5F1

5082-7756 ..................
5082-7760 ..................
6N135 ......................
6N136 ......................
6N137 ......................

4-61
4-61
1-39
1-39
1-45

F5G1 ...................... 3-153
FLV110 ..................... 6-81
FND310C ................... 4-41
FND317C ................... 4-41
FND318C ................... 4-41

GMC 2985C ................
GMC 2988C ................
GMC 7175C ................
GMC 7175CA ...............
GMC 7475C ................

4-135
4-143
4-107
4-113
4-107

6N138 ......................
6N139 ......................
740L6000 ..................
740L6001 ...................
740L6010 ...................

1-51
1-51
1-57
1-57
1-57

FN D350C
FND357C
FND358C
FN D360C
FND367C

GMC 7475CA ..............
GMC 7975C ................
GMC 7975CA ..............
GMC 8475C ................
GMC 8675C ................

4-113
4-107
4-113
4-119
4-119

......................
......................
......................
......................
......................

. . . . . . . . . . . . . . . . . ..
...................
...................
. . . . . . . . . . . . . . . . . ..
...................

3-141
3-145
3-145
3-145
3-149

4-45
4-45
4-45
4-45
4-45

740L6011 ................... 1-57
APP. NOTE (AN1071 for CNY17) . 1-197
APP. NOTE (AN1074 for 6N138/139) 1-203
APP. NOTE (AN1075 for MID400) 1-207
APP. NOTE (AN3OOOfor740L..6OXX) 1-219

FND368C ................... 4-45
GMA2475C ................ 4-127
GMA2485C ................ 4-135
GMA2488C ................ 4-143
GMA2675C ................ 4-127

GMC 8875C ................ 4-119
GMC 8975C ................ 4-119
H11A1 ...................... 1-79
H11A1 ...................... 2-13
H11A2 ...................... 2-13

BPW36 .. . . . . . . . . . . . . . . . . .. 3-193
BPW37 .................... 3-193
BPW38 .................... 3-197
CNY17-1 .................... 1-67
CNY17-2 .................... 1-67

GMA2685C
GMA 2875C
GMA 2885C
GMA2888C
GMA2975C

H11A3 ......................
H11A4 ......................
H11A5 ......................
H11AA1 .....................
H11AA2 .....................

................
................
................
................
................

4-135
4-127
4-135
4-143
4-127

2-13
2-13
2-13
1-83
1-83

19

Alphanumeric Product Listing
Product

Product

Page

Product

...................
...................
...................
...................
...................

1-83
1-83
2-17
2-17
2-17

H21L1 ....................
H21 L2 ...................
H22A1 ...................
H22A2 .. .. .. . .. .. . .. .. ...
H22A3 .. .. . .. .. .. . .. .. ...

3-241
3-241
3-225
3-225
3-225

HLMP-1300
HLMP-1301
HLMP-1302
HLMP-1320
HLMP-1321

................
................
................
................
................

6-57
6-57
6-57
6-43
6-43

H11B1 .....................
H11B2 ....................
H11B3 ....................
H11C1 ....................
H11C2 ....................

2-21
2-21
2-21
2-25
2-25

H22A4
H22A5
H22A6
H22B1
H22B2

.. .. .. . .. .. . .. .. ...
.. .. .. . .. .. . .. . ....
.. .. .. . .. .. . .. .. ...
...................
...................

3-229
3-229
3-229
3-233
3-233

HLMP-1340
HLMP-1420
HLMP-1440
HLMP-1503
HLMP-1520

................
................
................
................
................

6-43
6-43
6-43
6-57
6-43

H11C3 ....................
H11C4 ....................
H11C5 ....................
H11C6 ....................
H11D1 .....................

2-25
2-25
2-25
2-25
1-87

H22B3
H22B4
H22B5
H22B6
H22L1

.. .. .. . .. .. . .. . ....
...................
.. .. .. . .. .. . .. . ....
...................
...................

3-233
3-237
3-237
3-237
3-245

HLMP-1521
HLMP-1523
HLMP-1540
HLMP-1700
HLMP-1719

................
................
................
................
................

6-43
6-57
6-43
6-61
6-61

H11D2 ....................
H11D3 ....................
H11F1 .....................
H11F2 .....................
H11F3 .....................

1-87
1-87
2-31
2-31
2-31

H22L2
H23A1
H23A2
H23B1
H23L1

...................
...................
. .. .. .. . .. .. . . . .. ..
...................
...................

3-245
3-249
3-249
3-253
3-257

HLMP-1790
HLMP-2300
HLMP-2350
HLMP-2400
HLMP-2450

................ 6-61
................. 5-5
................. 5-5
................. 5-5
................. 5-5

H11G1 .....................
H11G2 ....................
H11L1 .....................
H11L2 ....................
H11L3 ....................

1-91
1-91
2-35
2-35
2-35

H24A1 ....................
H24A2 ....................
H24B1 ....................
H24B2 ....................
HCPl:2503 ................

2-47
2-47
2-51
2-51
1-39

HLMP-2500
HLMP-2550
HLMP-2655
HLMP-2670
HLMP-2685

.................
.................
.................
.................
.................

5-5
5-5
5-5
5-5
5-5

................ 1-95
................ 1-95
................ 1-45
................ 1-45
............... 1-101

HLMP-2755
HLMP-2770
HLMP-2785
HLMP-2855
HLMP-2870

.................
.................
.. .. . . .. .. . .. ....
.................
.................

5-5
5-5
5-5
5-5
5-5

H11M3
H11M4
H11AG1
H11AG2
H11AG3

Page

H11N1 ..................... 2-41
H11N2 .................... 2-41
H11N3 .................... 2-41
H21A1 ................... 3-209
H21A2 ................... 3-209

HCPl:2530
HCPL-2531
HCPl:2601
HCPl:2611
HCPL-2630

Page

H21A3
H21A4
H21A5
H21A6
H21B1

...................
...................
...................
...................
...................

3-209
3-213
3-213
3-213
3-217

HCPL-2631 ................ 1-101
HCPL-2730 ............... 1-107
HCPL-2731 ............... 1-107
HCPL-4502 ................ 1-39
HLMP-0300 ............... 6-159

HLMP-2885
HLMP-3300
HLMP-3301
HLMP-3315
HLMP-3316

................. 5-5
................ 6-81
................ 6-81
................ 6-81
................ 6-81

H21B2
H21 B3
H21 B4
H21 B5
H21 B6

...................
...................
...................
...................
...................

3-217
3-217
3-221
3-221
3-221

HLMP-0301
HLMP-0400
HLMP-0401
HLMP-0503
HLMP-0504

HLMP-3750
HLMP-3850
HLMP-3950
HLMP-4700
HLMP-4719

. .. . . .. .. . .. ....
................
................
................
................

20

...............
...............
...............
...............
...............

6-159
6-159
6-159
6-159
6-159

6-85
6-85
6-85
6-61
6-61

Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

HLMP-4740
HLMP-6305
HLMP-6405
HLMP-6505
HLMP-6600

................
................
................
................
. . . . . . . . . . . . . . ..

6-61
6-17
6-17
6-17
6-25

HLMP-M550 .............. 6-151
HLMP-M551 ............... 6-151
HLMP-Q105 ................ 6-17
HLMP-Q150 ................ 6-19
L14C1 .................... 3-165

MAN3840A
MAN3880A
MAN3910A
MAN3920A
MAN3940A

................
.... . . . . . . . . . . ..
................
.... . . . . . . . . . . ..
..... . . . . . . . . . ..

4-21
4-29
4-37
4-37
4-37

HLMP-6620
HLMP-6700
HLMP-6720
HLMP-6800
HLMP-6820

................
. . . . . . . . . . . . . . ..
................
................
................

6-25
6-25
6-25
6-25
6-25

L14C2 ...................
L14F1 ....................
L14F2 ....................
L14G1 ...................
L14G2 ...................

3-165
3-169
3-169
3-173
3-173

MAN3980A
MAN3980A
MAN4410A
MAN4440A
MAN4610A

..... . . . . . . . . . ..
.... . . . . . . . . . . ..
................
..... . . . . . . . . . ..
................

4-29
4-37
4-49
4-49
4-49

HLMP-7000
HLMP-7019
HLMP-7040
HLMP-D101
HLMP-D105

................
................
................
................
...............

6-19
6-19
6-19
6-63
6-63

L14G3 ...................
L14N1 ....................
L14N2 ...................
L14P1 ....................
L14P2 ....................

3-173
3-177
3-177
3-181
3-181

MAN4630A
MAN4640A
MAN4705A
MAN4710A
MAN4740A

..... . . . . . . . . . ..
................
... . . . . . . . . . . . ..
................
... . . . . . . . . . . . ..

4-49
4-49
4-49
4-49
4-49

HLMP-D150
HLMP-D155
HLMP-D400
HLMP-D401
HLMP-D600

................ 6-51
................ 6-51
............... 6-131
............... 6-131
............... 6-131

L14Q1 ...................
L14R1 ....................
LED55B ..................
LED55BF . . . . . . . . . . . . . . . ..
LED55C ..................

3-185
3-189
3-157
3-161
3-157

MAN4910A ................
MAN4940A ................
MAN5350 .................
MAN5360 .................
MAN5450 .................

4-57
4-57
4-67
4-67
4-67
4-67
4-67
4-67
4-67
4-67

HLMP-D640 ............... 6-131
HLMP-K101 ................ 6-63
HLMP-K105 ................ 6-63
HLMP-K150 ................ 6-51
HLMP-K155 ................ 6-51

LED55CF ................. 3-161
LED56 ................... 3-157
LED56F .................. 3-161
MAN3010A ................. 4-7
MAN3020A ..... . . . . . . . . . . .. 4-7

MAN5460
MAN5750
MAN5760
MAN5950
MAN5960

.................
.................
.................
.................
.................

HLMP-K400
HLMP-K401
HLMP-K402
HLMP-K600
HLMP-K640

6-47
6-47
6-47
6-47
6-47

MAN3040A
MAN3210A
MAN3220A
MAN3240A
MAN3410A

..... . . . . . . . . . . .. 4-7
................ 4-15
................ 4-15
................ 4-15
................ 4-21

MAN6060
MAN6080
MAN6260
MAN6280
MAN6410

.................. 4-7
.................. 4-7
................. 4-15
................. 4-15
................. 4-75

HLMP-M200 ..............
HLMP-M201 ...............
HLMP-M250 ..............
HLMP-M251 ...............
HLMP-M300 ..............

6-151
6-151
6-151
6-151
6-151

MAN3420A
MAN3440A
MAN3480A
MAN3610A
MAN3620A

................
................
................
................
................

4-21
4-21
4-29
4-21
4-21

MAN6440
MAN6460
MAN6480
MAN6610
MAN6630

.................
.................
.................
.................
.................

4-75
4-75
4-75
4-79
4-79

HLMP-M301 ...............
HLMP-M350 ..............
HLMP-M351 ...............
HLMP-M500 ..............
HLMP-M501 ...............

6-151
6-151
6-151
6-151
6-151

MAN3630A
MAN3640A
MAN3680A
MAN3810A
MAN3820A

................
................
... . . . . . . . . . . . ..
................
................

4-21
4-21
4-29
4-21
4-21

MAN6640
MAN6650
MAN6660
MAN6675
MAN6680

.................
.................
.................
.................
.................

4-79
4-79
4-79
4-79
4-79

...............
................
...............
...............
...............

21

Alphanumeric Product Listing
Product

Product

Page

Product

MAN6695
MAN6710
MAN6730
MAN6740
MAN6750

.................
.................
.................
.................
.................

4-79
4-85
4-85
4-85
4-85

MCT271 ..................
MCT2E ...................
MCT4 ....................
MCT4R ...................
MCT5200 .................

1-149
1-129
1-153
1-157
1-159

MR5360
MR5361
MR5410
MR5460
MR5461

.. . . .. .. . .. . . .. ....
...................
...................
...................
...................

6-67
6-67
6-21
6-67
6-67

MAN6760
MAN6780
MAN6910
MAN6930
MAN6940

.................
.................
.................
.................
.................

4-85
4-85
4-89
4-89
4-89

MCT5201 .................
MCT5210 .................
MCT5211 .................
MCT6 ....................
MCT61 ...................

1-159
1-167
1-167
1-173
1-173

MR5660
MR5760
MR5761
MV2454
MV3350

...................
. . . . . . . . . . . . . . . . . ..
...................
.. .. .. . .. . .. . .. .. ..
.. .. .. .. .. .. .. .. ...

6-67
6-67
6-67
6-61
6-85

MAN6950 .................
MAN6960 .................
MAN6980 .................
MAN71A ..................
MAN72A ..................

4-89
4-89
4-89
4-21
4-21

MCT62 ................... 1-173
MCT9001 ................. 1-177
MID400 ................... 1-181
MOC3009 ................. 2-55
MOC3010 ................. 2-55

MV3450 . .. .. .. .. .. .. .. .... 6-85
MV3750 .. . .. .. .. .. . .. . .... 6-85
MV49124A ................ 6-163
MV50152 .. .. . .. . .. . .. . .... 6-77
MV50154 .................. 6-77

MAN73A .................. 4-21
MAN74A .................. 4-21
MAN78A .................. 4-29
MAN8010 .................. 4-7
MAN8040 .................. 4-7

MOC3011
MOC3012
MOC3020
MOC3021
MOC3022

2-55
2-55
2-61
2-61
2-61

MV5021A ..................
MV5022A .................
MV5023A .................
MV5024A .................
MV5025A .................

6-73
6-73
6-73
6-73
6-73

MAN8210 ..................
MAN8240 .................
MAN8410 .................
MAN8440 .................
MAN8610 .................

MOC3023 ................. 2-61
MOC8111 ................. 1-187
MOC8112 ................. 1-187
MOC8113 ................. 1-187
MP22 .................... 6-169

MV5026A .................
MV5052 .. .. .. .. . .. .. .. ....
MV5053 ...................
MV5054A-1 ................
MV5054A-2 ................

6-73
6-89
6-89
6-89
6-89

MP52 ....................
MP65 ....................
MR3050 ..................
MR3051 ..................
MR3350 ..................

6-169
6-167
6-135
6-135
6-135

MV5054A-3 . . . . . . . . . . . . . . ..
MV5055 .. . .. .. . . .. .. . .. ...
MV50640 ..................
MV5074C .................
MV5075C .................

6-89
6-89
6-57
6-39
6-39

6-135
6-135
6-135
6-135
6-135

MV5077C ................. 6-35
MV5094A ................ 6-143
MV50BL .................... 6-9
MV5152 ................... 6-93
MV5153 .................. 6-127

MAN8640
MAN8910
MAN8940
MCP3009
MCP3010

Page

4-15
4-15
4-95
4-95
4-99

................. 4-99
................ 4-103
................ 4-103
................. 1-113
................. 1-113

.................
.................
.................
.................
.................

MCP3011 .................
MCP3020 .................
MCP3021 .................
MCP3022 .................
MCT2 ....................

1-113
1-119
1-119
1-119
1-123

MR3351
MR3450
MR3451
MR3750
MR3751

..................
..................
..................
..................
..................

MCT210 ..................
MCT2200 .................
MCT2201 .................
MCT2202 .................
MCT270 ..................

1-135
1-141
1-141
1-141
1-145

MR5000
MR5010
MR5020
MR5060
MR5310

. .. .. .. .. .. .. . . . ...
...................
...................
...................
...................

22

6-21
6-21
6-21
6-67
6-21

Page

MV5154A ................. 6-127
MV53123 ................. 6-155
MV53124A ................ 6-163
MV53152 .................. 6-77
MV53154 .................. 6-77

Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

MV53164 .................. 5-15
MV53173 .................. 5-11
MV5352 . . . . . . . . . . . . . . . . . .. 6-93
MV5353 . . . . . . . . . . . . . . . . .. 6-127
MV5354A ................ 6-127

MV5753 .................. 6-127
MV5754A ................ 6-127
MV5760 . . . . . . . . . . . . . . . . . .. 6-43
MV57620 . . . . . . . . . . . . . . . . .. 6-43
MV57621 .................. 6-43

MV6700 ................... 6-13
MV6752 . . . . . . . . . . . . . . . . . .. 6-93
MV6753 .................. 6-127
MV6754A ................ 6-127
MV6951 .................. 6-139

MV5360 . . . . . . . . . . . . . . . . . ..
MV53621 ..................
MV53622 . . . . . . . . . . . . . . . . ..
MV53640 ..................
MV53641 ..................

MV57622 . . . . . . . . . . . . . . . . ..
MV57640 . . . . . . . . . . . . . . . . ..
MV57641 ..................
MV57642 . . . . . . . . . . . . . . . . ..
MV5774C .................

MV8102 ................... 6-97
MV8103 ................... 6-97
MV8104 ................... 6-97
MV8111 ................... 6-101
MV8112 .................. 6-101

6-43
6-43
6-43
6-57
6-57

6-43
6-57
6-57
6-57
6-39

MV53642 . . . . . . . . . . . . . . . . .. 6-57
MV5374C ................. 6-39
MV5377C ................. 6-35
MV53BL .................... 6-9
MV54123 ................. 6-155

MV5777C ................. 6-35
MV57BL .................... 6-9
MV5A164 .................. 5-19
MV5B164 .................. 5-19
MV5B54 .................. 6-55

MV8113
MV8114
MV8132
MV8133
MV8140

..................
..................
..................
..................
..................

6-101
6-101
6-105
6-105
6-109

MV54124A ................ 6-163
MV54152 .................. 6-77
MV54154 .................. 6-77
MV54164 .................. 5-15
MV54173 .................. 5-11

MV5B66 ..................
MV5C164 ..................
MV5D164 ..................
MV5E164 ..................
MV6000 . . . . . . . . . . . . . . . . . ..

6-55
5-19
5-19
5-19
6-13

MV8141
MV8190
MV8191
MV8313
MV8314

..................
..................
..................
..................
..................

6-109
6-109
6-109
6-113
6-113

MV5437 .................. 6-145
MV5452 . . . . . . . . . . . . . . . . . .. 6-93
MV5453 . . . . . . . . . . . . . . . . .. 6-127
MV5454A ................ 6-127
MV5460 ................... 6-43

MV6053 . . . . . . . . . . . . . . . . . .. 6-89
MV6151 .................. 6-139
MV6152 ................... 6-93
MV6153 .................. 6-127
MV6154A . . . . . . . . . . . . . . . .. 6-127

MV8332
MV8333
MV8341
MV8342
MV8410

. . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . ..
..................
..................
..................

6-105
6-105
6-117
6-117
6-121

MV54624 . . . . . . . . . . . . . . . . ..
MV54643 . . . . . . . . . . . . . . . . ..
MV54644 ..................
MV5474C .................
MV5477C .................

6-43
6-57
6-57
6-39
6-35

MV6300 . . . . . . . . . . . . . . . . . .. 6-13
MV6351 .................. 6-139
MV6352 . . . . . . . . . . . . . . . . . .. 6-93
MV6353 .................. 6-127
MV6354A ................ 6-127

MV8411
MV8703
MV8704
MV8741
MV8742

..................
. . . . . . . . . . . . . . . . ..
..................
..................
..................

6-121
6-123
6-123
6-123
6-123

MV5491A ................. 6-143
MV54BL .................... 6-9
MV55ABL .................. 6-9
MV57123 ................. 6-155
MV57124A ................ 6-163

MV6400 ................... 6-13
MV6451 .................. 6-139
MV64520 . . . . . . . . . . . . . . . . .. 6-93
MV64521 .................. 6-93
MV64530 . . . . . . . . . . . . . . . .. 6-127

MV9100 .................. 6-147
MV91 01 .................. 6-147
MV9102 .................. 6-147
OPB703 .................. 3-95
OPB703W ................. 3-97

MV57152 ..................
MV57154 . . . . . . . . . . . . . . . . ..
MV57164 ..................
MV57173 ..................
MV5752 . . . . . . . . . . . . . . . . . ..

MV64531 ................. 6-127
MV6454A ................ 6-127
MV6461 ................... 6-71
MV64BL .................... 6-9
MV6661 ................... 6-71

OPB704 ..................
OPB704W .................
OPB705 ..................
OPB705W .................
OPB706A .................

6-77
6-77
5-15
5-11
6-93

3-95
3-97
3-95
3-97
3-99

23

Alphanumeric Product Listing
Page

Product

Page

Product

OPB706B ................. 3-99
OPB706C ................. 3-99
OPB804 .................. 3-101
OPB860N11 .............. 3-103
OPB860N51 .............. 3-103

Product

QE0123
QE0221
QE0222
QE0233
QE0234

.................... 3-7
.................... 3-9
................... 3-9
. . . . . . . . . . . . . . . . . .. 3-11
................... 3-11

QS0422
QS0423
QS0424
QS0722
QS0723

..................
..................
..................
..................
..................

3-33
3-33
3-33
3-35
3-35

OPB860N55 ..............
OPB860T11 ...............
OPB860T51 ...............
OPB860T55 ..............
OPB861N51 ..............

3-103
3-115
3-115
3-115
3-105

QE0422
QE0423
QE0522
QE0523
QEE113

...................
...................
...................
...................
...................

3-13
3-13
3-15
3-15
3-17

QS0724 ..................
QS0733 ..................
QSE113 ...................
QSE114 ...................
QSE122 ...................

3-35
3-37
3-39
3-39
3-41

OPB861N55 ..............
OPB861T51 ...............
OPB861T55 ...............
OPB862N51 ..............
OPB862N55 ..............

3-105
3-117
3-117
3-107
3-107

QEE122 ...................
QEE123 ...................
QPA1223 ..................
QPA8259 . . . . . . . . . . . . . . . . ..
QPC1213 ..................

3-19
3-19
3-53
3-55
3-57

QSE123
QSE133
QSE156
QSE157
QSE158

...................
...................
...................
...................
...................

3-41
3-43
3-45
3-45
3-45

OPB862T51 ., .............
OPB862T55 ..............
OPB865N11 ..............
OPB865N51 ..............
OPB865N55 ..............

3-119
3-119
3-109
3-109
3-109

QP01223 .................
QP05223 .................
QPE1113 ..................
QPE1259 ..................
QRB1113 ..................

3-59
3-61
3-63
3-65
3-69

QSE159 . . . . . . . . . . . . . . . . . ..
QSE773 ..................
QSE973 .. .. . .. .. . .. .. . ....
QTLP282-2 ................
QTLP282-3 ................

3-45
3-49
3-51
6-31
6-31

OPB865T11 ...............
OPB865T51 .. . . . . . . . . . . . ..
OPB865T55 ..............
OPB866N51 ...............
OPB866N55 ..............

3-121
3-121
3-121
3-111
3-111

QRB1114
QRB1133
QRB1134
QRC1113
QRC1133

..................
..................
..................
..................
..................

3-69
3-71
3-71
3-73
3-75

QTLP282-4
QTLP282-7
QTLP912-2
QTLP912-3
QTLP912-4

................
................
................
................
................

6-31
6-31
6-27
6-27
6-27

..............
..............
..............
..............
..............

3-123
3-123
3-113
3-113
3-125

QR01113 ..................
QR01114 ..................
QR01313 ..................
QSA156 ...................
QSA157 ...................

3-77
3-77
3-79
3-21
3-21

QTLP912-7
QTLP913-2
QTLP913-3
QTLP913-4
QTLP913-7

................
................
................
................
................

6-27
6-27
6-27
6-27
6-27

OPB867T55 .............. 3-125
OPTO PLUS ............... 1-15
QCK3 ..................... 3-67
QCK4 ..................... 3-67
QEC112 .................... 3-3

QSA158
QSA159
QSC112
QSC113
QSC114

...................
... . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . ..
...................
. . . . . . . . . . . . . . . . . ..

3-21
3-21
3-25
3-25
3-25

QVA11123
QVA11124
QVA11133
QVA11134
QVA11223

.................
.................
.................
.................
.................

3-81
3-81
3-81
3-81
3-81

QEC113
QEC121
QEC122
QE0121
QE0122

QSC133
QS0122
QS0123
QS0124
QS0128

.. . .. .. .. .. .. .. ....
...................
...................
...................
...................

3-27
3-29
3-29
3-29
3-31

QVA11224
QVA11233
QVA11234
QVA11323
QVA11324

.................
.................
.................
.................
.................

3-81
3-81
3-81
3-81
3-81

OPB866T51
OPB866T55
OPB867N51
OPB867N55
OPB867T51

24

....................
....................
....................
....................
....................

3-3
3-5
3-5
3-7
3-7

Page

Alphanumeric Product Listing
Product

Page

QVA11333
QVA11334
QVA21113
QVA21114
QVA21213

..................
..................
...................
...................
..................

3-81
3-81
3-81
3-81
3-81

QVA21214
QVA21313
QVA21314
QVB11123
QVB11124

..................
..................
..................
..................
..................

3-81
3-81
3-81
3-85
3-85

QVB11133
QVB11134
QVB11223
QVB11224
QVB11233

..................
..................
..................
..................
..................

3-85
3-85
3-85
3-85
3-85

QVB11234
QVB11323
QVB11324
QVB11333
QVB11334

..................
..................
..................
..................
..................

3-85
3-85
3-85
3-85
3-85

QVB21113
QVB21114
QVB21213
QVB21214
QVB21313

..................
..................
..................
..................
..................

3-85
3-85
3-85
3-85
3-85

QVB21314 ..................
QVE11233 ..................
QVL21653 ..................
QVL25335 ..................
SURFACE MOUNT OPTIONS ..

3-85
3-89
3-91
3-93
1-17

Product

Page

VDE APPROVED HIGH-VOLTAGE
OPTOCOUPLERS ............ 1-11

TAPE & REEL (6-PIN
OPTOCOUPLERS) ........... 1-19
TAPE & REEL (8-PIN
OPTOCOUPLERS) ........... 1-21
TAPE & REEL (LED) ......... 6-171
TIL111 ..................... 1-193
UL APPROVED OPTOCOUPLERS
............................. 1-9

25

26

OPTOCOUPLERS

OPTOELECTRONICS

OPTOCOUPLERS
Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

4N25
4N26
4N27
4N28
4N32

.....................
.....................
.....................
.....................
.....................

1-23
1-23
1-23
1-23
1-29

H11G2 ....................
HCPL-2503 ................
HCPL-2530 ................
HCPL-2531 ................
HCPL-2601 ................

1-91
1-39
1-95
1-95
1-45

MID400 ................... 1-181
MOC8111 ................. 1-187
MOC8112 ................. 1-187
MOC8113 ................. 1-187
OPTO PLUS ............... 1-15

4N33
4N35
4N36
4N37
6N135

.....................
.....................
.....................
.....................
....................

1-29
1-33
1-33
1-33
1-39

HCPL-2611 ................ 1-45
HCPL-2630 ............... 1-101
HCPL-2631 ................ 1-101
HCPL-2730 ............... 1-107
HCPL-2731 ............... 1-107

SURFACE MOUNT OPTIONS 1-17
TAPE AND REEL ........... 1-19
TAPE AND REEL ........... 1-21
TIL111 .................... 1-193
UL APPROVED OPTOCOUPLERS 1-9

6N136 ....................
6N137 ....................
6N138 .....................
6N139 .....................
740L6000 .................

1-39
1-45
1-51
1-51
1-57

HCPL-4502 ................ 1-39
MCP3009 ................. 1-113
MCP3010 ................. 1-113
MCP3011 ................. 1-113
MCP3020 ................. 1-119

VDE APPROVED HIGH-VOLTAGE
OPTOCOUPLERS .......... 1-11

740L6001 .................
740L6010 .................
740L6011 .................
CNY17-1 ..................
CNY17-2 ..................

1-57
1-57
1-57
1-67
1-67

MCP3021 .................
MCP3022 .................
MCT2 ....................
MCT210 ..................
MCT2200 .................

1-119
1-119
1-123
1-135
1-141

CNY17-3 ..................
CNY17-4 ..................
CNY17F-1 .................
CNY17F-2 .................
CNY17F-3 .................

1-67
1-67
1-73
1-73
1-73

MCT2201 .................
MCT2202 .................
MCT270 ..................
MCT271 ..................
MCT2E ...................

1-141
1-141
1-145
1-149
1-129

CSA APPROVED COUPLERS
H11A1 .....................
H11AA1 ...................
H11AA2 ...................
H11AA3 ...................

1-13
1-79
1-83
1-83
1-83

MCT4 ....................
MCT4R ...................
MCT5200 .................
MCT5201 .................
MCT5210 .................

1-153
1-157
1-159
1-159
1-167

H11AA4 ...................
H11D1 .....................
H11D2 ....................
H11D3 ....................
H11G1 .....................

1-83
1-87
1-87
1-87
1-91

MCT5211 .................
MCT6 ....................
MCT61 ...................
MCT62 ...................
MCT9001 .................

1-167
1-173
1-173
1-173
1-177

Application Notes
AN1071 (CNY17) ...........
AN1074 (6N138/139) .......
AN1075 (MID400) .........
AN3000 (740L60XX) .......

1-197
1-203
1-207
1-219

1-1

OPTOCOUPLERS

OPTOELECTRONICS

EQUIVALENT
CIRCUIT

PART
NUMBER

CMR

TYP.

PAGE

740L6000

Logic
1 LSTTL
Load

logic
10 TTL Loads
Totem Pole

5V/5V

OA mN16 mA

15 Mbit/s

15 kV/!
I

VCE = 0.3V
VCE = 5.0V

V

Of-

---9-

w

C)

I

0.75

fil

0.50

a:
fo

~

o

>

Cl

/

N

a:

:::i

~

...............

~

/

~

~

a:

o

u.. O.S L--...l..-__-'-...L-L__...l..-...L--1.__...L..J
0.1 0.2 0.5 1 2
5 10 20 50100
FORWARD CURRENT - IF (mA)

C16S6
Fig. 1. Forward Voltage vs.
Current

0.25

o
z

o

o

15
10
IF-(mA)
Fig. 2. Normalized CTR vs.
Forward Current

5

20

C1679

1-25

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.2

20

IF = 10mAIF = 5mAIF = 20mAl

~

~~

-

0

a: c;
I-a: 1.0
UI-

......9-

II,,'

I

a:
I-

0.8

()

Cl

"/

w

N

::;

«

0.6

::;:

r

Vce =0.3V
Vce = 5.0V

~.

/VCE =5V

16

~~ ~ ~

~

1/

I

14

F

//

L

18

1

12

I

10

.9

8

4

a:
0
z

004
-75 -50 -25

o

0 +25 +50 +75 +100 +125
TA - (OC)
C1680
Fig. 3. Normalized CTR vs.

1.0

~~z 0.90 /
a:a: ~ 0.80
I- a:
U g: 0.70
0.60

5a:

0.50

fil

0040

~

0.30

«
::;:
a:

~

ill

~

CD

--E-

~

'\

/'

Vce = 5V

/

/

20~l

10{

f\IF =
I'IF = 10mA
IF = 5mA

I

/

I I
I I

()I- g:a:

0.70

--E-

0.60

a:
I-

0.50

Cl

0040

4

5

6

7

8

9 10

0.20

0

0.10

Z

1M

o
10K

(n)

IIII

'"

IF= 20mA
IF = 10mA
IF = 5mA

I

II
I
I

J
lOOK
RBe - BASE RESISTANCE -

C1681

1.2

1.2
~

CD

~1.0

w
::;
«
::;:
a:
0

"'-'-'"

I
..9"

I

0.9

/

Cl

W

IlUi

e

0.6
10K
RBe -

\

Cl

Vee = 10V
Ie = 2mA
RL = lOOn

z

1.1

'\

N

::;
«
::;:

0.8
0.7

~

a: ..

I

I

N

~U
J[

-1'1

1.1

~~

==
..9

1.0

a:

Vec = 10V
Ic =2mA
RL = loon
(See Fig. 10)

0

Z

~igi 111

lOOK
1M
BASE RESISTANCE -

CO
(n)

0.9
10K
RBe -

lOOK
1M
BASE RESISTANCE -

Cl683

7. Normalized T.

1-26

1M
(n)
Cl682

6. CTR VS. RBE

5. CTR VS. RBE

;;--1
z
w
a: ..

11

C1243

Vce·=0.3V

t--- r--..

0.30

::;:

a:

10K
lOOK
RBe - BASE RESISTANCE -

3

1.00

~0.90 F
ct::II iii~ 0.80 III

«

o

2

I.
JV
'/

(mA)
Fig. 4. Col/ector Current VS.
Forward Current

w
N
::;

0.10

1

~

/

IF -

()

I

0.20

~~

o

/

lA'

~E=I.4V

vs. RBE

8. Normalized T.

vs. RBE

CO
(n)
Cl684

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

VCC = 10V

1.2
VeE

r\

'\

-----

= lOV

RL = 100n
(See Fig. 101

PULSE WIDTH =100 ~s
DUTY CYCLE = 10%

INPUT

OV

OUTPUT

r--.....

OUTPUT

I
10

1S

le-(mAI

I

I

I

~tooMtOff

20

C16SS

C1294

C1296A

Fig. 9. Switching Time vs. IC

Fig. 11. SWitching Time Waveforms

Fig. 10. Switching Time
Test Circuit

:~~~LATION luF

>---1 hIV'.!'-e
cEO

-

CONSTANT
CURRENT
INPUT

"

Vee "'10VOUS

DETECTOR
'------4~-t.OUTPUl

'.

IC (DC) = 2 mA
ic = 0.7 mA AMS
C1123

Fig. 12. Modulation Circuit Used to Obtain
Plot

1. The current transferratio (VIF) is the ratio of the detector collector current to the LED input current with VeE at 10 volts.
2. The frequency at which i, is 3dB down from the 10 kHz value.
3. Rise time (t,) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (tJ is the time required for the col/ector current to decrease from 90% of its initial value to 10%.

1-27

1-28

PHOTODARLINGTON OPTOCOUPLERS

OPTOELECTRONICS

4N324N33

The 4N32 and 4N33 have a gallium arsenide infrared
emitter optically coupled to a silicon planar photodarlington.

J

t

15" MAX

8.3 6.86
MAX 6.10

0.3
0.2

!

=+
1.9
TYP

+

+
5-.3

4.06
3.81

,MAX

t

+
1.4
0.9

-ll0.56
0.40

*

• High isolation resistance-10"D.
• High dielectric strength, input to output 5300 V RMS-1
minute
• Low coupling capacitance-1.0 pF
• Convenient package-plastic dual-in-line
• Long lifetime, solid state reliability
• Low weight----O.4 grams
• UL recognized-File E90700

DIMENSIONS IN mm
PACKAGE CODE K

ST1603A

Equivalent Circuit

TOTAL PACKAGE
*Storage temperature ................................................................ -55°C to 150°C
*Operating temperature at junction .................................................... -55°C to 100°C
*Lead soldering time @ 260°C ............................................................ 10 seconds
*Total power dissipation at 25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 250 mW
*Derate linearly from 25°C ................................................................ 3.3 mWrC
INPUT DIODE
*Power dissipation @ 25°C ambient ....... 150 mW
*Derate linearly from 55°C ............... 2 mW/oC
*Continuous forward current ............... 80 rnA
Reverse current .......................... 10 rnA
*Peak forward current
(300 p,sec, 2% duty cycle) ................. 3.0 A
*Indicated JEDEC

OUTPUT TRANSISTOR
*Power dissipation @25°Cambient ....... 150 mW
*Derate linearly from 25°C ............. 2.0 mW/oC
*Collector-emitter breakdown voltage (BVcEQ) .. 30 V
*Collector-base breakdown voltage (BVcso) .... 50 V
Emitter-base breakdown voltage (BVESO) ••••• 8.0 V
*Emitter-collector breakdown voltage (BVECO) •••• 5 V

istered data.
1-29

PHOTODARLINGTON OPTOCOUPLERS

OPTOELECTRONICS

DETECTOR
(TA=25°C and IF=O unless otherwise noted)
*Collector-emitter dark current

(TA=25°C unless otherwise noted)
*Collector output current (Note 1)
4N32,4N33

100

mA

50

*Collector-emitter saturation voltage (1)
4N32,4N33

1.0

Volts

0.6

5.0

Ic=50 mA, IF=200 mA,
Vcc=10V

45

100

Vcc=10V

V

*Indicates JEDEC Registered Data.
(1) Pulse test: pulse width =300 p,S, duty cycle .. 2.0%
(2) For this test LED pins 1 and 2 are common and phototransistor pins 4, 5 and 6 are common.
(3) IF adjusted to Ic=2.0 mA and ic=0.7 mA RMS.
(4) td and t, are inversely proportional to the amplitude of IF; t, and t, are not significantly affected by IF'

1-30

mA

1,.0';; 1 pA
V RMS, t=1 minute

PHOTODARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

~

«

en
f-

E

...J

o

1.0~~~~~~~~$$$t~

~

~.!!: 0.9

~

OJ OJII 0.8
U

~ Bi~~~~+---+--+-4~~_+~
.....9 0.5I.-fc----t---t--+--+--+--+-+-i-i

I
w


w

C

N

~
II:

:::;

~

II:

0.3 ~----~-~-+_+-4-4-+-H

0.21-----t---t---+-+-t-t-t-H

II:

o

o

Z

0.8 L--'-__L--'---"--_-'--'----L_--L...J
0.1 0.2 0.5 1 2
5 10 20 50100
FORWARD CURRENT - IF (mA)
C1886

IJ..

0.1 L....._ _ _L....._I.-.....l..........L--L--L---L....L.l
2
3
4 5 6 7 8 910
1
IF (mA)
C1894
Fig. 2. Normalized CTR

Fig. 1. Forward Voltage vs.
Forward Current

~1.0

"

II: UJ

t5~

@!

II:

f-

~
II:

t5

/

0.9
0.8

/

0.7

fa

0.6

~
:::;

0.5

N

/

/

1.3

V

I'

/

U

1.1

~ ......

""-

&,
11:'"

t5@!
II:
fU

/

vs. IF

0.9

IF=10mA
VeE = 5 V

TA = 25°C

IF= 10 mA-

0.7

II:

~

..........

'"

0.5

0.4

o

2

3

4

VeE (VOlts)
3. Normalized CTR

-50

5
C1717

-25

0

25

TA (0 C)

vs.-

50

75

100
C1718

4. Normalized CTR vs. Temperature

1.3

..........
UJ

1.1

i'-....

~

..........

C

w

~ i'oo.

N

:J 0.9
«
:::;
II:

0
Z

0.7

IF=10mA

-

Ie = ,5 mAl
0.5
-50

-25

0

25

TA (0 C)

Fig. 5. Normalized

50

75

100

C1719

vs. Temperature
1-31

PHOTODARLINGTON OPTOCOUPLERS

OPTOELECTRONICS

INPUT~:

+ 10V

1

TPOH L - - :

OUTPUT

1000

___

I.SV-

PULSE

:

:

_1 -1.5V

L

--~--- SAT.

OUTPUT

I
I

(NON SATURATED)~i
]0%
90% _

,,,

I
_ _______ JI

:

i

t, --:

....---IF

1

OUTPUT

I

===:

L

(SATUAA T E O I :

r,;'~3i34m
r----------- ----,
I
I
I
I
I
L

:--

: 1
- : :-- TPDlH
~:
: '
5V

,,,

90%

i
:_

10%

:

r!

--:

~ tl

= lOrnA
1294

C868

6. Test Circuit

Fig. 7. Switching Waveforms

1. The current transferratio (1,j1F) is the ratio of the detector collector current to the LED input current with VeE at 10 volts.
2. The frequency at which ic is 3dB down from the 1 kHz value.
3. tON is measured from 10% of the leading edge of the input pulse to the 90% point on the leading edge of the output pulse. tOFF is
measured from 90% of the trailing edge of the input pulse to the 10% point on the trailing edge of the output pulse.

1-32

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

4N35 4N36 4N37

~
}
15° MAX
8.3 6.86
MAX 6.10

1
8.89
8.38

0.3
I

I

J

L=

2.33
REF

0.2

+

1.9

TVP

•

4.06
3.81

t

•

5.3
,MAX

+

t

.M..
0.9

~~
0.56
0.40

The 4N3S, 4N36, and 4N37 series of optocouplers have
an NPN silicon planar phototransistor optically coupled
to a gallium arsenide infrared emitting diode.

DIMENSIONS IN nun
PACKAGE CODE K

•
•
•
•
•
•
•
•
•

AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
Industrial controls
Covered under UL component recognition program,
reference File E90700
• High DC current transfer ratio

ST1603A

Equivalent Circuit

TOTAL PACKAGE
*Relative humidity .. . . . . . . . . . . . . . . . .. 8S% @ 8SoC
*Storage temperature ............. -SsoC to 1S0°C
*Operating temperature ........... -SsoC to 100°C
*Lead temperature (soldering, 10 sec) ....... 260°C

INPUT DIODE
*Forward DC current (continuous) .......... 60 mA
Reverse voltage ......................... 6 volts
*Peak forward current
(1 JLS pulse, 300 pps) ..................... 3.0 A
*Power dissipation atTA=2SoC ...... , .... 100 mWt
*Power dissipation at Tc=2SoC ........... 100 mWt
(Tc indicates collector lead temp
1/32" from case)
*Indicates JEDEC registered values

OUTPUT TRANSISTOR
*Power dissipation at 2SoC ambient ....... 300 mW
Derate linearly above 2SoC .............. 4 mW/oC
*Power dissipation at Tc=2SoC .......... SOO mWtt
(Tc indicates collector lead temp
1/32" from case)
*VCEO • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30 volts
*Vcso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 volts
*VECO . • • • • • • • • • • • • . • • • • • • • • • • • • . . • • • • • • • • 7 volts
*Collector current (continuous) ............ 100 mA

tDerate 1.33 mWrC above 2SoC.

ttDerate 6.7 mWrC above 2SoC.
1-33

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

COUPLED
t*DC current transfer ratio

CTR

100

%

IF =10 rnA, VcE =10 V

t*DC current transfer ratio

CTR

40

%

IF =10 rnA, VcE =10 V,
TA=-55°C

t*DC current transfer ratio

CTR

40

%

IF =10 rnA, VcE =10 V,
TA =+100°C

*Turn on time

5

10

p'sec

Vcc=10V,lc=2mA,
RL =100n,
(Fig. 10 and Fig. 11)

*Turn off time

5

10

p.Sec

Vcc=10 V, Ic=2 rnA,
RL =100n,
(Fig. 10 and Fig. 11)

*Indicates JEDEC registered values
tPulse test: pulse width=300p.S,
duty cycle:S2.0%

1-34

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

Isolation voltage ali devices

V,sa

*Input to output isolation current
(pulse width=8 msec)
(see Note 1)
4N35
4N36
4N37

',-0

*Input to output resistance

R,_a

*Input to output capacitance

C,_a

5300

100
100
100
100

VRMS

',-0 :5 1i-"I

a:- 1_o

w

I
a:

(!)

~
...J

0.75

I-

°53

0

>
0

0.50

/

N

a:

:;

~

..:
~

a:

0
"- 0.8
0.1 0.2 0.5 1 2
5 10 20 50 100
FORWARD CURRENT - IF (mA)
C1686

Fig. 1. Forward Voltage vs.
Current

-......

/

°Il--.9-

/

~

0.25

o
Z

o

o

5

10

15

IF-(mA)

20
C1679

Fig. 2. Normalized CrR vs.
Forward Current

1-35

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.2

20

----..
~ 5

~<

0:: !::
1-0::
01-

IF = 10mAIF=5mAIF = 20mAl
1.0

I

0.8

0

«

VVCE =5V

16

I

14

..c:;

~/

/

UJ

N

:J

~

L

18

il/' ,," ~1 b-.~~~
V

-.....90::
I0

Vee = 0.3V
Vee = 5.0V

:0: 12

E 10
I

~

E

4

~

z

o

1

~

I
F"""
I 11I1
§ 0.90
0.80 1f--t--l-boF'b!9-H--t--t-+-I-t+tH

II:

~

i2

o ~
-.....90::

V

Vee = 5V

0.70 II--tV~:::-IV-7f-1-tf1J--t-_-H
1!-H+tt1
O.60I--+-+IH--f't.H-I-'I'IF = 20mA
I 1/
i'IF = lOrnA
0.50
J
IF = 5mA

I

5
fil

I I

0.40

0.30 t-t-+I/H-t-t-HItft--t--t-++-++1+l

:2

0.20 H---II'-t-t-t+ll+tt--t--t-+t++t-H

~

0.10 H--+-+-t-H-'I+I+--t--t-++-++I+l

5

8

9

10 11
C1243

I-

-.....9-

0.60

50::

0.50

o

0.40

~

0.30

«
:2
0::

~

0.20
0.10

o
10K

1M

BASE RESISTANCE -

IIII
Vce·= 0.3V

II:

10K

lOOK

"-

0.90

OU-~~~~llL__L-~~~

RBe -

4

"-...
cl ~ 0.80 III
o ~ 0.70 L t---.l...I
----"1
ffi

UJ

~
0::

1.00

~

I'

3

Fig. 4. Col/ector Current vs.
Forward Current

1.0 r~TFFI'TIfI="'Fft==!iIIIIII

/"

2

IF - (mA)

Fig. 3. Normalized CTR vs.
Temperature

.....,--...
z

7

tz

~ P""

o

0 +25 +50 +75 +100+125
TA - (OC)
C1680

6

IV

a

0.4
-75 -50 -25

V

LX

8

/

0.6

:2

0::

V

vr

Vv~E ='.4 V

(n)

IF=20mA
IF = lOrnA
IF =5mA

I

IL
I
1
I
lOOK
RBe -

1M

BASE RESISTANCE -

C1681

Cl682

5. CTR vs. RBE

Fig. 6. CTR vs. RBE (Saturated)

1.2

1.2

----..

~IZ1.l
"
w
II:

--~

Q.

~~

~1.0

'"

0.9

I

0

UJ

N

:J
0::

az

J~
~
I
..9"

I

10K

lOOK
RBe -

1\

0

Vce = 10V

«

Ie =2mA
RL = lOOn

0::

r~ie

0.6

1.1

UJ

:J

0.7

f\

N

0.8

«

:2

v

w
WI Q.Z

"
II:

V

I
..9

Vee = 10V

a
z
co

1M

BASE RESISTANCE -

1.0

:2

ii9i Ii)
(n)

Ie = 2mA
RL = loon

(See Fig. 10)

0.9
10K

lOOK
RBe -

co

1M

BASE RESISTANCE -

Cl683

7. Normalized TOFF vs. RBE

1-36

(n)

(n)

Cl684

Fig. 8. Normalized TON vs. RBE

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

Vec = 10V
1.2
VeE = 10V
RL = 100n
(See Fig. 10)

\

PULSE WIDTH = 100"s
DUTY CYCLE = 10%

INPUT
OV

OUTPUT

"- i'-..

OUTPUT

I
I

10

15

le-(mAI

Fig. 9. Switching Time vs. IC

20
C1685

I

I

~t'"Mtoff

C1296A

Fig. 10. Switching Time
Test Circuit

C1294

Fig. 11. Switching Time Waveforms

1. Tests of input to output isolation current resistance and capacitance are performed with the input terminals (diode) shorted together
and the output terminals (transistor) shorted together.
2. The current transfer ratio (1dIF) is the ratio of the detector collector current to the LED input current with VeE at 10 volts.
3. Rise time (t,) is the time required for the col/ector current to increase from 10% of its final value, to 90%.
Fall time (tJ is the time required for the collector current to decrease from 90% of its initial value to 10%.

1-37

1-38

HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

HCPL·2503 HCPL·4502 6N136 6N135

/

16' MAX
6.86
6.35

0.36
0.20

f

7.62

REF

The HCPL-4502/HGPL-2503 and 6N136/5 optocouplers
contain a 700 nm GaAsP LED emitter, which is optically
coupled to a high speed photodetector transistor.
A separate connection for the bias of the photodiode
improves the speed by several orders of magnitude over
conventional phototransistor optocouplers by reducing
the base-collector capacitance of the input transistor.
An internal noise shield provides superior common mode
rejection of 10 kV/ f,Ls. An improved package allows
superior insulation permitting a 480 V working voltage
compared to industry standard of 220 V.

2.54 ---I ~ 0.89 TYP
--ITYPI- II
3.94 +
3.68
3.56
0.51
3.05
MIN
0.89 TYP
C2091

•
•
•
•
•

High Speed-1 MBit/s
SuperiorCMR-10kV/}LS
Double working voltage-480 V RMS
CTR guaranteed 0-70°C
UL. recognized (File #E50151)

•
•
•
•

Line receivers
Pulse transformer replacement
Output interface to CMOS-LSTTL-TTL
Wide bandwidth analog coupling

Equivalent Circuit
The HCPL-4502 has the same specifications as the 6N136 but has
no base connection.

Storage temperature .............. -55°C to 125°C
Operating temperature ............ -55°C to 100°C
Lead solder temperature ............. 260°C for 10s
Average forward input current. . . . . . . . . . .. 25 mA (1)
Peak forward input current .............. 50 mA (2)
(50% duty cycle, 1ms p.w.)
Peak transient input current - IF . . . . . . . . . . . . . .. 1.0 A
(:51 f,Ls p.w., 300 pps)

Reverse input voltage ........................ 5 V
Input power dissipation ................ 45 mW (3)
Average output current ..................... 8 mA
Peak output current ....................... 16 mA
Emitter-base reverse voltage .................. 5 V
Supply and output voltage .......... -0.5 V to 15 V
Base current .............................. 5 mA
Output power dissipation .............. 100 mW (4)

t Absolute Maximum Ratings are JEDEC Registered Data for 6N136 and 6N135.
6N136 and 6N135 are the only JEDEC Registered Parts on this data sheet.

1-39

HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

Input forward
voltage

VF

IF=16mA T.=25°C

Input reverse
breakdown

BVR

IR=10uA, TA=25°C

~

IF=16mA

aT,

1.5

1.7

5

V
V

mV/oC

-1.6

DETECTOR
Logic high
output current

10H

Logic low
supply

ICCL

Logic high
supply

lOCH

IF=OmA Vo=Vcc =5.5V
T.=25°C

3

IF=OmA, Vo=Voc=15V
T.=25°C

0.Q1

IF=16mA Vo=OPEN
Vcc=15V
IF=OmAVo=OPEN Voc=15V
T.=25°C

6N135
6N136
HCPL-4502
CTR

nA
uA

40

uA
uA

2

5

Current transfer
Ratio
(Note 5)

500

uA

7

18

%

IF=16mA, Vo=O.4V
Voc =4.5V T.=25°C

19

24

%

IF=16mA, Vo=0.5V
Voc =4.5V

15

25

%

HCPL-2503
6N135
6N136
HCPL-4502
HCPL-2503

Logic low
output voltage

1-40

VOL

6N135

IF=16mA,l o=1.1mA
Voc =4.5VT.=25°C

0.1

0.4

V

6N136
HCPL-4502
HCPL-2503

IF=16mA,l o=2.4mA
Voc =4.5V TA=25°C

0.1

0.4

V

HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

Propagation
delay time
to logic low

tpH,

Propagation
delay time
to logic low

tpHL

6N136
HCPL-4502
HCPL-2503

R,=1.9K 1,=16mA Note 9 Fig. 7

0.2

0.8

uS

6N136
HCPL-4502
HCPL-2503

R,=1.9K 1,=16mA Note 9 Fig. 7
Note 7 Fig. 6

0.6

0.8

uS

Common mode
transient
immunity at
logic high

I

CM H

I

6N136
HCPL-4502
HCPL-2503

1,=OmA, VCM = 1OVp.p
R, =1.9K
Note7Fig.6

10,000

V/us

Common mode
transient
immunity at
logic low

I

CM,

I

6N136
HCPL-4502
HCPL-2503

1,=16mA, VcM =10Vp.p
R,=1.9K
Note 7 Fig. 6

10,000

V/us

Input-output
insulation
leakage

1'0

45% relative humidity
t=5sec V,_0=3000VDC
TA =25°C, note 6

1.0

Withstand
insulation
voltage

V,so

RH,;;50% t=1 min TA =25°C
Note 11

Resistance
input-output

R,_o

V,-O=500VDC

10'2

10=3mA Vo=5V

150

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

uA

VRMS

2500

n

Derate linearly above 70°C free-air temperature at a rate of 0.8 mAloC.
Derate linearly above 70°C free-air temperature at a rate of 1.6 mAloC.
Derate linearly above 70°C free-air temperature at a rate of 0.9 mWloC.
Derate linearly above 70°C free-air temperature at a rate of 1.0 mWrC.
CURRENT TRANSFER RA TlO is defined as the ratio of output collector current, 10 , to the forward LED input current, I" times 100%.
Device considered a two-terminal: Pins I, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
Common mode transient immunity in Logic High level is the maximum tolerable (positive) dValdt on the leading edge of the
common mode pulse VCM' to assure that the output will remain in a Logic High state (i.e., Vo>2.0 V). Common mode transient
immunity in Logic Low level is the maximum tolerable (negative) dVc~dt on the trailing edge of the common mode pulse Signal, VCM
to assure that the output will remain in a Logic Low state (i.e., Vo<0.8 V).
The 4.1 Knload represents 1 LSTTL unit load of 0.36 mA and 6. 1 KJl.
The 1.9 Kll load represents 1 TTL unit load of 1.6 rnA and the 5.6 Kll pull-up resistor.
The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
The 2500 Vacll min capability is validated by a factory 3.1K Vac (rms)11 sec dielectric voltage withstand test.

1-41

HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.3

1.6

.---, 1.5

!z «
~Q ~
a: '"'

1.4

1.3
Oa:,!!,,!!, 1.2
::J«

V

~~ ~~
-' Z '" '"

« « iii iii

V

~ 1= ~ ~ 0.9 NORMALIZED TO:

~

ti

IF= 16 rnA
I- 0.8 Vo=0.4V
Vcc=5V
0.7
TA = 25°C

E

~ 1.1

::J«

.-

~

~

NORMALIZED TO:
IF= 16 rnA
TA=25°C
Vcc=5.0V
,\VO=0.4V

II

0a:'!!''!!'1.0

\

faffi

"-,

@

!::!}Jj

\

1.0

Z

a: '"'

~Q

/

II

Clffi@@ 1.1

~ 1.2

I-

!;(

Ii 0.9

',-

-IZOOCfJ

««wiii
~ 1= ~~ 0.8
~ titi

\
\

"

'---' 0.7

-60 -40 -20 0 20 40 60 80 100
TA - TEMPERATURE-oC
Cl948

2
4 6 8 10
20 40
80
IF - FORWARD CURRENT - rnA
C1946

Fig. 2. Normalized Current Transfer
Ratio vs. Temperature

Fig. 1. Normalized Current Transfer
Ratio VS. Forward Current

= 5.0 V
18 k HH-+_ _+-_-+VCC
ItH 16 rnA

w!li. 16 k HH-+--+---+ ItL 0 rnA

«c:

VOH 2.0
14 k HH-+--+---+ VOL 0.8 V
z'5 12 k f-H-+--+-_-+-RL = 1.9 k
TA=25°C
O~
::;:'0 10 k
::;:1OZ 8k
Cl~

~I

II

~I­

IZ
Q~

CJ a: 10-11;;;;;'--+-+--+--+--4--'~

O::J

o!!:!

-'0

I~ 6k

II-

::;:«
01=

"i? 10-21;;;;;,--t_~~-+--+--+---l
21::J

4k

o

2k
0
1<>-:50

-25
0
25
50
75
TA - TEMPERATURE - °C

500
1000 1500 2000 2500
VCM - COMMON MODE
TRANSIENT AMPLITUDE - V
Cl951

100
C1950

Fig. 3. Logic High Output Current
vs. Temperature

Fig. 4. Common Mode Transient Immunity
VS. Common Mode Transient Amplitude

NORMALIZED TO:
Vcc=5.0V
IF = 8 rnA
TpLH - - - RL=7.5 k n - TpHL TA = 25°C

/

/
,,",,'

V

~.............

l..,.../'

-25

o

25

50

70
C1997

Fig. 5. Normalized Propagation Delay VS.
Temperature at IF=8 mA

1-42

HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOElECTnONICS

Vo

~---------------5V

SWITCH AT A: IF=OmA
Vo
SW;:;IT==C::-:H7"A-::::r::-:e=-:-:I-F=---"16'-m-A---'~VOL

r-----,----0 +5 V

r------'-----O Vo

VCM

C2000

Test Circuit

6. Common Mode

~~
:
I
,
,

I
I

,

Vo

I
I
I

5V

,,
,

1.5V

-1.5 V _-,:-{-''_
~
I'--_
_ VOL

r-

---!

TpLH

NOISE
SHIELD

i

PULSE
GEN.
Zo=50n
Ir=5 ns
10% D.C.
1//< 1001'S

VCC

+5V

8

I

I

VB

I
I

,

RL

Vo

6

Vo

4
IF MONITOR

-=-

-=-

I
C2001

Time Test Circuit

1-43

1-44

VERY HIGH-SPEED
LOGIC GATE OPTOCOUPLERS

OPTOELECTRONICS

6N137
HCPL·2611
10 MBit/s LOGIC GATE HCPL·2601

./

15° MAX

6.86
6.35

0.36

+

f

7.62
9.14

REF

The 6N137 and HCPL-2601 single-channel optocouplers consists
of a 100 nm GaAsP LED, optically coupled to a very high speed
integrated photodetector logic gate with a strobable output. This
output features an open collector, thereby permitting wired-OR
outputs. The coupled parameters are guaranteed over the
temperature range of O-lO°C. A maximum input signal of 5 mA
will provide a minimum output sink current of 13 mA (fan-out of 8).
An internal noise shield provides superior common mode
rejection of typically 10 kV/JLs. The HCPL-2601 has a minimum
CMR of 1 kV/JLs. The HCPL-2611 has a minimum CMR of3.5kV/
JLsec.
An improved package allows superior insulation, permitting a 480
V working voltage compared to industry standard 220 V.

3.68

3.56
3.05

•

0.51
MIN

0.89 TYP
C2091
DIMENSIONS IN mm
PACKAGE CODE D

•
•
•
•
•
•
•
•

Very high speed-10 MBit/s
SuperiorCMR-10kV/JLs
Double working voltage--480 V
Fan-out of 8 over O-lO°C
Logic gate output
Strobable output
Wired-OR-open collector
U.L. recognized (File #E50151)

•
•
•
•
•
•
•

Ground loop elimination
LSTIL to TIL, LSTIL or 5-volt CMOS
Line receiver, data transmission
Data multiplexing
Switching power supplies
Pulse transformer replacement
Computer-peripheral interface

TRUTH TABLE
(Positive Logic)
Input Enable Output

Equivalent Circuit

H

H

L

L

H

H

H

L

H

L

L

H

A 0.1JLF bypass capacitor
must be connected
between pins 8 and 5.
(See note 1)

Storage temperature ................... -55°C to +125°C
Operating temperature ..................... DOC to + 10°C
Lead solder temperature ................... 260°C for 10 s
INPUT DIODE
DC/average forward input current .................. 20 mA
Enable input voltage, {v,J
(notto exceed Vee by more than 500 mV) .......... 5.5 V
Reverse input voltage ............................. 5.0 V
Reverse supply voltage (-Vee) .................. - 500 mV

OUTPUT TRANSISTOR
Supply voltage, {Veel ............. 1.DV/1 minute maximum
Output current, (10) ...... . . . . . . . . . . . . . . . . . . . . . . . .. 25 mA
Output voltage, (Vo) ............................... 7.0V
Collector output power dissipation ................ 40 mW

1-45

VERY HIGH-SPEED
LOGIC GATE OPTOCOUPLERS

OPTOElECTRONICS

Input current, low level
Input current, high level
Supply voltage, output
Enable voltage low level
Enable voltage high level
Operating temperature
Fan out

0
*6.3
4.5
0
2.0
0

IFl
IFH
Vee
VEL
VEH
T.
N

250
15
5.5
0.8
Vee
70
8

,.,A
mA
V
V
V
°C

*6.3 rnA is a guard banded value which allows for at least 20% eTR degradation. Initial input current threshold value is 5.0 rnA or less.

INPUT DIODE
Input forward
voltage

VF

Input reverse
breakdown
voltage

BvR

Input diode
temperature
coefficient

/1VF/IH.

-1.4

High level supply
current

leeH

10

15*

mA

Low level supply
current

Iccl

15

18*

mA

Vee~5.5V, IF~10mA
VE~0.5V

Low level enable
current

IEl

-1.5

-2.0*

mA

Vcc~5.5

V, VE~0.5 V

High level enable
current

IEH

-1.0

mA

Vcc~5.5

V, VE~2.0 V

High level enable
voltage

VEH

V

Vcc~5.5

V,

Low level enable
voltage

VEL

0.8

V

Note: 11

High level output
current

10H

.02

250*

,.,A

Vee~5.5 V, Vo~5.5 V
IF~250 ,.,A, VE~2.0 V

Low level output
voltage

VOL

.34

0.6*

V

Vee~5.5 V, IF~5 mA
VE~2.0 V, 10l ~13 mA

1.55

1.75*

5.0*

V

IF~1O

V

IR~10,.,A, TA~25°C

mV/oC

mA, TA~25°C

IF~10mA

DETECTOR

1-46

2.0

Vee~5.5

V,

IF~O

mA

VE~0.5V

IF~10

mA

VERY HIGH·SPEED
LOGIC GATE OPTOCOUPLERS

OPTOElECTRONICS

Propagation delay
time (for output
high level)

TpLH

48

75*

ns

RL=350n
C L=15pFFig.7

Propagation delay
time (for output
low level)

TpHL

48

75*

ns

RL =350 n Fig. 7
CL=15 pF

Output rise time
(10-90%)

t,

30

ns

1,=7.5 mA Fig. 7

Output fall time
(90-10%)

4

14

ns

Notes 2, 3, 4 & 5, Fig. 7

Enable propagation
delay time (for
output high level)

tELH

25

ns

1,=7.5mA
VEH =3.0 V Fig. 8

Enable propagation
delay time (for
output low level)

tEHl

14

ns

RL=350n, C L=15 pf
Notes 6 & 7, Fig. 8

Common mode transient
immunity (at output
high level)

CM H

Common mode transient
immunity (at output
low level)

CM L

Input-output
Insulation leakage
current

10,000
10,000

V//LS

1000

10,000
10,000

V/JLS

1000

1.0*

1'-0

pA

VcM =50 V (Peak)
1,=0 mA, VOH (Min.)=2.0 V
6N137
RL =350 n, Note 9
HCPL-2601
Fig. 13

Relative humidity=45%
TA =25°C, t=5 s
V,_0 =3000 VDC
Note: 10

Withstand
insulation test
voltage

V'SO

Resistance (input
to output)

R,_o

1012

n

V,_0 =500 V, Note: 10

Capacitance
(input to output)

C,_O

0.6

pF

f= 1 MHz, Note: 10

2500

VRMS

RH<50%
TA =25°C
t=1 min.

"JEDEC Registered Data
""All typical values are at Vcc=5 V, TA =25°C

1-47

VERY HIGH-SPEED
LOGIC GATE OPTOCOUPLERS

OPTOElECTRONICS

9.0

VcJ=5.0~_

8.0

>

I

TA=25'C

1.0

~

0

0

5.0

I-

I-

4.0

~

>

/

,

~

D..

~

1\

RL=lKO

D..

I-

3.0

~

0

1\
\-l

L..

2.0

I
0

>

1.0

UJ.

.0

1.0

2.0

0
II:

3.0

4.0

/

0.1

«

RL = 3500

3:

,

II:

0

LL

I

1f

5.0

/

TA~25'C

II:

6.0

...J

I-

Z

(!)

«

I-

.s
W
II:

7.0

w

~ 10.0

«

II

.01
1~

6.0

FORWARD INPUT CURRENT (IF. rnA)

12
1A
1~
VF. FORWARD INPUT VOLTAGE (V)
C1600

C1602

Fig. 2. Forward Input Current vs.
FOrwardlnputVoftage
.8
w

Vee = 5.5V
V, = 2.0V I - IF = 5.0mA

.7

~'"

.6

o

>

~

g

10 = 16mA--,.

.4

10 = 12.8mA

JI

..J
W

~

.3

..J

~

~
~
cc

a

.5

i=

1

'>

-6.4mA~

10

.2

10 =9.5mA

1.0
.6

.4 I - .2

I--

./

Vee = 5.5V
Vo =5.5V
VE =2.0V
IF = 250~A

./
./

.1

~

.06
I- .04
::>
~ .02
w
ii; .01

/

V

V

..J

.006
52.004

:I:

..J

:I:

·'.002

V

"

0
0

10

20

30

40

50

50

70

->'.001

10

TEMPERATURE ITA. 'CI

20

30

40

50

60

70

TA - TEMPERATURE I'CI
C1598

C1613

Fig. 3. Low Level Output

Fig. 4. High Level Output
Currentvs.

80

!

70

:5w

80

0

z

50

«
to

40

>

....

0

;::
~

..,
0

30

...

20

a:

....

Rl =350n
RL =4KIl

RL = lKIl

Vee:: 5.0V

----tpI..H

10

TA "" 25°C
10r-----+-----~----_+----~

IF = 7.5mA
Vee'" 5.0V

- - tpHL

0
0

10

20

30

40

50

60

70

o

10

C1604

Rg.5.

1-48

Delay

15

I, - PULSED INPUT CURRENT (mA)

T. - TEMPERATURE ('C)

Fig. 6. Pro/7ag,ltion

20

VERY HIGH·SPEED
LOGIC GATE OPTOCOUPLERS

OPTOElECTRONICS

INPUT
(IFI

OUTPUT

(Vol
I----.!>I--...-I~ OUTPUT
IVol
47n

C1597

C1981

7. Test Circuit and Waveforms for

INPUT
MONITOR
(IVE)

------15V

Cl599

Cl982

~,
e--'
f- "

.E

300

~

200

f=

----

Vee 5,OV==
IF -7.5mA_

-- --

RL = 4KO

...J

;;i

100

u.

80

~

60
50
40

~

0:

--

.;:-

30

~".

20

10

--

-- --

RL = 3500

~
--..1-_I RL =4KO
Rc

lKO

RL=l~-\-

RL

o

10

20

30

40

3500

+-'

50

60

70

TA - TEMPERATURE (OCI

C1601
Fig. 9. Rise and Fall Time
vs. Temperature

1-49

VERY HIGH·SPEED
LOGIC GATE OPTOCOUPLERS

OPTOELECTRONICS

>- 60

~

0

z

--r-

30 TEU...

iF\ .L

w
-'

20

"i:5,

!

'0

il:

..

'"

-'?

TELt","f\'" 4KO

0

'"0~"

Vee - 5.0V
= 3.0V
VeL =ov
IF'" 1.SmA

___ ~EH

50

;:: 40

-:::

-1Kn

~I""

I

30

!
~
~

....

40

50

TA - TEMPERATURE 1°C)

;
8
,

-

60

70

C1S07

Fig. 10. Enable Propagation
Delay vs. Temperature

8K

H-t-+-+-+--+-.., IFH '" 7.SmA -

7K

-

A
~~H=2O:V
O.8V

Z

~

'j I I I
20

z~ 9K I-++-+-++-+--+--'L-L-IH
Vee· 5.0V

::>

w

I T"H.1\· 3600

~ 'TeHL' RL • 350ft 1Kn. 4Kfl_

10

~ 1.4,..,--,--,--,-----r-,----,
~

~10KrT'--'-.--r-r----r-.-r-'-'

70

!

~

VOL·

~=~

6K

~

!z
~
~

-

1.3 f--t--+--+-+--'--+--t
Vee = 5.OV

1.2

1--+----1,-----+---1 ~~~ : ~:~

~~=~~ r--

:: 1.1

~

5K H+-+-++-+--+--=-'r-r-H
4K HIt-+-++-+--+-1!-i-H
3K f-fr-+-++-+--+-1r-i-H
2K
I'
lKf-+-+-++-+--+-1-i-H

~

i

r--

IFH ""7.5mA

"

VCM =50V

1·°I--I--P'od--+----.-+--t
.91--I--+--+"-+r-..""""ob--+--I

w

i"- . . . .
.8 f--t--+--+-+--+--t-''''''I

~

.7 ' - - - ' - - " - - ' - - - ' - - ' - - - ' - - '
0

8
>

....

10

100 200 300 400 500 600 700 800 900 1000

20

30

40

50

60

70

TA - TEMPERATURE (OC)

VCM - COMMON MODE TRANSIENT AMPLITUDE (VI

01595

Fig. 11. Relative Common Mode Transient
Immunity vs. Common Mode
Transient
.

Fig. 12. Relative Common Mode
Transient Immunity vs.

t - - -......~-....5V
VCM

Tv

35011

5V

SWITCH POS. (AI, IF = 0

- - - - y o (M'N.I

I\

~ _ _ _ _----'
O.5V
PULSE GEN.

- - - - VO (MAX.I
SWITCH POS. ()
B,'F = 7.5mA

CI984

C1594

Fig. 13. Test Circuit Common Mode Transient Immunity

1. The Vcc supply voltage to each 6N137 isolator must be bypassed by a 0.1 /-tF capacitor or larger. This can be either a ceramic or
solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package Vcc
and GND pins of each device.
2, tPHL - Propagation delay is measured from the 3:75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V
level on the HIGH to LOW transition of the output voltage pulse,
3. tPHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1,5 V
level on the HIGH to LOW transition of the output voltage pulse.
4. tf
- Fall time is measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.
5. t,
- Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse,
6. tEHL - Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to
the 1.5 V level on the HIGH to LOW of the QutpUt voltage pulse,
7, tEu< - Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to
the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
8. CML - The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e.,
VOUT <0.8 V). Measured in volts per microsecond (V/I-tS).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e"
VOIH>2,0 V), Measured in volts microsecond (V//-ts).
10.
- Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together. The
2500 VAcl1 minute capability guarantees 3000 VocI5 sec. as registered with JEDEC and is validated by a factory 3.1 K VAcl1
second.
11. Enable Input - No pull up resistor required as the device has an internal pull up resistor.
12.
- DC current transfer ratio is defined as the ratio of the outpiJt collector current to the forward bias input current times 100%,

1-50

HIGH GAIN
SPLlT·DARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

6N138
6N139

/

15° MAX

6.86
6.35

0.36

1=

7.62
REF

2.54 ---I I-. 0.89 TYP
-ITYP I-- I I
i I 3.94 f
b-=-'-<==-'-=r-'d
3.68

3.56
3.05

The 6N138/9 single channel optocouplers contain a 700 nm
GaAsP LED emitter which is optically coupled to a high gain
detector in a split Darlington configuration, providing extremely
high current transfer ratio.
The split darlington configuration separating the input photodiode
and the first stage gain from the output transistor permits lower
output saturation voltage and higher speed operation than
possible with conventional darlington phototransistor
optocoupler.
The combination of a very low input current of 0.5 mA and a high
current transfer ratio of 2000% makes this family particularly
useful for input interface to MOS, CMOS, LSTTL and EIA RS232C,
while output compatibility is ensured to CMOS as well as high
fan-out TIL requirements.
An internal noise shield provides exceptional common mode
rejection of 10 kV//Ls. An improved package allows superior
insulation permitting a 480 V working voltage compared to
industry standard 220 V.

+

0.51
MIN

0.89 TYP
C209!
DIMENSIONS IN mm
PACKAGE CODE D

C1984

•
•
•
•
•
•

Low current-0.5 mA
Superior CTR-2000%
Superior CMR-10 kV//Ls
Double working voltage---480 V RMS
CTR guaranteed 0-70°C
U.L. recognized (File #E50151)

•
•
•
•
•
•

Digital logic ground isolation
Telephone ring detector
EIA RS-232C line receiver
High common mode noise line receiver
/LP bus isolation
Current loop receiver

Equivalent Circuit

TOTAL PACKAGE
Storage temperature ................... -55°C to +125°C
Operating temperature . . . . . . . . . . . . . . . . . . . .. O°C to + 70°C
Lead solder temperature .. . . . . . . . . . . . . . .. 260°C for 10 sec
INPUT DIODE
Average input current .......................... 20 mA (1)
Peak input current ............................... 40 mA
(50% duty cycle, 1 ms P.w.)
Peak transient input current-I, ..................... 1.0 A
(:51 /Lsec P.w., 300 pps)
Reverse input voltage . . . .. . . .. . . . . . . . . . . .. . . . . . .. . . .. 5V
Input power dissipation ....................... 35 mW (2)

OUTPUT TRANSISTOR
Output current (Pin 6) ......................... 60 mA (3)
Emitter-base reverse voltage (Pin 5-7) ................ .5 V
Supply and output voltage-Vee (Pin 8-5), Vo (Pin 6-5)
6N138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 to 7 V
6N139 . .. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . .. -0.5 to 18 V
Output power dissipation ..................... 100 mW (4)

1-51

HIGH GAIN
SPLIT· DARLINGTON OPTOCOUPLERS

OPTOELECTRONICS

INPUT DIODE
Input forward voltage

VF

1.45

1.7*

V

.6 mA, TA =25°C

Reverse breakdown
voltage

BVR

Temperature coefficient
of forward voltage

~

-1.8

mY/DC

ICCL

0.20

mA

IF=1.6 mA, Vo=Open, Vcc=5 V

Logic high supply
current (Note 6)

IccH

10.0

nA

IF=O mA, Vo=Open, Vcc=5 V

Current transfer ratio
(Notes 5, 6)

CTR

10,000

V/p,s

IF=O mA, RL =2.2 kG
I Vern I =10Vp-p

V/p,s

IF=1.6 mA, RL =2.2 kG
IV,ml=10vp-p

V

5*

dTA

IR=10pA, TA =25°C
IF=1.6mA

Logic low output
voltage (Note 6)
Logic high output
current (Note 6)

TRANSISTOR AC
Propagation delay time to
logic low at output
(see Fig. 5; Notes 6, 8)
Propagation delay time to
logic high at output
(see Fig. 5; Notes 6, 8)
Common mode transient
immunity at logic high
level output
(see Fig. 6; Note 9)
Common mode transient
immunity at logic low
level output
6; Note
*JEDEC registered data
**AII typica/s at TA =25°C and Vcc=5 V

1-52

1000

-1000 -10,000

HIGH GAIN
SPLlT·DARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

2500

VRMS

R,.o

10'2

n

V,.0=500 Vdc

C,.o

0.6

pF

f=1 MHz

1. Derate linearly above 50°C free-air temperature at a rate of 0.4 mN°C.
2. Derate linearly above 50°C free-air temperature at a rate of 0.7 mW/oC.
3. Derate linearly above 25°C free-air temperature at a rate of 0.7 mN°C.
4. Derate linearly above 25°C free-air temperature at a rate of 2.0 mW/°C.
5. DC CURRENT TRANSFER RA TlO is defined as the ratio of output collector current, 10' to the forward LED input current, IF' times
100%.
6. Pin 7 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and B shorted together.
B. Use of a resistor between pin 5 and 7 will decrease gain and delay time.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVe,/dt on the leading edge of the
common mode pulse, Vem' to assure that the output will remain in a Logic High state (i.e., Vo>2.0 V). Common mode transient
immunity in Logic Low level is the maximum tolerable (negative) dVe,/dt on the trailing edge of the common mode pulse Signal, Vem'
to assure that the ouput will remain in a Logic Low state (i.e., Va 

II

~ .01

1.0

1.2
1.4
1.6
VF. FORWARD INPUT VOLTAGE (V)
C1600

Fig. 1. Input Diode Forward
Current vs. Forward Voltage

1.0
2.0
Va - OUTPUT VOLTAGE - 1V
C1957

Fig. 2. 6N13B/9 DC Transfer
Characteristics

1000 .1

1.0

10

100

INPUT FORWARD CURRENT-rnA
C1958

Fig. 3. Current Transfer Ratio vs.
Input Forward Current

1-53

HIGH GAIN
SPLlT·DARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

100
TA
TA

..::

E

w

~

'i-

I
f-

Z

85°C
25°C

10

a::
a::

::>

TA
TA

ttl
O°C

"~

0---1,

40°C

I

r-I
I

()

I

f-

:

I

::>
tl.

f- 1.0

::>
0

I
E

f=VCC

5V

r-iOIIIM

Fig. 5. Switching Test Circuit

0.1
1.0
10
100
0.1
INPUT FORWARD CURRENT - rnA
C1959

Fig. 4. 6N138 Output Current vs.
Input Diode Forward Current

~--t--o+5V

'1':'-~'
If

RL

-

t - - -....-oVO

A
Vo - - - _ ; ; ; ; . ; ;....- - - - - - - 5V

SWITCH AT A: IF

~

= OmA
VCM

~

Vo - - - - - - - - -...

VOL

SWITCH AT B: IF = 1.6mA

PULSE GEN.

6. Test Circuit for Transient Immunity and Typical Waveforms

C'382

Non-Inverting Logic Interface

1-54

Inverting Logic Interface

CI381

HIGH GAIN
SPLIT-DARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

R, (NON-INVERl) = VDD1 - VDF - VOL1
IF
R, (INVERl) = VDD1 - VOH1 - VDF
IF

OUTPUT

R2 = VDD2 - VOLY. (@IL+12)
IL
WHERE: VDD1
VDD2
VDF
VOL1

:
:
:
:

VOH1 :
IF
:
VOLY. :
IL

:

12

:

Current

INPUTSUPPLYVOLTAGE
OUTPUT SUPPLY VOLTAGE
DIODE FORWARD VOLTAGE
LOGIC "0" VOLTAGE OF
DRIVER
LOGIC "1" VOLTAGE OF
DRIVER
DIODE FORWARD CURRENT
SATURATION VOLTAGE OF
MCC670
LOAD CURRENT THROUGH
RESISTORR2
INPUT CURRENT OF OUTPUT
GATE.

Resistor Calculation

CMOS CMOS
@5V @ 10V

INPUT

R, (.n)

NON-IN\/.
INV.
NON-INV.
IN\/,
NON-IN\/.
74XX
INV.
NON-IN\/.
74L.XX
INV.
NON-IN\/.
74SXX
INV.
NON-INV.
74LSXX
INV.
NON-INV.
74HXX
INV.

2000
510
5100
4700
2200
180
1800
100
2000
360
2000
180
2000
180

1000

74XX

74L.XX

750

1000

2200

Resistor Values for

74SXX 74LSXX 74HXX

1000

1000

560

Interface

1-55

1-56

HIGH-SPEED
LOGIC-TO-LOGIC OPTOCOUPLERS

OPTOElECTRONICS

740L6000
740L6001
740L6010
CMOS INVERTER 740L6011

TTL BUFFER

0Prf~

TTL INVERTER
LSTTLto
CMOS BUFFER

TM

LOGIC COMPATIBILITY
PART
LOGIC
OUTPUT
NUMBER INPUT OUTPUT FUNCTION CONFIGURATION
740L6000 LSTTL
TTL
BUFFER
TOTEM POLE
740L6001 LSTTL
TTL
INVERTER
TOTEM POLE
740L6010 LSTTL
CMOS
BUFFER
OPEN COLLECTOR
CMOS
INVERTER OPEN COLLECTOR
740L6011 LSTTL

• Industry first LSTTL to TTL and LSTTL to
CMOS complete logic-to-Iogic optocoupler
• Incorporates LED drive circuitry-use as
logic gate
• Very high speed
• Choice of buffer or inverter
• Choice of TTL or CMOS compatible output
up to 15 volts
• Fan-out of 10 TTL loads, fan-in 1 LSTTL load
• Internal noise shield-very high CMR of ±15

SYMBOL

~
Buffer

-fs>Inverter

• Transmission line interface-receiver and
driver
• Excellent as bridged receiver in fast LAN
highways
• Bus interface
• Logic family interface with ground loop noise
elimination
• High speed AC/DC voltage sensing
• Driver for power semiconductor devices
• Level shifting
• Replaces fast pulse transformers

kV/j1S
• Provides superior 5300 VRMS Withstand
Test Voltage (WTV)-guarantees 480 VAC
operation
• Compact 6-pin DIP
• UL recognized (File #E90700)
• Same noise immunity as LSTTL/TTL.

1-VCCI (Input Vee)
2-V'N (Data in)
3-GND, (Input GND)

6-Veeo (Output Vecl
5-Vo (Data out)
4-GNDo (Output GND)

740L6000

740L6001

740L6010

NOISE
SHIELD
,

NOISE
SHIELD

NOISE
SHIELD

NOISE
SHIELD

I

I

6

I

I

'-+---+---1

4

I

I

3

C2004

LSTTL to TTL Buffer

740L6011

C2005

LSTTL to TTL Inverter

I

C2002

LSTTL to CMOS Buffer

C2003

LSTTL to CMOS Inverter

1-57

HIGH-SPEED
LOGIC-TO-LOGIC OPTOCOUPLERS

OPTOELECTRONICS

OPTOLOGICTM is the first family of
truly logic compatible optically
coupled logic interface gates.

This novel integration scheme
eliminates CTR degradation over
time and temperature.

The 740L6010/11 may also be used
to drive power MOS FETS or
transistors up to 15 volts.

The family consists of four device
types offering LSTTL to TTL and
LSTTL to CMOS interfacing. Each of
these interfacing functions is
available as a buffer (A=B), or as an
inverter (A=B). -

The emitter is optically coupled to an
integrated photodetector/high-gain,
high-speed output amplifier IC. The
superior 15 kV/ /Ls common-mode
noise rejection is ensured through
the use of an optically transparent
noise shield.

The Optologic coupler family
typically offers propagation of delays
of 60 ns and can support 15 MBaud
data communication.

The LSTTL input compatibility is
provided by an input integrated
circuit, with industry standard logic
levels. This input amplifier IC
switches a temperature
compensated current source driving
a high speed GaAsP/GaAs 700 nm
LED emitter.

The TTL compatible output has a
totem-pole with a fan-out of 10. The
CMOS compatible output has an
open collector Schottky-clamped
transistor that interfaces to any
CMOS logic between 4.5 and 15
volts.
---,vee
150

The two input chips and the output
chip are assembled in a 6-pin DIP
high insulation voltage plastic
package. It provides a withstand test
voltage of 5300 VRMS (1 minute),
which is recognized as a working
voltage of 480 VRMS.

- - -•• Vee

n TYR

INPUT 0 - - _ - - '

'----+---<> OUTPUT
';' GND

All Inputs

O'''UT

';' GND

LSTTL INPUT CIRCUIT
C2010

:::=f

TTL OUTPUT CIRCUIT
C2009

740L6000/01 Output

Storage temperature range ......... -55°C to +125°C
Operating temperature range ........... O°C to + 70°C
Input supply voltage ............................ 7 V
Input voltage ................................... 7 V
Output supply voltage ........................... 7 V
Output voltage ................................. 7 V
Output current ............................... 40 mA
Power dissipation .......................... 350 mW
Lead temperature (soldering, 10 sec) ........... 260°C

CMOS OUTPUT CIRCUIT
C2026

740L6010/11 Output

Storage temperature range ......... -55°C to +125°C
Operating temperature range ........... O°C to + 70°C
Input supply voltage ............................ 7 V
Input voltage ................................... 7 V
Output supply voltage .......................... 18 V
Output voltage ................................ 18 V
Output current ............................... 40 mA
Power dissipation ......................... 350 mW*
Lead temperature (soldering, 10 sec) ........... 260°C
*See Fig. 12 for maximum allowable output supply
Voltage.

1-58

HIGH-SPEED
LOGIC-TO-LOGIC OPTOCOUPLERS

OPTOElECTRONICS

TTL OUTPUT 740L6000/01
Input supply
Output supply
voltage

Vee,

4.5

5.0

5.5

V

Veeo

4.5

5.0

5.5

V

V'H

2.0

V

VIL

0.8

V

V'K

-1.2

V

VCCI=4.5 V, 1,=-18 mA

High-level input
current

I'H

1.0

40.0

j.tA

V ee,=5.5 V, V'H=4.5 V

Low-level input
current

III

-200.0

-400.0

j.tA

Vee,=5.5 V, VIL =O.4 V

ICCtH

10.0

14.0

mA

Vee,=5.5 V, V'N=V'H

'cell

10.0

14.0

mA

VCCI =5.5 V, V'N=VIL

VOH

2.4

3.0

V
0.6

V

0.5

V

-10.0

0.3

Val

-8.0

10H
10l

16.0

los

-5.0

V'N=2.0V

V,

V'N=0.8V

VCCI=4.5 V, Vecc=4.5 V,
IOl=16mA

V'N=0.8V

V'N=2.0V

mA

V'N=V'H

V'N=VIL

mA

V'N=0.8V

V'N=2.0V

VCCI =4.5 V, Veco =4.5 V,
V =0.6V
VCCI =5.5 V, Veco =5.5 V

-25.0

-40.0

mA

V'N=V'H

V'N-V'l

IceoH

9.0

15.0

mA

V'N=V'H

V'N=V'l

Iccol

8.0

12.0

mA

V'N=V'l

V'N=V'H

tpHl

60

100

ns

tplH

70

100

ns

V,

*AII typical values are at TA =25°C

TTL OUTPUT 740L6000/01
Propagation delay time
for
low level

15,17
15,17
VCCI=5 V, Veeo=5 V

Output fall time
for output low level

t,

45

ns

15,17

~

5

ns

15,17

1-59

[!ii

HIGH-SPEED
LOGIC-TO-LOGIC OPTOCOUPLERS

OPTOELECTRONICS

4.5

VCC'
Vcco

4.5

V'H

2.0

5.0

5.5

V

15.0

V

1,3

V

VIL

0.8

V

V'K

-1.2

V

Vcc,=4.5 V, 1,=-18 mA

I'H

1.0

40.0

pA

Vcc,=5.5 V, V'H=4.5 V

III

-200.0

-400.0

pA

Vcc,=5.5 V, V'L =0.4 V

Icc'H

10.0

14.0

mA

Vcc,=5.5 V, V'N=V'H

Icc'L

10.0

14.0

mA

Vcc,=5.5 V, V'N=V'L

VOL

0.4

0.6
Low-level
output voltage

V

V'N=0.8V

V'N=2.0V

Vcc,=4.5 V, Vcco =4.5 V,
=4mA

0.5
1.0

10H
10L

16.0
9.0

Output SUpP.ly
current (high

Output supply
current (low)

100.0

pA

V'N=V'H

V'N=V'L

mA

V'N=0.8V

V'N=2.0V

12.0
mA

IceoH
11.0

18.0

8.0

12.0

11.0

V'N=V'H

V'N=V'L

Vcc,=5.5 V, VO=VOH'
VcCo=4.5V
Vcc,=5.5 V, VO=VOH'
=15V

mA

IceoL

Vcc,=4.5 V, Vcco =4.5 V,
IOL=16mA

V'N=VIL

V'N=V'H

Vcc,=5.5 V, Vo=Vou
Vceo =4.5 V
Vcc,=5.5 V, Vo=Vw
Vcco=15V

18.0

*AII typical values are at TA =25°C

TTL OUTPUT 740L6010/11
Propagation delay time
for
low level

1-60

tpHL

60

120

ns

tpLH

100

180

ns

t,

50

ns

~.

5

ns

15,18
15,18
VCCI=5 V,
Vcco=5 V, RL=470n

15,18
15,18

HIGH·SPEED
LOGIC·TO·LOGIC OPTOCOUPLERS

OPTOELECTRONICS

740L6000/01/10/11
Common mode transient immunity
at logic
level output

CM H

5000

15000

VII's

Common mode transient immunity
at logic low level output

CM L

-5000

-15000

VII's

Common mode coupling
capacitance

CeM

0.005

pF

Withstand insulation test
voltage

Visa

5300

I

<"

.3
I

hH

0

f-

Z
w
cr
cr

-100 -

::J

VCCI = 5.5 V
VIH = 4.5 V
Vil = 0.4 V

-

f::J

a.
~

-200

f--300
-40

'-- r-

-20

0

20

40

hl

f-

12

z

::J

11

~

10

a.
a.

9

en

8

f::J

a.

7

(3

5

~

SO

80

100

14

w
cr
cr

::J

f--

15

13

tl

tl

16,19

VRMS

<"
S

100

16,19

VCCI=5 V, Veea=5 V,
VeM =50Vp-p

E

ICCIH
ICCll

740LS000-6010
740LS001-S011

ICCIH - 740LS001-S011
ICCll - 740LSOOO-S010

S

+CI =:5.5V

~

~

0

W

~

00

~

00

TA - AMBIENT TEMPERATURE -

TA - AMBIENT TEMPERATURE - (0C)

(0C)
C2029

C2028

Fig. 2. Input Supply Current
vs. Ambient Temperature

Fig. 1. Input Current vs.
Ambient TernD/!rature

<"
S
f-

zw

15

12

cr

§

9

tl

~

a.
a.

::J

en
f::J

a.

f::J

o
I

o()
E

S

SO

"
"

--...:::

<"
S

'~,

........
r-, ........
~ ....

I 40

.........

r-.

-"""""-

;:....

::::::::::::~t::.. :;.......

-40 -20

0

ICCOH

20

40

SO

~

::J

'CIOl

::

80 100

TA - AMBIENT TEMPERATURE -

(0 C)

10

0

::J

r--

IOH
(740LSOOO/S001 )

0-10

I
2

-20
-30
-40

-20

0

20

40

SO

80

TA - AMBIENT TEMPERATURE -

C2030

Fig. 3. Output Supply Current
vs. Ambient Temperature

IOl

iii

ICCOl
: ICC;OH

740 LSOOO/S001
VCCI = 5.5 V
Vcco = 5.5 V

o

VCCI = 4.5 V
30 I - - -Vcco = 4.5 V
cr
_ VOL = O.SV
cr 20 I - ::J
VOH = 2.4 V
f-

ICCOl
r-r-- I-- • IC~OH

-740LS010/S011
VCCI = 5.5 V
Vcco = 15 V
3 ••• 740LS010/S011
VCCI = 5.5 V
Vcco = 5.5 V

-

50

100

(0 C)
C2031

Fig. 4. Output Current vs.
Temperature

1-61

HIGH·SPEED
LOGIC·TO·LOGIC OPTOCOUPLERS

OPTOELECTRONICS

~ 0.5

5

4 I--

I

w

vel, =)5 V
Veeo = 4.5 V
IOH = -400 p.A

(!)

~

0.4

~

fIOL=~A

I:::l

~

~

0.3

:::l

o

..J
W

a:;

r--

0.2

tOJ4j

..J

~

o

-40

-20

0

20

40

60

80

100

TA - AMBIENT TEMPERATURE -

(' C)

0.1
-40

....

~

Vcd, = 4.J V
Veeo = 4.5 V
-20

0

20

40

60

80

100

TA - AMBIENT TEMPERATURE - (' C)
C2033

C2032

Fig. 6. Low-Level Output Voltage
vs. Ambient Temperature

Fig. 5. High-Level Output Voltage
vs.Ambient
5
veL=Lv
f-Veeo = 15 V
VOUT = 15 V

4

U)

oS

Vee, = 5.0V
veeo = 5.0 V
P.W= 200 ns
200 PEiIOD= 1 P.s

II
.§

2

:r0

10

I-

0

20

40

60

80

1
-40 -20

100

0

20

40

60

80

100

TA - AMBIENT TEMPERATURE - ('C)

TA - AMBIENT TEMPERATURE - (' C)
C2034

C2035

Fig. 7. 740L6010/11 Leakage Current
vS.Ambient
~-Veeo-5V

g

=
--Veeo = 15 V
Vee, = 5 V
200

50

1==

~~

Ir

If~~

ifF

5

0

20

40

60

80 100

TA - AMBIENT TEMPERATURE - ('C)
C2036

Fig. 9. 740L6010/11 Switching Times
vS.Ambient

1-62

11

8T

-~~

0

1
-40 -20

Fig. 8. 740L6000/01 Switching Times
VS. Ambient T"rnn,,.,,,, or"

RL = 470 n
P.W = 200 ns
PERIOD= 1 P.s
_IPLHIPLH

-- -100 -- -- --

=:

If

5

~
en

o
-20

IPHL
Ir

50

i=
(!)
·z

J
vV'

-40

tpL~~

100

w

::;:

~ 10
w

S;;

~~

~~
0;:::

IZ

9

8
7 c---- -Veeo; 5V
5V
Veel ;
2V
VOH ;
I--VOL
;
0.8
V
5 IRL ; 470 n (740L6010/601 1)
4

6 I-

::;;!:!:!

3
2

I-

1

o~
~

"-

o
VeM -

~

500

1000

1500

2000

2500

COMMON MODE TRANSIENT
AMPLITUDE -(V)
C2037

Fig. 10. Common Mode
Common Mode

vs.

HIGH·SPEED
LOGIC·TO·LOGIC OPTOCOUPLERS

OPTOELECTRONICS

12

<'

.§.

I

10

f-

Z

w

c:r:
c:r:

::::>

V
~

0.
0.

::::>

~~

IICC!

~

w

:;:~

0:;: 300
0.
w

,~:,

.

6

« I
VO
«o.~
...Jo.
«f-C/)
~z

~

I--

r-

I

2

I

!d

ct

4

5

6

Vcc -

7

8

f--

VCCI = 5.5~

f-O

o

- - J;13
""- - i--'" P" I.--"~TA= 7Toc

200

0!!2 100

C/}

"

~1]5Jc

_E

C)

Vcco
RANGE FOR 740L6000/6001

4

MAXIMUM ALLOWABLE POWER
DISSIPATION @TA= 25°C

c:r:

V V- i--""

j

8

~

.. <6cl l= 4~5 V

o

5 6 7 8 9 1011 1213 1415

4

9 10 11 12 13 14 15

Vcco -

SUPPLY VOLTAGE - (V)

--

-f-@i;~#c

~

OUTPUT SUPPLY VOLTAGE -

C2038
Fig. 12. Power Dissipation vs.
Ambient Temperature

Fig. 11. Supply Current vs.

~

1.6

w

1.5

G
C)

~

100

~
...........

1.4

§2
o 1.3
...J

o

I

ff3
j!:

<'

"~

.3

w

c:r:
c:r:

::::> -100

()

f-

::::>

/

0.

1.1

~ -200

VCCI = 5.0 V _
VCc1o= 5'i V

~ 1.0

Z

0.9
-40 -20

/'

/

V

E
VCCI = 4.5 V

0

20

40

60

80

-300

100

Z

'5

0

Z

""-

1.2

f-

J:

f-

~

c:r:

I-

(V)

C2039

TA - AMBIENT TEMPERATURE - (0 C)

o

2
VIN -

3

4

INPUT VOLTAGE -

5

6

(V)

C2041

C2040
Fig. 13. Input Threshold Voltage vs.
Ambient Temperature

Fig. 14. Input Current vs.
Input Voltage

o
470

n (740L6010111)

PULSE
GEN
PW = 200 ns
PERIOD =l~s

tr= 5 ns
Zo '" 50n

C~

Vo

"'CL = 15pF STRAY CAPACITANCE

INCLUDING PROBE

C2042

Fig. 15. Switching Time Test Circuit

VOM

C2043

Fig. 16. Common Mode Rejection
Test Circuit

1-63

HIGH·SPEED
LOGIC·TO·LOGIC OPTOCOUPLERS

OPTOELECTRONICS

OUTPUT, Vo

OUPTUT, Vo

(740L6000)

(740LB010)

OUPTUT, Vo
(740L6011)

OUTPUT, Vo

(740L6OO1)

Fig. 18. Switching Parameters
740L6010/11

Fig. 17. 740L6000/01 Switching Times
vs. Ambient Temperature

_ _ _ _ SOy

i\-

VCM

oV _ _ _ _oJ!

\

dVCM

=.Y!
I

cl~
I-

cE 1.0

/'

01-

---9-

w

C!)

~

1,=20 rnA, VCE =O.4 V

/LS

a:

1.1

0.75

I-

o

--'

~

8

C

0.50

/

N

a:

~ 0.9 f-Y"---1I--+--+--I-

:::i

o

o

a:

u. 0.8 '---'------''--.l..--L-----L----''---L----L---1
0.1 0.2 0.5 1 2
5 10 20 50100
FORWARD CURRENT - IF (rnA)
C1686
Fig. 1. Forward Voltage VS.
Current

«

~

--..

~

/

0.25

z

o

o

5
IF -

10
(rnA)

15

20
C1679

Fig. 2. Normalized CTR VS.
Forward Current

1-69

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.2
IF = 10mAIF =5mAIF = 20mA

------E

n<
~

Ii~

f-a:
Uf-

l

1.0

-....9I
a:
fU

/

0.8

0

/

w

N

:::;

~

/VCE =5 V
16

~. ~ ~

<

.§.

~

/' ~/

I

14

-=.:

,/'

..[

18

I
J,!

12

::?i
a:
0

/y

8

'/
(/

Z

OA
-75 -50 -25

1

~~ffi
~

a:

0.90
0.80

I

~

a: ..
f- a:
U
0.70

-....9a:

0.50

fiJ

OAO

!:!

0.30

::?i
a:

0.20



VeE = 0.3V
VeE = 5.0V

/' -.... ~

UI-

w

I

(.!)

a:
I-

~
..J

0.75

U

0

fa

>
Q

0.50

/

N

a:

:J

~

/

=.
I-a: 1.0
UI--

......9I
a:

II//

0.8

Q

w

N

::;
«
::;;

r
,/'

VeE = 0.3V
VeE =5.0V

~

~.

VVCE =5V
16

F.~

~
~

/

14

~

~

1/

1

12

I

10

E

8

//

JV

4

,

z

0.4
-75 -50 -25

o

o

0 +25 +SO +7S +100+125
TA - (OC)
C1680

g 0.90
0.80

0:

a:
I-

0.70

--9.-

0.60

0:

a:
b
fa

~


w
Cl

IF

1111

I::l

IF-SmA

aw

N

:::;

>

a

«
:::;:

~
o

o

a:
a:

u.. 0.8

L--L-_.L....-'----'-_-L---L---L_...L..l

0.1 0.2 0.5 1 2
5 10 20 50100
FORWARD CURRENT - IF (mA)
C1686

a:
z
I
a:

.Q

III 111111

.1

NORMALIZED TO:

VCE=10VO~~
"r~F-l0mA

1lllliBilll~tgl

111'1/
.01
.1
100
1000
.01
10
VCE-COLLECTOR TO EMITTER VOLTAGE-VOLTS
Cl773

Fig. 3. Input Characteristics

«
VCE=200V
L VCE-l00V
VCE~50V

::l
t)

II::

Fig. 4. Output Characteristics

104

z
w
a:
a: loa

«a:
a
aw

./.

10'

:::;

«

t)

w 500

a:
0
z 1()"'

I

a:

w

NORMALIZED TO:~
VCE=200 VOLTS _
IF=O
RBE=l meg
~
TA-+2SDC
_

'"~

z 700 VCB=10V
w
a: 600 IF=50mA
a:
I

«
m

400

0

300

a:

"//

:::;:

800

CIl

,/1

10'

"-

I-

::l

"'

N

~

10~~

~

o

~
o

I-

I'-.

a:

II

I-

r-- ....

.2

I

II

0.01

IF-20mA

.... ~
.... ~

~

J""i-..

:::<

I

a:

..9

....

IF-lOrnA

1.0
.8 I'--~
.6
IF=5mA
.4

N

NORMALIZED TO:
VCE=10 VOLTS
IF=10mA
RBE=l meg

L

0.1

aw

I'

r-

1.4
1.2

0

aw

f-NORMALIZED TO:
1_
VCE=10 VOLTS, IF=10mA
I- RBE=lMO, TA=25°C
-

2.2 ~r2.0 r-~
1.8
1.6 ~

a:
a:

::l

~
0..

2.4

I-

10

a:
a:

l-

t)

w

...J
...J

200

t)

100

0

I

VCB=200V
IF=10mA

I

VCB=10V
IF=lpmA
VCB=10V
IF=5mA

:::;

\

\

""

\ \

~
, ~-

"""" r---......

~

0

10·'
+25
+50
+75
+100
+125
TA-AMBIENT TEMPERATURE-DC
C1774

Fig. 5. Normalized Dark Current vs. Temperature

'"

~

-50 -25 0 +25 +50 +75 +100
TA-AMBIENT TEMPERATURE-DC
Cl77S

Fig. 6. Collector Base Current vs. Temperature

1-89

1-90

HIGH VOLTAGE
PHOTODARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

H11G1
H11G2

;mt~
t
wi
15

0

6.35
REF

0.3
I

f

0.2

-L

"1

8.3
REF

• High BVcEo
Minimum 100V for H11G1
Minimum BOV for H11 G2
• High sensitivity to low input current-Minimum SOO
percent CTR at IF=1 mA
• Low leakage current at elevated temperature
(maximum 100 pA at BO°C).
• Underwriters Laboratory (UL) recognized File #E90700

I

5.1
t

MAX

•

j

0.51

MIN

~~
0.56
0.41

The H11G1 and H11G2 are the photodarlington-type
optically coupled optoisolators. Both devices have a
gallium arsenide infrared emitting diode coupled with a
silicon darlington connected phototransistor which has
an integral base-emitter resistor to optimize elevated
temperature characteristics.

DIMENSIONS IN mm
PACKAGE CODE E

ST1603-02

•
•
•
•
•

CMOS logic interface
Telephone ring detector
Low input TIL interface
Power supply isolation
Replace pulse transformer

Equivalent Circuit

TOTAL PACKAGE
Storage temperature .............. -SsoC to 1S0°C
Operating temperature ............ -SsoC to 100°C
Lead temperature
(soldering, 10 sec) ...................... 260°C
Total package power dissipation at 2SoC
(LED plus detector) .................... 260 mW
Derate linearly from 2SoC .............. 3.S mW/oC
Isolation voltage ................. 7S00 VAC PEAK

INPUT DIODE
Forward DC current ....................... 60 mA
Reverse voltage ............................. 6 V
Peak forward current
(1 /Ls pulse, 300 pps) ..................... 3.0 A
Power dissipation 2SoC ambient .. . . . . . . . .. 100 mW
Derate linearly from 2SoC ............... 1.B mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 2SoC ................ 200 mW
Derate linearly from 2SoC ............. 2.67 mW/oC
Collector to emitter voltage
H11G1 .................................. 100V
H11G2 ................................... BOV
1-91

HIGH VOLTAGE
PHOTODARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

1.50

V

1.=10 mA

mVrC

V.=O V, f=l MHz
V.=l V, f=l MHz
I

OUTPUT DARLINGTON
Breakdewn veltage
Cellecter te emitter
HllGl

Cell ector te base
HllGl

Leakage current
Cellecter te emitter
HllGl

BVcEo
100

V

100

V

Ic=1.0 mA; 1.=0

BVcBO

IcEO
100

nA

HllGl

100

~

VcE =80V, 1.=0,
TA =80°C

HllG2

100

~

VcE =60V, 1.=0,
T =80°C

Current Transfer Ratie,
cellecter te emitter
HllGl/2

Saturatien veltage

CTR
1000

%

0.85

1.0

V

1.=16 mA; Ic=50 mA

SWITCHING TIMES
Turn-on time

5

Turn-eff time

100

1-92

VcE =5V
Pulse width ... 300 /Lsec,
f ... 30 Hz

HIGH VOLTAGE
PHOTODARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

4.0

, ,,'

1000

~

100

:l!a:

10

~

/

ao

1.0

~

o. 1

k

.01

r\

a: 3.0
f-

/

1/

a
w

/

«
a:

.001

o

II

0

z

j
.5

I

1.0

1\

I

N
:::; 2.0

:::i:

f2

\

Cl

1.0
NORMALIZED TO

1.5

2.0

VF-FORWARD VOLTAGE-VOLTS

VeE = 5 V
IF = 1 rnA

0

.1
IF -

10
(rnA, 300 /JS pulses)

Cll19

Fig. 1. Forward Voltage vs.
Forward Current

III

100

C1704

Fig. 2. Normalized CTR VS.
Input Current

1-93

HIGH VOLTAGE
PHOTODARLINGTON OPTOCOUPLERS

100

10

~

IF
IF
IF

10mA
50 mA
1 mA

l7"""'-o 1000...

...........:

w

a:
a:

a

v

10.0

-.....-.....

I-

IF
IF
IF

7

50 mA
10mA
1 mA

a:

t)

:::>

Cl

w

0..

~

N

1.0

o

1.0

::::i

«

:2
a:
0

Cl
W

N

~

z

0.1

:2

NORMALIZED TO
IF 1.0 mA (300 /lS pulse)
VeE 5V

a:

oz

-

l-

0.01

"-

NORMALIZED TO
TA = 25·C
IF = 1.0 mA (300 /lS pulse)
VeE = 5 V

0.1
-50°C

0123456
VeE - COLLECTOR TO EMITTER VOLTAGE (V)

~

O°C
+50°C
TA- (OC)

+lOO°C
C170S

C1705

Fig. 4. Normalized CTR vs.
Temperature

Fig. 3. Output Characteristics

10

100

«
10

-~ -~

E

aov
50V
10V

VeE
VeE
VeE

I

"-

Z
w
a:
a:

'I

\F L = 10 n

:::> 1.0

\100 n

lK

t)

o

//

9. 100
.010

.001
O°C

'"

I-

:::>
0..

~

1/

-

20°C

,!!,

.."

.....

40·C 60°C
TA - (OC)

ao°c

100°C
C1707

Fig. 5. Dark Current vs.
Temperature

1-94

\

\

I-

fNORMALIZED
TO:IF = 10 mA
RL = 100 n
VeE = 5 V

0.1
0.1

~

\

1.0

10

tON + tOFF NORMALIZED TOTAL
SWITCHING SPEED
C170a

Fig. 6. Switching Speed

DUAL HIGH-SPEED
TRANSISTOR OPTOCOUPLERS

HCPL·2530 HCPL·2531

/

15° MAX

6.86
6.35

+

f

7.62

REF

The HCPL-2530/31 dual optocouplers contain two completely
separated 700 nm GaAsP LED emitters each optically coupled to
a high speed photodetector transistor.
A separate pin for the bias of the photodiodes improves the
speed by several orders of magnitude by reducing the basecollector capacitance.
An internal noise shield provides superior common mode
rejection of 10 kV/p,s. An improved package allows superior
insulation permitting a 480 V working voltage compared to
industry standard of 220 V.

2.54 -.J I- 0.89 TYP
--ITYP 1-- I I

3.94
3.68

3.56
3.05

+

0.51
MIN

•
•
•
•
•

High speed 1 MBiVs
Superior CMR-l0 kVh,s
Double working voltage-480 V RMS
CTR guaranteed 0-70°C
U.l. recognized (File #E50151)

•
•
•
•

Line receivers
Pulse transformer replacement
Output interface to CMOS-LSTIL-TIL
Wide bandwidth analog coupling

0.89 TYP
C2091
DIMENSIONS IN mm
PACKAGE CODE D

Equivalent Circuit

TOTAL PACKAGE
Storage tern perature ..................... -55°C to 125°C
Operating temperature ................... -55°C to 100°C
Lead solder temperature ................... 260°C for lOs
INPUT DIODE
Average forward input current
(each channel) ............................. 25 mA (1)
Peak forward input current
(each channel) ............................. 50 mA (2)
(50% duty cycle, 1 ms pulse width)
Peak transient input current-I, (each
channel) (:S;lILS P.w., 300 ........................ 1.0 A
Reverse input voltage (each channel) ................. 5 V
Input power dissipation
(each channel) ............................. 45 mW (3)

OUTPUT TRANSISTOR
Average output current (each channel) .............. 8 mA
Peak output current (each channel) ................ 16 mA
Supply voltage - Vee (pin 8-5) . . .. . . . .. .. .. .. -0.5 V to 30 V
Output voltage - Va (pin 7, 6-5) ............. -0.5 V to 20 V
Output power dissipation
(each channel) ............................. 35 mW (4)

1-95

DUAL HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

DIODE
Input forward
Voltage

VF

In put reverse
breakdown volt.

BvR

Temp. coefficient
of forward volt.

1.5
5

.§Y..r..

-1.6

LlT

DETECTOR
Logic high
output current

1.7

.02

500

V

IF=16 mA, TA =25°C

V

IR=10 !1A

5

mV/oC

IF=16 mA

5

nA

1F1 =I F,=O mA, TA =25°C
V01 =V02 =Vcc =5.5 V

!1A

1F1 =I F,=O mA
VOl =Vo,=Vcc= 15 V

!1A

IF,=I F,=16 mA, Vcc=15 V
Vo,=Vo,=Open

10H
10
80

IccL

.01

4

Logic low
output voltage

PARAMETER

CTR

SYM.

tpLH

Propagation delay
time
(For output
high level)

tpHL

Common mode
transient
immunity at logic
high level output

CM H

Common mode
transient
immunity at logic
low level output

CM L

1-96

19

2530

5

2531

15

%
21

5,6

IF=16 mA, Vo=0.5 V, Vcc =4.5 V

1,2

5,6

0.5

v

IF=16 mA
10=1.1 mA, Vcc =4.5 VTA =25°C

2531

.1

0.5

V

I
I

TYp.o

MAX.

UNITS

2530

0.5

1.5

ikS

1,=16mA, RL=4.1 kO

2531

0.3

0.8

ikS

1,=16mA, RL=1.9kO

2530

0.2

1.5

p,s

1,=16 mA, RL=4.1 kO

2531

0.1

0.8

p,s

1,=16 mA, RL=1.9 kO

MIN.

2530

1000

10000

2531

1000

10000

TEST CONDITIONS

RL=4.1 kO
RL=1.9kO

-1000 -10000

RL=4.1 kO
V/ikS

2531

-1000 -10000

5

16mA
mA, Vcc =4.5 V TA=25°C

V/ikS

2530

5

1,2

.1

DEVICE
HCPL

5

IF=16 mA
TA =25°C, Vo=0.5 V, Vcc =4.5 V

2530
VOL

Propagation delay
time
(For output
low level)

*AII typicals at TA =25°C

2531

6

5

!1A

18
Current transfer
ratio

3

RL=1.9 kO

FIG.

NOTE

5,11

10,11

5,11

10,11

1,=0 mA,
VcM =10Vp-,

10

9,10,11

1,=16mA,
VcM =10 V,.,

10

9,10,11

DUAL HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

Withstand
Insulation test
voltage

V,so

Resistance
(input-output)

R,-O

10'2

n

V,_,=500VDC

7

Capacitance
(input-output)

C,_,

0.6

pF

1=1 MHz

7

Input-Input
insulation
leakage cu rrent

I"

0.005

pA

RHs50%
V,., =500 VDC
t=5s

8

Resistance
(input-input)

R,_,

10"

n

V,_, =500 VDC

8

Capacitance
(input-input)

C,_,

0.25

pF

1=1 MHz

8

2500

VRMS

RHs50%
T.=25°C, t=1 min

7,13

*AII typicals at TA =25°C

1.
2.
3.
4.
5.
6.
7.
B.
9.

10.
11.
12.
13.

Derate linearly above 70°C free-air temperature at a rate of O.B mA/oC.
Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/oC.
Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/oC.
Derate linearly above 70°C free-air temperature at a rate of 1.0 mW/oC.
Each channel.
CURRENT TRANSFER RATIO is defined as the ratio of output collector current, ,0 , to the forward LED input current, I" times 100%.
Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and B shorted together.
Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVc,/dt on the leading edge of the
common mode pulse VCM' to assure that the output will remain in a logic High State (i.e., Val 2.0 V). Common mode transient
immunity in Logic Low level is the maximum tolerable (negative) dValdt on the trailing edge of the common mode pulse Signal, VCM
to assure that the ouput will remain in a Logic Low state (i.e., Va (O.B V).
The 1.9 Kn load represents 1 TTL unit/oad of1.6 rnA and the 5.6 Kllpull-up resistor.
The 4.1 Kllioad represents 1 LSTTL unit load of 0.36 mA and 6.1 Kn pull-up resistor.
The frequency at which the ac output voltage is 3dB below the low frequency asymptote.
The 2500 VRM/1 min capability is validated by a factory 3.1 kV~1 sec dielectric voltage withstand test.

1-97

DUAL HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

1.6

---INDICATES
PULSED OPERATION

20

TA - 25'C
Vee = 5.0 V

.--.... - --- >-- -

<{

E

I
W

a:
a:

"8 10

II-- f- I-

l-

=>

11.

l-

o=>

--

l-

I

e(

~~

Oa:.!:!:.,!; 1.2

I

2rm~2?m~_

1.1

,/

\
\

1.0

0.9 NORMALIZED TO:
IF= 16 mA
oa:1-a:a:
1-1Z
aa 0.8 Vo =0.4V
~
0.7 Vcc=5V
TA=25°C

15mA-

\
\

2
4 6 8 10
20 40
80
IF - FORWARD CURRENT - mA
Cl946

20

10

II

V

II

fijffi@J@J
~~ titi
~~ ~~
::;a:uu

rimA

o

1.5

E 1.4
~ 1.3

Z

Wo
a:_

I
I
l?m~-

I'"""

I
52

I I

_45mA
_40mA-~-~
35mA-~ -~30mA_

-~

IZ

,.........,

Vo - OUTPUT VOLTAGE - V

C1945

Fig. 2. Normalized Current Transfer
Ratio vs. Forward Current

Fig. 1. DC and Pulsed
Transfer Characteristics
_10.0
e(

1.3

g
I-

W

a:

0:
::l

-

/

Z

TA=25'C

1.0

r-

/

a

I::l

"\~
"- ~

/

£1.

~
0
0:

/

0.1

e(

3:

,

0:

0

u.
~

.01
1.0

'"

/
1.2
1.4
1.6
VF. FORWARD INPUT VOLTAGE (V)

-60 -40 -20 0 20 40 60 80 100
TA - TEMPERATURE _DC
C1948

C1600

Fig. 4. Normalized Current Transfer
Ratio vs. Temperature

Fig. 3. Forward Input Current VS.
Forward Input Voltage

~

....I

W

o
z

g

a

< <'"~

(!)

~I-II

NORMALIZED TO:
1.5 Vcc=5.0V
IF= 16mA
1.4
RL= 4.1 K
1.3 TA = 25°C
1.2

1.0

i;!j (/) (/)

0.9

~
::;

0.8

o~~

0:

oZ

e(

TPHL

V L.

.

.. I--::::

TPLH

II-

J:::l

oQ.l~I;;;;;;,.-~~~=-+--+--+-~

-!:;
o

0.7
-25

o
25
50
TA - TEMPERATURE - °C

~I­

J:Z

9a

/
j::iI"

c:

J:I

Qll!
(!) 0: 10-11;;;;;;,.-+--+--+--+---+-.,.£.l

V

oww 1.1
0:::;::;
Q.~ ~

r---.

NORMALIZED TO:
IF= 16 mA
TA = 25°C
Vcc=5.0V
"VO=0.4V

70

10~50

-25
0
25
50
75
TA - TEMPERATURE - °C

Cl950

Cl949

Fig. 5. Normalized Propagation
Delay vs. Temperature

1-98

100

Fig. 6. Logic High Output
Currentvs.

DUAL HIGH·SPEED
TRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

Vcc ~ 5.0 V_
hH 16 mA
hLOmA
VOH 2.0
VOLO.8V RL~1.9k _
TA ~ 25°C

18 k
w

!l

O~

~I

16 k
14 k

zi5 12 k
03
:2;"C 10 k
:2;1OZ 8k
u!!!

I~

:2;«
UII:

I-

6k

0

RL

W

Vcc~5.0V

II: 0

TA~25°C

Z

!5 -

U~

2.0

...III:
«II:
z w 1.5
ClLl...

-If)
If)z

\ \

CMH

\

""-

4k
2k

I-

CML ..........

I

...1«

 8. 0

TA = 25°C

6. 0

~

5. 0

~

~ 4. 0
Q.

~

o

3. 0

I 2. 0

g

1. 0

L--

50

60

70

C1598
Fig. 2. Low Level Output
Voltage vs. Temperature
_10.0

u

/
TA = 25°C

/

I-

~
RL=lKfl

40

I-

I 7. 0

w
Cl

30

TEMPERATURE (TA • °C)

C1613
Fig. 1. High Level Output
Current vs. T..nnn"r:.t, /rIO
9. 0

20

70

TA • TEMPERATURE (OC)

::>
Q.

~

1\

1\ RL = 350fl
\"l
_\J.

a: 0.1
«
...I

RL = 350n

_AL... z4KO_

0

«

...

40

'"

;t

g:
,

...

RL~,:::::

-

~

30

0

- ......

-- :'s:::
--::::-

c

>-

«

u:

-==

«

.'"g:

«

Rl -4Kn

,

10

_ ----t
--t

PHL

Vel

= 5.0V

50

60

10

20

30

40

,

_

- - - t P L . H _ _Vcc:::
--tPHL

5.OV _

TA = 25°C

10

1

o

o

20

.>
IF =7.5m~_

pLH

~~-

30

0

RL = 1Kn

20

.>

RL ·350n ....
50 fJ1L =1Kn
RL=4Kn ..
40

z
0
;:

1------

"................
...... -R:=-3~O!l
'Y",,"
RL=lKn

60

0

RL -3SO!l

.........

RL -4KU

70

a
70

o

10

15

20

I, - PULSED INPUT CURRENT (mA)

TA - TEMPERATURE (OC)

C1603

C1604

Fig. 6. Propagation Delay vs.
Pulse Input Current

Fig. 5. Propagation Delay vs.

+5

PULSE
GENERATOR

INPUT

(I,)

Zo=50n
tr "" 5 ns

I

RL
OUTPUT t

f--+----+-o Vo

PHL

Cl*
OUTPUT
MONITORING
NODE

I--~_ _"

- _ _-=.,.1

;r=-t---

1 '-;,---

- ! tplH

1.5V

90%

1

o~~' \~~~~~~~T

Cl is approximately 15 pF, which

----'1

includes probe and stray wiring
capacitance

1

_~ _ _ _ _ _ _ _ _

(Va)

INPUT
MONITORING
MODE

_\!_
1

tf

I~

-----'1

tr

1"'---

C1980

C1597

Fig. 7. Test Circuit tpHU tpLH, t, and t,

..'"

~ 10K~nr-r--r-r--r-~-r-.--'--'

= t,----

=t

Voc - 5.0~==
I, -7.5mA_

f

!

300t--+--4--+--+-~--f---I

~

200i--f-'--,--+--i--",,\,""''-''t-'=''1

RL =4Kn

UJ

l00~~~
~
=
+--+-+-_-.+
...._--=......-;
.:r
_I

~ 80
::: 60

RL

lKn

50

40 RL
30

~

3500

Rl =4K!l

8K f--JH--t--+-t--+---1IFH = 7.5mA
IFL ::::: OmA

~ 7K
~

Z

f--H--~-+-+--+--I

VOH 2.0V
VOL""

O.BV

I-I--

~

6K

~

5K~~-+-r-~-+-r-,--,-r-~

RL = 3500

TA

>w 4K
o

=

25°C

I--

f--\l--t-+-t-+-~-+-+--+--I

~ 3K f--k,-t-+-t-+-~-+-+--+--I
~ 2K~+-~~t-~-+-t-~~-+-~

20f---+--+-+--+-Rl = lKn~

8 lKI--~-t--+-t--+-t--+-t--+---1

10L-_L-_L-_L-_~Rl~-L35~00~~4-J~~

:2

a

10

20

30

40

50

60

70

C1601
Fig. 8. Rise and Fall Time
vs. Temperature

I

u

100 200 300 400 500 600 700 800 900 1000
VeM - COMMON MODE TRANS I ENT AMPLITUDE (V)

TA - TEMPERATURE eC)

1-104

i

z

...I
...I

!!2

~ 9K~~-~-+-+--+-+--L-~-+~
Z
Voc = 5.0V

C1590
Fig. 9. Relative Common Mode
Transient Immunity vs. Common
Mode Transient Complitude

DUAL VERY HIGH·SPEED
LOGIC GATE OPTOCOUPLERS

OPTOELECTRONICS

,..

t:
z
::;)

1.4

::;;

~ 1.3

Vee = 5.0V

I-

~
enz 1.2

«a::

I-

1.1

VOH

t-...

0

::;;

1.0

.9

w

.8

~..J

.7

>

~

RL =3500
VOM =50V

...........

z

0

::;;
::;;
0
u

2.0V

IF!. =OmA

........... r-...

w

Q

""

VOL =0.8V
IFH :::: 7.5mA

rr-

i'o..

...........

0

10

20

30

40

50

........

60

70

TA - TEMPERATURE ('C)

C1595
Fig. 10. Relative Common Mode Transient
Immunity vs. Te~nof1falure

R

I-r------......... + 5 V
3500
A

Vo

5V
SWITCH POS. (A), IF

=0

- - - - y o (MIN.)

I\

Va
0.5V _ _ _ _......

- - - - VO (MAX.)
SWITCH POS. (8), IF

= 7.5mA

PULSE GEN.

Zo=500

Cl981

C1594

Fig. 11. Test Circuit for Transient Immunity and Typical Waveforms

1-105

OPTOELECTRONICS

DUAL VERY HIGH·SPEED
LOGIC GATE OPTOCOUPLERS

1. The Vcc supply voltage to each MCL2630 isolator must be bypassed by a 0.1 p.F capacitor or larger. This can be either a ceramic or
solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package Vcc
and GND pins of each device.
2. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V
level on the HIGH to LOW transition of the output voltage pulse.
3. tpLH - Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V
level on the LOW to HIGH transition of the output voltage pulse.
4. tf
- Fall time is measured from the to% to the 90% levels of the HIGH to LOW transition on the output pulse.
5. t,
- Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse.
6. Each channel.
7. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
B. CML - The maximum tolerable rate offall of the common mode voltage to ensure the output will remain in the low output state (i.e.,
VouT>O.B V). Measured in volts per microsecond (V/%sj.
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e.,
VOUT>2.0 Vj. Measured in volts microsecond (V/p.s).
Volts/microsecond can be translated to sinusoidial voltages:
Vlp.s= (dVc.J Max.='lTfcM VCM(p.p.j
dt
to.

1-106

Example: VcM =31B Vpp when fCM=1 MHz using eML and CMH =1000 Vlp.s.
- Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and B shorted together.

DUAL
SPLlT·DARLINGTON OPTOCOUPLERS

OPTOELECTRONICS

1.6 mA DUAL HCPL·2730
0.5 mA DUAL HCPL·2731

15° MAX
6.86
6.35

0.36

+

f

7.62
REF

The HCPL-2730/31 dual channel optocouplers contain two
completely separated 700nm GaAsP LED emitters. Each channel
is optically coupled to high gain detector in a split Darlington
Configuration, which provides extremely high current transfer
ratio.
The split darlington configuration separating the input photodiode
and the first stage gain from the output transistor permits lower
output saturation voltage and higher speed operation than
possible with conventional darlington phototransistor
optocoupler. An integrated emitter-base resistor provides
superior stability over temperature.
The combination of a very low input current of 0.5 mA and a high
current transfer ratio of 2000% make this family particularly useful
for input interface to MOS, CMOS, LSTTL and EIA RS232C, while
output compatibility is ensured to CMOS as well as high fan-out
requirements.

3.68
3.56
3.05

An internal noise shield provides exceptional common mode
rejection of 10 kV/,.,s. An improved package allows superior
insulation permitting a 480 V working voltage compared to
industry standard 220 V.

•

0.51
MIN

0.89 TYP
C2091
DIMENSIONS IN mm
PACKAGE CODE D

•
•
•
•
•

Low current-0.5 mA
Superior CTR-2000%
Superior CMR-10 kV/p,s
Double working voltage--480 V RMS
CTR guaranteed 0-70°C

• Digital logic ground isolation
• Telephone ring detector
• High common-mode-noise line receiver

Equivalent Circuit

Storage temperature ................... -55°C to +125°C
Operating temperature .................. -40°C to +85°C
Lead solder temperature ................... 260°C for 10 s

INPUT DIODE
DC/average forward input current
(each channel) ............................. 20 mA (1)
Peak forward input current
(each channel) ................................ 40 mA
(:$1 msec duration, 50% duty cycle) (1)
Reverse input voltage (each channel) .. . . . . . . . . . . . . .. 5.0 V
Input power dissipation
(each channel) ............................. 35 mW (2)

OUTPUT TRANSISTOR
Output current (each channel) .................. 60 mA (3)
Supply and output voltage !Ycc,Vo)
MCL2730 (HCPL-2730) ..................... -0.5 to 7 V
MCL2731 (HCPL-2731) .................... -0.5 to 18 V
Output power diSSipation
(each channel) ............................ 100 mW (4)

1-107

DUAL
SPLlT·DARLINGTON OPTOCOUPLERS

DIODE
Input forward
voltage

VF

Input reverse
breakdown
voltage

BvR

Temperature
coefficient of
forward voltage

I1VF
I1T,

1.5

1.7

5

V

IF=1.6mA, TA =25°C

V

IR=10~, T,=25°C

5

IF=1.6mA

5

mV/oC

-1.6

4

5

I

DETECTOR
Logic high
output current

10H

Logic low
supply current

IccL

0.Q1

2730

100

5

ICCH

Current transfer
ratio

CTR
2731

400

2000

%

IF=0.5 mA, Vo=O.4 V, Vcc =4.5 V

500

2000

%

IF=1.6 mA, Vo=O.4 V, Vcc =4.5 V

2730
Logic low
output voltage

AC
CHARACTERISTICS

VOL

2731

SYM.

DEVICE

P(opagation delay
time
(For output
low level)

tpHL

P(opagation delay
time
(For output
high level)

t pLH

.1

0.4

V

IF=1.6 mA, 10=4.8 mA, Vcc =4.5 V

.1

0.4

V

IF=0.5 mA, 10=2 mA, Vcc =4.5 V

.1

0.4

V

IF=1.6 mA, 10=8 mA, Vcc =4.5 V

0.4

V

MIN.

TYR*

1000

10000

MAX.

UNITS

TEST CONDITIONS

2

5,6

5

FIG.

NOTE

2730/1
2731
2730/1
2731

mode
transient
immunity at
logic high level
output
Common mode
transient immunity
at logic low
level

*All typicals at
1-108

CM H

CM L

-1000 -10000

V/IJS

IF=OmA, RL=2.2 kO
VcM =10 Vp_p

7

5,9

V/IJS

IF=16 mA, RL=2.2 kO
VcM =10 Vp_p

7

5,8

DUAL
SPLlT·DARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

Withstand
insulation
test voltage

V,so

Resistance
(input-output)

R,.o

10"

n

V,.o=500 VDC

10

Capacitance
(input-output)

C,-o

0.6

pF

f=1 MHz

10

Insulation
leakage
current
(input-input)

I,.,

0.005

pA

RH:s50%,
V,.,=500 VDC t=5 sec

7

Resistance
(input-input)

R,.,

10"

n

V,<=500VDC

7

C,.,

0.25

pF

f=1 MHz

7

2500

VRMS

RH:s50%, TA =25°C
t=1 min

10,11

*AII typicals at TA =25°C

1.
2.
3.
4.
5.
6.
7.
B.
9.

Derate linearly above 70°C free-air temperature at a rate of 0.5 mAl°C.
Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/oC.
Derate linearly above 70°C free-air temperature at a rate of 0.6 mN°C.
Derate linearly above 35°C free-air temperature at a rate of 1.7 mW/oC.
Output power=(Collector output} + (supply power).
Each channel.
CURRENT TRANSFER RATIO is defined as the ratio of the output collector current, 10' to the forward LED input current IF' times
100%.
Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
CM, - The maximum tolerable rate of the common mode voltage to ensure the output will remain in the low output state (i.e.,
Vour>O.B VI. Measured in volts per microsecond (V/p,S).
CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e.,
Vour>2.0 VI. Measured in volts per microsecond (V//1oS).
V//1os= dVcM Max ='TI"fcM VCM(p.p.)

dt

10. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and B shorted together.
11. The 2.5 kV RMS/1 minute capability is validated by a factory 3.1 kV RMS/1 sec.

1-109

DUAL
SPLIT-DARLINGTON OPTOCOUPLERS

OPTOELECTRONICS

100.----------,----------~

10,000

<90~--------~----------~

E

Vee=5 V

I 80 TA=25oC---+---------l

!z

70 IF = 0.5 rnAlslerl~;;""O;;...."""""'::_-___1

UJ
I%:
I%:

60 I----M;,..;;....,,:;....~=--~...._.j

a

ffiu-

TA 85°C

Z

vn

rn

<
I%:

TA-O°C

~;o"!
TA=-40°C
z 1 1000

50

UJ 0

I%: ..
:::ll%:

tl.

U

53°r-~~~~~~--~--~1

"

I

~201.V~====~========~
2

I%:

t;

10~~----+_----____l

1.0
10
100
INPUT FORWARD CURRENT-rnA
C1958

1.0
2.0
Vo - OUTPUT VOLTAGE - 1 V
C1957

Fig. 2. Current Transfer Ratio VS.
Current

Fig. 1. DC Transfer Characteristics

_10.0

100
TA
TA

..:

E

..:

85°C
25°C

.§.
f-

10

::>

w

O°C
40°C

0

0..

1l:

f-

::>
::>

/

0

a: 0.1

1.0

o
I

~
a:

~Vee 5V

2
0.1

,

0

r-iomM
0.1

u.

/

.i .01
1.0

100
10
1.0
INPUT FORWARD CURRENT - rnA
C1959

1.2
1.4
1.6
VF, FORWARD INPUT VOLTAGE (V)
C1600

Fig. 3. Output Current VS.
Input Forward Current

Fig. 4. Forward Input Current VS.
Forward Input

10

o MCl2730/31
MCl2731

7V Vee
18. V Vee

..:

::JE

IIIIIII

Zz

Vee 18V

~~1 0

":W
LCC
Occ

III'

cc::>
WO

Vee = 7 V

l!:.~1.0

...10..
"0..

.!J::>
CIl

I"

o.1

0.1

1.0
5 10 2
100
IF - FORWARD INPUT CURRENT
C1995

Fig. 5. Supply Current Per Channel
VS. Input Forward Current

1-110

/

,

f-

::>

o

1=

TA =25°C

a:
a: 1.0
::>

LmI
TA
TA

7

Z

I~

I
f-

a:
a:

\

'

1%::;:

540

iE

Vee -S.OV
Vo=O.4V

~

DUAL
SPLlT·DARLINGTON OPTOCOUPLERS

OPTOElECTRONICS

PULSE
GEN
Zo=501l
tF

IF=r----i

+5V

= 5ns

0 - - I~- - - - -

:

"~

tPHL~ F ---

±

f-----'---_-o Vo

I
I

CL=15pF

5V

i:",

IF MONITOR

-_(i:;:::"iPLH VOL

loon
Cl961

Fig. 6. Switching Test Circuit and Waveforms

10 V- -

-.~::;:;----.,.-,

VCM

If = Oma
VO------------~~VOL
It = 1.6 rnA

PULSE GEN.

C1962

Fig. 7. Test Circuit for Common Mode Transient Immunity and Waveforms

1-111

1-112

NON·ZERO·CROSSING TRIACS

OPTOElECTRONICS

MCP3009 MCP3010 MCP3011

*[[.)..}

15° MAX

6.86
6.35

0.36

I

f

----I

i---=
1.78 REF

7.62
REF

0.20

,..L

l'

The MCP3009, MCP3010 and MCP3011 are optically
isolated triac driver devices. These devices contain a
GaAs infrared emitting diode and a light activated silicon
bilateral switch, which functions like a triac. This series is
designed for interfacing between electronic controls and
power triacs to control resistive and inductive loads for
120 VAC operations.

• Low input current required (typically 5mA-MCP3011)
• Minimum commutating dvldt is specified at O.1V//Lsec
• Pin for pin replacement for the MOC3009, 3010 and
3011 devices
• High isolation voltage-minimum 7500 VAC peak
• Underwriters Laboratory (UL) recognized-File E50151
OAI

DIMENSIONS IN mm
PACKAGECODE R1

6 MAIN
TERM.

4 MAIN

TERM.

•
•
•
•
•
•

Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Solid state relay

*00 NOT CONNECT
(mIAC SUBSTRATE)
Equivalent Circuit

C20B1

TOTAL PACKAGE
Storage temperature .. . . . . . . . . . . .. -55°C to 150°C
Operating temperature ............ -40°C to 100°C
Lead temperature
(soldering 10 sec) ....................... 260°C
Total package power dissipation @ 25°C
(LED plus detector) .................... 330 mW
Derate linearly from 25°C .............. 4.0 mW/oC
Withstand test voltage ... 7500 VAC Peak (50-60 Hz)

INPUT DIODE
Forward DC current ....................... 60 mA
Reverse voltage ............................. 3 V
Peak forward current
(1 !LS pulse, 300 pps) ..................... 3.0 A
Power dissipation 25°C ambient ........... 100 mW
Derate linearly from 25°C . . . . . . . . . . . . .. 1.33 mW1°C
OUTPUT DRIVER
Off-state output terminal voltage .......... 250 volts
On-state RMS current
TA=25°C ........ 100 mA
(Full cycle, 50 to 60 Hz) TA=70°C ......... 50 mA
Peak nonrepetitive surge current ............. 1.2 A
(PW=10 ms, DC=10%)
Total power dissipation @ TA=25°C ........ 300 mW
Derate above 25°C ................... 4.0 mW/oC
1-113

NON·ZERO·CROSSING TRIACS

OPTOELECTRONICS

OUTPUT DETECTOR
Peak blocking current,
either direction

10

Peak on-state voltage,
either direction

100

nA

2.0

3.0

Volts

15.0

30

mA

VDRM =250 V, Note 1
ITM = 100 mA Peak

Note 1. Test voltage must be

MCP3009
MCP3010

----~---------------------------------------

MCP3011

10.0

15

mA

5

10

mA

Main terminal
voltage=3.0V

AC dv/dt RATING
Critical rate of rise of
off-state voltage

dv/dt

Critical rate of rise of
commutating voltage

dv/dt

1-114

0.1

10.0

V//J,s

Static dv/dt
(see Fig. 4)

0.2

VI,..S

Commutating dv/dt
II.OAD=15 mA
(see Fig. 4)

NON·ZERO·CROSSING TRIACS

OPTOElECTRONICS

+800

1,I FORWARD VOLTAGE ••.
FORWARD CURRENT IV, ••. ',I

.5
~ 1.
-'

o
~

<:)

4h

•.


" 1.
o
a: 1

'0

l'--

(!l

'irQ

~'''''

(J)

1'" ....

2

-1--8tatic dv/dt
Commutating dv/dt
Test Circuit in Figure 4

:>
'0

Vin = 30 V RMS
._
Test Circuit in Figure 4

U

:0.

~
()

Ui

~
0.16 ~

bk~ '::::'<.'

Ui 8

(!l

z

V

4.0

"C

0~20

.... 1'.

:0.

Ui 10.0
()

~

o

W
(!l

~

~ 2.0

::;;

dv/dt 0.2 V/fJS
Test Circuit in Figure 4
dv/dt 8.9 Vinl
RL= 1 kO

in
rc:
rc:

100

1.5

'€>

I

'0

o

1"'-

::J

()

Cl

(!l

1"'-,....

w 1.0

rc:

::J
(J)

10

~

..:
I

w

.5

0..

I

-5
1.0
10
100
1000
10,000 100,000
I - MAXIMUM OPERATING FREQUENCY (Hz)
C1692

Fig. 7. Commutating dV/dt
vs. Frequency

1-116

0.04

IWI!2bU1

r---

f-'

>
0..
0..

I......

~

a-'

w
:;

a()

Fig. 6. dV/dt vs. Temperature

1000
a:

0.08

C1691

C1690

~

::J

::;;
::;;

50
25
75
100
TA - AMBIENT TEMPERATURE (OC)

2.0

Fig. 5. dV/dt VS. Load Resistance

Ui
:::;

0.12 ~

:::;

~

o
0.01

0.1
PW -

1.0
10
100
PULSE WIDTH (ms)
C1696

Fig. 8. Maximum Nonrepetitilie
Surge Current

NON·ZERO·CROSSING TRIACS

OPTOElEtTHORICS

Ri"

6
MCP3009
MCP3010
MCP3011

180

120 V
60 Hz

180
MCP3009
MCP3010
MCP3011

4

0.1

~F

(lGT ~ 15 rnA)

C1693

120V

60Hz

C1694

Fig. 10. Inductive Load With
Sensitive Gate Triac

Fig. 9. Resistive Load

6

Ri"

160

120V

60 Hz
MCP3009
MCP301 0
MCP3011

0.21'F

4

(15 rnA < IGT < 50. rnA)
Fig. 11. Inductive Load With
Non-Sensitive Gate Triac

C1695

1-117

1-118

NON·ZERO·CROSSING TRIACS

OPTOELECTRONICS

MCP3020 MCP3021
MCP3022

Irnt~
}
15° MAX

6.86

6.35

0.36

~

I

I--"
1.78 REF

7.62
REF

0.20

-1..

1

I

4.95

,

The MCP3020, MCP3021 and MCP3022 are optically isolated
triac driver devices. These devices contain a GaAs infrared
emitting diode and a light activated silicon bilateral switch, which
functions like a triac. This is designed for interfacing between
electronic controls and power triacs to control resistive and
inductive loads for 240 VAC operations.

t MAX

• Minimum commutating dv/dt is specified at 0.1 V/J1,sec
• Excellent 1FT stabilily-IR emitting diode has low degradation
• Pin for pin replacement for the MOC3020, MOC3021 and
MOC3022
• High isolation voltage-minimum 7500 VAC peak
• Underwriters Laboratory (UL) recognized-File #E50151

I

0.51
MIN

C2090
0.41

DIMENSIONS IN mm
PACKAGECODE RI

ANODE 1

MAIN

•
•
•
•
•
•
•

European applications for 240 VAC
Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Solid state relay

6 TERM.

4 MAIN
TERM.

C2081
Equivalent Circuit

TOTAL PACKAGE
Storage temperature. . . . . . . . . . . . . . . . . . . .. -55°C to 150°C
Operating temperature .. . . . . . . . . . . . . . . . .. -40°C to 100°C
Lead temperature
(soldering, 10 sec) ............................. 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . . . . . . . . . . .. 330 mW
Derate linearly from 25°C ..................... 4.0 mWrC
Surge isolation voltage ................... 7500 VAC Peak

INPUT DIODE
Forward DC current .............................. 60 mA
Reverse voltage .................................... 3 V
Peak forward current
(1 J1,S pulse, 300 pps) ............................ 3.0 A
Power dissipation 25°C ambient .................. 100 mW
Derate linearly from 25°C .................... 1.33 mW/oC
OUTPUT DRIVER
Off-state output terminal voltage . . . . . . . . . . . . . . . .. 400 Volts
On-state RMS current
TA =25°C ........... 100 mA
(Full cycle, 50 to 60 Hz)
TA=70°C ............ 50 mA
Peak nonrepetitive surge current .................... 1.2 A
(PW=10 ms, DC=10%)
Total power dissipation @TA =25°C ............... 300 mW
Derate above 25°C ......................... 4.0 mWrC

1-119

NON·ZERO·CROSSING TRIACS

OPTOELECTRONICS

1.50

V

IF=30mA

mvrc

VF=O V, f=1 MHz
VF=1 V, f=1 MHz

OUTPUT DETECTOR
Peak blocking current,
either direction

IORM

10

100

nA

Peak on-state voltage,
either direction

VTM

2.0

3.0

Volts

VORM =400 V, Note 1
ITM =100

mA Peak

_M_C_P_3_02_0_ _...:.IFT'--_ _ _ _ _ _ _ _1_5_ _ _ _3_0_ _ _ _
m_A_ _ Main terminal
MCP3021

1FT

8

15

mA

MCP3022

1FT

5

10

mA

Critical rate of rise of
off-state voltage

dv/dt

15

V/JJ1l

Static dv/dt, TA =85°C
(see Fig. 3)

Critical rate of rise of
commutating voltage

dv/dt

0.2

V/p.s

Commutating dv/dt
ILDAo =15mA
(see Fig. 4)

voltage=3.0V

dv/dt RATING

1-120

0.1

NON·ZERO·CROSSING TRIACS

OPTOElECTRONICS

+800

«E
a:
a:

a::

~

I

:::>

~

w
N
:J

o
a:

N

..J

o

/

:::i

~

/

a:

0.50

ow

0.40

t>

0.60 1I---F-t-:fH-f>l.m-:I'\ IF = 20mA
/
i'IF = 10mA
0.50
I
IF = SmA

fil

0.40 I--I/-t-l+
I-+t--t--I+l+--+-+++-++t+l

a:

!:l..:

i

I

rf iii 0.80
a:

U g: 0.70

0.301-+-tJH-+++++tt--t--+-t-l+I-tH

!:l

0.30

~

0.20 H--Vy-+t+f-ttt--+-++t-t+H-i

~

0.20

~

0.10 t+--+-+-+t+f-ttt--+-++t-t+H-i

~

0.10

a:

I

..:
a:

II
I
I

I

o
10K

RBE -

IF= 20mA
IF = 10mA
IF =5mA

II,--

10K

1M

VeE'=0.3V

t-- r----.

Ou-~~~~~_~~~~uu

lOOK
BASE RESISTANCE -

I I II

/S

~~
ffiO.90
"' i';
III "-

RBE -

(0)

lOOK
BASE RESISTANCE -

Cl681

Fig. 6. CTR VS. RBE (Saturated)

5. CTR VS. RBE
1.2

1,2
~

;;---1z 1.1

.... "':1'

a:"' w
~

g

'"

/

0.9

w

N

::::;

.9
0

w

N

::::;

0.8

~

0

..:

Vee = 10V
Ie =2mA
RL = 1000

..:
a:

0.7

RBE -

lOOK
1M
BASE RESISTANCE -

1.0

~

a:
a
z

ImtiiQj III

z
0.6
10K

\

c

V

0

'\

~

~ 1.1
I

1/

I

",

"' Z
w
a:
~
WI

::~

~1.0

.9

CO

(0)

Vee = 10V
Ie = 2mA
RL = 1000
(See Fig. 10)

0.9
10K
RBE -

lOOK
1M
BASE RESISTANCE -

C1683

7. Normalized T.

VeE = 10V
RL = 1000
(See Fig. 10)

\ "-

VS.

RBE

o

5
Ie -

Vee = 10V

OUTPUT

J

i'....

10
(mA)

15

Swltcnlmn Time vs. IC

20
C1685

CO

(0)
C1684

8. Normalized T.

vs. RBE

1.2

1-126

1M
(0)
Cl682

C1296A

10. Switchlinn Time Test Circuit

PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

PULSE WIDTH = 1001's
DUTY CYCLE = 10%

INPUT

OV

OUTPUT

I
I

I

J

~ lonM loff

C1294

Fig. 11. Switching Time Waveforms

1. The current transferratio (VIF) is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequency at which i, is 3 dB down from the 1 kHz value.
3. Rise time (t,) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (tJ is the time required for the collector current to decrease from 90% of its inital value, to 10%.

1-127

1-128

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

MCT2E

5.}
15° MAX
8.3 6.86
MAX 6.10

1
8.89
8.38

~

b
J [
2.33
REF

0.3
0.2

+

1.9

TYP

•

4.06
3.81
i

The MCT2E is a NPN silicon planar phototransistor
optically coupled to a gallium arsenide infrared emitting
diode.

•

U

+ MAX
+

•
•
•
•
•
•
•
•
•

Utility/economy isolator
AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
UL recognized - File E90700

+

1.4
[9

~l0.56
0.40

DIMENSIONS IN mm
PACKAGE CODE K

ST1603A

Equivalent Circuit

Storage temperature ............... -55°C to 150°C
Operating temperature ............. -55°C to 100°C
Lead soldering temperature (10 sec) .......... 260°C

INPUT DIODE
Forward current. ........................... 60 mA
Reverse voltage ............................. 3.0 V
Peak forward current
(1 f,Ls pulse, 300 pps) ...................... 3.0 A

Power dissipation at 25°C ambient. ......... 200 mW
Derate linearly from 25°C ................ 2.6 mW/oC
OUTPUT TRANSISTOR
Power dissipation at 25°C ambient .......... 200 mW
Derate linearly from 25°C ................ 2.6 mWrC
Total package power dissipation at 25°C ambient
(LED plus detector) ..................... 250 mW
Derate linearly from 25°C ................ 3.3 mW/oC
Collector-Emitter Current (ICE) ................ 50 mA
1-129

OPTOElECTRONICS

PHOTOTRANSISTOR OPTOCOUPLER

SWITCHING TIMES
Non-saturated
collector

0.5

RL =100n,l c=2 mA, Vcc=10V

r---------------------------~------------------~---

Saturated
collector

1-130

Fig. 10

RL=1 Kfi,lc=2mA,Vcc=10V

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

SWITCHING TIMES (Cont'd)
Saturated
t on (from 5 V to 0.8 V)

5

RL=2 Kn, IF=15 rnA, Vcc=5 V

/Ls

R.=open
Saturated
t on (from 5 V to 0.8 V)

5

RL =2 Kn, IF=20 rnA, Vcc=5 V

/Ls

R.=100 Kn
Non-saturated
Base

175

Rise time

ns

RL=1 Kn, Vc.=10V

ns
Bandwidth (see note 2)

KHz

150

Bw

~

_____
~ < 1.25

...J

o

-

0

~

::;

VCE = 0.3V
VCE = 5.0V

E

~

2:-

r£ 1.0

I

CJ

~

0.75

II:
I-

o

...J

o

>
o

5l

~

:J

o

o

0.50

/

N

II:

«

~

II:

0.8 '--'-_.l.---L-L_-'---L.......L_--L.J
0.1 0.2 0.5 1 2
5 10 20 50100
FORWARD CURRENT - IF (rnA)
C1BSB

Fig. 1. Forward Voltage vs. Current

--..

/

01-

---9-

1
ILl

u.

Ic=2 rnA, VcE =10 V,
RL=100n

~

/

0.25

z

o

o

5
IF -

10
(rnA)

15

20
C1679

Fig. 2. Normalized CTR vs. Forward Current

1-131

PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

1,2

20

IF = 10mAIF=5mAIF = 20mAl

-------E

~<
~

-

0

0: !:
1-0:
UI-

1,0

---.9-

0.8

/

w

N

::::;

::<

y

18

VVCE =5V

16
.c::..~

,/~/

~

~~

/

14

~

1
I

~

12

VV

10

2

L/

0:

0

2

Z

0.4
-75 -50 -25

o
o

0 +25 +50 +75 +100+125
TA - (OCI
C1680

1.0

~

0:

0:
I-

o

/
0.90
0.80

1"-

I

0:

b

Vr---

0.60

0.50

Cl

I

0.40

w
~

I

0.30

~
0:

0.20

~

1.00
.......-;,.
w ~ 0.90

~

I-

0:

U ~ 0.70

20~l

I

2

---.9-

0.60

0:
I-

0.50

Cl

0.40

U

I
II

w

~

4

5

6

7

8

9

10

0.20

0.10

~

0.10

o

r--- ........" /'

o
100K
RBE - BASE RESISTANCE -

1M

I
I

I I II

(n)

VeE'= 0.3V
IF= 20mA
IF = 10mA
IF = 5mA

I
I

I

10K
RBE -

100K
BASE RESISTANCE -

C1681

5. CTR vs. RBE
1.2
,.-...

~IZ1.1
"' w
0:

--t"

~

~~

~1.0

0.9

/

Cl

w

N

::::;
0:

0

~

g~

1\

1\

~ 1.1
I
c
..9

/

Cl

w

N

::::;
<0:
::<

0.8
Vee = 10V
Ie =2mA
RL= 100n

<0:

::<

.....

WI Zw

"'
0:

If

I

'"

0.7

Z

IIITieiigi

0.6
10K
RBE -

100K
1M
BASE RESISTANCE -

1.0
Vee = 10V
Ie =2mA
RL = 100n
(See Fig. 10)

0:

0

III

Z

CO
(n)

0.9
10K
RBE -

1M
100K
BASE RESISTANCE -

C1683

7. Normalized T.

1-132

1M
(n)
C1682

6. CTR vs. RBE

1.2

..9

11

C1243

F

0.30

<0:

:::;;
0:

10K

3

ct ii 0.80 II
"' 0

'IF =
..... IF = 10mA
IF = 5mA

If

/

1

~

Fig. 4. Col/ector Current vs.
Forward Current

II I
VeE = 5V

V

"'
0:
~ 0.70

---.9-

;;.-

~

~

til

IF -(mAl

Fig. 3. Normalized CTR vs.

. . .,- .ffi.~

l/r

~E=I.4V

~V

/

0.6

<0:

~

,," ~.

/

I

0:
IU
Cl

V

VeE = 0.3V
VeE = 5.0V

vs. RBE

8. Normalized T.

vs. RBE

CO
(n)
C1684

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

Vcc = 10V
1.2

=
=

VCE
10V
RL
1000.
(See Fig. 101

\

OUTPUT

]

'\

PULSE WIDTH = 100 ~s
DUTY CYCLE = 10%

INPUT
OV

OUTPUT

I
10

15

Ic-(mAI

I

I

I

~to"MtOff

20
C168S

C1294

C1296A

Fig. 9. Switching Time vs. IC

Fig. 11. Switching Time Waveforms

Fig. 10. Switching Time
Test Circuit

~~e¥LATION

41~!

l .. F

>--l . . . fVV'-

--

CONSTANT
CURRENT
INPUT

-

Vee" 10 VOLTS

DETECTOR

L----4I>----

.su
I

.. 50

.......... ......

IF -

BmA

IF

4mA

e

2.0H-tftl--lr.H+t+~+Ht-+++I

.s
1.0~titmfia1~E~~~~
.•

.2

H-+ttllII-+t1+-+-l-H+-H-+I

.'0~~~m

.06

.04

.02 H-++HY--+t+t-++1I++-+++I
.01 '--'-L..LJ.I...J......1..w.....1...J..JW-...L.......L..JJ

'5
.2

.5

1.0

2.0

Ret; - (Mn)

5.0

10

lKn

Fig. 5. Collector to Emitter Breakdown
vs. Base to Emitter Resistance
130

II

0

~

0

10l(n

C1245

IX'

130

~

,~

0

I

50

~~ V

110

IC =16mA-,

1c =20mA

'\

100

90

~

,
80

30
-50

'50
TEMP -(Vel

Rg.~

1-138

"00
Cl2S9

CurrentTmnsrerRailo
(saturated) vs. Temperature

10Mn
C1246

Vce=SV

C =2mA

120

~
,

1 Mn

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

VeE = 0.4 V

-Ie'" I.SmA

lOOKa
ReE -Inl

70
-50

-25

+25
TEMP - (~CI

~

... so

'"

+75

+100

C1247

Fig. 8. Current Transfer Ratio
(unsaturated) vs. Temperature

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.0

100,000

.9
.8

IF" 0

.,

10,000

.6

..

.5

;;

1,000

1

? .4
I

~

.3

~

D

100

.Y
10

.2

+25

+50

+75

TEMP- ("C)

+25

+100

Fig. 9. Collector to Emitter
Saturation Voltage vs. Temperature

16

14

l0t----t----t---:~c.,f,I

12
0

I

____ ______ ____
~

~

+50"

"

"

---- Vee - 5 v

+100'

-Vcc=20V
Ie =2mA

~~I. " Kli

t-~rrr

.> 12

~~I. j,o

-

28

2.

..

--vcc",sv
--Vcc=20V
Ie = 2mA

20

~,-

3

,.

16

i=

12

~.

./

"

II".

lOOK

500K

RBe - ('I)

C1255

Fig. 13. Rise Time vs. Base to Emitter
Resistance (non-saturated)

lOOK

L"

J .."

~~
-.!i'
u
f\.
11
t/P
410

s

J

L·~
-rr.:

lIRL'" ,oon

o
50K

1M

J
>11'

~

".

RI..;' tOOS!

C1252

Fig. 12. Switch-on Time vs.
Drive (saturated)

III

I-

16

IF -(rnA)

~~. lloo!!

0
50K

12

C1250

III I

----

I

3.24

~H]rtTih"IKlI

16

-t,OIHLI

.~

~

+75"

I

_ _ tr

I

2

Fig. 11. Collector to Emitter Leakage
Current vs. Temperature

....

I

~NSATUAATEO AT
RaE" 50 I<:u

TEMPERATURE _ (DC)

20

RL = 2.7 Ku
Vcc=5V

~ ~ ReE=OPEN

f\.\.

·01I7"'-;.----b!S-.c;.-r----l

•

C1249

I

.,

] 0.1 t---7"I----,

26

+100 +125 +150

tP>R8E '" l00KH

;(
.3

+25'

+75

Fig. 10 Collector to Emitter Leakage
Current vs. Temperature

100.----.-----.-----,

.001~~

+50

TEMP - f C)

C1248

500K
ABE - {HI

1M
C1254

Fig. 14. Fall Time vs. Base to Emitter
Resistance (non-saturated)

1-139

~

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTHOI'CS

INPUT

J.\

TPDttL·~ ~
1 :

OUTPUT

I---

i:

~:

~TPDLH

~I
:
I
5V

.

ISATURATEO):
1.SV

::

}~~

1.5 V

............. SAT.
OUTPUT

{NONSATURATEOI~20%
. tm.

··i
:

C1256

Cr~

90%
j

!---

10%

..!

L____

I:
~ ~tt

15 Switching Time Waveforms

1296A

Fig. 16 Switching Time Test Circuits

INPUT

Fig. 17. Typical TTLlnterface at
Operating Temperatures of
0° to 70°C

1-140

c.""

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

MCT2200
MCT2201
MCT2202

The MCT2200, MCT2201 and MCT2202 are optoisolators with phototransistor output. A gallium arsenide
infrared emitting diode is selectively coupled with an NPN
silicon phototransistor.

0.3
0.2

+

• Minimum current transfer ratio of 100%
• Maximum turn-on, turn-off time -10 JkS
• Underwriters laboratory (Ul) recognized File #E90700

1.9

TYP
+

4.06
3.81
t

!

5.3

,MAX
+ +

II

•
•
•
•

0.9

0.40

DIMENSIONS IN mm
PACKAGE CODE K

Power supply regulators
Digital logic inputs
Appliance sensor systems
Industrial controls

ST1603A

Equivalent Circuit

TOTAL PACKAGE

INPUT DIODE

Storage temperature .............. -55°C to 150°C
Operating temperature ............ -55°C to 100°C
lead soldering temperature (10 sec.) ........ 260°C
Total package power dissipation at 25°C ambient
(lED plus detector) .................... 260 mW
Derate linearly from 25° ................ 3.5 mW/oC

Forward current .......................... 60 mA
Reverse vOltage. . . . . . . . . . . . . . . . . . . . . . . . . . .. 3.0 V
Peak forward current (1 ILs pulse, 300 pps) .... 3.0 A
Power dissipation at 25°C ambient ......... 135 mW
Derate linearly from 25°C ............... 1.8 mW/oC

OUTPUT TRANSISTOR
Power dissipation at 25°C ambient ........ 200 mW
Derate linearly from 25°C ............. 2.67 mW/oC
1-141

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

v

ICEO

5

50

Ic=1.0 rnA, IF=O

nA

8

IF=10 rnA; Ic=2.5 rnA

6.0

10

/kS

~~~~----------------~--------------~------~-------------

1-142

RL =100n; Ic=2 rnA;
Vcc=10 V
10.

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

en
~

o

~1i 1.25

;!;
I

r- ci' 1.0
()r~

C

a:

w

Cl

()

o

~

0.50

/

N

::;

~


Cl
a:

-.........

V

0.75

a:

~
-J

VCE = 0.3V
VCE = 5.0V

~

1M
(fl)

C1682

Fig. 6. CTR VS. RBE (Saturated)

1-143

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.2

1.2

~IZ1.1
m
a: ..

~ ~
~ 1.1

~~

G1.0
1

0.9

/

Cl

w

N

I

V

.,9
Cl

w

N

:::;

0.7

0

«
::;

Vee = 10V
Ie =2mA
RL= 1000

«

::;
II:

e

RBe -

1.0
I
Vee = 10V
Ic =2mA
RL = 1000
(See Fig. 10)

II:

0

Z

lmi ii j 111

z
0.6
10K

1\

1
c

0.8

:::;

r\

m w

a:
WI ..Z

-I-;

W

.]

~

~

9

lOOK
1M
BASE RESISTANCE -

0.9
10K

CO
(0)

RBe -

lOOK
1M
BASE RESISTANCE -

C1683

7. Normalized T.

Fig. 8. Normalized TON

vs. RBE

vs.

RBE

1.2
Vce = 10V
RL = 1000
(See Fig. 10)

w
::;
i=

~

I~

I-

E

5~1I

~ 1-

\ "-,

1.0

0.8

fil ]

~ ~

::;

Vcc = 10V

OUTPUT

]

0.6

II:

oZ

o

5

10
Ic-(mA)

15

20
Cl685

C1296A

Fig. 9. Switching Time vs. IC

Fig. 10. Switching Time Test Circuit

PULSE WIDTH = 100 I's
DUTY CYCLE = 10%

INPUT
OV

OUTPUT

I
I

~ Ion

I

M

I
Ioff
Cl294

Fig. 11. Switching Time Waveforms

1-144

co
(0)
C1684

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

MCT270

~
}
15° MAX
8.3 6.86
MAX 6.10

1
8.89
8.38

*

k

J

The MCT270 is a phototransistor-type optically coupled
isolator. A gallium arsenide infrared emitting diode is
selectively coupled with an NPN silicon phototransistor.

0.3
0.2

[

2.33
REF

=+

• Minimum current transfer ratio of 50%
• Maximum turn-on, turn-off time 10f.L seconds specified
• Underwriters Laboratory (UL) recognized File E90700

1.9
TYP

•

4.06
3.81
t

•

i

•
•
•
•
•
•

1.4
0.9

~I0.56
0.40

,

+
5.3
MAX

DIMENSIONS IN mm
PACKAGE CODE K

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Power supply regulators
Industrial controls

ST1603A

Equivalent Circuit

TOTAL PACKAGE
Storage temperature .............. -55°C to 150°C
Operating temperature ............ -55°C to 100°C
Lead tempertaure
(soldering, 10 sec) ...................... 260°C
Total package power dissipation @ 25
(LED plus detector) .................... 260 mW
Derate linearly from 25°C .............. 3.5 mW/oC

INPUT DIODE
Forward DC current ....................... 90 mA
Reverse voltage ............................. 3 V
Peak forward current
(1 f.LS pulse, 300 pps) ..................... 3.0 A
Power dissipation 25°C ambient . . . . . . . . . .. 135 mW
Derate linearly from 25°C ............... 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . . .. 200 mW
Derate linearly from 25°C ............. 2.67 mW/oC
1-145

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

1.3

V,

!>l!..r.

tan

V

1,=20 mA

mY/DC

-1.8

aT.

h'E

1.50

50
65

V,=OV, f=1 MHz
V,=1 V, f=1 MHz

100

500

VcE =5 V, Ic=100 p.A

30

45

6.0

V

Ic=1.0 mA,I,=O

RL =1000; Ic=2 mA;
Vcc=5V

10

See Figs. 10, 11
3.9

JJS

1,=16 mA; RL =1.9 Kn
See Figs. 10, 11

(Approximates a typical TTL interface)
Turn-on time
tan
Turn-off time
(Approximates a

1-146

3.9

JJS

1,=16 mA; RL =4.7 Kn

110

JJS

See Figs. 10, 11

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

(j)
I-

--'

--=---1;': 1.25

2:-

rf~

0

...

I-

I

--9-

>

a:- 1.0

w

a:

~

0.75

I-

o

--'

0

iil

>
Cl
a:

0.50

~

«

~

l.L

0.8
0.1 0.2

0.25

z

0.5 1 2

5 10 20

FORWARD CURRENT -

o

50 100

IF (mA)
C16S6

1.2

~<

a:

E

0

0::

I-a:
01-

1.0

--9I
a:
I0

O.S

w

N

«
::;

II
///

0

:::;

IF = 10~AIF =5mAIF = 20mA\

0.6

IL

,/"'
,/'

/

o

5

15

20

~

~~

VCE = 0.3V
VCE = 5.0V

......
~

y

18

VVCE =5 V

16

~

~

20
C1679

Fig. 2. Normalized CTR vs.
Forward Current

/

14

~

~



@

0
a:

~

«
o

~

a:

Fig. 1. Forward Voltage
Current

~<

~s

f-a:
()f-

1.0

--..9I

0

UJ
N

::;

«

::;:
a:

0.6

~

/ ~/ ~~
V

,/'

0.8

/

0.25

o

o

5
IF -

10
(rnA)

Fig. 2. Normalized CTR
Forward Current

VS.

15

,//

VeE = 0.3V
VeE = 5.0V

y

18

IVcE

16
c::..~

b-.
~~

~~

/

/

14
~

12

..sI

10

Jd

0

Z

Fig. 3. Normalized CTR VS.

o
o

vr

~E=I.4V

'"

JV

6

0 +25 +50 +75 +100+125
TA - (OC)
C1680

=5V

/1'

4

0.4
-75 -50 -25

20
C1679

VS.

20

IF = 10mAIF =5mAIF =20m~

E

f-

/

~

Z

1.2

..-...

a:

0.50

N

::;

0
"- 0.8
0.1 0.2 0.5 1 2
5 10 20 50 100
FORWARD CURRENT - IF (rnA)
C1686

-.......

V

---9-

CJ

()

VeE = 0.3V
VeE = 5.0V

a: ~
f- C£ 1.0
()f-

UJ

•

1.25

c5

.!!-

C
">
I

~~
1

2

~
3

~

4

5

6

7

8

IF - (mA)

9 10

11

C1243

Fig. 4. Col/ector Current vs.
Forward Current

1-151

[ffi

PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

1.0

L

....,-..~
~ 0.90
a:
0.80

1"\

........

I

co

.......9-

0.60

t;

0.50

cw

0.40

a:
~

0.30

::e

0.20

~

0.10

«

a:

V
/

ili 0.90

.1

£

I I

a:

~

U ~ 0.70

!

-S

IF= 20mA
IF = 10mA
IF = SmA

1/

~ 0.80 If

Ii! ..

VeE = 5V

~

a:

0040

:J

0.30

N

0.20

a:
0

0.10

Z

o
RBE -

lOOK
BASE RESISTANCE -

"I

0.60

U
C
w

«
:;

1

o

I

(n)

IF= 20mA
IF = 10mA
IF =5mA

t

J
I

I

10K

1M

RBE -

lOOK
BASE RESISTANCE -

C1681

1.2

1.2

--.

~IZl.l
co w
IX: ..
~t 1.0
-:::..;:..

N

0.8

cw
:J
«
::;;:

a:
0

_

0

1.1

r::

..9

cw

V

N

:J

«

Vee = 10V
Ie =2mA
RL = lOOn

0.7

e

a:
0
z

9

lOOK
1M
BASE RESISTANCE -

1.0

:;

lfllt ii j 111

Z

Vee = 10V
Ie = 2mA
RL = 1000
(See Fig. 10)

0.9
10K

CO

(0)

RBE -

lOOK
1M
BASE RESISTANCE -

Cl683

VCE = 10V
RL = loon
(See Fig. 10)

U

E 1.0

\

UN

II

2

I

Fig. 8. Normalized TON
vs. RBE
Vee = 10V

1.2

j
~

0.8

PULSE WIDTH = 100 pS
DUTY CYCLE = , 0%

INPUT

ov

OUTPUT

'\

i'..

OUTPUT

0.6

I
o

5

10
Ic - (rnA)

Fig. 9. Switching Time
vs./C

1-152

CO

(0)
Cl684

Fig. 7. Normalized TOFF vs. RBE

..:

1\

1

j

RBE -

'\

gwU~

~

I

0.6
10K

......

zw
a:co ..

....... ~

1

0.9

1M
(n)
C1682

Fig. 6. CTR vs. RBE (Saturated)

5. CTR vs. RBE IlIn'.~"r,rtr"rr"nJ

==
..9

II

VeE·=0.3V

t-- .......

0.50

~

I
II

10K

-<

.......--"

II I

iii

a:

~ a:
U ~ 0.70

1.00

~

15

20
C1685

I

-+j too

I

M

I

toll

Cl296A

Fig. 10. Switching Time
Test Circuit

Fig. 11. Switching Time Waveforms

PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

MCT4

r- .~~g--J

-:-__-:-Irrr_·;_~;_;_j-.lll
.2tO

T

.560
.500

I

PURE NICKEL

V'
I

The MCT4 is a standard four-lead, TO-18 package
containing a GaAs infrared emitting diode optically
coupled to an NPN silicon planar phototransistor.

GOLO PLATEO
KOVAR

•
•
•
•

LED
ANODE

Hermetic package
High current transfer ratio; typically 35%
High isolation resistance; 10" ohms at 500 volts
High voltage isolation emitter to detector

PIT
COLLECTOR

PIT EMITTER

C950

BOTTOM VIEW
DIMENSIONS IN INCHES

Storage temperature .............. -65°C to 150°C
Operating temperature ............ -55°C to 125°C
Lead soldering temperature (10 sec) ......... 260°C
LED (GaAs Diode)
Power dissipation at 25°C ambient. . . . . . . . .. 90 mW
Derate linearly from 25°C ...... , ........ 1.2 mW/oC
Continuous forward current ...... , .... ,.... 40 mA
Reverse voltage. . . . . . . . . . . . . . . . . . . . . . . . . . .. 3.0 V

Peak forward current (1 /Ls pulse, 300 pps) .... 3.0 A
Total power dissipation . . . . . . . . . . . . . . . . . .. 250 mW
Derate linearly from 25°C .............. 3.3 mW/oC
DETECTOR (Silicon phototransistor)
Power dissipation at 25°C ambient ...... ,. 200 mW
Derate linearly from 25°C ..... , ...... , 2.67 mW/oC
Collector-emitter breakdown voltage (BVcEQ) ••• 30 V
Emitter-collector breakdown voltage (BVECO) ••• 7.0 V
ISOLATION VOLTAGE .................. 1000 VDC
1-153

PHOTOTRANSISTOR OPTOCOUPLER

30

1-154

v

10= 1.0 rnA, IF=O

PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

o

j~

0

5r-!

0

5

/-

5

---~~

vc~· 10 V6LTS

/

5
0

/

IF .. ZOmA

5

IF =

;'"

/
;'"

0

V

LV

110 mA

/"

5
10
15
20
25
30
VeE COLLECTOR VOLTAGE DETECTOR (VOLTS)

10

20

30

40

50

IF INPUT CURRENT LED (rnA)

C951

60
C952

Fig. 2. Input Current vs. Output Current

Fig. 1. Detector Output Characteristics
10-4

........

I

Ui
0..
10- 6
::;;

::>
S
!,?

1

I

10- 5

90

VeE: 10 VOLTSj

"
":::;
"'"

10-7

~
w

0:

10-8

a:

~
u
~ 10- 10

6

0:

oZ

5

/

10- 11

-60 -40 -20

V
LED CURRENT-lOmA
VCE-IO VOLTS
FREE STANDING DEVICE

/

/

4

V

10- 12

J

70

N

/

-

/

/

["""--,.,

0

20

40

60

3

80 100 120 140

AM81ENT TEMPERATURE lOCI

·60

·40

C953

Fig. 3. Dark Current vs.
Temperature (OC)

·20
0
20
40 60 80
AMBIENT TEMPERATUREI'C)

Fig. 4. Current Output vs.
Temperature

2.0

\

1111111

<1.6
! 1.4
...Z

\1'

VeE' 10 VOLTS

';-

~ 1.2

)~~

a:

a

~

1.0

~
.J

Vr -IOVOLTS

•

~\

:;12
&AI
~IO

~\

ga: 0.8

u

I II
I II

1111111

1.8

1:
u

IK

10K

lOOK

FREQUENCY (Hz)

Fig. 5. Output vs. Frequency

..........

... 6
~ 4 r'-..

\

0.2

R

L

~ 8

\ 1\

80.4

1

f'...

-=

\

0.6

100
C954

RL

Jooln
-r
-470nI
R~ -u

1'- ...

I II
I
C955

0.1

0.2 0.3 CI.4 Cl.60.8 1.0

2

3 4 567810

COLLECTOR CURRENT Ie (mA)

C956

Fig. 6. Switching Time
vs. Col/ector Current

For additional characteristic curves, see MCT2

1-155

PHOTOTRANSISTOR OPTOCOUPLER

OPT DEL m RON ICS

CONSTANT
CURRENT
INPUT

LED

Vee -10VOLTS

r
I ___
~ ~
L
_

)--.----'

47n

-I
~
LED

'----.---t...

OUTPUT

"

C957

Modulation Circuit Used to Obtain

PULSE

INPUT

-

L

~

~

Ie

~
I

___ J
.....

Vee -1OVOLlS

DETECTOR

-_~

PULII
__ OUTPUT

"

C968

Circuit Used to Obtain Switching Time vs. Collector Current Plot

1. The current transfer ratio (Ie/IF) is the ratio of the detector collector current to the LED input current with VeE at 10 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (t,) is the time required for the collector current to increase from 10% of its final value, to 90%. Fall time (4) is the time
required for the collector current to decrease from 90% of its initial value to 10%.

1-156

RELIABILITY CONDITIONED HERMETIC
PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

MCT4R

rr
f-

The MCT4R is a standard four-lead, TO-18 package
containing a GaAs infrared emitting diode optically
coupled to a silicon planar phototransistor.

'~~~--j
'.195-11

-:-_ _...-:..;...1_1_.7_8 _--.111

.2tO

I

PURE NICKEL

GOLD PLATED

1

:l:=:====::=ro"nnV '~AA
LED
ANODE

f

r--

PIT
COLLECTOR

!

45'

~

~

.01Q

T

~

.019
.016

Ii

--, -

................,1IC.oo""

•
•
•
•
•

A-

.046
.036

~
~~~Fs

LED
CATHODE

Hermetic package
High current transfer ratio; typically 35%
High isolation resistance, 10" ohms at 500 volts
High voltage isolation emitter to detector
Screened to MIL-STD-883 Class B

The MCT4R is designed and manufactured to conform to
the requirements of military systems. Reliability testing
has proven the product capable of conforming to the
screening and quality conformance requirements of
MIL-STD-883C Class B devices.

.048

PIT EMITTER

BOTTOM VIEW

C950
DIMENSIONS IN INCHES

SCREEN-100%
Characteristic

Method

Internal Visual
Stabilization Bake
Temperature Cycle
Centrifuge
Hermeticity
Critical Electrical
Burn In
Final Electrical
Group A Sample Inspection
External Visual

2010 1008 1010 2001 1014 -

1015 -

5005
2009

Characteristics applicable to device
150°C. for 48 hours
10 cycles; -55°C., 25°C., 150°., 25°C.
Test Condition E
Fine and Gross
Data Sheet
160 hours @ 125°C
Data Sheet
Table I Subgroups

1-157

RELIABILITY CONDITIONED HERMETIC
PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

Subgroup I
Visual Mechanical
Marking Permanency
Physical Dimensions
Subgroup \I
Solderabil

2008

15%

2003

15%

Subgroup III
Thermal Shock
Temperature Cycle
Moisture Resistance
Critical Electrical

1011 1010 1004

Subgroup IV
Mechanical Shock
Vibration Fatigue
Vibration Variable Frequency
Constant Acceleration
Critical Electrical

2002
2005
2007
2001

15 cycles; 150°C. to -65°C.
10 cycles; -55°C., 25°C., 150°C., 25°C.
Data Sheet

-

Condition 8
Condition A
Condition A
Condition E
Data Sheets

15%

Subgroup V
Lead Fatigue
Hermeticity

2004 1014 -

Condition 8 2
Fine Condition A
Gross Condition C

15%

Subgroup VI
Salt Atmosphere

1009 -

Condition A

15%

SubgroupVII
High Temperature Storage
Critical Electrical

1008 -

150°C. for 1000 hours
Data Sheet

7%

Subgroup VIII
Operating Life
Critical Electrical

1005 -

Condition 8
Data Sheets

7%

1015 -

Condition A; 72 hours at 150°C.

7%

2001 -

Condition C; 10 devices on

Reference: MIL-STD-883C Test Methods and Procedures for Microelectronics.

1-158

15%

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

MCT5200
MCT5201

-= .

•t

J

15° MAX

6.35

REF

-0.3

~

~

f

0.2

-=-L

8.3

REF

The MCT5201 has a minimum saturated CTR of 120% for
a LED input current of 5 mAo Maximum LSTTL interface
propagation delays of 30 JLs are guaranteed with the use
of an external 330K resistor between the base and
emitter. The MCT5200 is specified for a minimum
saturated CTR of 75% for an input current of 10 mAo

•

5.1
t MAX

•

t

0.51
MIN

-n0.56

0.41

The MCT520X are high performance logic compatible
phototransistor type optically coupled isolator products.
They are constructed using a very low degradation and
high-efficiency AIGaAs, 890 nm infrared emitter, coupled
to a high speed NPN phototransistor, in a six-pin dual-inline package. They provide a very high current transfer
ratio (CTR), high switching speed and 5300 VAC RMS
withstand test voltage performance. The critical circuit
design parameters of CTRcE and CTR cB are guaranteed
over a temperature range of 0-70DC resulting in
guaranteed switching propagation delays when
interfaced to LSTTL logic.

DIMENSIONS IN mm
PACKAGE CODE E

ST1603·01

•
•
•
•
•
•

High CTR cE (SAT] comparable to Darlingtons
Guaranteed switching speed with LSTTL load
Performance guaranteed over ODC to 70DC
High common mode rejection-5 kV/JLS
Data rates up to 150 kbits/s (NRZ)
Underwriters Laboratory (UL) recognized file #E90700

•
•
•
•
•

LSTTL digital logic isolation
IEEE 488 isolated inputs
Switching power supply
High speed industrial interfaces
Isolated microprocessor inputs

Equivalent Circuit

TOTAL PACKAGE
Storage temperature .............. -55 DC to 150DC
Operating temperature ............ -55DC to 100DC
Lead temperature (soldering, 10 sec) ........ 260DC
Total package, power dissipation
(LED plus detector) .. . . . . . . . . . . . . . . . . .. 260 mW
Derate linearly from 25DC .............. 3.5 mWrC

INPUT DIODE
Forward DC current ....................... 40 mA
Reverse voltage ............................. 6 V
Peak forward current (1 JLS pulse, 300 pps) .... 1.0 A
Power dissipation ........................ 54 mW
Derate linearly from 25 DC .............. 0.7 mW/DC
OUTPUT TRANSISTOR
Power dissipation ....................... 200 mW
Derate linearly from 25DC ............. 2.67 mW/DC
1-159

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

1.3

1.5

-1.9

Junction
capacitance

V

IF=5mA

mV/oC

IF=2mA

18

CJ

112

OUTPUT TRANSISTOR
DC forward
current gain
Breakdown voltage
Collector to emitter

VcE=OA V,
IcE =6mA

400

hFE(SAT)

30

45

V

100

8,9

Ic=1.0 mA, IF=O

nA
11
VCE=O, f=l MHz

Saturated current
transfer ratio
(collector to emitter)

CTRcE(SAT)

Current transfer ratio
(collector to emitter)

CTRcE

Current transfer ratio
(collector to base)

CTRcB

Saturation voltage
(collector to emitter)

VCE(SAT)

*AII typica/s TA =25°C

1-160

MCT5200

75

150

%

IF=10 mA, VcE=OAV

2,3,4

MCT5201

120

225

%

IF=5.0 mA, VcE=OA V

2,3,5

MCT5200

200

%

IF=10 mA, VcE =5.0V

MCT5201

300

%

IF=5 mA,

5.0V

MCT5200

0.2

0.3

%

IF=10 mA, VcB =4.3V

MCT5201

0.28

0.5

%

IF=5.0 mA, VcB =4.3 V

MCT5200

0.2

0.4

V

IF=10 mA, IcE =7.5 mA

MCT5201

0.2

0.4

V

IF=5 mA, ICE=6 mA

2
6,7

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

15,18

3,4
5,6

17
7

7

15
1,=5 mA, VeE=OA V
RL = 1.0 K, RBE =330 K
Vcc =5.0 V

Fail time

t,

19

30

12

30

13,18

3,4
5,6

""s
IF=5 mA, VCE=OA V
Vcc =5.0V, RL=(Fig.18)
RBE =330 K

7

*Alltypica/s TA =2SoC

Common mode
rejectionoutput high

CM H

5000

v/""s

VeM =50 Vp. p
RL =1 K!1, 1,=0

Common mode
rejectionoutput low

CM L

5000

v/""s

VeM =50 Vp. p
RL=l K!1, 1,=5 mA

Common mode
coupling capacitor

Cern

0.2

pF

Package capacitance
input/output

CI.O

0.7

pF

17

8
VI.O=O, f=l MHz

9

1. DC current transfer ratio (CTRe& is defined as the transistor collector current (Ie& divided by input LED current (IF) xl00%, at a speCified
voltage collector to emitter (Ve.).
2. Current transfer ratio is defined as the collector to base photocurrent (Ie.) divided by the input LED current (IF) times 100%.
3. Switching delay time (tJ is measured for SO% of LED current to 90% falling edge of Vo.
4. Rise time (t,) is measured from the 90% to 10% of Vo falling edge.
S. Storage time (tJ is measured from SO% offailing edge ofLED currentto 10% of rise edge of Vo.
6. Fall time (tJ is measured from the 10% to 90% of the rising edge of Vo.
7. The tpLH propagation delay is measured from SO% point on the falling edge of the input pulse to the 1.3 V paint on the rising edge of the
output pulse. The tpHL propagation delay is measured from SO% point on the rising edge of input to 1.3 V paint on falling edge of output
pulse.
8. Device considered a two terminal device: Pins 1, 2, and 3 are shorted together. Pins 4, S, and 6 are shorted together.

1-161

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

100

~ 1.3
~ ~-'> 1.2

<

• DC

~ ~ 1.1
~ ~ 1.0

~~5DC
~~ <..... 50DC
'/.

I

~

II

0.9
() 0.8
0.7

l'j
II:

NOTE:
Dotted line segment 1-1:ndlic~te~ PilS,ed Io~eritiln

0.1
1.0

ti
~

l
Z

-

Ii

10
1.0
IF-Forward Current-rnA

-

~

.....

r-,..,

<

30

!

25

~

20

E

~
o

tl

~~

lv

15

8I
2

o

--- -

10

IF
(mA)

0-

I-- 9

~

.2!

jO

-20

I--

c:

r-

100

C1805
Fig. 2. Normalized Current Transfer
Ratio vs. Forward Current

N. I

N 1'--..
1.1
~ 1.0 - I-~m~
~ i'-.1.~ mA
rrr 0.9
i'" ~
0.8
r"
0.7
-g 0.6
IF=10mA
~ 0.5


c:

:c0

10 1-

"ien
.1

lis

50

,/

E

Refer to figure 18 for
I switching test circuit
25

tPHL

20

i=

....t

tPLH

30 IF 5mA
RL = 1 K
RBE=100K
Vee=5.0V

/

,,;
L- ~ ~

.......

/
/

V
tf~

---

t,

~

tPLH
ts

_
l

Refer to figure 18 for
switching test circuit

100

-20

0

25

50

70

100

TA-Ambient Temperature-O C
C1817
Fig. 14. Switching Speed vs. Temperature
'F=5 mA RBE =100 K

TA-Ambient Temperature-O C
C1816
Sw:itchina Time vs. Temperature
K

20

1F =10mA
RL=1 K
RBE = 100 K
~ 15 Vcc=5.0V

Refer to figure 18 for
switching test circuit

i

CD

E

~ 10r:;;~~~~~~:P~:r:l~
~

:co

~

~ 5fEE~~f~~;~a~;tf~

50
70
100
25
0
TA-Ambient Temperature-OC
C1818
Fig. 15. Switching Speed vs. Temperature
'F=5 rnA RBE =330 K
-20

-20

70
100
TA-Ambient Temperature-O C
C1819
Fig. 16. SWitching Speed vs. Temperature
'F=5 mA RBE =100 K

7000

en

~

6000I--'H--+--t--+ Vec = 5.0 V
RL=1 K

>
I 5000
~~
~ ~ 4000
c: E

~

=

E5i

~=.C

hH = 5 mA
hL=OmA
VOH = 2.0 V
VOL=0.8V

3000I-H--t--+--t--+-+--I

8'~ 2000r-~~-+--t--~-+--r--;
II!
;:!I-

o

1000r-I~F;;f:=+=+=~::1
C1821

o

1000 2000 3000 4000 5000 6000
VCM-Common Mode
Transient Amplitude-V C1820

Fig. 17. Common Mode Transient
Common Mode

1-164

vs.

Fig. 18. Text Circuit for Transient
Immunity and Typical Waveforms

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

Pulse Gen
Zo=50n
f = 10 KHz
10% D.F.

o
>

Pulse Gen
Zo=50n
f = 10 KHz
10% D.F.

02
IF monilor

IF monilor

03

04

........
Ir. If. Id. Is
TEST CIRCUIT

IPHL.lpLH
TEST CIRCUIT

C1822
MCT5201
VCC1 =

5.0 V

RF

RL

VCC2

= 5.0 V

A

IF

mA

n

1.6
3.0
5.0
10.0
10.0

2K
1.1 K
620
330
330

!l

10 K
4.7 K
1K
1K
2K

RBE

n

tPHL
/J.S

15
470K 10
330K 12
100K 7
47 K 3
~

IPLH DATA·
p.S

RATE
NRZ

12 37 K
10 50 K
8 50 K
11 56 K
4 140 K data

1

·NRZ=--tPLH + tPHL

C1824

C1823

Fig. 19. Switching Circuit Waveforms

Fig. 20. Typical Non-Inverting LSTTL
to LSTTL Interface

1-165

1-166

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

MCT5210
MCT5211

~

-t-

J

WMAX

6.35

REF

0.3
0.2

t
7.62

1=

8.3

MAX

REF

The MCT-521X are high performance CMOS/LSTTL logic
compatible phototransistor type optically coupled isolator
products. They are constructed using a very low
degradation and high-efficiency AIGaAs, infrared emitter,
coupled to a photoefficient high gain NPN
phototransistor in a six pin dual-in-line package. This
package provides a minimum of 5300 VAC Withstand
Test Insulation, and 5000 V/p,s common mode transient
rejection.
The MCT-5211 is well suited for CMOS to LSTT/TTL
interfaces, for it offers 250% CTRcE(SAT) with 1 mA of LED
input current. When an LED input current of 1.6 mA is
supplied data rates to 20K bits/s are possible .

•

The MCT-5210 can easily interface LSTTL to LSTTL/TTL,
and with use of an external base to emitter resistor data
rates of 100 K bits/s can be achieved.

5.1
MAX
t

.. *

0.51

MIN

-n0.56

0.41

DIMENSIONS IN mm
PACKAGE CODE E

ST1603·01

•
•
•
•
•

High CTRcE (sA1) comparable to Darlingtons
CTR guaranteed O°C to 70°C
High common mode transient rejection-5 kV/ p,s
Data rates up to 50 kbits/s (NRZ)
Underwriters Laboratory (UL) recognized file #E90700

• CMOS to CMOS/LSTTL logic isolation
LSTTL to CMOS/LSTTL logic isolation
• RS-232 line receiver
• Telephone ring detector
• AC line voltage sensing
Equivalent Circuit

TOTAL PACKAGE

INPUT DIODE

Storage temperature ............. , -55°C to 150°C
Operating temperature ............ -55°C to 100°C
Lead temperature (soldering, 10 sec.) ........ 260°C
Total package power dissipation at 25°C
(LED plus detector) ..... . . . . . . . . . . . . . .. 260 mW
Derate linearly from 25°C .............. 3.5 mW/oC

Forward DC current ....................... 40 mA
Reverse voltage ............................. 6 V
Peak forward current (1 p,S pulse, 300 pps) .... 1.0 A
Power dissipation ........................ 54 mW
Derate linearly from 25°C .............. 0.7 mW/oC

OUTPUT TRANSISTOR
Power dissipation ....................... 200 mW
Derate linearly from 25°C ............. 2.67 mW/oC
1-167

(!ii

HIGH PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

V.

1.3

ilV./ilT,

-1.9

VR
Junction capacitance

1.5

V

1.=5 mA

mV/oC

1.=2mA

V

IR =10 !LA

5

CJ

OUTPUT TRANSISTOR
DC forward
current gain

350

hFE(SAT)

Breakdown voltage
Collector to emitter

30

8,9

VcE =0.4 V, ICE=2 mA
Ic= 1.0 mA, 1.=0

V

45

100

11

Saturated current
Transfer ratio

CTAcE SAT

MCT5211

(Collector to emitter)

CTRCE

Current transfer ratio
(Collector to base)

Saturation voltage

*Alltypicals TA =25°C

1-168

CTRce

VCE SAT

350

%

2

300

%

3

75

250

%

1.=1.0 mA, VCE=0.4 V

MCT5210

70

400

%

1.=3.0 mA, VCE=5.0 V

MCT5211

150

350

%

110

300

%

(Collector to emitter)
Current transfer ratio

60
100

5
4

MCT5210

0.2

0.9

%

1.=3.0 mA, Vce =4.3 V

6

MCT5211

0.3

0.75

%

1.=1.6 mA, Vce =4.3 V

7

0.25

0.6

%

1.=1.0 mA, Vce =4.3 V

MCT5210

0.2

0.4

V

1.=3.0 mA, ICE= 1.8 mA

MCT5211

0.2

0.4

V

.6mA

2

HIGH PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

MCT-5210

Propagation delay H-l

tpHL

MCT-5211

MCT-5210

Propagation delay L-H

t,.LH

MCT-5211

10

1"5

RL=330 n, R.E=oo

1,=3.0mA

12

1"5

RL =3.3 K, R.E=39 K

Vee =5.0V

20

1"5

RL=750n, R.E=oo

1,=1.6mA

12

25

1"5

RL =4. 7 K, R.E=91 K

Vee =5.0V

13

40

1"5

RL=1.5 K, R.E=oo

1,=1.0mA

45

J"S

RL=10 K, R.E =160 K

Vee =5.0V

10

1"5

RL=330n, R.E=oo

1,=3.0mA

12

J"S

RL =3.3 K, R.E=39 K

Vee =5.0V

20

1"5

RL =750 n, R.E=

25

1"5

RL =4.7 K, R.E=91 K

00

12

40

1,=1.0 mA

13

45

=5.0V

CM H

5000

v/J"S

VeM =50Vp.p , RL=750n
1,=0

Common mode transient
Rejection - output low

CM L

5000

v/I"S

VeM =50 Ip.p RL =750 n
1,=1.6mA

Common mode coupling
capacitor

C eM

0.2

pF

Package capacitance
input/output

C'.Q

0.7

pF

Withstand insulation
test voltage

V,sa

5300

1,=1.6mA
Vee =5.0 V

Common mode transient
Rejection - output high

VAC{RMS)

4

14

14
V,.a=O, f=1 MHz

3

5
6
7

7500

1. DC Current Transfer Ratio (CTRcrJ is defined as the transistor collector current (IeJ divided by the input LED current (IF) x 100%, at a
specified voltage between the collector and emitter (VeJ.
2. The collector base Current Transfer Ratio (CTRe.J is defined as the collector base photocurrent (le.J divided by the input LED current
(IF) time 100%.
3. Referring to Figure 13 the tpHL propagation delay is measured from the rising edge of the data input (A) to the rising edge of the rising
edge of the data output (B).
4. Referring to Figure 13 the tpLH propagation delay is measured from the falling edge of data input (A) to the falling edge of the data
output (B).
5. CeM is the capacitance between the LED (input assembly) to the base of the phototransistor.
6. C'.Q is the capacitance between the input (pins 1, 2, 3 connected) and the output, (pins 4, 5, 6 connected).
7. Device considered a two terminal device: Pins 1, 2, and 3 shorted together, and pins 5, 6, and 7 are shorted together.

1-169

HIGH·PERFORMANCE AIGaAs
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

"1 1.7

100

I

~

I-

a:;a:

10"

~~~

O°C
25°C
50°C
75°C

10

a:
::>

o

o
a:


g! SOOO
:;!::

~~ 4000

:;:;

:; ~ 3000
01-

uz

J~ 2000

u~

g: 1000

\

,
C1821 A

a
1000 2000 3000 4000 SOOO 6000
VCM-COMMON MODE
TRANSIENT AMPLITUDE-V
C18S2

Fig. 14. Common Mode Transient Rejection
& Test Circuit

1-172

DUAL
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

MCT6 MCT62
MCT61

/

15° MAX

6.86
6.35

0.36

The MCT6X optoisolators have two channels for high
density applications. For four channel applications,
two-packages fit into a standard 16-pin DIP socket. Each
channel is an NPN silicon planar phototransistor optically
coupled to a gallium arsenide infrared emitting diode.

f

7.62

REF

•
•
•
•

Two isolated channels per package
Two packages fit into a 16 lead DIP socket
Choice of 3 current transfer ratios
Underwriters Laboratory (U.L.) recognized File E50151

3.68
3.56
3.05

0.51
MIN

0.8S TYP
C2oS1
DIMENSIONS IN mm
PACKAGE COOE G

• AC Line/Digital Logic-Isolate high voltage transients
• Digital Logic/Digital Logic-Eliminate spurious
grounds
• Digital Logic/AC Triac Control-Isolate high voltage
transients
• Twisted pair line receiver-Eliminate ground loop
feedthrough
• Telephone/Telegraph line receiver-Isolate high
voltage transients
• High Frequency Power Supply Feedback ControlMaintain floating ground
• Relay contact monitor-Isolate floating grounds and
transients
• Power Supply Monitor-Isolate transients

Equivalent Circuit

Storage temperature .............. -55°C to 150°C
Operating temperature ............ -55°C to 100°C
Lead temperature ........ (soldering, 10 sec.) 250°C

TOTAL INPUT
Power dissipation at 25°C ambient ......... 100 mW
Derate linearly from 25°C ............... 1.3 mW/oC

COUPLED
Input to output breakdown voltage ... 2500 volts VRMS
Total package power dissipation
@ 25°C ambient ....................... 400 mW
Derate linearly from 25°C ............. 5.33 mWrC

INPUT DIODE (each channel)
Forward current .......................... 60 mA
Reverse voltage. . . . . . . . . . . . . . . . . . . . . . . . . . .. 3.0 V
Peak forward current (1 f.1S pulse, 300 pps) ...... 3 A
OUTPUT TRANSISTOR (each channel)
Power dissipation @ 25°C ambient ........ 150 mW
Derate linearly from 25°C ................ 2 mW/oC
Collector current . . . . . . . . . . . . . . . . . . . . . . . . .. 30 mA

1-173

OPTOElECTRONICS

DUAL
PHOTOTRANSISTOR OPTOCOUPLERS

2.4

f1S

Ic:2 mA, VcE :10 V,
RL:1000

15

f1S

Ic:2 mA, VcE :10 V,
RL=1KO
I

25

f1S

150

kHz

RL =2KO, IF =40 mA

10'2
500

1-174

VDC

Relative humidily=40%
1=1 MHz

DUAL
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

(jJ

~I

/'

S

1

w

1

CJ

a:

~

0.75

f-

...J

o

()

o
a:

N

fa

>

0.50

/

:::i

«

~
o

~

a:

u.. 0.8 '---"-_'---"-..L---.l_L-..L---L.......l

0.1 0.2 0.5 1 2
5 10 20 50 100
FORWARD CURRENT - IF (mA)
C1686
Fig. 1. Forward Voltage vs.
Current

/

0.25

o
Z

o

o

15
10
IF-(mA)
Fig. 2. Normalized
VS.
Forward Current
5

~<8

.!:

a: s
f-a:
()f-

S

VCE = 0.3V
VCE = 5.0V

1.0

y

8

VVCE =5V

6

/

4

I

a:
f-

()

2

0.8

0

8

w

«

JV

6

0.6

:2

a:

4

Z

2

0

0.4 '----'------'_--'------L_..L----L_.L----I

-75 -50 -25

0 +25 +50 +75 +100+125
TA - (OC)
C1680
Fig. 3. Normalized CTR VS.

0

~

o

I./F
J,-QE = 1.4 V

V
I/,V

0

N

:::i

20
C1679

cm

0

IF = 10mA-~
IF = 5mAIF = 20mAll\

.-....

~

1

~
2

~
3

V

4

5

6

7

8

IF -(mAl

9 10

11

C1243

Fig. 4. Collector Current VS.
Forward Current

1-175

DUAL
PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.2
VCE = 10V
RL = 100n
(See Fig. 10)

w

:;
i=
(!l
~

5~

I"

f-

~ 1.0

~ t
@j

0.8

::;;

0.6

~ ~

\

II

E

VCE = 10V

OUTPUT

}

"- r'--...

a:

az

o

5

15

10

20
C1685

Ic-(mA)

C1296A

Fig. 6. Switching Time Test Circuit

'::;Wffcnlma Time vs. IC

PULSE WIDTH = 100 J.ls
DUTY CYCLE = 10%

INPUT

OV

OUTPUT

I
I

~

I

I

tonM toft
C1294

Time Waveforms

1. Normalized CTR degradation =

CT~f-;TR
o

2. The current transfer ratio (IJIF) is the ratio of the detector collector current to the LED input current with VeE at 10 volts.
3. The frequency at which ic is 3 dB dawn from the 1 kHz value.
4. Rise time (t,) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (tJ is the time required far the collector current to decrease fram 90% of its initial value to 10%.

1-176

DUAL PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

MCT9001

.I

15° MAX

6.86
6.35

0.36

+

f

7.62

REF

3.56
•
0.51
3.05
MIN
0.89 TYP
C2091

Storage temperature .............. -55°C to 150°C
Operating temperature ............ -55°C to 100°C
Lead temperature (soldering, 10 sec) ........ 250°C

INPUT DIODE (each channel)
Forward current .......................... 60 rnA
Reverse voltage ............................ 5.0 V
Peak forward current
(1 /ks pulse, 300 pps) ....................... 3 A
TOTAL INPUT
Power dissipation 25°C ambient ........... 100 mW
Derate linearly from 25°C ............... 1.1 mW/oC

The MCT9001 is a two channel optocoupler in a
standard, end stackable, 8 pin dual-in-line package. This
part offers the same packing density as 4 pin
optocouplers, while minimizing component count and
insertion costs.

• Two isolated channels per package
• Two packages fit into a 16 lead DIP socket
• Underwriters Laboratory (UL) recognized File E50151

•
•
•
•
•
•
•
•

High voltage isolation
Ground loop elimination
Transient protection
Common mode noise reduction
AC line to logic interface
Telephone line receiver
Isolated feedback control
Logic to power interface

OUTPUT TRANSISTOR (each channel)
Power dissipation at 25°C ambient ......... 150 mW
Derate linearly from 25°C .............. 1.67 mW/oC
Collector current . . . . . . . . . . . . . . . . . . . . . . . . .. 50 rnA
COUPLED
Input to output breakdown voltage ........ 2500VRMS
Total package power dissipation
at 25°C ambient . . . . . . . . . . . . . . . . . . . . . .. 400 mW
Derate linearly from 25°C ............. 4.83 mW/oC

1-177

DUAL PHOTOTRANSISTOR OPTOCOUPLER

OPTOElECTRONICS

V

100

Ic=0.5 mA; IF=O

nA

2mA;

Surge isolation voltage

Steady state isolation
voltage

1-178

3500

VDC

Relative humidity

:550%; 1,_o:510pA

DUAL PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

en
~

a

--=---1
;;:
~ E

C

c£ 1.0
Ot-

~

I

0.75

o
@

0.50

cr:
t-

~

a

>

ocr:

:::i

cr:

~

«

u.. 0.8 '---'-_L-...L-L_-'-....L---l._..L...J
0.1 0.2 0.5 1 2
5 10 20 50 100
FORWARD CURRENT - IF (rnA)
C1686
Fig. 1. Forward Voltage vs.
Current

1.2

------.
~ g

~<

cr: co
t-cr: 1.0
Ot-

I
cr:
t-

0

0.8

0

w

N

:::i

«
::;;

/

N

~
a

S

/'

S

I

w
CJ

0.6

IF = 10mAIF=5mAIF = 20mA,,\

/

V
,,/

//'~/

~.

/

~

~

0.25

a

a

15
10
IF-(mA)
Fig. 2. Normalized CTR vs.
Forward Current
5

18

/VCE =5V

/

;;c

12

.sI

10

9

8

//

cr:

az

0 +25 +50 +75 +100 +125
TA - (OC)
C1680
Fig. 3. Normalized CTR vs.
Temperature

o

o

l/r

-<~E =',4 V

/,

/

0.4
-75 -50 -25

20
C1679

.r

20

14

~,

~

z

16

-=.-

= 0.3V
= 5.0V

a

VCE = 0.3V
VCE = 5.0V

~

--

VCE
VCE

1.25

0

'C

~

~
1

~

2

~
3

IV
V

4

5

6

7

8

IF - (mA)

9

10

11

C1243

Fig. 4. Col/ector Current vs.
Forward Current

1-179

[!i]

DUAL PHOTOTRANSISTOR OPTOCOUPLER

OPTOELECTRONICS

1.2

w
:;
i=

=
=

VCE
10V
RI.
1000
(See Fig. 10)

I"

Z
C!l

E 1.0

~J?~
I-

~
c
Itj

~
:;

E

t

j

!

0.8

\ "-

VCE = 10V

RI.
OUTPUT

}

i'-..

0.6

a:

oZ

o

5

20

15

10

Ic-(mA)
SW/lrcnIl1(J

Time

vs.

C1296A

C1685

Ie

Fig. 6. Switching Time Test Circuit

PULSE WIDTH = 1oo"s
DUTY CYCLE = 10%

INPUT

OV

OUTPUT

I
I
10%

I

I

-+J

Ion

I I
M

Ioff
C1294

7. Switching Time Waveforms

1-180

AC LINE MONITOR LOGIC·OUT DEVICE

OPTOELECTRONICS

MID400

The MID400 is an optically isolated AC line-to-Iogic
interface device. It is packaged in an 8-lead plastic DIP.
The AC line voltage is monitored by two back-to-back
GaAs LED diodes in series with an external resistor. A
high gain detector circuit senses the LED current and
drives the output gate to a logic low condition.

2.54

--I I-. 0.89

TYP

3.94
3.68

+

-ITYPI-

II

The MID400 has been designed solely for use as an AC
line monitor. It is recommended for use in any AC-to-DC
control application where excellent optical isolation, solid
state reliability, TTL compatibility, small size, low power,
and low frequency operation are required.

3.56
0.51
3.05
MIN
0.89 TYP
C2091

• Direct operation from any line voltage with the use of
an external resistor
• Externally adjustable time delay
• Externally adjustable AC voltage sensing level
• High voltage isolation between input and output
• Compact plastic DIP package
• Logic level compatibility
• UL recognized (File #E50151)

• Monitoring of the AC/DC "line-down" condition
• "Closed-loop" interface between electromechanical
elements such as solenoids, relay contacts, small
motors, and microprocessors
• Time delay isolation switch
Equivalent Circuit

INPUT-LED CIRCUIT

TOTAL PACKAGE

RMS current . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 mA
DC current ............................. ±30 mA
Power dissipation at 25°C ambient . . . . . . . . .. 45 mW
Derate linearly from 70°C ............... 2.0 mW/oC

Storage temperature ............ -55°C to +125°C
Operating temperature ........... -40°C to +85°C
Lead soldering temperature, 10 sec .......... 260°C
Power dissipation at 25°C ambient ......... 115 mW
Derate linearly from 70°C .............. 4.0 mWrC
Surge isolation ........................ 3550 VDC
2500VRMS
Steady state isolation .................. 3200 VDC
2250VRMS

OUTPUT-DETECTOR CIRCUIT
Low level output current (loC> . . . . . . . . . . . . . . .. 20 mA
High level output voltage (VOH) ............... 7.0 V
Supply voltage (Vcd ........................ 7.0 V
Power dissipation at 25°C ambient .......... 70 mW
Derate linearly from 70°C .............. 2.0 mW/oC

1-181

AC LINE MONITOR LOGIC·OUT DEVICE

OPTOElECTRONICS

INPUT
LED Forward

1.5

V

±30mADC

DETECTOR
Logic Low Output
Supply Current

IccL

3.0

mA

Logic High Output
Supply Current

ICCH

0.80

mA

Logic High Output Current

10H

100

IlA

On-state RMS Input Voltage

V'IONJ RMS

Off-state RMS Input Voltage

V'loFfJ RMS

On-state RMS Input Current

1'loNJ RMS

Off-state RMS Input Current

1'lOFFjRMS

.02

90

V
5.5

4.0

Vo=0.4 V, 10=16 mA
Vcc =4.5 V, R'N=22 Kn

V
mA

.15

mA

SWITCHING TIME (TA=+25°C)

Turn-On Time

1.0

mS

I'N=4.0 mA RMS
10=16mA, VJ;.c=4.5V
R'N=22 KO (:;ee Test Circuit 2)

Turn-Off Time

1.0

mS

I'N 4.0 mA RMS
I =16 mA, V =4.5 V
~'N=22 Kn (lfee Test Circuit 2)

3550

VDC

2500

VACRMS

Relative Humiditys50%,
1,.os101lA
1 Second, 60 Hz

3200

VDC

2250

VACRMS

Surge Isolation Voltage

Steady State Isolation Voltage

(RMS= True RMS Voltage at 60 Hz, THD "" 1%.)

1-182

Relative Humiditys50%,
1'-Os101lA
1 Minute, 60 Hz

AC LINE MONITOR LOGIC·OUT DEVICE

OPTOElECTRONICS

The input of the MID400 consists of two back-to-back LED diodes which will accept and convert alternating currents
into light energy. An integrated photo diode-detector amplifier forms the output network. Optical coupling between
input and output provides 3550 V DC voltage isolation. A very high current transfer ratio, (defined as the ratio of the DC
output current and the DC input current) is achieved through the use of a high gain amplifier. The detector amplifier
circuitry operates from a 5 V DC supply and drives an open collector transistor output. The switching times are
intentionally designed to be slow in order to enable the MID400, when used as an AC line monitor, to respond only to
changes of input voltage exceeding many milliseconds. The short period of time during zero-crossing which occurs
once every half cycle of the power line is completely ignored. To operate the MID400, always add a resistor, R,N, in
series with the input (as shown in test circuit 1) to limit the current to the required value. The value of the resistor can be
determined by the following equation:

RIN -- V,N-VF
liN

Where V ,N (RMS) is the input voltage.
VF is the forward voltage drop across the LED.
liN (RMS) is the desired input current required to sustain a logic "0" on the output.

DESIGNATION

V ,N" V ,N2

PIN#

1,3

Vee

8

AUX.

7

Va

6
5

GND

FUNCTION

SCHEMATIC DIAGRAM

Input terminals.
Supply voltage, output circuit.
Auxiliary terminal.
Programmable capacitor input to
adjust AC voltage sensing level
and time delay.
Output terminal; open collector.
Circuit ground potential.

C'4738
NOTE, DO NOT CONNECT PIN 2 'AND 4

1-183

OPTOELECTRONICS

VOLTAGES
V'(ON) RMS

V'(OFF)

RMS

AC LINE MONITOR LOGIC-OUT DEVICE

On-state RMS input voltage
The RMS voltage at an input terminal for a specified input current with output conditions applied that
according to the product specification will cause the output switching element to be sustained in the
on-state within one full cycle.
Off-state RMS input voltage
The RMS voltage at an input terminal for a specified input current with output conditions applied that
according to the product specification will cause the output switching element to be sustained in the
off-state within one fill cycle.
Low-level output voltage
The voltage at an output terminal for a specific output current 10l with input conditions applied that
according to the product specification will establish a low-level at the output.
High-level output voltage
The voltage at an output terminal for a specified output current 10H with input conditions applied that
according to the product specification will establish a high-level at the output.

VF

LED forward voltage
The voltage developed across the LED when input current

CURRENTS
1,(oN) RMS

I'(OFF)

RMS

IF

is applied to the anode of the LED.

On-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the product
specification will cause the output switching element to be sustained in the on-state within one full
cycle.
Off-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the product
specification will cause the output switching element to be sustained in the off-state within one full
cycle.
High-level output current
The current flowing into * an output with input conditions applied that according to the product
specification will establish a high-level at the output.
Low-level output current
The current flowing into * an output with input conditions applied that according to the product
specification will establish a low-level at the output.

ICCl

Supply current, output low
The current flowing into * the Vee supply terminal of a circuit when the output is at a low-level voltage.
Supply current, output high
The current flowing into * the Vee supply terminal of a circuit when the output is at a high-level voltage.

DYNAMIC CHARACTERISTICS
Turn-on time
The time between the specified reference points on the input and the output voltage waveforms with
the output changing from the defined high-level to the defined lOW-level.

taN

Turn-off time
The time between the specified reference points on the input and output voltage waveforms with the
output changing from the defined low-level to the defined high-level.
*Current flowing out of a terminal is a negative value.

1-184

AC LINE MONITOR LOGIC·OUT DEVICE

OPTOELECTRONICS

INPUT CURRENT VS. CAPACITANCE, CAUX. CIRCUIT

C1478A

Test Circuit 1

OV

,
,,

,,
,,,

,,,
--...: toff :-4--

~hom~

:: _ ,"_:~J. 5_0%. __________:--,tr5-0%--"INPUT TURNS ON AND OFF AT ZERO CROSSING.
+4.5 V
Vee

MID 400

1 INPUT
N/C

Vee
AUX.

2 INPUT

V OUT

N/C

GND

TEST CIRCUIT

8

7

R,

300n

6

L-.J

5

OUTPUT

-=C1479B

Test Circuit 2
MID400
Time

1-185

AC LINE MONITOR LOGIC·OUT DEVICE

OPTOElECTRONICS

30

250
tA =125°c
Vee = 5.0 V

Ui

!'O

!'O

20

w

w

t:;
0-

to

150

100

V1~~

~

u

.l:

/

:;;

:;;

~
':;
o
>

/

25

Ui 200

50

V
'/

..J

~ 10
~

o

10

OL ""

20

30

/

«
J

40

~

f-

V

16 mA

o
o

R'N (K!1)
50

60

C1474

V

~O

15

0

>

,y,

V

o/

«
f-

IOH .::;; 11 OOJ,tA

R'N (K!1)
10

20

30

40

50

60
C1474

Fig. 2. Input Voltage vs. Input Resistance
120

.

_110

~

II

"!:!w 100
..J

«

:;;
a:
Z

90

/'

W
.
.
..
.'

o

.,,::~
I'

~

.'
.'.' . /

,,,0
7" ~ ~<:I
'

80
4.5

4.6 4.7 4.8 4.9 5.0 5.1
Vee (VI

2.8

:;;
a: 2.0



5.2 5.3 5.4 5.5
C1475

tOL

"'-

f- 1.6

4.5V

= 16 mA

5.0V
.20 f---+--+----+----,~9r_-__1

10H:<;; 100~A
R'N = 22 K!l
TA = 25°C

"'-

-5

~w
"

~
o

~

~',

f~ 0.8

.15

~ .10
f-

::0

o

z

t----!----t----;H'i"----t----j

>

0:

cr: 1.2
u
::0

~--;---"---r---r---'

.05

II (OFF)

t---M'---t---+----t----j

0.4
.01

OL-__- L__

10

20

50

100

200

500

CAPACITANCE (pFI (AUX. TO GNDI

Fig. 4.

1-186

1000
C1476

01.0

5.0

~L_

10.0

__

~

__

15.0

~

__

20.0

OUTPUT CURRENT (10,1 (mAl

Fig. 5. Output Voltage vs.
Current

~

25.0
C1477

OPTOElEtTHOMltS

PHOTOTRANSISTOR OPTOCOUPLERS

MOC8111
MOC8112
MOC8113

The MOC series consists of a Gallium Arsenide IRED
coupled with an NPN phototransistor.

• High isolation voltage
5300 VAC RMS-1 minute
7500 VAC PEAK-1 minute
• High BVCEO minimum 70 volts
• Current transfer ratio in selected groups:
MOC8111: 20% min.
MOC8112: 50% min.
MOC8113: 100% min.
• Maximum switching time in saturation specified
• Underwriters Laboratory (UL) recognized File #E90700

•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Industrial controls

Equivalent Circuit

TOTAL PACKAGE

INPUT DIODE

Storage temperature .............. -55°C to 150°C
Operating temperature ............ -55°C to 100°C
Lead temperature
(soldering, 10 sec) ...................... 260°C
Total package power dissipation @ 25°C
(LED plus detector) ..... . . . . . . . . . . . . . .. 260 mW
Derate linearly from 25°C .............. 3.5 mW/oC

Forward DC current ....................... 90 mA
Reverse voltage ............................. 6 V
Peak forward current
(1 JLS pulse, 300 pps) ..................... 3.0 A
Power dissipation 25°C ambient . . . . . . . . . .. 135 mW
Derate linearly from 25°C ............... 1.8 mW/oC

OUTPUT TRANSISTOR
Power dissipation @ 25°C .. . . . . . . . . . . . . .. 200 mW
Derate linearly from 25°C ............. 2.67 mW/oC

1-187

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.50

V

IF=60mA

VF

1.3

~
ATA

-1.8

mY/DC

50

pF

VF=O V, f=1 MHz

OUTPUT TRANSISTOR
Breakdown voltage
Collector to emitter
Emitter to collector
Leakage current
Collector to emitter
Capacitance
Collector to emitter

BVcEo

70

V

Ic=1.0 mA, IF=O

BVEco

7

V

IE= 1OOjLA, IF=O

5

nA
pF

8

6.0

1-188

50

10

VCE=O, f=1 MHz

RL =1000; Ic=2 mA;
Vcc=10V

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

SATURATED SWITCHING TIMES
Turn-on time

ton
MOC8111

Rise-time

3.0

5.5

1.=20 rnA, VcE=OA V

2.0

4.0

1.=20 rnA, VcE=OA V

18

34

1.=20 rnA, VcE =0.4 V

11

20

1.=20 rnA, VcE=OA V

t,
MOC8111

MOC8111

Cii

______ 1.25

f...J
0

-I
~

2:">
I

VCE = 0.3V
VCE = 5.0V

E

0
a:'" <
f- r£ 1.0

--.9I

C)

a:

~
...J

0.75

f-

0

0

>

Cl

w

Cl

0.50

/

N

a:

:::;

«

~

.............

V

Of-

w

/

~

::;;

a:

0
u. 0.8
0.1 0.2 0.5 1 2
5 10 20 50 100
FORWARD CURRENT - IF (rnA)
C1686

Fig. 1. Forward Voltage vs.
Current

a: 0.25
z

0

o

o

5

10

15

IF-(mA)

20
C1679

Fig. 2. Normalized CTR vs.
Forward Current

1-189

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

1.2 ,...---.---,--,.-----,---,--r---r---.

f

18

VVCE = 5 V

.§

.!:

0:. ~
1-0:.
01-

16

1.0

<
.s

I

I-

0
0

0.8

I
2

w

~

...J



RBE :;:

0.6

a:

0

z
0

5

10
le-(mA)

15

1______

*

20
C1685

C1296A

Fig. 10. Switching Time
Test Circuit

Fig. 9. Switching Time
vs.IC

PULSE WIDTH = 1001's
DUTY CYCLE = 10%

INPUT _
OV

I
I

I

I
I
I

I

OUTPUT

I
I

I
I

90%

I
10%
I
I
I I I
I
I I I
~ ton M
tol! JC1294

Fig. 11. Switching Time Waveforms

1-196

~OUTPUT

00
(0)
C1884

OPTOElECTRONICS

OPTOCOUPLER INPUT DRIVE CIRCUITS
CNY17 SERIES

AN1071
An optocoupler is a combination of a light source and a
photo-sensitive detector. In the optocoupler, or photon
coupled pair, the coupling is achieved by light being
generated on one side of a transparent insulating gap
and being detected on the other side of the gap without
an electrical connection between the two sides (except
for a minor amount of coupling capacitance). In the
Quality Technologies optocouplers, the light is generated
by an infrared light emitting diode, and the photodetector is a silicon diode, transistor, or SCR. The
sensitivity of the silicon material peaks at the wavelength
emitted by the LED, giving maximum signal coupling.
Since the input to all the optocouplers is a LED, the input
characteristics will be the same, independent of the type
of detector employed. The LED diode characteristics are
shown in Figure 1. The forward bias current threshold is
shown at approximately 1 volt, and the current increases
exponentially, the useful range of IF between 1 mA and
100 mA being delivered at a VFbetween 1.2 and 1.3 volts.
The dynamic values of the forward bias impedance are
current dependent and are shown on the insert graph for
ROF and dR as defined in the figure. Reverse leakage is in
the nanoampere range before avalanche breakdown.
The LED equivalent circuit is represented in Figure 2,
along with typical values of the components. The diode
equations are provided if needed for computer modeling
and the constants of the equations are given for the IR
LED's. Note that the junction capacitance is large and
increases with applied forward voltage. An actual plot of
this capacitance variation with applied voltage is shown
on the graph of Figure 3. It is this large capacitance
controlled by the driver impedance which influences the
pulse response of the LED. The capacitance must be
charged before there is junction current to create light
emission. This effect causes an inherent delay of 10-20
nanoseconds or more between applied current and light
emission in fast pulse conditions.
The LED is used in the forward biased mode. Since the
current increases very rapidly above threshold, the
device should always be driven in a current mode, not
voltage driven. The simplest method of achieving the
current drive is to provide a series current-limiting
resistor, as shown in Figure 4, such that the difference

between VFand VAPP is dropped across the resistor at the
desired IF' determined from other criteria. A silicon diode
is shown installed inversely parallel to the LED. This
diode is used to protect the reverse breakdown of the
LED and is the simplest method of achieving this
protection. The LED must be protected from excessive
power dissipation in the reverse avalanche region. A
small amount of reverse current will not harm the LED,
but it must be guarded against unexpected current
surges.
The forward voltage of the LED has a negative
temperature coefficient of 1.05 mW/oC and the variation is
shown in Figure 5.
The brightness of the IR LED showly decreases in an
exponential fashion as a function of forward current (IF)
and time. The amount of light degradation is graphed in
Figure 6 which is based on experimental data out to
20,000 hours. A 50% degradation is considered to be the
failure point. This degradation must be considered in the
initial design of optoisolator circuits to allow for the
decrease and still remain within design specifications on
the current-transfer-ratio (CTR) over the design lifetime of
the equipment. Also, a limitation on IF drive is shown to
extend useful lifetime of the device.
In some circumstances it is desirable to have a definite
threshold for the LED above the normal 1.1 volts of the
diode VF. This threshold adjustment can be obtained by
shunting the LED by a resistor, the value of which is
determined by a ratio between the applied voltage, the
series resistor, and the desired threshold. The circuit of
Figure 7 shows the relationship between these values.
The calculations will determine the resistor values
required for a given 1FT and VA. It is also quite proper to
connect several LED's in series to share the same IF. The
VFof the series is the sum of the individual V;s. Zener
diodes may also be used in series.
Where the input applied voltage is reversible or
alternating and it is desired to detect the phase or polarity
of the input, the bipolar input circuit of Figure 8 can be
employed. The individual optocouplers could control
different functions or be paralleled to become polarity
independent. Note that in this connection, the LED's
protect each other in reverse bias.

1-197

OPTOCOUPLER INPUT DRIVE CIRCUITS
CNY17 SERIES

OPT DEl Eel RON ICS

VF-VFT
iF=IFTexP-k-

FORWARD BIAS

VF ""VfT+k I09TFT
"

"
mA

FOR IR IN OPTO-ISOlATORS

100

V FT =O.98VDlT
1FT =O.lOmA
k =0.360

80

LEO
EQUIVALENT
CIRCUIT

R _ 0.03 (V)

60
o.~c..,..u.Jw....J.,.,,-l-l.J..L.....
,,--1..J.J..L...J

18

/ I J=.lR=~

t

SLOPE

40

If-FORWARD CURRENT _ mA

20

s-~

/

/

j

>,

20
, 0.5

10

RANGE OF

t

0.1

Cl02

VFVOLTS

1.0

V

0
10

I,

10

C,

100
NOTE CHANGE OF SCALES

-5

V,

THRESHOLD

REVERSE BIAS

'-----.4-_--l

55

100 300 500
1.0

V,

mA

'R

Cl01

Fig. 1. Characteristics of IR LED

<10

IR

100 rnA

1.1

pF

1.2

1.3

0

Rs

00

Rp >10'

-

V
nA

30

3

0.3

{1
{1

V, - VFr
I,=I'T exp - - k
350

I,

V,=VFr+klogIFr

u.

c.

300

FOR IR IN OPTO-ISOLATORS

~--

VFr =0.98 VOLT

w
u

z

«
f0-

IFr =0.10 rnA
k=0.360

250

G

«
"«u

Rs=0.03

z

;::

M

I, (Al

200

0

Fig. 2. Equivalent Circuit Equations

u

z

~
150
R

NOTE SCALE CHANGE
Cl04

50

Fig. 4. Typical LED Drive Circuit
VF
1.5

1.0

0.5

a
APPLIED VOLTAGE

3

4

5

8

6

Cl03

Fig. 3. Voltage Dependence of Junction Capacitance

1-198

OPTOCOUPLER INPUT DRIVE CIRCUITS
CNY17 SERIES

OPTOElECTRONICS

1.4r-~--'-'--r--.-'-~--~

00
I-

...J

~ 1.3r-+---r-+-~--~~-+--4-4
u.

>I 1.21-t---b"'F--+---t----t..4--+-l
UJ

CJ

1.1

~

1.0

~

Cl

Fig. 7. LED Threshold Adjustment

~'"--;-:;-;!=:;:L--::J,.oo"'---t--+--I---+-I

a:

~ 0.9 1--::I7'''''-t-+--+--t-

a:

o

0.8 '---'-__-'---'---'-__-'----'---'-__-'--'
0.1 0.2 O.S 1 2
S 10 20 SO 100

u..

FORWARD CURRENT -

CIOB

Fig. 8. Bipolar Input Selects LED

IF (rnA)
C1686

Fig. 5. IR Forward Voltage vs.
Forward Current and Temperature

;§!.

50

z

30

>=
«
«

20

'"'"

10

Ito

8
6
4

40

I)j)'p

0

'"
'"
UJ

'"

'"
::J
UJ
N

.,.,

~
I'-'"

'r'

i.--"

\f·

-:. -'"'

~

Ij _I'&~A

IIII
100

Cl09

Fig. 9. High Threshold Bipolar Input

\ ~30"'p..

.....

-

1

~-

1
10

~

~

\~

,/"

«
:;;:

'"0z

.,., ~

r

~

1000

TA - 25°C
10,000

100,000

TIME - HOURS

Cl06

Fig. 6. Brightness Degradation vs.
Forward Current and Time

r - - - - -_ _- - - .

0--/

r
120V

R,

.JvV'v-P--+---"

fF

C,

EXTERN"'A-L
SWITCH
DEVICE

-=-J~~i

t

~'~lo-_____~_2_+~_R_2____~

--

lHCPL

~--.....I

ClIO

Fig. 10. AC Input to LED Drive Circuit

Another method of obtaining a high threshold for high
level noise immunity is shown in Figure 9, where the
LED's are in inverse series with inverse parallel diodes to
conduct the opposite polarity currents. In this circuit the
VF is the total forward drop of the LED and silicon

diode in series. The resistors serve their normal threshold
and current limiting functions. The silicon diodes could
be replaced by LED's from other optocouplers or visible
signal indicators.
1-199

OPTOCOUPLER INPUT DRIVE CIRCUITS
CNY17 SERIES

OPTOElECTRONICS

In some situations it may be necessary to drive the LED
from a 120 VRMS, 60 Hz or 400 Hz source. Since the LED
responds in nanoseconds, it will follow the AC excursions
faithfully, turning on and off at each zero-crossing of the
input. If a constant output is desired from the optocoupler
detector, as in AC to logic coupling, it is necessary to
rectify and filter the input to the LED. The circuit of Figure
10 illustrates a simple filtering scheme to deliver a DC
current to the LED. In some cases the filter could be
designed into the detector side of the optocoupler,
allowing the LED to pulse at line frequency. In the circuit
of Figure 10, the value of C, is selected to reduce the
variations in the IF between half cycles below the current
that is detectable by the detector portion. This condition
usually means that the detector is functioning in
saturation, so that minor variations of IF will not be
sensed. The values of R" R2 and Rs are adjusted to
optimize the filtering function, RsC, time constant, etc.
Speed of turn-off may be a determining factor. More
complicated transistor filtering may be required, such as
that shown in Figure 11, where a definite time delay, rise
time and fall time can be designed in. In this circuit, C,
and Rs serve the same basic function as in Figure 10. The
transistor provides a high impedance load to the R,C 2
filter network, which, once reaching the VFvalue,
suddenly turns on the LED and pulls the transistor
quickly into saturation. The turn-off transient consists of
the discharge of C, through Rs and the LED.

In logic-to-Iogic coupling using the optocoupler, a simple
transistor drive circuit can be used as shown in Figure 12.
In the normally-off situation, the LED is energized only
when the transistor is in saturation. The design equations
are given for calculating the value of the series current
limiting resistor. With the transistor off, only minor
collector leakage current will flow through the LED. If this
small leakage is detectable in the optocoupler detector,
the leakage can be bypassed around the LED by the
addition of another resistor in parallel with the LED shown
as R,. The value of R, can be large, calculated so that the
leakage current develops less than threshold VF (-0.8
volt) from Figure 5. The drive transistor can be the normal
output current sink of a TTL or DTL integrated circuit,
which will sink 16 mA at 0.2 volt nominal and up to 50 mA
in satu ration.
If the logic is not capable of sinking the necessary IF' an
auxiliary drive transistor can be employed to boost
current capability. The circuit of Figure 13 shows how a
PNP transistor is connected as an emitter follower, or
common collector, to obtain current gain. When the
output of the gate (G,) is low, 0, is turned on and current
flows through the LED. The calculation of R, must now
include the base-emitter forward biased voltage drop,
VBE , as shown in the figure.
In the normally on situation of Figure 14, the transistor is
required to shunt the IF around the LED, with a VSAT of less
than threshold VF. Typical switching transistors

r ,--

DC
INPUT
FROM

I

r--

C,

BRIDGE
RECTIFIER

'OK

C111

Fig. 11. R-C-Transistor Filter Circuit
R1

vee

+

= VCC-VF-VBE-VCE(SATIGATE

Vec ~5V
IF
=20mA
VSAT ~ 0.4 V

VBEIQ,I ~ 0.6 V

VF

VeEISATIIG,1 ~ 0.4 V

~

vee

vee

IF

1.2V

10K

R _ Vee-VF-VSAT
IF
=5-1.2-0.4 ~ 3.4

20

20

R ~ 170n

C112
C113

1-200

Fig. 12. Transistor Drive, Normally Off

Fig. 13. Logic to LED Series Booster

OPTOCOUPLER INPUT DRIVE CIRCUITS
CNY17 SERIES

OPTOElECTRONICS

have saturation voltages less than 0.4 volts at le=20 mA
or less. The value of the series resistor is determined to
provide the required IF with the transistor off.
Again, if the logic cannot sink the IF' a booster transistor
can be employed as shown in Figure 15. With the output
of the gate low the transistor 0, will be on, and the sum of
VeE (SAT) of G, and VBE of 0, will be less than the
threshold VFof the LED. With the gate high, 0, is not
conducting and the LED is. The value of R, is calculated
normally, but shunt current will be greater than IF. The
normally-on or normally-off conditions are selected
depending on the required function of the detector
portion of the optocoupler and fail-safe operation of the
circuits.
In many applications it is found necessary to pulse drive
the LED to values beyond the DC ratings of the device. In
these situations a "pulse" is defined as an on-off
transient occurring and ending before thermal
equilibrium is established between the LED, the lead
frame, and the ambient. This equilibrium will normally
occur within one millisecond. For a pulse width in the
microsecond range, the IF can be driven above the DC
ratings, if the duty cycle is low. The chart of Figure 16

VCC-VF

R'-IF

,~,

shows the relationship between the amount of overdrive,
duty cycle, and pulse width. The overdrive is normalized
to the IDe value listed as maximum on the device data
sheet. Average power dissipation is the limiting
parameter at high duty cycles and short pulse widths. For
longer pulse widths, the equilibrium temperature occurs
at lower duty cycle values, and peak power is the limiting
parameter.
For duty cycles of 1% or less the pulse becomes similar
to a non-recurrent surge allowing additional ratings such
as the J2t used in rectifier diodes. Average current is used
for lifetime calculation. The pulse response of the
detector must be considered in choosing drive
conditions.
There are situations where it is not desirable to pass all of
the input current through the LED. One method to
achieve this is to provide a bypass resistor as suggested
in Figure 7 for threshold adjustment. This method is
satisfactory where the input current is switched on and off
completely, but, if the information on the current is only a
small variation riding on a constant DC level, the bypass
resistor also bypasses a large portion of the desired
signal around the LED. Two methods can be used to
retrieve the signal with little
Vee

vee

Vee

1900

vF

0--

-=-

Cl14

Fig. 14. Transistor Drive, Normally On

100

Fig. 15. Logic to LED Shunt Booster

'"~""
5",
1-

PW' 30

I

1oop.s

--

~

"

10",

::""':

"sec

~~

~

"

.........;

.1

300",
1

0.1

........

I
1.0

10

DUTY CYCLE - %

100
Cl16

Fig. 16. Maximum Peak IF Pulse Normalized to Max loe
for Pulse Width (PW) and Duty Cycle (%)

1-201

OPTOCOUPLER INPUT DRIVE CIRCUITS
CNY17 SERIES

OPTOELECTRONICS

attenuation. If the signal has a rapid variation (e.g., the
audio signal on a telephone line), the DC component can
be cancelled in the detector by feedback circuits. If the
variation is slow, a dynamic shunt can be used instead of
the fixed resistor. If a constant-current device or circuit is
used in parallel with the LED, as shown in Figure 17, the
adjusted component of the DC will flow through the
dynamic inpedance, and any current variations will result
in a change of terminal voltage. Therefore, the total
current change will flow through the

2.7K

paralleled LED circuit. The graph of Figure 18 shows the
performance of this particular circuit adjusted to center
on IL =120 mA and a circuit node voltage of.3.4 volts. In
the circuit shown the detector portions of the CNY17-1
and CNY17-4 were employed for convenience. Note that
in Figure 18 most of the current variation occurs as IF' The
ratio between the DC resistance (R D) and dynamic
impedance (Rd) for the shunt is 50, which represents the
signal transfer gain achieved over a fixed resistor.

3.4V

HIIB2

«

220n

I
r
I
I

L

~ l15r-----r---~-----+-----+----~

--=~iJ
_L~

__

110 f----if----t-----+-----I------i
IL, SANS LED

R = 1.6Kn

Cl17

105 ':--'---'--....L..--'__..J....~__..I..._--'-__.L........J
3.0 3.1
3.2
3.4
3.6
3.8
4.0
TERMINAL VOLTAGE - VA

Fig. 17. Constant-Current Shunt Impedance
Fig. 18. Shunt Impedance Performance

1-202

C1l8

LOW CURRENT INPUT CIRCUIT IDEAS
6N139/138 SERIES

OPTOELECTRONICS

AN1074
Introduction

this way, the LED is not causing conduction in its output
circuitry but is prepared to conduct very quickly. Any
noise or oscillation on the "D.C. power source" is
coupled through "C" which develops a signal across the
LED. Even small unwanted signals can cause a large
change in the LED forward current. Once the LED's
forward current equals or exceeds 500 microamperes,
the output circuitry will conduct indicating the presence
of the unwanted signal.

Advancements in opto-coupling and LED technology
have given us the 6N139. This unique optocoupler,
having an input LED current specification at 500
microamperes, has opened some interesting design
doors. Besides the obvious and much written about
ability to be directly driven by CMOS circuits, the 6N139
can be considered for signal detection, transient
detection, matrices and non-loading line receiving.
Following are but a few circuit ideas to stimulate the
designer's interest.

Transient Detection

Signal Detection

The detection of the presence or absence of waveforms
can easily be detected by the circuit in Figure 2.

The detection of noise, spikes or oscillations can easily
and directly be detected by the input of the 6N139 as
shown in the circuit of Figure 1.
6N139
r-------------------..
--

Rs

RL

Input

+o-----4---~~--4--4:~
R

D.C.
C1460A

power source

Fig. 2. Pulse or Waveform Detection Circuit
L •••••••••••••••••

Cl459A
Fig. 1. 6N139 Input Circuit For Signal Detection

For the detection of undesirable signals on a D.C. power
source use:
R Power supply voltage - 1.5 volts
50 microamperes
C = To effect 500 microamperes into
LED
X=Latching or non-latching output
circuitry to follow

For the detection of the presence of a desired signal,
pulse or waveform use:
CR=Silicon diode
R
L

(Positive Vpk. of input) - 2.5 volts
1 milliampere

C.
Pulse interval of liE
min
R
L

Rm
s ax

Pulse width or 1/4F
5C

X=Non-latching output
circuitry to follow
LED=lnput diode of 6N139

LED=lnput diode of 6N139
The LED is provided with a 50 microampere forward
current to charge the LED capacity to the VF level. In

Examples:
A desired pulse train to be present is shown in Figure 3.

1-203

[!ii
OPTOELECTRONICS

The resulting LED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.

LOW CURRENT INPUT CIRCUIT IDEAS
6N139/138 SERIES

Matrices Opto-Coupllng
With the low input LED current advantage of the SN139,
the ability to drive matrices with but one TTL output is
now possible as shown in Figure 5.

......

+5V.

"'

6.6KO
resistors

>-......-t-1~1-1--,----~

-

-

-

-

aU , / are input diodes of
6N139

1--""t''"t''"t'T------ - - - t---"t----""'-Output to TIL

--+--(

6N139 Output Circuitries
The following are two examples of 6N139 output circuitry.
One latching (Figure 7); the other non-latching (Figure 8),
but both capable of driving a TTL gate directly.

In Figure 8, where no signal is being received, the input
transistor is not conducting. The output transistor is very
slightly conducting. The 4.7MO resistor causing this
slight conduction will not bring the "Output" to a "0"
level. The purpose of this slight conduction is to reduce
the turn-on delay time. When a signal is received, both
input and output transistors are turned on causing the
"Output" to a logic "0" state. The 4.7MO resistor will now
tend to reduce the output transistor's turn-off time.

(5V.)

+V.
6N139

*Normally OPEN momentary push-button
0'

C1466A

Fig. 8. Non-Latching Output Circuit For 6N139

Ground

For Reset"

TTL output with open collector

C1465A

Fig. 7. Latching Output Circuit for 6N139

If you have not looked over the 6N139 specification
sheet, you may not be totally aware of the current
capabilities of Quality Technologies optocouplers.

Referring to Figure 7 and assuming that the "RESET" has
been actuated by a momentary ground and no input
signal is being received, all transistors shown are nonconducting (Output high, "1"). The arrival of an input
signal will cause all transistors to turn on. (Output low,
"0"). The PNP transistor, being turned on by the output
transistor, will in turn latch that same output transistor or
until the "RESET" is again initiated.

1-205

1-206

MID400 POWER LINE MONITOR

OPT 0H ECT H0NICS

AN1075
INTRODUCTION
The MID400 is an optically isolated AC line-to-Iogic
interface device for monitoring ON or OFF status of an
AC power line. The logic circuitry operates from a
standard 5V supply. The MID400 is packaged in a
compact a-pin plastic MINI-DIP. The optical isolation
provided by the MID400 makes it suitable for power-tologic interface applications such as industrial control
medical equipment computers and other fail-safe type
monitor systems in which status information about the
AC line is essential.

The photodetector amplifier circuit is shown in Figure 1.
The Photodiode 03 is coupled into a high gain 3 stage
emitter follower current amplifier (O,OS05) driving into an
output transistor 0B. The emitter follower loads are
comprised of constant current circuits formed by O2 , R2 ,
A., Rs , 0 6 , and R•. Constant current level in these devices
is established by the constant voltage source formed by
the base emitter voltage of 0 7 and R5 •

INTERNAL COMPONENTS
During assembly two infrared GaAs LED diodes are
mounted on an input lead frame, and a photodetector/
amplifier chip is mounted on an output frame. Use of two
separate lead frames insures high electrical isolation
between input and output terminals after trimming of the
lead frame edges. Light emitted by the input LED's is
optically coupled through solid transparent material to
the surface of the photodetector. The LED's are
connected back-to-back, and power line status is
monitored by the LED's in series with an external current
limiting resistor. When the high gain photodetector and
amplifier senses light output from the two LED's, it drives
an output NPN transistor to the ON state.

The common point of the output photodiode/amplifier is
brought out to pin 7 to allow connection of an external
integrator capacitor or other circuits. Because the
amplifier has a high current gain factor of 10,000 to
100,000, its input impedance (at pin 7) is extremely high.
Switching time of the amplifier is intentionally designed to
be slow, so that the MID400 only responds to an absence
of input signal over a few milliseconds, and not during
the short zero-crossing period of the AC input voltage
waveform.

vee (8)

(~

INPUT 01
Va (6)

(3)

(7)c>-----------"

L----4---~_+_---~OGND

(5)

C1436A

Fig. 1. Circuit Schematic of MID400 AC Line Monitor

1-207

[!i]

MID400 POWER LINE MONITOR

OPTOELECTRONICS

BASIC CIRCUIT OPERATION

UNSATURATED MODE

Consider the test circuit shown in Figure 2. Back-to-back
input diodes 0, and O2 each conduct on every half cycle
of the AC input waveform, producing 120Hz light pulses.
The light output causes the photodiode to conduct,
raising the potential of the input to the amplifier, and in
turn driving the output NPN transistor ON. When input
current is removed, light from the two LED's ceases,
charge established by the photodiode current on the
input amplifier leaks away, and the NPN transistor turns
OFF. There are basically three operation modes:
Saturated, unsaturated, and the "OFF" STATE mode.

If input current is dropped below the recommended 4mA
RMS, the amplifier drops out of saturation during the
zero-crossing periods of the input AC waveform and
120Hz pulses appear on MID400 output pin 6, (see
Figure 4). Under these conditions the device makes an
attractive, simple 120Hz clock generator that is free from
most of the normal power line transients for many digital
applications.

SATURATED MODE

OFF-STATE MODE
When the input RMS AC input current is below 0.15mA
the MID400 output will be in the high state as per
specifications.

When input AC is above the recommended 4mA RMS
minimum input current, the 120Hz photodiode pulses are
sufficient to saturate the amplifier, so that the MID400
output is low at pin 6 as long as AC input signal is
present, (see Figure 3).

vee
8
4.7Kn.

IL____________ .J
C1512A

Fig. 2. Test Circuit

Output

IBI

(Pin 6)

Photo
DIode
(Pm 71

Output

(B)

(Pin 6)

Photo
Diode

(A)

(PiIl7)

Input

Input

60Hz AC Waveform

60Hz AC Waveform

HOflz.
Vert.

='

5mS,cm

:-<

Uncalibrated

Fig. 3. Saturated Operation

NOTE: Normal specified 4mA RMS input IF current.
Output saturated (latched). The 120Hz pulses from the
photodiode 0 3 are above the threshold of the amplifier;
therefore, the MID400 output is low anytime the AC
current is present.

1-208

Horiz. = 5mS/cm
Vert. = Uncalibrated

Fig. 4. Unsaturated Operation

NOTE: Below normal specified 4mA RMS input IF current.
The level of 120Hz pulses from the photodiode are now
below the input threshold of the amplifier and the pulses
appear on the output. The output pulse width depends
on the AC input drive level.

MID400 POWER LINE MONITOR

OPTOElECTRONICS

+5V

vcc
MID400

(S)

Output
(Pin 6)

4.7K

22K

Photo

(A)

Diode
(Pin 7)

31

Input

I
I
'-------0-...---. (A)
IL _ _ _ _ _ _ _ _ _ --.l
~CAUX 17-5)

CAUX

1Oms/em

;

.005 !iF

Horiz.; 10mS/em

Vert. ; Unealibrated

C1513A

Fig. 5. Circuit with Addition of Capacitor at Pin 7

Fig. 6. Waveforms with Capacitor Added at Pin 7

OPERATION WITH AN EXTERNAL CAPACITOR
Figure 5 shows a basic delay circuit obtained by addition
of an integrating capacitor Cx to the photodiode/amplifier
input pOint pin 7. Delay at POWER ON is short, as the
photodiode, when conducting, has a low impedance
providing a fast charge to the capacitor. The delay when
AC is removed is long, because the

capacitor discharges through various leakages of the
amplifier and the photodiode. The waveforms in Figure 6
shows the capacitance on both TURN-ON and TURNOFF delays. Figures 7 and 8 show plots of capacitance
versus turn-on and turn-off time.

.10

.10

~ .0 1

CAPACITOR
AUXTO GND

V

v

V

/

~ .01
w

w

()

z

()

z

....«

/

>I:

C3

CAPACITOR
AUXTO GNO/"

~() .00 1

I

:t() .00 1

f-- )-

/

.0006

.0006
.0004

.0004

II
Ir

.0002

.0002
.000 1

1

2

4 6 10

100

1000
C1510

Fig. 7. Plot of Capacitance Versus Turn-on Time

2

4 6 10

100

1000

C1511

Fig. 8. Plot of Capacitance Versus Turn-off Time

MID400 INTERFACE CIRCUITS USING A 555 TIMER
Addition of a 555 Timer at the MID400 output, as shown
in Figure 9, produces an interface circuit with improved
drive capability and output switching times, and better

noise immunity. Figure 10 illustrates these switching time
improvements.

1-209

MID400 POWER LINE MONITOR

OPTOElECTRONICS

+5V

Vee

r---------l
1

8

r-~--~~r_------~
4.7K

22K

rQ--t~-.,6 THReSH Vee
5
OUTPUT HIGH
WITH MID 400
INPUT CURRENT

31

I
I
L-----o-_--;~IA)
I _ _ _ _ _ _ _ _ _ --1 ~CAUX
L
,
C1513

Fig. 9. Circuit with 555 Timer Added

The 555 Timer is basically being used as a SCHMITT
trigger circuit with well defined input thresholds. The
input HIGH state is 2/3 Vcc' +5 volts in this case), and its
LOW state is 1/3 Vee'
The output may be taken from either 555 pin 3 or from
pin 7 discharge point with a pullup resistor. Both these
pins are high when AC current is applied to the MID400.

The 555 output is capable of supplying both sink and
source currents up to 200mA One advantage of using
the 555 discharge output pin is that it can be tied to
another similar unit to provide the "AND" function. That is
both AC inputs to both units must be present before the
555 outputs can be high.

TOFF

(C)

555
Output

(B)

MID400

Output

Horiz.

~

Vert.

~

0.2mS/CIll
Uncalibrated

Hariz. ; 50"S/cm

Fig. 10. Output Waveforms for ToNToFF' Pin 7 Auxiliary Input
Open Using the 555 Circuit (Fig. 9)

1-210

MID400 POWER LINE MONITOR

OPTOElECTRONICS

Figure 11 shows a circuit which includes a 555 Timer for
shaping of waveforms. This circuit can provide an
adjustable delay either at power on or power off. Delay is
adjusted by the time constant of R, and C,. Insertion of
diode 0, across R, provides either a fast charge and slow
discharge of C" or a slow charge and fast discharge
when diode polarity is reversed. See

waveforms in Figures 12 through 14. Because charge on
capacitor is established by the output of MID400, the
delay will vary according to whether MID400 is operated
in saturated mode or unsaturated mode. In the
unsaturated mode delay will depend upon the ratio of the
pulse ON to OFF time (Duty Factor).

+5V

With 0,

Vee

Turn on delay
22K

555

e)

3

Output

555

B)

I
I

Input

I

I

Ae

L _________ . . .

Input
C1514

Fig. 11. Adjustable Delay Turn Off/On Circuit

Horiz. = 20mS/em
Vert. = Uncalibrated

Without 0 ,

Rx = 200KD

Turn on and off Delay

C x = O.3/J F

555
(e)

Output

(8)

Input

Fig. 13. Delayed Turn On, Diode D, Connected
Opposite to Shown in Circuit Schematic

555
With 0 ,
Turn off delay

Ae
Input

555

(e)

0utput

555

(S)

Horiz. = 20mS/em
Vert. = Uncalibrated

Input

Rx = 200K,u
ex = O.3~F

AC
Input

Fig. 12. Output Without D, Diode

Horiz.

Vert.

= 20mS/em
= Unealibrated

Rx = 200KD
C x = O.3f1F
Fig. 14. Delayed Turn Off, Diode D, Connected
As Shown in Circuit Schematic

1-211

MID400 POWER LINE MONITOR

OPTOElECTRONICS

+5V
Vee
RX
22K

,-------------'8

~200Kn

4.7K

6

Vee

THRESH

O,§

5

2

555
TRIG

DISC.

RESET

4

I
Ry

Vee

.1~F OR LARGER

:;.::: :;:::: ex

a,

(AI

GRD

%:

2N5143

:~: ~10Mn
~j:.

PNP
C1515

Fig. 15. Precision Delay Circuit

Figure 15 shows a precision delay circuit. Here delay is
provided by using the 555 Timer as a missing pulse
detector or one-shot. The time out is independent of
whether the MID400 is operated in saturated or
unsaturated mode. In unsaturated mode the Timer is
continuously being reset by the 120Hz pulses from the
MID400 and output of the 555 is high. When an AC line
fails, there are no 120 Hz pulses, the 555 times out and
the output then goes low. Refer to waveforms in Figure

A larger capacitor at C, will increase the time-out period
of the 555 causing it not to detect the missing input
cycles as shown in Figure 17.
With the MID400 operated in the saturated mode, output
of MID400 is low, which turns on the PNP transistor Q"
stopping C, from charging, and the 555 output is high.

16.

(D)

555

:)l):)

Output

555

Ie)
(B)

(0)

Threshold

(C)

MID400

IBI

Output

Output

555
Threshold
MID400

Output

AC

Ae
Input
20mS/cm

(ex

=

.1jJF\

Fig. 16. Unsaturated Mode - Detects Missing AC Input
Cycles (when more than one cycle is missing)

1-212

Input
20mS/em

(ex = .4jJFI

Fig. 17. Unsaturated Mode - Does NOT Detect Missing
AC Input Cycles

MID400 POWER LINE MONITOR

OPTOElECTRONICS
555

555

(0}

Output

Output

Ie)

555
Threshold

555
Threshold

MID400

MID400

(B)

Output

Output

AC

Input

AC

Input

20mS/em
Fig. 18. Saturated Mode - Detects Missing
AC Input Cycles

Fig. 19. Saturated Mode - Does NOT Detect
Missing AC Input Cycles

,--------------------l
AC LINE

I
I
I
I

MONITORING UNIT

.--__.--h

GND

,------------,8
I

I POWER SUPPLY INTERNAL
IMPEDANCE OR OTHER
I CIRCUITS WHEN MONITORING
I SYSTEM IS "OFF".
I
MINICOMPUTER

,---INPUT

I
I
I
I

MID400

1
RL

I

21
I
I
L

_______

~

___

7
~

II

IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

I
I

I

IL _ _ _ _

~

C1516

Fig. 20. Example For Fail-Safe Considerations

On AC line failure the MID400 goes high, causing 0, to
turn off and allowing Cx to charge, so that after the
required time the 555 is allowed to go LOW. Refer to the
waveform in Figure 18.
By the choice of the time constant RxCx the circuit in
either a saturated or unsaturated mode can be made to
either respond or not respond to one or more AC input
cycles as shown in Figures 16 through 19.

OTHER SPECIAL DESIGN CONSIDERATIONS
Special mention must be made about effects on MID400
operation caused by leakage at pin 7. To avoid problems
keep impedance at 10 megohm or greater. If a capacitor
is connected to pin 7, make sure it is a high quality type
(such as Mylar) that exhibits very low leakage. (Even
current leakage between printed circuit traces can have
noticeable effects on circuit operation if the board
material has poor dielectric insulation characteristics.)

1-213

MID400 POWER LINE MONITOR

OPTOElECTRONICS

DESIGNS FOR FAIL-SAFE OPERATION
In those industrial, military, computer, and medical
system applications where fail-safe operation is
important, circuit response must also be considered
when AC input or the Vee supply, (or even both), switch
off.
Table I lists the MID400 output response under these
conditions. This "Truth Table" shows that the MID400
output NPN transistor can be ON (conducting) only when
AC current is flowing through MID400 input LED diodes
and the 5V Vco to the MID400 is present (ON).
Table 1. FAIL-SAFE TRUTH TABLE
AC Line
Input

+5Vcc
Supply

MID400 Output
Condition

ON

ON

ON
(conducting)

ON

OFF

OPEN
(non-conducting)

OFF

ON

OPEN
(non-conducting)

OFF

OFF

OPEN
(non-conducting)

This truth table reflects a MID400 being operated from
a +5 volt supply which has a high impedance when
not "ON." However, other external factors can
influence the apparent state of the MID400 output. For
example, Figure 20 shows an application where the
MID400 is monitoring the AC voltage of a device. The
MID400 is supplied by a separate 5V supply in the
"MONITOR UNIT" fed from a separate AC line. The
output of MID400 is fed to a remote minicomputer with a
TTL type input circuit.
.
In this system it is quite feasible to get an erroneous
apparent output from the MID400 if RL is 1000 ohms, or
less, and the 5V power supply in the monitor system
presents a low impedance when OFF. The TTL input to
the minicomputer might appear low due to current being
forced through RL and the low impedance of the OFF 5V
power supply. This can be eliminated by the addition of a
diode Dx as shown in Figure 21.
In some applications additional circuitry may have to be
added to insure fail-safe operation. One such example is
the monitor circuit shown later, Figure 24. There both
voltage and current are monitored.
Another interesting condition to consider is operation of
the MID400 if its LED input diodes are "blown out" by
excessive current. In this case the MID400 output will be
in the high state, still indicating an error condition.

r-------------------,

I

MID400

I
11

DIODE

Ox

<~
INTERNAL ...:.
IMPEDANCE
I
OR OTHER
I
CIRCUITS
I

3

+5V
SUPPLY

7
C1517

Fig. 21. Diode Dx Added to Stop Reverse Current
When MID400 +5v V", Line is Off

1-214

MID400 POWER LINE MONITOR

OPTOELECTRONICS

115V
AC
'------.--------'

RI~g~~~~D

POWER OUTPUT TO
COMPUTER. "po MEMORY ETC.

+5V

r

I

r--_----<)--+5V

I

.___0-----4--_... OUTPUT

I

POWER FAILURE DETECT

I
I
L___ _

GOES HIGH ON POWER FAILURE

C1518

Fig. 22. Circuit for Switching Power Supply

}-!.

r--------------I
I
I

r--....-----<>--p-- +5V

I

I

.-------.-- +V
SUPPLY

3.3K

jB#

"
IB~

13.5mA

MID400

C1519

Fig. 23. Relay Interface Circuit

APPLICATION CIRCUITS
Figure 22 shows a circuit for a switching power supply to
give advanced warning of power failure to computer,
microprocessor, memory etc., so that an orderly power
down sequence can be initiated. Such a circuit is useful
because a switching power supply inherently provides
power storage for a limited period of time after removal of
AC input power.
Figure 23 shows a circuit that allows a relay or solenoid
of almost any voltage and current rating to be controlled
by the MID400. NPN transistor 0, must have adequate
beta and voltage/current ratings for the application. Relay
is energized when no AC current is flowing in the MID400
input diodes.
Figure 24 shows a circuit that uses two MID400s to
monitor both voltage and current. When both voltage

and current are being supplied to the load, the output of
"NOR" gate is high. If load current drops due to either
open circuit or failure, the output of "NOR" gate is low.
If both voltage and current are not present the output is
low. Care must be taken in overall systems design to
insure fail-safe operation is achieved for all possible
conditions. This topic was discussed previously in this
Note.
Figure 25 shows a circuit to monitor a fuse or a circuit
breaker. With this circuit consideration must be given to
Fail-Safe operation. Note that if load is a very high
impedance there might not be sufficient current to
operate the MID400. In other words, the output of MID400
is low on open fuse or breaker. If Vee to MID400 is off and
fuse opens, no MID400 indication will result.
1-215

MID400 POWER LINE MONITOR

OPTOElECTHOIICS

POWER DIODES

TO LOAD

AC INPUT
110V 60Hz

116V AC lCiRCUlT'h
LINE

n BREAKER

IL---'I
FUSE

R' 22Kn

1 '-------------'8
+5V
RL

NOR

lK

GATE

7402
74LS02

ETC.

L _ MID400
____ _

----

7

...J
5

OUTPUT NORMALLY HIGH.
OUTPUT LOW WHEN FUSE OR CIRCUIT BREAKER OPENS.
C1521

C1520

Fig. 24. AC Power Line Voltage and Current Monitor

Fig. 25. Fuse or Circuit Breaker Monitor

el-..----~----------------~
110V

NEUTRAL

~tr----f--t--...--------,~
110V

}

POWER
TO
SYSTEM

~~L--~___+-_+--------,~
r------------~

I

I

+5VVCC

MID400

I
I

~--<:>--.....,~ OUTPUT

C1522

NOTE: Circuit detects failure of either but not both phases
Fig. 26. Monitor Circuit for Two Phase Power Line

1-216

MID400 POWER LINE MONITOR

OPTOElECTRONICS

.,-~-------------.
81-r+~t---------------i~

~

.~

·3--t-t--r-----------.

NEUTRAL-t+-h-----------~

.,

POWER

TO
SYSTEM

.2~-~~----------.

C1523

NOTE: Circuit detects failure of either or both phases
Fig. 27. Alternate Monitor Circuit for Two Phase Power Line

C1524

I

Fig. 28. Monitor Circuit for Three Phase Power Line

=50V
ACRMS

AC
NPUT

r-----------

I

j

+5V

I
I

Fig. 29. AC Voltage Deviation Monitor

ADDITIONAL APPLICATION IDEAS
The following circuits are included for their intrinsic value,
but may need further refining for use in a specific
application.
Figure 26 shows a circuit to detect failure of either but not
both phases on a two phase AC power line. The MID400
output goes LOW when a phase fails. Figure 27 shows a
more complicated circuit that will detect failure of either
or both phases on a two phase line. The NOR gate output
stays HIGH so long as both phases are present, but
switches to LOW if either or both phases fail.
Figure 28 shows a circuit to monitor a three phase line.
This circuit detects a failure on a single phase, as well as
all phases failing simultaneously. The output from the
NOR gate is normally high when all phases are present.

The input current limiting resistor RL is chosen so the
MID400s operate in saturated mode. If a phase fails, for
example phase 01 goes open circuit, this effectively
places MID400's #A and #8 in series, causing them now
to operate in non-saturated mode and produce 120Hz
pulses. Therefore the output "NOR" gate outputs pulses
to indicate phase failure. The output NOR gate is low
when there is no power on any phase.
In some applications, for example when monitoring the
power to a three phase motor, if a phase opens when the
motor is running, it might run "single phase." The motor
might then generate sufficient back EMF on the open
phase to keep input current to MID400, and under such a
condition this MID400 monitoring system is not effective.
1-217

OPTOELECTRONICS

Figure 29 illustrates the basic circuit concept for an AC
voltage deviation monitor. Here the zener diode and
bridge rectifier establish a given AC voltage, irrespective
of AC input voltage, over a given range. This is compared
with the voltage developed by R2 and R3. Depending
upon choice of zener voltage and ratio of R2 and R3 the
circuit can operate in a number of modes:
1. Voltage Deviation Monitor to give a low output when
AC voltage deviates from set standard. The voltage at
junction of R2 and R3 is made equal to zener voltage for
given AC input voltage. A deviation from standard
causes current flow through MID400 diodes.
2. Over Voltage Monitor (over given range). For normal
AC input voltage R2 and R3 are chosen for a current
flow thorugh the MID400; when AC input voltage goes
too high the current ceases through MID400 input
diodes.
3. Under Voltage Monitor (over given range). Similar to
above, except R2 and R3 are chosen so current through
MID400 input diodes ceases if AC with low input
voltage is too low.
It should be noted that in this circuit the magnitude of
current through the MID400 input diodes is governed by
choice of R" R2, and R3 resistor values.

1-218

MID400 POWER LINE MONITOR

MID400 BENEFITS
This small size device connects through an external
resistor directly to AC power lines and offers both inputto-output noise immunity as well as electrical surge
isolation, up to 2500 VRMS (or 3550 VDC). Its output is
compatible with TIL logic. Also the MID400 is UL
recognized (File #E50151), has low power consumption,
and operates from a single Vee supply up to 7 volts.
Besides inputs from power lines, the MID400 can also be
connected to AC surces of other frequencies and even to
DC sources (for detection of power). Output current is
16mA when a minimum 4mA RMS input current is applied
to the input LEDs. When the inexpensive and readily
avaialble 555 Timer is connected to the MID400 output,
circuits can be built having high sink and source current
drive capabilities. These simple circuits can also be
designed for a wide range of adjustable delay, and with
rise and fall times compatible with TTL computer circuits.

CONCLUSION
This Application Note has summarized internal operation
of the MID400 and described several classes of
application circuits. Refer to the MID400 Data Sheet for a
listing of Absolute Maximum Ratings and specifications
for its Electrical Characteristics.

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOELECTRONICS

~U1fC

AN3000

TM

INTRODUCTION
Since the introduction of the optically coupled isolator, digital design engineers have struggled with the problem of
achieving logic-in to logic-out compatibility over temperature, minimizing the effects of LED degradation, and obtaining
high speed operation. Typically this problem is approached by selecting input/output resistors, and often by trial and
error.
This guesswork type of interfacing is now a thing of the past. Enter the new OPTOLOGICTM family of logic-to-Iogic
compatible, optically coupled isolators. This easy to use logic element offers LSTTL-in to TTL-out or LSTTL-in to
CMOS-out. The device eliminates the resistor selection and features guaranteed DC parameters over temperature.
This ease of design-in and operation is made possible through use of an input amplifier that provides the interface
between the driving LSTIL gate and the LED emitter. The output circuitry consists of a multistage high speed amplifier
available with either a totem pole or open collector ouptut. The input amplifier, LED, and output amplifier are
assembled in an industry standard six-pin package.
The Optologic devices not only provide the isolated logic-to-Iogic interface function, but due to many unique features
of the input amplifier, offer solutions for high speed data communications and precise DC level sensing. These
applications, and the operation of the Optologic interface gate, will be discussed in this application note.

OPTOLOGIC OPERATION
Functionally the Optologic gate consists of an input
amplifier, high speed GaAsP/GaAs LED emitter, and an
output amplifier. Figure 1 illustrates the block diagram of
the LSTTL to TIL logic gate.

The input network is a hybrid assembly of a silicon IC
amplifier and LED emitter. The input functionally consists
of four elements: 1) open emitter input with Schottky
diode clamp, 2) differential comparator, 3) voltage
reference, and 4) current steering LED driver.

INPUT SECTION

OUTPUT SECTION
VCCO

DIFFERENTIAL
COMPARATOR

' - - - - . - - - Vo

GNDOUT

C2049

Fig. 1. 740L6000 Block Diagram

1-219

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOElECTRONICS

The input of the IC is very similar to standard bipolar
logic. It consists of a Schottky clamp diode connected
between the emitter of an NPN transistor and ground.
The input sources input current over the nominal LSTTL
logic levels. Figure 2 shows the typical input current!
voltage characteristics. The input offers a 20K ohm input
resistance between -0.5 to 3.0 V. The input resistance
drops to 7.5 K from 3.0 to 3.4 V, while between 3.4 to 7 V
the resistance is greater than 1 megohm. Input voltages
more negative than 0.5 V activate the Schottky diode
clamp.
0.1

-0.1

~-o.2
I
-0.3

f-

Z

w

~ -0.4

r
I

I-'"

.--- ~

L-/

()

-0.5

D..

~ -0.6

I

-0.7

-0.8
-1

o

2

4

3

Vi -INPUT VOLTAGE- V
C2065

Fig. 2. Input Current vs. Input Voltage

The collector of the input transistor is connected to a
differential comparator, whose output switches when the
input signal exceeds the reference voltage. The effects of
temperature and power supply variations are minimized
through the use of a voltage reference.
Figure 3 shows VIN vs VOlIf of the 740L6000 illustrating
the input voltage switching point of 1.34 V.

>
I
w

(!)

5

~

4

~

l

f-

irf-

3

::J

o
I

5

g

1

o

3
VIN -

4

5

INPUT VOLTAGE - V

C2062

1-220

Fig. 3. 740L6000

The output IC consists of seven functional circuits. These
include: 1) PN photodiode, 2) transresistance amplifier, 3)
differential gain stage, 4) hysteresis loop,S) buffer
amplifier, 6) output stage, and 7) voltage regulator.
The optical flux developed by the LED emitter is
converted to an electrical current by a reversed biased
PN photodiode. This photocurrent is amplified and
converted to a voltage by a transresistance gain stage.
This stage is connected to the inverting input of a
differential amplifier, while the hysteresis network is
connected to the non-inverting input. The output of this
amplifier drives a buffer that provides the level shifts and
signal splitting needed to drive the totem pole output
stage. Power supply noise is rejected through the use of
a voltage regulator that powers the transresistance
amplifier and the differential gain stage.

::::J

t;

The output of the comparator controls a current steering
LED driver. The LED is enabled when the transistor is
OFF. When the transistor is driven into saturation, it steers
the current away from the LED by dropping the LED
voltage below its 1.5 V conduction threshold. This
technique of driving has the advantage of pre-biasing the
LED, thus minimizing the switching speed reduction
caused by the diode junction capacitance. It has the
added advantage of greatly reducing power supply
noise.

The output of the amplifier is offered as either an open
collector (740L6010/11) or a totem pole (740L6000/01).
The open collector output is designed to interface with
CMOS logic, with a supply voltage up to 15 volts. The
output transistor will drive 10 standard TTL loads with a
VOL of 0.4 V, and its safe operating range allows it to sink
up to 60 mA peak. The active pull-up will source an IOH in
excess of 10 mA with a VOH greater than 2.4 V. The output
characteristics of the Optologic gates are shown in
Figures 4 and 5.

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOElECTRONICS

to
>
I

/~

/'

SWITCHING OPERATION

0.8

;;;

9

I-

~

0.6

0
w
C!l

~

0.4

I

0.2

./'
,/

g
....

g

The Optologic optocoupler was designed to interface
directly with LSTTL at the input and either TTL or CMOS
at the output. In addition, the switching levels are
identical to the standards established for each of these
logic families.

/

/

/
o

Underwriters Laboratories File E#50151, and with a
withstand test voltage of 2500 VRMS ' guarantees
continuous operation at 440 VAC.

There are four Optologic devices currently available. Two
of these devices are LSTTL to TIL compatible. The
740L6000 is a logic buffer and the 740L6001 is an
inverter logic. LSTTL to CMOS is provided by the
740L6010 buffer and the 740L6011 inverter. The
switching operation is shown below.

/

40
20
30
50
IOL - OUTPUT CURRENT-LOW - mA

60

10

C2066

DEVICE

INPUT

LED

OUTPUT

740L6000

HIGH
LOW

OFF
ON

HIGH
LOW

740L6001

HIGH
LOW

ON
OFF

LOW
HIGH

740L6010

HIGH
LOW

OFF
ON

OFF
ON

740L6011

HIGH
LOW

ON
OFF

ON
OFF

Fig. 4. 740L6000 VOL VS 10L
5

>
I

4

J:
C!l

:x:

I-

3

r--.....

~

0

W

C!l

~

g

2

~

~

"'"

I

J:

g

o

5

10

""

15

IOH - OUTPUT CURRENT HIGH - mA

~
20
C2064

Fig. 5. 740L6000 VOH VS 1011

The effects of common mode transients and other noise
sources on the output amplifier are reduced by an
optically transparent, electrically conductive noise shield,
as well as by amplifier hysteresis. The shield shunts the
noise away from the input stage and channels it to logic
ground. The amplifier hysteresis eliminates false output
pulses caused by a slowly varying input signal, or power
supply noise found on the input network of the Optologic
gate.
These three chips are assembled in an industry standard
six-pin dual-in-line package. Quality Technologies uses
its patented over/under split lead-frame assembly
process. This process has proven to be very reliable
given environments typically found in industrial interface
applicaitons. This package is recognized under

The preceding table indicates that the Optologic gate is
effectively two cascaded logic gates. The first is the input
network and the second the output. Both the totem pole
and open collector output amplifier function as inverters.
Thus, when the LED is ON, the output will be a logic low
state. Therefore, in order to create an Optologic buffer
(740L6000, 740L6010), the input amplifier must function
as an inverter for controlling the LED emitter. The
Optologic inverter gates (740L6001, 740L6011) use a
non-inverting input amplifier.
One will note that the output chip is always HIGH (OFF)
when the LED is OFF, and the output is forced LOW (ON)
when the LED is ON. Thus, the Optologic input has a
switching threshold of 1.34 V.
The operational sequence of LED and input/output chips
will give the designer insight when combinations of
inverters and buffers are used in parallel data transfer
applications. In these types of applications, the rate of
data transfer is greatly affected by the propagation delay
difference between the slowest to fastest Optologic gate.
The propagation delay is the sum of the delays of the
input chip, LED, and output amplifier. The typical delay
times for the 740L6000/01 are 65ns, with rise times of
45ns and fall times of 5ns. The rise and fall time
difference is the result of the operation of the output
amplifier. The typical switching characteristics of the
740L6000/01 are shown in Figures 6 and 7. When output
edge detection is used, the fastest response will be
obtained when the falling edge (H-L) is sensed. This is
true for both the inverter and buffer Optologic gates.
1-221

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

2.00VlDIV

30.0 ns/DIV

II

U

t-

740L6000
DATA OUTPUT

It

,....

.I

OUTPUT

I

~

t

DATA
IN

~

,.

74L~04 I \

r--

~\
:~

{

:1

DATA
IN

30.0 nS/DIV

2.00VlDIV

740L6010
DATA OUTPUT

~

.,.. h

J
RL=4700
Vcc=5V

/
./

",-

1

-

r-

(

74LS04
oUYUT

j

C2057

C2058

Fig. 6. 740L6000 Switching
Characteristics

153.0 ns
30.0 nS/DIV

-4.08 V
2.00VlDIV

-,

/
740L6OO1
DATA

I

74JS04
OUTPUT

V: :-

DATA
IN

j

(

O~TPUl

:\

If

_1

.l

30. nS/DIV

2.00 VlDIV

:\

II
DATA
IN

-

Fig. 8. 740L6010 SWitching
Characteristics

l

V

740L6011
DATA OUTPUT

V

,

"""'"

\

V

\

J
RL 4700
Vcc=5V

l/\

.....
74LS04
OUTPUT

\

If':

'"
11

1\

C2056

Fig. 7. 740L6001 Switching
Characteristics

The CMOS compatible output family (740L601 0/11)
satisfies the VOH by using an open collector transistor and
an external pull-up resistor. The high to low propagation
delay and fall time is very similar to the 740L6000/01
Optologic gates. The low to high propagation delay and
rise time is greatly influenced by the value of the pull-up
resistor. When a 470 ohm pull-up resistor is used, the
typical propagation delay for low to high is lOOns. The
typical switching characteristics of the 740L6010/11 are
shown in Figures 8 and 9.

1-222

/.

02059

Fig. 9. 740L6011 Switching
Characteristics

The Optologic gate's input and output chips ensure a
constant propagation delay over the temperature range
of -40°C to 85°C. This consistency is shown in Figures
10 and 11.

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOELECTRONICS

en

oS

Veel ~
Veea ~
P.W200 PE~IODI~

5.0V
5.0V
200 ns
1 I's
IPLH=
IPHL::
Ir :

100

w

::<
f=
z
I

"
0

~

3:en

50

10

::

If

5

4.5 to 5.5 volt supplies and, under these conditions, the
devices will operate successfully over a -40°C to 85°C
range. The 740L6010111 output amplifier will operate
from a 15V supply over a temperature range of -40°C to
55°C, however, the output amplifier power supply voltage
must be derated at a rate of -0.27VfOC above an
operational temperature of 55°C. This function is shown
graphically in Figure 12.

1
-40 -20

TA -

0

20

40

60

80

w
~o~
n.
E
w_
~I

100

AMBIENT TEMPERATURE - (0 C)

~

E
oS

i=

200
100

w

::<
f=
z
I

"
0

~

~

Veea~ 5V
--Veea ~ 15 V
VCCI = 5 V

.

<.... <
<~
~en

0!:!2

100

~c

RL = 4700
200 ns
PERIOD ~ 11's
.IPLHIPLH

50

- -

n.~

I

P.W~

-- -- -- -- -- -

300

:.:z 200
00

C2035

Fig. 10. 740L6000/01
Switching Times vs.
Ambient Temperature

en

MAXIMUM ALLOWABLE POWER
DISSIPATION @TA= 25DC

a:

.t

o

4

t,~
f=::

---

~+)55!C

...-

Veel = 5.5 Y; ~ r-'"

. ;:P-J..--r
.. QCCI'~

5

:J:-B

~~TA=7tC

-@T;:-';-W-c

4~5 V

6 7 8 9 10 11 12 13 14 15

Veea - OUTPUT SUPPLY VOLTAGE - (V)
C2039

I,

Fig. 12. Power Dissipation vs.
Ambient Temperature
10

I!~

If

5

1
-40 -20

0

20

40

60

§f--

80 100

TA - AMBIENT TEMPERATURE - (DC)
C2036

Fig. 11. 740L60to/11
Switching Times vs.
Ambient Temperature

Operational stability is optimized when low impedance

Vee and VDD supplies are used to power the Optologic
gates. This can be ensured by the common practice of
including 0.1 JLF bypass capacitors for the input and
output amplifier supplies. These capacitors are placed
immediately next to the Vee and ground connections of
the input and output amplifier. These capacitors minimize
output ringing and improve the power supply noise
rejection. A suggested printed circuit board layout is
shown in Figure 13.
INPUT

OPERATIONAL CONSIDERATIONS
The Optologic gates have eliminated the need to perform
a worst case analysis for logic family compatability and
switching speed. Operational performance degradation
is greatly minimized through the optimal selection of the
LED emitter and output amplifier. These features make
the Optologic gates the easiest optocouplers to use for
logic-to-Iogic interfacing.
OPERATIONAL CONSIDERATIONS
The consistent performance of the Optologic gates will
be obtained if the designer ensures that package power
dissipation and operational supply voltage does not
exceed their absolute maximum ratings. The
740L6000/01 were designed to operate from standard

INPUT

Vee: j

:: GND

BUS

I I BUS
II

I I
II

O~~~T:
BUS

:
I
II
I

: : OUV"';,';,UT
"

BUS

I I

DATA
IN

Fig. 13. Suggested PCB Lay-out

1-223

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOElECTRONICS

DATA COMMUNICATIONS INTERFACING
The common LED input!phototransistor output and high
speed logic compatible output have found their way into
point-to-point (simplex) data communications
applications. When used as a line receiver the designer
was required to design a matching network to provide
the minimum reflection caused by the non-linear input
impedance of the light emitting diode. These matching
networks were commonly designed for a specific cable
distance between the receiver and the transmitter.
Therefore, if the cable distance were to be changed, a
new matching network would be required in order to
effect proper operation.
This need of designing matching networks and allowing
only point-to-point communications is a thing of the past
with the introduction of the Optologic gates. The
Optologic gate, when used as a line receiver, does not
require a matching network. Its input amplifier offers a
22Kohm input resistance which permits it to bridge the
transmission. When it is used as the onlyreceiver
connected to the end of the transmission line, optimum
speed performance will be obtained when the
transmission line is terminated in its characteristic
impedance (Zo).
When multiple data taps are required, all the deSigner
need do is bridge the Optologic gate across the
transmission line at the desired cable length. Figure 14
illustrates a simplex multi-drop (tap) data
communications system that has incorporated four
740L6001 gates as receivers, evenly spaced along a
1000 foot, 75 ohms co-axial transmission line. The cable
used in this example is a Times Fiber & Cable Model
RG59/U Series 2000. This cable includes a third insulated
conductor that is used as the Vee supply source for the
input amplifier of the Optologic gates connected to the
transmission line. This third conductor permits one
simple isolated supply to power all the Optologic gates
connected to the communications cable.
PRSG
100 ns BIT
INTERVAL

The common mode rejection and insulation of the
communications system can be greatly improved by
incorporating an Optologic gate as a line driver. When
driving low impedance transmission lines such as the 75
ohm coax shown in Figure 14, a buffer is required to drive
the line. This buffer is shown in Figure 15.
The signal quality "Eye Pattern" for the communications
system shown in Figure 14 is provided in Figures 16
through 18 with a 10 MBaud NRZ Pseudo-Random
Sequence (PRS). Traces 1-3 in Figure 16 describe the
transmitter section. Traces 4-7 of Figure 17 show the
output of the four Optologic bridged terminations. Traces
8-11 in Figure 18 illustrate the "Eye Pattern," as seen at
the output of the 74LS04 logic gate. The data quality is
well preserved, in that only a 30% eye closure is seen at
the receiver located 1000 feet from the transmitter.

10n

ALL DIODES
1N6263

Fig. 15. Buffer

~-,-'r/,",_""-'

75 !)
TERMINATION

740L6000 BUFFER

C2048

Fig. 14. Simplex Multi-drop Data Communications System

1-224

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOELECTRONICS

OPTICALLY ISOLATED TRI-STATE
RECEIVER TRANSMITTER
PRSG

VeC2
aPTQlOGle

1.1 K

DRIVER

10n

740L6000
DATA
IN

BUFFER

TRANSMISSION
LINE

OUTPUT
HORIZONTAL

<

20 ns/OIV

VEATICAL- 2 VIOl V

Fig. 16.

Veel._ _ _~~

OPTOLOGle
'JUTPUT

14()L6001
250 FT

•

500 FT

5

750 FT

6

1000 FT

7

HCPL·2731
DATA OUT

HORIZONTAL ~ 20 nslOIV
VERTICAL.: 2 VlOIV

ALL DIODES
1N6263

Fig. 17.
740L6001

C2069A

Fig. 19.

74LS04

250 FT

•

500 FT

•

750 FT

10

1000 FT 11

HORIZONTAL
VERTICAL

20 ns· DIV
2 V DIV

Fig.1B.

Through the use of the tri-state line driver, shown in
Figure 19, a half duplex multi-drop communications
system can be configured. This is done by adding this
driver at each of the tap positions shown in Figure.14.
This sytem provides the most common data
communications configuration of high speed bidirectional communications, with the added features of
vastly improved common mode transient rejection and
insulation when compared to a common integrated line
receiver.

When high differential and common mode rejection are
required, the differentially driven and received
communications topology is considered. Figure 20
shows a full duplex point-to-point communications
system that is implemented with twisted pair shielded
cable. Given the higher impedance of this type of cable, it
is possible for the Optologic gates to drive the line
directly. Here, a 740L6000 and 740L6001 are used in a
push-pull mode to differentially drive the line. The
receiving end of the line is simply terminated in Zoo
Bridging this termination is a DM8820 differential line
receiver that is connected to the 740L6000 Optologic
gate. Power for the line receiver and the Optologic gate is
derived from two insulated shields of the twisted pair
cable. This system offers a data rate in excess of 1
MBaud NRZ at a distance of 600 feet.

1-225

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOElECTRONICS

TERMINAL 1

ISOLATED DATA LINK

TERMINAL 2

VCC1 +5 V

::;:
0.1

~F

DATA
INrl_t-..:J
DATA
OUT

DATA
IN
DATA
OUT

0.1

U1. U3. U6. U8 740LSOOO
U2. U7
740L6001
U4. U5
DM8820

~F

GND2
C2011

Fig. 20. 1 MBaud Full Duplex Differential Optically Isolated Transmit and
Receive Data Transmission System with Shielded Twisted Pair.

AC VOLTAGE LEVEL MONITOR
The machine and process control industry has used
optocouplers as voltage sensing devices for a number of
years. These have proven very versatile when the
presence or absence of power is to be determined. The
monitoring of specific voltage levels has required the
designer to commonly use selected couplers that have
guaranteed gain at a specific LED drive current. Once
armed with this specification, a resistor divider network is
designed that will support 1 to 10 mA required by the
LED. As the line voltage threshold increases, the power
dissipation in the passive divier network can approach
2 watts.

AC LINE VOLTAGE
SENSE

Using the Optologic gate, a fixed AC or DC level monitor
can easily be designed. Recall the Optologic gate has a
fixed reference source built into the input amplifier. The
stability and consistency of this reference source allows
the designer to construct a level detector using standard
product that will offer an accuracy of ±150/0. If higher
accuracy is needed, the factory can provide devices with
tighter reerence voltage tolerance. Not only is high
accuracy possible, but power required from the line is
typically less than 0.2 W.

R2

+5

740L6001 +5 V

NE555

160K
100 ~F/

35V
AC
>60VRMS
>-----~--~~---+----~~~~

D1. D2 IN4005
OUT
C2070

Fig. 21. Optologic Voltage Line Monitor and Power Supply

1-226

APPLICATIONS AND
OPERATION OF OPTOLOGICTM

OPTOElECTRONICS

The most significant feature of the Optologic, in this
application, is the small amount of current that is required
to flow in the voltage divider. Under worst case design
considerations, this sensing current will not exceed 500
/LA. This low current permits the use of
.25 W or smaller precision resistors, thus allowing even
greater monitor accuracy.
For example, when sensing a voltage of 110 VAC, the
power dissipated in the divider network is only 45mW.
Figure 21 shows a typical AC Line Monitor circuit. The
threshold is determined by selecting the value of R1 and
R2. Best accuracy is achieved when R1 is equal to or less
than 2.2Kohm. Once R1 is selected, the value of R2 can
be determined with the following equation.
R1 RN (Vth - Vref)
R2 = - - - - - - - Vref(R N +R1) - R1V
Where
Vth
Vref
RN
V

= Selected AC or DC switching level
= 1.34V
= 22Kohm
= 4.3V

This equation has been solved graphically in Figure 22.
450

c:

400

I

350

>::

/

/

a::
0 300

/

t-

Ul

250

iii
w
a:: 200

V
V

t-

::J

a. 150
~

&'

100

V

V
V

50

o

20 40 60 80 100120140160 180 200

V'h - THRESHOLD VOLTAGE - VOLTS

C2072

Fig. 22. Input Resistor vs. Threshold Voltage

The monitor circuit shown in Figure 21 consists of three
elements. The first is an Optologic power supply, the
second is the voltage divider, and the third is the
retriggerable one-shot.

o~--+---~-~------I

HIGH

!

G:l
C2071

Fig. 23. 740L0001 AC Level Detection Waveform

The voltage divider (R1, R2) sets the monitor threshold
point of the sensor. R1 is used as an Optologic input
pull-down, thus, as the input voltage rises, it forces
current through R1 which raises its voltage up to the Vref
of the Optologic input. Once the reference voltage is
exceeded, the output of the Optologic will change state.
Figure 23 illustrates the relationship of the input voltage
to the 740L6001 output. It can be seen that the output is
a series of pulses, whose width is determined by the
duration that the input waveform exceeds the voltage
threshold.
The final section of the sensor consists of a retriggerable
one-shot, constructed with an NE555 timer. This one-shot
is included to convert the pulse train into a constant logic
level. For best stability, a time constant of 1-1/4 cycles
was selected. When a 60Hz power main is to be
monitored, this becomes a time constant of 18ms. Thus,
as the input voltage exceeds the monitor threshold, the
output of the 740L6001 changes from high to low, thus
triggering the NE555 timer. Once triggered, the NE555
outputs a logic high and will stay high as long as it is
triggered every 16ms.

CONCLUSION
The Optologic family of TTL and CMOS compatible
devices is a new and easy-to-use optically coupled logic
circuit element. This Application Note has provided but
few of many new uses for this versatile device. Not only
does this device provide high noise immunity and level
shifting for logic-to-Iogic interfaces, it also has numerous
applications in data communications and industrial
control systems.

The power supply consists of a capacitor voltage divider
and 5V regulator. A capacitor divider was used to
minimize the power consumption from the AC line. This
power supply will provide over 15 mA when the line
voltage exceeds 60V RMS.
1-227

1-228

OPTOElECTRONICS

FORMER HARRIS OPTOCOUPLER PRODUCTS
Products described in this Data Book section include optocouplers formerly manufactured by
Harris Semiconductor. These products were acquired in 1991 when OTC purchased Harris'
optoelectronics business.
A new OPTOPLANARTM assembly process is now in U$e for all former Harris 6-pin Optocoupler
Products. A brief description of this process can be found on page 7 of this Data Book.

2-1

2-2

OPTOCOUPLERS

OPTOELECTRONICS

FORMER HARRIS OPTOCOUPLERS
Alphanumeric Product Listing
Product
4N39
4N40
H11A1
H11A2
H11A3

Page

...................... 2-7
...................... 2-7
..................... 2-13
..................... 2-13
..................... 2-13

Product
H11N1 .....................
H11N2 ....................
H11N3 ....................
H24A1 ....................
H24A2 ....................

2-41
2-41
2-41
2-47
2-47

H11A4 .....................
H11A5 .....................
H11AG1 ...................
H11AG2 ...................
H11AG3 ...................

2-13
2-13
2-17
2-17
2-17

H24B1 ....................
H24B2 ....................
MOC3009 .................
MOC3010 .................
MOC3011 .................

2-51
2-51
2-55
2-55
2-55

H11B1 .....................
H11B2 ....................
H11B3 ....................
H11C1 ....................
H11C2 ....................

2-21
2-21
2-21
2-25
2-25

MOC3012
MOC3020
MOC3021
MOC3022
MOC3023

2-55
2-61
2-61
2-61
2-61

H11C3 ....................
H11C4 ....................
H11C5 ....................
H11C6 ....................
H11F1 .....................

2-25
2-25
2-25
2-25
2-31

H11F2
H11F3
H11L1
H11L2
H11L3

2-31
2-31
2-35
2-35
2-35

.....................
.....................
.....................
.....................
.....................

.................
.................
.................
.................
.................

Application Notes
H11LX/H11NX .............. 2-65

2-3

OPTOElECTRONICS

A/jDDE~6BASE
CATH.2

5 COL
~

J

4EUIT.
C2D79

A.OO~6BASE
CATH. 2

3

5 COLl

""

4 EMIT.

C2084

ANOOE~GA'"
CATH. 2

3

~

5 ANODE
4 CATH.

ST1602

'To order VDE Device, Add - .300 suffix 10 part number
2VDE qualmcalion pending. Call OT.

2-4

OPTOCOUPLERS

OPTOCOUPLERS

OPTOELECTRONICS

-~3
4

H11F1

30V

2000

2000

~

7500 VAC PEAK

2-31

H11F2

30V

3300

3300

@

7500 VAC PEAK

2-31

H11F3

30V

4700

4700

~

7500 VAC PEAK

2-31

TERM.

z..

CAlH.

5

~rJ:~T

5T1600

ANODEB

6VCC

CATH.2
3

5 GND
4 Vo

5T1601

1 To

2

order VDE device. add .300 suffix to part number
VDE qual~ication pending. Call QT.

2-5

2-6

PHOTO SCR OPTOCOUPLERS

OPTOElECTRONICS

4N394N40

-=.

*t

)
WMAX

6.35
REF

-,

1

=4-

t

The 4N39 and 4N40 have a gallium-arsenide infrared
emitting diode optically coupled with a light activated
silicon controlled rectifier in a dual in-line package.

-0.3
0.2

-=>~
•
•
•
•
•

+

5.1
MAX
t

High efficiency, low degradation, liquid epitaxial LED
10 A, T2L compatible, solid state relay
25 W logic indicator lamp driver
400 V symmetrical transistor coupler
Underwriters Laboratory (UL) recognized - File
#E90700

+ +

0.51
MIN

-ll0.56
0.41

DIMENSIONS IN mm
PACKAGE CODE E

ST1603

ST1602

Equivalent Circuit

TOTAL PACKAGE
*Storage temperature ............. -55°C to 150°C
*Operating temperature ........... -55°C to 100°C
*Lead solder temperature ......... 260°C for 10 sec
*Total power dissipation (-55°C to 50°C) ... 450 mW
Derate linearly (above 50°C) ........... 9.0 mW/oC
INPUT DIODE
*Power dissipation (-55°C to 50°C) ....... 100 mW
Derate linearly (above 50°C) ............ 2 mW/oC
*Continuous forward current (-55°C to 50°C) 60 mA
*Peak forward current (-55°C to 50°C) ......... 1 A
*Reverse voltage (-55°C to 50°C) ............. 6 V

DETECTOR
*Power dissipation (-55°C to 50°C) ....... 400 mW
Derate linearly (above 50°C) ............ 8 mW/oC
*Off-state and reverse voltage
4N39. . . . . .. 200 V
*(-55°Cto +100°C)
4N40 ....... 400V
*Peak reverse gate voltage( -55°C to 50°C) ..... 6 V
*Direct on-state current (-55°C to 50°C) .... 300 mA
*Surge on-state current (-55°C to 50°C) (100p's) 10 A
*Peak gate current (-55°C to 50°C) ......... 10 mA

'Indicates JEDEC Registered Data

2-7

PHOTO SCR OPTOCOUPLERS

OPTOElECTRONICS

50

VoM =200V, TA =100°C, IF=O,
RGK =10 Kn

150

VDM =400 V, TA =100°C, IF=O,
RGK =10Kn

2

2-8

pF

Input to putput voltage=O
f=1 MHz

PHOTO SCR OPTOCOUPLERS

OPTOELECTRONICS

VAK'!iOV

...

RGK'IOK

"'"

VAK,ANODE TO CATHODE VOLTAGE-VOLTS

TA'25'C

.I

8T21 04

60

TA -"':IENT TEMPERAn:.C

80

5T21 06

120

Figure 2. Input Current To Trigger vs. Temperature

vs. Anode-Cathode

NORMALIZED TO
VAIC '5OY

~GI(:~~

0

NORMALIZED TO

VAk'50V
RGK·IOI(

T,,'25-(

···

,

r--

I
RGI(

.3OQ.n.

0

2

....,
..
2

,

o
TA-AMBIENT TEIllPERATURE-"C

5T21 07

Figure 3. Input Current To Trigger Distribution vs. Temperature

.I:
~

--

IdK

'"

56K-

I

i

. . . 810
20
4060
100
PULSE WIDTH-MICRO SECONDS

"'"

<00

8T2108

Figure 4. Input Current To Trigger vs. Pulse Width

I

"

!
!

.........

"
I

\

\

\

"

VAI('50IIOLTS
IDn"cI+ l ,
I,=I~HC

14

"oK'"(

12

,"\.

10

~

_5 •

-......::::::: ~IOIC

" r-..... --t-=

,.

80
IF -INPUT CUARENT - MILUAMP£RES

Figure 5. Turn-On Time vs. Input Current

...

",L---~L-~w~--L---~~~--~--.~•

ST21 09

v,.-FflRWARDVOLTAG£-VOLTS

5T2110

Figure 6. Input Characteristics IF vs. VF

2-9

PHOTO SCR OPTOCOUPLERS

OPTOElEtTRONICS

0
RGI('300.n.

+--

or-

100

r---

-

r-

0

~ t---- --I---

-

10K

'"
'"

.

----

VAK"SOV

0

-20

-'0

0

20

'0

I

'0

J
ST2111

TA -AMBIENT TEMP£RATURE-OC

Current vs.

,,,,nn,,r;lTlI.r,,

00010.002 0,00""

0.01

004

Q02

0.1

02

0.4

ST2112

TIlliE-SECONDS

Figure 8. Maximum Transient Thermal Impedance

10,000

- r--

10

NORMALIZED TO
"AK"SOV
TA o2S"C

J

0

o~,
~~,

o

,
\' \',

0

o

\\

0

/ /

0

0

\

0

0

'0,,",

0

/ /..,

0

,

\\ \

AMBIENT TEMP:~ \
HAl.f-SINE wAVE
AVG

26
75
fA-AMBIENT TEMPERATURE·"C

OC~~R~~':::
0.2

ST2113

9. Off-State Forward Current vs. Temperature

L.EAD TEMP
-'It ..ANODE
DC CURRENT

,

\

\ \. \.

10

/

I

\ \ '.
1\\ \ "

''"

ANODE LEAD TEMP
112 SINE WAVE AVERAGE

0.4

0.6

0.8

1.0.

ON STATE CURRENT - AMPERES

ST2114

Figure 10. On-State Current vs Maximum Allowable Temperature

0

2
0

"-.....

0

--J

.0

r-.......
Rmc =300ollo

0

0

,

""

"-

"--....

"

"

.•

"-

"-

_

JUNCTION TEMPERATURE = 25"C

r-1'UJCTl~N ~'!P,tT!REI"O~.C

2

"-

'-..
I

10

"'50

""..

"

'-....!7K

,

\

TA -AMBIENT TEMPERATUflE-"C

10

KID

Figure 11. dv/dtvs. Temperature

2-10

.I

0

""

.

~

..
..
..
I

"-

ST2115

INCREASES TO FORWARD
BREAKOVER VOL.TAGE

20

3.0

V T-ON-STATE VOLTAGE -VOLTS

Figure 12. On-State Characteristics

'.0
ST2116

OPTOELECTRONICS

10A, T"L COMPATIBLE, SOLID STATE RELAY
Use of the 4N40 for high sensitivity, 5300V
isolation capability, provides this highly reliable
solid state relay design. This design is compatible with 74, 748 and 74H series FL logic
systems inputs and 220V AC loads up to 10A.

'tONTACT"
Z20VAC

IN50&0 (4)

47

ST2117

INDICATOR
LAMP

25W, LOGIC INDICATOR LAMP DRIVER
The high surge capability and non-reactive input
characteristics of the 4N40 allow it to directly
couple, without buffers, T2L and DTL logic to
indicator alarm devices, without danger of
introducing noise and logic glitches.

ST2118

400V SYMMECTRICAL TRANSISTOR COUPLER
Use of the high voltage PNP portion of the 4N40
provides a 400V transistor capable of conducting
positive and negative signals with current transfer
ratios of over 1%. This function is useful in remote
instrumentation, high voltage power supplies and
test equipment. Care should be taken not to exceed
the 400 mW power dissipation rating when used at
high Voltages.

ST2119

FIGURE 13
COUPLED dv/dt - TEST CIRCUIT
Vp = 800 Volts

f T---

tp

=.010 Seconds

f

= 25 Hertz

+ IOOVAC

TA

= 250 C

lOOn

+

Vp

L.6jVp

~

tp

~
EXPONENTIAL
RAMP GEN.

OSCILLOSCOPE
ST2120

2-11

2-12

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

H11A1 H11A2 H11A3
H11A4 H11AS

}
15' MAX
8.3 6.86
MAX 6.10

0.3
0.2

1

+

8.89
8.38

1.9
TVP

+
4.06

,

3.81

The H11A series consists of a gallium arsenide infrared
emitting diode. coupled with a silicon phototransistor in a
dual in-line package.

+
5.3
t MAX

•

M..
0.9

•
•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Industrial controls
Underwriters Laboratory (UL) recognized-File
#E90700

*

-Ji0.56
0.40

DIMENSIONS IN mm
PACKAGE CODE K

ST1603A

Equivalent Circuit

TOTAL PACKAGE
Storage temperature .............. -55°C to 150°C
Operating temperature ............ -55°C to 100°C
Lead solder temperature .......... 260°C for 10 sec

INPUT DIODE
Power dissipation (25°C ambient) ......... 100 mW
Derate linearly (above 25°C ambient) ... 1.33 mW/oC
Continuous forward current ................ 60 mA
Peak forward current (1 JLs pulse, 300pps) ...... 3 A
Reverse voltage ............................. 3 V

DETECTOR
Power dissipation (at 25°C ambient) ....... 150 mW
Derate linearly (above 25°C) ............ 2.0 mW/oC
VCEO ....................................... 30V
VCBO ....................................... 70V
VECO ........................................ 7V
Continuous collector current .............. 100 mA

2-13

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

OUTPUT DETECTOR
Breakdown voltage
Collector to emitter

BVcEo

30

V

Ic

= 10 mA,l F = 0

Breakdown voltage
Collector to base

BVcBO

70

V

Ic

= 100 pA, IF = 0

Breakdown voltage
Emitter to Collector

BVEco

7

V

IE

= 100 pA, IF = 0

2-14

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

H11A1 H11A2 H11A3
H11A4 H11A5

'0

~g~~!~I~:DWT~~OO /A_I-

8

RL = 100 O.IC = 2 mAo - I Ion = 8.7 /A. loft = 3.3/A

VRL = 1 V

'011. RL = 1 KO

~

I

2 1 - - - l1on• RL

"Z

=1 KO

-VRL=8V

[--VRL' 0.1 V

~

-'J

N(!,OQ
.......a.

I
z·

•

VRL=1V

10.' 1;[

4

loft. RL = 10 0
-Ion. ilL = 100

I-

2

8

VRL = 0.1 V

2

0.1

•

2

2~~~/~/K-~-4--~-4

6

•

4

100

92CS-42589

0.1 0<---..0.';;5-"'--'7-"'---.,-J1.';;5--..,2;----;;'2.';;5---,!3
VF- VOLTS

6

VF- FORWARD VOLTAGE- VOLTS

ST1724

SWITCHING SPEED VS. COLLECTOR CURRENT
(NOT SATURATED)

ST1723

1. Input Characteristics

VS.

... 1000

... 105
z

V.

.

G104

X'....<;
/. ' l
"VCE =

i'§

D 103

:::;

10 v

///
///

I

51

10

~

'(//

VCB- 30 V
VCB= 20 V

D

100

lI!

2

~

10 8

/. //

•

I

o

4

ID

~

2

1
25
50
75
100
TA - AMBIENT TEMPERATURE _·C

125

ST1725

3. Dark leEo Current vs. Temperature

VCB= 10 V

//

//~

II:

NORMALIZED TO:
VCE=10V
TA =25·C
=0
IF

~

0"/

8
6
4

C

1

o

i'§

:::;

o

z

2

1&1
N

///

~ 102

U

II:

///

C

4

.

1&1

N

1&1
II:
II:

::>

VCE=20V -

II:

8

•

Z

VCE= 30V,

1&1
II:
II:

Col/ector Current

o

NORMALIZED TO:
VCB= 10 V
TA = 25·C
IF =0

///

///
V

25

50

75

100

TA - AMBIENT TEMPERATURE _·C

125

ST1726

4. leBO vs. Temperature

2-15

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

!z

100

10.0

!z

w

II:
II:

i:l
~

!;
o

l:!

,/

1.0

10

II:

:::>
U

~

L

O. 1

V

!;

Q

o

N

W
N

w

Q

::;
~

~
II:

o

o

Z
I

Z

o

Z

/

0.001

0.00011
4

0.1

I

NORMALIZED TO:
VCE= 10 VOLTS
IF =10mA
TA = 25"C

iii"

~

/

o. 1

:i

0.0 1

II:

8 8

4

8 8

4

10
1.0
IF-INPUT CURRENT- rnA

o

NORMALIZED TO:
VCB=10V
IF =10rnA
TA = 25"C

0.0 1

III
~

0.001
4

8 8

5T1727

10

Z

W
II:
II:

a

10.0

-

~

I-

I-

IF

Z

30 rnA

W
II:
II:

IF- 20 rnA

:::>

IF= 10 rnA_

~

0

Q

w

N

-

I

IF='2 mA_

0.1

U

1.0

NORMALIZED TO:
VCE-l0 V
I'
IF -IDmA
TA =25"C / ' ~

~
o

i

IF= 1 mA

II:

0

~

I

0.01

-

IF=0.5 mA

!w

NORMALIZED TO: VCE - 10 V
= 10mA
IF
TA = 25"C
0.001
-25
-SO
25
75
o
50
TA - AMBIENT TEMPERATURE -"C

/

Q

I:l

O. 1

V

i

II:

o

~

0.0 1

/

11/

Z
iii

~

I

7. Output Current vs. Temperature

4

8 8

100

5T1728

100

F

50m
20mA

IF= 10 mA
5.0mA

I IIII
IF= 2.0 mA

/

IF-l.0 mA

I

11111I

IF=0.5 mA

o

I

.9

8. 8

IF

IF

::;

::;

2-16

:::>

I-

IF= 5 mA=

I!::::>

4

6. Output Current - Col/ector To Base
vs. Input Current

5. Output Current vs. Input Current

I-

8 8

10
1.0
IF-INPUT CURRENT- rnA

0.1

. 100

./
0.001
0.01

1/

I IIIII

10
100
1.0
0.1
VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

5T1729

8. Output Characteristics

5T1730

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

H11AG1 H11AG2 H11AG3
-=.

!

J

t

15° MAX

6.35
REF

-0.3

~

==-L

f

0.2

--=:-1-

+

5.1
t

• High efficiency low degradation liquid epitaxial IRED
• Logic level compatible, input and output currents, with
CMOS and LS/lTL
• High DC current transfer ratio at low input currents
• Underwriters Laboratory (UL) recognized - File
#E90700

MAX

.. *

0.51
MIN

-l~
0.56
0.41

The H11AG series consists of a gallium-aluminumarsenide infrared emitting diode coupled with a silicon
phototransistor in a dual in-line package. This device
provides the unique feature of high current transfer ratio
at both low output voltage and low input current. This
makes it ideal for use in low power logic circuits,
telecommunications equipment and portable electronics
isolation applications.

DIMENSIONS IN mm
PACKAGE CODE E

ST1603

• CMOS driven solid state relay
• Telephone ring detector
• Digital logic isolation

Equivalent Circuit

TOTAL PACKAGE
Storage temperature .............. -50°C to 150°C
Operating temperature ............ -50°C to 100°C
Lead solder temperature .......... 260°C for 10 sec

INPUT DIODE
Power dissipation (25°C ambient) .......... 75 mW
Derate linearly (above 25°C) ............ 1.0 mW/oC
Continuous forward current ................ 50 mA
Reverse voltage ............................. 6 V

DETECTOR
Power dissipation (at 25°C ambient) ....... 150 mW
Derate linearly (above 25°C ambient) .... 2.0 mWrC
VCED ....................................... 30V
VCBO ....................................... 70V
VECO ........................................ 7V
Continuous collector current ............... 50 mA

2-17

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

OUTPUT DETECTOR
Breakdown voltage
Collector to emitter

BVceo

30

V

Ic:1 mA,IF:O

Breakdown voltage
Collector to base

BVceo

70

V

Ic: 100 !1A, IF:O

Breakdown voltage
Emitter to Collector

BVEco

7

V

Ic:100!1A,I F:0

Leakage current
Collector to emitter

IcEo

2-18

5

10

!1A

VcE :10 V, IF:O

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

<

e

,:
Z

10
8
6

tZ

w

II:
II:
::l

w

II:
II:
::l

0
t-

~

t0

::l

C

/'

1
0.8
0.6

,/

0
t-

v

0.2

Z

0.1

0

t ~::
.9

1
.8

::l

.6
.4

"t0

w

.2

,.~

.1
.08
.06
.04

N

w 0.4

iii
II:

::l

C

~

NORMALIZED TO:
IF=lmA

1/

/

II:

0

~

Vc "'5V

!

W

J?

0.04

10
B
6
4

.02

0.02

.002
.001

1.0

10

-

mA

'F=lmA
'F a.5mA
'F=O.3mA

// /

'F=O.2mA

'F O.1mA

///

.01
.008
.006
.004

0.01

0.1

./. L.

IF 5mA
I

."

NORMALIZED TO:
Vce=5V
'F 1rnA
TA 25"C

f
.4

.2

100

.6

2.0

.8 1.0

4.0

6.0 8.0 10

Vee-COLLECTOR TO EMITTER VOLTAGE-VOLTS

5T2071

5T2072

Output Current vs. Collector-Emitter Voltage

0

fil

N

,.~

II:

0

IF=lmA
VeE 5V

r-

W

II:
II:
::l
::l

t--

I--

=/1 I

/'

FF=10mA

5mA

R8E

2mA

k

ImA

0.6
0.4

I

0.2

I

a.5mA

L

II

0.1
.08

~ .06

~J? .04

J

.02

0.01
I
TA-AMBIENT TEMPERATURE- DC

Current vs.

I

t-

~

/'
20

/'

/'

TA"'75°Y 25 C/-25"C ~

-

O

8

toff RL 1 Kn

:" ......

~RL 100n

10

.lU

1.0
0.8

Q

/

1.0

/

/

toff R L = lOon

~

,;"

0.6

la- ~::

0.4

NORMALIZED TO!:

0.4

o. I

II

tonRL=lKn

..::::: 1=::...;

"a:

0.2

1000

5T2074

10

a:

~

It

100

Current vs. Base Emitter Resistance

::>

f2

10

RSE-EXTERNAL BASE RESISTOR-Kn

T",,,n,,.r~ltll1·"

100
80
60
40

~

I

5T2073

O.2mA

I

VCC=5V

0.2

I

/

I
1.0

1.1

1.2

1.3

1.4

VF-FORWAAD VOLTAGE-VOLTS

Input

Current

1.5

1.6

5T2075

'F=lmA
RL = 1000

0.1
0.1

0.2

0.4

0.6 0.8 1

8

IF -INPUT CURRENT -rnA

.c;""it",hinn Times VS.

10

5T2076

Current

2-19

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

1000
BOO

100

60

f

60

600

40

/'

I~
~

 .02

1.2

v
./

ID

:0:

..,..,..

~

"..

5
10
20
10- LOAD CURRENT,-mA

0.4

-----

N

~

~

ON VOLTAGE VS. LOAD CURRENT

2-38

0.6

~

Iii

vccosv
T A =25°C

0.01
I

III
ST2068

/

1.4

c

.05

I

1.8

5 o.8

I

I I

THRESHOLD CURRENT VS. SUPPLY VOLTAGE

!:i

~:..J

-

NClMMUZED TOTURN ON THRESHOlD
AT
Vcc ·5V. TA'"25°C

4
8
12
Vcc - SUPPLY VOLTAGE- VOLTS

TRANSFER CHARACTERISTICS

~
.r

URN OFF THRESHOLD

I
o

3
ST2067

IF -INPUT CUARENT-mA

r

-

I

VOL

.,

-

0.4

o

T A,"2SoC

I

~

....

V

iiiN

."

2

j

TURN ON THRESHOlD

G 1.2
4

I

!;

I I

'"

VOH

50

100

ST2069

!i!

~

NORMALIZED TO:
VCCOSV:
TAII2SoC

0.2

0

./

./

-50

- 20
10
40
70
TA -TEMPERATURE - DEGREES C

1

100
ST2070

THRESHOLD CURRENTS VS. TEMPERATURE

MICROPROCESSOR COMPATIBLE GaAs
SCHMITT TRIGGER OPTOCOUPLERS

OPTOElECTRONICS

IOIr----,----,----,----.----,----r---~

100 8

•

..

4

E

..::iI

2

10

II:
II:

::I

••

r--

l00'C
2S'C

.

-SO'C

E
I

~

'"

4



II:

i

2

u.

8

01.0
I

~

6r----r----~--~----~--~----~

0:
0:

o

~

I

..
..

•

I

4

2

0.1

o

4r----r----r----r--~~~~~~~

::::>

I

I

O.S
VF-VOLTS

J

4

I.S
2
2.S
VF-FORWARDVOLTAGE-VOLTS

6
V65 -

8
10
12
SUPPLY VOLTAGE -VOLTS

ST2015

FORWARD VOLTAGE VS. FORWARD CURRENT

V=2V/DIV
H=SmS/DIV
R L = 270n
RL = 1200fi

c=o

8T2017

16

ST2016

SUPPLY CURRENT VS. SUPPLY VOLTAGE
HIILI

HIILI

14

1MHz NRZ - 0111 011101- DATA STREAM

V=2V/DIV
H=IJ'S/DIV
Rl =270fi
RE= 1.2Kfi
C=270pf

8T2018

2-39

OPTOELECTRONICS

MICROPROCESSOR COMPATIBLE GaAs
SCHMln TRIGGER OPTOCOUPLERS

+5VDC

ION

i

5001------'

I

I

Rp

OUTPUT

2

ST2019

2-40

5

PROGRAMMABLE CURRENT
THRESHOLD SENSING CIRCUIT

HIGH-SPEED AIGaAS
SCHMITT TRIGGER OPTOCOUPLERS

OPTOElECTRONICS

H11N1 H11N2 H11N3

}
15° MAX
6.35

REF

0.3

0.2

+

8.3

REF

+

5.1

• MAX

.. *

0.51

MIN

-H0.56

0.41

DIMENSIONS IN mm
PACKAGE CODE E

ST1603

The H11N series has a medium-to-high speed integrated
circuit detector optically coupled to a gallium-aluminumarsenide infrared emitting diode. The output incorporates
a Schmitt trigger, which provides hysteresis for noise
immunity and pulse shaping. The detector circuit is
optimized for simplicity of operation and utilizes an open
collector output for maximum application flexibility.

• High data rate, 5 MHz typical (NRZ)
• Free from latch up and oscillation throughout voltage
and temperature ranges
• Microprocessor compatible drive
• logic compatible output sinks 16 mA at 0.5 V
maximum
• Guaranteed on/off threshold hysteresis
• High common mode transient immunity 2000 V/ f.LS
minimum
• Fast switching: t" ~=10 ns typical
• Wide supply voltage capability, compatible with all
popular logic systems
• Underwriters laboratory (Ul) recognized - file
#E90700
• logic to logic isolator
• Programmable current level sensor
• Line receiver-eliminates noise and transient problems
• logic level shifter-couples TTL to CMOS
• A.C. to TTL conversion-square wave shaping
• Isolated power MOS driver for power supplies
• Interfaces computers with peripherals

Equivalent Circuit

TOTAL PACKAGE
Storage temperature .............. -55°C to 125°C
Operating temperature ............. -25°C to 85°C
lead solder temperature .......... 260°C for 10 sec
INPUT DIODE
Power dissipation (25°C ambient) .......... 50 mW
Derate linearly (above 70°C) ........... 1.67 mW/oC
Continuous forward current ................ 30 mA
Peak forward current
(300f.LS pulse, 2% duty cycle) ............... 50 mA
Reverse voltage ............................. 6 V

DETECTOR
Power dissipation (at 25°C ambient) ....... 150 mW
Derate linearly (above 25°C ambient) ...... 5 mW/oC
V.. allowed range ....................... 0 to 16 V
Vas allowed range ....................... 0 to 16 V
14 output current .......................... 50 mA

2-41

OPTOELECTRONICS

2-42

HIGH·SPEED AIGaAS
SCHMln TRIGGER OPTOCOUPLERS

HIGH·SPEED AIGaAs
SCHMITT TRIGGER OPTOCOUPLERS

OPTOElECTRONICS

0.2

Common mode transient immunity

CM L

O.S

I-'S

C=O, RL =270 n,
IF (MAX) H11N1: SmA
H11N2: 10mA
H11N3: 20mA

±2000

±10000

V/I-'s

Vpk=SOV, Vcc=S V,
RL =270 n, IF=O

±2000

±10000

V/I-'S

V.

1. All measurements are with l00nF bypass capacitor from pin 6 to pin 5.
2. Steady overdrive increases to .. Use of a large RE and a small C as in figure 7 is preferred over overdrive current.
3. Maximum data rate will vary depending on the bias conditions and is usually hIghest when RE and C are matched to IF(ON) and Vcc is between 5 and
15V. With this optimized bias, most units will operate at over 10 MHz, NRZ.
4. H11NI: RE = 9100, HIIN2: RE = 5600, H11N3: RE = 2400.

2-43

OPTOISOLATOR SPECIFICATIONS

•

1A

VOH

•

I

2

•

,
'FiOFF)

2

Hy.terisls area
shaded for illustration
1

V
V
V
V

TA-25°C

'FIONI

.,.,.....

i--

~

-

TURN Off THRESHOLD

NOfIMAUZEO TO,

~

~N ON THRESHOLD_

I 0."

Vcc"'SV, TA • 25-C

~

J!o

'.2

lL
'.5

I..
I...~

VCC=5Y
RL = 2700

VOL.

1.5

I.

2.5

18

12

VCC·SUPPLY VOLTAGE - VOLTS

IF • INPUT CURRENT (mAl

Figure 2. Threshold current vs. supply voltage

Figure 1. Transfer characteristics ST2022

ST2023

100

1.',--,---,---,--,---,---,---.,

..

~ 1.21---+---+---+---+---+---+----:::l

/""

--

V

~

-

~L----

~ 1.0b==i===t---~===t=::=t=~-+---l

I

.81---+---+---1---+---+---+---'-1

VCc"SV

TA"2SoC

~ O.61---I---I---I---I---L---I---'-1
1i
I.. 0.4 f-__I-__I-__I-__+-_"'TA!,:":;25::..":::,C_-i-__-l
NORMALIZED TO

VCC=5V

I

/

/

.2 t---t---t---j---+---t---t----i

II

..•

·~.--~I~.--~--~~~--4~.---50~--OO~---d7.

10

0.'

T A - TEMPERATURE - DEGREES C

VOL _ OUTPUT VOLTAGE LOW - VOLTS

ST2024

Figure 3. ON voltage vs. current

Figure 4. Threshold current vs. temperature ST2025

100

0

•

50

I

j

850Cj.SOJj

•

I

/

·2S·C

/

6

·•

-2S"CY

25"C
8S·C

~~

5
6

I I
1 \'

1.0

1.2

1.'

I

I I
1.•

YF - FORWARD VOLTAGE - VOLTS

1.•

2.'
ST2026

VS. forward current

2-44

,.,

·,

-2S"C
2S"C

8S"C

---

:::::

~

~~o

---

::::::-i---

-

-

~

~:::

~ '""""

-

ON STATj IF· lOrnA

"

VIS - SUPPLY VOL fAGE • VOL15

"ST2027

OPTOISOLATOR SPECIFICATIONS

OPTOElECTRONICS

VIN

___ --,
'~
I
.. --II--

sv

.::.:..L-o

I
I

I
,--l
I

--l'PHLI.-

~PLH

,

'___ +_J _'''''
- - - , - r- ....
-I -- ~--

~ ~_

Vo

II -l.,:.., I':
-I'ft-

----L-- I

ST2028

Figure 7. Switching test circuit

o

o

o
RE =9100
C=l20 pF

ST2029

Figure 8. Switching test waveforms

5V1

n

-1==11

~-+-""'--oVo

IF" 1.5mA

Vo

Vern
VeM

ST2030

Figure 9. Common-mode transient immunity, test circuit and voltage
waveforms
14

see DYN1MIC OVEROJ,VE

2

·

SWITCHI~G

t- SPECS FOR OVERDRIVE LIMITATIONS

•

Vpk~25OV

2

'!o.,,1,t.', "

YCC"'5Y

.

, "

•

~;'
.,

T"25O

•

c"t';'

I- CMH (OFFSTATE)

4

, ,,'

VCC=5V
T=25C

l\
\"

eMH

'-

eM

OFFSTATE IF = mA

ONSTATE

IF" 7.5mA

2

/'
'00

200
INPUT OVERDRIVE

300
Ipt,cON) RAllO - PERCENT

Figure 10. CML and CMH input current

800

ST2031

200

400

600

800

V,* - COMMON MODE 11tAHIteNT VOLTAGt: ~ VOLTS

1000

1200

ST2032

Figure 11. CML and CMH vs. common-mode transient

2-45

2-46

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElHTHONICS

H24A1 H24A2

.50 REF

., tL

The H24A series consists of a gallium arsenide infrared
emitting diode coupled with a silicon phototransistor. The
devices are housed in a low-cost plastic package with
lead spacing compatible with a dual in-line package.

Ls1·50REF
SECTION X-X:-T
LEAD PROFILE

t- --1

6 35
. MAXi

:~; 1

• 4-pin configuration
• Small package size and low cost
• UL recognized-file E51868

.76

3if 8.89 MAX

I
titX
x

• Digital logic inputs
• Microprocessor inputs
• Industrial controls

SEATING
PLANE

I

I

_8.00._
7.24

7.62 MIN

!

_2.79_
2.29
DIMENSIONS IN MM
ST2006

ANODEh
CATH.e..

~EMIT.

~COLL.

ST4004

Equivalent Circuit

TOTAL PACKAGE
Storage temperature ............... -55°C to 85°C
Operating temperature ............. -55°C to 85°C
Lead solder temperature ........... 260°C for 5 sec
INPUT DIODE
Power dissipation (25°C ambient) ......... 100 mW
Derate linearly (above 25°C) ........... 1.67 mW/oC
Continuous forward current ................ 60 mA
Reverse voltage ............................. 4 V

DETECTOR
Power dissipation (25°C ambient) ......... 150 mW
Derate linearly (above 25°C) ............ 2.5 mW/oC

VCEO

•••••••••••••••••••••••••••••••.•••••••

30V

VECO • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 6V
Continuous forward current ............... 100 mA

2-47

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

OUTPUT DETECTOR
Breakdown voltage
Collector to emitter

BVcEO

30

V

Ic=1 mA, 1.=0

Breakdown voltage
Emitter to Collector

BVECO

7

V

Ic=100 pA, 1.=0

2-48

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOELECTRONICS

10

100

t - - NORMALIZED TO:

!-!--

>z

!;;
~

"'

10

5

~

I

""'

/"

N

::J

TA=25°C

r-

rr-

PULSED

PW=JOOfL s

PRR "OOPps
I F =loml

-

o

>~
>:J
o

IF .',omA

I

IF=5mA

""'
::J
N

V

.1

::Il

-

-

:J

o

0:
0:
:J

IF"OmA
VeE = 5V

NORMALIZED TO:
IF=lOmA

PU~~~OO,.s I

l!l
I

~

PRR=IOOpps

Z .0 I
o

r-- I -

~

i5z
,

VCE",SV

a:

IF=2.mA

o. I

=

J'l

~

I
.00 I

0.03
10
I

I

100
-INPUT CURRENT - rnA

-50
-55

1000

-25

0

+25

Fig. 2. Output Current vs. Temperature
0

10000

I-- NORMALIZED TO:

r--

!z

~
a:

---

PULSED

~IOO 0

----

~
I

:J

~~

~~

10 0

"'

I-a 'I-0:

>-

:J

VeE =5V
PULSED
PRR"IOOPPS

N

/

~
~

/

0

,

.!t

o
z

w
II ~/ J

!-.

j

I
III

J

I
V F - FORWARD VOLTAGE-VOLTS

5T2036

/

10
0.1
veE -COLLECTOR TO EMITTER VOLTAGE-VOLTS

Fig. 3. Input Characteristics

~20

1/

i§

100

5T2037

Fig. 4. Output Characteristics

~~~~c~~~
r--

t---yeE"'O v
t---.r.=25°C !::-c-::=:

tON

"Q 10

~~~~i~~~

t - - - V.=5V

~IO41:::::== T.=25°C

a:

g

tOH

L

3

"'"::J
N

"

::;;

/

a:
o

z

1."2t~r-

,/£

~ 0.I

PRR=ICOpps

I F =5mA

LV
1/1 ~

::J

PULSED ABOVE 60 mA
pW= 100,",s

Id--::

I..---': ~=20m~ l I -I - ~

V

PW"'OO~s

.""'

/

"a:

IF = SOmA

IF=IOmA

~

.//

o

a:

+10 o

+75

5T2035

Fig. 1. Output Current vs. Input Current

!z
"'a:a:

+50

T. -AMBIENT TEMPERATURE-OC

5T2034

I

d'

/-:/

h ~
.I
IK

~

Y

"'~

-

.,,~<.

-

~ ,o
..J

2

""'
::J

L:.

::Ill 0

IF='~~A

a:

o

/

Vcc=5V
PW=300Jlos

4'

~

I

H

,~

.......

pps

10K
lOOK
RL -LOAD RESISTANCE - OHMS

Fig. 5. Switching Speed vs.

"' 10'

N

NORMALIZED TO.
RL 'IOKSl

TTr

a

1000K

5T2038

o.1

25
50
75
100
TA- AMBIENT TEMPERATURE _oC

0 .1

25
50
75
100
TA -AMBIENT TEMPERATURE-"C

6. Leakage Current vs. Temperature

5T2039

2-49

2-50

OPTOElECTRONICS

H2481 H2482

The H24B series consists of a gallium arsenide infrared
emitting diode coupled with a silicon phototransistor. The
devices are housed in a low-cost plastic package with
lead spacing compatible with a dual in-line package.

.50 REF

., tL
Lm1·50REF
SECTION X-X:-T
LEAD PROFILE
t6.35MAX_b

- ~ :l:; 1

•
•
•
•

4-pin configuration
Small package size and low cost
UL recognized-file E51868
High current transfer ratio

...1.l
.50 8.89 MAX
SEATING
PLANE

I
titX
X
I

7.62 MIN

I

1+- 8.00. _

_

7.24

2.79fe2.29

!

DIMENSIONS IN MM
ST2006

ANODEh
CATH.e..

~EMIT_

~COLL.

ST4004

Equivalent Circuit

TOTAL PACKAGE
Storage temperature . . . . . . . . . . . . . .. -55°C to 85°C
Operating temperature ............. -55°C to 85°C
Lead solder temperature . . . . . . . . . .. 260°C for 5 sec

INPUT DIODE

DETECTOR
Power dissipation (at 25°C ambient) ....... 150 mW
Derate linearly (above 25°C ambient) .... 2.5 mW/oC
VCEO • • • • . • • • • . • • . • • • • • • • • • • • . • • • • • • • . • • • • • • 30V
VECO • • • . • . • • . • • • • • • • • • . • • • • • • • • • • • • • • . • • • • • • 7V
Continuous forward current ............... 100 mA

Power dissipation (25°C ambient) ......... 100 mW
Derate linearly (above 25°C) ........... 1.67 mW/oC
Continuous forward current ................ 60 mA
Peak forward current (1 /Ls pulse, 300pps) ...... 3 A
Reverse voltage ............................. 4 V
2-51

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

1.7

2-52

V

30

V

7

V

PHOTOTRANSISTOR OPTOCOUPLERS

OPTOElECTRONICS

10

10

iI!

I-

I

I-- NORMALIZED TO: t-- PULSED
VCE" 5V

TA=25°C

..

/
1/

I-

:::>

I

I-

is

PW'IOO"s
PRR=IOOPps

II

-

§

u

.I

t-t--

1,=IOmA

II-

IZ

I F II20mA

-

IF=IOmA
IF=5mA

...co
N

I

/

I,
!

PRR=IOOpps

I I

I,=2.mA

z

PW.IOO~s

/

I

-r--

:::;

NORMALIZED TO:
IF-5mA
VCE II 1.5V
PULSED

o. I

r--

~

I

O.O~

.000I
0.1

I

10
IF - INPUT CURRENT - mA

-50
-55

100

-25

0

10000

UI

~
I

...!z

~
~

100

u

....

PULSED

-

---- - -

11"000

~~-

r:

I

- --

- IF"'~A

.I

PRRalOOpps

NORMALIZED TO: -

IF·SmA
VCE-1.5V
PULSED

,!t

/

PWalOO"s

II
v,- FORWARD

2
VOLTAGE-VOLTS

I

I
10
100
VeE-COLLECTOR TO EMITTER VOLTAGE-VOLTS

ST2011

II

.
'o"

~

Z

I

/ . '/

co

v-:: ; /

Z

'"z

~o

"''1'

2

NORMALIZED roo
RL"'Kll

i::

~o

V
I

100

_V.·5V

- T A " ' 25°C

•

..~

........ 1-""

~I-""

0:

/

•

tOFf

I:l:::;

2

/

1'.~

-

/

VCC· 5V

PW' ~OO".

I

I

nTOPO

.I

IK
10K
RL-LOAD RESISTANCE -OHMS

lOOK

100
50
75
TA-AMBIENT TEMPERATURE-'C

.1

-

75
100
50
T.-AMBIENT TEMPERATURE-"C

ST2013
VS. RL

1000

ST2012

~~~~~~T~

r:::::=::;.z

/

co

~~~Ti3~~~

_~CE" 10V r------,
4_TA'25'C

tON

10

g

-'-

Fig. 4. Output Characteristics
105

~ 20

e-

-'-

PRR"IOOPps

Fig. 3. Input Characteristics

6,
!:

IF,"f~A

III

/

10

IF "IOmA

i-- 1,·2mA

PULSED ABOVE 60 mA
pw- 100,u.5

/

,

ST2035

I
I-I--

~

co

a:

~

+10o

+75

0

II!

i

+50

Fig. 2. Output Current vs. Temperature

Fig. 1. Output Current vs. Input Current

~

+25

TA -AMBIENT TEMPERATURE-"C

ST2009

Currentvs.

ST2014

2-53

2-54

NON·ZERO·CROSSING TRIACS

OPTOELECTRONICS

MOC3009 MOC3010
MOC3011 MOC3012

6.35

REF

0

0.3
0.2

E

1=

8.3

7.62

MAX

REF

•

• Low input current required (typically 5mA-MOC3011)
• High isolation voltage-minimum 7500 VAC peak
• Underwriters Laboratory (UL) recognized-File E90700

5.1
• MAX

+

The MOC3009, MOC3010, MOC3011 and MOC3012 are
optically isolated triac driver devices. These devices
contain a GaAs infrared emitting diode and a light
activated silicon bilateral switch, which functions like a
triac. This series is designed for interfacing between
electronic controls and power triacs to control resistive
and inductive loads for 120 VAC operations.

I

0.51

MIN

0.41

DIMENSIONS IN mm
PACKAGE CODE E

ANODE 1

ST1603-02

6 MAIN

TERM.

•
•
•
•
•
•

Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Solid state relay

*00 NOT CONNECT

(TRIAC SUBSTRATEI
Equivalent Circuit

C2081

TOTAL PACKAGE
Storage temperature .............. -55°C to 150°C
Operating temperature ............ -40°C to 100°C
Lead temperature
(soldering 10 sec) ....................... 260°C
Withstand test voltage ... 7500 VAC Peak (50-60 Hz)

INPUT DIODE
Forward DC current ....................... 50 mA
Reverse voltage ............................. 3 V
Peak forward current
(1 pS pulse, 300 pps) ..................... 3.0 A
Power dissipation (25°C ambient) ......... 100 mW
Derate linearly (above 25°C) ........... 1.33 mW/oC
OUTPUT DRIVER
Off-state output terminal voltage .......... 250 volts
On-state RMS current
TA =25°C ........ 100 mA
(Full cycle, 50 to 60 Hz) TA=70°C ......... 50 mA
Peak nonrepetitive surge current ............. 1.2 A
(PW=10 ms, DC=10%)
Total power dissipation @TA=25°C ........ 300 mW
Derate above 25°C ................... 4.0 mW/oC
2-55

NON·ZERO·CROSSING TRIACS

OPTOElECTRONICS

OUTPUT DETECTOR
Peak blocking current,
either direction
Peak on-state voltage,
either direction

100

nA

2.0

3.0

Volts

VORM =250 V, Note 1
ITM =100 mA Peak

Note 1. Test voltage must be applied within dv/dt rating.

LED trigger current
(current required
to latch output)

MOC3009

1FT

15.0

30

mA

MOC3010

1FT

10.0

15

mA

MOC3011

1FT

5

10

mA

MOC3012

1FT

5

mA

Main terminal
voltage=3.0 V, RL = 1500

AC dv/dt RATING
Critical rate of rise of
off-state voltage

dv/dt

12.0

V/f./S

Static dv/dt
(see Fig. 4)

Critical rate of rise of
commutating voltage

dv/dt

0.2

V/p,S

Commutating dv/dt
II.OAo=15 mA
(see Fig. 4)

2-56

NON·ZERO·CROSSING TRIACS

OPTOElECTRONICS

+800

out~ut pLse ~idth L80~V

IF =20 rnA
f = 60 Hz

~ +400
w
a:
a:
::J

o

j

o

w

~

V

/

/

!ii

z

0- 400

V

I

,.../

-800
-14 -10 -6.0 -2.0 2.0 6.0 10
14
VTM - ON-STATE VOLTAGE (VOLTS)
1119

C1687

Fig. 2. On-State Characteristics

Fig. 1. Forward Voltage Drop
vs. Forward Current
1.3

t-

.!!;
Cl

1.1

w

r--.r-....
....... r--.

~

N

:J

«

::2:

r"-r-....

0.9

i'

a:

0

Z

I\.

0.7

0.5
-40 -20
0
20
40
60 80 100
TA - AMBIENT TEMPERATURE (OC)
C1688

Fig. 3. Trigger Current vs. Temperature
COMMUTATING -

dv/dt TEST CIRCUIT

STATIC - dv/dt TEST CIRCUIT

.-------.6

Vcc

Rln

2

MOC3009
MOC3010
MOC3011
MOC3012 I-..JVV'Ir-'
L -_ _- '

6
MOC3009
2 MOC3010
MOC3011
MOC3012

~----.

4

4

~ = WVpack = 2,,1 x1.414 Vrms

~ = 8.88 f

= 8.88 1 Vrms

RL

Vrms
ST1783

4. dV/dt Test Circuits

2-57

NON·ZERO·CROSSING TRIACS

OPTOELECTRONICS

12.0

(i)
::t

rn
::t

10.0

~
C,)
;::

Static

8.0

~

V
.....
V

V

~
en
I 6.0

~

0.20 ~
Cl

z

0.16 ~
I-'

V "Commutating

:::>

0.12

V

0

I

0.08 ....

o

0.4
0.8
1.2
1.6
RL - LOAD RESISTANCE (kO)

(i)

C,)

;::
~
en
I

0.20

~ r....1'.

1'.

1\

8

~

"-

6

"0

..... I'.~ ..

4

(i)

~

2

--

o

0.16 ~

';~""'t--_.
'If.f)

Cl

Z

""i'. ....

;::

r...

i'-

~""
It" .....

l.ispo;t I'

"0

0.04
2.0

.

~

t.

I\-..

~
~

"0
.......
>

Vin = 30 V RMS._
T~st firc~it in Figure 4
2.0

~
~

C,)

4.0

"0

10

0.24

0.12 ~
:::>
~
~

0.080
~

C,)

.... .....

-·Static dv/dt
Commutating dv/dt
Test Circuit in Figure 4

I
t-

0.04 ~
>
"0

0

25
50
75
100
TA - AMBIENT TEMPERATURE (0C)
C1691

C1690
Fig. 6. dV/dt vs. Temperature

5. dV/dt vs. Load Resistance
(J)

a..

1000
a:

>
w

1.5

r"r'"

a:
a:

:::)

100

~

~ ...

I-

~

IWI! 2h IJ~

1'1"-

~

0.2 V/p.s
Test Circuit in Figure 4
dv/dt = 8.9 Vinf
RL = 1 kO
dv/dt

(j)
:2

Cl

2.0

~

r" r"'1"'0

()

-l

w 1.0

0

(!)

>
Cl
w

a:

:::)
(J)

:J
a..
a..

10

«~

w

<{

.5

a..

1

I

c:

">
1.0
10
f-

III

100

::::!

111111

1000

Cf)

10,000

100,000

MAXIMUM OPERATING FREQUENCY (Hz)

.!=

o
0.01

11

0.1

1.0

10

C1696

C1692
Cnnnml,lt"ti'ln

2-58

dV/dt vs.

t-rt>n'lft>ntov

100

PW - PULSE WIDTH (ms)
8. Maximum Nonrepetitive

Current

NON·ZERO·CROSSING TRIACS

OPTOELECTRONICS

Rin

1

6
MOC3009
MOC3010
MOC3011
MOC3012

180

120 V
6

60 Hz

180

120 V

MOC3009 /--<--.NV-......---.I\I'II'---+
MOC3010
MOC3011
• MOC3012 /---10 ms) at moderate speeds (:::;200
kHz @ 150 ns t" t,), or a shorter duty cycle operating to
more than 2 MHz with 15-ns transitions. Duty cycles are
limited by the Schmitt-trigger power-supply current
draining the source capacitor and can be increased with
larger storage capacitance, but at the cost of increased
refresh time or more complex refresh circuitry. DC
operation requires a refresh scheme or a small power
supply, as mentioned above. Overall, these optoisolators
appear to offer great advantages in driving commondrain powre MOSFETs and similar devices, such as IGT,
MOS-gated thyristor, etc.

Test Circuit
To check the apparent advantages of the optoisolator
approach, a circuit was built theat employed the H11L
(slow) and H11N (fast) optoisolated Schmitt triggers .. A .
plug-in prototype board was used to construct the circuit
of Fig. 2. The circuit makes use of an IRF630 powerMOSFET switch and replaces the lower FET with a
45-ohm power-resistor source load. A 1-tLF aluminum
electrolytic capacitor was used as the bootstrap supply,
with a variable dc power source for Vee supply was kept
below 75V to keep the circuit within the IRF630 ratings
during the turn-off spike. No heatsinks or special wiring
precautions were used. Although only the H11N1 is
actually specified for common-mode rejection at 2000
V/tLS minimum, the lower-cost H11L1 uses similar
shielding in the IC chip, and identical packaging. These
similar features of the H11 L1 and N1 lead to the
expectation of a similar ability to function under high
dv/dt.
Tests of the ciruit confirmed the expected performance
for both optoisolators in the circuit. The H11L was driven
from 5V pulses with a 2K resistor, and drives the IRF630
at about 300 kHz with a 12% duty cycle. Turn-on and

Application Notes

OPTOELECTRONICS

turn-off times of the IRF630 were about 60 ns, which
yielded more than 2000-V/JLS dv/dt during the 175V
turn-off spike. These wavforms are illustrated in Fig. 3.
The H11N1 was then substituted for the H11L, and the
value of the infrated diode-limiting resistor was reduced
to 680 ohms. Operation a 1 MHz

was confirmed. Higher-frequency operation was
obtainable through heatsinking of the IRF630 and the use
of a higher-rated load resistor. The waveform presented
in Fig. 4 illustrates this operation, and about the same
dv/dt as the H11 L provided.

+

~~~~~~~VBB

5V

L---~------------~----------~-oOUTPUT

Fig. 2 - Optically isolated power-MOSFET-driver test circuit.

ST1655

2-67

Application Notes

OPTOELECTRONICS

r-

r--

,

,

1\

o

o

I

~

I
1/
\

~

ST1656

ST1657

a) Load Voltage Across 45.0
V=20 V/Division
t=5oo ns/Division

b) Expanded Scale of Turnoff Portion of Above Waveform
V =20 V/Division
t=50 ns/Division

Fig. 1.

Fig. 2.

.

\

o

\

~

I\. .I
\.... /

I

o

j
,

I

J

V

",

ST1658

c) Turnoff Waveforms with V•• to Increase Load
Voltage to 75V
V=50 V/Division
t=50 ns/Division

3 Waveforms taken with an H11 L in the test circuit.

2-68

ST1659

V=50 V/Dlvlslon
t=200 ns/Dlvlslon

Fig. 4 Waveforms Taken With An H11N In The Test Circuit

INFRARED COMPONENTS AND ASSEMBLIES

OPTOElECTRONICS

INFRARED COMPONENTS AND
ASSEMBLIES
Alphanumeric Product Listing
Product

Page

Product

Page

Product

..................
..................
..................
..................
..................

3-127
3-131
3-135
3-193
3-193

H22A2
H22A3
H22A4
H22A5
H22A6

. . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . ..

3-225
3-225
3-229
3-229
3-229

OPB703 ..................
OPB703W .................
OPB704 ..................
OPB704W .................
OPB705 ..................

BPW38 ..................
CNY28 . . . . . . . . . . . . . . . . . ..
CNY29 . . . . . . . . . . . . . . . . . ..
CNY36 . . . . . . . . . . . . . . . . . ..
CQX14 ...................

3-197
3-263
3-267
3-271
3-201

H22B1
H22B2
H22B3
H22B4
H22B5

...................
. . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . ..
...................
. . . . . . . . . . . . . . . . . ..

3-233
3-233
3-233
3-237
3-237

OPB705W . . . . . . . . . . . . . . . .. 3-97
OPB706A ................. 3-99
OPB706B ................. 3-99
OPB706C ................. 3-99
OPB804 .................. 3-101

CQX15 ...................
CQX16 ...................
CQX17 ...................
F5D1 .....................
F5D2 ....................

3-205
3-201
3-205
3-141
3-141

H22B6
H22L1
H22L2
H23A1
H23A2

. . . . . . . . . . . . . . . . . ..
...................
...................
...................
.. . . . . . . . . . . . . . . . ..

3-237
3-245
3-245
3-249
3-249

OPB860N11 ..............
OPB860N51 ..............
OPB860N55 ..............
OPB860T11 ...............
OPB860T51 ...............

3-103
3-103
3-103
3-115
3-115

F5D3 ....................
F5E1 .....................
F5E2 ....................
F5E3 ....................
F5F1 .....................

3-141
3-145
3-145
3-145
3-149

H23B1 ...................
H23L1 ...................
L14C1 ....................
L14C2 ...................
L14F1 ....................

3-253
3-257
3-165
3-165
3-169

OPB860T55 ..............
OPB861N51 ..............
OPB861N55 ..............
OPB861T51 ...............
OPB861T55 ...............

3-115
3-105
3-105
3-117
3-117

F5G1 ....................
H21A1 ...................
H21A2 ...................
H21A3 ...................
H21A4 ...................

3-153
3-209
3-209
3-209
3-213

L14F2 ....................
L14G1 ...................
L14G2 ...................
L14G3 ...................
L14N1 ....................

3-169
3-173
3-173
3-173
3-177

OPB862N51 ..............
OPB862N55 ..............
OPB862T51 ...............
OPB862T55 ..............
OPB865N11 ..............

3-107
3-107
3-119
3-119
3-109

...................
...................
...................
...................
...................

3-213
3-213
3-217
3-217
3-217

L14N2
L14P1
L14P2
L14Q1
L14R1

...................
....................
....................
...................
....................

3-177
3-181
3-181
3-185
3-189

OPB865N51 ..............
OPB865N55 ..............
OPB865T11 ...............
OPB865T51 ...............
OPB865T55 ..............

3-109
3-109
3-121
3-121
3-121

H21 B4 ...................
H21 B5 ...................
H21 B6 ...................
H21L1 ....................
H21L2 ...................
H22A1 ...................

3-221
3-221
3-221
3-241
3-241
3-225

LED55B ..................
LED55BF .................
LED55C ..................
LED55CF .................
LED56 ...................
LED56F ..................

3-157
3-161
3-157
3-161
3-157
3-161

OPB866N51 ...............
OPB866N55 ..............
OPB866T51 ..............
OPB866T55 ..............
OPB867N51 ..............
OPB867N55 ..............

3-111
3-111
3-123
3-123
3-113
3-113

1N6264
1N6265
1N6266
BPW36
BPW37

H21A5
H21A6
H21 B1
H21B2
H21B3

3-95
3-97
3-95
3-97
3-95

3-1

INFRARED COMPONENTS AND ASSEMBLIES

OPTOELECTRONICS

INFRARED COMPONENTS AND
ASSEMBLIES
Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

OPB867T51 .............. 3-125
OPB867T55 .............. 3-125
QCK3 ..................... 3-67
QCK4 ..................... 3-67
QEC112 .................... 3-3

QRD1114 ..................
QRD1313 ..................
QSA156 ...................
QSA157 ...................
QSA158 ...................

3-77
3-79
3-21
3-21
3-21

QVA11223
QVA11224
QVA11233
QVA11234
QVA11323

.................
.................
.................
.................
.................

3-81
3-81
3-81
3-81
3-81

QEC113
QEC121
QEC122
QED121
QED122

....................
....................
....................
....................
....................

3-3
3-5
3-5
3-7
3-7

QSA159
QSC112
QSC113
QSC114
QSC133

...................
...................
...................
...................
...................

3-21
3-25
3-25
3-25
3-27

QVA11324
QVA11333
QVA11334
QVA21113
QVA21114

.................
.................
.................
.................
.................

3-81
3-81
3-81
3-81
3-81

QED123
QED221
QED222
QED233
QED234

.................... 3-7
.................... 3-9
................... 3-9
................... 3-11
................... 3-11

QSD122
QSD123
QSD124
QSD128
QSD422

...................
...................
...................
...................
..................

3-29
3-29
3-29
3-31
3-33

QVA21213
QVA21214
QVA21313
QVA21314
QVB11123

.................
.................
.................
.................
.................

3-81
3-81
3-81
3-81
3-85

QED422
QED423
QED522
QED523
QEE113

...................
...................
...................
...................
...................

3-13
3-13
3-15
3-15
3-17

QSD423
QSD424
QSD722
QSD723
QSD724

..................
..................
..................
..................
..................

3-33
3-33
3-35
3-35
3-35

QVB11124
QVB11133
QVB11134
QVB11223
QVB11224

.................
.................
.................
.................
.................

3-85
3-85
3-85
3-85
3-85

QEE122 ...................
QEE123 ...................
QPA1223 ..................
QPA8259 . . . . . . . . . . . . . . . . ..
QPC1213 ..................

3-19
3-19
3-53
3-55
3-57

QSD733 ..................
QSE113 ...................
QSE114 ...................
QSE122 ...................
QSE123 ...................

3-37
3-39
3-39
3-41
3-41

QVB11233
QVB11234
QVB11323
QVB11324
QVB11333

.................
.................
.................
.................
.................

3-85
3-85
3-85
3-85
3-85

QPD1223 .................
QPD5223 .................
QPE1113 ..................
QPE1259 . . . . . . . . . . . . . . . ...
QRB1113 ..................

3-59
3-61
3-63
3-65
3-69

QSE133
QSE156
QSE157
QSE158
QSE159

...................
...................
. .. . .. .. . .. . . .. ....
...................
...................

3-43
3-45
3-45
3-45
3-45

QVB11334
QVB21113
QVB21114
QVB21213
QVB21214

.................
.................
.................
.................
.................

3-85
3-85
3-85
3-85
3-85

..................
..................
..................
..................
..................
..................

3-69
3-71
3-71
3-73
3-75
3-77

QSE773 ..................
QSE973 . . . . .. .. .. . .. .. ....
QVA11123 .................
QVA11124 .................
QVA11133 .................
QVA11134 .................

3-49
3-51
3-81
3-81
3-81
3-81

QVB21313
QVB21314
QVE11233
QVL21653
QVl25335

.................
.................
.................
.................
. .. . .. . .. .. . .. ...

3-85
3-85
3-89
3-91
3-93

QRB1114
QRB1133
QRB1134
QRC1113
QRC1133
QRD1113
3-2

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

QEC112/113

The QEC11X is a 940 nm GaAs LED encapsulated in a
clear, peach tinted, plastic T-1 package.

REFERENCE
SURFACE

.030 (0.76)
NOM

I
.042 (1.07) ]
±.010 (±.25)

.800 (20.3)
MIN

,I

'l(

~ANODE

:U.u

• Tight production E, distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow emission angle.
• Mechanically and wavelength matched to QSC11X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor .
• High irradiance level.

.018 (0.46) SQ
±.003(±0.08)
TYP 2 PLCS.
ST2130

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES CATHODE.

3-3

OPTOELECTRONICS

GaAs INFRARED EMITTING DIODE

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2 .....5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2,3,5)
Continuous Forward Current .. , . , ....... , ..... , .... , ..... , . , ............ , ... , . , . , . , ................ , . , ....... , .. 50 mA
Reverse Voltage ............. , ..... , ..... , ..... ,., ............. , .... , ...... , .......... , ........ , ..... ,., .... , 5.0 Volts
Power Dissipation ......... , ... , .... , . , ........ , ............... , ................... , ................... , ..... 100 mW(1)

1.
2.
3.
4.
5.
6.
7,

3-4

Derate power dissipation linearly 1.33 mW/oC above 25°C,
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a single 100 ILsec pulse.
E. is a measurement of the average apertured radiant energy incident upon a sensing area 0,444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E. is not
necessarily uniform within the measurement area.

AIGaAs INFRARED EMITTING DIODE

OPTOELECTRONICS

QEC121/122

The QEC12X is an 880 nm AIGaAs LED encapsulated in a
clear, purple tinted, plastic T-1 package.

REFERENCE
SURFACE

.030(0.76)

----r:JOM

I
.042(1.07,]
±.010 (±.25)

.800 (20.3)
MIN

I I

.

~

~ANODE

:U.u

05~~F27)r--t--l

L.110(2.79)
.090(2.29)

• Tight production E, distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow emission angle.
• Mechanically and wavelength matched to QSC11X
series phototransistor .
• Plastic package color allows easy recognition from
phototransistor.
• High irradiance level.

.018 (0.46) sa
±.003 (±0.08)
TYP 2 PLCS.
ST2131

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES CATHODE.

3-5

OPTOELECTHOIICS

AIGaAs INFRARED EMITTING DIODE

Storage Temperature ............................................................. '.' ................. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4.5)
Lead Temperature (Flow) ........ : ............................................................. 260°C for 10 sec. (2.3.5)
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.
2.
3.
4.
5.
6.
7.

3-6

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 'li6" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a single 100 IJ-sec pulse.
E, is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E. is not
uniform within the measurement area.

AIGaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

QED121/122/123

t-=)

The QED12X is an 880 AIGaAs LED encapsulated in a
clear, peach tinted, plastic T-1% package .

h'

.320(8.13)
.290(7.37)

REFERENCE
SURFACE

l ,

u===

t

.040 (1.02) NOM

.800 (20.3) MIN

I

~

t

.050 (1.25) NOM

~THOOE
ANODE

• Tight production E. distribution.
• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Very narrow emission angle .
• Mechanically and wavelength matched to QSD12X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor.
• High irradiance level.

I I
-I 1--. 100 (2.54) NOM

t

.025 (0.640)
.015 (0.380)
SQNOM
2 PLCS

.240 (6.10)
.215 (5.46)

l
ST2132

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES CATHODE.

3-7

OPTOElECTRONICS

AIGaAs INFRARED EMITTING DIODE

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2.3.4.5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Continuous Forward Current ................................................................................... 100 mA
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation .......................................................................................... 200 mW(l)

Derate power dissipation linearly 2.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6. Measurement is taken at the end of a single 100 JLsec pulse.
7. E. is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E. is not
necessarily uniform within the measurement area.

1.
2.
3.
4.

3-8

AIGaAs INFRARED EMlnlNG DIODE

OPTOElECTRONICS

QED221/222

The QED22X is an 880nm AIGaAs LED encapsulated in a
clear, purple tinted, plastic T-1% package.

REFERENCE
SURFACE

1,

t

.040 (1.02) NOM

j

.800 (20 3) MIN

~tt:=CATHODE

~_

t
.050(1.25) NOM

--l I--

ANODE

• Tight production E. distribution.
• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Wide emission angle .
• Mechanical and wavelength matched to QSD12X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor.
• High irradiance level.

.100(2.54) NOM

t

.025 (0.640)
.015 (0.380)
SQNOM
2 PLCS

.240 (6.10)
.215 (5.46)

t
ST2133

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES CATHODE.

3-9

OPTOELECTRONICS

AIGaAs INFRARED EMITTING DIODE

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2,3.4.5)
Lead Temperature (Flow) .. , .. , .. , ... ,., .. ,.,., .. , ..... ,....................................... 260°C for 10 sec. (2.3,5)
Continuous Forward Current ................................................................................... 100 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation .......................................................................................... 200 mW(1)

1.
2.
3.
4.
5.
6.
7.

3-10

Derate power dissipation linearly 2.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a Single 100 !,-sec pulse.
E, is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E, is not
uniform within the measurement area.

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

QED233/234

The QED23X is a 940nm GaAs LED encapsulated in a
clear plastic T-1% package.

REFERENCE
SURFACE

l,
t
.040 (1.02) NOM
.800 (20.3) MIN

I

lYCAnIDDE

~

t

.050 (1.25) NOM

ANODE

• Tight production E, distribution.
• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Wide emission angle .
• Mechanical and wavelength matched to QSD12X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor.
• Medium and high irradiance level.

I I
1--.100 (2.54) NOM

---I

t

.240(6.10)
.215(5.46)
.025 (0.640)
.015 (0.380)
SQNOM
2 PLCS

l
ST2134

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES CATHODE.

3-11

OPTOElECTRONICS

GaAs INFRARED EMITTING DIODE

Storage Temperature . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2.3.4.5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2,3,5)
Continuous Forward Current ................................................................................... 100 mA
Reverse Voltage ........................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ......................................... , .. , ............................................. 200 mW(1)

1.
2.
3.
4.
5.
6.
7.

3-12

Derate power dissipation linearly 2.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'AB" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a single 100 p,sec pulse.
E, is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E, is not
uniform within the measurement area.

AIGaAs INFRARED EMlnlNG DIODE

OPTOElECTRONICS

QED422/423

r.:::;I::;i~
REFERENCE
SURFACE

I

-

The QED42X is an 880nm AIGaAs LED encapsulated in a
clear, purple tinted, plastic TO-46 package.

I

.230 (5.84)
.210(5.33)

~-.l
-r
.......,~----rr--'

0.030 (0.76)
NOM

.800 (20.3)
MIN

CATHODE

klJrANODE
I-

.05 (1.27)
NOM

- I
-l

0.100(2.54)
NOM

• Tight production E, distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Wide emission angle.
• Mechanical and wavelength matched to QSD42X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor .
• High irradiance level.

SQNOM
2 PLCS
ST2135

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. TAB DENOTES CATHODE.

3-13

OPTOELECTRONICS

AIGaAs INFRARED EMITTING DIODE

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. 12,3,4,S}
Lead Temperature (Flow) .................... , ... , .......... , ........................ , ......... 260°C for 10 sec. 12,3,S}
Continuous Forward Current ...... , ............ , .. , ........... , ........... , ............ , , , ............. , , , , , . ,. 100 mA
Reverse Voltage ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ....... , ............................... " ................................................. 200 mWl1}

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 2.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a single 100 p'sec pulse.
E, is a measurement of the average aperlured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E, is not
necessarily uniform within the measurement area.

3-14

AIGaAs INFRARED EMITTING DIODE

OPTOELHTRONICS

QED522/523

The OED52X is an 880 nm AIGaAs LED encapsulated in a
clear, peach tinted, plastic TO-46 package.

REFERENCE
SURFACE

-r
0.030 (0.76)
NOM
CATHODE

• Tight production E. distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow emission angle.
• Mechanically and wavelength matched to OSD72X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor.
• High irradiance level.

.025 (.635)
.015(.381)
SQNOM
2 PLCS

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. TAB DENOTES CATHODE.

3-15

OPTOELECTRONICS

AIGaAs INFRARED EMITTING DIODE

Storage Temperature ................................................................................ -40°C to + '100°C
Operating Temperature ..... , .......... , ........................ , ............. , ... , ........... ,...... -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ......... , ............. , ... , ............ , , ....... , . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. 12,3,4,5)
Lead Temperature (Flow) ., ..... , .. , ....... ' ..... , ........ , .... , .............. , ........ , ....... 260°C for 10 sec. 12,3,5)
Continuous Forward Current ......... , .... , ......... , ............................ , ........ , ................ , ... 100 mA
Reverse Voltage ............................... , ...................................................... , , . . . .. 5.0 Volts
Power Dissipation ................... , ...... ,.,., ... , ...... , .............. , ........ , ................. , ..... , 200 mW~)

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 2,67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a single 100 /J-sec pulse.
E. is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E. is not
necessarily uniform within the measurement area.

3-16

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

QEE113

The QEE113 is a 940 nm GaAs LED encapsulated in a
wide angle, orange, plastic sidelooker shell package.

.08 DIA.

I

i-

.050 (1.27)

.200(5.08)

I'-r-.---.,.........

.062 DIA

CATHODE

.500 (12.7)
MIN

SANa

DE

II .020(0.51) sa
-I t-NOM
.100(2.54)1

I

• Tight production E, distribution with min/max limits.
• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Mechanically and wavelength matched to QSE11X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor.
• High irradiance level.

~~2.54)

.020(0.51)

l

Y--J

.175(4.44)
ST2128

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010 (.25)
UNLESS OTHERWISE SPECIFIED.

3-17

OPTOElECTRONICS

GaAs INFRARED EMITTING DIODE

Storage Temperature . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2.3.4,5)
Lead Temperature (Flow) .. ".,., ......... ,., .................................................. 260°C for 10 sec. (2,3,6)
Continuous Forward Current .. , . , . , , .. , ..... , ........................... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Reverse Voltage ..................... ,., ..... , ............. , .. , .. , ... , ...... ,., ... , ... , ........... ,.......... 5.0 Volts
Power Dissipation ................... , ... , .... , . , , , ... , ....... , ..... , ......... , ....... , .................... " 100 mWO)

Derate power dissipation linearly 1,33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'A." (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6. Measurement is taken at the end of a single 100 ILsec pulse.
7. E, is a measurement of the average aperlured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E, is not
uniform within the measurement area.

1.
2,
3,
4,

3-18

AIGaAs INFRARED EMITTING DIODE

OPTOELECTRONICS

QEE122/123

The QEE12X is an 880 nm AIGaAs LED encapsulated in a
wide angle, dark green, plastic sidelooker shell package.

.08 DIA.

I

.050(1.27)

.200 (5.08)

~~-'~~CATHODE
.062 DIA

.500 (12.7)
MIN
SANODE

-II-

.100(2.54)

.020(0.51) SO
NOM

1 I

• Tight production E. distribution.
• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Mechanically and wavelength matched to QSE11X
series phototransistor.
• Plastic package color allows easy recognition from
phototransistor.
• High irradiance level.

~3·54)

.020 (0.51)

r-J l
.175(4.44)

ST2129

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.

3-19

OPTOELECTRONICS

AIGaAs INFRARED EMlnlNG DIODE

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4.5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Continuous Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Reverse Voltage ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ................................................................... : ....................... 100 mW(1}

1.
2.
3.
4.
S.
6.
7.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'A." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Measurement is taken at the end of a single 100 JLsec pulse.
E. is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter,
perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E. is not
uniform within the measurement area.

3-20

OPTO LOG ICTM

OPTOElECTRONICS

QSA156/157/158/159

The QSA15X family are OPTOLOGICTM ICs which feature
a Schmitt trigger at output which provides hysteresis for
noise immunity and pulse shaping. The basic building
block of this IC consists of a photodiode, a linear
amplifier, voltage regulator, Schmitt trigger and four
output options. The TIL)LSTTL compatible output can
drive up to ten TTL loads over supply currents from 4.5 to
16.0 volts. The monolithic die is packaged in a narrow
angle, hermetically sealed, TO-18 metal can package .

.215(5.46)
.205(5.21)

.021 (0.53)
:016(0.41)
DIA3 PLCS

VCC

•
•
•
•

High noise immunity.
Direct TTL)LSTIL interface.
Hermetically sealed package.
Reception angle of ±12°.

ST2139

3-21

OPTOLOGICTM

OPTOElECTRONICS

Supply Voltage, Vee ........................................................................................... 18volts
Storage Temperature ........................................................................ ; ....... -65°C to +125°C
Operating Temperature .............................................................................. -55°C to +105°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2,3,4,5)
Lead Temperature (Flow) ... "., .. , .. ,.,.,.,., .. , ... " .. ",.,.' .. , ....... "" .... , .. ,.,., .. , ... 260°C for 10 sec. (2,3,5)
Power Dissipation " .... ,.", .. ,.,." .. ,.,.,.,., ... ,., .... , .... ,.,., ... "".,."."., .. ,.,." ... ,.,.,....... 250 mW(1)
Duration of Output short to Vee .. ,.' ............ ",., ... ,.,., ..... ,., ... ,."".,." .. ,.,., ... " ... ,' ...... ,., .. ' 1,00 sec.
Voltage at Output. , ..... , . , . , .. , . , . , ... , . , . , . , . , . , ... , , , . , .. , . , , . , . , ... , , , , . , . , , . , , . , . , .. , . , .. , , , . , . , . , .. , .. " 35 volts
Sinking Current " .... ", .... ,."" ... ,.,.,.,., .. ,.,.,.,.,.,.,., ..... "., ... ,.,.,.,.,.,." ... ,.,.,., .... ,., .. ,. 50 mA
Sourcing Current (QSA156, QSA157) .',., .. ",., ... ,.,., ..... " .... , ... ", .. ,.,.,., ........ , .. , ........ ,., .. , .... 10 mA
Irradiance ".,.,., .. " ... ".,.,.,."., .... ",.,.,.,." .... ,.,.,"., ... " ... , ....... , .. ,.,.' ... " ... , .. , .. 3.0 mW/cm 2

Peak to peak ripple which will
cause false triggering

2,00

V

f = DC to 50 MHZ

Vee - 2,1

V

Ee = .3 mW/cm2,
10H = -1,0 mA(a)

Voc - 2.1

V

Ee = 0, 10H = -1,0 mA

0.40

V

Ee = ,3 mW/cm2,
10L = 16 mA(e)

QSA156 (BUFFER TOTEM POLE)
High Level Output Voltage

VOH

QSA157 (INVERTER TOTEM POLE)
High Level Output Voltage

VOH

Low Level Output Voltage

VOL

QSA158 (BUFFER OPEN COLLECTOR)
High Level Output Current

10H

QSA159 (INVERTER OPEN COLLECTOR)
High Level Output Current

10H

100

J,LA

Ee = 0, VOH = 30V

Low Level Output Voltage

VOL

0.40

V

=,3 mW/cm2,
= 16mAl6)

3-22

OPTOLOGICTM

OPTOElECTRONICS

Ee=O or.3 mW/cm2 , f=10K HZ
DC=50%, RL = 10 TTL loads

Ee=O or .3 mW/cm 2 , f=10K HZ
DC=50%, RL =3000(6)·

Switching Test Curve For Buffers

INPUT
50%
IF
tpHL
90%

tpHL
10%

OUTPUT
VO
10%

1.4V

90%

tr

If

Switching Test Curve For Inverters

INPUT
50%
IF 
tpHL
tpHL

90%
OUTPUT
VO
90%

1.4V

10%

tr

tf

5T2141

1. Derate power dissipation linearly 2.50 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or Isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron tip 1,16" (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6. Irradiance measurements are made with an AIGaAs LED

wR,,,.I.mn;fh of 880 nm.

3-23

OPTOLOGICTM

OPTOElHTRONICS

VCCv-----~--~------------~

QSA156
Totem-Pole Output Buffer

VOUTo-----""-.

GNDO-----~--~~--------~--~
VCCo-----~--~------------~

QSA157
Totem-Pole Output Inverter

GNDO-----4---~--------~L-~
VCCv-----~~--------_r==~--~

VOLTAGE
REGULATOR
VOUT
QSA158
Open-Collector Output Buffer

GNDo-~----~----------~~--~
VCCu-------~---------,r===~~

VOLTAGE
REGULATOR
VOUT

GNDo-~----~----------~~--~
ST2140

QSA159
Open-COllector Output Inverter

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

QSC112/113/114

The QSC11X is a silicon phototransistor encapsulated in
an infrared transparent, black T-1 package.

REFERENCE
SURFACE

f

.042 (1.07)]
±.01O (±.25)
.800 (20.3)
MIN

I ,

~

~COLLECTOR

U.U

• Tight production distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Plastic package is infrared transparent black to
attenuate visible light.
• Mechanically and spectrally matched to the QECXXX
LED.
• Black plastic body allows easy recognition from LED .

sa

.018 (0.46)
±.003 (±0.08)
TYP 2 PLCS.
ST2142

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES CATHODE.

3-25

OPTOELECTRONICS

PLASTIC SILICON
PHOTOTRANSISTOR

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3,4,5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Collector-Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter-Collector Breakdown Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'li6" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Light source is an AIGaAs LED'
at a
WRI".I'!nn,m of 880 nm.

3-26

PLASTIC SILICON
PHOTODARLINGTON

OPTOElECTRONICS

QSC133

The QSC133 is a silicon photodarlington encapsulated in
an infrared transparent, black T-1 package.

REFERENCE
SURFACE

ORANGE
STRIPE

I

.042 (1.07;,1
±.010 (±.25)
.800 (20.3)
MIN

I

l

COLLECTOR

~EMITTER

.u

.050(1.27)~L
REF

.110 (2.79)
.090(2.29)

• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Plastic package is infrared transparent and tinted to
attenuate visible light.
• Mechanically and spectrally matched to the QECXXX
LED.
• Black plastic body allows easy recognition from LED.

sa

.018(0.46)
±.003 (±O.08)
TYP 2 PLCS.
ST2143

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES COLLECTOR.

3-27

OPTOElECTROIICS

PLASTIC SILICON
PHOTODARLINGTON

Storage Temperature .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2,3,4.5)
Lead Temperature (Flow) ...... , ....... ; ..................................................•.... 260°C for 10 sec. (2.3.5)
Collector-Emitter Breakdown Voltage ................................................................. :......... 30 Volts
Emitter-Collector Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW~)

1.
2.
3.
4.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 11." (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6. Ught source is an AIGaAs LED emitting light at a peak wavelength of 880 nm.

3-28

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

QSD122/123/124

The QSD12X is a silicon phototransistor encapsulated in
an infrared transparent, black T-1% package.

~
~185i''')
REFERENCE
SURFACE

.320(8.13)
.290(7.37)

t----""------'~
.040 (1.02) NOM
EMITTER
COLLECTOR

.050 (1.25) NOM

• Tight production distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechnical alignment.
• Narrow reception angle.
• Plastic package is infrared transparent black to
attenuate visible light.
• Mechanically and spectrally matched to the QED123/
222 LED.
• Black plastic body allows easy recognition from LED.

~.100(2.54) NOM

.240(6.10)
.215 (5.46)1
.025 (.640)
.015(.380)
SQNOM
2 PLCS

I
ST2144

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES EMITTER.

3-29

OPTOElECTRONICS

PLASTIC SILICON
PHOTOTRANSISTOR

Storage Temperature ................•............................................................... -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
.
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2,3.4.5)
Lead Temperature (Flow) .......................... '............................................ 260°C for 10 sec. (2,,~)
Collector-Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter-Collector Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.
2.
3.
4.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6. Ught source is an AIGaAs LED
at a
of 880 nm.

3-30

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOElECTRONICS

QSD128

'~
i'B5'j'"
REFERENCE
SURFACE

The QSD128 is a phototransistor encapsulated in
an infrared transparent, black T-1 % package. The
flat on the package indicates the collector lead.

.320 (8.13)
.290 (7.37)

I--"'-----'-I~
.040 (1.02) NOM
COLLECTOR
EMITIER

• Steel lead frames for improved reliability in
solder mounting
• Good optical-to-mechanical alignment
• Narrow reception angle
• Plastic package is infrared transparent black to
attenuate visible light
• Mechanically and spectrally matched to the
QED123/222 LED
• Black plastic body allows easy recognition from
LED
• Low cost

.100 (2.54) NOM

.240 (6.10)
.215 (5.46)
.025 (.640)
.015 (.380)
SQNOM
2 PLCS

1
ST1664

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. FLAT DENOTES COLLECTOR.

3-31

OPTOELHTRONICS

PLASTIC SILICON
PHOTOTRANSISTOR

Storage Temperature ............................................................... -40°C to +100°C
Operating Temperature ............................................................. -40°C to +100°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec. 12,3,.,5)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec. 12,3,5)
Collector-Emitter Breakdown Voltage .......................................................... 30 Volts
Emitter-Collector Breakdown Voltage ......................................................... 5.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

1.
2.
3.
4.
5.
6.

3-32

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) from housing.
As long as leads are not under any stress or spring tension.
Light source is an AIGaAs LED emitting light at a peak wavelength of 880 nm.

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

QSD422/423/424

The QSD42X is a silicon phototransistor encapsulated in
an infrared transparent, black TO-18 package.

REFERENCE
SURFACE

r
I -

L......,n----".----'-r
0.030 (0.76)

.800 (20.3)
MIN

I

EMITTER

L

~

PLLECTOR

~1-1-0.100(2.54)
~
NOM

NOM

• Tight production distribution.
• Steel lead frames for improved reliability in solder
mounting .
• Good optical-to-mechanical alignment.
• Narrow reception angle.
• Plastic package is infrared transparent black to
attenuate visible light.
• Mechanically and spectrally matched to the QED423/
523 LED.
• Black plastic body allows easy recognition from LED .

.025(6.35)
.015 (381)
SQNOM
2 PLCS

ST2145

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. TAB DENOTES EMITTER.

3-33

OPTOElEtTRONICS

PLASTIC SILICON
PHOTOTRANSISTOR

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .......................... ; ................................................... -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ........................................................................ 240°C for 5 sec. {<,51
Lead Temperature (Flow) .... , .................................................................. 260°C for 10 sec. {',51
Collector-Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter-Collector Breakdown Voltage ........................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW{11

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Light source is an AIGaAs LED emitting light at a peak wavelength of 880 nm.

3-34

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

QSD722/723/724

,190(4,83)
[

.178(4.62)

The QSD72X is a silicon phototransistor encapsulated in
an infrared transparent, black TO-18 package.

~I

Tl

-I- -

REFERENCE
SURFACE

1
i'-/

'

.235 (5.97)
.218(5.54)

I

• Tight production distribution.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow reception angle.
• Plastic package is infrared transparent black to
attenuate visible light.
• Mechanically and spectrally matched to the QED423/
523 LED.
• Black plastic body allows easy recognition from LED.

I
0.030 (0.76) NOM
EMITTER
.800(20.3)
MIN

k1U'Jf--

.05(1.27)
NOM

-I
-I

ocmcro

,

I

1-0.100(2.54) NOM

ST2146

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.O1O (.25)
UNLESS OTHERWISE SPECIFIED.
3. TAB DENOTES EMITTER.

3-35

OPTOnHTnONICS

PLASTIC SILICON
PHOTOTRANSISTOR

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................. , ............................................... -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4.5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Collector-Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter-Collector Breakdown Voltage ........................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.
2.
3.
4.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6.
is an AIGaAs LED
.
at a
of BBO nm.

3-36

PLASTIC SILICON
PHOTODARLINGTON

OPTOELECTRONICS

QSD733

[ :~;~~::~~~-J-,-r--rl
-J-

REFERENCE
SURFACE
ORANGE
STRIPE

The OS0733 is a silicon photodarlington encapsulated in
an infrared transparent, black TO-18 package.

45°

'i'{

I

.235 (5.97)
.218(5.54)

Lw-.-:J~
f

0.030 (0.76) NOM
EMITTER

k

.800(20.3)
MIN

.05 (1.27)
NOM

~~L

• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow reception angle.
• Plastic package is infrared transparent black to
attenuate visible light.
• Mechanically and spectrally matched to the OE0523
LED.
• Black plastic body allows easy recognition from LED.

j-OOLLECTOR

- I
-I

I

I- 0.100 (2.54) NOM

ST2147

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. TAB DENOTES EMITTER.

3-37

OPTOELECTRONICS

PLASTIC SILICON
PHOTODARLINGTON

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4.5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Collector-Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter-Collector Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW' )

1.
2.
3.
4.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6. Light source is an AIGaAs LED emitting light at a peak wavelength of 880 nm.

3-38

SIDELOOKER
PHOTOTRANSISTOR

OPTOElECTRONICS

QSE113/114

.08 DIA.

.050(1.27)

The QSE11X family is a silicon phototransistor
encapsulated in a wide angle, infrared transparent, dark
blue, plastic sidelooker shell package .

.200(5.08)

h-r---,...,.-I{
.062 DIA

EMITTER

.500(12.7)
MIN
::[COLLECTOR

sa
-11--.020(0.51)
NOM
. 100(2.54)1

I

• Tight production distribution with min/max limits .
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Plastic package is infrared transparent and tinted to
attenuate visible light.
• Mechanically and spectrally matched to the QEE113
and QEE123 LEOs .
• Dark blue shell body allows easy recognition from LED.

:!:::l[]J3·
.020(0.51)

Y-J

L

54 )

.175(4.44)
ST2148

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

3-39

SIDELOOKER
PHOTOTRANSISTOR

Storage Temperature ............ , . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . .. -40°C to + 100°C
Operating Temperature ............................................................................... -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3,4,5)
Lead Temperature (Flow) " " " " " " " " " , . , ................... , ............................ , 260°C for 10 sec. (2,3,5)
Collector-Emitter Breakdown Voltage ....................................................... ' ............... ,... 30 Volts
Emitter-Collector Breakdown Voltage ................... , .. , . , ..... , ....... , .. , .... , . , ...... , .... , ... , .... , ... ,. 5.0 Volts
Power Dissipation .................... , .............. , ..... , ........................... , ....... , .......... , .. 100 mW(l)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'A.H (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Ught source is an AIGaAs LED
at a
of 880 nm.

3-40

SIDELOOKER
PHOTOTRANSISTOR

OPTOElECTRONICS

QSE122/123

The QSE12X family is a silicon phototransistor
encapsulated in a wide angle, infrared transparent, dark
blue, plastic sidelooker shell package.

.08 DIA.

I

.050(1.27)

.200(5.08)

h..-----r.....
.062 DIA

==f--

EMmER

.500 (12.7)
MIN
::LCOLLECTOR

sa
-11-.020(0.51)
NOM
. 100(2.54)1

I

Y[]J3·

L

.020 (0.51)J""J

• High Sensitivity.
• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Plastic package is infrared transparent and tinted to
attenuate visible light.
• Mechanically and spectrally matched to the QEE113
and QEE123 LEOs .
• Dark blue shell body allows easy recognition from LED.

54)

.175(4.44)
ST2149

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

3-41

OPTOElECTRONICS

SIDELOOKER
PHOTOTRANSISTOR

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2~.4~)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3~)
Coliector·Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter·Coliector Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33 mWrC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip fAB" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Ught source is an AIGaAs LED
of 880 nm.

3·42

SIDELOOKER
PHOTODARLINGTON

OPTOELECTRONICS

QSE133

The QSE133 is a silicon photodarlington encapsulated in
a wide angle, infrared transparent, dark blue, plastic
sidelooker shell package.

.08 DIA.

I

.050(1.27)

.200(5.08)

~-,---,

.... {

.062 DIA

EMITTER

.500(12.7)
MIN
::[COLLECTOR

(0.51) sa
-11--.020 NOM
.100:tjJ2.54)

.

• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Plastic package is infrared transparent and tinted to
attenuate visible light.
• Mechanically and spectrally matched to the QEE113
and QEE123 LEOs .
• Dark blue shell body allows easy recognition from LED.

----r
o

0

.020 (0.51)r-J

~.54)

L

.175 (4.44)
ST2150

NOTES:

1. DIMENSIONS ARE IN INCHES (mm).

2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

3-43

OPTOELECTRONICS

SIDELOOKER
PHOTODARLINGTON

Storage Temperature ........................................................ '........................ -40°C to + 100°C
Operating Temperature .............................................................................. :"40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2."'.5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Collector-Emitter Breakdown Voltage ........................................................................... 30 Volts
Emitter-Collector Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(l)

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip VI." (1.6 mm) minimum from housing.
5. As long as leads are not under any stress or spring tension.
6.
source is an AIGaAs LED
.
at a
of 880 nm.

1.
2.
3.
4.

3-44

OPTOLOGICTM

OPTOELECTRONICS

QSE156/157/158/159

.08 DIA.

.050(1.27)

I

J-,"T"1~...-J~OBI

jlN

.062 DIA

.075(1.90)!

.500(12.7)

~ L-111-:9

-I I-

~~~) sa

.075 (1.90)

GROUND ~VOUT

L-

20

The QSE15X family are OPTOLOGICTM ICs which feature
a Schmitt trigger at output which provides hysteresis for
noise immunity and pulse shaping. The basic building
block of this IC consists of a photodiode, a linear
amplifier, voltage regulator, Schmitt trigger and four
output options. The TILILSTIL compatible output can
drive up to ten TIL loads over supply currents from 4.5 to
16.0 volts. The dark red epoxy packaging system is
designed to optimize the mechanical resolution, coupling
efficiency, cost, and reliability.

vee

La~1

•
•
•
•

High noise immunity.
Direct TILILSTIL interface.
Steel lead frames for improved solder mounting.
Reception angle of ±25°.

l

.020 (0'51)r-J
.175(4.44)

ST2151

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

3-45

OPTOLOGICTM

OPTOElECTRONICS

Supply Voltage, Vee ........................................................................................... 18 volts
Storage Temperature .................................................................................. -40°C + 100°C
Operating Temperature ............................................................................... -40°C to + 85°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec. (2.M5)
Lead Temperature (Flow) ...................................................................... 260°C for 10 sec. (2.3.5)
Power Dissipation ........................................................................................... 100 mW(1)
Duration of Output short to Vee ................................................................................ 1.00 sec.
Voltage at Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 volts
Sinking Current ............................................................................................... 50 mA
Sourcing Current (QSE156, QSE157) ............................................................................. 10 mA
Irradiance ............................................................................................... 3.0 mW/cm 2

Peak to peak ripple which will
cause false triggering

2.00

V

f = DC to 50 MHZ

V

Ee = .3 mW/cm 2 ,

QSE156 (BUFFER TOTEM POLE)
High Level Output Voltage

VOH

10H

= -1.0 mAlS)

QSE158 (BUFFER OPEN COLLECTOR)
High Level Output Current

10H

100

Ee = .3 mW/cm 2 , VOH = 30 V{S)

100

Ee

QSE159 (INVERTER OPEN COLLECTOR)
High Level Output Current

3-46

10H

= 0, V = 30V
OH

j"

OPTOLOGICTM

OPTOELECTRONICS

Ee=O or.3 mW/cm2 , f=10K Hz
DC=50%, RL =10 TIL loads(B)

Ee=O or .3 mW/cm2 , f=10K Hz
DC=50%, RL=3000(61•

Switching Test Curve for Buffers
INPUT
50%
IF

90%

10%

OUTPUT

VO

1t-1:-:0:::01c-:-o----.:g:-:0~%:+t----1.4 V

tr

tf

Switching Test Curve for Inverters

INPUT
50%
IF 

10%

90%

OUTPUT

VO

l-:::g"'0"'%,.----:1""'0""'%,.-fIf---- 1.4 V
tr

tf

ST2153

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 4.00 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Irradiance measurements are made with an AIGaAs LED emitting light at a peak wavelength of 880 nm.

3-47

OPTOLOGICTM

OPTOELECTRONICS

VCCo-----~----~--------------_,

QSE156
Totem-Pole Output Buffer
VOUTo--~:::I.-

GNDO-----~----4-----------~--~

VCCo-----~----~--------------__,

QSE157
Totem-Pole Output Inverter
VOUTo--~:::I.-

GNDo-----~----4-----------~--~

VCCu----~-----_r==~-~

VOLTAGE
REGULATOR
VOUT

QSE158
Open-Collector Output Buffer

GNDo-~~--~~----------~----~

VCCo----~-----_r==~-~

VOLTAGE
REGULATOR
VOUT

GNDo-~-----+------------~--~

3-48

QSE159
Open-Collector Output Inverter

SIDELOOKER PIN
PHOTODIODE

OPTOELECTRONICS

QSE773

c==n

The QSE773 is a silicon PIN photodiode encapsulated in
an infrared transparent, black, plastic sidelooker
package.

--.£.108 (2.75)
±.008

-r

.118 (3.00)
±.008

.610 (15.48)
MIN

OPTICAL CENTER
RADIANT SENSITIVE AREA

.107 (2.71) X .107 (2.71)

.100 (2.54)

ST1665

• High sensitivity
• Lowcost
• Plastic package is infrared transparent and tinted to
attenuate visible light

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).

3-49

SIDELOOKER PIN
PHOTODIODE

Storage Temperature ................................................................ -40°C to +85°C
Operating Temperature .............................................................. -40°C to +85°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(2,3,.,5)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(2,3,5)
Reverse Voltage ..... , ...... ,.,., .... , ........... , .. , ............................ , ....... ,.. 32 Volts
Power Dissipation .. , .. ,.,., ..... , ...... ,., ... , .................. , .......... , .............. 150 mW(l)

1,
2,
3.
4.
5,
6.

3-50

Derate power dissipation linearly 2,50 mW/oC above 25°C,
RMA flux is recommended,
Methanol or Isopropyl alcohols are recommended as cleaning agents,
Soldering iron tip '/,." (1,6 mm) from housing.
As long as leads are not under any stress or spring tension.
Light source is an GaAs LED emitting light at a peak wavelength of 940 nm.

SIDELOOKER PIN
PHOTODIODE

OPTOELECTRONICS

QSE973

The QSE973 is a silicon PIN photodiode encapsulated in
an infrared transparent, black, plastic sidelooker
package .
. 150(3.81)

SENSING
SURFACE

I

I

I

:

I :

......- -...1-+-1
.118 (3.00)
±.008

I

I

I

I

• High sensitivity
• Lowcost
• Plastic package is infrared transparent and tinted to
attenuate visible light

.610 (15.48)
MIN

L

CATHODE
ANODE

.100 (2.54)
ST1666

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).

3-51

[!ii
OPTOELECTRONICS

SIDELOOKER PIN
PHOTODIODE

Storage Temperature ................................................................ -40°C to +85°C
Operating Temperature .................................................. , ........... -40°C to +85°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(2,3,4,5)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(2,3,5)
Reverse Voltage ................................................................ , . . . . . . . . . .. 32 Volts
Power Dissipation ......................................................................... 150 mW(1)

1.
2.
3.
4.
5.
6.

3-52

Derate power dissipation linearly 2.50 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'lie" (1.6 mm) from housing.
As long as leads are not under any stress or spring tension.
Ught source is an GaAs LED
of 940 nm.

HERMETIC PAIR

OPTOElECTRONICS

QPA1223

.230 (5.48)
.209(5.31)

111 ~. . . . ;...-.,.
1;<--""

.205 (5.21)
.190 (4.83)

.255 (6.48)
MAX

.~;:;;:!l.---1.

J

.030 (0.76) *r==l!=n=:::::;:;:!l
MAX
.021 (0.53)
1.00(25.4)
.016(0.41)
MIN
DIA2 PLCS

.021 (0.53)
.016(0.41)
DIA3 PLCS

L

CATH~ODE~~~~~
~

.044(1.12)

~

.046 (1.17)
.036(0.91)

.031 (0.79)

PHOTOTRANSISTOR

INFRARED LED

ST2137

ST2137

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

The QPA1223 consists of an 880 nm AIGaAs LED
and a silicon phototransistor mounted in TO-46
(LED) and TO-18 (sensor) metal can packages.

• Narrow emission/reception angle.
• Hermetically sealed packages.

3-53

HERMETIC PAIR

OPTOElECTRONICS

Storage Temperature ................................................' ................................ -65°C to + 150°C
Operating Temperature , ...................... , ...................................................... -65°C to + 125°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.5)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.5)

INPUT DIODE
Continuous Forward Current ................................................................................... 100 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 170 mW(1)
OUTPUT TRANSISTOR
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation .......................................................................................... 300 mW(1)

1.70

30

V

V

IF = 1.0 mA, Ee = 0

COUPLED
On-State Collector Current

1.
2.
3.
4.

Derate power dissipation linearly 1.70 mW/oC above 25°C for input diode; 3.00 mW;oC for output transistor.
RMA flux is recommended.
Soldering iron tip 'A6" (1.6 mm) minimum from case.
D is the distance from lens tip to lens tip.
5. As long as leads are not under any stress or spring tension.

3-54

HERMETIC PAIR

OPTOElECTRONICS

QPA8259

.215(5.46)

To5(5.21)

1

11r--->;ii---r-

.021 (0.53)

.021 (0.53)

~

D~l~(~~/'

DIA3 PLCS

VCC

PHOTOSENSOR

INFRARED LED

ST1661

ST1660

NOTES:
1. DIMENSIONS ARE IN INCHES [mm].
2. TOLERANCE IS ±.O1O [.25]
UNLESS OTHERWISE SPECIFIED.

The QPA8259 consists of an 880nm AIGaAs LED
and an OPTOLOGICTM silicon photosensor
mounted in hermatically sealed packages.

• Narrow emission/reception angle
• Hermetically sealed packages

3-55

HERMETIC PAIR

OPTOElECTRONICS

Storage Temperature ......................................................... ; ..... -6SoC to +1S0°C
Operating Temperature ............................................ , ................ -6SoC to +12SoC
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for S sec.(3,·,5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec. la ,.)
INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 3.0 Volts
Power Dissipation ......................................................................... 170 mW(1)
OUTPUTOPTOLOGICTM

Output Current .............................................................................. SO mA
Operation Voltage Allowed Range ....................................................... 4.S to 16 Volts
Output Voltage Allowed Range .......................................................... 4.S to 16 Volts
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2S0 mW(2)

4.5

1.
2.
3.
4.
5.
6.

3-S6

Derate power dissipation linearly 1.70 mW/oC above 25°C.
Derate power dissipation linearly 2.50 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) from housing.
0 is the distance from lens
to lens

16.0

v

20.0

rnA

Vee

= 5 V, RL = 2700., D = ,250"(6)

r!li

PLASTIC T·1 PAIR

OPTOELECTRONICS

QPC1213

.018(0.46)Saill1654 19)
±.003 (±0.08)
TYP 2 PLCS.
A'
3.68)

al .

.

.018 (0.46) sa
±.OO3(±0.08)
TYP 2 PLCS.

INFRARED LED

PHOTOTRANSISTOR
ST213B
ST213B

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

The QPC1213 consists of an 880 nm AIGaAs LED
and a silicon phototransistor mounted in plastic T-1
packages.

• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow emission/reception angle.
• Black plastic body allows easy recognition of sensor.

3-57

PLASTIC T·1 PAIR

OPTOElECTRONICS

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2,3,5)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2,5)

INPUT DIODE
Continuous Forward Current .. , . , ..... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Reverse Voltage ..................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(l)
OUTPUT TRANSISTOR
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(l)

OUTPUT TRANSISTOR
Collector-Emitter Breakdown

30

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Soldering iron tip 06" (1.6 mm) minimum from case.
D is the distance from lens tip to lens tip.
As
as leads are not under
tension.

3-58

V

IF = 1.0 mA, Ee = 0

PLASTIC T·1% PAIR

OPTOElECTRONICS

QPD1223

REFERENCE
SURFACE

.040 (1.02)
.800 (20.3gtMINEMITTER
COLLECTOR

.050 (1.25) NOM

.025 (.640)
.015 (.380)
SO NOM
2 PLCS

~
D

t
.240 (6.10)
.215 (5.46)

.100 (2.54) NOM

~
D

.025 (.640)
.015 (.380)
SO NOM
2 PLCS

I

INFRARED LED

I

.240 (6.10)
.215 (5.48)

I

PHOTOTRANSISTOR

ST2169

ST2169

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

The OPD1223 consists of an 880 nm AIGaAS LED
and a silicon phototransistor mounted in plastic
T-1% packages.

• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow emission/reception angle.
• Black plaS1ic body allows easy recognition of sensor.

3-59

PLASTIC T·1% PAIR

OPTOELECTRONICS

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature .............................................................................. _40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2,3,5)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2,5)

INPUT DIODE
Continuous Forward Current ............. , ............................................................ , ........ 100 mA
Reverse Voltage .................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation .......................................................................................... 200 mW(1)
OUTPUT TRANSISTOR
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.70

30

V

V

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.

Derate power dissipation linearly 2.67 mW/oC above 25°C for LED and 1.33 mW/oC for sensor.
RMA flux is recommended.
Soldering iron tip 0." (1.6mm) minimum from case.
0 is the distance from lens tip to lens tip.
As long as leads are not under any stress or spring tension.

3-60

I,

= 1.0 mA, Ee = 0

PLASTIC TO·46/T0·18 PAIR

OPTOElECTRONICS

QPD5223

.190 (4.83)

CO (4.52] ,
REFERENCE
SURFACE

r-

.230 (3.84)
.220 (5.33)

~;:J-1

I

.080 (20.3)

.BOO (20.3)

MIN

G1if

MIN

.05

(1.27)~

NOM

~.100 (2.54)

r223(S.",]

.05 (1.27)

NOM

NOM

.205(5.21)

Y

,

-I
-l

COLLECTOR

0.100 (2.54) NOM
225 (5.72)
[205 (5.21)1

,~

-e-:*'-&=l=
45°

_iI-

~1if

_YANODE

0.020 (0.51)

0.020 (0.51)

SQNOM

SQNOM

.020 (0.51)

.022 (0.56)

NOM RADIUS
PHOTOTRANSISTOR

NOM RADIUS
INFRARED LED

ST2170

ST2170

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.

The QPD5223 consists of an 880 nm AIGaAs LED
and a silicon phototransistor mounted in plastic
TO-46 (LED) and TO-18 (sensor) packages.

• Steel lead frames for improved reliability in solder
mounting.
• Good optical-to-mechanical alignment.
• Narrow emission/reception angle.
• Black plastic body allows easy recognition of sensor.

3-61

PLASTIC TO·46/T0·18 PAIR

OPTOElECTRONICS

Storage Temperature .............................................................................. " -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3,5)
Lead Temperature (Flow) .,., .... , .. ,.,., ....... , ... , .. ,., .. , ................................... 260°C for 10 sec. (2.5)

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation .......................................................................................... 200 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage " .... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

1.70

30

V

V

IF

= 1.0 mA, Ee = 0

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.

Derate power dissipation linearly 2.67 mW/oC above 25°C for LED and 1.33 mW/oC for the sensor.
RMA flux is recommended.
Soldering iron tip 06" (1.6mm) minimum from case.
D is the distance from lens tip to lens tip.
As
as leads are not under
stress or
tension.

3-62

PLASTIC SIDELOOKER PAIR

OPTOELECTRONICS

QPE1113

.050 (1.27)

.050 (1.27)
.062 DIA.

I

EMITTER

CATHODE

.500 (12.7)
MIN

ANODE

L

(0.51) SO
-I ,I-.020 NOM

-11-.020 (0.51) SO
NOM

.100 (2.54)1 .

.020 (0.51)

1".

I

~2.54)

I

.020 (0.51)r-1

1

-.175 (4.44)-

-.175 (4.44
INFRARED LED

PHOTOTRANSISTOR
ST2171

ST2171

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.

The QPE1113 consists of a 940nm GaAs LED and
a silicon phototransistor mounted in plastic
side looker packages.

• Steel lead frames for improved reliability in solder
mounting.
• Excellent optical-to-mechanical alignment.
• Wide emission/reception angle.
• Black plastic body allows easy recognition of sensor
and filters ambient visible light.

3-63

PLASTIC SIDELOOKER PAIR

OPTOELECTRONICS

Storage Temperature ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2,3.5)
Lead Temperature (Flow) ....... , .. , . , ........ , ... , .. , . , ... , ....... , ............................ 260°C for 10 sec, (2,5)

INPUT DIODE
Continuous Forward Current , , .. , . , .... , . , ...... , . , ... , .... , ... , .. , .... , .. , ..... , . , . , , , . , .... , .......... , .... , .. 60 mA
Reverse Voltage .,." .. ,."" .... , .... , .......... " ..... , ... , ...... , .... , .... ,., ........ , .. ,,.,., ...... ,.,.,' 5.0 Volts
Power Dissipation .... , . , ................... , .... , .. , . , ... , ........ , .. , . , .. , . , . , . , . , . , .... , ... , . , . , .... , . , . '. 100 mW(l)

OUTPUT TRANSISTOR
Collector-Emitter Voltage , .... , .. , . , .... , . , ........ , ...... , . , . , ............ , . , ... , . , . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage .,." ...... , ..... , ..... '., .. ,.,., ....... , ..... , ........ , .. , ... , ... ,., .... , .. , ... "... 5.0 Volts
Power Dissipation ..... ,., .... , .... , .. , .. , ................ , ..... , .. ,." .... ,.,.,., ... , .. ,.,., ... , ........ ,.,. 100 mW(l)

OUTPUT TRANSISTOR
Collector-Emitter Breakdown

30

COUPLED
On-State Collector Current

1.
2,
3.
4,

Derate power dissipation linearly 133 mW/oC above 25°C.
RMA flux is recommended,
Soldering iron tip 'if." (1.6mm) minimum from case.
D is the distance from lens tip to lens tip.
5. As
as leads are not under
tension.

3-64

V

Ie

= 1.0 mA, Ee = 0

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

QPE1259

I

.050 (1.27)

.200 (3.08)
.06201A

i'-1-r---,,.,-I==f-_"
.0620IA.

.050 (1.28)r.500 (12.7)
MIN

.500 (127)
MIN

II-

-1

.020 (0.51)
NOM

J
sa

.075 (1.90)

PHOTOSENSOR

INFRARED LED

ST1662

ST1663

NOTES:
1. DIMENSIONS ARE IN INCHES [mm].
2. TOLERANCE IS ±.O1O [.25]
UNLESS OTHERWISE SPECIFIED.

The QPE1259 consists of a gallium arsenide LED
and an OPTOLOGICTM silicon photosensor
mounted in plastic sidelooker packages.

• Steel lead frames for improved reliability in solder
mounting
• Excellent optical-to-mechanical alignment
• Wide emission/reception angle
• Black plastic body allows easy recognition of sensor
and filters ambient visible light

3-65

PLASTIC SIDELOOKER PAIR

OPTOELECTRONICS

Storage Temperature ............................................................... -40°C to +100°C
Operating Temperature .............................................................. -40°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec. I3.4-5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec. IM)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(l)

OUTPUT OPTOLOGICTM
Output Current .............................................................................. 50 mA
Operation Voltage Allowed Range ....................................................... 4.5 to 16 Volts
Output Voltage Allowed Range .......................................................... 2.4 to 30 Volts
Power Dissipation ......................................................................... 200 mW(2)

4.5

1.
2.
3.
4.
5.
6.

3-66

Derate power dissipation linearly 1.67 mW/DC above 25 DC.
Derate poWer dissipation linearly 3.33 mW/DC above 25 DC.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Sordering iron tip 'If." (1.6 mm) from housing.
D is the distance from lens
to lens

16.0

v

20.0

rnA

Vee = 5 V, RL = 270n, D = .155"(6)

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

QCK3/QCK4 SURFACE MOUNTABLE OPTO INTERRUPTER

2

The QCK3/QCK4 is a slotted optical switch designed for
surface mount applications where extreme temperatures
are experienced during solder reflow. The switch consists
of a GaAs LED and a silicon photodarlington facing each
other across a .157" (4.0 mm) gap. The leads are formed
to sit flush on a PCB during solder reflow.

3

Pin 1

4

• Unique single piece housing designed to reduce cost.
• High temperature housing material to withstand
extreme temperature.
• High current transfer ratios (CTR) for low drive current
at extreme temperature.
• Shipped in plastic tubes for protection of leads and to
feed automatic placement equipment.
• Sensor package is infrared transparent and tinted to
attenuate visible light.

ST2168

PINOUT:
1-ANODE
2-CATHODE
3 - COLLECTOR
4-EMITIER
NOTES:
1. ALL LEADS ARE CO-PLANAR WITHIN .006".
2. UNLESS SPECIFIED, GENERAL TOLERANCE IS ±.010".
3. HOUSING MATERIAL IS ELECTRICALLY CONDUCTIVE.

3-67

SLOTTED OPTICAL SWITCH

OPTOElECTnOllCS

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature ............................................................................... -40°C to + 100°C
Surface mount soldering temperature: (IR reflow solder chamber)
Pre-heating stage 60 seconds max. . ......................................................................... 183°C
Reflow stage 5 seconds max. ............................................................................... 230°C
NOTE: The rate·of temperature rise shall be between 3°C and 10°C per second.
INPUT DIODE
Continuous Forward Current .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)
OUTPUT TRANSISTOR
Collector-Emitter Voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Collector Current .............................................................................................. 40 mA
Power Dissipation ........................................................................................... 100 mW~)

1.40

30

COUPLED
On-State Collector Current

3-68

V

IF

= 2.0mA

V

Ie

= 1.0 mA, Ee = 0

REFLECTIVE OBJECT SENSORS

OPTOElECTROHICS

QRB1113/1114

.062 R NOM

.---

.226 (5.74)

The QRB1113/1114 consists of an infrared emitting diode
and an NPN silicon phototransistor mounted side by side
on a converging optical axis in a black plastic housing .
The phototransistor responds to radiation from the
emitting diode only when a reflective object passes within
its field of view. The area of the optimum response
approximates a circle .200" in diameter.

..1.-(E)
(C)

.703 (17.86)

I

• Phototransistor output
• High Sensitivity
• Low cost plastic housing
• IR transparent plastic covers for dust protection .

~

r D

.3731:0

r

r

.903 (22.94)----j

1

.210 (5.33)

f

.603 (15.32)

19

1
ST2179

FUNCTION
(C) COLLECTOR
(E) EMITTER
(I<) CATHODE
(A) ANODE
NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010" (.25)
UNLESS OTHERWISE SPECIFIED.

3-69

OPTOElECTRONICS

REFLECTIVE OBdECT SENSORS

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.3)

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Collector Current .............................................................................................. 40 mA
Power Dissipation ........................................................................................... 100 mW(1)

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron I1B" (1.6mm) from housing
D is the distance from the assembly face to the reflective surface.
Measured using Eastman Kodak neutral test card with 90% diffused reflecting surface.
Cross talk is the photocurrent measured with current to the input diode and no reflecting surface.

3-70

[ill

REFLECTIVE OBJECT SENSORS

OPTOElECTROIICS

QRB1133/1134

.062 R
NOM

.

.-~

-j'L

.150 (3.81) NOM
POINT OF
OPTIMUM
RESPONSE

~
LD
to

.703 (17.86)
.373

I

r1.

The QRB1133/1134 consists of an infrared emitting diode
and an NPN silicon phototransistor mounted side by side
on a converging optical axis in a black plastic housing .
The phototransistor responds to radiation from the
emitting diode only when a reflective object passes within
its field of view. The area of the optimum response
approximates a circle .200" in diameter.

•
•
•
•
•

Phototransistor output
High Sensitivity
Low cost plastic housing
#26 AWG, 24 inch PVC wire termination
Infrared transparent plastic covers for dust protection.

.903 (22.94)-=1

I

,

.210 (5.33)

603 (15.32)

~vf

I

r

I

ST2177

FUNCTION

WIRE COLOR

(C)
(E)
(K)
(A)

WHITE
BLUE
GREEN
ORANGE

COLLECTOR
EMITTER
CATHODE
ANODE

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010" (.25)
UNLESS OTHERWISE SPECIFIED.

3,71

REFLECTIVE OBJECT SENSORS

OPTOELECTRONICS

Storage Temperature ................................................................................. -40°C to + 85°C
Operating Temperature ............................................................................... -40°C to + 85°C
Soldering:
lead Temperature (Iron) ....................................................................... 240°C for 5 sec. 12.3.41
lead Temperature (Flow) ....................................................................... 260°C for 10 sec. 12.31

INPUT DIODE
Continuous Forward Current .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 rnA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mWl11

OUTPUT TRANSISTOR
Collector-Emitter Voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Collector Current .............................................................................................. 40 rnA
Power Dissipation ........................................................................................... 100 mWI11

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

5

V

IE = 100pA, Ee = 0

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropanol alcohols are recommended as cleaning agents.
Soldering iron 06" (1.6mm) from housing
D is the distance from the assembly face to the reflective surface.
Cross talk is the photocurrent measured with current to the input diode and no reflecting surface.
Measured
Eastman Kodak neutral test card with 90% diffused
surface.

3-72

REFLECTIVE OB.JECT SENSORS

OPTOELECTRONICS

QRC1113

.062 R
NOM

.

.- .:;-.-

-'j'L

The QRC1113 consists of an infrared emitting diode and
an NPN silicon phototransistor mounted side by side on
a converging optical axis in a black plastic housing. The
phototransistor responds to radiation from the emitting
diode only when a reflective object passes within its field
of view. The area of the optimum response approximates
a circle .200" in diameter.

.150 (3.81) NOM
POINT OF
OPTIMUM
RESPONSE

.703 (17.86)

I

.373

• Phototransistor output
• High Sensitivity
• Low cost plastic housing

~
E[]]
r

[Q]

,

.210 (5.33)
ST2178

(C)
(E)
(I<)
(A)

COLLECTOR
EMITIER
CATHODE
ANODE

NOTES:
1. CATHODE AND EMITIER LEADS
ARE .050 NOM SHORTER THAN
ANODE AND COLLECTOR LEADS.
2. DIMENSIONS ARE IN INCHES (mm).
3. TOLERANCE IS ±.010" [.25] UNLESS
OTHERWISE SPECIFIED.

3-73

REFLECTIVE OBJECT SENSORS

OPTOElECTRONICS

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature ............................................................. . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2 ....1
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.31

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(11

OUTPUT TRANSISTOR
Collector-Emitter Voltage ...................................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Collector Current .............................................................................................. 40 mA
Power Dissipation ........................................................................................... 100 mWnl

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

5

V

.200

mA

COUPLED
On-State Collector Current

1,
2.
3.
4,
5.
6.
7,

IF

= 40 mA, VeE = 5 V, D = .150"(5,7)

Derate power dissipation linearly 1.67 mW;oC above 25°C,
RMA flux is recommended,
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron 06" (1.6mm) from housing,
D is the distance from the assembly face to the reflective surface.
Cross talk is the photocurrent measured with current to the input diode and no reflecting surface.
Measured using Eastman Kodak neutral test card with 90% diffused
surface.

3-74

REFLECTIVE OBJECT SENSOR

OPTOELECTRONICS

QRC1133

.063 R NOM

. 150 (3.81) NOM
POINT OF
OPTIMUM
RESPONSE

.703(17.86)

I

FUNCTION
(C) COLLECTOR
(E) EMITTER
(I<) CATHODE
(A) ANODE

~
LmJ

r [[]

The QRC1133 consists of an infrared emitting diode and
an NPN silicon phototransistor mounted side by side on
a converging optical axis in a black plastic housing. The
phototransistor reponds to radiation from the emitting
diode only when a reflective object passes within its field
of view. The area of optimum response approximates a
circle .200" in diameter.

•
•
•
•

Phototransistor output
High Sensitivity
Low cost plastic housing
#26 AWG, 24 inch PVC wire termination

.373

WIRE COLOR
WHITE
BLUE
GREEN
ORANGE

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.O1O (.25)
UNLESS OTHERWISE SPECIFIED.

3-75

REFLECTIVE OBJECT SENSOR

OPTOElECTRONICS

Storage Temperature ................................................................ -40°C to +85°C
Operating Temperature .............................................................. -40°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(2.3.4)
Lead Temperature (Flow) ..................................................•... 260°C for 10 sec.(2.3)

INPUT DIODE
Continuous Forward Current .................................................................. 50 rnA
Reverse Voltage ........................................................................... 5.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage ....................................................................... 30 V
Emitter-Collector Voltage ........................................................................ 5 V
Collector Current ............................................................................ 40 rnA
Power Dissipation ........................................................................ 100 mW(1)

1.70

0.20

1.
2.
3.
4.
5.
6.
7.

3-76

V

rnA

IF

= 40 rnA, VeE = 5 V, D = .150"(5.7)

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0.' (1.6 mm) from housing.
D is the distance from the assembly face to the reflective surface.
Cross talk is the photocurrent measured with current to the input diode and no reflecting surface.
Measured using Eastman Kodak neutral test card with 90% diffused reflecting surface.

REFLECTIVE OBJECT SENSOR

OPTOElECTRONICS

QRD1113/1114

The QRD1113/1114 reflective sensors consist of an
infrared emitting diode and an NPN silicon
phototransistor mounted side by side in a black plastic
housing. The on-axis radiation of the emitter and the
on-axis response of the detector are both perpendicular
to the face of the QRD1113/1114. The phototransistor
responds to radiation emitted from the diode only when a
reflective object or surface is in the field of view of the
detector .

PIN 1
INDICATOR

.--

r-

.183 (4.65)

.020 (0.51)
SQNOM
4 PLCS

.500 (12.7)
MIN

L~f

Qi

•
•
•
•

Phototransistor output.
Unfocused for sensing diffused surfaces .
Low cost plastic housing.
Designed for paper path and other non-contact surface
sensing.

3 .100(2.54),

1

NOTE 4
.083 (2.11) . / '

ST2172

NOTES:
1. PINS 2 AND 4 TYPICALLY
.050" SHORTER THAN PINS 1 AND 3
2. DIMENSIONS ARE IN INCHES (mm).
3. TOLERANCE IS ±.010" [.25]
UNLESS OTHERWISE SPECIFIED.
4. THESE DIMENSIONS ARE CONTROLLED
AT HOUSING SURFACE.

3-77

OPTOElECTRONICS

REFLECTIVE OBJECT SENSOR

Storage Temperature ................................................................................ -40°C to + 100°C
Operating Temperature ............................................................................... -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. 12.3,41
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. 12,41

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mWl11

OUTPUT TRANSISTOR
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mwm

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
RMA flux is recommended.
Soldering iron 'A." (1.6mm) from housing.
As long as leads are not under any stress or spring tension.
D is the distance from the sensor face to the reflective surface.
Crosstalk{lcxJ is the collector current measured with the indicated current on the input diode and with no reflective surface.
Measured . Eastman Kodak neutral white test card with 90% diffused
as a
surface.

3-78

REFLECTIVE OBJECT SENSOR

OPTOElECTRONICS

QRD1313

The QRD1313 reflective sensors consists of an infrared
emitting diode and an NPN silicon photodarlington
mounted side by side in a black plastic housing. The
on-axis radiation of the emitter and the on-axis response
of the detector are both perpendicular to the face of the
QRD1313. The photodarlington responds to radiation
emitted from the diode only when a reflective object or
surface is in the field of view of the detector.

PIN 1
INDICATOR

.020 (0.51)
SQNOM
4 PLCS

•
•
•
•

Photodarlington output.
Unfocused for sensing diffused surfaces .
Low cost plastic housing.
Designed for paper path and other non-contact surface
sensing.

Qi
3

•

1

.100 (2.54) ............

4

NOTE 4
.083 (2.11) ...........

ST2173

NOTES:
1. PINS 2 AND 4 TYPICALLY
.050" SHORTER THAN PINS 1 AND 3
2. DIMENSIONS ARE IN INCHES (mm).
3. TOLERANCE IS +.010" [.25]
UNLESS OTHERWISE SPECIFIED.
4. THESE DIMENSIONS ARE CONTROLLED
AT HOUSING SURFACE.

3-79

REFLECTIVE OBJECT SENSOR

OPTOElECTRONICS

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Operating Temperature .............................................................................. -40°C to + 100°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.4)

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)
OUTPUT DARLINGTON
Collector-Emitter Voltage ...................................................................................... 15 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

10.0

1.
2.
3.
4.
5.
6.
7.

mA

IF

= 20 mA, Vee = 5.0V; D = .050"

Derate power dissipation linearly 1.33 mW;oC above 25°C.
RMA flux is recommended.
Soldering iron 11." (1.6mm) minimum from housing.
As long as leads are not under any stress or spring tension.
D is the distance from the sensor face to the reflective surface.
Crosstalk(lcxJ is the collector current measured with the indicated current on the input diode and with no reflective surface.
Measured
Eastman Kodak neutral white test card with 90% diffused
as a
surface.

3-80

(5.7)

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

QVASERIES

The OVA series of switches is designed to allow the user
maximum flexibility in applications. Each switch consists
of an infrared emitting diode facing an NPN
phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust and dirt buildup while molded internal
apertures give precise positioning and also provide
protection from ambient light interference.

SEENOTE3~

PIN 1

f IDENtiFiCATION
k AS SHOWN ON

SELECTION GUIDE
(PAGE 3)

.250 (6.35)

• Ambient light and dust protection.
• Lead spacing available at .220", .300", or .320".
• .010' and .050" apertures .

.020 (0.51)
.020 (0.51)
I

I Iro-

.020 (0.51)
4PLCS

j_(

sa

.100 (2.54)-,

EMmER

COLLECTOR 3

ANODE

2 CATHODE
ST2174

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5 = .050", 1 = .010")

3-81

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

Storage Temperature ................................................................................ , -40°C to + 85°C
Operating Temperature .............................................................................. , -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3,4)
Lead Temperature (Flow) ,.'" .. , ........ ,'."., ... ,.,., .... , ... '., ... , ... , .. , .... ,' , , ... , . , . , .. 260°C for 10 sec. (2,3)

INPUT DIODE
Continuous Forward Current .. , . , . , , , , , , . , . , ... , ....................... , . , . , . , .. , , .... , , . , . , , .. , . , .. , , , . , , . , . , ., 50 mA
Reverse Voltage . , . , , . , . , . , , . , . , .... , , .. , . , . , . , , . , . , , . , .. , , . , .. , , , .. , . , , . , . , . , ... , , , . , , .. , .. , . , .. , , .. , ... , . ,. 5,0 Volts
Power Dissipation. , .. , .... , . , . , .... , ... , . , ., . , .. , . , .. , , . , .. , ... , ..... , , . , . , . , . , , , . , .. , . , , . , , . , , , , .. , . , . , , . ,. 100 mW(1)
OUTPUT TRANSISTOR
Collector-Emitter Voltage .,., .. , .... , ... ,.,.,.,., .. , .. ,."." .. , ..... ,.,.,., ... , ... ,., .. , .. ,."., ... ".,.,.,. 30.0 Volts
Emitter-Collector Voltage '., ... ,., .. " .... ,., ... ,"' .. , .. ', ... ,.,.,.,.,.".,., .. , ..... , .. " .. ,.,., .. ,.,., .. ," 5.0 Volts
Power Dissipation, . , .. , . , . , . , , , . , . , . , , , . , , , . , . , .. , ............. , ...... , . , . , ... , , , , , , , .. , .. , .. , . , , . , . , . , . , ... 100 mW(1)

1.70

See selection guide page 3.

1. Derate power dissipation linearly 1.67 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or Isopropyl alcohols are recommended as cleaning agents,
4,
'iron
from

3-82

V

mA

I,

= 20 mA, VeE = 5 V

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

QVA11123
QVA11124

.220"
.220"

0.050"
0.050·

0.010"
0.010·

0.20
0.50

QVA11223
QVA11224

.300"
.300"

0.050·
0.050"

0.010"
0.010"

0.20
0.50

QVA11323
QVA11324

.320"
.320"

0.050"
0.050"

0.010"
0.010"

0.20
0.50

QVA11133
QVA11134

.220"
.220·

0.050"
0.050"

0.050"
0.050"

0.50
1.00

QVA11233
QVA11234

.300"
.300"

0.050"
0.050"

0.050"
0.050"

0.50
1.00

QVA11333
QVA11334

.320"
.320·

0.050"
0.050"

0.050"
0.050"

0.50
1.00

QVA21113
QVA21114

.220"
.220·

0.010"
0.010"

0.010"
0.010·

0.10
0.20

QVA21213
QVA21214

.300·
.300"

0.010"
0.010·

0.010"
0.010"

0.10
0.20

QVA21313
QVA21314

.320"
.320·

0.010"
0.010"

0.010·
0.010"

0.10
0.20

3-83

3-84

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

QVBSERIES

SEENOTE3~

(f)

+
.313 (7.94)

OPTICAL
CENTERLINE

t!

425 (10.80) MIN
........
PIN 1
IDENTIFICATION

st(E~~I6~~8rbE

The QVB series of switches is designed to allow the user
maximum flexibility in applications. Each switch consists
of an infrared emitting diode facing an NPN phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust and dirt buildup while molded internal
apertures give precise positioning and also provide
protection from ambient light interference.

• Ambient light and dust protection.
• Lead spacing available at .220", .300", or .320".
• .050" and .010" aperatures available.

(PAGE 3)

EMITTER ) - ( ANODE

COLLECTOR 3

2 CATHODE

ST2175

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.

(5

= .050", 1 = .010")

3-85

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature ............................................................................... -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2....)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.3)
INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Collector Current .............................................................................................. 40 mA
Power Dissipation ........................................................................................... 100 mW(1)

1.70

See selection guide page 3.

1.
2.
3.
4.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropanol alcohols are recommended as cleaning agents.
Soldering iron tip V,6" (1.6 mm) from housing.

3-86

V

mA

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

QVB11123
QVB11124

.220"
.220"

0.050"
0.050"

0.010"
0.010"

0.20
0.50

QVB11223
QVB11224

.300"
.300"

0.050"
0.050"

0.010"
0.010"

0.20
0.50

QVB11323
QVB11324

.320"
.320"

0.050"
0.050"

0.010"
0.010"

0.20
0.50

QVB11133
QVB11134

.220"
.220"

0.050"
0.050"

0.050"
0.050"

0.50
1.00

QVB11233
QVB11234

.300"
.300"

0.050"
0.050"

0.050"
0.050"

0.50
1.00

QVB11333
QVB11334

.320"
.320"

0.050"
0.050"

0.050"
0.050"

0.50
1.00

QVB21113
QVB21114

.220"
.220"

0.010"
0.010"

0.010"
0.010"

0.10
0.20

QVB21213
QVB21214

.300"
.300"

0.010"
0.010"

0.010"
0.010"

0.10
0.20

QVB21313
QVB21314

.320"
.320"

0.010"
0.010"

0.010"
0.010"

0.10
0.20

3-87

3-88

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

QVE11233

The QVE11233 is designed to allow the user maximum
flexibility in applications. Each switch consists of an
infrared emitting diode facing an NPN phototransistor
across a .150" (3.81 mm) gap.

PIN 1

'onl~~6)
.150 (S.81)

r---

.331 (8.38)

---L
· ,t
.071 (1.78)

•
•
•
•
. 300 (7.62)-1

.100 (2.54)J

Lead spacing .300".
Gap width of .150".
Printed circuit board mounting.
2 mm aperture width .

SEE NOTE 3

-SEE NOTE 3

I:
~}-c='
ANODE 2

3 EMITTER

S12176

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. THIS DIMENSION IS CONTROLLED
AT THE HOUSING SURFACE.

3-89

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

Storage Temperature ............ ',' ......................... , ..................... , ...... , . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature .. , ........................... , ........... , ......................... , . . . . . . . . .. -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ........................ , ..... ,........................................ 240°C for 5 sec. (2,3,4)
Lead Temperature (Flow) ., ...... , ....... , ................................................ , ..... 260°C for 10 sec. (2,3)

INPUT DIODE
Continuous Forward Current ........................... , ...... , ...................... , ......................... , 50 mA
Reverse Voltage ... , . , .................. , . , ................... , ....... , ......................... , . , .. , . , . . . .. 5.0 Volts
Power Dissipation ........ , .. , ....... , ................ , ...... , , ....... , ...... , ... , ..................... , ..... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage ................................................................. , ........... ,...... 30.0 Volts
Emitter-Collector Voltage ............ , .................................. , ...... ,., ............. , ..... ,., ... ,.. 5.0 Volts
Power Dissipation ...... , ....................... , ...... , ...... , ....... , ...................... , ............... 100 mW(1)

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

COUPLED
On-State Collector Current

0.50

1. Derate power dissipation linearly 1.67 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or

4. .....nlrnF"7nn

3-90

SLonED OPTICAL SWITCH

OPTOElECTRONICS

QVL21653

®

®

IIIII

I "I

CD

@)

1.150 (29.21)

,.276 (7.01)

.398 (10.11)1-

.177 (4.50)

~

.177 (4.50)

/-.138(3.51)

.398(10.11)

il

.638 (16.21)
.200 (5.09)- - -

.449 (11.40)

I

I

--1-

-t

"""---rr+n-"

.138 ±.02 (3.5 ±D.5)
t

-..-.020 (0.51)

i

.051 (1.30)J

r

1-1_ _-

1.028 (26.11)

ct

SQ .

.050 (1.27)

I
I
ct
NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010
UNLESS OTHERWISE SPECIFIED.

The QVL21653 consists of an infrared light emitting
diode coupled to an NPN silicon phototransistor
packaged into an injection molded housing. The
housing is designed for wide gap, non contact
sensing.

5T1667

• 20mm wide gap

• PC Board mount
• .060" apertures
• Sensor filter to attenuate visible light

3-91

OPTOElECTRONICS

SLonED OPTICAL SWITCH

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to +85°C
Operating Temperature ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(2.3.4)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(2.3)

INPUT DIODE
Continuous Forward Current .................................................................. 50 rnA
Reverse Voltage ............................................................................. 5 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage ....................................................................... 30 V
Emitter-Collector Voltage ........................................................................ 5 V
Power Dissipation ......................................................................... 100 mW(1)

1. Derate power dissipation linearly, on each component, 1.67 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or Isopropanol alcohols are recommended as cleaning agents.
4.
iron
mm) frOf!!

3-92

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

QVL25335

Ifll

fill

,.276 (7.01)
.177(4.50)

.177 (4.50)

r.138 (3.51)

-------T :;:;J.

~.425 (10.80) MIN
lJ--1,""PIN 1
IDENTIFICATION

.100 (2.54)

l

.320 (8.13)

.125 (3.18) R
2 PLACES

.125 (3.18) DIA
2 PLACES

•
•
•
•

Fully enclosed design allows dust protection .
Lead spacing at .320".
.050" and .010" aperture options.
PCB mountable .

.250 (6.36)

.22(0.57) SO
4 PLCS
.100 (2.55)""1 rEMITTER 4

1 ANODE

J-{

COLLECTOR 3

2 CATHODE

ST1782

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ± .010 (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5=.050",1=.010")
APERTURE OPTIONS:
OP8860T11
OP8860T51
OP8860T55

LED
.010
.050
.050

PHOTOTRANSISTOR
.010
.010
.050

3-115

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

Storage Temperature ................................................................ -40°C to +85°C
Operating Temperature .............................................................. -40°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(2,a,.)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(2,3)

INPUT DIODE
Continuous Forward Current .. , .............. ,................................................ 50 mA
Reverse Voltage ........................................................................... 5.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage ....................................................................... 30 V
Emitter-Collector Voltage ........................................................................ 5 V
Power Dissipation .......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

5

COUPLED
On-State Collector Current

1.
2.
3.
4.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'AB" (1.6 mm) from housing.

3-116

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

OPB861T51/0PB861T55

SEENOTE3~

(f) 1

g
.313 (7.94)

OPTICAL .125 (3.17)
CENTERLINE

-'--~----11---i

.425 (10.80) MIN
",PIN 1
IDENTIFICATION
1-.320 (8.13)
.125 (3.19) DIA
2 PLACES

I
.125 (3.18) R
2 PLACES

The OPB861T series of switches is designed to allow the
user maximum flexibility in applications. Each switch
consists of an infrared emitting diode facing an NPN
phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust build-up while molded internal apertures
give precise positioning and also provide protection from
ambient light interference.

• Fully enclosed design allows dust and ambient light
protection .
• Lead spacing at .320".
• .050" and .010" aperture options.
• PCB mountable .

.250 (6.36)

.125 (3.18) R
2 PLACES
.100 (2.55).., ,...
EMITTER ) _ ( ANODE

COLLECTOR 3

2 CATHODE

ST2160

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5=.050",1=.010")
APERTURE OPTIONS:
LED
OPB861T51
.050
OPB861T55
.050

PHOTOTRANSISTOR
.010
.050

3-117

OPTOElECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature ....................................................................... . . . . . . .. -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2 ....)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. 12.3)

INPUT DIODE
Continuous Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Reverse Voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................................... 30.0 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

COUPLED
On-State Collector Current

1. Derate power dissipation linearly 1.67 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or
alcohols are recommended as cleaning agents.
4.
"om

3-118

SLOTTED OPTICAL SWITCH
OPTOELECTRONICS

OPB862T51/0PB862T55

SEENOTE3~

(±)

g

+
.313 (7.94)

OPTICAL .125 (3.17)
CENTERLINE

The OPB862T series of switches is designed to allow the
user maximum flexibility in applications. Each switch
consists of an infrared emitting diode facing an NPN
phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust build-up while molded internal apertures
give precise positioning and also provide protection from
ambient light interference.

~ .425, (1 090) MIN

l

lJ--i."PIN 1
IDENTIFICATION
.320(8.13)
.125 (3.18) DIA
2 PLACES

.125 [3.18] DIA
2 PLACES

• Fully enclosed design allows dust and ambient light
protection .
• Lead spacing at .320" .
• .050" and .010" aperture options.
• PCB mountable .

r

.250 (6.36)

.022 (.057) SQ
4PLCS
.100 (2.55)"""1

t-

'Mm')~(~u
COLLECTOR 3

2 CATHODE

8T2162

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5=.050",1=.010")
APERTURE OPTIONS:
OPB862T51
OPB862T55

LED
.050
.050

PHOTOTRANSISTOR
.010
.050

3-119

OPTOElECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.3)

INPUT DIODE
Continuous Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Reverse Voltage ............................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mWi')

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................................... 30.0 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW~)

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

COUPLED
On-State Collector Current

1. Derate power dissipation linearly 1.67 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or
alcohols are recommended as cleaning agents.
4.
~om

3-120

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

OP8865T11/0P8865T51/0P8865T55

SEENOTE3~
(±) 1

~
.313 (7.94)

OPTICAL .125 (3.17)
CENTERLINE

"

The OPB865T series of switches is designed to allow the
user maximum flexibility in applications. Each switch
consists of an infrared emitting diode facing an NPN
phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust build-up while molded internal apertures
give precise positioning and also provide protection from
ambient light interference.

I 'C_

.345 (8.76)

,.425 (10.80) MIN

~---1')IN

.125 (3.18) R
2 PLACES

1
IDENTIFICATION
.220 (5.59)
. 125 (3.18) DIA
2 PLACES

• Fully enclosed design allows dust and ambient light
protection .
• Lead spacing at .220" .
• .050" and .010" aperture options.
• PCB mountable .

.250 (6.36)

.022 (.057) sa
4 PLCS
.100 (2.55)-. rEMITIER ) _ ( ANODE

COLLECTOR 3

2 CATHODE

ST2164

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5=.050",1=.010")
APERTURE OPTIONS:
LED
OPB865T11
.010
OPB865T51
.050
.050
OPB865T55

PHOTOTRANSISTOR

.010
.010
.050

3-121

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

Storage Temperature .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature ............................................................................... -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.3)

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(l)
OUTPUT TRANSISTOR
COllector-Emitter Voltage ............. ,...................................................................... 30.0 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(l)

1. Derate power dissipation linearly 1.67 mW/oC above 25°C.
2. RMA flux is recommended.
3. Methanol or
alcohols are recommended as cleaning agents.

4.

3-122

~om

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

OP8866T51/0P8866T55

SEENOTE3~

®

1

+

S

.313 (7.94)

The OPB866T series of switches is designed to allow the
user maximum flexibility in applications. Each switch
consists of an infrared emitting diode facing an NPN
phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust build-up while molded internal apertures
give precise positioning and also provide protection from
ambient light interference.

~ .425 (10.80) MIN

11---1. " PIN 1

I

IDENTIFICATION

1-.220 (5.59)
.125 (3.18) DIA
2 PLACES

.125 (3.18) R
2 PLACES

• Fully enclosed design allows dust and ambient light
protection .
• Lead spacing at .220".
• .050" and .010" aperture options.
• PCB mountable .

.250 (6.36)

.

sa

.022 (057)
100 (2 55)
.
.... ,... 4 PLCS

EMITTER

j_(

COLLECTOR 3

ANODE

2 CATHODE

ST2166

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5=.050",1=.010'1
APERTURE OPTIONS:
LED
.050
OPB866T51
OPB866T55
.050

PHOTOTRANSISTOR
.010
.050

3-123

OPTOELECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 85°C
Operating Temperature .................................................................. , . , . . . . . . . . .. -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.3)

INPUT DIODE
Continuous Forward Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 rnA
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................................... 30.0 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mWll)

1.
2.
3.
4.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip '.If.n (1.6 mm) from housing.

3-124

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

OPB867T51/0PB867T55

SEENOTE3~

~.313(7.94)

.125 (3.18) R
2 PLACES

. 125 (3.18) DIA
2 PLACES

The OPB867T series of switches is designed to allow the
user maximum flexibility in applications. Each switch
consists of an infrared emitting diode facing an NPN
phototransistor across a .125" (3.18 mm) gap. A unique
housing design provides a smooth external surface to
prevent dust build-up while molded internal apertures
give precise positioning and also provide protection from
ambient light interference.

• Fully enclosed design allows dust and ambient light
protection .
• Lead spacing at .220" .
• .050" and .010" aperture options.
• PCB mountable .

.250 (6.36)

"='j-("
COLLECTOR 3

2 CATHODE

ST2127

NOTES:
1. DIMENSIONS ARE IN INCHES (mm).
2. TOLERANCE IS ±.01O (.25)
UNLESS OTHERWISE SPECIFIED.
3. NUMBER INDICATES APERTURE SIZE.
(5=.050",1=.010")
APERTURE OPTIONS:
OPB867T51
OPB867T55

LED
.050
.050

PHOTOTRANSISTOR

.010
.050

3-125

OPTOELECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature ................................................................................. -40°C to + 85°C
Operating Temperature ............................................................................... -40°C to + 85°C
Soldering:
Lead Temperature (Iron) ....................................................................... 240°C for 5 sec. (2.3.4)
Lead Temperature (Flow) ....................................................................... 260°C for 10 sec. (2.')

INPUT DIODE
Continuous Forward Current .................................................................................... 50 mA
Reverse Voltage ............................................................................................. 5.0 Volts
Power Dissipation ........................................................................................... 100 mW('}
OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................................... 30.0 Volts
Emitter-Collector Voltage ..................................................................................... 5.0 Volts
Power Dissipation ........................................................................................... 100 mW('}

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

COUPLED
On-State Collector Current

1.
2.
3.
4.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip !Ji." (1.6 mm) from housing.

3-126

GaAs INFRARED EMITTING DIODE

OPT 0ELECT RON I CS

1N6264

The 1N6264 is a 940nm LED in a narrow angle, TO-46
package.

5T1332

• Good optical to mechanical alignment
SYMBOL

A
~b
~D
~D

e
e
h

i
k
L
ex

INCHES
MIN. MAX.
.255
.016
.021
.230
.209
.188
.180
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
45"
45"

MILLIMETERS
NOTES
MIN.
MAX.
6.47
.407
.533
5.31
5.84
4.57
4.77
2.54 NOM.
2
1.27 NOM.
2
.76
.79
1.11
.92
1.16
1
25.4
45"
45"
3

• Mechanically and wavelength matched to TO-18 series
phototransistor
• Hermetically sealed package
• High irradiance level

• (*) indicates JEDEC registered values

ANgDE~ C~THODE

(CONNECTED
TO CASE)

5T1604

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAX. DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO A
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-127

OPTOELECTRONICS

GaAs INFRARED EMITTING DIODE

*Storage Temperature .............................................................. -65°C to +150°C
Operating Temperature ............................................................ -65°C to +125°C
*Soldering:
*Lead Temperature (Iron) ..................................................... 240°C for 5 sec.(....5.6)
*Lead Temperature (Flow) .................................................... 260°C for 10 sec.(3,4·6)
*Continuous Forward Current ................................................................ 100 rnA
*Forward Current (pw, 1JLS; 200 Hz) .............................................................. 10A
*Reverse Voltage ............................................................................ 3 Volts
*Power Dissipation (TA = 25°C) ............................................................. 170 mW(1)
Power Dissipation (Tc = 25°C) ................................................................ 1.3 W(2)

1.
2.
S.
4.
5.
6.
7.

Derate power dissipation linearly 1.70 mW/oC above 25°C ambient.
Derate power dissipation linearly 1S.0 mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip >foR (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Total
Po, is the total
radiated
the device into a solid

3-128

of 27T steradians.

GaAs INFRARED EMlnlNG DIODE

OPTOElECTROIICS

'"

100

10

""
"
r-...

1.2

.A

10

'"

::s:
CUR_lIT

•
•

NTIMUOUS

I.t, -

.0

•

::f

NORMALIZED
r,-IOOI'IIA

•

'._lleC

.1

r-...
.........

"-..

..c::~~':DTO
'A- Ire

0.00
0. 2

0.02
0.0I

.001.ooz

II

.oos

.01

III

.oz
.05
0.1
0.2
D.I
I,..FORWAIID CUIIIIENT-AMfIfJt!S

Fig. 1. Power Output VS.

LO

Current

0

10

...

.•

0.0

I

IIJ

t

V

/

V

/

7

/

/

If·-. f··c l···c

•
I

I

/

I

I
I

•

. . .0&

.04

•

IJ2
.010

/

./

1D.4
Il 0.I
I..IJ&

...
ST1007

v

./

I--'

lo.a
Ii 0.

10.•

~

100

100

0
0

2 IJ

0
H
•
ft
TA-AItIIIINT TlII""ATUtlI--C

.......

Fig. 2. Power Output vs. Temperature

I0

::I

-a

-10

STl002

"

.....

4
I
•
7
YJr- P'OftWAIIID YOLTAIE -VOLTS

Fig. 3. Forward Voltage VS. Forward Current

I.

I

J
V
.1

1

I

I

/

LO
1.1
I..
1.1
V,-FOJIWMD VOLT... -VOLT.

L4

4. Forward Voltage vs. Forward Current

ST1003

100

II

ST1006

\
7
I

.
0

0

•

I

I

J

r

~

10403020
10
01010104010
HNlUL.... DI'''L.ACIMINT '11011 OIITICAI. AXII-DURIU

Radiation Pattern

snOO4
3-129

3-130

GaAs INFRARED EMlnlNG DIODE

OPTOElECTRONICS

1N6265

The 1N6265 is a 940nm LED in a wide angle, TO-46
package.

ST1331

SYMBOL

A
~b
~D
~D

e
e
h

i
k
L
a

• Good optical to mechanical alignment
INCHES
MIN. MAX.
.155
.016
.021
.209
.230
.180
.187
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
450
450

MILLIMETERS
NOlES
MIN. MAX.
3.93
.407
.533
5.31
5.84
4.57
4.77
2.54 NOM.
2
2
1.27 NOM.
.76
.79
1.11
1
.92
1.16
25.4
450
3
450

• Mechanically and wavelength matched to TO-18 series
phototransistor
• Hermetically sealed package
• High irradiance level

• (*) indicates JEDEC registered values

ANgDE~ C~THODE

(CONNECTED
TO CASE)

ST1604

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAX. DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO A
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-131

OPTOElECTRONICS

GaAs INFRARED EMITTING DIODE

*Storage Temperature .............................................................. -65°C to +150°C
Operating Temperature ............................................................ -65°C to +125°C
*Soldering:
*Lead Temperature (Iron) ..................................................... 240°C for 5 sec.(M5.S)
*Lead Temperature (Flow) .................................................... 260°C for 10 sec.(3.4.S)
*Continuous Forward Current ................................................................ 100 rnA
*Forward Current (pw, 1p's; 200 Hz) .............................................................. 10 A
*Reverse Voltage ............................................................................ 3 Volts
*Power Dissipation (TA = 25°C) ............................................................. 170 mW(1)
Power Dissipation (Tc = 25°C) ................................................................ 1.3 W(2)

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 1.70 mW/oC above 25°C ambient.
Derate power dissipation linearly 13.0 mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 'A." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Total power output, Po, is the total power radiated by the device into a solid angle of 2'T1' steradians.

3-132

GaAs INFRARED EMlnlNG DIODE
OPTOElECTRONICS

100

'"

10

-

20

.A

10

•
•

i'.

1.1

~

"~

=.=;:
CUll. ."

...

"- ,

-

...

NTINUOUS
IlWA"D

1£.-

1.0

........

~

i'-. I-....

NORMALIZlO

r,-toaM"

•

T,,-U-C

..
0.1

NOr:~::C:~~D

..•

0.

..

TA-

TO

........

u-c

CO

o.or.ool

,002

1111

.cae

.01

IILO

II

,01
.D5
0.1
0.2
D.I
r,...P'ORWAItO CUftllENT-AMPa!S

I0

.
.0

V

I

•

0 .1

./

/

"'"V /

I;'·"" ;..c

I

./
1/

7

/

/ . .c

I

I

I
I

I

~::

I

I

.04

4
II
•
7
'IF" 'ORWAIID VOLT"GE -VOLTS

Fig. 3. Forward

I

10

VS. Forward Current

v

.

I

/

)
V

11

101040

1.1

/

I..

1.1

.

..
ST1006

"' \
,

1 1\

0

0

/

v,- PORWAIIO .LTAII-VOLT'

\

II

0

1.0

Fig. 4. Forward Voltage vs. Forward Current

5T1OO3

100

II
.1

II

I

/

•

....
.01.

110

5T1007

/

I---

1

I ..

~

eo
10

r! ..
,'''
S
e

100

100

0
0

I:.

•
H
..
ft
TA-aMBIENT TlII. . . .TUIII-·C

Fig. 2. Power Output VS. Temperature

...
::

-o

-10

5T1002

Current

Fig. 1. Power

•

10

\
r-.......

10

010

4010
HGMEI

10

, - ANGULAR IMSPLACEMENT FIDM OIITICAt AXil -

Radiation Pattern

5T1005

3-133

3-134

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

1N6266

The 1N6266 is a 940nm LED in a narrow angle, TO-46
package.

ST1332

SYMBOL

A
~b
~D
~D

e

e
h

j

k
L
a

• Good optical to mechanical alignment
INCHES
MIN. MAX.
.255
.016
.021
.209
.230
.180
.188
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
45"
45"

MILLIMETERS
NOTES
MIN. MAX.
6.47
.407
.533
5.31
5.84
4.57
4.77
2.54 NOM.
2
1.27 NOM .
2
.76
1.11
.79
1.16
1
.92
25.4
45"
45"
3

• Mechanically and wavelength matched to TO-18 series
phototransistor
• Hermetically sealed package
• High irradiance level

• (*) indicates JEDEC registered values

ANgDE~ C~THODE

(CONNECTED
TO CASEI

ST1604

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAX. DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.77Bmm) THEIR TRUE POSITION RELATIVE TO A
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-135

OPTOElECTRONICS

GaAs INFRARED EMITTING DIODE

*Storage Temperature .............................................................. -65°C to +150°C
Operating Temperature ............................................................ -65°C to +125°C
*Soldering:
*Lead Temperature (Iron) ..................................................... 240°C for 5 sec.(...·...)
*Lead Temperature (Flow) .................................................... 260°C for 10 sec.(3.4.6)
*Continuous Forward Current ................................................................ 100 mA
*Forward Current (pw, 1/-£S; 200 Hz) .............................................................. 10 A
*Reverse Voltage ............................................................................ 3 Volts
*Power Dissipation (TA = 25°C) ............................................................. 170 mW(1)
Power Dissipation (Tc = 25°C) ......................•......................................... 1.3 W(2)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.70 mW/oC above 25°C ambient.
Derate power dissipation linearly 13.0 mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 0.H (1.6 mm) minimum from housing.
As long as leads are not under any stress or
tension.

3-136

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

15 0

10
8

5~

,...

6
U>

"'ffi

......

"-

.......

',"

~


u 0.6

'"

"h~.,

~ +"
""..
"".

"

"'-\-

"- 0.4
'!'!

~O

5

~

10

100

Ulf\

1000

-r\

r---.

"r\.
\ 10% D.C.

CYCLE

\

.01

100,000

.02

f - FREQUENCY - HERTZ

ST1008

Fig. 1. Maximum Pulse

\

~
~IOO% DUTY

o

10,000

':-~';O!~~/~~III'!~·~·i·o~,.~,~,.~rn!"~'BII

r--...

"-

~~~

0.2

0.1

'\

-0-

!;

!'

-....:: -I-

\%OC.

\

.04 .06 0.1
.2
.4.6 .81.0
IF - INPUT CURRENT - AMPERES

4

6

8 [0

Fig. 2. Maximum Temperature vs. Input Current ST1009

V

.."g!R~1I
NORMALIZED TO:

2

IF"IOOmA

T,II,"25"C

.0'

.0'

.D.ble,____.O".--'-,.04J,.L!
..."'' 'l.!-.L,- .•!-J-.•~"I~
111_-!----LL.LLl-!ll

1---+-1---+,-1-.--!-,--1-.-+,--!---!c----.!

.01 0

v~

l r - INPUT CURRENT - AMPERES

Fig. 3. Radiant Intensity vs. ST1012
Input Current ille/ill

V"
I

0

I
I
I
I

I-

::>

is

o. 6

"'>
~..I

O. 4

II

"'
0:

0
880

Fig. 4. Forward Voltage vs.
Forward Current

V
900

ST1013

Fig. 5. Forward Voltage vs.
Forward Current

10 0
60
40

NORMALIZED TO'
IF: IOOmA

TA = 25·C
....01 STERADIANS ~
SILICON PHOTODIODE
IF' IA ==E AS DETECTOR ~

0

~

\

10

6
4

\
\

2

/

\

,

920
940
960
980
A - WAVELENGTH - NANOMETERS

Fig. 6. Spectral Output

IF

.0

~ 100mA

6
4
2

r-..

)

o. 2

I
I.
1.
VF- FORWARO VOLTAGE-VOLTS

FORWARD VOL.TAGE - VOLTS

\

o. 8
~

-

0

IF! lOrnA

6
4

I'1000

1020

ST1016

2
I

-

- 25

o

75
100
25
50
TA - AMBIENT TEMPERATURE - ·C

Fig. 7. Output VS.
Temperature

125

150

ST1020

3-137

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

The design of an Infrared Emitting Diode (IRED)photodetector system normally requires the designer to
determine the minimum amount of infrared irradiance
received by the photodetector, which then allows
definition of the photodetector current. Prior to the
introduction of the 1N6266, the best method of estimating
the photodetector received infrared was to geometrically
proportion the piecewise integration of the typical beam
pattern with the specified minimum total power output of
the IRED. However, due to the inconsistencies of the
IRED integral lenses and the beam lobes, this procedure
will not provide a valid estimation.
The 1N6266 now provides the designer specifications
which precisely define the infrared beam along the
device's mechanical axis. The 1N6266 is a premium
device selected to give a minimum radiant intensity of
25 mW/steradian into the 0.01 steradians referenced by
the device's mechanical axis and seating plane. Radiant
intensity is the IRED beam power output, within a
specified solid angle, per unit solid angle.
A quick review of geometry indicates that a steradian is
a unit of solid angle, referenced to the center of a sphere,
defined by 4'IT times the ratio of the area projected by the
solid angle to the area of the sphere. The solid angle is
equal to the projected area divided by the squared
radius.
8teradians = 4'IT N4'ITR2 = NR2 = w.
As the projected area has a circular periphery, a
geometric integration wi" solve to show the relationship
of the Cartesian angle (a) of the cone, (from the center of
the sphere) to the projected area.

w = 2'IT (1-C08 ~).

3-138

Radiant intensity provides an easy, accurate tool to
calculate the infrared power received by a photodetector
located on the IRED axis. As the devices are selected for
beam characteristics, the calculated results are valid for
worst case analysis. For many applications a simple
approximation for photodetector irradiance is:
H eo Ijd2, in mw/cm2
where d is the distance from the IRED to the detector in
cm.
IRED power output, and therefore I.; depends on IRED
current. This variation (aljal) is documented in Figure 1,
and completes the approximation: H = IJd2 (aljal). This
normally gives a conservative value of irradiance. For
more accurate results, the effect of precise angle viewed
by the detector must be considered. This is documented
in Figure 2 (alJaro) giving:
H = IJd2 Wjal) in mw/cm2.
For worst case designs, temperature coefficients and
tolerances must also be considered.
The minimum output current of the detector (IJ can be
determined for a given distance (d) of the detector from
the IRED.
IL

= (8)H eo (8)ljd2
or

IL

= (8)H = (8) (lJd2)

(aljaro) (aIJal)

where 8 is the sensitivity of the detector in terms of
output current per unit irradiance from a GaAs source.

GaAs INFRARED EMITTING DIODE

OPTOELECTRONICS

IRED RADIANT INTENSITY SPECIFICATION CONCEPT
MATCHING A PHOTOTRANSISTOR WITH 1N6266

Assume a system requiring alOmA IL at an IRED to
detector spacing of 2cm (seating plane to seating
plane)" with bias conditions at specification points.
Given: d.=2cm; IL, = IOmA min.; Ie = 25mW/Steradian
Then: H. ~ Ie/D. 2 = 25/(2)2 = 6.25 mW/cm2 .

AREA "A"

Detector Evaluation:
H (Tung....nl ~ H(OaAsI

IL MIN. tiP

S(OaAsI

TYPE

rnA

mw/cm'

mw/cm'

rnA/mw/cm'

L14GI
L14G2

6

3

10
10

3
3

2
1

Calculated IL = d l is:
L14GI (S)
L14G2 (S)

HI
HI

=
=

(2) 6.25 = 12.5 rnA
(1) 6.25 = 6.25 rnA

Since the system requires an IL of 10 mA minimum the
correct device to use is the L14G 1.

1.4

I1II

A

I

I III

6)+-:;~

in

I.

2r--.

~

...
gz

--------~

W+21r(I-COST)

z

1.0

..........

0.8

:

~ 0.6
N
:J

~

~,

0.4

-

_

"'"

IIIII
I IIIII
IIIII

..: o. 2
o..001
I

~
I\...

NORMALIZED TO:
IF = ICOmA
Cd = .01 STERADIANS
TA = 25-C

-

..f"ARE AA

.002

.004.006
I

4

I

5

.01

.02

.Q4
I

10

06.os.1 STERADIANS
I

15

I

1.0
- 1ot.6.8
I
I

20 DEGREES - ex: 45

60

Fig. 1 Intensity and Power VB. Angle


~

r---.

10.

./

l-

0.0I

NORMALIZEO TO
IF"'OOmA

/

TA

=

Pw ceo"tsec
RR" 3CHz

0..0.0.I I

Iil
~

0.8

~

0..4

If

--

PULSEO INPUTS

rE

ST1025

100

2

~

IOOmA

-

lOrnA

I

-25

0.

25

50

75

TA-AMBIENT TEMPERATURE-oC

Fig. 3. Forward

...!z

80

.~

60

I

II

~
~

125

150.

ST1026

,
Ir,F5E

\

5
~40

5

1\

~

f.- r-

V 0.

0.

150.

1\

If

,.... I--~

"'-

40.
6
40.
20.
0.
2
60.
8-DISPLACEMENT FROM CPTICAL AXIS-DEGREES

ST1027

vs. Temperature

ICC

I-

fE 20

125

ICC

75

l"-

I/J..-"

--

o.5A

50.

Fig. 2. Power Output vs. Temperature

-

IF"'A

I

25

..............

TA-AMBIENT TEMPERATURE·oC

Pw=80p.aec
F=30Hz

~

NCRMALIZED TO
IF=IOOmA, TA=25 D C

0..2 r- Pw=80l'lec. f "30Hz

0.

4

3

r--

I

10.0.0.

Current

t--

I

I

10.
ICC
IF-INPUT CURRENT-mA

--

IF"'CCmA

t--

~ 0..6

-

=25°C

2

Radiation Pattern

80.

I 0.

ST1028-98

120

I-

10.0.

'r~

80

z

~

I-

it
~

- -7 ~- ...

,,- -rTYPICAL SPECTRAL
RESPDNSE DF SILlCo.N
PHo.TOSENSORS

F5'i .... j
60

~

5

7

40

'"
if

(J..o

.,

./

I-20

"-

7

900
)..-WAVE LENGTH-nm

5. Output vs.

... ...

1\

TA "25 GC

80.0.

...

,

1\

II

IF=IOOmA

V
70.0.

\

\

\
1\

\

I'10.0.0.

ST1030-98

3-147

3-148

OaAs INFRARED EMlnlNO DIODE

OPTOELECTRONICS

F5F1

.tL~
r .. '.
E

~

I'

The F5F1 is a 940nm LED encapsulated in a clear, wide
angle, sidelooker package.

-jblrL
r7i b

Black

+- Color t;b-.JL.J-+
Code

-, G

SECTION x-x
LEAD PROFILE

~

rt,......-+--,

"
"

A

4,~

T

X

• Good optical to mechanical alignment

'~x"":::7"":7.==-

• Mechanically and wavelength matched to the L14Q
series phototransistor

lJ.t

1

2

SYMBOL MILLIMETERS
MIN. MAX.
A
5.59
5.80
B
1.78 NOM.
(>b
.60
.75
NOM.
b
.51
D
4.45
4.70
E
2.41
2.67
E
.58
.69

e
G
L
L
S

ANODE

2.41
1.98
12.7
1.40
.83

2.67

NOM.
1.65

.94

• Plastic package with a color stripe for easy recognition
from phototransistor
• High irradiance level

ST1334
INCHES
NOTES
MIN. MAX.
.220
.070
.024
.020
.175
.095
.023
.095
.078
.500
.055
.033

.228

NOM.
NOM .

2
1
1

.185
.105
.027
.105

3

.030

NOM.
.065
.037

3

CATHODE

ST1604

NOTES:
1. TWO LEADS. LEAD CROSS SECTION DIMENSIONS
UNCONTROLLED WITHIN 1.27 mm (.050'1 OF
SEATING PLANE.
2. CENTERLINE OF ACTIVE ELEMENT LOCATED
WITHIN .25 mm (.010") OF TRUE POSITION.
3. AS MEASURED ATTHE SEATING PLANE.
4. INCH DIMENSIONS DERIVED FROM MILLIMETERS.

3-149

OPTOELECTRONICS

GaAs INFRARED EMlnlNG DIODE

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(2.....5)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(2,3,5)
Continuous Forward Current .................................................................. 60 mA
Forward Current (pw, 1JLS; :5 33 Hz) ............................................................... 3 A
Reverse Voltage ............................................................................. 6 Volts
Power Dissipation ......................................................................... 100 mW(l)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33 mW/oC above 25°C ambient.
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Ie measured with a 0.45 cm aperture placed 1.6 cm from the tip of the lens on the lens centerline perpendicular to the plane of
the leads.

3-150

GaAs INFRARED EMITTING DIODE

OPTOELECTRONICS

40

~

10

----

[

'"
W

NORMALIZED TO

;;:

IF

t-



-..............

r-

IF PULSED
I--- PW 0100",
PRR 0 100pps

T. = 25°C

~

r---...

--I---

IF olOOOmA

----- --

500mA_

r---~

,.
o
z

:::::::::::I

:J«
I

60

20mA

lOrnA

-25

5"mA
0
T. - AMBIENT

.1
25
50
TEMPERATURE -·C

75

Fig. 3. Forward Voltage vs. Temperature
1,0 I

\
--

,8

25

100

100

t-

'"
a:

a.

--,--

I

toa.

--

60

J

t::>

F5F-f..

o

.4

w 40

j:

2:

«
...J
w

I

ffi

-~

w

a:

80

w
u

--

Z
06

w

/\

--

Q.'

--

.2

It

o
500

600

700
X - WAVE

800
900
LENGTH - NANOMETERS

Fig. 5. Spectral Response

~a:

\

\

\

1000

-1100

8T1035

75

100

TEMPERATURE _ °C

ST1037

Current vs.

z

'"

50
TA - AMBIENT

ST1034

---

w

>

-----

V-

-

----1
100~~~~
IF = 1000mA (pulsedl

>-

SOOmA (pulsed)

>-

10

~

>-

~

~

,>-

>Z

'"

10~~~~
~

l00mA I p u l s e d l -

'Q"

>z

'Q"

:i!

~
~

20mA

~::;

:!
i!]'"

~

0

z, ,01

~

_.,

-"

.1

2mA
i~ii~iiliiiiiiiiliiii~iil!iii15~m~A~~~~~~
r-NORMAL1ZED TO:

/
001
0.1

f--

'~"

V

r-~A:~~~ ~--------r--------+--------+-------~

./
10
. INPUT CURRENT·
"

mA

TA - AMBIENT TEMPERATURE _

Current

---

.O~'::25:---------!:----------:!2::-5---------!51::0 ---------,'!::5--------;:!,00

1000 2000

100

8T1041

°c

8T1046

Fig. 2. Radiant Intensity vs. Temperature

f--NORMALIZED TO:

l000mA

I-V. - 3V

"

r- TA = 25~C

;"'"

.".-/

0

V

500mA

-

.,/

~

100mA

lOrnA

l-~WP~~:/J~
PRR'" IppS

25

o

-25
TA

~

1

'5

50

. 25

100

50

AMBIENT TEMPERATURE - "C

8T1042

1.0

100

~

F5G

,.

80

I
I

>z
0.6

0.4

o. 2

o

500

600

'00

I

1\

J
I
I
I
V

I

800

~,

60

>-

~

=>

0

w

>
>=

40

20

900

1000

1100

o

,....,f--..IJ

100

BO

60

o-

A - WAVE LENGTH - NANOMETERS

8T1043

Il

\
\

I

g
\

8T1045

Currentvs.

f\

0.8

100

'5

T A - AMBIENT TEMPERATURE _ "C

'"

\

~
20

20

'"

.",-

60

i'--

BO

tOO

DISPLACEMENT FROM OPTICAL AXIS - DEGREES

Pattern

8T1044

3-155

3-156

GaAs INFRARED EMlnlNG DIODE

OPTOElECTRONICS

LED55B/C, LED56

The LED55B/C and LED56 are 940nm LEOs in a narrow
angle, TO-46 package.

ST1332

• Good optical to mechanical alignment
SYMBOL

A
I{lb
(6D
(6D

e
e
h

j

k
L

"

INCHES
MIN. MAX.
.255
.021
.016
.209
.230
.180
.188
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
45'
45'

MILLIMETERS
NOTES
MIN. MAX.
6,47
,407
.533
5.31
5.84
4.57
4.77
2.54 NOM.
2
2
1.27 NOM.
.76
.79
1.11
.92
1
1.16
25,4
45'
45'
3

• Mechanically and wavelength matched to the TO-18
series phototransistor
• Hermetically sealed package
• High irradiance level

ANgDE~ C~THODE

(CONNECTED
TO CASE)

ST1604

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAX. DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO A
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-157

OPTOELECTRONICS

GaAs INFRARED EMITTING DIODE

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ..................................................... , 240°C for 5 sec.(3,·,5,S)
Lead Temperature (Flow) ., ........ , ..... , .... ,', .. " .... ,', .. ,., ............. 260°C for 10 sec.(3,4,S)
Continuous Forward Current ................................................................. 100 mA
Forward Current (pw, 1J,1,S; 200 Hz) ................... , ..................... , ............ , ........ 10 A
Reverse Voltage .... , ........................................................ ,............... 3 Volts
Power Dissipation (TA = 25°C) , ................. , .......... , ................................ 170 mW(l)
Power Dissipation (Tc = 25°C) , ................................ , ...................... , ..... ,. 1.3 W(2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.70 mW/oC above 25°C ambient.
Derate power dissipation linearly 13.0 mW/oC above 25°C case.
RMA flux is recommended,
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 06H (1.6 mm) minimum from housing.
6. As long as leads are not under any stress or spring tension.
7. Total power output, Po, is the total power radiated by the device into a solid angle of 271' steradians.

3-158

GaAs INFRARED EMITTING DIODE

OPTOELECTRONICS

I

1.4

~ I"'-

1.2

..4-

i.

_~~;;~W

~
~
~

~g~~~..U,l'"S

/

~

~

;

~

~

~

~

0.6

~
1i1
I
,p

0.4

<

;:

NORMALIZED

0.2

0.8

11

c

~

........

1.0

IF-IOO mA
TA"2!5-C

0.1

'"

~ "-

........

NORMALIZED TO
IF-IOOmA

'"

I'......

.........

""

TA- 25-C

0.'
0.2

'.1,01

.002

III

III

.005

0

.02

I

-'0

-2'

!F- FORWARD CURRENT-AMPERES

Fig. 1. Power Output VS. Input Current

. ST1052

10
8.0
6.0

~

a

.;"

1.0
0.8
0.6

/

If"O~C

I

.•

;5'C

/

/

/
/-55'C

8

<

c

~

OJ

~u. .08
.0.

Ii',

I
I

4

L
H

/
V

2
.02

I

2

3

4
6
7
5
VF- FORWARD VOLTAGE -VOLTS

8

Fig. 3. Forward Voltage VS. Forward Current

"

ST1053

100

."

1.0

/

/
1.1

1.2

1.3

VF- FORWARD VOLTAGE -VOLTS

Fig. 4. Forward Voltage VS. Forward Current

I..

I~

ST1056

I\

80

I

60

40

20

)
0 50

J

I

10

II

I

I

.04

.01 0

V

10

a::: 0.2

~

./

)::/

0.4

./

V

/'

40

20

c

I&.

ISO

ST1057

./

1/

I-'-

~

~
I

125

80
60

w 2.0
~

~

100

100

4.0

!<

0
25
50
75
TA-AMBIENT TEMPERATUAE--C

Fig. 2. Power Output vs. Temperature

40

r

1\

30
20
10
0
to
20
30
8-ANGULAR DISPL.ACEMENT FROM OPTICAL AXIS-DEGREES

Fig. 5. Typical Radiation Pattern

40

'"

ST1054

3-159

3-160

GaAs INFRARED EMITTING DIODE

OPT 0EL E£T H0NI CS

LED55BF/CF, LED56F

The LE055BF/CF and LE056F are 940nm LEOs in a wide
angle, TO-46 package.

ST1331

• Good optical to mechanical alignment
SYMBOL

A
¢b

~
¢D

e
e
h

i
k
L
a

INCHES
MIN. MAX.
.155
.016
.021
.209
.230
.180
.188
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
450
450

MILUMETERS
NOTES
MIN. MAX.
3.93
.407
.533
5.31
5.84
4.57
4.77
2.54 NOM.
2
1.27 NOM.
2
.76
1.11
.79
1
1.16
.92
25.4
3
450
450

• Mechanically and wavelength matched to the TO-18
series phototransistor
• Hermetically sealed package
• High irradiance level

ANgDE~ C~THODE

(CONNECTED
TO CASE)

ST1604

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAX. DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO A
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-161

OPTOElECTRONICS

GaAs INFRARED EMITTING DIODE

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec. ls,4,5,.)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec. ls ,4,S)
Continuous Forward Current ................................................................. 100 mA
Forward Current(pw, 111,8; 200 Hz) ............................................................... 10A
Reverse Voltage ............................................................................. 3 Volts
Power Dissipation (TA = 25°C) .... , ......................................................... 170 mW(1 )
Power Dissipation (Tc = 25°C) ................................................................ 1.3 W(2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.70 mW/oC above 25°C ambient.
Derate power dissipation linearly 13.0 mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 'AB" (1.6 mm) minimum from housing.
6. As long as leads are not under any stress or spring tension.
7. Total power output, Po, is the total power radiated by the device into a solid angle of 2Tr steradians.

3-162

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

I

1.4

""

1.2

~

_~~;;~W

I

1.0

~

""'-

""-

~

L.

I

~ 0.8

"ONJ.'.N.!'.?U'

~r--.

""'-

f

~
~

.il

0 .•

,p

0.4

~

NORMAL IZEO

IF-IOOmA
TA"25·C

n.

I

""-

~~

""

NORMALIZED TO

IF-IOOmA
TAo 25°C
0.2
0.02
0.01

V
.0

0

I

-SO

2,
0
SO
7.
TA-AMBIENT TEMPERATURE-OC

-2'

IF-

ST1052

Fig. 1. Power Output vs. Input Current

ISO

12.

ST1057

100

10
8.0
•.0

80
60

4.0

I--"

./
/

20

;.,OOOC

0.4

V

/'

40

....-V

1.0
0.8
0.6

./

./

./

I--

2.0

/

/

Is.t

/

/

j-we

10

I

0

a: 0.2

<

8

/

~

u. 0.1
~ .08
.06

0

!!l

6

j

2

2

3

4

7

6

5

8

VF- FORWARD VOLTAGE -YOLTS

•

100

1.0

/

I

/
1.1

1.2

1.3

VF - FORWARD VOLTAGE -VOLTS

Fig. 4. Forward Voltage vs. Forward Current

I.'

LS

ST1056

/' "'\
/

80

60

II

20

V

80

/
V
60

40

\

\\

1

40

0

..

ST1053

Fig. 3. Forward Voltage vs. Forward Current

I

J

I

10

I

V

.02

I

I

I

4

~

.04

.01 0

100

Fig. 2. Power Output vs. Temperature

20

0

20

\
40

~
60

80

8-ANGULAR DISPLACEMENT FROM OPTICAL AXIS - DEGREES

Fig. 5. Typical Radiation Pattern

ST1055

3-163

3-164

HERMETIC SILICON
PHOTOTAANSISTOR

OPTOELECTRONICS

L14C1/C2

The L14C series is a silicon phototransistor mounted in a
wide angle, TO-18 package.

ST1336
SYMBOL

A

<,lb
<,lD
<,lD

e
e
h

i
k
L
a

INCHES
MIN. MAX.
210
.016
.021
.209
.230
.178
.195
.100 NOM.
.050 NOM.
.030
.036
.046
.028
.048
.500
45'
45'

MILLIMETERS
NOTES
MIN. MAX.
5.34
.406
.534
5.30
5.85
4.52
4.96
2.54 NOM.
2
1.27 NOM.
2
.76
.91
1.17
.71
1.22
1
12.7
45'
45'
3

• Hermetically sealed package
• Wide reception angle

(COLLECTOR

CONNECTED
TO CASE)

ffi(3)

B(2)~
ST1605

E (I)

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-165

OPTOELECTRONICS

HERMETIC SILICON
PHOTOTRANSISTOR

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec. 13 ,4,S,S)
Lead Temperature (Flow) ..... , ..................... , ...... '.' ............ , .... 260°C for 10 sec. 13 ,4,S)
Collector-Emitter Breakdown Voltage ......................................... , . . . . . . . . . . . . . . .. 50 Volts
Collector-Base Breakdown Voltage ... ,., .......................... , .... , .............. , .... ,. 50 Volts
Emitter-Base Breakdown Voltage ..... ,., ................... , ..................... , ....... ,.... 7 Volts
Power Dissipation (TA = 25°C) ' ........... , ................................................. 300 mW(1 )
Power Dissipation (Tc = 25°C) .............................................................. 600 mW(2)

Derate power dissipation linearly 3. OOmW/oC above 25°C ambient.
Derate power dissipation linearly 6. OOmW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'li6" (1.6 mm) minimum from housing.
6. As long as leads are not under any stress or spring tension.
7. Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
8. Figure 1 and figure 2 use light source of tungsten lamp at 28700K color temperature. A GaAs source of 3.0 mW/cm2 is
aDI~ro.)(imlat6"vequivalent to a tungsten source, at 2870 oK, of 10 mW/cm2.

1.
2.
3.
4.
5.

3-166

HERMETIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

10

10

...z
w
'"
~

...... 1-

(.)1.0

!i=

'":::;
"

./

IV/

uJ

:J

'z"

I-

Ee= 20mW/C~

-

Z

Ee = 10 mW/cm 2

-

E e - 5mW/cm 2 -

'-"

./

'"

0::
0::

:::>

u

.-

1/

1.0

I-

I NORMALIZED

::t:

e

E -2mW/cm:"

,,/

0

.

Lv'

N

0.1

l!!

./

0::

0

111

NDR ALiZED TO.
VCE = 5v

11//

Fe = IDmw/Cr2

y/

.0.
0..1

1.0.

Z
I

TO.

,/
0..1

100

100

..

<[

10

/"

'"
0:
0:

1.0

~

/
V

0:
<[

f

o. I

,..,o
.0.

'V

/

V

V

/

V

/

0
Z
0:

...
:::>

."
z

~

"~
,.'"
OJ

VCE"20V

++--+--+:::"'k:-H=""-I RL • ICOn

~,
j

ICC

75

50

25

10

I
RL"OIl

1.0.

150

125

STlo.63

Fig. 3. Dark Current vs. Temperature

V

0. 9
O. 8
O. 7

V

~O.6

o

0:::

~
uJ
0:

O. 3

./

V

/

/

""\

\.

/

100

\

..'"
5
....
OJ

I

\

70.0.

800

900

\

:::>
0

\

80
70
60

50.

OJ

>
;:: 40.

::l

\
A-WAVE

"

~ 90

OJ
0:

O. 1
60.0

V

OJ

u

30

1000

1100

LENGTH - NANOMETERS

1\

/

20
10

500

I
I

liD

0.2

o

Ir-

~

120

"

STlo.66

Current
130

0

100

10.

lc- OUTPUT CURRENT - rnA

T-TEMPERATURE-OC

>

STlo.67

Fig. 2. Normalized Light Current vs. Radiation

......~
...

Ee~OmYUcm~

I

'"
~ O.5
'"w 0 .4

100.

10.

U)

1000

B

1.0.

E.' TCTAL I RRADIANCE IN mW/c..;z

EMITTER VDLTAGE-VOLTS

Fig. 1. Light Current vs. Col/ector to Emitter Voltage STlo.62

~
z

./"

.01

10.

VeE- CDLLECTDR

....-'

f-

TO
VCE"SV - - ; ; 2
E.'10mW/cm

/'

'"
'"
::;
::;

/IV

N

~D.1
o

-

I

I

V

\

I'\:

L
-60.

-40.

-20

0 +20

+40

+60

+80

8-ANGULAR DISPLACEMENT FROM OPTICAL AXIS-DEGREES

ST1o.64

R~!"n.nn,."

Curve

STlo.65

3-167

3-168

HERMETIC SILICON
PHOTODARLINGTON

OPTOElECTRONICS

L14F1/2

The L14FX is a silicon photodarlington mounted in a
narrow angle, TO-1B package.

ST1333

SYMBOL

A
(io
~D
~D

e
e
h

i
k
L
a

INCHES
MIN. MAX.
.225
.255
.016
.021
.209
.230
.178
.195
.100NOM
.050 NOM
.030
.036
.046
.028
.048
.500
450
450

(Collector
connected to
case)

MILLIMETERS
NOTES
MIN. MAX.
5.71
6.47
.407
533
5.31
5.84
4.52
4.96
2.54 NOM
2
1.27 NOM
2
.76
1.16
.92
.71
1.22
1
12.7
450
450
3

• Hermetically sealed package
• Narrow reception angle

3C

28

ST1606

IE

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + .025 - .000mm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO A
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-169

HERMETIC SILICON
PHOTODARLINGTON
OPTOELECTRONICS

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec. 13,4.5.S)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec. I3.4-S)
Collector-Emitter Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 Volts
Collector-Base Breakdown Voltage ........................................................... 25 Volts
Emitter-Base Breakdown Voltage ............................................................. 12 Volts
Power Dissipation (TA = 25°C) .............................................................. 300 mW(1)
Power Dissipation (Tc = 25°C) .............................................................. 600 mW(2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 3.00mW;oC above 25°C ambient.
Derate power dissipation linearly 6.00mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'A. n (1.6 mm) minimum from housing.
6. As long as leads are not under any stress or spring tension.
7. Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
8. Figure 1 and figure 2 use light source of tungsten lamp at 2870 0 K color temperature. A GaAs source of 0.05 mW/crri is
anl1rn:~im'atp.'lv equivalent to a
source, at 2870°1(, of 0.2 mW/crri.

3-170

HERMETIC SILICON
PHOTODARLINGTON

OPTOElECTRONICS

-

100

....
z

w

'":::>
o'"
....

10

/
/

'"

:J
o

.5

...J

1.0

L

'"oz

,
.:t

L
I

z

"'
()

....

/"

----

.6
.4

,../
NORMALIZED TO'

......

VCE -

15

.2

O. I

N

.06

./

5V

@ .04
-'

"'J

.02

Ee = .2 mW/cm'
25
30
35

20

/
VeE = 5V
H· = .2mW/cm2

~

V

.0 I

-50

o

-25

25

VeE - COLLECTOR TO EMITTER - VOLTS

110 r - - , - - - , - - - , - - , - . , ....--,---,---,----,

II

O.B

/

0.7

...J

\

~80~-+--~-~--~+t+--~--i--t-~

\

V

~ 70~-+--~-~--~+++_-~-~--t_~

:;

~60~-+_-~-~--~+4+_-~-~--t_~

«

~

/

~

"'~ 0.3

"1\

V

"'

(/) 0.4

... V

~ 50~-+_-~-~--~~H--~-~--t_~

540~-+_-~-~--H-+_H--~-_i--t_-~
"'"'30~-+_-~-~--#_+_*_-~-_i--t_~

\

«

...J

~ 0.2

20~-+_-~-~---t_+_i_-_r-_i--t_-~

O. I

o400

125
ST1077

I'

w

'" 0.6
'" 0.5

100

Fig. 2. Relative Light Current vs. Ambient Temperature

1.0

«
t;

75

Current vs. Col/ector to Emitter

0.9
~

50

T - TEMPERATURE -'C

ST1072

o
3;

v

/

Ib .08
.05

10

d

o

'"

.1

/'

3 I:g
w

!i

,../

.2

V

0:
0:

:::>

>

/'

w

~

-

1.0
./

8
6
4

....

2.0

./

(!)

~

10
5.0rnW/cm2

10~-+_--r-_i-~~+_1--_r-_i--t-~

500

600

700

BOO

x- WAVELENGTH -

900

1000

1100

~90'

1200

-70'

-50'

-30'

-10'

NANOMETERS

Fig. 3. Spectral Response Curve

10'

30'

50'

70'

90'

DEGREES

ST1073

ST1076

4. Angular Response
100

"\ . LOAD RESISTANCE

1011

E

,

....
z

NORMALIZED TO'

I\,

«

RL"OOIl

IL = lOrnA

10011

10

"'0:

'":::>
....
'"~

I N j U T'V"\.r+
LE,.56

\

1\

()

\,\ 1\'00011

(!)

LED

1.0

I

1+

RL

.:t

OUTPUT

I\,
Vee

ST1074

I

~

I\[\.

= IOV

w

RELATIVE SWITCHING SPEED
td + tr + ts + tf

~

100
ST1075

Fig. 5. Test Circuit and Voltage Waveforms

Fig. 6. Light Current vs. Relative Switching Speed

3-171

3-172

HERMETIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

L14G1/2/3

The L14G series is a silicon phototransister mounted in a
narrow angle, TO-18 package.

ST1333
SYMBOL

A

iftb
iftD
iftD

e
e
h

i
k
L

"

INCHES
MIN. MAX.
.225
.255
.021
.016
.209
.230
.178
.195
.100 NOM
.050 NOM
.030
.036
.046
.028
.048
.500
45°
45°

MILLIMETERS
NOTES
MIN. MAX.
5.71
6,47
.407
533
5.31
5.84
4.52
4.96
2.54 NOM
2
1.27 NOM
2
.76
.92
1.16
.71
1.22
1
12.7
45°
45°
3

• Hermetically sealed package
• Narrow reception angle

(COLLECTOR

CONNECTED
TO CASE)

...0\(3)

B(2)~
ST1605

EO)

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + .025 - .000mm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-173

OPTOElECTRONICS

HERMETIC SILICON
PHOTOTRANSISTOR

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(",,5.6)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(M6)
Collector-Emitter Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 Volts
Collector-Base Breakdown Voltage ........................................................... 45 Volts
Emitter-Base Breakdown Voltage .............................................................. 5 Volts
Power Dissipation (fA = 25°C) .............................................................. 300 mW(1)
Power Dissipation (fc = 25°C) .............................................................. 600 mW(2)

1.
2.
3.
4.
5.
6.
7.
8.

Derate power dissipation linearly 3.00mW/oC above 25°C ambient.
Derate power dissipation linearly 6.00mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
Figure 1 and figure 2 use light source of tungsten lamp at 28700K color temperature. A GaAs source of 3.0 mW/cm" is
approximately equivalent to a tungsten source, at 2870 0K of 10 mW/cm".

3-174

HERMETIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

10

0

I III

Eet

L~

I.

! 20~~/cm' 1,;0

lomwl/cm'2

t, ",

7

1,;0

5mW/cm 2

r/
V
r/

2JJ

j;'

tmwJcm~

./

I'

I
NORMALIZED TO

NORMALIZED TO
Vct:=5V
Eet = 10mW!cm 2

V

V

I III

.0 I
01

10

>=
it
o

Z
0:

i:!

-" ~

.
o

z
z

o

~ 1.0
~::J

..iJi

/

o .1

- 50

/
VCE II 5V
Eet = 10mW/cm 2

j

\

T"25",
50

Kl

I.

-

, ---

"

IDa

10....

""- .......
......

I---

~

0
0

.1

o

/

V
25

V

V

f-

10

100

~ cJ
.....

0

/

8

6

NORMALIZED TO
IO@25"C
VcIEOS'OVOLTS

LI48

LEDin

/
r---

ST1086

Fig. 4. Switching Times vs. Output Current

.2

2

RL"IOO.n

RL"Of

IL -OUTPUT CURRENT-mA

.,/
-'

..............

I,D

4

3

!"o .........

RL"r I I

Current vs. ""nr:I"r.~TI.tr" ST1083

4

"

IL"'2mA
ton "toff=5p.see

T-TEMPERATURE- "C

105

10

ST1087

~ RL=IK.n

........ to...

VCE .. 10 VOLTS

~OO.I

150

-

~ ......
......
......

NORMALIZED TO

~

NORMALIZED TO

o

10mW/cm2

:I:

Fig. 2. Normalized Light Current vs. Radiation

,.~

0

,/

"sv

Est = TOTAL IRRAOIANCE IN mW/cm'

ST1082

Current vs. Col/ector to Emitter

0

Eet

0.1

100

VeE-COLLECTOR TO EMITTER VOLTAGE

/'
./

VCE

V

'/

.0 I

10

Fig. 1.

./

r-...... to...
~

NORMALIZED TO

LID I . . .PUT-IOIIA
VCE =ro VOLTS

4

IL=IOOp.A

r· 25~C
2

50
75
T-TEMPERATURE _DC

100

Fig. 5. Dark Current vs. Temperature

125

150

ST1084

0

55

35

1552545
T-TEMPERATUR£--C

65

85

Kl5

Fig. 6. Normalized Light Current vs. Temperature ST1085
Both Emitter (LED55B) and Detector
(L14G) at Same Temperature

3-175

3-176

HERMETIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

L14N1/2

The L14N series is a silicon phototransister mounted in a
wide angle, TO-18 package.

ST1336

k

INCHES
MIN. MAX.
210
.021
.016
.209
.230
.178
.195
.100 NOM
0.50 NOM
.030
.046
.036
.048
.028

L

.soo

-

a

45'

45'

SYMBOL

A
~b

¢D
¢D

e
e
h

i

MILLIMETERS NOTES
MIN. MAX.
5.34
.406
.534
5.30 5.85
4.52 4.96
2.54 NOM
2
1.27 NOM
2
.76
.91
1.17
.71
1.22
1
12.7
45'
45'
3

• Hermetically sealed package.
• Narrow reception angle.
• Device can be used as a photodiode by using the
collector and base leads.

(COLLECTOR
CONNECTED
TO CASE)

~(31
B(2)~
ST1605

EO)

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + .025 - .000mm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-177

OPTOElECTROIICS

HERMETIC SILICON
PHOTOTRANSISTOR

Storage Temperature .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to + 150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(3.4.5,6)
Lead Temperature (Flow) ,.,." ... , ... ,., .... , ....... , .... ,., ........ , ........ 260°C for 10 sec.(3,.,6)
Collector-Emitter Breakdown Voltage ..... , ... , . , .... , .......... , .......... , . , ...... , , ...... , ., 30 Volts
Collector-Base Breakdown Voltage , .. ,., .............. , ..... , .. , ........ , ... , .. ,', .. ,........ 40 Volts
Emitter-Base Breakdown Voltage .,., .. ,.,., ....... , .... ,.,.,.".,.,., .... " ........ ,.,., .. ,... 5 Volts
Power Dissipation (TA = 25°C) ... , ........ , ... , ...... , ..... , .. , ... , .. , ... ,.,., .. , ........... 300 mW(1)
Power Dissipation (Tc = 25°C) ,., ...... ,.,., ...... ,.,.,.,., .... , ...... ,.,., ... " ... ".,., .. , 600 mW(2)

1.
2,
3,
4,
5.
6,
7,
8,

Derate power dissipation linearly 3.00mW/oC above 25°C ambient.
Derate power dissipation linearly 6,00mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents,
Soldering iron tip 06" (1.6 mm) minimum from housing,
As long as leads are not under any stress or spring tension.
Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
Figure 1 and figure 2 use light source of tungsten lamp at 2870 0 K color temperature. A GaAs source of 3,0 mW/cm" is
to a
source, at 2870 0 K, of 10 mW/cm",

3-178

HERMETIC SILICON
PHOTOTRANSISTOR

OPTOElECTRONICS

0

8

~NOAMALIZED

6

TO:

4~Ee"",5rt}W/cm2

!zw

VeE= 5V
TA = 25°C

II:
II:
::J

E

2~PULSED
tp =

()

~

ow

N

:J
-- Ee = TmW/cm2
VeE= 5V

r-

t-

Z

W

0:
0:

a
~

Cl

2

r-

o
~
::::i
«

~~

1
.8

~

~

0.1

'.01

~

.02

10 ;

.2

.4.6 .8 1

4

6 810

./

::;;

" 10
0:

/"

V
./

C§

@1O,

.9

~

1

Ee - TOTAL IRRADIANCE IN mW/cm'

ST1102

V

10

20

30

o

W

40

« o. 1

60

70

1\

I \

/

11.1

/

t-

:>60

:=6 50

jj20

1 mA

.06
.06

~

.04

lOAMALlZEj TO:VeE"
IF 5 rnA
5vI

.02

PULSED
TA '" 25°r
GAAS SQURCf/1N6264), tp '" 300,usec, TJ=T A

80

90

.01

100

II

I

25

"'

=
75

100

ST1106

0

\

II)

'\

\

7 Z

ir

.6::30::
511.1

>
4~

311.1
0::

2

o~

~

0
8
6
4

~

"'c

w
N

:---... t--,R( • '000
~

nr-::: t--.....

::;;

g NORMALIZED TO:

«

5V
Ie,'" 10

BrVce

40 500 600 700 800 900 1000 ltOO
A-WAVE LENGTH
NANOMETERS

Fig. 5. Angular and Spectral Response

ST1104

I~ J:::::-t-...
NORMALIZED TO:
Vee 5V
IIc:-l0 mA

rnA

Rl'" 100n

4 r--R L= lOOn

TA=25~C

TA=25~C.

1
.1

.2

on-J-

,..... ~ t--.tH,«>"

t-t~
s

2

Rl.=:T

""'-"':l'- ~"

Nsot/..........

:::;

a:
o
z

~


~ 30

:::>

o

/

10 0

11.1 40

2

::::i

Fig. 3. Dark Current vs. Temperature

i!i

l!:w
0:
0:

/

ST1107

Fig. 2. Light Current VS. Radiation

I
Cl

T A- TEMPERATURE - 'C

t-

.o4f_----t_----t_~f_t_t_----t_----+_--~+_+_----~

.02f_----t---+-+-+-+--+--+_--jf-I-I----j
·°ri.,..I-----.*2-----.+4--..,.61-.*8-+,-----+-----+--~61-*8-,"'0~---,120·

./

10

/"

tp =: 300psec

0:

o

V

o

o. '0

N

«

4

,

~
0:
oZ

Ee= 1 mW/cm2

f-----¥~--+_--I-+_+_----+_- PU LS~'6 " 25'C

::::i

NORLALlZE~ TO:

0:

N

ow

20

VOLTS

TA = 25"C
l!:w 10'r-- t--VCE
= lOV
0:

W

./

'11/

.04.06.OS.1

.4 f-----+_------:.I"'--I-+_+_----+_- N0't~:~I~QD TO:

::::i

oJ

Fig. 1. Light Current VS. Collector to Emitter

::::i

t-

---

0.2

VCE - COLLECTOR TO EMITTER VOLTAGE -

o

o

Cl

'///1

If.

.0 2

:::>

:::>

....,./

'Ill /

.0

.0

~

0.5

[:::;::;t::"::

#. ~ ~
:~ ~

•

I
oJ

W

0:
0:

I

1
.08
.0 6

II:

t-

Z

5

f~~ ~ ~

tp = 300~sec

.2

::;;

e-:gmw/cm(

E

;~~S~5~C

.•
.4

::::i

f--I-

I

.4 .0.81

2

4

6 10/.1

.2

I I

.4 .6.81

2

ICE - OUTPUT CURRENT - mA

RISE TIME

FALL TIME

4

6 810

ST1105

Fig. 6. Switching Speed vs. Bias

3-183

3-184

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOElECTRONICS

L14Q1

!+-i"

~

J

1]B1-L
T

Red
'-Color
Code. b

~.~

-lG

The L14Q1 is a silicon phototransister encapsulated is a
clear, wide angle, sidelooker package.

bl

SECTION x-x
LEAD PROFILE

ct.

T .! .--+--.
A

"
~

4,~

T x '"x=:.-'7:'i:=-

• Good optical to mechanical alignment
• Mechanically and wavelength matched to the F5F LED

lJ.l

1.

2

SYMBOL MILLIMETERS
MIN. MAX.
5.59
5.80
A
B
1.78 NOM.
~b

b
D
E
E,

e
G
L
L
S

.60
.51
4.45
2.41
.58
2.41
1.98
12.7
1.40

.83

.75

NOM .
4.70
2.67
.69
2.67

NOM.

1.65
.94

• Plastic package with a color stripe for easy recognition
from LED

ST1335

INCHES
NOTES
MIN. MAX.
.220
.070
.024
.020
.175
.095
.023
.095
.078
.500
.055
.033

.228

NOM .
NOM.

2
1
1

.185
.105
.027
.105

3

.030

NOM .
.065
.037

3

ST1608

NOTES:
1. TWO LEADS, LEAD CROSS SECTION DIMENSIONS
UNCONTROLLED WITHIN 1.27mm (.OS0'1 OF
SEATING PLANE.
2. CENTERLINE OF ACTIVE ELEMENT LOCATED
WITHIN .2Smm (.010'1 OF TRUE POSITION.
3. AS MEASURED AT THE SEATING PLANE.
4. INCH DIMENSIONS DERIVED FROM MILLIMETERS.

3-185

OPTOELECTRONICS

PLASTIC SILICON
PHOTOTRANSISTOR

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.!"·....·)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(2.3.5)
Collector-Emitter Breakdown Voltage .......................................................... 30 Volts
Emitter-Collector Breakdown Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 Volts
Power Dissipation ......................................................................... 150 mW(1)

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 2.00mW/oC above 25°C ambient.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
Figure 1 and figure 2 use light source of tungsten lamp at 28700K color temperature. A GaAs source of 3.0 mW/cm" is
approximately equivalent to a tungsten source, at 2870 oK, of 10 mW/cm".

3-186

PLASTIC SILICON
PHOTOTRANSISTOR

OPTOElECTRONICS

10

...z
w

g:

1

a

~
""..-

--

5 mW/cm 2

/.

2 mJ/cm2

~
u

~ f-----+_:=-""""'-!---'

-

-

0.2 mW/cm2

VeE" 5V
Ee:= 5mW/cm 2
TA = 25°C

VeE

2
IN VOLTS

10

05 rnW/cm 2

TO

~~~--+-:~~~----r---Eee 5mW/cmL

-

1---~""''f----1---+--- T. ~ 25"C

o

20

. 1. Light Current VS. Collector to Emitter Voltage

rnW/cm 2

i----:;>..L=t----1--="""-"'f--- ~~~MtyZED

NORMAWZED T O _

.2

2 rnW/cm

:I:

01 mW/cm 2

V

5 mW/cm 2

~'~~:===+=====~;;~~~:=====+=====~~====::j

::>

...

0.5 ';'W/cm 2

Vi

.1

Ee (2870"K).: 10 m'Nlcm 2

1 rnW/cm2

":tj V//
J
"
"z'~.01
IU
I
.001

--

I
Ee{2870 K) 20 mW/cm
1U mW/cm 2

25

TA- AMB1ENT

50

100

°c

TEMPERATURE

8T1113-11

Fig. 2. Light Current VS. Ambient Temperature

8T111D-11

4r------.-----r---.---r-r~

~
//

~
;/'

VCC,25VOLY

;7
/'"

'"

PW~300!,s. PRR=100pps
NORMALIZED TO RL~ 2.5K.o.

~

"
~

§ IDI-------------+~~~------+-----~----~--~
0:

TA ", 25°C

1//

COUPLED SWITCHING
WITH F5F1
Vee 5V, IF::.~A

u

NORMALIZED TO
VeE·25V
_

/'

~
z
i'
!I>

~e"IOVOLTS
I

"'"

~ 08 r-------=~!_-----

/"

O.I
25

10

50
75
TA - AMBIENT TEMPERATURE _oC

2K
RL - LOAD

.~",';tr-."'inn

8T1111-11

0

7"

O. 9

O. 8
O.7

V

~O.6

z
o

o.U5

!I>

'"w"'0.4
~

~ O. 3

./

V

/

/

""\

i\

.... 10

z

\.

UJ

0:

0:

::>

'\

/

u

...

oJ

700

~-WAVE

800
900
LENGTH - foIANOMETERS

Fig. 5. Spectral Response

1000

V

"

UJ

\

N

,.::J


./

"b
(iD
(iD

e
e
h

k
L
a

INCHES
MIN. MAX.
.255
.225
.016
.021
.209
.230
.195
.178
.100 NOM
.050 NOM
.030
.036
.046
.028
.048
.500
45°
45°

MILLIMETERS
NOTES
MIN. MAX.
5.71
6.47
0407
533
5.31
5.84
4.52
4.96
2.54 NOM
2
1.27 NOM
2
.76
.92
1.16
.71
1.22
1
12.7
45°
45°
3

• Hermetically sealed package
• Narrow reception angle
• European "Pro Electron" registered

(COLLECTOR

CONNECTED
TO CASE)
~('51

8(21~
ST1607

EIII

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + .025 - .000mm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-193

OPTOElECTRONICS

HERMETIC SILICON
PHOTOTRANSISTOR

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(3,4,5 .•)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(3.'.•)
Collector-Emitter Breakdown Voltage .......................................................... 45 Volts
Collector-Base Breakdown Voltage ........................................................... 45 Volts
Emitter-Base Breakdown Voltage .............................................................. 5 Volts
Power Dissipation (TA = 25°C) .............................................................. 300 mW(1)
Power Dissipation (Tc = 25°C) .............................................................. 600 mW(2)

1.
2.
3.
4.
5.
6.
7.
8.

Derate power dissipation linearly 3.00mW/oC above 25°C ambient.
Derate power dissipation linearly 6. OOmW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 116H (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
Figure 1 and figure 2 use light source of tungsten lamp at 2870 0 K color temperature. A GaAs source of 3.0 mW/cm' is
approximately equivalent to a tungsten source, at 2870°K, of 10 mW/cm'.

3-194

HERMETIC SILICON
PHOTOTRANSISTOR

OPTOELECTRONICS

0

10

I III

,

.;

",.

Eet = 20 mW/~m2

.".,

lomwl,cml2

.".,

5mW/cm 2

L

/'

0

~

'/V

2mWU

'j / '

,

1mW) Cm

./
./~

J

I

NORMALIZED TO

V

/'

Eet = 10 mW/cm&

I III

.0 I
01

10

V

.0 I

100

0.1

L
10
Ht: TOTAL IRRADIANCE IN mW/cm 2

VCE-COLLECTOR TO EMITTER VOLTAGE

., 10

'";::'"

10

~

'z"
"
o

~

V

"
........

~

,. ~

~ 1.0

-.... ~
"""'-

.....
.......
,~

o. I

-50

/

.......

T=

o

r--

= 10mW/cm2
25

°1

IL =2mA

RL"Or

50
100
T - TEMPERATURE -"C

ST1251

~

I

/'

/

25

V

... /

10lcJ

-

CQXI4

E
a:: 1.0
a:

a

/

I-

is

:;

.8

'"

"
!il"

NORMALIZED TO
I.o(ii)2SoC

a:

,

VetO-IOVOlTS

BPW36 OR
BPW37

............ ~

0

N

:;

/'

IDC

ST1254

Fig. 4. SWitching Times vs. Output Current

1.2

3

RL"Of

II

1.4

...V

r..r---..

--fRL"oOn~f-

1.0
10
IL -OUTPUT CURRENT-mA

150

Current vs. Temperature

r--...

ton'"toff=S"'ec

I

105

r-.....
......... 1'0..

NORMALIZED TO
VeE" 10 VOLTS

NORMALIZED TO
VCE" 511
Ee

r- RL= I K.fI.

i"......
.........
1'0..

./

/
•

IDC

ST1255

Fig. 2. Normalized Light Current vs. Radiation

Fig. 1. Light Current vs. Col/ector to Emitter Voltage ST1250

./

VCF =5V
Eet = 10 mW!cm2

1/

NORMALIZED TO
I/CE"'511

.6

......

,

NORMALIZED TO
CQXI4INPUT'IOmA
VeE -10 VOLTS
IL-IOo",A

.4

r- 25~C

,:;
.2

50

75

100

_·c
Fig. 5. Dark Current vs. Temperature

125

150

T-TEMPERATURE

ST1252

0

55

~

~

5
25
%
T-TEMPERATURE-OC

~

~

Fig. 6. Normalized Light Current vs. Temperature
Both Emitter (CQXI4) and Detector
(BPW36 or BPW37) at Same Temperature

105

ST1253

3-195

3-196

HERMETIC SILICON
PHOTODARLINGTON

OPTOElECTRONICS

BPW38

The BPW38 is a silicon photodarlington mounted in a
narrow angle TO-18 package.

ST1333

SYMBOL

A

(>b
(>D
"'D
e
e
h

i
k
L
a

INCHES
MIN. MAX.
.225
.255
.016
.021
.209
.230
.178
.195
.100 NOM
.050 NOM
.030
.036
.046
.028
.048
.500
450
450

MILLIMETERS NOTES
MIN. MAX.
5.71
6.47
.407
533
5.31
5.84
4.52
4.96
2.54 NOM
2
1.27 NOM
2
.76
.92
1.16
.71
1.22
1
12.7
450
450
3

• Hermetically sealed package
• Narrow reception angle
• European "Pro Electron" registered

3C

~B

0--+-1

ST1606

IE

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + .025 - .000mm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-197

OPTOELEtTRONICS

HERMETIC SILICON
PHOTODARLINGTON

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(S.',M)
Lead Temperature (Flow) ..................................................... 260°C for 10 sec.(S,',S)
Collector-Emitter Breakdown Voltage .......................................................... 25 Volts
Collector-Base Breakdown Voltage ........................................................... 25 Volts
Emitter-Base Breakdown Voltage ............................................................. 12 Volts
Power Dissipation (TA = 25°C) .............................................................. 300 mW(1)
Power Dissipation (Tc = 25°C) .............................................................. 600 mW(2)

1.
2.
3.
4.
5.
6.
7.
8.

Derate power dissipation linearly 3.00mW/oC above 25°C ambient.
Derate power dissipation linearly 6.00mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
Figure 1 and figure 2 use light source of tungsten lamp at 2870 0 K color temperature. A GaAs source of 0.05 mW/cm" is
to a
source, at 2870 oK, of 0.2 mW/cm".

3-198

HERMETIC SILICON
PHOTODARLINGTON

OPTOELECTRONICS

100

10IZ

'"'"
'"=>
<>

1

/'
/"

10

:::;

1/

o

/

(!)

./
1.01

'"
N

./
.s

::i
1.0

'"z
o

----

I

O

./

.OS

Ee

~

~

w

1.0

I'

'"~ 0.8

/

o

3i 0.7

v

'"'" 0.6
..J

I

~
t; 0.5

25
50
75
T - TEMPERATURE _·c

100

125

Fig. 2. Relative Light Current vs. Ambient TemperatureST1265

1\

90r_--+-----I---_I_---t~~--~----r---t-~

\

~ 80r_-__I_-_+-~--t4++__I_-_I_---+--t_~

\

=>

I- 70~-__I_-_+-__+--~++__I_-_I_---+--t_~

::i

.

~60~-__I_-_+-__+--~~__I_-_I_---+--t_~

\

~50r----I---+-~--tr~H---I----+--t-~

§40~-__I_-_+-__+--H_+_H_-_I_---+--t_~

/'/

'"

0:30~-__I_-_+-__+--*_+_*_-_I_---+--t_~

\

20~-__I_-_+-__+--*_+_+--_I_---+--t_~

O. I

400

o

-25

110 , . . - - - , - - - , - - - - - , - - , - , - - , - - - , - - - , - - , - - - - - ,

0.2

o

VeE'sv
Ee = .2mW/cm2

100 f--+_--I----+--H'l\-+_---f---+----,f----j

..J

~

.01
-50

35

'\

V

Q.

.

V

/

...

ST1260

Fig. 1. Light Current vs. Col/ector to Emitter

0.9

.8aI
.06

5,02 /

=.2 mW/cm 2
30

~

/

@ .04

NORMALIZED TO'
VeE' 5V

~

.2

'"

,./

/

.4

0:

,

.I

VeE - COLLECTOR TO EMITTER - VOLTS

'"en 0.4
'"~ 0.3

'">
~
'"

-"'"

.2

/ ' ..Q

L

4

2.0

l-

X

~

10
8
6

5.0mW/cm2

10~-4--_I_-__+----,~+_1--_I_---+--t_~

500

600
A-

700
800
900
1000
WAVELENGTH - NANOMETERS

3. Spectral Response Curve

1100

~9~07.==-~70=.==~-5~07.==-~30=.==-~1~0.~~10~.==~30~.~~5~0~.==~7~0.~~9~

1200

DEGREES

ST1261

ST1264

100
_..... LOAD RESISTANCE
Ion

E
I-

z

IN:l-~

NORMALIZED TO'
RL'loon

\.

<[

Il

I\.

10

'"0:0:

\

=>
<>

L:J

\.

lX

\\

(!)

:J

= lOrnA

loon

1.0

OUTPUT

Vee' 10V

I

0.1

\Iooon

'\

1.0
10
RELATIVE SWITCHING SPEED

100

Id+ 1,+ I, + If

Fig. 5. Test Circuit and Voltage Waveforms

Fig. 6.

Current vs. Relative SlILlitr..hin'n

3-199

3-200

GaAs INFRARED EMITTING DIODE

OPTOElECTHORICS

CQX14, CQX16

The CaX14/16 are 940nm LEOs in narrow angle, TO-46
packages.

ST1332

• Good optical to mechanical alignment
SYMBOL

A
(>b
(>D
(>D
e
e
h
j
k
L

'"

INCHES
MIN. MAX.
.255
.016
.021
.230
.209
.180
.187
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
45'
45'

AN~DEe

(CONNECTED
TO CASEI

MILLIMETERS NOTES
MIN. MAX.
6.47
.407
.533
5.31
5.84
4.52
4.77
2.54 NOM.
2
2
1.27 NOM.
.76
.79
1.11
1
.92
1.16
25.4
3
45'
45'

• Mechanically and wavelength matched to TO-18
phototransistor
• Hermetically sealed package
• High irradiance level
• European "Pro Electron" registered

I

o
CATHODE
ST1604

NOTES:
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-201

GaAs INFRARED EMITTING DIODE

OPTOELECTRONICS

Storage Temperature ............................................................... -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec.(3.4.5,6)
Lead Temperature (Flow) ......... , ............ , ............ ,., .... , ..... , .... 260°C for 10 sec,(3,.,6)
Continuous Forward Current , ........ , .. " ............. , .................................... , 100 rnA
Forward Current (pw, 1 tLS; 200 Hz) .,., ..... ,., ......... ,., ..... , ...... , ........... , .. , .... , ... ,. 10 A
Reverse Voltage ..... , ................ , .. , ... ,., ........... ,., ......... , ... ,., .... , .. ,.,..... 3 Volts
Power Dissipation (TA = 25°C) ..... ,.,., ..... , .. , .... , ... ,., ..... , ...... , ..... , ...... " ..... 170 mW(1)
Power Dissipation (Tc 25°C) .......... , ...... , ........ ,., ......... ,., .. , ..... , .... , ......... 1.3 W(2)

=

1.
2.
3.
4.
5.
6.
7.

Derate power dissipation linearly 1, 70mW/oC above 25°C ambient.
Derate power dissipation linearly 13.0mW/oC above 25°C case.
RMA flux is recommended,
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 'A6 H (1.6 mm) minimum from housing.
As long as leads are not under any stress or spring tension.
Total power output, Po, is the total power radiated by the device into a solid angle of 271' steradians.

3-202

GaAs INFRARED EMITTING DIODE

OPT 0EL mHO NICS

IA

100

~

0

•

0

.A.

0

•
2

1L.-

0

PULSED
PW 10,..S
FORWARD
CURRENT

'"

..........

0

~

'""

•

CONTINUOUS
FORWARD
CURRENT

•

•

..........

"" i'---

NORMALIZED

2

rF"'IOOmA

•

TA·2~·C

.1

0.05

NORMALIZED TO
IF-IOOmA
TA- 2Sec

t---.
........

o. 2

0.00
0.01

.001 .002

.D05

.01

.02
.05
0.1
0.2
0.5
IF- FORWARD CURRENT-AMPERES

1. Power Output VS.

100
0

.

~

•
•

0.

il

0. 2

0

.-1--

"'"

lo.a
~ 0.

e

0 .1

H

.08
.08

I..

...

100

./

V

./

V

/

/"

V

/

I;'"o~e

180

8T1276

./

0

V

/

/

r·e /-...e

•

I

•

/

I

I

•

•

.0

•
4

5

6

7

I

10

VF- FORWARD VOLTAGE -VOLTS

VS.

Forward Current

1.0

/

1.1

/

1.2

YF-FORWARD VOLTAIE-VOLTS

8T1272

100

VS.

1.3

I.'

Forward Current

I~

8T1275

/I ~

80

0

0

20

°50

I

/
V

,..

II

I

I

.02

I

0
20
50
75
TA-AM8IENT nM'ERATUItE--C

~

JJ

I.0

-25

Fig. 2. Power Output VS. Temperature

0
0

~

~

ST1271

I0

0

~

-50

10

Current

....
..
:::

0

1.0

J

r

1\

403020100102050

40

00

'-ANGULAR DISPLACEMENT FROM OPTICAL AXIS-DEGREES

Radiation Pattern

8T1273

3-203

3-204

GaAs INFRARED EMlnlNG DIODE

OPTOElECTRONICS

CQX15, CQX17

The CQX15/17 are 940nm LEOs in wide angle, TO-46
packages.

ST1331

• Good optical to mechanical alignment
SYMBOL

A
~

¢D
¢D

e
e
h

i
k
L
a

INCHES
MIN. MAX.
.155
.016
.021
.209
.230
.180
.187
.100 NOM.
.050 NOM.
.030
.031
.044
.036
.046
1.00
45'
45'

MILLIMETERS
NOTES
MIN. MAX.
3.93
.407
.533
5.31
5.84
4.57
4.n
2.54 NOM.
2
1.27 NOM .
2
.76
.79 1.11
.92
1.16
1
25.4
3
45'
45'

• Mechanically and wavelength matched to TO-18
phototransistor
• Hermetically sealed package
• High irradiance level
• European "Pro Electron" registered

AN~DE~ C~THODE

(CONNECTED
TO CASE)

ST1604

NOTES;
1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE.
2. LEADS HAVING MAXIMUM DIAMETER .021" (.533mm)
MEASURED IN GAUGING PLANE .054" + .001" - .000
(137 + 025 - OOOmm) BELOW THE REFERENCE
PLANE OF THE DEVICE SHALL BE WITHIN .007"
(.778mm) THEIR TRUE POSITION RELATIVE TO
MAXIMUM WIDTH TAB.
3. FROM CENTERLINE TAB.

3-205

OPTOElECTRONICS

GaAs INFRARED EMITTING DIODE

Storage Temperature ........... " .................................................. -65°C to +150°C
Operating Temperature ............................................................. -65°C to +125°C
Soldering:
Lead Temperature (Iron) ...................................................... 240°C for 5 sec. 13,4,5,S)
Lead Temperature (Flow) " " " , .......... , ........ , ....... , ...... , ..... , ... ,. 260°C for 10 sec,13,4,6)
Continuous Forward Current , ............ ,.,., ........ , ....... , .. ,., ........... , .. , .......... 100 mA
Forward Current (pw, 1 J,tS; 200 Hz) ., .. , ...... , ...... , ...... , ............... , ...... , .. ,., ... , .... 10 A
Reverse Voltage .. , ....... , ......... , ............... , ....... , .. ,.,., .................... "... 3 Volts
Power Dissipation (TA = 25°C) ........... , ... , .. ,.,., ........ , .. ,., .... , .......... , .. , ...... 170 mW(1)
Power Dissipation (Tc = 25°C) , .. ", ........... , ............ ,., ......... , .. , ........ , ........ , 1.3 W(2)

1.
2.
3,
4.
5.
6.
7.

Derate power dissipation linearly 1. 70mW/oC above 25°C ambient.
Derate power dissipation linearly 13.0mW;oC above 25°C case,
RMA flux is recommended,
Methanol or Isopranol alcohols are recommended as cleaning agents.
Soldering iron tip 146" (1.6 mm) minimum from housing.
As long as leads are not under any stress or
tension.
Total
is the total
the device into a solid

3-206

of 2", steradians.

GaAs INFRARED EMITTING DIODE

OPTOElECTRONICS

100

IA

'""

0
1.2

0

A

0

PULSED

PW 80,..S
FORWARD

•

CURRENT

2

1L.-

.0

..

""'" ~

•

CONTINUOUS
OAWAAO
CURRENT

~ t-....

•

" I"-.

""

NORMALIZED

2

rr-'OOmA
TA-ZS-C

NORMALIZED TO
IF·,OOmA

.1

TA- 25-<:

0.05

o. 2

0..02
0.0I

.001

.005

.01

.os

.02

0.1

0.2

0.5

1.0

-50

10

-25

8T1271

Fig. 1. PowerOutputvs.lnputCurrent
8.0
o.0

80

..;

.0

150

120

8T1276

./

./

V

/

./

V

/

V

I

II

/

/

I;'-_e fo.e /-.. e

4

•

I

Q

100

/'

.-1--

....

75

1/

I-

.0

0 .1

50

60

.0.

i?
I..

.,

Fig. 2. Power Output vs. Temperature
100

2

0

TAo-AMBIENT TEMPERATURE--C

I0

O.

........

,I
.002

IF- FORWARD CURRENT-AMPERES

i

"-

/

I

I

.08
. . . 06

I

/

.04

/

II

.0 2

..

J

I

6

7

10

VF- FORWARD VOLTAGE - VOL.TS

Fig. 3. Forward Voltage vs. Forward Current

/

-7

0

II

0

0

1.4

I~

8T1275

I/, '\

0

0

/

1.0
1.1
1.2
1.3
YF- FORWARD VOLTAGE -VOLTS

4. Forward Voltage vs. Forward Current

8T1272

10.0

I

/
V

1\

\

r \\
\

\

l/

f'..

806040200204010
B- ANGULAR DISPLACEMENT FROM OPTICAL AXIS - DEGREES

Radiation Pattern

80

8T1274

3-207

3-208

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

H21A1/2/3

SYMBOL

-1b1~

I

I~

~

b1

xr

SECTION X LEAD PROFILE
ST1339-01

A
A
A,
¢b
b

0
0
0

e
e,
E
L
¢p

SEATING
PLANE

L

Q

S
S

T

MILLIMETERS
MIN. MAX.
10.7
11.0
3.0
3.2
3.0
3.2
.600
.750
.50 NOM.
24.7
24.3
11.6
12.0
3.0
3.3
6.9
7.5
2.3
2.8
6.15
6.35
8.00
3,4
3.2
18.9
19.2
.85
1.0
3.45
3.75
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.433
.422
.119
.125
.119
.125
.024
.030
2
.020 NOM .
2
.957
.972
.457
.472
.119
.129
.272
.295
.110
.091
.243
.249
.315
.126
.133
.745
.755
.034
.039
.136
.147
.103 NOM.
3

!
NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BETWEEN 1.27mm (.050") FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "Tn ±0.75mm (±.030 INCH).

ST1339-02

I]:l",r~, 4
I

L
2

1""1

.J L_

I
.J

3

ST1609

The H21A Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon phototransistor in
a plastic housing. The packaging system is designed to
optimize the mechanical resolution, coupling efficiency,
ambient light rejection, cost and reliability. The gap in the
housing provides a means of interrupting the signal with
an opaque material, switching the output from an "ON"
to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• High IqoN)

3-209

OPTOELECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(3,.,5)
Lead Temperature (Flow) .......................... , ... , ............ " ......... 260°C for 10 sec.(3,')

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ...... " ............................................... " ................ 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................... 6 Volts
Power Dissipation ......................................................................... 150 mW(2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
Derate power dissipation linearly 2.00 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 1,16" (1.6 mm) from housing.

3-210

OPTOElECTRONICS

SLOTTED OPTICAL SWITCH

SATURATION VOLTAGE
H21A2

3-211

SLOTTED OPTICAL SWITCH

OPTOElECTROIICS

10
8
6

E

L....-~

II:
II:

V

:>

"
~
§

I
8
.6

..

iilN
«

"~

.!-

~

c

I
8

~

.6

f-

.2

17

I

.0 I I

-r-

I

~I - -

r--

-55 -40

I

j

~

-20
0
20
40
60
TA-AMBIENT TEMPERATURE-·C

O«TICTOII

80

7

...!z

100

ST1134-11

103

'/

•
~:= 1=
~~
" F 1= ~~ ~i:r:=- ~
/
~
:>

N

:::;

10

I

"""

~a

I--

EMITTER

103

...

f---

IF=IOmA

T-I-

Fig. 2. Output Current vs. Temperature

c

f---

I--

IF =30 rnA

-...-

.4

j

/

--

I--

t

.1

.02

2

::I

I-

p~::g~~s

~

§

.08
,06

.§ .0'

-

II!a:

a
r--r---

r==

8~' NORMALIZED TO VeE -SV,IF -20 mA,TA"25·C
s 1 - - . INPUT PULSED
I,='OOmA
4
IIF"SOmA"

....z

NORMALIZED TO'
IF =20mA
VCE -5V
PULSED

V

Z

:::;

-

0

~

+

10I

•
./

J/

/

I

N

~

~

/ 1/

"

}

r----=~~~~----_+------~~~- ~
IF

ISmA

tt=t--

t - - NORMALIZED TO-

.6!----t--t--+--!-~+-..........jr___I
-50

-25

0

25

50

75

IF"~ A

)~? V

PW=300p.s
PRR-IOOpps

2

IIOItIlALIZED TO
ItLot.IICA

5

....-

I
.9

.B
.6

/

V

7'

ZK

236.2

t=

I

+50

+75

+lOC

ST1133-11

I
35

393,

I
II
NORMALIZED

TO VALUE WITH

SHIELD
REMOVED

lBLACK

I

SHIELD

.01

3K
4K
5K
6K
RL-LOAD RESISTANCE-OHMS

-I

TA-AMBIENT TEMPERATURE··C

I
I

.1

-

E:J~rG:=

~

V R =5V

/'

~V

RL

/"

.7

.5
115
IK

I
+25

d-DISTANCE-mUs
151~

787

1.00

V

vcc· 5V,

NORMALIZED TO'

f--- I--TA =25°C

Currents vs.

5

•
3

7K 8K 9K 10K

~~:d
-0

~ BLACK
SHIELD

~-:

.001

.000 10

I
I
8

4

10

d-OISTANCE-mm

ST1131-11

3-212

\25·~1

ST1130-11

VS.

f-

VeE .. 25V

I
+25
+50
+75
+100
TA -AMBIENT TEMPERATURE-oC

100

TA -AMBIENT TEMPERATURE-"C

..

.....11/

I

Current vs. Distance

ST1132-11

SLonED OPTICAL SWITCH

OPTOElECTRONICS

H21A4/S/6

SYMBOL

- , b1

tl.

~

A
A

b1

_A.

iT"

!6b
b
0
0
O.

SECTION X LEAD PROFILE
ST1339-01

e
e
E
L
~p

SEATING
PLANE

L

Q

S
S
T

MILLIMETERS
MIN. MAX.
10.7
11.0
3.0
3.2
3.0
3.2
.750
.600
.50 NOM.
24.3
24.7
11.6
12.0
3.0
3.3
6.9
7.5
2.3
2.8
6.15
6.35
8.00
3.2
3.4
18.9
19.2
.85
1.0
3.75
3.45
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.119
.125
.024
.030
2
.020 NOM .
2
.957
.972
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.126
.133
.745
.755
.034
.039
.136
.147
.103 NOM.
3

!
NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BETWEEN 1.27mm (.050") FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

ST1339·02

1~11"rQ,4
,""I
I

I

L .J L_ .J

2

,

ST1609

The H21A Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon phototransistor in
a plastic housing. The packaging system is designed to
optimize the mechanical resolution, coupling efficiency,
ambient light rejection, cost and reliability. The gap in the
housing provides a means of interrupting the signal with
an opaque material, switching the output from an "ON"
to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• High Ic(oN)

3-213

OPTOElECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec. 13 .',5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec. 13 ,4)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................... 55 Volts
Emitter-Collector Voltage ..................................................................... 6 Volts
Power Dissipation ......................................................................... 150 mW(2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33 mW/oC above 25°C ambient.
Derate power dissipation linearly 2.00 mW/oC above 25°C case.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) from housing.

3-214

OPTOElECTRONICS

SLOTTED OPTICAL SWITCH

SATURATION VOLTAGE

3-215

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

10

10

8
6
4

\;

VV

OJ

II:

~

...

I
.8
.6

...~::>
o
o

.4

~

.2

'",.

\;

o

OJ
N

~

f-

l

I

~ .0B
.!-

5

.06
.04

& .02

/

2

a

f-f-

~~:Ig~~s

V

---

a

.
j

/

I

.8

4

6 8 10

20
40 60 80100
l.=-INPUT CURRENT-rnA

200

400 600

.4

.2

~-

---....

-N-tL.5m~

-

20
40
60
TA-AMBIENT TEMPERATURE·oC

10

/

l'''Z

r-

. t:=
1= = ~~ ..f>_
V v..,,~- ~
~(j

/

.8i---=F----:::l_S.-

0
0
OJ

,..
N

+100

2K

,./

-

.I
+25

NORMALIZED TO'
VR"5V
TA-25"C

I

+50

=

+75

+100

I

;

I
, BLACK
SHIELD

3K
4K
5K
RL-LOAD RESISTANCE-OHMS

RL

6K

7K 8K 9K 10K

c::D[b-:

.00 I

J

.000 I0

3937

0

II:

-

315

NORMALIZED
TO vALUE WITH
SHIELD
REMOVED

;~~K
E 2 :g
0

8T1145-11

I

SHIELD

.0

:::i

Fig. 5. Switching Speed VS.

3-216

...::>

EJ~G:=

/

./

./

/
I

I

::>

,/'

RL

./

OJ
II:
II:

u

//

g

•

d-OlSTANCE-mils
1575
2362

787

...z

tON~>, / '

PW ' 3001"

•

Fig. 4. Leakage Current vs. Temperature

1.00

i5

10

TA-AMBIENT TEMPERATURE-etc

4.'
Vcc" SV,

8T1144-11

/'

TA-AMBIENT TEMPERATURE-II(:

II)

100

I

NORMALIZED TO'

I

+25

-

E.. TTEIt

•

2

,.

80

Fig. 2. Output Current vs. Temperature

HTECTOIt

Fig. 3.

-

IF=IOmA

- 5 5 4 0-2 0 0

1000

-r-

I

IF."'30 rnA

.........

8T1140-11

Fig. 1. Output Current vs. Input Current

II F '60m,{"

-

.6

I

.0 I I

t::::

--

4

OJ

NORMALIZED TO'
IF=20mA
VeE' 5V
PULSED

V

OJ

6

II:
0:

/'

U

8 ~'NORMALIZED TO VCE=5V,I,=20mA.TA=25°C
I
r - . INPUT PULSED
IF·IOOmA

...z

.........

I
I
4

10

d-DISTANCE-mm

8T1142-11

Fig. 6. Output Current vs. Shield Distance

8T1143-11

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

H2111/2/3

,

b1

tL

I2J

b1

Xl

SECTION X LEAD PROFILE
ST1339·01

SEATING
PLANE

IH.'~
r-,

4

2

3

I
L

INCHES
NOTES
MIN. MAX.
.422

.433

.119
.125
.125
.119
.024
.030
.020 NOM .
.957
.972
.472
.457
.119
.129
.272
.295
.091
.110
.243
.249
.315
.126
.133
.745
.755
.034
.039
.147
.136
.103 NOM.

2
2

3

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BETWEEN 1.27mm (.050") FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

ST1339·02

I
I

SYMBOL MILLIMETERS
MIN. MAX.
10.7
11.0
A
A,
3.0
3.2
3.0
3.2
A,
t,lb
.600
.750
b
.50 NOM.
D
24.3
24.7
D
11.6
12.0
3.0
3.3
D2
6.9
7.5
e
2.3
2.8
elL
6.15
6.35
E
L
8.00
t/Jp
3.2
3.4
Q
18.9
19.2
.85
1.0
S
S
3.45
3.75
T
2.6 NOM.

I I
I~I
I I

.J L. __

I
I
I

ST1191

The H21B Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon photodarlington
in a plastic housing. The packaging system is designed
to optimize the mechanical resolution, coupling
efficiency, ambient light rejection, cost and reliability. The
gap in the housing provides a means of interrupting the
signal with an opaque material, switching the output from
an "ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• High ICION)

3-217

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(3,4,S)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec. (3,4)
INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(1)
OUTPUT DARLINGTON
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................... 7 Volts
Power Dissipation ......................................................................... 150 mW(2)

OUTPUT DARLINGTON
Emitter-Collector Breakdown

7.0

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
Derate power dissipation linearly 2.00 mW/oC above 25°C.
RMA flux is recommended.
Methanol or
....nJ'm.'·mn

3-218

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

H21B1

mA

I,

= 2mA, VeE = 1.5V

V

I,

= 10mA, Ie = 1.BmA

SATURATION VOLTAGE
H21B1

1.0

Turn-On Time
H21B1,H21B2,H21B3

45

Vee

= 5V, I, = 10mA, RL = 750.11

250

Vee

= 5V, I, = 10mA, RL = 750.11

Turn-Off Time
H21B1,H21B2,H21B3

3-219

SLOTTED OPTICAL SWITCH
OPTOElECTRONICS

100

-

IZ

'"

~

0:
0:

:>

u

NORMALIZEO TO
VcE·'.5V, IF "SmA, TA·25°C
INPUT PULSED

IIF.IOO!A

-r-

10

I-

~
5
c

i-"

:~

'"

.4
.2

~

7

7

.I

;uf5

_

IF"30 rnA
NORMALIZED TO
IF .. 5mA

/

I

~
~

[,'SO mA

I

[F'20-;;:"A

IF·IO~

VCE "'1.5V

7

I

PULSED

PW=IOOps
PRR-IOO ppl

:83
.04

IF·~mA

I
F.21--

I

.02

J
0.1

4

6 8 10

-

20
40 SO 80 100
[,,-INPUT CURRENT-mA

I-IC

Fig. 2. Output Current vs. Temperature

N

~

I

r-

~

c

'"
:;

I,

NORMALIZED TO·

5OmA-

104

.!.c.,,~.TA=25°C
IF 10 mA
PULSED
PW=IOO p.s,PRR=100 pps

Z

:i!

!§

IF-20mA - [ C

1.8:'

- i f " lemA

~

y 0.6

.!L a9~A ~
5mA

[F

....
o

- 25

25

50

75

100

Te-AMBIENT TEMP,ERATURE·GC

Fig. 3.

IF

'~"
c
z

.4

.2

-

~

20

40

60

V
~~
eo
100

200

Rt: LOAD RESISTANCE-OHMS

5. Switching Speed vs.

3-220

~

r

~
J
C

==

0

~

/

0:

o

,

Z

0:

....

O. I
25
50
75
100
TA-AMBIENT TEMPERATURE-oC

NORMALIZED TO:
VR·5V
TA·25°C . /

==

.L-

./

1/

01!5

50
15
100
TA-AMBIENT TEMPERATURE-oC

ST1152

Currentvs.
a-DISTANCE-mils
1575
2362

787

35
I

393.

I

T

I

I
NORMALIZED
TO VALUE WiTH

SHIELD
REMOVED

BLACK

SHIELD

V/

I

/

~[,4

'"

a I ,0

.RL

W

NORMALIZED TO'
RL ·75011

.6 I - - - -

+-~

u

~ 102

I

1.00

I

J~G:

2

z

0:

ST1149

I

c

I-

'"§ 103

'"
'":;

Fig. 4.

4

~

~ f=

104

N

vs.

PW·300p.s
I I - - - - PRR '100 ••'
.8 I - - - - [F" ~~ AMPS,Vcc' 5V

tt~
...&...<'17

10

~

50

2~

NORMALIZED TO:
VCE'25V
T. ·25·C
7

/1/

N

~

EMITTER

0:

0.4

N

10 2

i--

'":;
fil
u

'"

i--

c

~_3imA

o.8

103

u

~

,..=.

i-i--

I-

g
I

+100

ST1153

DETECTOR

2

+75

A

ST1148

Current

Fig. 1. Output Current vs.

0
+25
+50
-25T -AM8IENT
TEMPERATURE-oC

-

400 600 1000

200

0

+

20 :g

~ BLACK
SHIELD

c::C!b-:

I

ggo 1000 1500

400 6OOr

I
.0000

10
d-OISTANCE-mm

ST1150

Fig. 6. Output Current vs. Shield Distance

ST1151

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

H2184/5/6

SYMBOL

---i b1 t--:
I 1--1.....

~

b1

XT

SECTION X LEAD PROFILE
ST1339-01

A
A
A,
<,lb
b
0
0
0

e
e
E
L
<,lp

SEATING
PLANE
L

Q

S
S
T

MILLIMETERS
MIN. MAX.
11.0
10.7
3.0
3.2
3.0
3.2
.600
.750
.50 NOM.
24.7
24.3
11.6
12.0
3.3
3.0
7.5
6.9
2.3
2.8
6.15
6.35
8.00
3.2
3.4
19.2
18.9
.85
1.0
3.45
3.75
2.6 NOM.

INCHES
MIN. MAX.
.422
.433
.119
.125
.119
.125
.024
.030
.020 NOM.
.957
.972
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.126
.133
.745
.755
.034
.039
.136
.147
.103 NOM.

NOTES

2
2

3

!
NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BETWEEN 1.27mm (.050") FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

ST1339-02

ITI.'
I 1,1r~-'I 4
I

L ...J1"'1L __

2
ST1191

I

!

The H21B Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon photodarlington
in a plastic housing. The packaging system is designed
to optimize the mechanical resolution, coupling
efficiency, ambient light rejection, cost and reliability. The
gap in the housing provides a means of interrupting the
signal with an opaque material, switching the output from
an "ON" to an "OFF" state.

• Opaque housing
• Lowcost

• .035" apertures
• High ICION)

3-221

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(....5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(a.4)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(l)

OUTPUT DARLINGTON
Collector-Emitter Voltage .................................................................... 55 Volts
Emitter-Collector Voltage ..................................................................... 7 Volts
Power Dissipation ......................................................................... 150 mW(2)

1. Derate power dissipation linearly 1.33 mW/"C above 25°C.
2. Derate power dissipation linearly 2.00 mW/oC above 25°C.
3. RMA flux is recommended.
4. Methanol or
alcohols are recommended as cleaning agents.

5.

3-222

~om

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

SATURATION VOLTAGE
H21B4

1.0

v

IF

= 10mA, Ie = 1.8mA

Turn-On Time
H21B4,H21B5,H21B6

45

Vee

= 5V, IF = 10mA, RL = 7500

250

Vee

= 5V, IF = 10mA, RL = 7500

Turn-Off Time
H21B4, H21B5, H21B6

3-223

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

100

10 0

~8

...
'"
il
...

--

40

Z

20

0:
0:

..-

10

34

~

NORMALIZED TO

~

VCE= 1.5V, IF "'5mA. TA"'25°C
INPUT PULSED

1,.IOO!A

-

10

"F"6u mA

i;'

~
o

o

.
N

/

.4

~
o

~

VCE "'1.5 V

/

.2

PULSED
PW=IOOJ£'
PRR-IOO pp.

/

I

-=~... :8t
.04

~

1,"'30 mA
I F ·20"";A

NORMALIZED TO '
IF "SmA

/

I

'":::; :6B

IF·IO~

I

J,"'5 mA

I

~

IF.2~

.02
4

6 8 10

20

40 60 80 100

200

0.1

400 600 1000

IF-INPUT CURRENT-mA

-50

-25

0
+25
+50
TA -AMBIENT TEMPERATURE .oC

Fig. 2. Output Current vs. Temperature
DETECTOR

NORMALIZED TO

I

..'"

z

IF

10mA
PULSED
PW= 100 ~s.PRR=IOO pps

~'6J\

o

.... 104

.!k=~,TA=25°C

_

5OmA-

'"
0:
0:

B 103

"

N

~,

r=

~

fill02

I

t--

EMITTER

NORMALIZED TO'
VCE"4~V / TA .. 25°C

r-

0:

:::;
~

~

b'

.~~~ 1=

----ho/

~v"'f- r--

N

IC 3'/mA
JF .. 2Cifj;'A

O.B

~

o

~ 0.6
~

r---

IC 1.8:A
I"--fF'lomA

IC

+100

8Tl162

Fig. 1. Output Current vs. Input Current

ric

+75

8T1157

0.9-:::A

~

1F=51TiA r - - -

... 104

z

i:!0:
::>

o Kl 3

.."
.. ==
i,
Ill'

~ 102

o

~~

/
10

0:

~o

/

'"o

N

:::;

/

..

/

0:

I

H

H

0.4

NORMALIZED TO'
VR' 5V
TA'25·C ..,/"

10

==

L

./

1/

/
- 25

50

o

25

50

75

Te-AMBIENT TEMPERATURE .oC

Fig. 3.

~O
75
100
TA-AMBIENT TEMPERATURE·oC

o.I25

100

8T1158

.I
025

~O
7~
100
TA-AMBIENT TEMPERATURE-·C

8Tl161

vs. Temperature

Fig. 4. Leakage Currents vs. Temperature
d-DISTANCE -mils

4

IF

'"
:::;

..,.t5
N

z

~

J;

..
~

PW= 300 IJ-s
1 - PRR:IOOpps

.8 -

.6

IF"

-

7R~

f1'"

AMPS,VcC=5V

-

NORMALIZED TO I
RL'" 750.0.

.4

~

.2

o. 110

2

~
40

7'

~

200

1575

2362

.1

3937

I
NORMALIZED

~
~

TO VALUE WITH
SHIELD
REMOVED

BLACK
SHIELD

.0

I

o

E

~

I

o:g

~ BLACK
SHIELD

::I

15
~

315

/

I
I

~

0:

a...
~

V

dJ!1-~

.00 I

o

~

~V

60 80100
75

...

o

V/

[,£

RL-LOAD RESISTANCE-OHMS

400 600 800 1000 1500
750

Fig. 5. Switching Speed vs. RL

3-224

RL

J~G:
?-

2
o

787

1.00

I

8Tl159

I
.00°0

10
d-DISTANCE-mm

Fig. 6. Output Current vs. Shield Distance

8T1160

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

H22A1/2/3

I

t:L

oT
b1

b1

SECTION X - X
LEAD PROFILE

~S1~
I
I

T

t---

'T'
-L

f
A1

A
A
lib
b

0
D.

..
e

ST134O-01

I --

SYMBOL

A

SEATING
PLANE

r
X

L

1

1

X

t- e1~

E
L
S
S
T

MILUMETERS
MIN. MAX.
11.0
10.7
3.0
3.2
.600
.750
.50 NOM.
11.6
12.0
3.3
3.0
6.9
7.5
2.3
2.8
6.15
6.35
8.00
1.0
.85
3.45
3.75
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.024
.030
2
.020 NOM.
2
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.034
.039
.136
.147
.103 NOM.
3

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BElWEEN 1.27mm (.050'1 FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

ST1340·02

I]~l"f7Q'
4
.-'1
I

L

2

.J L_

I

.J

3

ST1609

The H22A Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon photodarlington
in a plastic housing. The packaging system is designed
to optimize the mechanical resolution, coupling
efficiency, ambient light rejection, cost and reliability. The
gap in the housing provides a means of interrupting the
signal with an opaque material, switching the output from
an "ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• High

Ic(ON)

3-225

OPTOELECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec. 13 ,4,5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec. 13 ,4)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ................................................................... ,. 6 Volts
Power Dissipation ......................................................................... 150 mW(2)

Derate power dissipation linearly 1.33 mW/oC above 25°C.
Derate power dissipation linearly 2.00 mW/oC above 25°C.
RMA flux is recommended.
Methanol or
alcohols are recommended as cleaning agents.
5.
from

1.
2.
3.
4.

3-226

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

ON·STATE COLLECTOR CURRENT
H22A1

SATURATION VOLTAGE
H22A2

0.40

v

IF

= 20mA, Ie = 1.8mA

3-227

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

10

10

8

!z

~
5o
o

'"j
,.'"

6 - . INPUT PULSED

/1--"

'"0:

a

8 '=:=' NORMALIZED TO VeE -5V, IF -20 mA,TA'25'C

...--

6
4

V

I
.8

.6
.4

tt-

NORMALIZED TO'
IF=20mA
VCE - 5V
PULSED

/

.2

!c;

.02

r-

I

IF =30 mA

r--

I

.8

-

lR~~:g~~.

V

I

TF~ -

- - :---r--t-:-..

.6

IF=IOmA

.4

~:

I I F '60 mA"

f-"

~ .08

~

--

.-

4

I

.t.5

./'

V
4

6 810

20
40 60 80100
I"INPUT CURRENT- mA

200

400600

.1

1000

-

--+-

.2

.0 I I

I
I

IF _ 100 mA

m~

-

BO

100

- 55 - 40 - 2 0 0 2 0 4 0 6 0

TA-AMBIENT TEMPERATURE··C

ST1174

ST1179

Fig. 2. Output Current vs. Temperature

Current

EMITTEII

DETECTOII

/

•

10

....z

.

'"~
u

~
fi3

..,.

'"

10 2

.

',I

~~~~
.~~ =
~~
~ ",,"1=

=

V

II

10 I

•

10

2

/'

1

N

::;

I II

[!i
.6r--~---r--t--~~-~----~--~
-50

-25
o
25
50
TA -AMBIENT TEMPERATURE-"C

vs.

75

100

NOIIIiIALIZlD TO
ilL" Z_IKA

N

1.5

./V

0:
0
Z

~

I
.9
.8
.6

.5

~./

+50
+75
+100
TA-AMBIENT TEMPERATURE-oC

ST1178

d-QISTANCE-mils
1575
2362

315

3937

NORMALIZED
TO VALUE WITH
SHIELD
REMOVED

LACK

,

~
E~

I

_g

-

9~G:=

./
2K

3K
4K
5K
6K
RL-LOAD RESISTANCE-OHMS

7K BK 9K 10K

ST1176

.000l0!:----+--'---4!----+---'----!,-----:!,0
d-DISTANCE-mm

Current vs. Shield Distance

3-228

=

I
I
I
+25
+50
+75
+100
TA-AMBIENT TEMPERATURE-oC

SHIELD

.01

RL

./

.7

45
IK

+25

I

,~~~I~~~~/~q

tON~~ , /

././

PRR'IOO PPI

Q

z

TA;25'~

I

I-- NORMALIZED TO'

f-- VR =5V
_T ,25'C
f-- A

I.OOF==~:¥==~~~==~~~==~~~=~~
/
/

/

PW=300p.s

I?

.

VeE =25V

Currents vs.

Vcc" 5V,

i\N

j

NORMALIZED TO'

T"'nn,"r~ltllt·"

IF'~ A

is

Q

I--

787

.,,.

::;

~ f--

ST1175

4.5

.,.'"

}

./
1./

I

ST1177

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

H22A4/5/6

SYMBOL

i

tL

oT
b1

b1

SECTION X - X
LEAD PROFILE
ST1340·01

~

S1

I

--

r--'

IT !

A1

SEATING
PLANE

r

1

X

X

L

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BE1WEEN 1.27mm (.050") FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

1

,

r--.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.024
.030
2
.020 NOM.
2
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.034
.039
.136
.147
.103 NOM.
3

A

u..
T

e
e
E
L
S
S
T

T

It-- -

A
A
¢b
b
D
D.

MIWMETERS
MIN. MAX.
10.7
11.0
3.2
3.0
.600
.750
.50 NOM.
11.6
12.0
3.0
3.3
7.5
6.9
2.3
2.8
6.15
6.35
8.00
.85
1.0
3.45
3.75
2.6 NOM.

e1~

ST1340·02

I]~l"~Q' 4
I

1""1

I

L .J L_ ..J

2

~

ST1609

The H22A Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon photodarlington
in a plastic housing. The packaging system is designed
to optimize the mechanical resolution, coupling
efficiency, ambient light rejection, cost and reliability. The
gap in the housing provides a means of interrupting the
signal with an opaque material, switching the output from
an "ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• High lC(oN)

3-229

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec. 13 ,.,5)
Lead Temperature (Flow) ............................ , ......................... 260°C for 10 sec. 13 ,4)

INPUT DIODE
Continuous Forward Current .............. ,................................................... 60 mA
Reverse Voltage ....... , .................... , ..................... ,........................ 6.0 Volts
Power Dissipation .......................... , ................... , ... , ...................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................... 55, Volts
Emitter-Collector Voltage ..................................................................... 6 Volts
Power Dissipation .................. , ...................................................... 150 mW(2)

OUTPUT TRANSISTOR
Emitter-Collector Breakdown

6

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
Derate power dissipation linearly 2.00 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohois are recommended as cleaning agents.
Soldering iron tip 0." (1.6 mm) from housing.

3-230

mA

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

SATURATION VOLTAGE
H22A5

0.40

v

IF = 20mA, Ie = 1.SmA

3-231

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

10

10

8
6

!zOJ

4

1/ .....

~

a

I-

~

§
o

.6
.4

N

i
~
t
j

2

ff-

.B
.6

r

I--

T-

IF "30 rnA

7F~ I - IF=IOmA

.1

.4

.08
.06
.04

I--

---I-

!

2

.0 2 /

--

[IF"60oiil"

~

I

f-

~:lg8J:ps

V

-- -r+:+-

2
NORMALIZED TO'
IF'20mA
VCE oSV
PULSED

1I

OJ

-

4

V

I
.8

~

8 ~'NORMALIZED TO VCE-eV,IF·20mA.TA=25°C
6 r---.'NPUT PULSED
IF' 100 mA

./""

I.

I--

,./

V

.0 I I

4

6 810

20
40 6080100
I.-'NPUT CURRENT· mA

Fig. 1. Output Current vs.

200

.1

400600 1000

-55 -40

ST1183

-20
0
20
40
60
To-AMBIENT TEMPERATURE-OC

BO

100

ST118B

Fig. 2. Output Current V5. Temperature

Current

IllETECTOII

10

EMITTER

/

•

10

•

IZ
OJ
0:
0:

0

:;
:I!

'"g

~

OJ
N

'"

=

0:

0:

0""- ~
1= ~".;~ .'-f=

:;

s

7 J

10 I

'"

:I!

;;;

0:

!i'01

.8

/

_tl

I

./

I

7 /

::::::: NORMALIZED

+25

VCE =4!5V

,7
T~

TA=25°C

+50

I I

+75

I

-

r

NORMALIZED TO I
VR"'5V

TO "25"C

7B7

I--

.I
+25
+50
+75
+100
TA-AMBIENT TEMPERATURE-"C

ST11B7

Currents V5.

1.00

'--

I

+100

TA-AMBIENT TEMPERATURE·Ot

4. 5

'"

./

~-

.6

2

i/ /~".;-

0

::;

~

~~ ~ f--

a

OJ
N

d-DISTANCE-mlls
1575
2362

315

3937

4

/

Vcc· 5V•

IF·~A

3

toy<,.. /

PW·300p.1
PRRalOOPPI
NOIIMALIZED TO

2

/'"

I1L,I.IIeA
5

V

~V

./

I

.9
.8
.7
.6
5

.45

IK

RL

/'

-

9~tG;=

./
2K

3K
4K
5K
6K
RL-LOAD RESISTANCE-OHMS

7K 8K 9K 10K

ST1185

.00010!------!-L----!4----6!--..L--!-------.,J,0
d-DISTANCE-mm

Current V5. Shield Distance

3-232

ST1188

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

H22B1/2/3

SYMBOL

i

tL

oT
b1

b1

SECTION X - X
LEAD PROFILE
ST1340·01

,r;

S1

I

--

r--=

IT;

b
D
D

e
e,

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.024
.030
2
.020 NOM .
2
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.034
.039
.136
.147
.103 NOM.
3

A

LL
SEATING
PLANE

f

A1r

L

1

X

t--

~b

E
L
S
S
T

T

t---

A
A

MILLIMETERS
MIN. MAX.
10.7
11.0
3.0
3.2
.600
.750
.50 NOM.
11.6
12.0
3.0
3.3
6.9
7.5
2.3
2.8
6.15
6.35
8.00
.85
1.0
3.45
3.75
2.6 NOM.

1

X

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED
BETWEEN 1.27mm (.050") FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

e1--1

ST1340·02

IH.'~
r-,
I

I
I
L

2
ST1191

I 1

1:;:1
1 I
.J L.:.. __

I
I

1

4
!

The H22B Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a silicon photodarlington
in a plastic housing. The packaging system is designed
to optimize the mechanical resolution, coupling
efficiency, ambient light rejection, cost and reliability. The
gap in the housing provides a means of interrupting the
signal with an opaque material, switching the output from
an "ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• High lC(oN)

3-233

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(M5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(a.•)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT DARLINGTON
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................... 7 Volts
Power Dissipation ......................................................................... 150 mW(2)

1.7

V

OUTPUT DARLINGTON
Emitter-Collector Breakdown

7.0

COUPLED
On-State Collector Current

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33 mW/oC above 25°C.
Derate power dissipation linearly 2.00 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
iron
from

3-234

mA

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

H22Bl

mA

iF

= 2mA, VeE = 1.5V

V

iF

= lamA, ie = 1.8mA

SATURATION VOLTAGE
H22Bl

1.0

Turn·On Time
45

Turn·Off Time
250

Vee

= 5V, iF = lamA, RL = 7500

3-235

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

I-

Z
OJ
0:
0:

100

"~8
40
20

I--""

a

~

OJ
N

...:::i

l

IF 'IOO!A

-r

10

. 'F'''' ,,\A ~

~

o

c

I F.3O mA
I F ,2

".I

~

~ .I~~37S~~=i/~~
.-

§
lei

c

::;

~ /-:

a 110

40

60 7~0100

200

RL"' LOAD RESISTANCE ~OHMS

Fig. 5.

3-240

~

j

~V
0

400 6007gg0 1000 1500

NORMALIZED
~~I~t6UE WITH

~

~

2

I

~LACI<

.01

REMOVED

~~~~S~HI_E~LD~~~~~~~~t~~~=,I~:;.;:=1
~
•

0

-d

•

-0

BLACK

~~

r1~n

.00I~~~~3=£L:=..J~-~:
.00°'o!;-----;\---'----!4!-----!:--...L--4----....JIO
d-OISTANCE-mm

ST1204

Fig. 6. Output Current vs. Shield Distance

ST1205

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

H21L1/2

I-bTl

SYMBOL

~~1

SECTION X - X
LEAD PROFILE

A
A

A.
<.6b
b
0
0
0

e
e,
e
E
L
I/Jp
Q

S

S
T

ST1344

MILLIMETERS
MIN. MAX.
10.7
11.0
3.2
3.0
3.2
3.0
.600
.750
.50 NOM.
24.3
24.7
11.6
12.0
3.0
6.9
7.5
2.3
2.8
1.14
1.40
6.15
6.35
8.00
3.2
3.4
18.9
19.2
.85
1.0
3.94 NOM.
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.119
.125
.024
2
.030
.020 NOM.
2
.957
.972
.457
.472
.119
.272
.295
.091
.110
.045
.055
.243
.249
.315
.126
.133
.745
.755
.034
.039
.155 NOM.
.103 NOM.
3

NOTES
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FIVE LEADS, LEAD CROSS SECTION IS CONTROLLED
BElWEEN 1.27 mm (.050'1 FROM SEATING PLANE AND THE
END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75 mm (±.030 INCH).

A~~~~tND

2J

CATHODE

~30

Vee

ST1610

The H21 L Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a high speed integrated
circuit detector in a plastic housing. The output
incorporates a Schmitt trigger which provides hysteresis
for noise immunity and pulse shaping. The packaging
system is designed to optimize the mechanical
resolution, coupling efficiency, ambient light rejection,
cost and reliability. The gap in the housing provides a
means of interrupting the signal with an opaque material,
switching the output from an "ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures

3-241

OPTOELECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to +85°C
Operating Temperature .............................................................. -55°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(S"'S)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(s,,)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100mW(1)
OUTPUT OPTOLOGICTM
Output Current I•............................................................................. 50 mA
Allowed Range Vss ...................................................................... 4 to 16 Volts
Allowed Range V.5 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2.4 to 16 Volts
Power Dissipation ....................................................................... 150 mW (2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33mW/oC above 25°C.
Derate power dissipation linearly 2. OOmW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip >16n (i.6 mm) minimum from housing.

3-242

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

TURN-ON THRESHOLD CURRENT
H21l1

TURN-OFF THRESHOLD
H21l1

SWITCHING SPEEDS
Rise Time

t,

0.1

RL

= 2700, Vee = 5V, IF = 20mA

3-243

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

6
VOH

.,
!:i

g
I

4

'"~

1F(o.F)

!:i

IRON)

g

....

~

5

2

o

Vee· 5V
RL·270ll

I

TA =25°C

~

I

VOL

o

10
IF - INPUT CU RRENT -mA

4

8

16

~

Vee - SUPPLY VOLTAGE.

ST1165

VOLTS

ST1170

Fig. 2. Threshold Current VS. Supply Voltage

1. Transfer Characteristics

1.8,---,----,,----,,-----,-----,---,--,

J 1.61---+---+--+---t------t--~0---__i

1.0
Ul

':;

g

/'

g

V

lil
'::i

o. I

~

....:::>

1.4\---l---\---\----j----j~:........__+----I

....

1.21---+---+----+---+-"7''''---+---+---1

a~

./ .....

la.i O. 2

~

.!I

O.5

I

~

I.ol---t---t---I--::;~'---ir---I---__+----I

0.81---+----b...,,'--+---+----+---+---I

:I:

~

0.

~

.05

o

of .02 .....
I

0.01
I

........

./

~

Ii!
Vcc-5V
T A =2S D C

2
12 -

5

10

O.61----==t---+---t-----t----t----t---i
0.41---+--+--+----t--~--~---i

N

~

50

20

LOAD CURRENT. - m A

100

i

0.21---+---+---+----+----+
-50

/

'"E
....

a

""/ "
/

/

20

z

Ii'"

TA 10

8i"Y 25-7 -5~

.....L

IZ

w

a:
a:
u

:>

/

e

---I-1B~ACK
SHIELO

,

...J

/

e

:I:

ffl 4

ST1169

:I:

l-

e

i

I

I

V
j
.9

~
a:

I

1.0

/

z

I

1.1

/

Z
~1
1.3

1.4

VF - FORWARO VOLTAGE - VOLTS

VS.

r·=

a

1.2

Forward Current

1.5
ST1167

\ r \
d=4mm I
PULSED 100HZ'

a

/

/

\

I

N

I

\

NORMALIZED TO:
Vee=5V
I F=20mA

:::;
I

BLACK

I I

a:

g

3-244

100

70

~TD
I I

-lol~I/lII~loJ:~

w

I

40

10

,e... f---,"

SO

,

10

4. Threshold Currents vs. Temperature

vs. Load Current

100

-20

TA -TEMPERATURE - OEGREES C

ST1166

o

10

1

4

d-DISTANCE-mm

Fig. 6. Threshold Current VS. Shield Distance

8

9

ST1168

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

H22L1/2

~-r
~·~~~.LLb1

SYMBOL
A
A
~b

SECTION X-X

b

LEAD PROFILE

D
D

e
82

e
E
L
S
S
T

2

3

fO'R'Cbl4
Lcl::12]
1

5

ST1343

MILLIMETERS
MIN. MAX.
10.7
11.0
3.0
3.2
.600
.750
.50 NOM.
11.6
12.0
3.0
6.9
7.5
2.3
2.8
1.14
1.4
6.15
6.35
8.00
.85
1.0
3.94 NOM.
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.024
.030
2
2
.020 NOM .
.457
.472
.119
.272
.295
.091
.110
.045
.055
.243
.249
.315
.034
.039
.155 NOM.
.103 NOM.
3

NOTES
1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
2. FIVE LEADS, LEAD CROSS SECTION IS CONTROLLED
BETWEEN 1.27 mm (.050'1 FROM SEATING PLANE AND
THE END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION
AND BY DIMENSION "T" ±0.75 mm (±.030 INCH).

A~~~~tND
2J ~3°V
CATHODE
cc

ST1610

The H22L Slotted Optical Switch is a gallium arsenide
light emitting diode coupled to a high speed integrated
circuit detector in a plastic housing. The output
incorporates a Schmitt trigger which provides hysteresis
for noise immunity and pulse shaping. The packaging
system is designed to optimize the mechanical
resolution, coupling efficiency, ambient light rejection,
cost and reliability. The gap in the housing provides a
means of interrupting the signal with an opaque material,
switching the output from an "ON" to an "OFF" state.

• Opaque housing
• Low cost
• .035" apertures

3-245

OPTOElECTROIICS

SLOTTED OPTICAL SWITCH

Storage Temperature ................................................................ -55°C to +85°C
Operating Temperature .............................................................. -55°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(3.4.5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(3,,)

INPUT DIODE
Continuous Forward Current ...................... ,., ......................................... 60 mA
Reverse Voltage .. , ............ ,........................................................... 6.0 Volts
Power Dissipation ......................................................................... 100 mW(1)
OUTPUT OPTOLOGICTM
Output Current I, ............................................................................. 50 mA
Allowed Range Vas ............. , ........................................................ 4 to 16 Volts
Allowed Range V45 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 2.4 to 16 Volts
Power Dissipation ...................................... , ................................ 150 mW (2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.33mW;oC above 25°C.
Derate power dissipation linearly 2.00mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 06" (1.6 mm) minimum from housing.

3-246

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

TURN·ON THRESHOLD CURRENT
H22L1

TURN·OFF THRESHOLD CURRENT

SWITCHING SPEEDS
Rise Time

RL

= 2700, Vee = 5V, TA = 25°C, I, = 20mA

3-247

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

6

5

II:
II:

OJ

g

-

u 1.2

~

4

CO

1.(OF.)

g3

!.lOll)

,/

f3
1= 0.8

...

I

.

N

::;

~ 2

,

VCC'5V
RL=270ll
TA = 2S-C

~ 0.4

,

z

1.8

J

1.6

,
...z
...

1.2

j

./
./

1.4

0:

/'

0:

1.0

:>

u
0

..J

0

",

16

VOLTS

Fig. 2. Threshold Current vs. Supply Voltage

5

%
OJ

...0:

....-

./"

I

8T1216

it

5

I

12

8

4

0

V cc - SUPPLY VOLTAGE.

.0

I

I--

8T1211

1. Transfer Characteristics

2

I

I I I I

10

5

r. -INPUT CURRENT-mA

I

I

~

....

VOL

I

NORMALIZED TO'
TURN ON lMRESHOLD
AT
Vcc=5V. TA=25°C

o

I

I

/'

o

~

I

,URN OFF THRESHOLD

.....-

;/

II:

...

I

TURN ON THRESHOLD

:>

~

~

I

Z

!:i

...I

1.6

...
...

VO"

...

0.8
0.6

%

Iil
N

.

Vcc=5V
T A =25°C

::;

0.4
0.2

::E
0:

01
I

It -

50

5
10
20
LOAO CURRENT. - m A

100

i

-50

-20

10

40

70

100

TA -TEMPERATURE - DEGREES C
8T1215

8T1212

4. Threshold Current vs.

vs. Load Current

...z

'00
,"'-- - ,

.

50

,

20

./

TA'8~y

...

/

7

/

~

-55'Y

25

10

10

8

:::>

/'
/

0:

~
u

a:
a:
u

./

./

E

...z

w

a

..J

/

o

ffi41--+--t---lt---t--+---+--+--tt----l
a:

:!:

f-

a

w

N

Q

:::;

0:

i

I

I

J

V

.9

:;;

a:

I

oz

/

/

I

«

I

1

1.0

/

I

1.1

/

Z

o

u:
1.2

1.3

1.4

V. - FORWARD VOLTAGE - VOLTS

vs. Forward Current

3-248

1.5
8T1213

3

4

5

6

d-DISTANCE-mm

6. Threshold Current vs. Shield Distance

8

9
8T1214

[ffi

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

H23A1/2

-jbll=L

4»b-0-i-x-x

SECTION
LEAD PROFILE

The H23A is a matched emitter-detector pair which
consists of a gallium arsenide infrared emitting diode and
a silicon phototransistor. The clear epoxy packaging
system is designed to optimize the mechanical
resolution, coupling efficiency, cost, and reliability. The
devices are marked with a color dot for easy identification
of the emitter and detector.

"
"

• Good optical to mechanical alignment

j

• Color dot for easy recognition of LED and
phototransistor
ST1342

MILLIMETERS
SYMBOL
MIN. MAX.
A
5.59 5.80
B
1.78 NOM.
.80
.75
!hb
b
.51
NOM.
D
4.45
4.70
2.41
2.67
E
E
.58
.69
2.41
2.67
e
1.98 NOM.
G
L
12.7
L
1.40
1.65
S
.83
.94

2

r- --, r-I

EMITTER
(BLACK)

II
I
I

I

I

I

II~:I
''ll
I I
I

I"'- _ _ -'I
I

• Lowcost

INCHES
NOTES
MIN. MAX.
.220
.228
.070 NOM.
2
.024
.030
1
.020 NOM.
1
.175
.185
.105
.095
.027
.023
.105
.095
3
.078 NOM.
.500
.055
.065
.037
.033
3

I

IL __

2

ST1611

NOTES
1. TWO LEADS. LEAD CROSS SECTION DIMENSIONS
UNCONTROLLED WITHIN 1.27 mm (0.50") OF
SEATING PLANE.
2. CENTERLINE OF ACTIVE ELEMENT LOCATED
WITHIN .25 mm (.010'1 OF TRUE POSITION.
3. AS MEASURED AT THE SEATING PLANE.
4. INCH DIMENSIONS DERIVED FROM MILLIMETERS.

3-249

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(3,4,S)
Lead Temperature (Flow) .............. ,., .................... , ............... 260°C for 10 sec.(M5)

INPUT DIODE
Continuous Forward Current ..................... , ......... , .............. ,',................. 60 mA
Forward Current (pw, 1p's; 33 Hz) ........... , ........................ " ......... ,., .. ,., .. , ....... 3 A
Reverse Voltage ............................................. , .. , ....... ,.,................ 6.0 Volts
Power Dissipation .. , .. , ............ , .. , ................ "., ............................... 100mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .. ,., .......... ,., .................................................. 30 Volts
Emitter-Collector Voltage ......... ,........................................................... 6 Volts
Power Dissipation ........... , ........... , ......................................... , ...... 150 mW (2)

See page 3.

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33mW/oC above 25°C.
Derate power dissipation linearly 2. OOmW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 11." (1.6 mm) minimum from housing.
Coupled characteristics are measured at a separation distance of .155" (4 mm) with the lenses of the emitter and detector on a
common axis within O.lmm and
within 5°.

3-250

[!ii
OPTOElECTRONICS

PLASTIC SIDELOOKER PAIR

H23A1/2

H23A1

SATURATION VOLTAGE
H23A1

PLASTIC SIDELOOKER PAIR

OPTOELECTRONICS

0

4

,...

0
IZ

a:
"'
a:

IF =IOOmA

:>

f-- -

I

<>

...:>

,/

I-

5

..ili

30mA

f - - '-~

I-

lil

-

60m

V

NORMALIZED TO
VeE ·5V

1/

0 .I

IbmA

=

:J

PULSED
PW'IOO,,"
PRR·IOOpp.

/'

o

I f - -r-1A

r--

-jdl-

~ 0.0I

JJ

4

6 8 10

20

40 6080100

200

NORMALI ZED TO
VCE=5V, IF =3OmA, TA=25-C, d=4mm.

f-- f--

r~

s.
I

r-- !---

IF 30mA
d=4mm

N

PULSED

f-- f--

400 600 1000

0.0I

PW=IOO~s,

PRR"'IOOppa

II

I

-25
o
TA-AMBIENT TEMPERATURE-'C

-55

IF-INPUT CURRENT-mA

Fig. 1. Output Current vs. Input Current

I~ ~

II:

::l

<>

......
::l

0
0

O. I

.

r---... ........

.......

:

,.c

I

:

"-

:

0.0I

l

"-

..........

....... ........

I"'--..

"-

.......

:
:

~

~ ~=

..........

---- --r--

30

40

/I

4

.20~

60

L
I

V

30~A

70

./

U

30mA-

:,t:;
~

50

60~A

/

/1
/

~

t---

I

/1/

2

/III

."...

20mA

--

IOmA

I

m

'/ II
qjeO.1

10
VCE(sat}-VOLTS

d-DISTANCE-mm

Fig. 3. Output Current vs. Distance

Fig. 4.
ST1221

SENSOR

1.0

-

~/

I

.'"
---=..¥:;~

I~ =

NORMALIZED TO
VCE '25V
TA '25'C
::::

I

0\15

50

I

-~

I--

.~>I

,/'

<>

1--+--H--j-lI--+4m r- I -,

::l

I

>I~

==



:J

NORMALIZED TO
VR '5V
::: I
TA • 25'C
-

30

. ~mEBAO~AD~\8
0

N

./

Fig. 5. Leakage Currents vs. Temperature

3-252

-. m m ' -

0:
:J

...>-

./

-

~

"'a:
I::l

/1/"-""-

20

~I []::~f--t[]~'/1 ~I:r
~ ~~jLlZEJTO
1-

Z

/

DlSPLACEMENT-DEGR~1224

~i~~~I~l~~O
f"
e
tf.~ :jd'4mm~+--+I_+--l
10

V
I-

2

vs. Distance
8-ANGULAR

IRED EMITTER

•

PRR-IOOpps

[Fa'OOlmA

V

/

-..!~IOOmA

5mA

20

10

PW=toO~"

.C=I.8mA,IF PULSED

~~

12

-

PRR ·IOOpps.

r-...

,

N

I

PW'IO~,

d

H

1-1 -

f-- f--

PULSED

\' ."\.
'\"\.

"':J
~

100

ST1225

o

-

o d

NORMALIZED TO:
VCE-O.4V, IF=30mA, d=4mm.

'\. I"

I::l

I--

75

Currentvs.
14

-

"'a:

I~:~

ST1220
10

IZ

I I 50I
25

I I

I--

,\
2

3

4

5

6 01

AD-AXIS DI$PLACEMENT-mm

68. Output Current vs.
Displacement ST1223
(Angular & Axis)

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

H23B1

1 bl i:L

b--0--i-x-x

SECTION
LEAD PROFILE

The H23B1 is a matched emitter-detector pair which
consists of a gallium arsenide infrared emitting diode and
a silicon photodarlington. The clear epoxy packaging
system is designed to optimize the mechanical
resolution, coupling efficiency, cost, and reliability. The
devices are marked with a color dot for easy identification
of the emitter and detector.

"

• Good optical to mechanical alignment

j

• Color dot for easy recognition of LED and
phototransistor
ST1342

SYMBOL
A
B

MILLIMETERS
MIN. MAX.
5.59
1.78
.60
.51
4.45
2.41
.58
2.41
1.98
12.7
1.40
.83

~b

b
D
E
E

e
G
L
L
S

I

5.80

NOM.
.75

NOM.
4.70
2.67
.69
2.67

NOM.
1.65
.94

• Lowcost

INCHES
NOTES
MIN. MAX.
.220
.070
.024
.020
.175
.095
.023
.095
.078
.500
.055
.033

.228

NOM.
NOM.

2
1
1

.185
.105
.027
.105

3

.030

NOM.

.085
.037

3

2

ST1612

NOTES
1. TWO LEADS. LEAD CROSS SECTION DIMENSIONS
UNCONTROLLED WITHIN 1.27 mm (0.50") OF
SEATING PLANE.
2. CENTERLINE OF ACTIVE ELEMENT LOCATED
WITHIN .25 mm (.010") OF TRUE POSITION.
3. AS MEASURED AT THE SEATING PLANE.
4. INCH DIMENSIONS DERIVED FROM MILLIMETERS.

3-253

PLASTIC SIDELOOKER PAIR

Storage Temperature ............................................................... -55°C to +100°C
Operating Temperature ............................................................. -55°C to +100°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(3,4,5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.('·O)

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100mW(1)
OUTPUT DARLINGTON
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................... 7 Volts
Power Dissipation ........................................................................ 150 mW (2)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33mW/oC above 25°C.
Derate power dissipation linearly 2.00mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 'A6" (1.6 mm) minimum from housing.
Coupled characteristics are measured at a separation distance of .155" (4 mm) with the lenses of the emitter and detector on a
common axis within O.1mm and
within 5°.

3-254

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

fa

a

f-- 1F-100mA

I--IF'~
IF"30~ f.---

/'
/'

I

iil

f

::;

VeE 'i.5

IF'lomA==~

:l
~

d:4mm

/

I

g

~

___

I F"5mA - - ~

~ ~=
1=

.1

PULSED PW=IOO,u.s
PRR" l00pps

.011/

~IF=10mA

-o/dl-

NORMALIZED TO:

.01

N

f--1F'~

I--IF"~

I II
1

.00I 1

4

6 810

20

II

.0I

40 60 80100

IF-INPUT CURRENT- mA

~""
.\~ ,,"";, ."'

\

'to.. '\

i\ '\.
1\

,

"'-

I

..........

'"

1F'2mA

""-

10

4

r--.....

"-...

I

I

I

i"--..

r--..

'\.

20

IC=1.8mA
IF PULSED PW·'OO,... H-I--.\-I---::=~f--=lF==:j:::++-1--I-+-I

48

44

PRR 'lOa pps -I--I---I--I-I-¥-I-----+---+--I--I----J.+-.J....I.~

40

~ 9=----+--+-+-++-lI++--~+c-+--+-+-+-+-H

l.jd

36

............

.........

:-........

r--....
r--...
-r--..

32

--

-

30
40
50
d-DISTANCE-mm

28

!F=100mA

w

f?

0

24

;:!

20

If=30mA

z

Ul

is

'6

..,I '2

F=20mA

8

1,'5;;;;- ~

:--

60

F=2 A

4

~

I =lm

a

.1

70

.4

.2

Fig. 3. Output Current vs. Distance

.6.8 1
VCEllatJ-VOLTS

Fig. 4.

I-

z

'0

'"

//

0:

i

~/

Q

.I:l r----r. v...t=
:::;

::IE

.......

"/

~c.; ~o'"

clot

'0

Io

,

../

/
I

25

>E5

a
~
~
:J

6

~

!il,

I

]

a

~

L

~ 10"

u

ISz

./

EMITTER
10 4
NORMALIZED TO' --=:.-.;..:
-V.-5V
-TA'25°C
I

0.1

50

75
'002&
50
TA -AMB'ENT TEMPERATURE-OC

75

'00

8-ANGULAR DISPLACEMENT-IiEG~~232

-8

i~~,tf&

ST1230

010203040506~0

:jd"4mmi-

T T

~I [)=~f--+O~·11 ~[]=-""7~~~~~8gB~NOjLIZEJTOL
II:

-4mm

I

1--+--++---+-~_+.4m

VALUEOFtCE (on)
ATVCE"1.5V.=

\: rZ' r4

.I~II=I~r[l~'T~1~
AD

[\Ao

~~~~~I ~2~~~a'F fgE~1

~+-lIr---+--1ATVeEsI.5V.
I,."'IOmA,

H~ f-+-II-+-4~~1HO~~5LD
4mj GA~

I

=d~4mm ~F8!g~~

--TI1

ATVeE'1.5V.

\6

.1

1\

IF=IOmA .•- -+---+-++-AD-O, -1-+--1--\-*1---1
dS4im.

1\

.0IO!:--+-'!:2-:!-3~4!-~5-±6-JO!:-...JIL-...J2L-...J3!-...J4r----5:!--l.-l6'01
d-DISTANCE-mm

Fig. 5. Leakage Currents vs. Temperature

810

6

4

VS. Distance

ST1229
DETECTOR
_NORMALIZED TO
VeE"25V
.-TA'25°C

100

56
52

.......

""'- i"'--..

\:.\ '\.

.1

+75

Fig. 2. Output Current vs. Temperature
ST1228

I

+50

+25

TA - AMBIENT TEMPERATURE - °C

NORMALIZED TO;
°H
VeE"1.0v. 1F'fomA-t-r ~d"4mm
PULSED PW"00,..s.pRflolOOprs I-

I

a

-25

-55

400600 1000

200

Fig. 1. Output Current vs. Input Current
10

=?d~

NORMALIZEO TO:
VCE=1.5V. IF"10mA, TA"'25°C
d=4mm
PULSED PW=100rS,
PRR=IOOpps

Fig 6A. Output Current vs.
Shield Distance

Ao-AXIS DISPLACEMENT-mm

68. Output Current vs.
Displacement

3-255

3-256

PLASTIC SIDELOOKER PAIR

OPTOELECTRONICS

H23L1

-1CiitL

SYMBOL

b1

b1

A
B
B

¢b-JLJ,
SECTION X-X
LEAD PROFI LE

~b

b

D
E
E

L,

SEATING
PLANE

T

X X

L

IT

EMITTER

----Is

1~1
!!
--., ·
·1

..J

e
e

T

PLANE

T

G

·1-

DETECTOR

·1

, 2 3

UTI
-Is

0,

R=RADIUS+ C

0/

ST1614

L
L
R
S
T

MILLIMETERS
MIN, MAX,
5,59
5,80
1_78 NOM_
3_94
3,68
,60
,75
,51
NOM,
4,45
4,70
2,41
2,67
_58
_69
2,41
2,67
1_14
1,40
1_98 NOM,
12.7
1,40
1.65
1.27 NOM_
_83
_94
1_65
-

INCHES
NOTES
MIN_ MAX,
,220
,228
_070 NOM_
2
,145
,155
,024
,030
1
_020 NOM_
1
_175
,185
_095
_105
_027
,023
_095
,105
3
_045
_055
3
_078 NOM_
,500
,055
,065
1
_050 NOM _
_033
,037
3
,065

NOTES
1, LEADS, LEAD CROSS SECTION
DIMENSIONS UNCONTROLLED WITHIN
1,27 mm (0.50") OF SEATING PLANE.
2, CENTERLINE OF ACTIVE ELEMENT
LOCATED WITHIN ,25 mm (.010") OF
TRUE POSITION.
3. AS MEASURED AT THE SEATING
PLANE,
4. INCH DIMENSIONS DERIVED FROM
MILLIMETERS,

3
EMITTER
(BLACK)

DETECTOR Vee
(BLUE)
ST1613

The H23L1 is a matched emitter-detector pair which
consists of a gallium arsenide infrared light emitting diode
and a high speed integrated circuit detector. The output
incorporates a Schmitt trigger which provides hysteresis
for noise immunity and pulse shaping. The detector circuit
is optimized for simplicity of operation and utilizes an open
collector output for maximum application flexibility. The
clear epoxy packaging system is designed to optimize the
mechanical resolution, coupling efficiency, cost, and
reliability. The devices are marked with a color dot for easy
identification of the emitter and detector.

• Good optical to mechanical
alignment
• Color dot for easy recognition of
LED and detector
• Lowcost

3-257

OPTOELECTRONICS

PLASTIC SIDELOOKER PAIR

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. -55°C to +85°C
Operating Temperature .............................................................. -55°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(3,4·5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(3,4)

INPUT DIODE
Continuous Forward Current .................................................................. 60 rnA
Continuous Forward Current ................................................................... 3 rnA
Reverse Voltage ........................................................................... 6.0 Volts
Power Dissipation ......................................................................... 100mW(1)

OUTPUT OPTOLOGICTM
Output Current 12 • . . . • . . • • • . • • • • • • • • • • • • . •• • • • • • • • • • • • • • • • • • • • . • • • • • • • • . • • • • • • • • . • • • • • • • • . • • •. 50 rnA
Allowed Range Vee ...................................................................... 4 to 16 Volts
Allowed Range V2l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2.4 to 16 Volts
Power Dissipation ....................................................................... 150 mW (2)

1.
2.
3.
4.
5.
6.

Derate power dissipation linearly 1.33mW/oC above 25°C.
Derate power dissipation linearly 2. OOm W/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
Soldering iron tip 0," (1.6 mm) from housing.
Coupled characteristics are measured at a separation distance of .155" (4 mm) with the lens of the emitter and detector on a
common axis within 0.1 mm and parallel within 5°.

3-258

OPTOELECTRONICS

PLASTIC SIDELOOKER PAIR

3-259

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

.

VOH

5

50

!:i

g
I

'"
e

4

I

'"~

!:i
g
....

~

IF(OFFI

20

....z

~ONl

OJ

0:
0:

3

10

:::>

u

0
0:
C

2

~

•

VCC'5V
RL=270n
TA" Z5°C

I

5

0:

~
I

I

..!t
VOL

5

10

15

20

IF -INPUT CURRENT-rnA

1.4

ST1237

Fig. 1. Transfer Characteristics

Fig. 2. Forward Voltage VB. Forward Current

1.0

~

..
....

U)

~

g

Q5

I

1.8
1.6

~

./

~

.5

/'

I.4

L

I

aJ O.2

~
~

o. I

"~

.05

....:::>
o

2

a

ID

9o o.8
%

./

~

..... -'"

I
-'

>0

~

V

!iI

O.6

50

5

10
20
LOAD CURRENT. - m A

VS.

i=

NORMALIZED TO:

N

~

I. -

L'"

iii o.4

TA =250 C

0.0 I

L

V

v-

~

VCC'5V

.0 2

1.5

ST1238

100

ST1239

,.
i

VC C
" 5V
T
As2S·C

O. 2

-50

-20

40

10

70

100 ST1244

4. Threshold Currents VB. Terno/3raj'ure

Load Current
100

....z

'":::>

1.6

80

I

I

I

....

0:
<.J

~J:
~
j!:

-- ......
r--

O. 8

0:

TURN ON THRESHOLD

1.2

1/

V

a--

J I

a9

I

o

URN OFF THRESHOLD

t--

o

o

OJ
N

N

'o~" O.

4

Z
I

....

I
o

4

8

V cc - SUPPLY VOLTAGE.

5. Threshold Current vs.

3-260

.,.

NORMALIZED TOTURN ON "lHRESHOLD
AT
Vcc"'SV. TA=2S oC

:J

~

~

L
I 1

J

~

VOLTS

ST1240

20

m
....%

./

'":J

60

~ 40

II:

[] ItO

0'

~

8
6

r-....

2

I

Vcc· 5V
RL"270n
TA"25"C

.=-

PULSED 100Hz
PW.,OO,....

.......

4

NORMALIZED TO:

~

-...........
0.4

0.6

0.8

'--

1.0
1.2
1.4
.-APERTURE DlAMETER-mm

6. Threshold Current VB.

1.6

Diameter

1.8

ST1231

PLASTIC SIDELOOKER PAIR

OPTOElECTRONICS

9 ANGULAR DISPLACEMENT - DEGREES

10°t=====i~====~~i=====~~~~=4~0====~~====~~====~ro

10
8

6

ffi

B4
0:

.-~

9

~

2

m

/

:z:

I-

1.0

i

0.8
0.6

~

~ 0.4

V

~ 8~----+-----~----+4~--+---~+-----+---~

--

'"0:0:

~

a 61------j-o

..J

o

:z:

NORMALIZED TO
VCC'5V
RL'270tl
I--d=4mm
I--T•• 25·C
i--='----'
PULSED 100H~.==

f:l 41------+--

~

o

NORMALIZED TO:
Vcc·5V
IF'20mA
~ 21------+-----J'I-----¥----+------l 8-0·
o
d=4mm
PULSED 100Hr

'"

.

N

:;

PW-=100/oA:'

/

/

1

J0.2 /
I

I
0·0

PW·IOOp..

~

M'"
2

4

8

6

14
ST1241

12

10

d - 01 STANCE - mm

t

~ 8

0:
0:

ae 6

-11-- 0
4mm

..J

4

4mm

\

0:

:z:

l-

e

..
I:l
::;

~ 2
~
I

~

M

o

ST1242

~~

\

1

1

o
:z:

I

I{

II
I) '(]-d

I-

::l

Ao- AXIS DISPLACEMENT - mm

Fig. 8. Theshold Current vs. Displacement (Angular and Axis)

Fig. 7. Threshold Current vs. Distance
10

I.OO~::;..-~-----:!2-----:}3-----:!:4-----:!:5--------::!------!7

\

\

\

NORMALIZED TO;

1\

\
f\
3

4

Vcc,.5V
IF' 2OmA

,-,-

I~~:r"'
5

d -DISTANCE -mm

-

6

7

ST1245

Fig. 9. Threshold Current vs. Shield Distance

3-261

3-262

SLonED OPTICAL SWITCH

OPTOELECTROIICS

CNY28

,

b1

t:L

~

b1

iT"

SECTION X LEAD PROFILE

L
r"""""----n---.--n-----'

A2

.,x

SEATING
PLANE

I

2

1""'1

.J L_

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.119
.125
.024
.030
2
2
.020 NOM.
.957
.972
.472
.457
.119
.129
.272
.295
.091
.110
.249
.243
.315
.126
.133
.745
.755
.034
.039
.136
.147
.103 NOM.
3

L

1

I]~1"~QI 4
L

SYMBOL MIWMETERS
MIN. MAX.
A
10.7
11.0
A
3.0
3.2
3.0
3.2
A,
.600
.750
~b
.50 NOM.
b
24.3
24.7
0
D
11.0
12.0
3.0
D
3.3
6.9
e
7.5
2.3
e2
2.8
E
.615 6.35
L
6.00
3.2
3.4
~p
Q
18.9
19.2
S
.85
1.0
3.45
3.75
S
T
2.6 NOM.

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM
MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS
CONTROLLED BETWEEN 1.27mm (.050") FROM
SEATING PLANE AND THE END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S"
DIMENSION AND BY DIMENSION "T" ±0.75mm
(±.030 INCH).

I

.J

1

ST1609

The CNY28 is a gallium arsenide infrared emitting diode
coupled with a silicon phototransistor in a plastic
housing. The gap in the housing provides a means of
interrupting the signal with tape, cards, shaft encoders, or
other opaque material, switching the output from an
"ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• European "Pro Electron"
registered

3-263

OPTOELECTRONICS

SLOTTED OPTICAL SWITCH

Storage Temperature ................................................................ -55°C to +85°C
Operating Temperature .............................................................. -55°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec. IM5)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec. 13A)

INPUT DIODE
Continuous Forward Current .................................................................. 60 rnA
Reverse Voltage ........................................................................... 3.0 Volts
Power Dissipation ......................................................................... 100 mW(1 )

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................... 5 Volts
Power Dissipation ......................................................................... 150 mW(2)

1.
2.
3.
4.
5.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
Derate power dissipation linearly 2.50 mW/oC above 25°C.
RMA flux is recommended.
Methanol or Isopropyl alcohols are recommended as cleaning agents.
iron
from

3-264

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

10
8
6

!Z

4

1/ ......

"'!§

It:

U
I::J

.
§
o

I

.8

~

.OB

.a

.04

~

.02

,.~
t.

/

---

I

.8

l-

~~::g~.

V

I

II-

NORMALIZED TO'
IF'20mA
VCC 5V
PULSED

.4

.2

--

4

2

.6

"'
N

/

-

10
8 ~-NORMALIZED TO vce·5V,IF.20mA,TA-2SoC
6 ~. INPUT PULSED
IF' 100 mA

.4

.06

/

IF -60 mA

IF '30 mA

IF·~ -

--+-

- -r-t--

-

0020406080
-55 -40 -2
T.-AMBIENT TEMPERATURE-'C

100

/

.0 I I

4

6 8 10

20
40 60 80 100
I.-INPUT CURRENT-mA

200

I

400 600 100

8T1315

DETECTOR

EMITTER

•

/

10
IZ

~

a
i!!
:!I
f3
N

10

'/

"....-P='
- ~
= = .~~~r
J--- c--

j

II

10I

l!SmA

6~--~-----r----+-----r----+----~----1
-25
o
25
50
T. -AM8IENT TEMPERATURE-OC

Fig. 3.

75

)

8T1316

VCC'5V.

IF·~ A

ill
Ii!
N

1.5

It:

./
./

0
Z

0

!'

' - - NORMALIZED TO'
VR ·5V
I--T, =25"'C

-

-I
I
I
+25
+50
+75
+100
T.-AMBIENT TEMPERATURS'ff319

I

d-DISTANCE-mils
1575
2362

I

.9

.8
.7

315

""""

2K

::J

U

I

I

NORMALIZED
TO VALUE WITH
SHIELD
REMOVED

::J

k::::V

is

0

"'

lBLACK
SHIELD
.0 I

N

,....:::;

~~~d
•
-0

~ BLACK
SHIELD

~

-

3K
4K
5K
6K
RL-LOAD RESISTANCE-OHMS

Fig. 5. SWitching Speed vs. RL

7K 8K 9K 10K

8T1317

j

3931

I

..
I-

EJ~G:=

.6
.5

45
IK

"'It:It:

I-

RL

./

I

Z

to~~'p VV

V

~

L

I-

././

PRR-IOO PPI
NORMALIZED TO
RL=2_IIKG

0

...zz

V

PW=300ps

N

j

\25'~

./

1/

4

~

"'

NORMALIZED TOVCE -25V

78.7

1.00

OJ

,....:::;

./

/

10I

Fig. 4. Leakage Current vs. Temperature

vs. Temperature

4.5

,.

~
~

!
--=r--

IV

I
+25
+50
+75
+100
T.-AMBIENT TEMPERATURE-'C

100

~
~

III

f:::. f-f--

~

°10 2

0

:::;

r_---=3=~~~-----+------r_--~. ~

•

IZ

~

•

10

~

.8~--~F---~~~~~~~-­

-50

8T1320

Fig. 2. Output Current vs. Temperature

Fig. 1. Output Current vs. Input Current

IF

-

IF·,OmA

·t'5m~

.2

V

T-

I

-

.6

I
I

d][b-:

.00I

I
.0000

4
d-OISTANCE-mm

10
8T1318

Fig. 6. Output Current vs. Distance

3-265

3-266

SLOTTED OPTICAL SWITCH

OPTOElE£THONICS

CNY29

SYMBOL

i

b1

tL

@b1

SECTION X - X'T
LEAD PROFILE

A
A
A,
~b

b

D
D
D,

e
e,
E
L

L

r '-------,rr--.--.r---' -l!-7.pLc:-:A:.:cN:=E'-=--

A2

SEATING

~p
Q

L-,.,..."r1

L

!

S
S

T

MILUMETERS
MIN. MAX.
10.7
11.0
3.0
3.2
3.0
3.2
.600
.750
.50 NOM.
24.3
24.7
11.0
12.0
3.0
3.3
6.9
7.5
2.3
2.B
.615 6.35
6.00
3.2
3.4
1B.9
19.2
.85
1.0
3.45
3.75
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.119
.125
.024
.030
2
.020 NOM .
2
.957
.972
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.126
.133
.745
.755
.034
.039
.136
.147
.103 NOM.
3

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM
MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS
CONTROLLED BETWEEN 1.27mm (.050") FROM
SEATING PLANE AND THE END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S"
DIMENSION AND BY DIMENSION "T" ±O.75mm
(±.030 INCH).

'TI ~4
r- ,

I
I
I

I

2

r--- ,

I I
1"",1

1,1
I I

L__ J

I
I

I
I

L____.J

3

ST1609

The CNY29 is a gallium arsenide infrared emitting diode
coupled with a silicon photodarlington in a plastic
housing. The gap in the housing provides a means of
interrupting the signal with tape, cards, shaft encoders, or
other opaque material, switching the output from an
"ON" to an "OFF" state.

• Opaque housing
• Low cost
• .035" apertures
• European "Pro Electron"
registered

3-267

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to +85°C
Operating Temperature ............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to +85°C
Soldering:
Lead Temperature (Iron) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240°C for 5 sec.!....')
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.('·')

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 3.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT DARLINGTON
Collector-Emitter Voltage .................................................................... 25 Volts
Emitter-Collector Voltage ..................................................................... 7 Volts
Power Dissipation ......................................................................... 150 mW(Z)

OUTPUT DARLINGTON
Emitter-Collector Breakdown

7.0

COUPLED
On-State Collector Current

1.
2.
3.
4.

Derate power dissipation linearly 1.67 mW/oC above 25°C.
Derate power dissipation linearly 2.50 mW/oC above 25°C.
RMA flux is recommended.
Methanol or
alcohols are recommended as cleaning agents.
5.
from

3-268

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

'§g
I-

z

UJ
0:
0:

20

,....-

:J

"
!;

~

o

~-c
!UO

I"100t

il

-r

10 .• ,·...,mA

S

I F·30mA
1,'2OmA

VCE "'I.SV

...fil
:;

PULSEO
PW,.IOO,.,.,
PRR-IOO ppl

z

NORMALIZED TO
IF "5mA

I

.2

_

i
l-

.S

..II!

NORMALIZED TO
"cE'1.5V, IF'5mA, TA,25"C
INPUT PULSED

~

...
:;
UJ

100

-

40

.6
.4

./

V

/

6J
:81
.04

I

.
2

J

I II

.02

II
4

6 S 10

I

!Ii

20
40 80 80 100
Ir-INPUT CURRENT·mA

200

IF·IO~
1,·5mA

IF.29-I
O. I

400 600 1000

-

-50

- 25

0
+25
+50
TA-AMSIENT TEMPERATURE-'C

ST1330

Fig. 2. Output Current vs. Temperature

1. Output Current VS. Input Current

DETECTOR

I

t-l£.,~IF

"-

o

...
UJ

I,
~

f-

6Ot\

NORMALIZED TO'
I.SmA ,TA=250C
IF 10mA
PULSED
PW"IOO p..,PRR=IOO pps

.!k.

::; ,03

f--

:J

-

I:!"

g

I.e., 3./mA
IF

20 mA

~ 0.6

IC

If'"

D.9-::A

5 rnA

~

-

...

UJ

~

0
25
50
TC-AMBIENT TEMPERATURE-"C

Fig. 3.

75

EMITTER

hL ~

NORMALIZED TO:
VCE'25V
TA '25'C

...,,"' ...&=t~

~~

t:=

//

::i
..

0.4

-25

102

o

>--- IC I.S :'A
r------- 'if ' IDmA

fil
...."

-50

1==

IZ
UJ

I
O.S

+100

+75

ST1325

r--

10

==

./'

,-----

I

I
0. 25
50
75
100
TA-AMBIENT TEMPERATURE-'C

100

ST1326

NORMALIZED TO:
VR '5V
TA·2S·C _____ "L.

I
0'25
50
TA-AMBIENT

75

100

TEMPERAT~~

Fig. 4. Leakage Current vs. Temperature

vs. Temperature

d-DISTANCE-mll.
4

I
IF

..

''"~"
~~

..
o

z

II.:

PW· 300 JLI
I r - - - PRR=IOOpp.
.8

r----- IF" ~~

.6 I - .4

.2

I
0'1

-

--:!'
~ /C

~

4

200

75
RL-LOAD RESISTANCE-OHMS

236.2

I

IZ
UJ

'"
"

0:

393.7

315

I

I

I

:J

NORMALIZED
TO VALUE WITH
SHIELD
REMOVED

l-

i!

!;

//
/

lBLACK

0

0
UJ

.'"
N

:;

i

SHIELD

.0

':~:g

8LACK
SHIELD

c:!:!1-:

15

;

.00 I

j

V

f8~100

1575

1/

'7

AMPS.Vcc" SV

NORMALIZED TO'
RL ' 75011

787

RL

UJ

:;

1.00

I

J~G:

o

...

I

400 600 800 1000 1500
750

ST1327

I
I

4
d-OISTANCE-mm

10

ST1328

Current VS. Distance

3-269

3-270

SLOTTED OPTICAL SWITCH

OPTOELECTRONICS

CNY36

I

t:L

oT
bl

bl

SECTION X - X
LEAD PROFILE

~Sl~
1 - - ~-

A

LL
T
Al

SEATING
PLANE

r

1

X

X

A
A
~b

b

D
D,
e

.,
E
L
S
S
T

T

ITi

SYMBOL

L

1
--, e2

r-

MILLIMETERS
MIN. MAX.
10.7
11.0
3.0
3.2
.750
.600
.50 NOM.
11.6
12.0
3.0
3.3
6.9
7.5
2.3
2.8
6.15
6.35
8.00
.85
1.0
3.75
3.45
2.6 NOM.

INCHES
NOTES
MIN. MAX.
.422
.433
.119
.125
.024
.030
2
.020 NOM .
2
.457
.472
.119
.129
.272
.295
.091
.110
.243
.249
.315
.034
.039
.136
.147
.103 NOM.
3

NOTES:
1. INCH DIMENSIONS ARE DERIVED FROM
MILLIMETERS.
2. FOUR LEADS. LEAD CROSS SECTION IS
CONTROLLED BETWEEN 1.27mm (.050") FROM
SEATING PLANE AND THE END OF THE LEADS.
3. THE SENSING AREA IS DEFINED BY THE "S"
DIMENSION AND BY DIMENSION "T" ±0.75mm
(±.030 INCH).

ST1340

']~l"'~Q'
I

'-

2

'-'1

.J L_

I

.J

4

l

S11609

The CNY36 is a gallium arsenide infrared emitting diode
coupled with a silicon phototransistor in a plastic
housing. The gap in the housing provides a means of
interrupting the signal with tape, cards, shaft encoders, or
other opaque material, switching the output from an
"ON" to an "OFF" state.

• Opaque housing
• Lowcost
• .035" apertures
• European "Pro Electron"
registered

3-271

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to +85°C
Operating Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to +85°C
Soldering:
Lead Temperature (Iron) ....................................................... 240°C for 5 sec.(....·)
Lead Temperature (Flow) ...................................................... 260°C for 10 sec.(3.')

INPUT DIODE
Continuous Forward Current .................................................................. 60 mA
Reverse Voltage ........................................................................... 3.0 Volts
Power Dissipation ......................................................................... 100 mW(1)

OUTPUT TRANSISTOR
Collector-Emitter Voltage .................................................................... 30 Volts
Emitter-Collector Voltage ..................................................................... 5 Volts
Power Dissipation ......................................................................... 150 mW(2)

OUTPUT TRANSISTOR
5.0

Emitter-Collector Breakdown

COUPLED
On-State Collector Current

0.20

1. Derate power dissipation linearly 1.67 mW/oC above 25°C.
2. Derate power dissipation linearly 2.50 mW/oC above 25°C.
3. RMA flux is recommended.
4. Methanol or
alcohols are recommended as cleaning agents.

5.

3-272

~om

mA

IF = 20 mA, VeE = 10V

SLOTTED OPTICAL SWITCH

OPTOElECTRONICS

10
8

.--

/v

===.- NORMALIZED TO VeE -5V, IF -20 mA.TA·Z~·C
_ . INPUT PULSED

----

,/

I

IF"20mA
VCE =5V
PULSED

V
V

I

t--

I

-

~~~:g~~

/
.0 I I

~

e '\-'N:~T CU~E~_~AIOO

6

200

.1

400~2~

- 55

r

I

f-"

IF'"30mA

~

~~
..
'

-.--

V

-

I IF-SOmA"

-

f-

NORMALIZED TO'

I

I

I'r" IOOmA

,~

IF'"IOmA

-~
.J

-40 -20

,

--+-

40

20

0

I

.~

eo

60

100

8T2502

TA-AMBIENT TEMPERATURE"-C

Fig. 2. Output Current VS. Temperature

Current

DETECTOR

•

EIIITT"R

/

'0

..

- f---7 Fr-

,

---

10

I-

...Z
0:
0:

13

~
~

10

•

=

" '/
.-P:= F=
::::: ~~~~(
.. """1= f=

.~

2

f-- I - -

::;
~
~

.6r---1---+--~--4---+---+---1

o

-25

-50

25

15

50

TA -AMBIENT TEMP(RATuRE-'"C

Fig. 3.

}

,

/ 1/

,lL::

t--- NORMALIZED TO·
VeE "'25V

j

T.;25.~

+25

+50

+15

./

I

I

-

I

100
8T2503

'/

r--

,V

~'--

./

,

1/

10I

N

+'00

TA-AMBIENT TEMPERATURE·oC

NORMALIZED TO'
VA =5\1

r T.- 25 • C

-

I

I
I
I
+25
+50
+15
+100
T.-AMBIENT TEMPERATURS'f!504

Fig. 4. Leakage Current vs. Temperature

vs. Temperature

d-DISTANCE-mils

.

"><~

V-

Vcc"5V•

3

I

F

=~ A

PRR=IOOpps

C

NORMALIZED TO
RLoZ.&KA

:;

1.5

0:

~

j
cz

'~"

2362

3'5

/

I

.9
.8
.7
.6
.5
45
IK

~

ac
::J

4K

5K

RL-LOAO RESISTANCE-OHMS

Fig. 5. Switching Speed VS.

RL

6K

/
NORMALIZED
TO VALUE WITH
SHIELD

-

REMOVED

~LACK
SHIEL..D
.0I

:;

t3K

"

I

I

ii'

B~G:=
ZK

~

I-

RL

",/

0:

l-

~V

./

I

...
Z

//

:;?

...

I-

tON/.OFY vV'

RL

PW=300~s

OJ

"'"

1515

4

"l

..

187

1.00

4.5

E

.-.
O_d

~ BLACK
SHIELD

(!]-:

\ 0 0I

j

,

7K 8K 9K 10K

8T2505

d-OIS.JANCE-,.,m

10
8T2506

Fig. 6. Output Current vs. Distance

3-273

3-274

DISPLAYS

OPTOElECTRONICS

DISPLAYS
Alphanumeric Product Listing
Page

Product

.................
.................
.................
.................
.................

4-61
4-61
4-61
4-61
4-61

GMA 8675C
GMA 8875C
GMA 8975C
GMC 2475C
GMC 2485C

..............
..............
..............
..............
..............

4-119
4-119
4-119
4-127
4-135

MAN3630A
MAN3640A
MAN3680A
MAN3810A
MAN3820A

................
................
................
................
................

4-21
4-21
4-29
4-21
4-21

5082-7751 .................
5082-7756 .................
5082-7760 .................
FND310C ..................
FND317C ..................

4-61
4-61
4-61
4-41
4-41

GMC 2488C
GMC 2688C
GMC 2875C
GMC 2885C
GMC 2888C

..............
..............
..............
..............
..............

4-143
4-143
4-127
4-135
4-143

MAN3840A
MAN3880A
MAN3910A
MAN3920A
MAN3940A

................
. . . . . . . . . . . . . . ..
................
................
................

4-21
4-29
4-37
4-37
4-37

FND318C ..................
FND350C .................
FND357C .................
FND358C .................
FND360C .................

4-41
4-45
4-45
4-45
4-45

GMC 2975C ..............
GMC 2985C ..............
GMC 2988C ..............
GMC 7175C ..............
GMC 7175CA .............

4-127
4-135
4-143
4-107
4-113

MAN3980A
MAN3980A
MAN4410A
MAN4440A
MAN4610A

...... .. . .. .. ...
.. .. .. .. . .. .. ...
................
................
................

4-29
4-37
4-49
4-49
4-49

FND367C ................. 4-45
FND368C ................. 4-45
GMA 2475C .............. 4-127
GMA2485C .............. 4-135
GMA2488C .............. 4-143

GMC 7475C ..............
GMC 7475CA .............
GMC 7975C ..............
GMC 7975CA .............
GMC 8475C ..............

4-107
4-113
4-107
4-113
4-119

MAN4630A
MAN4640A
MAN4705A
MAN4710A
MAN4740A

................
... . . . . . . . . . . . ..
... .. . .. .. . .. ...
................
................

4-49
4-49
4-49
4-49
4-49

GMA2675C
GMA 2685C
GMA2875C
GMA2885C
GMA2888C

Product
5082-7650
5082-7651
5082-7653
5082-7656
5082-7750

Page

Product

Page

..............
..............
..............
..............
..............

4-127
4-135
4-127
4-135
4-143

GMC 8675C .............. 4-119
GMC 8875C .............. 4-119
GMC 8975C .............. 4-119
MAN3010A ................. 4-7
MAN3020A . .. .. .. .. .. . .. ... 4-7

MAN4910A ................
MAN4940A . . . . . . . . . . . . . . ..
MAN5350 .................
MAN5360 .................
MAN5450 .................

4-57
4-57
4-67
4-67
4-67

GMA2975C ..............
GMA2985C ..............
GMA2988C ..............
GMA 7175C ..............
GMA 7175CA .............

4-127
4-135
4-143
4-107
4-113

MAN3040A
MAN3210A
MAN3220A
MAN3240A
MAN3410A

. .. .. .. .. .. . .. ... 4-7
................ 4-15
................ 4-15
................ 4-15
................ 4-21

MAN5460
MAN5750
MAN5760
MAN5950
MAN5960

.................
.................
.................
.................
.................

4-67
4-67
4-67
4-67
4-67

GMA 7475C ..............
GMA 7475CA .............
GMA 7975C ..............
GMA 7975CA .............
GMA 8475C ..............

4-107
4-113
4-107
4-113
4-119

MAN3420A
MAN3440A
MAN3480A
MAN3610A
MAN3620A

................
................
................
................
................

MAN6060
MAN6080
MAN6260
MAN6280
MAN6410

.................. 4-7
.................. 4-7
................. 4-15
................. 4-15
................. 4-75

4-21
4-21
4-29
4-21
4-21

4-1

DISPLAYS

OPTOElECTRONICS

DISPLAYS
Alphanumeric Product Listing
Product

4-2

Page

Product

Page

MAN6440
MAN6460
MAN6480
MAN6610
MAN6630

.................
.................
.................
.................
.................

4-75
4-75
4-75
4-79
4-79

MAN6950 .................
MAN6960 .................
MAN6980 .................
MAN71A ..................
MAN72A ..................

4-89
4-89
4-89
4-21
4-21

MAN6640
MAN6650
MAN6660
MAN6675
MAN6680

.................
.................
.................
.................
.................

4-79
4-79
4-79
4-79
4-79

MAN73A .................. 4-21
MAN74A .................. 4-21
MAN78A .................. 4-29
MAN8010 .................. 4-7
MAN8040 .................. 4-7

MAN6695
MAN6710
MAN6730
MAN6740
MAN6750

.................
.................
.................
.................
.................

4-79
4-85
4-85
4-85
4-85

MAN8210 ..................
MAN8240 .................
MAN8410 .................
MAN8440 .................
MAN8610 .................

MAN6760
MAN6780
MAN6910
MAN6930
MAN6940

.................
.................
.................
.................
.................

4-85
4-85
4-89
4-89
4-89

MAN8640 ................. 4-99
MAN8910 ................ 4-103
MAN8940 ................ 4-103

4-15
4-15
4-95
4-95
4-99

DISPLAYS

OPTOELECTROIICS

PART
NUMBER

COLOR

~
~

5082-7650
5082-7750

High Efficiency Red
Red

5082-7651
5082-7653
5082-7751
5082-7760

-I
~

PACKAGE

DESCRIPTION

BRIGHTNESS OR
WMINOUS
INTENSITY
(TYPICAL)

PAGE

.43-lnch; Common Anode; LHDP

840 !Lcd @ 5 mA
980 !LCd @ 20 mA

4-61
4-61

High Efficiency Red
High Efficiency Red
Red
Red

.43-lnch;
.43-lnch;
.43-lnch;
.43-lnch;

840 !Lcd @ 5 mA
840 !Lcd @ 5 mA
980 !Lcd @ 20 mA
980 !Lcd @ 20 mA

4-61
4-61
4-61
4-61

5082-7656
5082-7756

High Efficiency Red
Red

.43-lnch; Universal Overflow ±1;
RHDP

840 !Lcd @ 5 mA
980 !Lcd @ 20 mA

4-61
4-61

FND318C
FND358C
FND368C

High Efficiency Red
Red
High Bright Red

.362-lnch; Common Cathode ± 1;
RHDP

450 !Lcd @ 20 mA
450 !Lcd @ 20 mA
450 !Lcd @ 20 mA

4-41
4-45
4-45

FND310C
FND350C
FND360C

High Efficiency Red
Red
High Bright Red

.362-lnch; Common Anode; RHDP

2700 !LCd @ 20 mA
450 !Lcd @ 20 mA
450 !Lcd @ 20 mA

4-41
4-45
4-45

FND317C
FND357C
FND367C

High Efficiency Red
Red
High Efficiency Red

.362-lnch; Common Cathode;
RHDP

2700 !Lcd @ 20 mA
450 !LCd @ 20 mA
450 !LCd @ 20 mA

4-41
4-45
4-45

~::::
! ....

GMX7175CA
GMX7475CA
GMX7975CA

High Efficiency Red
Yellow
Green

0.7-lnch; 5 x 7 Array
Common Anode and
Common Cathode

3000 !LCd @ 20 mA
@48mAPeak
1/8 Duty Cycle

4-112
4-113

:::::

GMX7175C
GMX7475C
GMX7975C

High Efficiency Red
Yellow
Green

0.7-lnch; 5 x 7 Array
Common Anode and
Common Cathode

3000 !Lcd @ 20 mA
@48mAPeak
1/8 Duty Cycle

4-107
4-107
4-107

I:::::
•••••

GMX8475C
GMX8875C
GMX8975C
GMX8675C

Yellow
High Efficiency Red
Green
Red/Green

1.2-lnch; 5 x 7 Array
Common Anode and
Common Cathode

3000 !Lcd @ 20 mA
@48mAPeak
1/8 Duty Cycle

4-119
4-119
4-119
4-119

;::::
=::::
••••
:I! ••••
....

GMX2475C
GMX2675C
GMX2875C
GMX2975C

High Efficiency Green
Bicolor Red/Green
Yellow
High Efficiency Red

2.0-lnch; 5 x 7 Array
Common Anode and
Common Cathode

400 !LCd
@48mAPeak
1/8 Duty Cycle

4-127
4-127
4-127
4-127

B

Common
Common
Common
Common

Anode; RHDP
Cathode; RHDP
Anode; RHDP
Cathode; RHDP

•

H
;:::;

•••••
•••••
•••••
•
• • • 1Ii

4-3

DISPLAYS

OPTOELECTRONICS

COLOR

GMX2485C
GMA2685C
GMX2885C
GMX2985C

High Efficiency Green
Bicolor Red/Green
Yellow
High Efficiency Red

GMX2488C
GMC2688C
GMX2888C
GMX2988C

Green
Red/Green
Yellow
High Efficiency Red

MAN3010A
MAN3210A
MAN3410A
MAN3610A
MAN3810A
MAN3910A
MAN71A

AIGaAs Red
AIGaAs Red
High Efficiency Green
Orange
Yellow
High Efficiency Red
Red

MAN3020A
MAN3220A
MAN3420A
MAN3620A
MAN3820A
MAN3920A
MAN72A

AIGaAs Red
AIGaAs Red
High Efficiency Green
Orange
Yellow
High Efficiency Red
Red

MAN3630A
MAN73A

Orange
Red

MAN3040A
MAN3240A
MAN3440A
MAN3640A
MAN3840A
MAN3940A
MAN74A

AIGaAs Red
AIGaAs Red
High Efficiency Green
Orange
Yellow
High Efficiency Red
Red

.3-lnch; Common Cathode; RHDP

3600 !LCd
12000 /Lcd
3200 /Lcd
1800 /Lcd
1700 /Lcd
1900 /Lcd
350 /Lcd

MAN3480A
MAN3680A
MAN3880A
MAN3980A
MAN78A

High Efficiency Green
Orange
Yellow
High Efficiency Red
Red

.3-lnch; Common Cathode;
RHDP; 10-Pin

3200 !LCd @
1800 /Lcd @
1700 /Lcd @
1900 /Lcd@
350 /Lcd @

10 mA
10 mA
10 mA
10 mA
10 mA

4-29
4-29
4-29
4-29
4-29

MAN4705A
MAN4630A

Red
Orange

.4-lnch; Universal (CNCC)
Overflow ±1; RHDP

350 /Lcd@ 10 mA
1800 /Lcd @ 10 mA

4-49
4-49

PACKAGE

..........
•••••
•••••
•••••
•••••
•••••
•••••

BRIGHTNESS OR
LUMINOUS
INTENSITY
(TYPICAL)

PART
NUMBER

DESCRIPTION

PAGE

2.3-lnch; 5 x 8 Array
Common Anode and
Common Cathode

400/Lcd
@48mAPeak
1/8 Duty Cycle

4-135
4-135
4-135
4-135

2.3-lnch; 8 x 8 Array
Common Anode and
Common Cathode

3000 /Lcd @ 20 mA
@48mAPeak
1/8 Duty Cycle

4-143
4-143
4-143
4-143

.3-lnch; Common Anode; RHDP

3600 /Lcd
12000 /Lcd
3200 /Lcd
1800 !LCd
1700 !LCd
1900 /Lcd
350 !LCd

@
@
@
@
@
@
@

5 mA
20 mA
10 mA
10 mA
10 mA
10 mA
10 mA

4-7
4-15
4-21
4-21
4-21
4-37
4-21

.3-lnch; Common Anode; LHDP

3600 !LCd
12000 !LCd
3200 /Lcd
1800 !LCd
1700 /Lcd
1900 !LCd
350 /Lcd

@
@
@
@
@
@
@

5 mA
20 mA
10 mA
10 mA
10 mA
10 mA
10 mA

4-7
4-15
4-21
4-21
4-21
4-37
4-21

1800 /Lcd @ 10 mA
350 !LCd @ 10 mA

4-21
4-21

~

.....

~:::::~~
/e •••••••
~

~;

•••••••
~:::::::

.......

~
~

B
~

~
•l

4-4

.3-lnch; Common Anode;
Polarity and Overflow

@
@
@
@
@
@
@

5 mA
20 mA
10 mA
10 mA
10 mA
10 mA
10 mA

4-7
4-15
4-21
4-21
4-21
4-37
4-21

DISPLAYS

OPTOELECTRONICS

PACKAGE

~
~

PART
NUMBER

COLOR

MAN4410A
MAN4610A
MAN4710A
MAN4910A

High Efficiency Green
Orange
Red
High Efficiency Red

MAN4440A
MAN4640A
MAN4740A
MAN4940A

High Efficiency Green
Orange
Red
High Efficiency Red

MAN5350
MAN5960

10 mA
10 mA
10 mA
10 mA

4-49
4-49
4-49
4-57

.4-lnch; Common Cathode; RHDP

3200 /Lcd @
1800 /Lcd @
350 /Lcd@
1900 /Lcd @

10 mA
10 mA
10 mA
10 mA

4-49
4-49
4-49
4-57

Yellow

.51-lnch; Common Anode; RHDP
.51-lnch; Common Cathode; RHDP

1200 /Lcd @ 20 mA

4-67
4-67

MAN5450
MAN5460

Green

.51-lnch; Common Anode; RHDP
.51-lnch; Common Cathode; RHDP

3000 /Lcd @ 20 mA

4-67
4-67

MAN5750
MAN5760

Red

.51-lnch; Common Anode; RHDP
.51-lnch; Common Cathode; RHDP

500 /Lcd @ 20 mA

4-67
4-67

MAN5950
MAN5360

Orange Red

.51-lnch; Common Anode; RHDP
.51-lnch; Common Cathode; RHDP

2500 /Lcd @ 20 mA

4-67
4-67

0.56-lnch; Common Anode;
RHDP; 2-Digit
0.56-lnch; Common Cathode;
RHDP; 2-Digit

3300 /Lcd @ 10 mA

0.56-lnch; Common Anode;
RHDP; 2-Digit
0.56-lnch; Common Cathode;
RHDP; 2-Digit

2200 /Lcd @ 10 mA

0.56-lnch; Common Anode;
RHDP; 2-Digit
0.56-lnch; Common Cathode;
RHDP; 2-Digit

420 /Lcd @ 10 mA

0.56-lnch; Common Anode;
RHDP; 2-Digit
0.56-lnch; Common Cathode;
RHDP; 2-Digit

2200 /Lcd @ 10 mA

0.56-lnch; Common Anode;
RHDP; 1%-Digit
0.56-lnch; Common Cathode;
RHDP; 1%-Digit

2200 /Lcd @ 10 mA

0.56-lnch; Common Anode;
RHDP; 1%-Digit
0.56-lnch; Common Cathode;
RHDP; 1%-Digit

420 /Lcd @ 10 mA

0.56-lnch; Common Anode;
Overflow ±1.8, RHDP
0.56-lnch; Common Cathode;
Overflow ±1.8, RHDP

2200 /Lcd @ 10 mA

High Efficiency Green
MAN6440
MAN6610
Orange
MAN6640
MAN6710
Red
MAN6740
MAN6910
High Efficiency Red
MAN6940
MAN6630
Orange
MAN6650

+lB

MAN6730
Red
MAN6750
MAN6930
High Efficiency Red
MAN6950

~

PAGE

3200 /Lcd @
1800 /Lcd@
350 /Lcd @
1900 JLCd @

MAN6410

BB

DESCRIPTION

BRIGHTNESS OR
LUMINOUS
INTENSITY
(TYPICAL)

.4-lnch; Common Anode; RHDP

4-75
4-75
4-79
4-79
4-85
4-85
4-89
4-89
4-79
4-79
4-85
4-85
4-89
4-89

MAN6060
MAN6080

AIGaAs Red
Low Current

0.56-lnch; Common Anode; RHDP
0.56-lnch; Common Cathode; RHDP

4200 /Lcd @ 5 mA

4-7
4-7

MAN6260
MAN6280

AIGaAs Red
Hi. Intensity

0.56-lnch; Common Anode; RHDP
0.56-lnch; Common Cathode; RHDP

15000 /Lcd @ 20 mA

4-15
4-15

0.56-lnch; Common Anode;
RHDP;
0.56-lnch; Common Cathode;
RHDP

3300 /Lcd @ 10 mA

0.56-lnch; Common Anode;
RHDP;
0.56-lnch; Common Cathode;
RHDP

2200 /Lcd @ 10 mA

MAN6460
High Efficiency Green
MAN6480
MAN6660
Orange
MAN6680

4-75
4-75
4-79
4-79

4-5

DISPLAYS

OPTOELECTRONICS

PACKAGE

~
~
-I.

PART
NUMBER

COLOR

MAN6760
Red
MAN6780
MAN6960
High Efficiency Red
MAN6980

MAN6675
Orange
MAN6695

IBJ

0.56-lnch; Common Anode;
RHDP;
0.56-lnch; Common Cathode·
RHDP
,

420/-Lcd@ 10 mA

0.56-lnch; Common Anode·
RHDP;
,
0.56-lnch; Common Cathode·
RHDP
,

2200 /-Lcd@ 10 mA

0.56-lnch; Common Anode;
RHDP; ± 1 Overflow
0.56-lnch; Common Cathode·
RHDP; ± 1 Overflow
'

2200 /-LCd@ 10 mA

PAGE

4-85
4-85
4-89
4-89

4-79
4-79

MAN8010
MAN8040

AIGaAsRed

.800-lnch; Common Anode; RHDP
.80Q-lnch; Common Cathode; RHDP

3500/-LCd@5mA

4-7
4-7

MAN8210
MAN8240

AIGaAsRed

.800-lnch; Common Anode; RHDP
.80Q-lnch; Common Cathode; RHDP

11000/-Lcd@20mA

4-15
4-15

.800-lnch; Common Anode·
RHDP;
,
.800-lnch; Common Cathode;
RHDP

3200 /-LCd@10mA

.800-lnch; Common Anode·
RHDP;
,
.800-lnch; Common Cathode·
RHDP
,

2200 /-Lcd@10mA

.SOO-Inch; Common Anode·
RHDP;
,
.SOO-Inch; Common Cathode·
RHDP
,

2200 /-Lcd@ 10 mA

MAN841 0

I~.

DESCRIPTION

BRIGHTNESS OR
WMINOUS
INTENSITY
(TYPICAL)

High Efficiency Green
MAN8440
MAN8610
Orange
MAN8640
MAN8910
High Efficiency Red
MAN8940

4-95
4-95
4-99
4-99
4-103
4-103

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

OPTOElECTRONICS

7.6mm (O.3in) MAN30XOA
14.2mm (O.56in) MAN60XO
20.0mm (O.Bin) MAN80XO

This line of solid state LED displays uses newly
developed Double Heterojunction (HD) AIGaAs/GaAs
material to emit deep red light at 650 nm. This material
has outstanding efficiency at low drive currents and can
be either DC or pulse driven. Viewability at up to 10
meters (MANBOOO Series) is available for applications
such as instruments weighing scales, meters and pointof-sale terminals.

• Low Power Consumption
Typical power consumption is 1.6mNseg. at 1mA drive
ideal for battery operated applications
• Typical intensity of 650/Lcd/seg at 1mA drive
• Excellent for multiplexing long digit strings
• Compatible with monolithic LED display drivers
• Three Character Sizes
7.6mm (0.3in), 14.2mm (0.56in), 20.0mm (O.Bin)
• Common anode or common cathode
• Excellent character appearance
Wide viewing angle
Grey body for optimum contrast
• Categorized for luminous intensity. Use of like
categorizes yields a uniform display

PART NO.

MAN3010A
MAN3040A
MAN3020A

CHARACTER
SIZE

0.3"

DESCRIPTION

PACKAGE
DRAWING

Common anode; right hand decimal
Common cathode; right hand decimal
Common anode; left hand decimal

A
B
C

MAN6060
MAN60BO

0.56" (14.2mm)

Common anode; right hand decimal
hand decimal
Common cathode;

D
E

MANB010
MANB040

O.B" (20mm)

Common anode; right hand decimal
Common cathode; right hand decimal

F
G
4-7

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

OPTOElECTRONICS

Thermal resistance LED junctionto-pin

RaJ-PIN

MAN3000
MAN6000
MAN8000

255
400

°C/W/Seg.

430

1. Case temperature of the device immediately prior to the intensity measurement is 25°C.
2. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
3. The dominant wavelength, Ad' is derived from the CIE chromaticity diagram and is that single wavelength which defines the color
of the device.

4-8

OPTOELECTRONICS

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

Average power per segment or DP (TA=25°C) .................................................................... 37 mW
Peak forward current per segment or DP (TA=25°C)[1] ............................................................. 45 mA
Average or DC forward current per segment or DP (TA=25°C) ....................................................... 15 mA
Operating temperature range .......................................................................... -20°C to +85°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to +85°C
Reverse voltage per segment or DP ............................................................................... 3.0 V
Lead solder temperature (1.59 mm [1/16"] below seating plane) ............................................. 260°C for 3 sec.

NOTES:

1. Do not exceed maximum average current per segment.

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not vary more than ±33.3% between all segment within a digit.
2. Leads of the device immersed to 1/16" from the body. Maximum device surface temperature is 140°C.
3. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their bOiling points.
4. All displays are categorized for Luminous Intensity. The intensity category is marked on each part as a suffix letter to the part
numbers.

4-9

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

OPTOElmaONICS

MAN3000A SERIES

PIN

11 --

0.370
(i.
m)
0.738
(18.75mm)

c

A OR B

I0.2

~o

r:: 0.050
--1(1.27mm)

(5.08mm)

_J\J\J\I\J\J\r-~:1:0.015
PIN "

t

0.16 o
( •• 06mm)

IJ

I

-'

l-

0.100 (2.5.Jmm)

JLO.02~
(0.51mm)

L

O.01~

(0.25mm)
:1:0.015.1

0.300
( •• 06mm)

LUMINIOUS INlENSiTY CAlEGORY

PIN

IS

J

L

0.100 (2.5.Jmm)

JL

!S:883

0.020 (0.51mm)

NOlE :

ALL DIMENSION ARE IN INCHES(mm)
C3060

4-10

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

OPTOELECTROIICS

MAN6000 SERIES

PIN

PIN"

15

• • • •

BOTTOM VIEW

•

•

•

•
PIN

16

D OR E
UGHT INTENSITY CAT

1*0.010
J
0.315
(8.00mm)

LO.050(1.27mm)

0.100 TYP.-l

+0·883

I-

-l1-0.02t-(0.51mm)

L...,

!8:~
'---__
*O._0I_5_---ITO.010 -(.254mm)
.....
0.600
-I
(15.24mm)

E

C3061

4·11

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

OPTOElECTRONICS

MAN8000 SERIES
*0.010

..---0.73&-----t
(1 ...7mm)

*0.010

0.800
(20.J2mm)

0.985
(25.02mm)

L~"

,o.100(2.54mm)'

L

IN

f1

*0.010

0.415
~0I5
(10.54mm)-+--+( 4~~mm)

WMINiOUS

INTENSITY
CAl£GORY

A

PART

r-------~-~~

0.050 (1.27mm)

+0.007
-0.000

I

*0.015

E

....... 0.010(.254mm)

1--0.600---1-1

(15.24mm)

C3062

4-12

DOUBLE HETEROJUNCTION
AIGaAsRED
LOW CURRENT DISPLAYS

OPTOElECTRONICS

PIN
NO.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

A

B

C

0

E

F

G

MAN3010A

MAN3040A

MAN3020A

MAN6060

MAN6080

MAN8010

MAN8040

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
Cathode D
Cathode D.P
Cathode C
CathodeG
No Pin
Cathode B
Common Anode

Anode F
AnodeG
No Pin
Common Cathode
No Pin
Anode E
Anode D
Anode C
Anode D.P
No Pin
No Pin
Common Cathode
Anode B
Anode A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P
Cathode E
Cathode D
No Connection
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

Cathode E
Cathode D
Common Anode
CathodeC
CathodeD.P
Cathode B
Cathode A
Common Anode
Cathode F
CathodeG

Anode E
Anode D
Common Cathode
AnodeC
Anode D.P
Anode B
Anode A
Common Cathode
Anode F
Anode G

MAN3010
(A)

No Connection
A Cathode
FCathode
Common Anode
E Cathode

No Connection
A Anode
FAnode
Common Cathode
EAnode

E Cathode

E'Anode

D Cathode
D.PCathode
DCathode
Common Anode
CCathode
GCathode
B Cathode

Common Cathode
D.PAnode
DAnode
Common Cathode
CAnode
GAnode
BAnode

Common Anode

Common Cathode

1lAN3040

MAN3020

(B)

(C)
C3072

C3071

C3070

MAN6060

MAN6080
(E)

(0)

C3074

C3073

14

1,2

117

I

I

I

.

",A E , , " ,
GB

f
D DFC
2 3 5.7 9.11 1013 h4 15
MAN8010
(F)
C3075

C3076

4-13

4-14

DOUBLE HETEROJUNCTION
AIGaAsRED
SUNLIGHT VIEWABLE DISPLAYS

OPT 0EL mHO II CS

7.6mm (O.3in) MAN32XOA
14.2mm (O.56in) MAN62XO
20.0mm (O.Bin) MAN82XO

This line of solid state LED displays uses newly
developed Double Heterojunction (DH) AIGaAs/GaAs
material technology. This LED material has outstanding
light output efficiency over a wide range of drive currents
and can either be DC or pulse driven. The color is deep
red at the dominant wavelength of 637 nanometers.
Viewability of up to 10 meters (MAN8200 Series) is
available for applications in bright sunlight such as
automotive and avionic instrumentation, portable
instruments, point-of-sale terminals and gas pumps.

• Sunlight Viewable
Typical intensity of 15mcd/Seg at 20mA Drive
• Capable of high drive currents
• Excellent for multiplexing long digit strings
• Three Character Sizes
7.6mm (0.3in), 14.2mm (0.56in), 20.0mm (0.8in)
• Excellent character appearance
Evenly lighted segments
Wide viewing angle
Grey body for optimum contrast
• Categorized for luminous intensity. Use of like
categorizes yields a uniform display

PART NO.

MAN3210A
MAN3240A
MAN3220A
MAN6260
MAN6280
MAN8210
MAN8240

CHARACTER
SIZE

DESCRIPTION

PACKAGE
DRAWING

0.3" (7.6mm)

Common anode; right hand decimal
Common cathode; right hand decimal
Common anode; left hand decimal

A
B
C

0.56" (14.2mm)

Common anode; right hand decimal
Common cathode; right hand decimal

D
E

Common anode; right hand decimal
Common cathode;
hand decimal

G

0.8"

F

4-15

DOUBLE HETEROJUNCTION
AIGaAsRED
SUNLIGHT VIEWABLE DISPLAYS

OPTOELECTRONICS

MIN.

IF =20 mA DC
IF =20 mA DC
IF =20 mA DC

Thermal resistance LED junctionto-pin

RaJ-PIN

MAN3200A
MAN6200
MAN8200

6.9
9.1
6.0

255
400
430

°C/W/Seg.

1. Case temperature of the device immediately prior to the intensity measurement is 25°C.
2. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
3. The dominant wavelength, Ad' is derived from the CIE chromaticity diagram and is that single wavelength which defines the color
of the device.

Average power per segment or DP (TA=25°C) ..................................................................... 96 mA
Peak forward current per segment or DP (TA=25°C)[1] ............................................................ 160 mA
Average or DC forward current per segment or DP (TA=25°C) ....................................................... 40 mA
Operating temperature range .......................................................................... -20°C to +85°C
Storage temperature range ............................................................................ -40°C to +85°C
Reverse voltage per segment or DP ............................................................................... 3.0 V
Lead solder temperature (1.59 mm [1/16"] below seating plane) ............................................. 260°C for 3 sec.

NOTES:

1. Do not exceed maximum

current mOl' .~",nm."nr

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. IntenSity will not vary more than ±33.3% between aI/segment within a digit.
2. Leads of the device immersed to 1/16n from the body. Maximum device surface temperature is 140°C.
3. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
4. AI/ displays are categorized for Luminous IntenSity. The intenSity category is marked on each part as a suffix letter to the part
numbers.

4-16

DOUBLE HETEROJUNCTION
AIGaAsRED
SUNLIGHT VIEWABLE DISPLAYS

OPTOELECTRONICS

MAN3200A SERIES

PIN "

--

0.370
(e.
m)

0.738
(18.7&nm)

c

A OR B

"I
0.2

Qr-010

r.

(5.08mm)

,-1\J\J\f\J\I\r-~

t

~o.015

0.16 o
(4.06mm)

IJ

I

PIN #1

I-

0.100 (2.54mm)

JLO.02~
(0.51mm)

0.050

-1(1.27mm)

L

+0.007

O.01cf-OOO
(0.25mm)
:0.015.1

0.300

(4.06mm)

LUMINIOUS INTENSITY CATEGORY

t :0.010

PART NO.

0.200
(5.08mm)

YXX

1
PIN

f8

J

L

0.100 (2.54mm)

!8:883

J L 0.020 (0.51mm)

NOTE :
ALL DIMENSION ARE IN INCHES(mm)
C3060

4-17

DOUBLE HETEROJUNCTION
AIGaAsRED
SUNLIGHT VIEWABLE DISPLAYS

OPTOElECTRONICS

MAN6200 SERIES

PIN"

rIt

II

J

I

~-

-

Il

1 JEa

/

• • • •

1
.0.010
0.540
(14.22rnm)

1'-.0.080

"-- 0.320_-.::1 .J"

BOTTOM VIEW

...

PIN fa

(8.13mm)

D OR E
UGHT INlENSiTY CAT

1:tO.010
0.315

(8.00mm)

r"T"""T""T""t'"""T"'\-+-'-J
""'[ 0.050C1.27mm)

0.100 TYP.-I

+8:~
~_01_5_ _-+...... 0.010 -(.254mm)
1-- - - 0.600
......

I-

(15.24mm)

E

C3061

4-18

DOUBLE HETEROJUNCTION
AIGaAsRED
SUNLIGHT VIEWABLE DISPLAYS

OPTOELECTRONICS

MAN8200 SERIES
*0.010

~---0.73&--"""'"

PIN 11.,..---->",

(18.87mm)

:to.010

~-ro·02~mm)

0.800
(20.32"'nm)

0.985
(25.02mm)

L~"

.O.100(2.54mm)·

1""'>...-_~0.100(2.54mm)
'NP

L

IN
:to.0I0

11

BF

0I5
0.415
(10.54mm)-t--+-.( 4~~mm)

WMINiOUS
INTENSITY
CAlEGORY

A

PART

~--------~'-r~

0.050 (1.27mm)

+0.007

E

-0.000

:to.015
+0.010(.254mm)
1---0.600----I-{
(15.24mm)

C3062

4-19

DOUBLE HETEROJUNCTION
AIGaAsRED
SUNLIGHT VIEWABLE DISPLAYS

OPTOElECTRONICS

PIN
NO.

A
MAN3210A

B

C

MAN3240A

MAN3220A

1
2
3
4
5
6

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
Cathode D
Cathode D.P
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

Anode F
AnodeG
No Pin
Common Cathode
No Pin
Anode E
AnodeD
AnodeC
Anode D.P
No Pin
No Pin
Common Cathode
Anode B
Anode A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P
CathodeE
Cathode D
No Connection
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

7
8
9
10
11
12
13
14
15
16
17
18

D
MAN6260

E
MAN6280

Cathode E
Cathode D
Common Anode
CathodeC
Cathode D.P
Cathode B
Cathode A
Common Anode
Cathode F
CathodeG

AnodeE
Anode D
Common Cathode
AnodeC
Anode D.P
Anode B
Anode A
Common Cathode
Anode F
AnodeG

F

G
MAN8240

MAN821 0

No Connection
A Cathode
FCathode
Common Anode
E Cathode

No Connection
AAnode
F Anode
Common Cathode
EAnode

ECathode

EAnode

DCathode
D.PCathode
DCathode
Common Anode
C Cathode
GCathode
BCathode

Common Cathode
D.PAnode
DAnode
Common Cathode
CAnode
GAnode
BAnode

Common Anode

Common Cathode

2 7 8 9 10 11 13
MAN3240
(8)

MAt1,210
C3063

MAN3220
(C)
C3064

MAN6260

MAN6280
(E)

(D)
C3066

C3067

MAN8240
(G)
C3068

4-20

C3069

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

HIGH EFFICIENCY GREEN MAN3400A
ORANGE MAN3600A

The MAN3400A, MAN3600A, MAN70A and MAN3800A
Series provides a choice of color of LED displays.
Standard units are available in Red, Green, Orange and
Yellow. They can be mounted in arrays with 0.400-inch
(10.16 mm) center-to-center spacing. Yellow and High
Efficiency Green displays are constructed with Grey face
and neutral segment color. Red displays have Black
faces and Red segment color. Others have face and
segment color corresponding to the emitted light.

MAN3410A
MAN3420A
MAN3440A
MAN3610A
MAN3620A
MAN3630A
MAN3640A
MAN71A
MAN72A
MAN73A
MAN74A
MAN3810A
MAN3820A
MAN3840A

RED
MAN70A
YELLOW MAN3800A

•
•
•
•
•
•
•
•
•
•
•
•

Common anode or common cathode models
Red, Yellow, Green and Orange
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Standard 14 pin dual-in-line package configuration
Wide angle viewing ... 150°

•
•
•
•
•

Digital readout displays
Instrument panels
Point of sale equipment
Calculators
Digital clocks

High Efficiency Green
High Efficiency Green
High Efficiency Green
Orange
Orange
Orange
Orange
Red
Red
Red
Red
Yellow
Yellow
Yellow

Common Anode; Right Hand Decimal
Common Anode; Left Hand Decimal
Common Cathode; Right Hand Decimal
Common Anode; Right Hand Decimal
Common Anode; Left Hand Decimal
Common Anode; Overflow ± 1
Common Cathode; Right Hand Decimal
Common Anode; Right Hand Decimal
Common Anode; Left Hand Decimal
Common Anode; Overflow ± 1
Common Cathode; Right Hand Decimal
Common Anode; Right Hand Decimal
Common Anode; Left Hand Decimal
Common Cathode;
ht Hand Decimal

4-21

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

750
900

IF =10mA
IF =60 mA peak, 1:6 DF

3200
4000

Forward voltage
Segment
Decimal point

2.2
2.2

Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal pOint

V
V

IF =20mA
IF =20mA

12
12

(1
(1

IF =20mA
IF =20mA

40
40

pF
pF

V=O
V=O

3.0
3.0

100
100

pA

MAN3610A, 3620A, 3630A, 3640A
Luminous Intensity, digit average
(See Note 1 and 3)

510

1800

Forward voltage
Segment
Decimal point

2.5
2.5

!Lcd

IF =10mA

V
V

IF =20mA
20mA

Dynamic resistance
Segment
Decimal point

26

(1
(1

IF =20mA
IF =20mA

Capacitance
Segment
Decimal pOint

35
35

pF
pF

V=O
V=O

pA
pA

VR=5.0V
V

Reverse current
Segment
Decimal pOint

4-22

26

100
100

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

Forward voltage
Segment
Decimal point

2.0
2.0

Dynamic resistance
Segment
Decimal point

2
2

Capacitance
Segment
Decimal point

35
35

Reverse current
Segment
Decimal

V
V

IF =20mA
IF =20 mA

n
n
80
80

pF
pF

100
100

pA

OOmA
OOmA

V=O
V=O

MAN3810A, 3820A, 3840A
Luminous Intensity, digit average
(See Note 1 and 3)

450

1700

Forward voltage
Segment
Decimal point

3.0
3.0

!Lcd

IF=10mA

V
V

IF =20mA
IF =20 mA

Dynamic resistance
Segment
Decimal point

26
26

n
n

IF =20mA
IF =20 mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

pA
pA

V R=5.0V
V R =5.0V

Reverse current
Segment
Decimal point

100
100

4-23

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

MAN3610A
MAN3620A
MAN3630A
MAN3640A
MAN3410A
MAN3420A
MAN3440A

J
J

Panelgraphic Scarlet 6S
Homalite 100-1670
Panelgraphic Green 48
Homalite 100-1440 Green

Power dissipation at 2SoC ambient ...................... .
Derate linearly from SO°C ............................... .
Storage and operating temperature ..................... .
Continuous forward current
Tota!. ............................................. ..
Per segment. ....................................... .
Decimal pOint. ...................................... .
Reverse voltage
Per segment. ....................................... .
Decimal pOint. ...................................... .
I i time at 260°C
Notes 4 and .............. .

Power dissipation at
ambient ...................... .
Derate linearly from SO°C ............................... .
Storage and operating temperature ..................... .
Continuous forward current
Tota!. .............................................. .
Per segment. ....................................... .
Decimal point. ...................................... .
Reverse voltage
Per segment. ....................................... .
Decimal point. ...................................... .
I i time at 260°C
Notes 4 and

MAN71A
MAN72A
MAN73A
MAN74A

J

MAN3810A
MAN3820A
MAN3840A

J

Panelgraphic Red 60
Homalite 100-160S
Panelgraphic Yellow 2S or Amber 23
Homalite 100-1720 or 100-1726
Panelgraphic Grey 10
Homalite 100-1266 Grey

EFF_
MAN3410A
MAN3420A
MAN3440A

MAN71A
MAN72A
MAN74A

MAN73A

600mW
-12 mW/oC
-40°C to +8SoC

480mW
-6.9 mW/oC
-40°C to +8SoC

300mW
-4.29mW/oC
-40°C to +8SoC

240mA
30mA
30mA

240mA
30mA
30mA

lS0mA
30mA
30mA

6.0V
6.0V
S sec.

6.0V
6.0V
Ssec.

6.0V
6.0V
Ssec.

YELLOW
MAN3810A
MAN3820A
MAN3840A

MAN3610A
MAN3620A
MAN3640A

MAN3630A

600mW
-10.3mW{DC
-40°C to +8SoC

600mW
-8.6mW/oC
-40°C to +8SoC

37SmW
-S.36 mW/oC
-40°C to +8SoC

200mA
2SmA
2SmA

240mA
30mA
30mA

lS0mA
30mA
30mA

ORANGE

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of
segments. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figures 3, 6, 9, and 12 is normalized to the brightness at 25°C to indicate the relative Luminous Intensity over the operating
temperature range.
3. The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the decimal point
is .3 times the Luminous Intensity of the segments, since the area of the decimal point is .3 times the area of the average segment.
4. Leads of the device immersed to
from the body. Maximum device surface temprature is 140°C.
5. For flux removal, Freon
Freon
or water
be used up to their boiling points.
6. All
The
is marked on each part as a suffix letter to the
number.

4-24

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

R"

' ':..

e133'

L

.300"
II
7.621n!"----I
t.Ol5·

.• ".-It-- ,025mm
+oor

C1338

~:ODO"

....

'

"....·-R"-'

:•..1,\~~!

0
0

'

(9.40mm)

,.
"

L

""~,~m' rB:~~'
,,l.

a ,,_

I·LJro.
j,J::.-,,,,,
.L,"

B',~

,~,

EgC

o

:5'.

Pin
No.

1
2
3
4

5
6
7
8
9

10
11
12
13
14

A
MAN3410A, 3610A, 71A, 3810A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
CathodeE
Cathode D
CathodeD.P.
CathodeC
CathodeG
No Pin
CathodeB
Common Anode

B
MAN3420A, 72A, 3620A, 3820A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P.
Cathode E
Cathode D
No Connection
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

C
MAN3630A,73A

AnodeC, D
No Pin
AnodeC, D
No Pin
No Pin
No Pin
Cathode D
CathodeC
No Connection
Cathode B
Cathode A
No Pin
No Pin
Anode A, B

.'

0 •

I- (9.:~~!-l
,010

C422A

o

D
MAN3440A, 3640A, 74A, 3840A

Anode F
AnodeG
No Pin
Common Cathode
No Pin
Anode E
AnodeD
AnodeC
AnodeD.P.
No Pin
No Pin
Common Cathode
AnodeB
Anode A

4-25

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

4.0

100

;C

E

70

~

60

ll§

50

Cl

I
MAN3400A SERIES

I
I

I

40

cr

30

~_

0
2
10

«

+1IZE+I,

80

'"
=>
(J

I

90

I

1/
./

0
1.0

V

{DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3. 51

2.0

3.0

51015202530
DC FORWARD CURRENT -I" (mA)

4.0

C1702

C1697

Fig. 2. Relative Luminous Intensity
vs. DC Forward Current

Fig. 1. Forward Current
vs. Forward
13

100

NORMALIZED

90

AT 25°C

MAN3600A SERI(S

80

' " MAN3400A SEAlES

0
0

'" '"

70

-55

7.

~

0

-25
25
50
75
TEMPERATURE - T1\ 'C



00
50
40

.........

30

I

•
10

0
0

I

T

0

-50

25

50

AM61ENT TEMPERATURE - °C

70
C428

Fig. 5. Relative Luminous Intensity
vs. Temperature

4-26

.S

1.•

1.5

V~-VOLTS

Fig. 6. Forward Current vs.
Forward Voltage

2.•

C'26

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

..•

•

'00

'60

MAN70A SERIES

'-

'50
'40

'"

•
•

~
'i

13

~

11

120

'"

~ '00

~

90

5 8•
~

•

.

""

•

·60

.,.

..

50

'"

,.

-"c

C12441

vs.

..

'00

..

•

Fig. 7. Relative Luminous Intensity

II.

I

,.
50

AMBIENT TEMPERATURE

I
I
I

I

30

'"

-25

.,.

I
MAIII3800ASERIES

.
/

/

,

...

3.

em

\IF - VOLTS

Fig. 8. Forward Current vs.
Forward Voltage

MA~3800A S~RIES

"'"- ..........

...........

r--....

8.

,.
-50

10L-LL~llL-LLU~L-LL~~

10

-25

"

50

100
1000
PULSE DURATION ".5

,.

AMBIENT TEMPERATURE _·C

Fig. 9. Relative Luminous Intensity
vs. Temperature
4.0'T-rTTTT11rr-r-rT1TT111

10,000

C1699

C431

Fig. 10. Maximum Peak Current
vs. Pulse Duration
1000

MAN3600A SERIES

800
500

~FAEaUENCV'"

.'00
,

200 pps

r'-r-.,.

,.
10

20

50

DC

~

'0
:2

% DUTY CYCLE

Fig. 11. Relative Efficiency

3

5

a

10

DUTY CYCU:

C1701

Fig.

20
....

30 50 80 100
C1221

12. Max Peak Current vs.

vs.

4-27

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

21\
\

MAN3600A SERIES

.-'
5

""-

"-

MAN4700A SERIES

.........

"-

20

40

20

10

DC

DUTY CYCLE

DC

40

DUTY CYCLE %

...

IF PERSEG IOmAAVERAGE

rnA AVERAGE

IF PER SEG 10

C1222

CI232

Fig. 13. Luminous Intensity vs.

Fig. 14. Luminous Intensity vs.
DutyCyc/e

'000
.00
500

'DOD

MAN70A SERIES

MAN3800ASERIES

.00
500

~

FREQUENCY

z

.

:: 100
0
~

,RE~UENCY = 200 pps

200 pps

" "-

.200
E

~

t-

,

,

.200
E

""-

.:: 100

~

50

r-.
0

80

so

r-..,

I
0

0

0
2

3

S 8

10

DUTY CYCLE

20

30 50 80100

"0

C1223

Fig. 15. Max Peak Current vs.
Duty Cycle

2

3

OJ

8 10

:w

DUTY CYCLE

30 5080100
C1225

Fig. 16. Max Peak Current vs.
Duty Cycle

MAN3800A SERIES

'\

/'

"-

>.5

/

" "-

/
/
I'-

,
20

L

40

DUTY CYCLE
'.
I~ PER SEG 10 mA AVERAGE

Cl226

Fig. 17. Luminous Intensity vs.
Duty Cycle

4-28

50

,

00

5

/
o
5
10
15
20
25
30
IF-FORWARD CURRENT-mA
C1825

Fig. 18. Relative Luminous Intensity vs.
Forward Current

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

RED
MAN78A
YELLOW MAN3880A
HIGH EFFICIENCY RED MAN3980A

HIGH EFFICIENCY GREEN MAN3480A
ORANGE MAN3680A

The MAN3480A, MAN3680A, MAN78A, MAN3880A and
MAN3980A are common cathode displays which provide
a choice of color of LED displays. They are pin and
functional replacements for the 0.300-inch HewlettPackard common cathode displays. The series is
complementary to the MAN3400A, MAN3600A, MAN70A,
MAN3800A and MAN3900A families of displays. They
can be mounted in arrays with OAOO-inch (10.16 mm)
center-to-center spacing. Yellow and High Efficiency
Green displays are constructed with Grey face and
neutral segment color. Red displays have Black faces
and Red segment color. Others have face and segment
color corresponding to the emitted light.

MAN3480A
MAN3680A
MAN78A
MAN3880A
MAN3980A

High Efficiency Green
Orange
Red
Yellow
High Efficiency Red

• Hewlett-Packard compatible common cathode
displays
• Red, Yellow, Green, Orange and High Efficiency Red
• Fast switching - excellent for multiplexing
• Low power consumption
• Bold solid segments that are highly legible
• Solid state reliability - long operation life
• Impact resistant plastic construction
• Directly compatible with integrated circuits
• High brightness with high contrast
• Categorized for Luminous Intensity (See Note 6)
• Standard 10 pin dual-in-line package configuration
• Wide viewing angle ... 150°

•
•
•
•
•

Digital readout displays
Instrument panels
Point of sale terminals
Calculators
Digital clocks

Common
Common
Common
Common
Common

Cathode;
Cathode;
Cathode;
Cathode;
Cathode;

Right Hand
Right Hand
Right Hand
Right Hand
Hand

Decimal
Decimal
Decimal
Decimal
Decimal
4-29

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

DEVICE TYPE

FILTER

MAN3480A

Panelgraphic Green 48
Homalite 100-1440 Green

MAN3680A

Panelgraphic Scarlet 65
Homalite 100-1670

750
900

FILTER

MAN3980A
MAN78A

Panelgraphic Red 60
Homalite 100-1605

MAN3880A

Panelgraphic Yellow 25 or Amber 23
Homalite 100-1720 or 100-1726
Panelgraphic Grey 10
Homalite 100-1266

IF =10 mA
IF =60 mA peak, 1:6 DF

3200
4000

Forward voltage
Segment
Decimal point

2.2
2.2

Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal paint

3.0
3.0

V
V

IF =20mA
IF =20mA

12
12

n
n

IF =20mA
IF =20mA

40
40

pF
pF

V=O
V=O

pA

VR=5.0V
VR=5.0V

!LCd

IF =10mA

V
V

IF =20mA
IF =20mA

100
100

MAN3680A
Luminous Intensity, digit average
(See Note 1 and 3)

510

1800

Forward voltage
Segment
Decimal point

2.5
2.5

Dynamic resistance
Segment
Decimal paint

26
26

n
n

IF =20mA
IF =20mA

Capacitance
Segment
Decimal paint

35
35

pF
pF

V=O
V=O

100
100

4-30

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

Forward voltage
Segment
Decimal pOint

2.0
2.0

Dynamic resistance
Segment
Decimal point

2
2

Capacitance
Segment
Decimal point

35
35

Reverse cu rrent
Segment
Decimal

V
V

n
n

IF =20 mA
IF =20mA
=100mA
=100mA

80
80

pF
pF

V=O
V=O

100
100

pA
pA

VR=5.0V
VR=5.0V

!Lcd

IF =10 mA

V
V

IF =20mA
IF =20mA

MAN3880A
Luminous Intensity. digit average
(See Note 1 and 3)

450

1700

Forward voltage
Segment
Decimal point

3.0
3.0

Dynamic resistance
Segment
Decimal point

26
26

n
n

IF =20mA
IF=20mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

Reverse current
Segment
Decimal point

100
100

pA

MAN3980A
Luminous Intensity. digit average
(See Note 1 and 3)

450

1900

!Lcd

IF =10mA

V
V

IF =20 mA
IF =20 mA

I

Forward voltage
Segment
Decimal point

2.5
2.5

Dynamic resistance
Segment
Decimal point

26
26

n
n

IF =20 mA
IF =20 mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

pA
pA

VR=5.0V
VR=5.0V

Reverse current
Segment
Decimal pOint

100
100

4-31

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

MAN3480A

MAN78A

HIGH EFF. RED
MAN36BOA
MAN36BOA
MAN39BOA

600mW
-12mW/oC
-40°C to +8SoC

480mW
-6.9mW/oC
-40°C to +8SoC

600mW
-10.3 mW/oC
-40°C to +85°C

240mA
30mA
30mA

240mA
30mA
30mA

200mA
2SmA
25mA

6.0V
6.0V
5 sec.

6.0V
6.0V
Ssec.

6.0V
6.0V
5 sec.

HIGH EFF. GREEN

Power dissipation at 25°C ambient ...................... .
Derate linearly from 50°C ............................... .
Storage and operating temperature ..................... .
Continuous forward current
Total ............................................... .
Per segment. ....................................... .
Decimal point. ...................................... .
Reverse voltage
Per segment. ....................................... .
Decimal point. ...................................... .
time at 260°C
Notes 4 and .............. .

RED

GREEN/YELLOW
Thermal resistance junction to free air JA •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 160°C/W
Wavelength temperature coefficient (case temperature) ............................................................. 1.0A/oC
Forward voltage temperature coefficient ...................................................................... -1.S mV/oC
RED/ORANGE/HIGH EFFICIENCY RED
Thermal resistance junction to free air JA' ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 160°C/W
Wavelength temperature coefficient(case temperature) ............................................................. 1.0A/oC
Forward voltage temperature coefficient ...................................................................... -2.0 mV/oC

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figures 3, 6, 9, and 12 is normalized to the brightness at 25°C to indicate the relative Luminous Intensity over the
operating temperature range.
3. The decimal pOint is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the
decimal point is .3 times the Luminous Intensity of the segments, since the area of the decimal pOint is .3 times the area of the
average segment.
4. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, Isoproponalor water may be used up to their boiling pOints.
6. All displays are categorized for Luminous Intensity. The IntenSity category is marked on each part as a suffix letter to the part
number.

4-32

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

+

R

~

4.0Smm
±.OlS"

_t

---

-JI-

-t I

.300"
j.-7.62

·oso"
1.27mm

'.01~~

--i

t

.010"
.025mm
+.007"
-.000"

.-r----------------

.200"
5.0Bmm

'or

PART No. CODE
MANX XXX =PART No.
YXX = DATE CODE
Z = LIGHT INTENSITY
CAT. No.

t-r--r-rT..............,.........,...,.......---.-I

100"

2 54mm

I

---l

I
r--

C3000

I

386"

C420A

I

1-(9.BO mml----t

±.010"

PIN
NO.

1
2
3
4
5
6

7
8
9
10

ELECTRICAL
CONNECTIONS

Common Cathode
AnodeF
AnodeG
Anode E
Anode D
Common Cathode
Anode D.P.
AnodeC
Anode B
Anode A

4-33

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

4.0

100

~
-'"

~

'"'"

80

I

70

I

I

o 40
o

~
~

I

30
20
10

1/1
./

(DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3. 51

V

0
4.0
2.0
3.0
1.0
FORWARD VOLTAGE - VF (VOLTS)
C1697

120

l
~

110

~

"'- ~

100

!!!

70
·55

.

~

7

JO

1"-

0

-25
25
50
75
TEMPERATURE - TA rC)

"

I

0

100

..

C1700

FORWAFID VOLTAGE IV,I

,ao

,so

10

130

eo

or

110
110

I' 16 '0 , .. 28 32 36 40
VOLTS

"' "-

:
"

MAN78A

•

.
50

""-

JO

"50
50

CIOBO

T

10

.., ~ "-::~="100

8

Fig. 4. Forward Current vs.
Forward

.

10

"

AMBIENT TEMPEAATURe

50
C

'"

10

C11.4

Fig. 5. Relative Luminous Intensity
vs.

4-34

I

0

.: . 0

~

~,

.--~ ::~=

0

H'
,

~

C1702

90

Fig. 3. Relative Luminous Intensity
vs. Temperature

~

30

510152025

DC FORWARD CURRENT _ I, (""I

80

~~

eo

[7

".,

NORMALIZED
AT 25"C

1"-

90

isw
'"

V

Fig. 2. Relative Luminous Intensity
vs. DC Forward Current

Fig. 1. Forward Current
vs. Forward
130

V

I'

/

MAN3480A

I

60
0

:0

'"

+~ZEOA~ I, Jo""

I

90

,.
•

I

I

.

,

Fig. 6. Forward Current vs.
Forward

2.

C.,.

[!ij

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

.,..
,

MAN7eA-

"-

'50

......

.

11

i'-

::: 100

~

~

I'-

.'"

. .

.......

."

·25

50

A""8IENT TEMPERATURE··C

-

AMI.ENT TlMHRATU"E - ·C

0

3.0

I-

2.0

~
~

;;

1.0

~

o. O·

... r-

'000

I II ill~~

~

I

_

t+

MAN36IDA
MAN3IIOA

500

,FREQUENCY. 200 PCII

10m
5m
2.5m

I !
I

10,000
C1699

IF/AVG} '" 20 m A I - -

2.0

••
C,"

Fig. 10. Maximum Peak Current
vs. Pulse Duration

MA,N~8~A~ I!l!

E
;!

;;

100
1000
PULSE DuRATION ,..8'

013'

Fig. 9. Relative Luminous Intensity
vs. Temperature

""

,.

~AN38801

". --..r--.....!
...........
i'..
..
.. .. ,.
'"...
4.0

/

Fig. 8. Forward Current VB.
Forward Voltage

VB.

,ao

I

,

'"
CI:Nt

Fig. 7. Relative Luminous IntenSity

".

I

'"
'",

'-

-~

1

I
I

50

.......

10

50

J
MAN3880A

.'"
.

'-

i ::•
~

...

,oe

".,

.200
E

i"-

f::::...

t-. .....

I'

I
5.0
10 20
% OUTVCVCLE

i"i'-,..

.:!' 100
~ 00
::: 50

50

Fig. 11. Relative Efficiency

DC
C1701

'"
•

2

J

!j

8 10

20

30 SO 80 100

~

C'221

OUT'( CYCLE .

Fig. 12. Max Peak Current VB.

VB.

4-35

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

'~+'\.

•

MAN3880A

1000

MAN39BOA

MAN78A

8..

5"

"

r\.

F AeOUENCY .. 200 PPI

i'

.2..

'\..

E

" '\..

.:: 100

~

SO

~

50

"-

"

20
1

'0

10

D

DC

'2

IF PERSEG lQmAAVERAGE

3

S 8 10

20

O\JTY CYCLE

C1222

JO

!)()

80 H)Q

C1223

...

Fig. 14. Max Peak Current vs.
Duty Cycle

Fig. 13. Luminous Intensity vs.
Duty Cycle

1000
800

MAN3800ASERIES

5<10
FREQUENCY

'\..[

,

~

200pps

.2DO
1.5

''\..

.:: 100

...........

r--

~

80

~

50

"-

D

1
10

DC

20

DUTY CYCLE - %
'F PER seG 10 mAAVERAGE

0
'2

3

C1232

Fig. 15. Luminous Intensity vs.
Duty Cycle

OJ

8 10

20

30 5080100

DlJTY CYCLE

C122S

Fig. 16. Max Peak Current vs.
Duty Cycle

,
MANJ8BOA

V'

'\,.

\.
5

/
'\..

/
~

/

1
10

DC
DUTY CYCLE

,

IF PER SEC; 10 mA AVERAGE

C1226

Fig. 17. Luminous Intensity vs.

4-36

50

100

/

50

/
o
10

15

20

25

30

IF-FORWARD CURRENT -rnA
C1825

Fig. 18. Relative Luminous Intensity vs.
Forward Current

O.300-INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

HIGH EFFICIENCY RED MAN3900A SERIES

•
•
•
•
•
•
•
•
•
•
•
•
•
The MAN3900A Series is a High Efficiency Red LED
display. Standard units are also available in Red, Green,
Orange and Yellow, with common anode right hand
decimal, common anode left hand decimal, and common
cathode right hand decimal. They can be mounted in
arrays with 0.400-inch (10.16 mm) center-to-center
spacing. Units are constructed with Red face and
segment color.

PART NUMBER

MAN3910A
MAN3920A
MAN3940A
MAN3980A

COLOR

Common anode or common cathode models
High Efficiency Red
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability-long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Standard dual-in-line package configuration
Wide angle viewing ... 1500
These devices have a Red face and Red segments

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Calculators
• Digital clocks

PACKAGE

High Efficiency Red
High Efficiency Red
High Efficiency Red
High Efficiency Red

A
B
C
D

DESCRIPTION

Common
Common
Common
Common

Anode; Right Hand Decimal
Anode; Left Hand Decimal
Cathode; Right Hand Decimal
Cathode; Right Hand Decimal

PINOUT
SPECIFICATION

A
B
C
D

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

FILTER

MAN3910A
MAN3920A
MAN3940A
MAN3980A

Panelgraphic Scarlet 65
Homalite 100-1670

4-37

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

Forward voltage
Segment
Decimal point

2.5
2.5

V
V

IF =20mA
IF=20 mA

Dynamic resistance
Segment
Decimal pOint

26
26

n
n

IF=20 mA
IF =20mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

100
100

MAN3910A, MAN3920A, MAN3940A, MAN3980A
Power dissipation at 25°C ambient ............................................................................. 600 mW
Derate linearly from 50°C ................................................................................. -8.6 mW/oC
Storage and operating temperature ..................................................................... -40°C to +85°C
Continuous forward current
Total ...................................................................................................... 240 mA
Per segment ................................................................................................ 30 mA
Decimal point ............................................................................................... 30 mA
Reverse voltage
Per segment ................................................................................................. 6.0 V
Decimal point ................................................................................................ 6.0 V
time at 260°C
Notes 4 and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 sec.

HIGH EFFICIENCY RED
Thermal resistance junction to free air JA ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••• 160°CIW
Wavelength temperature coefficient (case temperature) ........................................................... 1.oA;oc
Forward voltage temperature coefficient ..................................................................... -2.0 mV;oC

4-38

O.3GO·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

R:f-"

, ,,:mm

II

--i

020"
-O:Slmm
+004"
-.000"
el337

L

.300'

1.62mrn

!.015··

--i

.OW
.025mm
+.001"

-000"

"¥;: ;"
(brll: St

C1338

:~\~

1'1811'
L.

"s"

"8.75 mm)

. 010

Ill-{)

I

~'lHl
10042

-0

I TV'

L)II

,tlJ·

.rQ~

,...

U12"""1

0 •
0 '

~19.:S~~1-4
, 010
C422A

o

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative Luminous Intensity over the operating
temperature range.
3. The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the
decimal point is .3 times the Luminous Intensity of the segments, since the area of the decimal paint is .3 times the area of the
average segment.
4. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used to their boiling points.
6. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.

4-39

O.300·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

PIN
NO.

A
MAN3910A

1
2
3
4

B
MAN3920A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
CathodeE
Cathode D
CathodeD.P.
CathodeC
CathodeG
No Pin
CathodeB
Common Anode

5
6
7

a
9

10
11
12
13
14

100

Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P.
Cathode E
Cathode D
No Connection
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

170

160

MAN39QOA SEAlES

150

80

I 140

40

:

~

10

/
.4

.8

I
(V~)

-

VOLTS

-so

I I

,REQUENCY. 200 PPS

e

~ 80
~

'\..

10

5 810
DUTY CYCLE

"'

70

C1244

r-....

20 30 5080100
%

Fig. 3. Max Peak Current vs.
Duty Cycle

C1221

10

20
I,.

/

./

"

L

40

DUTY CYCLE - %
PEA SEG 10 rnA AVERAGE

DC

150

100

/

'\.

20

4-40

/

'\

'r-3

°c

'\

50

2

50

25

Fig. 2. Relative Luminous Intensity vs.
Temperature

"

I

-25

AMBIENT TEMPERATURE -

C1OSO

1\
\

MAN3900A SE RI ES

'::100

" I'..

50

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

I I I

"' "'

60

Fig. 1. Forward Current vs.
Forward

,,200

80

a: 70

FORWARD VOLTAGE

500

"

100

> 90

20

800

"'"'

~ 120
:r
~ 110
a:

30

1000

MAN3900A SERIES

"

m130

I
I

50

-

"

II

70

"-E 50

Common Cathode
Anode F
AnodeG
Anode E
AnodeD
Common Cathode
Anode D.P.
AnodeC
Anode B
Anode A

Anode F
AnodeG
No Pin
Common Cathode
No Pin
Anode E
Anode D
AnodeC
Anode D.P.
NoPin
No Pin
Common Cathode
Anode B
Anode A

I I

90

D
MAN3980A

C
MAN3940A

50

/

o
10

15

20

25

30

IF-FORWARD CURRENT -rnA
C1222

Fig. 4. Luminous Intensity vs.
Duty Cycle

C1825

Fig. 5. Relative Luminous Intensity vs.
Forward Current

0.362 . INCH
7· SEGMENT DISPLAY

OPTOElEmONICS

HIGH EFFICIENCY RED FND310C FND317C FND318C

INTENSITY
CATEGORY
ORIENTATION
MARKS

,

·fJoo
(.508)
I

I

r

r

.362
(9.195 )
TYP

.400
(10.180)
F
(2.540)

:100

.1101

(2.794)1
TYP

_ _ d075 (1.905)
.170 (4.318)
.130 (3.302)

,,.

l

580
(14224)
.550
(13.970)

I

.0901

:

DPO

k I~

060
(1.524)

I

.315
(8.001 )
.295
(7.493 )

.295
FND350

Lh-n----nrH

L

FND357
FND380
FND367

.050
(1.270)

,

100

I

(2.540)

l

-l

T

_~ i

I

.030
(762)- 340 (8.636).330 (8.832)

.310 (7.874)

3[

(.508)

I

I

"'":"290 (7.366)-

(8.001)

1100 1

~~,=tl :
192
4.877)TYP

-SEATING PLANE

(7.493)

.020 (.508)
.016 (.406)

fTTTT'

.020 (.508)

.r6 (.406)

.400
(10.180)
REF

I

075 (1.905)

170 (4.318)
130(3.302)
SEATING PLANE

m1:1 ::1 HIt!
III ~I ~ Iq !I! :I~

ww~ww

-

J- -

FND358
-

_

.013 (.330)
TYP

FND368

.012 (.305)
.008 (.203)

- .200(5.080)

e173?

NOTES:
1. ALL DIMENSIONS ARE IN MM (INCH)
2. TOLERANCE ARE ±O.010 INCH UNLESS OTHERWISE SPECIFIED

The FND310C, FND317C and FND318D are high
efficiency red GaP 7-segment displays with nominal
0.362" digit height. Reflector cap, PCB and encapsulant
are used in the construction of these FND3XXCs.

FND310C
FND317C
FND318C

Hi. Eff. Red
Hi. Eff. Red
Hi. Eff. Red

•
•
•
•
•
•

Exactly pin and package compatible with FND3XX
Compact -10 digits in 3-inch panel width
Wide viewing angle
Right-hand decimal configuration
Categorized for luminous intensity
Rugged encapsulated plastic construction

Common anode seven segment display
Common cathode seven segment display
Common cathode ± 1 overflow display

4-41

O.362·INCH
7-SEGMENT DISPLAY

OPTOElECTRONICS

Power dissipation at 2SoC ambient ..................... .
Continuous forward current
Total ........................................... .
Per segment or decimal point ..................... .
Reverse voltage
Per segment or decimal point ..................... .
Storage and operating temperature .................... .
HnlrlR"inn time at 250°C ('A6 inch from the seati
plane) .. .

FND310C/317C
SOOmW

FND318C
320mW

200mA
2SmA

12SmA
2SmA

6V
-2SoC to +8SoC
3 sec

6V
-2SoC to +8SoC
3 sec

.-------------11

1

0

a==o

o

A

F

B

9

'{Or
DPQ

6

FND317C

4-42

1

10

Pin
1
2
3
4
5
6
7
8
9
10

FND317C
Common Cathode
Segment F
SegmentG
SegmentE
SegmentD
Common Cathode
Decimal Point DP
SegmentC
SegmentB
SegmentA

FND310C
Common Anode
SegmentF
SegmentG
SegmentE
SegmentD
Common Cathode
Decimal Point DP
SegmentC
Segment B
Segment A

2

3

D

0

~'a

10
9

8

4

t

JO:

7

5

0

DPQ

6

Pin
1
2
3
4
5
6
7
8
9
10

FND318C
Common Cathode
Plus Si~n
Minus ign
NC
Omitted
Common Cathode
Decimal Point DP
SegmentC
Segment B
NC

FND318C

0.362 . INCH
7 • SEGMENT DISPLAY

OPTOElECTRONICS

120

50


11.

80

=>

60

t-

Z
UJ
II:
II:

30

()

20

=>

I

II

Cl

II:

10

~
ou..
II:

/

a
1.2

0

UJ

V

1.6

2.0

\

t-

>

20

UJ
II:

2.4

2.6

/
II

40

~
--'

/

a
580

520

ST2658

~
1\

600

640

680

720

ST2663

WAVELENGTH (N-nm

FORWARD VOLTAGE (VF)-VOLTS

Fig 2. Spectral Response

Fig. 1 Forward Current vs. Forward Voltage
2
2.5

V

2.0

1.25

~

--'
UJ

/

0.25

10

a

10

20

Fig. 3 Relative Luminous

30

40

50

ST2662

DUTY CYCLE % PER SEGMENT
(AVERAGE IF=10mA)

vs. Forward Current
1000

~

35 r o - r , - , - " - r , - , - , , - r - , ,

UJ
II:
II:

30

~-+~+-~-+~+-~-+~

=>

25

~-+~+-~-d-~+-~-+~

g

20 ~-+-r+-~-+~+-~-+~

500
200

()

«E
b..
~
«
W

:2

=>

:2

~

~

:2

10 ~-+-r+-~-+-r+-~r+~
5 ~~4-~-+1-~-+1-~~

a

a..

~~~~~-L~~~-L~

·40

-20

a

20

40

60

80

100

()

9

DC

40

20

ST2659



II

0.5

a

UJ
t~
UJ

V

1.0

'\.

U5

V

1.5

'\.

~
z

/

2.25

TAAMBIENTTEMPERATURE °C

5T2660

Fig. 4 Maximum Allowable DC Current Per
Segment vs. a Function of Ambient Temperature

.........

100

I'--

75

~

50

"'",

25
10

1

3

5

10

20 50

100 5T2661

DUTY CYCLE %
Fig. 6 Max Peak Current vs. Duty Cycle %
(Refresh Rate f=1.KHzJ

Clean the displays only in water, isopropanol, ethanol, freon TF or TE (or equivalent)

4-43

4-44

O.362·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

RED FND350C FND357C FND358C
HI·BRITE RED FND360C FND367C FND368C

INTENSITY
CATEGORY
ORIENTATION
MARKS

/1TTT'

.020 (.508)

·t

6 (.406)

"rJoo
(.508)
I

. f - - - - I __

I

r

r

.400
"TIiO (10.180)
F
(2.540)

.382
(9.195 )
TYP

J075 (1.905)

.1101
(2.794)
TYP

I

.170 (4.318)
.130 (3.302)

~~(

I

1-,

I

1.200
(.508) .400
--1.. (10.180)

.580
(14.224)
.550
(13.970)

.0901

-;-SS1

~('W;>.192 I~ 1.524)
(.080

.100
(2.540)

l -f -1

.Ts"

FND350C

-L

FN0357C
FN0380C
FND387C

.050
(1.270)
C1736

I

.030
(.782)-1 -

.340 (8.636).330 (8.832)

J~~~:~~:l(8.001 )
.295
(7.493)

.020 (.508)
.016 (.408)

-I

I

REF

1075 (1.905)
.170 (4.318)
.130 (3.302)

SEATING PLANE

i:! i:i 1:1 Hi!l
:11 ~q

lit I:!

:1:

W~:~WW

J- -

FND358C
-

~

-

.013 (.330)
TYP

FN0388C

.012 (.305)
.008 (.203)

1(5~0)

C1737

NOTES:
1. ALL DIMENSIONS ARE IN MM (INCH)
2. TOLERANCES ARE ±O.010 INCH
UNLESS OTHERWISE SPECIFIED

The FND35XC are red GaAsP/GaAs displays and
FND36XC are hi-brite GaP/GaP displays. Both series are
of nominal size of 0.362" in digit height and are of right
hand decimal configuration.

FND350C
FND357C
FND358C
FND360C
FND367C
FND368C

Red
Red
Red
Hi-brite Red
Hi-brite Red
Hi-brite Red

•
•
•
•
•
•

Common
Common
Common
Common
Common
Common

Exactly pin and package compatible with FND3XX.
Compact-10 digits in 3 inch panel width
Right hand decimal configuration
Wide viewing angle
Categorized for luminous intensity
Rugged encapsulated plastic construction

anode seven segment display
cathode seven segment display
cathode ±1 overflow display
anode seven segment display
cathode seven segment display
cathode ± 1 overflow d

4-45

O.362·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTROIICS

segment or
Reverse voltage
Per segment or decimal point .................. .
Storage and operating temperature ............... .
Soldering time at 250°C ......................... .
(1/16 inch from the

Forward voltage - V (per doide)
FND35XC
FND36XC

200mA

125mA

200mA

125mA

25mA

25mA

25mA

25mA

6V

6V

6V

6V

-25° to +85°C
3 sec

1.7
2.1

Luminous intensity -Iv
FND35XC
FND36XC

240
240

Peak wavelength
FND35XC
FND36XC
Reverse voltage - VR
Capacitance - C (per diode)

V
V

IF =20mA
IF =20mA

450
450

ucd
ucd

IF =20mA
IF =20mA

655
655

nm
nm

IF =20mA
IF20mA

23

V
pF

IR=100 JJA
V=O,
F=l MHz

5

, 0

0=0
'[[:If
o

5

0

A

F

B

DPQ

4-46

Pin
1
2
3
4
5
6
7
8
9
10

FND357C
FND367C
Common Cathode
Segment F
SegmentG
Segment E
Segment D
Common Cathode
Decimal Point DP
SegmentC
Segment B
Segment A

FND350C
FND360C
Common Anode
Segment F
SegmentG
SegmentE
SegmentD
Common Anode
Decimal Point DP
SegmentC
Segment B
Segment A

6

FND357C
FND367C

2.0
2.6

1

0

10

3

F[?'Q

~o:

8

0

6

4

5

FND350C
FND360C

DPQ

FND358C
Pin FND368C
1 Common Cathode
2 Plus Si~n
3 Minus ign
4 NC
5 Omitted
6 Common Cathode
7 Decimal Point DP
8 SegmentC
9 Segment B
10 NC

FND358C
FND368C

[!ii

0.362 . INCH

OPTOElECTRONICS

SEVEN SEGMENT DISPLAY

120

50

t;
40

100

,

()

l-

30

=>
f==>

60

~

40

~

20

80

o

20

/

10

/

o

1.2

~

1.6

2.0

2.4

2.8

560

600

\
~

640

WAVELENGTH

FORWARD VOLTAGE (VF)-VOLTS

\

J

0
520

5T2601

/

/

680

720 5T2602

(N -nm

Fig 2. Spectral Response

Fig. 1 Forward Current vs. Forward

2
2.5

~

2.25
2.0

V

Ci5

z

~

w

I-

1.5

/

1.25

>

/
10

..................
................

...J

W

......

a:

I

o

20

30

40

10

50

5T2604

Fig. 5 Luminous Intensity vs. Duty Cycle

1000

:-

500

«

E

15
2
0 _
10

Il

~

«
w

5

-40 -20

0 20

40 60 80

DC

40

DUTY CYCLE % PER SEGMENT
(AVERAGE IF=10rnA)

Fig. 3 Relative Luminous Intensity vs. Forward Current

a..

100

TA AMBIENT TEMPERATURE 0C

20

5T2603

IF FORWARD CURRENT-rnA

o

............

~

V

0.5
0.25

1.6

w

V

1.0

o

z

ST2606

200
100
75
50
25

"

"

.......

"

"

.......
5T2605

10

135

10

20 50

100

DUTY CYCLE %
Fig. 4 Maximum Allowable DC Current Per Segment
vs. A Function Of Ambient Temperature

Fig. 6 Max Peak Current vs. Duty Cycle %
(Refresh Rate f= 1

Clean the displays only in water, isopropanol, ethanol, freon TF or TE (or equivalent)

4-47

0.362 . INCH
SEVEN SEGMENT DISPLAY

OPTOElECTRONICS

120

«

50

IL

40

E

IZ
W

c:
c:
=>
()

o

c:

~
c:

f2

~

'j

30

/

1.6

::::>

60

W

40

~

20

>

f\
/ \

2.0

2.4

8T2607

2.B

a::

\

/
/

~

I'"

/

W

/

1.2

BO

0

/

o

a..

I-

V

10

100

::::>

II

20

°1
I-

0
600

8T2612

640

FORWARD VOLTAGE (VF)-VOLTS

720

6BO

760

BOO

WAVELENGTH (I\)-nrn
Fig 2. Spectral Response

1 Forward Current vs. Forward

2
2.5

>-

2.25

I-

2.0

W
IZ

1.5
1.25
,/

1.0

V

\.

w

'--"

"\

"\.

1.6

>
~

V

0.5

'"

...J

W

"-

c:

0.25

o0

\.

U5

1

10

20

30

40

50

8T2608

20

DC

40

8T2611

DUTY CYCLE % PER SEGMENT
(AVERAGE IF = 10rnA)

IF-FORWARD CURRENT -rnA
3 Relative Luminous

I'
10

vs. Forward Current

1000

30tttmmmm
35

r+l=I=1f=t=r:+r:+l=++=l=l

25

r:+

500

20~§§W
151++1=

«E

1:_
-40 -20 0 20 40 60 80 100

.Q.
:.c

«
w
a..

200
100
75
50
20

"-

........

........ r-..

8T2609

10

TAAMBIENT TEMPERATURE DC

20 50

---100

8T2610

DUTY CYCLE %
Fig. 4 Maximum Allowable DC Current Per
Segment vs. A Function Of Ambient
Temperature

Fig. 6 Max Peak Current vs. Duty Cycle %
(Refresh Rate f= 1 KHz)

Clean the displays only in water, isopropanol, ethanol, freon TF or TE (or equivalent)
4-48

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

HIGH EFFICIENCY GREEN MAN4400A SERIES
ORANGE MAN4600A SERIES
RED MAN4700A SERIES

The MAN4400, MAN4600, MAN4700 and MAN4BOO
Series provides superior brightness in a choice of color
LED displays. Standard units are available in Red, Green,
and Orange. They can be mounted in arrays with 0.400inch (10.16 mm) center-to-center spacing. The Green
displays are constructed with Grey face and neutral
segment color. Red displays have Black faces and Red
segment color. Others have face and segment color
corresponding to the emitted light.

MAN4410A
MAN4440A
MAN4610A
MAN4630A
MAN4640A
MAN4705A

Green
Green
Orange
Orange
Orange
Red

MAN4710A
MAN4740A

Red
Red

•
•
•
•
•
•
•
•
•
•
•
•
•

Common anode or common cathode models
Red, Green and Orange
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability-long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Standard 14 pin dual-in-line package configuration
Wide angle viewing ... 1500
Package size and lead configuration is the same as
MAN50N3600A!70NBOA Series

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Calculators
• Digital clocks
• High ambient light conditions

Common Anode; Right Hand Decimal
Common Cathode; Right Hand Decimal
Common Anode; Right Hand Decimal
Common Anode; Overflow ± 1; Right Hand Decimal
Common Cathode; Right Hand Decimal
Universal (CA or CC) Overflow ± 1; Right Hand
Decimal
Common Anode; Right Hand Decimal
Common
Hand Decimal

A
A
A
B
A

A
C
A
B
C

B
A
A

D
A
C
4-49

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

For optimum .ON and OFF contrast, one of the following filters or equivalents should be used over the display:
FILTER

DEVICE TYPE

FILTER

MAN4410A
MAN4440A

Panelgraphic Green 48

MAN4705AJ
MAN4710A
MAN4740A

Panelgraphic Red 60
Homalite 100-1605

MAN4610AJ
MAN4630A
MAN4640A

Panelgraphic Scarlet 65
Homalite 100-1670

NOTE: When using the Grey face MAN4480 or MAN4880 in situations of high ambient light, a neutral density filter can be used to
achieve a greater contrast. The following or equivalent can be used: Panelgraphic Grey 10.

Forward voltage
Segment
Decimal point

2.2
2.2

Dynamic resistance
Segment
Decimal point
CapaCitance
Segment
Decimal point

V
V

IF =20 mA
IF =20 mA

12
12

n
n

IF =20 mA
IF =20mA

40
40

pF
pF

V=O
V=O

pA
pA

VR=5.0V
VR=5.0V

/Lcd

IF =10 mA

V
V

IF=20mA
IF=20mA

3.0
3.0

100
100

MAN4610A/4630A/4640A
Luminous Intensity, digit average
(See Note 1 and 3)

510

1800

Forward voltage
Segment
Decimal point

2.2
2.2

Dynamic resistance
Segment
Decimal pOint

26
26

n
n

IF =20mA
IF =20 mA

CapaCitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

pA

VR=5.0V
5.0V

2.5
2.5

100
100

4-50

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

MAN4705A/4710A/4740A
Luminous Intensity. digit average
(See Note 1 and 3)

125

Peak emission wavelength
Forward voltage
Segment
Decimal point

350

!Lcd

660

nm

1.6
1.6

Dynamic resistance
Segment
Decimal point

2
2

Capacitance
Segment
Decimal point

35
35

Reverse current
Segment
Decimal point

Power dissipation at 25°C ambient ....................... .
Derate linearly from 50°C ................................ .
Storage and operating temperature ....................... .
Continuous forward current
Total ................................................ .
Per segment ......................................... .
Decimal point ........................................ .
Reverse voltage
Per segment ......................................... .
Decimal point ........................................ .
Soldering time at 260°C (See Notes 4 and 5) ............... .

2.0
2.0

IF =10 mA

V
V

IF =20 mA
IF =20 mA

n
n

IF =20mA
IF =20mA

SO
SO

pF
pF

V=O
V=O

100
100

!LA
!LA

VR=5.0V
VR=5.0V

MAN4410A
MAN4440A

MAN4705A

MAN4710A
MAN4740A

600mW
-12mW/oC
-40°C to +S5°C

360mW
-5.2 mW/oC
-40°C to +S5°C

4S0mW
-6.9mW/oC
-40°C to +S5°C

240mA
30mA
30mA

1S0mA
30mA
30mA

240mA
30mA
30mA

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

MAN4630A

MAN4610A
MAN4640A

450mW
-6.4 mW/oC
-40°C to +S5°C

600mW
-S.6mW/oC
-40°C to +S5°C

1S0mA
30mA
30mA

240mA
30mA
30mA

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

Power dissipation at 25°C ambient ........................................... .
Derate linearly from 50°C .................................................... .
Storage and operating temperature ........................................... .
Continuous forward current
Total .................................................................... .
Per segment ............................................................. .
Decimal point ............................................................ .
Reverse voltage
Per segment ............................................................. .
Decimal point ............................................................ .
Notes 4 and
................................... .
time at 260°C

GREEN/YELLOW
Thermal resistance junction to free air cI>JA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 160°CIW
Wavelength temperature coefficient (case temperature) ........................................................... 1.0 Arc
Forward voltage temperature coefficient ..................................................................... -1.5 mV/oC
RED/ORANGE
Thermal resistance junction to free air cI>JA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 160°CIW
Wavelength temperature coefficient (case temperature) ........................................................... 1.0 Aloc
Forward voltage temperature coefficient ..................................................................... -2.0 mV/oC

4-51

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

S
A

~~OA

B

002fl B

G

E

UOOP.

C

o

PIN
=1

r

. 738'

(lS.75m mJ
-.010

.386"
i--19.8mmJ-1

I

-010"

to

PIN
=1

A

LIad/"
"

00"

0O" 6mm)

_l
~

~II-a

,055" OIA
(1.4Omm)

(O.25mm)

8

+007"--000"

.

~I
(762mmJ
. 015"

r c£O

738
(18.75m mJ
'.010

..

L

o

B

-j

..

R
J
~o,

LEADS ARE TIN/LEAD
SOLDER DIPPED

00"

110. 16mml

TOLERANCE .015" (.381mm)

.055" OIA

(1.4Omml

-II-a

C1458

.200"
C1457

1554 mml

.010"

I

'0

-j

rE1J ..

l-1

.386"
i--19.8m m
-OW

OOP

(5.08mml

'.010"

~

.160"
(4.06mm)

'.015"

-.

PART NO. CODe·

I

.050"
11.27mmJ

100"
i2.54mm)
. 010"

020"
IO.51mmJ
+,004"
- 000"

MANXXXX = PART NO.
YXX = DATE CODe
Z:- LIGHT INTENSITY
CAT NO.

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not val}' more than ±33.3% between all segments within a digit.
2. The curve in Figures 3, 6, 9, and 12 is normalized to the brightness at 25°C to indicate the relative Luminous IntenSity over the
operating temperature range.
3. The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the
decimal point is .3 times the Luminous Intensity of the segments, since the area of the decimal point is .3 times the area of the
average segment.
4. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, Isoproponalor water may be used up to their boiling points.
6. All displays are categorized for Luminous Intensity. The IntenSity categol}' is marked on each part as a suffix letter to the part
number.

4-52

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

PIN
NO.

1
2
3
4
5

6
7
8
9
10
11
12
13
14

A
MAN4410A/4610A/4710A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Pin
Cathode E
Cathode 0
Cathode D.P.
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

AnodeC, D
No Pin
AnodeC,O
No Pin
No Pin
No Connection
Cathode 0
CathodeC
Cathode O.P.
Cathode B
Cathode A
No Pin
No Pin
Anode A, B, & O.P.

...----114

AnodeF
AnodeG
No Pin
Common Cathode
No Pin
Anode E
Anode 0
AnodeC
Anode O.P.
No Pin
No Connection
Common Cathode
Anode B
Anode A

Anode D1
No Pin
Cathode 01
CathodeC
Cathode D2
Anode 02
AnodeC
Anode O.P.
No Pin
Cathode D.P.
Cathode B
Cathode A
Anode A
Anode B

...-.--;14

13

11

12

'-----111

10

8
C1216

C1456

MAN4705A

MAN4630A

4-53

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

100

<

.s

90
80

'wZ

60

-'"

i!i

50

()

40

:::J
Cl

II:

I
I

20

f.:

10

3.0

oz~

2.0

~

N~MAL!ZED1T IF },O
MAN4400A

(DDTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3. 5)

>

i

120
110

~ 100
~
g 90

II!

'"

l/

51015202530
DC FORWARD CURRENT - IF mA
C1702

100

NORMALIZED
AT 25·C

1

90

MAN4800A SERIES

80

~AN4400A ~ri.'

'0

f"..

60

i""-

80

50

I

40

"L

30
20

""

70

-55

V

/

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward

#

-25
25
50
75
TEMPeRATURE - TA DC

I

10

V

100
4

Fig. 3. Relative Luminous Intensity vs.

8

12 16 20 24 28 32 3.640

Fig. 4. Forward Current vs.
Forward

..

100
170
110

M_ _ ES

'"

!:2

11 0

100

!

..
10

S
II!

70

..

10

.......
.........

..........

40

..........

70

I

I

10

50

-25

.

..

10

AMIIENT TEMPERATURE - C CUI

Fig. 5. Relative Luminous Intensity vs.
Temperature

4-54

1

30

20

10

-so

T

T
MAN4700A SERies

10

~ 140
~ 130
~ 120

Cl0S0

FORWARD VOLTAGE tVFI - VOLTS

CI700

I

m1/

/

0
1.0
2.0
3.0
4.0
FORWARD VOLTAGE - VF (VOLTSI
C1697

130

Serie.

/

1.0

3II!

1/1

./

~

~

I
I

0

«
~

0

.,~

I

0

..

...>

I

..

10
V,

...

VOLTS

Fig. 6. Forward Current vs.
Forward Voltage

2.0
C4'"

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

110

1000
BOO
600

j

160

,.

MAN4700A SERIES

ISO

400

~
X

13o

~

11 0

..

100

>
;::

90

g

.... .......

120

........

100

~

.........
............

0
60

10
10

50
-25

SO

AMBIENT TEMPERATURE -

C

I

I I

Baa
500

U

"

200

FJEQUE!CY'- rot

~

20

50

2

DC

% DUlY CYCLE

3

5810

1

20

10

40

MAN4700A SERIES

/'

FREQUENCY 200 pps

I'.

200

"

'00

.0
50

/

5

3

5

a

..........
10

10

20

DUTY CYCLE %

30

50 80 100

C1223

Fig. 12. Max Peak Current vs.
Duty Cycle

20

50

1aa

50

/

1

10

/

/

............

"

20

2

C1222

Fig. 11. Relative Luminous Intensity vs.

5ao
"

DC

DUTY CYCLE %
IF PER SEG 10 mA AVERAGE

C1221

Fig. 10. Max Peak Current vs.

MAN4700A SEAlES

800

""
'"

20 305080100

DUTY CYCLE %

C1701

Fig. 9. Relative Luminous Intensity vs.

1000

'"' '"'

"

10

10

l

:"..

20

5.0

MAN4600A SEAlES

\.

50

0.0
2.0

r-..

MAN4600A SERIES

100
80

-

10,000
C1699

,000

2.5mA

1000

Fig. 8. Max Peak Current vs.
Duty Cycle

1--'

'~~

I-

100

C428

MAN4400A SERIES

iF(AVG)=20 mA

t-.;;
~O~ ~~'bx
X

PULSE DURATION 1..1

70

Fig. 7. Relative Luminous Intensity vs.

4. 0

:-

=
-

I-

r-

i:

...........

80

-50

MAN4400A SERI~

1 -j200
a "'~OJA ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 160°C/W
Wavelength temperature coefficient (case temperature) ........................................................... 1.0 Aloc
Forward voltage temperature coefficient ..................................................................... -2.0 mVrC

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative Luminous Intensity over the operating
temperature range.
3. The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the
decimal point is .3 times the Luminous Intensity of the segments, since the area of the decimal paint is .3 times the area of the
average segment.
.
4. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
6. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.

4-58

~

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

S
A

8

G

E

o

C

Oop

-.

'11
ml

LEAOS ARE TIN/LEAD

SOLDER DIPPED

lij

I

.400"

t10.1 6mml

-.l
.055"OIA

O.4Omml

~1-8'
IS.54 mm)
"

TOLERANCE: .01S" /.381mml

C1457

A

.oI0"BJ.

fO.25mml

---.

I

+.007"

- 000"
.

.050"

~(1.27mm)
!7.62mm)
!.OlS"

1
2

3
4
5
6
7
8
9

10
11
12

13
14

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
CathodeE
Cathode D
CathodeD.P.
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

AnodeF
AnodeG
No Pin
Common Cathode
No Pin
AnodeE
AnodeD
AnodeC
AnodeD.P'
No Pin
No Connection
Common Cathode
AnodeB
Anode A

4-59

O.400·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

100

170

90

160
150

80

.

E

I

70
60
50

-

I

40

'"

140

....:>:

120

.,a:

110

I

'"z~

I



30
20

I

10
.8

...........

~

90
80

...........

70

50
-50

I

I I I

I

~REQUENCY

I
I I

I

1\

= 200 pps

E
I

~100

""- 1"'-

50

1'-1'-

I'-.

20
10
2

3

5 8 10

20

10

30 50 80100

DUTY CYCLE - %

20
I~

CI221

Fig. 3. Max Peak Current vs.
Duty Cycle

"-

40

DUTY CYCLE - %
PER SEG 10 rnA AVERAGE

Fig. 4. Luminous Intensity vs.
Duty Cycle

/

/

/

1/

150

100

50

/

/

o
5
10
15
20
25
30
IF-FORWARD CURRENT -rnA
C1825

Fig. 5. Relative Luminous Intensity vs.
Forward Current

4-60

70
C428

'\.

~ 80
~

50

°c

\

" I'-t'....

.. 200

25

Fig. 2. Relative Luminous Intensity vs.
Temperature

Fig. 1. Forward Current vs.
Forward

I I I

o

-25

AMBIENT TEMPERATURE -

Cl080B

500

...........

60

FORWARD VOLTAGE IV F ) - VOLTS

800

.........

W

1.2 1.6 2Jl 2.4 2.8 3.2 3.6 4.0

1000

r......

100

...J

a:

I
.4

.... ......

130

"

DC

Cl222

O.43·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

HIGH EFFICIENCY RED 5082·7650 SERIES
RED 5082·7700 SERIES

The 5082-7650 and 5082-7700 Series are families of High
Efficiency Red and Red seven segment LED displays with
0.43-inch digit height. For maximum ON/OFF contrast,
5082-7650 Series displays have Red face and Red
segment color. 5082-7700 Series have Black face and
Red segment color.

5082-7650
5082-7651
5082-7653
5082-7656
5082-7750
5082-7751
5082-7756
5082-7760

High Efficiency Red
High Efficiency Red
High Efficiency Red
High Efficiency Red
Red
Red
Red
Red

•
•
•
•
•
•
•
•
•
•

Industry-standard 0.43-inch displays
High Efficiency Red and standard Red models
Left or right decimal versions
Common anode or common cathode
Solid state reliability -long operating life
Impact-resistant plastic construction
Standard 14 pin DIP configuration
Categorized for Luminous Intensity
Wide viewing angle ... 150°
Directly compatible with integrated circuits

•
•
•
•
•

Instrumentation
Point of sale terminals
Appliances
Digital clocks
Industrial control equipment

Common Anode; Left Hand Decimal
Common Anode; Right Hand Decimal
Common Cathode; Right Hand Decimal
Universal Overflow ±1; Right Hand Decimal
Common Anode; Left Hand Decimal
Common Anode; Right Hand Decimal
Universal Overflow ±1; Right Hand Decimal
Common Cathode;
Hand Decimal

5082-7650 SERIES

5082-7750 SERIES

Panelgraphic Scarlet 65
Homalite 100-1670
Panelgraphic Gray 10
Homalite 100-126

Panelgraphic Red 60
Homalite 100-1605

4-61

O.43·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

340

840

mADC

320

980

mA

610

IF =100mAPk
1:10DF

HIGH EFFICIENCY RED

5082·7650
5082·7651
5082·7653

Power dissipation at 50°C ambient ............. .
Derate linearly from 50°C ..................... .
Storage and operating temperature ............ .
Continuous forward current
Total ..................................... .
Per segment or decimal point ............... .
Reverse voltage
Per segment or decimal point ............... .
Soldering time at 260°C (See Notes 4
and
................................... .

5082·7656

840mW
630mW
-16 mW/Co
-12 mW/Co
-40°C to +85°C

RED

5082·7750
5082·7751
5082·7760

5082·7756

520mW
390mW
-6.9 mW/Co
-5.2 mW/Co
-40°C to +85°C

240mA
30mA

180mA
30mA

200mA
25mA

150mA
25mA

3V

3V

3V

3V

3 sec.

3 sec.

3 sec.

3 sec.

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments excluding decimal points. Intensity will not vary more than ±33.3% between all segments within a digit.
2. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.
3. Intensity adjusted for smaller areas of the "+" and decimal pOints.
4. Leads immersed to 1/16 inch from the
the device. Maximum unit surface
is 140°C.
5. For flux removal, use Freon TF, Freon
or water up to their

4-62

O.43·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

Thermal resistance junction to ambient ................... .
Wavelength temperature coefficient (case temp.) ........... .
Forward voltage temperature coefficient ................... .

r

12 70
(.500)
.
MAX.

PIN~8

A

Fil~s

Efl~Oc

=

0

DP

3 OA

c=o
a

E

B

o
DP

-,
19.05 ± .025
(.750± .010)

5082-765X

5082-775X

SYMBOL

280°CIW
0.1 nm/oC
-2.2mV/oC

280°CIW
0.3nm/"C
-1.6 mV/oC

t:.MAT
t:..v,lt:.T

l

PIN~

=---T
il0=0
V

j

Unused
Decimal
Position

PART NO. CODE:
5082-XXXX Part No.
Date

LI~~~~lty

~0.25 (.010)

7
(.300)

PIN

ziiT

5
6
7
8
9
10
11
12
13
14

Cathode A
Cathode F
Common Anode
No Pin
No Pin
CathodeD.P.
CathodeE
Cathode D
No Connection
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

O"--r

10.36

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
CathodeD
CathodeD.P.
CathodeC
CathodeG
No Pin
Cathode B
Common Anode

Jla.

DIA.

(.062)

5082-7656
5082-7756

6.35 (.250)

;V VVVUVV=c
#~j L

C~M- 5082-XXXX YXX

4.06 (.160) MIN.

--11-0.51 (.020)
2.54 (.100)

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).
TOLERANCES ± 0.25 (± 0.010) UNLESS
OTHERWISE INDICATED.

1
2
3
4

Q

I

___...J'

I ~.01 lsoD8Cimal
1.57 DIA. ( 276)
Position
(.062)
.
5082-7650
5082-7750

Z

MAX.

('750['7""=,-Q~~,- (~!)

I =-r---.l
..lL
; : Unused

~

IF=20mA
IF=2mA

~(~~~--I

I

19.05 ± .025

(.430)

y~

8JA

I

10.92

TEST
CONDITIONS

C2023

Anode A
AnodeF
Common Cathode
No Pin
No Pin
No Connection
AnodeE
AnodeD
AnodeD.P.
AnodeC
AnodeG
No Pin
Anode B
Common Cathode

CathodeD
AnodeD
No Pin
CathodeC
Cathode E
Anode E
AnodeC
Anode D.P.
Cathode D.P.
CathodeS
Cathode A
No Pin
Anode A
Anode B

4-63

O.43·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

14
2

13

3

12

4

11

5

10

6

9

7

8

14
2

13

3

12

4

11

5

10

6

9

7

8

C2024

5082-7650
!:II::

i'fi

0..

SERIES

500
400
300

~~ 200

~
cf;,

1&

fI'\

"

1\

~..

b

100",6
1 ms
tp - PULSE DURATION -

10 ms

s
C2018

C2017

Fig. 1. Maximum Tolerable
Peak Current vs.
Pulse Duration

4-64

Fig. 2. Maximum Tolerable
Peak Current vs.
Pulse Duration

O.43·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

NORMALIZED TO IL
AT IF = 20 rnA AND TA = 25°C

>-

1.3
1.2

~~
f---

./

1.1

-

50B2-7750
_SERIES

1.00

iii!

o

0.3
10

-

--'

~

o

2.25

5082-7650
SERIES -

1/

/

J

2
VF -

C2021

Fig. 5. Normalized Luminous
Intensity vs. Forward
Current Over

4

3

FORWARD VOLTAGE -

V
C2022

Fig. 6. Peak Forward Current
vs. Forward Voltage

4-65

4-66

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

YELLOW MAN5350/5360
GREEN MAN5450/5460

•
•
•
•
•
•
•
•
•
•
•
•
•

This display series is a family of large
digits 0.510 inches in height. All models
have right hand decimal points and are
available in common anode or common
cathode configurations. All units are
constructed with untinted segments on
grey face to enhance ON/OFF contrast.
Standard units are available in red,
orange-red, green and yellow.

RED MAN5750/5760
ORANGE-RED MAN5950/5960

Large, easy to read, digits
Common anode or common cathode models
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for luminous intensity (see Note 5)
Wide angle viewing ... 150 0
Low forward voltage
Untinted segments on grey face

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

MAN5350
MAN5360

Yellow
Yellow

Common Anode
Common Cathode

A
B

MAN5450
MAN5460

Green
Green

Common Anode
Common Cathode

A
B

MAN5750
MAN5760

Red
Red

Common Anode
Common Cathode

A
B

Common Anode
Common Cathode

A
B

MAN5950
MAN5960

NOTE: These devices are exact equivalents to the TELEFUNKEN Part Numbers TDSR 5150/5160,
TDSO 5150/5160, TDSY 5150/5160, TDSG 5150/5160.

4-67

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

YELLOW
MAN5350/MAN5360
Luminous Intensity, digit average
(See Note 1)

820

Peak emission wavelength
Dominant wavelength

1200
480

,ucd
,ued

IF=10 mA
IF=5 mA

585

nm

IF=10 mA

nm

IF=10 mA

582

593

Spectral line half width

40

Forward voltage

2.4

Dynamic resistance

26

Capacitance

35

nm
3.0

V

IF=20mA
IF=20mA

pF

VR=O, f=1MHz

,uA

VR=6.0V

3000
1000

,ued
,ued

IF=10mA
IF=5 mA

562

nm

IF=10mA

nm

IF=10 mA

Reverse current

10

GREEN
MAN5450/MAN5460
Luminous Intensity, digit average
(See Note 1)

820

Peak emission wavelength
Dominant wavelength

564

574

Spectral line half width

30

Forward voltage

2.4

Dynamic resistance

12

Capacitance

40

Reverse current

4-68

nm
3.0

V

IF=20mA
IF=20mA

10

pF

VR=O, f=1MHz

,uA

VR=6.0V

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

RED
MAN5750/MAN5760
500
250

!Lcd
!Lcd

IF~1O

Peak emission wavelength

655

nm

IF~10

mA

Dominant wavelength

645

nm

IF~10

mA

Spectral line half width

20

nm

Forward voltage

1.6

IF~20

mA

Luminous Intensity, digit average
(See Note 1)

280

Dynamic resistance

2

Capacitance

35

2.0

V

IF~5

mA
mA

IF~20mA

pF

VR~O, f~1MHz

!LA

VR~6.0V

2500
700

!Lcd
!Lcd

IF~10 mA
IF~5 mA

635

nm

IF~10

mA

nm

IF~10

mA

IF~20

mA

IF~20

mA

Reverse current

10

ORANGE·RED
MAN5950/MAN5960
Luminous Intensity, digit average
(See Note 1)

820

Peak emission wavelength
Dominant wavelength

615

630

Spectral line half width

40

Forward voltage

2.0

Dynamic resistance

26

Capacitance

35

Reverse current

nm
3.0

10

V

pF

VR~O, f~1MHz

!LA

VR~6.0V

4-69

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

MAN5350
MAN5360

Power Dissipation at 25°C Ambient

..............

MAN5450
MAN5460

MAN5750
MAN5760

MAN5950
MAN5960

600mW

570mW

480mW

600mW

Derate linearly from 50°C .......................

-10.3mWrC

-12 mwrc

-6.9mWrC

-8.6mW/oC

Storage and operating temperature ..............

-40°C to +85°C

-40°C to +85°C

-40°C to +85°C

-40°C to +85°C

Continuous forward current
Total .........................................
Per segment ..................................
Decimal pOint .................................

200mA
25mA
25mA

240mA
30mA
30mA

240mA
30mA
30mA

240mA
30mA
30mA

6.0V
6.0V

6.0V
6.0V

6.0V
6.0V

6.0V
6.0V

5 sec.

5 sec.

5 sec.

5 sec.

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not val}' more than ±33.3% between all segments within a digit.
2. The relative luminous intensity in this curve is normalized to the brightness at 25°C to indicate the relative efficiency over the
operating temperature range.
3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
5. All displays are categorized for Luminous Intensity. The intensity categOI}' is marked on each part as a suffix letter to the part
number.

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

4-70

FILTER

DEVICE TYPE

FILTER

MAN5350
MAN5360

Panelgraphic Yellow 25 or Amber 23
Homalite 100-1720 or 100-1726
Panelgraphic Grey 10
Homalite 100-1266 Grey

MAN5450
MAN5460

Panelgraphic Green 48
Homalite 100-1440 Green
Panelgraphic Grey 10
Homalite 100-1266 Grey

MAN5750
MAN5760

Panelgraphic Red 60
Homalite 100-1605

MAN5950
MAN5960

Panelgraphic Scarlet 65
Homalite 100-1670

~

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

+0.012

~0.689~
~(17.5mm)~

O.
0.276 ± 0.012
(6.41""') (7.0mm)
~
0.417 ± 0.012
hrr-..,.......,~....-.IrrI _ _ _!L (10.6mm)

---'f

I

i
14:0.100
. 12.54mm)

:10.002

0.012

I.. (0.3_
. 0.600:10.006.1
(15.24mm)

NOTE: Dimensions in inches (mm)
Tolerances ±0.010" unless otherwise

PIN NO.

1
2

3
4
5

6
7
8
9
10

13

Is

1

I

A
MAN5X50

B
MAN5X60

Cathode E
CathodeD
Com. Anode
CathodeC
CathodeD.P.
CathodeB
Cathode A
Com. Anode
Cathode F
CathodeG

AnodeE
AnodeD
Com. Cathode
AnodeC
AnodeD.P.
Anode B
Anode A
Com. Cathode
AnodeF
AnodeG

Is

13
I

I

,

.l.

Eb b B

12

14 16

F G bf
19

MAN5X50

o~

b

~

R

12 14 ~

h nF
19 11 0 ~

MAN5X60

4-71

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPT 0ELECT 80 NI CS

0
NORMALIZED
AT I.. = 10 mA

0

/

0

/

a

'00

V
~

V
's

'0

20

2S

80

gj

70

l'

30

Ii-:---....

'00

~
"

~

70
3.0

I

·2S

-50

4.0

VF • (VOLTS)

"'-

80

../
2.0

1.0

..........

go

a:

/

DC FORWARD CURRENT· .. (mA)
C1702

2S

SO

70

AMBIENT TEMPERATURE· 'C

C429

C43'

Fig. 1B. Foward Current vs.
Forward Voltage

Fig. 1A Relative Luminous Intensity
vs. DC Forward Current

no

w

60

50
0
0
20
0
0

/'/'

0

'20

"1ft

go

Fig. 1C. Relative Luminous Intensity
vs. Temperature (See Note 2)
2

'000

,

800
500

~200

,

"\.

'"

i'~

0

"-

\.

FREQUENCY '" 200 pps

50

'"\..

0
, 1

2

3 5 810

i

NORMAUZED
AT IF "" 10 mA

3.0

/

a

;!; 2.0

3

~ 1.0

;

/'
00

/'

5

V

80
70
50
50
40

V

30
20-

i!

., .
..

I
~

~
ll!

(DOTTED UNE
INDICATES

see
'g=-:12.0 pu..seo
3.0

OPERATION

15

20

25

'.0

30

'30

'20

~

nO

K

FORWARD VOlTAGE· V, (VOlTS)

C,702

C1697

r-

NORMALIZED
AT 25·C._

I"

90

"-

80

70 ss

4.0

DC FORWARD CURRENT ... (mA)

Fig. 2A Relative Luminous Intensity
vs. Forward Current

OC

~ '00

FIGS. 2D.2E)

10

40

Fig. 1E. Relative Luminous Intensity
vs. Duty Cycle
FIGURE 1: MAN5350/MAN5360

go

V

20

DUTY CYCLE • %
I,: PER SEa 10 rnA AVERAGE C1226

C1225

Fig. 10. Max Peak Current
vs. Duty Cycle

1: 4.0

,0

20 30 5080100

DUTY CYCLE - %

g

r--..

,

20

-l!S

0

2S

C,700

Fig. 2C. Relative Luminous Intensity
vs. Temperature (See Note 2)

~

,-

-

~'o ~~~~o~{~

'I'

% DUTY CYCLE

Jill

I

111111

I

0

1111

I

111111

I

10

100

1000

PULSE DURATION •

C'70,

Fig. 2D. Relative Efficiency
vs. Duty Cycle

~S

'0,000
C'699

Fig. 2E. Maximum Peak Current
vs. Pulse Duration
FIGURE 2: MAN5450/MAN5460

4-72

~~

lS

20

,

-2O""""-'--'-*-SOfll'JOC

'"

50 75 '00

AMBIENT TEMPERATURE· 'C

Fig. 2B. Forward Current vs.
Foward Voltage

0.OL-.7I
2 .,,0.J...Js~.rI-"-':,,,o

"-

0.510 INCH (13 MM)
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

~
~
~

7
4. 0

NORMAliZED

AT

'F _ 10

mA

3.0

V

~

I

3

1/

~ 2.0

~ 1.0

,0

V

90
0

1

/

•

0
60
50
40
20
0

15
20
25 30
DC FORWARD CURRENT . IF (mA)

VF

•

,0
VOLTS

,5

.......
.......

,
;

·50

C1702

·25

25

50

70

AMBIENT TEMPERATURE· ·C

2.

C1244

C426

Fig. 3B. Foward Current vs.
Forward Voltage

Fig. 3A. Relative Luminous Intensity
VS. DC Forward Current

"

3
2
,0
00
90
80
70
60
50

30

~ 00L /1i
10
S

a;

4

I

Fig. 3C. Relative Luminous Intensity
vs. Temperature (See Note 2)
2

,000
800 500

~

i

-

I

FREQUENCY • 200

"',"
,!

200

'" ,00
~ 80
c. 50

I

i

0

,

0
,

2 3 5810

10

203Q50801oo

DUTY CYCLE· ""

r--

,

I

-

20
40
PERCENT DUTY CYCLE

DC

C,200

C119SA

Fig. 3D. Max Peak Current
vs. Duty Cycle

Fig. 3E. Relative Luminous Intensity
vs. Duty Cycle
FIGURE 3: MAN5750/MAN5760

0

0

/

0

°v

0
0

i

0

< •0
E

V

V

,.

,0

/

NORMAliZED
AT I,.. _ ,0 rnA

~
~

0
0

3

0

iI'

0
0

0/
10

15

20

25

30

o

DC FORWARD CURRENT· If (mA)
C1702

,.
17

15

......

,4
,3

.......

,2
110
,0
90
80
70
60
50

......

........

·50

4 B 1.21.62.02.42.83.23.64.0

QT4B

·25
25
50
70
AMBIENT TEMPERATURE .• c

FORWARD VOLTAGE.· V, (VOLTS)

Fig. 4A. Relative Luminous Intensity
vs. Forward Current

e1244

Fig. 4B. Forward Current vs.
Foward Voltage

Fig. 4C. Relative Luminous Intensity
vs. Temperature
(See Note 2)
2

,000
800
500

<
~2O0
0

\.

r--.

'\.

I'.....

0
FREQUENCY _ 200 pps

,,
0

"

I'.....

,

0

3 5 10 20
50 lOa
DuTY CYCLE· %
C1193

Fig. 40. Maximum Peak Current
vs. Duty Cycle

10
20
40
DC
DUTY CYCLE • %
If PER SEG 10 mA AVERAGE C1222

Fig. 4E. Relative Luminous Intensity
vs. Duty Cycle
FIGURE 4: MAN5950/MAN5960

4-73

4-74

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

HIGH EFFICIENCY GREEN MAN6400 SERIES

•
•
•
•
•
•
•
•
•
•
•
•
•
•
The MAN6400 Series is a family of large digits which
includes double and single digits. The series features the
sculptured font which minimizes "gappiness" at the
segment intersections. All models have right hand
decimal points and are available in common anode or
common cathode configuration. This device has a Grey
face and clear segment to enhance ON and OFF
contrast.

High
High
High
High

Eff.
Eff.
Eff.
Eff.

Green
Green
Green
Green

High Efficiency Green nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 5)
Wide angle viewing ... 150°
Low forward voltage
Two-digit package simplifies alignment and assembly

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

2 Digit; Common Anode; Rt. Hand Decimal
2 Digit; Common Cathode; Rt. Hand Decimal
Single Digit; Common Anode; Rt. Hand Decimal
Common Cathode; Rt. Hand Decimal

B

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

MAN6400 Series

FILTER

Panelgraphic Green 48
Homalite 100-1440 Green
Panelgraphic Grey 10
Homalite 100-1266
4-75

OPT 0ElEe T80 NICS

Power dissipation at 25°C ambient ............................. .
Derate linearly from 50°C ..................................... .
Storage and operating temperature ............................ .
Continuous forward current
Total. ..................................................... .
Per diode ................................................. .
Reverse voltage
Per diode ................................................. .
I
time at 260°C
Notes 2 and
.................... .

O.S60·INCH
SEVEN SEGMENT DISPLAYS

MAN6410
MAN6440

MAN6460
MAN6480

1140mW
-24 mW/oC
-40°C to +85°C

570mW
-12 mW/oC
-40°C to +85°C

480mA
30mA

240mA
30mA

6.0V
5 sec.

6.0V
5 sec.

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not val}' more than ±33.3% between all segments within a digit.
2. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
3. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
4. Intensity adjusted for smaller areas of the" +" and decimal pOints.
5. All displays are categorized for Luminous Intensity. The Intensity categol}' is marked on each part as a suffix letter to the part
number.

4-76

O.560·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

r- -1

.985"

480"
(12~20mm)

r-:"~~;..ml~

t..Ol0"

I I ~"~~~~ I t

E

.066"DIA
8' 11.68mml LlGHTINTEIIISITY
DATE CODe
CAT.

.320H
18.13 mm)

.315"

CaUT.~TITu>nd--}(~~O~)
PINS'
(NOTE SQUARE

SASE ON

.100..

-1 I- ..jl- ;:::

(2.54mm)

,020.. /1.27mml

(0.51 mml
+.004"

LEADI

-.000"

Aa

a

G

0

E

C

OOP

0

01GIT=1

6

C

Dop

r--I14~~~1

,------r-'1
L -D

PIN #1

I

.100" TYP--l
{2.54mml

.BOO"
(O.2Smml
(1S.24m;;;r1 +.007"
~.015"
-.000"

No.

A
MAN6410

B
MAN6440

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Cathode E 1
Cathode D 1
CathodeC 1
Cathode D.P. 1
Cathode E 2
Cathode D 2
CathodeG2
CathodeC2
Cathode D.P. 2
Cathode B2
CathodeA2
CathodeF2
Anode Digit 2
Anode Digit 1
Cathode B 1
Cathode A 1
CathodeG 1
Cathode F 1

Anode E 1
Anode D 1
AnodeC 1
Anode D.P.1
AnodeE2
Anode D2
AnodeG2
AnodeC2
AnodeD.P. 2
Anode B2
AnodeA2
Anode F2
Cathode Digit 2
Cathode Digit 1
Anode B 1
Anode A 1
AnodeG 1
Anode F 1

Pin

B

S

''':::o~mB~[EJ]
1, ~ O:ml
I
J:JJo~

A

G

MAN6460

D
MAN6480

Cathode E
Cathode D
Common Anode
CathodeC
Cathode D.P.
Cathode B
Cathode A
Common Anode
Cathode F
CathodeG

Anode E
Anode D
Common Cathode
AnodeC
Anode D.P.
Anode B
Anode A
Common Cathode
Anode F
AnodeG

C

4-77

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPT 0HEm 0NICS

,0

~
100

<
S

90

I

70

!zw

60

IE

50

o
a:

40
30

a:

0

::>

"~
12

I

0

10

NdRMAJZED

~~

I

I

~
....

I
I

w

>

5a:w

I
/

(DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 51

IF

=1 '0

mil

/V

~
~ 2. 0

I

/'

iT

3. 0

1.0

V

l/

V

1/

o

0
2.0
3,0
4.0
1.0
FORWARD VOLTAGE - VF (VOLTS)
C1697

5
W
g
W ~
~
DC FORWARD CURRENT - IF mA

100
1000
PULSE DURATION .• s

C1702

Fig, 3, Maximum Peak Current
vs, Pulse Duration

Fig, 2. Relative Luminous Intensity
vs, DC Forward Current

Fig, 1, Forward Current
vs, Forward Voltage
1~

O~

#

12

>~

11 0

NORMALIZED

~

~
:;!;

100

IF(AVG)

~

90

0

60

"

70
-55

'~:::~h

U

-25
25
50
TEMPERATURE - TA

~I'-

II

~

0

"-

75

~

20 rnA

2,5mA

1"-

..J

~

=

0"-

!;l!

!;1

I I IIIIII

.0

AT~·C

Z

1"-1'

O. 0

100

2.0

··c

5.0
10
W
'Ii> DUTY CYCLE

50

0
2

,
C

,.
B

A G F
16 17 18

OP E

4

•

C
8

MAN6410

B
10

Fig, 5, Relative Efficiency
vs,

A

F

11

12

9

E
1

0
2

C

3

B
15

OP E
4 5

A G F
16 17 18

0
6

C

G
7

MAN6640

;~

MAN6460

4-78

01238

8

B A
10 11

F OP
12 9

1

C1195

EOCBAFGD
124679105

DC
C1701

C1700

Fig, 4, Relative Luminous

E
1

10,000

C1699

E
1

I.

18

I

I

,. ,.
0
2

C
4

C1197

~ ~. ~;
B
•

A
7

MAN6480

F
9

~;~
G 0
10 5
C1239

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

ORANGE MAN6600 SERIES

The MAN6600 Series is a family of large digits which
includes double and single digits. The series features the
sculptured font which minimizes "gappiness" at the
segment intersections. Available models include twodigit, one and one-half digits with polarity sign, single
digits, and single polarity/overflow digits. All models have
right hand decimal points and are available in common
anode or common cathode configuration. Units are
constructed with Orange face and segment color.

MAN6610
MAN6630
MAN6640
MAN6650
MAN6660
MAN6675
MAN6680
MAN6695

•
•
•
•
•
•
•
•
•
•
•
•
•
•

High performance nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Wide viewing angle ... 150°
Low forward voltage
Two-digit package simplifies alignment and assembly

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

Orange
Orange
Orange
Orange
Orange
Orange

2 Digit; Common Anode; Rt. Hand Decimal
1'h Digit; Common Anode; Overflow ± 1.8; Rt. Hand Decimal
2 Digit; Common Cathode; Rt. Hand Decimal
1'h Digit; Common Cathode; Overflow ±1.8; Rt. Hand Decimal
Single Digit; Common Anode; Rt. Hand Decimal
Single Digit; Common Anode; Overflow ±1.0; Rt. Hand
Decimal
Orange Single Digit; Common Cathode; Rt. Hand Decimal
Orange Single Digit; Common Cathode; Overflow ±1.0; Rt. Hand
Decimal

A
B
A
B
C
D

A
B
C
D
G

C
D

F
H

E

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICETVPE

MAN6600 Series

FILTER

Panelgraphic Scarlet 65
Homalite 100-1670
4-79

O.560·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

Forward voltage
Segment
Decimal point

2.5
2.5

V
V

IF =20mA
IF =20mA

Dynamic resistance
Segment
Decimal point

26
26

n
n

IF =20mA
IF =20mA

Capacitance
Segment
Decimal pOint

35
35

pF
pF

V=O
V=O

!LA
!LA

VR=3.0V
VR=3.0V

Reverse current
Segment
Decimal point

Power dissipation at 25°C ambient. .........
Derate linearly from 50°C ..................
Storage and operating temperature .........
Continuous forward current
Total ..................................
Per segment. ..........................
Decimal point. .........................
Reverse voltage
Per segment ............................
Decimal pOint. .........................
Soldering time at 260°C
Notes 3 and
.....................

100
100

1200mW
-17mW;oC
-40°C to +85°C

1050mW
-15.0 mW/oC
-40°C to +85°C

600mW
-8.6 mW;oC
-40°C to +85°C

375mW
-5.4mW/oC
-40°C to +85°C

480mA
30mA
30mA

420mA
30mA
30mA

240mA
30mA
30mA

150mA
30mA
30mA

6.0V
6.0V

6.0V
6.0V

6.0V
6.0V

6.0V
6.0V

5 sec.

5 sec.

5 sec.

5 sec .

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not val}' more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their bOiling pOints.
5. All displays are categorized for Luminous Intensity. The Intensity categol}' is marked on each part as a suffix letter to the part
number.

4-80

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

~'25:5~m'~

[I

~~~~~

.4BO"

1-.(12.20mmJ-J

I

It

E

0

.320"

S'

(8.13 rom)

.st.

A,

:t.010"
\14.22mmJ

G

(14.22mml

DIGIT: 1

(1.68 mm)

-+

C

Qop

D

320"

.066" DIA.

(B.13mml

.066"DIA

DATE CODe

I

S

±r750"B~560"
oJ

(19',05mml

±.010"·

LIGHT ~~~~NSITY

PART

LIGHT INTENSITY

CAT

~"
j '8.00mml
:t.010"

II";;'~~'
,------r~.

IDENTIFICATION

L -L--:::r

PIN #1

{NOTESOUARE

BASE ON

.600"

(O.25mm)
+.007"

:t.01S"

-.000"

(15.24m~

LEAD}

PIN#l

,

-PIN#1

I

.100" TYP--1
12.54mmJ

PIN #9

~--Jf.

~
".27mml

020"

+004"

(0.51 mml-:OOO"

PIN #5

PIN#l
.., "

"

"

d

BOTTOM VIEW

BOTTOM VIEW

PIN#10

CDC

S
A,

DA

cggc na

E

VODP

(1.68 mm) LIGHT INTENSITY

DATE CODE

CAT

--sfs..

t-n===~~'.M-t".oo(m'
.100"~
12.54mml

I- -ll-I,.g~·m)
.020"

(O.51mm)

+.004"
-.000"

C

001'

PIN#6

r -1
T ? D-t
.4""

(12.20mm)
±.010"

0

.750"

.066"DIA
S'

°

R
L

,,·:";m,
:!:.OlS"

--...l

--L-:J

.BOO"~

(15.24mmJ
±.01!i"

(O.2IirnmJ
+.007"

~

Q

"~~r'

=0.

DATE CODE
PART
IDENTJFICATIO

~"

,.

UOOp

.060" DIA.

j

__

.3tS"
(8.00mm)

±.010"

I

p'N.#11
.100"~
(2.54mm)

I

c} DA
=(JB

LIGHT INTENSITY CAl:

Z

-.000"

PLUS

.560"

(14.22'mm)

.OSO"

II 11.27mml
~ ---1 f-. .020" +.006"
(0.S1 mm)-.OOO"

t

R
L

·160"
(4.06mm)

±.01S"

--'

-L

.600"
(1S.24mm)
±.01S"

_I

.010" :.007"

(.2S mm) -.000"
C1830A

4-81

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

Pin
No.

A

1
2
3

ECath. (#1)
D Cath. (#1)
CCath. (#1)

D
MAN6650

C

B
MAN6630

MAN661 0

MAN6640

CCath. (#1)
DCath. (#1)
BCath. (#1)

EAn.(#I)
DAn. (#1)
CAn. (#1)

F
MAN6680

E
MAN6660

CAn. (#1)
DAn. (#1)
BAn. (#1)

ECath.
DCath.
Com. An.

EAn.
DAn.
Com.Cath.

4

DP Cath. (#1)

DP Cath. (#1)

DPAn. (#1)

DPAn. (#1)

CCath.

CAn.

5
6

ECath. (#2)
DCath. (#2)

ECath. (#2)
DCath. (#2)

EAn. (#2)
DAn. (#2)

EAn. (#2)
DAn. (#2)

DPCath.
BCath.

DPAn.
BAn.

7

GCalh. (#2)

GCath. (#2)

GAn. (#2)

GAn. (#2)

ACath.

AAn.

8
9
10
11
12
13
14
15
16
17
18

CCalh. (#2)
DP Cath. (#2)
BCath. (#2)
ACath. (#2)
FCath. (#2)
Digit #2 An.
Digit #1 An.
BCath. (#1)
ACath. (#1)
GCath.
FCath.

CCath. (#2)
DP Cath. (#2)
BCath. (#2)
ACath. (#2)
FCath. (#2)
Digit #2 An.
Digit #1 An.
ACath. (#1)
N.C.
N.C.
N.C.

CAn. (#2)
DPAn. (#2)
BAn. (#2)
AAn. (#2)
FAn. (#2)
Digit #2 Cath.
Digit #1 Cath.
BAn. (#1)
AAn.(#I)
GAn.
FAn.

CAn. (#2)
DPAn. (#2)
BAn. (#2)
AAn. (#2)
FAn. (#2)
Digit #2 Cath.
Digit #1 Cath.
AAn.(#I)
N.C.
N.C.
N.C.

Com. An.
FCath.
GCath.

Com. Cath.
FAn.
GAn.

90

eo

I I I I

160

MAN6600 SERies

150
140

70

I

60

100

90

30

80

J

10

70
50
242832

FORWARD VOLTAGE (V~) -

-50

3640

VOlTS

I

~

4.0

>
;;;
Z
w
1- 3.0

1-

\.

~ FREQUENCY = 200 pps

\..

351020

50

....

w
> 1.0

r-...

~

w

100

20

40

DC

DUTY CYaE - %

DUTY CYCLE = %

Fig. 3. Max Peak Current vs.

4-82

C1193

//

:i
:>

\..

a:

10

70

C12441

NJRMALizED1TIF=I,om~

:>
0 2.0
z

I"\"

f'..

20

"

(J)

..........

50

°c

i!:

\.

"

50

25

Fig. 2. Relative Luminous Intensity
vs. Temperature
(see Note 2)

r\

I

-25

AMBIENT TEMPERATURE -

C10BO

Fig. 1. Forward Current vs.
Forward Voltage

I

" ""-

60

/
48121620

l. 100
l! eo

""

110

20

200

"-

120

J
I

50
40

500

Minus An.
Com.Cath. ±
Seg. BAn.
Com. Cath.
A,B,DP
DPAn.
Seg.AAn.
Com. Cath.
A,B,DP
Com.Cath. ±
Plus An.
N.C.

"

130

;S

1000
800

Minus Cath.
Com. An. ±
Seg. B Cath.
Com. An.
A,B,DP
DPCath.
Seg.A Cath.
Com. An.
A,B,DP
Com. An. ±
Plus Cath.
N.C.

170

100

~

H
MAN6695

G
MAN6675

I. PEA SEG 10 rnA AVERAGE

C1222

Fig. 4. Luminous Intensity vs.
Cycle

V

V

V

V

5
10
15
20
25
30
DC FORWARD CURRENT - IF mA
C1702

Fig. 5. Relative Luminous Intensity vs.
Forward Current

O.560·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

1,3

114
FIRSTIOIGIT

:il.

p' ~-~
E
1

A

0

C

B

2

3

15 16

G F
17 18

DP E
4
5

0

6

G
7

8

A
1011
B

MAN6610

0

12 9

0
2

,~

C
1

A

B

15 3

2

C
1

B

15 3

DP E
5
4

0
6

G
7

C
8

G

7

C
B

B

A

10

"

F
12

P

9
MAN6640

C'196

10

I.

, ,. ,

I

I

I I

B

A
10 11

MAN6650

F DP
12 9

E D C B A

C1198

MAN6660

1

2

4

•

7

.

~ ,~

o.
F

G

9

10

5

C1828

E

D C

1

2

4

~ ~
B

•

A
7

MAN6680

C1238

9
MAN6675

ell97

j8

j3

1,3
SECONDl DIGIT

A

0
6

MAN6630

•A
0

DP E
4
5

C1195

14

±1.

t

F

SECOND DIGIT

£'~

'~
C

1I"

14

SECONDl DIGIT

A
6

B
3

MAN6695

~
F

G

9

10

5

C1239

D

C1829

4-83

4-84

O.560·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

RED MAN6700 SERIES

The MAN6700 Series is a family of large digits which
includes double and single digits. The series features the
sculptured font which minimizes "gappiness" at the
segment intersections. Available models include twodigit, one and one-half digits with polarity sign, and single
digits. All models have right hand decimal points and are
available in common anode or common cathode
configuration. Units are constructed with Black face and
Red segment color.

PART
NUMBER

MAN6710
MAN6730
MAN6740
MAN6750
MAN6760
MAN6780

COLOR

Red
Red
Red
Red
Red
Red

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

High performance GaAsP
Large, easy to read, digits
Common anode or common cathode models
Also available in Orange (MAN6600 Series)
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 7)
Wide viewing angle ... 1500
Standard double-dip lead configuration
Low forward voltage

For industrial and consumer applications such as:
• Two-digit package simplifies alignment and assembly
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

DESCRIPTION

2 Digit; Common Anode; Rt. Hand Decimal
1'h Digit; Common Anode; Overflow ± 1.8; Rt. Hand Decimal
2 Digit; Common Cathode; Rt. Hand Decimal
1'h Digit; Common Cathode; Overflow ± 1.8; Rt. Hand Decimal
Single Digit; Common Anode; Rt. Hand Decimal
Digit; Common Cathode; Rt. Hand Decimal

PACKAGE
DRAWING

PINOUT
SPECIFICATION

A
B
A
B
C
C

A
B
C
D

E
F

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

MAN6700 Series

FILTER

Panelgraphic Red 60
Homalite 100-1605

4-85

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

Forward voltage
Segment
Decimal pOint
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point

V
V

IF =20mA
IF =20mA

2
2

n
n

IF =20mA
IF =20mA

35
35

pF
pF

V=O
V=O

,.,A
,.,A
,.,A

VR =5.0V
VR =5.0V
VR=5.0V

2.0
2.0

Reverse current
Segment
Decimal point
Segment C or D of "+" (6730/6750)

Power dissipation at 25°C ambient ............... .
Derate linearly from 25°C ........................ .
Storage and operating temperature ............... .
Continuous forward current
Total ........................................ .
Per segment. ................................ .
Decimal point. ............................... .
Reverse voltage
Per segment ................................. .
Decimal pOint ................................ .
Soldering time at 260°C
........................... .
(See Notes 3 and

100
100
100

MAN671D
MAN6740

MAN673D
MAN675D

MAN676D
MAN67BD

960mW
-13.7 mW/oC
-40°C to +85°C

840mW
-12.0mWrC
-40°C to +85°C

480mW
-6.9mWrC
-40°C to +85°C

480mA
30mA
30mA

420mA
30mA
30mA

240mA
30mA
30mA

6.0V
6.0V

6.0V
6.0V

6.0V
6.0V

5 sec.

5 sec.

5 sec.

1. The digit average Luminous Intensity is obtained by summing the Luminous IntenSity of each segment and dividing by the total
number of segments. IntenSity will not vaty more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponalor water may be used up to their bOiling points.
5. Pins 3 and 8 on MAN6760 and MAN6780 ar redundant anodes or cathodes.
6. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.

4-86

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

r-;::I,,::';ml :;-1

I' ~:~?,;~

ABO"

i-4,2.20 mm)--I

I .

'f

'75°"B~·"··

(19.o6mm)

0

A,

A,

G

(14.22mml

I

S S
G

E

oJ

,

o

E

,

o

OOP

OOP

±.OlO"

J 0DJ
1=

II •.O, mml 9
~u<
±.OIG"

,066"DIA

DIGIT-'

.320"
\8.13 mm)

s· 11.68mml LIGHT INTENSITY
DATE CODE
CAT.

PART

CATEeODE

PART_ PART
IDENTIFICATION
NO

"'~~~I

R ..
L -L-:T
I
~

IDENTIFICATION

?INN1
(NOTE SQUARE

BASE ON

(IS.24mm)
t.OI5"

12.54 mm)

PIN#l

---l

-.066" DIA.

S"

LIGHT INTENSITY
CAT.

~..

XYY

.100"P~~;' I I

.600.. .....,..... (O.25mmj

LEAD)

-I

r--

Z

+

_ _ (8;,~~,o~1

~

~~ (l:~;or:m)+.004"
(0.51 mm}-.OOO"

+.007"
-.000"

PIN #9

PIN#5

PIN#l

rc

BOTTOM VIEW

c

"

"

d

BOTTOM VIEW

PIN#10

g

S

C

D

'C.
PIN #6

A,

egg,D:

D

G

O~DP

fJ:
L

E

o

C

Dop

".::::ml

-.i"

-r

.600"~

.010"
{O.26mm\

115.24mml

+.007"

:1:.015"

-.000"

Pin

D
MAN6750

No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Cathode E 1
CathodeD 1
CathodeC 1
Cathode D.P. 1
CathodeE2
Cathode D2
CathodeG2
CathodeC2
Cathode D.P. 2
Cathode B2
CathodeA2
CathodeF2
Anode Digit 2
Anode Digit 1
Cathode B 1
Cathode A 1
CathodeG 1
Cathode F 1

CathodeC 1
CathodeD 1
Cathode B 1
Cathode D.P. 1
CathodeE2
CathodeD2
CathodeG2
CathodeC2
Cathode D.P. 2
CathodeB2
Cathode A 2
CathodeF2
Anode Digit 2
Anode Digit 1
Cathode A 1
No Connection
No Connection
No Connection

Anode E 1
AnodeD 1
AnodeC 1
AnodeD.P.1
AnodeE2
AnodeD2
AnodeG2
AnodeC2
Anode D.P. 2
AnodeB2
AnodeA2
AnodeF2
Cathode Digit 2
Cathode Digit 1
Anode B 1
Anode A 1
AnodeG 1
AnodeF 1

AnodeC 1
AnodeD 1
Anode B 1
Anode D.P.1
Anode E2
AnodeD2
AnodeG2
AnodeC2
Anode D.P. 2
AnodeB2
AnodeA2
AnodeF2
Cathode Digit 2
Cathode Digit 1
Anode A 1
No Connection
No Connection
No Connection

Cathode E
CathodeD
Com. Anode
CathodeC
CathodeD.P.
CathodeB
Cathode A
Com. Anode
Cathode F
CathodeG

AnodeE
AnodeD
Com. Cathode
AnodeC
AnodeD.P.
AnodeB
Anode A
Com. Cathode
AnodeF
AnodeG

4-87

O.560·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

170

lGO

I

10

I

.

MAN6100 SERIES

10

I 140

70

50

"..

40

"

"'

~130

~120

10

,

160

150

~

20
10
1.0

1.&

V, - VOLTS

"

~ 90

~

70

60
50
-50

2.0

-25

vs DUlY CYCLE

K:EOUENCV. :1OO"'1'.i1

-

'0

!

,

,.

3

,.

I

..

DUlY cvel E ""

'00

, ,
0

t,
0

,

A

IS

DC

9

C1195

,

"

DP E
4 5

0
6

7

5
10
15
20
25
30
DC FORWARD CURRENT - IF mA

C,OOO

8
A
10 11

MAN6730

C1702

Fig. 5. Relative Luminous Intensity vs.
Forward Current

F
12 II

. .
1& 16 17 1

C1196

..

0' E

D

5

lD

A

F

11

12 •

C1198

MAN6160

C12S8

I

E
1

0
2

I

C

B

A F G 0

4

•

7

MAN6180

A
11

F
12

C1197

~"
~4 ~~ ~4~

~
EDCBAFG
124679105

8

I.

I
~~

C

7

7

I,

~~

,• • • •

5

MAN6740

SECONOI DIGIT

MAN6750

4-88

.

L

/

/

V

I"

"
.~

C

20

a:

1"--....

Fig. 4. Luminous Intensity vs.
Duty Cycle

MANR7t()

~~

I.

~
w

PERCENT DUTY CYCLE

AGFOPEOGCBAF
16 11 18 4
5
6
1
8
10 11 12

,

r---. ......... to-

ClllIA

Fig. 3. Max Peak Current vs.
Duty Cycle

E

:3

w
> 1.0

r-...

1\

I

'0

'"

::>
0 2.0
Z

:E

,

"-

/v

:!;

I

i

"-

'00
80

70

C1244

NJRMAc!zED1TIFJ,oml~

>
0iii
zw
0- 3.0

M1N.Ws~""l-j

M~:~E~~C~RR,;~~~

"'"

"'

Fig. 2. Relative Luminous Intensity vs.
Temperature (See Note 2)
4.0

'00

50

25

AMBIENT TEMPERATURE _·C

C42f1

Fig. 1. Forward Current vs.
Forward Voltage

'000
800

'" "

"'

S80

'I
.&

......

~100

1
I
I

30

110

•

10

5

C1239

O.560·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

HIGH EFFICIENCY RED MAN6900 SERIES

The MAN6900 Series is a family of large digits which
includes double and single digits. The series features the
sculptured font which minimizes "gappiness" at the
segment intersections. Available models include twodigit, one and one-half digits with polarity sign, and single
digits. All models have right hand decimal points and are
available in common anode or common cathode
configuration. This device has a Red face and Red
segments.

MAN6910
MAN6930
MAN6940
MAN6950
MAN6960
MAN6980

High
High
High
High
High
High

Eff.
Eff.
Eff.
Eff.
Eff.
Eff.

Red
Red
Red
Red
Red
Red

•
•
•
•
•
•
•
•
•
•
•
•
•
•

High Efficiency Red nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Wide angle viewing ... 150°
Low forward voltage
Two-digit package simplifies alignment and assembly

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

2 Digit; Common Anode; Rt. Hand Decimal
1'h Digit; Common Anode; Overflow ± 1.8; Rt. Hand Decimal
2 Digit; Common Cathode; Rt. Hand Decimal
1'h Digit; Common Cathode; Overflow ± 1.8; Rt. Hand Decimal
Single Digit; Common Anode; Rt. Hand Decimal
. Digit; Common Cathode; Rt. Hand Decimal

A

A

B

B

A

C

B

o

C
C

E
F

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

MAN6900 Series

FILTER

Panelgraphic Scarlet 65
Homalite 100-1670

4-89

O.S60·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

Forward voltage
Segment
Decimal point

2.5
2.5

V
V

IF =20mA
IF =20mA

Dynamic resistance
Segment
Decimal pOint

26
26

n
n

IF =20 mA
IF=20 mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

pA
pA

VR=5.0V
VR=5.0V

Reverse current
Segment
Decimal pOint

Power dissipation at 25°C ambient. ...................... .
Derate linearly from 50°C ............................... .
Storage and operating temperature ...................... .
Continuous forward current
Total ............................................... .
Per segment ........................................ .
Decimal point ....................................... .
Reverse voltage
Per segment ........................................ .
Decimal pOint ....................................... .
Soldering time at 260°C (See Notes 3 and 4) .............. .

100
100

MAN6910
MAN6940

MAN6930
MAN6950

MAN6960
MAN6980

1200mW
-17.1 mW/oC
-40°C to +85°C

1050mW
-15.0mW/oC
-40°C to +85°C

600mW
-8.6mWrC
-40°C to +85°C

480mA
30mA
30mA

420mA
30mA
30mA

240mA
30mA
30mA

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

Thermal resistance junction to free air 

~

0

0
0

/
.4

.8

I

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FORWARD VOLTAGE (V"I - VOLTS

500

200

~

100

.!!:

80

~
50
w

I

150

-'"

140

"-

~130

130

~120

.........

11 0

~

.........

100

110

~100

............

0
0

..........

~90

0

60

50
-50

50
-25

50

25

°c

·50

70

-25

25

Fig. 2. Luminous Intensity vs.
Forward Current

I

I

~REaUENCY

"

>

l-

e;;

\.

=200 pps

MV53173
MV57173

w

a.

0
0
10
20
DUTY CYCLE =%

"

50 100

Fig. 4 Max Peak Current vs.
Duty Cycle

::>

0

20

"-

z
:i
::>
....

2.0

>

1.0

w

"

~
....
w

.....

40

DlJTY CYCLE -

C',93

IF



()

I
.0

0

~

V

I
I

.0

I

0

/v

I

40

@ 30
~

1T IF ,1 '0

NJRMAc!ZED

100

0

I

I

./

IDonED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 5)

0
10

o~

/
10

15

20

25

DC FORWARD CURRENT -

3.0
4.0
1.0
2.0
FORWARD VOLTAGE - VF (VOLTS)
C1697

30

100

IF mA

1000

C1699

Fig. 2. Relative Luminous Intensity
vs. DC Forward Current

Fig. 1. Forward Current
vs. Forward Voltage

Fig. 3. Maximum Peak Current
vs. Pulse Duration

130
NORMALIZED

0"'-

~ 12

~

en

11 0

~

100

z

~

~ 90
~ 80
70
-55

AT 25°C

'"

1'\

,""'-

1"'-

"'-

-25
25
50
75
TEMPERATURE - TA ,GC

0.0 L-.....L....Ll.J.J.il1L--L-LJ..llJ.J.J;
2.0
5.0 10
20
50 DC
% DUTY CYCLE
C170,

100

C1700

Fig. 5. Relative Efficiency
vs. Duty Cycle

Fig. 4. Relative Luminous Intensity
vs.

A

D
DP
5,79,1110

C
13

G

14

15

MAN8410

A
5,7

DP
10

MAN8440

4-98

D

c

11

13

10,000

PULSE DURATION 'loiS

C1702

G
14

15

O.SOO-INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

HIGH EFFICIENCY RED (ORANGE) MAN8600 SERIES

•
•
•
•
•
•
•
•
•
•
•
•
•
•
The MAN8600 Series is a family of large digits 0.8-inches
in height. This series combines high brightness, large
size, good aesthetics and is designed to be used where
accurate readable displays need to be viewed over a
distance. All models use right hand decimal points. Units
are constructed with Grey face and neutral segment
color.

PART NUMBER

MAN8610
MAN8640

High performance nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability -long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Wide angle viewing ... 150°
Low forward voltage
Grey face for use in high ambient light conditions

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

COLOR

DESCRIPTION

High Efficiency Red
(Orange)
High Efficiency Red

Common Anode; Right Hand Decimal
Common Cathode; Right Hand Decimal

For optimum ON and OFF contrast, one of the following
filters or equivalents should be used over the display:
Panelgraphic Scarlet 65
Homalite 100-1670

PACKAGE
DRAWING

In situations of high ambient light, contrast with the
Grey face can be enhanced by using a neutral density
filter. The following or an equivalent can be used:
10

4-99

O.800·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

Forward voltage
Segment
Decimal point

2.5
2.5

V
V

1,=20mA
1,=20mA

Dynamic resistance
Segment
Decimal point

26
26

n
n

1,=20mA
1,=20mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

pA
pA

VR=3.0V
VR=3.0V

Reverse current
Segment
Decimal point

100
100

IL

2:1

1,=10 mA

Power dissipation at 25°C ambient ................................................................................ 600 mW
Derate linearly from 50°C .................................................................................... -8.6 mWrC
Storage and operating temperature ....................................................................... -40°C to +85°C
Continuous forward current
Total. ......................................................................................................... 240 mA
Per segment. ................................................................................................... 30 mA
Decimal point. .................................................................................................. 30 mA
Reverse voltage
Per segment ..................................................................................................... 6.0 V
Decimal pOint .................................................................................................... 6.0 V
Soldering time at 260°C (See Note 4) ............................................................................... 5 sec.
(See Figure 4) ................................................................... Peak forward current per segment

Thermal resistance junction to free air JA' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 160°C/W
Wavelength temperature coefficient (case temperature) ............................................................. toArc
Forward voltage temperature coefficient ...................................................................... -2.0 mV/oC

1. The digit average Luminous Intensity is obtained by summing the Luminous IntenSity of each segment and dividing by the total
number of segments. Intensity will not val}' more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1/16 inCh from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
5. All displays are categorized for Luminous IntenSity. The IntenSity categol}' is marked on each part as a suffix letter to the part
number.

4-100

O.SOO·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

PIN #1

.735"
1--(18.67 mm} _ _1
)-

±.OlQ"

r
.985"
(25.02 mm)

t

.8lo"
(20.32

!TIm)

1~~

PIN #10
LUMINOUS

"

Xyy Z

r-

-===r: (4~06 m,~)

020"_11_
(51 mm)
+.004"
-.000"

.160"

_.015

C1370

1
2
3
4
5
6
7
8

No Connection
A Cathode
FCathode
Common Anode
ECathode

No Connection
A Anode
FAnode
Common Cathode
EAnode

E Cathode

EAnode

9

DCathode
DPCathode
DCathode
Common Anode
CCathode
G Cathode
BCathode

Common Cathode
DPAnode
DAnode
Common Cathode
CAnode
GAnode
BAnode

Common Anode

Common Cathode

10
11
12
13
14
15
16
17
18

4-101

O.SOO·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

100

170

90

160

,000
800

80

150

500

II<

70

~ 60

1
11

0
-

40

0

.8

130
120

>
;:

~

~

""""-...

,00

~

80

"~

.........

"-

50
-50

"'

0

0

-25

50

25

r-.......

AMBIENT TEMPERATuRE - °c

C428

4. 0

'"

~

~

~

!!l

1"",

~

2.0

~

,.

..J

12
::> 10
8
)(
6

~

....
....

II

3.0

!;

I\,

22

20
a: 18
:> 18
u

'\

NdRMAJzED1TIFJ,oml~

>-

....

~ 1.0

~

1

/

V
5

40

PERFECT DUTY CYCLE

o

DC

10 20 30 40 50

60 70

°c

MAN8610

OP
10
MAN8640

o
11

G

'3

,5

20

25

30

Fig. 6. Relative Luminous Intensity VB.
Forward Current

VB.

5,7

,0

/V

C1702

C1371

Fig. 5. Maximum DC Current

A

/

V

DC FORWARD CURRENT - IF mA

80 80

TA. AMSIENT TEMPERATURE,

C1194

Fig. 4. Luminous Intensity VB.

C"93

Fig. 3. Max Peak Current VB.
Duty Cycle

I-

::! 30
a: 28
~ 28
2'

50 ,00

,0
20
DUTY CYCLE = %

70

~

20

~

20

Ii

a:

4-102

~

Fig. 2. Luminous Intensity vs.
Temperature (See Note 2)

\ 1,\

,0

I

60

Fig. 1. Forward Current VB.
Forward

~w

.........

70

1.2 1.6 2D 2.4 2.8 3.2 3.6 4.0

"

I

MV57173

200

90

Cl080B

,.s

......

80

"'

I

,FREQUENCY = 200 pps
MV53173

100

FORWARD VOLTAGE (VF' - VOLTS

i

... ...... r-.,

110

w

If
.4

'"z~

."a:

I

10

140

~

IJ

0

I

14

15

O.SOO-INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

HIGH EFFICIENCY RED MAN8900 SERIES

•
•
•
•
•
•
•
•
•
•
•
•
•
•
The MANS900 Series is a family of large digits O.S-inches
in height. This series combines high brightness, large
size, good aesthetics and is designed to be used where
accurate readable displays need to be viewed over a
distance. All models use right hand decimal points.

High performance nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See Note 6)
Wide angle viewing ... 150°
Low forward voltage
Red face and Red segment for good ON or OFF
contrast
• These devices have a Red face and Red segments

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

High Efficiency Red
Fffi,..io,,,'\1 Red

Common Anode; Right Hand Decimal
Common Cathode;
Hand Decimal

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
Panelgraphic Scarlet 65
Homalite 100-1670
4-103

O.SOO·INCH
SEVEN SEGMENT DISPLAYS

OPTOElECTRONICS

Forward voltage
Segment
Decimal pOint

2.5
2.5

V
V

IF =20 mA
mA

Dynamic resistance
Segment
Decimal point

26
26

n
n

IF =20mA
IF =20mA

Capacitance
Segment
Decimal point

35
35

pF
pF

V=O
V=O

~
~

VR =3.0V
VR =3.0V

Reverse current
Segment
Decimal point

100
100
I,

2:1

IF =10mA

Power dissipation at 25°C ambient. ............................................................................... 600 mW
Derate linearly from 50°C .................................................................................... -8.6 mW;oC
Storage and operating temperature ....................................................................... -40°C to +85°C
Continuous forward current
TotaL ......................................................................................................... 240 mA
Per segment .................................................................................................... 30 mA
Decimal point. .................................................................................................. 30 mA
Reverse voltage
Per segment ..................................................................................................... 6.0 V
Decimal pOint .................................................................................................... 6.0 V
Soldering time at 260°C (See Note 4) ............................................................................... 5 sec.
Peak forward current
i
.................................................................. .

1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their bOiling points.
5. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.

4-104

O.SOO·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

PIN #1

r
,985"
(25.02 mml

,735"
1--(18,67 mml ___1
±.O1O"

il~D

1 Dd]

±.O10"

A

Fil~D8

'Dd~,

r

,800"
(20.32 rnm)

D

,lOa" DIA

PIN #10

(2,54 mml
LUMINOUS

I-

t
,020"_11_
(.51 mml
+.004"
-,000"

.160"
(4,06 mml
±.015"

C1370

1

2
3

4
5
6
7
8
9

10
11
12
13

14
15
16
17
18

No Connection
A Cathode
FCathode
Common Anode
ECathode

No Connection
A Anode
FAnode
Common Cathode
EAnode

E Cathode

EAnode

DCathode
DPCathode
DCathode
Common Anode
CCathode
G Cathode
BCathode

Common Cathode
DPAnode
DAnode
Common Cathode
CAnode
GAnode
BAnode

Common Anode

Common Cathode

4-105

O.SOO·INCH
SEVEN SEGMENT DISPLAYS

OPTOELECTRONICS

100
170

90
80
70

"E

'"
I

60

40

130

I-

120

:r

'"~
w

>
>=

30
20

g

J

10

V
.4

.8

140

~

z

J
J

SO

-

150

II

.

f.....

200

.........

100

.......

90

...........

80

"~

'""'-

0

~

0

0

50

-50

-25

25

50

AMBIENT TEMPERATURE -

10
20
DUTY CYCLE =%

70

°c

C428

Fig. 2. Luminous Intensity vs.
Temperature (See Note 2)

4.0

>-

I-

~ 30
28
~ 28

I-

2'
2I
20

:l
0

....

.~--

.
ag
..

~

"

I,
"'- I"

..'""

!

x

40

DC

OlITYCYCLE-%
r~ PER SEG 10 mA AVERAGE

~x

~

=1 10

Z

w

~

z

18
16

v

2.0

:!

•

:l

2~~~~~~~~~~~~
ot
so

..I

..I

2
10
8
6

W

>

0

10 20 30 40

60 70

~

W

a:

De

o

C

G

10

11

13

14

MANB040

1.0

V

/

1/

25
30
IF mA
C1702

C1371

Fig. 6. Relative Luminous Intensity vs.
Forward Current

MAN8810

5,1

ml/

//

5
10
15
20
DC FORWARD CURRENT -

80 80

Fig. 5. Maximum DC Current
vs.

A

100

C1193

3.0

(/)

TA. AMBieNT TEMPEAATUAE,·C

01222

Fig. 4. Luminous Intensity vs.

NJRMAJZED IT IF

a;

.."

\

50

Fig. 3. Max Peak Current vs.
Duty Cycle

iii

'\.

4-106

.!=

70

:.

20

100

"~

.......

80

~

I

,FREQUENCY =200 pps
MV53173
MV57173

60

1.2 1.6 2D 2.4 2.8 3.2 3.6 4.0

Fig. 1. Forward Current vs.
Forward Voltage

10

I

500

110

FORWARD VOLTAGE (VF) - VOLTS
C10808

\

1000
800

MAN4900SERIES

160

15

0.7" 5x7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

HER GMA 7175C GMC7175C
YELLOW GMA 7475C GMC 7475C

GREEN GMA 7975C GMC 7975C

r

MONTH CODEI
BIN GRADE

12.7:tO.3l
(.50±.01)

"~,,

(7T~~~:T~)

35)(.1f2.0{.08)

...J

R- - .
--.l

L

~

7.6(.30)

L

NOTES:
1. ALL PINS ARE 90.5 (.02).
2. DIMENSION IN MILLIMETERS (INCH),
TOLERANCE IS 0.25 (.01) UNLESS
OTHERWISE NOTED.

The X in GMX denotes row anode or row cathode.

5.0(.20)

6.3(.25)

PIN6-

The GMX7X75C series are 0.7" (17.2mm) matrix height
5 X 7 dot matrix displays. All these parts are available in
grey face and white dot color.

ST2618

•
•
•
•
•
•

0.7" (17.Smm) matrix height
Choice of 3 colors - green, yellow and HER
Low power consumption
5x7 array with X-V select
Stackable vertically and horizontally
Choice of 2 matrix orientation cathode column or
anode column
• Easy mounting on PCB or sockets
• Categorized for luminous intensity

YELLOW
UNITS
HER
GREEN
Power dissipation per dot. . . . . . . . . . . . . . .
60
70
75
mW
Peak forward current per dot .. . . . . . . . . . .
SO
100
100
mA
(Duty cycle 1/10, 10KHz)
Continuous IF per dot ..................
20
25
25
mA
5
5
5
V
Reverse voltage per dot ................
Operating and operating temperature range ............................................... -25°C to +S5°C
~"lrI"r'inn time at 260°C
6 inch below
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 sec

4-107

0.7" 5x7
DOT MATRIX DISPLAYS

OPTOELECTRONICS

I

..: 40
E

100

II

I

"'"e"

3

120

50

30

5 20

'J'.
I

~

0

~

~ 10

i

a:

I
1.2

1.6

)

o

. 480

2.0

2.4
2.8
Forward voltage (VF) - volls.

2

J

7

.3
40
20

0

E

/

'E

60

(I)

'I

"E

2.5

§ 1.5

S

I

<.l

r

80

'f

1

'"

0.5

&i

\

560

.~

o

640

720

800

-7
o

5

10

15

20

25

C3033

C3D32

Fig. 3. Relative Luminous Intensity vs.
Forward Current (Per Segment)

Fig. 2. Spectral Response

Fig. 1. Forward Current vs.
Forward Voltage
28

30

Forward Current (IF) - rnA

Wavelength (A) - nm.

C3D31

1/

1000

2

800

24

..:

E
I

e
~
8
8

~

«

7200

'" '"

8

4

o

o

20

40

60

80

:: 100
~ 80
5 50

""
~
90

C3034

4-108

~_:c:i

.........

1.5

""-

<.l

Ambient Temperature (Ta) - ·C

Fig. 4. Max. Forward Allowable
DC Current Per Seg. vs.
Ambient T",nmor,,"IJ'"

'"

c:

16
12

'"""

500

"- ""-

20

"" '-..

r.........r-,
20
10

o
o

2

5

10

20

Duty Cycle %

50

100

10

20

"

"" '"
40

DC

Duty Cycle %
C3036

O.7"5x7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

3

120

50

/

~ 40

100

/

I
BO
'5
a.
'5 60
0

/
/

Q)

40

1.6

/

a:

j
1.2

I

V

Q)

~

20

o

o
2.0

2.B

2.4

4BO

V \

o

24

8
Iii

:;

12
B
4
0

o

20

40



25

I'\..

500

"-

20

2

~

I

15

C3039

BOO

{g 16

10

Fig. 3. Relative Luminous Intensity vs.
Forward Current (Per Segment)

1000

2B

E

5

Forward Current (IF) - mA

Fig. 2. Spectral Response

20

o

/

C3038

C3037

Fig. 1. Forward Current vs.
Forward Voltage

()

BOO

560
640
720
Wavelength (Ao) - mm

Forward voltage (VF) - volts.

~

/

\

;/!

a:

o

10

"'

""

20

40

DC

Duty Cycle %

Duty Cycle %

C3041

Fig. 5. Max. Peak Current vs.
Duty Circle %
(Refresh Rate-F=1 KHz)

C3042

Fig. 6. Luminous Intensity vs.
Duty Cycle %
(Average 1=10 mA Per Seg.)

4-109

0.7" 5x7
DOT MATRIX DISPLAYS

OPTOELECTRONICS

50

<

/

40

E

~ 30

~
<3

"#
I

:;

/

20
10

1.2

1.6

2.0

g"

~

]

2.4
-

20

I

0

1

2.8

480

:.,!
a:

\
560

volts.

640

720

800

24

500

'"

i
<3

12

8
~

"-

4

o

o

40

60

80 90

Ambient Temperature (Ta) - ·C

C3046

Fig. 4. Max. Forward Allowable
DC Current Per Seg. vs.
Ambient Temperature

4-110

~

<3
~

20

25

30

Fig. 3. Relative Luminous Intensity vs.
Forward Current (Per Segment)

~

......

'

o

2

5

10

20

50

......

100

Duty Cycle %

J
o

""-

~ 1.5

I'.

20
10

20

"

c: 100
c: 50

~60

""

15

C3045

I"'-..

I

8

10

2

~200

"'-

5

C3044

1000
800

16

o

Forward Current (IF) - mA

Fig. 2. Spectral Response

28

I

o

/

/

0.5

Wavelength (I.) - nm.

Fig. 1. Forward Current vs.
Forward Voltage

E

1.5

Qi

C3043

20

J

V

UJ

40

a:

Forward voltage (VF)

<

/

2.5

~" 2

80
60

.,

J

o

~

·w

~

0

II

11

j

100

il

I

3

,

120

""'- ......

"
10

20

40

DC

Duty Cycle %

C3047

C3048

0.7" 5x7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

1
2
3
4
5
6

Anode row 1
Anode row 2
Cathode column 2
Cathode column 1
Anode row 6
Anode row 7

Cathode row 1
Cathode row 2
Anode column 2
Anode column 1
Cathode row 6
Cathode row 7

7

Cathode column 3
Anode row 5
Cathode column 4
Anode row 4
Cathode row 3
Cathode row 5

Anode column 3
Cathode row 5
Anode column 4
Cathode row 4
Anode row 3
Anode row 5

8
9
10
11
12

PIN

1

---.

4

3

9

COLUMN

ROW

r---~---+--~r---+----r.

PIN

!

2

2

11

11

10

10

8

8

5

5

6

6

---. 4

3

9

COLUMN 1
ROW

r---~---+--~----+----r.

4-111

4-112

O.7"5x7

DOT MATRIX DISPLAYS

OPTOElECTRONICS

HER GMA 7175CA GMC 7175CA
YELLOW GMA 7475CA GMC 7475CA

GREEN GMA 7975CA GMC 7975CA

r

MONTH CODE!
BIN GRADE

12.7±O.3l
(.50±.01)

PIN12

17.L~~
~><
L~ ~

/2.54xL.7

35X12.0(.08)

(.7(h.Ol)

l!

(.10x5·.50)

.-l

R-.

L

•
•
•
•
•
•

--~

-' 7.6(.30) L
NOTES:
1. ALL PINS ARE eO.5 (.02).
2. DIMENSION IN MILLIMETERS (INCH),
TOLERANCE IS 0.25 (.01) UNLESS
OTHERWISE NOTED.

The X in GMX denotes row anode or row cathode.

5.0(.20)

6.3(.25)

PIN6--

The GMX7X75CA series are 0.7" (17.2mm) matrix height
5 X 7 dot matrix displays. All these parts are available in
grey face and white dot color.

ST2623

0.7" (17.8mm) matrix height
Choice of 3 colors - green, yellow and HER
Low power consumption
5 X 7 array with X-V select
Stackable vertically and horizontally
Choice of 2 matric orientation cathode column or
anode column
• Easy mounting on PCB or sockets
• Categorized for luminous intensity

YELLOW
HER
GREEN
UNITS
Power dissipation per dot .............. .
75
mW
60
70
Peak forward current per dot ........... .
mA
100
100
80
(Duty cycle 1/10, 10KHz)
Continuous IF per dot ..................
20
25
25
mA
Reverse voltage per dot ................
5
5
5
V
Operating and operating temperature range ............................................... -25°C to +85°C
~nlrl"'r'inn time at 260°C (1/16 inch below seating plane) ............................................... 3 sec

4-113

0.7" 5x7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

I

«

E 40

30

§

(.)

i

:1

10

I

i

j

0
1.2

1.6

)

o

2.0

2.4

Forward voltage (VF)

-

. 480

2.8

~'"

I

20

Ii!

\

560

720

~
I

16

"

~ 12

8

o

20

40

5

~

60

80

4-114

25

""
a.&'!

200

"

.~
c:

"-

~

'"

1.5

Q)

........

>

~

"'t-.,

20
10

30

C3033

~

'" "'-

Ii!

"-

"-

o
o

2

5

10

20

50

100

10

20

40

DC

Duty Cycle %

Duty Cycle %

C3034

Fig. 4. Max. Forward Allowable
DC Current Per Seg. vs.
Ambient Temperature

20

Fig. 3. Relative Luminous Intensity vs.
Forward Current (Per Segment)

"-

(.)

Ambient Temperature (Ta) - 'C

15

2

::- 100
~ 80
5 50

90

10

C3032

c:

""-

17

Forward Current (IF) - rnA

«

4

o

o

500

(3

~

/

0.5

1000
800

E

8

1.5

800

Fig. 2. Spectral Response

28

"-

/

Wavelength (I.) - nm.

volts •.

Fig. 1. Forward Current vs.
Forward

20

J

2

o

640

C3031

24

/

.~ 2.5

f

/

20

If

100

II

I

'-=-E"'

3

120

50

C3036

Fig. 6.

0.7" 5x7
DOT MATRIX DISPLAYS

OPTOELECTRONICS

3

120

50

/

~ 40

100

II

I

S

~

/

0

'"

~
a:

II
1.2

1.6

SO

2.S

2.4

I

I

o

640

560

720

24

~
..!..
g

"-

§
~

:::;;

"-

12
8
4

o

o

",

40

60

80 90

Ambient Temperature (Ta) - 'C

20

"'~

~

<9
=18.0{.71)

ST2634

NOTES:
1. ALL PINS ARE aO.5 (.02).
2. DIMENSIONS IN MILLIMETER (INCH),
TOLERANCE IS ±0.25 (.01) UNLESS
OTHERWISE NOTED.

4-119

1.2"5

x7

DOT MATRIX DISPLAYS

OPTOELECTRONICS

Power dissipation per dot ....................
Peak forward current per dot
(Duty cycle 1/10, 10KHz) ..................
Continuous IF per dot ........................
Reverse voltage per dot ......................

60

70

75

mW

80
20
5

100
5
5

100
25
5

mA
mA

V

Operating and storage temperature range ............................................................... -25°C to +85°C
Soldering time at 260°C (11,. inch below
............................................................... 3 sec

PART NO.
YELLOW

HER

GREEN

GMC8475C
GMA8475C

GMC8875C
GMA8875C

GMC8975C
GMA8975C

4-120

MULTICOLOR

DESCRIPTION

GMA8675C
GMC8675C

Anode column, cathode row
Cathode column, anode row
Cathode column, anode row
Anode column, cathode row

PACKAGE
DIMENSION

INTERNAL
CIRCUIT
DIAGRAM

A
A

A

B
B

C
D

B

1.2" 5 x 7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

,

120

50

/

~ 40

100

il

'$
I

"5

~

/

0

SO

~

lii

J!!

.E

2.S

2.4

~

I

40

1\

o

640

560

720

24

Iii

":'200
a.

::::.

. . . r'--

S

1
I

4
0

o

"

U

20

40

60

80 90

Ambient Temperature (Ta) - 'C

C3040

Fig. 4. Maximum Forward Allowable
DC Current Per Segment vs.
Ambient Temperature

30

'""-

~
c::

........

E 100
~ SO

~

25

,'""-

500

~

20

2

E

a 12

15

C3039

j
-'-'::-lr- 0.4(.16)

0000
00000
00000
o0 0 0 0

35x.5.0(.2)

r-

,-

ggggg

7.62x6

l
J

L

(~1ij:OO~)

=45.72(1.8)

000

8.5(.33)

38.1(1.5)

-J

L

5.7(.22)

•
•
•
•
•
•
•
•
•
•
•
•

2.0" (50.7 mm) character height
Low power requirement
High contrast & brightness
Wide viewing angle 1300
5 x 7 array with X-v select
Compatible with USASCII and EBCDIC codes
X-v stackable
Choice of two matrix orientation anode or cathode
column
Easy mounting on PCB
Categorized for luminous intensity
Single color displays have the choice of 3 bright colors
- yellow/orange/green
Multicolor color displays are applicable to 3 bright
colors - greens, orange (HER) and yellow (green and
HER mixed)

BIN GRADE

MONTH CODE

~
2.54xB=20.32(.8)

ST2640

NOTES:
1. ALL PINS ARE eO.5 (.02).
2. DIMENSIONS IN MILLIMETERS (INCH),
TOLERANCE IS ±0.25 (.01) UNLESS
OTHERWISE NOTED.

4-127

2.0" 5 x 7
DOT MATRIX DISPLAYS

OPTOELECTRONICS

Power dissipation per doVcolor ...............
Peak forward current per doVcolor
(duty cycle 1/10, 10KHz) ..................
Continuous IF per doVcolor ...................
Reverse voltage VA per doVcolor ..............

60

70

75

mW

80
20
5

100
25
5

100
25
5

mA
mA

V

Operating and storage temperature range ............................................................... -25°C to +85°C
Soldering time at 260°C (11\. inch below seating plane) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 sec

PART NO.

YELLOW

HER

GREEN

GMC2875C
GMA2875C

GMC2975C
GMA2975C

GMC2475C
GMA2475C

4·128

MULTI·
COLOR

DESCRIPTION

GMA2675C

Anode column, cathode row
Cathode column, anode row
Cathode column, anode row

PACKAGE
DIMENSION

INTERNAL
CIRCUIT
DIAGRAM

A
A

A

B

C

B

2.0" 5 x 7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

3

120

50

/

"El: 40

100

II

."

::- 30
c:

I

~

I
II

~:J

U 20

"E

~

~ 10

0

1.2

1.6

80

.5

ia:

Forward voltage (VF)

-

i

40

I

a:

\

I}

720

28

1000

24

500

.l.

i'.

g

i'.

12

I"\.

20

i'

30

'\,.

'" ""

~ 80

<3

25

200

50

. . . . 1'-

~

~
4

15

2

"E 100

"r--.

8

10

C3039

"El:

I

5

Fig. 3. Relative Luminous Intensity vs.
Forward Current

800

"E 16
~

o

o

Forward Current (IF) - mA

Fig. 2. Spectral Response

E 20

~
:;

800

/

C3038

C3037

8

0.5

Wavelength (A.) - mm

Fig. 1. Forward Current vs.
Forward

<3

/

1

o

640

560

480

volts.

«

V

.3

o
2.8

2.4

/

2

.~ 1.5

60

20

2.0

/

2.5

5"'

Q)

J

o

\,

#'5

f

.....

"-

"-

20

o

10
20

40

60

60 90

Ambient Temperature (Ta) - ·C

o

2

5

10

20
Duty Cycle %

50

C3040

Fig. 4. Maximum Allowable
DC Current Per Segment vs.
A Function of Ambient
Temperature

100

10

20

40

DC

Duty Cycle %

C3041

Fig. 5. Luminous Intensity vs.
Duty Cycle

o

C3042

Fig. 6. Max Peak Current vs. Duty Cycle %
(Refresh Rate f= 1 KHz)

4-129

2.0" 5 x 7
DOT MATRIX DISPLAYS

OPTOELECTRONICS

«

E 40

...,
c
E

I

30

~:>

()

3

120

50

/

100
If.

/

20
10

80

~

60

a

~

/

J

I

'"
~

1.2

1.6

2.4

~

1

20

/2

0.5

J \
560

Forward voltage (VF) - volts.

640

o
720

C3031

~

4

o

~

'" '"

S

o

40

60

SO

5

C3034

Fig. 4. Maximum Allowable DC Current Per
Segment vs. A Function of Ambient

20

25

30

C3033

500

'"
1.5

j

Ambient Temperature (Ta) - ·C

15

SOO

.~

90

10

Fig. 3. Relative Luminous Intensity vs.
Forward Current

«

~

'"

"'-

~ 100

['.,.

20

.....,

~ SO
5 50

.....

40

'"

()

.......

10

200

c:

c..~

o
20

o

1000

~
c:

16

8

8

/

/

C3032

I'.

"- '\

E
Ii! 12

V

Forward Current (I,) - rnA

2

20
I

800

Fig. 2. Spectral Response

2S
24

J

Wavelength (I.) - nm.

Fig. 1. Forward Current vs. Forward Voltage

~

2

/

.9

. 4S0

2.S

£

40

o

2.0

2.5

.1 1.5

cr

J

0

f

:;

'f

DC

1"--. . . .

20
10

o

2

5

10

20

50

100

Duty Cycle %

Duty Cycle %

C3036

Fig. 5. Luminous Intensity vs. Duty Cycle

C3035

Fig. 6. Max. Peak Current vs. Duty Cycle %
(Refresh Rate f= 1 KHz)

2.0"5 x 7
DOT MATRIX DISPLAYS

OPTOELECTRONICS

50

«40

/

E
I

~ 30

1
~

20

i
If

10

/

/

100

"if.
I

/

Forward voltage (VF)

-

I

~
8
~

12

'" 1I

o

o

20

40

60

80 90

Ambient Temperature (Ta) - ·C
C3046

Fig. 4. Maximum Allowable
DC Current Per Segment vs.
A Function of Ambient
Temperature

10

15

20

25

C3045

Fig. 3. Relative Luminous Intensity vs.
Forward Current

'"

........

"" 80
'E 50

f'.,

~
~

~"

20
10

30

Forward Current (IF) - mA

~

I

4

5

I'\..

~ 200

8

o

2

c: 100

~

o

V

C3044

500

'"

BOO

720

Fig. 2. Spectral Response

24

16

640

Wavelength (I.) - nm.

1000
800

F.

\
560

volts.
C3043

/

:::. 0.5

J
480

28

"-

V

j

I

Fig. 1. Forward Current vs.
Forward Voltage

~20

/

2

§ 1.5

40

2.8

2.4

/

2.5

'E
.3

o

2.0

1.6

i

g60
,

I
1.2

~

80

20

o

3

,

120

o

2

5

10

20

50

100

Duty Cycle %

o

10

'"

" " '"

20

40

DC

Duty Cycle %
C3047

Fig. 5. Max Peak Current vs. Duty Cycle %
(Refresh Rate f=1 KHz)

C304B

Fig. 6. Luminous Intensity vs.
Duty Cycle
(Average 1=10 mA Per Seg.)

4"131

2.0"5 x 7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

1
2

3
4
5
6

7
8
9
10
11
12
13

14
15

16
17

18

4-132

Cathode row 5
Cathode row 7
Anode column 2
Anode column 3
Cathode row 4
Anode column 5
Cathode row 6
Cathode row 3
Cathode row 1
Anode column 4
Anode column 3
Cathode row 4
Anode column 1
Cathode row 2

Anode row 5
Anode row 7
Cathode column
Cathode column
Anode row 4
Cathode column
Anode row 6
Anode row 3
Anode row 1
Cathode column
Cathode column
Anode row 4
Cathode column
Anode row 2

2
3
5

4
3
1

Cathode column 1 green
Cathode column 2 green
Cathode column 2 HER
Cathode column 3 HER
Anode row 6
Anode row 7
Cathode column 4 HER
Anode row 5
No connection
Cathode column 5 green
Cathode column 5 HER
Cathode column 4 green
Anode column 3 green
Anode row 4
Anode row 2
Anode row 1
Anode row 3
Cathode column 1 HER

2.0" 5 x 7
DOT MATRIX DISPLAYS

OPTOElECTRONICS

PIN

!

--13

3

10

6

PIN

--13

3

10

6

COLUMN 1
ROW

9

9

14

14

8

8

12

7

2
C.GMA2675C

PIN - - -

!

18

COLUMN
ROW

.---~----+r----H----++----Hh

15
17

8

5
6
4-133

4-134

2.3" 5 x 8
DOT MATRIX DISPLAYS

OPTOElECTRONICS

YELLOW GMA 2885C
HER GMA 2985C
GREEN GMA 2485C
BICOLOR RED/GREEN

A.GMX2X85C

r

r Il
8.8(.35)

38. 4 ± O . 3 +

(1.5:1:.01)

I-=~~~-=-'-'

0.4(.016)

0000
00000
00000

o0

40X0S.0(.2)

0 0 0 =5~~~(~')

00000
00000
0000
000

MONTHCODE---b

PIN1_1

BIN GRADE

I

ST2628

r Il
8.8(.35)

38

.4:tO.3-=+(1.5:1:.01)

,=--=--=--=---=i"'1,

O.<{.16)

0000
00000
00000

60.8±O.3

40X0S.0(.2)

45.72(1.8)

(2.39±.01)

J

j

L

5.5(.22)

MONTH CODE

---b fi'7i1 d-PIN 1

=:I
-.I

These are 5x8 dot matrix displays with large emitting
area (0.2" diameter) LED sources. The GMX2X85C series
are single color displays with the exception of
GMA2685C which is a bicolor of red/green displays.
All displays have gray face and white dot color. Other
face or dot colors are available with minimum
requirement.
The X in GMX denotes row anode or row cathode.

5.5(.22)

B.GMA2685C

r

45.72(1.8)

Lj~

rr7if1 d--

I

(~?3~?ci~)

GMC 2885C
GMC 2985C
GMC 2485C
GMA 2685C

•
•
•
•
•
•
•
•
•
•
•
•

2.3" (58.4 mm) character height
Low power requirement
High contrast & brightness
Wide viewing angle 1300
5 x 8 array with X-V select
Compatible with USASCII and EBCDIC codes
X-V stackable
Choice of two matrix orientation anode or cathode
column
Easy mounting on PCB
Categorized for luminous intensity
Single color displays have the choice of 3 bright colors
- yellow/orange/green
Multicolor color displays are applicable to 3 bright
colors - greens, orange (HER) and yellow (green and
HER mixed)

81N GRADE

1

~

2.54><8=20.32(.8)

ST2629

NOTES:
1. ALL PINS ARE aO.5 (.02).
2. DIMENSIONS IN MILLIMETERS (INCH),
TOLERANCE IS ±0.25 (.01) UNLESS
OTHERWISE NOTED.

4-135

2.3" 5 x 8
DOT MATRIX DISPLAYS

OPTOElECTRONICS

Power dissipation per dot/color ...............
Peak forward current per dot/color
(duty cycle 1/1 0, 10KHz) . . . . . . . . . . . . . . . . .
Continuous IF per dot/color ...................
Reverse voltage VR per dot/color ..............

.

60

70

75

mW

80
20
5

100
25
5

100
25
5

mA
mA
V

Operating and storage temperature range ............................................................... -25°C to +85°C
Sol'CiAlmo time at 260°C
inch below
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 sec

PART NO.

YELLOW

HER

GREEN

GMC2885C
GMA2885C

GMC2985C
GMA2985C

GMC2485C
GMA2485C

4-136

MULTICOLOR

DESCRIPTION

PACKAGE
DIMENSION

INTERNAL
CIRCUIT
DIAGRAM

GMA2685C

Anode column, cathode row
Cathode column, anode row
Cathode column, anode row

A
A
B

A
B
C

2.3" 5 x 8
DOT MATRIX DISPLAYS

OPTOElECTRONICS

so
«40

l

E

~ 30

!

/

100
;11
I

~

/

0

il

~

&!

j

80

~ 2

60

gj
.~ 1.5

40

j

1.2

1.6

0
2.0

2.4
2.8
Forward voltage (VF) - volts.
C3043

480

I

24

SOO

16

8

"-

~ 200

"-

8

o

-=<:
~

8?

o

80
50

20

40

60

80 90

C3046

Fig. 4. Maximum Allowable
DC Current Per Segment vs.
A Function of Ambient

5

10

15

20

25

30
C3045

Fig. 3. Relative Luminous Intensity vs.
Forward Current

~
f;i 1.5
£

" ,

.....

20

10
Ambient Temperature (Ta) - ·C

o

Forward Current (IF) - rnA

........

<3

"".,

1.i 4
::;

o

800

""""'-

'"

0: 100

i'..

12

720

2

I

J

640

/

0.5

V

C3044

1000
800

"-

560

Fig. 2. Spectral Response

28

20

V 1\

I

V

Wavelength (A) - nm.

Fig. 1. Forward Current vs.
Forward Voltage

E

~
&!

I

20

/

;:. 2.5
.~

Q)

110

«

3

'5

20

o

,

120

o

2

5

10

20

so

100

Duty Cycle %

"-

j

"'- .....

"
o

10

20

40

DC

Duty Cycle %

C3047

Fig. 5. Max Peak Current vs. Duty Cycle %
(Refresh Rate f= 1 KHz)

C3048

Fig. 6. Luminous Intensity vs.
Duty Cycle %
(Average 1=10mA PerSeg.)

4-137

2.3" 5 x 8
DOT MATRIX DISPLAYS

OPTOElECTRONICS

~

/
/

40

I

~ 30
E
~

<3
'E

~

u.

3

120

50

100
~

10

~

1.2

1.6

S

S.

j

60

o

~40

~

Q)

2.4

Forward voltage (VF)

-

. 480

2.S

560

720

"'"

E
~ 12

<3

8

200
Ci
;:-100
~ 80
5 50

"-

" ,
~

20

40

60

SO

90

Ambient Temperature (Ta) - 'C

C3034

Fig. 4. Maximum Allowable
DC Current Per Segment vs.
A Function of Ambient
Temperature

4-138

"''_~1

.........

"

u

o

15

20

25

"-

'" "-"

1.5

I

........

20
10

30

2

7

8

10

C3033

500

"'-

5

Fig. 3. Relative Luminous Intensity vs.
Forward Current

«

14
o

o

C3032

1000

16

/
Forward Current (IF) - rnA

SOO

I

[.7

I

800

Fig. 2. Spectral Response

2S

~

1.5

Wavelength (A) - nm.

volts.

Fig. 1. Forward Current vs.
Forward'

24

/

o

640

C3031

20

/

2

~ 0.5

J \

o

2.0

~

\

20

j

0

c:

'5

/
/

20

SO

I

/

.~ 2.5

r

"

o
o

2

5

10

20

50

100

Duty Cycle %

10

20

DC

40

Duty Cycle %
C3035

Fig. 5. Max. Peak Current vs.
Duty Cycle %
(Refresh Rate f= 1 KHz)

C3036

Fig. 6. Luminous Intensity vs.
Duty Cycle %

2.3"5 x 8
DOT MATRIX DISPLAYS

OPTOELECTRONICS

1i

/

40

100

II

I

""1i:

::- 30

I

'5

~

j

10

i

1.2

1.6

4S0

\.

560

Forward voltage (VF) - volts.

o
720

640

§

U

12

0

I

g

C

~

::;

~

SOO

I'.

f

200

........

'i:! 100

oS 1.5

8

it1

~ SO

r--....

S

50

..... :---.

~

~

4

20

o

10

o

20

40

60

80 90

Ambient Temperature (Ta) - ·C

C3040

Fig. 4. Maximum Allowable
DC Current Per Segment vs.
A Function of Ambient
Temperature

20

o

25

30

2

1i

i'--

15

C3039

800

24

16

10

Fig. 3. Relative Luminous Intensity vs.
Forward Current

1000

I

5

Forward Current (IF) - rnA

Fig. 2. Spectral Response

2S

E 20

o

V

C3038

C3037

'i:!

SOO

Wavelength (A) - mm

Fig. 1. Forward Current vs.
Forward

.7
=5334(2.1)

The X in GMX denotes row anode or row cathode.

+-

MONTH CODEI

BIN GRADE

5.""'
7=35.5,--J
(.2Ox7=1.40)

ST2613

B.GMC2688C

r----

60.1(2.37)--1

:..,I=---_~_~~
_~4.,...!r- 0.4(.02)

64xeS.O(.2)

0000000
00000000
00000000
00 0 0 0 0 0 0
00000000
00000000
00000000
00

762'<7=53.34

(3)

(2.1)

,9.2(.36)

1

45.8(1.8)

..JL
5.0(.2)

MONTHCODEt

I

IJO(;;;XX;~1

I

GMC 2888C
GMC 2988C
GMC 2488C
GMC 2688C

•
•
•
•
•
•
•
•
•
•
•
•

2.3" (58.4mm) character height
Low power requirement
High contrast & brightness
Wide viewing angle 1300
8 x 8 array with X-V select
Compatible with USASCII and EBCDIC codes
X-V stackable
Choice of two matrix orientation anode or cathode
column
Easy mounting on PCB
Categorized for luminous intensity
Single color displays have the choice of 3 bright color
- yellow/orange/green
Multicolor color displays are applicable to 3 bright
color-greens, orange (HER) and yellow (green and
HER mixed)

d-BINGRADE

PIN,_ "'""""""'
!.-2.54X15c38.1(1.5jj

ST2614

NOTES:
1. ALL PINS ARE eO.5 (.02).
2. DIMENSIONS IN MILLIMETERS (INCH),
TOLERANCE IS ±0.25 (.01) UNLESS
OTHERWISE NOTED.

4-143

2.3" 8x8
DOT MATRIX DISPLAYS

OPTOElECTRONICS

YELLOW

HER

GREEN

UNITS

Power dissipation per dot/color ....•..........
60
70
75
mW
Peak forward current per dot/color
(duly cycle 1/10, 10KHz) ..................
80
100
100
mA
Continuous I, per dot/color. . . . . . . . . . . . . . . . . . .
20
25
25
mA
Reverse voltage VR per dot/color ..............
5
5
5
V
Operating and
range ............................................................... -25°C to +85°C
time
I
............................................................. 3~c

PART NO.

YELLOW

HER

GREEN

GMC2888C
GMA2888C

GMC2988C
GMA2988C

GMC2488C
GMA2488C

4-144

MULTICOLOR

DESCRIPTION

GMC2688C

Anode column, cathode row
Cathode column, anode row
Anode column, cathode row

PACKAGE
DIMENSION

INTERNAL
CIRCUIT
DIAGRAM

A
A

A

B

C

B

2.3"8x8
DOT MATRIX DISPLAYS

OPTOELECTRONICS

'il:

/
/

40

-;;:

::- 30
c:

~
u" 20

&

100
I

SO

"

Qj

E

~ 40

1\

20

j
1.2

o

560
640
720
Wavelength (Ie) - mm

4S0

2.S

1

/

r!F. 0.5

J 1\

o

1.6
2.4
2.0
Forward voltage (V,) - volts.

V

1.5

~

a:

/

2

'E

.3

>

/

2.5

~
"'
g

Sc.
S
0 60

10

o

f

1

'#

/
/

"E

~

3

120

50

SOO

o

2S

1~

24

500

I"

"'-

4

o

o

~
c:

........

~

"E 100
~ 80

"

::;

8

C3040

Fig. 4. Maximum Allowable
DC Current Per Segment vs.
A Function of Ambient
Temperature

1.5

ia:

50

. . . 1'-.

&.

20

o

30

2

o
5
10 20
Duty Cycle %

50

100

"

'\.

"" " "

(I)

16

10
20
40
60
6090
Ambient Temperature (Ta) - ·C

25

2

E 20

""-

20

C3039

<

u" 12
0
c
1;\ S

15

Fig. 3. Relative Luminous Intensity vs.
Forward Current

Fig. 2. Spectral Response

Fig. 1. Forward Current vs.
Forward Voltage

"E 16
~

10

Forward Current (I,) - mA
C3038

C3037

I

5

/

10

20

40

DC

Duty Cycle %
C3041

Fig. 5. Max Peak Current vs. Duty Cycle %
(Refresh Rate f=1. KHz)

C3042

Fig. 6. Luminous Intensity vs.
Duty Cycle %
(Average 1= 10 mA Per Seg.)

4-145

2.3" 8x8
DOT MATRIX DISPLAYS

OPTOELECTRONICS

I

-1

T.

...L

T

x:x
.
~

CATEGORY
PART

END VIEW O. E

(0.350)

-1....J

NUMBER

0.508 ± 0.05
COLOR BIN
(0.020)
TYP.
SIDE VIEW D. E

MIN.

5~

r-

(~~".~~ IiD

O.~~ (~:::)

(0.160)~

i(0:35O)l
C

±0.076
(0.023±0.300)

4'osiO~~

~rR I~~
...i...4

L JLr;;p5a4
SIDES

0.254±

PIN

3;il

1.270

8.8k 1(0.050)

~

1.- 10.160 -1
I (0.400) I
MAX.
0

~~~~R~~~~~~~~,'~DMILLIMETERS (INCHES). TOLERANCES ± 0.25 (± 0.010) UNLESS

5-6

1.016
(0.040)

C2015

LED LIGHT BARS

OPTOElECTRONICS

PARAMETER

Luminous
Intensity
Forward
voltage
Peak
wavelength
Dominant
wavelength
Capacitance
Reverse
voltage
Thermal
resistance

Luminous
Intensity
Forward
voltage
Peak
wavelength
Dominant
wavelength
Capacitance
Reverse
voltage
Thermal
resistance

Luminous
Intensity
Forward
voltage
Peak
wavelength
Dominant
wavelength
Capacitance
Reverse
voltage
Thermal
resistance

SYMBOL

min.
typo
typo
max.
typo

Iv
VF

6.0
23
30
2.6
2.0

13
45
50
2.6
2.0

13
43
50
2.6
2.0

13
45
50
2.6
2.0

22
80
100
2.6
2.0

mcd
mcd
mcd
V

1,=20mA
1,=20mA
1,=60 mA pK, 1:3 D.F.
1,=20mA

typo

Ap

630

630

630

630

630

nm

typo

Ad

626

626

626

626

626

nm

typo

C

45

45

45

45

45

pF

VF=O, 1=1 MHz

min.

VR

6

6

6

6

6

V

IR=100 pA

°C/W/
LED chip

typo

min.
typo
typo
max.
typo

8JL

Iv
VF

150

150

150

150

150

6
20
33
2.6
2.1

13
38
60
2.6
2.1

13
35
60
2.6
2.1

13
35
60
2.6
2.1

26
70
115
2.6
2.1

mcd
mcd
mcd
V

1,=20mA
1,=20mA
1,=60 mA pK, 1:3 D.F.
1,=20mA

typo

Ap

585

585

585

585

585

nm

typo

Ad

588

588

588

588

588

nm

typo

C

35

35

35

35

35

pF

V,=O, 1=1 MHz

min.

VR

6

6

6

6

6

V

IR=100 pA

typo

8JL

150

150

150

150

150

°C/W/
LED chip

5
25
38
2.6
2.2

11
50
75
2.6
2.2

11
50
75
2.6
2.2

11
50
75
2.6
2.2

22
100
150
2.6
2.2

mcd
mcd
mcd

min.
typo
typo
max.
typo

Iv
VF

V

typo

Ap

565

565

565

565

565

nm

1,=20mA
IF=20mA
1,=60 mA pK, 1:3 D.F.
1,=20mA

typo

Ad

567

567

567

567

567

nm

typo

C

40

40

40

40

40

pF

VF=0,1=1 MHz

min.

VR

6

6

6

6

6

V

IR=100 pA

150

°C/W/
LED chip

typo

8JL

150

150

150

150

5-7

LED LIGHT BARS

OPTOELECTRONICS

l<:

~ ~ f--

t-- OPERATION IN THIS'REGION
REQUIRES A REDUCTION
IN TA MAXIMUM

II-

Il

~
Ii>

"1-

\1;

'i

¥ ~~
\

1\
10
10!,s

l00!,s

T

:r~ ~~ ;S;1\

ffi~200
~I

~ II~

70
50
::<0 40

::<

1>:

~

~

t(1.>;

"N\ .~

I-

\

00
Z

w

IZ

Ui1.5
>

1\
1\[\

j::

<
-'
w

a:

I"
10

"I'

20
40
DUTY CYCLE - %

DC

IDC-DC CURRENT PER LED-mA

C3077

Cl194C

Fig. 5. Luminous Intensity vs.
Duty Cycle

5-8

Fig. 6. Luminous Intensity vs.
Forward Current

LED LIGHT BARS

OPTOElECTRONICS

140

%'\

~120 %
0..
I-

::::J

o

~100

,

;::

«
...J

I'\.

"

f"

IX:

"" ,
......

W

...

80 %

60'y,
-60 -40 -20 a 20 40 60
TEMPERATURE -"C

"

80

100

C654B

1
2
3
4
5
6

1
1
2
2

Cathode
Anode
Cathode
Anode

7
8
9

1
1
2
2
3
3
4
4

1
1
2
2
3
3
4
4

Cathode
Anode
Cathode
Anode
Cathode
Anode
Cathode
Anode

Cathode
Anode
Anode
Cathode
Cathode
Anode
Anode
Cathode

1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8

10
11
12
13

14
15

16

Cathode
Anode
Anode
Cathode
Cathode
Anode
Anode
Cathode
Cathode
Anode
Anode
Cathode
Cathode
Anode
Anode
Cathode

2
3

4

w~
A

HLMP-2XOO

'CO
1

6

3

2

7

3

6

2

8

B
HLMP-2X50 I

4

4

5

0
HLMP - 2X70

C
HLMP - 2X55

C2016

5-9

PANEL MOUNTING GROMMET FOR
.SOO-INCH RECTANGULAR INDICATOR

OPTOElEtTRONICS

MP73

£

.008

20mml

~ J.-.'r:~~'

JI

t'6~m'
NON ACCUM.
(.41mm)

TYP. ALL AAOUND
SCALE: 20/1

MATTE FINISH,

BEZEL ONLY

<

(fTY~

DETAIL A

.025
(.64mml

-J t 020
II ~mml

FULL. RADIUS (4 PleS)

These MP73 mounting grommet is
intended for panel mounting the
MV5X173 rectangular lamp. The
grommets are made of Black
plastic and provide the user with an
easy-to-mount, professional
appearance when viewed on a
front panel.
The MP73 can be used on any
panel thickness up to .125-inch
(3.18 mm).

f'~I[~_===~_I~-L
~
.035

t

~=Omml I
(.76 mml----i

3

~

'8fm,

1.02

555~

(14.·~~Omm)

(.51mm)

(15.75 mm)
MATERIAL: POLYPROPYLENE - BLACK

' 'Fr

.032
(.B1 mm)
.43
.
·r.-:--!10.92mml~

I.

.032

.20
(5.08mm)

r-"'~-' -; i r-----1

C 1480

PANEL HOLE PUNCHING
Punches may be ordered from one
of the following sources:
WA WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771

.88
(17.27mm)

.616
(15.65mm)

ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600
PROTRUSIONS
TO BE SCORE

LINES IN MOLD
(2SIDESONLY)

MATERIAL: POLYPROPYLENE - BLACK

5-10

C 1481

PANEL INDICATORS

OPTOElECTRONICS

YELLOW MV53173
HIGH EFFICIENCY GREEN MV54173
HIGH EFFICIENCY RED MV57173

RIENTATION MARK

The MV5X173 series is a large rectangular lamp
which contains two LED chips with separate anodes
and cathodes for each light. The illuminated area is
0.500-inchesxO.250-inches (12.7 mmx6.35 mm).

Pin#l
.250"

\

1'(635mml'l
_

___

.125"
(3.18mm)

-t

1

.550"
(l3.97mm)

.500"
(12.70mmJ

t

t

+

.275"

.250"

(6.99mm)

{S.35mmJ

_+_~~_t_

• .500-inchx.250-inch lighted area available in
three colors
• Solid state reliability
• Fast switching-excellent for multiplexing
• Low power consumption
• Directly compatible with IC's
• Wide viewing angle
• .2 inch DIP lead spacing
• Mounting hardware available
• Categorized for Luminous Intensity
(See Note 1)

{3;:~l-I~c:;;:--c-"'

{BJj~ 1

RJ",

!
200"-1

{4:ri:~~,
±.OTS"
.

(5.0Bmm) -

DATE CODE
PART NO.
LIGHT
INTENSITY
CATEGORY

MV54173

(11.94mm)

J

-f:=-.01-'---O"- i ; l
(O.25mml
±.D02"

±.OlS"
C1467

TOLERANCE ±.OlO" UNLESS SPECIFIED.

Power dissipation at 25°C .................. .
Derate linearly from 50°C ................... .
Storage temperature ...................... .
Operating temperature ..................... .
Continuous forward current per light (25°C) .. .
Peak forward current per LED chip .......... .
(1 ILsec pulse width, 300 pps)
Lead soldering time at 260°C ............... .
(See Notes 3 and 5)

• Panel indicators
• Backlight legends
• Light arrays

MV53173
190mW
-4.3mWfOC
- 40°C to + 100°C
-40°C to +85°C
20mA
60mA

MV54173
200mW
-4.5 mW/oC
- 40°C to + 100°C
-40°C to +85°C
30mA
90mA

MV57173
200mW
-4.3 mW;oC
-40°C to + 100°C
-40°C to +85°C
35mA
1.0A

5 sec.

5 sec.

5 sec.

5-11

PANEL INDICATORS

OPTOELECTRONICS

Forward voltage (VF)
Typ.

Max.
Luminous Intensity
Min. (See Note 1)
Peak wavelength
Typ.
Spectral line half width
Capacitance
Typ.
Reverse voltage (V,J
Min.
Typ.

IF=20mA
IF=20mA

2.0
2.5

2.2
3.0

2.0
2.5

V
V

IF=20mA

4.5

4.5

4.5

mcd

IF=20mA
IF=20 mA

585
45

562
30

635
45

nm
nm

V=O, f=1 MHz

35

20

35

pF

IR=100JLA
IR=100JLA

5
25
120

5
50
120

5
25
120

V
V

Thermal resistance juntion to free air JA ••••••••••••••••••••••
Wavelength temperature coefficient (case temp.) ............. .
Forward voltage temperature coefficient ..................... .

PIN
NO.

,

2

3
4

5

ELECTRICAL
CONNECTIONS

Cathode'
NoPin
Anode 2
Cathode 2
NC

6

c$4J

Anode 1

For optimum ON and OFF contrast, one of the following filters or equivalents may be used over the lamp:
MV53173
MV54173
MV57173
Panelgraphic Yellow 25 or Amber 23
Panelgraphic Green 48
Panelgraphic Red 60
Homalite 190-1720 or 100--1726
Homalite 100--1440 Green
Homalite 100-1605
In situations of high ambient light, a neutral density filter can be used to achieve greater contrast:
Panelgraphic Grey 10
Panelgraphic Grey 10
Homalite 100--1266 Grey

1. The average Luminous IntenSity is obtained by summing the Luminous IntenSity of each segment and dividing by the total number of
segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela Meter (Model IV-D) corrected for
wavelength. IntenSity will not vary more than ±33.3% between all segments within a unit.
2. Leads immersed to 1/16 inch (1.6 mm) from the body of the device. Maximum unit surface temperature is 140°C.
3. All units are categorized for Luminous Intensity. The IntenSity category is marked on each part as a suffix letter to the part number.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used to their bailing points.

5-12

PANEL INDICATORS

OPTOElECTRONICS

100

IMV53173

90
E SO
u.

70

zUJ

60

,...

MV57173/

::;)

0

40

a:

~
ft

w

I-

f)

~

/IMV54173

CIl

::J

o
Z

~

b

3D

a:

I-

I II

a: 50
a:
()

>iii
z

III

<:

20

::J
..J
W

>

~

10

~

IJI

o

.4.S

..J
W

a:

1.2 1.6 2.0 2.4 2.S 3.2 3.6 4.0

o

FORWARD VOLTAGE (VFI- VOLTS
Cl0S0A

~

1000
800
500
,REQUENCY = 200 pps
MV53173
I'.. MV57173

200

.......

..:

~

100
80

l<:

..:
w
a..

\

~

iii
,...~
z

r--....

1.5

~

1,,\['\

MV5317~ ~\

UJ

a:

......
1
10

10
3

5
10
20
DUTY CYCLE = %

C1702

'\ l,

UJ

20

1

30

IF ImAI

~MV57173

>

"~

50

25

Fig. 2. Relative Luminous Intensity vs.
DC Forward Current
(Both LED Chips ON)

Fig. 1. Forward Current vs.
Forward Voltage

E

5
10
15
20
DC FORWARD CURRENT -

50

100

Cl193

Fig. 3. Max Peak Current vs. Duty Cycle

20

~

~i'
DC

40

PERCENT DUTY - %

C1194A

DUTY CYCLE - %
IF perseg.l0mAAVERAGE

Fig. 4. Luminous Intensity vs. Duty Cycle

1000

600

JA • • • . • . • . . • . • .
Wavelength temperature coefficient (case temp.) ..... .
Forward
coefficient ............. .

MV53164
160°C/W

MV54164
160°C/W

MV57164
160°C/W

1.0N°C

1.0N°C

1.0N°C

-1.5 mY/DC

-1.4 mVrC

-2.0mVrC
5-15

BARGRAPH DISPLAYS

OPTOELECTRONICS

Forward voltage MV53164, MV57164/MV54164
Luminous Intensity (unit average) (See Note 1)
Pulsed Luminous Intensity (MV54164)

2.0/2.2
1800
2500

510
710

Peak emission wavelength
MV53164
MV54164
MV57164
Spectral line half width MV53164, MV57164/MV54164
Dynamic resistance
Segment MV53164, MV57164/MV54164
Capacitance IIiIV53164, MV57164/MV54164
Switching time
Reverse

2.5/3.0

nm
nm
nm
nm

26/12
35/40
500

pF
ns

1.=20 mA
V=O, f=1 MHz
1.=10 mA

a

6.0

•

REF
OUT

~

~
RVS

B

R,

REF

~~.
AROR
INGLE

ED
ONTROl
V&:-

1.2V

B

10

"

>----I\.

"

12

>----I\.

12

13

>----I\.

13

14

......-I\.

I.

15

:;:

>-------too.

I.

"

:;

"

17

...:;

"

:;

3

19

:;:

2

20

I~

......-I\.
~

17

3

~B

IN

v'

-l\.

......-I\.
SI GNAL

1.=10 mA
1.=10 mA
1.=60 mA
peak; 1:6 DF

585
562
630
40/30

TYPICAL DRIVE CIRCUIT

RHI

V
t-tcd
t-tcd

"
1
ILEO

LA

,.

:~ 9
:~ •
:~
7

•
5

•

1

I~

Rco •

'*

.,f2

vLM3914

RVS:

REFERENCE VOLTAGE SOURCE

MSA:

MODE SELECT AMPLIfiER

B:
RB:

MV54164

BUFFER
LED BRIGHTNESSCONTROL

C1471

PIN
NO.

ELECTRICAL
CONNECTIONS

PIN
NO.

ELECTRICAL
CONNECTIONS

PIN
NO.

ELECTRICAL
CONNECTIONS

PIN
NO.

ELECTRICAL
CONNECTIONS

1
2
3
4
5

Bar 1 Anode
Bar 2 Anode
Bar 3 Anode
Bar 4 Anode
Bar 5 Anode

6
7
8
9
10

Bar 6 Anode
Bar 7 Anode
Bar 8 Anode
Bar 9Anode
Bar 10 Anode

11
12
13
14
15

Bar 10 Cathode
Bar 9 Cathode
Bar 8 Cathode
Bar 7 Cathode
Bar 6 Cathode

16
17
18
19
20

Bar 5 Cathode
Bar 4 Cathode
Bar 3 Cathode
Bar 2 Cathode
Bar 1 Cathode

5-16

BARGRAPH DISPLAYS

OPTOElECTRONICS

100

/MV53164
90

«

E 80

~

II

70

....z

MV57164,

60
w
a: 50
a:

c

40

«

30

f2

20

m
z

'/

w

~

fj

III

Ul

:l

oZ

ru

a:

s:a:

I-

I. rJ MV54164

::::J

U

>

1/

h

10

.4

.8

"

~

:l
..J

"

~

~

..J
W

a:

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FORWARD VOLTAGE IVFI- VOLTS

o

5
10
15
20
25
30
DC FORWARD CURRENT - IF (mAl
C1702

Cl080A

Fig. 2. Relative Luminous Intensity vs.
DC Forward Current
(Both LED Chips ON)

Fig. 1. Forward Current vs.
Forward Voltage

~

1000
800
500

\

['..FREQUENCY = 200 pps
MV5X164 SERIES

"- ......

200

«

E

100
.!O 80
~

«w

1.5

"-

""

50

0.

20
10

1

3

5
10
20
DUTY CYCLE = %

Fig. 3. Max Peak Current vs.

'"

50

100

Cl193

~~V5~164
"\ l"\
''\ :\
MV5316~ ~~
~ ~ ....

1

10

20

40

PERCENT DUTY - %

DC

Cl194A

DUTY CYCLE - %
IF per seg. 10 mA AVERAGE

Fig. 4. Luminous Intensity vs.

5-17

BARGRAPH DISPLAYS

OPTOElECTRONICS

4.0 r--,--.,-rTTTTT,----,--.,-r"'-'-TTTI
I

> ()

1000
_ 800

1

800

~400 l -

::J

"r-

u 100 F"i30

V

3

o
o

4

/

/
20

V

/

40

V

60

80

INSTANTANEOUS FORWARD
CURRENT 1.(mA)
C652A

FOWARD VOLTAGE VF (VOLTS)
Cl833

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward
120%

...--.-'"""T--.-....,..-,--.-....,..-,~,

100%

>tUi
Z

W

~

w

W

>

~ 40%~~~-+++~~~~~~r-,

~..J

::5
w

W

~

~

C2095

Fig. 3.

Distribution

WAVELENGTH (A) - nm

Cl064A

Distribution

4. The leads of the device were immersed in molten solder, heated to a temperature of 230°C, to a point 1/16 inch (1.6mm) from the
body of the device per MIL-S-750, with dwell time of 5 sec.
5. The axis of
distribution are
within a 100 cone with reference to the central axis of the device.

6-11

6-12

SUBMINIATURE T·3/4
SOLID STATE LAMPS

OPTOElECTRONICS

RED MV6000
HIGH EFFICIENCY RED MV6700
YELLOW MV6300
HIGH EFFICIENCY GREEN MV6400

These subminiature lamps are constructed as axial
leaded devices. They complement the MV5XBL series.
The plastic lamp packages in this series have a "squarebase" design; versus a "round" base for the MV5XBL
series. The optics of wide-angle beam emission and
sharp ON/OFF contrast are derived from the tinted,
diffused epoxy lens package.

1.3132.9) MIN

.06011.5)

~

o

ATHODE

~

0.020
10.51)
0.065~DIA

0.075(1.51)
.03010.76)R
.04011.02)

_I

_

To2510.63)

.00910.23)
.01310.33)

"YOKE" and "GULL-WING" lead bends and SMT tape &
reel versions are available (see separate data sheet) .

.03710.94)

~1.37)

ffir:

•
•
•
•
•

I I~I-I

Subminiature T-3/4 package
Low package profile
Axial leads
Wide viewing angle
SMT versions

.09212.34)

OM;;

~ c::::=

I

I

~--:---b=r=:=::::J-T

1
2==:::.01)

0.01010.25)
REF

f£~:~

.077

11. 96)

~

J!lI.
10.43)

0.08712.21)

QT906A

MV6000
MV6700
MV6300
MV6400

NOTES:
1. ALL DIMENSIONS IN INCHES (mm)
2. TOLERANCES ARE ±.O1O INCH UNLESS OTHERWISE
SPECIFIED

Red
High Efficiency Red
I=ffi."io'''-\1

Green

Red Diffused
Red Diffused
Yellow Diffused
Green Diffused

6-13

SUBMINIATURE T·3/4
SOLID STATE LAMPS

OPTOELECTRONICS

Luminous intensity

Iv

Standard Red

6000

0.5

1.2

1.0

3.0

1.0

3.0

1.0

3.0

High Efficiency Red

6700
Yellow

6300

mcd

IF =10 mA

High Efficiency Green

6400
I
Peak wavelength

Spectral line halfwidth

Forward voltage

Ap

l1A1/2

VF

Standard Red
High Efficiency Red
Yellow
High Efficiency Green

655
635
583
565

Standard Red
High Efficiency Red
Yellow
High Efficiency Green

24
40
36
28

Standard Red
High Efficiency Red
Yellow
High Efficiency Green

1.4
1.5
1.5
1.5

All

5.0

1.6
1.8
2.0
2.0

nm

nm

2.0
3.0
3.0
3.0

V

IF =10 mA

breakdown

Power dissipation ................................ .
Average forward current .......................... .
Peak forward current (see Note 1) .................. .
Lead soldering time at 260°C ...................... .
and
............... .

6-14

V

MV6700

MV6300

MV6000

MV6400

135
30
400
3

85
20
400
3

100
50
1000
3
-55°C to +100°C

135
30
90
3

mW
mA
mA
sec

SUBMINIATURE T·3/4
SOLID STATE LAMPS

oPI 0ElECT ROil CS

-"wr/

~80

!z
w
~

~
o
a:

1/

60
_STANOARD
50
RED
40

'"

/I
/I

~ 30

~

~

~3O

z
~
z

J

70

10

J

0

1

I

:>

o

z

~

./

10

o L:.
o

I/J

3

4

>

::::.. -- -- -

I,..-

..,.

I,..-

.,-

-

STANDARD RED

20

40

60

80

INSTANTANEOUS FORWARD
CURRENT IF (mA)

FORWARD VOLTAGE VF (VOLTS)

Fig. 1. Forward Current vs.
Forward Voltage

V

/

...J

/I

2

YElLOW
GREEN
HER

;;; 20

HIGH
EFFICIEN CY
GREEN

/I

a: 20

e

40

HER
YEllOW

<100
.5. 90

OT90SA-02

Fig. 2. Luminous Intensity vs.
Forward Current

OT906A-03

120%

I-

:>

0-

I-

80%

:>

0

w 60%

>

~

...J

40%

W

a:
20%

Fig. 3. Relative Luminous Intensity

0T906A-04

Fig. 4. Spectral Distribution

OT906A-05

vs.

6-15

SURFACE MOUNT OPTIONS FOR
MV6XOO SUBMINIATURE LAMPS (T-3/4)
GULL WING/YOKE LEAD/Z-BEND CONFIGURATION

OPTOElECTRONICS

GULL WING LEAD CONFIGURATION

'ldr:~:::::O"
, 1

L

LI I
0.020 (0.51 11

These subminiature solid state lamps are encapsulated
in an axial lead package. The lens is diffused for even
light dispersion.

0.025 (0.631

I

0.150 (3.811 MAX--J

0.031 (0.791 MAX

I~I

0106

0.087 (2.211

(0.151 REF

• Gull Wing!Yoke Lead configurations for surface mount
applications
• Compatible with automatic placement equipment
• Compatible with vapor phase reflow solder processes
• Long life-solid state reliability
• Supplied on tape and reel or in bulk packaging

n~~r~

0.119 (3.021 MAX

L

~

I

0.082 (2.08,
0.092 (2.341

Automatic placement equipment can be used to mount
the LEDs on the PC board. The lamps can be mounted
using either batch or in line vapor phase reflow solder
processes. Subminiature lamps for surface mount
applications are available in standard red, high efficiency
red, yellow and green. The equivalent devices containing
integral resistors can also be made available for surface
mount applications.

CATHODE STRIPE

I

Z·BEND LEAD CONFIGURATION
QT906C-01

CAntODE

YOKE LEAD CONFIGURATION

r-=~

0.020

I

~~~: :~::~: DIA

(0.511~ r-.,.-,..,--IOf-u"o!-'--1]

/

[8jj:::r::r::Jb

ANODE
0.025 (0.631
CATHODE REF

- - 0.300(7.621 MAX _

-0.013 (O.33)TYP

~

I

0.077 (1.961 MAX
0.008 (0.201
0.Q18 (0.461 R TYP.

0.031 (0.791
MAX

L
.--:j-l_t-

0.042 (1.071
TYP 0.028 (0.711
TYP

...t. 0.008 (0.201

I

I

0.077 (1. 96 1
0.087 (2.211

---~

0.014 (0.361

I

1-

o"'''of'~ ~

0.78~

0.51 (0.0'0)
0.037 (0.941
5..9 (0.220)

0.054 (1.371

if.iO(O.'40)
CATHODE

~~

I---J
0.082 12.081
0.092 (2.341

6-16

QT906C-02

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. ALL TOLERANCES ARE ±.010" (.254 mm)
UNLESS OTHERWISE SPECIFIED.

ST4000

SUBMINIATURE T·%
NON·DIFFUSED LAMPS

OPTOELECTRONICS

AlGaAs HLMP·Q105
YEllOW HLMP·6405

HIGH EFF. RED HLMP·6305
HIGH EFF. GREEN HLMp·6505

These subminiature are constructed as axial leaded
devices. Non-diffused packages are used to provide high
brightness.

.084 1.&.!M

=! c:::==7~'''~
CJ
~ ~ATHODE
_~

ANODE

/

I

I

I

0.J20

-

./

T a 2 5 (0.63)

(0.51)

O.065~DIA
0.075 (1.91)

.03010.76) R
.040)1.02)

I

o~o~

_I

1_

.00910.23)
.013 (0.33)

• Subminiature T % package
• Low package profile
• Excellence for back lighting and space limited
applications
• "Gull Wing", "Yoke" and "Z" lead bents are available
• Axial and SMT version tape and reel are available

.037 10.94)

~'.37)

ffir:
I~L
.092 (2.341

I

I

!

~ c=::1==2'01)~~1:r=r==:::::JT0.010 (0.25)
REF

f"O/i:
Max _ _

.077 (1.96)

~

0.087 (2.21)

..&.l1.
10.43)

QT906A

NOTES:
1. ALL DIMENSIONS IN INCHES (mm)
2. TOLERANCES ARE ± .010 INCH UNLESS
OTHERWISE SPECIFIED

Power dissipation ......................
DC forward current .....................
Peak forward current not" •••.•••••.••••••
Reverse voltage aIl R=100!LA ............
Operating temperature range ............

85
30
300
5
-20 to 100

135
30
90
5
-55 to 100

85
20
60
5
-55 to 100

135
30
90
5
-55 to 100

mW
mA
mA
V
°C

Storage temperature range ........................................................................... -55°C to 100°C
Lead soldering time at 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 Sec.
Surface mount reflow soldering
Convective IR at 235°C ..................................................................................... 90 Sec
Vapour phase at 213°C ...................................................................................... 3 min

NOTE1-1

PW&O.1%DF

6-17

SUBMINIATURE T-%
NON-DIFFUSED LAMPS

OPTOElECTRONICS

v,

Forward voltage HLMP-Q105
HLMP-6305/6405/6505

V
V

1,=20mA
1,=10 mA

15
30
50

V
V
V

IR=100pA
IR=100pA
IR=100pA

35
12

mcd
mcd

1,=20mA
1,=10mA

Peak wavelength
HLMP-Q105
HLMP-6305
HLMP-6405
HLMP-6505

645
635
583
565

nm
nm
nm
nm

Dominant wavelength
HLMP-Q105
HLMP-6305
HLMP-6405
HLMP-6505

637
626
585
569

nm
nm
nm
nm

Spectral line half width
HLMP-Q105
HLMP-6305/6405/6505

20
35

nm
nm

Capacitance - C
HLMP-Q105
HLMP-6305/6405/6505

30
15

pF

1.5

1.8
1.8

Reverse voltage - VR
HLMP-Q105
HLMP-6305
HLMP-6405/6505

5
5
5

Luminous intensity - IL
HLMP-Q105
HLMP-6305/6405/6505

15
3

2.2
3.0

90
<

I

7 70

...
iiia:

g;
o

HIGH
EFFICIENCY
REO

60

50

f2

1 20

I:

GREEN
YELLOW

A
1.0

"

2.0

5

10

15

20

25

5.0

~

...

1

o.s

I

1.0

...0.,

00.51.01.52.02.53.03.5

3.0

4.0

5.0

VF - FORWARD VOLTAGE - V

DC FORWARO CURRENT -

~

~

'(ff

10

C300S

Y,:-FORWARD VOlTAGE-:-V
C2214

30

I, (mAl

C1702

Fig. 1. Relative Luminous Intensity vs.
Forward Current

6-18

~

,/

1'00,0

IJJ
'I

~ 40
<
~ 30

o

200.0

II.

80

V,=O, F=1 MHz
V
F=1 MHz

Fig. 2. Forward Current vs.
Forward Voltage

Fig. 3. Forward Current vs.
Forward Voltage-AIGaAs

SUBMINIATURE T·%
LOW CURRENT 2 MA
DIFFUSED LAMPS

OPTOElECTRONICS

AlGaAs RED HLMP·Q150
HIGH EFF. RED HLMP· 7000
YELLOW HLMp·7019 HIGH EFF. GREEN HLMP·7040

1.3132.91 MIN

These subminature lamps are constructed as axial
leaded devices. High brightness chips; such as AIGaAs
red and HER chips are used to achieve the low current
and high brightness requirement. Color tinted, diffused
epoxy packages are used for these packages.

---

1C]
t

0.020
(0.51)

O.065~OIA
0.075(1.91)

.030 (0.76) R

.040(1.021

_I

r

_

•
•
•
•
•
•
•

.037 (0.94)

U7I

tEL

I I~I-I

Subminiature T % packages
Low package profile
Wide viewing angle
Low current, high brightness
Ideal for back lighting and space limited applications
"Gull Wing", "Yoke" and "Z" lead bents are available
Axial and SMT version tape and reel are available.

.09212.341

NOTES:
1. ALL DIMENSIONS IN INCHES (mm)
2. TOLERANCES ARE ±.01O INCH UNLESS
OTHERWISE SPECIFIED

0.01010.251
REF

Power dissipation ......................
DC forward current .....................
Peak forward current note1 ••••••••••••••••
Reverse voltage at IR= 1OOpA
Operating temperature range ............

85
30
300
5
-20 to 100

135
30
90
5
-55 to 100

85
20
60
5
-55 to 100

135
30
90
5
-55 to 100

mW
mA
mA
V
°C

Storage temperature range ............................................................................ -55=C to 100°C
Lead soldering time at 260°C .................................................................................... 3 Sec
Surface mount reflow soldering
Convective IR at 235°C ................................................................................. 90 Seconds
Vapour phase at 213°C ................................................................................... 3 Minutes
NOTE 1-1jLS PW & 0.1% DF

......................................................... HLMP-Q150
HLMP-7000/19/40

6-19

SUBMINIATURE T-0/4
LOW CURRENT 2 MA
DIFFUSED LAMPS

OPTOElECTRONICS

Forward voltage - V,
HLMP-Q150
HLMP-7000
HLMP-7019/40

1.5
1.5

1.6
1.8
2.0

Reverse voltage - VR
HLMP-Q150
HLMP-7000
HLMP-7019/40

5
5
5

1.0
0.4

V
V
V

1,=1 mA
1,=10mA
1,=10mA

15
30
50

V
V
V

IR =100pA
IR=100pA
IR=100pA

1.8
0.6

mcd
mcd

Peak wavelength
HLMP-Q150
HLMP-7000
HLMP-7019
HLMP-7040

645
635
583
565

nm
nm
nm
nm

Dominant wavelength
HLMP-Q150
HLMP-7000
HLMP-7019
HLMP-7040

637
626
585
569

nm
nm
nm
nm

Spectral line half width
HLMP-Q150
HLMP-7000/19/40

20
35

nm
nm

Capacitance - C
HLMP-Q150
HLMP-7000/19/40

30
15

pF
pF

Luminous intensity - IL
HLMP-Q150
HLMP-7000/19/40

1.8
3.0
3.0

90

80

~

60

!5u

50

HIGH
EFFICIENCY
REO

10
15
20
25
30
DC FORWARD CURRENT - I, (mAl
C1702

Fig. 1. Relative Luminous Intensity vs.
Forward Current

6-20

2.0

!I!

2.0

1

0.5

I

I

1.0

0.'
0.1

1M
1.0

5.0

f

'(fJ

10

Q

a:

h

1 20

-"

I:

YELLOW

'/!J
'I

I:~

L

i/

1 100.0

, /GREEN

1

V,=O, F=l MHz
V,=O, F=l MHz

300.0
200.0

/J.
I

il,70

1,=1 mA
1,=2mA

3.0

4.0

5.0

VF - FORWARD VOLTAGE - V

Fig. 2. Forward Current vs.
Forward Voltage

00.51.01.52.02.53.03.5
\'f-FORWARD VOLTAGE-V

C3005

Fig. 3. Forward Current vs.
Forward

SUBMINIATURE T·3/4
RESISTOR LAMPS

OPTOELECTRONICS

RED MR5000/5010/5020
YELLOW MR5310

GREEN MR5410

These T-3/4 LED lamps contain an integral resistor which
is in series with the emitter chip. This construction allows
for operation in circuits with 5 volt supply voltage; without
the use of an external current limiting resistor. Color
tinted, diffused epoxy packages are used for all lamps in
this group.

NOTES:
1. ALL DIMENSIONS IN INCHES
(mm)
2. TOLERANCES ± .010 INCH
UNLESS SPECIFIED

Applications include circuit board status indication;
especially in TTL circuits. They allow for savings in
component/assembly costs. The lamps are compatible
with vapor phase reflow surface mount and conventional
solder assembly.
• Integral Current Limiting Resistor
(No external resistor required)
• Operates with 5 Volt Supply
• All Colors
- MR5000/501 0/5020 Red Diffused
- MR5310 Yellow Diffused
- MR541 0 Green Diffused
• Subminiature Package
• Solid-State Reliability

TYPE

SOURCE
COLOR

LENS
COLOR

MR5000
MR5010
MR5020
MR5310
MR5410

Red
Red
Red
Yellow
Green

Red Diffused
Red Diffused
Red Diffused
Yellow Diffused
Green Diffused

6-21

SUBMINIATURE T-3/4
RESISTOR LAMPS

OPTOElECTRONICS

RED

6 Volts
6 Volts
-55°C to +100°C
-55°C to +100°C
260°C for 3 Secs

6-22

6 Volts
6 Volts
-55°C to +100°C
-55°C to +100°C
260°C for 3 Secs

UNITS

TEST
CONDITION

mcd

VF =5 Volts

6 Volts
6 Volts
-55°C to +100°C
-55°C to +100°C
260°C for 3 Secs

SUBMINIATURE T-3/4
RESISTOR LAMPS

OPTOElECTRONICS

Red MR5000/5010/5020
Forward

current vs_

Green MR5410
Yellow MR5310

Forward Voltage

22

J

20

/

18

t

16

!z

14

::J
0
0

10

I
II

8

~

6

LL

1:

I
II

w
a: 12
a:
a:

Forward Current vs. Forward Vohage
rnA
IF 7

MRSOlO

4

jV

3
2

./ if' M~541?

o

MRS000

VI

j

V

I V ....- V

2

!J

4

MRS010

V

MRk10

2

3

4

567
QT903-21

-VF

~V

o 1 234 5 6 7
FORWARD VOLTAGE - VOLTS

QT903-20

Relative Luninous Intensity

Relalive Luninoua Intensity

va. Forward Voltage

vs. Forward Voltage
1.8

2.5

1.6
1.4
Ul-

1.2

~!

1.0

:::EO

0.8

3~

I

w:::; 0.6

II!~

z~

1/

><

~i!

~>

~o

1.5

::J-'

O~

1.0

:::EO
-'-

0.5

;;;~

/

;;!;a:
::Jz

I

0.4

/

1.0

1 234 5
6
7
FORWARD VOLTAGE - VOLTS

0.8

II!~

7.0

QT903-23

f

0.6

0.4

I
I

0.2

0.0
800

6.0

1,01

MRSOXO

~~

S~

5.0

Relative Spectral Emiaaion ..... I(l. )

f \

:::Eo
w:::;

4.0

QT903-22

Ul>

3~

3.0

I

Ul

5'"
;;!;~

2.0

V

v

~-FORWARDVOITAGE-VOL~

Spectral Cislribution
1.0

~

...... /

/

0.2

o

~
z

2.0

Ul'"

/

\

20 1----1'/---1+--I--\--+-~~-I
o~--~--~--~--~--~~

\.

II

'/
620

,

\

500

660

680

WAVELENGTH - A (nm)

560

580

800

_A

~
640

540

620

640
QT903-25

700
QT903-24

6-23

6-24

SUBMINIATURE T·0/4
5· VOLT RESISTOR LAMPS

OPTOElECTRONICS

HIGH EFFICIENCY RED HLMP·6600/20
YELLOW HLMP·6700/20
HIGH EFFICIENCY GREEN HLMP·6800/20

1.3 (32.9) MIN

These T-% square based LEOs contain an integral resistor
which is in series with the emitter chip. This construction
allows for the operation in circuits with 5V supply voltage;
without the use of an external resistor. Color tinted,
diffused epoxy packages are used for these lamps.

---

0.020
(0.51)

O.065~DIA
0.075 (1.911
.030 (0.76) R

.040(1.02)

I

0.010 (0.25)
REF

_I

r

_

U7I

ffir:

Integral current limiting resistor .
TTL compatible
Wide viewing angle
Solid-state reliability
SMT lead formings and T&R available

I~L
.092 (2.34)

I

~

0.030
(0.76)
Max

•
•
•
•
•

.037 (0.94)

J!!Z.
(0.43)

.077 (1.96)
0.OB7 (2.21)

QT906A

NOTES:
1. ALL DIMENSIONS IN INCHES (mm)
2. TOLERANCE ARE ±.01O INCH UNLESS
OTHERWISE SPECIFIED

Power dissipation ............................
135
85
135
mW
DC forward voltage ... .. . .. .. .. . . . . .. . . . .. .. . .
6
6
6
V
Lead soldering time at ........................
3
3
3
Sec
Surface mount reflow soldering
Convective IR at 235°C ................................................................................. 90 Seconds
Vapour phase at 213°C ................................................................................... 3 Minutes
Operating temperature range ............................................................................. -40°C to 85°
............................................................................ -55°C to 100°C

6-25

SUBMINIATURE T·o/.a
5· VOLT RESISTOR LAMPS

OPT 0El ECT 80 NICS

9.6
3.5

mA
mA

V,=5V
V,=5V

5.0
2.0

mcd
mcd

V,=5V
V,=5V

Peak wavelength
HLMP-6600/20
HLMP-6700/20
HLMP-6800/20

635
583
565

nm
nm
nm

Dominant wavelength
HLMP-6600/20
HLMP-6700/20
HLMP-6800/20

626
585
569

nm
nm
nm

Spectral line half-width
HLMP-6600/20
HLMP-6700/20
HLMP-6800/20

40
36
28

nm
nm
nm

Capacitance - C
HLMP-6600/20
HLMP-6700/20
HLMP-6800/20

11
15
18

Luminous intensity - Iv
HLMP-6600/6700/6800
HLMP-6620/6720/6820

1.3
0.8

13.0
5.0

F=1 MHz
F=1 MHz
F=1 MHz

ReIaIive luminous Intensity
VB. FOfWard Voltage

1.8

~
-

2.0

::>

1.5

:>...1

1.0

~~
~~

>::>

0.5

".3

4

5

6

7

Fig. 1. Relative Luminous Intensity vs.
Forward Voltage

80%

CL

~c

1.0

FORWARD VOLTAGE - VOLTS OT903-22

6-26

'JI.

;;;gj

/
V

wO 0.2
a:~

o

~>

"''''
z@

/
V

0.4

100%

2.5

/

V

/

/

w
>

~

60%

40%

...I

w

II:

20%

2.0

v, -

3.0
4.0
5.0
6.0
FORWARD VOLTAGE - VOLTS

0

Fig. 2. Relative Luminous Intensity vs.
Forward Voltage

WAVELENGTH (A) -

nm

Fig. 3. Spectral Distribution

Cl064A

SUBMINIATURE T·o/..i (1.9 mm)
SOLID STATE LAMPS

OPTOELECTRONICS

RED
YELLOW
GREEN
AIGaAs/RED

QTLP913-2
QTLP913-3
QTLP913-4
QTLP913- 7

RED DIFFUSED
YELLOW DIFFUSED
GREEN DIFFUSED
RED DIFFUSED

RED
YELLOW
GREEN
AIGaAs/RED

QTLP912-2
QTLP912-3
QTLP912-4
QTLP912- 7

CLEAR
CLEAR
CLEAR
CLEAR

These subminiature LED lamps are intended
for high volume, low cost status indication on
PCBs, and for backlighting keyboards and
switches. They are compatible with vapor
phase reflow or wave solder surface mount
equipment. Available in either clear, or tinted
diffused lens and a choice of "Yoke", "ZBend", or "Gull-Wing" lead bends. Tape and
reel options are also available.

0.6

1.4

•
•
•
•

Subminiature package.
Low package profile.
Choice of clear or tinted diffused lens.
Three lead bend options for surface
mounting.

ST1669

DC forward current (I,) ...................... .
Operating temperature range ................ .
Storage temperature range .................. .
Lead soldering time ........................ .
(at y,. inch from the bottom of lamp)
Peak forward current ....................... .
(atf = 1.0 KHz, Duty factor = 1/10)
Power dissipation (Pd) ...................... .
Recommended
current

Yellow

Red
30mA

Green

160mA

160mA

160mA

200mA

100mW

100mW

85mW
20mA

110mA

30mA

20mA
-40°C to +85°C
-40°C to +100°C
5 seconds @ 260°C

AIGaAs (Red)
40mA

6-27

SUBMINIATURE T·0/4 (1.9 MM)
SOLID STATE LAMPS

OPTOElECTRONICS

Luminous intensity (mcd)
minimum
typical
Forward voltage (VF)
minimum
typical
maximum
Peak wavelength (nm)
Spectral line half width (nm)
Reverse breakdown voltage (V,J
Viewing angle (0)

Luminous intensity (mcd)
minimum
typical
Forward voltage (VF)
minimum
typical
maximum
Peak wavelength (nm)
Spectral line half width (nm)
Reverse breakdown voltage (VR)
Viewing angle (0)

6-28

IF=20 mA
48
80

18
30

30
50

113
170

1.7
2.0
2.8
640
45
5
25

1.7
2.0
2.8
585
35
5
25

1.7
2.1
2.8
565
30
5
25

1.7
2.0
2.8
660
20
5
25

24
40

9
15

15
25

72
108

1.7
2.0
2.8
640
45
5
50

1.7
2.0
2.8
585
35
5
50

1.7
2.1
2.8
565
30
5
50

1.5
1.7
2.4
660
20
5
50

IF=20 mA

IF=20mA
IF=20mA
IR=10 pA
IF=20 mA

IF=20 mA
IF=20 mA

IF=20 mA
IF=20mA
IR=10 pA
IF=20mA

SUBMINIATURE T·% (1.9 mm)
SOLID STATE LAMPS

OPTOElECTRONICS

,..
....>;;;

!....

.

1;

....~

•.5

~

a:

•

500

750

WAVELENGTH - nm

ST1717

Fig. 1 Relative Intensity Vs. Wavelength
40

100
90
E
:; 80
70



... V

V

~

--

~

~

rr

~ 60
~

..-

'f

HI EFF..+./+/',0)----1

g
~O

30

r-

'(f

~ 10

o
ST1718

Fig. 2. Relative Luminous Intensity
Vs. DC Forward Current

/Ii
1/1

hV
..I./.b

~ 20

STANDARD RED

RED//,

40~--+--+-+.H~-+--~

...

i""""

02040
60
80
INSTANTANEOUS FORWARD
CURRENT ... (IlIA)

INDICATE-~+-I---t+H--I

STANDARD
50
RED

~

II'
;'1'/
.J /

DOTTED LINES

PULSED
~,
OPERATION-YIELLOW

2

HI EFF.
GR1EEN-

3

FOWARD VOLTAGE VF (VOLTS)
C1833

Fig. 3. Forward Current Vs.
Forward

1IO"~-+--+--+--I3

30"40' 50"110"711'110"110"''''

ST1720

Fig. 4. Relative Luminous Intensity
vs. Angular Displacement

4

ST1721

Fig. 5. Relative Luminous Intensity

vs.

6-29

SURFACE MOUNT OPTIONS FOR
QTLP91X·X SUBMINIATURE T·% (1.9 mm)
GULL WING/YOKE/Z·BEND LEADS

OPTOELECTRONICS

GULL WING LEAD CONFIGURATION

I~T~11
~
i

0.5

These subminiature lamps are encapsulated in an
axial lead package. Either a clear or diffused
lenses are available. Automatic placement
equipment can be used to mount these LEDs on
PC boards. The lamps can be mounted using
either batch or in line vapor phase reflow solder
processes. Subminiature lamps are available in
red, high efficiency red, yellow, and green.

2.0 ±O.2

0.4

I

• Gull Wing, Yoke Lead, and Z-Bend
configurations for surface mount applications.
• Compatible with automatic placement
equipment
• Compatible with vapor phase reflow solder
processes.
• Supplied on tape and reel or in bulk packaging

YOKE LEAD CONFIGURATION

Z-BEND LEAD CONFIGURATION

Jrn'~~1ll1 •
.Eh9(I~i- t

",n~211·:·:·1 ·1
i---f,--",+~~j~H==II-_(A-N~O_DE)-I-+-f+-~- L.2.0t02
0.5

I

....----~1.91
I

2.0±O.2

0.5

0.4

I

,---,,_ _--f-:,o-t-\91
1.4
2.0.0.2

'1"-t.

I

~=-I-t-=JI------'-~'1.1
2.5 ± 0.2

ST1740

6-30

0.4

ST1741

SURFACE MOUNT LED LAMP
FLAT TYPE

OPTOELECTRONICS

RED
YELLOW
GREEN
AIGaAs/RED

r
~t~+-~~~~'lo,o,
7 ' O (MIN)

O.5±O.1

1

i

1rf

CLEAR
CLEAR
CLEAR
CLEAR

These subminiature LED lamps are
intended for high volume, low cost status
indication on PCBs, and for backlighting
keyboards and switches. They are
compatible with vapor phase reflow or wave
solder surface mount equipment. Available
in "Gull-Wing" lead bend configuration.
They have clear, flat lenses. Tape and reel
options are also available.

O.8±O.1

i i

~~==~~·--~-{~tE==·-==+3==~·,
O.16±O.05

QTLP282-2
QTLP282-3
QTLP282-4
QTLP282- 7

1.1 / . 2.5 ±O.2

1.3±O.2

•
•
•
•

Subminiature package
Flat package profile
Wide viewing angle
Lead bend options for surface mounting

ST1709

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE LEADS EMERGE FROM THE PACKAGE
3. PROTRUDED RESIN UNDER THE FLANGE IS 1.5 mm (0.059'1 MAXIMUM

DC forward current (I,) ................................ .
Operating temperature range ......................... .
Storage temperature range ........................... .
Lead soldering time .................................. .
(at 1/16 inch (1.6 mm) from the bottom of lamp)
Peak forward current ................................. .
(at f= 1.0 KHz, Duty factor= 1/1 0)
Power disSipation (Pd) ................................ .
Recommended
current
............... .

30mA

20mA
30mA
-40°C to +85°C
-40°C to +100°C
5 seconds @ 260°C

160mA

160mA

100mW

85mW

160mA

200mA

100mW

110mA

20mA

6-31

SURFACE MOUNT LED LAMP
FLAT TYPE

OPTOELECTRONICS

Luminous intensity (mcd)
minimum
typical
Forward voltage (V,)
minimum
typical
maximum
Peak wavelength (nm)
Spectral line half width (nm)
Reverse breakdown voltage (VR)
Viewing angle (0)

1.5
5.6

3.5
6.0

1.0
5.6

11
17

1.7
2.0
2.8
640
45
5
150

1.7
2.0
2.8
585
35
5
150

1.7
2.1
2.8
565
30
5
150

1.7
2.0
2.8
660
20
5
150

1,=20 mA

1,=20mA
1,=20 mA
IR=10 p.A
1,=20 mA

40'
1.0
UJ

>

~

0.9

50'

0.8

60'

40%

70'
80'
90'

0.7

...J

UJ

cr:

O~...l-~__~-U~L-~~~~

520 540 560 580 600 620

WAVELENGTH (A) - nm

C1064A

Fig. 1. Relative Intensity vs. Wavelength

6-32

0.5

0.3

0.1

0.2

0.4

0.6
ST1711

Fig. 2. Relative Luminous Intensity
vs. Angular Displacement

SURFACE MOUNT LED LAMP
FLAT TYPE

OPTOELECTRONICS

~

! ! I

100 DOTTED LINES

~~~~:6E

.!.

90
:;- 80 OPERATIION-IELLOW I

~~I

'.0

Ii/

,

~ 70~----+----T~--~~~--~

~

§

HII EFF..-!'+I'I-----I
RED,Ii I

ooc

40~----+---+-~ff~-+----~

60

STANDARD
() 50
RED

~

30

11.

~ 20
Q,

10

II

V
3.0
25

iil

/ll
'(f~ HI EFF.
hV GR,EEN-

2.0

1.0

.J..IL)
2

3

4

o

FOWARD VOLTAGE VF (VOLTS)
C1833

V

V

1.5

0.5

o

L

/

V

V
./

o

10

15

20

25

30

IDC - DC CURRENT PER lEO - mA

ST1627

Fig. 4. Relative Luminous Intensity
vs. DC Forward Current

Fig. 3. Forward Current vs.
Forward

10
9

1'111

8
7
5

\

,

1\

4
3

~

\

\~
~

.. ,... . \ ~'
rr ~U N~I
\

2

~l'
1:,'
~

<>

1
t.. -PULSEDURATION-1lS

10

100

1000

ST1714

Fig. 5. Maximum Peak Current
vs. Pulse Duration

10.000

tp - PULSE DURATION - p.

ST1642

Fig. 6. Maximum Peak Current Vs.
Pulse Duration

6-33

SURFACE MOUNT OPTION FOR
QTLP282·X FLAT TYPE LED LAMP
GULL WING LEAD CONFIGURATION

OPTOElECTRONICS

"T~~---I-+-l--'-­
-~-f+--F_--- 1_
I

---+f------_2---,' 0 _2

0_5

i

These flat package LED lamps are encapsulated in an
axial lead package with a clear lens. Automatic
placement equipment can be used to mouont these
LEDs on PC boards. The lamps can be mounted using
either batch or in line vapor phase reflow solder
processes. Subminature lamps are availabe in red, high
efficiency red, yellow, and green.

0.4

I

0.6

1.4

t

t

------,-

• Gull Wing lead configuration for surface mount
application
• Compatible with automatic placement equipment
• Compatible with vapor phase reflow solder processes.
• Supplied on tape and reel or in bulk packaging

ST1690

Wave soldering temperature ......................................................................... 260° for 3 seconds
(1.6 mm (0.063'1 from body)
Surface Mount Reflow
Soldering:
Convective IR ................................................................................. 235°C for 90 seconds
.................................................................................... 215°C for 3 minutes

The absolute maximum ratings and electrical/optical specifications are identical to the basic catalogue device,
except for the vapor phase soldering rating as specified above.

6-34

LOW PROFILE T·1
SOLID STATE LAMPS

OPTOElECTRONICS

STANDARD RED MV5077C HIGH EFFICIENCY GREEN MV5477C
YELLOW MV5377C
HIGH EFFICIENCY RED MV5777C

These solid state indicators offer a low profile T-1
package. The High Efficiency Red, Green and Yellow
devices are made with a gallium arsenide phosphide on
gallium phosphide. All are encapsulated in epoxy
packages. Their small size (approximately T-1 size), good
viewing angle, and small square leads contribute to their
versatility as all purpose indicators.

.130" 13.18 mm)DIA.

.~ t
.150" (3.81 mm)

~""""-----I t
T~'

.045" 11.143 mm)

1.00" 125.4mm) MIN.

~:~:::!~~:::SO--D=
~~
J ANODE

• Square leads (will fit into .020-inch (.508 mm) diameter
holes)
• Compact size
• Very wide viewing angle
• Long life, rugged
• Mount on approximately 3/16-inch (4.72 mm) centers
• Tinted diffused

.050" (1.27mm)

REF.

•
t

.160" 14.06 mm) DIA .
. 150" 11.27

mm..!.~_ _ _l_-1
.060" 11.52 mm)
.050" 11.27 mm)

NOTE: TOLERANCE '.010"
UNLESS SPECIFIED

MV5077C
MV5377C
MV5477C
MV5777C

Cl132A

Standard Red
Yellow
High Efficiency Green
Red

Red Diffused
Yellow Diffused
Green Diffused
Red Diffused

Wide Beam
Wide Beam
Wide Beam
Wide Beam

Low Profile
Low Profile
Low Profile
Low Profile
6-35

LOW PROFILE T·1
SOLID STATE LAMPS

m 0NICS

OPT 0ELE

max,
min,
typ,

Iv

IF =20 mA
IF =20 mA

mcd
mcd

0,3
1.75

1,0
7,0

1,0
7,0

1,0
7,0

IF =20 mA

nm

20

35

35

45

IR=100 ,.,A
IR =100 ,.,A

V
V

5
15

5
25

5
25

5
25

Power dissipation " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " 105 mW
Derate linearly from 2 5 ° C " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " , -1,14 mW/oC
Storage and operating temperature, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , " -55°C to +100°C
Continuous forward current (MV5377C=20 mAl " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " ' " 35 mA
Peak forward current (p.Sec pulse 0,3% duty cycle) (MV5477C=90 mAl (MV5377C=60 mAl " " " ' , ' , " " ' , " , " ' , ' , " ' " 1,0 A
Reverse voltage " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " 5,0 V
Lead soldering time at 260°C (See Note 1) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " 5 sec,

6-36

LOW PROFILE T·1
SOLID STATE LAMPS

OPTOELECTRONICS

100,-::-,==...,...,.,=::.,.,----,--.-.".,
DOTTED LINES
90 INDICATE---f+-I--tf-H-----l
E
PULSED
.~.
;; 80 OPERATION-YrEllOW

I

<'

!z
ll!

70
60

§

'I'

I

HII

STANDARD
U 50
RED

30

LI..

~ 20
n. 10

"

EFF.'..,.I.,.·I-II-__-I

o

HI
'Ir- HI EFF.

2

iii

z

W

t-

RED ' "
I

//1
.hIl/

..--

I

>30

t-

c
iii
a:40i----..,I---JI-H'-H'--t------i

~

40

II I
"'1'/

20

Z

~ 1

GR,EEN-

3

~

o'"

:J

0

:J
-'

oV
o

4

V

/
20

/

1/

40

/'

60

80

INSTANTANEOUS FORWARD
CURRENT j,(mA)
C652A

FOWARD VOLTAGE VF (VOLTS)
C1833

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward
120%

.....--.----r-r--r--r-.--r--,---,

100%

~
z

Cii
w

;

g;!

w

>
~ 40%

i=

~

a:

100%

w

II:

C2094
Fig. 3. Spatial Distribution

20%

i-+-+t-t-W-tt-ti-'H---1r-1

WAVELENGTH (A) - nm

C1064A

Fig. 4. Spectral Distribution

1. The leads of the device were immersed in molten solder, at 260°C, to a point 1/16 inch (1.6 mm) from the body of the device per
MIL-S-750, with a dwell time of 5 seconds.

6-37

6-38

T·1
SOLID STATE LAMPS

OPTOElECTRONICS

YELLOW MV5374C
STANDARD RED MV5074C HIGH EFFICIENCY GREEN MV5474C
STANDARD RED MV5075C
HIGH EFFICIENCY RED MV5774C

t

.160"{4.06mml DIA.
.210" (5.33mm)
.190" (4.3Bmm)

~

L
.020"

{.l

+

.150" (3.81 mm)

-

.060"(1.52mm}
.050" (1.27 rnm)

These solid state indicators offer a variety of color
selection. The High Efficiency Red, Green and Yellow
devices are made with a gallium arsenide phosphide on
gallium phosphide. All are encapsulated in epoxy
packages. Their small size (approximately T-1 size), good
viewing angle, and small square leads contribute to their
versatility as all purpose indicators .

t .00" (2St mm) MI N.

mm}

:~~~:::::~~:sa.O: ~--=t
ANODEJ

-

.050"(1.27mm)

REF.

C1128B

--1-

MV5074C
MV5075C
MV5374C
MV5474C
MV5774C

Standard Red
Standard Red
Yellow
High Efficiency Green
H
Red

• Square leads (will fit into .020-inch (.50Bmm) diameter
hole)
• Compact size
• Long life, rugged
• 1-inch (25.4 mm) minimum lead length
• Mount on approximately 3/16-inch (4.72 mm) centers

Red Clear
Red Diffused
Yellow Diffused
Green Diffused
Red Diffused

Narrow Beam
Wide Beam
Wide Beam
Wide Beam
Wide Beam

High Profile
High Profile
High Profile
High Profile
Profile
6-39

OPTOELECTRONICS

T·1
SOLID STATE LAMPS

Power dissipation ............................................................................................ 105 mW
Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -1.14 mWo C
Storage and operating temperature .................................................................... -55°C to +100°C
Lead soldering time at 260° C (See Note 1) ........................................................................ 5 sec.
Continuous forward current (MV5374C=20 mAl ................................................................... 35 mA
Peak forward current (ltsec pulse 0.3% duty cycle) (MV5474C=90 mAl (MV5374C=60 mAl .............................. 1.0 A
Reverse voltage ................................................................................................ 5.0 V

6-40

T·1
SOLID STATE LAMPS

OPTOElECTRONICS

100

DOTTED LINES

<"

90 INDICATE

.!!,

80 OPERATIION-

§.

PULSED

I-

Z 70
w
a: 60
a:
::J

U

50

0

STANDARD
RED

a: 40
30

u..
:..: 20

«w

a. 10

v;
Z
w

....

RED/I'

11/
III
'(fr-- HI EFF.
/) V GR1EEN-

:<: 2 0
Vl

::l

o

2

3

V

Z

:; 1

0

::l
~

L

..ui)

o

..--

I

....> 3 0

HII EFf/'

«

s:0

40

1//
r.tl
1ELLOW,
/

o
o

4

/

/

V

V

20
40
60
BO
INSTANTANEOUS FORWARD
CURRENT 1,lmAj
C652A

FOWARD VOLTAGE VF (VOLTS)
Cl833

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage
120%

I I

100%

;¥

I
I::J

vtdw ~EDI
'\

HI. EFF.
GREEN/,

80%

a.

I::J

0
w

>

~...J

60%

, J\

40%

W

a:

20%

o

J

1\

"./ \

\

/ V/ \,IL
~

,

STD.
RED

Jr-...

I

\

V\

~

520 540 560 580 600 620 640 660 680 690
50%

30%

10% 0

Fig. 3. Spatial Distribution

C1129

WAVELENGTH (i-) - nm

Cl064A

Rg. 4. Spectral Distribution

1. The leads of the device were immersed in molten solder, at 260°C, to a paint 1/16 inch (1.6 mm) from the body of the device per
MIL-S-750, with a dwell time of 5 seconds.

6-41

6-42

CLEAR LENS T·100
SOLID STATE LAMPS

OPTOELECTRONICS

YELLOW MV5362X TINTED, HLMP·1440, MV5360 PALE TINT
HIGH EFFICIENCY GREEN MV5462X TINTED, HLMP·1540, MV5460 PALE TINT
HIGH EFFICIENCY RED MV5762X TINTED, HLMP·1340, MV5760 PALE TINT

These solid state indicators offer a variety of color
selection. The High Efficiency Red and Yellow devices
are made with gallium arsenide phosphide on gallium
phosphide. All are encapsulated in epoxy packages and
have clear lenses. Their small size, wide viewing angle,
and small square leads contribute to their versatility as
all-purpose indicators. All types are tinted to aid
identification.

3.15±0.2

00.5

:z
::i!:

I

:Z
:i!
'"'
;::i
c_

I

20

.:

II

•0

./

2.G

v, -

10

...

"'

8T1622

5.0

2.0
1.5

2~I

\,

·i.o

l;
zw

...~w

lL

1.3
1.2

if

... ,

15

20

2S

30

35

40

INA.1f. ... PEAK CURRENT ~R LED .....

Figure 2. Relative Luminous Intensity vs.
Forward Current

~

/

"' 0.' I
8T1623

10

,

...
'.0

/

00

io"""

U
1.5

~ ...

/

1.0
0..

'.B
'.7

V

/

FORWARO VOLTAGE _ V

Figure 1. Forward Current vs.
Forward Voltage

0.7

0102030.co

sa

10 70

Figure 3. Relative Efficiency vs.
Peak LED Current

~

Figure 4. Maximum Peak Current
vs. Pulse Duration

10100

8T165O

~

~ l ~ ... lii .....
I'~

eo

IPEAK- PEAt( CURRENT PER LED - mA

""

'" ... PULSE DURATION ..,..,

6-48

...

!~

10

0
1.0

~

1/

t

1.9

4.0

J
L

so

IlOO

8T1624

Figure 5. Relative Luminous Intensity
vs. Angular Displacement

T·1 (3 mm)
SOLID STATE LAMPS

OPTOELECTRONICS

Soft Orange

1

..

..
I

70

Q

I

,

j

...

1.5

II

30
20

1.0

• V

0, .0

0"

2.0

• .0

..0

5.0

o
8T1626

/

7

•

1/

1

/

i

j

1.2

I

1.0

I

0.9

,I

0.8
15

10

20

25

30

ST1627

0.7
0

10

20

3D

40

50

10

70

80

90

IplEAt( - PEAK CURRENT PER LEO - mA

loe - DC CURRENT PER LED - mA

Vf - FORWARD VOLTAGE - V

/

1.3

/

2.0

I-t"

1.'

:/

2.5

I

50

1.5

V

3.0

80

I

/

3.5

I

i
a'"

1.6
0

8T1628

Figure 3. Relative Efficiency
vs. Peak LED Current

Figure 2. Relative Luminous Intensity
vs. Forward Current

Figure 1. Forward Current vs.
Forward Voltage

•
5

•

:~ I~fli

1\
,,~
i ll~ i ll~, i ~~ ~~~

m'

1 i
.1

~

"

.. I100

10

1.Il00

10.Il00

" ~ PULSE DURATION -fill

20'

Figure 5. Relative Luminous Intensity

vs.

,

/
II 1

I

I

J

I

J
17

I{ 17

IV
V\

I

V

-

V

500

/

)
~

~v

550

,,

Orange

Green

0.5

100"
8T1629

Figure 4. Maximum Peak Current
vs. Pulse Duration

1.0

rKr

40"

8T1624

,

"-

"'"
600

~

\

1\

I'

~

r--....
650

700
8T1630

6-49

6-50

DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

OPTOElECTRONICS

1-1% HLMP·D150A/D155A
1-1 HLMP·K150/K155

3.15±Q,2

A recently developed double heterojunction (DH)
AIGaAs/GaAs material technology is the basis of the light
emitting chip utilized in these solid state lamps.
Exceptional light output typifies these devices and
provides for their use over a broad range of drive
currents. At a dominant wavelength of 637 nanometers.
the light is perceived as a deep red color. These lamps
are ideally suited for use in applications where high light
output is required with minimum power input.

3':~~Q:3

~
,

,

' ..... '

•
•
•
•
•
•
•
•

ST4020

.me

!I)

.350( ....)

Luminous intensity specified at 1 mA
High light output at low currents
Wide viewing angle
Low power/low forward voltage
Outstanding material efficiency
CMOS/MOS compatible
TTL compatible
Deep red color

t:;:p-j
!I!

~I_'

• Low power circuits
• Battery powered equipment
• Telecommunication indicators

'.00 (25.4) MIN.

iJNOM.

.100 (2.54) NOM.---I
.050 (1.27)

6C2201

.100 (2.54)

NOM•

•490 (12.44)
.460 (11.68)

FLAT DENOTES
CATHODE

r

.040
(1.02)

.350 (8.89)

~

.330 (8.38)

--*--c:;;:::,;:;:j,
I~II.~ f
It,

0.045 {1 151 .90 (23.0) MIN.

JUF
,~

:~~:~:~SQ.

t

t

(,.27) NOM

c

.100 (2.54) NOM.

.050 (1.27)

C2202

i3. ~~~~E'f::l~~·
=~(~ERWISE SPECifiED
AN EPOXY MENISCUS MAY EXTEND ABOUT
.04Cr (1 mm) DOWN THE LEADS

6-51

[!ii

DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

OPTOELECTRONICS

SIZE

TYPE

LENS EFFECT

Iy(mcd)
MIN.

@1mA

VIEWING ANGLE
201/2 DEGREES

TYp.

PKG.

T-1
T-l

HLMP-K150
HLMP-K155

Red Tinted Diffused
Clear

1.2
2

2
3

60

45

A
A

T-1%
T-1%

HLMP-D150A
HLMP-D155A

Red Tinted Diffused
Clear

1.2
5

3
10

65
24

B
C

6-52

DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

OPTOElECTRONICS

1.0

300.0

200.0

/

C

E 100.0
I
to- 50.0
Z
iii
20.0
II:

rr:

::J

10.0

0

5.0

J

2.0

(,)

0.5

II:
II:
II.

0

1.0

I

.!!-

0.5
0.2
0.1

650

600

700

WAVELENGTH-nm

o

~~

-0

ole

5

2

..........

I

to-

~

I

/

OC

",2

0.5

!!iZ

0.2
0.1

35

0.5

1

2

5

r\ '~ ~

25

R8JA = 459°CIW·./"

11111

1111

11111

11111

J

15 -

II.

0

10

1-

5

r
0.1 0.2

30

Z

iii
0:
0:

::J
U
0

Nil:

~-

3.5

E

2

:::;i

3.0

C2214

C

iii

::J~

2.5

Fig. 2. Forward Current vs.
Forward

::J-

!Eo

2.0

40

50
30
20
10

1.5

C2203

100

(/)'

1.0

VF-FORWARD VOLTAGE-V

Fig. 1. Relative Intensity
vs. Wavelength

~z_

0.5

10

20 30 50 100

loc-DC FORWARD CURRENT-rnA

C2213

Fig. 3. Relative Luminous Intensity
vs. DC Forward Current

20

-

R8JA = 574° CIW ~

0:

~ ~\.. ~.

.-A

R8JA = 689°CIW

20

40

r\ ~~

.

~~

0:

60

80

"
100

TA-AMBIENT TEMPERATURE-'C

C2205

Fig. 4. Maximum Forwad DC Current
vs. Ambient Temperature. Derating
Based on T MAX = 110°C

6-53

DOUBLE HETEROJUNCTION AIGaAs
LOW CURRENT RED LED LAMPS

OPTOElECTRONICS

~r-:::_"--'-r-1,.....,.-r-r-...,., 1.0

~LJ:1~~~tttr~~j

10°20°30°40"50"60"70"80°90°100°

C2209

C2211

Fig. 6. Relative Luminous Intensity
VB. Angular Displacement.
HLMP-K150

Fig. 5. Relative Luminous Intensity
VB. Angular Displacement.
HLMP-D150A

C2212

C2210

Fig. 7. Relative Luminous Intensity
VB. Angular Displacement.
HLMP-D155A

6-54

Fig. 8. Relative Luminous Intensity
VB. Angular Displacement.
HLMP-K155

BLUELEDS

OPTOELECTRONICS

1-1% MVSBS4
1-1 MVSB66
3.15±0.2

rf
I

3.0±0.2

(t
~J

.180

57 )

U')

c:::i
+1
C!

.350 (8.89)
.330 (8.38)

LLr'----+-l---1~I

.040

g.11\g.§~SQ
.2
.

(1.02)

.050 (1.27)
REF.

L
I

I

'
]_W--.l..
J
I
I

'

I

~

I
I

00.5

1.00 (25.4) MIN .

~

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS

.~~~ \~!:»
Cl062L

Both the T-1% and T1 package are lightly
tinted LEDs. The LEDs is manufactured
with the single crystal silicon carbide
technology. The color emitted is an 80%
saturated blue with a dominant
wavelength of 481 nm.

•
•
•
•

Silicon carbide technology
481 nm 80% saturated blue
Standard T-1% and T1 package
CMOS/MaS compatible

ST4020

• Medical instrumentation
• Front panel status indicator
• Moving message signs

Thermal Resistance Junction to free air 8JA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3;gc~
Wavelength temperature coefficlen.t ~case temperature) ........................................................ '~1.4'mV/cC
Forward voltage temperature coefficient .................................................................... .

6-55

[!ii

BLUELEDS

OPTOELECTRONICS

110

E
?:
;;

10C1

c:

-]•

•:s
0

I

I

r--. -..........

110

c

E

...:s

.80

·20

I
I

•

1"-

~

I
I I I

o

20

40

"

481

' ...., ....

80

10

480*---~~-r-'--~~~~--~
10
20
30
40
50
60
a

100

AalblentT~(q

cumlflt IlIA

ST1672

Fig. 2. The peak wavelength stays the same
width respect to current

Fig. 1. Between 2D-80°C The equation
of the CUNe is y = 104.3 - O.233x
The dotted lines denote extrapolated data

..
..
I
1
i ..
to

.
6-56

\

\

dom_nm

(onoOl

1\~

!'..,

r--.... r-

r- ~ '\.

..

-

To",),

ST1674

ST1673

DIFFUSED T·100
SOLID STATE LAMPS

OPTOElECTRONICS

RED
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED

These solid state indicators offer a variety of color
selection. The High Efficiency Red and Yellow devices
are made with gallium arsenide phosphide on gallium
phosphide. The High Efficiency Green utilizes an
improved gallium phosphide light emitting diode. All are
encapsulated in epoxy packages with diffused lenses.
Their small size, wide viewing angle, and small square
leads contribute to their versatility as all-purpose
indicators.

3.15±O.2

NOTES:
1. ALL DIMENSIONS ARE IN MM.
2. LEAD SPACING IS MEASURED
WHERE THE LEADS EMERGE
FROM THE PACKAGE.
3. PROTRUDED RESIN UNDER
THE FLANGE IS 1.5 mm (0.059")
MAX.

3.:~~O~3

$
I

MV50640
MV5364X
MV5464X/HLMP·15X3
MV5764X/HLMP·130X

• Replacement for the HLMP-1300 and -1500 product
series
• 100 mil lead spacing T-1
• High efficiency GaP light
• Versatile mounting on PC board or panel
• Wide viewing angle
• Diffused tinted lens

\

,

,

-,

ST4020

WMINOUS
INTENSITY
TYPE

MV50640
MV53640
MV53641
MV53642
MV54643
(HLMP-1503)
MV54644
(HLMP-1523)
MV57640
(HLMP-1300)
MV57641
(HLMP-1301)
MV57642
(HLMP-1302)

SOURCE
COLOR

LENS
EFFECT

Standard Red
Yellow

Red Diffused
Yellow Diffused

High Efficiency Green

Green Diffused

High Efficiency Red

at 25°C (mcd)
MIN.

TEST
CONDITIONS

TYp.

0.5
1.0
1.5
2.5

1.5
2.0
3.0
4.5

2.0

5.0

6.0

10.0

1.0

2.0

2.0

2.5

3.0

4.0

}
}

IF =20mA
IF =10 mA

IF =20 mA

Red Diffused

1

IF =10 mA

6-57

DIFFUSED T·100
SOLID STATE LAMPS

OPTOElECTRONICS

SYMBOL

TESTCOND.

max.

typo

UNITS

v

typo

26'h

See Fig. 3

degrees

90

Power dissipation at 25°C ambient ............................ .
85
1.6 mW/oC
Derate linearly from 50°C ..................................... .
Storage and operating temperatures ........................... . -55°C to +100°C
Lead soldering time at 260°C (1/16 inch from body) .............. .
5 sec.
Continuous forward current at 25°C ............................ .
20mA
60mA
Peak forward current (1 }.30

o
o

4

20

40

60

80

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward
10'

V

V

INSTANTANEOuS FORWARD
CURRENT IF/rnA)
C652A

FOWARD VOLTAGE VF (VOLTSl
C1833

0'

V

/

l/

120%

20'

1 1

V!LLdw
HI. EFF.
100%
"#
GREENlf
IQ.

>

i=

60%

40%

N

Wo
Ww

0.6

w:E

0.4

it~

..... r--.

~~

~

::i~ 0.4

0
Z

v

L

0.6

NO:

:Il0:

3.0

Fig. 2. Forward Current vs.
Forward Voltage

/

!o
:E w 0.8

"t:!
........

2.5

1.2

~c
zE 1.2

-0
UlN

2.0

C2206

1.6
1.4

UI

1.5

C2203

Fig. 1. Relative Intensity
vs. Wavelength

!::

1.0

VF-FORWARD VOLTAGE-V

WAVELENGTH-nm

..

0.5

0:0:

10

~!.

V

0.2
0

o

15

10

20

25

30

IDe-DC FORWARD CURRENT -mA

5

10

20

50

100

C2204

Fig. 3. Relative Luminous Intensity
vs. DC Forward Current

200 300

IPEAK-PEAK FORWARD CURRENT-mA
C2207

Fig. 4. Relative Efficiency
vs. Peak Forward Current

40

<

35

....I
zw

30

E

r\ i~ r\

0:
0:

25

0

20

f-- RDJ. ~ 5]40 crw

~

15

I-- RBJA = 689° CfW

0

10

"
0

RDJ.

0:

~ 459'Crw';'

~ ~~
/'

!

r\ '.

"

0:

~\

N

20

40

60

80

100

TA-AMBIENT TEMPEAATURE_oC

C2205

Fig. 5. Maximum Forward DC Current
vs. Ambient Temperature. Derating
Based on TJ MAX = 110°C.

10

tp-PUlSE DURATION-ps
C220B

Fig. 6. Maximum Tolerable Peak Current
vs. Peak Duration (IPEAK MAX Determined
from Temperature Derated loe MAX)

6-65

DOUBLE HETEROJUNCTION AIGaAs
HIGH INTENSITY RED LED LAMPS

OPTOELECTRONICS

\..-li-IH-+++-+-H-+-+--l .6

900LL1:=f.~t:tttlt'$ttt:l

10"20"30°40°50°60°70"80°90°100°

C2209

C2211

Fig. 8. Relative Luminous Intensity
vs. Angular Displacement, HLMP-K101

Fig. 7. Relative Luminous Intensity
vs.
HLMP-D101A

1.0

.8
.6

.4

.2

900LCL=E~=tlt±ttt:lli

10°20°30°40°50°60°70°80°90° 100°
C2210

Fig. 9. Relative Luminous Intensity
vs.
HLMP-D105A

6-66

80°
90°
10"20°30°40°50°60°70°80"90"100°
C2212

Fig. 10. Relative Luminous Intensity
vs.
HLMP-K105

INTEGRATED T·1 RESISTOR LAMPS
5 VOLT and 12 VOLT SERIES

OPTOELECTRONICS

RED MRS060 TINTED/MRS660 UNTINTED
HIGH EFFICIENCY RED MRS760/MRS761 TINTED
YELLOW MRS360/MRS361 TINTED
HIGH EFFICIENCY GREEN MRS460/MRS461 TINTED

This group of T-1 size LED lamps contain integral
resistors. Operation at 5 volts (MR5X60 Part Nos.) or 12
volts (MR5X61 Part Nos.) is possible without the use of
external current limiting resistors. Color tinted, diffused
epoxy packages are used for all the lamps in this group;
with the exception of the MR5660, which is no tint - but
diffused.

3.15±0.2

00.5

Z
~

i j

Z
~

;:

i

~2.54tr

NOTES:
1. ALL DIMENSIONS ARE IN MM.
2. LEAD SPACING IS MEASURED
WHERE THE LEADS EMERGE
FROM THE PACKAGE.
3. PROTRUDED RESIN UNDER
THE FLANGE IS 1.5 mm (0.059")
MAX.

• Integral Current Limiting Resistor
(No external resistor required)
• TTL Compatible
• Operate with 5 Volt & 12 Volt Supplies
• All Colors - Red, HER, Yellow, Green
• Wide Viewing Angle
• Solid-State Reliability

~
3':~~0~3
,

\

\

,

"

ST4020

MR5060
MR5660
MR5760
MR5761
MR5360
MR5361
MR5460
MR5461

Red
Red
High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
.
Green

Red Diffused
Clear Diffused
Red Diffused
Red Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused

6-67

t!ii

INTEGRATED T·1 RESISTOR LAMPS
5 VOLT and 12 VOLT SERIES

OPTOELECTRONICS

Spectral Line
Halfwidth
Forward Current
12V Devices
Forward Current
5VDevices

Forward Current
12VDevices
Forward Current
5VDevices

13

20

36

5.0

DC Forward Voltage
(TA=25°C) ......................... .
Reverse Voltage (I R=1oo pAl ........ .
Operating Temperature Range ....... .
Storage Temperature Range ......... .
Lead Soldering Temperature ......... .

13

7.5 Volts
5 Volts
-40°C to +85°C
-55°C to +100°C

5.0

15 Volts

VF=12V

rnA

VF=5V
IR=100pA

28

20
12

5.0

rnA

5.0

28

15

20

15

5.0

13
10

10

36

IF

IF

20

5.0

5.0

AA1/2

13

nm

40
13

IF

VR

6-68

40

24

IF

VR

Spectral Line
Halfwidth

24

AA1/2

nm
20

15
5.0

7.5 Volts

5 Volts
5 Volts
-40°C to +85°C
-20°C to +85°C
-55°C to +100°C
-55°C to +100°C
.
260°C for 5 seconds

rnA

VF=12V

rnA

VF=5V
IR=100pA

15 Volts
5 Volts
-20°C to +85°C
-55°C to +100°C

INTEGRATED T·1 RESISTOR LAMPS
5 VOLT and 12 VOLT SERIES

OPTOElECTRONICS

1
tiW

24

a:
0::

16

0

12

::J

If

~
a:

12
J>

5

V

8
4

tiW

a:
0::

/

0

0::

1

/

20

24

0

a:

20

/'

16

/

0
0::

8

I

12

4

IV

V

IL'

OW
WCI

:::;~

12

~
a:

I>

8

7.5
6

4

" "'

11.0

1/

~>

2

.J

/V

o
~ 00
o 20 40 60 8085
2 4 6 18 10 12 141 16
18 10 12 141 lIbTS03-03
7.5
15
QT903-04
7.5
15
T. - AMBIENT TEMPERATU~!fS03_~5
Vee - APPLIED FORWARD VOLTAGE - V
Vee - APPLIED FORWARD VOLTAGE - V
Fig. 3. Maximum Allowed Applied Forward
Fig. 2. Forward Current vs. Applied
Fig. 1. Forward Current vs. Applied
Voltage vs. Ambient Temperature
Forward Voltage 12 Volt Devices
Forward Voltage 5 Volt Devices
75°C/W 5 Volt Devices
o0

2

4

C

0::

~

0::>

6

16
15

12'W

12

~~
0

8

.........

Co
0..

~>

4

.}
o
o

80
20

40

60

8085

QT903-06
10-2(f30-4d"5d'60/0-8d90'100"

T. - AMBIENT TEMPERAlURE - C

QTS03-07

Fig. 4. Maximum Allowed Applied Forward
Voltage vs. Ambient Temperature
75°C/W 12 Volt Devices

Fig. 5. Relative Luminous Intensity vs. Angular
Displacement for T-1 Package

2.5

1.5r--.--,.---,,-.---,

2.0
-'
w

1.5

~w

1.0

>

a:

0.5

o

o

/

-'

1.0f--t---t--++---t---j

~

J

~

w

V

a:

HIGH EFFICIENCY
G 7 RED. YELLOW.
GREEN

2

4
6
8
5 VOLT DEVICE

10
QT903-08

Fig. 6. Relative Luminous Intensity vs. Applied
Forward
5 Volt Devices

QTS03-0S

Fig. 7. Relative Luminous Intensity vs. Applied
Forward
12 Volt Devices

6-69

6-70

BICOLORT·1
SOLID STATE LAMPS

OPTOElECTRONICS

HIGH EFFICIENCY GREEN/AlGaAs RED MV6461
HIGH EFFICIENCY RED/AlGaAs RED MV6661

The MV6461 is a White Diffused wide viewing angle, dual
chip, 4-state lamp utilizing Deep Red AIGaAs and High
Efficiency Green AC-driven, the LED lamp appears
Orange. The MV6661 is a Red Diffused, wide viewing
angle bipolar Red (AC) lamp featuring Red AIGaAs and
High Efficiency Red chips.

3.1S±O.2

•
•
•
•
•

Excellent uniformity and visual appeal
Very wide viewing angle for perfect direct view
Increased reliability
Radically improved die-off-center characteristics
Same current for both colors for minimum component
count
• Improved solder heat durability
• 4-state; Green, Red, Orange, OFF. (MV6461)
• 100 mil lead spacing

CAlHOOEQ
RED

NOTES:
1. ALL DIMENSIONS ARE IN MM.
2. LEAD SPACING IS MEASURED WHERE THE LEADS EMERGE FROM THE PACKAGE.
3. PROTRUDED RESIN UNDER THE FLANGE IS 1.5 mm (0.059'1 MAX.

6-71

r!li

BICOLORT·1
SOLID STATE LAMPS

OPTOELECTRONICS

mW
mA
mA

5
seconds
-55°C to +100°C

-20°

_10°

O·

10°

20·

C1827

Fig. 1. Spatial Distribution

6-72

2

3

TAPERED PACKAGE T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

STANDARD RED MV502XA

The MV502X Series of solid state indicators is made with
gallium arsenide phosphide light emitting diodes.
Encapsulation and lens is epoxy. Various lens effects are
available for many indicator applications.
A

.185 DIA. (4.70mm)

• Tapered barrel T-1%
• High Intensity Red light source with various lens colors
and effects
• T-1 % with stand-off
• Versatile mounting on PC board or panel
• Snap in panel mounting clip available (See MP22 for
clip detail)

CATHODE
INDEX NOTCH

.030
(0.76mm)

±'[:
.450 (11.43mm)

TOP VIEW

1.00 (25.4mm)-1

TYPE

MV5021A
MV5022A
MV5023A
MV5024A
MV5025A
MV5026A

C599

A

B

C

D

E&F

SOURCE
COLOR

LENS
COLOR

LENS
EFFECT

POP-IN
MOUNTING

CIRCUIT
BOARD
MOUNTING

.340
.340
.340
.340
.340
.340

.190
.190
.190
.160
.160
.160

.100
.100
.100
.130
.130
.130

.040
.040
.040
.040
.040
.040

.020
.020
.020
.020
.020
.020

Red
Red
Red
Red
Red
Red

White Diffused
Transparent Red
Red Diffused
Red Diffused
Red Diffused
Dark Red Diffused

Soft
Point
Soft
Soft
Flooded
Flooded

X
X
X
X
X
X

X
X
X
X
X
X
6-73

OPTOElECTRONICS

TAPERED PACKAGE T·1%
SOLID STATE LAMPS

Power dissipation at 25°C ambient ............................................................................. 180 mW
Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 mW/oC
Storage and operating temperatures ................................................................... -55°C to +100°C
Lead soldering time at 260°C (See Note 1) ........................................................................ 5 sec.
Continuous forward current at 25°C ............................................................................. 100 mA
Peak forward current (1 !£Sec pulse, 0.3% duty cycle) ................................................................ 1.0 A
Reverse voltage ................................................................................................ 5.0 V

1. The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch (1.6 mm) from the body of the device per
MIL-S-750, with a dwell time of 5 seconds.

6-74

TAPERED PACKAGE T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

100
140%

!; 120%
Il.

I-

:::>

o

~100"ti

f=

c(
..J
W

II: 80%
;¥

\

~

c(

I\.

I
I
I
7
I

90

.s 80

'"

;: 70

aJa::

~

§
~

""-

60
50

I
I

40

II:

~ 30
a:: 20

'".......

!2

~

I

10

I

./

o

60%
-60 -40 -20 0
20 40 60
TEMPERATURE - °C

2
FORWARD VOLTAGE VF (VOLTS)

80 100
C654A

Cl832
Fig. 2. Forward Current vs.
Forward Voltage

Fig. 1. Output vs. Temperature
3.0 ,--"'T""-""T'"---,-----r--,-----,
CONSTANT DUTY CYCLE = 0.3%
l"SEC
~

30"

2.5 f---f---+--f--+--F--l---I

I

a:
~

2.0 f---f---+--h~+----l---I
40"

o

Il.

~ 1.51-----+--+~~~-+_-+-_I

....OJ

o

~

50"

1.0 1-----+--:iIII~'----f--+_-+-_I
60"

t(

~

a:

70"

.5

MV5020A
0.2
0.4
0.6
0.8
1.0
PEAK FORWARD CURRENT - AMPS

80"

tt:tt±p~~ti±f:::Ij 90'

1.2

0.6 0.5 0.4 0,3 0.2 0.1

C606A

Fig. 3. Radiated Output Power vs.
Peak Forward Current

C607

Fig. 4. Spatial Distribution

40

....-

I

>3 0

t-

en
z
w

1/

t-

~2

0

(/)

:J

o
z
:i 1 0
:::>

o

V

o

1/

17

w

V

V

~

M

M

INSTANTANEOUS FORWARD
CURRENT 1,(mA)
C652A

Fig. 5. Luminous Intensity vs. Forward Current

6-75

6-76

BULLET PROFILE T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

STANDARD RED MV50152/4
YELLOW MV53152/4

FLAT DENOTES

CATHODE

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE .010 INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .040" (1 mm)
DOWN THE LEADS

MV50152
MV50154
MV53152
MV53154
MV54152
MV54154
MV57152
MV57154

Standard Red
Standard red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
High Efficiency Red

HIGH EFFICIENCY GREEN MV54152/4
HIGH EFFICIENCY RED MV57152/4

These solid state indicators offer a variety of lens effects
and color availability in a short barrel T-1% package. The
High Efficiency Red, High Efficiency Green and Yellow
devices are made with gallium phosphide.

• High intensity light source with two lens effects
• Red, High Efficiency Red, High Efficiency Red, High
Efficiency Green and Yellow colors available
• Versatile mounting on PC board or panel
• Long life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight
• High efficiency
• MV5X154 diffused, MV5X152 non-diffused
• Short T-1 % size

Red Clear
Red Lightly Diffused
Amber Clear
Amber Lightly Diffused
Green Clear
Green Lightly Diffused
Orange Clear
Orange Lightly Diffused

Point Source
Soft Point Source
Point Source
Soft Point Source
Point Source
Soft Point Source
Point Source
Soft Point Source

6-77

BULLET PROFILE T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

PARAMETER

SYMBOL

TEST
CONDo

UNITS

50152 50154 53152 53154 54152 54154 57152 57154

Forward voltage

typo
max.

VF

IF=10 mA
IF=10 mA

V

1.6
2.0

1.6
2.0

2.1
3.0

2.1
3.0

2.2
3.0

2.2
3.0

2.0
3.0

2.0
3.0

Luminous Intensity

min.
typo

Iv

IF =10 mA
1.=10 mA

mcd
mcd

0.6
2.0

0.4
1.5

3.0
10.

1.5
8.0

2.5
15.0

2.0
12.0

4.0
10.0

2.0

B.O

Power dissipation (MV5015X) .................................................................................. 180 mW
Power dissipation (MV5315X=85 mW) .......................................................................... 105 mW
Derate linearly from 25°C (MV5015X) ......................................................................... 2.0 mW/oC
Deratelinealyfrom25°C ................................................................................... 1.14mW/oC
Storage and operating temperatures ................................................................... -55°C to +100°C
Lead soldering time at 260°C (See Note 2) ........................................................................ 5 sec.
Continuous forward current (MV5015X) .......................................................................... 100 mA
Continuous forward current (MV5315X=20 mAl ................................................................... 35 mA
Peak forward current (1/Lsec pulse, 0.3% duty cycle) (MV5415X=90 mAl (MV5315X=60 mAl .............................. 1.0 A
Reverse
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 V

1. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
2. The leads of the device were immersed in molten solder at 260°C to a pOint 1/16 inch (1.6 mm) from the body of the device per
MIL-Sd-750, with a dwell time of 5 seconds.

6-78

BULLET PROFILE T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

40

100r-~~~~~r-----~rT'-'

~

DOTTED LINES
!/ I
90 INDICATE
I
I I
PULSED
.l,
80 OPERATIION-- iELLOW I i I

z

70~--~~--~~~~~--~

«

.s
~

f-ii

HI EFF..-!-/~/+____--1

60

§
() 50

STANDARD
RED

II I
I
iiI

RED

>

30~---4--~-+'~=--+----~

III

~ 20

:t

10

o

r--

'(f

hV
..LI1/
2

;/

Z
w

,....
~

40~----~~~~~~+---~

12

e;,
20

(j)

Cl
~

~

..--

I

> 30

l-

HI EFF.
GRIEEN-

~

o
z

:;; 1

a

~
~

V

3

o
o

4

V

/
20

./

V
40

60

80

INSTANTANEOuS FORWARD
CURRENT (r(mA)
C652A

FOWARD VOLTAGE VF (VOLTS)

C1833

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward

UJ

>

~

40%

...J

UJ
~

C1358

Fig. 3. Spatial Distribution (Note 1)

20%

I---'l--+t-t--'w-tt-tt-'I+----Ir-i

WAVELENGTH (A) - nm

Cl064A

4. Spectral Distribution

6-79

6-80

SECOND SOURCE T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

HIGH EFF. RED HLMP·3300 HIGH EFF. RED HLMp·3315
HIGH EFF. RED HLMP·3301 HIGH EFF. RED HLMP·3316
STANDARD RED FLV110

Direct replacements for popular T-1 % lamps from
Fairchild and Hewlett-Packard. The FLV11 0 is a Standard
Red Lamp with a low profile (.285 inch) lens. HLMP-33XX
parts are High Efficiency Red with a standard T-1 %
package.

SEE
BELOW

Lr'--+----li~

FLV110, HLMP-3300 and HLMP-3301 are diffused.
01850 (0.45 mm) NOMINAL

.040

HLMP-3315 and HLMP-3316 are non-diffused.

L--....--I-r1--'-_~1 (1.02)

.050
(1.27)
NOM.

I

,
j

I I
I

I

1.00 (2.54) MIN.
NOTES,

I

1. ALL DIMENSIONS ARE IN INCHES (mm)

I

2.

L - ':--L
I
~
I

, -

050 (1 27)
',100 (2',54)

~~~~~~;gES ARE ±.010· INCH UNLESS

3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040. (1 mm) DOWN THE LEADS
4. DIMENSION X.
PACKAGE HEIGHT HLMP=.330 (8.38)/.350 (8.89)

FLV
5. FLV FLANGE HEIGHT

=.275 (6.98)/.295 (7.49)

=g:g:g g:~~~

C1062M

• Replace Fairchild and Hewlett-Packard devices
• Popular, general purpose lamps
• Wide and narrow viewing angle devices for direct view
or backlighting
• Solid state reliability
• Sturdy leads for easier assembly

6-81

SECOND SOURCE T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

min.
typo

mcd
mcd

IF =10 rnA
IF =10 rnA

2.0
1.6

V
V

IF =10mA
IF =10mA

IR=100pA

Iv
VF

Reverse breakdown
voltage

min.

VBR

5

5

5

5

5

V

Total viewing angle
between half Luminous
Intensity Points

typo

28'h

65

65

35

35

70

degrees

*For FLV110 Test IF=2O rnA

Power dissipation ............................................................................................ 135 mW
Derate linearly from 25°C ................................................................................... 1.8 mWrC
Storage and operating temperatures ................................................................... -55°C to +100°C
Lead soldering time @ 260°C (See Note 1) ........................................................................ 5 sec.
Continuous forward current .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 rnA
Peak forward current (1l'sec pulse, 0.3% duty cycle) (FLV110 1 amp) ................................................. 90 rnA
Reverse
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.0 V

6-82

SECOND SOURCE T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

100

DOTTED LINES

<"
9o INDICATE
E
PULSED
:; 8o OPERA T1ION

!zw
lE

70
60

:::l

U 50

o

II:

30

~

20

~

10

..:

I

I

o

120%

I

I HI EFF.J
RED I

:J

STANDARD
RED

...t-

80%

0

60%

>
«>=

40%

t-

I

In

I

...J
W

J

II

a:

/

..J../

20%

2

3

4

RED

J

I\

:J

w

~JD.

HLEFk
RED

100%
>fI
I

40

o~

u.

I

)

o

J

\

V \ 1\

520 540 560 580 600 620 640 660 680 690

FOWARD VOLTAGE VF (VOLTS)
C1833B

WAVELENGTH (AI - nm

Cl064F

Fig. 2. Spectral Distribution

Fig. 1. Forward Current vs.
Forward Voltage
2

>-

fCi)

~

Z
w
fZ
;;:;1.5

\

U)

~

>

t=
..:
...J
w

II:

0.
0.

g

~

'"

o

r--.,~

W
II:

u.

"- t'-10
IF

",-.

40
20
DUTY CYCLE - %
10 rnA AVERAGE

DC
C1194B

Fig. 3. Luminous Intensity vs.
Duty Cycle

6-83

6-84

ULTRABRIGHT T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

ULTRABRIGHT

HLMP·3XSOA SERIES
MV3XSOA SERIES

The Ultrabright HLMP-3X50A Series are direct, pin-for-pin
replacements for the Hewlett-Packard devices with the
same part numbers.
HLMP-3X50A in High Efficiency Red, Yellow and High
Efficiency Green are very narrow viewing angle Clear
lamps in a standard T-1% package .

.-£--+--1-.--1

0.055 (1.40)

0.045 (1.15)

By using more efficient LED chips, these lamps are
superior in Luminous Intensity compared to other lamps.

.023 (0.51) sa TYP.

040
,(1.02)

Lamps have Pale Tinted package to aid identification.

NOTES,
1, TOLERANCES, UNLESS
OTHERWISE SPECIFIED,
.XXX±.010

2. ALL DjMENSIONS IN
INCHES (MILLIMETERS)
.050 (1.27) NOM.

•
•
•
•
•
•

.050 (1.27)
.100 (2.54)
NOM.
C1062H

HLMP-3X50A

rf'::::::::

REF.
(2.54)
.100

r:

-,
"

FLAT DENOTES
CATHODE

.350 (S.S9)

L

.330 (s.3S)

r--+---1~
.040
--1(1.02)

.050

I I

27
(R'·E F.)

I,'

~

J

'I

I

_1_

• Yellow
HLMP-3850A
MV3350A

.017 (0.43) SQ .
.023 (0.58)

1.00 (25.4) MIN.

I

I--l

'~
_

Minimum 80 mcd
All three colors
Pale Tint avoids mix problems
Sturdy leads with or without stand-off on T-1 %
Excellent for small area backlighting
High Efficiency Red
HLMP-3750A
MV3750A
• High Efficiency Green
HLMP-3950A
MV3450A

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS

.050 (1.27)
.100 (2.54)
C1062F

MV3X50A

6-85

ULTRABRIGHT T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

Reverse breakdown
voltage
Total viewing angle
between half Luminous
Intensity points

min.

BVR

5

5

5

28'h

24

24

24

V

IR=100 JJA

85
60

20
20
5

2
3

-55to+100°C

1. For High Efficiency Red and High Efficiency Green, derate power linearly from 25°C at 1.8 mW/oC. For Yellow derate power
linearly from 50°C at 1.6 mW/oC.
2. For High Efficiency Red and High Efficiency Green derate linearly from 50°C at 0.5 mA;oC. For Yellow derate linearly from 50°C at
0.2mA/oC.
3. To a point of minimum 1/16 inch (1.6 mm) from the bottom of the lamp.

6-86

ULTRABRIGHT T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

3.0

e(

E 40~-+--r-~--~~~--~~
I

!z

w
a:
a:

ao

/

>

1--

,,'

~~
wo
f,o",

,

~Il 2.0
en'!!'

30,1----+--t-+~hA-

:ll-

,

Oe(

201----+--t-~~~~~~~~

zo
w
:ii
:l~
....1....1

we( 1.0

a:

~ 101----+~~~~~4-_4--+_~
a:
ou.
O~~~

>::!i
-a:
1-0

/

:Sz

/

"

/

/

w~

a:

__~~__L_-L-J~

0

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
FORWARD VOLTAGE (VF) - VOLTS
C1063D

./
10
20
30
40
50
60
IF - FORWARD CURRENT - rnA
C1792

Fig. 2. Relative Luminous Intensity vs.
DC Forward Current

Fig. 1. Forward Voltage/
Forward Current

>-

fw_

/

Z« 3.0
WE

~~

~~
Oc 2.0

zw

~~

--'«
LJ.J::;;

>a:
- 0 1.0

~6
LJ.J

a:

V

V

V

"#

~ 80%r=~~+-~~~~~~~~
a.

:l

~ 6O%1----+~~~~H_~~~~_4

o
w

>

~
w

40%r--+~~~~~~~~4-~

a:

O~LL~

10
20
30
FORWARD CURRENT (IF)-rnA
C1563A
Distribution

__~-U~~L-~~

520 540 560 580 600 620 640 660 680
WAVELENGTH (A) -

nm

Cl064C

Fig. 4. Spectral Distribution

6-87

6-88

STANDARD RED T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

MV5052
MV5053/6053

NOM.

(~.~)
.230
(5.84)

__ I _, I FUIT DENOTES
/1'1 : I" ,,-CATHODE
\

.350 (8.89)

.=[

~
t:;:;::t;:j - t

t-

-1

I

....

I

I

--:~ . ,,/

• Standard Red light source with various lens colors and
effects
• Versatile mounting on PC board or panel
• Snap in mounting grommet MP52
• Long life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight

I .050 (1.27) NOM.

.100 (2.54) NOM.
.050 (1.27)

MV5052
MV5053*
MV5054A-1
MV5054A-2
MV5054A-3
MV5055
*MV6053 - Anode

The MV505X Series of industry standard solid state
indicators is made with gallium arsenide phosphide light
emitting diodes encapsulated in epoxy lenses. Various
lens effects give different design possibilities.

· f r · -G.

ii'j··

-l~

MV5054A·1/2/3
MV5055

6C2201

Standard
Standard
Standard
Standard
Standard
Standard

Red
Red
Red
Red
Red
Red

Red Tint
Red Diffused
Red Diffused
Red Diffused
Red Diffused
Red Diffused

Point Source
Wide Beam
Narrow Beam
Narrow Beam
Narrow Beam
Very Wide Beam

Backlighting
Direct View
Direct View
Direct View
Direct View
Direct View

also available.

6-89

STANDARD RED T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

5052

6053
5053

iF=20mA
IF=10mA

0.7

0.5

Forward voltage
VFmcd

IF=20 mA
IF=10 mA

2.2

Peak wavelengths
Aptypical

IF=20 mA

660

Spectral line
half width typical

IF=20 mA

Capacitance
typical
Reverse current
IRmax.

PARAMETER

TESTCOND.

Luminous Intensity
Iv min.

Viewing angle
typical, See Figures

5054A·1

5054A·2

5054A·3

5055

UNIT

0.1

mcd
mcd

2.2

V
V

1.0

2.0

3.0

2.2

2.2

2.2

660

660

660

660

660

nm

20

20

20

20

20

20

nm

V=O
f=1 MHz

30

30

30

30

30

30

pF

VR=5.0V

100

100

100

100

100

100

!lA

72

80

24

24

24

150

degrees

2.2

Power dissipation ............................................................................................ 180 mW
Derate linearly from 25° .................................................................................... 2.0 mW/o C
Storage and operating temperatures ................................................................... -55°C to +100°C
Lead soldering time at 260°C (See Note 2) ........................................................................ 5 sec.
Continuous forward current .................................................................................... 100 mA
Peak forward current (1l-'sec pulse, 0.3% duty cycle) ................................................................ 1.0 A
Reverse voltage ................................................................................................ 5.0 V

1. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
2. The leads of the device were immersed in molten solder at 260°C to a point 06{1.6 mm) from the body of the device per
MIL·S-750, with a dwell time of 5 seconds.

6-90

STANDARD RED T·10/4
SOLID STATE LAMPS

OPTOELECTRONICS

40

100

I
I
I

_90
30

>-

~20

(/)

:::J

o
z
:i 1 0

I
I

:::J

o~

o

o

2

20

C1832

~

l-

140%

\

e;;
Z

w

I-

Z

;:u 1.5

~

>
i=

~120'1c,
a.

I-

:::J

~

«...J

o
d
w

,~

II:

LL

w
II:

I'-. .......
20

10
IF

,

~100'1c

i=

\

" "-

60

80

~

«
...J
w

~

""......

,

80'Ic

r--....

~i'1-DC

40

DUTY CYCLE - %
10 rnA AVERAGE

Cl1948

Fig. 3. Luminous Intensity vs. Duty Cycle

I-

40

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage

>

/

INSTANTANEOUS FORWARD
CURRENT IFlmA)
C652A

FORWARD VOLTAGE VF (VOLTSl

2

V

V

V

/'

60%
-60 -40 -20 0 20 40
TEMPERA TURE -

60
0

C

"

80

100

C654A

Fig. 4. Output vs. Temperature

100% 1--+---+-:3.:---+----+---1

:::J

g: 80% I--+--++--+-~r+--+-___l

:::J

o

~60%I_-+---~-+-~-__+-_l

~

m 40%r--+--+~-~-_+~_4-~

a:

3 0
iii
zw
....

:;2 0
::;)

o
z

1/j,'HIGH
EFFICIENCY
GrEEN

~

rll

20

..J

V

7h

o

2

10

::l

7- r7

L1i
c.. 10

V

en

//'

30

~

I

VI

II

U 50

~

/ll

HIGH ............ "
EFFICIENCY I
RED "

~ 60

IL
lI(

4 0

1

100

3

o
o

4

FOWARD VOLTAGE Vr (VOLTS)
Cl831C

17

V

1/

1/

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA)
C652A

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage
MV5454

1OO%I-+---l~hri!~___+--l----1
30'
100%

>00

90%

UJ

80%

~

70%

I-

Z

~ 80%~~~~-l~~-4~~~r-~
::J
40'

50'

>

~

...J
UJ

a..

~ 60%,~~-,H--#~~~--~~~~

o

IUJ

#-

60'

60%

70'

a:

80'

w
> 40%1--+~~4-~~+-~~~

~

w
a:
O~~LL~~~JL-L~~

520 540 560 580 600 620 640 660 680
Cl066A

Fig. 3. Spatial Distribution

1)

WAVELENGTH (A) - nm C1064C
Distribution

6-95

6-96

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPT 0ElEe TRON I CS

SUPER RED MV81 02 CLEAR
SUPER RED MV81 03 CLEAR
SUPER RED MV81 04 CLEAR

These T-1 % super bright LEOs have a narrow 20° viewing
angle for concentrated light output. The MV81 01 /2/3/4
are made with GaAlAs LEOs on a GaAlAs substrate. They
are all encapsulated in an epoxy package and have water
clear lenses.

i
!

L I! I

26.4 MIN

~

Ii ' - . 1

! --:

Outstanding material efficiency
Popular T-1 % package
Low drive current
Solid state reliability
Super high brightness suitable for outdoors
applications
• Standard 1 mil. lead spacing

•
•
•
•
•

1.00 MIN

~2.54~
FLAT DENOTES

ST1760

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE
LEADS EMERGE FROM THE PACKAGE
3. PROTRUDED RESIN UNDER FLANGE
IS 1.5 mm (0.059") MAX.

DC forward current (I,) ........................................................................... 40 mA
Operating temperature range ............................................................. -40°C to +85°
Storage temperature range ............................................................ - 40°C to + 100°C
Lead soldering time ................................................................. 5 seconds @2600e
(at 'lis inch from bottom of lamp)
Peak forward current ........................................................................... 200 mA
(at f= 1.0 KHz, Duty factor = 1/10)
Power dissipation (Pd) ......................................................................... 110 mW
Recommended
current
.......................................................... 20 mA

6-97

SUPER BRIGHT T·1% (5 MM)
LED LAMPS

OPTOELECTRONICS

250

630
1000

1.8

/

V

v

1~0

......

..... .......

/
./

~
0

1

0

/

o

5

10

15

20

25

30

5

Fig. 1. Relative Luminous Intensity
vs. DC Forward Current

'0

50

20

100

200 300

1__ - PEAK FORWARO CURRENT -lOA

I .. - DC FORWARO CURRENT -';'A

8T1002

8T1761

Fig. 2. Relative Efficiency vs.
Peak Foreward Current

.....

..
..' 300

c

I

30

~..

25

~

20

i~.

\ 1\\

-

50

6
0

E Z40
I 220
200

o

f-Rf", .... ~ \
I I I I ~ \\
f-i"'j67ii v ~ :\
r:IW-

./

~

'r'Ai'f'1'20

10

10

TA - AMBIENT TEMPERATURE -

100

·c

!i
II!
G

.

IIi!
.~

7

I
I

110
110
1~

·T

120
1ao
10
10

..

I

40
20

00

~I

7
0.&

1.0

U

z.o

3.0

2.5

v. - FORWARO WLTAGE -

V

Fig. 4. Forward Current vs.
Forward Voltage

6-98

3.6

8T1763

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

10
I

~II

7
6

~

1\

4

l\

\

~

~

II

10

\

~;

.
III~I~I Ii ~I
~

1

1.0,.---.----_---,-----,

~llll

9

100

o.sl--+--+I-\---+--i

.. 1\ ~,

1000

tp - PULSE DUR ....ION -,..

10.000

ST1765

'"

71'

WAVELENGTH - nm

ST1766

Fig. 6. Relative Intensity
vs. Wavelength

Fig. 5. Maximum Peak Current
vs. Pulse Duration

Fig. 7. Relative Luminous Intensity
vs. Angular Displacement

6-99

6-100

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOElECTRONICS

SUPER RED MV8111 CLEAR
SUPER RED MV8112 CLEAR
SUPER RED MV8113 CLEAR
SUPER RED MV8114 CLEAR

These T-1 % super bright LEOs have a narrow 12° viewing
angle for concentrated light output. The MV8111 is made
with a GaAlAs/GaAs LED and the MV8112/3/4 are made
with GaAlAs LEOs on a GaAlAs substrate. They are all
encapsulated in an epoxy package and have water clear
lenses.

rt°~Or
!

8.6 ±0.3

!

tr:::;;+;::;::J={:1.0 MAX

L

26·4MIN

lii-,
I

::

~2.5j~

1.0 MIN

•
•
•
•
•

Popular T-1 % package
Low drive current
Solid state reliability
Super high brightness suitable for outdoor application
Standard 1 mil. lead spacing

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE LEADS EMERGE
FROM THE PACKAGE
3. PROTRUDED RESIN UNDER FLANGE 1.5 mm (0.059") MAX

DC forward current (I,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 mA
Operating temperature range ........................................................................... -40°C to +85°
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to + 100°C
Lead soldering time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 seconds @ 260°C
(at \11. inch from bottom of lamp)
Peak forward current (I,) ....................................................................................... 200 mA
(at f= 1.0 KHz, Duty factor= 1/1 O)
Power dissipation (Pd) ........................................................................................ 110 mW
Recommended operating current (I, Rec) ......................................................................... 20 mA

6-101

[!ij

SUPER BRIGHT T·1% (5 MM)

LED LAMPS

OPTOELECTRONICS

370

250
630
1000
1600

iF =20mA
iF =20mA
iF =20mA
iF =20mA

mcd
mcd
mcd
mcd

940
1500
2400

..

/
/~

V

/

...

1.0

.....

i'

/

V

oV

10

211

15

0

30

Z6

10

50

20

100

200 300

In. ... - PEAK FORWARD CURRENT - tnA

I .. - DC FORWARD CURR.ENT - mA

ST1774

ST1775

Fig. 2. Relative Efficiency VB.
Peak Foreward Current

Fig. 1. Relative Luminous Intensity
VB. DC Forward Current
300

1I

30

~

Z6

i

I
I

20

1
-

510

5
0

'220

1\ \\
I III

i ri

~

o

'"

..

~

~U.i-r'140

'"

./ ~ \

r-jJ. 5

20

~

~~
. / ~ \'.

I-II6J. ~_CIW

80

I

·280
280
2-40

80

100

T. _ AMBIENT TEMPERATURE - ·C

200
180

I
I
I
I

'80
140
120

I':
~

10
40
20
0

I
o.s

.J
1.0 .

1.5

2.0

2.5

\t, _ FORWARD VOLTAGE -

3.0

Fig. 4. Forward Current VB.
Forward Voltage

6-102

3.5

V

ST1777

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

10

\

l;1I

7

6

l\

1\

\~

.

~1

~

31-

1\

2

1

1 . 0 r - - - , - - - -.....- - - - , - - - - ,

;11111

••

..1\

~I

~1

i~ Ii ~
100

10

1000

... _ PULSE DURATION -

0.51---l----I+-+--f------i

os

10.000

no

710
WAVELENGTH - nm

ST1778

ST1779

Fig. 6. Relative Intensity
vs. Wavelength

Fig. 5. Maximum Peak Current
vs. Pulse Duration

1.0
G.I

i

.~
:::>

0.'
0.7
0.6

0.5

I

11.4

5

G.2

!:!

"'

0:

G.3

G.1

t...-

"to..

~r~~~ww~~w~w~www~~ww~

e_ANGLE FRDM OPTICAl. CENTERLINE - DEGREES (CONE HALF ANGLE)

ST1780

Fig. 7. Relative Luminous Intensity
vs. Angular Displacement

6-103

6-104

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOElHTRONICS

SUPER RED MV8132 CLEAR
SUPER RED MV8133 CLEAR
SUPER YELLOW MV8332 CLEAR
SUPER YELLOW MV8333 CLEAR

ri°;or

'f

L

26.4MIN

I

J.
. 1 . 0 MAX

I
I

These T-1% super bright LEDs have a moderate 30°
viewing angle. The MV8332/3 are made with an InGaA1P
LED on a GaAs substrate and the MV8132/3 are made
with a GaAlAs LED on a GaAlAs substrate. They are
encapsulated in an epoxy package and have water clear
lenses.

I

•
•
•
•

I

! !
i : i ---I.
J.
I I

:,

+i2.5J~

1.0MIN

Popular T-1% package
Low drive current
Solid state reliability
Super high brightness suitable for outdoors
applicatons
• Outstanding material efficiency

FLAT DENOTES
CATHODE

ST1743

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. LEAD SPACING IS MEASURED WHERE
THE LEADS EMERGE FROM THE PACKAGE.
3. PROTRUDED RESIN UNDER THE FLANGE
IS 1.5 mm (0.059") MAX.

DC forward current (If)
MV813X ..................................................................................... 40 mA
MV833X ..................................................................................... 30 mA
Operating temperature range ........................................................... -40°C to +85°C
Storage temperature range ............................................................ -40°C to +100°C
Lead soldering time (at )1,. inch from the bottom of lamp) ................................. 5 seconds @ 260°C
Peak forward current {If) (at f=1.0 KHz, Duty factor= 1/10)
MV813X .................................................................................... 200 mA
MV813X ..................................................................................... 160 mA
Power dissipation (P d)
MV813X .................................................................................... 110 mW
MV813X ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 mW
Recommended
.......................................................... 20 mA
6-105

SUPER BRIGHT T.1%(5 mm)
LED LAMPS

OPTOElECTRONICS

IF=20 mA

Luminous intensity (mcd)
minimum
typical
maximum

630
940

1000
1500

630
940

1000
1500

1.5
1.7
2.4

1.5
1.7
2.4

1.7
2.1
2.8

1.7
2.1
2.8

IF=20 mA

Forward voltage (VF)
minimum
typical
maximum

MV813X
0'

10'

20"

100"10

(

r\
II \

I-

:::>

~800/0

:::>

o

~ 60"10

~

J

u:l40"10

a::

20"10
0"10

/

630 640

650

660

1()()%

90%

Z

\

/

#-

>iii
I-

~

80%

w

70%

~

60%

?;

>

\

670

...J
W

a::

"

660 690

WAVELENGTH - A - nm

50% 40% 30% 20% 10%
C620A

C618

Figure 2. Relative Luminous Intensity vs.
Angular Displacement

Figure 1. Relative Intensity vs. Wavelength

3C1O
280

11

...
z

e

0:

::0
U

0

'.8

>-

t:
z

200
220
200

,
,

.eo

,...

0:

100
120
180

1

60

0:

;1

~I:

i!c
ifa

::o!:!
......
OC

II

!!II

.. .
2

~~

eo

,

20

•o

e
0

z

J
D.5

1.0

1.5

2.0

1.2

/

1.0

2.5

3.0

Figure 3. Forward Current vs.
Forward

3.5

ST1646

V

h
51:
~tc

/

o.a

~!!I
5~

....
.. ::I

V

G.4

oV
o

....

o.a

..... ~

0.8

G.4

10

~!.

V

CU

1.0

"0

~

0.8

::I-

V,-FORWMDIIOLTAGE-V

6-106

•.2

. ...
I!!j

260

CU
0
10

15

20

25

'oc-DCFORWAIIDCURRENT-mA

Figure 4. Relative Luminous Intensity
vs. DC Forward Current

30

ST1647

5

10

20

50

180

200 300

IHAIt-PEAK FORWARD CURRENT-mA

ST1648

Figure 5. Relative Efficiency vs.
Peak Forward Current

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

MV833X
1.0

2.5
50

.
!

1

45

Ii:

CO

i

I

w

~

0.5

a:
a:

w

35

a

30

0

2S

i

211

a:

w

a:

R8J.A •• 12 '"CiW/

1.5

"'i
~i
w

1.0

i,,!:I51

\.\
,'.
I\,

a:

o

10 20 30 CO 50 60 70

eo

o.s
0.0

90 100

/

/

o

17
1/
1/
. 20

1~

30

co

50

IF - DC FORWARD CURRENT - mit.

8T1751

Fig. 2. Maximum Forward DC Current
vs. Ambient Temperature
Derating based on TjMax = 110°

Fig. 3. Relative Luminous Intensity
vs. DC Forward Current

r---r--,----,--...--.-....,..,.---....

.......

I

)

~ r-

~

iIi! 10~m
i!

J..

!l~

if!

'.

'E

'2

2.0

T" - AMBIENT TEMPERATURE -"c 8T175O

8T1749

Fig. 1. Relative Intensity
vs. Wavelength

.

\V

I V t\.

I

i:c
we

10

o

200

R....". 618 ·CiW /

.,

IS

~

~-W"VELENGTH-nm

I\.
I

"'I011I1Z/

-

,L1CHz1

~

.........

........ '

t--t--r.--+--f1f-+-II--:--I

0.5~~~~~~~~~~~

,. 0

0.5

,1.0, 1.5

2.0

2.5

o

3-D .3.5

VF-FORWARDVOLTAGE-V

8T1752

so

1011

ISO

~
200

IPEAII-, PEAK FORWARD CUAf!ENT _ mA

Fig. 4. Forward Current vs.
Forward Voltage

8T1753

Fig. 5. Maximum Average Current
vs. Foreward Current

1.0

,

1\

I \

II
"

II
j

V
1/

o

1\
..

~

\

I'

~w.~wrwwwwrwww.rr~ww~

• - ANGLE

_'OPnc:AL CENIEIiuNe - DEGREES
(COile HALF ANGIR) 8T1754
, ,.' . . .

Fig. 6. Relative Luminous Intensity
vs. Angular Displacement

6-107

6-108

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

SUPER RED MV8140 CLEAR SUPER RED MV8190 DIFFUSED
SUPER RED MV8141 CLEAR SUPER RED MV8191 DIFFUSED

-'

These T-1% super bright LEOs have a moderate 40° or
45° viewing angle. The MV8190/1 are 40° and the
MV8140/1 are 45°. All are made with GaA1As LEOs on a
GaA1As substrate. They are encapsulated in an epoxy
package. The MV8140/1 have a water clear lens while the
MV8190/1 have a red diffused lens.

e:;:;:!:;;:;:i -.1.0 ± 0.2

L

26· 4MIN

IIII
!!i i!--.t
i
I-I

I

1.00 MIN

~2.54~

•
•
•
•
•
•

Outstanding material efficiency.
PopularT-1% package.
Low drive current.
Solid state reliability.
Super high brightness.
Standard 1 mil. lead spacing.

NOTES:
1. ALL DIMENSIONS ARE IN MM.
2. LEAD SPACING IS MEASURED WHERE THE LEADS EMERGE FROM THE PACKAGE.
3. PROTRUDED RESIN UNDER THE FLANGE IS 1.5 mm (0.059") MAX.

DC forward current (I,) ........................................................................... 40 mA
Operating temperature range ........................................................... -40°C to +85°C
Storage temperature range ............................................................ -40°C to +100°C
Lead soldering time ................................................................. 5 seconds@260°C
(at Vi. inch from the bottom of lamp)
Peak forward current (I,) ........................................................................ 200 mA
(at f=1.0 KHz, Duty factor= 1/10)
Power dissipation (Pd) .......................................................................... 110 mW
Recommended
current
.......................................................... 20 mA

6-109

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOElECTRONICS

Luminous intensity (mcd)
minimum
typical
maximum

i.=20mA
63
100

120
220

100
200

Forward voltage (V.)
minimum
typical
maximum

1.=20 mA
1.5
1.7
2.4

2110

V-

/

100

c

250
370

1.4
1.2

E

<

50

!zw

~

I

a:
a:

I

20

~
c
a:

I

10

...~

.

!(

fa

1.0

::;

"

0.6

)t'

::E

5

a:

~

.!!-

004
0.2

1

/

0.8

N

o

0.5

1.0

1.5

2.0

VFO FORWARD VOLTAGE

2.5
0

3.0

/

V

V

10

15

-

!Ii...

25

Fig. 2. Relative Luminous Intensity vs.
Forward Current

10
9
8
7

a:
a:

;;)

u

20

iIi!

16

ca:

I
0!-

Rs, -A • 659'CMI
- Rs'_A • 514'CMI
R" -A • 8B9' CMI-

6
5

I\. '. l'.
r- ~

r,

'\ r~,

10

\

3

TA - AMBIENT TEMPERATURE -

'c

ST1641

1

,

1\

l!1

~
~

t

I\~
~
~
..1\ ~'
~~ ~ ~I

,

2

20 30 40 60 60 70 80 90 100 110

..

,'III

~

S

00

\

4

~\

10

30

DC FORWARD CURRENT - mA

40

30

25

20

ST1640
I DC

35
I

/

ST1639

v

Fig. 1. Forward Current vs.
Forward

1

V

10

100

1000

10.000

tp - PULSE OURATION - ps

Fig. 4. Maximum Peak Current vs. Pulse Duration

6-110

ST1642

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

1.2

>
u-

z<
wE

1.0

~~

0.8

wCl
>w

0.6

I"-~t--

to-....

r--..

~!<
-N

~~

W::!E

a: a:

OA

,0

~~
0.2

10
"EAK -

Fig. 5. Relative Luminous Intensity vs.
MV8190/1

20

50

100

200 300

PEAK FORWARD CURRENT - rnA
ST1644

Figure 6. Relative Efficiency vs.
Peak Forward Current

Fig. 7. Relative Luminous Intensity
vs.
MV8140/1

6·111

6-112

SUPER BRIGHT T-1% (5 mm)
LED LAMPS

OPTOELECTRONICS

SUPER YELLOW MV8313 CLEAR
SUPER YELLOW MV8314 CLEAR

t

S.6 ±O.3

L

26.4 MIN

":" r

These T-1 % super bright LEDs have a narrow 12° viewing
angle for concentrated light output. The MV831 X emit
yellow light at 590 nm. They are encapsulated in an
epoxy package and have water clear lenses.

I

:{1.0MAX
I

!I

I'

I'I

! I!

J.

I • . ---I.

!

I

•

1.OMIN

.2.54~

Popular T-1 % package
Low drive current
Solid state reliability
Super high brightness suitable for outdoors
applications
• Standard 1 mil. lead spacing

•
•
•
•

FLAT DENOTES
CATHODE

ST1675

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE LEADS EMERGE
FROM THE PACKAGE
3. PROTRUDED RESIN UNDER FLANGE IS 1.5 mm (0.059'1 MAX

DC forward current (I,)
MV831X ................................................................................... 30 mA
Operating temperature range ............................................................. -40°C to +85°
Storage temperature range ............................................................ -40°C to + 100°C
Lead soldering time ................................................................. 5 seconds @260°C
(at 'As inch from bottom of lamp)
Peak forward current (I,) ........................................................................ 160 mA
(atf=1.0 KHz, Dutyfactor=1/10)
Power dissipation (Pd)
MV831X ................................................................................... 85 mW
Recommended
current
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA

6-113

SUPER BRIGHT T·1% (5 MM)
LED LAMPS

OPTOELECTRONICS

630

mcd
mcd

940
1500

1000

IF =20mA
IF =20mA

590

,l, _I

200

c

lDO

E

,

50

!i
II!
!Ii
u

20

I,

1

I~ "
t

r~

fUGOHz/

5

!

__ I

T

20

j

0.5m~o o.s
1.5

z.o

2.5

3.0

~

"

V,-FORWARDVOLTAGE-V

o

1/
0.0

V

o

•

V

I!u
iii
i8

...
~d ...
a~;

1~

30

I,-DC FORWARD CURRENT-m"

Fig. 3. Relative Luminous Intensity
vs. Foreward Current

200
'10
IPEAK- PEAK FORWARD CURRENT _ IlIA
ST1677

...
ali ...

iIi

20

lDO

Fig. 2. Maximum Average Current
vs. Peak Foreward Current

/
'0

10

ST1706

Fig. 1. Forward Current vs.
Forward

/

10

3.5

-

,1.::17--

.......

I

1.0

6-114

......

50

10

2

.!-

50

ST1703

'.0 ,

'0

'DO

'DOD

,....

t,. - PULSE. DURATION-pa

ST1714

Fig. 4. Maximum Peak Current
vs. Pulse Duration

SUPER BRIGHTT·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

1.0...-------,...--.--------,------.....

10

~

05

,

40

~

B

35

fl

15

~

10

30

I:
o
o

O~~----r-~-_r~~--~-----~
ISO
594 100
12'
ts30
ISO
WAYELENGTIt -

10ft

~\

'-/

1111/
Re.f!.A • •

'2-ctW/

'-\
I\:
10 20 30 40 50 60 70 10 10 '00
T,,-"MBIENTTEMPERATURE-'C

ST1680

ST1704

Fig. 6. Maximum Forward DC Current
vs. Ambient Temperature
Derating Based On TjMAX = 110°

Fig. 5. Relative Intensity
vs. Wavelength

,.0

171\

0.1

I ~7

0.1

I

lE U

II

I~

}
1

u

./

u

o

I I I I
1\ 11'I I I I
\IIe..."•• 1I "CIW

~

"""

."

J

,

1\

,

1\

I\.

~

...... I"-- i--

Wwwww~wrrrrrrrw~WWWWW
a-ANGULAR DISPLACEMENT-DEGREES

ST1682

Fig. 7. Relative Luminous Intensity vs.

6-115

6-116

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

SUPER YELLOW MV8341 CLEAR
SUPER YELLOW MV8342 CLEAR

-.-i1.0 ± 0.2
C:::;::;:+:;:;:j,

L

26·4MIN

,I

These T-1% super bright LEOs have a moderate 45°
viewing angle for consistent light output. They are
suitable as an indicator or for back lighting in high
ambient light situations. The MV8341/2 are made with
InGaAlP LEOs on a GaAs substrate. All are encapsulated
in an epoxy package and have a water clear lens.

III

I

!!

I

I

•
•
•
•
•
•

J.

III--L
I--

1.00 MIN

-+j2.54~

Ouststanding material efficiency
Popular T-1 % package
Low drive current
Solid state reliability
Super high brightness
Standard 1 mil. lead spacing

FLAT DENOTES

ST1683
NOTES:
1. ALL DIMENSIONS ARE IN INCHES MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE
LEADS EMERGE FROM THE PACKAGE
3. PROTRUDED RESIN UNDER THE FLANGE
IS 1.5 mm (0.059'1 MAX

DC forward current (I,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 mA
Operating temperature range .......................................................................... -40°C to +85°C
Storage temperature range ........................................................................... -40°C to +100°C
Lead soldering time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 5 seconds @ 260°C
(at lA. inch from the bottom of lamp)
Peak forward current (I,) ....................................................................................... 160 mA
(atf = 1.0 KHz, Duty factor = 1/10)
Powr dissipation (Pd) ...................................................................•...................... 85 mW
Recommended operating current (I, Rec) ......................................................................... 20 mA

6-117

SUPER BRIGHT T·1% (5 MM)
LED LAMPS

OPTOElECTRONICS

Luminous intensity
MV8341
MV8342

160
250

220
370

Forward voltage
MV8341
MV8342

1.7
1.7

2.1
2.1

Peak wavelength
MV8341
MV8342

2.8
2.8

660
590

ur-----~~--------_,

mcd
mcd

1,=20mA
1,=20mA

V,
V,

1,=20 mA
1,=20 mA

nm
nm

1,=20mA
1,=20 mA

200

100

c

e,
!Zw

50

II!
II!

20

u

10

.

:::>

I
.b-

O~~~----~----~~-EO~

~5~~~~~~~~~~
o
0.5

8T1684
l. - WAVEI.ENGTH - ....

50

I
i
J.

4Q

35
30
25

I I I I\,
I I I I
IA8M. 818 'CIYi""

,

E

..!Z
I
..
Ii

"' I',

'\V

u

Re",... 412 OCIW'

,\\

'.

15

10 20 30

4Q

......

4Q

2.5

8T1704

Fig. 3. Maximum Forward DC Current
vs. Ambient Temperature
Derating based on TjMax = 110 0

~

-... io....J

3.0

3.5

8T1706

hl00Hz/

~,

20

j

10

50

100

T

,1.~

" """

30

o

50 80 70 80 80 100

T.-AMBIENTTEMPERATURE-'C

6-118

2.0

.l11CHz1

50

II!

I\.

10

o
o

c

I I I I /

1.5

Fig. 2. Forward Current vs.
Forward Voltage

Fig. 1. Relative Intensity
vs. Wavelength

1,

1.0

YF - FORWARD VOLTAGE - Y

~

150

r"-.
200

IPEAK - PEAK FORWARD CURRENT - mA

Fig. 4. Maximum Average Current
vs. Foreward Current

8T1677

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOElECTRONICS

2.S

1/

1/
0.0

1/
1/

/

o

10

20

3D

40

•• - DC FORWARD CURRENT - mA

50

ST1703

Fig. 5. Relative Luminous Intensity
vs. DC Forward Current

7rt' 80" 90" 100"

ST1645

6-119

6-120

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOElECTRONICS

SUPER GREEN MV8410 CLEAR
SUPER GREEN MV8411 CLEAR

These T-1% super bright LEDs have a narrow 12° viewing
angle for concentrated light output. The MV8410/1 are
made with GaP LEDs on a GaP substrate. They are
encapsulated in an epoxy package and have a water
clear lens.

L

26 .4MIN

I

I

!
!1 - - 1
J.
I
!,
1.0MIN

-+\2.541++

FLAT DENOTES
CATHODE

•
•
•
•
•

Popular T-1% package
Low drive current
Solid state reliability
Super high brightness
Standard 1 mil. lead spacing

ST1690-02

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE
LEADS EMERGE FROM THE PACKAGE
3. PROTRUDED RESIN UNDER THE FLANGE
IS 1.5 mm (0.059") MAX

DC forward current (I,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 mA
Operating temperature range .......................................................................... -40°C to +85°C
Storage temperature range ........................................................................... -40°C to +100°C
Lead soldering time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 seconds @ 260°C
(at JA. inch from the bottom of lamp)
Peak forward current (I,) ....................................................................................... 160 mA
(atf = 1.0 KHz, Duty factor = 1/10)
Power dissipation (Pd) ......................................................................................... 85 mW
Recommended
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA

6-121

SUPER BRIGHT T·1% (5 MM)
LED LAMPS

OPTOELECTRONICS

Luminous intensity (mcd)
minimum
typical
maximum
Forward voltage (VF)
minimum
typical
maximum
Peak wavelength (nm)
Spectral line half width (nm)
Reverse breakdown voltage (VR)
Viewing angle (0)

...

t

IF=20 mA
160
240

250
370
IF=20 mA
1.7
2.1
2.8
565
30
5
12

,..

/

I

,0

I
ffi

&0

'"u!!i

so

I

..

~

i

I

V

0

V2.0

o
1.0

./

...

3.0

5.D

8T1626

.....

iiiJ1

)0

8T1692

1.0

1~..L.U.":'0~...Il!Ju:,~
..-'-'w.:',...
~Ll..i.I~,,,,,~
1,-PUl.. . DUAA11ON-..

8T1714

0.9

~

1

~
w
~

~.~...Y-~

~)W

II>
:t

0

\'

~

,1\ r\

.....

I
oJ'

...

:t

w

1"1\.

5
w

10

otO

10

10

tOO

T._~_1UIIE_'C

8T1694

Fig. 4. Maximum Forward DC Current
vs. Ambient Temperature
Derating based on TjMax = 110°

6-122

25

1.0

1 1'1

10

20

Fig. 3. Maximum Peak Current
vs. Pulse Duration

1ER.0IWICIE.GREEN, EMEfW.D_

I ..

"

Igc: .. DC CURRENT PER LED • "'"'

.
'"1.

1D

Fig. 2. Relative Luminous Intensity
vs. Forward Current

Fig. 1. Foward Current vs.
Forward Voltage

i

V

/

VF - FORWARD VOLTAGE - V

IS

/

/

II

3l

20

IF=20mA
IF=20mA
IR=10 JLA
IF=20 mA

ex:

0.8
0.7
0.6
0.5
o.~

0.3
0.2
0.1

o

.....

,

" .....

~wwww~~w~w~w~w~~wwww~

8 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE)

Fig. 5. Relative Luminous Intensity
vs.

8T1638

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOELECTRONICS

SUNSET ORANGE MV8741 CLEAR
SUNSET ORANGE MV8742 CLEAR

SUNSET ORANGE MV8703 CLEAR
SUNSET ORANGE MV8704 CLEAR

These T-1% super bright LEDs have either a narrow 20°,
or a moderate 45° viewing angle. The MV8703/4 and the
MV8741/2 are made with InGaAlP LEDs on a GaAs
substrate that emit orange light at 620 nm. They are
encapsulated in an epoxy package and have a water
clear lens .

.-t

e:;:;:i:;:;::l , 1 .0 ± 0.2

L

26· 4 MIN

I

II

•
•
•
•
•

Outstanding material efficiency
Popular T-1% package
Low drive current
Solid state reliability
Super high brightness suitable for outdoors
applications
• Standard 1 mil. lead spacing

'II

!I ,!
J.
I I----L
1--

,

1.00 MIN

~2.541~

FLAT OENOTES
CATHODE

ST1683

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS
2. LEAD SPACING IS MEASURED WHERE THE
LEADS EMERGE FROM THE PACKAGE
3. PROTRUDED RESIN UNDER THE FLANGE
IS 1.5 mm (0.059'1 MAX

DC forward current (I,) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Operating temperature range ................................................... , •..................... -40°C to +85°C
Storage temperature range ........................................................................... -40°C to +100°C
Lead soldering time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 seconds @ 260°C
(at 11,. inch from the bottom of lamp)
Peak forward current (I,) ....................................................................................... 160 mA
(at f = 1.0 KHz, Duty factor = 1{10)
Power dissipation (Pd) ........................................................................................ 100 mW
Recommended operating current (I, Rec) ......................................................................... 20 mA

6-123

SUPER BRIGHT T·1% (5 MM)
LED LAMPS

OPTOELECTRONICS

Luminous intensity (mcd)
minimum
typical
maximum
Forward voltage (V,)
minimum
typical
maximum
Peak wavelength (nm)
Spectral line half width (nm)
Reverse breakdown voltage (V.J
(0)
Viewing

1,=20mA
250
370

0.0

45

/

1/
1/

1000
1500

1 1 1
1 1 l"-

I

RO,>A

20

30

40

Fig. 1. Relative I.uminous Intensity
vs. DC Forward Current

50
811703

-,

I I I
_.ta
w" I' V

I I I V 1\

I'

RO,>A_4'2"CiW/

1"-1\

. '.

20
15

"

10

o
'0

1,=20 mA
1,=20 mA
IR=10 !IA
mA

20

1

1

1,-DCFORWARDCUAREHT-mA

6-124

45

1.7
2.1
2.8
620
18
5
20

I

/

o

630
940

1,=20mA

2.5

1/

400
600

010 20 30 40 50

eo

70 811 811 '00-

TA-AMBIENTTEMPERATURE-"C

(=;g• .2. Maximum Forward DC Current

ST1704

SUPER BRIGHT T·1% (5 mm)
LED LAMPS

OPTOElECTRONICS

2110

.LKH&I

"" t:::'"r-,-I

'"

,.,00 ... /

o

SO

100

c

E
I

T

,~;:r,-.

10

i

20

u

10

II:

:::>

i

"- ~

100

Ii!

.........

.;.

~5~~~~~~~~~~
o
D.s

110

IpE.lK - PEAK FORWARD CURRENT - mA

1.0

1.5

2.0

2.5

3.0

3.5

Y,-FORWAAO VOLTAGE-V

ST170S

ST1706

Fig. 4. Forward Current vs
Forward Voltage

Fig. 3. Relative Efficiency vs
Peak Forward Current

10' 7JJ' 30' 40' 50' 60' 70' SO' 110' 100'
ST1643

Fig. 6. Relative Luminous Intensity vs
MV874X

6-125

6-126

DIFFUSED T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

ORANGE
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED

L

330 (838)

I

rL---f--l---.l
~:~1 \g~~i\ sa

.......,...-4...,....-'------,-1 I'.040
.02)

.050 (1.27)
REF.

,
j

~

I

I I
I

MV6153/4A
MV6353/4A
MV64530/1 MV6454A
MV6753/4A

These solid state indicators offer a variety of diffused lens
effects and color availability. The High Efficiency Red and
Yellow devices are made with gallium arsenide
phosphide on gallium phosphide. The Green units are
made with gallium phosphide on gallium phosphide. All
devices are available with cathode long as MV5X5X, or
with anode long as MV6X5X.

rf:~
350(889)

MV5153/4A
MV5353/4A
MV5453/4A
MV5753/4A

1.00 (25.4) MIN .

I

I

I ] _ I ------L
I
~

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEAOS

..~~~ \~~:))
C1062L

CATHODE
LONG

ANODE
LONG

MV5153
MV5154A
MV5353
MV5354A
MV5453
MV5454A
MV5753
MV5754A

MV6153
MV6154A
MV6353
MV6354A
MV64530/1
MV6454A
MV6753
MV6754A

• High efficiency GaP light source with various lens
effects
• Versatile mounting on PC board or panel
• Snap in grommet MP52 available as separate order
item
• Long life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight

SOURCE
COLOR

LENS
TYPE

LENS
EFFECT

APPLICATION

High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
High Efficiency Red

Amber Diffused
Amber Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused
Red Diffused
Red Diffused

Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam

Direct View
High Bright Direct View
Direct View
High Bright Direct View
Direct View
High Bright Direct View
Direct View
Hi
Bright Direct View
6-127

~

DIFFUSED T·10/4
SOLID STATE LAMPS

OPTOElECTRONICS

Forward voltage (VF)
typo
max.

IF=20mA
IF=20mA

V
V

2.0
3.0

2.0
3.0

2.1
3.0

2.1
3.0

2.2
3.0

2.2
3.0

2.2
3.0

2.0
3.0

2.0
3.0

Luminous Intensity
min.
typo

IF=20mA
IF=20mA

moo
mcd

3.0
15

10.0
25

2.5
15

10.0
25

3.0
20

7.0
20

10.0
30

3.0
15

10.0
25

IF=20mA

nm

45

45

35

35

30

30

30

45

45

Capacitance
typo

V=O, f=1 MHz

pF

45

45

45

45

20

20

20

45

45

Reverse voltage (V,,)
min.

IR =100 pA

V

5

5

5

5

5

5

5

5

5

100

100

100

100

100

100

100

100

100

Spectral line
half width

Reverse current (I,,)
max.

YEUOW

H.E.RED,
ORANGE

Power dissipation at 25°C ambient ............................ .
85mW
120mW
1.6mW/oC
1.6mW/oC
Derate linearly from 25°C (MVX453/4A from 50°C) ............... .
Storage and operating temperatures ........................... . -55°C to + 100°C -55°C to +1oo°C
Lead soldering time at 260°C (See Note 2) ...................... .
5 sec.
5 sec.
20mA
35mA
Continuous forward current at 25°C ............................ .
60mA
1.0A
Peak forward current (1 poSec pulse, 0.3% duty cycle) ............. .
Reverse
............................................. .
5.0V
5.0V

GREEN
120mW
1.6mW/oC
-55°C to +1OO°C
5 sec.
30mA
90mA
5.0V

1. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
2. The leads of the device were immersed in molten solder, at 260°C, to a point 1/16 inch (1.6 mm) from the bodyofthe device per
MIL-S-750, with a dwell time of 5 seconds.

6-128

DIFFUSED T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

<"

.s
~

40

J.

100

DOTTED LINES
90 INDICATE--YELLOW
PULSED
80 OPERATION

i

Z 70

w

::J

()

a

a:

~
0

50
40

o

iii

z

W

t-

~20
Vl

::J

o

~ 10

::J

G~EEN

hV

,/

Z

//"HIGH
'(f/ EFFICIENCY

30

!.--

I

>30

t-

HIGH .......... / '
EFFICIENCY!!,
RED
//!

LL

:.: 20

0

/'/

12

Q

a:

8

0
u..

4

6

18
7.5

10 12 141 16
-"
15 QT903-03

V
2

4

6

V

18
7.5

10 12 141 16
15 QT903-04

Fig. 1. Forward Current vs. Applied
Forward Voltage 5 Volt Devices

Fig. 2. Forward Current vs. Applied
Forward Voltage 12 Volt Devices

~>

fl·
1iJl3

6

~~

4

~>

Vee - APPLIED FORWARD VOLTAGE - V

0

~.
w

11.0

Vee - APPLIED FORWARD VOLTAGE - V

II:

7.5

r--....

"'

DC!

/
00

8

~>

/

w
a: 16
a:

~
a:

4

D
~

20

/

2

24

2

o

o

20

40

60

8085

Fig. 3. Maximum Allowed Applied Forward
Voltage vs. Ambient Temperature
175°C/W 5 Volt Devices

16
15

r---.

12

:J~

8

0.. 0

~>
4

;}
o
o

80
20

40

60

8085 QT903-06
10'2Cf30'4cr5d60"70'80'90~00"

T. - AMBIENT TEMPERATURE - C

Fig. 4. Maximum Allowed Applied Forward
Voltage vs. Ambient Temperature
12 Volt Devices

QT903-07
Fig. 5. Relative Luminous Intensity vs. Angular
Displacement for T-1 3/4 Package

2.5

1.5,--,--,--T7--,-----,

2.0

/

~

w

>

~w

a:

1.5
1.0
0.5

I

2

1.0f--f--+-++---t----I

w

>

I

~w

a:

HIGH EFFICIENCY
r G Y RED. YELLOW.
GREEN

o
o

2

4

6

5 VOLT DEVICE

8

10
QT903-08

Fig. 6. Relative Luminous Intensity vs. Applied
Forward
5 Volt Devices

12 VOLT DEVICES

QT903-09

Fig. 7. Relative Luminous Intensity vs. Applied
Forward
12 Volt Devices

6·137

6-138

HIGH CONTRASTT-1%
SOLID STATE LAMPS

OPTOElECTRONICS

HIGH EFFICIENCY RED (ORANGE) MV6151
YELLOW MV6351

This White Diffused family of T-1 % lamps gives maximum
ON/OFF contrast in high ambient lighting levels. The
family features Orange, AIGaAs Red (Dark Red), Yellow
and High Efficiency Green as well as High Efficiency Red,
which here is Orange. The family exhibits wide viewing
angle intended for direct view.

rf:;~J
.350 (8.89)
.330 (8.38)

L r'--+---i~
--1
.050

~~~~
~

I

I

I

j

I,'
I
I

.040
11 .02 )

.017 (0.43) SQ .
.023 (0.58)

lOO (25.4) MIN.

I

_1_ ~- . . . . L
_

HIGH EFFICIENCY GREEN MV6451
AlGaAs RED MV6951

I

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS

.050 (1.27)
.100 (2.54)

• Excellent ON/OFF contrast
• Pale tint, diffused
• AIGaAs Red plus 3 bright colors: High Efficiency
Red/Orange, Yellow and Green
• Alternative for popular MV6X53 family
• Snap-in grommet MP52 available as separate order
item

C1062F

MV6151
MV6351
MV6451
MV6951

High Efficiency Red
Yellow
High Efficiency Green
AIGaAs Red

Pale Orange Diffused
Pale Yellow Diffused
Pale Green Diffused
Pale Pink Diffused

Orange Diffused
Yellow Diffused
Green Diffused
Red Diffused

Direct View
Direct View
Direct View
Direct View
6-139

[!U

HIGH CONSTRAST T-1%
SOLID STATE LAMPS

OPTOELECTRONICS

UNITS

Power dissipation ................................... .
Continuous forward current .......................... .
Peak forward current (1 p.S. 0.3% DF) .................. .
Lead soldering time at 260° C
Storage and operating temperatures .................. .

85

120

20

35

60
5

1000
5

-55°C to + 100°C

1. Derate linearly from 25°C (MV6451 from 50°C) at 1.6 mW/oC.
2. From a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.

6-140

120
30
90

mW
mA
mA
5
seconds
-55°C to +100°C

2

HIGH CONTRAST T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

J.

100

30

I '/

a: 60
a:
()

40

/11

DOTTED LINES
90 INDICATE--YELLOW
PULSED
80 OPERATION

o

4

FOWARD VOLTAGE VF (VOLTS)
C1831C

V

/

1/

V

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA)
C652A

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward

100%
;;'1100%

90%

I
I-

it
I-

80%

80% I--+--f---w-\l-!l-\l-+--i\-f----l

5 60% l-+-lI--lI\~i_II-*+--+-H---I
w
>

~ 40%

w

a: 20% f-.Jf--II--+-thH'rI-t-i+--+--+--\I
50%

30%

10% 0

20%

40%

OUL~~~~~~~~~~

520540 560 580 800620 640660 680 690 700
WAVELENGTH (>.) -

C1066B

Fig. 3. Spatial Distribution

nm
C1064D

Fig. 4. Spectral Distribution

6-141

6-142

BICOLOR AND BIPOLAR T·1 %
SOLID STATE LAMPS

OPTOELECTRONICS

HIGH EFFICIENCY GREEN/AlGaAs RED MV5491 A
HIGH EFFICIENCY RED/AlGaAs RED MV5094A

r~:\~:~;\1

TTlI -I-r

:gggm:l

~

.480(12.191

l

c1':)
T .850 (21.6)
MIN.

I

:

460

(1,,·68)

.017 (0.43) SO
~.

i ~

I
I

I

I II---

-..:.J

065 (1 65)
~

NOTES:
1 TOLERANCES ± 010" UNLESS SPECIFIED
2 ALL DIMENSIONS SHOWN IN INCHES

(MILLIMETERS)

II

en
R: m

t

~U1 ' ! .050(1.27) NOMINAL
.OSO(127)NOM~ j-~
t
100 (254)

NO~

GREEN
CATHODE

The Green/Red MV5491 A and Red/Red MV5094A are
superior drop-in replacements for Quality Techologies'
bicolor Green/Red MV5491 or MV9475 and for bipolar
Red/Red MV5094 or MV9775. The MV5491 A is a White
Diffused, very wide viewing angle, dual chip, 4-state lamp
utilizing Deep Red AIGaAs and High Efficiency Green.
AC-driven, the LED lamp appears Orange. The MV5094A
is a Red Diffused, very wide viewing angle bipolar Red
(AC) lamp featuring Red AIGaAs and High Efficiency Red
chips.

6C1826A

•
•
•
•
•
•
•
•
•

Excellent uniformity and visual appeal
Very wide viewing angle for perfect direct view
Increased reliability
Radically improved die-off-center characterstics
Same current for both colors for minimum component
count
Improved solder heat durability
4-state; Green, Red, Orange, OFF (MV5491A)
1" leads
May be panel mounted-MP52 is separate order item

1. Derate power linearly from 25°G at 1.8 mW/oG.
2. Derate power linearly from 50 0 G at 0.5 mA/oG.
3. Toa pOint minimum 1/16 inch (1.6 mm) from the bottom of the lamp.

6-143

BICOLOR AND BIPOLAR T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

-20·

-10·

O·

10·

20·

30·

50·

6C1827

6-144

3 LEADS IICOLOR T·1%
SOLID STATE LAMPS

OPTOELECTRONICS

HIGH EFFICIENCY GREEN/HIGH EFFICIENCY RED MV5437

The MV5437 T-1% lamp is a three leaded bicolor light
source with a central common cathode lead.

•
•
•
•
•
•
•

1.00 (25.4)

Excellent uniformity and visual appeal
Very wide viewing angle for perfect direct view
Increased reliability
Radically improved die-oft-center characteristics
Improved solder heat durability
4-state; Green, Red, Amber, OFF.
TTL compatible

IMIN

11
I

~

0.020 (5.08)
SQ.TYP

C3025

NOTES:
1.ALL DIMENSIONS ARE IN INCHES{mm)
2.AN EPOXY MENISCUS MAY EXTEND ABOUT 0.040"
(lmm) DOWN "!HE LEADS.

6-145

BICOLOR T·1%
SOLID STATE LAMPS

OPTOElECTRONICS

29'h

100

100

Power dissipation ........................................................... .
Peak current ................................................................ .
Average current ............................................................. .
Lead soldering time ......................................................... .
Storage and operating temperatures ........................................... .

1. Derate power linearly from 25°C at 1.8 mW/oC
2. Derate current linearly from 50°C at 0.5 mN°C
3. To a pOint minimum 1/16 inch (1.6 mm) from the bottom lamp.

_20·

-10·

O·

10·

20·

6C1827
Fig. 1. Spatial Distribution

6-146

degree

mA

135

mW

90

mA
mA
seconds

25
5

-55°C TO +100°C

2

3

SUPER BRIGHT 10 mm
LED LAMPS

OPTOElECTRONICS

SUPER RED MV9100 CLEAR
SUPER RED MV9101 CLEAR
SUPER RED MV9102 CLEAR

These 10 mm super bright LEOs have a narrow 8°
viewing angle for concentrated light output. The MV91 00/
1/2 are made with GaA1As LEOs on a GaAs substrate.
They are all encapsulated in an epoxy package and have
water clear lenses.

135 +/- 03

I

(ANODE)

I'

11

26.4 MIN

~!!
1.0 MIN _ _

•

I-I- !

Outstanding material efficiency.
Low drive current.
Solid state reliability.
Super high brightness suitable for outdoor
applications.
• Standard 1 mil. lead spacing.

~2.'S4~
!

ST1632

•
•
•
•

:

NOTES:
1. ALL DIMENSIONS ARE IN MM.
2. LEAD SPACING IS MEASURED WHERE THE LEADS
EMERGE FROM THE PACKAGE.
3. PROTRUDED RESIN UNDER THE FLANGE IS 1.5 mm
(O.059'~

MAX.

DC forward current (I,) ........................................................................... 40 rnA
Operating temperature range ........................................................... -40°C to +85°C
Storage temperature range ............................................................ -40°C to +100°C
Lead soldering time ................................................................. 5 seconds @ 260°C
(at);,6 inch from the bottom of lamp)
Peak forward current (I,) ........................................................................ 200 rnA
(atf=1.0 KHz, Duty factor = 1/10)
Power dissipation (P d) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 110 mW
Recommended operating current Rec) .......................................................... 20 rnA
6-147

SUPER BRIGHT 10 mm
LED LAMPS

OPTOElECTRONICS

IF =20mA
1000
1500

600

940

IF =20mA

Forward voltage (VFl
minimum
typical
maximum

1.5

1.7
2.4

300

1
I

!Zw
II:

§

Col
0

II:

C

~

II:

0

II.

I
~

II

280
Z60
240

2.4 f-

200

7

180
160
140
120

I

7

100
80
60

J
0.5

1.0

1.5

~51
2!:j

0.5

~gZ

0.2

C
,.JIII
II:

1
I

40
20

1.0

3~

II

2.5

3.0

3.5
5T1633

1/

~

'I

l/

0.1

.os
2.0

I..,.

2.0

~e
_fa

0!;c

I

Figure 1. Forward Current vs.
Forward

6-148

Ie

1
I

220

o
o

1600
2400

"

1

2

~

~"

5

10

20

Figure 2. Relative Luminous Intensity vs.
Forward Current

50
5Tl634

SUPER BRIGHT 10 mm
LED LAMPS

OPTOELECTRONICS

1.1

~C

WE

y2
......
IDe

D••

lli

0.4

'i

0.3

~-

\

/

0.6
0.5

w a:
a:

E

0.7

~fiI
j:!::!
:5~

J

e

0.9

I '~

R&JA=4OO"CIW-

...a:

40

::>

30

~

\

,

I

50

1.0

ReJAJ50"CiW~-\'

II:

0

e

~

20

...

10

a:
~

0.2

\

\\

C

II:

~

0.1
0.0

10

1

20

o

100 200
ST1635

50

I

o

20 2S

I

40

I

55 60 70 80

100
ST1636

TA - AMBIENT TEMPERATURE _·C

IPEAI(- PEAl< FORWARD CURRENT - mA

Figure 4. Maximum Forward DC Current
vs. Ambient Temperature
Derating based on TJ MAX=110°.

Figure 3. Relative Efficiency vs.
Peak Forward Current

e

E

~w

a:
a:

B
c

35

i~

30 1----1f--7'4~.____+---I

~

2S

a:

..

II:
W

~

~

10~

50

____

~

____

100

~

____

150

~

____

~

200

ST1637

Figure 5. Maximum Average Current
vs. Forward Current
1.0
0.9

~
zw

~

II>

::>

0.8
0.7

0.6

0

~
:J

0.5

...>

0.4

5a:w

0.2

0.3

0.1

o

........ 1-'

"- ""-

~ww~~~~~~w~r~w~~~~ww~

e - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE)

ST1638

Figure 6. Relative Luminous Intensisty
vs.

6-149

6-150

4mm FLAT TOP LAMPS

OPTOElECTRONICS

RED (HIGH EFFICIENCY) HLMP·M200/M201 HLMP·M250/M251
YELLOW HLMP·M300/M301 HLMP·M350/M351
GREEN HLMP·M500/M501 HLMP·M550/M551

1

L

2·~~r
6.24 (.246)
5.74 (.226)

Bright colors and a wide viewing angle are the
outstanding features of the new 4 mm flat top lamps. The
cylindrical shape and flat emitting surface make these
lamps particularly well suited for applications requiring
high light output in minimal space.

~

127f:)

I

0.50 (0.200)
SQUARE NOMINAL

25.4 (1.00)

127LI I~
r--

•
•
•
•
•
•

Replaces Hewlett-Packard devices
Wide viewing angle
Excellent for backlighting small areas
Solid state reliability
Compact, rugged, lightweight
Choice of tinted nondiffused and tinted diffused
package

t

t-tffi--H3+-- 4.11 (1.62)
3.86 (1.52)

INDICATES
CATHODE

t
2.54 (.100)

DIMENSIONS IN MILLIMETERS (INCHES)
C3001

HLMP-M200
HLMP-M201
HLMP-M250
HLMP-M251
HLMP-M300
HLMP-M301
HLMP-M350
HLMP-M351
HLMP-M500
HLMP-M501
HLMP-M550
HLMP-M551

Red, Diffused
Red, Diffused, High Brightness
Red, Nondiffused
Red, Nondiffused, High Brightness
Yellow, Diffused
Yellow, Diffused, High Brightness
Yellow, Nondiffused
Yellow, Nondiffused, High Brightness
Green, Diffused
Green, Diffused, High Brightness
Green, Nondiffused
Green,
Brightness

3.4
5.4
3.4
5.4
3.6
5.7
3.6
5.7
4.2
6.7
4.2
6.7

5.0
7.0
5.0
7.0
5.0
7.0
5.0
7.0
7.0
10.0
10.0
16.0

20
20
10
10
20
20
10
10
20
20
10
10

135
80
135
80
135
80
6-151

4mm FLAT TOP LAMPS

OPTOELECTRONICS

MIN

120

5.0

PARAMETER

Power dissipation .....................
Derate linearly from 25°C ...............
Storage & operating temperature ........
Lead soldering time at 260°C ...........
Continuous forward current .............
Peak forward current 11" sec. pulse
......
0.3% duty cycle
Reverse voltage (IR = 1oo~) ...........
Average forward current ................
Transient forward current
...............
(101" sec pulse)

6-152

Junction to
Cathode Lead

120

120

5.0

5.0

H.E.RED
HLMP·M2XX

YELLOW
HLMp·M3XX

GREEN
HLMP·M5XX

UNITS

135
1.6
-55 to +100
5
35

120
1.6
-55 to +100
5
20

135
1.6
-55 to +100
5
30

mW
mW/oC
°C
sec .
mA

90

60

90

mA

5
25

5
20

5
25

V
mA

500

500

500

mA

4mm FLAT TOP LAMPS

OPTOElECTRONICS

O·

20·

40·

60°

80·

100°

120·

C3002

Fig. 1. Relative Luminous Intensity vs.
Angular Displacement

1.0,---i-;7'\-r\:T--7""'""-r-----.--------.
HIGH EFFICIENCY
RED

>-

I-

iii

z

W
I-

~ 0.5~-------------r~--~~------~--~--------~~------------~------------J
~

--'

w

cr:

~~OWO----~~~~~------~~~~~----~~~~~--------~~~----------~
650
700
750
WAVELENGTH - nm
C3003

6-153

4mm FLAT TOP LAMPS

OPTOElECTRONICS

90

Ii
I

80

«

,

E

70

HIGH
EFFICIENCY
RED

I-

Z

60

W

0:
0:
::l

50

0

0

~
0:

20

-~

10

IA
1.0

'p -

PULSE DURATION - ,..

5.0

zW

L

oL
o

1.4

/

1.3

W
W

~

5.0

W
0:

..
~

0.8

~

0.7

10 15 20 25 30 35 40 45 50
DC CURRENT PER LED - mA

/'

VI'GREEN

"

I 0.9

YELLOW

6
•
o

10 20 30 40 50 60 70 80 90 100
IpEAK -

PEAK LEO CURRENT - mA

C3006

Fig. 5. Relative Luminous Intensity vs. Forward
Current. Nondiffused Devices

03005

HIGH
EFFICIENCY
RED

b- V

lh ~

1.0

0.6
5

loe -

YELLOW

> 1.1

J

0.5

1.5

E1.2

HIGH EFFICIENCY
,ED AND GREEN

1/

V--

4.0

3.0

FORWARD VOLTAGE - V

Fig. 4. Forward Current vs. Forward Voltage

,..0

.1-

J

2.0

1.6

1

4.5

h
'Il

VF -

03004

Fig. 3. Maximum Tolerable Peak Current vs. Pulse
per MAX Ratings)
Duration

YELLOW

'1

30

l?

JIj

/!J

40

0:

'/GREEN

03007

Fig. 6. Relative Efficiency (Luminous Intensity per Unit
Current) vs. Peak LED Current. Nondiffused Devices
13

~
z«'

~.!5
;;;N
~!;c
00

,..

2.0

1.0

/
./

!;(~
0:

.5

o

5

..."
5

IOC -

10

V

09

~ OB

:5
W
0:

I

0.7

~0.6

RED

.I

~ P'" I'---

GREEN- ' - -

'I

/J
I

"'0.5
15

20

25

30

0.4
01020 30 40

'PEAK -

DC CURRENT PER LED - mA

C3008

Fig. 7. Relative Luminous Intensity vs. Forward
Current. Nondiffused Devices

6-154

W
W

u.

V '"

o

u:

1.0

...

'...-:

zW 1.1

/

1.5

~o

ill

YELLOW

0

~~

3~
Wo:

12

50 60 70 60 90

PEAK CURRENT PER LEO - rnA
C3009

Fig. 8. Relative Efficiency (Luminous Intensity per Unit
Current) vs. Peak LED Current. Nondiffused
Devices

RECTANGULAR
SOLID STATE LAMPS

OPTOElECTHOIICS

YELLOW MV53123
HIGH EFFICIENCY GREEN MV54123
HIGH EFFICIENCY RED MV57123

2.0:1.0.1

c=JL
I

5.0:t 0.1-r---1

I

"1 i

I

1.9:t 0.1

0

uk.

~ ~l.1:t

-l I- 2.0:1.0.1

0.1

[ J.

28.4 MIN

2.54

These rectangular LED lamps provide a lighted surface
area 2 x 5 mm. The High Efficiency Red and Yellow solid
state lamps contain a gallium arsenide phosphide on
gallium phosphide light emitting diode. The High
Efficiency Green Lamps utilize an improved gallium
phosphide light emitting diode.

1.0 MIN

C166lA

•
•
•
•

2 x 5 mm lighted area
High brightness-typically 4 mcd at 20 mA
Solid state reliability
Compact, rugged, lightweight

•
•
•
•

Legend backlighting
Illuminated pushbutton
Panel indicator
Bargraph meter

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (MM)
2. TOLERANCES ARE ±010" INCHES UNLESS SPECIFIED.
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .40" (1 MM) DOWN THE LEADS. THE BASE OF THE PACKAGE IS NOT FLAT.

6-155

RECTANGULAR
SOLID STATE LAMPS

OPTOElECTRONICS

Forward voltage fYF)
typo
max.

IF=20mA
IF=20mA

V
V

2.1
3.0

2.2
3.0

2.0
3.0

Luminous Intensity
min.
typo

IF=20mA
IF=20mA

mcd
mcd

1.0
4.0

1.0
4.0

1.0
4.0

mcd
nm

585

mA

45

562
30

635
45

Peak wavelength
half width
Capacitance
typo

V=O, f=1 MHz

pF

45

20

45

Reverse voltage fY,J
min.

IR =100 !LA

V

5.0

5.0

5.0

Power dissipation .............................................. .
Derate linearly from 50°C ........................................ .
Storage and operating temperatures .............................. .
Peak forward current (1 pSec pulse width 300 pps) ................. .
Forward current ................................................ .
Lead soldering time at 260°C (See Note 1) ......................... .
Reverse voltage ................................................ .

6-156

85mW
1.6mW/"C
-55°C to +100°C
60mA
20mA
5 sec.
5.0V

120mW

1.6mW/oC
-55°C to +100°C
90mA
30mA
5 sec.
5.0V

RECTANGULAR
SOLID STATE LAMPS

OPTOElECTRONICS

100

PN~i6~~i'NES . ~ELLOW
~90 PULSED
i
:; 80 OPERATION

!zw

I

~60
::J
50

C,)
Q

-

30

~

10

'(f/

hV

20

I

~80%

HI EFF.
GREEN

::J

" f\

1\

HI EFF.
RED

fl.

~60%

o
~
~
..J

EFFICIENCY
GrEEN

40%

W
a: 20%

./.LI

o

Y~LLJW

100%
'#

(//
I///·. . . HIGH

«

...~

Iff'/

HIGH ......... I I
EFFICIENCYIII
RED

It 40

"

I

70

120%

3

I I \ II \
II / \fA \

\

J\

o J /

4

520 540 560 560 600 620 640 660 680

FOWARD VOLTAGE VF (VOLTS)
C1831C

WAVELENGTH (A) -

nm

C1064C

Fig. 2. Spectral Distribution

1. Forward Current vs. Forward
40

>f00

1\

\

Z

w

f-

I

f-

z

w1.5

>

;::
«
...J
w

a:

;: 3 0

I'\.

1l.
0.

IF

~2

'"
ci"

::J

w

0

...

Z

~

10

=

~r-, .....

20
40
DUTY CYCLE - %
10 mA AVERAGE

1/

0

en

It

~
10

Z

w

0
0

"- i'-r-,

/'

00

o

L

o

DC
C1194B

Fig. 3. Luminous Intensity vs.
Duty Cycle

V

V

/

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT Ir/mAJ
C652A

Fig. 4. Luminous Intensity vs.
Forward Current
140
%"

~120%
0.
f::J

o

~100

~w
~

"-1'..

I"-.

""-

80

60%
-60 -40 -20 0 20 40
TEMPERATURE -

""i'...

i'-..
60
C

0

80 100
C654A

imJ'1lp..rsp.riin molten solder, heated to a temperature of 260°C, to a pOint 1/16 inch (1.6 mm) from the body
with dwell time of 5 seconds.

6-157

6-158

RECTANGULAR
SOLID STATE LAMPS

OPTOElECTRONICS

HIGH EFFICIENCY RED HLMP·0300/1
YELLOW HLMP·0400/1
HIGH EFFICIENCY GREEN HLMP·0503/4

sa .018 (0.45) ~ r-----,
NOMINAL
2 PLACES

t

_I
.100 (2.54)
.090 (2.29)

I-I

315 (8.00)
290 (7.37)

.100 (2.54) NOMINAL

I

.295 (7.49)
- - .275 (6.99) - -

_

The HLMP-OXOX Series of rectangular lamps are direct
replacements for Hewlett-Packard's series with the same
part numbering. The series is similar to MV5X123 except
for the larger lens size. Like the MV5X123, the
HLMP-OXOX is stackable. The lamps are tinted diffused
and intended for direct view.

CATHODE
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)

1.00(25.4)
MIN.

LO

---u=

ANODE_

DEVICE

HLMP-0300
HLMP-0301
HLMP-0400
HLMP-0401
HLMP-0503
HLMP-0504

2.

TOLERANCES ARE ±O1O" INCH UNLESS
SPECIFIED

3.

AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1mm) DOWN THE LEADS. THE BASE
OF THE PACKAGE IS NOT FLAT

~

~O(l.27)NOMINAL

t

• 3 High Efficiency colors
• Rectangular light area
• Inexpensive panel indicators

Cl730

SOURCE
COLOR

LENS
COLOR

High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
Hi
Green

Red Diffused
Red Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused

LENS
EFFECT

Very Wide
Very Wide
Very Wide
Very Wide
Very Wide
Very Wide

Beam
Beam
Beam
Beam
Beam
Beam

Iv MIN. AT
20mA

1.0
2.5
1.5
3.0
1.5
3.0

6-159

RECTANGULAR
SOLID STATE LAMPS

OPTOELECTRONICS

PARAMETER

Luminous Intensity

min.
typo

Forward voltage

typo

HI.EFF.RED
0301

SYMBOL

0300

Iv

1.0
2.5

2.5
5.0

3.0
5.0

1.5
3.0

2.5
5.0

mcd
mcd

IF =20mA
IF =20mA

VF

3.0
2.1

3.0
2.1

3.0
2.2

3.0
2.3

3.0
2.3

V
V

IF =20mA
IF =20mA

a}J2

45

45

35

35

35

nm

IF=20mA

UNITS

35

TEST CONDITIONS

Power dissipation at 25°C ambient (HLMP-040X=85 mAl .......................................................... 135 mW
Derate linearly from 25°C ................................................................................... 1.6 mW/oC
Storage and operating temperatures ................................................................... -55°C to +100°C
Lead soldering time at 260°C (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 sec.
Continuous forward current at 25°C (HLMP-040X=20 mAl .......................................................... 30 mA
Peak forward current (1 !£Sec pulse, 0.3% DC) (HLMP·040X=60 mAl ................................................. 90 mA

6-160

RECTANGULAR
SOLID STATE LAMPS

OPTOElECTRONICS

2.0

>-

/

l-

e;;_

«

T

40~~-1--+-~~~1--+~

z«

~

30~~-1---H'-fr--fr=+-=-r=-'j

0-

20r-~-1,,~.f--r-1--+~

::>i!l

~E 1.5
ZO
_N

V

0011

a:
a:

::>~

z1;; 1.0

/

~"O

6

..J7J

Cl

wE

~ 10r--r~r+~-+--r-1--+~
a:

-'
w

>~

a:

~S

a:

Cl
u..

0~~~~

0.0

__L-~-L~~

1.4 1.6 1.B 2.0 2.2 2.4 2.6 2.8 3.0
FORWARD VOLTAGE (VF) - VOLTS
C1063C

120

~_110
>-0
!::: :bwo

"- -........

00'"

ifi «i
1-"0

90

~_~ 80
Wo;
~ E 70

~E

10
40
30
20
FORWARD CURRENT - IF (rnA)
C1676

120%

"'" "'"

VkLL6w

100%
.: 80%

~

..........
..........

o

HI EFF.
GREEN

60%

~ 40%

S
~ 20%

60

50
-25
25
50
75
TEMPERATURE - TA (OC)

o J

100

'\f\

I{\

HI EFF.
RED

I I \ V 1\
I II \A \

W

a:

-55

/

o

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward
130

0.5

J

J

\

520 540 580 580 600 620 640 680 680
WAVELENGTH (A) - nm C1064C

C1671

Fig. 3. Relative Luminous Intensity
vs. Temperature

Fig. 4. Spectral Distribution

9-0FFAXIS ANGLE-DEGREES
C1776

1. The leads of the device immersed in molten solder, at 260°C, to a point 1/16 inch (1.6 mm) from the body of the device per
MIL-S-750, with dwell time of 5 seconds.

6-161

6-162

RECTANGULAR
SOLID STATE LAMPS

OPTOELECTRONICS

YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
HIGH EFFICIENCY GREEN/AIGaAs RED

TIT--:---lti~~
O
.~--'-""--I'""T"""...,.......j{ll'-:. ,. . , . ., . . . ,. . . .j~

NOM

REFE~CE
C~~~~~~:
MARK MAY

m~~gr~

!

r

CATH DE

--i~

...JQ..

(2.54)

sa

j..-.020
TVP
(.506)

'--:--1 1-

NOTES:
1 ALL TOLERANCES ARE
008 INCH (0.20)
2. ALL DIMENSIONS IN
INCHES (mrn)

~~
.050 (1.27)
NOMINAL

T

MV53124A
MV54124A
MV57124A
MV49124A

The MV5X124A Series of rectangular high performance
LED lamps with reflector cap has been engineered for
much improved light uniformity which is especially
important in direct view and legend backlighting.
Includes a Green/Red version-MV49124A. The Green
chip is the same as is used in MV54124A, while the Red
chip is AIGaAs at 660 nm to achieve a bright Dark Red
color in the non-tinted diffused epoxy.

•
•
•
•
•

Uniform illumination
Increased typical brightness
Tighter mechanical tolerances for base of design
Stackable in X or Y direction without crosstalk
.220" x .125" lighted area for direct view or legend
backlighting
• Use Black MP65 two piece grommet for panel
mounting
• Superior quality

C12458

GREEN

------.o~
RED

• Legend backlighting
• Panel indicator
• High quality bargraphs

ST4017

FOR MV49124A

MV53124A
MV53124A
MV57124A
MV49124A

Yellow
High Eff. Green
High Eff. Red
Eff. Green/AIGaAs Red

Yellow Diffused
Green Diffused
Red Diffused
White Diffused
6-163

RECTANGULAR
SOLID STATE LAMPS

OPTOELECTRONICS

PARAMETER

SYMBOL

MY

MY
53124A

MY
54124A

MY
57124A

49124A

UNITS

TEST
CONDo

Luminous
Intensity

min.
typo

Iv

1.0
6.0

1.0
6.0

1.0
6.0

1.0
6.0

mcd
mcd

IF =20 mA
IF =20 mA

Forward voltage

typo
max.

VF

2.0
3.0

2.2
3.0

2.0
3.0

2.2
3.0

V
V

IF =20mA
IF =20mA

NOTES

30/45

Power dissipation ............................................................... .
Continuous forward current ....................................................... .
Peak forward current (1 "'s, 0.3% DF) ............................................... .
Lead soldering time at 260° C ..................................................... .
On,eraltinn and
.............................................. .

1. Derate linearity from 25°C at 1.6 mW/oC.
2. From a point minimum 1/16 inch (1.6

6-164

from the bottom of the

120
mW
30
mA
90
mA
5
seconds
-55°C to +100°C

2

RECTANGULAR
SOLID STATE LAMPS

OPTOElECTRONICS

J.
i

IiI

DOTTED LINES
90 INDICATE - - YELLOW
PULSED
1: 80 OPERATION
I

;(

§.

I-

zIJJ

70

0

50

l<:

20

LL

«IJJ

1--I--f---Vl-\I-if--ir-+--I1r--t--I

I-

~ 80%

jjl

0

30

I

~ 80%
0..

EFFICIENCm- AIGaAs
RED II
RED

a: 40

~0

~100%

HIG~ . / I I r~

a: 60
a:

::l

if1'J
If."

1--I--II--lAr-fHI--i-I,+--++t--I

IJJ

>

~40%

lh'HIGH
EFFICIENCY
GrEEN

(f/

IJJ

hV

10
0..

a: 20% 1--f--ff-+-tiHff-+H---+-t1!

../LI

o

2

3

OUL~~~~LL~~~--~

4

520540560 580 600620640660 680690700
WAVELENGTH (A) - nm
Cl064D

FOWARD VOLTAGE VF (VOLTS)
C1831D

Fig. 2. Spectral Distribution

Fig. 1. Forward Current vs. Forward Voltage
40

2

1\\

~

Cii
Z
IJJ

I-

z

;;j1.5

«
...J

IJJ
II:

10
IF

ill

UJ

""

z

Co
Co

W

is

t-

~20

'"

~

>
i=

~

I

>30

t-

:::J
o'"

d
IJJ
a:

Z

LL

~ 1

0

:::J

i'. ........ 1'-

-'

o~
o

DC

20
40
DUTY CYCLE - %
10 mA AVERAGE

140

~120 %
0..

I::l

o

~100 0

i=

«
...J
w

~

80%

V

20
40
60
80
INSTANTANEOuS FORWARD
CURRENT 1'lmA)
C652A

Cl1948

Fig. 3. Luminous Intensity vs.
Duty Cycle

L

/

V

/

Fig. 4. Luminous Intensity vs.
Forward Current

\

"

i'..

"

"...... 1'-....

60%
-60 -40 -20 0
20 40 60
TEMPERATURE - °c

"80 100
C654A

6-165

6-166

MV5X124

PANEL MOUNTING GROMMET

OPTOELECTRONICS

MP65

.370"
(9.40mm)

~LJ============~

-1

L

.270"
(6.86 mm)

I

I

I
I

I
I

I
I

y

~
1=-_ ____________-::1
L _____________ -.J

The MP65 mounting grommet is intended for panel
mounting the MV5X124 Series of rectangular lamps.
The grommets are made of Black plastic and provide the
user with an easy-to-mount, professional appearance
when viewed on a front panel.
The MP65 can be used on any panel thickness up to
.125-inch (3.18 mm).
MATTE FINISH

'---------'
TOP VIEW OF GROMMET

1_

.123" (3.12mm)--!
.120" (3.05 mm)

-I

-I

C;:+I=======:=~

II~I==::=::j:::;:::J

.075"(1.91 mm)--l
.012" (1.83 mm) -

I

.300"

(7.62 mm)

"r'j
SIDE VIEW OF GROMMET

I

.370"
(9.40mm)

•

T
.270"

I,--~
I

..

END VIEW
OF GROMMET

I

PANEL HOLE PUNCHING

1

_______-;-.

.203"

lmm)

I

304"
i---(7.72mm)----I
TOP VIEW OF RING

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

1

.200"

(

lmm)

Punches can be ordered from one of the following
sources:
W.A. WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771
{Request a 28xx series punch with
dimensions of 0/18" x %2'1
ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600
(Request a 3506 series punch with
dimensions of 0/18" x %2")

SIDE VIEW OF RING
MATERIAL: POLYPROPYLENE BLACK

C1455

6-167

6-168

T·1 % PANEL MOUNTING GROMMETS
OPTOELECTRONICS

MP22 MP52

NOTES

TAPERED TO
MATE WITH
APPLICABLE
LAMPS

265"
(6.73mmJ

• I
:::::.--.t
"""---+----'''''I +

_*_!--->~

L

.310,-1

(7.87mmJ OIA

LAMP HOLDER

TOLERANCE ±.O1O" (.254mm)
MATERIAL: POL YPRO OR EQUIVALENT
FOR MOUNTING DRILL A ,25" (6.35mmJ HOLE

~l5"
~~mml
1.~16;EDI~ I
(9.14mm) OIA.

COLLAR

e600

e600

MP22 TWO-PIECE POP-INS FOR MV5X2XA

i--'7.11-~8~',' D~A"
t....... .250"

116'35m,'

,N~OTES:

;-I

m
I

TYPICAL MOUNTING TECHNIQUE
FOR EITHER TYPE

TOLERANCE :!.OlO" (.254mmj
MATERIAL: POLYPRO OR EQUIVALENT
FOR MOUNTING DRI LL A .25" (6.35mmJ HOLE

DIA. I

j";-f

i.

L

The MP Series of mounting grommets is intended for
panel mounting of any standard T-1% Quality
Technologies light emitting diode indicators, The
grommets are made of plastic and are available in Black
only.
The MP65 Series will easily mount the applicable lamps
on any panel thickness up to ,125-inch (3.18 mm).

-J

.310"
p.87mm) OIA

~
.D25"
('635mm)

r+---!J-,r,

C621A

(3.18mm)

C602

~~mm'

~

2J

.282"
(1.16mmlDIA .

.360"
LAMP HOLDER

PANEL MAX .125"

(9.14mmJ OIA.

C621A

COLLAR

MP52 TWO-PIECE POP-INS FOR MV6X5X AND MV5X5X

6-169

6-170

TAPE & REEL

OPTOELECTRONICS

CONFIGURATIONS:

T-1

T-13/4

f- / '

~

RECTANGULAR

TAPE

B

F

FEED
DIRECTION
ANOOEFIRST

•
_ __ .I. __

___ .L __
I

(( , ---6 - 1- i- -

I

--0-

- C)- -

5.08mm

2.S4mm

I

2.54mm

--(0---

- --0-I

S.OBmm

2.54mm

S.08mm
C3018

FAMILY

CONFIGURATIONS
AVAILABLE

T-13/4*
T-1**
RECT. (MV5X123)
RECT. (MV5X124A)
RECT. (HLMP-OXOX)
*

**

AlB

C/D
ElF
ElF
ElF

QTY
PER
REEL

QTYPER
AMMOPACK

1200
2000
2000
1500
2000

1200
2000
2000
1200
1500

MV5X5X, MV5X15X, MV6X53X, FLVXXX, HLMP-3XXX,
MV3X50

• Automatic PCB assembly of mostT-1-3/4, T-1, and
rectangular leds with radial insertion machines.
• Meets ANSI/EIA standard RS 468
• Standard 2.S4mm (0.100") lead spacing or preformed
to S.08mm (0.200")
• Choice of a variety of "H" dimensions.
• One luminous intensity category per reel or ammopack

MV5X6XX, HLMP-1XXX

1. Tape & Reel is not available for MV5X (T-3/4) MV5X9XA or MV5X7X lamp families
2. Anode leaves Reel first.

6-171

TAPE & REEL

OPTOELECTRONICS

PACKAGE DIMENSIONS &

TO~ERANCES:

TAPE
FEED
DIRECTION

B

c

E

D

F

ANODE FIRST

•

'z

,.
,"
.;,..'-:
.,'

,~

I.~·"

p
C3019

A

H

Ho
F

B

D

C

16.5

18.5

-

20.5

20.5

20.5

5

22.5

22.5

6

24.5

24.5

1

16.5

2

17.5

3
4

2.54

18
5.08

E

F

18.5

-

20.5

20.5

20.5

22.5

22.5

22.5

24.5

24.5

24.5

17.5
18.5

-

2.54

-

18
5.08

16.5
17.5

2.54

P

12.7 ±0.3

Ho

±0.5mm

Po

6.35 ±1.0

W

18.0 +1.0/-0.5

d

4.0 ±0.2

Wo

15.0 ±0.3

22.5

Z

2.0 max

W1

9.0 +0.75/-0.5

24.5

H

±1mm

W2



GULL WING LEAD
SUBMINIATURE LAMP

~
I

ST1722

NOTES:
1. EMPTY COMPONENT POCKETS ARE SEALED
WITH TOP COVER TAPE.
2. 7" REEL Z-BEND AND GULL WING; 1500
PIECES PER REEL. YOKE LEAD; 1200 PIECES
PER REEL. FLAT PACKAGE; 2000 PIECES
PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END
OF THE TAPE IS 500 MM.
4. THE MAXIMUM NUMBER OF MISSING LAMPS
IS TWO.
5. THE CATHODE OF ORIENTED TOWARDS
THE TAPE SPROKET HOLE IN ACCORDANCE
WITH ANSI/EIA RS-481 SPECIFICATIONS.

6-175

6-176

THE PHOTOMETRY OF LED'S
A PRIMER IN PHOTOMETRY

OPTOELECTRONICS

AN601
Other abbreviations of immediate concern are:

Any short discourse on the subject of photometry
requires a brief review of geometric principles utilized.

Ae=Area of emitting (or reflecting) surface.
Ap=Apparent area of an emitting source whose
image is projected in space and viewed at some
angle, 6.
Ad=Detection area. Whether a physical target or
merely a defined spatial area, it is the area of
interest.

RADIAN
In plane geometry the angle whose arc is equal to the
radius generating it is called a radian. Therefore, if
C=2'fl'R (Circumference of a circle) 2'fl'R=360°.
Radian=180o/'fl'=57.27° (approx.).

FLUX (Symbol F)
Any radiation, whether visible or otherwise, can be
expressed by a number of FLUX LINES about the source,
the number being proportional to the intensity of that
source. This LUMINOUS flux is expressed in LUMENS for
visible radiation.

LUMINOUS EMITTANCE (Symbol L)

TWO DIMENSIONAL FIGURE

Fig.t.

STERADIAN
In solid geometry one steradian is the solid angle
subtended at the center of a sphere by a portion of the
surface area equal to the square of the radius of the
sphere. Therefore, if ARENR2=1 =1 steradian and the
area on the surface of a sphere equals 4'fl'R2, then
4'fl'R2/R2 or 4'fl' steradians of solid angle ro about the
center of a sphere. The steradian is usually abbreviated
as STER.

A source measurement parameter. It is defined as the
ratio of the luminous flux emitted from a source to the
area of that source, or L= F/Ae. Typically expressed in
units of:
lumens/cm 2 or one PHOT,
lumens/m2 or one LUX (for one METER CANDLE),
lumens/ft2 or one FOOT CANDLE.
The foot candle is the more common term used in this
country.

Fig. 3.

THREE DIMENSIONAL FIGURE

Fig. 2.

6-177

THE PHOTOMETRY OF LED'S
A PRIMER IN PHOTOMETRY

OPTOELECTRONICS

ILLUMINANCE (Symbol E)
This is a target or detector area measurement parameter.
It is the ratio of flux lines incident on a surface to the area
of that surface or E=l/Ad. Typical measurement units are
the same for LUMINOUS EMITTANCE (above) i.e. lumen/
cm 2=one phot, lumen/m 2=one lux, and lumen/f!2=one ft.
candle.

it can be considered as an area source. If less than this
10% figure, the source can be treated as point in nature.
This one to ten ratio of source diameter to distance is
offered as it MATHEMATICALLY very closely
approximates results obtained when comparing an area
source to its point equivalent. LUMINANCE presents itself
as an extremely useful parameter as it applies a figure of
merit to:
1. Apparent or protected area of the source (Ap).

2. Amount of luminous flux contained within the
TARGET OR
DETECTOR AREA

projected area of the source (Ap).
3. Solid angle the projected area generates with
respect to the center of the source.

Fig. 4.

NOTE: The projected area Ap varies directly as the
cosine of 6 i.e. max. at 0° or normal to the surface and
minimum at 90°
Ap=Ae cos 6

LUMINOUS INTENSITY (Symbol I)
A spatial flux density concept. It is the ratio of luminous
flux of a source to the solid angle subtended by the
detected area and that source. The LUMINOUS
INTENSITY of a source assumes that source to be pOint
rather than an area dimension. The LUMINOUS
INTENSITY (or CANDLE POWER) of a source is
measured in LUMENS/STERADIAN which is equal to one
CANDELA (or loosely, one CANDLE).

LUMINANCE is defined as the ratio of LUMINOUS
INTENSITY to the projected area of the source Ap.

o·

LUMENS
LUMINOUS
INTENSITY

Ap

STERADIAN
Ae COS

e

CAN DE LAS
(Sq. Unit)

POINT SOURCE

Fig. 5.

LUMINANCE (Symbol B)
Sometimes called photometric brightness (although the
term brightness should not be used alone as it
encompasses other physiological factors such as color,
sparkle, texture, etc.) it is applied to sources of
appreciable area size. Mathematically, if the area of an
emitter (circular for example) has a diameter or diagonal
dimension greater than 0.1 the distance to the detector,

6-178

And depending on the units used for area:
1 CANDELA/cm2
1 STILB
1 CANDELA/m 2
= 1 NIT
1 CANDELA/in 2
= ) no designator available.
1 CANDELA/ft2
= )
Also:
1hr candela/cm 2
1/-rr candela/m2
1/-rr candela/in2
1/-rr candela/ft2

= LAMBERT
= APOSTILB (or BLONDEL)
no designator available
= FOOT LAMBERT

THE PHOTOMETRY OF LED'S
A PRIMER IN PHOTOMETRY

OPTOElECTRONICS

CIECURVE
Following is the standard observer curve or "standard eyeball" established by the Commission Internationale de
I'Eclair (commonly called the CIE curve). Whereas one watt of radiated energy at any frequency corresponds to one
watt of radiated energy at any other frequency, this relationship fails to hold true for photometric measurement. The
CIE curve is essential therefore, not only in determining the eye's efficiency at any particular wavelength, but also the
corresponding lumens per watt conversion of that particular wavelength.
For example, the MV5020A which emits 180 JLW of radiant energy at 6600A (typical) or 41.4 lumens per watt has
180 x 10"" watts x 41.4 lumens =7.45 mLumens
watt
of flux emitted from it.
700

V

650

/

600

a::
0

I

550

I

I-

u

«
u..

500

Z
0

450

a::
w

400

Z
0

350

I
I
I
I

I- 300
I-

«

~
CI)

250

Z

200

I

\

I

I

150

..J

100

/

50

V

/
V

-7516

\

I

,

zw

1\
\

w

a:

~

~

:2:

.\

I
I
I
I
I
I
I
I
I

-~

\

~
I

W
~

~

I

I

C,:)

:E

~
I

CI)

>

-100%

t'\

6"
W
a:

\

100mA

NOTES:
AINORMALFORWARDIFNFCURVE
BI DAMAGE OCCURRING TO JUNCTION
WHILE REVERSE BIASED
CI PARTIALLY DAMAGED JUNCTION
DI DEFECTIVE OR HEAVILY DAMAGED
JUNCTION

IF,- - - - - - -

I
I
T-

+ [TEST BENCHMARK
< VF (MAX) @ IF, (TEST)]

VF,

.7

IC:

A

I
/
•

/."

/"

:VF1

V_

+[TEST BENCHMARK
> VR (MINI @ IR (TESTI]

VR

B

EXCESSIVE IR

>

lO~A

FORWARD AND REVERSE
NOT TO SAME SCALE

C451

Fig. 4. Effects of Improper Testing Procedure
DEVICE
UNDER
TEST

o

••
POWER SUPPLY
(VOLTAGE REGULATED)

SCOPE
C452

Fig. 5. Potentially Damaging Forward-Mode Test Setup

advised with LED's, especially if the testing involves
operating with excess current or current which exceeds
the device ratings for several hours. LED's exhibit a
gradual degradation of brightness as a function of
current, time, and temperature, and the higher the
current, the faster the degradation. The graphs in Figures
2 and 3 illustrate typical LED responses to forward
current and temperature. Exceeding the rated
parameters in test can result in rapid degradation beyond
an acceptable level. For the same reasons, burn-in is
particularly inadvisable with LED's if the test set-up
involves slow on-off cycles of overcurrent (cyclic room
temperature to high temperature and then cooling).

Thermal Cycling-is an on-off cycling method which
simulates operational heating effects. The device is
allowed to heat up from room temperature with rated
current, and is then cooled down. Thermal cycling is an
excellent method for finding defective devices (poor
bonds, fractures in the metalization, voids in the dieattach, etc.), and its use is recommended for testing
LED's. Too often, such thermal cycling occurs in actual
use, and defects are detected too late. However, to
insure against exceeding the rated capabilities of a
particular device, a thermal cycling test program (or
operational program) should not be established without
factory guidance.
6-183

THE PHOTOMETRY OF LED'S
A PRIMER IN PHOTOMETRY

OPTOELECTROI'CS

use a power supply which is both full voltage regulated
and current limited.

Brightness Tests

"'
I

Optical measurements are typically, and in most
instances, unavoidably, of very low accuracy. Optical
measurements with errors of less than 1% are rare, and
accuracy within 5% is difficult to obtain. With an
experienced technician using good equipment it is
possible to secure accuracy within 10% to 20% on a
routine basis,_ but even here a slight difference in
technique can result in errors in excess of 50%.

lJj
z
o

~w

>

~

a:

WAVELENGTH ().) - nm

C453

Fig. 6. Responses of Two Detectors to the
Output of a Visible Red LED

Reverse Conduction Mode Problems
Reverse voltage testing can be hazardous since it may
involve a system capable of delivering voltages and
currents which considerably exceed the reverse voltage
and power ratings of the device under test. Too much
current at the avalanche voltage will dissipate excessive
power, resulting in heat which will degrade the junction
rapidly. The importance of adequate current limiting
cannot be over-emphasized. Without it, damage to the
junction can result from testing into the avalanche region
and/or from the sudden application of voltage which
exceeds the rated avalanche breakdown voltage of the
device. Damage in the avalanche region is usually the
result of an improperly set testing apparatus. As Figure 4
indicates, damage may not be immediately apparent, but
it could result in poor performance during other test
situations and possible rejection of the device due to
excessive voltage or current values.

Forward Conduction Mode Problems
Forward mode testing is used to check such
performance criteria as the forward VII curve of the diode,
brightness, ROp, and luminescence. The potential danger
in examining the forward curve is damage to the diode
junction, since the test circuitry can sometimes deliver
very high energy bursts. For example, if a 50-volt
regulated power supply is set for 5 volts to supply the test
fixture, and if power is supplied through a switch as
shown in Figure 5, it is possible to deliver current pulses
of a high enough amplitude to result in junction damage.
This problem is easily avoided by supplying low voltage
power with current limiting to the test fixture. Another
acceptable method, and the one which is used by
General Instrument quality assurance engineers, is to
2Michael A. Zaha, "Shedding Some Needed Light on Optical
Measurements," Electronics, November 6,1972, pp. 94-96.

6-184

Detector~A good detector approximates the CIE curve
area with 2%. However, it is important to note that even
when the detector is within 2% of perfect, it is still
possible to produce mismatches at specific wavelengths
which can cause the percentage of error to increase
considerably. Therefore, in order to determine the margin
of possible error, it is imperative that one know the
detector's spectral response within the wavelength range
of the device to be measured. To illustrate the problem of
spectral mismatch, the reader is referred to Figure 6
where we show the responses of two detectors, a
radiometric detector and a photometric detector, to the
output of a visible red LED. The response of the
radiometric detector is about 3% high. Notice, however,
that the photometric detector, which provides a very
close match to the CIE curve, produces a +25% error?

Additional factors which must be considered are detector
aging and filter deterioration, nonlinear detector
responses, circuitry which is not temperaturecompensated, and stray light. Periodic calibration is
essential if a reasonable degree of accuracy is to be
maintained.

Correlation Sample~Unless the testing apparatus is
reciprocally related to a vendor-supplied correlation
sample, test results may erroneously indicate that many
devices in a shipment do not meet the minimum
brightness that was specified on the order, and could
result in the rejection of devices which do meet minimum
standards. Correlation samples are also essential for the
correction of instrumentation drift.
Subjectivity Problem~ln some instances a visual
comparison may be the best method for brightness
testing. However, the manner by which the human eye
"sees" is affected by various factors such as the nature of
the light source, viewing distance, color, texture, the
observer's visual acuity, and even the viewer's emotional
state. Therefore, because of these highly subjective
factors involved in human visual perception, such tests
alone are usually inadequate and should be

OPTOElECTRONICS

THE PHOTOMETRY OF LED'S
A PRIMER IN PHOTOMETRY

used only as a supplement to or in correlation with
instrumentation. It has been our experience that
manufacturers who rely solely on visual testing return
many devices, a fair percentage of which can be
reshipped and accepted.

Testing to Parameters Other Than Those
Specified-This is a particularly important consideration
when a manufacturer specifies his own parameters
distinct from those normally specified. To avoid
unnecessary rejection of devices, it is imperative that a
device is always tested to the parameters under
which it will be expected to operate.
SUGGESTIONS FOR PROPER TESTING
That which follows is a quick check list of "do's" which
enable manufacturers to avoid many of the problems
associated with running incoming quality assurance tests
on LED's.
• In cooperation with the vendor, establish specifications
which are economically feasible and ensure that
devices are screened at their point of origin.
• Always obtain a correlation sample from the vendor
before setting up the test procedure.
• Establish a reliable test procedure.
• Measure relevant parameters at relevant points.
• Make sure that the test circuitry will not erroneously
indicate defects and that it will not generate failures
later in the manufacturing cycle.
• Work closely with the vendor in establishing the test
system.

6-185

6-186

North American Technical Representatives
ALABAMA
R.O. Whitesell

FLORIDA
R.O. Whitesell

Houston, TX ....... (713) 783-4497
FAX .............. (713) 783-5307

Huntsville ......... (205) 883-5110
FAX .............. (205) 882-9626

Huntsville, AL ..... (205) 883-5110
FAX .............. (205) 882-9626

MAINE
Advanced Tech Sales

ARIZONA
Compass Marketing

Longwood ........ (407) 682-6662
FAX .............. (407) 682-7038

North Reading, MA. (508) 664-0888
FAX .............. (508) 664-5503

Phoenix .......... (602) 996-0635
FAX .............. (602) 996-0586

GEORGIA
R.O. Whitesell

MARYLAND
Beacon North

Tucson ........... (602) 577-0580
FAX .............. (602) 577-0581

Norcross ......... (404) 449-9190
FAX .............. (404) 449-9197

Columbia ......... (800) 877-3747
FAX .............. (410) 381-4752

ARKANSAS
Technical Marketing, Inc.

IDAHO
ES/Chase Company

MASSACHUSETTS
Advanced Tech Sales

Carrollton, TX ..... (214) 387-3601
FAX .............. (214) 387-3605

Tigard, OR ........ (503) 292-8840
FAX .............. (503) 292-8827

North Reading ..... (508) 664-0888
FAX .............. (508) 664-5503

CALIFORNIA
Ewing·Foley, Inc.
Auburn ........... (916) 885-6591
FAX .............. (916) 885-6594
Los Altos ......... (415) 941-4525
FAX .............. (415) 941-5109

Harvey King Inc.
San Diego ........ (619) 695-9300
FAX .............. (619) 695-9515

Varigon Inc.

Compass Marketing
Salt Lake City, UT .. (801) 322-0391
FAX .............. (801) 322-0392

ILLINOIS
Sumer,lnc.
Rolling Meadows .. (708) 991-8500
FAX .............. (708) 991-0474

Lorenz Sales
St. Louis, MO .... " (314) 997-4558
FAX .............. (314) 997-5829

Westlake Village ... (818) 735-5494
FAX .............. (818) 735-5499

INDIANA
R.O. Whitesell

CANADA
Dynasty Components Inc.

Fort Wayne ....... (219) 489-0588
FAX .............. (219) 489-5733

Calgary, Alb ....... (403) 850-4350
FAX .............. (403) 686-2364

Indianapolis ....... (317) 876-9000
FAX .............. (317) 876-0434

Burnaby, B.C ...... (604) 880-0301
FAX .............. (604) 298-8318

Kokomo .......... (317) 457-9127
FAX .............. (317) 456-1234

Ottawa, Ont. ...... (613) 596-9800
FAX .............. (613) 596-9886

IOWA
Lorenz Sales

Vitel Electronics

Cedar Rapids ..... (319) 377-4666
FAX .............. (319) 377-2273

Kanata, Ont. ...... (613) 592-0090
FAX .............. (613) 592-0182
Lachine, Que ...... (514) 636-5951
FAX .............. (514) 636-1341
Mississauga, Ont.. . (905) 564-9720
FAX .............. (905) 564-5719

COLORADO
Compass Marketing
Greenwood Village. (303) 721-9663
FAX .............. (303) 721-0195

CONNECTICUT
Advanced Tech Sales
Wallingford ....... (508) 664-0888
FAX .............. (508) 664-5503

DELAWARE
Beacon North
Colombia, MD ..... (800) 877-3747
FAX .............. (410) 381-4752

KANSAS
Lorenz Sales
Overland Park ..... (913) 469-1312
FAX .............. (913) 469-1238
Wichita ........... (316) 721-0500
FAX .............. (316) 721-0566

KENTUCKY
R.O. Whitesell
Lexington ......... (606) 277-4904
FAX .............. (606) 277-5116
Cincinnati, OH ..... (513) 528-5644
FAX .............. (513) 528-5662

LOUISIANA
Technical Marketing, Inc.
Carrollton, TX ..... (214) 387-3601
FAX .............. (214) 387-3605

MICHIGAN
R.O. Whitesell
Grand Blanc ...... (810) 695-0770
FAX .............. (810) 695-2732
Grand Rapids ..... (616) 942-5420
FAX .............. (616) 942-1173
St. Joseph ........ (616) 983-7337
FAX .............. (616) 983-6506
Farmington Hills ... (810) 473-5454
FAX .............. (810) 473-1165

MINNESOTA
George Russell
Bloomington ...... (612) 854-1166
FAX .............. (612) 854-6799

MISSISSIPPI
R.O. Whitesell
Huntsville, AL ..... (205) 883-5110
FAX .............. (205) 882-9626

MISSOURI
Lorenz Sales
St. Louis .......... (314) 997-4558
FAX .............. (314) 997-5829
Overland Park, KS . (913) 469-1312
FAX .............. (913) 469-1238
Wichita, KS ....... (316) 721-0500
FAX .............. (316) 721-0566

MONTANA
Compass Marketing
Salt Lake City, UT .. (801) 322-0391
FAX .............. (801) 322-0392

NEBRASKA
Lorenz Sales
Lincoln ........... (402) 475-4660
FAX .............. (402) 474-7094

NEVADA
Compass Marketing
Phoenix, AZ ....... (602) 996-0635
FAX .............. (602) 996-0586
(Las Vegas/Clark County Only) 7-1

North American Technical Representatives
NEVADA
Ewing.Foley

OREGON
ES/Chase Co.

UTAH
Compass Marketing

Auburn, CA ....... (916) 885-6591
FAX .............. (916) 885-6594

Tigard ............ (503) 684-8500
FAX .............. (503) 684-3400

Salt Lake City ..... (801) 322-0391
FAX .............. (801) 322-0392

NEW HAMPSHIRE
Advanced Tech Sales

PENNSYLVANIA
R.O. Whitesell

VERMONT
Advanced Tech Sales

North Reading, MA. (508) 664-0888
FAX .............. (508) 664-5503

Pittsburgh ........ (412) 963-6161
FAX .............. (412) 963-0620

North Reading, MA. (508) 664-0888
FAX .............. (508) 664-5503

NEW JERSEY

TAl Corp.

TAl Corp.
Moorestown ....... (609) 778-5353
FAX .............. (609) 778-7828

Moorestown, NJ ... (609) 778-5353
FAX .............. (609) 778-7828

VIRGINIA
Beacon North
Columbia, MD ..... (800) 877-3747
FAX .............. (410) 381-4752

Trionic Associates

PUERTO RICO
R.O. Whitesell

Great Neck, NY .... (516) 466-2300
FAX .............. (516) 466-2319

Longwood, FL. .... (407) 682-6662
FAX .............. (407) 682-7038

NEW MEXICO
Compass Marketing

RHODE ISLAND
Advanced Tech Sales

Albuquerque ...... (505) 344-9990
FAX .............. (505) 345-4848

Wallingford, CT .... (508) 664-0888
FAX .............. (508) 664-5503

NEW YORK
Bob Dean, Inc.

SOUTH CAROLINA
R.O. Whitesell

Ithaca ............ (607) 257-1111
FAX ........... , .. (607) 257-3678

Norcross, GA ...... (404) 449-9190
FAX .............. (404) 449-9197

WISCONSIN
Sumer, Inc.

Wappingers Falls .. (914) 297-6406
FAX .............. (914) 297-5676

Durham, NC ...... (919) 544-3380
FAX .............. (919) 544-3709

George Russell

Trionic Associates
Great Neck ....... (516) 466-2300
FAX ...... , .... , .. (516) 466-2319

NORTH CAROLINA
R.O. Whitesell
Durham .......... (919) 544-3380
FAX .............. (919) 544-3709

NORTH DAKOTA
George Russell
Bloomington, MN .. (612) 854-1166
FAX .............. (612) 854-6799

OHIO
R.O. Whitesell
Cleveland ......... (216) 447-9020
FAX .............. (216) 447-0260
Dayton ........... (513) 298-9546
FAX .............. (513) 298-2586

SOUTH DAKOTA
George Russell
Bloomington, MN .. (612) 854-1166
FAX .............. (612) 854-6799

TENNESSEE
R.O. Whitesell

Cincinnati, OH ..... (513) 528-5644
FAX .............. (513) 528-5662

Brookfield ......... (414) 784-6641
FAX .............. (414) 784-1436
Bloomington, MN .. (612) 854-1166
FAX .............. (612) 854-6799

WYOMING
Compass Marketing
Salt Lake City, UT .. (801) 322-0391
FAX .............. (801) 322-0392

Austin ............ (512) 343-6976
FAX .............. (512) 343-7986
Carrollton ......... (214) 387-3601
FAX .. , ........... (214) 387-3605
Houston .......... (713) 783-4497
FAX .............. (713) 783-5307

R.O. Whitesell

Columbus ........ (614) 888-9396
FAX .............. (614) 888-8792

EI Paso ........... (915) 771-0522
FAX .............. (915) 771-0523

7-2

WEST VIRGINIA
R.O. Whitesell

TEXAS
Technical Marketing, Inc.

Brownsville ...... , (210) 542-1718
FAX .............. (210) 541-4732

Carrollton, TX ..... (214) 387-3601
FAX .............. (214) 387-3605

Kirkland .......... (206) 823-9535
FAX .............. (206) 821-7257

Knoxville .......... (615) 694-9476
FAX .............. (615) 691-9693

Cincinnati. ........ (513) 528-5644
FAX .............. (513) 528-5662

OKLAHOMA
Technical Marketing, Inc.

WASHINGTON
ES/Chase Co.

QT Optoelectronics
North American Sales
Headquarters
16775 Addison Rd.
Dallas, TX 75248
Tel: (214) 447-1300
FAX: (214) 447-0784

North American Authorized Distributors
ALL AMERICAN
Huntsville, AL. .........
Irvine, CA. ............
San Diego, CA.........
San Jose, CA. . . . . . . . ..
Torrance, CA. .........
Westlake Village, CA....
Danbury, CT...........
FI. Lauderdale, FL. .....
Lisle, IL. . . . . . . . . . . . . ..
Bedford, MA. ..........
Rockville, MD ..........
Eden Prairie, MN .......
West Berlin, NJ ........
Hauppauge, Ny........
Beaverton, OR. ........
Austin, TX.............
Houston, TX...........
Richardson, TX........
Salt Lake City, UT......

(205)
(714)
(619)
(408)
(310)
(818)
(203)
(305)
(708)
(617)
(301)
(612)
(609)
(516)
(503)
(512)
(713)
(214)
(801)

837-1555
453-1945
658-0200
441-1300
320-0240
706-1775
791-3818
429-2800
852-7707
275-8888
251-1205
944-2151
768-6767
434-9000
531-3333
335-2280
955-1993
231-5300
261-4210

ARROW/SCHWEBER
Huntsville, AL. .........
Tempe, AZ. ............
Calabasas, CA. ........
Irvine, CA.............
San Diego, CA. ........
San Jose, CA. .........
Englewood, CO ........
Wallingford, CT........
Deerfield Beach, FL. . ..
Lake Mary, FL. .........
Duluth, GA. ...........
Itasca, IL. .............
Indianapolis,'N ........
Lenexa, KS ............
Wilmington, MA. .......
Columbia, MD .........
Plymouth, MI. .........
Eden Prairie, MN .......
SI. Louis, MO ..........
Raleigh, NC ...........
Marlton, NJ ............
Pine Brook, NJ .........
Hauppauge, Ny........
Melville, NY (Int'I) .......
Rochester, Ny.........
Centerville, OH ........
Solon, OH .............
Tulsa, OK.............
Beaverton, OR. . . . . . . ..
Monroeville, PA. .......
Austin, TX.............
Carrollton, TX..........
Houston, TX...........
Salt Lake City, UT ......
Bellevue, WA. . . . . . . . ..
Brookfield, WI. . . . . . . ..

(205)
(602)
(818)
(714)
(619)
(408)
(303)
(203)
(305)
(407)
(404)
(708)
(317)
(913)
(508)
(301)
(313)
(612)
(314)
(919)
(609)
(201)
(516)
(516)
(716)
(513)
(216)
(918)
(503)
(412)
(512)
(214)
(713)
(801)
(206)
(414)

837-6955
431-0030
880-9686
587-0404
565-4800
441-9700
799-0258
265-7741
429-8200
333-9300
497-1300
250-0500
299-2071
541-9542
658-0900
596-7800
455-0850
941-5280
567-6888
876-3132
596-8000
227-7880
231-1000
843-5000
427-0300
435-5563
248-3990
252-7537
629-8090
856-9490
835-4180
380-6464
647-6868
973-6913
643-9992
792-0150

(604)
(905)
(613)
(514)

421-2333
670-7769
226-6903
421-7411

ARROW - CANADA
Burnaby, B.C ...........
Mississauga, Ont.. .....
Neapean, Ont.. . . . . . . ..
Dorval, Que ............

BELL INDUSTRIES, INC.
Huntsville, AL. ......... (205) 430-3150
Scottsdale, AZ. . . . . . . .. (602) 905-2355

Agoura Hills, CA.......
Irvine, CA. ............
Los Angeles, CA. ......
Roseville, CA. .........
San Diego, CA. ........
Sunnyvale, CA. ........
Denver, CO ...........
Meriden, CT. ..........
Altamonte Springs, FL..
Norcross, GA. .........
Elk Grove Village, IL. . ..
FortWayne,'N .........
Indianapolis, IN ........
Andover, MA..........
Columbia, MD .........
Fairfield, NJ ...........
Mount Laurel, NJ .......
Albuquerque, NM ......
Dayton, OH ...........
Solon, OH .............
Beaverton, OR. ........
Richardson, TX........
Midvale, UT...........
Bellevue, WA. . . . . . . . ..
Waukesha, Wi .........

(818)
(714)
(310)
(916)
(619)
(408)
(303)
(203)
(407)
(404)
(708)
(219)
(317)
(508)
(410)
(201)
(609)
(505)
(513)
(216)
(503)
(214)
(801)
(206)
(414)

865-7900
727-4500
826-2355
781-8070
576-3290
734-8570
280-1115
639-6000
339-0078
446-7167
640-1910
422-4300
875-8200
474-8880
290-5100
227-6060
439-8860
292-2700
435-5922
498-2002
644-3444
690-9096
561-9691
646-8750
547-8879

ELECTRONICS MARKETING
CORP.
Indianapolis, IN ........
Charlotte, NC ..........
Columbus, OH .........
Highland Heights, OH ..

(317)
(704)
(614)
(216)

484-3059
394-6195
299-4161
442-3441

(205)
(602)
(818)
(714)
(916)
(619)
(408)
(303)
(203)
(407)
(904)
(305)
(813)
(404)
(208)
(708)
(317)
(913)
(508)
(410)
(313)
(612)
(314)
(704)
(919)
(609)
(201)
(516)
(716)
(315)
(513)
(216)
(918)
(503)
(512)
(713)

837-9209
731-4661
879-1234
753-4778
782-7882
623-2888
434-0369
237-1400
250-1319
865-9555
668-7772
428-9494
530-1665
447-4767
376-8080
843-0034
469-0441
381-6800
779-3111
312-0833
513-0015
947-0909
542-9922
548-9503
876-0088
988-1500
331-1133
348-3700
387-9600
451-4405
427-6090
446-0061
492-1500
297-5020
346-6426
952-7088

F.A.I.
Huntsville, AL. .........
Phoenix, AZ. ...........
Agoura Hills, CA. . . . . ..
Irvine, CA.............
Roseville, CA. .........
San Diego, CA. ........
San Jose, CA..........
Lakewood, CO .........
Cheshire, CT..........
Altamonte Springs, FL..
Tallahassee, FL. .......
FI. Lauderdale, FL. .....
Largo, FL. ............
Norcross, GA. .........
Boise, 10..............
Hoffman Estates, IL. ....
Indianapolis,'N, .......
Overland Park, KS ......
Bolton, MA............
Columbia, MD .........
Livonia, MI. ...........
Eden Prarie, MN .......
SI. Louis, MO ..........
Charlotte, NC ..........
Raleigh, NC. . . . . . . . . ..
Marlton, NJ ............
Parsippany, NJ .........
Hauppauge, Ny........
Rochester, Ny.........
Syracuse, Ny..........
Beavercreek, OH .......
Mayfield Heights, OH ...
Tulsa, OK.............
Portland, OR..........
Austin, TX.............
Houston, TX...........

Richardson, TX ........
San Antonio, TX........
Salt Lake City, UT......
Bothell, WA............
Brookfield, WI. ........

(214)
(210)
(801)
(206)
(414)

231-7195
738-3330
467-9696
485-6616
792-9778

(403)
(403)
(604)
(204)
(905)
(613)
(514)
(418)

291-5333
438-5888
654-1050
788-3075
612-9888
820-8244
694-8157
682-5775

F.A.I •• CANADA
Calgary, Alb ............
Edmonton, Alb.. . . . . . ..
Vancouver, B.C.........
Winnipeg, Man .........
Mississauga, Ont.. . . . ..
Ottawa, Ont.. ..........
Montreal, Que ..........
Quebec, Que..........

FUTURE ELECTRONICS
CORP.
Huntsville, AL. .........
Phoenix, AZ.. . . . . . . . . ..
Tucson, AZ. ............
Irvine, CA. ............
Los Angeles, CA. . . . . ..
San Diego, CA.........
San Jose, CA..........
Lakewood, CO .........
Cheshire, CT. . . . . . . . ..
Altamonte Springs, FL..
Largo, FL. ............
Norcross, GA. .........
Hoffman Estates, IL. ....
Indianapolis, IN ........
Bolton, MA. . . . . . . . . . ..
Columbia, MD.........
Grand Rapids, MI ......
Livonia, MI. ...........
Eden Prairie, MN .......
SI. Louis, MO..........
Concord, NC ..........
Raleigh, NC...........
Marlton, NJ ............
Parsippany, NJ .........
Hauppauge, NY........
Syracuse, Ny..........
Rochester, Ny.........
Beavercreek, OH .......
Mayfield Heights, OH. ..
Beaverton, OR. . . . . . . ..
Austin, TX.............
Houston, TX...........
Richardson, TX........
Salt Lake City, UT......
Bothell, WA............
Brookfield, Wi .........

(205)
(602)
(602)
(714)
(818)
(619)
(408)
(303)
(203)
(407)
(813)
(404)
(708)
(317)
(508)
(410)
(616)
(313)
(612)
(314)
(704)
(919)
(609)
(201)
(516)
(315)
(716)
(513)
(216)
(503)
(512)
(713)
(214)
(801)
(206)
(414)

830-2322
968-7140
929-5600
250-4141
865-0040
625-2800
434-1122
232-2008
250-0083
767-8414
530-1222
441-7676
882-1255
469-0447
779-3000
290-0600
698-6800
261-5270
944-2200
469-6805
455-9030
790-7111
596-4080
299-0400
234-4000
451-2371
387-9550
426-0090
449-6996
645-9454
502-0991
785-1155
437-2437
467-4448
489-3400
879-0244

(403)
(403)
(604)
(204)
(905)
(613)
(514)
(418)

250-5550
438-2858
294-1166
786-7711
612-9200
820-8313
694-0090
877-6666

FUTURE-CANADA
Calgary, Alb ............
Edmonton, Alb.. . . . . . ..
Vancouver, B.C.........
Winnipeg, Man .........
Mississauga, Ont.. . . . ..
Ottawa, Ont.. ..........
Montreal, Que ..........
Quebec, Que ..........

GERBER ELECTRONICS
Norwood, MA. ......... (617) 769-6000

North American Authorized Distributors, cont'd
MOUSER ELECTRONICS
Gilroy, CA. . . . . . . . . . . ..
Santee, CA. ...........
Mansfield, TX..........
Randolph, NJ ..........

(800)
(800)
(800)
(800)

346-6873
346-6873
346-6873
346-6873

NEWARK ELECTRONICS
Birmingham, AL. ....... (205)
Huntsville, AL. ......... (205)
Mobile, AL. ........... (205)
Little Rock, AR. ........ (501)
Tempe, AZ. . . . . . . . . . .. (602)
Chula Vista, CA........ (619)
Garden Grove, CA. ..... (714)
Palo Mo, CA. . . . . . . ... (415)
Riverside, CA. . . . . . . . .. (909)
Sacramento, CA. ...... (916)
San Diego, CA......... (619)
Santa Clara, CA. ....... (408)
Santa Fe Springs, CA. .. (310)
Thousand Oaks, CA.... (805)
Denver, CO. . . . . . . . . .. (303)
Bloomfield, CT...... '" (203)
Ft. Lauderdale, FL. ..... (305)
Jacksonville, FL. ....... (904)
Orlando, FL. . . . . . . . . .. (407)
Tampa, FL. ............ (813)
Norcross, GA. . . . . . . . .. (404)
Bettendorf, IA. ......... (319)
Cedar Rapids, IA. ...... (319)
West Des Moines, IA.... (515)
Boise, ID .............. (208)
Addison, IL. ........... (708)
Rockford, IL. .......... (815)
Schaumburg, IL. ....... (708)
Springfield, IL. ......... (217)
Willowbrook, IL. ....... (708)
Ft. Wayne, IN .......... (219)
Indianapolis, IN ........ (317)
Indianapolis, IN ........ (317)
Overland Park, KS ...... (913)
Louisville, KY. . . . . . . . .. (502)
Metarie, LA............ (504)
Marlborough, MA. . . . .. (508)
Woburn, MA. .......... (617)
Hanover, MD .......... (410)
Grand Rapids, MI. ..... (616)
Oak Park, MI. . . . . . . . .. (810)
Oak Park, MI .......... (810)
Saginaw, MI. .......... (517)
Minneapolis, MN ....... (612)
St. Paul, MN ........... (612)
St. Louis, MO .......... (314)
Ridgeland, MS ......... (601)
Helena, MT............ (406)
Charlotte, NC .......... (704)
Greensboro, NC ....... (910)
Raleigh, NC ........... (919)
Omaha, NE............ (402)
Nashua, NH. . . . . . . . . .. (603)
East Brunswick, NJ ..... (908)

7-4

979-7003
837-9091
471-6500
225-8130
966-6340
691-0141
893-4909
812-6300
784-1101
565-1760
453-8211
988-7300
929-9722
449-1480
373-4540
243-1731
486-1151
399-5041
896-8350
287-1578
448-1300
359-3711
393-3800
222-0700
342-4311
495-7740
229-0225
310-8980
787-9972
789-4780
484-0766
259-0085
844-0047
677-0727
423-0280
838-9771
229-2200
935-8350
712-6922
954-6700
967-0600
968-2950
799-0480
331-6350
631-2683
453-9400
956-3834
443-6192
535-5650
294-2142
781-7677
592-2423
888-5790
937-6600

Union, NJ .............
Albuquerque, NM ......
Reno, NV. . . . . . . . . . . ..
Bohemia, Ny..........
Latham, Ny............
Liverpool, Ny..........
Pittsford, NY...........
Wappingers Falls, NY...
Williamsville, Ny.......
Cincinnati, OH .........
Cleveland, OH .........
Columbus, OH .........
Dayton, OH ...........
Toledo, OH ............
Youngstown, OH .......
Oklahoma City, OK. . . ..
Tulsa, OK. .. . . . . . . . . ..
Portland, OR ..........
Allentown, PA. .........
Fort Washington, PA. ...
Pittsburgh, PA. . . . . . . ..
Greenville, SC.. . . . . ...
Brentwood, TN ........
Knoxville, TN ..........
MemphiS, TN ..........
Austin, TX.............
Corpus Christi, TX......
EI Paso, TX............
Houston, TX...........
San Antonio, TX........
Salt Lake City, UT......
Herndon, VA...........
Richmond, VA. . . . . . . ..
Roanoake, VA. . . . . . . ..
Bellevue, WA. .........
Spokane, WA. .........
Madison, WI. ..........
Milwaukee, WI. ........
Charleston, WV........

(908)
(505)
(702)
(516)
(518)
(315)
(716)
(914)
(716)
(513)
(216)
(614)
(513)
(419)
(216)
(405)
(918)
(503)
(610)
(215)
(412)
(803)
(615)
(615)
(901)
(512)
(512)
(915)
(713)
(210)
(801)
(703)
(804)
(703)
(206)
(509)
(608)
(414)
(304)

851-2290
828-1878
322-6090
567-4200
783-0983
457-4873
381-4244
298-2810
631-2311
772-8181
391-9330
326-0352
294-8980
866-0404
793-6134
843-3301
252-5070
297-1984
434-7171
654-1434
788-4790
288-9610
371-1341
588-6493
396-7970
338-0287
857-5621
772-6367
894-9334
734-7960
261-5660
797-9010
282-5671
772-6821
641-9800
327-1935
221-4738
453-9100
345-3086

Tulsa, OK.............
Pittsburgh, PA. ........
Austin, TX.............
Dallas, TX.............
Houston, TX...........
San AntoniO, TX........
Brookfield, WI. ........

NEWARK - CANADA

SEYMOUR ELECTRONICS

London, Ont. .......... (519) 685-4280
Mississauga, Ont. ...... (905) 670-2888
Mount Royal, Que ...... (514) 738-4488

Altamonte Springs, FL..
Norcross, GA. .........
Columbia, MD .........
Mt. Laurel, NJ ..........
Woodbury, Ny.........

PIONEER· STANDARD
Tempe, AZ. . . . . . . . . . ..
Agoura Hills, CA. ......
Irvine, CA. ............
San Diego, CA. ........
Shelton, CT. . . . . . . . . ..
Addison, IL. ...........
Indianapolis, IN ........
Fort Wayne, IN .........
Lexington, MA. . . . . . . ..
Grand Rapids, MI. .....
Plymouth, MI. .........
Eden Prairie, MN .......
St. Louis, MO..........
Fairfield, NJ ...........
Binghamton, NY. . . . . ..
Fairport, Ny...........
Woodbury, Ny.........
Cleveland, OH ....... "
Dayton, OH ...........
Worthington, OH .......

(602)
(818)
(714)
(619)
(203)
(708)
(317)
(219)
(617)
(616)
(313)
(612)
(314)
(201)
(607)
(716)
(516)
(216)
(513)
(614)

350-9335
865-5800
753-5090
514-7700
929-5600
495-9680
573-0880
489-0283
861-9200
534-3145
416-2157
944-3355
542-3077
575-3510
722-9300
381-7070
921-8700
498-6305
236-9900
848-4854

(918)
(412)
(512)
(214)
(713)
(210)
(414)

665-7840
782-2300
635-4000
386-7300
495-4700
377-3440
780-3600

PIONEER-STD./ZENTRONICS CANADA
Calgary, Alb ...........
Edmonton, Alb .........
London, Ont.. .........
Mississauga, Ont. ......
Nepean, Ont. ..........
Richmond, B.C .........
Ste-Foy, Que ...........
Ville St. Laurent, Que ....
Winnipeg, Man. . . . . . ..

(403)
(403)
(519)
(905)
(613)
(604)
(418)
(514)
(204)

291-1988
482-3038
672-4666
405-8300
226-8840
273-5575
654-1077
737-9700
989-1957

PIONEER TECHNOLOGIES
Huntsville, AL. .........
San Jose, CA. .........
Englewood, CO ........
Altamonte Springs, FL..
Deerfield Beach, FL. . ..
Duluth, GA ...........
Gaithersburg, MD ......
Morrisville, NC .........
Beaverton, OR. ........
Horsham, PA..........
Bellevue, WA .........

(205)
(408)
(303)
(407)
(305)
(404)
(301)
(919)
(503)
(215)
(206)

837-9300
954-9100
773-8090
834-9090
428-8877
623-1003
921-0660
460-1530
626-7300
674-4000
644-7500

SCOTT ELECTRONICS
Lincoln, NE ............ (402) 466-8221
Omaha, NE ............ (402) 734-6750

(407)
(404)
(410)
(609)
(516)

767-6974
441-7878
992-7474
235-7474
496-7474

SUMMIT DISTRIBUTORS,
INC.
Buffalo, Ny............ (716) 887-2800
Rochester, Ny......... (716) 334-8110

TAITRON COMPONENTS INC.
Santa Clarita, CA ...... (800) 247-2232

QT Optoelectronics
North American Sales
Headquarters
16775 Addison Rd.
Dallas, TX 75248
Tel: (214) 447-1300
Fax: (214) 447-0784

European Authorized Distributors
AUSTRIA
Spoerle Electronic

GERMANY
Eurodis Enatechnik

ITALY

Heiligenstaedter Strasse 52
A-1190Wien
Tel. 0222/31872700
FAX - 0222/3692273

Pascalkehre, 1
Postfach 1240
0-25443 Quickborn-Hamburg
Tel. 04106/701-0
FAX - 04106/701268

BELGIUM
Diode

(SALES AGENT)
Via A. Moro, 12A
25060 Cellatica (BS)
Tel. 030/2523004
FAX - 030/375 4273

Indeg Industrie·Elektronik
GmbH

A company of Spoerle Electronic
Keilberg II
Minervastraat 14/B2
B-1930 Zaventem
Tel. 02/725.46.60
FAX - 02/725.45.11

Eurodis Texim Electronics,
S.A./N.V.
Oorlogskruisenlaan, 116
B-1120 Brussels
Tel. 02/247.49.51
FAX - 02/215.58.95

DENMARK
Avnet Nortec A/S
Transformervej 17
OK-2730 Herlev
Tel. 44/880 800
FAX - 44/880 888

FINLAND
Avnet Nortec OY

Emil-Kommerlingstrasse 5
Postfach 1563
0-66924 Pirmasens
Tel. 06331/94065
FAX - 06331/94064

Setron Schiffer·Elektronik
GmbH &Co. KG
Friedrich-Seele-Strasse 3A
Postfach 4263
0-38032 Braunschweig
Tel. 0531 8098 0
FAX - 0531 8098 789

Spoerle Electronic KG
Max-Planck-Strasse 1-3
Postfach 10 21 40
0-63267 Oreieich/Frankfurt
Tel. 06103/3048
FAX - 06103/304201

Future Electronics
Deutschland GmbH

Italahdenkatu 18
FIN-00210 Helsinki
Tel. 0/613181
FAX - 0-6922326

MOnchner Stra[3e, 18
Postfach1152
0-85765 Unterf6hring
Tel. 08995/719 50
FAX - 08995/957 8838

FRANCE
Avnet Composants

GREECE
Smart Electronics Ltd.

79 Rue Pierre Semard
BP90
F-92320 Chfl.lillon
Tel. 1/49.65.25.00
FAX -1/49.65.27.69

39 Ag. Konstantinov Str.
GR-10437 Athens
Tel. 01/5230453
FAX - 01/5245 474

C.C.I. Electronique
12, Allee de la Vierge
SIUC 577
F-94 653 Rungis Cedex
Tel. 1/41.80.70.00
FAX -1/46.75.32.07

Dimacel Composants
63, Rue Jean Jaures
BP 116
F-95874 Bezons
Tel. 1/34.23.70.00
FAX - 1/30.76.31.97

Future Electronics
LP 854 Les Ulis
3, Avenue du Canada
Bal. Theta 2
F-91974 Courtaboeuf Cedex
Tel. 01/69.82.11.11
FAX - 01/69.82.11.00

ISRAEL
Alexander Schneider Ltd.
16 Haim Hazaz Street
IL-69407 Tel-Aviv 61180
Tel. 3/6473331
FAX - 3/6474114

Felice Colombi

Eurelettronica SpA
Via Enrico Fermi, 8
1-20094 Assago (MI)
Tel. 02/457841
FAX - 02/4880275

Idac Camel SRL
Via Savelli 3
1-35129 Pad ova
Tel. 049/8075616
FAX - 049/8075626

Lasi Elettronica s.p.a.
Oivisione della Silverstar Ltd.
Viale Fulvio Testi 280
1-20126 Milano
Tel. 02/661431
FAX - 02/66101385

Silverstar Ltd.
Viale Fulvio Testi 280
1-20126 Milano
Tel. 02/661251
FAX - 02/66101359

NETHERLANDS
Diode
A Company of Spoerle Electronic
Coltbaan 17
NL-3439 NG Nieuwegein
Tel. 03402 91234
FAX - 03402 35924

Eurodis Texim Electronics
B.V.
Nijverheidsstraat, 16
NL-7482 GZ Haaksbergen
Tel. 5427-33 333
FAX - 5427-33 888

NORWAY
Avnet Nortec A/S
P.O. Box 123
Smedsvingen 4B
N-1364 Hvalstad
Tel. 66/843210
FAX - 66/84 6545

PORTUGAL
Amitron·Arrow Electronica
LDA
Quinta Grande, Lote 20
Alfragide
P-2700 Amadora
Tel. 1/471 4806
FAX - 1/471 0802

7-5

European Authorized Distributors
SOUTH AFRICA
Allied Electronics
Components
10 Skietlood Street
Isando Ext. 3
P.O. Box 69
Isando 1600
Tel. 011/392.3804
FAX - 011/974.9683

SPAIN
Amitron·Arrow
Albasanz 75
E-28037 Madrid
Tel. 1/3043040
FAX -1/327 2472

Sutelco
Pilar de Zaragoza 23
E-28034 Madrid
Tel. 1/355.8603
FAX -1/355.81.20

SWEDEN
Avnet Nortec AB
Box 1830
Englundavagen, 7
S-17127 Solna
Tel. 8/6291400
FAX - 8/627 0280

SWITZERLAND
ElatexAG
Sales Office Electronic
Components
Hardstrasse 72
CH-5430 Wettingen
Tel. 056/275111
FAX - 056/275 454

Fabrimex
Ein Unternehmen der Spoerle
Electronic
Cherstrasse, 4
CH-8152 Opfikon-Glattbrugg
Tel. 01/8746262
FAX - 01/874 6200

TURKEY
Turkelek
Hatay Sokak 8
TK-Ankarra
Tel. 312/425-2109
FAX - 312/417-5529

7-6

UNITED KINGDOM
Gothic Crellon, Ltd.
3 The Business Centre
Molly Millars Lane
Wokingham
Berkshire RG11 2EY
Tel. 01734/788878
FAX - 01734/776095

Polar Electronics, Ltd.
Cherrycourt Way
Leighton Buzzard
Beds. LU7 8VY
Tel. 01525/377093
FAX - 01525/378369

Farnell Electronic Services
Ltd.
Edinburgh Way
Harlow
Essex CM20-2DF
Tel. 01279/626777
FAX - 01279/441687

Future Electronics LTD
Future House
Poyle Road
Colnbrook
Berkshire SL3 OEZ
Tel. 01753 687 000
FAX - 01753 689100

Semiconductor Specialists
(UK) LTD
Unit 6, Crown Business Centre
Crown Way, West Drayton
Middlesex UB7 8HZ
Tel. 01895/445522
FAX - 01895/422 044

YUGOSLAVIA
DCD Electronics
12 Rue des Chardonnerets
B-1390 Grez-Doiceau
Belgium
Tel. 010/680 280
FAX - 010/680 282

Asian Authorized Reps and Distributors
AUSTRALIA
KC Electronics
1/38, South Street,
Rydalmere NSW,
Australia 2116,
Australia
Tel. (3) 467 4666
FAX - (3) 467 7183

HONG KONG
Tekcomp Electronics LTD.,
(REP)
913-4, Bank Centre,
636, Nathan Road,
Kowloon,
Hong Kong
Tel. (2) 7108121
FAX - (2) 780 5871

Che Fong Hong Electronics
LTD.
5th FI, Tower 1,
Enterprise Square,
No.9, Sheung Yuen Rd.,
Kowloon Bay, Kowloon
Hong Kong
Tel. (2) 796 6880
FAX - (2) 3052560

Electrocon Product Ltd.,
8/F, Block B,
Prosperity Centre,
77 Container Port Road,
Kwai Chung,
N.T. Hong Kong
Tel. (2) 481-6022
FAX - (2) 480-3967

Inchcape Industrial
10/F, Tower 2,
Metroplaza,
223 Hing Fong Rd.,
Kwi Fong Road,
N.T. Hong Kong
Tel. (2) 4106262
FAX - (2) 401 2497

INDIA
Kilachand & Devchand Co.
LTD. (REP)
7, Jamshedji Tata Road,
Bombay 400 020,
India
Tel. (022) 22 0048
FAX - (022) 873 5918

JAPAN
New Metals & Chemicals
Corp. Ltd.,
Shin Dai-Ichi Building,
No: 4-13, Sanchome, Nihonbashi
Chuo-Ku, 103 TOKYO,
Japan
Tel. 033 201 6585
FAX - 033 271 5860

KOREA
Wonil Digital Technologies
Corp. (REP)
Taekun Building,
Room 303,1009-1,
Bangbae-Dong,
Seocho-Ku, Seoul,
Korea
Tel. (2) 5235473
FAX - (2) 5235476

NEW ZEALAND
Philips Components
2, Wagener Place,
Mt. Albert
Aukland,
New Zealand
Tel. 6498494160
FAX - 649 849 781

SINGAPORE
Compotech Electronics pte.
Ltd. (REP)

TAIWAN
Fullteque Int'l Corp., (REP)
5F-1 No. 178, Sec. 2,
Nanking East Road,
Taipei 10409
Taiwan R.O.C.
Tel. (2) 506 6735
FAX - (2) 5071574

Galaxy Far East Corp.
8F-6, 390, Sec 1
Fu Hsing South Road,
Taipei,
Taiwan fl.O.C
Tel. (02) 705 7266
FAX - (02) 708 7901

Unit·Teque Corporation
3 FL-2, No. 153,
Tun-Hwa North Rd.,
Taipei,
Taiwan R.O.C.
Tel. (2) 7199577
FAX - (2) 7199684

THAILAND
Siam Well International Co.
LTD (REP)
33/28 Kingkaow Road,
Bangplee Yai,
Banglee, Samutprakarn,
Thailand
Tel. 662-337-3136/7
FAX - 662-337-3136

35, Kallang Pudding Road
Hex 07-12
Block A, Tong Lee Building
Singapore 1334
Tel. 7437491
FAX - 743 6848

B.B.S. Electronics Pte. LTD.,
1, Genting Link,
Hex 05-03
Perfect Industrial Building
Singapore 1334
Tel. 7488400
FAX - 7488466

Device Electronics pte. LTD.
605 Macpherson Road,
Hex 04-12, Citimac
Industrial Complex
Singapore 1336
Tel. 2886455
FAX - 287 9197

ASIAN HEADQUARTERS
QUALITY TECHNOLOGIES
Asia Pacific
B613, 6th Floor
East Wing, Wisma Tractors
Jalan SS 16/1, Subang Jaya
47500 Petaling Jaya
Selangor Darul Ehsan, MALAYSIA
Tel: 03-7352417/8
Fax: 03-7363382

7-7

(ill

Over 25 Years of Excellence in Optoelectronics

OP10ELEClROliCS

CORPORATE

SAL E S

OFFICES

NORTH AMERICA

EUROPE

ASIA

Corporate Headquarters

Southern European

Asian Headquarters

OT Optoelectronics

Headquarters

Ouality Technologies

610 North Mary Ave

Ouality Technologies

Asia Pacific

Sunnyvale, CA 94086

France S.A.

B613 , 6th Floor

Tel: 408 720-1440

Immeuble La Pyramide

East Wing, Wisma Tractors

80 Avenue du General de Gaulle

Jalan 5516/1, Subang Jaya

FAX: 408 720 0848

94009 Creteil Cedex, France

47500 Peta ling Jaya

North American

Tel: 3301/43.99.25. 12

Selangor Daru l Ehsan, Malaysia

Sales Headquarters

FAX: 33 01/43 .99.17.41

Tel : 603-7352417/8

OT Optoelectronics
16775 Addison Rd

FAX: 603-7363382
Central European

Suite 200

Headquarters

Dallas, TX 75248

Ouality Technologies GmbH

Tel: 214 447 -1300

Max-Huber-Strasse 8

FAX: 214 447-0784

D-85737 Ismanig, Germany
Te l: 49 089/96.30.51

Western Region

FAX: 49 089/96.54.74

OT Optoelectronics
16775 Addison Rd

Northern European

Suite 200

Headquarters

Dallas, TX 75248

Ouality Technologies (U.K.) Ltd.

Tel: 214447- 1300

10, Prebendal Court, Oxford Rd

FAX: 214447-0784

Aylesbury, Buckin ghamshire

Central and

Tel: 44 01296/39.44.99

Southeastern Region

FAX: 44 0 1296/39.24.32

HP19-3 EY United Kingdom

OT Optoelectronics
16775 Addison Rd
Suite 200
Dallas, TX 75248
Tel : 214 447-1300
FAX: 214447-0784

Northeastern Region

OT Optoelectronics
396 Whitehorse Ave
Trenton, NJ 08610
Tel: 609 581-0444
FAX: 609 581-2266

DB95



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:22 18:08:03-08:00
Modify Date                     : 2017:07:22 18:58:56-07:00
Metadata Date                   : 2017:07:22 18:58:56-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:30f65dbc-4ff0-fd41-a839-ae5041518eb4
Instance ID                     : uuid:6ad506db-eec5-b049-bbc9-a3f8a299e38c
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 962
EXIF Metadata provided by
EXIF.tools

Navigation menu