1996_HP_Optoelectronics_Designers_Catalog 1996 HP Optoelectronics Designers Catalog

User Manual: 1996_HP_Optoelectronics_Designers_Catalog

Open the PDF directly: View PDF PDF.
Page Count: 631

Download1996_HP_Optoelectronics_Designers_Catalog 1996 HP Optoelectronics Designers Catalog
Open PDF In BrowserView PDF
LED Lamps and
Indicators
LED Light Bars
and Bar Graph
Arrays
LED Displays
Infrared Products

-

Flipa HEWLETT'"

':1:.

PACKARD

Hewlett-Packard:
A Leader in Components

A Brief Sketch
Founded in 1961, and
headquartered in San Jose,
California, the Hewlett-Packard
Company's Components Group is
the world's largest independent
supplier of communications
components. Today the group has
approximately 9500 employees,
and had fiscal 1995 revenues of
$856 million.
The Components Group
incorporates three major
divisions-Optoelectronics,
Optical Communication and
Communications Componentsand serves six major markets:
communications, computer/
office, industrial, transportation,
consumer and government!
military. Included in the Components Group's extensive line of
more than 9,000 components are
visible and infrared LED lamps;
visible LED displays, light bars
and arrays; Infrared Data
Association (IrDA)-compliant
infrared transceiver modules;
fiber-optic transceivers,
transmitters and receivers
meeting most oftoday's industry
standards; motion control
devices; optocouplers and related
optically-isolated control components; bar-code scanners; RF and
microwave semiconductors; and
communications amplifiers and

assemblies. HP offers the world's
brightest LEDs and is a technical
leader for visible III-V products.

accurate on-time delivery and upto-date technical information for
its customers.

The Components Group markets
products through a sales force of
300 technically-educated sales
professionals located in about 40
countries. HP components are
also sold through a worldwide
distributor network with more
than 150 locations. Altogether,
95 percent of sales revenues are
from customers external to HP.

Quality and Reliability

The Components Group
maintains five marketing centers
worldwide in San Jose, California;
Boeblingen, Germany; Tokyo,
Japan; Frimley, UK; and
Singapore. Each is fully staffed
with product application and
support engineers and each is
responsible for regional decision
making. A design center in
Tokyo is specifically chartered to
develop products for the
Japanese market.
Local decision-making is central
to HP's transnational business
strategy which focuses on
customer satisfaction. In addition
to providing the right product
with superior quality and
reliability, the Components
Group strives to ensure worldwide product availability,

Quality and reliability are very
important concepts to HewlettPackard in maintaining the
commitment to product
performance.
At Hewlett-Packard, quality is
integral to product development,
manufacturing, and final introduction. HP's commitment to
quality means that there is a
continuous process of improvement and tightening of quality
standards. Manufacturing quality
circles and quality testing
programs are important
ingredients in HP products.
Reliability testing is also required
for the introduction of new HP
components. Lifespan calculations
in "mean-time-between-failure"
(MTBF) terms are published and
available as reliability data
sheets. HP's stringent reliability
testing assures long component
lifetimes and consistent product
performance.

The body of this book is printed on
recycled paper.

r/iP'W HEWLETT®
~J::. PACKARD

About This Catalog

About This Catalog
To help you choose and design
with Hewlett-Packard optoelectronic components, this catalog
contains detailed product
specifications. The catalog is
divided into four product
sections:

-

• Selection Guides at the
beginning of each of the four
product sections allow you to
quickly select products most
suitable for your application
and also list the page number
on which the corresponding
data sheet is located.

1. LED Lamps and Indicators
2. LED Light Bars and Bar Graph
Arrays
3. LED Displays
4. Infrared Products

Following the product sections is
a complete listing of available
application notes and briefs
which can be easily obtained. The
fmal section contains sales and
service information.

How to Find the Right
Information

How to Order

• The Table of Contents helps
you locate the product sections
as well as the selection guides
for each product section.

To order any component in this
catalog, call your nearest HP
authorized distributor or rip sales
office.

• The Alphanumeric Index (p. iv)
lists every component in this
catalog and the page number
oriwhich the corresponding
data sheet is located.

A complete listing of HP'
authorized distributors is located
on page 6-3. These distributors"
can offer off-the-shelf delivery for
most HP components.

Service and Support
For technical assistance or to fmd
out the location of your nearest
HP sales office, distributor or
representative call (US and
Canada only): 1-800-235-0312 or
408-654-8675.
Elsewhere in the world, call your
local sales office located in your
telephone directory. Ask for a
Components representative.

For Additional
Information
For additional technical literature
not available in this catalog, try
our fax-back service (US and'
Canada only) at: 1-800-450-9455.
Elsewhere in the world, call your
local HP sales office located in
your telephone directory. Ask for
a Components representative.
Information regarding
Hewlett-Packard Components
Group products is available on
the World Wide Web via the
Hewlett-Packard home page at:
http://www.lip.com!
or directly at:
http://www.hp.com!go/
components/

-

"liOW
HEWLETT'"
a:e.. PACKARD

Table of Contents

Alphanumeric Index ............................................................................................................................ iv
LED Lamps and Indicators ............................................................................................................. 1-1
Introduction ................................................................................................................................................. 1-2
Selection Guide ........................................................................................................................................... 1-4
LED Light Bars and Bar Graph Arrays ...................................................................................... 2-1
Introduction ................................................................................................................................................. 2-2
Selection Guide ........................................................................................................................................... 2-3
LED Displays ........................................................................................................................................ 3-1
Introduction ................................................................................................................................................. 3-2
Selection Guide ........................................................................................................................................... 3-3
LED Glass/Ceramic Displays ............................................................................................... 3-207
Introduction ...................................................................................................................................... 3-208
Selection Guide ................................................................................................................................. 3-209
Infrared Products ............................................................................................................................... 4-1
Introduction ................................................................................................................................................. 4-2
Selection Guide ........................................................................................................................................... 4-3
Design Guide ............................................................................................................................................... 4-4
Applications .......................................................................................................................................... 5-1
Sales and Service ................................................................................................................................ 6-1
Ordering Information, After-Sales Service ................................................................................................... 6-2
Authorized Distributor & Representative List ............................................................. _................................ 6-3

iii

r/i~ HEWLETT@

':~PACKARO

Alphanumeric Index

HCMS-2000
HCMS-2001
HCMS-2002
HCMS-2003
HCMS-2004

....................................................
....................................................
....................................................
............... ,....................................
....................................................

3-156
3-156
3-156
3-156
3-156

HCMS-2712
HCMS-2713
HCMS-2714
HCMS-2720
HCMS-2721

.................................................. ~. 3-100
..................................•................. 3-100
.................................................... 3-100
..............................................•..... 3-100
.................................................... 3-100

HCMS-2010
HCMS-2011
HCMS-2012
HCMS-2013
HCMS-2300

....................................................
..................................•.................
....................................................
....................................................
.......................................•............

3-240
3-240
3-240
3-240
3-156

HCMS-2722
HCMS-2723
HCMS-2724
HCMS-2901
HCMS-2902

..................................................... 3-100
.................................................... 3-100
.................................................... 3-100
.................................................... 3-109
...............................................•.... 3-109

HCMS-2301
HCMS-2302
HCMS-2303
HCMS-2304
HCMS-2310

.................................................... 3-156
.................................................... 3-156
......................................•............. 3-156
.................................................... 3-156
.................................................... 3-240

HCMS-2903
HCMS-2904
HCMS-2905
HCMS-2911
HCMS-2912

.................................................... 3·109
.................................................... 3-109
.......................•............................ 3-109
.................................................... 3-109
......................................... ,.......... 3-109

HCMS-2311
HCMS-2312
HCMS-2313
HCMS-2314
_ _ _ HCMS-2351

.................................................... 3-240
.................................................... 3-240
.................................................... 3-240
.................................................... 3-240
.................................................... 3-240

HCMS-2913 ....................................................
HCMS-2914 ....................................................
HCMS-2915 ....................................................
HCMS-2921 ....................................................
HCMS-2922 ....................................................

HCMS-2352 .................................................... 3-240
HCMS-2353 .................................................... 3-240
HCMS-2354 .................................................... 3-240
HCMS-2700 .................................................... 3-100
HCMS-2701 .................................................... 3-100
HCMS-2702
HCMS-2703
HCMS-2704
HCMS-2710
HCMS-2711

.................................................... 3-100
.................................................... 3-100
.................................................... 3-100
.................................................... 3-100
.................................................... 3-100

Bold = New Product
Note: Standard Options Available (see page xiv).

iv

HCMS-2923
HCMS-2924
HCMS-2925
HCMS-2961
HCMS-2962

3-109
3-109
3-109
3-109
3-109

.................................................... 3-109
.................................................... 3-109
.................................................... 3-109
.................................................... 3-109
.................................................... 3-109

HCMS-2963 .......................•............................ 3-109
HCMS-2964 .................................................... 3-109
HCMS-2965 .......................•............................ 3-109
HCMS-2971 .......................•............................ 3-109
HCMS-2972 .......................•............................ 3-109

HCMS-2973
HCMS-2974
HCMS-2975
HDLA-2416
HDLG-2416

....................................................
....................................................
....................................................
....................................................
....................................................

3-109
3-109
3-109
3-164
3-164

HDSP-2112 .....................................................
HDSP-2113 .....................................................
HDSP-2131 .....................................................
HDSP-2132 .....................................................
HDSP-2133 .....................................................

3-140
3-140
3-224
3-224
3-224

HDLO-2416 ....................................................
HDLR-2416 ....................................................
HDLS-2416 .....................................................
HDLU-2416 ....................................................
HDLY-2416 .....................................................

3-164
3-164
3-164
3-164
3-164

HDSP-2179 .....................................................
HDSP-2310 .....................................................
HDSP-2311 .....................................................
HDSP-2312 .....................................................
HDSP-2313 .....................................................

3-224
3-211
3-211
3-211
3-210

HDSP-0760 .....................................................
HDSP-0761 .....................................................
HDSP-0762 .....................................................
HDSP-0763 .....................................................
HDSP-0770 .....................................................

3-193
3-193
3-193
3-193
3-193

HDSP-2351 .....................................................
HDSP-2352 .....................................................
HDSP-2353 .....................................................
HDSP-2450 .....................................................
HDSP-2451 .....................................................

3-210
3-210
3-210
3-211
3-211

HDSP-0771 .....................................................
HDSP-0772 .....................................................
HDSP-0781 .....................................................
HDSP-0782 .....................................................
HDSP-0783 .....................................................

3-193
3-193
3-256
3-256
3-256

HDSP-2452 ..................................................... 3-211
HDSP-2453 ..................................................... 3-211
HDSP-2490 ....................................................... 3-15
HDSP-2491 ....................................................... 3-15
HDSP-2492 ....................................................... 3-15

HDSP-0784 .....................................................
HDSP-0791 .....................................................
HDSP-0792 .....................................................
HDSP-0793 .....................................................
HDSP-0794 .....................................................

3-256
3-256
3-256
3-256
3-256

HDSP-2493 ....................................................... 3-15
HDSP-2500 ..................................................... 3-140
HDSP-2501 ..................................................... 3-140
HDSP-2502 ..................................................... 3-140
HDSP-2503 ..................................................... 3-140

HDSP-0860 ..................................................... 3-193
HDSP-0861 ..................................................... 3-193
HDSP-0862 ..................................................... 3-193
HDSP-0863 ..................................................... 3-193
HDSP-0881 ..................................................... 3-256

HDSP-2530 .....................................................
HDSP-2531 .....................................................
HDSP-2532 .....................................................
HDSP-2533 .....................................................
HDSP-2534 .....................................................

HDSP-0882 .....................................................
HDSP-0883 .....................................................
HDSP-0884 .....................................................
HDSP-0960 .....................................................
HDSP-0961 .....................................................

3-256
3-256
3-256
3-193
3-193

HDSP-3350 .......................................................
HDSP-3351 .......................................................
HDSP-3353 .......................................................
HDSP-3356 .......................................................
HDSP-3400 .......................................................

3-28
3-28
3-28
3-28
3-92

HDSP-0962 ..................................................... 3-193
HDSP-0963 ..................................................... 3-193
HDSP-0981 ..................................................... 3-256
HDSP-0982 ..................................................... 3-256
HDSP-0983 ..................................................... 3-256

HDSP-3401 .......................................................
HDSP-3403 ............... ,.......................................
HDSP-3405 .......................................................
HDSP-3406 .......................................................
HDSP-3530 .......................................................

3-92
3-92
3-92
3-92
3-42

HDSP-0984 .....................................................
HDSP-2010 .....................................................
HDSP-2107 .....................................................
HDSP-2110 .....................................................
HDSP-2111 .....................................................

HDSP-3531 .......................................................
HDSP-3533 .......................................................
HDSP-3536 .......................................................
HDSP-3600 .......................................................
HDSP-3601 .......................................................

3-42
3-42
3-42
3-50
3-50

3-256
3-211
3-140
3-140
3-140

3-125
3-125
3-125
3-125
3-125

Bold = New Product
Note: Standard Options Available (see page xiv).

v

HDSP-3603 ....................................................... 3~50
HDSP-3606 ..........................................•............ 3-50
HDSP-3730 .............................................. :; ....... '3-42
HDSP-3731 ....................................................... 3~42
HDSP-3733 ....................................................... 3;42

HDSP-5308 ....................................................... 3-84
HDSP-5321 ....................................................... 3-84
HDSP-5323 ....................................................... 3-84'
HDSP-5401 ..................................................... 3-200
HDSP-5403 ..................................................... 3-200

HDSP-3736 ....................................................... 3-42'
HDSP-3900 ................................................. ;..... '3-92
HDSP-3901 ........................................................ 3-92
HDSP-3903 ............................................. :......... 3~92
HDSP-3905 ....................................................... 3"92

HDSP-5501 ..................................................... ;.3-84
HDSP-5503 ....................................................... 3-84
HDSP-5507 ....................................................... 3-84
HDSP-5508 ....................................................... 3-84
HDSP-5521 ....................................................... 3-84

HDSP-3906 .......................................................
HDSP-4030 ....................... ;...............................
HDSP-4031 .......................................................
HDSP-4033 .... ;..................................................
HDSP-4036 .......................................................

HDSP-5523 .......................................................
HDSP-5531 .......................................................
HDSP-5533 .......................................................
HDSP-5537 .......................................................
HDSP-5538 .......................................................

3-92
3-42
3-42
3 c42
3-42

3-84
3-42
3-42
3-42
3-42

HDSP-4130 ....................................................... 3-42
HDSP-4131 ....................................................... 3-42
HDSP-4133 ....................................................... 3-42
HDSP-4136 ....................................................... 3-42
HDSP-4200 ................................................. :..... '3-92

HDSP-5551 ....................................................... 3-28
HDSP-5553 ....................................................... "3-28
HDSP-5557 ....................................................... 3-28
HDSP-5558 ....................................................... 3-28
HDSP-5601 ....................................................... 3-84

HDSP-4201 ....................................................... 3-92
HDSP-4203 ....................................................... 3-92
HDSP-4205 ....................................................... 3-92
HDSP-4206 ....................................................... 3-92
HDSP-4401 ..................................................... 3-200

HDSP-5603 ....................................................... 3-84
HDSP-5607 ....................................................... 3-84
HDSP-5608 ....................................................... 3-84
HDSP-5621 ....................................................... 3-84
HDSP-5623 ....................................................... ·~84

HDSP-4403 ..................................................... 3-200
HDSP-4501 ..................................................... 3-200
HDSP-4503 ..................................................... 3-200
HDSP-4600 ....................................................... 3-50
HDSP-4601 ....................................................... 3-50

HDSP-5701 ....................................................... 3-84
HDSP-5703 .................................................. ;.... 3-84
HDSP-5707 .................................................... :.. 3~84
HDSP-5708 ....................................................... 3-84
HDSP-5721 ........................................................ 3-84

HDSP-4603 ....................................................... 3-50
HDSP-4606 ...................... ;................................ 3-50
HDSP-4701 ..................................................... 3-200
HDSP-4703 ..................................................... 3-200
HDSP-4820 ....................................................... 2-23

HDSP-5723 .......................................................
HDSP-5731 .......................................................
HDSP-5733 ........................................................
HDSP-5737 ................................................... ;...
HDSP-5738 .......................................................

HDSP-4830 .......................................................
HDSP-4832 ............................................... ,.......
HDSP-4836 .......................................................
HDSP-4840 .......................................................
HDSP-4850 .......................................................

2-23
2-23
2-23
2-23
2-23

HDSP-6650 ..................................................... 3-213
HDSP-6651 ..................................................... 3-213
HDSP-6652 ..................................................... 3-213
HDSP-6653 ..................................................... 3-213
HDSP-7301 ....................................................... 3-66

HDSP-5101 ..................................................... 3-200
HDSP-5103 ..................................................... 3-200
HDSP-5301 ....................................................... 3-84
HDSP-5303 ....................................................... 3c84
HDSP-5307 ....................................................... 3-84

HDSP-7302 ....................................................... '3-66
HDSP-7303 ....................................................... 3-66
HDSP-7304 ....................................................... 3-66
HDSP-7307 ....................................................... 3-66
HDSP-7308 ....................................................... 3·66

Bold = New Product
Note: Standard Options Available (see page xiv).

vi

3-84
3-42
3-42
3-42
~42

HDSP-7401 .......................................................
HDSP-7402 .......................................................
HDSP-7403 .......................................................
HDSP-7404 .......................................................
HDSP-7407 .......................................................

3-66
3-66
3-66
3-66
3-66

HDSP-A807
HDSP-A808
HDSP-A901
HDSP-A903
HDSP-A907

......................................................
......................................................
......................................................
......................................................
......................................................

3-28
3-28
3-28
3-28
3-28

HDSP-7408 .......................................................
HDSP-7501 .......................................................
HDSP-7502 .......................................................
HDSP-7503 .......................................................
HDSP-7504 .......................................................

3-66
3-66
3-66
3-66
3-66

HDSP-A908
HDSP-E100
HDSP-E101
HDSP-E103
HDSP-E108

...................................................... 3-28
..................................................... ; 3-28
...................................................... 3-28
.......................................... :........... 3-28
...................................................... 3-28

HDSP-7507 .......................................................
HDSP-7508 .......................................................
HDSP-7511 .......................................................
HDSP-7513 .......................................................
HDSP-7517 .......................................................

3-66
3-66
3-28
3-28
3-28

HDSP-E150 ......................................................
HDSP-E151 ......................................................
HDSP-E153 ......................................................
HDSP-E156 ......................................................
HDSP-F001 .......................................................

3-50
3-50
3-50
3-50
3-74

HDSP-7518 .......................................................
HDSP-7801 .......................................................
HDSP-7802 .......................................................
HDSP-7803 .......................................................
HDSP-7804 .......................................................

3-28
3-66
3-66
3-66
3-66

HDSP-F003 .......................................................
HDSP-F007 .......................................................
HDSP-F008 .......................................................
HDSP-F011 .......................................................
HDSP-F013 .......................................................

3-74
3-74
3-74
3-18
3-18

HDSP-7807 .......................................................
HDSP-7808 .......................................................
HDSP-8600 .......................................................
HDSP-8601 .......................................................
HDSP-8603 .......................................................

3-66
3-66
3-92
3-92
3-92

HDSP-F101 .......................................................
HDSP-F103 .......................................................
HDSP-F107 .......................................................
HDSP-F108 .......................................................
HDSP-F111 .......................................................

3-28
3-28
3-28
3-28
3-18

HDSP-8605 .......................................................
HDSP-8606 .......................................................
HDSP-A011 ......................................................
HDSP-A013 ......................................................
HDSP-A101 ......................................................

3-92
3-92
3-18
3-18
3-28

HDSP-Fl13 .......................................................
HDSP-F151 .......................................................
HDSP-F153 .......................................................
HDSP-F157 ........................................................
HDSP-F158 .......................................................

3-18
3-74
3-74
3-74
3-74

HDSP-A103
HDSP-A107
HDSP-A108
HDSP-A111
HDSP-Al13

......................................................
......................................................
................... :..................................
......................................................
......................................................

3-28
3-28
3-28
3-18
3-18

HDSP-F161 .......................................................
HDSP-F163 .......................................................
HDSP-F201 .......................................................
HDSP-F203 .......................................................
HDSP-F207 .......................................................

3-18
3-18
3-74
3-74
3-74

HDSP-A151
HDSP-A153
HDSP-A157
HDSP-A158
HDSP-A211

......................................................
......................................................
......................................................
......................................................
......................................................

3-66
3-66
3-66
3-66
3-18

HDSP-F208 .......................................................
HDSP-F211 .......................................................
HDSP-F213 .......................................................
HDSP-F301 .......................................................
HDSP-F303 .......................................................

3-74
3-18
3-18
3-74
3-74

HDSP-A213
HDSP-A511
HDSP-A513
HDSP-A801
HDSP-A803

......................................................
......................................................
......................................................
......................................................
......................................................

3-18
3-18
3-18
3-28
3-28

HDSP-F307 .......................................................
HDSP-F308 .......................................................
HDSP-F401 .......................................................
HDSP-F403 .......................................................
HDSP-F407 .......................................................

3-74
3-74
3-74
3-74
3-74

Bold = New Product
Note: Standard Options Available (see page xiv).

vii

HDSP-F408 ........................................................
HDSP-F501 .......................................................
HDSP-F503 .......................................................
HDSP-F507 .......................................................
HDSP-F508 .................................................. :....

3-74
3-74
3-74
3-74
3-74

HDSP-H211 ................................. , ....................
HDSP-H213 ......................................................
HDSP-H511 ......................................................
HDSP-H513 ......................................................
HDSP-K011 ......................................................

HDSP-F511 .......................................................
HDSP-F513 .......................................................
HDSP-G001 ......................................................
HDSP-G003 ..................................................•...
HDSP-G011 ...................•..•...............................

3-18
3-18
3-74
3-74
3-18

HDSP-K013 ...................................................... 3-18
HDSP-K111· ...................................................... 3-18
HDSP-Kl13 ...................................................... 3-18
HDSP-K121 ...................................................... 3-28
HDSP-K123 ......... ,............................................ 3-28

HDSP-G013 ......................................................
HDSP-G101 .......................................................
HDSP-G103 ......................................................
HDSP-G111 ........................... ,...................•......
HDSP-Gl13 ......................................................

3-18
3-28
3-28
3-18
3-18

HDSP-K211
HDSP-K213
HDSP-K511
HDSP-K513
HDSP-K701

HDSP-G151
HDSP-G153
HDSP-G161
HDSP-G163
HDSP-G201

......................................................
........................................... ;..........
......................................................
......................................................
......................................................

3-74
3-74
3-18
3-18
3-74

HDSP-K703 ...................................................... 3-28
HDSP-L101 ................ ,.................................... 3-200
HDSP-L103 ..................................................... 3-200
HDSP-L201 ......... ,........................................... 3-200
HDSP-M101 .................................................... 3-200

HDSP-G203
HDSP-G211
HDSP-G213
HDSP-G301
HDSP-G303

......................................................
......................................................
......................................................
......................................................
......................................................

3-74
3-18
3-18
3-74
3-74

HDSP-M103 .................................................... 3-200
HDSP-N100 ...................................................... 3-28
HDSP-N101 ...................................................... 3-28
HDSP-N103 ...................................................... 3-28
HDSP-N105 ...................................................... 3-28

HDSP-G401 ......................................................
HDSP-G403 ......................................................
HDSP-G501 ......................................................
HDSP-G503 ......................................................
HDSP-G511 ......................................................

3-74
3-74
3-74
3-74
3-18

HDSP-N106
HDSP-N150
HDSP-N151
HDSP-N153
HDSP-N155

.................................................. :...
......................................................
.......................................................
......................................................
......................................................

HDSP-G513
HDSP-H011
HDSP-H013
HDSP-H101
HDSP-H103

...........................................•..........
......................................................
......................................................
•............................................•........
......................................................

3-18
3-18
3-18
3-28
3-28

HDSP-N156
HDSP-U001
HDSP-U003
HDSP-U011
HDSP-U013

...................................................... 3-92
...................................................... 3-58
.........................................•............ 3-58
................................................. :.... 3-58
..................................................... ; 3-58

HDSP-H107 .................................................. :...
HDSP-H108 ......................................................
HDSP-H111 ......................................................
HDSP-Hl13 ......................................................
HDSP-H151 ......................................................

3-28
3-28
3-18
3-18
3-84

HDSP-U101
HDSP-U103
HDSP-U111
HDSP-Ul13
HDSP-U201

...................................................... 3-58
...................................................... 3-58
...................................................... 3-58
...................................................... 3-58
...................................................... 3-58

HDSP-H153
HDSP-H157
HDSP-H158
HDSP-H161
HDSP-H163

3-84
3-84
3-84
3-18
3-18

HDSP-U203
HDSP-U211
HDSP-U213
HDSP-U301
HDSP-U303

.......................... :...........................
......................................................
......................................................
......................................................
.................................................•....

......................................................
............................................ :.........
......................................................
........................•.............................
............................................. :........

Bold = New Product
Note: Standard Options Available (see page xiv).

viii

................................ , ............•........
......................................................
......................................................
......................................................
.............................. ,.......................

3-18
3-18
3-18
3-18
3-18

3-18
3-18
3-18
3-18
3-28

3-28
3-92
3-92
3-92
3-92

3-58
3-58
3-58
3-58
3-58

HDSP-U311
HDSP-U313
HDSP-U401
HDSP-U403
HDSP-U411

...................................................... 3-58
...................................................... 3-58
...................................................... 3-58
...................................................... 3-58
...................................................... 3-58

HLMA-GH20 ...................................................
HLMA-GH22 ...................................................
HLMA-GJ15 ....................................................
HLMA-GJ17 ....................................................
HLMA-GL15 ....................................................

1-31
1-31
1-31
1-31
1-31

HDSP-U413
HDSP-U501
HDSP-U503
HDSP-U511
HDSP-U513

...................................................... 3-58
...................................................... 3-58
...................................................... 3-58
...................................................... 3-58
...................................................... 3-58

HLMA-GL17 ....................................................
HLMA-GL20 ....................................................
HLMA-GL22 ....................................................
HLMA-KHOO .....................................................
HLMA-KLOO ......................................................

1-31
1-31
1-31
1-37
1-37

HEMT-1001 ...................................................... 1-24
HEMT-3301 ...................................................... 1-24
HEMT-6000 ...................................................... 1-24
HLCP-A100 ......................................................... 2-8
HLCP-B100 ........................................................ 2-8

HLMA-PHOO ..................................................
HLMA-PLOO ..................................................
HLMA-QHOO .................................................
HLMA-QLOO ..................................................
HLMP-0104 ....................................................

1-161
1-161
1-161
1-161
1-122

HLCP-C100 ........................................................ 2-8
HLCP-D100 ........................................................ 2-8
HLCP-E100 ........................................................ 2-8
HLCP-F100 ......................................................... 2-8
HLCP-G 100 ........................................................ 2-8

HLMP-0300
HLMP-0301
HLMP-0400
HLMP-0401
HLMP-0503

....................................................
....................................................
....................................................
....................................................
....................................................

1-149
1-149
1-149
1-149
1-149

HLCP-H100 ........................................................ 2-8
HLCP-J100 ....................................................... 2-23
HLMA-CHOO ..................................................... 1-37
HLMA-CG15 ................................................... 1-31
HLMA-CG17 ................................................... 1-31

HLMP-0504
HLMP-0800
HLMP-1300
HLMP-1301
HLMP-1302

....................................................
....................................................
....................................................
....................................................
....................................................

1-149
1-157
1-134
1-134
1-134

HLMA-CH15 ...................................................
HLMA-CH17 ...................................................
HLMA-CH20 ...................................................
HLMA-CH22 ...................................................
HLMA-CJ15 ....................................................

1-31
1-31
1-31
1-31
1-31

HLMP-1320
HLMP-1321
HLMP-1340
HLMP-1385
HLMP-1400

.................................................... 1-128
.................................................... 1-128
...................................................... 1-83
.................................................... 1-134
.................................................... 1-134

HLMA-CJ17 ....................................................
HLMA-CLOO ......................................................
HLMA-CL15 ....................................................
HLMA-CL17 ....................................................
HLMA-CL20 ....................................................

1-31
1-37
1-31
1-31
1-31

HLMP-1401
HLMP-1402
HLMP-1420
HLMP-1421
HLMP-1440

.................................................... 1-134
.................................................... 1-134
.................................................... 1-128
.................................................... 1-128
...................................................... 1-83

HLMA-CL22 ....................................................
HLMA-DGOO .....................................................
HLMA-DHOO .....................................................
HLMA-DH05 ...................................................
HLMA-DLOO ......................................................

1-31
1-37
1-37
1-49
1-37

HLMP-1485
HLMP-1503
HLMP-1520
HLMP-1521
HLMP-1523

....................................................
....................................................
....................................................
....................................................
....................................................

HLMA-DL05 ....................................................
HLMA-GG15 ...................................................
HLMA-GG17 ...................................................
HLMA-GH15 ...................................................
HLMA-GH17 ...................................................

1-49
1-31
1-31
1-31
1-31

HLMP-1540
HLMP-1585
HLMP-1600
HLMP-1601
HLMP-1620

...................................................... 1-83
.................................................... 1-134
.................................................... 1-113
.................................................... 1-113
.................................................... 1-113

1-134
1-134
1-128
1-128
1-134

Bold = New Product
Note: Standard Options Available (see page xiv).

ix

HLMP-1621
HLMP-1640
HLMP-1641
HLMP-1700
HLMP-1719

.................................................... ·1-113
.................................................... 1-113
.........................................;.......... 1-113
...................................................... 1-108
.................................................... 1-108

HLMP-3400
HLMP-3401
HLMP-3415
HLMP-3416
HLMP-3450

...................................................... 1-94
...................................................... 1-94
...................................................... 1-88
...................................................... 1-88
.................................................... 1-101

HLMP-1790
HLMP-2300
HLMP-2350
HLMP-2400
HLMP-2450

.................................................... 1-108
........................................................ 2-8
........................................................ 2-8
........................................................ 2-8
........................................................ 2-8

HLMP-3451
HLMP-3465
HLMP-3466
HLMP-3490
HLMP-3502

.................................................... 1-101
.................................................... 1-101
.................................................... 1-101
...................................................... 1-83
...................................................... 1-94

HLMP-2500
HLMP-2550
HLMP-2598
HLMP-2599
HLMP-2600

........................................................ 2-8
........................................................ 2-8
...................................................... 2-30
...................................................... 2-30
........................................................ 2-8

HLMP-3507
HLMP-3517
HLMP-3519
HLMP-3553
HLMP-3554

...................................................... 1-94
...................................................... 1-88
...................................................... 1-88
.................................................... 1-101
.................................................... 1-101

HLMP-2620
HLMP-2635
HLMP-2655
HLMP-2670
HLMP-2685

........................................................ 2-8
........................................................ 2-8
........................................................ 2-8
........................................................ 2-8
........................................................ 2-8

HLMP-3567
HLMP-3568
HLMP-3590
HLMP-3600
HLMP-3601

.................................................... 1-101
.................................................... 1-101
...................................................... 1-83
.................................................... 1-113
.................................................... 1-113

HLMP-2700
HLMP-2720
HLMP-2735
HLMP-2755
HLMP-2770

........................................................ 2-8
......................................................... 2-8
......................................................... 2-8
........................................................ 2-8
........................................................ 2-8

HLMP-3650
HLMP-3651
HLMP-3680
HLMP-3681
HLMP-3750

.................................................... 1-113
.................................................... 1-113
.................................................... ·1-113
.................................................... 1-113
...................................................... 1-83

HLMP-2785
HLMP-2800
HLMP-2820
HLMP-2835
HLMP-2855

........................................................ 2·8
........................................................ 2-8
........................................................ 2-8
........................................................ 2-8
........................................................ 2-8

HLMP-3762
HLMP-3850
HLMP-3862
HLMP-3950
HLMP-3962

......................................................
......................................................
......................................................
......................................................
......................................................

HLMP-2870
HLMP-2885
HLMP-2898
HLMP-2899
HLMP-2950

........................................................ 2-8
........................................................ 2-8
...................................................... 2-30
...................................................... 2-30
....................................................... ;·2-8

HLMP-4000
HLMP-4100
HLMP-4101
HLMP-4700
HLMP-4719

.................................................... 1-157
............................................. ,.......... 1-8
........................................................ 1-8
.................................................... 1-108
.................................................... 1-108

HLMP-2965
HLMP-3300
HLMP-3301
HLMP-3315
HLMP-3316

........................................................ 2-8
...................................................... 1-94
...................................................... 1-94
...................................................... 1-88
...................................................... 1-88

HLMP-4740
HLMP-5029
HLMP-6000
HLMP-6001
HLMP-6203

....................................................
....................................................
....................................................
....................................................
....................................................

HLMP-3350
HLMP-3351
HLMP-3365
HLMP-3366
HLMP-3390

.................................................... 1-101
.................................................... 1-101
.................................................... 1-101
.................................................... 1-101
...................................................... 1-83

HLMP-6204
HLMP-6205
HLMP-6206
HLMP-6208
HLMP-6300

.................................................... 1-174
.................................................... 1-174
.................................................... 1-174
.................................................... 1-174
.................................................... 1-174

Bold = New Product
Note: Standard Options Available (see page xiv).

x

1-94
1-83
1-94
1-83
1-94

1~108

1-120
1-174
1-174
1-174

HLMP-6305
HLMP-6400
HLMP-6405
HLMP-6500
HLMP-6505

....................................................
....................................................
....................................................
....................................................
....................................................

1-174
1-174
1-174
1-174
1-174

HLMP-D101 ...................................................... 1-66
HLMP-D105 ...................................................... 1-66
HLMP-Dl15 .................................................... 1-49
HLMP-D120 .................................................... 1-49
HLMP-D150 ...................................................... 1-71

HLMP-6600
HLMP-6620
HLMP-6653
HLMP-6654
HLMP-6655

....................................................
....................................................
....................................................
....................................................
....................................................

1-174
1-174
1-174
1-174
1-174

HLMP-D155 ......................................................
HLMP-D400 ....................................... _..............
HLMP-D401 ......................................................
HLMP-D600 ......................................................
HLMP-D640 ......................................................

HLMP-6656
HLMP-6658
HLMP-6700
HLMP-6720
HLMP-6753

....................................................
....................................................
....................................................
....................................................
....................................................

1-174
1-174
1-174
1-174
1-174

HLMP-DBOO ..................................................... 1-62
HLMP-DB15 ..................................................... 1-62
HLMP-JIOO ...................................... _............ 1-124
HLMP-JI05 ................................................... 1-124
HLMP-J150 ................................................... 1-124

HLMP-6754
HLMP-6755
HLMP-6756
HLMP-6758
HLMP-6800

....................................................
....................................................
....................................................
....................................................
....................................................

1-174
1-174
1-174
1-174
1-174

HLMP-J155 ................................................... 1-124
HLMP-K101 ......................................................
HLMP-K105 ......................................................
HLMP-K150 ......................................................
HLMP-K155 ......................................................

HLMP-6820
HLMP-6853
HLMP-6854
HLMP-6855
HLMP-6856

....................................................
....................................................
....................................................
....................................................
....................................................

1-174
1-174
1-174
1-174
1-174

HLMP-K400 .................................................... 1-134
HLMP-K401 .................................................... 1-134
HLMP-K402 .................................................... 1-134
HLMP-K600 .................................................... 1-134
HLMP-K640 ...................................................... 1-83

HLMP-6858
HLMP-7000
HLMP-7019
HLMP-7040
HLMP-8100

.................................................... 1-174
.................................................... 1-174
.................................................... 1-174
.................................................... 1-174
...................................................... 1-44

HLMP-PI02 ................................................... 1-174
HLMP-P105 .................................................... 1-174
HLMP-PI06 ................................................... 1-168
HLMP-P156 ................................................... 1-168
HLMP-P202 ....................... ;........................... 1-174

HLMP-8102
HLMP-8103
HLMP-8109
HLMP-8115
HLMP-8205

......................................................
........................•.............................
......................................................
......................................................
......................................................

1-44
1-44
1-75
1-75
1-75

HLMP-P205 .................................................... 1-174
HLMP-P302 ................................................... 1-174
HLMP-P305 .................................................... 1-174
HLMP-P402 ................................................... 1-174
HLMP-P405 .................................................... 1-174

HLMP-8209
HLMP-8305
HLMP-8309
HLMP-8405
HLMP-8409

......................................................
......................................................
......................................................
......................................................
......................................................

1-75
1-75
1-75
1-75
1-75

HLMP-P502 ................................................... 1-174

HLMP-8505 ......................................................
HLMP-8509 ......................................................
HLMP-8605 ......................................................
HLMP-C100 ......................................................
HLMP-C110 ......................................................

1-75
1-75
1-75
1-44
1-44

HLMP-QI02 .................................................. 1-168
HLMP-QI06 .................................................. 1-168

HLMP-P505 ....................................................
HLMP-P605 .......................................•..•.........
HLMP-Q101 ....................................................
HLMP-Q105 ....................................................

1-71
1-94
1-94
1-94
1-83

1-66
1-66
1-71
1-71

1-174
1-174
1-174
1-174

HLMP-Q150 .................................................... 1-174
HLMP-Q152 .................................................. 1-168
HLMP-Q155 .................................................... 1-174

Bold = New Product
Note: Standard Options Available (see page xiv).

xi

HLMP,Q156 .................................................. 1-168

HLMP-Q400 .................................................... 1-174
HLMP-Q600 .................................................... 1-174
HLMP-RI00 .................................................... 1"149
HLMP-SI00 .................................................... 1-153
HLMP-S200
HLMP-S201
HLMP-S300
HLMP-S301
HLMP-S400

....................................................
.....................................................
....................................................
....................................................
........................•...........................

HSDL-4220
HSDL-42S0
HSDL-4400
HSDL-4420
HSDL-5400

..................................................... 4-48
..................................................... 4-48
..................................................... 4-68
..................................................... 4-68
..................................................... 4-68

1-153
1-153
1-153
1-153
1-153

HSDL-5420 ..................................................... 4-68
HSDL-7000 ..................................................... 4-43
HSDL-8000 ....................................................... 4-3

HLMP-S401 .................................................... 1-153
HLMP-S500 .................................................... 1-153
HLMP-S501 .................................................... 1-153
HLMP-S600 .................................................... 1-153
HLMP-T200 ............................................•......... 2-19

HSMA-T625 .................................................. 1-199
HSMA-T725 .................................................. 1-199

HLMP-T300 ...................................................... 2-19
HLMP-T400 ...................................................... 2-19
HLMP-T500 ...................................................... 2-19
HLMP-VIOO ..................................................... 1-56
HLMP-V500 ..................................................... 1-56

HSMD-T425 .................................................. 1-199

HLMP-VHOO ....................................................
HLMP-VLOO .....................................................
HLMT-CLOO ....................................................
HLMT-CHOO ...................................................
HLMT-DLOO ....................................................

1-56
1-56
1-37
1-37
1-37

HSMA-T425 ............................................... ;... 1-199
HSMA-T525 .................................................. 1-199

HSMD-C650 .................................................... 1-212
HSMD-C670 .................................................... 1-212
HSMD-T400 .................................................... 1-204

HSMD-T500 .................................................... 1-204
HSMD-T525 .................................................. 1-199

HSMD-T600 .........•.......................................... 1-204
HSMD-T625 .................................................. 1-199

HSMD-T700 .................................................•.. 1-204
.................................................. 1-199
.................................................. 1-204
.................................................. 1-204
.................................................. 1-204

HSMD-T725
HSME-T400
HSME-T500
HSME-T600

HLMT-DHOO ................................................... 1-37
HLMT-PHOO ..........................................•....... 1-161
HLMT-PLOO ........................ : ......................... 1-161
HLMT-QHOO ................................................. 1-161
HLMT-QLOO .................................................. 1-161

HSME-T700 .................................................. 1-204

HMDL-2416 .................................................... 3-209
HPDL-1414 ..................................................... 3-175
HPDL-2416 ..................................................... 3-175
HPWA-DHOO ................................................... 1-25
HPWA-DLOO ................................................... 1-25

HSMG-T500 .................................................... 1-204
HSMG-T600 .................................................... 1-204
HSMG-T700 .................................................... 1-204
HSMH-C650 ................................................... 1-212
HSMH-C670 ................................................... 1-212

HPWA-MHOO .................................................. 1-25
HPWA-MLOO ................................................... 1-25
HPWR-MSOO ................................................... 1-25
HLWT-DHOO ................................................... 1-25
HPWT-DLOO .................................................... 1-25

HSMH-T400 .................................................... 1-204
HSMH-T500 .................................................... 1-204
HSMH -T600 .................................................... 1-204
HSMH-T700 .................................................... 1-204
HSMJ-T425 ................................................... 1-199

HPWT-MHOO .................................................. 1-25
HPWT-MLOO ................................................... 1-25
HSDL-IOOO ..................................................... 4-33
HSDL"lOOl ..................................................... 4-53
HSDL-IIOO ..................................................... 4-61

HSMJ-T525 ................................................... 1-199
HSMJ-T625 ................................................... 1-199
HSMJ-T725 ................................................... 1-199

Bold =New Product
Note: Standard Options Available (see page xiv).

xii

HSMF-C655 .................................................... 1-212
HSMG-C650 ................................................... 1-212
HSMG-C670 ................................................... 1-212
HSMG-T400 .................................................... 1-204

HSMS-C650 ........................................... , ........ 1~212
HSMS-C670 .................................................... 1-212

HSMS-T400 .................................................... 1-204
HSMS-T500 .................................................... 1-204
HSMS-T600 .................................................... 1-204
HSMS-T700 .................................................... 1-204
HSMY-C650 .................................................... 1-212

5082-7626 ........................................................ 3-50
5082-7650 ........................................................ 3-50
5082-7651 ........................................................ 3-50
5082-7653 ........................................................ 3-50
5082-7656 ........................................................ 3-50

HSMY-C670 .................................................... 1-212
HSMY-T400 .................................................... 1-204
HSMY-T500 .................................................... 1-204
HSMY-T600 .................................................... 1-204
HSMY-T700 .................................................... 1-204

5082-7660 ........................................................ 3-50
5082-7661 ........................................................ 3-50
5082-7663 ........................................................ 3-50
5082-7666 ........................................................ 3-50
5082-7730 ........................................................ 3-50

4N51 .............................................................. 3-249
4N52 .............................................................. 3-249
4N53 .............................................................. 3-249
4N54 .............................................................. 3-249
5082-7300 ...................................................... 3-187

5082-7731 ........................................................ 3-50
5082-7736 ........................................................ 3-50
5082-7740 ........................................................ 3-50
5082-7750 ........................................................ 3-50
5082-7751 ........................................................ 3-50

5082-7302 ...................................................... 3-187
5082-7304 ...................................................... 3-187
5082-7340 ...................................................... 3-187
5082-7610 ........................................................ 3-50
5082-7611 ........................................................ 3-50

5082-7756 ........................................................ 3-50
5082-7760 ........................................................ 3-50

5082-7613 ........................................................ 3-50
5082-7616 ........................................................ 3-50
5082-7620 ........................................................ 3-50
5082-7621 ........................................................ 3-50
5082-7623 ........................................................ 3-50

Bold = New Product
Note: Standard Options Available (see page xiv).

xiii

Solid State Display Intensity and Color
Selections
Option SOl Intensity and Color
Selected Displays ....................... 3~13
Option S02 Intensity and Color
Selected Displays ....................... 3-13
Option S20 Intensity and Color
Selected Displays ....................... 3-13

Option 103
Option 104
Option 105
Option 106
Option 107

Lead Bend Options, Subminiature Lamps
Option 011 Tape and Reel,
1500 Lamps per Reel ............... 1-188
Option 012 Gull Wmg Array,
Bulk Packaging ......................•. 1-188
Option 013 Gull Wmg Array,
Shipping Tube .......................... 1-188
Option 021 Yoke Lead, Tape and Reel,
1500 Lamps per Reel ............... 1-188
Option 022 Yoke Lead,
Bulk Packaging ........................ 1-188
Option 031 Z-Bend, Tape and Reel,
1500 Lamps per Reel ............... 1-188
Option 032 Z-Bend, Bulk Packaging ........... 1-188
Option ILl 2.54 mm (0.100 in) Rt. Angle
Bend, Long Leads .................... 1-188
Option lSI 2.54 mm (0.100 in) Rt. Angle
Bend, Short Leads .................... 1-188
Option 2L1 5.08 mm (0.200 in) Rt. Angle
Bend, Long Leads .................... 1-188
Option 2S1 5.08 mm (0.200 in) Rt. Angle
Bend, Short Leads .................... 1-188
Luminous Intensity and Color Binning Options
Option S02 This option provides the selection
of lamps from two adjacent
luminous intensity
categories ................................ 1-219
Option S20 Devices selected to two
color bin categories ................. 1-219
Option S22 Devices selected to two
IV categories and two
color bin categories ................. 1-219
Right Angle and Panel Mount Options
Option 102 T-1 Rt. Angle,
2 Element Array ....................... 1-147

xiv

Option 108

T-l Rt. Angle,
3 Element Array ....................... 1-147
T-1 Rt. Angle,
4 Element Array ....................... 1"14 7
T-1 Rt. Angle,
5 Element Array ....................... 1-147
T-1 Rt. Angle,
6 Element Array ....................... 1·147
T-1 Rt. Angle,
7 Element Array ....................... 1-147
T-1 Rt. Angle,
8 Element Array ....................... 1-147

Panel Mount Options
Option 007 High Profile T-P/4 w/HLMP-0104
Clip & Ring .............................. 1-122
Option 010 T"l% Rt. Angle,
Leads Sheared Even ................. 1-118
Option 100 T-1% Rt. Angle,
Leads Unsheared Uneven ........ 1-118
Option 101 T-1 Rt. Angle,
Leads Sheared Even ................. 1~ 145
Option 010 T-1 Rt. Angle,
Leads Unsheared Uneven ......... 1-145
Option 010 Subminiature Rt .. Angle ............ 1-197
Tape and Reel Options
Option 001 T-1 %,5 mm (0.197 in)
Formed Leads,
1300 Lamps per Reel ............... 1-140
Option 001 T-1, 5 mm (0.197 in)
Formed Leads,
1800 Lamps per Reel ............... 1-140
Option 002 T-1%, 5mm (0.197 in)
Formed Leads,
1300 Lamps per Reel ............... 1-140
Option 002 T-1, 5mm (0.197 in)
Formed Leads,
1800 Lamps per Reel ............... 1-140
LED Light Bars Standard Options
Option S02 Devices Selected to
Two (2) Iv Categories ................ 2-33
Option S22 Devices Selected to
Two (2) Iv Categories
and Two (2) Color
Bin Categories ........................... 2-33

r/i~ HEWLETTv is the total luminous flux output as measured with an integrating sphere.
2. 8 1/2 is the off axis angle from optical centerline where the luminous intensity is 1/2 the on·axis value.

5964-2064E

1-25

Outline Drawing
2xR 0.69 .. 0.20
(0.027 .. 0.006)

CHAMFER 1.25 x 1.25
(0.049 x 0.049)

fl

7.62 .. 0.50
(0.300 .. 0.020)

~

(o~i~: g::s)

-

I

__ ,

i~----- ANODE -----.. iAi

;!J

~.--.

1_

,--,

-1-

7.62 .. 0.50
(0.300 .. 0.020)

.O"TYP.

~OR~

1.50 (0.OS9)

t

1.90 (0.075)

f

2.50 .. 0.50
(0.098 .. 0.020)

~~~~~--~~

1.66 .. 0.20 TYP
(0.081 .. 0.006)

.--1I

7.50= 0.20
(0.295 .. 0.006)

i

0.76 .. 0.10 TYP.--I
(0.030 .. 0.004)

. - - 5.08 * 0.30 ---..

(0.200 .. 0.012)
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. DIMENSIONS WITHOUT TOLERANCES ARE NOMINAL•.
3. CATHODE LEADS ARE INDICATED WrrH A "C" AND
ANODE LEADS ARE INDICATED WITH AN "A".

Absolute Maximum Ratings at TA = 250C
Parameter
DC Forward Current[l[
Power Dissipation
Reverse Voltage (IR = 100!IA)
Operating Temperature Range
Storage Temperature
High Temperature Chamber
LED Junction Temperature
Solder Conditions
Preheat Temperature
Solder Temperature

HPWR-M300
70
161
10
·40 to +100
·55 to +100

HPWA·MXOO/DXOO
70[2,3J
147
10
·40 to +100
·55 to +100
125OC, 2 hrs. max.
125°C

HPWT·MXOO/DXOO
70[2,3[
193
10
·40 to +100
·55 to +100

1000C
260°C for 5 seconds
[1.5 mm (0.06 in.) below seating plane)

Notes:
1. Derate linearly as shown in Figure 4a and 4b.
2. Drive Currents between 10 rnA and 30 rnA are recommended for best long tenn performance.
3. Operation at currents below 10 rnA is not recommended, please contsct your Hewlett-Packard sales representative.

1·26

Units
rnA
mW
V
°C
°C

Optical Characteristics at TA = 25"C
Peak
Wavelength
Apeak (nm)

Color,
Dominant
Wavelength
A.d (nm)[21

Total
Included
Angle aO•90 v
(Degrees)[31

Luminous
Intensity/
Total Flux
Iv (mcd)/cI>v (mlm)

Part Number

Total Flux
cI>v(mlm)
@70mA[11
Min. Typ.

Typ.

Typ.

Typ.

Typ.

HPWR-M300

500

800

655

643

95

0.7

HPWA-MHOO

500

1250

621

615

95

0.6

75

0.85

HPWA-DHOO
HPWA-MLOO

500

1250

592

590

HPWA-DLOO
HPWT-MHOO

990

2500

626

617

HPWT-DHOO
HPWT-MLOO

990

2500

594

592

HPWT-DLOO

95

0.6

75

0.85

100

0.6

70

1.25

100

0.6

70

1.25

Notes:
1. «I>v is the total luminous flux output as measured with an integrating sphere.
2. The dominant wavelength is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. 80 .90 V is the included angle at which 90% of the total luminous flux is captured.

Electrical Characteristics at TA

Part Number
HPWR-M300
HPWA-MHOO/DHOO
HPWA-MLOO/DLOO
HPWT-MHOO/DHOO
HPWT-MLOO/DLOO

= 25"C

Forward
Voltage
VF (Volts)
@IF = 70mA
Min. Typ. Max.
2.01
2.01
2.01
2.25
2.25

2.25
2.25
2_25
2.65
2.65

2.75
2.75
2.75
3.00
3.00

Capacitance
Reverse
C (PF)
Speed of
Breakdown
Thermal
VR (Volts)
VF = 0,
Resistance Response
@ IR = 100 j.IA f= 1 MHz RaJ_PIN ("C/W) t. (ns)[ll
Typ.
Typ.
Typ.
Typ.
Min.
20
20
20
20
20

10
10
10
10
10

20
40
40
40
40

155
155
155
125

45
13
13
13
13

125

Note:
1. t. is the time constant, e·t/<•.

1.0,-----.....,,,....-,---..,,...,....--"'T7'..-------,
HPWR-Maoo

HPWA-XLOOI
HPWT-XLOO

70

so

~
z

~
-w

H~MAtXr
HPWR-M300

-I ,, 1/
r---../ ,I

1//
0.51-----1.""'-.=-t--JV--;;;~1¥_Y_+--+----j

// /

~

, /---...

1/

II:

10

700
WAVELENGTH (nm)

Figure 1. Relative Intensity vs. Wavelength.

/1'1

o

1.5

V;/
.1.'/
1.7

1.9

2.1

HPwi-xxoo

2.3

2.5

2.7

FORWARD VOLTAGE (V)

Figure 2. Forward Current vs.
Forward Voltage.

1-27

II-

1.0,---,----,----,--...,--,.--=.....

1.0

0.9 f-__+-=-+---:c±=+-=-"''-I-___l

0.9

~~.........

)(

R9J..A == 200° ~~....",

3
1L

0.8

(I)

O.7f---+--+-•-•
• .+.......~·r=-.·.y·n':.~
0.61--+---v''---..i=---+--+-___l

52:

><

1Ie -~'"''''

...... ••••• R9J-A

=600

0



i

C/W

i 0.5I----tJ~~~~~~~=_=_j
::>

~

5w

.-;."

,.,y

0.4

i-"""

......

3w
~

I!

0.2~__+-_+--+-+_-+-___l

a: 0.1 f-__+ _ _+--+-+_-+-___l
20

30

50

40

60

0.7
0.6
0.4
0.3
0.2

0.1

#~••

V

~~
20

Figure 3a. JlPWR.M300 Relative
Luminous Flux VB. Forward Current.

.... ..'..
".

"

=300' C/W
ReJ_1! =4O~' C/W
/

ReJ-A • 500' C/W
I

ReJ-A

30

40

50

60

70

Relative Luminous Flux VB_ Forward
Current_

.......

'

)..." \
~:\

,"..\.
'.

I'... "

.....

..."

'"

'

" '. ' "\
~
~ ,'.....

"

ReJ-A = 300' C/W
I

I

\

ReJ-A = 400' C/W

~

=600' C/W V
I

I "'h..
ReJ-A = 600' C/W

Flgure 3b_ HPWA/HPWT-XXOO

.~ >. -,

ReJ'1!

ReJ-A = 400' C/W

"
~

FORWARD CURRENT (mA)

FORWARD CURRENT (mA)

'\

.....

"

I

~o

70

.'.'

=200° C/W......'

•
...' ,o-

i 0.5

0•3 , . .

~o

..'
.
.'
.' ....

RaJ-A

~ 0.8

...

ReJ-AI• 500' C/W

~

ReJ-AI= 600; CIW

20

40

60

60

100 120

20

AMBIENT TEMPERATURE ('C)

Figure 4a. JlPWR.M300/HPWA-XXOO
Maximum DC Forward Current VB.
Ambient Temperature_

1.0

'-/

0.9

i_

;

I

If

0.9

0.7

II'"

.,0.9

i :~
~
~

Ie

0.1

o

60

,

\

'"'\

1\

\

}

1\

~

'-

~HUnU"~~HWOW~~~"~nUH~

OFF AXIS ANGLE (DEGREES)

FIgure 5a. JlPWR.M300, HPWA-MXOO Relative Luminous
Intensity VB. Off Axis Angle.

1-28

60

100120

FIgure 4b. BPWT-XXOO MaxImum DC
Forward Current VB. Ambient
Temperature.

I
II

0..

0.'

40

AMBIENT TEMPERATURE ('C)

1.0

~

0.9

~

0.7

!I
!i!

0.8

...

0.4

i

::0

\

1/

J

\

0.5

w 0.3
>
0.2

I
I

~

w 0.1

II:

,

II

~ 0.8

o

·100

-aO

\

-eo

·40

-20

0

20

40

80

80

100

OFF AXIS ANGLE (DEGREES)

Figure lib. HPWT·MXOO Relative Luminous Intensity VB. Off AxIs

Angle.

1.0

~

0.9

~

0.7

I

~ 0.8
1/1

0.6

0

0.5

...w
::0

0.4

>

0.3
0.2

::0

~

~

o

~oo

"

~

I

\

I

\

II

w 0.1

II:

'\ 1\

\

V
-eo

-eo

~

~

0

"

20

40

80

80

100

OFF AXIS ANGLE (DEGREES)

Figure lie. HPWA·DXOO Relative Luminous Intensity VB. Off
AxIs Anille.

1.0

i~.

0.9

1/1

0.8

0

0.5

...w

0.4
0.3

~

0.2

::0

~

::0

>

/ \..

0.8

o

·100

\

I
II

1\
\
1\

J

w 0.1

II:

,

I
II

0.7

-eo

-a0

~

·20

0

20

40

80

80

100

OFF AXIS ANGLE (DEGREES)

Figure lid. HPWT·DXOO Relative Luminous Intensity VB. Off
Axis Angle.

1·29

1.0
HPWA-DXOO/

><
::> 0.8

...J
IL

'"
::>

0.6

...J
...J

0.4

::>

~

If!.

,

0.7

0
z
:i

100

i--""-:::""

0.9

1

1

0.5

0.2

f
I,

0.1

""

0.3

o

.;'

o

20

,

40

", "

"

,

><
::> 80

...J
IL

'"::>0

"

z
:i

HPWR-M300
HPWA-MXOO

60

80

r----

100

...... r""

90

",

::>
...J
...J

~If!.

120

70

V
HPWT-DXOOf

f

60
50

40
30

f

20
10

j

o p"
o 20

f

"

J

,"

",

"

"

"

•• HPWT-MXDO

",

,

"
40

60

80

100

120

TOTAL INCLUDED ANGLE (DEGREES)

TOTAL INCLUDED ANGLE (DEGREES)

Figure 6a_ HPWR-MSOO/HPWA-XXOO
Percent Total Luminous Flux vs_
Total Included Angle.

Figure 6b. HPWT-XXOO Percent Total
Luminous Flux vs_ Total Included

1-30

Angle.

-

FliiiW HEWLETTI!l

~t:.. PACKARD

T-1 3/4 (5 mm) Precision Optical
Performance AllnGaP LED
Lamps
SunPower Series
HLMA·CHXX/CJXX/
CLXX/CGXX
HLMA·GHXX/GJXX/
GLXX/GGXX

Technical Data

Features

Applications

• Well Def"med Spatial
Radiation Patterns
• Viewing Angles: 8°, 15°
• High Luminous Output
• Colors:
590nmAmber
605 nm Portland Orange
615 nm Reddish-Orange
622 nmRed
• High Operating
Temperature:
TJLED = +130OC
• Superior Resistance to
Moisture
• Four Package Options:
With or Without Flange Base;
With or Without Lead StandOffs

• Tramc Management:
Pedestrian Signals
Work Zone Warning Lights
Variable Message Signs
• Commercial Outdoor
Advertising:
Signs
Marquees
• Automotive:
Exterior and Interior Lights

Benefits
• Viewing Angles Match
Outdoor Sign Requirements
• Colors Meet Automotive and
Pedestrian Signal
Specifications
• Superior Performance in
Outdoor Environments
• Suitable for Autoinsertion
onto PC Boards

Description
These precision performance
lamps utilize the absorbing
substrate aluminum indium
gallium phosphide (AS AlInGaP)
LED technology. The luminous
flux produced by AS AlInGaP
technology provides sufficient
light output for readability in
sunlight. AS AlInGaP LED
technology provides extremely
stable light output over very long
periods of time.
These LED lamps are untinted,
nondiffused, T-1 3/4 packages
incorporating second generation

optics producing well defined
spatial radiation patterns at
specific viewing cone angles.
These lamps are made with an
advanced optical grade epoxy,
offering superior high temperature and high moisture resistance
performance in outdoor signal
and sign applications. The high
maximum LED junction
temperature limit of + 130°C
enables high temperature
operation in bright sUnlight
conditions. The package epoxy
contains both uv-a and uv-b
inhibitors to reduce the effects of
long term exposure to direct
sunlight.
These lamps are available in four
package options to give the
designer flexibility with device
mounting.

5964-4206E

1-31

Device Selection Guide
Viewing
Part
Angle,
Number 281/2 (Deg.),[5]
IllMATyp.

CL20
GL20
CL22
GL22
CH20
GH20
CH22
GH22
CL15
GL15
CL17
GL17
CJ15[6]
GJ15[6]
CJI7[6]
GJ17[6]
CH15
GH15
CHl7
GH17
CG15
GG15
CGl7
GGl7

8
8
8
8
8
8
8
8
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

Color,
Dominant
Wavelength,
Act (run),["'] Typ.
Amber, 590
Amber, 590
Amber, 590
Amber, 590
Red-Orange, 615
Red-Orange, 615
Red-Orange, 615
Red-Orange, 615
Amber, 590
Amber, 590
Amber, 590
Amber, 590
Orange, 605
Orange, 605
Orange, 605
Orange, 605
Red-Orange, 615
Red-Orange, 615
Red-Orange, 615
Red-Orange, 615
Red, 622
Red, 622
Red, 622
Red, 622

Luminous
Intensity,
Iv (mcd),[1,2]
@20mA
Typ.
Min.

1600
1600
1600
1600
1400
1400
1400
1400
700
700
700
700
500
500
500
500
500
500
500
500
290
290
290
290

4000
4000
4000
4000
4000
4000
4000
4000
1700
1700
1700 .
1700
1300
1300
1300
1300
1300
1300
1300
1300
800
800
800
800

Total Flux,
l!Jv(mlm),[3]
@20mA,
Typ.

400
400
400
400
300
300
300
300
400
400
400
400
350
350
350
350
300
300
300
300
200
200
200
200

Leads
with
StandOffs
No
No
Yes
Yes
No
No
Yes
Yes
No
No
Yes
Yes
No
No
Yes
Yes
No
No
Yes
Yes
No
No
Yes
Yes

Flanged
Base
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No

Notes:

1. The luminous intensity is measured on the mechanical axis of the lamp package.
2. The optical axis is closely aligned with the package mechanical axis.
3. "" is the total luminous flux output as measured by an integrating sphere.
4. The dominant wavelength, A..!, is derived from the CrE Chromaticity Diagram and represents the color of the lamp.
5. 81/2 is the off-axis angle where the luminous intensity is one half the on-axis intensity.
6. These 15°, Portland Orange lamps are specifically designed for use in the HAND symbol of pedestrian signals.

1-32

Package
Drawing
A

B

C
D
A

B

C
D
A

B

C
D
A

B

C

b
A

B

C
D
A

B

C
D

Package Dimensions

c

I--" (O~; 97 : 0:008)
00

A
8.71
(0.343

!
::t

020

1.14:0.20

0.20
0.008)

(O'rs ::t 0.008)

L

=r
~70(O.O28)

~

f

2.35 (0.093)

MAx.

MAX.

31
(1.2·:~)MIN.

CATHO~

CATHODE
LEAD

LEAD

j

I

t

~~_(0.020
0.50:0.10 SQ. TVP.
::t 0.004)

1.00
(0.039) MIN.

B

~ (O~;~~: g:~g8)

D

8.7110.20
::t:

I - - (0~1'~~: g:~B)

I

.---.---h-"
(0.343

~L(0.020
0.50:tO.10 SQ TYP
• 0.004) .
•

1.00 MIN.
(0.039)

0.008)

L

8.71!

0.20
(0.343 :t 0.008)

d

L,~~

f--- 0.70 (0.028)
MAX.

1-

~

t;I
1.50:t0.15
(0.059 :t 0.006)

0.70 (0.028)

CATHO~
LEAD

LEAD

I

j
1.00 MIN.

(0.039)

MAX.

CATHO~

~L(0.020
0.50::t:0.10 SQ TVP
• 0.004) •
.
I

i,~.~

(0.100:t 0.015)

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. LEADS ARE MILD STEEL, SOLDER DIPPED.
3. TAPERS SHOWN AT TOP OF LEADS (BOTTOM OF LAMP PACKAGE) INDICATE AN
EPOXY MENISCUS THAT MAY EXTEND ABOUT 1 mm (0.040 In.) DOWN THE LEADS.
4. RECOMMENDED PC BOARD HOLE DIAMETERS:

• LAMP PACKAGES A AND B WITHOUT STAND-OFFS: FLUSH MOUNTING AT BASE OF
LAMP PACKAGE = 1.143/1.067 (0.04410.042) .

I
1.00

MIN.

(0.039)

~L(0.020
0.50:tO.10 SQ TVP
• 0.004) .
.
I

i.".~

(0.100.0.015)

PART NO.

d

HLMA-XX22

12.37.0.25
(0.487 • 0.010)
HLMA-XX17
12.42.0.25
(0.489 • 0.010)

• LAMP PACKAGES C AND 0 WITH STANC-OFFS: MOUNTING AT LEAD STAND-OFFS

= 0.96510.889 (0.038/0.035).
5. FOR DOME HEIGHTS ABOVE LEAD STAND-OFF SEATING PLANE, d, LAMP PACKAGES
C AND D, SEE TABLE.

1-33

Absolute Maximum Ratings at TA = 25"C
DC Forward Current[1.2.5.6] .......................................................... 50 rnA
Peak Forward Current[2.3] ......................................................... 200 rnA
Average Forward Current (at IpEAK = 100 rnA, f ~ 1 kHz)[3] ........ 45 rnA
Transient Forward Current (10 J.IS Pulse)14] .............................. 500 rnA
Reverse Voltage (IR = 100 IJA) ......................................................... 5 V
LED Junction Temperature .......................................................... 130°C
Operating Temperature ............................................... -40OC to + 1000C
Storage Temperature ................................................... -40OC to + 1200C
Soldering TemperatUre ........................................... 2600C for 5 seconds
[1.59 rum (0.060 in.) below seating plane]
Notes:
1. Derate linearly as shown in Figure 4.
2. For long term performance with minimal light output degradation. drive currents at
or less than 30 rnA are recommended.

3. Refer to Figure 5 for pulsed operating conditions.
4. The transient peak current is the maximum non· recurring pulse over a 10 Ils duration
that the device can withstand without damage to the LED die or wire bond.
5. Drive currents between lOrnA and 30 rnA are recommended for best long term
performance.
6. Operation at currents below 10 rnA is not recommended. please contact your
Hewlett-Packard sales representative.

Electrical/Optical Characteristics at TA
Parameter
Forward Voltage
Reverse Voltage
Peak Wavelength:
Amber (A.d = 590 nm)
Portland Orange (A.d = 605 nm)
Red-Orange (Act = 615nm)
Red (A.d = 622 nm)
Spectral Halfwidth:
Amber
Portland Orange
Red-Orange
Red
Speed of Response
Capacitance
Thermal Resistance

Symbol
VF
VR

= 25"C
Min.
5

Typ.
1.9
20

Max.
2.4

Units
V
V

Test Conditions
IF = 20 rnA
IR 100 IJA

APEAK

592
609
621
630

nm

Peak of Wavelength
Spectral Distribution

81..112

17
17
18
20
13

nm

Wavelength Width at
Spectral Distribution
1/2 Power Point

ns

Exponential Time
Constant, e-t/'rs

pF

VF = 0, f = 1 MHz
LED Junction-toCathode Lead

ts
C
RaJ-PIN

40
237

°CIW

Luminous Efficacy[l]
Amber
Portland Orange
Red-Orange
Red

l1v

480
370
263
197

lm/W

Emitted Luminous
PowerlEmitted
Radiant Power

Note:

1. The radiant intensity. Ie. in watts per steradian. may be found from the equation Ie = Ivlrlv. where Iv is the luminous intensity in
candelas and Tlv is the luminous efficacy in lumens/watt.

1-34

1.0,------...--,---,...-----,..-----;---------,

~

~

~

0.5f------I---IH--I---/-\--+---+--------I

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.

200

2.5

~

e

180

...z

160

II:
II:

120

gj!;;:

100

00

E
I

w 140

::::I

0

~c 2.0

wE

!Z_N..

~-

i~
::l....l

0

II:

80

II:

60

~
~
I

.!!-

...Ie

40

II:

1.5

2.0

2.5

3.0

60

0

w

O!w
~
I

CJ

~

r" ~K

40

~

f~300Hz

30

CJ

f~lOOHz

V

20

..........

40

I

w

II:
II:
::::I

0

0
II:

~

~\

,

RiJA=5jOj\

30

RtA=7~OcJ/

20

\.

.'\

II:

0

110.

I

10

.!!-

o

o

10

20

30

40

50

Figure 3. Relative Luminous Intensity
vs. Forward Current.

o

o

20

40

60

80

100

TA - AMBIENT TEMPERATURE - °C

Figure 4. Maximum Forward Current
vs. Ambient Temperature. Derating
Based on TJMAX = 130"C.

----

"-

10

o

...z

I

Vf~lKHz

50

::::I

50

I

I

e

II:
II:

V

V

e

E

IF - DC FORWARD CURRENT - mA

Figure 2. Forward Current vs.
Forward Voltage.

!zw

V

52;.0.5
w

20

VF - FORWARD VOLTAGE - V

I

1.0

w:!

>11:

-0

0
1.0

E

1.5

v

50

100

150

""

200

IpEAK - PEAK FORWARD CURRENT - mA

Figure 5. Maximum Average Current
vs. Peak Forward Current.

1-35

100

I I\,

90

~

90

I

~

Z

i

60

w

40

1\
\

I

70

1/1

I

50

CI

;

20

II:

!il

,

I
If

30

1\

~

/

10

I'..

1/

o

-20 ·18 ·18 ·14 ·12 ·10 -8 -8 -4 ·2

0

2

4

6

e- ANGULAR DISPLACEMENT -

8 10 12 14 16 18 20
DEGREES

Figure 6. Spatial RadIation Pattern for 8° Viewing Angle Lamps.

100
80

~

70

w

40

II!

30
20
10

I

o

\

I

! ::
S

"

/

90
~
I

II

\
\

V
1/

'\..

1/

.......

·20 ·18 ·16 ·14 ·12 ·10 ·8 -8 -4 -2

0

2

4

e - ANGULAR DISPLACEMENT -

6

8 10 12 14 16 18 20
DEGREES

Figure 7. Spatial Radiation Pattern for 111° Viewing Angle Lamps.

1-36

-

FliP'W HEWLETT®

a.!e..

PACKARD

T-13/4 (5 mm), T-I (3 mm), High
Performance AllnGaP LED
Lamps
SunPower Series
HLMA-CXOO Series
HLMA-DXOO Series
HLMA-KXOO Series
HLMT-CXOO Series
HLMT-DXOO Series

Technical Data

Features

Description

• Outstanding LED Material
Efficiency
• High Light Output over a
Wide Range of Currents
• Low Electrical Power
Dissipation
• CMOS/MOS Compatible
• Colors: 590/592 nm Amber,
615/617 nm and 622 nm
Reddish-Orange
• Variety of Packages Available

These untinted, non-diffused, solid
state lamps utilize the latest

Applications
•
•
•
•
•
•
•
•
•

absorb~ransparentsubsbr.rte

aluminum indium gallium phosphide (AStrS AllnGaP) LED technology. These materials have a very
high luminous efficiency, capable
of producing high light output over
a wide range of drive currents. In
addition, these LED lamps are at
wavelengths ranging from amber
to reddish orange and at viewing
angles ranging from 7 to 45
degrees.

Outdoor Message Boards
Safety Lighting Equipment
Signaling Applications
Emitter for Emitter/
Detector Applications
Changeable Message Signs
Portable Equipment
Medical Equipment
Automotive Lighting
Alternative to Incandescent
Lamps

5963-2323E

1-37

Package Dimensions
I----- ::~~

.-----.----h-.....
9.19~

J.

BA3(0.332)

12·70~)L
11.94 (0.470)

-r- LJU!~
I

'!!'!!(9,gH)

0.114 (0.0211)

CATHODE ......

LEAD

L

.a_
(0.050)

t

fo-

L1.8I1~
1.311 (0.053)

--.I L

0.64

SQUARE

(O.02B) NOMIMAL

A
NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHeS~
2. THE LEADS AAE MILD STeEL, SOLDER DIPPI!D.
3. AN EPOXY MENISCUS MAV EXTEND ABOUT 1 MM (0.040")
DOWN THE LEADS, UNLI!SS OTHERWISE NOTED.

1·38

10.114(0.0211)

.1

(0.0s0) NOM.

t

,

B

L

1.27 NOM"
(0.050)

j

-

L2.S4

(O.I00)

L

.I
--I

US SQUARE
(O.OIS) NOMIMAL

CA_DE))
c

NOM.

Absolute Maximum Ratings at TA

= 25"C

(T-1 3/4 Package)

DC FOIWard Current[I,4,5] ........................................................... 50 rnA
Peak FOIWard Current[2] ........................................................... 200 rnA
Time Average Input Power[2] ................................................... 103 mW
Transient FOIWard Current[3] (10 J.ls Pulse) .............................. 500 rnA
Reverse Voltage (lR = 100 J.lA) ......................................................... 5 V
Operating Temperature Range .......................................... -40 to 100"C
Storage Temperature ......................................................... -40 to 120"C
Junction Temperature ................................................................. 130"C
Soldering Temperature .......................................... 260"C for 5 seconds
[1.59 rom (0.06 in.) below seating plane]
Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or tbe
Max Allowable Time Average Power as specified in Figure 5.
3. The transient peak current is the maximum nonrecurring peak current the device can
withstand without damaging the LED die and wire bonds.
4. Drive Currents between 10 and 30 rnA are recommended for best long term
performance.
5. Operation at currents below 10 rnA is not recommended, please contact your
Hewlett-Packard sales representative.

Absolute Maximum Ratings at TA = 25"C (T-l Package)
DC FOIWard Current[1,4,5] ........................................................... 50 rnA
Peak FOIWard Current[2] ........................................................... 200 rnA
Time Average Input Power[2] ................................................... 103 mW
Transient FOIWard Current[3] (10 J.ls Pulse) .............................. 500 rnA
Reverse Voltage (IR = 100 J.lA) ......................................................... 5 V
Operating Temperature Range .......................................... -40 to 100"C
Storage Temperature ......................................................... -40 to 100"C
Junction Temperature .................................................................. 110"C
Solder Temperature ................................................ 260"C for 5 seconds
[1.59 rom (0.06 in.) below seating plane]
Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the
Max Allowable Time Average Power as specified in Figure 5.
3. The transient peak current is the maximum nonrecurring peak current the device can
withstand without damaging the LED die and wire bonds.
4. Drive Currents between 10 rnA and 30 rnA are recommended for best long term
performance.
5. Operation at currents below 10 rnA is not recommended, please contact your

Hewlett-Packard sales representative.

1-39

Optical Characteristics at TA = 250C
TS.AlInGaP T·18/,
Luminous
Intensity
Part
Iv (mcd)
@20mAU]
Number
Min.
Typ.
1D..MT·
CLOO[l]
2600
8300
CHOO[l]
2900
9000
DLOO[4]
450
1500
DHOO[4]
500
1800

Peak
Wavelength

Color,
Dominant
Wavelength

Ape&!.: (run)

A.d[2] (run)

Typ.

Typ.

594
623
594
623

592
617
592
617

Viewing Angle LUminous
Efficacy
281/2
Degrees[8]
T'lv
Typ.

(linIw)

8
8
24
24

480
263
480
263

Package
Drawing
A
B

Notes:
1. The luminous intensity, Iv, is measured at the peak of the spatial radiation pattern which tn8f not be aligned with the mechanical axis
of the lamp package.
.
2. The dominant wavelength, A.!, is derived from the ClE Chromaticity Diagram and represents the color of the device.
3. 91/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity~
4. The luminous intensity, lv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern
may not be aligned with this axis.

AS.AlInGaP T·13/,

Part
Number
1D..MA·
CLOO[l]
CHOO[l]
DLOO[4]
DHOO[4]
DGOO[4]

Luminous
Intensity
Iv (mcd)
@20mA[1]
Min.
Typ'

1000
1000
300
290
290

3500
3500
800
600
500

Peak
Wavelength

Color,
Dominant
Wavelength

A-peak(run)

A.P] (run)

Typ.

Typ.

592
621
592
621
630

590
615
590
615
622

Viewing Angle Luminous
Efficacy
28 1/2
Degrees[8]
T'lv
Typ.

(linIw)

7
7
24
24
24

480
263
480
263
197

Paclmge
Drawing
A
B

Notes:
1. The luminous intensity, Iv, is measured at the peak of the spatial radiation pattern which tn8f not be aligned with the mechanical axis
of the lamp package.
.
2. The dominant wavelength, A.!, is derived from the ClE Chromaticity Diagram and represents the color of the device.
3. 9 1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.
4. The luminous intensity, lv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern
tn8f not be aligned with this axis.

AS·AlInGaP T·I

Part
Number
1D..MA·
KLOO
KHOO

Luminous
Intensity
Iv (mcd)
@20mA[1]
Min.
Typ.

35
35

200
200

Peak
Wavelength

Color,
Dominant
Wavelength

A"eak (run)

A.d[2] (run)

Typ.

Typ.

Typ.

(linIw)

592
621

590
615

45
45

480
263

Viewing Angle Luminous
Efficacy
28 1/2
Degrees[8]
T'lv

Package
Drawing
C

Notes:
1. The luminous intensity, lv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern
tn8f not be aligned with this axis.
2. The dominant wavelength, A.!, is derived from the ClE Chromaticity Diagram and represents the color of the device.
3. 91/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

1·40

Electrical Characteristics at TA

= 25"C

TS-AllnGaP T-1 3/4

Part
Number
HLMTCLOO
CHOO
DLOO
DHOO

Forward
Voltage
VF (Volts)
@IF =20mA
Typ.
Max.

2.0
2.0
2.0
2.0

2.4
2.4
2.4
2.4

Reverse
Breakdown
VR (Volts)
@IR = 100!lA
Typ.
Min.

5
5
5
5

25
25
25
25

Capacitance
C(pF)
VF = 0,
f=IMHz
Typ.

Thennal
Resistance
RaJ_PIN ("C/W)

Speed of
Response
1:. (ns)
Time Constant
e-t/
~t:.. PACKARD

T·1 3/4 (5 mm) High Performance
TS AlGaAs Red LED Lamps
Technical Data
HLMP·810X Series
HLMP·CIOO
HLMP·CllO
Features

Description

• Exceptional Brightness
• Outstanding LED Material
Efficiency
• High Light Output Over a
Wide Range of Drive
Currents
• Viewing Angle: Narrow or
Wide
• Low Forward Voltage
• Low Power Dissipation
• CMOSIMOS Compatible
• Red Color

These T-13/4, untinted,
nondiffused lamps utilize a
highly optimized LED material
technology, transparent
substrate aluminum gallium
arsenide (TS AlGaAs). This
LED technology has a very high
luminous efficiency, capable of
producing high light output over
a wide range of drive currents
(500 j.tA to 50 rnA). The color is
deep red at a dominant wavelength of 644 nm. TS AlGaAs is
a flip-chip LED technology, die
attached to the anode lead and
wire bonded to the cathode lead.

Package Dimensions

1

0.76 ± 0.13
(0.030 ± 0.005)

0.78 ± 0.13

1 (O'... ±o.oo&)

~ CATHODE

f- ·(O~! :~~)SQUARE

j
~NOM~======~ru
(0....)
.,
~ SQUARE
(0.025) NOMINAL

CATHODE

HLMP·8100

~SQUARE

(G.025) NOMINAL

CATHOOE

HLMP·81021·8103

HLMP·C100l·CllO

NOTES:
1. ALL DIMENSIONS ARE IN MlWMETERSIINCHES.
2. THE LEADS ARE MILD STEEL, SOLDER DIPPED.
3. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0..040'1 DOWN THE LEADS, UNLESS OTHERWISE NOTED.

1-44

5964-9291E

Axial Luminous Intensity and Viewing Angle at T A = 25°C
Part Number
HLMP-

Minimum Intensity
(mcd)@20mA

Typical Intensity
(mcd)@20mA

Typical Radiant
Intensity
(mW/sr) @ 20 mA

28 11211]
Degrees

8103

2000

3000

35.3

7

8102

1400

2000

23.5

7

8100

290

1000

11.8

19

ClOO

290

750

8.8

30

C110

200

400

4.7

40

Note:
1. 9112 is the off axis angle from optical centerline where the luminous intensity is 112 the on·axis value.

Absolute Maximum Ratings at TA =25°C
Peak Forward Current[2] .......................................................... 300 rnA
Average Forward Current (@ I pEAK = 300 rnA) [1,2] ................... 30 rnA
DC Forward Current[3] ............................................................... 50 rnA
Power Dissipation .................................................................... 100 mW
Reverse Voltage (IR=100 J,LA) ••••••••.••.••.•••••••.••••.••••••.••.•••••••.••••.•••••••• 5 V
Transient Forward Current (10 j.Ls Pulse)[4] ............................ 500 rnA
Operating Temperature Range ...................................... -55 to +100°C
Storage Temperature Range .......................................... -55 to +lOO°C
LED Junction Temperature ....................................................... 110°C
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body] .......................... 260°C for 5 seconds
Notes:
1. Maximum IAVG at f= 1 kHz, DF = 10%.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device
can withstand without damaging the LED die and wire bonds. It is not
recommended that the device be operated at peak currenta above the Absolute
Maximum Peak Forward Current.

Electrical/Optical Characteristics at TA =25°C
Description
Forward Voltage
Reverse Voltage
Peak Wavelength
Dominant Wavelength[lJ
Spectral Line Halfwidth
Speed of Response
Capacitance
Thermal Resistance
HLMP-81OX
HLMP-C1XO
Luminous Efficacy[2J

Typ.

Max.
2.4

ts

1.85
20.0
654
644
18
45

C

20

pF

RaJ . PIN

210
237
85

°CIW

Symbol
VF
VR
ApEAK
Ad
dA]J2

Tlv

Min.

5.0

Units
V
V
nm
nm
nm
ns

Test Conditions
I F =20mA
IR

= 100 J.IA

Exponential Time
Constant, e·tlt
VF = 0, f = 1 MHz
Junction-to-Anode Lead

ImIW

Notes:

1. The dominant wavelength, A..!, is derived from the eIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, Ie, in watts per steradian, may be found from the equation Ie=Ivlrlv, where Iv is the luminous intsnsity in
candelas and flv is luminous efficacy in lumenslwatt

300

i""

200

~

~

...E

100

~
w

60

i3

20

II:

10

II:
II:

~

I

co

i.

II:

1

1000
WAVELENGTH· nm

Figure 1. Relative Intensity vs. Wavelength.

1-46

'"

o

o.s

1.0

1.5

2.0

2.5

3.0

3.5.

VF- FORWARD VOLTAGE-V

Figure 2. Forward Current vs. Forward Voltage.

'f

2A
2.0

~

1/

1.0

~<
wE

~~

0.2

...

0.1

I~
"w:!
.....

~C

0.9

"I-

0.0

!IN

Wo
Ww
~!::!

-

0:0:

5~

0.05

.. -f .

·-1··

~i

0:

Figure 3. Relative Luminous Intensity
vs. DC Forward Current.

z

30

..

20

20

50

100

200 300

IPEAK - PEAK FORWARD CURRENT - mA

Figure 4. Relative Efficiency vs. Peak
Forward Current.

~

10

o

10

\\

0:

i~

I

R'... J50'CIW ~

0:
0:

"

OA
0.3
0.2

J"=4J.CIW~ ~

40

W

0:

W

1.1
1.0

!:!:!.;

....

o.s

.

OIl-

"00

1.2

o

20 25

40

55 60

80

100

TA - AMBIENT TEMPERATURE - cC

Figure 5. Maximum Forward DC
Current vs. Ambient Temperature.
Derating Based on TJMAX = 110"<::.

I PEAK - PEAK FORWARD CURRENT - rnA

Figure 6. Maximum Average Current
vs. Peak Forward Current.

1.0
0.9

~

01
Z

...

W

0.7

01

0.6

~

"
..."

0
z o.s
;;;
W

~

0:

OA
0.3
0.2
0.1

o

i"....-

...........

~~~w~~~~~.O'.~~w~~w~w~

9 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE)

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP·8103
and HLMp·8102.

1·47

'.0

f\1.f

0.9

.,~z
w
....

.,i!!
"0

~
3
w

5'"
w

0.0
0.7
0.0

o.s
OA

1\

J
J

0.3
Q.2

\

0:

0..

.....i"--.

~i"""

o

..

~W~~W~WWWW~WWWWW~N~W~

9 - ANGLE FROM OPTICAL CENTERUNE - DEGREES (CONE HALF ANGLE)

Figure S. Relative Luminous Intensity vs. Angular Displacement. HLMP-SIOO.

m

• .0
0.9

.,z~
I!!

.,i!!
"0

~
3

w

5'w"

11\

0.8

II \

0.7

0.&

o.s

I

OA

0.3

o

~

\

J

Q.2

1\

I

0:

0..

J

\

~

......

~W~~~~WW~W~W~WWW~~~W~

9 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE)

Figure 9. Relative Luminous Intensity vs. Angular Displacement. HLMP-CIOO .

• .0

f

0.9

~

0.0

w

0.7

!II
Z

liE
!II

"i!!0

""....
~
w
w

a:

1\

0.0

OA

0.3

I

0.2
0.'

o

I

\

II

\

II

0.&

-'"

I

\
J \

1\

,

\

"

~W~N~~~WWW~WW~W~~~~.~

• - ANGLE FROM OPTICAL CENTERUNE - DEGREES (CONE HALF ANGLE)

Figure 10. Relative Luminous Intensity vs. Angular Displacement. HLMP-CllO.

1-48

-

r/i~

HEWLETT®

~r... PACKARD

T-13/4 (5 mm), T-l (3 mm), High
Performance, Tinted, Diffused,
AllnGap' and TS AlGaAs Red
LED Lamps
Technical Data
Features

Applications

• High Light Output Over a
Wide Range of Currents
• Popular T-l and T-1 3/4
Packages
• Choice of Three Colors
Amber
Reddish-Orange
Deep Red
• Wide Viewing Angles
• Long Life: Solid State
Technology
• Available on Tape and Reel

•
•
•
•
•

HLMA-DX05 Series
HLMA-KX05 Series
HLMP-DIXX Series
HLMP-JIOO/J150 Series

Outdoor Message Boards
Automotive Lighting
Portable Equipment
Medical Equipment
Changeable Message Signs

Description
The HLMA-D/KXXX series tinted,
diffused, solid state lamps utilize
the newly developed aluminum
indium gallium phosphide
(AlInGaP) LED technology. This
technology has a very high
luminous efficiency, capable of
producing high light output over a
wide range of drive currents.
These LED lamps are available
with a choice of two colors, 592

nm amber and 615 nm reddishorange, and with two viewing
angles, 65° and 60°.
The HLMP-D/JXXX series tinted,
diffused solid state lamps utilize
the highly optimized transparent
substrate aluminum gallium
arsenide (TS AlGaAs) LED
technology. This technology has a
very high luminous efficiency,

Device Selection Guide

Package Description
T-l3f4 (5 mm), Tinted, Diffused,
Standard Current
T-1 (3 mm), Tinted, Diffused,
Standard Current
T-1% (5 mm), Tinted, Diffused,
Standard Current
T-1 3/4 (5 mm), Tinted, Diffused,
Standard Current
T-1 (3 mm), Tinted, Diffused,
Standard Current
T-1 (3 mm), Tinted, Diffused,
Diffused, Low Current
5964-9287E

Viewing
Angle
291/2
65°
60°
40°
25°
55°
55°

Amber
Ad = 592 nm
HLMADL05
HLMAKL05

ReddishOrange
Ad = 615 nm
HLMADH05
HLMAKH05

Deep
Red
Ad = 644 nm

Package
Outline
A
B

HLMPD115
HLMPD120
HLMPJ100
HLMPJ150

A
A

C
C

1-49

capable of producing high light
output over the wide range of
drive CillTents from 500 J.lA to
50 rnA. The color is deep red at a

dominant wavelength of 644 run.
TS AlGaAs is a flip-chip LED
technology, die attached to the
anode lead and wire bonded to

1-~

Package Dimensions
!:~ ~g:~~gl

-

the cathode lead. Available viewing angles are 25°, 40°, and 55°.

I--~:!~~

~:!~~

_3.43~

_ _ 3.43 (QJ!ID

9.19~

-

~~

l-1t 0.89~

I

6.35~

. . . -------.t 4-.7'0"k-'o.'-.5

~b
5.58(0.220)

0.64 (0.025)

2.92 (0.115)

2.92(0.115)

jj--1

5.58(0.220)

4.19(0.165)

~

,

,L

4.70~

E= ~ 4.19~O.165)

~

..12
(0.040) NOM.

(0.040) NOM.

~r

T~~./

"27(O.050)NOM.~

~------.J!.1.4 1

(o'~)NOM.
0.45(0.018)

"'-"'

CATHODE

SQUARE

NOMINAL

24.13

~/_~-

1_ _

--I

1____

SQUARE

NOMIMAL

- r-co~O~)

J l(o";'.!,)NOM. (o'o~) NOM.

2.54 NOM

(O.1OO)

.

e

c

B

A

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT
1 mm (0.040") DOWN THE LEADS.

HLMA-DL05/DH05/Kl05/KH05 AllnGaP Lamps
Absolute Maximum Ratings at TA = 25°C
HLMADL05

HLMADH05

HLMAKL05

HLMAKH05

50

50

50

50

rnA

Peak Forward Current[2]

200

200

200

200

rnA

Average Input Power[2]

103

103

103

103

mW

Parameter
DC Forward Current[1,3,4]

Units

Reverse Voltage (IR = 100 J.lA)

5

5

5

5

V

Operating Temperature Range

-40 to
+100

-40 to
+100

-40 to
+100

-40 to
+100

°C

Storage Temperature Range

-55 to
+100

-55 to
+100

-55 to
+100

-55 to
+100

°C

Junction Temperature
Soldering Temperature
[1.59 mm (0.06 in.) below seating plane]

110
260°C for 5 second

Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward current as specified in Figure 5.
3. Drive currents between 10 rnA and 30 rnA are recommended for best long term performance.
4. Operation at currents below 10 rnA is not recommended, please contact your Hewlett-Packard sales representative.

1-50

°C

Optical Characteristics at TA

Part Number
HLMA-

DL05
DH05
KL05
KH05

= 25"C

Luminous
Intensity
Iv (mcd)
@20mA[1)
Typ.
Min.

35
35
35
35

Peak
Wavelength
Apeak (um)
Typ.

Color,
Dominant
Wavelength
A.i[2) (um)
Typ.

Viewing
AngIe
291/2
Degrees[3)
Typ.

Luminous
Efficacy
Tlv
(lm/w)

594
621
594
621

592
615
592
615

65
65
60
60

480
263
480
263

100
100
100
100

Notes:
I. ~ is the total luminous flux output as measured with an integrating sphere.
2. The dominant wavelength, Au, is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. 8 1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at TA

Part
Number
HLMA-

DL05
DH05
KL05
KH05

Forward
Voltage
VF(Volts)
@IF =20mA
Typ.
Max.

1.9
1.9
1.9
1.9

= 25"C

Reverse
Breakdown
VR(Volts)
@IR = 100 J..IA.
Typ.
Min.

2.4
2.4
2.4
2.4

5
5
5
5

25
25
25
25

Capacitance
C (PF)
VF = 0,
f= ImHz
Typ.

Thermal
Resistance
R9J _PIN ("CIW)

Speed of Response
ts (ns)
Time Constant
e-tits
Typ.

60
60
60
60

260
260
290
290

13
13
13
13

200,----r----rT---r---,

In,---------~_r--~._------,_----------_,

~

I

180
180r---_r----~--_r--~

~ 140r---_r----t+--_r--~
Mr-------~--~~--_4------+_----------~

~
::>

u

1~r---_r----Hr--_r--~
l00r---_r----Hr--_r--~

l :r---_r----~--_r--~
IL

I

~

40r---_r----f----_r---1
20r---_r----~--_r---1

O~--~--~~--~~~

1.0

WAVELENGTH -

Figure 1. Relative Intensity vs.
Wavelength.

nm

1.5

2.0

2.5

3.0

VF - FORWARD VOLTAGE - V

Figure 2. Forward Current vs.
Forward Voltage.

1-51

2. 5

0

0

0.0

o

V

/

/

V

"
I

40

!'w""
"

~ r- ~

IpEAK - PEAK FORWARD CURRENT - rnA

/

0.&

'.

\

o

Figure 3. Relative Luminous Intensity
vs. Forward Current.

1.0

()

1,\ \

IF - DC FORWARD CURRENT - rnA

D."

''""

40

:J

w

15

........

I

ill

R9J •• = 412 "CIW/

10

50

I-

'\V
V \. I\~

20

50

"E

\

R9J.-.=61&oCJW/

35

:J

fl2:1 KHz

I\,

I
1

45

~

10

I

50
E

Figure 5. Maximum Average Current
vs. Peak Forward Current.

HLMP-D115/D120/JI00/J150 TS AlGaAs Red Lamps
Absolute Maximum Ratings at TA = 25°C
HLMPD115

HLMPD120

HLMPJI00

HLMPJ150

Units

DC Forward Current[![

50

50

50

50

rnA

Peak Forward Current[2[

300

300

300

300

rnA

Average Input Power[2]

mW

Parameter

100

100

100

100

Reverse Voltage (IR = 100!1A)

5

5

5

5

V

Operating Temperature Range

-55 to
+100

-55 to
+100

-55 to
+100

-55 to
+100

°C

Storage Temperature Range

-55 to
+100

-55 to
+100

-55 to
+100

-55 to
+100

°C

Junction Temperature

110

Soldering Temperature
[1.59 mm (0.06 in.) below seating plane]

°C

260°C for 5 second

Notes:
1. Derate linearly as shown in Figure 12.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward current as specified in Figure 13.

Optical Characteristics at TA

Part Number
HLMP-

= 25°C

Luminous
Intensity
Iv (mcd)
@20mA[1]
Typ.
Min.

Peak
Wavelength
J"eak (nm)
Typ.

Color,
Dominant
Wavelength
A.d[2] (nm)
Typ.

Viewing
Angle
291/2
Degrees[3]
Typ.

Luminous
Efficacy
1lv
(Im/w)

D115

138

250

654

644

40

85

D120

138

350

654

644

25

85

J100

39

175

654

644

55

85

J150

1.3

3.0

654

644

55

85

Notes:
1. v is the total luminous flux output as measured with an integrating sphere.
2. The dominant wavelength, Ad, is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. 01/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at TA

Part
Number
HLMP-

Forward
Voltage
VF (Volts)
@IF =20mA
Min.
Typ.

= 25°C

Reverse
Breakdown
VR (Volts)
@ IR = 100 I!A
Typ.
Min.

Capacitance
C (PF)
VF = 0
f= ImHz
Typ.

Thermal
Resistance
R9J _PIN eCIW)

Speed of Response
1:S (ns)
Time Constant
e-t/..

Typ.

D115

1.85

2.4

5

20

20

260

45

D120

1.85

2.4

5

20

20

260

45

J100

1.85

2.4

5

20

20

290

45

3150

1.6

1.9

5

20

20

290

45

1-53

300
200

......

V

4

0
0
5

I

2

I

0

1

5

1

0.5

WAVELENGTH - nrn

Figure 8. Relative futensity vs.
Wavelength.

........ , /

2.5

0.01

3.0

3.5

0.5

10

20

50

IF - DC FORWARD CURRENT - rnA

Figure 10. Relative Luminous futensity
vs. DC Forward Current.

2

30

II:

~

.

1

\

40

Z

W
II:
II:

a"

O.

20

II:

~
I

.!!-

10

20

50

100 200 300

IpEAK - PEAK FORWARD CURRENT - rnA

Figure 11. Relative Efficiency vs. Peak
Forward Current.

1-54

I-

u

:l;;! o.5
~! o.4 II
>~ o.3 I
o.
o.~il
O. 0

2.0

50

1I

iii 1
~~
Hi io( o.7
.. 51 8

i:!>I

1.5

Figure 9. Forward Current vs.
Forward Voltage.

1.2

1.1
1.0
o.9
o.8

t;-

1.0

VF - FORWARD VOLTAGE-V

10

o
o

~ ~

ROJA =i'1, \
ROJA=b.o·J,/ \\
~
20

40

60

80

100

T A - AMBIENT TEMPERATURE - °C

Figure 12. Maximum Forward Current
vs. Ambient Temperatnre. Derating
Based on TJ Max 110"C.

=

°50~--~100=---~1~50~~2~00~~250~--~300
IpEAK - PEAK FORWARD CURRENT - rnA

Figure 13. Maximum Average Current
vs. Peak Forward Current.

1.0

/ "\

0 ••
0.9

~

II>

zw

0.7

iii
w
...t:!

OA

II:

i !l

0.3

"z

0.2

Q

I

0.6
0.5

0.1

o

I

\

\

I

-

.... ~

1\
1"\

/

--

I"

I-"

~~~~~~W~~W~W~~W~W~~~~

ANGULAR DISPLACEMENT - DEGREES

Figure 14. Spatial Radiation Pattern for 400 HLMP·D115 Lamp.

1.0

If\.
II \

•

O.

O.8

~

~

O.7
0.6

•

;

O•

i

O.3
O. 2
O.1

1\

I
II

~ O.5

1\
\

/

-

I\,

./

l- I-"

.......

0
100 90 80 70 .60 50 40 30

20 10

-

0" 10 20° 30" 40° 50"

ANGULAR DISPLACEMENT - DEGREES

r- r-

eo-

70° 80" go" 100"

Figure 15. Spatial Radiation Pattern for 25 0 HLMP·DI20. Lamp.

1.0

V" .......

0.9

II

0.9

i

0.7

Q

0.5

~

OA

~
~

I

0••

II:

0.3

"z

0.2
0.1

o

\

II

\

I

\

/

-I- ......

100 90 80" 70

eo

/

\

,

-

r-

50 40 30

20 10

0

10 20 30 40 50 60 70" 80 90 100"

ANGULAR DISPLACEMENT - DEGREES

Figure 16. Spatial Radiation Pattern for 550 HLMP·JI00·JI50 Lamps.

1-55

FliiiW HEWLETT®

a.:~ PACKARD

T-13/4 (5 mm), Wide Viewing
Angle, High Intensity LED
Lamps
HLMA-VHOO
HLMA-VLOO
HLMP-VIOO
HLMP-V500

Technical Data

Features

Description

• Outstanding LED Material
Efficiency
• Extremely Wide Horizontal
Viewing Angle
• High Light Output over a
Wide Range of Currents
• Untinted, Non-diffused Lens
• Choice of Four Colors: 644
nm Red, 590 nm Amber, 570
nm Green, and 615 nm
Orange

These high intensity LED lamps
provide the user with an
extremely wide 60° (horizontal)
by 30° (vertical) oval shaped
radiation pattern. Available in TS
AlGaAs red, AllnGaP amber,
AllnGaP orange, and GaP green
colors, these untinted nondiffused T-I3/4 (5 mm) LEDs are
an excellent choice for outdoor
applications requiring an
extremely wide field of vision and
high brightness.

Outline Drawing

Device Selection Guide
Amber
590nm
HLMA-VLOO

Ad

=

Applications

Red-Orange
615nm
HLMA-VHOO

~

=

•
•
•
•

Outdoor Message Boards
Safety Lighting Equipment
Changeable Message Signs
Alternative to Incandescent
Lamps
Red
Ad 644nm
HLMP-VlOO

=

Green
Ad 570nm
HLMP-V500

=

0.51 SQUARE
(0.020) NOMINAL

NOTES:
1 LEAD DRIENTM"ION·

2.54±.025
(0.100 ± 0.010)

~
..
I

5.08±D.25
(0.200 ± 0.010)

DEVICE TYPE

CENTER LEAD

OUTER LEADS

HUIIP-V100

COMMON ANODE

CATHODE

HLMP-V500
HUIIA-VLOO

COMMON C/O"HODE

ANODE

COMMON CM"HODE

ANODE

HUIIA·VHOO

COMMON CATHODE

ANODE

2. ALL DIMENSIONS ARE IN MM (INCHES).

5.59 ± 0.25
(0.220 ± 0.010)

1-56

5964-9292E

Absolute Maximum Ratings at TA = 25"C
Parameter
DC Forward Current[1,3]

HLMA-VLOO HLMA-VHOO
60[4,5]
60[4,5]

HLMP-VIOO

HLMP-V500

Units

60

50

rnA

Peak FOIWard Current[2,3]

400

400

600

180

rnA

Average Input Power[2]

120

120

120

110

mW

5
-40 to +100

5

5

5

V

Operating Temperature Range

-40 to +100

-55 to +85

-20 to +100

OC

Storage Temperature Range

-55 to +100

-55 to +100

-55 to +100

-55 to +100

OC

Reverse Voltage (IR = 200 !LA)

Junction Temperature

110

Soldering Temperature
[1.59 mm (0.06 in.) below
seating plane I

OC

2600C for 5 seconds

Notes:
1. Derate linearly as shown in Figure 5.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the Max Allowable Average Power as specified in
Figure 6.
3. Specified with both die powered simultaneously.
4. Drive Currents between 10 rnA and 30 rnA are recommended for best long term performance.
5. Operation at currents below 10 rnA is not recommended, please contact your Hewlett-Packard sales representative.

Optical Characteristics at TA

Part Number
HLMA-VLOO

Luminous
Intensity
Iv (mcd)
@40mA[I)
Min.
Typ.
212
460

HLMA-VHOO
HLMP-V100

200
500

HLMP-V500

112

= 25"C

592

Color,
Dominant
Wavelength
A.i[2l (nm)
Typ.
590

460
1000

621
654

615
644

270

568

570

Peak
Wavelength
Apeak(nm)
Typ.

Viewing
Angle
29 1/2
Degrees[3l
Typ.
60° horizontal
30° vertical
60° horizontal
30° vertical
60° horizontal
30° vertical

Luminous
Efficacy
11v
(lmIw)

480
263
85
595

Notes:
1. The luminous intensity, Iv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern
may not be aligned with this axis.
2. The dominant wavelength, A.d' is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. 2 81!2 is the off-axis angle where the luminous intensity is 1/2 the on-axis intensity.

Electrical Characteristics at TA

Part Number
HLMA-VLOO
HLMA-VHOO
HLMP-V100
HLMP-V500

Forward
Voltage
VF (Volts)
@IF =40mA
Typ.
Max.
1.90
2.4
1.90
2.4
1.85
2.4
2.20
3.0

= 25"C

Reverse
Breakdown
VR (Volts)
@ IR = 200 IJ.A.
Min.
5
5
5
5

Capacitance
C (PF)
VF = 0,
f= 1 MHz
Typ.
120
120
50
20

Thermal
Resistance
R9J _PIN
("C/W)

100
100
115
100

Speed of Response
'to (ns)
Time Constant
e-ti'tS
Typ.
13
13
26
171
1-57

,

400

..:

,

E

....z

w 280

a:
a:

::>
0

240
200

Q

a:

~
~,

.!:

160

I

120

I

I

I

~2

J

40
1.0

1.5

§Ui
Uo

Uo

U

QW

~ffi

II

10

2.0

2.5

II.w

:a. iS

.!!-j!:

3.0

i

I

1
1.5

2.0

..
~

:::I

;;

3
!l:!

~

4.0

4.5

ORANGE &: AMBER
GREEN

1.2

l,P

1.0

o.s

~

RED

0.6

1:#

Slli!

~!(
!l:!~

./

S;,!

1.4
1.2

>!.

0.6

..

V

1.0

0.8

$!c

"

w

o

30

20

40

50

wo:
0

D.4

j~

.

b.."

o
o

I"

D.3

I

0.2

I

0.1
0.0

40 80 120 160 200 240 280 320 360 400

Figure 4a. Relative Efficiency vs. Peak
Forward Current, HLMA-VLOO/VllOO.

1

t
~~
iEi

::!c
>0

1. 1

/'

1.0

......

St

o.7

~~

O.6

.. 0

•o

50

~i
§ US

40

~

30

It!

20

40

so

j!:

80 100 120 140 160 180

Figure 4c. Relative Efficiency vs. Peak
Forward Current, HLMP-V600.

I

Z

ii
ij0
00

10

~ o

E

~~

R8JA.='..,1C/W-

'is
JI.

\ \
\:i\
---\ \
1\\
'\

..551

.. :::I

"'JA. = 350 C/W0

H2O

IpEAK - PEAK FORWARD CURRENT - rnA

1-58

Z

II. w

D.5

D.

I

U o

3~ o.

~i

51

60

!< ~

/

o.9

~

20

40

100

200 40D 600

mA

Figure 4b. Relative Efficiency vs. Peak
Forward Current, HLMP-VIOO.

70

'"
E

10

IPEAK - PEAK FORWARD CURRENT -

5

1.2

3.0 3.2

..........

IF - FORWARD CURRENT - rnA

1.3

2.8

0.6
0.7

IpEAK - PEAK FORWARD CURRENT - rnA

Figure 3. Relative Luminous Intensity
vs. Forward Current.

2.6

1.0

0.6
D.5

0:

D.'

60

2.4

D.9

fE~

0.2

o
10

1.6

w"

,0

lR'"

0.2

h
uli!

2.0

a: a::

2.2

1.3
1.2
1.1

2.2

~c

2.0

Figure 2c. Forward Current vs.
Forward Voltage, HLMP-V600.

wE 1.8

~~

D.4

1.9

VF-FORWARDVOLTAGE-Y

2.6

w

0:

3.5

2.'

0

Z

3.0

Figure 2b. Forward Current vs.
Forward Voltage, HLMP-VIOO.

1.6

w

2.5

I

I

1
1.7

VF - FORWARD VOLTAGE-V

Figure 2a. Forward Current vs.
Forward Voltage, HLMA-VLOO/VllOO.

~z

10

'is

VF-FORWARD VOLTAGE-V

1A

J

U

II.w

~

I/

§~

-j!:

J

o

I~

5~

~i

II

80

~2

200

'~100

!
Q

0••
0.8
0.7

0.5

~

0.3

w

a:
Q

z

I

0.6

~
3Q

\

\

J

\

{

0.4

0.2
0.1
100

'"\

80

60

\
\

- -

40

J

\

20

-20

.4Q

-60

-80

-100

ANGULAR DISPLACEMENT (DEGREES)

Figure 8b. Relative lntensity vs_ Angle, HLMP-VIOO Vertical Axis.

n

1.0

i
rn

i3
Q

w

N

::J

c

"~
a:

0••

/I

0.8

/

I \/

0.7

\

1'1\.'

,

\J \

0••
0.5
0.4
0.3
0.2
0.1
100

-

1.1

\..

~

80

60

40

20

-20

r--

~

.4Q

ANGULAR DISPLACEMENT (DEGREES)

Figure 9a. Relative lntensity vs. Angle, HLMP-V500 Horizontal Axis.

1-60

1.0

0.8

;!;

0.7

"'

0.6

....w

::>
0
;!;

'c"

0.5

~

0.3

:I
w

'z"

II:

0

{

D."

~z

~

L
I
I
I

1--

\

\
\
\
\

D.'
0.2

_.
-----~"

I

0.1

100

80

60

40

\
20

-20

-60

·80

·100

ANGULAR DISPLACEMENT (DEGREES)

Figure 9b. Relative Intensity vs. Angle, HLMP-V500 Vertical Axis.

1-61

rli~ HEWLETT"
a:~PACKARD

T-1 3/4 (5 mm) SiC Blue LED
Lamps

Technical Data
BLMP-DBOO
HLMP-DB15

Features

Applications

• Silicon Carbide Technology
• 481 run Blue Color
• Viewing Angles: Narrow and
Wide
• CMOS/MOS Compatible

• Moving Message Signs
• Automotive Interior Lighting
• Front Panel Status Indicator
• Medical Instrumentation

Description
9.19~

C

"1

ICA~~:

L

,a_ t

(0.050)

O."~
0.64 (0.026)

"1

0.102 (0.004)
MAX.TYP.

0.102 (0.004)
MAX.TYP.

,a_

IL

--i

(0.050)
0.45 (0.018)
SQUARE

O."~
0.64 (0.025)

11-

't- - - - IHL
--i OAS (0.018)
SQUARE

NOMIMAL

NOMIMAL

These untinted diffused and
nondiffused T-1 % LED blue
lamps utilize single crystal silicon
carbide technology_ The color is
an 80% saturated blue with a
dominant wavelength of 481
nanometers. The HLMP-DBOO is a
38 degree cone angle diffused
lamp for use in moving message
panel signs or as a front panel
indicator. The HLMP-DBI5 is a
nondiffused lamp with a 15
degree cone angle that may be
used for backlighting legends or
as a blue wavelength emitter.

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

2. THE LEADS ARE MILD STEEL, SOLDER DIPPED.
3. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040-) DOWN THE LEADS.

HLMP-DB15

1-62

HLMP-DBOO

5964-9288E

Absolute Maximum Ratings at TA

= 25"C

DC Forward Currentl!1 ............................................................................................................................ 50 rnA
Peak Forward Current l2J ....................................................................................................................... 100 rnA
Average Forward Current (@ IpEAK = 100 rnA, f = 1 KHz)12J ................................................................. 40 rnA
LED Junction Temperature ............ :........................................................................................................ 110°C
Transient Forward Current (10 Jls Pulse)13J .......................................................................................... 500 rnA
Reverse Voltage (IR = 100 JlA) .................................................................................................................... 5 V
Operating Temperature Range ........................................................................................................ -55 to 85ce
Storage Temperature Range ......................................................................................................... -55 to 100ce
Lead Soldering Temperature (1.59 mm [0.063 in.] from body) ......................................... 260ce for 5 seconds
Notes:
1. Derate linearly as shown in Figure 5.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and
wire bonds. Operating the device at peak currents above the absolute Maximum Peak Forward Current is not recommended.

Optical Characteristics at TA

Part
Number
HLMP-

Luminous
Intensity
I.. (mcd)
@IF 20mA[l]
Min_
Typ.

= 25"C

Radiant
Intensity
Ie {JlW/sr)
@20mA
Typ.

Color,
Dominant
Wavelength

Peak
Wavelength

@20mA[2]
Typ.

Ai S ] (urn)

ApEAK (urn)

Typ.

Typ.

Viewing
Angle
291/2
Degrees[4]
Typ.

Total Flux
cJ>.v(mlm)

DBOO

1.0

3.0

23.1

2.0

480

470

38

DBl5

6.3

12.0

93.3

2.0

480

470

15

Notes:
1. The luminous intensity, Iv, is measured at the peak of the spatial radiation pattern which may not be aligned with the geometric axis of
the lamp package.
2. v is the total luminous flux output as measured with an integrating sphere.
3. The dominant wavelength, Au, is derived from the CIE Chromaticity Diagram and represents the color of the device.
4. 8 1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at TA
Forward
Voltage
VF (Volts)
@IF 20mA
Typ. I Max.
3.5

I

4.0

= 25"C

Reverse
Breakdown
VR (Volts)
@IR = 100 JlA
Min. I Typ.

Speed of Response
ts Cns)
Time Constant
e-t /,.
Typ.

Capacitance
C (PF)
VF = 0,
f= 1 MHz
Typ.

Junction to
Cathode Lead

I

500

97

260

5.0

45.0

Thermal
Resistance
R9J _PIN ("CIW)

1-63

1.0

100

I

TA -'25°C

I
IE
w

~

80

''""
""'"
'"

80

I

20

I
IZ
W

.5

5

iIi!

w

'"

JI-

I

40

I

o
650

800

I

I

1/
o

'.0

1.0

WAVELENGTH - nm

'.0

3.0

•.0

VF -FORWARD VOLTAGE-V

Figure 2. Forward Current VB.
Forward Voltage.

Figure 1. Relative Intensity VB. Wavelength.

2.0

~

~C

E2

1.8
1.6

100'

1A

!!I!c

1.2

~~
w'"

0.8

w

D••

0" 1.0

~i

'"

0.8

L

/

V

V

1/

".

50

t;

U
110

1/

t~

1.0

I" ........

0.8

~~

o

.... -100..

OA

I

JI-

D••

10

20

30

50

40

o

20

40

Figure 3. Relative Luminous Intensity
de Forward Current.

VB.

Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current)
VB. Peak Current.

li
w
:;'"

50

~

~IE
"1>1w

40

30

~

'z"

0

I

ji"

20

50

60

70

80

90

100

'PEAK - PEAK CURRENT - ~A

Figure 6. Time Average Current VB.
Peak Forward Current as a Function
of Pulsed Refresh Rate, f (Hz).

1-64

\

25

'."

20

,.

10

o

I

1
o

10 20 30 40 50 60 70 80 90,100 110

0.7
0.6

I

D••

D••

/

0.3
0.2

-

I

oc

Figure 5. Maximum de Current VB.
Ambient Temperature. Derating Based
on TJ Max. llO"C.

=

0.8

0.1
10L---~----~--~----~----'

337°C/W

If "\

0.•

''""
"'w"

ReJ~A=

30

TA - AMBIENT TEMPERATURE -

1.0

I
IZ
W

1\

36

100

80

60

I\,

IpEAK - PEAK CURRENT - mA

IF - de FORWARD CURRENT - rnA

~

40

Ii
''""
""'"
'~"
Ii!'"

......

0.2

o

45

I

E

j~
w C 0.8
",,"

..~i

C

\
\

,

~

~

a - ANGULAR DISPLACEMENT -

L""DEGREES

Figure 7. Normalized Luminous Intensity VB. Angular Displacement,
HLMP·DBOO.

1.0
0••

~

0.8

II>

0.7

!

0.6

zw

C

w

,.~
II:

cz

0.5
0.4
0.3
0.2
0.1

j

0
100° 90°

80 0 70°

J

1\

\

60' 50' 40' 30' 20'
9 - ANGULAR DISPLACEMENT - DEGREES

Figure 8. Normalized Luminous Intensity vs. Angular Displacement HLMP-DB15.

1-65

FliiiW HEWLETT®

a:~PACKARD

T-13/4 (5 mm), T-l (3 mm),
High Intensity, Double
Heterojunction AlGaAs Red
LED Lamps
Technical Data
Features
• Exceptional Brightness
• Wide Viewing Angle
• Outstanding Material
Efficiency
• Low Forward Voltage
• CMOS/MOS Compatible
• TTL Compatible
• Deep Red Color

Applications
• Bright Ambient Lighting
Conditions
• Moving Message Panels

HLMP-DIOl/DI05
HLMP-KIOljKl05

• Portable Equipment
• General Use

Description
These solid state LED lamps
utilize newly developed double
heterojunction (DH) AlGaAs/GaAs
material technology. This LED
material has outstanding light
output efficiency over a wide
range of drive currents. The color
is deep red at the dominant
wavelength of 637 nanometres.
These lamps may be DC or pulse
driven to achieve desired light
output.

Package Dimensions

H~~

n~

==4

lli(~

XU
)

o... (~

0.64 (0.025)

0.45 (0.018)
SQUARE NOMINAL

1

!U! (.3621
.89 (.0351

i

12.44 1.4801
11.68 1.4601

~

251

-,

0.641.0251

23.0 (.901
MIN.

1.27 (.G501

8.43 (.3321

SQUARE
NOMINAL

I

LL

I

6.361.250)

'l

'.191.1651

+

26.40 11.001
MIN.

wr-I
---.-----1,I
I

I--

---j

CATHODE

2.64 (0.100)
NOMINAL

A
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES lINCHESJ.

2.54(.100)
NOM.

o

CATHODE

2.54 1.100) NOM.

B

)(2J
CATHOOe

c

2. AN EPOXY MINISCUS MAY EXTENO ABOUT
1 mm (0.040") DOWN THE LEADS.

1-66

5964-9369E

Axial Luminous Intensity and Viewing Angle @ 25"C
Part
Number
HLMP-

Iv (mcd) @
Package Description

Min.

20 rnA
Typ.

291/2[11
Degrees

Package
Outline

DlOI

T-I% Red Tinted Diffused

35

70

65

A

Dl05

T-I % Red Untinted, Non-diffused

90

240

24

B

KIOI

T-1 Red Tinted Diffused

22

45

60

C

K105

T-I Red Untinted Non-diffused

35

65

45

C

Note:
1. elf,! is the off axis angle from lamp centerline where the luminous intensity is 1/2 the on·axis value.

Absolute Maximum Ratings at TA

= 25"C

Peak FOIWard Currentll,21 ..................................................................................................................... 300 rnA
Average FOIWard Currentl 2J .................................................................................................................... 20 rnA
DC Current l3J .......................................................................................................................................... 30 rnA
Power Dissipation .................................................................................................................................. 87 mW
Reverse Voltage (IR = 100 IJA) .................................................................................................................... 5 V
Transient FOIWard Current (10 lIS Pulse)14J ......................................... ,................................................ 500 rnA
LED Junction Temperature........................................................................................... .......................... IIO"C
Operating Temperature Range ................................................................................................... -20 to + IOO"C
Storage Temperature Range ...................................................................................................... -55 to + IOO"C
Lead Soldering Temperature [1.6 mrn (0.063 in.) from body] ........................................... 260"C for 5 seconds
Notes:
1. Maximum IpEAK at f = 1 kHz, DF = 6.7%.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non·recurring peak current the device can withstand without damaging the LED die and
wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

1-67

Electrical/Optical Characteristics at TA = 25"C
Symbol

Min.

Typ.

Max.

Unit

1.8

2.2

V

IF

5.0

15.0

V

IR

Peak Wavelength

645

run

= 100 IJA
Measurement at Peak

Dominant Wavelength

run

Note 1

Spectral Line Halfwidth

637
20

Speed of Response

30

ns

Exponential Time
Constant, e·t/l'8

pF

Description

VF

Forward Voltage

VR

Reverse Breakdown Voltage

Ap
Ad
l1Al/2
1:8

Test Condition

= 20mA

run

RaJ .PIN

Thermal Resistance

30
2601 3 ]
2101 4 ]
2901 5 ]

"e/W

VF = 0, f = 1 MHz
Junction to Cathode Lead

1'\v

Luminous Efficacy

80

lm/W

Note 2

C

Capacitance

Notes:
1. The dominant wavelength, Au, is derived from the elE chromaticity diagram and represents the color of the device.
2. The radiant intensity, Ie, in watts per steradian, may be found from the equation Ie = lvlrtv, where Iv is the luminous intensity in
candelas and flv is luminous efficacy in lumens/watt.
3. HLMP-DIOl.
4. HLMP-DI05.
5. HLMP-KIOl/-KI05.

1.0,.--...,----_---,----,

1r

..

i
i

z
'W
0:
0:

0.51--+---++-+---+----1

"u
0
0:

!f

oJ>

300
280
260

J

Z40

J

220
200

I

Figure 1. Relative Intensity VB. Wavelength..

1-68

I
I

1

60

40
211

I

../
0.5

WAVELENGTH - nm

1

I

180
180
140
1211
100
80

1.0

1.5

2.0

2.5

3.0

3.!

V. - FORWARD VOLTAGE - V

Figure 2. Forward Current VB. Forward Voltage.

1.6

1.2

0

V

/

8

V

>
u-

~1

Yo>
;;:N

V

oV
I DC

.. 0

> ..

~:J
.......
,.
"'a:

/

~~

10
-

20

1S

25

30

40

0

f\

25

Of-- +-RO JA

"
0

=

45rclW

1 1 1 1

~\ \

0.4

0.2

Os

10
'PEAK -

/'

40

50

100

TA - AMBIENT TEMPERATURE - PC

Figure 5. Maximum Forward DC Current vs. Ambient
Temperature. Derating Based on T J MAX = 110"(;.

8O'~--4---~---+---4~

Figure 7. Relative Luminous Intensity vs. Angular
Displacement. HLMp·DIOl.

200 300

\

,

1\

~I

1\

~~

:t

Iv%

3

P< r\.\

80

100

-

41-

f-lA i"rei V N \
At" i sarcr ~
20

50

20

PEAK FORWARD CURRENT - mA

Figure 4. Relative Efficiency vs. Peak Forward Current.

5

~ ~ I\.

. . . r---

0.6

10
9
8
7

s

0

r-...

DC FORWARD CURRENT - mA

Figure 3. Relative Luminous Intensity vs. DC Forward
Cnrrent.

sf--

r""

0.8

~!;(

/

6

1.0

1\

2

1

10

~I
J\ ~J

i~ i rt
100

1000

tp - PULSE DURATION -

10,000

~s

Figure 6. Maximum Tolerable Peak Current vs, Peak
Duration (IpEAK MAX Determined from Temperature
Derated I DC MAX).

8O'\--t--i---i---i::::=

Figure 8, Relative Luminous Intensity vs. Angular
Displacement. HLMp·KIOl.

1-69

Figure 9. Relative Luminous intensity vs. Angular
Displacement. HLMP·DI06.

1-70

Figure 10. Relative Luminous intensity vs. Angular
Displacement. HLMP·KI05.

Wj~

HEWLETT@

~~PACKARD

T-13/4 (5 mm), T-l (3 mm), Low
Current, Double Heterojunction
AlGaAs Red LED Lamps
Technical Data
HLMP-D150/D155
HLMP-K150/K155

Features

Applications

• Minimum Luminous Intensity Specified at 1 rnA
• Bigh Light Output at Low
Currents
• Wide Viewing Angle
• Outstanding Material
Efficiency
• Low PowerlLow Forward
Voltage
• CMOS/MOS Compatible
• TTL Compatible
• Deep Red Color

• Low Power Circuits
• Battery Powered Equipment
• Telecommunication
Indicators

Description
These solid state LED lamps
utilize newly developed double
heterojunction (DB) AlGaAs/GaAs
material technology. This LED
material has outstanding light
output efficiency at very low drive
currents. The color is deep red at
the dominant wavelength of 637
nanometres. These lamps are

ideally suited for use in
applications where high light
output is required with minimum
power output.

Package Dimensions

-

4.1. (.1651

~ _ _ _L

•

23.0 (.90)
MIN.

I

NfL

1.27(.0Ii0)

1.27 (.0Ii01
NOM.

-.--1-.

M

I
--1

-~
nlnl 8.1 C.~OI
"Ii

A
NOTES,
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES!.
2. AN EPOXV MINISCUS MAV EXTEND ABOUT
1 mm (0.040") DOWN THE LEADS.

5964-9289E

CATHODE
-

5.8 1.2201

~

-

2.54 !.100INOM.

B

CATHODE

I
!--

2.54 (.1001
NOM.

~
c
1-71

Axial Luminous Intensity and Viewing AngIe @ 25"C
Part
Number
ID..MPD150

Iv (mcd) @ 1 rnA DC
Package Description

D155

T-13/4 Red Tinted Diffused
T-1 3/4 Red Untinted, Non-diffused

K150

T-l Red Tinted Diffused

K155

T-l.Red Untinted Non-diffused

Min.

Typ.

'.

291/2[1]
Degrees

Package
Outline

1.3

3

65

A

5.4

10

24

B

1.3

2

60

C

2.1

3

45

C

Note:
1. elf2 is the off axis angle from lamp centerline where the luminous intensity is 1/2 the on·axis value.

Absolute Maximum Ratings at TA

= 25"C

Peak Forward Current!1! .................................................................................................................. ;:... 300 rnA
Average Forward Current ....................................................................................................................... 20 rnA
DC Current!2! ...................................................................................................................................... ;... 30 rnA
Power Dissipation .................................................................................................................................. 87 mW
Reverse Voltage (IR = 100 !lA) ................... :........................................................................................... ,.... 5 V
Transient Forward Current (10 I1s Pulse)!3! .......................................................................................... 500 rnA
LED Junction Temperature............ ....... ........ ...... .... ............ ....... ..... ... ......... ........ .... .... ..... .... .......... ......... 110"C
Operating Temperature Range ................................................................................................... -20 to + 100"C
Storage Temperature Range ...................................................................................................... -55 to + 100"C
Lead Soldering Temperature [1.6 mm (0.063 in.) from body) ........................................... 260"C for 5 seconds
Notes:
1. Maximum IPEA!{ at f = 1 kHz, DF = 6.7%.
2. Derate linearly as shown in Figure 4.
3. The transient peak current is the maximum non·recurring peak current the device can withstand without damaging the LED die and
wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

1-72

Electrical/Optical Characteristics at TA
Symbol

Description

VF

Forward Voltage

VR

Reverse Breakdown Voltage

Ap

Min.

= 250C
Typ.

Max.

Unit

1.6

1.8

V

Test Condition

= 1 rnA
IR = 100!iA
IF

15.0

V

Peak Wavelength

645

run

Measurement at Peak

Dominant Wavelength

637

nm

Note 1

Spectral Line Halfwidth

20

nm

Speed of Response

30

ns

Exponential Time
Constant, e-t/Ts

RaJ_PIN

30
260[3J
210[4J
290[5J

pF

Thermal Resistance

"C!W

VF = 0, f = 1 MHz
Junction to Cathode Lead

llv

Luminous Efficacy

80

Im/W

Note 2

Ad
I'lAI/2
1:s

Capacitance

C

5.0

Notes:
I. The dominant wavelength, Au, is derived from the eIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, Ie, in watts per steradian, may be found from the equation Ie = lv/riv, where Iv is the luminous intensity in
candelas and 'lv is luminous efficacy in lumens/watt.
3. HLMP-Dl50.
4. HLMP-Dl55.
5. HLMP-K150/-K155.

1.0

300.0
200.0

V

... 100.0

~

>
....

......z

0;

..
;!!

~

20.0

!!i

10.0

It

~

0.6

>

50.0

I

5.0

It

S
..

;

~

It

I

~

2.0

1.0
0.5
0.2
0. I.

800
WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.

0.6

v, -

1.0

1.5

2.0

2.6

3.0

3.5

FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage.

1-73

40

1
...I

V"

2ti

'"u

20

Q

II:

t'

~

.

II:

0

I

~

11111

If"
0.,0.. 0.2

11111

0.5

,

II 5 IllIl.0
2

2030

.00

1\1', \
·_ctw- r\ ~
1 1 1 1 / ' P< \.\

-- ~RO,o

•• -- ~roi5ri
'r'A i-r c'{'.0

20

I, - DC .FORWARD CURRENT - rnA

Figure 3. Relative Luminous Intensity vs. DC Forward
Current.

30

~

II:
II:

•

3.

40

80

V ~\

~

80

'00

To - AMBIENT TEMPERATURE· -'C

Figure 4. Maximum Forward DC Current vs. Anlbient
Temperature. Derating Based on TJ Max. 110 "C.

=

8er
acr~--+---+---+---~

Figure o. Relative Luminous Intensity vs. Angular
Displacement. HLMP·DloO.

Figure 6. Relative Luminous Intensityvs. Anguiar

Displacement. HLMP·KloO.

80'

acrr-~r--+---+---E~

~'~--+---1----+---+~

Figure 7. Relative Luminous Intensity vs. Angular
Displacement. HLMP·Dloo.

Figure 8. Relative Luminous Intensity vs. Angular
Displacement. HLMP-Kloo.

1-74

-

r,,~

HEWLETT®

~t:. PACKARD

T-1 3/4 Super Ultra-Bright
LED Lamps
HLMP-8115
HLMP-8205
HLMP-8305
HLMP-8405
HLMP-8505
HLMP-8605

Technical Data

Features

Description

• Very High Intensity
• Narrow and Medium Viewing
Angles
• Untinted, Nondiffused Lens
• Choice of Five Colors
• Sturdy Leads with Seating
Plane Tabs

These untinted, nondiffused solid
state lamps are designed with
special internal optics to give a
very high luminous intensity
within a well defmed viewing
angle. The LED materials used
within these devices is specifically
grown to assure the high light
output performance these lamps
provide.

HLMP-8109
HLMP-8209
HLMP-8309
HLMP-8409
HLMP-8509

Device Selection Guide
Part Number

Typical Luminous Intensity
(mcd @ 20 rnA dc)

291/2
Viewing Angie

DH AS AlGaAs

HLMP-8115
HLMP-8109

1000
500

10°
20°

High Efficiency Red

HLMP-8205
HLMP-8209

350
260

10°
20°

Yellow

HLMP-8305
HLMP-8309

350
260

10°
20°

Orange

HLMP-8405
HLMP-8409

350
260

10°
20°

High Performance Green

HLMP-8505
HLMP-8509

400
300

10°
20°

Emerald Green

HLMP-8605

75

10°

LED Color

5964-9370E

1·75

Package Dimensions

II.M (DJI25)
sauARE
NOMlllAL

CATHODE

HLMNX09

HLMP-81151-8XOS
NOlES:
1. ALL DlIENSIOIIS ARE IN IlLUIIETIES (INCHES).
2. THE LEADS ARE "LD STEEL, SOLDER DIPPED.

3. AN EPOXY IENlSCUS MAY EX'IEND ABOUT 1 rrm (O.D4O") DOWN THE LEADS.

Absolute Maximum Ratings at TA = 25"C
Efficiency Red
and Orange

DC Forward Current[!]

30

30

Parameter

Yellow

High
Performance
Green/Emerald Green

Units

20

30

rnA

High

DHAS
AlG8.As
Red

Peak Forward Current[2]

300

90

60

90

rnA

Average Forward Current[2]

20

25

20

25

rnA

Transient Forward Current[3]
(lOllS Pulse)

500

500

500

500

rnA

Reverse Voltage OR = 100!1A)
LEI) Junction Temperature
Operating Temperature Range
Storage Temperature Range
Lead Soldering Temperature
[1.6 rnrn (0.063 in.) from body)

5

5

5

5

V

110

110

110

110

"C

·20 to +100

"C

·20 to + 100

·55 to +100
·55 to +100

"C

260"C for 5 seconds

Notes:
1. See Figure 5 for maximum current derating vs. ambient temperature.
2. See Figure 6 for maximum peak current vs. pulse duration and allowable duty factor.
3. The transient peak current is the maximum non·recurring peak current the device can withstand without damaging the LED die and
wire bond. Do not operate these lamps at peak currents above the Absolute Maximum Peak Forward Current.

1·76

Electrical/Optical Characteristics TA

= 25"C

DB AS AlGaAs BLMP-8115/8109
Parameter
Luminous Intensity
HLMP-8115
HLMP-8109
Forward Voltage

Symbol

Min.

Typ.

Iv

500
200

1000
500

5.0

15.0

10
20

Deg.

VF
VR

Reverse Breakdown Voltage
Included Angle Between
Half Intensity Points
HLMP-8115
HLMP-8109

1.8

291/2

Total Luminous Flux
Peak Wavelength
Dominant Wavelength! 1]

Max:.

2.2

Units
mcd

IF

= 20 rnA

V

IF

V

IR

= 20 rnA
= 100 IJA

= 20 rnA

v
APEAK
Ad
MI/2
'ts

Test Conditions

mlm
nm
nm
nm
ns
pF

IF = 20 rnA
Measured at Peak

VF = 0, f = 1 MHz
LED Junction-toCathode Lead

Notes:
1. The dominant wavelength, A.d' is derived from the CIE Chromaticity Diagram and represents the color of the device.
2. The radiant intensity, Ie> in watts per steradian, may be found from the equation Ie = I,/rlv> where I" is the luminous intensity in
candelas and 11v is the luminous efficacy in lumens/watt.

Emerald Green HLMP-8605[1[
Parmneter
Lwninous Intensity
HLMP-8605
Forward Voltage
Reverse Breakdown Voltage
Included Angle Between
Half Intensity Points
HLMP-8605
Peak Wavelength
Dominant Wavelength[2)
Spectral Line Half Width
Speed of Response
Capacitance
Thermal Resistance
Luminous Efficacy[3)

Symbol

Min.

Typ.

Max.

Units

Iv
VF
VR

69

75
2.2
30

3.0

mcd
V
V

5.0

C
R9J _LEAD

10
558
560
24
3100
35
210

"e!W

'I1v

656

lm/W

29 1/2
APEAK
Ad
flAI/2
'ts

Deg.
nm
nm
nm
ns
pF

Test Conditions
IF = 20 rnA
IF = 20 rnA
IR = 100 J.IA

Measured at Peak

VF = 0, f = 1 MHz
LED Junction-toCathode Lead

Notes:
1. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.
2. The dominant wavelength, "", is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. The radiant intensity, I." in watts per steradian, may be found from the equation Ie = I,/rlv, where I" is the luminous intensity in
candelas and 11v is the luminous efficacy in lumens/watt.

1-79

1.0

AlGaAaRED

HIGH EFFICIENCY RED

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.
High Efficiency Red, Orange,
Yellow, and High
Performance Green

DH M A1GeAa Red

-.
-.0

'00

1.00.0:I

, ....

I

IV

i
0;

'"

-

J

-

i~

i

~

I

'0.0
I.D

~

-

HIGH
PERFORMANCE
GREEN,
"
EMERALD GREEN .

I.
'/

-/1
/, /

HKlH
EFFtclENCY
REDIORANGE

fl.

"-- YELLOW

J/j

u

,.0

....

0

•
~o

U

,.

v. -

1J

U

U

U

U

o
o

FORWMD VOLTAGE - V

"

j'/

0.2

1,1

2.0

1.0

3.0

4.0

5.0

YF -FORWARDYOLTAGiE-V

Figure 2. Forward Current vs. Forward Voltage (Non-Resistor Lamp),

DH A. A1GeAa Red

HER, Orange, Yellow, and High

Performance Green, Emerald Green

s.a

L

2-

.
.

1/
/
/

aDO

...

"'II

illl
.2

/

III

III
0

I, - DC FORWARD CURRENT - IlIA

Figure 3. Relative Luminous Intensity vs. Forward Current.

1-80

./
IDC

10
~

16

20

21

DC CURRENT PER LEO - ntA

30

HER, Orange, Yellow, end High
PeIformance Green, Emerald GIWn

DH AI AlGW Reel

u

hi.

~

I

............

".

I.

II

2D

1ID

~ ijII""

~! loG
~c D.I

~I1•

YELLOW, EllERALt OREEN

I.I

•

:"
D.I

DA

2GD JID

..... - PEAle FORWARD CURRENT - MA

'I

_

H.lt~
\~

PERFORMANCE OIEEN

I

ow. • • • •

N •

M

, _ -PEAK SEc.NTCUIUlENT-mA

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.
HER, Orange, Yellow, and High
Performance Green, Emerald GIWn

DH AI AlGW Reel

..

311

"II

30

i

21

~

I
II!
I

•

2D
I

0

0

[\

I

\

).;;

r-j"ii

i\ \

RII, .. • __ CIW~

V ~\

~

2O.a80.'.
Ta. -

~IENT

na.ERATURE

I
I

»

HER. ~~ ~AE1EN. EIIEIIALD GIIEEH

a"

l18

":'a~aaJ.c.J2D

10

-"

f\

"' i\\
~ 1\\

In..

~~

R8.... =7OI0 ~

20

4D

10

•

1110

_·c

Figure 5. Maximum Forward de Current vs. Ambient Temperature. Derating Based on TJMAX

= llO"C.

HER, Orange, Yellow, end HIgh
DH AI AlGW Reel

t,.

-PULSEDURAnoN-~

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration.

Performence Green

till - PULSE DURATlON - ~

One MAX as per MAX RatIngs).

1-81

II'

..

90ANGLE fAOll 0P11CAL CENTEfL"ERELATIVE LlJlllCNOUS INTENSITY

oEGREES (CONE HALF ANGLE.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-8115/-8X05.

SO"

9O·LLt=E~t:m~;t.1

111' 20' 30' 411' 511' 611' 711' 611' 90' lD11'

RELATIVE LUMINOUS INTENSITY

9-ANOlE FROM OPnCAL CENTERLlNEDEGREES (CONE HALF ANGLE)

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-8X09.

1-82

-

Fli'PW HEWLETT$
a:~PACKARD

T-13/4 (5 mm), T-l (3 mm),
Ultra-Bright LED Lamps
HLMP-3750, -3850, -3950
HLMP-3390, -3490, -3590
HLMP-1340, -1440, -1540
HLMP-D640
HLMP-K640

Technical Data

Features

Applications

• Improved Brightness
• Improved Color Performance
• Available in Popular T-l and
T -1 3/4 Packages
• New Sturdy Leads
• IC Compatible!Low Current
Capability
• Reliable and Rugged
• Choice of 3 Bright Colors
High Efficiency Red
High Brightness Yellow
High Perfonnance Green

•
•
•
•

Lighted Switches
Backlighting Front Panels
Light Pipe Sources
Keyboard Indicators

Description
These clear, non-diffused lamps
out-perfonn conventional LED
lamps. By utilizing new higher
intensity material, we achieve
superior product performance.
The HLMP-3750/-3390/-1340
Series Lamps are Gallium
Arsenide Phosphide on
Gallium Phosphide red light
emitting diodes. The HLMP-3850/

-3490/-1440 Series are Gallium
Arsenide Phosphide on Gallium
Phosphide yellow light emitting
diodes. The HLMP-3950/-3590/
-1540/-D640/-K640 Series Lamps
are Gallium Phosphide green light
emitting diodes.

Axial Luminous Intensity and Viewing Angle @ 250C
Part
Number
HLMP3750
3850
3950
D640[2]
3390
3490
3590
1340
1440
1540
K640[2]

Iv (mcd) @ 20 rnA DC
Package
Description
T-1 3/4

T-1 3/4 Low ProfIle

T-1

Color
HER
Yellow
Green
Emerald Green
HER
Yellow
Green
HER
Yellow
Green
Emerald Green

Min.

Typ.

29 1/2[1]

90
96
111
6.7
35
37
40
22
23
27
4.2

125
140
140
21
55
55
55
45
45
45
21

24°
24°
24°
24°
32°
32°
32°
45°
45°
45°
45°

Package
Outline
A
A
A

D
B
B
B
C
C
C
C

Note:
1. elf" is the typical off·axis angle at which the luminous intenSity is half the axial luminous intensity.
2. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.

5964-9290E

1-83

Package Dimensions

i!,!!.(.3621
••43 1".3321

.:!! (.0361

t--

I

j

..

~

23.01.901

l.~ ~

1.02 (JIoIOI
d... (.o21U

MIN.

NOMINAL

-L

.

-~
. ..In\ 6.1 (.2401
'T) . 5.8 (.2201

ML - l

CATHODE
-.

..

. 23.D (.101

SQUARE

1D6D
NOM.
1.27
•

T'

~(~

~ ~"[~

7

I

51

'~

- '.

1l~
"""

CATHODE

1.27 (_DEDI
NOM_

I

U7(JIIO)

NOM_

l "

-i-_-I8.1

-l i- 2.~OOI

L401

5.8 (.2201

CATHODE

-~

·CATHODE

2_54 (_1001 NOM.

2,64 (.I00INOM.-

PACKAGE OUTLINE ''8''
HLMP-3390, -3490, -3590

PACKAGE OUTLINE "A"
HLMP-3750, -3850, -3950

PACKAGE OUTLINE ''C''

'HLMP~1340, -1440, -1540, -K640

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABdUT 1 mm (DAD") DOWN THE LEADS.

Absolute Maximmn Ratings at TA
Parameter
Peak Forward Current
Average Forward Current!l]

= 25"C

Red

Yellow

GreenlEmerald Green

Units

90
25

60
20

90
25

rnA
rnA

DC Current!2]

30

20

30

rnA

Transient Forward Current!3]
(10 IlS PUlse)

500

500

500

rnA.

Reverse Voltage (IR

= 100!lA)

LED Junction Temperature
Operating Temperature Range
Storage Temperature Range
Lead Soldering Temperature
[l.6 mm (0.063 in.) from body.]

5

5

5

V

110

110

110

"C

-55 to +100

-55 to +100

-20 to +100

"C-

-55 to +100
260"C for 5 seconds

Notes:
1. See Fjgure 2 to establish pulsed operating conditions.
2. For Red and Green series derate linearly from 50"C at 0.5 mA/"C. For Yellow series derate linearly from 50"C at 0.2 mA/"C.
3. The transient peak current is the maximum non-recurring peak current the deVices can withstand without damaging the LED die and
wire bonds. It is not recommended that the deVice-be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

1-84

Electrical/Optical Characteristics at TA

= 25"C

T·1 3/4
Symbol

Description

T·}3/4

Low
Dome

T·1

Min.

Typ.

Max.

Test
Conditions

Units

Peak Wavelength

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

635
583
565
558

run

Measurement
at Peak

Dominant Wavelength

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

626
585
569
560

run

Note 1

Spectral Line Halfwidth

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

40
36
28
24

run

'ts

Speed of Response

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

90
90
500
3100

ns

C

Capacitance

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

11

pF

15
18
35

3750
3850
3950
D640

3390
3490
3590
1340
1440
1540
K640

210
210
210
510
290
290
290
290

A.PEAK

A..J

!l).)J2

RaJ .PIN

Thermal Resistance

VF

Forward Voltage

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

1.5
1.5
1.5

VR

Reverse Breakdown
Voltage

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

5.0

Ttv

Luminous Efficacy

3750
3850
3950
D640

3390
3490
3590

1340
1440
1540
K640

1.9
2.1
2.2
2.2

145
500
595
655

"e/W

2.6
2.6
3.0
3.0

VF

= 0, f = 1 MHz

Junction to
Cathode Lead

= 20mA
(Figure 3)

V

IF

V

IF

= 100 IJ.A.

lumens Note 2
watt

Notes:
1. The dominant wavelength, A", is derived from the elE chromaticity diagram and represents the single wavelength which defines the
color of the device.
2. The radiant intensity, Ie, in watts per steradian, may be found from the equation Ie = Ivlrlv, where Iv is the luminous intensity in
candelas and flv is the luminous efficacy in lumens/watt.

1·85

Red, Yellow, and Green

WAVELENGTH -

nm

Figure 1. Relative Intensity vs. Wavelength.

80

1J

80

I QFI~N

c

E

...
I

i!ia::

70

50

c

40

"0a::"

'/

80

a::

JV

I
~

,)1

30
20

10

~

o

III
rt

3.0
'.0
'.0
v, - FORWARD VOLT AGE -

1.0

tp - PULSE DURATION-III

Figure 2. Maximum Tolerable Peak Current vs. Pulse
Duration. (Inc MAX as per MAX Ratings).

-

/1/

ReD,

iJ

a::
~

JLLOW-

5.0
V

Figure 3. Forward Current vs. Forward Voltage.

3.0

~

~i
!!g

gli

2.5

YELLOW,

1.5

!:!g

1.0

V

-'I

II

./

w

a:

./

0.5

."

/'

f
po

/
10

15

20

.5

30

IDe - DC CURRENT PER LED -"mA

Figure 4. Relative Luminous Intensity vs. Forward Current.

1-86

~~

1.0

i~
:>-'

5!-

I ......

'.0

0.7

...
u
OA

EIIEJIAU)

GREEN

~-

'\.

Rio

-

GREEN

I

J.

I

OW. •

•

80 80 70 80 80

1~-_CU_PERLEAd-1IIA

FIgure 5. Relative Efficiency (Luminous Intensity per Unit
Current) vs. Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular
Displacement. T-l"'4 Lamp.

Figure 7. Relative Luminous Intensity vs. Angular
Displacement. T-l"'4 Low Prom.e Lamp.

~r---+---+---+---~

Figure 8. Relative Luminous Intensity vs. Angular
Displacement. T-l Lamp.

1-87

Flio- HEWLETTO!>
~~PACKARD

T-1 3/4 (5 mm) High Intensity
LED Lamps
Technical Data
HLMP-331X Series
HLMP-341X Series
HLMP-351X Series

Features
• High Intensity
• Choice of 3 Bright Colors
High Efficiency Red
Yellow
High Performance Green
• Popular T -1 3/4 Diameter
Package
• Selected Minimum
Intensities
• Narrow Viewing Angle
• General Purpose Leads

• Reliable and Rugged
• Available on Tape and Reel

Description
This family of T-1 3/4 nondiffused
LED lamps is specially designed
for applications requiring higher
on-axis intensity than is
achievable with a standard lamp.
The light generated is focused to
a narrow beam to achieve this
effect.

Package Dimensions

Selection Guide
Part
Number
HLMP-

Description

Minimum
Intensity
(mcd)
at lOrnA
13.8

3315

Illuminator/
Point Source

3316

Illuminator/
High Brightness

22

3415

Illuminator/
Point Source

9.2

3416

Illuminator/
High Brightness

14.7

3517

Illuminator/
Point Source

6.7

3519

Illuminator/
High Brightness

10.6

1-88

Color
(Material)
High Efficiency
Red
(GaAsP on GaP)

Yellow
(GaAsP on GaP)

-.

1.271 .....

Green (GaP)

NOTES:
1. ALL DIMENSIONS ARE. IN M'lLiMETRES UNCHESj.
2. AN EPOXY MENISCUS MAY EXTEND AJOUT 1mm
1.040; DOWN THE LEADS.

5964-9293E

Electrical Characteristics at TA
Symbol
Iv

21}lf2

Description
Luminous Intensity

Including Angle
Between Half
Luminous Intensity
Points

= 25"C

Device
HLMP-

Min.

Typ.

3315
3316

13.8
22

3415
3416
3517
3519

Units

Test Conditions

40.0
60.0

mcd

IF = 10 rnA (Figure 3)

9.2
14.7

40.0
50.0

mcd

IF = 10 rnA (Figure 8)

6.7
10.6

50.0
70.0

mcd

IF = 10 rnA (Figure 13)

3315
3316

35
35

Deg.

IF = lOrnA
See Note 1 (Figure 6)

3415
3416

35
35

Deg.

IF = lOrnA
See Note 1 (Figure 11)

3517
3519

24
24

Deg.

IF = lOrnA
See Note 1 (Figure 16)

Max.

APEAK

Peak Wavelength

331X
341X
351X

635
583
565

nm

AAI/2

Spectral Line Halfwidth

331X
341X
351X

40
36
28

nm

Ad

Dominant Wavelength

331X
341X
351X

626
585
569

nm

'ts

Speed of Response

331X
341X
351X

90
90
500

ns

C

Capacitance

331X
341X
351X

11
15
18

pF

Thermal Resistance

331X
341X
351X

260

OC/W

VF

Forward Voltage

331X
341X
351X

1.9
2.0
2.1

VR

Reverse Breakdown Volt.

llv

Luminous Efficacy

RaJ . PIN

All

331X
341X
351X

5.0
145
500
595

2.4
2.4
2.7

Measurement at Peak
(Figure 1)

See Note 2 (Figure 1)

VF = 0; f = 1 MHz

Junction to Cathode
Lead

V

IF = 10 rnA (Figure 2)
IF = 10 rnA (Figure 7)
IF = 10 rnA (Figure 12)

V

IR=lOO~

lumens
Watt

See Note 3

Notes:
1. 9 1/2 is the off-axis angle at which the luminous intensity is half the axiallunrlnous intensity.
2. The dominant wavelength, '-d, is derived from the CIE chromaticity diagram and represents the single wavelength which defmes the
color of the device.
3. Radiant intensity, I., in watts/steradian, may be found from the equation I. = iJrlv, where Iv is the luminous intensity in candelas and
Tlv is the luminous efficacy in lumens/watt.

1-89

Absolute Maximum Ratings at TA

= 25"C

331X Series

.34D{Series

351X Series

Units

Peak FOIWard Current

90

60

90

rnA

Average FOIWard Current[l]

25

20

25

rnA

Parameter

DC Current[2]

30

20

30

rnA

Power Dissipation[3]

135

85

135

mW

= 100 j.tA)

5

5

5

V

Transient FOIWard Current[4]
(10 j.lSecPulse)

500

500

500

rnA

LED Junction Temperature

110

110

110

"C

-55 to +100

-55 to +100

-20 to +100

"C

Reverse Voltage (lR

Operating Temperature Range

-55 to +100
260"C for 5 seconds

Storage Temperature Range
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body]

Notes:
1. See Figure 5 (Red), 10 (yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from 50"C at 0.5 mAI"C. For Yellow series derate linearly from 50"C at 0.2 mAI"C.
3. For Red and Green series derate power linearly from 25"C at 1.8 mW/"C. For Yellow series derate power linearly from 50"C at
1.6 mW/"C.
.
4. The transient peak current is the maximum· non-recurring peak current that can be applied to the device without damaging the LED
die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the
Absolute Maximum Ratings.

,..

i

~
~

HIGH EFFICIENCY
RED

0.1

S
.,

..

0

soo
WAVELENGTH - nm

Figure 1. Relative Intensity VB. Wavelength.

1-90

High Efficiency Red HLMP-331X Series

...

I:
.

'"

1.0

/
2.0

/
/

..

•

1/

..

D

so

...

1/ /

•

D

Y, _ FORWARD VOlTAGE - V

,

/

•

I
IL

I:
I

..

:1

1I ..

/
11115202530

loe: • DC CURRENT PEA LED ...A

.2

i

g

~

11

./

1.D

~

• If

~

D.

=
~

0

..

o.

7
I
• fI

•..

G

~

•

» •

H

•

~

•

•

IPIA. - PEAIt CURRENT " " LED - .....

Figure 2. Forward Current vs.
Forward Voltage Charaeteristics.

Figure 3. Relative Luminous Intensity
vs. DC Forward Current.

Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current)
vs. Peak LED Current.

i11l"
.i

11'=.O,-l-.LJJ~10:-l...IJ.wl1~OO=-'"""

1000

10.000

lp - PULSE DURATtON -,..

Figure 5. Maximum Tolerable Peak
Current vs. Pulse Duration (IDe MAX
as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

1-91

Yellow HLMP-341X Series

80

i
o

i
~

...
I

~

40
30
0

I

10

o1.0

, 2.0

2.0

.. 0

1.4

=>!;;

1.3

1.5

!!!"
!/-

z-

~~

1Il-

~~

t=c

"0
Ww

,"tj

J

~;

i:15

..

:l~

1.0

>tj

0.5

2.5

3.0

3.5

4.0

1.2

,.,/

1.1

j;

1.0
0.9
0.8

1

If"

IF - FORWARD CURRENT - mA

FillW'e 8. Relative l..UIiUnOlis Intensity
VB. DC Forward Current.

'"

i--"'"

J
20

VF - FORWARD VOLTAGE - V

Figure 7. Forward Current VB.
Forward Voltage Characteristics.

1.5

I!! 15

~

0:

~
1.5

....
!zE
_"

G

III

I
1/

I

1.&

2.5

If

~

30

40

80

IP£AI( - PEAK CURRENT - mA

Figure 9. RelatiVe EffiI!1l!JI.cy
(Luminous Intensity per Unit Current)
VB. Peak Current.

11"'.0..J..W~10:-l...LL~1~OO=-"..&I.LL'~OOOl:=-I...I.U,!:!0~.OOO
'to - PULSt: DURATION -..,.

Figure 10. Maximum Tolerable Peak
Current VB. Pulse Duration (lDC MAX
as per MAX Ratings).

1-92

Figure 11. Relative Luminous Intensity VB. Angular Displaeement.

Green HLMP-351X Series

..

1,

.. -

..

~ .,.
i ...

,.

.3

•

.1

>

I/

~

,

•

2.

I

--i-

/

I

•

3.'

v, -

...

SA

•

A

.7

•

//
10

'1

20

21

3D

I

• GO.
1

•

•

•

•

~

•

•

I"". - PUte CURRENT PlA LID - fIlA

FOAWAAO VOLTAGE - \I

Figure 12. Forward Current VB.
Forward Voltage Characteristics.

/

~

/
L

/

....... ~

..

V

Figure 13. Relative Luminous
Intensity VB. DC Forward Current.

Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current)
VB. Peak LED Current.

~r---r---r---+---~
... - PULSE DURATION -,..

Figure 15. Maximum Tolerable Peak
Current VB. Pulse Duration (Inc MAX
as per MAX Ratings).

Figure 16. Relative Luminous Intensity VB. Angular Displacement. T·1 3/4
Lamp.

1-93

r/"~ HEWLETT'"
~I!JI PACKARD

T-1 3/4 (5 mm) Diffused LED
Lamps

HLMP-3300 Series
HLMP-3400 Series
HLMP-3500 Series
HLMP-3762
HLMP-3862
HLMP-3962
HLMP-D400 Series
HLMP-D600

Technical Data

Features
• High Intensity
• Choice of4 Bright Colors
High Efficiency Red
Orange
Yellow
High Performance Green
• Popular T-1 3/4 Diameter
Package
• Selected Minimum
Intensities
• Wide Viewing Angle
• General Purpose Leads

• Reliable and Rugged
• Available on Tape and Reel

Description
This family ofT-1 3/4 tinted,
diffused LED lamps is widely used
in general purpose indicator
applications. Diffusants, tints, and
optical design are balanced to
yield superior light output and
wide viewing angles. Several
intensity choices are available in
each color for increased design
flexibility.

Selection Guide
Part Number
HLMP-

Application

Minimum Intensity
(mcd) at 10 rnA

Color (Material)
High Efficiency Red (GaAsP on GaP)

3300

General Purpose

2.1

3301

High Ambient

5.4

3762

Premium Lamp

8.6

D400

General Purpose

2.1

D401

High Ambient

5.4

3400

General Purpose

2.2

3401

High Ambient

5.7

3862

Premium Lamp

9.2

3502

General Purpose

1.6

3507

High Ambient

4.2

3962

Premium Lamp

10.6

D600[1]

General Purpose

1.0

Orange (GaAsP on GaP)

Yellow (GaAsP on GaP)

Green (GaP) 565 nm

Emerald Green (GaP) 558 nm

Note:

1. Please refer to Application Note 1061 for information comparing staodard green and emerald green light output degradation.

1-94

5964-9294E

Package Dimensions

T

25AO 11.001
MIN.

1.21 (.0601
NOM.

f

0.89 (.03S)

014 (.025)
0.45 (.01" SQUARE
NOMINAL

I
ll.

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES CINCHES).

2. AN EPOXV MENISCUS MAY EXTEND ABOUT lmrn
(.040'" DOWN THE LEADS.

Optical/Electrical Characteristics at TA = 25"C
Symbol
Iv

Device
HLMP-

Min.

High Efficiency Red
3300
3301
3762

2.1
5.4
8.6

3.5
7.0
12.0

Orange
D400
D401

2.1
5.4

3.5
7.0

Yellow
3400
3401
3862

2.2
5.7
9.2

4.0
8.0
12.0

Green
3502
3507
3962

1.6
4.2
10.6

2.4
5.2
14.0

Emerald Green
D600

1.0

3.0

Parameter
Luminous Intensity

Typ. Max.

Units

Test
Conditions

mcd

IF = lOrnA

IF = lOrnA
See Note 1

28 1/2

Included Angle
Between Half
Luminous Intensity
Points

High Efficiency Red
Orange
Yellow
Green
Emerald Green

60
60
60
60
60

Deg.

A.PEAK

Peak Wavelength

High Efficiency Red
Orange
Yellow
Green
Emerald Green

635
600
583
565
558

nm

Measurement
at Peak

1-95

Optical/Electrical Characteristics at TA = 25"C (cont.)
Symbol
!lAl/2

Parameter
Spectral Line Halfwidth

A.i

Device
IILMP-

Min.

Typ. Max.

HER/Orange
Yellow
Green
Emerald Green

40
36
28
24

nm

Dominant Wavelength

High Efficiency Red
Orange
Yellow
Green
Emerald Green

626
602
585
569
560

nm

'ts

Speed of Response

High Efficiency Red
Orange
Yellow
Green
Emerald Green

90
280
90
500
560

ns

C

Capacitance

High Efficiency Red
Orange
Yellow
Green
Emerald Green

11

pF

4
15
18
3100

Thermal Resistance

All

260

VF

Forward Voltage

HER/Orange
Yellow
Green
Emerald Green

1.9
2.0
2.1
2.1

VR

Reverse Breakdown
Voltage

All

llv

Luminous Efficacy

High Efficiency Red
Orange
Yellow
Green
Emerald Green

RaJ_PIN

"C/W
2.4
2.4
2.7
2.7

5.0

-

See Note 2

VF = 0;
f=IMHz

Junction to
Cathode Lead

V

IF

= 10 rtiA

V

IR

= 100 IlA

~

145
380
500
595
656

Test
Conditions

Units

See Note 3

Watt

Notes:
1. elf2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, Au, is derived from the ClE chromaticity diagram and represents the single wavelength which defines the
color of the device.
3. Radiant intensity, Ie' in Watts/steradian, may be foundfrom the equation Ie = I/Ilv, where is the luminous intensity in candelas and
TJv is the luminous efficacy in lumens/Watt.

r.

1-96

Absolute Maximum Ratings at TA

= 25"C

HER/Orange

Yellow

Green!
Emerald Green

Units

Peak Forward Current

90

60

90

rnA

Average Forward Current[![

25

20

25

rnA

DC Current[2[

30

20

30

rnA

Power Dissipation[3[

135

85

135

mW

5

5

5

V

500

500

500

rnA

Parameter

Reverse Voltage (IR = 100).I.A)
Transient Forward Current[4[
(10 lJ.Sec Pulse)
LED Junction Temperature
Operating Temperature Range

110

110

110

"C

-55 to +100

-55 to +100

-20 to +100

"C

-55 to +100

Storage Temperature Range

260"C for 5 seconds

Lead Soldering Temperature
[1.6 rom (0.063 in.) from body]

Notes:
1. See Figure 5 (Red/Orange), 10 (yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red, Orange and Green series derate linearly from 50"C at 0.5 mA/"C. For Yellow series derate linearly from 50"C at 0.2 mA/"C.
3. 1.8 mW/"C. For Yellow series derate power linearly from 50"C at 1.6 mW/"C.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED
die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the
Absolute Maximum Ratings.

WAVELENGTH - nm

Figure 1. Relative Intensity VB. Wavelength.

1-97

T-1 3/4 High Efficiency Red, Orange Diffused Lamps

...

il

~ "

i

eo

1

~

I :'"

'-1- t -

1/

II

•
•I.' V

I

.

I

l5.'

VF - FORWARD VOLTAGE"': v

Figure 2. Forward Current vB.
Forward Voltage Characteristics.

IDC - DC CURRENT PER LED - rnA

Figure 3. Relative Luminous Intensity
DC Forward Current.

VB.

INA. - PEAK CURRENT PER LED -

Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current)
VB.

~

~

C
~

Peak LED Current.

U
~
~

•

C

at

~5~lii

I;e!
"U!!il

u

jI".u

I!;~i"

.A

9 ~

Iic

~

a2

...

;j
t, -PULSE DUAATtoN

-JQ

Figure 5. Maximum Tolerable Peak

Current VB. Pulse Duration. (Inc MAX
as per MAX Ratings).

1-98

m'"

Figure 6. Relative LumIIlous Intensity VB. Angular Displacement.

T-1 3/4 Yellow Diffused Lamps

..
..

I

I---

..•

If

-t- 1---I- 7

-

.

•

/

10

U

5

If

--

./2.0

i

I
2.5

v, - FORWARD VOLTAGE·

DD

l.S
V

Figure 7. Forward Current VB.
Forward Voltage Characteristics.

,.

/

.,!.c

,5

/
./

V
'D

15

..

.

Figure 8. Relative Luminous Intensity

Forward Current.

V

V

12

.70

" - FORWARD CURRENT - rnA

VB.

~

,..
"
,
,..

~

I

r---

T••

/

V

/

I
10

'PEAK

20

:JO

40

50

80

PEAK CURRENT - mA

Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current)
Peak Current.

vB.

,,·.,.o,..u.llll~,o=-,".w"!,~oo~w.I!,~
....;;;"-"'"':,~o.....
tp - PULSE DURATION - 101'

Figure 10. Maximum Tolerable Peak
Current VB. Pulse Duration. (Inc MAX
as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

1-99

T-1 3/4Green!Emerald Green Diffused Lamps

..
.
70

~

a

I ..

.•

I
I

..
s
..

3D

"

•I.'

II

Figure 12. Forwar!i Current vs.

Forward Voltage Characteristics.

~

/

./

3..

1.5

V

tz

/

1.3

$
w

1.2

U

S

V
10

II!

15

20

2&

30

35

.

IPEAK - PEAK CUf'RENT PER LED

Figure 13. Relative Luminous
Intensity vs. DC Forward Current.

I'

1A

w

2:

..

VF - fORWARD VOLTAGE ,_ v

I

EMERALD GREEN

s

J

I

1.6

s
~I-- I-:-



/

0

"

/

fl0

~

10

1.0

/

1.5

~C
wE

2.0

~~

1.5

i51

-N
:&-

"... ...C

/

.. :I

1.0

,

>'"

>=i

~-

'"
2.0

ULC

.... 0
i!:~

If

!Ii

T••

2.5

3.0

3.5

4.0

YF - FORWARD VOLTAGE-V

Figure 12. Forward Current VB.
Forward Voltage.

.5

A

/

V

/

/

1.6

L

1.•

>R
~l

~

1.3

u~

~~

"e
~~

~i

w'"
"'~

.. -

1.2

15

.. - FORWARD CURRENT - mA

Figure 13. Relative Luminous
Intensity VB. Forward Current.

20

/

1. 1

.9

V

1/

1.0

.8
10

",.,.-

u

I

/
I

10
JpEAK

20

30

40

50

60

- PEAK CURRENT - mA

Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current)
VB. Peak Current.

tp - PULSE DURATION - ps

Figure 15. Maximum Tolerable Peak
Current VB. Pulse Duration. (Inc MAX
as per MAX Ratings).

Figure 16. Relative Luminous Intensity VB. Angular Displacement.

1-105

Green HLMP-355X/-356X Series
Electrical Specifications at TA 25"C

=

Device

Symbol

m..MP-

Description

Max.

Units

IF = lOrnA
(Figure 18)

50
50
40
40

Deg.

Note 1 (Figure 21)

Peak Wavelength

565

run

Measurement at
Peak (Figure 1)
Note 2

29 1/2

Including Angle Between Half
Luminous Intensity Points

3553
3554
3567
3568

A.PEAK

Dominant Wavelength

569

run

Spectral Line Halfwidth

28

run

1:8

Speed of Response

500

ns

C

Capacitance

18

pF

Thermal Resistance

260

"e/W

VF

Forward Voltage

2.1

VR

Reverse Breakdown Voltage

l1v

Luminous Efficacy

MI/2

R9J .PIN

Test
Conditions

mcd

3553
3554
3567
3568

A.!

Typ.

3.2
10.0
7.0
15.0

Axial Luminous Intensity

Iv

Min.
1.6
6.7
4.2
lO.6

2.7

5.0
595

VF = 0; f = 1 MHz
Junction to
Cathode Lead

V

IF = lOrnA
(Figure 17)

V

IR = 100 J.IA
Note 3

lm/W

Notes:
1. 9 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant wavelength, Ad, is derived from the eIE chromaticity diagram and represents the single wavelength which defines the color
of the device.
3. Radiant Intensity, Ie' in watts/steradian may be found from the-equation 1. = Vrlv> where Iv is the luminous intensity in candelas and
11. is the luminous efficacy in lumens/watt.
-

90

1. 3

J

80

1.2

I

10

2.0

C

...~

80

<

.

~
~
II:

30

1/

10
0
1.0

~

J

20

./
2.0

1.0

w

O.

1/ f-""

>
;::

O•

1.0

7

.5

0_

3.0

4.0

VF - FORWARD VOLTAGE - V

Figure 17. Forward Current vs.
Forward Voltage.

H06

1. 1

t;
~

• 1/
~
•
J
a: o.
i o.8 I
" •

1.5

e

I

~

•.0

IF - FORWARD CURRENT - mA

Figure 18. Relative Luminous
Intensity vs. Forward Current.

IPEAK - PEAK CURRENT PER LED - rnA

Figure 19. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

tp - PULSE DURATION - Il'

Figure 20. Maximum Tolerable Peak
Current vs. Pulse Duration. (Inc MAX
as per MAX Ratings).

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

1-107

rt,ijW.

HEWLETTIJj)

~~PACKARD

T-13/4 (5 mm), T-l (3 mm), Low
Current. LED Lamps
Technical Data
HLMP-4700, -4719, -4740
HLMP-1700, -1719, -1790

Features
•
•
•
•
•
•
•

Low Power
High Efficiency
CMOS-MOS Compatible
TTL Compatible
Wide Viewing Angle
Choice of Package Styles
Choice of Colors

Applications

• Portable Equipment
• Keyboard Indicators

Description
These tinted diffused LED lamps
are designed and optimized
specifically for low DC current
operation. Luminous intensity and
forward voltage are tested at
2 rnA to assure consistent brightness at TIL output current levels.

• Low Power DC Circuits
• Telecommunications
Indicators

Package Dimensions
t-~~:~:.
1431.131'

t:II r:ii5t

0.45C.o1.,
0.451.01.,

SQUARE NOMINAL

$QUARE

NOMINAL

-.

1.271.0501

'"
.-'-~
~
..,.

, \ •.• O~

CATHODE

2.14

1.1ot

NOTES,
1. ALL DIMENSIONS ARE IN MIWMETRES CINCHES•.

2. AN EPOXY MINIBCUB MAY EXTEND ABOUT
, mm (O.04O H ) DOWN THE LEADS.

HLMP-4700, -4719, -4740

A
H08

HLMP-1700, -1719, -1790

B
5964-9371E

Low Current Lamp Selection Guide
Color
Size

HER
HLMP-

Yellow
HLMP-

Green
HLMP-

T-1 3/4

4700

4719

4740

T-1

1700

1719

1790

Axial Luminous Intensity and Viewing Angle @ 25"C
Part
Number
HLMP-

Iv (mcd) @ 2 mA DC
Package Description

Color

Min.

Typ.

291/2[1[

Package
Outline

4700
4719
4740

T-I3/4
Tinted Diffused

Red
Yellow
Green

1.3
0.9
1.0

2.3
2.1
2.3

50°

A

1700
1719
1790

T-1
Tinted Diffused

Red
Yellow
Green

0.8
0.9
1.0

2.1
1.6
2.1

50°

B

Note:
1.

el /_ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

1-109

Electrical/Optical Characteristics at TA
Symbol

Description

T-l3/4

= 25"C

T-l

Min.

Test
Conditions

Typ.

Max.

Units

1.8
1.9
1.8

2.0
2.5
2.2

V

2mA

V

IR = 50 j.iA

'.

VF

Forward Voltage

4700
4719
4740
4700
4719
4740

1700
1719
1790
1700
1719
1790

VR

Reverse Breakdown
Voltage

Au

Dominant
Wavelength

4700
4719
4740
4700
4719
4740

626
585
569
40
36
28

run

Spectral Line
Halfwidth

1700
1719
1790
1700
1719
1790

M1/2

1:8'

Speed of Response

4700
4719
4740

1700
1719
1790

90
90
500

ns

C

Capacitance

4700
4719
4740
4700
4719
4740

1700
1719
1790

11

pF

1700
1719
1790

4700
4719
4740
4700
4719
4740

1700
1719
1790
1700
1719
1790

RaJ_PIN

Thermal
Resistance

APEAK

Peak Wavelength

TJv

Luminous Efficacy

5.0
5.0
5.0

15
18
260(3)
290(4)
635
583
565
145
500
595

Note 1

run

VF=O,
f=IMHz

OC/W

Junction to
Cathode Lead

run

Measurement
at peak

~

Note 2

watt

Notes:
1. The dominant wavelength, A,., is derived from the OlE chromaticity diagram and represents the single wavelength which defines the
color of the device.
2. The radiant intensity, Ie, in watts per steradian, may be found from the equation I. = Iv/11v, where Iv is the luminous intensity in
candelas and l1v is luminous efficacy in lumens/watt.
3. T-l3/•.
4. T-1.

1-110

Absolute Maximum Ratings
Parameter

Maximum Rating

Power Dissipation
(Derate linearly from 92"C at 1.0 mA/"C)

Red
Yellow
Green

DC and Peak Forward Current
Transient Forward Current (10 IJS Pulse)]l]
Reverse Voltage (lR

Units

24
36
24

= 50 !lA)

7

rnA

500

rnA

5.0

Operating Temperature Range

RedlYellow
Green

Storage Temperature Range

V
-55"C to 100"C
-20"C to 100"C

-55"C to

Lead Soldering Temperature
[1.6 rom (0.063 in.) from body]

mW

+ 100"C

260"C for 5 seconds

Note:
1. The transient peak current is the maximum non-recurring peak current the devices can withstand without damaging the LED die and
wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

1.0

..i
~
!

0.5

II:

a

500
WAVELENGTH

~ 11m

Figure 1. Relative Intensity vs. Wavelength.

10

I

•

illa:

8

"u
"

4

.1
a:

if
I

~

,•.or---'---~----.---
"

.!!-

6

I8
1.5

4

...l.
10

12

1.

I

o

~
g
cr
;

II'"

16
16

10

12

...... .......

~
Q

........

I8
1.5

14

I

11;

16

Figure 2. Forward Current vs. Applied Forward Voltage.
12 Volt Devices.

I

I'....

•

Vee - APPLI ED FORWARD VOLTAGE - V

>

8
7.5

l/

//V

o

18

15

Figure 1. Forward Current vs. Applied Forward Voltage.
5 Volt Devices.

I

V

I

Vee - APPLI ED FORWARD VOLTAGE - V

>

V

V
./

"~
"12

J

I

20

...z
I

I
V

II:

"::>

~

1/

I

'"

24

>
c

12

-

........

II:

!12

~

fil

Q

'"

::;

~

~

I

~

~
0

20

&0

&0 85

TA - AMBIENT TEMPERATURE -'C

20

&0

80 85

TA - AMBIENT TEMPERATURE -'C

Figure 3. Maximum Allowed Applied Forward Voltage vs.
Ambient Temperature RaJA = 175"C/W. 5 Volt Devices.

Figure 4. Maximum Allowed Applied Forward Voltage vs.
Ambient Temperature RaJA = 175"C/W. 12 Volt Devices.

Figure 4. Relative Luminous Intensity vs. Angular
Displacement for Tol Package.

Figure 5. Relative Luminous Intensity vs. Angular
Displacement for T ol"'. Package.

1 116
0

1.5.----r----.---~~--,---_,

2.5

2.0

II

5

GoAIP
0.5

o
o

I
.A

..... /L

~

1.0
~
YO

>

;

/

YO

rr

0.5

HIGH EFFICIENCYRED. YELLDW.
GR1EEN

I

4

6

8

18 20

10

5 VOLT DEVICE

Figure 6. Relative Luminous Iutensity VB. Applied Forward
Voltage. 5 Volt Devices.

12 VOLT DEVICES

Figure 7. Relative Luminous Intensity vs. Applied Forward
Voltage. 12 Volt Devices.

1-117

F/in- HEWLETT®

~I:. PACKARD

T-13/4 (5 mm) Right Angle LED

Indicator Options
Technical Data
Option 010
Option 100

Features
• Ideal for Card Edge Status
Indication
• Package Design Allows
Flush Seating on a PC
Board
• May be Side Stacked on
6.35 mm (0.25',) Centers
• LEDs Available in Four
Colors, With or Without
Integrated Current
Limiting Resistor in T-1 3/4
Tinted Diffused Packages

• Housing Meets UL9V-0
Flammability Rating
• Additional Catalog Lamps
Available as Options

Description
The T-13/4 0 ption 010 and 100
series of Right Angle Indicators
are industry standard status
indicators that incorporate a T13/4 LED lamp in a black plastic
right angle mount housing. The
indicators are available in

Package Dimensions

-

OPTION NO.

0100

CATHODE LEAO
LENGTH

ANODE LEAD
LENGTH

4.111 I0.1U)
3."10.145)
20.32 10.100)
MIN.

UOIO.1I5)
3.11,0.145)
1.27 (0.050)
NOM. LONGER
THAN CATHODE

SHEARED
EVEN LEADS
UNSHEARED
UNEVEN LEADS

NOTES,
I. ALL DIMENSIONS ARE IN MILLIMETRES {INCHES).
2. LEAD WIDTH MAY BE 0.4510.018) OR 0." 10.025)
SQUARE NOMINAL DEPENDING UPON PRODUCT
TYPE.
3. OPTION 100 IS AVAILABLE FOR LONGER LEADS.

6.DI ((1.200)

rn /G.iiiii

f

SEE TABLE

l

1-118

5964-9297E

standard Red, High Efficiency
Red, Yellow, or High Performance Green with or without an
integrated current limiting
resistor. These products are
designed to be used as back
panel diagnostic indicators and
card edge logic status
indicators.

Ordering Information
To order T-!3/4 high dome lamps
with right angle mount housing,
select the base part number and

add the option code 010 or 100.
For example: HLMP-3750
option 010.
All Hewlett-Packard T-Pl4highdome lamps are available in
right angle housing. Contact
your local Hewlett-Packard
Sales Office or authorized
components distributor for
additional ordering information.

Absolute Maximum
Ratings and Electrical!
Optical Characteristics
The absolute maximum ratings
and device characteristics are
identical to those of the T-!3/4
LED lamps. For information
about these characteristics, see
the data sheets of the equivalent T-!3/4LED lamp.

The Plastic right angle housing
may be purchased separately as
part number HLMP-5029.

1-119

r!Jpw HEWLETT4I>
':~PACKARD

T-1 3/4 (5 IQIIl)Right AngIe Mount

Housfug .,.

.

,

Technical'Data
HLMP-5029
Option 010
Option 100

Features

Description.

• Fits Any HP High Dome
T-1 3/4 LED Lamp
• Snap-In Fit Makes Mounting
Simple
• High Contrast Black Plastic
• May be Ordered with
Mounted T-1 3/4 Lamp as an
Option

The HLMP-5029 is a black plastic
right angle housing which mates
with Hewlett-Packard high dome
T-l3/4lampS. The leads should be
prebent 90° as shown prior to
snapping into the right angle
housing.
The housing material is high
temperature nylon capable of
withstanding temperatures up
to + 150"C.

Physical Dimensions

I

~I

In

I
I

n

CATHODE LEAD
LENGTH

ANODE LEAD
LENGTH

#010

HX!O'
, O. l:l

rO~'l:;1
.68 ,

.100

20.32 (0.800)

I

+

I

I
I

: 1I
I

:II

I
I

I
I

I

OPTION NO.

MIN.

SHEARED
EVEN LEADS

1.27 (0.050)
UNSHEARED
NOM. LONGER UNEVEN LEADS
THAN CATHODE

NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. LEAD WIDTH MAY BE 0.45 (0.018) OR 0.64 (0.025)
SQUARE NOMINAL DEPENDING UPON PRODUCT TYPE.
3. OPTION 100 IS AVAILABLE FOR LONGER LEADS.

~

9.27 (0.365)
8.76 (0.345)

4.70 (0.185)
3.94 (0.155)

~

6.37 (0.251)
6.09 (0.240)

I

~ DESIGNATES CATHODE

2.54 (0.100)
REF.

1-120

PATENT PENDING

l

90'

"'-.

:lBLE

!

5.33 (0.210)--!'.... L - - - - L
REF.

5964-3814E

As an option, T-13/4lamps may be

ordered pre-mounted into the
HLMP-5029 housing with leads
bent down 90° and sheared to
length, see table. To order, select
the lamp base, part number and
affIx the desired option code. For
example, the HLMP-3300 HER
lamp may be ordered premounted into the HLMP-5029
housing with leads shared to an
even length. The part number for
this option is: HLMP-3300
Option 010.

1-121

rli~ HEWLETTtD
':~PACKARD

T-1 3/4 (5 mm) Panel Mount Clip
and Retaining Ring
Technical Data
Option 007 (HLMP-OI04)

Description
The Option 007 (HLMP-0104) is a
black plastic mounting clip and
retaining ring. It is designed to
panel mount Hewlett-Packard
Solid State high profIle T-1 3/4 size
lamps. This clip and ring
combination is intended for
installation in instrument panels
from 1.52 mm (0.060'') to 3.18
mm (0.125") thick. For panels
greater than 3.18 mm (0.125")
counterboring is required to the
3.18 mm (0.125") thickness.

Mounting Instructions
1. Drill a 6.35/6.53 (0.250/0.257
in.) dia. hole in the panel.
Deburr but do not chamfer the
edges of the hole.

1.21
(G.2..)

DtA.

RETAINING
RING

CLIP

1

2. Press the panel clip into the
hole from the front of the
panel.
3. Press the LED into the clip
from the back. Use blunt long
nose pliers to push on the LED.
Do not use force on the LED
leads. A tool such as a nut
driver may be used to press on
the clip.
Note: Clip and retaining ring are also
available for T·j package, from a non-HP
source. Please contact Interconsal
Association, 2584 Wyandotte Way,
Mountain View, CA for additional
information. Telephone: (408) 745-0161.

1-122

5964-9298E

4. Slip a plastic retaining ring
onto the back of the clip and
press tight using tools such as
two nut drivers.

Ordering Information
T-13/4 High Dome LED Lamps can
be purchased to include clip and

ring by adding Option Code 007

to the device catalog part number.

Example: To order the HLMP3300 including clip and ring,
order as follows: HLMP-3300
Option 007.

1-123

F/iiifj HEWLETT'"

~r... PACKARD

T-l (3 mm) High Performance
TS AlGaAs Red LED Lamps

Technical Data

Features

HLMP-JIOO
HLMP-JI05
HLMP-JI50
HLMP-JI55

Package Dimensions

-

• Ifigh Light Output over a

•
•
•
•
•
•
•

Wide Hauge of Currents
(500 IJA to 50 rnA)
Popular T-1 Package
Low Forward Voltage
Low Power Dissipation
Deep Red Color
Long Life: Solid State
Reliability
Wide Viewing Angles
Available on Tape and Reel

+
6.3S~

-::~~
~:::~

t

4.19~0.165)

NOM.
_ _ 0.45 (0.D18)

SQUARE
NOMINAL

Description
25.40 (1.00)
MIN.

ANODE

Outdoor Message Boards
Automotive Lighting
Portable Equipment
Safety Lighting Equipment
Medical Equipment
Changeable Message Signs

"70~

t
1.02 (0.040)

Applications
•
•
•
•
•
•

I
---.t

~

5.58 (0.220)

2.54(0.100)NOM.

=-J

l

1.27 (0.050)
NOM.

The T-l solid state lamps utilize a
highly optimized LED material
technology, transparent substrate
aluminum gallium arsenide (TS
AlGaAs). This LED technology
has a very high luminous
efficiency, capable of producing
high light output over a wide
range of drive currents (500 J.IA to
50 rnA). The color is deep red at a
dominant wavelength of 644 nm.
TS AlGaAs is a flip-chip LED
technology, die attached to the
anode lead and wire bonded to
the cathode lead.

Device Selection Guide
Package Description
T-l (3 rom), Untinted,
Non-diffused, Standard Current
T-l (3 rom), Untinted,
Non-diffused, Low Current
T-l (3 rom), Tinted, Diffused,
Standard Current
T-l, (3 rom), Tinted, Diffused,
Low Current
1-124

Typical
Iv (mcd)
IF = 0.5 rnA

HLMP-Jl05

Typical
Iv (mcd)
IF = 20 rnA
340

45°

HLMP-J155

-

6

55°

HLMP-J100

175

-

55°

HLMP-J150

-

3

Viewing
Angle
291/2
45°

Deep Red
Ad

= 644nm

-

5964-9372E

Absolute Maximum Ratings
Peak FOlWard Current[2[ ............................................................ 300 rnA
Average FOlWard Current (@ IpEAK = 300 rnA)[1,2[ ...................... 30 rnA
DC FOlWard Current[3[ ................................................................. 50 rnA
Power Dissipation ..................................................................... 100 mW
Reverse Voltage (lR = 100~) ......................................................... 5 V
Transient FOlWard Current (10 I!s Pulse)[4) ............................... 500 rnA
Operating Temperature Range ........ ................... ............. -55 to + 1000C
Storage Temperature Range ........................................... -55 to + 1000C
LED Junction Temperature ........................................................... 11 OOC
Solder Temperature ................................................ 2600C for 5 seconds
[1.6 mm (0.063 in.) from body)
Notes:
1. Maximum IAVG at f = 1 kHz, DF = 10%.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non·recurring peak current the device can
withstand without damaging the LED die and wire bonds. It is not recommended that
the device be operated at peak currents above the Absolute Maximum Peak Forward
Current.

Optical Characteristics at TA = 25"C

Part
Number
HLMP-J105
HLMP-JlOO

Luminous
Intensity
Iv (mcd)
@20mA[l)
Min. Typ.
56.4
340
35.2
175

Total Flux
<\Iv(mlm)
@20mA[2)
Typ.

280

Optical Characteristics at TA
Part
Number
(Low
Current)
HLMP-JI55
HLMP-J150

Luminous
Intensity
Iv (mcd)
@O.5mA[1)
Min. Typ.
2.1
6.0
1.3
3.0

Peak
Wavelength
(om)
Typ.
654
654

ApEAK

Color,
Dominant
Wavelength
(om)
Typ.
644
644

A-.t[3)

Viewing
Angle
29 1/2
(Degrees)[4)
Typ.
45
55

Luminous
Efficacy
11v
(lmIw)
85
85

= 25"C

Total Flux
<\Iv (mlm)
@O.5mA[2]
Typ.
37.2

Peak
Wavelength
APEAK (nm)
Typ.
654
654

Color,
ZDominant
Wavelength
(om)
Typ.
644
644

A-.t[3]

Viewing
Angle
291/2
cDegrees)[ 4]
Typ.
45
55

Luminous
Efficacy
11v
(lmIw)

85
85

Notes:
1. The luminous intensity, Iv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern
may not be aligned with this axis.
2. <,><:;

=8

~-

1,

I.. - PULSE DURATION - ,as
HER. Orange. Velow. and 0....,

10

1000

tp _ PULSE DURATION - ..

Figure 5. Maximum Tolerable Peak Current vs. Peak Duration.
~ MAX Determined from Temperature Derated I.x, MAX).

Figure 6. Relative Luminous Intensity vs. Angular Displaeement,

1-156

100

\

AI_Rod

10000

rli~ HEWLETT®
~~PACKARD

T-13/4 , 2 mm X 5 mm Rectangular
Bicolor LED Lamps
High Efficiency Red/
High Performance Green
Technical Data

Features:
• Two Color (Red, Green)
Operation
• (Other Two LED Color
Combinations Available)
• Three Leads with One
Common Cathode
• Option of Straight or Spread
Lead Configurations
• Diffused, Wide Visibility
Lens

Description

-

The T-I 3/4 HLMP-4000 and
2 rnm by 5 rnm rectangular
HLMP-0800 are three leaded
bicolor light sources designed for
a variety of applications where
dual state illumination is required
in the same package. There are
two LED chips, high efficiency
red (HER), and high performance
green (Green), mounted on a
central common cathode lead for
maximum on-axis viewability.
Colors between HER and Green
can be generated by
independently pulse width
modulating the LED chips.

HLMP-4000
HLMP-0800

Other Bicolor
Combinations
Other bicolor combinations are
available:
• HER/yellow
• HER/green
• DH AlGaAs red/green.
Contact your local HewlettPackard Components Field Sales
representative for details.

Package Dimensions
HLMP-4000

HLMP-0800
2.23 10.088)
1.98jil.ij'Jjj

- lI

1-L.J

I~+.!- ~"

r:

9.19 10.362)

8.43 10.332)

25.40 (1.00)
MIN.

~~~O)I

NLL

1.27

r-T

COMMO:·M (6.025)

CATHODE

0.508 10.020)

so. TYP.

I

I

5.18 10.204)
i""·>-----o·+4.li310.194)

8.00 10.316)

2.41 10.096)
2]j3 10.085)

f:r-rTTTTI--'a l~:~!:
vg~~~g~

26.4011.00)
Mr

r-2.54 10.100) NOM.
,.2710.10) NOM
SIDE VIEW

REO

RED
ANODE/'
ISHOAT LEAD)

ANODE

ISHOAT
LEAD)
COMMON

CATHODE

-- t
-

0.60810.020)
SQTYP.

.27 (0.060)
NOM

2.5410.100)
NOM

kCf::~~~
Sl
\

COMMON
CATHODE
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES IINCHES).

2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm
10.040") DOWN THE LEADS.

5964-9363E

1-157

Package Dimensions, continued

8.00(0.315)
7.'"(0....)

5.08 (0.200)

4.57 (0.180)

0.89 (0.035)
0.64 (O.tl26)

9.19 (0.382)

~r-

---.l
t

12.54:1: 0.25
(0.100' 0.010)

>AI (0.095)

5.48 (0.215)
4."(0.1")

~

'.03(0.085)

COMMON
CATHODE
0.508 SQUARE

0.508 SQUARE
(0.020) NOMINAL

(0.020) NOMINAL

SIDE VIEW

2.54:1:0.25
(0.100.0.010)

2.54:tO.25
(0.100.0.010)

GREEN~

GREEN

ANODE

ANODE

[J

FLAT INDICATES
liED ANODE

RED ANODE
(SHORT LEAD)

RED ANODE
(SHORT LEAD)

COMMON CATHODE

COMMON CATHODE

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT
1 MM (0.040") DOWN THE LEADS.

Absolute Maximum Ratings at TA

= 25"C

Wgh Efficiency
Red/Green

Units

90

rnA

Average Forward Cli.rrent[l,2] (Total)

25

rnA

DC Current[2,4] (Total)

30

rnA

135

mW

Parameter
Peak Forward Current.

Power Dissipation[3,6] (Total)
Operating Temperature Range
Storage Temperature Range
Reverse Voltage (IR

= 100 IJA)

Transient Forward Current[6]
(10 lJ.Sec Pulse)
Lead Soldering Temperature
[1.6 mm (0.063 in.) below
seating plane I

-20 to +85
~55

"C

to +100

5

V

500

rnA

260"C for 5 seconds

.Notes:
1. See Figure 5 to establish pulsed opemting conditions.
2. The combined simultaneous current must not exceed the maximum.
3. The combined simultaneous power must not exceed the maximum.
4. For HER and Green derate linearly from 50"C at 0.5 mA/"C.
5. For HER and Green derate linearly from 25"C at 1.8 mW/"C.
6. The tmnsieIit peak current is the maximum non-recurring current that can be applied
to the device without damaging the LED die and wirebond. It is not recommended that
the device be opemted at peak currents beyond the peak forward current listed in the
Absolute Maximum Ratings ..

1-158

Electrical/Optical Characteristics at TA

= 25"C
Green

Red

Parameter

Sym.

Luminous Intensity
HLMP-4000

Iv

HLMP-0800

Min.

Typ.

Max. Min.

Typ.

2.1

5

4.2

8

2.1

3.5

2.6

4.0

Max.

Test
Conditions

Units

mcd

IF
IF

= lOrnA
= 20 rnA

ApEAK

Peak Wavelength

635

565

A.d

Dominant
Wavelength(1)

626

569

ts

Speed of Response

90

500

ns

C

Capacitance

11

18

pF

VF = 0, f

VF

Forward Voltage

1.9

V

IF

VR

Reverse Breakdown
Voltage

R9J _PIN

Thermal Resistance

29 1/2

llv

5
260

2.1

2.4

nm

2.7

5

V

260

°C/W

= 1 MHz

= lOrnA
IR = 100 J.lA
Junction to
Cathode Lead

Included Angle
Between Half
Luminous
Intensity PointS(2)
HLMP-4000

65

65

HLMP-0800

100

100

145

595

Luminous Efficacy(3)

Deg.

IF
IF

= lOrnA
= 20 rnA

Lumen!
Watt

Notes:
1. The dominant wavelength, Ad' is derived from the eIE chromaticity diagram and represents the single wavelength which defmes the
color of the device.
2.6 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. Radiant intensity, Ie' in watts steradian, may be found from the equation Ie = Ijrlv where I. is the luminous intensity in candelas and
11. is the luminous efficacy in lumens/watt.

1.0r--------.-------.,__- - - - - - , - - - -__~__r------_r------.,

~

i...
!
~

HIGH
PERFORMANce GREEN

os~---------~~--~----~--~~------_+~---------_+------------~

~

a:

O~~---~~--~~------~--~?-----------~HO~---------~~-----------7=~

Figure 1. Relative Intensity vs. Wavelength.

1-159

<

e

'::r

..15

a:
a:
u
C
a:

"

ie
I

J

:HIO! J

1

I

1"1
D

.

Jrr

311

10
0

1.0

b

/

1.3

/I

1.1

:::'O:.:'RFORMANCE _

1.0

~

0.9

rl

o.t

&.0

I.t'

eF.!.c:'e':~~ED
HtGH PERFORMANCE

OREEN

'j

0 .•
0.1

3.0

~lR:lGR~EN

f

1.2

Ii

2G

~

o..tIJCIC)

1.0

'(

EFFICllNCY RED

80

HIGH EFFICIENCY RED
HLI

J
o

10 20 30 40

50 80 70

aD 10 100

VF - FORWARD VOLTAGE - V

Figure 2. Forward Current vs.
Forward Voltage CharaeteristIcs.

Figure 3. Relative Luminous Intensity
vs. DC Forward Current.

Figure 4. Relative Efftciency
(Luminous Intensity per Unit
Current) vs. Peak LED Current.

9O'1-~+---l--+--4~

.. - PULSE DURATION - ••

Figure 5. Maximum Tolerable Peak Current vs.
Pulse Duration. (lDC MAX as per MAX
Ratings).

Figure 7. Relative Luminous Intensity vs. Angular
Displacement for the HLMP-0800.

1-160

Figure 6. Relative Luminous Intensity vs. Angular
Displacement for the HLMP-4000.

100'

r/i~ HEWLETT"
~e.. PACKARD

Subminiature High Performance
AllnGaP LED Lamps

Technical Data

Features
• Subminiature Flat Top
Package
Ideal for Backlighting and Light
Piping Applications
• Subminiature Dome Package
Nondiffused Dome for High
Brightness
• Wide Range of Drive
Currents
• Colors: 590 run Amber,
615 run Reddish-Orange
• Ideal for Space Limited
Applications
• Axial Leads
• Available with Lead
Configurations for Surface
Mount and Through Hole PC
Board Mounting

-

De~cription

Flat Top Package
The HLMX-PXXX flat top lamps
use an untinted, nondiffused,
truncated lens to provide a wide
radiation pattern that is necessary
for use in backlighting applications. The flat top lamps are also
ideal for use as emitters in light
pipe applications.

5964-9364E

SunPower Series
HLMA-PHOO HLMT-PHOO
HLMA-PLOO HLMT-PLOO
HLMA-QHOO HLMT-QHOO
HLMA-QLOO HLMT-QLOO

Dome Packages
The HLMX-QXXX dome lamps use
an untinted, nondiffused lens to
provide a high luminous intensity
within a narrow radiation pattern.
Lead Configurations
All of these devices are made by
encapsulating LED chips on axial
lead frames to form molded epoxy
subminiature lamp packages. A
variety of package conflguration
options is available. These include
special surface mount lead
conflgurations, gull wing, yoke
lead, or Z-bend. Right angle lead
bends at 2.54 mm (0.100 inch)
and 5.08 mm (0.200 inch) center
spacing are available for through
hole mounting. For more information refer to Standard SMT and
Through Hole Lead Bend Options
for Subminiature LED Lamps data
sheet.
Technology
These subminiature solid state
lamps utilize one of the two newly

developed aluminum indium
gallium phosphide (AlInGaP) LED
technologies, either the absorbing
substrate carrier technology (AS
= HLMA-Devices) or the
transparent substrate carrier
technology (TS = HLMTDevices). The TS HLMT-Devices
are especially effective in very
bright ambient lighting conditions. The colors 590 nm amber
and 615 nm reddish-orange are
available with viewing angles of
150 for the domed devices and
125 0 for the flat top devices.

1-161

Device Selection Guide
Package Description
Domed, Nondiffused
Untinted

Viewing Angle
28 1/ 2
28 0

Amber
A.d 590 om
HLMA-QLOO
HLMT-QLOO

Reddish-Orange
A.d 615 nm
HLMA-QHOO
HLMT-QHOO

Package
Outline

125 0

HLMA-PLOO
HLMT-PLOO

HLMA-PHOO
HLMT-PHOO

A

Flat Top, Nondiffused,
Untinted

=

=

B

Package Dimensions
(A) Flat Top Lamps

0.50 (0.020) REF.

1.40 (0.055)
.1.65 (0.065)

l ~I :~::~ :~::~:1
I

l --'l::=--,
-r

BOTH SIDES

vr~---'=::"-..J 0.46(0.018)
0.56 (0.022)
0.25 (0.010) MAX.
NOTE 2

0.20 (0.008) MAX.

(B) Domed Lamps, Diffused and Nondiffused
0.18 (0.007)
0.50

(01.021=:~::~:~::: ~
I

BOTH SIDES

I

CATHODE

i--==--,

I

r~
11

~

0.46 (0.018)
0.56 (0.022)
0.25 (0.010) MAX.

0.20 (0.008) MAX.

NOTE 2

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

1-162

T

2.92 (0.115)
MAX.

0.63~

0.38 (0.015)

CATHODE
STRIPE

Absolute Maximum Ratings at TA

= 25"C

HLMA-QLOO/QHOO/PLOO/PHOO
Peak Forward Current[2) ........................................................... 200 rnA
Average Forward Current (lPEAK = 200 rnA)[l,2) ......................... 45 rnA
DC Forward Current[3,5,6) ............................................................ 50 rnA
Power Dissipation .................................................................... 105 mW
HLMT-QLOO/QHOO/PLOO/PHOO
Peak Forward Current[2) ........................................................... 100 rnA
Average Forward Current (lPEAK = 100 rnA)[l,2) ......................... 37 rnA
DC Forward Current[3,5,6) ........................................................... 50 rnA
Power Dissipation .................................................................... 120 mW
All Devices
Reverse Voltage (lR = 100 1lA) ........................................................ 5 V
Transient Forward Current (10 I1s Pulse)[5) .............................. 500 rnA
Operating Temperature Range........ ........ .................. ..... - 40 to +100"C
Storage Temperature Range .......................................... -55 to + 100"C
LED Junction Temperature .......................................................... 110"C
Lead Soldering Temperature
[1.6 rom (0.063 in.) from body .......................... 260"C for 5 seconds
SMT Reflow Soldering Temperatures
Convective Reflow............. 235"C Peak, above IS3"C for 90 seconds
Vapor Phase Reflow ........................................... 215"C for 3 minutes
Notes:
1. Maximum 'AVG at f = 1 kHz.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 4.
4. The transient peak current is the maximum non-recurring peak current these devices
can withstand without damaging the LED die and wire bonds. Operation at currents
above Absolute Maximum Peak Forward Current is not recommended.
5. Drive currents between 5 ·rnA and 30 rnA are recommended for best long term
performance.
6. Operation at currents below 5 rnA is not recommended, please contact your HewlettPackard sales representative.

1-163

NO. ANODE DOWN.

YES. CATHODE DOWN.

Figure 1. Proper Right Angle Mounting to a PC Board to Prevent Protruding Cathode Tab from Shorting to Anode
Connection.

Optical Characteristics at TA = 25"C

Part
Number
HLMAQLOO
QHOO
PLOO
PHOO
HLMTQLOO
QHOO
PLOO
PHOO

Luminous
Intensity
Iv (mcd)
@20mA[11
Typ.
Min.

Total Flux
v (mlm)
@20mA[21
Typ.

Peak
Wavelength
Ap.,ak(nm)
Typ.

Color,
Dominant
Wavelength
API (nm)
Typ.

Viewing
Angle
291/2
Degrees[41
Typ.

Luminous
Efficacy
1lv[51
QrnIw)

135
135
23
22

500
500
75
75

250
250
250
250

592
621
592
621

590
615
590
615

15
15
125
125

480
263
480
263

300
290
46
35

1000
800
150
120

800
800
800
800

592
621
592
621

590
615
590
615

15
15
125
125

480
263
480
263

Notes:

1. The luminous intensity, r", is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern
may not be aligned with this axis.
2. v is the total luminous flux output as measured with an integrating sphere.
3. The dominant wavelength, A.d, is derived from the ClE Chromaticity Diagram and represents the color of the device.
4. 81/2 is the off-axis angle where the liminous intensity is 1/2 the peak intensity.
5. Radiant intensity, r", in watts/steradian, may be calculated from the equation r" = '/TIv' where r" is the luminous intensity in candelas
and T"iv is the luminous efficacy in lumens/watt.

1-164

1.0

~z

...w

!!; 0.5

w

~

W

II:

700
WAVELENGTH - nm

Figure 1. Relative Intensity VB. Wavelength. All Devices.

Electrical Characteristics at TA

Part

Number
HLMAQLOO
QHOO
PLOO
PHOO
HLMTQLOO
QHOO
PLOO
PHOO

Forward
Voltage
VF (Volts)
@IF = 20mA
Typ.
Max.
1.9
2.4
1.9
2.4
1.9
2.4
1.9
2.4

2.0
2.0
2.0
2.0

2.4
2.4
2.4
2.4

= 250C

Reverse
Breakdown
VR (Volts)
@ IR = 100 J.LA
Typ.
Min.

Capacitance
C (PF)
VF = 0,
f=IMHz
Typ.

Thermal
Resistance
RaJ_PIN ("C/W)

Speed of Response
t. (ns)
Time Constant
e-t!t.
Typ.

5
5
5
5

25
25
25
25

40
40
40
40

170
170
170
170

13
13
13
13

5
5
5
5

20
20
20
20·

70
70
70
70

170
170
170
170

13
13
13
13

1-165

200
C

180

I

160

!Zw

140

E

,.
II:
II:

120

U

100

c

II:

i
0

II.

I

.!!-

100
C

80

I

80

E

!zW

80

70

II:
II:

80

U

50

C
II:

40

II:

30

,.

60

;

40

~

20

20

.!!-

10

0
1.0

I

1.5

2.0

2.5

3.0

/
/

'I'

o /

/
/
o
o

10

/

/

30

40

o
o

50

I

!ZW
II:
II:

,.U

30

w

i!w

20

j"

10

~

10

j
100

150

200

IpEAK - PEAK FORWARD CURRENT - mA

Figure 5a. Maximum Average Current
vs. Peak Forward Current for HLMAQLOO/QHOO/PLOO/PHOO.

10

20

30

40

.......... ~

30

o

50

\

\

40

\
\

ROrA=3j'j\ \

30
R01'_A =

20

4k, cJ~ r\,\

~

10

.!!50

f~l

60

f~3OOHz/

58

67

75

83

92

o

20

40

60

80

100'

TA - AMBIENT TEMPERATURE - 'C

=

-

:><: :::;:t'-

f~llHZ/ /

o

Figure 4. MaxImum Forward Current
vs. Ambient Temperature for HLMA-I
HLMT-QLOO/QHOO/pLOO/PHOO.
Derating Based on TJMAX 110 "C.

KHz

0:::::::.; :""""

40

w

c:l

20

I

,/

Figure 3b. Relative Luminous
Intensity vs. DC Forward Current.
HLMT·QLOO/QHOO/PLOO/pHOO.

50

40

1-166

i~

IF - DC FORWARD CURRENT - mA

~

0
50

C
II:

/

w

I

II:
II:

U'

'I'

U

~

,.

/

50

~

!zw

./
20

50

I

E

II:
II:

3.5

E

C

,.

3.0

2.5

C

Figure 3a. Relative Luminous Intensity
vs. DC Forward Current. HLMA·QLOOI
QHOO/PLOO/PHOO.

!zw

2.0

4.0

IF - DC FORWARD CURRENT - mA

I

/

FIgure 2b. Forward Current vs.
Forward Voltage. HLMT-QLOO/QHOOI
PLOO/pHOO.

Forward Voltage. HLMA-QLOO/QHOOI
PLOO/PHOO.

/

/

VF-FORWARD VOLTAGE- V

Figure 2a. Forward Current vs.

/

/

/

1.5

VF - FORWARD VOLTAGE - V

2.5

/

100

IpEAK - PEAK FORWARD CURRENT - mA

Figure 5b. Maximum Average Current
vs. Peak Forward Current for HLMTQLOO/QHOO/PLOO/PHOO.

1.0

z~

....w
;!;

0.8

1/

-

0.7

I

0.6

~

:IE

0.3

0

0.2

«

II:

z

\

I

c 0.5
w
0.4

,

~

L

0.9

\

L

\

I

\

0.1

o

-50

-30

-40

-20

-10

o

10

20

30

40

50

ANGULAR DISPLACEMENT - DEGREES

Figure 6. Relative Luminous Intensity vs. AnguJ.ar DlspIaeement for BLMA-/HLMT-QLOO/-QBOO.

i;

tJ)

z

1.1
1.0
0.9

/ - r-..

0.8

I

w 0.7
....
;!;

I

0.6

c
w 0.5
~

..J

«

:;

II:

0

z

0.4
0.3
0.2
0.1

",

/

I

..... l- I'\.
1\
I\.
'\

/

I" ........

o

100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100
ANGULAR DISPLACEMENT - DEGREES

Figure 7. Relative Luminous Intensity vs. Angular DispIaeement for BLMA-/BLMT-PLOO/-PBOO.

1-167

r/i~ HEWLETT®

~~PACKARD

Subminiature High
Performance TS AlGaAs Red
LED Lamps
Technical Data
HLMP-P 106IP 156
HLMP-QIOXlQ15X

Features
• Subminiature Flat Top
Package
Ideal for Backlighting and
Light Piping Applications
• Subminiature Dome
Package
Diffused Dome for Wide
Viewing Angle
Non-diffused Dome for High
Brightness
• Wide Range of Drive
Currents
500 ~ to 50 mA
• Ideal for Space Limited
Applications
• Axial Leads
• Available with lead
configurations for Surface
Mount and Through Hole
PC Board Mounting

Description
Flat Top Package
The HLMP-PXXX Series flat top
lamps use an untinted, nondiffused, truncated lens to
provide a wide radiation pattern
that is necessary for use in
backlighting applications. The
flat top lamps are also ideal for
use as emitters in light pipe
applications.

1-168

Dome Packages
The HLMP-QXXX Series dome
lamps, for use as indicators, use
a tinted, diffused lens to provide
a wide viewing angle with high
on-off contrast ratio. High
brightness lamps use an
untinted, nondiffused lens to
provide a high luminous intensity within a narrow radiation
pattern.
Lead Configurations
All of these devices are made by
encapsulating LED chips on
axial lead frames to form
molded epoxy subminiature
lamp packages. A variety of
package configuration options is
available. These include special
surface mount lead configurations, gull wing, yoke lead, or Zbend. Right angle lead bends at
2.54 mm (0.100 inch) and 5.08
mm (0.200 inch) center spacing
are available for through hole
mounting. For more information
refer to Standard SMT and
Through Hole Lead Bend
Options for Subminiature LED
Lamps data sheet.

Technology
These subminiature solid state
lamps utilize a highly optimized
LED material technology,
transparent substrate
aluminum gallium arsenide (TS
AlGaAs). This LED technology
has a very high luminous
efficiency, capable of producing
high light output over a wide
range of drive currents (500 ~
to 50 rnA). The color is deep red
at a dominant wavelength of
644 nm deep red. TS AlGaAs is
a flip-chip LED technology, die
attached to the anode lead and
wire bonded to the cathode lead.
Available viewing angles are
75°,35°, and 15°.

5964-9365E

Device Selection Guide
Viewing Angle Deep Red Typical Iv Typical Iv
Rd=644nm If = 500 J.Ia I f =20mA
291/2

Package Description
Domed, Diffused Tinted,
Standard Current

35

HLMP-Q102

Domed, Diffused Tinted,
Low Current

35

HLMP-Q152

Domed, N ondiffused
Untinted, Standard Current

15

HLMP-Q106

Domed, Nondiffused
Untinted, Low Current

15

HLMP-Q156

Flat Top, Nondiffused,
Untinted, Standard Current

75

HLMP-P106

Flat Top, Nondiffused
Untinted, Low Current

75

HLMP-P156

1.14 (0.045)

I

!:~~ :~:~~:~

0.23 lQ.OO§)

B

530

B

7

A

130

A

2

1.40 (0.055)
1.65 (0.065)

r

0.58 (0.023)
017)

0.43

~

0.18 (0.007)

B

2

l. l~-t
1.40 (0.055)

B

160

Package Dimensions
A) Flat Top Lamps

Package
Outline

..

~-=;;.....

I

j.0.20 (0.008) MAlt

OAB (0.018)
D.5B (0.022)

0.25 (0.010) MAX.'
NOlE2

• REFER TO FIGURE 1 FOR DESIGN CONCERNS.

B) Diffused and Nondiffused Dome Lamps
0.18 (0.007)
0.23 (0.009)

1=
t

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AIGaA. SUBMINIATURE LAMPS IS OPPOSITE TO THE
LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.

1-169

NO. CATHODE DOWN.

YES. ANODE DOWN.

Figure 1. Proper Right Angle Mounting to a PC Board to Prevent
Protruding Anode Tab from Shorting to Cathode Connection,

Absolute Maximum Ratings at TA = 25°C
Peak Forward Current[2] ......................................................... 300 rnA
Average Forward Current (@ IpEAK = 300 rnA)[1,2] .................... 30 rnA
DC Forward Current[3] .............................................................. 50 rnA
Power Dissipation .................................................................... 100 mW
Reverse Voltage (IR = 100 1lA) ......................................................... 5 V
Transient Forward Current (10 liS Pulse)[4] ........................... 500 rnA
Operating Temperature Range ..................................... -55 to +100°C
Storage Temperature Range .......................................... -55 to +100°C
LED Junction Temperature ....................................................... 110°C
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body ........................... 260°C for 5 seconds
Reflow Soldering Temperatures
Convective IR .................. 235°C Peak, above 183°C for 90 seconds
Vapor Phase ..................................................... 215°C for 3 minutes
Notes:
1. Maximum IAVG at f = 1 kHz, DF = 10%.
2. Refer to Figure 7 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 6.
4. The transient peak current is the maximum non-recurring peak current the
device can withstand without damaging the LED die and wire bonds. It is not
recommended that the device be operated at peak currents above the Absolute
Maximum Peak Forward Current.
.

1-170

Optical Characteristics at TA =25°C
Part
Number

HLMP·
QI06

Luminous
Intensity
Iv (mcd)
@20mA111
Min. Typ.

@20mA[21
Typ.

Peak
Wavelength
Apeak (nm)
Typ.

Color,
Dominant
Wavelength
A.i[31 (nm)
Typ.

Total Flux
~(mlm)

Viewing
Angle
291/2
Degrees[41
Typ.

Luminous
Efficacy
llv[51
(lmlw)

56

530

280

654

644

15

85

QI02

22

160

-

654

644

35

85

PI06

22

130

280

654

644

75

85

@O.5mA[21
Typ.

Peak
Wavelength
Apeak (om)
Typ.

Color,
Dominant
Wavelength
A.i[31 (om)
Typ.

Viewing
Angle
29 112
Degrees[41
Typ.

Luminous
Efficacy
llv[51

Optical Characteristics at TA =25°C
Part
Number
(Low
Current)
HLMP·

Luminous
Intensity
Iv (mcd)
@O.5mAI11
Min. Typ.

Total Flux
~(mlm)

(lmlw)

Q156

2.1

7

10.5

654

644

15

85

QI52

1.3

2

-

654

644

35

85

P156

0.6

2

10.5

654

644

75

85

Notes:
1. The luminous intensity, Iv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation
pattern may not be aligned with this axis.
2. v is the total luminous flux output as measured with an integrating sphere.
3. The dominant wavelength, A.!, is derived from the CIE Chromaticity Diagram and represents the color of the device.
4. 9' /2 is the off-axis angle where the liminous intensity is 112 the peak intensity.
5. Radiant intensity, Iv, in watts/steradian, may be calculated from the equation Iv = l,/1]v, where Iv is the luminous intensity in
candelas and 1]v is the luminous efficacy in lumens/watt.

1-171

Electrical Characteristics at TA = 25°C
Part
Number
HLMP·
QI06

Forward
Voltage
VF(Volts)
@IF =20mA
Typ. Max.
1.9

Reverse
Breakdown
VR (Volts)
@IR = 100 IJA.
Min. TYP.

2.4

5

Capacitance
C (pF)
VF=O,
1= 1 MHz
Typ.

Thermal
Resistance
RaJ . PIN (OCIW)

Speed of Response
ts (ns)
Time
, Constant
e·ths
Typ.

20

170

45

20

Q102

1.9

2.4

5

20

20

170

45

P106

1.9

2.4

5

20

20

170

45

Electrical Characteristics at TA =25°C
Part
Number
(Low

Current)
HLMP·
Q156

Forward
Voltage
VF (Volts)
@IF =0.5mA
Typ. Max.

Reverse
Breakdown
VR (Volts)
@IR = 100 IJA.
Min. Typ.

Capacitance
C (pF)
VF=O,
f= 1 MHz
Typ.

Speed of Response
t. (ns)
Time Constant

RaJ •PIN ec/W)

Typ.

Thermal
Resistance

e·th •

5

20

20

170

45

1.9

5

20

20

170

45

1.9

5

20

20

170

45

1.6

1.9

Q152

1.6

P156

1.6

300
200

......

""

0

!ii iii

D.

~

H •

I

0

1.0

!I'C
DOl o. 2

I

0

•

2.
2.0

~

UI
3~

D.1

5

~!!lD.D5

2

II!

j!'

I~D=D----~=-----~~J~~I000

1

0.5

WAVELENGTH - nm

Figure 2. Relative Intensity vs.
Wavelength.

:~

I

'"

7

~!. D.3
0.

!Zw

2.5

3.0

3.5

v

0.01
0.5

10

20

50

IF - DC FORWARD CURRENT - rnA

Figure 4. Relative Luminous
Intensity vs. DC Forward CUlTent.

a:
a:

"

i
S!

II

I

I

.J!-

\
\

'1,' \

R8JA =iOO
30

R8JA=~'cJ/

a:

20

r\\

~

10

I
o
1

2

10

20

50

100 200 300

IpEAK - PEAK FORWARD CURRENT - rnA

Figure 5. Relative Efficiency VB.
Peak Forward CUlTent.

1-172

\

40

Q

OA
0.:
D.0

,.I

U

i:~ o.6
j~ D.5

~~

2.0

50

1

D.8
(l

1.5

Figure 3. Forward CUlTent vs.
Forward Voltage.

1.2

1.1
~2 1.0
we o.9

~~

1.0

VF - FORWARD VOLTAGE -

o

20

40

60

60

TA - AMBIENT TEMPERATURE -

100

°c

Figure 6. Maximum Forward DC
CUlTent vs. Ambient Temperature.
Derating Based on TJMAX no°c.

=

IpEAK - PEAK FORWARD CURRENT - mA

Figure 7. Maximum Average
CUlTent VB. Peak Forward Current.

1.0

:

0.8

i;

~

,

I~

0.9

0.7
0.6

I: :
~ 0.3

I
I

0.2

o. 1
o

.....

100 90

80 70 60

50

40

30

1\
\
I"'--

20

10

0

10 20

30 40 50

60 70

80

90 100°

ANGULAR DISPLACEMENT - DEGREES

Figure 8. HLMP·QI06l.QI56.

1.0

If1\

0.9

II

0.8

.,z
~

0.7

I!!

0.6

0

0."

II

iE

..~

i'..

a: 0.3
0.2
0.1

o

..... I"

100 90

80 70

I'- t-...

.... 1"

0

z

\

0."

60

SO

40

30

20 10

r--- t-...

0" 10 20 30 40 50 60 70 80 90 100°

ANGULAR DISPLACEMENT - DEGREES

Figure 9. HLMP·QI02l·QI52

1.0

If l

0.9
0.8

~

~
iE

V

0.7

V

0.6

1/

0

w 0.5

~
a:
0

z

-'II

OA

0.3
0.2

.....
.....

\
1\
\

......

".

0.1

o

~~~~~WW~~~~~~~WW~~~~~

ANGULAR DISPLACEMENT - DEG-=-EES

Figure 10. HLMP.PI06l·PI56.

1·173

Flipl HEWLETT®
':~PACKARD

Subminiature LED Lamps
Technical Data
HLMP-PXXX Series
HLMP-QXXX Series
HLMP-6XXX Series
HLMP-70XX Series

Features
• Subminiature Flat Top
Package
Ideal for Backlighting and
Light Piping Applications
• Subminiature Dome
Package
Diffused Dome for Wide
Viewing Angle
Nondiffused Dome for High
Brightness
• Arrays
• TTL and LSTTL
Compatible 5 Volt Resistor
Lamps
• Available in Six Colors
• Ideal for Space Limited
Applications
• Axial Leads
• Available with Lead
Configurations for Surface
Mount and Through Hole
PC Board Mounting

Description
Flat Top Package
The HLMP-PXXX Series flat top
lamps use an untinted, nondiffused, truncated lens to
provide a wide radiation pattern
that is necessary for use in
backlighting applications. The
flat top lamps are also ideal for
use as emitters in light pipe
applications.
1-174

Dome Packages
The HLMP-6XXX Series dome
lamps for use as indicators use
a tinted, diffused lens to provide
a wide viewing angle with a
high on-off contrast ratio. High
brightness lamps use an
untinted, nondiffused lens to
provide a high luminous
intensity within a narrow
radiation pattern.
Arrays
The HLMP-66XX Series
subminiature lamp arrays are
available in lengths of 3 to 8
elements per array. The
luminous intensity is matched
within an array to assure a 2.1
to 1.0 ratio.
Resistor Lamps
The HLMP-6XXX Series 5 volt
subminiature lamps with built
in current limiting resistors are
for use in applications where
space is at a premium.

surface mount lead configurations, gull wing, yoke lead or Zbend. Right angle lead bends at
2.54 mm (0.100 inch) and
5.08 mm (0.200 inch) center
spacing are available for
through hole mounting. For
more information refer to
Standard SMT and Through
Hole Lead Bend Options for
Subminiature LED Lamps data
sheet.

Lead Configurations
All of these devices are made by
encapsulating LED chips on
axial lead frames to form molded
epoxy subminiature lamp
packages. A variety of package
configuration options is available. These include special

5964-9350E

Device Selection Guide
Part Number: HLMP-XXXX
High
High
DHAS
Standard AlGaAs Efficiency
Perf. Emerald
Red
Red
Orange Yellow Green Green
Red

6000/6001

Device DescriptionU ]

P105

P205

P405

P305

P505

P102

P202

P402

P302

P502

Q101
Q105

6300
6305

Q400

6400
6405

6500
6505

Q150

7000

7019

7040

6600

6700

6800

6620

6720

6820

Untinted, Nondiffused,
FlatTop
Untinted, Diffused,
FlatTop
Tinted, Diffused
Untinted, Nondiffused,
High Brightness
Tinted, Diffused, Low
Current
Nondiffused, Low
Current
Tinted, Diffused,
Resistor, 5 V, 10 rnA
Diffused, Resistor, 5 V,

6653
6654
6655
6656
6658

6753
6754
6755
6756
6758

6853
6854
6855
6856
6858

4 rnA
3 Element
4 Element
5 Element
6 Element
8 Element

P605

Q600

Q155

6203
6204
6205
6206
6208

Matched
Array,
Tinted,
Diffused

Device
Outline
Drawing

A
B

B

.

C

Package Dimensions
(A) Flat Top Lamps

1.14 (0.045)
1.40 (0.1165)

I

0.58 (0.G23)
0.43 (0.017)

l·nL~~
0.18 (0.007)
0.23 (0.009)

NOTES:
1. ALL DIMENSIDNS ARE IN MILLIMETERS (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

(0.W:\

\7.91
2.18 (0.08&)

*Refer to Figure 1 for design concerns.

1-175

Package Dimensions (cont.)
(B) Diffused and Nondiffused
0.18 (0.007)
0.23 (0.009)

0.50 (0.020) REF.

I If--~~:~~~:~: -1
I

BOTH SIDES

CATHODE

,I
T

r~=::-'

l:c:=:=::J

1

i

1"

0.63 (0.025)
0.38 (0.015)

0.20 (0.009) MAX.

NOTES:
1. ALL DIMENSIONS ARE IN MILUMETERS (INCHES).

2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

"Refer to Figure 1 for design concerns.

(C) Arrays
~(o.o30)R

0.89 (0.035) •
0.63 (0.025)
Q.38 (0.015)

t

=!-r
t

0.71 (0.031)

ii.5i(0.021)
CATHODE

NOTES:
1. ALL DIMENSIONS ARE IN MILUMETERS ONCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

NO. ANODE DOWN.

YES. CA11tODE DOWN.

Figure 1. Proper Right AngIe Mounting to a PC Board to Prevent Protruding Cathode Tab from Shorting to Anode
Connection.

1-176

Absolute Maximum Ratings at TA

= 25°C

DHAS
Standard AlGaAs
Red
Red

Parameter
DC Forward CurrenV']
Peak Forward Current]2]

Orange Yellow

50

30

30

30

20

30

30

rnA

300

90

90

60

90

90

rnA

6

6

6

V

6
~)

High
Perf. Emerald
Green Green Units

1000

DC Forward Voltage
(Resistor Lamps Only)
Reverse Voltage (I R = 100

High
Eff.
Red

5

5

5

5

5

5

5

V

Transient Forward Current]3]
(10 Its Pulse)

2000

500

500

500

500

500

500

rnA

Operating Temperature Range:
Non-Resistor Lamps

-55 to
+100

-40 to
+100

-40 to
+100

-20 to
+100

-55 to +100

°C
Resistor Lamps
Storage Temperature Range
For Thru Hole Devices
Wave Soldering Temperature
[1.6 mm (0.063 in.) from body]
For Surface Mount Devices:
Convective IR
Vapor Phase

-40 to +85

-20 to
+85

-55 to +100

°C

260°C for 5 Seconds

235°C for 90 Seconds
215°C for 3 Minutes

Notes:
1. See Figure 5 for current derating vs. ambient temperature. Derating is not applicable to resistor lamps.
2. Refer to Figure 6 showing Max. Tolerable Peak Current vs. Pulse Duration to establish pulsed operating conditions.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without failure. Do not
operate these lamps at this high current .

•

1-177

Electrical/Optical Characteristics, T A

=25°C

Standard Red
Device

HLMP-

Parameter

Symbol

6000
6001

Luminous Intensityl']

Iv

6203 to
6208
Forward Voltage
All

P005

Reverse Breakdown
Voltage
Included Angle Between
Half Intensity Points[2]

VF
VR

1.2

1.3

3.2

0.5

1.2

1.4

1.6

5.0

12.0

2.0

Test Conditions

mcd

IF = lOrnA

V

IF = lOrnA

V

IR = 100 J.LA

125
Deg.
90

A"EAK

655

nm

Dominant Wavelength[3]

A.d

640

nm

Spectral Line Half Width

!:J.A.1I2

24

nm

Peak Wavelength

1-178

0.5

291f2

All
Others

All

Min. Typ. Max. Units

Speed of Response

1:,

15

ns

Capacitance

C

100

pF

Thermal Resistance

R9J .PIN

170

°CIW

Luminous Efficacy[4]

'11.

65

lmIW

VF = 0; f= 1 MHz
Junction-to-Cathode
Lead

DR AS AIGaAs Red
Device
IILMP-

Parameter

Symbol Min. Typ. Max. Units

P102

4.0

20.0

P105

8.6

30.0

Q101

22.0

45.0

22.0

55.0

Q105

Luminous Intensity

Iv

Q150

1.0

1.8

Q155

2.0

4.0

Q101
P205IP505
Q101lQ105

Forward Voltage

VF

Reverse Breakdown
Voltage

VR

Q1501Q155
All

P105
QlOlIQ150
Q105/Q155

IF =20mA
mcd
IF=lmA

1.8
1.8

2.2
2.2

1.6

1.8

15.0

V

I F =20mA
IF=lmA

V

IR = 100 p.A

125
Included Angle Between
HalfIntensity Points l2]

29 112

90

Deg.

Peak Wavelength

'-rnAK

28
645

nm

Dominant

Wavelength l3]

Measured at Peak

~

637

nm

flA1J2

20

nm

Speed of Response

't,

30

ns

Exponential Time
Constant· e-tlt ,

Capacitance

C

30

pF

VF = 0; f= 1 MHz

Thermal Resistance

R9J _PIN

170

9CIW

Luminous Efficacy l41

1'\v

80

ImIW

Spectral Line Half Width
All

5.0

Test Conditions

Junction-to
Cathode Lead

1-179

High Efficiency Red
Device
BLMPParameter

Symbol

Min. Typ. Max. Units

P202

1.0

5.0

P205

1.0

8.0

6300

1.0

10.0

6305

3.4

24.0

7000

Luminous Intensity[l]

IF= 10mA

0.4

1.0

6600

1.3

5.0

6620

0.8

2.0

6653 to
6658

1.0

3.0

1.5

1.8

3.0

9.6

13.0

3.5

5.0

All
6600
6620
All

Iv

FQrward Voltage
(Nonresistor Lamps)

VF

Forward Current
(Resistor Lamps)

IF

Reverse BrlJakdown
Voltage

VR

P205
6305

Included Angle Between
Half Intensity Points[2]

IF=2mA
VF = 5.0 Volts
IF =lOmA

V

IF= 10 mA

mA

VF = 5.0V

V

IR = 100~

291/2

28

Deg.

90

ApEAK

635

nm

Dominant Wavelength[3]

Ad

626

nm

Spectral Line Half Width

Mlf.!

40

nm

Speed of Response

t,

90

ns

Capacitance

C

11

pF

Thermal Resistance

R9J _PIN

170

°CIW

Luminous Efficacy[4]

'Il.

145

ImIW

Peak Wavelength

1-180

30.0

mcd

125

All
Diffused

All

5.0

Test Conditions

Measured at Peak

VF = 0; f = 1 MHz
Junction-to-Cathode
Lead

Orange
Device
BLMP-

Parameter

Symbol Min. Typ. Max. Units

P402
P405

P405

6

1.0

8

Forward Voltage

VF

1.5

1.9

Va

5.0

30.0

Reverse Breakdown
Voltage
Included Angle Between
Half Intensity Points!2]

3.0

mcd

I F =1OmA

V

IF =1OmA

V

Ia = 100 J.LA.

125
Deg.

29 112

Q400

90
Peak Wavelength

All

4.0

Iv

Q400
All

1.0
1.0

Luminous Intensity

Test Conditions

A.PEAK

600

nm

Dominant Wavelength!3]

A.d

602

nm

Spectral Line Half Width

8AlJ2

40

nm

t.

260

ns

Speed of Response
Capacitance
Thermal Resistance
Luminous Efficacy!4]

C

4

pF

R9J _PIN

170

°C/W

"v

380

ImIW

Measured at Peak

VF=O;f= 1 MHz
Junction-to-Cathode
Lead

1-181

Yellow

Device
BLMP-

Symbol Min. Typ. Max. Units

Parame~r

P302

1.0

3.0

P305
6400

1.0
1.0

4.0
9.0

3.6

20

6405

.

Luminous Intensityll)

I

7019

Test Conditions

IF= 10 mA
mcd

0.4

0.6

IF=2mA

6700

1.4

5.0

VF = 5.0 Volts

6720

0.9

2.0

6753 to
6758

1.0

3.0

All

Forward Voltage
(Nonresistor Lamps)

VF

Forward Current
(Resistor Lamps)

IF

Reverse Breakdown
Voltage

VR

6700
6720
All

Included Angle Between
HalfIntensity Points (2)

29 112

All
Diffused

9.6

13.0

3.5

5.0

50.0

V

IF= 10mA

mA

VF =5.0V

V

28

Deg.

~
Ad
AA.1l2

583

nm

585

nm

36

nm

Speed of Response

'to

90

ns

Capacitance

C

15

pF

Thermal Resistance

R9J _PIN

170

°CIW

Luminous Efficacy[4)

'11.

500

1mIW

Dominant Wavelength

(3)

Spectral Line Half Width

1-182

2.4

90
Peak Wavelength

All

2.0

125

P305
6405

5.0

IF= 10mA

Measured at Peak

VF = 0; f= 1 MHz
Junction-to-Cathode
Lead

High Performance Green
Device
HLMP-

Parameter

Symbol Min. Typ. Max. Units

P502

1.0

3.0

P505

1.0

5.0

6500

1.0

7.0

6505

4.2

20.0

0.4

0.6

6800

1.6

5.0

6820

0.8

2.0

6853 to
6858

1.0

3.0

7040

All

Luminous Intensity lll

Iv

Forward Voltage
(Nonresistor Lamps)

VF

Forward Current
(Resistor Lamps)

IF

Reverse Breakdown
Voltage

VR

6800
6820
All
P505
6505

IF = 10 rnA
mcd

VF = 5.0 Volts
IF = 10 rnA

2.1

2.7

9.6

13.0

3.5

5.0

50.0

IF=2rnA

V

IF = 10 rnA

rnA

VF =5.0V

V

~

= 100 IlA

125
Included Angle Between
Half Intensity Points (2)

291/2

All
Diffused

28

Deg.

90

~

565

nm

Dominant Wavelength (3)

Ad

569

nm

Spectral Line Half Width

!lA1l2

28

nm

'to

500

ns

Peak Wavelength

All

5.0

Test Conditions

Speed of Response

C

18

pF

Thermal Resistance

R9J _PIN

170

°CIW

Luminous Efficacy (4)

1'1v

595

ImIW

Capacitance

VF =0;f=1MHz
Junction-to-Cathode
Lead

Notes:
1. The luminous intensity for arrays is tested to assure a 2.1 to 1.0 matching between elements. The average luminous intensity
for an array determines its light output category bin. Arrays are binned for luminous intensity to allow Iv matching between
arrays.
2. 9112 is the off-axis angle where the luminous intensity is half the on-axis value.
3. Dominant wavelength, A.d' is derived from the CIE Chromaticity Diagram and represents the single wavelength that defines the
color of the device.
4. Radiant intensity, Ie' in watts/steradian, may be calculated from the equation Ie =I/TJv' where Iv is the luminous intensity in
candelas and t'lv is the luminous efficacy in lumenslwatt.

1-183

Emerald Green[l]
Device
HLMP~

P605

Parameter
Luminous Intensity

Symbol Min. Typ. Max. Units
Iv

Q600

P605

Forward Voltage

VF

Reverse Breakdown
Voltage

VR

Included Angle Between
Half Intensity Points 12]

1.5

1.0

1.5
2.2

5.0

3.0

Test Conditions

mcd

IF = 10mA

V

IF = 10 mA

V

IR=100~

125
Deg.

29112

Q600

P605/
Q600

1.0

90
Peak Wavelength
Dominant Wavelength[31

ApEAK

558

nm

A.d

560

nm

Spectral Line Half Width

flA.!/2

24

nm

Speed of Response

t,

3100

Capacitance

C

35

ns
pF

Thermal Resistance

R9J .PIN

170

°C/W

Luminous Efficacy[4]

llv

656

ImIW

Measured at Peak

VF = O;f= 1 MHz
Junction-to-Cathode
Lead

Note:
1. Please refer to Application Note 1061 for infonnation comparing stnadard green and emerald green light ouptut degradation.

1-184

1.0

HIGH
PERFORMANCE
GREEN

z~

iw

0.5

5
w

0:

0

7SO

550

5DO

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.
High Efficiency Red, Orange,
Yellow, and High
Performance Green

Standard Red and DH AS
AIGaAs Red

....

'00

0

2011. 0

STD. flED

.. ,DO.0

1/

~ so.0

~

~

ilQ

ift'

.!-

.
i..
a:

..

"

co

~...

20

E

20-0

DH Ala_", RED

10.0

E!

5.0

~

2. 0
1,0
O.

.. -

•

HIGH PERFORMANCE
GREEN.,

EMERALD GREEN ......

0.5

1.0

1.5

2.0

2.5

3.0

REDIORANOE

III
fI, '-- YELLOW
J'I

IJ

••

3.6

VF - FORWARD VOLTAGE - V

1
1

":IENCY

D. 2

D. t

1 1
1

I~

'.0

I

1I
2.0

..0

4.0

5.0

V, -FORWARDVOLTAGE-Y

Figure 2. Forward Current vs. Forward Voltage. (Non·Resistor Lamp)

Standard Red, DH As AIGaAs Red

HER, Orange, Yellow, and
High Performance Green,
and Emerald Green

Low Current
4.0

'00

•

.

0

11111

•

DH AS AtGoA
RED

~.

1/

~ER ~~

YELLOW_
GREEN -

WlU

o.2

If - FORWARD CURRENT - mA

~1

3.0

2.5

l!!w

2.0

zo

",N

2

,
~ ~•

>

,

~-

c;;;:

:>c
0"

5

o.

~

3.5

11111111

0.1 0.2

0.5

1

510203060100

I, - DC FORWARD CURRENT - mA

V

~i

1.5

3~

1.0

0:

0.5

/

./

V

>0:

w

o

/

1

:>::1

/

V

o

./

'0

15

20

25

loc- DC CU RRENT PER LED - rnA

Figure 3. Relative Luminous Intensity vs. Forward Current. (Non-Resistor Lamp)

1-185

30

'.30

C

.
a

,..

~2

...

we

0.6

~1

/

~

i

t:i!ii
1.10

!~

II

j

~'"

>
u-

i--'"

I!
!:!

,.•

1.2

1.20

!(:i

olil

,....

"''''

~~

00

.. . ..

20

HER, Orange, Yellow, and
High Performance Green,
and Emerald Green

DH As AIGaAs Red

Standard Red

...

..~.

0.'

0:

iii

~

l.>
~

~
J/~

1.t

:»

'.0

....

EMERALD GREEN

HEFFlClENCY_
REDIORAHQE

HIGH
PERFORMANCE

GREEN
0.8

0.•
IPliAIC - PEAK FORWARD CURRENT _

YELLOW

4

~

r

'00

IpEAK - PEAK CURRENT - mA

,.

II
I'
o

mA

..

40

.. .

,...

IPUIl - PEAK SEGMENTCUARENT - rnA

Figure 4. Relative Efficiency (Luminous Intensity per Unit CUITent) vs. Peak CUITent (Non-Resistor Lamps).

.

1

....

1 1
1 1

I I
I I

OS

I
I

1\

['~~R8J-i1-

RB Ul (1) 1--'

0

1\

RV.I_.tS)~

25

I -I

20

1

15

r<'

"

1

R8 J-A (5) I - f-'

'0

Ae J..A (4)

o

01020

3O.teI

,..J.A IX

\
\

'~

\

~,

\

!--. I'. r~
I '~

1 1
1 1

-'

~

SO 10

ao

7D

STO
RED

1

I

AI""" II-EFF
RED
RED ORANGE YELLOW GREE.N

: : I.
:I

I'"

"C!W
LED

...
288

UNITS

JUNCTION

TC

AMEJlENT
288

90100

T A - AMBIENT TEMPERATURE - "C

Figure 5. Maximum Forward dc Current vs. Ambient Temperature. Derating Based on TJ MAX = 110°C
(Non-Resistor Lamps).

HER, Orange, Yellow, and High
Performance Green

Standard Red
20

~

II ..
.. i~ ,.

.\

\

1°!
_"u
.. &

DH As AIGaAs Red

IW~IH.I
I::::
,300Hz
~

....

KHz

10KHz
90KHz

'DO""

il~
~!§S
~u ..

I

~~

Ug

ir

1\

.i

j~

,.

I'

1\

If\

.. ,...

,

til - PULS£DURATION-~

'0000

'.0 _,L--~_..J..-::'~..L"",:,~.l.......J
tp - PUlSE DURATION

-1-1*

Ip - PULSE DURATION -!lS

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration. (IDe MAX as per MAX Batings) (Non-Resistor
Lamps).

1-186

e

E
I

..~
...
i2"

,S

,.S

I_

1._

,.

I
1/

I.
SVOLT10mABEraElj

:>

.,.
I

V
·0

I..tV

V

~~

!:c
II"

!!!!

V
I

~"

z!:;

./
!5VOI..T4mA

SERIES

VF - FORWARD VOLTAGE -VOLTS

Figure 7. Resistor Lamp Forward Current vs. Forward
Voltage.

~i
~a:

~~

a:

J

I

1.2

1/

1.0

J

0.•

1/

0.1
0._

0..

/

00

YF - FORWARD VOLTAGE-VOLTS

Figure 8. Resistor Lamp Luminous Intensity VB.
Forward Voltage.

Figure 9. Relative Intensity vs. Angular Displacement.

1-187

Fli;W HEWLETT

LWINGLEAD,
DOME ONLY

I'

FEED DIRECTION _ _ _ _

NOTES:

I. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
3. THE MAXIMUM NUMBER OF CONSECUTIVE MiSSING LAMPS IS TWO.

GULL WING LEAD

~

4. IN ACCORDANCE WITH ANSUEIA R8-481 SPECIFICATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TApE SPROCKET HOLE.

(J) Array Shipping Tube, Gull Wing Lead

t

5.33

10.2101

!
I

"'.----------43IU7.01------lHf------*i.l

<,-______
I~' , - , , - ,

=

TUBE LABEL IDENTIFIES
CATHODE SIDE OF ARRAYS. ~

SUGGESTED TUBEFEED

J

'--\1.-,
,-, 'l V m~~.::~ /
_ll_..I.L_

,L-_J...J._ll_ll-

J.~.g......g."".Q.=-.g..-,g.=-~

"'"

HLMP-

6XX3
6XX4
6XX5
6XX6
6XX8

NO. OF LAMP
ELEMENTS
PER ARRAY

QUANTITY
OF ARRAYS
PER TUBE

3

53
40
32
26
20

4
5
6
8

1-193

(K) 12 rom Tape and Reel, "Yoke" Lead

~______~F~E~E~D~D~IR~E~C~T~ID~N________~:>
NOTES:
1. EMPTY COMPONENT POCKETS SEALED WrrH TOP COVER TAPE.

2. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 600 mm.
3. THE MAXIMUM NUMBER OF CONSECUTfYE MISSING LAMPS IS TWO.

4. IN ACCORDANCE WITH ANSLfEIA RS-4B1 SPECIFtcATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKET HOLE.

1-194

(L) 12 mm Tape and Reel, Z-Bend Lead

rr,1

III'

'I" L ,
rJJL

I r
I'

,

I
I,

'l"" J'
L_ I r r..J

: ,I,
IIII

L!lJ

FEED DIRECTION

"-

~-~=-----t/ I

~=I~~ELAMP

I

I

I

vv~
A
C
N
T

D
DJ
D,
E
F

Ko
P
Po
P,
t
W

Reel Dimensions
Per ANSl/EIA
Standard RS-481.
7 Inch Reel
178.0 ± 2.0 (7.0 ± 0.08) Dia.

All Dimensions
Are In MillImeters
(Inches).
13 Inch Reel
330 (12.9) Dia. Max.

13.0 (0.512) Dia. Typ.
50.0 (1.97) Min.
18.4 (0.72) mMax.

13.0 (0.512) Dia. Typ.
100.0 (3.93) Min.
18.4 (0.72) Max.

Embossed Carrier
Tape DImensions
Per ANSIJEIA
Standard RS-481.

All DImensions
Are In MlllImeters
(lnebes).

Gull Wing Dome
1.55 (0.061 ± 0.002) Dia.
1.0 (0.039) Dia. Min.
20.2 (0.795) Dia. Min.
1.75 ± 0.1 (0.069)
3.23 (0.127 ± 0.002)
3.05 ± 0.1 (0.120) Typ.
4.0 (0.157) Typ.
4.0 (0.157) Typ.
2.0 (0.079 ± 0.002)
0.3 (0.012) Typ.
12.0 ± 0.3 (0.472 ± 0.012)

Gull WIng Flat Top
1.55 (0.061 ± 0.002) Dia.
N/A (No Push Pin Hole)
20.2 (0.795) Dia. Min.
1.75 ± 0.1 (0.069)
3.23 (0.127 ± 0.002)
2.54 ± 0.1 (0.100) Typ.
4.0 (0.157) Typ.
4.0 (0.157) Typ.
2.0 (0.079 ± 0.002)
0.3 (0.012) Typ.
12.0 ± 0.3 (0.4 72 ± 0.012)

Yoke Dome
1.55 (0.061 ± 0.002) Dia.
N/A (No Push Pin Hole)
20.2 (0.795) Dia. Min.
1.75 ± 0.1 (0.069)
3.23 (0.127 ± 0.002)
3.05 ± 0.1 (0.120) Typ.
4.0 (0.157) Typ.
4.0 (0.157) Typ.
2.0 (0.079 ± 0.002)
0.3 (0.012) Typ.
12.0 ± 0.3 (0.472 ± 0.012)

Z-BendDome
1.55 (0.061 0.002) Dia.
N/A (No Push Pin Hole)
20.2 (0.795) Dia. Min.
1.75 ± 0.1 (0.069)
3.23 (0.127 ± 0.002)
2.97 ± 0.1 (0.117) Typ.
4.0 (0.157) Typ.
4.0 (0.157) Typ.
2.0 (0.079 ± 0.002)
0.3 (0.012) Typ.
12.0 ± 0.3 (0.472 ± 0.012)

Yoke and
Z-Bend Flat Top
1.55 (0.061 ± 0.002) Dia.
N/A (No Push Pin Hole)
20.2 (0.795) Dia. Min.
1.75 ± 0.1 (0.069)
3.23 (0.127 ± 0.002)
3.05 ± 0.1 (0.120) Typ.
4.0 (0.157) Typ.
4.0 (0.157) Typ.
2.0 (0.079 ± 0.002)
0.3 (0.012) Typ.
12.0 ± 0.3 (0.472 ± 0.012)

1-195

(M) 12 mm Tape and Reel
DIMENSIONS PER ANSllEIA
STANDARD _ 1 .
ALL _ENSIONS ARE IN

C:::~U~SE~R~D~I~R~E£C~TI@O~N~O~F~F~E~E]OC:~:>

MlLUMETRES ~NCHES).
A

178.0 ± 2.0 (7.0 ±O.OI) DIA.

C

13.0 (0.512) OIA. TYP.

D

1.55 (0.061 ± 0.002) DIA.

D,

1.0 (0.038) 'DIA. MIN.

D.
E

20.2 (0.715) DlA. MIN.
1.75 ± 0.1 (0.069)

F

5.50 (0.127 ± 0.002)

K

3.05 ± 0.1 (0.120) TYP.

N

50.0 (1.970) MIN.

P

4.0 (0.157)TYP.

p.

4.0 (0.157) TYP.

P

2.0 (0.079 ± 0.002) TYP.
0.3 (0.012) TYP.

T

W
TRAILER

LEADER

40 mm (1.5710.1 MIN

600 mm 119.710.) MIN

18A (0.72) MAX.
12.0 ±0.3 (0.472 ± 0.012)

THICKNESS OF TOP COVER TAPE
0.10 (0.004) MAX.

TOLERANCES CUNLESS OTHERWISE SPECIFIEDI:
.X •• 1: .XX ••05C.XXX ••004)

REEL

!

1

- --- -

C

N

rJ.3 HEWLETT

...T.JIII

PACKARD

OPERATOR _____________

~:~~~~~.ER------TAPINGDATE ____-'-_____

~~~~R~~~E ---------QUANTITY _ _ _ _ _ __
CUSTOMER PART NUMBER _ _

1-196

ll,

A

-

Fli;- HEWLETT®
a!r.JIII PACKARD

Subminiature Right Angle
LED Indicators
Technical Data
Option 010

Features

Description

• Ideal for PC Board Status
Indication
• Side Stackable on 2.54 mm
(0.100 in.) Centers
• Available in Four Colors
• Housing Meets UL 94V·O
Flammability Rating
• Additional Catalog Lamps
Available as Options

The Hewlett-Packard series of
Subminiature Right Angle
Indicators are industry
standard status indicators that
incorporate tinted diffused LED
lamps in black plastic housings .
The 2.54 mm (0.100 in.) wide
packages may be side stacked
for maximum board space

savings. The silver plated leads
are in line on 2.54 mm
(0.100 in.) centers, a standard
spacing that makes the PC
board layout straight-forward.
These products are designed to
be used as back panel diagnostic
indicators and logic status
indicators on PC boards.

Package Dimensions

l

r

2'62~

2.46 (0.097)

'f---:..............:
3A310.13&)

2.ii /G.i1il

1/

.J
t±'L0.23
'-

j...---- CATHODE

M!~
3A310.13&)

J
5964-9421E

~~
0.&8 (0.0221

liAii lOJiiIJ

10.0G8)
D.iflOA07T

2.54 (0.100) NOM.
NOTE: ALL DIMENSIONS ARE IN MILLIMETRES IINCHES).

1-197

Ordering Information
To order Subminiature Right
Angle indicators, order the base
part number and add the option
code OlD. Example: HLMP-6300
option OlD. For price and
delivery on Resistor
Subminiature Right Angle
Indicators and other
subminiature LEDs not
indicated above, please contact
your nearest HP Components
representative.

1-198

Absolute Maximum
Ratings and Other
ElectricaJlOptical
Characteristics
The absolute maximum ratings
and typical device characteristics are identical to those of the
Subminiature lamps. For
information about these
characteristics, see the data
sheets of the equivalent
Subminiature lamp.

rli~ HEWLETT®
a:~PACKARD

Surface Mount High
Performance AlInGaP LED
Indicators
Technical Data

_

SunPower Series
HSMA-TX25
HSMD-TX25
HSMJ-TX25

Features

Description

• Outstanding LED Material
Emciency
• Exceptional Light Output
Over a Wide Range of Drive
Currents
• Colors: 590 run Amber, 603
run Orange, and 615 run
Reddish-Orange
• Compatible with Automatic
Placement Equipment
• Compatible with Convective
IR, Vapor Phase Reflow, and
ITW Solder· Processes
• Packaged in 12 mm or 8 mm
Tape on 7" or 13" Diameter
Reels
• EIA Standard Package
• Low Package Profile
• Non-diffused Package
Excellent for Backlighting
and Coupling to Light Pipes

The LED material used in these
devices is the very efficient
absorbing Substrate aluminum
indium gallium phosphide (AS
AiInGaP), capable of producing
high light output over a wide
range of drive currents.
These solid state surface mount
indicators are designed with a flat
top and sides to be easily handled
by automatic placement equipment. A glue pad is provided for
adhesive mounting processes.
They are compatible with
convective IR and vapor phase
reflow soldering, through the
wave (TIW) soldering, and
conductive epoxy attachment
processes.
The package size and configuration ·conform to the EIA-535.

BAAC standard specification for
case size 3528 tantalum
capacitors. The folded leads
permit dense placement and
provide an external solder joint
for ease of inspection.
These devices are non-diffused,
providing high intensity for
applications such as backlighting,
light pipe illumination, and front
panel indication.

Device Selection Guide
Amber
590 run

Orange
Ad = 603 run

Reddish-Orange
Ad 615 run

HSMA-T425

Description

HSMD-T425

HSMJ-T425

12 mm Tape, 7" Reel, 2000 Devices

HSMA-T525

HSMD-T525

HSMJ-T525

12 mm Tape, 13" Reel, 8000 Devices

HSMA-T625

HSMD-T625

HSMJ-T625

8 mm Tape, 7" Reel, 2000 Devices

HSMA-T725

HSMD-T725

HSMJ-T725

8 mm Tape, 13" Reel, 8000 Devices

Ad

=

5964-9352E

=

1-199

Package Dimensions
f.- 3.5 ± 0.2 ---I
I (0.138 ± 0.008)
I

B

J

2.2'0.1
(0.087' 0.004)

0.8 ± D.3
(0.031' 0.012)
(2 PLACES)

Tape and Reel
Specifications
Hewlett Packard surface mount
LEDs are packaged tape and reel
in accordance with EIA-481A,
Taping oj Surface Mount

L

Componentsjor Automatic
Placement. This packaging
system is compatible with tapefed automatic pick and place
systems. Each reel is sealed in a

vapor barrier bag for added
protection. Bulk packaging in
vapor barrier bags is available
upon special request.

~
l~cATHoDE
:
\

:

REEL DIAMETER:
178 mm (TIN.) OR 330 mm (13 IN.)

1-200

Absolute Maximum Ratings at TA

= 25"C

DC Forward Current[I,4,5) ............................................................ 50 rnA
Peak Forward Current[2) ........................................................... 200 rnA
Average Forward Current ........................................................... 45 rnA
(at IpEAK = 200 rnA, f~ 1 KHz)[2)
Transient Forward Current (10 I1s Pulse)[3) .............................. 500 rnA
Reverse Voltage (Iii = 100 !LA)................ .............. .......... .......... ....... 5 V
LED Junction Temperature ............................................................ 95"C
Operating Temperature Range ....................................... -40°C to +S5"C
Storage Temperature Range .......................................... -40"C to +S5"C
Reflow Soldering Temperatures
Convective IR ...................... 235"C Peak, above IS3"C for 90 seconds
Vapor Phase ........................................................ 215"C for 3 minutes
Notes:
1. Derate lineralJy as shown in Figure 4.
2. Refer to Figure 5 to establish pulsed operating conditions.
3. The transient peak current is the maximum non-recurring peak current the device can
withstand without damaging the LED die and wire bonds.
4. Drive currents between 5 rnA and 30 rnA are recommended for best long term
performance.
5. Operation at currents below 5 rnA is not recommended, please contact your HewlettPackard sales representative.

Optical Characteristics at TA

Part
Number
HSMA-TX25
HSMD-TX25
HSMJ-TX25

= 25"C

Luminous
Intensity
Iv (mcd)
@IOmA
Min_
Typ.
10
25
25
10
10
25

Peak
Wavelength
(nm)
Typ.

A.PEAK

592
607
621

Color,
Dominant
Wavelength
(nm)
Typ.

A..i[l)

590
603
615

Viewing
Angle
291/2
Degrees(2)
Typ.
120
120
120

Luminous
Efficacy
l1v
(Im/w)

4S0
370
263

Notes:
1. The domirumt wavelength, A", is derived from the CIE Chromaticity Diagram and represents the color of the device.
2. 91/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at TA

Part
Number
HSMA-TX25
HSMD-TX25
HSMJ-TX25

Forward
Voltage
VF (Volts)
@IF = 10mA
Typ.
Max.
1.9
2.4
1.9
2.4
1.9
2.4

= 25"C

Reverse
Breakdown
VR (Volts)
@IR = 100~
Typ.
Min.
5
25
25
5
5
25

Capacitance
C (PF)
VF = 0,
f= I MHz
Typ.
40
40
40

Thermal
Resistance
R9J _PIN ("C/W)
ISO
ISO
ISO

Speed of
Response
t. (ns)
Time Constant
e-t/ts
Typ.
13
13
13

1-201

200

1.0,------7r...,...,..---.r-----,--------,
C

180

I

160

Iiw

140

E

a:
a:

120

(.)

100

:::>

L.51-------cI--l-H--I-\----+----+------l

c
a:

~

~
a:

Ii!I
.!!-

V
/
o
o

10

V

/

1:
I

u
a:

25

~

30

1.0
0.8
0.8

1/

0.7

15

.J>

10

o
o

50

o.3

R9J.A ::I 244° C/W

/

30

\1,

10 20 30 40 50 60 70

=

.......

" ,
'\

If

,

"

\.

Figure 6. Relative Intensity vs.

20

I'I

10

eo

I
90 100110

vs. Ambient Temperature. Derating
Based on TJ Max 95"C.

\

Angular Displacement.

I

Figure 4. MaxImum Forward Current

9 - ANGULAR DISPLACEMENT - DEGREES

1-202

'\ ~

J

O. 2

0

"

40

R9J-A = 439° C/W

TA - AMBIENT TEMPERATURE - °C

I
If

~ OA

O. 1

1/

If

~ O.5
~

V

J

0.6

50

5

Figure 3. Relative LumInous Intensity
vs. Forward Current.

Ii

,

\

20

~

IF - DC FORWARD CURRENT - rnA

I

1\

40

35

::>

40

2.5.

3.0

60

45

!Z
il!a:

."
30

2.0

Figure 2. Forward Current vs.
Forward Voltage.

50

I

20

1.5

VF- FORWARD VOLTAGE- V

55

/

40
20

nm

Figure 1. Relative Intensity vs. Wavelength.

5.0

60

0
1.0

700

850
WAVELENGTH -

80

o

50

- -fj1 KHz

r-... : /r--

f~iHz/

/'"

r-. ..........

f~I00Hz/

100

150

200

IPEAK - PEAK FORWARD CURRENT - rnA

Figure 5. Maximum Average Current
vs. Peak Forward Current.

Recommended Printed Circuit Board Attachment Pad Geometries
INFRAREDNAPOR PHASE
REFLOW SOLDERING

CONDUCTIVE ATTACHMENT

COMPONENT LOCATION
ON PAD

COMPONENT LOCATION
ON PAD

NOTE: ALL DIMENSIONS ARE IN MILUMETERS ONCHES).

Convective m Reflow
Soldering
For information on convective m
reflow soldering, refer to the
Supplement to Application Note
1060, Suiface Mounting SMT
LED Components.

1-203

Fli;- HEWLETT®
a:r... PACKARD

Surface Mount LED Indicator
HSMD-TXOO
HSME-TXOO
HSMG-TXOO
HSMH-TXOO
HSMS-TXOO
HSMY-TXOO

Technical Data

Features

Description

• Compatible with Automatic
Placement Equipment
• Compatible with Infrared
and Vapor Phase Reflow
Solder Processes
• Packaged in 12 mm or 8 mm
tape on 7" or 13" Diameter
Reels
• EIA Standard Package
• Low Package Prome
• Nondiffused Package
Excellent for Backlighting
and Coupling to Light Pipes

These solid state surface mount
indicators are designed with a flat
top and sides to be easily handled
by automatic plaCement
equipment. A glue pad is provided
for adhesive mounting processes.
They are compatible with
convective IR and vapor phase
reflow soldering and conductive
epoxy attachment processes.
The package size and configuration conform to the EIA-535
HAAC standard specification for
case size 3528 tantalum
capacitors. The folded leads

permit dense placement and
provide an external solder joint
for ease of inspection.
These devices are nondiffused,
providing high intensity for
applications such as backlighting,
light pipe illumination, and front
panel indication.

Device Selection Guide
DHAS
AlGaAs
Red
HSMHT400

High
Efficiency
Red
HSMST400

Orange
HSMDT400

T500

T500

T600
T700

1-204

Yellow
HSMYT400

High
Performance
Green
HSMGT400

Emerald
Green
HSMET400

T500

T500

T500

T500

T600

T600

T600

T600

T600

T700

T700

T700

T700

T700

Description
12 mm Tape, 7" Reel,
2000 Devices
12 mm Tape, 13" Reel,
8000 Devices
8 mm Tape, 7" Reel,
2000 Devices
8 mm Tape, 13" Reel,
8000 Devices

5964-9359E

Package Dimensions
f--- 3.5 ± 0.2
I (0.138± 0.008)

-r

1.9 ± 0.2

__'-~__~-'__ J~,o~±roo~
0.8±D.3

(0.031 ± 0.012)
(2 PLACES)

Tape and Reel
Specifications
Hewlett Packard surface mount
LEDs are packaged tape and reel
in accordance with EIA-481A,
Taping oj Surface Mount

B

J L
2.2<0.1

(0.087 ± 0.004)

Componentsjor Automatic
Placement. This packaging
system is compatible with tapefed automatic pick and place
systems. Each reel is sealed in a

vapor barrier bag for added
protection. Bulk packaging in
vapor barrier bags is available
upon special request.

REEL DIAMETER:

178 mm (7 IN.) OR 330 mm (13 IN.)

1-205

Absolute Maximum Ratings at TA = 25"C
DHAS
AlGaAs
Red

High
Efficiency
Red

Orange

DC Forward
Current[l]

30

30

Peak Forward
Current[2]

300

Average
Forward
Current[2]

20

Parameter

LED Junction
Temperature
Transient
Forward
Current[3]
(10 /.IS Pulse)
Reverse Voltage
(IR= 100 rnA)
Operating
Temperature
Range
Storage
Temperature
Range
Reflow Soldering
Temperature
Convective m
Vapor Phase

Yellow

High
Perf.
Green

Emerald
Green

Units

30

30

30

30

rnA

90

90

60

90

90

rnA

25

25

20

25

25

rnA

95

"C

500
5

rnA

-40 to +85

-40 to +85

V

-20 to +85

"C

"C

235"C Peak, above I85"C for 90 seconds.
2I5"C for 3 minutes.

Notes:
1. Derate dc current linearly from 50"C: For AlGaAs red, high efficiency red, and green devices at 0.67 mAt'C. For yellow devices at
0.44 mAt'C.
2. Refer to Figure 5 showing Maximum Tolerable Peak Current vs. Pulse duration to establish pulsed operating conditions.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and
wire bond. The device should not be operated at peak currents above the Absolute Maximum Peak Forward Current.

1·206

Electrical/Optical Characteristics at TA = 25°C
DH AS AlGaAsRed HSMH-TXOO
Symbol

Min.

Typ.

Max.

Luminous Intensity

Iv

9.0

Forward Voltage

VF

2.2

Reverse Breakdown Voltage

VR

17.0
1.8
15.0

Parameter

Included Angle Between
Half Intensity PointS(1)

29 112

Peak Wavelength

A.PEAK

Dominant Wavelength(2)

A.d
,11..112

Spectral Line Half Width
Speed of Response

5.0

Capacitance

C
R9J _Pin

Thermal Resistance
Luminous Efficacy(3)

mcd

llv

V
V

120
645
637
20
30
30
180
80

'ts

Units

Test Conditions
IF = lOrnA

= lOrnA
IR = 100 j.LA

IF

deg.
nm
nm
nm
ns

Time Constant, e-ti'ts

pF

VF = 0, f

"e/W

= 1 MHz

Junction-to-Cathode

lm/W

High Emciency Red HSMS-TXOO
Parameter

Symbol

Min.

Typ.

Max:.

Luminous Intensity

Iv

2.0

Forward Voltage

VF

2.5

Reverse Breakdown Voltage

VR

6.0
1.9
30.0

Included Angle Between
Half Intensity Points( 1)

29 112

Peak Wavelength

ApEAK

Dominant Wavelength(2)

A.d
,11..112

Spectral Line Half Width
Speed of Response
Capacitance

'ts

5.0

120
635
626
40
90

Units
mcd

Test Conditions
IF = lOrnA

V

IF

V

IR

= lOrnA
= 100 j.LA

deg.

nm
nm
nm
ns

C

11

pF

Thermal Resistance

R9J _pin

°C/W

Luminous Efficacy(3)

llv

160
145

Time Constant, e-ti'ts
VF = 0, f

= 1 MHz

Junction-to-Cathode

lm/W

Notes:
1. 81/2 is the off-axis angle where the luminous intensity is half the on-axis value.
A"., is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. The radiant intensity, r." in watts per steradian, ~ be found from the equation Ie = IJ 11., where Iv is the luminous intensity in
candelas and 11. is luminous efficacy in lumens/watt.

2. The dominant wavelength,

1-207

Orange HSMD-TXOO
Symbol

Min.

Typ.

Luminous Intensity

I"

1.5

5.0

Forward Voltage

VF

V

IF = lOrnA

Reverse Breakdown Voltage

VR

5.0

30.0

V

IR = 100J.IA

29 1/2

120

deg.

APEAK

600

nm

Ad

602

nm

Mlt2

40

nm

'ts

260

ns

C
R9J _Pin

4

pF

Thermal Resistance

160

"e1W

Luminous Efficacy(3)

'l\v

380

lmIW

Parameter

Included Angle Between
Half Intensity Points!I)
Peak Wavelength
Dominant Wavelength(2)
Spectral Line Half Width
Speed of Response
Capacitance

1.9

Max.

Units
mcd

2.5

Test Conditions
IF

= 10 rnA

Time Constant, e-t/t s
VF = 0, f = 1 MHz
Junction-to-Cathode

Yellow HSMY-TXOO
Symbol

Min.

Typ.

Luminous Intensity

I"

2.0

5.0

FOIWard Voltage

VF

Reverse Breakdown Voltage

VR

5.0

50.0

29 1/2

120

deg.

APEAK

583

nm

Dominant Wavelength(2)

Ad

585

nm

Spectral Line Half Width

LlAlt2

36

nm

'ts

90

ns

Parameter

Included Angle Between
Half Intensity PointS!I)
Peak Wavelength

Speed of Response
Capacitance

2.0

Max.
2.5

Units

Test Conditions

mcd

IF = lOrnA

V

IF = lOrnA

V

IR =100 J.IA

C

15

pF

Therrilal Resistance

R9J _pin

160

°CIW

Luminous Efficacy(3)

'l\v

500

lmIW

Time Constant, e-t/t s
VF = 0, f

:=

1 MHz

Junction-to-Cathode

Notes:
I. 9 1/2 is the off-axis angle where the 11!IIIinous intensity is half the on-axis value.
2. The dominant wavelength, "", is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. The radiant intensity, Ie' in watts per steradian, may be found from the equation 1. = IjTlv, where 1. is the luminous intensity in
candelas and Tlv is luminous efficacy in lumens/watt.

1-208

High Performance Green HSMG-TXOO
Parameter

Symbol

Min.

Typ.

Luminous Intensity

Iv

4.0

10.0

Forward Voltage

VF

Reverse Breakdown Voltage

VR

Units

Test Conditions

mcd

IF = lOrnA

V

IF = lOrnA

50.0

V

IR = 100 ~

2.0
5.0

Max.
2.5

Included Angle Between
Half Intensity Points] 1]

29 1/2

120

deg.

Peak Wavelength

ApEAK

570

nm

Dominant Wavelength]2]

Ad

572

nm

Spectral Line Half Width

dA112

28

nm

ts

500

ns

Time Constant, e·t/ts

C

18

pF

VF = 0, f = 1 MHz

R9J_pin

160

°C/W

Tlv

595

lm/W

Speed of Response
Capacitance
Thermal Resistance
Luminous Efficacy]31

Junction-to-Cathode

Notes:
1. 9 1/2 is the off-axis angle where the luminous intensity is half the on-axis value.
2. The dominant wavelength, "'d' is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. The radiant intensity, Ie' in watts per steradian, may be found from the equation Ie = VfI.. where Iv is the luminous intensity in
candelas and fly is luminous efficacy in lumenslwatt.

Emerald Green HSME-TXOO
Parameter _

Symbol

Min.

Luminous Intensity

Iv

1.0

Forward Voltage

VF

Reverse Breakdown Voltage

VR

Typ.
1.5

Units

IF

50.0

V

IR = 100 ~

291/2

120

deg.

Peak Wavelength

ApEAK

558

nm

Dominant Wavelength]2]

Ad

560

nm

Spectral Line Half Width

dA112

28

nm

ts

500

ns

Capacitance

= 10 rnA
= 10 rnA

IF

V

2.27

Included AngIe Between
Half Intensity Points] 11

Speed of Response

Test Conditions

mcd

2.2
5.0

Max.

C

52

pF

Thermal Resistance

RaJ_pin

120

°C/W

Luminous Efficacy]3]

Tlv

680

lm/W

Time Constant, e-t/t s
VF = 0, f = 1 MHz
Junction-to-Cathode

Notes:
1. 91/2 is the off-axis angle where the luminous intensity is half the on-axis value.
2. The dominant wavelength, "'d' is derived from the CIE Chromaticity Diagram and represents the color of the device.
3. The radiant intensity, 1", in watts per steradian, may be found from the equation Ie = V fI .. where Iv is the luminous intensity in
candelas and fly is luminous efficacy in lumens/watt.
4. Refer to Application Note 1061 for information comparing high performance green with emerald green light output degradation.

1-209

1.0

DH A1GoAs REDI
HIGH
PERFORMANCE

~
II>

HIGH EFFICIENCY RED

GREEN

z

I!!

!! 0.5

~

j

w

a:

0
SOD

550

650

600

750

700

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.
HER, ORANGE, YELLOW,
HIGH PERFORMANCE GREEN
AND EMERALD GREEN

DH AS AIGaAs RED

1I
Ii:w
a:
a:

"uc
a:

~
~
I

_L

90

3DO
280
280
240
220
20D

80

-

r-

J J

1 io
I

180
180
140
120

I

I
I

i!l

I

60

In

50

40

i:

80
60

..!"

I

o.s

./
1.0

1.5

2.0

2.5

3.0

10

0

rtf

II/

YELLOW

jll

I

40
20

h

HIGH
-EFFICIENCY
RED,ORANGE

I

lDO

,"

GREEN-

EMERALD GREEN

0.5

A/

1.0

1.5

2.0

2.5

3.0

3.5

V F - FORWARD VOLTAGE-V

V F- FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage.
HER, ORANGE, YELLOW,
HIGH PERFORMANCE GREEN
AND EMERALD GREEN

DH AS AIGaAs RED
3.D

~

rII~
I!! ..
!!~

fill<

2.5

cc

I.S

3~

1.0

~~
wa:

/

2.0

/

~c

S!.

w
a:

D.5

D.D

/

o

V

/

1/

10

I.

20

25

3D

IF - DC FQRWARD CURRENT - mA

Figure 3. Relative Luminous Intensity vs. Forward Current.

1-210

IF - DC FORWARD CURRENT - mA

4.0

HER, ORANGE, YELLOW,
HIGH PERFORMANCE GREEN
AND EMERALD GREEN

DH AS AIGaAa RED

I.'

I.5

1.3
>_ 1.2
1

if
P D.' .,
1.0

~M

~i

I"'"

D.'

~

10

20

V

L

50

10a

i!I

~~

~

GREEN

EMERALD GREEN

I

D.
6
5

::

U o.•
..

2

A

y 5! o.9
tt!CCI O. 1

UJ

"- 1'-.

D.e

0.0

vr

EFFICIENCY
~ ~ ~:o ---c ~ HIGH
RED,DRANGE

Ih;:

lI!i

.r--

YELLOW

I.'

1.2

20D SOD

IpEAK - PEAK FORWARD CURRENT - InA

D.3
O. 2
O. 1
0

o

10

~

~

~

~

M

~

~

~

IpEAK - PEAK FORWARD CURRENT - mA

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.
HER, ORANGE, YELLOW,
HIGH PERFORMANCE GREEN
AND EMERALD GREEN

DH AS AIGaAs RED

1.S

Hl-HtllfHHttllfH-tt'I\ftfI-t-fflilflll

I •• o,L..J....UJJ~,.~UIL.u,~..
~..IJ.u:,!:'!~""':'~ 1

...

I, - PULSE DUAAnoN - J.'S

' .. - PULSE ovumN -

...

~

Figure D. Maximum Tolerable Peak Current vs. Pulse Duration (Inc MAX per MAX Ratings).

0'

8D'
10' 2ft lI1' 40° &0" 8D' 70' 8D' 8D' lOCI
• - OFF·AXIS ANGLE - DEGREES

NORMAUZ£D INTENSITY

Figure 6. Relative Intensity vs. Angular Displacement.

1-211

FliP"l HEWLETT®
~t:. PACKARD

Surface Mount Chip LEDs
Technical Data
HSMX-C650
HSMX-C670
HSMF-C655

Features

Applications

• Small Size
• Industry Standard
Footprint
• Low Profile
• Tinted, Diffused Optics
• Compatible with IR Solder
Process
• Five Colors and Bicolor
Available
• Available in 8.1DDl Tape on
7" (178 mm) Diameter
Reels

•
•
•
•

Push-Button Backlighting
LCD Backlighting
Symbol Backlighting
Front Panel Indicator

Description
These single and bicolor LEDs
are designed in an industry
.standard package for ease of
handling and use. Five different
LED colors are available in two
compact, low profile, single color
packages. The 3.2 x 1.6 mm.is
an excellent all around package,
and the small 2.0 x 1.25 mm
package is designed for applications where space is limited.
The single color LEDs have

tinted diffused optics. The
bicolor package is untinted,
diffused.
The small size, low 1.1 mm
profile and wide viewing angle
make these LEDs excellent for
backlighting applications and
front panel illumination. They
are compatible with IR reflow
soldering processes.

Device Selection Guide
Footprint
(mm)

DH
AlGaAs
Red

High
Efficiency
Red

Orange

Yellow

Green

3.20 x 1.60

HSMH-C650 HSMS-C650

HSMD-C650 HSMY-C650 HSMG-C650

2.00 x 1.25

HSMH-C670

HSMD-C670 HSMY-C670 HSMG-C670

3.20 x 2.70

1-212

HSMS-C670

Bicolor
HERGreen

HSMF-C655

5964-9360E

~ CATHODEoMAR~

~

o
POLARIlY

1

1.60
(0.063)

r-

l-:r 1

2.00
mol
~
(0.079)

I

1(0.055)

E3

B

(O~~)

0.50(0.020)

t

t

1.25
(0.049)

1---

B

HSMX·C650 Series

HSMX·C670 Series

[1206]

[805]

GREEN

n~--'
~
.J

3.20_~
(:.:)

M

GREEN

0 RED

POLARITY

RED

['

o---N----o

(O~~)

• [

I(O~;~)-I

(0.079)

I

l

J

0.50 (0.020)

f f

III

II

I

1·40T

(0.055)_

HSMF·C655
[1210]

1-213

Absolute Maximum Ratings at TA =25°C
HSMX·C650
HSMF·C655

Parameter

HSMX·C670

Units

DC Forward Current!l]

25

20

rnA

Power Dissipation

65

50

mW

Reverse Voltage (IR = 100 ~)

5

5

V

LED Junction Temperature

95

95

°C

Operating Temperature Range

-25 to +80

-25 to +80

°C

Storage Temperature Range

-30 to +85

-30 to +85

°C

See SMT reflow soldering profile, Figure 6

Soldering Temperature

Notes:
1. Derate linearly as shown in Figure 4 for temperatures above 25°C.

Optical Characteristics at T A =25°C

Part
Number

Color

Luminous
Intensity
Iv (mcd)
@ IF 20 mA[1]
Typ.
Min.

Typ.

Color,
Dominant
Wavelength
Ai2] (nm)
Typ.

DegreesIS1
Typ.

Peak
Wavelength
~eak (nm)

Viewing
Angle
2 £)112

HSMH-C650
HSMH-C670

DH AlGaAs Red

6.3

16.0

650

639

155

HSMS-C650
HSMS-C670

High Efficiency
Red

1.6

5.0

639

626

155

HSMD-C650
HSMD-C670

Orange

1.6

4.0

606

604

155

HSMY-C650
HSMY-C670

Yellow

1.6

5.0

584

586

155

HSMG-C650
HSMG-C670

Green

4.0

9.0

566

571

155

HSMF-C655

High Efficiency
Red

1.6

5.0

639

626

155

Green

4.0

9.0

566

571

155

Notes:
1. The luminous intensity, Iv, is measured at the peak of the spatial radiation pattern which may not be aligned with the
mechanical axis ofthe lamp package.
2. The dominant wavelength, Ad, is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
3. fJl/. is the off-axis angle where the luminous intensity is 1/2 the peak intensity.
4. Chip LEDs are supplied in 8 mm embossed tape on 178 mm (7 in.) diameter reels, with 3000 devices per reel. Minimum order
quantity and order incremenets are in quantity of reels only.

1-214

Electrical Characteristics at TA =25°C

Part
Number

Color

HSMH·C650
HSMH-C670

DHAIGaAs

HSMS-C650
HSMS-C670

High Efficiency

HSMD-C650
HSMD-C670

Forward
Voltage
VF (Volts)
@ i F =20mA
Typ.
Max.

Reverse
Breakdown
Va (Volts)
@ia = 100~
Min.

Capacitance
C (pF)
VF=O,
f= 1 MHz
Typ.

Thermal
Resistance

RaJ .PIN (OCIW)

1.8

2.2

5

46

460
300

1.9

2.6

5

4.0

400
250

Orange

2.1

2.6

5

4.0

400
250

HSMY-C650
HSMY-C670

Yellow

2.1

2.6

5

3.0

400
250

HSMG-C650
HSMG-C670

Green

2.2

3.0

5

8.0

400
250

HSMF-C655

High Efficiency

1.9

2.6

5

3.7

325

2.2

3.0

5

6.3

325

Red
Red

Red
Green

I
~

u

~--------~~--~--~~Ar--4-~~~-----+----------1

II!

Figure 1. Relative Intensity V8. Wavelength.

1-215

1.6

30

c

E

1A

25

I

!Zw

20

II:
II:

/

:>

u
Q

15

./

II:

i~
I

~

o

°1~~~--~~BL~~--~25~--~ao~

V

o

Figure 2. Forward Current vs. Forward Voltage.

40

!Zw

25

a

20

II:

,

Q

II:

i~

15

i'
"'~

10

I

IL

o
o

20

40

60

~
60

100

T A - AMBIENT TEMPERATURE _·C

Figure 4. Maximum DC Current vs. Ambient
Temperature.

.6

.6

A

.2

10· 20· 30" 40· 50" 60· 70" 80"
ANGLE

1-216

10

15

20

25

Figure 3. Relative Luminous Intensity vs. DC Forward
Current.

35

I

/

I 00- DC FORWARD CURRENT - mA

VF - FORWARD VOLTAGE - V

30

;r

,/

10

1

/
V

I

I

-BtB4-~
5 12.011.75 1
11.7
~!!I-071I).('!;D68).
HSMX.ceso SERIES

o
o

I D"Fo(O.OSS)
T ~Ji:.o(o.OSS)

1.75 1 2.0
I 1.75
1(2-D68).!!I-071I).~

OA
(0·018)

HSMF.ce&5 SERIES

Figure 6. Recommended sm Rellow
Soldering Profile.
1.1
(0.043)

HSMX-cB70 SERIES

Figure 7. Recommended Solder Patterns.

r

,,178.0
(7.01)

=-10

-- t

Figure 8. Reeling Orientation.

Q1t.O

,,\3.15)

I

~

Figure 9. Reel Dimensions.
NOTE:
ALL DIMENSIONS IN MILLIMETERS (INCHES).

1-217

•.0010.'0

-----

TAIIU!'

--.

•

-.--~CINCIID)

PART_I.R

_.A

'0."'-1 • 0.'0"-1
1.7.""",
IAI~I

1.711""",

1.11"'....

, .. ..-1
1.'....' ..1

Figure 10. Tape Dimensions.

_ _A L L _ A _

Of. _ (1.17 -CHI Of
EMPTY_NT
POCKETIIIALED WITH

IIIOUNTED WITH

COIIPONaTI

COYERTAPI.

Figure 11. Tape Leader and Trailer Dimensions.

1-218

EIIPTY_

TMIIIII IIIALI.. A I M _
Of.o_('.I71tC1110F

POCKETI8EALIO WITH
COVIIR TAP!.

,CAIIRER_
. ----1
(U-'UItCHI

!lAve_OF
_TAP!.

-

r,,~

HEWLETTIII

a:~ PACKARD

Standard Intensity and Color
Binning Options for LED Lamps
Technical Data
Option S02, S20, S22

Description
Due to applications that require
tightly matched devices, HewlettPackard has developed several
standard options to service these
requirements.
Option 802 consists of devices
which are selected to two Iv
categories. All color bins of the
base parts (yellow and green
devices) fulfill the color requirements of these products.
Option 820 consists of devices
which are selected to two color
bins. All Iv bins of the base parts
fulfill the Iv requirements of these
products.
Option 822 consists of devices
which are selected to two Iv
categories and two color bin
categories.

Ordering Information
To order LED indicators with
these standard options, order the
base part number and add the
option code (802, 820, 822). For
any base part number that does
not appear in the following lists,
please consult your local HewlettPackard representative or your
local franchise distributor.

5964-9361E

Option 802 - Partial base part
number list:
HLMP-D 10 1
HLMP-DI05
HLMP-D150
HLMP-D155
HLMP-D401
HLMP-KlOO
HLMP-KI01
HLMP-KI05
HLMP-KI50
HLMP-K155
HLMP-K402
HLMP-L250
HLMP-RlOO
HLMP-8200
HLMP-8300
HLMP-8400
HLMP-8500
HLMP-T200
HLMP-T300
HLMP-T500
HLMP-0300
HLMP-0400
HLMP-0503
HLMP-0800
HLMP-I002
HLMP-llOO
HLMP-1l20
HLMP-1301
HLMP-1302
HLMP-1320
HLMP-1321
HLMP-1340
HLMP-1385
HLMP-1402
HLMP-1421

HLMP-1440
HLMP-1485
HLMP-1521
HLMP-1523
HLMP-1540
HLMP-1550
HLMP-1585
HLMP-1600
HLMP-1601
HLMP-1620
HLMP-1640
HLMP-1700
HLMP-1719
HLMP-1790
HLMP-3001
HLMP-3002
HLMP-3301
HLMP-3316
HLMP-3351
HLMP-3401
HLMP-3416
HLMP-3451
HLMP-3502
HLMP-3507
HLMP-3517
HLMP-3519
HLMP-3554
HLMP-3600
HLMP-3650
HLMP-3680
HLMP-3744
HLMP-3750
HLMP-3810
HLMP-3850
HLMP-3860
HLMP-3910
HLMP-3950
HLMP-3960

1-219

HLMP-4000
HLMP-4600
HLMP-4700
HLMP-4719
HLMP-4740
HLMP-5030
HLMP-5040
HLMP-5050
HLMP-5060
HLMP-5070
HLMP-5080
HLMP-6001
HLMP-6300
HLMP-6305
HLMP-6400
HLMP-6500
HLMP-6505
HLMP-7000
HLMP-7019
HLMP-7040
HLMP-8109

1-220

HLMP-8110
HLMP-8115
HLMP-8205
HLMP-8209
HLMP-8305
HLMP-8309
HLMP-8320
HLMP-8405
HLMP-8409
HLMP-8505
HLMP-8509
HLMP-8510
HLMP-8520

OPTION 820 - Partial base
part number list:

HLMP-1620
HLMP-1640
HLMP-3400
HLMP-3651

OPTION 822 - Partial base
part number list:

HLMP-S301
HMLP-S500
HLMP-T300
HLMP-T500
HLMP-0401
HLMP-0504
HLMP-1402
HLMP-1440
HLMP-1523
HLMP-1620
HLMP-1719
HLMP-3401
HLMP-3450
HLMP-3850
HLMP-3862
HLMP-4719

Fh3

a!~

HEWLETT"'
PACKARD

LED Light Bars and Arrays

LED Light Bars are HewlettPackard's innovative solution to
fixed message annunciation. The
large, uniformly illuminated light
emitting surface may be used for
backlighting legends or simple
indicators. Four distinct colors are
offered: AlGaAs red, high
efficiency red, yellow, and high
performance green with two
bicolor combinations. The AlGaAs
Red Light Bars provide exceptional brightness at very low drive
currents for those applications
where portability and battery
backup are important considera-

2-2

tions. Each of the eight X-V
stackable package styles offers
one, two, or four light emitting
surfaces. Along with this family of
stackable light bars, HP also
provides a single chip light bar for
high brightness indication of
small areas. Panel Mounts are also
available for all devices.
In addition to light bars, HP offers
effective analog message annunciation with the lO-element LED
Bar Graph Arrays. These bar
graph arrays eliminate the matching and alignment problems

commonly associated with arrays
of discrete LED indicators. Each
device offers easy to handle
packages that are compatible
with standard DIP. sockets. The
10-element Bar Graph Array is
available in standard red, AlGaAs
red, high efficiency red, yellow,
and high performance green. The
multicolor 10-element arrays
have high efficiency red, yellow,
and green LEDs in one package.
The package is X-V stackable,
with a unique interlock allowing
easy.end-to-end alignment.

LED Light Bars
Device
Package Outline Drawing

Description
Part No.
HLMp·2300

\I=:JI

I

HLMP-2500

Green

Green
Diffused

25 mcd

2.2V

Diffused

45 mcd

2.0V

High
8 Pin In-Line; 0.100"
Efficiency Centers; 0.800'L x
Red
0.195"W x 0.245"H

HLMP-2450

Yellow

Diffused

38mcd

2.1 V

HLMP-2550

Green

Green
Diffused

50mcd

2.2V

Diffused

22 mcd

2.0V

Diffused

18med

2.1 V

Green
Diffused

25mcd

2.2V

Diffused

25mcd

2.0V

Diffused

18mcd

2.1 V

Green
Diffused

25mcd

2.2V

Diffused

45mcd

2.0V

Diffused

35mcd

2.1 V

Green
Diffused

50med

2.2V

HLMP-2720
HLMP-2820

HLMP-2635

I

2.0V

2.1 V

HLMP-2620

I

23mcd

20 mcd

HLMP-2800

E3

Diffused

Diffused

HLMP-2700

IDDDDI

High
4 Pin In·Line; 0.100'
Efficiency Centers; 0.400"L x
0.195"W x 0.245"H
Red

Lens

Yellow

HLMP-2600

[]I]

Package

HLMP-2400

HLMP-2350

II

Color

Typical
Typical
Luminous Forward
Intensity Voltage
@20mA @20mA

HLMP-2735
HLMP-2835

High
8 Pin DIP; 0.100"
Efficiency Centers; 0.400"L x
0.400"W x 0.245"H
Red
Dual Arrangement
Yellow
Green

High
16 Pin DIP; 0.100"
Efficiency Centers; 0.800"L x
0.400"W x 0.245"H
Red
Quad Arrangement
Yellow
Green

High
16 Pin DIP; 0.100"
Efficiency Centers; 0.800"L x
Red
0.400"W x 0.245"H
Dual Bar Arrangement
Yellow
Green

Page
No.
2-8

2-3

LED Light Bars (Continued)
Device
Package Outline Drawing

Description
Part No.
HLMP-2655

0

HLMP-2755
HLMP-2855

HLMP-2670

[JDI

HLMP-2770
HLMP-2870

HLMP-2685

D

HLMP-2785
HLMP-2885

Color

Package

High
8 Pin DIP; 0.100"
Efficiency Centers; 0.400'L x
Red
O.4OO"W x 0.245"H
Square Arrangement
Yellow
Green

High
16 Pin DIP; 0.100"
Efficiency Centers; 0.8oo"L x
Red
0.400"W x 0.245"H
Dual Square
Yellow Arrangement
Green

High
16 Pin DIP; 0.100"
Efficiency Centers;. 0.800"L x
0.400"W x 0.245"H
Red
Single Bar Arrangement
Yellow
Green

Lens

Typical
Typical
Luminous Forward
Intensity Voltage
@20mA @20mA

Diffused

43med

2.0V

Diffused

35med

2.1 V

Green
Diffused

50mcd

2.2V

Diffused

45med

2.0V

Diffused

35mcd

2.1 V

Green
Diffused

50mcd

2.2V

Diffused

80mcd

2.0V

.Diffused

70med

2.1 V

Green
Diffused

100 mcd

2.2V

Page
No.
2-8

DH AIGaAs Low Current LED Light Bars
Device

Description

Package Outline Drawing

Part No.

2-4

II

Package

Lens

Page
No.
2-8

HLCP-A100

AIGaAs
Red

4 Pin In-Line; 0.100'
Centers; 0.400"L x
0.195'W x 0.245"H

Diffused

7.5med

HLCP-B100

AJGaAs
Red

8 Pin In-Line; 0.100"
Centers; 0.8oo"L x
0.195"W x 0.245"H

Diffused

15.0 med

ICJI
II

Color

Typical
Typical
Luminous Forward
Intensity Voltage
@3mA
@3mA
1.6 V

DH AIGaAs Low Current LED Light Bars (Continued)
Device

Description
Part No.

Color

HLCP-D100

AIGaAs
Red

SPin DIP; 0.100"
Centers; 0.400"L x
0.400"W x 0.245"H
Dual Arrangement

Diffused

7.5 mcd

HlCP-E100

AIGaAs 16 Pin DIP; 0.100"
Red
Centers; O.SOO"l x
0.4oo"W x 0.245"H
Quad Arrangement

Diffused

7.5mcd

BJ

HlCP-F100

AIGaAs 16 Pin DIP; 0.100"
Centers; O.SOO"l x
Red
0.400'W x 0.245"H
Dual Bar Arrangement

Diffused

15.0mcd

D

HlCP-C100

AIGaAs Spin DIP; 0.100"
Centers; 0.400"l x
Red
0.400'W x 0.245"H
Square Arrangement

Diffused

15.0 mcd

IDI~I

HlCP-G100

AIGaAs 16 Pin DIP; 0.100"
Red
Centers; O.Soo"l x
0.400"W x 0.245"H
Dual Square
Arrangement

Diffused

15.0mcd

HlCP-H100

AIGaAs 16 Pin DIP; 0.100"
Red
Centers; O.SOO'l x
O.4oo"W x 0.245"H
Single Bar Arrangement

Diffused

30.0mcd

Package Outline Drawing

m

IDDDD!
I

I

0

Package

Lens

Typical
Typical
Luminous Forward
Intensity Voltage
@3mA @3mA
1.6V

Page
No.
2-S

LED Bicolor Light Bars
Device
Package Outline Drawing

D

Description
Part No.

Color

HlMP-2950

High
Efficiency
Red!
Yellow

HlMP-2965

High
Efficiency
Red!
Green

Package
SPin DIP; 0.100"
Centers; 0.400"l x
0.400·W x 0.245"H
Square Arrangement

Lens

Typical
Typical
Luminous Forward
Intensity Voltage
@20mA @20mA

Diffused

HER:
20mcd
Yellow:
12 mcd

HER:
2.0V
Yellow:
2.1 V

Diffused

HER:
20mcd
Green:
20mcd

HER:
2.0V
Green:
2.2V

Page
No.
2-S

2-5

Single Chip LED Light Bar
Device
Package Outline Drawing .

Description
Part No.

Color

Package

Lens

Typical
Luminous
Intensity

29112

Typical
Forward
Voltage

HLMP-T200

High
One Chip LED . Tinted
Efficiency Light Bar
Diffused
Red
(626nm)

4.8 mcd
@20mA

HLMP-T300

Yellow
(585 nm)

6.0 mcd
@20mA

2.2V
@20mA

HLMP-T400

Orange
(608nm)

4.8 mcd
@20mA

2.2V
@20mA

HLMP-T500

Green
(569nm)

6.0 mcd
@20mA

2.3V
@20mA

D1

100°

2.2V
@20mA

Page
No.
2-19

LED Bar Graph Arrays
Device
Package Outline Drawing

Description
Part No.
HDSP-4820

Standard
Red

HDSP-4830

Package
20 Pin DIP; 0.100"
Centers;1.0"L x
O.4OO"W x 0.200"

Lens

1250 ILcd
@20mA
DC

1.6 V
@20mA
DC

High
Efficiency
Red

Diffused 3500 ILcd
@10mA
DC

2.1 V
@20mA
DC

HDSP-4840

Yellow

Diffused 1900 ILcd
@10mA
DC

2.2V
@20mA
DC

HDSP-4850

High
Performance
Green

Green
Diffused

2.1 V
@10mA
DC

HDSP-4832

Multicolor

Diffused 1900 ILcd
@10mA
DC

HDSP-4836

Multicolor

Diffused 1900ILcd
@10mA
DCC

HLCP-J100

AIGaAs Red

0000000000

2-6

Color

Diffused

Typical
Typical
Luminous Forward
Intensity Voltage

Diffused

1900 ILcd
@10mA
DC

1000 ILcd
@10mA

1.6 V
@1mA

Page
No.
2-23

Panel Mounts for LED Light Bars
Device
Package Outline Drawing

Part No.
HLMP-2598

HLMP-2350, -2450, -2550,
HLCP-B100

D

HLMP-2599

HLMP-2300, -2400, -2500,
HLCP-A100

D
D

HLMP-2898

HLMP-2600, -2700, -2800
-2655, -2755, -2855
-2950, -2965, HLCP-C100, -0100

HLMP-2899

HLMP-2620, -2720, -2820,
-2635, -2735, -2835
-2670, -2770, -2870
-2685, -2785, -2885
HLCP-E100, -F100, -G100, -H100

I

I

Page
No.

Corresponding Light Bar Module Part Number

2-30

LED Light Bars Standard Options
Option Code

Description

S02

Devices Selected to Two (2) Iv Categories

S22

Devices Selected to Two (2) Iv Categories and Two ( 2) Color Bin Categories

Page No.
2-33

2-7

r/i~ HEWLETT~
a:~ PACKARD

LED LighiBars

HLCP-AIOO, -BIOO, -CIOO,
-DIOO, -EIOO, -FIOO, -GIOO,
-HIOO
HLMP-2300, -2350, -2400,
-2450, -2500, -2550, -2600,
-2620, -2635, -2655, -2670,
-2685, -2700, -2720, -2735,
-2755, -2770, -2785·, -2800,
-2820, -2835, -2855, -2870,
-2885, -2950, -2965

Technical Data

Features

Description

• Large Bright, Uniform Light
Emitting Areas
• Choice of Colors
• Categorized for Light Output
• Yellow and Green
Categorized for Dominant
Wavelength
• Excellent ON-OFF Contrast
• X-Y Stackable
• Flush Mountable
• Can be Used with Panel and
Legend Mounts
• Light Emitting Surface
Suitable for Legend
Attachment per Application
Note 1012
• HLCP-XIOO Series Designed
for Low Current Operation
• Bicolor Devices Available

The HLCP-XIOO and HLMP-2XXX
series light bars are rectangular
light sources designed for a
variety of applications where a
large bright source of light is
required. These light bars are
conflgured in single-in-line and
dual-in-line packages that contain
either single or segmented light
emitting areas. The AlGaAs Red
HLCP-XIOO series LEDs use
double heterojunction AlGaAs on
a GaAs substrate. The HER
HLMP-2300/2600 and Yellow
HLMP-2400/2700 series LEDs
have their p-n junctions diffused
into a GaAsP epitaxial layer on a
GaP substrate. The Green HLMP2500/2800 series LEDs use a
liquid phase GaP epitaxial layer
on a GaP substrate. The bicolor
HLMP-2900 series use a
combination of HERlYellow or
HER/Green LEDs.

Applications
• Business Machine
Message Annunciators
• Telecommunications
Indicators
• Front Panel Process Status
Indicators
• PC Board Identifiers
• Bar Graphs

2-8

5962-7197E

Selection Guide
Light Bar Part Number
HLCP-

Size of
Light Emitting Areas

HLMP-

Number
of
Light
Emitting
Areas

Package
Outline

Corresponding
Panel and
Legend Mount
Part No. HLMP-

AlGaAs

HER

Yellow

Green

AlOO

2300

2400

2500

8.89 mm x 3.81 mm
(.350 in. x .150 in.)

1

A

I=::J

2599

8100

2350

2450

2550

19.05 mm x 3.81 mm
(.750 in. x .150 in.)

1

B

c::===:J

2598

DlOO

2600

2700

2800

8.89 mm x 3.81 mm
(.350 in. x .150 in.)

2

D

c:::o

2898

ElOO

2620

2720

2820

8.89 mm x 3.81 mm
(.350 in. x .150 in.)

4

E

ITIIJ

2899

FI00

2635

2735

2835

3.81 mm x 19.05 mm
(.150 in. x .750 in.)

2

F

~

2899

ClOO

2655

2755

2855

8.89 mm x 8.89 mm
(.350 in. x .350 in.)

1

C

GlOO

2670

2770

2870

8.89 mm x 8.89 mm
(.350 in. x .350 in.)

2

HlOO

2685

2785

2885

8.89 mm x 19.05 mm
(.350 in. x .750 in.)

2950

2950

2965

2965

D

2898

G

CD

2899

1

H

c::::::::J

2899

8.89 mm x 8.89 mm
(.350 in. x .350 in.)

Bicolor

I

D

2898

8.89 mm x 8.89 mm
(.350 in. x .350 in.)

Bicolor

I

D

2898

2-9

Package Dimensions

r

U53
10:
1851

8.81Ol

10.3501

I

MAX

---,

r- ~:=
}-d
'.. ' II=-_=r
LII
'.
II--.l .

3.810
10.1501

I.

1::::1

t-D~
TOP A

END VIEW A. B

--

.

.

.-l.
~"~+l'

BEAT1NG

PLANE

TOPB

1 1
,0 ,80
10.4001
.
MAX

XYV Z

10.1001

•

1.016

PLANE

LUMINOUS
INTENSlTV

10.2461

~41 I~~:'I

:~~

~ XYV.HLXX-XX
Z W
~~rtrtr+r+flrt~~=-~

DOT
CATHODE·

6.223 MAX.

J' iL;::"""
,

2.54 TVP

w

I

CATEGORV

8.223

L

I J 23 4

2.54 TVP

0.11.... l1.li7.

~iE

N

•

10,,~U;BD'"

10.4001

•

~

MAX.

MAX.

I~:~IDEVIEWC.D.I

_.

O.lll4OO.tJ711

•t

0.508'0.115

10.1120.0.0021
TYP.

COLOR BIN

INOTE21

SIDE VIEW E, F,G, H

I

;

10.0501

_j

CJ
'0.180
10.4001
MAX.

E

(~~TU

"0
-- .

MIN'---LJ

~"'0 10.0501

'.890
10.3501

/L

I-

10.1501

END VIEW C.D. E. F. G. H. I

:

1~:~~I,HDFt~:~

i

3.810
(0.1501
--4PLes

PART
NUMBER

tI.2&4 • 0.0&
1000'0.o.tIII2J

II:R:
c=J

CJ :
CJ--ro
c:::::J

LUMINOUS
INTENSITY
CATEGORY

MAX.

10.02300.0031

~

j 2 T -1j

C.I

TYP.

-I

8.890
10.3501

I~I

~h

7.820

6 10.3&01

Irv~~ll t-jlg~1 T ---:l
~

tl

111.2461

~~ 10.3001

:- _

3

6 7

1.018

SIDE B

I

~ PIN

&

10.1001

(0.1123> tI.OII3I

SIDE A

SEATING

3.810

~

-

I

~~T
10.160
10.4001
MAX.

F

1

1-

-

I •.890

D
D1-

10.3501

1 1
t t
8.890 1.210

10.350110.050

~

-

1

10.160

(UOOI
MAX.

G

NOTES:
1. DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES ±o.25 mm (±o.010 IN.) UNLESS OTHERWISE INDICATED.
2. FOR YELLOW AND GREEN DEVICES ONLY.

2-10

Internal Circuit Diagrams

r:u;
~4
A

PIN FUNCTION

PIN

C.D

PIN FUNCTION

PIN
1
2
3
4
5
6
7
8

A
·2300/·2400
·250OIA100
CATHODE.
ANODE.
CATHODEb
ANODEb

B
·23501·2450
·255018100
CATHODE.
ANODE.

1

2
3
4
5
6
7
8

C,D

'6

CATHODEb
ANODEb
CATHODEc

15

9
10
11
12
13
14
15
16

14

ANODEc
CATHODEd
ANODEd

CATHODE.
ANODE.
ANODEb
CATHODE b
CATHODEc
ANODEc
ANODEd
CATHODEd

13
12
11

E.F.G,H
CATHODE.
ANODE.
ANODE b
CATHODE b
CATHODEc
ANODE.
ANODEd
CATHODEd
CATHODE.
ANODE.
ANODEf
CATHODEf
CATHODEg
ANODEg
ANODEh
CATHODE h

10
9

B.

E,F,G,H

PIN FUNCTION

PIN

HER

1

CATHODE.

2

ANODE a

3
4
6

7
8

ANODEd
CATHODEd

5

*

HIGH EFFICIENCY RED LED

*

ANODEb
CATHODE b
CATHODE c
ANODE c

YELLOWI
GREEN
ANODE.
CATHODE.
CATHODEf
ANODEf
ANODEg
CATHODEg
CATHODEh
ANODEh

YELLOW OR GREEN LED

2-11

Absolute Maximum Ratings
Parameter

AlGaAsRed
HLCP-XIOO
Series

HER
HLMP-2300/
2600/29XX
Series

Yellow
HLMP-2400/
2700/2950
Series

Green
HLMP-2500/
2800/2965
Series

37mW'1]

135 mW"]

85mW'3]

135 mW"]

45mAI41

90mAI51

60mA15 ]

90mAI51

15mA

25mA

20mA

25mA

15 mAil I

30mAl21

25mA!3]

30 mA!']

Average Power Dissipated per LED Chip
Peak Forward Current per LED Chip
Average Forward Current per LED Chip
DC Forward Current per LED Chip

6 V!"!

Reverse Voltage per LED Chip

5V

Operating Temperature Range

-20"C to + 100"C!7]

-40"C to +85"C

-20"C to +85"C

-40"C to +85"C

Storage Temperature Range
Lead Soldering Temperature 1.6 mm
(1/16 inch) Below Seating Plane3

260"C for. 3 seconds lS ]

Notes:
1. Derate above 87"C at 1. 7 mW/"C per LED chip. For DC operation, derate above 91"C at 0.8 mA/"C.
2. Derate above 25"C at 1.8 mW/"C per LED chip. For DC operation, derate above 50"C at 0.5 mA/"C.
3. Derate above 50"C at 1.8 mW/"C per LED chip. For DC operation, derate above 60"C at 0.5 mA/"C.
4. See Figure 1 to establish pulsed operation. Maximum pulse width is 1.5 mS.
5. See Figure 6 to establish pulsed operation. Maximum pulse width is 2 mS.
6. Does not apply to bicolor parts.
7. For operation below -20"C, contact your local HP sales representative.
8. Maximum tolerable component side temperature is 134"C during solder process.

Electrical/Optical Characteristics at TA = 250C
AlGaAs Red HLCP-XIOO Series
Parameter
Luminous Intensity
per Lighting Emitting
Area[l]

HLCPAl OOID 1OOIE 100

Max.

Symbol

Min.

Typ.

Iv

3

7.5

mcd

6

15

mcd

BlOO/C100/FIOO/G 100

Units

30

mcd

APEAK

645

nm

Dominant Wavelength[2]

Au

637

Forward Voltage per LED

VF

1.8

Reverse Breakdown Voltage per LED

VR

H100
Peak Wavelength

Thermal Resistance LED Junction-to-Pin

2-12

12

RaJ_PIN

5

Test Conditions
IF

= 3mA

nm

2.2

V

15

V

250

"C/W/
LED

= 20mA
IR = 100~
IF

High Efficiency Red HLMP-2300/2600/2900 Series
Parameter

HLMP-

Symbol

Min.

Typ.

Max.

Units

Test Conditions
IF = 20mA

6

23

mcd

2350/2635/2655/2670/2950[3)

13

45

mcd

2965[4)

19

45

mcd

2685

22

80

mcd

A.EAK

635

nm

Dominant Wavelength[')

A.d

626

Forward Voltage per LED

VF

2.0

Luminous Intensity
per Lighting Emitting
Area[l)

2300/2600/2620

Peak Wavelength

Reverse Breakdown Voltage per LED)5)
Thermal Resistance LED Junction-to-Pin

1.

V.

6

ReJ _PIN

nm

2.6

V

IF =20mA

15

V

1. =

150

"e/W/
LED

100!IA

Yellow HLMP-2400/2700/2950 Series
Parameter
Luminous Intensity
per Lighting Emitting
Area)!)

HLMP-

Symbol

Min.

Typ.

Max.

Units

Test Conditions

I,. = 20mA

6

20

mcd

2450/2735/2755/2770/2950)3)

13

38

mcd

2785

26

70

mcd

A.EAK

583

nm

2400/2700/2720

Peak Wavelength

1.

Dominant Wavelength[2)

A.d

585

Forward Voltage per LED

VF

2.1

Reverse Breakdown Voltage per LED[')

V.

Thermal Resistance LED Junction·to-Pin

ReJ _PIN

6

nm

V

I,. = 20mA

15

V

I. = 100!IA

150

"e/W/
LED

2.6

2-13

High Perfonnance Green HLMP·2IiOO/2800/2961i Series

Parameter
Luminous Intensity
per Lighting Emitting
Area[!)

HLMP·

Symbol

Min.

Typ.

Max.

Units

Test Conditions

1,.= 20mA

5

25

mcd

2550/2835/2855/2870

11

50

mcd

2965[4)

25

50

mcd

2885

22

100

mcd

2500/2800/2820

Iv

~

565

nm

Dominant Wavelength[')

Ad

572

nm

Forward Voltage per LED

V.

2.2

Peak Wavelength

Reverse Breakdown Voltage per LED[5)
Thermal Resistance LED Junction·to·Pin

V.

RaJ •PIN

6

V

I,. = 20 rnA

15

V

I.

150

"e/W/

2.6

=

100 IlA

LED
Notes:
1. These devices are categorized for lumlnous intensity. The intensity category is designated by a letter code on the side of the package.
2. The domlnant wavelength, ~d' is derived from the eIE chromaticity diagram and is the single wavelength which defines ~e ,color of the
device. Yellow and Green devices are categori2ed for dominant wavelength with the color bin designated by a number code on the side
of the package.
3. This is an HER/Yellow bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Yellow electrical/optical
'
characteristics are shoWn in the Yellow table.
4. This is an HER/Green bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Green electrical/optical
characteristics are shown in the Green table.
5. Does not apply to HLMP·2950 or HLMP·2965.

2·14

AIGaAsRed

':~====~====~======t=====~

7r-----r---~----_+----_i

:t::::::E~~~t:~~~~===1.~~~~~
~
OPERATION IN THIS
REGION REQUIRES
TEMPERATURE DERATING
OF IDC MAX

31---+--\

,~,~~~,~O~~~~~~!=~~~

fp - PULSE DURATION - ,..

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration.
15

LJCrN/L-V

R9
.0

10

1

1

I

./'

R9.o' IOO'CrN/LED

~,

1.2

1.0

i
U

0.8

r:- ----. -

$

§

0.8

w
6

020

30

40

60

80

70

80

911

~

0.4

J

0.2

Figure 2. Maximum Allowed DC Current per LED vs.
Ambient Temperature, T.MAX 110 "C.

=

20

10

100

30

40

II'IAIC - PEAK CURRENT PER LED - mA

T. - AMBIENT TEMPERATURE - ·C

Figure 3. Relative Efficiency (Luminous Intensity per Unit
Current) vs. Peak LED Current.

50.0

I

1I

2D.0

§

10.0

I

&.0

V

I

I

~

2.0

..

1.0

i2

o.s

I

0.2

o.1
o

I;'

1

8

,
1/

0.5

v, -

1.0

1.5

2.0

FORWARD VOIIAGE - V

Figure 4. Forward Current vs. Forward Voltage.

1

0.5

10

20

I, - FORWARD CURRENT PER LED - rnA

Figure 5. Relative Luminous Intensity vs. DC Forward
Current.

2-15

HER, Yellow, Green

VELLC

---

-

I

..

,

\

HER GRE

OPERATION IN
THIS REGION
REOUIRES
TEll\PERATURE
DEAATINGOF
IDC MAX

~~

-;~~

!\

~1 ~1'~

10

100

1000

10000

tp - PULSE DURATIDN -,..

Figure 6. Maximum Allowed Peak Current VB. Pulse
Duration.

36

1

30

I

Q

..
Ii..
..
~

il
!!
I

25
20

IS

1.3

HEAI.GRE~N
V~LLCJw

\

118.... 322"CIW/LED'

-

RI! • Jo.ck/LEh ".-

~6! .J..C,.!v/LEb .......

>

II
~

\

w

"YO

~ ',)

YO

O!:

"

10

~

.....,

1.1
1.0

0.'

Ii

0.8

.."

0.8

~

0.7

00

10

20

40

30

50

80

70

80

~o

10

FIgure 7. Maximum Allowable DC Current per LED VB.
Ambient Temperature, T. MAX 100"C.

=

10

Go

./

I! rv

10
50

/1

U
I

40

i.

30

~

10

o

1.0

!if
Zii

VELLOW

h

')If
/I

lB

2.0

30

40

50

10

70

10

10

1.8
1.8

!i~

lA

Ira

1.2

3~

1.0

IO-

4.0

5.0

Y. - FORWARD VOLTAGE· Y

Figure 9. Forward Current VB. Forward Voltage
Characteristics.

~
~
~

0.8

r

0.8

u
0.2

I

3.0

20

ZoO

if!

~~
wi

Ii

20

ro

202

til

HER

"

Ii!

f--

2 ••

.1 GREJN

70

u
Q

-

Figure 8. Relative Emclency (Luminous intensity per Unit
Current) VB. Peak LED Current.

II

80

I

.
i.
.

L~REEN -

1__ - PEAK CURRENT PER LED· mA

TA -AMBIENTTEMPERATURE-"C

~
w

~

~ ~-

0.11

j

Q

.\ .-

1.2

:I

1:

HER

VELLOW

,
'\ ,
X~
,/

r

l..c
HER. VELLOW.

~RE~N I 1- r- -

",

&

1.1'

10

II

20

2&

30

I, - FORWARD CURRENT PER LED - mA

Figure 10. Relative Luminous intensity VB. DC Forward
Current.

For a detailed explanation on the use qf data sheet information and recommended soldering procedures,
see Application Notes 1005,1027, and 1031.
2-16

Electrical
These light bars are composed of
two, four, or eight light emitting
diodes, with the light from each
LED optically scattered to form
an evenly illuminated light
emitting surface.
The anode and cathode of each
LED is brought out by separate
pins. This universal pinout
arrangement allows the LEDs to
be connected in three possible
confIgurations: parallel, series, or
series parallel. The typical
forward voltage values can be
scaled from Figures 4 and 9.
These values should be used to
calculate the current limiting
resistor value and typical power
consumption. Expected maximum
VF values for driver circuit design
and maximum power dissipation,

may be calculated using the
following VFMAX models:
AlGaAs Red HLCP-X100 series
VFMAX = 1.8 V + IPeak (20 Q)
For: IPeak ~ 20 rnA
VFMAX = 2.0 V + Ipeak (10 Q)
For: 20 rnA ~ IPeak ~ 45 rnA

HER (HLMP-2300/2600/2900),
Yellow (HLMP-240012 700/2900)
and Green (HLMP-2500/2800/
2900) series
VFMAX = 1.6 + Ipeak (50 Q)
For: 5 rnA ~ Ipeak ~ 20 rnA
VFMAX = 1.8 + Ipeak (40 Q)
For: Ipeak ;:: 20 rnA

The maximum power dissipation
can be calculated for any pulsed
or DC drive condition. For DC
operation, the maximum power

dissipation is the product of the
maximum forward voltage and the
maximum forward current. For
pulsed operation, the maximum
power dissipation is the product
of the maximum forward voltage
at the peak forward current times
the maximum average forward
current. Maximum allowable
power dissipation for any given
ambient temperature and thermal
resistance (R8J .,J can be determined by using Figure 2 or 7. The
solid line in Figure 2 or 7 (R8J _A of
600/538 C/W) represents a typical
thermal resistance of a device
socketed in a printed circuit
board. The dashed lines represent
achievable thermal resistances
that can be obtained through
improved thermal design. Once
the maximum allowable power
dissipation is determined, the
maximum pulsed or DC forward
current can be calculated.

Optical
Size of Light
Emitting
Area

Surface Area
Sq. Metres
67.74 x 10""

729.16 x 10""

8.89 mm x 3.81 mm

33.87 x 10""

364.58 x 10""

8.89 mm x 19.05 mm

135.48 x 10""

1458.32 x 10""

3.81 mm x 19.05 mm

72.85 x 10""

781.25 x 10""

1tIv (cd)
L (footlamberts) = - v

A (ft2)

=

IAVG
[ I
TEST

]
(T]IPEAJ{)

(I. Data Sheet)

Sq. Feet

8.89 mm x 8.89 rum

The radiation pattern for these
light bar devices is approximately
Lambertian. The luminous
sterance may be calculated using
one of the two following formulas:

IVTIMEAVG

Refresh rates of 1 kHz or faster
provide the most efficient
operation resulting in the maximum possible time average
luminous intensity.
The time average luminous
intensity may be calculated using
the relative efficiency characteristic of Figure 3 or 8, T]IpEAK' and
acljusted for operating ambient
temperature. The time average
luminous intensity at TA = 25"C is
calculated as follows:

where:
I TEST = 3 rnA for AlGaAs Red
(HLMP-XOOO series)
20 rnA for HER,
Yellow and Green
(HLMP-2XXX series)
Example:
For HLMP-2735 series

I
VTIME AVG

12 rnA]
= [- (1.18) (35 mcd)
20 rnA

= 25 mcd

2-17

The time average luminous
intensity may be acijusted for
operating ambient temperature by
the following exponential
equation:

Iv (T,J = Iv (25"C)e[K (T. -25"0)1
Color

K

AlGaAsRed

-O.0095/"C

HER

-O.0131/"C

Yellow

-O.0112/"C

Green

-O.0104/"C

Example:
Iv (SO"C) = (25mcd)e['()·0ll2 (80-25)[
= 14mcd.

2-18

Mechanical
These light bar devices inay be
operated in ambient temperatures
above +60"C without derating
when installed in a PC board
configuration that provides a
thermal resistance pin to ambient
value less than 2S0"C/W/LED. See
Figure 2 or 7 to determine the
maximum allowed thermal
resistance for the PC board,
RapC-A, which will permit
nonderated operation in a given
ambient temperature.
To optimize device optical
performance, specially developed
plastics are used which restrict
the solvents that may be used for
cleaning. It is recommended that
only mixtures of Freon (F113)
and alcohol be used for vapor
cleaning processes, with an

immersion time in the vapors of
less.than two (2) minutes
maximum. Some suggested vapor.
cleaning solvents are Freon TE,
Genesolv DES,Arklone A or K. A
60"C (140"F) water cleaning
process may also be ~ed, which .
includes a neutralizer rinse (3%
ammonia solution or equivalent),
a surfactant rinse (I % detergent
solution or equivalent), a hot
water rinse and a thorough air
dry. Room temperature cleaning
may be accomplished with Freon
T-E35 or T-P35, Ethanol,
Isopropanol or water with a mild .
detergent.
For further information on
soldering LEDs please refer to
Application Note 1027.

-

rli~ HEWLETT'"
~~PACKARD

Single Chip LED Light Bar
Technical Data
HLMP-T200
HLMP-T300
HLMP-T400
HLMP-T500

Features
• Flat Rectangular Light
Emitting Surface
• Choice of 4 Bright Colors
• Excellent On/Off Contrast
• Ideal as Flush Mounted
Panel Indicators
• Long Life: Solid State
Reliability
• Solder Coated Leads

Applications
• Bar Graphs
• Front Panel Status
Indicators
• Telecommunications
Indicators

• Push Button Dlumination
• PC Board Identifiers
• Business Machine Message
Annunciators

Description
The HLMP-T200/-T300/-T400/
-T500 light bars are rectangular
light sources designed for a
variety of applications where this
shape and a high sterance are
desired. These light bars consist
of a rectangular plastic case
around an epoxy encapsulated
LED lamp. The encapsulant is
tinted to match the color of the

emitted light. The flat top surface
is exceptionally uniform in light
emission and the plastic case
eliminates light leakage from the
sides of the device.

Package Dimensions

3.18

r'::S'l

~!:,,9IL' .. JI - '-:';'~'

•

3.56

,0.1401

t

1.85

,0.01161

'0.225'
NOTES:

1. DIMENSIONS ARE IN MILLIMETRES (INCHES!.
2. TOLERANCES ARE :!:(J.26 mm (:1:0.010 INCH)
UNLESS OTHERWISE NOTED.

5963-7350E

2-19

Electrical/Optical Characteristics at TA = 25°C
Symbol
Iv

291/2
ApEAK

Description
Luminous Intensity

Included Angle Between
Half Luminous Intensity
Points
Peak Wavelength

A.!

Dominant Wavelength

ts

Speed of Response

C

Capacitance

R9JC

Device
HLMP·
High Efficiency Red
T200
Orange
T400
Yellow
T300
Green
T500

3.0

4.8

3.0

4.8

3.0

4.8

3.0

6.0
100

All

High Efficiency Red
Orange
Yellow
Green
High Efficiency Red
Orange
Yellow
Green
High Efficiency Red
Orange
Yellow
Green
High Efficiency Red
Orange
Yellow
Green

Thermal Resistance

All

VF

Forward Voltage

HER/Orange
Yellow
Green

VR

Reverse Breakdown
Voltage
Luminous Efficacy

All

llv

Min. Typ. Max. Units

High Efficiency Red
Orange
Yellow
Green

635
612
583
565
626
608
585
569
350
350
390
870
4
4
8
11
260
1.5
1.5
1.6
5.0

2.2
2.2
2.3

145
262
500
595

Test
Conditions

mcd

IF = 20 rnA

Deg.

IF = 20 rnA
See Note 1

nm

Measurement
at Peak

nm

See Note 2

ns

pF

V

Junction to
Cathode Lead
at Seating Plane
IF = 20 rnA

V

IR = 100 J.IA

°CIW
2.6
2.6
2.6

VF=O;
f= 1 MHz

lumens See Note 3
Watt

Notes:
1. 01/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, A..!, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the
color of the device.
3. Radiant intensity, Ie' in watts/steradian, may be found from the equation Ie = lvfrlv, where Iv is the luminous intensity in candeias
and 11v is the luminous efficacy in lumens/watt.

2·20

Characteristics at TA = 25"C
....._-,....._.,_------"T"-----__,

I.0r-------r---..,~-_,~_r_,

I
!

~.r---------_t~--,Ar_--~~_,~-~--1r\_-------_4---------__1

...

,..
Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red, Orange, Yellow, and Green Light Bars

10

J
:/

80

1
~

ai

II:
II:

.

70

/

B

&0 RED.

I2

«I

"

... .
,.

t:

>--

YELLOW

J~

ORANGE

30

G"E~N±-

.

iii!
-N

Ifi:
""III

~:J

... "

§~

.."

...

3.0

/

'.6
,.0

..... .,./

V
'5

20

~~

~:'!J.E

."

-

G"E~ -

f-

Ii
I

,,/

.5

26

Icc - DC CURRENT PER LED - mA

Figure 3. Relative Luminous Intensity
vs. DC Forward Current.

Figure 2. Forward Current vs.
Forward Voltage Charaeteristics.

J

/~

'0

0.0

Vp -FORWARDVOLTAGE-V

..

~\

1

>"

'.t

0

YELLOW

.. :I

l/i

0,.. L-}2.0

!c
d
!!C

1.3
2.0

30

0·'0

II"EAK - PEAK CURRENT PER LED - mA

Figure 4. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. LED Peak Current.

, ,\
'~!I

,

k

.pk

~

~

1\
'0

00

, ,

~

~

'00

'000

'0.000

Ip - PULSE DURATION - loll

Figure 5. Maximum Tolerable Peak
Current vs. Pulse Duration. One MAX
as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular
Displacement.

2-21

Absolute Maximum Ratings at TA = 25°C
Parameter
Peak Forward Current
Average Forward Current!!!
DC Current!2]
Power Dissipation
LED Junction Temperature
Operating Temperature Range
Storage Temperature Range
Reverse Voltage (lR = 100~)
Transient Forward Current!3]
(10 J.1sec Pulse)
Lead Soldering Temperature
[1.6 mm (0.063 in.) below
seating plane 1

High Efficiency Red/
Orange
90
25
30
88

-40 to +85
-55 to +100

Yellow
60
20
20
64
110
-40 to +85
-55 to +106
5
500

Green
90
25
30
88

-20 to +85
-55 to +100

Units
rnA
rnA
rnA

mW
OC
OC
V
rnA

2600C for 3 seconds

Notes:
1. See Figure 5 to establish pulsed operating conditions.
2. For Red, Orange, and Green derate linearly from 50°0 at 0.5 mAl°O. For Yellow derate linearly from 50°0 at 0.34 mA/"0.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die
and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current liated in the Absolute
Maxlmum Ratings.

Optical
The radiation pattern for these
light bar devices is approximately
Lambertian. The luminous sterance
may be calculated using one of the
two following formulas:

Lv (cd/m2)

=

Iv (cd)

A (m2)

Lv (footlamberts) = ltIy (cd)
A (ft2)

Size of light emitting area (A)
= 3.18 mmx 5.72 mm
= 18.19 x 10-6 m2
= 195.8 x 10-6 ft2

2-22

F/i;iW HEWLETT®

~r... PACKARD

lO-Element Bar Graph Array
Technical Data
HLCP-JI00
HDSP-4820
HDSP-4830
HDSP-4832

_

Features

Description

• Custom Multicolor Array
Capability
• Matched LEDs for Uniform
Appearance
• End Stackable
• Package Interlock Ensures
Correct Alignment
• Low Profile Package
• Rugged Construction
• Large, Easily Recognizable
Segments
• High ON-OFF Contrast,
Segment to Segment
• Wide Viewing Angle
• Categorized for Luminous
Intensity
• HDSP-4832/4836/4840/4850
Categorized for Dominant
Wavelength
• HLCP-JI00 Operates at Low
Current
Typical Intensity of 1.0 mcd at
1 rnA Drive Current

These 10-element LED arrays are
designed to display information
in easily recognizable bar graph
form. The packages are end
stackable and therefore capable
of displaying long strings of
information. Use of these bar
graph arrays eliminates the
alignment, intensity, and color
matching problems associated
with discrete LEDs. The HDSP4820/4830/4840/4850 and HLCPJ 100 each contain LEDs of one
color. The HDSP-4832/4836 are
multi color arrays with High
Efficiency Red, Yellow, and High
Performance Green LEDs in a
single package.

Applications
•
•
•
•
•

Industrial Controls
Instrumentation
Office Equipment
Computer Peripherals
Consumer Products

-r

Package Dimensions
25 .40 (1.000) M A X . i

ri

0.38
(0.015)

11-----------1---

5.0F 88 888888

t

(~Oi~)

1. DIMENSIONS IN MILLIMETERS (INCHES).
2. ALL UNTOLERANCED DIMEMSIONS FOR
REFERENCE ONLY.
3. HDSP-48321-48361-4840/-4850 ONLY.

1----+-+----4-1-----J~

2.54 _
(0.100)
6.10:1: 0.25
(0.240 • 0.010)

I

PIN ONE
MARKING

JLJ

0.61
(0.024)

5963-7037E

CUSTOM MULTI COLOR ARRAYS
ARE AVAILABLE WITH
MINIMUM DELIVERY REQUIREMENTS. CONTACT YOUR LOCAL
DISTRIBUTOR OR HP SALES
OFFICE FOR DETAILS.

R~,
U

(0.015)

L2.54.0.25
(0.100.0.010)

7.62 ± 0.38
(0.300 • 0.015)

2-23

Absolute Maximum RatingS[7]

"

HER
Yellow
Red
AlGaAsRed
HDSP-4820
HLCP-JI00
HDSP-4830
HDSP-4840
Parameter
Average Power
37mW
87mW
50mW
63mW
Dissipation per LED
(TA = 25"C)
45mA[2]
90mA[3]
60mA[3)
150mA[1]
Peak Forward Current
per LED
30mA[4]
15mA[4)
30mA[5)
20mA[5)
DC Forward Current
per LED
Operating
-40°C to +85°C -20°C to + 100°C
-40°C to +85°C
Temperature Range
Storage Temperature -40°C to +85°C -55°C to + 100°C
-40°C to +85°C
Range
3.0V
Reverse Voltage per
3.0V
5.0V
LED
260°C for 3 seconds[8)
Lead Soldering
Temperature
(1.59mm
(1/16 inch) below
seating plane)[6)

Green
HDSP-4850
105mW

90mA[3)
30mA[5]
-20°C to +85°C

Notes:
1. See Figure 1 to establish pulsed operating conditions. MaJtimum pulse width is 1.5 ms.
2. See Figure 2 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
3. See Figure 8 to establish pulsed operating conditions. Maximum pulse width is 2 ms.
4. Derate maximum DC current for Red above TA = 62"C at 0.79 mAl°C, and AlGaAs Red above TA = 91°C at 0.8 mAl°C. See Figure 3.
5. Derate maximum DC current for HER above TA = 48°C at 0.58 mAI"C, Yellow above TA = 70"C at 0.66 mAI"C, and Green above
TA = 37"C at 0.48 mA/"C. See Figure 9.
6. Clean only in ~ter, isopropanol, ethanol, Freon TF or TE (or equivslent), or Genesolve DI-15 (or equivslent).
7. Absolute maximum ratings for HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/4840/
4850 maximum ratings.
8. Maximum tolerable component side temperature is 134"C during solder process.

Internal Circuit Diagram

•

20

b

19

c

18

d

17

•

16

I

15

9

14

h

13

I

10

2·24

J

1.2

11

Pin
1
2
3
4
5
6
7
8
9
10

Function
Anode a
Anode b
Anode c
Anode d
Anode e
Anode f
Anode g
Anode h
Anode i
Anodej

Pin
11

12
13
14
15
16
17
18
19
20

Function
Cathodej
Cathode i
Cathode h
Cathode g
Cathode.!
Cathode e
Cathoded
Cathode c
Cathode b
Cathode a

Multicolor Array Segment Colors
Segment
a
b
c
d
e
f
g
h
i
j

HDSP-4832
Segment Color
HER
HER
HER
Yellow
Yellow
Yellow
Yellow
Green
Green
Green

HDSP-4836
Segment Color
HER
HER
Yellow
Yellow
Green
Green
Yellow
Yellow
HER
HER

Electrical/Optical Characteristics at TA

= 25"C[4]

Red HDSP-4820
Parameter
Luminous Intensity per LED
(Unit Average)ll]
Peak Wavelength
Dominant Wavelengthl2]
Forward Voltage per LED
Reverse Voltage per LEDI5]
Temperature Coefficient VF per LED
Thermal Resistance LED Junction-to-Pin

Symbol
Iv

Min.

Typ.

610

1250

ApEAK
Ad
VF
VR

3

~VF/oC

Raj_PIN

655
645
1.6
12
-2.0
300

Max.

Units
Ilcd

Test Conditions
IF = 20 rnA

nm
nm

2.0

V
V
mV/OC
OC/W/LED

Max.

Units
Ilcd

IF = 20 rnA
IR = 100'JlA

AlGaAs Red HLCP-JI00
Parameter
Luminous Intensity per LED
(Unit Average)ll]

Symbol
Iv

Min.

Typ.

600

1000
5200

Peak Wavelength
Dominant Wavelength l2 ]
Forward Voltage per LED
Reverse Voltage per LEDI5]
Temperature Coefficient VF per LED
Thermal Resistance LED Junction-to-Pin

ApEAK
Ad
VF
VR
~VF/OC

Raj_PIN

5

645
637
1.6
1.8
15
-2.0
300

Test Conditions
IF = 1 rnA
IF = 20 rnAPk;
1 of 4 Duty Factor

nm
nm
V

2.2
V
mV/OC
°C/W/LED

IF = 1 rnA
IF = 20 rnA
IR = 100 JlA

2-25

High Efficiency Red HDSP·4830
Parameter
Luminous Intensity per LED
(Unit Average)[1,4]
Peak Wavelength
Dominant Wavelengthl2]
Forward Voltage per LED
Reverse Voltage per LEDI5]
Temperature Coefficient VF per LED
Thermal Resistance LED Junction·to·Pin

Symbol

Min.

Typ.

Iv

900

3500

Units
Ilcd

635
626
2.1
30
·2.0
300

run
nm
V
V
mV/OC
OC/W/LED

ApEAK
Ad
VF
VR
!!NF/OC
RaJ .PIN

3

Max.

2.5

Test Conditions
IF = 10 rnA

IF
IR

= 20 rnA
= 100 IlA

Yellow HDSp·4840
Parameter
Luminous Intensity per LED
(Unit Average)[1,4]
Peak Wavelength
Dominant Wavelengthl2,3]
Forward Voltage per LED
Reverse Voltage per LEDI5]
Temperature Coefficient VF per LED
Thermal Resistance LED Junction·to·Pin

Symbol

Min.

Typ.

Iv

600

1900

ApEAK
~
VF
VR
tNF/OC
RaJ_PIN

581
3

583
585
2.2
40
·2.0
300

Max.

592
2.5

Units
Ilcd
run
nm
V
V
mV/OC
OC/W/LED

Test Conditions
IF = lOrnA

IF
IR

= 20 rnA
=100 IlA

Green HDSP·4850
Parameter
Luminous Intensity per LED
(Unit Average)ll,4]
Peak Wavelength
Dominant Wavelength l2 ,3]
Forward Voltage per LED
Reverse Voltage per LEDI5]
Temperature Coefficient VF per LED
Thermal Resistance LED Junction·to·Pin

Symbol
Iv

Min.

Typ.

600

1900

APEAK
Ad
VF
VR
llVF/OC
RaJ_PIN

3

566
571
2.1
50
-2.0
300

Max.

577
2.5

Units
Ilcd
run
run
V
V
mV/OC
OC/W/LED

Test Conditions
IF = 10 rnA

IF
IR

= 10 rnA
= 100 IlA

Notes:
1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the
package.
.
2. The dominant wavelength, A..!, is deIived from the CIE chromaticity diagram and is that single wavelength which defines the color of
the device.
3. The HDSP-4832/-4836/-4840/-4850 bar graph arrays are categorized by dominant wavelength with the category designated by a
number ac:\jacent to the intensity category letter. Only the yellow elements of the HDSP·4832/-4836 are categorized for color.
4. Electrtcalloptics1 characteIistlcs of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830
charactertstics. CharacteIistics of Yellow elements of the HDSP-4832/-4836 are Identics1 to the HDSP-4840. Charactertstics of
Green elements of the HDSP-4832/-4836 are identics1 to the HDSP-4850.
.
5. Reverse voltage per LED should be limited to 3.0 V max. for the HDSP-4820/-4830/·4840/·4850/·4832/·4836 and 5.0 V max. for.
.
the HLCP.J100.

2·26

20

,,1i!!Z
2!:~1i!

I I II I I I I I I

15
12.5
10

1111

1111

t,-

1

8

!(a::a::

a: w ::>
w"' u
... ::Eu
oWe
::EI-::E

1111

% ~-=~ $~
lft lft ;fI 1t1!l.

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE
DERATING OF IDC MAX

%

i~i

10

\

100

~

1000

Ip - PULSE DURATION -

I

OUI-

","'iii
iIi:l... ew

~l~

1.5

1

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE
DERATING OF IDC MAX

~§fa

~

1

9

8
7
6

~ffi~
:&a:::E

':II

\

10

"'::E

DC OPERATION

111

10000

1
1

10

~SEC

i~
::>1

UIUZ
e W
::E::E

I~

~ffi

::E'"

35

30

eW
ROJ.A = SOO·C/W

R~D

25

\

20
15

AIGaAsRED

,

r\

1.0

/

~~ 0.8

/

-'!:!

~~

0.2

0.9

g~

0.8

w

0.7

o ./'
o

I

-

1SO

I
RED

I'

Q

~~
~
we
a: E

'0

",N

Ul!c

I

0.6

IAIGaAsRED

rl

0.5
0.4

~

o

20

40

SO

80 100 120 140 160

IpEAK - PEAK SEGMENT CURRENT - rnA

0.5 1.0 1.5 2.0

2.5 3.0 3.5 4.0

VF - FORWARD VOLTAGE - V

Figure 5. Forward Current vs.
Forward Voltage.

~

Z2

0.4

1.0

~

RJD

20

1.2

0.6

~~

11

11

AIG!As~ED
111 yo I-"""

Figure 4. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

1.4

W-'
~e
I-::E
:sa:

e"
§:c

1.

""

Figure 3. Maximum Allowable DC
Current vs. Ambient Temperature.
TJMAX = 100"(; for Red and
TJMAX = 110"(; for AlGaAs Red.

~I:!

1.2

~i

".
I

::Ee
::>w

wa::

5

10

TA - AMBIENT TEMPERATURE _·C

~~
~!c

DC OPERATION

W~

I

~
11

10000

Figure 2. Maximum Tolerable Peak Current vs. Pulse
Duration - AlGaAs Red.

~c

!iii

~

1000

Ip - PULSE DURATION -~.

Figure 1. Maximum Tolerable Peak Current vs. Pulse
Duration - Red.
40

100

/
V

/

/
;'
10

15

20

25

IF - FORWARD CURRENT PER SEGMENT - mA

Figure 6. Relative Luminous lntensity
vs. DC Forward Current - Red.

0.1
0.1

0.2

0.5

10

20

IF - FORWARD CURRENT PER SEGMENT

Figure 7. Relative Luminous lntensity
vs. DC Forward Current - AlGaAs.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures,
See Application Note 1005.
2-27

HER, Yellow, Green

tp ~ PULSE DURATION - ~SEC

Figure 8. Maximum Tolerable Peak Current \'S. Pulse Duration HER/Yellow/Green.
40

!Zw

Ro~'A • 600'C/W

3a

~1
u,

30

Q!Z

25

IIw

GR~ENIH~R

i~

20

;!
~

.

15
10

GR~E~

YE~OW

~

'\ HEJ
~'\

" "N
" ""

YELLOlll

~

,w

II

11

1.6

li
ili
w

II!

1.0

~

0.8

I/~ ~

1.1

90
GREEN SERIES
60

n

0.9

I

0.7
0.6

o

60

J I-- YELLOW SERIES

50
40

r---

30

HER-..,
SERIES

Ih

20
10

o

1.0

~

W
'f

IpEAK·- PEAK SEGMENT CURRENT - mA

3.0

Figure 10. Relative Efficienl!)'
(Luminous Intensity per Unit
Current) \'S. Peak Current.

4.0

6.0

VF -FORWARD VOLTAGE-V

Figure 11. Forward Current \'S.
Forward Voltage.

/

I ::

V

/

1

2.5

3

~

2.0

10 20 80 40 50 60 70 60 90 100

4.0

-II

I

70

GREEN SERIES

J

TA - AMBIENT TEMPERATURE - 'C

Figure 9. Maximum Allowable DC
Current \'S. Ambient Temperature.
TJMAX = 100"C.

~

.,

1.2

-

HER SERIES

/

1.3

.~,
~

..J

...... YI!LLOW SJlRIES

1.6

1A

2.0
1.5

~

1.0

II!

0.5

oV
o

/
6

V
10

I

16

20

26

30

36

40

IF - FORWARD CURRENT PER SEGMENT - mA

Figure 12. Relative Luminous
Intensity vs. DC Forward Current.

For a Detailed Explanatirm on the Use of Data Sheet Inj'ormatirm and Recommended Soldering Procedures,
See Applicatirm Note 1005.

Electrical/Optical
These versatile bar graph arrays
are composed of ten light emitting diodes. The light from each
LED is optically stretched to form
individual elements. The Red
(HDSP-4820) bar graph array
LEDs use a p-n junction diffused
into a GaAsP epitaxial layer on a
GaAs substrate. The AlGaAs Red
(HLCP-JIOO) bar graph array
LEDs use double heterojunction
AlGaAs on a GaAs substrate. HER
(HDSP-4830) and Yellow (HDSP4840) bar graph array LEDs use
a GaAsP epitaxial layer on a GaP
substrate. Green (HDSP-4850)
bar graph array LEDs use liquid
phase GaP epitaxial layer on a
GaP substrate. The multicolor bar
graph arrays (HDSP-4832/4836)
have HER, Yellow, and Green
LEDs in one package.
These displays are designed for
strobed operation. The typical
forward voltage values can be
scaled from Figures 5 and 11.
These values should be used to
calculate the current limiting
resistor value and typical power
consumption. Expected maximum VF values for driver circuit
design and maximum power
dissipation may be calculated
using the VFMAX models:

Standard Red HDSP-4820 series
VFMAX = 1.8 V + Ipeak (10 Q)
For: Ipeak ~ 5 rnA
AlGaAs Red HLCP-J100 series
VFMAX = 1.8 V + Ipeak (20 Q)
For: IPeak S; 20 rnA
VFMAX = 2.0 V + Ipeak (10 Q)
For: Ipeak ~ 20 rnA
HER (HDSP-4830) and Yellow
(HDSP-4840) series
VFMAX = 1.6 + IPeak (45 Q)
For: 5 rnA S; Ipeak S; 20 rnA
VFMAX = 1. 75 + Ipeak (38 Q)
For: Ipeak ~ 20 rnA
Green (HDSP-4850) series
VFMAX = 2.0 + Ipeak (50 Q)
For: IPeak > 5 rnA
Figures 4 and 10 allow the
designer to calculate the
luminous intensity at different
peak and average currents. The
following equation calculates
intensity at different peak and
average currents:
IyAVG = (IFAVG/IFAVG DATA
SHEET)llpeak)(IyDATA
SHEET)

Where:
IyAVG is the calculated time
averaged luminous intensity
resulting from IFAVG.
IFAVG is the desired time
averaged LED current.
IFAVG DATA SHEET is the data
sheet test current for IyDATA
SHEET.
llpeak is the relative efficiency at
the peak current, scaled from
Figure 4 or 10.
Iy DATA SHEET is the data sheet
luminous intensity, resulting
from IFAVG DATA SHEET.
For example, what is the
luminous intensity of an HDSP4830 driven at 50 rnA peak 1/5
duty factor?
IFAVG

= (50 rnA)(0.2) = 10 rnA

IFAVG DATA SHEET = 10 rnA
ll p eak = 1.3
Iy DATA SHEET = 3500 I1cd
Therefore
IyAVG

= (10 mA/iO rnA)
(1.3)(3500 I1cd)
= 4550 I1cd

2-29

r/iiiW HEWLETTIBl
a:~PACKARD

Panel and Legend Mounts for
LED Light Bars
Technical Data
HLMP-2598
HLMP-2599
HLMP-2898
HLMP-2899

Features

Description

• Firmly Mounts Light Bars in
Panels
• Holds Legends for Front
Panel or PC Board
Applications[1)
• One Piece, Snap-in Assembly
• Matte Black Bezel Design
Enhances Panel Appearance
• Four Sizes Available
• May Be Installed in a Wide
Range of Panel Thicknesses
• Panel Hole Easily Punched
or Milled

This series of black plastic be;jiel
mounts is designed to install
Hewlett-Packard Light Bars in
instrument panels ranging in
thickness fromI.52 mm (0.060
inch) to 3.18 rom (0.125 inch). A
space has been provided for
holding a 0.13 mm (0.005 inch)
film legend over the light emitting
surface of the light bar module.

Selection Guide
Panel and
Legend
Mount
Part No.
lll.MP2598
2599
2898

2899

Corresponding
Light Bar Module
Part No.
lll.CPHLMPBlOO
2350,2450,2550
A100
2300,2400,2500
DIOO
2600,2700,2800
ClOO
2655,2755,2855
2950,2965,2980
ElOO
2620,2720,2820
F100
2635,2735,2835
GlOO 2670,2770,2870
H100
2685,2785,2885

Panel Hole Installation Dimensions(2 )
7.62 rom (0.300 inch) x 22.86 mm (0.900 inch)
7.62 mm (0.300 inch) x 12.70 rom (0.500 inch)
12.70 mm (0.500 inch) x 12.70 rom (0.500 inch)

Package
Outline
c:::I B
CI A
C

12.70 mm (0.500 inch) x 22.86 rom (0.900 inch)

D

[]

I:J

Notes:
1. Application Note 1012 addresses legend fabrication options.
2. Allowed hole toleran,ce: +0.00 mm, -0.13 rom (+0.000 inch, -0.005 inch). Permitted radius: 1.60 rom (0.063 inch).

2-30

5963-7038E

Package Dimensions

o
SIOEA.B

~

I

13.12

J:

0.25

10.540' 0.0101

1_

I

23.88! 0.25 ~

-10.940, 0.0101

·£[gl~::'I~I
Tope

TOP 0

1

II

NOTES: 1. DIMENSIONS IN MILLIMETRES (INCHES)
2. UNTOLERANCED DIMENSIONS ARE FOR

0.16
CO.O:m1

-+11.............J
6.22' 0.25
1
. 110246 • 0.0101

o
SIDE C,D

REFERENCE ONLY.

Mounting Instructions
1. Milll 3 1or punch a hole in the
panel. DebuIT, but do not
chamfer, the edges of the hole.
2. Place the front of the mount
against a solid, flat surface. A
fIlm legend with outside dimensions equal to the outside
dimensions of the light bar
may be placed in the mount or
on the light bar light emitting
surface. Press the light bar into
the mount until the tabs snap
over the back of the light
bar141 . When inserting the
HLMP-2898, align the notched
sides of the light bar with the
mount sides which do not have
the tabs. (See Figure 1.)

3. Applying even pressure to the
top of the mount, press the
entire assembly into the hole
from the front of the panel l51 .
(See Figure 2.)
Note: For thinner panels, the
mount may be pressed into the
panel first, then the light bar may
be pressed into the mount from
the back side of the panel.

Suggested Punch Sources
Hole punches may be ordered
from one of the following
sources:

Ring Division
The Producto Machine Company
Jamestown, NY 14701
(800) 828-2216
Porter Precision Products
Company
12522 Lakeland Road
Santa Fe Springs, CA 90670
(213) 946-1531
Di-Acro Division
Houdaille Industries
800 Jefferson Street
Lake City, MN 55041
(612) 345-4571

Danly Machine Corporation
Punchrite Division
15400 Brookpark Road
Cleveland, OH 44135
(216) 267-1444

Notes:

3. A 3.18 mm (0.125 inch) diameter mill may be used.
4. Repetitve insertion of the light bar into mount may cause damage to the mount.
5. Repetitive insertion of the mount into the panel will degrade the retention force of
the mount.
.

2-31

Installation Sketches

Figure 1. Installation of a Light Bar into a Panel Mount.

Figure 2. Installation of the Light Bar/panel Mount Assembly into a Front Panel.

2·32

-

FliiiW HEWLETT®
~~PACKARD

LED Light Bars
Standard Options
Technical Data
Option 802, 822

Description
Due to applications that require
tightly matched devices, HewlettPackard has developed several
standard options to service these
requirements.
Option S02 consists of devices
which are selected to two Iv
categories. All color bins of the
base parts (yellow and green
devices) fulfill the color
requirements of these products.
Option S22 consists of devices
which are selected to two Iv
categories and two color bin
categories.

Ordering Information
To order Light Bars with these
standard options, order the base
part number and add the option
code (S02, 822). For any base
part number that does not appear
in the following lists, please
consult your local Hewlett-Packard
representative or your local
franchise distributor.

5963-7039E

Option S02 - Partial base
part number list:

OPTION S22 - Partial base
part number list:

HDSP-4820
HDSP-4830
HD8P-4840
HDSP-4850
HLCP-AlOO
HLCP-BlOO
HLCP-CIOO
HLCP-DlOO
HLCP-EIOO
HLCP-FlOO
HLCP-GlOO
HLCP-HlOO
HLMP-2300
HLMP-2316
HLMP-2350
HLMP-2400
HLMP-2450
HLMP-2500
HLMP-2550

HLMP-2400
HLMP-2500
HLMP-2855
HLMP-2965
HLMP-2450
HLMP-2735

HLMP-2600
HLMP-2620
HLMP-2635
HLMP-2655
HLMP-2670
HLMP-2685
HLMP-2700
HLMP-2720
HLMP-2735
HLMP-2755
HLMP-2770
HLMP-2785
HLMP-2800
HLMP-2820
HLMP-2835
HLMP-2855
HLMP-2870
HLMP-2885
HLMP-2950

HLMP-2755
HLMP-2785
HLMP-2885
HLMP-2550
HD8P-4840
HDSP-4850

2-33

2-34

rli~. HEWLETT
~e..PACKARD

>LED Displays

Hewlett-Packard's line of LED
displays answers all the needs of
the designer. From small
alphanumeric displays to low cost
numeric displays and large dot
matrix displays the selection is
complete.
Hewlett-Packard's 5X7 dot matrix
alphanumeric displays are
available in a variety of packages
and font sizes, as well as four
colors. Many of the newer and
most popular products are also
now available in AlGaAs Red. This
wide diversity of packages, font
heights, and colors mean .
solutions for your diverse
applications.

In the intelligent display family
look for the HDSP-250X large
font eight digit and the HPSP253X medium font eight digit
displays. For high performance;
consider the HCMS~29XX small.
and medium font fOur, eight, and
sixteen digit displays. For your
industrial applications the HDSP665X medium font four character

3-2

glass/ceramic displays are also
available. These intelligent
displays give each customer a
wide choice of new products to
design into medical equipment,
avioitics, telecommunications,
computer products, industrial or
office equipment applications.
Also, part of HP's alphanumeric
display line is the large 5X7 dot
matrix alphanumeric display
family which offers a variety of
color selections as well as
e,,"cellent viewing distances from
12-18 me.tres. Applications for·
these displays include industrial
machinery and process controllers, weighing scales, computer
tape drives, variable message
signs, and transportation.
Hewlett-Packard also features a
·broad line of numeric seven
segment displays. Included are
low cost, standard red displays to
high ambient light displays
.
producing 7.5 mcdlsegment. This
broad product offering provides a
solution to every display need.

They include several sizes in dual
digit displays and the Micro
Bright line of small package,
bright displays.
HP's broad line of numeric seven
segment displays is ideal for electronic instrumentation, industrial,
weighing scales, point-of-sale
terminals, game machines, and
appliance applications. In this
product line the Double Heterojunction AlGaAs red low current
sunlight viewable display family .
is available in many package
sizes. These AlGaAs numeric
displays are ideal for battery
operated and other low power
applications.
Where contrast is important,
choose from the following HP
seven segment display products:
black surface seven segment
displays, orange color Seven
segment displays and the smallest
package on the market, the litra
Mini 8 mm (0.31"). All devices
are available as either common
anode or common cathode.

8 mm (0.31 inch) Ultra Mini Seven Segment Displays
Device

[I

8.0 mm (0.31 in.)
Dual-in-Line
0.43' H x 0.28' W
x 0.20" D

PIN

Description

HDSP-U001
HDSP-U003

Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0

HDSP-U011
HDSP-U013

Common Anode Right Hand Decimal, Black Surface, ,1Common Cathode Right Hand Decimal, Black Surface, ,1-

HDSP-U101
HDSP-U103

Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Slirface, 0

HDSP-U111
HDSP-U113

Common Anode Right Hand Decimal, Black Surface, ,1Common Cathode Right Hand Decimal, Black Surface, ,1-

HDSP-U201
HDSP-U203

Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0

HDSP-U211
HDSP-U213

Common Anode Right Hand Decimal, Black Surface,,1Common Cathode Right Hand Decimal, Black Surface, ,1-

HDSP-U301
HDSP-U303

Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0

HDSP-U311
HDSP-U313

Common Anode Right Hand Decimal, Black Surface, ,1Common Cathode Right Hand Decimal, Black Surface, ,1-

HDSP-U501
HDSP-U503

Common Anode Right Hand Decimal, Dark Gray Surface, ,1Common Cathode Right Hand Decimal, Dark Gray Surface, ,1-

HDSP-U511
HDSP-U513

Common Anode Right Hand Decimal, Black Surface, ,1Common Cathode Right Hand Decimal, Black Surface, ,1-

HDSP-U401
HDSP-U403

Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0

HDSP-U411
HDSP-U413

Common Anode Right Hand Decimal, Black Surface, ,1Common Cathode Right Hand Decimal, Black Surface, ,1-

Color

Typical I.

Red

1100 IJCd
@20mA

AIGaAs
Red

600IJCd
@1mA

High
Efficiency
Red

980 !!Cd
@5mA

Yellow

480 IJCd
@1mA

Green

300 mcd
@10mA

Orange

980lJCd
@5mA

Page
No.
3-58

o =segment is not tinted
,1- = segment is tinted

3-3

Black Surface Seven Segment Displays
Device

r:
+8+0++
+
+
+
+

~

7.62 mm (0.30 In.)
Micro Bright
Dual·in·Line
0.5" H x 0.3" W x 0.24" D

I
10.16 mm (0.40 in.)
Dual·in·Line (Single Digit)
0.51" H x 0.39" W x 0.25" D

~
10.16 mm (0.40 in.)
Dual·in·Line (Dual Digit)
O.Sl" H x 0.39" W x 0.2S" D

o =segment is not tinted

I\. =segment is tinted

3-4

PIN

Description

Color

Typically

Page
No.

1100 j.¥:d @20 mA

3·18

HDSp·AOll Common Anode Right Hand Decimal, I\.
HDSp·A013 Common Cathode Right Hand Decimal, I\.

Red

HDSp·A211 Common Anode Right Hand Decimal, I\.
HDSP·A213 Common Cathode Right Hand Decimal, I\.

High Efficiency 980j.¥:d@5mA
Red

HDSp·Alll Common Anode Right Hand Decimal, I\.
HDSp·Al13 Common Cathode Right Hand Decimal, I\.

AIGaAs Red

600 IJCd @ 1 mA

HDSp·A511 Common Anode Right Hand Decimal, I\.
HDSP·A513 Common Cathode Right Hand Decimal, I\.

Green

3000j.¥:d@10mA

HDSp·FOll Common Anode Right Hand Decimal, I\.
HDSp·F013 Common Cathode Right Hand Decimal, I\.

Red

1200 j.¥:d @20 mA

HDSp·F211 Common Anode Right Hand Decimal, I\.
HDSp·F213 Common Cathode Right Hand Decimal, I\.

High Efficiency 1200 j.¥:d @5 mA
Red

HDSp·Flll Common Anode Right Hand Decimal, I\.
HDSp·Fl13 Common Cathode Right Hand Decimal, I\.

AIGaAs Red

650 IJCd @ 1 mA

HDSp·F161 Common Anode Right Hand Decimal, I\.
HDSp·F163 Common Cathode Right Hand Decimal, I\.

AIGaAs Red

15.0 mcd @20 mA

HDSp·F511 Common Anode Right Hand Decimal, I\.
HDSP·FS13 Common Cathode Right Hand Decimal, I\.

Green

3500 j.¥:d @10 mA

HDSp·GOll Two Digit Common Anode Right Hand Decimal, I\. Red
HDSp·G013 Two Digit Common Cathode Right Hand
Decimal, I\.

1200 j.¥:d @20 mA

HDSp·G211 Two Digit Common Anode Right Hand Decimal, I\. High Efficiency 1200j.¥:d@SmA
HDSp·G213 Two Digit Common Cathode Right Hand
Red
Decimal,1\.
HDSP·Glll Two Digit Common Anode Right Hand Decimal, I\. AIGaAs Red
HDSp·Gl13 Two Digit Common Cathode Right Hand
Decimal,1\.

650 IJCd @1 mA

HDSP·G161 Two Digit Common Anode Right Hand Decimal, I\. AIGaAs Red
HDSp·G163 Two Digit Common Cathode Right Hand
Decimal, I\.

lS.0 mod @20 mA

HDSp·GSll Two Digit Common Anode Right Hand Decimal, I\. Green
HDSp·GS13 Two Digit Common Cathode Right Hand
Decimal, I\.

3S00 j.¥:d @ 10 mA

Black Surface Seven Segment Displays (cont.)
Device

[BJ
(l;;J.9
14.2 mm (0.56 in.)
Dual·in-Line (Single Digit)
0.67" H x 0.49" W x 0.31" D

a"s
14.2 mm (0.56 in.)
Dual·in-Line (Dual Digit)
0.67" H x 1.0" W x 0.31" D

PIN

Description

Color

Typical I.

HDSP-HOll
HDSP-HOI3

Common Anode Right Hand Decimal, t>
Common Cathode Right Hand Decimal, t>

Red

1300 ~d
@20mA

HDSP-H211
HDSP-H213

Common Anode Right Hand Decimal, t>
Common Cathode Right Hand Decimal, t>

High
Efficiency Red

2800 ~d
@ 10mA

HDSP-Hlll
HDSP-HI13

Common Anode Right Hand Decimal, t>
Common Cathode Right Hand Decimal, t>

AIGaAs
Red

700 IJCd
@lmA

HDSp·HI61
HDSp·HI63

Common Anode Right Hand Decimal, t>
Common Cathode Right Hand Decimal, t>

AIGaAs
Red

16.0 mcd
@20mA

HDSp·H511
HDSP-H513

Common Anode Right Hand Decimal, t>
Common Cathode Right Hand Decimal, t>

Green

2500 ~d
@10mA

HDSP-KOll
HDSP-KOI3

Two Digit Common Anode Right Hand Decimal, t>
Two Digit Common Cathode Right Hand Decimal, t>

Red

1300 ~d
@20mA

HDSP-K211
HDSP-K213

Two Digit Common Anode Right Hand Decimal, t>
Two Digit Common Cathode Right Hand Decimal, t>

High
Efficiency Red

2800 IJCd
@10mA

HDSP-Klll
HDSP-KI13

Two Digit Common Anode Right Hand Decimal, t>
Two Digit Common Cathode Right Hand Decimal, t>

AIGaAs
Red

700 IJCd
1 mA

HDSP-K511
HDSP-K513

Two Digit Common Anode Right Hand Decimal, t>
Two Digit Common Cathode Right Hand Decimal, t>

Green

2500 IJCd
@10mA

Page
No.
3-18

o =segment is not tinted
t> =segment is tinted

3-5

Low Current Seven Segment Displays
Device

PIN
HDSp·Al0l

~

+
.
+8+
+

T

;;~

0 ....

+
'------"
+

~

HDSp·Al03

:=0 !

HDSp·Al07

+9 0+

+

0

+
'------"

HDSp·Al08
HDSp·7511
HDSP·7513
HDSP-7517
HDSp·7518
HDSp·A801
HDSp·A803
HDSp·A807
HDSp·A808
HDSp·A901
HDSp·A903

7.62 mm (0.30 in.)
Micro Bright
Dual·in·Line
0.5" H x 0.3' W x 0.24" D

HDSp·A907
HDSp·A908
HDSP·Fl0l

I

=0
~

10.16 mm (0.40 in.)
Dual·in·Line (Single Digtt)
0.51' H x 0.39' W x 0.25' D

o = segment is not tinted
~ = segment is tinted

3·6

Description

Color

Typical ~

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0 .
Common Anode ±1. Overflow,
Light Gray surface, 0
Common Cathode ±1. Overflow,
Light Gray Surface, 0

AlGaAs Red

600.1J.Cd

@ 1 mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow,
Light Gray Surface, 0
Common Cathode ±1. Overflow,
Light Gray Surface, 0

High
Efficiency
Red

270 /lcd

@ 2 mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow,
Light Gray Surface, 0
Common Cathode ±1. Overflow,
Light Gray Surface, 0

Yellow

420 IJ.Cd @ 4 mA

Common Anode Right Hand Decimal,
Dark Gray Surface, ~
Common Cathode Right Hand Decimal,
Dark Gray Surface, ~
Common Anode ±1. Overflow,
Dark Gray Surface, ~
Common Cathode ±1. Overflow,
Dark Gray Surface, ~

Green

4751J.Cd

AIGaAsRed

650 IlCd @ 1 mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
HDSp·Fl03 Common Cathode Right Hand DeCimal,
Light Gray Surface, 0
HDSp·Fl07 Common Anode ±1. Overflow,
Light Gray Surface, 0
HDSp·Fl08 Common Cathode ±1. Overflow,
Ught Gray Surface, 0
HDSp·Gl0l Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
HDSp·Gl03 Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0

@ 4 mA

Page
No.
3·28

Low Current Seven Segment Displays (cont.)
Device
+

+

,

f

PIN

r;--

HDSP-El00

+ u m HDSP-El0l
!O=~ +
+=0
+ a
+9.
U
..
+
HDSP-El03
+ = +
0

+

HDSP-El08
HDSP-3350
HDSP-3351

10.92 mm (0.43 in.)
Dual-in-Line
0.75" H x 0.5" Wx0.25" D

~

'pO
.~~ =0
~.9
+ ...

+0

HDSP-3353
HDSP-3356
HDSP-Hl0l
HDSP-Hl03
HDSP-Hl07
HDSP-Hl08
HDSP-KI21
HDSP-KI23
HDSP-5551
HDSP-5553
HDSP-5557
HDSP-5558
HDSP-K701

14.2 mm (0.56 in.)
Dual-in-Line (Single Digit)
0.67' H x 0.49' Wx 0.31" D

te
..
+
<.
+
+
+

...+

+

...

...
+

+0 ----:--;:. 0+

...

...

! a ill
.!Oafo·
+

.

HDSP-K703
HDSP-Nl00
HDSP-Nl0l
HDSP-Nl03
HDSP-Nl05

20 mm (0.8 in.)
Dual-in-Line
1.09' H x 0.78' Wx0.33" D

HDSP-Nl06

Description

Color

Typically

Common Anode Left Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Universal ±1. Overflow, Light Gray Surface, 0

AIGaAsRed

650 ).lcd @1 mA

Common Anode Right Hand Decimal,
Red Surface, A
Common Cathode Right Hand Decimal,
Red Surface, A
Common Anode ±1. Overflow, Red Surface, A
Common Cathode ±1. Overflow, Red Surface, A

High
Efficiency
Red

300).led @2mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow,
Light Gray Surface, 0
Common Cathode ±1. Overflow,
Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0

AIGaAsRed

700).led @1 mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow,
Light Gray Surface, 0
Common Cathode ±1. Overflow,
Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0

High
Efficiency
Red

370 J.Lcd @2 mA

Common Anode Left Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Left Hand Decimal,
Light Gray Surface, 0
Universal ±1. Overflow,
Light Gray Surface, 0

AIGaAs Red

590).lcd @1 mA

Page
No.
3-28

o = segment is not tinted
A = segment is tinted

3-7

Seven Segment Displays
Device

~

,.-~

tl R~ .

~

..

++

'---

Description

HDSp·7301

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Colon,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal, Colon,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0

REid

1100 fWd
@20mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0

A1GaAs Red

14mcd
@20mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Colon,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal, Colon,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. OverflOW, Light Gray Surface, 0

High
Efficiency
REid

980 jlCd
@5mA

Common Anode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Colon,
Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Cathode Right Hand Decimal, Colon,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0

Yellow

480jlCd
@5mA

Common Anode Right Hand Decimal,
Dark Gray Surface, Ll
Common Anode Right Hand Decimal, Colon,
Dark Gray Surface, Ll
Common Cathode Right Hand Decimal,
Dark Gray Surface, Ll
Common Cathode Right Hand Decimal, Colon,
Dark Gray Surface, Ll
Common Anode ±1. Overflow, Dark Gray Surface, Ll
Common Cathode ±1. Overflow, Dark Gray Surface, Ll

Green

3000 jlCd
@10mA

HDSp·7302

+r't, f'I+

+f~O-t0+

HDSP·7303

+

~

HDSp·7304
HDSp·7307
HDSP'7308
HDSp·A151
HDSp·A153
HDSp·A157
HDSp·A158
HDSP·7501
HDSp·7502
HDSp·7503
HDSp·7504
HDSp·7507
HDSP·7508
HDSp·7401
HDSP·7402
HDSp·7403
HDSp·7404
HDSP'7407
HDSp·7408
HDSp·7801
HDSp·7802
HDSp·7803

7.62 mm (0.3 in.)
Micro Bright
Dual·in·Line
0.5' H x 0.3" Wx 0.24" D

o = segment is not tinted
Ll = ~egment is tinted

3-8

HDSP'7804
HDSp·7807
HDSp·7808

Color

Typicel~

PIN

Page
No.
.3·66

Seven Segment Displays (cont.)
Device

r

~

'=}!; +00
:L:J 0
.
)(.,~

"'"'---"

PIN
HDSp·F001
HDSp·F003

~

HDSp·F007
HDSP·F008
HDSP·G001

10.16 mm (0.4 in.)
HDSp·G003
Dual-In-Line (Single Digit)
0.51" H x 0.39" Wx 0.25" D HDSP-F151
HDSP-F153

aa

+++++++++

+++++++++

HDSP-F157
HDSP-F158
HDSP-G151
HDSP-G153

HDSP-F201
10.16 mm (0.4 in.)
HDSP-F203
Dual-In-Line (Two Digit
0.67" H x 0.90" Wx 0.25" D
HDSP-F207
HDSP-F208
HDSP-G201
HDSP-G203
HDSP-F401
HDSP-F403
HDSP-F407
HDSp·F408
HDSP-G401
HDSP-G403
HDSP-F301
HDSP-F303
HDSP-F307
HDSP-F308
HDSP-G301
HDSP-G303
HDSP-F501
HDSP-F503
HDSP-F507
HDSP-F508
HDSP-G501
HDSP-G503

Description
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digk Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digk Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digk Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0 .
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digk Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode ±1. Overflow, Ught Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand, Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Dark Gray Surface, t.
Common Cathode Right Hand Decimal,
Dark Gray Surface, t.
Common Anode ±1. Overflow, Dark Gray Surface, t.
Common Cathode ±1. Overflow, Dark Gray Surface, t.
Two Digit Common Anode Right Hand Decimal,
Dark Gray Surface, t.
Two Digk Common Cathode Right Hand Decimal,
Dark Gray Surface, t.

Color
Red

Typically

AIGaAs
Red

15.0 mcd
@20mA

High
Efficiency
Red

1200 ~cd
@5mA

Orange

1200 ~cd
@5mA

Yellow

800 ~cd
@5mA

Green

3500~

12oof.1Cd
@20mA

Page
No.
3·74

@10mA

o =segment is not tinted

t. =segment is tinted

3-9

Seven Segment Displays (cont.)
Device

-. .
:0=0;
~O=Oo
. . ..
-

PIN
5082-7730
5082-7731
5082-7740
5082-7736.
5082-7610
5082-7611
5082-7613
5082-7616
5082-7620·
5082-7621
5082-7623
5082-7626
HDSP-3600
HDSP-3601
HDSP-3603
HDSP-3606

B
O.

~

7.62 mm (0.3 in.)
Dual-in-Line
0.75" H x 0.4" W x 0.18' D

.. =g.

: Dr=3

+

+

;dbm

:0=0:to +++ D++
0

~

0

10.92 mm (0.43 in.)
Dual-in-Line
0.75" H x 0.5" W x 0.25' D

o= segment is not tinted
A =segment is tinted

3-10

5082-7750
5082-7751
5082-7760
5082-7756
HDSP-E150
HDSP-E151
HDSP-E153
HDSP-E156
5082-7650
5082-7651
5082-7653
5082-7656
5082-7660
5082-7661
5082-7663
.5082-7666
HDSP-4600
HDSP-4601
HDSP-4603
HDSP-4606

Description
Common Anode Left Hand Decimal, Black Surface, A
Common Anode Right Hand Decimal, Black Surface, A
Common Cathode Right Hand Decimal, Black Surface, A
Universal ±1. Overflow, Right Hand Decimal, Black Surface, A
Common Anode Left.Hand Decimal, Red Surface, A
'
Common Anode Right Hand Decimal, Red Surface, A
Common Cathode Right Hand Decimal, Red Surface, A·
Universal ±1. Overflow, RighI-Hand Decimal, Red Surface, A
Common Anode Left Hand Decimal, Yellow Surface, A
Common Anode Right Hand Decimal, Yellow Surface, A
Common Cathode Right Hand Decimal, Yellow Surface, A
Universal ±1. Overflow, Right Hand Decimal, Yellow Surface, A
Common Anode Left Hand Decimal, Dark GraySurface, A
Common Anode Right Hand Decimal, Dark Gray Surface, A
Common Cathode Right Hand Decimal, Dark Gray Surface, A
Universal ±1. Overflow, RightHand Decimal,
Dark Gray Surface, A
' Common Anode l-eft Hand Decimal, Red Surface, A
Common Anode Right Hand Decimal, Red Surface, A
Common Cathode Right Hand Decimal, Red Surface, A
Universal ±1. Overflow, Right Hand Decimal, Red Surface, A
Common Anode Left Hand Decimal, Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0
Universal ±1. Overflow, Right Hand Decimal,
Light Gray Surface, 0
Common Anode Left Hand Decimal, Red Surface, A
Common Anode Right Hand Decimal; Red Surface, A
Common Cathode Right Hand Decimal, Red Surface, A
UniVersal ±1. Overflow, Right Hand Decimal, Red Surface, A
Common Anode Left Hand Decimal, Yellow Surface, A
Common Anode Right Hand Decimal, Yellow Surface, A
Common Cathode Right Hand Decimal, Yellow Surface, A
Universal.±1. Overflow, Right Hand Decimal, Yellow Surface, A
Common Anode Left Hand Decimal, Dark Gray Surface, A
Common Anode Right Hand Decimal, Dark.Gray Surface, A
Common Cathode Right Hand Decimal, Dark Gray Surface, A
Universal ±1 . .overflow, Right Hand Decimal,
Dark Gray Surface, A

Color
Red

Typically
77Ol1ed
@20mA

High
Efficiency
Red

SOO!led
@5mA

Yellow

620 !led
@5mA

Green

2700 IlCd
@10mA

Red

1100l1ed
@20mA

AIGaAs
Red

15.0med
@20mA

High
Efficiency
Red

1115 1lCd
@5mA

Yellow

83511Cd
@5mA

Green

4ooOl1ed
@10mA

Page
No.
3-50

Seven Segment Displays (cont.)
Device

[8J
+-.

+ ..

...... +

+

c{?0
=0

•• 0

PIN
HDSp·5301
HDSP'5303
HDSp·5307
HDSp·5308
HDSp·5321
HDSp·5323

14.2 mm (0.56 in.)
HDSp·H151
HDSp·H153
Dual·in·Line (Single Digit)
0.67" H x 0.49" W x 0.31" D HDSp·H157
HDSp·H158
HDSp·K121

D

14.2 mm (0.56 in.)
Dual·in·Line (Two Digit)
0.67' H x 1.0" W x 0.31" D

HDSp·K123
HDSp·5501
HDSp·5503
HDSp·5507
HDSp·5508
HDSp·5521
HDSp·5523
HDSP'5701
HDSp·5703
HDSp·5707
HDSp·5708
HDSp·5721
HDSP'5723
HDSp·5601
HDSp·5603
HDSp·5607
HDSp·5608
HDSp·5621
HDSp·5623

Description
Common Anode Right Hand Decimal, Light Gray Surface, 6
Common Cathode Right Hand Decimal, Light Gray Surface, 0
Common Anode ±t Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand DeCimal, Light Gray Surface, 0
Common Cathode Right Hand Decimal, Light Gray Surface, 0
Common Anode ±1. Overflow, Light Gray Surface, 0
Common Cathode ±1. Overflow, Light Gray Surface, 0
Two Digit Common Anode Right Hand Decimal,
Light Gray Surface, 0
Two Digit Common Cathode Right Hand Decimal,
Light Gray Surface, 0
Common Anode Right Hand Decimal, Dark Gray Surface, A
Common Cathode Right Hand Decimal, Dark Gray Surface, A
Common Anode ±1. Overflow, Dark Gray Surface, A
Common Cathode ±1. Overflow, Dark Gray Surface, A
Two Digit Common Anode Right Hand Decimal,
Dark Gray Surface, A
Two Digit Common Cathode Right Hand Decimal,
Dark Gray Surface, A

Color
Red

Typically
1300 !lcd
@20mA

AIGaAs
Red

16.0 mcd
@20mA

Page
No.
3·84

'3:28
High
Efficiency
Red

2800 !led
@10mA

Yellow

1800 !led
@10mA

Green

2500 !lcd
@10mA

3·84

o = segment is not tinted
A = segment is tinted

3·11

Seven Segment Displays (cont.)
Device

PIN
Description
HDSP-3400 .Cornrnon AnOde Left Hand Decirnal, Light Gray Surface, 0
•
HDSP-3401 Cornrnon Anode Right Hand Decirnal, Light <;3ray Surface, 0
..
.
+
HDSP-3403 Cornrnon Cathode Right Hand Decirnal, Light Gray Surface, 0
+
+
..
+
HDSP-3405 Cornrnon Cathode Left Hand Decirnal, Light Gray Surface, 0
+
+
..
+
HDSP-3406 Universal ±1. Overflow, Right Hand Decirnal,
..
+
+
•
+
...
+'
0'"
0-' 0
Light Gray Surface, 0
HDSP·N150 Cornrnon Anode Left Hand Decirnal, Light Gray Surface, 0
HDSp·N151 Cornrnon Anode Right Hand Decirnal, Light Gray Surface, 0
HDSp·N153 Cornrnon Cathode Right Hand Decirnal, Light Gray Surface, 0
HDSp·N155 Cornmon Cathode Left. Hand Decirnal, Light Gray Surface, 0
HDSp·N156 Universal ±1. Overflow, Right Hand Decirnal,
Light Gray Surface, 0
HDSP-3900 Cornrnon AnOde Left Hand Decirnal, Light Gray Surface, 0
HDSP-3901 Cornrnon Anode Right Hand Decirnal, Light Gray Surface, 0
HDSP·3993 Cornrnon Cathode Right Hand Decirnal, Light Gray Surface, 0
HDSP-3905 Cornrnon Cathode Left Hand Decirnal, Light Gray Surface, 0
HDSp·3906 Universal ±1 . .overflow, Right Hand Decirnal,
Light Gray Surface, 0
HDSP-4200 Cornrnon Anode Left Hand Decirnal, Light Gray Surface, 0
HDSP-4201 Cornrnon Anode Right Hand Decirnal, Light Gray Surface, 0
HDSP-4203 Cornrnon Cathode Right Hand Decirnal, Light Gray Surface, 0
HDSP-4205 Cornrnon Cathode Left Hand Decirnal, Light Gray Surface, 0
HDSP-4206 Universal ±1. Overflow, Right Hand Decirnal,
Light Gray Surface, 0
HDSP-8600 Cornmon Anode Left Hand Decirnal, Dark Gray Surface, Ll
HDSP-8601 Cornrnon Anode Right Hand Decirnal, Dark Gray Surface, !i
HDSP-8603 Cornrnon Cathode Right Hand Decirnal, Dark Gray Surface, !i
20 rnrn (0.8 in.)
HDSP-8605 Cornrnon Cathode Left Hand Decirnal, Dark Gray Surface, !i
Dual-in-Line
HDSP-8606 Universal ±1. Overflow, Right Hand Decirnal,
1.09" H x 0.78' WxO.33" D
Dark Gray Surface,!i

.

!B :=aa:

Color
Red

Typical I.
1200 !lcd
@ 20 rnA

AIGaAs
Red

14.0 rned
@ 20 rnA

High
Efficiency
Red

7000 !led
@ 100 rnA
peak 1/5
Duty
Factor

Yellow

7000 !!cd
@ 100 rnA
peak 1/5
Duty
Factor

Green

1500 !!Cd
@ 10 rnA

! am

o =segrnent is not tinted
!i = segrnent is tinted

3-12

Page
No.
3-92

High Ambient Light, Seven Segment Displays
Typical I. @
Device

. .

r--

:0::0:

"O=Yo

-

B
~D:

•

9

0

7.62 mm (0.3 in.)
Dual-in-Line
0.75" H x 0.4" Wx 0.18" D
+

.· .

: O=d.

: D

OJ

+

0u:

•+c:::::J
a0 0•+

:0=0:? ·

.

10.92 mm (0.43 in.)
Dual-in-Line
0.75" H x 0.5" W x 0.25" D

[8J

.

+

¢O
=0

+++0

PIN
HDSP-3530
HDSP-3531
HDSP-3533
HDSP-3536
HDSP-4030
HDSP-4031
HDSP-4033
HDSP-4036
HDSP-3730
HDSP-3731
HDSP-3733
HDSP-3736
HDSP-4130
HDSP-4131
HDSP-4133
HDSP-4136
HDSP-5531
HDSP-5533
HDSP-5537
HDSP-5538

HDSP-5731
14.2 mm (0.56 in.)
HDSP-5733
Dual-in-Line
HDSP-5737
0.67" H x 0.49" W x 0.31" D HDSP-5738

Description
High Efficiency Red, Common Anode, LHDP, Light Gray Surface, 0
High Efficiency Red, Common Anode, RHDP, Light Gray Surface, 0
High Efficiency Red, Common Cathode, RHDP,
Light Gray Surface, 0
High Efficiency Red, Universal Polarity Overflow Indicator, RHDP,
Light Gray Surface, 0
Yellow, Common Anode, LHDP, Light Gray Surface, 0
Yellow, Common Anode, RHDP, Light Gray Surface, 0
Yellow, Common Cathode, RHDP, Light Gray Surface, 0
Yellow, Universal Polarity Overflow Indicator, RHDP,
Light Gray Surface, 0
High Efficiency Red, Common Anode, LHDP, Light Gray Surface, 0
High Efficiency Red, Common Anode, RHDP, Light Gray Surface, 0
High Efficiency Red, Common Cathode, RHDP,
Light Gray Surface, 0
High Efficiency Red, Universal Polarity Overflow Indicator, RHDP,
Light Gray Surface, 0
Yellow, Common Anode, LHDP, Light Gray Surface, 0
Yellow, Common Anode, RHDP, Light Gray Surface, 0
Yellow, Common Cathode, RHDP, Light Gray Surface, 0
Yellow, Universal Polarity Overflow Indicator, RHDP,
Light Gray Surface, 0
High Efficiency Red, Common Anode, RHDP, Light Gray Surface, 0
High Efficiency Red, Common Cathode, RHDP,
Light Gray Surface, 0
High Efficiency Red ±1. Common Anode, Light Gray Surface, 0
High Efficiency Red ±1. Common Cathode, Light Gray Surface, 0
Yellow, Common Anode, RHDP, Light Gray Surface, 0
Yellow, Common Cathode, RHDP, Light Gray Surface, 0
Yellow, ±1. Common Anode, Light Gray Surface, 0
Yellow, ±1. Common Cathode, Light Gray Surface, 0

100 mA Peak
1/5 Duty Factor
7100 !lcd/seg

Page
No.
3-42

4500 I!cdiseg

10900 !lcd/seg

5000 !lcd/seg

6000 I!cdiseg

5500 /lcd/seg

o

= segment is not tinted
6. = segment is tinted

Solid State Display Intensity and Color Selections
Option
Option SOl
Option S02
Option S20

Description
Intensity and Color Selected Displays

Page No.

.

'Contact your local Hewlett-Packard sales representative for information regarding this product.

3-13

Alphanumeric LED Displays
PIN

Device
"i"'''' + +

++++++

100000000
+++ ....

++ .... +++++++

to 0:g:g.g:g 001

[000000001

@0 0 01

~~
' , ,,+,, , ,
l+: ,+,
~_J LJ t _~ "]11
l~J

Ir
r'" ','.','
'

I

I

I

I

I

I

I

t

,

I

I

~q'
I

I

I

t

I

I

g.]
I

I

I

I

I

I

".(~'3 cl.~·~J'3 i-i-t~ ~i-J

/00001
3·14

I

HDSp·2110
HDSp·2111
HDSp·2112
HDSp·2113
HDSp·2107

Color

Description
5.0 mm (0.2 in.)
5 x 7 Eight Character
Intelligent Display
Operating Temperature
Range: '45"C to +85"C
ASCII Character Set

Orange
Yellow
High Efficiency Red
Green
AIGaAsRed

Application
• Medical
• Telecommunications
• Analytical Equipment
• Computer Products
• Office Equipment
• Industrial Equipment

Page
No.
3·140

HDSp·2500 7 mm (0.27 in.)
HDSp·2501
ASCII 5 x 7 Eight Character
HDSp·2502 . Intelligent Display
HDSp·2503 Operating Temperature
Range: ·45"C to +85"C

Orange
• Computer Peripherals
Yellow
• Industrial Instrumentation
High Efficiency Red • Medical Equipment
Green
.' Portable Data Entry Devices
• Cellular Phones
• Telecommunications
• Test Equipment

HDSp·2530
HDSp·2531
HDSp·2532
HDSp·2533
HDSP·2534

5.0 mm (0.2 in.) Eight
Character Intelligent Display
Operating Temperature
Range: -40"C to +85"C

Orange
Yellow
High Efficiency Red
Green
AIGaAsRed

-Avionics
• Computer Peripherals
• Industrial Instrumentation
• Medical Equipment
• Portable Data Entry Devices
• Telecommunications
• Test Equipment

3·125

HDLA·2416
HDLG·2416
HDLO·2416
HDLR·2416
HDLS·2416
HDLU·2416
HDLY·2416

5.0 mm (0.2 in.)
5 x 7 Four Character
Intelligent Display
Operating Temperature
Range: ·40"C to +85"C

Orange
Green
High Efficiency Red
Red
AIGaAs Red (SV)
AIGaAs Red (LP)
Yellow

• Portable Data Entry Devices
• Industrial Instrumentation
• Computer Peripherals
• Telecommunications

3·164

HPDL·1414
HPDL·2416

2.85 mm (0.112 in.)
4.1 mm (0.16 in.)
16·Segment Four Character
Monolithic Intelligent Display
Operating Temperature
Range: -40"C to +85"C

Red
Red

• Portable Data Entry Devices
• Medical Equipment
• Industrial Instrumentation
• Computer Peripherals
• Telecommunications

3·175

HCMS·2000
HCMS·2001
HCMS·2002
HCMS·2003
HCMS·2004

3.8 mm (0.15 in.) 5 x 7 Four
Character Display 12 pin
Ceramic DIP 7.6 mm (0.30 in.)
Operating Temperature
Range: ·40"C to +85"C

Red
Yellow
High Efficiency Red
Green
Orange

• Computer Terminals
• Business Machines
• Portable, Hand·held or
Mobile Data Entry, Read-out,
or Communications

3·156

HCMS·2300
HCMS·2301
HCMS·2302
HCMS·2303
HCMS·2304

5.0 mm (0.20 in.) 5 x 7 Four
Character Display 12 pin
Ceramic DIP 6.35 mm
(0.250 in.)
Operating Temperature
Range: -40"C to +85"C

Red
Yellow
High Efficiency Red
Green
Orange

• Avionics
• Ground Support, Cockpit,
Shipboard Systems
• Medical Equipment
• Industrial and Process Control
• Computer Peripherals and
Terminals

HCMS·2700
HCMS·2701
HCMS·2702
HCMS·2703
HCMS·2704

1 Row of 4 Characters
3.8 mm (0.15 in.) 5 x7 Dot
Matrix, Full ASCII
Character Set

Standard Red
Yellow
High Efficiency Red
Green
Orange

• Telecommunications
• Instrumentation
• Medical Instrumentation
• Business Machines

3·100

Alphanumeric LED Displays (Cont.)
PIN

Device

1000000001

00000000
00000000
100001

1000000001
00000000
00000000

@0001
10000000 ~

,r···,,

" ___ .I

L.J

~

:

r-~

L ___ '

[~~]

~Q9Q90000QOO9~

Application

HCMS-2710
HCMS-2711
HCMS-2712
HCMS-2713
HCMS-2714

1 Row of 8 Characters

Standard Red
Yellow
HER
Green
Orange

HCMS-2720
HCMS-2721
HCMS-2722
HCMS-2723
HCMS-2724

2 Rows of 8 Characters

standard Red
Yellow
HER
Green
Orange

HCMS-2901
HCMS-2902
HCMS-2903
HCMS-2904
HCMS-2905

1 Row of 4 Characters
3.8 mm (0.15 in.) 5 x7 Dot
Matrix Fully Integrated
Serial-in Display

Yellow
HER
Green
Orange
A1GaAs

HCMS-2911
HCMS-2912
HCMS-2913
HCMS-2914
HCMS-2915

1 Row of 8 Characters
3.8 mm (0.15 in.)

Yellow
HER
Green
Orange
AIGaAs

HCMS-2921
HCMS-2922
HCMS-2923
HCMS-2924
HCMS-2925

2 Rows of 8 Characters
3.8 mm (0.15 in.)

Yellow
HER
Green
Orange
AIGaAs

HCMS-2961
HCMS-2962
HCMS-2963
HCMS-2964
HCMS-2965

1 Row of 4 Characters
5.0 mm (0.20 in.)

Yellow
HER
Green
Orange
AIGaAs

HCMS-2971
HCMS-2972
HCMS-2973
HCMS-2974
HCMS-2975

1 Row of 8 Characters
5.0 mm (0.20 in.)

Yellow
HER
Green
Orange
AIGaAs

HDSP-2490

6.9 mm (0.27 in.) 5 x 7
Four Character
Alphanumeric
28 Pin Ceramic 15.24 mm
(0.6 in.) DIP with
Untinted Glass Lens

Red

• High Brightness Ambient
Systems
Yellow
• Industrial and Process
Control
High
• Computer Peripherals
Efficiency Red • Ground Support Systems

Operating Temperature
Range: -20"C to +85"C

High
Performance
Green

HDSP-2491

,,..... ,,

Color

Description

HDSP-2492

HDSP-2493

Page
No.
3-100

• Telecommunications
• Portable Data Entry Devices
• Computer Peripherals
• Medical Equipment
• Test Equipment
• Business Machines
• Avionics
• Industrial Controls

3-109

*

For further information see
Application Note 1016.

'Contact your local Hewlett-Packard sales representative for information regarding this product.
3-15

Large Alphanumeric 5 X 7 Displays
Device

PIN

~

00000
00000
00000
00000
00000

QQQQQ

00000
00000
00000
00000
00000
00000
00000

Description

Page
No.

Color

Package
17.3 mm (0.68 in.)
Dual-in-Line
0.70 in. H x
0.50 in. Wx
0.26 in. D

770 !Lcd/dot 100 rnA 3-200
peak 1/5 Duty Factor
1650 !Lcd/dot lOrnA
peak 1/5 Duty Factor
2800 !Lcd/dot 50 rnA
peak 1/5 Duty Factor
4000 !Lcd/dot 50 rnA
peak 1/5 Duty Factor

26.5 mm (1.04 in.)
Dual-in-Line
1.10 in. H x
0.79 in. Wx
0.25 in. D

800 !Lcd/dot 100 rnA
peak 1/5 Duty Factor
1850 !Lcd/dot lOrnA
peak 1/5 Duty Factor
3500 !Lcd/dot 50 rnA
peak 1/5 Duty Factor
4500 !Lcd/dot 50 rnA
peak 1/5 Duty Factor

HDSP-4701
HDSP-4703
HDSP-L101
HDSP-Ll03
HDSP-L201

Common Row Anode
Common Row Cathode
Common Row Anode
Common Row Cathode
Common Row Anode

Red
Red
AIGaAs Red
AIGaAs Red
High Efficiency Red

HDSP-5401
HDSP-5403

Common Row Anode
Common Row Cathode

Green
Green

HDSP-4401
HDSP-4403
HDSP-Ml01
HDSP-Ml03
HDSP-4501
HDSP-4503
HDSP-5101
HDSP-5103

Common Row Anode
Common Row Cathode
Common Row Anode
Common Row Cathode
Common Row Anode
Common Row Cathode
Common Row Anode
Common Row Cathode

Red
Red
AIGaAs Red
AIGaAs Red
High Efficiency Red
High Efficiency Red
Green
Green

Typical I.

Hexadecimal and Dot Matrix Displays
Device
n

·...
···...···
..· ..· .

n~." r L

'-J'-J'-JL...J

(A)

PIN

·...
···...··
.·...·

r--u-u--u-J.

5082-7300
(A)

Numeric RHDP
Built-in Decoder/Driver/Memory

IB)

5082-7302
(B)

Numeric LHDP
Built-in Decoder/Driver/Memory

5082-7340
(C)

Hexadecimal
Built-in Decoder/Driver/Memory

5082-7304
(D)

Over Range ±1

LI

LJ

.
···...·· ......
·· ..
··...··
•.

,,"ron

I

r-LILr"l...l::

•••

L.JL.JL.J'--J

(e)

7.4 mm (0.29 in.)
4x 7 Single
Digit

3-16

Description

1-fl....J LJ

'-J

(D)

mnr

Package
8 Pin Epoxy
15.2mm
(0.6 in.) DIP

Application
General Purpose Market
• Test Equipment
• Business Machines
• Computer Peripherals
• Avionics

Page
No.
3-187

Hexadecimal and Dot Matrix Displays (Cont.)
Device

·...
···...···
·...· .

p.n..n..o

't::::ro"Lro

"O"O"LILJ

rlrlrlrl

·...

·...··
···...
. ·

[~~
··.... ..:... ···
·.... · ·· .

I""1ILf""LI"l.

t..n....J"U'TI

PIN

Description

HDSp·0760
(A)

Numeric RHDP
Built·in Decoder/Driver/Memory

HDSP-Q761
(B)

NumericLHDP
Built·in Decoder/DriveriMemory

HDSp·0762
(C)

Hexadecimal
Built·in Decoder/Driver/Memory

HDSp·0763
(D)

Over Range ±1

HDSp·0770
(A)

Numeric RHDP
Built·in Decoder/Driver/Memory

HDSP·0771
(B)

NumericLHDP
Built·in Decoder/Driver/Memory

HDSP·0772
(C)

Hexadecimal
Built·in Decoder/Driver/Memory

HDSP·0860
(A)

Numeric RHDP
Built·in Decoder/Driver/Memory

HDSP·0861
(B)

NumericLHDP
Built·in Decoder/Driver/Memory

HDSP·0862
(C)

Hexadecimal
Built·in Decoder/DriveriMemory

HDSP·0863
(D)

Over Range ±1

HDSP·0960
(A)

Numeric RHDP
Built·in Decoder/Driver/Memory

HDSP·0961
(B)

Numeric LHDP
Built·in Decoder/Driver/Memory

HDSP·0962
(C)

Hexadecimal
Built·in Decoder/Driver/Memory

HDSP-Q963
(D)

Over Range ±1

Package
High Efficiency
Red
Low Power

• Military Equipment
• Ground Support
Equipment
• Avionics
• High Reliability
Applications

High Efficiency
Red
High Brightness

• High Brightness
Ambient Systems
• Cockpit, Shipboard
Equipment
• High Reliability
Applications

Yellow

• Business Machines
• Fire Control Systems
• Military Equipment
• High Reliability
Applications

High
Performance
Green

• Business Machines
• Fire Control Systems
• Military Equipment
• High Reliability
Applications

LJ LJ LJ LJ

7.4 mm (0.29 in.)
4 x 7 Single Digit
Package:
8 Pin Glass Ceramic
15.2 mm (0.6 in.) DIP

Application

Page
No.
3·193

Glass/Ceramic Selection Guide is located on 3·209.

3·17

Flii1l HEWLETT.:e.. PACKARD

Black Surface Seven Segment
Displays
Technical Data

HDSP-AXll/-AX13 Series
HDSP-FXll/-FX13 Series
HDSP-GXll/-GX13 Series
HDSP-HXll/-HX13 Series
HDSP-KXll/-KX13 Series

Features

• Design Flexibility
Common Anode or Common
Cathode
Single and Two Digit
• Categorized for Luminous
Intensity
Categorized for Color: Green
Use of Like Categories Yields a
Uniform Display
• Excellent for Long Digit
String Multiplexing

• Black Surface and Color
Tinted Epoxy
• Industry Standard Size
• Industry Standard Pinout
• Choice of Character Size
7.6 mm (0.30 in.), 10 mm
(0040 in.), 14.2mm (0.56 in.)
• Choice of Colors
Red, AlGaAs Red, High
Efficiency Red (HER), Green
• Excellent Appearance
Evenly Lighted Segments
± 50° Viewing Angle

Description
These devices use industry
standard size package and pinout.
Available with black surface
fmish. All devices are available as

either common anode or common
cathode.
Typical applications include
appliances, channel indicators of
TV, CATV converters, game
machines, and point of sale
terminals.

Devices
Red
HDSP-

AlGaAs
Red
HDSP-

AOll

A111

A211

A511

7.6 mm Common Anode Right Hand Decimal

A

A013

A1l3

A213

A513

7.6 mm Common Cathode Right Hand Decimal

B

FOll

FIll

F211

F511

10 mm Common Anode Right Hand Decimal

C

F013

F1l3

F213

F513

10 mm Common Cathode Right Hand Decimal

D

GOll

GIll

G2ll

G5ll

10 mm Two Digit Common Anode Right Hand Decimal

E

G013

G1l3

G213

G513

10 mm Two Digit Common Cathode Right Hand Decimal

F

HOll

Hll1

H2ll

H5ll

14.2 mm Common Anode Right Hand Decimal

G

H013

H1l3

H213

H513

14.2 mm Common Cathode Right Hand Decimal

H
I

J

HER
HDSP-

Green
HDSP-

Description

KOll

Kll1

K2ll

K5ll

14.2 mm Two Digit Common Anode Right Hand Decimal

K013

K1l3

K213

K513

14.2 mm Two Digit Common Cathode Right Hand Decimal

3-18

Package
Drawing

5964-6372E

Package Dimensions (7.6 mm Series)

Internal Circuit Diagram

COLOR BIN
(NOTE 6J

10

10

LUMINOUS

INTENSITY
CATEGORY

OATE CODE

A

B

A.S

,~11lL
~~
5.01

NOTES:

,.27

1. ALL DIMENSIONS IN MIWMETERS (INCHES).
2.MAXIMUM.
3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
4. REDUNDANT ANODES.
5.REDUNDANTCATHODet
•• FOR HDSP-A511/-A513 ONLY.

1.0501

1.2001

A.S

Package Dimensions (10 mm Series: Single)

5.59

I~.~::O~::OI
I

-----!

LUMINOUS INTENSITY CATEGORY

r-

10

·=~i':·~:-;:.:
3

8

(0.400)

_I

4 ° P· '8 - - -+-

--'-'_ _ _ _ _
5

".79 MAle.
10.385 MAX.) -----..

1 1_

--I

C.D.

C.D

0.25
10.0101

:ffi

__ _

7.82

10.3001

C,D

Internal Circuit Diagram

PIN
1

z
3
4
5

•
••
7

10

_

c

DATE CODE

10

o

--~

(O.I."N.)

*The SIde v_ at pacIcage
IndIcIM CaunIIY DfOtgln.

FUNC110N
D
C
ANODEI"I
CATtfODEIII
ANODE.
CATHODE.
ANODEg
CATHODEg
CATHODE.
ANODE.
CATHODEci
ANODEci
CATHODEIJI
AMODE141
CATHODEDP AMODEDP
CATHODEc
AMODEo
CATHODE II
ANODE II
CATHODE.
ANODE.

NOTES:

1. ALL DIMENSIONS IN MILLIIIETERS (INCHES).
Z. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. FOR HDSP-FS11/.f513 ONLY.
4. REDUNDANT ANODet
5. REDUNDANT CATHODet

3-19

Package Dimensions (10 rom Series: Two Digit)

IntemalCircuit Diagram .
.!,

17

\~

,.

I

2

:J

..

DIGIT
NO.1
0.25 TVP.
10.010)

'4

12

n

10

.',

•

•

U

11

10

1S

is

E

,.

17

I.

"

I.

12

E,F
WIoINOUS
INTENSITY

CATEGORY

DATE

roDE

/I

I

~~'
I

.-11....-0.5; 10.ll2O)TYP.
.

1.14
10_),

U410..DD TVP.)

E,F

NOTES:

1. DlIlENSIONS ARE .. IIWllETERS ONCHES).
2. ALL UNTOLEIlANCED DIIIENSIONS ARE fOR REFERENCE ONLY.
3. FOR HDSPoGSI1I-G51S ONLY.

0.450 IN.
~o.450IN.

?

au: au

o

0 1 0

0

f=1) -

0

c::J
01

0

<;I

~'O

0

0

IICILE PATTERN FOR PCB LAYOUT 10 ACHIEVE UIIFORM D.4IO
DICIT 10 IIICIIT PITCH. fOR HDIP.f'XlIlIlO HDSP.QlCXX.

3-20

0---

aD

1

0

0

c:::J -

...L -

fLu0 :
o

0

<;I

0---

·T·

I
I

D.1Oa IN.

i

Package Dimensions (14.2 mm Series: Single)
-----J

1.00
1.3151

"1

I

I

Internal Circuit Diagram
I.

r
---1

2M
':010'

TV.

cr'~l
~

I....,

oj

6.86

1.2701

L

G
OATE

I.

CODE

9

. _CA_
_NOTES:

J.ALL
_
t, A L
L _ I I_
_ ( 1 I_
I I I I E_
S I . _ OItLy.

G,H'
• The End View of padaIge indica'"
Counlry of OrIgin.

.

.. _ _ _ IClllLY.

H

Package Dimensions (14.2 mm Series: Two Digit)

7." L -j /,",10" 110:":_
1.3'"

'::::'nt
171 ",.,3,Z'''.

1r-\:!;:__

I, J

Internal Circuit Diagram
..

11

,.

IS

"

13

12

H

10

'III

17

11

1&

,.

13

12

11

ttl

...

.a~

J

I,J

• The SIde View of package
IndIcaIaa Counlly of OrIgin.

3·21

Absolute Maximum Ratings
Red
HDSP·XOIX
Series

AlGaAsRed
HDSP·XllX
Series

HER

Green

HDSP·X21X
Series

HDSP·X51X
Series

Units

82

37

105

105

roW

Peak Forward Current per
Segment or DP

150[1]

45

90[3]

90[5]

rnA

DC Forward Current per
Segment or DP

25[2]

15[7]

30[4]

30[6]

rnA

·40 to +100

·20 to +100

DeScription
Average Power per Segment
orDP

Operating Temperature Range
Storage Temperature Range

·40 to +100

"C

·55 to +100

"C

Reverse Voltage per
Segment or DP

3.0

V

Lead Solder Temperature for

260

"C

3 Seconds (1.60 mm [0.063 in.]
below seating plane)
Notes:
1. See Figure 1 to establish pulsed conditions.
2. Derate above 80"C at 0.63 mA!'C (see Figure 2).
3. See Figure 10 to establish pulsed conditions.
4. Derate above 53"C at 0.45 mA!'C (see Figure 12).
5. See Figure 11 to establish pulsed conditions.
6. Derate above 39"C at 0.37 mA!'C (see Figure 12).
7. Derate above 91"C at 0.53 mA!'C (see Figure 6).

3·22

Electrical/Optical Characteristics at TA

= 250C

Red
Device Series
HDSP-

Symbol

Min.

Typ.

Iv

600

1100
500

IF

F01X, G01X

650

1200

IF

HOIX, K01X

600

1300

A01X

Parameter
Lurrtinous Intensity/Segment[1,2]
(Digit Average)

Max.

Units
).lcd

Test Conditions
IF

= 20 rnA

= lOrnA
= 20 rnA
IF = 20 rnA
IF = 100 rnA Peak:

1400

1/5 Duty Factor
All Devices

Forward Voltage/Segment or DP
Peak Wavelength

A01X

VF

1.6

2.0

V

A.PEAK

655

run

Dominant Wavelength[3]

A.d

640

run

Reverse Voltage/Segment or DP[4]

VR

3.0

12

V

Temperature Coefficient of
Vj,/Segment or DP

fNF/"C

-2

mV/oC

Thermal Resistance LED
Junction-to-Pin

RaJ .PIN

200

°C/W/
Seg.

F01X, G01X

320

H01X, KOIX

345

IF

= 20 rnA

IR

= 100 J.1A

AlGaAsRed
Device Series
HDSPA11X

Parameter
Luminous Intensity/Segment[I,2]
(Digit Average)

Symbol

Min.

Typ.

Iv

315

600

F11X, G11X

330

HllX,KllX

400

Max.

Units
J.1Cd

3600

IF = 5 rnA

650

IF

3900

IF

700
4200

All Devices

Forward Voltage/Segment or DP

VF

1.6

2.0

V

Dominant Wavelength[3]
Reverse Voltage/Segment or DP[4]

AllX

22

A.PEAK

645

run

A.d

637

run

VR

3.0

15

V

Temperature Coefficient of
VF/Segment or DP

LWF/oC

-2

mV/oC

Thermal Resistance LED
Junction-to-Pin

RaJ •PIN

255

°C/W/
Seg.

F11X, GllX

320

HllX,K12X

400

= 1 rnA
= 5 rnA
IF = 1 rnA
IF = 5 rnA
IF = 1 rnA
IF = 5 rnA

1.7
1.8
Peak Wavelength

Test Conditions
IF = I rnA

IF

= 20 rnA Peak

IR

= 100 J.1A

3-23

High Efficiency Red
Device Series
HDSP·

Parameter
Luminous Intensity~gment(l,2]
(Digit Average)

Symbol

Min.

Typ.

Iv

360

980

Max.

Units

Test Conditions

5390

= 5mA
IF = 20 rnA

F21X, G21X

420

1200

IF - 5 rnA

H21X, K2IX

900

2800

IF

3700

IF

A21X

I1cd

IF

= lOrnA
= 60 rnA Peak:

1/6 Duty Factor

All
Devices

Forward Voltage/Segment or DP

2.0

2.5

V

ApEAK

635

nm

Dominant Wavelength[3[

Ad

626

nm

Reverse Voltage/Segment or DP(4]

VR

Peak Wavelength

A21X

VF

3.0

30

V

Temperature Coefficient of
VF/Segment or DP

A\FfOC

·2

mV/oC

Thermal Resistance LED
Junction·to·Pin

RaJ. PIN

200

°C/w1

IF

= 20 rnA

IR

= 100 I1A

Seg.

F21X, G21X

320

H21X, K21X

345

High Perfonnance Green
Device Series
HDSP·
MIX

Parameter
Luminous Intensity/Segment[1,2]
(Digit Average)

Symbol

Min.

Typ.

Iv

860

3000

Max.

Units

I1cd

6800
F51X, G51X

1030

3500

H51X, K51X

900

2500
3100

Test Conditions

= lOrnA
IF = 20 rnA
IF = lOrnA
IF = lOrnA
IF = 60 rnA Peak:

IF

1/6 Duty Factor

All
Devices

Forward Voltage/Segment or DP
Peak Wavelength
Dominant Wavelength[3,5]
Reverse Voltage/Segment or DP(4]

MIX

VF

2.1

ApEAK

566

~
VR

571
3.0

2.5

V

IF = lOrnA

nm
577

nm

50

V

Temperature Coefficient of
V~egment or DP

A\FIOC

·2

mV/OC

Thermal Resistance LED
Junction·to-Pin

RaJ_PIN

200

OC/w1

IR

= 100 I1A

Seg.

F5lX, G5lX

320

H51X, G51X

345

Notes:
I. Case temperature of device inunediately prior to the intensity measurement is 25OC.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, ~, is derived from the eIE chromaticity diagram and is that single wavelength which defines the color of
the device.
.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. Green (HDSP-A51X/F51X/G51X/H512X/K5IX) series displays are categorized for dominant wavelength. The category is designated by
a number a

I

0.600 IN.

0

0

c;>

0---

'i.
HOLE PATTERN FOR PCB LAYOUT TO ACHIEVE UNIFORM 0.450 In. DIGIT TO DIGIT PITCH. FOR HDSP-FXXX TO HDSl4JXxX.

Absolute Maximum Ratings

Description
Average Power per Segment or DP
Peak Forward Current per
Segment or DP
DC Forward Current per
Segment or DP
Operating Temperature Range
Storage Temperature Range
Reverse Voltage per Segment
orDP
Lead Solder Temperature for 3
Seconds (1.60 mm [0.063 in.] below
seating plane)

AlGaAsRed
BDSP-AIOX/EIOX/
HIOX/K12X/NIOX/
FIOX, GIOX Series
37

HER
HDSP-751X/
335X/555X/
K70X Series

52
45

15111
-20 to +100

-40 to +100
-55 to +100
3.0

.260

Green
BDSP-A90X
Series
64

Units
mW
rnA

15 ,21

Notes:
1. Derate above 91"C at 0.53 mAI'C.
2. Derate HERlYellowabove 80"C at 0.38 mAI'C and Green above 71 'C at 0.31 mAI'G.
3-36.

Yellow
HDSP-ASOX
Series

rnA

"C
"C
V

"C

Electrical/Optical Characteristics at TA

= 25"C

AlGaAsRed
Device
Series
HDSP-

Parameter

Symbol

Min.

Typ.

Max.

315

600

IF

3600

IF

Units

AI0X

330

390
Luminous Intensity/Segment[I,2]
(Digit Average)

650
3900

IF

= 5 rnA
IF = I rnA

650
!lcd

Iv
3900
400

700

590

= 5 rnA
IF = 1 rnA

3500

IF

4200

IF

NI0X

= 5 rnA
IF = 1 rnA

1.6
Forward Voltage/Segment or DP

VF

1.7
1.8

All Devices

Peak Wavelength

2.2

645

run

Dominant Wavelength[3]

A..J

637

run

Reverse Voltage/Segment or DP[4]

VR

15

V

-2mV

mVrC

Temperature Coefficient of
VF/Segment or DP

!J.VFI"C

Al OX

255

FlOX, GlOX

320

EI0X
Thermal Resistance LED
HlOX, K12X Junction-to-Pin
NI0X

V

A.PEAK

3.0

= 5 rnA
IF = 1 rnA
IF

HlOX,KI2X
270

= 1 rnA

= 5 rnA
IF = 1 rnA

FIOX, GlOX

EI0X

Test Conditions

= 5 rnA
IF = 20 rnAPk
IF

IR

= 100 rnA

340
RaJ. PIN

"C/W/Seg
400
430

3-37

High Efficiency Red
Device
Series
HDSP-

,
Parameter

Symbol

Max;

Min.

Typ.

160

270

IF = 2 rnA

1050

IF = 5 rnA

Units

Test Conditions

751X
200
Luminous Intensity/Segment(-1,2] .
(Digit Average)
335X, 555X,
K70X

VF

1200

IF = 5 rnA

370

IF = 2 rnA

1480

IF = 5 rnA

1.6

IF = 2 rnA

1.7
2.1

All Devices

Peak Wavelength

3-38

2.5
nm

Dominant Wavelength(3j

A.J

626

nm

Reverse Voltage/Segment or DP(4]

VR

30

V

-2

mVrc

!::J.VFrc

3.0

200
Thermal Resistance LED
Junction-to-Pin

RaJ . PIN

280
345

IF = 5 rnA
IF =20rnAPk

635

751X

555X, K70X

V

A.PEAK

Temperature Coefficient of
VF/Segment or DP

335X

IF = 2 rnA
mcd

270

Forward Voltage/Segment or DP

300

Iv

"e/W

IR = 100 rnA

Yellow
Device
Series
HDSP-

Parameter
Luminous Intensity/Segment[1,2]
(Digit Average)

Forward Voltage/Segment or DP

Symbol

Min_

Typ.

250

420

Max.

Units

Test Conditions
IF

= 4 rnA

1300

IF

= 10 rnA

1.7

IF

= 4 rnA

IF

= 5 rnA

IF

= 20 rnAPk

IR

= 100

mcd

Iv

VF

1.8

V

A80X
2.1
Peak Wavelength

2.5

583

APEAK

nm

Dominant Wavelength[3,5]

Au

581.5

585

Reverse Voltage/Segment or DP[41

VR

3.0

30

V

592.5

nm

Temperature Coefficient of
VF/Segmeilt or DP

IlVF/OC

-2

mV/"C

Thermal Resistance LED
Junction-to-Pin

RaJ . PIN

200

°CIW

Parameter

Symbol

rnA

Green
Device
Series
HDSP-

Luminous Intensity/Segment I1 ,2]
(Digit Average)

Forward Voltage/Segment or DP

Min.

Typ.

250

475

Max.

Units

Test Conditions
IF

= 4 rnA

1500

IF

= 10 rnA

1.9

IF

= 4 rnA

IF

= 10 rnA

IF

= 20 rnAPk

IR

= 100 rnA

mcd

Iv

VF

2.0

V

A90X
2.1
Peak Wavelength

APEAK

566

Dominant Wavelength[3,51

Au

571

Reverse Voltage/Segment or DPI 41

VR

3.0

2.5
nm

577

nm

30

V

Temperature Coefficient of
VF/Segment or DP

IlVF/OC

-2

mV/"C

Thermal Resistance LED
Junction-to-Pin

RaJ . PIN

200

°CIW

Notes:
1. Device case temperature is 25"C prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, Au, is derived from the CIE chromaticity diagram and is the single wavelength which defmes the color of the
device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. The yellow (HDSP-ABOO) and Green (HDSP-A900) displays are categorized for dominant wavelength. The category is designated by a
number adjacent to the luminous intensity category letter.
3-39

AlGaAsRed
so.o

20
18
Re A

16

=noocrw

!

20.0

I

I-

14

~c

\

12

o:E
,,'
uiZ

5.0

a:::Ii

2.0

Ow

10

10.0

~"III
a:

00:
"'w
,0.

-"-

I

1.0
0.5
0.1

o
20 30 40 50 60 70

eo

0.5

9D 100 110 120

1.5

1.0

2.0

2.5

V F - FORWARD VOLTAGE - V

T A - AMBIENT TEMPERATURE - °C

Figure 1. Maximum Allowable
Average or DC Current vs. Ambient
Temperature.

Figure 2. Forward Current vs.
Forward Voltage.

1.3
20

/

,
~~

1.'

i~

1.1

I

!!!-

WI-

>0

i=w
w"
"'c

1.0

:IN
~~

~z

0.2

0.5

10

20

IF - FORWARD CURRENT
PER SEGMENT - mA

Figure 3. Relative Luminous Intensity
vs. DC Forward Current.

3-40

~
-~

a.SmA

0.8
0.7

0.1

--. i -

0.9 1--- --",

..0

0.1

""- ~

I

wo

V

I---- r-.....

o

10

20

30

40

IpEAK- PEAK FORWARD CURRENT

PER SEGMENT - rnA

Figure 4. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

50

HER, Yellow, Green
c

20

..,

50

'~"

40

E

ReM' 77I1'CIW

18

zw

16

ERlYbLLbw

1.

~REEN' l\

12

I\:

10

...'"w

311

'"

20

!Zw

\\

'"
G
D
'"
~
fl,
c

o

~

20 30 .. 50 10 70 8D

ao

100 110120

T. -AIiBiENTTEIoFERAlVRE-"C

10

0

•

o.s

1••

1.S

2.•

2.5

3.0

YF -FORWARD YOlTAGE-Y

Figure 5. Maximum Allowable
Average or DC Current vs. Ambient
Temperature.

Figure 6. Forward Current vs.
Forward Voltage.

16

/

14

/

,.
12

HER/

A"

~ELlOWI I---G~E~

/

/

.",./

/

••

V
8

10

12

14

16

IF- FORWARD CURRENT PER SEGMENT - rnA

IPEAl( - PEAK FORWAIID CURRENT
PER SEGMENT - mA

Figure 7. Relative Luminous Intensity
vs. DC Forward Current.

Figure 8. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

Electrical/Optical

chorinated hydrocarbon family
(methylene chloride, trichloroethylene, carbon tetrachloride,
etc.) are not recommended for
cleaning LED parts. All of these
various solvents attack or
dissolve the encapsulating
epoxies used to form the package
of plastic LED parts.

For more information on
electrical/optical characteristics,
please see Application Note 1005.

Contrast Enhancement
For information on contrast
enhancement please see Application Note 1015.

Soldering/Cleaning
Cleaning agents from the ketone
family (acetone, methyl ethyl
ketone, etc.) and from the

For information on soldering
LEDs please refer to Application
Note 1027.

3-41

rli~

HEWLETT"

a:r... PACKARD

Seven Segment Displays for High
Light Ambient Conditions
Technical Data

HDSP·3530/·3730/·5530/
·3900 Series
HDSP·4030/·4130/·5730/
·4200 Series

Features

Description

• High Light Output
Typical Intensities of Up to 7.0
mcd/seg at 100 rnA pk 1 of 5
Duty Factor
• Capable of High Current
Drive
Excellent for Long Digit String
Multiplexing
• Four Character Sizes
7.6 mm, 10.9 rum, 14.2 rum,
and 20.3 rum
• Choice of Two Colors
High Efficiency Red
Yellow
• Excellent Character
Appearance
Evenly Lighted Segments
Wide Viewing Angle
Gray Body for Optimum
Contrast
• Categorized for Luminous
Intensity; Yellow
Categorized for Color
Use of Like Categories Yields a
Uniform Display
• IC Compatible
• Mechanically Rugged

The HDSP-3530/-3730/-5530/
-3900 and HDSP-4030/-4130/
-5730/-4200 are 7.6 mm, 10.9
mm/14.2 mm/20.3 mm high
efficiency red and yellow displays
designed for use in high light
ambient condition. The four sizes
of displays allow for viewing
distances at 3, 6, 7, and 10
meters. These seven segment
displays utilize large junction
high efficiency LED chips made
from GaAsP on a transparent GaP
substrate. Due to the large
junction area, these displays can
be driven at high peak current
levels needed for high ambient
conditions or many character
multiplexed operation.

3-42

These displays have industry
standard packages, and pin
configurations and ± 1 overflow
display are available in all four
sizes. These numeric displays are
ideal for applications such as
Automotive and Avionic
Instrumentation, Point of Sale
Terminals, and Gas Pump.

5964-6374E

Devices
Part No.

HDSP3530
3531
3533
3536
4030
4031
4033
4036
3730
3731
3733
3736
4130
4131
4133
4136
5531
5533
5537
5538
5731
5733
5737
5738
3900
3901
3903
3905
3906
4200
4201
4203
4205
4206

Color
High Efficiency Red

Yellow

High Efficiency Red

Yellow

High Efficiency Red

Yellow

High Efficiency Red

Yellow

Description
7.6 mm Common Anode Left Hand Decimal
7.6 mm Common Anode Right Hand Decimal
7.6 mm Common Cathode Right Hand Decimal
7.6 mm Universal Overflow ± 1 Right Hand Decimal
7.6 mm Common Anode Left Hand Decimal
7.6 mm Common Anode Right Hand Decimal
7.6 mm Common Cathode Right Hand Decimal
7.6 mm Universal Overflow ± 1 Right Hand Decimal
10.9 mm Common Anode Left Hand Decimal
10.9 mm Common Anode Right Hand Decimal
10.9 mm Common Cathode Right Hand Decimal
10.9 mm Universal Overflow ± 1 Right Hand Decimal
10.9 mm Common Anode Left Hand Decimal
10.9 mm Common Anode Right Hand Decimal
10.9 mm Common Cathode Right Hand Decimal
10.9 mm Universal Overflow ± 1 Right Hand Decimal
14.2 mm Common Anode Right Hand Decimal
14.2 mm Common Cathode Right Hand Decimal
14.2 mm Overflow ± 1 Common Anode
14.1 mm Overflow ± 1 Common Cathode
14.2 mm Common Anode Right Hand Decimal
14.2 mm Common. Cathode Right Hand Decimal
14.2 mm Overflow ± 1 Common Anode
14.1 mm Overflow± 1 Common Cathode
20.3 mm Common Left Hand Decimal
20.3 mm Common Anode Right Hand Decimal
20.3 mm Common Cathode Right Hand Decimal
20.3 mm Common Cathode Left Hand Decimal
20.3 mm Universal Overflow ± 1 Right Hand Decimal
20.3 mm Common Left Hand Decimal
20.3 mm Common Anode Right Hand Decimal
20.3 mm Common Cathode Right Hand Decimal
20.3 mm Common Cathode Left Hand Decimal
20.3 mm Universal Overflow ± 1 Right Hand Decimal

Package
Drawing
A
B

C
D
A
B

C
D
E
F
G

H
E
F
G

H
I

J
K

L
I

J
K

L
M
N

0
P

Q
M
N

0
P

Q

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams D and H.

Absolute Maximum Ratings (All Products)
Average Power per Segment or DP (TA = 25°C) ................................................................................. 105 mW
Peak Forward Current per Segment or DP (TA = 25°C) ............................... 135 rnA (Pulse Width = 0.16 ms)
DC Forward Current per Segment[2] or DP (TA = 25°C) ........................................................................ 40 rnA
Operating Temperature Range ................................................................................................ -40OC to +85OC
Storage Temperature Range .................................................................................................... -40OC"to +85OC
Reverse Voltage per Segment or DP ......................................................................................................... 5.0 V
Lead Solder Temperature (1.59 mm [1/16 inch] below seating plane) .................................... 2600C for 3 sec
Notes:
1. See Figure 1 to establish pulsed operating conditions
2. Derate maximum DC current above TA = 250C at 0.50 mNOC per segment, see Figure 2.

3-43

Package Dimensions (HDSP-3530/-4030 Series)
5.18

(.2041

FUNCTION

10"

..

2
3
L.H.D.P.
Nolo 8

r--~

••

1 ,

:ffj..:
:'0. . "

13
'2

t

d'

4.19 (.• 661

(.3001

.0

9

6.72(.2251

7112

R.H.D.p.

_8

+

1
2
3

19.05 - 0.25
(.750 - .0101

•

l_

5
6
7
8
9
10

4.19 (.1651

5.08

(.2001

11

A,B,C

12
13
14

D

A
-35301-4030

B
-3531/-4031

C
-3533/-4033

D
-3536/-4036

CATHODE...
CATHODE-!
ANODE13]
NO PIN
NO PIN
CATHODE-dp
CATHODE..
CATHODE-d

CATHODE...
CATHODE-!
ANODEI']
NO PIN
NO PIN
NOCONN.l5]
CATHODE-.
CATHODE-d
CATHODE-dp
CATHODE-c
CATHODE-g
NO PIN
CATHODE-b
ANODE13]

CATHODEI6J
ANODE-!
ANODE-g
ANODE..
ANODE-d
CATHODEIs]
ANODE-dp
ANODE-c
ANODE-b

ANODE-d
NO PIN
CATHODE-d
CATHODE-c
CATHODE..
ANODE...
ANODE-c
ANODE-dp
NO PIN
CATHODE-dp
CATHODE-b
CATHOOE-a
ANODE-.
ANODE-b

NOCONN.~I

CATHODE-c
CATHODE-g
NO PIN
CATHODE-b
ANODE'~

ANODE-a

LUMINOUS

INTENSliY
CATEGORV

-I(~~

I~':::~-+--+'" t:Jii~=~,----t-

CATEGORY

MAX.

r-

Rt

"_~
L
(..aol
'.06(.'801
MIN.

-r- '

-11'1-- 0.25 (.0101

7.62(.3001~

DATE
CODE

A,B,C,D
END

C
SIDE

Package Dimensions (HDSP-3730/-4130 Series)
10'
1

I.

+

2 +

.a

11

10

_.

0

._1...

,1---t---foI. 8

+ 8

3.181.1251

R.H,D.P.

~

A.H.D.P.

N....

1.35 (.250) -j.---II--~-f- 5.2' 1.206)

E

H

F,G
FRONT VIEW

FUNCTION
LUMINOUS
INTENSITY

PIN

CATEGORY

1
2
3
4
5

6

(.• oal

END VIEW

3-44

SIDE VIEW

7
8
9
10
11
12
13
14

E
. -3730/-4.30

F
-37311-4.31

CATHODE..

CATHODE...

CATHOOE·f
ANODE 131
NO PIN
NO PIN
CATHODE-dp

CATHODE·f
ANODE(3)

CATHODE...
NO CONN.'.)

NOP)N
NOP)N
NOCONN.15)
CATHODE-.
CATHODE-d
CATHODE-dp

CATHODE-c

CATHODE-c

CATHODE..
NO PIN
CATHODE·.
ANODE(3)

CATHODE",
NO PIN
CATHODE"
ANOOEf3J

CATHODE..

G

H

-3733/-4133

-3736/-4136

ANODE·.
ANODE·f

CATHODE i.]
NO PIN

CATHODE ...
ANODE-d
NOP)N
CATHODE-c

NOPIN

CATHODE-e

NOCONN.15J
ANODE-d

ANODE ..
ANODE ..
ANODE-dp

ANODE-dp

CATHODE-dp

ANODE·c
ANODE·g
NO PIN
ANDOE ..
CATHODE'.I

CATHODE·b
CATHODE-a
NO PIN
ANOOE-a
ANODE·.

ANODe..

Package Dimensions (-5530/-5730 Series)
TOP END VIEW I,J, K, L

FUNCTION

1.00171
1.11

P'N

I,~I

I

~~~~~--~DATE
COOE

--I

8.00).-

I {.31SI I

2M

LIAII
. K 1137'
CATHODE. ANODE.
ANODE •• d CATHODE
• d
CATHODE/. CATHODEb ANODEb
ANODE.
ANODEa,b CATHODE

2

3
4

ANODE'M
CATHODE.

5

CATHODE
ANODEDP
DP
CATHODEb ANOOEb
CATHODEo ANODE,

6

7

0 [r--~1
±L '9.

8

~

ssaa

CATHODEo ANODE.
CATHODEd ANODEd

J{~~I

l87
{.
8
731
.
17·02c-il

~

DP

.,b,DP

CATHODE

ANODEDP

DP

CATHODE. ANODEo
ANODE •• b. CATHOOE
• b DP
DP
ANODE'M
CATHODE'· ANODEc,d CATHODE
cd
CATHODE f ANODEf
CATHOOEd ANODEd
CATHODE g ANODEg
NO PIN'·'
NO PIN'·'

9
10

{.IIDOI

t~4j{~:11

j

8.85
1.2701

L

-~

12.573

(...II
MAX

FRONT VIEW K, L

SIDE VIEW I, J, K, L

Package Dimensions (-3900/-4200 Series)
1.78
10.070)

+

I

2

+

3
4

+
+

5

6 ..

+

..

+

LHDP

i.-

8.26
1.27 10.326)

8.2~
t ' 1.27

NOTE 4

iii 10.060)
Ii LCHARACTER

•

LpACKAGE

r
.

l

'.1 MIN.

•
•
•
5
7

8
8

10.00101

10
11

0.38 10.015)

",.

13

15.24' 0.25
10.800 , 0.010)

,.
15

DATECOOE

NOTES:

M
pt.

3

10.330,0.0101

END VIEW M, N, 0, P, 0

FRONT VIEW 0
Function

0.51
10.0201

I

L±

Ii
PACKAGE...J

FRONTVIEWN.O

S~0'25
...i
~

10'F

10.0601

LpACKAGE

COLOR SINn!
LUMINOUS
INTENSITY
CATEGORY

~

NOTE 4

ILcHARACTER

FRONT VIEW M, P

19.96 MAX'
10.785 MAX.)

RHDP

10.325)

SIDE VlEWM.N,O,P,O

1. Dimensions in mlllimetera and (inches).
2. All untoleranced dimensions are for reference only.
3. Redundant anodes.

11
18

3I00I....

N
_ 1''201

NO PIN

NO PIN
CATHODE.

CATHODE'
"NODe lal

CATHODE'

CATHooe.

ANODE!31
CATHODEe
CATHODEe
ANooe[3]
ANODEI31
CATHODEdp NO.CDNNEC.
NO
PIN
NO PIN
NQPIN
NO PIN
CATHODEd
ANODEI!]
CATHODEc
CATHODEg
CATHODE b
NO PIN
ANODEf3!
NO PIN

NO PIN
CATHOoe""
CATHOOEd
ANODEIS)
CATHOOEc;
CATHODE g
CATHODE b
NO PIN
ANODEJ3]
NO PIN

0

390314203
NO PIN
ANODE.

P
3Il05l4205
NO PIN
ANODE.

ANooe,

ANODe!

CATHODE"I
ANODEe
CATHODE'I'

ANODEe

NO PIN
NO PIN
ANOOoEdp
ANODEd
CATHODE(8)
ANODE c
ANODE g
ANODE b
NO PIN
CATHODElI]
NOPIN

NO PIN
NO PIN
NO PIN
ANODEd
CATHODEISI
ANODEc
ANOOEg
ANODE b
NO PIN
CATHODEIS]
NO PIN

CATHODE!I]

CATHODE!8)
NO. CONNEC. ANODEdp

__
Q

NO PIN
CATHODE.
ANODEd
CATHQDEd
CATHODEc
CATHODEs
ANODEe
CATHODEdp
NO PIN
ANODEdp
CATHODEdp
CATHODE b
ANODEb
ANODE c
ANOOE a
NO PIN
CATHODE a
NO PIN

4. Unused dp poSition.
7. For HDSP-403D/-4130/-57311-420D Series product only.
5. See Internal Circuit Diagram. 8. See part number table for LHDP and RHDP designation.
6. Redundant Cathodes.

3-45

Internal Circuit Diagram (lIDSP-3530/-4030 Series)

c

B

A

D

Internal Circuit Diagram (lIDSP-3730/-4130 Series)

F

E

H

G

Internal Circuit Diagram (lIDSP-5530/-5730 Series)
'0

3

7

8

4

5

'0

8

9

3-46

4

4

J

9

8

K

3

L

5

Internal Circuit Diagram (HDSP-3900/-4200 Series)
18

5

9

M

o

N

Electrical/Optical Characteristics at TA
Parameter
Luminous Intensity/
Segmentl9 ,lOI
(Digit Average)

Peak Wavelength

Dominant Wavelengthlll,12J
(Digit Average)

Forward Voltage!Seg or D.P.
Reverse Current/Seg or D.P.
Temp. Coeff. ofVl'Y'Seg or D.P.
Thermal Resistance
LED Junction-to-Pin

Sym.
Iv

A.PEAK

A..i

VF
IR
ilVF/oC
RaJ.PIN

o

p

= 25°C

Device
HDSP3530
3730
5530
3900
3530
3730
5530
3900
4030
4130
5730
4200
4030
4130
5730
4200
3530/3730/
5530/3900
4030/4130/
5730/4200
3530/3730/
5530/3900
4030/4130/
5730/4200
All Devices
All Devices
All Devices
3530/4030/
3730/4130
5530/5730
3900/4200

Min.

1500
1500
2200
2200

1500
1500
2200
2200

581.5

Typ. Max.
4500
5000
7000
7000
3100
3500
4800
4800
4500
5000
7000
7000
2200
2500
3400
3400
635

Units
j.lcd

Test Condition
100mAPk;
1 of 5 Duty Factor

j.lCd

20mADC

j.lcd

100mAPk;
1 of 5 Duty Factor

j.lCd

20mADC

run

583

run

626

run

586

592.5

run

2.6

3.5
100

j.LA

V

-1.1

mV/oC

282

OC!W!Seg

345
375

OC!W!Seg
OC!W!Seg

IF = 100mA
VR = 3.0V
IF = 100mA

Notes:
9. Case temperature of the device inunediately prior to the intensity measurement is 25"<::.
10. The digits are categorized for lnminous intensity with the intensity category designated by a letter on the side of the package.
11. The dominant wavelength, I.i, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the
device.
12. The yellow displays are categorizes as to dominant wavelength with the category designated by a number ruljacent to the intensity
category letter.

3-47

20
13.&

"

'\.

10
8

"

4
3.4

.3

~

r

10

to -

100

OPE RATION IN
THISREGION
HEQUIRES
TE MPERATURE
DERAnNGOF
·IDC MAX

,,

"

't

I

I

f\. t\.

~

~J

f

-... ,,~,
"i

~

\
10.000

1000

DCOPERAnON

PULIE DURATION - ••

Figure 1. Maximum Allowed Peak Current VB. Pulse Duration.
I.2

&0

"

\

\

'\.

ReJ• • 430"CIWISEG~ ~
ReJA •.&30·ClWISEG~
6 ReJA - 82&'ClWISEG~
ReJA - 770'ClWISEG~
0

i

,

O.8

~a

o.81/

~=
I

II:

O. 4

"i
j!z

0.2

~

~'"

I(S,

V I-"'" ,:,

,

.. !:!

1I

..."

.,.. I"'" ;;;;00

....~1
Yo

~''\

I.0

".

HDIIP-4030/-41301
-&731/-4200 SERIES

/

o

10

20

30

40

&0

80

70

80

90 100

TA - AMB'ENT TE...ERATURE -'C

2.4

.

~R

"1
!!iI

1.8
I.B

!!! ..

1.4

i'"

~~
....

1.2

~i

0.8

Si
.a:

/

2.0

V

/

V

1.0

V

0.6
0.4
0.2

o/
o

V

V
20

.
~

"c
J
40

80

80

100

120

Electrical
These display devices are
composed of eight light emitting
diodes, with light from each LED
optically stretched to form
individual segments and a
decimal point.

140

Figure G. Relative Luminous Intensity
VB. DC Forward Current.

HDIP-3630/-37301
-663I/-3BOO IERIES",

VI

80
40
20

o

ff
')V

i~

~
~~ '\.:t:-:~:tES
2.0

1.0

V. -PEAK FORWAROVOLTAGE-V

Figure •. Peak Forward Segment
Current VB. Peak Forward Voltage.

Expected maximum VF values, for
the purpose of driver circuit
design and maximum power
dissipation, may be calculated
using the following VF MAX
models:

= 2.15 V
For: IF ~ 30 rnA

+ IPEAJ{ (13.5 0)

The devices utilize LED chips
which are made from GaAsP on a
transparent GaP substrate.

VF MAX

These display devices are
designed for strobed operation.
The typical forward voltage
values, scaled from Figure 4,
should be used for calculating the
current limiting resistor value and
typical power dissipation.

Temperature derated strobed
operating conditions are obtained
from Figures 1 and 2. Figure 1
relates pulse duration (1;,), refresh
rate (t), and the ratio of maximum peak current to maximum

30

I, - SEGMENT DC CURRENT - mA

3-48

80

VF MAX

,/

10

"

I'"

Figure 3. Relative EMclency
(Luminous Intensity per Unit
Current) VB. Peak Segment Current.

,/

2.2

100

'PEA. - PEAK SEGMENT CURRENT - mA

Figure 2. Maximum Allowable DC
Current per Segment VB. Ambient
Temperature.

>

"a

I

0
20

120

1:1

5
0

140

z

...... 11\.

./

,

180

HD~~~/I

-5&31/-'3900 SERIES

= 1.9 V + IDe (21.8 0)
For: 10 rnA:5 IF :5 30 rnA

3.0

dc current (IPEAK MAX/loc MAX).
Figure 2 presents the maximum
allowed dc current vs. ambient
temperature. Figure 1 is based on
the principle that the peak junction temperature for pulsed
operation at a specified peak
current, pulse duration and
refresh rate should be the same
as the junction temperature at
maximum DC operation. Refresh
rates of 1 kHz or faster minimize
the pulsed junction heating effect
of the device resulting in the
maximum possible time average
luminous intensity.
The time average luminous intensity can be calculated knowing
the average forward current and
relative efficiency characteristic,
11 IPEAK, of Figure 3. Time average
luminous intensity for a device
case temperature of 25°C, Iv
(25°C), is calculated as follows:
Iv (25OC) = [2;:J [tJlPEAKl [IvDATASHEETl

Example: For HDSP-4030 series
11 IPEAK = 1.00 at IpEAK
ForDF = 1/5:

= 100 mAo

Mechanical

Contrast Enhancement

These devices are constructed
utilizing a lead frame in a
standard DIP package. The LED
dice are attached directly to the
lead frame. Therefore, the
cathode leads are the direct
thermal and mechanical stress
paths to the LED dice. The
absolute maximum allowed
junction temperature, TJ MAX, is
105°C. The maximum power
ratings have been established so
that the worst case VF device does
not exceed this limit.

The objective of contrast enhancement is to optimize display
readability. Adequate contrast
enhancement can be achieved in
indoor applications through
luminous contrast techniques.
Luminous contrast is the
observed brightness of the
illuminated segment compared to
the brightness of the surround.
Appropriate wavelength fIlters
maximize luminous contrast by
reducing the amount of light
reflected from the area around
the display while transmitting
most of the light emitted by the
segment. These fIlters are
described further in Application
Note 1015.

Worst case thermal resistance
pin-to-ambient is 400°C/W/Seg
when these devices are soldered
into minimum trace width PC
boards. When installed in a PC
board that provides R9PIN•A less
than 400°C/W/Seg these displays
may be operated at higher
average currents as shown in
Figure 2.

Optical
The radiation pattern for these
devices is approximately Lambertian. The luminous sterance
may be calculated using one of
the two following formulas.

20mA ]
Iv (25") = [20mA [1.00)[4.5 mcd]
=

=

Iv(cd)
A(m2)

4.5 mcd/segment

The time average luminous intensity may be adjusted for operating junction temperature by the
following exponential equation:
Iv (TJ)

1y(cdlm2)

= Iv (25°C) e[k(TJ + 25"C)]

Device
-3530/-3730/
-5530/-3900
-4030/-4130/
-5730/-4200

1y(footlarnberts) = 7tlv(cd)
A(ft2)

Device

-3530/-4030
-3730/-4130
-5530/-5730
-3900/-4200

Chrominance contrast can further
improve display readability.
Chrominance contrast refers to
the color difference between the
illuminated segment and the
surrounding area. These displays
are assembled with a gray package
and untinted encapsulating epoxy
in the segments to improve
chrominance contrast of the ON
segments. Additional contrast
enhancement in bright ambients
may be achieved by using a
neutral density gray fIlter such as
Panelgraphic Chromafilter Gray
10, or 3M Light Control Film
(louvered film).

Area/Seg. Area/Seg.
mm2
in2

2.5
4.4
8.8
14.9

0.0039
0.0068
0.0137
0.0231

K

-0.0131;oC
-0.0112;oC

3-49

Fh.dl HEWLETT®

a:~PACKARD

7.6 mm (0.3 inch)/IO.9 mm
(0.43. inch) Seven Segment
Displays

Technical Data

5082-761X Series
5082-762X Series
5082-765X Series
5082-766X Series
5082-773X Series
5082-7740
5082-775X Series
5082-7760
HDSP-360X Series
HDSP;;460X Series
HDSP-E15X Series

Features
• Industry Standard Size
• Industry Standard Pinout
7.62 nun (0.300 inch) DIP
Leads on 2.54 mm
(0.100 inch) Centers
• Choice of Colors
Red, AlGaAs Red, High
Efficiency Red, Yellow, Green
• Excellent Appearance
Evenly Lighted Segments
Gray Package Gives Optimum
Contrast
± 50° Viewing AngIe
• Design Flexibility
Common Anode or
Common Cathode
Single Digits
Left or Right Hand Decimal
Point
± L Overflow Character

• Categorized for Luminous
Intensity
Yellow and Green Categorized
for Color
Use of Like Categories Yields a
Uniform Display
• High Light Output ,
• High Peak Current
• Excellent for Long Digit
String Multiplexing
• Intensity and Color
Selection Available
See Intensity and Color
Selected Displays Data Sheet
•. Sunlight Viewable AlGaAs

Description
The 7.6 mm (0.3 inch) and 10.9
mm (0.43 inch) LED seven

segment displays are designed for
viewing distances up to 3 metres
(10 feet) and 5 metres (16 feet).
These devices use an industry
standard size package and
pinouts. All devices are available
as either common anode or
common cathode.

Devices
Red
50827730

AlGaAs!l!
RedHDSP-

BERU!
50827610

Yellow
50827620

Green
HDSP3600

Description
7.6 mm Common Anode Left Hand Decim31

Package
Drawing
A

7731

7611

7621

3601

7.6 mm Common Anode Right Hand Decimal

B

7740

7613

7623

3603

7.6 mm Common Cathode Right Hand Decimal

C

7736

7616

7626

3606

7.6 mm Universal ± 1: Overflow Right Hand Decimal!2]

D

7650

7660

4600

10.9 mm Common Anode Left Hand Decimal

E

7750

E150

7751

E151

7651

7661

4601

10.9 mm Commo,:!Anode Right Hand Decimal

F

7760

E153

7653

7663

4603

10.9 mm Common Cathode Right Hand Decimal

G

7756

E156

7656

7666

4606

10.9 mm Universal ± 1. Overflow Right Hand Decimal!2]

H

Notes:
1. These displays are recommended for high ambient light operation. Please refer to the HDSP-EI0X AlGaAs and HDSP-335X HER data
sheet for low current operation.
.
2. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram D.
3. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diBgram H.
3-50

5963-7394E

These displays are ideal for most
applications. Pin for pin equivalent displays are also available in
a low current or high light

ambient design. The low current
displays are ideal for portable
applications. The high light
ambient displays are ideal for
high light ambients or long string

lengths. For additional information see the Low Current Seven
Segment Displays, or High Light
Ambient Seven Segment Displays
data sheets.

Package Dimensions

FUNCTION
PIN

1
2
3
4

r---'--

5
6
7
8
9

19.05' 0.25

('7ror'0Ir~
5.72
(.2251

'~OTE'

---l

0.25

(.0101

o

A,B,C

A
CATHODE·.

B
CATHODE·.

C
NO PIN

CATHODE·'
ANODEl'I

CATHODE·'
ANODEt"

CATHODE'"

NO PIN

NO PIN

NO PIN

ANODE·'
ANODE'll

CATHODE-d
CATHODE-c

ANODE ..

CATHODE ..

ANODE-d
NO PIN

ANODE·.

NO PIN

NO PIN
CATHODE-dp NOCONN.III

CATHODE·.
CATHODE-d

CATHODE ..

NO CONN.!"

10
11
12
13
14

CATHODE·.
CATHODE",
NO PIN
CATHODE·b
ANODEI'I

ANODE-c

CATHODE-d
NO PIN
CATHODE-dp CATHODE"]

ANODE-dp
NO PIN

CATHODE-c
CATHODE-a
NO PIN
CATHODE·b
ANODEI']

ANODE·dp

CATHODE-dp

ANODE-c
ANODE·b
ANODE·.

CATHODE·b

L.UMINOUS
INTENSITY
CATEGORY
10.11 MAX .
(..aol

NO PIN

I

.LR
'

.... (....1
MIN.

-"

D
ANODE·d

NOTES;

---L

I (~;~I

-1 '1-- 0.26 (.0.01

7.82 (.300I+--

CATHODE·.
ANODE·.
ANODE·b

1

DATE

•• DIMENSIONS IN
MILLIMETRES AND
(INCHES).
2. ALL UNTOLERANCED
DIMENSIONS ARE
FOR REFERENCE
ONLY.
3. REDUNDANT
ANODES.
4. UNUSED DP
POSITION.

COOE

C SIDE

A.B,O:SIOE

5. SEE INTERNAL
CIRCUIT DIAGRAM.

A,B,C,O END

*The SIde VI8w 01 padcage Indlcat.. eounlly 01 Origin.

'0"

r:: a
I '

.'

0

'106!I 0 .25 3 +c:
f ,010,41 + c::::::3
+-"
S+f1b+l0

1.110

I

8...

.

7

0\

~

F.G

FRONT VIEW

LUMINOUS

INTENSITY
CATEGORY

6.33

,

....

Ii
END VIEW

E

1
2

CATHODE ..

FUNCTION
F
G
CATHODE.. ANODE..

CATHODE·'
ANODEt"
NO PIN

CATHODE·'
ANODEt"
NO PIN

NO PIN
CATHODE-dp
CATHODE..
CATHODE-d

NO PIN

CATHODE'"
NO PIN
NO PIN

NOCONN.,t]

NO CONN.,·1 ANODE ..

CATHODE..
CATHODE...
CATHODE-d
CATHODE-c

ANODE..

3

•
g

SIDE VIEW

~

RHOP

PIN

4
5
8
7

6.3&

(.2.01 1....1

(.4081

•

..1_ L.-.---'.....-J
,
H NOTE 4
E

6. REDUNDANT
CATHODE.
7. SEE PART NUMBER
TABLE FOR L.H.D.P.
AND R.H.D.P.
DESIGNATION.
8. FOR YELLOW AND
GREEN DEVICES
ONLY.

10
11
12
13
14

NO CONN.'"
CATHODE-c
CATHODE....

CATHODE....
NO PIN

ANODE·'

ANODE'"
ANODE-dp
ANODE-c
ANODE",
NO PIN

H
CATHODE-d
ANODE-d
NO PIN
CATHODE-c
CATHODE..
ANODE-c
ANODE... p
CATHODE-dp
CATHODE·b
CATHODE·.

NO PIN
CATHODE-b

CATHODE·b

ANODE·b

NO PIN
ANODE·.

ANODEt"

ANODE1"

CATHODE'"

ANODE·b

*The SIde VI8w 01 padcage Indicates Country of Origin.
3-51

Internal Circuit Diagram

A

B

E

F

D

H

G

Absolute Maximum Ratings
AlGaAsRed
HDSP-E150
Series

HER
5082-7610/
7650 Series

Yellow
5082-7620/
7660 Series

Green
HDSP-3600/
4600 Series

Units

82

96

105

80

105

mW

Peak Forward Current per
Segment or DP

150111

160131

90151

60 171

90 191

rnA

DC Forward Current per
Segment or DP

25 121

40 141

30 161

20 181

30101

rnA

-40 to +100

-20 to + 1001111

Description
Average Power per Segment or DP

Operating Temperature Range
Storage Temperature Range
Reverse Voltage per
Segment or DP
Lead Solder Temperature for 3
Seconds (1.59 mm [0.063 in.]
below seating plane

Red
5082-7700
Series

-40 to +100

"C

3.0

V

260

"C

Notes:
1. See Figure 1 to establish pulsed conditions.
2. Derate above 80"C at 0.63 mA/"C.
3. See Figure 2 to establish pulsed conditions.
4. Derate above 46"C at 0.54 mA/"C.
5. See Figure 7 to establish pulsed conditions.
6. Derate above 53°C at 0.45 mAtC.
7. See Figure 8 to establish pulsed conditions.
8. Derate above 81"C at 0.52 mA/"C.
9. See Figure 9 to establish pulsed conditions.
10. Derate above 39"C at 0.37 mA/"C.
11. For operation 'below -20"C, contact your local HP components sales office or an authorized distributor.

3-52

"C

-55 to +100

Electrical/Optical Characteristics at TA = 25"C
Red
Device
Series

Parameter
Luminous Intensity/Segmentll ,21
(Digit Average)

5082·773X
5082-774X

Symbol

Peak Wavelength

770

~cd

IF = 20 rnA

1100

~cd

IF = 20 rnA

V

IF = 20 rnA

360
360

Max.

VF

1.6

A.PEAK

655

nm

640

nm

12

V

Dominant Wavelengthl31

A..!

Reverse Voltage!Segment or DPI4]

VR

All

Test
Conditions

Typ.

Iv

5082-775X
5082-776X
Forward Voltage!Segment or DP

Units

Min.

3.0

2.0

IR=100~

Temperature Coefficient of
VF/Segment or DP

6.VFI"C

-2

mVI"C

Thermal Resistance LED
Junction-to-Pin

RaJ_PIN

280

"C/W!Seg

AlGaAsRed
Device
Series

HDSPE15X

Symbol

Min.

Typ.

Luminous Intensity!Segmentll, 2, 5]
(Digit Average)

Iv

8.5

15.0

mcd

IF= 20 rnA

1.8

V

IF = 20 rnA

Forward Voltage/Segment or DP

VF
V

IF = 100 rnA

Parameter

2.0
Peak Wavelength

A.PEAK

Dominant Wavelengthl3]

A..!

Reverse Voltage!Segment or DPI4]

VR

3.0

Max.

3.0

Units

645

nm

637

nm

15

V

Temperature Coefficient of
VF/Segment or DP

6.VFI"C

-2

mVI"C

Thermal Resistance LED Junctionto-Pin

RaJ_PIN

340

°C/w/Seg

Test Conditions

IR =

100~

3-53

High Efficiency Red
Device
Series
5082-761X

Parameter

Symbol

Typ.

340

800

340

1115

Max.

Units

IF

= 5mA

/lcd

IF

V

IF

= 5mA
= 20mA

IR

= 100 I!A

Forward Voltage/Segment or DP

VF

2.1

ApEAK

635

run

626

run

30

V

Peak Wavelength
Dominant Wavelength[3]

A.!

Reverse Voltage/Segment or DP[4]

VR

3.0

2.5

Test Conditions

/lcd

Iv

5082-765X

All

Min.

Luminous Intensity/Segment[1,2,6]
(Digit Average)

Temperature Coefficient of
VF/Segment or DP

!1VFI"C

-2

mV!"C

Thermal Resistance LED
Junction-to-Pin

RaJ.PIN

280

"C/W

Yellow
Device
Series
5082-762X

Parameter
Luminous Intensity/Segment[1,2]
(Digit Average)

Symbol

Peak Wavelength

620

290

835

Max.

Units

Test Conditions

/lcd

IF

= 5mA

VF

2.2

ApEAK

583

2.5

/lcd

IF

V

IF

= 5mA
= 20mA

IR

= 100 I!A

run

Dominant Wavelength[3, 7]

Ad

581.5

586

Reverse Voltage!Segment or DP[4]

VR

3.0

40

V

All

3-54

Typ.

205
Iv

5082-766X
Forward Voltage/Segment or DP

Min.

592.5

run

Temperature Coefficient of
VF!Segment or DP

!1VF!"C

-2

mV/"C

Thermal Resistance LED
Junction-to-Pin

RaJ-PIN

280

"C/W/Seg

High Performance Green
Device
Series
HDSP-360X

Parameter

Symbol

Luminous Intensity/Segment[1,2[
(Digit Average)

Min.

Typ.

860

2700

1030

4000

Max.

Test
Conditions

Units
~cd

IF = lOrnA

~cd

IF = lOrnA

V

IF = lOrnA

Iv

HDSP-460X
Forward Voltage/Segment or DP
Peak Wavelength
Dominant Wavelength[3, 7]

All
Reverse Voltage/Segment or DP[4[

VF

2.1

A.PEAK

566

A..i

571

VR

2.5

nm
577

run

50

V

Temperature Coefficient of
VF/Segment or DP

IlVFI"C

-2

mVI"C

Thermal Resistance LED
Junction-to-Pin

RaJ-PIN

280

OC/W/Seg

3.0

IR=lOO~

Notes:
I. Device case temperature is 2500 prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, A.d, is derived from the CIE chromaticity diagram and is that single wavelength which dermes the color of
the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs HDSP-EI OX series displays are recommended. They are tested at I rnA dc/segment and are pin
for pin compatible with the HDSP-E15X series.
6. For low current operation, the HER HDSP-335X series displays are recommended. They are tested at 2 rnA dc/segment and are pin for
pin compatible with the 5082-7650 series.
7. The Yellow (5082-7620/7660) and Green CHDSP-3600/4600) displays are categorized for dominant wavelength. The category is
designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE

OPERATION IN THIS
REGlON REQUIRES
TEIlPERATURE

=:.r:.~GOFIDC

=~J~:OFIDC

I

~

-~

,

_.. 10

i~ ~~ N ~~
laD

lDOD

I. - PULSE DURATION -)IS

Figure 1. MaxImum Tolerable Peak Current vs.
Pulse Duration - Red.

-to
N ~~~
II' ~~~~
1111

DC OPERATION
10000

10

laD

lDOD

DC OPERATION
10000

I. - PULSE DURATION -."

Figure 2. Maximum Allowed Peak Current vs. Pulse
Duration - AlGaAs Red.

3-55

Red, AlGaAs Red (Continued)
so

!i
II!

"
Be

u E
,,'
a!i:

i;;:iJW

;111

,ffi
....
,.
c

I

45

A......

I

=T7O"CIW

40

f

30
AED

25

RED
AlGoAsRED

100

10

~

60

,~

15

I

I ::
;

35

2D

160

I

AIG_AED

~

10

~

o

o

2D 30 40 50 60 10 80 90 100 110 120

j)
o

0.5

TA - AMBIENT TEMPERATURe - "C

1.5

2.0

2.5

3.0

3.5

4.0

Y, -FORWARDYOLTAGE-V

Figure 3. Maximum Allowable DC Current vs.
Ambient Temperature.

Figure 4. Forward Current vs. Forward Voltage.

,

2.00

1,0

1A

AIGaAa RED,'

/:t'~

i~

I~
~~
WI
3~
~!..

,
,,

1.75
1.50
1.25

AED/

1.00
0.75
0.50
0.25

o

V

o

L

V
10

1.2

•.'

RED

/

0.8

15

V

1.0

2D

25

3D

35

V

1,- FORWARD CURAENT PER SEGMENT - InA

"
"

/~RED

0.8
0.5

40

/ ....... r--..

/'

s.o

50.0

150.0

IPEAI( - PEAK FORWARD CURRENT
PER SEGMENT - mA

Figure 5. Relative LumInous Intensity vs. DC
Forward Current.

Figure 6. Relative Efficiency (Luminous Intensity per
Unit Current) vs. Peak Current.

HER, Yellow, Green

·f;:!lE.
j l'l;r~'l00.~JI

100
OPERATlONINTHIS
REGION AEQUIIES

++tt1'#-+t'-tHl~'--t., 11t =::~~

H-H-fHl#--++HlIfH

i-\j!ll; MAIIT

00

l°mullfJ'
-1:il:r::
r-Jfffi
-.(_.
....

"I"
~a

~~

1
1

10

,'!III

100

DC OPERATION

1000

lDODO

tp - PULSE DURATION -!-IS

Figure 7. MaxImum Tolerable Peak Current vs.
Pulse Duration - HER Series.

3-56

==
D

10

I~~ I~ ~I!~""~
~\~y~:i~i ---r-

I

JPERATIDH IN THIS
REGION REQUIRES

TEllPERATURE

-

1

1

10

~

l)

"

100

M
1000

OF 100

-------.t
DC DPERATIDN
lDODO

Ip - PULSE DUAAnON-~1

Figure 8. Maximum Tolerable Peak Current vs.
Pulse Duration - Yellow Series.

HER, Yellow, Green (Continued)
50

OPERAnON IN THIS
REGION REQUIRES
TEMPERATURE

40

0:
0:

D

,

Be

='::O.FIDC

31

g~

-I

_.

-

30
25

1m
~-&

~~~
11.: nlIJ~

,

,00

'0

~~
'000

I-

80

HER SERIES

110

____Ii /-

TA - AMBIENT TEMPERATURE _·C

Figure 10. Maximum Allowable DC Current VB.
Ambient Temperature.

VU

40

I: e

YELLOW SERIES
GREEN SERIES

I

30

10

a

,.0

~

rJ

2.0

I~~

I~

3.0

4.0

5.0

YF -FORWARD YOLTAGE-Y

Figure 11. Forward Current VB.
Forward Voltage.

HER. YELLOW. GREEN

3.0

2.G

ii

0_5

II'

/

2.5

1.5

I ;;

/

3.5

3 !:I

U

I/J

20

I"" ~

20 30 40 50 80 70 80 10 100 110120

4.G

II

r-..: ~ YELLOW

o

DC OPERATION

10000

I)

70

'!.!tER

11

Figure 9. Allowable Peak Current VB.
Pulse Duration - Green Series.

90

,

'5
10

tp -PULSE DURATION -loll

90

GR~

20

i~

1--

R8J.A =77O"C1W

41

!i:w

V

V

1.0

a

V

o

lL

Mill

YELlow SE~IES

L

1.4

d ::
~=

/
~

'"

I I

HER SERIES
GREEN SERIES

Il~

".

1.1

i~1 :~ I,
j

:

0.8
0.7

G.G
'015202130111411

1,- FORWARD CURRENT PER SEGMENT - mA

Figure 12. Relative Luminous
Intensity VB. DC Forward Current.

o

'D

20 3D 40 50 80 70 8D 90 100

IpEAK - PEAK FORWARD CURRENT
PER SEGUENT - mA

Figure 13. Relative Luminous
Emciency (Luminous Intensity per
Unit Current) VB. Peak Current.

Contrast Enhancement
For information on contrast
enhancement please see
Application Note 1015.

Soldering/Cleaning
For information on soldering
LEDs please refer to Application
Note 1027.

3-57

F/i;W HEWLETTI!>
~1:.tI PACKARD

8 mm (0.31 inch) Ultra Mini
Seven Segment Displays
BDSP-UOXX Series
BDSP-UIXX Series
BDSP-U2XX Series
BDSP-U3XX Series
BDSP-U4XX Series
BDSP-U5XX Series

Technical Data

Features
• Compact Package
·8 mm (0.31 inch) Chltracter
Height
• Choice of Colors
Wide Range of Colors
• Excellent Appearance
Evenly Lighted Segments
Mitered Corners on Segments
Gray/Black Surface Gives
Optimum Contrast
± 50° Viewing Angle
• Design Flexibility
Common Anode or Common
Cathode
Right Hand Decimal Point
• Categorized for Luminous
Intensity
Yellow and Green also
Categorized for Color
Use of Like Categories Yields
a Uniform Display

• High Light Output
• High Peak Current
• Excellent for Long Digit
String Multiplexing
• Intensity and Color
Selection Option

Description
The 8 mm (0.31 inch) LED seven
segment displays are HP's most
space-efficient character size.
They are designed for viewing
distances up to 3 metres (10
feet). The numeric devices feature
a right hand decimal point. All
devices are available as either
common anode or common
cathode.
Typical applications include
appliances, temperature controllers,and digital panel meters.

Devices
Red AlGaAsRed
HDSPHDSP-

HER
HDSP-

Orange Yellow Green
HDSP- HDSP- HDSP-

Description

Circuit
Diagram

UOOl

UlOI

U201

U40l

U30l

U501

Common Anode, Right
Hand Decimal, Gray Surface

A

UOO3

UI03

U203

U403

U303

U503

Common Cathode, Right
Hand Decimal, Gray Surface

B

UOll

Ulll

U2ll

U4ll

U3ll

U5ll

Common Anode, Right
Hand Decimal, Black Surface

A

UOl3

U1l3

U213

U413

U3I3

U5I3

Common Cathode, Right
Hand Decimal, Black Surface

B

3-58

5964-6424E

Package Dimensions

COLOR BIN
NOTE NO. 3
LUMINOUS
INTENSITY
CATEGORY

(0.197)

r °)1
7.1

28
O.
MAX.

NOTES:
1. ALL DIMENSIONS IN MILLIMETERS (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. FOR YELLOW AND GREEN SERIES PRODUCT ONLY.

0.25!8

(0.010)

5.3

(0.209)

Internal Circuit Diagram
10

10
9

2

9

8

3+--1)1-9

8

7

4

7

5

B

A
FUNCTION
PIN

B

A
DEs

:a
:.
:d
:DP

8
9

10

IODl1e
lE
OOEb

ANODEs
ANC
ANC
ANC

:a

:.
:d

'DEDP
,DP
IDl1e
THODE
lOEb

HDSP-UXXX CIRCUIT

3-59

Absolute Maximum Ratings

Series

Green
HDSPU5XX
Series

Units

105
90[5J

80
60[7J

105
90[9J

mW
rnA

30[6J

20[8J

30 10 J

rnA

Red
HDSPUOXX
Series

AlGaAsRed
HDSPUIXX
Series

HER/Orange
HDSPU2XX/-4XX
Series

Yellow
HDSP-

Average Power per Segment or DP
Peak Forward Current per
Segment or DP

82
150[IJ

37
45[3J

DC Forward Current per Segment
orDP

25[2J

15[4J

-25 to +90

-20 to +90

Description

Operating Temperature Range

uaxx

DC

-25 to +90
-30- +90

DC

Reverse Voltage per Segment or DP

3.0

Lead Solder Temperature for
3 Seconds (1.60 mm [0.063 in.]
below seating plane)

260

V
DC

Storage Temperature Range

Notes:
1. See Figure 1 to establish pulsed conditions.
2. Derate above 80'C at 0.63 mN'C (see flgure 3).
3. See Figure 2 to establish pulsed conditions.
4. No derating over specified temperature range.
5. See Figure 7 to establish pulsed conditions.

6. Derate above 53'C at 0.45 mAt'C (see figure 10).
7. See Figure 8 to establish pulsed conditions.
8. Derate above 81 'c at 0.52 mAt'C (see figure 10).
9. See Figure 9 to establish pulsed conditions.
10. Derate above 39'C at 0.37 mN'C (see figure 10).

Electrical/Optical Characteristics at TA =25°C
Red
Device
Series
HDSPUOXX

Symbol

Min.

Typ.

Luminous Intensity/Segment 11 ,2J
(Digit Average)

Iv

600

1100

Forward Voltage/Segment or DP

VF

Parameter

Peak Wavelength

3-60

Max.

Units
).lcd

500
1.6

A.PEAK

Dominant Wavelength l31

A.d

Reverse Voltage/Segment or DPI4J

VR

3.0

Test
Conditions

= 20 rnA
= 10 rnA
IF = 20 rnA
IF
IF

2.0

V

655

nm

640

nm

12

V

Temperature Coefficient of
VF/Segment or DP

~VF;oC

-2

mV/oC

Thermal Resistance LED
Junction-to-Pin

RaJ . Pin

200

oe/W/
Seg

IR

= 100).lA

AlGaAsRed
Device
Series
HDSP-

UIXX

Parameter
Luminous Intensity/Segment[ 1,2)
(Digit Average)

Symbol

Min.

Typ.

Iv

315

Forward Voltage/Segment or DP

VF

600
3600
1.6
1.7
1.8
645
637
15
-2

Peak Wavelength
Dominant Wavelength(3)
Reverse Voltage/Segment or DP(4)
Temperature Coefficient of
VF/Segment or DP
Thermal Resistance LED
Junction-to-Pin

High Efficiency Red
Device
Series
Parameter
Luminous Intensity/Segment[I,2)
HDSPU2XX (Digit Average)
Forward Voltage/Segment or DP
Peak Wavelength
Dominant Wavelength(3)
Reverse Voltage/Segment or DP(4)
Temperature Coefficient of
Vp/Segment or DP
Thermal Resistance LED
Junction-to-Pin

ApEAK
Ad
VR
!:NF/OC

3.0

Symbol

Min.

Typ.

Iv

360

~VF;oC

980
5390
2_0
635
626
30
-2

RaJ_PIn

200

VF

ApEAK
Ad
3.0

Units
/lcd

V

2.2

Test
Conditions
IF
IF
IF
IF
IF

= 1 rnA
= 5 rnA
= 1 rnA
= 5 rnA
= 20 rnA

IR

= 100!lA

nm
nm

V
mV;oC

255

RaJ_Pin

VR

Max.

OC/W/
Seg

Max.

Units
/lcd

2_5

V

Test
Conditions
IF
IF
IF

= 5 rnA
= 20 rnA
= 20 rnA

IR

= 100!lA

nm

nm
V
mV/OC
°C/W/
Seg

3-61

Orange
Device
Series
HDSPU4XX

Parameter
Luminous Intensity/Segment[l,2]
(Digit Average)
Forward Voltage/Segment or DP
Peak Wavelength
Dominant Wavelength[3j
Reverse Voltage/S~gment or DP[4]
Temperature Coefficient of
VF/Segment or DP
Thermal Resistance LED
Junction-to-Pin

Yellow
Device
Series
HDSPU3XX

Parameter
Luminous Intensity/Segment[l,2]
(Digit Average)
Forward Voltage/Segment or DP
Peak Wavelength
Dominant Wavelength[3,5]
Reverse Voltage/Segment or DP[4]
Temperature Coefficient of
VF/Segment or DP
Thermal Resistance LED
Junction-to-Pin

High Performance Green
Device
Series
Parameter
HDSP- Luminous Intensity/Segment[l,2[
(Digit Average)
U5XX
Forward Voltage/Segment or DP
Peak Wavelength
Dominant Wavelength[3,5[
Reverse Voltage/Segment or DP[4]
Temperature Coefficient of
VF/Segment or DP
Thermal Resistance LED
Junction-to-Pin

Symbol

Min.

Typ.

Iv

360

980
5390

VF

2.0

APEAK
Ad

600
603

VR
tJ.VFI"C

3.0

Iv

Min.
225

VF

2.2
583
586
50.0
-2

581.5
3.0

Symbol
Iv

Min.
860

VF

RaJ.Pin

Typ.
3000
6800
2.1
566

APEAK
Ad
VR
tJ.VFI"C

Max.

3.0

571
50.0
-2
200

Units
~cd

2.5

V
nm
592.5
nm
V
mV/"C

200

RaJ.Pin

V
nm
nm
V
mV/"e

Test
Conditions .
IF
IF
IF

= 5 rnA
= 20 rnA
= 20 rnA

IR

= 100~

"e/W/
Seg

480
2740

APEAK
Ad
VR
tJ.VFI"C

2.5

30
-2

Typ.

Units
~cd

200

RaJ . Pin

Symbol

Max.

Test
Conditions
IF
IF
IF

= 5 rnA
= 20 rnA
= 20 rnA

IR =

100~

"e/W/
Seg

Max.

Units
~cd

2.5

V
nm
nm
V
mVI"C

Test
Conditions
IF
IF
IF

= 10 rnA
= 20 rnA
= lOrnA

IR

= 100~

oe/W/
Seg

Notes:
1. Case temperature of device immediately prior to the intensity measurement is 25OC.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, Au, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of
the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. The Yellow (HDSP·U3XX) series and Green (HDSP-U5XX) series displays are categorized for dominant wavelength. The category is
designated by a number adjacent to the luminous intensity category letter.

3-62

Red, AlGaAs Red
OPERAnON IN THIS
REGION REQUIRES
TEMPERATURE
OPERATING OF 100
MAXIMUM

OPERATION IN THIS
REGION REQUIRES

TEMPERATURE
OPERATING OF I DC

MAXIMUM

I

I

1\

t

,

~I).-~

I"~ IT~ \( ~~
100

10

1000

-

10000

-r"~ ~~'~
Nil

DC OPERATION

10

tp - PULSE DURATION - j.l8

Figure 1. Maximum Tolerable Peak Current va. Pulse
Duration - Red.

50

!zw

45

"e
UE

35

....

30

0:
0:

g'

.. !Z

"w

;!dli

r·

25

I'.

20

160

~

100

il

80

~
U

15

I

10

o
20 30 40 50 60 70 80 90 100 110 120

RED
AIGaAsRED

80

"

j

b

40
20

o

j)
o

0.5

TA - AMBIENT TEMPERATURE _·C

AIGaAs RED,'

h
m2

i5!(

~o

1.75
1.50

REV

1.25

~,.. 1.00

ifa
3~
we

0.75

jo:

0.50

> ..

iI!~

0.25

o

V

o

/

V

,,

,,

,

,

j:

4.0

RED
1.0

IJ

ee

~~

,-

35

3.5

E 1.2

~2

~e

30

ao

~c

Hi

.. ..
25

2.5

1.4

Ww
""
~~

20

2.0

M

,,

/

15

1.5

Figure 4. Forward Current va. Forward Voltage.

zz

10

1.0

VF -FORWARD VOLTAOE-V

Figure 3. Maximum Allowable DC Current va. Ambient
Temperature.

2.00

- - DC OPERATION
10000

,

I

I ::

RED

1000

Figure 2. Maximum Tolerable Peak Current va. Pulse
Duration - AlGaAs Red.

,

40

~

t

~

tp - PULSE DURATlON-1J.8

~

R eJ-A = TlO"C/W

100

~

40

I

0.8

I AIGaAsRED
1/

0.6

0.5

I
1.0

IF - FORWARD CURRENT PEA SEGMENT - mA

Figure 5. Relative Luminous Intensity va. DC Forward
Current.

r-...

V

1111111
2.0 5.0 10.0 20.0150.0 1'50.0
3.0
30.0 100.0

I

500.0

'PEAK - PEAK FORWARD CURRENT
PER SeGMENT - mA

Figure 6. Relative Efficiency (Luminous Intensity per
Unit Current) va. Peak Current.

3-63

HER, Orange, Yellow, Green
100 _ _

100l1li_

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE

OPERATING OF IDC
MAXIMUM

1°.II~=j

OPERATION IN THIS
REGION REQUIRES

H-H-IllIII-++H++HI-++++IIlI-+H+I-Iffl

TEMPERATURE

OPERATING OF 'IX

1°.EI=MAXlM~T
(i~l~,t~

f

(~~1i~~'~~

1 ,L.l...l..l.llJJJ'"=O--'-.illJl'~00:-'-..>.JJLl,Ul100=0.il.w'0000Illll---- DC OPERATION

tp - PULSE DURATION -

H-H-IllIII-++H++Hl-+l++IIlI-+H+I-Iffl

10

~

100

10000

Figure 8. Maximum Tolerable Peak Current vs. Pulse
Duration - Yellow.

50
OPERAll0N IN THIS
REGION REQUIR ES

MAXIMUM

TEMPERATURE

Ii:w

45

"c
"E

j

35

....
i~
II!i
.. ..

30

'c,..
"Z
..

"w

I
-

10000

1000

c- GR~ ......

25
20
15

~

i~ ~~~ ~~

R eJ-A

=770"C/W

40

II:
II:

OPERATING OF IDC

100

1000

tp - PULSE DURATION-1lS

Figure 7. Maximum Tolerable Peak Current vs. Pulse
Duration - HER, Orange.

10

HERIORANGE

"r-...: ~

YELLOW

I"':

10

.?

o

DCOPERATION

20 30

40 50 60

70 80

90 100 110 120

TA -AMBIENT TEMPERATURE- °C

tp - PULSE DURATION-IJS

Figure 10. Maximum Allowable DC Current vs.
Ambient Temperature.

Figure 9. Maximum Tolerable Peak Current vs. Pulse
Duration - Green.

2
YELLOW
10

~EJ,R1NdE.j-

I

I
'f--

~

,r.

1.0

2.0

1/
G,EEN13.0

VF -FORWARD VOLTAGE-V

Figure 11. Forward Current vs.
Forward Voltage Charaeteristics.

3-64

5.0

1/

1/
GiEL.:

p~~

"

HERIORANJE-

""

...... 1.;-

GREEN

j.... ....

j--t 4.0

IJ

I~

18

~

IV

YELLdw

/

/

-.L-

8

YELLOW

(f

HER/ORANGE

t

LJ...l.JlJlllLLJ.l.WI!L-ULlllL:J..)lJJJ.IIII_ DC OPERATION

o
o

~I- ....
10

15

20

25

30

I F- FORWARD CURRENT PER SEGMENT - rnA

20

40

80

80

IpEAK - PEAK FORWARD CURRENT
PER SEGMENT - mA

Figure 12. Relative Luminous
Intensity vs. DC Forward Current.

Figure 13. Relative Efficiency
(Luminous Intensity per Unit Current)
vs. Peak Current.

100

Electrical/Optical
For more information on
electrical/optical characteristics,
please see Application Note 1005.

Contrast Enhancement
For information on contrast
enhancement please see
Application Note 1015.

Soldering/Cleaning
Cleaning agents from the ketone
family (acetone, methyl ethyl
ketone, etc.) and from the
chorinated hydrocarbon family

(methylene chloride, trichloroethylene, carbon tetrachloride,
etc.) are not recommended for
cleaning LED parts. All of these
various solvents attack or dissolve
the encapsulating materials used
to form the package of plastic
LED parts.
For more information on
soldering LEDs please refer to
Application Note 1027.

3-65

FliiiW HEWLETT®
~~PACKARD

7.6 mm (0.3 inch) Micro Bright
Seven Segment Displays
HDSP-730X Series
HDSP-731X Series
HDSP-740X Series
HDSP-750X Series
HDSP-780X Series
HDSP-A15X Series

Technical Data

Features

Right Hand Decimal Point

• Available with Colon for
Clock Display
• Compact Package
0.300 x 0.500 inches
Leads on 2.54 mm (0.1 inch)
Centers
• Choice of Colors
Red, AlGaAs Red, High
Efficiency Red, Yellow, Green
• Excellent Appearance
Evenly Lighted Segments
Mitered Corners on Segments
Surface Color Gives Optimum
Contrast
± 50° Viewing Angle
• Design Flexibility
Common Anode or Common
Cathode

± 1. Overflow Character
• Categorized for Luminous
Intensity
Yellow and Green Categorized
for Color
Use of Like Categories Yields a
Uniform Display
• High Light Output
• High Peak Current
• Excellent for Long Digit
String Multiplexing
• Intensity and Color
Selection Available
See Intensity and Color
Selected Displays Data Sheet
• Sunlight Viewable AlGaAs

Description
The 7.6 mm (0.3 inch) LED seven
segment displays are designed for
viewing distances up to 3 metres
(10 feet). These devices use an
industry standard size package
and pinout. Both the numeric and

Devices
Red
HDSP7301
7302

AlGaAs!l]
HDSPA151

7303
7304
7307
7308

HER!I]
HDSP7501
7502

Yellow! I]
HDSP7401
7402

Green!l]
HDSP7801
7802

A153

7503
7504

7403
7404

7803
7804

A157
A158

7507
7508

7407
7408

7807
7808

Description
Common Anode Right Hand Decimal
Common Anode Right Hand Decimal,
Colon
Common Cathode Right Hand Decimal
Common Cathode Right Hand Decimal,
Colon
Common Anode ± 1. Overflow
Common Cathode ± 1. Overflow

Package
Drawing
A
B

C
D
E
F

Note:
1. These displays are recommended for high ambient light operation. Please refer to the HDSP-AlOX AlGaAs, HDSP-335X HER, HDSPABOX Yellow, and HDSP-A90X Green data sheet for low current operation.

3-66

5091-6834E

± 1. overflow devices feature a
right hand decimal point. All
devices are available as either
common anode or common
cathode.

These displays are ideal for most
applications. Pin for pin equivalent displays are also available in
a low current design. The low
current displays are ideal for

Package Dimensions

portable applications. For
additional information see the
Low Current Seven Segment
Displays.

COLOR liN
INOTE II
LUMINOUS
INTENSITY
CATEGORY
DATE CODE

B,O

A,C

,:o-gL
J

1.27

~ 1.0501

6.08

1.21101

NOTES:
1. ALL DIMENSIONS IN MILLfMETRES (INCHES).
2. MAXIMUM.
3. ALL UNTOLERANCED DIMENSIONS ARE
FOR REFERENCE ONLY.
4. REDUNDANT ANODES.
5. REDUNDANT CATHODES.
6. FOR HDSp·74001·7800 SERIES PRODUCT ONLY.

FUNCTION
PIN

A
1 ANODEIOI
2 CATHODE f
3 CATHODE,
4 CATHODE.
5 CATHODE d
I ANODEIOI
7 CATHODE DP
8 CATHODE c
9 CATHODE b

10 CATHODE.

I
CATHODE COLON
CATHODE f
CATHODE,
CATHODE.
CATHODE d
ANODE
CATHODE DP
CATHODE c
CATHODE b
CATHODE.

D

C
CATHODE ..I
ANODE f
ANODE,
ANODE.
ANODE d
CATHODE .. I
ANODE DP
ANODE c
ANODE b

ANODE COLON
ANODE f
ANODE,
ANODE.
ANODE d
CATHODE
ANODE DP
ANODE c
ANODE b

ANODE.

ANODE.

E
ANODE 101
CATHODE
CATHODE
NC
NC
ANODE I-I
CATHODE
CATHODE
CATHODE
Ne

F
PLUS
MINUS

CATHODE .. I
ANODE PLUS
ANODE MINUS

NC
NC
CATHODE ..I
ANODE DP
ANODE c
ANODE b
NC

DP
c
b

Internal Circuit Diagram

4

A

10 1

10 1

10 1

9

2

9

2

•

2

9

2

8

2

I

3

8

3

8

3

8

3

8

3

7

4

7

4

7

4

7

4

7

4

I

5

I

6

I

5

I

5

I

5

10 1

10 1

2

B

C

D

d.

E

10

dp

F

3-67

Absolute Maximum Ratings
Description

Red
HDSP·7300
Series

Average Power per Segment or DP

105
90[5]

80
60[7]

105
90[9]

mW

25[2]

40[4[

30[6]

20[8]

3010]

rnA

·40 to +100

·20 to + 100[11]

Storage Temperature Range

°C

3.0

V

260

"C

7. See Figure B to establish pulsed conditions.
B. Derate above BI"C at 0.52 rnA/"C.
9. See Figure 9 to establish pulsed conditions.
10. Derate above 39"C at 0.37 rnA/"C.
11. For operation below ·20"C, contact your local HP
components sales office or an authorized distributor.

1. See Figure 1 to establish pulsed conditions.
2. Derate above BO"C at 0.63 rnA/"C.
3. See Figure 2 to establish pulsed conditions.
4. Derate above 46"C at 0.54 rnA/"C.
5. See Figure 7 to establish pulsed conditions.
6. Derate above 53"C at 0.45 rnA/"C.

Electrical/Optical Characteristics at T A
Red
Parameter
Luminous Intensity/Segmentl1 ,2]
(Digit Average)
Forward Voltage/Segment or DP
Peak Wavelength

All

3·68

"C

·40 to +100

Lead Solder Temperature for 3
Seconds (1.60 mm [0.063 in.]
below seating plane)
Notes:

rnA

·55 to +100

Reverse Voltage per
Segment or DP

730X

Green
HDSp·7800
Series
Units

96
160[3[

DC Forward Current per
Segment or DP

Device
Series
HDSP·

Yellow
HDSp·7400
Series

82
·150[1[

Peak Forward Current per
Segment or DP

Operating Temperature Range

AlGaAsRed
HER
HDSP·A150 HDSp·7500
Series
Series

=25°C

Symbol

Iv

Min.

Typ.

600

1100

Max.

Units
~cd

500
2,0

VF

1.6
655

run

640

run

A.!

Reverse Voltage!Segment or DP[4]

VR

3,0

= 20 rnA
= 10 rnA
IF = 20 rnA

IF
IF

ApEAK

Dominant Wavelength[3]

Test Conditions

V

12

V

Temperature Coefficient of
VF/Segment or DP

.1'FI"C

·2

mV;ac

Thermal Resistance LED Junction·
to·Pin

RaJ-PIN

200

"C!W!Seg

IR

= 100 rnA

AlGaAsRed
Device
Series
HDSP-

Symbol

Min.

Typ.

Luminous Intensity/Segment[1,2,5]
(Digit Average)

Iv

6.9

14.0

med

IF

= 20 rnA

1.8

V

IF

= 20 rnA

Forward Voltage/Segment or DP

VF
V

IF

= 100 rnA

IR

= 100 IlA

Parameter

2.0
A15X

Peak Wavelength

A.PEAK

Dominant Wavelength[3]

A..!

Reverse Voltage/Segment or DP[4]

VR

3.0

Max.

3.0

Units

645

nm

637

nm

15.0

V

Temperature Coefficient of
VF/Segment or DP

/l,.VFf'C

-2

mVf'C

Thermal Resistance LED Junctionto-Pin

RaJ . PIN

255

"C!W/Seg

Test Conditions

High Efficiency Red
Device
Series
HDSP-

Parameter
Luminous Intensity/Segment[1,2,6]
(Digit Average)

Symbol

Min.

Typ.

360

980

Max.

Units

IF

Forward Voltage/Segment or DP
Peak Wavelength

VF

2.0
635

nm

626

nm

A.d

Reverse Voltage/Segment or DP[4]

VR

3.0

= 20 rnA
IF = 20 rnA

IF

A.PEAK

Dominant Wavelength[3]

= 5 rnA

!Lcd

Iv
5390

750X

Test Conditions

2.5

V

30

V

Temperature Coefficient of
VF/Segment or DP

/l,.VF/"C

-2

mV/"C

Thermal Resistance LED Junction·
to-Pin

RaJ-PIN

200

"C!W/Seg

IR

= 100 IlA

3-69

Yellow
Device
Series
HDSP·

Parameter
Luminous Intensity!Segmentll,2, 71
(Digit Average)

Symbol

Min.

Typ.

225

480

Max.

Units

IF= 5 rnA
(.lcd

Iv

2740
Forward Voltage!Segment Or DP

740X

Peak Wavelength

Test Conditions

VF

2.2

APEAK

583

IF = 20 rnA

2:5

V

IF = 20 rnA

run

Dominant Wavelengthl3 ,9]

A..:t

581.5

586

Reverse Voltage!Segment or DPI4]

VR

3.0

50.0

V

592.5

run

Temperature Coefficient of
VF!Segment or DP

Il.VFI"C

-2

mVI"C

Thermal Resistance LED Junctionto·Pin

RaJ_PIN

200

"C/W!Seg

IR = 100 (.LA

High Perfonnance Green
Device
Series
HDSP-

Parameter

Symbol

Min.

Typ.

860

3000

Luminous Intensity/Segmentll ,2,8]
(Digit Average)

Iv

Forward Voltage!Segment or DP

VF

2.1

ApEAK

566

A..:t

571

Max.

Units

IF = 10 rnA
(.lcd

6800

780X

Peak Wavelength
Dominant Wavelengthl3,9]
Reverse Voltage!Segment or DPI4]

VR

Test Conditions

3.0

IF = 20 rnA

2.5

V

IF = lOrnA

run

577

run

50.0

V

Temperature Coefficient of
VF!Segment or DP

Il.VFI"C

-2

mVI"C

Thermal Resistance LED Junctionto·Pin

RaJ_PIN

200

"C/W!Seg

IR = 100 (.LA

Notes:
1. Case temperature of device inunediately prior to the intensity measurement is 25"C.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, A..!, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of
the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation the AlGaAs HDSP-AIOI series displa¥s are recommended.
6. For low current operation the HER HDSP-7511 series displa¥s are recommended.
7. For low current operation the Yellow HDSP-ABO 1 series displays are recommended.
8. For low current operation the Green HDSP-A901 series displa¥s are recommended.
9. The yellow CHDSP-7400) and Green (HDSP-7800) displays are categorized for dominant wavelength. The category is designated by a
number adjacent to the luminous intensity category letter.

3-70

Red, AlGaAs Red

iw~ ffi §~

~~~ 100~~TIJ~$F~[DD$II~IllI

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE

~ g~

MAXIMUM

oC

Ill.

0

~~8

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE
OPERATING OF I DC
MAXIMUM

OPERATING OF 'DC

::I!! II::E

o aI!!
;ffi;
S~;!
eww

I

~1I1I~1I~~If~~~===~-

10

.. II:"

10._--'j

f

lI:o.c

i~~~N''t~

"L-.LLlJ..l.lL,LLO-LJ..l.LU'~OO:-.L;ILLl.L'~O'::oo:-'--"-ill,~OOO--;-

1

DC OPERATION

1

Ip - PULSE DURATION - J1S

Figure 1. Maximum Tolerable Peak
Current vs. Pulse Duration - Red.

50

,..z

Figure 2. Maximum Allowed Peak Current vs.
Pulse Duration - AlGaAs Red.

R I) J-A = 770 cCIW

45

w

Ip - PULSE DURATION - 118

AIGaAsRED

1,

160

!z

140

II:

~
~

c,..

~

40

35
30
....
....,ill 15'0
10
II:

"e
UE
U,

.. Z

"w

"

RED

25

~!i!

~

20

30

40 50

60

70 80

fi

80

a

80

I

o
90 100 110 120

AIGaAsRED

100

"

'"

~

II

.b.

40

.0
o

Ai

o

D.5

T A - AMBIENT TEMPERATURE - °C

AIGaA. RED,'

1.50

!!l~

,,

,,

,,

,

~

II:

I

N

w~

,

~!.

o

o

10

15

I
~

STANDARD REy

i~

1.5

25

30

3.0

2.5

3.5

4.0

1.4

1.2
RED

1.0
0.8

/

V

lL

V

lArG.

35

40

IF - FORWARD CURRENT PER SEGMENT - mA

0.5

I'

.........

r....
I'

e RED

0.6
20

2.0

Figure 4. Forward Current vs.
Forward Voltage.

,

1.75
h
ifig
!iii!;; 1.25
1.00
ifa
V
3 0.75
/
0.
5
0
5~
0.'5 V V

1.0

V F -FORWARD VOLTAGE-V

Figure 3. Maximum Allowable DC
Current per Segment as a Function of
Ambient Temperature.

2.00

II

120

Il!

'il:\.

>co.

I
RED

5.0

50.0 150.0

(PEAK -PEAK FORWARD CURRENT

PER SEGMENT - mA

Figure 5. Relative Luminous Intensity
vs. DC Forward Current.

Figure 6. Relative Efficiency (Luminous
Intensity per Unit Current) vs. Peak Current.

3-71

HER, Yellow, Green
100

>

OPERATION INTHIS
REGIONREQUIRES
TEMPERATURE
OPERATING OFIDC
MAXIMUM

i
'&

~~ ~

10

100

1000

•

10

t

~

1

- - DC OPERA:TlON

1

10000

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE
OPERATING OF I DC
MAXIMUM

10

r1~

I

~). ~

~I'''ir ~

100

1000

tp - PULSE DURATiON-1JS

tp - PULSE DURATION-1lS

Figure 7. Maximum Tolerable Peak
Current vs. Pulse Duration - HER.

Figure 8. Maximum Tolerable Peak

50

j

IO~ ~~
100

--OCOPERATION
10000

Current vs. Pulse Duration - Yellow.

OPERAT10NIN THIS
REGION REQUIR ES
TEMPERATURE
OPERATlNG OF I DC
MAXIMUM

10

t

.~

~~
1000

t
10000

DCOPERAT1ON

ffi

45

81
u,

36

0:
0:

~ffi

",.
!!iii!

i.,
!Iii
f'

R 9 J-A • 7700 C!W

40

30

GRE~

25 20

HER

""

-...: ~ YELLOW

15

"'" ~

10

.!!
o
20 30 40 50 60

70 80 90 100 110 120

T A - AMBIENT TEMPERATURE - "c

tp - PULSE DURATION-1J.8

Figure 9. Allowable Peak Current vs.
Pulse Duration - Green.

Figure 10. Maximum Allowable DC Current per

Scgment as a Function of Ambient Temperature.

12
10

I

H~R, h;.L

I

rJ-

YELLOW
YELLOW

~

II

'I

HER

/

YJ

IA

'l.

GiEENI- 3.0

4.0

VF - FORWARD VOLTAGE - V

Figure 11. Forward Current vs.
Forward Voltage Characteristics.

3-72

rs.o

o ~
o

GiE~ ~i--"~

'" ....n
.... r-10

15

I
20

25

30

IF- FORWARD CURAEJoff PEA SEGMENT - rnA

Figure 12. Relative Luminous
Intensity vs. DC Forward Current.

Contrast Enhancement

V

YELLOW/
~r--~

,

/

HER~

i£

~

~

1- .......

-.-

-

II / '
/

GREEN

Soldering/Cleaning

-,- --

--- -

L

20

40

60

80

For information on contrast
enhancement please see
Application Note 1015.

100

IpEAK - PEAK FORWARD CURRENT
PER SEGMENT - rnA

Figure 13. Relative Efficiency
(Luminous Intensity per Unit Current)
vs. Peak Current.

Cleaning agents from the ketone
family (acetone, methyl ethyl
ketone, etc.) and from the
chlorinated hydrocarbon family
(methylene chloride, trichloroethylene, carbon tetrachloride,
etc.) are not recommended for
cleaning LED parts. All of these
various solvents attack or dissolve
the encapsulating epoxies used to
form the package of plastic LED
parts.
For further information on
soldering LEDs please refer to
Application Note 1027.

3-73

FliiiW HEWLETT@

~t:. PACKARD

10 mm (0.40 inch) Seven
Segment Displays

HDSP-FOOX Series
HDSP-F15X Series
HDSP-F20X Series
HDSP-F30X Series
HDSP-F40X Series
HDSP-F50X Series
HDSP-GOOX Series
HDSP-G15X Series
HDSP-G20X Series
HDSP-G30X Series
HDSP-G40X Series
HDSP-G50X Series

Technical Data

Features
• Industry Standard Size
• Industry Standard Pinout
7.6 mm (0.3 inch) DIP Single
15.24 mm (0.6 inch) DIP Dual
Leads on 2.54 mm
(0.1 inch) Centers
• Choice of Colors
Red, AlGaAs Red, High
Efficiency Red, Orange, Yellow,
Green
• Excellent Appearance
Evenly Lighted Segments
Mitered Corners on Segments
Gray Package Gives Optimum
Contrast
± 50 0 Viewing Angle

• Design Flexibility
Common Anode or"
Common Cathode
Single and Dual Digits
Right Hand Decimal Point
± 1. Overflow Character
• Categorized for Luminous
Intensity
Yellow and Green Categorized
for Color
Use of Like Categories Yields a
Uniform Display
• High Light Output
• High Peak Current
• Excellent for Long Digit
String Multiplexing

• Intensity and Color
Selection Option
• Sunlight Viewable AlGaAs

Devices
AlGaAs
Red
HDSP-

Red!!!
HDSP-

HDSP-

Orange
HDSP-

Yellow
HDSP-

Green
HDSP-

Description

Package
Drawing

FOOl

F151

F201

F401

F301

F501

Common Anode Right Hand Decimal

A

FOO3

F153

F203

F403

F303

F503

Common Cathode Right Hand Decimal

B

FOO7

F157

F207

F407

F307

F507

Common Anode ± 1. Overflow

C

FOO8

F158

F208

F408

F308

F508

Common Cathode ± 1. Overflow

D

GOO1

G151

G201

G401

G301

G501

Two Digit Common Anode
Right Hand Decimal

E

GOO3

G153

G203

G403

G303

G503

Two Digit Common Cathode
Right Hand Decimal

F

HER

Note:
1. These displays are recommended for high ambient light operation. Please refer to the HDSp·FIOX data sheet for low current
operation.

3-74

5963-7393E

Description

metres (15 feet). These devices
use an industry standard size
package and pinout. The dual
numeric, single numeric, and ± 1.
overflow devices feature a right
hand decimal point. All devices

The 10 mm (0040 inch) LED
seven segment displays are HP's
most space-efficient character
size. They are designed for
viewing distances up to 4.5

are available as either common
anode or common cathode.
Typical applications include
instruments, point of sale
terminals, and appliances.

Package Dimensions
WMINOUS INTeNSITY CATEGORY
5.59 - - - ,

12.90 ± 0.50
10.508 ± 0.020)

I

"'~I'~-r

10.'.

g

12.90 ± 0.60
10.508 ::!: 0.0201

3
8
10.4(0)
4""7
;5
8-------

+

-Lt________

I:.~~~.I -I

L

" 6.08

(0.20016.38 MAX.
(0.2&0 MAX.I-----

FRONT VIEW A, B
TOP END VIEW A, B, C, D

JEl

*The End View of padcagIt Indicat8a CDunIry of Origin.

0.25 .-...

(0.01 O~

----

7.82

(0.3001

COLOR BIN
NOTe NO. 3

4.1.

0.188

2.54 (0.100 TYP.I

_-.1

MIN.

DIGIT

NO.1

-h
DATE CODE

TOP END VIEW E, F

* The End View of padcagIt Indica...
Counlry of Origin.

FRONT VIEW E, F
NOTES:
1. DIMENSIONS ARE IN MlLLIMETRES ("CHESI.
2. ALL UNTOLEAAHCED DlIMENSIOHS ARE FOR REFERENCE ONLY.
3. WHERE APPUCABLE.

3-75

Intemal Circuit Diagram
10

A
18

17

18

10

10

•

6

,.

13

12

11

18

10

DP

c

B
16

10

17

16

16

"

13

12

11

D

10

FUNCTION

7

.S

E

F

FUNCTION
PIN

A

C

B

D

1

ANODE[11

CATHODE'"

ANODE'"

CATHODE'"

2

CATHODE I

ANODE I

CATHODE PLUS

ANODE PLUS

3

CATHODEg

ANODEg

CATHODE MINUS

ANODE MINUS

4

CATHODE.

ANODE.

NC

NC

5

CATHODEd

ANODEd

NC

NC

CATHODE'"

ANODE[11

CATHODE'"

8

ANODE"'

7

CATHODEDP

ANODEDP

CATHODEDP

ANODEDP

8

CATHODE.

ANODE.

CATHODE.

ANODE.

a

CATHODEb

ANODEb

CATHODEb

ANODEb

10

CATHODE.

ANODE.

NC

NC

PIN

E

1

E CATHODE NO.1

EANODE NO. 1
DANODENO.l

F

2

D CATHODE NO.1

3

C CATHODE NO.1

CANODE NO. 1

4
5
8
7
8

DP CATHODE NO.1

DP ANODE NO.1

E CATHODE NO.2

EANODE NO. 2

D CATHODE NO: 2

DANODE NO. 2

G CATHODE NO.2

G ANODE NO.2

C CATHODE NO.2

CANODENO.2

a

CP CATHODE NO.2

DP ANODE NO.2

10

B CATHODE NO.2

BANODENO.2

11

A CATHODE NO.2

A ANODE NO. 2

12

F CATHODE NO.2

FANODENO.2

13

DIGIT NO.2 ANODE

DIGIT NO.2 CATHODE

14

DIGIT NO.1 ANODE

DIGIT NO. 1 CATHODE

15

B CATHODE NO.1

BANODE NO. 1

18

A CATHODE NO.1

A ANODE NO. 1

17

G CATHODE NO.1

GANODE NO. 1

18

FCATHODE NO.1

F ANODE NO. 1

NOTES:
1. REDUNDANT ANODES
2. REDUNDANT CATHODES

~w.

1----.Q.,aGlN.

~----------------~--~

?

0

1
1

-1_
1
1

1

o 01

0

o Ii>

I ~.Q5W.
~R.----o1

0

o

?

0---

aU

a
o

Ii>

o.eoo IN.

0---

W

,

3-76

HOLE PATTERN FOR PCB LAYOUT TO ACHIEVE UNIFORM 0.450 IN. DIGIT TO DIGIT PITCH. FOR HDSP·FXXX TO HDSP-GXXX.

Absolute Maximum Ratings

Description

Red
HDSPFOOX/GOOX
Series

AIGaAsRed
HDSPF15X/G15X
Series

HER/Orange
HDSPF20X/G20x/
G40XSeries

Yellow
HDSPF30X/G30X
Series

Green
HDSPF50X/G50X
Series

Units

Average Power per Segment or DP

B2

96

105

BO

105

mW

Peak Forward Current per
Segment or DP

1501 1 ]

160 13 ]

90(71

60(71

9019]

rnA

DC Forward Current per
Segment or DP

251 2 ]

40(4]

30(6]

20(8]

30(10]

rnA

-40 to +100

-20 to + 100(11]

Operating Temperature Range
Storage Temperature Range

-40 to +100

OC

3.0

V

260

OC

Reverse Voltage per
Segment or DP
Lead Solder Temperature for 3
Seconds (1.59 mm [0.63 in.]
below seating plane)
Notes:
1. See Figure 1 to establish pulsed conditions.
2. Derate above BOOC at 0.63 mA/"C.
3. See Figure 2 to establish pulsed conditions.
4. Derate above 460C at 0.54 mA/"C.
5. See Figure 7 to establish pulsed conditions.
6. Derate above 530C at 0.45 mA/"C.

7. See Figure B to establish pulsed conditions.
B. Derate above BlOC at 0.52 mAtC.

9. See Figure 9 to establish pulsed conditions.
10. Derate above 390C at 0.37 mAI"C.
11. For operation below -20OC, contact your local HP components

sales office or an authorized distributor.

Electrical/Optical Characteristics at TA
Red
Device
Series

HDSPFOOX/
GOOX

= 25"C

Symbol

Min.

Typ.

Luminous Intensity/Segment[I,2)
(Digit Average)

Iv

650

1200

Forward Voltage/Segment or DP

VF

1.6

APEAK

655

run

Dominant Wavelength[3)

A.!

640

run

Reverse Voltage/Segment or DP[4)

VR

12

V

Parameter

Peak Wavelength

OC

-55 to +100

3.0

Max.

2.0

Units

Test Conditions

J.1cd

IF

= 20 rnA

V

IF

= 20 rnA

IF

= 100 j.iA

Temperature Coefficient of
VF/Segment or DP

IlVFfC

-2

mVfC

Thermal Resistance LED
Junction-to-Pin

RaJ.PIN

320

"C/W/Seg

3-77

AlGaAsRed
Device
Series

Symbol

Min.

Typ.

Luminous Intensity!Segment[I,2,51'
(Digit Average)

Iv

7.5

15.0

Forward Voltage/Segment or DP

VF

1.8

APEAK

645

nrn

Dominant Wavelength(3).

A.:!

637

nrn

Reverse Voltage/Segment or DP(4)

VR

15

V

Parameter

Max.

Units

Test Conditions

-"-

HDSP·
F15X1
G15X

Peak Wavelength

3.0

2.2

mcd

IF = 20 rnA

V

IF = 20 rnA

Temperature Coefficient of
VF!Segment or DP

!!VF/"C

·2

mV/"C

Thermal Resistance LED
Junction-to-Pin

RaJ_PIN

320

"C/W!Seg

IR = 100).1A.

High Efficiency Red
Device
Series

HDSPF20Xl
G20X

3-78

Symbol

Min.

Typ.

Luminous Intensity!Segment[I,2)
(Digit Average)

Iv

420

1200

Forward Voltage!Segment or DP

VF

2.0

APEAK

635

nrn

Dominant Wavelength(3)

A.:!

626

nrn

Reverse Voltage/Segment or DP)4)

VR

30

V

Parameter

Peak Wavelength

3.0

Max.

Units
~cd

2.5

V

Temperature Coefficient of
VF!Segment or DP

!!VF/"C

-2

mV/"C

Thermal Resistance LED
Junction-to-Pin

RaJ_PIN

320

"C/W/Seg

Test Conditions
IF = 5 rnA

IF = 20 rnA

IR = 100).1A.

Orange
Device
Series

HDSP·
F40X/
G40X

Symbol

Min.

Typ.

Luminous Intensity/SegmentI1 ,2]
(Digit Average)

1.

420

1200

Forward Voltage!Segment or DP

VF

2.0

!,.EAK

600

run

Dominant Wavelength l31

1.

603

run

Reverse Voltage/Segment or DPI4]

VR

30

V

Parameter

Peak Wavelength

3,0

Max.

2.5

Units

Test Conditions

!lcd

I,,=5mA

V

IF =20mA

Temperature Coefficient of
V,!Segment or DP

IW,IOC

-2

mVt'C

Thennal Resistance LED
Junction-to-Pin

Rl\iI.r.P1N

320

OC/W/Seg

Parameter

Symbol

IR = 100 !LA

Yellow
Device
Series

HDSPF30X/
G30X

Min.

Typ.

290

800

Luminous Intensity/Segment(I,2]
(Digit Average)

Iv

Forward Voltage/Segment or DP

VF

2.2

A.PEAK

583

Peak Wavelength

Max.

2.5

Units

Test Conditions

!lcd

IF = 5mA

V

IF = 20mA

run

Dominant Wavelength(3,6]

A..!

581.5

586

Reverse Voltage!Segment or DP(4]

VR

3.0

40

V

592.5

run

Temperature Coefficient of
VF/Segment or DP

/::,.VFt'C

-2

mVt'C

Thennal Resistance LED
Junction-to-Pin

RaJ.PIN

320

OC/W/Seg

IR = 100 !LA

3-79

High Performance Green
Device
Series

HDSPF50X/
G50X

Symbol

Min.

Typ.

Luminous Intensity!Segment[1,2)
(Digit Average)

Iv

1030

3500

Forward Voltage!Segment or DP

VF

2.1

APEAK

566

.Dominant Wavelength[3,6)

A.l

571

Reverse Voltage/Segment or DP(4)

VR

Parameter

Peak Wavelength

3.0

Max.

2.5

Units

Test
Conditions

).lcd

IF = 10mA

V

IF = lOmA

nm
577

nm

50

V

Temperature Coefficient of
VF/Segment or DP

il\Frc

-2

mV/"C

Thermal Resistance LED
Junction-to-Pin

RaJ.PIN

320

°C!W!Seg

IR = lOO].LA

Notes:
1. Case temperature of device inunediately prior to the intensity measurement is 25'C.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, A..:I, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of
the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs HDSP-FlOX, G lOX series displays are recommended. They are tested at 1 rnA
dc/segment and are pin for pin compatible with the HDSP-F15X/G15X series.
6. The Yellow (HDSP-F30X/G30X) series and Green (HDSP-F50X/G50X) series displays are categorized for dominant wavelength. The
category is deaignated by a number adjacent to the luminous intensity category letter.

3-80

RED, AlGaAs Red
::! ...
~~I

100

0 PERATION IN THIS
REGlON REQUIRES
TEIFERATURE

!;ia:a:

ffirB
""g

=~~:DFIDC

~I!!,.

~

iei

,.~ffi!.i
.. ,.

10

~§51

!!~i
cww

.... .,
~Ii
.!!-!!

10

1

50

i

15

il~

35

a:

gl

II;

i ..

i»l
I~
i

RaJ-A

/I:

30

~~
1000

DC OPERA110N
10000

I I

nrrctW

RED

~

REb

25

100

Figure 2. Maximum Tolerable Peak. Current vs. Pulse
Duration - AlGaAs Red.

AIIloAo RED

010

.

1IJ~\j

tp - PULSE DURATION - ...

tp - PULSE DURATION -).IS

Figure 1. Maximum Tolerable Peak. Current vs. Pulse
Duration - Red.

~

I~'

1

i

~

20

"i::'I.

15

I

""

10

11

.

Ii!
I

o
20 30 010 50 60 711 60 10 100 110120

AIIloAo RED
100
10
10
010
20

o

./

o o.s

1.5 2.0

2.5

3-D 3.5

4.0

YF - FORWARD VOLTAGE - Y

T A. - AIIBIENT TEMPERATURE - OC

Figure 3. Maximum Allowable DC Current vs. Ambient
Temperature.

1.0

Fignre 4. Forward Current vs. Forward Voltage.

2.00

AJGaA8 RED,'
1.75

h

1.50

!iiC

1.25

wlil

I~

~..II

,
...,

,

RED

REV
1.00
0.75
0.50
0.25

o

V

o

V

/

V

IJ

......

V
I_RED
D.I

10

1520

253D35.fO

IF - FORWARD CURRENT PER SEGIENT - mA

Figure o. Relative Luminous Intensity vs. DC
Forward Current.

If

1111111

l'so.o

0.5 1 2.0 1 5.0 '0.0 20.0150.0
500.0
1.0
3.0
30.0 100.0
I...... - PEAK FORWARD CURRENT
PER SEGIIENr-1IIA

Figure 6. Relative Efficiency (Luminous Intensity per
Unit Current) vs. Peak. Current.

3·81

HER, Orange, Yellow, Green

DPERA11DN IN THIS
REGlON REQUIRES
TEMPERATURE

0
.::':'0
OF loe

-.l

~ :~

10

Figure 7. Maximum Tolerable Peak Current vs.
Pulse Duration - HER, Orange.

Figure 8. Maximum Tolerable Peak Current vs. Pulse

Duration - Yellow.

10

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE

=':.0 OF loe

IB1
gl

R• J.A ", T7f1'CIW

411

..
.
«J

10

Iii ,.
10

f--

OtE~ ..... .!IER,ORANGE
i'..: ~ ~ELLOW

I~

i'S ~

10

10

100

Ii'ti
~~
lOGO

11
DC OPERATION
10000

o
10 10 «J •

•

70 •

Figure 9. Maximum Tolerable Peak Current vs. Pulse
Duration - Green.

Figure 10. Maximum Allowable DC Current vs.
Ambient Temperature.

100

I

I ·•

I

«J

I

D

o

rtJ

III
rL

111,1.1- ~~

I
II
V- t-YELLOW

UGW

~
~

1/

10'

~

1M
1.0

2.0

OJ!! ... ~~
I
I

1.0- ....

.... =::: ~ ....
2.0

4.0

5.0

V, -FORWAADYOLTACIE-Y

Figure 11. Forward 'Current vs. Forward
Voltage Characteristics.

3-82

I

I

H R,ORANGE

i. ·

IG 100 1101.

TA - AIIIIENT TEMPERATURE _·C

I, -PULSE DURATION - ...

1

DCOPERATlDN
10000

'OGO

'p -PULSE DURATlDN-...

t, - PULSE DURATION - ...

i~ ~~~~r1N

~

100

10

,.

•

..

10

I,. FORWARD CURRENT PER SEGMENT - mA

Figure 12. Relative Luminous Intensity vs. DC
Forward Current.

Contrast Enhancement

YElui1

1/
IV
1/1
rt

•

_JE-

v

.....

~AEEN

Soldering/Cleaning

/

I
20

II

For infonnation on contrast
enhancement please see
Application Note 1015.

II

,.

IPEAK - PEAK FOIIWAIID CURRENT

PER BEGIENT - ....

Figure 13. Relative Efficiency (Luminous Intensity per
Unit Current) vs. Peak Current.

Cleaning agents from the ketone
family (acetone, methyl ethyl
ketone, etc.) and from the
chlorinated hydrocarbon family
(methylene chloride, trichloroethylene, carbon tetrachloride,
etc.) are not recommended for
cleaning LED parts. All of these
various solvents attack or dissolve
the encapsulating epoxies used to
form the package of plastic LED
parts.
For further information on
soldering LEDs please refer to
Application Note 1027.

3-83

F'iPW
HEWLETT"
':~PACKARD

14.2 mm (0.56 inch)
Seven Segment Displays

HDSP-530X Series
HDSP-532X Series
HDSP-550X Series
HDSP-552X Series
HDSP-560X Series
HDSP-562X Series
HDSP-570X Series
HDSP-572X Series
HDSP-H15X Series

Technical Data

Features
• Industry Standard Size
• Industry Standard Pinout
15.24 mm (0.6 in.) DIP Leads
on 2.54 mm (0.1 in.) Centers
• Choice of Colors
Red, AlGaAs Red, High
Efficiency Red, Yellow, Green
• Excellent Appearance
Evenly Lighted Segments
Mitered Corners on Segments
Gray Package Gives Optimum
Contrast
± 50° Viewing Angle
• Design Flexibility
Common Anode or Common
Cathode
Single and Dual Digits
Right Hand Decimal Point
± 1. Overflow Character

• Categorized for Luminous
Intensity
Yellow and Green Categorized
for Color
Use of Like Categories Yields a
Uniform Display
• High Light Output
• High Peak Current
• Excellent for Long Digit
String Multiplexing
• Intensity and Color
Selection Option
See Intensity and Color
Selected Displays Data Sheet
• Sunlight Viewable AlGaAs

Description
The 14.2 mm (0.56 inch) LED
seven segment displays are
designed for viewing distances up

to 7 metres (23 feet). These
devices use an industry standard
size package and pinout. Both the
numeric and ± 1 overflow devices
feature a right hand decimal
point. All devices are available as
either common anode or common
cathode.

Devices
Red
HDSP-

AlGaAsRed
HDSP_[lj

HER
HDSP_[lj

Yellow
HDSP-

Green
HDSP-

Description

Package
Drawing

5301

H151

5501

5701

5601

Common Anode Right Hand Decimal

A

5303

H153

5503

5703

5603

Common Cathode Right Hand Decimal

B

5307

H157

5507

5707

5607

Common Anode ± 1. Overflow

C

5308

H158

5508

5708

5608

Common Cathode ± 1. Overflow

D

5321

5521

5721

5621

Two Digit Common Anode Right Hand
Decimal

E

5323

5523

5723

5623-

Two Digit Common Cathode Right Hand
Decimal

F

Note:
1. These displays are recommended for high ambient light operation. Please refer to the HDSP-H10X/K12X AlGaAs and HDSP-555X HER
dsta sheet for low current operation.

3-84

5963-7388E

These displays are ideal for most
applications. Pin for pin
equivalent displays are also
available in a low current design.
The low current displays are ideal

for portable applications. For
additional information see the
Low Current Seven Segment
Displays data sheet.

Package Dimensions
TOP END VIEW E. F

TOP END VIEW A. B. C. 0

COLOR
BIN
(NOTE 5)

2.54
(.1001
TY.

LUMINOUS

INTENSITY

.51

CATEGORY

(.0201
TY•

•
DATE CODE

-

MIN

f

H

I I
fo-

3.961.155)----1

7JIG

\~)

/10"

1

SIDE VIEW
800

(.31S)

18171615'4'3121110

SIDE VI EW A. B. C. 0

FRONT VIEW E. F

FUNCTION
1

A
CATHODE.

B
ANODE.

2

CATHODEd

ANODEd

PIN

C
CATHODEc

D
ANODEc

E
E CATHODE NO.1

F
E ANODE NO. 1

o ANODE NO. 1

ANODEc,d

CATHODEc.d

D CATHODE NO.1

3

ANODE[3)

CATHODEI4l

CATHODE b

CANODE NO.1

CATHODEc

ANODEc

DP CATHODE NO.1

DP ANODE NO.1

5

CATHODEDP

ANODEDP

ANODE " b, DP
CATHOPDEDP

ANODEb
CATHODE ., b, DP

C CATHODE NO.1

4

ANODE DE

E CATHODE NO.1

E ANODE NO.2

6
7

CATHODEb

ANODEb

CATHODEs

ANODE.

D CATHODE NO.2

DANODENO.2

ANODE a

G CATHODE NO.2

CATHODE(4J

ANODEa b, DP
ANODEc, d

CATHODE .. b DP

8

CATHODE a
ANODEI3J

CATHODE c, d

C CATHODE NO.2

CANODE NO. 2

9

CATHODE I

ANODE I

CATHODEd

ANODEd

DP CATHODE NO.2

DP ANODE NO.2

10

CATHODEg

ANODEg

NO PIN

NO PIN

B CATHODE NO.2

BANODE NO.2

G ANODE NO. 2

11

A CATHODE NO.2

A ANODE NO. 2

12

F CATHODE NO.2

FANODE NO.2

13

DIGIT NO.2 ANODE

DIGIT NO.2 CATHODE

14

DIGIT NO.1 ANODE
B CATHODE NO.1

BANODE NO. 1

15

DIGIT NO.1 CATHODE

16

A CATHODE NO.1

A ANODE NO. 1

17

G CATHODE NO.1

G ANODE NO. 1

F CATHODE NO.1

FANODE NO. 1

18
NOTES:

3. REDUNDANT ANODES.

1. ALL DIMENSIONS IN MILLIMETRES (INCHES).

4. REDUNDANT CATHODES.

2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.

S. FOR HDSP·S600I-S700 SERIES PRODUCT ONLY.

3-85

Internal Circuit Diagram
10

9

7

6

•

5

10

9

7

3

7

6

3

•

'8

11

18

15

2

3

•

'4

13

12

"

7

•

•

c

B

A

6

D
18

10

17

,.

15

,..

• • •

13

12

11

10

'7'
F

E

Absolute Maximum Ratings
Yellow
HDSP-5700
Series

Green
HDSP-5600
Series

Units

80
60[7]

105

mW

160[3]

105
90[5]

90[9]

rnA

25[2]

40[4]

30[6]

20[8]

3010]

rnA

-40 to +100

-20 to + 100[11]

Description

AlGaAsRed
HDSP-H150
Series

Average Power per Segment or DP

82

96

Peak Forward Current per
Segment or DP

150[1[

DC Forward Current per
Segment or DP
Operating Temperature Range

Storage Temperature Range
Reverse Voltage per
Segment or DP
Lead Solder Temperature for
3 Seconds (1.60 rom [0.063 in.]
below seating plane)
Notes:
1. See Figure 1 to establish pulsed conditions.
2. Derate above 80"C at 0.63 mAt'C.
3. See Figure 2 to establish pulsed conditions.
4. Derate above 46"C at 0.54 mAt'C.
5. See Figure 7 to establish pulsed conditions.
6. Derate above 53"C at 0.45 rnA/"C.

3-86

HER
HDSP-5500
Series

Red
HDSP-5300
Series

-40 to +100

"C

-55 to +100

"C

3.0

V

260

"C

7. See Figure 8 to establish pulsed conditions.
8. Derate above 81"C at 0.52 mAl°C.
9. See Figure 9 to establish pulsed conditions.
10. Derate above 39"C at 0.37 rnA/"C.
11. For operation below -20"C. contact your local HP
components sales office or an authorized distributor.

Electrical/Optical Characteristics at TA

= 25"C

Red
Device
Series
HDSP-

Parameter

Symbol

Min.

Typ.

600

1300

Luminous Intensity/Segment[I,21
(Digit Average)

Iv

Forward Voltage/Segment or DP

VF

1.6

Max.

Units

Test Conditions
IF = 20 rnA

!lcd

1400

IF = 100 rnA Peak:
1 of 5 df

2.0

V

IF = 20 rnA

53XX
A.PEAK

655

nm

Dominant Wavelength[31

A..i

640

nm

Reverse Voltage/Segment or DP[41

VR

12

V

Peak Wavelength

3.0

Temperature Coefficient of
VF/Segment or DP

f.VFI"e

-2

mVrC

Thermal Resistance LED Junctionto-Pin

RaJ-Pin

345

"e/W/
Seg

IR = 100 !LA

AlGaAsRed
Device
Series
HDSP-

Symbol

Min.

Typ.

Luminous Intensity/Segment[I,2,51
(Digit Average)

Iv

9.1

16_0

Forward Voltage/Segment or DP

VF

Parameter

Max.

Units
mcd

1.8

Test Conditions
IF = 20 rnA
IF = 20 rnA

V

2.0

IF = 100 rnA

3.0

H15X
Peak Wavelength
Dominant Wavelength[31

A.PEAK

645

nm

A..i

637

nm

15

V

Temperature Coefficient of
VF/Segment or DP

f.VFfOC

-2

mVrc

Thermal Resistance LED Junctionto-Pin

RaJ-Pin

400

"e/W/
Seg

Reverse Voltage/Segment or DP[41

VR

3.0

IR = 100 !LA

3-87

High Efficiency Red
Device
Series
HDSP-

Parameter

Symbol

Luminous Intensity/Segment[I,2,6J
(Digit Average)

Iv

Forward Voltage/Segment or DP

VF

2.1

A.PEAK

635

nm

A..!

626

nm

Min.

Typ.

900

2800

Max.

Units

Test Conditions
IF = lOrnA

l1ed
IF = 60 rnA Peak:
1 of6 df

3700
2.5

V

IF = 20 rnA

55XX
Peak Wavelength.
Dominant Wavelength.[3J
Reverse Voltage/Segment or DP[4J

30

V

Temperature Coefficient of
VF/Segment or DP

ilVFI"C

VR

3.0

-2

mVI"C

Thermal Resistance LED Junctionto-Pin

RaJ.Pin

345

"e/W/
Seg

Parameter

Symbol

IR = 100 ItA

Yellow
Device
Series
HDSP-

Min.

Typ.

600

1800

Luminous Intensity/Segment[1,2J
(Digit Average)

Iv

Forward VoJtage/Segment or DP

VF

2.1

A.PEAK

583

Max.

Units

Test Conditions
IF = lOrnA

I1cd
IF = 60 rnA Peak:
1 of 6 df

2750
2.5

V

IF = 20 rnA

57XX
Peak Wavelength.

3-88

nm

Dominant Wavelength[3,7J

A..!

581.5

586

Reverse Voltage/Segment or DP[4J

VR

3.0

40

V

592.5

nm

Temperature Coefficient of
VF/Segment or DP

ilVFI"C

-2

mV/"C

Thermal Resistance LED Junctionto-Pin

RaJ.Pin

345

°C/W/
Seg

IR = 100 ItA

High Performance Green
Device
Series
HDSP-

Parameter

Symbol

Min.

Typ.

900

2500

Luminous Intensity/Segment[I,2[
(Digit Average)'

Iv

Forward Voltage/Segment or DP

VF

2.1

Max.

Units

Test Conditions
IF

!Lcd

= 10 rnA

= 60 rnA Peak:
1 of 6 df

IF

3100

V

2.5

IF

= lOrnA

IR

= 100 !LA

56XX

Peak Wavelength

ApEAK

566

Dominant Wavelength[3, 7[

Ad

571

Reverse Voltage/Segment or DP[4)

VR

3.0

nm
nm

577

50

V

Temperature Coefficient of
VF/Segment or DP

/l,.VF/oC

-2

mV;oC

Thermal Resistance LED Junctionto-Pin

RaJ.Pin

345

°C/W/
Seg

Notes:
1. Device case temperature is 25°C prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, Ad, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of
the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AIGaAs HDSp·HlOX series displays are recommended. They are tested at 1 rnA dc/segment and are
pin for pin compatible with the HDSP-H15X series.
6. For low current operation, the HER HDSP-555X series displays are recommended. They are tested at 2 rnA dc/segment and are pin
for pin compatible with the HDSP·550X series.
7. The Yellow (HDSP-5700) and Green (HDSP-5600) displays are categorized for dominant wavelength. The category is designated by
a number a<\iacent to the luminous intensity category letter.

Red, AlGaAs Red
II!.-·

.. _.

OPERATION IN THIS
REGION REQUIRES
TEMPERATURE

~~'::OFIDC

--.L
~-

"I""' ,.

~ ~
~~~~
1-" ~ N:'i

'c>

c ..

~~

~

1
1

10

100

1000

lp - PULSE DURATION - J,1I

Figure 1. Maximum Tolerable Peak Current vs.
Pulse Duration - Red.

-r

SiF!15

100

OPERATION IN nilS
REGlON REQUIRES
TEMPERATURE
D

"'CO:

ca:o:
a:~B

M~~:J~:OFIDC

,.~~g
... ,.

"",iii

hi

I\.

10

~~5I

OU ...

"'~~
~~~

~~
T

I~ t~~1{ t~~~

c;

DC OPERATION

10000

~

::Je~

'c>

10

100

1000

DC OPERATION

10000

tp - PULSE DURATION -IJ'

Figure 2. Maximum Tolerable Peak Current vs.
Pulse Duration - AlGaAs Red.

3-89

.
50

I I

Re"" • TIO"CIW

AI_ ED

40

RED

35

AIGaAeRED

311
RED

25

,,~

20

'I\~

'5

'"

'0

o

o.s

20 311 40 50 80 70 8D ID '00 110'20

Figure 3. MaxImum Allowable DC Current VB.
Ambient Temperature.

,
AlGaAa RED,'

~c

"'s
ilig
!lie
~o

!! ..

1.. iii~

,
,,

1.75
1.50

V
REy

1.25
1.DD

0.7.

U

0.50

IU~

II:

0.25

o/
o

/

V
10

I

I
,
~

20

25

30

35

2.0

2.5

3.0

3.5

4.0

Figure 4. Forward Current vs. Forward
Voltage.

!

/
15

1.5

VF - FORWARD VOLTAGE - V

TA - AIIBIENTTEMPERAlURE- 'C

2.DD

.AJ
1.0

40

".

RED
1.0

V

I'

V

D.8

I_RED
D.8
80.0

5.0

0.5

150.0

I PEAK - PEAK FORWARD CURRENT
PER SEGIENT - mA

IF - FORWARD CURRENT PER SEGMENT - mA

Figure 5. Relative Luminous Intensity
vs. DC Forward Current.

I'
/
.......
/ r-....

Figure 6. Relative Emciency (Luminous Intensity per
Unit Current) vs. Peak Current.

HER, Yellow, Green
100

OPERATION IN THIS
AEGlON REQUIRES
TEMPERAlURE

=~~": OF 'DC

,.

~
\
I-~ ~11

~
1
1
tp -

PUL~E

DURATION -

~s

Figure 7. Maximum Tolerable Peak
Current vs. Pulse Duration - HER.

3-90

10

'00

t~~
1GOD

,.000

DC OPERATION

Ip - PULSE OURAOON -."

Figure 8. MaxImum Tolerable Peak Current
vs. Pulse Duration - Yellow.

100
0 PERATION iN THIS

50

0:
0:

40

TEMPERATURE
DERATIIIGOFl oc
1IlOOMUII.

::>c

35

g'

30

Us

.
....
i~
,15
.. ..

~

.. Z

::>w

~~
rr~ (~ ~1i
1

100

10

"

1000

20

11

10000

20 30 40 50

70

~c
IDS
~~

HER SERIES

-/J. 1/-

IV

40
30

20
10

o
1.0

~

YELLOW SERIES
GREEN SERIES

"

2.0

2.5

~"
"w
::>!l!
........

2.0

~!'i
w~

1.0

0:

3.0

4.0

5.0

Vp -FORWARD VOLTAGE-V

Figure 11. Forward Current vs.
Forward Voltage.

HER, YELLOW, GREEN

300

8e

ID_

J

3.5

b

!:!~

Ii
'I

70 80 90 100 110 120

Figure 10. Maximum Allowable DC Current VB.
Ambient Temperature.

4.0

If

eo

T". -AMBIENTTEMPERATURE-"C

/)

50

I":: ~YaLOW
I"" ~

15
10

- PULSE DURATION -""

90

HER,ORANGE

GREEN

DC OPERATION

Figure 9. Maximum Tolerable Peak
Current vs. Pulse Duration - Green.

.
.

.......

-

25

~

1

R OJ-A = 77rJCCIW

45

zw

REGION REClUIRES

10

.

If

/

o.s
o

V

o

/

15

1.5

t~

1A

20

25

30

35

40

0:"

...

~!:l

o.a

Intensity VB. DC Forward Current.

HERBERIES

/
-::;::.

GREEN SERIES

l'

1.1

If"

,

1/

I:

o

10

20 30 40

50 60 70

80 90 100

I PEAK - PEAK FORWARD CURRENT
PER SEGMENT - mA

IF - FORWARD CURRENT PER SEGMENT - rnA

Figure 12. Relative Luminous

./

1.2

1.0

,...... ~

YELLOW SERIES

1.3

~~

~~
'w

V
10

1.6

~

~I
~~
we

/

1.5

~

Figure 13. Relative Emelency
(Luminous Intensity per Unit Current)
Peak Current.

VB.

Electrical/Optical
For more information on
electrical/optical characteristics,
please see Application Note 1005.

Contrast Enhancement
For information on contrast
enhancement please see
Application Note 1015.

Soldering/Cleaning
Cleaning agents from the ketone
family (acetone, methyl ethyl
ketone, etc.) and from the
chlorinated hydrocarbon family

(methylene chloride, trichloroethylene, carbon tetrachloride,
etc.) are not recommended for
cleaning LED parts. All of these
various solvents attack or dissolve
the encapsulating epoxies used to
form the package of plastic LED
parts.
For information on soldering
LEDs please refer to Application
Note 1027.

3-91

FliiiW HEWLETT
.:e. PACKARD

20 mm (0.8 inch)
Seven Segment Displays

Technical Data

HDSP~340X Series
HDSP·390X Series
HDSP·420X Series
HDSP·860X Series
HDSP·N15X Series

Features
• Industry Standard Size
• Industry Standard Pinout
15.24 mm (0.6 in.) DIP Leads
on 2.54 rom (0.1 in.) Centers
• Choice of Colors
Red, AlGaAs Red, High
Efficiency Red, Yellow, Green
• Excellent Appearance
Evenly Lighted Segments
Mitered Corners on Segments
Gray Package Gives Optimwn
Contrast
± 50 Viewing Angle
• Design Flexibility
Common Ariode or Common
Cathode
Left and Right Hand Decimal
Points
± 1. Overflow Character
• Categorized for Luminous
Intensity
Yellow and Green Categorized
0

•
•
•

•

for Color
Use of Like Categories Yields a
Uniform Display
High Light Output
High Peak Current
Excellent for Long Digit
String Multiplexing
Intensity and Color
Selection Option
See Intensity and Color
Selected Displays Data Sheet
Sunlight Viewable AlGaAs

Description
The 20 mm (0.8 inch) LED seven
segment displays are designed
for viewing distances up to 10
metres (33 feet). These devices
use an industry standard size
package and pinout. All devices
are available as either common
anode or common cathode.

These displays are ideal for most
applications. Pin for pin
equivalent displays are also
available in a low current design.
The low current displays are ideal
for portable applications. For
additional information see the
Low Current Seven Segment
Displays data sheet.

Devices
Red
HDSP-

AlGaAs!l]
HDSP-

HER
HDSP-

Yellow
HDSP-

Green
HDSP-

3400
3401
3403
3405
3406

N150
N151
N153
N155
N156

3900
3901
3903
3905
3906

4200
4201
4203
4205
4206

8600
8601
8603
8605
8606

Description
Common Anode Left Hand Decimal
Common Anode Right Hand Decimal
Common Cathode Right Hand Decimal
Common Cathode Left Hand Decimal
Universal ± 1. Overflow(2)

Package
Drawing
A
B

C
D
E

Notes:
1. These displays are recommended for high ambient light operation. Please refer to the HDSP-NIOX AlGaAs data sheet for low current
operation.
2. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram E.

3-92

5964-6426E

Package Dimensions

•
5
6
7
8

+

9

RHOI'

Ii.
PACKAGE..J

FRONT VIEW B. C

FRONT VIEW A. 0

FRONTVIEWE
Function

PIn

INTENSITY
CATEGORY

~0'25

~~

--.LJ

COLOR
BIN(7J

NO PIN

3

CATHODE a
CATHODEf
ANODE!)1

6
7
8
9

.l..IO.330 , 0.0101

6.1 MIN.
10.2.0 MIN.I

I

•
•5

LUMINOUS

--I
I 10.786 MAX.I I
~ 19.96 MAX.

'"
11

10.a.ol

"
"
18

~!

L J.~LO.3810.0151

13

"

17

15.2.,0.25
(0.800 ± 0.0101

18

DATE CODE

SIDE VIEW

END VIEW

en. SIde VIIIw III padIagIIlncIcna
CculIIy III OrigIn.

A

B
NO PIN
CATHODE a
CATHODE f

c
NO PIN
ANODEs
ANODEf

CATHODE.
ANODE[3]

ANODEI 31
CATHODE.
ANODE(31

CATHODE dp
NO PIN
NO PIN
NO PIN
CATHODE d

NO. CONNEC. NO. CONNEC.
NO PIN
NO PIN
NO PIN
NO PIN
CATHODEdp ANODE dp
CATHODEd
ANODE d

ANODEI 31

CATHODE,I)

CATHOCEc
CATHODEg
CATHODE.b
NO PIN
ANODEI3!
NQPIN

CATHODEe
CATHODEg
CATHODE b
NO PIN
ANODE]3]
NOP]N

ANODE c
ANODE 9
ANODE b
NQPIN
CATHODE]II]
NO PIN

ANODEI 31

CATHODEI6)
ANODe 8

CATHODe'61

D
NO PIN
ANODEs
ANODEf
CATHODE I61
ANODEe

CATHODE'81
ANOOe dp
NO PIN
NO PIN
NO PIN
ANOOEd
CATHODE!S1
ANODEc
ANODEg
ANODE b
NO PIN
CATHODE]6]
NO PIN

NO PIN
CATHODE a
ANODE d
CATHODEd
CATHODE c
CATHODEe
ANODE e
CATHODE dp
NO PIN
ANODEdp
CATHODE dp
CATHODE b
ANODE b
ANODE e
ANODE a
NO PIN
CATHODE a
NO PIN

NOTES:
,. DIMENSIONS IN MILUMETERS AND (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. REDUNDANT ANODES.
4. UNUSEO dp POSITION.
5. SEE INTERNAL CIRCUIT DIAGRAM.
8. REDUNDANT CATHODES.
7. FOR HDSP-4200/-8600 SERIES PRODUCT ONLY.

Internal Circuit Diagram
18

A

B

c

o

E

3-93

Absolute Maximum Ratings
Red
HDSp·3400
Series

AIGaAsRed
HDSp·N150
Series

HER
HDSp·3900
Series

Yellow
HDSP·4200
Series

115

96

105

105

105

mW

Peak Forward Current per
Segment or DP .

200[1)

160[3)

135[5)

135[5)

90[7)

rnA

DC Forward Current per
Segment or DP

50[2)

40[4)

40[6)

40[6)

30[8)

rnA

-40 to +100

"C

Description
Average Power per Segment
orDP

·40 to +100 ·20 to +100[9)

Operating Temperature
Range

·40 to +100

Storage Temperature Range

Green
HDSP·8600
Series
Units

-55 to +100

"C

Reverse Voltage per
Segment or DP

3.0

V

Lead Solder Temperature
for 3 Seconds (1.60 mm
[0.063 in.] below seating.
plane)

260

"C

Notes:
1. See Figure 1 to establish pulsed conditions.
2. Derate above 45"C at 0.83 mA/"C.
3. See Figure 2 to establish pulsed c~nditions.
4. Derate above 55"C at 0.8 mA/"C.
5. See Figure 7 to establish pulsed conditions.

6.
7.
8.
9.

Electrical/Optical Characteristics at TA

Derate above 50"C at 0.73 mA/"C.
See Figure 8 to establish pulsed conditions.
Derate above 50"C at 0.54 mA/"C.
For operation below -20"C, contact your local HP
components sales office or an authorized distributor.

= 25"C

Red
Device
Series

HDSP340X

Parameter

Symbol

Min.

Typ.

Luminous Intensity/Segment[1,2)
(Digit Average)

Iv

500

1200

Forward Voltage/Segment or DP

VF

1.6

APEAK

655

nm

Ad

640

nm

Peak Wavelength
Dominant Wavelength[3)
Reverse Voltage/Segment or DP[4)

3-94

2.0

Units

Test Conditions

)lcd

IF = 20 rnA

V

IF = 20 rnA

20

V

Temperature Coefficient of
\F/Segment or DP

t;,.VF/oC

-2

mV/"C

Thermal Resistance LED Junctionto-Pin

RaJ.PIN

375

°C/W

VR

3.0

Max.

IR = 100 JlA

AlGaAs Red
Device
Series

Symbol

Min.

Typ.

Luminous Intensity/Segmentl! ,2, 51
(Digit Average)

Iv

6.0

14.0

mcd

IF

= 20 rnA

1.8

V

IF

= 20 rnA

Forward Voltage/Segment or DP

VF
V

IF

= 100 rnA

IR

= 100 ~

Parameter

2.0

Max.

3.0

Units

Test Conditions

HDSP·
N15X

Peak Wavelength
Dominant Wavelength l31
Reverse Voltage/Segment or DPI 41

A.PEAK

645

nm

A.d

637

nm

VR

15

V

Temperature Coefficient of
VF/Segment or DP

!!NFi"C

-2

mVrC

Thermal Resistance LED Junctionto-Pin

RaJ.PIN

430

°C/W/
Seg

3.0

High Efficiency Red
Device
Series

Parameter
Luminous Intensity/Segmentl!,2]
(Digit Average)
Forward Voltage/Segment or DP

Symbol

Min.

Typ.

Max.

Units

3350

7000

!lcd

IF

4800

!lcd

IF

Iv

VF

2.6

3.5

V

Test Conditions

= 100 rnA Peak:
1 of 5 df

= 20 rnA
IF = 100rnA

HDSP390X

Peak Wavelength
Dominant Wavelength l3 ]
Reverse Voltage/Segment or DPI4]

A.PEAK

635

nm

A.d

626

nm

25

V

Temperature Coefficient of
VF/Segment or DP

AVFi"C

-2

mVrC

Thermal Resistance LED Junctionto-Pin

RaJ.PIN

375

°C/W/
Seg

VR

3.0

IR

= 100 ~

3-95

Yellow
Device
Series

Parameter

Symbol

Min.

Typ.

2200

7000

Luminous Intensity/Segment[l,2]
(Digit Average)

Iv

FOIWard Voltage/Segment or DP

VF

2.6

APEAK

583

Max.

3400
HDSP420X

Peak Wavelength

3.5

Units

Test Conditions

I1cd

IF = 100 rnA Peak:
1 of 5 df

I1cd

IF

V

IF

= 20 rnA
= 100 rnA

IR

= 100 I1A

nm

Dominant Wavelength[3,6],

A..!

581.5

586

Reverse Voltage/Segment or DP[4]

VR

3.0

25.0

V

592.5

nm

Temperature Coefficient of
VF/Segment or DP

IJ.VFi"C

-2

mV/"e

Thermal Resistance LED Junctionto-Pin

RaJ.PIN

375

"e/W/
Seg

Green
Device
Series

Parameter
LUlllinous Intensity/Segment[l,2]
(Digit Average)'
Forward Voltage/Segment or DP

HDSP860X

Peak Wavelength

Symbol

Units

Min.

Typ.

680

1500

I1cd

IF

1960

I1cd

IF = 50 rnA Pellk:
1 of 5 df

Max.

Iv

VF

2.1

ApEAK

566

Dominant Wavelength]3,6]

A..!

Reverse Voltage/Segment or DP[4]

VR

571
3.0

2.5

V

Test Conditions

= 10 rnA

IF

= lOrnA

IR

= 100 I1A

nm

577

nm

50.0

V

Temperature Coefficient of
VF/Segment or DP

IJ.VF!"e

-2

mV/"C

Thermal.Resistance LED Junctionto-Pin

RaJ.PIN

375

"e/W/
Seg

Notes:
1. Case temperature of the device immediately prior to the intensity measurement is 25"C.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, Au, is derived from the CrE chromaticity diagram and is that single wavelength which defines the color of
the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs Red HDSP-NlOO series displays are recommended. They are tested at 1 rnA dc/segment and
are pin for pin compatible with the HDSP-N150 series.
6. The Yellow (HDSP-4200) and Green CHDSP-8600) displays are categorized for dominant wavelength. The category is designated by
a number ruljacent to the luminous intensity category letter.

3-96

Red, AlGaAs Red
>.ll-':':'O.O!o::::o_DCOPERATION

_..~ Iil_u"

tp - PULSE DURAnON-J.i.S

Figure 1. Maximum Allowable Peak Current vs. Pulse
Duration - Red.

.

a:
w
Izw
a:
a:
uE
U,
CI"z
"w

"'"

50

~~

35

AIGaAs RED ---

25

""
~Il!
"II>
,

15 f - - -

~

10

"
!!

I
1

\

40

30

Figure 2. Maximum Allowed Peak Current vs. Pulse
Duration - AlGaAs Red.

200

\

45

tp - PULSE DURATION -flS

"

20
R aJ-A= 525°C/W

..

B~
Cw
11:"
~m

"'

a: II>
~

20

30 40 50

60

70 80

RED_

I
1---

120

80
80

~

40
20

o.s

00

90 100 110

Figure 4. Forward Current vs. Forward Voltage.

2.50

12

~E
ifi~

I
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4..5 5.0
V F - FORWARD CURRENT - V

TA -AMBIENT TEMPERATURE - °C

Figure 3. Maximum Allowable DC Current vs.
Ambient Temperature.

AIGaAs RED

100

,

1\

°10

180

II:
w
180
Iz
140
w",
a: E

RED

/

00

/
5

V
10

/

/

V

/

/

tc
Z E

1.1

H
w_

1.0

!!!e
UN

~e

551
wI>!

15

V

AIGaAsRED V

119

~~ o.s
"0:
:\0

"i!!.

20 25

30

35 40 45 50

IF - FORWARD CURRENT PER SEGMENT - mA

RED

/

'"

......

0.7
D.6
2

3 45

10

20 304050

100

200

I PEAK - PEAK FORWARD CURRENT
PER SEGMENT

Figure 5. Relative Luminous Intensity vs. DC
Forward Current.

Figure 6. Relative Efficiency (Luminous Intensity
per Unit Current) vs. Peak Current.

3-97

HER, Yellow, Green

I

I"
~~

'I>

~

I

OPERATIONIN

OPERATION IN
THIS REGION

THIS REGION

'"

REQUIRES

DERATING

~~~~

OFI DC MAX.

?~~~ 1b
~

I
10

100

1000

tp - PULSE DURATION -

'\

_DCCPE RATION
10.000

50

~ 140

45

zW

120

40

ii

0:
0:

::Ie

35

~

100

UE
u,

30

~~

~:lJ
,

i

,

I\.

20

~

ffi

:l!

1

°10

20

70

I

so

90 100 110

/

/J

60

II /

i. :
,

30 40 50 60

HER __ U~YELLDW

80

G

R OJ •A = 525 0 CIW

~

I

II

0:

I\.

15
10

HER/YELLOW

"- \
GREEN-I\. 1\.

25

10,000

Figure 8. Maximum Allowed Peak C;'rrent vs. Pulse
Duration - Green.

w

~iii

1000

100

10

tp - PULSE DURATION-I.!S

....

f.---

I

'\

DC OPERAT10N

~

Figure 7. M/LXimum Allowed Peak Current vs. Pulse
Duration - HER, Yellow.

0:

REQUIRES
TEMPERATU RE
DERATING
OFI DC MAX.

TEMPERATU RE

~~

'I

o
o

TA- AMBIENT TEMPERATURE - °C

It

~GREEN

,/

0.&1.01.52.02.53.03.5

VF - FORWARD VOLTAGE - V

Figure 9. Maximum Allowable DC Current vs.
Ambient Temperature.

Figure 10. Forward Current vs. Forward Voltage.

1.5

~v

lL

V

/

V

L

15

20

1.0

j'ELLi'W

30

35

40

Figure 11. Relative Luminous Intensity vs. DC
Forward Current.

1.1

I wO

0.7

"iI!~~

:::

.1

.....

GREEN

/

1

HER

0.9

o.a

i~

25

1.3

~o~

!f~::1

IF - FORWARD CURRENT PER SEGMENT - mA

3-98

~~i

~:;i

,/
10

1.2

~~o

.L' <--HER AND

..,/

ffi~i

§1!

/

/

1A

l;a:w

/
GREEN

~~

,;'

./

/

"""I--.:p

.....

".
V"-YELLOW

OA
0.3
10 20 30 40 50 60 70 80 90 100 110 120 130

I PEAK - PEA" FORWARD CURRENT
PER SEGMENT - rnA

Figure 12. Relative Efficiency (Luminous Intensity per
Unit Current) vs. Peak Current.

Contrast Enhancement
For infonnation on contrast
enhancement please see
Application Note 1015.

Soldering/Cleaning
Cleaning agents from the ketone
family (acetone, methyl ethyl
ketone, etc.) and from the
chlorinated hydrocarbon family
(methylene chloride, trichloroethylene, carbon tetrachloride,
etc.) are not recommended for
cleaning LED parts. All of these
various solvents attack or
dissolve the encapsulating
epoxies used to fonn the package
of plastic LED parts.
For infonnation on soldering
LEDs please refer to Application
Note 1027.

3-99

rli;- HEWLETT®

.:e. PACKARD

CMOS 5 x 7 Small Alphanumeric
Displays
Technical Data
HCMS-270X Series
HCMS-271X Series
HCMS-272X Series

Features
• On-Board Low Power CMOS
ICs
Integrated Shift Registers with
Constant Current LED Drivers
• Wide Operating
Temperature Range
-40OC to +85OC
• Three Package Styles
1 Row of 4 Characters
1 Row of 8 Characters
2 Rows of 8 Characters
• Five LED Colors
Standard Red
High Efficiency Red
Orange
Yellow
High Performance Green
• 5 x 7 LED Matrix
Displays Full ASCII
Character Set
• Character Height
3.8 nun (0.15 inch)
• Long Viewing Distance
2.6 Metres (8.6 Feet)
• Wide Viewing Angie
X Axis = ± 30
Y Axis = ±55°
• Categorized for Luminous
Intensity
0

3-100

• Categorized for Color
HCMS-270l/-2703
HCMS-271l/-2713
HCMS-272l/-2723

Typical Applications
• Telecommunications
Equipment
• Instrumentation
• Medical Instruments
• Business Machines

Device Selection Guide
Part Number
HCMS-2700
-2701
-2702
-2703
-2704
HCMS-2710
-2711
-2712
-2713
-2714
HCMS-2720
-2721
-2722
-2723
-2724

Display Package Style
1 Row of 4 Characters

1 Row of 8 Characters

2 Rows of 8 Characters

LED Color
Standard Red
Yellow
HER
Green
Orange
Standard Red
Yellow
HER
Green
Orange
Standard Red
Yellow
HER
Green
Orange

5964-6375E

Description
The HCMS-270X series are four
character 5x7 dot matrix alphanumeric displays in a dual in-line
12 pin plastic package. The onboard CMOS ICs form a 28 bit
shift register.
The HCMS-271X series are eight
character 5x7 dot matrix alphanumeric displays in a dual in-line
plastic package with 26 pin
positions. The on-board CMOS
ICs form a 56 bit shift register.

The HCMS-272X series are
sixteen character 5x7 dot matrix
alphanumeric displays. Each
device is assembled by enclosing
two HCMS-271X devices in a
common lens assembly forming
two rows of eight characters. The
plastic package has two dual inline rows of 26 pin positions for a
total of 52 pin positions. The two
on-board CMOS IC 56 bit shift
registers for each row are
electrically separate from each
other.

The on-board CMOS ICs form
serial input shift registers with
constant current output LED row
drivers. Decoded column data is
clocked into the shift registers for
each refresh cycle. Full character
display is accomplished with
external column strobing at a
refresh rate of 100 Hz or faster.
All of these display devices may
be end stacked in the X-direction
to form a string of characters of
desired length.

Package Dimensions

PIN
1
2
3

r

jOTE 3
.-E-EN-

~~=======$=$===[:J=4=3__~_______(~-±J~)MA1
-

4
5
6

FUNcnON
COLUMN 1
COLUMN 2

COWMN3
COLUMN 4
COLUMNS
INT. CONNECT"

PIN
7

•
9

10
11
12

FUNCTION
DATA OUT

V•
VDD
CLOCK
GROUND

DATA IN

* DO NOT CONNECT OR USE.

PIN 1 IDENTIFIER

r-----r-

LUMINOUS INTENSITY CATEGORY

~

~

0.25

LJ~~r-~~~~~~-;-~ ~

L~-- leII---2.54

(0.100)

7.62

I

(0.300)-

(0.050)

2.54±O.13
(0.100 ± 0.005)
TVP. NON ACCUM.

NOTES:
1. DIMENSIONS IN MILLIMETRESIINCHES.

2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE
ON ALL DIMENSIONS IS O.3BMM (0.015 H ) .
3. CHARACTERS ARE CENTERED WITH RESPECT TO

LEAD WITHIN 0.13MM (0.005').
4. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-270X

3-101

PIN
1
2
3
4

-SEE NOTE 3

(O~;~

REF.

r;l

m mr:l

Iel 1,1 Isl

3E3 J~~)

~LJ~~4J~=4J~~LJ~~~~LJ~~LJ=$.~LJ=3 __________~'l

•

MAlL

NO PIN

6

INT. CONNECT'"

7
8
9
10
11
12
13

NO PIN
COLUMN 1
NOPIH
COLUMN 3
HOPIN
COLUMN 6
INT. CONNECT"

PIN
14

DATA OUT

16
17
18
19
20
21
22
23
24
26
26

VB("')
NO PIN
CLOCK
GROUND
NO PIN
NOPIN
INT. CONNECT"
VB (1")
VDD
NO PIN
GROUND
DATA IN

,.

FUNCTION

• DO NOT CONNECT OR USE.

PIN 1 IDENTIFIER
DATE
COOE

LUMINOUS INTENSITY CATEGORY

0.26

COLOR81N

PART NUMBER

hf

~ (:,~)-I

Hi

1--

1.27

(o.OSO)

2.54±D.13

(0.100 ± O.OOS)
TYP. NON ACCUM.

NOTES,
1. DIMENSIONS IN MILLIMETRESIINCHES.
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE
ON ALL DIMENSIONS IS O.38MM (O.015·~
3. CHARACTERS ARE CENTERED WITH RESPECT TO
LEAD WITHIN 0.13MM (0.005:').
4. LEAD MATERIA.., SOLDER PLATED COPPER ALLOY.

1--------- ~~~

2.54
(0.100)

HCMS·271X

MAX.-------_'I
SEE NOTE 3

1-~-[:J-tJ+rJ-[:J-~-rJ
------1-------EJ-Q-~tEJ-EJ-EJ-B

SEE NOTE 3

I

....+

(G.100)

PIN
1A
2A
3A

FUNCTION
NDPIN
COLUMN 2

PIN
1B
2B

FUNCTION
NO PIN
COLUMN 2

NO PIN

3B

NO PIN

4A

COLUMN 4
NOPIN
INT. CONNECT"
NOPIN
COLUMN 1
NOPIN
COLUMN 3
NOPIN
COLUMN 5
INT. CONNECT"
DATA OUT
VB (13-10)
NOPIN
CLOCK
GROUND
NOPIN
NOPIN
INT. CONNECT"

4B
5B
88
7B
BB
9B
10B
11B
128
13B
14B
168
1SB
17B
1BB
1BB
20B
218
22B
238
24B
26B
26B

SA
SA
7A
SA
SA
10A
11A
12A
1SA
14A
1SA
1SA
17A
1SA
1SA

20A
21A
22A

23A
24A

26A
26A

V8(9-12)

VDD
NO PIN
GROUND
DATA IN

COLUMN_
NO PIN
.INT. CONNECT"
NO PIN
COLUMN 1
NO PIN
COLUMN 3
NO PIN
COLUMN 6

INT. CONNECT"
DATA OUT
VB (6'"
NO PIN
CLOCK
GROUND
NO PIN
NO PIN
INT. CONNECT"
VB (1"")

VDD
NO PIN
GROUND
DATA IN

* DO NOT CONNECT OR USE INTERNAL

PIN 1A IDENnFlER

CONNECTION PINS.

DATE
CODE
PART NU_ER

&.08±O.127
(O.200± .006)

NOTES:
1. DIMENSIONS ARE IN IIILLIMETRESJINCHES.
2. UNLESS OTHERWISE SPECJFlED,
TOLERANCE IS ± G.38I1M (0.015-).
a. CHARACTERS ARE POsmONED WITH
RESPECT TO LEADB WIT..N ± 0.1311'" (O.OO5 M).
4. LEAD MATERIAL IS SOLDER PLATED COPPER ALLOY.

3-102

FUNCTION
NOPIH
COLUMN 2
HOPIN
COLUMN 4

HCMS·272X

Absolute Maximum Ratings
Supply Voltage VDD to Ground ........................................ -0.3 V to 7.0 V
Data Input, Clock, Data Output, VB ................................... -0.3 V to VDD
Column Input Voltage, VCOL .............................................. -0.3 V to VDD
Free Air Operating Temperature, TA .............................. -40"C to +85°C
Storage Temperature, Ts ............................................. -55"C to + 100"C
Maximum Allowable Package Power Dissipation, PD at 55"C[1,2}
HCMS-270X ............................................................................ 0.837 W
HCMS-271X ............................................................................ 1.674 W
HCMS-272X (per 8 character row) ........................................ 1.674 W
(total per package ........................................... 3.348 W)
Maximum Solder Temperature
1.59 rom (0.063") Below Seating Plane, t < 5 sec ............... :..... 260"C
ESD Protection @ 1.5 kQ, 100 pF ........................ Vz = 4 kV (each pin)
Notes:

1. Maximum allowable power dissipation is derived from VDD = 5.25 V and VB = 2.4 V,
VeoL = 3.5 V, 20 LEDs illuminated per character, 20% on-time duty factor.
2. See Figure 1 for power derating. Thermal resistance from device VDD pines) to
ambient through the PC board mounting assembly is assumed to be ROpe•A ';> 35"C/W
per device for the HSMS-270X,,;> 1 7.5°C/W per device for the HCMS-271X, and
,;> 17.5"C/W per row for the HCMS-272X.

Recommended Operating Conditions, TA = -40"C to +S5"C
Description
Supply Voltage
Data Out Current, Low State
Data Out Current, High State
Column Input Voltage
Setup Time
Hold Time
Clock Pulse Width High
Clock Pulse Width Low
Clock High to Low Transition
Clock Frequency

Symbol
VDD
IOL
IOH
VCOL
tSETIJP
t HoLD
tWH(CLOCK)
tWL(CLOCK)
trHL
f CLOCK

Minimum
4.75

Nominal
5.0

2.75
10
25
50
50

Maximum

3.0

5.25
1.6
-0.5
3.5

Unit
V
rnA
rnA
V

ns
ns

200
5

ns
ns
ns
MHZ

Electrical Characteristics, -40"C to +S5"C
Parameter
Supply Current, Dynamic[2]
HCMS-270X
HCMS-271X
HCMS-272X (per row)
Supply Current, Static[3}
HCMS-270X
HCMS-271X
HCMS-272X (per row)
HCMS-270X
HCMS-271X
HCMS-272X (per row)

Symbol
IDDD

Test Conditions
VDD = 5.25V
f CLOCK = 5 MHz
VB = 0.4 V

IDDsoff

VDD = 5.25 V
VB = 0.4 V

IDDSon

VDD = 5.25 V
VB = 2.4 V

Min.

Typ.ll)

Max.

Unit

6.2
12.4
15.6

7.8
15.6
15.6

rnA

1.8
3.6
3.6
2.2
4.4
4.4

2.6
5.2
5.2
6.0
12.0
12.0

rnA

3-103

Electrical Characteristics, -40OC to +85OC (cont'd.)
Parameter
Column Input Current
HCMS-270X
HCMS-271X
HCMS-272X (per row)
Input Logic High:
Data, VB, Clock
Input Logic Low:
Data, VB, Clock
Input Current:
Data
Clock
HCMS-270X
HCMS-271X
HCMS-272X (per row)
VB
HCMS-270X
HCMS-271X
HCMS-272X (per row)
Data Out Voltage

Symbol
IcoL

Min.

Voo = 5.25
VCOL = 3.5 V
VB = 2.4 V

= 4.75 V

TypPl

Max.

335
670
670

410
820
820

2:0

V

Voo

ViL

Voo = 5.25 V
Voo = 5.25 V
0< VI < 5.25V

-10

+1

Voo = 5.25 V
0< Vi < 5.25 V

-10
-20
-20

+1

II

VOR

Po

RaJ .PIN

VOD = 5.25 V
0< VB < 5.25 V
Voo = 4.75 V
lOR = -0.5 rnA
IcoL = 0 rnA
Voo = 5.25 V
lOR = 1.6 rnA
ICOL = 0 rnA
Voo = 5.0V
VCOL = 3.5 V
17.5%DF
VB = 2.4 V
15 LEDs ON
Per Character

Unit
rnA

VIH

VOL

Power Dissipation[41
Per Package
HCMS-270X
HCMS-271X
HCMS-272X (per row)
Thermal Resistance[5]
IC Junction-to-Pin (Voo)
HCMS-270X
HCMS-271X
HCMS-272X (per row)

Test Conditions

0.8

V

J.LA

-40
-80
-80
2.4

0
4.2

0.2

V

0.4

451
902
902

mW

50
25
25

°CIW

Notes:
1. All typical values at Voo = 5.0 V, TA = 25OC.
2. 100 Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5 MHz.
3. 100 Static is the Ie current after column data is loaded and not being clocked through the on-board s!tift register.
4. Four, eight, or sb:teen characters are illuminated with a typical ASCII character composed of 15 dots per character.
5. The IC junction temperature TJ(IC), is:
TJ(IC) = (Po)(R9J.PIN +R9pc.~ + TA
Where: Po is the total power into the display for HCMS-270X and HCMS-271X,
and the total power into one row of an HCMS-272X display.
Po = P(IoDSo.J + P(IcoLl
P(Iooso.J = IOOSon 'Voo
P(IeoLl = 5*leoL'VeoL*n/35*DF
n = Quantity of LED dots illuminated per character.
DF = LED on-time duty factor.
The IC junction temperature rise above the temperature of the Voo pines), ATiIC), is:
ATJ(IC) = (Po)(RIlJ.PIN)
The IC junction temperature, TJ(IC), must not exceed + 125°C.

3,104

Optical Characteristics at TA

= 25°C

Standard Red HCMS-2700/-2710/-2720
Description
Test Conditions
Peak Luminous Intensity per LED
VDD = 5.0 V, VeoL = 3.5 V
(Digit Average) [J,5]
VB = 2.4 V, Ti = 25°C[3]
Dominant Wavelength[4]
Peak Wavelength
Yellow HCMS-270l/-2711/-2721
Description
Peak Luminous Intensity per LED
(Digit Average)[1,5]
Dominant Wavelength[2,41
Peak Wavelength

Test Conditions
VDD = 5.0 V, VeoL = 3.5 V
VB = 2.4 V, Ti = 25°C[3]

Min.

Typ.

Unit

Iv

105

200
640
65

~cd

Ad
ApEAK

Min.

Typ.

Unit

Iv

400

750
585
583

~cd

ApEAK

High Performance Green HCMS-2703/-2713/-2723
Description
Test Conditions
Peak Luminous Intensity per LED
VDD = 5.0 V, VeoL = 3.5 V
(Digit Average)[1,5]
VB = 2.4 V, Ti = 25°C[3]
Dominant Wavelength[2,4]
Peak Wavelength

Test Conditions
VDD = 5.0 V, VeoL = 3.5 V
VB = 2.4 V, Ti = 25°C[3]

nm
nm

Symbol

Ad

High Efficiency Red HCMS-2702/-2712/-2722
Description
Test Conditions
Peak Luminous Intensity per LED
VDD = 5.0 V, VeoL = 3.5 V
(Digit Average)[1,5]
VB = 2.4 V, Ti = 25°C[3]
Dominant Wavelength [4]
Peak Wavelength

Orange HCMS-2704/-2714/-2724
Description
Peak Luminous Intensity per LED
(Digit Average)[J,5]
Dominant Wavelength[4]
Peak Wavelength

Symbol

nm
nm

Symbol

Min.

Typ.

Unit

Iv

400

1430
625
635

~cd

Ad
APEAK

nm
nm

Symbol

Min.

Typ.

Unit

Iv

400

1550
574
568

~cd

Ad
ApEAK

nm
nm

Symbol

Min.

Typ.

Unit

Iv

400

1400
602
600

~cd

Ad
ApEAK

nm
nm

Notes:
1. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the side of
the display package.
2. Yellow and high performance green devices are categorized for color with the color category designated by a number code on the
side of the display package.
3. T, refers to the initial device temperature immediately prior to the light measurement.
4. Dominant wavelength, Ad, is derived from the CIE chromaticity diagram and is that Single wavelength which defines the LED color.
5. The luminous sterance of the individual LED pixels may be calculated using the following equations:
Ly(cd/m2) ~ Iv(Candela)*DF/A(Meter2)
LvCFootiamberts) ~ nl v(Candela)*DF/A(Foot2 )
Where: A ~ LED pixel area ~ 3.32xlO·8 m 2 or 3.57xlO· 7 ft2
DF ~ LED on-time duty factor.

3-105

Switching Characteristics, TA = -40"C to +S5"C
Parameter

...

Condition

Typ. Max. Units

Cr. = 15 pF

5
105

MHz
ns

4

5

IlS

1

2

f CLOCK CLOCK Rate
t pLH, tPHL

Propagation Delay
CLOCK to DATA
OUT

RL

= 2.4 k.Q

toFF

VB (0.4 V) to
Display OFF

• toN
V..

v.

VB (2.4 V) to
Display ON

r~I

z.oV\

v,.O.8V

J

l..'lOFF

~tON

DN(lLLUMINATEDIIIO%~
DISPLAV
Off INDT ILLUMINATEDIIO%

I
I

I\.

R8"....4Z.5"CIl

r- f-ell8)~~

Figure 1. Maximum Allowable Power Dissipation vs. Ambient
Temperature as a Function of Thermal Resistance IC Junctlon-toAmbient, ReJ _A • Operation .at 85"C Assumes a Thermal Resistance for the
Printed Circuit Board of R8 pc_A 35"CfW Per Device for the HCMS270X, 17.5"CfW Per Device for the HCMS-271X, and 17.5"CfW PerRow
for the HCMS-272X.

'\

r-r G.I02
.~c!.w
l - I- Rei"...,
,
l - I-

=

["".

·iiEViCE

r-r OMI

I

o
o

I

0
&

'rt

HCMS-27V2I-m2l-~

HCMS-2704I-27141-ant

r

!=t=F

1

i:

HCII8-27III!IomOl-2720

~ii: ~III
HCUs-2701/·2711/-2721
HCMs-2703/-2713/-2723

~~

-40

-20

0

I201LIII
.u
2&

101

•

100

T. - AMBIENT TEMPERATURE _·c

Figure 2. Relative Luminous intensity
vs. Display Pin Temperature.
3-106

200

If

100

'~

II
10

:I
-

0

I

HC....mX HCIIS472X
III LED PIXELS

Ta -15"C

Voo' 5.0 V

u.rNA~D)

I

1-

I I I I I II
0.1

BOD

ITi

l -

)

-

.......

.........

I

HC_
(II LED PIXELS

o

-

r--..

.......

........

e--

I I

V-.- CDWIIN VOLTAGE - V

Figure 3. Peak Column Current vs.
Column Voltage.

"".2IJ

0

201·.a
..

i'-

10

101100
II

T. - AIIBIENT TE_RATURE _·C

Figure 4. Relative Column Current,
IcoL' vs. Ambient Temperature.

Electrical Description
Each display device contains four
or eight 5x7 LED dot matrix
characters and two or four CMOS
integrated circuits, as shown in
Figure 5. The CMOS integrated
circuits form an on-board 28 bit
or 56 bit serial-in-parallel-out
shift register that will accept
standard TTL logic levels. The
Data Input pin is connected to bit
position 1 and the Data Output
pin is connected to bit position
28 (56). The shift register
outputs control constant current
sinking LED row drivers. The
nominal current sink per LED
driver is 11 mAo A logic 1 stored
in the shift register enables the
corresponding LED row driver
and a logic 0 stored in the shift
register disables the corresponding LED row driver.

This process is repeated for the
other 2 (6) characters until all 28
(56) bits of column data (four or
eight 7 bit bytes of character
column data) are loaded into the
on-board shift register. Then the
column 1 input, VeoL , pin 1, is
energized to illuminate column 1
in all 4 (8) characters. This
process is repeated for columns
2,3,4, and 5. All of the VeoL
inputs should be at logic low to
insure the display is off when
loading data. The display will be
blanked when the blanking input
VB is at logic low regardless of
the outputs of the shift register or
whether one of the VeoL inputs is
energized.

The electrical configuration of
these CMOS IC alphanumeric
displays allows for an effective
interface to a display controller
circuit that supplies decoded
character information. The row
data for a given column (one 7 bit
byte per character) is loaded (bit
serial) into the on-board 28 (56)
bit shift register with high to low
transitions of the Clock input. To
load decoded character information into the display, column data
for character 4 (8) is loaded first
and the column data for character
1 is loaded last in the following
manner. The 7 data bits for
column 1, character 4 (8), are
loaded into the on-board shift
register. Next, the 7 data bits for
column 1, character 3 (7), are
loaded into the shift register,
shifting the character 4 (8) data
bits over one character position.

Refer to Application Note 1016
Using the HDSP-2000 Alphanumeric Display Family for drive
circuit information.

COLUMN DRIYE INPUTS

COLUMN
1

2

3 4

5

I

[

~'.r
ii
:i
,;0

"1/

~
~

Ill'
Ill'

~

1

t I

LED
MATRIX

2

~'fJ

--:>

LED

LED
MATRIX

MATRIX

•

3

CSI

~;lIY~

1
BLANKING
CONTROL. VB

SERIAL
DATA

INPUT

2

-I

-

1

2

3 • •
ROWS

I

6 7

3 •• 6

ROWS,-7

I

ROWS 1..7

I

CONSTANT CURRENT SJNKIIIfG LED DRIVERS

I

7

~ r'~
ROWSS-t.

ROWS 15-21

. . IT $11'0 " I " REGI$T'ER

~

SERIAL
DATA
OUTPUT

A

T

CLOCK

Figure 5. Block Diagram of an HCMS-27XX Series LED Alphanumeric Display.

3-107

ESD Susceptibility
The HCMS"27XX series displays
have art ESD susceptibility
ratings of CLASS 3 per DODSTD-1686 and CLASS B per MILSTD-883C. It is recommended
that normal CMOS handling
precautions be observed with
these devices.

3-108

Soldering and Post Solder
Cleaning
For information on soldering and
post-solder cleaning of LED
Displays, see Application Note
1027: Soldering LED
Components.

Contrast Enhancement
When used with the proper
contrast enhancement fIlters, the
HCMS-27XX series displays are
readable in bright ambients. For
information on contrast enhancement, refer to Application Note
1015 Contrast Enhancement
Techniques for LED Displays.

-

rli~

HEWLETT®

a:e. PACKARD

High Performance CMOS 5 x 7
Alphanumeric Displays

Technical Data
HCMS-29XX Series

Features

Description

• Easy to Use
• Interfaces Directly with
Microprocessors
• 0.15" Character Height in 4,
8, and 16 (2x8) Character
Packages
• 0.20" Character Height in 4
and 8 Character Packages
• Rugged X- and Y-Stackable
Package
• Serial Input
• Convenient Brightness
Controls
• Wave Solderable
• Offered in Five Colors
• Low Power CMOS
Technology
• TTL Compatible

The HCMS-29XX series are high
performance, easy to use dot
matrix displays driven by on-board
CMOS ICs. Each display can be
directly interfaced with a
microprocessor, thus eliminating
the need for cumbersome interface
components. The serial IC
interface allows higher character
count information displays with a
minimum of data lines. A variety of
colors, font heights, and character
counts gives designers a wide
range of product choices for their
specific applications and the easy
to read 5 x 7 pixel format allows
the display of uppercase, lower
case, Katakana, and custom userdefmed characters. These displays
are stackable in the x- and ydirections, making them ideal for
high character count displays.

Applications
• Telecommunications
Equipment
• Portable Data Entry Devices
• Computer Peripherals
• Medical Equipment
• Test Equipment
• Business Machines
• Avionics
• Industrial Controls

Device Selection Guide
Description

AlGaAs
HCMS-

HER
HCMS-

Orange
HCMS-

Yellow
HCMS-

Green
HCMS-

Package
Drawing

1 x 40.15" Character

2905

2902

2904

2901

2903

A

1 x 80.15" Character

2915

2912

2914

2911

2913

B

2 x 8 0.15" Character

2925

2922

2924

2921

2923

C

1 x 4 0.20" Character

2965

2962

2964

2961

2963

D

1 x 8 0.20" Character

2975

2972

2974

2971

2973

E

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO
AVOID STATIC DISCHARGE.
5964-6376E

3-109

17.78 (0.700) MAX'-I

_

PIN FUNC110N
ASSIGNMENT TABLE

H4.45 (0.175) TYP.

H I-

I

I

1

I

.

I

I

FUNCTION
DATA OUT
OSC

PIN.
1
2 .
3
4
B
8
7
8
9
10
11
12

1

2.22 (0.087) SYM.

I

3.71 (O.l48)TYP.

2.11 (0.083)TYP.

V LED

DATA IN
lIS
CLK

CE

BLANK
GND
SEL
V LOGIC
RESET

PIN' 1 IDENTIFIER

I

I

1 1
I

0.51 ± 0.13 TVP
(0.020 ± 0.005)
•

--.J-I
~

2.64±O.13 TYP

I

i- (0.100 ± 0.005)

•

(NON ACCUM.)

NOTES:
1. DIMENSIONS ARE IN mm ~NCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ±0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-290X
~---35.58(1.400)

2.22 (0.087) SYM.

-+j

MAX.-----J

1-PIN FUNC110N
ASSIGNMENT TABLE
PINt FUNCTION

0.2&

(0.010)

R~

4.32
(0.170) TYP.

_

(O~~) SYM.

-I

I

3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-291X
3-110

,~

1

1

I

I

I-

1

~7.62

(0.300)

NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLE~NCE ON DIMENSIONS IS

I

± 0.38 mm (0.015 INCH).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28

NO PIN
NO PIN
V LED
NO PIN

NO PIN
NO PIN
ONDLED
NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
DATA IN
lIS
NO PIN
CLOCK

CE

BLANK
GNDLOGIC

sa

V LOGIC
NO PIN
RESET

OSC
DATA OUT

PIN FUNCTION ASSIGNMENT TABLE
PIN. FUNC110N PIN. FUNCTION

r - - - - - 3 5 . 5 6 (1.400) MAX.-----...I

--j

2.22 (0.088) SYM.

I

lA
2A
3A
4A
SA
SA
7A
SA
9A
lOA
l1A
12A
13A
14A
lSA
16A
17A
16A
16A
20A
21A
22A
23A
24A
26A
26A

II

4.45 (0.175) MAX. ~

r-

ROWB

1

19.81 (0.780) MAX .

•.•• (0.360)-

l_

DATE CODe (YEAR, WEEK)

PIN # 1 IDENTIFIER

I
I

I

I

I

I

I

- --

I

II
II
~i :-4-- (O~:')

I

I I
I I

2.54±O.13 TVP.

(0.100 ± 0.005)
(NON ACCUM.)

I

(::.) j..-

NOTES:
1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED. TOLERANCE ON DIMENSIONS IS ± 0.38
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

mm (0.016 INCH).

HCMS-292X

r-

PIN FUNC110N
ASSIGNMENT TABLE

r-MAX·-l

21 46
. (0."')

2.67(0.105)SVM.--j

I

-I

!

I

G--EJ+&B

/

PIN. FUNCTION
1
2
3
4

U' (0.100) TVP.

~

r

- 11.43 (0.450) MAX.

~

.... (O.211)TVP.

PIN #I 11DENnFIER

I

0.51to.13
(0.020 ± 0.005) TYP.

--...IL
.

I

I I
I I
--.I 1_(0.100
2.54 ± 0.13 TVP.
± 0.00.)
I

I

I

I

NOTES:
1. DIMENSIONS ARE IN

mm (INCHES).

2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON DIMENSIONS IS ± 0.38 mm (O.015INCH).
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-296X

••
••
7

10
11
12

DATA OUT
OSC
V LED
DATA IN
lIS
ClK

CE

BLANK
GND

SEl
V LOGIC
RESET

NO PIN
NO PIN
V LED

NO PIN

NO PIN
NO PIN
GNDLED

NO PIN
NO PIN
V LED

NO PIN
NO PIN
NO PIN

DATA IN
lIS
NO PIN
CLOCK

CE

BLANK

lB

211
38

NOPIN
NO PIN
V LED

so
so

NOPIH
NOPIH
NOPIH

7B

GNDLED

4B

.
sa

lOB
liB
12B
13B
,.B
,.B
,.B
17B
,.B

..

,

NOPIH
NOPIH
VLED

NOPIN
NDPIN

NOPIH
DATAIN
lIS

NOPlH
CLOCK

CE

BLANK

QNDLOQIC . .B

GNDLOGIC

SEl
V LOGIC
NO PIN
RESET
OSC
DATA OUT

SEL

21B
22B
. .B
24B
. .B
. .B

V LOGIC
NO PIN
RESET
DSC
DATA OUT

F

42.93 (1.880l MAX.

2.67(o.I05JSVM.:!

r-

H •.36 (O.2l1l TYP.
I

,

PINt FUNCTION
I

2
3
4

•

6
7
8
9
10

PIN # 1 IDEN11FfER

If

12
13
14
I.

16
17
18
19
20
21
22

23
24
25
26

NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
GNDLED

NO PIN
NO PIN
V LED
NO PIN
NO PIN
NO PIN
DATA IN
RS
NO PIN
CLOCK

CE

BLANK
GNDLOGIC

sa.

V LOGIC
NO PIN
RESET

osc

DATA OUT

NOTES:
1. DIMENSIONS ARE IN

mm (INCHES).

2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).
3. LEAD MATERIAL: SOLDER PLATED tOPPER ALLOY.

HCMS-297X
Absolute Maximum Ratings
Logic Supply Voltage, VLOGIC to GNDLOGIC ....................... -0.3 V to 7.0 V
LED Supply Voltage, VLED to GNDLED .............................. -0.3 V to 5.5 V
Input Voltage, Any Pin to GND ......................... -0.3 V to VLOGIC +0.3 V
Free Air Operating Temperature Range TAil] ................. -40"C to +85"C
Relative Humidity (non-condensing) ................................................ 85%
Storage Temperature, Ts ................................................. -55°C to lOO"C
Maximum Solder Temperature
1.59 rom (0.063 in.) Below Seating Plane, t< 5 sec .................. 260"C
ESD Protection @ 1.5 kO, 100 pF (each pin) ................................ 2 KV
TOTAL Package Power Dissipation at TA = 25"C[2]
4 character ....................................................................... 1.2 W
8 character ....................................................................... 2.4 W
16 character ........................................................................ 4.8 W
Notes:
1. For operation in high ambient temperatures, see Appendix A, Thermal Considerations.

Recommended Operating Conditions over Temperature Range
(-40"C to +85"C)
Typ.

Max.

Units

3.0

5.0

5.5

V

4.0

5.0

5.5

V

-0.3

0

+0.3

V

Parameter

Symbol

Min.

Logic Supply Voltage

VLOGIC

LED Supply Voltage

VLED

GNDLED to GNDLOGIC

-

3-112

Electrical Characteristics over Operating Temperature Range C-40"C to +85"C)
TA
Parameter

Symbol

Input Leakage Current
HCMS-290X/296X (4 char)
HCMS-291X/297X (8 char)
HCMS-292X (16 char)

II

lLOGIC OPERATING
HCMS-290X/296X (4 char)
HCMS-291X/297X (8 char)
HCMS-292X (16 char)

lLOGIC(OPT)

lLOGIC SLEEPII]
HCMS-290X/296X (4 char)
HCMS-291X/297X (8 char)
HCMS-292X (16 char)

lLOGIc(SLP)

ILED BLANK
HMCS-290X/296X (4 char)
HCMS-291X/297X (8 char)
HCMS-292X (16 char)

ILED(BL)

ILED SLEEpll]
HCMS-290X/296X (4 char)
HCMS 291X/297X (8 char)
HCMS-292X (16 char)

ILED(SLP)

Peak Pixel Current l2 ]
HCMS-29X5 (AlGaAs)
HCMS-29XX (Other Colors)

IpIXEL

HIGH level input voltage

LOW level input voltage

HIGH level output voltage

= 25"C
= 5.0 V

\].OGIC
Typ.

Max.
+7.5
+15
+15

-40"C < TA < 85"C
3.0 V < \].OGlC < 5.5 V
Min.
Max.

-2.5
-5.0
-5.0

0.4
0.8
0.8

2.5
5
5

5
10
10

5
10
10

15
30
30

25
50
50

0.4
0.8
0.8

1.8
3.5
3.5

2.5
5
5

1
2
2

3
6
6

50
100
100

Thermal Resistance

VIN

= 0 V to VLOGIC

mA

\IN

= \LOGIC

~

\IN = \LOGIC

mA

BL = OV

15.4
14.0

17.1
15.9

18.7
17.1

~

\lh

\{,I

70

VLED - 5.5 V
All pixels ON,
Average value per
pixel

2.0

V

4.5 V < VLOGIC < 5.5 V

V

3.0 V < VLOGIC < 4.5 V

l.l

V

4.5 V < VLOGIC < 5.5 V

0.2 VLOGIC

V

3.0 V < VLOGIC < 4.5 V

V

\LOGIC = 4.5 V,
loh = -40~

2.4

\{,h

mA
mA

0.8 VLOGIC

'11

R9J_p

Test Conditions

~

+50
+100
+100

V

3.0 V < VLOGIC < 4.5 V

0.4

V

\LOGIC = 5.5 V,
101 = 1.6 mA13]

0.2 VLOGIC

V

3.0 V < VLOGIC < 4.5 V

0.8 VLOGIC
LOW level output voltage

Units

°C/W

IC junction to pin

Notes:
1. lD SLEEP mode, the internal oscillator and reference current for LED drivers are off.
2. Average peak pixel current is measured at the maximum drive current set by Control Register O. Individual pixels may exceed this
value.
3. For the Oscillator Output, 101 = 40 ~.

3-113

Optical Characteristics at 25"C[1]

= 5.0 V, 50% Peak Current, 100% Pulse Width

VLED

Luminous Intensity
perLED[2]
Character Average Q.lcd)
Typ.
Min.

Display Color

Part Number

AlGaAsRed
High Efficiency Red
Orange

HCMS-29X5
HCMS-29X2
HCMS-29X4

95
29
29

Yellow

HCMS-29XI

29

Green

HCMS-29X3

57

230
64
64

Peak
Wavelength
(om)
Typ.

APeak

Dominant
Wavelength
(om)
Typ.

Ad[3]

645
635

637
626
602

64

600
583

585

114

568

574

Notes:
1. Refers to the initial case temperature of the device immediately prior to measurement.
2. Measured with all LEDs illuminated.
3. Dominant wavelength, Au, is derived from the OlE chromaticity diagram and represents the single wavelength which defines the
perceived LED color.

Electrical Description
Pin Function

Description
Sets Control Register bits to logic low. The Dot Register contents are
unaffected by the Reset pin. (logic low = reset; logic high = normal
operation).

DATA IN (DIN)

Serial Data input for Dot or Control Register data. Data is entered on the
rising edge of the Clock input.

DATA OUT (DoUT)

Serial Data output for Dot or Control Register data. This pin is used for
cascading multiple displays.

CLOCK (CLK)

Clock input for writing Dot or Control Register data. When Chip Enable is
logic low, data is entered on the rising Clock edge.

REGISTER SELECT (RS)

Selects Dot Register (RS = logic low) or Control Register (RS = logic high)
as the destination for serial data entry. The logic level of RS is latched on
the falling edge of the Chip Enable input.

CHIP ENABLE (CE)

This input must be a logic low to write data to the display. When CE
returns to logic high and CLK is logic low, data is latched to either the LED
output drivers or a Control Register.

OSCILLATOR SELECT
(SEL)

Selects either an internal or external display oscillator source.
(logic low = External Display Oscillator; logic high = Internal Display
Oscillator) .

OSCILLATOR (OSC)

Output for the Internal Display Oscillator (SEL = logic high) or input for an
External Display Oscillator (SEL = logic low).
Blanks the display when logic high. May be modulated for brightness
control.
Ground for LED drivers.

BLANK(BL)

GNDLED
GNDLOGIC
VLED

Ground for logic.
Positive supply for LED drivers.

VLOGIC

Positive supply for logic.

3-114

AC Timing Characteristics over Temperature Range (-40OC to +85OC)
Timing
Diagram

Ref.
Number

Description

Symbol

4.5 V < VLOGIC <5.5 V
Min.
Max.

VLOGIC = 3 V
Min.
Max.

Units

t.....

10

10

ns

Register Select Hold Time to
Chip Enable

tm.

10

10

ns

3

Rising Clock Edge to Falling
Chip Enable Edge

tclkee

20

20

ns

4

Chip Enable Setup Time to
Rising Clock Edge

tees

35

55

ns

5

Chip Enable Hold Time to
Rising Clock Edge

tceh

20

20

ns

6

Data Setup Time to Rising
Clock Edge

tds

10

10

ns

7

Data Hold Time after Rising
Clock Edge

tdh

10

10

ns

8

Rising Clock Edge to DOUTlll

tdout

10

9

Propagation Delay DIN to DOUT
Simultaneous Mode for
one ICIl,21

tdoutp

10

CE Falling Edge to DOUT Valid

teedo

11

Clock High Time

12

1

Register Select Setup Time to
Chip Enable

2

40

10

18

25

65

ns

30

ns

45

ns

telkh

80

100

ns

Clock Low Time

telkl

80

100

ns

Reset Low Time

ITstl

50

50

Clock Frequency

Fcye

Internal Display Oscillator
Frequency

Finose

80

210

Internal Refresh Frequency

Frf

150

External Display Oscillator
Frequency
Prescaler = 1
Prescaler = 8

Fexosc

51.2
410

5

ns

4

MHz

80

210

KHz

410

150

400

Hz

1000
8000

51.2
410

1000
8000

KHz
KHz

Notes:
1. Timing specifications increase 0.3 ns per pf of capacitive loading above 15 pF.
2. This parameter is valid for Simultaneous Mode data entry of the Control Register.

3-115

Display Overview
The HCMS-29XX series is a family
of LED displays driven by
on-board CMOS ICs. The LEOs
are configured as 5 x 7 font
characters and are driven in
groups of 4 characters per IC.
Each IC consists of a 160-bit shift
register (the Dot Register), two
7-bit Control Words, and refresh
circuitry. The Dot Register
contents are mapped on a
one-to-one basis to the display.
Thus, an individual Dot Register
bit uniquely controls a single
LED.
8-character displays have two ICs
that are cascaded. The Data Out
line of the first IC is internally
connected to the Data In line of
the second IC forming a 320-bit
Dot Register. The display's other
control and power lines are
connected directly to both ICs. In
16-character displays, each row
functions as an independent
8-character display with its own
320-bit Dot Register.

Reset
Reset initializes the Control
Registers (sets all Control
Register bits to logic low) and
places the display in the sleep
mode. The Reset pin should be
connected to the system power"on
reset circuit. The Dot Registers
are not cleared upon power-on or
by Reset. After power-on, the Dot
Register contents are random;
however, Reset will put the
display in sleep mode, thereby
blanking the LEOs. The Control
Register and the Control Words
are cleared to all zeros by Reset.

First RS is brought low, then CE
is brought low. Next, each
successive rising CLK edge will
shift in the data at the DIN pin.
Loading a logic high will turn the
corresponding LED on; a logic
low turns the LED off. When all
160 bits have been loaded (or 320
bits in an 8-digit display), CE is
brought to logic high.

To operate the display after being
Reset, load the Dot Register with
logic lows. Then load Control
Word 0 with the desired brightness level and set the sleep mode
bit to logic high.

When CLKis next brought to
logic low, new data is latched into
the display dot drivers. Loading
data into the Dot Register takes
place while the previous data is
displayed and eliminates the need
to blank the display while loading
data.

Dot Register

Pixel Map

The Dot Register holds the
pattern to be displayed by the

Ina 4-character display, the
160-bits are arranged as 20

Table 1. Register Truth Table
Function
Select Dot Register
Load Dot Register
DIN = HIGH LED = "ON"
DIN = LOW LED = "OFF"
Copy Data from Dot Register to Dot Latch
Select Control Register

LEOs. Data is loaded into the Dot
Register according to the
procedure shown in Table 1 and
the Write Cycle Timing Diagram.

.

CLK

CE

RS

Not Rising

.l-

L

i

L

X

L

H

X

Not Rising

.l-

H

Load Control Register! 1]

i

L

X

Latch Data to Control Word 112 ]

L

H

X

Notes:
1. BIT Do of Control Word 1 must have been previously set to Low for serial mode or High for simultaneous mode.
2. Selection of Control Word I or Control Word 0 is set by D7 of the Control Shift Register. The unselected control word retains its
previous value.

3-116

R

CE-~\

~ J'r I. ,,'11'
I

j;

~

DN~

~

Dour(SERIAL)

(SIMUL

'10'"

""~=== ~
I

':"",lITP

r
y"1! ~

S

l!i·I:~H.1

II

t '~ }

.

f'--...J/

'-tl
~~

NEW DATA LATCHED HERE

>@OOEX

~I

X

*
I

I.1

x

(1]

I
I

TANEO~~~

LED OUTPUTS,

RE~~~+:~;

_____________

I

,.":"::'~-::-

-'X

---'P..;.R,;;,EV..;.IO"'U..;.S..;.DA..;.T..;.A_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

NEWOATA

NOTE:
_
1. DATA IS COPIED TO THE CONTROL REGISTER OR THE DOT LATCH AND LED OUTPUTS WHEN CE IS HIGH AND elK IS LOW.

HCMS-29XX Write Cycle Diagram
columns by 8 rows. This array can
be conceptualized as four 5 x 8
dot matrix character locations,
but only 7 of the 8 rows have
LEDs (see Figures 1 & 2). The
bottom row (row 0) is not used.
Thus, latch location 0 is never
displayed. Column 0 controls the
left-most column. Data from Dot
Latch locations 0-7 determine
whether or not pixels in Column 0
are turned-on or turned-off.
Therefore, the lower left pixel is
turned-on when a logic high is
stored in Dot Latch location 1.
Characters are loaded in serially,
with the left-most character being
loaded first and the right-most
character being loaded last. By
loading one character at a time
and latching the data before
loading the next character, the
figures will appear to scroll from
right to left.

Control Register
The Control Register allows
software modification of the IC's
operation and consists of two
independent 7-bit control words.
Bit D7 in the shift register selects
one of the two 7-bit control
words. Control Word 0 performs
pulse width modulation
brightness control, peak pixel
current brightness control, and
sleep mode. Control Word 1 sets
seriaVsimultaneous data out
mode, and external oscillator
prescaler. Each function is
independent of the others.

Control Register Data
Loading
Data is loaded into the Control
Register according to the procedure shown in Table 1 and the
Write Cycle Timing Diagram.
First, RS is brought to logic high

and then CE is brought to logic
low. Next, each successive rising
CLK edge will shift in the data on
the DIN pin. Finally, when 8 bits
have been loaded, the CE line is
brought to logic high. When CLK
goes to logic low, new data is
copied into the selected control
word. Loading data into the
Control Register takes place while
the previous control word
configures the display.

Control Word 0
Loading the Control Register with
D7 = Logic low selects Control
Word 0 (see Table 2). Bits Do-D3
adjust the display brightness by
pulse width modulating the LED
on-time, while Bits D4-D5 adjust
the display brightness by
changing the peak pixel current.
Bit D6 selects normal operation or
sleep mode.

3-117

DATAIN ...------.>-;;==-----1f------~---''F''F--------------,
CLOCK

REGISTER
SELECT

VLED+

RESET

-+:1

11-----'--.....

.ulUlROW1

DSC

If ...... ....

t
COLUMN 0
CHARD

CHAR 3

DSC
SELECT
GND(LED)

BLANK

Figure 1.
DATA FROM
..r-PREVIOUS

I

/PIXEL

,

CHARACTER
ROW 7

•~ •~ T_.
~

ROW.

J

;;;;;=:
It It It It It ::
L_J

Figure 2.

3-118

L_.J

L_.J

L_.J

ROW 0 (NO LEDS)

t
CDLUMN19

L_.J

(NOT USED)

Sleep mode (Control Word 0, bit
D6 = Low) turns off the Internal
Display Oscillator and the LED
pixel drivers. This mode is used
when the IC needs to be powered
up, but does not need to be
active. Current draw in sleep
mode is nearly zero. Data in the
Dot Register and Control Words
are retained during sleep mode.

Control Word 1
Loading the Control Register with
D7 = logic high selects Control
Word 1. This Control Word
performs two functions: serial!
simultaneous data out mode and
external oscillator prescale select
(see Table 2).

Serial/Simultaneous Data
Output Do
Bit Do of control word 1 is used to
switch the mode of DoUT between
serial and simultaneous data entry
during Control Register writes.
The default mode (logic low) is
the serial DOUT mode. In serial
mode, DoUT is connected to the
last bit (D 7) of the Control Shift
Register.
Storing a logic high to bit Do
changes DoUT to simultaneous
mode which affects the Control
Register only. In simultaneous
mode, DoUT is logically connected
to DIN. This arrangement allows
multiple ICs to have their Control
Registers written to simultaneously. For example, for NICs
in the serial mode, N * 8 clock
pulses are needed to load the
same data in all Control Registers.

In the simultaneous mode, NICs
only need 8 clock pulses to load
the same data in all Control
Registers. The propagation delay
from the fIrst IC to the last is
N * t oOUTP •

External Oscillator
Prescaler Bit D1
Bit Dl of Control Word 1 is used
to scale the frequency of an
external Display Oscillator. When
this bit is logic low, the external
Display Oscillator directly sets the
internal display clock rate. When
this bit is a logic high, the
external oscillator is divided by 8.
This scaled frequency then sets
the internal display clock rate. It
takes 512 cycles of the display
clock (or 8 x 512 = 4096 cycles
of an external clock with the
divide by 8 prescaler) to completely refresh the display once.
Using the prescaler bit allows !;he
designer to use a higher external
oscillator frequency without extra
circuitry.
This bit has no affect on the
internal Display Oscillator
Frequency.

Bits D2 -D 6
These bits must always be programmed to logic low.

Cascaded ICs
Figure 3 shows how two ICs are
connected within an HCMS-29XX
display. The first IC controls the
four left-most characters and the
second IC controls the four
right-most characters. The Dot

Registers are connected in series
to form a 320-bit dot shift
register. The location of pixel 0
has not changed. However, Dot
Shift Register bit 0 of IC2
becomes bit 160 of the 320-bit
dot shift register.
The Control Registers of the two
ICs are independent of each
other. This means that to adjust
the display brightness the same
control word must be entered into
both ICs, unless the Control
Registers are set to simultaneous
mode.
Longer character string systems
can be built by cascading multiple
displays together. This is
accomplished by creating a fIve
line bus. This bus consists of CE,
RS, BL, Reset, and CLK. The
display pins are connected to the
corresponding bus line. Thus, all
CE pins are connected to the CE
bus line. Similarly, bus lines for
RS, BL, Reset, and CLK are
created. Then DIN is connected to
the right-most display. DoUT from
this display is connected to the
next display. The left-most display
receives its DIN from the DoUT of
the display to its right. DoUT from
the left-most display is not used.
Each display may be set to use its
internal oscillator, or the displays
may be synchronized by setting
up one display as the master and
the others as slaves. The slaves
are set to receive their oscillator
input from the master's oscillator
output.

3-119

Table 2. Control Shift Register
CONTROL WORD 0
L

D6

D5

D.

D3

IDZ

i

I Dl

I

.Do

I

BitD7
Set Low
to Select
Control
Word 0

PWM Brightness
Control
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
Peak Current
Brightness
Control
H L
L H
L

Typical Peak
Pixel Current
(rnA)

4.0
6.4
9.3
12.8

L

H H
SLEEP MODE

L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H

On-Time
Oscillator
Cycles

Duty
Factor

Relative
Brightness

0

0
0.2
0.4
0.6
0.8
1.0
1.4
1.8
2.1
2.7
3.5
4.3
5.5
7.0
9.4
11.7

0
1.7
3.3
5.0
6.7
8.3
11.7
15
18
23
30
37
47
60
80
100

L
H
L
H
L
.H
L
H
L
H
L
H
L
H
L
H

I

2
3
4
5
7
9
11

14
18
22
28
36
48
60

(%)

(%)

Relative Full
Scale Current
(Relative Brightness, %)

31
50
73 (Default at Power Up)
100

L - DISABLES INTERNAL OSCILLATOR-DISPLAY BLANK
H - NORMAL OPERATION

CONTROL WORD 1
L

BitD 7
Set High
to Select
Control
Word 1

3-120

L

Reserved for Future
Use (Bits D2-Da
must be set Low)

Serial/Simultaneous Data Out
L - Dout holds contents of Bit D7
H - Dout is functionally tied to Din
External Display Oscillator Prescaler
L - Oscillator Freq + 1
H - Oscillator Freq + 8

BL

-

..

'--

I - - - BL

I - - - lI-

IIDI!T
elK

"our

Dour

SEL

sa.

osc

OSC

..

tI!"

'-tI!"

IIDI!T

101
BITS 1).159

eLK

CHARACTERS 0.3

D"",

D.

r--

IC2

BITS 18D-319
CHARACTERS4·7

D.

OSC
SOL

-:::-

Figure 3. Cascaded lCs.

3-121

Appendix A. Thennal
Considerations

1.3
1.2

PD can be calculated as Equation
2 below.

The display IC has a maximum
junction temperature of 150"C.
The IC junction temperature can
be calculated with Equation 1
below.
A typical value for RaJA is 100"C/
W. This value is typical for a
display mounted in a socket and
covered with a plastic (Ilter. The
socket is soldered to a .062 in.
thick PCB with .020 inch wide,
one ounce copper traces.

II:

Figure 4 shows how to derate the
power of one IC versus ambient
temperature. Operation at high
ambient temperatures may
require the power per IC to be
reduced. The power consumption
can be reduced by changing
either the N, IpIXEL , Osc cyc or
VLED . Changing VLOGIC has very
little impact on the power
consumption.

=

R 8J-A 100"ClW

1.1

I~
~g

"II:
i~

~~

:IF:

~~

d
..

1.0

o.a

I"'

D.8

0.7

0.6
D.5

OA
D.3
0.2

0.1

o
25 30 35 40 45 50 55 60 65 70 75 80 85 90
T A - AMBIENT TEMPERATUAE - cC

Figure 4.

Appendix B. Electrical
Considerations
Equation 1:
TJMAX = TA + P D .. RaJA
Where:
TJMAX maximum IC junction temperature
TA = ambient temperature surrounding the display
RaJA = thermal resistance from the IC junction to ambient
PD = power dissipated by the IC

=

Equation 2:
PD = (N * IpIXEL .. Duty Factor * VLED) + ILOGIC * VLOGIC
Where:
PD = total power dissipation
N = number of pixels on (maximum 4 char * 5 .. 7
IpIXEL = peak pixel current.
Duty Factor = 1/8 * Osccyc/64
Osc cyc = number of ON oscillator cycles per row
ILOGIC = IC logic current
VLOGIC = logic supply voltage

The average current required by
the display can be calculated with
Equation 4 below.

= 140)

Equation 3:
IPEAK

= M .. 20 * IPIXEL

Where:
IPEAK = maximum instantaneous peak current for the display
M = number of ICs in the system
20 = maximum number of LEDs on per IC
IpIXEL = peak current for one LED

Equation 4:
ILED(AVG) = N * IPIXEL .. 1/8

* (oscillator cycles)/64

(see Variable Defmitions above)

3-122

Current Calculations
The peak and average display
current requirements have a
significant impact on power
supply selection. The maximum
peak current is calculated with
Equation 3 below.

The power supply has to be able
to supply IpEAK transients and
supply ILED(AVG) continuously.
The range on VLED allows noise on
this supply without significantly
changing the display brightness.
VLOGIC and VLED Considerations

The display uses two independent
electrical systems. One system is
used to power the display's logic
and the other to power the
display's LEDs. These two
systems keep the logic supply
clean.
Separate electrical systems allow
the voltage applied to VLED and
VLOGIC to be varied independently.
Thus, VLED can vary from 0 to 5.5
V without affecting either the Dot
or the Control Registers. VLED can

be varied between 4.0 to 5.5 V
without any noticeable variation
in light output. However, operating VLED below 4.0 V may cause
objectionable mismatch between
the pixels and is not
recommended. Dimming the
display by pulse width modulating
VLED is also not recommended.
VLOGIC can vary from 3.0 to 5.5 V
without affecting either the
displayed message or the display
intensity. However, operation
below 4.5 V will change the
timing and logic levels and
operation below 3 V may cause
the Dot and Control Registers to
be altered.
The logic ground is internally
connected to the LED ground by a
substrate diode. This diode
becomes forward biased and
conducts when the logic ground is
0.4 V greater then the LED
ground. The LED ground and the
logic ground should be connected
to a common ground which can
withstand the current introduced
by the switching LED drivers.
When separate ground
connections are used, the LED
ground can vary from -0.3 V to
+0.3 V with respect to the logic
ground. Voltages below -0.3 V can
cause all the dots to be ON.
Voltage above +0.3 V can cause
dimming and dot mismatch. The
LED ground for the LED drivers
can be routed separately from the
logic ground until an appropriate
ground plane is available. On long
interconnections between the
display and the host system,
voltage drops on the analog
ground can be kept from affecting
the display logic levels by
isolating the two grounds.

Electrostatic Discharge
The inputs to the ICs are protected against static discharge
and input current latchup. However, for best results, standard
CMOS handling precautions
should be used. Before use, the
HCMS-29XX should be stored in
antistatic tubes or in conductive
material. During assembly, a
grounded conductive work area
should be used and assembly
personnel should wear conductive
wrist straps. Lab coats made of
synthetic material should be
avoided since they are prone to
static buildup. Input current
latchup is caused when the CMOS
inputs are subjected to either a
voltage below ground (VIN <
ground) or to a voltage higher
then VLOGIC (VIN > VLOGIC) and
when a high current is forced into
the input. To prevent input
current latchup and ESD damage,
unused inputs should be connected to either ground or VLOGIC •
Voltages should not be applied to
the inputs until VLOGIC has been
applied to the display.

Appendix C. Oscillator
The oscillator provides the
internal refresh circuitry with a
signal that is used to synchronize
the columns and rows. This
ensures that the right data is in
the dot drivers for that row. This
signal can be supplied from either
an external source or the internal
source.
A display refresh rate of 100 Hz
or faster ensures flicker-free
operation. Thus for an external
oscillator the frequency should be
greater than or equal to 512 x
100 Hz = 51.2 kHz. Operation
above 1 MHz without the

prescaler or 8 MHz with the
prescaler may cause noticeable
pixel to pixel mismatch.

Appendix D. Refresh
Circuitry
This display driver consists of 20
one-of-eight column decoders and
20 constant current sources, 1
one-of-eight row decoder and
eight row sinks, a pulse width
modulation control block, a peak
current control block, and the
circuit to refresh the LEDs. The
refresh counters and oscillator are
used to synchronize the columns
and rows.
The 160 bits are organized as 20
columns by 8 rows. The IC
illuminates the display by
sequentially turning ON each of
the 8 row drivers. To refresh the
display once takes 512 oscillator
cycles. Because there are eight
row drivers, each row driver is
selected for 64 (512/8) oscillator
cycles. Four cycles are used to
briefly blank the display before
the following row is switched on.
Thus, each row is ON for 60
oscillator cycles out of a possible
64. This corresponds to the
maximum LED on time.

Appendix E. Display
Brightness
Two ways have been shown to
control the brightness of this LED
display: setting the peak current
and setting the duty factor. Both
values are set in Control Word O.
To compute the resulting display
brightness when both PWM and
peak current control are used,
simply multiply the two relative
brightness factors. For example,
if Control Register 0 holds the
word 10011 0 1, the peak current

3-123

3.0

2.2

!(

~

1.8

~

1A

Q

i

k:

2.6

g

HERIORrGE

,~ [---YELLOW
GREfN~

~

AIGaAs----

1.0

~

Q

!!.
0.6

~~
fII!I!i!

0.2

-55

-35

-15

5

25

45

65

85

TA -AMBIENT TEMPERATURE _oc

Figure/i.

is 73% of full scale (BIT D5 = L,
BIT D4 = L) and the PWM is set
to 60% duty factor (BIT D3 = H,

BIT D2 = H, BIT Dj = L, BIT Do
= H). The resulting brightness is
44% (.73 x .60 = .44) of full
scale.
The temperature of the display
will also affect the LED brightness
as shown in Figure 5.

Appendix F. Reference
Material
Application Note 1027: Soldering
LED Components
Application Note 1015: Contrast
Enhancement Techniquesfor
LED Displays

3-124

-

rli~ HEWLETT'"
~~PACKARD

Eight Character 5 mm Smart
Alphanumeric Display
Technical Data
HDSP-253X Series

Features

Description

• XY Stackable
• 128 Character ASCII
Decoder
• Programmable Functions
• 16 User Definable
Characters
• Multi-Level Dimming and
Blanking
• TIL Compatible CMOS IC
• Wave Solderable

The HDSP-253X is ideal for
applications where displaying
eight or more characters of dot
matrix information in an
aesthetically pleasing manner is
required. These devices are eightdigit, 5 x 7 dot matrix, alphanumeric displays. The 5.0 mm (0.2
inch) high characters are packaged in a 0.300 mm (7.62 inch)
30 pin DIP. The on-board CMOS
IC has the ability to decode 128
ASCII characters, which are
permanently stored in ROM. In
addition, 16 programmable
symbols may be stored in.onboard RAM. Seven brightness
levels provide versatility in
acljusting the display intensity
and power consumption. The
HDSP-253X is designed for stan-

Applications
•
•
•
•
•

Avionics
Computer Peripherals
Industrial Instrumentation
Medical Equipment
Portable Data Entry
Devices
• Telecommunications
• Test Equipment

dard microprocessor interface
techniques. The display and
special features are accessed
through a bidirectional eight-bit
data bus.

Device Selection Guide
AIGaAsRed
HDSP-2534

5964-6377E

3-125

r=

Package Dimensions
42.93 (1."0) MAX.
PIN FUNCTION ASSIGNMENT TABLE

2.68 (0.105) SYM,:! !M

PIN # FUNCTION
'.36 (0.211) TYP.

1

,

/

2

l'L

3
4
5
6
7
8
9
10
11
12
13

AD
A1
A,
A,

,.

PIN 1# 1 IDENTIFIER

RST

15

PIN.

FUNCTION

16
17
18

GNO (SUPPLY)

,.

A_
CLS
CLK
WR

20
21
22
23
24
2.
28
27
28

CE

29

NO PIN
NO PIN
NO PIN

Voo

30

THERMAL TEST

.<"'.0 (LOGIC)
RO

DO
0,
NO PIN
NO PIN
NO PIN

0,
0,
0_
0,
0,
07

0.25
(0.010)

,

I

ii

2.54±O.13 TYP.

(0.100 ± 0.005)
(TOL. NON ACCUM.)

~I

I_

~.

-

10.16

(0.400)

i

_I'

- ,

,

,

----I

7.62
(0.300)

1--

NOTES:
1. DIMENSIONS ARE IN MM (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.25 MM (0.010 IN.).
3. FOR YELLOW AND GREEN DISPLAYS ONLY.

Absolute Maximum Ratings
Supply Voltage, VDD to Groundl!] ..................................... -0.3 V to 7.0 V
Operating Voltage, VDD to Groundl 2 ] ••••••••••••••••••••••••.••••••••••••••••••••• 5.5 V
Input Voltage, Any Pin to Ground .......................... -0.3 V to VDD +0.3 V
Free Air Operating Temperature Range, TAI3 ] ..••••.•.•.•.•• -40"C to + 85°C
Relative Humidity (Non-Condensing) ............................................. 85%
Storage Temperature Range, Ts ...................................... -55°C to 100°C
Maximum Solder Temperature
1.59 rom (0.063 in.) Below Seating Plane, t< 5 sec .................. 260°C
ESD Protection @ 1.5 kn, 100 pF ................................. 4 kV (each pin)
Notes:

1. Maximum Voltage is with no LEDs illuminated.
2. 20 dots ON in aJllocations at full brightness.
3. See Thermal Considerations section for information about operation in high
temperature ambients.

ESD WARNING: NORMAL CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO
AVOID STATIC DISCHARGE.
3-126

ASCII Character Set
D7
DI

•

;.-:======:::_

a
0

Optical Characteristics at 25"C[l]
VDD

= 5.0 V at Full Brightness
Luminous Intensity
Character Average (#)
Iv (mcd)

Peak
Wavelength
(nm)
Typ.

ApEAK

LED Color
AlGaAsRed

Dominant
Wavelength[2)
(nm)
Typ.

Ad

Part Number

Min.

Typ.

HDSP-2534

5.1

25

645

637

High Eff. Red

HDSP-2532

2.5

7.5

635

626

Orange

HDSP-2530

2.5

7.5

600

602

Yellow

HDSP-2531

2.5

7.5

583

585

Green

HDSP-2533

2.5

7.5

568

574

Notes:
1. Refers to the initial case temperature of the device immediately prior to measurement.
2. Dominant wavelength, \i, is derived from the CIE chromaticity diagram, and represents the single wavelength which defmes the color
of the device.

3-127

Recommended Operating Conditions
Parameter

Minimum

Nominal

Maximum

Supply Voltage

4.5

5.0

5.5

Electrical Characteristics over Operating Temperature Range
4.5 < VDD < 5.5 unless otherwise specified
Symbol

Min.

Input Leakage
(Input without pull-up)

II

-1.0

Input Current
(Input with pull-up)

lIP

-30

Parameter

21i"C
21i"C
Typ.!lJ Max.!l]

-11

-18

Max.

Units

Test Conditions

1.0

IJA

VIN = 0 to VDD , pins CLK,
Do-D7, Ao-At

0

IJA

VIN = 0 to VDD , pins CLS,
RST, WR, RD, CE, FL

= VDD

IDD(BL)

0.5

3.0

4.0

rnA

VIN

IDD 8 digits 12 dots/char[2,3,4]
(AlGaAs)

IDD(V)

230

295

390

rnA

'V" on in all 8 locations

IDD 8 digits 20 dots/char[2,3,4]
(AlGaAs)

IDD(#)

330

410

480

rnA

"#" on in all 8 locations

IDD 8 digits 12 dots/char[2,3,4]
(all colors except AlGaAs)

IDD(V)

200

255

330

rnA

''V'' on in all 8 locations

IDD 8 digits 20 dots/char[2,3,4]
(all colors except AlGaAs)

IDD(#)

300

370

430

rnA

"#" on in all 8 locations

VDD

V

IDDBlank

Input Voltage High

Vrn

2.0

+0 ..3 V
Input Voltage Low

ViL

GND

V

-0.3 V
Output Voltage High

VOH

V

VDD

Output Voltage Low
Do-D7

VOL

0.4

V

VDD

= 4.5 V, IOH = -40 IJA
= 4.5 V, IOL = 1.6 rnA

Output Voltage Low
CLK

VOL

0.4

V

VDD

= 4.5 V, IoL = 40 IJA

Thermal Resistance IC
Junction-to-PIN

RaJ_PIN

2.4

16

"C/W

Measured at pin 1 7

Notes:
1. vnn = 5.0 V.
2. See Thermal Considerations Section for information about operation in high temperature ambients.
3. Average Inn measured at full brightness. See Table 2 in Control Word Section for Inn at lower brightness levels.
Peak Inn = 28/15 x Inn(#).
4. Maximum Inn occurs at -55"C.

3-128

AC Timing Characteristics over Temperature Range
VDD = 4.5 to 5.5 V unless otherwise specified.

Reference
Number

Symbol

1

tACC

2
3

4
5
6

7

Description
Display Access Time
Write
Read

tACS

Address Setup Time to Chip Enable

tCE

Chip Enable Active Timel2, 31
Write
Read

Min.IlJ

Units

210
230
10

ns

tAcH

Address Hold Time to Chip Enable

tCER

Chip Enable Recovery Time

140
160
20
60

tCES

Chip Enable Active Prior to Rising Edge ofl2, 3J
Write
Read

140
160

tCEH

Chip Enable Hold Time to Rising Edge of
Read/Write Signall2 ,3 1

8
9
10

tw

Write Active Time

twn

Data Valid Prior to Rising Edge of Write Signal

tnH

Data Write Hold Time

11

~

12
13

tw

Read Active Prior to Valid Data

tDF

Read Data Float Delay

~c

Reset Active Time l41

0
100
50
20
160
75
10
300

Chip Enable Active Prior to Valid Data

ns

ns
ns
ns

ns
ns
ns
ns
ns
ns
ns
ns
ns

Notes:
1. Worst case values OCClU' at an IC junction temperature of 125"0.
2. For designers who do not need to read from the display, the Read line can be tied to VDD and the Write and Chip Enable lines can be
tied together.
3. Changing the logic levels of the Address lines when CE "0" III8¥ cause erroneous data to be entered into the Character RAM,
regardless of the logic levels of the WR and RD lines.
4. The display must not be accessed until after 3 clock pulses (110 lIS min. using the internal refresh clock) after the rising edge of the
reset line.

=

Symbol
Fosc
F RF [5]

Description
Oscillator Frequency
Display Refresh Rate

FFL[6]

Character Flash Rate

tsT[7]

Self Test Cycle Time

25"C Typical

Minimum[!]

Units

57
256
2
4.6

28
128
1
9.2

kHz
Hz
Hz
sec

Notes:
5. FRF = Fosc/224.
6. FFL = Fosd28,672.
7. taT = 262,144/Fosc·

3-129

Write Cycle Timing Diagram

Ao-A.

Fi:

®

(1)

®

0 0 -0,
. INPUT PUL~E LEVELS - 0.6 V TO 2.4 V

Read Cycle Timing Diagram

INPUT PULSE LEVELS, 0.& V TO 2.4 V
OUTPUT REFERENCE LEVELS, 0.8 V TO 2.2 V
OUTPUT LOADING = I TTL LOAD AND l00pF

3-130

Electrical Description
Pin Function

Description

RESET (RST, pin 1)

Reset initializes the display.

FLASH (FL, pin 2)

FL low indicates an access to the Flash RAM and is unaffected by the
state of address lines A.a-A4'

ADDRESS INPUTS
(Ac)"~, pins 3-6, 10)

Each location in memory has a distinct address. Address inputs (Ao-A2)
select a specific location in the Character RAM, the Flash RAM or a
particular row in the UDC (User-Defined Character) RAM. A3-~ are
used to select which section of memory is accessed. Table 1 shows the
logic levels needed to access each section of memory.

Table 1. Logic Levels to Access Memory
Section of Memory
FL
A3
~

A2A}

Ao

Character Address

0

X

X

Flash RAM

1

0

0

UDC Address Register

Don't Care

1

0

1

UDCRAM

Row Address

1

1

0

Control Word Register

Don't Care

1

1

1

Character RAM

Character Address

= 1) or external (CLS = 0)

CLOCK SELECT
(CLS, pin 11)

This input is used to select either an internal (CLS
clock source.

CLOCK INPUT/OUTPUT
(CLK, pin 12)

Outputs the master clock (CLS
displays.

WRITE (WR, pin 13)

Data is written into the display when the WR input is low and the
CE input is low.

CHIP ENABLE (CE, pin 14)

This input must be at a logic low to read or write data to the display and
must go high between each read and write cycle.

READ (RD, pin 19)

Data is read from the display when the RD input is low and the CE
input is low.

DATA Bus
(Do-D7' pins 20,21,25-30)

The Data bus is used to read from or write to the display.

= 1) or inputs a clock (CLS = 0) for slave

GND (SUPPLy) (pin 16)

This is the analog ground for the LED drivers.

GND (LOGIC) (pin 18)

This is the digital ground for internal logic.

VDD (POWER) (pin 15)

This is the positive power supply input.

Thermal Test (pin 17)

This pin is used to measure the IC junction temperature.
Do not connect.

3-131

A,

r.::ID~
IT

~

w

f\)

UDe ADOR
REGISTER

EN

AD
WR

UDC
ADoR

0 0 -01

ClR
PRE SET

,

A,....

Ao

J

FL-.J

A,

'---

Ao_
FL-.J

-

'

CE~

&xl

L

~ CHARACTER

RJj

RD
WR

iVA

RAM

00-0 7

Oo-Ih

Ao-A2
A,

Au-A,
RESET

.---

Fi _ _

Ao

Fi
CE

~
-.J
-

J

L
RESET

CONTROL

WORD
REGISTER

EN

AD

WR
00-D7
RST

~~

RESET
SELF
TEST
RESULT

h

0
~INTENSITY
1
2 I-IFLASH
3
t - - - BLINK
4

6

L

EN
FLASH
RD
DATA
WR
0,
FLASH
Au-A, RAM
RESET
CHAR

SELf
TEST

J..

EJ

r--

VISUAL
TEST

SELF
TEST

ROM
TEST

SELF
TEST

CLR

START

1~

TE~Q
FLASH
TEST OK

I _

..

~ctJ- t--

CHAR

INTENSITY

FLASH
' - - BLINK
RESET
CLOCK

ADDR
TIMING
AND
CONTROL

-

OO-D3
[fEN

EN
DECODER 10 )

DOT
DATA
DOT
DRIVERS

' - - 0 0 -0,
ROW

DOT
DATA

r--

8 5)( 7
lED
CHARACTERS

TIMING

SELF

TEST

ROW DRIVERS
TIMING

CLR2

CLS

0,

CHARADDR

ADDR

SELF
TEST
IN

elRl

ClK

Do-D,

EN
RD
WR
DOT
Do-D,
DATA
Ao-A2
UDC ADDR
ROW SET

~ SEl

A __
A,

rnl.JL
w.r-

UDC
RAM

I

C~

ROW SET

TIMING

Figure 1. HDSP-253X Internal Block Diagram.

Display Internal Block
Diagram
Figure 1 shows the internal block
diagram of the HDSP-253X
display. The CMOS IC consists of
an 8 byte Character RAM, an 8 bit

driving of eight 5 x 7 dot matrix
characters. The major user
accessible portions of the display
are listed below:

Flash RAM, a 128 character ASCII
decoder, a 16 character UDC
RAM, a UDC Address Register, a
Control Word Register and the
refresh circuitry necessary to
synchronize the decoding and

Character RAM

This RAM stores either ASCII character data or a UDC RAM
address.

Flash RAM

This is a 1 x 8 RAM which stores Flash data.

User-Defmed Character RAM
(UDCRAM)

This RAM stores the dot pattern for custom characters.

User-Defmed Character
Address Register
(UDC Address Register)

This register is used to provide the address to the UDC RAM when
the user is writing or reading a custom character.

Control Word Register

This register allows the user to adjust the display brightness, flash
individual characters, blink, self test or clear the display.

Character Ram
Figure 2 shows the logic levels
needed to access the
HDSP-253X Character RAM.
During a normal access the CE =
"0" and either RD = "0" or WR =
"0". However, erroneous data may
be written into the Character RAM
if the Address lines are unstable
when CE = "0" regardless of the
logic levels of the RD or WR lines.
Address lines ~-A2 are used to
select the location in the Character RAM. Two types of data can
be stored in each Character RAM
location: an ASCII code or a UDC
RAM address. Data bit D7 is used
to differentiate between the ASCII
character and a UDC RAM
address. D7 = 0 enables the ASCII
decoder and D7 = 1 enables the
UDC RAM. Do-D6 are used to
input ASCII data and Do-D3 are
used to input a UDC address.

• ,
,•
, ,

UNDEFINED

0

,

0

WAITE TO DISPLAY
READ FROM DISPLAY

0

UNDEFINED

CONTROL SIGNALS

I I I I

CHARACTER

I

oaa • LEFT MOST

L_'--L_'.....L_'--L_AlI_DR_E_I_I_.... 111' RIGHT MOlT
CHARACTIR RAM ADDRIBS

121 ASCII CODE

0

1

X

X

x

I

UDCCODE

CHARACTIR RAM DATA FORMAT
DiCIt DIG, 010. DIG. DIG. 010, 010,
oaa

I I I
001

010

011

1 '00 1 '01 1 '10 I

DIGr
111

SYMIOL 18 ACCEIIED IN LOCATION
SI'tlCIPIID IY THE CHARACTER ADDRI.. AIDYI
DISPLAY
• = LOGIC 0; 1 " LOGIC '; X ; DO NOT CARl

Figure 2. Loglc Levels to Access the Character RAM.

3-133

UDe RAM and UDe Address
Register
Figure 3 shows the logic levels
needed to access the UDC RAM
and the UDC Address Register.
The UDC Address Register is
eight bits wide. The lower four
bits CDo-D3) are used to select one
of the 16 UDC locations. The
upper four bits (D4-D7) are not
used. Once the UDC address has
been stored in the UDC Address
Register, the UDC RAM can be
accessed.
To completely specify a 5 x 7
character requires eight write
cycles. One cycle is used to store
the UDC RAM address in the UDC
Address Register. Seven cycles
are used to store dot data in the
UDC RAM. Data is entered by
rows. One cycle is needed to
access each row. Figure 4 shows
the organization of a UDC
character assuming the symbol to
be stored is an "F." Ao-A2 are used
to select the row to be accessed
and Do-D4 are used to transmit
the row dot data. The upper three
bits CD5-D7) are ignored. Do (least
significant bit) corresponds to the
right most column of the 5 x 7
matrix and D4 (most significant
bit) corresponds to the left most
column of the 5 x 7 matrix.
Flash RAM
Figure 5 shows the logic levels
needed to access the Flash RAM.
The Flash RAM has one bit
associated with each location of
the Character RAM. The Flash
input is used to select the Flash
RAM. Address lines As-~ are
ignored. Address lines Ao-A2 are
used to select the location in the
Flash RAM to store the attribute.
Do is used to store or remove the
flash attribute. Do = "1" stores
the attribute and Do = "0"
removes the attribute.

3-134

• •
• • •
1

1

1

1

1

UNDEFINED
WRITE TO DISpLAY
READ '''OM plSPLAY

UNDEfiNED

CONTROL SIGNALS

UDC ADDRESS REGISTER ADDRESS

UDC ADDRESS REGISTER DATA FORMAT

• •

UNDEFINED

1

READ FROM DISPLAY

• • •
1

1

1

1

WRITE TO DISPLAY

UNDEFINED

CONTROL SIGNALS

ROW SELECT

I

aGO· ROW'
'10.'" ROW 1

UDC RAIl ADDREI.

Dr

I

D.

D.

x

x

D.

D.

I

D.

D,

D.

DDT DATA

UDC RAIl
DATA FORMAT

C
0
L
I
a • LOGIC 0; , • LOGIC I, X • DO NDT CARE

C
0
L

•

Figure 3. Logic Levels to Access a UDC Character.

C
0
L
2

C
0
L
3

D.
I I

I

C
0
L

C

I
I

0 0
I
0 0
0 0
0 0
IGNORED

,

C

0 0
L L

,
•
Do Do
,•a a
,, ,

5

D, Do
I I
0
0 0
I 0
0 0
0 0
0

•

HEX

UDC
CHARACTER

.CODE

IF

ROW I
ROW.!
ROW 3
ROW'
ROWS
ROW I
ROWl

,.
10

IE
10
10
10

o " LOGIC 0; 1 = LOGIC 1: • " ILLUMINATED LED.
Figure 4. Data to Load "'F' into the UDC RAM.

When the attribute is enabled
through bit 3 of the Control Word
and a "1" is stored in the Flash
RAM, the corresponding
character will flash at approxi-

mately 2 Hz. The actual rate is
dependent on the clock frequency.
For an external clock the flash
rate can be calculated by dividing
the clock frequency by 28,672.

• •
, • •, ,
, •,

UNDEFINED

, • ••, •,
, ,

WAITE TO DISPLAY
READ FROM DISPLAY

UNDEFINED

UNDEFINED
WRfTl! TO DISPLAY

0

CONTROL SIGNALS

READ .ROM DISPLAY

UNDEFINED

CONTROL SIGNALS

Ao
x
FLASH RAM ADDRESS
CONTROL WORD ADl1RlSS

I

0,

D.

DI

D,.
X

0,

D2

Ot
X

DO

W

REMOVE FLAIM AT

.,._ED DIGIT LOCATION

L-X______________________~~~'~:~~E~~~LOCNnON

0,

D.

D.

D.

C

S

•

IlL I

FLASH RAM DATA FORMAT

D.

0,

D.

•

I

Do

-I

o ' LOGIC .: , ' LOGIC ': X ' DO NOT CARE

,'

o

Figure 5. Logic Levels to Access the Flash RAM.

Control Word Register

Flash Function (Bit 3)
Bit 3 determines whether the
flashing character attribute is on
or off. When bit 3 is a "1," the
output of the Flash RAM is
checked. If the content of a location in the Flash RAM is a "1," the
associated digit will flash at

27..

o

,,.,

,

0

_RIGHTNESS
CONTROL
LEVELl

DISAllLE FLAIIH
ENAILI FLASH

Figure 6 shows how to access the
Control Word Register. This is an
eight bit register which performs
five functions. They are
Brightness control, Flash RAM
control, Blinking, Self Test and
Clear. Each function is
independent of the others. However, all bits are updated during
each Control Word write cycle.
Brightness (Bits 0-2)
Bits 0-2 of the Control Word
a0.13
TYP
(0.20II ± 0.1105)

~ai:~ TYP (NON-ACCUIA)

3. FOR YELLOW AND GREEN DEVICD ONLY.

D.
NO PIt

"

CLS

cue

Wii

a.IBr:)

f

'L

Ali

0"

COUNTRY OF ORIG..

n
coo

L

\!IlDILDGICI

..

A.

DO NOrCCINNEc:T
DONOrCCINNECT
DO NOTCClNNECT

WIIINOUS INTENSITY CAtEGORY

COLOR liN (NOtE 31

~Y)

j

-~L JL
15."

10.600)

2.118 (0.1182) SYM

ASCII Character Set HDSP-210X, HDSP-211X, HDSP-250X Series

Recommended Operating Conditions
Parameter
Supply Voltage

Symbol

Minimum

Nominal

Maximum

Units

VDD

4.5

5.0

5.5

V

3-143

Electrical Characteristics overOperathtg Temperature Range (-45"C to +85"C)
4.5 V < VDD < 5.5 V; unless otherwise specified

Parameter

Input Leakage
(Input without pullup)

Symbol

TA
VDD
Typ.

= 25"C
= 5.0V

.45"C < TA < + 85"C
4.5 V < VDD < 5;5 V
Min.
Max.

Units

Test Conditions

1.0
-1.0

~

VIN 0 to Voo,
pins CLK, Do-D7'
Ao-A4

-18

-30

~

VIN = 0 to Voo,
. piDs CLS, RST,
WR RD CE FL

3.0

4.0

rnA

VIN = Voo

Max•.

1m
IlL
....

=

IIPL

-11

100CBLK)

0.5

1008 digits
12 dots/character[I,2l

100(V)

200

255

330

rnA

"V" on in all 8
locations

1008 digits
20 dots/character[I,2,3,4l

100(#)

300

370

430

rnA

"#" on in all
locations

:2.0

Voo
+0.3

V

GND

0.8

V

Input Current
(Input with pullup)
100 Blank

Input Voltage High

\lH

Input Voltage Low

\lL

i·

-0.3V
Output Voltage High

VOH

Output Voltage Low
Do-D7

VOL

Output Voltage Low
CLK

V

Voo = 4.5 V,
IOH '= -40~

0.4

V

Voo = 4.5 V,
IOL = 1.6 rnA

VOL

0.4

V

Voo = 4.5 V,

High Level Output
Current

IOH

-60

rnA

Voo = 5.0V

Low Level Output
Current

IOL

50

rnA

Voo = 5.0V

Thennal Resistance
IC Junction-to-Case

2.4

IOL=40~

R9J •c

15

"e/W

Notes:
1. Average IDD measured at full brightness. See Table 2 in Control Word Section for IDn at lower brightness levels. Peak
IDD = 28/15 X IDD (#).
2. Maximum IDD occurs at -55'C.
3. Maximum IDD(#) = 355 rnA at VDD = 5.25 V and IC TJ = 150'C.
4. Maximum IDD(#) = 375 rnA at VDD = 5.5 V and IC TJ = 150'C.

3-144

Optical Characteristics at 25oc (1)
VDD

= 5.0 V at Full Brightness

Description
AlGaAs
HER
Orange
Yellow
High
Performance
Green

Part
Number
HDSP-2107
HDSP-2112
-2502
HDSP-2110
-2500
HDSP-2111
-2501
HDSP-2113
-2503

Luminous Intensity
Character Average (#)
Iv (mcd)
Typ.
Min.
5.0
15.0
2.5
7.5

Peak
Wavelength

Dominant
Wavelength

(nm
645
635

(nm)
637
626

A.pe~

A.d

2.5

7.5

600

602

2.5

7.5

583

585

2.5

7.5

568

574

Note: 1. Refers to the initial case temperature of the device immediately prior to measurement.

AC Timing Characteristics over Temperature Range (-45OC to +S5OC)
4.5 v < VDD < 5.5 V, unless otherwise specified
Reference
Symbol
Number
Description
1
Display Access Time
tAcc
Write
Read
2
Address Setup Time to Chip Enable
tACS
Chip Enable Active Time12,3)
3
tCE
Write
Read
4
Address
Hold Time to Chip Enable
tACH
Chip Enable Recovery Time
5
tCER
Chip Enable Active Prior to Rising Edge of1 2,3)
6
tCES
Write
Read
7
Chip Enable Hold Time to Rising Edge of
tCEH
Read/Write Signall2 ,3)
8
Write Active Time
tw
9
Data Write Setup Time
twsu
10
Data Write Hold Time
twH
11
Chip Enable Active Prior to Valid Data
tR
12
Read Active Prior to Valid Data
tRD
13
Read Data Float Delay
tnF
Reset Active Time(4)
t RC

Min.ll)

Units

210
230
10

ns
ns

140
160
20
60

ns
ns
ns

140
160

ns

0
100
50
20
160
75
10
300

ns
ns
ns

ns
ns
ns
ns
ns

Notes:
1. Worst case values occur at an ICjunction temperature of 1500 C.
2. For designers who do not need to read from the display, the Read line can be tied to VDD and the Write and Chip Enable lines can be
tied together.
3. Changing the logic levels of the Address lines when CE = "0' may cause erroneous data to be entered into the Character RAM,
regardless of the logic levels of the WR and RD lines.
4. The display must not be accessed until after 3 clock pulaes (110 I1S min. using the internal refresh clock) after the rising edge of the
reset line.

3-145

AC Timing Characteristics over Temperature Range (-45OC to +8,5OC)
4.5 V < VDD < 5.5 V, unless otherwise specified

Symbol

25"C Typ.

Description

Units

Fosc
FRF[2[

Oscillator Frequency

57

28

kHz

Display Refresh Rate

256

128

Hz

FFL[3]

Character Flash Rate

2

1

Hz

t ST[4]

Self Test Cycle Time

4.6

9.2

sec

Notes:

1. Worst case values occur at an Ie juoction temperature of 150"C.
2.l"RF = Fosc/224
3. FFL = Fosc/28,672
4. tST = 262,144/Fosc

Write Cycle Timing Diagram

®

(j)

®

INPUT PULSE LEVELS - 0.6 V TO 2.4 V

3·146

Min)!]

Read Cycle Timing Diagram

INPUT PULSE LEVELS: 0.8 V TO U V
OUTPUT REFERENCE LEVELS: 0.8 V TO 2.2 V
OUTPUT LOAOING • 1 TTL LOAO AND l00pFd

Relative Luminous Intensity vs. Temperature

~G

3.0

Ii

1.5

~~
-c
"'~~
w5

a:

2.0

1.0

0.5

TA • AMBIENT TEMPERATURE· 9C

3-147

Electrical Description
Pin Function

Description

RESET (RST, pin 1)

Initializes the display.

FLASH (FL, pin 2)

FL low indicates an access to the Flash RAM and is unaffected by the
state of address lines A3-A4.

ADDRESS INPUTS
(Ao-A4' pins 3-6, 10)

Each location in memory has a distinct address. Address inputs (Ao-A2)
select a specific location in the Character RAM, the Flash RAM or a
particular row in the UDC (User-Defined Character) RAM. A3-A4 are
used to select which section of memory is accessed. Table 1 shows the
logic levels needed to access each section of memory.
Table L Logic Levels to Access Memory

Section of Memory

Ao

FL

A4

A3

A2 Al

Flash RAM

0

X

X

Char. Address

UDC Address Register

I

0

0

Don't Care

UDCRAM

1

0

1

Row Address

Control Word Register

I

1

0

Don't Care

Character RAM

1

1

1

Character Address

= I) or external (CLS = 0) clock source.

CLOCK SELECT
(CLS, pin 11)

Used to select either an internal (CLS

CLOCK INPUT/OUTPUT
(CLK, pin 12)

Outputs the master clock (CLS
displays.

WRITE (WR, pin 13)

Data is written into the display when the WR input is low and the
CE input is low.

CHIP ENABLE (CE, pin 17)

Must be at a logic low to read or write data to the display and must go
high between each read and write cycle.

READ (RD, pin 18)

Data is read from the display when the RD input is low and the CE
input is low.

DATA Bus (Do-D7'
pins 19, 20, 23-28)

Used to read from or write to the display.

GND (SUPPLY) (pin 15)

Analog ground for the LED drivers.

GND (LOGIC) (pin 16)

Digital ground for internal logic.

VDD (POWER) (pin 14)

Positive power supply input.

3-148

= 1) or inputs a clock (CLS = 0) for slave

A

~EN

UDC ADDR
REGISTER

CE

RD

ViR

UDC
ADDR

Do-DJ

ill
PRE SET

A,

A.

UDC
RAM

-

FL'
CE

EN

RD
Wii
Du-D~

Ao-A,

A,

~

A. --....-.
CE· _ _
FL'
'"

-

Rij

Wii

1

EN

AD
WR

Do-I),
Ao-A2
A,

.--

A.

Fa:~

Fa:

r.?!U

L

A

CE

~

WORD
RD
WR
D. 0,

~

b

2W_
3 I FlASH
4

f..

TEST
RESULT

•
'~

SELF
TEST

+-flASH
DATA

CLS

Cf'
.j>.

<0

1

EJ

DOT
DRIVERS

8 5x 7
~

LED
CHARACTERS

ROW
SEL

DOT
DATA

TIMING

r-

TEST

ROW DRIVERS
TIMING

VISUAL
TEST
SELF
TEST

ROM
TEST
CLR

TEST
OK
FLASH
TEST OK

t:D-~

ASCII
DECODER

0 0 -06

FlASH
RAM

il

CLR2

CLK

DOT

~ DATA

SELF

EN
RD
WR
D.

SELF
TEST

START

eLRl

'---

ADDR

TEST
IN

BLINK

RESET
SELF

L

SELF

INTENSITY

Do-D3
EN

RESEr
CHAR

CONTROL

REGISTER

UDC ADOR
ROW SET

EN

0,

Ao-A2
RESET
CHARADOR

110-110·

RESET

tPL
RST

CHARACTER
RAM Do-Os I - -

0.-0,

CE

If

.--8x8

DOT
DATA

INTENSITY
FLASH
BLINK
RESET

CLOCK

TIMING
AND

~~~:tROW SET

CONTROL
TIMING

Figure I. HDSP-210XJ-211XJ-212XJ-250X Internal Block Diagram.

ALPHANUMERIC
DISPLAYS

Display Internal Block
Diagram
Figure 1 shows the internal block
diagram of the HDSP-210X/
-211X/-250X displays. The CMOS
IC consists of an 8 byte Character

RAM, an 8 bit Flash RAM, a 128
character ASCII decoder, a 16
character UDC RAM, a UDC
Address Register, a Control Word
Register, and refresh circuitry
necessary to synchronize the

decoding and driving of eight 5 x
7 dot matrix characters. The
major user-accessible portions of
the display are listed below:

Character RAM

This RAM stores either ASCII character data or a UDC RAM address.

Flash RAM

This·is a 1 x 8 RAM which stores Flash data.

User-Defmed Character RAM
(UDCRAM)

This RAM stores the dot pattern for custom characters.

User-Defined Character
Address Register
(UDC Address Register)

This register is used to provide the address to the UDC RAM when
the user is writing or reading a custom character.

Control Word Register

This register allows the user to adjust the display brightness, flash
individual characters, blink, self test, or clear the display.

Character Rant
Figure 2 shows the logic levels
needed to access the
HDSP-210X/-211X/-250X
Character RAM. During a normal
access, the CE = "0" and either
RD = "0" or WR = "0." However,
erroneous data may be written
into the Character RAM if the
address lines are unstable when
CE = "0" regardless of the logic
levels of the RD or WR lines.
Address lines Ao-~ are used to
select the location in the Character RAM. Two types of data can
be stored in each Character RAM
location: an ASCII code or a UDC
RAM address. Data bit D7 is used
to differentiate between the ASCII
character and a UDC RAM
address. D7 = 0 enables the ASCII
decoder and D7 = 1 enables the
UDC RAM. Do-D6 are used to
input ASCII data and Do-D3 are
used to input a UDC address.

m

Ci

AD

Wii

• •
• • •• ••
• •

UNDEFINED
WAITE TO DISPLAY
AEAD FROM DISPLAY

UNDEFINED

CONTROL SIGNALS

I·

1 • 1 • 1

1

L.._

CHARACTER
1DOG '" LEFT MOST
_A_D_D_RE_S_S_ ..... 111 - RIGHT MOST

...._ - - ' - ._

....

CHARACTER RAM ADDRESS

0

128 ASCII CODE

•

X

X

x 1

UDCCODE

CHARACTER RAM DATA FORMAT

...

DIG.
111

SYMBOL IS ACCESSED IN LOCATION
SPECIFIED BY THE CHARACTER ADDRESS ABOVE
DISPLAY

o '" LOGIC 0; 1 '" LOGIC 1; X '" DO "'OT CARE
Figure 2. Logic Levels to Access the Character RAM.

3-150

UDC RAM and UDC Address
Register
Figure 3 shows the logic levels
needed to access the UDC RAM
and the UDC Address Register.
The UDC Address Register is
eight bits wide. The lower four
bits (Do-D3) are used to select one
of the 16 UDC locations. The
upper four bits (D4-D7) are not
used. Once the UDC address has
been stored in the UDC Address
Register, the UDC RAM can be
accessed.

To completely specify a 5 x 7
character, eight write cycles are
required. One cycle is used to
store the UDC RAM address in the
UDC Address Register and seven
cycles are used to store dot data
in the UDC RAM. Data is entered
by rows and one cycle is needed
to access each row. Figure 4
shows the organization of a UDC
character assuming the symbol to
be stored is an "F." Ao-~ are used
to select the row to be accessed
and Do-D4 are used to transmit
the row dot data. The upper three
bits (D 5-D 7) are ignored. Do (least
significant bit) corresponds to the
right most column of the 5 x 7
matrix and D4 (most significant
bit) corresponds to the left most
column of the 5 x 7 matrix.
FlashRAM
Figure 5 shows the logic levels
needed to access the Flash RAM.
The Flash RAM has one bit
associated with each location of
the Character RAM. The Flash
input is used to select the Flash
RAM while address lines ~-~ are
ignored. Address lines Ao-~ are
used to select the location in the
Flash RAM to store the attribute.
Do is used to store or remove the
flash attribute. Do = "I" stores
the attribute and Do = "0"
removes the attribute.

0

1

a

UNDEFINED

1

WAITE TO DISPLAY

• •

0

1

1

1

READ FROM DISPLAY

UNDEFINED

CONTROL SIGNALS

x

I

UDC ADDRESS REGISTER ADDRESS

I

D7

D.

0,

Dot

D3

D,

0,

D.

UDC CODE

x

UDC ADDRESS REGISTER DATA fORMAT

0
0

•

1

0

UNDEFINED

1

WRITE TO DISPLAY

, ,
1

0

REAO FROM DISPLAY

UNDEFINeD

CONTROL SIGNALS

.....I1 :::~;

CT
1.1_'......&I_o-,-'_'......&'_R_DW_S_EL_E_
UDe RAM ADDRI!SS

D7

I

D.

D.

x

x

I

UDCRAM
DATA FORMAT

D.

D.

D.

D.

D.

]

DOT DATA

C
0
L

C
0
L
5

•

•• LOGIC 0; 1 • LOGIC 1; X • 00 NOT CARE

Figure 3. Logic Levels to Access a UDC Character.
C

C

C

L

L
2

0

0

L

L

0

1

0

a

C

4

C

0

L

5

~4

~.

~2

~1

~o

1
1
1
1

0
0
1
0
0
0

0
0
1
0
0
0

0
0
1
0
0
0

0
0
0
0
0
0

1

1

IGNORED

ROW 1
ROW 2
ROW a
ROW 4
ROW 5
ROW a
ROW 7

pHf'HF8JEf!

aSflE

1F
10
10
10
10
10
10

o= LOGIC 0; 1 = LOGIC 1; • = ILLUMINATED LED.
Figure 4. Data to Load ""F" into the UDC RAM.

When the attribute is enabled
through bit 3 of the Control Word
and a "1" is stored in the Flash
RAM, the corresponding
character will flash at approxi-

mately 2 Hz. The actual rate is
dependent on the clock frequency.
For an externaJ. clock the flash
rate can be calculated by dividing
the clock frequency by 28,672.

3-151

m

,

0

0

o

l

,1

0

r,

,

01

, I

Ci

WRITE TO DISPLAY

READ FROM UIS'LA.,
UNDEFINED

WI

iiii

,
,
, ,

0
·0

,

UNDEfiNED

0

0

UNDEFINED

0

READ FROM DISPLAY

WRITE TO DISPLAY

UNDEFINED

CONTROL SIGNALS

CONTROl. SIGNALS

CONTROL WOAD ADDRESS
FLASH RAM ADDRESS

I

D,

r-D~'__~D~.__D~.~~D~.__~D3~~D~2__~D~1~~D~·~REM~ERASH~

x

x

L.!..J

C

SPECIFIED DIGIT LOCATION

O.

I

s

I

DS

s

D.

03

D.

0,

BL

F

a

B

DO

I I I I I I

or
B

, o,1 ,_...
0
0

.._______________________..1L2.J......:.'...J :~~~~~~G~~ LOCATION

53%

FLASH AAM DATA FORMAT
D - LOGIC 0; 1

~

1
0
0
1
1

LOGIC 1; X = DO NOT CARE

Figure Ii. Logic Levels to Access the Flash RAM.

Control Word Register

Flash Function (Bit 3)
Bit 3 detennines whether the
flashing character attribute is on
or off. When bit 3 is a"I," the
output of the Flash RAM is
checked. If the content of a location in the Flash RAM is a "1," the
associated digit will flash at
3-152

,

27%

20%
13%

BRIGHTNESS

CONTROL
LEVELS

0

DISABLE FLASH
ENABLE FLASH

DISABLE BLINKING
ENABLE BLINKING

Figure 6 shows how to access the
Control Word Register. This 8-bit
register perfonns five functions:
Brightness control, Flash RAM
control, Blinking, Self Test, and
Clear. Each function is
independent of the others; however, all bits are updated during
each Control Word write cycle.
Brightness (Bits 0-2)
Bits 0-2 of the Control Word
a VDD) and
when a high current is forced into
the input. To prevent input
current latchup and ESD damage,
unused inputs should be connected either to ground or to VDD •
Voltages should not be applied to
the inputs until VDD has been
applied to the display.

Thermal C()nsiderations
The HDSP-210X/-211X/250X
have been designed to provide a
low thermal resistance path for
the CMOS IC to the 26 package
pins. Heat is typically conducted
through the traces of the printed
circuit board to free .air. For most
applications no additional
heatsinking is required.
Measurements were made on a 32
character display string to
determine the thermal resistance
of the display assembly. Several
display boards were constructed
using 0.062 in. thick printed
circuit material, and one ounce
copper 0.020 in. traces. Some of
the device pins were connected to
a heatsink formed by etching a
copper area on the printed circuit
board surrounding.the display. A
maximally metallized printed
circuit board was also evaluated.

3-154

The junction temperature was
measured for displays soldered
directly to these PC boards,
displays installed in sockets, and
fmally displays installed in
sockets with a filter over the
display to restrict airflow. The
results of these thermal
resistance measurements, R9J _A
are shown in Table 3 and include
the effects of R9J _c .

Ground Connections
Two ground pins are provided to
keep the internal IC logic ground
clean. The designer can, when
necessary,. route the analog
ground for the LED drivers
separately from the logic ground
until an appropriate ground plane
is available. On long interconnections between the display and the
host system, the designer can
keep voltage drops on the analog
ground from affecting the display
logic levels by isolating the two
grounds.
The logic ground should be
connected to the same ground
potential as the logic interface
circuitry. The analog ground and
the logic ground should be
connected at a common ground

which can withstand the current
introduced by the switching LED
drivers. When separate ground
connections are used, the analog
ground can vary from -0.3 V to
+0.3 V with respect to the logic
ground. Voltage below -0.3 V can
cause all dots to be on. Voltage
above +0.3 V can cause dimming
and dot mismatch.

Soldering and Post Solder
Cleaning Instructions for
the HDSP-210X/-211X/
-250X
The HDSP-210X/-211X/-250X
may be hand soldered or wave
soldered with SN63 solder. When
hand. soldering, it is recommended that an electronically
temperature controlled and
securely grounded soldering iron
be used. For best results, the iron
tip temperature should be set at
315"C (600"F). For wave soldering, a rosin-based RMA flux can
be used. The solder wave temperature should be set at 245°C ±
5°C (4 730F ± 9"F), and the dwell
in the wave should be set
between 11/2 to 3 seconds for
optimum soldering. The preheat
temperature should not exceed
lO5°C (221"F) as measured on
the solder side of the PC board.

Table 8. Thennal Resistance, 9JA, Using Various Amounts of
H eatsin
' king Material
Heatsinking
W/Sockets W/OSockets W/Sockets
Metal
WlFilter
per Device W/OFilter W/OFilter
(Avg.)
(Avg.)
(Avg.)
Units
sq. in.
0
1
3
Max. Metal

31
31
30
29

30
28
26
25

35
33
33
32

°e/W
°e/W
°e/W
°e/W

4 BoardAvg

30

27

33

°e/W

For additional infonnation on
soldering and post solder cleaning, see Application Note 1027,
Soldering LED Components.

Contrast Enhancement
The objective of contrast
enhancement is to provide good
readability in a variety of ambient
lighting conditions. For information on contrast enhancement see
Application Note 1015, Contrast
Enhancement TechniquesJor
LED Displays.

3-155

FliHW HEWLETT'"
Ii!~ PACKARD

CMOS 5 x 7 Alphanumeric
Displays
Technical Data
HCMS-200X Series
UCMS-230X Series

Features
• On-Board Low Power
CMOSIC:
Integrated Shift Register with
Constant Current LED
Drivers
• Wide Operating
Temperature Range:
-40"C to +85 "C
• Compact Glass Ceramic
4 Character Package:
HCMS-200X Series End
Stackable
HCMS-230X Series
X-Y Stackable
• Five Colors:
Standard Red
High Efficiency Red
Orange
Yellow
High Performance Green
• 5 X 7 LED Matrix
Displays Full ASCII Set
• Two Character Heights:
3.8nun (0.15 inch)
5.0nun (0.20 inch)
• Wide Viewing Angle:
X Axis = ± 50 0
Y Axis = ±65°
• Long Viewing Distance:
HCMS-200X Series to 2.6
Meters (8.6 Feet)·
HCMS-230X Series to 3.5
Meters (11.5 Feet)
• Categorized for Luminous
Intensity

• HCMS-2001/-2003,
HCMS-2301/-2303:
Categorized for Color

Typical Applications
•
•
•
•

Commercial Avionics
Instrumentation
Medical Instruments
Business Machines

Description
The HCMS-200X and HCMS-230X
series are 5x7 LED four character
displays contained in 12 pin dualin-line packages designed for
displaying alphanumeric information. The character height for the
HCMS-200X series displays is
3.8nun (0.15 inch), and for the

HCMS-230X series displays the
character height is 5.0nun (0.20
inch). These displays are available in five LED colors: standard
red, high efficiency red, orange,
yellow and high performance
green. The HCMS-200X series
displays are end stackable and the
HCMS-230X series displays are
endlrow stackable.

Display Selection Table
Part. Number

Character Size

LED Color

HCMS-2000
HCMS-2001
HCMS-2002
HCMS-2003
HCMS-2004

3.8 nun (0.15 inch)
3.8 mm (0.15 inch)
3.8 nun (0.15 inch)
3.8 nun (0.15 inch)
3.8 nun (0.15 inch)

Standard Red
Yellow
High-Efficiency Red
High-Performance Green
Orange

HCMS-2300
HCMS-2301
HCMS-2302
HCMS-2303
HCMS-2304

5.0 nun (0.20 inch)
5.0 nun (0.20 inch)
5.0 nun (0.20 inch)
5.0 mm (0.20 inch)
5.0 nun (0.20 inch)

Standard Red
Yellow
High-Efficiency Red
High-Performance Green
Orange

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED.
3-156

5964-6379E

These displays are designed with
on-board CMOS integrated circuits
for use in applications where
conservation of power is important. The two CMOS ICs form an
on-board serial-in-parallel-out 28bit shift register with constant
current output LED row drivers.
Decoded column data is clocked
into the on-board shift register for

each refresh cycle. Full character
display is achieved with external
column strobing.

HDSP-200X, HDSP-230X TTL IC
displays. The 12 pin glass/
ceramic package confIguration,
four digit character matrix and pin
functions are identical.

Compatibility with HDSP200X/230X TTL IC Series
Displays
The HCMS-200X, HCMS-230X
CMOS IC displays are "drop-in"
replacements for the equivalent

Package Dimensions

I~~e:cd
MAX.

=1

r-

Io,~'!e) REF.

SEE NOTE 3

7.25
10.290)

1

PIN
1
2
3

FUNCTION
PIN
COLUMN 1
7
COLUMN 2
8
COLUMN 3
9
COLUMN 4
10
5
COLUMN &
11
8
12
INT. CONNECT"
• 00 NDT CONNECT OR USE

FUNCTION
DATA OUT

V.
Voo

•

CLOCK
GROUNO
OATAIN

-2L
~

~

I

8.85
10.270)

!

0.25.0.08 . . .
10.010±0.003)
TVP.

2.&410.13
10.100t0.006)

1.27
10.050)

TYP.

~

7.62
10.3001

~

NONACCUM.

HCMS-200X Series

I~:I)MAX'~
--I
I

I--

12 11 10 19

t

PART NUMBER

SEE

OATECOOE

NOTE 3
7

f

SEE NOTE 3

8.43
(0.332)

1
12341581
ON BACK OF PACKAGE

5'08~
2S4

S.OO:t:O.13

I
2.54.'0.13_I

~

LUMINOUS INTENSITY

Ff
'~"'~L I:r~ ---1;1~:O~::acTYP'

W.27±0.,3
10.I97tO.006)
10.050±D.005)

10.200)

10.1001

J..-----+.

fl

PIN 1 MARKED BY DOT

I

I--~

100IOOtO.005) TVP.
NON ACCUM.

CATEGORY

~

I~.:O)TVP.~I
I

O.54tO.08
10.020±0.003)

•5

FUNCTION
COLUMN 1
COLUMN 2
COLUMN 3
COLUMN'
COLUMNS

6

INT. CONNECT·

PIN
1
2
3

.

NOTES: 1.
8.36 025
2.
10.250to' 010)
• .
3.

•.

PIN

FUNCTION

7

DATA OUT

8

V.

9

Veo

'0

CLOCK
GROUNO
OATAIN

11
12

DO NOT CONNECTOR USE
DIMENSIONSINMILLIMETRESIINCHES)
UNLESS OTHERWISE SPECIFIEO THE
TOLERANCE ON ALL OIMENSIONS IS
±D.38 ... 1'0.016).
CHARACTERS ARE CENTEREO WITH
RESPECT TO LEADS WITHIN ±O.13mm(t.O.OO6', •
LEAO MATERIAL ISCOPPER ALLOY.
SOLOER OIPPEO.

HCMS-230X Series

3-157

Absolute Maximum Ratings
Supply Voltage Vooto Ground .......................................... -0.3 V to 7.0 V
Data Input, Data Output, VB .................................................................................... -0.3 V to Voo
Column Input Voltage,VcoL ............................................................. ,......................... -0.3. V to Voo
Free Air Operating Temperature Range, TA.................................... -40"C to +85"C
Storage Temperature Range, Ts .............................................................. -55"C to + 100"C
Maximum Allowable Package Power Dissipation, Pill l ,2]
HCMS-2000/-200l/-2002/-2003/-2004 at TA = 78"C .............. 0.79 Watts
HCMS-2300 at TA = 85"C ....................................................... O. 79 Watts.
HCMS-230l/-2302/-2303/-2304 at TA = 85"C ........................ 0.92 Watts
Maximum Solder Temperature
1.59 mm (0.063") Below Seating Plane, t < 5 sec ........................ 260"C
ESD Protection @ 1.5 kO, 100 pF ......................... Vz = 4 kV (each pin)
Notes:
1. Maximum allowable power dissipation is derived from Voo = 5.25 V, VB = 2.4 V,
V L = '3.5 V, 20 LEOs on per character, 20% OF.
2. i1r., power dissipation for these dispia¥s should be derated as follows:
HCMS-200X series derate above 78"0 at 18 mW/"C, R9J.,\ 60"O/W.
HCMS-230X series may be operated without derating up to TA = 85"0,
R9 .A = 45"O/W.
.
Oerai\itgs based on R9pc,A = 35"O/W per dispia¥ for printed circuit board assembly. See
Figure 1 for power derating.

=

Recommended Operating Conditions over.
Operating Temperature Range (-40OC to +85OC)
Parameter
Supply Voltage
Data Out Current, Low State
Data Out Current, High State
Column Input Voltage
Setup Time
Hold Time
Clock Pulse Width High
Clock Pulse Width Low
Clock High to Low Transition
Clock Frequency

3-158

Symbol

Min.

Typ.

Max.

Units

Voo
IOL

4.75

5.00

5.25
1.6
-0.5
3.5

rnA
rnA

loa
VaaL

tsETUP
taaLD
twa(CLQCK)

~(CLOCK)

trm

f CLOCK

2.75
10
25
50
50

3.0

200
5

V

V
ns
ns
ns

ns
ns
MHz

Electrical Characteristics over Operating Temperature Range
(-40°C to +85°C)
Parameter

Symbol

Test Conditions

Input Logic High
Data, \i" Clock

VIH

= 5 MHz
\i, = 0.4 V
VB = 2.4 V
VB = 0.4 V
VB = 2.4 V
VB = 2.4 V
VB = 2.4 V
Voo = 4.75 V

Input Logic Low
Data, \i" Clock

V;L

Voo

Input Current
Data, Clock
VB

I)

Supply Current, Dynamic[)]
Supply Current, Static [2]

1000

IOOSO!!
IDoson

Column Input Current
HCMS-2000/-200 1/-2002/-2003/-2004
HCMS-2300
HCMS-230l/-2302/-2303/-2304

~OL

Data Out Voltage

'6H
VOL
Power Dissipation
Per Package[3[
HCMS-2000/-2001/-2002/-2003/-2004
HCMS-2300
HCMS-230 1/-2302/-2303/-2304

Thermal Resistance
IC Junction-to-Pin[4]
HCMS-2000/-200 1/-2002/-2003/-2004
HCMS-2300/-230 1/-2302/-2303/-2304

f CLOCK

Typ.*

Max.

Units

6.2

7.8

rnA

1.8
2.2

2.6
6.0

rnA

10

I!A

310
310
360

384
384
451

rnA
rnA

2.0

V

= 5.25 V

Voo = 5.25 V
0< 'f < 5.25 V
o < \i, < 5.25 V
Voo = 4.75 V
\'H = -0.5 rnA
~OL = o rnA
Voo = 5.25 V
\'L = 1.6 rnA
~OL = o rnA
Voo
~OL

Po

Min.

= 5.OV
= 3.5 V

17.5% DF
VB = 2.4 V
15 LEDs ON
per Character

-10
-40
2.4

0.8

V

+1
0

I!A

4.2
V
0.2

0.4
V

414
414
481

mW

RaJ.PIN
25
10

°C/W

-All typical values specified at VDD = 5.0 V and TA = 25°C.

Notes:
1. 100 Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5MHz, the display
is not illuminated.
2. !Do Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
3. ~'our characters are illuminated with a typical ASCII character composed of 15 dots per character.
4. IC junction temperature TPC) = (Po)(R8J . PIN + R8pc.A) + TA •

3-159

Optical Characteristics at TA

= 250C

Standard Red HCMS-2000/-2300
Description
Peak Luminous
Intensity per HCMS-2000
LED!5,']
HCMS-2300
(Character Average)
Dominant Wavelength!8!
Peak Wavelength

Symbol

Test Condition

Min.

Typ.*

VDD = 5.0V
VCOL = 3.5 V
VB = 2.4 V
T, = 25"C!7]

105
130

200
300

!-lcd

"d

639

nrn

A"EAK

655

nrn

I vPEAK

Max.

Units

Yellow HCMS-2001/-2301
Description
Peak Luminous
Intensity per HCMS-2001
LED!5,']
HCMS-2301
(Character Average)
Dominant Wavelength!·,8!
Peak Wavelength

Symbol

Test Condition

Min.

Typ.*

VDD = 5.0V
VeoL = 3.5 V
VB= 2.4 V
T, = 25"C!7]

400
650

750
1140

!-lcd

"d

585

nm

ApEAK

583

nrn

IvPEAK

Max.

Units

High Efficiency Red HCMS-2002/-2302
Description
Peak Luminous
Intensity per HCMS-2002
LED!5,']
HCMS-2302
(Character Average)
Dominant Wavelength!8!
Peak Wavelength

Symbol

I vPEAK

Test Condition

Min.

Typ.*

VDD =5.0V
VCOL = 3.5 V
VB = 2.4 V
T, = 25"C!7]

400
650

1430
1430

!-lcd

625

nm

635

nm

"d
"PEAK

Max.

Unit

High Perfonnance Green HCMS-2003/-2303
Description
Peak Luminous
Intensity per HCMS-2003
LED!5,']
HCMS-2303
(Character Average)
Dominant Wavelength!·,8!
Peak Wavelength

3-160

Symbol

I vPEAK

"d
A"EAK

Test Condition

Min.

Typ.*

VDD = 5.0V
VeoL = 3.5 V
VB = 2.4 V
T, = 25"C!7!

850
1280

1550
2410

Max.

Units
!-lcd

574

nm

568

nm

Orange HCMS-2004/-2304
Description

Symbol

Peak Luminous
Intensity per HCMS-2004
LED!,,9)
HCMS·2304
(Character Average)

I vPEAK

Dominant Wavelength(8)

Test Condition

Min.

Typ.*

VDD = 5.0V
VeaL = 3.5 V
VB=2.4V
T, = 25°CI7I

400
650

1430
1430

"'d

Peak Wavelength

"'PEAK

Max.

Units
!lcd

602

nrn

600

nrn

*All typical values specified at VDD = 5.0 V and TA = 250C unless otherwise noted.

Notes:
5. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the
package.
6. The HCMS-200l/-2301 and HCMS-2003/-2303 are categorized for color with the color category designated by a number on the back
of the package.
7. T[ refers to the initial case temperature of the display immediately prior to the light measurement.
8. Dominant wavelength, Ad' is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the
color of the device.
9. The luminous sterance of the individual LED pixels may be calculated using the following equations:
Ly(cdlm2) = I/Candela)*DF/A(Metre)2
L (Footlamberts) = pI (Candela)*DF/A(Foot)2
y
Where: A = LED pixel area = 5.3 x 1O-8M2 or 5.8 x 1O-7ft2
DF = LED on-time duty factor

Switching Characteristics, T A

= -40°C to +85OC
Parameter

Condition

Typ.

f CLOCK CLOCK Rate
t pLHJ

tpHL

Propagation Delay
CLOCK to DATA
OUT

.r-

V,H
VB

2.0V,"
V'lO.8 V

'----------.J I
~tOFFJ

~tON

ON (ILLUMINATED)
~
DISPLAY
90%

tOFF
VB (0.4 V) to
Display OFF
tON
VB (2.4 V) to
Display ON

CL = 15 pF
RL = 2.4 kQ

4

Max.

Units

5

MHz

105

ns

5
!lS

1

2

OFF (NOT 'LLUMINATEDI'O%

3-161

1.2

~

H6ML~)SEhIE~- f-f--

1. If- f - r

::l~

ROJ_A

1. 0

§ ~ 0.92 O. 9
... ;:

«~

~~

0.7
0.6 I--cc,-HCMS-2300
R9J_A = 60~CIW
0.5

Q

0.4

Xa:

0.3
0.2

f"

O. 1

I

I

a

0
0.79 .

~ Q
:§ !;(

~~

= 45cC~J f-f-

~

-

w

~RI·J-t =16~CIf

o

o

I
I

20

40

I
I
60

1_0

FHCM5-2002/-2302l-2004/-2304-

...

500

Lr-HCM5-2000/-2300

a:
a:

400

0.5

80

100

120

Qc

Figure 1. Maximum Allowable Power
Dissipation vs Ambient Temperature
as a Function of Thermal Resistance
Junction-to-Ambient, RS J _A • Derated
Operation Assumes RS pc _A = 35'C/W
Per Display for the Printed Circuit
Board. T J (IC) MAX = 125'C.

Electrical Description
Each display device contains four
5x7 LED dot matrix characters
and two CMOS integrated circuits,
as shown in Figure 4. The two
CMOS integrated circuits form an
on-board 28 bit serial-in-parallelout shift register that will accept
standard TTL logic levels. The
Data Input, pin 12, is connected
to bit position 1 and the Data
Output, pin 7, is connected to bit
position 28. The shift register
outputs control constant current
sinking LED row drivers. The
nominal current sink per LED
driver is 11 rnA for the HCMS200X displays, 13 rnA for the
HCMS-230X. A logic 1 stored in
the shift register enables the
corresponding LED row driver
and a logic 0 stored in the shift
register disables the corresponding LED row driver.
The electrical configuration of
these CMOS IC alphanumeric
displays allows for an effective
interface to a display controller

"
"8" 300
'~" 200

I I
o_~

-20

I

I

20
25

,

I

I LI II

40

If

2

HCM5-2001/-2301

~

I

0

100

y

I
60

801 100
85

T A - AMBIENT TEMPERATURE _

°c

Figure 2. Relative Luminous Intensity
vs Display Pin Temperature

circuit that supplies decoded
character information. The row
data for a given column (one 7 bit
. byte per character) is loaded (bit
serial) into the on-board 28 bit
shift register with high to low
transitions of the Clock input. To
load decoded character information into the display, column data
for character 4 is loaded first and
the column data for character 1 is
loaded last in the following
manner. The 7 data bits for
column 1, character 4, are loaded
into the on-board shift register.
Next, the 7 data bits for column 1,
character 3, are loaded into the
shift register, shifting the character 4 data over one character
position. This process is repeated
for the other two characters until
all 28 bits of column data (four 7
bit bytes of character column
data) are loaded into the on-board
shift register. Then the column 1
input, VeoL pin 1, is energized to
illuminate column 1 in all four
characters. This process is
repeated for columns 2, 3, 4 and

rH~MS-:i-SE,"IES

TA =25"C
Voo :5.0V

u

HCMS-2003/-2303

a:

I

ffi

~~ ~L11

>

T A - AMBIENT TEMPERATURE -

3-162

,..

~

Z

600

-
Vnn) and when a high current is
forced into the input. To prevent
input current latchup and ESD
damage, unused inputs should be

cortnected either to ground or to
Vn!>. Voltages should not b~.
applied to the inputs until Vrin has
been applied to the display.
Transient input voltages should be
eliminated.

Soldering and Post
Solder Cleaning
Instructions for the
HDLX-2416
The HDLX-2416 may be hand
soldered or wave soldered with
SN63 solder. When hand soldering
it is recommended that an electronically temperature controlled
and securely grounded soldering
iron be used. For best results, the
iron tip temperature should be set
at 315°C (600lj. For wave
soldering, a rosin-based RMA flux
can be used. The solder wave
temperature should be set at
245°C ± 5°C (473"F±9lj, and
dwell in the wave should be set
between 1 1/2 to 3 seconds for
optimum soldering. The preheat
temperature should not exceed
1100C (230"F) as measUred on the
solder side of the PC board.
For further information on soldering and post solder cleaning, see
Application Note 1027, Soldering
LED Components.

Contrast Enhancement
The objective of contrast enhancement is to provide good readability in the end user's ambient
lighting conditions. The concept is
to employ both luminance and
chrominance contrast techniques.
These enhance readability by
having the OFF-dots blend into the
display background and the ONdots vividly stand out against the
same background. For additional
information on contrast enhancement, see Application Note 1015.

Fli;W HEWLETT®
II.!~ PACKARD

Four Character Smart
Alphanumeric Displays
Technical Data
HPDL-1414
HPDL-2416

Features
• Smart Alphanumeric Display
Built-in RAM, ASCII Decoder
and LED Drive Circuitry
• Wide Operating Temperature
Range
-40"C to +85 "C
• Fast Access Time
160ns
• Excellent ESD Protection
Built-in Input Protection Diodes
• CMOS IC for Low Power
Consumption
• Full TTL Compatibility Over
Operating Temperature
Range

"IL = 0.8 V
"IH = 2.0V

-

• Wave Solderable
• Rugged Package
Construction
• End-Stackable
• Wide Viewing Angle

Typical Applications
• Portable Data Entry Devices
• Medical Equipment

•
•
•
•
•

Process Control Equipment
Test Equipment
Industrial Instrumentation
Computer Peripherals
Telecommunication
Instrumentation

Description
The HPDL-1414 and 2416 are
smart, four character, sixteensegment, red GaAsP displays. The
HPDL-1414 has a character
height of 2.85 rom (0.112"). The
HPDL-2416 has a character
height of 4.10 rom (0.160"). The
on-board CMOS IC contains
memory, ASCII decoder, multiplexing circuitry and drivers. The
monolithic LED characters are
magnified by an immersion lens
which increases both character
size and luminous intensity. The
encapsulated dual-in-line package
provides a rugged, environmentally sealed unit.

The HPDL-1414 and 2416
incorporate many improvements
over competitive products. They
have a wide operating temperature range, very fast Ie access
time, and improved ESD protection. The displays are also fully
TTL compatible, wave solderable,
and highly reliable. These
displays are ideally .suited for
industrial and commercial
applications where a goodlooking, easy-to-use alphanumeric
display is required.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED
WITH THE HPDL-1414 AND HPDL-2416.

5964-6381E

3-175

Absolute Maximum Ratings
Supply Voltage, Vnn to Ground ...................................... -0.5 V to 7.0 V
Input Voltage, Any Pin to Ground ........................ -0.5 V to Vnn + 0.5 V
Free Air Operating Temperature Range, TAr l ] ............... -40°0 to +8500
Relative Humidity (non-condensing) at 65°0 ................................. 90%
Storage Temperature, Ts .............................................. -4000 to +8500
Maximum Solder Temperature, 1.59 mm (0.063 in.)
below Seating Plane, t < 5 sec ................................................. 26000
ESD Protection @ 1.5 kn, 100 pF ...................... Vz = 2 kV (each Pin)
·All typicals at TA = 25'0.

Package Dimensions
HPDL-1414

PIN
NO_
1
2
3
4

5
&

PIN
NO_ FUNcnON
7 GND
~ATAINPUT
8 D.DATAINPUT
9 D,DATAINPUT
WRWRITE
~ DIGIT SELECT 10
DzDATAINPUT
A. DIGIT SELECT 11 DsDATAINPUT
VDD
12 D.DATAINPUT
FUNCnON
D.DATAINPUT

NOTES:
1. UNlESS OTHERWISE SPECIFIED, THE TOlUAIICE ON ALL IIIIIEN8IOIIIIIS CI.2M __ (IL01D In.~
2.1II_IN_11ncIwe).

3-176

HPDL-2416

r.r

2&.2010._

I

---j

6.3510.2&0)

TVP'I

0.26 ± G.13
10.010±0.lJ06)

r~~

TVP.

-I
1&.3
1Il.800)

20.07

IOL~3

_--.l
PIN

PART NUMBER
AND DATE CODE

LUMINOUS INTENSITY
CATEGORY

NO.

1
2
3
4

PIN 1 IDENTIFIER

O.s1t.013

10.02OtO.006)

TVP

2.54CO.100) TVP.

.

5
6
7
8
I

FUNCTION
C~

CHIP ENABLE
~CHIP ENABLE
CLRCLEAR
CUE CURSOR ENABLE
'CO' CURSOR SELECT

WRWRITE
ADDRESS INPUT AI
ADDRESS INPUT Ag
VDD

PIN
NO.

10
11
12
13
14
15
16
17
18

FUNcnON
GND
D.DATAINPUT
D,DATAINPUT
DzDATAINPUT
D,DATAINPUT
D.DATAINPUT
D.DATAINPUT
D. DATA INPUT
11[ DISPLAY BLANK

NOTES:

I. UNLESS OTHE_E SPECIFIED. THE TOLERANCE ON AlL DI~ 18 G.254 .... 1DJI101n.~
2. DIMENSIONS IN ..... (~

Recommended Operating Conditions
Parameter
Supply Voltage

Sym.

3-177

DC Electrical Characteristics over Operating Temperature Range
Parameter
Input Current
HPDL-1414
HPDL-2416
IDD Blank
HPDL-1414
HPDL-2416
IDD 4 Digits ON
(10 Segments/digit)[2,3]
HPDL-1414
HPDL-2416
IDD 4 Digits ON Cursor[4]
HPDL-2416
Input Voltage High
Input Voltage Low
Power Dissipation[5]
HPDL-1414
HPDL-2416

Sym.
IlL

25"C
Typ.

Min.

25"C

Max. Max.!l] Units

Test Conditions

17
17

30
30

50
40

!LA
!LA

VDD = 5.0 V, BL = 0.8 V

1.2
1.5

2.3
3.5

4.0
8.0

rnA
rnA

VDD = 5.0 V, BL = 0.8 V

70
85
125

90
115
165

130
170
232

rnA
rnA
rnA

VDD = 5.0V

VDD
0.8

V
V

715
910

mW
mW

IDD (BL)

IDD

IDD(CU)

ViH
VlL
PD

2.0
GND
350
425

450
575

VDD = 5.0V

VDD = 5.0V

Notes:
1. voo 5.5 V.
2. "%"iIluminated in all four characters.
3. Measured at five seconds.
4. Cursor character is sixteen segments and DP ON.
5. Power Dissipation = (Vno)(Inn) for 10 segments ON.

=

Optical Characteristics at 25"C[6]
Parameter
Peak Luminous Intensity per Digit,
8 segments ON (character average)
HPDL-1414
HPDL-2416
Peak Wavelength
Dominant Wavelength
Off Axis Viewing Angle
HPDL-1414
HPDL-2416

3-178

Sym.
Iv Peak

APeak
Ad

Min.

Typ.

Units

0.4
0.5

1.0
1.25
655
640

mcd
mcd
nm
nm

±40
±50

degrees
degrees

Test Conditions
VDD = 5.0 V,
II"," illuminated in all
4 digits

AC Timing Characteristics over Operating Temperature Range at Vee
Parameter
Address Setup Time
Write Delay Time
Write Time
Data Setup Time
Data Hold Time
Address Hold Time
Chip Enable Hold Time[l]
Chip Enable Setup Time]l]
Clear Time]l]
Access Time
Refresh Rate

= 4.5 V

Symbol

-20"C tMIN

25"C tMIN

70"C tMIN

tAS
tWD
tw
t DS
tDH
tAR
tCEH
tCES
tCLR

90
10
80
40
40
40
40
90
2.4
130
420-790

115
15
100
60
45
45
45
115
3.5
160
310-630

150
20
130
80
50
50
50
150
4.0
200
270-550

Units
ns
ns
ns
ns
ns
ns
ns
ns
ms
ns
Hz

Note:
1. HPDL-2416 only.

Timing Diagram

~2.0V

o.sv

I

teEs

I

jr-

2.0 V

I~o.sv
:"tcEH-

~:

-'K2.0V

..,

o.sv

_IAH_

lAS

I

2.0V

o.sv
-two
Do-D.

JI

...

~r-

--10._

K.2.0V
0.8 V

!--'OH-

3-179

Character Set
D3
D2
D,
DO

BITS

0

0

0

0
0

0
0

,

0
0

D,

Ds

DC

HEX

0

I

o

I

0

2

I_I

I

o

I

,

3

,

0

0

4

,

0

I

6

0

, ,,
0
0

2

3

:±J

/I

, , , ,,
,
,
,
,
•
/
(
&
/
> *- + I 6 1 B 9 - / L -- ~ ?
F G H I J K L M N 0
V W X y Z [ \ ] /'\ -

0

, ,

0
1
I
I

1
0
0
0

4

5

7

8

0
1

0
1

0

0

0
1

0

9j %

0 I 2 3 Y 5
OJ R B C 11 E
P Q R 5 T U

1
0
0

I

1

1

I

0
0

0
I

0

I

B

C

D

E

f

1
0

1
0

0

A

I

I

Magnified Character Font Description

!:-

!:- 3.'OO~

2.10=1
10.014)

10.122)

rNil

rl\kJ

'Llll~
dz

S'REF.

d,

HPDL-1414

3.0

1\

~

\
2.0

i!
.....
.....
l!:
~

1.0

\

""'

"

a:

~

-20

0

"'

..........

20

"'
40

BO

BO

TA - AMBIENT TEMPERATURE -I'C)

3-180

d.

d,

HPDL-2416

Relative Luminous Intensity vs. Temperature

iii
Ii"'

ll7l~-""

100

Electrical Description
Display Internal Block
Diagram HPDL-1414
Figure 1 shows the internal block
diagram of the HPDL-1414. It
consists of two parts: the display
LEDs and the CMOS IC. The
CMOS IC consists of a four-word
ASCII memory, a 64-word character generator, 17 segment drivers,
four digit drivers, and the
scanning circuitry necessary to
multiplex the four monolithic
LED characters. In normal

DATA If"!PUTS (06-001

operation, the divide-by-four
counter sequentially accesses
each of the four RAM locations
and simultaneously enables the
appropriate display digit driver.
The output of the RAM is decoded
by the character generator which,
in turn, enables the appropriate
display segment drivers. Sevenbit ASCII data is stored in RAM.
Since the display uses a 64character decoder, half of the
possible 128 input combinations
are invalid. For each display
location where D5 = D6 in the

00-0 4

K-

Ds f--

2
WRITE

D.

po-

64)( 17
CHARACTER

I-m-

DECODER

SEGMENT
DRIVERS

-2f-- 2

0-.

I--

COUNTER

m~FH¥3 ~

1

3

3f-- 3
10F.
DECODER 1

r--T,;--

BLANK

II

WRITE(WRI

INTERNAL
OSC.

Data Entry HPDL-1414
Figure 2 shows a truth table for
the HPDL-1414. Data is loaded
into the display through the
DATA inputs (D6-DO), ADDRESS
inputs (A1-Ao), and WRITE (WR).
After a character has been
written to memory, the IC
decodes the ASCII data, drives
the display and refreshes it
without any external hardware or
software.

~

6

ADD RESS INPUTS (A,-A,)

ASCII RAM, the display character
is blanked.

f--l

of-- 0

DIGIT
DRIVERS

2
1

0

Figure 1. HPDL-1414 Internal Block Diagram.

3-181

WR A, Au
L
L
L
L
H

L
L
H
H

X

L
H
L
H

X

O2 0,
a a

Do

01G301G201G,01GO

a

NC NC NC R
NC NC B NC
NC c: NC NC
D NC NC NC

Os
a

05

04

0,

a

a

a

b

b

b

b

b

b

b

c

c

c

c

c

c

c

d

d

d

d

d

d

d

X

X

X

X

X

X

X Previously Written

Data

L; LOGIC LOW INPUT
H ; LOGIC HIGH INPUT
X ; DON'T CARE
"a" ; ASCII CODE CORRESPONDING TO SYMBOL" R"
NC = NO CHANGE

Figure 2. HPDL-1414 Write Truth Table.

Display Internal Block
Diagram HPDL-2416
Figure 3 shows the internal block
diagram for the HPDL-2416
display. The CMOS IC consists of
a four-word ASCII memory, a
four-word cursor memory, a
64-word character generator, 17
segment drivers, four digit
drivers, and the scanning circuitry
necessary to multiplex the four
monolithic LED characters. In
normal operation, the divide-byfour counter sequentially
accesses each of the four RAM
locations and simultaneously
enables the appropriate display
digit driver. The output of the
RAM is decoded by the character
generator which, in turn, enables
the appropriate display segment
drivers. For each display location,
the cursor enable (CUE) selects
whether the data from the ASCII
RAM (CUE = 0) or the stored
cursor (CUE = 1) is to be
displayed. The cursor character is
denoted by all sixteen segments
and the DP ON. Seven-bit ASCII
data is stored in RAM. Since the
display utilizes a 64-character

3-182

decoder, half of the possible 128
input combinations are invalid.
For each display location where
D5 = D6 in the ASCII RAM, the
display character is blanked. The
entire display is blanked when
BL=O.
Data is loaded into the display
through the data inputs (D6 - Do),
address inputs (AI, Ao), chip
enables (CEI, CE2), cursor select
(CU), and write (WR). The cursor
select (CU) determines whether
data is stored in the ASCII RAM
(CU = 1) or cursor memory
(CU = 0). When CE I = CE 2 =
WR = 0 and CU = 1, the information on the data inputs is stored
in the ASCII RAM at the location
specified by the address inputs
(Al> Ao). When CE I = CE2 = WR
= 0 and CU = 0, information on
the data input, Do, is stored in the
cursor at the location specified by
the address inputs (Al> Ao). If Do
= 1, a cursor character is stored
in the cursor memory. If Do = 0,
a previously stored cursor
character will be removed from
the cursor memory.

If the clear input (CLR) equals
zero for one internal display cycle
(4 ms minimum), the data in the
ASCII RAM will be rewritten with
zeroes and the display will be
blanked. Note that the blanking
input (BL) must be equal to
logical one during this time.

Data Entry HPDL-2416
Figure 4 shows a truth table for
the HPDL-2416 display. Setting
the chip enables (CE I , CE2) to
their low state and the cursor
select (CU) to its high state will
enable data loading. The desired
data inputs (D6-DO) and address
inputs (AlLAo) as well as the chip
enables (CE I , CE 2) and cursor
select (CU) must be held stable
during the write cycle to ensure
that the correct data is stored
into the display. Valid ASCII data
codes are shown in Figure 1. The
display accepts standard sevenbit ASCII data. Note that D6"* D5
for the codes shown in Figure 4.
If D6 = D5 during the write cycle,
then a blank will be stored in the
display. Data can be loaded into
the display in any order. Note
that when Al = Ao = 0, data is
stored in the furthest right-hand
display location.
Cursor Entry HPDL-2416
As shown in Figure 4, setting the

chip enables (CEl> CE2) to their
low state and the cursor select
(CU) to its low state will enable
cursor loading. The cursor
character is indicated by the
display symbol having all 16
segments and the DP ON. The
least significant data input (Do),
the address inputs (AI. Ao), the
chip enables (CE I , CE2), and the
cursor select (CU) must be held
stable during the write cycle to

DATA INPUTS (06-0,)
OAT A INPUT

6
4x7
ASCII

too I

ADDRESS INPUTS (A,-AO I

OOW~

MEMORY

2

06
WR ITE CLEAR REAO

2

A

64)(11
CHARACTER
GENERATOR

Pf.

CURSOR

SEGMENT
QRIVER
BLANK

P.

~~~~

05

jf"')

.-

rl:>-

~

4<'

L3;-

CURSOR MEMORY
~

WRITE

READ

2V

,.~

CHIP ENABLES

~

~

(CE, CE2)

WRITE (WRJ
qJRSOA SELECT (Ct,h

CURSOR ENABLE (CUE)

CLEAR (CLR)

~)

BLANK (BI)

El-

3
-;..4
COUNTER

4-<-

BLANK

1 OF 4
DECODER

4-

DIGIT
DRIVER

2
1

0

r
Figure 3. HPDL-2416 Internal Block Diagram.

3-183

ensure that the cOITect data is
stored in the display. liDo is in a
low state during the write cycle,
then a cursor character will be
removed at the indicated
location. If Do is in a high state
during the write cycle, then a
cursor character will be stored at
the indicated location. The
presence or absence of a cursor
character does not affect the
ASCII data stored at that location.
Again, when Al =Ao = 0, the
cursor character is stored in the
furthest right·hand display
location.
All stored cursor characters are
displayed if the cursor enable
Function
Write
Data
Memory

BL CLR CUE CU CE,
L
X

X
H

H
-ORH

X

L
L

WR

A,

Au

Os 0 6 0 4

Oa

O2

0,

00

L

L

L

L

H

H
H

H

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

X

X

X

X

X

X

X

X

X

L
L
H
H

L
H
L
H

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

H
H
H
H

NC
NC
NC

NC
NC

L
L
H
H

L
H
L
H

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

L
L
L
L

NC
NC
NC
' ,
"-,

NC
NC

X

X

X

X

X

X

X

X

X

L

L

H
H
H

X
X

H

H

X

X
X
X

X

X

H

X

X
X

Write
Cursor

X

X

X

L

L

L

L

Disable
Cursor
Memory

X
X
X

X

X
X
X

L = LOGIC LOW INPUT
H = LOGIC HIGH INPUT
X = DON'T CARE

X

L

X
X
X

L

L
L
L

data stored in the display will be
cleared if the clear (CLR) is held
low and the blanking input (BL)
is held high for 4 ms minimum.
The cursor memory is not
affected by the clear (CLR) input.
Cursor characters can be stored
or removed even while the clear
(CLR) is low. Note that the
display will be cleared regardless
of the state of the chip enables
(CEl> CE2). However, to ensure
that all four display characters
are cleared, CLR should be held
low for 4 ms following the last
write cycle.

L

X
X
X

X

As shown in Figure 4, the ASCII

CE 2

Disable
Data
Memory
Write

Clear
Cursor

X

X

Display Clear BPDL·2416

(CUE) is high. Similarly, the
stored ASCII data words are
displayed, regardless of the
cursor characters, if the cursor
enable (CUE) is low. The cursor
enable (CUE) has no effect on the
storage or removal of the cursor
characters within the display. A
flashing cursor is displayed by
pulsing the cursor enable (CUE).
For applications not requiring a
cursor, the cursor enable (CUE)
can be connected to ground and
the cursor select (CU) can be
connected to Vee. This inhibits
the cursor function and allows
only ASCII data to be loaded into
the display.

L

L

X
X

X

H

H

H

X

X
X

L

OlGa 0lG 2 OIG, OIGo
NC
NC
NC

NC
NC

NC

R

C

B

D

NC

NC
NC

NC
NC
NC

Previously Written
Data

m
NC
m
NC
m
NC
m NC

.-,

NC

NC
NC

[]

NC

NC

[]

[]

NC
NC
NC

NC
NC

Previously Written
Cursor

"a" = ASCII CODE CORRESPODING TO SYMBOL "R"
NC = NO CHANGE
= CURSOR CHARACTER (ALL SEGMENTS ON)

m

Figure 4a. CursorlData Memory Write Truth Table.
Function

BL CLR

CUE

H

H

H
H

Clear

CUE

CU

X

H

L
H

L

X

OlGa

X

X
X

X
X

X
X

X

X

X

X*

OIGo

0lG2

,.-.,

c
!itJ

D

Display previously written data
Display previously written cursor

!itJ

~-.,

~-.,

"_J

"_J

I

I

"_J

r-1 r-1

r-1

r-1

[]

I

I

I

I

Clear data memory, cursor memory
unchanged

'NOTE: CLR should be held low for 4 ms
following the last WRITE cycle to ensure
all data is cleared.
Blanking

L

X

X

X

X

X

X

"_J

Figure 4b. Displayed Data Truth Table.

3·184

"_J

"_J

"_J

Blank display, data and cursor"
memories unchanged.

Display Blank HPDL-2416
As shown in Figure 4, the display

will be blanked if the blanking
input (BL) is held low. Note that
the display will be blanked
regardless of the state of the chip
enables (CE l , CE 2) or write (WR)
inputs. The ASCII data stored in
the display and the cursor
memory are not affected by the
blanking input. ASCII data and
cursor data can be stored even
while the blanking input (BL) is
low. Note that while the blanking
input (BL) is low, the clear (CLR)
function is inhibited. A flashing
display can be obtained by
applying a low frequency square
wave to the blanking input (BL).
Because the blanking input (BL)
also resets the internal display
multiplex counter, the frequency
applied to the blanking input
(BL) should be much slower than
the display multiplex rate. Finally,
dimming of the display through
the blanking input (BL) is not
recommended.

For further application information please consult Application
Note 1026.

Optical Considerations/
Contrast Enhancement
The HPDL-1414 and HPDL-2416
displays use a precision aspheric
immersion lens to provide
excellent readability and low offaxis distortion. For the HPDL1414, the aspheric lens produces
a magnified character height of
2.85 mm (0.112 in.) and a
viewing angle of ± 40°. For the
HPDL-2416, the aspheric lens
produces a magnified character
height of 4.1 mm (0.160 in.) and
a viewing angle of ± 50°. These
features provide excellent
readability at distances up to 1.5
metres (4 feet) for the HPDL-

1414 and 2 metres (6 feet) for
the HPDL-2416.
Each HPDL-1414/2416 display is
tested for luminous intensity and
marked with an intensity category
on the side of the display
package. To ensure intensity
matching for multiple package
applications, mixing intensity
categories for a given panel is not
recommended.
The HPDL-1414/2416 display is
designed to provide maximum
contrast when placed behind an
appropriate contrast enhancement fIlter. For further information on contrast enhancement,
see Hewlett-Packard Application
Note 1015.

Mechanical and Electrical
Considerations
The HPDL-1414/2416 are dual inline packages that can be stacked
horizontally and vertically to
create arrays of any size. These
displays are designed to operate
continuously between -40OC to
+85°C with a maximum of 10
segments on per digit.
During continuous operation of
all four Cursors the operating
temperature should be limited to
-40OC to +55°C. At temperatures
above +55OC, the maximum
number of Cursors illuminated
continuously should be reduced
as follows: No Cursors illuminated at operating temperatures
above 75OC. One Cursor can be
illuminated continuously at
operating temperatures below
75OC. Two Cursors can be
illuminated continuously at
operating temperatures below
68°C. Three Cursors can be
illuminated continuously at
operating temperatures below
60°C.

The HPDL-1414/2416 are assembled by die attaching and wire
bonding the four GaAsP/GaAs
monolithic LED chips and the
CMOS IC to a high temperature
printed circuit board. An
immersion lens is formed by
placing the PC board assembly
into a nylon lens filled with
epoxy. A plastic cap creates an
air gap to protect the CMOS IC.
Backfill epoxy environmentally
seals the display package. This
package construction provides
the display with a high tolerance
to temperature cycling.
The inputs to the CMOS IC are
protected against static discharge
and input current latchup.
However, for best results
standard CMOS handling
precautions should be used. Prior
to use, the HPDL-1414/2416
should be stored in anti-static
tubes or conductive material.
During assembly a grounded
conductive work area should be
used, and assembly personnel
should wear conductive wrist
straps. Lab coats made of
synthetic material should be
avoided since they are prone to
static charge build-up. Input
current latchup is caused when
the CMOS inputs are subjected
either to a voltage below ground
(VIN < ground) or to a voltage
higher than VDD (VIN > VDD) and
when a high current is forced into
the input. To prevent input
current latchup and ESD damage,
unused inputs should be
connected either to ground or to
VDD • Voltages should not be
applied to the inputs until VDD
has been applied to the display.
Transient input voltages should
be eliminated.

3-185

Soldering and Post Solder
Cleaning Instructions
The HPDL-1414/2416 may be
hand soldered or wave soldered
with SN63 solder. Hand soldering
may be safely performed only
with an electronically
temperature-controlled and
securely grounded soldering iron.
For best results, the iron tip
temperature should be set at

3-186

3150(} (600"F). For wave
soldering, a rosin-based RMA flux
can be used. The solder wave
temperature should be
24500 ± 50(}(473"F ± 9"F),
and the dwell in the wave should
be set at 11/2 to 3 seconds for
optimum soldering. Preheat
temperature should not exceed
930(} (200"F) as measured on the
solder side of the PC board.

For further information on
soldering and post solder
cleaning, see Application Note
1027, Soldering LED
Components.

FliP'W HEWLETT'"

a:~PACKARD

Hexadecimal and Numeric
Indicators
Technical Data
5082-7300
5082-7302
5082-7304
5082-7340

Features
• Numeric 5082-7300/-7302
0-9, Test State, Minus Sign,
Blank States
Decimal Point
7300 Right Hand D.P.
7302 Left Hand D.P.
• Hexadecimal 5082-7340
0-9, A-F, Base 16 Operation
Blanking Control, Conserves
Power
No Decimal Point
• DTUITL Compatible
• Includes DecoderlDriver With
5-Bit Memory
8421 Positive Logic Input
• 4x 7DotMatrix~
Shaped Character, Excellent
Readability

-

• Standard Dual-in-Line
Package Including Contrast
Filter
15.2 mm x 10.2 mm (0.6 inch
x 0.4 inch)
• Categorized for Luminous
Intensity
Assures Unifonnity of Light
Output From Unit to Unit
Within a Single Category

Description
Hewlett-Packard's 5082-7300
series solid state numeric and
hexadecimal indicators with onboard decoder/driver and memory
provide 7.4 mm (0.29 inch)
displays for reliable, low-cost
methods of displaying digital
information.

The 5082-7300 numeric indicator
decodes positive 8421 BCD logic
inputs into characters 0-9, a"";'''
sign, a test pattern, and four
blanks in the invalid BCD states.
The unit employs a right-hand
decimal point.

Package Dimensions
5082-7300

5082-7302

5082-7340

FuncHon
Pin
I

2

3

PLANE

0.3 • O.DB TVP.

10.012' 0.0031

1~~IJ.--I~.~r=obl--+
---I

1!-•

'.3TVP.~'~'
(.D&OI
~

.o ..... TY•.
{0.02O • 0.0031
2.6 • 0.13 TYP.

Input 2
Input4
InputS
Decimal

5082-7340
Hexadecimal
Input 2
Input 4

Point

InputS
Blanking
Control

5

Latch
Enable

Latch
Enable

6

Ground

Ground

7

Vee

Vee

S

Input 1

Input 1

4

'-SEATING

5082-7300
and 7302
Numeric

No...:
1 DimenSions In millimeters and
1.........

8

d--'
mm 1.0.016
4. ...
HDBP-IlIIIIO
_ it _D.38
HDSP_
_ • Inchl.

"SEATING
PLANE

0.3 _O.II81YP.
lo.o12±O.II031
4

3

2

u

+

~

(.171

t SETUP-j4--_to-j4--_to+..... LD

DATA INPUT
ILOW LEVEL DATAl

TRUTH TABLE
BCODATA(11

NUMERIC

DATA INPUT
IHIGH LEVEL DATAl

HEXADECIMAL

H
H
H

H

H

Figure 1. TimIng Diagram

H

H

H

H

H

..

:::

H

Vee
ENABLE

H

==
==

LOGIC
INPUT

-

DPI21

XI
X2
X4
X8

•

H
H

MATRIX
DECODER

LATCH
MEMORY

4

-

~

H

Figure 2. Logic Block Diagram.

H

IBLANKl
H

c:

,,

U

H

IBLANKl

H

(BLANKl

1::.

DECIMAL PT.l>l ~ONi;-..c--_ _ _ _ _--;V!-D'"-P::-=.,:;L_-l

t

LED
MATRIX
DRIVER

GROUND

3·194

H

H

DP
BLANKINGI.I
CONTROL

H

H

DP

IBLANKl

H

H

ENABLE"l
BLANKINGI31

f-

LED
MATRIX

OFF

VDP-H

LOAD DATA

VE = L

LATCH OATA

VE • H

DISPLAY-ON

V. - L

DISPLAY-OFF

Va - H

Notes:
1. H = Logic High: L = Lagic Low. With tho .....1e i....' at loB" high
chi"", in BCD input logic levels hawe no effect upon display
memory, displayed chulCtar. or DP.
2. The decimal point input. DP, partlim only to the numeric displays.
3. ThI blinking control input. B. 1*'1IIni only to the hexadecimal
di.IIVL all.. ing input his no effect upon display memory.

Absolute Maximum Ratings
Description
Storage Temperature, Ambient
Operating Temperature, Ambient[l[
Supply Voltage[2]
Voltage Applied to Input Logic, dp and Enable Pins
Voltage Applied to Blanking Input[2]
Maximum Solder Temperature at 1.59 mm (0.062 inch)
Below Seating Plane, t ~ 5 seconds

Symbol
Ts
TA
Vee
VI, VDP , VE
VB

Min.
-65
-55
-0.5
-0.5
-0.5

Max.
+100
+85
+7.0
Vee
Vee
260

Unit

Max.
5.5
+85

Unit
V

°C
°C
V
V
V

°C

Recommended Operating Conditions
Description
Supply Voltage[2]
Operating Temperature, Ambient[l]
Enable Pulse Width
Time Data Must Be Held Before, Positive
Transition of Enable Line
Time Data Must Be Held After Positive
Transition of Enable Line
Enable Pulse Rise Time

Optical Characteristics at TA
Device
HDSP-0760
Series
HDSP-0770
Series
HDSP-0860
Series
HDSP-0960
Series

tsETUP

Min.
4.5
-55
100
50

t HOW

50

Symbol
Vee
TA
tw

Nom.
5.0

°C
nsec
nsec
nsec

1.0

trLH

msec

= 25°C, Vec = 5.0 V

Description
Luminous Intensity per LED (Digit Average)[3,41
Peak Wavelength
DominantWavelength[5]
Luminous Intensity per LED (Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength[51
Luminous Intensity per LED (Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength[5,6]
Luminous Intensity per LED (Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength[5,6]

Symbol
Iv

Min.
65

ApEAK
Ad

Iv

260

ApEAK
Ad

Iv

215

ApEAK
Ad

Iv
ApEAK
Ad

298

Typ.
140
635
626
620
635
626
490
583
585
1100
568
574

Max.

Unit
/lcd

nm
nm
/lcd

nm
nm
/lcd
nm
nm
/lcd
nm
nm

Notes:
1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is RaJA = 50°C/W/
device. The device package thermal resistance is RaJ_PIN = 15°C/W/device. The thermal resistance device pin-to-ambient through
the PC board should not exceed 35°C/W/device for operation at TA = +85°C.

2. Voltage values are with respect to device ground, pin 6.
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of
the display package, Case temperatnre of the device immediately prior to the light measurement is equal to 25°C.

3-195

Electrical Characteristics; TA = -55°C to +85°C
Description
Supply Current
HDSP-0760 Series
HDSP-0770 Series
HDSP-0860 Series
HDSP-0960 Series
Power Dissipation
HDSP-0760 Series
HDSP-0770 Series
HDSP-0860 Series
HDSP-0960 Series
Logic, Enable and Blanking Low-Level Input
Voltage
Logic, Enable and Blanking High-Level
Input Voltage
Logic and Enable Low-Level Input Current
Blanking Low-Level Input Current
Logic, Enable and Blanking High-Level
Input Current
Weight
Leak Rate

Symbol

Test Conditions

Icc

Vee = 5.5V
(Characters "5."
or "B" Displayed)

Min. Typ.l7 l

PT

VIL

Vee

1m

Unit

78
120

105 .

390
690

573
963

mW

0.8

V

= 4.5V

rnA

175

2.0

Vm

IlL
IBL

Max.

V

Vee = 5.5V
VIL = 0.4 V
Vee = 5.5V
Vm = 2.4 V

-1.6
-10
+40
1.0

rnA

!lA
!lA

gm
5x1O-B cc/sec

Notes:
4. The luminous intensity at a specific operating ambient temperature, Iv (TAJ may be approximated from the following exponential
equation: Iv (TA = Iv (25°C) elk (TA·25'U)J.
Device

K

HDSP-0760 Series
HDSP-0770 Series

-0.0131/oe

HDSP-0860 Series

-0.01l2l0 e
-0.0104/oe

HDSP-0960 Series
5. The dominant wavelength,
device.

~,

is derived from the eIE Chromaticity Diagram and is that single wavelength which defines the color of the

6. The HDSP-0860 and HDSP-0960 series devices are categorized as to dominant wavelength with the category designated by a number on
the back of the display package.
7. All typical values at Vee = 5.0 V and TA = 25°e.

3-196

Operational
Considerations

The decimal point input is active
low true and this data is latched
into the display memory in the
same fashion as the BCD data.
The decimal point LED is driven
by the on-board IC.

Electrical
These devices use a modified
4 x 7 dot matrix light emitting
diode to display decimal/hexadecimal numeric information. The
high efficiency red and yellow
LEDs are GaAsP epitaxial layer
on a GaP transparent substrate.
The green LEDs are GaP epitaxial
layer on a GaP transparent
substrate. The LEDs are driven
by constant current drivers, BCD
information is accepted by the
display memory when the enable
line is at logic low and the data is
latched when the enable is at
logic high. Using the enable pulse
width and data setup and hold
times listed in the Recommended
Operating Conditions allows data
to be clocked into an array of
displays at a 6.7 MHz rate.

For information on soldering and
post solder cleaning see Application Note 1027, Soldering LED
Components.

Contrast Enhancement
These display devices are
designed to provide an optimum
ON/OFF contrast when placed
behind an appropriate contrast
enhancement filter. For further
information, please refer to
Application Note 1015, Contrast
Enhancement Techniques for

The blanking control input on the
hexadecimal displays blanks (turns
oft) the displayed information
without disturbing the contents of
display memory. The display is
blanked at a minimum threshold
level of 2.0 volts. When blanked,
the display standby power is
nominally 250 mWat TA = 25"C.

LED Displays.

Over Range Display
The over range devices display
"± 1" and decimal point. The
character height and package
configuration are the same as the
numeric and hexadecimal
devices. Character selection is
obtained via external switching
transistors and current limiting
resistors.

Mechanical
The primary thermal path for
power dissipation is through the
device leads. Therefore, to insure
reliable operation up to an
ambient temperature of +85°C, it
is important to maintain a caseto-ambient thermal resistance of
less than 35°C watt/device as
measured on top of display pin 3.

Package Dimensions
Pin

1
2

3
4
5

1

2

3

4

6
7
8

FRONT VIEW
NOTE: 1. DIMENSIONS IN MILLIMETRES ANO (INCHES).

Function
Plus
Numeral One
Numeral One
DP.
Open
Open

Vee
Minus/Plus

Pin

Character
+

-

1
Decimal Point
Blank

1
1
0
X
X
0

2,3
X
X

1
X

0

4
X
X
X

1
0

8
1
1
X
X

0

Notes:
0: Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care'

3-197

Absolute Maximum Ratings
Description
Symbol
Storage Temperature, Ambient
Ts
Operating Temperature, Ambient
TA
Forward Current, Each LED
IF
Revers.e Voltage, Each LED
VR

Min.
-65
-55

Max.

+100
+85
10
5

Unit
°C
OC
mA
V

----------,I

#7 Vee -s.ov

,---------NUMERAL ONE

M~S

~

I
I
I
I
I
1...-

#3
R,

#2

---,.

RZ

---'

#8

R,

R.

R,

Flgure 3. Typlcal Driving Circuit.

Recommended Operating Conditions vee = 5.0 V
Device
HDSP-0763
Low Power
High Brightness
HDSP-0863
HDSP-0963

Resistor Value

Forward
Current Per
LED, rnA

Rl

Rll

Ra

2.8
8
8
8

1300
360
360
360

200
47
36
30

300
68
56
43

Min.

Typ.
140
620
490
1100

Units
j.l.cd
j.l.cd
j.l.cd
j.l.cd

Luminous Intensity per LED

(Digit Average)13,4] at TA = 25°C
Device
Test Conditions
HDSP-0763
IF = 2.8mA
IF = 8mA
HDSP-0863
IF = 8mA
HDSP-0963
IF = 8mA

3-198

65
215
298

Electrical Characteristics: TA = -55°C to +85°C
Test
Device
Description
Symbol Conditions
HDSP-0763 Power Dissipation (All LEDs illuminated)
PT
IF = 2.8 rnA
IF = 8 rnA
Forward Voltage per LED
VF
IF = 2.8 rnA
IF = 8 rnA
HDSP-0863 Power Dissipation (All LEDs illuminated)
PT
IF = 8 rnA
Forward Voltage per LED
VF
PT
HDSP-0963 Power Dissipation (All LEDs illuminated)
IF = 8 rnA
Forward Voltage per LED
VF

Min.

Typ.
72
224
1.6
1.75
237
1.90
243
1.85

Max. Unit
mW
282
V
2.2
282 mW
2.2
V
282 mW
2.2
V

3-199

FliPfJ HEWLETTlO
II:~ PACKARD

Large 5 X 7 Dot Matrix
Alphanumeric Displays
17.3/26.5 mm Character Heights
Technical Data

Features
•
•
•
•

Multiple Colors Available
Large Character Height
5 X 7 Dot Matrix Font
Viewable Up to 18 Meters
(26.5 mm Display)
• x·y Stackable
• Ideal for Graphics Panels
• Available in Common Row
Anode and Common Row
Cathode Configurations
• AlGaAs Displays Suitable for
Low Power or Bright
Ambients
Typical Intensity 1650 mcd
at 2 rnA Average Drive
Current

-

HDSP·440X Series
HDSP·450X Series
HDSP·470X Series
HDSP·510X Series
HDSP·540X Series
HDSP·LI0X Series
HDSp·L20X Series
HDSP·MI0X Series

• Categorized for Intensity
• Mechanically Rugged
• Green Categorized for Color

Description
The large 5 X 7 dot matrix alphanumeric display family consists of
26.5 mm (1.04 inch) and 17.3
mm (0.68 inch) character height
packages. These devices have
excellent viewability; the 26.5
mm character can be read at up
to 18 meters (12 meters for the
0.68 inch part).
The 26.5 mm font has a 10.2 mm
(0.4 inch) dual·in·line (DIP) con·
figuration, while the 17.3 mm font
has an industry standard 7.6 mm
(0.3 inch) DIP conflguration.

Applications include electronic
instrumentation, computer
peripherals, point of sale termi·
nals, weighing scales, and indus·
trial electronics.

Devices
Standard
Red

AlGaAs
Red

High
Efficiency
Red

High
Performance
Green

HDSp·4701

HDSP·L 10 1

HDSP·L201

HDSP·5401

17.3 mm Common Row Anode

HDSP·4703

HDSP·LI03

HDSp·L203

HDSp·5403

17.3 mm Common Row Cathode

HDSP·4401

HDSP·MI0l

HDSP·4501

HDSp·5101

26.5 mm Common Row Anode

HDSP·4403

HDSP·M103

HDSp·4503

HDSp·5103

26.5 mm Common Row Cathode

3·200

Description

5964·6373E

Package Dimensions
HDSP-470X/LIOX/L20X/540X Series
DATE CODE

17.27

2.54

(0.68)

(0.101

!
LUMINOUS
INTENSITY
CATEGORY
LEFT SIDE VIEW

FRONT VIEW

FUNCTION

PIN

1

6.80
(0.2801 MAX.

••
••
•
4

7
8

NOTES,
1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
2. ALL UNTOLERANCEO DIMENSIONS ARE FOR
REFERENCE ONLY.
3. A NOTCH ON SCRAMBLER SIDE DENOTES
PIN 1.

10

,.
11

HDSF47011-54011
L1011L201
COLUMN 1 CATHODE

HDSP-47031-54031
L1031L203
ROW 1 CATHODE

ROW 3 ANODE

ROW 2 CATHODE

COLUMN 2 CATHODE
ROW 5 ANODE
ROW 6 ANODE
ROW 7 ANODE

COLUMN 2 ANODE
COLUMN 1 ANODE
ROW 6 CATHODE
ROW 7 CATHODE
COLUMN 3 ANODE

COLUMN 4 CATHODE
COLUMN 5 CATHODE

ROW5CATltOOE

ROW 4 ANODE
COLUMN 3 CATHODE

COLUMN 4 ANODE
ROW 4 CATHODE
ROW 3 CATHODE
COLUMN 5 ANODE

ROW 2 ANODE

ROW1 ANODE

END VIEW

4. FOR GREEN ONLY.

HDSP-440X/MIOX/450X/510X Series
PIN 1 REFERENCE

3.25
(0.13)

\

DATE CODE

-'---!- ; - - -

.---J..-~oo
r(~~_-

,-

~r:MAX.

2.54
10.101

2B.54
(1.041
11

10

COLOR BIN
NOTE 4.

LUMINOUS
INTENSITY
CATEGORY

LEFT SIDE VIEW

FUNCTION
PIN
1

!

L
10'2s0~

'

635

~.O:~tDIMENSIONS

IN MILLIMETRES (INCHES).
2. ALL UNTDLERANCED DIMENSIONS ARE FOR
REFERENCE ONLY.
3.

~~~~~~~~ ~~.SCRAMBLER SIDE

4. FOR GREEN ONLY.

4.~

10.181

0.S1 SO.

MIN. (0.0201

-b~j~
10.16
10A01
END VIEW

1.0

I (o.f"
~

••
••
I.•
4

7
8

,.
,.,.,.I.
11

[;76

(0.191

17
18

HDSI4401f-M101/
-4501/-5101
COLUMN 1 CATHODE

NO PIN
ROW 3 ANODE
COLUMN 2 CATHODE

NO PIN
ROW 5 ANODE
NO PIN
ROW 6 ANODE

ROW 7 ANODE
COLUMN 3 CATHODE
COLUMN 5 CATHOOE
NO PIN
ROW 4 ANODE
NO PIN
COLUMN 4 CATHOOE
ROW 2 ANODE
NO PIN
ROW 1 ANODE

HDSP-4403I-M1031

-45031-5103
ROW 1 CATHODE
NO PIN
COLUMN 3 ANODE
ROW 3 CATHODE
NO PIN
COLUMN 1 ANODE
NO PIN
COLUMN 2 ANODE
ROW 7 CATHODE
ROW 6 CATHODE
COLUMN 4 ANODE
NO PIN
ROW 5 CATHODE
NO PIN
ROW 4 CATHODE
ROW 2 CATHODE
NO PIN
COLUMN 5 ANODE

3-201

Internal Circuit Diagrams
HDSP-4401IM101/4501/5101

HDSP-44031M1 03/4503151 03

HDSP-4701/L1011L201/5401

HDSP-47031L1 03IL20315403

COMMON ANODE ROW

COMMON CATHODE ROW

COMMON ANODE ROW

COMMON CATHODE ROW

COLUMN

COLUMN

234

x • ROW OR COLUMN NUMBER.

2

•

3

4

5

0 -PIN NUMBER

COLUMN
2
3
3

COLUMN
2
3

x - ROW OR COLUMN NUMBER.

0- PIN NUMBER

Absolute Maximum Ratings at 25"C
Description

HDSP-470X/
440X Series

HDSP-LIOX/
MIOX Series

Average Power per Dot
(TA = 25 OC)[l]

HDSP-L20X/
450X Series

HDSP-540X/
510X Series

75mW

Peak Forward Current per Dot
(TA = 25°C)[I,2]

125mA

125mA

90mA

90mA

Average Forward Current per Dot
(TA = 25°C) [1,3]

32mA

23mA

15mA

15mA

Operating Temperature Range

-40OC to +85OC -20OC to +85OC -40OC to +85OC -20OC to +85OC

Storage Temperature Range

-40OC to +85OC

Lead Solder Temperature
(1.59 mm [0.062 in.] below
seating plane)

2600C for 3 s

Notes:
1. Average power is based on 20 dots per character. Total package power dissipation should not exceed 1.5 W.
2. Do not exceed maximum average current per dot.
3. For the HDSP·440X/470X series displays, derate maximum average current above 35"C at 0.43 mA/"C. For the HDSP-LI0X/MI0X
series displays, derate maximum average current above 35"C at 0.31 mA/"C. For the HDSP·L20X/450X series and HDSP·540X/510X
series displays, derate maximum average current above 350C at 0.2 mA/"C. This derating is based on a device mounted in a socket
having a thermal resistance junction to ambient of 50"CIW per package.

3-202

Electrical/Optical Characteristics at TA = 25°C
Standard Red HDSP·440Xl470X Series
Description
Luminous Intensity/Dot[4]
(Digit Average)
HDSP-470X (17.3 mm)
HDSP-440X (26.5 mm)
Peak Wavelength
Dominant Wavelength[5]

Symbol

Test Conditions

Iv

100 rnApk: lof5
Duty Factor (20 rnA Avg.)
360
400

770
800

Jlcd

ApEAK

655

nm

Ad

640

nm

Forward Voltage

VF

I F = 100 rnA

Reverse Voltage[6]

VR

IR = 100 JlA

Temperature Coefficient ofVF
Thermal Resistance LED
Junction-to-Pin per package
HDSP-470X
HDSP-440X

Min. Typ. Max. Units

1.8

2.2

V

12

V

IlVF/oC

-2.0

mVrC

R8J-PIN

15
13

°C/W/
PACK

3.0

AlGaAs Red HDSP·L10XIM10X Series
Description

Symbol

Luminous Intensity/Dot[4]
(Digit Average)
HDSP-L10X (17.3 mm)
HDSP-M10X (26.5 mm)

Iv

Luminous Intensity/Dot[4]
(Digit Average)
HDSP-L10X
HDSP-M10X

Iv

Peak Wavelength

Test Conditions

Min. Typ. Max. Units

10 rnA pk: 1 of 5
Duty Factor (2 rnA Avg.)
730
760

1650
1850

Jlcd

1750
1980

Jlcd

30 rnApk: lof14
Duty Factor (2.1 rnA Avg.)

ApEAK

645

nm

Dominant Wavelength[5J

Ad

637

nm

Forward Voltage

VF

IF = 10 rnA

VR

IR = 100 JlA

Reverse Voltage[6]
Temperature Coefficient OfVF
Thermal Resistance LED
Junction-to-Pin per package
HDSP-L10X
HDSP-M10X

1.7

2.1

V

15.0

V

IlVF/oC

-2.0

mVrC

R8J-PIN

20
18

°C/W/
PACK

3.0

3-203

mgh Efficiency Red HDSP-450X/L20X Series
Description

Symbol

Test Conditions

Luminous Intensity/Dot[4]
(Digit Average)
HDSP-L20X (17.3 rom)
HDSP-450X (26.5 rom)

Iv

50 rnA pk: 1 of 5
Duty Factor (lOrnA Avg.)

Luminous Intensity/Dot[4]
(Digit Average)
HDSP-L20X
HDSP-450X

Iv

Peak Wavelength

Min.

Typ.

Max.

Units

1150 2800
1400 3500

Ilcd

740
930

Ilcd

30 rnApk: 1 of 14
Duty Factor (2.1 rnAAvg.)

APEAK

635

nm

Dominant Wavelength[5]

Ad

626

nm

Forward Voltage

VF

Reverse Voltage[6]
Temperature Coefficient of VF
Thermal Resistance LED
Junction-to-Pin per package
HDSP-L20X
HDSP-450X

= 50 rnA
IR = 100 IlA

2.6

IF

3.5

V

25.0

V

~VFI"C

-2.0

mVfC

Raj_PIN

15
13

"e/W/
PACK

VR

3.0

High Performance Green HDSP-540X/510X Series
Description

Symbol

Test Conditions

Luminous Intensity/Dot[4]
(Digit Average)
HDSP-540X (17.3 rom)
HDSP-51OX (26.5 rom)

Iv

50 rnA pk: 1 of 5
Duty Factor (10 rnA Avg.)

Luminous Intensity/Dot[4]
(Digit Average)
HDSP-540X
HDSP-510X

Iv

Peak Wavelength
Dominant Wavelength[5,7]

Max.

Units

1290 4000
1540 4500

J.Lcd

570
630

Ilcd

30 rnA pk: 1 of 14
Duty Factor (2.1 rnA Avg.)

566

nm

Ad

571

nm

VF

Reverse Voltage[6]

VR

Thermal Resistance LED
Junction-to-Pin per package
HDSP-540X
HDSP-51OX

Typ.

APEAK

Forward Voltage

Temperature Coefficient of VF

Min.

= 50 rnA
IR = 100 IlA

2.6

IF

3.0

3.5

V

25.0

V

~VF/"C

-2.0

mVfC

Raj_PIN

15
13

"e/W/
PACK

Notes:
4. The displays are categorized for luminous intensity with the intensity category designated by a letter on the left hand side of the
package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual dot
intensities.
5. The dominant wavelength is derived from the C.l.E. Chromaticity diagram and is that single wavelength which defines the color of the
device.
6. Typical specification for reference only. Do not exceed absolute maximum ratings.
7. The displays are categorized for dominant wavelength with the category designated by a number a<\jacent to the intensity category
letter.

3-204

~
I

§a:
a

60

RI,...'60·C/W/PACK
40

30

:I

20

II:

:>

HER/GREEN

:I

~,

......

...........

10

~,

o

-6

120

r--

1&

3&

6&

..........

'1

75

r-t

I .•

z

1/

60

I:
I

.!t

96

T" - AMBIENT TEMPERATURE _ DC

0

/

Vro

0.5

1.0

1.&

2.0

HEtlGRfEN
2.&

LR~D

~

0.8

0:

o.a

"
I'"

0 .•

\~IGoAoRED

'GREEN

/

Q

1.2
1.0

)

a:

B

..ur>
..it.. /, ~
..5, 1

ED

AlGJ.RED

!Zw so

""-,

AIGaAoRED

~

~
Q

a: 100
~

RED

..~

'" 140
E

3.0

3.5

VF - FORWARD VOLTAGE - V

0.2

r

o

HER

20

40

60

80

100

120

IptAC - PEAK DOT CURRENT - mA

Figure 1. Maximum Allowable Average
Current Per Dot as a Funetlon of
Ambient Temperature.

Figure 2. Forward Current V6. Forward
Voltage.

Figure 3. Relative Efficiency
(Luminous Intensity per Unit Dot) V6.
Peak Current per Dot.

Operational
Considerations

HER CHDSP-450X/L20X):
VFMAX = 1. 75 V + IpEAK(35 Q)
For IpEAK :<: 5 rnA
Green (HDSP-540X/510X):
VFMAX = 1.75 V + IpEAK(38 Q)
For IpEAK :<: 5 rnA

Iy DATA SHEET is the time
averaged data sheet luminous
intensity, resulting from IFAVG
DATA SHEET.
IyAVG is the calculated time
averaged luminous intensity
resulting from IFAVG.

Figure 3 allows the designer to
calculate the luminous intensity at
different peak and average
currents. The following equation
calculates intensity at different
peak and average currents:

For example, what is the
luminous intensity of an AlGaAs
Red (HDSP-L10X) driven at 50
rnA peak 1/5 duty factor?

Electrical Description
These display devices are composed of light emitting diodes,
with the light from each LED
optically stretched to form
individual dots.
These display devices are well
suited for strobed operation. The
typical forward voltage values can
be scaled from Figure 2. These
values should be used to calculate
the current limiting resistor value
and the typical power dissipation.
Expected maximum VF values, for
driver circuit design and maximum power dissipation, may be
calculated using the following
VFMAX models:
Red (HDSP-440X/470X):
VFMAX = 1.55 V + IpEAK(6.5 Q)
For IpEAK :<: 5 rnA
AlGaAs Red
QIDSP-L 1OX/M 1OX):
VFMAX = 1.8 V + IpEAK(20 Q)
For IpEAK ~ 20 rnA
VFMAX = 2.0 V + IpEAK(lO Q)
For IpEAK :<: 20 rnA

IyAVG = (IFAVGIIFAVG DATA
SHEET)(T]PEAK)(Iy DATA SHEET)
Where:
IFAVG is the desired time
averaged LED current.
IFAVG DATA SHEET is the time
averaged data sheet test current
for IvDATA SHEET.
T]PEAK is the relative efficiency at
the peak current, scaled from
Figure 3.

IFAVG = 50 rnA * 0.2 = 10 rnA
IFAVG DATA SHEET = 2 rnA
T]PEAK = 0.98
Iy DATA SHEET = 1650 !-tcd
Therefore
IyAVG = (10 ruN2 rnA)(0.98)
(1650 !-tcd) = 8085 !-tcd

3-205

Thermal Considerations
The device thermal resistance
may be used to calculate the
junction temperature of the
central LED. The equation below
calculates the junction temperature of the central (hottest)
LED.
TJ = TA + (PD)(R9J-~(N)
Pn = (VFMAX)(IFAVG)
RGJ _A = R9J _PIN + RGpIN_A
TJ is the junction temperature of

the central LED.
TA is the ambient temperature.
PD is the power dissipated by one
LED.
N is the number of LEDs ON per
character.
VFMAX is calculated using the
appropriate VF model.
RGJ_A is the package thermal
resistance from the central LED
to the ambient.
RGJ-PIN is the package thermal
resistance from the central LED
to pin.
RGpIN_A is the package thermal
resistance from the pin to the
ambient.
For example, what is the maximum ambient temperature an
HDSP-L10X can operate with the
following conditions:

3-206

IpEAK = 125 rnA
IFAVG = lOrnA
RGJ_A = 50OC;W
N = 35
TJMAX = llO°C
VFMAX

= 2.0 V + (0.125 A)(10)

= 3.25V
PD = (3.25 V)(0.01 A)
= O.0325W
TA = llOOC(50OC!W)(0.0325 W)(35)
= 53°C

The maximum number of dots ON
for the ASCII character set is 20.
What is the maximum ambient
temperature an HDSP-LlOX can
operate with the following
conditions:
IpEAK = 125 rnA
IFAVG = 10 rnA
RGJ_A = 50°C;W
N = 20
TJMAX = llO°C
VFMAX = 3.25 V
P D = 0.0325W
TA = llO°C(50°C!W)(0.0325 W)(20)
= 77°C
Therefore, the maximum ambient
temperature can be increased by
reducing the average number of
dots ON from 35 to 20 dots ON
per display.

Contrast Enhancement
For information on contrast
enhancement please see
Application Note 1015.

Soldering/Cleaning
For Soldering/Cleaning information on soldering LEDs please
refer to Application Note 1027.

1rJ~ HEWLETTI!>

~I!.a PACKARD

LED Glass/Ceramic Displays

In addition to commercial solid
state displays, Hewlett-Packard
offers a selection of environmentally sealed glass/ceramic
packages for industrial and high
reliability applications. These
packages consist of numeric and
hexadecimal displays, 5 x 7 dot
matrix alphanumeric displays
with extended temperature
ranges, and fully intelligent
monolithic 16 segment displays

3-208

with extended temperature
ranges and on board CMOS ICs.
Similar to the commercial display
product selection, the glass/
ceramic display products are
offered in a variety of character
sizes and colors: standard red,
high efficiency red, yellow, and
high performance green. Orange
displays are sometimes available
upon request.

Integrated numeric and hexadecimal displays (with on-board
ICs) solve the designer's
decoding/driving problems. They
are available in plastic packages
for general purpose usage and
glass/ceramic packages for
industrial applications. This
family of displays has been
designed for ease of use in a wide
range of environments.

Glass/Ceramic Alphanumeric Displays
Device

I~~i ;;Ui igii U~i ~I ~HI~ ~j~ filal

II~:~I~II

PIN
Description
HDSP·2131 5.0 mm (0.20 in.) 5 x 7 Eight
Character Smart Alphanumeric
HDSP-2132 Display

Color
Yellow

HDSP-2133 32 pin Ceramic 7.62 mm (0.3 in.)
DIP with Untinted Glass Lens

High Performance
Green

HDSP-2179 Operating Temperature Range:
-55"C to +85"C
HMDL-2416 4.1 mm (0.16 in.) Four
Character Monolithic Smart
Alphanumeric Display

Orange

High Efficiency Red

Standard Red

Application
• High Reliability
Applications
• Avionics
• I/O Terminals
• Industrial
Equipment

Page
No.
3-224

~

CMOSIC
32 pin Ceramic 15.24 mm
(0.6 in.) DIP wHh Untinted
Glass Lens

IL.J Lj ..; ""jL.J I
,-!~ 'i'-~ ~-~
~
,

-- ........
I'

"

•

I

,

Operating Temperature Range:
-55"C to +1 OO"C
HCMS-2351 5.0 mm (0.20 in.) 5 x 7 Four
Character Alphanumeric Sunlight
HCMS-2352 Viewable Display
HCMS-2353 CMOSIC
12 pin Ceramic 6.35 mm
HCMS-2354 (0.25 in.) DIP wHh Untinted
Glass Lens

Yellow

3-240

High Efficiency Red
High Performance
Green
Orange

Operating Temperature Range:
-55"C to +1OO"C
'Contact your local Hewlett-Packard sales representative for information regarding this product.

3-209

Glass/Ceramic Alphanumeric Displays (Cont.)
Page

Device

r-]II

, , r-,
r-,
,.,
I., I.'
,

L.J
IIf"'

I

I
,
10.01

I

I

I
I
I.,
I
I

I
I
L..01

I. ....

1'--' ,--. ,--, '---I
•

I

I

"

••

,

I

I

I

"

,

I

L.~

PIN
Description
HCMS-2010 3.7 mm (0.15 in.) 5x 7 Four
Character Alphanumeric

•

~ .. ~ ~ .. : ~n;

Color
Standard Red,
Red Glass
Contrast Fi~er

CMOSIC
HCMS-2011

Yellow

12-pin Ceramic 7.62 mm
HCMS-2012 (0.3 in.) DIP with Glass Lens

High Efficiency Red

HCMS'2013 Operating Temperature Range:
-55"C to +1 OO"C

High Perlormance
Green

HCMS-2310 5.0 mm (0.20 in.) 5x7 Four
Character Alphanumeric
HCMS-2311
CMOSIC
HCMS-2312
12 Pin Ceramic 6.35 mm (0.25 in.)
HCMS-2313 DIP w~h untinted glass lens

Standard Red

Operating Temperature Range:
HCMS-2314 -55"C to +1 OO"C
HDSP-2351 4.87 mm (0.19 in.) 5 x 7 Four
Character Alphanumeric Sunlight
HDSP-2352 Viewable Display
HDSP-2353 12 pin Ceramic 6.35 mm
(0.25 in.) DIP with Untinted
Glass Lens

No.
3-240

Yellow
High Efficiency Red
High Performance
Green
Orange
Yellow
High Efficiency Red
High Performance
Green

Operating Temperature Range:
-55"C to +1OO"C
'Contact your local Hewlett-Packard sales representative lor information regarding this product.

3-210

Application
o Extended Temperature Applications
Requiring High
Reliability
o 1/0 Terminals
o Avionics

---.--

Glass/Ceramic Alphanumeric Displays (Cant.)
Device

PIN
Description
HDSP-2010 3.7 mm (0.15 in.) 5 x 7 Four
Character Alphanumeric

Color
Standard Red,
Red Glass
Contrast Fitter

12 pin 7.62 mm (0.3 in.)
Ceramic DIP with Red Glass Lens
Operating Temperature Range:
--40~to+85~

..
, ., ...
',00'
,_.,
,",__ : "'j
t •.
__
__
I

I

~

I

~

"

~

~

I'

~

•

~

HDSP-2310 5.0 mm (0.20 in.) 5 x 7 Four
Character Alphanumeric
HDSP-2311
12 Pin Ceramic 6,35 mm (0,25 in.)
HDSP-2312 DIP wHh Untinted Glass Lens
HDSP-2313 Operating Temperature Range:
-55~to +85~

,-_ .. , r-·-,

L..J L.J

HDSP-2450 6,9 mm (0,27 in.) 5 x 7 Four
Character Alphanumeric
HDSP-2451
28 Pin Ceramic 15.24 mm
HDSP-2452 (0.6 in.) DIP with Untinted
Glass Lens
HDSP-2453
Operating Temperature Range:

Application
o Extended Temperature Applications
Requiring High
Reliability
o VO Tenninals
o Avionics
o Ground Support,
Shipboard Systems

Standard Red
Yellow

Page
No.

.

;----;-

For further
information see
Application Note 1016.

High EffiCiency Red
High Perionnance
Green
Standard Red

~

Yellow
High Efficiency Red
High Perionnance
Green

-55~to+85~

HDSP-6650 5.0 mm (0.20 in.) 5 x 7 Four
Character Dot Matrix
HDSp·6651
Fully Intelligent Display
HDSP-6652
18 pin Ceramic 15.24 mm
HDSP-6653 (0.6 in.) DIP with Untinted
Glass Lens

Orange

3-213

Yellow
High Efficiency Red
Green

Operating Temperature Range:
-55~to+85~

·Contact your local Hewlett-Packard sales representative for Information regarding this product,

3-211

GlassiCeramic Hexadecimal and Numeric Dot Matrix Displays
Oevice

............ ,....,,....,

·...
··...··
·...· .

wwww
(A)

...·
···...
.·...·.

PIN
4N51
(A)

Description
NumericRHDP
DecoderlDriverlMemory

4N52
(B)

Numeric LHDP BuiH-in
Decoder/DriverlMemory

4N54
(C)

Hexadecimal Built-in
Decoder/DriverlMemory

4N53
(D)

Character PluslMinus Sign

Package
8 Pin Hermetic BuiH-in
15.2 mm (0.6 in.) DIP with
Gold Plated Leads

Applications
• High Reliability
Applications
• Avionics
• Fire Control Systems
• Ground Support,
Shipboard Equipment

f---

, .... r"LI"'l-'l

HDSP-0781
(A)

Numeric RHDP, Built-in
DecoderlDriver Memory

HDSP-0782
(B)

Numeric LHDP, Built-in
Decoder/Driver Memory

L..J(BIL..J

HDSP-0783
(D)

Overrange ±1

...... .., c-. ,....,

HDSP-0784
(C)

Hexadecimal, Built-in
DecoderlDriver Memory

HDSP-0791
(A)

Numeric RHDP, BuiH-in
DecoderlDriver Memory

HDSP-0792
(B)

Numeric LHDP, BuilNn
Decoder/Driver Memory

HDSP-0793
(D)

Overrange ±1

HDSP-0794
(C)

Hexadecimal, Built-in
Decoder/Driver Memory

HDSP-0B81
(A)

Numeric RHDP, Built-in
Decoder/Driver Memory

HDSP-OB82
(B)

Numeric LHDP, Built-in
Decoder/Driver Memory

HDSP-0883
(D)

Overrange ±1

HDSP-0884
(C)

Hexadecimal, Built-in
DecoderlDriver Memory

HDSP-0981
(A)

Numeric RHDP, Built-in
DecoderlDriver Memory

HDSP-0982
(B)

Numeric LHDP, Built-in
Decoder/Driver Memory

HDSP-0983
(C)

Overrange ±1

HDSP-0984
(D)

Hexadecimal, Built-in
DecoderlDriver Memory

·...
···....·
·...·

High Efficiency Red
Low Power

High Efficiency Red
High Brightness

3-256

• Ground, Airborne,
Shipboard Equipment
• Fire Control Systems
• Industrial

lJl...J l...J l...J

Ie)
I"1J""1JLJ'"

•
...;.....·
•
•·
.

~

(0)

7.4 mm (0.29 in.)
4 x 7 Single Digtt
Package
8 Pin Glass/Ceramic
15.2 mm (0.6 in.) DIP

3-212

Page
No.
3-249

Yellow

High Performance Green

• Ground, Airbome,
Shipboard Equipment
• Fire Control Systems
• Industrial

Fli;' HEWLETT'"
~~PACKARD

Four Character 5 nun Glass/·
Ceramic 5 x 7 Alphanumeric
Displays for Avionic Applications
Technical Data
HDSP-665X Series

Features

Description

• Readable in 8000 fc Daylight
with Filter
• Wide 60° Viewing Angle
• Glass/Ceramic Package
• Operating Temperature
Range: -55"C to +85"C
• On-Board CMOS IC
• Data RAM, Decoder, LED
Drive Circuitry
• 128 ASCII Character Set
• Dinuning and Blanking

These devices are hermetic, 5.0
mm (0.20 in.) high, four character, 5 x 7 dot matrix alphanumeric LED displays designed
specifically for use in avionic
systems, both commercial and
military. These displays are also
ideal for use in other non-avionic
high reliability and military
applications. When used with the
proper contrast enhancement
filter, these displays are readable
in an 8000 fc daylight ambient.
Each display has an on-board
CMOS IC that decodes and stores
7 bit ASCII data and drives the
LED matrix within each charac-

ter. The IC may be interfaced to a
microprocessor by connecting
the inputs directly to the
microprocessor address and data
buses. Display blanking and eight
levels of dimming are software
controlled.

Device Selection Guide
Yellow

High Efficiency Red

High Performance Green

Orange

HDSP-6651

HDSP-6652

HDSP-6653

HDSP-6650

ESD WARNING: NORMAL CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO
AVOID STATIC DISCHARGE.
5964-6386E

3-213

Absolute Maximum Ratings
Supply Voltage, Voo to Ground!l! ..................................... -0.5 V to 7.0 V
Input Voltage, Any Pin to Ground ............................ -0.5 to Voo +0.5 V
Free Air Operating Temperature Range, TA ................... -55"C to +85"C
Storage Temperature Range, Ts .................................. -55"C to + 100"C
CMOS IC Junction Temperature, TJ(IC) .................................... + 150"C
ESD Protection, R = 1.5 kO, C = 100 pF ............. Vz = 4 kV (each pin)
Maximum Solder Temperature
at Lead Seating Plane, t < 5 sec .............................................. 260°C
Note:
1. Maximum voltage is with no LEDs illuminated.

Package Dimensions
27M

";~-~
_

(IJ110,REf.

CaDDQ

55~5~

caDDO

DarDj

---0

I

I

1

I

t

:::::
:::::
:::::
aoaaa

::~~:

oaoaa

lIaODCli

aaaDa

aaotla

:::::

aar

!

oa

ODDDO
0'111110

OQODO

aODoa
lIoaDa

I

] :::',TYP.

I
3.43±G.25

(O.'35 z °.ll1111

1.111
(OJMOIIEF.

I ....!0JI1111

EID

IDENnFER

G.2!I

H...

COIlN1llY
OF ORIGIN

(,

-t

TYP.

.J=: : :; ;: : :;:;: ;: :;: (: ;'~: : : ,R;EF;·;I:__
±=~rl ~:

~.l-~~

(8EA1*G PLANE) .1-----'1"

~REf_

,1.24
(0.I00I

1.27 1YP.
(O.GIDI

HDSP-665X

Notes:
1. All dimensions are in mm (inches).
2. Unless otherwise specified, tolerance
on dimensions is ± 0.38 mm (± 0.015 in.).
3. For yellow and green devices only.
4. Leads are Alloy 42, solder dipped.

3-214

Pin
No.

Function

1
2
3
4
5
6
7
8

CEI Chip Enable
CE2 Chip Enable
CLRClear
CUE Cursor Enable
CU Cursor Select
WRWrite
Al Address Input
Ao Address Input

9

\Do

Pin
No.

Function

10

GND

11

Do Data Input
DI Data Input
D2 Data Input
D3 Data Input
D6 Data Input
D5 Data Input
D4 Data Input
BL Display Blank

12
13
14
15
16
17
18

Character Set
000101010101010101
rO='~~O~t-~O~r-'~~~'~t-~O-;~O~~~'~~'~t-~O~~O~t-~'-;~l~~O~~~O-;__'~t-~1~
02
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

ASCII

CODE

rO=3~~O~t-~O~~O~~~O~t-~O-;~O--~O~1-~O~t-~1~~1~t-~1-;~1~~1~~~,-;--,~t-~,~

D6 05 D4 Hex

o o o o

o o

2

.I. ....
•
1_'

3

H.

4

"HI

5

6

7

8

9

• ••1.
•
' •••
.• ...;
•• ••
,_

ABC

0

E

I

: I. :

H ••

F

I..,:

I • •'

I :

•

o

-

....•• .-:: •• •. •••• • .- ...••• .r::. J'.
'.
•
• ••
•••
•
••••
••
I:::'
.. - :,'....•••: .••...•••• ·....:-.i'·.!• • ..H"• ••10-...• :..• .. ....
• ..•J. m
••• er'
_.
.
.• .':-• ....
• ...... ...
• • •• •• ••
• • .... ...
•
...:--:'. :.:..
•
•
•
••
:
.';': I"'; .1"; 1--1 ,--: : : ••-•• ·
I :: • • =•• •• +
.:- T
••• u . - ....... -- ••••• '-' ... :-: ••••
•
•
:: • tl.. .'. •••• • • .:....
:• ::
.,.:•• .....
·r ....•• ••'.'...••• .' :'. ..: .,....
•••••
•..
•• ''',''
•
••
::
•• ..;.' • ...
•
•
•
.., ·...: •-....• •_.•.:•• .:-...: ....••.. '''.,• ••.--•• .•...:...• :: ::•• .' ..... •••• ....:
•I,':•
•
.....- •.-.,•• ....•• '-' ......- ...I' ...= .... :: ••••
·.........,., -:-.
•• .'
•
•
•
:
.
.:
•
•
:
:
..
.
:
:•••
..• :-::•·•: _.-• • :: .J..:i ! ::.. •:•.....• --•,• .•• -: .::• ..•••• •• •i I:: •••• • :-.
1

0

o

o

2

3

o o

4

;

5

6

I

II

.1• •

i _. .... ,
i
i ::~
H'"

I

- •• :••:
.•_.- ,--.
• ..• :'-. -·
••••
•
• •
i
.',
••••• •• •• ·.
..
: : 1_'
...
..•• • :•••
•
: ... .. _. ••
...
...
..
-...: ...:."" : E... .ei.. --••...• ....i •::::• -:• .:• .:.: .. . ........
• ..·
-••_" -_.: ..•••• ••. -•..._.. J..:".. ·i .:: :•','::••••.....: •••'.'••• •--:• ._.
I

• •

I

: I

•••••

• •• •

:

M"

I

o

I

I

.I,'

o

I"

I •

I

I ••

I

:

I

:

•• •• ••

""

I

..

I

:

• • •• •• '-:
•••••
••••• :
:..
..:
• i .
":
i ••H:,'.: ::'_.: :, _I•
"'
••
.:
••
• ••
.'
• i : '.' •••
••
•••
I' •:
••
•
:'
•
•••
• •• •
••
•
I

I
•

I . .:

I

7

I

•

•

•

I

II I

I

Notes:
1. High = 1 level.
2. Low = 0 level.

3-215

Recommended Operating Conditions
Parameter

Synlbol

Min.

Typ.

4.5

5.0

Supply Voltage

Electrical Characteristics over Operating Temperature Range
4.5 < VDD < 5.5 V (unless otherwise specified)
. All Devices
25"C[1[
Paramet~r

IDDBlank
Input Current
Input Voltage High .
Input Voltage Low
IDD 4 digits
20 dots/character[2,3]
IDD Cursor all
dots ON @50%
Thennal Resistance
IC Junction to Pin

Synlbol

Min.

Typ.

Max.
,

1.0

IDDCblnk)

Max.

Units

4.0

rnA

II

-40

10

~

VIR
VIL

2.0

VDD
0.8

V

GND

V

IDD (#)

110

130

160

rnA

"#" ON in all four
locations

IDD (CU)

92

110

135

rnA

Cursor ON in all
four locations

RaJ .PIN

11

Notes:
1. "DD= 5.0 V.
2. Average IOD measured at full brightness. Peak IDD = 28/15 x Average IDD(#).
3. IOD(#) max. = 130 rnA at full brightness, 150"C Ie junction temperature andVOD = 5.5 V.

3-216

Test Conditions
All Digits Blanked
VIN = OV to VDD
VDD = 5.0V

"e/W

IC Junction to GND
Pin 10.

Optical Characteristics at 25"C11]
VDD = 5.0 V at Full Brightness
HDSP-6651 Yellow
Parameter

Symbol

Min.

Typ.

Units

Test Conditions

Iv

3.9

5.0

mcd

"*" illuminated in all four digits.

Average Luminous Intensity
per digit, Character Average

19 dots ON

Peak Wavelength
Dominant Wavelength[2]

ApEAK

583

nm

Ad

585

nm

HDSP-6652 High Efficiency Red
Parameter
Average Luminous Intensity
per digit, Character Average
Peak Wavelength
Dominant Wavelength[2]

Symbol

Min.

Typ.

Units

Test Conditions

Iv

3.9

5.0

mcd

"*" illuminated in all four digits.
19 dots ON

ApEAK

635

nm

Ad

626

nm

HDSP-6653 Green
Parameter
Average Luminous Intensity
per digit, Character Average
Peak Wavelength
Dominant Wavelength[2]

Symbol

Min.

Typ.

Units

Test Conditions

Iv

5.55

7.40

mcd

"*" illuminated in all four digits.
19 dots ON

ApEAK

568

nm

Ad

572

nm

HDSP-6650 Orange
Parameter
Average Luminous Intensity
per digit, Character Average
Peak Wavelength
Dominant Wavelength[2]

Symbol

Min.

Typ.

Units

Test Conditions

Iv

3.9

5.0

mcd

"*" illuminated in all four digits.
19 dots ON

ApEAK

600

nm

Ad

602

nm

Notes:
1. Refers to the initial case temperature of the device immediately prior to the light measurement.
2. Dominant wavelength, ld' is derived from the eIE chromaticity diagram, and represents the single wavelength which defmes the
color of the device.

3-217

AC Timing Characteristics over Operating
Temperature Range at VDD = 4.5 V
Parameter

Symbol

Min.

Units

Address Setup
Address Hold
Data Setup
Data Hold
Chip Enable Setup
Chip Enable Hold
Write Time
Clear
Clear Disable

tAS
tAR
tos
tOH
tCES
tCEH
tw
tCLR
t CLRO

10
40
50
40
0
0
75
10

ns
ns
ns
ns
ns
ns
ns

1

~s

~s

Timing Diagram

2.0V
O.BV

AO:Al.aJ

a

CLR

3-218

_tc_~_o_________________________
2.0V
0.8 V

Electrical Description
Pin Function

Description

Chip Enable
(CE I and CE 2 ,
pins 1 and 2)

CE I and CE 2 must be a logic 0 to write to the
display.

Clear
(CLR, pin 3)

When CLR is a logic 0 the ASCII RAM is reset
to 20hex (space) and the Control Register/
Attribute RAM is reset to OOhex.

Cursor Enable
(CUE pin 4)

CUE determines whether the IC displays the
ASCII or the Cursor memory. (1 = Cursor,
0= ASCII).

Cursor Select
(CU, pin 5)

CU determines whether data is stored in the
ASCII RAM or the Attribute RAM/Control
Register. (1 = ASCII, 0 = Attribute
RAM/Control Register).

Write (WR, pin 6)

WR must be a logic 0 to store data in the
display.

Address Inputs
(AI andAo,
pins 8 and 7)

Ao-AI selects a specific location in the display
memory. Address 00 accesses the far right
display location. Address 11 accesses the far
left location.

Data Inputs
(Do-D6' pins 11-17)

Do-D6 are used to specify the input data for the
display.

VDD (pin 9)

VDD is the positive power supply input.

GND (pin 10)

GND is the display ground.

Blanking Input
(BL, pin 18)

BL is used to flash the display, blank the
display or to dim the display.

Display Internal Block
Diagram
Figure 1 shows the HDSP-665X
display internal block diagram.
The CMOS IC consists of a 4 x 7
Character RAM, a 2 x 4 Attribute
RAM, a 5 bit Control Register, a
128 character ASCII decoder and
the refresh circuitry necessary to
synchronize the decoding and
driving of four 5 x 7 dot matrix
characters.
Four 7 bit ASCII words are stored
in the Character RAM. The IC
reads the ASCII data and decodes
it via the 128 character ASCII
decoder.
A 5 bit word is stored in the Control Register. Three fields within
the Control Register provide an 8
level brightness control, master
blank, and extended functions
disable.
For each display digit location,
two bits are stored in the Attribute
RAM. One bit is used to enable a
cursor character at each digit
location. A second bit is used to
individually disable the blanking
features at each digit location.
The display is blanked and
dimmed through an internal
blanking input on the row drivers.
Logic within the IC allows the
user to dim the display either
through the BL input or through
the brightness control in the
control register. Similarly, the
display can be blanked through
the BL input, the Master Blank in
the Control Register, or the Digit
Blank Disable in the Attribute
RAM.

3-219

Ao -A1

WRITE
ADDRESS

DO -D6

DATA IN

CHARACTER/CURSOR
MULTIPLEXER

ASC II DECODER

CHARACTER RAM
DATA
OUT

CHARACTER/
CURSOR
MULTIPLEXER

WRITE
(Ox 71
3

READ
ADDRESS

ROW

CURSOR

CHARACTER

SELECT

SELECT

CLR

Wi
ATTRIBUTE RAM

DO

CUE'-----'-..
DC.

OIGIT CURSOR

-------0,

DIGIT BLANK
DISABLE

-------Ao-A1

WRITE ADDRESS
(2x41

WRITE

READ ADDRESS

CLR
CLR
CONTROL REGISTER

Oz

MASTER
BLANK

-----0,-0.

BRIGHTNESS
LEVELS

-----0.

EXTENOED
FUNCTIONS
DISPLAY

-----1 x 5

WRITE
CLR

CLR
r-------~

DIGITAL
DUTY
CONTROL

4 (LSS's)

osc

+ 32

2 (MSB',I

Figure 1. Internal Block Diagram

3-220

+7

Display Clear

is set to logic 0, data will be
loaded into the Control Register
and Attribute RAM. Address
inputs Ao-Al are used to select
the digit location in the display.
Data inputs Do-D6 are used to
load information into the display.
Data will be latched into the
display on the rising edge of the
WR signal. Do-D6' Ao~Al' CEl ,
CE 2 , and CU must be held stable
during the write cycle to ensure
that correct data is stored into
the display. Data can be loaded
into the display in any order.
Note that when Ao and Al are
logic 0, data is stored in the right
most display location.

Data stored in the Character
RAM, Control Register, and
Attribute RAM will be cleared if
the clear (CLR) is held low for a
minimum of 10 I1s. Note that the
display will be cleared regardless
of the state of the chip enables
(CE l , CE 2). After the display is
cleared, the ASCII code for a
space (20H) is loaded into all
character RAM locations and OOH
is loaded into all Attribute RAMI
Control Register memory
locations.

Data Entry
Figure 2 shows the truth table for
the HDSP-665X displays. Setting
the chip enables (CE l , CE 2) to
logic 0 and the cursor select (Cll)
to logic 1 will enable ASCII data
loading. When cursor select (CU)

CE I

WR

Cursor
When cursor enable (CUE) is a
logic 1, a cursor will be displayed
in all digit locations where a logic

1 has been stored in the Digit
Cursor memory in the Attribute
RAM. The cursor consists of all
35 dots ON at half brightness. A
flashing cursor can be displayed
by pulsing CUE. When CUE is a
logic 0, the ASCII data stored in
the Character RAM will be
displayed regardless of the Digit
Cursor bits.

Blanking
Blanking of the display is controlled through the BL input, the
Control Register and Attribute
RAM. The user can achieve a
variety of functions by using
these controls in different
combinations, such as full
hardware display blank, software
blank, blanking of individ- ual
characters, and synchronized

01

CUE

BL

CLR

0

1

1

1

1

1

X

X

0

Reset RAMs

X

0

1

Blank Display but do not reset
RAMS and Control Register

CE.

CU

Al

Ao

D.

05

0,

Os

D.

Display Stored Cursor

X

X

X

X

X

X

X

0

0

X

X

Intensity
Control

Extended
0

Functions

X

Master
Blank

Disable
o~

0

0

1

000 = 100%
001 = 60%
010 ~ 40%
011 ~ 27%
100 ~ 17%
101 ~ 10%
110 ~ 7%
111 = 3%

Enable
D 1-D5

X

1

0

0

1

0
0

1

0

~

Disable
DrD5

o~

Displa¥
ON
1~
Displa¥
Blanked

0

1

1

Always

Enabled

X

X

X

1

1

0

X

Digit
Blank
Disable 0

Cursor

Digit

Digit
Blank
Disable 1

Digit
Cursor
1

Digit
Blank

Disable 2

Digit
Cursor
2

Digit
Blank
Disable 3

Digit
Cursor
3

X

X

X

1

X

X

1

Write to Attribute RAM
and Control Register

0

1

0

0

Digit 0 ASCII Data (Right Most Character)

1

0

1

Digit 1 ASCII Data

1

1

0

Digit 2 ASCII Data

1

1

1

Digit 3 ASCII Data (Left Most Character)

X

X

X

0

1

X

o = LogIC 0; 1 =

0

X

DBDn = 0, Allows Digit n to be
blanked

DBDn = 1 Prevents Digit n
from being blanked.
Den = 0 Removes cursor from
Digitn

Do

X

Function

Displa¥ASCII
X

X

Do

DCn = 1 Stores cursor at

Digitn

Write to Character RAM

X

X

X

X

X

X

X

No Change

Logic 1; X = Do Not Care.

Figure 2. Display Truth Table

3-221

flashing of individual characters
or entire display (by strobing the
blank input). All of these blanking
modes affect only the output
drivers, maintaining the contents
and write capability of the
internal RAMs and Control
Register, so that normal loading
of RAMs and Control Register can
take place even with the display .
blanked.
Figure 3 shows how the Extended
Function Disable (bit D6 of the
Control Register), Master Blank
(bit D2 of the Control Register),
Digit Blank Disable (bit Dl of the
Attribute RAM), arid BL input can
be used to blank the display.
When the Extended Function
Disable is a logic 1, the display
can be blanked only with the BL
input. When the Extended
Function Disable is a logic 0, the
display can be blanked through
the BL input, the Master Blank,
and the Digit Blank Disable. The
entire di&play will be blanked if
either the BL input is logic 0 or
the Master Blank is logic 1,
providing all Digit Blank Disable
bits are logic O. Those digits with
Digit Blank Disable bits a logic 1
will ignore both blank signals and
remain ON. The Digit Blank

EFD

MB

DBDn

BL

0

0

0

0

Display Blanked by

0

0

X

1

Display ON

0

X

1

0

Display Blanked by BL. Individual characters
"ON" based on "1" being stored In DBDn

0

1

0

X

Display Blanked by MB

.0

1

1

1

Display Blanked by MB. Individual characters
"ON" based on "1" being stored in.DBDn

1

X

X

0

Display Blanked by BL

1

X

X

1

Display ON

m:.

Figure 3. Display Blanking Truth Table

Disable bits allow individual
characters to be blanked or
flashed in synchronization with
the BL input.

Dimming
Dimming of the display is
controlled through either the BL
input or the Control Register. A
pulse width modulated signal can
be applied to the BL input to dim
the display. A three bit word in
the Control Register generates an
internal pulse width modulated
signal to dim the display. The
internal dimming feature is

enabled only if the Extended
Function Disable is a logic O.
Bits 3-5 in the Control Register
provide internal brightness
control. These bits are interpreted as a three bit binary code,
with code (000) corresponding to
the maximum brightness and
code (111) to the minimum
brightness. In addition to varying
the display brightness, bits 3-5
also vary the average value of
IDD . IDD can be specified at any
brightness level as shown in
Table 1:

Table 1. Current Requirements at Different Brightness Levels
Symbol
I DD (#)

3-222

Ds
0
0
0
0
1
1
1
1

D,
0
0
1
1
0
0
1
1

D3
0
1
0
1
0
1
0
1

Brightness

25"C Typ.

25"C Max.

Max. over Temp.

Units

100%

110
66
45
30
20
12
9
4

130
79
53
37
24
15
11
6

160
98
66
46
31
20
15
9

rnA
rnA
rnA
rnA
rnA

60%
40%
27%
17%
10%
7%
3%

rnA

rnA
rnA

· '~-1------~--,
Ik

4

iii: (PIN III
10kHz
OUTPUT

Figure 4. Intensity Modulation
Control Using an Astable
Multivibrator (reprinted with
pennission from Electronics
magazine, Sept. 19, 1974, V1VU
Business pub. Inc.)

Figure 4 shows a circuit designed
to dim the display from 98% to
2% by pulse width modulating the
BL input. A logarithmic or a linear
potentiometer may be used to
a VDD), and
when a high current is forced into
the input. To prevent input
current latchup and ESD damage,
unused inputs should be
connected to either ground or
VDD • Do not apply voltages to
inputs until VDD has been applied
to the display. VDD must be
applied to the display prior to
applying voltages to inputs in
order to prevent latchup.
Transient voltages should be
eliminated from VDD and data

lines. A 0.1 ~F capacitor placed
between pin 9 (VDD) and pin 10
(GND) at each display will help
eliminate extraneous noise from
affecting the ICs. The impedance
of the ground return line from pin
10 of each display to the power
supply should be as close to zero
as possible at a frequency of
200Hz.

ESD Susceptibility
These displays have an ESD
susceptibility rating of CLASS 3
per MIL-HDBK-263A and CLASS
3 per MIL-STD-883C.

Contrast Enhancement
Filter Vendors
For information on contrast
enhancement, see Application
Note 1015, Contrast Enhancement Jor LED Displays.

Soldering and Post Solder
Cleaning
For information on soldering and
post solder cleaning, see Application Note 1027 Soldering LED
Components. These displays are
fully compatible with semiaqueous cleaning processes that
use the terpene solvent BIOACT
EC-7R.

Night Vision Lighting
With the use of NVG/DV filters,
the HDSP-6651/6653/6650
displays may be designed into
NVG lighting applications. For
further information, refer to
Application Note 1030 LED
Displays and Indicators and
Night Vision Imaging System
Lighting.

3-223

rli~ HEWLETT"
~~PACKARD

Eight Character 5.0 mm
(0.2 inch) Glass/Ceramic Smart
5 x 7 Alphanumeric Displays
for Military Applications
Technical Data

HDSP-2131
HDSP-2132.
HDSP-2133
HDSP-2179

Features

-

• Wide Operating Temperature Range -55"C to +85"C
• Smart Alphanumeric Display
On-Board CMOS IC
Built-In RAM
ASCII Decoder
LED Drive Circuitry
• 128 ASCII Character Set
• 16 User Def"mable
Characters
• Programmable Features
Individual Character Flashing
Full Display Blinking
Multi-Level Dimming and
Blanking
Self Test
Clear Function
• Read/Write Capability
• Full TTL Compatibility
• HDSP~2131/-2133/-2179 Useable in Night Vision Lighting
Applications

• Categorized for Luminous
Intensity
• HDSP-2131/2133 Categorized for Color
• Excellent ESD Protection
• Wave Solderable
• X-Y Stackable

Description
The HDSP-2131 (yellow), HDSP2179 (orange), HDSP-2132 (high
efficiency red) and the HDSP2133 (green) are eight-digit, 5 x
7 dot matrix, alphanumeric
displays. The 5.0 mm (0.2 inch)
high characters are packaged in a
standard 7.64 mm (0.30 inch) 32
pin DIP. The on-board CMOSJC
has the ability to decode 128
ASCII characters, which are
pennanently stored in ROM. In
addition, 16 programmable
symbols may be stored in an onboard RAM. Seven brightness

levels provide versatility in adjusting the display intensity and
power consumption. The HDSP213X is designed for Standard
microprocessor interface techniques. The display and special
features are accessed through a
bidirectional eight-bit data bus.
These features make the HDSP213X ideally suited for applications where a hennetic, low
power alphanumeric display is
required.

Devices
Yellow

High Efficiency Red

IDgh Performance Green.

Orli.nge

HDSP-2131

HDSP-2132

HDSP-2133

HDSP-2179

3-224

5964-6387E

Package Dimensions
(1.68)
.42'72~

5.33 TYP.
(0.210)

PIN 17

1

1,

(0.24)

~.oW'

[]C
.

PIN 1 IDENTIFIER

-.

8.,0 REF.

PART NUMBER

HDSP·213X12179

7.82

(0.300)

_---.L.

PIN
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

FUNCTION
ClS
ClK
WR
CE
RST
RO
NO PIN
NO PIN
NO PIN
NO PIN
00
01
02
03
NC

VDD

PIN
NO.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FUNCTION
GNO (SUPPLY)
GNO(lOGIC)
04
05
06
07
NO PIN
NO PIN
NO PIN
NO PIN

FL

AO
A1
A2
A3
A4

Note:
1. All dimensions are In mm (Inches).
2. Unless otherwse specified tolerance is iO.30·mm (iO.015).
3. For green and yellow devices only.
4. leads are copper alloy, solder dipped.

Absolute Maximum Ratings
Supply Voltage, VDD to Ground[l] ....................................... -0.3 to 7.0 V
Operating Voltage, VDD to Ground[2] ............................................. 5.5 V
Input Voltage, Any Pin to Ground ............................. -0.3 to VDD +0.3 V
Free Air Operating Temperature Range, TA .................... -55"C to +85"C
Storage Temperature, Ts ............................................. -55"C to + 100"C
CMOS IC Junction Temperature, TJ (lC) .................................... + 150"C
Maximum Solder Temperature
at Seating Plane, t < 5 sec ........................................................ 260"C
ESD Protection @ 1.5 kn, 100 pF.. ....................... Vz = 4 kV (each pin)
Notes:
I. Maximum voltage is with no LEDs illuminated.
2. 20 dots ON in all locations at full brightness.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH
THE HDSP-2131, HDSP-2132, HDSP-2133, AND HDSP-2179.

3-225

Character Set

3-226

Recommended Operating Conditions
Parameter

Symbol

Minimum

Nominal

Maximum

Units

Supply Voltage

VDD

4.5

5.0

5.5

V

Electrical Characteristics over Operating Temperature Range
4.5 < VDD < 5.5 V (unless otherwise specified)
25"C

Parameter

Symbol

Min.

Input Leakage
(Input without pullup)

II

-10.0

lIP

-30.0

25"C

Typ.ll] MaxJ1]

Max.l 2 ] Units
+10.0

IJA

Test Conditions
VIN = 0 to VDD'
pins CLK, Do-D7'
Ao-~

11

18

30

IJA

VIN = 0 to VDD ' _
pins RST, CLS, WR,
RD, CE, FL

InD (BLK)

0.5

1.5

2.0

rnA

VIN

IDD 8 digits
12 dots/character[3]

IDD(V)

200

255

330

rnA

''V'' on in all 8
locations

IDD 8 digits
20 dots/character[3]

I DD (#)

300

370

430

rnA

"#" on in all 8
locations

Input Voltage High

Vrn

2.0

VDD
+0.3

V

VDn

= 5.5V

Input Voltage Low

VIL

GND
-0.3V

0.8

V

VDn

= 4.5V

Output Voltage High

VOH

2.4

V

VDn == 4.5 V,
IOH = -40 IJA

Output Voltage Low
Do-D7

VOL

0.4

V

VDD = 4.5 V,
IOL = 1.6 rnA

0.4

V

VDD = 4.5 V,
IOL = 40 IJA

Input Clll'1'ent
(Input with pullup)
IDD Blank

Output Voltage Low
CLK
Thennal Resistance
IC Junction-to-PIN

R8J _PIN

11

= VDD

°CIW

Notes:
1. voo = 5.0 V.
2. Maximum 100 occurs at -55"C.
3. Average 100 measured at full brightness. See Table 2 in Control Word Section for 100 at lower brightness levels. Peak
100 = 28/15 x Average Inn (#).

3-227

Optical Characteristics at 25"C(4)
VDD

= 5.0 Vat Full Brightness

IDgh Efficiency Red HDSP-2132
Description
Luminous Intensity Character Average (#)
Peak Wavelength
Dominant Wavelength

Symbol

Minimum

Typical

Units

Iv

2.5

7.5

mcd

~

635

nm

Ad

626

nm

Orange HDSP-2179
Symbol

Minimum

Typical

Units

2.5

7.5

mcd

Peak Wavelength

Iv
ApEAK

600

nm

Dominant Wavelength

• Ad

602

nm

Description
Luminous Intensity Character Average (#)

Yellow HDSP-2131
Description
Luminous Intensity Character Average (#)
Peak Wavelength
Dominant Wavelength

Symbol

Minimum

Typical

Units

Iv

2.5

7.5

mcd

~

583

nm

Ad

585

nm

IDgh Performance Green HDSP-2133
Description
Luminous Intensity Character Average (#)
Peak Wavelength
Dominant Wavelength

Symbol

Minimum

Typical

Units

Iv
ApEAK

2.5

7.5

mcd

568

nm

574

nm

Ad

Note:
4. Refers to the initial case temperature of the device immediately prior to the light measurement.

3-228

AC Timing Characteristics Over Temperature Range
VDD = 4.5 to 5.5 V unless otherwise specified.

Reference
Number

Symbol

1

t ACC

Min,l1]

Units

Display Access Time
Write
Read

210
230

ns

Description

2

tACS

Address Setup Time to Chip Enable

10

ns

3

tCE

Chip Enable Active Time[2, 3]
Write
Read

140
160

ns

4

tACH

Address Hold Time to Chip Enable

20

ns

5

tCER

Chip Enable Recovery Time

60

ns

6

teES

Chip Enable Active Prior to Rising Edge of[I,2]
Write
Read

140
160

ns

0

ns

7

tCEH

Chip Enable Hold Time to Rising Edge of
Read/Write Signal[2, 3]

8

tw

Write Active Time [2,3]

100

ns

9

tWD

Data Valid Prior to Rising Edge of Write Signal

50

ns

10

tDH

Data Write Hold Time

20

ns

11

tR

Chip Enable Active Prior to Valid Data

160

ns

12

tRD

Read Active Prior to Valid Data

75

ns

13

tDF

Read Data Float Delay

10

ns

t RC

Reset Active Time[4]

300

ns

Notes:
1. Worst case values occur at an ICjunction temperature of 150"C.
2. For designers who do not need to read from the display, the Read line can be tied to VDD and the Write and Chip Enable lines can be
tied together.
3. Changing the logic levels of the Address lines when CE = "0" may cause erroneous data to be entered into the Character RAM,
regardless of the logic levels of the WR and RD lines.
4. The display must not be accessed until after 3 clock pulses (110 lIS min. using the internal refresh clock) after the rising edge of the
reset line.

3-229

AC Timing Characteristics Over Temperature Range
VDD

= 4.5 to 5.5 V unless otherwise specified.
Symbol
Fosc
FRF [5]

Description

25"C Typical

Units

Oscillator Frequency

57

28

kHz

Display Refresh Rate

256

128

Hz

FFL[6]

Character Flash Rate

2

1

Hz

t ST [7]

Self Test Cycle Time

4.6

9.2

Sec

Notes:
5.FRF = Fosc!224.
6.FFL = Fosc!28,672.
7.tST = 262,144IFosc ·

Write Cycle Timing Diagram

®
®

®

DO-O,
INPUT PULSE LEVELS - 0.6 V TO 2.4 V

3-230

Minimum[l]

Read Cycle Timing Diagram

INPUT PULSE LEVELS: 0.' V TO 2.4 V
OUTPUT REFERENCE LEVELS: u.s V TO 2.2 V
OUTP~ LOADING· I TTL LOAD AND lQOpF·

Relative Luminous Intensity vs.
Temperature

Character Font
(Not to Scale)

4.0
3.5

r-2.15lo.112) TYP--j

L

Ic,

C2

C3

C4

1:61

r-•••••

0,7610,0301 TYP - .

O.254(O.OIO)TVP~

I

•

•

•

fi
'"

•

N

!C

R=l
R2

•••

• • A3

•••

• • A4

•••••
•••

Ii!
fil

!:!
....
c

4.83 10.190) TYP

A~'

I

~

• • AS

•••••

A7

TA -AMBIENT TEMPERATURE _·C

I

---I

I---O.fi5 (0.02111 TVP

3-231

Electrical Description
Pin Function

RESET (RST, pin 5)

Reset initililizes the display.

FLASH (FL, pin 27)

FL low indicates an access to the Flash RAM and is unaffected by the
state of address lines A3-~.

ADDRESS INPUTS
(Ao-~, pins 28-32)

Each location in memory has a distinct address. Address inputs (Ao-A2)
select a specific location in the Character RAM, the Flash RAM or a
particular row in the UDC (User-Defmed Character) RAM. A3-~ are
used to select which section of memory is accessed. Table 1 shows the
logic levels needed to access each section of memory.

Table 1. Logic Levels to Access Memory
FL

A4

Aa

Section of Memory

A2 Al

0

X

X

Flash RAM

Character Address

1

0

0

UDC Address Register

Don't Care

1

0

1

UDCRAM

Row Address

1

1

0

Control Word Register

Don't Care

1

1

1

Character RAM

Character Address

Ao

= 1) or external (CLS = 0)

CLOCK SELECT
(CLS, pin 1)

This input is used to select either an internal (CLS
clock source.

CLOCK INPUT/OUTPUT
(CLK, pin 2)

Outputs the master clock (CLS
displays.

WRITE (WR, pin 3)

Data is written into the display when the WR input is low and the
CE input is 'low.

CHIP ENABLE (CE, pin 4)

This input must be at a logic low to read or write data ~ the display and
must go high between each read and write cycle.

READ (RD, pin 6)

Data is read from the display when the RD input is low and the CE
input is low.

DATA Bus (Do-D7'
pins 11-14, 19-22)

The Data bus is used to read from or write to the display.

GND(sUPPLy) (pin 17)

This is the analog ground for the LED drivers.

GND(LOGIC) (pin 18)
VDD(POWER)

3-232

(pin 16)

= 1) or inputs a clock eCLS = 0) for slave

This is the digital ground for internal logic.

This is the positive power supply input.

A

~EN

UDC ADDR
REGISTER

p.,r-

AD
WR
0 0 -0 1

UDC
ADOR

CLR
PRE SET

A.

::1'

UDC
RAM

CE_

A.

'----

::~

.--

1

CE

Ali

EN

AD

Wii

WR

f--

Ao-A2
r-- RESET

A.

l

A ••

~
FL
~

CONTROL
WORD
REGISTER

~

WR

0 0 -0,

r;::D-

~h
2~.

31
,

L

6

RESULT

7

SELF
TEST
IN

TEST

~

I--FLASH
DATA

ROM
TEST

SELF
TEST

CLR

TEST~
OK
FLASH
CLR2

CLS

w

""

~

A

G

tD-~

.-- TIMING

LED

.-

TEST

TIMING

TEST OK

CLK

DOT
DATA

8 5x 7
CHARACTERS

ROW DRIVERS}

SELF
TEST

START

CLR1

ROW
SEL

f--

FLASH
RAM

VISUAL
TEST

BLINK
SELF

m.::

DOT
DRIVERS

RESET
CHAR
ADOR

FLASH

RESET

f.

INTENSITY

ASCII
DECODER

DOT

DATA

SELF

EN
RD
WR
D.
Ao~A,

RESET

EN

f--

L--- 0 0 -0,

CHARADDR

~

FI

CE

Do-D3
ffEN

~

0 0 -0,

00-0 ,
Ao-A2
A.

RST

hI
CHARACTER
RAM 00-0 ,

EN
RD
WR
DOT
Do-D,
DATA
Ao-A,
UDC ADDR
ROW SET

INTENSITY
FLASH
BLINK
RESET
CLOCK

CHAR
ADDR
TIMING
AND
CONTROL

ROW SET
TIMING

Figure 1. HDSP·213XJ·2179 Internal Block Diagram.

GLASS/CERAMIC
DISPLAYS

Display Internal Block
Diagram
Figure 1 shows the internal block
diagram of the HDSP-213X/-2179
display. The CMOS IC consists of
an 8 byte Character RAM, an 8 bit

Flash RAM, a 128 character ASCII
decoder, a 16 character UDC
RAM, a UDC Address Register, a
Control Word Register, and the
refresh circuitry necessary to
synchronize the decoding and

driving of eight 5 x 7 dot matrix
characters. The maJor user
accessible portions of the display
are listed below:

Character RAM

This RAM stores either ASCII character data or a UDC RAM address.

Flash RAM

This is a 1 x 8 RAM which stores Flash data.

User-Defined Character
RAM (UDC RAM)

This RAM stores the dot pattern for custom characters.

User-defined Character
Address Register
(UDC Address Register)

This register is used to provide the address to the UDC RAM when
.the user is writing or reading a custom character.

Control Word Register

This register allows the user to a VDD) and
when a high current is forced into
the input. To prevent input current latchup and ESD damage,
unused inputs should be
connected either to ground or to
VDD . Voltages should not be
applied to the inputs until VDil has
been applied to the di,splay. Transient input voltages should be
eliminated.

Thennal Considerations
The HDSP-213X/-2179 has been
designed to provide a low thermal resistance path from the
CMOS IC to the 24 package pins.
This heat is then typically
conducted through the. traces of
the user's printed circuit board to
free air. For most applications no
additional heatsinking is required.
The maximum operating IC
junction temperature is 150"C.
The maximum IC junction temperature can be calculated using
the following equation:

3-238

TlIC) MAX = TA
+ (PDMAX) (R8J .PIN +
Where
PDMAX

ESD Susceptibility
R8pIN_~

= (YDDMAX) (IDDMAX)

IDDMAX = 370 rnA with 20 dots
ON in eight character locations at
25"C ambient. This value is from
the Electrical Characteristics.
table.
PDMAX = (5.5 V) (0.370 A)
= 2.04W

Ground Connections
Two ground pins are provided to
keep the internal IC logic ground
clean. The designer can, when
necessary, route the analog
ground for the LED drivers separately from the logic ground until
an appropriate ground plane is
available. On long interconnects
between the display and the host
system, the designer can keep
voltage drops on the analog
ground from affecting the display
logic levels by isolating the two
grounds.
The logic ground should be connected to the same ground potential as the logic interface circuitry.
The analog ground and the logic
ground should be connected at a
common ground which can
withstand the current introduced
by the switching LED drivers.
When separate ground connections are used, the analog ground
can vary from -0.3 V to +0.3 V
with respect to the logic ground.
Voltage below -0.3 V can cause all
dots to be on. Voltage above +0.3
V can cause dimming and dot
mismatch.

These displays have ESD susceptibility ratings of CLASS 3 per
DOD-STD-1686 and CLASS B per
MIL-STD-883C.

Soldering and Post Solder
Cleaning Instructions for
the HDSP-213X/-2179
The HDSP-213X/-21 79 may be
hand soldered or wave soldered
with SN63 solder. When hand
soldering it is recommended that
an electronically temperature controlled and securely grounded
soldering iron be used. For best
results, the iron tip temperature
should be set at 315"C (600"F).
For wave soldering, a rosin-based
RMA flux can be used. The solder
wave temperature should be set at
245"C ± 5"C (4 73"F ± 9"F), and
dwell in the wave should be set
between 11/2 to 3 seconds for
optimum soldering. The preheat
temperature should not exceed
105"C (221"F) as measured on
the solder side of the PC board.
For further information on
soldering and post solder
cleaning, see Application Note
1027, Soldering LED
Components.

Contrast Enhancement
When used with the proper contrast enhancement fIlters, the
HCMS-213X/-2179 series displays
are readable daylight ambients.
Refer to Application Note 1029
Luminous Contrast and Sunlight Readability of the HDSP235X Series Alphanumeric
Displaysfor Militaty Applications for information on contrast
enhancement for daylight

ambients. Refer to Application
Note 1015 Contrast Enhancement Techniques for LED
Displays for information on contrast enhancement in moderate
ambients.

Night Vision Lighting
When used with the proper NVG/
DV filters, the
HDSP-2131, HDSP-2179 and
HDSP-2133 may be used in night

vision lighting applications. The
HDSP-2131 (yellow), HDSP-2179
(orange) displays are used as
master caution and warning
indicators. The HDSP-2133 (high
performance green) displays are
used for general instrumentation.
For a list of NVG/DV filters and a
discussion on night vision lighting
technology, refer to Application
Note 1030 LED Displays and
Indicators and Night Vision

Imaging System Lighting. An
external dimming circuit must be
used to dim these displays to
night vision lighting levels to meet
NVIS radiance requirements.
Refer to AN 1039 Dimming
HDSP-213X Displays to Meet
Night Vision Lighting Levels.

3-239

FliP'W HEWLETT®
a:~ PACKARD

CMOS Extended Temperature
Range 5 X 7
Alphanumeric Displays

Technical Data

Features
• On-Board Low Power
CMOSIC
Integrated Shift Register with
Constant Current LED Drivers
• Wide Operating
Temperature Range
-55"C to + 100°C
• Compact Glass Ceramic 4
Character Package
HCMS-20IX Series X-Stackable
HCMS-231X/-235X
Series X-Y Stackable
• HCMS-235X Series are
Sunlight Viewable
• Five Colors
Standard Red
High Efficiency Red
Orange
Yellow
High Perfonnance Green
• 5 x 7 LED Matrix Displays
Full ASCII Set
• Two Character Heights
3.8 mm (0.15 inch)
5.0 mm (0.20 inch)

HCMS-201X Series
HCMS-231X
HCMS-235X Series

• Wide Viewing Angle
X Axis = ± 50°
Y Axis = ± 65°
• Long Viewing Distance
HCMS-201X Series to 2.6
Meters (8.6 Feet)
HCMS-231X/-235X Series to
3.5 Meters (11.5 Feet)
• Categorized for Luminous
Intensity
• HCMS-2011/2013
HCMS-231I/-2313/-23I4
HCMS-235I/-2353/-2354
Useable in Night Vision
Lighting Applications
• HCMS-2011/-20I3,
HCMS-2311/-2313 and
HCMS-235I/-2353:
Categorized for Color

Typical Applications
•
•
•
•

Avionics
Communications Systems
Radar Systems
Fire Control Systems

Description
The HCMS-201X, HCMS-231X
and the sunlight viewable HCMS235X series are 5 x 7 LED four
character displays contained in
12 pin dual-in-line packages
designed for displaying alphanumeric infonnation. The character
height for the HCMS-201X series
displays is 3.8 mm (0.15 inch),
and for the HCMS-231X and
HCMS-235X series displays the
character height is 5.0 mm (0.20
inch). The HCMS-201X series
displays are available in four LED
colors: standard red, high
efficiency red, yellow and high
performance green. The HCMS231X series are available in all

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED.

3-240

5964-6388E

five LED colors. The HCMS-235X
series displays are available in
four LED colors: high efficiency
red, orange, yellow and high
performance green. The HCMS201X series displays are end
stackable. The HCMS-231X and
HCMS-235X series displays are
end/row stackable.

where conservation of power is
important. The two CMOS ICs
form an on-board 28-bit serial-inparallel-out shift register with
constant current output LED row
drivers. Decoded column data is
clocked into the on-board shift
register for each refresh cycle.
Full character display is achieved
with external column strobing.

Compatibility with
HDSP-201X/-231X/-235X
TTL IC Series Displays

Character Size

LED Color

These displays are designed with
on-board CMOS integrated
circuits for use in applications

The HCMS-201X, HCMS-231X
and HCMS-235X CMOS IC
displays are "drop-in" replacements for the equivalent HDSP201X, HDSP-231X and HDSP235X TTL IC displays. The 12 pin
glass/ceramic package configuration, four digit character matrix
and pin functions are identical.

Display Selection Table
Part Number

HCMS-2010
HCMS-2011
HCMS-2012
HCMS-2013

3.8 mm (0.15
3.8 mm (0.15
3.8 mm (0.15
3.8 mm (0.15

inch)
inch)
inch)
inch)

Standard Red
Yellow
High-Efficiency Red
High-Performance Green

HCMS-2310
HCMS-2311
HCMS-2312
HCMS-2313
HCMS-2314

5.0 mm (0.20 inch)
5.0 mm (0.20 inch)
5.0 mm (0.20 inch)
5.0 mm (0.20 inch)
5.0 mm (0.20 inch)

Standard Red
Yellow
High-Efficiency Red
High-Performance Green
Orange

5.0 mm (0.20 inch)
5.0 mm (0.20 inch)
5.0 mm (0.20 inch)
5.0 mm (0.20 inch)

Yellow
High-Efficiency Red
High-Performance Green
Orange

Sunlight Viewable Displays
HCMS-2351
HCMS-2352
HCMS-2353
HCMS-2354

3-241

Package Dimensions

I---(~~~
=1 r--;---r
MAX.

SEE NOTE 3

I

I

PIN
I
2
3

7.2&

•

(D.280)

I

L_"

t

5
8

PIN
7

,

8
10

"

12

FUNCTION
OATAOUT
V.
VDD

CLOCK
GROUND
DATA IN

• DO NOT CONNECT OR USE

0.2&<0.08 . . .
(0.010.0.003)
TYP.

1.27

(0.050)

FUNCTION
COLUMN 1
COLUMN 2
COLUMN 3
COLUMN.
COLUMN 5
INT. CONNECT·

I-

~

7.62

f-- (0.300)

HCMS-201X Series

:~MA~:~E:I
12 11 101

91 8

7

PART NUMBER
DATE CODE

-----c.SEE NOTE 3

f

8.43
(0.332)

!
PIN 1 MARKED BY DOT
ON BACK OF PACKAGE

fi
L (:r

LUMINOUS INTENSiTY
CATEGORY

.T-:I=:E~~~~11~~~:J --"T

5.06
10.2001

III

J
r--'

Ol

(O~:'::~ITYP·

I---.:.j1~(;:OITYP'
i ~
-.....J
---..j

2.54>0.13
(0.100'0.0051 TYP.
NON ACCUM.

0.54<0.08
(0.020.0.0031

PIN
I

2
3

•
5
6

FUNCTION
COLUMN 1
COLUMN 2
COLUMN 3
COLUMN •
COLUMN 5
INT. CONNECT'

II

,2

FUNCTION
DATA OUT

V.
VDD
CLOCK
GROUND
DATA IN

'00 NOT CONNECT OR USE
NOTES: 1. OIMENSIONSIN MILLIMETRES(lIIICHESI
2. UNLESS OTHERWISE SPECIFIEO THE
&.35<0.25
TOLERANCE ON ALL OIMENSIONS IS
(0.211000.0101
<0.38mm(.o.0151.
3. CHARACTERS ARE CENTEREO WITH
RESPECT TO LEADS WITHIN ±O.13mmC±O.OO6
•. LEAO MATERIAL IS COPPER ALLOY.
SOLDER DIPPED.

HCMS-231X/-235X Series

3-242

PIN
7
8
9
10

H

) •

Absolute Maximum Ratings
Supply Voltage VDD to Ground ......................................... -0.3 V to 7.0 V
Data Input, Data Output, VB .............................................. -0.3 V to VDD
Column Input Voltage,VcoL ............................................... -0.3 V to VDD
Free Air Operating Temperature Range, TA ................. -55"C to + 100"C
Storage Temperature Range, Ts ................................... -65°C to + 125"C
HCMS-2310/-2311/-2312/-2314
HCMS-2351/-2352/-2354
Storage Temperature Range, Ts ................................... -55°C to + 100"C
HCMS-2010/-2011/-2012/-2013
HCMS-2313
HCMS-2353
Maximum Allowable Package Power Dissipation, PD[l,2]
HCMS-201O/-2011/-2012/-2013 at TA = 83°C ..................... 0.79 Watts
HCMS-231O/-2311/-2312/-2313/-2314 at TA = 88°C ........... 0.92 Watts
HCMS-2351/-2352/-2353/-2354 at TA = 71°C ..................... 1.31 Watts
Maximum Solder Temperature
1.59 mm (0.063") Below Seating Plane, t ~ 5 sec ...................... 260°C
ESD Protection @ 1.5 kil, 100 pf .......................... Vz = 4 kV (each pin)
Notes:
1. Maximum allowable power dissipation is derived from VDD = 5.25 V, VB = 2.4 V,
VCOL = 3.5 V, 20 LEDs ON per character, 20% DF.

2. The power dissipation for these displays should be derated as follows:
HCMS-201X series derate above 830C at 17 mW/OC, R8J.A = 60OC/W
HCMS-231X series derate above 880C at 22 mWIOC, R8J _A = 45OC/w
HCMS-235X series derate above 71 'C at 23 mWI'C, R8J_A = 45OC/W.
Deratings based on R8pc_A = 35'C/W per display for printed circuit board assembly.
See Figure 1 for power derating based on lower R8J_A values.

Recommended Operating Conditions
Over Operating Temperature Range C-55"C to +100"C)
Parameter
Supply Voltage
Data Out Current, Low State
Data Out Current, High State
Column Input Voltage
Setup Time
Hold Time
Clock Pulse Width High
Clock Pulse Width Low
Clock High to Low Transition
Clock Frequency

Symbol

Min.

Typ.

Max.

VDD
IOL
lOR
VCOL

4.75

5.00

2.75
10
25
50
50

3.0

5.25
1.6
-0.5
3.5

t SETUP
t ROLD
tWH(CLOCK)
tWL(CLOCK)
~RL

fCLOCK

Units
V
rnA
rnA
V

ns

200
5

ns
ns
ns
ns
MHz

3-243

Electrical Characteristics
over Operating Temperature Range (-55"C to + 100"C)
Parameter
Supply Current, Dynamic[l]
Supply Current, Static[2]

Symbol
IDDD
IDDSoff
IDDSon

Column Input Current
HCMS-2010/-2011/-2012/-2013
HCMS-2310/-2311/-2312/-2313/-2314
HCMS-2351/-2352/-2353/-2354

ICOL

Input Logic High Data, VB' Clock

VIR

Test Conditions

= 5 MHz
VB = 0.4 V
VB = 2.4 V
VB = 0.4 V
VB = 2.4 V
VB = 2.4 V
VB = 2.4 V
VDD = 4.75 V
VDD = 5.25 V
VDD = 5.25 V

Min.

f CLOCK

VII.
II

0:0; VI:O; 5.25 V
0:0; VB:O; 5.25V

-10
-40

VDD = 4.75 V
IOH = -0.5 rnA
ICOL = 0 rnA

2.4

VOH

VOL

VDD = 5.25 V
IOL = 1.6 rnA
ICOL = 0 rnA

PD

VDD = 5.0V
VCOL = 3.5 V
17.5% DF
VB = 2.4 V
15 LEDs ON
per Character

Thermal Resistance
IC Junction-to-Pin[4]
HCMS-201O/-2011/-2012/-2013
HCMS-2310/-2311/-2312/-2313/-2314
HCMS-2351/-2352/-2353/-2354

RaJ . PIN

rnA

1.8
2.2

2.6
6.0

rnA

10

ItA

384
451
650

rnA
rnA
rnA

0.8

V

+10
0

ItA

V

4.2
V
0.2

0.4
V

414
481
668

mW

25
10
10

"e!W
5xlO·s

Leak Rate
·All typical values

Units

7.8

2.0

Input Current
Data, Clock
VB

Power Dissipation Per Package[3]
HCMS-2010/-2011/-2012/-2013
HCMS-2310/-2311/-2312/-2313/-2314
HCMS-2351/-2352/-2353/-2354

Max.

6.2

310
360
500

Input Logic Low Data, VB' Clock

Data Out Voltage

Typ.*

cc/sec

specified at VDD = 5.0V and TA = 25"C.

Notes:
IDD Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5MHz,
the display is not illuminated.
2. IDD Static is the IC current after column data is loaded and not being clocked through the on·board shift register.
3. Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
4. IC junction temperature TJ(IC) = (PD)(R8J.PIN + R8pc_M + TA-

.l.

3-244

Optical Characteristics at TA = 250C
Standard Red HCMS-2010/-2310
Description
Peak Luminous
Intensity per HCMS-201O
LED[5,9]
HCMS-231O
(Character Average)
Dominant Wavelength [8]
Peak Wavelength

Symbol

Test Condition

Min.

Typ.

VDD = 5.0V
VeaL = 3.5 V
VB = 2.4 V
Ti = 25°C[7]

105
220

200
370

!lcd

Ad

639

run

ApEAK

655

run

IvPEA!{

Max.

Units

Yellow HCMS-2011/-2311/-2351
Description
Peak Luminous
Intensity per HCMS-2011
LED[5,9]
HCMS-2311
(Character
HCMS-2351
Average)
Dominant Wavelength[6,8]
Peak Wavelength

Symbol

Test Condition

Min.

Typ.

VDD = 5.0V
VeaL = 3.5 V
VB = 2.4 V
Ti = 25oc[7]

400
650
2400

750
1140
3400

!lcd

Ad

585

nrn

ApEAK

583

run

IvPEAK

Max.

Units

High Efficiency Red HCMS-2012/-2312/-2352
Description
Peak Luminous
Intensity per HCMS-2012
LED[5,9]
HCMS-2312
(Character
HCMS-2352
Average)
Dominant Wavelength[8]
Peak Wavelength

Test Condition

Min.

Typ.

VDD = 5.0V
VeaL = 3.5 V
VB = 2.4 V
Ti = 25OC[7]

400
650
1920

1430
1430
2850

!lcd

Ad

625

nrn

ApEAK

635

nrn

Symbol

IyPEAK

Max.

Units

High Performance Green HCMS-2013/-2313/-2353

Description
Peak Luminous
Intensity per HCMS-2013
LED[5,9]
HCMS-2313
(Character
HCMS-2353
Average)
Dominant Wavelength[6,8]
Peak Wavelength

Symbol

Max.

Units

Test Condition

Min.

Typ.

VDD = 5.0V
VeaL = 3.5 V
VB = 2.4 V
Ti = 25°C[7]

850
1280
2400

1550
2410
3000

!lcd

Ad

574

nrn

ApEAK

568

nrn

IyPEAK

3-245

Orange HCMS-2314/-2354
Description
Peak Luminous
Intensity per
LED[5,9]
HCMS-2314
(Character
HCMS-2354
Average)

Symbol

Test Condition

Min.

Typ.

VDD = 5.0V
VCOL = 3.5 V
VB = 2.4 V
Ti = 25°C[7]

650
1920

1430
2850

Iled

Ad

602

run

APEAK

600

run

IvPEAK

Dominant Wavelength[8]
Peak Wavelength

Units

Max.

All typical values specified at Voo = 5.0 V and TA = 25"C unless otherwise noted.
Note.:
5. These LED displays are categorized for luminous intensity, with the intensity category designsted by a letter code on the
back of the package.
6. The HCMS·201l/·231l/·2351 and HCMS-2013/·2313/-2353 are categorized for color with the color category designsted by a
number on the back of the package.
7. Ti refers to the initial case temperature of the display immedisteiy prior to the light measurement.
8. Dominant wavelength, An, is derived from the CrE Chromaticity Diagram, and represents the single wavelength which
defines the color of the device.
9. The luminous sterance of the individual LED pixels may be calculated using the following equations:
LyCcdlm2) = lvCCandela)*DF/ACMetre)2
LyCFootJamberts) = ltI.CCandela)*DF/A(Foot)2
Where: A = LED pixel area = 5.3 x 10-8M2 or 5.8 x 1O-7ft2
DF = LED on-time duty factor

Switching Characteristics, TA

= -55"C to +100"C
Parameter

Condition

Typ.

f clock CLOCK Rate

tpLH• tpHL
Propagation Delay
CLOCK to DATA
OUT

V,.
v.

2.oV~

v,.o.BV

I-tOFFJ

I

'--1: tON

ON(lLLUMINATED)90"~
DISPLAY
OFF CNOT ILLUMINATED)10"

3-246

tOFF
VB (0.4 V) to
Display OFF
tON
VB (2.4 V) to
Display ON

CL = 15 pF
RL = 2.4 kn

4

Max. Units
5

MHz

105

ns

5

Ils
1

2

1.31~
1.3 HCMS-235X SERIES

~

~~

~... !IF'" O.92~
0.9
~ ~ 0.79~

i

~

~~
:Ii is
I a:

~i
IE
~

0.7
0.6

0.5

~~

~

.....
..

I

11)

i!!

~

-t-

..~

HCMS-2OIX SERIES
- rRe J-A - ecrC/W

ReJ_A(~A
20

40

2.0

~

1.0

I

.....~
a:

80

100

j

HCMS 236X .sERIES

a:
a:

:>

u

f'II~ ~~

500

T..,=26"'C
400

Voo -5.0V

cl

3110

0.2

HCMS-2011I-2311/-23S1
_8-2013/-2313/-23&3

"~

200

II

J

100

I

I

,

I
0

201

40

80

80 100

25

\ I

1

(f HCM+23lt~~
II

Z

:Ii
:>

lHCMS-+X SE~IES

u

0.5

-5&

TA -AMBIENT TEMPERATURE -'C

>~

f<

0.1
-10 -40 -20

120

6011

E

HcMS·:zOl01-2:110

>

i lOO"CI'
&0

HCM"'2012J.2312~±'
·23521·2354

5.0

z

HCMS-23IX SERIES

0.2 0.1

.

10.0

1.2
r
I. I ±.R8.J_A=45·C/W

f--

I
J

f28 LED PIXELS
ILLUMINATEDI

I I

Vcot. - COLUMN VOLT AGE

-v

TA -AMBIENT TEMPERATURE -'C

Figure 1. Maximum Allowable Power
Dissipation V8 Ambient Temperature
as a Fnnction of Thermal Resistance
Junetion-to-Ambient, RO J _A • Derated
Operation Assumes RO pc_A = 35"C/W
per Display for Printed Circuit Board.
T J (IC) MAX = 130"C.
RO J _A (TA = lOO"C)
= 22"C/W for HCMS-235X Series
= 32"C/W for HCMS-231X Series
= 38"C/W for HCMS-201X Series.

Electrical Description
Each display device contains four
5 x 7 LED dot matrix characters
and two CMOS integrated
circuits, as shown in Figure 4.
The two CMOS integrated circuits
form an on-board 28 bit serial-inparallel-out shift register that will
accept standard TTL logic levels.
The Data Input, pin 12, is
connected to bit position 1 and
the Data Output, pin 7, is
connected to bit position 28. The
shift register outputs control
constant current sinking LED row
drivers. The nominal current sink
per LED driver is 11 rnA for the
HCMS-201X displays, 13 rnA for
the HCMS-231X displays and
18 rnA for the HCMS-235X
displays. A logic 1 stored in the
shift register enables the
corresponding LED row driver
and a logic 0 stored in the shift
register disabies the
corresponding LED row driver.
The electrical configuration of
these CMOS IC alphanumeric
displays allows for an effective

Figure 2. Relative Luminous Intensity
Ambient Temperature.

Figure 3. Peak Column Current vs
Column Voltage.

interface to a display controller
circuit that supplies decoded
character information. The row
data for a given column (one 7 bit
byte per character) is loaded (bit
serial) into the on-board 28 bit
shift register with high to low
transitions of the Clock input. To
load decoded character information into the display, column data
for character 4 is loaded fIrst and
the column data for character 1 is
loaded last in the following
manner. The 7 data bits for
column 1, character 4, are loaded
into the on-board shift register.
Next, the 7 data bits for column
1, character 3, are loaded into the
shift register, shifting the character 4 data over one character
position. This process is repeated
for the other two characters until
all 28 bits of column data (four 7
bit bytes of character column
data) are loaded into the onboard shift register. Then the
column 1 input, VeoL pin 1, is
energized to illuminate column 1
in all four characters. This
process is repeated for columns

2, 3, 4 and 5. All VeoL inputs
should be at logic low to insure
the display is off when loading
data. The display will be blanked
when the blanking input VB' pin
8, is at logic low regardless of the
outputs of the shift register or
whether one of the VeoL inputs is
energized.

V8

Refer to Application Note 1016
for drive circuit information.

ESD Susceptibility
The HCMS-201X/-231X/-235X
series displays have an ESD
susceptibility ratings of CLASS 3
per DOD-STD-1686 and CLASS B
per MIL-STD-883C. It is
recommended that normal CMOS
handling precautions be observed
with these devices.

Soldering and Post Solder
Cleaning
These displays may be soldered
with a standard wave solder
process using either an RMA flux
and solvent cleaning or an OA
flux and aqueous cleaning. For
3-247

COLUMN DRIVE INPUTS

,

COLUMN

2

3 •

5

1

I T
I I I

~rr
~

>I:

~

.,..,

r---'\

LED
MATRIX
2

I I I

'-l.?

~

1,r;1", I", ,r;

~

1
T1

I

I T
I I I

~

rV

LED
MATRIX

,.--1\

rV

3

LED
MATRIX

•

~,* 'if if~

BLANKING
CONTROL. V.

SERIAL
DATA
INPUT

-

-

,

2

I
3

•

5

•

7

ROWS

,

2

3 •

5

RDWS'-7

1

I
ROWS'-7

ROWS'-7

CONSTANT CURRENT SINKING LED DRIVERS

•

7

~ r'~ ~
ROWS 8-"

RDWS'5-2'

28-8IT SIPO SHIFT REGISTER

RDWS22-211

f"-

SERIAL
DATA
OUlPUT

A.

Y

CLOCK

Figure 4. Block Diagram of an HCMS·2XXX Series LED Alphanumeric Display.

optimum soldering, the solder
wave temperature should be
245°C and the dwell time for any
display lead passing through the
wave should be 11/2 to 2 seconds.
For more detailed information,
refer to Application Note 1027
Soldering LED Components.

Applications for information on
contrast enhancement for sunlight and daylight ambients. Refer
to Application Note 1015
Contrast Enhancement Techniquesfor LED ~wys for
information on contrast enhancement in moderate ambients.

Contrast Enhancement

Night Vision Lighting

When used with the proper
contrast enhancement filters, the
HCMS-235X series displays are
readable in sunlight and the
HCMS-201X/231X series displays
are readable in daylight ambients.
Refer to Application Note 1029
Luminous Contrast and
Sunlight Readability of the
HDSP-235X Series AlphanunwricD~wysfurMiliUuy

3-248

When used with the proper NVG/
DV filters, the HCMS-2311/-2351
and HCMS-2133/-2353 displays
may be used in night vision
lighting applications. The HCMS2311/-2351 (yellow) displays are
used as master caution and
warning indicators. The HCMS2313/-2353 (high performance
green) displays are used for
general instrumentation. For a

list of NVG/DV filters and a
discussion on night vision
lighting technology, refer to
Application Note 1030 LED
D~wys and Indicators and
Night Vision Imaging System
Lighting.

Controller Circuits,
Power Calculations and
Display Dimming
Refer to Application Note 1016
Using the HDSP-2000
Alphanunwric D~z.ay Family
for information on controller
circuits to drive these displays,
how to do power calculations and
a technique for display dimming.

F/i;W HEWLETT®

a!a

PACKARD

Glass/Ceramic Numeric and
Hexadecimal Displays for
Industrial Applications
4N51
4N52
4N53
4N54

Technical Data

Features

Description

• Three Character Options
Numeric, Hexadecimal, Over
Range
• 4 x 7 Dot Matrix Character
• Performance Guaranteed
Over Temperature
• High Temperature Stabilized
• Solder Dipped Leads
• Memory Latch/Decoder!
Driver
TTL Compatible
• Categorized for Luminous
Intensity

These standard red solid state
displays have a 7.4 mm (0.29
inch) dot matrix character and an
on-board IC with data memory
latch/decoder and LED drivers in
a glass/ceramic package. These
devices utilize a solder glass frit
seal.
The 4N51 numeric display
decodes positive 8421 BCD logic
inputs into characters 0-9, a "-"
sign, a test pattern, and four
blanks in the invalid BCD states.
The unit employs a right-hand
decimal point.

Package Dimensions*

-

i

'~O~X;:j 4N51

---,I

-.~..

r,J.1.

•'

•

7.'

10.2 MAX

-

10.•00Ij

~f.1

, ,

13.5

I"~IITI

I....'

i~

Lck:rmJ:rl=:l

111.291

"m1rr~1r-rI-.j~

8

......... SEATING

PLANE

0.3 to.DaTVP.
(.0'2>'('031

COUNTRY

CODE
PIN 1 KEY
•

3

2

1

13~

I

'"r:!Ir:::r'dr::r'~

.W
'i~.!.ir ~~~~r
END ViEW

REAR VIEW
7

1

10.531

13.5

...

"

1-

I

10.191

IS

I--'~~X....., 4N54

4N52

1~'~I-1
.fl -1 ,.17)~

+

SEATING
PLAN!

~I

'.5

(.1&)

(.081

I

3.4

-1..(.'3&1

I

i i -I
-I I--I

2.6.±O.13TVP,
(.10'.006'

PIN

1
2

3
4

FUNCTION
4N54
eN5!
4N52
HEXA·
NUMERIC
DECIMAL
Input 2
Input 2
Input 4
Input

a

Dec:imal
point
Latch
enable

Input 4
InputS
Blanking

6
7

Ground

gantrol
Latch
enable
Ground

a

Vee

Vee

Input 1

Input 1

5

NOTES,
1. Dimensions In millirnetraund !inches) •
2 Unit. otharwi. specified, the tolerance
on all dimensions is ±.38mm (±.015',
3. Digit center line is %.25mm (:1.01")

from package center' lina.
4. Solder dIpped loads.
see over range package drawing for
HP standard marking•

6 ..

*JEDEC Registered Data.

5964-6389E

3-249

The 4N52 is the same as the
4N51 except that the decimal
point is located on the left side of
the digit.

In place of the decimal point an

The 4N54 hexadecimal display
decodes positive 8421 logic
inputs into 16 states, 0-9 and A-F.

The 4N53 is a "± 1." overrange
display, including a right-hand
decimal point.

input is provided for blanking the
display (all LEDs off), without
losing the contents of the memory.

Absolute Maximum Ratings*
Description
Storage Temperature, Ambient
Operating Temperature, Ambient[1,2)
Supply Voltage[3)
Voltage Applied to Input Logic, dp and Enable Pins
Voltage Applied to Blanking Input[7)
Maximum Solder Temperature at 1.59 mm (0.062 inch)
Below Seating Plane; t s; 5 Seconds

Symbol
Ts
TA
Vee
VI> VDP, VE
VB

Min.
-65
-55
-0.5
-0.5
-0.5

Max.
+125
+100
+7.0
Vee
Vee
260

Unit
"C

Max.
5.5
+100

Unit
V
"C
nsee
nsee

°C
V
V
V

°C

Recommended Operating Conditions*
Description
Supply Voltage
Operating Temperature, Ambient/l,2)
Enable Pulse Width
Time Data Must Be Held Before Positive
Transition of Enable Line
Time Data Must Be Held After Positive
Transition of Enable Line
Enable Pulse Rise Time
• JEDEC Registered Data.

3-250

Symbol

t sETUP

Min.
4.5
-55
100
50

t HOLD

50

Vee
TA
tw

trLH

Nom.
5.0

nsee
200

nsee

Electrical/Optical Characteristics*
TA

= -55 DC to

+ 1 OODC, unless otherwise specified

Description
Supply Current
Power Dissipation
Luminous Intensity per LED
(Digit Average) [5,61
Logic Low-Level Input Voltage
Logic High-Level Input Voltage
Enable Low-Voltage;
Data Being Entered
Enable High-Voltage;
Data Not Being Entered
Blanking Low-Voltage;
Display Not Blanked[7]
Blanking High-Voltage;
Display Blanked[7]
Blanking Low-Level Input
Current[7]
Blanking High-Level Input
Current] 7]
Logic Low-Level Input Current
Logic High-Level Input Current
Enable Low-Level Input Current
Enable High-Level Input
Current
Peak Wavelength
Dominant Wavelength[81
Weight**
Leak Rate

Symbol
lee
PT
Iv
VIL
VIH
VEL

Test Conditions

Min.

Typ.l41

40

112
560
85

Vee = 5.5 V
(Characters "5." or "B")
Vee

= 5.0 V, TA = 25 DC

Vee

= 4.5 V

Max.
170
935

Unit
rnA
mW
!lcd

0.8

V
V
V

2.0
0.8

VEH

2.0

V

VBL

0.8

VBH

V
V

3.5

IBL

Vee

= 5.5 V; VBL = 0.8 V

50

I1A

IBH

Vee

= 5.5 V; VBH = 4.5 V

1.0

rnA

IlL
IIH
IEL
IEH

Vee
Vee
Vee
Vee

= 5.5 V; VIL = 0.4 V
= 5.5 V; VIH = 2.4 V
= 5.5 V; VEL = 0.4 V
= 5.5 V; VEH = 2.4 V

-1.6
+100
-1.6
+130

rnA

A.PEAK
A.d

TA
TA

= 250C
= 25°C

655
640
1.0

I1A
rnA

I1A
nm
nm

gm
5 x 10.8 cc/sec

Notes:
1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board:
ElJA = 50"CIW; ElJC = 15"C;W:
2. ElCA of a mounted display should not exceed 35"CIW for operation up to TA = + 100'C.
3. Voltage values are with respect to device ground, pin 6.
4. All typical values at Vcc = 5.0 Volts, TA = 25"C.
5. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the
display contiguous with the Hewlett-Packard logo marking.
6. The luminous intensity at a specific ambient temperature, I,.CTAl, may be calculated from this relationship:

Iv(TAl =

Iv(25,C)(0.985) (TK25'C).

7. Applies only to 4N54.
8. The dominant wavelength,
color of the device.

~,

is derived from the CIE chromaticity diagram and represents the single wavelength which defines the

• JEDEC Registered Data.
"Non-Registered Data.

3-251

;nv'~~-4f.----+~o~

TRUTH TABLE

r.:--rBCD=-,DA=rT",A;.-"_],....,:;--1

DATA INPUT
(LOW LEVEL DATAl

X.

X.

x,

X.

_, AND 4N52

4N54

n
....
H

DATA INPUT

._;

H

tHIGH LEVEL DATAJ

H

H

'::=

:

...

:

.3

.:::

...

"'1

H

H

H

:"

H
H

Figure 1. Timing Diagram of 4N514N54 Series Logic_

H

' ',

H

H

H

H

H

H

H

(BLANK!

H

H

L(XJIC

INPUT

~

,:::X2
•-<.:
-DP
8 ~X,

2

LATCH
MEMORY

r-

MATRIX

H

H

H

(BLANKl

H

H

(BLANK!

DECIMAL PT.12]

DECODER

l

BLANKINGI31
CONTROL
4

GROUND

-

BLANKINGf3J

LED
MATRIX

I-

DRIVER

VDP"'H

LOAD DATA

V• • L

LATCH DATA

Ve .. H

DISPlAY-ON

VB .. L

DISPLAY-OFF

VB

- H

LED

Notes:
1. H = Logic High; L • Logic Low. With the enable Input at logic high
cheng_In BCD Input logic levels or D.P. Input have no effect upon
display memory, displayed character, or D.P.
2. The decimal point Input, DP, pertains only to the 4N51 and 4N52
dl.playa.
3. The blanking oontrollnput, B, pertainaonlytothe4N54hexadeclmal
display. Blanking Input has no effect upon display memory.

.~

3&0

5

300

Vee -aov
Tc -2ErC

/
L

2

,
..... V-

/'

I

V
1/

~

V~ -&.Jv

f'.

200

'10

'00

i' r-....

Y,-OVV.-DV

........

r-...

--.. r-

v" -UY

1""v" -uY

v,,-o.sy

Figure 3_ Typical Blanking Control
Current vs. Voltsge for 4N54.

-1.2
-1. 0

-.8
-A

t'--...

......

\
l

0

TA - AMBIENT TEMPERATURE

vee -I.GY

a.

-A

10

~C -25'"C I-

E-,..

~

~

I

-1,8

1I -1.&

r- r- iis

2O.40.801DD

Va -BLANKINOWLTAGE-V

3-252

OFF

MATRIX

Figure 2_ Block Diagram of 4N514N54 Series Logic_

a

F

r-:D",N~_________--:-V;:.Dt':..'=L__-;

DPI!) 4

DP

r::

(BLANK!

H

Vee
ENABLE

"'f

!

H

_·c

Figure 4. Typical Blanking Control
Input Current vs. Ambient
Temperature for 4N54.

2.0

10

f.O

Vii -LATCH ENABLE VOLTAGE-V

Figure 5. Typical Latch Enable Input
Curreut vs. Voltage.

&.0

1.0
-1.8

1

~C -25'C .
I -

-1,6

r-

Vee· S.OV

1-1"

!E
:! -1.2
G -1,0

.

II

...B -.
I

~

-

I

.......

-

r-

Vee -6.DV
V 1L

.1'1

-.4

o

U·J\
0.&

r--

I - f--

I

Vee -S.DV
Vat -2M

I

8

I

•2

)

0

I

~
.2

-o.av

.....

_..

0

-

1.0

/

8

V. -

8

2

2.0

3.0

...

•2

1
0 ..

0
.........

YIN - LOGIC VOLTAGE - V

-20
0
204010.100
TA, - AMBIENT TEfMiERATURE _·C

0

~

-&&.....

-20

L
0

V
20

40

10

80

TA - AMBIENT TEMPERATURE - °C

Figure 6. Typical Logic and Decimal
Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable
Low Input Current vs. Ambient
Temperature.

Figure 8. Typical Logic and Enable
High Input Current vs. Ambient
Temperature.

Operational
Considerations

minimum threshold level of 3.5
volts. This may be easily achieved
by using an open collector TTL
gate and a pull-up resistor. For
example, (1/6) 7416 hexinverter
buffer/driver and a 120 ohm pullup resistor will provide sufficient
drive to blank eight displays. The
size of the blanking pull-up
resistor may be calculated from
the following formula, where N is
the number of digits:

high reliability device. These
displays are designed and tested
to meet a helium leak rate of
5 x 10-8 cc/sec and a fluorocarbon gross leak bubble test.

Electrical
The 4N51-4N54 series devices
use a modified 4 x 7 dot matrix of
light emitting diodes (LEDs) to
display decimallhexadecimal
numeric information. The LEDs
are driven by constant current
drivers. BCD information is
accepted by the display memory
when the enable line is at logic
low and the data is latched when
the enable is at logic high. To
avoid the latching of erroneous
information, the enable pulse rise
time should not exceed 200 nanoseconds. Using the enable pulse
width and data setup and hold
times listed in the Recommended
Operating Conditions allows data
to be clocked into an array of
displays at a 6.7 MHz rate.

The blanking control input on the
4N54 display blanks (turns off)
the displayed hexadecimal
information without disturbing
the contents of display memory.
The display is blanked at a

Rblank

= (Vee - 3.5 V)/[N (1.0 rnA)]

The decimal point input is active
low true and this data is latched
into the display memory in the
same fashion as the BCD data.
The decimal point LED is driven
by the on-board Ie.
The ESD susceptibility of the IC
devices is Class A of MIL-STD883 or Class 2 of DOD-STD-1686
and DOD-HDBK-263.
Mechanical
4N51-4N54 series displays are
hermetically tested for use in
environments which require a

These displays may be mounted
by soldering directly to a printed
circuit board or inserted into a
socket. The lead-to-lead pin
spacing is 2.54 mm (0.100 inch)
and the lead row spacing is 15.24
rom (0.600 inch). These displays
may be end stacked with 2.54
rom (0.100 inch) spacing
between outside pins of adjacent
displays. Sockets such as Augat
324 AG2D (3 digits) or Augat
508 (one digit, right angle
mounting) may be used.
The primary thermal path for
power dissipation is through the
device leads. Therefore, to insure
reliable operation up to an
ambient temperature of + 100°C,
it is important to maintain a caseto-ambient thermal resistance of
less than 35°C/watt as measured
on top of display pin 3.

3-253

100

Soldering
For infonnation on soldering and
post solder cleaning, see
Application Note 1027 Soldering
LED Components.
Preconditioning
4N51-4N54 series displays are
100% preconditioned by 24 hour
storage at 125°C.

Contrast Enhancement
The 4N51-4N54 displays have
been designed to provide the
maximum possible ON/OFF
contrast when placed behind an
appropriate contrast enhancement filter. For further information see Hewlett-Packard
Application Note 1015, Contrast
Enhancementfor LED

Solid State Over Range
Display
For display applications requiring
a ±, 1, or decimal point designation, the 4N53 over range display
is available. This display module
comes in the same package as the
4N51-4N54 series numeric
display and is completely
compatible with it.

Displays.

Package Dimensions*
.7

r---------NUMEAALONE

0.3 :1:0.08 TYP.
(.012 :t.0D3)

~~I-I U
~

FRONT

!.171

,-+
t-

.,

'--

....,

Vee

-------~--,
M~US

---.2 -----;4

....,

'ODs,

.s

'....

~

---.,
,....

SIDE
&

•

7

•

Figura 9. Typical Driving Circuit.
DATE CODE

PIN 1 kEY
COUNTRY
CODE

4

3

Z

TRUTH TABLE

1

REAR

CHARACTER

END
PIN

FUNCTION

1

Plus

NQT£s,

2

1. DIMENSIONS IN MILLIMETRES AND CINCHES).
2. UNLEIIOTHEfIWa .8:IFIID. THE TOLERANCE
ON ALL DlMEN8IONIIS:I: •• MM ~ .D11INCHEI).

3
4
B

Nu......,.IOn.
Humer•• One

e

,
•
*JEDEC registered data

3-254

D.

0_
0..-

v ..
MlnullPlus

+

-1

Deci"",' Point
Blank

I

I
I
I
I
_ _ .JI

PIN
1

2.3

4

8

H
L
X
X
L

X
X
H
X
L

X
X
X
H
L

H
H
X
X
L

NOTES: L: Une IWI!Chlng mlnliltOr In Figura 9 cutoff.
H: Line switching tranlistor in Figure 9 .turated.
X: 'Don't cere'

Electrical/Optical Characteristics*
4N53 (TA

= -55°C to + 100°C, Unless OtheIWise Specified)

Description
FOIWard Voltage per LED
Power Dissipation
Luminous Intensity per LED
(Digit Average)
Peak Wavelength
Dominant Wavelength
Weight**

Symbol
VF
PT
IF
Apeak
Ad

Test Conditions
IF = 10 rnA
IF = 10 rnA, all diodes lit
IF = 6 rnA
Te = 25°C
Te = 25°C
Te = 25°C

Min

Typ

40

1.6
280
85
655
640
1.0

Max
2.0
320

Unit
V
mW

Ilcd
nm
nm
gm

Recommended Operating Conditions*
Description
LED Supply Voltage
FOIWard Current, Each LED

Sym

Vee
IF

Min
4.5

Nom
5.0
5.0

Max Unit
5.5
V
10
rnA

Absolute Maximum Ratings*
Description
Storage Temperature, Ambient
Operating Temperature, Ambient
FOIWard Current, Each LED
Reverse Voltage, Each LED

Symbol
Ts
TA
IF
VR

Min
-65
-55

Max
+125
+100
10
4

Unit
°C
°C
rnA
V

Note:
LED current must be externally limited. Refer to Figure 9 for recommended resistor
values.

*JEDEC Registered Data.
""Non-Registered Data.

3-255

Flin- HEWLETT®
~~PACKARD

Glass/Ceramic Numeric and
Hexadecimal Displays for
Industrial Applications
Technical Data

HDSP-078X
HDSP-079X
HDSP-088X
HDSP-098X

Features
• Three Character Options
Numeric, Hexadecimal, Over
Range
• Three Colors
High Efficiency Red, Yellow,
High Performance Green
• 4 x 7 Dot Matrix Character
• High Efficiency Red, Yellow
and High Performance Green
• Two High Efficiency Red
Options
Low Power, High Brightness
• Performance Guaranteed
Over Temperature
• High Temperature Stabilized
• Memory Latch/Decoder/
Driver
TTL Compatible

-

• Categorized for Luminous
Intensity

Description
These standard solid state displays
have a 7.4 mm (0.29 inch) dot
matrix character and an on-board
IC with data memory latch!
decoder and LED drivers in a
glass/ceramic package.
The hermetic HDSP-078X,-079X/
-088X displays utilize a solder
glass frit seal. The HDSP-098X
displays utilize an epoxy glass-toceramic seal.
The numeric devices decode positive BCD logic into characters
"0-9," a "-" sign, decimal point,
and a test pattern. The
hexadecimal devices decode

positive BCD logic into 16
characters, "0-9, A-F." An input is
provided on the hexadecimal
devices to blank the display (all
LEDS off) without losing the
contents of the memory.
The over range device displays
"± 1" and right hand decimal
point and is typically driven via
external switching transistors.

Devices
Part Number HDSP0781
0782
0783
0784
0791
0792
0793
0794
0881
0882
0883
0884
0981
0982
0983
0984
3-256

Color
High-Efficiency Red
Low Power
High-Efficiency Red
High Brightness
Yellow

High-Performance Green

Description
Numeric, Right Hand DP
NumeriC, Left Hand DP
Over Range ± 1
Hexadecimal
Numeric, Right Hand DP
Numeric, Left Hand DP
Over Range ± 1
Hexadecimal
Numeric, Right Hand DP
Numeric, Left Hand DP
Over Range ± 1
Hexadecimal
Numeric, Right Hand DP
Numeric, Left Hand DP
Over Range ± 1
Hexadecimal

Front View
A

B
C
D
A

B
C
D
A

B
C
D
A

B
C
D
5964-6390E

Package Dimensions
FRONTVIEWB

FRONT VIEW A

FRONT VIEW D
FUNCTION

1--'0.2 MAX. --.l

In

(0.4001

-,
NUMERIC

HEXA·
DECIMAL

1

Input 2

Input 2

2

InllUt4

PIN

1

13.5

3
4

10.53)

5

InputS

Blanking

Latch

enable
6

Ground

-,

Vee
Input 1

7
8

REAR VIEW
5

8

7

Input 4

Input 8

Decima'
point

control
Latch
enable
Ground

Vee
Input 1

1. Dimensions in n
2. Un_ otherwi. specified, the tolerance
an all dirnantions is ±.38 mm It.015"J.
3. Digit Clmer lint il ±.25 mm (t.O,",
from ...... cen1IIr line.

8

4. SGIiIiidlppld_
6.

COt.; co.-for HosP-OI8X/-09BX ~I

COUNTRY CODE
tSETUP'+--~*,"-~-t-,,"OLD

DATA INPUT
(LOW LEVEL DATA)

TRUTH TABLE

BCDDATAI1
X,

x.

X,

X,

NUMERIC

,...

HEXA·
DECIMAL

,..

..

DATA INPUT
(HIGH LEVEL DATAl

..

...,

...

...

...,
..

..

H

:.,!
..

H

..,
Figure 1. Timing Diagram.

Vee

H

ENABLE

I::::
::::

INPUT

2

.-

3.
0P121

LATCH

MATRIX
DECODER

MEMORY

H

(BLANK)

...

(BLANKI

...
i

H

M
H

H

H

H

H

H

,

i::'

(BLANK)

DP

DECIMAL PT,12)

~

t
ENABLE"I

LED

BLANKINGI31

GROUND

..
f"g

....

M

DP

CONTROL

H

H

XI
X2
X4
XB

..

..

H

H

1

..

..
..

H

LOGIC

,

H

4~-

6*

MATR~X

DRIVER

BLANKINGI31

f-

LED

H

IBLANK)

ON

Va,

OFF

VDP - H

LOAD DATA

-L

DISPLAY·ON

V,
V,
V.

DISPLAY·OFF

v.

-H

LATCH DATA

L

-H

-L

MATR~X

Notes:
,. H. Logic High; L ". Logic Low. With the enable inp&.lt 111: logic high
chIInges in BCD input logic lavels hne no effect upon display
~. diIP1IYed character, Dr DP.
2. The decimll point input, DP, pertains onty to the num..ic displays.
a The blanking control input. B. pertains only to the hlJuldecimal
d'-Plays. Btanking input has no effect upon display memory.

Figure 2. Block Diagram.

3-257

Absolute Maximum Ratings
Description
Storage Temperature, Ambient
HDSP-078X/-079X/-088X
HDSP-098X
Operating Temperature, Ambient[l]
Supply Voltage[2]
Voltage Applied to Input Logic, dp and Enable Pins
Voltage Applied to Blanking Input[2]
Maximum Solder Temperature at 1.59 rum (0.062 inch)
Below Seating Plane; t ~ 5 Seconds

Symbol

Min.

Max.

Unit

Ts

-65
-55
-55
-0.5
-0.5
-0.5

+125
+100
+100
+7.0
Vee
Vee
260

"C

TA
Vee
VI> VDP , VE
VR

"C
V
V
V
"C

Recommended Operating Conditions
Description
Supply Voltage[2]
Operating Temperature, Ambient[l]
Enable Pulse Width
Time Data Must Be Held Before Positive
Transition of Enable Line
Time Data Must Be Held After Positive
Transition of Enable Line
Enable Pulse Rise Time

Symbol

Min.

Vee
TA
tw
t SETUP

4.5
-55
100
50

t HOLD

50

Nom.
5.0

Max.
5.5
+100

Unit
V
"C
nsec
nsec

nsec
1.0

trLH

msec

Optical Characterstics at TA = 25OC, Vee = 5.0 V
Device
HDSP-078X Series

HDSP-079X Series

HDSP-088X Series

HDSP-098X Series

Description
Luminous Intensity per LED
(Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength[5]
Luminous Intensity per LED
(Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength[5]
Luminous Intensity per LED
(Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength[5,6]
Luminous Intensity per LED
(Digit Average)[3,4]
Peak Wavelength
Dominant Wavelength

Symbol
Iv

Min.
65

Typ.
140

260

635
626
620

nm
nm
!lcd

215

635
626
490

nm
nm
!lcd

298

583
585
1100

nm
nm
!lcd

568
574

nm
nm

ApEAK
Ad
Iv

ApEAK
Ad
Iv

ApEAK
Ad
Iv

ApEAK
Ad

Max.

Unit
!lcd

Notes:
1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is
RaJA = 50°CIW/device. Tbe device package thermal resistance is RaJ.PIN = l5OCIW/device. The tbermal resistance device pin-toambient through the PC board should not exceed 35°CIW/device for operation up to TA = + lOOOC.
2. Voltage values are with respect to device ground, pin 6.
3. Tbese displays are categorized for luminous intensity witb tbe intensity category designated by a letter code located on tbe back of
the display package. Case temperature of the device immediately prior to tbe light measurement is equal to 25OC.

3-258

Electrical/Optical Characteristics
TA = -55"C to + 100°C

Description

Symbol

Test Conditions

HDSP-078X Series
HDSP-079X/-088X/
-098X Series
Power
HDSP-078X Series
Dissipation
HDSP-079X/-088X/
-098X Series
Logic, Enable and Blanking
Low-Level Input Voltage
Logic, Enable High-Level Input
Voltage
Blanking High-Voltage; Display
Blanked
Logic and Enable Low-Level
Input Current
Blanking Low-Level Input Current
Logic, Enable and Blanking
High-Level Input Current
Weight
Leak Rate

Icc

Vee = 5.5 V
Characters "5." or
"B" displayed
Vee = 5.5 V
Characters "5." or
"B" displayed
Vee = 4.5 V

Supply
Current

PT

VIL

Max.
105

120

175

390

573

690

963
0.8

Unit
rnA

mW

V
V

VBH

2.3

V

IlL

Vee = 5.5 V

-1.6

rnA

IBL
IIH

V1L = 0.4 V
Vee = 5.5 V
ViH = 2.4 V

-10
+40

IJ.A
IJ.A

5 x 10.8

gm
cc/sec

1.0

Device

K

-0.0131/'C

HDSP-088X Series

-0.0112/'C

HDSP-098X Series

-0.0104/'C

These devices use a modified
4 x 7 dot matrix of light emitting
diodes to display decimal!
hexadecimal numeric information. The high efficiency red and
yellow displays use GaAsP/GaP
LEDs and the high performance
green displays use GaP/GaP
LEDs. The LEDs are driven by
constant current drivers, BCD
information is accepted by the
display memory when the enable

78

2.0

HDSP-078X Series
HDSP-079X Series

Electrical

Typ.l7J

VIH

Notes:
4. The luminous intensity at a specific operating ambient
temperature, Iv(T,J, may be approximated from the following
exponential equation: Iv(T,J = Iv(25"C) e[kCTA"25'C)I.

Operational
Considerations

Min.

5. The dominant wavelength, A.d' is derived from the OlE chromaticity diagram and represents the single wavelength which
defines the color of the device.
6. The HDSP-088X and HDSP-098X series devices are categorized as to dominant wavelength with the category designated
by a number on the back of the display package.·
7. All typical values at Vee = 5.0 V and TA = 25"C.

line is at logic low and the data is
latched when the enable is at
logic high. Using the enable pulse
width and data setup and hold
times listed in the Recommended
Operating Conditions allows data
to be clocked into an array of
displays at a 6.7 MHz rate.
The decimal point input is active
low true and this data is latched
into the display memory in the
same fashion as the BCD data.
The decimal point LED is driven
by the on-board IC.

The blanking control input on the
hexadecimal displays blanks
(turns off) the displayed
information without disturbing
the contents of display memory.
The display is blanked at a
minimum threshold level of 2.0
volts. When blanked, the display
standby power is nominally 250
mWat TA = 25°C.
The ESD susceptibility of the IC
devices is Class A of MIL-STD883 or Class 2 of DOD-STD-1686
and DOD-HDBK-263.

3-259

Mechanical
These displays are hermetically
sealed for use in environments
that require a high reliability
device. These displays are
designed and'tested to meet a
helium leak rate of
5 x 10-8 cc/sec.
These displays may be mounted
by soldering directly to a printed
circuit board or insertion into a
socket. The lead-to-Iead pin
spacing is 2.54 rom (0.100 inch)
and the lead row spacing is 15.24
rom (0.600 inch). These displays
may be end stacked with 2.54
rom (0.100 inch) spacing
between outside pins of adjacent
displays. Sockets such as Augat
324-AG2D (3 digits) or Augat

50S-AGSD (one digit, right angle
mounting) may be used.
The primary thermal path for
power dissipation is through the
device leads. Therefore, to insure
reliable operation up to an
ambient temperature of + 100"C,
it is important to maintain a
base-to-ambient thermal
resistance of less than
35"C watt/device as measured on
top of display pin 3.
For further information on
soldering and post solder
cleaning, see Application Note
1027, Soldering LED
Components.

3-260

Symbol
Ts
TA
IF
VR

Contrast Enhancement
These display devices are
designed to provide an optimum
ON/OFF contrast when placed
behind an appropriate contrast
enhancement filter. For further
information on contrast
enhancement, see Application
Note 1015, Contrast
Enhancementfor LED
Displays.

Over Range Display

Absolute Maximum Ratings
Description
Storage Temperature, Ambient
Operating Temperature, Ambient
Forward Current, Each LED
Reverse Voltage, Each LED

Preconditioning
These displays are 100% preconditioned by 24 hour storage at
125"C, at 100°C for the HDSP09SX Series.

Min

Max

-65
-55

+125
+100
10
5

Unit
"C
"C
rnA
V

The over range devices display
"± 1" and decimal point. The
character height and package
confIguration are the same as the
numeric and hexadecimal
devices. Character selection is
obtained via external switching
transistors and current limiting
resistors.

Package Dimensions
FRONT VIEWC

Pin

hO~~IMAX'1

I,.l!

7

6

5,

,

- "-- .......,.-.1.5
1110.06

Pin

I
~

1.9
(0.075)'

1

Function
Plus

2

Numeral One

+

3

Numeral One

-

4

DP.

5
6
7

Open

1
Decimal Point
Blank

8

Minus/Plus

Open

Vee

1

2,3

1
0
X
X
0

X
X
1
X
0

4
X
X
X
1
0

8
1
1
X
X
0

Notes:
0: Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care.'

Note:
1. Dimensions in millimetres and (inches).
;;:7

Character

Vee == 5.0V

r---------NUMERAL ONE

----------1
MINUS PLUS

PlUS

~

L_

__...J

=3

=2

R,

",

#4

=8

R,

=1
R3

Figure 3. Typical Driving Circuit.

Luminous Intensity per LED
(Digit Average) at TA = 25°C
Device
HDSP-0783
HDSP-0883
HDSP-0983

Test Conditions
IF = 2.8 rnA
IF = 8 rnA
IF = 8 rnA
IF = 8 rnA

Min.
65
215
298

Typ.
140
620
490
1100

Units

fled
Iled
Iled
Iled

Recommended Operating Conditions
vee = 5.0 V

Device
HDSP-0783 Low Power
High Brightness
HDSP-0883
HDSP-0983

Forward
Current Per
LED,mA
2.8
8
8
8

Resistor Value
Rl
1300
360
360
360

R2
200
47
36
30

R3
300
68
56
43
3-261

Electrical Characteristics
+ 100"C

TA = -55"C to

Device
Description
HDSP-0783 Power Dissipation
(All LEDs lliuminated)
Forward Voltage per LED
HDSP-0883 Power Dissipation
(All LEDs lliuminated)
Forward Voltage per LED
HDSP-0883 Power Dissipation
(All LEDs lliuminated)
Forward Voltage per LED

3-262

Symbol
PT

PT

Test Conditions
IF = 2.8 rnA
IF = 8 rnA
IF = 2.8 rnA
IF = 8 rnA
IF = 8 rnA

VF
PT

IF

VF

VF

= 8 rnA

Min

Typ
72
224
1.6
1.75
237

Max

2.2
282

mW

1.90
243

2.2
282

mW

1.85

2.2

V

Unit
mW

282
V

V

rli~ HEWLETT®

a!1:.. PACKARD

Infrared Products

Infrared communications
technology is quickly becoming a
de facto feature of computer/
office and communications
products. In the future, this
communications technology will
be key in industrial and medical
handheld equipment as well as
transportation and consumer
products. HP has been in the
forefront of IR technology
combining superior IIW LED
technology, high performance,
high speed analog Ie devices, and
high volume manufacturing
processes to produce infrared
emitters, detectors, and
transceiver modules.

-

4-2

HP's discrete emitter offering
includes two versions of a T-1 3/4
(5 mm) TS AlGaAs 875 nm LED
lamp and a two versions of an
SMT subminiature 875 TS AlGaAs
LED lamp. The HSDL-4220 is a
38 mW/Sr, 300 T-13/4Iamp and
the HSDL-4230 is a 75 mW/Sr,
17° T-13/4Iamp. The HSDL-4400
is a series of flat top subminiature LED lamps and the HSDL4420 is a series of dome top
subminiature LED lamps. Under
development is a series of IR
detectors. The HSDL-5400 is a
series of flat top subminiature
LED detectors and the HSDL5420 is a series of dome top
subminiature LED detectors.

HP also offers a series of IrDA
compliant transceiver modules.
The HSDL-lOOO is a 115.2 Kb/s,
1 meter minimum distance transceiver module designed to IrDA
physical layer specifications. The
HSDL-1001 is an IrDA 115.2 Kb/s
module with improved electrical
performance. This product is
designed for low power, fast link
turn around applications. This
device also offers a shutdown
feature for true power saving.
This device will be released by
July 1996. The HSDL-1100, a
faster speed IrDA 4.0 Mb/s transceiver is under development and
will be product released in May
1996. Also under development is
a smaller form factor transceiver
package for both the 115.2 Kb/s
and the 4.0 Mb/s products. These
products will be available in late
1996.

Page No.
4·4

IrDA Data Link Design Guide
IrDA Infrared Transceivers
Operating
Data
Shut·
Part
Rate Distance Supply
Idle down Receiver Tempera·
Number Range Range Voltage Current Pin Latency
ture
HSDL-l000 9.6K·
0101
5
1.1
No
01070
8
New! 115.2 K
HSDL-l00l 9.6 K·
Oto 1 3t05
0.17
Yes
0.1
Oto 70
New! 115.2K

Package
Size
(wxh)
15 x 8.75

HSDL-ll00

9.6 K·
4.0 M

Oto 1

5

New!
Units

Baud

m

V

No

mA

15 x 8.75

0.2

Oto 70

15 x 8.75

ms

C

mm

Mounting
Options
top/right
angle
top/right
angle

Page
Applications
No.
Notebook/Desktop PCs, 4-33
FAX, modems PDAs,
- 4-53
mobile/fixed phones,
automotive, handheld
instruments

top/right
angle

Notebook/Desktop PCs, 4-61
printers, scanners,
digital cameras

Infrared Emitters
On
For· RiseJ Operating
Part
Package Viewing
Axis
ward
Fall Tempera· Mounting
Number
Size
Angle Intensity Voltage Time
ture
Options
HSDL-4220 T-13/4 (5)
30
22
1.50
40
Oto 70
top, right
angle
New!
HSDL-4230 T-13/4 (5)
17
39
1.50
40
Ot070
top, right
angle
New!
-40 to 85 SMTtop
HSDL-4400
Sub·
110
4
1.50
40
& reverse,
New! miniature
(2x2)
thru·hole
HSDL·4420
24
40 ·40 to 85 SMTtop
Sub·
18
1.50
& reverse,
New! miniature
(2x2)
thru·hole
Units
(mm)
degrees mW/sr
V
ns
C

Applications
Extended distance to IrDA Ir transceivers,
consumer audio/video, automotive
industrial handhelds, diffuse IR networks,
control, and sensor
Short range IR data links, small handheld,
pagers, PCMCIA cards, diagnostics!
programming, board·to·board, smart
cards and sensor

Page
No.
4-48

4-68

Note:
1. Where applicable forward current is 50 rnA.

Infrared Detectors
Part
Number
HSDL·5400

New!
HSDL-5420

New!

Package
Size
Sub·
miniature
Sub·
miniature

Units

Viewing
Angle
110

Photo
Current
@875nm
1.6

Dark
Current
2

RiseJ
Fall
Time
7.5

Operating
Tempera·
ture
-40 to 85

28

6.0

2

7.5

·40 to 85

degrees

J.lA

nA

ns

C

Mounting
Options
Same as
HSDL-4400/4420
Same as
HSDL·4400/4420

Application
Same as Infrared
Emitter HSDL·4400/4420

Page
No.
4-68

Nole:
2. Where applicable forward current is 1 mW/cm2.

Infrared ICs
Part Number
HSDL·7000

Description
irDA 3116th Modulation IC

Interface to
HSDL·l000 or HSDL·l00l

Operating Temperature
·10t085

Package
8 Pin SMT

Page No.
4-43

New!
Units

C

Evaluation Kits
Part Number
HSDL-8000

New!

Description
IrDA 115.2 Kbps
Evaluation Kit

Contents
Contains 2 fully functional PCBs with HSDL-l 000 and HSDL·7000. HSDL-4220 and
HSDL-4230 are provided for extended distance applications. Literature·lrDA Design Guide

4·3

Fhp1ll HEWLETT@
~t:. PACKARD

IrDA Data Link Design Guide

HP 8m History
Hewlett-Packard has been
offering infrared data transfer in
its products beginning with the
infrared printer port of the
HP-41C pocket calculator
introduced in 1979. In 1990, HP
introduced the HP-48SX
calculator, a bi-directional IR
port. Finally, with HP's
OmniBook 300 sub-notebook and
100LX palmtop computers,
introduced in 1992, and the
Vectra XM series desktop
computers, introduced in May,
1993, HP began to offer a serial
infrared port using HP's 115.2
Kb/s Serial Infrared (HP SIR)
standard.
Seeing the benefits of an open
infrared standard which could
allow cableless communication
between a variety of devices from
many manufacturers, HP was
instrumental in the formation of
- - - - - the Infrared Data Association. In
September of 1993, HP SIR was
adopted by IrDA as its hardware,
physical layer standard, and
added IrLAP; the link access
protocol layer and IrLMP; the link
management layer. In addition
optional transport protocol layers
are also written and are available.
IrDA, at that time, was an organization of 40 members. The IrDA
standard was designed around a
"point and shoot" environment
for short distance, 1m, tetherless
communication featuring data

4-4

integrity, reliability, and low cost.
HP began an HP SIR licensing
program in 1993 which made the
technology available to the
public. IrDA has since grown into
an organization of over 100
members, representing companies
spanning computer and office
automation, telecommunications,
consumer, automotive, and
industrial markets, with representation from around the world.
By November, 1994, there were
at least four companies demonstrating notebook computers
equipped with IrDA-compatible
IR ports, three companies
demonstrating desktop PCs, one
company incorporating an IR
port into laser printers, and a
company offering an IrDAcompatible adapter for the serial
ports of existing PCs. Since then
other companies have introduced
portable computers with an IrDAcompatible port, and other
companies offer adapters for
existing printers.
Microsoft supports infrared
connectivity in the Messaging
Applications Program Interface
(MAPI) and Telephony API
(TAPI) in Wmdows 95, and
Microsoft WinPad-based PDAs
incorporating IrDA compatible IR
ports are scheduled for
introduction in 1995.
The advantages of this inexpensive and truly portable connectivity
is being viewed with great

interest by medical, test and
measurement, automotive,
transportation and networking
companies who have seen the
early success of the subnotebook
computer and printer users.
Designs on the drawing board
include drive-through toll booth
payment equipment, automotive
diagnostic data transfer and
keyless entry systems, and at
least one national telephone
company has outlined plans to
incorporate IR ports into hotel
and public phones.
In April of 1995, IrDA approved a
faster speed standard by voting
into place the joint HP, IDM and
Sharp proposal for a link which
will run at 4 Mb/s, 1.15 Mb/s and
be backward compatible to the
present 115.2 Kb/s. Transfer of
text fIles and relatively small
amounts of information between
machines is the primary
application with the present
115.2 Kbfproducts. The release of
4 MB/s and 1.15 Mb/s standard
will allow users to move into
more data intensive applications
such as networking, and the
transfer of larger amounts of data
that include color graphic fIles to
printers. 10 Mb/s and faster are
on the horizon and lead to the
possibilities of IR docking
stations, multimedia in computing
products and very fast data
transfer with imaging products.
IR is also used in security,

industrial and automotive applications requiring motion sensing
or transmission of short packets
of data such as in keyless entry.
The development of faster, low
power IR components will allow
more data to be sent over longer
distances in products providing
much longer battery life than at
present. Small form factor,
inexpensive devices will allow IR
ports to be included in a wide
variety of products for such
functions as on-line testing,
diagnostics, remote programming
and other applications, doing
away with the need for plugs,
connectors and wires which are
presently used in such
applications.
HP Components Group
HP's Components Group is the
largest independent supplier of
communications components in
the world. The group's charter-to
develop semiconductor
component solutions that enable
the information exchange
revolution-advances such
strategic technologies as the
"information superhighway," the
extended desktop and mobile
information appliances. These
technologies will significantly
expand communications and
information management capabilities worldwide.

The Components Group, founded
more than 30 years ago and
headquartered in San Jose,
California, employs 8925 people
worldwide, and includes three
major divisions-the Communication Components, Optical
Communication and Optoelectronics Divisions. The HP
Components Group serves six
major markets: communications,
computer/office, industrial,

transportation, consumer and
government/military.
Major Product Areas·
o Fiber-optic components for
voice, data and video
transmission
o Fiber-optic link products for
computer data transfer
o Radio frequency (RF) and
microwave components for
wireless communications
o RF and microwave transistors
and integrated circuits for
wireless communications
o Light-emitting diode (LED)
displays
o LED indicators
o LED high-brightness lamps
o Motion-control products for
instruments, industrial
equipment, office equipment
and printers
o Optocouplers for industrial
equipment and motor control
o Bar-code scanners
o RF and microwave amplifiers
for wireless communications
o Infrared emitters, detectors and
transceiver modules for the
communications and computer/
office markets
Current Leadership Positions:
0#1 worldwide in LED lamps
and displays
o World's brightest LEDs
o #1 worldwide in fiber-optic
communications transceiver
modules
o Technical leader for visible III-V
products
o World's broadest fiber optic
components product line
o # 1 worldwide in optical
encoders
o #1 worldwide in photo IC
optocouplers
o World's most advanced highspeed silicon bipolar process

Recent advances in band gap
engineering, coupled with
expertise in optics design and
high volume manufacturing have
permitted HP to develop products
such as the IrDA-compliant
transceiver module. III-V
advances will continue to focus
on developing faster devices
without compromising light
output, reliability or cost. HP's
experience with fiber optic
transmitters and receivers as well
as bar code scanners provides a
wealth of knowledge about
designing and manufacturing
through-the-air data link
solutions.
In addition to III-V materials
capabilities, HP's access to high
performance, high-speed analog
bipolar IC processes is also very
important to Components Group
products. For example, the serial
infrared module contains an IC
containing high-sensitivity photo
detectors and amplifiers
combined with integral logic.
Emitter Techrwlogy

Figures 1 and 2 provide a look at
the III -V technology for IR
emitters. The first two devices on
the left represent a much older
technology, primarily used for
control and sensing applications.
These devices are relatively
bright, but too slow for data
transmission.
The emitter technology on the
right represents DH TS AlGaAs
(Double Heterojunction
Transparent Substrate Aluminum
Gallium Arsenide) emitter
structure, the technology used in
HP's IR transceiver. This technology is superior in optical power
and speed, as shown in Figure 2.
The TS AlGaAs emitters can be as
much as three times as powerful

4-5

GaAa:SI
MORE POWER,
MORE COST

I

I

DHTSAIQaAa

AIGaAs:SI

f 1---------1
AIQaAa WINDOW

l~N
t

1----------I
I

I

GaAa SUBSTRATE,
REMOVED

1
GaAs:SI
DEVICE

___

t

N, HIGH-AI

p

1-----------\

1
1

AlGaAa:SI
DEVICE

GoA.
SUBSTRATE

........m

640-875 nm

SUGHTLY FASTER

HIGH POWER

925-850nm

INEXPENSIVE

MORE POWER

HIGH SPEED

BETTER MATCH
TO DETECTORS

BEneRMATCH
TO DETECTORS

INDUSTRIAL, CONSUMER,
LOW-SPEED DATACOM

----------1

so

.
.

1
1

I GaAs SUBSTRATE, I
REMOVED
II __________
JI

P, LOW-AI

Figure 1, and 2.

p

HIGH-sPEED DATACOM, WIReless LAN,
CONSUMER AUDIO & VIDEO

COST,PERFORMANCE - - - - - - - - - - - -

m Emitter Technology.

50

30

os

AIGaAa:Si

20

QaA8:Si + AlGaAa-WiNDOW

,.

,.

_1111

GaA8:Si

SPEED

<100kHz.

<1 MHz

< 10 MHz

<100 MHz

-3dB FREQUENCY

5000 ••

500 . .

so.o

5 ..

SWlTCH1NG TIME

o

PHOTONICS
IEEE ~

HP
85U

SHARP HP
MODULE CORVALLIS

PHOTONICS
APPLETALK

i

I

I

I

I

115K

230K

1M

8.8K 19.2K

HP DESKNET

I'lWlil

&ICC
TOKEN RING
TOKEN RING ETHERNET
FDDI

i i i
4M

10M

16M

I·

DATA RATE IN bps

>100M

Figure 1, and 2. IR Emitter Technology.

and ten times faster than GaAs:Si
and AlGaAs:Si. The keys to the
efficiency of this die is in the
band gap engineering which goes
into optimizing the ability to
generate and allow the light to
escape from the junction in the
middle ofthe die, and the
removal of the GaAs substrate
which acts as a light absorbing
medium in earlier technology
(absorbing substrate) die.
4-6

Future Product Direction
The major thrust of new IR data
link products under development
will be on increased data rate and
efficiency. The III-V expertise will
be leveraged to provide customers
with the highest speed and
efficiency products available at
reasonable cost. Active development will also take place in
increased integration and cost
reduction in the module. HP
Components Group is well
positioned in these areas because
of its in-house capabilities and
large manufacturing facilities.

Infrared Data
Association (lrDA)
Standard

POWER
mWO
100mA

j

place and the highest quality
products are shipped.

Manufacturing
These products are assembled in
highly-automated facilities with
many years of experience in high
volume manufacturing. In
addition to their high volume
manufacturing expertise, these
facilities have been leaders in
TQM for many years and are ISO
9000 certified. These policies and
certification insure the best
process control practices takes

Background
IrDA is an independent organization whose charter is to create
interoperable, low cost IR data
interconnection standards that
support a walk-up, point-to-point
user model that is adaptable to a
broad range of appliances,
computing and communicating
devices. The IrDA address and
phone number is listed in the
appendix under the reference list.
Setting standards for IR communication is key to effortless communication between brands and
types of equipment. Standards
and protocols which can be
reasonably and inexpensively
implemented is key to promoting
the proliferation of IR.

There are a few administrative
items when getting involved with
the IrDA.

patent. System manufacturers or
OEMs that purchase and implement components utilizing the
technology do not need to
acquire an HP patent license. The
system OEM is relieved of any
license requirement as long as
one of the components in the
system is from a firm that
acquired a valid HP License. The
license fee is $5000 and the
licensing agent is IrDA. HP's
patent only applies to the
115.2 Kb/s standard and license
agreements are not required for
any higher speed versions, such
as the 1.15 Mb/s and 4 Mb/s
standard.

IrDA Membership Fees:
$3,000 (US) for affiliate membership (standards documents,
attend meetings, access to
reflector)
$6,000 for executive membership (same as affiliate plus
voting rights)
IrDA Standards Document Fee:
$500 for Standards Document
per company
HP Patent Agreement
As part of the HP SIR technology,

IrDA Standard
The IrDA specifications provide
guidelines for link access (IrLAP),
link management (lrLMP), and
for the physical transfer of data
bits (Physical Layer Specification) (see Figure 4). IrLAP
provides guidelines for the
software which looks for other

HP had patented the encode/
decode circuitry and IR receiver
minus the PIN photodiode
(Figure 3). Acquisition of a
license to use the HP patent
should be considered by
component or subsystem
manufacturers that provide
components that infringes on the

machines to connect to (sniff),
discovers other machines
( discover), resolves addressing
conflicts, initiates a connection,
transfers data, and cleanly
disconnects. IrLAP specifies the
frame and byte structure of IR
packets as well as the error
detection methodology for IR
communication. Figure 5 shows
the block diagram of the IrDA
IrLAP function. Within the link
connection provided by IrLAP,
the functions and applications are
managed by IrLMP software.
IrLMP assesses the equipment
and services available on the
connected pieces of equipment,
and manages negotiation of
parameters such as bit rate,
number of BOFs (beginning of
frame), and link turn around
time. IrLMP then manages the
correct transfer of data and
information.

HP's PATENT

1-------------,
1

UART

•

1

1

1

1
1
1

1
1
1

1

1
1

SOFTWARE

BYTE

LED DRNER/RECElYER CKT

OISCRETES

3I16th
PULSE WIDTH

MODULATOR

EDGE
DETECTOR AND
PULSE WIDTH
DERMODULATOR

,
SERIAL 110
INTERFACE

INTERFACE

:

1

,

1

- - - - - - - - - - - - - - - - - - - - - - - - - ______ 1

Figure 3. IrDA Physical Layer and HP Patent.

4-7

IrDA Physical Layer
The Physical Layer Specification
provides guidelines for the physical
connection of equipment using IR.
The specifications for operating
distance, viewing angle, optical
power, data rate, and noise immunity
enable physical interconnectivity
between various brands and types of
equipment. The specifications also
ensure successful communication in
typical environments and minimize
interference between IR participants.
The physical layer block diagram is
shown in Figure 6 and represents the
components necessary to implement
an IrDA data link. Figures 7 and 8
describe the template for acceptable
intensity/incidence versus viewing
angle. These parameters as well as
others are needed to ensure IrDA
compliance at the physicalla¥er.

Figure 4. IrDA Protocol Stack.

Figure 5. IrLAP Block Diagram.

UART

ENCODEIDECODE CIRCUITRY

PARALLEL

PULSE WIDTH

LED DRIVER/RECEIVER CKT

SOFTWARE

BYTE

3116 ill

TO SERIAL

MODULATOR

EDGE

SERIAL

DETECTOR AND
PULSE WIDTH

TO

PARALLEL

DE-MODULATOR

SERIAL 110
INTERFACE

ANALOG CIRCUITRY
SO = LED ORNER

PRE = PREAMPLIFIER
POST. POST AMPUFIER
Q = QUAN1'1ZER

Figure 6. IrDA Physical Layer Block Diagram.

4-8

DISCRETES

INTENSITY (mWtsr) (VERTICAL AXIS IS NOT DRAWN TO SCALE.)

UNACCEPTABLE RANGE

-500

ACCEPTABLE RANGE

i

-30

1

1-

UNAccjPTABLE

-15

0

40 -

15

i

30

Figure 7. Acceptable Optical Output Intensity Range.
INCIDENCE (mW/cm2)
(VERTICAL AXIS IS NOT DRAWN TO SCALE.)

...-----1---.- 500
OPTICAL
HIGH

UNDEFINED REGION

UNDEFINED REGION

STATE

0.004
-30

-15

30

15
ANGLE (DEGREES)

Figure 8. Optical High State Acceptable Range.

The IrDA physical layer specification defines the IR communication of
a half-duplex link. Some of the key parameters are shown in the table
below.
Link Parameters
Communication
Operating Distance
Data Rate
Modulation
Bit Error Rate
Transmitter Parameters
Peak Wavelength
On-axis Intensity
Optical Half Angle Range
Pulse RiselFall Time
Pulse Optical Overshoot
Systematic Jitter
Receiver Parameters
Incidence in Angular Range
Half-Angle
Systematic Jitter
Latency

Specifications
half-duplex
Oto 1 m
9.6 to 115.2 Kb/s
3/16
<10-9
Specification
850 nm to 900 nm
40 mW/sr to 500 mW/sr
± 15 to ± 30 degrees,
see Figure 7
< 600 ns
< 25%
<0.2 Jls
Specification
4 JlW/cm2 to 500 mW/cm2,
see Figure 8
>± 15 degrees
<0.2 ms
<10ms

The IrDA link is a half-duplex link
because of the physical proximity
of the optical components. The
transmitter and receiver in a
point and shoot model are
physically close together. When
the transmitter is emitting light it
saturates its own receiver, thus
disabling it from receiving data
from another source. A certain
amount of time must elapse
before the receiver can operate.
In this case, < 10 ms is required
for the receiver to return to its
receiving state before the other
end of the link starts to send data
back. This delay, the period
between the time that the transmitter stops sending light pulses
and the time the receiver is able
to receive data, is called latency,
also known as receiver set-up time.
In order for the IrDA link to be
robust, certain measures were
taken to prevent ambient noise
from affecting the link. IrDA
specifies the test methods for
measuring the data integrity of
the link under electromagnetic
fields, sunlight, incandescent
lighting and fluorescent lighting.
IrDA Compliance
IrDA has a Compliance Trademark and a Service Mark, shown
in Figure 9a and 9b. The use of
the Service Mark can be used
freely on literature and equipment
by IrDA members. This mark
does not represent IrDA Compliance. The IrDA Compliance Trademark represents Compliance to
IrDa Standards. A one-time fee
per company of $500 for IrDA
members and $1000 (U.S. Dollars)
for non-IrDA members is required.
In addition, the product carrying
this trademark must have a valid
Implementation Guide For IrDA
Compliance and Compliance
Certificate on record with IrDA.
The full form, as of July 1995, is
included in the Appendix for your
convenience.
4-9

should be Half-Duplex, IrDA, SIR,
transmit active high,and receive
active low where applicable.
UART2 is usually enabled by the
bit settings.

Association 8M
Figure 9a. JioDA Service Mark.

Special Notejor Inte?jace with
the National Semiconductor
PC87334:

An IR system comprising the
HSDL-I000 and the National
Semiconductor PC87334 I/O chip
performs to IrDA standards when

correctly implemented on a
printed circuit board according to
the board layout guidelines in this
design guide. Errorless transmission can be obtained at distances
of at least 1 meter between
transmitter and receiver. If the
PC87334 I/O chip is used with
the HSDL-I000, then UART2 is
the recommended IR interface.
Figure 10 shows the recommended hardware connection:

Figure 9b. JioDA Compliance Trademark.
R4

IR Applications
Desktop PC and Notebooks
Many PC systems make use of an
I/O chip in to control floppy disk
drives, hard disk drives, modems,
parallel ports, and other serial
ports. Such systems can make
use of special I/O chips which can
also control the IR link, and will
directly interface to the HSDL1000 for full IrDA communication. I/O chips made by various
semiconductor manufacturers
including -National Semiconductor
and Standard Microsystems
Corporation (SMC) are designed
for IR communication, and are
suitable for interface with the
HSDL-1000. The following I/O
chips are recommended for
interface with the HSDL-1000:
• National Semiconductor
PC87334VLJ or PC87334VJG
• SMC
FDC37C665IR or
FDC37C6661R
For anyVO chip, the Configuration Register bits must be set so
that the I/O chip is set to operate
in the proper modes. The settings
4-10

BOARD COMPONENTS:
CX1 =C1 .22pF* 10%
CX2= C2= .47 pF. 20%
CX3=C3 •. 1pF:t2O%
AT 0.5 em MAXIMUM DISTANCE
FROM PINS 3,5 (CERAMIC).

=

CX4=C4=4.7~F

Ctx=C5=.1I1F :t20%
RI=R1_aoon:t6%
Rtx.R2=2kn:t:5%
R4 RLED = 8 n MAXIMUM

68
IRRX

=

11801.-1000 = HP INFRARED

UART2 500 ms), then the HSDL1000's LED would be driven
above the Absolute Maximum
Rating for average LED current.
Register Bit
0
1
3,2

4

TRANSCEIVER MODULE
PC87334. NAnONAL
SEMICONDUCTOR SUPER I/O

Once the hardware is complete,
the IR ConfIguration Register of
the PC87334 must be set-up for
IR communication. National
Semiconductor's ~OS especially
for the PC87334 is recommended
for this purpose. FollOwing every
reset of the PC87334, the IR Configuration Register bits will need to
be set-up for IR communication.
The IR Configuration Register bits
should be set as follows:

Setting
Set to 1 for SIR mode on UART2
Set to 1 for half"duplex mode (lrDA standard)
Set to 01 (bit 3 to 0 and bit 2 to 1) for
IR signals on UART2 pins
Set to 0 for IRpulse width fIxed at 1.6 ~
Set to 1 for IR pulse width - 3/16 baud period

UARTs (16550 or Similar)
Many electronic machines such
as PDAs, modems, and analytical
instruments can make use of
16550 or similar UARTs for I/O
interface. The UART signals are
100% duty-cycle (full bit width)
and need to be modulated!
demodulated for the HSDL-I000
IR transceiver module. The
HSDL-7000 Endec (Encode/
Decode) chip is recommended for
the modulation/demodulation
functions. The HSDL-7000 chip
requires a 16x Clock or Baudout

TXO

GND

signal from the UART in order to
determine the baud rate for
correctly modulating/demodulating the signal pulses.
The HSDL-7000 provides the
modulation of UART-type full-bitwidth data into 3/16th-bit-width
IrDA type data for IR transmission. The HSDL-7000 also
provides demodulation of the
HSDL-I000 RXD 3/16th-bit-width
output into full bit width UART
type data. An IR system using a
16550 UART and the HSDL-7000

The HSDL-7000 requires a 16x
Clock or Baudout signal in order
to correctly modulate and
demodulate the UART and IR
signals. The 16x Clock or
Baudout signal needs to be 16
times the data rate of the UART
data coming into the HSDL-7000.
UART's such as the 16550 UART
typically provide a 16x Clock!
Baudout signal pin for easy
connection to the HSDL-7000.

3/16 Endec Netlist
System designers that do not
require the functionality of a full
I/O chip, and do not wish to use a
discrete UART, often implement
the I/O functions into a system
ASIC. The modulation/demodulation function required for IR can
be incorporated into the system
ASIC, so that the ASIC can
interface directly with the HSDL1000 IR transceiver module. The
HSDL-7000 EncodelDecode chip
can be incorporated into the
system ASIC to perform the
modulation/demodulation.

RXD Vee

. .-!---!----J,....---!=:;----

Endec can be realized with the
connections shown in Figure 11.

PIN 5 CAN BE USED
TO ENABLEIOISABLE
THE IR RECEIVER.
HIGH = ENABLED
LOW = DISABLED

The HSDL-7000 Endec netlist is
available for ease of incorporation into a system ASIC.

BOARD COMPONENTS:
CX1 = C1 = .22 pF:t 10%
CX2 = C2= A7 pF:I: 20%

CX3=C3=.1IJF :l:20%
AT 0.5 em MAXIMUM DISTANCE
FROM PIN 3 (CERAMIC).

CX4=C4=4.7IJF
RI=R1 =3000:1:5%
R4 = RLED = 8 n MAXIMUM
HSDL-1000 = HP INFRARED
TRANSCEIVER MODULE
HSDL-7000 HP ENDEC CHIP

=

Figure 1L 16550 UART Application Diagram.

4-11

Please contact your HewlettPackard Component Sales
Representative for information
regarding the HSDL-lOOO;
RS-232

Some electronic systems require
off-board, or subsystem
implementation of IR. If such
systems use an RS-232 interface
for IR, then IR can be implemented as shown in Figure 12.

pins: RTS, DTR, TXD, and RXD.
Such a system would need
software ,drivers to correctly
confIgure the RTS and DTR
signals to convey baud rate
information. The software drivers
and,related hardware are needed
to fully implement this solution.
Please refer to reference list in
the Appendix for contact
information.

The RS-232 implementation
would interface to the following

TXD

GND RXO Vee

HSOL-7000

PIN 5 CAN BE USED
TO ENABLEJDISABLE
THE IR RECEIVER.
HIGH = ENABLED
LOW = DISABLED

BOARD COMPONENTS:
CX1 =C1 =.22 pF::t 10%
CX2 = cz = .47pF:i: 20%
CX3=C3=.1pF:t20%
AT 0.5 em MAXIMUM DISTANCE

FROM PIN 3 (CERAMIC).
1.8432 MHz
CRYSTAL

CX4= C4 =4.7 IoIF
RI=R1 =3000::1:5%

=

=
=

R4 RLED 8 n MAXIMUM
HSDL-1000 HP INFRARED
TRANSCEIVER MODULE
HSDL-700D = HP ENDEC CHIP

Figure 12. RS-232 Interface Diagram.

4-12

Microcontrollers
Hewlett-Packard is currently
working on a recommendation
for the IR interface to such
microcontrollers as the Intel
8051 and 8031, or,the Motorola
HC05, HC08, and HC1l. Please
contact your local HewlettPackard sales representative for
current information.
Extended Link Distance
Receiver sensitivity and transmission intensity are the main factors
affecting link,distance. To extend
the link distance, both sensitivity
and intensity must be increased
on one end of the IR link, or
either sensitivity or intensity must
be increased on both ends of the
IR link. Assume there are two
ends of an IR link labeled A and
B. If both sensitivity and intensity
are increased for end A, then A's
transceiver can both receive and
transmit at longer distances
regardless of what transceiver is
at end B. If only transmission
intensity is increased for end A,
then the transmisl1ion intensity of
end B must also be increased in
order to increase link distance.
Otherwise, B's transceiver could
move further from A and still
receive A's signal, but A could not
receive B's transmitted signal at
the extended distance. The same
is true if only receiver sensitivity
is increased.
The HSDL-1000 provides guaranteed errorless data transmission
from 0 cm to r meter under
recommended operating
conditions. In typical applications,
the link distance can reach 2
meters. Typical link distance can
be increased if the transmission
intensity is increased at both ends
of the IR link. If the LED current
pulse amplitude of both ends of
the IR link are increased from the
recommended 250 rnA to 500

mA, the link distance can
typically reach as far as 3 m at
115.2 Kb/s, but guaranteed over
recommended operating
conditions as far as 1.5 meters.

pulse current of 250 rnA, and has
a viewing angle of 17 degrees.
Refer to the HSDL-4220 and
HSDL-4230 data sheets in the
Appendix for more information.
Connection of an external IR LED

The HSDL-1000 features the
ability to drive an external LED
for added power, as shown in
Figure 13a. The HSDL-4220 IR
emitter or the HSDL-4230 IR
emitter can be connected in
series or in parallel with the
HSDL-1000's internal LED. The
HSDL-4220 typically provides
190 mW/sr of intensity at a peak
pulse current of 250 mA, and has
a viewing angle of 30 degrees.
The HSDL-4230 typically provides
375 mW/sr of intensity at a peak

in parallel with the LED in the

HSDL-1000 can be implemented
as shown below. Resistors R3 and
R4 should be chosen to provide
the appropriate LED current as
described in the Figure 13b.
The combined intensity of the
HSDL-1000 internal LED and the
HSDL-4220 or HDSL-4230
external LED can be used to
calculate the potential link
distance. Link distance is

LED2

HSDL~1000

Vee

Transmission signals with less
than 20 percent duty cycle can be
used to obtain even further link
distance. LED pulses of peak
amplitude larger than 500 mA
can be used if the pulse duty
cycle is decreased below 20
percent. The recommended
maximum average LED current
for the HSDL-1000 is 100 mA. An
LED pulse of 500 mA peak
amplitude and 20% duty cycle
corresponds to 100 mA average
LED current. If an IrDA allowable
1.6 Ils pulse at 9600 bits/second
is used (1.53 percent duty cycle),
then an LED pulse of 1 amp peak
amplitude can be used and still
not exceed the 100 mA maximum
average LED current.
Successful link communication at
9.6 Kb/s has been demonstrated
at distances exceeding 10 meters
with an external HSDL-4230 LED
connected to the HSDL-lOOO.
Both the HSDL-4230 LED and
the HSDL-lOOO LED were driven
with 1 amp peak amplitude
pulses of 1.6 JlS pulse width.

R3
COMPONENTS:
R3 = LED2 BIAS RESISTOR = 8 n MAXIMUM
R4 = MODULE LED BIAS RESISTOR 8 n MAXIMUM
LED2 = EXTERNAL LED
HSDL-4220 OR HSDL-4230 RECOMMENDED
HSDL-1000 = IR TRANSCEIVER MODULE

=

Figure 13a. Extended Distance Schematic.

Transmitting
Devices
HSDL-1000
HSDL-1000
HSDL-lOOO and
HSDL-4220
HSDL-1000 and
HSDL-4230

proportional to the square root of
the total intensity of the signal.
The table below demonstrates the
link distances which can be
achieved under typical operating
conditions. Guaranteed link
distances over the recommended
operating range will reduce the
link distance.

LED Pulsed
Drive
Currents
(Ipeak)
250mA
500mA

TotalLED
Typical
Intensity
On-Axis
100mW/sr
200mW/sr

Typical
On-Axis
Link Distance
2.0 meters
2.8 meters

250 mAeach

290mW/sr

3.4 meters

250 mAeach

475 mW/sr

4.4 meters

Figure 14 demonstrates the effect
of receiver sensitivity (IlW/cm2)
and transmission intensity (mW/
sr) on link distance. For a given
receiver sensitivity (40 IlW/cm2)
and a given transmission intensity
(40 mW/sr), the theoretical link
distance in meters can be
determined.

4-13

v+ LED Pull-up
Supply Voltage (V)
4.5
4.5
4.5
4.5
4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0

RLED Pull-up Resistor (n)
(Ra or R4 and Eva! Board)
4.3
5.6
6.2
6.8
7.5
5.1
5.6
6.8
7.5
8.2
9.1
10.0

ILED (rnA)
465
357
323
294
266
490
446
368
333
305
275
250

!LED = (V+ =2.5 V)/RLED'

Figure lSb. HSDL-lOOO LED Resistor Selection Table.

10

......

~

......

.rDA 40 IJW/cm~-

.......

:.....
"~ ~

"

~

'"...... "',

0.1

I l

'500mW/sr

lJ"W/~m2'---

250mW/sr

125mW/sr80mW/sr

'Jmw).r
1

10
UNK DISTANCE (m)

Figure 14. Incidence vs. Link Distance vs. Transmit Intensity.

Software Drivers and
Application Programs
The following list of manufacturers provides application
software and drivers utilizing IR
hardware. The addresses and
phone numbers are listed in the
Appendix under Reference List.
Microsoft (W'mdows 95)
Puma Technology (Application
Software)
Traveling Software (Application
Software)
Connexus (Windows Drivers)
Parallax (IR Drivers for PDAs)

4-14

HSDL-IOOO Design
Guidelines
Product Description
Block Diagram

The HSDL-lOOO transceiver module performs infrared data transfer
compliant to the IrDA physical layer
specifications, at data rates up to
115.2 Kb/s. The modular design
enables ease of implementation,
and ease of compliance to IrDA
angular specifications. The design
of the receiver circuitry enables
error free data transfer at guaranteed link distances from 0 meters
(nose to nose) to at least 1 meter.

The HSDL-1000 schematic
diagram shows the operation of
the HSDL-1000. Both pins of the
LED are accessible in order to
implement additional LEDs in
series or in parallel if desired. A
daylight cancellation circuit in the
first stage amplifier of the
receiver uses CX1 to filter out
ambient light. The output of the
first stage amplifier is capacitively coupled to the comparator
to extract only the AC component
of the signal.
Dynamic Range

The wide dynamic range, over 5
orders of magnitude, required by
the IrDA physical layer specification necessitates automatic
adjustment of the receiver to
incoming signal levels. The
HSDL-1000 uses feedback and
limiting within the first stage
amplifier circuitry to enable quick
adjustment to incoming signal
levels. The amplifier design
allows maximum sensitivity for
low power signals (4 ~W/cm2)
and also limits pulse width distortion during high power signals
(500 mW/cm2). The realized
performance with this special
design eliminates the need for
any additional automatic gain
control, AGC circuitry.
AGC circuitry can be used in an
IR receiver to obtain wide
dynamic range. The presence of
AGC circuitry is not a guarantee
that the IrDA specifications will
be met. Imprecise design of the
AGC circuitry has been shown to
lead to bit errors at large signal
levels (short IR link distances).
The complete IR system should
be tested for IrDA compliance at
both short (nose-to-nose) and
long (1 meter) distances regardless of the design methodology
used to obtain wide dynamic
range.

Ambient Light
The HSDL-I000 IR transceiver
module makes use of several
technologies to reduce the interfering effects of ambient light on
correct IR signal reception. The
package mold compound is tinted
with dye to filter out light
wavelengths below the IR
wavelengths of 850-900 nm. The
lens of the detector is designed to
focus light within the IrDA
viewing angle. The fIrst stage
amplifIer of the receiver contains
daylight cancellation circuitry to
eliminate the ambient light
portion of incoming signals. HP
has ensured robust performance
in adverse conditions.
EMI Immunity
The HSDL-I000 has excellent
EMI Immunity when board layout
is implemented according to the
board layout section of this
design guide. The EMI Immunity
is greater than 200 volts/meter
for any square wave noise source,
and even higher for sinusoidal
noise sources. A 10 volt peakpeak square wave signal source
placed 5 cm from the HSDL-I000
would produce EMI of 200 volts/
meter.
All IR transceiver solutions
require improved ground plane
design and capacitive decoupJing
over standard practices for digital
integrated circuits. Any IR transceiver solution, modular or
discrete, has both analog functions and digital functions. The
analog functions (IR detector,
preamplifier) are more sensitive
to EMI and power supply noise
than typical digital integrated
circuits.

Transmitter
The transmitter uses a high
speed, high efficiency TS AlGaAs
LED, along with a high speed
drive circuit to produce high
power IR pulses with minimal
pulse width distortion. The
efficiency of the LED and the
package design enable maximum
light intensity at the minimum
drive current of 250 rnA. The
speed of the LED and drive
circuitry minimize the rise and
fall times of the LED signal
edges, improving the detection
capability of the corresponding
IR receiver.
The HSDL-I000's transmitted
intensity IE at 250 rnA LED
current is guaranteed to be at
least 44 mW/sr over the normal
operating life of the transceiver
module, if the recommended
operating conditions are followed. The HSDL-1000 guarantees a minimum intensity of
44 mW/sr, which is 10% above
the IrDA minimum of 40 mW/sr.
This additional power allows for
losses through a cosmetic
window of about 10%, so that the
minimum IrDA intensity can still
bernet.
The HSDL-I000 is a fully integrated transceiver. It includes the
optics, LED and PIN photodiode,
LED driver and receiver circuits
in one package. It performs the
IR transmit and receive functions
for the system. The transmitter
side of the HSDL-I000 converts
the nominally 3/16th bit width

electrical pulses from the modulator into IR light pulses. On the
receiver side, the HSDL-I000
also detects IR light pulses and
converts them to TTL level
electrical pulses for the demodulator. The block diagram, Figure
17, shows the partitioning an IR
system using the HSDL-1000.

Mechanical Considerations
Lead Bend Options
The HSDL-I000 has four leadbend options. See Figure 15.
XOl: Module lies flat on the
board with the lens facing up
from the horizontal board
surface.
X02: Module sits upright at the
board edge with the lens facing
parallel to the horizontal board
surface. Module sits with the
board plane intersecting the body
of the module. All leads point
back to the board and are surface
mount.
X03: Module sits upright on the
board with lens facing parallel to
the horizontal board surface.
Some leads are surface mount
and others are through-hole.
Leads point both front and back
for stability.
X04: Module sits upright on the
board with the lens facing parallel
to the horizontal board surface.
All leads are surface mount.

4-15

"FIRST"
#003
#103

"AlID"

IlOO2

F1/lUre 15. HSDL-1000 Mounting OPtions.

11102

''TOP''
#001
#101

"FRONT"

IlOO4

#104

Pad Layout
Please refer to the lfSDL-I000
data sheet for details on package
and lead dimensions. The
recommended Pad layouts for
each lead cOnIJguration are
ShOWIlin Figures 16a _ 16d.

The leadframe of the lfSDL-I000
actually extends on both sides of
the package and prOvides proper

F1/lUre 16a. Pad LaYout Dia/ll"am OPtion #XOI.

4-16

centering of the leadframe in the
mold. There are four leads on
one side and eight leads on the
other. The four leads are sheared
off after molding, but they are
slightly expOsed. These leads are
still active and caution mUst be
used to avoid contacting these
leads to any conductive material.

HOLES ARE ON VERTICAL
CENTER LINES OF PADS.

14.0

12J0.4TYP.
TOLERANCES: .XX":I: 0.05 mm

.x =:1: 0.1 mm

Figure 16b. Pad Layout Diagram Option #X02.

HOLES ARE ON
VERTICAL CENTER
LINES OF PADS

+

I2J 0.4 TYP.

Figure 16c. Pad Layout Diagram Option #X03.

TOLERANCES: .XX

=:I: 0.05 mm

.x =:1: 0.1 mm

18'1:6~ In~~ffil1'~~~lf-;
r~
r=slr
r
.,---l

~

311

I~6.01
I t-

DDDDDDDD

1.50 REF.

JL

j

5.10

LO.91

0.36 REF.

t

8.51

Ii2J

!51l

7.15

R:.L

4.82
REF.

,

TOLERANCES: .XX =:1: 0.1

mm

~-e-

¢
Figure 16d. Pad Layout Diagram Option #X04.

4-17

RECEIVER LENS

TRANSMITTER LENS

The values of the external components eXl, eX2, eX3, eX4, Rh
RLED , etx, and Rtx should be
chosen according to the recommendation table on the data sheet
and the recommended interface
circuits in the IR Applications
Section.

v+
12345678

R,

TXD

TXD

External Components

I
I
I

k'

AXD

v+

Figure 17. HSDL-I000 Schematic Diagram and Pinout Description.

Electrical Considerations
Component
eXI

CX2
CX3
CX4
R]
RLED

Rtx*
Ctx*

Recommendation
Should not deviate from 0.22 IJP, and is crucial to the daylight cancellation circuitry.
Merging of received bits may occur if the eXI value is too large. Loss of receiver
sensitivity may occur if the CXl value is too small.
Should be a minimum of 0.4 IJP, and can be higher if feasible to implement on the board.
Nominally O.Ij.lF and small enough in size to be as close as possible «0.5 cm) to pins 3
and 5 of the HSDL-1000.
Should be 4.7 j.lF minimum, and can be made larger to improve noise immunity.
Nominally 300 ohms.
Range from 4 to 10 Q depending upon the board supply voltage Vee. The data sheet
requires RLED to be 8 Q maximum, in order to allow the Vee to drop as low as 4.5 V.
A minimum LED current of 250 rnA is then guaranteed. RLED should be chosen so that the
minimum LED current is 250 rnA over the full range of Vee in the actual application. If
Vee is guaranteed not to go below 5 V, then a value as high as 10 Q can be used for RLED .
See the HSDL-1000 Source Calibration Table in the IrDA Compliance section for the
resulting ILED from various VecfRLED combinations.
Nominally 2 kil.
Nominally 0.11JP in order to minimize pulse width distortion while Ae coupling the
data input.

*Rtx and Ctx are only necessary in applications where the Txd pulse duty cycle is such that the Txd pulse width can be greater than
90 IlS, such as interfacing to the National Semiconductor Super I/O chip. Refer to Figure 10.

4-18

PCB Layout for Noise Immunity
Special attention to the recommended PCB layout guidelines
will minimize the effects of EMI
(Electro-Magnetic Interference)
and PSN (Power Supply Noise)
on the performance of the HSDL1000's receiver. The effects of
EMI and PSN can potentially
reduce the sensitivity of the
HSDL-IOOO's receiver resulting
in reduced link distance. EMI can
also generate spurious bits on the
receiver output Rxd, when no IR
signal is being received. HSDL1000 evaluation boards which
demonstrate the correct board
layout, can be obtained from your
local Hewlett-Packard Component Sales Representative.
EMI Immunity
EMI is radiated by switched mode
power supplies, dc/dc converters,
external monitor I/O ports, power
ports, or clock generators. The
distance of the HSDL-lOOO to
such EMI sources determines the
EMI field strength required by the
HSDL-lOOO module. The EMI
field strength at the HSDL-1000
must be less than the minimum
EMI Immunity of the HSDL-IOOO
in order for error free
performance.

then the distance of the EMI
source to the HSDL-lOOO must be
increased until the EMI field
strength is less than 200 Vim at
the HSDL-1000 module.
The following recommendations
for PCB layout should provide
sufficient EMI immunity for error
free IR link operation:
1. Vee bypass capacitor CX3
should be ceramic, and
positioned as close as possible
to the module (within 0.5 cm
of pins 3 and 5 of the module)

2. Multi-layer PCB is recommended so that a sufficient
ground plane can be properly
placed.
3. The board underneath the
module, and 3 cm in any
direction around the module is
defined as the critical ground
plane zone. The board's
ground plane should be maximized in the critical ground
plane zone. Any unused board
space in the critical ground
plane zone should be filled
with ground metal. Unused
board space is defined as
board space not used for other
connections/traces.

4. The ground plane for the
HSDL-1000 should have a very
low impedance connection to a
clean/noiseless ground node.
The noise on the ground node
should be 10 mV or less for
optimum receiver performance.
The HSDL-1000 ground plane
connection to board ground
should be separated by a high
impedance to ground connections of power supplies, digital
switching circuits, or other
noise sources. The impedance
between HSDL-1000 ground
and noise source ground can
be increased by minimizing the
conductive or ground plane
paths between them (both
number of traces and trace
size). An example of this
recommended connection is
shown in Figure 18a.
5. The components recommended
for each particular application
should be placed within the
board area where the HSDL1000 ground plane has been
maximized. CX1, CX2, CX3,
and CX4 (if used for the
particular application) should
be placed as close to the
module as possible. The
ground plane metal can be
extended beyond the critical

EMI field strength is measured in
volts/meter. A 200 volt EMI
source placed 1 meter from the
HSDL-lOOO represents a 200 Vim
field strength to the HSDL-1000.
A 10 volt EMI source placed 5 cm
from the HSDL-1000 also
represents a 200 Vim field
strength to the HSDL-lOOO.
EMI Immunity is the maximum
field strength of EMI that the
HSDL-1000 can tolerate while
maintaining a receiver
BER <10.9 . If the EMI Immunity
of the HSDL-1000 is 200 Vim

Figure 18a. HSDL-I000 Ground Connection.

4-19

The table below shows the expected EMI Immunity performance when
following the guidelines above.
SignaJ. Source
Square Wave
Square Wave
Square Wave
Sinusoidal

Frequency

o Hz to 10kHz
10 kHz to 300 kHz
>300 kHz
All

ground plane zone in order to
accommodate components, or
to further improve EMI
immunity.
6. All signal or noise sources
(power ports, monitor ports,
clock generators, switched
mode power supplies) should
be located at least 5 cm away
from the module, and outside
of the HDSL-1000 ground
plane.
If the peak signal amplitude of a

noise source is known, then the
EM! field strength at the HSDL1000 can be calculated in volts/
meter. The distance of that
source to the HSDL-1000 can be
a(ljusted above or below 5 cm in
order to maintain an EM! field
strength less than the EMI
Immunity.
Compromises in board layout
from the recommended layout
can result in a significant reduction in EMI immunity. Factors
such as increased lead/trace
length from pins 3,5 of the
HSDL-1000 to CX3 and CX4, or
reduced ground plane area, can
degrade EMI immunity by 50% or
greater. Curves of EMI Immunity
versus Frequency for the
recommended board layout, and
a compromised board layout are
shown on Figure 19a.

4-20

EMI Inununity (VIm)
;::: 285
;::: 235
;:::305
;:::305

Power Supply Rejection (PSR)
Power supply noise can be
coupled into the HSDL-1000's
receiver through Vee or ground
lines. Power supply ripple is a
common example of power
supply noise. PSR (power Supply
Rejection) refers to the HSDL1000's ability to tolerate power
supply noise, while maintaining
error free operation. Proper PCB
layout techniques and external
component placement can ensure
successful operation with power
supply noise present on Vee or
ground.
The recommendations for board
layout below should provide
sufficient PSR for error free IR
link operation:
1. The least noisy power source

available on the application
board should be chosen for Vee
of the HSDL-1000 module.
Biasing Vee of the HSDL-1000
directly from a noisy switched
mode power supply line should
be avoided.
2. The Vee line to the HSDL-1000
module should be fIltered sufficiently so that less than 10 mV
of noise is present at either pin
3 or pin 5 of the module. The
recommended values of CX3
and CX4 should provide

sufficient fIltering in most
cases. CX3 and CX4 can be
increased in value if more
fIltering is necessary.
3. Vee bypass capacitor CX3
should be ceramic, and
positioned as close as possible
to the module (within 0;5 .cm
of pins 3 and 5 of the module)
4. The board underneath the
module, and 3 cm in any
direction around the module is
defined as the critical ground
plane zone. The board's
ground plane should be maximized in the critical ground
plane zone. Any unused board
space in the critical ground
plane zone should be filled
with ground metal. Unused
board space is defined as
board space not used for other
connections/traces.
5. The ground plane for the
HSDL-1000 should have a very
low impedance connection to a
clean/nQiseless ground node.
The noise on the ground node
should be 10 mV or less for
optimum receiver performance.
The HSDL-1000 ground plane
connection to board ground
should be separated by a high
impedance to ground connections of power supplies, digital
switching circuits, or other
noise sources. The impedance
between HSDL-1000 ground
and noise source ground can
be increased by minimizing the
conductive or ground. plane
paths between them (both
number of traces and trace
size). An example of this
recommended connection is
shown in Figure 18a.

wave frequency at a fixed
distance.

350
300

i?
W

tu

250

f'... .....

~

...... / '

CORRECT BOARD LAYOUT

~ 200

z

::>

~

~

150
100
50

;::rpRIMISE1~
o

50

100

150

200

250

300

SQUARE WAVE FREQUENCY (khz)

Figure 19a. EMI Immunity vs. Square
Wave Noise Sigual Frequency.

1.00
W

o

:il!

Iii ~ 0.95
~~

0;"
... c[

QW

0.90

~~

ii!Uj

~ ~ 0.85

r

QE

~:i

Ci!

~
oz

0 0.80

0.75

-.....

j

I

V
o

200

400

600

800

1000

POWER SUPPLV NOISE FREQUENCY (khz)

Figure 19b. Infrared Unk Distance
versus Power Supply Noise
Frequency.

The effect of power supply noise
on HSDL-1000 receiver sensitivity is shown Figure 19b. A
1 meter infrared link is constructed with a power supply
noise sine wave of 40 mV peakpeak amplitude applied to the Vee
pin of the link's receiving HSDL1000 module. The sine wave is
modulated on top of the DC
positive supply voltage. The
frequency of the sine wave is
varied from 1 Hz to 700 kHz for
the measurement. The IR link's
transmitting LED forward current
is adjusted to maintain a link
BER:<> 10-6 for each noise sine

The normalized link distance
operating at a BER:<> 10-6 is
derived from the LED forward
current at each frequency and
compared to the maximum IR
link distance no power supply
noise at a BER:<> 10-6 . Normalized
IR link distance
d = sqrt[ (ILED@no noise)/
(ILED@f) I where f = frequency of
the noise signal.

Improving EM! Immunity and
PSR
If EMI noise or power supply
noise are suspected in causing
reduced sensitivity or link
distance, then the signal on Rxd
of the receiving HSDL-1000
should be measured with the link
in an idle state (no IR transmission). If bits are observed on
Rxd, then noise is coupling into
the receiver causing spurious bits
on Rxd. The receiving HSDL1000 should then be biased from
a separate clean dc supply (such
as a battery). If spurious bits are
still observed on Rxd of the
receiving HSDL-1000, then the
noise is most likely due to EMI. If
Rxd looks clean when biased
from a separate dc supply, then
the noise is most likely Vee or
Ground noise.
The first step in improving EMI
immunity and Power Supply
Rejection is to confirm that the
recommended board layout has
been followed.
The following steps specifically
improve EMI Immunity, but can
also improve PSR:
1. Increase the ground plane under
the HSDL-1000 module.
Extend the ground plane

further out from the module.
For a multi-layer board, use
board layers underneath and
near the HSDL-1000 for
additional ground plane.
2. Move CX3 closer to module
pins 3 and 5. Increase CX3
from its nominal value
(0.1 !iF).
3. Move CX4 closer to the
module, and increase CX3
from its nominal value /
(4.7 !!F).
The following steps specifically
improve PSR, but can also
improve EMI Immunity:
1. Connect Vee of the HSDL-1000
to a DC power board trace
with measured noise:<> 10 mY.
For a multi-layer board, use
one layer underneath and near
the HSDL-1000 as Vee, and
sandwich that layer between
ground connected board
layers. For example in a fourlayer PCB, layer 1 (top) contains traces, layer 2 contains
ground underneath the module
and surrounding areas, layer 3
contains Vee, layer 4 (bottom)
contains traces and ground
metal.

2. If possible, move CX3 closer to
module pins 3 and 5. Increase
CX3 from its nominal value
(0.1 !iF).
3. If possible, move CX4 closer to
the module, and increase CX3
from its nominal value
(4.7 !!F).
4. Connect the ground plane of
the HSDL-1000 to a ground
node with < 10 mV noise.
Separate the HSDL-1000
connection to ground from

4-21

power supply: or digital
switching circuits connections
to ground.

front panel of a hypothetical
product. Dimension 'Y' is the
distance between the apex of the
receiver side lens and the outside
face of the front panel. Dimension 'X' is the distance from the
middle. of the module to the edge
of the IRtransparent window,
which is defined as the 'Aperture
Half Width.' For a given 'Y'
design, the Aperture Half Width
'X' must be less than or equal to
the value shown in Figure 21. For
dimensions greater than 5 mm,
the following equation can be
used to calculate X:
X=2.87*Y+7.0.

5. Implement a PI fIlter on Vee as
shown in Figure 19c.

TL
10-1OOliH

BOARDVcc

CX4

HSDL-10OOVCC

T T

CX3

Figure 1ge. PI Filter.

Optical Port Design
Ap~urern~nsand

Orientation
Figure 20 shows a module
positioned with respect to the

APERTURE HALF WIDTH (X) va
MODULE DEPTH (Y)
25

I

,/
20

8:

,/

~

15

~

10

Iii

5

~

.;'

,/

,/

,/

,/

",

!1i

o

o

G.5

1

1.5

2

2.5 3

3.6

4

4.5

5

MODULE DEPTH (Y) (mm)

Figure 21. Maximum Aperture Half
Wldth as a Function of Module Depth.

Window Material Selection

The HSDL-I000 data sheet specifications for Transmitter Radiant

FRONT VIEW
OPAQUE MATERIAL

Ir TRANSPARENT

Intensity and for Receiver Input .
Irradiance allow for 10% light
signal loss through a cosmetic
window placed in front of the IR
transceiver module. The recommended plastic materials for use
as a cosmetic window are available from General Electric
Plastics, see Reference List in the
Appendix for contact information.:
Recommended Dye: Violet
#21051 (IR transmissant above
625 nm)

PACKAGE
CENTERLINE

PIN 1

Figure 20. Position of Module with Respect to Product Case.

Recommended Plastic Materials:
Material #
Lexan 141L
Lexan 920A
Lexan 940A

Light Transmission
88%
85%
85%

Haze
1%
1%
1%

Note: 920A and 940A are more flame retardant than 141L.

Refractive Index
1.586
1.586
1.586

Improved receiver performance
in the presence of ambient light
(sunlight, fluorescent light,
incandescent light) can be
attained by indenting the module
into the system box by a few
millimeters. The overhang of the
system box will minimize the
amount of direct ambient light
that the HSDL-I000 detector
sees. The cosmetic window will
also help reflect ambient light
away from the module.

New Products
HSDL-1001: 115Kb/slnfrared
IrDA Compliant Transceiver
The HSDL-1001 is an improved
version of the HSDL-1000. HP
plans to offer and support both
the HSDL-lOOO and HSDL-1001.
A preliminary data sheet is
located in the Appendix. The
following table summarizes the
performance enhancements of
the HSDL-lOOI.

Parameter
Supply Voltage
Idle Icc
Receiver Latency
Shutdown Pin
External Passive Components
TXD Input Current

IR System Testing
IrDA Physical Layer
Compliance
Obtaining IrDA compliance for
the completed m system is
important not only to permit the
use of the IrDA trademark, but in
order to guarantee interoperability with equipment produced by

HSDL-llOO: 1.15/4 Mb/s
Infrared IrDA Compliant
Transceiver
With the approval of the higher
speed (1.15 MB/s and 4 Mb/s)
IrDA standard in April, 1995,
Hewlett-Packard is designing a
transceiver module compliant to
this standard, the HSDL-llOO. A
preliminary data sheet is located
in the Appendix.

HSDL-IOOO
5V
1.1 rnA
8ms
No
6-8
4.5 rnA

HSDL-lOOl
3Vt05V
165 IlA
100/..ls
Yes
3-5
lOOIlA

other manufacturers. Such interoperability will greatly increase
the value of your IR system in the
perspective of the end user. Both
short distance, nose-to-nose, and
long-distance (1 meter), performance should be verified for
any proposed IR system seeking
to be IrDA compliant. IR compo-

HSDL-44XX/54XX: IR Emitter
and PIN Photodiode in a
Subminiature SMT Package
For applications that require
small, surface mount, and short
distance IrDA-type links, such as
pagers and hand held devices, the
HSDL-44XX emitter and HSDL54XX detector may fit your
application. A preliminary data
sheet is located in the Appendix.
Please consult your local HP
Components Sales Representative
regarding samples and availability of these future products.

nents of some manufacturers,
advertised as IrDA compatible or
compliant, currently do not meet
the required performance at both
short and long link distances. The
HSDL-1000/HSDL-1001 is tested
in production in order to
guarantee IrDA compliance for
both short and long distances.

4-23

The modular design of the HSDL"
1000/HSDL-1001 enables the
system designer to easily meet
the IrDA physical layer
specifications, The design and
guaranteed performance of the
HSDL-1000/HSDL"1001 ensures
that a ~orrectly designed system
will meet all of the IrDA physical

layer specifications. Correct
system design includes proper
board layout and optical interface
as described later in this design
guide. The Compliance Tables.
below demonstrate the guaranteed performance of the HSDL1000/HS:PL-1001 in an IR
system, and can be used to
complete the Product Qeclaration

of Compliance form located in
the Appendix.
For iR detectors: IE (mW/sr) =
[(Measured Power (mW))*
(1 meter/L)2] /(Detector Area
(meters2)], where L is the
diStance, in meters, from the
HSDL-1000/HSDL-1001 under
test to the IR detector.

IR Transmitter Compliance Table
Active Output Specifications
Peak Wavelength
Active On-Axis Output Power

Half-Angle Where Power
is < 40mW
Optical Rise Time
Optical Fall Time
Pulse Overshoot
Pulse Jitter

Measured Value
or Check
875nm
>44mW/sr
< 500mW/sr

± 15 to ± 30 degrees
22 degree typical
Typic31 = 150 ns
Maximum = 600 ns
Typical = 50 ns
Maximum = 600 ns
< 25%
< 200 ns

SpecificationS
850 nm to 900 nm
40 mW/srto
500mW/sr

± 15 to
± 30 degrees

Verification
Method
GBD
VBT
GBD
See Note 1
VBT

< 600ns

GBD

< 600 ns

GBD

< 25%
<200ns

GBD
GBD

GBD = Guaranteed By the DeSign of the HSDL-1000!HSDL-1001 module. Characterization data has shown that all functionally good
units will meet these specifications.
VBT = Verified by 100% test of production units prior to shipping.
Note:
1. Although the HSDL-IOOO!HSDL-lOOl data sheet guarantees a transmitted intensity IE;O: 44 mW!srwithin the IrDA viewing angle,
verification of the output power of the overall IR system may be necessary. The orientation of the HSDL~·lOOO ill.the IR system box
with respect to windows and openiilgs, and the window shape and material, could effect IE- Verification that the overall IR system
meets the 40 mW!sr minimum can be accomplished with a simple on-axis IE test. An IR detector with known area can be placed at '
20 cm or greater, on-axis (half-angle = 0), from the IR system window. IE can be derived from the measured power captured by the
detector. The minimum IE within the IrDA viewing angle occurs on-axis for the HSDL-1000!HSDL-1001. See Figure 7 in the HSDL1000 data sheet located in the Appendix.

4-24

IR Receiver Compliance Table
Active Input Specifications
Receiver correctly generates O's and l's when exposed to a
pulsed IR signal of 4 IlW/cm2 at 0 degrees
Receiver correctly generates O's and l's when exposed to a
pulsed IR signal of 500 mW/cm2 at 0 degrees
Receiver correctly generates O's and l's when exposed to a
pulsed IR signal of 4 IlW/cm2 at + 15 degrees
Receiver correctly generates O's and l's when exposed to a
pulsed IR signal of 500 mW/cm2 at + 15 degrees
Receiver correctly generates O's and l's when exposed to a
pulsed IR signal of 4 IlW/cm2 at -15 degrees
Receiver correctly generates O's and l's when exposed to a
pulsed IR signal of 500 mW/cm2 at -15 degrees
Using a jitter free sequence of IR pulses, what is the jitter in
the electrical equivalent of those pulses « 200 ns)
Minimum delay after transmit that the receiver receives
error free « 10 ms)

Yes
X

No

Verification Method
See Note 2

X

VBT

X

VBT

X

VBT

X

VBT

X

VBT

< 200ns

GBD

 angle > 15 degrees)
«600 ns)
«600 ns)
«25%)
«200 ns

*OK to quote LED data sheet and not measure this parameter

Please describe the setup of the testing environment and equipment (Le. calibration).

Please document your results by checking the appropriate response:

Active Input Specifications
Receiver correctly generates
O's and l's when exposed to
a pulsed IR signal of
4 IlW/cm2 at 0 degrees
Receiver correctly generates
O's and l's when exposed to
a pulsed IR signal of
500 mW/cm2 at 0 degrees
Receiver correctly generates
O's and l's when exposed to
a pulsed IR signal of
500 mW/cm2 at. +15 degrees

4-28

Yes

No

Active Input Specifications
(Continued)
Receiver correctly generates
O's and 1's when exposed to
a pulsed IR signal of
4 ~W/cm2 at -15 degrees
Receiver correctly generates
O's and 1's when exposed to
a pulsed IR signal of
500 mW/cm2 at -15 degrees
Using ajitter free sequence
of IR pulses, what is the
jitter in the electrical
equivalent of those pulses ( < 200 ns)
Minimum delay after transmit
that the receiver receives
error free ( < 10 ms)

Yes

No

What additional features of the specification have you included in the applicant product?

IrDA Link Access Protocol (IrLAP) Implementation (Mandatory)
Please document your results by circling the appropriate response(s):
Specification Version: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Minimal Implementation Only
Secondary Only
Primary and Secondary
Baud Rates Supported (bps)
Maximum Turnaround Supported (ms)
Data Size Supported (bytes)
Tx Window Size Supported
Rx Wmdow Size Supported
Number of ROF Req'd @ 11.5 kbps
Minimum Turnaround Time (ms) (Please write)
Link DisconnectlThreshold time(s)
Primary/Secondary Role Exchange
Sniffing

Yes
Yes
Yes

Yes
Yes

No
No
No
2400,9600,19200,38400,57600,115200
500,250,100,50,25,10,5
64,128,256,512,1024,2048
1,2,3,4,5,6,7
1,2,3,4,5,6,7
48,24,12,5,3,2,1
3/0,8/3, 12/3, 16/3,20/3,25/3,30/3,40/3
No
No

IrDA Link Management Protocol (IrLMP) Implementation (Mandatory)

Please document your results by checking the appropriate response(s):
Specification Version: _ _ _ _ _ _ _ _ __
4-29

IrDA Link Management Protocol (IrLMP) Implementation (Continued)
Yes

No

Minimal Implementation Only
Exclusive Mode
Primary/Secondary Exchange
Sniffing
Connectionless Data Tx
Connectionless Data Rx
lAS Client
Get Info Base Details
Get Objects
Get Value
Get Value By Class
Get Object Info
Get Attribute Names
lAS
Get Info Base Details
Get Objects
Get Value
Get Value By Class
Get Object Info
Get Attribute Names

IrDA Plug and Play (IrPnP) Implementation (Optional):
Implemented
Specification Version
PnP Attributes Values:
Device ID
Name
Manufacturer
Category
Version
Status
CompCnt
Comp #00
Comp #01
Comp #02
Comp #03

Extend as appropriate.
4-30

YES

NO

IrDA Transport Protocol (IrTP) Implementation (Optional):
Minimal Implementation Only
Specification Version:

YES

NO

INTEROPERABILITY STATEMENT

List other IrDA Compliant devices with which the applicant device has been demonstrated to interoperate.

List other IrDA Compliant devices with which the applicant device has failed to be interoperable. Where
possible please offer your diagnosis of the failure.

TESTING AND QUALITY ASSURANCE STATMENT
Briefly describe why you believe this device is compatible with the IrDA standard. What methods have been
used to ensure IrDA Compliance?

Has an independent test suite been used to validate this implementation? If YES, state which suite and attach
sample results.

Briefly describe plans for regression tests for subsequent releases.

4-31

COMPLIANCE CERTIFICATE
The Compliance Certificate must be completed and submitted to Infrared Data Association ("IrDA") for
each individual product model on which you intend to utilize the beaming IR and IrDA trademarks ("IrDA
Trademarks") as required by the IrDA Trademark License Agreement ("Agreement"). Submission of (I) a
duly authorized signed Agreement (with the appropriate fee) and (li) a signed Compliance Certificate
permits the Primary Licensee and other Affiliated parties defmed in the Agreement to (a) use the IrDA
trademarks on or in relation to (Le., packaging, advertising, documentation, etc.) a product that has been
herein documented designed to be compliant with the IrDA Standards, a (b) state that their developed and!
or market system level products have been implemented compliant to the most recent version of the IrDA
standard specifications. The receipt of the Agreement and the Compliance Certificate must be
acknowledged by IrDA prior to initiating use of the IrDA Trademarks.
The Implementation Guide Procedures for IrDA Compliance is a guide for documentation and does not
substitute or release from obligation referral to the IrDA Standards Specifications for full compliancy design.
The Primary Licensee is responsible for the testing and confirmation of product compliance including but
not limited to contacted components/subcomponents. Accurate completion of the IrDA Physical Layer, IrDA
Link Access Protocol; (lrLAP), and the IrDA Link Management Protocol (lrLMP) sections of the standard are
mandatory for the authorized use of the IrDA Trademarks.

Applicant Information:
Trademark License Agreement Number: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Campany Name: __________________________________
(Primary Licensee)
______________________________________

Div~ion:

Authorized Contact Name:
Address: _ _ _ _ _ _ _-=_____________~---------------Street
City
Zipcode

State

Telephone Number: _ _ _ _ _ _ _ _ _ __

Country
F~mile:

Description of Applicant Device (Manufacture, Model,
Tiule Version No.))
Manqfactured by:

Primary Licensee 0

_ _ _ _ _ _ _ _ _ _ _ _ _ __

Rev~ion,

Software Rev~ion (Manufacturer,

AJJiliated Party 0

OEM

0

As the duly authorized agent of the Primary Licensee and properly authorized to execute this document on
its behalf, I certify the above statements and test results reflected in the Implementation Guide for IrDA
Compliance are truthful and accurate. I understand that an misrepresentation of the facts or false statements
will result in termination of the Agreement and recission of permission to utilize the IrDA trademarks.

4-32

[Type name]

[Signature]

[Title]

[Date]

F'i;- HEWLETT®
~I.:. PACKARD

Infrared IrDA® Compliant
Transceiver

Technical Data
HSDL-IOOO

Features
• Low Cost Infrared Data Link
• Guaranteed to Meet IrDA
Physical Layer Specifications
1 em to 1 Meter Operating
Distance
30° Viewing Angle
2.4 KBd to 115.2 KBd Data
Rate
• Daylight Cancellation
• Easily Implemented Direct
Connection to Various I/O
Chips
• Small Form Factor
• Several Lead and Shipping
Configurations Available
• Excellent EMI Immunity
(> lOV/m)

Applications

-

• Data Comm: Serial Data
Transfer Between:
Notebook Computers
Subnotebooks

Desktop PCs
PDAs
Printers
Other Peripheral Devices
• Telecom:
Modem, Fax, Pager, Phone
• Industrial:
Data Collection Devices
• Medical:
Patient and Pharmaceutical
Data Collection

Description:
The HSDL-lOOO serial infrared
module performs low cost, low
power, point-to-point, through the
air data transfer in a serial, halfduplex mode.
The module has been designed to
the IrDA (Infrared Data Association) Physical Layer Specifications. The module is designed to

operate from 0 to 1 meter at a
data rate of 115.2 Kbd per second
at a 30° viewing angle.
The HSDL-lOOO contains a high
speed, high efficiency TS AlGaAs
875 nm LED, a PIN Silicon photodiode and an integrated circuit.
The IC contains an LED driver,
amplifiers and a quantizer.
The module is designed to interface directly with selected I/O
chips that incorporate logic which
performs pulse width modulation!
demodulation.
v+
RLED

Schematic

LED C

LEDA

TXD~__~R~I__~TX~D~~

BUTTRESS
LEAD'

I
I

I
I
I

PHOTODIODE

I COMPARATOR

RXDo~______~R~XD~I:~~
CX1

~

I
I
I

I
I
I
I

I
I
I
I
I
I
I
I

PIN ONE

I
I
__________________ I

'SIDE BUTTRESS LEADS ARE FOR MECHANICAL STABILITY AND
SHOULD NOT BE CONNECTED TO ANY ELECTRICAL POTENTIAL.

5964-9641E

4-33

Package Dimensions
OptionXOl*

-Il-

D16.61~0.15

(:.~~.

1"t:;;:... ·~1

=f&l.---~,1~~
5.0" (1Ox)

0.13 ~0.06
(0.005 ~ 0.003)

DIMENSIONS IN MiLLIMETERS (INCHES).

OptionX02*

4.56 ~ 0.15.---100---_-1
(0.180 ~ 0.01)

(o~~~~~~")+--~

0.60 ~ 0.25
(0.02 ~ 0.01)
DIMENSIONS IN MILLIMETERS (INCHES).

Note:
The -B- datum is formed by the two highest points of the combined surface formed by this surface and the corresponding surface of the
same lead on the opposite side of the package.
'X position indicates packaging. 0 = tape and reel, 1 = JEDEC standard tray.
4-34

Package Dimensions (continued)
OptionX03*
3.4 ",0.25
(0.14",0.01)

DIMENSIONS IN MILLIMETERS (INCHES).

I--~+-

5.08 '" 0.15
(0.200",0.01)

OptionX04*

6.35 ",0.25
(0.25", 0.010)

5.0'",3.5'

0.90 z 0.25
(0.04 z 0.01)
6.22 ",o.25
(0.24 '" 0.01)
6.79 '" 0.25
APPROX._
(0.27= 0.01)
CG

t

+

'
COPLANARITY
z 0.076 mm (0.003 INCHES).

DIMENSIONS IN MILLIMETERS (INCHES).

Note:
The -B- datum is formed by the two highest points of the combined surlace formed by this surface and the corresponding surlace of the
same lead on the opposite side of the package.
·X position indicates packaging. 0

= tape and reel, 1 = JEDEC standard tray.
4-35

Truth Table
TXD

btputs
EII1] .

VIH
VIL
VIL

x=

X
EIH
ElL

Outputs

LED

LEDA

ON
OFF
OFF

Low
High

RXD
Low[2]
LoW[21

High

High

Don't care.

Notes:
1. EI - received in band light intensity present at detector surface.
2. Logic Low is a pulsed response. A receiver output low state VOL (RXD) is not indefInitely
maintained, but is instead a pulsed response. The output low state is maintained for· a
duration dependent on the incident bit pattern and the incident intensity (El).

Pinout
Pin

Description

Symbol

1
2

Daylight· Cancellation Capacitor
PIN Bypass Capacitor
Supply Voltage

CXl
CX2

3
4
5
6
7

8

Vee
RXD
Gnd
TXD
LEDC
LEDA

Receiver Data Output
Ground
Transmitter Data Input
LED Cathode
LED Anode

Absolute Maximum Ratings
Parameter
Storage Temperature
Operating Temperature·
Lead Solder Temperature

Symbol

Min.

Max.

Units

Ts
TA

-20
0

85
70
260

C
C
C

rnA
rnA

Average LED Current
Repetitive Pulsed LED Current

lLED (DC)
ILEDcPK)

100
500

Peak LED Current

ILED (RP)

1.0

A

7.0
VLEDA
7.0
5.5
Vee + 0.5

V
V
V

LED Anode Voltage
LED Cathode Voltage
Supply Voltage
Transmitter Data Input Voltage
Receiver Data Output Voltage

4·36

VLEDA
VLEDe
Vee
VTXD
VRXD

-0.5
-0.5
0
-0.5
-0.5

V
V

Conditions

For 10 s (1.6 rom
below seating plane)
$
$

90 JlS Pulse Width,
20% Duty Cycle

$
$

2 JlS Pulse Width,
10% Duty Cycle

Fig.

Reflow
ProfIle

Infrared Reflow Profile
300.-------------------------------------r------,

14-------- 12 = 11.5 "

.5 MINS. (SOLDER JOINT) -----~

Tl:~lR~~Fogg~;~~~~~6~C-----

250

E

11 = 8 " 1 MINS. (SOLDER JOINT) ---.:

!> 200

I

I
W

II:

150

~

100

i

T > 120°C FOR!
GREATER THAN 2.5 MINS.
(SOLDER JOINT)

:Iii

I!:!

50

IdT/d! I < 3 °c/sEC.
o~------~----------------------------------~
o
2
4
6
8
10
12
14
TIME(!)

Recommended Operating Conditions
Parameter
Operating Temperature
Supply Voltage

Symbol

Min.

0°
4.5
Logic High Transmitter Input Voltage ViHCTXD)
2.5
Logic Low Transmitter Input Voltage V1L (TXD)
0.0
Logic High Receiver Input Irradiance
0.0036
EIH
(870nm)
Logic Low Receiver Input Irradiance
ElL
LED (Logic High) Current Pulse
250
ILEDA
Amplitude
Receiver Set-up Time
10
Signal Rate
Ambient Light

TA
Vee

2.4

Conditions

Max.

Units

70°
5.5
5.5
0.3

C
V
V
V

500

mW/cm2

For in-band signals*

0.3

I!W/cm2

For in-band signals*
For one metre links with
daylight fIlters
For full sensitivity after
transmitting

rnA

ms
116

Kp/s
See IrDA Serial Infrared
Physical Layer Link Specification, Appendix A for
ambient levels. See Rx
TH + section at the end
of this data sheet also.

'Note: An in-band optical signal is a pulse/sequence where the peak wavelength, A.p, is defmed as 850 nm" A.p" 900 nm, the pulse
repetition rate, PRR, is defmed as 2.4 Kp/s" PRR" 115.2 Kp/s and the pulse width, PW, is defmed as 1.6 s" PW" (3/16)/PRR.

4-37

Electrical & Optical Specifications
Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worse case
values for the parameters under test. Unspecified test condition can be anywhere in their recommended operating range. All typicals
are at 25"C and 5V unless otherwise noted.

Parameter
Receiver Data
Output Voltage

Logic LowI2J

Logic High

Symbol

Min.

VOH (RXD)

0.4

Vee -0.5

Effective
Detector Area
Transmitter
Radient
Intensity

Typ. Max.

VOL (RXD)I2,3J

Logic High
Intensity

0.3

IEL
IEH

44

250
40

Peak
Wavelength

Transmitter
Receiver
Transmitter
Data Input
Current
LED Anode On
State Voltage

Spectral Line
Half Width
Viewing Angle

10 = 0.3 rnA
For In-Band
EI;:: 3.6IlW/cm2;
9 S; 15 0

V

10 = -20 !lA,
For In-Band
EI S; 0.3 IlW/cm2

IlW/SR \'! S; 0.3 V
mW/SR ILEDA = 250 rnA,
\'! = 2.5 V, 9 S; 300

4,6

A.p

875

nm

6

1lA.1f2

35

nm

6

0

7

Logic Low

IIL(TXD)

30
30
-1.0

9

Logic High

IIH(TXD)

4.5

60° VON (LEDA) Receiver Peak Sensitivity Wavelength Conditions V cm2 0.2 Logic Low Unit 880 nm VI 1 1,3 11 1 9 Notes: 1. EI - received in band light intensity present at detector surface. 2. Pulsed Response - Logic Low is a pulsed response. A receiver output low state VOL (RXD) is not indefinitely maintained but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and incident intensity (EI). 3. The EI '" 3.6I!W/cm2 condition guarantees the IrDA minimum receiver sensitivity of 4.0 I!W/cm2 while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1000. (See the Rx TH + section at the end of this data sheet for information on receiver sensitivity over temperatQI'e, and in the presence of ambient light.) 4-38 Switching Specifications Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worst case values for the parameters under test. Unspecified test conditions can be anywhere in their recommended operating range. All typicals are at 25"C arid 5V unless otherwise noted. Parameter Symbol Min. Transmitter Turn On Time Transmitter Turn Off Time Transmitter Rise Time Transmitter Fall Time Receiver Turn On Time Receiver Turn Off Time Receiver Rise Time Receiver Fall Time Receiver Recovery Time Typ. 0.1 0.4 Max. Units 1.0 0.6 0.6 0.4 5.4 1.0 0.02 10 Ils Ils Ils Ils Ils Ils Ils Ils ms Conditions lLED = 250 rnA, 1.6 Ils PW Fig. 13,14 t-----'- r--I--- EI EI = 3.6 IlW/cm2 , 1.6 Ils PW 15, 16 = 500 mW/cm2 , 1.6 IlS PW r--- EI = 3.6 IlW/cm2 , 1.6 Ils PW Application Circuit Component Recommended Value RI RLED CX1 CX2 CX3 3000hms± 5% 8.0 Ohms maximum 0.22 i!F± 10% 0.4 i!F minimum 0.10 i!F ± 22%. Low inductance is critical 4.7 IlF minimum. Larger value is recommended for noisy supplies or environments. CX4 4·39 I / If 2.5 V"I > I TA=125 'C w ~ ~ < c I I OJ 2.4 1 / 1.6~sPW, 3116 DUTY CYCLE 2.3 ....w 2.2 I?i w .... 2.1 I 2.2 ILED~ = 250 lrnA puLsED .., ~ ~ c V !;i ~ ./ / 3 .... 40 20 BO 60 !!! i ~ c ~ ! c ~ o ~ 1.2 ~ NORMALIZED TO IE @ ILEDA = 250 rnA z 1.1 ~ 1.0 0.9 0.8 ~ Z '" " " 0.6 ~ ~. ~ 0.4 II: 0.7 0 20 40 60 80 w 1.0 c O.B ~ ::Ii ...~ !i1 0 ·100 - ~ .I ..so o ~ \. 50 e - HORIZONTAL TRANSMITTER VIEWING ANGLE - ' Figure 7. Transmitted Intensity vs. Horizontal Viewing Angle. 4-40 100 100 oZ 950 A,- WAVELENGTH -nrn I Figure 6. Transmitted Intensity vs. Wavelength. ~ 1.2 i (/) 0.2 0.21-----F+----+r---j TA - TEMPERATURE - ·C ~ c ~ :!II: c ". !:!::! ~ I-N_~_r-=LM=EA=D,-,~,-~+E2_~_T_~,l..E'--+_ _ _-j 0.4f----+1----\------l 1'" . !!! > !: 1.0 0.6 Figure 5. Transmitted Intensity vs. Temperature. JV 100 1. Figure 4. Transmitted Intensity vs. LED Pulse Amplitude. l 80 c O.BI-----f--t--H-----j :---... ILEDA - LED PULSE AMPLITUDE - mA NORMALIZED TO IE @ ILEDA = 250 rnA 1.2 ~ < 1.2 60 TA "TEMPERATURE -'C ::Ii II: 40 ... !!! ~ TA=25 C 20 100 ~ !!! ! 1.0 '" '" ........ Figure 3. LED Forward Voltage vs. Temperature. ~- O.B ~UD~~ CYCLE Figure 2. LEDA Voltage vs. Temperature. ~ ~ f-- TA - TEMPERATURE - ·C Figure 1. LED Pulse Current Amplitude vs. LEDA Voltage. Ii! 1.9 I VLEDA - LEDAVOLTAGE - V ~ z 2.0 ~ 5 4 2.1 ~ iii .!. .1 ILEDA = 250 rnA PULSED I I I W > 2 1 > NORMALIZED TO IE @ ILEDA = 250 rnA l TA=25 C 1.2 NORMALIZED TO B80nrn iii I...... ~ ~ 1.0 ii O.B II: II: ~ lrl 0.6 I 0.6 0.2 o -100 ..so J .... o 50 e - VERTICAL TRANSMITTER VIEWING ANGLE - ' Figure 8. Transmitted Intensity vs. Vertical Viewing Angle. 100 I 0.2 o 1\ , 1\ II w !:! "\ / ~ 0.4 0.4 I TA I=25 1·C , I 700 BOO 900 1000 A,- WAVELENGTH -nrn Figure 9. Receiver Responsivity vs. Wavelength. 1100 ~ 1.2 i .. TA=k5'C ~ 1.0 ( m 0.8 0.6 II: 0.4 ~ 51 ~ 0.2 15Z 0 \ !zw / \ / \ \ II II: ~ ~ ./ -100 0.9 0.8 o ::; a. ---- .!C .. ILEtA = 256 mA :::> ~ ........ ......or.--- f-- .,. Vee = 4.5 V 0.7 ,... :::> 11:11-:::> 20 '" - RECEIVER VIEWING ANGLE - ' TA=~'C 11:1 II 50 20 OE 15 Il. ~ o -50 II: II: 1.0 Figure 12. Data Input Current VB. Data Input Voltage. ! I INPui PW = 1.6 ~s -- --- J 1 ~ RLED=8;J.- INPUT PW = 1.6 ~s EIINTENSITY = 100 ~W/om2 EI DUTY CYCLE = 20% I'" / , ,-' ........ RLEO=2.Q ........ ...... ".. ~ w 4.0 ~ :::> Il. " !:i ~ ~ " . 4.5 !ii ~ PULfT~ ~I~l!lc= , ...~!~N:jNSITY I 40 60 80 100 20 TA - TEMPERATURE - 'c 40 60 80 TA - TEMPERATURE - 'C Figure 14. Tr8llSmitted Pulse Width Temperature. Figure 13. Transmitted Pulse Width Temperature. VB. VB. 100 f i ......... 2.0 Q 20 1·1 ~s """- 3.0 w 2.5 ~ EI '\ ~IINT~NSITY ll00 ~~/om2 """'- 3.5 II: o f\. 5 10 3.6 ~i/cm2 ---- 15 --- 20 25 DUTY CYCLE OF LIGHT PULSE EI- % Figure 15. Receiver Output Pulse Width VB. Duty Cycle of Received Signal. ! I ~ !ii ~ :::> a. ~ o II: W ~ II: I 1 0. > PWEI - RECEIVED LIGHT PULSE WIDTH - ~s Figure 16. Receiver Output Pulse Width VB. Received Light Pulse Width. 4-41 Rx TH + (Receiver OnThreshold) The maximurn receiver onthreshold is equivalent to the minimum receiver sensitivity. Both are terms for the amount of light signal which must be present at the HSDL-1000 detector in order to trigger a low pulse on the receiver output CRXD). The IrDA Physical Layer Specification requires a minimum receiver sensitivity of 4.0 IlW/cm2, at a Bit Error Rate of 10-9 , and in the presence of the 10 klux of sunlight, 0-1000 lux of fluorescent light, or 0-1000 lux of incandescent light. The fluorescent and incandescent specifications require minimum receiver sensitivity with 1000 lux incident ori.to the horizontal surface of the IR link. The resulting amount of fluorescent or incandescent light actually reaching the detector surface may vary between 0 and 500 lux depending upon the design of the housing around the HSDL-1000 module. The HSDL-lOOO VOLCRXD) specification guarantees a maximum receiver on-threshold of EI = 3.6IlW/cm2, at a BER S; 10-9 , and TA = 0-70°C. The EI = 3.6IlW/cm2 threshold guarantees the IrDA minimum receiver sensitivity of 4.0 IlW/cm2, while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-lOOO. The EI = 3.6IlW/cm2 threshold also guarantees receiver sensitivity with 10 klux of sunlight, 0-500 lux fluorescent light, or 0-500 lux of incandescent light incident on the HSDL-1000 detector surface. HSDL-IOOO Reliability Test Results Test Name Solder Heat (IR Profile) MIL-STD-883 Reference Solder Heat Resistance Solder Rework Cycle Temperature Cycle 1010 Power Temp. Cycle Mechanical Shock Vibration Variable Frequency Resistance to Solvents 2002 ConditionB 2007 Condition A 2015 High Temp. Operating Ufe Low Temp. Opearting Life Wet Operating Life ESD - Human Body Model 3015 ESD - Machine Model EIAJ Test Conditions See absolute profile 3 times thru IR Profile + 20 Temp. Cycles Solder iron tip temp. 370"C/700"F Time per lead 1 second # of rework cycles = 4 -40"C to + 100"C, Dwell = 15 Minutes Transfer = 5 Minutes 20 Cycles Units Tested Total Failed 60 60 17 0 0 0 120 100 Cycles -40"C/+ 100"C, Dwell = 15 minutes, Transfer = 5 Minutes, Vee = 5 Vdc, If = 100 mAdc, LED On/Off = 1 Second Total Cycles = 35 2 Blows each Xl, X2, Y1, Y2, Zl, Z2 1500 G's, 0.5 msec Pulse (4) 4 Minute Cycles, X, Y, Z at 50 G's Min., 20 to 2,000 Hz 120 60 0 0 0 10 0 10 0 3 one minute inunersion Brush after solvent 20 0 TA= 70"C, If = 100 mAde, Vee = 5 Vdc, Time = 500 hours TA = O°C, If = 100 mAde, Vee = 5 Vdc Time = 500 hours TA = 35"C, R.H., = 85% If = 100 mAdc Vee = 5 Vee, Time = 500 hours RI = 1500 Ohms, C = 100 iJF Level = 4000 V Rload = 0 Ohms, C = 200 iJF Level = 300V 60 0 60 0 60 0 10 0 10 0 Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs 1-008,1-009,1-015 for more information. 4-42 FliiiW HEWLETT® ~~PACKARD IR 3/16 EncodelDecode Ie Technical Data HSDL-7000 Features Description • Compliant with IrDA Physical Layer Specs • Interfaces with IrDA Compliant HSDL-I000 IR Transceiver • 1 Micron CMOS Gate Array • Used in Conjunction with Standard 16550 UART • Pin Compatible with PLX-I000 The HSDL-7000 performs the modulation/demodulation function used to both encode and decode the electrical pulses from the IR transceiver. These pulses are then sent to a standard DART which has a BADDOUT signal available externally. This signal is 16 times the selected baud rate. In applications where the 16XCLK is not available, an external means of generating the 16XCLK must be designed. Applications Interfaces with HSDL-IOOO to perfonn: • Serial Half-Duplex Data Transfer Between: Notebook Computers Subnotebooks Desktops PCs PDAs Printers Other Peripheral Devices • Telecom Applications in: Modems Fax Machines Pagers Phones • Industrial Applications in: Data Collection Devices • Medical Applications in: Patient and Pharmaceutical Data Collection 5964-9278E The HSDL-7000 is comprised of two state machines - the serial IR encode and the serial IR decode blocks. Each of these blocks derives their timing from the 16XCLK input signal from the DART. The Encode block is driven by the negative edge triggered TXD signal from the DART. This initiates the modulation state machine resulting in the 3/16 modulated IR_TXD signal which drives the IR transceiver module, HSDL-I000. The IR Decode block is driven by the negative edge triggered IR_RCV signal from the HSDL-lOOO. After this signal is demodulated and stretched, it drives the RCV signal to the DART. Schematic HSOL·7000 TXO I IIR_TXO IRENCOOE I I I I I I IIR_RCV . ,' RCV NRST IROECOOE t I I I I I ____ .J Pin Out 16XCLK 1 TXO 2 RCV 3 GNO 4 8 HP7000 VYWW Vcc 7 IR_TXO 6 IR_RCV 5 NRST 4-43 Pin Description 16XCLK - Positive edge triggered input clock that is set to 16 times the data transmission baud rate. The encode and decode schemes require this signal. The signal is usually tied to a DART's BADDOUT signal. TXD - Negative edge triggered input signal; usually tied to a DART's SODT signal (serial data to be transmitted). RCV - Output signal which is usually tied to a DART's SIN signal (received serial data). GND - Chip ground. NRST - Active low signal used to reset the decode state machine. This signal can be tied to POR (Power on reset) or Vee. This signal can also be used to disable any data reception. rn 8 5 IR_TXD - This signal is the modulated 3/16ths TXD signal which is input to the HSDL-lOOO. Vee - Power. r Package Dimensions 6.65 (0'26)~ MAX. IR_RCV - A 3/16th pulse width input signal from the HSDL-lOOO. The signal is a demodulated (pulse stretched) to generate the RCV output signal. 1.05 <---I . . " r-L 0.15 + 0.101-0.00 (0.006 + 0.004/-0.00) o DETAIL A, SCALE 20 1.55 (0.06) SEE DETAIL A 0.40+0.10/-;:--11(0.016 + 0.004/-0.000) -1.27-(0.05) NOTE: DIMENSIONS IN MILLIMETERS (INCHES). 4-44 Encoding Scheme 16 CLOCK CYCLES 16 X CLOCK --..., TXO IRTXO ---+----',, , ~3csl-, , The encoder sends a pulse for every space or "0" that is sent on the TXD line. On a high to low transition of the TXD line, the generation of the pulse is delayed for 7 clock cycles of the 16XCLK before the pulse is set high for 3 clock cycles (or 3/16th of a bit time) and then subsequently pulled low. Decoding Scheme 16 CLOCK CYCLES r------- ~ > 6XCLOCK ~ R_RXO ~ ~ l-J Rxo A high to low transition of the IR_RXD line from the HSDL-lOOO signifies a 3/16th pulse. This pulse is stretched to accommodate 1 bit time (16 clock cycles). Every pulse that is received is translated into a "0" or space on the RXD line equal to 1 bit time. Note: The stretched pulse must be at least 3/4 of a bit time in duration to be correctly interpreted by a UART. 4-45 Absolute Maximum Ratings Parameter Storage Temperature Operating Temperature Output Current Power Dissipation Input/Output Voltage Power Supply Voltage Symbol Ts TA 10 PMAX VrNo Vee Min. -65 -40 Max. +150 +85 10 0.22 Vee + 0.5 +6.5 -0.5 -0.5 Units OC OC rnA W V V Conditions Switching Specifications (Vee = 5 Volts ± 10%, TA= -40 to +85°C) Parameter Toggle Frequency Propagation Delay Time Output Fall Time Output Rise Time Symbol Min. ftog tpd 11 tr Max. Typ. 120 0.5 1.0 2.0 1.42 1.54 Units Conditions Mhz ns ns ns ns ns Internal Gate Input Buffer Output Buffer Output Buffer (CL Output Buffer (CL = 15 pF) = 15 pF) Note: ftog represents the maximum internal D-Type Flip Flop toggle rate Capacitance (Vee = 0 Volts, TA= -40 to +85°C) Parameter Input Capacitance Output Capacitance Output Fall Time 4-46 Symbol CIN COUT Min. Typ. 10 10 10 Max. 20 20 20 Units pF pF pF Conditions f = 1 ~Hz - Unmeasured Pins Returned to 0 Volts Recommended Operating Conditions (TA = -40 to +85°C) Parameter Supply Voltage Input Voltage Ambient Temperature High Level Input Voltage Low Level Input Voltage Positive Trigger Voltage Negative Trigger Voltage Hysteresis Voltage Power Dissipation Input Rise Time Input Fall Time Max Clk Frequency (16XCLK) Minimum Pulse Width (IR TXD)* Symbol Vcc VI TA VIH VIL Vp VN VH Pmss tri Min. 2.7 0.0 -40 0. 7Vcc 0.0 l.61 0.55 0.50 4.9 tra f16XCLK tmpx Typ. 5.0 Max. 5.5 Vcc +85 Vcc 0.3Vcc 4.00 3.10 2.00 220 200 200 2 250 Units V V °C V V V V V mW ns ns MHz ns Conditions CMOS level CMOS level CMOS level CMOS level CMOS level CMOS level CMOS level CMOS level f16XCLK = 2 MHz f16XCLK = 2 MHz f16XCLK = 2 MHz f 16XCLK = 2 MHz 'IrDA Parameters. The Max Clk Frequency represents the maximum clock frequency to drive the HSDL·7000's internal state machine. Under normal circumstances, this clock input should not exceed 16 ' 115.2 Kbp/s or 1.8432 MHz. This product can operate at higher clock rates, but the above is the recommended rate. The Minimum Pulse Width represents the minimum pulse width of the encoded IR]XD pulse (and the IR_RCV pulse). As per the IrDA specifications, the minimum pulse width of the IR_TXD and IR_RCV pulses should be 3 * (1/1.8432 MHz) or 1.63 J.1S. The minimum pulse width specified for the HSDL· 7000 is 250 ns, which is within IrDA specification. Under normal circumstances, the pulse width should not be less than 1.63 J.1S. Application Circuits HSDL-7000 Connection to UART HSDL-7000 HSDL·l000 /' '-... TX~ ./ RC~ ,_/ /' IR_TXD IR_RCV UARTl65SO TXD SOUT RCV SIN 16XCLK BAUDOUT Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs 1-008,1-009,1-015 for more information. 4-47 FliP'W HEWLETT ....z ~ oC 100 0 c oC ~ 0: 0: w 0.5 0 u.. ~ 10 C I U W 950 .!!- Flgore 1. Relative Radiant Intensity vs. Wavelength. 2.0 0.5 --~-t-~-_ 1.6 r- > r- ... r- ... 0 1.2 r- r-I-. 'FOC=50mA 1.4 0: ... ... 'FDC=l m IL > 1.0 -20 o 20 40 Figure 2e. Forward Voltage vs Ambient Temperature. ~ 80 ac r-, ,\ RaJA = 400 °CJW /' ~~ 40 i 20 g 60 RaJA = 500 °CJW /' .~ 1/ 1/ 1/ / / / 2.0 1.5 / I .!!- 2.0 2.5 2.0 / i ~ ~ ~ .... 80 1.5 3.0 Figure 2b. Peak Forward Current vs. Forward Voltage. NORMjLlZED ITO IFPK = 250 1.5 ~ 60 1.0 0.5 VF- FORWARD VOLTAGE- V g 40 ... , I ~ 0: 20 I 10 D. oC ::E 100 IFDC - DC FORWARD CURRENT - mA VALID FOR PULSE WIDTH = 1.6~. / TO 100~. 1.0 / 0.5 V 100 ~ V / 200 300 400 500 IFPK - PEAK FORWARD CURRENT - mA Figure 3b. Normalized Radiant Intensity VB. Peak Forward Current. ~ 1,000 I Ia ~ 1\ ,, ~ c i , ~ :IiD. I I ~ ~ / TA=25°C 100 D. Figure 3a. Relative Radiant Intensity vs. DC Forward Current. RaJA = 300 °CIW I 1/ o/ o 80 60 TA - AMBIENT TEMPERATURE _ °C 100 I TA=25°C IFDC=lOOmA CI !;; 1.0 2.0 TA=25°C I w 1.8 I ~~ Flgore 2a. DC Forward Current vs. Forward Voltage. I > u.. o c VF - FORWARD VOLTAGE - V A-WAVELENGTH - nm ~ J c 0 800 C 0: 0: :::> 0 0: ~ 0 ffi0: / 0: 1,000 I , w W ~ TA=125 o C I z ~ 1,000 E TA=25°C IFDC=50mA ~ 00 10 20 30 40 50 60 70 80 TA - AMBIENT TEMPERATURE - °C Figure 4. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on TJMAX 110"<::. = j: TA=25°C pUlSE ,iIT" 'OS.01 1,1 00 ~i 0.1 DUTY FACTOR Figure o. Maximum Peak Forward Current vs. Duty Factor. 4-51 m 1.0 ~ rn 0.9 0.8 ;:; z 0.7 zw ... ... II \ II 0.6 ~ 0.5 ~ ~ 0.3 '" 0.1 J 1/ 0.2 w 1\ \ I 0.4 w TA=25 'C II \ 1\ \ V o I' 100"90' 80' 70' 60' SO' 40' 30' 20' 10' 0" 10' 20' 30' 40' 50' 50' 70' 80' 90' 100' e - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE) Figure 6. Relative Radiant Intensity vs. Angular Displacement HSDL-4220. 1.0 r\J 0.9 ~ rn TA=25'C 0.8 z ...;:;w ...z 0.7 C ~ OA 'w" 0.3 j 0.2 '" o 0.6 0.5 > I 0.1 w I 1\ \ ...... - 100'90' 80' 70' 50' 50' 40' 30' 20' 10' 0" 10' 20' 30' 40' 50' 60' 70' 80' 90' 100' e - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE) Figure 7. Relative Radiant Intensity vs. Angular Displacement HSDL-4230. III III " I TA=25'C ~ -~ I I w -2 ~ ~3 ~ -4 c -5 ~ -8 9MHz \ \ ~ -5 w -7 :3 \ -9 ~ -10 lE+5 lE+6 lE+7 1 lE+8 f - FREQUENCY - Hz Figure 8. Relative Radiant Intensity VB. Frequency. Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60S25-1. Please refer to Application Briefs I-OOS, 1-009, 1-015 for more information. 4-52 - FliiiW HEWLETT" ~~PACKARD Infrared IrDA® Compliant Transceiver Preliminary Technical Data* HSDL-lOOl Features Applications Description • Low Cost Infrared Data Link • Guaranteed to Meet IrDA Physical Layer Specifications 1 cm - 1 M Operating Distance 30° Viewing Angle 2.4 Kbd - 115.2 Kbd Data Rate • Low Latency • Shutdown Feature • 3 Volt Operation • Very Low Static Icc • Daylight Cancellation • Direct Interface to I/O Chips and Glue Logic • Serial Half-Duplex Data Transfer Between: Notebook Computers Subnotebooks Desktop PCs PDAs Printers Other Peripheral Devices • Telecom Modem Fax Pager Phones • Industrial Data Collection Devices • Medical Patient and Pharmaceutical Data Collection The HSDL-1001 serial infrared module is a low cost, low power solution to cableless IR communication. The link is a point-topoint, through the air serial, half duplex data transfer medium. The module has been designed to the Infrared Data Association (IrDA) Physical Layer Specifications. It is designed to operate from 1 cm to 1 meter at a maximum data rate of 115.2 Kbd at a 30° viewing angle. V+ Schematic RLED LEDC Rl BUTTRESS LEAD" TXD TXD I i (OPTIONAL) LEDA -"f I VPIN ~ I PHOTODlODE;r : COMPARATOR I RxD-C--------~RX~D~.~I~~ ..,.i~ SHUTDOWN SO I CX4 PIN 1 GNDo-C-+---+--~~,--;~ : I : I I I I I I I I I i ~------------ ______ I " SIDE BUTTRESS LEADS ARE FOR MECHANICAL STABILITY AND SHOULD NOT BE CONNECTED TO ANY ELEcmlCAL POTENTIAL. -This data sheet represents the latest available information at the time of publication (10/1/95). For more current information, please consult with your HP Field Sales Office. 4·53 The HSDL-1001 contains a high speed, high efficiency TS AlGaAs 875 run emitter, a PIN Silicon photodiode and an integrated circuit. The Ie contains an" LED driver, amplifiers and a quantizer. The shutdown feature allows designers to turn off the receiver by pulsing the shutdown pin. The device draws less than 10 IJA when in shutdown mode. Package Dimensions OptionX01 * f ~ 8.54 0:15 MAX (0.336 ~ 0.01) . ·8· D Ij:;;:"'.M" 6.2~~.25 (0.24 " 0.01) "'00". 16.61,,0.15 _~l 5.00 (lOx) 0.6" 0.25 (lOx) (0.02 " 0.01) 0.13" 0.06 (0.005 ~ 0.003) DIMENSIONS IN MILLIMETERS (INCHES). 13.21 ""0.25~ (0.52 0.01) OptionX02* 6.4.0.25 0.25.0.G1 NOTE: THE ·B· DATUM IS FORMED BY THE TWO HIGHEST POINTS OF THE COMBINDED SURFACE FORMED BY THIS SURFACE AND THE CORRESPONDING SURFACE OF THE SAME LEAD ON THE OPPOSITE SIDE OF THE PACKAGE. 'X POSITION INDICATES PACKAGING. o = TAPE AND REEL. 1 =JEDEC STANDARD ARRAY. 1.27,0 0.15 (7x) (0.050.0.01) (:;58~'~ ~~):+~-.I (~.:5~"~~")+--~ 0.60.0.25 (0.02 • 0.01) DIMENSIONS IN MILLIMETERS (INCHES). 4-54 Package Dimensions (continued) OptionX03* 3.4"0.25 __ (0.14,.0.01) DIMENSIONS IN MILLIMETERS (INCHES). OptionX04* NOTE: THE -B- DATUM IS FORMED BY THE TWO HIGHEST POINTS OF THE COMBINDED SURFACE FORMED BY THIS SURFACE AND THE CORRESPONDING SURFACE OF THE SAME LEAD ON THE OPPOSITE SIDE OF THE PACKAGE. 'X POSITION INDICATES PACKAGING. 0= TAPE AND REEL. 1 = JEDEC STANDARD ARRAY. j~ (O~~~ : ~:~~f8X) 0.90,. 0.25 (0.04 ,. 0.01) 1 - 6.22! 0.25 (0.24 ,. 0.01) 6.79,. 0.25 APPROX._ 0.61 • 0.25 (0.02. 0.01) 1 i"~O:.O~l):'-'J===C:G==~tJ~;~~~ I ,~I (0.27 j COPLANARITY ,. 0.076 mm (0.003 INCHES). /' A----:f --11-. 5.00 0 (0.626 ,. 0.01) -"~.""~ + L~ E 5l ---,'U'= r 1 0.76,. 0.08 f2x) (0.030 • 0.003 (0.23,. 0.01) 4.12,.0.15 (0.162,.0.006) f DIMENSIONS IN MILLIMETERS (INCHES). 4-55 Truth Table TID x= Inputs Ell!] Outputs Shutdown LED SD LEDA Low High RXD Lowl2 ] Low[2] VIH X ON High ViL V1L X EIH OFF High ElL X OFF High High High OFF Low High High Don't care. Notes: 1. E, - received in band light intensity present at detector surface. 2. Logic Low is a pulsed response. A receiver output low state VOL (RXD) is not indefinitely maintained, but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and the incident intensity (E,). Pinout Pin Description 1 2 3 Shutdown Open 4 Receiver Data Output 5 6 7 8 Ground Transmitter Data Input Symbol SD Supply Voltage Vee RXD Gnd TXD LEDC LEDA LED Cathode LED Anode Absolute Maximum Ratings Parameter Storage Temperature Operating Temperature Symbol Min. Max. Units Ts TA -20 0 85 55 260 C C Lead Solder Temperature C Repetitive Pulsed LED Current ILED CDC) ILED (PK) 100 500 rnA rnA Peak LED Current ILED (RP) 1.0 A LED Anode Voltage VLEDA VLEDe Average LED Current LED Cathode Voltage Supply Voltage Transmitter Data Input Voltage Vee VTXD Receiver Data Output Voltage VRXD 4-56 -0.5 -0.5 0 -0.5 -0.5 7.0 V VLEDA V 7.0 5.5 V Vee + 0.5 V V Conditions For 10 s (1.6 mm below seating plane) :'> 90 J.IS Pulse Width, :'> 20% Duty Cycle :'> 2 J.IS Pulse Width, :'> 10% Duty Cycle Recommended Operating Conditions Parameter Symbol Min. Max. Units 70 5.5 5.5 0.3 500 "C Em 0 2.7 2.5 0.0 0.0036 Em 0.005 Operating Temperature TA Supply Voltage Vee Logic High Transmitter Input Voltage VmCTXD) Logic Low Transmitter Input Voltage VIL (TXD) Logic High Receiver Input Irradiance (870nm) Logic High Receiver Input Irradiance (950nm) Logic Low Receiver Input Irradiance Transmitter Viewing Angle Receiver Viewing Angle LED (Logic High) Current Pulse Amplitude Receiver Setup Time ElL 29 1/2 2 L PUSHPIN rTHROUGH HOLE p ___ GULL WING LEAD SUBMINIATURE PACKAGE vcivJJ\JJ\jj NOTES: 1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE. 2. 7 INCH REEL -1500 PIECES PER REEL. 3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm. 4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO. 5. IN ACCORDANCE WITH ANSVEIA RS--481 SPECIFICATIONS, THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE. At the time of this publication XX/96, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60B25-1. Please refer to Application Brief I-OOB for more information. 4-74 (K) 12 rom Tape and Reel, "Yoke" Lead, Option 021 FEED DIRECTION ~1~':~'~~~E PACKAGE > I I uv* NOTES: 1. EMPTY COIiPONENT POCKElS SEALED WITH TOP COVER TAPE. Z. 71NC11 REEL-1511O PIECES PER REEL 3. 1IIN1_ LEADER LENGTH AT E\1HER END OF THE TAPE IS 500 mm. 4. THE MAXIlllUIi NUIIBER OF CONSECUTIVE IIISSING LAMPS IS lWO. 5. IN ACCORDANCE WITH ANSVEIA 115-481 SPECIFICATIONS. THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKET HOLE. 4-75 (L) 12 mm Tape and Reel, Z-Bend Lead, Option 031 CATHODE LEAD rfll III' 1I11 r'r J L ,L l I I I I I I I I,.,.. I J I r r...l i ,I, L._ 1111 L~J FEED DIRECTION " Io....-_O':;';':;'=.;;::~-v Z·BEND LEAD I I I I v~ 4-76 (M) 12 mm Tape and Reel DNENSIONS PER ANSVEIA STANDARD R_,. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). C::::U~S~EUR~D~I~R~E£C~TI@O~N~O~F~F~E~E~DC::::> TAPE NO COMPONENTS A 171.0 ±2.0 (7.0 ±O'os) DIA. C 13.0 (0.512) DIA. TYP. D 1.55 (0.061 ± 0.002) DIA. D, D 20,2 (0.795) DCA. MIN. E 1.75 ± 0.1 (0.0l1li) 1.0 (0.039) DIA. MIN. F 5.50 (0.127 ± 0.002) K 3.05±0.1 (0.12O)TYP. N 50.0 (1.970) MIN. P 4.0 (O.I57)TYP. p. 4.0 10015n TYP. p. 2.0 (0.079 ± 0.002) TYP. t 0.3 (0.012) TYP. TRAILER 40 mm 11.57 In.) MIN T 18A (0.72) MAX. W 12.0 ±0.3 (0.472 ± 0.012) THICKNESS OF TOP COVER TAPE 0.10 (0.004) MAX. LEADER 600 mm nt.7In.} MIN TOLERANCES IUNLESS OTHERWISE SPECIFIED): .X •. 1: .XX •.G5I.XXX •. 004) REEL ! --- --- f0- r-c N r~:3 ':1:.1 HEWLETT PACKARD OPERATOR _ _ _ _ _ __ HP PART NUMBER _ _ _ __ DATECODE _ _ _ _ _ __ TAPINGDATE _ _ _ _ __ fLEC. VALUE _ _ _ _ __ TOLERANCE _ _ _ _ ____ OUANTITV _ _ _ _ _ __ LL, A CUSTOMER PART NUMBER _ _ 4-77 HSDL-44XX Absolute Maximum Ratings Parameter Symbol Peak FOlWard Current CDuty Factor = 20%, Pulse Width = 100 Jls) DC FOlWard Current Power Dissipation Reverse Voltage (IR = 100 j.l.A) IFPK Transient FOlWard Current (10 JlS Pulse) Operating Temperature Min. IFDe PDISS VR 100 180 . Storage Temperature Ref. Fig. 7,8 rnA Fig. 6 V A To -40 1.0 85 Ts TJ -55 100 Reflow Soldering Temperatures Convection IR Vapor Phase rnA mW 5 IFJ'R Junction Temperature Lead Solder Temperature [1.6 mm(0.063 in.) from body] Unit Max. 500 110 260/5 s °c °c °c °c 235/90 s 215/180 s °c °c [I] Notes: 1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds. HSDL-44XX Electrical Characteristics at TA Parameter FOlWard Voltage FOlWard Voltage Temperature Coefficient Series Resistance Diode Capacitance Reverse Voltage Thermal Resistance, Junction to Pin 4-78 = 25"C Symbol Min. Typ. Max. Unit VF 1.30 1.40 1.50 1.67 2.15 1.70 1.85 V Condition IFDe = IFDe = IFPK = IFDe = IFDe'= 50 rnA 100 rnA 250 rnA 50 rnA 100mA ft..V~ft..T -2.1 -2.1 Rs 2.8 n Co VR 40 pF IFDe = 100 rnA OV, 1 MHz 20 V IR = 100 j.l.A 170 OCIW R9jp 5 mVrC Ref. Fig. 2 Fig. 3 HSDL-44XX Optical Characteristics at TA Parameter Symbol Min. = 25"C Typ. Max. Unit Condition Ref. Radiant Optical Power HSDL-4400 Po 16 30 mW HSDL-4420 Po 16 30 mW = 50 rnA = 100 rnA IFDc = 50 rnA IFDc = 100 rnA IFDc IFDc Radiant On-Axis Intensity HSDL-4400 IE 1 3 6 15 8 mW/sr HSDL-4420 IE 9 17 32 85 30 mW/sr = 50 rnA = 100 rnA = 250 rnA IFDc = 50 rnA IFDc = 100 rnA IFPK = 250 rnA IFDc = 50 rnA IFDc = 100 rnA IFDc IFDc IFPK Fig. 4, 5 Fig. 4, 5 L'1IE/L'1T -0.35 -0.35 %;aC HSDL-4400 29 1/ 2 110 deg IFDc Fig. 9 HSDL-4420 291/2 24 deg IFDc Fig. 10 Radiant On-Axis Intensity Temperature Coefficient Viewing Angle Peak Wavelength Peak Wavelength Temperature Coefficient ApK L'1A/L'1T 860 875 895 nm 0.25 nm/OC = 50 rnA = 50 rnA IFDC = 50 rnA IFDc = 50 rnA Fig. 1 Spectral Width at FWHM L'1A 37 nm IFDc t"/1{ 40 ns IFPK = 50 rnA = 50 rnA Fig. 1 Optical Rise and Fall Times, 10%-90% fc 9 MHz IFDc = 50 rnA Fig. 11 Bandwidth ± lOrnA 4-79 HSDL-54XX Absolute Maximum Ratings Parameter Power Dissipation Reverse Voltage (IR = 100).IA) Operating Temperature Symbol PDISS VR Min. To ·40 -55 Storage Temperature Junction Temperature Lead Solder Temperature [1.6 mm (0.063 in.) from body] Reflow Soldering Temperatures Convection m Vapor Phase HSDL-54XX Electrical Characteristics at TA Parameter Forward Voltage Breakdown Voltage Symbol VF VBR Min. Ts TJ Typ. Max. 1.80 235/90 s 215/180 s °C °C 40 Unit Condition V V IFDe = 50 rnA IR = 100 ).lA, E. = OmW/cm2 VR = 5 V, E. = OmW/cm2 In 1 Series Resistance Rs 2000 n Diode Capacitance Co 5 pF Open Circuit Voltage Voe 375 mV Temperature Coefficient of Voe !lVod!lT -2.2 mV/K Short Circuit Current HSDL-5400 HSDL-5420 Temperature Coefficient of Ise ).IA ).IA !lIsd!lT 1.6 4.3 0.16 %/K R9jp 170 OCIW 4-80 Unit mW V °C °C °C OC = 25"C Reverse Dark Current Thermal Resistance, Junction to Pin Max. 150 40 85 100 110 260/5 s 5 nA Ise VR = 5 V, E. = OmW/cm2 VR = Ov, E. = OmW/cm2 f=IMHz E. = 1 mW/cm2 ApK = 875 nm E. = 1 mW/cm2 APK = 875 nm E. = 1 mW/cm2 ApK = 875 nm E. = 1 mW/cm2 ApK = 875 nm Ref. Fig. 12 Fig. 16 HSDL-54XX Optical Characteristics at TA = 25°C Unit Condition 1.6 6.0 flA Ee = 1 mW/cm2 ApK = 875 nm VR = 5V Fig. 14, 15 M pH/L1T 0.1 %IK Ee = 1 mW/cm2 ApK = 875 nm VR = 5V Fig. 13 A 0.15 mm 2 S 0.5 A/W 291/2 110 28 deg Wavelength of Peak Sensitivity ApK 875 nm Spectral Bandwidth L1A 7701000 nm Quantum Efficiency 1"\ 70 % NEP 6.2 x 10.15 W/Hz 1/ 2 VR = 5V ApK = 875 nm D 6.3x 10 12 cm* HzI/2/W VR = 5V ApK = 875 nm tr/tr 7.5 ns VR = 5V RL = 1 kO ApK = 875 nm fc 50 MHz VR = 5V RL = 1 kO ApK = 875 nm Parameter Photocurrent HSDL-5400 HSDL-5420 Temperature Coefficient ofIpH Radiant Sensitive Area Absolute Spectral Sensitivity Viewing Angle HSDL-5400 HSDL-5420 Noise Equivalent Power Detectivity Optical Rise and Fall Times, 10%-90% Bandwidth Symbol Min. Typ. IpH 0.8 3.0 Max. Ref. Ee = 1 mW/cm 2 ApK = 875 nm VR = 5V Fig. 18 Fig. 19 Ee = 1 mW/cm2 VR = 5V Ee = 1 mW/cm2 VR = 5V Ee = 1 mW/cm2 ApK = 875 nm, VR = 5V Fig. 17 Fig. 17 4-81 00( I TA=2S'C IFDC=50mA ~ zw Z II: II: w :> 1.0 0 z ::: ~ ..: 5 II: 0 SOD 950 5.00 ...:i ..: ... .!!- I I !z 4.00 3.50 I 0.5 !Ii! 3.00 N 1.50 ~g /' 1.00 0.50 o/ o ./ / ii! L g 300 400 500 Figure 4. Nonnalized Radiant Intensity vs. Peak Forward Current. E 500 I .... l- zw 400 II: II: ..... :> 0 c 1--1-200 / 0.1 10 IFPK - FORWARD CURRENT - mA 500 DuivFA~~ 400 ----- 10 % - - - 20% --50% Figure 7. Maximum Peak Forward Current vs. Duty Factor. 60 100 =2~0 ,ck- 80 - Ra 1 Ip I I Rajp = ~ Raj = 370 'CJW- 'CI'f' 80 60 ~~ ~ 40 o o I o 20 1 lJ%~ b--- • ~%- ~, 40 ~s 60 80 100 TA - AMBIENT TEMPERATURE - 'C Figure 8. Maximum Peak Forward Current vs. Ambient Temperature. Derated Based on TJMAX = 110°C. j -40 ·20 o 20 40 80 80 100 TA - AMBIENT TEMPERATURE - 'C Current vs. Ambient Temperature. Derated Based on TJMAX = 110"C. sci%- ~ -40 -20 20 Figure 6. Maximum DC Forward I 200 10 40 120 i i 100 Ipw - PULSE WIDTH - ms 4-82 II PULSE WIDTHS <1100 0 0.01 i 0.01 0.1 I 0- 20 :IE 300 ~ 100 ~ B c g 300 II: ~ 0 ... l:1 w ... '" .l!- o Figure 3. Forward Voltage vs Ambient Temperature. Figure 5. Nonnalized Radiant Intensity vs. Peak Forward Current (0 to 10 rnA). . Dm FACTOR ...... 7% - - - 10% ~,.. --20% 50% II .1 TA - AMBIENT TEMPERATURE - 'C / 0.10 IFPK - PEAK FORWARD CURRENT - mA 00( 3.0 / II: 200 2.5 I ~ V 100 2.0 r---TA=2S'C. -c~ L 2.00 1.5 --- IFOC=l mA 1.0 ·20 ffi TA=2S'C 2.50 1.0 Figure 2. Peak Forward Current vs. Forward Voltage. /' PULSE WIDTHS ~ 100 ~s -- - 1.2 IL > 1.00 I --- 1.4 VF - FORWARD VOLTAGE - V Figure 1. Relative Radiant Intensity vs. Wavelength. 4.50 , "'r,,1,,; .. r- I.!fpc=60mA II: 10 1. - WAVELENGTH - nm ~ 1.6 i~ I I W !:i I I IFDC=l00mA c II: 0.5 1.8 ~ ; ~ w ~ II: 00( w 100 I ./ "" TA=25'C e l- II: > I- II) ~ 2.0 E 1,000 1.5 1.0 ~ z ..~ ...z O.S j 0.7 0.6 is II: ,- 0.3 0.2 / IF=50mA 1,\ TA = 25°C 1\ I II ~ /' 0.100 Il. i§ \ \ -6 f - - f--VR=5V 1.000 o ll! -4 -5 1.40 10.000 :::> 9 MHz -3 ':I! !z.. Q ~!il / 0.010 II: I \ lE+6 lE+7 lE+S f - FREQUENCY - Hz Figure 11. Relative Radiant Intensity vs. Frequency. £I 0.001 o 20 40 60 so 100 TA - AMBIENT TEMPERATURE - °c Figure 12. Reverse Dark Current vs. Ambient Temperature. 1.30 VR=5V 1.20 - 1.10 1.00 0.90 l - f-- ~ 0.80 0.70 0.60 -40 -20 o 20 40 60 SO 100 TA - AMBIENT TEMPERATURE - °c Figure 13. Relative Reverse Light Current vs. Ambient Temperature. 4-83 10 5 1.40 VR=SV TA=2S'C !zw 1.30 ~ 1.10 ~ 10 g a: a: ::> (J ~ ...:>: 0.8 0.6 Q w !:>! ..J 0.4 V / I ~ o :IE a: 0 10 15 30 35 o 40 0.1 10 Figure 16. Diode Capacitance vs. Reverse Voltage. 1/ '\ a: 0.8 a: 100 VIi- REVERSE VOLTAGE - V 0.9 II ::> 0.7 1\, ~ ...:>: ~ ~~ V 1\ 1/ VR=SV TA=25'C \ I 0.5 w 0.4 ~ 0.3 ~ \ 0.7 (J ~:>: 0.6 ... 0.5 Q w 0.4 J I !:>! 0.3 ..J


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:18 09:41:48-08:00
Modify Date                     : 2017:07:18 10:11:30-07:00
Metadata Date                   : 2017:07:18 10:11:30-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:92ced189-5374-6740-b06b-2237bf76e02f
Instance ID                     : uuid:274a7cd2-caae-924f-9bfb-7aaa1c5bb2e6
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 631
EXIF Metadata provided by EXIF.tools

Navigation menu