1996_Harris_Linear_ICs 1996 Harris Linear ICs

User Manual: 1996_Harris_Linear_ICs

Open the PDF directly: View PDF PDF.
Page Count: 1420

Download1996_Harris_Linear_ICs 1996 Harris Linear ICs
Open PDF In BrowserView PDF
$5.00

HARRIS
SEMICONDUCTOR
TECHNICAL ASSISTANCE
Harris Marketing Support Services (HMSS)
HMSS provides world-class service to customers requiring information on all products offered by Harris
Semiconductor. Ask Harris Marketing Support Services for answers concerning:
• Product Identification
• Availability
• Competitive and Obsolete Cross-Reference

• Distributor Stocking Levels
• Requests for Literature and Samples

HMSS services are available from 8:00am to 8:00pm EST. Within the United States, call1-800-4HARRIS.
Callers from outside the United States, dial (407) 727-9207.
HMSS is the initial contact for customers who need technical assistance with the selection and use of
our products. Callers have the option to be connected directly to the Central Applications Group.

Central Applications
Ask our experienced staff of engineers for assistance with:
• Device Selection
• Specification Interpretation
• Applications for Any Harris Product
Central Applications serves you Monday through Thursday 8:00am to 7:00pm and Friday 8:00am to
5:00pm EST. Within the United States, call1-800-4HARRIS. Callers from outside the United States dial
(407) 727-9207.
Central Applications' knowledge of our portfolio can provide you with a total system design solution
using the latest Harris devices!

Electronic Technical Support
Electronic services from Harris Semiconductor offer you the most current information possible.

http://www.semi.harris.com
•
•
•
•
•

Latest Literature Revisions
New Product Listing
Product Information
Design Support
Contact Information

t.nHARRlS
W

SEMICONDUCTOR

(407) 724-7S00
• Latest Literature Revisions
• New Product Listing
• Data Book Request Form

ENTRAL

~APPLICATIONS
EMAIL

centapp@harris.com, or 1-S00-4HARRIS
• Technical Application Assistance

Copyright © Harris Corporation 1996
(All Rights Reserved)
Printed in USA, 11/1996

See our
specs in

CAPS

HARRIS LINEAR PRODUCTS
Harris Semiconductor is .a pioneer in developing and producing advanced Linear
products for the most demanding Commercial, Industrial and Automotive applications
worldwide. Harris offers an extensive line of Linear components including: High Speed
and General Purpose Op Amps, Comparators, Sample/Hold Amps, Video Crosspoint
Switches, Special Analog.Circuits and Transistor Arrays.
This data book fully describes Harris Semiconductor's Linear ICs. It includes a
complete set of data sheets for product specifications, application notes with design
details for specific applications of Harris products, and a description of the Harris
Quality and Reliability program. Section 12, Harris' On-Line Services, describes how
our customers have access to the most recent technical updates.
It is our intention to provide you with the most up-to-date information on Linear
Products. For complete, current and detailed technical specifications on any Harris
devices, please contact the nearest Harris sales, representative or distributor office,
listed in Section 13; or direct literature requests to:
Harris Semiconductor Data Services Department
P.O. Box 883, MS 53-204·
Melbourne, FL 32902
Phone: 1-800-442-7747
Fax: 407-724-7240

For a complete listing of all Harris Semiconductor products, please refer to the Product
Selection Guide (PSG201; ordering information above).

See Section 12 for Harris' On-Line Services

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves
the right to make changes in circuit design and/or specifications at any time without notice.
Accordingly, the reader is cautioned to verify that data sheets are current before placing
orders. Information furnished by Harris is believed to be accurate and reliable. However, no
responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of
patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

LINEAR INTEGRATED CIRCUITS
FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS
New Products •
Table of Contents and General Information •

* Operational Amplifiers •
*Comparators •
*Sample and Hold Amplifiers.
*Video Crosspoint Switches.
*Transistor and Diode Arrays, and Differential Amplifiers.
Special Analog Circuits •
Harris Quality and Reliability.

II
Packaging Information III

Application ,Notes, Abstracts and Spice Model Listing

Harris' On-Line Services
Sales Offices
* A Product Selection Guide is located at the beginning of the section.

iii

III

II

1
NEW PRODUCTS

PAGE
VIDEO OP AMPS AND BUFFERS . ................................................................. .

1·3

SAMPLElHOLD ................................................................................. .

1·5

PIN DRIVER ................................................................................... .

1·6

WIRELESS COMMUNICATIONS . ...........................•.......................................

1·6

VIDEO CROSSPOINT SWITCHES . ................................................................. .

1·7

t

::;)

Q

0

a::
A.

~
w
Z

New High Speed Linear Products
VIDEO OP AMPS AND BUFFERS
HFA1145
LOW POWER VIDEO OP AMP WITH DISABLE

HFA1109
LOW POWER, WIDE BAND, VIDEO OP AMP

AnswerFAX DOCUMENT 4# 3955
• -3dB Bandwidth ..................•....... 330MHz
• High Slew Rate .......................... 1000VlJ.lS

AnswerFAX DOCUMENT # 4019
• Wide -3dB Bandwidth ..................... 5S0MHz
• High Slew Rate ......................... 1200V/lls
•
•
•
•
•

• Differential Gain/Phase ........... 0.02%/0.03 Degrees

Gain Flatness to 250M Hz ..... '.............. ±O.SdB
Fast Settling Time (0.1 %) ...................... 17ns
Differential Gain/Phase .......... 0.02%/0.02 Degrees
Low Supply Current. ........................ 10mA
8 Lead PDIP and SOIC

•
•
•
•

=

HFA1113
PROG. GAIN VIDEO BUFFER WITH OUTPUT LIMITING

HFA1105.
LOW POWER VIDEO OP AMP

t

:;)

AnswerFAX DOCUMENT 4# 1342
• Wide -3dB Bandwidth ...................... 850MHz
• High Slew Rate ...............•.......... 2400V/lls

AnswerFAX DOCUMENT # 3395
• -3dB Bandwidth (Av +2) .................. 330MHz

=

•
•
•
•
•

Gain Flatness to 7SMHz ....................... ±0.1dB
Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . . .. 6mA
Output Enable/Disable (TONITOFF 180ns/3Sns)
8 Lead PDIP and SOIC

High Slew Rate ......................... 1000VlJ.lS
Gain Flatness to 7SMHz ....................... ±0.1 dB
Fast Settling Time (0.1 %) ...................... 1Sns
Differential Gain/Phase . . . . . . . . .. 0.02%/0.03 Degrees
Low Supply Current .......................... 6mA

•
•
•
•

Differential Gain/Phase .......... 0.02"1010.04 Degrees
User Programmable Gain of +2, ±1
User Programmable Output Limiting
8 Lead PDIP and SOIC

• 8 Lead PDIP and SOIC
HFA1114
CABLE DRIVING BUFFER WITH SUMMING NODE

HFA1106
VIDEO OP AMP WITH EXTERNAL COMPENSATION

AnswerFAX DOCUMENT 4# 3151
AnswerFAX DOCUMENT # 3922

• Wide -3dB Bandwidth ........... , .......... 8S0MHz

• -3dB Bandwidth .......................... 31SMHz

• High Slew Rate .......................... 2400VlIlS

• High Slew Rate .......................... 700V/lls
• Differential Gain/Phase ........... 0.02°/010.05 Degrees

• Differential Gain/Phase. . . . . . . . .. 0.02"1010.04 Degrees

• Low Supply Current. . . . . . . . . . . . . . . . . . . . . . .. S.8mA
• Compensation Pin for Bandwidth Limiting

• Summing Node Pinout Enables Tailoring of System
Response For Cable Length

• 8 Lead PDIP and SOIC

• 8 Lead PDIP and SOIC

• User Programmable Gain (+2, ±1)

HA4600
400MHz VIDEO BUFFER WITH OUTPUT DISABLE

HFA1149
LOW POWER, WIDEBAND OP AMP
WITH OUTPUT DISABLE

AnswerFAX DOCUMENT # 3990
• Low Power DiSSipation ..................... 10SmW

AnswerFAX DOCUMENT # 4019
• Wide -3dB Bandwidth ..... . . . . . . . . . . . . . . .. 5S0MHz
• High Slew Rate ........................ , 1200VlllS

• Symmetrical Slew Rates. . . . . . . . . . . . . . . . .. 1700VlJ.lS
• 0.1dB Gain Flatness ................•.••.. 2S0MHz
• Off Isolation (100MHz) ....................... 8SdB

• Gain Flatness to 250M Hz ................... ±O.SdB

• Differential Gain and Phase ....... 0.01"1010.01Degrees

• Differential Gain/Phase . . . . . . . . .. 0.02"1010.02 Degrees

• High ESD Rating ................•......... >2000V

• Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . . . 10mA

• 8 Lead PDIP and SOIC

• Fast Enable/Disable Times ................ 18nsl11 ns
• 8 Lead PDIP and SOIC

1-3

o
o

a:
a..

3:
w
z

New High Speed Linear Products
HFA1135
VIDEO OP AMP WITH OUTPUT LIMITING

•
•
•
•
•
•
•
•

AnswerFAX DOCUMENT # 3653
·3dB Bandwidth ........................... 36.oMHz
High Slew Rate ......................... 12.o.oV/lls
Fast Settling Time (.0.1 %) ...................... 15ns
Differential Gain/Phase. . . . . . . . . .. .0..02%/.0..04 Degrees
Low Supply Current. .........................7mA
User Programmable Output Limiting
Fast Overdrive Recovery ...................... S

LT1225CSB

HA9P2841-5

Yes

For Gains >S

Yes

LT1225MJ8

HA7-2841/883

LT1226CJ8

HA7-2B40-5

LT1226CNB

HA3-2840-S

LT1226CSB

HA9P2B40-S

LT1226MJB

HA7-2840/BB3

LT1227CNB

HA3-5020-5

Yes

Lower Cost

LT1227CSB

HA9P5020-S

Yes

Lower Cost

LT1227MJB

HA7-S020/BB3

Yes

Lower Cost

LT1229CN8

HA50231P

Yes

Better Video and DC Specifications, ±SV Only

LT1229CSB

HA50231B

Yes

Better Video and DC Specifications, ±SV Only

For Gains >5

t
t

For Gains >25

t
t

For Gains >25

For Gains >2S

For Gains >25

LT1230CS

HAS02SIB

Yes

Better Video and DC Specifications

LT1230CN

HAS02SIP

Yes

Better Video and DC Specifications

LT12S2CNB

HA3-S020-S

Yes

LT12S2CS8

HA9PS020-S

Yes

LT1253CNB

HA50231P

Yes

Better AC and Video Specs

LT1253CSB

HAS0231B

Yes

Better AC and Video Specs

LT12S4CN

HAS0251P

Yes

Better AC and Video Specs

LT1254CS

HAS02SIB

Yes

Better Slew Rate and Video Specs

LT1259CN

HA50221P

Yes

Functional Equivalent

LT12S9CS

HA50221B

Yes

Functional Equivalent

LT1260CN

HA50131P

Yes

LT1260CS

HAS0131B

Yes

LT1360CNB

HA3-2841-5

Yes

LT1360CNB

HA3-S020-S

Yes

VFB vs CFB

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-27

LLen

o!z
WW

..J",

IIlZ

~8

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN·TO·PIN

HARRIS ADVANTAGE/COMMENT

LT1360CS8

HA9P2841-S

Ves

LT1360CS8

HA9PS020-S

Ves

LT1361CN8

HAS0231P

Ves

VFB vs CFB

LT1361CS8

HAS0231B

Ves

VFB vs CFB

LT1362CN

HAS02SIP

Ves

VFB vs CFB

LT1362CS

HAS0251B

Ves

Functional Equivalent

LT1363CN8

HA3-2841-S

Ves

LT1363CNB

HA3-5020-5

Ves

LT1363CS8

HA9P2841-S

Ves

LT1363CS8

HA9P5020-5

Ves

VFB vs CFB

LT1364CNB

HAS0231P

Ves

VFB vs CFB

LT1364CSB

HAS0231B

Ves

VFB vs CFB

LT136SCN

HAS0251P

Ves

VFB vs CFB

LT1365CS

HAS0251B

Ves

VFB vs CFB

LTC1050ACH

ICL76S0SITV-l

LTC1050ACN8

ICL7650SIPA,1

LTC1050AMH

ICL76S0SMTV-l

LTC1050CH

ICL76S0SITV-l

LTC1050CN8

ICL7650SIPA-l

LTC1050CP

ICL7650SIPA-l

LTC1050MH

ICL7650SMTV-l

MAX404CPA

HA3-2B42-5

VFBvS CFB

VFB vs CFB

t
t
t
t
t
t
t

Reduced 'BIAs/I'O
Reduced IBIAs/I,O
Reduced IBIAs/I'O
Reduced 'BIAs/I,oIgreater fJ.vOL
Reduced 'BIAsli,olgreater AVOL
Reduced 'BIAs/I'O
Reduced 'BIAs/I,oIgreater AVOL

Ves

MAX404CSA

HA9P2842-S

Ves

Better Video Specs, Lower Power

MAX404EPA

HA3-2842-9

Yes

Better Video Specs, Lower Power

MAX404ESA

HA9P2B42-S

Ves

Better Video Specs, Lower. Power

MAX4S2CPA

HA3-2841-S

Yes

Lower Power

MAX4S2CSA

HA9P2841-S

Ves

Lower Power

MAX4S2EJA

HA3-2841-9

Ves

Lower Power

MAX4S2EPA

HA3-2841-9

Ves

Lower Power

MAX457CPA

HA50231P

Ves

Better Performance, Lower Power

MAX457CSA

HA50231B

Ves

Better Performance, Lower Power

MAX4S7EPA

HA50231P

Yes

MAX460lGC

HA2-5033-5

MAX460MGC

HA2-S033-2

MAX467CPE

HAS0131P

MAX467CWE
MC1776CD

Better Performance, Lower Power
Greater Bandwidth

t
t

Greater Bandwidth

Ves

Better AC Specs, Lower Power

HA50131B

Ves

Better AC Specs, Lower Power

ICL7611DCBA

Yes

Lower Power Drain

MCl776CG

ICL7611 BCTV

Ves

Lower Power Drain

MCl776CPl

ICL7611BCPA

Ves

Lower Power Drain

MCl776G

ICL7611 BMTV

Ves

Lower Power Drain

MC3302N

CA3290E

Ves

Moslet Input

MC3303D

CA5470M

Ves

Mos Input/enhanced ACs

MC3303N

CAS470E

Yes

Femos Input/enhanced ACs

MC33071P

CA3140AE

Ves

Reduced IBIASIi,O

MC33072P

CA3240AE

Ves

Reduced 'BIASIi,O

MC3346D

CA3046M

Ves

Full-S5 To 12SoC Operation

MC3346P

CA3046E

Ves

Full -5S To 12SoC Operation

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-28

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN·TO·PIN

HARRIS ADVANTAGE/COMMENT

MC34001BG

CA3140AT

Yes

Reduced IBIAs/IIO

MC34001BP

CA3140AE

Yes

Reduced IBIAs/IIO

MC34001G

CA3140T

Yes

Reduced IBIAs/IIO

MC34001P

CA3140E

Yes

Reduced IBIAs/IIO

MC34002BG

CA3240AT

Yes

Reduced IBIASillO

MC34002BP

CA3240AE

Yes

Reduced IBIASillO

MC34002G

CA3240T

Yes

Reduced IBIAs/IIO

MC34002P

CA3240E

Yes

Reduced IBIAS/IIO

MC3403D

CA5470M

Yes

Mos Input/enhanced ACs

MC3403N

CA5470E

Yes

Mos Input/enhanced ACs

MC34071P

CA3140AE

Yes

Reduced IBIAs/IIO

MC34072P

CA3240AE

Yes

Reduced IBIAs/IIO

MC3456L

ICM7556MJD

Yes

CMOS/Reduced ICC

MC3456P

ICM75561PD

Yes

CMOS/Reduced Icc

MC3556L

ICM7556MJD

Yes

CMOS/Reduced Icc

MC66BACN·B

ICL7650SCPA·1

Yes

Enhanced VOUT

NE5230N

CA5160AE

No

Mos Input

NE5517AN

CA32BOAE

No

Reduced VIO

NE5517D

CA32BOM

No

Reduced VIO

NE5517N

CA3280E

No

Reduced VIO

NE5532AFE

HA7-51 02-5

Yes

Enhanced VOUT/Reduced ICC

NE5532AN

HA3-51 02-5

Yes

Enhanced VOUT/Reduced ICC

NE5532FE

HA7-51 02-5

Yes

Enhanced VOUT/Reduced ICC

NE5532N

HA3-51 02-5

Yes

Enhanced VOUT/Reduced Icc

NES534AFE

HA7-5101-S

NE5534AN

HA3-51 01-5

NE5534FE

HA7-5101-5

NE5534N

HA3-51 01-5

NES539D

HA9P-2539-5

NE5539F

HAl-2839-5

NE5539N

HA3-2B39-5

t
t
t
t
t
t
t

NE556-1N

ICM75561PD

Yes

CMOS/Reduced Icc

Enhanced VOUT
Enhanced VOUT
Enhanced VOUT
Enhanced VOUT
Specified at ±15V Supplies
Specified at ±15V Supplies
Specified at ±lSV Supplies

NE556N

ICM7SS61PD

Yes

CMOS/Reduced IcC

OP-15CH

CA3140AT

Yes

Reduced IBIAs/IIO

OP-15GN8

CA3140AE

Yes

Reduced IBIAs/IIO

OP11AY

HA1-S134-2

Yes

Enhanced ACs

OP11EY

HA1-5134-5

Yes

Enhanced ACs

OP11FY

HA1-5104-5

Yes

Enhanced ACs

OP160GP

HA3-S020-9

Yes

OP160GS

HA9PS020-S

Yes

OP21SGZ

CA3240AE (PDIP)

Yes

OP220CJ

HA2-5142-2

Yes

OP220CZ

HA7-5142-2

Yes

Enhanced ACs

OP220GJ

HA2-S142-5

Yes

Enhanced ACs

OP220GZ

HA7-S142-S

Yes

Enhanced ACs

OP271AZ

HA7-51 02-2

Yes

Lower Voltage Noise/greater Bandwidth

Enhanced ACs

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-29

u.Ul

01Z
WW
...II-

mz
~8

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN·TO·PIN

HARRIS ADVANTAGE/COMMENT

OP271EZ

HA7-51 02-5

Yes

Lower Voltage Noise/greater Bandwidth

OP271FZ

HA7-51 02-5

Yes

Lower Voltage Noise/greater Bandwidth

OP271GP

HA3-51 02-5

Yes

Lower Voltage Noise/greater Bandwidth

OP271GS

HA9P-5102-9

Yes

Lower Voltage Noise/greater Bandwidth

OP27AJ8

HA7-S127A-2

Yes

Enhanced ACS/Reduced Icc

OP27AZ

HA7-5127A-2

Yes

Enhanced ACS/Reduced Icc

OP27CJ8

HA7-S127-2

Yes

Enhanced ACs/Reduced Icc

OP27CZ

HA7-5127-2

Yes

Enhanced ACs/Reduced Icc

OP27EJ8

HA7-5127A-5

Yes

Enhanced ACs/Reduced Icc

OP27EZ

HA7-S127A-5

Yes

Enhanced ACS/Reduced Icc

OP27GJ8

HA7-5127-S

Yes

Enhanced ACS/Reduced Icc

OP27GZ

HA7-5127-S

Yes

Enhanced ACs/Reduced Icc

OP37AJ8

HA7-5137A-2

Yes

Enhanced ACS/Reduced Icc

OP37AZ

HA7-S137A-2

Yes

Enhanced ACs/Reduced Icc

OP37CJ8

HA7-S137-2

Yes

Enhanced ACs/Reduced Icc

OP37CZ

HA7-5137-2

Yes

Enhanced ACS/Reduced Icc

OP37EJ8

HA7-5137A-5

Yes

Enhanced ACS/Reduced Icc

OP37EZ

HA7-5137A-5

Yes

Enhanced ACS/Reduced Icc

OP37GJ8

HA7-5137-S

Yes

Enhanced ACS/Reduced Icc

OP37GZ

HA7-5137-S

Yes

Enhanced ACs/Reduced Icc

OP400AY

HA1-5134A-2

Yes

OP400EY

HA1-S134A-S

Yes

OP400FY

HA1-S134-S

Yes

OP420BY

HA1-S144-2

Yes

Enhanced ACs

OP420CY

HA1-S144-2

Yes

Enhanced ACs

OP420HY

HA1-S144-S

Yes

Enhanced ACs

OP470AY

HA1-S104-2

Yes

OP470EY

HA1-S104-S

Yes

OP470FY

HA1-S104-S

Yes

OP470GP

HA3-S104-S

Yes

OP470GS

HA9PS104-S

Yes

OP470GS

HA9PS104-S

Yes

OP47AD

HA7-S147A-2

Yes

OP47AT

HA2-S147A-2

Yes

OP47CD

HA7-S147-2

Yes

OP47CT

HA2-S147-2

Yes

OP47EN

HA7-S147A-S (CDIP)

Yes

OP47GN

HA7-S147-S (CDIP)

Yes

OP62AJ

HA2-S221-S

OP62AZ

HA7-S221-9

OP62EJ

HA2-S221-S

OP62EZ

HA7-S221-9

OP62FJ

HA2-S221-S

OP62FZ

HA7-5221-9

OP63AJ

HA2-S221-S

OP63AZ

HA7-S221-9

OP63EJ

HA2-S221-S

=10
=10
Greater Bandwidth/min AcL =10
Greater Bandwidth/min AcL =10
Greater Bandwidth/min AcL =10
Greater Bandwidth/min AcL = 10
Greater Bandwidth/min AcL

Greater Bandwidth/min AcL

t
t

Greater Slew Rate

t
t

Greater Slew Rate

t
t
t
t
t

Greater Slew Rate

Greater Slew Rate

Greater Slew Rate

Greater Slew Rate
ReducedVIO
Reduced VIO
Reduced VIO

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-30

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN-TO-PIN

HARRIS ADVANTAGE/COMMENT

HA7·S221·9

t
t
t

Reduced VIO

OP64AJ

HA2·5221·S

t

Reduced VIO

OP64AZ

HA7·2622·2

Yes

OP64AZ

HA7·5221·9

OP64EJ

HA2·5221·S

OP64EZ

HA7·S221·9

OP64FJ

HA2·5221-5

t
t
t
t

OP64FZ

HA7·262S·S

Yes

OP64FZ

HA7-S221·9

OPBOFJ

CAS420AT

OP63EZ

HA7·S221·9

OP63FJ

HA2·S221·5

OP63FZ

Reduced VIO
Reduced VIO

Reduced VIO
Reduced VIO
Reduced VIO
Reduced VIO

OPBOGJ

CA5420T

OPBOGP

CA5420E

OPA121KP

CA3140AE

t
t
t
t
t

OPA2111KM

HA2-51 02-5

Yes

Greater Bandwidth

OPA2111KP

HA3-S102-5

Yes

Greater Bandwidth

OPA27AZ

HA7-S127A-2

Yes

Enhanced ACslReduced Icc

OPA27CZ

HA7-S127-2

Yes

Enhanced ACslReduced IcC

OPA27EZ

HA7-S127A-5

Yes

Enhanced ACs/Reduced Icc

OPA27GZ

HA7·S127-S

Yes

Enhanced ACs/Reduced Icc

OPA37AZ

HA7-S137A-2

Yes

Enhanced ACs/Reduced IcC

OPA37CZ

HA7-S137-2

Yes

Enhanced ACs/Reduced Icc

OPA37EZ

HA7-S137A-S

Yes

Enhanced ACslReduced Icc

OPA37GZ

HA7-S137-S

Yes

Enhanced ACs/Reduced Icc

OPA404AG

HA1-S114-S

Yes

Lower Voltage Noise/enhanced ACs

OPA404BG

HA1-S114-S

Yes

Lower Voltage Noise/enhanced ACs

OPA404KP

HA3-S114-S

Yes

Lower Voltage Noise/enhanced ACs

OPA404KU

HA9PS114-S

Yes

Lower Voltage Noise/enhanced ACs

OPA404SG

HA1-S114-2

Yes

Lower Voltage Noise/enhanced ACs

OPA44SAP

HA7-264S-S

Yes

Reduced VIO
Single Supply Operation
Single Supply Operation
Single Supply Operation
Mos InpuVenhanced ACs

OPA44SBM

HA2-2640-2'

Yes

OPA44SSM

HA2-2640-2

Yes

OPA623AU

HFA110SIB

Yes

OPA633AH

HA2-S033-2

Yes

OPA633KP

HA3-S033-S

Yes

OPA633SH

HA2-S033-S

Yes

OPA644H

HFA1100lJ

Yes

Better Bandwidth

OPA644HB

HFA1100lJ

Yes

Better Bandwidth

OPA644P

HFA1100lP

Yes

Better Bandwidth

OPA644PB

HFA1100lP

Yes

Better Bandwidth

OPA644U

HFA1100lB

Yes

Better Bandwidth

OPA644UB

HFA1100lB

Yes

Better Bandwidth

OPA64BH

HFA1100lJ

Yes

OPA648P

HFA1100lP

Yes

OPA648U

HFA1100lB

Yes

Better Video and DC Specifications

Primary Pins are pin-to-pin; secondary/optional pins are not

2-31

u..~

Oz
WW

..JI-

mz
~8

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN-TO-PIN

HARRIS ADVANTAGE/COMMENT

OPA658P

HFAll00lP

Yes

Harris Is Higher ICC

OPA658PB

HFA1100lP

Yes

Harris Is Higher Icc

OPA658U

HFAll00lB

Yes

Harris Is Higher Icc

OPA658U

HFA11051B

Ye~

Harris Is Lower AC

OPA658UB

HFAll00lB

Yes

Harris Is Higher Icc

OPA658UB

HFAll051B

Yes

Harris Is Lower ACs

RC3403AN

CA5470E

Yes

Mos Input/enhanced ACs

RC47410

HAI-4741-2

Yes

Guaranteed ACs

RC4741M

HA9P4741-9

Yes

Guaranteed ACs

RC5532AN

HA3-51 02-5

Yes

Enhanced Your/Reduced Icc

RC5532N

HA3-51 02-5

Yes

Enhanced Vour/Reduced Icc

RC5534AN

HA3-5101-5

Enhanced YOur/Reduced Icc

RC5534N

HA3-5101-5

RM5334T

HA2-51 01-2

t
t
t

RM5532AD

HA7-51 02-2

Yes

Reduced Icc

RM5532AT

HA2-51 02-2

Yes

Reduced Icc

RM5532D

HA7-51 02-2

Yes

Reduced Icc

RM5532T

HA2-51 02-2

Yes

Reduced Icc

RM5534AD

HA7-5101-2

Reduced IcC

RM5534AT

HA2-5101-2

RM5534D

HA7-5101-2

t
t
t

SA556-1N

ICM75561PD

Yes

CMOS/Reduced Icc

SA556N

ICM75561PD

Yes

CMOS/Reduced Icc

SE5532AFE

HA7-51 02-2

Yes

Reduced Icc

SE5532FE

HA7-51 02-2

Yes

SE5534AFE

HA7-5101-2

SE5534FE

HA7-5101-2

SE5539F

HA1-2539-2

t
t
t

SE556-1CN

ICM7556MJD

Yes

CMOS/Reduced Icc

SE556-1F

ICM7556MJD

Yes

CMOS/Reduced Icc

SE556F

ICM7556MJD

Yes

CMOS/Reduced ICC

SG1536T

HA2-2640-2

SG1536Y

HA7-2640-2

SG3045J

CA3045F

SG3049T

CA3049T

Yes

SG3083

CA3083

Yes

SG3183D

CA3183M

Yes

Identical Specs at 25°C

SG3183N

CA3183E

Yes

Identical Specs at 25°C

SHC5320KH

HAI-5320-5

Yes

SHC5320SH

HA1-5320-2

Yes

SHC85

HA1-2425-5

No

SHC85ET

HA1-2420-2

No

Enhanced ACs

SHM-20C

HA1-5320-5

Yes

Guaranteed Acquisition Time

SHM-20M

HA1-5320-2

Yes

Guaranteed Acquisition Time

SHM-IC-1

HAI-2425-5

Yes

Almost Identical

SHM-IC-1M

HA1-2420-2

Yes

Almost Identical

I

Enhanced Vour/Reduced Icc
Reduced Icc

Reduced Icc
Reduced Icc

Reduced Icc
Reduced IBIAs/IIG
Reduced IBIAS"IO
Specified at ±15V Supplies

Reduced Violenhanced ACs

t
t

Reduced Violenhanced ACs

Yes
Greater Bandwidth/Reduced Noise

Enhanced ACs

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-32

Commercial Linear Product Cross Reference
PART NUMBER

SL3045C-DG

t

HARRIS DEVICE

PIN-TO-PIN

CA3045F

HARRIS ADVANTAGE/COMMENT

Yes

SL3046C-DP

CA3046E

Yes

SL3127C-DC

CA3127F

Yes

SL3127C-DP

CA3127E

Yes

SL3145C-DC

CA3045F

Yes

Greater Breakdown Voltages

SL3145C-DP

CA3046E

Yes

Greater Breakdown Voltages

SL3227-DP

CA3227E

Yes

Greater Breakdown Voltages

SL3227-MP

CA3227M

Yes

Greater Breakdown Voltages

SL3245-DP

CA3246E

Yes

Programmable Biasing Current

SL3245-MP

CA3246M

Yes

Faster Acquisition/lower Droop

SMP10AY

HA1-2420-2

t

Faster Acquisition/lower Droop

SMP10BY

HA1-2420-2

t

Faster Acquisition~ower Droop

SMP10EY

HA1-2425-5

t

Faster Acquisition/lower Droop

SMP10FY

HA1-2425-5

t

Faster Acquisition/lower Droop

SMP11AY

HA1-2420-2

Faster Acquisition/lower Droop

SMP11BY

HA1-2420-2

SMP11EY

HAI-2425-5

SMP11FY

HA1-2425-5

t
t
t
t

SP1-2541-2

HA1-2541-2

Yes

SP1-2541-5

HA1-2541-5

Yes

SP1-2542-2

HAI-2542-2

Yes

SPI-2542-5

HAI-2542-5

Yes

SPI-5330-2

HAI-5330-2

Yes

SPI-5330-5

HAI-5330-5

Yes

SP2-2500-2

HA2-2500-2

Yes

SP2-2502-2

HA2-2502-2

Yes

SP2-2505-5

HA2-2505-5

Yes

SP2-251 0-2

HA2-251 0-2

Yes

SP2-2512-2

HA2-2512-2

Yes

VOUT Version Available

Faster Acquisition/lower Droop

ILC/)

01Z
WW

...JI-

IXlZ

~8

SP2-2515-5

HA2-2515-5

Yes

SP2-2520-2

HA2-2520-2

Yes

Substitute HA2-2529-2

SP2-2522-2

HA2-2522-2

Yes

Substitute HA2-2529-2

SP2-2525-5

HA2-2525-5

Yes

Substitute HA2-2529-5

SP2-2541-2

HA2-2541-2

Yes

SP2-2541-5

HA2-2541-5

Yes

SP2-2542-2

HA2-2542-2

Yes

SP2-2542-5

HA2-2542-5

Yes

SP2-2600-2

HA2-2600-2

Yes

SP2-2602-2

HA2-2602-2

Yes

SP2-2605-5

HA2-2605-5

Yes

SP2-2620-2

HA2-2620-2

Yes

SP2-2622-2

HA2-2622-2

Yes

SP2-2625-5

HA2-2625-5

Yes

SP3-2505-5

HA3-2505-5

Yes

SP3-2515-5

HA3-2515-5

Yes

SP3-2525-5

HA3-2525-5

Yes

SP3-2542-5

HA3B2842-5

Yes

Substitute HA3-2529-5

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-33

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN-TO-PIN

HARRIS ADVANTAGE/COMMENT

SP3-2605-5

HA3-2605-5

Yes

SP3-2625-5

HA3-2625-5

Yes

SP7-2500-2

HA7-2500-2

Yes

SP7-2502-2

HA7-2502-2

Yes

SP7-2505-5

HA7-2505-5

Yes

SP7-2510-2

HA7-251 0-2

Yes

SP7-2512-2

HA7-2512-2

Yes

SP7-2515-5

HA7-2515-5

Yes

SP7-2520-2

HA7-2520-2

Yes

Substitute HA7-2529-2

SP7-2522-2

HA7-2522-2

Yes

Substitute HA7-2529-2

SP7-2525-5

HA7-2525-5

Yes

Substitute HA7 -2529-5

SP7-2600-2

HA7-2600-2

Yes

SP7-2602-2

HA7-2602-2

Yes

SP7-2605-5

HA7-2605-5

Yes

SP7-2620-2

HA7-2620-2

Yes

SP7-2622-2

HA7-2622-2

Yes

SP7-2625-5

HA7-2625-5

Yes

TA75393P

CA3290AE/CA3290E

Yes

Reduced ISIAsliioIlcc

TA75557F

HA9P5102-9

No

Greater Bandwidth/Reduced Vnoise

TA75557P

HA3-51 02-5

Yes

Greater Bandwidth/Reduced Vnoise

TA75559F

HA9P5112-9

No

Greater Bandwidth/Reduced Vnoise

TA75559P

HA3-5112-5

Yes

Greater Bandwidth/Reduced Vnoise

TCA971

CA3146AE/CA3046E

Yes

Greater \lCBO With CA3146

TCA971G

CA3146AM/CA3046M

Yes

Greater VCBO With CA3146

TCA991

CA3146E/CA3046E

Yes

Greater VCBO With CA3146

TCA991G

CA3146M/CA3046M

Yes

Greater VCBO With CA3146

TD62507F

CA3183AM

No

All. Product Is CA3083

TD62507P

CA3183AE

No

All. Product Is CA3083

TDB2046DP

CA3046E

Yes

Full-55 To 125°C Operation

TDB2046FP

CA3046M

Yes

Full-55 To 125°C Operation

TLC252ACD

CA5260AM

Yes

Specified at +5V Supply

TLC252ACP

CA5260AE

Yes

Specified at +5V Supply

TLC252CD

CA5260M

Yes

Specified at +5V Supply

TLC252CP

CA5260E

Yes

Specified at +5V Supply

TLC254CD

CA5470M

Yes

Specified at +5V Supply

TLC254CN

CA5470E

Yes

Specified at +5V Supply

TLC272ACD

CA5260AM

Yes

Greater VOUT Range/Reduced Icc

TLC272ACP

CA5260AE

Yes

Greater VOUT Range/Reduced Icc

TLC272AID

CA5260AM

Yes

Greater VOUT Range/Reduced Icc

TLC272AIP

CA5260AE

Yes

Greater VOUT Range/Reduced ICC

TLC272CD

CA5260M

Yes

Greater VOUT Range/Reduced Icc

TLC272CP

CA5260E

Yes

Greater VOUT Range/Reduced Icc

TLC2721D

CA5260M

Yes

Greater VOUT Range/Reduced Icc

TLC2721P

CA5260E

Yes

Greater VOUT Range/Reduced Icc

TLC272MJG

CA5260E (PDIP)

Yes

Greater VOUT Range/Reduced Icc

TLC274CD

CA5470M

Yes

Greater VOUTlbandwidth/slew Rate

TLC274.CN

CA5470E

Yes

Greater VOUT/bandwidth/slew Rate

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-34

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

PIN·TO·PIN

HARRIS ADVANTAGE/COMMENT

TLC2741D

CA5470M

Yes

Greater VOUTlbandwidth/slew Rate

TLC2741N

CA5470E

Yes

Greater VOUT/bandwidth/slew Rate

TLC274MJ

CA5470E (PDIP)

Yes

Greater VOUT/bandwidth/slew Rate

TLC27M2ACD

CA5260AM

Yes

Greater VOUTlbandwidth/slew Rate

TLC27M2ACP

CA5260AE

Yes

Greater VOUTlbandwidthlslew Rate

TLC27M2AID

CA5260AM

Yes

Greater VOUTlbandwidthlslew Rate

TLC27M2AIP

CA5260AE

Yes

Greater VOUT/bandwidth/slew Rate

TLC27M2CD

CA5260M

Yes

Greater VOUT/bandwidthlslew Rate

TLC27M2CP

CA5260E

Yes

Greater VouTlbandwidthlslew Rate

TLC27M21D

CA5260M

Yes

Greater VOUTlbandwidthlslew Rate

TLC27M21P

CA5260E

Yes

Greater VOUT/bandwidth/slew Rate

TLC27M2MJG

CA5260E (PDIP)

Yes

Greater VOUT/bandwidth/slew Rate

TLC555CD

ICM7555CBA

Yes

Reduced Icc

TLC5551P

ICM75551PA

Yes

Reduced Icc

TLC556CN

ICM75561PD

Yes

Reduced Icc

TLC5561N

ICM75561PD

Yes

Reduced Icc

TLC556MJ

ICM7556MJD

Yes

Reduced Icc

TP1321

HA·5195

Yes

TP1322

HA-2520

Yes

TP1326

HA-2600

Yes

TP1332

HA-2645

Yes

TP1339

HA-2620

No

TP1341

HA-2840

Yes

TP1342

HA-2839

Yes

TP1344

HA-5160

Yes

LLcn

01Z
WW

...JIIIlZ

~8

TP1345

HA-5162

Yes

TP4856

HA 1-2420/25

Yes

Guaranteed Acquisition Time

TP4866

HAl-5320

Yes

Guaranteed Acquisition Time

TSC7650ACPA

ICL7650SCPA-l

Yes

Reduced Tempco/voltage Noise

TSC7650ACPD

ICL7650SCPD

Yes

Reduced Tempco/voltage Noise

TSC7650AIJA

ICL7650SIJA-l

Yes

Reduced Tempco/voltage Noise

TSC7650AIJD

ICL7650SIJD

Yes

Reduced Tempco/voltage Noise

UCOP01CN

CA3140AE

Yes

Moslet Input

UCOP01GJ

CA3140AE (PDIP)

Yes

Moslel Inpul
Full -40 To 85°C Operation

ULN2046A-l

CA3146E

Yes

ULN2046L-l

CA3146M

Yes

ULN2083A

CA3083

Yes

Full-55 To 125°C Operation

ULN2083A-l

CA3183E

Yes

Full -40 To 85°C Operation
Full-55 To 125°C Operation

ULN2083L

CA3083M

Yes

ULN2086A

CA3086

Yes

Full-55 To 125°C Operation

XR-13600AP

CA3280AE

No

Reduced Violenhanced ACs

XR-13600CP

CA3280E

No

Reduced Violenhanced ACs

XR-2242CP

ICM72421PA

Yes

Greatiy Reduced Icc

XR-3403CP

CA5470E

Yes

Mos Input/enhanced ACs

XR-4739CN

HA7-51 02-5

No

Enhanced ACs/DCs

XR-4739CP

HA3-51 02-5

No

Enhanced ACslDCs

XR-4741CN

HAI-4741-5

Yes

Guaranteed Channel Separation

Primary Pins are pin-to-pin; secondary/optional pins are not.

2·35

Commercial Linear Product Cross Reference
PART NUMBER

t

HARRIS DEVICE

XR-4741CP

HA3-4741-5

XR-4741M
XR-5532AN

PIN-TO-PIN

HARRIS ADVANTAGE/COMMENT

Yes

Guaranteed Channel Separation

HA1-4741-2

Yes

Guaranteed Channel Separation

HA7-51 02-5

Yes

Reduced VloIlslAS

XR-5532AP

HA3-51 02-5

Yes

Reduced VloIlslAS

XR-5532N

HA7-51 02-5

Yes

Reduced VloIlslAS

XR-5532P

HA3-51 02-5

Yes

XR-5534ACN

HA7-5101-5

XR-5534ACP

HA3-5101-5

XR-5534AM

HA7-5101-2

XR-5534CN

HA7-5101-5

XR-5534CP

HA3-5101-5

XR-5534M

HA7-51 01-2

t
t
t
t
t
t

XR-8038CN

ICL8038CCJD

Yes

XR-8038CP

ICL8038CCPD

Yes

XR-8038M

ICL8038AMJD

Yes

XR-8038N

ICL8038BCJD

Yes

uPA103G

HFA3046B

Yes

Lower Cost

uPC357C

CA3130E

Yes

Reduced ISlAS

uPC4741C

HA3-4741-5

Yes

Guaranteed Specs Over Temp

uPC4741G2

HA9P4741-9

t

Guaranteed Specs Over Temp

uPD5555C

ICM7555CPA

Yes

Reduced Icc

uPD5556C

ICM7556CPD

Yes

Reduced Icc

Reduced VloIlslAS
Greater AVOL/Reduced VIO
Greater AVOL/Reduced VIO
Greater AVOL
Greater AVOL/reduced VIO
Greater AVOL/reduced VIO
Greater AVOL

Primary Pins are pin-to-pin; secondary/optional pins are not.

2-36

Data Acquisition Products
AID CONVERTERS DISPLAY
CA3162/CA3162A

AID Converter lor"3 112-Digit Display

ICL71 C03/1CL8052

Precision 41/2-Digit AID Converter

ICL 71 C03/1CL8068

Precision 41/2-Digit AID Converter

ICL7106

31/2-Digit LCD Single-Chip AID Converter

ICL7107

31/2-Digit LED Single-Chip AID Converter

ICL7116n117

31/2-Digit with Display Hold Single-Chip AID Converter

ICL7126

31/2-Digit Low Power Single-Chip AID Converter

ICL7129

41/2-Digit LCD Single-Chip AID Converter

ICL7136

31/2-Digit LCD Low Power AID Converter

ICL7137

31/2-Digit LED Low Power Single-Chip AID Converter

ICL7139

33/4-Digit Autoranging Multimeter

ICL7149

Low Cost 33/4-Digit Autoranging Multimeter

AID CONVERTERS INTEGRATING

u..cn
01-

ICL7104/1CL8052

14/16-Bit IlP-Compatible 2-Chip AID Converter

..JI-

ICL7104/1CL8068

14/16-Bit

ICL7109

12-Bit

ICL7135

41/2-Digit BCD Output AID Converter

~P-Compatible

~P-Compatible

2-Chip AID Converter

AID Converter

AID SUCCESSIVE APPROXIMATION
~P-Compatible

ADC0802/3/4

8-Bit

CA331 0/CA331 OA

CMOS 10-Bit AID Converter with Internal Track and Hold

AID Converter

HI-574A

Fast, Complete 12-Bit AID Converter with Microprocessor Interface

HI5812

Low Power, Sampling 12-Bit AID Converter

HI-674A

12~s,

HI-774

8~s

Complete 12-Bit AID Converter with Microprocessor Interface

Complete 12-Bit AID Converter with Microprocessor Interface

AID CONVERTERS FLASH
HI3304

4-Bit 25 MSPS AID Converter

HI1826

6-Bit 140 MSPS AID Converter

HI1866

6-Bit 140 MSPS AID Converter

HI3306

6-Bit 15 MSPS AID Converter

HI-5701

6-Bit 30 MSPS AID Converter

HI3318

8-Bit 15 MSPS AID Converter

HI1386

8-Bit 75 MSPS AID Converter

HI1396

8-Bit 125 MSPS AID Converter

HI1166

8-Bit 250 MSPS AID Converter

HI1276

8-Bit 500 MSPS AID Converter

D/A CONVERTERS
AD7520

10/12-Bit Multiplying DIA Converter

AD7521

10/12-Bit Multiplying DIA Converter

AD7530

10/12-Bit Multiplying DIA Converter

2-37

Z
WW

ccz

~8

Data Acquisition Products
AD7531

10/12-Bit Multiplying D1A Converter

AD7523

8-Bit Multiplying D/A Converter

AD7533

10-Bit Multiplying D/A Converter

AD7541

l2-Bit Multiplying D/A Converter

AD7545

l2-Bit Buffered Multiplying CMOS DAC

HI-DAC80V

l2-Bit, Low Cost, Monolithic D/A Converter

HI-DAC85V

l2-Bit, Low Cost, Monolithic D/A Converter

DIA CONVERTERS HIGH SPEED
HI2304

Triple 8-Bit 20MHz D/A Converter

Hlll06

8-Bit 35MHz D/A Converter

HI1260

Triple 8-Bit 35MHz D/A Converter

HI20206

Triple 8-Bit 35MHz D/A Converter

HI117l

8-Bit 40MHz CMOS D/A Converter

HI1178

Triple 8-Bit 40MHz D/A Converter

HI1177

Dual 8-Bit 40MHz D/A Converter

HI3338

8-Bit 50MHz D/A Converter

HI20203

8-Bit l60MHz D/A Converter

HI3050

Triple 10-Bit 50MHz D/A Converter

HI2307

Triple 10-Bit 50MHz D/A Converter

ANALOG SWITCHES
DG18l

Dual SPST (30Q) Switch

DG182

Dual SPST (75Q) Switch

DG184

Dual DPST (30Q) Switch

DG185

Dual DPST (75Q) Switch

DG187

SPST (30Q) Switch

DG188

SPST (75Q) Switch

DG190

Dual SPST (30Q) Switch

DG19l

Dual SPST (75Q) Switch

DG200

Dual SPST CMOS Analog Switch

DG201A

Quad Monolithic SPST CMOS Analog Switch

DG202

Quad Monolithic SPST CMOS Analog Switch

DG2ll

Quad Monolithic SPST CMOS Analog Switch

DG2l2

Quad Monolithic SPST CMOS Analog Switch

DG300A

Dual SPST TTL Compatible CMOS Analog Switch

DG301A

SPOT TTL Compatible CMOS Analog Switch

DG302A

Dual DPST TTL Compatible CMOS Analog Switch

DG303A

Dual SPDT TTL Compatible CMOS Analog Switch

DG308A

Quad Monolithic SPST CMOS Analog Switch

DG309

Quad Monolithic SPST CMOS Analog Switch

DG401/403/405

Dual CMOS Analog Switches

DG4ll/4l2/4l3

Quad SPST CMOS Analog Switches

DG441 1442

Quad SPST CMOS Analog Switches

HI-200

Dual SPST CMOS Analog Switch

HI-20l

Quad SPST CMOS Analog Switch

2-38

Data Acquisition Products
HI-201HS

High-Speed Quad SPST CMOS Analog Switch

HI-222

High Frequency Video Switch

HI-300

Dual SPST CMOS Analog Switch

HI-301

SPOT CMOS Analog Switch

HI-302

Dual DPST CMOS Analog Switch

HI-303

Dual SPOT CMOS Analog Switch

HI-304

Dual SPST CMOS Analog Switch

HI-305

SPOT CMOS Analog Switch

HI-306

Dual DPST CMOS Analog Switch

HI-307

Dual SPOT CMOS Analog Switch

HI-381

Dual SPST CMOS Analog Switch

HI-384

Dual DPST CMOS Analog Switch

HI-387

SPOT CMOS Analog Switch

HI-390

Dual SPDT CMOS Analog Switch

HI-5040

SPST CMOS Analog Switch

HI-5041

Dual SPST CMOS Analog Switch

HI-5042

SPOT CMOS Analog Switch

HI-5043

Dual SPDT CMOS Analog Switch

HI-5044

DPST CMOS Analog Switch

HI-5045

Dual DPST CMOS Analog Switch

HI-5046

DPOT CMOS Analog Switch

HI-5046A

OPDT CMOS Analog Switch

HI-5047

4PST CMOS Analog Switch

HI-5047A

4PST CMOS Analog Switch

HI-5048

Dual SPST CMOS Analog Switch

HI-5049

Dual DPST CMOS Analog Switch

HI-5050

SPDT CMOS Analog Switch

HI-5051

Dual SPDT CMOS Analog Switch

&.LCf)

01Z

ww

...JI-

mz

t!8

IH401A

Quad Varafet Analog Switch

IH5040

SPST 75 Ohm High-Level CMOS Analog Switch

IH5041

Dual SPST 75 Ohm High-Level CMOS Analog Switch

IH5042

SPOT 75 Ohm High-Level CMOS Analog Switch

IH5043

Dual SPOT 75 Ohm High-Level CMOS Analog Switch

IH5044

DPST 75 Ohm High-Level CMOS Analog Switch

IH5045

Dual OPST 75 Ohm High-Level CMOS Analog Switch

IH5046

OPOT 75 Ohm High-Level CMOS Analog Switch

IH5047

4PST 75 Ohm High-Level CMOS Analog Switch

IH5052

Quad SPST CMOS Analog Switch

IH5053

Quad SPST CMOS Analog Switch

IH5140

SPST High-Level CMOS Analog Switch

IH5141

Dual SPST High-Level CMOS Analog Switch

IH5142

SPOT High-Level CMOS Analog Switch

IH5143

Dual SPOT High-Level CMOS Analog Switch

IH5144

DPST High-Level CMOS Analog Switch

IH5145

Dual DPST High-Level CMOS Analog Switch

2-39

Data Acquisition Products
IHS148

Dual SPST High-Level CMOS Analog Switch

IHS149

Dual DPST High-Level CMOS Analog Switch

IHS1S0

SPDT High-Level CMOS Analog Switch

IHS1S1

Dual SPDT High-Level CMOS Analog Switch

IHS341

Dual SPST CMOS RFNideo Switch

IHS3S2

Quad SPST CMOS RFNideo Switch

MULTIPLEXERS
DG406/407

16-Channel/Dual 8-Channel CMOS Analog Multiplexer

DG408/409

Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers

DGS06A

16-Channel/Dual 8-Channel CMOS Analog Multiplexer

DGS07A

16-ChanneI/DuaI8-Channel CMOS Analog Multiplexer

DGS08A

8-Channel/Dual 4-Channel CMOS Analog Multiplexer

DGS09A

8-Channel/Dual 4-Channel CMOS Analog Multiplexer

DGS26

16-Channel/Dual 8-Channel CMOS Latchable Multiplexer

DGS27

16-Channel/Dual 8-Channel CMOS Latchable Multiplexer

DGS28

8-Channel/Dual 4-Channel Latchable Multiplexer

DGS29

8-Channel/Dual 4-Channel Latchable Multiplexer

HI-1818A11828A

Low Resistance Single 8/Differential 4-Channel CMOS Analog Multiplexers

HI-S06

Single 16/Differential 8-Channel CMOS Analog Multiplexer

HI-S07

Single 16/Differential 8-Channel CMOS Analog Multiplexer

HI-S06A

Single 16/Differential 8-Channel CMOS Analog Multiplexer with Active Overvoltage Protection

HI-S07A

Single 16/Differential 8-Channel CMOS Analog Multiplexer with Active Overvoltage Protection

HI-S08

Single 8/Differential 4-Channel CMOS Analog Multiplexer

HI-S09

Single 8/Differential 4-Channel CMOS Analog Multiplexer

HI-S08A

Single 8/Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection

HI-S09A

Single a/Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection

HI-S16

16-Channel/Differential 8-Channel CMOS High-Speed Analog Multiplexer

HI-S18

8-Channel/Differential 4-Channel CMOS High-Speed Analog Mulitplexer

HI-S24

4-Channel Wideband and Video Multiplexer

HI-S39

Monolithic, 4-Channel, Low Level, Differential Multiplexer

HI-S46

Single 16/Differential 8-Channel CMOS Analog Mulitplexer with Active Overvoltage Protection

HI-S47

Single 16/Differential 8-Channel CMOS Analog Mulitplexer with Active Overvoltage Protection

HI-S48

Single 8/Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection

HI-S49

Single 8/Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection

IH6108

a-Channel CMOS Analog Multiplexer

IH6208

4-Channel Differential CMOS Analog Multiplexer

DISPLAY DRIVERS
CA3161

BCD to Seven Segment Decoder/Driver

CA3168

2-Digit BCD to Seven Segment Decoder/Driver

ICM7211

4-Digit LCD/LED Display Driver

ICM7212

4-Digit LCD/LED Display Driver

ICM7218

8-Digit LED Multiplexed Display Driver

ICM7228

8-Digit LED Multiplexed Display Driver

ICM7231

Numeric/Alphanumeric Triplexed LCD Display Driver

2-40

Data Acquisition Products
ICM7232

Numeric/Alphanumeric Triplexed LCD Display Driver

ICM7243

B-Character IJP-Compatible LED Display Driver

REAL-TIME CLOCK
ICM7170

IJP-Compatible Real-Time Clock

COUNTERS WITH DISPLAY DRIVERSfTlMEBASE GENERATORS
ICM7207/A

CMOS Timebase Generator

ICM720B

7-Digit LED Display Counter

ICM7209

Timebase Generator

ICM7213

One Second/One Minute Timebase Generator

ICM7216A1B/D

B-Digit Multi-Function Frequency CounterlTimer

ICM7217

4-Digit LED Display Programmable Up/Down Counter

ICM7224

41/2-Digit LCD/LED Display Counter

ICM7226A1B

B-Digit Multi-Function Frequency CounterlTimer

ICM7249

5 1/2-Digit LCD IJ-Power Event/Hour Meter
u.C/)

O~

SPECIAL PURPOSE

Z

AD590

2-Wire Current Output Temperature Transducer

ICLB069

Low Voltage Reference

DATA COMMUNICATIONS
ICL232

+5 Volt Powered Dual RS-232 Transmitter/Receiver

HIN200

+5 Volt 5T/OR Powered Dual RS-232 Transmitter/Receiver

HIN201

+5 Volt 2T/2R Powered Dual RS-232 Transmitter/Receiver

HIN202

+5 Volt 2T/2R Powered Dual RS-232 Transmitter/Receiver

HIN204

+5 Volt 4T/OR Powered Dual RS-232 Transmitter/Receiver

HIN206

+5 Volt 4T/3R Powered Dual RS-232 Transmitter/Receiver

HIN207

+5 Volt 5T/3R Powered Dual RS-232 Transmitter/Receiver

HIN20B

+5 Volt 4T/4R Powered Dual RS-232 Transmitter/Receiver

HIN209

+5 Volt 3T/5R Powered Dual RS-232 Transmitter/Receiver

HIN211

+5 Volt 4T/4R Powered Dual RS-232 Transmitter/Receiver

HIN213

+5 Volt 4T/5R Powered Dual RS-232 Transmitter/Receiver

2-41

WW
..J~

mz
~8

r------

Digital Signal Processing Products - - - - - - ,

MULTIPLIERS
HMA510

16 x 16-Bit CMOS Parallel Multiplier Accumulator
16 x 16-Bit CMOS Parallel Multipliers

HMU16/HMU17

ONE DIMENSIONAL FILTERS
DECI· MATE

Harris HSP43220 Decimating Digital Filter Development Software
Serial I/O Filter

HSP43124
HSP43168

Dual FIR Filter
Half Band Filter

HSP43216
HSP43220
HSP43881

Decimating Digital Filter
Digital Filter

HSP43891

Digital Filter

TWO DIMENSIONAL FILTERS
HSP48901
HSP48908

3 x 3 Image Filter
Two Dimensional Convolver

SIGNAL SYNTHESIZERS
HSP45102
HSP45106
HSP45116

12-Bit Numerically Controlled Oscillator
16-Bit Numerically Controlled Oscillator
Numerically Controlled Oscillator/Modulator

HSP45116A

Numerically Controlled Oscillator/Modulator
HSP45116 Evaluation Daughter Board

HSP45116-DB

SPECIAL FUNCTION
HSP45240

Address Sequencer

HSP45256
HSP48410

Binary Correlator
Histogrammer/Accumulating Buffer

HSP9501

Programmable Data Butter

HSP9520/9521
HSP-EVAL

Binary Correlator
DSP Evaluation Platform

COMMUNICATIONS
HSP50016

Digital Down Converter

HSP50110

Digital Quadrature Tuner

HSP50210
HSP5011 0/21 OEVAL

Digital Costas Loop
Demo Chipset Evaluation Board

HSP50306

QPSK Demodulator (Note 1)

HSP50307

Burst QPSK Modulator (Note 1)

HSP50307EVAL

Burst QPSK Modulator Evaluation Board

HSP50214
HSP50215
NOTES:

Programmable Downconverter (Note 1)
Programmable Upconverter (Note 2)

1. New Product Offerings
2. New Product Offerings In Short Term Road Map

FOR MORE INFORMATION CONTACT YOUR LOCAL SALES OFFICE OR DISTRIBUTOR

2-42

3
OPERATIONAL AMPLIFIERS

PAGE
SELECTION GUIDE .............................................................................. .

3-4

OPERATIONAL AMPLIFIER DATA SHEETS
CA124, CA224, CA324, Quad, 1MHz, Operational Amplifiers for Commercial, Industrial, and Military Applications .....
LM324, LM2902

3-17

CA 158, CA 158A,
CA258, CA258A,
CA358, CA358A,
CA2904,
LM358, LM2904

Dual, 1MHz, Operational Amplifiers for Commercial Industrial, and Military Applications ...... .

3-22

CA741 , CA741C,
CA1458,
CA1558, LM741 ,
LM741C, LM1458

Single and Dual, High Gain Operational Amplifiers
for Military, Industrial and Commercial Applications ....................................•...

oJ

«C/)
Za:

O!:!:!
-u.

!;;::::i
a:c.
W:li

:5«
3-29

CA3020, CA3020A

8MHz Power Amps For Military, Industrial and Commercial Equipment ......................... .

3-34

CA3060

110kHz, Operational Transconductance Amplifier Array ............................... .

3-35

CA3078, CA3078A

2kHz, Micropower Operational Amplifier ........................................... .

3-36

CA3080, CA3080A

2MHz, Operational Transconductance Amplifier (OTA) ............................... .

3-45

CA3094, CA3094A,
CA3094B

30M Hz, High Output Current Operational Transconductance Amplifier (OTA) .............. .

3-56

CA31 00

38M Hz, Operational Amplifier ................................................... .

3-57

CA3130, CA3130A

15MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output ................. .

3-64

CA3140, CA3140A

4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output ................ .

3-79

CA3160, CA3160A

4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output .................. .

3-98

CA3193, CA3193A

1.2MHz, BiCMOS Precision Operational Amplifiers .................................. .

3-114

CA3240, CA3240A

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output ........... .

3-115

CA3260, CA3260A

4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output ............... , .. .

3-129

CA3280, CA3280A

Dual, 9MHz, Operational Transconductance Amplifier (OTA) ........................... .

3-132

CA3420, CA3420A

O.5MHz, Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers ............ .

3-141

CA3440, CA3440A

63kHz, Nanopower, BiMOS Operational Amplifiers .................................. .

3-142

CA3450

220M Hz, Video Line Driver, High Speed Operational Amplifier ......................... .

3-143

CA5130, CA5130A

15MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output ... .

3-144

CA5160, CA5160A

4MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output .... .

3-145

CA5260, CA5260A

3M Hz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output ....... .

3-146

3-1

Operational Amplifiers

(Continued)

CA5420, CA5420A

0.5MHz, Low Supply Voltage, Low Input Current.BiMOS Operational Amplifiers.... .........

3-150

CA5470

Quad, 14MHz, Microprocessor BiMOS-E Operational Amplifier with MOSFET InpLiVBipolar Output.

3-156

HA-2400, HA-2404,
HA-2405

40MHz, PRAM Four Channel Programmable Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-161

HA-2406

30MHz, Digitally Selectable Four Channel Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . ..

3-167

HA-2444

50MHz, Selectable, Four Channel Video Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . ..

3-173

HA-2500, HA-2502,
HA-2505

12MHz, High Input Impedance, Operational Amplifiers. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ..

3-174

HA-2510, HA-2512,
HA-2515

12MHz, High Input Impedance, Operational Amplifiers. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ..

3-181

HA-2520, HA-2522,
HA-2525

20M Hz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. . . ..

3-188

HA-2529

20M Hz, High Input Impedance, High Slew Rate Operational Amplifier. . . . . . . . . . . . . . . . . . . ..

3-196

HA-2539

600MHz, Very High Slew Rate Operational Amplifier. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . ..

3-197

HA-2540

400MHz, Fast Settling Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-205

HA-2541

40MHz, Fast Settling, Unity Gain Stable, Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . ..

3-213

HA-2542

70MHz, High Slew Rate, High Output Current Operational Amplifier. . . . . . . . . . . . . . . . . . . . ..

3-222

HA-2544

50MHz, Video Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-233

HA-2548

150M Hz, High Slew Rate, Precision Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . .. ..

3-244

HA-2600, HA-2602,
HA-2605

12MHz, High Input Impedance Operational Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-245

HA-2620, HA-2622,
HA-2625

100MHz, High Input Impedance, Very Wideband, Uncompensated Operational Amplifiers. . . ..

3-252

HA-2640, HA-2645

4MHz, High Supply Voltage Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-259

HA-2839

600MHz, Very High Slew Rate Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-265

HA-2840

600MHz, Very High Slew Rate Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-266

HA-2841

50MHz, Fast Settling, Unity Gain Stable, Video Operational Amplifier. . . . . . . . . . . . . . . . . . . ..

3-273

HA-2842

80MHz, High Slew Rate, High Output Current, Video Operational Amplifier. . . . . . . . . . . . . . ..

3-281

HA-2850

470MHz, Low Power, High Slew Rate Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-290

HA-4741

Quad, 3.5MHz, Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..

3-291

HA-5002

110MHz, High Slew Rate, High Output Current Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-297

HA-5004

1OOMHz Current Feedback Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-305

HA5013

Triple, 125MHz Video Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-306

HA-5020

1OOMHz Current Feedback Video Amplifier With Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-320

HA5022

Dual, 125MHz, Video Current Feedback Amplifier with Disable. . . . . . . . . . . . . . . . . . .. . . . . ..

3-340

HA5023

Dual 125MHz Video Current Feedback Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-356

HA5024

Quad 125MHz Video Current Feedback Amplifier with Disable. . . . . . . . . . . . . . . . . . . . . . . . ..

3-370

HA5025

Quad, 125MHz Video Current Feedback Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-386

HA-5033

250M Hz Video Buffer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-399

HA-51 01 , HA-5111

10MHz and 100MHz, Low Noise, Operational Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-408

3-2

Operational Amplifiers

(Continued)

HA-5102, HA-5104,
HA-5112, HA-5114

Dual and Quad, 8M Hz and 60MHz, Low Noise Operational Amplifiers ................... .

3-419

HA-5127, HA-5127A

8.5MHz, Ultra-Low Noise Precision Operational Amplifier ............................. .

3-432

HA-5130, HA-5135

2.5MHz, Precision Operational Amplifiers .......................................... .

3-441

HA-5134

4MHz, Precision, Quad Operational Amplifier ....................................... .

3-450

HA-5137, HA-5137A

63MHz, Ultra-Low Noise Precision Operational Amplifier .............................. .

3-458

HA-5142, HA-5144

Dual/Quad, 400kHz, Ultra-Low Power Operational Amplifiers .......................... .

3-466

HA-5147, HA-5147A

120MHz, Ultra-Low Noise Precision Operational Amplifiers ............................ .

3-474

HA-5160, HA-5162

1OOMHz, JFET Input, High Slew Rate, Uncompensated, Operational Amplifiers ............ .

3-482

HA-5170

8MHz, Precision, JFET Input Operational Amplifier .................................. .

3-489

HA-5177

2MHz, Ultra-Low Offset Voltage Operational Amplifier ................................ .

3-497

HA-5190, HA-5195

150MHz, Fast Settling Operational Amplifiers ....................................... .

3-498

HA-5221, HA-5222

100MHz, Single and Dual Low Noise, Precision Operational Amplifiers ................... .

3-506

HFA1100, HFA 1120

850MHz, Low Distortion Current Feedback Operational Amplifiers ...................... .

3-518

HFA1102

600MHz Current Feedback Amplifier with Compensation Pin ........................... .

3-528

HFA 1103

200MHz, Video Op Amp with High Speed Sync Stripper .............................. .

3-533

0:((1)

HFA1105

330MHz, Low Power, Current Feedback Video Operational Amplifier .................... .

3-539

HFAll06

315MHz, Low Power, Video Operational Amplifier with Compensation Pin ................ .

3-550

Ow
-u::
!;:~

HFA1109, HFAll49

550MHz, Low Power, Current Feedback Operational Amplifiers ........................ .

3-564

HFA 1110

750MHz, Low Distortion Unity Gain, Closed Loop Buffer .............................. .

3-565

HFA 1112

850M Hz, Low Distortion Programmable Gain Buffer Amplifier .......................... .

3-573

HFA 1113

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier ............ .

3-585

HFA 1114

850MHz Video Cable Driving Buffer .............................................. .

3-600

HFA 1115

225M Hz, Low Power, Output Limiting, Closed Loop Buffer Amplifier ..................... .

3-605

HFA 1118, HFA 1119

500MHz Programmable Gain Video Buffers with Output Limiting and Output Disable ........ .

3-611

HFA 1130

850M Hz, Output Limiting, Low Distortion Current Feedback Operational Amplifier .......... .

3-612

HFA 1135

360M Hz, Low Power, Video Operational Amplifier with Output Limiting ................... .

3-623

HFA 1145

330M Hz, Low Power. Current Feedback Video Operational Amplifier with Output Disable .... .

3-628

-I

HFA 1205

Dual, 400MHz, Low Power, Video Operational Amplifier .............................. .

3-640

HFA1212

Dual 350MHz, Low Power Closed Loop Buffer Amplifier .............................. .

3-647

HFA 1245

Dual, 530MHz, Low Power, Video Operational Amplifier with Disable .................... .

3-657

HFAl405

Quad, 560MHz, Low Power, Video Operational Amplifier .............................. .

3-663

HFA1412

Quad, 350MHz, Low Power, Programmable Gain Buffer Amplifier ....................... .

3-676

ICL7611, ICL7612

l.4MHz, Low Power CMOS Operational Amplifiers .................................. .

3-689

ICL7621, ICL7641,
ICL7642

Dual/Quad, Low Power CMOS Operational Amplifiers ................................ .

3-700

ICL7650S

2MHz, Super Chopper-Stabilized Operational Amplifier ............................... .

3-711

Operational Amplifiers Glossary of Terms ........................................................... .

3-721

3-3

Z£C

£CQ.

W::iE
~o:(

Selection Guide
WIDEBAND:

MiniMax Limits at 25°C, Unless Otherwise Specified

GBWP
(TYP)
(MHz)

FPBW
(TYP)
(MHz)

SLEW
RATE
(TYP)
(V/l1s)

HFA1112

850

260

HFAl113

850

260

HFAl114

850

260

2400

HFA1110

750

150

1300

HA4600

400

HA-5033

250

HFA1115
HA-5002

DEVICE

AVOL
(dB)/
AZOL
(V/mA)

PSRR
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

35000

39

26.0

35000

39

26.0

39

26.0

39

26.0

54

25.0

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

2400

+1, -1, +2

25

2400

+1,-1, +2

25

+1, ·1, +2

25

=i5000

+1

25

40000

1700

+1

10

50000

17.5

1100

+1

15

35000

225

140

1100

·

+1, ·1, +2

10

15000

110

20.7

1300

·

+1

20

7000

140

1100

·

+1, ·1, +2

10

15000

140

1100

·

+1, ·1, +2

10

CMRR
(dB)

BUFFERS

·

·

13.0

·

45

7.1

54

10.0

·

45

6.1

15000

·

45

6.1

DUAL BUFFERS
HFA1212

340

QUAD BUFFERS
HFA1412

225

SINGLE OP AMPS
HFA1100

850

300

2300

500
(Note 1)

1

6.0

40000

40

45

26.0

HFA1120

850

300

2300

500
(Note 1)

1

6.0

40000

40

45

26.0

HFA1130

850

300

2300

500
(Note 1)

1

6.0

40000

40

45

26.0

HA-2539

600

9.5

600

80

10

10.0

20000

60

60

25.0

HA-2839

600

10.0

625

86

10

2.0

14500

75

75

15.0

HA-2840

600

10.0

625

86

10

2.0

14500

75

75

15.0

HFA1109

500

TBD

1200

500
(Note 1)

1

5.0

15000

47

50

10.0

HFA1149

500

TBD

1200

500
(Note 1)

1

5.0

15000

47

50

10.0

HA-2850

470

.5.4

340

86

10

2.0

14500

75

75

8.0

HA-2540

400

6.0

400

80

10

10.0

20000

60

60

25.0

HFA1105

350

140

1000

500
(Note 1)

1

5.0

15000

47

50

6.1

HFA1145

350

140

1000

500
(Note 1)

1

5.0

15000

47

50

6_1

HFA1135

350

170

1200

500
(Note 1)

1

5.0

15000

47

50

7.1

HFAll06

315

100

700

500
(Note 1)

1
(Note 2)

5.0

15000

47

50

6.1

HA·5190

150

6.5

200

83

5

5.0

15000

74

70

28.0

HA-5195

150

6.5

200

83

5

6.0

15000

74

70

28.0

HA-5147

140

0.5

35

117

10

0.1

80

100

86

4.0

NOTE: Bold type designates a new product from Harris.
3·4

Selection Guide
WIDEBAND:

MiniMax Limits at 25°C, Unless Otherwise Specified (Continued)

DEVICE

GBWP
(TYP)
(MHz)

FPBW
(TYP)
(MHz)

SLEW
RATE
(TYP)
(VlIlS)

AVOL
(dBY
AZOL
(VIrnA)

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

CMRR
(dB)

PSRR
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

HA-5147A

120

0.5

35

120

10

0.03

40

114

lOB

4.0

HA-5020

100

17.5

1100

3500
(Note 1)

1

B.O

BOOO

60

64

10.0

HA-2620

100

0.6

35

100

5
(Note 2)

4.0

15

BO

BO

3.7

HA-2622

100

0.6

35

9B

5

5.0

25

74

74

4.0

(Note 2)
HA-2625

100

0.6

35

9B

5
(Note 2)

5.0

25

74

74

4.0

HA-5111

100

O.B

50

120

10
(Note 2)

3.0

200

BO

BO

6.0

HA-5160

100

1.9

120

97

10
(Note 2)

3.0

0.05

74

74

10.0

HA-5162

100

1.10

70

BB

10
(Note 2)

15.0

0.065

70

70

12.0

HA-5221

100

0.56

35

106

1

0.75

BO

B6

B6

11.0

....J
«(J)

HA-2842C

150

18.0

1200

94

2
(Note 2)

3.0

10000

80

70

15_0

O!!!
-IL

HA-2B42

BO

6.0

400

94

2

3.0

10000

BO

70

15.0

HA-2B41

50

3.B

240

BB

1

3.0

10000

BO

70

11.0

HFA1245

530

150

1050

500
(Notal)

1

5

15000

45

48

6.1

HFA1205

400

180

1275

500
(Note 1)

1

5

15000

45

48

6.1

HA5022

125

28

475

1000
(Note 1)

1

3.0

8000

53

60

10.0

HA5023

125

28

475

1000
(Note 1)

1

3.0

BOOO

53

60

10.0

HA-5222

100.0

0.56

35

106

1

0.75

BO.O

B6

B6

11.0

HA-5112

60.0

0.32

20

100

10

2.0

200.0

B6

B6

2.5

28

475

3500
(Note 1)

1

3.0

8000

53

60

10_0

!;;:::::i

DUAL OP AMPS

TRIPLE OP AMPS
HA5013

125

QUADOPAMPS
HFA1405

400

TBD

1000

500
(Note 1)

1

5

15000

45

48

6.1

HA5024

125

28

475

3500
(Note 1)

1

3.0

SOOO

53

60

10.0

HA5025

125

28

475

3500
(Note 1)

1

3.0

8000

53

60

10.0

HA-5114

60.0

0.32

20.0

100

10

2.5

200.0

B6

B6

1.63

HA-2444

50.0

5.1

160

71

1

7.0

15000

70

65

6.25

NOTE: Bold type designates a new product from Harris.

3-5

Za:

a:

11.

W::!:

~cr:

Selection Guide
WIDEBAND: MinIMax Limits at 25°C, Unless Otherwise Specified (Continued)
GBWP
(TYP)
(MHz)

FPBW
(TYP)
(MHz)

SLEW
RATE
(TYP)
(VlIlS)

HA-2400

40.0

0.95

30.0

HA-2404

40.0

0.95

HA-2405

40.0

0.95

DEVICE

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

CMRR
(dB)

PSRR
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

94 .

10
(Note 2)

9.0

200.0

80

74

1.5

30.0

94

10
(Note 2)

9.0

200.0

80

74

1.5

30.0

94

10
(Note 2)

9.0

250.0

74

74

1.5

AYOL
(dBY
AZOL
(VIrnA)

NOTES:
1. AZOL applies to current feedback amplifiers only (HA-5004, HA-502X, HFA 11 XX, HFA 12XX, HFA 14XX).
2. Product features an external compensation pin to limit bandwidth for noise reduction or to allow unity gain operation.

HIGH SLEW RATE: MinIMax Limits at 25°C, Unless Otherwise Specified
SLEW
RATE
(TYP)
(V/JUI)

GBWP
(TYP)
(MHz)

FPBW
(TYP)
(MHz)

HFAll12

2400

850

HFAll13

2400

850

HFA1114

2400

850

260

DEVICE

AYOL
(dBY
AZOL
(VIrnA)

PSRR
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

35000

39

26.0

35000

39

26.0

39

26.0

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

260

+1, -1, +2

25.0

260

+1, -1, +2

25.0

+1, -1, +2

25

35000

CMRR
(dB)

BUFFERS

-

-

HA4600

1700

400

-

+1

10

50000

-

13.0

HFAlll0

1300

750

150

+1

25.0

40000

39

26.0

HA-5002

1300

110

20.7

-

+1

20.0

7000

54

10.0

HFA1115

1100

225

140

-

+1, -1, +2

10

15000

HA·5033

1100

250

17.5

+1

15.0

35000

340

140

-

+1,-1,+2

10

15000

225

140

-

+1, -1, +2

10

-

45

7.1

54

25.0

-

45

6.1

15000

-

45

6.1

DUAL BUFFERS
HFA1212

1100

QUAD BUFFERS
HFA1412

1100

SINGLE OP AMPS
HFAll00

2300

850

300

500
(Note 1)

1

6.0

40000

40

45

26.0

HFAl120

2300

850

300

500
(Note 1)

1

6.0

40000

40

45

26.0

HFAl130

2300

850

300

500
(Note 1)

1

6.0

40000

40

45

26.0

HFA1109

1200

500

TBD

500
(Note 1)

1

5.0

15000

47

50

10.0

HFA1149

1200

500

TBD

500
(Note 1)

1

5.0

15000

47

50

10.0

HFA1135

1200

350

170

500
(Note 1)

1

5.0

15000

47

50

7.1

HA-2842C

1200

150

18.0

94

2
(Note 2)

3.0

10000

80

70

15.0

NOTE: Bold type designates a new product from Harris.

3-6

Selection Guide
HIGH SLEW RATE: MinIMax Limits at 25°C, Unless Otherwise Specified (Continued)
MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

CMRR
(dB)

PSRR
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

3500
(Note 1)

1

8.0

BOOO

60

64

10.0

140

500
(Note 1)

1

5.0

15000

47

50

6.1

350

140

500
(Note 1)

1

5.0

15000

47

50

6.1

600

10.0

86

10

2.0

14500

75

75

15.0

SLEW
RATE
(TYP)
(V/IlS)

GBWP
(TYP)
(MHz)

FPBW
(TYP)
(MHz)

HA·5020

1100

100

17.5

HFA1105

1000

350

HFA1145

1000

HA·2839

625

DEVICE

AVOL
(dB)I
AZOL
(V/mA)

HA·2840

625

600

10.0

86

10

2.0

14500

75

75

15.0

HA·2539

600

600

9.5

80

10

10.0

20000

60

60

25.0

HA·2540

400

400

6.0

80

10

10.0

20000

60

60

25.0

HA·2842

400

80

6.0

94

2

3.0

10000

80

70

15.0

HA·2542

350

70

5.5

80

2
(Note 2)

10.0

35000

70

70

34.5

HA·2850

340

400

5.4

86

10

2.0

14500

75

75

8.0

HA·2841

240

50

3.8

88

1

3.0

10000

80

70

11.0

HA·2541

250

40

4.0

80

1

2.0

35000

70

70

40.0

HA·5190

200

150

6.5

83

5

5.0

15000

74

70

28.0

lci::::i

HA·5195

200

150

6.5

83

5

6.0

15000

74

70

28.0

W:i

HA·2544

150

50

4.2

71

1

15.0

15000

75

70

12.0

HA·2520

120

20

2

80

3
(Note 2)

6.0

200

80

60

6.0

HA·2522

120

20

2

76

3
(Note 2)

10.0

250

74

74

6.0

HA·2525

120

20

2

76

3
(Note 2)

10.0

250

74

74

6.0

HA·5160

120

100

1.9

97

10
(Note 2)

3.0

0.05

74

74

10.0

DUAL OP AMPS
HFA1205

1275

400

140

500
(Note 1)

1

5

15000

45

48

6.1

HFA1245

1050

530

130

500
(Note 1)

1

5

15000

45

48

6.1

HA5022

475

125

28

1000
(Note 1)

1

3.0

SOOO

53

60

10.0

HA5023

475

125

28

1000
(Note 1)

1

3.0

8000

53

60

10.0

CA3260

125

9.0

1.99

94

1

3.0

5000

60

66

2.4

CA3260A

125

9.0

1.99

94

1

0.5

5000

94

94

2.4

125

28

3500
(Note 1)

1

3.0

8000

53

60

10.0

TRIPLE OP AMPS
HA5013

475

NOTE: Bold type designates a new produC1 from Harris.

3·7

...I

oct(/)
Oll:!
-u..

Za:
a:

11.

~oct

Selection Guide
HIGH SLEW RATE: MinIMax Limits at 25°C, Unless Otherwise Specified (Continued)

DEVICE

SLEW
RATE
(TYP)
(V/1UI)

GBWP
(TYP)
(MHz)

FPBW
(TYP)
(MHz)

AYOL
(dBY
AZOL
(VIrnA)

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

CMRR
(dB)

PSRR
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

QUADOPAMPS
HFA1405

1000

400

TBD

500
(Note 1)

1

5,0

15000

45

48

6.1

HA5024

475

125

28

3500
(Note 1)

1

3.0

8000

53

60

10.0

HA5025

475

125

28

3500
(Note 1)

1

3.0

8000

53

60

10.0

HA-2444

160

50

5.1

71

1

7.0

15000

70

65

6.25

NOTES:
1. AZOL applies to current feedback amplifiers only (HA-5004, HA-502X, HFA11 XX, HFA 12XX, HFA14XX).
2. Product features an external compensation pin to limit bandwidth for noise reduction or to allow unity gain operation.

VIDEO:

Typical Values at 25°C, Unless Otherwise Specified
O.ldB
FLAT
GAIN
(MHz)

GBWP
(MHz)

SLEW
RATE
(V/IUI)

SUPPLY
SUPPLY
OUTPUT VOLTAGE CURRENT
CURRENT RANGE
(mAlOP
(±V)
(mA)
AMP)

FEATURES

DIF.
GAIN
(%)

HA4600

Video Buffer wlOutput Disable

0.01

0.01

250

480

1700

20

4.5 - 5.5

10.5

HFAlll0

+ I, Std. Buffer Pinout

0.02

0.02

>100

750

1300

60

4.5-5.5

21.0

HFA1112

-I, +1, +2 (Selectable) Standard
Op Amp Pinout

0.02

0.04

>100

850

2400

60

4.5-5.5

21.0

HFA1113

-I, +1, +2 (Selectable) Standard
Op Amp Pinout, VOUT Limits

0.02

0.04

>100

850

2400

60

4.5 - 5.5

21.0

HFA1114

-I, +1, +2 (Selectable)
Summing Node Pinout

0.02

0.04

>100

850

1100

60

4.5 - 5.5

21.0

HFA1115

-I, +1, +2 (Selectable) Standard
Op Amp Pinout, VOUT Limits

0.02

0.03

>50

225

1100

60

4.5-5.5

5.9

HA-5033

+ 1, Std. Buffer Pinout

0.03

0.02

250

1100

100

5-16

21.0

HA-5002

+ I, Std. Buffer Pinout

0.06

0.21

110

1300

200

5-20

8.3

0.02

0.02

>50

340

1100

60

4.5 - 5.5

5.9

0.02

0.02

>50

225

1100

60

4.5-5.5

5.9

DEVICE

OfF.
PHASE
(DEG)

BUFFERS

DUAL BUFFERS
HFA1212

-I, +1, +2 (Selectable)

QUAD BUFFERS
HFA1412

-I, +1, +2 (Selectable)

SINGLE OP AMPS
HFAll09

Ay ~ I, CFB, Wideband

0.02

0.03

100

500

1200

30

4.5 - 5.5

10.0

HFA1149

Ay ~ I, CFB, Programmable
Output Disable

0.02

0.03

100

500

1200

30

4.5 - 5.5

10.0

HFA1105

Ay ~ I, Low

Icc, CFB
Ay ~ I, Low Icc, CFB,

0.02

0.03

>50

350

1000

60

4.5 - 5.5

5.9

0.02

0.03

>50

350

1000

60

4.5-5.5

5.9

0.02

0.04

>50

360

1200

60

4.5-5.5

6.9

HFA1145

Output Disable
HFA1135

Ay ~ I, Low Icc, CFB,
Programmable Output Limiting

NOTE: Bold type deSignates a new product from Harris.

3-8

Selection Guide
VIDEO: Typical Values at 25°C, Unless Otherwise Specified (Continued)

DEVICE

FEATURES

DIF.
GAIN
(%)

DIF.
PHASE
(DEG)

O.ldB
FLAT
GAIN
(MHz)

GBWP
(MHz)

SLEW
RATE
(V/IlS)

0.02

0.05

100

315

700

60

HFA1106

HFA1105 with Compensation
Pin for Bandwidth Limiting

HA-2842

Av ~ 2, Cable Driver

0.02

0.03

>10

80

400

HA-5020

Av ~ 1, Output Disable, CFB
(Current Feedback)

0.02

0.03

5

100

1100

HFAll00

Av~

0.03

0.05

75

850

1, CFB

SUPPLY
OUTPUT VOLTAGE
CURRENT RANGE
(rnA)
(±V)

SUPPLY
CURRENT
(mAlOP
AMP)

4.5 - 5.5

5.9

100

6 ·17

14.2

32

4.5 -18

7.5

2300

60

4.5 - 5.5

21.0

HFAl120

HFA 1100 with Offset Adjust

0.03

0.05

75

850

2300

60

4.5-5.5

21.0

HFA1130

Av ~ 1, CFB, Programmable
Output Limiting

0.03

0.05

75

850

2300

60

4.5·5-5

21.0

HA-2544

Av~

0.03

0.03

5

50

150

35

8 - 17

10.0

HA-2841

Av ~ 1, Low Icc

0.03

0.03

>10

50

240

30

6-17

10.0

1

DUAL OP AMPS
HFA1245

Ay ~ 1, Low Icc, CFB,
Output Disable

0.02

0.03

50

530

1050

60

4.5 - 5.5

5~9

HFA1205

Ay ~ 1, Low Icc, CFB

0.03

0.03

>50

400

1275

60

4.5 - 5.5

5.9

eten

HA5022

Ay ~ 1, CFB, Output Disable

0.03

0.03

20

125

475

20

4.5 -18

7.5

O!:!:!
-u.

HA5023

Ay~1,CFB

0.03

0.03

20

125

475

20

4.5 -18

7.5

..J

~et

Ay~l,CFB

0.03

0.03

20

125

475

20

4.5 -18

7.5

Ay ~ 1, Low Icc, CFB

0.03

0.03

TBD

400

>1000

60

4.5 - 5.5

5.9

HA5024

Ay ~ 1, CFB, Output Disable

0.03

0.03

20

125

475

20

4.5 -18

7.5

HA5025

Ay~1,CFB

0.03

0.03

20

125

475

20

4.5 -18

7.5

HA-2444

IV ~ 1, 4-ChanneJ, Mux'd Output

0.03

0.03

10

50

160

25

8.5 -17

5.0

QUAD OP AMPS
HFA1405

NOTES:
1. Single Supply Range.

LOW NOISE: MiniMax Limits at 25°C, Unless Otherwise Specified

DEVICE

!cc:::i
a:: 0.
W::iii

TRIPLE OP AMPS
HA5013

Za::

NOISE
VOLTAGE
lkHz(TYP)
(nVNHz)

NOISE
CURRENT
1kHz (TYP)
(pANHz)

,
GBWP
(TYP)
(MHz)

SLEW
RATE
(TYP)
(V/IlS)

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
. CURRENT
(nA)

SUPPLY
CURRENT
(mAlOPAMP)

SINGLE OP AMPS
HA-5127A

3.0

0.4

8.5

10

1

0.025

40

HA-5137A

3.0

0.4

63

20

5

0.025

40

4.0

HA-5147A

3.0

0.4

120

35

10

0.025

40

4.0

HA-5101

3.0

0.6

10

10

1

3.0

200

6.0

4.0

HA-5111

3.0

0.6

100

50

10

3.0

200

6.0

HA-5221

3.4

0.97

100

35

1

0.75

80

11.0

HA-5020

4.5

2.5
(Note 1)

100

1100

1

8.0

8000
(Note 1)

10.0

NOTE: Bold type designates a new product from Harris.

3-9

Selection Guide
LOW NOISE:

MiniMax Limits at 2SoC. Unless Otherwise Specified (Continued)

NOISE
VOLTAGE
1kHz (TYP)
(nVNHz)

NOISE
CURRENT
1kHz (TYP)

GBWP
(TYP)
(MHz)

SLEW
RATE
(TYPJ
(V/I1S)

MINIMUM
STABLE
GAIN

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(nA)

SUPPLY
CURRENT
(mAlOPAMP)

HFAll0S

3.5

2.5
(Note 1)

350

1000

1

5.0

15000

6.1

HFAll06

3.5

2.5
(Note 1)

315

700

1
(Note 2)

5.0

15000

6.1

HFAl135

3.5

2.5
(Note 1)

350

1200

1

5.0

15000

6.1

HFA1145

3.5

2.5
(Note 1)

350

1000

1

5.0

15000

7.1

HA·S190

6.0

5.0

150

200

5

5.0

15000

28.0
15.0

DEVICE

(pANHz)

HA-2839

6.0

6.0

600

625

10

2.0

14500

HA-2840

6.0

6.0

600

625

10

2.0

14500

15.0

HA-2539

6.0

6.0

600

600

10

10.0

20000

25.0

HA-2540

6:0

6.0

400

400

10

10.0

20000

25.0

0.3

0.1

2.5

HA-5170

10.0

0.01

8.0

8.0

1

HA-2542

10.0

3.0

70

350

2
(Note 2)

10.0

35000

34.5

HA-2541

10.0

4.0

40

250

1

2.0

35000

40.0

HA-5222

3.4

0.97

100

35

1

0.75

80

11.0

HFA1205

3.5

2.5
(Note 1)

400

1275

1

5.0

15000

6.1

HFA1245

3.5

2.5
(Note 1)

530

1050

1

5.0

15000

6.1

HA-5102

4.3

0.57

'8.0

3.0

1

2.0

200

2.5

HA-5112

4.3

0.57

60

20

10

2.0

200

2.5

HA5022

4.5

2.5
(Note 1)

125

475

1

3.0

8000
(Note 1)

10.0

HA5023

4.5

2.5
(Note 1)

125

475

1

3.0

8000
(Note 1)

10.0

HFA1405

3.5

2.5
(Note 1)

400

>1000

1

5.0

15000

6.1

HA-5104

4.3

0.57

8.0

3.0

1

2.5

200

1.63

HA-5114

4.3

0.57

60

20

10

2.5

200

1.63

HA5024

4.5

2.5
(Note 1)

125

475

1

3.0

8000
(Note 1)

10.0

HA5025

4.5

2.5
(Note 1)

125

475

1

3.0

8000
(Note 1)

10.0

HA-5134

7.0

1.0

4.0

1.0

1

0.2

50

2.0

DUAL OP AMPS

QUADOPAMPS

NOTES:
1. +Input. These are current feedback amplifiers. so value for -Input will be larger.
2. Product features an extemal compensation pin to limit bandwidth for additional noise reduction or to allow unity gain operation.

NOTE: Bold type designates a new product from Harris.

3·10

Selection Guide
GENERAL PURPOSE: Typical Values at 25°C, Unless Otherwise Specified

GBWP
(MHz)

SLEW
RATE
(V/jlS)

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT
(jtA)

SUPPLY
VOLTAGE
RANGE
(±V)

SUPPLY
CURRENT
(mAlOP
AMP)

1

50

150

6.0

7.00

8-17.5

10.0

1

38

70

1.0

0.7

7-18

8.5

SiMOS, CMOS Output, Output
Strobe

1

15

30

2.0

5.0pA

2.5-8

2.0

HA-2500

Wideband, High Slew Rate,
High Input Impedance

1

12

30

2.0

0.1

10-20

4.0

HA-2510

Wideband, High Slew Rate,
High Input Impedance

1

12

60

4.0

0.1

10-20

4.0

HA-2600

Wideband, Compensated, High
Input Impedance

1

12

7

0.5

0.001

4-22.5

3.0

HA-5101

Low NOise, High Performance

1

10

10

0.5

0.1

3-20

4.0

HA-5127A

Low Noise, Precision,
Compensated

1

8.5

10

0.01

0.Q1

5-22

3.5

HA-5170

JFET Input, Precision

1

8

8

0.1

20pA

5-22

1.9

CA3140A

SiMOS, Output Strobe Capability

1

4.5

9

2.0

1O.0pA

2-18

4.0

HA-2640

High Voltage, Compensated

1

4

5

2.0

0.01

10-50

3.2

Ol!!
-u..
~:::;

2.5-8

2.0

w:E

DESCRIPTION

MINIMUM
STABLE
GAIN

HA-2544

Ultra-Stable, High Performance

CA31 00

Wideband Amplifier

CA3130A

DEVICE
SINGLE OP AMPS

CA3160A

SiMOS, CMOS Output, Output
Strobe

1

4

10

2.0

5.0pA

CA3080

Operational Transconductance
Amp

1

2

75

0.4

2.0

2-18

1.0
1.7

CA741

Low Cost, Mil/Com Temp

1

1

0.5

1.0

0.08

5-22

LM741

Low Cost, Mil/Com Temp

1

1

0.5

1.0

0.08

5-22

1.7

HA-2520

Uncompensated

20

120

5.0

0.125

10-20

4.0

HA-5137A

Low Noise, Precision

HA-2620

Wideband, Uncompensated,
High Input Impedance

3
(Note 1)
5

80

20

0.Q1

0.01

5-22

3.5

5
(Note 1)

100

35

0.5

0.001

4-22.5

3.0

HA-5195

Wideband, Fast Settling

5

150

200

3.0

5.0

12-17.5

19.0

HA-5147A

Low Noise, Precision,
Wideband

10

140

35

0.01

0.01

5-22

3.5

HA-5111

Low NOise, High Performance,
Uncompensated

10
(Note 1)

100

50

0.5

0.1

3-20

4.0

CA3280A

Operational Transconductance
Amp

1

9

125

0.25

1.8

2-18

2.0

HA-5102

Low Noise, High Performance

1

8

3

0.5

0.13

3-20

1.5

CA3240A

SiMOS, High Input Impedance

1

4.5

9

2.0

10.0pA

2-18

4.0

CA3260A

SiMOS, CMOS Output, High
Input Impedance

1

4

10

2.0

5.0pA

2-8

0.6

CA5260A

Mil Temp Version of CA3260A

1

3

5

2.0

5.0pA

2.25-8

0.6

CA158A

Wide Supply Range, Mil Temp

1

1

0.25

1.0

0.02

1.5-16

0.75

CA1558

Low Cost, Mil Temp Range

1

1

0.5

1.0

0.08

5-22

1.7

DUAL

NOTE: Sold type deSignates a new product from Harris.

3-11

....I

«U)
Za:

a:

0.

~«

Selection Guide
GENERAL PURPOSE: Typical Values. at 25°C, Unless Otherwise Specified (Continued)

DESCRIPTION

MINIMUM
STABLE
GAIN

LM358

Wide Supply Range, Low Cost

LM1458

Low Cost

LM2904

Wide Supply Range, Ind. Temp

HA-5112

Low Noise, High Performance,
Uncompensated

CA5470

High Input Impedance, Wide
Supply Range, Mil Temp

HA-5104

Low NOise, High Performance

DEVICE

(J1A)

SUPPLY
VOLTAGE
RANGE
(±V)

SUPPLY
CURRENT
(mAlOP
AMP)

0.05

1.5-16

0.7

0.08

5-18

1.7

2.0

0.05

1.5-13

0.7

0.5

0.13

3-20

1.5

5.0

1.0pA

1.5-8

2.5

0.5

0.13

3-20

1.25
0.2

GBWP
(MHz)

SLEW
RATE
(V/IlS)

OFFSET
VOLTAGE
(mV)

BIAS
CURRENT

1

1

0.5

2.0

1

1

0.5

2.0

1

1

0.5

10

60

20

1

14

5

1

8

3

QUAD

CA124

Wide Supply Range, Mil Temp

1

1

0.5

2.0

0.045

2.5-16

HA-4741

Quad 741, Wide Supply

1

3.5

1.6

0.5

0.06

2-20

4.5

HA-5114

Low Noise, High Performance,
Uncompensated

10

60

20

0.5

0.13

3-20

1.25

LM2902

Low Cost, Ind. Temp

1

1

0.5

2.0

0.04

2.5 -16

0.2

LM324

Low Cost

1

1

0.5

2.0

0.05

2.5-16

0.2

NOTE:
1. Can be compensated to unity gain.

PRECISION: MinIMax Limits at 25°C, Unless Otherwise Specified

DEVICE

OFFSET
VOLTAGE
(mV)

VIO
DRIFT
(TYP)
(IlVfOC)

BIAS
CURRENT
(nA)

OFFSET
CURRENT
(nA)

CMRR
(dB)

PSRR
(dB)

GBWP
(TYP)
(MHz)

SLEW
RATE
(TYP)
(V/IlS)

AVOL
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

SINGLE OP AMPS
ICL7650S

0.005

0.02

0.01

0.02

120

120

2.0

2.5

135

3.0

HA-5127A

0.025

0.20

40.0

35.0

114

108

8.5

10.0

120

4.0

HA-5130

0.025

0.40

2.0

2.0

110

100

2.5

0.8

120

1.7

HA-5137A

0.025

0.20

40.0

35.0

114

108

63.0

20.0

120

4.0

HA-5147A

0.025

0.20

40.0

35.0

114

108

120.0

35.0

120

4.0

HA-5135

0.075

0.40

4.0

4.0

106

94

2.5

0.8

120

1.7
4.0

HA-5137

0.100

0.40

80.0

75.0

100

96

63.0

20.0

117

HA-5147

0.100

0.40

80.0

75.0

100

96

120.0

35.0

117

4.0

HA-5170

0.300

2.0

0.1

0.03

85

85

8.0

8.0

109

2.5

HA-5221

0.750

0.5

80.0

50.0

86

86

100.0

35.0

106

11.0

11.0

DUALOPAMPS
HA-5222

0.75

0.5

80

50

86

86

100.0

35.0

106

CA158A

2.0

7.0

50

10

70

65

1.0

0.5

94

1.5

HA-5102

2.0

3.0

200

75

86

86

8.0

3.0

100

2.5

HA-5112

2.0

3.0

200

75

86

86

60.0

20.0

100

2.5

ICL7621A

2.0

10.0

0.05

0.03

76

80

0.5

0.16

86

0.25

NOTE: Bold type designates a new product from Harris.

3-12

Selection Guide
PRECISION: MinIMax Limits at 25°C, Unless Otherwise Specified (Continued)
OFFSET
VOLTAGE
(mV)

VIO
DRIFT
(TVP)
(IlVJOC)

BIAS
CURRENT
(nA)

OFFSET
CURRENT
(nA)

CA3280A

0.5

3.0

5000

CA258A

3.0

7.0

80

CA358A

3.0

7.0

HA-5142

6.0

3.0

DEVICE

SLEW
RATE
(TVP)
(V/IlS)

AVOL
(dB)

SUPPLY
CURRENT
(mAlOP
AMP)

CMRR
(dB)

PSRR
(dB)

GBWP
(TVP)
(MHz)

700

94

94

9.0

125.0

94

2.4

15

70

65

1.0

0.5

94

1.5

100

30

65

65

1.0

0.5

88

1.5

100.0

10.0

77

77

0.4

1.5

86

0.15

QUAD OP AMPS
HA-5134

0.2

0.3

50.0

50.0

100

100

4.0

1.0

118

2.0

HA-5114

2.5

3.0

200.0

75.0

86

86

60.0

20.0

100

1.63

HA-5104

2.5

3.0

200.0

75.0

86

86

8.0

3.0

100

1.63

CA124

5.0

7.0

150.0

30.0

70

65

1.0

0.5

94

0.5

HA-5144

6.0

3.0

100.0

10.0

77

77

0.4

1.5

86

0.15

CA224

7.0

7.0

250.0

50.0

65

65

1.0

0.5

88

0.5

CA324

7.0

7.0

250.0

50.0

65

65

1.0

0.5

86

0.5

CA2902

7.0

7.0

250.0

50.0

65

65

1.0

0.5

86

0.3

....I

 15V can cause
excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device.
3. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

Values Apply for Each Operational Amplifier. Supply Voltage V+ = 5V, V- = OV,
Unless Otherwise Specified
CA224, CA324, LM324

CA124
TEST
CONDITIONS

PARAMETER
Input Offset
Voltage (Note 6)
Average Input
Offset Voltage
Drift

Rs=OQ

Differential Input
Voltage (Note 5)

TEMP.
("C)

MIN

TYP

MAX

25

-

2

5

Full

-

7

Full

7

-

Full

TYP

MAX

MIN

2

7

-

-

-

9

-

7

-

-

V+

-

V+

V

V+-l.5

-

-

V

-

-

V+-2

V

MIN

V+

V+=30V

25

0

-

V+-l.5

0

V+=30V

Full

0

-

V+-2

0

V+=26V

Full

-

-

Common Mode
Rejection Ratio

DC

25

70

85

65

Power Supply
Rejection Ratio

DC

25

65

100

Input Bias
Current (Note 4)

11+ or 11-

25

-

45

150

11+ or II"

Full

-

-

300

11+-11"

25
Full

-

3

11+-1 1-

Input Common
Mode Voltage
Range (Note 5)

Input Offset
Current
Average Input
Offset Current
Drift

Full

-

10

3-18

-

V+-2
0

70

-

65

100

-

-

-

45

250

-

500

-

50

-

30
100

LM2902

5

-

-

150
10

-

-

TYP

MAX

UNITS
mV

-

10

7

mV
',!VfC

-

V

dB

dB

40

nA
500

nA

-

-

nA

45

200

nA

10

-

pAfC

CA 124, CA224, CA324, LM324, LM2902
Electrical Specifications

Values Apply for Each Operational Amplifier. Supply Voltage v+ = 5V, v- = OV,
Unless Otherwise Specified (Continued)
CA124

PARAMETER
Large Signal
Voltage Gain

Output
Voltage
Swing

MIN

TYP

RL,,2kQ,V+=15V
(For Large Vo Swing)

25

94

100

RL " 2kn, V+ = 15V
(For Large Vo Swing)

Full

88

-

V+-l.5

25

a

-

RL = 2kn, V+ = 30V

Full

26

-

RL = 2kn, V+ = 26V

Full

RL = 10kn, V+ = 30V

Full

RL = 10kn

Full

Source V,+ = +IV, V,- = OV,
V+=15V

25

V,+ = IV, V,- = 0,
V+=15V

Low
Level
Output
Current

TEMP.
(OC)

RL = 2kn
High
Level

Sink

Crosstalk

Total Supply
Current

MAX

MIN

TYP

88

100

83

-

a
26

MAX

-

27

28

-

5

20

40

-

20

40

Full

10

20

10

20

V,+ = OV, V,. = IV,
V+ = 15V

25

10

20

-

10

V,+ = OV, V,- = IV,
Vo=200mV

25

12

50

-

V,. = IV, V,+ = 0,
V+= 15V

Full

5

8

-

f= 1 to 20kHz
(Input Referred)

25

-120

RL=

00

Full

0.8

RL =

00,

UNITS
dB

83

dB

-

V
V

22

20

-

TYP

V+-l.5

5

23
20

V
28
5

V
100

mV

-

mA

10

20

mA

20

-

-

mA

12

50

-

-

IlA

5

8

5

8

mA

-

-120

-

2

0.8

-

Full

MIN

-

28

V+ = 26V

MAX

27

LM2902

CA224, CA324, LM324

TEST
CONDITIONS

2

-

dB

0.7

1.2

mA

1.5

3

mA

NOTES:
4. Due to the PNP input stage the direction of the input current is out of the IC. No loading change exists on the input lines because the
current is essentially constant, independent of the state of the output.
5. The input signal voltage and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit
of the common mode voltage range is V+ - 1.5V, but either or both inputs can go to +32V without damage.
6. Vo = 1.4V, Rs = on with V+ from 5V to 30V, and over the full input common mode voltage range (OV to V+ - 1.5V).

3-19

CA 124, CA224, CA324, LM324, LM2902
Schematic Diagram

(One of Four Operational Amplifiers)

+
~
2

6

7

•

2+
~
4

13

4

•

O+
~
3

9

8

•

V. 11

Typical Performance Curves
iii' 120

r--;---+---t

iii!:
100
~

r-~~~-+---t

~

w

-+
~ 601---I---+~~~-'---T--r--~
~

...
02;

Z

80 1-_-1-.....3"""....

....-r--~

lK

10K

~WE

450 1--1--

~V:I
: SOpF ~ VO_-I-_-I-_f---I

~

400 ........_

..;.

o
1M

lOOK

350

="

I--fl--+--+--+--+---fll/~---i----l

10M

Vl

__

__

2S00~-~~2-~3-~4-~S~~6~~7~~8-~9
TIME()ls)

FREQUENCY (Hz)

FIGURE 1. OPEN LOOP FREQUENCY RESPONSE

FIGURE 2. VOLTAGE FOLLOWER PULSE RESPONSE (SMALL
SIGNAL)

TA =2S·C
V+ = lSV
RL=2k.1l

J

-

\

J

\.

-"

o

... INPUT

....L..

~ 3OO~-+\~O~~T.,PU~T~~ ~ ~r__+--+~

&201---I---+--1---I-.....3~
100

~

~

401---I---+--1-~~~-+--~-~

10

SOOI---+-

10

20

30

40

TIME (118)

FIGURE 3. VOLTAGE FOLLOWER PULSE RESPONSE (LARGE SIGNAL)

3·20

CA 124, CA224, CA324, LM324, LM2902
Typical Performance Curves

(Continued)

VieR =OV
60
~

.~

!

V+ =30V

50

:c
S

~
zw

a:
a:

!ztI! 41---r--+--+-~--~
a:
i3 3 I - - \ - - \ - - \ - - \ - - f -

15V

40

.1-"""'"
30

5V

::)

~

Q.

(,)
~
::)

Q.

~ 21--1--1--1--1--1--11--11--11--1

20

TA = OOC TO 125°C

i!!:
10

·55"C

o

·75

·50

·25

0

25

50

75

100

125

5

10

FIGURE 4. INPUT CURRENT vs AMBIENT TEMPERATURE

TA = 25°C

>
(;'

15

~
w

CI

~ 10

\

~
~

S
o

5

>

,@.Ii1
2

,N'

10K

60

!zw

50

a:
a:
::>
u
w
u
a:

= =

::>

c(CIl

Za:

O!!:!
-IL

r--.. r---..~

40

30

!;;(:::i
a: a..
W:!ii
~c(

I'-- .........

r---.

0

II>
~

20

~

10

::>
Q.

...

o
1K

1 Vo

.J

V+ =15V

:c

.§.

'!Z~

\.

'\

30

70

i~+15V

,~

i!!:

25

FIGURE 5. SUPPLY CURRENT vs SUPPLY VOLTAGE

100kQ

-

20

POSITIVE SUPPLY VOLTAGE M

TEMPERATURE (OC)

20

15

0

.........

o

·75

1M

100K

·50

·25

0

25

50

75

100

125

TEMPERATURE ("C)

FREQUENCY (Hz)

FIGURE 7. OUTPUT CURRENT vs AMBIENT TEMPERATURE

FIGURE 6. LARGE SIGNAL FREQUENCY RESPONSE

TA =25°C

TA = 25"C

75

iii' 150
~

:c
s
!zw
a:
a:

~
~

50

::)

(,)
~
::)

- ---

Q.

i!!:

25

o

~

",

l /V"

30
10
20
POSITIVE SUPPLY VOLTAGE M

100

~

75

!:i

§
zw

!!i

./

."

'"

RL =20kQ'RL=2kQ -

50
25

o
o

40

-- ~

125

w
~

10

20

30

40

POSITIVE SUPPLY VOLTAGE M

FIGURE 8. INPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 9. VOLTAGE GAIN vs SUPPLY VOLTAGE

3·21

CA158, CA158A, CA258, CA258A,.
CA358, CA358A, CA2904,
LM358, LM2904
Dual, 1MHz, Operational Amplifiers for Commercial
Industrial, and Military Applications

June 1996

Features

Description

• Internal Frequency Compensation tor Unity Gain

The CA158, CA158A, CA258, CA258A, CA358, CA358A
and CA2904 types consist of two independent, high gain,
internally frequency compensated operational amplifiers
which are designed specifically to operate from a single
power supply over a wide range of voltages. They may also
be operated from split power supplies. The supply current is
basically indepe~dent of the supply voltage over the
recommended voltage range.

• High DC Voltage Gain •••••••••••••••.• 10OdB(Typ)
• Wide Bandwidth at Unity Gain •••••••••. 1MHz(Typ)
• Wide Power Supply Range:
- Single Supply •••••••••••••••••••••••• 3V to 30V
- Dual Supplies •••••••••••••.•••••. ±1.5Vto±15V
• Low Supply Current .•••.••.•••••••••• 1.5 mA(Typ)
• Low Input Bias Current
• Low Input Offset Voltage and Current
• Input Common-Mode Voltage Range Includes Ground
• Differential Input Voltage Range Equal to V+ Range
• Large Output Voltage Swing •••••••••• OV to V+ -1.5V

Ordering Information
PART
NUMBER

TEMP.
RANGE ("C)

PACKAGE

PKG.
NO.

CA0158E

·55 to 125 8Ld PDIP

CA0158AE

-55 to 125 8 Ld PDIP

E8.3

CA0158M

-55 to 125 8Ld SOIC

M8.15

CA0158M96

-55 to 125 8 lei SOIC Tape and Reel

M8.15

CA0158T

-55 to 125 8 Pin Can

T8.C

CA0158AT

-55 to 125 8 Pin Can

T8.C

CA0258E

-25 t08?

8Ld PDIP

E8.3

CA0258AE

-25 to 85

8Ld PDIP

E8.3
M8.15

These devices are particularly useful in interface circuits with
digital systems and can be operated from the single
common 5Voc power supply. They are also intended for
transducer amplifiers, DC gain blocks and many other
conventional op amp circuits which can benefit from the
single power supply capability.
The CA158, CA158A, CA258, CA258A, CA358, CA358A, and
CA2904 types are an equivalent to or a replacement for the
industry types 158, 158A, 258, 258A, 358, 358A, and CA2904.
Technical Data on LM Branded !ypes is identical to the
corresponding CA Branded types.

E8.3

CA0258M

-25 to 85

BLd SOIC

CA0258M96

-25 t085

8 lei SOIC Tape and Reel

MB.15

CA0258AM

-25 t085

8Ld SOIC

M8.15

Pinouts
CA158, CA258, CA358 (METAL CAN)
TOP VIEW
INV.
INPUT (A)

CA0258AM96

-25 t085

8 lei SOIC Tape and Reel

MB.15

CA0258T

-25 to 85

8 Pin Can

T8.C

CA0258AT

-25 to 85

8 Pin Can

TB.C

CA0358E

o t070

8Ld PDIP

E8.3

CA0358AE

o to 70

8Ld PDIP

E8.3

CA0358M

o to 70

8 Ld SOIC

M8.15

CA0358AM

o to 70

8 LdSOIC

M8.15

CA158, CA258, CA358, CA2904 (PDIP, SOIC)
LM358, LM2904 (PDIP)

CA0358M96

o to 70

8 lei SOIC Tape and Reel

M8.15

TOP VIEW

CA0358AM96

o to 70

8 Ld SOIC Tape and Reel

MB.15

CA0358T

o to 70

8 Pin Can

T8.C

CA0358AT

o to 70

8 Pin Can

T8.C

CA2904E

-40 t085

8Ld PDIP

EB.3

CA2904M
CA2904M96

-40 toB5
·40 t085

8Ld SOIC
8 Ld SOIC Tape and Reel

INV.
INPUT (B)

OUTPUT (A) 1
INV.INPUT (A) ...,20=""""'''
NON-INV. INPUT (A) 3

M8.15
M8.15

LM358N

o t070

8Ld PDIP

E8.3

LM2904N

o to 70

8Ld PDIP

EB.3

CAUTION: These devices are sensRive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation t996

3-22

7

OUTPUT (B)

6

INV. INPUT (B)

5

NON·INV. INPUT (B)

File Number

1019.3

CA 158, CA 158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904
Absolute Maximum Ratings

Thermal Information

Supply Voltage
CA2904, LM2904 ........................... 26V or ±13V
Other Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32V or ±16V
Differential Input Voltage (All Types) ...................... 32V
Input Voltage .................................. -0.3V to V+
Input Current (VI < -0.3V, Note 1) ....................... SOmA
Output Short Circuit Duration (V+';; 15V, Note 2) ...... Continuous

Thermal Resistance (Typical, Note 3)
9JA (OCNY) 9Jc (OCNY)
PDIP Package.... .. ... .. . .. . . . ..
130
N/A
SOIC Package. . . . . . . . . . . . . . . . . . .
170
N/A
Can Package. . . . . . . . . . . . . . . . . . . .
155
67
Maximum Junction Temperature (Can Package) .......... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range .......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............. 300 DC
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
CA15B, CA15BA .......................... -55 DC to 125DC
CA25B, CA25BA ........................... -25 DC to B5DC
CA2904, LM2904 .......................... -40 DC to B5DC
CA35B, CA35BA, LM35B ....................... ODC to 70DC

CAUTION: Stresses above those listed in "Absolute Maximum Ra#ngs" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the opera#onal sections of this specification is not implied.

NOTES:
1. This input current will only exist when the voltage at any of the input leads is driven negative. This current is due to the collector base junction
of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also
lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V+
voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This transistor action is not destructive
and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V.
2. The maximum output current is approximately 40mA independent olthe magnitude of V+. Continuous short circuits at V+ > 15V can cause
excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.
3. 9JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

Input Offset
Voltage (Note 6)

W::

TEMP
(OC)
25
Full

CA158A
MIN

-

Full

CA258A

TYP

MAX

1

2

-

4

7

15

MIN

~<

CA358A

TYP

MAX

MIN

TYP

MAX

1

3

2

3

mV

4

-

5

mV

15

7

20

flVJOC

UNITS

Average Input
Offset Voltage
Drift

Rs=On

Input Common
Mode Voltage
Range (Note 5)

V+=30V

25

0

V+-l.5

0

V+-1.5

0

-

V+-l.5

V

V+=30V

Full

0

V+-2

0

V+-2

0

-

V+-2

V

Common Mode
Rejection Ratio

DC

25

70

B5

-

70

B5

-

65

B5

-

dB

Power Supply
Rejection Ratio

DC

25

65

100

65

100

65

100

-

dB

Input Bias
Current (Note 4)

11+ or 11-

25

20

50

40

BO

45

100

nA

11+ or 11-

Full

40

100

40

100

40

200

nA

Input Offset
Current

11+-1 1-

25

2

10

2

15

5

30

nA

11+ -I r

Full

30

-

75

nA

10

200

10

300

pAi"C

100

-

Average Input
Offset Current
Drift
Large Signal
Voltage Gain

"
g

~

!:i

~
~

~

I--~f-­

450

I--~f--

1\

4OO1-.....f-

I 350r-~Hl~.-

o !:i
o

__, -__

Ilou,TPUT

INPUT

~ ~~~I/~;__+-~
f
__

3oor-~I~l~A~~__~__+-~~-t__~~
~

o

10

20

30
TIME (".)

250L-__
o

40

FIGURE 7. VOLTAGE FOLLOWER PULSE RESPONSE
(LARGE SIGNAL)

20

500

w

2 ~

\

~ 4
w
:..0

~

L-\n~__~__

- L__- L__- L__

234
TIME ("s)

~ ~~
__

6789

FIGURE 8. VOLTAGE FOLLOWER PULSE RESPONSE
(SMALL SIGNAL)

.....I

TA = 25°C

«en
Za:

TA = 25°C

100kn
75

~
CI

~~.,w

15

~

~

'"

w

CI

~

10

VI

+7V

-u.

,

~:::i
a: a..

C

.s.

_ ) . . 0Vo
-

~
w 50

2kn

)

:\-

~

!:i...
!:i0

;

O!!!

a:
a:

-= -=-=

~

u

!:i...

- ---

l!: 25

5

'\
"I"'-......

o
1K

10K

100K

o

1M

o

~

l/

"

/'

~«

10
20
30
POSITIVE SUPPLY VOLTAGE (V)

FREQUENCY (Hz)

40

FIGURE 10. INPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 9. LARGE-SIGNAL FREQUENCY RESPONSE

10

8

:-:ft-

V+

7

~

W::i

V+ = +5Voc
V+=+ 15VOC

~,

w

~
~

":'"

~

-

-

--

+

~If

rlV

V
0.01
0.1
10
OUTPUT SOURCE CURRENT (rnA)

0.1

0

I
0.001

V+/2

~

/

-

V+

I-

INDEPENDENT OF V+
TA = 25°C

2

~+,i t~VDII ~

~
CI

10+

":'"

"->I

0.01
0.001

100

FIGURE 11. OUTPUT SOURCE CURRENT CHARACTERISTICS

3-27

V

V
0.01

--

TA =25OC

0.1
10
OUTPUT SINK CURRENT (rnA)

10

Vo

100

FIGURE 12. OUTPUT SINK CURRENT CHARACTERISTICS

CA158, CA158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904
Typical Performance Curves

(Continued)

70
V+ = 15V

C

60

Iiw

50

:)

40

.§.

r--.... ........ ....

II:
II:

U

w

U

II:

30

:)

r--.... ........

. . . r--..,

0

5...'"

20

I:)

10

0

o

-75

-50

-25

0

25

50

75

100

125

TEMPERATURE (DC)

FIGURE 13. OUTPUT CURRENT vs AMBIENT TEMPERATURE

Meta~lization

Mask Layout
o

10

20

30

40

50

60 66

72--70-

605069-n
(1.753 - 1.956)

30 20 10 -

-o-~"~~~I*""---•

•

Dimensions in parentheses are in millimeters and derived
from the basic inch dimensions as indicated. Grid
graduations are in mils (10-3 inch).
The photographs and dimensions represent a chip when it
is part of the wafer. When the wafer is cut into chips, the
cleavage angles are 5~ instead of 90° with respect to the
face of the chip. Therefore, the isolated chip is actually 7mils
(O.17mm) larger in both dimensions.

3-28

CA741, CA741C, CA1458,
CA 1558, LM741, LM741C, LM1458

HARRIS
SEMICONDUCTOR

Single and Dual, High Gain Operational Amplifiers
for Military, Industrial and Commercial Applications

November 1996

Features

Description

• Input Bias Current ..••.•........•...• 500nA (Max)

The CA1458, CA1558 (dual types); CA741C, CA741 (single
types); high-gain operational amplifiers for use in military,
industrial, and commercial applications.

• Input Offset Current .................. 200nA (Max)

Applications
• Comparator
• DC Amplifier
• Integrator or Differentiator

• Multiyibrator
• Summing Amplifier
• Narrow Band or Band
Pass Filter

Ordering Information
PART
NUMBER
CA0741E

TEMP. RANGE
(DC)

-55 to 125.
-55 to 125
Ot070
-55 to 125

BLd PDIP
BLd PDIP
B Ld PDIP
B Pin Metal Can
B Pin Metal Can
B Pin Metal Can
B Pin Metal Can
B Ld PDIP
BLd PDIP
B Pin Metal Can

PKG.NO.
EB.3
EB.3
E8.3
EB.3
TB.C
TB.C
TB.C
TB.C
EB.3
EB.3
TB.C

Ot070
Ot070

B Pin Metal Can
B Ld PDIP

TB.C
EB.3

-55 to 125

CA0741CE
CA145BE
CA155BE
CA0741T
CA0741CT
CA145BT
CA155BT
LM741N
LM741CN
LM741H

o to 70
Ot070
-55 to 125
-55 to 125
Ot070
o to 70

LM741CH
LM145BN

PACKAGE
BLd PDIP

These monolithic silicon integrated circuit devices provide
output short circuit protection and latch-free operation.
These types also feature wide common mode and
differential mode signal ranges and have low offset voltage
nulling capability when used with an appropriately valued
potentiometer. A 10ka potentiometer is used for offset
nulling types CA741C, CA741 (see Figure 1). Types
CA1458, CA1558 have no specific terminals for offset
nUlling. Each type consists of a differential input amplifier
that effectively drives a gain and level shifting stage having
a complementary emitter follower output.
The manufacturing process make it possible to produce IC
operational amplifiers with low burst "popcorn" noise
characteristics. The CA741 gives limit specifications for burst
noise in the data bulletin, File Number 530. Contact your
Sales Representative for information pertinent to other operational amplifier types that meet low burst noise
specifications.
Technical Data on LM Branded types is identical to the corresponding CA Branded types.

Pinouts
CA741 , CA741C, LM741 , LM741C (CAN)
TOP VIEW

CA1458, CA1558 (METAL CAN)
TOP VIEW

NC

v+

IN~Wr

INV.INPIi~ 2~~~11~~,"-, 6 l~r INPUT

2

88

v-

CA741 , CA741C, LM741 , LM741C (PDIP)
TOP VIEW
OFFSET NULL
INV. INPUT
NON-INV.INPUT

y-

2

3

7

+

CA1458, CA155B, LM1458 (PDIP)
TOP VIEW
OUTPUT (A)

NC

v+

1.,-;.,._...--

INV. INPUT (A) 2

6 OUTPUT

NON-INV. INPUT (A) 3

5 OFFSET NULL

7 OUTPUT (B)
6 INY. INPUT (B)
NON-INY. INPUT (B)

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-29

File Number

531.3

..J
C(C/)

Za:

O!!:!
-IL

!ct:::i
a: a..
W::i

~C(

CA741, CA741C, CA1458, CA1558, LM741, LM741C, LM1458
.Absolute Maximum Ratings

Thermal Information

Supply Voltage
CA741C, CA1458, LM741C, LM1458 (Note 1) ............. 36V
CA741, CA1558, LM741 (Note 1) ..................... , 44V
Differential Input Voltage . .............................. 30V
Input Voltage . .................................. ±VSUPPLY
Offset Terminal to V- Terminal Voltage (CA741C, CA741) ... ±0.5V
Output Short Circuit Duration ....................... Indefinite

Thermal Resistance (Typical, Note 3)
9JA (OC/w)
9JC (OC/W)
PDIP Package. . . . . . . . . . . . . . . . . . .
130
N/A
Can Package. . . . . . . . . . . . . . . . . . . .
155
67
Maximum Junction Temperature (Can Package) .......... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering 1Os) ............. 300°C

Operating Conditions
Temperature Range
CA741 , CA1558, LM741. ................... -55°C to 125°C
CA741C, CA1458, LM741C, LM1458 (Note 2) ..... OOC to 70°C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This is 8 stress only rating and operation
01 the device at these or any other conditions above those Indicated in the operational sections 01 this specilication is not implied.

NOTES:
1. Values apply for each section of the dual amplifiers.
2. All types in any package style can be operated over the temperature range of -55°C to 125°C, although the published limits for certain
electrical specification apply only over the temperature range of OOC to 70°C.
3. 9JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications
PARAMETER
Input Capacitance

Typical Values Intended Only for Design Guidance, VSUPPLY = ±15V

SYMBOL

TEST CONDITIONS

TYPICAL VALUE
(ALL TYPES)

UNITS

1.4

pF

±15

mV

CI

Offset Voltage Adjustment Range
Output Resistance

Flo

Output Short Circuit Current
Transient Response
Rise Time

t,

Overshoot

0.5.

Slew Rate (Closed Loop)

Electrical Specifications

PARAMETER
Input Offset Voltage

SR

Unity Gain, VI = 20mV, RL = 2kn,
C L S100pF

RL ;;,2kn

TEST
CONDITIONS
Rs s10kn

Input Common Mode Voltage
Range

Power Supply Rejection Ratio

Input Resistance

n

25

mA

0.3

IlS

5.0

%

0.5

VIIlS

For Equipment Design, VSUPPLY = ±15V

TEMP
(OC)

(NOTE 4)
CA741 , CA1558, LM741

MIN

25

-

Full

±12V

25
Full

Common Mode Rejection Ratio

75

Rs s10kn

RsS10kn

(NOTE 4)
CA741C, CA1458, LM741C,
LM1458

MAX

UNIT
S

2

6

mV

-

-

7.5

mV

±12V

±13V

TYP

MAX

MIN

TYP

1

5

-

1

6

-

-

25

-

-

Full

70

90

-

Full

-

-

30

150

-

25

0.3

2

-

0.3

25

3-30

V

-

±13V

70

V
90

30

dB

-

dB

150

IlVN
IlVN

2

Mn

CA741, CA741C, CA1458, CA1558, LM741, LM741C, LM1458
Electrical Specifications

For Equipment Design, VSUPPLY = ±15V (Continued)

TEST
CONDITIONS

PARAMETER

(NOTE 4)
CA741C, CA1458, LM741C,
LM1458
TYP

MAX

UNIT
S

500

80

500

nA

800

nA

300

1500

-

125

30

500

25

20

200

20

200

nA

300

nA

85

500

7

200

200,000

-

TEMP
(DC)

Input Bias Current

(NOTE 4)
CA741, CA1558, LM741
MIN

25

TYP

MAX

80

MIN

Full
-55

Input Offset Current

nA

-

Full
-55
125
Large Signal Voltage Gain

Output Voltage Swing

RL ,,2kQ, Vo =±10V

RL " 10k.Q

25

50,000

Full

25,000

RL ,,2kQ

-

nA

200,000

VN
VN

±12V

±14V

V
..J
«II)

ZIX

-

±10V

±13V

-

±13V

-

±10V

±13V

-

25

1.7

2.8

1.7

2.8

mA

-55

2

3.3

1.5

2.5

-

mA

125

-

±10V

V

IXD.

mA

50

85

50

85

mW

-

60

100

-

-

mW

125

-

45

75

-

mW

NOTE:
4. Values apply for each section of the dual amplifiers.

Test Circuits

INVERTING
INPUT
OUTPUT

NON-INVERTING
INPUT --,."..,---.

}-_--VOUT

V-

FIGURE 2. TRANSIENT RESPONSE TEST CIRCUIT FOR ALL
TYPES

FIGURE 1. OFFSET VOLTAGE NULL CIRCUIT FOR CA741C,
CA741, LM741C, AND LM741

3-31

O!:!:!
-u.

!;:::J

-55

25

Device Power Dissipation

20,000

nA

-

±14V

25
Full

Supply Current

±12V

-

15,000

25
Full

nA

W:i:

~«

CA741, CA741C, CA1458, CA1558,LM741, LM741C, LM1458
Schematic Diagram

(Notes 5, 6)

CA741C, CA74,1, LM741C, LM741 AND FOR EACH AMPLIFIER OF THE CA1458, CA1558, AND LM1458

,. 01

INVERTING
INPUT

NON-INVERTING
INPUT

."

Ql0

Q3

"II- 0 4

Q4

t1

~~ Qll

"

R9
25

Rg

- 0 OUTPUT
RIO
50

,)Q1S

8

Q16

Q9~

~

(.).

OFFSET-C ......

... Q17

Q14

0
Rl
1K

".Q13

.... -

7.5K

Q

Os
NULL

Q12

r--i

Rs
39K

Q2

,~

R7
4.5K

Cl

'i' 30pF

_~c

V+

O2

.... QS

.
.

.

R3
50K

"

R.c

R2
1K

03

Rl1
aOK

R12
50K

3K

.

V-

NOTES:
5. See Pinouts for Terminal Numbers of Respective Types.
6. All Resistance Values are in Ohms.

Typical Performance Curves
40

TA = 25°C

E
w
CJ

./

z
a:

0(

...5

1
~
CJ

~

/

w
Q
0
::Ii

z

~

/

10

~

0
::Ii
::Ii

5...
50

/

5

/

8
o

TA = 25°C
RL ,,2kn

35

15

25
20
15
10

5

/

5

o
o

10

15

20

/

30

V

V

V

/
o

5

10

15

20

DC SUPPLY (v+, V-)

DC SUPPLY (V+, V-)

FIGURE 3. COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY
VOLTAGE FOR ALL TYPES

3-32

FIGURE 4. OUTPUT VOLTAGE vs SUPPLY VOLTAGE FOR ALL
TYPES

CA741, CA741C, CA1458, CA1558, LM741, LM741C, LM1458
Typical Performance Curves

(Continued)

30

DC SUPPLY VOLTS (V+ = 15, V- = -15)
TA = 25°C, CL = 100pF

25

20

:;-

§.

....
::)
.......
::)

r- r- 90% I
II

15

0

...

~

20

I

I
II, 10%
RISE TIME

5

o

o

-0.5

1.0

-0.5

TIME

1.5

2.0

2.5

3.0

(~.)

FIGURE 5. TRANSIENT RESPONSE FOR CA741C AND CA741

Metallization Mask Layout
-I

CA741CH

57

o

10

20

I

I

I

ctCll

30

40

50

I

I

I

Za:

6064

Ow

-u:::

~::i

"--...-

a:1l.

W:E

~ct

54-62
(1.372 -1.575)

61-69
(1.549 -1.753)

CA1458H

o

10

20

55_.1.1[ll!!1

50-

30

I

40

50

60

70

80

11111

I

104
90 100

1

1

~ 1

403020100-

_-;-_

52-60
(1.321 - 1.524)

.."'_liiiiiii
---

'-'1

1-- ~:1~~ - 0.254)

..

J
(2.m:~~68)

------

NOTE: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in
mils (10. 3 inch).

3-33

8MHz Power Amps For Military,
ustrial and Commercial Equipment
Description
• High Power Output Class B Amplifier
- CA3020 .................... O.5W (Typ) at Vee 9V
- CA3020A .................. 1.0W (Typ) at Vee = 12V

=

• Wide Frequency Range •• Up to 8MHz with Resistive Loads
• High Power Gain .•......•....••••...••••• 75dB (Typ)
• Single Power Supply For Class B Operation With
Transformer
- CA3020 ................................ 3V to 9V
- CA3020A .............................. 3V to 12V
• Built-In Temperature-Tracking Voltage Regulator Provides
Stable Operation OVer -550 C to 125°C Temperature Range

Applications
• AF Power Amplifiers For Portable and Fixed Sound and
Communications Systems
• Servo-Control Amplifiers
• Wide-Band Linear Mixers
• Video Power Amplifiers
• Transmission-Line Driver Amplifiers (Balanced and
Unbalanced)
• Fan-ln and Fan-out Amplifiers For Computer Logic Circuits
• Lamp-Control Amplifiers
• Motor-Control Amplifiers
• Power Multivibrators
• Power Switches

Pinout

The CA3020 and CA3020A are integrated-circuit, multistage, multipurpose, wide-band power amplifiers on a single
monolithic silicon chip. They employ a highly versatile and
stable direct coupled circuit configuration featuring wide
frequency range, high voltage and power gain, and high
power output. These features plus inherent stability over a
wide temperature range make the CA3020 and CA3020A
extremely useful for a wide variety of applications in military,
industrial, and commercial equipment.
The CA3020 and CA3020A are particularly suited for service
as class B power amplifiers. The CA3020A can provide a
maximum power output of 1W from a 12VDC supply with a
typical power gain of 75dB. The CA3020 provides O.5W
power output from a 9V supply with the same power gain.
Refer to AN5766 for application information.

Ordering Information
TEMP.
RANGEfe)

PACKAGE

CA3020

-55 to 125

12 Pin Metal Can

T12.B

CA3020A

-55 to 125

12 Pin Metal Can

T12.B

PART NUMBER

PKG.
NO.

Schematic Diagram
CA3020
(METAL CAN)
TOP VIEW

9

R10

8

11

1.SK

V-

OUTPUT 6

The resistance values included on the schematic diagram have been supplied as a convenience to assist
Equipment Manufacturers in optimizing the selection of 'outboard" components of equipment designs.
The values shown may vary as much as 30"10.
Harris reserves the right to make any changes In the Resistance Values provided such changes do not
adversely affect the published performance characteristics of the device.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-34

File Numi:>er

339.4

November 19

h

¥",

.

&f!I/I>~'*~";'i!',N;"'I!."I'iIM,.;.tM,."",w!pJ,;#I.W'-I

Features l-"",,_'''"''~'"'''~w''-''

Description

• Low Power Consumption as Low as 100mW Per
Amplifier

The CA3060 monolithic integrated circuit consists of an array of
three independent Operational Transconductance Amplifiers
(see Note). This type of amplifier has the generic characteristics of an operational voltage amplifier with the exception that
the forward gain characteristic is best described by transconductance rather than voltage gain (open-loop voltage gain is the
product of the transconductance and the load resistance,
gMRLl. When operated into a suitable load resistor and with
provisions for feedback, these amplifiers are well suited for a
wide variety of operational-amplifier and related applications. In
addition, the extremely high output impedance makes these
types particularly well suited for service in active filters.

• Independent Biasing for Each Amplifier
• High Forward Transconductance
• Programmable Range of Input Characteristics
• Low Input Bias and Input Offset Current
• High Input and Output Impedance
• No Effect on Device Under Output Short-Circuit
Conditions

The three amplifiers in the CA3060 are identical push-pull
Class A types which can be independently biased to achieve a
wide range of characteristics for specific application. The electrical characteristics of each amplifier are a function of the
amplifier bias current (lABe)' This feature offers the system
designer maximum flexibility with regard to output current capability, power consumption, slew rate, input resistance, input bias
current, and input offset current. The linear variation of the
parameters with respect to bias and the ability to maintain a
constant DC level between input and output of each amplifier
also makes the CA3060 suitable for a variety of nonlinear applications such as mixers, mUltipliers, and modulators.

• Zener Diode Bias Regulator

Applications
• For Low Power Conventional Operational Amplifier
Applications
• Active Filters
• Comparators
• Gyrators
• Mixers

In addition, the CA3060 incorporates a unique Zener diode
regulator system that permits current regulation below supply voltages normally associated with such systems.

• Modulators
• Multiplexers
• Multipliers

• Sample and Hold Functions

NOTE: Generic applications of the OTA are described in AN-6668.
For improved input operating ranges, refer to CA3080 and CA3280
data sheets (File Nos. 475 and 1174) and application notes AN6668
and AN6818.

Pinout

Od
r ermg I norma
it
Ion

• Strobing and Gating Functions

CA3060
(PDlP)
TOP VIEW

PART NUMBER
CA3060E

REGULATOR OUT

1

REGULATOR IN

2

TEMP.
RANGE ("C)
·40 to 85

PACKAGE
16 Ld PDIP

PKG.
NO.
E16.3

OUTPUT NO. 1
BIAS NO. 1
NON-INV. INPUT NO.1

INV. INPUT NO.3

4

INV. INPUT NO.1

NON·INV. INPUT NO. 3 ...5_..,~~,.
BIAS NO. 3

6

OUTPUT NO.3

7

INV. INPUT NO.2
NON-INV. INPUT NO.2
BIAS NO.2
9

OUTPUT NO.2

CAUTION: These devices are senSitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyrtght

© Harrts Corporation 1996

3-35

File Number

537.3

..J

 > - RI+RF

assuming RB > > RI

FIGURE 3. OFFSET VOLTAGE NULL CIRCUITS
5.1MD

5.1MD

1.5V

"AA"CELL

+
-

1.5V

"AA"CELL

+

+

5~F

10MD

FIGURE 4. INVERTING 20dB AMPLIFIER CIRCUIT

FIGURE 5. NON-INVERTING 20dB AMPLIFIER CIRCUIT

3-39

+
-

CA3078, CA3078A
TABLE 1. UNITY GAIN SLEW RATE VB COMPENSATION - CA3078 AND CA3078A
VSUPPLY = ±6V, Output Voltage (Vol = ±5V, Load Resistance (RLl = 10kQ, Transient Response: 10% overshoot for an output voltage of
100mV, Ambient Temperature (TA) = 25°C
UNITY GAIN (INVERTING)
FIGURE 1
COMPENSATION
TECHNIQUE

UNITY GAIN (NON-INVERTING)
FIGURE 2

Rl

Ct

R2

C2

SLEW RATE

Rt

Cl

R2

C2

kQ

pF

kQ

IlF

VlIlS

kQ

pF

kQ

IlF

I SLEW RATE
I VlIlS

CA3078 - 10 = 1001lA
0

750

00

0

0.0085

0

1500

00

0

0.0095

3.5

350

00

0

0.04

5.3

500

00

0

0.024

00

0

0.25

0.306

0.67

00

0

0.311

0.45

0.67

Single Capacitor

0

300

00

0

0.0095

0

800

00

0

0.003

Resistor and Capacitor

14

100

00

0

0.027

34

125

00

0

0.02

Input

00

0

0.644

0.156

00

0

0.77

0.4

0.4

Single Capacitor
Resistor and Capacitor
Input
CA3078A - 10 = 20llA

0.29 •

Application Information
Compensation Techniques
The CA3078A and CA3078 can be phase compensated with
one or two external components depending upon the closed
loop gain, power consumption, and speed desired. The
recommended compensation is a resistor in series with a
capacitor connected from Terminal 1 to Terminal 8. Values of
the resistor and capacitor required for compensation as a
function of closed loop gain are shown in Figures 25 and 26.
These curves represent the compensation neoessary at
quiescent currents of 1001lA and 20!!A, respectively, for a
transient response with 10% overshoot. Figures 23 and 24
show the slew rates that can be obtained with the two different
compensation techniques. Higher speeds can be achieved
with input compensation, but this increases noise output.

Compensation can also be accomplished with a single
capacitor connected from Terminal 1 to Terminal 8, with speed
being sacrificed for simplicity. Table 1 gives an indication of
slew rates that can be obtained with various compensation
techniques at quiescent currents of 1001lA and 201lA.

Single Supply Operation
.The CA3078A and CA3078 can operate from a single supply
with a minimum total supply voltage of 1.5V. Figures 4 and 5
show the CA3078A or CA3078 in inverting and non-inverting
20dB amplifier configurations utilizing a 1.5V type "AA" cell
for a supply. The total consumption for either circuit is
approximately 675nW. The output voltage swing in this configuration is 300mVp_p with a 20kn load.

Typical Performance Curves
VS=±6
TA =2SoC
Rs:510kO

.s
!zw

~w

Sl

!:i

~

~O
5II.
iii!:

..,

VS~±6

0('

TA=2SoC

10

r-

II:
II:

I

I II

CA3078

:::I

,;

..,

,

CJ

3.0

!Ai

......

~

III

2.4

0

CA3078

I.B
1.2

5II.

0.1

..,

CA3078A

iii!:

CA3078A

0.6

o

1

10

100

0.01

1000

1

TOTAL QUIESCENT CURRENT (1lA)

FIGURE 6. INPUT OFFSET VOLTAGE vs TOTAL QUIESCENT
CURRENT

10
100
1000
TOTAL QUIESCENT CURRENT (1lA)

10000

FIGURE 7. INPUT OFFSET CURRENT vs TOTAL QUIESCENT
CURRENT

3-40

CA3078, CA3078A
Typical Performance Curves
~
/~

VS=±6
TA =2S OC
100

L

10

a:
a:

TA =2So C

:i

m r;

~

<
.s
!zw

(Continued)

::::J
til

~ 108

CA3078A

~

1/ ~

:!
III

II.

§

5...

Z

~

iii!:

0.1

1

126

w 126

Cl

~

U

~

"'"

~~

F= C~30~8

S

i

10

100

1000

10000

90
72
54

RL=lMn

108

.::::::::; ~10kO

90
72
54

r--

36

r-::::?!i

18

o

1

o

10
100
TOTAL QUIESCENT CURRENT (J1A)

TOTAL QUIESCENT CURRENT (~)

FIGURE 8. INPUT BIAS CURRENT vs TOTAL QUIESCENT
CURRENT

36
18

I
I

1000

FIGURE 9. OPEN LOOP VOLTAGE GAIN vs TOTAL
QUIESCENT CURRENT

1000

100

a
l!. 100

VS=±6TOVS=±lS
TA =2S oC

Vs =±lS

....I

cccn
Za:
OW

w

U

~

~a:

10

"""

+3
·3

"

Cl

z

~

~

TA = 2So C
RsET CONNECTED BETWEEN
TERMINAL 5 AND V+

0.1

III

0.01
1000

0.1
100

10
0.1
0.01
TDTAL QUIESCENT CURRENT (~)

0.001

1

FIGURE 10. BIAS SETTING RESISTANCE vs TOTAL
QUIESCENT CURRENT

1.5

-

z

1.0

.,

~

~
~

1o=100~

~ 100 1 - - - f - - - f - - + -.......0;:1-......".....;F- Ct =0pF

~ 80~--F~~~~~~~~~~~~~~

/' ~

W

~

CA3078
120 Vs=±6

RL= SOkO

,.. ....-

Cl

w
100
~603oo
~
1000

~ ~lOkn
SkO

II.

§

I

50

II.

o

o

o

1.5
0.5
1.0
TOTAL QUIESCENT CURRENT (~)

201---f---f--+---+~~~~~-~

Z

w

2.0

0'
0100

w~

-

e.
w

~ 40r---+---+---~~~~~~~~~

'~~kO

"lkO
soon

0.5

::::J
II.

10
100
1000
TOTAL QUIESCENT CURRENT !ItA)

FIGURE 11. MAXIMUM OUTPUT CURRENT va TOTAL
QUIESCENT CURRENT

I

Vs =±1.3V
TA =2So C

E
itil

~CC

+1
·1

til

~

fi~
a: 0..
w==

+6
-6

z

~
cw

~

o RL = 10k1l, TA = 25°C
Ct. BETWEEN TERMINALS 1 AND 8
·20 L -_ _ _---"-:,.--_::-_---:-_-'-::-_......L:,..:---'
102
103
104
0.1
101
FREQUENCY (Hz)

FIGURE 12. OUTPUT VOLTAGE SWING vs TOTAL QUIESCENT
CURRENT

FIGURE 13. OPEN LOOP VOLTAGE GAIN vs FREQUENCY FOR
CA3078

3·41

CA3078, CA3078A

Typical Performance Curves

(Continued)

100

Ia =20""
TA = 25°C

~

10

VIC~

~

~ II'VOM

i

/ /

w

I

~
S!""
I!:l

~

0.1

z

~

~

g
w

+1
-1

+0.1
.0.1

.0.1

+10

+100

·10

·100

FIGURE 15. OPEN LOOP VOLTAGE GAIN vs FREQUENCY FOR
CA3078A

SUPPLY VOLTS (V+, V.)

~

l

1.75
VS=±6

~

:;-

S!

i

~

-VIC~

!Ii:

~

,

.§.
w 1.25

~

1

./

1.50

!:i

g
t:i
UI

-YOM

~

II.
II.

,

-1 0

0

!;

...i!:

~A3078
IQ=1OO""

1.00

--

0.75
0.50
0.25
0

-75

·50

-25

~

/

0

_

t/

25

~

~3078A
IQ=20""

50

75

-

100

125

TEMPERATURE (oC)
FIGURE 14. OUTPUT AND COMMON MODE VOLTAGE vs
SUPPLY VOLTAGE

tt

VS=±6

j

I!

• 2.5

10 '

!i 2.0
~
!;
~

6

'" N:
CA3078A

1.0
0.5

0
-75

-SO

-25

I"

4

"

0
25
50
TEMPERATURE <"C)

iw

100

~

3

12•5

! 10.0

!!5

i

t:i

G 5.0

~

I

~u

Ia = 20""
100

..........

7.5

!;

2.5

o i!:

~

o

·75

125

~

C~~ ~

~ID

2~

K

75

VS=±6

tt 15.0

u

II:

1.5

U

~

8

",CA3078
IQ=100""

w

II:

!!5

FIGURE 16. INPUT OFFSET VOLTAGE vs TEMPERATURE

IQ = 100""
-I
I

-50

-25

0
25
50
TEMPERATURE (oC)

75

r-....

75

~

100

3-42

ffi

II:
II:

50

G

25

!;

o

125

FIGURE 18. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 17. INPUT OFFSET CURRENT vs TEMPERATURE

~

~ID

...i!:

CA3078, CA3078A
Typical Performance Curves

(Continued)

VS=±6

VS=±6
110

in
:!:!. 105

~

~

w

~

!:i

g

...
§
z
...w
0

"I"'"

i

40

1/

~

CA3078
10 = 10011A

95

~

50

!i:

CA3078A
10 = 2011A

CJ 100

030

!i:w

90

~ 20

85

aID

CA3078-.

·25

o

25

50

75

100

125

~ ~75

ffl

5

o
·50

"-

I

·25

0

25

50

75

100

125

~

~

VS=±6
TA = 25°C
CA3078AT

~

I

........

Ia = lOO11A-

III
1""00

10= 2011A

1~

104

FREQUENCY (Hz)

FIGURE 21. EQUIVALENT INPUT NOISE VOLTAGE vs
FREQUENCY

'"

'" "-

10 = lool1A

103

o

FIGURE 20. TOTAL QUIESCENT CURRENT VB TEMPERATURE

I~=~IIA r-

102

!i:
w

50

TEMPERATURE (oC)

-

o

TEMPERATURE ("C)

FIGURE 19. OPEN LOOP VOLTAGE GAIN VB TEMPERATURE

VS=±6
TA=25oC
CA3078AT

150
100

~

·50

a:
a:

~

K3078A

5

80
·75

200

!i:w

1~

1~

FREQUENCY (Hz)

FIGURE 22. EQUIVALENT INPUT NOISE CURRENT VB
FREQUENCY

3·43

..J
c(Ul

zo:

OW

-u::

!C(:::i
0:11.
W::i

~c(

CA3078, CA3078A
Typical Performance Curves

1.5

...

REs.JoR~ckcrrbR
COMPENSATION
(R1 - C1 BETWEEN
TERMINALS 1 AND

0.75

III

0.5

~
...

I
If

I
J

/

0.25

0.6 r RES!SlOJAPACL
COMPENSATION
(R1 - C1 BETWEEN
~ 0.5 r
TERMINALS 1 AND.,...
~
III 0.4

V'

81

1.25

'"

~

~

I

(Continued)

I

CAPACITOR
COMPENSATION
(BETWEEN
TERMINALS 1 AND 8)

-

~
a: Q.3

-

~

III

/

10
20
30
40
50
60
70
80
80
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)

6

s'o

do

ao

19.1 29.7
40
70
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)

~

/cAPACITOR
COMPENSATION
(BETWEEN
TERMINALS 1 AND 8)

I

~V

II

I

10
20
30
40
50
60
70
80
90
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)

so

do

ao

/;
19.1 29.7
40
70
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)

Supply Volts: V+

=IOOI1A

9'0

=+6, V- =-6

Quiescent Current (Io) = 20l1A

Ambient Temperature (TA) = 25°C
Load Impedance: RL

V /

90

Supply Volts: V+ = +6, V- = -6
Quiescent Current (IO)

r~

0.2

0.1

~",

/

Ambient Temperature (TA) = 25°C

=10kQ, CL =100pF

Load Impedance: RL

=10kQ, CL =100pF

Feedback Resistance (RF) = 0.1 MQ

Feedback Resistance (RF) = 0.1 MQ

Output Voltage (Vop-p) = 10V

Output Voltage (Vop-p) = 10V

R1 determined for transient response with 10% overshoot on a
100mVoutput signal (Rt xCI = 2.5 x to- 6)

R t determined for transient response with 10% overshoot on a
100mV output signal (Rt x Ct = 2x 10-6 )

FIGURE 23_ SLEW RATE VB CLOSED LOOP GAIN FOR
IQ 100l1A - CA3078

FIGURE 24. SLEW RATE VB CLOSED LOOP GAIN FOR IQ =20l1A
-CA3078A

=

~

~1000

5

If
t§

~

100

~

I

"

~

III

...ffi

8
...~

-1000

~

If
t§

I

_ RESISlOR-CAPACITOR
COMPENSATION
(R1 - C1 BETWEEN
"
TERMINALS 1 AND 8)

"

4b

...ffi

10

TERMINALS 1 AND 8)

"~

III

~

~

10
20
30
40
50
60
70
80
90
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)

6

100

8

CAPACITOR

COMPENSATION
==
- (BETWEEN

';j?

z

o
~

~

to

1 0

~

CAPACITOR
COMPENSATION
(BETWEEN
~RMINALS 1 AND 8)

So

ao io

ld.l 29.7
80
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)

-

RESISlOR-CAPACITOR
COMPENSATION
(R1 - C1 BETWEEN
TERMINALS lAND 8)

....

I""..
1 0

10
20
30
40
50
60
70
80
80
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)

"""""""

Supply Volts: V+ = +6, V- = -6

Supply Volts: V+ = +6, V- = -6

Quiescent Current (IO) = 1001lA
Ambient Temperature (TA) = 25°C

Quiescent Current (lo) = 20l1A

Load Impedance: RL

So $0 io

19.1 ad.7 ~o
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)

6

IAl

ao

IAl

Ambient Temperature (TA) = 25°C

=10kQ, CL =100pF

Load Impedance: RL = 10kQ, CL = 100pF

Feedback Resistance (RF) = 0.1 MQ

Feedback Resistance (RF) = 0.1 MQ

Output Voltage (Vop-p) = 100mV

Output Voltage (vop-p) = 100mV

Rt determined for transient response with 10% overshoot on a
1OOmV output signal (Rt x Ct = 2.5 x 10-6)

Rt determined for transient response with 10% overshoot on a
1OOmV output signal (Rt x Ct = 2 x to- 6)

FIGURE 25. PHASE COMPENSATION CAPACITANCE VB
CLOSED LOOP GAIN - CA3078

FIGURE 26. PHASE COMPENSATION CAPACITANCE VB
CLOSED LOOP GAIN - CA3078A

3-44

CA30BO, CA30BOA

HARRIS
SEMICONDUCTOR

2MHz, Operational
Transconductance Amplifier (OTA)

November 1996

Features

Description

• Slew Rate (Unity Gain, Compensated) ••...... 50Vl/lS

The CA3080 and CA3080A types are Gatable-Gain Blocks
which utilize the unique operational-transconductanceamplifier (OTA) concept described in Application Note
AN6668, "Applications of the CA3080 and CA3080A HighPerformance Operational Transconductance Amplifiers".

• Adjustable Power Consumption ••..•.... 10/lW to 30/lW
• Flexible Supply Voltage Range .....•...• ±2V to ±15V
• Fully Adju~table Gain •.......••.••. 0 to gMRL Limit
• Tight gM Spread:
- CA3080 .•.......•..................•.•... 2:1
- CA3080A ...••...•...•..•....•..•..•.•... 1.6:1
• Extended gM Linearity •••.•••.••••••••.• 3 Decades

Applications
• Sample and Hold

• Multiplier

• Multiplexer
• Voltage Follower

• Comparator

The CA3080 and CA3080A types are notable for their excellent
slew rate (50V//lS), which makes them especially useful for
multiplexer and fast unity-gain voltage followers. These types
are especially applicable for multiplexer applications because
power is consumed only when the devices are in the "ON"
channel state.

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGE (oC)

PACKAGE

PKG.
NO.

o to 70

B Pin Metal Can

TB.C

CA30BOA

-55 to 125

B Pin Metal Can

TB.C

CA30BOAE

-55 to 125

B LdPDIP

EB.3

CA30BOAM
(30BOA)

-55 to 125

B Ld SOIC

MB.15

CA30BOAM96
(3080A)

-55 to 125

8 Ld SOIC Tape
and Reel

MB.15

CA30BO

The CA3080 and CA3080A types have differential input and a
single-ended, push-pull, class A output. In addition, these types
have an amplifier bias input which may be used either for gating
or for linear gain control. These types also have a high output
impedance and their transconductance (gM) is directly
proportional to the amplifier bias current (lABel.

CA30BOE

Oto 70

8 Ld PDIP

EB.3

CA3080M
(3080)

Oto 70

BLdSOIC

MB.15

CA30BOM96
(30BO)

Oto 70

8 Ld SOIC Tape
and Reel

MB.15

The CA3080A's characteristics are specifically controlled for
applications such as sample-hold, gain-control, multiplexing, etc.

Pinouts
CA30BO
(METAL CAN)
TOP VIEW

CA30BO
(PDIP, SOIC)
TOP VIEW

INV.
INPUT
NON-INV.
INPUT

:~~'UT

3

e

NON-INV.
INPUT

AMPLIFIER
BIAS INPUT

:

3

:+

TA

OUTPUT
BIAS

v-

NOTE: Pin 4 is connected to case.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-45

File Number

475.3

....I

c(1J)

Za:

O!!:!
-IL

!ci:::i
a: a..
W:ii

~c(

:,

'w

CA30BO, CA30BOA
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V- Terminal) ....... , , , , . , , 36V
Differential Input Voltage . .... , . , .... , , ... , , , , ........... 5V
Input Voltage. , , . , , ........ , .... , , . , . , .......... , , V+ to VInput Signal Current .... ,. , ... , ......... ' , .. , ........ lmA
Amplifier Bias Current (lABel, .. , . , . , , , .. , . , , , . . . . . . . .. 2mA
Output Short Circuit Duration (Note 1) ........ , .. , No Limitation

Thermal Resistance (Typical, Note 2)
6JA (oCIW) 6JC (oCIW)
PDIP Package ..... , . , , , . . . . . . . . .
130
N/A
SOIC Package ... , . , , . , . . . . . . . . . .
170
N/A
Metal Can Package ....... , , , . . . . .
200
120
Maximum Junction Temperature (Metal Can) •...... , .... , 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Maximum Storage Temperature Range ..... , . .. -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ...... , ... " 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
CA30BO ............. , , , .................. , .
to 70°C
CA30BOA .. , , . , ......... , .... , .. , ....... -55°C to 125°C

ooc

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device, This is a stress only reting and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied,

NOTES:
1. Short circuit may be applied to ground or to either supply.
2. 6JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified

CA3080
PARAMETER
Input Offset Voltage

TEST CONDITIONS

TEMP

Input Offset Voltage Temp. Drift
Input Offset Voltage
Sensitivity

IPositive
INegative

TYP

IABC=5IlA ·

25

0,3

IABC= 5OOIlA

25

0.4

Full
Input Offset Voltage Change

MIN

IABC = 500ilA to 51lA

25

IABC = 1001lA

Full

IABC = 500ilA

25

-

IABC = 5001lA

25

Input Bias Current

IABC= 500ilA

25

-

5

MIN

TYP

MAX

UNITS

-

0.3

2

mV

-

0.4

2

mV

-

5

mV

0.1

3

6
0.2

-

-

-

3.0

150
150

-

0.12

0.6

-

2

5

-

25

Input Offset Current

CA3080A
MAX

Full

7

Differential Input Current

IABC = 0, VDIFF = 4V

25

Amplifier Bias Voltage

IABC= 500ilA

25

-

Input Resistance

IABC= 5OOIlA

25

10

Input Capacitance

IABC = 500IlA, f = 1 MHz

25

Input-to-Output Capacitance

IABC = 500IlA, f = 1MHz

25

Common-Mode Input-Voltage
Range

IABC = 5001lA

25

Forward Transconductance
(Large Signal)

IABC = 5001lA

Output Capacitance

IABC = 500IlA. f = 1MHz

25

Output Resistance

IABC= 500ilA

25

Peak Output Current

IABC = 51lA, RL = 00

25

IABC = 5001lA, RL = 00

25

350

500

Full

300

-

-

150

IlVN

150

IlVN

0.12

0,6

IlA

2

5

-

15

IlA
IlA
nA

0.008

5

0.71

-

0.71

-

26

10

26
3,6
0.024

0.008

-

0.024

-

12to
-12

13.610
-14.6

12to
-12

13.610
-14.6

25

6700

9600

13000

7700

9600

Full

5400

-

-

4000
5.6

-

-

3-46

-

3.6

-

5.6
15
5
650

mV
IlVPC

V
kO

-

pF
pF

V
12000

IlS

-

IlS

15

-

MO

3

5

7

IlA

350

500

650

IlA

300

pF

IlA

CA30BO, CA30BOA
Electrical Specifications

For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified (Continued)
CA3080

PARAMETER
Peak Output
Voltage

TEST CONDITIONS
Positive

13.8

V

-14.5

-12

-14.5

V

12

13.5

V

25
25

-

25

12

13.5

IABC = 500~A, RL = ~

MAX

-

-12

-14.4

-12

-14.4

25

0.8

1

1.2

0.8

1

1.2

mA

36

24

30

36

mW

-

0.08

5

nA

5

nA

-

dB

'ABC'= 500~A

25

24

30

25

-

0.08

'ABC = 0, VTP = 36V

25

0.3

0.3

Propagation Delay

IABC =500~A

25

45

4S

Common-Mode RejeC1ion Ratio

'ABC =500~A

25

Open-Loop Bandwidth

IABC = 500~A

25

Uncompensated

25

Compensated

25

Magnitude of Leakage Current

Slew Rate

UNITS

25

IABC = 0, VTP = 0

Device Dissipation

MAX

'ABC=500~A

Negative
Amplifier Supply Current

12

TYP

Negative
Positive

TYP

13.8

MIN

'ABC = 5~A, RL = ~

CA3080A

MIN

TEMP

80

110
2
75

-

50

-

80

110

-

2
75

-

50

V

ns

MHz

-

V/~s

V/~s

Schematic Diagram

...J

c(C/)

Za:

O!!:!
-II..

!i:i
a: a..
W:E
~c(

INVERTING
INPUT
NONINVERTING
INPUT
AMPLIFIER 5
BIAS INPUT

Typical Applications
V+ = 15V

VS=±15V

-,

62k.Q

LOAD
(SCOPE PROBE)

OUTPUT
WIDIV.

:fs;l

1

1MQ.J:---J

10k.Q V-

-.L

= -15V

INPUT
5VIDIV.

T

O.OOI~F

TIME ..o.II'81DIV.

FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UN/TY-GA/N VOLTAGE FOLLOWER CONFIGURATION
AND ASSOCIATED WAVEFORM

3-47

CA3080, CA3080A
Typical Applications

(Continued)

20pF

CENTERING

BUFFER VOLTAGE
FOLLOWER

+7.SV

THRESHOLD
DETECTOR

l00ka
+7.SV

7.SV
MAX FREQ. SET

MIN FREQ. SET

+7.SV o-,\".,.......W.,--W~-M- -7.SV
10kQ 6.2kQ
soon soon
FREQ.
ADJUST

2kQ

-

HIGH-FREQ.
LEVEL
ADJUST

FIGURE 2. 1,000,00011 SINGLEoCONTROL FUNCTION GENERATOR - 1MHz TO 1Hz

,NOTE: A Square-Wave Signal Modulates The External Sweeping
Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency
range of the function generator.

NOTE: The bottom trace is the sweeping signal and the top trace is
the actual generator output. The center trace displays the 1MHz signal
via delayed oscilloscope triggering of the upper swept output signal.

FIGURE 3A_ TWO-TONE OUTPUT SIGNAL FROM THE
FUNCTION GENERATOR

FIGURE 38. TRIPLE-TRACE OF THE FUNCTION GENERATOR
SWEEPING TO 1MHz

FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS

3-48

CA30BO, CA30BOA

Typical Applications

(Continued)

V+= +15V

2.0kn

SAMPLEOV

SLEW RATE (IN SAMPLE MODE) = 1.3V1lls
ACQUISmON TIME = 31ls (NOTE)

If
0----'

HOLD .15V

V·=·15V

NOTE: Time required for output to settle within ±3mV of a 4V step.

FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION
..J

«In
Za:
O!!d
-u.

30kn
STROBE

01 nrSAMPLE
·15 UU HOLD

!cc:::i
a: a.

1N914

W::il

~«

3.6kn
INPUT

200pF

2kn

FI

200P
4000

L--IE--.......~ ....... !
O.lIlF

......

~; 30pF

SIMULATED LOAV.L
NOT REQUIRED
.::.

FIGURE 5. SAMPLE AND HOLD CIRCUIT

3-49

,.I
I'~

:

.;~:

CA30BO, CA30BOA
Typical Applications

(Continued)

Top Trace:
Bottom Trace:
Center Trace:

Output Signal
5V/Div.,211S/Div.
Input Signal
5V/Div.,211S/Div.
Difference of Input and Output Signals Through
Tektronix Amplilier 7A13
5mV/Div., 211S/Div.

FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace:
Bottom Trace:

System Output; 1OOmV/Div., 500ns/Div.

Top Trace:

Sampling Signal; 20V/Div., 500ns/Div.

Bottom Trace:

Output; 50mV/Div., 200nslDiv.
Input; 50mV/Div., 200nS/Div.

FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 23

FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN
FIGURE 23

120VAC
60Hz
2OK~"''"''i-W''''''''

NOTE: All resistors 1/2 watt,
unless otherwise specified.
FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER

3-50

CA30BO, CA30BOA
Typical Applications

INPUT

(Continued)

2K
2K

R7 j;PUT TCl
2K

=e.

SAMPLE OV
HOLD

1f.

-7.5

-;;OBE

g.30pF

(TYP)

200~~I}
'----~.
R3
!~R:~SEL-___________~_·5_V____~
400 =
NULLING

15K

COMPENSATION

FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH SIMOS OUTPUT AMPLIFIER

-I

c:t(J)

Za:

O!!:!
-LL

tc:J

a: a.

W::i

~c:t

o
o
Top Trace:
Center Trace:
Bottom Trace:

Oulpul; 5V/Div., 2I's/Div.
Differential Comparison of Input and Output
2mV/Div., 21'S/Div.
Input; 5VlDiv., 21'S/Div.

Top Trace:
Bottom Trace:

FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 28

Output
20mV/Div.,100nslDiv.
Input
200mV/Div.,100nS/Div.

FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN
IN FIGURE 28

3-51

CA30BO,CA30BOA
Typical Applications

som~ __
·SOmV-

-n-

(Continued)

IN 0 - . . - - - (

N-O

J-1--,.....,~--O OUT

S10

FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS

Typical Performance Curves
S

.s.
III

~

!:l

3

0

Iii
0

4
-4

:::)

-5

Ie
LL.

III.

2SOC

12SOC

SUPPLY VOLTS: Vs

19~!c r-"7

-5~C lU
~=J7 ~ooc

2
1

·1 ~t'""It I
90°C
·2

i

HI

SUPPLY VOLTS: Vs =±1SV
I
I II

4

>

III

r

.r

l: -5
-7
-8
0.1

10

Iii
Ie

1

il:

YSifl

I

8
~

/I
h

102

I

~

I I.'t.:" 25~
-5SOC
700 C

V-

~
-

IIII
I III
1

10

100

,

25°C
~

0.1

104

"

"
:....o!:

~

IE

t..oo":lI'!:;

1

a:
a:

f"....

I

10

=
=

100

1000

dl;E

·' 250

103

"..

8

102

!50

10

~

2SoC

/

~

~

,
0.1

1000

'"

1/
0.1

FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT

.

·Ssoc

..,'"

S

......... 12SoC

1
10
100
AMPLIFIER BIAS CURRENT (IIA)

I

SUPPLY VOLTS: Vs ±1SV
LOAD RESISTANCE 00

II.

0.1
0.1

125°C

III

-ss°c

........

~.,

FIGURE 15. INPUT OFFSET CURRENT va AMPLIFIER BIAS
CURRENT

SUPPLY VOLTS: Vs =±15V

.....-.! ~

-5SoC

AMPLIFIER BIAS CURRENT (IIA)

FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS
CURRENT

I""" I"""

"
" "

.,

AMPLIFIER BIAS CURRENT (IIA)

~

~~

/

0.01
0.1

1000

=+1SV

1
10
100
AMPLIFIER BIAS CURRENT (IIA)

1000

FIGURE 17. PEAK OUTPUT CURRENT va AMPLIFIER BIAS
CURRENT

3-52

CA30BO, CA30BOA

Typical Performance Curves
15

g

I

SUPPLY VOLTS: Vs = ±15V
TA= 25°C
LOAD RESISTANCE = 00

~ 14.5

~~

(Continued)

II

14

~~

0

"

",UI

Sg

-13

~ ~-13.5
«0
~ ~

125°C
V-OM
V-CMR

-15
0.1

I II

1
10
100
AMPLIFIER BIAS CURRENT ("A)

1000

~

ioI""

,

UI

~

0

gz
0

Z

102

10

105 SUPPLY VOLTS: Vs = +15V

.....
....
......

0

....

-55~
25°C

103

I-I--

III

z

Vs =±6V

«

II:
I-

102

~
II:

~

10

100

1

1000

!;:::i
a: a.

~

~

10

W::E

~<

100

1000

AMPLIFIER BIAS CURRENT (!!A)

FIGURE 21. TRANSCONDUCTANCE VB AMPLIFIER BIAS
CURRENT

~>OO
+36V

~

0.1

AMPLIFIER BIAS CURRENT (!!AI

FIGURE 20. TOTAL POWER DISSIPATION vs AMPLIFIER BIAS
CURRENT

iJ

~

...0

1
10

,

125°C

0

0

0.1

-

II:

I

UI

O!:!:!
-II.

104

0

Vs =±3V

III

..J


:.J I-

25°C

SUPPLY VOLTS: Vs = +15V

!zUI

SUPPLY VOLTS: Vs = ±15V

/'

II:

~ 10

~

o

UI

36V

OV

~

V2 = V3 = Va = 36V / '

......

~
.......o

~

UI

o
E
0.1

/'

z
~

I;tI"

::&
0.01
-50

/'
-25

OV

I/"

tr

/'

/'
,/

o

25
50
75
TEMPERATURE (oC)

100

FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT

3-53

'"

/'

125

CA30BO, CA30BOA

Typical Performance Curves

(Continued)

SUPPLY VOLTS: Vs = ±1SV
V+= 1SV

C

...Soz
w

II:
II:

104

103

::::>
CJ

125°C

..

~ 102

""

;r;

-'
!$

!zw

./
25°C

10

"

II:
W

""-

I

is

o

V· = ·1SV

SUPPLY VOLTS: Vs =±1SV
TA= 25°C

~

>

10

z

~

.,.

~
!:i

g

;r;

ID
II:

I!!

.
~

200
100

0.01
10
100
AMPLIFIER BIAS CURRENT (1lA)

z

~

~

~

o

~

Co

4
3

2

a

~

~

V"
".

---

!.

~ 103

iii
w

...

102

0

10

II:

~
~

=

"'"

i"'""

125°C

1000

SUPPLY VOLTS: Vs=±1SV
... TA = 25°C

--

z

In

",'"

~f-

104

CJ

~

25°C

1
10
100
AMPLIFIER BIAS CURRENT (1lA)

~S

!--

w

V
CI

~

P"'"

FIGURE 27. AMPLIFIER BIAS VOLTAGE VB AMPLIFIER BIAS
CURRENT

105

5

'-"~
I"'""

~

0.1

FIGURE 26. INPUT RESISTANCE VB AMPLIFIER BIAS CURRENT

CJ

-

o

1000

SUPPLY VOLTS: VS=±1SV
f= 1 MHz
TA= 25°C

·SSoC

- -

300

::I!

-<

6

500

!$ 400

--

..

~ 0.1

7

600

In

~

~
w

-

w 700

!!l

0.1

800

.§.

.....

CJ

7

6

SUPPLY VOLTS: Vs = ±1SV

900

100

w

2
3
4
5
INPUT DIFFERENTIAL VOLTAGE (V)

FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE

FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT

.......

I

,,

... ...

...

~

;r;

o

0.1

1
1
10
100
AMPLIFIER BIAS CURRENT (1lA)

0.1

1000

FIGURE 28. INPUT AND OUTPUT CAPACITANCE VB AMPLIFIER
BIAS CURRENT

1
10
100
AMPLIFIER BIAS CURRENT (1lA)

FIGURE 29. OUTPUT RESISTANCE VB AMPLIFIER BIAS
CURRENT

3-54

1000

CA30BO,. CA30BOA
Typical Performance Curves

(Continued)

f= 1 MHz

[;"

So 0.06

V+

TA =2SoC

~
z

~ 0.05

13
~

..: 0.04

o

~

0.03

o

~ 0.02

i

" -r--.. """'-

-.... r--

r- I---

0.01

ii!:

o

V-

2

4

6

8

10

12

14

16

18

POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V)

FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT

FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY
VOLTAGE

..J

etC/)

Za:
O!!:!
-LL

~:J
a: a.

W:ail

~et

3-55

-----.:':~~094,

.CA3094A,
CA30948

30M Hz, High Output Current
ra lonal Transconductance Amplifier (OTA)
12

Features

Description

• CA3094T, E, M for Operation Up to 24V

The CA3094 is a differential input power control sw~chlampli·
fier with auxiliary circuit features for ease of programmability.
For example, an error or unbalance signal can be amplified by
the CA3094 to provide an on·off signal or proportional control
output signal u~to 100mA. This signal is sufficient to directly
drive high current thyristors, relays, DC loads, or power tran·
sistors. The CA3094 has the generic characteristics of the
CA30BO operational amplifier directly coupled to an integral
Darlington power transistor capable of sinking or driving currents up to 100mA.

• CA3094AT, E, M for Operation Up to 36V
• CA3094BT, M for Operation Up to ·44V
• Designed for Single or Dual Power Supply
• Programmable: Strobing, Gating, Squelching, AGC
Capabilities
• Can Deliver 3W (Average) or lOW (Peak) to External
Load (in Switching Mode)
• High Power, Single Ended Class A Amplifier will Deliver
Power Output of O.6W (l.6W Device Dissipation)
• Total Harmonic Distortion (THO) at O.6W in Class A
Operation 1.4% (Typ)

Applications
• Error Signal Detector: Temperature Control with
Thermistor Sensor; Speed Control for Shunt Wound
DC Motor
• Over Current, Over Voltage, Over Temperature Protectors
• Dual Tracking Power Supply with CA3085
• Wide Frequency Range Oscillator
• Analog Timer
• Level Detector

The gain of the differential input stage is proportional to the
amplifier bias current (lABC), permitting programmable
variation of the integrated circuit sensitivity with either digital
and/or analog programming signals. For example, at an IABC
of 1001lA, a 1mV change at the input will change the output
from 0 to 1001lA (typical).
The CA3094 is intended for operation up to 24V and is
especially useful for timing circuits, in automotive equipment,
and in other applications where operation up to 24V is a
primary design requirement (see Figures 2B, 29 and 30 in
Typical Applications text). The CA3094A and CA3094B are
like the CA3094 but are intended for operation up to 36V and
44V, respectively (single or dual supply).

Ordering Information

• Alarm Systems
• Voltage Follower
• Ramp Voltage Generator

PART NUMBER
(BRAND)

TEMP.
RANGE (oC)

• High Power Comparator

CA3094T, AT, BT

·55 to 125

B Pin Metal Can

• Ground Fault Interrupter (GFI) Circuits

CA3094E, AE, BE

·5510 125

BLdPDIP

EB.3

CA3094M, AM, BM
(3094, A, B)

·5510 125

BLdSOIC

MB.15

PKG.
NO.

PACKAGE

TB.C

Pinouts
CA3094 (PDIP, SOle)
TOP VIEW
EXT. FREQUENCY
COMPENSATION
OR INHIBIT INPlIT

8

CA3094 (METAL CAN)
TOP VIEW
SINK OllTPlIT
(COLLECTOR)

SINK 0l1TPl1T
(COLLECTOR)

DRIVE OllTPlIT
(EMrrrER)
5

8

IABC CURRENT
PROGRAMMABLE ]
[ INPUT
(STROBE OR AGC)

DRIVE OllTPlIT
(EMrrrERI

IABC CURRENT

NOTE: Pin 4 is connected to case.

GND (V. IN DUAL
SUPPLY OPERATION)

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-56

fi'ROGRAMMABLE INPlIT]
~STROBE OR AGC)

File Number

598.4

CA3100
38M Hz, Operational Amplifier

November 1996

Features

Description

• High Open Loop Gain at Video
Frequencies .................. 42dB (Typ) at 1MHz

The CA3100 is a large signal wideband, high speed
operational amplifier which has a unity gain cross over
frequency (fT) of approximately 38MHz and an open loop,
3dB corner frequency of approximately 110kHz. It can
operate at a total supply voltage of from 14V to 36V (±7V to
±18V when using split supplies) and can provide at least
18Vp_p and 30mAp_p at the output when operating from
±15V supplies. The CA3100 can be compensated with a
single external capacitor and has DC offset adjust terminals
for those applications requiring offset null. (See Figure 1).

• Unity Gain
Crossover Frequency (fT) •.•...•••.••. 38MHz (Typ)
• Full Power Bandwidth
Vo 18Vp_p ....................... 1.2MHz (Typ)

=

• Slew Rate
- 20dB Amplifier .................... 70Vl/ls (Typ)
- Unity Gain Amplifier .•..•.....•.•••• 25V1/ls (Typ)
• Settling Time .. .. .. .. .. .. .. .. .. .. .... O.6/ls (Typ)

The CA31 00 circuit contains both bipolar and PMOS transistors on a single monolithic chip.

• Output Current. .•..••••••••.••.•••.• ±15mA (Min)

Ordering Information

• Single Capacitor Compensation

PART NUMBER
(BRAND)

• Offset Null Terminals

Applications
• Video Amplifiers

TEMP.
RANGE (oC)

PACKAGE

PKG.
NO.

CA3100E

-4010B5

B Ld PDIP

EB.3

CA3100M
(3100)

-40 10 B5

BLdSOIC

MB.15

CA3100T

-5510125

B Pin Metal Can

TB.C

• Fast Peak Detectors
• Meter Driver Amplifiers
• High Frequency Feedback Amplifiers
• Video Pre-Drivers
• Oscillators
• Multivlbrators
• Voltage Controlled Oscillator
• Fast Comparators

Pinouts
CA3100
(PDIP, SOIC)
TOP VIEW

OFFSET
NULL
INV.
INPUT

CA31 00
(METAL CAN)

TOP VIEW

1
2

NO~j~~~ o.;3:..r---,•.-5 OFFSET
NULL

v-

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper Ie Handling Procedures.
Copyrighl © Harris Corporation 1996

3-57

File Number

625.3

CA3100
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V- Terminals) ............. 36V
Differential Input Voltage............................... 12V
Input Voltage to Ground ........................•... V+ to VOffset Terminal to V- Terminal Voltage. . . . . . . . . . . . . . . . .. ±0.5V
Output Current (Note 2) ................ , ............. 50rnA

Thermal Resistance (Typical, Note 1)
BJA (oCIW) BJC (oCIW)
PDIP Package...................
100
N/A
SOIC Package...................
165
N/A
170
85
Metal Can Package.. .. .. .. .. .. .. .
Maximum Junction Temperature (Metal Can) . . . . . . . . . . . .. 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Maximum Storage Temperature Range •....•..• _65°C to 150°C
Maximum Lead Temperature (Soldering 10s). • . . . . . . . . .. 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
CA3100E, CA3100M ....................... -40°C to 85°C
CA3100T ............................... -55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. BJA is measured with the component mounted on an evaluation PC board in Iree air.
2. CA31 00 does not contain circuitry to protect against short circuits in the output.

Electrical Specifications

TA = 25°C, VSUPPLY = ±15V, Unless Otherwise Specified

PARAMETER

SYMBOL

TEST CONDITIONS

MIN

TYP

MAX

UNITS

-

±1

±5

mV

DC
Input Offset Voltage

Via

Vo=O±D.W

Input Bias Current

liB

Vo=O±1V

0.7

2

IJA

Input Offset Current

110

Vo=O±1V

±D.05

±D.4

IJA

Common Mode Input Voltage Range

VICR

CMRR:?:76dB

±12

+14
-13

V

-

Common Mode Rejection Ratio

CMRR

VCM=±12V

76

90

Maximum Output Voltage

VOM+

Differential Input Voltage = 0 ±D.1V,
RL=2kQ

+9

'+11

-9

-11

V

Differential Input Voltage = 0 + O.W,
RL= 250Q

+15

+30

mA

-15

-30

-

mA

VOMMaximum Output Current

10M+

10MSupply Current
Power Supply Rejection Ratio

1+
PSRR

Va = 0 ±D.1V, RL:?: 10kQ

IN+=±1V,IN-=±W

dB
V

8.5

10.5

rnA

60

70

-

dB

DYNAMIC
Unity-Gain Crossover Frequency

IT

Open Loop Voltage Gain

AoL

Slew Rate

SR

Cc = 0, Vo = 0.3Vp_p

-

38

1= 1kHz, Va = ±1V, (Note 3)

56

61

1= 1MHz, Cc = 0, Vo = 10Vp_p

36

42

50

70

-

25

Av = 10, Cc = 0, VI = 1V (Pulse)
Av = 1, Cc = 10pF, VI = 10V (Pulse)

Full Power Bandwidth (Note 4)

FPBW

0.8

1.2

Av = 1, Cc = 10pF, Vo = 1BVp_p

-

0.4

Av = 10, Cc = 0, Va = 18Vp_p

Open Loop Differential Input Impedance

ZI

1= 1MHz

-

30

Open Loop Output Impedance

Zo

1= 1MHz

-

110

3-58

-

MHz
dB
dB
V/JJS
V/JJS
MHz
MHz
kQ
Q

CA3100
Electrical Specifications

TA = 25°C, V SUPPLY = ±15V, Unless Otherwise Specified (Continued)

PARAMETER

SYMBOL

Wideband Noise Voltage (RTI)

eN (Total)

Settling Time (To Within ±50mV of 9V
Output Swing)

ts

TEST CONDITIONS

MIN

BW= lMHz, Rs = lkQ
RL = 2kQ, CL = 20pF

TYP

MAX

UNITS

8

~VRMS

0.6

~s

NOTES:
3. Low frequency dynamic characteristic.
ew Rate.
4. Full Power Bandwidth = Siv
1t op-p

Test Circuits
V+

-'

 1MHz VI
POTENTIOMETER AND Vo MEASURED WITH
HF8405A VECTOR
VOLTMETER

~<

2200

V-

FIGURE 2. SLEW RATE IN lOX AMPLIFIER TEST CIRCUIT

FIGURE 1. OPEN-LOOP VOLTAGE GAIN TEST CIRCUIT AND
OFFSET ADJUST CIRCUIT

....- - - - - - - Av=100
1

10pF V+

..

+15V

RS

O.IIlF

-

V-

FIGURE 3. FOLLOWER SLEW RATE TEST CIRCUIT

- 1
=

-15V

FIGURE 4. WIDE BAND INPUT NOISE VOLTAGE TEST CIRCUIT

3-59

CA3100
Test Circuits

(Continued)
1pF
RL = 250n FOR 10M TEST

2kn

Vo

10M = 2"5oQ
9.1kn

Vo =±9V
> - - - ( 6 } -.....-f(»)

t
VOM
RL
2kn

-15V

-

+

1

51n

-

-

2kn

FIGURE 5. OUTPUT VOLTAGE SWING (VOM). OUTPUT
CURRENT SWING (10M) TEST CIRCUIT

12pF
2kn
SETTLING POINT TO SCOPE

FIGURE 6. SETTLING TIME TEST CIRCUIT

Schematic Diagram

R6
12kn
NONINVERT
INPUT

+

3~~-+--~-----+------,

OUTPUT

t--+--{6
~1r-~~~--+---~8
PHASE
COMP

Rg
200n
018

OFFSET
NULL

+-----+--+------(5
R14
1.1kn

~------+---------+---+------(1
R18
OFFSET
NULL
150n
AND PHASE
COMP

3-60

CA3100
Typical Applications
3dB BANDWIDTH
AcL = 20dB

= 15MHz

INPUT

r

·33~F
31en

3pF

g~~~~~;A~EL~~NG t-~~-+--r
SOQ LINE:
-3dB BANDWIDTH ~ 20MHz
TOTAL INPUT NOISE
'---~I--"" VOLTAGE REFERRED TO
INPUT ~ 3S~VRMS

FREQ
lMHz
2MHz
4MHz
6MHz

Vo
8V
5V
2V
lV

FIGURE 7. 20dB VIDEO AMPLIFIER

220Q
GAIN = 20dB

t-t-..---.......- '

-lSV

FIGURE 8. 20dB VIDEO LINE DRIVER

ZE~£~DJ

201en

+lSV

...I



iie

\

7.5

c

~

~

"

'-vICR

w
0

5.0

::E

z

~~

o

..,

w 12.5

Il.

~

15.0

CI

10

5

TA= 25°C

w

CI

Sl::E
8

~ p...

1

10

100

2.5

o

o

±2.5

±5

±7.5

FREQUENCY (MHz)

±10

±12.5 ±15

±17.5

FIGURE 19. MAXIMUM OUTPUT VOLTAGE SWING vs
FREQUENCY

FIGURE 20. COMMON MODE INPUT VOLTAGE RANGE vs
SUPPLY VOLTAGE

TA = 25°C
~
w

15

g

~
o
~

~

10

~

7.5

::E

::>
~

i

TA = 25°C
15

vt~~

~ 12.5

!:i

.c

~

~

~OM+

ztow

a:
a:

""

::>
0

::>

'"

±5

±7.5

±10

±12.5

±15

±17.5

~

7.5
5

-'"

2.5

o

±2.5

±5

SUPPLY VOLTAGE (V)

FIGURE 21. MAXIMUM OUTPUT VOLTAGE vs SUPPLY VOLTAGE

/"

12.5

w
a: 10.0
a:

::>

",. ~

0

'"~

7.5

!:i

5.0



II.

~

0

Bias-Source Circuit
At total supply voltages, somewhat above 8.3V, resistor R2
and zener diode ZI serve to establish a voltage of 8.3V across
the series-connected circuit, consisting of resistor Rl, diodes
01 through 04, and PMOS transistor 01. A tap at the junction
of resistor Rl and diode 04 provides a gate-bias potential of
about 4.5V for PMOS transistors 04 and Os with respect to
Terminal 7. A potential of about 2.2V is developed across
diode-connected ,PMOS transistor 01 with respect to Terminal
7 to provide gate bias for PMOS transistors 02 and 03' It
should be noted that 01 is "mirror-connected (see Note 8)" to
both 02 and 03. Since transistors 01, 02, 03 are designed to
be identical,. the approximately 200llA current in 01 establishes a similar current in 02 and 03 as constant current
sources for both the first and second amplifier stages, respectively.
At total supply voltages somewhat less than 8.3V, zener
diode ZI becomes nonconductive and the potential,
developed across series-connected Rl, 01-04, and 01, varies directly with variations in supply voltage. Consequently,
the gate bias for 04. 05 and 02, 03 varies in accordance
with supply-voltage variations. This variation results in

2.5

5

7.5

10

12.5

15

17.5

20

22.5

GATE VOLTAGE (TERMINALS 4 AND 8) (V)

FIGURE 2. VOLTAGE TRANSFER CHARACTERISTICS OF
CMOS OUTPUT STAGE

Input Current Variation with Common Mode Input
Voltage

As shown in the Table of Electrical Specifications, the input
current for the CA3130 Series Op Amps is typically 5pA at
TA = 250 C when Terminals 2 and 3 are at a common-mode
potential of +7.5V with respect to negative supply Terminal 4.
Figure 3 contains data showing the variation of input current
as a function of common-mode input voltage at TA 25°C.
These data show that circuit designers can advantageously
exploit these characteristics to design circuits which typically
require an input current of less than 1pA, provided the common-mode input voltage does not exceed 2V. As previously
noted, the input current is essentially the result of the leakage
current through the gate-protection diodes in the input circuit
and, therefore, a function of the applied voltage. Although the
finite resistance of the glass terminal-to-case insulator of the

3-68

=

CA3130, CA3130A
metal can package also contributes an increment of leakage
current, there are useful compensating factors. Because the
gate-protection network functions as if H is connected to Terminal 4 potential, and the Metal Can case of the CA3130 is
also internally tied to Terminal 4, input Terminal 3 is essentially "guarded" from spurious leakage currents.
r-~--~--r--'--~---r--r-~r-~--'

10

~

Input Offset Voltage (VIO) Variation with DC Bias and
Device Operating Life

7.5

w

CI

~
~

In applications requiring the lowest practical input current
and incremental increases in current because of "warm-up"
effects, it is suggested that an appropriate heat sink be used
with the CA3130. In addition, when "sinking" or "sourcing"
significant output current the chip temperature increases,
causing an increase in the input current. In such cases, heatsinking can also very markedly reduce and stabilize input
current variations.

5

I-

::;)

A-

~

2.5

0
-1

0

2

3
4
5
6
INPUT CURRENT (pAl

7

FIGURE 3. INPUT CURRENT vs COMMON-MODE VOLTAGE
Offset Nulling
Offset-voltage nulling is usually accomplished with a
100,OOOQ potentiometer connected across Terminals 1 and
5 and with the potentiometer slider arm connected to
Terminal 4. A fine offset-null adjustment usually can be
effected with the slider arm positioned in the mid-point of the
potentiometer's total range.

It is well known that the characteristics of a MOSFET device
can change slightly when a DC gate-source bias potential is
applied to the device for extended time periods. The magnitude of the change is increased at high temperatures. Users
of the CA3130 should be alert to the possible impacts of this
effect if the application of the device involves extended operation at high temperatures with a Significant differential DC
bias voltage applied across Terminals 2 and 3. Figure 5
shows typical data pertinent to shifts in offset voltage
encountered with CA3130 devices (metal can package) during life testing. At lower temperatures (metal can and plastic), for example at 850 C, this change in voltage is
considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental
changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage. The 2VDC differential voltage example
represents conditions when the amplifier output stage is
"toggled", e.g., as in comparator applications.
7
TA = 1250 C FOR TO-5 PACKAGES

Input-Current Variation with Temperature
The input current of the CA3130 Series circuits is typically
5pA at 250 C. The major portion of this input current is due to
leakage current through the gate-protective diodes in the input
circuit. As with any semiconductor-junction device, including
op amps with a junction-FET input stage, the leakage current
approximately doubles for every 100 C increase in temperature. Figure 4 provides data on the typical variation of input
bias current as a function of temperature in the CA3130.

>"

6

t:

5

III

4

§.

:E
II)

~

/"-

~

3

Iii
Ie

2

15

4000
Vs =±7.5V

1000

IZ

II:
II:

/

0
~

./

~
o

,

500

DIFFERENTIAL DC VOLTAGE
(ACROSS TERMINALS 2 AND 3) =OV
OUTPUT VOLTAGE =V+/2

1000 1500

2000 2500

3000 3500

4000

FIGURE 5. TYPICAL INCREMENTAL OFFSET-VOLTAGE
SHIFT VB OPERATING LIFE

,J

100

::;)

5
A-

..o!'V

~

TIME (HOURS)

i

w

o

/

DIFFERENTIAL DC VOLTAGE
(ACROSS TERMINALS 2 AND 3) = 2V
OUTPUT STAGE TOGGLED

/
".

10

/

1

-80 -60 -40 -20

0

20

40

60

80

100 120 140

TEMPERATURE (DC)

FIGURE 4. INPUT CURRENT vs TEMPERATURE

3-69

--'
V,o/I>T

-

8

NOTES:
3. At Va = 26Vp_p, +12V, -14Vand RL = 2kn.
4. At RL = 2kn.

Electrical Specifications

For Design Guidance At V+ = 5V, V- = OV, TA = 25°C
TYPICAL VALUES

PARAMETER

SYMBOL

CA3140

CA3140A

UNITS

IVIOI

5

2

mV

11101

0.1

0.1

pA

Input Current

II

2

2

pA

O!:!:!
-LL

Input Resistance

RI

1

1

Tn

a:

AoL

100

100

kVN

100

100

dB

32

32

IlVN

90

90

dB

-0.5

-0.5

V

2.6

2.6

V

100

100

IlVN
dB

Input Offset Voltage
Input Offset Current

Large Signal Voltage Gain (See Figures 6, 29)

Common Mode Rejection Ratio

CMRR

Common Mode Input Voltage Range (See Figure 8)

VieR

Power Supply Rejection Ratio

PSRR

I>VIOII>VS
Maximum Output Voltage (See Figures 2, 8)

Maximum Output Current:

ISource

ISink

80

80

VOM+

3

3

V

VOM-

0.13

0.13

V

10M+

10

10

mA

10M-

1

1

mA

Slew Rate (See Figure 31)

SR

7

7

V/IlS

Gain-Bandwidth Product (See Figure 30)

fT

3.7

3.7

MHz

Supply Current (See Figure 32)

1+

1.6

1.6

mA

Po

8

8

mW

200

200

IlA

Device Dissipation
Sink Current from Terminal 8 to Terminal 4 to Swing Output Low

3·81

..J
oI(U)

Za:

tcc:J0.

W:iii

~01(

CA3140, CA3140A
Block Diagram

- - - - - - - - - - - -2;; - - - - - - - - - - 4';A~
7

v+

I

I

2mA:

L-~~----~~~-i------

__--~~4

~

8::.:. ;';;B; ~
Schematic Diagram
BIAS CIRCUIT

INPUT STAGE

SECOND STAGE

p-------- .. ------------. r-----

01~

OUTPUT STAGE

DYNAMIC CURRENT SINK

____•

Ra

+-~~

______ ________
~

~~

____

1K ala
-;~~~-,

~~~

____

+-~~~-<'6

._------- ._------OFFSET NULL

STROBE

NOTE: All resistance values are in ohms.

3-82

v-

OUTPUT

CA3140, CA3140A
Application Information
Circuit Description

As shown in the block diagram, the input terminals may be
operated down to O.5V below the negative supply rail. Two
class A amplifier stages provide the voltage gain, and a
unique class AB amplifier stage provides the current gain
necessary to drive low-impedance loads.
A biasing circuit provides control of cascoded constant current
flow circuijs in the first and second stages. The CA3140
includes an on chip phase compensating capacitor that is
sufficient for the unity gain voltage follower configuration.
Input Stage

The schematic diagram consists of a differential input stage
using PMOS field-effect transistors (09, 010) working into a
mirror pair of bipolar transistors (011, 012) functioning as load
resistors together wijh resistors R2 through Rs. The mirror pair
transistors also function as a differential-to-single-ended
converter to provide base current drive to the second stage
bipolar transistor (Od. Offset nulling, when desired, can be
effected with a 10kn potentiometer connected across
Terminals 1 and 5 and wijh ijs slider arm connected to Terminal
4. Cascode-connected bipolar transistors 02, 05 are the
constant current source for the input stage. The base biasing
circuij for the constant current source is described
subsequently. The small diodes D3, D4, D5 provide gate oxide
protection against high voHage transients, e.g., static electricity.
Second Stage

Most of the voltage gain in the CA3140 is provided by the
second amplifier stage, consisting of bipolar transistor 013
and its cascode connected load resistance provided by
bipolar transistors 03, 04' On-chip phase compensation,
sufficient for a majority of the applications is provided by C1.
Additional Miller-Effect compensation (roll off) can be
accomplished, when desired, by simply connecting a small
capacitor between Terminals 1 and 8. Terminal 8 is also
used to strobe the output stage into quiescence. When
terminal 8 is tied to the negative supply rail (Terminal 4) by
mechanical or electrical means, the output Terminal 6
swings low, I.e., approximately to Terminal 4 potential.
Output Stage

The CA3140 Series circuits employ a broad band output stage
that can sink loads to the negative supply to complement the
capability of the PMOS input stage when operating near the
negative rail. Ouiescent current in the emitter-follower cascade
circuit (017, 018) is established by transistors (014, 015)
whose base currents are "mirrored" to current flowing through
diode D2 in the bias circuit section. When the CA3140 is
operating such that output Terminal 6 is sourcing current,
transistor 018 functions as an emitter-follower to source current
from the V+ bus (Terminal 7), via ~, R9, and R11' Under these
conditions, the collector potential of 013 is sufficiently high to
permit the necessary flow of base current to emitter follower
017 which, in turn, drives 018'
When the CA3140 is operating such that output Terminal 6 is
sinking current to the V- bus, transistor 016 is the current
sinking element. Transistor 016 is mirror connected to D6, R7,

wijh current fed by way of 021, R12, and 020' Transistor 020, in
turn, is biased by current flow through R13, zener D8, and R14'
The dynamic current sink is controlled by voltage level sensing.
For purposes of explanation, it is assumed that output Terminal
6 is quiescently established at the potential midpoint between
the V+ and V- supply rails. When output current sinking mode
operation is required, the collector potential of transistor 013 is
driven below its quiescent level, thereby causing 017, 018 to
decrease the output voltage at Terminal 6. Thus, the gate
terminal of PMOS transistor 021 is displaced toward the V- bus,
thereby reducing the channel resistance of 021' As a
consequence, there is an incremental increase in current flow
through 020, R12, 021, D6, R70 and the base of 016. As a
result, 016 sinks current from Terminal 6 in direct response to
the incremental change in output voltage caused by 018' This
sink current flows regardless of load; any excess current is
intemally supplied by the emitter-follower 018' Short circuit
protection of the output circuit is provided by 019, which is
driven into conduction by the high voltage drop developed
across R11 under output short circuij conditions. Under these
conditions, the collector of 019 diverts current from ~ so as to
reduce the base current drive from 017, thereby limiting current
flow in 018 to the short circuited load terminal.
Bias Circuit

..J

Ouiescent current in all stages (except the dynamic current
sink) of the CA3140 is dependent upon bias current flow in R1'
The function of the bias circuit is to establish and maintain
constant current flow through D1, 06, 08 and D2. D1 is a diode
connected transistor mirror connected in parallel wijh the base
emitter junctions of 01, 02, and Os. D1 may be considered as a
current sampling diode that senses the emitter current of 06
and automatically adjusts the base current of 06 (via 01) to
maintain a constant current through 06, 08, D2. The base
currents in 02, 03 are also determined by constant current flow
D1' Furthermore, current in diode connected transistor 02
establishes the currents in transistors 014 and 015'

O!!!
-II..

Typical Applications
Wide dynamic range of input and output characteristics with
the most desirable high input impedance characteristics is
achieved in the CA3140 by the use of an unique design based
upon the PMOS Bipolar process. Input common mode voltage
range and output swing capabilities are complementary,
allowing operation with the single supply down to 4V.
The wide dynamic range of these parameters also means
that this device is suitable for many single supply applications, such as, for example, where one input is driven below
the potential of Terminal 4 and the phase sense of the output
signal must be maintained - a most important consideration
in comparator applications.
Output Circuit Considerations

Excellent interfaCing with TTL circuitry is easily achieved with a
single 6.2V zener diode connected to Terminal 8 as shown in
Figure 1. This connection assures that the maximum output signal swing will not go more positive than the zener voltage minus
two base-to-emitter voltage drops wijhin the CA3140. These
voltages are independent of the operating supply voltage.

3-83

etC/)

za:

!ci:J
a: 0..
w:a
~et

CA3140, CA3140A
Figure 4 shows some typical configurations. Note that a
series resistor, RL, is used in both cases to limit the drive
available to the driven device. Moreover, it is recommended
that a series diode and shunt diode be used at the thyristor
input to prevent large negative transient surges that can
appear at the gate of thyristors, from damaging the
integrated circuit.

TYPICAL
TTL GATE

Offset Voltage Nulling
The input offset voltage can be nulled by connecting a 10kn
potentiometer between Terminals 1 and 5 and returning its
wiper arm to terminal 4, see Figure 3A. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is
not fully utilized. Typical values of series resistors (R) that
may be placed at either end of the potentiometer, see Figure
3B, to optimize its utilization range are given in the Electrical
Specifications table.

FIGURE 1. ZENER CLAMPING DIODE CONNECTED TO
TERMINALS 8 AND 4 TO LIMIT CA3140 OUTPUT
SWING TO TTL LEVELS

1000

q;

a

SUPPLY VOLTAGE (V.) = OY
TA = 25°C

I I III I

:2>

!!E

a:~

L&I

~~

100

v

10

An alternate system is shown in Figure 3C. This circuit uses
only one additional resistor of approximately the value
shown in the table. For potentiometers, in which the resistance does not drop to on at either end of rotation, a value of
resistance 10% lower than the values shown in the table
should be used.

1/ 1/ +:lOY

.~

!!=i5
~:::)

i/
+15V

/

~~
~~

)

I-

SUPPLY YOLTAGE (Y+) = +5Y

~~

~

v

sa
s""

Low Voltage Operation
Operation at total supply voltages as low as 4V is possible
with the CA3140. A current regulator based upon the PMOS
threshold voltage maintains reasonable constant operating
current and hence consistent performance down to these
lower voltages.

0

1
0.1

C!,01

1.0

10

LOAD (SINKING) CURRENT (mA)

FIGURE 2. VOLTAGE ACROSS OUTPUT TRANSISTORS (Q15
AND Q16) VB LOAD CURRENT

Figure 2 shows output current sinking capabilities of the
CA3140 at various supply voltages. Output voltage swing to
the negative supply rail permits this device to operate both
power transistors and thyristors directly without the need for
level shifting circuitry usually associated with the 741 series
of operational amplifiers.

The low voltage IimHation occurs when the upper extreme of
the input common mode voltage range extends down to the
voltage at Terminal 4. This limit is reached at a total supply
voltage just below 4V. The output voltage range also begins to
extend down to the negative supply rail, but is slightly higher
than that of the input. Figure 8 shows these characteristics and
shows that with 2V dual supplies, the lower extreme of the input
common mode voltage range is below ground potential.

v·
FIGURE 3A. BASIC

Y·
FIGURE 3B. IMPROVED RESOLUTION

FIGURE 3C. SIMPLER IMPROVED
RESOLUTION

FIGURE 3. THREE OFFSET VOLTAGE NULLING METHODS

3-84

CA3140, CA3140A

30V

t-----. NO LOAD
120VAC

FIGURE 4. METHODS OF UTILIZING THE VCE(SAT) SINKING CURRENT CAPABILITY OF THE CA3140 SERIES
FOLLOWER

SIMULATED
LOAD

>!.. ~

l00pF ;:; ~ 2k.Q

: ?
"-"
.~'::

....I

LOAD RESISTANCE (RLl = 2k.Q
LOAD CAPACITANCE (CU = l00pF
SUPPLY VOLTAGE: Vs =±15V
TA = 25°C
10

J

8
6

~

4

UJ

Cl

~
:.J

~

!:iCo
~

2
0

·2

·4
·6
·8

·10
0.1

10mV"

,

lm~

'lOmV

L,'

~

~

-r-.

""
~

~

-

tt::i0..

INVERTING
5k.Q

,lmV

a:

W:i:

g,et

.,'"

V ,
1..11 .......
/ "
1-

. .'...

etC/)
za:
O!!!
-1.1..

O.o5Ilf"

SIMULATED
LOAD

FOLLOWER

• • • • INVERTING

~~

~~IlmV- r-

lmV

l°iV~ ,\:omv '
1.0
SETTUNG TIME (1lS)

,~\

10

FIGURE SA. WAVEFORM

FIGURE SB. TEST CIRCUITS

FIGURE 5. SETTLING TIME vs INPUT VOLTAGE

Bandwidth and Slew Rate

Input Circuit Considerations

For those cases where bandwidth reduction is desired, for
example, broadband noise reduction, an external capacitor
connected between Terminals 1 and 8 can reduce the open
loop ·3dB bandwidth. The slew rate will, however, also be
proportionally reduced by using this additional capacitor.
Thus, a 20% reduction in bandwidth by this technique will
also reduce the slew rate by about 20%.

As mentioned previously, the amplifier inputs can be driven
below the Terminal 4 potential, but a series current limiting
resistor is recommended to limit the maximum input terminal
current to less than 1mA to prevent damage to the input pro·
tection circuitry.

Figure 5 shows the typical settling time required to reach
1mV or 10mV of the final value for various levels of large
signal inputs for the voltage follower and inverting unity gain
amplifiers. The exceptionally fast settling time characteristics
are largely due to the high combination of high gain and wide
bandwidth of the CA3140; as shown in Figure 6.

Moreover, some current limiting resistance should be
provided between the inverting input and the output when
the CA3140 is used as a unity gain voltage follower. This
resistance prevents the possibility of extremely large input
signal transients from forcing a signal through the input
protection network and directly driving the internal constant
current source which could result in positive feedback via the
output terminal. A 3.9k.Q resistor is sufficient.

3·85

CA3140, CA3140A
10K

SUPPLY VOLTAGE: Vs = +15V

/
C

1K

...az

~

Ul

It:
It:

60
40

RL=2kn,
CL=100pF

20

~

::>

U

!;
I>.

iiE

103
104
106
105
FREQUENCY (Hz)

102

-60

It:

~;t
UlCl ....

~~

$!:ii

-0.5

+VICR ATTA = 125°C !--

-1.0

+VICR AT TA = -55°C

+VICR ATTA = 25°C

r--

I J

~

1

I!::I
::>0

::>

U

+VOUT AT TA = 125°C

-2.5

~
!;

-3.0

...

iiE

1.0

Cl ...

0.5 --VOUTFOR
T = -ss°c to 125°C
0

j!ic

g~

!:i~

-2.0

-

111~

Ul ...

+VOUTATTA=250C
+VOUT AT TA = -550C

-1.5

oClio
It:

20
40
60
60
TEMPERATURE (OC)

1.5

It:

... It:

::>j!!

0

100

120

140

Z

1 11

::>

-20

UI

RL=OO
0

-40

FIGURE 7. INPUT CURRENT vs TEMPERATURE

UI

Z

~

1

108

107

FIGURE 6. OPEN LOOP VOLTAGE GAIN AND PHASE vs
FREQUENCY

9

/

10

1/

~

0
101

UI

1/

100

11

I

-VICR AT TA = 125°C
-VICR AT TA = 25°C
-VICR AT TA = -55 0C

1>.:1 -0.5

!:iii!

gil.
Z
C

-1.5

!:iI>.
o

5

10
15
,SUPPLY VOLTAGE (V+, V-)

20

-1.0

iiE

25

o

5

10
15
SUPPLY VOLTAGE (V+, V-)

20

25

FIGURE 8. OUTPUT VOLTAGE SWING CAPABILITY AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

The typical input current is on the order of 10pA when the
inputs are centered at nominal device dissipation. As the
output supplies load current, device dissipation will increase,
raising the chip temperature and resulting in increased input
current. Figure 7 shows typical input terminal current versus
ambient temperature for the CA3140.

same magnitude as those encountered in an operational
amplifier employing a bipolar transistor input stage.

It is well known that MOSFET devices can exhibit slight
changes in characteristics (for example, small changes in
input offset voltage) due to the application of large differential input voltages that are sustained over long periods at elevated temperatures.
Both applied voltage and temperature accelerate these
changes. The process is reversible and offset voltage shifts of
the opposite polarity reverse the offset. Figure 9 shows the
typical offset voltage change as a function of various stress
voltages at the maximum rating of 12SoC (for metal can); at
lower temperatures (metal can .and plastic), for example, at
8SoC, this change in voltage is considerably less. In typical linear applications, where the differential voltage is small and
symmetrical, these incremental changes are of about the

3-86

7

Ii:

TA = 125°C
FOR METAL CAN PACKAGES
DIFFERENTIAL DC VOLTAGE
(ACROSS TERMINALS 2 AND 3) = 2V
5 I- OUTPUT STAGE TOGGLED

III
Ul

4

.s>
:f

~

!j

$!

IiiIII

...

6

V

3

2

II.

0

o

tt
....
o

r
_

/

./

~
DIFFERENTIAL DC VOLTAGE
(ACROSS TERMINALS 2 AND 3) = ov
OUTPUT VOLTAGE = V+ 12

_

-

I

500 1000 1SOD ,2000 2500 3000 3500 4000 4500
TIME (HOURS)

FIGURE 9. TYPICAL INCREMENTAL OFFSET VOLTAGE
SHIFT VB OPERATING LIFE

CA3140, CA3140A
Super Sweep Function Generator
A function generator having a wide tuning range is shown in
Figure 10. The 1,000,000/1 adjustment range is accomplished by a single variable potentiometer or by an auxiliary
sweeping signal. The CA3140 functions as a non-inverting
readout amplifier of the triangular signal developed across
the integrating capacitor network connected to the output of
the CA30S0A current source.
Buffered triangular output signals are then applied to a second CA30S0 functioning as a high speed hysteresis switch.
Output from the switch is returned directly back to the input
of the CA30S0A current source, thereby, completing the pos·
itive feedback loop
The triangular output level is determined by the four 1N914
level limiting diodes of the second CA30S0 and the resistor
divider network connected to Terminal No.2 (input) of the
CA30S0. These diodes establish the input trip level to this
switching stage and, therefore, indirectly determine the
amplitude of the output triangle.
Compensation for propagation delays around the entire loop
is provided by one adjustment on the input of the CA30S0.
This adjustment, which provides for a constant generator
amplitude output, is most easily made while the generator is
sweeping. High frequency ramp linearity is adjusted by the
single 7pF to 60pF capacitor in the output of the CA30S0A.
It must be emphasized that only the CA30S0A is
characterized for maximum output linearity in the current
generator function.

Now, only the reference voltage must be established to set
the lower limit on the meter. The three remaining transistors
from the CA30S6 Array used in the sweep generator are
used for this reference voltage. In addition, this reference
generator arrangement tends to track ambient temperature
variations, and thus compensates for the effects of the normal negative temperature coefficient of the CA30S0A VABC
terminal voltage.
Another output voltage from the reference generator is used
to insure temperature tracking of the lower end of the
Frequency Adjustment Potentiometer. A large series
resistance simulates a current source, assuring similar
temperature coefficients at both ends of the Frequency
Adjustment Control.
To calibrate this circuit, set the Frequency Adjustment
Potentiometer at its low end. Then adjust the Minimum
Frequency Calibration Control for the lowest frequency. To
establish the upper frequency limit, set the Frequency
Adjustment Potentiometer to its upper end and then adjust
the Maximum Frequency Calibration Control for the
maximum frequency. Because there is interaction among
these controls, repetition of the adjustment procedure may
be necessary. Two adjustments are used for the meter. The
meter sensitivity control sets the meter scale width of each
decade, while the meter position control adjusts the pOinter
on the scale with negligible effect on the sensitivity
adjustment. Thus, the meter sensitivity adjustment control
calibrates the meter so that it deflects 1/6 of full scale for
each decade change in frequency.
Sine Wave Shaper

Meter Driver and Buffer Amplifier
Figure 11 shows the CA3140 connected as a meter driver
and buffer amplifier. Low driving impedance is required of
the CA30S0A current source to assure smooth operation of
the Frequency Adjustment Control. This low-driving
impedance requirement is easily met by using a CA3140
connected as a voltage follower. Moreover, a meter may be
placed across the input to the CA30S0A to give a logarithmic
analog indication of the function generator's frequency.
Analog frequency readout is readily accomplished by the
means described above because the output current of the
CA30S0A varies approximately one decade for each 60mV
change in the applied voltage, VABC (voltage between
Terminals 5 and 4 of the CA30S0A of the function generator).
Therefore, six decades represent 360mV change in VABC.

The circuit shown in Figure 12 uses a CA3140 as a voltage
follower in combination with diodes from the CA3019 Array
to convert the triangular signal from the function generator to
a sine-wave output signal having typically less than 2% THO.
The basic zero crossing slope is established by the 10kQ
potentiometer connected between Terminals 2 and 6 of the
CA3140 and the 9.1ka resistor and 10ka potentiometer
from Terminal 2 to ground. Two break points are established
by diodes 01 through 04. Positive feedback via 05 and 06
establishes the zero slope at the maximum and minimum
levels of the sine wave. This technique is necessary because
the voltage follower configuration approaches unity gain
rather than the zero gain required to shape the sine wave at
the two extremes.

3-S7

..J

;;b_

7. 25Vp_p output at 20kHz.

5.1
MO

8. -3dB at 24kHz from 1kHz reference .

BOOST

FOR DUAL SUPPLIES

TREBLE
CUT
2OOkO
(LINEAR) O.OOlIlF

+15V

100pF

2.2MO

lMO
100kO
10kO
CCW(LOG)
BOOST
BASS
CUT
TONE CONTROL NETWORK

-=-

--------------_.
FIGURE 19. TONE CONTROL CIRCUIT USING CA3130 SERIES (20dB MIDBAND GAIN)

FOR SINGLE SUPPLY
BOOST

0.0471lF

BASS
CUT
(LINEAR)
240kO
5MO
240kO
FOR DUAL SUPPLIES

750
pF

+15V

SMa
51kO
(LINEAR)
BOOST TREBLE
CUT
TONE CONTROL NETWORK

NOTES:
9. ±15dB Bass and Treble Boost and Cut at 100Hz and 10kHz, Respectively,
10, 25Vp_p Output at 20kHz.
11. -3dB at 70kHz from 1kHz Reference.
12. OdB Flat Position Gain.

FIGURE 20. BAXANDALL TONE CONTROL CIRCUIT USING CA3140 SERIES

3-92

CA3140, CA3140A
Wien Bridge Oscillator

.....

r-----~----

Another application of the CA3140 that makes excellent use
of its high input impedance, high slew rate, and high voltage
qualities is the Wien Bridge sine wave oscillator. A basic Wien
R2 R
Bridge oscillator is shown in Figure 21. When Rl
C2
C, the frequency equation reduces to the
and Cl
familiar f = 1/(27tRC) and the gain required for oscillation,
Aosc is equal to 3. Note that if C2 is increased by a factor of
four and R2 is reduced by a factor of four, the gain required
for oscillation becomes 1.5, thus permitting a potentially
higher operating frequency closer to the gain bandwidth
product of the CA3140.

=

=

=

f =

OUTPUT

-O

19Vp.p TO 22Vp.p
THO <0.3%

=

50Hz,
100Hz,
1kHz,
10kHz,
30kHz,

;:-2"-Jr.R;;=1~C:=1~R2=;C""'2

R = 3.3MO

R= 1.6MO
R = 160MO
R = l6MO
R = 5.1MO

soon

FIGURE 22. WIEN BRIDGE OSCILLATOR CIRCUIT USING

CA3140
Simple Sample-and-Hold System

FIGURE 21. BASIC WIEN BRIDGE OSCILLATOR CIRCUIT
USING AN OPERATIONAL AMPLIFIER

Oscillator stabilization takes on many forms. It must be
precisely set, otherwise the amplitude will either diminish or
reach some form of limiting with high levels of distortion. The
element, RS, is commonly replaced with some variable
resistance element. Thus, through some control means, the
value of RS is adjusted to maintain constant oscillator
output. A FET channel resistance, a thermistor, a lamp bulb,
or other device whose resistance increases as the output
amplitude is increased are a few of the elements often
utilized.
Figure 22 shows another means of stabilizing the oscillator
with a zener diode shunting the feedback resistor (RF of
Figure 21). As the output signal amplitude increases, the
zener diode impedance decreases resulting in more
feedback with consequent reduction in gain; thus stabilizing
the amplitude of the output signal. Furthermore, this
combination of a monolithic zener diode and bridge rectifier
circuit tends to provide a zero temperature coefficient for this
regulating system. Because this bridge rectifier system has
no time constant, i.e., thermal time constant for the lamp
bulb, and RC time constant for filters often used in detector
networks, there is no lower frequency limit. For example,
with 11!F polycarbonate capaCitors and 22MQ for the
frequency determining network, the operating frequency is
O.007Hz.
As the frequency is increased, the output amplitude must be
reduced to prevent the output signal from becoming slewrate limited. An output frequency of 180kHz will reach a slew
rate of approximately 9V11!S when its amplitude is 16Vp_p.

Figure 23 shows a very simple sample-and·hold system
using the CA3140 as the readout amplifier for the storage
capacitor. The CA3080A serves as both input buffer
amplifier and low feed-through transmission switch (see
Note 13). System offset nulling is accomplished with the
CA3140 via its offset nulling terminals. A typical simulated
load of 2kQ and 30pF is shown in the schematic.
30k!:!

smoBE

0,

o-~y.,...,

lN914

·15

n

rSAMPLE

UU

HOLD

3.5k!:!
INPUT{~~IIo-Q}I

2k!:!

.-

'-1E-.............. ,.t l

=

0.1""

30pF ;;

SIMULATED LOAD .......
NOT REQUIRED
'.V

.•

··.V

FIGURE 23. SAMPLE AND HOLD CIRCUIT

In this circuit, the storage compensation capacitance (Cl) is
only 200pF. Larger value capacitors provide longer "hold"
periods but with slower slew rates. The slew rate is:
dv

dt

=

cI = O.5mA1200pF = 2.5V/I1S

NOTE:
13. AN666B "Applications of the CA30BO and CA 30BOA High Per·

formance Operational Transconductance Amplifiers".

3·93

..J

«en
Za:

O!!:!
-u.
!;:~

a:

0.

W:E

~«

CA3140, CA3140A
Pulse "droop" during the hold interval is 170pAl200pF which is
(Le., 170pAl200pF). In this case, 170pA represents
the typical leakage current of the CA3080A when strobed off. If
C1 were increased to 2000pF, the "hold-droop" rate will
decrease to O.085~V1~, but the slew rate would decrease to
O.25V/~s. The parallel diode network connected between
Terminal.3 of the CA3080A and Terminal 6 of the CA3140
prevents large input signal feedthrough across the input
terminals of the CA3080A to the 200pF storage capacitor when
the CA3080A is strobed off. Figure 24 shows dynamic
characteristic waveforms of this sample-and-hold system.

Current Amplifier

O.85!lV/~s;

The low input terminal current needed to drive the CA3140
makes it ideal for use in current amplifier applications such
as the one shown in Figure 25 (see Note 14). In this circuit,
low current is supplied at the input potential as the power
supply to load resistor RL. This load current is increased by
the multiplication factor R2/R1, when the load current is monitored by the power supply meter M. Thus, if the load current
is 100nA, with values shown, the load current presented to
the supply will be 100IlA; a much easier current to measure
in many systems.

1Dk!1
+15V

I

10M!1

IL

.L.

Top Trace: Output; 50mV/Div., 200nS/Div.

'j

Bottom Trace: Input; 50mV/Div" 200nS/Div.
4.3kQ

-15V
FIGURE 25. BASIC CURRENT AMPLIFIER FOR LOW CURRENT
MEASUREMENT SYSTEMS

Note that the input and output voltages are transferred at the
same potential and only the output current is multiplied by
the scale factor.

Top Trace: Output Signal; 5V/Div, 2I's/Div.
Center Trace: Difference of Input and Output Signals through
Tektronix Amplifier 7A13; 5mV/Div., 21'S/Div.
Bottom Trace: Input Signal; 5V/Div., 21'S/Div.
LARGE SIGNAL RESPONSE AND SETTLING TIME

The dotted components show a method of decoupling the
circuit from the effects of high output load capacitance and
the potential oscillation in this situation. Essentially, the
necessary high frequency feedback is provided by the
capacitor with the dotted series resistor providing load
decoupling.
Full Wave Rectifier

Figure 26 shows a single supply, absolute value, ideal fullwave rectifier with associated waveforms. During positive
excursions, the input signal is fed through the feedback
network directly to the output. Simultaneously, the positive
excursion of the input signal also drives the output terminal
(No.6) of the inverting amplifier in a negative going
excursion such that the 1N914 diode effectively disconnects
the amplifier from the signal path. During a negative going
excursion of the input signal, the CA3140 functions as a
normal inverting amplifier with a gain equal to -R21R1' When
the equality of the two equations shown in Figure 26 is
satisfied, the full wave output is symmetrical.
SAMPLING RESPONSE
Top Trace: Output; 1OOmV/Div., 500ns/Div.
Bottom Trace: Input; 20V/Div., 500ns/Div.
FIGURE 24. SAMPLE AND HOLD SYSTEM DYNAMIC
CHARACTERISTICS WAVEFORMS

NOTE:
14. "Operational Amplifiers Design and Applications", J. G. Graeme,
McGraw-Hili Book Company, page 308, "Negative Immittance
Converter Circuits".

3-94

CA3140, CA3140A
~

Skn

~w

+1SV

NVV\

10kn

SIMULATED
LOAD

INPUT

> ..... -,
I

100pF ;.;

.: 2kn

I

".r,.
-1SV

=
R2

GAIN = -

R1

R3
= X = .....""---.;R1R2+R3

SW (-3dS) = 4.SMHz
SR = 9V1I1S

O.OSI1F

FIGURE 28A. TEST CIRCUIT

X + X2)
R3 = ( ~ R1
Skn
R2
FOR X = O.S 10kn = R

1

R3 = 10kn(0.7S) = 1Skn
O.S

20Vp_p Input BW (-3d B) = 290kHz, DC Output (Avg) = 3.2V

OUTPUT

Top Trace: Output; SOmV/Div., 200nS/Div.

o

Bottom Trace: Input; SOmV/Div., 200nS/Div.

FIGURE 28B. SMALL SIGNAL RESPONSE

INPUT

o

FIGURE 26. SINGLE SUPPLY, ABSOLUTE VALUE, IDEAL FULL
WAVE RECTIFIER WITH ASSOCIATED
WAVEFORMS

NOISE VOLTAGE
OUTPUT

(Measurement made with Tektronix 7A13, differential amplifier.)
Top Trace: Output Signal; SV/Div., S~S/Div.
Center Trace: Difference Signal; SmV/Div., S/ls/Div.
Bottom Trace: Input Signal; SV/Div., S/ls/Div.
SW (-3dS) = 140kHz
TOTAL NOISE VOLTAGE
(REFERRED TO INPUT) = 4811V (TYP)

1kn

FIGURE 28C. INPUT-OUTPUT DIFFERENCE SIGNAL SHOWING
SETTLING TIME

FIGURE 27. TEST CIRCUIT AMPLIFIER (30dB GAIN) USED FOR
WIDEBAND NOISE MEASUREMENT

FIGURE 28. SPLIT SUPPLY VOLTAGE FOLLOWER TEST
CIRCUIT AND ASSOCIATED WAVEFORMS

3-95

CA3140, CA3140A

Typical Performance Curves
20
RL=2kll

RL = 2kll
CL= 100pF

"N'

:r:

!.
."

Z
~
w

~~

125

~Do

Z

25

~

z

a'i
z

c

o
o

1

5

15
10
SUPPLY VOLTAGE (V)

20

25

25°C
125°C

20

~ 15

..

10

-

c
L.

TA-,550C

IE
II!a::

25°C
~250C

TA=~
5

25

~~

Do

~

IE
~
III

10
15
SUPPLY VOLTAGE (V)

20

25

5

100K

_

25°C

-

3

.All ~

-

r

2
1

o
o

5

10
15
SUPPLY VOLTAGE (V)

20

25

FIGURE 32. QUIESCENT SUPPLY CURRENT vs SUPPLY
VOLTAGE AND TEMPERATURE

SUPPLY VOLTAGE: Vs = t15V
TA = 25°C

1111 I

~

\

,

..........:: ~ "."
125°C

~

SUPPLY VOLTAGE: Vs d15V
TA=25oC

10K

20

6

~

FIGURE 31. SLEW RATE vs SUPPLY VOLTAGE AND
TEMPERATURE

o

15

7

u 4

8
5

10

5

RL=OO

5

S oo

o

FIGURE 30. GAIN BANDWIDTH PRODUCT vs SUPPLY
VOLTAGE AND TEMPERATURE

g

Ie

LL

SUPPLY VOLTAGE (V)

RL = 2kll
CL= 100pF

a::

TA=-550C

"

RGURE 29. OPEN-LOOP VOLTAGE GAIN lIs SUPPLY
VOLTAGE AND TEMPERATURE



r-..

.....

sz
LJJ

10

10 3

10 2
MAGNITUDE OF LOAD CURRENT (mA)

FREQUENCY (Hz)

FIGURE 23. EQUIVALENT NOISE VOLTAGE vs FREQUENCY

FIGURE 22. VOLTAGE ACROSS NMOS OUTPUT TRANSISTOR
(Q12) vs LOAD CURRENT

4000

-I

Vs =±7.5V

/

1000
7.5

I

<"

~

/

~

...

LJJ

C,?

Z
LJJ

~

II:
II:

~
~

0.
~

2.5

L

If

10
I

·1

__-L________________
2

3

4

5

6

1/

~

~

__
o

~

~

~

J

o

1

~

7

~

4

~

0

~

~

FIGURE 24. INPUT CURRENT vs COMMON MODE VOLTAGE

;:

DIFFERENTIAL DC VOLTAGE
(ACROSS TERMINALS 2 AND 3) = 2V
OUTPUT STAGE TOGGLED

6

I

5

LJJ
C,?

4

~

3

~

2

~

V'

/'

IL
IL

/

o

o

I

TA = 125°C FOR
METAL CAN PACKAGES"""'"

U)

/
V"

I/.
o

00

l00l~l~

FIGURE 25. INPUT CURRENT vs TEMPERATURE

7

lti:

ro

TEMPERATURE (oC)

INPUT CURRENT (pA)

500

V
DIFFERENTIAL DC VOLTAGE
(ACROSS TERMINALS 2 AND 3)
OUTPUT VOLTAGE = V+/2
1

= OV
1

1000 1500 2000 2500 3000 3500 4000
TIME (HOURS)

FIGURE 26. TYPICAL INCREMENTAL OFFSET VOLTAGE SHIFT vs OPERATING LIFE

3-113

a: a.
w~

:::>

...:::>0

0.
~

O!!:!
-II.

!;i::::i

g;«

I

100

«en
Za:

~';~"'-'1193,. CA3193A
1.2MHz, BiCMOS

____..... recision Operational Amplifiers
Description
LowVIO
- CA3193A .....••........•.....•... 200!!V (Max)
- CA3193 ......••........•......•.. 500!!V (Max)
• Low t..VloIt..T
- CA3193A ...............•........ 3!!vflc (Max)
- CA3193 ......•..........•••...•. 5!!vflC (Max)
• Low 110 and II
• Low t..lloIt..T: CA3193 .•.•.••....... 150pAflC (Max)
• Low t..ltlt..T: CA3193 ..•..........•.. 3.7nAflC (Max)

Applications
• Thermocouple Preamplifiers
• Strain Gauge Bridge Amplifiers
• Summing Amplifiers

The CA3193A and CA3193 are ultra-stable, precIsion
instrumentation, operational amplifiers that employ both
PMOS and bipolar transistors on a single monolithic chip.
The CA3193A and CA3193 amplifiers are internally phase
compensated and provide a gain bandwidth product of
1.2MHz. They are pin compatible with the industry 741
series and many other IC op amps, and may be used as
replacements for 741 series types in most applications.
The CA3193A and CA3193 can also be used as functional
replacements for op amp types 725, 108A, OP-5, OP-7,
LM11 and LM714 in many applications where nulling is not
employed. Because of their low offset voltage and low offset
voltage vs temperature coefficient the CA3193A and
CA3193 amplifiers have a wider range of applications than
most op amps and are particularly well suited for use as
thermocouple amplifiers, high gain filters, buffer, strain
gauge bridge amplifiers and precision voltage references.
The two types in the CA3193 series are functionally
identical. The CA3193A and CA3193 operate from supply
voltages of ±3.5V to ±18V.

• Differential Amplifiers
• Bilateral Current Sources

Ordering Information

• Log Amplifiers
• Differential Voltmeters

PART NUMBER

TEMP.
RANGE (oC)

PKG.
NO.

PACKAGE

• Precision Voltage References

CA3193AE

-25 to 85

8 Ld PDIP

E8.3

• Active Filters

CA3193AT

-25 to 85

8 Pin Metal Can

T8.C

• Buffers

CA3193E

Ot070

8Ld PDIP

E8.3

CA3193T

Ot070

8 Pin Metal Can

T8.C

• Integrators
• Sample-and-Hold Circuits
• Low Frequency Filters

Pinouts
CA3193
(METAL CAN)
TOP VIEW

CA3193
(PDIP)
TOP VIEW

NC

OFFSET NULL

1

INV.INPUT

2

NON-INV. INPUT

3
5

OFFSET NULL

NOTE: Pin 4 is connected to case on Sand T suffix.

)
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-114

File Number

1249.2

CA3240, CA3240A

HARRIS
SEMICONDUCTOR

Dual, 4.5MHz, BiMOS Operational Amplifier
with MOSFET Input/Bipolar Output

November 1996

Features

Description

• Dual Version of CA3140

The CA3240A and CA3240 are dual versions of the popular
CA3140 series integrated circuit operational amplifiers. They
combine the advantages of MOS and bipolar transistors on the
same monolithic Chip. The gate-protected MOSFET (PMOS)
input transistors provide high input impedance and a wide
common-mode input voltage range (typically to O.5V below the
negative supply rail). The bipolar output transistors allow a wide
output voltage swing and provide a high output current capability.

• Internally Compensated
• MOSFET Input Stage
- Very High Input Impedance (ZIN) 1.5TO (Typ)
- Very Low Input Current (II) 10pA Typ. at ±15V
- Wide Common-Mode Input Voltage Range (VICR):
Can Be Swung O.5V Below Negative Supply Voltage
Rail
• Directly Replaces Industry Type 741 in Most
Applications

Applications
Ground Referenced Single Amplifiers in Automobile
and Portable Instrumentation

The CA3240A and CA3240 are compatible with the industry
standard 1458 operational amplifiers in similar packages.The offset null feature is available only when these types are supplied in
the 14 lead PDIP package (E1 suffix).

Ordering Information

• Sample and Hold Amplifiers

PART NUMBER

• Long Duration Timers/Multivibrators (MicrosecondsMinutes-Hours)
• Photocurrent Instrumentation
• Intrusion Alarm System

• Active Filters

• Comparators

• Function Generators

• Instrumentation Amplifiers

• Power Supplies

Pinouts

TEMP.
RANGE (OC)

PKG.
NO.

PACKAGE

CA3240AE

·40 to 85

8 Ld PDIP

E8.3

CA3240AE1

·40 to 85

14 Ld PDIP

E14.3

CA3240E

·40 to 85

8 Ld PDIP

E8.3

CA3240E1

·40 to 85

14 Ld PDIP

E14.3

2mA

O U T P U T ( A ) O S v+
INV.
INPUT (A) 2
7 OUTPUT
NON·INV.
INPUT (A)
V
•

:~~UT (B)

3

6

4

5 NON-INV.
INPUT (B)

CA3240, CA3240A, (PDIP)
TOP VIEW
INV.
INPUT (A) 1
NON·INV.
INPUT (A)
OFFSET 3
NULL (A)
y. 4

OFFSET
4 NULL(A)

3

v+t
12pF

2 OUTPUT (A)

OFFSET 5
o OUTPUT(B)
NULL (B)
NON·INV.
9
v+t
INPUT(B) 6
OFFSET
INY. 7
I...-_ _...J S NULL (B)
INPUT (B)

V-

OFFSET NULL

NOTE: Only available with 14 lead DIP (E1 Suffix).

t Pins 9 and 13 internally connected through approximately 30.

CAUTION: These devices are sensitive to electroslatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-115

File Number

etC/)
za:
O!!:!
-u.

ti:::i
II:Q.
W:ii

~et

Functional Diagram
CA3240, CA3240A, (PDIP)
TOP VIEW

...J

1050.3

CA3240, CA3240A
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V-) ...•..•..........•... 36V
Differential Input Voltage........•....................... 8V
Input Voltage .....................•..•. (V+ +8V) to (V- -0.5V)
Input Current. .............•.......................•. 1mA
Output Short Circuit Duration (Note 1) ..............•• Indefinite

Thermal Resistance (Typical, Note 2)

8JA (oCIW)
8 Lead PDIP Package..... ... ....... ........
100
14 Lead PDIP Package ..... ,. ... .... ........
100
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range . • . . . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) .......••.... 300°C

Operating Conditions
Temperature Range ••....................•... -40°C to 85°C
Voltage Range ....••.• : ••..•••.••.. 4V to 36V or ±2V to ±18V

CAUTION: Stresses above those /lsted In "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Short circuit may be applied to ground or to either supply. Temperatures and/or supply voltages must be limited to keep dissipation within
maximum rating.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

For Equipment Design, VSUPPLY = ±15V, TA = 25°C, Unless Otherwise Specified
CA3240

PARAMETER

SYMBOL

Input Offset Voltage

VIO

Input Offset Current

110

Input Current

MIN

MAX

MIN

TYP

MAX

UNITS

5

15

-

2

5

mV

0.5

30

0.5

20

pA

10

SO

-

10

40

pA

20

100

-

20

100

-

kVN

86

100

-

II

Large-Signal Voltage Gain
(See Figures 13, 28) (Note 3)
Common Mode Rejection
Ratio (See Figure 18)
Common Mode Input Voltage
Range (See Figure 25)
Power Supply Rejection Ratio
(See Figure 20)

AoL

CA3240A

TYP

86

100

32

320

-

32

320

IlVN

70

90

-

70

90

-

dB

-15

-15.5 to
+12.5

11

-15

-15.Sto
+12.5

12

V

PSRR

-

100

150

-

100

150

IlVN

(/!NldIlV±)

76

80

-

76

80

-

dB

CMRR

VieR

dB

Maximum Output Voltage (Note 4)
(See Figures 24, 25)

, VOM+

12

13

12

13

VOM-

-14

-14.4

-14

-14.4

Maximum Output Voltage (Note 5)

VOM-

0.4

0.13

0.4

0.13

-

V

Total Supply Current
(See Figure 16) For Both Amps

1+

-

8

12

-

8

12

rnA

Total Device Dissipation

Po

-

240

360

-

240

360

mW

V
V

NOTES:
3. At Vo

=26Vp_p, +12V, -14V and RL =2kO.

4. At RL = 2ill.
5. At V+

=5V, V- =GND, ISINK =200JlA.

Electrical Specifications

For Equipment Design, VSUPPLY

=±15V, TA =25°C, Unless Otherwise Specified
TYPICAL VALUES

PARAMETER

SYMBOL

TEST CONDITIONS
Typical Value of Resistor Between Terminals 4 and
3(5) or Between 4 and 14(8) to Adjust Maximum VIO

Input Offset Voltage Adjustment Resistor
(E1 Package Only)

CA3240A CA3240 UNITS
18

4.7

ill

Input Resistance

RI

1.5"·

1.5

TO

Input Capacitance

CI

4

4

pF

Output Resistance

Ro

60

60

n

Equivalent Wideband Input Noise Voltage
(See Figure 2)

eN

48

48

IlV

BW = 140kHz, Rs = 1MO

3-116

CA3240, CA3240A
Electrical Specifications

For Equipment Design, VSUPPLY = ±15V, TA = 25°C, Unless Otherwise Specified
TYPICAL VALUES

PARAMETER

SYMBOL

Equivalent Input Noise Voltage
(See Rgure 19)

CA3240A CA3240 UNITS

f = 1kHz, Rs = 100n

40

40

nV"/Hz

f = 10kHz, Rs = 100n

12

12

nVl.JHz

IOM+

Source

40

40

mA

10M-

Sink

11

11

mA

4.5

4.5

MHz

eN

Short-Circuit Current to Opposite Supply

TEST CONDITIONS

Gain Bandwidth Product (See Figures 14, 28)

fT

Slew Rate (See Figure 15)

SR

Transient Response (See Figure 1)

Settling Time at 10 VP_P (See Figure 26)

9

9

V/Jls

tr

RL = 2kn, CL = 100pF

Rise Time

0.08

0.08

Jls

OS

RL = 2kn, CL = 100pF

Overshoot

10

10

%

ts

Av = +1, RL = 2kn, CL = 100pF,
Voltage Follower

To 1mV

4.5

4.5

Jls

Crosstalk (See Figure 23)

To 10mV

f= 1kHz

Electrical Specifications

1.4

1.4

Jls

120

120

dB

For Equipment Design, at VSUPPLY = ±15V, TA = -40 to 85°C, Unless Otherwise Specified
TYPICAL VALUES

PARAMETER

SYMBOL

CA3240A

CA3240

UNITS

Input Offset Voltage

IVlol

3

10

mV

Input Offset Current (Note 8)

11101

32

32

pA

II

640

640

pA

AoL

63

63

kVN

96

96

dB

CMRR

32

32

JlVN

90

90

dB

Common Mode Input Voltage Range (See Figure 25)

VieR

-15 to +12.3

-15 to +12.3

V

Power Supply Rejection Ratio (See Figure 20)

PSRR

150

150

JlVN
dB

Input Current (Note 8)
Large Signal Voltage Gain (See Figures 13, 28), (Note 6)

Common Mode Rejection Ratio (See Figure 18)

"

(tNloIAV±)

76

76

VOM+

12.4

12.4

V

VOM-

-14.2

-14.2

V

Maximum Output Voltage (Note 7) (See Figures 24, 25)

Supply Current (See Figure 16) Total For Both Amps

1+

8.4

8.4

mA

Total Device Dissipation

PD

252

252

mW

AVloIAT

15

15

JlVfOC

Temperature Coefficient of Input Offset Voltage
NOTES:
6. AtVo = 26Vp_p, +12V, -14V and RL = 2kn.
7. At RL = 2kn.

8. At TA = 85°C.

Electrical Specifications

For Equipment Design, at V+ = 5V, V- = OV, TA = 25°C, Unless Otherwise Specified
TYPICAL VALUES

PARAMETER

SYMBOL

CA3240A

CA3240

UNITS

Input Offset Voltage

IVIOI

2

5

mV

Input Offset Current

"10 1

0.1

0.1

pA

II

2

2

pA

Input Current
Input Resistance

RIN

1

1

Tn

Large Signal Voltage Gain (See Figures 13, 28)

AoL

100

100

kVN

100

100

dB

3-117

CA3240, CA3240A
Electrical Specifications

For Equipment Design, at v+ = 5V, V- = OV, TA = 25°C, Unless Otherwise Specified (Continued)
TYPICAL VALUES

PARAMETER
Common-Mode Rejection Ratio

SYMBOL

CA3240A

CA3240

UNITS

CMRR

32

32

IlVN

90

90

dB

-0.5

-0.5

V

2.6

2.6

V

31.6

31.6

IlVN
dB

Common-Mode Input Voltage Range (See Figure 25)

VieR

Power Supply Rejection Ratio

PSRR

90

90

Maximum Output Voltage (See Figures 24, 25)

VOM+

3

3

V

VOM-

0.3

0.3

V
mA

I

Source

IOM+

20

20

J

Sink

IOM-

1

1

mA

Slew Rate (See Figure 15)

SR

7

7

V/IJ.S

Gain Bandwidth Product (See Figure 14)

fT

4.5

4.5

MHz

Supply Current (See Figure 16)

1+

4

4

rnA

Device Dissipation

Po

20

20

mW

Maximum Output Current

Test Circuits and Waveforms

5OmVlDiv., 200nslDiv.
Top Trace: Input, Bottom Trace: Output

5VlDiv.,1IlslDiv.
Top Trace: Input, Bottom Trace: Output

FIGURE 1A. SMALL SIGNAL RESPONSE

FIGURE 1B. LARGE SIGNAL RESPONSE

SIMULATED
LOAD

>-. -,

100pF

+.....~

2kQ

-:.!,.-

BW (-3dB) = 4.SMHz
SR= 9Y/Jill
O.OSI'F
FIGURE 1C. TEST CIRCUIT
FIGURE 1. SPLlT·SUPPLY VOLTAGE FOLLOWER TEST CIRCUIT AND ASSOCIATED WAVEFORMS

3-118

CA3240, CA3240A
Test Circuits and Waveforms

(Continued)

NOISE
VOLTAGE
OUTPUT

BW (-3dB) = 140kHz
TOTAL NOISE VOLTAGE
(REFERRED TO INPUT) = 48~V (TYP)
FIGURE 2. TEST CIRCUIT AMPLIFIER (3DdB GAIN) USED FOR WIDE BAND NOISE MEASUREMENT

Schematic Diagram (One Amplifier of Two)
..J



L

,

100

CJ

5II.
~

,

10

"

,/

,/
-60

Input Circuit Considerations

-40

-20

~
0

20

40

60

80

100

120 140

TEMPERATURE <"C)

As indicated by the typical VICR, this device will accept
inputs as low as 0.5V below V-. However, a series currentlimiting resistor is recommended to limit the maximum input
terminal current to less than 1mA to prevent damage to the
input protection circuitry.
Moreover, some current-limiting resistance should be provided between the inverting input and the output when the

FIGURE 4. INPUT CURRENT vs TEMPERATURE

It is well known that MOSFET devices can exhibit slight
,changes in characteristics (for example, small changes in
input offset voltage) due to the application of large differential input voltages that are sustained over long periods at
elevated temperatures.

3-120

CA3240, CA3240A
Both applied voltage and temperature accelerate these
changes. The process is reversible and offset voltage shifts
of the opposite polarity reverse the offset. In typical linear
applications, where the differential voltage is small and symmetrical, these incremental changes are of about the same
magnitude as those encountered in an operational amplifier
employing a bipolar transistor input stage.
Offset-Voltage Nulling
The input offset voltage of the CA3240AE1 and CA3240E1
can be nulled by connecting a 10kQ potentiometer between
Terminals 3 and 14 or Sand 8 and returning its wiper arm to
Terminal 4, see Figure SA. This technique, however, gives
more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is not fully utilized.
Typical values of series resistors that may be placed at either
end of the potentiometer, see Figure SB, to optimize its utilization range are given in the table "Electrical Specifications for
Equipment Design" shown on third page of this data sheetAn
alternate system is shown in Figure SC. This circuit uses only
one additional resistor of approximately the value shown in
the table. For potentiometers, in which the resistance does not
drop to OQ at either end of rotation, a value of resistance 10%
lower than the values shown in the table should be used.

Typical Applications
On/Off Touch Switch
The onloff touch switch shown in Figure 6 uses the
CA3240E to sense small currents flowing between two contact points on a touch plate consisting of a PC board metalli-

zation "grid". When the "on" plate is touched, current flows
between the two halves of the grid causing a positive shift in
the output voltage (Terminal 7) of the CA3240E. These positive transitions are fed into the CA30S9, which is used as a
latching circuit and zero-crossing TRIAC driver. When a positive pulse occurs at Terminal 7 of the CA3240E, the TRIAC
is turned on and held on by the CA30S9 and its associated
positive feedback circuitry (S1kfl resistor and 36kQ/42kfl
voltage divider). When the positive pulse occurs at Terminal
1 (CA3240E), the TRIAC is turned off and held off in a similar manner. Note that power for the CA3240E is supplied by
the CA30S9 internal power supply.
The advantage of using the CA3240E in this circuit is that it
can sense the small currents associated with skin conduction while allowing sufficiently high circuit impedance to provide protection against electrical shock.
Dual Level Detector (Window Comparator)
Figure 7 illustrates a simple dual liquid level detector using
the CA3240E as the sensing amplifier. This circuit operates
on the principle that most liquids contain enough ions in
solution to sustain a small amount of current flow between
two electrodes submersed in the liquid. The current, induced
by an O.SV potential applied between two halves of a PC
board grid, is converted to a voltage level by the CA3240E in
a circuit similar to that of the onloff touch switch shown in
Figure 6. The changes in voltage for both the upper and
lower level sensors are processed by the CA3140 to activate
an LED whenever the liquid level is above the upper sensor
or below the lower sensor..

1(7)
12(10)
2(6)

v-

v-

FIGURE SA. BASIC

FIGURE 5B. IMPROVED RESOLUTION

R
FIGURE 5C. SIMPLER IMPROVED RESOLUTION
NOTE:
11. See Electrical Specification Table on Third page of this data sheet for value of R.
FIGURE 5. THREE OFFSET-VOLTAGE NULLING METHODS, (CA3240AE1, CA3240E1 ONLY)

3-121

~

«en

Za:

O!!!
-II.

!;;::i
a:

0.

w:!:

~«

CA3240, CA3240A
44M

10K(2W)
120V1220V
AC
60Hz/50Hz

+6V

T2300B (NOTE 10)

COMMON
1N914
+6VSOURCE

44M

NOTE:
12.

At 220V operation, TRIAC should be T2300D, Rs

~

18K, 5W.

FIGURE 6. ON/OFF TOUCH SWITCH
12M
+15V

LED

LED ON WHEN
LIQUID OUTSIDE
OF LIMITS
.LOW
LEVEL

12M

FIGURE 7. DUAL LEVEL DETECTER

Constant-VoltagelConstant-Current Power Supply

Precision Differential Amplifier

The constant-voltage/constant-current power supply show~
in Figure 8 uses the CA3240E1 as a vOltage-error and current-sensing amplifier. The CA3240E1 is ideal for this application because its input common-mode voltage range
includes ground, allowing the supply to adjust from 20mV to
25V without requiring a negative supply voltage. Also, the
ground reference capability of the CA3240E1 allows it to
sense the voltage across the 1n current-sensing resistor in
the negative output lead of the power supply. The CA3086
transistor array functions as a reference for both constantvoltage and constant-current limiting. The 2N6385 power
Darlington is used as the pass element and may be required
to dissipate as much as 40W. Figure 9 shows the transient
response of the supply during a 1OOmA to 1A load transition.

Figure 10 shows the CA3240E in the classical precision differential amplifier circuit. The CA3240E is ideally suited for
biomedical applications because of its extremely high input
impedance. To insure patient safety, an extremely high electrode series resistance is required to limit any current that
might result in patient discomfort in the event of a fault condition. In this case, 10Mn resistors have been used to limit the
current to less than 2~ without affecting the performance of
the circuit. Figure 11 shows a typical electrocardiogram
waveform obtained with this circuit.

3-122

CA3240, CA3240A
~------------------------------------------~~Vo

2N6385
DARLINGTON

---------..
V+

..

10-10K

180K

+ 500
- ~F

_________ • 10011
lN914
lOOK

0.OS6~F

82K

CA3086E
TRANSISTOR
ARRAY

680K
SOK

--'
«CIl
ZCC

Ow
-ii:

~:J

CCQ..

w:!:

-!-

lOOK

CHASSIS GROUND
Vo RANGE = 20mV TO 2SV
LOAD REGULATION:
VOLTAGE <0.08%
CURRENT <0.05%

111
lW

OUTPUT HUM AND NOISE,; 150~VRMS
(10MHz BANDWIDTH)
SINE REGULATION" 0.1%IV0
10 RANGE = 10mA-l.3A

FIGURE 8. CONSTANT-VOLTAGEICONSTANT-CURRENT POWER SUPPLY

Top Trace:

Output Voltage;
50OmVlDiv., 5JlS/Div.

Bottom Trace: Collector Of Load Switching Transistor
Load =100mA to 1A; 5VlDiv., 5JlS1Div.

FIGURE 9. TRANSIENT RESPONSE

3-123

~«

CA3240, CA3240A

100Kl%
10M

GAIN
CONTROL

"

~,

~
TWOCOND.
SHIELDED
CABLE
FREQUENCY RESPONSE (-3dB) DC TO 1MHz
SLEW RATE = 1.5V1lls
COMMON MODE REJ: 86dB
GAIN RANGE: 35dB TO 60dB

10M

-15V

FI~URE

10. PRECISION DIFFERENTIAL AMPLIFIER

Vertical: 1.0mVlDiv.
AmplHier Gain = 100X
Scope Sensitivity = 0.1 VlDiv.
Horizontal: >O.2slDiv. (Uncal) ,
FIGURE 11. TYPICAL ELECTROCARIOGRAM WAVEFORM

Differential Light Detector
In the circuit shown in Figure 12, the CA3240E converts the
current from two photo diodes to voltage, and applies 1V of
reverse bias to the diodes. The voltages from the CA3240E
outputs are subtracted in the second stage (CA3140) so that
only the difference is amplified. In this manner, the circuit
can be used over a wide range of ambient light conditions
without circuit component adjustment. Also, when used with
a light source, the circuit will not be sensitive to changes in
light level as the source ages.

3-124

CA3240, CA3240A
0.015~F

C30809

PHOTO
OUTPUT

DIODE

C30809

PHOTO
DIODE
0.015~F

FIGURE 12. DIFFERENTIAL LIGHT DETECTOR
..J
c(lI)

Typical Performance Curves

Za:

RL = 2kil

"N
:t: 20

iii
:!!.

~

t;

~

~

Q

"~

100

0

75

Z

50

9
w

5!a..

TA =-40oC

TA _-40°C

:t:

b

25~

I

..-.;::

~

85°C

25°C

85°C

Z
C

III

Z

a..

0

W:E
~c(

10

::I

w 125

~
a..

o!:!:!
-u..
~::i
a: a..

RL = 2kil
CL = 100pF

;(

25

"
o

5

10
15
SUPPLY VOLTAGE (V)

20

FIGURE 13. OPEN LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE
20

o

25

10
15
SUPPLY VOLTAGE (V)

5

10

IZI/I

TA _ -40oC

.-

~ a..

7

L

o;Z:

6

"'

::10
0 ...

!!i~
~6

... 111

a.. a:

85°C

...I

~

10
15
SUPPLY VOLTAGE (V)

20

FIGURE 15. SLEW RATE VB SUPPLY VOLTAGE

25

t=looc

8

/~

/~~

~
25°C

~

~C

/ ~

5

~

4
3
2

5

,
~

RL=OO
9

25jC _

25

FIGURE 14. GAIN BANDWIDTH PRODUCT VB SUPPLY VOLTAGE

RL = 2kil
CL = l00pF

15

20

o

5

10

15

20

25

SUPPLY VOLTAGE (V)

FIGURE 16. QUIESCENT SUPPLY CURRENT va SUPPLY VOLTAGE

3-125

CA3240, CA3240A

Typical Performance Curves

(Continued)

SUPPLY VOLTAGE: Vs = ±15V
TA = 25°C
25

rL

20

fi
g

15

w

!j

0

~

1\

~

~

r\\

0

z

80

~

60

w
Q
0
::Ii

40

~~

I"

~

..........

a::

,

...........

z

I""'i"o
0
10K

SUPPLY VOLTAGE: Vs = ±15V
TA = 25°C
100

~w

\

10

~

120

a::

I-

;:)

iii'
:!!.

100K

0
::Ii
::Ii

r---..

1M

20

~

0
0

FIGURE 18. COMMON MODE REJECTION RATIO vs
FREQUENCY,

iii'
:!!.

SUPPLY VOLTAGE: Vs = +15V
TA = 25°C

0

I

~z

RS= 1000

SUPPLY VOLTAGE: Vs = ±1SV
TA = 25°C

~

.... +PSRR
I.....

60

~

.....

·PSRR

a::

~

~

r-...

w

20

~

1

1\

10

\

ffi

4

o

,2

·10

~

a::m

J

/

o

\

Ww
a:: ...

;:);:)

08
~~

10

a.::Ii

7.5

0.0.

::'oe

Vs =±15V
RL=oo

\

15

!;;li! 12.5

j

~

TA = 25°C

~a::

/

"I"
·15

Em

If

~

o

C(~

L

ONE AMPLIFIER OPERATING

6

~

I

1\

Goe

l.!! iii
1ija.

I

,

~!1i 8

FIGURE 20. POWER SUPPLY REJECTION RATIO vs
FREQUENCY

17.5

I

10S

FREQUENCY (Hz)

t
I

104

103

103

FIGURE 19. EQUIVALENT INPUT NOISE VOLTAGE vs
FREQUENCY

I

~

.....

FREQUENCY (Hz)

Vsl=±115V

"

40

rn
a::

1"'1

I

1111

....

80

::.

TA=2S0C

I II

REJECTION RATIO = IN,oIl!.vS

a.
a.'

12

I II

POW~R ~~~PL~ I I II I I I

100

~
w

...... ....

102

105

FREQUENCY (Hz)

FIGURE 17. MAXIMUM OUTPUT VOLTAGE SWING vs
FREQUENCY

~

104

103

4M

FREQUENCY (Hz)

\

"

rna::

w

I

a.

5

\..

.....

2.5

5

10

15

·15

OUTPUT VOLTAGE (V)

·10

·5

0

5

10

15

OUTPUT VOLTAGE (V)

FIGURE 21. OUTPUT SINK CURRENT VB OUTPUT VOLTAGE

FIGURE 22. SUPPLY CURRENT VB OUTPUT VOLTAGE

3·126

CA3240, CA3240A
Typical Performance Curves

(Continued)

1000

iD
~
~

TA = 25°C
c- AMPA .... AMPB
AMPB .... AMPA
Vs = ±15V

140

-

130

--. ~~O=5VRMS

120

[""0.

..J

~

'"'"5!
0

110

V-=OV
TA -25°C

V+=+5V

100

,

~

~

..... ....

100

-

V

10

....

1.0
0.01

101

~

~

0

I I

60!:

;: iii!
i~

-1

W~ 1.5

I

~ ffi

11.1-

!;o
01-

0.5

-2

§! fa

-0.5

-2.5

!; II!

-1.0

~~

R1.S

-3

TA=2(OC

I
0

I
5

,

/

TA
I

=-4Q°C

TA

+lOV

10

II.W

=_40oC

I

10
15
SUPPLY VOLTAGE (V)

20

25

FIGURE 25A.

oJ

«en
Za:

I

I

O!!:!
-IL.

!;t::i

COMMON MODE VOLTAGE (+VICR)

I

I

I

a:

a..
W:E

. . .. . . -. ..

~«

TA = -40oC TO 85°C
TA = 85°C

W

<~

I I

0

.-,

~

""..

'"

lmV~

#

lDmV,

6

I

6

..

100pF

FOLLOWER
• ••• INVERTING

+~

2kil

•••

~

lm:~~V- f-

~omv

....

~
4

8 1.0

6

0.05~F

8 10

'TIME(~s)

FIGURE 26A. SETTLING TIME vs INPUT VOLTAGE

FIGURE 26B. TEST CIRCUIT (FOLLOWER)
5kil

SIMULATED
LOAD

>.-.

100pF

+~

2kil

'.'

5.11ka

FIGURE 26C. TEST CIRCUIT (INVERTING)
FIGURE 26. INPUT VOLTAGE vs SETTLING TIME
10K

~

/

i

lK

II:
II:

100

Vs =±15V
TA=25oC

i= Vs =±15V
~
CI

z~
W

w

~

80

!j

~

!l
II.

§

40

II.

20

!:

1111

·75

I

·90
·105

RL=2kO,
CL=loopF

·150

1
-60

,

/

§

zW

0

~
-40

·20

0

20

40

80

80

100

120

o

101

140

TEMPERATURE (oC)

FIGURE 27. INPUT CURRENT vs TEMPERATURE

zw

1"1

102

103

104

105

FREQUENCY (Hz)

~
106

"

107

108

FIGURE 28. OPEN LOOP VOLTAGE GAIN AND PHASE V5
FREQUENCY

3·128

W-

i

GAIN

II.

10

i3

II!CI
·135 l!l
·120

U l

"

60

:::I
U

II

RL =2kil
II~JA!! ~ ~L=OpF

100

~

/

III

CA3260, CA3260A

HARRIS
SEMICONDUCTOR

4MHz, SiMOS Operational Amplifier
with MOSFET Input/CMOS Output

November 1996

Features

Description

• MOSFET Input Stage provides
• Very High ZI 1.STO (1.S x 10120) (Typ)
• Very Low II = SpA (Typ) at 1SV Operation
= 2pA (Typ) at SV Operation

CA3260A and CA3260 are integrated circuit operational
amplifiers that combine the advantage of both CMOS and
bipolar transistors on a monolithic chip. The CA3260 series
circuits are dual versions of the popular CA3160 series.

• Ideal for Single Supply Applications

Gate protected P-Channel MOSFET (PMOS) transistors are
used in the input circuit to provide very high input
impedance, very low input current, and exceptional speed
performance. The use of PMOS field effect transistors in the
input stage results in common mode input voltage capability
down to O.SV below the negative supply terminal, an
important attribute in single supply applications.

=

• Common Mode Input Voltage Range Includes
Negative Supply Rail; Input Terminals Can be Swung
O.SV Below Negative Supply Rail
• CMOS Output Stage Permits Signal Swing to Either
(Or Both) Supply Rails

A complementary symmetry MOS (CMOS) transistor pair,
capable of swinging the output voltage to within 10mV of
either supply voltage terminal (at very high values of load
impedance), is employed as the output circuit.

Applications
• Ground Referenced Single Supply Amplifiers
• Fast Sample-Hold Amplifiers

The CA3260 Series circuits operate at supply voltages
ranging from 4V to 16V, or ±2.V to ±8V when using split
supplies. The CA3260A offers superior input characteristics
over those of the CA3260.

• Long Duration TimersiMonostables
• Ideal Interface with Digital CMOS
• High Input Impedance Wideband Amplifiers

Ordering Information

• Voltage Followers (e.g. Follower for Single Supply D/A
Converter)

PART NUMBER

TEMP.
RANGE (DC)

PKG.
NO.

PACKAGE

• Voltage Regulators (Permits Control of Output Voltage
Down to OV)

CA3260E

-5510125

B Ld PDIP

EB.3

CA3260T

-5510125

B Pin Metal Can

TB.C

• Wien Bridge Oscillators

CA3260AE

-5510125

B Ld PDIP

EB.3

• Voltage Controlled Oscillators

CA3260AT

-5510125

B Pin Metal Can

TB.C

• Photo Diode Sensor Amplifiers

Pinouts

CA3260, CA3260A (PDIP)
TOP VIEW

CA3260, CA3260A (METAL CAN)
TOP VIEW
V+

OUTPUT (A)

1

INV. INPUT (A)

2

7

OUTPUT (B)

NON INV. INPUT (A)

3

6

INV. INPUT (B)

5

NON INV. INPUT (B)

tNV. 2

6

INPUT (A)

tNV.
INPUT (B)

V-

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-129

File Number

1266.3

...I
C(I/)

zo::

O!!!
-1.1.

!;;::::i
0::0..

W:::a:
~C(

CA3260, CA3260A
Absolute Maximum Ratings

Thermal Information

DC Supply Voltage (V+ to V-) ........................... 16V
DC lilput Voltage ...................... (V+ +BV) to (V- -0.5V)
Differential Input Voltage .............•.................. BV
InputTermirialCurrent ................................ 1mA
Output Short Circuit Duration (Note 1) ................ Indefinite

Thermal Resistance (Typical, Note 2)
8JA (oC/W) 8JC fc/W)
PDIP Package. ..................
100
N/A
Metal Can Package. . . . . . . . . . . . . . .
165
75
Maximum Junction Temperature (Metal Can Package) ....... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) ......... '.... 300°C

Operating Conditions
Temperature Range ........................ -55°C to 125°C

CAUTION: Stresses above those listed in ''Absolute Maximum Ratings· may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Short circuit may be applied to ground or to either supply.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

TA = 25°C, Typical Values Intended Only for Design Guidance
TYPICAL VALUES

PARAMETER

SYMBOL

TEST CONDITIONS

CA3260A

CA3260

UNITS
TO

Input Resistance

RI

Vs=±7·5V

1.5

1.5

Input Capacitance

CI

f = 1MHz, Vs =±7.5V

4.3

4.3

pF

Unity Gain Crossover Frequency

tr

Vs=±7.5V

4

4

MHz

Slew Rate

SR

Vs=±7.5V

10

10

V/IJS

CL = 25pF, RL = 2kQ,Av = +1,
VS=±7.5V

0.09

0.09

~s

10

10

%

Ct. = 25pF, RL = 2kQ, Av= +1,

1.8

1.B

~s

Transient Response

I

Rise Time

tr

I

Overshoot

OS

Settling Time (to <0.1 %, VIN = 4Vp_p)

ts

VS=±7.5V
Input Offset Voltage

VIO

V+ =5V, V- = OV

2

6

mV

Input Offset Current

110

V+ = 5V, V- = OV

0.1

0.1

pA

II

V+ = 5V, V- = OV

2

2

pA

CMRR

V+ = 5V, V- = OV

70

60

dB

Va = 4Vp_p, RL = 20kQ,
V+ = 5V, V- = OV

100

100

kVN

100

100

dB

Ot02.5

Ot02.5

V

1

1

mA

1.2

1.2

mA

200

200

~VN

Input Current
Common Mode Rejection Ratio
Large Signal Voltage Gain

AoL

Common Mode Input Voltage Range

VICR

Supply Current

1+

V+=5V, V-=OV
Va =5V, RL =~, V+= 5V, V-= OV
Va = 2.5V,

Power Supply Rejection Ratio

Electrical Specifications
PARAMETER
Input Offset Voltage
Input Offset Current
Input Current
Large Signal Voltage Gain

Common Mode Rejection Ratio

PSRR

RL=~,

V+=5V, V-=OV

IlVld/!N+, V+ = 5V, V- = OV

For Each Amplifier at TA = 25°C, V+ = 15V, V- = OV, Unless Otherwise Specified

SYMBOL

TEST
CONDITIONS

CA3260A
MIN

CA3260

TYP

MAX

IVIOI

Vs =±7.5V

2

5

11101

Vs =±7.5V

0.5

20

II

Vs =±7.5V

30

AoL

CMRR

Vo= 10Vp_p,
RL= 10kQ

-

5

50

320

94

110

80

95

3·130

-

MIN

TYP

MAX

UNITS

6

15

mV

0.5

30

pA

5

50

50

320

94

110

70

90

-

pA
kVN
dB
dB

CA3260, CA3260A
Electrical Specifications
PARAMETER

For Each Amplifier at TA = 25°C. V+ = 15V. V- = OV. Unless Otherwise Specified (Continued)

SYMBOL

Common Mode Input Voltage
Range

VieR

Power Supply Rejection Ratio

PSRR

CA3260A

TEST
CONDITIONS

CA3260

MIN

TYP

MAX

MIN

TYP

MAX

UNITS

0

-0.5 to
12

10

0

-0.5 to
12

10

V

-

32

150

32

320

IlVN

11

13.3

11

13.3

-

V

INloIIN+
V+=17.5V

Maximum Output Voltage
VOM+

RL = 10kQ

0.002

VOMVOM+

RL=

14.99

00

VOMMaximum Output Current

0.01

15

-

0.002

0.Q1

V

14.99

15

-

V
V

0

0.01

-

0

0.01

Va = 7.5V
IOM+Source

12

22

45

12

22

45

mA

IOM- Sink

12

20

45

12

20

45

mA

Vo (Amplifier A) = 7.5V
Va (Amplifier B) = 7.5V

-

9

15.5

9

15.5

mA

Vo (Amplifier A) = OV
Vo (Amplifier B) = OV

-

1.2

3

1.2

3

mA

5

8.5

5

8.5

mA

Total Supply Current

1+

RL =

00

..J

ov

Va (Amplifier A) =
Va (Amplifier B) = 7.5V

-

"
!.

1

1600

w
CI 1400

I

~

§1

1200

Ul

:$ 1000
III
II:

II!
!!:

......
::;;

,-

Vg=V'0=V'2=OV -

<

10.2
·75

·50

·25

0

25

50

75

100

125

150 175

TEMPERATURE ("C)

FIGURE 17. LEAKAGE CURRENT vs TEMPERATURE

AMPLIFIER BIAS CURRENT (1lA)

FIGURE 18. AMPLIFIER BIAS VOLTAGE VB AMPLIFIER BIAS
CURRENT

3·138

CA3280, CA3280A
Typical Performance Curves

(Continued)

24
22

If>:

20

.s

16

w

~

14

!:i

12

g

18

8

Z

6

'"5
,

~

Vs =+ISV

IZ

""

.......

w
II:
II:
::>

...::>

I-

::>
0

.:;'

....

~

101

104

103

VB

FIGURE 20. PEAK OUTPUT CURRENT VB AMPLIFIER BIAS
CURRENT

FREQUENCY

TA - +25oC
VS= +ISV

......
~ 105

9-

.....

w
Z

....I

<(J)

105

106

;!

102

AMPLIFIER BIAS CURRENT (IlA)

FREQUENCY (Hz)

FIGURE 19. 1ff NOISE

~

J:-TA = 125°C
TA --55°C
TA _25°C

~~

...

102

~.

101

«
w

4

--.

g

~

102

0
I-

... IABC=SOO~

2

0

TA =-5SoC
TA = 25°C
TA = 125°C -

~

I'-

10

w

103

TA =2SoC

104

Qiii' 104

~~ ~ -S~O~I

<~

TA _25°C
TA = 125°C

II:E

~~

.....

oz

u.e
oi:>

'"w

iii

ZQ

103

W
Q

~8

.....

0

~'"

AMPLIFIER BIAS CURRENT (~)

DIODE CURRENT (IlA)

Vs

VB

~<

~

101

FIGURE 22. AMPLIFIER GAIN

DIODE CURRENT

+I5V

VB

AMPLIFIER BIAS CURRENT

VS=+I5V

....-!:

~.,

~

~

~

I-- r- TA = 125°C~....

~

10-1
10-1

~~ TA = 25°C

~

'TA = -55°C. 25°C

P'" ~TA=-550C
I

1

1~

III

I

101

1~

~

TA = 125°C

1~

~

102

AMPLIFIER BIAS CURRENT (~)

AMPLIFIER BIAS CURRENT (IlA)

FIGURE 23. SUPPLY CURRENT VB AMPLIFIER BIAS CURRENT

FIGURE 24. INPUT BIAS CURRENT
CURRENT

3-139

VB

Za:
o!!!
-II..
~:::i
a: 0..
W:!E

"'~

is 102

FIGURE 21. DIODE RESISTANCE

~

102

!2z

3
II: 10

~:

F

AMPLIFIER BIAS

CA3280, CA3280A
Metallization Mask Layout

Dimensions in parentheses are in millimeters and derived from
the basic inch dimensions as indicated. Grid graduations are in
mils (10- 3 inch).
The photographs and dimensions represent a chip when it Is
part of the wafer. When the wafer is cut into chips, the cleavage
angles are 5~ instead of 900 with respect to the face of the
chip. Therefore, the isolated chip is actually 7 mils (0.17mm)
larger in both dimensions.
.

3-140

~J~~kfJt~~20, CA3420A

~I
\

r-

.

.

liV[O!f\N2.(;;'·'!.!1,;,{dl;)~M~~, Low Supply Voltage, Low Input

'.'

~0~fI,b~\-~'9W::H"·:::~,, __,.. ~.,,~w,-_~~t BiMOS Operational Amplifiers
t~Fea;u;';~* r.~

''''''/iI,U-ril.j;/iI·...,.,».. ·,'ii«'

Description

• 2V Supply at 300llA Supply Current
• 1pA Input Current (Typ) (Essentially Constant to 85°C)
• Rail-to-Rail Output Swing (Drive ±2mA into 1kn Load)
• Pin Compatible with 741 Operational Amplifiers

Applications
• pH Probe Amplifiers
• Picoammeters
• Electrometer (High Z) Instruments
• Portable Equipment
• Inaccessible Field Equipment
• Battery-Dependent Equipment (Medical and Military)

Ordering Information
TEMP.
RANGE('lC)

PART NUMBER

PACKAGE

PKG.
NO.

CA3420AE

-55 to 125

B Ld PDIP

EB.3
TB.C

CA3420AT

-55 to 125

B Pin Metal Can

CA3420E

-55 to 125

B Ld PDIP

EB.3

CA3420T

-55 to 125

B Pin Metal Can

TB.C

Pinouts

The CA3420A andCA3420 are integrated circuit operational
amplifiers that combine PMOS transistors and bipolar
transistors on a single monolithic chip. The CA3420A and
CA3420 BiMOS operational amplifiers feature gate
protected PMOS transistors in the input circuit to provide
very high input impedance, very low input currents (less than
1pA). The internal bootstrapping network features a unique
guard banding technique for reducing the doubling of leakage
current for every 10°C increase in temperature. The CA3420
series operates at total supply voltages from 2V to 20V
either single or dual supply. These operational amplifiers are
internally phase compensated to achieve stable operation in
the unity gain follower configuration. Additionally, they have
access terminals for a supplementary external capacitor if
additional frequency roll-off is desired. Terminals are also
provided for use in applications requiring input offset voltage
nUlling. The use of PMOS in the input stage results in
common mode input voltage capability down to 0.45V below
the negative supply terminal, an important attribute for Single
supply application. The output stage uses a feedback OTA
type amplifier that can swing essentially from rail-to-rail. The
output driving current of 1.5mA (Min) is provided by using
nonlinear current mirrors.

Functional Diagram
CA3420 (PDIP)
TOP VIEW

OFFSET NULL 1
INV.
INPUT
NON-INV. 3
INPUT
5 OFFSET NULL

CA3420 (METAL CAN)
TOP VIEW

e

TAB ,STROBE

OFFSET NULL

IN~Ji

2

8

;

NON-INV. 3
INPUT

v+
6

BUFFER AMPS;
BOOTSTRAPPED
INPUT PROTEcnON
NETWORK

HIGH GAIN

OTABUFFER

(50K)

(X2)

OUTPUT

OFFSET NULL

v-

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-141

File Number

1320.3

...J

4OdB at f
• Power Bandwidth of 10MHz ••... ACL

=5MHz

=5; Vo =±3.5V

• Slew Rate at Full Load ..•.••...... 330Vll!s (Av ~ 10)

=

=

OpF With a Load of 50'1 1120pFII
• fT 220MHz; Cc
1M'1 (Scope Input)
• VOUT =±4.1V Into 75'1
• Offset Null Terminals

The CA34S0 (see Note) is a large signal video line driver
and high speed operational amplifier capable of driving SO'1
transmission lines and flash AIDs. The uncompensated unity
gain crossing occurs at 230MHz without load. It can operate
at dual or single supplies of ±7.2SV or 14.SV, respectively.
The CA34S0 can be compensated with a single capacitor
network. It has output drive capability of 7SmA SINK or
SOURCE. The CA34S0 is capable of driving Flash AIDs in
video or high speed instrumentation (accurate) applications
with bandwidth up to 10MHz. Offset voltage nulling terminals
are also available.
NOTE: Formerly Developmental Type No. TA11371A.

Applications

Ordering Information

• Video Line Driver
• High Frequency Unity Gain Buffer

PART NUMBER

TEMP.
RANGE ("C)

PKG.
NO.

PACKAGE

• Pulse Amplifier
CA3450E

• High Speed Comparator

-401085

16Ld PDIP

E16.3

~<

• Driver for AIDs in Video Applications ..... 10MHz BW

Block Diagram
CA3450
(PDIP)
TOP VIEW

INPUT CURRENT
COMPENSATED
DIFFERENTIAL
AMPLIFIER

1
6
'-v--"

9 11
'-v--"

OFFSET
NULL

PHASE

3·143

V-

COMP

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

~::::i
a: a..
W~

• High Frequency Oscillator and Video Amplifiers

Pinout

..J

ij"I-lI--J-J"{-.>;;j-Yi1i'/HI'l-j-i!.fr!;;!J-/.'''f,;C;I!;-('(O

tif~eatu;;~#'~W"f'~"

Description

• MOSFET Input Stage
- Very High ZI ............ 1.5T12 (1.5 x 101212) (Typ)
- Very Low II ... , ......• 5pA (Typ) at 15V Operation
2pA (Typ) at 5V Operation
• Ideal for Single Supply Applications
• Common Mode Input Voltage Range Includes
Negative Supply Rail; Input Terminals Can Be
Swung 0.5V Below Negative Supply Rail
• CMOS Output Stage Permits Signal Swing to Either (or
Both) Supply Rails
• CA5130A, CA5130 Have Full Military Temperature Range
Guaranteed Specifications for V+ 5V

=

• CA5130A, CA5130 Are Guaranteed to Operate Down to
V+ = 4.5V for AoL
• CA5130A, CA5130 Are Guaranteed to Operate at ±7.5V
CA3130A, CA3130 Specifications

Applications
•
•
•
•
•
•
•
•
•
•
•
•

Ground Referenced Single Supply Amplifiers
Fast Sample-Hold Amplifiers
Long Duration Timers/Monostables
High Input Impedance Comparators (Ideal Interface
with Digital CMOS)
High Input Impedance Wideband Amplifiers
Voltage Followers (e.g., Follower for Single-Supply
D/A Converter)
Voltage Regulators (Permits Control of Output Voltage
Down to OV)
Peak Detectors
Single Supply Full Wave Precision Rectifiers
Photo Diode Sensor Amplifiers
5V Logic Systems
Microprocessor Interface

CA5130A and CA5130 are integrated circuit operational
amplifiers that combine the advantage of both CMOS and
bipolar transistors on a monolithic chip, They are designed
and guaranteed to operate in microprocessors or logic
systems that use +5V supplies,
Gate protected P-Channel MOSFET (PMOS) transistors are
used in the input circuit to provide very high input
impedance, very low input current, and exceptional speed
performance. The use of PMOS field effect transistors in the
input stage results in common mode input voltage capability
down to O,SV below the negative supply terminal, an
important attribute in single supply applications,
A complementary symmetry MOS (CMOS) transistor-pair,
capable of swinging the output voltage to within 10mV of
either supply voltage terminal (at very high values of load
impedance), is employed as the output circuil.
The CAS130 Series circuits operate at supply voltages ranging
from 4V to 16V, or ±2V to ±8V when using split supplies, They
can be phase compensated with a single external capacitor,
and have terminals for adjustment of offset voltage for
applications requiring offset null capability, Terminal provisions
are also made to permit strobing of the output stage.
The CA5130A, CAS130 have guaranteed speCifications for
SV operation over the full military temperature range of
-SSoC to 12SOC.

Ordering Information
PART NUMBER
(BRAND)
CA5130AE
CA5130AM
(5130A)
CA5130AT
CA5130E
CA5130M
(5130)
CA5130T

TEMP.
RANGE (0C)
PACKAGE
-55 to 125 B Ld PDIP
-55 to 125 8 Ld SOIC

PKG.
NO.
EB,3
MB,15

-55 to 125
-55 to 125
-55 to 125

B Pin Metal Can
B Ld PDIP
B Ld SOIC

TB,C
EB,3
MB.15

-55 to 125

B Pin Metal Can

TB.C

Pinouts
CA5130 (PDIP, SOl C)
TOP VIEW
OFFSET NULL

1

INV.INPUT

2

NON-INV. INPUT

3

CA5130 (METAL CAN)
TOP VIEW
PHASE
TAB
COMPENSATION ~
____ '-'./--..
OFFSET NULL

INV.INPUT

1

2

5 OFFSET NULL

V-AND CASE

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper
Copyright

© Harris Corporation 1996

3-144

Ie Handling Procedures.

File Number

1923.3

'iY";,;;;··,·,,,<;,
t Feat(icS& ,""

Description

• MOSFET Input Stage
- Very High ZI; 1.5TO (1.5 x 10120) (Typ)
- Very Low II; 5pA (Typ) at 15V Operation
2pA (Typ) at 5V Operation

CAS160A and CAS160 are integrated circuit operational
amplifiers that combine the advantage of both CMOS and
bipolar transistors on a monolithic chip. The CAS160 series
circuits are frequency compensated versions of the popular
CAS130 series. They are designed and guaranteed to operate
in microprocessor or logic systems that use +SV supplies.

• Common-Mode Input Voltage Range Includes
Negative Supply Rail; Input Terminals Can be
Swung 0.5V Below Negative Supply Rail
• CMOS Output Stage Permits Signal Swing to Either
(or Both) Supply Rails
• CA5160A, CA5160 Have Full Military Temperature
Range Guaranteed Specifications for V+ = 5V
• CA5160A, CA5160 Are Guaranteed to Operate Down
to 4.5V for AOL
• CA5160A, CA5160 Are Guaranteed Up to ±7.5V

Applications

Gate-protected P-Channel MOSFET (PMOS) transistors are
used in the input circuit to provide very high input impedance,
very low input current, and exceptional speed performance.
The use of PMOS field effect transistors in the input stage
results in common-mode input voltage capability down to O.SV
below the negative supply terminal, an important attribute in
single supply applications.
A complementary symmetry MOS (CMOS) transistor pair,
capable of swinging the output voltage to within 10mV of
either supply voltage terminal (at very high values of load
impedance), is employed as the output circuit.
The CAS160 Series circuits operate at supply voltages ranging from +SV to + 16V, or ±2.SV to ±8V when using split supplies, and have terminals for adjustment of offset voltage for
applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage.
They have guaranteed specifications for SV operation over the
full military temperature range of -SSoC to 12SoC.

• Ground Referenced Single Supply Amplifiers
• Fast Sample-Hold Amplifiers
• Long Duration TimersiMonostables
• Ideal Interface With Digital CMOS
• High Input Impedance Wideband Amplifiers
• Voltage Followers (e.g., Follower for Single Supply
D/A Converter)

Ordering Information
PART NUMBER
(BRAND)

• Wien-Bridge Oscillators

TEMP.
RANGE (oC)

PKG.
NO.

PACKAGE

• Voltage Controlled Oscillators

CAS160AE

-55 to 125

8 Ld PDIP

E8.3

• Photo Diode Sensor Amplifiers

CA5160AM (5160A)

-55 to 125

8 LdSOIC

MB.15

CA5160M

• 5V Logic Systems
• Microprocessor Interface

-55 to 125

8 Ld SOIC

M8.15

CA5160E

(5160)

-55 to 125

B Ld PDIP

EB.3

CA5160T

-55 to 125

8 Pin Metal Can TB.C

Pinouts
CA5160 (METAL CAN)
TOP VIEW
SUPPLEMENTARY _ _ TAB
8
COMPENSATION
OFFSET)ULL

#'"

CA5160A, CA5160 (PDIP, SOIC)
TOP VIEW

STROBE
OFFSET NULL

1

1
INV.INPUT 2

INV.INPUT 2
NON INV. INPUT 3
5

OFFSET NULL

4
V-AND CASE

NOTE: CA5160 Series devices have an on-chip·frequency compensation network Supplementary phase-compensation or frequency roll-oll (~desired) can be
connected externally between terminals 1 and 8.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-145

File Number

1924.3

..I

c:«(/)

Za:
O!:!:!
-u..
!ci:::i
a: 0..

w::
~c:(

CA5260, CA5260A

~HARRls.

(KJ

SEMICONDUCTOR

3M Hz, BiMOS Microprocessor Operational
Amplifiers with MOSFET Input/CMOS Output

November 1996

Features

Description

• MOSFET Input Stage provides
- Very High ZI 1.STO (1.5 x 10120) (Typ)
SpA (Typ) at lSV Operation
- Very Low II
2pA (Typ) at SV Operation

The CAS260A and CAS260 are integrated-circuit operational
amplifiers Ihat combine the advantage of both CMOS and
'bipolar transistors on a monolithic Chip. The CAS260 series
circuits are dual versions of the popular CAS160 series. They
are" designed and guaranteed to operate in microprocessor or
logic systems that use +SV supplies.

=
=
=

• Ideal for Single Supply Applications
• Common Mode Input Voltage Range Includes
Negative Supply Rail; Input Terminals Can be
Swung O.SV Below Negative Supply Rail
• CMOS Output Stage Permits Signal Swing to Either
(or Both) Supply Rails
• CAS260A, CAS260 Have Full Military Temperature
Range Guaranteed Specifications for V+ SV

=

• CAS260A, CAS260 are Guaranteed to Operate Down to
4.SVfor AOL
• Fully Guaranteed to Operate from -55°C to 12SoC at
V+ = SV, V- = GND

Gate-protected P-Channel MOSFET (PMOS) transistors are
used in the input circuit to provide very-high-input impedance,
very-low-input current, and exceptional speed performance.
The use of PMOS field-effect transistors in the input stage
results in common-mode input-voltage capability down to O.SV
below the negative-supply terminal, an important attribute in
single-supply applications.
A complementary-symmetry MOS (CMOS) tranSistor-pair,
capable of swinging the output voltage to within 1OmV of either
'supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.
The CAS260 Series circuits operate at supply voltages ranging
from 4.SV to 16V, or ±2.2SV to ±BV when using split supplies,

Applications
• Fast Sample-Hold Amplifiers

The CAS260, CAS260A have guaranteed specifications for SV
operation over the full military temperature range of -SsoC to
12SoC.

• Long Duration TimersiMonostables

OrderinglnforlnaUon

• Ground Referenced Single Supply Amplifiers

• Ideal Interface with Digital CMOS

PART NUMBER
(BRAND)

• High Input Impedance Wideband Amplifiers
• Voltage Followers (e.g., Follower for Single Supply
D/A Converter)

TEMP.
RANGECOC)

PKG.
NO.

PACKAGE

CA5260AE

-55 to 125

B Ld PDIP

EB.3

CA5260AM
(5260A)

-55 to 125

B LdSOIC

MB.15

• Wien Bridge Oscillators

CA5260AM96
(5260A)

·55 to 125

B Ld SOIC Tape
and Reel

MB.15

• Voltage Controlled Oscillators

CA5260E

·55 to 125

B Ld PDIP

EB.3

• Photo Diode Sensor Amplifiers

CA5260M
(5260)

·55 to 125

B LdSOIC

MB.15

CA5260M96
(5260)

·55 to 125

B Ld SOIC Tape
and Reel

MB.15

• Voltage Regulators (Permits Control of Output Voltage
Down toOV)

• SV Logic Systems
• Microprocessor Interface

Pinout
CA5260 (PDIP, SOIC)
TOP VIEW
OUTPUT (A)

1

INV. INPUT (A)

2

7

OUTPUT (B)

NON INV. INPUT (A)

3

6

INV. INPUT (B)

5

NON INV. INPUT (B)

CAUTION: These devices are sensitive to electrostatic discharge, Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-146

File Number

1929.3

CA5260, CA5260A
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V- Terminals) ............. 16V
Differential Input Voltage ................................ 8V
Input Voltage ......................... (V+ +8V) to (V- -0.5V)
Input Current. ...................................... 1mA
Output Short Circuit Duration (Note 1) ................ Indefinite

Thermal Resistance (Typical, Note 2)

Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . .. -55°C to 125°C

9JA (oCIW)

PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96
157
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Junction Temperature (Die) ................. " 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) ............ 300°C
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other condiffons above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Short circuit may be applied to ground or to either supply.
2. IlJA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

Typical Values Intended Only for Design Guidance, V+ = 5V, V- = OV, TA = 25°C,
Unless Otherwise Specified
TYPICAL VALUES

PARAMETER

SYMBOL

Input Resistance

R,

Input Capacitance

C,

Unity Gain Crossover Frequency

fT

Slew Rate

SR

Transient Response
Rise Time

tr

Overshoot

OS

Settling Time (To <0.1%, Y,N = 4Vp_p)

Electrical Specifications
PARAMETER

ts

SYMBOL

Vo=2.5V

Input Offset Current

',0

Vo=2.5V

I,

Vo=2.5V

UNITS

1.5

TQ

4.3

4.3

pF

3

3

MHz

5

5

V/IlS

VOUT = 2.5Vp_p

..J
«II)

Za:
O~

-II.

CL = 25pF, RL = 2kQ
(Voltage Follower)

0.09

0.09

flS

~::::i
a: 0.

10

10

%

~«

1.8

1.8

IlS

CL = 25pF, RL = 2kQ
(Voltage Follower)

W:ii!

-

TYP

MAX

2

15

1

10

2

15

CMRR

Common Mode Input Voltage
Range

V,CR+
V'CR-

-

-0.5

Power Supply Rejection Ratio

PSRR

I'N+ = 1V; I!N- = 1V

70

84

RL = 00, Vo = 0.5 to 4V

105

111

RL= 10kQ,
Vo = 0.5 to 3.6V

80

86

VCM=Ot01V
VCM = 0 to 2.5V

AoL

10

pA

-

2

15

pA

80

85

-

dB

50

55

2.5

3

2.2

1.70

2

Output Voltage

VOM+

RL =00

4.99

5

-

0

4.4

4.7
0

VOM3

-

0.01

V
0

V

75

84

-

dB

107

113

83

86

1.75

2.2

1.70

2

4.99

dB

-

dB

-

mA
mA

5

-

-

0

0.01

V

4.4

4.7

0.01

0
3

0.01

dB

-0.5

0

3.4
0

3-147

1

3

1.75

VOM-

mV

-

55

VO=5V

RL=2kQ

UNITS

4

50

Vo=OV

VOM+

MAX

1.5

2.5

ISINK

RL= 10kQ

TVP

85

'SOURCE

VOM+

MIN

70

Sink Current

VOM-

CA5260A

CA5260
MIN

Common Mode Rejection Ratio

Source Current

CA5260A

1.5
f=1MHz

TEST
CONDITIONS

V,O

Large Signal Voltage Gain
(Note 3)

CA5260

TA = 25°C, V+ = 5V, V- = OV

Input Offset Voltage

Input Current

TEST CONDITIONS

V
0.01

V

V

3.4
0

V

0.01

V

CA5260, CA5260A
Electrical Specifications
PARAMETER
Supply Current

TA = 250 C, v+ = 5V, V- = OV (Continued)

SYMBOL
ISUPPlY

CA5260

TEST
CONDITIONS

MIN

MAX

MIN

TYP

MAX

UNITS

1.60

2.0

-

1.60

2.0

mA

1.80

2.25

1.80

2.25

mA

VO=OV

-

VO=2.5V

CA5260A

TYP

NOTE:
3. For V+ = 4.5V and V- = GND; VOUT = 0.5V to 3.2V at Rl = 10ka.

Electrical Specifications
PARAMETER

TA = -55°C to 1250 C, V+ = 5V, V- = OV

SYMBOL

CA5260A

CA5260

TEST
CONDITIONS

MIN

TYP

MAX

MIN

TYP

MAX

UNITS

-

2

15

mV

1

10

nA

2

15

nA

65

78

50

60

-

dB
V

Input Offset Voltage

VIO

Vo=2.5V

3

20

Input Offset Current

110

VO=2.5V

1

10

II

VO=2.5V

-

2

15

VCM = 0 to IV

60

78

VCM = 0 to 2.5V

50

60

Input Current
Common Mode Rejection Ratio

CMRR

3

0

V

62

65

-

dB

78

70

78

-

dB

60

65

60

65

dB

VO=OV

1.3

1.6

1.3

1.6

mA

ISINK

VO=5V

1.2

1.4

1.2

1.4

-

mA

VOM+

Rl =

4.99

5

4.99

5

-

V

-

0

0,01

-

0

0.01

V

4.2

4.4

-

4.2

4.4

-

V

VOM-

-

0

0.01

-

0

0,01

V

VOM+

Rl = 2ka

2.5

2.7

-

2.5

2.7

-

V

0

0

0,01

V

VO=OV

-

0.01

1.65

2.2

1.65

2.2

mA

1.95

2.35

1.95

2.35

mA

VICR+

2.5

3

VICR-

-

-0.5

Power Supply Rejection Ratio

PSRR

!:N+ = IV;
tN- = IV

60

65

Rl = 00,
Vo =0.5 t04V

70

Rl = 10ka,
Vo = 0.5 to 3.6V
ISOURCE

Source Current
Sink Current
Output Voltage

Aol

00

VOMVOM+

Rl = 10ka

VOMSupply Current

dB

-0.5

Common Mode Input Voltage
Range

Large Signal Voltage Gain
(Note 4)

-

ISUPPlY

Vo=2.5V

2.5
0

-

NOTE:
4. ForV+ = 4.5V and V- = GND; VOUT = 0.5V to 3.2V at Rl = 10ka.

Electrical Specifications
PARAMETER

Each Amplifier at TA = 25°C, V+ = 15V, V- = OV, Unless Otherwise Specified

SYMBOL

TEST
CONDITIONS

CA5260A

CA5260
MIN

TYP

MAX

MIN

TYP

MAX

UNITS

-

6

15

-

2

5

mV

0.5

20

pA

5

30

pA

50

320

-

kVN

94

110

80

95

Input Offset Voltage

VIO

Vs = ±7.5

Input Offset Current

110

VS=±7.5

0.5

30

II

Vs =±7.5

5

50

Input Current
Large Signal Voltage Gain

Common Mode Rejection Ratio

Aol
CMRR

VO= 10Vp_p,
Rl = 10ka

50

320

94

110

70

90

3-148

-

dB

-

dB

CA5260, CA5260A
Electrical Specifications

Each Amplifier at TA

Common Mode Input Voltage
Range

VieR

Power Supply Rejection Ratio,

PSRR

VS=±7.5

VOM+

RL = 10kQ

(Continued)

CA5260A

CA5260

TEST
CONDITIONS

SYMBOL

PARAMETER

=25°C, V+ =15V, V- = OV, Unless Otherwise Specified
MIN

TYP

MAX

MIN

TYP

MAX

UNITS

10

-0.5 to
12

0

10

-0.5 to
12

0

V

32

320

32

150

I1VN

13.3

-

V

0.002

0.01

V

IWloItN±
Maximum Output Voltage

11

15

-

VOM+

0

0.01

12

22

45

12

14.99

00

VOMMaximum Output Current

IOM+
(Source)

VO=7.5V

1+

V

0

0.01

V

12

22

45

mA

45

12

20

45

mA

9

16.5

-

9

16.5

mA

Va (Amp A) = OV
Va (Amp B) = OV

1.2

4

1.2

4

mA

5

9.5

5

9.5

mA

ov

..J

-

I'Nrolf!.T
f= 1kHz

Crosstalk

15

20

Va (Amp A) =
Va (Amp B) = 7.5V
Input Offset Voltage
Temperature Drift

14.99

Va (Amp A)=7.5V
Va (Amp B) = 7.5V

IOM- (Sink)
Total Supply Current, RL = 00

11
0.01

VOMRL =

13.3
0.002

-

8

6

I1VPC

«en
Za:

120

dB

!;::::i

O!!:!
-1.1..

120

W::!!!

~«

Schematic Diagram

+IN

a: a.

·IN

OUT

3·149

·IN

+IN

v·

CA5420, CA5420A

HARRIS
SEMICONDUCTOR

O.5MHz, Low Supply Voltage, Low Input Current
BiMOS Operational Amplifiers

November 1996

Features

Description

• CA5420A, CA5420 at sv Supply Voltage with Full
Military Temperature Range Guaranteed
Specifications
• CA5420A, CA5420 Guaranteed to Operate from ±1V
to ±10V Supplies

The CA5420A and CAS420 (see Note) are integrated circuit
operational amplifiers that combine PMOS transistors and
bipolar transistors on a single monolithic Chip. They are
designed and guaranteed to operate in microprocessor logic
systems that use V+ = SV, V- = GND, since they can operate
down to ±lV supplies. They will also be suitable for 3.3V logic
systems.

•
•
•
•

2V Supply at 300llA Supply Current
1pA (Typ) Input Current (Essentially Constant to 85°C)
Rail-to-Rail Output Swing (Drive ±2mA Into 1kQ Load)
Pin Compatible with 741 Op Amp

The CA5420A and CA5420 BiMOS operational amplifiers feature gate-protected PMOS transistors in the input circuit to
provide very high input impedance, very low input currents
(less than 1pAl. The internal bootstrapping network features a
unique guardbanding technique for reducing the doubling of
leakage current for every 10°C increase in temperature. The
CAS420 series operates at total supply voltages from 2V to
20V either single or dual supply. These operational amplifiers
are internally phase compensated to achieve stable operation
in the unity gain follower configuration. Additionally, they have
access terminals for a supplementary external capaCitor if
additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in commonmode input voltage capability down to 0.4SV below the negative supply terminal, an important attribute for single supply
application. The output stage uses a feedback OTA type
amplifier that can swing essentially from rail-to-rail. The output
driving current of 1.0mA (Min) is provided by using nonlinear
current mirrors.

Applications
• pH Probe Amplifiers
•
•
•
•
•

Picoammeters
Electrometer (High Z) Instruments
Portable Equipment
Inaccessible Field Equipment
Battery Dependent Equipment (Medical and Military)

• 5V Logic Systems
• Microprocessor Interface

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGEfC)

PKG.
NO.

PACKAGE

CA5420AM
(5420A)

-55 to 125

BLd SOIC

MB.15

CA5420AT

-55 to 125

B Pin Metal Can

TB.C

CA5420E

-55 to 125

B Ld PDIP

EB.3

CA5420M
(5420)

-55 to 125

B LdSOIC

MB.15

The CA5420 series has the same 8 lead pinout used for the
industry standard 741.

CA5420T

-55 to 125

B Pin Metal Can

TB.C

NOTE: Formerly Development Type No. TAl 0841.

These devices have guaranteed specifications for SV
operation over the full military temperature range of -SSoC to
125°C.

Functional Diagram

Pinouts
CA5420 (PDIP, SOIC)
TOP VIEW

CA5420 (METAL CAN)
TOP VIEW

CA5420

TAB ?ROBE

OF~~IT

1

IN~~

2

OF~~~eL

v+

IN~r-::r

NON-INV. 3
INPUT

;

OUTPUT

5 OFFSET NON-INV. 3
NULL

OFFSET
NULL

INPUT

VBUFFER AMPS;
BOOTSTRAPPED
INPUT PROTECTION
NE1WORK

NOTE: Pin is connected to Case.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-150

HIGH GAIN
(50K)

OTABUFFER
(X2)

File Number

1925.3

CA5420, CA5420A
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V- Terminals). . . . . .. . .... 22V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15V
Input Voltage .......................... (V+ + 8V) to (V- -0.5V)
......................
. .... 1mA
Input Current. . .
Output Short Circuit Duration (Note 1) . . . . . . . . . . . . .. Indefinite

Thermal Resistance (Typical, Note 2)
9JA (oCIW) 9JC (OCIW)
PDIP Package....... . .. .. . . ... . .
96
N/A
SOIC Package...................
157
N/A
80
Metal Can Package. . . . . . . . . . . . . . .
165
r\iiaximum Junction Temperature (Metal Can) .............. 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range (All Types). .. -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) ............ 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range ........................ -55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Short circuit may be applied to ground or to either supply.
2. 9JA is measured with the component mounted on an evaluation PC board in Iree air.

Electrical Specifications

Typical Values Intended Only lor Design Guidance. V+ = +5V; V- = GND, TA = 25°C

PARAMETER

CA5420

CA5420A

UNITS

Input Resistance

RI

150

150

TQ

Input Capacitance

CI

4.9

4.9

pF

Output Resistance

Ro

300

300

Q

Equivalent Input
Noise Voltage

eN

62

62

nV/VHz

Short-Circuit Current
To Opposite Supply

SYMBOL

TEST CONDITIONS

1= 1kHz

ISink

etC/)

38

38

nVNF!Z

!cc:::i

2.6

2.6

mA

W:ii

10M-

2.4

2.4

mA

I

Gain Bandwidth Product

fT

0.5

0.5

MHz

Slew Rate

SR

0.5

0.5

V/JlS

Transient Response

I Rise Time

tr

0.7

0.7

JlS

I Overshoot

OS

15

15

%

Current Irom Terminal 8 To V-

18+

20

20

JIA

Current Irom Terminal 8 To V+

18-

2

2

mA

Settling Time

Electrical Specifications

PARAMETER

RL = 2kQ, CL = 100pF

0.01%

Av= 1

12Vp-p Input

8

8

JlS

0.10%

Av= 1

12Vp-p Input

4.5

4.5

JlS

TA = 25°C, V+ = 5V, V- = 0, Unless Otherwise Specilied

SYMBOL

Za::
o!!:!
-LL

10M+

I = 10kHz
ISource

I Rs=100Q

..J

TEST
CONDITIONS

CA5420

CA5420A

MIN

TYP

MAX

MIN

TYP

MAX

UNITS

-

1.5

10

-

1

5

mV

VO=2.5V

0.02

1

0.02

0.5

pA

VO=2.5V

0.02

2

0.02

1

pA

Input Offset Voltage

VIO

Vo=2.5V

Input Offset Current

110

Input Current

II

Common Mode Rejection Ratio

CMRR

VCM = 0 to 3.7V, Vo = 2.5V

70

Common Mode Input Voltage
Range

VICR+

Vo=2.5V

3.7

4

-

-

-0.3

0

Power Supply Rejection Ratio

PSRR

70

80

-

VICR-

IN+ = 1V; IN- = 1V

3-151

75

80

3.7

75

4

-

-0.3

0

V

83

-

dB

83

dB
V

a::c..
~et

CA5420, CA5420A
Electrical Specifications

PARAMETER
Large Signal Voltage Gain

TA = 25°C, V+ = 5V, V- = 0, Unless Otherwise Specified (Continued)

SYMBOL

CA5420

TEST
CONDITIONS

TYP

MAX

MIN

-

AoL

80

B5

dB

1.2

2.7

mA

1.2

2.1

mA

4.9

4.94

RL=oo

B5

B7

Vo= 0.5 to4V

RL= 10kO

B5

B7

Vo= 0.7 to 3V

Sink Current
Output Voltage

RL=2W

BO

85

ISOURCE

VO=OV

1.2

2.7

ISINK

VO=5V

1.2

2.1

-

VOM+

RL=oo

4.9

4.94

-

0.13

0.15

VOMVOM+

ISUPPLY

PARAMETER

V

3.5

4.6

-

3.5

4.6

-

V

0.15

0.15

V

400

500

-

0.1

Vo=OV

-

0.1

400

500

430

550

-

430

550

ItA
ItA

4.9

-

V

0.12

0.15

V

4.7

TA = -55°C to 125°C, V+ = 5V, V- = 0, Unless Otherwise Specified

SYMBOL

TEST
CONDITIONS

110

Vo=2.5V

Up to TA = B50C

110

IIII

CA5420
MIN

-

Vo=2.5V

IIII

CA5420A

TYP

MAX

MIN

TYP

MAX

UNITS

3

15

-

2

10

mV

1.5

3

-

1.5

3

nA

2

10

2

10

pA

2

5

15

25

Common Mode Rejection Ratio

CMRR

VCM=Ot03.7V,
Vo=2.5V

65

Common Mode Input Voltage
Range

VICR+

Vo=2.5V

3.7

4

-

-

-0.3

0

Power Supply Rejection Ratio

PSRR

!N+= W;
!N-=W

65

BO

-

Vo=0.5t04V

RL=oo

80

Vo = 0.7 to 4V

RL= lOW

BO

Vo = 0.7 to 2.5V

RL=2W

75

VICR"

70

75

2

5

nA

10

15

pA

80

-

dB

4

-

V

-0.3

0

V

70

B3

-

dB

B5

B5

B7

dB

B5

BO

B7

dB

BO

75

BO

dB

1

2.7

1

2.7

mA

3.7

AoL

ISOURCE

VO=OV

Sink Current

ISINK

Vo=5V

1

2.1

Output Voltage

VOM+

RL=oo

4.B

4.9
0.16

VOMVOM+

RL= lOW

VOMVOM+

RL=2kO

4.7

4.9

-

0.15

3

VOMSupply Current

V
0.15

RL=2kO

Input Offset Current

Source Current

0.13

dB

-

Vo=2.5V

Large Signal Voltage Gain

-

dB

87

0.15

VIO

Up to TA = 85°C

87

85

4.9

Input Offset Voltage

Input Current

B5

0.12

VO=2.5V

Electrical Specifications

UNITS

-

VOMSupply Current

MAX

4.7

RL = 10kO

VOMVOM+

TYP

,

VO= 0.5 t04V

Source Current

CA5420A

MIN

ISUPPLY

VO=OV
VO=2.5V

-

3-152

0.2

1

2.1

4.B

4.9

-

V

-

0.16

0.2

V

0.2

V
V

4.7
0.20

mA

4.9
0.15

V

4

-

4

-

0.14

0.2

0.14

0.2

V

430

550

430

550

(.LA

480

600

480

600

ItA

3

CA5420, CA5420A
Electrical Specifications

PARAMETER

For Equipment Design at VSUPPLY = ±lV, TA = 25°C, Unless Otherwise Specified

SYMBOL

Input Offset Voltage

VIO

Input Offset Current

11101

Input Current
Large Signal Voltage Gain

Common Mode Rejection Ratio

TEST
CONDITIONS

CA5420
MIN

TYP

MAX

MIN

TYP

MAX

5

10

-

2

5

mV

0.01

4 (Note 3)

0.01

4 (Note 3)

pA

0.02

5 (Note 3)

-

0.02

5 (Note 3)

pA

10

100

-

20

100

-

kVN

80

100

86

100

-

560

1000

IlVN

65

60

65

-

dB

0.5

0.2

0.5

-1.3

-1

-1.3

-

V

32

320

IlVN

-

1111
AoL

RL = 10kO

CMRR

560
55

Common Mode Input Voltage
Range

0.2

VICR+

-

VICR"
Power Supply Rejection Ratio

Maximum Output Voltage

PSRR

VOM+

RL =

00

VOMSupply Current
Device Dissipation
Input Offset Voltage Temp. Drift

Electrical Specifications

PARAMETER

Po
!NIO'!'.T

SYMBOL
VIO

Input Offset Current

11101

Large Signal Voltage Gain

100

1000

UNITS

dB

V

-0.91

-

350

650

350

650

IJ.A

0.7

1.1

0.7

1.1

mW

4

-

60

80

-

70

90

0.95

-

0.9

0.95

-0.85

-0.91

-0.85

-

4

dB
V
V

IlVPC

TEST
CONDITIONS

1111
AoL

RL= 10kO

CA5420
MIN

TYP

MAX

MIN

TYP

MAX

UNITS

5

10

-

2

5

mV
pA

0.03

4 (Note 3)

0.05

5 (Note 3)

10

100

0.03

4 (Note 3)

-

0.05

5 (Note 3)

20

100

pA
kVN

80

100

-

86

100

CMRR

-

100

320

-

100

320

IlVN

70

80

70

80

-

dB

Common Mode Input Voltage
Range

VICR+

8.5

9.3

9

9.3

VICR-

-10

-10.3

-10

-10.3

-

V

Power Supply Rejection Ratio

PSRR

-

32

-

32

320

IlVN

70

90

70

90

9.7

9.9

9.7

9.9

-9.7

-9.85

-9.7

-9.85

-

-

450

1000

IJ.A

9

14

mW

4

-

IlVPC

Common Mode Rejection Ratio

Maximum Output Voltage

VOM+
VOM-

Supply Current
De,vice Dissipation
Input Offset Voltage
Temperature Drift

RL =

00

320

-

ISUPPLY

450

1000

Po

9

14

!'.VloI!'.T

4

-

dB

V

dB
V
V

NOTE:
3. The maximum limit represents the levels obtainable on high-speed automatic test equipment. Typical values are obtained under
laboratory conditions.

3-153

«C/)

zo::
O!:!:!
-LL.

~:::i

0::0.

~«

CA5420A

-

..J

w:=

For Equipment Design at VSUPPLY = ±10V, TA = 25°C, Unless Otherwise Specified

Input Offset Voltage

Input Current

1800

0.9

-

ISUPPLY

CA5420A

CA5420, CA5420A
Typical Applications
Picoammeter Circuit

High Input Resistance Voltmeter

The exceptionally low input current (typically 0.2pA) makes
the CA5420 highly suited for use in a picoammeter circuit.
With only a single 1000 resistor, this circuit covers the range
from ±1.5pA. Higher current ranges are possible with suitable
switching techniques and current scaling resistors. Input transient protection is provided by the 1MO resistor in series with
the input. Higher current ranges require that this resistor be
reduced. The 10MO resistor connected to pin 2 of the
CA5420 decouples the potentially high input capacitance
often associated with lower current circuits and reduces the
tendency for the circuit to oscillate under these conditions.

Advantage is taken of the high input impedance of the CA5420
in a high input resistance DC voltmeter. Only two 1.5V "AA"
type penlite batteries power this exceedingly high-input resistance (>1,000,OOOMO) DC voltmeter. Full-scale deflection is
±500mV, ±150mV, and ±15mV. Higher voltage ranges are easily added with external input voltage attenuator networks.

lOGO

The meter is placed in series with the gain network, thus
eliminating the meter temperature coefficient error term.
Supply current in the standby position with the meter undeflected is 300~A. At full-scale deflection this current rises to
800~. Carbon-zinc battery life should be in excess of 1,000
hours.

+1.5V

FtGURE 1. PtCOAMMETER CIRCUIT

FIGURE 2. HIGH INPUT RESISTANCE VOLTMETER

Typical Performance Curves
10
TA = 25°C
v-=ov

TA = 25°C
RL= 100kQ

I I
V+=2V ~
V+=5V
V+=10V
100 v+ =20V

Vovo+

VICR+

5
SUPPLY VOLTAGE

10

'IIIII~

I'

VleR-

1000
0.001

15

M

0.1

1

10

LOAD (SOURCING) CURRENT (rnA)

FIGURE 3. OUTPUT VOLTAGE SWING AND COMMON MODE
INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 4. OUTPUT VOLTAGE vs LOAD SOURCING CURRENT

3-154

CA5420, CA5420A
Typical Performance Curves

(Continued)

V+=5V
V-=GND

TA = 25°C
V+=OV

L. ~
~

~

<
..=.
zfw

-~ ~t-- ~V-=-20V
V-=-10V

2400
2000

II:
II:

:::> 1600

V-=-5V
"V- = -2V

(J

~ 1200

"""":::>

II)

800
400

0.1
LOAD (SINKING) CURRENT (rnA)

10

3.75

/

..J



(J

~

I

:$ 300
CD

f-

:::>

!:i

""

f- 1.25

:::>
0

""

1!:

/
o

10
100
LOAD RESISTANCE (kil)

~"'" V

-

V

o

1000

25

FIGURE 7. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

...

200
100

,/

35

45

55

65
75
85
95
TEMPERATURE (oC)

iii"
~

~
CI

I'" ~ ~

100
80

w

CI

~

~

""

0
0

....

""

~ "'-

125

-90

"-

60

1'00..

" "-

40

'"~

20

1

en
w
0
-45

~

o

104

102

103

104

"

"~

-135
-180

w

II:
CI

w

e.w
~

:r

""""

0

9
zw

""0

FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 9. INPUT NOISE VOLTAGE vs FREQUENCY

105 115

TA = 25°C
V+ = +10V, V- = 10V
RL = 10kil
CL=OpF

Z

w
0

103

/

J

FIGURE 8. INPUT BIAS CURRENT DRIFT (AlslAT)

TA = 2SoC

Vs =+10V
Vs =±5V
_ Vs =±1V

~<

J

400

II)

0

5

800
TA = 25°C
V+=5V
V-=GND
RL TOGND

~

~

4

FIGURE 6. SUPPLY CURRENT vs OUTPUT VOLTAGE

5.00

z

3

OUTPUT VOLTAGE (V)

FIGURE 5. OUTPUT VOLTAGE vs LOAD SINKING CURRENT

CI

2

0

FIGURE 10. OPEN LOOP GAIN AND PHASE SHIFT RESPONSE

3-155

CA5470

HARRIS
SEMICONDUCTOR
November 1996

Quad, 14MHz, Microprocessor BiMOS-E
Operational Amplifier with MOSFET InputlBipolar Output

Features

Description

• High Speed CMOS Input Stage Provides
- Very High ZI •••••••••••••.•. 5Tn (5 x 1012n) (Typ)
- Very Low II ••••....••• 0.5pA (Typ) at 5V Operation
- Very Low 110 ••••••••• 0.5pA (Typ) at 5V Operation

The CA5470 is an operational amplifier that combines the
advantages of both high speed CMOS and bipolar transistors
on a single monolithic chip. It is construcled in the BiMOS-E
process which adds drain-extension implants to 3J.lm polygate
CMOS, enhancing both the voltage capability and providing
vertical bipolar transistors for broadband analog/digital functions. This process lends itself easily to high speed operational
amplifiers, comparators, analog swilches and interface peripherals, resulting in twice the speed of the conventional CMOS
transistors having similar feature size.

• ESD Protection to 2000V
• 3V to 16V Power Supply Operation
• Fully Guaranteed Specifications Over Full Military
Range
• Wide BW (14MHz)j High SR (SVlJ.ls) at SV Supply
• Wide VICR Range From -o.5V to 3.7V (Typ) at 5V Supply
• Ideally Suited for CMOS and HCMOS Applications

Applications
• Bar Code Readers

BiMOS-E are broadbased bipolar transistors that have high
transconductance, gains more constant with current level, stable "precision" base-emitter offset voltages and superior drive
capability. Excellent interface with environmental potentials
. enable use in SV logic systems and future 3.3V logic systems.
Refer to Application Note AN8811.
ESD capability exceeds the standard 2000V level. The
CAS470 series can operate with Single supply voltages from
3V to 16V or ±1.5V to ±8V. They have guaranteed specifications at both 5V and ±7.SV at room temperature as well as
over the full -SSoC to 12SoC military range.

• Photodiode Amplifiers (IR)
• Microprocessor Buffering
• Ground Reference Single Supply Amplifiers
• Fast Sample and Hold

Ordering Information

• Timers
• Voltage Controlled Oscillators

PART NUMBER
(BRAND)

• Voltage Followers

TEMP.
RANGE (oC)

PKG.
NO.

PACKAGE

• V to I Converters

CA5470E

-5510125

14Ld PDIP

E14.3

• Peak Detectors

CA5470M
(5470)

-5510125

14 LdSOIC

M14.15

CA5470M96
(5470)

-55 to 125

14 Ld SOIC Tape
and Reel

M14.15

• Precision Rectifiers
• 5V Logic Systems
• 3V Logic Systems

Pinout
CA5470 (PDIP, SOle)
TOP VIEW
OUTPUT!

!

NEG. INPUT 1 2
POS.INPUT!

POS. INPUT 2 5
9

NEG. INPUT 2 6

NEG. INPUT 3

OUTPUT2 7

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-156

File Number

1946.3

CA5470
Absolute Maximum Ratings

Thermal Information

DC Supply Voltage (Between V+ And V- Terminals) ......... 16V
Differential Input Voltage ................................ BV
Input Voltage .......................... (V+ +BV) to (V- -0.5V)
Input Current. ....................................... 1mA
Output Short Circuit Duration (Note 1) ................ Indefinite

Thermal Resistance (Typical, Note 1)
9JA (oCIW)
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
175
Maximum Junction Temperature (Die) .................... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering 1Os) ............. 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range ......................... -55°C to 12SoC

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This Is a stress only rating and operation
01 the device at these or any other conditions above those Indicated in the operational sections of this specification is not implied.

NOTES:
1. Short circuit may be applied to ground or to either supply.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Typical Values Intended Only for Design Guidance at V+ = SV, V- = OV, TA = 2SoC, Unless Otherwise Specified
PARAMETER

SYMBOL

Input Resistance

TEST CONDITIONS

TYPICAL VALUES

UNITS

S

Tn

RI

Input Capacitance

CI

Unity Gain Crossover Frequency

fr

Slew Rate

SR

CL = 2SpF, RL= 2kn
(Voltage Follower)

tr

Overshoot

pF

14

MHz

S

V/Jls

27125

ns

20

%

a:c..

1

JlS

~<

436

kHz

VOUT = 3.6SVp_p

Transient Response:
Rise Time/Fall Time

3.1

f= 1MHz

OS

Settling Time (To <0.1%, VIN = 4Vp_p)

CL = 2SpF, RL= 2kQ
(Voltage Follower)

ts

Full Power BW, SR = SV/JlS

FPBW

Av = 1, VOUT = 3.6SVp_p

O!!:!
-II.

~:J

w:iii

Electrical Specifications TA = 2SoC, V+ = SV, v- = GND
PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

6

22

mV

11101

-

O.S

SO (Note 3)

pA

II

-

0.5

50 (Note 3)

pA

VICR

3.5

-0.5 to 3.7

0

V

70

dB

Input Offset Voltage

IVIOI

Input Offset Current
Input Current
Common Mode Input Range

TEST CONDITIONS

Common Mode Rejection Ratio

CMRR

VICR = OV to 3.5V

55

Power Supply Rejection Ratio

PSRR

IN = 2V

60

75

-

Positive Output Voltage Swing

VOM+

RL = 2kQ to GND

4

4.4

-

V

Negative Output Voltage Swing

VOM-

RL = 2kn to GND

-

0.06

0.10

V

7

dB

-

6

Unity Gain Bandwidth Product

fT

10

14

MHz

Slew Rate

SR

4

5

V/Jls

ISOURCE

4

5.5

mA

ISINK

1.0

1.2

mA

BO

90

dB

Total Supply Current

ISUPPLY

VOUT = 2.5V, RL = 00

mA

Output Current
Source to opposite supply
Sink to opposite supply
Open Loop Gain

AoL

O.SV to 3.SV, RL = 10kQ

NOTE:
3. This is the lowest value that can be tested reliably. Almost all devices will be <10pA.

3-157

..J



~

10

8

,

6
4

2
10K

V+ = 5V, V· = OV

1111111

I

1111111

I

100K

I\.
~~
10M

1M

100M

FREQUENCY
FIGURE 1. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

Metallization Mask Layout
97.2

o
10
_1......
1

_.1_.1_..1_.1..._1..I
20

30

40

50

60 69.7

90 -

80 70 -

Dimensions in parentheses are in millimeters and
derived from the basic inch dimensions as indicated.
Grid graduations are in mils (10.3 inch).

60 97.2
(2.46)

50 -

The layout represents a chip when it is part of the
wafer. When the wafer is cut into chips, the cleavage
angles are 57° instead of 90° with respect to the face
of the chip. Therefore, the isolated chip is actually 7
mils (0.17mm) larger in both dimensions.

40 -

30 20 10 -

69.7
(1.77)

3·160

·1

HA-2400, HA-2404,
HA-2405

HARRIS
SEMICONDUCTOR

40MHz, PRAM Four Channel
Programmable Amplifiers

November 1996

Features

Description

• Programmability

THA-2400/04/05 comprise a series of four-channel
programmable amplifiers providing a level of versatility
unsurpassed by any other monolithic operational amplifier.
Versatility is achieved by employing four input amplifier
channels, anyone (or none) of which may be electronically
selected and connected to a single output stage through
DTLlTTL compatible address inputs. The device formed by
the output and the selected pair of inputs is an op amp which
delivers excellent slew rate, gain bandwidth and power
bandwidth performance. Other advantageous features for
these dielectrically isolated amplifiers include high voltage
gain and input impedance coupled with low input offset
voltage and offset current. External compensation is not
required on this device at closed loop gains greater than 10.

• High Rate Slew ........................... 30VlJ.lS
• Wide Gain Bandwidth .................•... 40MHz
• High Gain ••.•...........•........••.•.. 150kVN
• Low Offset Current .................•.•....••5nA
• High Input Impedance ...................... 30MO
• Single Capacitor Compensation
• DTIJITL Compatible Inputs

Applications
• Thousands of Applications; Program
- Signal Selection/Multiplexing
- Operational Amplifier Gain
- Oscillator Frequency
- Filter Characteristics
- Add-Subtract Functions
- Integrator Characteristics
- Comparator Levels

Ordering Information
PART NUMBER
HA1-2400-2
HA1·2404·4
HA1·2405·5
HA3-2405-5

TEMP.
RANGE ("C)
-55 to 125
·25 to 85
Oto 75
Oto 75

PACKAGE
16LdCERDIP
16LdCERDIP
16 LdCERDIP
16 Ld PDIP

PKG.
NO.
F16.3
F16.3
F16.3
E16.3

Each channel of the HA-2400/04I05 can be controlled and
operated with suitable feedback networks in any of the
standard op amp configurations. This specialization makes
these amplifiers excellent components for multiplexing signal
selection and mathematical function designs. With 30Vll1s
slew rate, 40MHz gain bandwidth and 30MO input
impedance these devices are ideal building blocks for signal
generators, active filters and data acquisition designs.
Programmability, coupled with 4mV typical offset voltage and
5nA offset current, makes these amplifiers outstanding
components for signal conditioning circuits.
During Disable Mode VOUT goes to V-. For high output
impedance during Disable, see HA2444.
For further design ideas, see Application Note AN514.

Pinout

TRUTH TABLE
HA-2400/o4 (CERDIP)
HA-2405 (CERDIP, PDIP)
TOP VIEW)
00
01

ENABLE

D1

DO

EN

SELECTED CHANNEL

D1

L

L

H

1

L

L

H

H

2

L

H

L

H

3

H

H

H

H

4

H

X

X

L

None, VOUT goes to V-

X

GNO

---,

COMP

OUT

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-161

File Number

2891.2

-'
eelf)

Za::

O!!!
-IL

t:t:J

a:: a..

W:5

~ee

HA-2400, HA-2404, HA-2405
A~solute

Maximum Ratings

Thermal Information

TA = 25°C

Thermal Resistance (Typical, Note 2)
8JA (oC/W) 8JC (oCIW)
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . .. 45.0V
PDIP Package...................
80
N/A
Differentfallnput Voltage ......•..•..•.............. VSUPPLY
Digital Input Voltage. . . . . . . . . . . . . . . • • . . . . .. -0.76V to + 1O.OV
CERDIP Package . . . . . . . . . . . . . . . .
90
35
Output Current. • . . . . . . . .. Short Circuit Protected, Isc <±33mA) . Maximum Junction Temperature (Ceramic Package). . . . . . .. 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Internal Power Dissipation (Note 1)
Maximum Storage Temperature Range ... . . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............ 300°C)
Operating Conditions
Temperature Range
HA-2400-2 .................••.......... , -55°C to 125°C
HA-2404-4. . . . . . . . . • . . . . . . . . . . . . . . . . . . . .. -25°C to 85°C
HA-2405-5 ................•............... , OOC to 75°C
CAUTION: Stresses above ihose listed In "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated In the operatIonal sectIons of thIs specification is not implied.

NOTES:
1. Maximum power dissipation including output load, must be designed to maintain the junction temperature below 175°C for the ceramic
package, and below 150°C for the plastic packages.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

Test Conditions: VSUPPLY = ±15V, Unless Otherwise Specified. Digital Inputs: VIL = +0.5V, VIH = +2.4.
Limits apply to each of the four channels, when addressed

PARAMETER

TEST
CONDITIONS

TEMP_
('IC)

HA-2400104

I

MIN

TYP

25

-

4

Full

-

HA-2405
MAX

I

MIN

I TYP

MAX

I UNITS

INPUT CHARACTERISTICS
Offset Voltage

Bias Current (Note 8)

25
Full

Offset Current (Note 8)

-

25

-

4

9

mV

-

-

11

mV

50

250

nA

-

500

nA

5

50

nA

-

100

50

200

-

400

5

50

Input Resistance (Note 8)

25

-

Common Mode Range

Full

±9.0

150

Full

9
11

-

-

30

±9.0

-

-

50

150

-

25
100

dB

-

100

30

-

nA
MO

-

V

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

RL=2kQ

25

50

VOUT = 20Vp_p

Full

25

VCM = ±5V

Full

80

100

-

74

Gain Bandwidth (Notes 3, 9)

25

20

40

-

20

40

MHz

Gain Bandwidth (Notes 4, 9)

25

-

4

8

MHz

10

-

VN

±10.0

±12.0

10

20

mA

Common Mode Rejection Ratio

Minimum Stable Gain

4

8

10

-

Full

±10.0

±12.0

25

10

20

(CCOMP=O)

kVN
kVN

OUTPUT CHARACTERISTICS
Output VoHage Swing

RL=2kQ

Output Current

-

-

V

Full Power Bandwidth (Notes 3,10)

VOUT = 20Vp_p

25

640

950

640

950

kHz

Full Power Bandwidth (Notes 4, 10)

VOUT = 20Vp_p

25

200

250

200

250

kHz

TRANSIENT RESPONSE (Note 11)
Rise Time (Note 4)

VOUT = 200mVPEAK

25

20

45

Overshoot (Note 4)

VOUT = 200mVpEAK

25

-

25

40

Slew Rate (Note 3)

VOUT = 10Vp_p

25

20

30

Slew Rate (Notes 4, 9)

VOUT= 10Vp_p

25

6

8

3-162

:;

20

50

-

25

40

20

30

6

8

ns

%
V/iJ.s

-

V/jJ.S

HA-2400, HA-2404, HA-2405
Electrical Specifications

Test Conditions: VSUPPLY = ±15V, Unless Otherwise Specified. Digital Inputs: VIL = +0.5V, VIH = +2.4.
Limits apply to each of the four channels, when addressed (Continued)
TEST
CONDITIONS

PARAMETER
Settling Time (Notes 4, 5, 9)

HA-2400I04

HA-240S

TEMP.
fC)

MIN

TYP

MAX

MIN

TYP

MAX

UNITS

25

-

1.5

2.5

-

1.5

2.5

IlS

-

1

1.5

5

VOUT= 10Vp.p

CHANNEL SELECT CHARACTERISTICS
Digital Input Current

VIN=OV

Full

Digital Input Current

VIN= +5.0V

Full

Output Delay (Notes 6, 9)

25

Crosstalk (Note 7)

25

100
-BO

1

1.5

rnA

5

-

nA

100

250

ns

·74

·110

-

dB

-

4.B

6.0

74

90

·250

-110

POWER SUPPLY CHARACTERISTICS
Supply Current

25

Power Supply Rejection Ratio

Vs = ±10V to±20V

Full

I

74

4.8

6.0

90

-

I

I

rnA
dB

NOTES:
3. Av = +10, CCOMP = 0, RL = 2kn, CL = 50pF.
4. Av = +1, CCOMP = 15pF, RL = 2kn, CL = 50pF.
5. To 0.1% offinal value.
6. To 10% of final value; output then slews at normal rate to final value.
7. Unselected input to output; VIN = ±10Voc·
B. Unselected channels have approximately the same input parameters.
9. Guaranteed by design.
SR
10. Full Power Bandwidth based on slew rate measurement using: FPBW = -2-V--: V pEAK = 5V.
"
PEAK
11. See Figure 13 for test circuit.

Schematic Diagram
HA-2400
IN+

DO

IN-

COMP

01

Diagram Includes: One Input Stage, Decode Control, Bias Network, and Output Stage

3-163

+Vcc

HA-2400, HA-2404, HA-2405

Typical Applications
IN

2K

Sample Charging Rate
Hold Drift Rate

12

= CV Is

1K

Switch Pedestal Error =
500

11

= CV/S

gv

11 ~ 150 x 1O-6A
x 10-9A at 25°C
~ 600 x 10-gA at -55°C

12 ~ 200
500

~ 100 x lO-g A at 125°C
Q ~ 2 x 1O- 12C
FIGURE 2_ HA·2400 SAMPLE AND HOLD

FIGURE 1_ HA·2400 AMPLIFIER, NONINVERTING
PROGRAMMABLE GAIN

For more examples, see Harris Application Note AN514_

3·164

HA-2400, HA-2404, HA-240S
Typical Performance Curves
140

o

120

'l!l

,

100

C

80

UJ

!iii

60

::>

40

S

II:
II:

0

S

f\.

c

~
...... ~

o

·55

·50

·25

II:
W

::>
-'

~

125

0.8

·55

·50

·25

1

:::--....
........

25
50
0
TEMPERATURE (oC)

II:

..J

J

....

en

~ ....
100.

~

Gl.~

3

·55

·50

·25

0
25
50
TEMPERATURE (oC)

75

100

II,

>
:!!
+1

........

)OPIFII

S
fa

1.1

........ ........ ;:::~

,/ 15pF
,/ 30pF

~

1.0

120

a

z
;;:

80

CI
UJ

CI

~

g
Q.

0
0

..J

z

......
...

60

~
40

100PF/

Q.

"" "
....

300P~~

20

l000pF

0

IIII
I

UJ

0

,~

·20
10

100

I'

~

~
i"o

i'"

lK

"

~~

UJ

::>
-'

~

i"o

c
~ 0.9

t'-ol' ~~ l"10M

W::i

)

.j
.. ,

N~
10M

c

120 ;;

en

150

"i!:

180
210
100M

1.2

~

10K
lOOK
1M
FREQUENCY (Hz)

PHASE 90 CI
w

FIGURE 6. OPEN LOOP FREQUENCY AND PHASE RESPONSE

FIGURE 5. POWER SUPPLY CURRENT vs TEMPERATURE

iii' 100

CCOMP= OpF
- - - CCOMP = 15pF
III I
·20 I IIII I 1111 I III
lK
10K
lOOK
1M
10
100
FREQUENCY (Hz)

125

O~
-II..
!;;::::;

u;

II:

r~

::>

UJ
UJ

60

1'0

"

Q.
Q.

cs:rn
za:

30

.~' 1"-,

~

i'"

~

125

100

0

~

4

,

CROSSTALK REJECTION, ""' = +1

~~.

!iiiUJ

75

FIGURE 4. NORMALIZED AC PARAMETERS vs TEMPERATURE

120
I
I
VSUPPLY = ±20V ,
VSUPPLY =±15V ,
VSUPPLY = +10V ,

f':

II:

li!

100

.....

~

I

75

"""
rWRi~

~ 0.9

OFFSET CURRENT _

0
25
50
TEMPERATURE (0C)

1.0

~

5

o

IBAND~IDTH

C

FIGURE 3. INPUT BIAS CURRENT AND OFFSET CURRENT vs
TEMPERATURE

~

,

W

...........

........... I"---

5

,

1.1

~

I-~CURRENT-:-

r--

10

,

1.2

~
~

100M

k: ----

0.8
±10

--"1 ""'"'"

--

BANDWI~

SLEj'Aj

±15
SUPPLY VOLTAGE (V)

FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE

FIGURE 7. FREQUENCY RESPONSE vs CCOMP

3·165

±20

a: a.

~cs:

HA-2400, HA-2404, HA-2405
·Typical Performance Curves
110

r105

iii"
z

:!!.

I

I

VSUPPLY = ±20V
VSUPPLY = ±15V_

r- VSUPPLY = ±lOV

.....e?
...;.

100

~

(Continued)

~

~ -.....

~

-- ~

:;..~

rI.. 10

~

;;,...-"'"

~
CI

z

isUl

·50

~

!5"!5
0

95

90
·55

·25

0
25
50
TEMPERATURE (oC)

75

100

0.1
10K

125

1M
FREQUENCY (Hz)

1000

~~

..... ~

10K SOURCE RESISTANCE

10

iii'100

o

.-

z

~

~

1

~

ITI

~

......

z

1kHz

~

10

'N

~
I 11111111
10kHz

I 11111111
100kHz

~

1

UPPER 3dB FREQUENCY (LOWER 3dB FREQUENCY.l0Hz)
BROADBAND NOISE CHARACTERISTICS

450

I 111111 II 111111 III
1

100

10

1K

10K

FIGURE 12. INPUT NOISE vs FREQUENCY

SELECTED
CHANNEL

..........--_-0 +15.0V
......-o OUT

>--1t-~-

2000

FIGURE 13. SLEW RATE AND TRANSIENT RESPONSE

3-166

!5

0.1

~

i5
z

~~

111111

FREQUENCY (Hz)

FIGURE 11. EQUIVALENT INPUT NOISE vs BANDWIDTH

IN

11111

I I III
lMHz

ffi

a:

(J

Ul

i5

i

'L"

w

~

.,. THERMAL NOISE OF 10K RESISTOR
0.1
100Hz

10

CI

oSOURCE RESISTANCE

w

!!l

1.0

10M

lOOK

FIGURE 10. OUTPUT VOLTAGE SWING VS FREQUENCY

100

~~

......

1.0

FIGURE 9. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

~

CcOMP=OpF
CcOMP= 15pF

.....

20

0.01
lOOK

HA-2406

HARRIS
SEMICONDUCTOR

30M Hz, Digitally Selectable Four Channel
Operational Amplifier

November 1996

Features

Description

• TTL Compatible Inputs

The HA-2406 is a monolithic device consisting of four op
amp input stages that can be individually connected to one
output stage by decoding two TTL lines into four channel
select signals. In addition to allowing each channel to be
addressed, an enable control disconnects all input stages
from the output stage when asserted low.

• Single Capacitor Compensation
• Low Crosstalk ............•••........•... -110dB
• High Slew Rate .............•......•...... 20VlllS
• Low Offset Current ..........................5nA
• Offset Voltage .............................• 7mV
• High Gain-Bandwidth •...................• 30MHz
• High Input Impedance ...................... 30MO

Applications
• Digital Control Of
- Analog Signal Multiplexing
- Op Amp Gains
- Oscillator Frequencies
- Filter Characteristics
- Comparator Levels

Dielectric isolation and short-circuit protected output stages
contribute to the quality and durability of the HA-2406.
When used as a simple amplifier, its dynamic performance
is very good and when its added versatility is considered,
the HA-2406 is unmatched in the analog world. It can
replace a number of individual components in analog signal
conditioning circuits for digital signal processing systems.
Its advantages include saving board space and reducing
power supply requirements.

Ordering Information
PART NO.

TEMP
RANGE (oC)

Each input-output combination of the HA-2406 is designed
to be a 20V/IlS, 30M Hz gain-bandwidth amplifier that is
stable at a gain of ten. By connecting one external 15pF
capacitor all amplifiers are compensated for unity gain
operation. The compensation lead may also be used to limit
the output swing to TTL levels through suitable clamping
diodes and divider networks (see Application Note AN514).

PKG.NO.

PACKAGE

HA1-2406-5

Ot075

16LdCERDIP

F16.3

HA3-2406-5

Ot075

16 Ld PDIP

E16.3

HA9P2406-5

oto 75

16Ld SOIC

M16.3

HA9P2406-9

-40 to 85

16 LdSOIC

M16.3

During Disable Mode VOUT goes to V-. For high output
impedance during Disable, see HA2444.
For further design ideas, see Application Note AN514.

Pinout
HA-2406
(PDIP, CERDIP, SOIC)
TOP VIEW)

TRUTH TABLE

01
00
01

ENABLE
GNO

SELECTED
CHANNEL

DO

EN

L

L

H

I

L

H

H

2

H

L

H

3

H

H

H

4

X

X

L

COMP

---,......

None, VOUT
goes toV·

v+

IT\
---"-0

OUTPUT
+IN2

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-167

File Number

2892.2

..J

cr:cn
za:
O!!:!
-u.

!;i::J

a: a..

w:=
~cr:

HA-2406
Absolute Maximum Ratings

Thermal Information

TA = 25PC

Supply Voltage Between V+ and V- Terminals .............. 45V
Differential Input Voltage........................... VSUPPLY
Output Current ........... Short Circuit Protected (ISC < ±33mA)

Operating Conditions
Temperature Range
HA-2406-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 75°C
HA-2406-9 ................................ -40°C to 85°C

Thermal Resistance (Typical, Note 1)
9JA (oCIW) 9JC (oCIW)
PDIP Package....... ............
80
N/A
SOIC Package. . . . . . . • . . . . . . . . . . .
96
N/A
CERDIP Package . . . . . . . . . . . . . . . .
90
35
Maximum Junction Temperature (Ceramic Package) ........ 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range .......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............. 300°C
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in ''Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only raUng and operation
of the device at these or any other condiffons above those indicated in the operational secUons of this specification is not Implied.

NOTE:
1. 9JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

Test Conditions: VSUPPLY = 15.0V, Unless Otherwise Specified. Digital Inputs: VIL = +0.5V, VIH = +2.4V.
Limits apply to each of the four channels, when addressed.

PARAMETER

TEST
CONDITIONS

HA-2406-5, -9
TEMP (oC)

I

MIN

TYP

MAX

UNITS

INPUT CHARACTERISTICS
Offset Voltage

25

7

Full
Bias Current (Note 7)

Offset Current (Note 7)

10

mV

12

mV

25

50

250

nA

Full

-

500

nA

25

5

50

nA

Full

-

Input Resistance (Note 7)

25

-

30

MQ

Common Mode Range

Full

±9.0

-

V

25

40

150

100

nA

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

RL=2kQ
VOUT = 20Vp_p

Common Mode Rejection Ratio

VCM=±5V

Gain Bandwidth Product (Notes 2, 9)
Gain Bandwidth Product (Notes 3, 9)
Minimum Stable Gain

Full

20

Full

74

80

25

15

30

3

6

25

-

10

CCOMP=O

kVN
kVN
dB
MHz
MHz
VN

OUTPUT CHARACTERISTICS
Output Voltage Swing

RL=2kQ

Full

±10.0

±12.0

Output Current

VOUT=±10V

25

10

15

Full Power Bandwidth (Notes 2, 8, 9)

VOUT = 20Vp_p

25

240

320

Full Power Bandwidth (Notes 3, 8)

VOUT = 20Vp_p

25

64

95

-

25

V

-

mA
kHz
kHz

TRANSIENT RESPONSE (Note 10)
30

100

25

-

25

40

25

15

20

VOUT = 10Vp_p

25

4

6

-

VI1S

VOUT = 10Vp_p

25

-

2.0

3.5

fJS

VIN=OV

Full

-

1

1.5

mA

Rise Time (Note 3)

VOUT = 200mVpEAK

Overshoot (Note 3)

VOUT = 200mVpEAK

Slew Rate (Notes 2, 9)

VOUT = 10Vp_p

Slew Rate (Note 3)
Settling Time (Notes 3, 4)

ns

%
V/fJS

CHANNEL SELECT CHARACTERISTICS
Digital Input Current

3-168

HA-2406
Electrical Specifications

Test Conditions: VSUPPLY

= 15.0V, Unless Otherwise Specified. Digital Inputs: VIL =+0.5V, VIH = +2.4V.

Limits apply to each of the four channels, when addressed. (Continued)
HA-2406-S, -9

TEST
CONDITIONS

PARAMETER
Digital Input Current

TEMP (oC)

TYP

MIN

Full

15

Output Delay (Notes 5, 9)

25

150

Crosstalk (Note 6)

25

VIN = +5.0V

·74

MAX

UNITS
nA

300

ns
dB

·110

POWER SUPPLY CHARACTERISTICS
Supply Current

25
Vs = ±10V to ±20V

Power Supply Rejection Ratio

Full

74

4.B

7.0

mA

90

.

dB

NOTES:
2. Av
3. Av

= +10, CCOMP =0, RL =2k.Q, CL = 50pF.
= + 1, CCOMP = 15pF, RL = 2kn, CL = 50pF.

4. To 0.1% offinal value.
5. To 10% of final value; output then slews at normal rate to final value.

6. Unselected input to output; VIN = ±1 OV
7. Unselected channels have approximately the same input parameters.
B. Full power Bandwidth based on slew rate measurement using: FPBW = Slew Rate .
2ltV pEAK

9. Sample tested.

-'
C(C/)

Za:

10. See Figure 11 for test circuit.

O!!!
-11..

!i::::i
a: a.

Schematic Diagram

W::l!!

IN-

IN+

rD,R.~ R,
0.

Ro

~aK
D.
R.
~2.9K

n~r

Os .....

....
II)

a......

0.9

ra.

Rs
a.OK

o.~

GND

_

~25 0,";-

023

VD

0"

~

0 ••

I~

P

D15l

03~
r ........

'--

,:J000

R.
'.5K

~OO

R.
34

r--- ~R OUT

....

094 j§.s ....

3'

36.5

o

••

V+

Do•
..... , 0••

0.0
I,Q91

}m~~
INPUT STAGES

a..

VA

R10
10K

0 ••

cif

'I

VB

R.
4K

1.2

097

9.0pF

VC

0'3

~O'7

ro,.

I,D••

a

0'0

Dt!

rD.,

I'll

0,.

R35
0.75K

.r

[D••

-

%4K
R33

D'03l",':::I:
?'I" 0.7
D••

~c(

+vcc

UK
R34

09.

-LJ
~IQD.'
K:l'

007

2-

L

*oW;

DO~

0'0' L.. D.s

Oo'IJ

~;

D.,

oE
083

"'1

~

D~

R7
5.6K
0,.

a..

.... 0.,

!'li,.1~~r"
0,.
022~ ~

R.
2.0K

R35
UK

0.0

o..~

~~~ -

J,.I J ~.~

R,o
2.0K

L.....:
0.7

4 o.

ffi

VE

~.
rD.

w

~
O.8K

R,.
UK

UK

COMP

R"
10K

R,s
10K

R,.
10K

R,.
UK

R"
1.6K
DO

R..
OAK

01

Diagram Includes: One Input Stage, Decode Control, Bias Network, and Output Stag

3·169

·VE

HA-2406
Typical Applications

IN

2K
1K

500
500

11
Sample Charging Rate = CV Is
12
Hold Drift Rate = CV/S
Switch Pedestal Error =

§V

11 ~ 150 x 10-SA
12 ~ 200 x 10-9A at 25°C
~ 600 x 10- 9A at -55°C

~ 100 x 1O-9A at 125°C
Q ~ 2 x 1O- 12C

FIGURE 2. HA-2406 SAMPLE AND HOLD

FIGURE 1. HA-2406 AMPLIFIER, NONINVERTING
PROGRAMMABLE GAIN

For more examples, see Harris Application Note AN514.

3-170

HA-2406
Typical Performance Curves

---- --

60

0

I
I
I I
BIAS CURRENT

=:::::

*

~~

~~

""'II

0

~

:::: ..... ,.....

BANDWIDTH

t-...

""'
5

0

OFFSET CURRENT
I
I

o

o

25
50
TEMPERATURE (oC)

4.50

120

C

i!:

j:' 4.25

C3 80

z

a:
a:

I'-

:::>

o

~

"'
i'--

4.0

"":::>

Ul

Cl

~

"

Vs=±20V
Vs =±15V
" VS=±10V

§!
"0

9

0

z

"0

o

25
50
TEMPERATURE (oC)

75

FIGURE 5. POWER SUPPLY CURRENT vs TEMPERATURE

~

z

:;(

100
80

Cl
LIJ

Cl

60

§!

40

~

"0
0

....

~

.. :::~ ~"
"", ...." ~~
...." ~~

I

~

100pF
300p~/
l000pF

20

:"~

~.
~

0
-20
10

40
20

~~

~~

~"

100

lK

0

CCOMP= OpF
• • • CCOMP = 15pF

-20
10

I 1111 I IIII I 11
100

lK

iii
LIJ

60

"

LIJ

a:

"'"

r,

~'
~

I( r· ~

lliti

10K
lOOK
1M
FREQUENCY (Hz)

PHASE 90 Cl
LIJ

II

./
~

,~
10M

e.
120
LIJ
Ul
c(

:z:

150 "180
210
100M

1.2

'!H

J2
5l

lpll

1.1

il

1/15pF
30pF

M:!
~

"f:::~

" t'oo'"

Z

LIJ

"-

0

"

60

.J

-I~.L--

FIGURE 13. SLEW RATE AND TRANSIENT RESPONSE

3-172

HA-2444
Features

Description

• Digital Selection of Input Channel

The HA-2444 is a channel-selectable video op amp
consisting of four differential inputs, a single-ended output,
and digital control circuitry allowing two digital inputs to
activate one of the four differential inputs. The HA-2444 also
includes a high impedance output state allowing the outputs
of multiple HA-2444s to be wire-OR'd. Functionally, the
HA-2444 is equivalent to four wideband video op amps and
a wideband multiplexer.

• Unity Gain Stability
• Gain Flatness to 10MHz......•..••.•.....••. 0.1dB
• Differential Gain ........................... 0.03%
• Differential Phase...•••............•• 0.03 Degrees
• Fast Channel Selection .•.•.••••....•.•••.••• 60ns
• Crosstalk Rejection ••••....••...••••.•.•.... 60dB

Unlike similar competitor devices, the HA-2444 is not
restricted to multiplexing. Any op amp configuration can be
used with any of the inputs. Signal amplification, addition,
integration, and more can be put under digital control with
broadcast quality performance.

Applications
• Video Multiplexer
• Programmable Gain Amplifier
• Special Effects Processors
• Video Distribution Systems
• Heads-up/Night Vision Displays
• Medical Imaging Systems
• Radar Video

Ordering Information
PART NUMBER

TEMP.
RANGE (oC)

PACKAGE

PKG.
NO.

HA3-2444-5

Ot075

16 Ld PDIP

E16.3

HA3-2444-9

-40 to 85

16Ld PDIP

E16.3

HA9P2444-5

Ot075

16 Ld sOle

M16.3

HA9P2444-9

-40 to 85

16 LdSOIC

M16.3

The key video parameters of the HA-2444 have been
optimized without compromising DC performance. Gain
Flatness to 10MHz is only 0.1 dB. Differential gain and phase
are typically 0.03% and 0.03 degrees, respectively. Laser
trimming allows offset voltages in the 4.0mV range and a
unique common current source deSign assures minimal
channel-to-channel mismatch, while maintaining 60dB of
crosstalk rejection at SMHz. Open loop gain of 76dB and low
input offset and bias currents enhance the performance of
this versatile device.
For information about military grade devices, please refer to
the HA-2444/883 data sheet.

' 0'Peratlon
L oglc

Pinout
HA-2444
(POIP, SOIC)
TOP VIEW

TRUTH TABLE
EN

01

DO

SELECTED
CHANNEL

H

L

L

1

H

L

H

2

H

H

L

3

H

H

H

4

L

X

X

NONE-OUT is set to a high
impedance state.

L = Low State (O.BV Max)
H = High State (2.4V Min)
X = Don't Care

CAUTION: These devices Bre sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © HarriS Corporation 1996

3-173

File Number

2490.6

HA-2S00, HA-2S02,
HA-2S0S

1m HARRIS
(.KJ

SE M ICON 0 U C TOR

12MHz, High Input Impedance,
Operational Amplifiers

November 1996

Description

Features
• Slew Rate •......•••...•..•....•.....••..

30V/~

• Fast Settling •..•...•••.......•......••...• 330ns
• Full Power Bandwidth •••...•.....•....••.. 500kHz
• Gain Bandwidth .••.•••.•.••..•••.••.•.•.. 12MHz
• High Input Impedance ••....••..•.....•....• SOMa
• Low Offset Current .••••...•.....•••..••.... 10nA
• Internally Compensated For Unity Gain Stability

Applications
• Data Acquisition Systems
• RF Amplifiers
• Video Amplifiers
• Signal Generators

Ordering Information
PART
NUMBER

TEMP
RANGE (DC)

PACKAGE

PKG. NO.

HA2-2500-2

-5510125

B Pin Metal Can

T8.C

HA2-2502-2

-5510125

B Pin Metal Can

TB.C

HA2-2505-5

010 75

B Pin Metal Can

TB.C

HA3-2505-5

01075

B Ld PDIP

EB.3

HA7-2500-2

-5510125

B LdCERDIP

FB.3A

HA7-2505-5

01075

B Ld CERDIP

FB.3A

HA-2500, HA-2502, HA-2505 comprises a series of
operational amplifiers whose designs are optimized to
deliver excellent slew rate, bandwidth, and settling time
specifications. The outstanding dynamic features of this
internally compensated device are complemented with low
offset voltage and offset cu rrent.
These dielectrically isolated amplifiers are ideally suited for
applications such as data acquisition, RF, video, and pulse
conditioning circuits. Slew rates of ±30V/jls and 330ns
(0.1 %) settling time make these devices excellent
components in fast, accurate data acquisition and pulse
amplification designs. 12MHz small signal bandwidth and
500kHz power bandwidth make these devices well suited to
RF and video applications. With 2mV typical offset voltage
plus offset trim capability and 10nA offset current, HA-2500,
HA-2502, HA-2505 are particularly useful components in
signal conditioning designs.
The gain and offset voltage figures of the HA-2500 series
are optimized by internal component value changes while
the similar design of the HA-2510 series is maximized for
slew rate.
.
MIL-STD-883 product and data sheets are available upon
request.

Pinouts
HA·2500102 (CERDIP)
HA·2505 (PDIP, CDIP)
TOP VIEW

HA-2500102I05
(METAL CAN)
TOP VIEW
COMP

v-

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-174

File Number

2890.2

HA-2500, HA-2502, HA-2505
Absolute Maximum Ratings

Thermal Information

Supply Voltage Between V+ and V- Terminals .............. 40V
Differential Input Voltage ............................... 15V
Peak Output Current. ................................ SOmA

Thermal Resistance (Typical, Note 1)
8JA (oCfIN) 8JC (oCfIN)
Metal Can Package. . . . . . . . . . . . . . .
165
80
96
N/A
PDIP Package. . . . . . . . . . . . . . . . . . .
CERDIP Package. . . . . . . . . . . . . . . .
135
50
Maximum Junction Temperature (Hermetic Package) ........ 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............. 300°C

Operating Conditions
Temperature Range
HA-2500/2502-2 . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to 125°C
HA-2505-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 75°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification ;5 not implied.

NOTE:
1. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

Vs = ±15V

PARAMETER

TEMP
(DC)

HA-2500-2
MIN

HA-2502-2

TVP

MAX

25

2

5

Full

-

8

MIN

TVP

HA-2505-5
MAX

MIN

TVP

MAX

UNITS

INPUT CHARACTERISTICS
Offset Voltage

Offset Voltage Average Drift

Full

20

-

Bias Current

25

100

200

Full
Offset Current

400

25

10

Full

25
50

Input Resistance (Note 2)

25

25

Common Mode Range

Full

±10

--

25

20

30

50

-

4

4

8
10

20

-

125

250

-

500

20

50
100

-

-

-

20

50

20

±10

-

±10

15

25

15

8

mV

10

mV

Full

15

-

10

Common Mode Rejection Ratio
(Note 4)

Full

80

90

74

-

IlVPC

125

250

nA

!;t::i

-

500

nA

~CC

20

50

nA

100

nA
MQ

50

-

V

kVN

90

-

Gain Bandwidth Product (Note 5)

25

12

-

12

-

MHz

-

25

10
90

-

74

12

kVN
dB

OUTPUT CHARACTERISTICS
Output Voltage Swing (Note 3)

Full

±10

±12

±10

±12

±10

±12

Output Current (Note 6)

25

±10

±20

±10

±20

±10

±20

V

Full Power Bandwidth (Notes 6, 11)

25

350

500

300

500

300

500

-

kHz

-

25

50

-

25

50

25

50

ns

25

40

25

50

25

50

%

-

±30

-

V/flS

0.33

-

flS

mA

TRANSIENT RESPONSE
Rise Time (Notes 3, 7, 8, 9)

25

Overshoot (Notes 3, 7, 8,9)

25

Slew Rate (Notes 3, 7, 9,12)

25

±25

±30

±20

±30

Settling Time to 0.1 %
(Notes 3,7,9,12)

25

-

0.33

-

0.33

3-175

±20

CCtJ)

20

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain (Notes 3, 6)

..I

Za:
O!!!
-II.
a: a..

W:E

HA-2S00, HA-2S02, HA-2S0S
Electrical Specifications

Vs = ±15V (Continued)
HA-2S()()'2
TEMP
(oC)

PARAMETER

HA-2502-2

MIN

TYP

MAX

4

6

80

90

-

HA-2S0S-5

MIN

TYP

MAX

4

6

74

90

-

MIN

TYP

MAX

UNITS

-

4

6

mA

74

90

-

dB

POWER SUPPLY CHARACTERISTICS
Supply Current

25

PSRR (Note 10)

Full

NOTES:
2. This parameter value is based on design calculations.
3. RL

=2kQ.

4. VCM = ±1 OV.
5. Av> 10.
6. Vo=±10V.
7. CL=50pF.
8. Vo = ±200mV.
9. See Transient Response Test Circuits and Waveforms.

10. tN=±5V.
11. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = Slew Rate/2ltVpEAK'
12. VOUT=±5V.

Test Circuits and Waveforms
INPUT .J+SV

-5V
OUT:: :

+

L

io~:':'
-- --~ f toV
~ : . : - .- - -

J_ _

5V - - .!D!o_ -..!
_ , SLEW
- - - I , tot 'RATE
"
'=toVltot
I

I

i

J

L

200
+
INPUT
OmV

OVERSHOOT

,ERROR BAND
,±10mV FROM
,FINAL VALUE
,

+200mV - - 90% - -

I

,,
,
...-, ,-+- RISE TIME

OmV

: _ SETTLING
~
TIME
......'

NOTE: Measured on both positive and negative transitions from OV to +200mv and OV to -200mV at the output.
FIGURE 1. SLEW RATE AND SETTLING TIME

FIGURE 2. TRANSIENT RESPONSE

/

-

V
=

NOTE: Measured on both positive and negative transitions from OV
to +200mv and OV to -200mV at the output.

RL = 21<0, CL 50pF
Upper Trace: Input
Lower Trace: Output

'\..

'\.

I'"'

=

Vertical 5V/Div.
Horizontal = 200nsIDiv.
TA '= 250 C, Vs = ±15V

FIGURE 4. VOLTAGE FOLLOWER PULSE RESPONSE

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

3-176

HA-2S00, HA-2S02, HA-2S0S

Test Circuits and Waveforms

(Continued)

v+
INPUT

2kn

5kO

IN

OUT

13. AV=-1.
14. Feedback and Summing Resistor Ratios should be 0.1 %
matched.

NOTE: Tested offset adjustment range is 1VOS + 1mVI minimum
referred to output. Typical ranges are ±6mV with AT = 20kO.

15. Clipping Diodes CRI and CR2 are optional. HP5082-2810
recommended.

...I

ctll)

FIGURE 5. SETTLING TIME TEST CIRCUIT

FIGURE 6. SUGGESTED Vos ADJUSTMENT AND COMPENSATION HOOK UP

Schematic

Za:
O!!:!
-LL

!ci::J
a: a..
W:E

~ct

BAL

BAL

v+
R5
200

Ql~r

Q2~'

o.c~~

R2
2K
R3
960

Ra
200

R7 RIO
1.8K

Rll
2K

~.&K

Rl
4K

f-

Q3~r

R6
R9
200 200

;-'

Q6

'III

.....

Q&
III

Ql0",

'"""

'" Q16

I'll

~Q5
.,.Q7

C2
10.6P

FT

Q~

'"

R12
1.1K

'"

Ql1

Cl
10pF

~~Q14

I'&Q12 Q1I

I

'101 Io' Q17

.....

n

~

COMP

1'.13K

K

o.co)-

Q37

+IN PUT
III

Q38
800

--,.,Q35

R25
"Q29

Q39r
800

J

R26
"'IQ28
" Q26

fr.
C

'Q30

R20
3.3K

rQ31

Q33 ....

Q3!1

R23J_-

12 ~
~ l(

~ ffl
a: ::I
ifC :>'~

1.0

~

r

0.9

-

. /~

~~ :::::

120

r-

100

r-

:cCl 80 ....
"Ii;
z

~

w

Cl

~

60

...0
0
...
zw
...
0

40

~

I

If

0.8
10

10K

lOOK

1M

10M

100M

FIGURE 10. OPEN LOOP FREQUENCY AND PHASE
RESPONSE

~

./

SLEW RATE -

~

lK

FREQUENCY (Hz)

FIGURE 9. NORMALIZED AC PARAMETERS VB TEMPERATURE

1.1

i

40

zw

::Ii
a:

ifi

60

0

I!;j~

PHASE

~
!:i
~

SLEW RATE

c:>' 0.9

~

1 MHz

o

w

"'w
a:::I

100kHz

"'"'"

FIGURE 8. EQUIVALENT INPUT NOISE VB BANDWIDTH
(WITH 10Hz HIGH PASS FILTER)

W
II:

ffi\I.

SE

1°~ ~~~lm-oR I

FREQUENCY (Hz)

FIGURE 7. INPUT BIAS AND OFFSET CURRENT vs
TEMPERATURE

W

~

"

.... ""

0.1
1ooHz

125

......
THE Fli

TEMPERATURE (oC)

c

~

~~

1.0

~
5

~

100

;r"

;.~

10

~

OFFSET CURRENT

·20
-40

w

z~

SUPPLY VOLTAGE (±V)

FIGURE 11. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE
.

~
I-

20

300pF
1000pF

0

"'"11

·20
10
15

~~

1111111
I~~FII
30pF
100pF

~
""

1"'0

i'

i'

~

~
~

1111111
100

~

lK

10K

lOOK

1M

~
10M

100M

FREQUENCY (Hz)

20

NOTE: External compensation components are not required for
stability, but may be added to reduce bandwidth if desired.
FIGURE 12. OPEN LOOP FREQUENCY RESPONSE FOR
VARIOUS VALUES OF CAPACITORS FROM
COMPENSATION PIN TO GROUND

3·178

HA-2S00, HA-2S02, HA-2S0S
Typical Performance Curves
I
I
VSUPPLY = ±20V ......

-

35

............

-

.......,

VSUPPLY = ±15V

VSUPPLy=+l~

90

Vs = ±lSV, TA = 25°C, Unless Otherwise Specified (Continued)

~

~? ~ /

~

30

CJ

25

....

1111

II~

~

z

~



~

10

::>
0

5

111111111

VSUPPLY = ±2OV

~

VSUPPLY = ±lOV

\ I'

I!:

o

80
-50

-25

0

25

50

75

100

125

10K

lOOK

lMEG

10MEG

FREQUENCY (Hz)

TEMPERATURE (DC)

FIGURE 13. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 14. OUTPUT VOLTAGE SWING

VB

FREQUENCY

5
..J

cern
za:
O!:!:!

-IL
VSUPPLY = ±20V .....

I--

VSUPPLY =±15V ...........

I - - VSUPPLY = +lOV ......

-........

.......

~

~

..:::::;;; ~

-

3
-50

-25

0

25

50

75

100

125

TEMPERATURE (oC)

FIGURE 15. POWER SUPPLY CURRENT vs TEMPERATURE

3-179

!ci::::J
a: a.
W:::E

~ce

HA-2S00, HA-2S02, HA-2S0S

Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

57 mils x 65 mils x 19 mils
1450~m x 1650~m x 483~m

Unbiased
TRANSISTOR COUNT:

METALLIZATION:

40

Type: AI, 1% Cu
Thickness: 16kA ± 2kA

PROCESS:
Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ± 2kA
Nitride Thickness: 3.5kA ± 1.5kA

Metallization Mask Layout
HA-2500, HA-2502
+IN

BAL

-IN

COMP

v-

v+

3-180

HA-2510, HA-2512,
HA-2515

HARRIS
SEMICONDUCTOR

12MHz, High Input Impedance,
Operational Amplifiers

November 1996

Features

Description

• Slew Rate ..........•...............•••.. 60V/~s

HA-251 0/12115 are a series of high performance operational
amplifiers which set the standards for maximum slew rate,
highest accuracy and widest bandwidths for internally compensated devices. In addition to excellent dynamic characteristics, these dielectrically isolated amplifiers also offer low
offset current and high input impedance.

• Fast Settling ••..•...•........•.......•.... 250ns
• Full Power Bandwidth •.•......•.•....•••..• 1 MHz
• Gain Bandwidth •••••••••••••••••••••••••• 12MHz
• High Input Impedance ••..••.....•.....•.•. l00Mn
• Low Offset Current ••••..•••..•••..•.••...•• 10nA
• Internally Compensated for Unity Gain Stability

Applications

The ±6OVI~ slew rate and 250ns (0.1 %) settling time of these
amplifiers is ideally suited for high speed D/A, AID, and pulse
amplification designs. HA-2510/12115's superior 12MHz gain
bandwidth and 1000kHz power bandwidth is extremely useful
in RF and video applications. For accurate signal conditioning
these amplifiers also provide 10nA offset current, coupled w~h
100Mn input impedance, and offset trim capabil~.
MIL-STD-883 product and data sheets available upon request.

• Data AcquiSition Systems
• RF Amplifiers

....I
10.

6. Vo=±10V.
7. CL = 50pF.
8. Vo = ±200mV.
9. See Transient Response Test Circuits and Waveforms.
10.IN=±5V.
11. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = Slew Rate/2"VpEAK'
12. VOUT = ±5V.

..oJ
«If)

Za:
O!!!
-IL

Test Circuits and Waveforms
+5V

r----------.L

+~0:J

INPUT]
-5V
+5V - - - - - - -It...._ _..-.~-..-....- ...-..
~
.....
-~

INPUT

+

- 90% - - -

OUTPUT
-5V :

10%

•

I

t

~
i!.v

=: ~ -,.::.3 SLEW

, At I RATE.
: =AVlt.t

+~-

OmV

"'

OVERSHOOT

!fo'
:.?:F~~~
FINAL VALUE

+200mV - - 90% ---

,.....,_iJII'_......._--- - - - - -

,
I

OUTPUT
10%

,
I

OmV

--',

__ SE:::;ri~NG_

L

:-- RISE TIME

NOTE: Measured on both positive and negative transitions from OV
to +200mV and OV to -200mV at the output.

NOTE: Measured on both positive and negative transitions from OV
to +200mV and OV to ,-200mV at the output.
.

FIGURE 1. SLEW RATE AND SETTLING TIME

FIGURE 2. TRANSIENT RESPONSE

I

v
NOTE: Measured on both positive and negative transitions from OV
to +200mV and OV to -200mV at the output.
FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

RL = 2k!l, CL = 50pF
Upper Trace: Input
Lower Trace: Output

Vertical = 5V/Div.
Horizontal = 200nS/Div.
TA = 25°C, Vs = ±15V

FI,GURE 4. VOLTAGE FOLLOWER PULSE RESPONSE

3-183

!ci:::J
a:c..
w::
~«

HA-2510, HA-2512, HA-2515
Test Circuits and Waveforms

INPUT

(Continued)

2kn

v+

5kn

5kn

IN

OUT

SETTLING TIME
TEST POINT
2kn

CR2
":'

'::"

NOTES:

13. Ay=-l.
14. Feedback and summing resistor ratios should be 0.1 % matched.
15. Clipping diodes CRl and CR2 are optional. HP5082-2810
recommended.

NOTE: Tested offset adjustment range is IVOS + 1mVI minimum
referred to output. Typical ranges are ±6mV with Rr = 20kQ.

FIGURE 5. SETTLING TIME TEST CIRCUIT

FIGURE 6•. SUGGESTED Vos ADJUSTMENT AND
COMPENSATION HOOK UP

Schematic
BAL

BAL

3-184

HA-2510, HA-2512, HA-2515

Typical Performance Curves
4.4

100

4.2

80

~

C

So

4.0

!zW

VSUPPLY
3.8 - VSUPPLY
VSUPPLY

a:
a:

::>
(.)

~

a.
a.

....

3.6

::>

Ul

3.4

.s
!zW

i""""
~

-

a:
a:

(.)

20
0

3.2
-50

-25

-

40

::>

0
25
50
TEMPERATURE (oC)

75

100

-20

125

FIGURE 7. POWER SUPPLY CURRENT vs TEMPERATURE

-50

1.1

a:

W

10

0
Z

E!OtSOURC~';'~~'"T'''''''
"""." '''''''''.

I-

::>

a.

!:
I-

Z

...W
~
5

....

fa

,~

0.1
100Hz

1kHz

iii"
:!:!.
z
;(
c:J

100
80

Ii!j

60

~

40

a.
0
0

...

THERMAL NOISE
OF 10K RESISTOR

II

I

I I I 111111

a.

«CI)

Zit:

SLEW RATE

-- ~ ~

-50

lMHz

-25

0

25

75

100

125

FIGURE 10. NORMALIZED AC PARAMETERS vs
TEMPERATURE

1.1

>

LEJRATEI_

Ul'"

iii"

1U!c

90 a:

~!!I

60

W
W

PHASE

iii

B

i'

120 ~

::c

150 II.

i'

::IEUl

If~
1iIj2
!:I iii
~a:

1.0
BANDWIDTH

..;~
0.9

~~

"

r-r

I

BANDWIDTH-

SLEW RATE

~

a: a:

OW

180
10K
lOOK
1M
FREQUENCY (Hz)

50

TEMPERATURE (OC)

ffi+i

lK

"

0.8

100kHz

~

100

.J

=

0
-20
10

125

I I

1-

II ""

10kHz
FREQUENCY (Hz)

~

100

.=

30

20

75

~

0

Z
W

0

0
25
50
TEMPERATURE (oC)

BANDWIDTH

rn.J~

W

-25

SLEW RATE

FIGURE 9. EQUIVALENT INPUT NOISE vs BANDWIDTH
(WITH 10Hz HIGH PASS FILTER)

120

..........

..,

".

1.0

...

-

........... ~T1URREi

;-"R:

en::E
!II

r"

FIGURE 8. INPUT BIAS AND OFFSET CURRENT vs
TEMPERATURE

100

~

BIAS CURRENT

1"'--....

60

C

~V

=±20V -..
/.
=±15V r--...
=±10V ...... l:;? ~ ~ ",.

--- -

....

10M

z:li
a:
0.8
±10

100M

FIGURE 11. OPEN LOOP GAIN AND PHASE RESPONSE

±15
SUPPLY VOLTAGE (V)

FIGURE 12. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE AT 250 C

3-185

±20

O!!!
-II.

ti:::i

1t:Q.

W:i
~«

HA-2510, HA-2512, HA-2515
Typical Performance Curves
120

~

C(
Cl

80

Cl

60

~

w

~

§2
~

g
z

1'-0
1'-0

40

i!Io

20 f-- 300p~~
1000pF

W

~

~
~

o

-20
10

~
80

1K

""

10K
100K
FREQUENCY (Hz)

~

r"I

1M

10M

I-fIi: 30
d.
25
20

w

15

I::l

10

!:i0

5

§2

-50

o

-25

fo"""'"

25

50

75

100

125

FIGURE 14_ OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

1111

111111

~UPPLY

= ±20V

TA

= 25°C

VSUPPLY = ±15V

"""

Cl

~

--

~~

~~ ~P
.. v" V
L

11111

;::.
z

+10V~

TEMPERATURE (oC)

35

Cl

VSUPPLY

75
100M

FIGURE 13- OPEN LOOP GAIN RESPONSE FOR VARIOUS
VALUES OF CAPACITORS FROM COMPENSATION
PIN TO GROUND

iIII

±20V ......

~

r-.
r-.

11111111
100

85

~
~
~

I =l

VSUPPLY

I- VSUPPLY =±15V ......

30pF
100pF

roo.

111111111

Q.

90

l~

iil100

z

(Continued)

VSUPPLY = ±10V

."'"'''' -'

Q.

I'I'll

o
10K

100K

1MEG
10MEG
FREQUENCY (Hz)

FIGURE 15. OUTPUT VOLTAGE SWING vs FREQUENCY

3-186

HA-2510, HA-2512, HA-2515
Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

65 mils x 57 mils x 19 mils
1650llm x 1450llm x 4831lm

Unbiased
TRANSISTOR COUNT:

METALUZATION:
Type: AI, 1% Cu
Thickness: 16kA

40
PROCESS:

±2kA

Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA-2510, HA-2512, HA-2515

+IN

-IN

BAL

..I
«I/)
za:

O!!:!

-LL
COMP

tc::::i

a: a.

W:1E

~«

v-

v+
BAL

3-187

OUT

HA-2520, HA-2522,
HA-2525

aD HARRIS
WJ SEMICONDUCTOR
November 1996

20M Hz, High Slew Rate, Uncompensated,
High Input Impedance, Operational Amplifiers

Features

Description

• High Slew Rate .......................... 120VlllS

HA-25201252212525 comprise a series of operational amplifiers
delivering an unsurpassed combination of specifications for
slew rate, bandwidth and settling time. These dielectrically
isolated amplifiers are controlled at close loop gains greater
than 3 without external compensation. In addition, these high
performance components also provide low offset current and
high input impedance.

• Fast Settling ••••••••...••.•.•..••.••••••.• 2oons
• Full Power Bandwidth ...................... 2MHz
• Gain Bandwidth (Av ~ 3) ................... 20MHz
• High Input Impedance ..••••....••.•..•••.• 100Mn
• Low Offset Current •••••.•....•.•..•.•...••• 10nA

Applications
• Data Acquisition Systems
• RF Amplifiers
• Video AmplHiers
• Signal Generators
• Pulse Amplification

120VlJ.lS slew rate and 200ns (0.2%) seWing time of these
amplifiers make them ideal components for pulse amplification
and data acquisition designs. These devices are valuable
components for RF and video circuitry requiring up to 20MHz
gain bandwidth and 2MHz power bandwidth. For accurate signal
conditioning designs the HA-252012522/2525's superior dynamic
specifications are complemented by 10nA offset current, l00Mn
input impedance and offset trim capability. MIL-STD-883 product
and data sheets are available upon request.

Ordering Information
PART NUMBER
(BRAND)
HA2·2520-2
HA2-2522-2
HA2·2525-5
HA3-2525-5
HA4P2525-5
HA7-2520-2
HA7-2522-2
HA7-2525·5
HA9P2525·5
(H25255)

TEMP.
RANGE ("C)
-5510125
-5510125
01075
010 75
010 75
-5510125
-5510125
01075
010 75

PACKAGE
B Pin Metal Can
B Pin Metal Can
B Pin Metal Can
B Ld PDIP
20 Ld PLCC
BLdCERDIP
BLdCERDIP
BLdCERDIP
B LdSOIC

PKG.
NO.
TB.C
TB.C
TB.C
EB.3
N20.35
FB.3A
FB.3A
FB.3A
MB.15

Pinouts
HA-2520/22 (CERDIP)
HA-2525 (PDIP, CERDIP, SOl C)
TOP VIEW

HA-2520/22125
(METAL CAN)
TOP VIEW
COMP

HA-2525
(PLCC)
TOP VIEW
~

~

...

8
NC

v+
NC

OUT
NC

~

CAUTION: These devices are sensijive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyrlght @ Hams Corporation 1996

3-188

~ ~

~

File Number

2894.2

HA-2520, HA-2522, HA-2525
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V- Terminals) ............. 40V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V
Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50mA

Thermal Resistance (Typical, Note 1)
8JA (oCIW) 8JC (oCIW)
Metal Can Package. . . . . . . . . . . . . . .
165
BO
PDIP Package. . . . . . . . . . . . . . . . . . .
96
N/A
CERDIP Package............ ... .
135
50
PLCC Package................ ..
74
N/A
SOIC Package...................
157
N/A
Maximum Junction Temperature (Hermetic Packages) . . . . .. 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Maximum Storage Temperature Range .......... -650 C to 150°C
Maximum Lead Temperature (Soldering 10s) ............ 300°C
(SOIC and PLCC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-2520/2522-2. . . . . . . . . . . . . . . . . . . . . . . .. -550 C to 125°C
HA-2525-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 75°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those Indicated in the operational sections of this specification is not implied.

NOTE:
1. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

VSUPPLy=±15V

PARAMETER

TEMP
(DC)

HA-2520-2

I

MIN

TYP

HA-2522-2
MAX

MIN

HA-2525-5

TYP

MAX

5

10

-

14

MIN

TYP

MAX

UNITS

5

10

mV

..J

-

14

mV

INPUT CHARACTERISTICS
25

-

4

B

Full

-

-

11

Offset Voltage Drift

Full

-

20

-

25

-

30

Bias Current

25

100

200

125

250

125

Full

-

400

-

500

20

Offset Voltage

Offset Current

25

-

10

25

Full

-

-

50

Input Resistance (Note 2)

25

50

100

40

Common Mode Range

Full

±10.0

-

±10.0

15

7.5

15

5

-

-

JlVPC
250

nA

a:1l.

500

nA

~c(

nA

50

20

50

100

-

100

100

nA
Mn

40

100

±10.0

-

-

V

7.5

15

-

kVN

5

-

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain
(Notes 3, 6)

25

10

Full

7.5

Common Mode Rejection Ratio
(Note 4)

Full

BO

90

74

90

74

90

Gain Bandwidth (Notes 2, 5)

25

10

20

10

20

10

20

MHz

Minimum Stable Gain

25

3

-

3

3

-

VN

Output Voltage Swing (Note 3)

Full

±10.0

±12.0

±10.0

±12.0

±10.0

±12.0

V

Output Current (Note 6)

25

±10

±20

±10

±20

±10

±20

mA

Full Power Bandwidth
(Notes 6, 11)

25

1.5

2.0

1.2

2.0

1.2

2.0

-

MHz

-

25

50

-

25

50

ns

25

50

25

50

%

±80

±120

±120

-

V/jJ.S

--

kVN

-

dB

OUTPUT CHARACTERISTICS

-

-

TRANSIENT RESPONSE ("",=+3)
Rise Time (Notes 3,7, B, 10)

25

25

50

Overshoot (Notes 3,7,8, 10)

25

-

25

40

Slew Rate (Notes 3,7, 10, 12)

25

±100

±120

SetUing Time (Notes 3, 7, 10, 12)

25

-

0.20

0.20

3-189

-

±BO

0.20

c((/)

Za:
O!:!:!
-u...

JlS

!(i:::i
W:i:

HA-2520, HA-2522, HA-2525
Electrical Specifications

VSUPPLY = ±lSV (Continued)

PARAMETER

UNITS

Supply Current

mA

Power Supply Rejection Ratio (Note 9

dB

NOTES:
2. This parameter value is based on design calculations.
3. RL= 2kQ.
4.
S.
6.
7.
B.
9.
10.
11.

VCM=±10V.
Av> 10.
Va = ±1 O.OV.

CL= SOpF.
Va = ±200mV.
!N = ±S.OV.
See Transient Response Test Circuits and Waveforms.
Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = Slew Rate.
2ltV pEAK
12. VOUT = ±5V.

Test Circuits and Waveforms

+1~.67V

INPUT

L

±67:J
INPUT

-1.67V
'- _ _ _
+5V - - - - - - -.r.~_"""'",!"iiiioOi;.!i"_....
OUTPUT

-~: -

- -,

-5V: :: :: - - , - -, -

'

::

,

'

OVERSHOOT

90% - --

FINAL VALUE

=AVlAt:

,
SETTLING
,
,TIME - ,

L

±200mV - - -

-SLEW : ;fO~:F':o~

.... , At , - - RATE

,

OV

fw -r-

OV

I

--:

,,
I

:..... RISE TIME

NOTE: Measured on both positive and negative transitions from OV
to +200mV and OV to -200mV at the output.
FIGURE 2. TRANSIENT RESPONSE

FIGURE 1. SLEW RATE AND SETTLING TIME

INPUT

667.20

16670

IN
>---1~"""---"""--OOUT

999.90
...._ _....._ _ SETTLING TIME
TEST POINT

20000

NOTES:
13. Av=-3.
14. Feedback and summing resistor ratios should be 0.1 % matched.
lS. Clipping diodes CRl and CR2 are optional. HP50B2-2Bl0
recommended.
FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

FIGURE 4. SETTLING TIME TEST CIRCUIT

3-190

HA-2520, HA-2522, HA-2525

Test Circuits and Waveforms

(Continued)

v+

OUT

IN

NOTE: Tested offset adjustment range is 1Vas + 1mVI minimum referred to output. Typical ranges are ±20mV with RT = 20kO,
FIGURE 5. SUGGESTED Vos ADJUSTMENT AND COMPENSATION HOOK-UP

Schematic Diagram
OFFSETPIN 1

OFFSET+

BALl
200
R2AA

~, 030

~"029
Rll

R10

440

440

UK

c:ecn
Za:

O!!:!
-II..

oJ

L

~

04A('

,...,,04B

~c

!B~~

~J

R1A) R1B
r 024
,,"018

~"019
021A

025
R&A

05A
4 ) 022

..... 012A
R17

011B

02B

02& "1

Rg

~

'0138

I. 017

.,,020

08

r

02A

f?*:

~
r

~

R15

~c:e

...... 015
C1
lpF

1M

~~027

a:c..

W:::i

03B

03A

~:::i

R12

UK

R1&

+IN PUT

....I

R21

~01&

~,. 028

v+

200
R2BB

~

R13

COMP

BAL2

121B
R&B

~

R3A

-INPUT

3-191

'-..J

50

OUTPUT

~

012B

R18
30

~, °13A

t--K

09

0 5B

010

~R3B

~R18

011A

,014
R10

v-

HA-2520, HA-2522, HA.,2525

Typical Application
Inverting Unity Gain Circuit
Figure 6 shows a Compensation Circuit for an inverting unity
gain amplifier. The circuit was tested for functionality with supply voltages from ±4V to ±15V, and the performance as tested
was: Slew Rate", 120Vl!1s; Bandwidth", 10MHz; and Settling
Time (0.1%) '" 5OOns. Figure 7 illustrates the amplifier's frequency response, and it is important to note that capacitance
at pin 8 must be minimized for maximum bandwidth.

'" r~

2K

51--4-~HH#--+-I-H4H#--4-~~~~H
GAIN

m

i"

w

\

w

\

OUT

.~

10K

lOOK

1M

-180

10M

FIGURE 7. FREQUENCY RESPONSE FOR INVERTING UNITY
GAIN CIRCUIT

FIGURE 6. INVERTING UNITY GAIN CIRCUIT

Vs

CJ

e.

0

-10 1--4-~HH#--+-I-H4H#--4-~f-RII.H-'\-lIH -90 ~
:c
-15 ~~rrHH*--+~rHH*--~rrHH~~H -135 "-

=5K

Typical Performance Curves

a:

0~~++~~~~~~~d-~~~-1~
IL
-45 :E
-5 1--++++l+HI--+-H-++tHl PHASE
-~..,..#tfr--II-l
rn
1

HA-2520

5OOPF~

Cii"
w
w

10~~rrHH*--+~rHH*--~rrHH*-~H

~

10K

IN

151--4-~HH#--+~H4H#--4-~HH#-~H

=±15V, TA =25°C, Unless Otherwise Specified

~~:~.~~+-+-~I-~-I-+-+-+-~I-1-1-+-I-~~

~-1~1-~~~+-+-~-+-+-I-4-+-~-1-+-I-4-+-~
m_1~~'~~~I~Y-~~-+-r;-~~-+~+-~~
-140
-150

HH~~-+--+-+-+-IH-+--+--+--t-+-I-t-+--+---i
t-.ll/~-t--t-H-++-+--IH-++-+-l-++-+-I

-160_6L..0-'-_..J4O--L-_..L20-'-~01.....JL...2..10--L-4O:'::-J.....J6':-0--'-..J
80--'--1OLO--'-1..J2-'0

TEMPERATURE (oC)

TEMPERATURE I"C)

FIGURE 8. OFFSET VOLTAGE va TEMPERATURE (6 TYPICAL
UNITS FROM 3 LOTS)

i

!zw

30
20

a:
a: 10

:::)

0

rn

~
Iii

...o~

I'"

~

r-. r-. ~' ........

-.... ....

r- I"'-

0

-20

s;l>
~
....

i

....

-10
.....

FIGURE 9. BIAS CURRENT vs TEMPERATURE (6 TYPICAL
UNITS FROM 3 LOTS)

~

22
21
i"'""
20
~
19
I"jII'
l...o"
18
~
'7
17 ,.~
16
f,J
15
,,~
~
14
.,1
13
12
11
10 1'1
IJ
9
8

--

...."

....
~:;;iil"""

....

...

~·I"

7
~O'--'~--'--'---'-~~L..J~--'--'---'---'-~~L.....J-'

-eo

-40

-20

0

~

40

60

80

100

6
-eO

1~

TEMPERATURE (OC)
FIGURE 10. OFFSET CURRENT va TEMPERATURE (5 TYPICAL
UNITS FROM 3 LOTS)

-40

-20

0

20
40
60
TEMPERATURE (oC)

80

100

120

FIGURE 11. OPEN LOOP GAIN va TEMPERATURE (6 TYPICAL
UNITS FROM 3 LOTS)

3-192

HA-2520, HA-2522, HA-2525
Typical Performance Curves

Vs = ±15V, TA = 25°C, Unless Otherwise Specified (Continued)

-

50
40

C

30

tJ.

20

E

!zw
II:
II:

:;)

U
I-

:;)

"-

!;
a

10
0

,.,.

-

~~

-20

---

-30
6

3!i

-..

1000..

8

10

12

-- -

,.,.

4

w

SUPPLY VOLTAGE (±V)

!:l

2
0

!;

-2
-4

i,..o-'

i""'ooo.

1,...000'

-..

-6

A

-

i"""-o iooo.

14

4

6

8

10

FIGURE 13. OUTPUT VOLTAGE SWING

-550 C

100
80

iii
If

-

0

14

14

...

- ...

...

SUPPLY VOLTAGE (±V)

III

..J

c(C/)

Za::

....

O~

-II.

iii
w
w

...

II:

"e.w

0

...
"cz

w
-45

"

-90

III.

I II I:10K
I I100K

100

SUPPLY VOLTAGE

vOPEN LOOP GAIN

OPEN LOOP PHASE

12

VB

1111

40

20

8

I

.iill I

!60
GUlt~~J~~
3!i
" P~AU ~T l ~ ~OO
C

10

......

12

SUPPLY VOLTAGE (±V)

25°C

8

...... ....

-10
-12

125°C

6

-"" I"""

-"" I"""

i""'ooo

S -8

FIGURE 12. OUTPUT CURRENT vs SUPPLY VOLTAGE

5.4
5.2
5.0
C 4.8
E 4.6
;- 4.4
4.2
4.0
II
3.8
II
> 3.6 fl
~ 3.4
!!; 3.2 'I1
til 3.0
2.8
2.6
2.4
4

8
6

~

-40
4

c;

~

i""""-

RL = 2k!l

~ 10

~

-.. i"'--

-10

i,..o-' ."""

14
12

1M

1K

w
-135 ~

~

10M

:z:

-180 "-

100M

FREQUENCY (Hz)

FIGURE 14. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 15. FREQUENCY RESPONSE

f

100

1000
500

:5-

.....

....

w 100

'""' '""'

"CURRENT
INPUT
NOISEI"
I" """"
"""

~111I1ll

!:l 50
~

INPUT NOISE

VO~~~rr;;:

w

~
~

10

l"'R:I:IIIII..

~

!!l

50

5

U

10

1

1

10

100

1K

10K

0.1
100K

FREQUENCY (Hz)

FIGURE 16. OPEN LOOP FREQUENCY RESPONSE FOR
VARIOUS VALUES OF CAPACITORS FROM COMP
PIN TO GROUND

3-193

w

!!l

a

0.5~
~
3!i

5

1

~

!z
II!
II:
:;)

h

3!i

FREQUENCY (Hz)

il

FIGURE 17. INPUT NOISE CHARACTERISTICS

~:::i
a::c.

w:=
~c(

HA-2520, HA-2522, HA-2525

Typical Performance Curves

Vs

= ±lSV. TA = 25°C. Unless Otherwise Specified (Continued)

1.2

35

RL=2kn

VSUPPLY = ±20V

1
~

30

CI

25

!

20

III

CI

~

15

!:i

10

~

.' "" III.

VSUPPLY = ±15V

vLL~!~~tv

~
~

CL=50pF

1.0

II

'H

0.9

12
c

0.8

~

0.7

II:
0
Z

0.6

~

"'r\

IU

1.1

~I\

III

::&

S
0

o

10K

~

~

!? ~ "
~ ~ ~ NEGATIVE

",

a1NO'wIOTH

",~

~

I:::::i

l.I ~

V

SLEW RATE

POSITIVE
SLEW RATE

0.5

0.4
100K

1M

5

10M

FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY

7

9

11

13

15

17

19 20

SUPPLY VOLTAGE (±V)

FREQUENCY (Hz)

FIGURE 19. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE

3-194

HA-2520, HA-2522, HA-2525
Die Characteristics
DIE DIMENSIONS:

PASSIVATION:

67 mils x 57 mils x 19 mils
(1700~m x 1440~m x 483~m)

Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

METALLIZATION:
TRANSISTOR COUNT:

Type: AI, 1% Cu
Thickness: 16kA ±2kA

40

SUBSTRATE POTENTIAL:

PROCESS:

Unbiased

Bipolar Dielectric Isolation

Metallization Mask Layout
HA-2520, HA-2522, HA-2525

-I

-.......- - - 0
900n

OUT

NOTES:
11. V s :±15V.

loon

12. Av: +10.
13. CL " 10pF.

FIGURE 1. TEST CIRCUIT

A

B

Vertical Scale: A: 0.5V/Div., B: 5.0V/Div.
Horizontal Scale: 50nS/Div.

Vertical Scale: Input: 1OmV/Div., Output: 50mV/Div.
Horizontal Scale: 20ns/Div.

FIGURE 2. LARGE SIGNAL RESPONSE

FIGURE 3. SMALL SIGNAL RESPONSE

3-199

HA-2539
Test Circuits and Waveforms

(Continued)

NOTES:
14. Av

= -10.

15. Load Capacitance should be less than 1OpF.

200n

OUTPUT

INPUT

17. SETTLE POINT (Summing Node) capacitance should be less
than 10pF. For optimum seWing time results, it is recommended
that the test circuit be constructed direcHy onto the device pins.
A Tektronix 568 Sampling Oscilloscope with S-3A sampling
heads is recommended as a settle point monitor:

500n
2kr.l

SETTLE
POINT

16. It Is recommended that resistors be carbon composition and that
feedback and summing network ratios be matched to 0.1 %.

5kn

FIGURE 4. SETTLING TIME CIRCUIT

Schematic Diagram
~~~--.---~~--~--~~---.-------------------.-------.--~ v+

Rs

...---+---+-+--------~ Qp5

+INPUT

0-+--+--+--------+
OUTPUT

-INPUT

o-----t---t--------------+--t---+-----'

3-200

HA-2539
Typical Applications

SETAv=~
R,

FIGURE 5. FREQUENCY COMPENSATION BY OVERDAMPING

=-3

FIGURE 6. STABILIZATION USING ZIN

R5 1kfl
INPUT

-!-

R,

OUTPUT

-!FIGURE 7. REDUCING DC ERRORS; COMPOSITE AMPLIFIER

FIGURE 8. DIFFERENTIAL GAIN ERROR (3%) HA-2539 20dB
VIDEO GAIN BLOCK

Typical Performance Curves
14

7

12

6

.;; 10

5

RSOURCE

a::
a::

-

....

8

::::I
(J

III

6

...

4

:$

1-"V

OFFSET VOLTAGE

I

...

3

tu
III

C!I

BIAS CURRENT

0

~

2

-40

o

~

~

80

120

40

f.eo...
z

w
30 a::

a::

::::I
(J

20 w

~

~

5

Z

10

VOLTAGE NOISE

CURRENT NO ISE
1111

o
40

50

10

W

~Z

Vs = ±15V

'"

w 15

II.
II.

1!:

20

.s

~

2

-80

~>

~

........... J.

o

w

4

CD

::::I

.5.

C!I

~'~Q

~

:>

C

!zw

25

o

160

10

TEMPERATURE (OC)

111111111
100

I

111111
lK

10K

TI11

o

lOOK

FREQUENCY (Hz)

FIGURE 9. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs
TEMPERATURE

FIGURE 10. INPUT NOISE VOLTAGE AND NOISE CURRENT vs
FREQUENCY

3-201

HA-2539
Typical Performance Curves

(Continued)

JOO

80

iii'

~
II: 60
II:

""""'

:;;

0

...
r-....

40

r" ro-

20

Vertical Scale: 10mV/Div.
Horizontal Scale: 50ms/Div.

lK

FIGURE 11. BROADBAND NOISE (0.1 Hz TO 1MHz)

10K

lOOK
FREQUENCY (Hz)

100

Il~![

80

60

80

"

PHAS EI"oo

iii'
~

1::::=0

z

:;;:

!'iii roo

:~

=

lK

10K

lOOK
FREQUENCY (Hz)

1M

·20
100

10M

~

w

e.

135 ~

~

:x:
c.
180
225

lK

10K

28

.

iii' 80

0
0

iii

lOOK
1M
10M
FREQUENCY (Hz)

100M

~~~1~15~

±15V

90

II.

f§

90

FIGURE 14. OPEN LOOP GAIN/PHASE vs FREQUENCY

1111

Cl

w

o

100 I-Vs

z
:;;:

Vi
w

20

FIGURE 13. POWER SUPPLY REJECTION RATIO vs
FREQUENCY

~

45

r--

I""

40

20

o

o

Cl

I:::::

10M

FIGURE 12. COMMON MODE REJECTION RATIO vs
FREQUENCY

100

40

1M

24

:tw 20

70
60

Cl

50

~

~ 16

oJ

40
w
If)
30
0
oJ 20
0
0

~

5

8

Vs ~±5V

10K

lOOK

1M

10M

a

100M

FREQUENCY (Hz)

"-

lllllilL

4

·10
lK

.,

\

I-

0
100

~+10V

~ 12

~

10

Vs

IIIIIII
tK

10K

tOOK

1M

10M

100M

FREQUENCY (Hz)

FIGURE 15. CLOSED LOOP FREQUENCY RESPONSE

FIGURE 16. OUTPUT VOLTAGE SWING vs FREQUENCY

3·202

HA-2539
Typical Performance Curves

(Continued)

1.4
28

(,) 1.3
",0

'0:.
d..

24

Cl
Z

20



a

!:;

4



V

I

~~
c>

1.0

~I:!
::::;
c

0.9

......

-,

-'

SLEW RATE

..........

;]~
!5 ~ 0.8

II
o

I

1.2 ~ANDWIDTH

'"

ZW

a: 0.7

200

400

600

800

lK

0.6
-80

1.2K

o

-40

40

FIGURE 17. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

a

fu

6
4
2

Iii
w

~

'-'
~

!:;
~

o

Y

/
10mV

"

0
-2
-4

./

"

,

/-lmv-

/

....I

«en
za:

Vs=±15V

~ 20
....
15a: 16

O!!:!
-u.

a

..

\.

!;;::::i

I

a:

I\, "-" l m V -

o

160

I

24

10mV ~

-6
-8
-10

120

FIGURE 18. NORMALIZED AC PARAMETERS vs TEMPERATURE

28
10
~

80

TEMPERATURE (OC)

RESISTANCE (il)

Vs =±5V

12

a:

a..
W:E

I

:5«

~

-

11. Av=+10.
12. CL :> 10pF.

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

I

I

-

I

I

I

B

m

t::J
~

~mv

I

Vs =±5V

8

III

l\.

120
160
80
SETTLING TIME (ns)

I

ce
ce

:::>

·2
-4

160

C
.§. 20

I

J

120

Vs=±15V _

24

/

w
CI

g'"'

/

o
40
80
TEMPERATURE (OC)

FIGURE 8. NORMALIZED AC PARAMETERS vs TEMPERATURE

,

10mv/

100M

1.3

~
8! 'ill

/'

12

10M

1.4

28

z

1M

FIGURE 6. OUTPUT VOLTAGE SWING vs FREQUENCY

12

CI

lOOK

FREQUENCY (Hz)

FIGURE 5. CLOSED LOOP FREQUENCY RESPONSE

~

..

11111111

o

100M

~

lSIH~~1
"'""'

II.

10K

-I-

Vs =±10V

16

w

,

-

·10
100

-

~
CI 20

I'

9 20 ~

28

4

200

FIGURE 9. SETTLING TIME FOR VARIOUS OUTPUT STEP
VOLTAGES

o

-80

240

-40

o

40
80
TEMPERATURE (OC)

120

160

FIGURE 10; POWER SUPPLY CURRENT VB TEMPERATURE

3·210

HA-2540
Typical Performance Curves

(Continued)

14
RSOURCE

12

:;-

OFFSET VOLTAGE

.....

20~

oS
UJ

/

~

~:>

tii

CI

CI

4

...........

3

..... i'o

~
III

IL
IL

BIAS CURRENT

2 0
"0
~

2

.s
UJ

~

~

-80

-40

o

40

80

120

I--~ ~URRENT NOISE

15

~<

40

,~

i

30

10~+-~~&-1-++t#ffi--r,,~~~-+++&m20 ~

UJ
III

VOLTAG:

il'ii

5
z

~

~

~

10
O'-...L...l....L.J....W."--'-.L..1..1...IJ.W--L...L.J...L.JJWL......J.-'....J...J...lJ.WO
10
100
lK
10K
100K

o

o

=on, Vs =±15

25~+-~H*&-~+++*~~~~~~-+++~50

160

TEMPERATURE (DC)

FREQUENCY (Hz)

FIGURE 11. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs
TEMPERATURE

FIGURE 12. INPUT NOISE VOLTAGE AND NOISE CURRENT vs
FREQUENCY

Vs = ±15,

R'~'= 1K

120
100

iii" 80
a:
a:

:!!.
:;;
0

60

-I"-

40

20

-

r--- ..

o
lK

Vertical Scale: 10mV/Div.
Horizontal Scale: 50ms/Div.

iii"

100

80

80

-

a:

:ea:

40

iii"
z

«
CI

60

9

40

...0

POSITIVE SUPPLY

NEGATIVE SUPPLY

10M

....... =:

o

~

:!!.

r=== 1=::

1M

FIGURE 14. COMMON MODE REJECTION RATIO vs FREQUENCY

100

60

lOOK
FREQUENCY (Hz)

FIGURE 13_ BROADBAND NOISE (0.1 Hz TO lMHz)

:!!.

10K

45

GAIN

1'1.

ffi'

PHASE

UJ

90

UJ

z

...
0

135 ~

UJ

..."

20

20

~

o

lK

-10

10K

lOOK

1M

10M

FREQUENCY (Hz)

100

180
225

1K

10K

100K

1M

10M

100M

FREQUENCY (Hz)

FIGURE 15. POWER SUPPLY REJECTION RATIO vs FREQUENCY

3-211

ffi

UJ

e.

FIGURE 16. OPEN LOOP GAIN/PHASE vs FREQUENCY

HA-2540

Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

v-

62 mils x 76 mils x 19 mils
1575 J.lmx 1930J.lm x 4831lm

TRANSISTOR COUNT:

METALLIZATION:

30

Type: AI. 1% Cu
Thickness: 16kA ±2kA

PROCESS:

Bipolar Dielectric Isolation

PASSIVATION:

Type: Nitride (Si 3N4) over Silox (Si02 • 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA-2540

v+

v·

OUTPUT

3-212

HA-2541
40MHz, Fast Settling,
Unity Gain Stable, Operational Amplifier

November 1996

Features

Description

• Unity Gain Bandwidth .........•....•...... 40MHz

The HA-2541 is the first unity gain stable monolithic
operational amplifier to achieve 40MHz unity gain bandwidth. A major addition to the Harris series of high speed.
wideband op amps, the HA-2541 is designed for video and
pulse applications requiring stable amplifier response at low
closed loop gains.

• High Slew Rate ..........•......•........ 250VlflS
• Low Offset Voltage •••••.•••...•.••.....•... 0.8mV
• Fast Settling Time (0.1%) .•................•. 90ns

• Power Bandwidth .•....•.•....•.•......•... 4MHz . The uniqueness of the HA-2541 is that its slew rate and bandwidth characteristics are specified at unity gain. Historically,
• Output Voltage Swing (Min) . . . . • . • . . . . • . • • •. HOV
high slew rate, wide bandwidth and unity gain stability have
been incompatible features for a monolithic operational ampli• Unity Gain Stability
fier. But features such as 250V/flS slew rate and 40MHz unity
• Monolithic Bipolar Dielectric Isolation Construction
gain bandwidth clearly show that this is not the case for the
HA-2541. These features, along with 90ns settling time to
Applications
0.1 %, make this product an excellent choice for high speed
data acquisition systems.
• Pulse and Video Amplifiers
MIL-STD-883 product and data sheets are available upon
• Wideband Amplifiers
request, Harris AnswerFAX (407-724-7800) document
#3698.
• High Speed Sample-Hold Circuits
• Fast, Precise DIA Converters
• High Speed AID Input Buffer
For a lower power version of this product, please see
the HA-2841 data sheet.

For further application suggestions on the HA-2541, please
refer to Application Note AN550 (Using the HA-2541), and
Application Note AN556 (Thermal Safe Operating Areas for
High Current Operational Amplifiers), Harris AnswerFAX
(407-724-7800) document #9550 and 9556. Also see 'Applications' in this data sheet.

Ordering Information
PART
NUMBER

TEMP.
RANGE (OC)

PACKAGE

PKG. NO.
F14.3

-55 to 125

14 LdCERDIP

HAl-2541-5

Ot075

14LdCERDIP

F14.3

HA2-2541-2

-55 to 125

12 Pin Metal Can

T12.C

HA2-2541-5

01075

12 Pin Melal Can

T12.C

HAl-2541-2

Pinouts
HAl-2541
(CERDIP)
TOP VIEW

HA2-2541

(METAL CAN)
TOP VIEW

V CASE

= v-

CAUTION: These devices are sensitive to eleclrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporetion 1996

3-213

+IN

File Number

2898.2

---I

C

35

IlA

50

-

-

±10

-

6

85

IlA
nAflC

1

7

IlA

-

9

IlA

100
1

kO

-

pF

±10

±11

-

10

nV/-.fHi

4

pAl-.fHi

V

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

-

25

10

16

10

16

Full

5

-

5

-

Full

70

90

70

90

dB

25

1

1

-

VN

Vo=90mV

25

-

40

-

40

Output Voltage Swing

RL = 1kQ

Full

±10

±11

±10

±11

Output Current

RL = 1kQ

25

±10

±15

±10

±15

-

2

0

3

4

MHz

Common Mode Rejection Ratio

Vo =±10V

V CM =±10V

Minimum Stable Gain
Unity Gain Bandwidth

kVN
kVN

-

MHz

-

mA

OUTPUT CHARACTERISTICS

25

-

2

Vp = 10V

25

3

4

Differential Gain

Note 4

25

Differential Phase

Note 4

25

Output Resistance
Full Power Bandwidth (Note 3)

3-214

-

-

0.1

-

0.2

-

-

0.1
0.2

V

-

%
Degrees

HA-2541
Electrical Specifications

VSUPPLY = ±15V, RL = 1kn,

PARAMETER
Harmonic Distortion

TEST
CONDITIONS

c L <; 10pF. Unless Otherwise Specified
HA-2S41-2
-SSoC to 12SoC

TEMP

(0C)

Note 6

MIN

TYP

HA-2S41-S

aOc to 75°C

MAX

MIN

<0.01

25

(Continued)

TYP

MAX

UNITS

<0.01

%

ns

TRANSIENT RESPONSE (Note 5)
Rise Time

25

4

4

Overshoot

25

40

40

%

Slew Rate

25

250

V/~s

Settling Time

200

250

200

10V Step To 0.1%

25

90

90

ns

10VStepToO.Ol%

25

175

175

ns

25

29

POWER REQUIREMENTS
Supply Current

Full
Power Supply Rejection Ratio

V s =±5Vto±15V

29

Full

70

80

mA
40

40
70

78

mA
dB

NOTES:
3. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW =
4. Differential Gain and Phase are measured with a tV differential voltage at SMHz.

~~w Rate.
1t

PEAK
..J
c((f)

5. Refer to Test Circuits section of this data sheet.

Za:
o!!!
-1.1..
~::i
a: a..

6. f = 10kHz; Av = 5; Va" 14Vp_p.

Test Circuits and Waveforms

w:!:
~c(

r-_ _ _ _....._ ....._O~~~~ING
NOTES:
7. Vs = ±15V.

8. Av=+I.
9. CL " 10pF.
NOTES:

10. Av =-1.
11. Feedback and summing resistor ratios should be 0.1 % matched.
12. HPS082-2810 clipping diodes recommended.
13. Tektronix P6201 FET probe used at settling point.
FIGURE 1. TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 2. SETTLING TIME TEST CIRCUIT

ov

ov

ov

ov
Vertical Scale: 5V/Div.
Horizontal Scale: SOnS/Div.

Vertical Scale: V'N = 1OOmV/Div., V auT = 50mV/Div.
Horizontal Scale: 20nS/Div.
SMALL SIGNAL RESPONSE

LARGE SIGNAL RESPONSE

3-215

HA-2541
Test Circuits and Waveforms

(Continued)

NOTES:
14. Vs=±15V. Rl = 1kQ.
15. TA = 25°C.

16. Propagation delay variance is
negligible over full temperature range.

Vertical Scale: 100mV/Div.
Horizontal Scale: 5ns/Div.

PROPAGATION DELAY

Schematic Diagram

Y

BALANCE

JcR,o

R',
JcQp,s
L

""""':!.

.......

Qp14

Qp13

R23

~,

J

QN••

'3JR,;)
R~7J 5K
R.B
Qp33
,s 5K
.....,
,/

r-..

Qps

Y BALANCE

.....,

v+

Qps~

Qp3.

IM{P7
Qp3'..;t-+-_~----t----t----II~""";":""--;::~

---

+IN

r

-IN

~,

I

>-0 V OUT

;-::-

'---+---I----+--I--+---+---+----\:r....~

QN3.

R••

Rs

R.o

'----~--~--~----~~-~--~---4_--~--4---_4--_4------4_--_4----~~

3-216

HA-2541

Typical Applications

(Also see Application Note AN550)

Application 1

Application 2

High power amplifiers and buffers are in use in a wide variety
of applications. Many times the "high power" capability is
needed to drive large capacitive loads as well as low value
resistive loads. In both cases the final driver stage is usually a
power transistor of some type, but because of their inherently
low gain, several stages of pre-drivers are often required. The
H~-2541, with its 10mA output rating, is powerful enough to
drive a power transistor without additional stages of current
amplification. This capability is well demonstrated with the
high power buffer circuit in Figure 3.

Video

The HA-2541 acts as the pre-driver to the output power
transistor. Together, they form a unity gain buffer with the
ability to drive three 50Q coaxial cables in parallel, each with
a capacitance of 2000pF. The total combined load is 16.6Q
and 6000pF capacitance.

One of the primary uses of the HA-2541 is in the area of
video applications. These applications include signal
construction, synchronization addition and removal, as well
as signal modification. A wide bandwidth device such as the
HA-2541 is well suited for use in this class of amplifier. This,
however, is a more involved group of applications than
ordinary amplifier applications since video signals contain
precise DC levels which must be retained.
The addition of a clamping circuit restores DC levels at the
output of an amplifier stage. The circuit shown in Figure 4
utilizes the HA-5320 sample and hold amplifier as the DC
clamp. Also shown is a 3.57MHz trap in series, which will
block the color burst portion of the video signal and allow the
DC level to be amplified and restored.

....I

C(I/)

za::
Ow

~§
a::

w::0.
~C(

LOAD 16.611; 6000pF
OR 12.50; 6000pF
FIGURE 4. VIDEO DC RESTORER

FIGURE 3. DRIVING POWER TRANSISTORS TO GAIN
ADDITIONAL CURRENT BOOSTING

Suggested Offset Voltage Adjustment

NOTE: Tested Offset Adjustment Range is IVos + 1mVI
minimum referred to output. Typical range is ±15mV for
RT= 5k.Q.

3-217

HA-2541
Typical Performance Curves
TA = 25°C. Vs

3.0

= +15V

2.5

>

§:

oS
UI
!;i

UI

u

z

10K

~

III
UI

a: 1000

I;
a.
~

100

.;;:- .....

2.0

lOOK

~
~

~
:!"

v-

!:i

~

Il'I'to..

Iii
II.

0

rn

0

IlII::::::

~.5

-1.5

- ......-r-..
....
.....
......... .........

r-r--

-2.5
10M

~

100M

~

0

~

FREQUENCY (Hz)

1000

~

,
.!!:

1 00

!ZUI
a:
a:

~

B
UI


ENI

~

i5

10

Z

I;

100

l....
z

UI

a:
a:
::)
U


:!!
III

~

INI

"'1""t
lK

10K

1
lOOK

I"19
18
17
16
I"15
14
13
......
12
11
10
9
8
i"'"
7
6
5
4
-60
~

I-- r- -s5"C
I-- r- +VOUT

..

2

..

E

0

·2
~ -4
:>

~

""""'"

~

·6
-8

.550 C
+VOUT

·10

I

-

·12
·14

5

7

~~

~"

~

~

-- - -

~

....

I:'l1o.

..... o::!!

~

.....

....

....

.......
-20

o

~

40

60

80

100

-

120

+IOUT I':::>

20

~~

125°C /"
+VOUT

11

....

-30

!""III
13

3

5

7

-

25°C
-lOUT -

\.

9

125°C
-lOUT

\

-...

·40

15

~

_55°C
-lOUT

-

0

-~

......; iI!Ii!!!!! ...

,~ ~

10

-10
o:!!III

~~

~ ~ ~ P'"

-SSoC

30

:>

~ I!!!!!!.

125°C
+IOUT ........

25°C
+loUT

40

.

9

~

I"

50

..!'

25°C I
+VOUT

~

60

~

oS

.,..

~

FIGURE 8. BIAS CURRENT VB TEMPERATURE
(6 REPRESENTATIVE UNITS)

C

.... ~ !!IIIo.

3

125°C
+VOUT \

25°C
+VOUT \
\

~

r--

TEMPERATURE ("C)

FIGURE 7. NOISE DENSITY VB FREQUENCY

I

~

""
".... ..... "

FREQUENCY (Hz)

6
4

r--

21
20

a.

i'

8

-.....r-

FIGURE 6. OFFSET VOLTAGE vs TEMPERATURE
(6 REPRESENTATIVE UNITS)

1000

f- ff- f- TA = 25°C

I

-- -

TEMPERATURE <"C)

FIGURE 5. INPUT RESISTANCE VB FREQUENCY

10

......... i'-.....

-3.0

1M

12

r-

..........

-2.0

1000

10

1.0
0.5

~ -1.0

9000

10
lOOK

1.5

11

13

SUPPLY VOLTAGE (±V)

SUPPLY VOLTAGE (±V)

FIGURE 9. OUTPUT VOLTAGE SWING VB SUPPLY VOLTAGE

FIGURE 10. OUTPUT CURRENT VB SUPPLY VOLTAGE

3·218

15

HA-2541
Typical Performance Curves

:it

30
28
26
24

(Continued)

1.2
1.1

IJI'

1.0

~

So

22
20
II: 18
II:
:::> 16

'7
f!
i--

~

I-

zw

/.

0

,~

I

~ 14
Il.
Il. 12
:::>
III 10
8
6
4

I

J :

.~

."
I

J'~

"

~

0.8

..I
III

0.7

w

125°C

25°C

..I
c(

::2

II:

-55°C

0

Z

I

I
I

II:
II:

III
Il.

0.3

VIN

~r/

~~
~

25°C

5

7

'.55 C _

-

I

11
9
SUPPLY VOLTAGE (±V)
7

13

15

~250C

"

-550 C f-+PSRR
_+PSRR
f--

Your

-=RL~CL

RL=2k!l
CL :510pF

I

L

L

I

9
11
SUPPLY VOLTAGE (±V)

i

I

13

15

FIGURE 12. SLEW RATE VB SUPPLY VOLTAGE
(NORMALIZED WITH Vs ±15V AT 25°C)

=

_

122
120
118
116
114
112
110

!8

108

,-

-125°C
f--+PSRR

~
+

V.

O

0.1

,.

~~
iii'
~ 82 f-- -

0.4

0.2

86

83

0.5

~,

n

w 0.6

til

87

84

125°C

C

FIGURE 11. SUPPLY CURRENT vs SUPPLY VOLTAGE

85

II

II:

--

5

3

w
!;( 0.9

'--

f--

-

II

::2
0 104

25°C

102
100
98
96
94
92

....

76

~

-'

II:

....

-, -

125°C

~108

81 f-125°C
80 f-- -~ ·PSRR
79
·550C
S250C
78 r ·PSRR - r--·PSRR ~""'77

,

I

./

-""I'"

J'

I

./

~

·550C

~

"
./

........

,.
~

./
r-

90

7
9
11
SUPPLY VOLTAGE (±V)

5

3

13

15

11
7
9
SUPPLY VOLTAGE (±V)

5

3

FIGURE 13. PSRR VB SUPPLY VOLTAGE (AVERAGE OF 3 LOTS)

13

15

FIGURE 14. CMRR VB SUPPLY VOLTAGE (AVERAGE OF 3 LOTS)

20
Vs =±15V, RL = 2kn, TA = 25°C
120
100

~

60

19
18

llcJRRI

....

+PSRR

80

iii'

~

·PSRR

17

~

.;;;:-.

~

J

r--. ...

40

±AvoL AT TA;, 25°C

16

~

20

15
14

1"""'-

13

±AYOL AT TA = ·550C

12

11

o

10

..",

9

100

lK

10K
lOOK
FREQUENCY (Hz)

1M

FIGURE 15. REJECTION RATIOS VB FREQUENCY

.---

r-"

8

10M

8

10

12
SUPPLY VOLTAGE (±V)

14

FIGURE 16. OPEN LOOP GAIN vs SUPPLY VOLTAGE
(AVERAGE OF 3 LOTS)

3·219

..J

«(/)

Za:

OW

-u:::

!;::J
a:c.

W:iE

~«

HA-2541

Typical Performance Curves
100

80

iii' 80
!!.

~
CJ

40

20
0

i~

..

'I'

'I~
+~
~
..
~
ff· .. ~

iW r

"'

100

OPENLOOP_

1111 I I
lK

10K lOOK 1M
FREQUENCY (Hz)

Av=·100·........

GA,IN,

qfl

5

.\.
0

sE

..

0

~

,

90

ie.

45

W

I

o

180
135

10M 100M

Av=·10 ....

-

9
6

GAIN

iii'3

...zO

R~

..
. ..tOO.

-=Av +10
Vs = ±15V
T = 25°C
lK

10K

\I

-=

1111

1111111

I

°
TA =125 ~,
TA =250~"
TA = ·55OC

~-3

""""'!'III.

~o

I,,\! .45
90

-6
PHASE

TA = 125°C
TA = 25°C

TAI~-S50C
1M

''-~

0
-45

:ij

• r• t
II ~ '.. I'.c'
r;J,~
10M

10M
FREQUENCY (Hz)

135

i\

II!

~

.180

W

225

0..

100M

FIGURE 19. CLOSED LOOP FREQUENCY RESPONSE

3·220

ffi

~

::z:

·90
·135
·180

100M

RS=50kO .....'

FIGURE 18. SMALL SIGNAL BANDWIDTH vs SOURCE
RESISTANCE

~

-8

. ;c .'.

•'0:;
roVOUT_
~
9000
l
1000- -

Rs=5kO "

'. '\.

~

lOOK
1M
FREQUENCY (Hz)

RS=OO_

Av=·l".

vs .. ±8V.Av=+1
RL .. 2kD, CL S 10pF

VIN

-1 0

~

I~

I

5

FIGURE 17. GAIN AND PHASE FREQUENCY RESPONSE

lOOK

'0

0

k/',

PH,Ji:

:""

.1..1

5

\ JJ ' n111;1;]
I.

II

Vs = ±15V. RL = lkn

20

II

Vs .. ±15V
RL=lkn
CL S10pF
TA =2S"C
10

(Continued)

iii'
w
w

a:

CI

iii

e.w
Ul

oCt

::z:

0..

HA-2541
Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

80 mils x 90 mils x 19 mils
2020!!m x 2280!!m x 483!!m

vTRANSISTOR COUNT:

METALLIZATION:

41

Type: AI, 1"10 Cu
Thickness: ISkA ±2kA

PROCESS:
Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride(Si3N4) over Silox (Si02 , 5"10 Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA-2541
-IN

+IN

BAL

..J
«II)

za:

O!!:!
-u...

!;;::::i
a:c..

w::

~«

v-

NC

BAL

OUTPUT

3-221

Vt

HA-2542
70MHz, High Slew Rate, High Output
Current Operational Amplifier

November 1996

Features

Description

• Stable at Gains of 2 or Greater

The HA-2542 is a wideband, high slew rate, monolithic
operational amplifier featuring an outstanding combination of
speed, bandwidth, and output drive capability.

• Gain Bandwidth .......................... 70MHz
• High Slew Rate ..................... 300VlJ.ls (Min)
• High Output Current ................. 100mA (Min)
• Power Bandwidth •..•..•..•..••••••.• s.sMHz (Typ)
• Output Voltage Swing. • • . . • . . . . . . . • • .. ±10V (Min)

Utilizing the advantages of the Harris 0.1. technology this
amplifier offers 350VlJ.ls slew rate, 70MHz gain bandwidth,
and ±100mA output current. Application of this device is
further enhanced through stable operation down to closed
loop gains of 2.

• Monolithic Bipolar Dielectric Isolation Construction

For additional flexibility, offset null and frequency
compensation controls are included in the HA-2542 pinout.

Applications

The capabilities of the HA-2542 are ideally suited for high
speed coaxial cable driver circuits where low gain and high
output drive requirements are necessary. With 5.5MHz full
power bandwidth, this amplifier is most suitable for high
frequency signal conditioning circuits and pulse video
amplifiers. Other applications utilizing the HA-2542
advantages include wideband amplifiers and fast samplehold circuits.

• Pulse and Video Amplifiers
• Wideband Amplifiers
• Coaxial Cable Drivers
• Fast Sample-Hold Circuits
• High Frequency Signal Conditioning Circuits

Ordering Information
PART NUMBER

TEMP.
RANGE (oC)

PACKAGE

PKG.
NO.

HA1·2542-2

-5510125

14Ld CERDIP

F14.S

HA1-2542-5

01075

14LdCERDIP

F14.S

HA2-2542-2

-5510125

12 Pin Metal Can

T12.C

HA2-2542-5

01075

12 Pin Metal Can

T12.C

HAS-2542-5

01075

14 Ld PDIP

E14.S

For more information on the HA-2542, please refer to
Application Note AN552 (Using the HA-2542), or Application
Note AN556 (Thermal Safe-Operating-Areas for High
Current Op Amps).

For a lower power version of this product, please see
the HA-2842 data sheet.

Pinouts
HA-2542
(PDIP, CERDIP)
TOP VIEW

HA-2542
(METAL CAN)
TOP VIEW

+IN

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-222

File Number

2899.2

HA-2542
Absolute Maximum Ratings

Thermal Information

Supply Voltage (Between V+ and V- Terminals) ............. 35V
Differential Input Voltage ................................ 6V
Output Current ................ 50mA Continuous, 125mApEAK

Thermal Resistance (Typical, Note 2)
9JA (oCIW) 9JC (oCIW)
CERDIP Package ....... . . . . . . . . .
75
20
100
N/A
PDIP Package. . . . . . . . . . . . . . . . . . .
Metal Can Package. . . . . . . . . . . . . . .
65
34
Maximum Junction Temperature (Note 1, Hermetic Packages) . 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range· . . . . . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............. 300°C

Operating Conditions
Temperature Range
HA-2542-2 .............................. -55°C to 125°C
HA-2542-5 ................................. OOC to 75°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only ;"ting and operation
of the device at these or any other condiffons above those indicated in the operational sections of this specificaffon is not implied.

NOTES:
1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below 175°C for
ceramic and can packages, and below 150°C for plastic packages. By using Application Note AN556 on Safe Operating Area equations,
along with the thermal resistances, proper load conditions can be determined. Heatsinking will be required in many applications. See the
"Application Information" section to determine if heat sinking is required for your application.
2. 9JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

VSUPPLY = ±15V, RL = lkQ, CL S 10pF, Unless Otherwise Specified

PARAMETER

TEST
CONDITIONS

HA-2S42-2
-5S DC to 12SDC

HA-2542-5
OOC to 75DC

TEMP.
(DC)

MIN

TYP

MAX

25

-

5

10

Full

B

20

Full

14

-

15

35

26

50

MIN

MAX

UNITS

 50mA (e.g. :;;50% duty cycle for 100mA).
4. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = ;Ie; Rate .
1t PEAK
5. Differential gain and phase are measured at 5MHz with a IV differential input voltage.

6. Refer to Test Circuits section of this data sheet.
7. VIN = 1VRMS; f = 10kHz; AV = 10.

Test Circuits and Waveforms

I N q : _ OUT
500n
500n

NOTES:

8. VS=±15V.

VOUT

9. Av=+2.
10. CL:;; 10pF.
Vertical Scale: VIN = 2.0V/Div., VOUT = 5.0V/Div.
Horizontal Scale: 200ns/Div.
LARGE SIGNAL RESPONSE

TEST CIRCUIT

3-224

HA-2542
Test Circuits and Waveforms

(Continued)

VOUT

Vertical Scale: IOOmV/Div.
Horizontal Scale: 50ns/Div.

Vertical Scale: 100mV/Div.
Horizontal Scale: 10ns/Div.
Vs ±15V. RL Ikn. Propagation delay variance
is negligible over full temperature range.

=

SMALL SIGNAL RESPONSE

=

PROPAGATION DELAY

..J

<1:0

.---. . .- - - - -......- 0 ( )

SETTLING
POINT

soon

11. Av = -2.

!;:::::i
a:c.
W:e:

13. HP5082-2810 clipping diodes recommended.
lkn

VIN

OW

12. Feedback and summing resistors must be matched (0.1%).

2.Skn

14. Tektronix P6201 FET probe used at settling point.

V+

o--..........."IV-4IO---~>_......___o()

VOUT

Za:

NOTES:

IS. For 0.01% settling time, heat sinking is suggested to reduce
thermal effects and an analog ground plane with supply
decoupling is suggested to minimize ground loop errors.

V-

SETTLING TIME TEST CIRCUIT (See Notes II - 15.)

3-225

-u::
~ 100 C (1500 C - 140°C).
Heatsinking would be required for operation at ambient
temperatures greater than 100 C.

=

=

=

Note that the problem isn't as severe with either the CERDI P
or Can packages due to their lower thermal resistances, and
higher TJMAX. Nevertheless, it is recommended that Figure
1 be used to ensure that heat sinking is not required.

3-226

HA-2542
As a result of speed and bandwidth optimization. the
HA-2542 can's case potential. when powered-up. is equal to
the V- potential. Therefore. contact with other circuitry or
ground should be avoided.

6
o

~ 100r-~---+--~--+---~-+--~­

z

iii

~

80

"!5
~

60

~~~__~~--~~~~--~--+---~~

Frequency Compensation
The HA-2542 may be externally compensated with a single
capacitor to ground. This provides the user the additional
flexibility in tailoring the frequency response of the amplifier.
A guideline to the response is demonstrated on the typical
performance curve showing the normalized AC parameters
versus compensation capacitance. It is suggested that the
user check and tailor the accurate compensation value for
each application. As shown additional phase margin is
achieved at the loss of slew rate and bandwidth.

I---+--+--+---t--

!::

;:
~401--+--+--+--+--I---+--+--+----jf----1
::;;

~

~
::;;

20

5
10 15 20 25 30 35 40 45
OUTPUT CURRENT (100% DUTY CYCLE, rnA)
FIGURE 1. MAXIMUM OPERATING TEMPERATURE
OUTPUT CURRENT

50

vs

Allowable output power can be increased by decreasing the
quiescent dissipation via lower supply voltages.
For more information please refer to Application Note
AN556, "Thermal Safe Operating Areas for High Current Op
Amps".
Prototyping Guidelines
For best overall performance in any application, it is recommended that high frequency layout techniques be used. This
should include: 1) mounting the device through a ground
plane: 2) connecting unused pins (NC) to the ground:
3) mounting feedback components on Teflon standoffs and
or locating these components as close to the device as possible: 4) placing power supply decoupling capacitors from
device supply pins to ground.

For example, for a voltage gain of +2 (or -1) and a load of
500pF/2kO, 20pF is needed for compensation to give a small
signal bandwidth of 30MHz with 40° of phase margin. If a full
power output voltage of ±1 OV is needed, this same configuration will provide a bandwidth of 5MHz and a slew rate of
200V/~s.

If maximum bandwidth is desired and no compensation is
needed, care must be given to minimize parasitic capacitance at ihe compensation pin. In some cases where minimum gain applications are desired, bending up or totally
removing this pin may be the solution. In this case, care
must also be given to minimize load capacitance.
For wideband positive unity gain applications, the HA-2542
can also be over-compensated with capacitance greater
than 30pF to achieve bandwidths of around 25M Hz. This
over-compensation will also improve capacitive load handling or lower the noise bandwidth. This versatility along with
the ±100mA output current makes the HA-2542 an excellent
high speed driver for many power applications.

Typical Applications
40

~

30

z 20

~

10

o

IN~_

o

OUT
990n

-45

fa
~

CJ

-90

e.
w

10n

-135 ~

-180 ...

Frequency (Od8) = 44.9MHz,
Phase Margin (Od8) = 40°
FREQUENCY RESPONSE
FIGURE 2. NON INVERTING CIRCUIT (AVCL

3-227

=100)

..J

«U)
Za:

O!!!
-LL

~:::i
a: 11.
W:i:

~«

HA-2542
Typical Applications

(Continued)

8

..,iii" 6

i'
~

I N I 1 : - OUT

son

4

2

o

o

son

-45

iil
w

Il!

e.w

Cl

m90

-135 ~
-180
Frequency (dB) = 56MHz. Phase Margin (3dB) = 40°
FREQUENCY RESPONSE

FIGURE 3. NONINVERTING CIRCUIT (AYCL

•

~

~l t:ro~
lkn.

=2)

IN

75n

lkn

OUT

1VIDiv.; 1OOns/Div.
PULSE RESPONSE
FIGURE 4. VIDEO CABLE DRIVER (AYCL

= 2)

NOTES:
16. Suggesled compensation scheme 5pF - 20pF.
17. Tested Offset Adjustment Range is IVas +1mVI
minimum referred to output.
18. Typical range is ±20mV with RT = 5kQ.

FIGURE 5. SUGGESTED OFFSET VOLTAGE ADJUSTMENT AND FREQUENCY COMPENSATION

3-228

:z:
0..

HA-2542
Typical Performance Curves
1000

1000

10
Vs =±12V

8

~:;;:

~

:;;-

.sw

S:

100 IZ

w

~

10

r- INPUT NOISE CURRENT

IIII

10

~

()

INPUT NOISE VOLTAGE

r"'o

!:;

0

10K

~

-2

~
II. -4

-

. ..

-60

-40

-20

0

~t

27
_

10K

~

~

::::I

"~

100

~

V-

19

!5

I

17

lSI 13
11

--

/

16

~
!zw

I.rt'

13

()

:$

I J'

14

a:
a:
::::I 12

UI

".

15

11

lSI 10
9
8
7

1:1

If.!

/

Oll:!
-II.

~

!;;:::::i
a:

"

~~ ~

100M

~«

I'..

I"""- ~ r-.... ~ ~
.......
~"'"
-40

-60

-20

0

20

40

60

-

-I80

TEMPERATURE (DC)

100

120

FIGURE 9. BIAS CURRENT vs TEMPERATURE

120
SIX REPRESENTATIVE UNITS

Vs _±15V

~

110
CMRR
100

....

I"""

90

[II ~
rll

80

Ifl
If
5

7

9
11
SUPPLY VOLTAGE (±V)

13

15

PSRR

-

70
-60

-40

-20

0

20

40

60

80

100

TEMPERATURE (DC)

FIGURE 10. BIAS CURRENT vs SUPPLY VOLTAGE

FIGURE 11. PSRR AND CMRR vs TEMPERATURE

3-229

0..

w:=

7

1M
10M
FREQUENCY (Hz)

TA=250 C

.J

«In
Za:

9

I 1IIIili

18

.....

~ 15

900n

FIGURE 8. INPUT RESISTANCE vs FREQUENCY

17

120

Vs =±12V
SIX REPRESENTATIVE UNITS

l"....
"'...... ~ ~

()

loon

10
lOOK

100

,

"-

~

a:

~
~

80

"- ~

23

cr:

.::; 21

I-

60

29

25

1000

40

FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE

lOOK

Cii

20

TEMPERATURE (OC)

TA =25oC
Vs=+15V

::!

~• .! -

-10

lOOK

FIGURE 6. INPUT NOISE VOLTAGE AND INPUT NOISE
CURRENTvsFREQUENCY

UI

-

-8 I .

1

FREQUENCY (Hz)

§:
z~

.

-6

~

i""" I"lK

Iii

"-

I

100

w
!!!
0
Z

....

--.

4
2

!j 0

::::I

~

IIII

~

a:
a:

SIX REPRESENTATIVE UNITS

6

120

HA-2542
Typical Performance Curves

(Continued)

32

28

~
zfw

IX:
IX:

;:)

~ 20

;:)

18 25°C

III

80

!

40

If

20

-

I

8
10
12
SUPPLY VOLTAGE (±V)

6

4

~

Av=2

±15V

Av=2

±10V

-

-'

i

-

±15V

III

Av=10
100

Av= 10

±10V

I

±5V

Av=10

I

I

-25

o

o
-50

25
50
75
TEMPERATURE (OC)

r--i'\

2.0

~

-2.0

~ 0.0

~

~

-4.0

-6.0
-8.0
0_10•0

!:i

+VOUT\

25

"i.'

-40

-20

...

1.3

0

1.2

!(
w
;:)

.....

1.1

:;l:

1.0

12Q

0.9

~

0.8

w

..:
::Ii

13

~~~

~

KI "

""'i..o" ~ "

VS=±7,_

Vs =±8

I,.,;~

"'"

0204060
TEMPERATURE fc)

80

100

120

_I

Q.

-~

~ ::::~

1.4

r+VOUT '

-55°C - -VOUT r-1250C
-12.0 -VOUT
-VOUT
-14.0
7
9
11
5
SUPPLY VOLTAGE (±V)

~~ ~:::: ~
~~ ~

I'::. ~~ ~

II ~"'"

~". L.oo' ~

10
-60

-'

~r- 2~~C

~

l-

....1"'"

FIGURE 15. OPEN LOOP GAIN VB TEMPERATURE,
AT VARIOUS SUPPLY VOLTAGES

-~

125°C

i'.

~~

15
125

100

12.0
25°C

35

20

FIGURE 14. SLEW RATE VB TEMPERATURE AT VARIOUS
SUPPLY VOLTAGES

10.0 -55°C
8.0 +VOUT
~ 6.0
CJ
Z 4.0

Vs = ±15

-' 30

±5V

~ ~".

Vs =±12""

40
~

Av=2

I I I.

45

L:::::>
~

i"-...

~-

50

~ 300
w

~

10M

55

400

w

1M

FIGURE 13. PSRR AND CMRR vs FREQUENCY

RL= lOOn

ii: 200

lOOK

10K

FREQUENCY (Hz)

500

IX:

lK

100

14

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE,
AT VARIOUS TEMPERATURES

!(

....

1250C

12

~

.... ....

o

I

I

14

.... ~

-PSRR

60

II

16

....

+PSRR

I
1

22

CMRR

100

fl

24

Vs =±15V
TA=250C RL=2k!l _

I

120

I,
'I.

26 =-55 0C

0

II.
II.

I

,

30

-

IX:
0

PHASE MARGIN

"-

"

0.7

~

/

0.6
0.5

...-

~

z

15

FIGURE 16. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE,
AT VARIOUS TEMPERATURES

~

.-.t-

BANDWIDTH

I
o

~ ~6"

..... SLEWRATE-

~~

I

5
10
15
20
COMPENSA110N CAPACITANCE (pF)

25

FIGURE 17. NORMAUZED AC PARAMETERS VB COMPENSA110N
CAPACITANCE

3-230

HA-2542
Typical Performance Curves

(Continued)

II

.! If

12

~ 10
w

~

Cl

~

§!
....::>
....II.::>
0

HA-2542
Ay=10

8

j

RL=100n
MAXIMUM SWING
UNDISTORTED SWING

6
4

S =±1SV
TA =
25°C
MAXIMUM SWING
--- RL =1kn

~ 10
w

2

~

8

§!
....

~
5

~~
~~

6

1""'0 ...
4
2

o
0.1

10

RL=1kn
MAXIMUM SWING
/UNDISTORTED SWING

Cl

I 1111111

..... UNDISTORTED
SWING

V

HA-2542
Ay=10
Vs= ±10V
TA= 25°C

12

RL = 100n
MAXIMUM SWING ",
UNDISTORTED SWING

1 11111111111

o

100

70

~40
~

20
10

o

~II

0.1

I III
! I "
Av=10

iD9

:!!.

z

II
PHASE

o

~.
vIII(

I I II
1

10
FREQUENCY (MHz)

FIGURE 20. FREQUENCY RESPONSE CURVES

100

100K

I

I

Za:
O!:!:!
-,,!ci:::J
a: a..

-55°C

-

~

25°C ......

soon GAIN = +2
Vs=±8V
RL=1kn
soon CL" 10pF
VIN,,90mV
1M

«til

~

GAIN

6

Cl 3

......

..J

I I I 1111 25°C I
I I 125°C "-

C

Av=2

100

10

12

II.~
Av = 100

30

"""

1

FIGURE 19_ OUTPUT VOLTAGE SWING vs FREQUENCY

HA-2542
TA= 25°C
RL= 1kn
Vs= ±15Y

Av = 1000

z

~~

FREQUENCY (Hz)

FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY

50

~

0.1

FREQUENCY (Hz)

60

~
po

10M
FREQUENCY (Hz)

oc~_

115

1

45

II!

\ 9Oe.5l

I
125°C

W::E

o Iii
w

~

135

~

·180

II.

100M

FIGURE 21. HA·2542 CLOSED LOOP GAIN vs TEMPERATURE

3-231

~«

HA-2542

Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

v-

106 mils x 73 mils x 19 mils
2700ilm x 1850llm x 4831lm

TRANSISTOR COUNT:

METALLIZATION:

43

Type: AI, 1% Cu
Thickness: 16kA ±2kA

PROCESS:
Bipolar Dielectric Isolation

PASSIVATION
Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA-2542
-IN

+IN

BAL

BAL

v-

OUTPUT

3-232

V+

COMP

HA-2544

~HARRlS
~

SEMICONDUCTOR

50MHz, Video Operational Amplifier

November 1996

Features

Description

•
•
•
•
•
•

The HA-2544 is a fast, unity gain stable, monolithic op amp
designed to meet the needs required for accurate
reproduction of video or high speed signals. It offers high
voltage gain (6kVN) and high phase margin (65 degrees)
while maintaining tight gain flatness over the video
bandwidth. Built from high quality Dielectric Isolation, the
HA-2544 is another addition to the Harris series of high
speed, wideband op amps, and offers true video
performance combined with the versatility of an op amp.

Gain Bandwidth .•...•.............•...... SOMHz
High Slew Rate •.•...••.••.•.••..•••.•••. l50Vl~s
Low Supply Current ....•..•...•..•••...•.•. 10mA
Differential Gain Error ••.•..•.••..•...•••..• 0.03%
Differential Phase Error •.•..•.••.••..• 0.03 Degrees
Gain Flatness at 10MHz.....•.••.•....•••.. 0.12dB

Applications
•
•
•
•

Video Systems
• Imaging Systems
Video Test Equipment • Pulse Amplifiers
• Signal Conditioning Circuits
Radar Displays
Data Acquisition Systems

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGE (oC)

PACKAGE

PKG.
NO.

HA2·2544·2

·5510125

8 Pin Melal Can

T8.C

HA3·2544-5

01075

8 LdPDIP

E8.3

01075

HA3·2544C·5

8 LdPDIP

E8.3

HA7·2544-2

·5510125

8 LdCERDIP

F8.3A

HA7·2544·5

01075

8 LdCERDIP

F8.3A

HA9P2544·5
(H25445)

01075

8 LdSOIC

M8.15

HA9P2544·9
(H25449)

-401085

8 LdSOIC

M8.15

HA9P2544C-5
(H2544C5)

01075

8 LdSOIC

M8.15

HA9P2544C-9
(H2544C9)

-401085

8 LdSOIC

M8.15

The primary features of the HA-2544 include 50MHz Gain
Bandwidth, 150Vl~s slew rate, 0.03% differential gain error
and gain flatness of just 0.12dB at 10MHz. High performance and low power requirements are met with a supply
current of only 10mA.
Uses of the HA-2544 range from video test equipment,
guidance systems, radar displays and other precise imaging
systems where stringent gain and phase requirements have
previously been met with costly hybrids and discrete
circuitry. The HA-2544 will also be used in non-video
systems requiring high speed signal conditioning such as
data acquisition systems, medical electronics, specialized
instrumentation and communication systems.
Military (/883) product and data sheets are available upon
request.

Pinouts
HA-2544 (PDIP, CERDIP, SOIC)
HA-2544C (PDIP, SOIC)
TOP VIEW

HA-2544
(METAL CAN)
TOP VIEW
NC

v-

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-233

File Number

2900.2

..J

cCtn

Za:

O!!!
-LL

!;i:::;
a:

a..
W:E

~cC

HA-2544
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals ............ , .. , . .. 35V
,. . 6V
Differentiallnpul Voltage (Note 1) ............. ,
................ ±40mA
Peak Output Current

Thermal Resistance (Typical, Note 2)
8JA (oCIW) 8JC (oCIW)
Metal Can Package,
, , ... , . . . . . .
160
75
PDIP Package. . . . . . . . . . . . . . . . . . . .
92
N/A
CERDIP Package ...... , ... , .. , .. . .
135
50
SOIC Package..... ...............
157
N/A
Maximum Junction Temperature (Hermetic Packages) ...... 175°C
Maximum Junction Temperature (Plastic Packages) ........ 150°C
Maximum Storage Temperature Range
-6SoC to 150°C
Maximum Lead Temperature (Soldering 105) ............ 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-2544/2544C-5. . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 75°C
HA-2544/2544C-9 ........ ................. -40°C to 8SoC
HA-2544-2 .............. , .......... , ... , -55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. To achieve optimum AC performance, the input stage was designed without protective diode clamps. Exceeding the maximum differential
input voltage results in reverse breakdown of the base-emitter junction of the input transistors and probable degradation of the input
parameters especially Vas, los and Noise.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

VSUPPLY = ±15V, CL ,;10pF, RL = lkn, Unless Otherwise Specified

PARAMETER

TEST
CONDITIONS

TEMP
(0C)

HA-2544-2, -5, -9

I

MIN

TYP

MAX

HA-2544C-5, -9
MIN

TYP

MAX

15

25

I UNITS

INPUT CHARACTERISTICS
Offset Voltage

6

25

15

mV

-2, -5

20

40

mV

-9

25

40

mV

Average Offset Voltage Drift (Note 7)

Full

10

Bias Current

25

7

Full

10
15

9

20

Average Bias Current Drift (Note 7)

Full

0.04

Offset Current

25

0.2

I1A

30

I1A

0.04
2

0.8

3

Full

I1V;oC

18

I1AJDC
2

flA

3

I1A

Offset Current Drift

Full

Common Mode Range

Full

±10

±11.5

±10

±11.5

V

Differential Input Resistance

25

50

90

50

90

kn

3

3

pF

-

20

20

nV/..JHz
pAl..JHz

Differential Input Capacitance

10

25

10

nAJDC

Input Noise Voltage

f= 1kHz

25

Input Noise Current

f= 1kHz

25

2.4

2.4

Input Noise Voltage (Note 7)

O.IHz to 10Hz

25

1.5

1.5

I1VP_P

O.IHz to lMHz

25

-

4.6

4.6

I1V RMS

6

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain (Note 7)

Common Mode Rejection Ratio (Note 7)

Va = ±5V

AVCM=±10V

Minimum Stable Gain

3.5

2.5

-2, -5

75

89

70

89

-9

75

89

65

89

dB

25

+1

+1

-

VN

-

45

MHz

50

MHz

65

Degrees

Unity Gain Bandwidth (Note 7)

Va = ±100mV

25

45

Va = ±100mV

25

50

25

3-234

-

65

-

kVN

6

-

2

Gain Bandwidth Product (Note 7)
Phase Margin

3

25
Full

kVN
dB

HA-2544
Electrical Specifications

VSUPPLY = ±15V, CL ;S10pF, RL = 1kn, Unless Otherwise Specified (Continued)

PARAMETER

TEST
CONDITIONS

TEMP
(DC)

HA-2544-2, -5, -9

I

MIN

TYP

MAX

HA-2544C-5, -9

I

MIN

TYP

MAX

-

I UNITS

OUTPUT CHARACTERISTICS
Output Voltage Swing
Full Power Bandwidth (Note 6)

Full

±10

±11

±10

±11

25

3.2

4.2

-

3.2

4.2

Peak Output Current (Note 7)

25

±25

±35

-

±25

±35

Continuous Output Current (Note 7)

25

±10

-

25

-

20

Output Resistance

Open Loop

V
MHz

-

±10

mA
mA

20

n

TRANSIENT RESPONSE
Rise Time (Note 4)

25

7

Overshoot (Note 4)

25

10

Slew Rate

25

Settling Time (Note 5)

25

100

150
120

-

7

ns

-

10

-

%

100

150

-

V/1lS

-

120

-

ns

-

0.03

-

Degree

0.0026

-

dB

0.03

-

VIDEO PARAMETERS RL = 1kn (Note 8)
Differential Phase (Note 9)

25

0.03

Differential Gain (Notes 3, 9)

25

0.0026

25

0.03

5MHz

25

0.10

10MHz

25

Gain Flatness

Chrominance to Luminance Gain (Note 10)

25

Chrominance to Luminance Delay (Note 10)

25

-

0.12

-

0.1

-

7

-

0.10

-

0.12

-

-

0.1

%
dB
dB
dB

7

-

ns

15

mA

POWER SUPPLY CHARACTERISTICS
Supply Current
Power Supply Rejection Ratio (Note 7)

10

12

-

10

-2, -5

70

80

-

70

80

dB

-9

65

80

-

65

80

dB

Full
Vs =±10V to ±20V

NOTES:

4. For Rise Time and Overshoot testing, VOUT is measured from 0 to +200mV and 0 to -200mV.
5. Settling Time is specified to 0.1 % of final value for a 10V step and Av = -1.
6. Full Power Bandwidth is guaranteed by equation: Full Power Bandwidth =
7. Refer to typical performance curve in Data Sheet.

:Ie~ Rate (VPEAK = 5V).
lt

PEAK

8. The video parameter specifications will degrade as the output load resistance decreases'.
9. Tested with a VM700A video tester, using a NTC-7 Composite input signal. For adequate test repeatability, a minimum warm-up of 2
minutes is suggested. Av = + 1.
.
10. Col Gain and Col Delay was less than the resolution of the test equipment used which is 0.1dB and 7ns, respectively.

3-235

,.

HA-2544
Test Circuits and Waveforms
NOTES:
V+

11. VS=±lSV.
12. AV=+l.

>~~""-,,,,-oVOUT

13. RS = son or 7Sn (Optional).
14. RL = lkn.
lS. CL < 10pF.
16. VIN for Large Signal = ±SV.

v-

17. VIN for Small Signal = 0 to
+200mV and 0 to -200mV.
FIGURE 1. TRANSIENT RESPONSE

VOUT = 0 to +10V
Vertical Scale: VIN = SV/Div.; VOUT = 2V/Div.
Horizontal Scale: 100nS/Div.

VOUT =0 to +200mV
Vertical Scale: VIN = 100mV/Div.; VOUT = 100mV/Div.
Horizontal Scale: 100ns/Div.

LARGE SIGNAL RESPONSE

SMALL SIGNAL RESPONSE

.--....----~-o ~~~~ING
5kO

2kO
2kO

RT

>-.....-oVOUT
NOTES:
18. Av=-l.
19. Feedback and summing resistor ratios should be 0.1% matched.
20. HPS082-2810 clipping diodes recommended.
21. Tektronix P6201 FET probe used at settling point.

NOTE: Tested offset adjustment range is IVos + 1mVI minimum
referred to output. Typical range for RT = 20kn is approximately
±30mV.

FIGURE 3. OFFSET VOLTAGE ADJUSTMENT

FIGURE 2. SETTLING TIME TEST CIRCUIT

3-236

HA-2544
Schematic Diagram
v+

1:

R2
.tl
Qp24
R2A

QP57F=rlQP58
Qp23
v-

QN22
R8

R7

QN36

Q~:'~

L

r

R9

R28

T

Qp5

C1

f

..... Qp19

j~R36

R37
QP32'"

v-

QN51 ....
+INPUT

Qp33

-INPUT
QNl

D34

~

~

R24
2000

D37
"---

~

QN2

R32
36o
~ OUTPUT
R33
36 o

Qp51....1

'" D38

F 039
F 040

R35

R~

R25
2000

.. QN43

r QN5

O!!:!
-La.

..... Qp54

~::::i
a:: a.

W:i!E

f*041

Rl0
v+

~<

,!QN18
Rll

R12

QPla..,~.
QN17

R13

QN9

QN59
r

...

... QN10 ... QN46

..... Qp15
R14

v+
r QN14

QN55

QN13
~

R15

R16

5kn

QN60
5kn

R38

R39

BAL

BAL

QN11

QN12

R17

R18

QN48
R31

v-

Application Information
The HA-2544 is a true differential op amp that is as versatile In a video signal, the video information is carried in the amplias any op amp but offers the advantages of high unity gain tude and phase as well as in the DC level. The amplifier must
bandwidth, high speed and low supply current. More impor- pass the 30Hz line rate luminance level and the 3.58MHz
tant than its general purpose applications is that the (NTSC) or 4.43MHz (PAL) color band without altering phase
HA-2544 was especially designed to meet the requirements or gain. The HA-2544's key specifications aimed at meeting
found in a video amplifier system. These requirements this include high bandwidth (50MHz). very low gain flatness
include fine picture resolution and accurate color rendition, ' (0.12dB at 10MHz). near unmeasurable differential gain and
and must meet broadcast quality standards.
differential phase (0.03% and 0.03 degrees). and low noise
(20nVlv'Hz). The HA-2544 meets these quidelines.

3-237

...J

50MHz), and can tolerate
some slight gain peaking and lower phase margin, experimenting with various load capacitance can be done.
Shown in Application 1 is an excellent Differential Input, Unity
Gain Buffer which also will terminate a cable to 750 and reject
common mode voltages. Application 2 is a method of separating a video signal up into the Sync only signal and the Video
and Blanking signal. Application 3 shows the HA-2544 being
used as a 100kHz High Pass 2-Pole Butterworth Filter. Also
shown is the measured frequency response curves.

Typical Applications
SHIELDED

Cf

1.21K
1.21K

f'oo

~

1.21K

1K

1

1K

COMPOO-S-ITJE~r-~---~~-i+ HA-2544

VIDEO

SYNC ONLY

~, 1N5711
~, 1N5711

1K

1.21K

VIDEO AND
BLANK

FIGURE 4. APPLICATION 1, 750 DIFFERENTIAL INPUT BUFFER

FIGURE 5. APPLICATION 2, COMPOSITE VIDEO SYNC
SEPARATOR
0

~
Z

Q

z~

w

2.1K
750pF

""'" --i

1

~.J.2~54-4+--O
~

~

-40

MIIIIII
II
1111 I
fo = 105.3kHz

~O

-80

~ ·100

750pF

:,.

·20

11

180

I-o~

135
90

OUTPUT

45
0

7 L--_----'
fO=

ffiw
II:

"e.
w

w
cC

Ul

X

1
21t (2.1 K x 750pF)

10

100

1K
10K
100K
FREQUENCY (Hz)

1M

-45
10M

FIGURE 7. MEASURED FREQUENCY RESPONSE OF
APPLICATION 3

FIGURE 6. APPLICATION 3, 100kHz HIGH PASS 2-POLE
BUTTERWORTH FILTER

3-238

a.

HA-2544
Typical Performance Curves
1000

1000

I~
~

.5.
w 100

~

~

100

"~

_1111111

W
In

z

111111111 J..J..

I 1111111

10

1111111

II

1o

...:::>
~

IlImto..

I 1111111

1
10

1

100

0
-1

o

~

-2

!!!

ti:i

~

-3

o

-4

w

oz

"
LL

-6

1
100K

10K

.... "'"

-5

~

l"I'MIIIL

1K

1

~

!zw

!5...

11111

2

:>

oS
w

:::>

INPUT NOISE CURRENT

f-

~

IX:
IX:

INPUT NOISE VOLTAGE

~

(5

3

~

~

~

~
~
80
80
TEMPERATURE (OC)

0

FREQUENCY (Hz)
FIGURE 8. INPUT NOISE VOLTAGE AND NOISE CURRENT
vs FREQUENCY

100

1~

1~

FIGURE 9. INPUT OFFSET VOLTAGE vs TEMPERATURE
(3 TYPICAL UNITS)

.J

c(C/)

15
14
13
12

~

z

t;(:J

a: a..

:::>

9

In

8

III

7

0

:!!:

w==
~c(

I"'

w 10

IX:
IX:

O!!!
-II.

,

11

f-

Za:

RL = 11<11, Vs = ±15V

I'.

....
.... 1'00.

-l- i-- ....

6

1""'1-

5

4
-60

-40

-20

20
~
60 80
TEMPERATURE (OC)

0

0.1Hz to 10Hz. Noise Voltage = 0.97I1VP_P
FIGURE 10. NOISE VOLTAGE (AV = 1000)

100 120

FIGURE 11. INPUT BIAS CURRENT vs TEMPERATURE

92

9

RL = 11<11, Vs = ±15V

II

RL = 1kn, Vs = ±15V

90
88

~

CMRR

iii'
:!:!. 86
IX:

o!!.

z

IX:

:::;
0
Q

84

z

82

IX:
IX:

80

...

78
76

"...0

-

....

....I

z

...

w
0

6

~

5

~~

4

)~~

3

74
~

""'~

7

0

+PSRR

In

-AVOL

8

<

-PSRR

0(

~

~

0

~
~
80 80
TEMPERATURE (oC)

100

1~

1~

-60

1~

-40

'"
-20

~'
~

...

0

~

... ......
....... ",,~I""

20
40 60 80
TEMPERATURE (oC)

... ~rttP
+AvOL

100

120 140

FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE

FIGURE 12. PSRR AND CMRR vs TEMPERATURE

3-239

HA-2544
Typical Performance Curves
12

~

I

10

I

I

E

8

~

6 I - +VOUT

\
\

~ 4
w 2
~ 0
-2

-SSoC -

!;

~

o~

-10

I-

I

!;;;:::;:::s ~

.~

20

o

OPEN LOOP

Ay=10

~

I III

-IIIIIS
100

FIGURE 14. OUTPUT VOLTAGE SWING va SUPPLY VOLTAGE

...

Ay=-1

~

I III
I III

IS

..

Ay= 100

~P~~W?P,

13

11
SUPPLY VOLTAGE (±V)

RL = lk1l, Vs = ±15V

...

I IIII

J. J.!!

I

9

7

40

I

-12

5

60

z

I

-

I

iii

Ifsac

fSOC -

,

-8 I - -VOUT

80

:Eo

\

,

!j

~

(Continued)

~

~

AV= 10
, -, "' 'Ay-10'-

I II , -'III

lK

180

"!

:\

,. ~ ......

40
30

g20
!5

10

!!5

0

L.~ ~
~

II:

~

-10

~

-20

:::0

o

.... '

r"1f

AV=-1

10K
lOOK
1M
FREQUENCY (Hz)

10M

\

\

..

\

-5SoC- 250 C

~ .:l.

j
~

Z
~

20

fi

..

11
9
SUPPLY VOLTAGE (tV)

7

13

----

VOUT .. tl00mV

15

100

FIGURE 16. OUTPUT CURRENT VB SUPPLY VOLTAGE

1.0

II:
II:
:::0

0.9

zw

0

0.8

~

0.7

II.
II.
:::0

en

C

w

!::!

....
C
::E
0

II:

z

lK

-

~

,. -.

-. ~r"-t15V

, ,1

t8~~

±SV

10K
lOOK
1M
FREQUENCY (Hz)

o
-45
-90

~~

-135
-180
100M

10M

m

l§

e
~

-

Ay=+I, VOUT=±loomV

I

J

If.... /

,/

/
1/
O.S
j /
0.4
V
0.3 /
0.2 /
0.6

i

o
100M

FIGURE 17. OPEN LOOP RESPONSE

1.1
f-

---

-~

-'"

r--

w

I±~~V

I

r..... ~

90
45

- ±8V
..... ±5V

1'1' ...

40

o

1250 C

-40

S

60

I

-30

-50

iii
"D

\

'"

z

!

FIGURE 15_ FREQUENCY RESPONSE AT VARIOUS GAINS

80

~ i'f'"

~:-.

/

50

~

135

r-...,
~

If'

RL=lkQ ,CL=,,10pF

~

6

/

iii 3
:Eo

z

~

1250 C
2SoC

-6

-ss°C

II-

_
=±I&V
.__ =±8V

t-

..... =±5V

"l!!

7

9

11

13

100

15

SUPPLY VOLTAGE (±V)

FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE
(NORMALIZED TO Vs ±15V AT 25°C)

lK

10K
lOOK
1M
FREQUENCY (Hz)

~

o

~

-45

, f~~

1.,
I

1111 I 1111

0.1

5

.-

0
-3

10M

-90
-135

-180
100M

FIGURE 19. VOLTAGE'FOLLOWER RESPONSE

=

3-240

w

~

-

HA-2544
Typical Video Performance Curves
0.004

iii"
~
z

;;:

CI
-'

z~

w
w

0.002

CI
w

0.001
0

:--.....

-0.001

w -0.002
a:
~ -0.003

f

...........

....... ~

LL

..........

0.100

e.w

0.050

II)

0

...-'
:J::

-0.050

..:
f=
zw

-0.100

a:
w

...is
LL

-0.005

o

2
DC VOLTAGE LEVEL

0.150

a:

..:

= 3.58MHz AND 5.00MHz _

is -0.004
-0.006

0.200

u;

0.003

SYSTEM
ALONE

~

......... ~

~

-0.150
f

-0.200

-0.300

4

o

3.58MHz -

= 5.00MHz .............

I

-0.250

r--!..=
I

..............
.......... "'
4

2
3
DC VOLTAGE LEVEL

--

FIGURE 21. AC PHASE VARIATION vs DC OFFSET LEVELS
(DIFFERENTIAL PHASE)

FIGURE 20. AC GAIN VARIATION vs DC OFFSET LEVELS
(DIFFERENTIAL GAIN)

.../

eten

Za::
O~

-LL

~::i
a::c.
W:E

~et

=

NTSC Method, RL lkn, Differential Gain <0.05% at TA
No Visual Difference at TA = -55°C or 125°C

=75°C

NTSC Method, RL = 1kn,
Differential Phase < 0.05 Degree at TA = 75°C
No Visual Difference at TA = -55°C or 125°C
FIGURE 23. DIFFERENTIAL PHASE

FIGURE 22. DIFFERENTIAL GAIN

INPUT

AV = +1, VIN = ±l00mV
RL = lkn, CL < 10pF
0.15

iii"
~

0.10
0.05

OUTPUT

II)
II)

w

z
!;;:
-'
LL

0

"

-0.05

z
;;:

-0.10

CI

-0.15
-0.20
100

lK

10K
lOOK
1M
FREQUENCY (Hz)

10M

NTSC Method, RL = lkn, Col Delay <7ns at TA = 75°C
No Visual Difference at TA -55°C or 125°C
Vertical Scale: Input = 1OOmV/Diy., Output 50mV/Diy.
Horizontal Scale: 500ns/Diy.

=

\
100M

=

FIGURE 25. CHROMINANCE TO LUMINANCE DELAY

FIGURE 24. GAIN FLATNESS

3-241

HA-2544

Typical Video Performance Curves

,

1

L
-VOUT

~

1
1
1
1
-1-

I~

~

-t1

-250.000n8

L

"

1

~

1

r
--

.,

J
~

--

--

~

1
1
1
1
1
-1-

I~

~

0.00000n8

~

-t1

",
-~

(Continued)

L
J

--

z

,/.

X

''\

:2-

---~

7

~
~

=

6

~10

I

~

0

PHASE
(-3dB)

35.5
40.8
50.1
55.8
54.8

-77.1u
-89.&0
-122.00
-150.rD
-179.1 0

0

r

-3

-9

-12
-15

250.000n8

BANDWIDTH
(-3dB)

; .... 20
___ 30
40
3 .......

I

~ -6

I

Ay=+l,VS=±15V
RL = lk1l

!""':'.

II
I

50

iii'

lJ

o

II

'.~'
lK* CL

'~

45

~~

0

•
•

-18
lOOK

VIN = 2.0V/Div.• VOUT = 2.0V/Div.• Timebase = 50ns
FIGURE 26. ±2V OUTPUT SWING (WITH RLOAD
FREQUENCY 5.00MHz)

(~~
,

ii

i'""'"

9

= 750,

90

135
j

180
1M

10M

100M

FIGURE 27. BANDWIDTH vs LOAD CAPACITANCE

3-242

~

CI

~
Ii:
~

IIIct
if

HA-2544
Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

v-

80 mils x 64 mils x 19 mils
2030llm x 1630llm x 4831lm

TRANSISTOR COUNT:

METALLIZATION:

44

Type: AI, 1% Cu
Thickness: 16kA ±2kA

PROCESS:
Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ± 2kA
Nitride Thickness: 3.5kA ±1.SkA

Metallization Mask Layout
HA-2544
SAL

-IN

+IN

v-

3-243

HA-2548
150M Hz, High Slew Rate,
cis ion Operational Amplifier
Features

Description

• High Slew Rate .•...••••...•••.....•.•..• 120Vl!1S

The HA-2548 is an op amp that offers a unique combination
of bandwidth, slew rate, and precision specifications. These
features can eliminate the need for composite op amp
designs and external calibration circuitry.

• Low Offset Voltage ...••..•.•••.•..... " .•.• 300!1V
• High Open Loop Gain ....•...•...•..•••.... 130dB
• Gain Bandwidth Product. ...•••••.•••.•••• 150MHz
• Low Noise Voltage at 1kHz ..•••.•..••..• 8.3nVlVHZ
• Minimum Gain Stability. . . . . • • . . • . . . . . . . . • . . •.

Applications
• High Speed Instrumentation
• Data Acquisition Systems
• Analog Signal Conditioning
• PreciSion, Wideband Amplifiers

~5

Optimized for gains ~5, the HA-2548 has a gain-bandwidth
product of 150MHz and a slew rate of 120V/1J.S while
maintaining extremely high open loop gain (130dB Typ) and
low offset voltage (300!1V Typ). These specifications are
achieved through uniquely designed input circuitry and a
single ultra-high gain stage that minimizes the AC Signal
path. Capable of delivering over 30mA of output current, the
HA-2548 is ideal for precision, high speed applications such
as signal conditioning, instrumentation, video/pulse
amplifiers and buffers.
For information on the military version of this device please
refer to the HA-25481883 datasheet.

- PulseJRF Amplifiers

Ordering Information
PART NUMBER

TEMP.
RANGEc<'C)

PACKAGE

PKG.
NO.

HA2·254B-5

01075

B Pin Melal Can

TB.C

HA2-254B-9

-40 10 B5

B Pin Metal Can

TB.C

HA3-254B-5

01075

B Ld POIP

EB.3

HA7-2548-5

01075

8LdSBOIP

08.3

HA9P2548-5

01075

16LdSOlC

M16.3

Pinouts
HA-2548
(PDIP, SBDIP)
TOP VIEW

HA-2548
(METAL CAN)
TOP VIEW

HA-2548
(SOIC)
TOP VIEW

COMP

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-244

File Number

2901.2

HA-2600, HA-2602,
HA-2605
12MHz, High Input Impedance
Operational Amplifiers

November 1996

Features

Description

•
•
•
•
•
•
•
•
•

HA-2600/2602l260S are internally compensated bipolar
operational amplifiers that feature very high input impedance
(500MO, HA-2600) coupled with wideband AC performance.
The high resistance of the input stage is complemented by
low offset voltage (O.5mV, HA-2600) and low bias and offset
current (1nA, HA-2600) to facilitate accurate signal
processing. Input offset can be reduced further by means of
an external nulling potentiometer. 12MHz unity gainbandwidth, 7V/JlS slew rate and 150kVN open-loop gain
enables
HA-2600/2602l2605 to perform
high-gain
amplification of fast, wideband signals. These dynamic
characteristics, coupled with fast settling times, make these
amplifiers ideally suited to pulse amplification designs as
well as high frequency (e.g. video) applications. The
frequency response of the amplifier can be tailored to exact
design requirements by means of an external bandwidth
control capacitor.

Bandwidth .••.•..••..•.•..•.....•..•..... 12MHz
High Input Impedance ..•.•.•••.••••••...•. SOOMO
Low Input Bias Current. .••.•••....•.•...•...• 1nA
Low Input Offset Current .••.•.....•..••..•.... 1nA
Low Input Offset Voltage ....•••.•.•••.•••••• O.SmV
High Gain ..••.••..••••.••...•••••..•••. lS0kVN
Slew Rate ••..•....••................•.... 7V/IlS
Output Short Circuit Protection
Unity Gain Stable

Applications
•
•
•
•
•

Video Amplifier
Pulse Amplifier
Audio Amplifiers and Filters
Hlgh-Q Active Filters
High-Speed Comparators
• Low Distortion Oscillators

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGE (DC)

PACKAGE

PKG.
NO.

HA2-2600·2

·55 to 125

B Pin Metal Can

TB.C

HA2·2602·2

·55 to 125

B Pin Metal Can

TB.C

HA2·2605·5

Ot075

B Pin Metal Can

TB.C

HA3·2605-5

010 75

B Ld PDIP

EB.3

HA7·2600-2

-55 to 125

B LdCERDIP

FB.3A

HA7·2602-2

-55 to 125

BLdCERDIP

FB.3A

HA7-2605-5

010 75

B LdCERDIP

FB.3A

HA9P2605-5
(H26055)

010 75

B LdSOIC

MB.15

In addition to its application in pulse and video amplifier
designs, HA-2600/2602l2605 are particularly suited to other
high performance designs such as high-gain low distortion
audio amplifiers, high-Q and wideband active filters and
high-speed comparators. For more information, please refer
to Application Note AN515.
The HA-2600 and HA-2602 are offered as 1883 Military
Grade; product and data sheets are available upon request.

Pinouts
HA-2600102 (CERDIP)
HA-2605 (PDIP, CERDIP, SOIC)
TOP VIEW

HA-26OO102I05
(METAL CAN)
TOP VIEW
COMP

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-245

File Number

2902.2

....I



U

-5
·10
·15

L

/BIAS

~/

lMHz

o

·25

·50

25

75

50

10MHz

100 125

TEMPERATURE (aC)

FIGURE 10. BROADBAND NOISE CHARACTERISTICS

FIGURE 9. INPUT BIAS CURRENT AND OFFSET CURRENT
vs TEMPERATURE
120

iii" 100
~

z

~

80

Cl

60

w

~

'-'

§i!

40

9

20

...0
z

~

0

1000

~

.........

"

" ~AIN

,

"'PHASE

0
·20
10Hz 100Hz

1kHz

~

0
20

i3w

60

B

100

II:

fiI

w
....
Cl

z

oC

~

1

140
180

w

~
:z:

...

c:

I"""'--- .......

800

~

!.

w 600

U

z
i§

...w

200

o

10kHz 100kHz lMHz 10MHz 100MHz

·55

FREQUENCY

"

~

400

Ii!

-35

·15

5

25

45

65

,

""'"

85

..........
105

125

TEMPERATURE ("C)

FIGURE 11. OPEN LOOP FREQUENCY RESPONSE

FIGURE 12. INPUT IMPEDANCE vs TEMPERATURE (100Hz)

3·249

HA-2600, HA-2602, HA-2605

Typffal Performance Curve~ , Vs = ±15V, TA = 25°C, Unless Otherwise Specified

100Hz
0.01'--_ _ _-'-_ _ _-'-_ _ _ _'--_ _ _-'
10kHz

100kHz

IMHz
FREQUENCY

FIGURE 13. OUTPUT VOLTAGE SWING

10MHz

100MHz

vS FREdUENCY

(Continued)

1kHz

10kHz 100kHz
FREQUENCY (Hz)

lMHz

10MHz

NOTE: External rompensation components are not required for stability,
but may be added to reduce bandwidth if desired. If Extemal Compensation is used, also connect I OOpF capacitor from output to ground,
FIGURE 14. OPEN LOOP FREQUENCY RESPONSE FOR
VARIOUS VALUES OF CAPACITORS FROM
COMPENSATION PIN TO GROUND

120

lvsuLy

-5S0 C TO 1250 C

.~
5

~
./

~

./
m
..,
Z 100
~

V

10
15
SUPPLY VOLTAGE (±V)

120

80

w
w

60

0
:Ii

40

:Ii
:Ii
0
U

o

5
25
45
65
TEMPERATURE (DC)

85

105

'

..

1kHz

10kHz .
FREQUENCY

125

10

~

~

~ L..Jf-HH-IIlIftooo.;l-INPUT NOISE
CURRENT ,*H+tIftIIII
l!z
;;;- 100...
" "

ro-...

CJ

w

~

IE
8

~

....

~

w

~
~~

20

100Hz

-15

1000 '-'r-T1mn:rr-T-r""rm--r-nTmtT-r"TTT

II:

15

-35

FIGURE 16. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

Q 100

C

80
-55

20

:2-

~.,
w

-

±5VSUPPLY -

FIGURE 15." COMMON MODE VOLTAGE RANGE vs SUPPLY
VOLTAGE

~
z

+IOVSUPPLY

'"
5

m

-

±15V SUPPLY

I0

t-1-t<1-l4II1II-+-I'l+I-IUI--+-j..j.I.tIIfI-+-A'I1IIt~I-+I~ 0.1 ~
~~

I
100kHz

IMHz

FIGURE 17. COMMON MODE REJECTION RAllO VB FREQUENCY

3-250

I

10

100
IK
FREQUENCY (Hz)

10K

0.01
tOOK

FIGURE 18. NOISE DENSITY vs FREQUENCY

HA-2600, HA-2602, HA-2605

Die Characteristics
DIE DIMENSIONS:

.

PASSIVATION:

69 mils x 56 mils x 19 mils
1750llm x 1420llm x 4831lm

Type: Nitride (Si3N4) over Silox (Si02. 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

METALLIZATION:
TRANSISTOR COUNT:

Type: AI. 1% Cu
Thickness: 16kA ±2kA

140
PROCESS:

SUBSTRATE POTENTIAL (Powered Up):

Bipolar Dielectric Isolation

Unbiased

Metallization Mask Layout
HA-2600, HA-2602, HA-2605
+IN

-IN

....I

BAL

:...-_-+--......_
4.2SV

..J

-+-oVOUT
50pF(NOTE)

NOTE: A small load capacitance of at least 30pF (including stray capacitance)
is recommended to prevent possible high frequency oscillations.
FIGURE 3. VIDEO AMPLIFIER

Typical Performance Curves

Vs = ±15V. TA = 25°C. Unless otherwise Specified

100r-----------~------,_---_,----~

15

~
LII
I;z
5II.

10

cc.s

5

!zLII

0

II:
II:

..""

-5

·15

~

10

I-

~

Z

...

LII

~

::;)

VaIAS

aLII

I'~
-50

.1

10knSOURCE
RESISTANCE

a!5

OFFSET

::;)

U

·10

EQUIVALENT INPUT
NOISE va BANDWIDTH

1~~Hz~--~~---1-0~kH-Z----l-00~kHz-----l-M~Hz-----l~OMHz

o

·25

25

50

75

100

UPPER 3dB FREQUENCY
LOWER 3dB FREQUENCY = 10Hz

TEMPERATURE fc)

FIGURE 4. INPUT BIAS CURRENT AND OFFSET CURRENT vs
TEMPERATURE

FIGURE 5. BROADBAND NOISE CHARACTERISTICS

120
iii'100

:!i!.

~

80

CI
LII

~

60

~

40

9z

20

......

1000

......

'"\. " ~AIN
"'-

!j

PHASE

LII

0

0
·20
10Hz 100Hz

20

10kHz 100kHz

LII

II:

60

I[

100

!i!

140

~

...

LII

~

0(

~

1

1kHz

iii'
LII
CI

"-

II.

II.

Q

:c
180

Cf
!.
LII

800

z
~
LII

600

-....

U

""

II.

iii

5II.

400

a!5

II.

200

o

lMHz 10MHz 100MHz

·55

FREQUENCY

FIGURE 6. OPEN LOOP FREQUENCY RESPONSE

~

-35

·15

~

5
25
45
65
TEMPERATURE fC)

" i'...
85

.........

105

125

FIGURE 7. INPUT IMPEDANCE va TEMPERATURE, 100Hz

3·256

HA-2620, HA-2622, HA-2625
Typical Performance Curves

Vs

=±15V, TA =25°C, Unless Otherwise Specified

(Continued)

20V
10V

~
CJ

z

iUJ

1V

w
CJ

~

~
cw

0.1V

lI/!

...

100Hz

1kHz

0.01V '--_ _ _...J...._ _ _ _. l -_ _ _-1_ _ _---l
10kHz

100kHz

1MHz

10MHz

l00MHz

'FREQUENCY

10kHz 100kHz
FREQUENCY

lMHz

10MHz

NOTE: External Compensation is required for closed loop gain < 5,
If external compensation is used, also connect 100pF
capacitor from output to ground.
FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR
VARIOUS VALUES OF CAPACITORS FROM COMPo
PIN TOGND

FIGURE 8. OUTPUT VOLTAGE SWING va FREQUENCY

..J

ctU)

Za:

120

20
-55°C to 125°C

~

~

i

10

z

o
::;

~

U

5

~

5

./

V

~

V

w

V

-

±2LsuJLY

~

W 15

±15V SUPPLY

iii'

:!!.

z

~

100

±5VSUPPLY

10
15
SUPPLY VOLTAGE (±V)

80
-55

20

-35

-15

1000 r-

.s
w
CJ

~

'"~

w
!II
0

z
~
...

5
25
45
65
TEMPERATURE fC)

10

r-..~
100

"'-""

INPUT NOISE CURRENT

~

1.0

i!i:.eo
w

Ii' .. k
""

I

II:
II:
::I

U

w

I

0.1

10 I- INPUT NOISE VOLTAGE -

6
z
...iE
I::I

iE

1 '-1

10

85

105

125

FIGURE 11. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 10. COMMON MODE VOLTAGE RANGE va SUPPLY
VOLTAGE

~>

--

±10VSUPPLY

100
lK
FREQUENCY (Hz)

10K

FIGURE 12. NOISE DENSITY va FREQUENCY

3-257

0.01
lOOK

O!:!:!
-II..
~:J
a:Q..
W:E

~ct

I

HA-2620, HA-2622, HA-2625
Die Characteristics
DIE DIMENSIONS:

PASSIVATION:

69 mils x 56 mils x 19 mils
1750~m x 1420~m x 483~m

Type: Nitride (SiaN4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

METALLIZATION:
TRANSISTOR COUNT:

Type: AI, 1% Cu
Thickness: 16kA ±2kA

140
PROCESS:

SUBSTRATE POTENTIAL (Powered Up)

Bipolar Dielectric Isolation

Unbiased

Metallization Mask Layout
HA-2620, HA-2622, HA-2625

COMP

v+

BAL

OUT

-IN

+IN

BAL

v-

3-258

m

HA-2640, HA-2645

HARRIS
SEMICONDUCTOR

4MHz, High Supply Voltage Operational Amplifiers

November 1996

Features

Description

• Output Voltage Swing . . . . . . . . . . . . . . . . . . . . .. ±3SV

HA-2640 and HA-2645 are monolithic operational amplifiers
which are designed to deliver unprecedented dynamic
specifications for a high voltage internally compensated
device. These dielectrically isolated devices offer very low
values for offset voltage and offset current coupled with large
output voltage swing and common mode input voltage.

• Supply Voltage ...........•..•...... ±10V to ±40V
• Offset Current. . • . . • . • . . . . • . . . . . . . . . . . . . . . .. SnA
• Bandwidth ..••........•..•.••..•....•..••. 4MHz
• Slew Rate ...••••••.•.••••................ SVJ!!S
• Common Mode Input Voltage Range. . . . . . . . .. ±3SV
• Output Overload Protection

Applications

For maximum reliability, these amplifiers offer unconditional
output overload protection through current limiting and a chip
temperature sensing circuit. This sensing device turns the
amplifier ·off", when the chip reaches a certain temperature
level.
These amplifiers deliver ±35V common mode input voltage
range, ±35V output voltage swing, and up to ±40V supply
range for use in such designs as regulators, power supplies,
and industrial control systems. 4MHz gain bandwidth and
5V/!!S slew rate make these devices excellent components
for high performance signal conditioning applications.
Outstanding input and output voltage swings coupled with a
low 5nA offset current make these amplifiers excitation
designs.

• Industrial Control Systems
• Power Supplies
• High Voltage Regulators
• Resolver Excitation
• Signal Conditioning

Ordering Information
PART NUMBER

TEMP.
RANGEfC)

PACKAGE

PKG.
NO.

HA2-2640-2

-55 to 125

B Pin Metal Can

TB.C

HA2-2645-5

010 75

B Pin Metal Can

TB.C

HA7-2640-2

-55 to 125

B LdCERDIP

FB.3A

HA7-2645-5

Ot075

B LdCERDIP

FB.3A

Pinouts
HA-2640J2645
(CERDIP)
TOP VIEW

HA-2640J2645
(METAL CAN)
TOP VIEW
COMP

v(TO-99 CASE VOLTAGE = FLOATING)

CAUTION: These devices are sensitive to electrostalic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-259

File Number

2904.2

..J

.

'""""

1

125

10

100

W
N

::::;

SLEW RATE

~

:cC1
w
C1

~

g

~

-25

o

120

.iANDWlj~
25

50

75

80

o

"~ ...

45

.........

0
0

40

'"

0

-'

zW

"-

100

I>.

0

125

,PHASE

G~'

I>.

........

............

a:: 0.8
0
z
-50

0.01
lOOK

10K

FIGURE 5. INPUT NOISE CHARACTERISTICS

z

oc(
~

lK

FREQUENCY (Hz)

.........

"I"

W

II)

0.10

l5

1.4

a::

o

!;

0

w
u. 1.2
w

:::J

z

FIGURE 4. INPUT BIAS AND OFFSET CURRENT vs
TEMPERATURE

c
w
a::
a::

a::
a::

,CURRENT

INPUT NOISE VOLTAGE

1

TEMPERATURE (oC)

°on
12'"

!z

-40

10

100

lK

10K

lOOK

-,

........

1M

......

~

FREQUENCY (Hz)

TEMPERATURE (oC)

FIGURE 6. NORMALIZED AC PARAMETERS vs TEMPERATURE

3-262

:il

e-

135 ~

C1

~

180 w
225

10M

FIGURE 7. OPEN LOOP FREQUENCY RESPONSE

13

w
90 a::

270

~

I>.

HA-2640, HA-2645

Typical Performance Curves
~

Vs

=±40V. TA =25°C. Unless Otherwise Specified

1.2

'i1
OJ'

1.1

~

II:
II:

z

w

u.

w

II:

w

3

~
c
w

~

Cl
0..

8

V V

BANDW

V

'"

:::;

zW

0

0..

0

V'

0.8
10

40

oJ

~-/
0.9

CL=
CCOMP';' . ; . 100pF

80

<

SLEW RATE

1.0

II:

~

~

120

~

fil

(Continued)

40

20

30

10

40

lK

100

10K

lOOK

1M

10M

FREQUENCY (Hz)

SUPPLY VOLTAGE (±V)

FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE AT 2SoC

FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR
VARIOUS VALUES OF CAPACITORS FROM
COMPENSATION PIN TO GROUND

100

f::

0:
D.

z
j

ccrn
Za:

,

O~

.......

VSUPPLY = ±20V

~

Cl

....I
VSUPPLY = +40V

-IL.

W
Cl

~

§!

a:

~cc

~

1.0

::>
0..

I-

::>

'vrlllU
IVIII II

§!

5
~
o

10K

lOOK

11""1~oC

OUTPUT LOAD CURRENT (mA)

FIGURE 11. OUTPUT CURRENT CHARACTERISTIC

40

2.0

II:
II:

::>
0

~

0..
0..

::>

UI

;

+Icc

1.5

30

Cl

20

0.5

~

10

0

Cl

-0.5

§!

-1.0

I-

z

1.0

w

~

-1.5

-Icc

-2.0
-2.5
10

I

'-_'--_-'-_-'-_.1...- -40 VIN = -35V

1M

2.5

S-

t

r--jt--j~~.~~-25-C+--~0~AI.i~=71,7.V~SU~p-p~-y-=~~~0~V-r-~

FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY

!iiiw

~ l1 t

10
115
20
125 C 25"c -55°C

AI.i=I,VSUPPLy=±20V
-20 _v.::;IN:,=_-1_5_v,-_r-_t----1

FREQUENCY (Hz)

C

-10

I"~f-'.,l-.;!""_""_-i

-55°C

0

0.1
lK

15

20

25

30

11.

w:=

~

UI

I-

!;;::::i

~

10.0 I--- VSUPPLY = +10V

35

0
-1 Oi'oo.

~

-2 0

o

-3 0
-40
10

40

SUPPLY VOLTAGE (±V)

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

t""'"

-

I.---' t""'"

-:::::--.... .....

~

-

~

-r---.... --...........
-VOUT

I

15

20

25

30

35

40

SUPPLY VOLTAGE (±V)

FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

3-263

HA-2640, HA-2645
Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

93 mils x 68 mils x 19 mils
2360llm x 1720llm x 4831lm

Unbiased
TRANSISTOR COUNT:

METALLIZATION:

76

Type: AI, 1% Cu
Thickness: 16kA ±2kA

PROCESS:
HV200 Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride (Si3N4) over Silox (Si02, S% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.SkA ±1.SkA

Metallization Mask Layout
HA-2640, HA-2645

BAL

COMP

v+

-IN

OUT
+IN

v-

BAL

3-264

HA-2839
.,"_~~vOOMHz,

Very High Slew Rate
Operational Amplifier

Description
• Low Supply Current •••••••••.....•...•••••• 13mA
• Very High Slew Rate ......••••••••••...•. 625Vi!ls
• Open Loop Gain •...•••••.•••••••..••••••. 25kVN
• Wide Gain-Bandwidth (Ay ~ 10) ...•...••••. 600MHz
• Full Power Bandwidth ••••••..•.•••...•••.. 10MHz
• Low Offset Voltage •.•••••.••••••••.••.••••. 0.6mV
• Differential Gain/Phase .....•••. 0.03%10.03 Degrees
• Enhanced Replacement for EL2039

Applications

The HA-2839 is a wideband, very high slew rate, operational
amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation,
delivers outstanding performance in circuits with a closed
loop gain of 10 or greater.
A 625V/!ls slew rate and a 600MHz gain bandwidth product
ensure high performance in video and RF amplifier designs.
Differential gain and phase are a low 0.03% and 0.03
degrees respectively, making the HA-2839 ideal for video
applications. A full ±10V output swing, high open loop gain,
and outstanding AC parameters, make the HA-2839 an
excellent choice for high speed Data Acquisition Systems.
The HA-2839 is available in commercial and industrial
temperature ranges, and a choice of packages. For military
grade product, refer to the HA-2839/883 data sheet.

• Pulse and Video Amplifiers
• Wideband Amplifiers

Ordering Information

• High Speed Sample-Hold Circuits
• RF Oscillators

PART NUMBER

TEMP.
RANGEfc)

PKG.
NO.

PACKAGE

HA1-2839-5

010 75

14 LdCERDIP

F14.3

HA3-2839-5

01075

14 Ld PDIP

E14.3

HA3-2839-9

-401085

14 Ld PDIP

E14,3

Pinout
HA-2839
(CERDIP, PDIP)
TOPYIEW

NOTE: No Connection (NC) pins may be tied 10 a ground
plane for better isolation and heat dissipation.

CAUTION: These devices are sensitive to electrostatic discharge, Users should follow proper IC Handling Procedures.
Copyrlght,© Harris Corporation 1996

3-265

File Number

2841.2

~

WJ

"HA-2840

I-IARRIS
SEMICONDUCTOR

60,OMHz, Very High Slew Rilte
, Operational Amplifier

November 1996

Features

Description

• Low Supply Current .......••.•..........••. 13mA

The HA-2840 is a wideband, very high slew rate, operational
amplifier featuring superior speed and bandwidth
characteristics. Bipolar construction, coupled with dielectric
isolation, delivers outstanding performance in 'Circuits with a
,closed loop gain of 10 or greater.

• Very HighSlew Rate •.••••...•.••• .- ••...• 625V11lS
• Open Loop Gain •..•...•..•.••...•....•.•• 25kVN
• Wide Gain-Bandwidth (Av ~ 10) •.....•.•..• 600MHz
• Full Power Bandwidth ..•..•.••..........•• 10MHz
• Low Offset Voltage •••.•..•.•.•••••.••....•. 0.6mV
• Differential GalnlPhase •...•••.• 0.03%10.03 Degrees
• Enhanced Replacement for EL2039

Applications
• Pulse and Video Amplifiers
• Wideband Amplifiers
• High Speed Sample-Hold Circuits
• RF Oscillators

A 62!:>VI~ slew rate and a 600MHz gain bandwidth product
ensure high performaflce in video and RF amplifier designs.
Differential gain and phase are a low 0.03% and 0.03
degrees respectively, making the HA-2840 ideal for video
applications. A full ±10V output swing, high open loop gain,
and outstanding AC parameters, make the HA-2840 an
excellent choice for high speed Data Acquisition Systems.
The' HA-2840 is availabl~ in commercial and industrial
temperature ranges, and a choice of packages. See the
"Ordering Information" below for more information. For military grade product, refer to the HA-2840/883 data sheet.

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGE(lIC)

PKG.
NO.

PACKAGE

HA3B2840-5

01075

14Ld PDIP

HA3·2840-5

010 75

8 Ld PDIP

E8.. 3

HA9P2840-5
(H28405)

01075

8LdSOlC

M8.15

E14.3

HA3B2840-9

-401085

14 Ld PDIP

E14.3

HA7·2840-9

-401085

8 LdCERDIP

F8.3A

HA3-2840-9

-401085

8 Ld PDIP

E8.3

Pinouts
HA-2840
(CERDIP, PDIP, SOIC)
TOP VIEW

HA-2840
. (PDIP)
TOP VIEW

NOTE: No Connection (NC) pins may be lied 10 a ground plane for better isolalion and heal dissipalion.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-266

File Number

2842.2

HA-2840
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 35V
Differential Input Voltage ................................ 6V
Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50mA

Thermal Resistance (Typical, Note 2)
8JA (oCIW) 8JC (oCIW)
14 Lead PDIP Package. . . . . . . . . . . . . .
80
N/A
8 Lead CERDIP Package . . . . . . . . . . . .
135
50
8 Lead PDIP Package. . . . . . . . . . . . . . .
96
N/A
157
N/A
8 Lead SOIC Package...............
Maximum Internal Quiescent Power Dissipation (Note I)
Maximum Junction Temperature (Ceramic Package) . . . . . .. 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering 1as). . . . . . . . . . .. 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-2840-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 75 0 C
HA-2840-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to 85°C
Recommended Supply Voltage Range ............. ±7V to ±15V

CAUTION: Stresses above those listed in ''Absolure Maximum Rarlngs' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
I. Maximum power diSSipation with load conditions must be designed to maintain the maximum junction temperature below 175°C lor
ceramic packages and below 150°C lor plastic packages.
2. 8JA is measured with the component mounted on an evaluation PC board in Iree air.

Electrical Specifications

VSUPPLY = ±15V, RL = Ikn, CL';; 10pF, Unless Otherwise Specilied
HA-2840-5. -9

PARAMETER

TEST CONDITIONS

TEMP (oC)

MIN

TYP

MAX

UNITS
....I

INPUT CHARACTERISTICS

c(fJ)

Offset Voltage (Note 8)

Za:

25

0.6

2

mV

O!!:!
-II..

Full

2

6

mV

a: a.

I1vfOc

Average Offset Voltage Drift

Full

-

20

Bias Current (Note 8)

25

-

5

14.5

fJ.A

8

20

I1A

4

fJ.A

Full
25

Offset Current

Full

-

I

8

fJ.A

Input Resistance

25

10

kn

Input Capacitance

25

I

pF

Full

±IO

-

V

Input Noise Voltage (Note 8)

I = I kHz, RSOURCE = on

25

-

6

nV/./Hz

Input Noise Current (Note 8)

1= 1kHz, RSOURCE = 10kn

25

6

pAl./Hz

Common Mode Range

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

Common-Mode Rejection Ratio (Note 8)

Note 3

VCM=±IOV

Minimum Stable Gain
Gain Bandwidth Product (Note 8)

25

20

25

Full

15

20

Full

75

80

25

10

-

kVN

-

kVN
dB
VN

-

MHz

±20

-

rnA

30

-

n

-

MHz

Vo = 90mV, Av = +100

25

600

Output Voltage Swing (Note 8)

Note 3

Full

±IO

-

Output Current (Note 8)

Note 3

Full

±IO

OUTPUT CHARACTERISTICS

Output Resistance

25

Full Power Bandwidth (Note 4)

Note 3

25

8.7

10

Differential Gain (Note 7)

Av= 10

25

-

0.03

3-267

V

%

!cc::i
W:E
~c(

HA-2840
Electrical Specifications

VSUPPLY = ±15V, RL = lkO, CL $ 10pF, Unless Otherwise Specified (Continued)
HA-2840-5, -9

PARAMETER

TEMP (oC)

TEST CONDITIONS

MIN

TYP

MAX

UNITS

Differential Phase (Note 7)

Av= 10

25

0.03

Degrees

Harmonic Distortion (Note 8)

Av = 10, Va = 2Vp_p, f = 1MHz

25

-79

dBc

TRANSIENT RESPONSE (Note 5)

-

Rise Time

25

4

Overshoot

25

20

%

ns

Slew Rate (Notes 6, 8)

Note 3

25

550

625

V/IlS

Settling Time

10V Step to 0.1%

25

-

180

ns

POWER REQUIREMENTS
Supply Current (Note 8)

Full

Power Supply Rejection Ratio (Note 8)

13
75

Full

Vs = ±10V to ±20V

15

90

NOTES:
3. RL = lkO, Va = ±10V, OV to ±10V for slew rate.
Slew Rate
4. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = 2-V-- : (V pEAK = 10V).
5. Refer to Test Circuit section of data sheet.

It

PEAK

6. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-Iot variation.
7. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS.
8. See ''Typical Performance Curves" for more information.

Test Circuits and Waveforms
IN

0---""

>-1--0

OUT

900n

9. Vs=±15V.

loon

10. Av = +10.
11. CL < 10pF.
TEST CIRCUIT

INPUT
INPUT

OUTPUT

OUTPUT

Input = lV/Div.
Output = 5V/Div.
50nslDiv.

Input = 10mVlDiv.
Output = 100mV/Div.
50ns/Div.
SMALL SIGNAL RESPONSE

LARGE SIGNAL RESPONSE

3-268

mA
dB

HA-2840
Test Circuits and Waveforms

(Continued)

~~~

200n
INPUT

NOTES:
12. Av=-10.
13. Load Capacitance should be less than 10pF.

iJY""":h J-l

-

H~,

soon

2k!l

14. It is recommended that resistors be carbon composition
and that feedback and summing network ratios be
matched to 0.1 %.

OUTPUT
PROBE
MONITOR

15. SETILING POINT (Summing Node) capacitance should
be less than 10pF. For optimum settling time results, it is
recommended that the test circuit be constructed directly
onto the device pins. A Tektronix 568 Sampling
Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.

5kn

SETTLING
POINT

SETILING TIME TEST CtRCUIT

Typical Performance Curves

TA = 25°C, VSUPPLY = ±15V, RL = lkQ, CL < 10pF, Unless Otherwise Specified

100

650

BO

r-;..

Iii" 60
:Eo

z
:;;:

"

40

•

II

20

J:

~

r- ====. ...

iii

r

~

'"

r 0jEi ,00,
10K

"

~
1"'1

~

g 600
c

0

W

J:
I-

«J:

~ 550

(/)

0

...

90
lBO

c

./

J:

~ 650

10M

1M

100M

5

6

7

'"~

a: 550

...

J:
I-

5! 450

~
z

70

"

~

~

350

·40

·20

14

15

...

BO

0

250
-60

13

90

..........

C

"

10
11
12
B
9
SUPPLY VOLTAGE (±V)

FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE

-,

ti
:::l

~
z
:;;:

W::lE

g;<

" 500
lOOK

FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS

750

",..

~

..,.,., ......... ~

I

z
~
z
:;;:

FREQUENCY (Hz)

"N

~::::i
a::/l.

I-

"e. ...a:

~~

AVCL= 10

i'

rI7'"'+I
lK

w
w
a:
w

I"'!!Io

AVCL = 100

~

Za::
O!!!
-11.

"N

0
AVCL = 1000

....I


.5.

~

~

!zw

~
1.5 I-

w
II)
LL
LL

0.5 0

...... ........

.......

80

I-

:::I

""A

7\

12

a:

§

10

U

~


c

-55

...c

-65

l - f-

II:

~

-75

~

-85

II

I

II

Vo = lVp.p

11

Vo=5Vp_p

i-'
~

Vo=0.5Vp_p

'"

,

~

.....

.---'-t
J- i-"""

---

"
'"

.....

IJ ....

~

.....-

c

-95
500K

,

"

II

II:

FIGURE 14. TOTAL HARMONIC DISTORTION VB FREQUENCY

Vo=2Vp_p

0

§l

10M

FREQUENCY (Hz)

",

~

..

~

:,...."
,.,."..

1M

i~

"

~
i0oi

Vo = O.25Vp_p

I
I
10M

FREQUENCY (Hz)

FIGURE 15. INTERMODULATION DISTORTION VB FREQUENCY (TWO TONE)

3-271

HA,;.2840

Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

v-

65 mils x 52 mils x 19 mils
1650/Lm x 131 O/Lm x 483/Lm

TRANSISTOR COUNT:

METALLIZATION:

34

Type: Aluminum, 1% Copper
Thickness: ·16kA ±2kA

PROCESS:

High Frequency Bipolar Dielectric Isolation

PASSIVATION:

Type: Nitride over Silox
Silox Thickness: 12kA ±2kA
Nitride thickness: 3.5kA ±1 kA

Metallization Mask Layout
HA-2840

..

r r.==n

['-~r====nr===iiiII3811

OUT

-IN

+IN

,

....

...I.J

y-

3-272

HA-2841
50MHz, Fast Settling, Unity Gain Stable,
Video Operational Amplifier

November 1996

Features

Description

• Low Supply Current ••••••••••••.•..••••.••• 10mA

The HA-2841 is a wideband, unity gain stable, operational
amplifier featuring a SOMHz unity gain bandwidth, and excellent
DC specifications. This amplifier's performance is further
enhanced through stable operation down to closed loop gains of
+1. the inclusion of offset null controls, and by its excellent video
performance.

• Low AC Variability Over Process and Temperature
• Unity Gain Bandwidth ..•.••••••.••.•.•••.• 50MHz
• Gain Flatness to 10MHz.••••••••.••..••••.. 0.05dB
• High Slew Rate .••••••.••.••.....•.••.•.• 240V/ms
• Low Offset Voltage .••••••••..•...•.••••••••• 1mV
• Fast Settling Time (0.1%) ••....•.•••.•.•••••. 90ns
• Differential Gain/Phase ••.•.•••• 0.03%10.03 Degrees
• Enhanced Replacement for AD841 and EL2041

Applications
• Pulse and Video Amplifiers
• Wideband Amplifiers
• High Speed Sample-Hold Circuits
• Fast, Precise D/A Converters
• High Speed AID Input Buffer

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGEr'C)

PACKAGE

PKG.
NO.

01075

14 Ld PDIP

E14.3

HA3-2841-5

01075

8LdPDIP

E8.3

HA9P2841-5
(H28415)

Ot075

8 LdSOIC

M8.15

HA3B2841-9

-401085

14 Ld PDIP

E14.3

HA3-2841-9
(H28415)

-401085

8Ld PDIP

E8.3

HA3B2841-5

The capabilities of the HA-2841 are ideally suited for high speed
pulse and video amplifier circuits, where high slew rates and
wide bandwidth are required. Gain flatness of 0.05dB, combined
with differential gain and phase specifications of 0.03%, and 0.03
degrees, respectively, make the HA-2841 ideal for component
and composite video applications.
A zener/nichrome based reference circuit, coupled with
advanced laser trimming techniques, yields a supply current with
a low temperature coefficient and low Iot·to-Iot variability. Tighter
Icc control translates to more consistent AC parameters
ensuring that units from each lot perform the same way, and
easing the task of designing systems for wide temperature
ranges. Critical AC parameters, Slew Rate and Bandwidth, each
vary by less than ±5'7'0 over the industrial temperature range (see

characteristic curves).
For military grade product, refer to the HA-2841/883 data
sheet. Harris AnswerFAX (407 724-7800), document num·
ber 3621.

Pinouts
HA-2841
(PDIP)
TOP VIEW

HA-2841
(PDIP, SOIC)
TOP VIEW

CAUTION: These devices are sens"ive to eleclrostatlc discharge. Users should follow proper IC Handling Procedures.
Copyright @ Harris Corporation 1996

3-273

File Number

2843.2

....I

c(CI)

Za:
O!:!:!
-IL.

ti::J0.

a:

W::::e
~c(

HA-2841
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 35V
Differential Input Voltage ................................ 6V
Output Current (Note 3) .............................. 50mA
10mA (50% Duty Cycle)

Thermal Resistance (Typical, Note 2)

Operating Conditions
Temperature Range
HA-2841-5. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 75°C
HA-2841-9 ............................. '" -40°C to 85°C
Recommended Supply Voltage Range ............ ±6.5V to ±15V

9JA (oCIw)

14 Lead PDIP Package....... . . . ......... .. .
89
8 Lead PDIP Package. . . . . . . . . . . . . . . . . . . . . . .
92
157
8 Lead SOIC Package.......................
Maximum Junction Temperature (Die, Note 1) ............... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range ....... " -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) ............. 300°C
(SOIC - Lead Tips Only)

CAUTION: Strasses abova those listed in "Absolute Maximum Ratings' may cause permanant damage to the device. This is a stress only "'ling and opa"'tion
of the device at these or any other conditions above those indicated In the ope"'tional sections of this specification is not implied.

NOTES:
1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 150°C for
plastic packages.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.
3. Va = ±10V, RL unconnected. Output duty cycle must be reduced if lOUT >10mA.

Electrical Specifications

VSUPPLY = ±15V, RL = 1kO, CL';; 10pF, Unless Otherwise Specified
HA-2841-5. -9

TEMP.
PARAMETER

TEST CONDITIONS

I

('IC)

MIN

TVP

25

-

1

3

-

-

6

mV

14

-

'IJ.vfJC

MAX

UNITS

INPUT CHARACTERISTICS

Offset Voltage (Note 10)

Full
Average Offset Voltage Drift

Full

Bias Current (Note 10)

mV

25

-

5

10

Full

-

8

15

I1A
I1A
nAPC

Average Bias Current Drift

Full

45

-

Offset Current

25

0.5

1.0

IJ.A

1.5

I1A

Full
Input ReSistance

25

Input Capacitance

25

-

Common Mode Range

Full

±10

1

-

-

-

170

kO
pF
V

Input Noise Voltage

10Hzt01MHz

25

16

Input Noise Voltage (Note 10)

f = 1kHz, RSOURCE = 00

25

16

nVl.../Hz

Input Noise Current (Note 10)

f = 1kHz, RSOURCE = 10kO

25

2

oAlJHZ

IJ.VRMS

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain

Common-Mode Rejection Ratio (Note 10)

VO=±10V

VCM=±10V

Minimum Stable Gain

-

25

25

50

Full

10

30

kVN

Full

80

95

25

1

-

-

VN

kVN
dB

25

50

-

MHz

Gain Flatness to 5MHz (Note 10)

RL",750

25

±0.015

-

dB

Gain Flatness to 10MHz (Note 10)

RL",5000

25

±0.05

Full

±10

±10.5

"Iote3

Full

15

30

Va = ±10V

25

3.2

3.8

Gain Bandwidth Product (Notes 5, 10)

dB

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 10)
Output Current (Note 10)
Output Resistance
Full Power Bandwidth (Note 6)

25

3-274

8.5

-

V
mA
0
MHz

HA-2841
Electrical Specifications

VSUPPLY

=±15V. RL =IkO. CL $IOpF. Unless Olherwise Specilied

PARAMETER

HA-2841-5, -9

TEMP.
(oC)

TEST CONDITIONS

(Continued)

TYP

MIN

MAX

UNITS

Differential Gain (Note 10)

Note 4

25

0.03

%

Differential Phase (Note 10)

Note 4

25

0.03

Degrees

Harmonic Distortion (Note 10)

Va = 2Vp_p, I = IMHz, Av = +1

25

>S3

dBc

TRANSIENT RESPONSE (Note 7)
Rise Time

25

3

Overshoot

25

33

Slew Rate (Notes 9,10)

AV=+1

25

200

Settling Time

10V Step to 0.1%

25

90

25

10

Full

10

ns

-

240

%
V/flS

-

ns

POWER REQUIREMENTS
Supply Current (Note 10)

Power Supply Rejection Ratio (Note 10)

NoteS

Full

70

mA

11

mA
dB

SO

NOTES:
4. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. RF = Rt

=IkO, RL = 7000.

5. AVCL = 1000, Measured at unity gain crossing.

6. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW

Slew Rate
=2
-V
1t

7. Refer to Test Circuit section 01 data sheet.

PEAK

(V pEAK = 10V) .

S. VSUPPLY = ±IOVto ±20V.
9. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-Iot variation.
10. See "Typical Performance Curves" lor more information.

Test Circuits and Waveforms
NOTES:
II. VS=±15V.
12. AV = +1.
13. CL < 10pF.

TEST CIRCUIT

INPUT

INPUT

OUTPUT

OUTPUT

=

Input 100mVlDiv.
Output = 100mV/Div.
50ns/Div.

Input = 5V/Div.
Output = 5V/Div.
50ns/Div.
LARGE SIGNAL RESPONSE

SMALL SIGNAL RESPONSE

3-275

HA·2841
Test Circuits and Waveforms

(Continued)
SeTI'UNG
POINT

Skn

2kn

NOTES:
14.
15.
16.
17.
18.

>--50mA, Duty Cycle must be derated accordingly.

Electrical Specifications

VSUPPlY = ±15V, RL = 1kn, CL S 1(JpF, Unless Otherwise Specified

I
PARAMETER

TEST CONDITIONS

TEMP (DC)

HA-2842-5, -9
MIN

TYP

MAX

UNITS

1

3

m,V

-

6

mV

INPUT CHARACTERISTICS
Offset Voltage (Note 10)

-

25
Full

. Average Offset Voltage Drift

Full

Bias Current (Note ,10)

25

13
5

Full

·JJ.vf>c
10

JJ.A

15

JJ.A.
nAPC

Average Bias Current Drift

Full

20

-

Offset Current

25

0.5

1.0

-

1.5

-

Full
Average Offset Current Drift

Full

Input Resistance

25

170

Input Capacitance,

25

1

Common Mode Range

Full

Input Noise Voltage

10Hz to 1MHz

25

Input !IIoise Voltage Density

f = 1kHz, RSOURCE = on

25

Input Noise Current (Note 10)

f = 1,kHz, RSOURCE = 100kn

25

"

..' nAPC

1.3

±10

IlA
IlA

-

kn
pF

-

V

16

JJ.VRMS

16

-

nV/JHz

2

-

pAlJHz

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

Common-Mode Rejection Ratio (Note 10)

VO=±10V

VCM= ±10V

Minimum Stable Gain

25

50

100

Full

30

60

Full

80

110

-

dB

25

2

-

-

VN

-

±0.035

±10

±11

Gain Bandwidth Product (Note 10)

AVCL= 100

25

Gain Flatness to 10MHz (Note 10)

RL;<:75n

25

Output Voltage Swing (Note, 10)

VO=±10V

Full

Output Current(Note 10) ,

Note 3

Full

80

kVN
kViv

-

MHz
dB

OUTPUT CHARACTERISTICS

3-282

I'

100

I

- I
-

V
mA

Electrical Specifications

VSUPPLY ~ ±15V, RL ~ 1k!.l, CL 0': 10pF, Unless Otherwise Specified (Continued)
HA-2842-5, -9
TEST CONDITIONS

PARAMETER

TEMP(°C)

Output Resistance

MIN

25

TYP

MAX

UNITS

8.5

n

6

MHz

Full Power Bandwidth (Note 6)

Vo~±10V

25

Differential Gain (Note 10)

Note 5

25

0.02

%

Differential Phase (Note 10)

Note 5

25

0.03

Degrees

Harmonic Distortion (Note 10)

Vo ~ 2Vp_p, f

25

>81

dBc

ns

~

1MHz, Av

~

2

5.2

TRANSIENT RESPONSE (Note 7)
Rise Time

25

4

Overshoot

25

25

%

400

ViI1S
ns

Slew Rate (Notes 9,10)

Av~+2

25

Settling Time

10V Step to 0.1%

25

100

25

14.2

Full

14.3

325

POWER REQUIREMENTS
Supply Current (Note 10)

Power Supply Rejection Ratio (Note 10)

Note 8

70

Full

mA
15

80

mA
dB

NOTES;
5. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. RF ~ R1 ~ 1kn, RL ~ 700n.
, 6. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW

~

Slew Rate. V
~ 10V
2"V PEAK' PEAK
.

..J

<0
Za:
O!!:!
-LL

7. Refer to Test Circuits section of this data sheet.

!;;::J

8. VSUPPLY ~ ±10V to ±20V.

a:e.

W::l:

9. This parameter is not tested. The limits are guaranteed based on lab characterization and reflect lot-to-Iot variation.

~<

10. See ''Typical Performance Curves" for more information.

Test Circuits and Waveforms
IN 0----1

>-- .....--yOUT
ySETTLING TIME TEST CIRCUIT

OUT

ySUGESTED OFFSET VOLTAGE ADJUSTMENT

Application Information
The Harris HA-2842 is a state of the art monolithic device
which also approaches the "ALL-IN-ONE" amplifier concept.
This device features an outstanding set of AC parameters
augmented by excellent output drive capability providing for
suitable application in both high speed and high output drive
circuits.
Primarily intended to be used in balanced son and 7S0
coaxial cable systems as a driver, the HA-2842 could also be
used as a power booster in audio systems as well as a
power amp in power supply circuits. This device would also
be suitable as a small DC motor driver.
Prototyplng Guidelines
For best overall performance in any application, it is recommended that high frequency layout techniques be used. This
should include:
1. Mounting the device through a ground plane.
2. Connecting unused pins (NC) to the ground plane.
3. Mounting feedback components on Teflon standoffs
and/or locating these components as close to the device
as possible.
4. PlaCing power supply depoupling capacitors from device
supply pins to ground.
Power Dissipation Considerations
At high output currents, especially with the 8 lead SOIC package,
care must be taken to ensure that the Maximum Junction
Temperature (TJ, see "Absolute Maximum Ratings" table) isn't
exceeded. As an example consider the HA-2842 in the SOIC

package, with a required output current of SOmA at VOUT =10V
with ±1SV supplies. The power dissipation is the quiescent power
(45OmW = 30V x 15rnA) plus the power dissipated in the output
stage (POUT=2SOmW=SOrnAx(1SV-10V», or a total of
700mW. The thermal resistance (8JA) of the SOIC package is
1S]DCNJ, which increases the junction temperature by 110°C
over the ambient temperature (TAl. Remaining below TJMAX
requires that TA be restricted to S 4()DC (1S00C - 1100C).
Heatsinking would be required lor operation at ambient
temperatures greater than 40°C.
Note that the problem isn't as severe with either of the PDIP
packages due to their lower thermal resistances, however it
is recommended that the above analysis be performed for
any package if operating outside the conditions listed below:
MAX POUT WITHOUT HEATSINK (VS

=±15V)

14LEADPDIP
(OJA 89°CJW)

8 LEAD PDIP
(OJA 92°CJW)

8LEADSOIC
(9JA 157°CJW)

85°C

280mW

260mW

Heatsink Required

70°C

450mW

420mW

60mW

25°C

950mW

910mW

350mW

TA

=

=

=

Allowable output power can be increased by decreasing the
quiescent dissipation via lower supply voltages.
For more information please refer to Application Note ANS56,
Thermal Safe Operating Areas for High Current Op Amps.

3-284

HA-2842

Typical Performance Curves
120

'"

80
60

=25°C. VSUPPLY =±15V. RL =1kn. CL < 10pF. Unless Otherwise Specified

~~CLI=ll00~

OPEN LOOP

100

TA

100
II

'N

I

:z: 90

~

........./AvCL=10
~AvCL=2

iii'
W

~

_40
III

a:

III

w

:g. 20

~

e.w

0

UI

...
f-

I-

OPEN LOOP

_1

Lli
10

100

..~
'/

"l

lK

~CL

o

f

90
180

AvCL AVCL AvCL
=1000 =100 = 10 =2

13
::I
0

...:z:
a:

70

!3

60

z

50

~

C
III

C( 40
III

1M

10M

----

80
70

:z:

~

40

7

8

14

15

...

....I

<
0

....

20

--

3

OFFSET VOLTAGE

~

10"-"'"

2

-I1

""- ........

BIAS CURRENT

60

!

'"CJ
~

Iii

Ul

...

II.

0

-1

~

14

CE

~ 12

'"a:a:

::> 10

(J

~
"-

"::>

l!:

6

4
100 120 140

80

8

Ul

~ f\1

I

A

~12.5

~

!;

O~

--

lr

CJ

10

25°C

7

8

-- I
!;

-7.5

~

-10

~

,

~

±8V,lkO

-20

'±811 1~00
'I

-

±8V, 750
40

12

13

60

80

/'

±8~,llkO

-

...

-

z

20

11

\

11l-12.5

0

10

r-- r-~8117L

-5

Ii

\
-40

9

FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE

7.5

±8V,1500

15

'\

6

5

±15V, 750

2.5
-60

14

25OC

SUPPLY VOLTAGE (±V)

±15V, 1500

r

15

l- -550~

-2.5

±lJV,l~

14

4

FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS
CURRENT vs TEMPERATURE

r-

13

1\ I ~
1 1/ 1
r\1

TEMPERATURE (DC)

15

12

16

~

0

40

11

FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE

I I I

I,

10

SUPPLY VOLTAGE (±V)

FIGURE 7. SLEW RATE vs TEMPERATURE

8

9

8

TEMPERATURE (DC)

-,

140

TEMPERATURE (oC)

-60

+15V, 1500

r--

II'

±15V,lkO

-15

100 120

I-- I-

±15V, 750

~

-40

-20

0

20

40

60

80

100

120 140

TEMPERATURE (DC)

FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE

FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE

3-286

HA-2842
Typical Performance Curves
30

11111111

~

25 I--

"iz

20

~

til

w

"~
~

l-

::>

a..

TA = 25°C. VSUPPLY = ±15V. RL = 1kn. CL < 10pF, Unless Otherwise Specified (Continued)
-40

111111

IIII

VSUPPLY = +15V
·50

..... ""

i

-

15
VSUPPLY = ±8V

S

-

0

-

-60

c

i!=

I\.

~-.

-

·70

...

-80

I-

::>
0

10K

1K

lOOK

I

1M

:!!.

t3::>
c

li!a..
c

0
::E

·70
·80

I""""

~

~

i:

;!';
cC

"...

II

O!:!:!
-u.

0.020

!;::::i
a: a..

w:=

0.015

~«

~

~

w 0.010
a:
w
IL

l..,....o000o

"

...I

«U)
Za:

~

-

~o=2Vp.: "", ~

'"

C

a:

.!.

~

a:

~

0.025

....
....
"'
....
j ,rc ~ ....
....
~"" .. """'"~ ~ ... :::: ~
VO=5t.P

I I IIII 10M

1M

FIGURE 14. TOTAL HARMONIC DISTORTION va FREQUENCY

;;
·60

Vo=1Vp.p
Vo=0.5Vp.p

FREQUENCY (Hz)

·40
·50

..

r\

I

lOOK

100M

10M

FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING
vs FREQUENCY

ID

~

~,

~ ~ ~:::

Vo= 2Vp.p

-

FREQUENCY (Hz)

..

~

11

·90

-

,

'l,~

:!!.

--

10

I

VO=10Vp.p

VSUPPLY = ±10V

IL

Vo=1Vp.p

is 0.005

·90
VO=0.25VP.P t = r o y - p ' l

1

OL-~_-L_~~L--L_-L_~_L-~

SOOK

1M

10M

100

200

300

FREQUENCY (Hz)
FIGURE 15. INTERMODULATION DISTORTION vs
FREQUENCY (TWO TONE)

w
w

\

0.12
0.10

\

til

cC

:c
a..

...
~
zw

a:
~

!!:

600

700

800

900 1000

0.04

a:

e."w

500

FIGURE 16. DIFFERENTIAL GAIN vs LOAD RESISTANCE

0.14

Iii
w

400

LOAD RESISTANCE (n)

0.08

•

0.06

\

0.04

c

,
"'-

".....

VSUPPLY = ±8V -

z

I

I

200 300

400 500

I

VSUPPLY = ±15V -

I
100

~
IL

VSUPPLY = ±10V

600

1"

-

0.02

,.

0.01

I--

I

700 800 900 1000

~
~

D.",

Z

~

~

\

!

I--

til
til
W

0.02
o

-

R! =751

iii' 0.03

o

o

1M

2M

~

~

f

I

RL= lson

II

RL= soon

r

3M

4M

5M

6M

RL= l000n

7M

8M

9M

10M

FREQUENCY (Hz)

LOAD RESISTANCE (n)
FIGURE 17. DIFFERENTIAL PHASE va LOAD RESISTANCE

FIGURE 18. GAIN FLATNESS va FREQUENCY (AvCL

3·287

=2)

HA-2842

Typical Performance Curves

TA:= 25°C. VSUPPLY = ±15V. RL = 1kO. CL < 1OpF. Unless Otherwise Specified (Continued)

85

I

""~

-

~

J
85

o

100 200

300

400

500 800

700 800

900 1000

LOAD RESISTANCE (n)

FIGURE 19. GAIN BANDWIDTH PRODUCT va LOAD RESISTANCE

3·288

HA-2842

Metallization Topology
SUBSTRATE POTENTIAL (Powered Up):

DIE DIMENSIONS:

V-

77 mils x 81 mils x 19 mils
19S0llm x 20S0llm x 4831lm

TRANSISTOR COUNT:

METALLIZATION:

58

Type: Aluminum. 1% Copper
Thickness: 1SkA ±2kA

PROCESS:
High Frequency Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride over Silox
Silox Thickness: 12kA ±2kA
Nitride thickness: 3.5kA ±1 kA

Metallization Mask Layout
HA-2842

BAL

BAL

....I

'Hz
• Input Offset Voltage ....•..........••....... O.5mV
• Input Bias Current ......................•...60nA
• Supply Range. . • . . . . . . . . . . . . . . • . . . .. ±2V to ±20V
• No Crossover Distortion
• Standard Quad Pinout

Applications
• Universal Active Filters

These excellent dynamic characteristics also make the HA4741 ideal for a wide range of active filter designs.
Performance integrity of multi-channel designs is assured by
a high level of amplifier-to-amplifier isolation (69dB at
10kHz).

• 03 Communications Filters
• Audio Amplifiers
• Battery-Powered Equipment

A wide range of supply volt

!50

0.1 _
_

10

100

lK
10K
lOOK
FREQUENCY (Hz)

1M

UI~

.... +l

!Sl~

10M

100

/~

If....l

0.9

I

<0
c ....
Ulc
!::lUI
....I a:


O~

(VOLTAGE FOLLOWER)
RL =00
CL =50pF
III

I I I

"'>
a: ....

i'

VS=±2V

I 11111111

FIGURE 4. OPEN LOOP FREQUENCY RESPONSE
1.1

VS =±5V

, "" 1--, '" "'"

100

·10
1

Vs =±10v

r--.

_ Vo=SV

±10
±15
SUPPLY VOLTAGE (V)

FIGURE 6. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE

±20

.S
·55

·25

r-~
BANDWIDTH

"

SLEW RATE

I II
o

25

50

75

100

125

TEMPERATURE (GC)

FIGURE 7. NORMALIZED AC PARAMETERS vs TEMPERATURE

3-294

HA-4741
Typical Performance Curves

VSUPPLY

=±15V, TA =25°C, Unless Otherwise Specified

35

1.4

i

30

1.2

S

25

1.0 oS

w

f'\

~ 20
~

w 15

!!!

o

z 10

~

!;

....
60

~
w

:::l

~

0.6 ~
0.4

i'..

5

I
100

10

lK

I

10K

6 N

40

II:

30

'w"

l:

~
5 %

til

!5

...'"

...

~

%

"

10

o

o

100

10

5

0

5

o
10,000

100,000

...I

c(U)

V

za:

...z

:

W

j

II:
II:
:::l

40

0

"

~

1'0.

20

o

o
100

lK

10K

·50

lOOK

..... "-

~ I""""

r--.
·25

LOAD RESISTANCE (Q)

OFFSET CURRENT

~
o

I

I160

:::l

~

8

80

II:

~
4.

I

Vs =+15

z

Q

I

.
.

!Vs = +10I

I

-

I

Vs=±5

-

40

o
·50

50

75

FIGURE 11. INPUT BIAS AND OFFSET CURRENT vs
TEMPERATURE

200

Ii:::I! 120

25

TEMPERATURE ("C)

FIGURE 10. MAXIMUM OUTPUT VOLTAGE SWING VB LOAD
RESISTANCE

·25

o

I
25

I
50

75

100

125

TEMPERATURE ("C)

FIGURE 12. POWER CONSUMPTION VB TEMPERATURE

3·295

O!:!:!
-IL

BIAS CURRENT

C

S 60

10

:::l

z

80

20

...~

:::l

~

CI

15

1

100

25

~

~
i;:

CI

FIGURE 9. SMALL SIGNAL BANDWIDTH AND PHASE
MARGIN VB LOAD CAPACITANCE

30

w

1000

2

LOAD CAPACITANCE (pF)

FREQUENCY (Hz)

FIGURE 8. INPUT NOISE vs FREQUENCY

1
~

z

'"

3 ID

1'1

20

lOOK

I:i
~

4

~

::I!

~

CURRENT NOISE- 0.2 !;

o

e.z

G

o

I~ ~

RL=2K

iii'
w
w
II: 50
CI
w

0.8 ~

VOLTAGE NOISE

7

70

~
:;
CI

(Continued)

100

125

!;::::i
a:Q.
W:i
~c(

HA-4741
Die Characteristics
SUBStRATE POTENTIAL (Powered Up):

DIE DIMENSIONS:

V:

87 mils x 75 mils x 19 mils
2210j.lm x 1910j.lm x 483j.lm

TRANSISTOR COUNT:

METALLIZATION:

72

Type: AI, 1% Cu
Thickness: 16kA ±2kA

PROCESS:
Junction Isolated Bipolar/JFET

PASSIVATION:
Type: Nitride
Thickness: 7kA ±C.7kA

Metallization Mask Layout
HA-474l
-IN4

+IN4

v-

+IN3

-IN3

OUT3

OUT4

OUT2

OUTl

-IN1

+IN1

V+

3-296

+IN2

-IN2

HA-5002

HARRIS
SEMICONDUCTOR

110M Hz, High Slew Rate,
High Output Current Buffer

November 1996

Features

Description

• Voltage Gain .............................. 0.995

The HA·5002 is a monolithic, wideband, high slew rate, high
output current, buffer amplifier.

• High Input Impedance. . . . . . . . . . . . . . . . . . .. 3000kn

Utilizing the advantages of the Harris 0.1. technologies, the
HA·5002 current buffer offers 1300V/~s slew rate with
11 OM Hz of bandwidth. The ±200mA output current capability
is enhanced by a 30 output impedance.

• Low Output Impedance. . . . . . . . . . . . . . . . . • . . . .. 30
• Very High Slew Rate ....................

1300Vl~s

• Very Wide Bandwidth ............•....... 110MHz
• High Output Current ..............•...... ±200mA
• Pulsed Output Current ............•....... 400mA
• Monolithic Construction

Applications
• Line Driver
• Data Acquisition

The monolithic HA·5002 will replace the hybrid LH0002 with
corresponding performance increases. These characteristics
range from the 3000kO input impedance to the increased
output voltage swing. Monolithic design technologies have
allowed a more precise buffer to be developed with more than
an order of magnitude smaller gain error.
The HA-5002 will provide many present hybrid users with a
higher degree of reliability and at the same time increase
overall circuit performance.
For the military grade product, refer to the HA-5002l883
datasheet.

Ordering Information

• 110MHz Buffer

PART NUMBER
(BRAND)

• High Power Current Source

PACKAGE

HA2-5002-2

·55 to 125

B Pin Metal Can

TB.C

HA2-5002-5

B Pin Metal Can

TB.C

B Ld PDIP

EB.3
N20.35

PKG.NO.

• Sample and Holds

HA3-5002-5

o to 75
o to 75

• Radar Cable Driver

HA4P5002-5

Oto 75

20 Ld PLCC

HA7-5002-2

-55 to 125

B Ld CERDIP

F8.3A

HA7-5002-5

o to 75
o to 75

B Ld CERDIP

FB.3A

B Ld SOIC

MB.15

B Ld SOIC

MB.15

• Video Products

HA9P5002-5
(H50025)
HA9P5002-9
(H50029)

-40 to B5

Pinouts
HA-5002 (PDIP, CERDIP, SOIC)
TOP VIEW

HA-5002 (PLCC)
TOP VIEW

HA-5002 (METAL CAN)
TOP VIEW
IN

OUT

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright

© Harris Corporation 1996

3-297

etC/)
O!!!
-I&.

~:J
a: a..

TEMP.
RANGE (DC)

• High Power Current Booster

...I

Za:

File Number

2921.2

w::e

~et

HA-5002
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 44V
Input Voltage ..............••................... V1+toV1Output Current (Continuous) . . . . . . . . . . . . . . . . . . . . . .. ±200mA
Output Current (50ms On, 1s Off) ................... ±400mA

Thermal Resistance (Typical, Note 2)
9JA (OC/W) 9JC (OC/W)
CERDIP Package
115
28
PDIP Package
92
N/A
Metal Can Package
155
67
PLCC Package
74
N/A
SOIC Package
157
N/A
Maximum Junction Temperature (Hermetic Packages, Note 1) ... 175°C
Maximum Junction Temperature (Plastic Packages, Note 1) ..... 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) ............. 300°C
(PLCC and SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-5002-2 ............................... -55°C to 125°C
HA-S002-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 7SoC
HA-S002-9 ..............•................. -40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Maximum power dissipation, including load conditions, must be designed to maintain the maximum junction temperature below 17SoC for
the ceramic and can packages, and below 1S0oC for the plastic packages.
2. 9JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

VSUPPLY = ±12V to±1SV, Rs = SOU, RL = 1kO, c L = 10pF, Unless Otherwise Specified
TEST
CONDITIONS

PARAMETER

TEMPi
(DC)

I

HA-5002-2
MIN

TYP

MAX

I
I

HA-5002-5, -9
MIN

TYP

MAX

I

UNITS

INPUT CHARACTERISTICS
Offset Voltage
Average Offset Voltage Drift
Bias Current
Input Resistance

25

5

20

5

20

Full

10

30

-

10

30

Full

30

-

30

mV
mV

25

2

7

-

2

7

Full

3.4

10

-

2.4

10

jlA

3

-

1.S

3

-

18

-

MO
jlV p _p

0.900

-

VN

0.971

-

VN

-

MHz

Full

1.S

jlV/"C
jlA

10Hz-1MHz

25

18

-

RL=500

25

0.900

-

RL = 1000

25

0.971

-

RL = 1kO

25

-

0.995

-

RL = 1kO

Full

0.980

-

0.980

V 1N = 1Vp•p

25

-

110

-

110

25

-

40

-

40

RL= 1000

25

±10

±10.7

±10

±11.2

V

RL = 1kO, Vs = ±15V

Full

±10

±13.5

±10

±13.9

V

RL = 1kO, Vs = ±12V

Full

±10

±10.5

±10

±10.5

V

V1N = ±10V, RL = 400

25

-

220

mA

-

3

10

0

<0.005

-

%

-

20.7

Input Noise Voltage
TRANSFER CHARACTERISTICS
Voltage Gain
(VOUT = ±10V)

-3dB Bandwidth
AC Current Gain

0.995

VN
VN
AlmA

OUTPUT CHARACTERISTICS
Output Voltage Swing

Output Current
Output Resistance
Harmonic Distortion

V1N = 1VRMS, f= 10kHz

220

-

Full

3

10

25

<0.005

-

TRANSIENT RESPONSE
20.7

25

-

2S

1.0

-

0.06
0.22

Full Power Bandwidth (Note 3)

25

Rise Time

25

Propagation Delay

25

Overshoot
Slew Rate
Settling Time

To 0.1%

25

Differential Gain

RL = 5000

25

Differential Phase

RL = 5000

25

3-298

MHz

3.6

-

3.6

ns

2

2

ns

30

-

-

30

%

1.3

-

1.0

1.3

V/ns

50

-

-

50

-

0.06

-

0.22

ns

-

%
Degrees

HA-5002
Electrical Specifications

VSUPPLY = ±12V to±15V, Rs = 50Q, RL = lkQ,
TEST
CONDITIONS

PARAMETER

TEMP
(OC)

cL=

10pF, Unless Otherwise Specified (Continued)

HA-S002-2
MIN

TYP

HA-S002-S, -9
MAX

I

MIN

TYP

MAX

I
I

UNITS

POWER REQUIREMENTS
Supply Current

8.3

25
Full

Power Supply Rejection Ratio

Av = 10V

Full

54

-

8.3

10

-

64

54

64

rnA
10

rnA
dB

NOTE:

3. FPBW

= Slew Rate;

Vp

= tOV.

2"V PEAK

Test Circuit and Waveforms
+15V
Rs

IN

o-.JoI<>/V--I >--'9---0 OUT

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE
...J



8SA = Heat Sink to Ambient Thermal Resistance

~

~~

0.4

Graph is based on:
0.2
0.0
25

65

45

85

105

125

TEMPERATURE (OC)

FIGURE 2. FREE AIR POWER DISSIPATION

Typical Application
.oJ
«(I)

Za:

O!!!
-LL

t:c:J

a: a..

W::!i

~«

FIGURE 3. COAXIAL CABLE DRIVER - SOQ SYSTEM

Typical Performance Curves
9

9
Vs

6

iii"

GAIN

0

~

-3

6 I-

11111

3

~

IIIII
PHASE

LIJ

~

= ±15V, Rs = son

-6

!:i

~ -9
-12
-15
-18

1

10

3

r\
\
\

,
"

LIJ

~~

III"
IIIII
PHASE

-6

-9

...

:\
\

-12

~

-15

1

FREQUENCY (MHz)

10

;:
III
LIJ

1350

if

100

FREQUENCY (MHz)

=1kQ)

FIGURE 5. GAINIPHASE vs FREQUENCY (RL

3-301

t:

45°

900

180"

-18

100

FIGURE 4. GAINIPHASE vs FREQUENCY (RL

=±15V, Rs =50n
Ici~I~1

iii"
~ 0
z
~ -3
Cl

Vs

=SOQ)

~

HA-5002
Typical Performance Curves

(Continued)
0.998

0.994

Vs =±15V

Vs = ±15V

0.992

....

0.997

0.990

~
z

C(

CI

w

VOUT = ·10V TO +10V

"'"

0.986
0.984

C(

1"'0 ........

0.982

g

0.980

~

~

0.996

.... ....

JOU~=10~O!10~

~

........

0.995

........ ""-

CI
1""""' ....

~

!j

~z

0.988

w

r-. ....

CI

0.994

g

0.993

~
;.a

0.978

.... 1-- 1"'0 ....

~

"""

0.992

-40

·20

0

20

40

60

80

100

VO UT =OTO ·10V

1"" ..

0.991
·60

120

1':--. ..

- .... ........ 1--"",

0.976
0.974
·60

-

·40

·20

0

TEMPERATURE (DC)

20

40

60

80

100

120

TEMPERATURE ("C)

FIGURE 6. VOLTAGE GAIN VB TEMPERATURE (RL

=100g)

FIGURE 7. VOLTAGE GAIN vs TEMPERATURE (RL = 1kg)

7

Vs = ±15V

Vs =±15V
6

""- .........

"""

..... "'"

....
....

·9
·10
·11
-60

·40

·20

0

20

40

60

5

~

4

8

3

a::
a::

-

80

~

~m

~

100

"

r- ~

2

o

120

........

-60

·40

·20

14

«
So

+VOUT

w

13

80

100

120

Vs = ±15V,l oUT = OmA

Vs = ±15V, RLOAD = 100,1

~

60

10

15

g
5
~
0

40

FIGURE 9. BIAS CURRENT vs TEMPERATURE

FIGURE 8. OFFSET VOLTAGE VB TEMPERATURE

CI

20

TEMPERATURE (DC)

TEMPERATURE ("C)

€

0

~-

!.

.. "" ~"'""

I

!z
Il!a::

-

.VOUT

8

7

::I

o

~

6

~

5

...

1-- ...

12

9

Ul

... ~

-

4
11
-60

-40

·20

0

20

40

60

80

100

3
-60

120

TEMPERATURE (DC)

FIGURE 10. MAXIMUM OUTPUT VOLTAGE

-40

·20

0

20

40

60

80

100

TEMPERATURE (DC)
VB

TEMPERATURE

3-302

FIGURE 11. SUPPLY CURRENT vs TEMPERATURE

120

HA-5002
Typical Performance Curves
10

11250C~ 25°C I

lOUT = OmA
:(

§.

J

to-

ffi

II:
II:

6

o

-'

4

8:

:::>
Ul

~

Vs =±15V

lOOK

~550C

g

2

-

1'-- ..
ZIN

.........

w

z

1§
~

.........
..... 1"-

100
10

4

6

8

10

12

14

16

louT

1
lOOK

18

......

~ ~: f-----::::;

70

TA

iii" 50
:2-

'"

!E

40

~

30

~ l1f-----------f---------~~~,~~----_l

20

9f-----~----_+-~~~~~~

10

,
..........

~ 101-----------I----------I-,~~~-""O~--__I
........

. .,~~Q

8f------t-----~--~

715

8

12

V

1300

w

./

1200

-' 1100
1000

10M

..-- ..--

/'

Vs =±15V
TA = 25°C

100

>
§.

50

:>

0

z

;..

~

~ ·50

I

·100

900
6

100M

FIGURE 15. PSRR vs FREQUENCY

f~

~

Ul

1M

150

1400

~

lOOK

FREQUENCY (Hz)

1500

<-

W:i

~c(

r\

10K

FIGURE 14. VOUT MAXIMUM vs VSUPPLY

Oi

"i'

o

5

SUPPLY VOLTAGE (±V)



>

(Continued)

8

10

12

14

16

-150 L---L__-'-__..L..__L---'__- ' -__....L....__.L.--''--...:::l
-10
-8
-6
-4
-2
0
2
4
6
8
10

18

SUPPLY VOLTAGE (±V)

INPUT VOLTAGE (VOLTS)

FIGURE 17. GAIN ERROR vs INPUT VOLTAGE

FIGURE 16. SLEW RATE vs SUPPLY VOLTAGE

3-303

HA-5002
Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

V1-

81 mils x 80 mils x 19 mils
2050~m x 2030~m x 483~m

TRANSISTOR COUNT:

METALLIZATION:

27

Type: AI, 1% Cu
Thickness: 20kA ±2kA

PROCESS:
Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride
Thickness: 7kA ±O.7kA

Metallization Mask Layout
HA-5002

OUT

3-304

~-5004
rent Feedback Amplifier

November 19

Features

Description

• Slew Rate ••••••••••••••••••••••••••••• l200V/J18

The HA-5004 current feedback amplifier Is a videolwideband
amplifier optimized for low gain applications. The design is
based on current·mode feedback which allows the amplifier
to achieve higher closed loop bandwidth than voltage-mode
feedback operational amplifiers. Since feedback is
employed, the HA-5004 can offer better gain accuracy and
lower distortion than open loop buffers. Unlike conventional
op amps, the bandwidth and rise time of the HA-5004 are
nearly Independent of closed loop gain. The 100MHz band·
width at unity gain reduces to only 65MHz at a gain of 10.
The HA-5004 may be used in place of a conventional op
amp with a significant improvement In speed power product.

• Output Current •••••••••••••••••••••••••• ±l00mA
• Drives ••••••••••••••.••••.•..••••. ±tV Into loon
• VSUPPLY ••••••••••••••••••••••••••••• ±5V to ±18V
• Thermal Overload Protection and Output Flag
• Bandwidth Nesrly Independent of Gain
• Output Enable/Disable

Applications
• Unity Gain VldeolWldeband Buffer

Several features have been designed in for added value. A
thermal overload feature protects the part against excessive
junction temperature by shutting down the output. If this fea·
ture Is not needed, it can be inhibited via a TTL input (TOI).
A TTL chip enable/disable (OE) is also provided; when the
chip is disabled its output is high impedance. Finally, an
open collector output flag ('i'O[) is provided to indicate the
status of the chip. The status flag goes low to indicate when
the chip is disabled due to either the internal Thermal Over·
load shutdown or the external disable.

• Video Gain Block
• High Speed Peak Detector
• Fiber Optic Transmitters
• Zero Insertion Loss Transmisalon Line Drivers
• Current to Voltage Converter
• Radar Systems

Ordering Information
TEMP.
RANGE ("C)

PACKAGE

HAl-5004-5

01070

14LdCERDIP

F14.3

HA1-5004-9

-401085

14LdCERDIP

F14.3

PART NUMBER

PKG.NO.

In order to maximize bandwidth and output drive capacity,
internal current limiting is not provided. However, current lim·
iting may be applied via the Vc+ and Vc' pins which provide
power separately to the output stage.
For Military grade product refer to the HA-5004l883 data
sheet.

Pinout
HA-5004
(CERDlP)
TOP VIEW

TRUTH TABLE

OE

TOI

TJ

fO[OUTPUT
(OPEN
COLLECTOR)

0

0

Normal

1

Normal

0

0

High

0

Auto Shutdown,

INPUTS

Vc-

VEE
......._-n2l·IN

TEMP

(Note)

OPERATION

HI·ZOUT

0

1

X

1

Normal

1

X

X

0

ManualShutdown,
HI·ZOUT

NOTE: >1800C Typical

CAUTION: These devices are sensRIve to eIecIrostattc discharge. Users ahoukllollow proper IC HandUng Procedures.
CopyrIght Harris Corporation 1996

«>

3-305

File Number

2923.2

Ci!rn
Za::

Ow

ti§
a:: 0.
W::E

o0.0(

HA5013
Triple, 125MHz Video Amplifier

November 1996

Features

Description

• Wide Unity Gain Bandwidth •.••••••..••..• 125MHz

The HA5013 is a low cost triple amplifier optimized for RGB
video applications and gains between 1 and 10. It is a
current feedback amplifier and thus yields less bandwidth
degradation at high closed loop gains than voltage feedback
amplifiers.

• Slew Rate .••••••••.•.••.•.•..••.•••..•• 475V/!1S
• Input Offset Voltage ...• , ..••••.•..•.•..•.. BOOIlV
• Differential Gain. . . . . . . . . . • • • • • • • . . • • . • • •• 0.03%
• Differential Phase. • . . . . . • . • • • • • • • . .• 0.03 Degrees
• Supply Current (Per Amplifier) •..•.••••••••. 7.5mA
• ESD Protection. . • • • . • • • • • • • • . • • • • • • • • • • •• 4OO0V
• Guaranteed Specifications at ±5V Supplies
• LowCost

Applications

The low differential gain and phase, 0.1 dB gain flatness, and
ability to drive two back terminated 750 cables, make this
amplifier ideal for demanding video applications.
The current feedback design allows the user to take
advantage of the amplifier's bandwidth dependency on the
feedback resistor.
The performance of the HA5013 is very similar to the popular Harris HA-5020 single video amplifier.

Ordering Information

• PC Add-On Multimedia Boards
• Flash AID Driver

PART NUMBER

TEMP.
RANGEfC)

PKG.
NO.

PACKAGE

• Color Image Scanners

HA50131P

-401085

14Ld PDIP

E14.3

• CCD Cameras and Systems

HA50131B

-401085

14 Ld sOle

M14.15

• RGB Cab'e Driver

HA5025EVAL

High Speed Op Amp DIP Evalualion Board

• RGB Video Preamp
• PC Video Conferencing

Pinout
HA5013
(PDIP, SOIC)
TOP VIEW

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-306

File Number

·3654.3

HA5013
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 36V
DC Input Voltage ............................... ±VSUPPLY
Dilferentiallnput Voltage ............................... 10V
Output Current (Note 2) ................ Short Circuit Protected
ESD Rating (Note 4)
Human Body Model (Per MIL-STD-883 Method 3015.7) .. 2000V

Thermal Resistance (Typical, Note 1)

Operating Conditions

8JA (oCIW)

PDIP Package .................. '" . . . ... . .
100
120
SOIC Package.............................
Maximum Junction Temperature (Die Only, Note 3) .......... 175°C
Maximum Junction Temperature (Plastic Package, Note 3) .. 150°C
Maximum Storage Temperature Range ., . . . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering 10s) ............. 300°C
(SOIC - Lead Tips Only)

Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .. -40°C to 85°C
Supply Voltage Range (Typical) ................. ±4.5V to ±15V
CAUTION: Stresses above those listed in "Absolute Maximum Ratings· may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. 9JA is measured with the component mounted on an evaluation PC board in free air.
2. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty
cycle) output current should not exceed 15mA for maximum reliability.
3. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175°C for die, and below
150°C for plastic packages. See Application Information section for safe operating area information.
4. The non-inverting input of unused amplifiers must be connected to GND.

Electrical Specifications

VSUPPLY

PARAMETER

=±5V, RF =1kO, "'" =+1, RL =4000, CL ~1 OpF, Unless Otherwise Specified
TEST CONDITIONS

...I
c(Ul

(NOTE 9)
TEST
LEVEL

TEMP.

fC)

MIN

TYP

MAX

UNITS

A

25

-

0.8

3

mV

-

5

mV

-

1.2

3.5

mV

Za:

a:c.

INPUT CHARACTERISTICS
Input Offset Voltage (VIO)

Delta VIO Between Channels
Average Input Offset Voltage Drift
VIO Common Mode Rejection Ratio

VIO Power Supply Rejection Ratio

Input Common Mode Range

V CM

=±2.5V (Note 5)

±3.5V ~ Vs ~ ±6.5V

VCM

=±2.5V (Note 5)

Non-Inverting Input (+IN) Current

+IN Common Mode Rejection
(+IBCMR

r)

=+

VCM

=±2.5V (Note 5)

IN

+IN Power Supply Rejection

±3.5V ~ Vs" ±6.5V

Inverting Input (-IN) Current

Delta - IN BIAS Current Between Channels

-IN Common Mode Rejection

O!!:!
-u..
~:::i

V CM

=±2.5V (Note 5)

3-307

A

Full

A

Full

W::!!i

B

Full

-

5

-

flVPC

A

25

53

-

-

dB

A

Full

50

A

25

60

-

A

Full

55

-

dB
dB
dB

A

Full

±2.5

-

-

V

A

25

-

3

8

JiA

A

Full

/lA

25

-

20

A

0.15

J1A/V

A

Full

0.5

J1A/V

A

25

0.1

J1A/V

A

Full

0.3

J1A/V

A

25,85

4

12

/lA

A

-40

10

30

/lA

A

25,85

6

15

/lA

A

-40

10

30

/lA

A

25

-

-

0.4

J1A/V

A

Full

-

1.0

J1A/V

-

-

~c(

HA5013
Electrical Specifications

VSUPPLY= ±5V, RF = 11<0, "'" =+1, Rl

PARAMETER
-IN Power Supply Rejection

TEST CONDITIONS
±3.5V S Vs S ±6.5V

=4000, Cl S10pF, Unless Otherwise Specified

(Continued)

(NOTE 9)
TEST
LEVEL

TEMP.
(IIC)

MIN

TYP

MAX

UNITS

A

25

-

-

0.2

fJAN

A

Full

-

-

0.5

fJAN

4.5

-

nVNFiZ

2.5

pANFil

25.0

-

Input Noise VoHage

f= 1kHz

B

25

+Input Noise Current

f .. lkHz

B

25

-Input Noise Current

f= 1kHz

B

25

VOUT=:I:2.5V (Note 11)

A

25

1.0

-

-

MO

A

Full

0.85

-

-

MO

25

70

-

dB

-

pANFil

TRANSFER CHARACtERISTICS
Transimpadance

Opan Loop DC Voltaga Gain

Rl = 4000, VOUT =
:I:2.5V

A
A

Full

65

Open Loop DC Voltage Gain

Rl= 1000, VOUT=
:I:2.5V

A

25

50

-

-

A

Full

45

-

-

dB

RL= 1500

A

25

:1:2.5

±3.0

-

V

A

Full

:1:2.5

±3.0

-

B

Full

±16.6

:1:20.0

A

Full

±40

±SO

-

dB
dB

OUTPUT CHARACTERISTICS
Output Voltage Swing

Output Current

Rl= 1500

Short Circuit Output Current

VIN = :I:2.5V, VOUT

=OV

V

rnA
rnA

POWER SUPPLY CHARACTERISTICS
Supply Voltage Range

A

25

5

-

15

V

Quiescent Supply Currant

A

Full

-

7.5

10

mAIOp
Amp

B

25

275

350

-

AC CHARACTERISTICS"", = +1
Slew Rata

Note 6

Full Power Bandwidth (Nota 7)

B

25

22

28

VOUT = lV, Rl = 1000

B

25

-

6

Fall Time (Note 8)

VOUT = lV, Rl = 1000

B

25

-

6

Propagation Delay (Note 8)

VOUT = lV, Rl = 1000

B

25

B

25

-

4.5

Risa Time (Note 8)

Overshoot
-3dB Bandwidth

VOUT= l00mV

B

25

Settling Time

To 1%, 2V Output Step

B

25

Settling Time

To 0.25%, 2V OutputStap

B

25

-

Nota 6

B

25

B

6

125
50

-

V/fJS
MHz
ns

-

ns

-

MHz

ns
%

ns

75

-

ns

-

475

-

V/fJS

25

-

26

AC CHARACTERISTICS "'" = +2, RF" 6810
Slew Rate

Rise Time (Note 8)

VOUT = lV, Rl- 1000

B

25

-

6

-

Fall Time (Note 8)

VOUT = lV, Rl" 1000

B

25

-

6

-

Full Power Bandwidth (Nota 7)

3·308

MHz

ns

ns

HA5013
Electrical Specifications

VSUPPLY = ±5V, RF = 1kO, Av = +1, RL = 4000, CL :;;10pF, Unless Otherwise Specified (Continued)

PARAMETER
Propagation Delay (Note 8)

TEST CONDITIONS
VOUT = IV, RL = 1000

Overshoot

(NOTE 9)
TEST
LEVEL

TEMP.
fC)

B

25

B

25

·3dB Bandwidth

VOUT= 100mV

B

25

Settling Time

To 1%, 2V Output Step

B

25

Settling Time

To 0.25%, 2V Output Step

B

25

Gain Flatness

5MHz

B

20MHz

Note 6

MIN

-

TYP

MAX

UNITS

6

-

ns

12

-

%

95

-

MHz

-

50

25

-

0.02

B

25

-

0.07

B

25

350

475

-

VIlIS

B

25

28

38

-

MHz

-

8

-

9

-

100

ns
ns
dB
dB

AC CHARACTERISTICS Av = +10, RF = 3830
Slew Rate
Full Power Bandwidth (Note 7)
Rise Time (Note B)

VOUT = IV, RL = 1000

B

25

Fall Time (Note B)

VOUT = tv, RL = 1000

B

25

Propagation Delay (Note B)

VOUT = IV, RL = 1000

B

25

B

25

Overshoot
-adB Bandwidth

VOUT= 100mV

B

25

Settling Time

To 1%, 2V Output Step

B

25

To 0.1%, 2V Output Step

B

25

Differential Gain

RL = 1500, (Note 10)

B

25

Differential Phase

RL = 1500, (Note 10)

B

25

-

9
I.B

ns
ns
ns
%

65

-

MHz

75

-

ns

130

ns

VIDEO CHARACTERISTICS

-

0.03
0.03

%

-

NOTES:
5. At ·40oC Product is tested at VCM = ±2.25V because Short Test Duration does not allow self heating.
6. VOUT switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.
Slew Rate
7. FPBW = 2 V
; V pEAK = 2V.
" PEAK
8. Measured from 10% to 90% pOints for risellall times; from 50% points of input and output for propagation delay.
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
10. Measured with a VM700A video tester using an NTC· 7 composite VITS.
11. At -40°C Product is tested at VOUT = ±2.25V because Short Test Duration does not allow self heating.

3-309

Degrees

..J

etC/)
Za:
O!!:!
-II..

!;;::::i
a: a..

W:i

~et

HA5013
Test Circuits and Waveforms

son
HP4195
NETWORK
ANALYZER

son

I

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

'". f'a

VOUT

VOUT

son

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

=

Vertical Scale: VIN = 100mV/Div., VOUT = 100mV/Div.
Horizontal Scale: 20ns/Div.

Vertical Scale: VIN 1V/Div., VOUT
Horizontal Scale: SOns/Diy.

=lV/Div.

FIGURE 5. LARGE SIGNAL RESPONSE

FIGURE 4. SMALL SIGNAL RESPONSE

3-310

Schematic

(One Amplifier of Three)

V+

~.~K

R2

~----~r-~~-------r--

Q"~

o...l

I

II ~~,
apl0

~

5~

~Qp2

•

Q

--.-.;
R28
20

QN13

+IN

r•=---+------r--r
I

R3

I!!:"'QPI3

+QN2

~

~
1 •4 PF
T
QN1S

2

g:.....
Co)

r
R21

•

R14

ttN4

R32

280 QNI4)j
KQN7

S

QNI9~

R13

aN3

~

140

!:::::'QN10

QP7>J-

O
l

_Cl

1'1.4pF

-IN
R12
280

6K

t

Ir

QplS

P12

Rl

~QNl

R29
9.5

t:::.. apS

I ,
QNS?

'"~.....

~

oJ

800

lK
R16

R23 J.R 26

400

400 $200

C,

';R30

7
______ OUT

V-a

1

1 11
R4

800

R33
800

f=:o

lQN~QNll

1

OPERATIONAL
AMPLIFIERS

1 11

11

HA5013

Application Information

Driving Capacitive Loads

Optimum Feedback Resistor

Capacitive loads will degrade the amplifier's phase margin
resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as
shown in Figure 6.

The plots of inverting and non-inverting frequency response,
see Figure 8 and Figure 9 in the typical performance section,
illustrate the performance of the HA5013 in various closed loop
gain configurations. Although the bandwidth dependency on
closed loop gain isn't as severe as that of a voHage feedback
amplifier, there can be an appreciable decrease in bandwidth at
higher gains. This decrease may be minimized by taking
advantage of the current feedback amplifier's unique relationship between bandwidth and RF. All current feedback amplifiers require a feedback resistor, even for unity gain applications,
and RF, in conjunction w~h the intemal compensation capacitor, sets the dominant pole of the frequency response. Thus,
the amplifier'S bandwidth is inversely proportional to RF. The
HA5013 design is optimized for a 10000 RF at a gain of +1.
Decreasing RF in a unity gain application decreases stability,
resuHing in excessive peaking and overshoot. At higher gains
the amplifier is more stable, so RF can be decreased in a tradeoff of stability for bandwidth.
The table below lists recommended RF values for various
gains, and the expected bandwidth.
GAIN

(AcLl

RF(O)

-1
+1
+2

750

+5
+10
-10

1000
681
1000
383
750

BANDWIDTH
(MHz)

....

VIN
RT

R

rP

"::,..::'

VOUT

±~

RF
R,

~
FIGURE 6. PLACEMENT OFTHE OUTPUT ISOLATION
RESISTOR,R

The selection criteria for the isolation resistor is highly
dependent on the load, but 270 has been determined to be
a good starting value.

Power Dissipation Considerations

100
125

Due to the high supply current inherent in triple amplifiers,
care must be taken to insure that the maximum junction temperature (TJ' see Absolute Maximum Ratings) is not
exceeded. Figure 7 shows the maximum ambient temperature versus supply voHage for the available package styles
(PDIP, SOIC). At Vs ±5V quiescent operation both package styles may be operated over the full industrial range of
-40°C to asoC. It is recommended that thermal calculations,
which take into account output power, be performed by the
designer.

95
52
65
22

=

PC Board Layout
The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board. The
use of low inductance components such as chip resistors
and chip capacitors is strongly recommended. If leaded
components are used the leads must be kept short especially for the power supply decoupling components and
those components connected to the inverting input.

130 r-~.,...-r-.,...-r-.,...-r--.---'r--r--'--'
120 t--...i""'-;;::-'If"""o"".......
~+~DIP -t----l-+--+-t--+--I
'; 110 t--f-.......
-P""oI::::--P'......~t--+-t--+---lt--+-I
~ 100~r-+--+~~~d-~-+~~~d-~--t--I--I

Attention must be given to decoupling the power supplies. A
large value (10IlF) tantalum or electrolytic capacitor in parallel with a small value (0.1IlF) chip capacitor works well in
most cases.
A ground plane is strongly recommended to control noise.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier's inverting input (-IN). The
larger this capacitance, the worse the gain peaking, resulting
in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to -IN, and that connections to -IN be kept as short as
possible to minimize the capacitance from this node to
ground.

3-312

G'

ij 90~r-+--+--r-~-I~~~~---I~~~~~~
~ 80 t--t--_t_-t--+--+SOIC...........

m 70

......

i".

......

ffi

~
60t--~_t_-t--+--+-t--+-41__4__+~~

-

50r-r--r-r--r-r--r-r--r-r--r~~

i

30

~ ~r-r--r-r--r-r--r-r--r~r--r~~
~r-r--r-r--r-r--r-r--r-r--r~~
10~~~-~~-~~-~~-~~~~

5

7

9

11

13

15

SUPPLY VOLTAGE (±V)

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE
va SUPPLY VOLTAGE

HA5013

=

Typical Performance Curves

II

YOUT " 0.2Vp..p
CL,,10pF

r

5

.I I I}..!. I
Av-+1,RF/IUl_

_I.!

YOUT " 0.2Vp..p
4 I - CL,,10pF
ii' 3 I - RF·7500

Av " 2, RF ,,8810
I

.
-3

1',.

2

I

1'2 r-

Ie:

.

"

100

-6

200

~

f

10

'"

Av" +1, RF .. 11Ul

\.
100

Av=+1

lc.a BANDWIDTH

:'"

"'~

IIII ~.

,.V"- t---. ....

1III

100

GAIN PEAKING

200

500

700

FREQUENCY (MHz)

FIGURE 10. PHASE RESPONSE AS A FUNCTION OF
FREQUENCY

oJ

ern

YOUT =0.2Vp..p
CL,,10pF
"-

rl"

Av ••10, RF - 7500

10

200

FREQUENCY (MHz)

I,"

~ ~~

YOUT • 0.2Vp..p
CL-10pF

V

"

I 111111

~.\

2

~

I
2

·100

i~

/

Av--6

Av-·1,RF·7500
"'llll1iIIo.
Av-+10, Rp'• •,m

, ·135

Av=·2
~

FIGURE 9. INVERTING FREQUENCY RESPONSE

FIGURE 8. NON·INVERTING FREQUENCY RESPONSE

1=

--"""">

Av,,·1

-3

10
FREQUENCY (MHz)

-

'/

1

1 J

I

oS

Av,,·1

2

I
~ .~

1
~

Av-10,RF·

1

...-

I

Av-5,RF-1""

........ ....

=1kn, RL = 4000, TA =2SoC,

VSUPPLY ±5V, Av" +1, RF
Unless Otherwise Specified

za:
O!!:/
-u..

-

--

~:J

a:Q.
W::E
~e

-r- r-... ....

800
1100
1300
FEEDBACK RESISTOR (0)

FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE

130
YOUT - O.2Vp.p

~

~_10pF

r--... ""'-

Av-+2

./
-3da BANDWIDTH

~

-

"1111\,.

"V "1-0..

GAIN PEAKING
350

500

,120

i::

.........

I

-

~ /~

10

80

850
800
NO
FEEDBACK RESISTOR (0)

FIGURE 12. BANDWIDTH AND GAIN PEAKING va FEEDBACK
RESISTANCE

Y-3da a:..DWlDTH

l-

•

I"-

,<

-

lV
o

200

~ I'"'"

GAIN PEAKING I-- YOUT" O.2Yp.p

1I I

400
800
LOAD RESISTOR (0)

~_10pF

Av-+1
800

o

1000

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD
RESISTANCE

3·313

6

HA5013
Typical Performance Curves

VSUPPLY = ±5V, Av = +1, RF = 1kQ, RL = 400Q, TA = 25°C,
Unless OthelWise Specified (Continued)
16r---------~_,--_.--,_--~_,--_.--,

80

1-

"" " \.

\

o

200

VOUT = 0.2Vp.p
CL = 10pF
Av = +10

\ .....

~

BOO

500
650
FEEDBACK RESISTOR (0)

350

":!S

0.06

""I . . . . . . .

I

/

II:

/

V

....I

!z:III

0.04

RL = 750

V

IL
IL

"

0.02

0.00

5

3

""

""""

A.
RL= 1500

III

C

7

9

11

0.06

~

0.04

e.

I --'-

'"

~

13

RL=l~OO

0.02

~

RL=lkn

FREQUENCY = 3.58MHz

Ili!

Q

0.00

15

3

If

FIGURE 16, DIFFERENTIAL GAIN VB SUPPLY VOLTAGE

o I-

VOUT = 2.0Vp_p
CL=30pF

I
5

7

11
9
SUPPLY VOLTAGE (±V)

~
~ i;'

I
HD~

'U
-60

z

3RD ORDER IMD
-70

Q

-80

13

15

AV= +1

-10

-so

~
~

\

~

FIGURE 17. DIFFERENTIAL PHASE VB SUPPLY VOLTAGE

-40

III

RL = 750

~

~=lkn~

SUPPLY VOLTAGE (±V)

:g.

1000

0.08
FREQUENCY = 3.58MHz

<

800

FIGURE 15. SMALL SIGNAL OVERSHOOT VB LOAD
RESISTANCE

0.10

0.08

600

LOAD RESISTANCE (0)

FIGURE 14. BANDWIDTH VB FEEDBACK RESISTANCE

tz

400

200

950

--

~

./

I

-20

o

-30

~

I~~

~

HD3

~

-50

f-

~ -60

CMRR

3.

~

-70

10
FREQUENCY (MHz)

FIGURE 18. DISTORTION VB FREQUENCY

0.001

--

NEGATIVE PSRR
I I

-80

-"""""'HD3

-90
0.3

~

z-40

II~

HD2,

~

POSITIVE PSRR
0.01

111111

I I 111111

11111

1111111

0.1
FREQUENCY (MHz)

10

FIGURE 19. REJECTION RATIOS VB FREQUENCY

3-314

30

HA5013
Typical Performance Curves

VSUPPLY = ±SV, Av = +1, RF = 1kQ, RL = 400Q, TA = 25°C,

Unless Otherwise Specified (Continued)
12

8.0
RL= 1000

...
S

...w~

Your = 1.0Vp_p
7.5

Z

7.0

IeCI
~

IfII.

-r--..

V
/

Q

Q

6.5

...

,,/

/

"..,.,

-"'"

"

-50

....

500

--

.

400

~ 350
w

300

~

...w

1

..........

Av=+l,RF=lkO

o

25
50
75
TEMPERATURE (oC)

-25

Your = 20Vp_p

450

250

III

1

Av=+2,RF=6810 -

.... i---

100

..V

200

+ SLEW RATE

--

-- -

0.8

I

r--......

iii"
:E.

0.2

~
CI
Q

w

~
II:

0

z

-25

...J

:

-

Ay:'l~ \ \

5

10

"-

, 1/

/

'{

15

a.

600

iii
sa0

400

!zw

isz

Ay=-5

-1.2

800,

sw

,/

'\., ""'-~ ~

c(

::i -0.4

1000

100

Av=-l

w

CI

-

z

40

~

~

II:
II:

~

200 U

20

Av=-2

"'

20

1
25

0
0.01

30

FREQUENCY (MHz)

FIGURE 24. INVERTING GAIN FLATNESS VB FREQUENCY

0.1

1
FREQUENCY (kHz)

10

0
100

FIGURE 25. INPUT NOISE CHARACTERISTICS

3-315

W:E

~mAm:E=OV

Full

0

5

7.5

mA

Disable Pin Input Current

'DiSAIJI:E .. OV

Full

0

1.0

1.5

mA

Quiescent Supply Current (Note 14)

Minimum Pin 8 Current to Disable (Note 16)

Full

Maximum Pin 8 Current to Enable (Note 5)

Full

350
0

0

IlA

0

0

20

ItA

AC CHARACTERISnCS (f;y .. +1)
Slew Rate (Note 17)

25

215

400

0

VlIlS

Full Power Bandwidth (Note 18)

25

22

28

0

MHz

Rise Time (Note 8)

25

0

6

0

ns

Fall Time (Note 8)

25

0

6

0

ns

Propagation Delay (Note 8)

25

0

6

0

ns

Overshoot

%

25

0

4.5

0

o3dB Bandwidth (Note 14)

VOUT= 100mV

25

0

125

0

MHz

Settling Time to 1%

2V Output Step

25

0

50

0

ns

Settling Time to 0.25%

2V Output Step

25

0

75

0

ns

Slew Rate (Note 17)

25

0

475

0

VIIJ.S

Full Power Bandwidth (Note 18)

25

0

26

0

MHz

Rise Time (Note 8)

25

0

6

-

ns

Fall Time (Note 8)

25

-

6

ns

Propagation Delay (Note 8)

25

-

-

6

-

ns

Overshoot

25

0

12

AC CHARACTERISnCS (f;y = +2, RF" 6810)

0

-

%

-3dB Bandwidth (Note 14)

VOUT= 100mV

25

0

95

MHz

sattllng Time to 1%

2V Output Step

25

0

50

Settling Time to 0.25%

2V Output Step

25

0

100

-

ns

ns

AC CHARACTERlsnCS (f;y .. +10, RF .. 3830)
Slew Rate (Note 17)

25

350

475

-

V/Jl.s

Full Power Bandwidth (Nota 18)

25

28

38

0

MHz
ns

Rise Time (Note 8)

25

0

8

0

Fall Time (Note 8)

25

0

9

0

ns

Propagation Delay (Note 8)

25

0

9

0

ns

Overshoot

25

-

1.8

0

o3dB Bandwidth (Note 14)

VOUT= 100mV

25

0

85

-

Settling Time to 1%

2V Output Step

25

-

75

0

3-324

%
MHz
ns

HA-5020
Electrical Specifications

V+ = +5V, V- = -5V, RF = 1kn, "'" = +1, RL = 400n, C L S;10pF, Unless Otherwise Specified.
Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect
lot-to-Iot variation. (Continued)

PARAMETER
Settling Time to 0.25%

TEST CONDITIONS

HA-5020-5. -9

TEMP.
("C)

MIN

TYP

MAX

UNITS

130

-

ns

4.5

-

nVNHz

2V Output Step

25

Input Noise Voltage (Note 14)

f= 1kHz

25

+Input Noise Current (Note 14)

f= 1kHz

25

2.5

-Input Noise Current (Note 14)

f= 1kHz

25

25

HARRIS VALUE ADDED SPECIFICATIONS

-

Input Common Mode Range

Full

±2.5V

Output Current, Short Circuit

VIN = ± 2.5VVour = OV

Full

±40

Output Current, Disabled (Note 14)

DISABLE = OV,
Your = ±2.5V, VIN = OV

Full
25

Output Enable Time (Notes 14, 21)

25

-

Supply Voltage Range

25

±5

DISABLE=OV

25

-

Differential Gain (Notes 13, 14)

RL = 150n

25

Differential Phase (Notes 13, 14)

RL = 150n

25

Gain Flatness to 5MHz

T05MHz

25

pAlVHz

-

V

±60

rnA

-

Output Disable Time (Notes 14, 20)

Output Capacitance, Disabled (Note 19)

pAlVHz

2

40

I!A
I!s

40

ns
±15

V

-

pF

6

-

0.03
0.03
0.1

-

!;;:::l

Degrees

w:=

dB

3. Suggested Vos Adjust Circuit: The inverting input current (-IBIAS) can be adjusted with an extemal10kO pot between pins 1 and 5, wiper
connected to V+. Since -I BIAS flows through the feedback resistor (RF), the result is an adjustment in offset voltage. The amount of offset
voltage adjustment is determined by the value of RF (/!Nos = a-IBIAS*RF)'
4. RL = 100n, VIN = 1OV. This is the minimum current which must be pulled out of the ,Disable pin in order to disable the output. The output
is considered disabled when -10mV S; Your S; +10mV.
5. VIN = OV. This is the maximum current that can be pulled out of the Disable pin with the HA-5020 remaining enabled. The HA-5020 is
considered disabled when the supply current has decreased by at least 0.5mA.
6. Your switches from -10V to +10V, or from +10V to -10V. Specification is from the 25% to 75% points.
FPBW = Slew Rate; V
= 10V.
2nVpEAK
PEAK

8. RL = 100n, Your = 1V. Measured from 10% to 90% points for riselfall times; from 50% points of input and output for propagation delay.
9. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-Iot variation.
10. VIN = +10V, Disable = +15V to OV. Measured from the 50% point of Disable to Vour = OV.
11. VIN = +10V, Disable = OVto +15V. Measured from the 50% point of Disable to Vour = 10V.
12. VIN = OV, Force Your from OV to ±10V, tR = tF = SOns.
13. Measured with a VM700A video tester using a NTC-7 composite VITS.
14. See "Typical Performance Curves' for more information.
15. V CM = ±2.5V. At -40°C product is tested at V CM = ±2.25V because short test duration does not allow self heating.
16. RL = 1oon. VIN = 2.5V. This is the minimum current which must be pulled out olthe Disable pin in order to disable the output. The output
is considered disabled when -10mV S; Vour S; +10mV.
17. Your switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.
18. FPBW = Slew Rate. V
= 2V.
2nVpEAK' PEAK
19. VIN = OV, Force Your from OV to ±2.5V, tR = tF = SOns.
20. VIN = +2V, Disable = +5V to OV. Measured from the 50% point of Disable to Your = OV.
21. VIN = +2V, Disable = OV to +5V. Measured from the 50% point of Disable to Your = 2V.

3-325

O!:!:!
-u.

%

NOTES:

7.

-'
.::--""ftI"v---O

OUTPUT

27

NOTES:

26. U2: HA-S020.

INHIBIT .......T"I.....,

27. Uj: CD4011.

FIGURE 9. LOW IMPEDANCE MULTIPLEXER

Typical Performance Curves

VSUPPLY = ±lSV, Av = +1, RF = lkn, RL = 400n, TA = 2SoC,
Unless Otherwise Specified

100

2.5

100
Ay= +10

....

If
~

-INPUT NOISE CURRENT

!zw

~~

a:
a:

::>

10

(J

w

~z

INPUT NOISE VOLTAGE

~I
+~~~UT NOISE ~~RRENT

1
10

lK

100

!:iII.

-

>
.§.
w

~
!:i
~

Iii
Ie
II.
0

i!::

1
lOOK

10K

.... 1-'"

2.0

1.,,000
VSUPPLY = ±15V ....
1.5

I-'"

~"""

1.0

f-oo! ~t:
_ ....,.... :J.ooi""T

0.5

~ ~~

~

VSUPPLY = ±4.5V

0.0
-60

-40

_

...

J--r1'"

""'-

~II.!.!

VSUPPLY = ±10V

I I I I I
-20

0

20

40

60

80

100

120

140

TEMPERATURE (Oc)

FREQUENCY (Hz)

FIGURE 10. INPUT NOISE vs FREQUENCY (AVERAGE OF 18
UNITS FROM 3 LOTS)

FIGURE 11. INPUT OFFSET VOLTAGE vs TEMPERATURE
(ABSOLUTE VALUE AVERAGE OF 30 UNITS
FROM 3 LOTS)

o

2.0

-0.5

1.8

".

~

!z

-1.0

w

a:
a:

::>
(J

-f ....

~
III
-2.0

!zw

VSUPPLY = ±15V

?VSUPPLY = ±10V
.-o!

-1.5

~

~.

\

~i:== ~

==:::;;; '=-

....

-40

-20

0

.... ~

1.6

VSUPPLY =±15V

1.4

~

::>

""'' ' '

(J

20
40
60
80
TEMPERATURE <"C)

1.2

100

120

FIGURE 12. +INPUT BIAS CURRENT vs TEMPERATURE
(AVERAGE OF 30 UNITS FROM 3 LOTS)

.;~

1.0
-60

140

i.o"~

"",I'

...:
-40

i.-"
-20

0

".

,;

.... ~
,;i""'"

VSUPPLY = ±10V

I I I .... 1

,;

~

Ul

~

i;o" i""'"

,;

a:
a:

!:::S :::: .... i""'" '·VSUPPLY = ±4.5V
"

-2.5
-60

,;

_....

JA"'"

i""'"

1."ooo~1
I J..J
VSUPPLY = ±4.5V -

20
40
60
80
TEMPERATURE <"C)

100

120

FIGURE 13. -INPUT BIAS CURRENT vs TEMPERATURE
(ABSOLUTE VALUE AVERAGE OF 30 UNITS
FROM 3 LOTS)

3-330

140

HA-5020

Typical Performance Curves

VSUPPLy=±lSV, "v = +1, RF = lkCl, RL =400Cl, TA = 2SoC,
Unless Otherwise Specified (Continued)

8

--

!25"b
51--1--+-

"

~

i!i 4

~

CL

§ 3 1--I~.,.tC-+::""''F----I---I

25"c

IV
III

Joo"'" -sS"C

3

5

V

~

°21-"-"""""--+--t--+--I--+--t--+--11---l
4
lL-~_~_L-~_~_L-~_~_k-~

·60

·40

·20

20
40
60
80
TEMPERATURE ('IC)

0

100

120

140

FIGURE 14. TRANSIMPEDANCE vs TEMPERATURE (AVERAGE
OF 30 UNITS FROM 3 LOTS)

9

.s

5

!i:
II!
II:
B

3

~

2

~

..
,.k :::::

4

~

~

;,......-

,.

II)

o

""""':

e::: -

.sslc-

~

~

Fr

~

.s!i:

25:£'-

II!II:

125"C

P"""

7
11
9
SUPPLY VOLTAGE (±V)

5

3

,.,

~

iii'
~

:I:

l

j:.so

·70

.so

3

~

f./..

II
2
r-

r- r.... 1-00.

r- r....
3

...

5

I
I

I

J
J ..... r.... ... J
7

9

11

I

I I

",.,.,..

I

1 _ ......... ~

I

r~

VOUT=-10V

\
I~

II

f

o

15

13

VOUT=+10V

::"-

2

4

6

8
10
12 14
FREQUENCY (MHz)

16

18

-1.0
-4$0

20

FIGURE 18. DISABLE MODE FEEDTHROUGH VB FREQUENCY

-40

-20

0

20
40
80
80
TEMPERATURE ('IC)

100

120

140

FIGURE 19. DISABLED OUTPUT LEAKAGE VB TEMPERATURE
(AVERAGE OF 30 UNITS FROM 3 LOTS)

3-331

-II

ti:
a:1l

W"..
a..
OC

I

/

fil

II! ..ao

.... ioo.J

I

I

1.0

l

..,.

5

-

II

o~

~~

FIGURE 17. SUPPLY CURRENT VB ~ INPUT VOLTAGE

..a0

CI

--

i -2
~-3

z

Sl-4

~

~
z

10
FREQUENCY (MHz)

100

FIGURE 42_ PHASE RESPONSE AS A FUNCTION OF
FREQUENCY

130

100

200

I,

VOUT = 0.2Jp_p
C L =10pF
Av=+l

-

.......

~

III

"D

-3dB BANDWIDTH

1'-.

'?

~

/' I'- .......

-13S ~

!!!:

GAIN PEAKING

-180
500

700

10

~
III

:!:!.

CJ

.........

200

--

/
120

-45 CJ
-90

"'

10
FREQUENCY (MHz)

140

!.

-5
2

I
2

FIGURE 41. INVERTING FREQUENCY RESPONSE

iii'

~~o

c(

if

....

~ ~~
Av+l0/
7'11~

2

1.111-

~

Av=-l6'

-5

200

FIGURE 40. NON-INVERTING FREQUENCY RESPONSE

iii' 4

"'

~ -2
-3

~<

~

Av=-2

::Ii

-4
2

~

0

;t-l

:"icl"'-

w::a

~ Av=-l

~

-3

-5

~:::i
a: a.

iii' 3

Av

-2

--1'""""-'_-0 Your

son
Your

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

=

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

=

Vertical Scale: VIN 100mV/Oiv., Your 100mV/Oiv.
Horizontal Scale: 20nS/Oiv.

Vertical Scale: VIN = 1V/Oiv., Your = 1V/Oiv.
Horizontal Scale: 50ns/Oiv.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 5. LARGE SIGNAL RESPONSE

3·344

Schematic Diagram

(One Amplifier ofT'NO)

y+

liz

As

800

UK

~Dz

~~

RtO
820

~i

~~tt

.....aP5
a

.....

Rt
10K

R7
15K

--i<0r4t

,-~ ...... 5:
a,.~

r

I---

r a..t2

Ct

-,...

a..tz
Rt2
lID

Op,3

Rae
20

~
r

ONto

a,~

ar..

n

Rt4
lID
Rt3

--"""ar.r
r

il

r&

o,ts

-

aNI

tl

Opt.~
R3t

o,.!!

...

aNtS

+IN

5K

aN3

i

Aft
1.5

r'1ApF

Ra

~ ~D,

,....

~

r aP10

IB

~

~
a..t,

-

...

As

....
..... aP2

200

Rt7 IoRt,

1K

L

Au
2K

Ru

Op,t>t-

L

apt ......

~~ ~l
~0p,4

-::

IS
t1

20

ONts

t~

~

t.

ONt.

Au

a..t,

1K

'"---

ii:

lias

aL~~
lID

aNt~

"'0p,7

~~t7

Rt.

Raa

Aft

400

400

200

5

~;:::t- aNt.~
~28

~30

200

0 'UT

A4

800

y.

Raa
800

As
820

~a..tt

OPERATIONAL
AMPLIFIERS

HA5022
Application Information

Driving Capacitive Loads

Optimum Feedback Resistor

Capacitive loads will degrade the amplifier's phase margin
resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as
shown in Figure 6.

The plots of inverting and non-inverting frequency response,
see Figure 11 and Figure 12 in the Typical Performance
Curves section, Illustrate the performance of the HAS022 in
various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that
of a voltage feedback amplifier, there can be an appreciable
decrease in bandwidth at higher gains. This decrease may
be minimized by taking advantage of the current feedback
amplifier's unique relationship between bandwidth and RF.
All current feedback amplifiers require a feedback resistor,
even for unity gain applications, and RF, in conjunction with
the internal compensation capacitor, sets the dominant pole
of the frequency response. Thus, the amplifier's bandwidth is
inversely proportional to RF' The HAS022 design is optimized for a 1000n RF at a gain of +1. Decreasing RF in a
unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the ampilfier is
more stable, so RF can be decreased in a trade-off of stability for bandwidth.
The table below lists recommended RF values for various
gains, and the expected bandwidth.
RF(Q)

BANDWIDTH
(MHz)

-1

750

100

+1

1000

125

GAIN

(AcLl

+2

681

95

+5

1000·

52

+10

383

65

-10

750

22

....

VIN

-P

RT

"::~

R
VOUT

±~

RF

"::_::"

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION
RESISTOR,R

The selection criteria for the isolation resistor is highly
dependent on the load, but 27n has been determined to be
a good starting value.

Power DiSSipation Considerations
Due to the high supply current inherent in quad amplifiers,
care must be taken to insure that the maximum junction temperature (TJ, see Absolute Maximum Ratings) is not
exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles
(PDIP, SOIC). At Vs = ±SV quiescent operation both package styles may be operated over the full industrial range of 400 C to 8SoC. It is recommended that thermal calculations,
which take into account output power, be performed by the
designer.
140

PC Board Layout

UI

The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board, The
use of low inductance components such as chip resistors
and chip capacitors is strongly recommended. If leaded
components are used the leads must be kept short ·especially for the power supply decoupling components and
those components connected to the inverting input. .

Iea:

Attention must be given to decoupling the power supplieS. A
large value (10J.1F) tantalum or electrolytic capacitor In.parallei with a small value (0.1 J.1F) chip capacitor works well in
most cases.
.

lE

a:

A ground plane is strongly recommended to control noise.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier's inverting input (-IN)~ The
larger this capacitance, the worse the gain peaking, resulting
in pulse overshoot and possible instability.. It is
recommended that the ground plane be removed under
traces connected to -IN, and that connections to -IN. be kept
as short as possible to minimize the capacitance from this
node to ground.

::::I

130

...
lE

120

UI

UI
I-

!;:
~

r--..

I I
PDIP

r--.... ~r--..

r--..

110

~

,,
i""""o.

100

.......

lE

<

~

........

.............

90

SOIC

80

I I
5

7

·9
11
SUPPLY VOLTAGE (±V)

.......

r--..
13

15

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE
va SUPPLY VOLTAGE

Enable/Disable Function
When enabled the amplifier functions as a normal current
feedback amplifier with all of the data in the electrical specifications table being valid and applicable. When disabled the
amplifier output assumes a true high impedance state and
the supply current is reduced significantly.

3-346

HA5022
The circuit shown in Figure 8 is a simplified schematic of the
enable/disable function. The large value resistors in series
with the DISABLE pin makes it appear as a current source to
the driver. When the driver pulls this pin low current flows out
of the pin and into the driver. This current, which may be as
large as 350~ when external circuit and process variables
are at their extremes, is required to insure that point "N
achieves the proper potential to disable the output. The
driver must have the compliance and capability of sinking all
of this current.

v+ _..-__- -....- - -.......
R6
15K

R7
15K

O--"",.,.........-

D~~

RaI

It::
1-_-0
....-f~of'_)QP3

ENABLEIDISABLE INPUT

tion 1. At position 1 the switch pulls the disable pin up to the
plus supply rail thereby enabling the amplifier. Since all of
the actual signal switching takes place within the amplifier,
it's differential gain and phase parameters, which are 0.03%
and 0.03 degrees respectively, determine the circuit's performance. The other circuit, U 1B, operates in a similar manner.
When the plus' supply rail is 5V the disable pin can be driven
by a dedicated TIL gate as discussed earlier. If a multiplexer
IC or its equivalent is used to select channels its logic must
be break before make. When these conditions are satisfied
the HA5022 is often used as a remote video multiplexer, and
the multiplexer may be extended by adding more amplifier
ICs.
Low Impedance Multiplexer

A

~

FIGURE 8. SIMPLIFIED SCHEMATIC OF ENABLEIDISABLE
FUNCTION

When Vee is +5V the DISABLE pin may be driven with a
dedicated TIL gate. The maximum low level output voltage
of the TIL gate, O.4V, has enough compliance to insure that
the amplifier will always be disabled even though D1 will not
turn on, and the TIL gate will sink enough current to keep
point "A" at its proper voltage. When Vee is greater than +5V
the DISABLE pin should be driven with an open collector
device that has a breakdown rating greater than Vee.
Referring to Figure 8, it can be seen that Rs will act as a pullup resistor to +Vee if the DISABLE pin is left open. In those
cases where the enable/disable function is not required on
all circuits some circuits can be permanently enabled by letting the DISABLE pin float. If a driver is used to set the
enable/disable level, be sure that the driver does not sink
more than 20~ when the DISABLE pin is at a high level.
TIL gates, especially CMOS versions, do not violate this criteria so it is permissible to control the enable/disable functionwithTIL.

Typical Applications
Two Channel Video Multiplexer
Referring to the amplifier U1A in Figure 9, R1 terminates the
cable in its characteristic impedance of 750. and R4 back
terminates the cable in its characteristic impedance. The
amplifier is set up in a gain configuration of +2 to yield an
overall network gain of + 1 when driving a double terminated
cable. The value of R3 can be changed if a different network
gain is desired. R5 holds the disable pin at ground thus
inhibiting the amplifier until the switch, S1, is thrown to posi-

Two common problems surface when you try to multiplex
multiple high speed signals into a low impedance source
such as an AID converter. The first problem is the low source
impedance which tends to make amplifiers oscillate and
causes gain errors. The second problem is the multiplexer
which supplies no gain, introduces all kinds of distortion and
limits the frequency response. Using op amps which have an
enable/disable function, such as the HA5022, eliminates the
multiplexer problems because the external mux chip is not
needed, and the HA5022 can drive low impedance (large
capacitance) loads if a series isolation resistor is used.
Referring to Figure 10, both inputs are terminated in their
characteristic impedance; 750 is typical for video applications. Since the drivers usually are terminated in their characteristic impedance the input gain is 0.5, thus the
amplifiers, U2, are configured in a gain of +2 to set the circuit
gain equal to one. Resistors R2 and Rs determine the amplifier gain, and if a different gain is desired R2 should be
changed according to the equation G = (1 + RslR2)' R3 sets
the frequency response of the amplifier so you should refer
to the manufacturers data sheet before changing its value.
R5, C1 and D1 are an asymmetrical charge/discharge time
circuit which configures U1 as a break before make switch to
prevent both amplifiers from being active simultaneously. If
this design is extended to more channels the drive logic
must be designed to be break before make. R4 is enclosed
in the feedback loop of the amplifier so that the large open
loop amplifier gain of U2 will present the load with a small
closed loop output impedance while keeping the amplifier
stable for all values of load capacitance.
The circuit shown in Figure 10 was tested for the full range of
capacitor values with no oscillations being observed; thus,
problem one has been solved. The frequency and gain characteristics of the circuit are now those of the amplifier independent of any multiplexing action; thus, problem two has
been solved. The multiplexer transition time is approximately
151lS with the component values shown.

3-347

...J

CCU)
Za:
O!!:!
-II.

~::J
a: a..

w:e
~cc

HA5022

VIDEO INPUT 11 -'"1r--"it~~"'"""~"""'~---VIDEO OUTPUT
10710
LOAD
R1
75

At

2OCJO

2

VIDEO INPUT 12 -""--if~4-.i~-'

ALL

'"

OFF

75

+&V IN •

G.1"F

1

I

..v IN

0

0.1J1f

11.

I .:t

..v

10"F

NOTES:
17. U1 is HA5022.
18. All resistors in O.
19. S1 Is break before make.
20. Use ground plana.

-=- -=-

':"

FIGURE 9. TWO CHANNEL HIGH IMPEDANCE MULTIPLEXER

INPUTB_------~~--------~

INPUTA_-.------~-~

CHANNEL _____..
SWITCH-

INHIBIT _ .....1....0,

NOTES:
21. Ua: HA5022.

22. U1: C04011.

FIGURE 10. LOW IMPEDANCE MULnPLEXER

3-348

HA5022

Typical Performance Curves

VSUPPlY = ±f>V, "'" = +1, RF = 1kn, RL = 400Q, TA = 25"C, Unless Otherwise Specified

5
VOUT = 0.2Vp.p

4 I-- CL= 10pF
3

e--

RF=750n
Av=·l

[7
!lot =·2
/

[7

~

~ ~
f", ...
)
!lot =·5
~

f-- !lot =·10

10
FREQUENCY (MHz)

2

·5

200

I

~

I

10

2

100

200

FREQUENCY (MHz)

FIGURE 12. INVERTING FREQUENCY RESPONSE

FIGURE 11. NON·INVERTING FREQUENCY RESPONSE

... 140

u;
~

0tj~e!!!t_i!t~C
180
.45
::eool..::+-H-+l--!.r---!135 ~

~ .90
~~ .135

90
45

~

~

·135

.......

-380

'/' I'-..

!l!
500

700

FREQUENCY (MHz)

... 100

130

:c

:c

b

VOUT = 0.2Vp.p
CL= 10pF
Av=+2

-

~

......... ........

95

III

~

90

'",

~

500

5

E
~
z
;Ii

" ...'1
z

r"""- r-....

"""

900
1100
1300
FEEDBACK RESISTOR (n)

~

o ~

90

80

FIGURE 15. BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE

-I---

V 1)/\

III

1100

k
""

/

100

~l/

z

650
800
950
FEEDBACK RESISTOR (n)

Za:

O!!:!
-LL

~:::i
a:1l.

10

~

III

:l!5

- ........ ...... -.

'\.'
·3dB BANDWIDTH

I

:c 110

10 ~

'"~'" i'--

120

!.

·3dB BANDWIDTH

\.

GAIN PEAKING
350

...:c

r-

/

z

;Ii

etCl)

"i!:~
II.

o

~

1500

FIGURE 14. BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE

FIGURE 13. PHASE RESPONSE AS A FUNCTION OF
FREQUENCY

!.

r--... .....

GAIN PEAKING

10

2

·3dB BANDWIDTH

I\..

.180 i!:

VOUT = 0.2Vp.p H---+-+-+-H-+l-t+--3I
CL= 10pF

--

/

~~

-315

..J

-

0

~~
Z~

VOUT = 0.2Vp.p
CL=10pF
'!lot =+1

w

~~

·100

I,

t§

~
4~

if

:c

!.

o

200

GAIN PEAKING

,

-CL=10pF
Av=+l

600

800

o
1000

LOAD RESISTOR (D)

FIGURE 16. BANDWIDTH AND GAIN PEAKING vs LOAD
RESISTANCE

3·349

6

I-- VOUT = 0.2Vp.p

I I I
400

-

w==

~et

HA5022
Typical Performance Curves
80

~
!.

I

,-

"

60

~

tv = +1, RF = 1ill, RL = 4000, TA = 25OC, Unless Olherwise Specified

. . 1\

\

40

~12~-4~~--~--+-~~-4--~--~--~~

8::c

..

i\

II!

......

ID

20

~ 6~-4-'~~~~~~~~

'-....

o

OL-~~~

200

350

800

650
FEEDBACK RESISTOR (n)
500

o

950

__

~

__

L-~

__

~

__

~

__J -__

600
LOAD RESISTANCE (n)

200

L-~

800

400

1000

FIGURE 18. SMALL SIGNAL OVERSHOOT vs LOAD
RESISTANCE

FIGURE 17. BANDWIDTH vs FEEDBACK RESISTANCE

0.08

0.10

FREQUENCY = 3.58MHz

FREQUENCY = 3.58MHz

/
I

/

,

I

,~
RL=75n

...

I'\..

U;

..
..

0.06

II:

CJ

"
"f'.."-

e.

~
~
~ RL= 150n

1/1

cC

0.04

::c

., ~

RL = 1~on

a.
:!!i

...

..
U
-.......

0.02

I-

z

II:

0.02

5

7
9
11
SUPPLY VOLTAGE (±V)

13

3

15

1\

~

I

0.00
3

RL=75n

....
"\~
RL = 1kn

II.
II.

is

RL= 1kn
0.00

(Continued)

VOUT =O.1Vp.p
CL = 10pF

VOUT = 0.2Vp.p
CL= 10pF
Av=+10

z
~

;5}

VSUPPLY = i5V,

5

7
9
11
SUPPLY VOLTAGE (±V)

13

15

FIGURE 20. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE

FIGURE 19. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE

-40

VOUT = 2.0Vp.p
CL=30pF

o

-50

:!!.

H~

~

';

-60

z

0

~

~

~

Q ·30
Z -40
Q
-50 I--

..b

I~

·70
HD2, '

1/1

100..
·80

1-

"

~

V

tI'

·20

Ie
II:

:/.1'

3RD ORDER IMD

is

·10

';

'U

ID

AV=+1

HD3

;:a

II:

-60

~

~MRR

"'"

~

1
FREQUENCY (MHz)

POSITIVE PSRRI I
10

"

NEGATIVE PSRR

·70

HD3
·90
0.3

~"'"

0.001

0.01

"""
0.1

11111'
,11111

I--

" " "'

IIIIII
10

FREQUENCY (MHz)

FIGURE 22. REJECTION RATIOS vs FREQUENCY

FIGURE 21. DISTORTION vs FREQUENCY

3·350

30

HA5022

Typical Performance Curves

VSUPPLY = ±5V, "v = +1, RF = 1k.Q, RL = 400(1, TA = 2SoC, Unless Otherwise Specified (Continued)
12

8.0
RL= 1000
Your = 1.0Vp_p
Av=+l

Ii"
oS

RLOAD = 1000
Your = 1.0Vp_p

7.5

1&1

C

z

7.0

0

~

V
./

~

Ii!

0-

6.5

...

- 'V

6.0
-50

V

/

500
Your = 2OVp_p

-

400

Ii"
:I.

~

350

I
~ + SLEW RArE

1&1

~

100

~

oJ

'"

250

-- -

125

..........

-

"

m
:!!.

0.2

~

0

1&1

-0.2

oJ

-0.4

c

c-

..J

ct!/)

za:

Ay- +2, RF = 6810 -

~

"""""""-

............... "">-.....

.-:::f'.... ............ ......

-0.6

Ay=+l,RF=lk.r.1 ..... ~

I

-1.0

...........

Ay = +10, RF = 3830

-1.2

25
50
75
TEMPERATURE (oC)

100

5

125

FIGURE 25. SLEW RATE vs TEMPERATURE

10

m

:!!.

........... .......

~

..............

15
20
FREQUENCY (MHz)

25

z

0.2

C

0

1&1

c

-0.2

c(

~

-0.4

CI

::i

a:
0
z

,

.........-.:::: ~

"\..

-0.6
-0.8
-1.0

Ay=-l

,/
........

I-

-1.2

5

/

" "" "" "<

Ay=-5

Ay=-10

1

10

/1

\.\ .

'-J

15

20

/'

I
Av=-2

-

I
25

30

FIGURE 26. NON-INVERTING GAIN FLATNESS vs FREQUENCY

Your = 0.2Vp_p
CL= 10pF
RF= 7500

0.4

-

Av= +5, RF = lkO-

0.8
0.6

15

O!!:!
-II..

!:Ii

~

o

13

Vour = 0.2Vp_p
CL = 10pF

-0.8

-25

---

7
9
11
SUPPLY VOLTAGE (±V)

0.4

150

-50

I

I

FIGURE 24. PROPAGATION DELAY vs SUPPLY VOLTAGE

a:
0
z

100

Av= +2, RF= 6810 -

3

0.6

,

~~

-"

200

...
... --...

0.8

. / -SLEW RATE _

300

Av = +10, RF = 3830

4

25
50
75
TEMPERATURE (oC)

FIGURE 23. PROPAGATION DELAY vs TEMPERATURE

450

-

Av=+l,RF=lk.r.1

o

-25

---

V

~
oJ

30

FREQUENCY (MHz)

FIGURE 27. INVERTING GAIN FLATNESS vs FREQUENCY

O~

1
FREQUENCY (kHz)

10

FIGURE 28. INPUT NOISE CHARACTERISTICS

3-351

!ci:::i
a: a..
w:=
~ct

HA5022

Typical Performance Curves

="ffjV, tv =+1, RF =11<0, RL =400Q, TA =25OC, Unless OthelWise Specified

VSUPPLY

1.5

1.0

2

\

f' i'--

........

0.5

0.0
·60

-40·20

0

-

----

20

40

60

-

80

/

100

120

-4
-60

140

~
-40

·20

0

1\

18

16
-60

~

;;13000

o
z

1\~

8

·40

·20

g

i
....... ........
0

20

~

~

40

/'
2000

-

60

80

100

120

/

1000

~

140

V

25

120

I

\

jl
~

~

-40

0

74

..".

-4

5

I

~~

,.",...

-'

~

68

II:

66

......

I:

I--

~

25DC

I

6

7

8

9

10

""""

~

..

~

40

~

~

~

140

11

12

13

14

15

SUPPLY VOLTAGE (±V)

,

~ ....

iii' 70
:!:!.

~

"'""
'\
I

V'"

/

20

+PSRR

72

125DC

J.,. ~ -'

140

FIGURE 32. TRANSIMPEDANCE VB TEMPERATURE

I I

55DC

15

10

100

TEMPERATURE (DC)

FIGURE 31. ·INPUT BIAS CURRENT VB TEMPERATURE

!

80

V'

TEMPERATURE (DC)

20

60

4000

III

~
ID

40

FIGURE 30. +INPUT BIAS CURRENT VB TEMPERATURE

22

!z

20

TEMPERATURE (DC)

FIGURE 29. INPUT OFFSET VOLTAGE vs TEMPERATURE

20

- -'"

,-

.,.V

TEMPERATURE (DC)

l

(Continued)

58
·100

.

.pSRR

--r--.........

-...........
CMRR

I

r"o

.........

"""'"

50

~

r---100

150

200

TEMPERATURE fc)

FIGURE 34. REJECTION RATIO VB TEMPERATURE

FIGURE 33. SUPPLY CURRENT VB SUPPLY VOLTAGE

3·352

250

HA5022

Typical Performance Curves
40

VSUPPLY =:t5v, "v = +1, Ai: = 1kO, RL = 4000, TA = 25OC, Unless 0tI'IerMse SpecifIed (Continued)

I

I

I

.10V

I-- r+5V

~

", I--

I

r-- r-- ~ ....
l"- I'

r"""

.15V

.... ......

~

~~

J

J

.... .... ~

4.0

....

~

~

~

~

/

o

V"

v
:/

/

VV

3.8

o

1

2

3

4 5 6 7 8 9 10 11 12 13 14 15
DISABLE INPUT VOLTAGE (V)

..

FIGURE 35. SUPPLY CURRENT va DISABLE INPUT VOLTAGE

-20

-40

0

20
40 80
80
TEMPERATURE ("C)

100

1.2

1.1

s

\

! 1.0
~

\ i'...

0.'

0.10
1.00
LOAD RESISTANCE (leO)

....

0.8
..

10.00

-40·20

~

V
./

-

~

0

40

20

30

80

I

-S50C

25

..

" "" -

0.0
-80

-40

·20

250C

V

r-- ~

0

20
40 80
80
TEMPERATURE ("C)

/

80

100

120

140

FIGURE 38. INPUT OFFSET VOLTAGE CHANGE BETWEEN
CHANNELS va TEMPERATURE

1.5

"-

V

TEMPERATURE ("C)

FIGURE 37. OUTPUT SWING va LOAD RESISTANCE

\

140

FIGURE 36. OUTPUT SWING va TEMPERATURE

30r---------~--------_r--------~

0.01

120

10

5

100 120

FIGURE 39. INPUT BIAS CURRENT CHANGE BETWEEN
CHANNELS va TEMPERATURE

./

~~
3

140

~

4

~

l/
~

V

[> " ,

;r
~

~~ ~

~

",
~

-- -I""""

- -

~

~250C

J i
5

6

7
8
• 10 11
SUPPLY VOLTAGE (±V)

12

13

14

15

FIGURE 40. DISABLE SUPPLY CURRENT va SUPPLY VOLTAGE

3·353

HA5022

Typical Performance Curves

VSUPPLY = ±5V, J\J = +1, RF = 1kn, ~ = 4000, TA = 25OC, Unless otherwise SIJIICiIIed

·30
AyI=+11

32

,

I I I

VOUT=2Vp.p

30

20

f"""'o. ~

18

I\..

28

/'

ENABLE

S

L

...
III
C

~
1
FREQUENCY (MHz)

:)

-40

~
w

·50

II:

w ·60

IL

·70

·80

--

0.1

i-'" i-"~

:i

(DISABLE- J--

2

f

0

12 ~
10 J:

r-- I

.,......

"

14 ~

0.5

1.0

4

1.5

0
2.5

2.0

FIGURE 42. ENABLEIDISABLE TIME vs OUTPUT VOLTAGE

DmAiii:E = OV
0 - VIN=5Vp.p
_ RF=750n
·10

CI

rL

OUTPUT VOLTAGE (V)

FIGURE 41. CHANNEL SEPARATION vs FREQUENCY

iii' ·20
:!!.
:x: -30

,.
.A

12
·2.5 ·2.0 ·1.5 ·1.0 -0.5

30

10

ENABD

18 1- DISABLE
16
14

·80
0.1

0

20

""'-

~

V

"

w 24
J: 22
w

:Ii

zw
·70

16

A

... 26

~~

(Continued)

~

10

fil

0.01

~

---- -

---

i-"

III

RL=1000

1

"" .....

0.1

II.

i! 0.001

""'"

r-~

I'

~

...

,

180
135
90

m

I

459-

o

\

-45

aw
~w

\ -90:x::l
1
FREQUENCY (MHz)

10

20

0.001

FIGURE 43. DISABLE FEEDTHROUGH vs FREQUENCY

~
w

I.)

10

z

0.1

i!!i
w

0.01

II.

:Ii 0.001

-

....

....

11111
RL=400n

......

180

"'"

1'-00..

z

0.1
1
FREQUENCY (MHz)

~

11

I-

iii'

135 w

II!
~
w

90

CI

45

...

0

CI

z

c
-45 w
-90

:l:x:

.135
0.001

.0.01

10

0.1
FREQUENCY (MHz)

10

100

FIGURE 45. TRANSIMPEDENCE vs FREQUENCY

3-354

II.

.135 II.

100

FIGURE 44. TRANSIMPEDANCE vs FREQUENCY

--.

iii

0.01

HAS022

Die Characteristics
DIE DIMENSIONS:

PASSIVATION:
Type: Nitride
Thickness: 4kA ±O.4kA

1650llm x 2540llm x 4831lm
METALLIZATION:

TRANSISTOR COUNT:

Type: Metal 1: AICu (1%)
Thickness: Metal 1: 8kA ±O.4kA

124

Type: Metal 2: AICu (1%)
Thickness: Metal 2: 16kA ±O.8kA

PROCESS:
High Frequency Bipolar Dielectric Isolation

SUBSTRATE POTENTIAL (Powered Up):

vMetallization Mask Layout
HA5022

-IN1

OUT1

v+

....I

«CI)
za::

O!!!
-II..

~::i
a:: a..

W::E

~«

Ne

-IN2

OUT2

3-355

HA5023
Dual 125MHz Video Current
Feedback Amplifier

November 1996

Features

Description

• Wide Unity Gain Bandwidth ••••••••••••••• 125MHz

The HAS023 is a wide bandwidth high slew rate dual
amplifier optimized for video applications and gains between
1 and 10. It is a current feedback amplifier and thus yields
less bandwidth degradation at high closed loop gains than
voltage feedback amplifiers.

• Slew Rate •••••••••••.•••••••••••••••••• 475V//-ls
• Input Offset YoRBge •••.••••••••••••••••••• BOO/-lV
• Differential Gain. • • .. • • • • • • • .. • • • • • • • • • ... 0.03%
• Differential Phase. • • . • . • • • • • • • • • • • •• 0.03 Degrees
• Supply Current (per Amplifier) •••••••••••••• 7.5mA
• ESD Protection ••••••••••••••••••••••••••• 4000V
• Guaranteed SpeCifications at ±5V Supplies

Applications
• Video Gain Block
• Video Distribution AmpllfierlRGB Amplifier

The low differential gain and phase, 0.1 dB gain flatness, and
ability to drive two back terminated 7S0 cables, make this
amplifier ideal for demanding video applications.
The current feedback design allows the user to take
advantage of the amplifier's bandwidth dependency on the
feedback resistor. By reducing RF, the bandwidth can be
increased to compensate for decreases at higher closed
loop gains or heavy output loads.
The performance of the HAS023 is very similar to the popular Harris HA-S020.

Ordering Information

• Flash AID Driver
PART NUMBER
(BRAND)

• Current to Voltage Converter

TEMP.
RANGE (DC)

PKG.
NO.

PACKAGE

• Medlciallmaglng

HAS0231P

-401085

8 Ld PDIP

E8.3

• Radar and Imaging Systams

HAS0231B
(H50231)

-40 to 85

8 LdSOIC

M8.15

• Video SWitching and Routing

HA5023EVAL

High Speed Op Amp DIP Evaluation Board

Pinout
HA5023
(PDlP, SOIC)
TOP VIEW

CAUTION: These devices are sensillve to electrostatic discharge. Users should follow proper Ie Handling Procedures.
Copyright C HarriS Corporation 1996

3-356

File Number

3393.5

HA5023
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 36V
DC Input Voltage (Note 3) ........................ ±VSUPPLY
Differential Input Voltage ............................... 10V
Output Current (Note 4) ................ Short Circuit Protected
ESD Rating (Note 3)
Human Body Model (Per MIL-STD-883 Method 3015.7) ... 2000V

Thermal Resistance (Typical, Note 2)

Operating Conditions

9JA (oclW)

130
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
160
SOIC Package. . . . . . . . . . . . . . . . . . . • . . . . . . . . .
Maximum Junction Temperature (Note 1) ................. 175°C
Maximum Junction Temperature (Plastic Package, Note 1) .. 150°C
Maximum Storage Temperature Range ....... " -65°C to 150°C
Maximum Lead Temperature (Soldering 1Os). . . . . . . . . . .. 300°C
(SOIC - Lead Tips Only)

Temperature Range .......................... -40°C to 85°C
Supply Voltage Range (Typical) ................. ±4.5V to ±15V
CAUTION: Stresses above those listed in ''Absolute Maximum Ratings· may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175°C for die, and below
1500 C for plastic packages. See Application Information section for safe operating area information.
2. 8JA is measured with the component mounted on an evaluation PC board in free air.
3. The non-inverting input of unused amplifiers must be connected to GND.
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty
cycle) output current should not exceed 15mA for maximum reliability.

Electrical Specifications

VSUPPLY = ±5V, RF = 1kfl, Av = +1, RL = 4000, CL" 10pF,
Unless Otherwise Specified

PARAMETER

TEST CONDITIONS

(NOTE 9)
TEST
LEVEL

TEMP.
(oC)

....I
«0
Za:

MIN

TYP

MAX

UNITS

Input Offset Voltage (VIO)

Delta VIO Between Channels
Average Input Offset Voltage Drift

VIO Power Supply Rejection Ratio

Input Common Mode Range

Note 5

±3.5V" Vs" ±6.5V

Note 5

Non-Inverting Input (+IN) Current

+IN Common Mode Rejection

Note 5

(+IBCMR=r)
+ IN
+IN Power Supply Rejection

a:

0.

w==

INPUT CHARACTERISTICS

VIO Common Mode Rejection Ratio

O!!:!
-LL

!;t:;j

±3.5V" VS" ±6.5V

Inverting Input (-IN) Current

Delta -IN BIAS Current Between Channels

3-357

A

25

0.8

3

mV

A

Full

-

5

mV

A

Full

1.2

3.5

mV

5

-

jlVPC

-

dB

-

dB

B

Full

A

25

53

A

Full

50

-

A

25

60

-

dB

A

Full

55

-

dB

A

Full

±2.5

-

V

A

25

-

3

A

Full

A

25

A

Full

A

25

A

Full

A

25,85

A

-40

A

25,85

A

-40

-

8

jlA

20

jlA

0.15

jlNV

0.5

jlNV

0.1

jlNV

0.3

jlNV

4

12

jlA

10

30

jlA

6

15

jlA

10

30

jlA

~«

HA5023
Electrical Specifications

VSUPPLY =±5V, RF = lkO, "'" = +1, RL = 4000, CL:S; 10pF,
Unless Otherwise Specified (Continued)

PARAMETER
·IN Common Mode Rejection

TEST CONDITIONS
Note 5

(NOTE 9)
TEST
LEVEL

TEMP.
(oC)

A

25

A

Full

A

25

MIN

TYP

-

-IN Power Supply Rejection

±3.5V:s; Vs:S; ±6.5V

A

Full

Input Noise Voltage

f= 1kHz

B

25

+Input Noise Current

f= 1kHz

B

25

-Input Noise Current

f = 1kHz

B

25

Note 11

A

25

1.0

A

Full

0.B5

A

25

70

A

Full

65

A

25

50

A

Full

45

A

25

±2.5

A

Full

MAX

UNITS

0.4

IlAIV

1.0

IlAIV

0.2

v.AN

0.5
4.5
2.5

-

25.0

-

v.AN
nVNHz
pANHz
pAl'I'Hz

TRANSFER CHARACTERISTICS
Transimpedence

Open Loop DC Voltage Gain

RL = 4000, Your = ±2.5V

Open Loop DC Voltage Gain

RL = 1000, Vour = ±2.5V

-

-

MO
MO
dB
dB
dB
dB

OUTPUT CHARACTERISTICS
Output Voltage Swing

RL= 1500

±3.0

V

±2.5

±3.0

V

±20.0

Output Current

RL= 1500

B

Full

±16.6

Output Current, Short Circuit

VIN = ±2.5V, Vour = OV

A

Full

±40

±SO

-

mA

Supply Voltage Range

A

25

5

-

15

V

Quiescent Supply Current

A

Full

7.5

10

mAlOpAmp

mA

POWER SUPPLY CHARACTERISTICS

AC CHARACTERISTICS (Av = + 1)
Slew Rate

Note 6

B

25

275

350

Full Power Bandwidth

Note 7

B

25

22

2B

RiSe Time

NoteB

B

25

Fall Time

NoteB

B

25

Propagation Delay

NoteS

B

25

B

25

-3dB Bandwidth

Vour= 100mV

B

25

Settling Time to 1%

2V Output Step

B

25

Settling Time to 0.25%

2V Output Step

B

25

Overshoot

3-358

-

-

V/IlS
MHz

6

ns

6

ns

6

ns

4.5
125
50
75

-

%
MHz
ns
ns

HA5023
Electrical Specifications

VSUPPlY = ±5V, RF = lkn, Av = +1, Rl = 400n, Cl:S; 10pF,
Unless Otherwise Specified (Continued)
(NOTE 9)
TEST
LEVEL

TEMP.
(DC)

Note 6

B

25

475

V/IlS

Full Power Bandwidth

Note 7

B

25

26

MHz

Rise Time

Note 8

B

25

6

ns

Fall Time

Note 8

B

25

6

ns

Propagation Delay

Note 8

B

25

B

25

12

TEST CONDITIONS

PARAMETER

MIN

TYP

MAX

UNITS

AC CHARACTERISTICS (Av = +2, RF = 681 Q)
Slew Rate

Overshoot

-

6

-

ns
%

·3dB Bandwidth

VOUT = 100mV

B

25

95

Settling Time to 1%

2V Output Step

B

25

50

-

ns

Settling Time to 0.25%

2V Output Step

B

25

100

-

ns

Gain Flatness

5MHz

B

25

20MHz

B

25

-

dB

MHz

0.02

-

0.07

dB
..J

O!!!
-I&.
~:;

AC CHARACTERISTICS (AV = +10, RF = 383n)
Slew Rate

Note 6

B

25

350

475

Full Power Bandwidth

Note 7

B

25

28

38

Rise Time

Note 8

B

25

Fall Time

Note 8

B

25

Propagation Delay

Note 8

B

25

Overshoot

B

-3dB Bandwidth

VOUT= 100mV

B

Settling Time to 1%

2V Output Step

Settling Time to 0.1 %

V/flS

-

8

MHz
ns

9

-

25

-

1.8

-

%

25

-

65

-

MHz

B

25

-

75

-

ns

2V Output Step

B

25

-

130

-

ns

Differential Gain (Note 10)

Rl= 150n

B

25

0.03

Differential Phase (Note 10)

Rl= 150n

B

25

0.03

9

ns
ns

VIDEO CHARACTERISTICS

-

%
Degrees

NOTES:
5. VCM = ±2.5V. At -40°C Product is tested at VCM = ±2.25V because Short Test Duration does not allow self heating.
6. VOUT switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% pOints.
7. FPBW = Slew Rate; V
= 2V .
PEAK
21tV pEAK

8. Rl = lOOn, VOUT = IV. Measured from 10% to 90% points for riselfall times; from 50% points of input and outputfor propagation delay.
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
10. Measured with a VM700A video tester using an NTC-7 composite VITS.
11. VOUT = ±2.5V. At -40°C Product is tested at VOUT = ±2.25V because Short Test Duration does not allow self heating.

3-359

~UJ

Za:

a:1l.
W:!i

:s~

HA5023

Test Circuits and Waveforms

HP4195
NETWORK
ANALYZER

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

'.' I 'Cj

VOUT

VOUT

son

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

=

Vertical Scale: VIN 100mV/Div.• VOUT
Horizontal Scale: 20ns/Div.

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

=100mV/Div.

=

Vertical Scale: VIN lv/Div .• VOUT
Horizontal Scale: SOns/DiY.

=lV/Diy.

FIGURE 5. LARGE SIGNAL RESPONSE

FIGURE 4. SMALL SIGNAL RESPONSE

3-360

Schematic Diagram
v+.

(One Amplifier of Two)

T I T 1As

TIT

T

[

['

T

,

2.51(

~.GPz

•
Rt
10K

~

i

~

t:l

R32
5

~OUT

v-.!

~
800

1

At

FIa3

800

1 1

!

820

1

{l

1

OPERATIONAL
AMPLIFIERS

1 1 J

1I

HA5023
Application Information
Optimum Feedback Resistor
The plots of inverting and non-inverting frequency response,
see Figure 8 and Figure 9 in the typical performance section,
illustrate the performance of the HA5023 in various closed
loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage
feedback amplifier, there can be an appreciable decrease in
bandwidth at higher gains. This decrease may be minimized
by taking advantage of the current feedback amplifier's
unique relationship between bandwidth and RF. All current
feedback amplifiers require a feedback resistor, even for
unity gain applications, and RF, in conjunction with the internal compensation capacitor, sets the dominant pole of the
frequency response. Thus, the amplifier's bandwidth is
inversely proportional to RF. The HA5023 design is optimized for a 10000 RF at a gain of +1. Decreasing RF in a
unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is
more stable, so RF can be decreased in a trade-off of stability for bandwidth.
The table below lists recommended RF values for various
gains, and the expected bandwidth.
GAIN
(AcLl

RF(Q)

BANDWIDTH
(MHz)

-1

750

100

+1

1000

125

+2

681

95

+5

1000

52

+10

383

65

-10

750

22

nected to -IN, and that connections to -IN be kept as short as
possible to minimize the capacitance from this node to
ground.

Driving Capacitive Loads
Capacitive loads will degrade the amplifier's phase margin
resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing
an isolation resistor (R) in series with the output as shown in
Figure 6.

....

VIN

rP

iRT
-

R

±~

Rf

RI

VOUT

'=.,?FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION
RESISTOR, R

The selection criteria for the isolation resistor is highly
dependent on the load, but 270 has been de.termined to be
a good starting value.

Power Dissipation Considerations
Due to the high supply current inherent in quad amplifiers,
care must be taken to insure that the maximum junction temperature (TJ, see Absolute Maximum Ratings) is not
exceeded. Figure 7 shows the maximum ambient temperature
versus supply voltage for the available package styles (Plastic
DIP, SOl C). At ±5VDC quiescent operation both package
styles may be operated over the full industrial range of -40°C
to 850 C. It is recommended that thermal calculations, which
take into account output power, be performed by the designer.

UI40r-r--.--.---r--r--r--,--,---.--.--,-,

PC Board Layout
The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board. The
use of low inductance components such as chip resistors
and chip capacitors is strongly recommended. If leaded
components are used the leads must be kept short especially for the power supply decoupling components and
those components connected to the inverting input.
Attention must be given to decoupling the power supplies. A
large value (1 011 F) tantalum or electrolytic capacitor in parallel with a small value (0.11lF) chip capacitor works well in
most cases.

~130r-+~~7-~~~--t--+--~~r--r--+--1-1
!!; 120
-t"-- _ _~P_DIP
1.
~
~

~ 110r-+1--~~~---r--+--+--~I---'~~~E±--~~
w.....
- .......
!Ii 100 r-+--+---ll--=
--,.,.,o::::-t--+--~~r--r--+--1-1

~ ~r-+--+--~--~~--+~~~~---r--+--+--~~

!z

SOIC

........

waol--l--+--+-1--t--II--""d--t--t--IH
iii
.............
~

i

A ground plane is strongly recommended to control noise.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier's inverting input (-IN). The
larger this capacitance, the worse the gain peaking, resulting
in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces con-

3-362

70r-r-~--r--r~--;-~--~~f""'-.~+--+~

60r-+--+---l---r--r--+--1---r--t--f~d-~
50~~~--~--~~--~~---L--L-~--~~

5

7

9

11

13

15

SUPPLY VOLTAGE (±V)

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE
vs SUPPLY VOLTAGE,

HA5023
Typical Performance Curves

VSUPPLY= ±SV. AV=+l. RF= lkn. RL=400n. TA=2SoC.
Unless Otherwise Specified

5
4

-

iii 3
!:!. 2
i!E
~

1

[il

0

~

-1

-2

Z

-3

:>

=lkQ
+, F /

'"

iii'

~

~

........

;;;;:;;;,.

z

'I

1/

-1

~

-2 -

0

!ll
c
f

"

100

ffi

1'-

-5

200

~

Ay=-10

0-

Ay=-5

:I-+++++f

..........

"

~

::I:

~~

e.
w

~

45

-1351--I--I-i"

UJ
C
::I:
0..

-100r--I-~++++rr---;--+-~~~~--~ 0

~

I,

130

100

10

........

100

200

-

-180
200

500

GAIN PEAKING
700

...I

--

--

O!!!
-II..

::I:

10 iii'
~
Cl

5

o

~

W
0..

~

1500

FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE

!.

.......

::I:

95

"lOUT. 0.2Yp.p
CL= 10pF
Av=+2

-

-

-

-:ldB BANrklDTH

~

N'

"'-"

ED
~

" I r--....

Cl
Z

"""-.

GAIN PEAKING
SOD

6SO

5

i'"

r---. ....

800

950

120

::I:

!.
10 _

Si!

cW

::I:

110

6

Z

100

4 Cl
Z

~
~

iii'
~

Si!

ED

C

'D

'?

"lOUT = O.2Vp_p
CL= 10pF
Ay=+l

90

0..
Z

;;:
0
1100

80

Cl

0

FEEDBACK RESISTOR (Q)
FIGURE 12_ BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE

200

400
600
LDAD RESISTOR (Q)

BOO

2

3-363

W
0..

~

Cl

0
1000

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD
RESISTANCE

ti::J
w::

a: a..
Z

............

900
1100
1300
FEEDBACK RESISTOR (Q)



/

Z -3

FIGURE 8. NON-INVERTING FREQENCY RESPONSE

i

Ay=-l

If

~
;;!

o

II
10
FREQUENCY (MHz)

2

2

I

Cl

/

oS

1

;;: 1

Ay = 10, RF = 383
II
I
I

-4

"lOUT = 0.2Yp_p
- - CL=10pF
3 __ RF=750Q
4

~4

~

II:

5

~ '='l'~

VOUPO.2Vp_pll
CL=10pF
I!
Ay .2, RF- 681Q
I
I I
Ay = 5, RF= lkQ

~<

HA5023
Typical Performance Curves

VSUPPLY = ±SV, Av = +1, RF = 1kQ, RL = 4000, T~ = 2SoC,

Unless Otherwise Specified (Continued)

80
VOUT = 0.2Vp.p
CL= 10pF
Ay =+10

1-

"~

""'1\

\

i\.

"

o

200

~

BOO

500
650
FEEDBACK RESISTOR (0)

350

950
LOAD RESISTANCE (0)

FIGURE 15, SMALL SIGNAL OVERSHOOT vs LOAD
RESISTANCE

FIGURE 14. BANDWIDTH VB FEEDBACK RESISTANCE

0.08

0.10

~ 0.08

z

~

~

I

/

0.06

/

II

,

0.04

0.02

~

I

RL = 750

w

1"'-

IE:

w

"

e.w
~
:z:

V .Lr..11'.....
RL=1500
"'-

5

7

9

11
SUPPLY VOLTAGE (±V)

0.04

II.

RL=1~00

-'

§w

I'...

"

IE:

w

--.........

I

3

0.06

CI

RL = 1k1l
0.00

FREQUENCY = 3.58MHz

enw

FREQUENCY = 3.58MHz

13

0.02

II.
II.

is

3

9

11

-10

-50

I'

HD2

z

0

3RD ORDER IMD

--

-90
0.3

r'II..

!

'i

IiiIE:
z
o

~

-40

fi

-50

Ul

-60

w

HD3

-

10

FREQUENCY (MHz)

CMRR
~

IE:

Da
1

~

-20

Q -30

~/I'
Ir...

I
./

HDa,

15

13

AV=+1

o

'U'
ID
:!!. -60

-80

I
7

5

FIGURE 17. DIFFERENTIAL PHASE VB SUPPLY VOLTAGE

VOUT = 2.0Vp.p
CL = 30pF

-70

../'

SUPPLY VOLTAGE (±V)

-40

~

\

~=1~~

W

0.00

15

FIGURE 16. DIFFERENTIAL GAIN VB SUPPLY VOLTAGE

~

RL=750

_\~

~

-70

NEGATIVE PSRR

-80

11111111 Jill

POSIT~~,~ PSRR

0.001

0.01

I

11111

0.1

l-

II
10

FREQUENCY (MHz)

FIGURE 18. DISTORTION VB FREQUENCY

FIGURE 19. REJECTION RATIOS VB FREQUENCY

3-364

30

HA5023
Typical Performance Curves

VSUPPLY = ±5V, Av = +1, RF = 1kO, RL = 4000, TA = 25°C,

Unless Otherwise Specified (Continued)
12

8.0

.
.s
~
w

RL = 1000
VOUT = 1.0Vp.p
Ay=+1
7.5

Z
Q 7.0

!;(

~
IfD.

6.5

...

--' ~

6.0
-50

o

-25

/
./

25

50

.s

/

/

Q

.

RlOAD=10Dn
VOUT = 1.0Vp_p

---

10

~w

Q

Z

8

0

~

...

~
CI

...

~

0

6

II:
D.

75

100

---

--

VOUT = 2OVp_p

. 400

.L'" + SLEW RATE

"~ 350
w
!;( 300

125

~

.----

250

-"""

..J

II)

200

/

0.8

~

iii'

-SLEW RATE

25

50

75

...........

Q

100

Av=+2,RF=6810-

.zF'-...... ........... .....
Ay=+1,RF=1kn ......
I

,

Ay=+5,RF=1kn -

'" .......... .................. -.............

Ay = +10, RF = 3830

5

10

TEMPERATURE (oC)
FIGURE 22. FIGURE 22. SLEW RATE VB TEMPERATURE

!c:::i
a:: a..

............... "">-....

-1.2

125

Za::

O!!:!
-u.

-

0

w -0.2
t!
..J
c( -0.4
:E
II: -0.6
0
z
-0.8

100

o(en

0.4

z

CI

..I

o.~Vp_p

:!:!. 0.2

~

o

15
20
FREQUENCY (MHz)

25

30

FIGURE 23. NON-INVERTING GAIN FLATNESS VB FREQUENCY

0.8

iii'

0.4

~
CI

0

1000

VOUT = 0.2Vp_p
CL = 10pF
RF = 7500

0.6

Av = +10, RF = 3830

:!:!. 0.2

,,

Q

w

-0.2

c(

-0.4

II:

-0.6

~
..J

:::;;
0

z

-0.8
-1.0

.......

~

1

-1.2

5

...

"""-

_'" \.
r- Av =~-10 '\.' \ .
10

15

VOUT =
CL = 10pF

0.6

-1.0
-25

13

FIGURE 21. PROPAGATION DELAY VB SUPPLY VOLTAGE

150
-50

""'"'"---

7
9
11
SUPPLY VOLTAGE (±V)

5

3

C

II:

I

4

FIGURE 20. PROPAGATION DELAY VB TEMPERATURE

450

I

Ay _ +2, RF= 6810 -

Av = +1, RF= 1kn

TEMPERATURE (C)

500

Ay = +10, RF = 3830

800f

w

600 ;

Ay=-1

.s

..).

!II

c.

!II
0

0

#

z

z

w
CI

Ay=-5

:,,-

'" 'X
15

~:>
;!;
..J
~

rAy=-21/

"-

20

I
25

30

FREQUENCY (MHz)

40

4OO!zw

20

200

II:
II:

0
0.01

0.1

10

0
100

FREQUENCY (kHz)

FIGURE 24. INVERTING GAIN FLATNESS VB FREQUENCY

FIGURE 25. INPUT NOISE CHARACTERISTICS

3-365

8

1IJ::ii1

~c

HA5023
Typical Performance Curves

VSUPPLY =±5V,AV= +1, RF= 1kQ, RL=400Q, TA=250C,
Unless Otherwise Specified (Continued)

1.5

2

\

1.0

"

~

........ ......

0.5

0.0

~o

-40

·20

0

20

-

40

.,.. ~

60

80

100

120

/

-4

140

~

,/
~

~

0

20

~

III

\

18

~

140

~O

""
"

",."".

~

~

\~

'""" ........

16
·40

·20

0

20

-

40

V

~

80

100

120 140

lL

1000
·60

-40

/

V

V

·20

0

TEMPERATURE fc)

20

40

60

"

100

120 140

TEMPERATURE fC)

FIGURE 28. ·INPUT BIAS CURRENT VB TEMPERATURE

FIGURE 29. TRANSIMPEDANCE VB TEMPERATURE

74

25

I I

I

20

\

--

~

......

~

"""

~

.)(

-~

" ,~

~

5

6

o

~Z

68
66

§ 64
III

ia
a: 62

7

8

9

10

11

12

13

14

I .... ~

:E-

'25°C
4

~

iii" 70

.J

...".

I
5 3

1PSRR

72

125°C

55°C

115
10

~

"

4000

22

!

~

FIGURE 27. +INPUT BIAS CURRENT VB TEMPERATURE

FIGURE 26. INPUT OFFSET VOLTAGE VB TEMPERATURE

20

40

TE;MPERATURE fc)

TEMPERATURE (oC)

l

-

"."",.

_i-

15

SUPPLY VOLTAGE (±V)

·PSRR

'""" ...........
~

~

60 i---,CMRR

'-

58
·100

o

·50

.......... I"-

-

50

r-100

150

200

TEMPERATURE fC)

FIGURE 31. REJECTION RATIO VB TEMPERATURE

FIGURE 30. SUPPLY CURRENT VB SUPPLY VOLTAGE

3·366

250

HA5023
Typical Performance Curves

VSUPPLy=±5V, Av= +1, RF= 1kQ, RL = 400Q, TA = 25°C,
Unless Otherwise Specified (Continued)
4.0

40

"
§.

30

I

-

i- +5V

IZ

:;)

20

U

......~

:;)

Ul

10

.....

~

'- . "

o
o

~

J

w

II:
II:

1

-

-

/.-. r-.. ......

2

3

I

I
+10V

r-.. r-..

+15V

fo""'"

J

J

~ r-...

~ r::

I
i"oooo.

V~

~
z

"~

3.8

!5...

I:;)

~

0

"

/
",
3.6
·60

4 5 6 7 8 9 10 11 12 13 14 15
DISABLE INPUT VOLTAGE (V)

/

V

./

·40

·20

~

0

/

20

40

60

80

100

120

140

TEMPERATURE (DC)

FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 33. OUTPUT SWING vs TEMPERATURE

30r----------.-----------r--------~

1.2

-J



§. 1.0

~

10r-------~~-----------+----------~

\

0.9

"-......

--

./

V

V

V

za:
O!!:!
-u.
~::::i
a:1l.

/

W:iE

~

0

a:

-40

b
w

·50

:z:

w -60

"-

·70

i-'
.,...,.". i"""'"

~

~

i

10

~
Z

0.1

2!i

0.01

; 0.001

I"RL=l~~~

....
"""

r""-I"o

iii

~

I'

180
~

""

A-

~'"

135

fff
w

90

l§

45

~
w

o S
\ ·45 ;

1

·80
0.1

_

10

1
FREQUENCY (MHz)

20

FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY

~

~

0.1

0.001

0.1
1
FREQUENCY (MHz)

0.01

,..
=a:

~~~~~rH~~~~Hr-;-H~-;-H~

0.01

!w:

~~~~~~~~rHI~1-rH--HHt-l45 ~

o
~~H*--~H--+~~~H*--r+HHH·45

~

~~~~~rH~~rH~;-~-;-~;H·90 ~:z:
L........L..LJ.........J..J..L.I.......................-'--.....L--'--'"':"-:-"

0.001

0.01

100

FIGURE 39. TRANSIMPEDANCE vs FREQUENCY

1:-~
__f+-HI---1H-Hl---1H-Hl~r=""I:-HI--H1+II-l180
i!! 0.001
r--...
i'..
11 ::5
Z

10

0.1
1
10
FREQUENCY (MHz)

.135 ...

100

FIGURE 40. TRANSIMPEDENCE vs FREQUENCY

3·368

·90 ~
·135

...

HA5023

Die Characteristics
DIE DIMENSIONS:
1650l1m x 2540l1m

PASSIVATION:

x 4a311m

Type: Nitride
Thickness: 4kA ±O.4kA

METALLIZATION:
TRANSISTOR COUNT:

Type: Metal 1: AICu (1%)
Thickness: Metal 1: akA ±O.4kA

124

Type: Metal 2: AICu (1 %}
Thickness: Metal 2: 16kA ±o.akA

PROCESS:
High Frequency Bipolar Dielectric Isolation

SUBSTRATE POTENTIAL (Powered Up):

V-

Metallization Mask Layout
HA5023
OUT

NC

..J

v+
-IN1

etC/)
Za:
O!!:!
-II..
!i(::i
a: a..
W:E

~et

+IN1

NC
OUT2

...

NC

g

•

D

~

=:
•

v-

+IN

-IN

3-369

HA5024

~HARRlS

\KJ

SEMICONDUCTOR

Quad 125MHz Video Current
Feedback Amplifier with Disable

November 1996

Features

Description

• Quad Version of HA·5020

The HA5024 is a quad version of the popular Harris
HAS020. It features wide bandwidth and high slew rate, and
is optimized for video applications and gains between 1 and
10. It is a current feedback amplifier and thus yields less
bandwidth degradation at high closed loop gains than volt·
age feedback amplifiers.

• Individual Output Enable/Disable
• Input Offset Voltage •••••••.............•.. BOOI1V
• Wide Unity Gain Bandwidth ••.•.•••.•••... 125MHz
• Slew Rate ••••...•.••••...••••...••••••• 475V/jlS
• Differential Gain. • • • • • • . • . . • • • • • • • • • . . • • •• 0.03%
• Differential Phase .....••....••..... , 0.03 Degrees
• Supply Current (per Amplifier) ••••••.••..••• 7.SmA
• ESD Protection ..•••••••••••••••••.••••••• 4000V
• Guaranteed Specifications at ±5V Supplies

Applications
• Video Multiplexers; Video Switching and Routing

The low differential gain and phase, 0.1 dB gain flatness, and
ability to drive two back terminated 7S0 cables, make this
amplifier ideal for demanding video applications.
The HAS024 also features a disable function that signifi·
cantly reduces supply current while forcing the output to a
true high impedance state. This functionality allows 2:1 and
4:1 video multiplexers to be implemented with a single IC.
The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. By reducing RF, the bandwidth can be
increased to compensate for decreases at higher closed
loop gains or heavy output loads.

• Video Gain Block

Ordering Information

• Video Distribution Ampllfier/RGB Amplifier
• Flash AID Driver

PART NUMBER

• Current to Voltage Converter

HA50241P

• Medical Imaging

HA50241B

• Radar and Imaging Systems

HA5024EVAL

TEMP.
RANGEfC)

PKG.
NO.

PACKAGE

-401085

20Ld PDIP

E20.3

-401085

20 LdSOIC

M20.3

High Speed Op Amp DIP Evaluation Board

Pinout
HA5024
(PDIP, SOIC)
TOP VIEW

+INI

DISf

+IN2
-IN2
OUT2

-"'---~

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-370

File Number

3550.3

HA5024
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals •................... 36V
DC Input Voltage (Note 3) ........................ ±VSUPPLY
Differential Input Voltage ............................... 10V
Output Current (Note 4) ................ Short Circuit Protected
ESD Rating (Note 3)
Human Body Model (Per MIL-STD-883 Method 3015.7) .. 2000V

Thermal Resistance (Typical, Note 2)

Operating Conditions

6JA (oclW)
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
90
Maximum Junction Temperature (Note 1) ................. 175°C
Maximum Junction Temperature (Plastic Package, Note 1) .... 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............ 300°C
(SOIC - Lead Tips Only)

Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to B50C
Supply Voltage Range (Typical) ................. ±4.5V to ±15V
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the opera/ional sections of this specification is not implied.

NOTES:
1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175°C for die, and below
150°C for plastic packages. See Application Information section for safe operating area information.
2. 9JA is measured with the component mounted on an evaluation PC board in free air.
3. The non-inverting input of unused amplifiers must be connected to GND.
4. Output is protected for short circuits to ground. Brief short Circuits to ground will not degrade reliability, however, continuous (100% duty
cycle) output current should not exceed 15mA for maximum reliability.

Electrical Specifications

VSUPPLY = ±5V, RF= lk.Q, Jl.,.t = +1, RL = 4000, CL ~ 10pF,UnlessOtherwise Specified

PARAMETER

TEST CONDITIONS

(NOTE 11)
TEST
TEMP.
LEVEL
("C)

MIN

TYP

MAX

UNITS

INPUT CHARACTERISTICS

A

25

0.8

3

mV

A

Full

-

-

5

mV

Delta VIO Between Channels

A

Full

-

1.2

3.5

Average Input Offset Voltage Drift

B

Full

-

5

A

25

53

A

Full

50

Input Offset Voltage (VIO)

VIO Common Mode Rejection Ratio

VIO Power Supply Rejection Ratio

Input Common Mode Range

Note 5

±3.5V ~ Vs ~ ±6.5V

Note 5

Non-Inverting Input (+IN) Current

+IN Common Mode Rejection

Note 5

(+IBCMR=~)
RIN
+IN Power Supply Rejection

±3.5V ~ Vs

~

±6.5V

Inverting Input (-IN) Current

Delta -IN BIAS Current Between Channels

-IN Common Mode Rejection

-IN Power Supply Rejection

Note 5

±3.5V ~ Vs ~ ±6.5V

3-371

A

25

60

A

Full

55

A

Full

±2.5

A

25

A

Full

A

25

A

Full

-

3

-

-

mV

IlvfJc
dB
dB

-

dB

-

dB

-

V

8

IlA

20

IlA

0.15

IlAIV

0.5

jlAIV

A

25

-

-

0.1

jlAIV

A

Full

-

-

0.3

jlAIV

A

25,85

4

12

IlA

A

-40

10

30

IlA

A

25,85

6

15

IlA

A

-40

10

30

IlA

-

0.4

jlAIV

1.0

jlAIV

0.2

jlAIV

0.5

jlAIV

A

25

A

Full

A

25.

A

Full

-

-

HA5024
Electrical Specifications

VSUPPLY =±f>V, RF = lkQ, "v = +1, RL =400n, Ct.:s; 10pF,UniessOtherwise Specified (Continued)

PARAMETER

TEST CONDITIONS

(NOTE 11)
TEMP.
TEST
(oC)
LEVEL

MIN

TYP

MAX

UNITS

-

4.5

-

nV/-JRZ

Input Noise Voltage

f= 1kHz

B

25

+Input Noise Current

f= 1kHz

B

25

2.5

-Input Noise Current

f= 1kHz

B

25

25.0

pAl-JRZ
pAl-JRZ

TRANSFER CHARACTERISTICS
Transimpedence

Open Loop DC Voltage Gain

Open Loop DC Voltage Gain

Note 16

RL = 400n, VOUT = ±2.5V

RL = lOOn, VOUT = ±2.5V

-

-

A

25

1.0

A

Full

0.85

25A

25

70

A

Full

65

A

25

50

dB

A

Full

45

dB

A

25

±2.5

±3.0

A

Full

±2.5

±3.0

-

V

-

mA

Mn
Mn
dB

-

dB

OUTPUT CHARACTERISTICS
Output Voltage Swing

RL= 150n

Output Current

RL= 150n

B

Full

±16.6

±20.0

Output Current, Short Circuit

VIN = ±2.5V, VOUT = OV

A

Full

±40

±60

Output Current, Disabled (Note 5)

DISABLE = OV,
VOUT = ±2.5V, VIN = OV

A

Full

V

-

mA

2

flA

Output Disable Time

Note 12

B

25

40

-

flS

Output Enable Time

Note 13

B

25

40

-

ns

Output Capacitance Disabled

Note 14

B

25

5

15

pF

POWER SUPPLY CHARACTERISTICS
Supply Voltage Range

A

25

Quiescent Supply Current

A

Full

-

15

V

7.5

10

mAlOpAmp

5

7.5

mAlOpAmp

1.0

1.5

mA

Supply Current, Disabled

DISABLE=OV

A

Full

Disable Pin Input Current

DISABLE=OV

A

Full

-

Minimum Pin 8 Current to Disable

Note 6

A

Full

350

-

flA

Maximum Pin 8 Current to Enable

Note 7

A

Full

-

20

flA

Note 8

B

25

275

350

-

V/flS

22

28

-

MHz

AC CHARACTERISTICS (Av = + 1)
Slew Rate
Full Power Bandwidth

Note 9

B

25

Rise Time

Note 10

B

25

Fall Time

Note 10

B

25

Propagation Delay

Note 10

B

25

6

B

25

4.5

25

Overshoot
-3dB Bandwidth

VOUT= 100mV

B

Settling Time to 1%

2V Output Step

B

25

Settling Time to 0.25%

2V Output Step

B

25

6

-

6

ns

-

ns
ns
%

125

-

MHz

50

-

ns

75

-

ns

475

-

V/flS

AC CHARACTERISTICS (Av = +2, RF = 681 n)
Slew Rate

Note 8

B

25

Full Power Bandwidth

Note 9

B

25

3-372

-

26

MHz

HA5024
Electrical Specifications

VSUPPLY = ±5V, RF = lkQ, Av = +1, RL = 400n, CL ~ 10pF,Unless O1herwise SpecWied (Continued)

MIN

TYP

MAX

UNITS

Rise Time

Note 10

B

25

-

6

-

ns

Fall Time

Note 10

B

25

-

6

Propagation Delay

Note 10

B

25

B

25

PARAMETER

TEST CONDITIONS

(NOTE 11)
TEST
TEMP.
(DC)
LEVEL

Overshoot

-

-

6

-

12

-

ns
ns
%

-3dB Bandwidth

VOUT= 100mV

B

25

Settling Time to 1%

2V Output Step

B

25

Settling Time to 0.25%

2V Output Step

B

25

100

Gain Flatness

5MHz

B

25

0.02

20MHz

B

25

0.07

dB

V/IlS

95
50

MHz

-

ns
ns

-

dB

AC CHARACTERISTICS (Av = +10, RF = 383n)
Slew Rate

Note 8

B

25

350

475

Full Power Bandwidth

Note 9

B

25

28

38

Rise Time

Note 10

B

25

-

8

Fall Time

Note 10

B

25

Propagation Delay

Note 10

B

25

9

-

9

MHz

-

-

ns

etcn

ns

OIY
-I&,.

1.8

-

65

25

-

B

25

-

130

-

RL= 150n

B

25

-

0.03

%

RL = 150n

B

25

0.03

Degrees

Overshoot

B

25

-3dB Bandwidth

VOUT= 100mV

B

25

Settling Time to 1%

2V Output Step

B

Settling Time to 0.1 %

2V Output Step

75

%
MHz
ns
ns

VIDEO CHARACTERISTICS
Differential Gain (Note 15)
Differential Phase (Note 15)
NOTES:
5. VCM = ±2.5V. At -40°C Product is tested at VCM = ±2.25V because short test duration does not allow self heating.
6. RL = 1DOn, VIN = 2.5V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output
is considered disabled when -10mV ~ VOUT ~ +10mV.
7. VIN = OV. This is the maximum current that can be pulled out of the Disable pin with the HA5024 remaining enabled. The HAS024 is
considered disabled when the supply current has decreased by at least 0.5mA.
8. VOUT switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.
9. FPBW = Slew Rate. V
= 2V.
2nV pEAK ' PEAK
to. RL = lOOn, VOUT = lV. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
11. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
12. VIN = +2V, DISABLE = +5V to OV. Measured from the 50% point of DISABLE to VOUT = OV.
13. VIN = +2V, DISABLE

=OV to +5V. Measured from the 50% point of DISABLE to VOUT =2V.

14. VIN = OV, Force VOUT from OV to ±2.5V, tR = tF = 50ns, DISABLE = OV.
15. Measured with a VM700A video tester using an NTC-7 composite VITS.
16. VOUT = ±2.5V. At -40°C Product is tested at VOUT = ±2.25V because short test duration does not allow self heating.

3-373

oJ

ns

Za:

!c~
a: a.

W2
~et

HA5024
Test Circuits and Waveforms

HP4195
NETWORK
ANALYZER

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

YIN

o-....,---;(+"'iii>_-_--o

YOUT

500
YOUT

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: VIN = lV/DiY., VOUT = lV/Diy.
Horizontal Scale: SOns/DiY.

Vertical Scale: VIN = 100mV/Diy., VOUT = l00mV/Diy.
Horizontal Scale: 20nS/Diy.

FIGURE 5. LARGE SIGNAL RESPONSE

FIGURE 4. SMALL SIGNAL RESPONSE

3·374

Y+~~~~~~
__ __

Schematic (One Amplifier of Four)

Qpl

~~~4-t---t~l~:t- ~_,

Rzo

I 1.2:~*
~QP2 ~QP3

,
R1

~QNl

_

I rK...Qp12

R7
15K

R)
6K

T

R4
800

Y-o

r-.

1'1.4pF
R28
20

R12

280

QN13

+IN

t::.--l----t·
II

II

Je:Qp13

1 ttl
R33
800

IJQ~

t
QP7~

----

t=:o

~

r;-l

CIt

T 1.4PF......
QN1;r

~ t:J~ I

J

.140

-IN

QN2

QN3

c1

I..

QP6

QN6....t-- .......

DiS

~

Qp15

2.c:..
Hzl

~

140

ICQN10
R14

280
R13
1K

R32

QN14

~8

R23 200

~:io>h. QN19;,;;:t-- R30
~R261
'I ~7
200

5

L-.-OUT

QNll
lQN?=5

1
OPERATIONAL
AMPLIFIERS

1 11 1

11

HA5024

Application Information

Driving Capacitive Loads

Optimum Feedback Resistor

Capacitive loads will degrade the amplifier's phase margin
resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as
shown in Figure 6.

The plots of inverting and non-inverting frequency response,
see Figure 11 and Figure 12 in the Typical Performance
Curves section, illustrate the performance of the HA5024 in
various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that
of a voltage feedback amplifier, there can be an appreciable
decrease in bandwidth at higher gains. This decrease may
be minimized by taking advantage of the current feedback
amplifier's unique relationship between bandwidth and RI=All current feedback amplifiers require a feedback resistor,
even for unity gain applications, and RF, in conjunction with
the internal compensation capacitor, sets the dominant pole
of the frequency response. Thus, the amplifier's bandwidth is
inversely proportional to RF. The HA5024 design is optimized for a 10000 RF at a gain of + 1. Decreasing RF in a
unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is
more stable, so RF can be decreased in a trade-off of stability for bandwidth.
The table below lists recommended RF values for various
gains, and the expected bandwidth.
GAIN

(Act>

RF(O)

BANDWIDTH
(MHz)

-1

750

100

+1

1000

125

+2

681

95

+5

1000

52

+10

383

65

-10

750

22

.....

VIN

~

Ry

-=..::-

R
VOUT

'iCc

RF
RI

-=-=FIGURE 6_ PLACEMENT OF THE OUTPUT ISOLATION
RESISTOR,R

The selection criteria for the isolation resister is highly
dependent on the load, but 270 has been determined to be
a good starting value.

Power Dissipation Considerations
Due to the high supply current inherent in quad amplifiers,
care must be taken to insure that the maximum junction temperature (TJ, see Absolute Maximum Ratings) is not
exceeded. Figure 7 shows the maximum ambient temperature
versus supply voltage for the available package styles (Plastic
DIP, SOIC). At ±5Voc quiescent operation both package
styles may be operated over the full industrial range of -40°C
to 85°C. It is recommended that thermal calculations, which
take into account output power, be performed by the designer.
130r-r--.--.--.--.-~--'--'--'-~r--r~

PC Board Layout
The frequency response of this amplifier depends greatly on
the amount of care taken in designing the PC board. The
use of low inductance components such as chip resistors
and chip capacitors is strongly recommended. If leaded
components are used the leads must be kept short especially for the power supply decoupling components and
those components connected to the inverting input.
Attention must be given to decoupling the power supplies. A
large value (1 011 F) tantalum or electrolytic capacitor in parallel with a small value (0.1IlF) chip capacitor works well in
most cases.
A ground plane is strongly recommended to control noise.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier's inverting input (-IN). The
larger this capacitance, the worse the gain peaking, resulting
in pulse overshoot and possible instability. It is
recommended that the ground plane be removed under
traces connected to -IN, and that connections to -IN be kept
as short as possible to minimize the capacitance from this
node to ground.

5

7

9

11

13

15

SUPPLY VOLTAGE (±V)

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE
VB SUPPLY VOLTAGE

EnableIDisable Function
When enabled the amplifier functions as a normal current
feedback amplifier with all of the data in the electrical specifications table being valid and applicable. When disabled the
amplifier output assumes a true high impedance state and
the supply current is reduced significantly.

3-376

HA5024
The circuit shown in Figure 8 is a simplified schematic of the
enable/disable function. The large value resistors in series with
the DISABLE pin makes it appear as a current source to the
driver. When the driver pulls this pin low current flows out of the
pin and into the driver. This current, which may be as large as
3501JA when external circuit and process variables are at their
extremes, is required to insure that point "A" achieves the
proper potential to disable the output.The driver must have the
compliance and capability of sinking all of this current.
When Vee is +5V the DISABLE pin may be driven with a
dedicated TIL gate. The maximum low level output voltage
of the TTL gate, 0.4V, has enough compliance to insure that
the amplifier will always be disabled even though D1 will not
turn on, and the TTL gate will sink enough current to keep
point "A" at its proper voltage. When Vee is greater than +5V
the DISABLE pin should be driven with an open collector
device that has a breakdown rating greater than Vee.
Referring to Figure 8, it can be seen that R6 will act as a pull-up
resistor to +VCC if the DISABLE pin is left open. In those cases
where the enable/disable function is not required on all circuits
some circuits can be permanently enabled by letting the DISABLE pin float. If a driver is used to set the enable/disable level,
be sure that the driver does not sink more than 201JA when the
DISABLE pin is at a high level. TTL gates, especially CMOS
versions, do not violate this criteria so it is permissible to control
the enable/disable function with TTL.
+vcc
R6
15K

its equivalent is used to select channels its logic must be break
before make. When these conditions are satisfied the
HA50241P is often used as a remote video mUltiplexer, and the
multiplexer may be extended by adding more amplifier ICs.
Low Impedance Multiplexer
Two common problems surface when you try to mUltiplex
multiple high speed signals into a low impedance source
such as an AID converter. The first problem is the low source
impedance which tends to make amplifiers oscillate and
causes gain errors. The second problem is the multiplexer
which supplies no gain, introduces all kinds of distortion and
limits the frequency response. Using op amps which have an
enable/disable function, such as the HA5024, eliminates the
multiplexer problems because the external mux chip is not
needed, and the HA5024 can drive low impedance (large
capacitance) loads if a series isolation resistor is used.
VIDEO
R4
INPUT
75
#1 o-'---il~~Miv-

R3
681

-

...I

r+

Za::
O!:!:!
-IL

100

!

R6
75

R33

5V

ALL
OFF

-

Qp18

-

-5V
VIDEO
INPUT
#3

A

C(CI)

1 R21

0,
R7
15K

VIDEO OUTPUT

TO 75(1 LOAD
__---':':~~:::;

R'4
75

R"
75

ENABLEIDISABLE INPUT

=

FIGURE 8. SIMPLIFIED SCHEMATIC OF ENABLEIDISABLE
FUNCTION

R'3
681

R'2
681
+5V

Typical Applications

VIDEO
INPUT
#4

R'9
75

Four Channel Video Multiplexer
Referring to the amplifier U1A in Figure 9, Rl terminates the
cable in its characteristic impedance of 750, and R4 back
terminates the cable in its characteristic impedance. The
amplifier is set up in a gain configuration of +2 to yield an
overall network gain of + 1 when driving a double terminated
cable. The value of R3 can be changed if a different network
gain is desired. R5 holds the disable pin at ground thus
inhibiting the amplifier until the switch, 81, is thrown to position 1. At position 1 the switch pulls the disable pin up to the
plus supply rail thereby enabling the amplifier. Since all of
the actual signal switching takes place within the amplifier,
its differential gain and phase parameters, which are 0.03%
and 0.03 degrees respectively, determine the circuit's performance. The other three circuits, U1 B through Ul [) operate in
a similar manner.
When the plus supply rail is 5V the disable pin can be driven by
a dedicated TIL gate as discussed earlier. If a multiplexer IC or

3-377

R,B
75

=
+5VIN.
O.lIlF

R,B
681

R'7
681

1 1·

JJ

+5V

10llF

-SVIN.
O.lIlF

11

JJ

.-sv
10JlF

NOTES:

17. U, is HA50241P.
1B. All resistors in U.
19. 5, is break before make.
20. Use ground plane.
FIGURE 9. FOUR CHANNEL VIDEO MULTIPLEXER

t(:::i
a:: 0..
W:::i
~C(

HAS024
Referring to Figure 10, both inputs are terminated in their
characteristic impedance; 750 is typical for video applications. Since the drivers usually are terminated in their characteristic impedance the input gain is 0.5, thus the amplifiers, U2,
are configured in a gain of +2 to set the circuit gain equal to
one. Resistors R2 and R3 determine the amplifier gain, and if a
different gain is desired R2 should be changed according to the
'equation G = (1 + R3"R2)' R3 sets the frequency response of
the amplifier so you should refer to the manufacturers data
sheet before changing its value. Rs, Cl and D1 are an asymmetrical charge/discharge time circuit which configures U1 as a
break before make switch to prevent both amplifiers from being
active simultaneously. If this design is extended to more chan-

nels the drive logic must be designed to be break before
make. R4 is enclosed in the feedback loop of the amplifier so
that the large open loop amplifier gain of U2 will present the
load with a small closed loop output impedance while keeping the amplifier stable for all values of load capacitance.
The circuit shown in Figure 10 was tested for the full range of
capacitor values with no oscillations being observed; thus,
problem one has been solved.The frequency and gain characteristics of the circuit are now those of the amplifier independent of any multiplexing action; thus, problem two has been
solved. The multiplexer transition time is approximately 15~s
with the component values shown.

INPUT B _----~~------.,

INPUTA_~~-----------, L-~~~~~~L:~_5~v~-t
D1A
lN4148

CHANNEL
SWITCH----+

>.:-......."Jtr-*--G

OUTPUT

+5V

NOTES:

INHIBIT ...........'1--'

1. U2: HAS022124.

D1B
lN4148

R6
lOOK

2. Uf CD4011.

FIGURE 9. LOW IMPEDANCE MULTIPLEXER

Typical Performance Curves
5
VOUT = 0.2Vp.p

4 I- CL=10pF

II

fI

130

;'

120

!l!z

=

!.
:z:

15
~z

i'

95

/

~

...'?

III

~

~

~

:2-

"I~

5

:--- r- GAIN PEAKING
I
500

~

iii'

"-

I

........ r-...

I

.....

o

650
800
950
FEEDBACK RESISTOR (0)

1100

130

........ 1000..

~

...z

o ~
1500

I

", ~ANLJH

120

,

110

/

III

10

',,-

350

li!:

-

-3dB BANDWIDTH

~

90

--

5

FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE

VOUT 0.2Vp.p
CL= 10pF
Ay=+2

~

iii!:

900
1100
1300
FEEDBACK RESISTOR (0)

700

500

III

C!

~ ........ ....
GAIN PEAKING

200

10 ~

:2-

FREQUENCY (MHz)

N'loo

-r-

~

·180 -

FIGURE 11. PHASE RESPONSE AS A FUNCTION OF
FREQUENCY

:z:

-

-

i\..

~

·135

VOUT = O.2Vp.p
CL=10pF
Ay=+l

·3dB BANDWIDTH

z

·90

~\.

Ay = ·10, RF = 7500

>
iii!: -315

:z:

C!

45

Ay = +10, RF'= 3830

c(

:z:

180

100

~

~

52

IV

90

~

~

80

~

o

/

200

V

..J

-- -

etC/)
Za:
O!!!
-I&..

I I I
VOUT = O.2Vp.p _
CL= 10pF
Ay=+l

a: a..

W:il

~

\
GAIN PEAKING

!;;::::i

6

iii'

4:2C!

~

2

~

~

oC!

800

400

800

1000

LOAD RESISTOR (0)

FIGURE 14. BANDWIDTH AND GAIN PEAKING vs LOAD
RESISTANCE

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs FEEDBACK
RESISTANCE
80

"~.....1\

N' 60

:z:

!.
:z:

\

§
~

40

z
~

...'?
III

20

o

200

VOUT = O.1Vp.p
CL= 10pF

VOUT = 0.2Vp.p
CL=10pF
Ay = +10

1-

~12~~-'~---+--~--~--+---+---r-~~~

\

~

8!

~ 6r--+-7~~~~~~-

"- ~

OL-~~~

350

500
650
FEEDBACK RESISTOR (0)

800

FIGURE 15. BANDWIDTH vs FEEDBACK RESISTANCE

950

o

200

__

~~

__

~

__

~~

400
600
LOAD RESISTANCE (0)

__-L__
800

FIGURE 16. SMALL SIGNAL OVERSHOOT vs LOAD
RESISTANCE

3-379

J-~

1000

~et

HA5024

Typical Performance Curves

VSUPPLY = f:SV,

"'v = +1, RF = lkn, RL = 400Q, TA = 2S0C,

Unless Otherwise Specified (Continued)
0.08

0.10

FREQUENCY = 3.58MHz

FREQUENCY" 3.58MHz

I

0.08

~

~

I

0.06

RL = 750

I

If

;i!

§

w 0.04

~

Cii"

""-

w 0.06
w

"""-"'

/'
V'RL=1500

,

a:
w

II..

~

0.02

0.00

,~

5

CI

I/J

e.
I/J

~
:z:

7
9
11
SUPPLY VOLTAGE (±V)

0.04
RL"~OO

"-

....
c(

~

"'

r-.........

~ RL" lkn
3

rr:

13

§

0.02

I/J

a:

-'-

w

II..
II..

is

3

15

~

~

tc

HD2,

,

~

~I/J

.-

/

I

I

~

a: -40r-rH~~++~ffi-~~~~-r~m&~

,I',"

·70

4OI-H-I+IH*--+~+mfr-~H+Hm~~~~~

Q

IY

3RD ORDER IMD

~ ......

H~

·50 ' -

~

1
FREQUENCY (MHz)

10

~~

~

NEGATIVE PSRR

0.001

0.01

__

I I IllJ!1 .111 Ulli

POS~~EPSRR

11111

111111

0.1
FREQUENCY (MHz)

10

30

FIGURE 20. REJECTION RATIOS va FREQUENCY

12

8.0
RL=1000
VOUT" 1.0Vp.p
Ay=+l

RLOAD = 1000
VOUT = 1.0Vp.p

7.5

...oS

/
L

~

w

Q

7.0

ElCIi
!

6.5

-IH-++IHH-7'1I.oo';,jo'Fl\I#I---f+f+tHII---f-l

·80 I-H-I+IH*--

FIGURE 19. DISTORTION VB FREQUENCY

5!

CMRR

-60
·70

HD3

·90
0.3

"-

15

m'~~~~*-++~ffi-~+H~~rH~~~
~

;

H:\

U" -60
III

Z

13

•1°1-+-IH-t*lt-+-Il+ttHtl-+-I+tHtflI-t-i+ttttllf--:loIII

-50

0

7
9
11
SUPPLY VOLTAGE (±V)

O~;Ay~=r+~ln*--~++~--+114~~4-~HHH--+1

VOUT" 2.0Vp..p
CL=30pF

...oS

I
5

FIGURE 18. DIFFERENTIAL PHASE VB SUPPLY VOLTAGE

-40

-80

\
./'

RL=lkn

0.00

FIGURE 17. DIFFERENTIAL GAIN VB SUPPLY VOLTAGE

~

~
"
r~ ~~

RL=750

- 'V

...

'/
./

-""--

10

~
w

Av = +10, RF = 3830

Q

Z

Q

V'

8

5!"-

I

...

tc
CI
!

... t--.

6

I

Ay=+2,RF=6810 -

---

Av=+l,RF=lkn

4

6.0
-50

·25

0
25
50
75
TEMPERATURE (oC)

100

125

3

FIGURE 21. PROPAGATION DELAY va TEMPERATURE

5

7
9
11
SUPPLY VOLTAGE (±V)

13

15

FIGURE 22. PROPAGATION DELAY va SUPPLY VOLTAGE

3·380

HA5024

Typical Performance Curves

VSUPPLY = ±5V. Av = +1. RF = 11<0. RL = 4000, TA = 2SoC,

Unless Otherwise Specified (Continued)

-

500
Your = 2OVp.p
450

Ul'

~

.-'

.

400

~

II:

...

250

w

l---'

..V

UI

200

0.4

-

iii"

:!!.

..........

0.2

~
CI

/~SLEW RATE . _ f-

w

;=

r--.....

-'

!( 300

I
Your = 0.2Vp.p
CL = 10pF

0.6

+ SLEW RATE

350

~

0.8

C

w

/'-

0

-..........

N

::i
c(

-0.4

:Ii
II:

-0.6

0

~

-0.8

I

-1.0

100

~

Ay=+1,RF=1k!l ......

z

150

Ay= +2, RF = 6810

~

-0.2

~

Ay= +5, RF = 1k!l-

..... ..........

/ ...........

Ay = +10, RF = 3830

-1.2
-SO

-25

0
25
50
75
TEMPERATURE <"C)

100

125

10

5

--=

.....

............

15
20
FREQUENCY (MHz)

r--........
30

25

FIGURE 24. NON-INVERTING GAIN FLATNESS VB FREQUENCY

FIGURE 23. SLEW RATE VB TEMPERATURE
0.8
Vour = 0.2Vp-p
CL = 10pF
RF =7500

0.6
0.4

iii"
z

:!!. 0.2
C

0

c

~

-0.2

0

-0.6

CI

:Ii
II:

z

"'-'\.,

-0.4

f-

Ay=-1

i

~~

'\.

-0.8
-1.0

-

~

"

/. \.' \

Ay=-10

"-

Av=-5

"

1

-1.2
5

15

10

/-

/
'{

/
Av=-2_

~~o
100

I
25

20

30

FREQUENCY (MHz)

FREQUENCY (kHz)

FIGURE 25. INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 26. INPUT NOISE CHARACTERISTICS

1.5

1.0

2

\

l

~

" .........t"-

t--

0.5

r- ~

.J'

~

J..--

--

V

0.0
-60

-4
-40

-20

0

20

40

60

80

100

120

140

TEMPERATURE (DC)

1/

-60

-40

-20

0

20
40
60
80
TEMPERATURE (DC)

100

120

140

FIGURE 28. +INPUT BIAS CURRENT VB TEMPERATURE

FIGURE 27. INPUT OFFSET VOLTAGE VB TEMPERATURE

3-381

HAS024

Typical Performance Curves

VSUPPLY = ±5V, Av = +1, RF = lkn, RL = 4000, TA = 25°C,

Unless Otherwise Specified (Continued)
4000

22

l

\

20

I

B
~

ID

~

;; 3000

1\

18

16

-60

'"

-40·20

.........

0

I
~

I'-- """-

20

40

2000

!/

60

100

80

120

1000
-60

140

~

/

·20

-40

0

FIGURE 29. -INPUT BIAS CURRENT VB TEMPERATURE

74

i

J

, """

~

15

~~~

]

~ I""""

~ I"'"

10

~

~~

iii'

70

0

68

3

4

5

to-...

a: 66
z

~

..,w

6

7

9

8

10

11

12

13

14

15

·PSRR

......

64

60

250 C

I

~~
t---

58
·100

CMRR

J

I"-.....

I"o

·50

SUPPLY VOLTAGE (±V)

I

I

J'V

.... ..... /...
'" -'
0

o

1

2

I

+10V

I-- f-+5V

+15V

.....

~

5

6

7

8

120 140

""""

r---r-..

50
100
150
TEMPERATURE (DC)

200

250

4.0

V~

II ~
",

I
J

/
4

--

J

J

..... r--.
-~ ..... ......
r--. .....

3

100

FIGURE 32. REJECTION RATIO VB TEMPERATURE

FIGURE 31. SUPPLY CURRENT VB SUPPLY VOLTAGE

40

80

~

I

:!!.

ij

I'
5

~

w
a: 62

I

60

~PSRR

72

550 C
1250 C

40

FIGURE 30. TRANSIMPEDANCE VB TEMPERATURE

25

20

20

TEMPERATURE (DC)

TEMPERATURE (DC)

I
\

/

/

~

i"'"

u

~~

/

9 10 11 12 13 14 15

DISABLE INPUT VOLTAGE (V)

V

V
~

~

~

/

3.6

-60

-40

·20

0

20

40

60

80

100

120

TEMPERATURE ~C)

FIGURE 33. SUPPLY CURRENT VB DISABLE INPUT VOLTAGE

3-382

FIGURE 34. OUTPUT SWING VB TEMPERATURE

140

HA5024

Typical Performance Curves

VSUPPLY= ±5V. AV= +1. RF= 1kO. RL = 4000. TA =2SoC.

Unless Otherwise Specified (Continued)
30

1.2

1.1

.

"iL

.s>- 1.0 \

~

I-

0

~

:>
0.9

/'

\ ".....

-

/

V

/

/

r-""

0.8
0.01

0.10

1.00

-60

10.00

·40

-20

0

LOAD RESISTANCE (len)

1.0

,

\

w

II:
II:
:::I
U

~

0.5

80

100

120

140

-

g

·40

t\..

-20

251-+-1--+

O!!:!
-u.

20

W:::ii

~c(

0

"""- r--.-.

20

40

60

80

100

120

3

140

4

5

6

FIGURE 37. INPUT BIAS CURRENT CHANGE BETWEEN
CHANNELS vs TEMPERATURE

32
1 1

3D

VOUT= 2Vp.p

".".

28

V

!

~

13

14

ENABLE

15

16

.A

26

'-

ENABL~

-...
Ay=+5,RF=lkn~
.~f".....
.....
Ay=+l,RF=lkn ......
r--......
r--...

-0.8

~

150
-1.0
100

-SO

-25

25

o

50

75

100

Ay = +10, RF = 3830

-1.2

125

5

10

25

15
20
FREQUENCY (MHz)

TEMPERATURE ("C)

FIGURE 22. SLEW RATE VB TEMPERATURE

--"'-

...........

30

FIGURE 23. NON-INVERTING GAIN FLATNESS VB FREQUENCY

0.8

1000
VOUT = 0.2Vp.p
CL= 10pF
RF = 7500

0.6

iii'
:!!.

z

0.4

~

0

w

-0.2

.J

-0.4

0

!:lI

~
a:
0

z

-,

0.2

-0.6

......

r- Ay(10

-1.2.

I

"',

L

IL

"<

Ay=~2

'"

\..
15

w

!II
0

z
w

~

-

z
~
w
a:
a:

400

:.J

§!

::>

()

200

I

20

25

30

FREQUENCY (MHz)

FREQUENCY (kHz)

FIGURE 24. INVERTING GAIN FLATNESS VB FREQUENCY

FIGURE 25. INPUT NOISE CHARACTERISTICS

1.5

1.0

~

600

w

!II

0

Ay=-S--""';- r-

\..

10

5

I

~~

'\.

-0.8
-1.0

.s.

Ay=-l

/"

I¥

800

~:>

2

1\
I" ~

l

--

......... :--.

0.5

-I-

G
~

L

-2

III

/

0.0
-60

0

~
w
a:
a:

-40

-20

0

20

40

60

80

100

120

140

-4
-60

,..",

".-

V
-40

-20

0

20

40

60

80

100

120

140

TEMPERATURE (DC)

TEMPERATURE ("C)

FIGURE 27. +INPUT BIAS CURRENT VB TEMPERATURE

FIGURE 26. INPUT OFFSET VOLTAGE va TEMPERATURE

3-394

HA5025
Typical Performance Curves

VSUPPLY = ±5V, A.J = +1, RF = 1kn, RL = 4000, TA = 25°C, Unless Otherwise Specified

4000

22

~

!i!

20

1\

0

~

~

1\~

'":::>

II:
II:

ID

18

16
-60

-40

-20

",

W 3000
U

~

........ .........

0

20

~

-

40

,/

:;

~

~

-

60

80

100

120

2000

1000

140

II

~

,/

~

I

I

20

~

15

~ -\
~~

~

10

--

i""""

."

~

,

~

~
~

5

0

~
II:
z

~

'"
ia
II:

I

68

.....

7

8

10

9

64
62

11

12

13

14

I

58
-100

15

I

I
30

-

r-+5V

IZ

'":::>

II:
II:

...... r--

0

~

a..
a..

:::>

III

J

20

10

o

'-

o

~ ......

i ' ......

~

"

......

~ r--.

~~

I
o

~

~<

...........

-

50

r-...
r--

100

~
Cl

J

J

-

W::i5

150

200

250

4.0

+15V

,.....



~

:::>
0

~

.;'V

V

/

,/

~

/'

,/

3.6
1

2

3

4

5

6

7

8

9 10 11 12 13 14 15

DISABLE INPUT VOLTAGE (V)

~

~

-~

0

~

40

60

80

100

1~

TEMPERATURE (oC)

FIGURE 32. SUPPLY CURRENT VB DISABLE INPUT VOLTAGE

3-395

FIGURE 33. OUTPUT SWING vs TEMPERATURE

140

HA5025
Typical Perfonnance Curves

VSUPPLY = ±5V, IV = +1, RF = lkO, RL = 4000, TA = 25°C, Unless Otherwise Specified (Continued)

30r----------,-----------,----------,

1.2

1.1

~!;
~

>

\

.§. 1.0

~

10r-------~~-----------+----------,

0.9

O~

_________ L_ _ _ _ _ _ _ _ _ _L __ _ _ _ _ _ _ _
0.10

0.01

1.00

~

V

\ "-

.., . /

-

......

V

/

,,/

0.8
-60

10.00

-40

·20

0

LOAD RESISTANCE (leO)

20

40

60

80

100

120

FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN
CHANNELS vs TEMPERATURE

FIGURE 34. OUTPUT SWING va LOAD RESISTANCE

·30

1.5

Ayl=+ll

I I I

VOUT= 2Yp.p

~

~

~

\

"

'- .........
~

0.5

·60

/'

iii'
:!!. -50

-40

·20

0

20

,,~

~

.......

0.0
40

-

60

./

~ -60
11:
w

..,~

II)

·70

80

100

120

-eo

140

/

V

0.1

FREQUENCY (MHz)

FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN
CHANNELSvsTEMPERATURE

FIGURE 37. CHANNEL SEPARATION vs FREQUENCY

~w.

ilI!ini:E = OY

0 '- VIN = 5Vp.p
·10 ;- RF =7500

iii' ·20
:!!.
:c -30
CI

:c

b
w

·50

w ·60

II.

·70

----

~

-40
~

...

-'

i"""

10
1-

~

0.1

~

0.01

iii 0.001

"'

RL= 1000
~

"'"

-i"o

~

!'-

:-....

,
~

\

·80
1

10

20

0.001

FREQUENCY (MHz)

180
135

~

0.01

0.1

1

10

o 5
z

-45 ~

FIGURE 39. TRANSIMPEDANCE VB FREQUENCY

3·396

II)

-90 ~

·135
100

FREQUENCY (MHz)

FIGURE 38. DISABLE FEEDTHROUGH va FREQUENCY

ffi

w
90 II:

45 _
w

~

0.1

30

10

1

TEMPERATURE (DC)

5II:

~

-40

.... 1.0

!

140

TEMPERATURE (DC)

...

HA5025

Typical Performance Curves

a

VSUPPLY =±5Y, "" = +1, RF = 1kn, RL = 4000, TA = ~c, Unless Otherwise Specified (Continued)
10

!.

~

II

"'"

w

0

z
~
w

0.1
0.01

Q.

l!l 0.001
-_..!.....-....- - o OUT

IN

OUT

loon

-'
«en

Za:

O!!:!
-II..

~::::i
a: a.
W:5

FIGURE 2. TRANSIENT RESPONSE

INP;V

IN;:::::Jr-----------------,~

Ir--------,L

OV~

1

,J__ _
- i- f

OUTPUT - 90% - - - ,
IN
__ .!0.!o __ J __ _
, _ , SLEW
,
'RATE=
: :
V/IlT

OVERSHOOT

, ERROR BAND
, ±10mVFROM
, FINAL VALUE
NOTE: Measured on both positive and negative transitions.

FIGURE 3. SETTLING TIME

FIGURE 4. RISE TIME

TA = 25°C, Rs = 50n, RL = 1kn

TA = 250 C, RS = 50n, RL = 100n
+10V RESPONSE

+10V RESPONSE

3-401

~«

HA-S033
Test Circuits and Waveforms

(Continued)

500mV

OV
500mV

VOUT
OV

TA = 25°C, RS

=500, RL = 1000

PULSE RESPONSE

Schematic Diagram
V+o-~~------~~~------~~--~--~

___

~---,

ApplicaUonlnformaUon
Layout Considerations
The wide bandwidth of the HA-5033 necessitates that high
frequency circuit layout procedures be' followed. Failure to
follow these guidelines can result in marginal performance.
Probably the most crucial of the RFlvideo layout rules is the
use of a ground plane. A ground plane provides isolation and
minimizes distributed circuit capacitance and inductance
which will degrade high frequency performance. This ground
plane shielding can also incorporate the metal case of the
HA-5033 since pin #2 is internally tied to the package. This
feature allows the user to make metal to metal contact
between the ground plane and the package, which extends
shielding, proVides additional heat sinking and eliminates the
use of a socket, IC sockets contribute inter-lead capacitance
which limits device bandwidth and should be avoided.

For the PDIp, pin 6 can be tied to either supply, grounded, or
simply not used. But to optimize device performance and
improve isolation, it is recommended that this pin be grounded.
Other considerations are proper power supply bypassing
and keeping the input and output connections as short as
possible which minimizes distributed capacitance and
reduces board space.
Power Supply Oecoupling
For optimum device performance, it is recommended that
the positive and negative power supplies be bypassed with
capacitors to ground. Ceramic capacitors ranging in value
from 0.011lF to O.1IlF will minimize high frequency variations
in supply voltage. Solid tantalum capaCitors 11lF or larger will
optimize low frequency performance.
It is also recommended that the bypass capacitors be
connected close to the HA-5033 (preferably directly to the
supply pins).

3-402

HA-5033
Graph is based on:

i

2.4
2.2
Q 2.0

Z

~

~

is

a:

~

..J

1.8

1.6
1.4
1.2
1.0

~ 0.8

12

~

!

0.6
0.4

~ 0.2
~

-,--

Where: TJMAX = Maximum Junction Temperature of the Device

QUIESCENT PD = 0.72W
AT Vs ±12V, ICC = 30mA

TA = Ambient Temperature
8JA = Junction to Ambient Thermal Resistance

O~----~r------r------~----~------,
25
45
65
85
125
105
TEMPERATURE (DC)

FIGURE 5. FREE AIR POWER DISSIPATION

Typical Applications

(Also see Application Note AN548)
V+
VIDEO
SIGNAL
INPUT

+12V
O.l~F

~

VIDEO
OUTPUT

Rl
60n

75n

R2
15n

RG-58

V+

V-

-

V-

"T~1
"":"

"="

goon

loon

FIGURE 7. VIDEO GAIN BLOCK

FIGURE 6. VIDEO COAXIAL LINE DRIVER 50Q SYSTEM

OV

OV

OV

OV

POSITIVE PULSE RESPONSE

NEGATIVE PULSE RESPONSE

3-403

-'
C(U)
Za:

O!:!!
-IL

!cc:::;
a: a.

W:i
~c(

HA-5033
Typical Performance Curves

>"

7

UJ

6

.s
C!I

~
~

Vs = ±15V

,I.
_VS=±12V

~~

5

4

~

3

~

/

~~

r

2

l.......r""
I

,

_~s=±5V

·80

t::=-

~
!z

-

If

I

Iii
~

40r-----r--------r--------~------_,

1

8

8~ 20F:!~~~~~~~

- - I~~
Vs=

III

~~

rOY

-I

1

-40

04080
TEMPERATURE (oC)

120

10~----~-------+--------+_------~

0-55

160

FIGURE 8. INPUT OFFSET VOLTAGE vs TEMPERATURE

30

30

UJ

a:

·25

25
75
TEMPERATURE (oc),

125

FIGURE 9. INPUT BIAS CURRENT vs TEMPERATURE

3000

I

Vs = ±15V, VIN = ±10V

I

Vs= ±15V

I 1

C

.s

!zUJ

20

~

vi ±l~V

a:
a:

:l

u

Vs= ±10V

;t
UJ
~

10

UI

1000

UI

-----

----

FALL (RL = lOOn)

""'-

UJ

!c
a:

Vs = ±5V

~

0.
0.
:l

~

/

\1

FALL (RL = 11<0)
2000

I
I
RISE (RL= 11<0) / '

./
,/

RISE (RL = lOOn)

I

o

·25

·55

25

·55

125

75

·25

FIGURE 10. SUPPLY CURRENT va TEMPERATURE

1400
1300
1200
1100
~ 1000
~ 900
;. 800
!c 700
a: 600

2200 Vs =±15V, RL = 11<0
TA = 25°C, VIN g ±10V
2000

'\..

"-

<~
UJ

!ca:

1400

J

,

I

",FALL

1200

...........

;t 1000
~ 800 --RiSE .................

UI

600
200

o

~UI

""~

""'- ...........

400

100
1000
CAPACITANCE (pF)

125

FIGURE 11. SLEW RATE va TEMPERATURE

2400

1800

75

TEMPERATURE (OC)

TEMPERATURE caC)

'iii' 1600

25

-5000

40

500
300
200
100

10,000

""
" " """
" "-"' ""
" ""-.................. ....

Vs =±15V, RL = loon
TA =25°C, VIN = ±10V

~

FALL

RIS~~ ~

~

o

100

1000

.....

5000

CAPACITANCE (pF)

FIGURE 13. SLEW RATE va LOAD CAPACITANCE

FIGURE 12. SLEW RATE VB LOAD CAPACITANCE

3·404

10,000

HA-5033
Typical Performance Curves

(Continued)

80
Vs = ±15V, TA = 25°C
60

5"

40

In

20

g

~

5...

0

5

·20

0

·40

jE

I!:::>

-60

-""

~~

RL='0kn

"...,..~

L

-80
·10

,/

/

II"""

900

V

RL= lkn

"
~ ~~I--"""

-

./

In

~

RL= 10kn

I

-8

-6

-4

X

~~
'#"

I-

...
::>

·2
0
+2 +4
INPUT VOLTAGE (V)

+6

+8

I'"

RL = 1000

./ ~

vr/

'" ~=500
V

·900
·10

+10

..".

.",

RL = 1000

...

·700

V

./ ~.Y

300

100
0
jE ·100
I::>
-300
I::>
0 ·500

I

RL = 500

5" 500

g

RL =lkn

I

I

Vs = ±15V, TA = 25°C
700

·8

-6

·4

·2
0
+2
+4
INPUT VOLTAGE (V)

+6

+8

+10

FIGURE 15. GAIN ERROR vs INPUT VOLTAGE

FIGURE 14. GAIN ERROR vs INPUT VOLTAGE

160
Vs = ±15, TA = 25°C

Vs =±15V, Vo=±10V

800

140

5" 120

g

In

~

5" 600

100

5
0

...:::>

RL= lkn

I-

...::>jE
5
...

g

80

r- -

VOUT = 0 SINKING
CURRENT

~

40

200

20

100

·55

·25

FIGURE

25
75
TEMPERATURE (oC)

0

125

,,~

/. ~

300

"

_I"""

I ~ ';/

,,
h

500

~ 400

60

I

I

700

-

VOUT=·10
VOUT=+10

I I

' "VOUT = 0 SOURCING
I
I
CURRENT

~ ~'
~~

~ ~~
10

16. GAIN ERROR vs TEMPERATURE

20

30

FIGURE

40

50 60 70
lOUT (mA)

80

90 100 110 120

17. VIN' VOUT vs lOUT

180

r--~

Y21

§Y21,Y21

135

iii
w
CJ
w

e.w

-'
c:I
Z

0(

w

~

90

1-1-'

W

II:

""'"

r\..

~ -!-o

Y"

45

11

Y,2
Y22
Y21

0
Y22

-I"-

i..I'!:

-45

!Ii
:r ·90

...

·135

i--"""Y12
-~

I

~ ,.J

"

10-4

-..

~Yll
Y,2

107
108
FREQUENCY (Hz)

107
108
FREQUENCY (Hz)

FIGURE 18. Y· PARAMETERS PHASE vs FREQUENCY

FIGURE 19. Y· PARAMETER MAGNITUDE VB FREQUENCY

3·405

....
 20
In
II:
W

~ 0.07

~

c 0.06
!:! 0.05

z

10K

lOOK
FREQUENCY (Hz)

1M

~
!:!

~

0.1

~

~

0.01

~
!:i 24

~

::Ii

II:

~

w

~

!:i
~

~

0

~

20

I!::::>

16

5

8

u-i
A-

4

2
INPUT VOLTAGE (RMS)

\

!~

NO HEAT SINK IN
FREE AIR

""

"" ......
'"

1M
10M
FREQUENCY (Hz)

100M

Vs =±10V

,

/

is = j5V

FIGURE 23. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE
6.0
5.5
'iii 5.0
::Ii 4.5
w 4.0
~ 3.5
!j
3.0
~ 2.5
5 2.0
1.5
0
1.0
0.5
0
10K

I

I

,,

VS=±15V,RL=lkQ

NOH~TSINK 1\

l

\

lOOK

,

0 100 200 300 400 500 600 700 800 900 lK
LOAD RESISTANCE (0)

3

Vs = ±15V, RL = loon

,

= 112v I
I

~~

:.= 12

I:!

t

sJl

u-i
A-

-,

1'-

1/

(

0

FIGURE 22. TOTAL HARMONIC DISTORTION vs INPUT VOLTAGE
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
10K

TA = 25°C j,Vs= ±15V

w 28

~

1

lOOK

FIGURE 21. TOTAL HARMONIC DISTORTION vs FREQUENCY

:.=

0

10K
lK
FREQUENCY (Hz)

100

.oJ

'iii

0.01

10M

./

0
::!i

.--"

0.02

€

f = 100kHz

z

II:

0.03

VS=±12V
RL= 1000

lz

~

0.04

«
:z:
.oJ

FIGURE 20. POWER SUPPLY REJECTION RATIO vs FREQUENCY·
1.0

0
::!i

II:

-'-~ 10

lK

Vs =-±12V, RL = loon
0.09- VIN=1VRM$
0.08

0

....

40

1".l

0.10

lZ

'" "
"" "'.

i

z 50

0

tiw

(Continued)
"

iD 70

IN FREE AIR

\

\

~

lG

FIGURE 24. OUTPUT SWING vs FREQUENCY (NOTE)

,

\

\.

"-

lOOK

1M
10M
FREQUENCY (Hz)

"

100M

lG

FIGURE 25. OUTPUT SWING vs FREQUENCY (NOTE)

NOTE:
This curve was obtained by noting the output voltage necessary to produce an observable distortion for a given frequency. If higher distortion
is acceptable, then a higher output voltage for a given frequency can be obtained. However, operating the HA-5033 with Increased distortion
(to the right of curve shown), will also be accompanied by an increase In supply current. The resulting increase In chip temperature must be
considered and heat sinking will be necessary to prevent thermal runaway. This characteristic is the result of the output transistor operation. If
the signal amplitude or signal frequency or both are Increased beyond the curve shown, the NPN, PNP output transistors Will approach a condition
of being simultaneously on. Under this condition, thermal runaway can occur.

3-406

Die Characteristics
SUBSTRATE POTENTIAL (Powered Up):

DIE DIMENSIONS:

51 mils x 67 mils x 19 mils
1300~m x 1700~m x 483~m

Unbiased
TRANSISTOR COUNT:

METALLIZATION:

20

Type: AI, 1% Cu
Thickness: 16kA ±2kA

PROCESS:

Bipolar Dielectric Isolation
PASSIVATION:

Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA-5033

..J

4:0
Za:

IN

O!:!!
-u.
!ci::J
a: a..
W::::E
~4:

y-

3-407

~HARRlS

mJ

SEMICONDUCTOR

HA-5101, HA-5111
10MHz and 100MHz, Low Noise,
Operational Amplifiers

November 1996

Features

Description

• Low Noise •••.•••••..••••.••• ,. 3.0nVl..JHi at 1kHz

The HA-5101/5111 are dielectrically isolated operational
amplifiers featuring low noise. Both amplifiers have an
excellent noise voltage density of 3.0nV/--IHz at 1kHz. The
uncompensated HA-5111 is stable at a minimum gain of 10
and has the same DC specifications as the unity gain stable
HA-5101. The difference in compensation yields a 100MHz
gain-bandwidth product and a 50VlllS slew rate for the HA5111 versus a 10MHz unity gain bandwidth and a 10V/IlS
slew rate for the HA-51 01.

• Bandwidth................. 10MHz (Compensated)
100MHz (Uncompensated)
• Slew Rate • . • . . • . • • . • . . • . •• 10VlllS (Compensated)
SOViIlS (Uncompensated)
• Low Offset Voltage Drift. . . • • • • . • • • • • • . • .. 31lVJOC
• High Gain· •..•••••••••.••••.••••.••.•• 1 x 106VN
• High CMRRlPSRR ••.•••.••••••••..•••••.• 100dB
• High Output Drive Capability .•.•••....••..•. 30mA

Applications
• High Quality Audio Preamplifiers
• High Q Active Filters
• Low Noise Function Generators
• Low Distortion Oscillators
• Low Noise Comparators
• For Further Design Ideas, See Application Note AN554,
Harris AnswerFAX (407-724-7800) Document #9554

Pinouts

DC characteristics of the HA-5101/5111 assure accurate
performance. The O.5mV offset voltage is externally adjustable and offset voltage drift is just 3IlVf'C. An offset current
of only 30nA reduces input current errors and an open loop
voltage gain of 1 x 106VN increases loop gain for low distortion amplification.
The HA-5101/5111 are ideal for audio applications, especially low-level signal amplifiers such as microphone, tape
head and phono cartridge preamplifiers. Additionally, it is
well suited for low distortion oscillators, low noise function
generators and high Q filters.

Ordering Information

HA-5101, HA-5111 (PDIP, CERDIP, SOIC)
TOP VIEW

PART NUMBER
(BRAND)

TEMP.
RANGE ("C)

PKG.
NO.

PACKAGE

HA2·51 01-2

-55 to 125

B Pin Can

TB.C

HA3·5101-5

Oto 75

BLdPDIP

EB.3

HA7-51 01-2

-55 to 125

B LdCERDIP

FB.3A

HA9P51 01-5
(H51015)

01075

B LdSOIC

MB.15

HA9P5101-9
(H51019)

-4010 B5

B LdSOIC

MB.15

B Ld PDIP

EB.3

BLdCERDIP

FB.3A

HA-5101 (CAN)
TOP VIEW

HA3-5111-5

01075

NC

HA7-5111-2

-55 to 125

HA9P5111·5
(H51115)

01075

B LdSOIC

MB.15

HA9P5111-9
(H51119)

-40 10 B5

B LdSOIC

MB.15

4
V-leASE)

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-408

File Number

2905.2

HA-5101, HA-5111
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 40V
Differential Input Voltage...................•............ 7V
Input Voltage ...................................... ±VSUPPLY
Output Current. . . . . . . . . . . . . . . . . .. Full Short Circuit Protection

Thermal Resistance (Typical, Note 2)
9JA (oCIW) 9JC (oCIW)
Can Package. . . . . . . . . . . . . . . . . . . .
165
80
94
N/A
PDIP Package. . . . . . . . . . . . . • . . . . .
CERDIP Package..... ...... .....
135
50
157
N/A
SOIC Package. . . . . . . . . . . . . . . . . . .
Maximum Junction Temperature (Note 1) . . . . . . . . . . . . . . .. 175°C
Maximum Junction Temperature (Plastic Package) ....... 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............ 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-5101/5111-2 ................•....•... -55°C to 125°C
HA-5101/5111-5 ............................ OOCt0750C
HA-5101/5111-9 .......................... -40°C to 85°C

CAUTION: Stresses abo"" those listed in "Absolute Maximum Ratings" may caUSe permanent damage to the device. This is a stress only rating and operaffon
of the device at these or any other conditions abo"" /hose indicated in the operational sections 01 this specification is not implied.

NOTES:
1. Maximum power diSSipation, including output load, must be designed to maintain the maximum junction temperature below 175°C for
hermetic packages, and below 150°C for the plastic packages.
2. 9JA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

VSUPPLY = ±15V, Rs = 1000, RL = 2kO, CL = 50pF, Unless Otherwise Specified
HA-5101·2, -5; HA-5111·2,·5
TEST CONDITIONS

PARAMETER

TEMP
fC)

MIN

TYP

MAX

HA·5101·9. HA-5111-9
MIN

TYP

MAX

UNITS
..J



\.

1000

,.,..,..V

CI

~

r--

VOLTAGE

~

Iii
~

I!;

SOO

V

~

ICURRENT

~

o

o

10

100

10K

lK

·50

lOOK

·25

o

FREQUENCY (Hz)

25

50

75

100

125

TEMPERATURE (DC)

FIGURE 9. HA-5101111 NOISE SPECTRUM

FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE

AV = 25000 Vs = ±15V (2.25I1Vp.P ATO)

AV = 25000, Vs = ±15V (12.89mVp.p RTO)

PEAK-To-PEAK NOISE O.lHz TO 10Hz

PEAK-To-PEAK TOTAL NOISE 0.1 Hz TO lMHz

20

250

200
~

/

·60

~/
·55

·25

I

V

-......

"""

.s
!Ew

150

~

a:
a:
:::)
u 100

~

~

III

"'-

"- ............r--

50

o

25

so

75

100

125

TEMPERATURE (DC)

o

·55

·25

o

25

-50

~

75

100

TEMPERATURE (DC)

FIGURE 11. INPUT OFFSET CURRENT vs TEMPERATURE

FIGURE 12. INPUT BIAS CURRENT vs TEMPERATURE

3-414

125

HA-5101, HA-5111

Typical Performance Curves
1.1

.....
Q 1.0

~

iI!

I I I I

!

1.1

I

"",io-' ",,'"

t...
SLEW RATE ..t
RISE TIME

~~

~; ~"'"

(Continued)

I""'r-- .......

140

100

~
~

iii" 80
:!!.
z 60

w

0.9

0.9

~

a:
0

~

0.8

a:

0.8

;=

!.
~
i=
w

!I!

~

0.7

II)

RL = 2kO, CL = 50pF
VS=±15V

I I I I I I I

0.6
·60

-40

·20

0
20
40
60
80
TEMPERATURE ('IC)

100

120

0 HA·5101

~

~ ..,..,

~

-- V --

-30

r::HASE

r-

~

50

100

10

100

lK

.c
!:i

;:;.- I"""

10M

100M

MlxIMU~

..J. :;;:::;;;-

l!i:

3

a:
a:
:::>
u

2

~

-

~
~

I

I

::::

400

450

a:c.

W:E

~ 30
u

g lOOK 1-_ _ _ _-+_ _ _ _ _+-_ _ _ _-1

!:iII.
!:i0

~

(100)

o

20
A
B
C
0

10
10K
(80) 5'-------10'-------11..
5- - - - - - ' 1 8
SUPPLY VOLTAGE (±V)

FIGURE 17. DC OPEN-LOOP VOLTAGE GAIN va SUPPLY
VOLTAGE

TA = 25°C, Vs =±15V

~~

C"

lM~~~~~~~~~~~~~~~~~

o

o

I

..........!,
VIN
+15mV
·15mV
+15mV
·15mV
20

40

VOUT
±15V
±15V
OV
OV
60

80
100
TIME (S)

120

140

FIGURE 18. SHORT CIRCUIT CURRENT vs TIME

3-415

Za:

!;t:::i

TYPICAL

II)

350

....


~
~

10K
lOOK
1M
FREQUENCY (Hz)

TA = 25°C

w

300

II.

FIGURE 14. OPEN·LOOP GAIN/PHASE vs FREQUENCY

FIGURE 15. INPUT OFFSET WARMUP DRIFT vs TIME
(NORMALIZED TO ZERO FINAL VALUE)
(SIX REPRESENTATIVE UNITS)

~~

135
180

TIME (SECONDS)

VN 10M
(dB)(140)

w

III

0.6

........ 1-0....

200 250

:E
II)

90 ~

~~

4

150

~

t:

jHilii

~

o

45

I""

5

~

·20

o

0.7 a:

TA=25oC,Vs=±15V

w 10

m
...o... ·10

III
a:

HA-5111

...

20

30

0

'iii

iili

...

w 40

~

GAIN

r'"

CI

~

~A~~~l

r'"
HA-5101

:cCI

FIGURE 13. SLEW RATE/RISE TIME vs TEMPERATURE

20

...

120
1.0 Q

160

HA-5101, HA-5111
Typical Performance Curves
25

(Continued)

1111111
11111"

20
15

-ss°C
PHASE

...

-5

'"'

:.1

- LI.

W

125°C
PHASE

~-10

-90~

~

-15

-135

'l1li

·20 Vs =±15V, Ao, = 10VN
RL =21<0, CL = 50pF
-25
10K
100K
1M
FREQUENCY (Hz)

iii

w

-180 ~

"

A:;'= 10

C 30
w
20

~

...'0~"'

~w

l1lllL

Q

w

-10

0

-20

9

~

10K

Ii

~

II!

::-55oC

9Q

III

10K

100K

1M
FREQUENCY (Hz)

%

~

~

-135 ...

~

V. =±15V, Ao, = 1VN
RL = 21<0, CL = 50pF

o

-90~

~l.

~

o

-60

iii'
:!!.

~

-460

1250CX'ASE
PHASE

w

-120

iii'
:!!.

z

10

"

0

·140

-40

!

..,'f'

,

,

,

-

~-

,

~+PSRR

1.1

,"

100

1K

10K
100K
FREQUENCY (Hz)

1M

TA = 25°C, v. = ±15V

10M

1111111

!;i

i

,,:::

~

II'"
-80

II: -100

·20

;"'
~
'f'-PSRRlCMRR

-60

II:

-10

,

o

---.",.

Ao, = 1

C

100M

FIGURE 22. HA·5111 REJECTION RATIOS VB FREQUENCY

i"~

I 11111

10M

-180

AV=10

20

I

-PSRRlCMRR

'f'

ia
II:

I
'f'

-100

~=11~bl

30

1M
FREQUENCY (Hz)

-LllI-U

-

z

FIGURE 21. HA-5101 FREQUENCY RESPONSE

40

100K

~ -80

-225
100M

10M

-

TA = 2SOC, V. = ±15V, Ao, = 100
10VN, RL = 21<0, CL = 50pF

TA=25oC,V.=±15V

~11I11

~ ·12

-

-

FIGURE 20. HA-5111 CLOSED·LOOP GAIN VB FREQUENCY

-6

~ ·9

-

-30

100M

GAIN

125°C\
GAIN

-3

!j

0

9

l5W

111111

r"

10

-225 ...

6

.......

11111

FIGURE 19. HA·5111 FREQUENCY RESPONSE

iii' 3
:!!. 0

1111

z

%

10M

Ao, =100

iii' 40
:!!.

1250~~
GAIN

iii' 10
:!!.
i!i 5
~ 0

~

50

IIJI
-55 C
GAIN

~~

IIIII
+PSRR

~

1,;''''

TA = 25°C, Vs = ±15V
RL = 21<0, CL = 50pF
10K

100K

1M
FREQUENCY (Hz)

10M

·120

100M

100

FIGURE 23. HA-5101 CLOSED·LOOP GAIN VB FREQUENCY

1K

10K
FREQUENCY (Hz)

100K

1M

FIGURE 24. HA-5101 REJECTION RATIOS VB FREQUENCY

3-416

HA-5101, HA-5111
Typical Performance Curves

1

1

•

1

1
1
1
1

(Continued)

,..

VOUT
4VIDIV.

VERROR

I

1
1
1
1
1

1
1

~

1
1

VSETTL~

---.1

+
If"

1'- 320n8

1

-

t;

FIGURE 26, HA-5101 SETTLING WAVEFORM 1,51lsID1V.

,

-8

J

I I

~
+ 11
10

I,

~L

1---1 '2S0C
9
11'1
100

I

12SoC

I 1000

-

1
200

+

~

1\
~
\
\

1

~

,

\

~ ·10

10kn

1I.().2V~
r-

1000

·9

12r--r~~~~--+--+--r-~~--~~

!:i

t
2.65IlV

1

·7

JI

........

+

1
1

FIGURE 25. HA-5111 SETTLING WAVEFORM 500nsID1V.

~

-:

;-

I

1

lmV

""""'i

lOOIlV
1

I

1

I--

:r!:i
VOUT

-11

2SoC

-12

~

RLOAD

\

- -5SoC
-13

I

I

300
400
RLOAD(O)

"
SOO

I

·14

600

VOUT

I
I

\

,

I
-

I
I

I
I

I

I

200

300
400
RLOAD(O)

500

O!!:!
-1.1..
W::aE
~«

I
I

-'- VSUPPLY = ±lSV

\

«en
Za:

~:J
a: 11.

LOAD

FIGURE 28, HA-5101 -VOUT vs RL

3-417

..J

I

I
100

FIGURE 27. HA-5101 +VOUT VS RL

-~
+

1,\ 12SoC

\
~,

10kO

600

HA-5101, HA-5111
Die Characteristics
DIE DIMENSIONS:
70 mils x 70 mils x 19 mils
1790~m x 1780~m x 483~m

PASSIVATION:
Type: Nitride (Si3N4) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

METALLIZATION:
Type: AI, 1% Cu
Thickness: 16kA ±2kA

SUBSTRATE POTENTIAL (Powered Up): VTRANSISTOR COUNT: 54
PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout
HA-S101

BAL

NC

• • • • • ~iIIlJn!ln

-IN

v+

+IN

OUT

v-

BAL

HA-5111
COMP

BAL
-IN

v+

OUT

+IN

v-

3-418

HA-5102, HA-5104,
HA-5112, HA-5114

HARRIS
SEMICONDUCTOR

Dual and Quad, 8MHz and 60MHz, Low Noise
Operational Amplifiers

November 1996

Features

Description

• Low Noise ••.••..•.•.........•••...... 4.3nVlv'Hz

Low noise and high performance are key words describing HA-5102
and HA-5104, HA-5112, HA-5114. These general purpose amplifiers offer an array of dynamic specifications ranging from a 3VIllS
slew rate and BMHz bandwidth (5102104) to 20V/IlS slew rate and
BOMHz gain-bandwidth-product (HA-5112114). Complementing
these outstanding parameters is a very low noise specification of
4.3nVNHz at 1kHz.

• Bandwidth.................. 8MHz (Compensated)
60MHz (Uncompensated)
• Slew Rate • . . . . . • . . • . . . . . . .. 3V1lls (Compensated)
20VlllS (Uncompensated)

Fabricated using the Harris high frequency DI process, these operational amplifiers also offer excellent input specifications such as a
0.5mV offset voltage and 30nA offset current. Complementing these
specifications are 10BdS open loop gain and BOdS channel separation. Consuming a very modest amount of power (90mWI package
for duals and 150mW/package for quads), HA-5102l04/12114 also
provide 15mA of output current.

• Low Offset Voltage. . . . . . . . . . . . . . . . . . . • . . .. O.5mV
• Available in Duals or Quads

Applications
• Applications

This impressive combination of features make this series of amplifiers ideally suited for designs ranging from audio amplifiers and
active filters to the most demanding signal conditioning and instrumentation circuits.

• High Q, Active Filters
• Audio Amplifiers
• Instrumentation Amplifiers

These operational amplHiers are available in dual or quad form with
industry standard pinouts allowing form immediate interchangeability
with most other dual and quad operational amplifiers

• Integrators
• Signal Generators
• For Further Design Ideas, See Application Note AN554

HA-5102

Dual, Compo

HA-5104

Quad, Compo

HA-5112

Dual, Uncomp.

HA-5114

Quad, Uncomp.

Refer to the 1883 data sheet for military product.

Pinouts

(See Ordering Information on next page)

HA-5102l5112 (PDIP, CERDIP)
TOP VIEW

HA-5102 (METAL CAN)
TOP VIEW

HA-5102/S112 (SOIC)
TOP VIEW

v+

011T~1

011T2

~Nl

+lN1

-

-IN2
4

5 +IN2

v-

HA-5104/5114 (PDIP, CERDIP)
TOP VIEW

HA51 04/5114 (SOIC)
TOP VIEW·

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-419

File Number

2925.2

...J

CCUl

Za:

O!!:!
-u.

t:i:J

a: a.

W:::aE
~CC

HA-5102, HA-5104, HA-5112, HA-5114
Ordering Information
PART NUMBER

TEMP. RANGE (DC)

PACKAGE

PKG.NO

HA2-51 02-2

-5510125

B Pin Metal Can

TB.C

HA2-51 02-5

01075

B Pin Metal Can

TB.C

HA3-51 02-5

010 75

BLd PDIP

EB.3

HA7-51 02-2

-5510125

BLd CERDIP

FB.3A

HA7-51 02-5

01075

BLdCERDIP

FB.3A

HA9P51 02-5

01075

16LdSOlC

M16.3

HA9P51 02-9

-4010 B5

16LdSOlC

M16.3

HAl-51 04-2

-5510125

14LdCERDIP

F14.3

HAl-51 04-5

01075

14LdCERDIP

F14.3

HA3-51 04-5

010 75

14Ld PDIP

E14.3

HA9P51 04-5

010 75

16 Ld SOIC

M16.3

HA9P51 04-9

-40 10 B5

16 Ld SOIC

M16.3

HA3-5112-5

01075

BLd PDIP

EB.3

HA7-5112-2

-5510125

B LdCERDIP

FB.3A

HA9P5112-5

01075

16 Ld SOIC

M16.3

HA9P5112-9

-40 10 B5

16 Ld SOIC

M16.3

HAl-5114-2

-5510125

14LdCERDIP

F14.3

HAl-5114-5

010 75

14LdCERDIP

F14.3

HA3-5114-5

01075

14Ld PDIP

E14.3

HA9P5114-5

01075

16LdSOlC

M16.3

HA9P5114-9

-40 10 B5

16 Ld SOIC

M16.3

3-420

HA-5102, HA-5104, HA-5112, HA-5114
Absolute Maximum Ratings

Thermal Information

Supply Voltage Between V+ and V- Terminals ...........•.. 40V
Differential Input Voltage ................................ 7V
Input Voltage ................................... ±VSUPPLY
Output Short Circuit Duration (Note 3) ................ Indefinite

Thermal Resistance (Typical, Note 2)
9JA (OCIW) 9JC (,CIW)
Metal Can Package. . . . . . . . . . . . . . .
165
80
8 Lead PDIP Package. . . . . . . . . . . . .
92
N/A
135
50
8 Lead CERDIP Package . . . . . . . . . .
112
N/A
SOIC Package (HA-51 02, HA-5112)..
80
30
14 Lead CERDIP Package.... .....
86
N/A
14 Lead PDIP Package. . . . . . . . . . . .
SOIC Package (HA-5104, HA-5114). .
96
N/A
Maximum Junction Temperature (Note 1, Ceramic Package) ... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs). . . . . . . . . . .. 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-5102l5104/511215114-2 ................ -55°C to 125°C
HA-5102l5104/511215114-5 ................... OoC to 75°C
HA-5102l5104/511215114-9 .......•......... -400Ct0850C

CAUTION: Stresses above those listed in "Abso/ute Maximum Ratings" may cause permanent damage to the daviee. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operaUona/ sections of this specificaUon is not implied.

NOTES:
1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 175°C for
hermetic packages, and below 150°C for plastic packages.
2. 9JA is measured with the component mounted on an evaluation PC board in free air.
3. Anyone amplifier may be shorted to ground indefinitely.

Electrical Specifications

VSUPPLY = ±15V, Unless Otherwise Specified

...J

c(CI)

HA-5102-2, -5
HA-5112-2, -5
PARAMETER

TEMP.
(oC)

MIN

HA-5104-2, -5
HA-5114-2, -s

TYP MAX MIN

TYP MAX

HA-5102-9
HA-SI12-9
MIN

HA-5104-9
HA-5114-9

TYP MAX

MIN

TYP MAX

UNITS

W:iE
~c(

INPUT CHARACTERISTICS
Offset Voltage

25

Offset Voltage Average Drift
Bias Current

25

-

2.0

Full

-

2.5

Full

3

-

130

200

Full
Offset Current

-

0.5

25
Full

Input Resistance

25

Common Mode Range

Full

30

500

2.5

-

0.5

2.0

-

3.0

mV

-

-

3

-

IlVPC

-

130

200

130

200

nA

325

-

-

500

-

500

nA

75

-

30

75

30

75

nA

125

-

-

125

-

125

nA

500

-

-

130

200

-

125

-

-

500

±12

-

-

±12

-

100

250

80

250

80

-

80

95

80

8

±12

mV

2.5

-

30

2.5

-

3.0

75

0.5

3

3

325

-

0.5

'-

-

500

±12

-

-

V

80

250

-

kVN

80

-

kVN

95

dB

1<0

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain
(VOUT = ±5V, RL = 21<0)
Common Mode Rejection Ratio
(V eM = ±5.0V)

25

100

Full

100

250

Full

86

95

25

-

8

-

100

-

86

95

-

-

8

-

-

-

-

-

Small Signal Bandwidth
HA-51 02151 04 (Av = 1)

-

8

-

MHz

60

-

MHz

Gain Bandwidth Product
HA-511215114 (Av = 10)

25

Channel Separation (Note 4)

25

60

-

60

-

60

-

3-421

60

60
60

-

-

60

Za:
O!!:!
-II.
~:::;
a:D.

dB

HA-5102, HA-5104, HA-5112, HA-5114
Electrical Specifications

VSUPPLY = ±15V, Unless Otherwise Specified (Continued)
HA-5102-2, -5
HA-5112-2, -5

PARAMETER

HA-5104-2, -5
HA-5114-2, -5

TEMP.
fC)

MIN

TYP MAX

Full

±12

±13

MIN

TYP MAX

±12

±13

HA-51 02-9
HA-5112-9

'HA-5104'9
HA-5114-9

MIN

TYP MAX

±12

±13

MIN

TYP MAX

±12

±13

UNITS

OUTPUT CHARACTERISTICS
Output Voltage Swing

Full

±10

±12

-

Full

±10

±15

·

HA·51 02151 04

25

16

47

HA·511215114

25

191

318

Output Resistance

25

·

110

.

(RL = 10kQ)
(RL=2kQ)
Output Current (VOUT = ±5V)

-

-

±10

±12

·

±10

±12

..

±10.

±12

±10

±15

·

±7

±15

·

±7

±15'

16

47

16

47

-

16

47

191

318

-

191

318

·

191

318

110

·

·

110

·

110

·

V

·

mA

'V

Full Power Bandwidth (Note 5)

·

kHz

·

.kHz
Q

STABILITY
Minimum Stable Closed Loop Gain
HA·510215104

Full

1

HA·511215114

Full

10

1

.

10

.

200

-

108

200

ns

48

100

·

48

100

ns

1

.

·

1

·

.

·

10

-

·

10

200

·

108

200

·

108

48

100

-

48

100

·

,· .

VN
VN

TRANSIENT RESPONSE (Note 6)
Rise Time
HA-51 02151 04

25

108

25

·

HA·51 02151 04

25

·

20

35

·

20

35

20

35

·

20

35

%

HA·511215114

25

-

30

40

·

30

40

30

40

·

30

40

%

HA·51 02151 04

25

1

3

·

V/Jls

HA·511215114

25

12

20

HA·51 02151 04

25

-

HA-511215114

25

HA·511215114
Overshoot

Slew Rate

-

1

3

1

3

·

1

3

20

-

12

12

20

·

12

20

4.5

-

·

0.6

·

·

4.5

-

·

4.5

·

·

4.5

-

JlS

·

0.6

·

·

0.6

-

0.6

·

JlS

9

25

-

6.0

9

25

-

·

4.3

6.0

V/JlS

Settling Time (Note 7)

NOISE CHARACTERISTICS (Note 8)
Input Noise Voltage
f= 10Hz

25

f= 1kHz

25

·

4.3

f= 10Hz

25

·

5.1

15

-

5.1

15

f= 1kHz

25

·

0.57

3

-

0.57

3

25

·

870

-

·

870

·

9

25

4.3

6.0

5.1

15

0.57

3

870

·

9

25

nV/'I'HZ

4.3

6.0

nVl'I'HZ

·

5.1

15

pAl'I'HZ

-

0.57

3

pAl'I'HZ

- -

870

·

nVRMS

Input Noise Current

·

Broadband Noise Voltage
f = DC to 30kHz

3-422

·

HA-5102, HA-5104, HA-5112, HA-5114
Electrical Specifications

VSUPPLY

=±15V, Unless Otherwise Specified
HA-Sl02-2, -5
HA-5112-2, -S

TEMP.
(DC)

PARAMETER

MIN

(Continued)

HA-Sl04-2, -5
HA-Sl14-2, -S

TYP MAX

MIN

HA-Sl02-9
HA-Sl12-9

TYP MAX

MIN

TYP MAX

HA-Sl04-9
HA-Sl14-9
MIN

TYP MAX

UNITS

POWER SUPPLY CHARACTERISTICS
Supply Current (All Amps)

25

Power Supply Rejection Ratio
(tNs =±5V)

Full

3.0
86

5.0

5.0

100

86

6.5

3.0

100

80

-

5.0

6.5

mA

80

100

-

dB

5.0

100

NOTES:
4. Channel separation value is referred to the input of the amplifier. Input test conditions are: f

=10kHz; VIN =100mVpEAK; Rs =1kQ.

5. Full power bandwidth is guaranteed by equation: Full power bandwidth = ;Ie; Rate .
" PEAK
6. Refer to Test Circuits section of the data sheet.
7. Settling time is measured to 0.1% of final value for a 1V input step, and Ay = -10 for HA-5112/5114, and a 10V input step, Ay = -1 for
HA-51 02151 04.
8. The limits for these parameters are guaranteed based on lab characterization, and reflect lot-to-Iot variation.

Test Circuits and Waveforms
HA-Sl02, HA-5104
..J
2kD

---'W..,..........--1
2krl

IN

INO_~ I I~

>--41---.....- - _ OUT

O~UT

+5Y
INPUT
OV

200mV

I

INPUT
-5V

J

I

I

Vertical

\

,

OUTPUT
OV

=5V/Div., Horizontal =5llslDiv. (Ay =-1)

I~~

1.

1.1

OV

Vertical

FIGURE 1. LARGE SIGNAL RESPONSE CIRCUIT

,

II
I ~.

+5V

-5V

h

f-'

=40mVlDiv., Horizontal =50nslDiv. (Ay =+1)

FIGURE 2. SMALL SIGNAL RESPONSE CIRCUIT

3-423

etC/)
Za:
OW

-u:::

!ci::::i
0..

a:

W~

~et

HA-5102, HA-5104, HA-5112, HA-5114
Test Circuits and Waveforms

(Continued)
HA-5112, HA-5114

+O.5V
OUTPUT

OV

+5V

1

OUTPUT

,

-o.5V

INPUT

~

~

OV

\

INPUT

-5V

f\

200mV

I

I
J

\

\.

Input = O.SV/Oiv.• Output = SVlDiv., Time = SOnslDiv.

OV

""

Input = 10mV/Oiv., Output = SOmV/Oiv.• TIme = SOnS/Oiv.

+15V

IN

0-----1

>-_---_---0
1.8k.Q

OUT

T

50pF

2000

VIN

~

O-_-"V'.J'V.....- I

2k.Q

NOTES:
9. Av=·1 (HA-S102lS104).Av=-10(HA-S1121S114).
10. Feedback and summing resistors should be 0.1 % matched.
NOTE: Av = +10.

11. Clipping diodes are optional. HPS082-2810 recommended.

FIGURE 3. LARGE AND SMALL SIGNAL RESPONSE CIRCUIT
(Av +10)

=

3-424

FIGURE 4. SETTLING TIME CIRCUIT

HA-5102, HA-5104, HA-5112, HA-5114

Simplified Schematic

rt
-"

J

.....

All"

.....

.....

I:

..)

,
~

~

..
I"

J

.....

I-

'

.....

.......

H r~

Ie

.

...

?~

"
~~ b-t::

t: ..

W

~

~

rJ

~
fj

OUTPUT

..J

ctrn

za:

ow

!i§
a: a..

~

W::E

~ct

.. II"

I)

v+INPUT

-INPUT

Typical Performance Curves
10

!
!zw
a:
a:

Vs

=±15V. TA" 25°C

5.0

1.0

::;)

(,)

w

!II

0.5

0

z

OL-------______
10

~

______________

100

~

lK

10

100
FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 5. INPUT NOISE VOLTAGE DENSITY

FIGURE 6. INPUT NOISE CURRENT DENSITY

3-425

lK

HA-5102, HA-5104, HA-5112, HA-5114
Typical Performance Curves

Vs

(Continued)

=±1SV, TA =2SoC, SOIlV/Div., 1S/Div., AV =1000VN
Input Noise =0.232IlVp.p

Vs

=±lSV, TA =2SoC, SOOIlV/Div., 1s/Div., Ay =1000VN
Total Output Noise =2.07SIlVp.P

FIGURE 7. O.lHz TO 10Hz NOISE

FIGURE 8. 0.1 Hz TO 1MHz NOISE

2.0
TA = 25°C

!

1.5

-

~

~
§!

1.0

Iii

~

I!i

0.5

o

o

2

4

6

8

10

12

14

16

18

SUPPLY YOLTAGE (±Y)

FIGURE 9. VIO VB TEMPERATURE

C

.s
I-

zI1J

II:
II:
::;)

0
II1J

rn
IL
IL

0

I-

...ii!:
::;)

4
2 YS=±lSY
0
·2
-4
-6
-8
I\..
·10
~~
·12
·14
·16
·18
·20

FIGURE 10. VIO VB Vs

100
90

~

!

80

'Z

70

~

.... ~

I1J

~

60

G

50

~
ID

i"""!'ooo

!'ooo
~

40

!'ooo

~ 1-00

~ 30

r-

-~

ii!: 20

·22
·24
·26
-60

Ys = ±lSY

10
-40

·20

0

20

40

60

80

100

o

120

~

TEMPERATURE (OC)

-40

~

0

20

40

80

80

TEMPERATURE (oC)

FIGURE 12. IBIAS VB TEMPERATURE

FIGURE 11. 110 vs TEMPERATURE

3·426

~

m

HA-5102, HA-5104, HA-5112, HA-5i14
Typical Performance Curves
S

Vs

(Continued)

=±1SV, lOUT =0

I-I-

c

-

,5. 4 ~hH-;-;-;-;-;-;-;-+-+-+-+-+-+-+-l

!zw

II:
II:

i3

3

f-f-H-I-t-l-l-t-t-t-+-++-+++-+-I

8:

2

I-\.-JW-l.....l~~~~~=t:t~:++-t--+~

1

~-b+-~-+-r+-~-r+-r-l-+-l-+-l

~

:>

UI

-'

~
o

-40

-60

·20

0

20

60

40

80

100

o 0~'--:2~~4"""'~6""""~8-.L-l-:':0""""'-1~2-"--:1~4-"--:1'="6-'-,'""'18

120

SUPPLY VOLTAGE (±V)

TEMPERATURE (OC)

FIGURE 13. Icc vs TEMPERATURE (HA-5104114)

Vs

FIGURE 14. IcC VB Vs (HA-5102l12)

S.S

=±lSV, 1!.vO =tl0V, RL =2kn
~~

.~ ~

~~

....

~

-

~~

J

~

Vo = ±10V, Vs = ±15V,
S.O

0

.... r--

~

CI

w

4.0

~

!:l

~
~

0
0

3.0

-'
~

0

-60

-40

·20

20

0

60

40

80

100

120

TEMPERATURE (oC)

FIGURE 15. AVOL vs TEMPERATURE

290
280
270
260
~ 2S0
:!!. 240
z 230
~ 220
~ 210

13
12
11
:; 10

TA = 2SoC, RL = 2kn
~

z

~

130

UI

II

II

o

2

6

8

10

12

14

!ci:::J
a: a..

~

W:5

~CC

-5SoC

-I"'"

2K

4K

6K

8K 10K

LOAD RESISTANCE (a)

7

1.1"
~
~

16

18

SUPPLY VOLTAGE (tV)

00

'"

'"

~

~
~
2

4

6

8

10

12

SUPPLY VOLTAGE (±V)

FIGURE 17. AvOL vs Vs

FIGURE 18. VOUT VB Vs

3·427

..J

CCCl)

Za:
O!!!
-II.

2S0C

I......

2
1

4

.... 10-""

TA = 2SoC, RL = 2kn

:
~:
~ :
~

190
180
170
160
lS0
140

-

FIGURE 16. AVOL VB LOAD RESISTANCE

~ 200
-

-- --------

Z
W

o

~

12Slc

--- ~

C

14

16

18

HA-5102, HA-5104, HA-5112, HA-5114
Typical Performance Curves

(Continued)

45

0
Vs = ±15V, TA = 25°C

40

~

!

IE

...

-20

"

35

II:
II:

...........
......... I"-- """-

ij

5

30

§

VOUT=-15V

iii

-40

3

-60

~
II:
II:

,
V

VOUT=+15V
25

-80

./
20

o

50

100

150

200

250

300

350

400

'"

I'"

-100
1K

450

...... "'"

~

10K

100K

1M

FREQUENCY (Hz)

TIME (SECONDS)

FIGURE 20. CMRR vs FREQUENCY

FIGURE 19. OUTPUT SHORT CIRCUIT CURRENT vs TIME

0

iii'
~
z
0

fi...
ill
II:

~
......
::::I
VI

...II:

...~

-20

.....

-40

~

-80

~

+PSRR

-60

~
100""""

"'"

~
~

~

.... ~

~PSRR

111111

Lilli
11111

"100
1K.

10K

100K

1M
FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 21. PSRR vs FREQUENCY

25
20

T1i\.

iii'

10

GAIN._

~

5

...CJCJ

0

~

120

AvCL = +10, TA = 25°C, RL = 2kO, CL = 5OpF, 1\

15
~

FIGURE 22. HA-5104102 UNITY GAIN FREQUENCY RESPONSE

~100

iii'

-

-

---

-5

~ -10

-15

PHASE....
I III I

-20

1111

-25
100

1K

10K

100K

1m

1M

......
II:

,

0

Sl

45

Ii:

90

iii...

.....

80

~
!:i

40 HA-51 02151 04
GAIN
20

...
~

e.

135 ~

:I:

10M

....

i""'"

~
CJ

100~80 !'-

60

0

~

Vs=±15V, TA=250C,
RL = 2kO, CL =50pF

r..

....

iii'

>-

HA-511215114
GAIN

~

i"-

I 1111 I

~

~:"5102l5104

'Tliu

1K

45

I

I II I

PHASE
100

o

HA-511215114

........ ""'"

100K

90 :

i""o

1111 I
10K

1M

"

10M

135 ~
180 ...
100M

FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 23. HA-5112114 FREQUENCY RESPONSE

FIGURE 24. OPEN LOOP GAIN vs FREQUENCY

3-428

~

Ii;
:I:

HA-5102, HA-5104, HA-5112, HA-5114
Typical Performance Curves
60
Vs

(Continued)

1.1

=±lSV, TA =2SoC, RL =2kn

so

/

10

o

10

-----

V

,/

/

RL

/

C 1.0

III
~
..J

'"

::.
a:

~

0.9

",..'

..... .... i"'"

0
~

III

!;( 0.8
a:
~

./

100

=2kn, CL =SOpF, Vs =±lSV

III
..J

en 0.7

lK

0.6
-60

10K

-40

-20

LOAD CAPACITANCE (pF)

0

20

40

60

80

100

120

TEMPERATURE (oC)

FIGURE 26. SLEW RATE vs TEMPERATURE

FIGURE 25. SMALL SIGNAL OVERSHOOT vs CLOAD

1.1

"~

~

c

~
~

1.0

RL

"

=2kn, CL =SOpF, Vs =±15V

~

....I

«C/)

Za:

O!!:!
-II.
~::::i

a:n.

0.9

W:E

~«

0.8

1=
III

~ 0.7
0.6
-60

-40

-20

0

20

40

60

80

100

TEMPERATURE (oC)

FIGURE 27. RISE TIME vs TEMPERATURE

3-429

120

HA-5102, HA-5104, HA-5112, HA-5114

Die Characteristics
DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

98.4 mils x 67.3 mils x 19 mils
2500/-lm x 1710/-lm x 483/-lm

Unbiased
TRANSISTOR COUNT:

METALLIZATION:

93

Type: AI, 1% Cu
Thickness:

PROCESS:

16kA ±2kA

Bipolar Dielectric Isolation

PASSIVATION:
Type: Nitride (Si3N4) over Silox (Si02. 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA·51 02

v·

+IN1

·IN1

OUT1

HA-5112

v·

+lN1

·IN1

+IN2

-IN2

OUT2

3·430

OUT1

v+

HA-5102, HA-5104, HA-5112, HA-5114

Die Characteristics
SUBSTRATE POTENTIAL (Powered Up):

DIE DIMENSIONS:
95 mils x 99 mils x 19 mils
2420llm x 2530llm x 4831lm

Unbiased
TRANSISTOR COUNT:

METALLIZATION:

175

Type: AI, 1% Cu
Thickness: 16kA ±2kA

PROCESS:

PASSIVATION:

Bipolar Dielectric Isolation

Type: Nitride (Si3 N4 ) over Silox (Si02, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

Metallization Mask Layout
HA-51 04
+IN2

v+

+IN1

-IN1

-IN2

....I
C(fI)

Za::

OUT2

OUT1

OUT3

OUT4

-IN3

-IN4

+IN3

v-

+IN4

HA-5114
+IN2

v+

+IN1

-IN2

-IN1

OUT2

OUT1

OUT3

OUT4

-IN3

-IN4

+IN3

v-

3-431

+IN4

O!!!
-u..
!cc::i
a:: a..
W::E
~C(

~

lKJ

HARRIS
SEMICONDUCTOR

HA-5127, HA-5127A
8.5MHz, Ultra-Low Noise
Precision Operational Amplifier

November 1996

Features

Description

• Slew Rate •.•.•••••..••...••.....•.•...•• 10V/IlS

The HA-5127 monolithic operational amplifier features an
unparalleled combination of precision DC and wideband
high speed characteristics. Utilizing the Harris D. I. technology and advanced processing techniques, this unique
design unites low noise (3nV/...JHz) precision instrumentation
performance with high speed (1 OV/~s) wideband capability.

• Unity Gain Bandwidth. . . . . . • . • • • • • • • • • • •• 8.5MHz
• Low Noise .......•.•.•.....•.•... 3nVNHZ at 1kHz
• Low Vas •...•...••••.....•.•.•.•.•.....•.

10~V

• High CMRR ........••..•.•...•..........• 126dB
• High Gain •••...••••.••...••••.•••.... 1800VlmV

Applications
• High Speed Signal Conditioners
• Wide Bandwidth Instrumentation Amplifiers

Using the HA-5127 allows designers to minimize errors while
maximizing speed and bandwidth.

• Low Level Transducer Amplifiers
• Fast, Low Level Voltage Comparators
• Highest Quality Audio Preamplifiers
• PuiseiRF Amplifiers

Ordering Information
PART NUMBER
(BRAND)

TEMP.
RANGE (oC)

PKG.
NO.

PACKAGE

HA3-5127-5

01075

BLdPDIP

HA3-5127A-5

01075

B Ld PDIP

EB.3

-5510125

B LdCERDIP

FB.3A

HA7-5127-2
HA7-5127-5

This amplifier's impressive list of features include low VOS
(10~V). wide unity gain-bandwidth (8.5MHz). high open loop
gain (1800VlmV), and high CMRR (126dB). Additionally, this
flexible device operates over a wide supply range (±5V to
±20V) while consuming only 140mW of power.

This device is ideally suited for low level transducer signal
amplifier circuits. Other applications which can utilize the
HA-5127's qualities include instrumentation amplifiers, pulse
amplifiers, audio preamplifiers, and signal conditioning circuits. This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07,
OP27 and OP37. For the military grade product, refer to the
HA-5127/883 data sheet.

EB.3

01075

B LdCERDIP

FB.3A

HA7-5127A-2

-5510125

B LdCERDIP

FB.3A

HA7-5127A-5

01075

B LdCERDIP

FB.3A

HA9P5127-5
(H51275)

01075

B LdSOIC

MB.15

Pinout
HA·5127
(PDIP, CERDIP, SOIC)
TOP VIEW

BAL88BAL
-IN

2

+IN

3

V-4

_..

7

v+

6 OUT
.

SNC

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-432

File Number

2906.2

HA-5127, HA-5127A
Absolute Maximum Ratings

Thermal Information

Supply Voltage Between V+ and V- Terminals .............. 44V
Differential Input Voltage (Note 3) ........................ 0.7V
Output Current. . . . . . . . . . . . . . . . . .. Full Short Circuit Protection

Thermal Resistance (Typical, Note 2)
BJA (oC/W) BJC (oC/W)
CERDIP Package. .... ...... .... ...
135
50
PDIP Package. .. ..... ..... . .......
92
N/A
SOICPackage .....................
157
N/A
Maximum Junction Temperature (Ceramic Package, Note 1) ... 175°C
Maximum Junction Temperature (Plastic Package) ........ 150°C
Maximum Storage Temperature Range . . . . . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering lOs). . . . . . . . . . .. 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-5127/27A-2 .......................... -55°C to 125°C
HA5127/27A-5 ............................. OoC to 75°C

CAUTION: Stresses above those lisled in "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Maximum power dissipation, including output load must be designed to maintain the maximum junction temperature below 175°C lor
Hermetic packages, and below 150°C lor the plastic packages.
2. BJA is measured with the component mounted on an evaluatIon PC board in Iree air.
3. For differential input voltages greater than O.7V, the input current must be limited to 25mA to protect the back-to-back input diodes.

Electrical Specifications

VSUPPLY = ±15V, CL < 50pF, Rs < 100Q
TEMP.

PARAMETER

TEST CONDITIONS

I

fc) I

I

HA-5127A
MIN

TYP

MAX

I

HA-5127
MIN

TYP

MAX

UNITS

-

30

100

IlV

..J

70

300

IlV

0.4

1.B

IlVPC

Za::
O!!:!
-u.

-

±15

±BO

nA

±35

±150

nA

12

75

nA

30

135

nA

INPUT CHARACTERISTICS
Offset Voltage

25

10

25

Full

30

60

Average Offset Voltage Drift

Full

0.2

0.6

Bias Current

25

±10

±40

Full

±20

±60

25

7

35

Full

15

50

Offset Current

-

Common Mode Range

Full

±10.3

±11.5·

±10.3

±11.5

-

V

Differential Input ReSistance (Note 4)

25

1.5

6

O.B

4

-

MQ

-

O.OB

O.lB

0.09

0.25

IlVp_p

3.5

8.0

3.B

B.O

nV/.JHz
nVl.JHz

Input Noise Voltage (Note 5)

0.lHztol0Hz

25

Input Noise Voltage Density
(Note 6)

f= 10Hz

25

-

f = 100Hz
f= 1000Hz

Input Noise Current Density
(Note 6)

f= 10Hz

-

25

-

I = 100Hz
1= 1000Hz

-

3.1

4.5

3.0

3.B

1'.7

4.0

1.0

2.3

-

0.4

0.6

700

1500

300

BOO

100

120

-

3.3

4.5

3.2

3.B

nV/.JHz

1.7

-

pAl.JHz

1.0

-

pAl.JHz

0.4

0.6

pA/.JHz

-

V/mV

-

VN

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

Common Mode Rejection Ratio

VOUT = ±10V, RL = 2kQ

25

1000

lBOO

-

Full

600

1200

-

Full

114

126

Minimum Stable Gain

25

1

-

Unity-Gain-Bandwidth

25

5

B.5

RL=600Q

25

±10.0

±11.5

-

RL=2kQ

Full

±11.7

±13.B

-

25

111

160

25

-

70

25

16.5

25

VCM=±10V

1
5

V/mV

dB

B.5

MHz

±10.0

±11.5

V

±11.5

±13.5

111

160

-

70

16.5

25

OUTPUT CHARACTERISTICS
Output Voltage Swing

Full Power Bandwidth (Note 7)
Output Resistance

Open Loop

Output Current

-

V

-

kHz
Q

rnA

TRANSIENT RESPONSE (Note B)
Rise Time
Slew Rate

VOUT= 10V

25

I -

25

I

3-433

7

150
10

J

-

-

I

7

10

150

I

ns

I

V/IlS

oCt

(I)

ti::::i
a::Q"
W::i

~oCt

HA-5127, HA-5127A
Electrical Specifications

VSUPPLY

=±15V, CL < 50pF, Rs < 1000

(Continued)
HA-5127

HA-5127A

TEMP,
(DC)

MIN

TYP

MAX

MIN

Settling Time (Note 9)

25

-

1.5

-

Overshoot

25

-

20

40

-

PARAMETER

TEST CONDITIONS

TYP

MAX

1.5
20

UNITS
f!s

40

%

POWER SUPPLY CHARACTERISTICS
Supply Current

25

Power Supply Rejection Ratio

Vs = ±4.5V to ±lBV

-

3.5

-

Full
Full

-

4.0

2

4

-

3.5

16

mA
4.0

mA

51

f!VN

NOTES:
4. This parameter value is based upon design calculations.
5. Refer to Typical Performance Curves.
6. The limits for this parameter are guaranteed based on lab characterization, and reflect lot-to-Iot variation.

7. Full power bandwidth guaranteed based on slew rate measurement using: FPBW =
B. Refer to Test Circuits section of the data sheet.
9. Settling time is specified to 0.1 % of final value for a 10V output step and Av -1.

~Ie: Rate.
1t

PEAK

=

Test Circuits and Waveforms

>_-_--0

IN

OUT

50pF

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUITS

IN

IN

OUT

OUT

Vertical Scale: Input = 0.5V/Div., Output
Horizontal Scale: 1f!slDiv.

=5V/Div.

Vertical Scale: 100mV/Div.
Horizontal Scale: 200nslDiv.
SMALL SIGNAL RESPONSE

LARGE SIGNAL RESPONSE

NOTES:

5kQ

10. Av=·I.

>-+.....__. . . . .00 VOuT
~50pF

2kn

11. Feedback and summing resistors
should be 0.1% matched.
12. Clipping diodes are optional.
HP50B2·2Bl0 recommended.

2kn
FIGURE 2. SETTLING TIME TEST CIRCUIT

3-434

Schematic Diagram
y+

,

'(

I

t J tCJ ~:u

R16

R2S
OP32

R1S

15/"'1

OP3S ......

OP43

ir
_ L.

ON19
...... OPS6

~

I1Y . .

RIA

~ ...... ONSI

.,.,

O~

J

R17
OP38

......

~

C6 "

~
O~
R24

~

059

"-.J

tl

,r

y_ 4

D60

RS

C4

''''I N13

"C,

}.
.~l . "
-"'"

~17

R7

R3

..... ON29

09

033

l'o ON4

(aP36~~ .

D41

(ION2A

"

4+
034

~

Q~
ONI

J~

""lr

I~

Ir

~54

O~

OP40
ONS......

/"'I

ON2S
L

ON48r

ON!?

.....
RIO

RS

/'1
SUBSTRATE

3

s

~

~

~

r 0N6'

.....
Op-;O

R19

C3

ON4

RS

roO

r*

-y

ON42

t"I

y

.....

~OPI6
"OP26

~~

~

uN24 ....

r
D22

~ONI2
~ ~lj;s

.,

O~ ~! LOp~ O~
Rg

R14

--

Cs

.... ONS2

ON3~

'r

R21

"l0PSS

~ 08

o

R20

R2

I~

OP3~
o

4:

ON49

...Y
..... °NSO

r--

C2

F

lnt~

+INPUT
-INPUT

OPERATIONAL
AMPLIFIERS

R22

~

~R23

~

~Rll

S
~
.....
I\)

10.'0

i;!

HA-5127, HA-5127A
Application Information
v+

NOTE: Tested Offset Adjustment Range is IVOS + 1mVI minimum referred to output. Typical range is ±4mV with RT = 10ka
FIGURE 3. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

~-·II·-~

. .
:

Cs

:

·1

--11--

1

1

C3

Low resistances are preferred for low noise applications as a 1kO resistor has 4nVNHz of thermal noise. Total resistances of greater than 10k0 on

either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.
FIGURE 4. SUGGESTED STABILITY CIRCUITS

Typical Performance Curves
30
20

~
w
CI

~

g
Iii

If
...
0

Unless Otherwise Specified: TA = 25°C, VSUPPLY = ±15V

.

10

12

'-

0

10

i.s

~

:>

r-..~

·10
·20

~

-40

-50
·60
-60

,

6 I--

I--

I--

l-

I-

l-

w
II.! 4 I-lz

I-

0

2

-20

0

20

40

60

80

100

~

NOISE VOLTAGE

I--

~

1111111110

~

I NoiSE CURRENT

l-

~
-40

I-

l-

~

g

I" .....

-30

,

1\

8

w

CI

~

6

o '-

120

1

TEMPERATURE (DC)

10

100

1K

1111111
10K

100K

FREQUENCY (Hz)

FIGURE 5. TYPICAL OFFSET VOLTAGE DRIFT vs TEMPERATURE

3-436

FIGURE 6. NOISE CHARACTERISTICS

1M

o

HA-S127, HA-S127A

Typical Performance Curves

Unless Otherwise Specified: TA = 25°C. VSUPPLY = ±lSV

0.14

140

0.12

120

~ 0.1

100

~

,

~

w

i!:l

.....

0.08

a;-

t-

80

::I!

60

a:
a:

~

w 0.06

~~

:s
0

~
~

.....

40

0.04

~

20

!: 0.02

o

o
4

6

8

10

12

14

16

18

10

20

100

lK

6.0

TA = 45°C

8

"-

7

.-

t
i§

6

~

5

~w

5.0

z

4.0

CI

~

~ V' ~

ct

:z::
0
w

3.0

~

2.0

""0

1.0

i!:j

IiiUl

4
3

o

10

20

30

120
100

a;-

:s
a:
a:

If

~ .....

80

+PSRR

80

20

r-r--,

10

-PSRR

a;-

:s
z
'i

~

CI

~~

40

lK

10K

Za:

!ci:::J
a: a.

r

W::::E
~c(

~ ."".-

rr

5 TYPICAL UNITS

1.0

2.0

3.0

5.0

4.0

lOOK

1M

-10

---

100

10M

~-

11

-

11

GAIN

0
PHASE

.....

til
w
w

a:

CI

90

w

e.w

!Il:z::
180
lK

10K

lOOK

1M

10M

I>-

100M

FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 11. PSRR vs FREQUENCY

0

-

-30 -40 -

o
100

c(cn

O!!!
-u.

-20

~

20

10

...I

FIGURE 10. OFFSET VOLTAGE WARM UP DRIFT

40

i'oo.

10M

TIME AFTER POWER ON (MINUTES)

30

r--'....."

"

~

0.0
0.0

40

FIGURE 9. OFFSET VOLTAGE DRIFT vs TIME

--

1M

,,--

DAYS

140

lOOK

FIGURE 8. CMRR vs FREQUENCY

AGURE 7. NOISE vs SUPPLY VOLTAGE

9

10K

FREQUENCY (Hz)

SUPPLY VOLTAGE (±V)

~

(Continued)

FIGURE 12. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

3-437

HA-5127, HA-5127A
Typical Performance Curves

---

17
16

~ 14

5

13

~
12
Q
zor(
10

...

8
7

0
0

C

i

~

,

J-

u

°...
0

AvOL -

tc
g

~

1.03

",

1.02

-

w 1.01

I

tc
II:

6

...rn==w

5

2

4

6

1..0'''''

,,""
1.00"

0.97

,,""

0.96
0.95
-60

10

8

0
20 40
60
TEMPERATURE (oC)

-20

-40

LOAD RESISTANCE (knl
FIGURE 13. AVOL AND VOUT VB LOAD RESISTANCE

2.80

C

§.

/

2.78
2.76

i3

2.74

II:
II:

......~

:>

/

2.72

!5

-'

!50

rn

~

\

I\..

12

"

8

25
TEMPERATURE (oC)

~

2.52

0.4

....

L

0.97 _

2.50

0.96

2.48

0.95

~

I

2.44

0.91

2.40

0.90
10
12
14
SUPPLY VOLTAGE (±Vl

16

18

FIGURE 17. SUPPLY CURRENT vs SUPPLY VOLTAGE

2.0

I- io""'"

'7

I

,J
o

20

,...-.

'(

0.92

2.42

"

, i/L

0.93

8

1.6

~~

I

BANDWIDTH

0.94

I

6

............

0.8
1.2
FREQUENCY (MHz)

~ 1.02
BANDWIDTH AT OdB
1.01 AoL
i:I 1.00 VOUT = 10V STEP
0.99 RL = 2k.O. CL = 50pF

2.56

4

I'..

FIGURE 16. MAX UNDISTORTED SINEWAVE OUTPUT VB
FREQUENCY

i

2.48

1""0..
.........

o

125

2.58

.... ....

120

,

4

C

......~
:>

16

\

/

§. 2.54

:>

"~
52

2.60

u

20

:..I

FIGURE 15. SUPPLY CURRENT VB TEMPERATURE

II:
II:

~

w

-'

-55

!Z
w

,

'Ii:

/'

2.70

100

RL=2kn
CL=50pF

I\.

24

/

rn

2.68

-'

-'

-'
-'
-'

I-

zw

-'

80

FIGURE 14. NORMALIZED SLEW RATE VB TEMPERATURE

28
2.82 VO=OV

"""~

L..o''

1.0
or(
::Ii
II: 0.99
0
z
w 0.98

I

o

10-

",

...~

9

4

1.05
RL=2kn
1.04 CL=50pF

Q

VOUT -

/

(Continued)

~

.~

11

.

~

..,

.,

15

Unless Otherwise Specified: TA = 25°C, VSUPPLY = ±15V

2

4

SLEW RATE

I

I

6
8
10
12
14
SUPPLY VOLTAGE (±V)

16

18

FIGURE 18. BANDWIDTH AND SLEW RATE VB SUPPLY
VOLTAGE

3-438

20

HA-5127, HA-5127A
Typical Performance Curves

Unless Otherwise Specified: TA = 2SoC, VSUPPLY = ±1SV

20

140
RL= 2kCl
120
100

m~

i"'~

C 60
(!J

10

"

GAIN

o
-45

I'

I'"

~Htl~~
1111
100

lK

"Z

10

-90

5

GAIN

L.oo

-180
10M 100M

'\

!fi
II!

~

i

\

ll!c(
if:

,

\

PHASE

UJ

-135

10K
lOOK
1M
FREQUENCY (Hz)

AV=+l
RL = 2kn
CL= 50pF

o

....

40

0

15

(!J

80

z

mC

~

20

(Continued)

,

\
lK

FIGURE 19_ OPEN LOOP GAIN AND PHASE

10K

lOOK
1M
FREQUENCY (Hz)

10M

o
..45
-90

!fiw
l§

e.t

:E
UJ

-135 w
~
-180 :r
0..

100M

FIGURE 20. CLOSED LOOP GAIN AND PHASE

.J
«(I)

Za:
O!!:!
-II.

ti:J
w:=

a: a..
~«

Horizontal Scale = 1sJDiv.
Vertical Scale = O.002I!V/Div.
AcL =25,OOOVN, EN =O.OBI!Vp_p RTI
FIGURE 21. PEAK-TO-PEAK NOISE VOLTAGE (0.1 Hz TO 10Hz)

3-439

HA-5127, HA-5127A
Die Characteristics
DIE DIMENSIONS:

PASSIVATION:

104 mils x 65 mils x 19 mils
2650l1m x 1650l1m x 48311m

Type: Nitride (Si3N4) over Silox (Si02. 5% Phos.)
Silox Thickness: 12kA ±2.kA
Nitride Thickness: 3.5kA ±1.5kA

METALUZATION:
TRANSISTOR COUNT:

Type: AI. 1% Cu
Thickness: 16kA ±2.kA

63

SUBSTRATE POTENTIAL (Powered Up):

PROCESS:
Bipolar Dielectric Isolation

V-

Metallization Mask Layout
HA-S127

BAL

-IN
+IN

v-

3-440

HA-5130, HA-5135
2.5MHz, Precision Operational Amplifiers

November 1996

Features

Description

• Low Offset Voltage .................•..

25~V

(Max)

• Low Offset Voltage Drift .•............... O.4~V,aC
• Low Noise. . • . . . . . . . . • . • • . . . • . . . . • . . . .. 9nVNHZ
• Open Loop Gain .......•••...•.........•.. 140dB
• Unity Gain BandWidth . . . • . . . . . . . . . . . . . . .. 2.5MHz
• All Bipolar Construction

Applications
• Precision Data Acquisition
• Precision Integrators
• Biomedical Amplifiers
• Precision Threshold Detectors

Ordering Information
TEMP.
RANGE('IC)

A Super Bela input stage is combined with laser trimming,
dielectric isolation and matching techniques to produce
25~V (Maximum) input offset voltage and O.4~VflC input offset voltage average drift. Other features enhanced by this
process include 9nV/..JHz (Typ.) Input Noise Voltage, 1nA
Input Bias Current and 140dB Open Loop Gain.
These features coupled with 120dB CMRR and PSRR make
HA-5130/5135 an ideal device for preciSion DC instrumentation
amplifiers. Excellent input characteristics in conjunction with
2.5MHz bandwidth and O.8V1~ slew rate, make this amplifier
extremely useful for precision integrator and biomedical
amplifier designs. These amplifiers are also well suited for
precision data acquisition and for accurate threshold detector
applications.

• High Gain Instrumentation

PART NUMBER

The Harris HA-5130/5135 are precision operational amplifiers
manufactured using a combination of key technological
advancements to provide outstanding input characteristics.

PKG.
NO.

PACKAGE

HA2-5130-5

01075

B Pin Metal Can

TB.C

HA2-5135-5

01075

B Pin Metal Can

TB.C

HA7-5130-2

-5510125

B LdCERDIP

FB.3A

HA7-5130-5

01075

BLdCERDIP

FB.3A

HA7-5135-2

-5510125

B LdCERDIP

EB.3A

HA7-5135-5

01075

B LdCERDIP

EB.3A

HA-5130/5135 offers added features over the industry standard OP-07 in regards to bandwidth and slew rate specifications. For the military grade product, refer to the HA5135/883 data sheet.

Pinouts
HA-513015135
(CERDIP)
TOP VIEW

HA-513015135
(METAL CAN)
TOP VIEW

NOTE: Both BAL 1 pins are connected together inlernally.

CAUTION: These devices are sensHive to electrostatic discharge. Users should foliow proper IC Handling Procedures.
Copyright © Harris Corporation 1996

3-441

File Number

2907.2

..J

500pF), a small value
resistor (=500) should be connected in series with the output and inside the feedback loop.

Offset Voltage Adjustment (See Figure 3)
1. Resolving low level signals requires minimizing leakage currents caused by external circuitry. Use of quality insulating
materials, thorough cleaning of insulating surfaces and implementation of moisture barriers when required is suggested.
2. Error voltages generated by thermocouples formed between
dissimilar metals in the presence of temperature gradients

A 20kn balance potentiometer is recommended if offset nulling is required. However, other potentiometer values such as
10kn, 50kO and 100kn may be used. The minimum
adjustment range for given values is ±2mV. Vos TC of the
amplifier is optimized at minimal Vos. Tested Offset Adjustment is IVos + 1mVI minimum referred to output.

3-444

HA-5130, HA-5135

Typical Applications

v+

The excellent input and gain characteristics of HA-5130 are
well suited for precision integrator applications. Accurate
integration over seven decades of frequency using HA-5130,
virtually nullifies the need for more expensive chopper-type
amplifiers.

c

OP1l0NAL
CONNECTION

R

FIGURE 3. OFFSET NULLING CONNECTIONS

OUT

Saturation Recovery
Input and output saturation recovery time is negligible in most
applications. However, care should be exercised to avoid
exceeding the absolute maximum ratings of the device.

Differential Input Voltages
Inputs are shunted with back-to-back diodes for overvoltage
'protection. In applications where differential input voltages in
excess of 1V are applied between the inputs, the use of limiting resistors at the inputs is recommended.

OUTPUT
±13V

1- L...II

.~

200J18/D11f.

.1 ,\
200J18/D1II

INPUT

J
II, .I

1\

INPUT
±5mV

FIGURE 4. PRECISION INTEGRATOR
Low Vas coupled with high open loop Gain, high CMRR and
high PSRR make HA-5130 ideally suited for precision detector applications, such as the zero crossing detector shown in
Figure 5.

II'

]

1\

OUT

f

I

J

I

-

RF

I

,------~------,
OPTIONAL FOR OUTPUT
SWING LIMITING

FIGURE 5. ZERO CROSSING DETECTOR
HA-5130

2kn
+15V

·15V

2kn

2kn

NOTE: Av = 100
-15V

FIGURE 6. PRECISION INSTRUMENTATION AMPLIFIER

3-445

...I

etC/)

Za:

O!!!
-I&.
~:::l
a:Q.
w:E
~et

HA-5130, HA-5135
Typical Performance Curves

"-

80

>' 70

.z,

4

"-

(/)c
...:.:.
m!Z

3

~T ~IAS CUR1RENT

Zll:
-~

~
~

50

(/)

tt:

30

°...~

20

1'-0...

iii!: 10

o

-80

o

tic
... !z
Ow

...-

0

TYPICAL
IVOSI

r-

·2

~

~II:
~

·10

ii!
Q

·5

~

I'-

\.........
\
\

~ 8

~

~

6

z 4

~

·10

iii!:

10

_140
III

i'12O

~
w

100

§
zw
...

°

'"

""III

~IS~ CURRENT

1K

0.4

./

10K

°z
~

0.2 iii!:

o

100K

FIGURE 10. INPUT NOISE vs FREQUENCY

45

" '""

.... ~

'100...

20

100

1K

10K

100K

w

II:

90 CI

w

e.w

"-

0
10

iii'

iii
w
PHASE ANGLE_

GAIN' ~

40

1

!Il

j

80

~~

60

·20

0.6

.9:

!z
II!
II:
i3w

FREQUENCY (Hz)

~,

~ 80

...

1.0

-'

0

!:i
~

10

0.8

100

FIGURE 9. HA·5130 OFFSET VOLTAGE STABILITY vs TIME

160

NOISE VOLTAGE

2

o
40

20
30
TIME (DAYS)

2 4 6 810

8

1.2,

~

10

~

oJ

g

·6
-4
·2
0
2
4
6
DIFFERENTIAL INPUT VOLTAGE (V)

1.4

~ 12

"I- _I

Ii:

·8

14

MEASUREMENT AND ENVIRONMENTAL
SYSTEMS ALLOWED 12 HOUR
STABILIZATION PERIOD
0

-

",i"'"

FIGURE 8. INPUT BIAS CURRENT vs DIFFERENTIAL INPUT
VOLTAGE

10

::t:

~

1..,...00'

~

",

-6

-4
160

I I I I I I I I I

IE

-4

...iii!:u

VSUPPLY = ±15V
Te = ±1 oC, Av = 1000

~

·2

(/)

~II:

FIGURE 7. INPUT OFFSET VOLTAGE, INPUT BIAS AND
OFFSET CURRENT vs TEMPERATURE

~
w

0

u

(/)e

-

",.

~

2

120

40
80
TEMPERATURE (DC)

-40

II:
II:

4

~UT OFFSET CURRENT

"."-, ............... .....> / '

w

2

!zW

0

...

~4O

4

~

u

w 60

!:i

6

~w
... 11:

2

(/)

",
L\

1M

135

;!i
...

:2-

~
CI

...
Q

30

9

20

w

U

180

'\.

60
50

§

.......

70

~

40

"

10

·10

1

FREQUENCY (Hz)

FIGURE 11. OPEN LOOP FREQUENCY RESPONSE

I\.

"

~

0

10M

~

10

100

1K
10K
100K
FREQUENCY (Hz)

"

1M

10M

FIGURE 12. CLOSED LOOP FREQUENCY RESPONSE

3·446

HA-5130, HA-5135

Typical Performance Curves

(Continued)
35

Ui 50
W

~
CJ

VSUPPLY = ±15~

I!:

CJ 40

PHASE MARGIN

W

e.z

"

C; 30
0:(

:2 20

W

III
0:(

10

10

~

CJ

W

2.4

15

5

~
z

lK

20

I
(

W

CJ

l:!i

'~"'

10

~

j

:::>

e:

:::>

Ir

15

5

o
1

10

..J

ctcn

1.1

~'H

i!!!j

If ...
U~

I

~12
wQ

0.9

I

0.8

0:(1!:

::sw

I!:'"

I

100

lK

0.7

OW
Zl!:

0.6

10K

o

2

4

8

10

12

14

16

18

20

FIGURE 16. NORMALIZED AC PARAMETERS vs SUPPLY
VOLTAGE

140

60

"~

100

"-~

80

'""-

120

~,

100

iii'
:!!.
I!:
I!:

If

,,~

40

""-"

80
60
40

20

o

6

SUPPLY VOLTAGE (±V)

~

120

u

~ct

"'I!:

140

:;;

W::i

SLEW RATE

!=!w

VSUPPLY = ±5V

FIGURE 15. MAXIMUM OUTPUT VOLTAGE SWING vs LOAD
RESISTANCE

I!:
I!:

!cc:J
a:c..

(l

LOAD RESISTANCE (n)

iii'
:!!.

Za:
O!!:!
-u.

BANDWIDTH

1.0

::sic

VSUPPLY = ±10V

/'

0

1M

III>
I!:",

I

I

III

.........

lOOK

FIGURE 14. OUTPUT VOLTAGE SWING vs FREQUENCY

VSUPPLY = ±15V

i

"""

10K

FREQUENCY (Hz)

30

~

.\.

I

100

10,000

FIGURE 13. SMALL SIGNAL BANDWIDTH AND PHASE
MARGIN vs LOAD CAPACITANCE

CJ

\

VSUPPLY = ±5V

LOAD CAPACITANCE (pF)

25

l\

1

10

0

2.35:::>

1000

~

VSUPPLY = ±10V

'"'
!;
...
!;
~

~
CJ

RL=2kO

I

20

l:!i

~
z
~

~BANDWIDTH

'\

100

:J:

:J:

!.
2.5

~

I!:

o

i!l: 25

2.6 'N

....

W

:J:

I
VSUPPLY = ±20V

rl. 30

60

...

~

1

10

100

lK

10K

"

20

lOOK

FREQUENCY (Hz)

o

1

10

100

lK

10K

FREQUENCY (Hz)

FIGURE 17. CMRR vs FREQUENCY

FIGURE 18. PSRR vs FREQUENCY

3-447

.......

lOOK

HA-5130, HA-5135
Typical Performance Curves

(Continued)

10

±1.4
±1.2

~~

:::~

I

I

5

~;

:..00

~f

0

5~

~

~~

~

O· -5

±1.0

±D.a

I

....

~I'-...."

!::'VS=±20V

~ i'--

±D.B

Vs =±15V
Vs =±10V

1""- Vs = ±5V

±DA
±D.2

-10
0

14

o

16

-60

SETTLING llME We)

-40

0

40

ao

120

160

TEMPERATURE (DC)

FIGURE 20. POWER SUPPLY CURRENT VB TEMPERATURE

FIGURE 19. SETTUNG TIME FOR VARIOUS OUTPUT STEP
VOLTAGES

3-448

HA-5130, HA-5135

Die Characteristics
DIE DIMENSIONS:

PASSIVATION:

72 mils x 103 mils x 19 mils
(1840llm x 2620llm x 4831lm)

Type: Nitride (Si3N4) over Silox (S102, 5% Phos.)
Silox Thickness: 12kA ±2kA
Nitride Thickness: 3.5kA ±1.5kA

METALLIZATION:
TRANSISTOR COUNT:

Type: AI, 1% Cu
Thickness: 16kA ±2kA

71

SUBSTRATE POTENTIAL (Powered Up):

PROCESS:

v-

Bipolar Dielectric Isolation

Metallization Mask Layout
HA-5130, HA-5135

-I

«en
Za:

O!!!
-II..

!;;:::::;
a:£l.
W:il

~«

BAL2

-IN

+IN

3-449

v-

HA-5134
November 1996

4MHz, Precision, Quad Operational Amplifier

Features

Description

• Low Offset Voltage ••••.••••••••••.••.• 200j!V (Max)

The HA-5134 is a precision quad operational amplifier that is
pin compatible with the OP·400, LT1014, OP11, RM4156.
and LM148 as well as the HA-4741. Each amplifier features
guaranteed maximum values for offset voltage of 200j!V, off·
set voltage drift of 2j!V{JC, and offset current of 75nA over
the full military temperature range while CMRRlPSRR is
guaranteed greater than 94dB and AVOL is guaranteed
above 500kVN from -55°C to 125°C.

• Low Offset Voltage Drift ...•.. . • • • . •• 2j!vfJc (Max)
• High Channel separ!ltion ••....••....•..•.. 120dB
• Low Noise •.•..•••••.••.....•••••••.•.• 7nV/-JHz
• Unity Gain Bandwidth ...................... 4MHz
• High CMRRlPSRR .... .. .. ... . .. • .... 120dB (Typ)

Applications
• Instrumentation Amplifiers
• State-Variable Filters

Precision performance of the HA·5134 is enhanced by a
noise voltage density of 7nV/..fFfZ at 1kHz, noise current den·
sity of 1pAl..fFfZ at 1kHz and channel separation of 120dB.
Each unity·gain stable quad amplifier is fabricated using the
dielectric isolation process to assure performance in the
most demanding applications.

• Precision Data Acquisition Systems

The HA-5134 is ideal for compact circuits such as instrumentation amplifiers, state-variable filters, and low-level
transducer amplifiers. Other applications include preciSion
data acquisition, precision integrators, and accurate threshold detectors in designs where board space is a limitation.

• Low-Level Transducer Amplifiers

For military grade product, refer to the HA-51341883 data sheet.

• Precision Integrators
• Threshold Detectors

Ordering Information
PART NUMBER

TEMP.
RANGE COC)

PKG.
NO.

PACKAGE

HA1-5134-2

-5510125

14 LdCERDIP

F14.3

HA1-5134-5

01075

14 LdCERDIP

F14.3

Pinout
HA-5134
(CERDIP)
TOP VIEW

CAunON: These devices are sensHive to electrostatic discharge. Users should follow proper IC Handling Procedures.
.Copyright © Harris Corporation 1996

3-450

File Number

2926.2

HA-5134
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 40V
Differential Input Voltage (Note 2) ......................... 6V
Output Current. . . . . . . . . . . . . . . . . .. Full Short Circuit Protection

Thermal Resistance (Typical, Note 1)
9JA (oCIW) 9JC (oCIW)
CERDIP Package . . . . . . . . . . . . . . . .
BO
30
Maximum Junction Temperature (Note 3) ................. 175°C
Maximum Storage Temperature Range .... . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............ 300°C

Operating Conditions
Temperature Range
HA-5134-2 .............................. -55°C to 125°C
HA-5134-5 ................................. OoC to 75°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those Indicated In the operational sections of this specification Is not Implied.

NOTES:
1. 9JA is measured with the component mounted on an evaluation PC board in Iree air.
2. For differential input voltages greater than 6V, the input current must be limited to 25mA to protect the back-to-back input diodes.
3. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 175°C.

Electrical Specifications

PARAMETER

VSUPPLY = ±15V, RL = 2kn. CL = 50pF. Rs:S; lOon. Unless Otherwise Specilied

TEST CONDITIONS

TEMP
(DC)

HA-5134-21-5
MIN

TVP

MAX

UNITS

INPUT CHARACTERISTICS

Average Offset Current Drift

Full

-

Common Mode Range

Full

±10

Differential Input Resistance

25

Offset Voltage

25
Full

Average Offset Voltage Drift

Full

Bias Current

25
Full

Offset Current

25
Full

Input Noise Voltage

0.lHztol0Hz

25

Input Noise Voltage Density

1= 10Hz

25

1= 100Hz
1= 1kHz
Input Noise Current Density

1= 10Hz

25

1= 1kHz

200

I1V

....I

350

I1V

0.3

2

I1 flC

O!!!
-IL

±10

±SO

nA

±20

±75

nA

10

50

nA

15

75

nA

0.05

-

nAflC

-

-

30

-

0.2
10

-

-

1= 100Hz

50
75

7.5
7

v

V
Mil

-

3

I1Vp_P
nVNHz
nVNHz
nVNHz
pAlVHz

1.5

-

pA/..JHz

1

-.

pAlVHz

TRANSFER CHARACTERISTICS

25

100

120

Full

94

115

-

Minimum Stable Gain

25

1

-

-

VN

Unity-Gain Bandwidth

25

-

4

-

MHz

Full

12

13.5

-

V

Large Signal Voltage Gain

Common Mode Rejection Ratio

VOUT=±10V

VCM=±10V

25

BOO

1200

Full

500

750

kVN
kVN
dB
dB

OUTPUT CHARACTERISTICS
Output Voltage Swing

3-451

c(rn

Za:

!;(:J
a: a..
W:E
~c(

HA-5134
Electrical Specifications

VSUPPLY = ±15V. RL = 2kO. CL = 50pF. Rs" 1000. Unless Otherwise Specified (Continued)

PARAMETER

TEMP
(oC)

TEST CONDITIONS

HA·5134·2/·5
MIN

TYP

MAX

UNITS

Output Current

25

20

rnA

Full Power Bandwidth (Note 4)

25

12

16

kHz

VOUT=±10V

25

120

136

-

Rise Time

Av = +1. VOUT = 200mV

25

200

400

ns

Slew Rate

Av=+l

25

1.0

-

V/Jls

Overshoot

Av=+l

25

20

40

25

13

Channel Separation

dB

TRANSIENT RESPONSE (Note 5)

Settling Time (Note 6)

0.75

%
JlS

POWER SUPPLY CHARACTERISTICS
Supply Current

All Amps

Full

-

6.5

Power Supply Rejection Ratio

Vs = ±5V to ±18V

25

100

120

dB

Full

94

115

dB

8

rnA

NOTES:
4. Full power bandwidth guaranteed based on slew rate measurement using: FPBW =

2~e: Rate;

5. Refer to Test Circuits section of the data sheet.

V pEAK = 10V.

PEAK

6. Specified to 0.01 % of a 10V step. Av = -1.

Test Circuits and Waveforms
INO---........~

r---~V-I-I-I-O OUT
2kn

50pF

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

Vertical: 50mV/Div.. Horizontal: 200nS/Div.
TA = 250 C. Vs =±15V. AV = +1. RL = 2kO. CL = 50pF

Vertical: 2V/Div., Horizontal: 2JlS/Div.
TA = 25°C, Vs = ±15V. Av = +1. RL = 2kO, CL = 50pF

SMALL SIGNAL RESPONSE

LARGE SIGNAL RESPONSE

3-452

HA-5134
Test Circuits and Waveforms

(Continued)

+15V

5kn

::" L~"""",
--¥.,.,.......,F

r--"""'-.....

>--+......._--0 VOUT
2kn
2kn

NOTES:
7. Av=·1.

TA = 2SoC, Vs = ±lSV, Av = 1000
en = 0.167I1Vp·P
O.OSI1VlDiv.,ls1Div.

8. Feedback and summing resistors should be 0.1 % matched.
9. Clipping diodes are optional. HPSOB2·2Bl0 recommended.

....I

ctUJ
Za:

PEAK-TO-PEAK NOISE O.lHz TO 10Hz

FIGURE 2. SETTLING TIME CIRCUIT

O!!:!
-u.
~:J
a: a.

Schematic Diagram (Each Amplifier)

W:E

~ct

V+

QN21

--+-o OUT

. ; t -.......

Rs

3-453

HA-5134

Application Information
materials, thorough cleaning of insulating surfaces and
implementation of moisture barriers when required is
suggested.

Power Supply Oecoupling
Although not absolutely necessary, it is recommended that
all power supply lines be decoupled with O.D1IlF ceramic
capacitors to. ground. Decoupling capacitors should be
located as near to the amplifier terminals as possible.

Considerations For Prototyping
The .following list of recommendations are suggested for
prototyping.
1. Resolving low level signals requires minimizing leakage
currents caused by external circunry. Use of qualny insulating

2. Error voltages generated by thermocouples formed between
dissimilar metals in the presence of temperature gradients
should be minimized. Isolation of low level Circuitry from heat
generating components is recommended.
3. Shielded cable input leads, guard rings and shield drivers are
recommended for the most critical applications.

Typical Applications

TA = 25°C, Vs =±15V. Av = 1, RL = 10k!l
20mV/Div.,1I1S/ Div.

VOUT = ±10V, RLOAD = son CLOAD = O.OlJ!F, Av = 3, Vs = ±lSV
Top: Input, 2V/Div.• 2011s1Div. Bottom: Output. SV/Div, 20J!S/Div.

FIGURE 3. SMALL SIGNAL TRANSIENT RESPONSE
(CLOAD 1nF)

TRANSIENT RESPONSE OF APPLICATION CIRCUIT #1

=

NOTES:
10.

-Ay = (1 +

~:)(~).

11. 10n - lOOn recommended for short circuit limiting.
12. When driving heavy loads the HA-5002 may
contribute to thermal errors. Proper thermal shielding
is recommended.

FIGURE 4. APPLICATION CIRCUIT #1: INSTRUMENTATION AMPUFIER WITH POWER OUTPUT

3-454

HA-S134

Typical Applications

(Continued)

R

8R

R

4R

Gl

Go

Av

0

0

-1

0

1

-2

1

0

-4

1

-8

1

High AvOL of HA-S134 reduces gain error.
Gain Error == 0.004% at Av = 8.
R

8R

1/4 HA-5134

VREF

FIGURE 5. APPLICATION CIRCUIT #2: PROGRAMMABLE GAIN AMPLIFIER

....I



.VOUT

~ ""'

14.0

..

iii

4.50

etC/)

Za:

OW

ti§

a: a..

~"

I:! 4.80
a:
B 4.70
8:~ 4.60

::Ii

..J

[...0' ~"'"

W::E
~et

'(

4.40
13.9
-60

4.30
-40

·20

0

20

40

60

60

100

~

120

·40

·20

TEMPERATURE (oC)

I
I

36

I
I

34 I--- I-- FALLING EDG;""-

~

8:z:
III

a:
w

~

32
30
28
26
24
22

.........

~~

..... ",.

.......

-

... ~
~

..... ,-

.......

~ RISING EDGE_

100

iii"
:E.-

r--

~

(!l

60

i-"""

80

120

....

60

....

40

GAIN

....

....

P~JEI.

o
45
90

=25°C, VS" ±15V
Ay =1, VOUT =200mV

TA

16

L
1

100

~

0

20
18
14

60

~

20

JIll"""
I"""

40

FIGURE 18. SUPPLY CURRENT VB TEMPERATURE

120

40

20

TEMPERATURE (OC)

FIGURE 17. MAXIMUM OUTPUT VOLTAGE VB TEMPERATURE

38

0

12

1A

I

1~

I
1~

1\

1

10

2

1K

10K

100K

1M

10M

Ii;
ili

i

w

180

100M

FREQUENCY (Hz)

LOAD CAPACITANCE (nF)
FIGURE 19. OVERSHOOT VB CLOAD

100

,

135

ie.

FIGURE 20. OPEN LOOP GAIN AND PHASE VB FREQUENCY

3·457

HA-5137,· HA-5137A
63MHz, Ultra-Low Noise Precision
Operational Amplifier

November 1996

Features

Description

• Slew Rate •••.......••••.•••..••.••••••.. 20V/j.1S

The HA-5137 operational amplifier features an unparalleled
combination of precision DC and wideband high speed
characteristics. Utilizing the Harris Dielectric Isolation
technology and advanced processing techniques, this
unique design unites low noise (3nV/,JFiZ) precision
instrumentation performance with high speed (20V/j.1S)
wideband capability.

• Wide Gain Bandwidth (Av 2!: 5) .••••.•.•••••• 63MHz
• Low Noise .•.•....•..•.•..•..... 3nV/.jHi at 1kHz
• Low VOS •••••.••.••••••.•.••...•.•••••..• 10j.1V
• High CMRR ••.••••.•.•••.•.•.••••..••••. , 126dB
• High Gain •••...••.•••••.••.••••..•••• 1800VlmV

Applications
• High Speed Signal Conditioners
• Wide Bandwidth Instrumentation Amplifiers

Using the HA-5137 allows designers to minimize errors while
maximizing speed and bandwidth in applications requiring
gains greater than five.

• Low Level Transducer Amplifiers
• Fast, Low Level Voltage Comparators
• Highest Quality Audio Preamplifiers
• PulseiRF Amplifiers
• For Further Design Ideas See Application Note 553

Ordering Information
PART NUMBER
(BRAND)
HA3-5137A-5

TEMP.
RANGE (oC)
010 75

PACKAGE

This amplifier's impressive list of features include low Vos
(10j.1V), wide gain bandwidth (63MHz), high open loop gain
(1800VlmV), and high CMRR (126dB). Additionally, this
flexible device operates over a wide supply range (±5V to
±20V) while consuming only 140mW of power.

PKG.
NO.

8 Ld PDIP

E8.3

HA7-5137-2

-55 to 125

8 LdCERDIP

F8.3A

HA7-5137-5

01075

8 LdCERDIP

F8.3A

HA7-5137A-2

-5510125

8LdCERDIP

F8.3A

HA7-5137A-5

01075

8 LdCERDIP

F8.3A

HA9P5137-5
(H51375)

010 75

8 LdSOIC

M8.15

This device is ideally suited for low level transducer signal
amplifier circuits. Other applications which can utilize the
HA-5137's qualities include instrumentation amplifiers, pulse
or RF amplifiers, audio preamplifiers, and signal conditioning
circuits.
This device can easily be used as a design enhancement by
directly replacing the 725, OP25, OP06, CP07, OP27 and
OP37 where gains are greater than five. For the military
grade product, refer to the HA-5137/883 data sheet.

Pinout
HA-5137, HA-5137A
(PDIP, CERDIP, SOle)
TOP VIEW

CAUTION: These devices are sensnive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris CorporaHon 1996

3-458

File Number

2908.2

HA-5137, HA-5137A
Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V- Terminals .................... 44V
Differential Input Voltage (Note 1) ....................... 0.7V
Output Current. . . . . . . . . . . . . . . . . .. Full Short Circuit Protection

Thermal Resistance (Typical, Note 2)
8JA (oCIW) 8JC (oCIW)
CERDIP Package. . . . . . . . . . . . . . . .
135
50
PDIP Package........... . .... . ..
120
N/A
SOIC Package. ......... . . .... . ..
160
N/A
Maximum Junction Temperature (Hermetic Package) ........ 175°C
Maximum Junction Temperature (Plastic Packages) ....... 150°C
Maximum Storage Temperature Range . . . . . . . .. -65°C to 150°C
Maximum Lead Temperature (Soldering lOs). . . . . . . . . . .. 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-5137/37A-2. . . . . . . . . . . . . . . . . . . . . . . . .. -55 0 C to 125°C
HA-5137/37A-5 ............................. OoC to 75°C

Die Characteristics
Back Side Potential .................................... VNumber 01 Transistors .................................. 63
CAUTION: Stresses above those listed in "Absolute Maximum Ratings· may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. For differential input voltages greater than 0.7V, the input current must be limited to 25mA to protect the back-to-back input diodes.
2. 8JA is measured with the component mounted on an evaluation PC board in Iree air.

Electrical Specifications

VSUPPLY = ±15V, CL" 50pF, Rs" loon
HA-5137

PARAMETER

TEST
CONDITIONS

TEMP.
(oC)

MIN

TYP

HA-5137A
MAX

MIN

TYP

MAX

UNITS

Za:
O!!:!
-I&.,

INPUT CHARACTERISTICS
Offset Voltage

25

Average Offset Voltage Drift
Bias Current

Offset Current

30

100

10

Full

70

300

30

Full

0.4

1.8

0.2

25

15

80

10

40

nA

Full

35

150

25

12

75

-

-

25

a:c..

60

I1V

~«

0.6

JlVfDC

20

60

nA

7

35

nA
nA

-

30

135

-

15

50

Common Mode Range

Full

±10.3

±11.5

-

±10.3

±11.5

-

Differential Input Resistance (Note 3)

25

0.8

4

1.5

6

V
Mn

Input Noise Voltage (Note 4)

O.lHz to 10Hz

25

-

0.09

0.25

0.08

0.18

Input Noise Voltage Density
(Note 5)

1= 10Hz

25

-

3.8

8.0

3.5

8.0

nV/./Hz

1= 100Hz

25

-

3.3

4.5

3.1

4.5

nV/./Hz

1= 1000Hz

25

3.8

3.0

3.8

nV/./Hz

25

1.7

4.0

pAl./Hz

I = 100Hz

25

1.0

2.3

pAl./Hz

1= 1000Hz

25

-

3.2

1= 10Hz

-

0.4

0.6

pAl./Hz

Large Signal Vol1age Gain

RL=2kn,
VOUT=±10V

25

700

1500

1000

1800

V/mV

Full

300

800

-

600

1200

Common Mode Rejection Ratio

VCM=±10V

Full

100

120

-

114

126

25

5

-

5

-

-

-

1.7
1.0

-

0.4

0.6

JlVp_p

TRANSFER CHARACTERISTICS

Minimum Stable Gain

3-459

ti:::J
W:E

I1V

Full

Input Noise Current Density
(Note 5)

-I
«II)

VlmV
dB
VN

HA-5137, HA-5137A
Electrical Specifications

VSUPPLY = ±15V, CL s; 50pF, Rs s; 100n (Continued)
HA-5137
TEST
CONDITIONS

PARAMETER
Galn·Bandwldth-Product

TEMP.
(DC)

MIN

TYP

f = 10kHz

25

60

80

f=IMHz

25

RL=600n

25

±10.0

±11.5

RL=2kn

Full

±11.4

25

220

HA-5137A
MAX

MIN

TYP

60

80

MHz

63

MHz

±10.0

±11.5

V

±13.5

±11.7

±13.8

V

320

220

320

kHz

70

n

25

rnA

63

MAX

UNITS

OUTPUT CHARACTERISTICS
Output Voltage Swing

Full Power Bandwidth (Note 6)
Output Resistance

Open Loop

Output Current

70

25
25

16.5

25

16.5

TRANSIENT RESPONSE (Note 7)
Rise Time

25

100

Slew Rate

Vour= ±3V

25

Settling Time

Note 8

25

1.0

25

20

25

3.5

Overshoot

14

20

100
14

20

V/IlS

1.0
40

20

ns

Ils
40

%

POWER SUPPLY CHARACTERISTICS
Supply Current

3.5

Full
Power Supply Rejection Ratio

Vs=±4Vto±18V

4.0

Full

16

51

NOTES:
3. This parameter value is based upon design calculations.
4. Refer to Typical Performance section of the data sheet.
5. The limits for this parameter are based on lab characterization, and reflect lot-to-Iot variation.
6. Full power bandwidth guaranteed based on slew rate measurement using: FPBW =
7. Refer to Test Circuits section of the data sheet.

Slew Rate
2ltV pEAK

8. SeWing time Is specified to 0.1% of final value for a 10Voutput step and Av = -5.

Test Circuits and Waveforms

'" j=t»1-.6-kn-,....-.....

_-O

OUT

~ 50pF
4000

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

3-460

2

rnA
4.0

rnA

4

IlVN

HA-5137, HA-5137A
Test Circuits and Waveforms

(Continued)

I
IN
IN

It!!

OUT

I

OUT

Vertical Scale: Input = 1V/Div.
Output = 5V/Div.
Horizontal Scale: 1~S/Div.

••

•-

•

IiiiII

I

Vertical Scale: Input = 20mV/Div.
Output = 100mV/Div.
Horizontal Scale: 100nS/Div.

LARGE SIGNAL RESPONSE

SMALL SIGNAL RESPONSE

+15V

r-----~~--~~--~TO
1000n

OSCILLOSCOPE

2kn

IN o--4_...4Vo",on~_t-_£oo'>~~""- OUT

NOTES:

9. Av=-5.

-15V

10. Feedback and summing resistors should be
0.1 % matched.

2kn

11. Clipping diodes are optional. HP5082-2810
recommended.

FIGURE 2. SETTLING TIME TEST CIRCUIT

3-461

Schematic Diagram
y+
r-"

'-r'
I'

.,...

lR25

r-

:; C7

~

R15

~

~~

I~

lR1 I
E.,..J

]

~

3]

R2

R20

1

R17

I~

I

CJ

R21

°P35"'"

Op43 ,."

"Op44

OP38

~ OP'~1r;-----r---------------;----------i-----i----------,

5

0N4!

_~

..er

OoaI

Op:

Lf

C5
19

ON46

~~
R14

ON3
"1

, ~0D53

ON2

R~

r

Ir

0
N12

[oP36AI

OPV

~rr
0D41

.....

R5

R6

y-

SUBSTRATE

+INPUT

-U

Co)

ON1A

1

"ii"f

ION1

Co)

l.J...l.

0

~

N18--:J""1'

0D34

r

0N7..

~
~

r

0N11

2
-INPUT

...

~

r;

r

R10

R19

0

'"

~

.-R22

R23

N50

OP30

:-a
~
&.
....

IF

~-

~

&.
....

~

,-

1_~_ON10Ul
3

'" I

~

~

R8

/7

~

OP26

0N39

4

.....

IF .'

ON48 ..... ON49 ONS ;;:

......

OP16

R3

ON42

~

~N25

R7

OP17)1-

OP40

OD~
~

ON24tl

~~

r

~

~

--.... ON4

10N2A

~~Oz5a

~

f:I

ON15

I...

OD54 ,

OD~ ~

, r 0D59
,7('

rt.

~

ON52

""

~r-~P27LOp~

~

~ON14

~OD9

C6

c,.>

~-++-+--4

0- N1-i
3 r=it-l-.........

~

_~,

ON51 "1

C4 ~

lr-

~
TaN47lE
~R2A

R
1A

ON!

L-e:

R16

..... c

HA-5137, HA-5137A

Application Information

!--_-oV+

NOTE: Tested Offset Adjustment Range is IVas + 1mVI minimum referred to output. Typical range is ±4mV with Rp = 10kQ.
FIGURE 3. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

Cs

·--11--,
I
I
I

..J


w

"-

-SO
-60
-60

~

10

~ -10
g
Iii
~
0

6

Vee = ±ISV. TA = 25°C

~

FIGURE 6. NOISE CHARACTERISTICS

o

1M

HA-5137, HA-5137A.
Typical Performance Curves
0.14

140

TA=250 C

'D: 0.12
II.

120

0.1

100

:;
w

...

CI

~

0.08

,.
~

~

w 0.06

r"o ....

..... 1'

60

z 0.04

40

l!;

20

0.02

o

.

8

6

10
12
14
16
SUPPLY VOLTAGE (±V)

18

10

20

100

2.60

2.56

C

.§. 2.54

::>

CJ

~
""::>

UI

1M

10M

1.10

2.58

II:
II:

1K
10K
100K
FREQUENCY (Hz)

FIGURE 8. CMRR vs FREQUENCY

FIGURE 7. NOISE vs SUPPLY VOLTAGE

!i:w

~

I"~

o

4

..... 1'

:!!. 80

~

0

-

iii
II:
II:

!1l

!5"-

=±1SV (Continued)

Unless Otherwise Specified: TA';' 2SoC. VSUPPLY

~~

2.52

l...o'

2.50

"".

-

II:'H
~

I-

:g12

III
~~
~

j

2.46

0.90 ~

...~ !c

~

2.48

-

-

~. ~ 1.00 JNl.JH

.... ~ i"'"

~

0.80

i

.,

,.",.

~

,.",.

"'"

~~

l-SLEWRATE

I

I

I

+sL~R1TE

0.70

zo

2.44

~ !. 0.60

2.42
0.50

2.40
4

8

6

10
12
14
16
SUPPLY VOLTAGE (tV)

18

120

1-I-

...

:!!.

II:
II:
UI

"-

'I'

"

"

+PSRR

:!!.

·PSRR

z

:cCI

~

1'"

10

100

1K
10K
100K
FREQUENCY (Hz)

FIGURE 11. PSRR vs FREQUENCY

10
0

·10

G11~

--

100

~~
1M

-

~
PHASE'

·20

I\..

20

o

,

iii" 20

....
....

40

III

30

....

60

20

40

.... 1'

80

15

FIGURE 10. BANDWIDTH AND SLEW RATE vs SUPPLY
VOLTAGE

~

100

iii"

10

SUPPLY VOLTAGE (±V)

FIGURE 9. SUPPLY CURRENT vs SUPPLY VOLTAGE

140

5

20

10M

'I1K

10K
100K
1M·
FREQUENCY (Hz)

':-:-

10M

100M

FIGURE 12. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

3·464

HA-5137, HA-5137A

Typical Performance Curves
17
16
15
~ 14
....
:::>
~ 13
12
C
z
..: 11
10
9
0
0
:c. 8
...J
0
7
~ 6
5
4

Unless Otherwise Specified: TA = 25°C, VSUPPLY = ±15V (Continued)

-

I

TA =2SoC

'-

AVOL

-~

V

,-,

~

YOUT_

J f

1.05
0

1.0

II:

0.99

z

~

o

2

4
6
LOAD RESISTANCE (kQ)

8

0.95
-60

10

2.72

-40

·20

0
20
40
60
TEMPERATURE (oC)

\

~
~ 20

III

~

100

120

g

./

..J

ctrn

Za:

\

O!!:!
-u.

" "-

i

8

./

./

8

./
4

~

w:s
~ct

I\.

.... 12

~

!ci:::J
a: a.

\.

~ 16

./

1"'0.

:.......

.......

",

25
TEMPERATURE (oC)

-55

80

RL = 2K, CL = 5OpF, TA = 25°C

~

2.70

./
./

~

24

./

Ul

2.68

/

FIGURE 14. NORMALIZED SLEW RATE vs TEMPERATURE

./
./
./

2.76

......~

~

28

Yo = OY, Ys = ±15Y

2.78

2.74

~

./

0.97

w 0.96
==

.J
Ul

r-

~

,

L'

w 0.98

I

0

:::>

~
..:

0

C(

:::>

1.02

::I!

2.80

II:
II:

1.03

12

",

w 1.01

'I

2.82

!zUJ

Ii

~

RL = 2K, CL = 50pF, TA = 25°C

C

I--

FIGURE 13. AYOL AND VOUT vs LOAD RESISTANCE

g

1.04

Ii!

I I

...~

°

o

125

FIGURE 15, SUPPLY CURRENT vs TEMPERATURE

-

......1.6
0.8
1.2
FREQUENCY (MHz)

0.4

.....
2

FIGURE 16, VOUT MAX (UNDISTORTED SINEWAVE OUTPUT)
VB FREQUENCY

140
120

iii"
z

1111
1111

i"'o~

100

~

:!!. 80

cc

60
40

0

iii'
w
w

i"o

CI

20

GAIN

i"o~

...

II:

1'00.

0

~~ASE

-45

,
10

100

1K

10K 100K 1M
FREQUENCY (Hz)

10M

-90

e."
w

Ii;

:r
Ul

w
-135 ~

AcL = 25,000VN

%

-180 ...
100M

Horizontal Scale = 1S/Oiv.
Vertical Scale 0.002I1V10iv., EN O.OBI1Vp_p RTI

=

FIGURE 17. OPEN LOOP GAIN AND PHASE vs FREQUENCY

=

FIGURE 18. PEAK-TO-PEAK NOISE VOLTAGE (0.1 Hz TO 10Hz)

3-465

HA-S142, HA-S144
Dual/Quad, 400kHz, Ultra-Low Power
Operational Amplifiers

November 1996

Features

Description

• Low Supply Current .•••••.•.•••..•••.•• 45IlAlAmp

The HA-5142144 ultra-low power operational amplifiers
provide AC and DC performance characteristics similar to or
better than most general purpose amplifiers while only
drawing 1/30 of the supply current of most general purpose
amplifiers. In applications which require low power dissipation and good AC electrical characteristics, this family offers
the industry's best speed/power ratio.

• Wide Supply Voltage Range Single • • • • • .• 3V to 30V
or Dual .............................. ±1.5V to ±15V
• High Slew Rate. . • . . . • • • . . . • • • . . • • . • . • • •. 1.5V1lls
• High Gain •....••••••••...••••••••••••.• 100kVN
• Unity Gain Stable

The HA-5142144 provides accurate signal processing by virtue of
their low input offset voHage (2mV), low input bias current (45nA),
high open loop gain (lOOkVN) and low noise (20nVNHz), for low
power operational amplifiers. These characteristics coupled with
a 1.5V/lls slew rate and a 400kHz bandwidth make the HA5142144 ideal for use in low power instrumentation, audio amplifier and active filler designs. The wide range of supply voKages
(3V to 3OV) also allow these amplifiers to be very useful in low
voKage battery powered equipment. These parts are also tested
and guaranteed at both ±15V and single ended +5V supplies.

• Available in Duals and Quads

Applications
• Portable Instruments
• Meter Amplifiers
• Telephone Headsets
• Microphone Amplifiers

These amplifiers are available with industry standard pinouts
which allow the HA-5142/5144s to be interchangeable with
most other operational amplifiers. For military grade product
refer to the 5142,5144/883 data sheet.

• Instrumentation
• For Further Design Ideas See Application Note 544

Pinouts

(See Ordering Information on Next Page)
HA-5142 (POIP, CEROIP)
HA-5142 (METAL CAN)
TOP VIEW
TOP VIEW

HA-5142 (SOIC)
TOP VIEW

v+

OUT1

NC

Ne
Ne
Ne
v-

HA-5144 (POIP, CERDlP)
TOP VIEW
OUT1

HA-5144 (SOIC)
TOP VIEW

OUT4

-IN1

-IN4

+IN1

+IN4

y+IN3
-IN2

-IN3

CAUTION: These devices are sens~iVe 10 electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Hams Corporation 1996

3-466

File Number

2909.2

HA-5142, HA-5144
Ordering Information
PART NUMBER

TEMP. RANGE (DC)

PACKAGE

PKG. NO.

HA2·5142·2

·55 to 125

8 Pin Metal Can

T8.C

HA2·5142·5

01075

B Pin Metal Can

TB.C

HA3·5142-5

01075

Bld POIP

EB.3

HA7-5142-2

-5510125

Bld CEROIP

FB.3A

HA7-5142-5

01075

Bld CEROIP

FB.3A

HA9P5142-9

-40 to 85

16ld SOIC

M16.3

HA1-5144-2

-55 to 125

14ldCEROIP

F14.3

HA1-5144-5

Oto 75

14ld CEROIP

F14.3

HA3-5144-5

Oto 75

14 Ld POIP

E14.3

HA9P5144-5

01075

16ldSOlC

M16.3

HA9P5144-9

-40 to 85

16ld SOIC

M16.3
..J

Schematic Diagram

<(I)
Zit:
O!!!
-II.

!i::;
It: a.
W:E

~<

t--t-''WI.-o

3-467

OUTPUT

HA-S142, HA-S144
Absolute Maximum Ratings

Thermal Information

Supply Voltage Between V+ and V- Terminals .............. 35V
Differential Input Voltage................................ 7V
Output Current ....................... Short Circuit Protected

Thermal Resistance (Typical, Note 1)
9JA (oc/W) 9JC (oc/w)
75
20
14 Lead CERDIP Package. . . . . . . . .
8 Pin Metal Can Package .. . . . . . . . •
155
67
14 Lead PDIP Package....... .....
100
N/A
120
N/A
8 Lead PDIP Package.... .........
135
50
8 Lead CERDIP Package...... ....
16 LeadSOIC Package (HA-5142) •..
110
N/A
100
NlA
16 Lead SOIC Package (HA-5144) ....
Maximum Junction Temperature (Hermetic Packages) ....... 175°C
Maximum Junction Temperature (Plastic Packages) ....... 150°C
Maximum Storage Temperature Range ......... -65°C to 150°C
Maximum Lead Temperature (Soldering lOs) ............ 300°C
(SOIC - Lead Tips Only)

Operating Conditions
Temperature Range
HA-5142144-5 .......................•...... OoC to 75°C
HA-5142144-2 ......................... " -55°C to 125°C
HA-5142144-9 ....................... , .... -40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. 9JA is measured

w~h

the component mounted on an evaluation PC board in free air.

Electrical Specifications

Rs = 1000, CL S; 10pF. Unless Otherwise Specified
-2, -5, -9
V+ = +5V, V- = OV

PARAMETER

-2, -5,-9
V+ = +15V, V- = -15V

TEST
CONDITIONS

TEMP.
(oC)

MIN

TYP

MAX

MIN

TYP

MAX

UNITS

Note 11

25

-

2

6

-

2

6

mV

Full

-

-

8

8

mV

Full

3

-

3

-

JlVPC

25

-

45

100

45

100

nA

Full

-

125

nA

25

10

nA

20

nA

INPUT CHARACTERISTICS
Offset Voltage

Average Offset Voltage Drift
Bias Current

Note 11

Offset Current

Note 11

125

-

0.3

10
20

Ot03

-

Full
Common Mode Range

Full

Differential Input Resistance

25

0.6
20

-

tl0

0.3

-

V

Input Noise Voltage

f= 1kHz

25

Input Noise Current

f= 1kHz

25

-

0.25

-

Notes 2, 4

25

20

100

20

100

kVN

Full
-2,-5

15

-

15

-

kVN

Full
-9

12

-

12

-

-

kVN

Full
-2, -5

77

105

77

105

-

dB

Full
-9

70

105

70

105

-

dB

0.6

-

20
0.25

MO
nVNHz

-

pANHz

TRANSFER CHARACTERISTICS
Large Signal Voltage Gain

Common Mode Rejection Ratio

Note 7

3-468

-

-

HA-S142, HA-S144
Electrical Specifications

Rs = 100n, CL ~ 10pF, Unless Otherwise Specified (Continued)

PARAMETER
Bandwidth

TEST
CONDITIONS

TEMP.
(oC)

Notes 2, 3

25

Notes 2,10

25

-2, -5,-9

-2, -5,-9

V+ = +5V, V- =OV

V+ = +15V, V- = -15V

MIN

MIN

TYP

TYP

MAX

MAX

0.4

-

1.0 to
3.8

0.710
4.2

-

±10

±13

-

V

Full

1.210
3.5

0.9 to
4.0

-

±10

±13

-

V

25

-

240

-

0.4

UNITS
MHz

OUTPUT CHARACTERISTICS
Output Voltage Swing

Full Power Bandwidth

Notes 2, 4, 8

24

kHz

TRANSIENT RESPONSE (Notes 2, 3)
25

-

600

Slew Rate

Note 6

25

0.8

1.5

Settling Time

Note 5'

25

10

Rise Time

-

600

-

ns

-

0.8

1.5

-

V/IlS

-

-

10

IlS
~

c(c/)

POWER SUPPLY CHARACTERISTICS
Supply Current

Power Supply Rejection Ratio

25

Note 9

45

Za:

100

150

IlAiAmp

100

-

-

200

IlAiAmp

80

Full

-

Full
-2, -5

77

105

-

77

105

-

dB

Full
·9

70

105

-

70

105

-

dB

NOTES:
2. RL=50kO.
3. CL = 50pF.
4. Vo = 1.4 to 2.5V for VSUPPLY = +5, OV; Vo = ±10V for VSUPPLY = ±15V.
'5. SetUingTime is specified 10 0.10/0 of final value for a3V output step and AV=·l forVSUPPLY = +5V, OV. Output step = 10V for VSUPPLY = ±15V.
6. Maximum input slew rate = 10V/',1S.
7. VCM = 0 10 3V forVSUPPLY = +5, OV; VCM = ±10V for VSUPPLY = ±15V.
8. Full Power Bandwidth is guaranteed by equation: FPBW = S2 1eVw Rate.
It

PEAK

9. INs = +10VforVSUPPLy=+5, OV; INs = ±5V for VSUPPLY =±15V.
10. For VSUPPLY = +5, OV terminate RL at +2.5V. Typical output current is ±3mA.
11. Vo = l.4V forVSUPPLY = +5V, OV.

3-469

O~

-u...

!i:::i
a:c..
W:E
~c(

HA-5142, HA-5144
Test Circuits and Waveforms

.~

I

11
f~

fVL
_ _ _ _..J_ 50kn

0 OUT

50pF

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

INPUT
INPUT

OUTPUT

OUTPUT

+VSUPPLY

=+15V, -VSUPPLY =-15V

+VSUPPLV = +15V, -VSUPPLY

= -15V

Vertical Scale: Input = 5V/Diy.; Output = 2V/Diy.
Horizontal Scale: 2l!slDiy.

Vertical Scale: Input = 100mV/Div.; Output = 50mV/Div.
Horizontal Scale: 2l!slDiv.

LARGE SIGNAL RESPONSE

SMALL SIGNAL RESPONSE

INPUT

INPUT

OUTPUT

OUTPUT

+VSUPPLY = +5V, -VSUPPLY = OV

+VSUPPLY

=+5V, -VSUPPLY =OV

Vertical Scale: Input = 2V/Diy.; Output = W/Diy.
Horizontal Scale: 5l!slDiv.

Vertical Scale: Input = 100mV/Diy.; Output = 50mV/Diy.
Horizontal Scale: 5l!slDiy.

LARGE SIGNAL RESPONSE

SMALL SIGNAL RESPONSE

3-470

HA-5142, HA-5144
Typical Performance Curves
110
100

Vs = ±2.5V, TA = 25°C, Unless Otherwise Specified
70

u:

I-

I

RL=SOkn

iii'

90

II'

3!::

80

GAIN

0

(1i

70

II ,

20

'"Cl

60

~

~
!i!

~

CL=50pF

)oIJ

80

§

30

Z

20

120

10

140

o

160

~
o

100

1

10

100

1K

10K

100K

I

24

i"""

r-I-

i"""

20

r-. ...

40
30

8

INPUT OFFSET CURRENT

III

20

.... 1"'"

4

10
-60

1M

-40

·20

0

20

40

60

80

100

120

FIGURE 3. INPUT OFFSET CURRENT AND BIAS CURRENT va
TEMPERATURE
1.6

I

I

I I

600

I III

RL=50kn

-.....

PHASE MARGIN

~

!.
I'"

".....

:E

400

0.3

0.1 ::>

1.2

~

~12

:Ell:

~~

0.6

~

.... ~

10

100

o

1000

±1

±2

BANDWIDTH-

f--

FIGURE 4. BANDWIDTH AND PHASE MARGIN
CAPACITANCE
14
RL= SOkQ

II

I

I

II
I III

va LOAD

I I III

1.2

8! ~

1.1

~~
~ !!I

1.0

~

!tee

~ > 0.9

"'12
~Q
Il!
:Ell:

"

VSUPPLY = +5V

~

:;!

'- ~~

±7

±8

±9

±10

100K

I

I

-- ......

SLEW RATE

:..~

,~

t-

r-

...... 1-

BANDWIDTH -

0.8

11:",
OU.
Z

.....

VSUPPLY = +2.SV
10K

±6

RL=SOkQ

i........

11:-1

~

1K

±S

CL=SOpF

VSUPPLY = +10V

o

±4

FIGURE 5. NORMAUZED AC PARAMETERS vs SUPPLY
VOLTAGE

VSUPPLY = +1SV

VSUPPLY = +3V

±3

SUPPLY VOLTAGE (V)

LOAD CAPACITANCE (pF)

Il!

0.7
0.6

1M

-60

-40

·20

·10

0

20

40

60

TEMPERATURE ('IC)

FREQUENCY (Hz)

FIGURE 6. OUTPUT VOLTAGE SWING va FREQUENCY AND
SINGLE SUPPLY VOLTAGE

FIGURE 7. NORMAUZED AC PARAMETERS va
TEMPERATURE

3·471

zo:
O!!:!
-II..
0:0.

0.4

00

...J

.

35

1K
100
FREQUENCY (Hz)

10K

I
I
II/'

10

W

U

!5I>.
!50

~

70

80

a!

60
40

o

::E

100

50

II:

w

""-

IZ

w 40

II:
II:

~

;:)

U

r--.

1K

VSUPPLY = +3V
10K

-H""'"

30

."...,.

I>.
I>.

20

;:)

UJ

10
·60

1M

100K

",,-

VS=+5V"""

I

VI

Vs= +2V

Vs=~3V

,. .-·40

-

I--'"

·20

20

0

.120 f--+-+-+-f+ffl'l'_:::+--+-+-++H-I+--+-+-I~,.HH

iii"

·80

UJ

-60

w

..J

W

Z

~

100kn

~.~~--+-~~~
-=- 1kn

100kn

~
1kn·

-40

·20

60

80

100

120

140

FIGURE 11. POWER SUPPLY CURRENT vs TEMPERATURE
AND SINGLE SUPPLY VOLTAGE

FIGURE 10. PSRR AND CMRR vs FREQUENCY

iif

40

/"

/
..."".

TEMPERATURE (OC)

FREQUENCY (Hz)

i"o ·100

100K

~-

~

r--.
10K

I IIII

VSUPPLY = +5V

I I

I>.

IIIIIII I

10

cC

·PSRR

+~Sffil~~RRI

20

60

I>.

....

II:

:e

~

""-

r--.

::E

U

III

I- Vs =+30V

W

II:
II:

".

FIGURE 9. MAXIMUM OUTPUT VOLTAGE SWING vs LOAD
RESISTANCE AND SINGLE SUPPLY VOLTAGE

II:

....

VSUPPLY = +10V
II
III
I I III

1K

80

....

I III

11111

Ul

~~

100

120

~

I

III IIW

2

140

iii"

III

4

1o
100K

FIGURE 8. INPUT NOISE vs FREQUENCY

100

VSUPPLY = +20V

I

CJ 12
z

~

w

100

.,

16

"ii
~ 14

w

II:
II:

11111

lIlllIl 1L

1

IZ

NOISE CURRENT

-

~
=

(Continued)

Cs=20LOG