3029900_Maintenance_Training_Manual_Mar1983 3029900 Maintenance Training Manual Mar1983

3029900_Maintenance_Training_Manual_Mar1983 manual pdf -FilePursuit

3029900_Maintenance_Training_Manual_Mar1983 3029900_Maintenance_Training_Manual_Mar1983

User Manual: 3029900_Maintenance_Training_Manual_Mar1983

Open the PDF directly: View PDF PDF.
Page Count: 558

Download3029900_Maintenance_Training_Manual_Mar1983 3029900 Maintenance Training Manual Mar1983
Open PDF In BrowserView PDF
TeleVideo®
Terminal Maintenance
Training Manual

March 1983

Copyright c 1981 by TeleVideo Systems, Inc. All rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without
the prior written permission ofTeleVideo Systems, Inc., 1170 Morse Avenue, Sunnyvale, California 94086.
Disclaimer

TeleVideo Systems, Inc. makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further,
TeleVideo Systems, Inc. reserves the right to revise this publication and to make changes from time to time
in the content hereof without obligation of TeleVideo Systems, Inc. to notify any person of such revision
or changes.

TeleVideo Systems, Inc., 1170 Morse Avenue, Sunnyvale, California 94086

408/745-7760

3029900 . ~ Te/eVideo 5/83 Printed in U.S.A.

.....

(

;

.("

...

\ ,.

I,

')

TABLE OF
CONTENTS

SECTION
·-WARRANTY, ORDERING SPARE PARTS, KEY CAPS, SPARE KITS

1

970 THE OF, SCHEMATICS, PARTS LIST

2

950 THE OF, SCHEMATICS, PARTS LIST

3

925 THE OF, SCHEMATICS, PARTS LIST

4

912/920 THE OF, SCHEMATICS, PARTS LIST

5

910/910+ THE OF, SCHEMATICS, PARTS LIST

6

VIDEO MODULE/POWER SUPPLY - -

7

970 VIDEO MODULE/POWER SUPPLY - -

8

TERMINAL TROUBLE SHOOTING GUIDE -

9

970 TERMINAL TROUBLE SHOOTING GUIDE -

10

SPECIFICATION SHEETS

11

SERVICE NOTES

12

The material contained in this handbook is the property of TeleVideo Systems, Inc_. and is not to be photocopied,
duplicated or reproduced without the express written permission of TeleVideo Systems. Inc.

(;

ORDERING SPARE PARTS
Parts are ordered directly from Terminal Spare Parts order entry
at our coporate head quarters in Sunnyvale, California.
Call
(408) 745-7760 or (800) 538-8725 (outside California). For
international customers Telex 910-399-9621, attention Terminal
Spares Order Entry. Contract customers and institutions can order
parts on a Purchase Order and be invoiced; please have Purchase
Order number and TeleVideo part number ready at time of call.
All other customers must order parts on a C.O.D. or cash-inadvance basis.
There is a S50.00 minimum on All orders (except
manuals).
For orders placed in California, add 6.5% sales tax. There is a
shipping and handling charge of SlO.OO per order.
There will be
no drop shipments, so please include the shipping and billing
addresses with your order. Shipments are made Best Way, which is
UPS or U.S. Mail.
Any special shipping requests will be
accommodated, but any extra costs incurred will be added to the
invoice.

NORTHWEST REGION

(

MIDWEST REGION

EASTERN REGIO

SOUTHEAST REGION
WESTERN REGION

SOUTHERN REGION

(

REGIONAL SALES OFFICE

WESTERN REGION

SOUTHERN REGION

505 N. TUSTIN AVE.
SUITE 253
SANTA ANA, CA. 92705
(714) 557-6095

4560 BELTLINE RD.
SUITE 424
DALLAS, TX 75293
(214) 980-9978

EASTERN REGION

SOUTHEAST REGION

202 JOHNSON RD.
SUITE A-I07
ATRUIM 1
MORRIS PLAINS, NJ 07950
(20U 267-8805

5901-C PEACHTREE-DUNWOODY RD.
SUITE 260
ATLANTA, GA. 30328
(404) 399-6464
MIDWEST REGION

NORTHWEST REGION
1170 MORSE AVE
SUNNYVALE, CA.
(408) 745-7760

94086

125 E. LAKE ST.
SUITE 203
BLOOMINGDALE, ILL. 60108
(312) 351-9350

(

October 29, 1982
TERMINAL SPARE PART PRICE LIST WITH REFERENCE TO NEW PART
NUMBERS

DESCRIPTION

OLD piN

NEW PiN

UNIT
PRICE

*****************************************************************
MANUALS

*****************************************************************
INSTAL & USER GUIDE 910
INSTAL & USER GUIDE 910PLUS
INSTAL & USER GUIDE 912/920
INSTAL & USER GUIDE 925
INSTAL & USER GUIDE 950
MAINTENANCE MANUAL 910/910PLUS
MAINTENANCE MANUAL 912/920
MAINTENANCE MANUAL 925
MAINTENANCE MANUAL 950

B300005-001
B300021-001
B300001-001
B300013-001
B300002-002
B300005-002
B300001-002
B300013-002
B300002-002

2004800
2004600
2001800
2003500
2002000
2002600
2001900
2003600
2002100

5.001
5.001
5.001
5.001
5.001
50.001
50.001
50.001
50.001

*****************************************************************
MODULES

*****************************************************************
POWER
VIDEO
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC
LOGIC

SUPPLY MODULE
MODULE
BOARD 910
BOARD 910 GIA
BOARD 910PLUS
BOARD 910PLUS GIA
BOARD 912/920B
BOARD 912/920C
BOARD 925
BOARD 925 GIA
BOARD 950
BOARD 950 GIA

KEYBOARD ASSEMBLY 910/910PLUS
KEYBOARD ASSEMBLY 912B
KEYBOARD ASSEMBLY 912C
KEYBOARD ASSEMBLY 920B
KEYBOARD ASSEMBLY 920C
KYBD ASSEMBLY WIHOUSING 925/950
TUBE, Blw P4 12 n
TUBE, GREEN P31 12"

BC-01642
BC-01643
B900011-001
B900011-001
B900011-003
B900011-003
B900001-001
B900001-001
B900014-001
B900014-001
B900002-001
B900002-001

2195700
2195800
2014000
2014001
2014002
2014500
2009000
2009002
2015500
2015501
2009500
2009501

91. 00 I
93.001
395.001
395'.00 I
395.001
395.001
458.001
458.001
514.001
514.001
539.001
539.001

K030330-003
K030330-001
K030330-003
K030330-002
K030330-004
K030331-001
T300002-001
T300002-002

2090001
2206500
2090000
2089900
2090100
2090200
2049100
2049300

105.001
105.001
105.001
126.001
126.001
175.001
179.001
179.001

*****************************************************************
CASES

*****************************************************************

TOP CASE 910/912
TOP CASE 920
TOP CASE 925/950
TOP CASE KEYBOARD 925/950
BOTTOM CASE 910/912/920
BOTTOM CASE 925/950
BOTTOM CASE KEYBOARD 925/950
BEZEL TOP CASE 925/950
BEZEL KEYBOARD 925/950

CRT-010267
CRT-OI0334
CRT-05001
CRT-04001
CRT-OI0268
CRT-05002
CRT-04002
CRT-05003
CRT-04003

1

2151600
2153800
2141800
2204200
2151700
2141700
2199100
2141900
2198000

97.801
97.801
97.801
25.001
70.201
70.201
35.001
20.001
10.001

***************************************************.************
KITS/OPTIONS

****************************************************************
PATTERN GENERATOR (912/950 INSTALLED)
DEMO PROGRAM EPROM 910
DEMO PROGRAM EPROM 910PLUS
DEMO PROGRAM EPROM 925
DEMO PROGRAM EPROM 950
CONVERSION KIT 910
CONVERSION KIT 910PLUS
CONVERSION KIT CP/M WORDSTAR 950
CURRENT LOOP KIT 910/910PLUS
A300006-001
CURRENT LOOP KIT 925
A300006-002
MEMORY KIT 2ND PAGE 912/920
A300004-001
MEMORY KIT 2ND PAGE 925/950
A300004-002
MEMORY KIT 3RD,4TH PAGE 950
A300004-003
MEMORY KIT 2ND, 3RD, 4TH PAGE 950
SP PTS LOGIC BOARD 910
A300001-007
SP PTS LOGIC BOARD 910 G/A
SP PTS LOGIC BOARD 910PLUS
A300001-009
SP PTS LOGIC BOARD 910PLUS G/A
SP PTS LOGIC BOARD 912/920
A300001-001
SP PTS LOGIC BOARD 925
A300001-011
SP PTS LOGIC BOARD 925 G/A
SP PTS LOGIC BOARD 950
A300001-005
SP PTS LOGIC BOARD 950 G/A
~, PTS MECH 910/910PLUS
A300001-010
SP PTS MECH 912/920
A300001-003
SP PTS MECH 925/950
A300001-006
SP PTS POWER SUPPLY/VIDEO MOD
A300001-002
SP PTS ADDITIONAL PARTS
A300001-004

2122300
8000094
8000073
8000072
8000119
2169700
2169100
2187400
2131000
2131100
2001400
2001500
2001600
2231700
2000600
2225400
2000800
2225500
2000000
2001000
2225300
2000400
2233000
2000900
2000200
2000500
2000100
2000300

200.00
16.00
16.00
16.00
16.00
25.00
25.00
100.00
50.00
60.00
35.00
40.00
80.00
120.00
112.22
158.12
124.19
162.70
150.80
135.71
181. 61
183.08
218.90
60.23
66.03
54.05
134.28
202.25

****************************************************************
ELECTRICAL COMPONENTS

CAPACITORS

.****************************************************************
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP

CERAMIC 1.0PF lKV SPARK GAP
CERAMIC 220PF 50V
CERAMIC .01UF 16V 20%
CERAMIC 330PF 50V 20%
CERAMIC .1UF 50V 10%
DIP MICA 10PF
ELECTROLYTIC 22UF 15V
ELECTROLYTIC 22UF 50V
ELECTROLYTIC 4.4UF 35V 10%
ELECTROLYTIC 10UF 16V 20%
ELECTROLYTIC lUF 16V 10%
ELECTROLYTIC .22UF 35V
ELECTROLYTIC 100UF 10V
ELECTROLYTIC 22UF 100V
ELECTROLYTIC 2.2KUF 10V
ELECTROLYTIC 100UF 160V
ELECTROLYTIC 22UF 160V
ELECTROLYTIC 220UF 16V
ELECTROLYTIC 3.3KUF 35J
ELECTROLYTIC 4.7KUF 16V
ELECTROLYTIC 4. 7UF 16V
ELECTROLYTIC 470 35V

C900100-012
CC-50221SL
C900100-001
C900100-003
C900100-008
C600100-001
C700100-001
C700100-003
C700100-008
C700100-010
C700100-013
C700100-016
CE-10107S
CE-I0226SH
CE-I0228S
CE-16107SH
CE-16226SH
CE-16227S
\,.,t,-.:L':l338S
CE-35478S
CM-16475
CT-35338S
2

2030900
2195900
2028700
2029100
2030100
2024100
2025700
2026100
2026900
2027300
2027900
2028500
2196000
2196100
2196200
2196300
2196400
2199300
2196500
2196600
2196700
2198200

2.04
.72
.72
.72
.72
.72
.72
.72
2.08
.72
1. 08
.72
.72
.72
2.28
6.60
1.27
.72
6.91
6.56
.72
1.68

(l

(

CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP
CAP

C600100-002
C600100-004
C600100-005
C600100-006
C600100-007
C600100-008
C900100-002
C900100-004
C900100-005
C900100-007
C900100-009
C900100-010
CM-20682H
CM-50102
CM-50103
CM-50473
CM-50474
CM-60104H
CO-40473H
C800100-001
C700100-002
C700100-005
C700100-009
C700100-011
CT-35334
CN-152065

MICA 20PF
MICA 100PF 50V 5%
MICA 47PF 50V 5%
MICA 150PF 500V 1%
MICA 330PF 500V 5%
MICA 390PF 500V 5%
MONOLYTHIC.OIUF 50V 10%
MONOLYTHIC 330PF 100V 20%
MONOLYTHIC 47PF 100V 5%
MONOLYTHIC 68PF lKV 20%
MONOLYTHIC .039UF 50V 10%
MONOLYTHIC .039UF 50V 5%
MYLAR .0068UF 200V
MYLAR .001UF 50V
MYLAR .01UF 50V
MYLAR .047UF 50V
MYLAR .47UF 50V
MYLAR .1UF 600V
MYLAR .047UF 400V
RADIAL LEAD lUF 15V
TANTALUM .68UF 50V
TANTALUM 3.3UF 50V 10%
TANTALUM 10UF 25V 10%
TANTALUM 4.7UF 16V 10%
TANTALUM .33UF 35V
NON POLARIZED .20UF 50V

2024300
2024700
2024900
2025100
2025300
2025500
2028900
2029300
2029500
2029900
2030300
2030500
2196800
2196900
2197000
2197100
2197200
2197300
2197500
2027901
2025900
2026300
2027100
2027500
2198100
2197400

.72
.72
.72
.72
.95
1.07
.72
.72
1.08
.72
.72
1.08
.72
.72
.72
.72
1.44
1.35
1.86
.72
1.74
2.40
1. 98
.96
1.20
4.63

****************************************************************
DIODES - REGULATORS - TRANSISTORS
*******************************************************~********

DIODE ZENER IN759A/RD12EB
DIODE IN914
DIODE IN920/KDS8513A
DIODE IN4001
DIODE IN4004/DS-130TBDIODE IN5391/DS135D
DIODE DSA17C/MR500
DIODE DS18/IDS135D
DIODE DSl13A/MRI-I000
DIODE LEC MV55A RED
DIODE P6KE
REGULATOR LAS1512
REGULATOR LAS16CB
REGULATOR LAS1605
REGULATOR LAS1812
REGULATOR 78M05
TRANSISTOR 2N2219A
TRANSISTOR 2N2907A
TRANSISTOR 2N3019
TRANSISTOR 2N3906/2SA495
TRANSISTOR 2N4401/2SCl166
TRANSISTOR 2N5551/2SC983
TRANSISTOR 2N6121/2SCl173
TRANSISTOR 2N6124/2SA473
TRANSISTOR 2SC2233/MJE13006
TRANSISTOR KTC 1627A/MPSA06
TRANSISTOR 2N3904/KTC1815

SD-I0254
S360100-000
SD-I0258
S360100-001
SD-I0257
SD-01251
SD-01253
SD-01252
SD-01255
S360100-003
S360100-002
SI-0551
R600005-001
R600004-003
SI-01553
R600000-001
S350100-000
S350100-003
S350100-002
ST-I0351
S350100-001
S350100-009
ST-01353
ST-01354
S350100-010
S350100-007
S350100-006

3

2201600
2047500
2201800
2047700
2202200
2200600
2201500
2201400
2201700
2048100
2047900
2202500
2126900
2126800
2202400
2126100
2045300
2045900
2045700
2042200
2045500
2047100
2199700
2202100
2047300
2046700
2046500

1.82
.72
.90
.91
1.00
.72
1.94
.72
6.29
3.00
4.20
35.00
18.60
23.70
35.00
3.96
3.60
.97
2.64
.91
2.02
2.59
4.00
4.28
22.80
2.07
4.50

************************************~~~***********.**************

FIRMWARE

*****************************************************************
SYSTEM EPROM 910
SYSTEM ROM 910
SYSTEM EPROM 910PLUS
SYSTEM ROM 912/920B (A49B1)
SYSTEM ROM 912/920C (A49C1)
SYSTEM EPROM 925
SYSTEM EPROM 925
SYSTEM ROM 950 (A41)
SYSTEM ROM 950 (A42)
CHAR GEN EPROM 910/910PLUS
CHAR GEN ROM 910/910PLUS
CHAR GEN ROM 912/920 (A3-2)
CHAR GEN EPROM 925
CHAR GEN ROM 925
CHAR GEN ROM 950 (A32)
CHAR GEN ROM 950 (A33)
KYBD EPROM 910/910PLUS
KYBD ENCDR 910/910PLUS
KYBD ENCDR 910/910PLUS
KYBD ROM 925/950
(U6)

I800000-020
I800000-015
I800000-040
1740010-049
I740010-050
I800000-033
I800000-031
I800000-001
I800000-007
I800000-021
I800000-016
I740010-053
I800000-021
I800000-016
I800000-003
I800000-002
I800000-019
I800000-020
I740011-013
I800000-009

8000020
8000015
8000040
2033800
2034000
8000033
8000031
8000001
8000007
8000021
8000016
2034600
8000021
8000016
8000003
8000002
8000019
2053200
2051800
8000009

37.50
18.90
25.00
25.80
25.80
37.50
37.50
18.90
18.90
37.50
18.90
14.94
37.50
18.901
18.901
18.901
21. 00 I
22.501
22.501
37.501

(

*****************************************************************
INTERGRATED CIRCUITS

*****************************************************************
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
lC
IC
lC
IC
lC
lC
lC
lC
lC
lC
IC
IC
IC
IC
IC

1740010-000
1740010-001
1740010-002
1740010-003
1740010-004
1740010-005
1740010-006
I740010-007
I740010-008
1740010-009
I740010-010
I740010-011
1740010-012
1740010-013
1740010-014
I740010-015
1740010-016
1740010-017
1740010-018
I740010-019
1740010-020
1740010-021
1740010-022
1740010-023
1740010-024
1740010-025
1740010-026
I740010-027
I740010-029
1740010-031

74S00
74LSOO
74LS03
74S04
74LS04
74LS05
74LS08
74LS10
74SL20
74LS32
74LS42
74LS51
74S74
74LS74
74LS86
74LS109
74LS139
74LS157
74LS163
74LS166
74LS173
74LS174
74LS253
74LS367
74LS373
74LS374

75188N/1488
75189AN/1489
TILl17
NE555
4

2024000
2024200
2024400
2024600
2024800
2025000
2025200
2025400
2025600
2025800
2026000
2026200
2026400
2026600
2026800
2027000
2027200
2027400
2027600
2027800
2028000
2028200
2028400
2028600
2028800
2029000
2029200
2029400
2029800
2030200

2.20
1. 72
1.72
2.41
1. 80
1.80
1. 80
1. 80
1. 72
1. 86
2.55
1.80
3.58
1. 80
2.07
2.00
3.181
2.761
4.561
5.041
4.141
3.181
3.241
2.761
3.481
3.481
4.141
4.141
4.481
2.581

(

(

.
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
Ie
IC
Ie
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC

1740010-032
1740010-033
1740010-034
1740010"'035
I740010-Q36
1740010-051
1740010-054
1740010-055
1740010-057
1740010-059
1740010-061
1740010-:-063
1740010-068
1740010-069
1740010-070
1740010-074
1740010-076
1740010-080
1740010-081
1740010-084
1740010-086
1740010-088
1740010-089
1740010-096
1740010-097
1740010-099
1740010-105
1740011-000
1740011-002
1740011-003
1740011-004
1740011-005
1740011-007
1740011-008
1740011-009
1740011-010
1740011-012
1740011-017
1740011-019
1740011-018

DP8304
AMD2111-4A
2502HP

TMS9927/5027
P8035
HIIG3
7406
4N38
7414
2114
74LS245/N8T245N
74LS191
74LS273
74S240
74LS175

74S32/629
74LSl1
93S16PC
74LS138
74LS02
74LS241
AM26LS31
AM26LS32
74LS240
74LS244
74S174
74LS14
6116
6502A
6545
6551 IMHz
6552A
Z80A SIO/2
Z80A CTC
Z80A CPU
Z80A DMA
64K RAM DYN
68B045 2 MHz
SY6551A-l 2MHz
SY6545A-l 2MHz
910/910 PLUS GATE ARRAY
925 GATE ARRAY
950 GATE ARRAY A
950 GATE ARRAY B

2030400
2030600
2030800
2031000
2031200
2034200
2034800
2035000
2035400
2035800
2036200
2036600
2037600
2037800
2038000
2038800
2040000
2040800
2041000
2041600
2042000
2042400
2042600
2044000
2044200
2044600
2045800
2049200
2049600
2049800
2155700
2050200
2050600
2050800
2051000
2051200
2051600
2052600
2053000
2052800
2057400
2057400
2057600
2057800

17.59
13.32
15.52
81.76
41.05
3.45
2.05
4.32
1. 92
9.75
5.76
2.70
3.48
8.82
1. 74
1. 80
1.14
6.60
1.68
1.14
3.54
7.92
7.92
3.54
. 5.52
3.96
1. 44
40.00
28.94
66.24
28.80
27.21
58.00
16.80
21.18
56.76
83.76
31.50
24.00
50.10
42.60
42.60
23.88
23.88

****************************************************************
RESISTORS & POTENTIOMETERS

****************************************************************
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

CF
CF
CF
CF
CF
CF
CF
CF
CF
CF

68 OHM 1/4W 5%
270 OHM 1/4W 5%
330 OHM 1/4W 5%
470 OHM 1/4W 5%
510 OHM 1/4W 5%
lK OHM 1/4W 5%
1.8K OHM 1/4W 5%
3.3K OHM 1/4W 5%
4.7K OHM 1/4W 5%
180 OHM 1/4W 5%

R514000-001
R514000-002
R514000-003
R514000-004
R514000-005
R514000-006
R514000-007
R514000-009
R514000-011
R514000-012
5

2051100
2051300
2051500
2051700
2051900
2052100
2052300
2052700
2053100
2053300

.72
.72
.72
.72
.72
.72
.72
.72
.72
.72

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
POT
POT
POT
POT
POT

CF 1M OHM 1/4W 5%
CF 750 OHM 1/4W 5%
CF 1.2K OHM 1/4W 5%
CF lOOK OHM 1/4W 5%
CF 51K OHM 1/4W 5%
CF 22 OHM 1/4W 5%
CF 47K OHM 1/4W 5%
CF 150 OHM 1/4W 5%
CF 10K OHM 1/4W 5%
CF 200 OHM 1/4W 5%
CF 33 OHM 1/4W 5%
CF 100 OHM 1/4W 1%
CF 51 OHM 1/4W 5%
CF 22K OHM 1/4W 5%
CF 27K OHM 1/4W 5%
CF 47 OHM 1/4W 5%
CF 2.7K OHM 1/4W 5%
CF 91 OHM 1/4W 5%
CF 2.2K OHM 1/4W 5%
CF 3.9K OHM 1/4W 5%
CF 6.8K OHM 1. 4W 5%
CF 30K OHM 1/4W 5%
CF 56K OHM 1/4W 5%
PACK lK OHM SIP 10%
PACK 6.2K OHM SIP 10%
PACK 10K OHM SIP 5%
PACK 4.7K OHM SIP 10%
PACK lK OHM SIP 5%
CF 510 OHM 1/2W 5%
CF 220 OHM 1/2W 5%
CF 390 OHM 1/2W 5%
CF 820 OHM 1/2W 5%
CF 1.5K OHM 1/2W 5%
CF 10K OHM 1/2W 5%
CF 2.2M OHM 1/2W 5%
WW 0.6 OHM 2W
BRIGHTNESS & VERTICAL HEIGHT
VERTICAL LINEARITY
VIDEO B +
FOCUS
CONTRAST

R514000-014
R514000-015
R514000-016
R514000-017
R514000-018
R514000-024
R514000-025
R514000-026
R514000-027
R514000-028
R514000-029
R514000-031
R514000-037
R514000-038
R514000-043
R514000-045
R514000-048
R514000-049
R514000-050
R514000-051
R514000-052
R514000-053
R514000-054
R514000-100
R514000-101
R514000-103
R514000-104
R514000-111
R514003-000
R514003-001
R514003-002
R514003-003
R514003-004
R514003-005
R514003-006
RC02608J
RF-07104B
RF-07202B
RF-07473B
RV-24205B
RV-24501B

2031500
2031700
2031900
2032100
2032300
2033500
2033700
2033900
2034100
2034300
2034500
2034900
2036100
2036300
2037300
2037700
2038300
2038500
2038700
2177400
2039100
2039300
2039500
2040500
2040700
2041100
2041300
2042700
2045100
2186000
2176600
2186200
2186300
2186400
2186500
2177100
2177700
2177800
2177900
2180100
2180200

.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
.72
1.58
1. 73
2.04
1.20
3.00
.72
.72
.72
.72
.72
.72
.72
.72
1.06
1.06
1. 06
3.86
2.77

(J

(

****************************************************************
TRANSFORMERS/COILS

****************************************************************
TRANSFORMER; FLYBACK KFS-00093
TRANSFORMER; HORIZ DR HDT19
TRANSFORMER; POWER W/CON CRT858
COIL INDUCTOR 27UH .3PIE
COIL LINEARITY ADJUSTABLE
COIL LINEARITY NON ADJUSTABLE
COIL DEFLECTION YOKE W/CONN
KYS-00060

IC-01467
IC-01466
IC .... 01465
IC-01464
IC-01463
IC-01462
IC-01461

2201300
2201200
2201100
2201000
2213600
2200900
2200800·

55.48
4.08
129.24
1.20
7.20
5.24
31.63

()
6

****************************************************************
MISCELLANEOUS

****************************************************************
1740010-090
M200401-001
M200401-002
M200401-003
M200401-004
M200401-006
I740010-056
FC12503A
M200104-001

CRYSTAL 16MHZ OSC
CRYSTAL 23.814 MHZ (912/920)
CRYSTAL S.7143MHZ
CRYSTAL 1.8432 MHZ
CRYSTAL 8.0000 MHZ
CRYSTAL 13.6080 MHZ
CRYSTAL 23.814 Kll14A (950)
FUSE, 3A 125V 2SEA.
FUSE, lA 250V 25EA.
POWER ADAPTER PATTERN GEN
THERMISTER, SDT-I00

3312453

2042800
2098600
2098601
2098602
2098603
2098605
2035200
2223700
2223300
2176300
2180300

27.00
11.11
7.85
8.16
4.80
8.70
37.08
11. 85
11. 85
41. 40
1. 44

****************************************************************
MECHANICAL COMPONENTS

KEYCAPS

****************************************************************
KEY CAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP

DG lXl
DG lXl SCULP
DG lXl BLANK (25ea)*
DG lXl SCULP BLANK
o (25ea)*
DG lXl SCULP BLANK -7 (2Sea)*
DG lXl SCULP BLANK +7 (25ea)*
DG lXl SCULP BLANK +14 (25ea)*
DG lXl-1/2
DG lXl-1/2 SCULP
DG lXl-1/2 BLANK (2Sea)
DG lXl-1/2 SCULP BLANK +7 (25ea)*
DG lX8
DG lX8 SCULP
LG lXl
LG lXl SCULP
LG lXl BLANK (25ea)*
LG IX! SCULP BLANK 0 (25ea)*
LG IX! SCULP BLANK -7 (25ea)*
LG IX! LOW PRO
LG lXl LOW PRO SCULP
LG lXl LOW PRO BLANK (25ea)*
LG IX! LOW PRO SCULP BLANK (25ea)*
LG lXl-1/4
LG lXl-1/4 SCULP
LG lXI-1/4 BLANK (25ea)*
LG lXI-1/4 SCULP BLANK +7 (2Sea)*
LG lXI-1/2
LG lXl-1/2 SCULP
LG lXl-1/2 BLANK (25ea)*
LG lXl-1/2 SCULP BLANK -7 (2Sea)*
LG "L" RETURN
LG "L" BLANK (RETURN)
LG "L" SCULP RETURN
LG "L" SCULP BLANK (RETURN)
BLACK lXl
BLACK lXl BLANK (25ea)*
7

20XXXXX
20XXXXX
2222100
2231600
2231300
2231400
2231500
2072XXX
2084XXX
2222200
2231200
2077400
2089700
207XXXX
208XXXX
2222400
2231100
2231000
207XXXX
2089XXX
2222500
2223100
2077300
2089600
2222600
2230900
2072XXX
2084XXX
2222300
2230800
2077100
2077101
2089400
2161602
20XXXXX
2053700

.72
.72
13.50
22.50
22.50
22.50
22.50
1. 52
2.56
33.00
33.00
1. 98
3.00
.72
.72
15.00
22.50
22.50
.72
.72
13.50
22.50
1. 52
2.44
31. 50
28.50
1. 52
2.56
33.00
33.00
1. 86
3.90
2.76
3.90
.72
22.50

KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP
KEYCAP
KEYCAP
KEY CAP
KEYCAP
KEYCAP
KEYCAP

20'63XXX
2221800
2077500
206XXXX
2221900
2063700
2222000
2202700
2090300
2090500
2090400
2090600
2090900
2091000

BLACK lXl-l/2
BLACK lXl-1/2 BLANK (25ea)*
BLACK lX8
TAN lXl
TAN lXl BLANK (25ea)*
TAN lXl-1/2
TAN lXl-1/2 BLANK (25ea)*
SET 910/910PLUS
SET 912B
SET 912C
SET 920B
SET 920C
SET 925/950
SET 925/950 SCULP

1. 80
30.00
2.70
.72
18.00
1. 80
37.50
52.44
52.44
52.44
63.24
56.58
79.29
59.10

(

*BLANK KEYCAPS SOLD IN QTY 25
****************************************************************
SWITCHES
****************************************************************
KEYSWITCH
KEYSWITCH - ALPHA LOCK
SWITCH TOP ADJ 7 POS DIP
SWITCH TOP ADJ 10 POS DIP
SWITCH SIDE ADJ 10 POS DIP
PUSHBUTTON SWITCH
SWITCH POWER ON/OFF SPST
SWITCH POWER SELECT, DPDT

KS-123456
KS-123457
M200101-001
M200101-002
M200101-003
M200101-004
M200107-001
M200108-001

2199400
2199500
2174200
2181000
2096800
2096900
2097300
209740()

3.60
6.22
3.84
3.90
5.70
'17.88
7.89
6.92

****************************************************************
MISCELLANEOUS
****************************************************************
CABLE ASY KEYBOARD 912/920
B510003-003 2005900
25.08
CABLE ASY KEYBOARD 910
B510003-009 2005901
25.08
CABLE ASY KEYBOARD 925/950
B510000-001 2005700
10.92
CABLE ASY MODEM RJl1
B510002-001 2135900
17.34
CONNECTOR 2 PIN RT ANGLE
M200601-006 2098703
.72
CONNECTOR 2 PIN STR WAF
M200603-002 2098800
.72
CONNECTOR 5 PIN STR WAF
M200603-005 2098802
.72
CONNECTOR 40 PIN HDR STRAIGHT
M200209-004 2098107
7.50
CONNECTOR KEYBOARD PCB 26PIN
M200601-004 2098701
4.21
CONNECTOR KEYBOARD RJ11
M200202-001 2097900
2.22
CONNECTOR RIGHT ANGLE RS232
M200201-001 2097800
10.62
CONNECTOR STRAIGHT RS232
M200201-005 2174300
20.00
CORD, POWER 6'3" 3 PRONG CONN
2109000
19.87
E-RING MINIMUM 25
CRT-010174
2223600
5.70
EQL ASY SPACE BAR DAMPER
K030500-003 2096300
.72
EQL ASY SPACE BAR, GUIDE STEM
K030500-002 2096200
.90
EQL ASY SPACE BAR, KEY GUIDE
K030500-001 2091200
1. 80
EQL ASY SPACE BAR KEYGUIDE ARM
K030500-004 2096400
3.60
FUSE HOLDER, CLIP
4301512
2180400
.72
FUSE HOLDER, PANEL MOUNT
M200106-001 2097200
21. 00
INSULATION PAD TRANSISTOR
M200100-002 2180800
.72
INSULATOR PAD CRYSTAL
M220000-001 2099700
1. 02
KNOB, CONTRAST
CRT-010124
2153000
.72
KEYSTOPPERS 100ea
KS123458
2223800
12.00
8

(

(

PIVOTSHAFT MINIMUM 25
SHROUD CONN 910/912/920
SHROUD CONN MODEM 910/912/920
SHROUD CONN 925/950
SHROUD CONN MODEM 925/950
SOCKET IC 14 PIN
SOCKET IC 16 PIN
SOCKET IC 18 PIN
SOCKET IC 24 PIN
SOCKET IC 28 PIN
SOCKET IC 40 PIN
SOCKET Ie 16 PIN LOW PROFILE

CRT-OI0138
M400011-001
M400011-002
M400008-001
M400008-002
M200301-004
M200301-007
M200301-001
M200301-002
M200301-005
M200301-003
M200303-003

9

2197800
2100200
2100201
2100100
2100103
2098403
2098405
2098400
2098401
2098404
2098402
2174601

4.68
10.00
20.00
10.00
20.00
.78
.72
.83
1.10
1. 32
1. 80
6.00

(

(J

PART LIST: KEYCAPS
I
970 DETACHABLE KEYBOARD
MODEL:

DESCRIPTION

DATE_12/09/82 _ _
PAGE_1 __ OF __ 4_

PART NUMBER

SCULPTURED/MATTED
PRINTED
BLANK
I

I PRINTED

BLANK

I COMMENTS I NOTES

------------------------------------------------------------------------------------------------o DEGREES
(1)
-----1X1 LIGHT GREY BLANK
2161600
n
lX1
lX1
1X1
1X1
1X1
1X1
1Xl
1X1
1X1
1X1
1X1
1X1
1X1
lXl
1X1
1X1
1X1
lX1
1X1
1X1
1X1
1X1
1X1
1X1
1X1
1X1
1X1
1X1
1X1
lXl
1X1
1Xl
lXl
1Xl
lXl

LG SETUP/NOSCROLL
LIGHT GREY F1
LIGHT GREY F2
LIGHT GREY F3
LIGHT GREY F4
LIGHT GREY F5
LIGHT GREY F6
LIGHT GREY F7
LIGHT GREY F8
LIGHT GREY F9
LIGHT GREY FlO
LIGHT GREY F11
LIGHT GREY F12
LIGHT GREY F13
LIGHT GREY F14
LIGHT GREY F15
LIGHT GREY F16
LG CHAR INSERT
LG CHAR DELETE
LG LINE INSERT
LG LINE DELETE
DARK GREY BLANK
DG LOC ESC/ESC
DARK GREY 1/1
DARK GREY 2/@
DARK GREY 3/#
DARK GREY 4/$
DARK GREY 5/%
DARK GREY 6/
DARK GREY 7/&
DARK GREY 8/*
DARK GREY 9/(
DARK GREY 0/)
DARK GREY -/
DARK GREY =/+

2088700
2085000
2085100
2085200
2085300
2085400
2085500
2085600
2085700
2085800
2085900
2086000
2087600
2087700
2087900
2087800
2088000
2086100
2086200
2086300
2086400

------2084200
2077800
2077900
2078000
2078100
2078200
2078300
2078400
2078500
2078600
2078700
2078800
2078900

2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700

0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
n
0
+14 DEGREES
n
+14
n
(2)
+14
n
+14
+14
"
+14
"
+14
"
+14
"
·n
+14
n
+14
n
+14
n
+14
n
+14
n
+14

v

~

PARTLIS'1': KEYCAPS
MODEL: 970 DETACHABLE KEYBOARD

DESCRIPTION
lXl DARK GREY '1lXl DARK GREY \/1
lXl DG BACK SPACE
lXI-1/2 DARK GREY TAB
lXl DARK GREY Q
lXl DARK GREY W
lXl DARK GREY E
lXl DARK GREY R
lXl DARK GREY '1'
lXl DARK GREY Y
lXl DARK GREY U
lXl DARK GREY I
lXl DARK GREY 0
lXl DARK GREY P
lXl DARK GREY[/]
lXl-I/2 DG LINE FEED
lXI-1/4 LG-CLEAR SPACE
lXl LIGHT GREY CONTROL I
lXl DARK GREY ALPHA LOCK I
lXl DARK GREY A
I
lXl DARK GREY S
I
lXl DARK GREY D
I
lXl DARK GREY F
I
lXl DARK GREY G
IX 1 DARK GREY H
lXl DARK GREY J
lXl DARK GREY K
lXl DARK GREY L
lXl DARK GREY ;/:
lXl DARK GREY '/R
LIGHT GREY RLII! RETURN
lXl LIGHT GREY BREAK
lXl DARK GREY BACK TAB
lXl-I/2 LG SHIFT
lXl DARK GREY Z

DATE _ _12/09/82_ _
PAGE _2_ OF _4_

PART NUMBER

SCULPTURED/MATTED KEYCAP
PRINTED
I BLANK
2230100
2079100
2079200
2084500
2080600
2080700
2080800
2080900
2081000
2081100
2081200
2081300
2081400
2081500
2081600
2084400
2088400
2086900
2081800
2081900
2082000
2082100
2082200
2082300
2082400
2082500
2082600
2082700
2082800
2082900
2089400
2087000
2081700
2084700
2083000

~

2161700
2161700
2161700
2161801
2161800
2161800
2161800
2161800
2161800
2161800
2161800
2161800
2161800
2161800
2161800
2161801
2161802
2161600
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161602
2162101
2161900
2161902
2161900

PRINTED

BLANK

COMMENTS I NOTES
R
+14
R
+14
R
+14
R
+7
R
+7
II
+7
R
+7
R
+7
+7 DEGREES
R
+7
R
+7
II
+7
II
+7
R
+7
II
+7
R
+7
R
+7

o
o
o
o
o
o
o
o
o
o
o
o
o
o

o

-7
-7
-7

DEGREES
II

"
II
III

R
II

"
II
II
II
II
II
II
II

II
l1li

II

PARTLIST: KEYCAPS
970 DETACHABLE KEYBOARD
MODEL:

DESCRIPTION

DATE_12/09/82 _ _

PART NUMBER

I SCULPTURED/MATTED KEYCAPI
I PRINTED
I BLANK
PRINTED

PAGE __ 3 __ OF __ 4___

BLANK

I COMMENTS I NOTES

--------------------------------------------------------------------------------------------------lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lX8
lXl
lXl
-IXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lXl
lX2
lXl
lXl
lXl
lXl

DARK GREY X
DARK GREY C
DARK GREY V
DARK GREY B
DARK GREY N
DARK GREY M
DARK GREY ,1<
DARK GREY .1>
DARK GREY II?
DARK GREY {I}
LIGHT GREY DEL
(LP)
LG PRINT
LG FUNCTION (LP)
DARK GREY SPACE BAR
LG HOME (LP)
LG CURSER (LP)
LG LINE ERASE
LG PAGE ERASE
LIGHT GREY SEND
DARK GREY 7
DARK GREY 8
DARK GREY 9
DARK GREY 4
DARK GREY 5
DARK GREY 6
DARK GREY 1
DARK GREY 2
DARK GREY 3
DARK GREY ,
DARK GREY 0
DARK GREY
DARK GREY DARK GREY PAGE
DARK GREY CE

2083100
2083200
2083300
2083400
2083500
2083600
2083700
2083800
2083900
2084000
2087100
2089300
2089000
2089700
2089100
2140500
2086500
2086600
2088500
2079900
2080000
2080100
2079600
2079700
2079800
2079300
2079400
2079500
2080400
2088100
2080500
2080300
2087200
2087300

2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161901
2162101
2162101

I
I
I
I
I

-------

2162101
2162101
2161600
2161600
2161600
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2251300
2161601
2161601
2161601
2161601

J

I
I
J

I
I

I
I
I

-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
0
0
0
0
0
0
0
0
0
0
0
0
0,
0
0
0
0
0
0
0
0
0
0

It
It
It
It
It
It
It
It
It

DEGREES
It

-tI
It

(3)
(3)

It
It
It
It
It
It
It
It
It
It
It
It

It
It
It
It
It
It
It
It
It

(3)
(3)

(4)

v

v

PART LIST: KEYCAPS
MODEL: 970 DETACHABLE KEYBOARD
DESCRIPTION
lXl
2xl
2xl
lXl

DARK GREY RESET
LIGHT GREY TAB
LIGHT GREY ENTER
DARK GREY 00

DATE_12/09/82_ _
PAGE_4_0F_4_ _

PART NUMBER

SCULPTURED/MATTED KEYCAPI
PRINTED
I BLANK
I
2087400
2088200
2088300
2180700

~

PRINTED

2161601
2251400
2251400
2161601

NOTES
1) DEGREES REFER TO SCULPTURED/MATTED KEYCAPS ONLY
2) SLASH BETWEEN TWO CHARACTERS (ie: 1/1) FOR CLARITY AND IS NOT
PRINTED ON KEYCAP
3) LOW PROFILE KEYS
4) SAME KEY CAN BE USED FOR ALL FOUR CURSER POSITIONS

BLANK

COMMENTS

o DEGREES
o n
o n
o n

NOTES

PART LIST: KEYCAPS
925 DETACHABLE KEYBOARD
MODEL:
950 DETACHABLE KEYBOARD
STEPPED
PRINTED

DESCRIPTION

DATE_11/15/82_
PAGE __1 __0F __3 __

~ART NUM~~R

KEYCAPS
I BLANK

I
I

SCULPTURED/MATTED KEYCAPSI
I COMMENTS/NOTES
PRINTED
BLANK
I

-------------------------------------------------------------------------------------------------1X1 LIGHT GREY BLANK
1X1 LG NO SCROLL/SETUP
1X1 LIGHT GREY F1
1X1 LIGHT GREY F2
1X1 LIGHT GREY F3
1X1 LIGHT GREY F4
1X1 LIGHT GREY F5
1X1 LIGHT GREY F6
1X1 LIGHT GREY F7
1X1 LIGHT GREY F8
1X1 LIGHT GREY F9
1X1 LIGHT GREY FlO
1X1 LIGHT GREY F11
1X1 LG CHAR INSERT
1X1 LG CHAR DELETE
1X1 LG LINE INSERT
1X1 LG LINE DELETE
1X1 DARK GREY BLANK
1X1 DG ESC/LOC ESC
1X1 DARK GREY 1/1
1X1 DARK GREY 2/@
1X1 DARK GREY 3/#
1X1 DARK GREY 4/$
1X1 DARK GREY 5/%
1X1 DARK GREY 6/
1X1 DARK GREY 7/&
1X1 DARK GREY 8/*
1X1 DARK GREY 9/(
1X1 DARK GREY 0/)
1Xl DARK GREY -/_
lXl DARK GREY =/+
lXl DARK GREY '/1X1 DARK GREY \/1
1X1 DG BACK SPACE
1X1-1/2 DARK GREY TAB
1X1 DARK GREY Q
1X1 DARK GREY W
1X1 DARK GREY E
1X1 DARK GREY R
A

------2075500
2073100
2073200
2073300
2073400
2073500
2073600
2073700
2073800
2073900
2074000
2074100
2074200
2074300
2074400
2074500

-------

2072300
2065900
2066000
2066100
2066200
2066300
2066400
2066500
2066600
2066700
2066800
2066900
2067000
2067100
2067200
2067300
2072600
2068700
2068800
2068900
2069000

2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2072400
2065800
2065800
2065800
2065800

-------

2088700
2085000
2085100
2085200
2085300
2085400
2085500
2085600
2085700
2085800
2085900
2086000
2086100
2086200
2086300
2086400

------2084200
2077800
2077900
2078000
2078100
2078200
2078300
2078400
2078500
2078600
2078700
2078800
2078900
2079000
2079100
2079200
2084500
2080600·
2080700
2080800
2080900

2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161600
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161700
2161801
2161800
2161800
2161800
2161800

o DEGREES

(1)

0
"
0
"
0
"
II
0
0
"
0
"
0
"
II
0
II
0
0
"
0
"
0
"
0
"
0
"II
0
0
"
+14 DEGREES
+14 "
(2)
+14 II
+14 "
+14 "
+14 II
+14 "
+14 "
+14 "
+14 "
+14 "
+14 "
+14 "
+14 "
+14 II
+14 II
+14 "
+7
"
+7
"
+7
"
n
+7
n
+7

v

~
PA'-R'. ,1ST: KEYCAPS
925 DETACHABLE KEYBOARD
MODEL:
950 DETACHABLE KEYBOARD
DESCRIPTION

I STEPPED
I PRINTED

~

eARl NUM13
KEYCAPS
I BLANK

DA'j'F._11/15/82_
PAGE __ 2__0F __3 __
SCULPTUREDIMATTED KEYCAPSI
PRINTED
I COMMENTSINOTES
I BLANK

------------------------------------------------------------------------------------------------

1X1
1X1
1X1
1X1
1X1
1X1
1X1

DARK
DARK
DARK
DARK
DARK
DARK
DARK

GREY T
GREY Y
GREY U
GREY I
GREY 0
GREY P
GREY [/1
1Xl-1/2 DG LINE FEED
1Xl-1/4 LG CLEAR SPACE
1X1 LIGHT GREY CTRL
1X1 DARK GREY ALPHA LOCK
1X1 DARK GREY A
1X1 DARK GREY S
1X1 DARK GREY D
1X1 DARK GREY F
1X1 DARK GREY G
1X1 DARK GREY H
1X1 DARK GREY J
1X1 DARK GREY K
1X1 DARK GREY L
1X1 DARK GREY ;1:
1X1 DARK GREY 'I"
LIGHT GREY "L" RETURN
1X1 LIGHT GREY BREAK
1X1 DARK GREY BACK TAB
1Xl-1/2 LG SHIFT
1X1 DARK GREY Z
1X1 DARK GREY X
1X1 DARK GREY C
1X1 DARK GREY V
1X1 DARK GREY B
1X1 DARK GREY N
1X1 DARK GREY M
1X1 DARK GREY ,1<
1X1 DARK GREY .1>
1X1 DARK GREY II?

2069100
2069200
2069300
2069400
2069500
2069600
2069700
2072500
2077300
2075000
2069900
2070000
2070100
2070200
2070300
2070400
2070500
2070600
2070700
2070800
2070900
2071000
2077100
2075100
2069800
2072800
2071100
2071200
2071300
2071400
2071500
2071600
2071700
2071800
2071900
2072000

2065800
2065800
2065800
2065800
2065800
2065800
2065800
2072400
2077200
2073000
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2077101
2073000
2065800
2072700
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800

2081000
2081100
2081200
2081300
2081400
2081500
2081600
2084400
2(789600
2086900
2081800
2081900
2082000
2082100
2082200
2082300
2082400
2082500
2082600
2082700
2082800
2082900
2089400
2087000
2081700
2084700
2083000
2083100
2083200
2083300
2083400
2083500
2083600
2083700
2083800
2083900

2161800
2161800
2161800
2161800
2161800
2161800
2161800
2161801
2161802
2161600
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161602
2161600
2161900
2161902
2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161900
2161900

+7 DEGREES
+7
"
+7
"
+7
"
II
+7
II
+7
+7
"
+7
"n
+7
o DEGREES
II
0
II
0
0
"
0
"
II
0
II
0
0
"
0
"
0
"II
0
II
0
0
"
0
"
II
0
II
-7
-7
"
-7
"
-7
"
-7
"
II
-7
II
-7
-7
"
-7
"
II
-7
-7
"
II
-7

PJ...
LIST: KEYCAPS
MODEL:
925 DETACHABLE KEYBOARD
950 DETACHABLE KEYBOARD

DESCRIPTION
lXl DARK GREY {I}
lXl LIGHT GREY DEL
lXl LG PRINT eLP)
lXl LG FUNCT (LP)
lX8 DARK GREY SPACE BAR
1X1 LG HOME
(LP)
1X1 LG CURSER (LP)
1X1 LG LINE ERASE
1X1 LG PAGE ERASE
1Xl LIGHT GREY SEND
lX1 DARK GREY 7
IX 1 DARK GREY 8
1X1 DARK GREY 9
lXl DARK GREY 4
1X1 DARK GREY 5
1X1 DARK GREY 6
1X1 DARK GREY 1
1X1 DARK GREY 2
1Xl DARK GREY 3
1X1 DARK GREY ,
lXl DARK GREY 0
1X1 DARK GREY •
1X1-1/2 LG ENTER
1X1 DARK GREY -

STEPPED
PRINTED
2072100
2075200
2077000
2076700
2077400
2076800
2076900
2074600
2074700
2075300
2068000
2068100
2068200
2067700
2067800
2067900
2067400
2067500
2067600
2068500
2068300
2068600
2072900
2068400

DATE_l1/15/82_
PAGE __3 __0F __ 3 __

PART NUl-, ...iR

KEYCAPS
I BLANK
2065800
2073000
2076500
2076500
2076500
2076500
2073000
2073000
2073000
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2072700
2065800

SCULPTURED/MATTED KEYCAPS
I BLANK
PRINTED
2084000
2087100
2089300
2089000
2089700
2089100
2140500
2086500
2086600
2088500
2079900
2080000 .
2080100
2079600
2079700
2079800
2079300
2079400
2079500
2080400
2080200
2080500
2084800
2080300

NOTES:
I)DEGREES REFER TO SCULPTURED/MATTED KEYCAPS ONLY
2)SLASH BETWEEN TWO CHARACTERS (ie: 1/1) IS FOR CLARITY AND IS NOT
PRINTED ON KEYCAP
3)LOW PROFILE KEYCAPS
4)SAME KEYCAP CAN BE USED FOR ALL FOUR CURSER POSITIONS

2161900
2161901
2162101
2162101
2162101
2162101
2161600
2161600
2161600
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2161601
2162103
2161601

COMMENTS/NOTES
-7
-7

o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

DEGREES
II
II
II

(3)
(3)

II

"
"
"

II

"
II

"
II

II
II
II

"
"
"

II
II
II
II
II

(3)
(3) (4)

(

(

PART LIST: KEYCAPS
I
910/910PLUS KEYBOARD
MODEL:
9I2C/920C KEYBOARD
DESCRIPTION

fAlIT NUMBER

DATE_II/10/82 _ _
PAGE_l __ OF __3_

1910/910PLUS I 912C/920C
I PRINTED
I PRINTED

BLANK

COMMENTS

-----------------------------------------------------------------------------------------2073000
lXl LIGHT GREY BLANK
(1)
------2073000
lXl LIGHT GREY Fl
2073100
lXl LIGHT GREY F2
lXl LIGHT GREY F3
lXl LIGHT GREY F4
lXl LIGHT GREY F5
lXl LIGHT GREY F6
lXI LIGHT GREY F7
lXI LIGHT GREY F8
IXI LIGHT GREY F9
IXI LIGHT GREY FlO
IXI LIGHT GREY Fll
lXI LG CHAR INSERT
lXl LG CHAR DELETE
lXl LG LINE DELETE
IXI LG LINE DELETE
lXl DARK GREY BLANK
lXl DARK GREY ESC
lXI DARK GREY 111
1X1 DARK GREY 2/@
lX1 DARK GREY 3/1
IXI DARK GREY 4/$
1X1 DARK GREY 5/%
IX1 DARK GREY 6/"
IXI DARK GREY 71 &
IXI DARK GREY 8/*
IXI DARK GREY 9/(
1X1 DARK GREY on
1X1 DARK GREY -1_
lXI DARK GREY =1 +
1X1 DARK GREY '11Xl DARK GREY \/1
lX1 DG BACK SPACE
1XI-1/2 DARK GREY TAB
IX 1 DARK GREY Q
lXI DARK GREY W
lX1 DARK GREY E
lXI DARK GREY R
1XI DARK GREY T
lX1 DARK GREY Y
1X1 DARK GREY U
lX1 DARK GREY I

-------------

---------------

2073200
2073300
2073400
2073500
2073600
.2073700
2073800
2073900
2074000
2074100
2074200
2074300
2074400
2074500

2072200
2065900
2066000
2066100
2066200
2066300
2066400
2066500
2066600
2066700
2066800
2066900
2067000
2067100
2067200
2067300
2072600
2068700
2068800
2068900
2069000
2069100
2069200
2069300
2069400

2072200
2065900
2066000
2066100
2066200
2066300
2066400
2066500
2066600
2066700
2066800
2066900
2067000
2067100
2067200
2067300
2072600
2068700
2068800
2068900
2069000
2069100
2069200
2069300
2069400

-------

-------------------------

-------------------

--------------

-------

-------

2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2073000
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2072400
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800

(l)
(1)
(1)

(1)
(1)
(l)
(1)
(1)

(1)
(1)
(1)
(1)

(1)
(1)

(2)

PARTLIST: KEYCAPS
MODEL:
910/9l0PLUS KEYBOARD
9l2C/920C KEYBOARD
DESCRIPTION
IXI DARK GREY 0
IXl DARK GREY P
lXl DARK GREY[/]
lXI-1/2 DG LINE FEED
IXl-1/4 LG CLEAR SPACE
IXI LIGHT GREY CTRL
lXl DG ALPHA LOCK
IXI DARK GREY A
IXI DARK GREY S
IXI DARK GREY D
IX1 DARK GREY F
lXl DARK GREY G
1Xl DARK GREY H
IXI DARK GREY J
IXI DARK GREY K
lXI DARK GREY L
lXl DARK GREY il:
lXl DARK GREY '/R
LIGHT GREY -L ft RETURN
1Xl LIGHT GREY BREAK
lXl DARK GREY BACK TAB
1Xl-1/2 LG SHIFT
lXI DARK GREY Z
IX1 DARK GREY X
lXl DARK GREY C
1Xl DARK GREY V
IXI DARK GREY B
IXI DARK GREY N
lXI DARK GREY M
lXl DARK GREY ,1<
IXI DARK GREY .1>
lXl DARK GREY II?
IX1 DARK GREY {I}
lXl LIGHT GREY DEL
lXl LIGHT GREY PRINT(LP)
IXl LG CONV/BLOCK (LP)
lXl LG FUNCT (LP)
IX8 DARK GREY SPACE BAR
lXl LG HOME eLP)
lXl LG CURSER (LP)
lXl LG LINE ERASE
lXl LG PAGE ERASE
lXl LG SEND LING
IXI LG SEND PAGE
lX1 DARK GREY 7
lXl DARK GREY 8
lXl DARK GREY 9
IXI DARK GREY 4

DATE _ _ 11/10/82 _ _
PAGE _2__ OF __ 3~

PART NUMBER

19IO/910PLUS I 912C/920C
I PRINTED
I PRINTED
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

20695'00
2069600
2069700
2072500
2077300
2075000
2069900
2070000
2070100
2070200
2070300
2070400
2070500
2070600
2070700
2070800
2070900
2071000
2077100
2075100
2069800
2072800
2071100
2071200
2071300
2071400
2071500
2071600
2071700
2071800
2071900
2072000
2072100
2075200
2077000
2076700
2077400
2076800
2076900

2068000
2068100
2068200
2067700

2069500
2069600
2069700
2072500
2077300
2075000
2069900
2070000
2070100
2070200
2070300
2070400
2070500
2070600
2070700
2070800
2070900
2071000
2077100
2075100
2069800
2072800
2071100
2071200
2071300
2071400
2071500
2071600
2071700
2071800
2071900
2072000
2072100
2075200
2076600
2076700
2077400
2076800
2076900
2074600
2074700
2075300
2074900
2068000
2068100
2068200
2067700

BLANK

2065800
2065800
2065800
2072400
2077200
2073000
2073000
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2077101
2073000
2065800
2072700
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2073000
2076500
2076500
2076500
2076500
2076500
2073000
2073000
2073000
2073000
2065800
2065800
2065800
2065800

COMMENTS

(

(3 )

(3 )
(3 )
(3 )
(3) (4)

(1)
(1)
(1)
(1)

(

PARTLIST: KEYCAPS
'ODEL: 910/910PLUS KEYBOARD
912C/920C KEYBOARD

~ART

1910/910PLUS
PRINTED

DESCRIPTION

I

DATE_II/10/82 _ _
PAGE _3_ OF _3_

NUMBER

I 912C/920C
I PRINTED

BLANK

COMMENTS

-----------------------------------------------------------------------------lXl DARK GREY 5
lXl DARK GREY 6
lXl DARK GREY 1
lXl DARK GREY 2
lXl DARK GREY 3
lXl DARK GREY ,
lXl DARK GREY 0
IX 1 DARK GREY
lXI-1/2 LG ENTER
lXl DARK GREY -

.

2067800
2067900
2067400
2067500
2067600
2068500
2068300
2068600
2072900
2068400

2067800
2067900
2067400
2067500
2067600
2068500
2068300
2068600
2072900
2068400

2065800
2065800
2065800
2065800
2065800
2065800
2065800
2065800
2072700
2065800

I)KEYCAPS ARE FOR 920C KEYBOARD ONLY.
2)SLASH BETWEEN TWO CHARACTERS (ie: 1/1)IS FOR CLARITY AND IS NOT
PRINTED ON KEYCAP
3)LOW PROFILE KEYCAPS
4)SAME KEYCAPS CAN BE USED FOR ALL FOUR CURSER POSITIONS

(

()

SPARE PART KITS
The following are the terminal spare part kits available through
TeleVideo Systems, Inc.
Each model terminal has been designated the
following spare part kits:
A)
B)
C)
D)

Main Logic
Power supply/Video module
Mechanical components
Additional parts

The suggested stocking levels have been identified as follows:
For
are
For
For
For

the first 50 terminals lea of
suggested.
the next 50 terminals add lea
the next 50 terminals add lea
the next 50 terminals add lea

kits A, B, C, & D
of kits A, & B
of kits A, B, C, & D
of kits A, & B

The list price of the spare part kits (as shown on the Terminal
Spare Parts Price List) reflect a 25% discount, if the items were
purchased seperately.

*Attached are the kits currently available through TeleVideo.

(

SPARE PARTS KIT
MODEL: 910 TTL
LOGIC BOARD
PART NUMBER:
2000600
PART t
2029200
2029400
2035800
2036200
2049600
2051800
2052800
2053000
8000020
2028700

DATE_02/10/83_

, DESCRIPTION
IC 75188N/1488
IC 75189AN/1489
IC 2114 RAM
IC 74LS245/N8T245N
IC 6502A 2MHz CPU
IC KYBD ENCODER 910/910PLUS
IC SY6545A-l 2MHz CRTC
IC SY6551A-1 2MHz UART
IC EPROM SYS PROG 910
CAP CERAMIC .01uf/16V 20% (2ea)

(

(

(J

DATE_02/10/83_

SPARE PARTS KIT
MODEL: 910 GATE ARRAY
LOGIC BOARD
PART NUMBER: 2225400
PART t
2029200
2029400
2035800
2036200
2049600
2051800
2052800
2053000
8000020
2057400
2028700

DESCRIPTION
IC 75188N/1488
IC 75189AN/1489
IC 2114 RAM
IC 74LS245/N8T245N
IC 6502A 2MHz CPU
IC KYBD ENCDR 910/910PLUS
IC SY6545A-1 2MHz CRTC
IC SY6551A-1 2MHz UART
IC EPROM SYS PROG 910
IC GATE ARRAY 910/925
CAP CERAMIC .01uf/16V 20% (2ea)

(

(

SPARE PARTS KIT
MODEL:
910PLUS TTL
LOGIC BOARD
PART NUMBER:
2000800

DATE_02/10/83_

PART t

DESCRIPTION

2029200
2029400
2035800
2036200
2049600
2051800
2052800
2053000
8000040
2028700

IC 75188N/1488
IC 75189AN/1489
IC 2114 RAM
IC 74LS245/N8T245N
IC 6502A 2MHz CPU
IC KYBD ENCDR 910/910PLUS
IC SY6545A-l 2MHz CRTC
IC SY6551A-l 2MHz UART
IC EPROM SYS PROG 910PLUS
CAP CERAMIC .01uf/16V 20% (2ea)

(:

(!

DATE_02/10/83_

SPARE PARTS KIT
MODEL:
910PLUS GATE ARRAY
LOGIC BOARD
PART NUMBER:
2225500
PART I
2029200
2029400
2035800
2036200
2049600
2051800
2052800
2053000
8000040
2057400
2028700

DESCRIPTION
IC 75188N/1488
IC 75189AN/1489
IC 2114 RAM
IC 74LS245/N8T245N
IC 6502A 2MHz CPU
IC KYBD ENCDR 910/910PLUS
IC SY6545A-1 2MHz CRTC
IC SY6551A-1 2MHz UART
IC EPROM SYS PROG 910PLUS
IC GATE ARRAY 910/925
CAP CERAMIC .01uf/16V 20% (2ea)

(;

DATE_02/10/83_

SPARE PARTS KIT
MODEL:
912C/920C TTL
LOGIC BOARD
PART NUMBER:
2000000
PART I
2026600
2027400
2028400
2029200
2029400
2030800
2031000
2031200
2034000
2035800
2098600
2028700

DESCRIPTION
IC 74LS74
IC 74LS157
IC 74LS253
IC 1488/75188N
IC 75189AN/1489
IC 2502HP UART
IC TMS 9927/5027 CRTC
IC P8035 CPU
IC SYSTEM ROM 912/920C A49C1
IC 2114 RAM
XTAL 23.814 MHz CRYSTAL (912/920)
CAP CERAMIC .01uf/16V 20% (2ea)

(

(

(

DATE_02/10/83_

SPARE PARTS KIT
MODEL: 925 GATE ARRAY
LOGIC BOARD
PART NUMBER:
2225300
PART t
2029000
2029200
2029400
2035800
2049600
2052800
2053000
8000031
8000033
2057400
2028700

DESCRIPTION
IC 74LS374
IC 75188N/1488
IC 75189AN/1489
IC 2114 RAM
IC 6502A 2MHz CPU
IC SY6545A-1 2MHz CRTC
IC SY6551A-1 2MHz UART
IC EPROM SYS PROG (A50)
IC EPROM SYS PROG (A49)
IC GATE ARRAY 910/925
CAP CERAMIC .01uf/16V 20% (2ea.)

(i

DATE_02/10/83_

SPARE PARTS KIT
MODEL:
925 TTL
LOGIC BOARD
PART NUMBER:
2001000
PART I

'DESCRIPTION

202900()
2029200
2029400
2035800
2049600
2052800
2053000
8000031
8000033
2028700

IC 74LS374
IC 75188N/1488
IC 75189AN/1489
IC 2114 RAM
IC 6502A CPU
IC SY6545A-1 2MHz CRTC
IC SY6551A-1 2MHz UART
IC EPROM SYS PROG 925 (A50)
IC EPROM SYS PROG 925 (A49)
CAP CERAMIC .01uf/16V 20% (2ea)

(l

(:

(,:

SPARE PARTS KIT
MODEL:
950 TTL
LOGIC BOARD
PART NUMBER:
2000400

DATE_02/10/83_

PART t

DESCRIPTION

2029200
2029400
2035200
2035800
2049600
2049800
2155700
2050200
8000043
8000044
2028700

IC 75188N/1488
IC 75189AN/1489
CRY Kll14A 23.814 MHz
IC 2114 RAM
IC 6502A CPU
IC 6545 CRTC
IC 6551 UART
IC 6522A VIA
IC EPROM SYS PROG 950
IC EPROM SYS PROG 950
CAP CERAMIC .01uf/16V

(950)

(A41)
(A42)
20% (2ea)

(

(

(;

DATE_02/10/83_

SPARE PARTS KIT
MODEL:
950 GATE ARRAY
LOGIC BOARD
PART NUMBER:
2233000
PART t
2029200
2029400
2035200
2049600
2049800
2155700
2050200
8000043
8000044
2057600
2057800
2049200
2028700

DESCRIPTION
IC 75188N/1488
IC 75189AN/1489
CRY Kll14A 23.814MHz (950)
IC 6502A CPU
IC 6545 CRTC
IC 6551 UART
IC 6552A VIA
IC EPROM SYS PROG 950 (A25)
IC EPROM SYS PROG 950 A20)
IC GATE ARRAY 950 A (A34)
IC GATE ARRAY 950 B (A37)
IC 6116 RAM 150ns
CAP CERAMIC .01uf/16V 20% (2ea)

(

("

.SPARE PARTS KIT
MODEL:
910/910PLUS
MECHANICAL
PART NUMBER: 2000900

DATE_02/l0/83_

PART •

DESCRIPTION

2005901
2223700
2223300
2199400
2096800
2097300
2097800
2100200
2180200

CABLE ASY KEYBOARD 910/910PLUS
FUSE 3A 125V (25EA)
FUSE 1A 250V (25EA)
KEYSWITCH (3ea)
SWITCH, SIDE ADJ 10 POS DIP
SWITCH, POWER ON/OFF SPST
CONNECTOR RIGHT ANGLE RS232
SHROUD, CONN 910/912/920
POT, CONTRAST

(I

(

()

DATE_02/10/83_

SPARE PARTS KIT
MODEL:
912/920
MECHANICAL
PART NUMBER: 2000200
PART I
2005900
2223700
2223300
2199400
2174200
2181000
2096800
2097300
2097800
2100200
2180200

DESCRIPTION
CABLE ASY, KEYBOARD 912/920
FUSE, 3A/125V (25ea)
FUSE, 1A/250V (25ea)
KEYSWITCH
Dea)
SWITCH, TOP ADJ. 7 POSe DIP
SWITCH, TOP ADJ. 10 POS DIP
SWITCH, SIDE ADJ. 10 POS DIP.
SWITCH, POWER ON/OFF SPST
CONNECTOR RIGHT ANGLE RS232
SHROUD CONN 910/912/920
POT, CONTRAST

(

()

SPARE PARTS KIT
MODEL: 925/950
MECHANICAL
PART NUMBER: 2000500

DATE_02/10/83_

PART t

DESCRIPTION

2005700
2223700
2223300
2199400
2096800
2097300
2097800
2097900
2100100
2180200

CABLE ASY KEYBOARD 925/950
FUSE 3A 125V (25EA)
FUSE lA 250V (25EA)
KEYSWITCH (3EA)
SWITCH SIDE ADJ 10 POS DIP
SWITCH POWER ON/OFF SPST
CONNECTOR RIGHT ANGLE RS232
CONNECTOR KEYBOARD RJll
SHROUD, CONNECTOR 925/950
POT, CONTRAST

(

(

SPARE PARTS KIT:
MODEL: 910/910PLUS
912/920 925/950
POWER SUPPLY & VIDEO MODULE
PART NUMBER: 2000100
PART t
2197300
2199300
2200800
2201000
2213600
2200900
2200600
2201500
2201600
2126800
2126900
2176600
2201200
2201300
2045500
2047100
2047300
2046700
2280000
2177700
2177800
2177900

DATE_02/10/83_

DESCRIPTION
CAP MYLAR, .lUF/600V (C504)
CAP ELECTROLYTIC 220UF (C305)
DEFLECTION YOKE W/CONN KYS-00060 (L202)
COIL INDUCTOR 27UH .3PIE (L302)
COIL LINEARITY ADJUSTABLE (L201)
COIL LINEARITY S.4UH NON ADJUSTABLE (L201)
DIODE INS391/0S135D (2ea)
DIODE DSA17C/MR500 (4ea)
DIODE, ZENER IN7S9A/RD12EB (0112)
REGULATOR, LAS1605 2A/5V (IC2)
REGULATOR, LAS16CB 2A/13.8V (ICl)
RESISTOR, CF 390 ohm 1/2w 5% (R102)
TRANSFORMER HORIZ DR HOT19 (T301)
TNFR FLYBACK KFS-00093 (T302)
TRANSISTOR 2N4401/2SCl166 (Q301)
TRANSISTOR 2NS5S1/2SC983 (Q103/Q10S)
TRANSISTOR 2SC2233/MJE13006 (Q302)
TRANSISTOR KTC1627A/MPSA06 (QI02)
CAP NON POLARIZED 16uf/2SV (C306)
POT lOOK BRIGHT/VERT HEIGHT (SFR1/SFR4)
POT 2K VERT LINEARITY (SFR2)
POT SK B+ 7SVOLT ADJUST (SFR3)

(

(

(J

SPARE PART KITS
MODEL: ALL
ADDITIONAL PARTS
PART NUMBER: 2000300

DATE_02/10/83_

PART t

DESCRIPTION

2024000
2024200
2024400
2024600
2024800
2025000
2025200
2025400
2025600
2025800
2026000
2026200
2026600
2138500
2027400
2027600
2048200
2027800
2028000
2028200
2044200
2138600
2028400
2028600
2028800
2029000
2030200
2030400
2030600
2044200
2030900
2047500
2201700
2201800
2202200
2180100
2177100
2041300
2040700
2152800
2097400
2180300
2201100
2225600
2199700
2202100

IC 74S00
74LSOO
74LS03
74S04
74LS04
74LS05
74LS08
74LSIO
74LS20
74LS32
74LS42
74LS5l
74LS74
74LSl12
74LS157
74LS163
74LS164
74LS166
74LS173
74LS174
74LS244
74LS251
74LS253
74LS367
74LS373
74LS374
NE555
DP 8304
AMD2lll-4A
74LS244
CAP CERAMIC 1.Opf lKV SPARK GAP
DIODE, IN9l4
DIODE DS l13A/MRI-lOOO
DIODE, IN920/KDS85l3A
DIODE, IN4004/DS130TB
POT FOCUS 2M ohm
RESISTOR 0.6ohm WW 2W
RESISTOR PAC 4.7K ohm
RESISTOR PAC 6.2K ohm
SPEAKER 80hm w/CONN
SWITCH, POWER SELECT, DPDT
THERMISTER, SDT-IOO
TRNF, POWER W/CONN (910/920/925/950)
TRNF, POWER W/CONN (970 ONLY)
TRANS 2N6l2l/25Cl173
TRANS 2N6l24/25A473

('

()

, ,,

..--':-1 :l

~

~

#

~
~

In

- ,:\1 5

:80,\

~

A

~

CPU

.

DO-D~

l/

Ysl

+

t·/)

~

elf-

r---

S I0 # 2

I
IBtI

ell: WI).I - - U}'Z

I...-

,~o

SIO

f-p.

ILO

PHI\TLR

.l

J ,

f-- BR I CIITNl.SS C\TRL
C\TRI.
RI.e;

I II 'I-

t

U/,

I-- CURSOR CNI Rl.
- son FONT eN'I RI.

A,B,C -

ROW/WOH

.,.,-

RAM
AllllRISS
111 CODE

i"

~
AUOHIS, BliS

I
~

)r

/8

CO\TR{lL

rOil ER 0\
RESET C I Reu IT

~

I--

S 10 1 SELLCT

t-

5102 SELI.CT
CONTROL RfcG A,B,C, SELECT

~

9007 \Il'AC SHECT

En

~

11b>~
I

{I

CLOCK
CIRCUITRY

8

....

,,..

.,.

''',

~

'\

"1

OBO-DB7

13

'\
V
D~I!\R

BUSACK
Y SYNC
H SYNC

SCAN LII'E

U)~TROl.

M

CIlARACTlR
RllW RUFFlR

~

AOO-AD15

II'

V

--{4

~1..

3V

>-

1/ V11

13

91107 VPi\C
HUHLR

~

~.

~

ADU - AIl13

ITT.•

CTC SELECT

ADDRESS
OLCODE

l< v

14

.

/5

~>

I/O

'

BATTERY

-V
/

BUS

Y

rs>-

>-

/8

k

I--

r

•

• {

..
II /5
RLSH

l{

I~

DAT,I HilS

'I

'I

I

I

{~ I

I·

'-1

~

2K CMOS
STATIC
I
RAM

DYNAMIC
DISPLAY
RAM

~

1
/16

II '

,~

~

I

st

16K

24 K
SYSTEM
EPROM

80/132 CIIAR SLLlCI

/

8

8

,

I'~

RS.';~

RSI "

PI

1:

- -

n

P-

S 1111-

8

UIARACTI.R
GENI:RATOR

8

PARM,LEL
[0
SERIAL

'=
I.-

DOT CLOCK
CIIARACTER CLOCK

4

ATTRIBUTE
ROW BUFFI.R

I

/5

i
I

CIIARACTLR CI.OCK

970 FUNCTIONAL BLOCK DIAGRAM

...

...

DISPl.AY
ATTRIBUTE
I.UCIC

VIDEO OUT
TO

MONITO~

~IREQ, RjW,
JOR,
BUSACK, BUSREQ

(

(

(

)

4-1
Overview
The terminal is controlled by a zao microprocessor operating at a clock
speed of 4.0Mhz.
The Z80 can address all 64K memory and refreshes the
dynamic RAM via the built in dyhamic memory refresh counter during one Ml
cycle.

Display Fundamentals
The SMC 9007 video processor/controller is the heart of the display unit.
It has 14 address lines and can address up to 16k of video memory.
The
chip has a row-table addressing mode and each data row on the screen has itE
own starting address.
A row table exists in memory which contains the
starting address of each data row.
For a screen with 26 data rows the row
table will consist of 26 14 bit address each pointing to the first
character position of its respective data row.
The controller is programmed to handle 26 rows by 80 or 132 columns.
A
Double Row Buffer (DRB) allows the buffer be loaded at a slower speed while
the other buffer is displaying at screen painting speed.
This is
especially important in attribute assembly mode (hidden attribute).
After
the DRB is loaded the controller address lines are three stated for the
remaining scan lines of the data row, thereby permitting full processor
access to memory during these scan lines.
The percentages of total memory
cycles available to the processor is approximately (10-2)/10 which equals
to 80%.
During attribute assembly,
the attribute data is latched into the
controller during one clock cycle, both the character and its attribute is
driven out and written into the row buffer (two 8 bit row buffers) •
This
allows one to reserve 8 bits for font and 8 bits for attributes and each
attribute only affects the character associated with it.
Smooth scrolling all or part of the screen (split screen) is accomplished
by a scroll offset register and two programmable registers which define
the start data row and the end data row of the smooth scroll operation.
The offset register will. force the scan line counter outputs of the
controller to start at the programmed offset value rather than zero for the
data row that starts the smooth scroll internal.
Row attributes such as double height double width or single height single
width are programmed by the most significant 2 bits of the row address
pointer in the row-table.

4-3

(

Communications
The keyboard is scanned and decoded by using a single chip microcomputer on
the seperate keyboard PCB. Keyboard entry is transmitted to the processor
serially at 9600 baud and received thru an SIO.
Key codes are assigned
using a PROM located on the keyboard PCB. The keyboard would interrupt the
CPU for every character that is entered.
The modem interface is similar to the keyboard interface and also uses half
a ZaO-SIO tie to the interrupt line.
The SIO is connected via a pair of
line driver and receiver to a standard EIA RS-232 connector.
The printer also uses half a ZaO-SIO
interrupt control on the interrupt line.
connector.

serial interface with optional
The SIO is connected to an RS232

4-4
Character Generation
The character generator is 16k bytes of static RAM.
The fonts are loaded
from system RAM into the font RAM by the CPU.
The characters are in a 6Xa
matrix placed in a aXlO cell with half-dot shift to achieve a llX8
resolution.
Bit 0 and 7 on the character font are used to control the
half-dot shift.
4-5

(

Terminal Memory
2K bytes of CMOS RAM with memory power back up, are used to store the
-terminal's set up parameters and the special function key codes.
Tbe terminal has 16K RAM space for display memory which provides up to 2
pages in hidden attribute mode.
The CRT controller constantly refreshes
the display memory to the display screen.
The terminal can have up to 24K bytes of EPROM (2764) space for firmware
program code space.
The rest of the RAM space not used by the display RAM
can be used for program data space.
4-6
Operating Clocks
The zao CTC timing controller is used as a baud rate generator to generate
the correct frequency clock for the 2 SIO channels.
The baud rate on each
channel is software programmable from 50 to 19.2K baud.

()

4-7

Interrupt Signals
The 970 CPU interrupt structure allows the peripheral device to identify
the starting location of the interrupt service routine. This mode (mode 2)
allows an indirect call to any memory location by a single 8 bit vector
supplied by the peripheral.
In this mode, the peripheral generating the
interrupt places the vector onto the data bus in response to an interrupt
acknowledge.
The vector then becomes the least significant eight bits of
the l6-bit indirect pointer.
The lEO and lEI lines of the peripheral devices are connected together in a
daisy-chain fashion with the devices closest to the CPU having the lowest
priority.
Frame interrupt interrupts the CPU every 1/60 second or 1/50 second
depending on line frequency setting.
This can be used as the real time
clock source.
The CRT controller frame interrupt must be enabled in order
to generate the frame interrupt.
In response to this interrupt, the CPU
jumps to location 66H.

(i

(

(I

()

(\

,.

(

)

;

7

8

6

4

5

3

2

RE7

22

r - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-'rJ~

+SV
CO

4~~,

FI"5

22~

13

"'SV

iOn

.0.117

r---~O 1----.-'-11
AI 1-:'
AII7

"""

~d~

10
EI

E2

g

-Ii

~

eLK

II
vee

.0.'17
745C4

I

Y2

E~AH:

711

')C""-+-+-+_6-1

..--------+--=1

~O--+'-I" "~'--

~~:f
~f

R64 :.
4.7K

.1.

5 6J
7 CLR A B ( 0
9~ ENP AilS
LD 0--'---4--=-l CP 74L S163
4

C

74LS 74

,

- - - - " (P

R

L

O~I--

+SV

AIOO

I

5

6

c:,h2,-,-------=-j-

T+

W74!4
7414
'

22"t

-L

'Sv IoSV

-=-

X~E+-_+_1-l7 NI..n

II

F\S7

12 .0.30

4.7K

74LSOO

ACo

~ Cp74L574

B

S

r6_+-t-t-2-~; RES ET

4~.J

AS~3~S~---------------~~f_+_+-t_+-----------------~A~0~S~__
A4 34
A04

I

}

c

SH 2,3.4.79.10

J

a::>:.:,ciSa'>a:~ 7 6 5 .. :I ;2+-...:10+..::.2+_-=-"'+_.::B+-=-S+_7'-+-4_+--------0'-.6-'-7----

oGt-I=-0-----------------l-----------t_--~-1r_+_+--t__l___l--1_-_+--t_+__l--+__+------------~O~B~6~__

05r9~--------------_l_--------__l------~__l--+__l___l--+__+__l--+__+__l--+__l_----------~O~B~S---­
D4t-7'----------------~r_--------+--------.~~+_+~t__1_-4--+-_+--t_1__+--t_-----------=C~6~4..:.--12

5rl2 ,3,5, 7,e, 9,10

C B2

02~----------------~f_--------_4----------------~_+--+__+--+__+--+__+--t__l_------------~~----

Olrl~S------------------t_--------~f_----------------~~1_-4--+__;--+__+--+__+------------~D~·~6"'____

MFIE Q

-----t---t-t--i

,2

>-----1I--"-------------t-~-I_4__+-+__r--

>--~c-._-----------------+-_t-+__+-+__+-

.

WR

E~.~

L----+---~_t_---+_I--+Oi(0~~-+-+='-'-IWAIT

25--

RF5H

~
-17:

Li!I:

-}yyF--<~
33 K 1
,.:>.

SFIQ_~~_H_A_L~_~

I.---+-+_-'---IBU__

__

SH4.9

GI

~

TeN

~----I-----------------------------------------------~~-----------------

-~~L

__=_2___" : : : : _ - - , c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

NOTES UNLESS OTHERWISE SPECIFIED

1.

ALL RESISTORS ARE VALUED IN OHI'S
AND ARE 1IIIW WATT ~ 5'70,

2.

ALL CAPAC TORS ARE VALUED IN
ARE 50 VDC !20:;.

JF

AND

Srl5.9

_________________Vv_ M_____ 5;"';2,3

eus:u

6USACK-"-:S~26----C~5C+----·----------------24 - -

SH4~~-2----------------------------------------~

2 "'98

SH 7, ,0

> - - _ t - - - - - - - - - - - - - - - - - - - - - - - - - 4 - + - _ + - - - - - - - - - - " - - - SH 2,.,
G2
8
I
19'"
I-a-R
A61 \~-~I---'~
IL------------------------+-+--------~--- SI-' 69

I--~r~lilt-~-iAL2'=-_~ ~'

___ '3

:~~

RO

~:---_trl---++.::;-5~~-A6---1
....., 6 46 -{)>-_ __4CCI4-'---------------------_+---+--1I-------------:;'-lc.:E:..:,Mc;,R-'-. S H2,3
::L.::J- .:I
,6
"mEQ

- - 22

J

f(jRQ
__+----"-'--='--- SH 4.7,9,10

9

474LS32

I 91

1: ~ S~~9
~+15V
L-_~-[-~~~~~LSI09Q~-~~k4LSIC'3Qr2-

iIi

__- - - - - ' - - - - - SH 3,7,10

V>--r-:-+----------------iI---+--+-+--l--l-~---=;4~L-;;SO~2-r---------~r_----~--_t~
3
1 INTA

74LS22
R 0 F2c:.'-+__jC-10"(l

+SV~o\'V6--+-A---~r---.61

L

AD

.-+~~+.~r-..--t-~_1~-t__t--~~--._+~I~~SV
:;,' »7.? ~ l ~ »;;' t;, <..:;:' < :{.?;' < :i'~:i' K' ~<» 'f.? ~ >

________________~8r_1

~,S

SH2.3,4,9

A02

MlF2~7

Q,L.

--t\--

SH 2,3.4

A6r3~6~_ _ _ _ _ _ _ _ _ _ _ _ _ _~~+~f_+~-+_j-------------------=A~~J.:.6_ _

19

A

SH2,34.s

0~r'-4--------------_+--------__+------------------~~r_+__r__+--r_+__r-----------D-8-0----

74LSOe

~---------~---~

; :

D

__

}

r3c9:_ _ _ _ _ _ _ _ _ _ _+--j_+-+--t---t-_+-t--+_j------------------~A=0_.:.'3~_

Q

1

-'\t:L PEf< EeL\ 05154-

Aer~~e~-----------~~-+~f_+~f_+~-+_j------------------~A~o.:.8~ __
A7r3~7---------------~~f_4-~f_+~-4__j-------------------=A~0~7_ _

II

2
p,
S M7 -....:...-"-'-----t-----''1D AI04

BUSRQ

A 0 II

IORQ~2~0--.:..--------------~2f___l

KSRST

MP-Ea

I

03r8~--------------_r--------_4------------+__r_4--+_~_4--+_~_4--+_4_----------~C~6~3~--

5

hE2
4.7K

$H3

A II

07 13

AIOO

4

FR:)O

}

.0.012

C;:i..;

SH4----------------~~--------------------------------.J

,

3

>-+-7_ _ _ _ _ _ _ _ _ _ _----------------------A-~-0----

9K I J.; T

FI~5..
ICK v
CFiE
IN914

/.
rf---

AD 13

I

Z ECA

5

J

5

AIIC
74LS04

___

2

4LSC4

5

eCLK

+5v

AI2

"~AI/O
:3
12
a

'~~~

A 2 t-3:.:2=--______+-17+J

aA osce aD TC

~ A~~

;~:

T
;{<: 2

A3 ~3~3~-------------------~~-+-_j-------------------"-·~c~3_ _

t---~~IO"-!ENT

c

~~

PROTO f',EL
PROTO "EL

F\P4 Cl<'b:.' 2' ~.?~)~
2<.,.~ >b:.' a:>a:
:i ({ a:Cl Cla:'1
~'~"~XL.-- "~."""'~~-~f-:::====:::~
2.2'a: a: a:c:t>J: a:;,a: u::;;a: u:
n-'C~'--,7if',,~--A 15 5
8 3~ 7 5 4
4 6 '2 '3 8 6 3 2 5 7
AD IS L . - -~,
"
"Z·O~3~--_-====~
__I__='_'_""'_.D..:c .
4
-"-+-'-+--=+-=+--=+-=+-=+-'-+----------------------.0.-'0'-"-,4-- SH 3.'3
A14 t-3-------t_-+-t--:-+--cf_+-t--_t_--t_-+-+-+-t----------------------.:..:.:::.:..:.---- SH 2,3,9

A '3

+sv

~3

I> 10

I
2

AIOt-4-'O--.:..--------~~4__4-+-If_4-~f_~-+-_+--+_--------------------A~D~IO~_

CPUINT 4?()
470
I
16
SH7,10 -=:.'---=--'-'-'----------------+-------+-----++-+...:.::j,NT
I

+SV

AI3

S
~ .0.116
u74LS74 Q ~'3_+_+-----..

Q~ __..

J1

SH 7,10

r-_ _ _ _ _ _ _ _ _~~-------------------------------------~B~C~L~K---SHIO

~~~I~C~C-v____=_2~...""<"
,"'-~-C;;,~Q;:;-7?:f(-1

D

1

f--,_._------'-REVISIONS
ZONE
l~R 1
DEScR:-:lp:::r':':,occ
, =----·------,---:O,-.='E---. A,PPRu'llfQ

8-l-:-~~-K-S~;:

-----------------.-------------------------------=--=--- 5'-'2,3,4,8
___________________________________________F_J_:_H_ _ SH2

=~_-_-_-_-_--_.===__-_--=_=_~_-_-___-_----------~

SAUl:' Kli

S----------R-ST___

___________ .._-_.____

:~'C~ .,o
BbOC<
"'*~","UH; .. ~

A

0/1

Pt~c"'nc

A

..

.a,
r.

I

()

(\

,.

(

)

;

()

(\

,.

(

)

;

7

8

6

1

2

3

4

5

REVISIONS
APPROvEO

DESCRIPTION

SEE SHT I
DB 7

.--_ _-.:_ _ _ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-=-j€ IA3

Inl-'..;.4---:;.0.=.B-7-

066

r-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~1~5~

~S7_--~D8~G~

2
2Y:; 18
085
065
. - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - , . . . , ''':'1
IYlr:-----"--7
__~O=E~A~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~-~-t_----4_~~---4__4---__,
__________._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~·~-~AIO~2Y2~---~D3~--'OB3
.--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--=-jEJ..{'ILS.:..wIY4r'-2---.:..0.::.B.3:..-.
082
..-_ _ _ _ _ _ _ _ _ _ _ _ _ _'7-1- '4
2V41-3_ _ _.:..0.:..B2.._.

o
SHI

4 -:Z
1.----------1

08 I
o BI?!

+;iG

+5 V "
"c 2
2
14
C
LT""P64.7K
01 O¢
3
2'!'3r'::-,
331l.
6":K D,- p.f'v"J
4 IA2
_.::.Ac..:0:..:,.7_ _ _ _ _ _ _---4t-_ _--I
IY<.I-,16",--<1_------------f'3'--''\.,,,f\.1\r,,...:'~41-<
I ~ 9/V,vcc
r--AOl3
17
18
4 A vV' 1.3 ,-c E:!O 13 I
---'-'-':......:'---------I-----'-j2A4
2Y4 t7l
-~.
6
_...:A.;..:0::.....::6'--_ _ _ _ _ _ _+--__...:2'-1IAI A9C I Y, ~
2
IS
10 AS
~
AD 12
13
74LS'41 7
I
16
II
--.;,...;:;.....;;;--------1-----::-1
2, yY2_
A4
>-6 2'AA_;2
c I,·q
_..;..A..:0;....::.5_ _ _ _ _ _ _ _I--_ _-I
12:
5
12A3~rl~!--_..;.A;,.:O:..;.,."_ _ _ _ _ _ _ _+--___'-I' 2AI
2'1"1 ~
S
,," e
6 ~
!--_ .::.A.::D_4~_ _ _ _ _ _~I__--8~: M
I _,21
II
6
7 AI
r-Ie. 2e.
10 V i S A¢
r--191
'V
IS
r-,"'?~i33
4!2
1sT
R71
RAtooVS5r-AOl4

IS

SHI,2 --=..:..-----------.....:..j2A3

r

SHI

r-:.
,'

2 14
01 o¢

-

."v-

I

2 I ..:
D I Oii\

r
'n
AOIO
'8'2~2~~~
__A..:0;..3:..-._ _ _ _ _ _-1I__--4IA4
IY4 ,12 1

c

ADS
17
IE
-........:::....:..--------I_---I2A-1AS? 2'\'3 -:;-,
AD 2
Z 74'c c__ 41 IY3 :3~ 1
-..:.;.;:..::.--------r_---'1IAJ
_..;.A:..::D:...;eO--_ _ _ _ _ _--,I--_---'13~2A2
2Y27'1
':
AD I
" I
IY2
ADIS
Ie:
IE
-~7_--_..._,1
"'l- 2A,
2YI'S'
4
_..;..A.::O'-'¢:...-_ _ _+_+--I--I-----\IA..
I V11-=>--411 - - - - - - - - - '

SHI

~

n

--..:.;.;~----------------r_--~~ JA~

NC -Q64K

.

5

2 14
01

2

14

21

141

C.

--cOID~

Dr

o~

01

01

-

i--

_

_

I--

I---

-

i--

-

_

I--

I--

I---

_

i-!--i--

----I--

i-AIC , ! - - 4116
!---

t,'ft

A II "
4116

A" 5
4116

-

AIC;

4116~

r---

I---

I---

_

!---

I--

_

I---

r--

I-I-I--

I--

r--

I---

I---

r---

'1'

2 I4
01 C'~

I-I---

A10',
4116

~ 2A '

-

_

I-I-I--

_
_
_

_

I---

I---

-

I--

I--

IAI
Ol/l

o
SH

I

I yz 1-'.:..E_ _........::D8:c::.....I;-

;'Y' 1-9=--_ _--=.0.::.6~.O_

GI G2
1 J9

Ail.c

4116

1816l~-~~;I~;~1:~-~H~
_ _~L4~_-414~--++~--++~1--~IH~1-~
1
1
1
I
I

,~~~~-~80'6~~~U=-7~~..:..----~~---~~+----_+-+----~4_---~~I__---~~_ _- - J
~.
'6
-~------*_-----*_----......,~----__<~-----4~----.....--------'

vV

c

~
-

E2S K EJI
+12V~

E32H tS V

L-+-_____________________________________________________
64K
-,

1r--+-----

.~7~r

~~

A110

74L~4
S
e IC """'(
,4L.'_

16~

L--------------------------------------------~T~

SHI

S A20

L-..
S74L51C

2

MI

3

I

4

E

I

~_+---+_-'-SI--I

~_;_:~:

SH' __

5H 4

1..

_____

_
6 10,
8
~
4 A"O
II
hiS

X~:rF+-ir--I

SHI--~------------------------------I_--~__I

B

8

74 L500
L...._ _ _ _ _

AII4
74LSSI

Aile

7~S04

D9~

I

BUSAC K
12
5
5H 1-==~~-----t_--_'""'l0 A113
ceLK
II CP ~LS7-l

SH4

J

•

74LSI0

7':LS04

4
2 0 Alr1
r -__

",i
o
.....

r-~IO~--,
QF5~_t_---,,12'1:; AI01> cL

~CF7:L~74 a~

•I

"R6J.

+ 5VV''4lK6 10

2 ~ :;

',",J

~+_l-~~~--------__,I__~-~~~~'~~~~e~.---~-~I'A"~~
I

rlV-

A 110

,,2 74LS04
Ales
+.,~
..2, A I S '-"'"0---+--3'-1 ~04"-1r----_~-'-l
Ir-----

r

'l <:~5;4

,-::,

oo

6..!1..+5V

c;74LS:::'<:

~~~____~--~~---I~----------------------------------------1-~--~----~~---+~------_-_-_-_-_-_-_-_-_-_-___-_-_-_-.r_-_-~~_:-~-~--'L_n-~=-6_._-_-_-.--._~:~~~~~~.~ .:\p,

R
SH4 _.::.D_Ll_A_""_ _ _ _ _ _ _+--_______...
'(113
IAEM""

'-- ---·---=A=0=..,-~5-·----

.-------.----.

UREQ
-;i74[C~2'-1I· ---------------------------+-....-.---------- SH I

SHI-~~~-----_+------------------.----------------------------------------------~~------------------------------------..

13

S

SHI--;8:;U:;S;;A:.>Cc.!.I(~--------------------------------------------.-------------t--f-------- __________________ ... _..J..O ~~'
SH4

OCLI(
-{ __.:;.::...:c;:..'--_ _ _ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ .. _ _ _ _ _ _ _ _ _ _ _ _ _.__. _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- - '
Q8CLK

8
10 Ales ~--------------------~-~

A'OI

8

s,~Lsce

74L.":'·32

..

A

__

5f~·c--~==.~-_=_

Bt:.C''-'\I....""''l,H~

'ARTS lIST
APflUCATION

r - - - -__- - - - - - I

NEXT AS-'SV

USlDON

(l1..'"'I'

;~1~~r--~------=r---~

o TeleVldeo;lnc.
TfHE

PCEl SCI1EMATIC<:,,--+'--" L:....74:..:L:.:S::.:3:.:2:...-_______--:R~A:..;I;__- SH 5

GI P

10

L..________________R_A..;.C_ _ SH S.IO

Il13~
lRAM
~~~~1~2----------------------------

74l S02

GNO

I'

Lo"\

Q"O
8

~6

-.:; ~ BL~;~".:.:K-=- - ~:~,I

h

E
10.....
'3
I"
QC'.
:...-------"'-i....."
+"____+-1
. . , . ">-+-__
.

CP

~t

A3S

TC~

A34

6

8

15~3
12

A4
93516

E E ).3~____________________________"_~____ SH 8, '3

4

I A

+~v

c

RA3

A41

:r; cr---------'

~-l---~I C l ~ B COLO

.l.

__________...'..:.74:':'L:..:S:.:3::2:..-____________________________

"4LS''O'':
G'2 8

~A394
3
.>
Y1>--------------.

41s16

SH '3

VS

CLP. QEI-4-------=2=-t--1l,..,

"

3

1

4.7K,l,9

7LS3",

E23 E24

~

:;I"G,IO

OVS
r--------------------------------------------..::...:....::..--S H '3

1

+SV~

9 A62

;'3'LS08

2 rtfM>iZ 8
+Sv
CL 0 K ?
OS C

P 0

J\ :

CELANKL3~S~------------""R32c:-"~.

8

r 4l5C~

HS
___
~7~4~LS~2~2~________________________~0~H~S~--

AE 6 ,\:6~__________________________.c.....::_____

VlT
VLT~I~I------------------------------------------------------------------~~--SHE,IO

10

-A€,'

4

1

·1~
C~

1________

A 6S

~'~~~.::
I: ~~:t
·'{k
'vvv3Y;

P41

(>

~1~3____________~~~~~~__+-~5~

9007 CF<.- - - 12
"SV
70,;'
I
CO~, TP.O L LER V S ~------------:..::.."-......----<---1>---\2

74 SO.l

SHe

_______________________.______________.__________________~~___

VDIL2~3~__________.________________________________________________~~~~;~___

13:~
"~M H Z
~'D

5H9

VD6111~8________________. ____________________________________________~V~D5___

__~A~D~6~____________________~______________________________·_____________ ···~VAS
37

c

o

'3K I'IT

INT~2~7~----------------------~~-+------------------------------·----·--·~C~S~Y~~:C---

74l:S32

AD 9

SH 2

SH I

1'\47

+SV ~l

74lS04

2S CS

__~A~D~I~3~____________________
~7~4~L~S~32~________________________________-7ci VA13
__~A~D~I~2____________________~~______________________________________________4~S VAI2
__~A~D~II______________________
~VAII
__~AiD~'0L-____________________
~~2 VA 10

SHI

'SEE SHT I

SV

R39
10K
i-5V
·VVV
AE3
__~B~U~S~AC~K~
________________________________________*-______________~
~
II '<1-'10,,+
__3_3--1 ACK

APPRO",':':

DESCPiPTIOl\

~--------~------------------------------------------~~=-SH8

SHS,8
o
""
rv

74lS0 4

3olL-__....J
-

vo·
o
o

(elK

t!=1r============1::--l~------------------------__j---------------------------------.- SH 8

T
10).

L--------------------------~--------------------------t__------------------------------~~1~i~~:( SH 3,'3,10
L---------------------------+---------------------------t---------------------- -----------. s., :<.6.9,10

8 12D AS

~4LS74

L-__________~II (P

8
'3KRD .LSH3

13,.----

>--f--.----------------------~

I
2

---.----+---------------.----.---.---.--

__________ ._. ____.. _. ____. __

08 (lK

J

All

6
H oC'~ t(
L..~_+----------------.---------------_r-----------------------------+_----------------------------·--·--------------------·--------SHIO

SH 2 __b.L~R.:'.A!!!~I_________________________-lI--+____________.____._. ___.__________ _

-------------------_._-----

~~I:....I--------.-------------~

A
SH 7,10

_~BA::.:U~0~2=.:32=--

______________________7_4SO
__0_________. ______________________________._ _

,--

I

...

_-_. ----------.--

r - - - - - - - - - - _____ _______ .I,I,'CE.~ .OC K) PG -I 2
•.. -•...

-

.~--------

.~~~-P--74..:.AL.'-'\"

t-r . --------..-

A

-:
o

4yL.-.__~

FtHlSH

--"-

DflAWIHO NO,

2021300
1

N.

6

C

()

(\

,.

(

)

;

()

(\

,.

(

)

;

7

8

5

6

1

3

4

REVISIONS
~-----.----

DESCRIPTION

APPqOVEC

D

D

SHTIO

CCLKA

SHT 5

HDEN

DHDEN

SHT 5

SHTIO
SHT 2
CURS

SHT 4

DC BLANK
UR

SHT 2
SHTIO

C

OE

7·L532

SHT 4

I

A2

-

HS

SHT 4

SHT 10

Q

8

S

P2-1

C

7<:LS04

SHT 8

BLINK

SHT 2

BLINK

K
12

RI7

R5
22

=7~

SHT B

VIDEO SHIELD GND

AI4
7406

SHT 8

SHT 2

SHT 8

HALF INTENSITY

SHT 2

TIME OUT BLANK

5

AI4
7406

ps-s

330

R7S
68

i

J

VI
VMIX

P2-4
SHT9

+1'2 \

,

+5V
-I )V

;::5-1 ....
C9
~3;.'rF

SOV

FS-3

CRI
1,\i 514
RI'3

P2-3

R7
IK

Ria
270

SHT 8

P54

R6
IK

8

DOT SERIAL

SHT 5

B

+5V

BLANK

T

e8
330r fC
SOV

lC7

530~T

sov

+C1
2Z",f
15V

+cs
'2 Lt,f
ISV

-1

IN

('2,.1;- 4':>

[

VRI

LM
79 L ('':
A'
L ,.

GND

!

(I,

IT

c; 1.<5.\ 'J.
f -i

I

.'

;

CSf'-11,

~l _

4C-~2,r-:4,

5{,,",,:"',-C';,

b _~ ;:,-~ ,-:-c:·~,
6:'\·liOO
.1

n
+nt,f

1C~

.::

.1

1:C1,.

rl',
.1
8600025-001

A

A

()

(\

,.

(

)

;

I

8

7

I

3

4

5

6

1
REVISIONS
DESCRIPTION

I~

o

ffi

_____JSI~ ~ .!.!IE;.!OL

APPFt,J .. EJ

1i3
~
I
rOPT
+S~L---t-_ _~'SVIr---~- - - - 0 + SPEA~EP.
;-_---FPli!;Z SH 10

P.3

J

~P'i

:>11(

~~"""
-= ><8;;5·

SHI

c

c

B

o

-r._

5HI-

> F4L:2~6,--_-+____ _

TXC8 ... "

6

+-_

DeCi' :~
fl).~i:f"----I--- -

['T"O~---

CT~f

:::

-

-----

A

A
5H2

81. DIP.

ENA

I

()

(\

,.

(

)

;

I

7

I

6

I

4

5

J

I

2

1

REVISIONS

I
MLTRI

eKE N I

. - - - - - - - - - 1 > - - - - - - - - - - - - - - - - - - - - - - - - - - - --19~.----------------.

I
I

C[~::~·PTlON

CI

SEE SHT I

DATE

I
I

APPROVE:

CHAD7
CHAD6
}SH5,:0
CHAD 5
-~~--------------------_+_+_.----------~----'~S.OG
OOSf=2=2~~~-------_l--~144:0S
~IS
CHAD4
-~~---------------------------_+_+_i~~-----_r-----1:40[4 AS4
~23
~ 4 A51
~~:~~----------_+------------------------------~----~~--_
CHAD3
--=-=~---------------------------_+_+_i_l~r_---~----.:!:!I CI390~f-13S Do.:: I
8 ,,;l\LS374 0.3f-:9::.-----------_+------------------------+----=:..::..::;=--(HAD2
-~~-----------------_+_+_+_i_i_1------+--~D12 ~~
D~ 2
7D2
~~6~-----+---------------------------+-----~~--CHAD I
-~.:.,------------------_+_+_+_4_!_!Hr_-+---I~CJII cr#~A DC' .3
401
01 5
"
........
4
3;>
CHAD'"
-::..=..:=------------------------t--HH'--t-+-+-.-'--t-----::,.:-'--I- :rt
• CO:
D~
O~---------+------------------------+-----.-::..:::-- SH 5,10
NS~t-,
CUl('~-"?
CP CE
74LcC,)
CU(
Illy
CLRI

- = - : - - - - - - - - - -________ . - - - - - - - - _ + - - - - 1 ' 7 :DI7

CKE..

0E007f=2:..:0~-------_l-~I8=l,07

07 19

D06F2~1~~-------~--~1~6

O€ 16

-~~--------------__________+_.---------~-~I~eOI6

o

I

3

D

r"

r--=-:

~~~-------~IA'~p~6-~~~_r;_+_r_r+----5+-_--~r+_r;_~r+_r_r-r_-+~1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _....:1-=-1°1
~'-

-

-

I~
OE 2C
OO'~

+-+-~++_r_+_+-ri-~1 ~~

t-~++_+_+_+-ri-_"l·6 016

.-+-+-+-+-+--+1--4~DG
t-~+++_!_+-..,;,.._{.' "'14

~F2~~?____~
D04F2:::.3_ _ _..J

460
.-+-+--~~_+_--12"1~;3 9006-135

c

Z

'I)

4

DOC 1-=7-:----------'

~~E~
'"

~2J

0ClZF-------'
DOIF3--------'

t----++----:6:1~
!

~

oo:!l-l---------'

-'
""'t:

II

4--t--I--Hf--.:.:jI()Dl2
......+--++----=1:11

CUl(NTtr---------~_+--+---------~~~-~4_+------..J

CK:\ ClK
81 5

7~ 19~,.------------.

81

,-+;_--1

c

CL R Z

~I~I"...--_-,

__~~_______~------------------_.~~_+~-'+-'+~~--~_i~1~7~"'~.~ENC~.. TOJb ~

~P7 CP
ro;j-='21~_.----------H+I_;7 '"''''
14 05
~22

16
07~19~--~
7

CP

Oi ~
16

171:06
- - ' - " - = - - - - - + - - - - - - - - - - - - - _ + - . . ......_+--t_l-lHf-I-++-+-"'l6pIG
Q61-16=---______
-~=---------+-------------_+_+-........_4_!-lHI-I-~+-+-~15~I5
Q:~,s-------1-4-OS
-"'-=--------+------------_+_+_+-..~>--1-lHf-I-~+-+--..:.-lC'4 A 53
. 23
I~ Do!. AE~

A63
V,SEN

21

~r2::.2____-,
!Y\.OO!'2
-F=.. :3_ _-..J
~

CO(

e

5

74LS04

~I---------~

VLT

DC 1-3_ _ _ _ _ _ _..J
f-----++-+----- I--

CLRCNTo---------------'

~I__---~~~1~4J A4~

ft

5

r+----2

1

13

- - -.. -~------~...

J

S

C,
C...:c.

5

~'6 AS2

II - 4L5,57

10,

t-------14~~6

2

4Y~Ie
L-----+--+--------'-=--l'-4_b___IS~r>~
L------'44",
13

-!l

R

_- - -

IS

A

~-_--

L.-_ _ _+ _ _ _ _;:--_ _ _ _-+________________________---'

If'-.. A46
2
L.-______-'-I

_ ...... (·~'roUU~'N,) "", .......

o--......_ .. • ....... t'O!'tlD
-.c...':l1ll0

74LS04
I

9
3Y 1-"--

II

L.-_ _ _

I

2Y t--

4
A44
I'i'~K74L510') _ 7
CU'\L II
I K R QI__--+----1--+-------------...:..:'---'---.

~~.:.,----------------~~---_+---t---t-..J

I

IY~
7

f----_+---'+_4-------',3A

I ' 74LSIC,)
.--I---'i'" : K

)
_~-=--______'__________________________.....!.!12'-LA36
74LSOZ

~IA
3 ~
[SIO
--++--+-..--- 2,\

II
r -______

_ .-:..:::...:.._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-"11-\

2

~CH~~I__I__r---.

I

00;1-4-::7---------

~~EN

I

L -_ _ _ _ _~~~_ _ __+_.~

Do:~2_ _ _ _-,

'I)

L-I---+--+-':-IJII

-

_~

JI_.

SCALE

" ...." ...... ~ ...

ro,,. .. g~.,,III • • """',,.,_

_'Tn_ co.... '",

eM'

u~

""rUU4L

........ 'J

'''"1I_toe:

-

1

'"

1

.
....-

...

Arpa

,-"

lIZ. I'"' .,l1...1 ....."··"""

o IOf-.!Q..1

--.~

I

I(?:

2021300

.~._._', . . • . .,,' ...........

~.

,. . . · ..·,.1 .•. _

()

(\

,.

(

)

;

()

(\

,.

(

)

;

8

7

2

3

4

5

6

1
REVIS,ONS

HCCLK

~--------------------------------------------------------------------------SHe

((LK

SH4--~~----------~---~-------------------+-----------------,
+SV

,">-A~~_

4:7K I

v

o

C
CC'JA
),:::.------------------------------=-=-=--S H5, 2>

4

o

74500

A 7;:
3 74lS 7~

2 D

Q ~S,-+-___4'-'.

6

......---+--"-lCK

74l S3 2

~i

AI17

(t>'

HS
DCLK

CCLKA

HOCll<

S

DC8lAN~

SHE __~~~~______________~~__~~1~2J

L -______'-'-j' CpA 7:.

74lS""

c
-4LSOB
10

91

--------,'6"6 'EII'S;4 6 ,0

'5 25 2E

CSC':¢CSltJi RCiOClQ

__

.-:7

2E

I/J 00 01:..,t
F2 OJ

I

2~ 221

zc/rc¢

ze/Tol

7

8

ze!T02
S

J

~LSO-l

._~L.._~

2 3 4
2 I ___
D7 eU.;/Ti;(.'; eLK/TFGI CLK/T;:;.::;.2 CLKi'· ..J lEI

C'-1 ['5 DEi

zeo C Te

RESET

p-cw')

AZ6 ~8~~-~---------_+------_+-----~~---~--AA~~-----~~~~SH6
'-----'
~_-J...-:3"1 ')~C4~_________
H::..D_.._....___ SH 5

cUCJ:C;-O.'i

--'"--------1OC_"·"·t"{
~" >t:_'''.:.:.~_ _ __

A

()

> 10K

u,
14L'l0'5

20 PF
z
---11-------==-1 XT ALI

I

Z.I

< R4
10K

"

Z@

<

RP'
10K
5

RP'3
10K

**

< RP"l.
< 10K

~. 10K
1

8

$

8

RP~

RP'Z.
10K
5'70

"

( ~6i
5

1&

,,/\

8*

;~~4~~~~B-1~--~~--~B-~3---tB-~+----------~~~--~~--~~----~~

I

Pl.OI-----~I--~~

U1,14LS0'5

I
I

-

DAn

DESCRIPTION

PROD

A

o

1

REVISIONS

I

RP"3,IO\(
U1
+5V~.A 41
,4LS05
Il.
1 II
10

Pl.1 r'Z._"t____-I-~---1~3

I

I
I

U""

II<. )

CHAR

LI"'E
11J5ERT

DELETE

+

L1"'E

=

OELET£

-001 (e04-e)
- cot. (S03 5)

,~~1' 10K

"14~J0'5

'Z.~

+SV..

"

5

P'Z.£~~~~-~~

.1
11

U1
"14LSOS

q

,,-,,'

8

'\

"

BAC-K
SPACE

T

Y

U

TA8

VI/

E

R

l O P

C

FEED

Q

2.4

l

I- :-

4-"3 t

'Z.1

:Jv

-<,",->-_-'5-1

1414

"q

:::0-8_..;;&'-1 I"'T

B

,,:r-'"I_t_V-I-_ _--I-f

J.

v I 1--"3....~r-....:4..::0~

11l!UOj

If5
--:-

l

~

c~
I

1

-

'!IHIFT

".,V

r-:~-'Z.-F~UIJ~C....:.T-tI~'l"R/lA~/Ir,-IO-I(..

Vc.c.

4 RPt,IOK

3~ t~~~ --:- 1 R~:

10K

r I '.
~. '-*<
'Z.
4
{,
\0
-r---- - - - - - - - ~

\0

{>o\7-h 7- ~7- ~

L--uZ--3~

8

-q..=-

:

_L_ __

7-+~7--\7--\:
_

_

_

_

_

_

_

~

I

-=-

~J'J
B

0r,l"3~5~,~ql--

ALEI--I\---------------------------------------I-----~r_----~----~r_-------~------+_----_+------+_-----+______A_L_E____~

VDD

DO

.Ol~f

"
1.0
,>----1-----------_----=-1

!q

'0'

....

T I

01
01.

p, .. '3

CTRL

I----...;,,;,;~H_.JV.AVV·--...

:::

,

,

TO

r--

P1 .. 4-

t<.

PI41--~-I--------------------------~--------~&_F-q--~&_F-IO--~&_F-I\--~~L=OC~E~S~L~____~H_PR~I~~T~~B~R~EA~I<.~------+_

us

1414

IO~

5

PI31--------------------------------------fg----~~--~H-----fg~'~ET;--u~P------~~--~~----fg----~~

us

OPTIOUAL

c

PI! 1--'Z.-8------------------------------------~~-----~~~~_._~~~E~r--------------r------t----t'"YTw-tLI"'E
"""
~J:.':.~'"
PI~ ~2.q--------------------------------------~..;;E..;;S~C--f&~E~RA'~E~~E~R~A~S~E~..;;5~E~"'~D~______~fr~~~E~~R~ET-U-R-~~FS~~~E~~EUTER
~O
FI
ft
F~
F"
F5
Fe.
F"1
Fa

1414
t-1- -34
"----l p n

3~OPF

>

4

PIOI----------------------------------------~----_8~----~----~~------------~~--~~----~~--~fr

ue

CIO

RP3'('

VER510 .... -OOt O"'LY

P'Z.1~3S~------------------------------------~-5-P--~~-~--~~-t--~~-+-----------~B_--.
__~~'----~~S----~~q

C1

"1414
" Tt

CIRCUITR'I'

31
<
')?
J
Pl."I----------------------------------------~~B~--~~"'~--~~M~--~-'~----------~~--~~/~__~~{~--~~OEL

141.'

US

ill

P'Z.41--3-5------------------------------------~~A----~..;;5~:--~~D~171--~~~~A~C~K~______~~G~--~~H~--~~J~--~~K
P'Z.5~3~"------------------------------------~~L----~~;----~-'----~~T~A=B----------~~2~--~~X~~~~C~--~~V

,~r
-#rl

VER510'" -001 A~O -002.

)o~-<~~~----€7----~~----~------------~~----~~--~~~~~~~LI~E

P'Z.~r---------------------------------------~----~~----~----~~------------~~--~~----~~--~+r

c

0]

rn

>O--~~~--~&---~~---Hr---------~~--~~--~~--~~

U1,14LS05

'!. XTAL'Z.

R"3

\JOTE': - U\JLE.5 5 OTHERVl/I'!IE SPEC. \ FIE.D

CHAR
IIJ'ERT

03

v:\s

DO

I'Z.

1"3

01

14

0'Z.

15

0'3

Ie.

04-

N

o
o

uJ

04 ~~--------------------------------_r----_+----~------~------------------------------------------OS
11

>-

o
o

SHl.

05

O&.

I---

IS

0,

01

LS I

L __________________________________________________ - - _________________ ----A

A

Bb 0000 3-00 I

I--:-::-A:-:
..-:-LlTC.-:-Tl-:::O.-::--L~"LI!SS OTHIAWISI NorlD DW".~ ,--11•.• ,O·I·6C
NIH ASS"

USED ON

IMfNSIONS .&AI IN

I' '''1' ,o..cl

eM .. ,j"c-,.II..._

""".~.

10-1·e.o

".' .. "-'·n

I--.-I-------l!+lr"i!
::::,o,-----j
1----+----t;;:IC~,,-:I--;-,.-':·-;-,,7!-'--t......
A.O

.<, " . , , -

o TeleVldeo~1nc.
TlfL.

PCB SC.H£UATICS

qSO KEYBOAR.D

5/)·

MATIIIIIAL

1-----+----;

I

7

I

6

I

5

i

4

I

3

I

.~

2

I

1

()

(\

,.

(

)

;

ITEM/
FIND
NO.

QTY PER
,

2
3

A

D

!.\.

4

1

1

4

26 26

5
6

:i2~125
1

..,

7
8
9
10
11
12
13
14
15

ASS~ljREV

LEVEL

1

L.

2

1

1

1

1

2

2

2

2

1

1

7

7

16
17

2

2

6

6

1B

1

1

REFERENC[f
DESIGNATOR

NmlENCLATUREjDESCRI PT I ON

PART

C1,3,5,32
c6
C7-17,19-24,2629.33-37
C2,4,25,38-160
C30
C18,31

Cap E1ec 22uf 15V 5%
Cap Tant 4.7uf 16v 10%
Cap Cer 330 pf 50V 20%

2025700
2027500
2029100

Cap Cer .1uf 50V 20%
Cap Mono 47pf 100V 5%
Cap Mono .01uf 50V 10%

2030100
2029500

ABO
A92
A74,85
A44,79
A73
A5,24,72,104,10B,
113,116
A39,117
A2,18,46,63,76,
110
A100

IC
IC
IC
IC
IC
IC

2051000

ZBOA CPU A
Z80A CTC A
Z80A SIO/2A
74LS109
74LSl12
74LS74

f\UMBER/RE~IARKS

2028900

2050Boo
2050600
2027000

213B5OO
2026600

IC 74S04
IC 74LS04

2024600

IC 7414

2035400

2024Boo

NOTES:

PAGE :. OF 6
DATE

TITLE
~~B

ASSY CONTROL BOARD 970

5-4-83
-----_._--

---

O.,TeleVideo Systp~s, Inc.

~

~
ItEM/
FIND
NO.
19

QTY PER
A

D

7
..

7

3

3

- 20

REV LEVEL.

REFERENCE/
DESIGNATOR

1

A9,12,26,32,58,
66,109
A20,30,38
A7,17,25,47,62,
6 8 ,71, 81 , 91
A86,103
A36,98
A88,93
A83
A6,15,23,37,45,
61,64
A31
Al14
A9Q,97
A55,115
A41
A34
A65,70
A33

1

A48

1

A49

21

9

9

22
23
24
25
26

2

2

L

2

2

2

1

1

7

7

}.
27
28
1
2
29
2
30
1
31
1
32
2
33
1
34
1
35
1
36
NOTES:

ASS~I/

..

1
1
2

2

1
1
2

~
NO~IENCLATURL/nESCR

I PTI ON

PART NUMBER/REMARKS

Ie 74LS08

2025200

Ie 7 LlLSOO
Ie 74LS32

2024200
2025800

Ie
Ie
Ie
Ie
Ie

2044200
2041600
2041000
2027200
2029000

74LS244
74LS02
74LS138
74LS139
74LS374
,

Ie
Ie
Ie
Ie
Ie
Ie
Ie
Ie
Ie
Ie

74LS174
74LS51
74LS241
74LS163
74LS164
74LS367
74LS245, N8T245N
74LS173
74S251
74S74

202'8200
202'6200
2042000 2027600
2048200
.2028600
2036200
2028000
2138600
2026400

PAG.f: 2 OF 6
TIIL1:

VATE

3 ASSY CONTROL BOARD 970

5-4-83

O.1eIeVideo Syst- ns,Inc.

!
I

i

ITHI/
FIND

l~TY

NO.

A

D

37

1

1

38

1

39
40
41

PER

ASS~I/

REFERENCU
lll:S I GNATOR

REV LEVEL

NOMENCLATURE/llESCRIPTION

PART

1

A50
A19

IC 74LS166
IC 74LS10

2027800
2025400

3

3

A1,8,14

IC 7406

2034800

1

1

A22

IC 74LS86

2026800

5

5

A16,28,40,52,67

IC 74LS157

2027400

2

2

A43,51

IC 75188N

2029200

45
46

3

3

A27,35,57

IC 75189AN

2029400

1

1

A56

8000139

47

1

1

A82

IC EPROM
US/UK CHARGEN
,.
IC 970 EPROM Firmware

48

1

1

A69

IC 9007 CRT Controller

2139900

49

4

4

A53,54,59,60

IC 9006-135 Buffer CRT Sgl

2140000

.'

t\Ur-.IBER/RE~IARKS

42
43
44

8000100

Row
50

8

8

A94,95,101,102,

IC 4116 16K Dynamic RAM

106,107,111,112

120 ns

2139200

51

1

1

Al05

IC 2Kx8 6116 CMOS Static RAM 2138700

52

2

2

A3,42

IC 4N38

2035000

,

53

1-

1

AlO

21.2544 MHZ Clock OSC

2138900

54

1

1

A4

IC 93S16PC

2040800

55

1

1

All

IC 74S32

2038800

NOTES:

PAG2 .3 OF 6
TITLE

P~1

ASSY CONTROL BOARD 970

UATE 5-4-83

!

!

O..ThleVideo Syst,...~s, Inc.

v

~
ITHI/

RLHRENCEj
llLSIGNATOR

QTY PLR i\SSf\I/REV LEVH

FINIl
NO.
56
57
58
59
60

A

D

2

2

1

1

1

1

~

NOMLNCLi\TURl:jDI:SCRIPTION

PAin

A77,78
A87
A99

IC 74soo

2024000

IC 970 EPRON Firmware
IC 970 EPROM Firmware

8000101
8000102
2098603
21 1n400
2098401

f\UIIIBERjREr.lARKS

.'

61
62
63
64

1

1

Y2

Cry 8.0000 MHZ

1

1

Y1

6

6

Cry 13.4784 MHZ
Socket 24p IC DIP

4

4

8

8

XA53,54,56,59,
60,105
Socket 40p IC DIP
XA69,74,80,85
XA94,95,101,102, Socket 16p IC DIP
106,107,111,112
Socket 28p IC DIP
XA82,87,92,99
P2,5
Plug 5P Str Waf
P3,4
Conn 25P PCB Metal D-Sub Fern
P1
Conn6P RJ12 970 Logic Bd

,

65
66

4

4

2

2

67
68

2

2

1

1

69
70
71
72

2098402
2098405
2098404
2098802
2165300
2141200

-

73
74

1

VRl

1

Volt Reg 79L05AC

2126200

NOTI:S:

PAGE '. OF 6
'.-."

.

TlIL

UATE

'B ASSY CONTROL BOARD 970
"'--- .....-,,-"""'~

5-4-83

O..1eleVideo Systr'"llS, Inc.

I

lTHI/

l)'l'Y PER

FIND

J\SS~I/

REHRENCL/

REV LEVEL

NmIENCLJ\TURL/IlESCR I PT I ON

PART f\;UMBER/RHIARKS

NO.

A

D

Ill:S r GNATOR

75
76
77
78

9

9

2

2

1
A-

1

2

2

R39-43,47-49,56
R27,28
R9
R5,67

Res
Res
Res
Res

elF
elF
elF
elF

10K Ohm 1.4w 5%
3.3K Ohm 1.4W 5%
6,80 Ohm 1. 4w 5%
22 Ohm 1/4W 5%

2034100
2052700
2037100
2033500

3

3

1

1

2

2

4

4

2

2

4

4

2

2

5

5

8

8

Res
Res
Res
Res
Res
Res
Res
Res
Res

elF
elF
elF
M/F
elF
elF
elF
elF
elF

33 Ohm 1/4W 5%
82 Ohm 1/4w 5%
68 Ohm 1/4W 5%
100 Ohm 1/4w 1%
220 Ohm 1/4w 5%
330 Ohm 1/4w 5%
270 Ohm 1/4W 5%
470 Ohm 1/4W 5%
1K Ohm 1/4w 5%

2034500
2144000
2051100
2034900
2040300
2051500
2051300
2051700
2052100

1

1

1

1

R3,59,71
R72
R11,75
R4,50-52
R66,73
R16,19,30,31
R17,18
R8,12,20,68,69
R1.6.7.22.35.65.
70,74
R13
R33
R14.15 23.24.29
32~J4.t36- 38.4446.53-55.57.6064

79
80
81
82
83
84
85
86
87
88
8g
gO

22

91

2

.'

-

-

22

R25,2b

2

Res elF 51K Ohm 1/4w 5%
Res elF lOOK Ohm 1/4w 5%
Res elF 4.7K Ohm 1/4w 5%

2032300
2032100
2053100

Res elF 510 Ohm 1/2W 5%

2045100

NOTES:

PAGE

~

OF 6

TlTU:
r

~

ASSY CONTROL BOARD 970

UATE

5-4-83

O~1.eleVideo Systr-ns, InC.

v

~
ITEM/
FIND
NO.

QTY PER
A

ASS~I/

REV LEVEL

v
-

REFERENCE/
DESIGNATOR

D

NmIENCLATURE/Dl:SCR I PT ION

PART NUMBER/REMARKS

92

1

1

RP6

Res PK 33 Ohm 16 Pin DIP

2041700

93

1

1

RP1,3,5

2041300

94

1

1

R10

Res PK 4. 7K Ohm lOP SIP
Res C/F 180 Ohm 1/4W 5%

95
96

1

1

R21

Res C/F 2K 1/4w 5%

2036900

2

2

RP2,4

Res PK 2.2K Ohm lOP SIP

2230000

97

2

2

Trans 2N2907A

2045900

98

6

6

CRl-6

Diode 1N914

2047500

99
100

4

4

Q1,3,8,9

Trans 2N2219A

2045300

1

1

Q6

Trans 2N3019

204.5700

,.

.Q5,7

2053300

111
112

i

113
114
115
116
117

1

1

118

1

1

119

1

1

~

CR7
B1

Diode Zener 1N756 8.2V

2244500

Battery Holder

2050101 .

Battery

2050001

..
-.

-

NOTES:

PAGE ::,,. OF 6
TITLE
~rB

.~-

ASSY CONTROL BOARD 970

DATE

5-4-83

O.1eleVideo SyStp~S, InC.

950 THEORY OF OPERATION

Table of Contents

Page

MAIN LOGIC BOARD
Overview------------------------------------------------ 1
CPU Timing and Control
3
Display Controller
5
Video and Character Generation
7
Visual Attributes
8
Input/Output Circuits
10
KEYBOARD
Overview----------------------------------------------Keyboard Layout
Keyboard Interface
Scanning Method

11
12
14
15

POWER SUPPLY-------------------------------------------17
VIDEO MONITOR

18

1

(

(

C' "
i

950 THEORY OF OPERATION
MAIN LOGIC BOARD
Overview
Please refer to pages 1, 2, 3, and 4 of the block diagrams as you
read the text that follows.
Page 1 shows the power-on reset, which is controlled by A17.
During power-up, this chip sends the signals necessary to reset the
CPU and to perform the initial diagnostic routine. -This routine
reads the switches in the back of the terminal and configures it for
the proper handshaking protocol.
The 950's CPU is a 6502, located at A53.
The Shift clock (OSCl) generates the timing for the 950's logic
system. The Stretch clock functions as the main clock for the CPU.
Other clock circuits include the Crystal clock to the UARTs, the
Shift clock, the DC Carry clock, the C clock, and the QC clock.
The CPU's address bus (6502 bus) addresses the ROM chips (A4l and
A42).
The ROMs contain the operating instructions, the power-up
diagnostics, and the other intructions necessary to operate the
terminal. Most systems only use two ROMs, but the 950 contains an
additional, optional ROM (A52).
The decoding gates (ASS and A63) select one of the three ROMs.
The other decoder (A62) selects either the Dl8P.MEM (display memory)
or the lOP.8EL (input/output select) signal.
The auxiliary chip on this page (6522) reads switches (81 and
82), and generates the control signals for the video attributes and
the bell, as well as several auxiliary control signals used to
address the display RAM.
On page 2 of the block diagram, note the continuation of the 6502
and the 6522.
The CRT controller chip (CRTC 6545) generates the signals
necessary to control the monitor portion of the terminal. It outputs
three primary signals: horizontal synch, vertical synch, and cursor.
These signals go to the video module.
The display RAMs are addressed by the 14 address bits coming from
the CPU bus, as well as the memory address bits from the CRTC.

1

The multiplexers in the center of the page (A43 through A46)
alternately select whether the CPU or the CRTC is permitted to
address the system and the display RAMs (A25 through A28, A34 through
A37) •

(

..

The Phase clock controls this process. During one phase of the
clock the CPU can address RAM. During the other phase, this
multiplexer allows the CRTC to address RAM.
When the CPU addresses the system display RAMs, the bidirectional
latch at A14 is enabled to either input or output data from the
system RAMs. When the CRT controller addresses the RAMs, the latch
at A24 holds the display data.
Normally, the outputs of the CRTC would be used for scrolling.
However, since the 950 has a smooth scroll option, the output of the
counter latches at the bottom of page 2 (A60 and A6l) are used to
scroll. The CPU controls these latches through the decoder at A62.
On page 3 of the block diagrams, the row
from these counter latches (A60 and A6l) and
the latch above it (A24) are used to address
ROMs (A32 and A33). The character-generator
to a parallel-to-serial shift register.

address signals corning
the display data from
the character-generator
ROMs then output 14 bits

The DC.Carry signal loads these 14 bits at the shift register
(A22 and A23), and the shift clock shifts the data into the video
logic and the drivers as a serial data stream.
The eight bits of display data from latch A24, as well as one bit
from the character generator ROMs, address the attribute registers.

(

The attribute registers' output also addresses the video logic
and drivers, as do the video attribute signals sent by 6522. These
signals (dark on light, cursor, force blank, blink rate, and maximum
intensity) control the video attributes through the video logic and
drivers. Note that, in the 950, the maximum intensity signal (MI) is
standard. To highlight, the 950 uses half intensity. The output is
routed to the video module.
.
The XTALI clock (clock source) controls the three UARTs on page 4
of the block diagrams.
A49 receives data from the keyboard.
A50 receives and transmits data for the main port (P3).
ASI receives and transmits data for the printer port (P4).

()
2

CLOCK
OSC

...

25,814

1.83 MHZ

"-';"-1.5

MHZ
OSC 1

~

....

TO UARTS

A4

SHIFT CLOCK
~

W

DC·CARRY

1. 701 MHZ

..

~

-'-, 14

1, 701 MHZ

CCLK

A3

.,..

POWER
ON
RESET

CLOCK
STRETCH

~0

..
.

~

AS,6,8

A17

~
--,.

6502
CPU
RESET
A53
~0 NMI,0Z,IRQ
A15-0,D7-0,

DECODE~

~

~

2
~

R If" l=Tr

3

A62

IOP'SEL
DISP'MEM

h.
I'-'

~

t::>-

p~

....

~

h.
DECODE ,....

k
I"-'

A58,63

~

ADDRESS
U')

.....J

<::;

z

lJ

......

V

V

DATA

~

....
....

~

0

0

ROM

ROM

Rml

A41

A42

A52

-

[f)
U')

YIA 6522

:::l
I=Q
N

c
L()

'-D

...

\

PA0-3

~DRESS &DA~

v-........
FIG. 1

PB0-5
PART PB7
OF PA4
6522
PAS

.,/

V

'"

S\\'ITCHES
S1 , S2
BELL
BI DIRENA
BOW

PA7

FORCE BLANK

~CB:'

BLI RATE

CPU, TIMING AND CONTROL

....

..

.

....

.

....

~

"..

~DRESS

"'i
_ IRO

&

DA~
v

- "--"
PART OF
6522
PB6

PA6

..,
.....

(\

-. IRQ CAl CA2 -

NMI

TIMING
LOGIC

...

CCLK

--CRTC RES
~--------~~--~C

...

~I\r. . - - - -ADDRESS
AND DATA
\
---------.- /
14 J

Y

ADDRESS

ADDRESS

...

RES
CCLK
HSN
CTRC
6545 VSN

t-41~--....

.....

I------~-

MA
ASS

I

MULTIPLEXER

...

(

A43-46

140
SYSTEM R.A]\1
DI SPLAY RA~l
BIDIRECTIONAL
TRANCEIVER
A

V

8I

...

A25-28, 34-37

8T2450 8 I

\ rt>r

LATCH
'--+-l---J~ 74 LS 3 74

l/'-'------'

~ll1A ~ ~ ~~

_______/~~/)D

A14

8 I
I

Q DISPlAY DAT
I

A24
CRTC RES

1------""""'-

DE CO DE

ADDRESS .,)

~-------~:

COUNTER
LATCH

A62
0-3 RO\\' ADDRESS

'\

1---____~D~A~TA~7~-_4~__________~vI

PAGE 2

A60,61

(

DC CARRY
SHIFT CLOCK
14 / ...

....
.

'\

"

ROW ADDRESS -/ CHARACTER
GEN ROMS

1)

....

DISPLAY

0

LD
SHIFT
REG

\i

A22,23

DA~
A32.33

'"\

~

A1,2,10,11 Q1
A
~
j ~

A

M.1.

....
,..

.

ATTRIBUTE
REGISTERS

-./ A18,19,20,
21,30
BOW
CURSOR
FORCE BLANK
BLI-RATE

FIG. 3 VIDEO GENERATION

PAGE 3

VIDEO
OUT

VIDEO LOGIC AND
DRIVER

,~

.

.".,

AI'

(
UART

I.......
-----------~--,-«,PO'·

PI ..

PO -

pr-

u-----~

"

tI),
...:l

<:

zt..:)
tI.l
tI.l
/Xl

':

'

DRIVERS
RECEIVERS
AND
SWITCHING
LOGIC

UART

~

::>

.'.,'

A50

N

'0
L/')

\0

A39,4O,47
48,56,57,
58,59

UART

FROM 6522 VIA
,BELL

A5I
CLOCK SOURCE

BIDIR "
CONTROL,

(

FIG. 4 I/O CIRCUITS

(
PAGE 4

CPU Timing and Control
A 23.814 MHz. oscillator (OSC 1, sheet 6) generates the timing
for the 950's entire internal logic system. Known as the Shift (or
dot) clock, it drives the two shift registers (A22 and A23). :These
registers bring in parallel data and shift it out as serial dot data.
The active low* shift clock is gated with the terminal count
output of the C.clock (Character clock) counter. Together they
driv~ a latch (A24,· sheet 4) that holds data from character
addresses 0 through 7, as well as the flip-flop (A3l, Sheet 4) that
controls the DEL CURSOR signal.
A 4-bit binary counter (A3, sheet 6) divides the shift clock's
rate by 14, creating eight 1.701 mHz clocks.
The C.clock, which is the time base for character generation,
drives the CRT chip (6545, sheet 2). The active low C.clock has two
purposes. It drives the Hex D flip-flops (A64 and A7l) that time
the CRTC RESET. It also controls the Stretch clock, which
generates clock periods twice the normal length (1175ns vs. 588ns)
.
upon command f rom the CPU.
This circuit (sheet 6) accesses slower memory or peripheral
devices. The final output (called ·00" or "Phase Zero clock") goes
to the 6502 and all the peripheral chips. The Phase Zero clock
controls the CPU bus timing, and it triggers all data transfers
between the CPU and the other internal processors.
The DC.carry signals function a. two clocks. The active high
DC.Carry clock drives a flip-flop (A19, sheet .4) that is part of the
video attribute circuitry. The active low DC.Carry clock is
connected to the LD or Shift/Load enable lines (A22 a~d A23, pin 15,
sheet 4) of two parallel-to-ser ial shift registers -(A22 and A23).
These registers are part of the characacter generation circuitry.
The XTALl clock drives UARTs A49, A50, and A5l, which interface
data to and from the terminal.
The QC clock combines with three RAM address lines (A15, sheet
3) to form a l-of-lO decoder. The decoder's output goes to the
chip select lines of each system RAM and each page of memory. The
QC clock also deselects the RAM chips while the address lines are
settling.
Line lock and smooth scroll are two 950 features not normally
attainable with the 6545 CRT controller. To use them, additional
circuity is required.
*The active low state is indicated by a bar above the signal name.

3

To achieve line lock, the top of the 6545's display register
must be reloaded at the beginning of each character row. A general
description of this circuitry follows.
To achieve smooth scroll, a 'CPU-loadable count-up counter (A60,
sheet 4) must replace the 6545's internal scan line counter.

CLOCK
OSC
23.814

7

~IfIZ

1. 83

13

1'0 UARTS

A4

OSC 1

SIIIFT CLOCK

- : 14

DC·CARRY

1.701

CCLK

1. 70 l~IIIZ

I

A3
POWER
ON
RESET

.6502
CPU
A53
t~ NMI .!t'Z, IRQ
A15-~ D7-0
.0;'" 1=+r
'

iiEE'T

---.-

DECODE~

~III;:

CLOCK
STRETCH

A17

~

~IIIZ

~~

AS,6,S
10P'SEL
DISP' ~IHI

~

2
3 0-+ DECODE

A62

k

~

~ ASS ,63

PJ,
')

"''\
l/

ADDRESS
v:l

-'

<
2:

t..:l

(

RO~I

RO~I

RO~I

A41

A42

A52

A

V

DATA

r\..

: t:

v:l

V)A 65""

:::>

'"

PA0-3

N

0

o.n
>C

....

A

V
~DDR[SS

&

DAT'~

.

PB0-S

.

S\I'JTCIIES
SI ,52

P'

"

PART PB7
OF PA~
6522

.--......

P/\S

BOll

P/\ -

FORe!: HL\:\I\

~

Figure 1

BUL

BI IlIRL:\A

Ill. 1

R.\TE

CPU, Timing, and Control

4

(

Display Controller
The 6545 (ASS) generates each character's memory address in
the display RAMS (A25 through A28) as it is to be displayed. It
also generates the horizontal and vertical synchronization (synch)
pulses necessary to control the deflection circuits of the monitor
(CRT).
Notel. In the text that follows, the term "scan line" refers to
one of ten scan lines created by the electron beam, which makes up
one data row.
The 6522's timer (T2) counts horizontal scan lines. When a
specified number of scans have been executed, it interrupts the
CPU (6502) with the NMI-interrupt. The CPU then loads the memory
address of the next data row into the CRT controller (6545).
At the same time the NMI-interrupt is issued to the CPU, the
CRTC reset timer (A64 and A7l, sheet 7) is cleared, causing it to
reset. The reset is released after seven C.CLK periods, and the
CRTC starts timing the next character row. This operation allows
the CPU to determine the order of the display lines so that some
lines can be locked while others scroll.
To achieve a smooth scrolling effect, the number of scan lines
in the character row and the starting scan line of each row must be
specified.
The 6522's timer, which
specifies the number of scan
Normally, ten lines are used
a smooth scroll, this number
bottom rows.

counts horizontal synch pulses,
lines in the present character row.
when smooth scroll is disabled. During
ranges between 1 and 10 on the top and

To do this, the processor loads a 4-bit value into a latch (A6l,
sheet 4). When the CRTC is reset, this value is transferred to the
counter (A60, sheet 4) and becomes the first scan line of the next
data line. Each horizontal synch pulse then increases this value
until the start of the next data line. At that point, it is preset
again to a value determined by the CPU.
The CPU and the display controller share access to the system
and display RAM during the alternate phase of the 6502's Phase 2
clock.
During the positive portion of the Phase 2 clock, the CPU
address can be gated onto the RAM address bus through multiplexers
(A43 through A46, sheet 2). A bidirectional transceiver (A14,
sheet 3) passes data between the CPU data bus and the RAM data bus.

5

During the negative portion of the Phase 2 clock, the 6545
address bus (ASS) is gated onto the RAM address bus, allowing the
video data to be loaded into a latch (A24, sheet 4). This address
becomes the input for the character generators and'the attribute
generation circuitry.
'

(
,

This alternating ("interleaved") access allows the processor to
operate at normal speed without interruption or degradation 'of the
display quality (which could be caused by accidental appropriation
of the d~~play bus by the processor as it accesses data).
'

~'"''''
I

~
,-,\
ll'\]j

'I

1',\1'] ()]:
(,:;""

V

t

PB(,

IT' \
'0il

[',1('

C\ '

11,1'

'C,\ 1 ,-

~

'I

[~,I

.

[\G

WG[C

CCl.~

CRTC RLS

,...

RLS
- CCLK

"'\

A

K

ADDRLSS ,\\[) [),\T,\

'I

/
v

1.1 J

ADDRESS

ADDRLSS

,
I~

j
<
G

~[A

}

0

IIsr-;
CTRC
6545 VSr-;
ASS

~[ULtIPLEXER

c.:;

A43-46

:.r.

14~

:.r.
::<:

:J

SYSTEM RAJ,[
DISPLAY RA~[

01

c

Vl

.0

A

/
\
'I

BIDIRECTIO)\AL
TRA\CEIVER
HT245
HI
llA'(1I
/

I

")

~

"

A25-28, 34-37
A

0

8 1

\....

I

A14

/

,

LATCH
74LS374
\
Q
/ D

'"
r

8 1

~

DISP~AY DAT
I

A24

"

CRTC RLS
~

"IIIIIU,"~

\

vi

[/IC()Il!:

cour-;n:n
LIITCII
A(,2

n - ~ nOli ADDRESS
II,~'I

'\

A 7 - ,1

'"
I'

/ IIbO ,(,]

"

~

Pigure 2

6

Display Controller

(.

Video and Character Generation
To create the 950's display, the CRT scans horizontally from
left to right, and vertically from top to bottom. Depending on the
terminal's Hertz setting, the scan consists of 250 horizontal scan
lines, each repeated 50 or 60 times per second. Each scan line
displays 80 sections of l4-dot pixels. Each character line contains
ten horizontal scan lines. This makes each character cell 14 pixels
wide ?y 10 pixels high.
Characters are formed when the electron beam turns on
individual pixels. The CRTC "MA" lines access the display memory
once each character time (14 dot clocks). Once each cycle, the data
from the display memory is then latched by the character address
latch (A24, sheet 4). The output from this latch drives the eight
most significant address lines of the character generator ROMs (A32
and A33, sheet 4).
The scan-line counter controls the four least significant
address lines of the character generators. The scan-line counter's
output changes only at the end of the scan line, when horizontal
synch goes high.
The character generator's output is a l4-bit word that
represents the pixel pattern to be displayed. The Shift clock loads
this word into a l4-bit parallel-in/serial-out shift register (A22
and A23, sheet 4), and shifts it out, one bit at a time.
Thus, as the present pixel pattern of one character is loaded,
the character address of the next character is latched. The bits
shifted out of the shift register are mixed with display enable and
the cursor and attribute data, creating the video output to the
monitor. This signal turns the CRT's electron beam on and off as the
beam sweeps the raster.
DC CARRY
CLOO:

5111 F1

~

"-

) CIIAR:\CTLR
CE:\ RO~IS

ROil ADlIRLSS

[IISPLA)

[)A~

~I

A~:

::;::;

I

v

6

LD
SIlIn
RLG

A22 ,2::;

.I.

---... ATTRIllUTL
"\

RLGISTLRS

--..

VIflEO LOGIC
DRIVER
AI

,c, 10,11

A:\D

VIDEO
OUT

Ql

'I"

/ AIR,19,20,

II'

~

1 ,::;0

BOll

CURSOR
FORC!: BLA:\l\
flLI-RAn.

Figure 3

Video and Character Generation
7

(
Visual Attribu'.es
The 950 hi] s five visual a ttr ibutes:
blank, underline, and reverse video.

half intensity, blink,

The only attribute created on a character-by-character basis is
half inte~sity. All other attributes are "field" attributes; i.e.
they have a specified starting and ending point. All characters
between these points are affected by the attribute selected.
In the 95(" attributes are stored in the display RAM just like
displayed characters. An attribute character occupies a character
space on the screen and is displayed as a half intensity space. The
attribute becomes active immediately to the right of that space and
remains in effect until the end of the screen.
Since an attribute is stored as a character in
RAM, the character generation logic processes it as
a displayed character. However, the byte stored in
attribute character differs from that for a display
bits 4 and 7 are always set, while bits 5 and 6 are

the display
though it were
RAM for an
character in that
always reset.

Bits 0 through 3 define the active attribute.
When the loworder character generator ROM (A33, sheet 4) is accessed by these
codes ~90 through 9F), the resulting data bit (A33, pin 17) is output
as a hlgh.
A21 ' s data input comes from the output of a four-channel, twoto-one multiplexer (A20). While nonattribute characters are
displayed, the multiplexer is driven by the output of A19. During an
attribute character time, the output of Nand gate All is low, and it
selects the A input to the multiplexer. This input connects with the
output of the And gates that compare the previous attributes (output
of A21) to the new attributes (output of A24).
If the previous attribute bit and the corresponding bit of the
new attribute are both high, the output of the And gate is high. If
one or both are low, the ouptut of the And gate is low and the
attribute is turned off.
Thus, if an attribute is true for both the previous attribute
and the new attribute, it is true while the new attribute is
displayed on the screen. Otherwise, it turns off when the new
attribute character starts.

8

(
_

The 950's attributes continue from character line to character
line. Since any attribute on the previous line must be displayed on
the current line until a new attribute is found, the logic must
remember the last attribute of the previous line.
To summarize, A21's output is used by the video logic to turn
visual attributes on or off. Its input can corne from two sources:
the output of the AND gates and the output of A19.
The output of the And gates defines the attribute(s) to be
displayed during the attribute character, while A19's output
determines the attribute(s) to be displayed during a nonattribute
character.
A19's output is set to equal the previous character line's
attribute until a new attribute is encountered. At that time, the
output changes to the new attribute. AlB is used to remember the
last attribute of a character in any character line.
Since each character line contains ten scan lines, the attribute
data changes ten times. At the end of the displayed portion of each
scan line, the Display Enable signal changes from high to low. This
signal is then inverted and fed into a two-input Nand gate with the
Delayed Display Enable signal, which changes one character time after
Display Enable. Both signals are high only during the Blst character
time of each scan line, creating a low pulse on the output of the
Nand gate (A13 and All). This pulse enables the output of a tristate latch (AlB).
AlB's input comes from A20 and is latched only during the last
scan line of the character row (pin 9, clock enable). This
"remembers" the last attribute data of any character line. AlB's
output is latched into Al9 at the end of the displayed portion of
each scan line. A19's output then defines the attribute to be
displayed during the current nonattribute character time.
The signals for Delayed Display Enable, Delayed Cursor, Dot
Serial, BoW, Force Blank, and Visual Attribute Data are combined on
sheet 6. They are gated together through AI, A9, AIO, and All, and
are amplified to proper voltage and current levels by an NPN
transistor QI (sheet 6). This transistor drives the video signal to
the video module and/or external monitor (i.e. composite video).

9

Input/Output Circuits
Each of the three peripheral ports is controlled by a seperate
6551 UART.

~

UART A50 receives and transmits data for the main port (P3)
UART A5l receives and transmits data for the printer port (P4)
UART A49 receives data from the keyboard
The UARTs receive serial data, convert it to parallel data, and
tie it dir'ectly to the CPU's data bus with input drivers, receivers,
and switching circuits (A39, 40, 47, 48, 56, 57, 58, 50, sheet 5).
The use of seperate UARTs for the P3 and P4 ports allows the
setting of different baud rates for each port.
The 1489 quadruple input line receivers (AS7 and A40) convert
RS232C voltage levels to TTL voltage levels. The 1488 quadruple
output line drivers (A48 and A39) convert TTL voltage levels to
RS232C voltage levels.
The output of AS9, a quadruple 2-to-l multiplexer, selects the
output line drivers. A59 can select between two inputs (A or B), and
route it to its respective outputs.

Figure 4

10

I/O Circuits

(

KEYBOARD
Overview
The 950 contains a microprocessor-based keyboard. The
firmware monitors keyboard scanning, return-line testing, and
communication with the control board.

In addition to the standard keyboard, additional parts let you
create a keyboard that allows new key codes to be programmed into the
keyboard PROM (2716).
Standard Keyboard

(Version 1)

Requires 5 volts (typical input current = 80 milliamps)
8048 microprocessor
lk byte ROM capacity (internal to the 8048)
Asynchronous serial transmit and receive
Baud rate = 1200 bits/sec.
Word structure = 1 start bit, 8 data bits, 1 stop bit
Version 2 Keyboard with EPROM
Requires 5 volts (typical input current = 150 milliamps)
8035 microprocessor
2K x 8 byte EPROM 2716 (external to 8035)
Status display - 8 LED display
Asynchronous serial transmit and receive
Baud rate = 1200 bits/sec.
Word structure = 1 start bit, 8 data bits, 1 stop bit
The Version 2 keyboard with the 2716 EPROM requires a larger
memory map and storage capability in the microprocessor. Therefore,
you must also change the standard lK x 8B 8048 microprocessor to a
2K x 8B 8035.
To install it, cut jumpers A through M on the circuit side of
the logic board and install the following components in the
appropriate locations.
Components
U2,U3
U4
U5
U7
C2,C3
C4,C5
R2

74LS367
75L5373
EPROM (2716)
74LS05
{.Oluf cap}
{lO% 50V}
lK 5% 1/4 watt

11

Keyboard Layout

~

The keyboard contains 101 keys on a PC board, as shown
in Figures 5-A and 5-B.
The key switches are arranged in an X-Y matrix (Figure 6).
four special keys (CTRL, SHIFT, FUNCT, and ALPHA LOCK) are not
included in the X-Y matrix.

Only

r::1

E.J

(I
Figure 5-A

Keyboard Layout

r.;;1D
EJ L.J

Figure 5-B
Keypad Layout

(
12

xu
Xl
X2
X3
X4
X5
X6

,

•

1

,

2

@

•

9

(

0

)

...
II

..
II"

%

6

7

&

Q

W

8

*

=

+

E

R

Y

U

I

0

P

A

S

D

F

G

H

J

K

Z

X

C

V

L

B

X8

...

4

X9

..

XIO

..
II"

5

T

SP

...

$

TAB

..

X12

4

#

II'

X7

XII

A

3

,

,

"

N

,

M

5

6

/

DEL

?

7

8

9

3

,

0

1

2

SEND

HOME

F4

F5

F6

PRINT

BREAK

-

ESC
Fl

F2

F3

F9

FlO

Fll

RETURN

ENTER
F7

F8

! ! ! ! ! ! ! !

YO

Yl

I CTRL

Y2

Y3

SHIFT

I

ALPHA

Y4

Y5

Y6

IFUNCT I

! ! ! !
FIGURE 6

KEYBOARD X-Y t'IATRIX

13

ARRA~GH!EKT

1'7

Keyboard

Inte~face

Communication between the main control board and the keyboard
controller is asynchronous. The standard asyr,chronous format used
by the 950 (Figure 9) consists of one start bjt, eight data
bits,' and one stop bit. The baud rate is set to 1200 bit,s/sec.

~

Control
Board

~.

~

,

Keyboard
Controller
8048
or
8035

•

(

Keyboard

(

f

Figure 7

Keyboard Interface

(

(

Keyboard Scanning Method
The keyboard microprocessor (8048 01 8035) drives the scan lines
(X lines), one at a time, to a low vo1ta~e. The return lines (Y lines)
are tested by the microprocessor.
The keyboard matrix output ports (10 through 14, 20 through 27)
latch the XO through X12 lines to the keyboard. The connections are
shown in Figure 7.
Whenever a low voltage is detected on a Y input line, it means
that a key has been depressed. That key is at the intersection of
the driven line (X) and the detected line (Y).
PORT 1

X12

PORT 2

XII XIO X9

X7

X8

X6

X5

X4

X3

X2

Xl

XO

TO KEYBOARD
FIGURE 8 8048 PORTS
The return matrix lines (Y lines) from the keyboard are read
by the microprocessor's data bus (DO through D7). The connections
are shown in Figure 8.

DBO
DBI
DB2
DB3
DB4
DBS
DB6
DB7

II

YO

•

Yl

II

Y2

of

1'3

..
..
..
...

....

FRml KEYBOARD

Y4
YS
Y6
1'7

FIGURE 9

15

8048 DATA BUS

Basic Scan Routine
Starting the scan routine resets the transmit flag and enables
the external interrupt for receiving status from the control board.

(

The keyboard matrix is scanned from the top row to the bottom
row. As soon as a key is pressed, the row is tested bit by bit, from
left to right. The matrix key codes are immediately encoded and
stored in.two registers (NEWKY 1 and NEWKY 2).
If the results of a matrix scan indicate that more than two keys
are depressed, the program enters a delay loop for 11 ms. Meanwhile,
the whole matrix is read once again to verify that the key is still
depressed. After the key is proven to be valid, the microprocessor
sends the proper code to the terminal.
If the depressed key is a repeat key, the last portion of the
scan routine controls the length of the repeat delay (0.5 sec.) and
the autorepeat rate (16 char/sec.). The program then branches back
to the beginning of the scan routine.

(

(
16

I

8

I

1

I

6

I

4

5

I

3

REVISIONS
ZONE

+SV
;;'

.5Y

C5

C4

701

OI.oJ

~-+r-I--'l

--'1.-4--+1-z-1---<, ~

SI-l I

--<

:--G
P?O

DESCRIPnON

SEE

SH, 1

-T

DATE

I

APPROVEO

T

I

I

A4 1--4
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _-'.:11=--104
Z3

'3

P1-'l.
I
Iq
-~------'------------+---~~AIO

I

c

I

I
I
I
I

D31----~I-+--+~~---+----~D5

Q41-1'-:::.----'-l- I----+-{")

04 1-1.:.'3--H+--If-+_--+I----'-"':I~ D4

I

Z

US
2,16

T

2 RPI '1.00,,-

1;1"

c

LEO
"OR REFEREUCE OUL~
I

-------------------~

00rq~-----------------------------------~~
:I
~

I

+5V

RI,2oo12.'7

It..

15

(.,
\I
Q'ZI-q--":':q-l--<"I
Q31-----l--<"I

B

DSI-----~~_+--+-~~~----~05

All------------------~Q1

I

~----------------------i~-+J
II
O'l~-----------------------+~~Ii-~

01

I

I

1'3
0'3~------------------------------------~~14-~~
~
I
~~----------------------------~-4~-t-1~

I
I

I
I

os

I

15

01o~----------------------~~~1+-4-~~-J-J
110

I
I
I
I
I

0'1. 1-1_ _-+-tI+----o,.-._ _ _-+I_ _ _ _1-'J

15

ASI---------------~QS
A~

U4

l

Vee

5
13
01 1-4~_-+-t1___._-------+1----=4~ 01 U I QI I-----"~
,4L5313

:

l

20
E

I

o
---,

o

e

'V

II

I

I

10

"

I

.5\1

a¢ r'3~_ ___._+-------+I-----=3:J DC

AZ I--G.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _~(,~ Q1-

_P_'1.~I_ _ _ _ _ _ _ _ _ _ _ _~1_ _2~2~Aq

I

I

UB
141'1

1
5
AI I-----------------~al
A3 r5
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _---.:q~ Q3

I

I

I

A¢ l-a'-----_ _ _ _ _ _ _ _ _ _~2:....JQ¢

I
I

--------------+--~A8

1----------------------

I

Vee.

Vpp

I
I

I

'1.0
Vee.

01

I

11

I
I

GUO

J-Il

I

B

I
I

I
L

r,-~O~3~-------------------------------------------------~I
:'7

SH I --<

.J

-

(7

D'Z.

f'l

Q
(j

D4

vJ
,

05

o

o

--;:O;-=;"'_ _ _-------------~~~~~~~~~~~~~~----------------------.J

-

I LTR I
ID I

r-------

---------~I
I ---=~==~~~~~~~~~~~-I -

o

B

1

2

01

------

-------~~--- ----~-

______ ..________________________________ __________ .______ .____ ._ .___ . ___
~

~

-

I

______________________ J

A

A
•

--r __
..

---j; --.------ --_._--------

4

- - --T---------------3

~

-~

S< •

"'A

'j.

c

T-:-';'-..
c ..

T
~

.

A

1 _ .____ .

2
1

()

(\

,.

(

)

;

.-:'

,4-

..LN. I ·

\

T

H

~ E 16
I~

EI'.3

It

III A"3') '3

. +'5V

~74L53t

Ir---+------l

E 2.1

H-t-------J

~_~4-1

I

YO

5

A" Z.

"-~
~
8

I

l4L5139

..;;... '1'1

.------+-":..j'1'2.

,

3

B -

,

L---~~_4-----4_4_-------~'~Y3

,
"
5
4
!

"

Ike
~

A4l

i(l

.,9

r

10

0 0 0 0 0 0

q 10 II 13 14 15 I" 11 I" Z,Z '2.3 I Z '3 4

Alit'

AS
Ar..

--.n

5

"

1

ECO

AI

,

B
81

""

'I

'I"

18

B="

EC004"J1.0442 11"~'" ".':..i..ll..-

n

l5V -:-

B+

~r~

"

~
~

~I.1
5HZ,1

AB'
ABZ
AB3
AB4

IRQ

+5'1 "'7

5H2.,'

ABS

Hit ;-

AB"

IJMt

ABl
ABS

" llMl

AS"
AB'¢!

AS:!>

AB"
ABlt

"SOLA

AS"
5H

5H

ijo

51

"

"

40

}'"

5H~,S

SH Z. '5
5HZ,S
5H2

5HZ,',1

(j)o
R/W

RESET

\j

28

f..::.:::....

Vc.<:

R45
SH 7

J:5V

2:Z

PD·/p~
1 -'3""

3.31:4

<--'Q

EC070,8Z

~.

Vc.C,

tRQ

'7/z'/.1

B2""

R,3'1

5,7

45

ECO 41,41
ECO 54

~ AIO

+5V

5H

APPROVED

Ii'
GP-lD IZ

-i!r 00 r -ll II' q- .,., oJ - G
« «
« « « « « « « « «

OA TE

FE~

I/Oll-q-'--------~

A¢

A!>

PROD FE

II 12. 13 15 I" Il 16 1'1 l.1 ~4 ~ '5 4

AI

At

Vc.c.

~/B3Z
'" 'Z.

DESCRIPTION

lTR

A

'i.1

a- aoJ

Ell

\

..~-I
~ C5 All

i

z

REVISIONS
lONE

\

~E14

o E\8 Ell EI5
tZO

\

~O
DB¢>
OBI
DBl.

RESET

SH2.,:3,5.'
5H 2.,S,l

DB~

- 5H 2,3,5,l

DB4DBS

DB"
DB'

41

;~
.

-

I

15

G

~---------------------+~--~I~! 8
L -_ _1
;,..:4-1

...0

'10

VI

A A"'I. 'ltrl.;;;O_____________________________-=Sc.R~E~G:......:S:!!:EL=-_____

14L"'" 'IS

BS PROD REL PER ECO 04&3 ~. '/"I-/.-r-PROD Rfl. PER Ec.o 0473 .' 1,<': J'. ,_ II:.. '
f---~
••;.:..=LlC;::.T:.::;IOII=---L'"""... O__ Y MOT. DW.o.c-.u- '-II-ICI •
MilT All'
UIiD ON
...11. . . . MIl Iff
C'" o·~ .....
N
"18IeVIdeo:1nc.

1

5H lit

·IS41

.-r."
....

IeALI'

,I

{VOAlE.

....
--

u

....PCe:SCHEM~TIC
950 CONT. BD.

)ft/

(

(

(

Tf

-

REVISIONS

.

20

ZONE

I LTR

DESCRIPTION

SE.E. SHT I

65

I

-,

DATE

I

I

APPROVED

I

Vee.

Z

CRTC, RESET

5H I

CCLK

5H IQ

2.1

RES
CCLK

H5'Yt-lC
VS'YNC
EJ..JASLE
CURSOR
RArP
RAI

AB¢

SH I

2.4

R./w

SH I

2Z

A"'!I

RS

Rjw

II
14L53Z.

5H I

-

DBrP
3t
OBI
31
OB2.
30
DB3

OB3
DB4

2'1

DBS

2.8

DB"
DB,

Z1

MAC.
MAl
MAS
Mil'!
MAIO

OB5

MAli

DB"
2.6
DB,

MAIl.

I

5H I

MAl.

DB4

10.-2"K53t
t '5 23
q )A~3 ~B________________________________________________- i______________________~

5H I

MAl

MA4
MA5

33

OBZ

VSI-I

18
Iq

DI'5PL,EI-JA

5H'

CUR50R

5H "'."
5H '"
5H '"

~
~
~

-

MA'!.

OBID
OSI

HSI-I

RA' ~
'4
RA4/STB
4
I..AA¢

ASS
"545

I~

1'2.

RAZ

,9
40

MAl!

5

,"
8
0

ASI
AB2.
AB3
AB4
AB5
AB~

AB'

SH l -

ABS
AB'I
ABIO
ASII

ABI1.
AS"
DI5R,UEU

R2.5

zi 5111

14 10 13

::!: Nc

c co

q

rt'I

...

rn

A4r.
'4LSIS'

?: >-N
5H IQ

5EL.CPU.AODR..

>- >-

.. 31- "...'"

~

HI

h

!!!~

rz

...

o ~

,

j

C

0
J

...:r:T
111

"-

,

>- ......
.., ..

,

~

I~

~ :i ~
::i.e
~ ~
::i . ci

10 III

'4LSI'S'

4

N

9
=
::l l

"1 12
I/"

10 13

3 "

-

SELti

'" ..

II 14

e « e e
~ CI'1 ""
A45

1010

41, q It

;z

.,

II<.

'"

......

~ EIoJ
~

f>\

t 5

II 14-

l

"

10 13

.

C C 10 10 III ID
~ ~ '"
.. - .,J

1144
'4LSI'S'

5ELr-]

~ ~ ~

~

4

I

q 12.

'"

EI.l

::!:

f±

CcC- >-

~ ~
'I 12.

15

~

sal
EIJ

10

:i« :ie

e
«
II< 0( ct: at:
6C{ ci

~ ~

81:>0000'2-001
."LlCATION

e

J

'"

:r:

en

NUT Aln

~LIEI' OTHIRWIII NOTiD DWfto·c...A..t ,.z. . .

USED ON

'MI.llO.1 ...". 'N

J

!

1. ...J.

ICALI·
lA'

VON£.

4

• leIeVtde«lnc.

CHII:" ~ •

::

E,-------f
::

,.....

~

TlTLiPCB

SCHEMATIC

950 CCNT. BD.

11I'"I:'''±I~ootf8oo

SIS

165

(

I
I

(

(

I
I ZONE

REVISIONS
LT~

DESCRIPTION

DATE

I

APPROVED

SEE 51"fT I

AI5

4

74LS4Z

IIQRAM

Sf! 1-

~~--~~----------------~C

SH 2.

AD·RA"'·II __________________~15~A
~~~~

-

AD·RAM·I'l.

5H 2.

3

14

8tq~~~-----------------------------------------------------------------------------------------------------------------------------------------------,

B

I'l.

QC eLK.

(,

1

5

~
10

4~

~~~--------------------_iD

:1101 0=-----''-1
AB
14L504-

14LS32.

AD·RAM·IO
AD·RAM·q
AD. RAM·a
AD. RAM.,
AD· RAM·"
AD. RA"'.5

SH 'l. -

AD·RAM·4
AD·RAM·!!
AD·RAM·l,
AD· RAM· 1
AD.RAM.(j)

t

5V

'6

ls

10 1 4 3

0

2.

I

11 '" 15

N(fl4".,,-3r-

+5V

tr

~ ;t .. .. .. .. '" '" '" c
A2.5
2.114

18 Vee.

10 _

gg8

~~
14

13

Il

S 1J-=8~_I__I__I__I_+_+_+_+_++~

I

5" 1

..

4

'3 2 I

r

.I)

....

q

ID 11"

N

8 8
14

S\oI I

SH 2.
SH

I

15

11 '"

'" ... * '"
~
18 ~;t
'" '" '" "S''" p-8
Vee..
All
")
2..114
GI-IO
~ VV
S It

L..-

Z

1

4 3 l

~

W

AZt<.
2.1_14

g
14

\I
.5V

SH

Ve.e.

~

q

G~D~

ls"

DU·R/W

13

g

p

12.

II

11

I

·t ~«B
5V

11 110 15

' k 0 - ( \ J m .. ~""'r-C)rr
18 '" '" '" -< '" '" .. .. -< q

6

~

(.,

5 4

3 Z.

I

23 'l.'I. 19

,,1

"3 :>-

g~
l!o

GI-ID

q

~ ~

It

II

h
10

r<

s

'" 1 4

o t I 11 110 15
A 2.8
2.114

~
0

Il..l

II

1

DB·,

1\

OB.e.

I'l.

DB·5

1'3

08·4
OB·'3
DB·Z
DB· I
08·¢

14

DMEt-J·Et-J

R/W

IS
1<'
11

IB

A,

B1

BID

AI4

AI.

:}lt4{:
B3
BZ
81
Bf>
-~

A3
A2.
AI
A¢.

CH·AD·1
B

1

CH·AD·5

'3

CH·AD·!!

...... 5H 4

CH.AD· 2.
CH.AD· I

CH.AO·!p

0iR

I,q \'

8(;00002 .. 001
A'-'LICATK)N

NUT AllY

\HIll'"

ulla ON

OTHfIIIWl1I NOTI

'MINlIONI Aftl IN

MATiRIAl.

1------1r------t

__

OWN o.~

......

•

CHI( ~:~ . . . . . .

fUKi"~

, .... ~

.-M-

............. ~.Inc.

I

~ •• :~~'09BOO

185

(\

(

)

I

REVISIONS

1

OESCRIPTtoN

I~

1

+5Y

SE~

"V
Rib

9
CHAO·l
:,
,.
-C::-c7
:-:O
::-C.( p : - - - - - - - - - - - - - - - - - - - - - - - 7
H-.A
4-410

2.

Ie

IQ

--"---:-=--=--------------------,::-lW A
CJ.I·AD·5
V

<.0,

..
~ ..

514 3

-C~J.I-.A~O~.~I----------------------:~~D

eDQ~I-~---.~-----+~--I-I------~A~

-Cc:c-:H-.A.,.,D::-c.!>:----------------------I~:-f40

-

-=-_~~--------------------.;..Il.:...jl0
C H 'AD,CP

18

-----~----------------------------1I-f8D

5H

1-{

i

I: CP

OBS

"

OB~

4

OS,

'3

AoO
14LS 1"1 I

Ab I

14L!':I1141"1:..:'5'--_ _--'1:..:5-1
0'5 ~ as 1
I DO tJ
O'Z.
Q~
01 /)
01.0 QI '5
10 D'2.

+

o~ Ft:G,¢ z.
MR
I y

SH Go

?-.,
S-"."

...,C=RT=-C_._R_t5__________--:I"-j1 'PL
...:..:,H""51-J"'-_ _ _ _ _ _ _ _ _ _ _'-'-l14 c..p

~~:EC;- 5£L.

SH I

~

-C-H-,A - 0 - . - 1 . - - - - - - - - - - - - - - - - - - - - - I ' I - f 5 0

30

8

~5Y

R38
II<.

--"S-'-H_I_F_T_. ..;:C..;:L:...K_ _ _ _ _ _"l_f

q

03

r.;.

Z
43

A'/.4 lQ
14LS314
19

A5

8

1

...--_--11-1;

13,..---..
I
\,11
12. AI~ /b-I-l-l-l-Hf---~

OEL·OI":>PL·ENA

OI~PL.EI-J

"1:iLsoo

I~H.

V
.A..J RI9

.,!,-b

Vlo 1l~

8

4

16

_

QH~

LO

15

IK

RA¢

5H"
SH '"

1

"

b

't« ~ ~

'------1"1-1 All

II'.

LD CLR I
5.11oJ1----

'2.

'-----t-....::; A

5

Ril

'I

IS

.:..---+-----t---+-+-+-+----t-'-t-r-r------+_+_+-+

'------=1

ES

+SV

v

3 B
"I
4
0 I 1--0-----------+---'51 e

A '2. 3

Ol I
0 14L'SI""
'-_______t2-1 A q "
10
' -_ _ _ _ _ _ _ _
2.3,-1 Ae
A33
:1-'11c:c~-------------+---:c,,1 ~
AIO

IQ 1-3_ _ + - - - - + - -......-+_+_+->----~------_--__l1 A1
+
1.
.------f 10 AI8 1.01-:5:--+----+-+-+-+----------.---+---=1
13
3 A"
.-----IZ-f'2.0,4L":>Il'33G'"
.... AS

II<.

1 H
-P.CK

1-=----1------1---+-+-+--+-------1-+-+-+------+-....

O?I-'

'1j. 1..."

A '2.'2.

c..K

2.1

Eo 5

.A

_V_5_"'
_ _ _ _ _ _ _+-+-_ _ _ _ _ _IS_f SIR
14

RI4

14 G

I"
011-'1-'-----,
081------,

I
Q21-'''=---_+----+--_+_+--+__i----__i__irll-t------__i--H

Q

.--_'_'1_L_":>O_O__'.:..t>ClK
2.

05 15

r!lao i-=-~-+_----l----+__+_+_+----+++_+------..
Z

--------_..--"'-1'1
S~

II

~;;: ~ ~ ~

-=

10 1 AI3

DC CARR'"

A1

~~

.J:.

OE
I

O~ I~

U

04114- - - - - - - - + - - - - - ' - ' 1 1 .1 F 14LSlcP£o

,t'?:-;:z....

aQI__~-I--r_+------_+_+~__I~-----:_fA4

-i>CLK

Tc..~

~1~1--------_+----~101E

'2.3 A9
I Ae

RC

1v ~

6

P'P"

'"

0:
;)

S.I~~

o I--------_+----j C
02. 10
5 D

AIO

30 ~
40 12.
5Q 15

CH.AD.4o

'"o

It<.

CLR

1-0-,--------------1_----1"1-1 All

2~32.

051-.._ _ _ _ _ _ _ _ __+--ll, G
15
14
0cD1-1-,,-----------+--,' H
011-::---__:_-,.--,---,
>---i>CK

~ 10~ :a,t--+------irll-l-~--...--+-~:~--A-3-0-III-I-+---t--r-_~2:-0:~-4-S---2...;.VI.;-P

['d:~~~O

O'-P....l· " . "

~
14L~08.A

P_IO'q

DOT SERIAL
OHI-'I-'=3--____________-+-_______________

't"' I B

V

5

'1~

AI!>

r:"'f----__1If----+--I

..J RlO
14L500
.--_ _ _ _ _ _ _v_.v_.Y_ _I I<.
_ _+ 3 - f - - + - - - - - - - - + - - - - - ,

_

le'5
liDO

6

~IZ.

'4L504

14L5.04

Aq

.--t_t---......-~~q1
A30

B
13

I'lLSOO 11.
l~)

~

!J

CLR

II

"

3

Z

.. ID
2.0

!

2.
'-----'
UI.JDERLlI-.lE
QI1-'5~--~+-+-++------------~R~E~V~E~R~S~E~.V~10-E-O--

2.Y 9

'" 2.0

Q<~,~----~+-+-+-----------~BL~I~I_.l~K~~~~

3A

3Y
'1Y It

II

03
04 10

14t~~,

3D
11-140 Alq 4 - . Q I - - I O - - - - - - - - - - - - - - - ' ' 1 4 B
1.-----::
A'2."1 1-".;..1b - - - - -q-4>CK'4L51l4
STRB

14LS08

CK

2.A

IQ S
18
2QI--,---------------_f2.B
0
3Q
113 3B

~

II

q

2. r--s-LE':"'L-' 4
3
~ IA
IY~,-+-+---i-----~r-4~ID

~_ _ _ _ _ _ _ _ _ _ _1'-14 4A

CLR
YSyt-lC

~5~
~ '4L508

14LSOB

~sool
~~
10
9

'--

14L~0~

10

~

. -_____________-I--I-......_-'-II~I A30

~~r--1-+-+-+--~--~~~
AI2

1-5_1__-0-E-L-C-U-R-50-R-_

Q

A31
14L'31"1

~----_f_f----1_~--------~~+__+__1--~-------------------~_f--+_----------_1-------+_+-+-1-+-.;..3~CK

~R~O~VV~~q_______r_t_t_+_+1_--------~1

5

RIB
II(.

PR

~ 0

SHIFT· CLK

OISPL.ElJA

'7

All

14L504

SH CQ

+5Y

14LS041r4--1

pf
~

'--_ _+-_ _+-'5:..j~

514 (p

OATE

1

SHT I

.lIS

3D
"10

1'1

~

BLAI_.lK

12
Q5 15

",""SH '"

OEL.015PL·EI_.l-

"0 A '2. I
1+517"1 Q,,~---__--__--__--__-----~-----'-H~A~L~F-.l~~~T-'-=E~~~S~IT~Y-

J

...--r-+-r-+-__I~D

,sv

CLR

II

l'

PIO-I

RI5
II<.

'1"

ROW.9

SHID

SH4
860000'2 - aOI
AH'UCATION

MIlT All'"

~LII' OTHtIlWI" NOTE

UIID ON

AHQ

!

2 A-C 3 PU:

1-

-

..--

IA •

OWN o.~

........
....

't-U...

CHIC o.~ .~

.MINlIOMS All. 1M

J.

I~

""

..

• 1ilIeYIcie«1nc.
TIT".

.

pce SCM EMAllC S /7

950 CONT. BO .. ,
~

(

)

(

()

8

7

6

5

4

3

1

...
I\J

I

...
n.

APPROVED

'"n:,

y

o

C

551

EZI)

PI-I

R4'3
3'30..n.

A~

o

R41

El4

Pl- 2.

5PI

-

'l

Q4
lIJZ2.1Q
1\

RoT'S

e41

11108
74lS5l.1

~8~----'f

RXO 10

I'Z.

PO-4

T C40
:::':: 3?O PF

330 - PF "1

I

TKO

...:I.

.,LelZ

cn .01 UF

'

f_~

T.OIUF

+I~

~
A69

"'1

'7"~
A701
l4L~

c

10

.&.,1'3

q

RxO

E8

10

"'r-

6 2

e

~

[ R'Zl,510-tl.

I

TXo
ROC

R~A 5\04

...:I.

"0-"

no

I .

5 r4LS3'/.

SJ A3q

DCor~~:======~~~~~----jl--t-t-t---jr------~~
~~~--4'lAS~"
~
CT5 ~q:!.----"-++--=jt============-H~-t----1M===q;0 ASS
CDS5"1
"0

,0

•

"

'\...:.-+---IZ'J

ASO

A39

DCO~

If88

C43
330 PF

\I

330 PF

c

,

V'/.w ~

TKO MOD ~

o5R ~1~l~=-=-=-=-=-=-~r~rJ~=-~~~-_--':PI:O:-~'=>=--f~E=-'9_tt-t-_j======!~

PI-'I

I/l~

'v

~
J
RT5~8~======t===~-~-+~~~1,i---t-t-r====][=======f--~==l=====~7~4~L5~3~'Z~lL___
'l, ,....1"..
~JI~I------_1~---::~~----~
t~~O===l=-+_+--t~E;",=e~!I~l±~;-HH--t--_J
"
"
J
,'~~;;"
'
,.58
_
'"
""",~
t<

PI-I

+-12V

T'

on
,

PO-I

PI-2

~ E1

14L'!IOa

oTR 1-'_'- - SH

A"B
14LS%1
9

POOl

,

P3-14
Plo-ll

PIo-l

P3-Z

P4-B

C45
1488

''ILS3l

C55
330 PF

P3-'Z.O

B

B

P4-'S

:lH .,

P3-4

oSR
5H

~

P4-r..

I

SIG- GIJO

1

SIG.GIJO

P3-'
P4-1

P3-1
P4- I

A

A

~v

P3-l'l

R2.B
;> :MK

<

Q.;)n-~-\.-5-00""
-

1.

100 KA

7

6

5

4

3

I

2

I

,(

(

,

REVISIONS
APPROVED

DESCRIPTION

SH '2.
SH l
5H ,
SH

~

5H ,

H

RArt>

RA3

BLACK·Qr.J·WHITE .(B·Q·W)

:3

5H

2

BLIr.J\<.
BLt·RATE
I'Z
Z
• AIQ
''lOti>

IS

8

BlAl..t1l:.

'4LS8("

DOTS. SERIAL

€

-=-lloV

ROW·q
Ur.JDERLlI.IE
SH 4-

+SV

Rl

-lloV

'2.'l.n...
:3

DEL DI5PL·Et-J -

HALF·UJTE/o..ISITV

FORCE·6lAI.IK
'4LS04
4

II

Gt-JD

13

j:jSt;J

'SO..n.

E'2.

QI
ZIJ'2.2.lq

R'I
'2.,04

,40'"
II

DISP·NlEI.I
RS
II<.

+svD

...2-4

-J'I

~~

~

Tt",

All

..i31

~"'t..
HZ

15
TC

2-

RI
II<.

E'I

13

'!iH
ASI!

It.

3

R~,IIC.

Sf! 4
CO""P.V+iiL VIDEO

r:3

11

e "':"
C
A4

~

0

r..

- Z
74L500

·~8

t

I

AS

r

'

IZ

1\

~II
'4-lS00

4
~ AS
'4LS04

RIO·, II'.
+5V ~

QC

511 45H 2.

SH 4

l
4

~

PR

J

Q~

At.
l'1L510q
ell'.

~

II:.
ColR
I

~

tS!~~h

,

RIZ

1M

.

4

'4lSOD

I

sf

RII
3.3K

~

RI3
'11K

All

,

•

C.I'
.Ol.t

t.

~

tl-

TI"-AER

(5

'I 1~5
Cil
.Ol... f

DZ +~V
RZq

ID

~

T

LftJql4

>4·1 Ie:

t--

'5'55

5

~'

5H

;~V

C.loc...K

AS

PZ-I
SH 2.

C.ClK

•
CI5I
IOJ -=-

q

RESET

8
AS
14LS04

1

I.

SH I,S,'
C49
.01 ...#

1/10

5H I

SHlrT.elK.

10''''L.S04

SH 4

SHIFT·CLK

SH ...

l\TALI

QO II

oc. ~L~CR

~

5H

~

SH

~

14LSIIo?
QS ~
ell(.
(fJ\

~

LO
10

"'4L53!.

AI"

2.

'4l504

Pl."

,

SEl'CPU'ADDR

AS

101,
m Et-IClR
A ~

~

P2-'"

(vsi:j),

+ VSY/o..IC

tHSY/o..IC.

ASLe
l'1l'304

II

I-~

74LSClB

P~-~

-:...

DC.CARRV

If

.V

r-

4 ~ do

Pl.-4

"8.n..

DC.CARRY

ell<.

.2-

Pb-8

A'Z.
I!>

~-,

I

R'Z.

E3

I

'4LSI""
Qc IZ
LD

+5VC;-

Pb-IO

C.CU:.

I

-:h'

?ID-5

,

P8-IO

1\

~ o A~ QD

=

fII[ > 0 ' l10 - q
~

C

'4L'531.

PID-9

,

PS-'

I

II

L.-I-- B •

+SV

OSC. I
KIII4-A
l.!>·814
NIH!.

A

P"-IQ

~

'4-lS0'l

'2.

lol,lll
EIJ ELlCLR

:

4.'.J

I~
A'l.

,AA

PIO-14

+ C"

II<.

• AIO
,40'"

SH'

IO.P.5El

EI

RS

• Ala

z

SIl 2.

5H

r..

• AIO
''lOGo
10

At
__V_S_~
__________________________________________________~3~

SH I

5

P~-I

~

R3
II<.

R'"

P8-E.

I

4
• AIO
''lOGo

P8-5

t

+5V

DEL CURSOR
REYERSE YIDEO

5H ,

4

q
~I" OTHERWIM

.'PLICATION

NIXT " I '

una

ON

IIOTI

IIilINSIONI AM IN
ANQ

I PLC J A.C

!-r
SCALI'

..4 IVt:JAJ'

DWNo.c....a.. ........

c""_ ..u ..

--......_.
IMGO

'OIl

•

1160000'2 -001

~Inc.

.,~

Pe B SCHEMATIC
a COPl.lT. BD. S' /1

~5

()

(

()

r

REVISIONS

flON"

r

I

DESCRIPTION

LTR \

195\

SE.E.

SH,. I

BL I, RATE
FORCE SLAI-IK

"

:\

51-1
5H

"

51-1

5

..

DATE

\

1 APPROVED
\

(i,

~r
20
Vee

DBl

2." DBl

CBZ

DB"

Zl

PAl

DBS
084
51-1

I -

2.8

2'l

DB:I

30

DB2

31

DB C.

19

PBl

DB5

PB¢

DB4

------------~5 IV

11

------j

'I

2.

3

b

5" G

1

B

~==========----------------------------t---------_t_t----------~ 1,\LS3Go12Al:~------~t-t-t-r1r--1Ii--~zZO~
~
L1-------~~~_t_t_t--_+_t--~----~~~~~----~
10

2Y

OUT 5PEAI'.ER

3Y 7

G 3A A"8

II

PEl I

DB3

::,

9

RPI
RES. II<-

RP4
RES· II<-

~I
;GI

IA~-------l~4-~r--t~--~

5

PA3

I

DBl

"'i
5H I

51-1 I

OBI

3Z

OBit>

33

AS

38

AS I

31

ABZ

3/0

AB!

3'-

R/iN

pO
- RESET

ZS

34

I

51-1 I

IO.P.SEL

2.3

ABI3

24

r::i'M1

511 I

21

.1,1

AS'!

GI
IY
5
2.Y
1
!lY

:I

"'5ZZA

RSI
IZ

PBZ

RSZ
RS3

'l

13

PB!!

2, R}w

SI-I ...
SI-!

RSr/J

PB4
PBS

II 5Y

15

13

5

GoA

5A
4A

,fA

ZA
IA

14

3

It

4~

10

S~

"

Go

4

l~

Z

8

G/..lD

~
~
~
~
S2

:IT:

..,L6

-

(Q

RES

PA4

C'jl

PAl
PA¢

CSZ

IRQ

.I, I

Z.
:I

40

CA I

CAL

GI

,L"!--+-+++"'-::s:-i IY
~~~~r-~l~ZY

3'l

13

>--

"'Y

PA"

(.

PB'"

5H S

I

Z

f4'"

-:-

L:..
S

10
IQ

zo

~

L!!..
A"q

~~~--------------------------t--------------------------,--~

'3

'Q~

1

5

15
r.,al-=;

~
~

!I

~5

Gol

IV

Gt

zy

bI\

5A

14
IZ

"

10

~

5-<'l
0

z-<)

~r..v

A~q

All

6~
L~4---J---J---Jf-Jf----CLK

l..!..!12.~-!-.-----------------------;;;;-o
ID~

-::!o-Q

It

~Z.Q
L.:; 3D

"I
l.!:14~--~-------------------e--~-:;;o

4AL~ ~~-+-.

AGo'" 3A
45Y
Y14lS%1 'ZA

:I

G/..lD

lS

5A~10~-J-J~~__________________10
~

R40
II<.

;>

b
Go Z

CoA

'-4-4-~--~3Y

+5V

I

BI.DIR.EIJA

'3

B

~

GoY

~2

~~I----t
~~_I-il

511

61S

Go,

A<..l
4Y l'llS3l.

14

9

IRQ

<0

4

PAZ

DB¢

IlLACK,OJ..!·WIlITE
(BOW)
SH

1

PA5

OBI

4

5 1 "

Z. 4 "

8

1

5 3 <.

R.P<'
RE~

II'.

'~.~::;':O~:~~__________________________________________________________~C~R~~~C~R~E~S_E_T

____

5H

Z..4

1'1L51'1
L---'.'-ilc> ell<.

PR
YIO

L .A

II

P5-3

,

10

,4

AI..9
LS04

J-t-sv
,I\.

RH.Il(.

Bb00002 -001
"'PLICATION

~En OTMERWIIII MOTI

L----"'r---,--i..IMIHIIONI AM IN
NIXT AllY
UIID ON
'LC

,,-

IAL

OWNO.c:.....A... ,.,,....
CKK . . . . . . . . .

IMO"

,.u·"

.r--..,.,.

F*' ....

,TITU

(

(

()

,

8

7

1

6

1

4

5

1

I

3

1

1.

SH 6

i

RI6lV~
~+5V
~

(

E 20 EI8

EI7 E 15 EI4
(~~)

j

I

fi9

IK

CSiAII

EIG

E 16

24
21
20 _vee es

E44 E45

(3

~ ~ ~ 'a 8 b ~ ~

m

(I)

~

-j..!'C
\Jl

GNDIi'2

IS All
7

IS

vee~+5V

DATE

DESCRIPTION

A
A2

+-5V

I

9 10 II 13 14 15 16 17 19 2223 I 2 3 4

__~E~X~________----__----__----__------------t-~~~~~--__----__----~"~RCS

lTR

BI

oJC2~
2~~~

IS _

1

REVISIONS
ZONE

D

I

2

-=-

L-c

>
;>R17
;>IK
-0

A2S

rP2,~I~,--'--+....

GND~

_N

r<)

II 12 I 15


00000

•

~~~-----+-+-+-+-+-.

()

..----11 A9

>->-

~AIO

~

~g

I~ ~

C

\~ti

+5V

c

li:~

¢.

~-

R39
SH 7

3.3K

IRQ

~

t 5v

R38.>
3.3K>

-----+

<, 5 H7

~~
NMI ____~______~______~6

NMI
All
G502A
)-SH 6
SH2.3,S,6,7

B

B

PI,-20

+-______---~
4 7 9 12

::! ~ ~ :: ~

N

A21
74LSIS7

{Jl

W

-

IS
ENt).:...,
i ~

~BLll -

~~>~

'-4-:-O=-7r--='9(-1::1
2 r-----'''-'

I

!!

I

ci

0

~I~

~~

00
""'LlCATlON
NIX' ASIY

I/l

I/l

'-----r-'

I<)

I

5

fJ.oo'JSOI

r'l
I

I

UIfD ON

NUIIOTHII"WIII NonD

4

I

3

I

EftOIo,

2 PlC 3 "-C

!d:::±::!
./"

~
2

OWN HHUR 3-8-82 ... leIeVlde«lnc.

CH'.J.~ ,1.#1.

IMINltONI "'RI' IN
ANO

acALE'

I/l

i

A

B600002 -00'2..

« « « «

« « « «

« «

'-----r-'

6

~ ~

a: a: ~
cici cio

I

I

~~
::I ::I

1';<'1 It!~
~~ ::I ~

~

I/l

7

Q OICX>

~~ ~

UJ

S

{!i

2 5 II 143 61013

'-:'4r 7
::'r.9;::'1.1::i
2 ------"-I

-

IZ~~~ Iii

:~~~:~,;;':~~~i~~ rupn r

re

AI2
74LSIS7

~

-~SE~L~.~C~PU~.~A~D~D~R-------t_t_t_----~~--t_t_t_t_------~--t_t_t_t_-------~--t_t_t_t_----~

.

'JI)

111436 10

~ ~ ~: ~

==

~BLll-

~~~~

41 7 9 12

ro

)11

."'0

/

.. PIIlD

FI:--------""D

I

TiTlE

PCB SCHEMATIC
CONT. BO 950 G/ A S)...j.

Ii 1~:±rWzoci9eo,

1

IB3

(

(

\

I

I

8

I

7

I

6

~

5

I

4

3

1

REVISIONS

I

I ZONE 1m I
I I I

3~

13 C

I

2

I

I
I

DESCRIPTION

SHTI

"EI:C

DATE

I APPROVED
I

III

I
9
A2
15 A
8
74LS42
7
14 B
6
12 D
5 6
5

o

0

4

-

-

+5V
.

~

8

~

7 6

5 4

24 VCC
···,-WE_

N

+5V

I 2322 19
.q:

¢.r)

«

CSv-::

GND~2
U)

f'..

roO-E20

~.g..aQ...gQ.~.g

SHG

10 II

9

DM. R/W

13

14 15

~

roOl\,
.q:
~- ~

A:3
6116

..£I,.. -

c

3 2

« « Nr<)V.r)U)
« « .q: .q: .q:

16

17

_

24

8 7

-e

vcc

9

6 5 4

3 2

I 232

GII6

Qg
10

II

+5V

19

Nr<)V.r)U)f'..rocn
.q: «

Aa

£!c~

-

I

« « « « « « «

.q:

"" 18
C~P':

GND~

~

24

81716 5 4
~
.q:

vec

«

1415

16 171

1

-

9

I 2322 19

«

Q
.q:

A 13

10

.q: .q:::;::

C:

18

o-t:

GND~

61 16

~ g ~ .g ~5E~ ~~Q. ~

13

3 2

Nr<)V.r)'D
.q: « .q: .q: .q:

a Q. .g .Q. .2. ~ OE~
II

13

14 15

16

171

1

-:::-

tv

817

r6

5 4

3 2

I 2322 19

~
Nr<)V.r)U)f'..(DO)O
.q: .q: .q: « « .. « « «
22

24 VCC

~ Q a 2. ~
10 II

13

14

c:c

18

GND=fo,

Q

15 16

~6E~

171

c

-:::-

I

j

-4

DB.7

DBA
DB.3
DB.2

I B3
16 B2

DB.I

17 BI
AI 3
I
2
B06E _A0
DIR
,19 I

DB.5
SH 1--<

B

DB.J1j

SH 2
SHI

DMEN.EN

CH.AD.7

A7 9
8
A
A5 7
A G
5
A
A2 4

/I 87
12 B6
I
85 A2G
I~ B48T245

DB.6

CH.AD.6
CH.AD.5
CH.AD.4
)- SH 4

CH.AD.3

B

CH.AD.2
CH.AD.I
CH.AD.0

-;-

-

~

N

o
o

R/w
DB.?
DB.6
DB.5
DBA
OB.3

-

I.D

PI 1-24
PIH8

CP

o

P 11-15
PIH6
PII-13

OB.2~ P 11-/2
OB.I
DB.0
P5-5'
-,
P5-1
P5-4

A

P5-3

+12V
-12V
+ 5V

~

*CRI
IN4°OIP

SQv

GND

.0)7

C69

C70
1°1

T---~-I
.01
I~~
50V
+

lc7I

r

OI

+1'2V
-12V

I

l.e27-~5.l
C57~ 6

i

0.1

C72

T

.01

PII_II
PII-IO

+5v

e,
~v

~ GND

A

8e.O('OOZ-OOZ
I-_A,--"_Ll,CA_TI_OH_-!.HL"'OTHE."'''E HeHO OWHHIjUR 3-9-8'2
NUT AllY

t2 oo9SCI

USED ON

IMI!'NSIOHS AlII!· IN

ANO

I'

PLcl' Ole]

•

CHI),/ ~ ".ia.tlf~

.....

(

TeleU.,.j~.lnc.
:y~

TITLE

PC,B BD
SCHEMAT
t==t::=~!-----44!!J!~·.t!-J.t:-=A~":::-0~=-=-=-=-=1
"'0
CONT.
950 G/AIe("' . "
SCALE·

AP"D

...,.J

t'7

j

(

('

(

----~------

-------

- - - - - ---

-------------~-

---------

-

I

~

5
Jij~

-+5V

~.H
18
19
22
23

All
AIO

A9
AS
I A7

D

121 t~4
Vpp

VDD

I

4

3

I

2

I
LZONEl LTR

I

01 9
10

1

REVISIONS

I
I

I
I

I
I

DESCRIPTION
~-,E[

'+1T I

o

II
13
05 14
15
v
16
07
17

,....

AYJ
2332

?CS

D

§

+

08

5v

P6_6
P6-9
PII- I

'.b.

AI A2 A3
87 6 5

P 1\-2
+12V

~
~----------4
~----------4

RI9

8 7 6

5 21

~----------4
~----------4

4.7K

'-----""9"-1AI0
~_ _ _2~2~A9

23 A8
~----~
~-----"-i' A7
.-+-_____~2 A6
3 AS
.-+-+-_____=-t

114

OSC I
KII14A
23.814
MHZ
A45

c

4

In!

~

(24
47PF
SOV

02'1!'~0_ _ _ _ _ _...,
~~~II_______~
A31~
_~13~______~
2332
o 14
15

2913<:

>R4~OPF

'S

o

33 _ SOV

PI'-14

0

1

33

J:

440
VDD

0

3!: 27 16 I" 14
'!2 "'!: ~ ~ _

P6-7
P6-8

I~

12 II Ie 9 8

~

EII

a:
lite;

-. ,Cl

C
~

t--"

EI3 «~~
EI2 ~ll..j 4

I >EI()'>~

SEE.

Il. Il.

+5vx

s,.:£

DESCRIPTION

'?,?
o -

V

Il.

Il.

a:
~

~~

R7

W

III

330

III

t!lt----1h

~Q. ~-i

~

a

APPROVED

SHT I

1

+ V R6

330

E25

~JVAV'v~>---''-.AI\.r-o-----------------4 P 7-1
Vv

o

v

E24 0 - - - - - - - - - - - - - - - - - - 4 P7-2

RS

~fr

;:~;

i,JA32,,- 5
4
lQI
f:2 Sb30;....P_F_-------4
~D~B~~______-+~~~4_+_----------------~~18~DB0
11489 ( / j- ,
;-;-I AI9
~N2219A
~~Fl loovT
C73
DB I
19
A36
L - ,.. _
r,
I
,00vcT
.T;~4
.01
~~~------_+_+_+_+_+_+-.------------_4-..:.~DBI 6551
II
I" 3
2 S- 9 6- 5
11- 12 3- ~- 8- 9- 6- 5 674LS32
4 )PO-1
~D~B~2~_______+_+_+_+_+_+_+_.-----------_+-2~0~DB2
.I
I.
.I
.I
.I
.I
.I
I
L-.-------'..L
+ 12V <]
rND) PI-I
~D~B~3~_______+_+_+_+_+_+_+_+~----------_4-=2~1 DB3
C8 C4 C9 -=- C7 -=C13-=- 04 -=- CI8 -=17 -=III
"
SHI
DB4
22DB4
RTS~
330-Pf 330t>F 330PF
330PF
33QPF
33QPF 33QP.
330'PF
_'/PI-2
DB5
23 085
RXD~I~2-1_--_+~~~V-+_IOO~V-+-10=0~V~+_1~0~0~V-~1~0~OVL-~~10~0~V~~IO~O~V~~IO~O~V_~
_
.----------~P9-'
10
9 AI9 B
E9
E7
l...-----.....----R-X-D~P9-Z
24 0 B6
DB6
TXD~16
o-E8---+-----------.:.:.:.:.:::..-4 PI-4
DB7
25 DB7
17
10
74lS37
RXD (J..AODEtJ)
SH4
t¢
2702
I
r---~R~X~D~(~H~O~S~T~)___ }_SH6
SH7 ~R~E~S~E~T_______+_+_+_+_+_+_+_+_+_+_+_+_+_+_._+~4~RESET
SH6

(L

1

1

1-1--t----

L---r-------t-_-+__-+________________________________________

' - -_ _ _----J

SH6

RXD
....-------.16
....+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-=2~6 I RQ XLI

c

'-r-~~-+-+~~~+-+-+-r-~13~RS~

PIO-II~

+4"'5
DTR~

8

-

PI0-9~

RTS~--+--..,

'f

0

Q

fa:

Til.

1

TXD~I~O----t---~-+--~~~>---~----------~~~I~----~--------------._--------------------------____________~T~X~D~
IS
1
~
RXC~I~7----4-----4-4--4-----------4------------~~~
I 74lS32
4
6
TXD

....+-+-+-+-+-+-+-+-+-+-+-+-+-;..:14:.j RS I
.-~-+-+~~+-+-~~-+~2~8 R/W
SHI _..:.A~B~I~I------~-1-1-1_+-+-+-+~+++++-+-+_~2 CS¢

DSR 6
AIS }.::.3_______-=.jS AIS O':~--------...T-,-------1------:..::.:::.......
Dca t-:'=----+--+++-------------I------------l__I--_4---,
2
L......j I--- 330 PF L-....;T:,.:::X.:::.D--=J..A.:::,O.:::,D---4
12
10
1488
(10
IOOV
....+-+-+-HH_4_4_4-+~IB DBO
RX 0
12 74lS32
DC 0 ~
t-+-+-+-+-~~'--I'--I-=19~DBI AZ9 CTS 9
~"
91 A23 /",8
13 A24
....+-HH-+-+-+~.=2-=.j0 0 B2 6551
330 PF
148B
IOOv
t-+-+-~~'--I'--I....=.2~1 0 B3
2 74LS32
.-~-+------------------------~---+~--~~
....+-+-+-1-1-1-!'-22~ 0 B 4
I ) A2 4 >3'--1_____..:S~
6
r--i tr;;;:- 330 PF
t-+-+-t-t-~23~ DB 5
'(~16~....;Q~0~V----------~R~X~D4
L..-_-,-/
A23 o.:----------___l~~
....+-+-+-~2~4 DB 6
r--I---I---I---I---I--.-:;13~ 4B
(6
.-t-Hf--"-'25" 0 B7
~ 4A
4Vt-'Ic:;2____________t_----I__-------------+--+_------.....:.14....;8~8=--___4H9
8
I--- .330 PF
.JQ 3B
10 AlB t)::::..+____-I~IOO=V-----~DT.:.:.:R~
'--+-1--'=-27-'-1 f 2
YHH_4_4....;I::...J1 3A AlB 3V 9
,~ 330 PF
~r--i- RESET
rIl~
....+-+-+-+-~I SEL 74LSlS7
"-----'.. PIO-IO
2 A23 p-3______1_4_88__-+____4...:.::10~0'-"V----------..:C::..:..TS~~
6
~
.

'-~~-+-+-+~~4_+-+-~3 ~

L

~I~

41

DTR

SHG~~~~~--+_t_r-~~_+_+~-r4-+-+_t_r-I__--------------~

~~~2B

SH7~B~I~,D~I:.:R~-E~N~A~-+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_1_----~~~----~

B

\6

26

Yl-I-I-I-I-I-I-I-I-I-I-I-I-I--=~IRQ

XU

L-HHH-+-+-+-+-+~~~~--~13~RS0

+~~v5

~u

14~

r-----------4---~---------_+~------~

-+__-+--I-~3 IB

r - -_ _ _ _

~

~pm-8

2V7

2

IA

ill 8

12
STR

IV 4

~

L--I---I---I---I--r-r-r--I--~1~9 OBI

'-1H-+-+-+~-r--2~°"-lDB2
'--t-t-t-t-t-t-~2~1 DB3

'-1~~::::~::::~=~===-;;;;..2~3~ ~::
'--HHf---....=.24..:.j DB6
'--1f---ir---=.25"'i 0 B7
27 ~2
~ RESET

2 AI8

~t3~~----+------------R~T~S4

14e8

A23
13

1,<:

14
'--t-t-t-t-t-t-t-t-t-t-t-t----iRSI
0
YH-+-+-+~~4_+-+-+-~2~8 R/W
TXD~I~----------+_+_----------------------I----_4-----<~~----l__-1
SH I ---'A..:B~10'--__________+_+_+-+_+_+_+_+_+_+_+_--=2, Cs¢ A33
~
'-1H_4_4-+-+-+-+~~--....:3'4 CSI 6551
~

L-t-t-t-t-+-+-+-+-+-~1~8 DB~

r

T
.
"--it-330 P F
CS

SH4
P3-2
P6-2
P4-8

P4-3

P3-20
P4-5
P3-4

B

IOOV

~I~I----------~~----+-------------~D~S~R~
r .

....
1488

c

P10-13
P6-12

·-H·=---(12 _

P4-E

330 PF
100V
N

I;g

o

o

-.0

co
Q

DTRrl~I------------~~------------------------~----~----~~~~~~--~

DSR~';..:7------------.

DCD~I~6------------~~----------------------~
RXD~I~2~----------+--------------------------------~
CTSJ-:9'-----Eo29

E~

E31

RXC~PI0-14

A
APPLICATION

HIXT AllY

USED ON

NLIUOTHIIiWISIE HOllO

DWNHHUR

IMENllONS AllIE IN

eH'"

00 '5'01

-12-

•

A

860000'Z -002

"TeIeVJCteo:Inc.

TITLI

"1'0
~C8 SCHEMATIC
\ r'
I-----I----~~t--'---l.-=f.:;;;::~:-----__I CONT. BO 950 G/A S rf·· ..
.....

7

6

RI ...L

FINISH

y

63

5

4

3

2

(

I

II.
.1

1
!

I,

J

(l

I

8

I

7

I

6

~

5

I

4

I

3

I
+SV

f~o

SH 4

D

SH S-{

I
VOD
CHAR CLOCK
3 RXD(HOST)

CHAR CLOCK
RXD (HOST)
RXD (MODEM)

SH 2
SH 4
SH I

-

SHS-{
SH 7

DBS
DB6
DB7
HORIZ SYNC
¢O
ABB
RTS
DT P.
CA2
A814
ABIS

s·'1

RXD

I/Op SEL

E23
R/W
ABI2
ABI3

c

I/o

29

P SEL

2

SEL CPU AODR

23

HORIZ SYNC

6

} ,"4

25

CRTC RESET

26
31

DISP MEM

SH 3
SH 2

SEL CRTC
EX

39

-

}SHI

EI6
DISP MEM RI'w

34
36

SHS
SH2,7
5H2

E19

32

0

51-14,7

RM
CLOCK EXTEND
DTR

37
18

I APPROVED
I

SH2

RA I
RA2

15

I DATE
I

DESCRIPTION
SEE. SHil

SHS,7

ROW9
RA¢

9
II
13

II

1

REVISIONS

SHS

15

4 RX 0 UAOD EM) SEL CPU ADD
A37 HORIZ SYNC
B DB4
GATE
ROW9
10DBS
ARRAY
RA 0
12 DBG
1740012-009
RAI
14DB7
RA2
22
HORIZ SYNC
16
RA3
00
17
CLOCK EXT
AB8
19
OTR
RTS
21
CRTC RESET
DTR
24
DISP MEM
CA2
27
EI9
ABI4
2B
fi6
ABIS
30
DISPMEMR/W
E23
33
SEL CRTC
R/W
35
EX
ABI2
38
ABI3
VSS

DB4

S"'i

RXO

I

2
I
I ZONE! LTRI

SHI

~30

A39 +Sv

~O

9

8

-

JVYY
It<:

1

+HSYNC

c
P2-1

7406

9
8

~'"
I

AI4

II

AX X_x... PI'-4

74i::S00

74 SOO
~

SH7
SH 4

.-

A 396

FORCE BlAN K

5

HALF INTENSITY

7406 3

PI 1-17
Rf3

1

4

+SV

7406
>R33

~750

--

E,!,.

B

SH 4

PI'-26

R3b

'?fB
IK

!;2

~
?P.34
?'K

~

1be ~
CR5

R~~

VIDEO

E4

SH 2

COMPOSITE V IDEO

I

B

4.7 ".d"

,AA

P2-4

r--~

P2-3

§

~

68

R37
IK

"J

(p

-:'::'

-

A39
SH 4

1c26

R35

E3

(

Q4
2N22\9'"

2

<:2
COMPo V +TT L VIDEQ. P2-G

~1.q

7406
+SV~
13[:>0'2
~

VE AT SYNC

r---

+ VS YNC ( VS N ) ) P2-S

7406
A39

A

A

8600002-00Z
"'PLICATION
HIXT AllY

20095"01

Ulla ON

NUU OTHt:"WISI NOTE

OWN

Ull!NltONI AllIE IN

eH

....j2

"'eL- "'"I

!~
ICALi!;

M~

",",,,,,,,.,.,, ..., 8

'II BI<;Hr'I"

G"A~"'''<; ... r:T(I~QF~S

I

7

I

6

I

5

i

4

I

3

I

2

/

E....

,.pO

HHUR 3'1"7--82

•

,~

/

I

leIeVKteo:Inc.

TITLE

PCB SCHEMATIC

CONT. BO 950 G/A 5J~

APPD

fl:------, ..0

I

I

D I~"T
-~-r-'2009ao I
0,--11

16.3

(

(

I

8

I

7

I

6

5

I

4

3

I

2

I

I

1

REVISIONS

I ZONE I LTR I

I

I

I
I

DESCRIPTION

I

SEe;

SHT

I

r--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~B~L~I.~R~A..:..TE~____

DATE

I
I

APPROVED

SH4

r--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _..:..F~O~R~CE~B~L~A~N~K~SH6
~

D

~20

26 DB7
_D~B~6_______________________________2_7~DB6

SH

1---<

-

DB5
DB4
DB3
DB2
OBI
DB¢

26
29
30
31
32
33

vee

DB5
DB4
DB3
DB2
OBI
DB¢

A

SHI
SH4

c

SH 6
SHI

5 H6

>
>

I

I
RP2 RES
3 ...----..IGJ..I:"'-""R26
4.7 K
E34
E35
,..-------..:::...tl'l 74 LS36 7 4.7t<> '-----::-l-=-r-:O-:-T-::r--=8~9r----'
0-::J....
..-_ _ _ _ _5"-12'1 A3B
6
2 3 4 5 6
r
3A~_*----~-ir_t__t_4_-+_+_------~
PB7~1~7-----------------------+_+_+_------~14~
6'1 ~
OUT SPEAKER SH 5
pB¢ ~I~O--------------------+_.
.....2 3'1
4
I
~2
2~ ~
PBI ~I~I--------------------+_t_;
~~ 2
PA 3j....::.S_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'
GND G2
+!iV.~

19
eB2 ~-----------------'
PA7'9::::...------------------'

T

~_"i.15

R31
4.7K

~

~A~B~~~__________________________~3~B~RS¢

SH I -{

D

+ SV .----"'-'-1_ _ _ _ _ _ _ _--,

~5V

DB7

v

I---

BLACK ON WHITE
ABI
37 RSI
PA5~7~------------------_+_+----_+--------------4_4_4_4_-4_4_----____+-.:.l.:.B-=0~W~)_ _ SH4
4
AB2
36 RS2
A43 PA2~---------------+-+----+--...-TI-.,16
_~A~B~3______________________________~3~S~RS3
6522A
a a
~R~NV~
2~2~R/w
~~_ _ _ _+-::::...j3 1'1' GI ~~1.;..4---------4____~H--_+_+---~3~~;::';
00
2S ~2
~-_----+-5=-t2Y
SA 12
4~ ~
...-_ _-:3-::4.., RES
12
7 3Y A42 4A 10
5
" lI 2
PB2 f.!!:---------------------------++~-------489
6
~
74L5367
_I::..;0:..;.. :. P. :. .S.:c.E
::..;L:..-_ _ _ _ _ _ _ _ _ _-+___2_3-a C"5l
PB3 13
4Y
3A
6
ABI3
24 eS2
PB4 14
II 5Y
2A 4
7~ ~
~IRO
8~ CW2
PB5 ....1,1~5--------------------------+_+_+_+-+_~~13 6Y GND IA 2
>--"
r---+~B-i PA6
_;.;.HO=-R:.;.:I::.Z-=S;.;.'1_N.:.e_ _ _ _ _ _ _ _ _ __+-+--t-I~G_i PB 6

____________________________

/J!!1

c

~

PA4~6--------------------+_+_+_+_+_+_----------------_4--------_4--------__-4~B~I.D~I.:.R~.~EN~A~_SH5

PAI~3~------------------------~~_+_+_+_+---._-,

~I

PAO,!-'2=----------------,

~A,I-I..:..4-'------+------+_----~9~ c;W'

~+-t--I_I_~S"_l2Y

~

SA 12
10
~4_4_4_-7~3Y A4 4A 10
10,.., ~
9
74LS367 3A~---~~~~~---------~
6
9,.., ~~I
~4_+--~4Y
.-.+-_1-11 5Y
2A 4
8
WI
~6Y
IA 2
7~ ~

G~D

SH6--~C~R-=T~e~R~E~S~E~T--------------------+_+-~~--------------------~

G~D

+ V
L:.

B

~15

t-+_+-+-+-~~3 IYGI

eA I 40
CA2 39

T

nl

~A~I~4------~~_l_4_4_4_~------_l_-6~ ~

~~~~--..:::...t5 2Y

R22
1M

-

C20

> R27

A3S
NE555
TIMER

~ 4.7K

A39

sb'yf T6--_~....I--rl:---rJ5",-J
1G'2.1

740G

1.

C22
10

10

-L8

10

II

2
~

1

1.

5~ ~

SA 12
AI

L-H~---!....j3Y74LS3674A
~H_....;9::.j4 'I'
3A 6
115'1'
2A 4
~ 6'1'
IA 2
GND
..

+5V

B

R~ '>
4.7K'>

I

AI5

L-~~~~--~3~IYGI
7

'-'

3

E
r.

2

1
V
I

C75
.01

'-SWI

4

,10 7 10 '3 8 7 6 5 4 3 2.1
RP 2

I

~
~

I r. ~
t sv
__

RPI
RES 4.7 K

RES4.7 KI

L---------------------------------____________________________________~e~A~2~--SH6
L----------------------------------------------------------------------------__~~~~~I~--SHI
IRQ
1,5
SHI.S

.01

L----------------------------------------------------------------------------------~R~E;S=E~T--SH
L -____________________________________________________________________________________________
~~~

A
... '~LlC ...TION

HUSI OTHfl'lWISI NOTfD DWHH

.....-.-.,-••-,,-.--u.••-o-.-l.IMI!NlIONIi Afllt: IN

•.., 'Olcl' .lCl

eH"':

Hl. R -15-82

-a

7

••,.,

~

_
T

A

B60000 2 - [] 02
11
Inc

Televtdeo:

.

TIT"

"1!~:;!."1:_-_TL!--+.I=:~:.:..::::;~~~~~~
PCB SCHEMATIC 5"' J
1-1--------l+-------1,!~
-+
m.
CONT. BO 9~ G/A
<:f'

.CALf

MATOIIAl

I----I-----l

I

7

I

6

I

5

i

4

I

3

I

FINISH

rt;-

2

~IZ~

~

I

r

L

IDPI . . WING

D I~:~.J

I

NO.

2009801

1

II ~,

~3

(

(

)

-@)
9KEOD

(

@
3REGO

~

/-[±]
5

3REQO

,

Z. REDO

PL,

(

-.1
Po.

R2

••
•
•••
•

" "

~

P9

••

P3

25

.•

•••• ""." ••• "

I " • .I!"

" ••

II " " "__• •

J

• ••••
,,-

"

1:0•

'.••

••

-

111'

Q". "

.t.Je:

•

""

"
PolS

.
•

"
"

• "

•

~~
•

"
Pol

Po' ..

"
••
"•

••
• •
=f.'
••
•• ••••
J :

••
••

P8

·0•• •••

•=t'
•••
•

""
• ••• ••••••

eO

,

I

•

• "

•••

"

nil

,

I

"

·
• -.·

"

•••
•••
"

••••

"

••
•

·•••

"

~

•

"

•

I

I

I

"

I

• •

"
"

•

II,',

I

(i

•"

•

I

"

•

•

"

"

"
"•
--------f----------------~

~ ~ "~l:.~·

". -"

"

P.25' t r'"

"
"P,<'9

••"

"

"

•

"

-

"

"

""

""

"

~••
• [29

.

e"

•

I I

"

" e•

•

I·

"

"

••
••
••
••

•

"

... - - - - - - .

"""

"eo

••

- Po57 •

""
•
e
•
"
" ,,""
"
"
"
,,"
e" "

"

•

•

•
"

••

""
"
•
"
"

"

0-

"

••

·."• " ..
•

"

UI

"

•••
••

"
31'J

·.

1982

•
"
" ""
"
""

"

"

•

rlTi ~~:1~
.'

"

"

""

""

R2S

"

"
""
" "
""
""
"

".

1.1

•

"

••

••

••••

11\ !

:

: : " ~IBU: :

"

" TELEVIOEO SYSTEMS INC.
62 "
9Se!
"

II!

"

rl~

"

"

•

"

"

t.?R

••• •••
,,: :.
o·• •• ::
••
• •
"

"
•
"

•• "
•••" eo

•

~.

•

"

"

"

"

"

•••

.l.X

1 I ••

""
"

"
" "
" "
"

"

."

i e.

••
.. R~.

Q~e.

"
"

• • - ••
1:0
• : .:

212H2J~~e!1

•
•

""

•

"

"

R~I

IU····_·.~~RP2

[19

r I!' "1.11 us

11',

()r-I •

e

••••••••••
I......... ~·

• •
"

"
""

•• e.

SW2

o

••

P4

"

Pi

t

oe._

8.

•••••
r

•

"
•

o••~14"l~
• ••
•• •

·•• \I.••

" P,41

•
•••
•

RS!!

o:·~-P,-4-4-"r-~a
· 000
•

"

••

•

" •"

••

" "" ••
•• ••
••" ••"
• •

•
••

••

~----tS

•• "
"

•

"

:
:

"

"~n3

.::::J,t32
Po4:U:

·•• ••"
·"
"

TELEVIo[O ...., PP.OMRSTER'SIlkSCREI

7

(

(

(

/

I

-

I TE~l/
FINIl

QTY PLR AS91/REV

NO.

B

1

44

HFLlU:NCL!
ilLS I (;NATOR

LI:VLI.

C2-5,9-14,16-29,

~W~IINCL!\TlJRL/l)I:SCl(

Cap CER .Oluf 16V

I Pl ION

PART t..;U~lBER/RnIARJ\S

2028700

20~

31-33 37-39,4954,58,59,64-68,
73.74

I

2

3

C69,71,72

Cap Elec 22uf 15V

2025700

3

17

C34,40-48,55-57,

CaE CEl{ 330pf 50V 20%

2029100

4

1

60-63
C6

Cap Tant 4.7uf 16V 10%

2027500

5

1

CIS

Cap Elec 10uf 16V 20%

2027300

6

5

Cl,7,8,30,36

Cap Mono .luf 20%

2186800

7

1

C75

Cap Mica 100pf 50V 5%

2024700

8

1

A60

IC 74LS191

2036600

9

1

A21

IC 74LS]74

2044600

10

1

A6

IC 74LS109

2027000

11

6

A5 ,9 ,11 ,13 ,38 , 70

IC 74LSOO

2024200

12

4

A2,8,12,69

IC 74LS04

2024800

13

1

AI0

IC 7406

2034800

14

3

A7,29,30

IC 74LS08

2025200

15

3

AI6,58,63

IC 74LS32

2025800

16

2

A31,71

IC 74LS74

2026600

17

1

Al

IC 74LS86

2026800

I

I

NOTES:

.
TITLE

PCB ASSY 950 CONTROL BOARD

IJATE

11-11-82

0"1eleVideo Systems, Inc.
_...,--

,

"

-,... ..,--..

...

~
lTHI/
FINn

NO.
18

"-'

~TY

PLR

ASS~I/

RLrrRLNCLI

({LV LLVLL

Ill: S I CNATO I{

B

19

1
6

20
21
22
23

2
2
1
3

24
25
26

4
1
2

27
28
29

2
1
1

30
31
32

4
1
1

33

1

A53
A55

34
35
36

3
1
1

A49-51
1\54
1\14

37

1
1

OSC-1
A41

38

1\62
A20,43-46,59
A3,4
A22,23
A18
A19 pl,64
1\65-68
A24
A39,48
A40,57
A47
A56
1\25-28
A34-37

~
N()~ILNCLAT!JRLlIlESCl{

II''!' I ON

PART NLJMBERjRHI1\RKS

Ie 74LS139
Ie 74LS157

2027200
2027400

Ie 74LS163

2027600

Ie 74LS166
Ie 74LS173
IC 74LS174

2027800
2028000
2028200

IC 74LS367
IC 74LS374
IC 75l88N

2028600
2029000
2029200

IC 75189AN
IC TILl17
IC 4N38

2029400
2029800
2035000

IC 2114ICB RAM
IC 6116 RAM 150ns

2035800
2049200
2049600
2049800

IC 6502A Micro
IC 6545 Cantr CRT
IC 6551 Hlllz UART
IC 6522A
IC 74LS245
CRY Kl114A 23.814MHz OSC
IC 2532 [PROM FOOD Sys Prg9 C O

II
I

I
I
.

2155700
2050200
2036200
2035200
8000043

NOTES:

.
TITLE

!lATL
PCB ASSY 950 CONTROL BOARD

~

------

- ----------- -------

-----

11-11-82

O. 1eleVideo Systems, Inc.

I

ITEM/

QTY PER

Flf\ill

J\SS~I/

ilLS I (;NJ\TOR

B
1
1
1

NO.
39
40
41

RI:FFRLNCL/

Rl:V LJ:VH

A33
11.32
A42

.'
42
43

1
1

44
45
46
47

2
1
' 2

48

1
2
1
20

49
50
51

11.15
11.17
R6,41
R32
R2,33
R21,22,29,31,
35-37
R4
R42,43
R34
Rl,3,5,8,9,10,14
15-20,23-25,38,
40,44
R11,28,39,45,46
R26
R12
RPl-4

7

52
53
,54
55

5
1
1
4

NO~lLNCL/\TIJRE/IlLSCR

I PT ION

IC ROM Up Char Gen
IC ROM Low Char Gen
IC 2532[0000 EPROM Sys

PART NUMBER/R01ARKS
8000002
8000003
8000044

Prog 950
IC 74LS42
IC NE555

2026000
2030200

Res CP 750 Ohm 1/4W 5%
Res CF 51K Ohm 1/4W 5%
Res CP 68 Ohm 1/4W 5%

2031700
2032300
2051100

Res CF 4700 Ohm 1/4W 5%

2053100

Res CF 270 Ohm 1/4W 5%
Res CF 330 Ohm 1/4W 5%
Res CF 510 Ohm 1/4W 5%
Res CF 1000 Ohm 1/4W 5%

2051300
2051500
2051900
2052100

Res
Res
Res
Res

2052700
2032100
2031500
2042700

CF
CF
CF
PK

3300 Ohm 1/4W 5%
lOOK 1/4W 5%
1M Ohm 1/4W 5%
lK Ohm 8 Pin SIP

NOTES:

.
TITLE

PCB ASSY 950 CONTROL BOARD

DATE
11-11-82

•.:IeleVideo Systems, Inc.

.

,.".,

--,

~

~
ITEM/
FIND
NO.
56
57
58

QTY I'LR

l~rHRENCIJ

REV LEVU.

IlLSIGNATOR

B
2

R27,30
R7

1

59
60
61
62
63
64
- 65
66
67
68
69
70
71
72
73

ASS~I/

'-'"
NmIENCLATURE/nESC1~

I PT ION

PART NUMBER/REMARKS

,',

Res CF 510 Ohm 1/2W 5%
Res CF 22 Ohm 1/4W 51

2045100
2033500

J
2
1
1

Ql,4
Q2
Q3

Tran 2N2219A
Tran 2N3019
Tran 2N2907A

2045300
2045700
2045900

4
1

Dl-4
D5

Diode IN914
Diode IN4001

2047500
2047700

I

2

SI,2

Switch 10 Pos Dip/20P Side
Adj

2096800

74
75
NOTES:

.
TITLE

PCB ASSY 950 CONTROL BOARD

DATE

11-11-82
---------

O.1eleVideo Systems, Inc.

,
I
,

ITEM/

FIND
NO.
. 76
I 77
78
80
81
82
83
,
84
85
86
87

B

REFI:RENC!:j
DESIGNATOR

1
9
3
3

R13
XA32-37,41,42,S2
XA49-S1
XAS3-SS

Res CF
Socket
Socket
Socket

2
2
1
1
3

P3,4
P2,S
PI
P9
Ql,2,4·

Conn 2SP PCB D-Sub Fern
Plug SP Str Waf
Conn PCB RJ11 Fern (AMP)
Plug 2 P Str Waf
Insu1 Pad Tran 300S-A Large

Qry PER

ASS~I/

REV LEVEL

I

NOf-IENCLATUREjIlESCR I PT ION

47K
24P
28P
40P

Ohm 1/4W 5%
IC Dip
IC Dip
IC Dip

PART NUMBERjRHfARKS

2033700
2098401
2098404
2098402
2097800
2098802
2097900
2098800
2180800

NOTES:

TITLE

PCB ASSY 950 CONTROL BOARD
------ - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - ---------

DATE 11-11-82

.~l£leVideo Systems, Inc.

(

THI/

; 11\ II
.Il.

I~n

H2

/'U~

AS91/1~I:V

IU: F U{/;t\CJ:/

I.U'l:I.

IlI:SI C:\ATOn

~mIU\CI.ATIJIU./ IlESCR

II'T IOt\

PART t\LJr.IIU:R/RUIAIU\S

1
..,
3
-t

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

1
1
1
48
1

1 '7

.'
1
1
-t

1
2
1
1
5

C23
C26
C20
C27-55,57-75
C22
C4-19,25
Cl,2,3
C21
C2-1

Cap
Cap
Cap
Cap
Cap
Cap
Cap
Cap
Cap

Al,4,38,42
A2
C3,22
AS
A6
A7,12,16,21,28

IC
IC
IC
IC
IC
Ie

r.lica 20pf 50V 10'),
Tant 4.7uf 16V 10~
Cer .luf 50V 10\
Cer .01uC 16V 20~
Elect IOuf 16V 20'1,
r.lono 330p f IOOV 20t
Elect 22uf 50V 10%
r.lono .0ltiC 50V JO%
Mica 47pf 50V 5'1,
74LS367
7-1I.S42
6116 RA\I 150ns
4N38

65-15 ContI' CRT
74LS157

r-;OTES:

2024300
2027500
2030100
2028700
2027300
2029300
2026100
2028900
2024900
2028600
2026000
2049200
2035000
2049800
2027400

.-.
"_..

.
-

PAGE 1 OF 4
TITLE

PCB ASS)' CONTROL BOARD 950 GATE ARRAY

UA1EI1_11_82

O.1eleVideo Systems, InC.

v
THI/

Ir\J1

o.
22
23
24
25
26
27
28
29

30
31

-,

.)-

33

~
(~TY

1
1
3
1

:)(1

1

37

1

38
39
40

1

41
42

1

ASS~I/

REV 1.I:\1E1.

I~t:

F I: RU,Ct:/

ilLSIC~ATOR

B2
2
1
1
1
1
2
2

34
35

I'I.R

1

1
]

1

~

r-.;m.IEr\CI.ATLJRE/IlESCR I PT IOr\

PART

:\lI~IBER/RHIARI\S

A9,32
AI0
All
A14
A25
A18,23
A19,24

IC
IC
IC
IC
IC
IC
IC

74189AN
TIL1l7
6502A ~licro
741.500
2532 EPRml FOOO Sys
75188N
74L532

2029400
2029800
2049600
2024200
8000043
2029200
2025800

A26
A27
A29,33,36
A34
A37
A35
A39
A43
A45
A20

IC 741.5245
IC 741.5374
<.
IC 6551 UART Ulllz
IC G/;,\ 950(A)
IC Glf\. 950(B)
I C NE,555
IC 7406
IC 6522A
CRY 1\1114A 23.814~1I1: 05C
IC 2532 EOOO EPRm.1 Sys

2036200
2029000
2155700
2057600
2057800
2030200
2034800
2050200
2035200
8000044

A31
A30

IC ROM UP Char Gcn
IC ROM Char Gcn Low 950

~~

-

I,

8000002
8000003

.,

,

NOTES:

PAGE 2 OF 4
TITLE
,

.,

.,_, PCB ASSY COt\TROL BOARD 950 GATE ARRAY

!lATE

11-11-82

O:IeleVideo Systems, Inc•

!\. _oJ

'-..

. ...

- ~)

IlU-11
I-I :-'11
\().

43

4 ·1
45

"

--(~li

I'LI{

I\·-;S~I,I~I.\'

I 1\'1.1,

IU,I'I.IU.:-'U /

III SI(;\,\I(1i{

HZ
5
3
10

11,34 ,3-:' ,-t:~
\ 1\ 29 • :>:-i :> ()
XI\ -;; ,8 13,15,17,
20,22 25,:>0,31

\J\(J,

4h
47

1

Ph

48

2

sIn ,2

49

'J
<-

\mll.\CI.,\lIJIU / vRllS("I{ II'T

I ()\

PAin

Socket IC 40P H: DIP
Socket I C ,28P Ie lJIP
Socket IC ~.1P Ie DIP

\LJ~IHLH

/

I

I{ nt' In.s

2098402
2098404
2098401
I
I

P3,4

Socket 14 Pin Ie DIP
S~ 10 Pos DIP/ZOP Side Adj
Conn 25P PCB D-SlIb Fern

2098403
2096800
2097800

1

PI

Conn PCB IU 11 Fern (MIP)

2097900

1

P2,5

Plug 51' Str \'iar

1

Q3

Insul PaJ Tran 3005-A

2098802
2180800

58
59
60

1

Roll

61

7

Rlh, 17,28-30,34,
...
..") ,-

Res CF 33 1/4~ 5~
Res CF 11\ 1/41\' 5 ':,

!

50
51
52
53
54
55
56
57

2034500

,

.

2052100

PAGE 3 OF 4
PCB ASSY COf\TROL BOARD 950 GATE ARRAY

DATE

11-11-82

O.1eleVideo Systems, Inc.
~-~--

,,'

-------

i

I

t\OTES:

TITLE

1

--.~--

v

~
ITEr-I/
I:

11\ Il

\0.

QTY I'LR

62
63
64
65

1
1
1
2

66

5
13

67
'68

1

69

1

-

/\SS~I/HrV

I
.... 0

ADDRESS

~

RAM

~ ......

R/W
fJI

DISPLAY

n_

l 1

~

I..

DATA BUS

CHARACTER~

GENERATOR
ROM

AG-A2

V

~IPARAllEl ~I
~

CLOCK

I

.

n ____ • L_

CIRCUITRY

DOT C OC!\

I

I

1-

VIOEO

~
§

OUTPUT

I

SERIAL
KEYBOARO
DATA

CIRCUITRY ; - - COIiPOSITE
VIDEO

EXT

MUX

tt

u

IIAIN PORT lORlNTER
(HOSTI
PORT

11I

lOAOE lORINT

%

<

925 CONTROL BOARD
BLOCK DIAGRAM

Figure 4-1

6

..

~

<
..

~

TO VIDEO AMP
1125 MONITOR

FOR EXT MONITOR

~----

FfFf

! i'OM

Fnoo

Read
Only

II 1

ROM /I 2

03

02

01

00

I

'"

PROGflAPli DATA

EFFF
EOOO
OFFF
0000

Unu5ed ROM /I 1

I

04

05

06

07

S
R
PROGRAM DATA

g[b

Unused ROM /I 2

'"

BFFF

Unused 1/0

"I

Qnn4

Write

Control Latch II 2

Read

Dipswitch Port

Read

Dipswitch Port

Write

Control Latch 1/ 1

--

Soare

Read/Wr

*2
*1

Oispla
9003 Mode

BOWl
WOB

Bell

9002 SP/MK

OlE

Pur.

Timeout Keyc llCk
Blank
OnlOff
Baud
Rate 3
Baud
Rate 3
60/
50Hz

DTR
Baud
Rate 2
Baud
Rate 2
Cursor
Under

iMonltor
Mode

Spare

Baud
Rate 1
Baud
Rate 1
Blln"K
Clock

Baud
Rate 0
Baud
Rate 0
l'age
Print

Exten.

Control Register

9001 Stop
Bits
9000 CPU
Reset
Rr
Stop
8063 Bits

BOWl
WOB
Word
925/
Length 920
925/
BiDirec. 920ATT

Word
lnth 1

Rcvr--Clk Baud
Word
lnth 0 Source Rate 3

Baud Baud
Rate 2 Rate 1

Baud
...
Rate 0

ReadlWr

Command Register

8062 Par.2

Par .1

Par. Q

Xmit 0

OTR

Read/.k

Status Register

8061 Read:

ReadlWr

Transmit or Receive Data 8060 Read:

Read

Dipswitch Port II 5

8050 Not Used

Write

Reset IRQ

Rn4rl

Read/Wr

Edit

Norm/

Xmit 1

Frhn

I~~~

Status Reg is ter

Write: Program Reset(No Data)

Receive Register

Write: Transmitter Register

Cursor Cursor
0
1

DTR

SRTS

l5aua l5auCl
Rate 2 Rate 1

Read/Wr

Command Register

8032 Par.2

Par.1

Par.O

Read/Wr

Status Register

8031 Read:

Status Register

Xmit 0 Rcv
OTR
IRa
Write: Program Reset(No Datar

Read/Wr

Transmit or Receive Reg.

8030 Read:

Receive Register

Write: Transmit Register

Norm/

8021

Address Register
(Contains Reg. Number)

8020

REGISTE~

Char
Char
8010 Set 1
Set 0
8000 Not Used

On/Off
Not Used
Line/Pg Timeout 601
Att. - Blank
50Hz

*4

Dipswiteh Port

Read

Dipswitch Port , 3
Unused Display
RM1

OISPLA; PARAMETERS
I
I

ACIA

Xmit 1

Echo

Read or Write
Regs 0-31

Read

I....

l5auCl
Rate 0 I"

Control Register

Revr Llk 'l5auCl
Word
Lnth 0 Source Rate 3

Write

AClA
) 1/0
112
(Keybd 1

NU UAIA

Word
Lnth 1

.,

Main

Not Used

Stop
8033 Bits

Read/Wr

Printer

III

(Host)

(

,;

) em

NUMBER
Keyc 1 ick

Not Used
CRI
COI"fn
Comm
CR-lF Mode 1 Mode 0

Test

I

...

7FFF
4COO

Page 2

4BFF
4800
47FF

0 isp
RAM

Page 1
,;

4000
3FFF

.,

Unused Sys. RAM

Sys.
RA~1

0400
03FF
0000

VARIABLE PROGRAM rTA
1

925 MEMORY MAP
Table 4-1

,;

(

I

8

I

7

I

6

I

4

5

I

3
=-:-e-C

o

I

I
I

I

OJ

P2.C

,~~
"::01.

P2.1 r-2._1._ _-t-~__1~3.

I

I
I

~

I

R'3

I

IK

-001

>

I
I

I

0_1_'

I
I

ua

I
I Pl-I
I

,->-T_W~I--_ _-:::4K
CIO

l

I

I

1.

'3

$

5'70

'1

l4LS0'5
II

"/\t

I (

¢ )

q

10

CHAR
IIJSERT

CHAR

DELETE

LI'-lE
IIJSERT

c !"
~C ~ 44~ i __.____________
" ' : : c: 46____

L--L~~.~

(6046)

+SV,r'''

'"

Ul
14LSOS

J

Ii

9

I
11

5
8*

1 &

--tt)--

l..10TES:-UULE..SS

I __
DELETE
LI'-lE

I

B

S

0

F

G

H

:r

PI~

'OA

~--l~pn

I
I
I
I

OPTIOIJAL

c

<

>?]

4

5

to

I

Z:I,

1

t1J

I

1..8

1
1

~q

I

L------- 1

TO

")ClB~-=E>-l

q

I

TI

I '-l T

I
I

I
I

,>-+_11._V+_ _--I'1

3.....-4I1--,.,;.40-"-j Vc.e.
v I 1--

1CI~ ~~
I l.ui

_t=i"

Vee

CII

55

5

I

B

I

-r:J
-

•

,Ol~'

01

01

D1.
D3

'->-_-+-_ _ _ _ _ _ __.--.:::.2.0-1 V~S

~

:
I

AIJO -COl.
OIJLY

P2."I----------------------------------______M+~B____~~~~--~~M~--~-'~----------~----~B_/~__4B~(~--~~OEL
p1.11--3_e____________________________________-H+-s_p__-H+-_4___+H_-t--_+H_------------~H_-.....
__~B-1-----HrB----~~q

PI!

1414

I

-

-001.

\(.

-

p,. '3

-001

YER510~

BACK

~1

1414

"

1

I
I

YER SIOJ.,J

I

'5

I

SPECIF=IE.O

Q
w
TAB
SPACE
\
a
R
~--a~-H+---~---+H---*H------------~H-----~~--~H--~--~~LI~E

PIOI--------------------------------------~~----~~----~----_H~------------~----_+H_----+»----_+H_

us

1414

Pl- 4

OTHERWISE

+

·sv

I

--

~L__ _~_ _ _ _ _ _ _

o

I

I

~~~

CIRCUITR'f

Ii\. RP" 10K

____

43

1
1

UB

I Pl-1.

#

E::"(:

:

'3~OPF

I

I

'"

31

_4..; RESET

I

I

A

ue

1414

84

"

I -

6

APPAQ,'ED

P1.4 I----------------------------------------M+-----H+-~:---+~~I~I--~~B~A~C~K~------~H-----~~--~H_~--~~
P1.5r-3_"____________________________________-tiTL____~~;----~-'----~~T~A~B~--------~~2~--~~X~--~~c~--~~V

1e1
....1

_

5

-,

OES\:RIPTlON
I
DATE
Ale ::''-''-,-:""D---,-'<,-=::~_~--,--='-'-"'_ _"'=-=-J-,.4~Z.=- _ _ _+-__+

LrR

P1.3~~~4------------------------------------_A~T----ffi_-Y----~-U----fa-I------------~-o----~~P----~-C----~.EED

I
~
_
:
O
_
I
1
.
.
r

I

Ul
14LS0'5

-001. (8035)
B
5
P2. '2. I-'----......- - - - !

';>

1
,..-o*i>--......--'-j
EA
~
+SV

I

I

ZONE

(.;1,14L'50S

XTAL1.
UG.

I

8

)(~:>-~o--"",=&-,-I--iC&--=t-~--fl7---'3=---ffi_--'------Btt-- --Er-Ul

[>-'1\/"-:;1

12.

'3

-.------1~---.---------~--·-.-T----.T
;. R4
RP3
RP'3
RP2
RP'2.
~ RP1.
? RP1.
10K
10K
10K
10K
10K
10K
10K

V'

RP"101(

+5'/

I

c

3,

v;:,,14L'50'5

I
I

-

14L'S0'5

r-z.-\---t--t-_~I:

~
P3
ICK

Ul

RP'3,IO(

~ +5V~1

I

I
I

:l '

1

REVISIONS

------------------ -i~~v -L"

r-- --

I

2

04
05
Dr"

~~

01

p~

N

14

01.

15

03

Ie..
~~

04

I

I

o
o

uJ

-,---------------------·-------·--0-5--·r - - - - - - - - - - - - - - - . - -..--------.-----~----1.--- .. - .... -... ----------------------------.-...--...- ... -------.IB
Ole
r------·
-.- . . ----.---..- -..-. ___LI ___._ ---------.. ----------...----...-------------..--------- -.. - .... -----.--19
I
01
1 - ' - - ' - - - - - - - - - - - . - - - -........- - - - - - - - - - - - -..- - - - -..-..- - - - - - . - - . - - - . - . - . - - - -.-..

~

SH

o
o

"2.

L

10
1L--_ _ _ _ .. __ .... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .._____._ _ _ _ _ _ _ _ _ _.._ _ _ _ _ _ _ _ _ _ _ _ ._. __

L __________..

.

_. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .JI

A

A

6"'00003-001

--.---.
t r'

I

7

I

6

I

5

i

4

I

3

I

2

I

1

(

(

(

I

8

J

7

6

I

I

~

5

4

I

I

3

ZONE

R~

",
"
ot

:3
l!'3
P0 13Z
DI
D2 l3.1

01

0

A fe,(/J

(oS02 A

+'5V

---

~H'S

t..IMI

Z RDV

'5H '5

~(AUA)

"''!i

-.ll r/Jo
t. milt

~~~.,



1.0
AI IlZ:
AZ- II

R27.

<;1017

04

DATE

PROD RELEASE

B~

U'5

pI. 27

DESCRIPTION

A

61

01

P! W1l.
D4 l i
P~ lZ..8

D1

'Y

LTR

51-12.4,S'
SH 2.4,5

rl./w
I!J

~4

CZle ~-

1

REVISIONS

~';v

el
vc.c..

I

2

5WI,S'
5H4,5

AI

Az.
A3

M
A?
1.(",

I

>SI-12.

A7

)

~e

M
AI(6
All

AIZ
AIS
AI4
1.10;

20;

i--

}~H4

c

+'5V
'Y

EI9

Rll

~~r;v

4.7K

~

orr~I~~----~\ ~~z-.~

A~

AI
A2
A!
M

ell>

A.lt.. '1tI~04

Ialle
'5 : : c.~

fO'O!J--f

vt.<.

14

G- Al

'"

~

A'5

Z

At.
A
AI!>

I

I'
I"
I';

Aq

[01
A1.A4Z
3
IOZ I~
0;

c.

2114IO ~
104

:7

.,

e

00
PI

12. .

02

II

D3

P?-?

)~±±~IZ~v~-------------I----------------------I--------~

-

GfoID

B
'il-l 4
5H 4
5H 4
~H

4

~

aooo-efFF
000

ELE~

CER

L~ zzpf

-\FFF

~.",

~

P?-4

---

-

£LE.c...

-'5V

o.Oi,uf

r

T C,}7
~ 4- ELEC
ZZ,M-f

,

,~~~N~D~~

,

O'0!l-<-f

m
l/1

i-N

eER

>.~+~~~VL-~'---~-----+----~----'-----~---i--------- +"'v
+

P5- 3

B

-r O.OIP

P"-I '~-~I~zv~--------~-----+------------------l1-----i----------,
1 C?f.,
C34

E"OOO-"FF

+12V

C~'5

c,8
Z'Z.}A-f

1

c.il'i '::!::T

____~____~____-*____~~__~~__~~________

o

-

\Jl

g
(l

Ii
i

eoc.e - DF'FF

A

8600014- 001

APPLICATION
••
U-'''-:A.U

_

NLIIIOTHERWISI NOTED OWN ~'f~ .f. J.~I
:-i.'MINIIONI ARliN
CHk

~ :J~~/"'",

--T--=
..=.-••

1--.-

!

-::1:-

I

7

I

6

I

EB E2.4

1------+----,

5

i

4

I

3

I

I. oLel_ "'"

.+ + -t-

A••

MATERIAL

.~

2

'NO.

>--I\t::: _..,-,..;..,

::::

TeIeV....aa,.elnc.

•

""""'"

I LI

PCB Sr.HEMATIC::; ~{(j
325 CONTROL BD. '

FINISH

I

1

A

(

)

(,

(.\
-.,",

,

7

8

4

5

6

2

3

1
REVISIONS
APPROVED

DESCRIPTION

~;EE

Del>

"O:I-n I

DI

02.
OiO

'JH 1,("

D

04
0'5

\

D

Dc..

07
Ad)

AI

A2.
A3

j

7HI

"4

A'5
AI"

A7
A8
A">
AIel>

All.
SI-IIFTCLOCK

~7

<;'H'1

':>H4
SH

<:I

SH<:I
'51-1 <:I

"!>HI
~H

'7

I

DC- CAI?RY

blsp tH
SH

...,
I

,

51-1 I
51-1

~Hz/~

HAR

Rlw
7£2
SE,/..

(NtU)

LK

v£RT5~"IC.

01

D~
D3
D4

27..r

'14L?'i2. , Q) l

Y

D(.

I"S

~£'l.

MA

'"

\LJ

~2(E)

..

~~
1/~-----4-+--J-J~+H----+ti-_t~J!
-+-+-+_-;,'''''~
-W-l--l-+-+if----tt-t----'i

r-

Co">

MAl>'-'"
L

I

L __

...

74L'>04

I

..,
IY I-'---+-t-.
oy,"T.!--+-H-r

SH 3,t1

DISP E.N
'Ci 1('50R
HORIZ SY"Ic.

'51-13
SH 3
'jH '3
SH 3,4

VERT SYIoJc.

zJ Po,??

L _ _ _-.;,'3f-jYI.
'"
IZ Y7 ;;
II y.
U

[~=Utj+===iti=t=~?~2" A,5
IB

vee.

8

lJ

"I

(!;

e

I~

I

II.>

~,..
..a~Aip"'lIC.e.
A47 leo
-:<'2

--'1 AI
4

3

A~

DI 1-ll'0,,-++-.

!~

D4UI.:?5-!-1--+-lH--H

Z'l

1'1 Alib

. 21

I

I

2",

I/C.c.

D1'
'"

eL.I(.

3 A>;

0.

!I'

Qt 1'5
Q") "I
Gl3 IZ

~"

ci"lD

...

01.

q

e I ;::,..,"" V u:

PI 10

19 AIO

3 DI

DZ

--,_=_

~

D4 14
D5'':5
1(0
DI'7

l'

e

"

DOT SERIAL

C

1-13

,,>H 4

A30

If) D4 74L'?IG.iD
II D'S
IZ Dlo
14 D7

os~
8_~1.
~

G"ID

15 "II

r-

13

DIt>,L.:!..---=-i"",

A31

I
23 Ae
ZZ A"I

QIo ' :

~
I«>~
--....:;;:-----1+------717
t<.

vc.c.

~~ 2332

.,

17 Of., ..
Dl

1'5
_, 110 .., p
r!'! " " (

2.4

'" C I
2 , A3

A39 QT

I~ D5 l:i~
~
~ D4D~

D3U/~4-l.4-t-t~
D'IJI.!!Io_l.4--I-+-+-H~
~1l1.!.7-l._+_+_1_+__HH-...

A4

AI"
1.Z3 A7
'

,~i1"
.,

~
~1-I--+--iH--H1-;-;v

_____'/1<1
l T''>V

<1>1
'"

j..::"l:!.--I--t--l-+--t-+-t-t,

DZIJIJ.~-l._+_~
·~~"Ti~~H~~lt~~~~~~~~?M loillo D(b~

2'1

1:1;13

GND

Ae

1

P~~I¢f
R471<

+5V

"" 8L-+-H++-t--t--1
A'1W

+~~.v
le~1AT21L
:-I

L-._ _ _ _ _ _

r;~Ju-!-~=====ti=H=±'~~A 74LSI'i4~L!Il.!:Z~+~I-++HTIII
L------+~r_t-;';iIIt1>" ~BA ~y
lli----JU--I---------t-t-I-t-""~
t.. ZB

~
r<.

11'l>-:!:-

.~ ttti=====+~l
I
L~--lW-+~-====R+t~2~d'A I~I IYL14-1H-+-H+t------,
'"

~--I+-+-H--t-J
(,'7

3YI-'1::.!-+-I-+-+-t,

'

DIR G VeL

A3

'14L'?OO

eT "..9
I

2
2.1

2.3
CRT'-

HORI;!S'IN

I-IOf:1,Z 3'i'IJi:

14L'SO

.3

'-J._I-+_~zJ_<..t..__A__"._"fr4 LS32

4

J AII

10
SH4

7~

LS32

ROW 10
\l--------.:~.:....:.=--5 H.3 "<17
74LSOB

A

A

_ ________-,~~~~~~~~~~~~~B~b~O~O~OI4-001
APPLICATION
NLESS OTHf:IIIWISE NOTED OWN ~ ,)., J 8 I
•
TeleVIdeo:lnc.

~i~f1fH::======~:~I..!-:~=====================:::::::::~
- - - - - - - - - - - ,- - - - - - - :3~- - - - J:= r=I:t= = =tM-~-"-'A~ ~.2;=':'~._1F_'H_'S_H-_. 1-l~=Ci~ ~ ~:~T~;=~1"2;~ o'~i5~:~O~0- - ~-6=~,

~~~~g~I~~~~~l~'M~E"~SlGO"~'~'E'E~'N~~~C~~Y~~~~"~A~~hlljrrrnr~~~~-----------~
PC B S(, H MAT IC..5 3'
I Ll -1
NEXT ASSY

,,,co

US!O ON

A. .

GNP

L--+----1!

T -';'1' T

SCAL',

-

7

, 'CC 3 PLC

NDNF

x

1

. ....L .J_.

E.G", , ....> ,I",,,,.,
"P!I'D

"'D

5

4

E:

925 CONTROL BD

v

A.PD

__,_'_'r_

6

/

TITLE

(

(

2

3
RP2

1

H'Z
SH 'Z

5101 Z
SH 2
SH '2

'ZIH

c

a

'ZIH '1
OSH 7

VE.RT SVIJc.
C~AD ~

CHAD t
C.~AD 4
C.HADS

I~

C.HAD ("

1"3] All.

14LS04

13~35lt
1\

l./"'"

10;] AI~
7~L532

74 L":>3Z

MONITOR. MODE.
DC. C.ARRV

BUNK

9

sfl4

8
!"

J

c
J
I
I

+'N

I~

.,

13 ere M~ 'KL'------'12_ _
L---,-,"-;P4 A22 Qt\
__

-~~~~----------~;:==~----t-t-1===~O~
DISP Et-J
SH

t

Sf.4 t
'"'

sHt

Q5L~10~ ~~________-,I

CUIl"SO~"6'-"'1( 1"3~,l"3~----I---f ~3;;1DI
1_4-;~""~.QII-=~----~

- C.URSOR

1\

CHAO'"

I

2
I AS4-

~

,,1"8

___

L~8
'4"08

L -_ _

14L'08

l!:..J
'"""'

D~ Q'.
oaf------,l

"".
...

-~~~~--J------------------=====~~~~~--~~~~~-------:-=~LS~Z
i t . ,

j~~~=~=-----------------------------~sJ

,

-:!:-

~

13 A"
I--'---It'l

A 13

A 18

'\..:::-----,

74LSI1!> "

I!AI8

'7o!1LS08

01

,"

2
~

~

L -__

AIO

5

c.w-,,+
Jq m.
VIDE.O
5 WJ.-.~
• be,..,.., Ji'J,I,es:I

____

.

_

.L

I

'>fL»Z

/

.'

3

J~"':"::'=---

, I Ale
.IAI. )

~

I

REV

~~
__
===+~====~BL~A~K~~~'~II
l~~~~~~~~~~L~S~O=8============================l=!===~~~~==================~~~=================
__________

\..4~~-+----r--I~""IAIO

'4,,08

14"08
OJzr;/9Z0 ATTS

AI

13

4

C-...I +.....!

'y

•

'-I

AID

B

•0

S

oelCIL<;08
8

SH4

A Iq

~~,_
~u:,u_~c

12

~H.:I
SH.:I

R

'-------,CL

,4"00
•
•
~~~h---------rr-c~~~II~~,qJA"
~AIZ·
~ ,,;<'° "
I

DEL Drsp Et-J
DE.L C.URSOR
\-\ALF INTENSITV

________

I~7 vc.c..~OE.
1----'-1CK

•

4JAI4

74L506

4

10

+-,v

"L~I------I::11 D~ ~
I~ Q1n~"3~
QIi..::4~-----r"'"
14LS3'Z2~__________________-t-r=t==="===========:=t======~1~4D~
~

OND

B

I

~
',~y;6'6

,

J

eUN"

I -

I~

UtJDER LI"-IE.

~~

~4====

~5~J~_A~~LS02

A

SH4
'5~4

5H4

BGOOOI4-- 001

.PO•
• PItD

MATE IAL

FINISH

-4-'

6

lJ'

'ffi/ . .o ATT,

L -__

7

OJ

5

4

3

2

---+r-

A

(

(

(

)

7

8

1

2

3

4

5

6

REVISIONS
DESCRIPTION

D

SH '7
51-1 2SH3
SH 2-

5\-\'Z.
SH :3
SH

'7

SH 3
51-1 3
SH '7
'5H

q

BLINK

51-13

3

AI6

BLII-JK C.lK
RAO

12

"
74504

DOT SER!AL

II
13

ROW I~

AS

4
12

REV VIDEO

I!>

AIS

SH 2

All

DEL DISP £t-.J

4-

'740{"

IK

q

'5

B

'jH Z.

C5

VIDEO SHIE.LD6ND

RB

1<4

270

IK

1<3

VIDEO

>

fA8

R

COOO-F'f'rF

Il

5/-11

~
q XX

10

8000

'?"

SH 1

BFFF

CSf,JD

4~1:l-'7r~F

10

AS4

q

DISi='

8

~

R/W

3

A35

f"..-.

lolASS

"I-

8

~

74 LSOO

13

"3

74L?~Z

SYS ~';:~~f

RP3

~4'7K
4- 14
z

D

~

Afr>
'14LS74

I .-.--

zIA"3~

5HZ

Q

3 CI<

R
I

GMP

T

W

+';V

A3 G,

[\l

A3lO

II

0;,1-1"7

~

13

~An

'74lS3Z

"

C?

COt-JTR'OL LATCH#Z

~

'14L'j:3 Z.

~
13

S

co

U1

5H 7

74LS32.

4

,

~

01
SET DI')P RAM

B

'SEC

CO"-ITROL LATc..i=l il'1

8

A3~

q

74L~04

A4

SH I

74L~08

10

f1)Z

~A~

5HfA
SHe"

SH I

(jiOOO-3FFF

4

-~

SH 1

D!PSWrrc.H PORT 1#6/
DrpSWnc.H PORT ~z.

7

II

S+l7

SI-I \

9xX3

C3

74l~OZ

'SI-II

I

gXX2.

-

SH 1

SH I

COOO-or!='~

AI4
"3
2.-cL..-/74L'532.

"

I~

B

rFF'l"

':>1-11

74l.S00

I

I~I

AI4

E.OOC) -

Eo
AZ8

c

SH I,Z.

DtSP RAM WR

II

74LS3Z

\J1

i))

0
0

SH 2

DISP RAM

",HZ

'1

-=-

C.HAR elK

A

r-~'~PP~LlC~AT~IO.~~~~==~~~~~~~~~B~6~OO~O~14~-OQO~I__~
NUT'S"

U"O O.

"".SIO ••••• I.

•

TeleVtdeo~lnc. 5 J J

PCB SCHEMATIC
92'; CONTROL BD.
APPD

FINISH

7

6

5

4

3

2

A

(

(

(

(

(

(

I

8

I

7

I

6

~

5

I

4

XTAL
13.f.,08MH~

~DI

0

¢

C.IS

1<15

I

RI1.

RI4

7'50

I.BK.

AI~

~'Z
74504

IH~

.,

470

+-'SV"
"

1

RP3

1E IZ-

3~0

10pF

El'3

.A

1('1 Z

,
Go

4

<1.'71<

'10

lq~

vu. CI('

o

~
~ c..

8

GD
cSND

81

74<;04

41~b

"

II

C

DATE

I

I

APPROVED

I

71-12,3
SI-l

0

~

'71-14

74LSOZ.
CHAR eLK
C.HAR C.lK

10

S~

2.,4

S~

I

NOTE:

II1z31

00

'5

CI(

Itl [I! t

PAGE PRINT
BlUJK C.Loc.K.
C.URSOR -BLOC.K

DIZI
Q(Il
4 DIA45 QI 5

01
SI-II,2.1..

I

StE. SI-n I

+'W

CONTROL LAfl::1=l ,. I
CONT~OL LAl'C::R:tI=2.

/

1851

I

1

REVISIONS
DESCRIPTION

'74S04

'SYS ~~;;ET

'11-11
')1-1 4
SH 4

l:iSR~y

'S£T DISP RA.M

10

., ] A4

~L510
AIIO

SH 2,3

DC. C.ARRY
8

-=-

-

DI::

74L';04

GIl>. 14
I~
GlB 12GlC

B

1

10

I

p AZ4
T 74LSI'"
f"L

-t
~ I>.
-.:::..

AI~

TC.

All

II

Ie;

~

I

2
I
IZONEILTRI

'5l-lrFT C.LOC.t<

YZ

I

3

DZ

"1 D1

D3
04

8

Gl2"
'i

0'5

13 D4
14

01.

11

Q'
Gl4 111
15

qZC; I qZ.O ATTS
B1 - DIREC.TIONAL
EXTENSION
c.PU RE':>ET"

Q5

05

Dr..
18 01

\ , D7

w/so ~z.

74LSZ'1~

03

Q" I"
G1
GNP

19

p(" ro; A 14 - OR ''''- P[N Drp ~OC.KET
FOR OPTIONAL BOARD C.ONNEC.TION.

SH'5
$1t4
')H3
"1101 2-

* PWS (/) 
>

>
>

I

1

B

OJ
V1

....

--

N

-

~

PI-I!!
~

li7

t~~

C41
0.01

C.URREt-lT
LOOP
WMM
(OPTIONAL)

0

P9-1
pq-2
P3-1
P4-1

~

Ul
00

0

I:)

-

CHASSIS GND

C.9

"~pf

:

1

P~-1

P4-1

LOoK 6ND

"7

fi7

USED ON

NLUIOTHERWISE HOTED DWN

eH.(

INdi.< ,r~..4iY
...... 0

2 I'LC 3 PLC

SCALI'
MATEI'IIAL

-+.Ie

NOlliE

6

I

5

i

4

I

3

I

..

APII'D

APII'D
FINISH

-.+--'

I

j)'-:L' - ,,/.,;.1

IMEN'IONI AI'I. IN

L J.
--T 'I"

7

s;......., to-USI

ANO

+

I

P~-13

)

~

NEXT ASSY

"'""'' ' " ' ',.. 8

:>
Plo-~.
>
""-"}
:> P~-Z?

pqHI

APPLICATION

1JD 8,....C'P O'l-.P"llrs.r·rllPRlsl

Pf.,-8

."

I

~

~ P

-b

t

-=-

R2.5 c Rt4
.,~ c '330

~
.I' 0

I~~

741L~oe

(FROM INTE.RNAL MODEM)

>

AS

Z

5

12
~HZ.

I~f

)...

.

NM!

~I-l?

RIIO
< ';IK

~\J

RIO
4.7K

e.4

?

Pf.,-Id
;

1

~H4

:>

+'51/

\c
-.I
.....

+'?V

'H 4

Bow/wOB
DI!>PLAY PAGe. Z

Ib

10-:!:-

B

~HS

TIMEOUT BLANK

GIl 1'1

- 12V

"11-13

~ P-I-h
4-Y 9
_ 3Y

158

II

Ibr--

L-i-\l

S

'----+-'jQ'~~

~------------;-\~~34A

IB

;; 1/\

MM 14
MAIO

'5
G ~~

19

~i6
121

vee 9
3Y f-<.--l_l_+-+-H-t-H-Hh
A20 4y~I:2~-t-~~~~

S

'-

vee

DZ 3

~~

I

2'0>

D3

A8 AI7

~

zz A,,) Z332. Db

w;:

13

r

15

D7

,oWl) [Jfo

Is AIO

r
lOllY
D31-'1-<,'3+t_t_l......r-

All

~1-'14..l..-j-+-lH--r.

9

ffil~

z. AS

AlB Ci'l b

tSV

15 916 7

<:<1.

(SI

~~"'li;;-4-t-1H-I-++-t-~::'i!~

Z.
S

10

s

AZ

2

A6

4 ~~
L-+44_j..;--+4-~3'A~~

I

~I

1433

'GND

171
.-L

-

8~
.l _

B

/ AI

r---------1~-------otyAL

GND csz:
I~

OJ

o

D21-'-1-:'---'
D3r.7---~

D41-'-14-'----......

D5~1~5------~

D6~1~6-----~
17

DE. D7 1 - - " - - - - - - - '

zoy

RAQi

~t--+4--------------------------------------~~~:.~~~-----}_SH3

'2-

~r -1~·R"l.

A'PLICATION
NL . . . OTH.OWISE NOTED OWNf.j
"--U'-EO-O-'-lIMfNstOHS AftE IN
CHI( J./..,irnf

1-.-,,-,-.-s.-y

I-L

ANO

PAGEl

2 fIILC 3 PLC

I, . I,

, ,

15A=

BIT¢

SCALE:

\1

NONE

MATEllIIAL

5

4

3

(NGIf
"1'1'0
""1'0

""1'0
FINISH

-f.-

6

o

9
L..II

RA¢C~;,B~~~~~~~~~~!A~A~~/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Jj
~~it~~
~~
I

7

N

\1l

L-__.,.::G;!N.!:D:::..-_A3.:J

SH5

D7
_
GNDDS cE:

PAGE Z. SEL SH ')

vee R/w¢

10116

L--44-~I~qA~

~~§

D374LSI6&

~

IZ Db

-i::7 . - - /FIA 241 '211

L+__~+-~Z~L~~

SH3

~1'_1~L..!:D:::::O-'-T--"S""Ec..:.R"-'IIA""l-SH 3

D2. A/2.

~5V

L--1=tti===t±=~z~~A7

A

!i1"FlVCCcp

r-----------++-----~§A¢

20Y

Zyr~i::J~f~;~~~~j8~ AA~c~

G

2

..:L

7

15Y

DI

•

4'~1~ g ..,.

II

VCC elK

.l.-I--+4...,.7+-1Db 74L'O,374G6 6
...
14 g~
g~ 195
l.....a D3
03 12.
D4~, ,. =04

D51-'1~6~-r++,....
IX 17
5FP7r-:-++_t_I-t-++~

GND

GMJ

31

lol

'3

I

15

~zA8

MA'Oi-!-I2.=--iH--------t-'7.fi4B 741..3157 I Y J.=14.t:--++++-H-+-l-H
13

A32

~~ ~116

G

81

DZLIc:1 +++-.

2.
I A7

LI-----.

R21
4.7K

~~ ~9t+~~~~~t+:::;-,

F/&~
DII-'IO,,-+~

vee

s AA~

t-=illt::=t:::iJ
'
-; A4

14 JA 74LSI57

:~ ~~

~o9

fib 8

GND

18~2it5V2.Ir---

I

VC~y

r-

10.1-.~ ~

G

A21

6 ZA

MAf, 10
MA7 1/

'----S,UR ES

j

~b

156;Yr-

1-_ _I_++t....;2~IA s

r>.

12.

L-------..!;I;:.ly~

9

'I

RP~i

tsV

c

2 I~g~

,J.

_ _.«11_+ 5V

I

MA4I-!B~I-++++-lr--_--+-H-+-:~;;jIB

B

Ii

j..;5~H-++-H-l-++'_-_-_-1tt..t~_i~~~il-ii~

MA

-t5V

vee

'-f'
to 2A
A Z Z ZY L
MAl
74LSI57
IZ
MA2.I-'G=-"I-++++-l-t-+---+-I-+--,;.l2"413
4Y

ZZ R!0
23 (j; Z. (z.)
Z5 cs

8XZ)(

~

2

'-+-++--';'5;;-// A

zG D7

R/W

DISP EN

R. . ,~:" ;H=-,6);'-:~7£: ~_'l§2. (r_

MA"" i-=4~H_++-I-I_l_+++__I_I_+__is~1 B

.2 N/ C

S~f~C~H~~~R~C~l~K~_____________~2,1

74LS32

1tf~f ~~NtI4

~D¢

c

74LS32.

DISPEN~I\0~~~~~~~~~~~--------------------------~++~~+4----+--+-------t-----------------r---------tii------~~~----_1r_--lr--_Zct,)~RS~OR~~~~
CURSoRI3'3
Hf\R I
SYNC
SH "3
E
+5V
r--4-HI--___________t__---t---S}H '35'" 3
*'----.1I -16'tV
I 19 ?~
n

2

7-

RA~

•

A

BlDo()OII/-PDZ

1eIeV.....~~.,Inc. 5 ]'::ruev

0

(

(

(

I

I

6

1

_

5

I

4

t)v

J:!.Q~L:~:::!£_____________"--__~:~II
_

I

ZONE

r3~5t________________===========~P~rvs~E~0~NgEf=

:::=~~~~~~~~==========================jt======l2.~9
--==========~~~==
-jtL~=::::::=::::::==
_____=====~==:::~~¢V~RT.SYNC
I o-~'Is~
p,-RAM-E,!30=====;========-___
3b
: :~t::::::::::::==::::::=--------------------t-----;=~3~'

-

4

R/w

VSs

¢ 2.. W

ROW I D

Z3

"D,e

j~L======---__=====~==t~~~RAI -t6~~~~IIA

==j~~t=============================j=====~=7.~5
=:::~~~~2f=============================t====]=~3~eHADz
j~~L=====------===j===+:J3~8 ~1j~P.G5CCSH~~NI~p
2. C.HAD
RAe. 3

39

c

'

cl

1 APPROVED

I

o

SH

G
5H"

HALF IN TEN S 11 Y .-. P II _26

-

4.7K

9/01rz.. /7

C~ADI

ATlr"-l
18

JII i40IZBlI3 Z1

-jD~O~T~S~~S~E.~R~'~A~Ltrl~=======================l=====i===~=

33 Il

c

51--12. _ 92SI'220 ATTS

SHG:::~R~A~G1E~Z~S~C~L~::::::::::==~__====::::::::::::::::::::::::::::::t:::::::::::::::t=::::::::::::::::::=

S-,H6'i~= ~D)~,r~CASI~R~-(iI~FR~I~: : : : : : : : : : : : : : : : : : = = : : : : : : : : : t: : : : :~: : : : : : : : : : : : : : : : : : ~ J

SHIFTCLOCK ~Pl/-Z/
VERT SYNC
~PI'-23

CLocK

: ::::15~E~T~~DIS~P~~~A~M;;~;;~::::::======::::::==:::::::::±::::::::::::=t::::::::::::::::::::::::::::::::::::::::::~
7~LS04
____t===~=================
3~~6
~~~-==eA~TTHR~I~BIU~T~E~~~~~~========
AT1R\BliTES_
'---+-I-~"i~
A35 )74--L'500

~==~~-f=E~~-j-rr~s ~6~
~~
-:::=iA~'4~=======_=_=_=_=_=_=_=_=_=_=_=_=_=_============1=~3~ IB IbtVee k~=j===========-=~:==t=~:=9X~X~O~=~3:::============~0~~~X~I=========1~~~~~~r=:::
~
~jlz~t=============1===~l=~[ii[~i===:::::::::::::::::::::::::::::::::::::=2~~~~--------~~~~::::::~-~
h~j9Cl-------t--t-r-=~11

----,,"'3
SHI-

~~
EOOO-i=H-F SHI
COOO-Di=FF
DID\PPSWI
TCH I
SWITCH

__________________________

LINELpp.,GE.

:2 IA

_______

____

+sv

caDa -FF" 4

2.'(0
Z'( I

A42

74LS3Z

PORi if

9)("Z

1/
10

==~A~¢~==================;~==~====F~/~32B
__~t-----_+i-_________________--_=======~;;~;;~
__
5'" IS ZG 2Y3~~~7=l======~===:
IY
IY P-tAI5

B

J

DATE

.-. P 11_ I 7

HAlf INTENsm

'!-IAOlNT S

IA

1

I

SH I, Z

-=j~~~z~~~~=~;,;=======================t=====i=~9~I~B~OW~!WOB VIDEOIJ
~-7~=: = = = = i=t= = = = = = = = = = = = = : : : : : : : : : : : : : : tT=:~CO~ )M~\P~(')~'S~TI~E~ V~ID~E~O~
10 BLINK CLK

SEE 5HEE.T

SH'"
L

~400D~FFP ROW"
~~~t~~O~~~~~~~~~~_ _ _ _===========~I~~~Y~I~DE~O~~~~}
~:t1~~~~~L====----==::::::==::::::t::::::=+~I(,~CUR&RBLOC"-=[B
I
~~~~::::::===------~========~===~=~~~AD7
=:::j~~~======--======~=~~Z~I
zz RA'5 A3':l CDMP,VID
RA¢ GATE
R4
z

¢

A~I

PII _22

PAGE TWO

fl:i11OKJ

DESCRIPTION

LTR

r

r
~~~~~======-----------==::::::::::::::::::~::::::::::::::::~ii~DISPEN' nPG~O~NE~~2~6~================-____===========~D~IS~P~R~A~M~===
: :3.S~~~
_________========3~?r,~ ~~Yt;ti_/DD
2t~QB~=====---------===================~ISRCURSORIN

1

REVISIONS

r

WI-l':!.!O;l!R:1./!.1"l:~S~Y: !:N~C~_- -j~

115

I

2

3

2A

£A~IL~-----------:-::::--:------;1'1 A'3 r,..:.;I1'----t-_-c",
I
"'-'='2,...."....._ _/,~

AI

74LSo4
A36

12 74L

SOO

9X X 3

PoRI

2.Y'2

A38

'y~~~~6~!=======~=====---~~------~i-~:===~~-------------_=======~~~~Ji~~I
\.-J26~
- -= :.: . .:. :. .:~
I
l

74LS13'3

~ G.

~ '5

IG

-

GND
I YQr-r

I?

8

5000 -BF-F F

~

I

C'
4-

A4'='j

~_

~

~~9~

0000 - 3\oF'F-

}J"

__________

_ _ __

CONTROL

h~8__________________~~=-______
CONTROL LAicH #'Z.

~4LS'3L
2

L-__________ I

~

U\ICH #

../74LS32.

A43

3

74 LS3'Z.

I12

A43

DISP

/I

RAM

S\-\\

SI--IS
SI--I5

sH

I

B

SH I
~~Wo

IJ1

CD

SHG

o

wR S\-I z.

f--

74 LS32...
VERi

SYNC

4 PZ-S

A
""AS.,

-

USODON

'001,,,cI3",-,,

, J J -I,
SCALE:

AI oNE

""'PCB SCHEMATIC

EN"

:~:

CONT BD 92'7 G/A

.Io"D
FINISH

I

7

,

6

\

5

4

I

3

I

2

I

1

(

(

(

8

5

6

4

2

3

1
REVISIONS

ZONE

r- - - - ---------,
P4--4>

0

P4-II

RT5

E5

HSHAKE

EG

I
1
1

0

DSR

P4-'ZO

DIR

2

L -0- -

E7

~

RP3

I

0

S3
EIO ~II
7<;~"

Ci

~

0B

1)

In

8

I AI6

II

/2

4
53

_~

I~

I1

8

v

L, I- ~~~F'f-

b-!'l---+--+-~-_____-+-+-_-+----l

RXD
R)(.n
T
SERIAL DATA FRf1M

P4-2.

PRI~nI=R

c~~

".l.Q. c.l.C4

... IOOV

J. luuv

I

SHS

E2"I

,11

DCD

IOOV

r~yPf

Y f-

P4--b

P4-£',

CTS

P4-5

GIZ

c
53

GElS Elb

9
10
2

E3/ E32

DTRE.N

II~IO

P3-LO
~~-4>-o~~~~~~I~~~~-------~
EI4T. CIO

S

1'2

12 ~'I
A24
~
B
74LS32.
RXD A4RT ~~-1-_+-__________
---l

m

Ln-

CII

DSR

-=- 3:Opf

v

v

'---i I- 330pf
lOW
J A23 }-~I~I--I_-.......--+-------1~-T:..:'A:.:.D:::.-~:__4 V3-2

L, r

...--+-----...!.!:..iI-Q
__
,---

13 ~':l'32

r:2:"'"r I.

~ ~ CSjJ~ 10

£30 L-_
L-----,;
g~
_~'~

~_IO 5

~r-

CI'3
330pf

P~-II

loOV

I ~--~"'?,"""'-""'.!.474LSOll~tl

SE.l ACIA l8X'3X)

~Ii

o

751B8

...---4--------:-A,="'6r---=.20_L _A_2__~4'74LS32.

"IOOV

II

PIO-II
PID-g)

B

3

~

75188

'J~3
74LS32. I"
.I.-..J

---1F::!:A~G~1:::....!P:!R~IN!::!.T.l-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---:::;;;;::f-+-+----.J

A
A
D

I

l

~~~ ~;-~'REC110NAL

]

8

"3
'--_ _---'

r.

"

en

TTXD MODEM

r~£PF 5ERIALtATATOPRINIER

-, P6-2.

P4--3

C 15

Y f- r~o~Ff.
I-_ ....~~~FF
IOOV

RT'3

Y

P"3-4

~ ACIA-I

w

R

q~74S04
(0 A"35
8
.....-f\,....,3""'1-:.:::....j
74LS3"Z.A4-0
13
12. a
7406f""'q'I.·:2'-r--4.....'\. 6
12

p~-t--~-II---~:LJ~t~~~~~~~~~~~~~~~~~~~~~~~~~~==~y.~·4~~~s~
32~-1/3~A30
I
J. IbOV

IZ

2
__--~H

9
4~----~~l£?,.JA'2-r/~~--. ~I ~

.g

5H1{

+sV
RP4
>4-.7K
•

~330Pf ~330PF~~1f_330Pt-

SH G

6

UV

~--44----------

CiS

P6-3

SHS

HSHAKE

'---'

P3-~

TESI

DTR

/3

C

SHS

~

PF ~330Ff T330i'F,~ 330PF
T ??9.
Illl" J. 1001,1
100V I IOOV

P3-5

H'SHAKE

1'l.~9

~

DCD

APPROVED

:'lEE. ,sHe:ET \

~
~ 4-.7K I
~5
6
-{r- -{r- -{}-4-- - - J

C')

P3- \3

DESCRIPTION

LTR

I A31

EB E9

P3-IB ) TEST
P3-b

~

<

I

~7 R1W655IA-1
\liZ

\
I
I

,

RS¢
RSI
D¢

D'

I DZ

\3
0416

YI

lCTAL2~

Z4 D6

D7

________________

XTALlI-!G=-------+-_-----.

g!

OS

,

PIO-5

-, PIO-7110

'l6
IRC'5' ( ACIA)
SH I
.~~-----------------------~~-----------------------~~~~~--RXC
RXC~5~--------------------------~~---------'-~~~_--4
P6-12.

IRQ

Dil:

J)
...

~
RI3
4,7K

+SV

,

T

P/O-/3

~

~ GND +5V

~

...--_4....Jr

-e

11
10K

-yV

C'23

RIG

IOF>f" I K

rj2

veer

,..,.>__O
Y3

)(T ALlj.::"::..--~.........

\Sl
(I)

0

> RIS

OPTIONAL
>
~ ~

;. »,
<.>
~ ~ '>

I

D'3
D4
05

+SV

9

h

~I'l~ 12C

DE>
D7

~1~~I~~B~D~RI~3~--~--4~_+-~~~_+S~b+7~5~9~IO------------------------------__~Z~'\~~ RV~~IB~~D3~~~+-~~~

/,::.
~ -~

2

:3

BD Rl'2.
BD RI I
BD Rl" 

r-SH I

BII-'£,---D-}'2.--~I-I-_+-+-_+_....

4 I
G L

B1J.:.14-..:...-....::D::..:I_HI__I__+__1_~

B A'3 A3 B3.t-::'2;::-...,:D::":¢:---lH~-I-'"
~ ..., 5 WD LENGTH
II A7 74lS7!WB7~9~....::D::..:S:.-+-I__I__+__1__+_++-~
15
o-~6~-S~I....::O~P~8~ll-5~--__--__--~~_+~4_----------------------------------~13Ab
B6h7~...,:D~~----1H~-I-4_+_~_+~~
14 ~/:::. 7
15
5
D6
13
B
17 A5
85 ~3;'-""::D4=---1--+-4-4-+-1--I-+--1--1-""

-

4

I '2

~

"

~ ~j...:.I:::.O--___.

r-- 1\4 GND 941-=--..::::....:...__1__+_4-4_+-1--14.....

IQL

EDll

V

T
~+t5 r:.---.----------1
20 I

910 I 925

~19D ~~~o_~I~
'Z.
IS

~ ~~

3

~n

~B~D~R~T~3~--_+~~~_+---------------------------------2Z~.A~CC GI~~IB~~D~3--~4-+-~~~
L-~B~D~R=~~Z~--_+_+--4-~----------------------------------~4~.AI
m~16~~D~~~-+~4_+_~

~__~B~D~RI~Ir---~H----~4_----------------------------------~17~A2
B[JRT~
1/

A41
L..------::P::-:A-::R=-'2.~~--t-+-----......-----------...------------------.!.;8::-tA3 74LS '244B4~1::"2---':D::':7:---II--I---1--"

o-~~A--------~~~~----~~._------------~--------------------------~~l

B7~~~--~4-+-~~_+-+-_+_4-4

~17~~R

...L!,...f
- IElV

TIMEOUT BLANK

-

10574LS~

I

SH4

B

A42

. '1

£

-IZV

t

~ Pb-S
~ P6-IO

T

~ Pb-b
Pb-'j

740E>

13

\I

i·

-.II

1

P{,- B

-

P7 -2.

R)c"Dt

P3-/2 )
P3-24)

---'" PI -4

R)('D-

IAD+

P6 -1/ )
P6 -4)

TXD-

l,a

)P£-IS{SFENOTES)} CURRENT
LOOP
) P6 -0" (11Pj

1

"h..

QI
'-"ZN4401

fRS

10K

~~r

Rl
z{

VIDEO SHIE:LD GND--"

-L

10 It<..

1-

PZ-3

~P3-7
P4-7
LOGIC GND

-

R'3

?>~
vv

VIDE:O

~ E'2

~~IG

COMP V +ITL VIDEO

---'" PZ-4.

...l·P'Z-f,

l31Q 00 DII..l- o()Z.

I -,--=-'P:..:PLl~C'~"O,-.-"'1. NLESIOTHI:AWllE
NEXT ASSV

NOTED

1-2 -B'Z.
cDWNH,H""r
••

USED ON

'NG

~::~::'------l

•

TeleVldeo~lnc. 54.)..

""'PCB 5CH EMATIC
CON T BD 32'5 G/A

A'''D

FINISH

7

6

5

B
1>

P'1-1
P'1-Z
P3-1
P4-1

CI':l

OI t
16v
....

~ Pb-7

1-

~p 0-4-

1

Rp
330

1'2 A4'l
74L53L

8
74LSOB

~

I?tJ
~
-

9

SH 3
5H 2.

-

0 Q2 2N4401

Y

HALF INTENSITY
SH~

~ P6-1
~ P6-14-

)P7 -I

10
-

~330 >330

+1'2V

A31

A

~R24~R2.'2

RIO.

4.7K

J

P!2l-Z )P\-'Z"
SH "3

A3S:'

74LSOO

9J 1'1"3,7

ROW 10
SfB
SPEAKER (!="ROM INTERNAL MODEM)
Pb-13,

elBA

~

8?

10

P0-1 ~
PI-I )-

BoW/WOB
DISPLY PAGE 2.

lC3!5V~

-W

NMI

t

+SV

16
Qf,
19

GND

tl'2V

4

3

2

£Oi~80 I

1

A

()

(

)

ZRE.QP

u
Z

EI8 E22 E21
E2S E25 E27
I •••1 I •••1.::3 I••• II •••1
EI9 EI1
E21
~
E24 E26 E28

•

r·······

SPRRE
I
ui m ! ••••••••

H

>->

o
~

•••

•

(l)W

a:

e

• ••• ••
•
6S51R-1

H-

~I

~

.c:::r.

. - ......I
"II

•

W•••••••

a ••••••••

.,4LSS2

•

•

••

•

h

••

~

•

••

•

•

.. ..

•

••

•••

•

",

~£J

• ••

..........:

~>

•

•

~ £J

• ••

6S1211

•

.....
~b

74LSS14

•

••

..~

•
•

'1I54SA-1 •

~

•

..

£Jell

•

c!,::,Z:: ...c! ...... .
. ..

llc:t
t

..

6116

•

: ~~il··~IlJDIl·JD[lj]LI~·~·~~
•
•••

•• ••• ••

i .: ••

•••• •

•••
•

•

,

WI

. . . . . .:

~.l"')

.

I · hri!I!~.n·~~!lJ[!:nl·~.E!3·[J·d ...

•

.......... .

14LS245 • •

• ~ 1iJ[j]L£.~·!J·U.:iJuJ~ a

• 14lSI1t

...
({

•

•

••••••••••••••• • •

~

2SSS

u

:

• I''tiJCl.r.!j.Cl.[I].Cl.~.Ql.

• ••••

•

• ••••••••••••
••••••••••••••••••••••
•• • •
•
••

2114

l5S2:·

.. .

~ ~...:J .I~::..•••t ....
•
•
741..1157·

•

•

•

74LSIS7

'

••

••••••••••••

.1 t::::::) • ••
•
• ... ..
•
.............
.
.
.
Xl·....
.u
..
........
:.
..
........
.
.......
.
• •••••••
•.
:>
I
>.
I
·
r.>"
•
I
:I>
•
~n'"
:~~+~.""
.. ...... .. ...0-. •• ......
.I ••• ~: . :.:~::;,...!:;~o:. •
:..
..
.
.
~c:J~
· •••••••
."
.•....
:)
............
.
..........
.
...
:::
.
•
I
I .. .;..;.... :) . I ••••• • · ..........
. .:~: ... :....' ·:i~... ,.. I~'
· 3~
·
.
'
...
.
•
•
• •
·
.
.•
••
•
•
•
•
•••••••I ··.1 ......... "'.......•.• :' ....
•••••••
• .. ••••••••
.
.
.
, .. ~:::.~)
>•••••••I
·
~~....... .~ III
•
••••••
•
••
• •
•
•
••
·.I
•
.
.
.....
.
••••••• .....
•••••••
.
• •Ui•••
.
•
•
•
•
•
I
>
•
I
·
~
l
....
• •• •••••••
•
•• •••••
•
•

••••••••

+

•• •

!'"

•

•

•

•

14L~

••

•
•

rl

•
•

•

u.::3 74LSISB •

• 14LS17.

•
I

• i!-'~~'-'"-''''

•

•
•

..74L:I.

•

4;:;.::3

•

5

74LSITS

•

•

r:l c:t

•
• 74LS8I.

>••••••••••I

•

•

•

••

••

~

a

•

i

!:I ~~O~l
U ~1eI 1eIr:l
~E7 - Rl. •

•

r:l~U
P 15 ~

74LHI

••

74LS273 ••

•

•

••

• 141..1273.
~ c:t

•

•

I •

74LSIII"

~ c:t

P'1

•

ctl

• •

:

•

•

• 741S244 ,,-

•

•

~

~..

•

• • 74LS14

••••

•••••

• C6S

fi·'.

~:~r.64
.~::::::I
• ~
~

... ~ID
C6S

fieI·
Ell-n
••• •

.74LS244

I

EI4

5 •. : : 3 . ~CS!

p
4·. •

cAD •

•

•

•••••••••••••

• •

• •••••

•

• ••• ~.

fii. ••••••••••• : •

o

•••••

~ c:t 741S244

..
•
P3

•

••

L-...J

•
•

•

• •

•

0 .. ' • in 1.:
~
~

l.J.' • •• • • • • •• •• •

r

•

i~::::::::)
-:

:I~ . . . . . . .
."....... n

•

•

•
•••

'c!'::::"':,

•••

•

•

~

I·

PS

• ••

•••
•

· .: ~.: 10. ......•..••..
E6

•

•

~

. : : 3 74LSS2.

~II!
••
~~~U~51".

•

PS

•• §~..

•

•

• !"! ••••••

•

• • • 74LS15!1
••
•

• 14LS!!l!

~

5•

~

•

"Ie-!!I
;r,",~D.

•

~.

•

•

~

••

74lSl4 •

·C82

•

rl

W

• 74lSllll

a 'ir.....,..-.:!'.~='

•••••••
• 6_> •• I
~
a •••••••
• !'l ••••••I
74LS74
•
~ ~OOO ••

00

....

a •••••••

• •

• •

rl.::3 74LSS2.

~ c:t.

•

•

I;;::::::::~:

~

• 74LSI7S

•••••••

••

."16

~

••

••• i!-'~~'-'"-''''

W

~.

•

••

•

• • "17
•

•

• • ;:;• c:t

>. .•

.e ••••••••••

~

• • 14LSS2

III

•• 14LSIIII

••

II!

... ':l
•
i '1 ••••• .-

•

>: ••.

••••••••

~........

~

•

•

1 ..rl ••••••••••l •
a ••••••••
• • •• 74LSI66•
• •• • • • •

Ie £ J

a •••••••••
• • 14LS88

.~.

• •

•

: I :.
a~ •••••••

• Rl ':l

...

• •• ••
;:;~
'

e

••••••••

•
•

:.

P2

a

E511...J.1

"I

I
•••••••

!~

•

~

QI

•
•

., .....I

74LSS2
•
• •• .. > ••

14LS86

..

.- .

~(j416

en

.

......
.
• • ~~
·1

~~

ru ••

~~
u

.:

~

LIl.

o

·

••

~':a:
•

•

•

• ~~ • • I
• • a •••••••

11 •••••••

•

•

• 14S14 • • • • • • •

.;.::3

•

65SIR-1

"12:a::

~

@•

'" '"TII!:!:!:Hfll
• e ••
••
••••••

.m:E3:

~ ~ 14LS14·

! .

........

;:;~

..'"

"21.c:::r.
e•••

•••
•• • ••

':~

•

....

•

wen
....
m

u

~

.

-'lSI

••

._

•

•
•

1: : : : : : : :

••

~~ ........ J

0.

(

(

()

o
••••••••••

S
•••••••••• ••

I

1....••...liI crJ•....•.• k :.•••
•

...

RPI

:·:·:·:·:·1

r-----t:-...:.~·~--=:·:·
•

•

•

CI

EIIElil

75189

• i············,
......... :: ..,.. . ... I············
•••••••••••••
Oj P3 0

Slit

6 5

l!3

E• •

,

9 ~ r::

••

RP3

R3

~

....
..

.....

0·1982

•

~... . , . TELEVIDEO
~

•

•

•

•••••••••• •••••••
• •••••••
~~ ..,~LSI6G I
• .. I ;X~ 74LS74
I
•••••••••••
••••••• • ••••••••
..
..

,······R
o

•

•

•
• ••

••••••••
!
•••••••••
•
~J74LS.I~

2 REQ'O

p •••••' . . . . . ..

~~2333

,....,.f
-, • •

•

••

• a • • • ... • • • • •

·RP4

••• •

:J;;;i..•••

,

=~~

.P2.
~

•••• •••••

r-:f18

~

~R4 ··w·~ : ~§... ~'"
..

••••••••
: ~:J"'~LSil4· ,
•
••••••••
~
•

EI
~
~ •

·........, ..• ... ....... ..I. ••• ..... . I
•
•
••••
..
:.:,::::::: ... :i:l : • ·:~·:·~6 ~. .:~;~:r.
....
•• •
..... .....I: .......·1
• •••••••••I.
••••••••••
•
~~
:~16..
..J
·
., .........
. •
a·········
..
. .......
..... .
•
.: .....•.. .......
•
•

•

•

•

•

~J74QJ:·

E3

~~~4;S08."

~~74LS2~'.

74lS245

~

•

"'E2

01

•

7

;!~74LS;2

1J74LSI;'9:

•

~

•

• • ••• t •••• ,

•

• • •

•

Pl1
• • • ••••••••••••
•••••••••••••

••

iJ74LS52·

•

m

6116

• ••

65451=1-\

••_

• •••

••

•

••• :

~ ~7.ilj28ilU::i-LI:lu:~liJLibi:a:LiLi·~·AJii."'.i~·i

"''''

~

0

.:::Ef:~. x!r~
.~I.5'
688 11HZ
.JJ7~Sil: .. I
...........

E1

•

....... .

12

o

r---:;;;J
~

27
28

C31

2

•

o
CZ8 POLARITY

E4[ij

•

",'-,8

" Ou tpu ts

().

~

'---~---""'"

I _-1------.

Additional
Inputs

r~

kJ=:.=:d.

r---'"""",,_ _...,.-_ _..d

I

"----~-!'"
Vl

r.:.>
I:::~ ~~;;=====:=JJrI

I

BAUD RATE
GENERATOR

~

I

CONTROL
& DECODE
LOGIC

I

I
,
I
CONTROL

I

I

CRT CHIP

I

KEYBOARNJ.r"~'" (INTERFACE )t===~F::-"'>I

r::C~UNlCATIO~
- -::-lI

CLOCK

GENERATOR

I-

~1>=~~~~~§J~~~~§
I
,.--. - ,
~
Qi r -{f .~-=

UART

I

I
I

I

~II

PROGRAM

DATA

RCM

RAM ( for

gi2,or

L -

I

SERIAL
INTERFACES

~~~)~~~e

I \~""""...JI

I

{~

-CHARA--C-TE-R-----

,

GENERATOR

DI:~LAY ~Io-_ _..,..._ _---,

-,.........._-_....,1
MODEM
INTFC

I I

RS~32 CU~ENT _ _Moot
I
_
--.J
L_
LOOP

-1-

1st PAGE

~~Q~~t~~

VIDEO GENERATION

2nd PAGE

~~ bytes.\

-I

I

I,.l920,uaed...L

L_

I

_

_

VID\o
ll.GNAY,.

_

.J

The CPU has control over all functional sections of the terminal via a
data/address bus and additional control lines.

The Display and Communi-

cation sections have some circuitry that runs independently of the CPU.

(

The Display section refreshes the video continuously, automatically.
The Communication section can send and receive words at the serial level
without CPU intervention.

The CPU ia the Intel 8035.

(See Appendix A, 8035 Specification)

The

bussed expansion capability of the CPU is used in order to provide external
program memory, data read/write memory, display memory, and memory-mapped
1/0.

Depending on firmware requirements 2K or 4K bytes of external program
ROM can be accommodated.

(Instead of the 8035, it is possible to use

an 8048 or 8049 CPU, thus lK bytes or 2K bytes, respectively, of external

(

program ROM memory can be omitted.)

In addition to the internal data memory of the CPU, there is a

25~

x 8

Data RAM (two 2111's) external to the CPU that is usable as read/write
storage by the firmware.

The characters being displayed on the screen are accessed by the CPU
via two 2K-byte blocks of read/write memory (RAM).

This memory is on the

same external data/address bus as the 256 x 8 Data RAM and is accessed in a
similar manner.

In addition to the normal read/write control lines, the

Display RAM requires that the address multiplexing logic be properly
controlled by the CPU for transfers to/from the display RAM.

The I/O Signal lines on the CPU chip that are not used for the expansion

-2-

data/address bus', are used for various control and status function ••
Additional I/O data, control, and status ports are gained by use of the
expansion bus.

Part of the data expansion

theae Input and Output capabilities.

~ddresses

are u.ed to implement

(This is known as memory·mapped I/O.)

Thus, these I/O ports are treated by firmware in a manner similar to the
RAM accesses, but are used for I/O transfers.

Via the I/O (direct and memory-mapped) the CPU interfaces to:

and

(1)

the CRT chip and other display circuitry

(2)

the UART and other communication circuitry

(3)

the keyboard.

The display I/O gives the CPU control over the CRT chip (including initializing
the CRT chip. reading/writing the cursor position, and scrplling) and some
video display circuitry (including a FORCE BLANK control),

Once initialized the

CRT chip and other display circuitry can automatically

perform the continuous refreshing required of the CRT by generating the
video, horizontal sync, and vertical sync signals required by the CRT.

The communication I/O gives the CPU control over the UART chip {including
initializing the UART's mode and sending/receiving characters on the word
level) and some other communication circuitry (including printer port
control, BREAK control, and control over the RS232 'ready' and 'clear'
types of Signals.

Once initialized the UART chip and other communication circuitry
automatically perform the parallel-to-serial. serial-to-parallel. and
signal level conversions required for the serial interfaces.
-3-

The Keyboard I/O allows the CPU and its firmware to scan the switch matrix
that is connected to the keyboard connector.

.

~ )

A clock generator provides the CR1lchip with the exact clock frequency
required.

Additionally, frequencies are tapped off for use by the CPU

and the communication baud rate generator.

Accessable switches and jumpers allow the user to select many option.
and configurations.

Operation of the above system capabilities is described in more
detail in the following sections.

Page references are to the schematics

of this terminal controller module.

(

-4-

2.

OPERATION OF THE CPU INTERFACES

The CPU is the center of control in this terminal (system).

This section

describes the CPU, the expansion bus, and the interfaces used to control
the other parts of the system.

Sections 2.1 through 2.4 provides most

of the information required by the firmware programmer in order to control
the system.

2.1

CPU

The CPU (Central Processing Unit)

is the 8035 (A54, schematic page 1).

It is the Intel "Single Chip Computer". containing control circuitry for
program execution, as well as program registers, read/write memory, and
I/O ports.

The 8035, a member of the 8048 family of single chip computers,

is the version which does not contain the program ROM memory internally.

The

system could, if deSired, use an 8048 or 8748 (each of which has lK bytes of
internal program memory) or an 8049 (which has 2K bytes of internal program
memory).

Using these devices can eliminate the need for all or part of the

external program memory (A49 and A50, page 2).
implementation and cost trade-off decision.

The exact configuration is an

When using internal program'mem-

ory the EA (External Access) pin must be grounded by installing jumper WI (page 1).
Appendix A contains the current 8035/8048/8748/8049 specification.
CLOCK:

The CPU clock is the +6MHz (5.9535 MHz, more precisely) signal

produced by the clock generator (page 4).

(See Section 5.1.)

nected to the CPU Xl pin (A54-2, page 1).

X2 requires no connection.

RESET:

8S

It is con-

CPU power-up reset is effected in the normal manner by connecting

the I)lF eapacitor (Cl) to CPU pin 4 (RESET, A54-4, page 1) and to ground.
A resistor, internal to the cPU, provides the RC time constant.

-5-

ALE:

The Address Latch Enable (ALE. A54-ll, page 1) signal occurs once

during each CPU cycle (every
internal CPU cycle as well
of external cycles:

2.5~sec.).

This occurs during every

every external CPU cycle.

8S

instruction

fet~h

There are two types

and data read/write.

(i

ALE is used

for both in order to latch the 8 lower address bits.

PSEN: . Following ALE, for each external instruction fetch, the Program Store
Enable

(PSEN, A54-9, page 1) signal occurs, see Figure 2.1.

Th1.s causes

a byte to be read from the program ROM (see Section 2.3.1 and 4.1).
FIGURE 2.1:

IILE

INSTRUCTION FETCH FROM EXTERNAL PROGRAM MEMORY

I--I~-'u--l-'ev--I

I

--'L

1-1_ _ _ _.---1,....1

(See Appendix A
for AC/DC
characteristics.)

(
RD and WR:

FollOWing ALE, for each external data read/write, either

the BUS read (RD, A54-8, page
signal occurs.

1)

or the BUS write (WR, A54-l0, page 1)

This causes a byte to be either read from external data

memory or written to external data memory, see Figure 2.2.
FIGURE 2.2:
WRITE TO EXTERNAL DATA MEMORY

READ FROM EXTERNAL DATA MEMORY

J

---'r

L
r--'ce--l
M ----------------~l
Jr----------------

ALE

II-._ _ _

ALE

J

L
"'0

IUS

(See Appendix A for AC/DC Characteristics.)
-6-

FlOATING

(

This system uses these read/write cycles to perform external accesses
to Data RAM (Section

2.3.2)~

Display RAM (Section 2.3.3), and memory

mapped I/O (Section 2.4).

All other CPU signals are used as bus or I/O signals.

They are described

in other sections of this document:
PIN NAME

A54
PIN NUMBER

SIGNAL

Section

DBe~DB7

12 -+ 19

Data Bus

2.2

P2f-+P23

21-'24

Address Signals (4MSBS)

2.2.2

P24

35

+4Hz FLASHER

2.4.1

p25

36

-DCR

2.4.2

P26

37

-PTR RDY

2.4.2

P27

38

-HALF DUPLEX

2.4.2

INT

6

-VSYNC

2.4.1

Tl

39

-ADV BLANK

2.4.1

Tf

1

p1f~

P17

PROG

-CTS
{KEYBOARD
CONNECTOR P1- 8-+15

27.-.34
25

-RESETUART

2.4.2
2.4.3
2.4.2

Figure 2.2.1 CPU Signals
2.2

BUS

During the external CPU cycles described in Section 2.1, the Data/Address
bus signal lines carry the address information to the external components
and the data information to or from those components.

2.2.1

DATA

The eight data lines +DBe through +DB7 carry the data between the CPU pins
(A54-l2~19,

1 through 4).

page 1) and all of the external memory and I/O devices (pages
Additionally, during ALE, data lines provide the eight

-7-

least significant address signals to the D inputs of the address latch
(74LS373, ASI, page 1).

(See timing in Figure. 2.1 and 2.2).

The data

linea are pulled up to provide adequate high drive characteristics.

2.2.2

(

ADDRESS

There are twelve address lines, +A. through +All, used to address the
memories and memory mapped I/O.

The eight least significant address

bits are latched (in 74LS373, ASI, page 1) during ALE.

The outputs of

this latch provide

+A~

on pagea 2 and 3.

The four most significant addres8 bits are provided by

through A7, all of which are used by the memories

the CPU via the output pins
and +All.

P2.~P23

(AS4 - 21-'24) for +AS, +A9, +AlO,

Four 74LS04 inverters (of A67) buffer +.All and

+Al~.

which

. are used for memory and memory-mapped I/O selection.

All twelve Address lines go to the program ROMs (A49 and ASO) on page 2.
(See Section 2.3.1.)

The data's address space is used by the RAMs and the memory mapped I/O.
When +.All is high +Ae through +AIO address the display RAM, page 3, aee
Section 2.3.3.

When +All is low, and +AI' is low, then +.A. through +A7

address the data RAM (page 2, A52 and AS3, see Section 2.3.2).

When +.All

i® low, and +Al' is high, then the memory mapped I/O decoder (74LS42,

ASS, page 1) is enabled, see Section 2.4.

-8-

(

2.3 MEMORY INTERFACES
2.3.1

PROGRAM RCI1 INTERFACE

When external program instruction memory is required, then Ie locations
A49 and A50 (page 2) are used.

The types and

~onfigurations

of ROMs

used determine the operation:
CONFIGURATION

RCl-l
In A49

ROM
In A50

411·

NO EXTERNAL ROM

NONE

fn:

2K EXTERNAL ROM
LOCATED 0 .... 2K

f!3 :
~J4.

4K

fF5 :

4K EXTER NAI. ROM

.JUMpERS

W26

W27

NONE

D.C.

D.C.

oC

D.C

NONE

2316E

OUT

IN

OUT

IN

2K EXTERNAL ROM
LOCATED 2K~4K

2316E

NONE

OUT

IN

OUT

IN

EXTERNAL ROM

2316E

2316E

OUT

IN

OUT

IN

2332

NONE

IN

OUT

IN

OUT

Figure 2.3.1 ROM Configuration

W28

W29

D.C •• DON'T CARE

The configuration determines which instruction fetches will result in
external ROM accesses.

Note that an 8048, which has 1K of internal

program memory, will only execute external fetches for the lK to 4K
address range (unless the EA pin is pulled high).

Section 4.1 describes

the operation of the RCl-ls.

2.3.2

D~~A

RAM INTERFACE

The 256 x 8 Data RAM is selected when the external address is:
A9
D.C.

A8

A7

D.C.

byte select

Al
D.C. • DON'T CARE

which t in hex, is OXX • lXX • 2XX • 3XX, where XX is the byte select.

2.3.3 DISPLAY RAM INTERFACES
There are two 2048 byte display RAM PAGES.
displayed in standard operation.)

(Only 1920 bytes are actually

(four 2114's; A6, AS, AIO, and A12; on

schematics page 3) can be addressed when +PG SEL is set true (output bit •
-9-

to memory mapped I/O location 4,C; see Section 2.4.1.).

PAGE 2 (four

2114's; A5, A7, A9, and All; on schematics page 3) can be addressed when

(

+PGSEL is set false (i.e., to zero).

F'or whichever of the two PAGEs is enabled (by +PGSEL), the Display RAM
is selected when the external address is:
All
1

Al~A'

byte select

which, in hex, is 8XX-FXX.

Performing a read or write to external data

m~ry

in this address range

will automatically override the refresh circuitry's addressing of the
Display RAM. giving the CPU priority at all times.

Section 2.4.1 describes

how the CPU can be synchronized with the refreshing to accomplish accesses
only during blanking periods.

(

Due to hardware implementation efficiencies the addressing of the 1920
characters being displayed on the CRT is not a direct linear mapping
within the 2048 byte Display RAMs.

Table 2.1 shows 80 character by 24

line display with the corresponding Display RAM locations for each
character.

2.4

I/O CONTROL AND STATUS INTERFACES

All memory mapped I/O ports use the 74LS42 decoder (AS8, page 1) to
detect the +A2, +A3, +A10, and +All address lines.

+A2 and +A3 select

which port is being addressed, while the combination of +All • 0 and
+A10 - 1 is required for all memory mapped operations.

Additionally

the keyboard circuitry uses +Ae and +Al, and the CRT chip uses +Ae,
'+Al. +A4, and +AS for additional

addressi~g.

-10-

(

,

DEC-rO-----------15(16---------- 3l-f 32:.-----..:---:...--47148-----------63164:...-------------79

CHAR

ROW

HEX'1-----------F 10----------lF 20----------2FI30-----------3FI40--------------4F

ROW

CHAR

DEC

HEX

(")

()

1

1

2

2

3

3

5

5

4
I
I-'
I-'
I

6
7

B

9
10
11
12

13
14
15
16
17

1B

19
20
21
22
23

DEC.

POSITION:

4

6
7

B

9
A
B
c
D
E
F
1'1
11
12
13
14
15
16
17

800-----------------------------------------------------B3F EOO------------EOF
B40---------------------------------------------------- -87F E40------------E4F

88()-----------------------------------------------------BBF EBo------------EBF
Bcn--------------------------------------------------- --6FF ECO------------ECF
FOO------------FOF

9()O-----------------------------------------------------93F
940-----------------------------------------------------9TF F40------------F4F
9Bo--------------------------------------------------- --9BF FBo------------FBF
9C()-----------------------------------------------------9FF FC()------------FCF
AI)0-----------------------------------------------------A3F ElO------------ElF
A4'l-------------.--------------------------------------~7F E50------------E5F
ABo-----------------------------------------------------ABF E90------------E9F
ACO-----------------------------------------------------AFF EDO------------EDF
BI)O-----------------------------------------------------B3F FlO------------FlF
B4o----------------------------------------------------BTF F50------------F5F
B80-----------------------------~----------------------~BF F90------------F9F
BCn-----------------------------------------------------BFF FDO------------FDF
C'lO-----------------------------------------------------C3F E20------------E2F
E60------------E6F
c40-----------------------------------------------------C7F
c8o-----------------------------------------------------CBF EAO---~--------EAF

CC0-----------------------------------------------------CFF EEO------------EEF
DOO-----------------------------------------------------D3F F20------------F2F

D40---------------------------------------____________ --D7F
DBn---------------------------------------------------- -DBF
DCn-------------------------.----------------------------DFF

F60------------F6F
FAO------------FAF
FEO------------FEO

o
1
2

3
4
5

I-1l

0
tjn
0
r+tj
::r'tj
(1)

00'0

00

::s

no.
::r' ~.
III
III

II

12
13
14
15
16
17
IB
19
20
21
22

23

::s

tj()Q

6
T
3
9

10

(1)
(/)

Ot;:1
r+ ~.
(1) (/)

t-i

~
C3

tj'O

~

>C PI

N

N

.....

.....

'<

;~
.....

::S~

(1)0.
0.

t;:1tj

..... (1)
(/)

(/)

'O(/)
..... (1)

III (/)

'<

The 74LS42 (AS8) decoder must also be enabled by the delayed signal
which is the OR of the RD and WR signals.

(This delay provides ade-

()

quate data setup time for the UART.)

"c" input (A58-l) to the decoder, which

The WR signal provides the

causes decoder outputs 18-+3 to be "I/O writes" and 4"'7 to be "I/O reads."

I/O beyond the memory mapped I/O comes directly from CPU I/O pins.

All

of the I/O is described in Sections 2.4.1 through 2.4.4, below.

CRT CHIP AND bISPLAY CONTROL

2.4.1

CRT CHIP:

The CRT chip responds to the following memory-mapped I/O

Figure 2.4 .la CRT Chip Addressing

addresses:
11
0

10
1

0

1

ADDF ESS HT
6
5
8
9
7
D.C. D.C D.C D.C X.
D.C. D.C D.C D.C 0

II

~

0

ADDR IN

HEX*

RD
or WRT

CRT CHIP
OPERATION
SELECT CRT CHIP

WRT
WRT
WRT
WRT
WRT
WRT
WRT
RD

CONTROL REG

1
0
1
0
1
0
1

400
401
402
403
410
411
412
413

4

3

2

X

1 0

0

0

X

X

0
0

0

0

0
0

0

0
0
0
0

0

0
0

1

1

1
1
0
0
1
1

I

1

0

0

0

420

RD

Ii

1

0

0

1

421

RD

i. II

1
1
1

0
0
1

1 0
1 1
0 0

422
423
430

RD
RD
WRT

1

1

0

1

431

WRT

1

1
1

1 0
1 1

432
433

RD
RD

0

1
1

I

i

I

I

I

I

I
I

,

,11

,

1 D.C.

·0

D.C D.C D.C 1

0

0

i..

D. C.

:II

DON'T CARE

~"'Assumes

"
"
"
"

"
"

II

"

"

"

"
"

-

(

1

2
3
4
5
6

Processor Self Load
NOT USED
Read Cursor Char
Addr.
Read Cursor Line
Addr.
Reset
Up Scroll
Load Cursor Char
Addr.
Load Cursor Line
Addr.
Start Timing Chain
Non-Procelsor self
Load
NOT U ED

DON'T CARES • ,

The above CRT Chip operations are as defined in the 5027 CRT CHIP specifi-

cations, Appendix B.

In order to attain the 24 lines of 80 characters each

at either 50 Hz or 60 Hz, the Control Registers should be loaded by the
-12-

(

Figure

CPU as follows:

VALUE
50 Hz

CONTROL
REG IS TEll

68
43

f
1
2
3
4
5

22
32

6

17

40

97

2.~.lb

IN HEX)
60 Hz
68
43

40

97
f7
17
17

Section 5.2 describes the operations directed by the
registers.
-VSYNC:

Control Register

abo~e

control

The CPU receives the vertical synchronizing signal at the INT

input of the CPU (A54-6, page 1).

This allows the CPU firmware to perform

timed operations based on the very precise 50 Hz or 60 Hz -VSYNC 8ignal. '

-ADVBLANK:

The CPU can synchronize to the displaY'8 blanking

sensing this signal.

t~e

by

This allows the CPU to perform Display RAM accesses

only during blank times, if desired. to avoid visable effects on the display.

When the CRT CHIP is programmed with the standard values (as listed

above) the -ADVBLANK signal is 25 character time8 long (active low) during
horizontal blanking.

However, Display RAM acce88 by the refre8h circuitry

8tarts one character time before the end of -ADVBLANK.

This mean8 that

from the detected leading edge of -ADVBLANK the CPU has 24 character
times (less the sampling period) during which it can be guaranteed blankinl.
Each character time is 588 nsec. which mean the CPU has l4.lJLsec (le8s
the Tl sampling period) to perform the Di8play Ram read or write without
effecting the refresh logic.

+4Hz FLASHER:

The CPU firmware is to generate this output at P24 (A54-35) by

using the -VSYNC interrupt input (see above) and dividing down appropriately.
+4Hz FLASHER is used to flash the Curaor (if jumpered to do so by inserting

W25) and is divided by 2 to generate the 2 Hz signal used to gate the
blinking video fie1d(s) on ana off.
-13-

+FORCE BLANK:

The CPU firmware can force the video to be blanked by

outputting a 1 on this bit.

+FORCE BLANK is part of the 74LS174 Output

Port (A47-1S, page 1) which is loaded by performing the memory-mapped
I/O write to location 4ft (HEX) or, more
Address Bit:

11

Value:

o

10

9

8

7

precis~ly,

6

5

~

4

3

2

1

lDCDCDCDCDCDC

1

100

DC • OON'T CARE

Data bit 5 is the +FORCE BLANK bit.

Firmware would normally keep an

image of this port in RAM, such that only the bits of interest can be
changed without affecting the others.

A summary of output port 40CH is:

Output to 40CH
Bit

Signal

7

DON'T CARE

6

OON'T CARE

5

+FORCE BLANK (see above)

4

+SEL LPT

(see Section 2.4.2)

3

.. BREAK

(

"

"

11

)

2

-RQS

(

"

"

"

)

1

+BEEP

(

"

"

2.4.4)

~

+PG SEL

(see below)

+PG SEL:

Figure 2.4.1c Output Port
40CB Summary

(

The CPU firmware selects which 2048-byte PAGE of display RAM is

to be displayed.

(Only 1920 characters are actually displayed.)

This

also selects which RAM is accessed by the CPU via the Display RAM addresses
(Section 2.3.3).
select PAGE 2.

+PG SEL is set to a , to select PAGE 1 and is set to a 1 to
This control bit is data bit' on output port

described under +FORCE BLANK. above.

-14-

4~

as

2.4.2

UART AND COMMUNICATION CONTROL

UART CHIP:

The UART Chip responds to the following memory-mapped I/O

addresses:
ADDRESS BIT
ADDR
IN HEX*

READ
or WR~

UART
OPERATION

404

READ

Read Data Enable

DC DC

408

WRT

Write Data Strobe

DC DC

408

READ

11

10

9

8

7

6

5

4

3

2

0

1

DC

DC

DC

DC

DC

DC

0

1

DC DC

0

1

DC

DC

DC

DC

DC

DC

1

0

0

1

DC

DC

DC

DC

DC

DC

1

0

1

0

Status Word Enable
!Data
~ Status
3
2
1

0
DC •

DON'T CARE
DON'T CARES •

* Assumes

e

FE, FRAME ERROR
PE, PARITY ERROR
TIttT» TRANSMIT
BUFFER El-lPTY
DTA, DATA
AVAILABLE

Figure 2.4.2 UART Chip Address

The above UART Chip operations are as defined in the UART specification
in Appendix C.

The hardware operation of the UART interface is described

in Section 6.

+RESET UART:

The CPU firmware can pulse this line by using I/O expander

instructions (which strobe the PROG output pin of the CPU, A54-25, page 1).
This signal is connected to the UART's RESET input.

+SEL LPT:

The CPU controls this signal by performing a memory-mapped

output operation to address 40CH with bit 4 baing +SEL LPT:

-15-

Output 40CH

.ill.

Signal

7

DON'T CARE

"

"

6

(

5

+FORCE BLANK (Section 2.4.1)

4

+SEL LPT

3

-BREAK

(see below)

-2

-RQS

(see below)

1

+BEEP

(see Section 2.4.4)

0

+PG SEL

(

"

"

2.4.1)

When set to 1, the +SEL LPT control line enables the line printer serial
communication transmitter (connector P4-3, PRT DATA (RS 232), page 2) and
disables the normal transmitter data driver (connector P3-2, TXD (RS 232),
page 2).

When set to

~,

(

+SEL LPT disables the printer transmitter and

enables the normal serial transmitter.

Add~tionally,

+SEt LPT selects

the line plfinter serial baud rate (as determined by switches 53) when set
to a I, or the normal serial baud rate (as determined by switches Sl).

This

allows the printer and normal serial interfaces to have independent baud
rates.

(Note that the UART does not receive serial data at the normal

baud rate when the printer is enabled.)

-BREAK:

This signal is controlled by the CPU using address 4_CH, bit 3

(see above).

-BREAK, when set to

line to the "break" state.

e forces

the selected serial transmit

This allows the CPU firmware to create the

desired Break condition for the desired duration.

-RQS:

This output bit (address

4~CH,

bit 2, see above) directly drives

the normal terminal serial interface's RTS (Request to Send, P3-4, page 2)

-16-

(

)

which also goes to the modem connector (P6-4, page 2).

Additionally

this can drive DTR (P3-20, page 2), if enabled using switch S5-3, 12.
This bit can also drive the printer's serial port TERM RDY lines
P4-8 and/or p4·6 (page 2) which can be connected by jumpers W12 and
Wll, respectively.

-DCR:

The CPU can input -DCR on I/O pin P25 (A54-36, page 1).

signal can come from any of 3 different places:

This

(1) "OCR (RS232)" at

P3-6 (page 2) which can be enabled by switch S5-1, 14; (2) "OCR (RS232)"
at P3-B (page 2) which can be enabled by switch S5-2, 13; and (3) Modem
connector p6-7 (page 2).

-PIR RDY:

The firmware inputs this signal via the CPU I/O pin P26

(A54-31, page 1).

It is the Printer Ready signal derived from connector

P4-20 (+PTRRDY (RS232), page 2).

-HALF DUPLEX:

The CPU firmware reads CPU I/O pin P27 (A54-38, page 1)

to determine the Full/Half Duplex mode.

When -HALF DUPLEX is

~

the firm-

ware should enter half duplex mode and when 1 the terminal should be in
full duplex mode.

-HALF DUPLEX is derived from switch S2-3,18 (page 1),

one side of which is grounded.

2.4.3

KEYBOARD I/O INTERFACES

The outputs to the Keyboard matrix consist of the 8 lines from the CPU
I/O pins Ple-.P17

(A54-21~34J

page 1) which are connected to Keyboard

connector pins Pl-8 through Pl-15, respectively.
from the matrix and 4 inputs from individual keys.
up by 1K ohm resistors to +5V.

-17-

There are 12 inputs
All inputs are pulled

Figure 2.4.3 Keyboard 110 Interfaces
The CPU reads Keyboard inputs via the i0110wing memory-mapped I/O reads:
11

ADDR
IN HEX'"

(

KEYBOARD INPUTS (P1 Connector Pins)
On Data Bits
7
6
4
3
5
1
2
0
r+-50Hz(ALPRA) 26 (SHFT) (Cm (FUNe) 16 20
3
4
6
5
25
"
"
"
"
" 17 21

4

3

2

1

0

1 DC DC DC DC DC DC

1

1 0

0

4~

1

1

0

1

4f)D

1

1

1

0

4f)E

"

"

24

"

"

"

18

22

1

1

1

1

4l'F

"

II

7

"

"

"

19

23

10

0

0

ADDRESS BIT
9 8 7 6 5

I

1 DCI:C DC DC DC DC
IX:

*

-

t Non Keyboard

,

DON T CARE
Assumes DON'T CARES - .,

Note that the 4 individual keys are input on all four addresses.

"-50 Hz"

is also input with these input operations and is to determine the terminal's
refresh rate upon power up, as described in Section 2.4.4.

Appendix D provides the descriptions of keyboard matrix with which this

(

system has been interfaced.

2.4.4
-50 Hz:

OTHER I/O INTERFACES
As described under Section 2.4.3, above. this Signal can be read

by the CPU firmware on memory-mapped I/O address 4f)C (as well as many
others) on data bit 7.

The firmware should sense this bit during power-up

and initialize the CRT chip accordingly (see Section 2.4.1).

When -50 Hz - f)

then the SO Hz mode should be established, else the 60 Hz mode.

This signal

is derived from switch S2 pins 17 and 4 (pin 4 is grounded).

+BEEP:

The CPU firmware can control the beeper (audio Signal, 1200 Hz) with

bit 1 of the memory-mapped I/O write to address 40CH (see, aiso, Sections
2.4.1 and 2.4.2 for the other control bits affected).

The +BEEP signal is

(J
-18-

gated with the +1200 Hz signal

(on page 1 with 74LSOO, A61-1,2,3)

which is then inverted to drive transistor Q2 which, in turn,
drives the 8 ohm speaker connected to P7-1,2.

When +BEEP is 0

the gating is such that the +1200 Hz is removed and the transistor
Q2 is put in the off (non-conducting) state.

-19-

3.

OPERATION OF JUMPERS AND SWITCHES

Presented below is a summary of the switches and jumpers used in the
system.

Included are short descriptions of their functions and refer-

ences to other pertinent sections of this document.

Though redundant,

this section should provide quick reference for software, hardware, and
systems technical personnel.

JUMPEF
iF
WI

DESCRIPTION
INSERTED
~SE

INTERNAL PROGRAM
MEMORY (ROM)

REMOVED
USE EXTERNAL
PROGRAM MEMORY
(ROM)

Scheme
Page
1

Reference
Sections

Comments

2.1

W2

NOT USED

W3

"

W4

"

W6

11>3 CONN:
~URRENT
~HORT

LOOP SEND
SERIES
510

KEEP 510
IN SERIES

2

6.3

l3>

W7

NOT USED

W8

"

W9

"

WlO

"

Wll

"

W12

p4- 6 NOT CONN
P4 CONN: TERM RDY
SENT
ON
P4-6
kRS232C)

2

6.3

W13

P4-8 NOT CONN
P4 CONN: TERM RDY
RS232C) SENT ON P4-8

2

6.3

(

Table 3.0 Summary of Switches and Jumpers

(,
-20-

JUMPEF
#

DESCRIPTION
INSERTED

Schem.
RFX)VED

Pa~e

I

Reference
Sections

Comments

P3 CURRENT LOOP SEND
~ONN

~O P3-25

W16

~NN "EMITTER END"
rr'0 P3-13

"EMITTER END"
NOT CONN TO P3-1

2

6.3

[»

W17

~ONN

P3-13 NOT CONN
TO GND

2

6.3

[3>

W15

fro

"COLLECTOR END"
P3-25

B>

"COLLECTOR END"no ,..2
CONNECTED TO
P3 "25
'EMITTER END"
2
NOT CONN TO P3_2c

W14

~ONN

"EMITTER END"

P3-13 TO GND

6.3
6.3

~

W22

Not used

W23

Not used

W24

Not used

W25

~URSOR FLASHES OFF
PN (INVERSE VIDEO)

CURSOR DOES NOT
FLASH AND IS
INVERSE VIDEO

5

5.4

W26

lFor 2332 ROM at A49

for all others

2

2.3.1, 4.1

W27

!For 2316E, 8316E, 2ne for all others
~OMS at A49 or A50

2

2.3.1, 4.1

W28

!For 2332 ROM at A49

for all others

2

2.3.1, 4.1

W29

or 2316E, 8316E,
2716 ROMs at A49 or
1\50

for all others

2

2.3.1, 4.1

W30

all character
~enerator PROMs

For no standard
character generator PROMs

5

~or

-21-

5.3

IrJUMJ:'ID

/I

INSERTED

DESCRIPTION
REMOVED

Scheme
Page

Reference
Sections

Comment.

(

OPTIONAL RESISTORS
R28

P3 CONN:
CURRENT LOOP SEND,
PULLS HIGH END TO

NOT PULLED UP

2

6.3

[9

+12V.

(

(

SWITCH
PINS
11

DESCRIPTION
Scheme Reference
CLOSED
OPEN
Page
Sections' Ccmments
COMMUNICATION PORT BAUD RATE SELECT (P3-2 and 3)

Sl

1-2
2-1
3-1
4-17
5-16
6-15
7-14

19,200
9,600
4,800
2,400
1,200
600
300

8-13

150

9-12
Sl 10-11

110

~

S2 10n1.l
II

NOT 19,200
NOT 9,600
NOT 4,800
NOT 2,400
NOT 1,200
NOT
600
NOT
300
NOT
150
NOT
75
NOT
110

75

SHORT OUT 270
IN SERIES WITH
CHARACTER VIDEO

6
6
6
6
6
6
6
6
6
6

6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1

KEEP 270 IN SERIES 5
(FOR COMPOS VIDEO)

5.4

OPEN FOR COMPOS
VID (SEE S2-1,20)

2-19

SELECT LOWER HAD SELECT UPPER HALF
OF CHARACTER GEN OF CHARACTER GENERATOR
ERATOR

5

5.3

3-18

HALF DUPLEX

FULL DUPLEX

1

2.4.2

4-17

50Hz

60Hz

1

2.4.4

5-16

PARITY IN TRANS
AND RCV

NO PARITY

2

6'.2; C (see also S2-9,12)

6-15

1 STOP BIT
(TRANS)

2 STOP BITS (TRANS) 2

7-14

NBI

-

"

52

BIT:~2_7.14:CLOSED

OPEN CLOSED

OP~

6.2; C

PER S2-8,13:CLOSED CLOSED OPEN OPEN 2
8-13 NB2 CHAR 11BITS ==
5
6
7
8.J

6.2; C

9-12

2

6.2; C (see also S2-5,16)

5

5.4

SEND AND RECEIVE: EVEN PARITY
ODD PARITY

1-20 a)+VIDEO P2-4
GETS COMPOS SYNC
TOO

a)+VIDEO P2-4 HAS
NO SYNC's

b)+TTL VIDEO BE- b)+TTL VIDEO P2-6
COMES VIDEO WIlli IS ONLY COMPOS SYNC
COMPOS SYNC(P2-6)

-23-

S2-10,11 SHOULD
BE OPEN FOR VIDEO
WITii COMPOS SYNC

1--.

SWITCH
If. PINS

DESCRIPTION
CLOSED

OPEN

NOT 19,200
19,'200
S3 1-20
NOT 9,600
9,600
2-19
4,800
NOT 4,800
3-18
2,400
NOT 2,400
4-17
1,200
NOT 1,200
5-16
600
600
NOT
6-15
300
NOT
300
7-14
NOT
150
150
8-13
75
75
NOT
9-12
i
S3 10-1'
NOT
110
110
5 1-14 CONN P3: RECEIVE ~ NOT RECEIVE DCR
DCR(RS232C) FROM IFROM P3-10
F3-10
2-13 CONN P3: RECEIVE po NOT RECEIVE DCR
DCR(RS232C) FROM FROM P3-8
P3-8
3-12 CONN P3: P3-20
(DTR) DRIVEN BY
SAME AS RTS (P3-4
P3-20 (DTR) NOT
4-11 CONN P3: P3-20
(DTR) PULLED TO
PULLED HIGH
+12VVIA 3.3K
5-10
CONN P3: RECEIVE DO NOT RECEIVE
6-9
SERIAL DATA
SERIAL DATA
RS232C
P3-3
RS232C
P3··3
,

Scheme
PSSl;e
6

6
6
6
6
6
6
6
6

6
2

Reference
Sections

Comments

6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1

~
')

6,3

tr;>

,

2

(I

6.3
h

rv

I
I

iS5 7-8

!

I CONN
P3: RECEIVE
SERIAL DATA CUR ..
RENT LOOP P3-12,
24

j..:.

2

2
00 NOT RECEIVE
SERIAL DATA CURRENT
LOOP P3 .. 12,24

)B>
6.3

1-

1_

0>
1--

(

6.3

CLOSED CONDITIONS OF SWITCHES WITHIN INDICATED SWITCH GROUP
ARE MUTUALLY EXCLUSIVE

,

IJ>'

MUTUALLY EXCLUSIVE CURRENT LOOP SEND CONNECTIONS FOR P3
P3 CONN: ISOLATED (W6 .. W-14. W-16 INSERTED) VS. I-SIDE GND (R28,
WIS, W17 INSERTED)

(/

4.

f!OGRAM MEMORY OPERA nON

The operation of the hardware for the program memory is described in
sections 4.1 (program ROM) and 4.2 (data RAM).

The functional inter-

face for system and firmware reference is described in sections 2.3.1
and 2.3.2.

4. 1

PROGRAM ROM

When external program memory is required by the CPU, the (P)ROMs at
locations A49 and A50 (page 2) are used.

The two ROMs have the 11 address lines and the 8 output data lines in
common.

(+A7~+A~)

The lower 8 address lines

come from the address latch

(ASl, page 1) and +AIO, +A9, and +A8 come from CPU port 2:
buffered), bit 1 (AS4-22) and bit

~

(A54-21), respectively.

data lines are connected to the CPU data bus

bit 2 (A54-23,
The output

(+DB7~+D~).

If the ROMs are 2316E types (i.e., 16K bits) then memory address bit All
,

(derived from CPU port 2 bit 3, AS4-24) selects which ROM is enabled when
-PSEN goes active.

+.All and its inverse are each gated with -PSEN (page 1,

A66-1,2,3 and A66-11,12,13) yielding -ROMICS or
active when -PSEN goes active.
goes active for +All-1.

-ROM~CS

-ROM~CS

-ROM~CS.

goes active for

one of which goes
+Al1-~

and -ROM1CS

selects the ROM at A50 (page 2, ASO-20).

-ROMlCS selects the ROM at A49 (A49-20).

Note that for 23l6E-type ROMs

jumper W29 is inserted (and W28 is not) in order to pass the -ROMICS signal.
Jumper W21 must be inserted (and W26 not inserted) for 2316E ROMs.

This

provides pin 21 (on A49 and ASO) with +SV, which is required for PROMs
(2716 or 2758) that may be used, and provides the high logic level for the
ROMs that have a positive chip select at this pin.
-25-

If a 2332-type (i.e., 32K bit) ROM is used then jumper W28 and W26
must be inserted while omitting W29 and W27.

This provides A49-20

(

with -PSEN directly such that this ROM is selected on every -PSEN cycle,
not just when +A1l=1.

Jumper W26 connects +All to A49-2l providing the

ROM with the required 12th address bit.

The negative chip select at pin 18 (on A49 and A50) is permanently grounded.

4.2

DATA RAM

The 2llLA (or BIllA) RAM chips (page 2, A52 and A53) comprise a 256 x 8
block of read/write memory. with A52 providing for data bits 7. 6, 5,
and 4 and A53 for bits 3, 2, 1
101-.104 (pins

11~14)

data bus +DB7

+D~

and~.

This data leaves and enters via

on A52 and A53, and is connected to the CPU

(see page 2).

The required 8 address bits are

+A7-++A••

(

This 256 x 8 RAM is enabled when +AlO and +All are both logic. by generating -DSCS (page 1, A66.4,5,6) which connects to A52-l5 and A53-l5.

-DSCS in conjunction with -RD pulse (from the CPU, page 1, A54-8) causes
the RAMs' outputs to be enabled (via A52 and A53 pin 9).

During -RD the

addressed data is then driven onto the data bus.

-DSCS in conjunction with -WR pulse (from the CPU, A54-l0) causes the
RAMs (viaA52 and A53 pins 16) to write the 8 bits from the data bus at
the addressed internal locations.

()
-26 ..

5.
5.1

DISPLAY OPERA nON
CLOCK GENERATION

The crystal oscillator (page 4) uses an astable 74S04 configuration to
generate the 23.814 MHz signal (at A55-4).
resonant at 23.814 MHz.

The crystal is series

The 7415109 flipflop

(A56-2~7)

divides the

basic clock by 2 to provide an 11.907 MHz "square" wave, +CLK (A56-6)
and -CLK (A56-7).

These two signals go on to the Video Generation

circuitry on page 5 (see Section 5.4) to provide the gating and shifting
clock for the basic dot of the video generation.

See Figure 5.1 for the timing diagram.

The 7415163 dot counter (page 4, A57) provides the display character clock
(+DC CARRY, A57-l5) to the video generation logic (page 5) and its frequency
equivalent, -DC2 (A55-l2), to the 5027 CRT Chip (at A23-l2, page 4).

The

counter's bits QA' QB' and QC generate the dot counter bits +DC0, +DCl, and
+DC2, respectively.

+Dc0 and +DC2 are used on page 5 by the video gener-

ation circuitry (Section 5.4).
(11.907

~

+DCl generates an asyrnetrical 3.402 MHz

3.5) signal which is used on page 6 by the baud rate generator

(Section 6.1).

+CLK is divided by 2 by the 7415109 (page 4, A56-10-.l5) to generate

+6MHz (actually 5.9535 MHz) on A56-10.

+6MHz goes to the CPU (page 1,

A54-2) to provide the basic CPU clock.

5.2

CRT CHIP OPERATION

The CRT 5027 Video Timer and Controller ("VTAC" or. "CRT CHIP") for SMC
Microsysterns Corporation is described in detail by the specification in
Appendix B.

This section describes the CRT Chip's specific operation
-27-

23.814 MHz
(ASS-4)
..-84 ns.

~

~

+CLK

11.907 MHz
(AS6-6)

I

l

E

+DC.
(AS7-14)

l

+DC1
(AS7-13)

J

F

9

A

B

(A57-12)

D

E

F

~

I
I

9·

A,

I

I
-----'I

+De 2

C

I

+DC CARRY
(AS7-1S)

r

Ji

I

I

r

I
I

- ul

.

~I- - - - - - - - -

I
I

1..----.-..41 .

+6 MHz

(AS6-10)
DISPLAY DOT TIME

6

7

I

1

2

l]

4

5

6

7

I

1

•

N
CD

•

FIGURE 5.1
CLOCK GENERATION TIMING DIAGRAM

j~
i

~

~

when the control registers are programmed for this system as described
in Section 2.4.1.

Clock Input:

The clock input (DCC, A23-12, page 4) to the CRT chip is at

the display character rate.
Figure 5.1.

It is the same as the inverse of +DC2 in

The CRT Chip Specification in Appendix B shows timing of the

output signals relative to the input clock.

Hardware Addressing Operation:

Accessing the CRT CHIP (page 4) is performed

by presenting the proper address inputs

(A~A0,

A23-2,l,40, and 39) and

then providing a negative strobe at the data select (DS. A23-9).
on the address inputs the chip performs a read (DB7-.DB0,
the CPU data bus

+DB7~+D~)

the CPU data bus

+DB7~+DB0).

or a write (the chips DB7

Depending

A23-l8~25,

drive

DB0 accept data from

Of the 16 addressable I/O registers (ports

in the CRT CHIP) 9 are output (write) and 7 are input (read) ports.

The

address table in Section 2.4.1 shows which ports are write and which are
read.
are:

Note that the address lines connected to the chip's address pins
+A5, +A4, +Al and

+A~

to the chip's A3, A2, AI, and

A~,

respectively.

Since the CRT Chip wants only one control strobe (Le., not both a read
and a write strobe) the read and write outputs of the I/O decoder (page 1,
A58) for address decodes "400" are logically ORId (by A43-11,12,13, page 1)
yielding -SEL CRT CHIP.
Chip (A23-9, page 4).

This signal provides the data select for the CRT
The "400" decoded signal, in conjunction with the

4 address lines, accounts for the I/O address locations (as presented in
the table in Section 2.4.1),

Operation of CRT Chip programming:

As stated in Section 2.4.1 the 7 control

registers must be programmed for either 50 Hz or 60 Hz

-29-

f~r

standard operation:

VALUE (IN B!X)
50 Hz
60 Hz

OONTROL
REGISTER

,

68
43
_yO
97
22
32
17

1
2

3
4
5
6

(

68
43

ltelfP
97

'17J7
17

Variations from this might be possible for special cases, but for 24 lines
of 80 displayed characters (at 50 Hz or 60 Hz refresh rates) it is necessary to use these values with the clock generation and video generation
circuitry provided in this system.

The above control register values provide the following

~arameters

to the

CRT Chip (see also the CRT Chip timing, Figure 5.2):

5.2.1 -- Control Register
Bits

7~_

150 Hzl

~

• Ni Horizontal Line count where Total Characters/Line .. N + 1.

Total Characters/Line" 68 16 + 1

(

.. 104 10 + 1

[60 Hzl

--Same--

5.2.2 -- Control Register 1
Bit 7;

Interlaced/Non-Interlaced
where 1 .. Interlaced;

Bits

" .. Non-Interlaced

150 Hzl

Bit 7 ... , Non-Interlaced

~O Hzl

--Same--

6~3

.. N; Horizontal Sync Width

where Horiz Sync Width Character Times .. N
(N .. 1-.15; N ..

[50 H~

'J

disallowed)

Hortz Sync Width Char Times .....§..

[60 Hz I --Same--30-

(

Bits 2..,

- N;

Horizontal Sync Delay

where Horiz Sync Delay Char Times -

(N -

150

1~;

Hzl

160 Hz I
5.2.3 -- Control

N

N - 0, disallowed)

Borb Sync Delay Char Times -

....L

·-Same--

Re~ister

2

Bit 7, not used (- .)
Bits

6~3

- N; Scans/Data Row

Where Scans/Data Row - N + 1

150

Hzl

Scans/Data Row .. 9 + 1
- 10 10

-I

--Same-T; Characters/Data Row

160 Hz

Bits

2~.

where T is defined in a table in the CRT Chip Specification
(Appendix B, last page).
For DB 2 .. I, OBI • •• DB • • 1 .the
Characters per Data Row • 80

150 Hzl

Characters/Data Row - f(T)
- f(S)

160

Hzl

--Same--

5.2.4 -- Control Rerister 3
Bits 7, 6 - Tj Skew Bits (Refer to 5.4)
where T is defined in a table in the CRT Chip Specification
(Appendix B, last page).
For DB 7 - 1, DB 6 - • the Skew Bits
are Sync/Blank Delay - 1 Character Time

-31-

Cursor Delay -

Iso Hzl

• Character Time

(

Skew Bits - f(T)
- f(2 1O )
- Sync/Blank Delay of 1 Char Times
Cursor Delay of no Char Times

160 Hz
Bits

5-;"~

;;1;.

I

--Sarne--

N;DataRows!Frarne -

=N+

where Number of Data Rows
(N

=~

150 Hzl

1

63)

~

Number of Data Rows

17 16 + 1

= 23 10 +

1

= 24

160 Hzl

--Same--

(

5.2.5 -- Control Register 4
Bits

7~~

~

N;

Scans/Frame

where, in non-interlaced mode,
Scans/Frame
150 Hzlscans/Frame

= 2N +
=2

0

256

22 16 + 256 10

= 2-34 10

+ 256

10

... 68 10 + 256 10
... 324 10
160 HzlscanS/Frame - 2'.7 + 256
- 14 + 256

(/
-32-

5.2.6 -- Control Register 5
Bits

7~

- N;

Vertical Data Start

where N • number of raster lines after leading edge of
vertical sync of vertical start position.
/50 Hzl

Vertical Data Start (raster lines) • 32 16
• 50 10

~ Vertical Data Start (raster lines)

=

17 16

• 23 10

5.2.7 -- Control Register 6
Bits 7, 6, not used (- .)
Bits

5~0

a

N;

Last Displayed Data Row

where N = Address of last displayed data row, N = 0 to 63
[ 50 Hzl

Last Displayed Data Row • 17 16
• 23 10

160 Hzl

--Same--

Figure 4.2 presents the timing of a frame showing the relationship between
the Valid Character Addresses (for the 24 aO-character rows) and the
Blanking and Sync signals.

The left and right edges correspond to the

start of Horizontal Sync, and the top and bottom edges (different for 50 Hz
and 60 Hz) correspond to the start of Vertical Sync.

The inner solid-lined

rectangle (24 Data Rows x ao characters) represents the time during which
the CRT Chip outputs valid addresses on
(A23-4,S,7,a), and

DR4~DR'

H6~' (A23-32~3a,

(A23-30,29,2a,27,26).

The

• to 79 on each scan across the ao character positions.

page 4),

H6~H'

R3~R'

lines go from

R3~R'

count out

the 24 character rows, covering all rows • through 23 on each frame (the
starting and ending counts are programmatically changed using the Last Data
-33-

~

~
START
HSYNC

50 Hz

r;;4
r-

~I

.~

I

~I
til

z:

Ul

...J,

~

til

Ul:

a:;

el:

~

a

&i
:z;

<
~
~

~
U

U)

..;;t
N
M

STAJlT
VERT
SYNC

•

..
N

=

0

In

~

N
M'

til

H'

H

<

til

...J

a'.

Ul

t:ol

:z;

....l

~

gj

,...

~:

N

0
&n

0

N

..
N

~.

I

CHARACTER
ADDRESSES
VALID

..(
~

..(

~:

CI

N
..j

..

N

:::t:

::t:

0

0'
-tJ

-tJ

I

~

~

c:l

H:

::t:

~~

~,

Ul

:>

fST

~~

~

a'.
..(:

~

~

u

til

tila'.

~,

~
H

....l

i

1 CH~r:!~ TIME (DI~.PLAY)

-eLK
A56-6

-u-

+DCCAR

I

I

A42-3
Display Dot Times
Shift

LJd

ADV DOT FF
A17-9

I

6 ] -Lll~]-=.;.,.Z--L..J......;:;
.. ~---L1_~~]L......5;;;.....~:.1...-1LI 7"J 1 [~2~= [3

IFrom

Reg

QH A2-13

(

DZ

Char Gen

I
I 04 I D:LI

J 0 ID?I P6 J D5
I
I

niLPi=I

~]:iiLl

I

QzIli I pZ-.ID6 ]

D5

I (I

5

I

=

041 D31

I

D6:I Dsln£:[Di.:i D2
I

[0

I

~i:L~~

I ~J:04I

D~I

NORM OOT FF
A17-5

First 3
Dot Positions
D1
1.

SELECTED VIDEO:

Is ELECTS

Clear Shift REG

AZ-9 ... A16-2

If

A19-3 '" 1

Dot Positions

ID0

IAnv DOT FF

o NORM

Last 4

OOT FF

I
0

SELECTS

ADV DOT FF
NORM DOT FF

=: J

(
FIGURE 5. 5:

VIDEO OOT

-44-

DISPLAY SIGNAL RELATIONSHIPS (VIDEO, BLANK, CURSOR, HSYNC):

The rela-

tionships between the various signals that directly effect the display
are shown in Figure 5.6.

The top portion of the diagram has the relative

character positions for the "display RAM", "character generation", and
"displaying video" activities.

(See Figure 5.3 for more details.)

Shown

in Figure 5.6 are the first few and last few character positions for a
horizontal scan line.

The following signals are controlled by CRT outputs:
(1)

RAM Accessing (display RAM address for indicated character)

(2)

-ADV BLANK (delay by 1 with respect to addresses)

(3)

CRV (delayed by 0 with respect to addresses)

(4)

HSYN (delayed by 1 with respect to addresses)

The delays are as programmed into the CRT chip, see Section 5.2.

-ADV

BLANK is delayed one more character time (by A35-2,5, page 4, as clocked
by +DCCAR) in order to line it up with displaying video.

This +BLANK

signal (A35-5) goes through an open collector driver (A14-12,l3, page 5)
in order to blank the video.

ADV BLANK and BLANK a:e used for addition

gating functions as described in other parts of this section.

Additionally,

-ADVBLANK goes to the CPU's Tl input (A54-39, page 1) to permit synchronization with the video by the CPU for performing accesses to the display
RAM without disturbing the display refresh.

(See Section 5.3.)

The cursor signal from the CRT Chip (A23-16, page 4) is delayed 2 character
times (by A35-9,12 and A34-1,12, clocked by +DCCAR, page 5) to line it up
with the video being displayed.

The +CURSOR signal complements the normal

video signal (using A21-l,2,3 and A21-4,5,6, page 5) including the effect

-45-

+DC CARRY
A')7-1,)

n

Jl

n

n

n- - j 5

n

n

n

II

n

n.

CHARACTER POS ITIO~S:

RAM ACCESSING
CHARACTER GENI·:RATlOr>;

ACCESS DIG

IllS I'll, Y I ~c

\' lill':ll

x

o

x

x

~

x

x

x

.)

I

o

71",

74

x

x

x

x

x

77

/~

7')

x

),

x

x

/h

; I

7K

lY

x

x

x

'.'.' (Bl ..A:\;~/SY:;C)
DU.r"

,
,

~

-AI>\'

RIA:;I\

/\.'1-17

=

1

~

I

.~

(C

_____________~I

'7~----------------~~

__________________

~

r---

- HLA:;I\

BlANK

S~·--ll-r-S-I'-IA-\-·---------------------,

- - - - - - - - - - - - - - - - - - - -_ _~

,\}')-')

',1'111 (TRS{lK :\T

CRV

A23-1h

L -_ _ __ _

POSITl(l\~-

__.... --;-__
--:-11 All \A NCr Il I~
«TRSO!{.\ Cl'RSPR
~
~)El~Y=ry

~

r ,

, 7~-------------------

___________--'1 (TKS()K
1). h PLA Y l
-

+{]IRSOR

,\]4-9

1"- r

(L _ _ _ _ _ _

~_:__-......,..._ _ _ _- - - .' (!10K SYNC lJELAY=)

-IISYN

AZJ-IS
+HSYNC (=11 ORIVE)

.'\1-3

J

~ ')0 1

Dl'TY (YCLE

55

lACTeAL
PORCH

FRONT
=

I

2

P2-1
,':Sec Section ').2 for CRT prt'gramming.
NOTE:
Sec Figure'). 3 f0r character p0si tion detai is.

FIGrRE S.h:

~.

DISPLAYED VIDEO RELATIOr\SlIIPS

~

~

of the INVERT VIDEO bit (A28-6 to A2l-2) of the control register.

Addi-

tional gating (at A18-ll,12,13, page 5) permits optional (by installing
jumper W2S) 4 Hz flashing (on-off) of the video at the cursor position.
For this option when the cursor is flashing "on" (A18-U-e), the ZeroIntensity driver (AlS-l,2,3, page 5) is disabled and "on" video is injected
into the video signal (at A19-l, page 5).

During Zero-Intensity this

causes video to be "on" (not because of the injected "on" video but because the Zero-Intensity signal, A32-6, disables the video driver, AlS-4,

5,6, through an inverter, A33-l,2,12,13).

During other (non-zero) inten-

sities the cursor "on" causes the character position to have all dots
"on" because of the injected "on" video.

This causes the character's

background to change (flash) to the same polarity as the character itself
(which is -already inverted once or twice by the +CURSOR signal and, possibly,
by the INVERT VIDEO control bit).

Horizontal sync (A23-lS, page

) is programmatically delayed in the CRT

Chip by 4 character times (1 for SYNC/BLANK DELAY and 3 for HSYN DELAY,
see Section 5.2) from the end of the last RAM address character position.
With video being delayed 2 more character times a 2-character "front
porch" is provided (see Figure 5.6 and Appendix B).

HSYN (A23-15) is

inverted (A36-l0,11, page 4) to drive a one-shot (Al-2,3) which generates
a horizontal drive signal (called +HSYNC) that goes to the video connector
(P2-l, page 5).

(-HSYNC is also used for other timing (on page 5) as

described in the paragraph below that presents the video control register.)

VSYNC (A23-11, page 4), which is inverted twice (A56-12,13 and AS6-I,2,
page 4) and driven (by A14-l0,ll, page 5) onto -VSYNC (P2-5), has the
timing as described in Section 5.2 and Appendix B.

-47-

(VSYNC signals are

also used for video control register timing, see below.)

-COMPSYNC (A23-

10, page 4) is inverted (AI5-11,12,13, page 5) and driven (by inverting

(

driver A14-8,9,
page 5) onto P2-6 •. Its main use is to provide the com,
posite sync to the multi-level video signal (by closing switch 52-10,11
and opening switch 82-1,20, page 5).

When the switch settings are made

then P2-6 provides +TTL VIDEO in addition to a TTL composite sync signal.

HALF-DOT-SHIFT LOGIC:

As described in Section 5.3 each scan line of each

character can specify a half dot shift characteristic for each the first
3 dot positions and the last 4 dot positions.

DI (from A3-l0, page 5)

selects the half dot shift for the first 3 dot positions (D1=1 selects the
advance dots, Dl=0 selects normal dots.
shift for the last 4 dot positions.

D0 (A3-9) selects the half dot

Section 5.3 shows a portrayal of

Dl and D0 are latched into A4S-2,5 and A45-l2,9

the 4 possibilities.

(respectively) by +DCCAR (A42-3 to A45-3 and A45-11) which is the same
time as when the shift register is loaded.

The outputs of A45-5,6 deter-

mine whether the normal or advanced dot is selected.
enables (via A18-4,5,6) the advanced dot (from AI7-9).

The Q output (A45-5)
The Q output

(AI7-6) enables (via AI8-l,2,3) the normal dot (from AI7-S).
+DC.a~

(inverted

~y

+DC2-l and

A44-12,13, page 5) cause (via A46-3.4,5.6 and A46-8,9,

lOtll) the selecting flip-flop A45-2,5) to take on the value of the flipflop that stored the D0 value A45-9.l2).

This occurs between the 3rd and

4th dot time (see Figure 5.1) causing the dot shift patterns shown in
Figure 5.4.

The dot-select gates (Al8-4,5,6 and AI8-l,2,3) have their

outputs OR'd (with other signals at AI9-2,4) to form the pre-complemented
video signal at Al9-6.

IN-STREAM VIDEO CONTROL REGISTER:

Six flip-flops implement a 4-bit control

register that captures video control information from the display character
-48-

(

stream.

As described in Section 5.3 the control information comes from

the outputs of the pipeline latch (A4, page 5) and uses up 32 (of the
possible 128) character encodings.

A control character is denoted by

having bits 6 and 5 equal to • (+DRD6 and +DRD5, A4-5,2) which is detected
by the gate A22-1,2,3, page 5.
(A44-l,2) to yield +CONTROL.

The output of this gate (A22-3) is inverted
The control register flip-flops are clocked

by signals that are essentially the same as +DCCAR (see Figures 5.l and
5.5) but are enabled only under the following conditions:
(1)

+CONTROL is true;

(2)

valid characters are in the character stream at the pipeline
register A4 (which is when the signal -ADVBLANK is high, see
Figure 5.6);

(3)

the intensity control bits (+DRDl,2) require that +DRD4-1 to
be clocked.

These conditions are gated (using A43-l2,l, A4l-4,5,6, A4l-8,9,lO,
A42-4,5,6, artd A42-8,9,lO, allan page 5) with +DCCARRY (at A43-5) and
-CLK (at A42-4 and A42-l0) to generate the clocking signals for the
UNDERLINE (+DRD,) and INVERT VIDEO (+DRDl) bits (as clocked from A42-6)
and the INTENSITY bits (+DRD3,2, as clocked from A42-8 which is inverted
by A44-l0,11, page 5).
CONTROL CODES:

BIT 6=', BIT

THEN START UNDERLINE
END

UNDERLINE

5-'

BIT '=1
BIT .-.

START INVERSE VIDEO

BIT 1=1

END INVERSE VIDEO

BIT 1='

IF ALSO BIT 4-1 THEN
START ZERO INTENSITY

BIT

•

2
•

START FLASH (2Hz)

1

1

-49-

3

mRMAL

BIT

3 2
1 ,

NORMAL

,

1

Bit' of control characters (+DR~, A4-9) is clocked

UNDERLINING:

(A29-ll) into the UNDERLINE flip-flop (A29-9,12, page 5).

If +DRDe a 1,

then, to prevent the control character position itself {which is blanked,
as described in the "SHIFT-REGISTER" paragraph above) from being underlined, a second flip-flop (A2B-9,12) provides a one-character delay.
The second flip-flop is clocked by +DCCAR at every character time.

If

+DRDf-., then the output of the first flip-flop (A29-9) clears the second
immediately (via A2B-13), causing the underline to disappear at the oeginning of a control character:
+DRDe-l
CTL

xxxxx [llI XXXXXXX

a'
CTL

rn

XXXXXX

X's are
Displayed
Characters

(\

Blanked
Control Character Positions

The actual underlining (as controlled by A2B-9) is gated (at AlB-8,9,10,
page 5) with +lOth Dot Row which indicates the last rastor scan line for
a character row (as denoted byA20-ll,12,13 and inverted by ABO-l,2,3,
page 5).

The output of the gate (AlB-B) forces a video "on" condition

(at A19-5).

(See also Inter-Scan-Line Storage,_ below.)

INVERTED VIDEO:

Bit 1 of control characters (+DROl, A4-6) are clocked

(A29-3) into the INVERTED VIDEO flip-flop (A29-2,5, page 5).

As with the

UNDERLINE flip-flop pair (described above), the INVERTED VIDEO has two
flip-flops (A29-2,5, and A28-2,5) which, when Bit 1=1, delay the effect
on the video until the following character, but when Bit la' they turn
off the inverse video immediately (using the second flip-flop's clear,

-50-

(

A28-l).

The actual inverting (as controlled by A28-6) i8 exclusive

OR'd with the +CURSOR signal (at A21-l,2,3, page 5) and the video signal
(using

A~1-4,5,6).

Thus the video may, in effect, be complemented

twice, once by the INVERT VIDEO control and once by the +CURSOR signal.
If the flashing cursor option (jumper W25) is not installed then the
presence of the cursor at the end of an INVERT VIDEO field will cause
ambiguity in visually determining the cursor position on the screen.
(See also Inter-Scan-Line Storage, below.)

INTENSITY CONTROLS:

When bit 4 (+DRD4, A4-l4) of control characters

equals 1, then bits 3 and 2 (+DRD3,2, A4-16,lS) are clocked (A3l-3,11)
into the INTENSITY control flip-flops (A3l-2,S and A3l-9,12, page S).
These flip-flops affect the intensity immediately when loaded.

When bit

3 (A3l-5) and bit 2 (A3l-9) both equal zero, this is detected (by gating
A31-6 and A31-l0 at A32.4,S,6, page 5) and causes a driver (AlS-I,2,3)
to zero the video.

(This driver may be disabled at the cursor position

at a 4 Hz on-off rate, if the flash cursor option, jumper W2S, is installed.
See CURSOR, above.)

When bit 3 and bit 2 both equal one, this is detected

and gated with a 2 Hz square ware (at

A33-~,4,S,6,

produce a video flashing (on-off) effect.

page 5) in order to

The gate's output (A33-6) inhib-

its and clears the dot shift register (via AI9-l0.8).
above.)

(See SHIFT REGISTER,

Any other combinations of bits 3 and 2 (specifically bit 3.2, • 1.0

or • •• 1) allow the normal intensity to be used.

INTER-SCAN-LlNE STORAGE OF CONTROL REGISTER:

The register AlO (page 5)

stores the CONTROL REGISTER values at the end of the 80th character at the
10th scan line of a character row.

At the beginning of each of the 10 scan

-51-

lines of the next character row the values in the storage register are
loaded into the control register flip-flops.

This allows UNDERLINE,

INVERTED VIDEO, and INTENSITY controls to carryover from one character
row to the next character row.

()

The storage register (A30) is loaded at

the end of the tenth scan line by gating -BLANK, +ADVBLANK, and +lOth
DOT ROW (all at A33-8,9,10,11, page 5) which, when all equal to 1, define
that the 80th character on scan line 10 is being displayed.

The gate's

output (A33-8) passes through A32-9,8 to provide one of the load enables
for the storage register (A30-9).

The other load enable (A30-l0) is

driven true by -10th DOT ROW (A20-ll through A32-l1,12,13).

In this way

the storage register is loaded with the control register bits -BIT0 (from
A29-8), -BIT 1 (A29-6), -BIT 2 (A3l-l0, and +BIT 3 (A3l-5) into storage
register data input 40, 3D, 20, and 10 (A30-l1,12,13,14), respectively.

Before loading the control register flip-flops at the beginning of each

(

scan line, all flip-flops are set to their initialized condition by the
-HSYNC (A36-10, page 4) signal:
UNDERLINE (A29-9) is set to • (via A29-l3)
INVERT VIDEO (A29-S) is set to • (via A29-l)
INTENSITY (bits 3.2 at A31-S,9) is set to

1,.

(via A31-4,13)

The outputs of the storage register are enabled (A30-2) by the combination
of +ADV BLANK and +BLANK (at A20-4,S,6) (except during VSYNC, see below).
These outputs go to the 4 control flip-flops causing them to preset or clear
in a manner appropriate with the stored bit value.

If a stored bit is high

at the output then the corresponding flip-flop is not changed because the
"initialized state" (see above) is already correct.

If a stored bit is low

()
-52-

at the output then the flip-flop is forced to the opposite of the "initialized state".

The flip-flops end up in the state indicated by the ItaraRe

register:
BIT #

INITIALIZED
VAWE

UNDERLINE

STORAGE
REGISTER
VAWE

INTENSITY

1

2

.

3

1

.

1

.,1

( .. -BITl) .,
1

I)

(m -BIT2)

1

(- -BIT.)

INVERT VIDEO

FINAL FLIP-FLOP
VAWE

1

.,
(- +BIT3) .,

.,

1

1

Figure 5.7 Storage Register Value
Addi tiona 11y , during vertical blanking, the signal -VSYNC (A36-l2, page 4)
causes (through A32-B,9,lO and A32-11,12,ll) both enables (A30-9,lO) of the
storage register be driven true.

+VSYNC (A36-2) forces the storage regis-

ter'e outputs to be disabled (at A30-1).

This causes the control flip-flops

to stay in their initialized state as forced by -HSYNC (from Al6-10, page 4.
to A29-1, A29-1l, A31-4, and A31-ll, page 5).
register to have the same values.

This also causes the storage

Following VSYNC these values are:

UNDERLINE - .,
INVERT VIDEO - .,
INTENSITY -

HALF.. INTENSITY

I,'

(i.e., NORMAL)

(-"PROTECTED" by firmware):

Bit 7 of every character (A4-12,

+DRD7, page 5) controls whether or not that character is displayed with
half intensity.

At the same time the shift register is loaded +DCCAR (A42-3,

page 5) loads (A16-ll. page 5) +DRD7 (A16-7) in a flip-flop whose output
(A16-9) is

dri~en ~by

A15-B,9,lO) through 510 ohms (R9) to the combined video

-53-

I

node.

With the driver's output (A15-8) low the combined Video is loaded

down more. causing the intensity level, if any, to be reduced.

(
COMBINED VIDEO:

The following open-collector drivers make up the combined

video Signal (A15-6, page 5);
Half intensity A15-8 through 510 ohm, R9
Zero intensity A15-3
Video (Dots)

AlS-6

BLANK

A14-l2

FORCE BLANK

A14-2

+FORCE BLANK's driver (A14-l,2) allows the CPU to blank the screen at any
time (to avoid unsightly display effects, for example, during massive display data accesses).

The CP.U writes a 1 in bit 5 to external data (memory

mapped I/O) address 40CH to cause the screen to blank.

52-l~20

For video without sync signals switch
is elosed.

(See 5ection 2.4.1.)

(

is opened and switch 52-10,11

Resistors R2 and R3 (510 ohms and lK ohm) provide the level

pullup capability.

The emitter-follower implementation of Ql provides a

high input impedance and a low output impedance which drives (through R4,
68 ohms) +VIDEO (P2-4).

A convenient ground signal is provided on P2-3.

For composite video (i.e., video with sync signals) switch 52-1,20 is closed
and switch S2-l0,ll is opened.

This puts a 260 ohm resistor (Rl) in series

with the previous combined video which prevents zero intensity from reaching
as low a level at 52-1.

Closing 52-1,20

allows composite sync (A14-8) to

cause the lowest level in the new video signal.
signal is output on P2-6 +TTL VIDEO.

This "TTL" driven video

As above. the signal is driven by

the emitter follower (Ql) to drive +VIDEO (P2-4).
-54-

(I

6.

COMMUNICATION OPERATION

6.1

Baud Rate Generation

The baud rate frequencies for the computer (P3) and printer (P4) serial
communication interfaces are determined by the counters and switches
shown on page 6 of the schematics.

The input clock is TDCl (A57-l3, page

4), which is an asymmetrical 3.402 MHz signal (see Figure 5.0).

The

first counter (A73, page 6) divides this by 11 to yield a 309,273 Hz signal (A73-ll) suitable for the 19,200 baud rate.

Counter A70 and A7l

each provide 4 levels of dividing by 2 to yield clocks for 9600 down to
75 baud.

Counter A72 divides A70's output by 11 to yield (at A72-ll) a

clock suitable for 110 baud.

Switch S1 selects the baud rate for the computer (P3) port by enabling
one (and only one, as enforced by the user) signal to A74-9 (page 6).
(See Section 3's table for switch settings.)

Switch S3 does the same for

the printer (P4) port by enabling one signal to A74-2.

The CPU selects

one of these two signals with +SELLPT (A74-1,2,3) the printer port and
-SELLPT-1 enables (at A74-8,9,lO) the computer port.
by the CPU as bit 4 in memory mapped I/O port 40CH.

+SELLPT is controlled
(See Section 2.4.1.)

The selected baud rate results in +BAUD GEN (A47-ll,l2,l3) which goes to
the UART (A48-12,40, page 2).

6.2

UART Operation

Details of the UART chip's (A48, page 2) internal operation are given in
its specification in Appendix C.

Section 2.4.2 presents programmer-level

I/O information.

-55-

UART I/O Interface:

Three I/O ports (2 read and 1 write) are used to

interface the CPU to the UART.

The data write port (address 408-H) is

enabled by address decoder output 2 (A5S-3, page 1) which goes to the
UART's - 05 (A48-23, page 2).

When pulsed (as per Section 2) on this

input the UART receives a byte on CPU data
connected to UART inputs
(address 40am
read outputs

J

O~.

(page 2).

~ines (+DB7~.)

which are

The data read pulse, -RDE

from the decoder (A58-6) enables (RDE, A4S-4) the UART's

(R08~L)

onto the CPU data bus

(+DB7~.~

respectively).

-RDE also pulsed the UART's reset Data available input (A4S-1S).

The

status word enable read pulse, -SWE (address 404H) , from the decoder
(A58-7) enables (48-10) four status bits onto the CPU data bus:
FE, Frame Error,

from A48-l4 to +OB3

PE, ·Parity Error,

from A48-l3 to +DB2

TBMT, Transmit Buffer Empty,

from A48-22 to +OBl

DTA, Data Available,

from A48-19 to +080.

UART 5WITCHCONTROL5:

Five switches provide operational control over the

UART, see Appendix C and Section 3:
52-5, 16

Parity

A48-35

52-6, is

Stop Bits

A48-36

52 ... 7, 14

Number of Bits

A4S-38

52-8, 13
S2-9, 12

"

"

"

ODD/EVEN PARITY

A48-37
A48-39

The -HALF DUPLEX Signal goes directly into the CPU (A54-38, page 18, from
switch S2-3,18).

It is not implemented with the UART, but by the firmware.

-56-

(

UART RESET:

The CPU resets the UART by pulsing the -PROG pin (A54-25.

page 1) which is inverted (by A67-1.2. page 1) yielding +RESETUART to
drive the UART's MR input (A48-2l, page 2).

UART SERIAL OPERATION:

As described in Appendix C the UART uses the

receive and transmit clocks, (A48-l7,40) at 16 times the baud rate, to
transmit data (A48-25) and receive data (A48-20).

The clock is as

selected in the BAUD RATE GENERATION logic (+BAUDGEN, A74-ll, page 6j see
Section 6.1).

6.3

SERIAL INTERFACES

The computer and printer serial interfaces can be either RS232C-type
levels or current loop.

The serial data is transmitted as both RS232 and

current loop (for the selected interface).

Two switches must be set to

select which type of data will be received on the computer port:
Receive RS232C on P3-3 -- Close 55-6,9
Receive Current Loop on P3-l2,24 -- Close 55-7,8
(only one switch should be closed).

6.3.1 RS232 Operation:
C(JotPUTER PORT, P3 :
Receive nata is input on P3-3 (by A60-12, page 2) and passed through
switch S5-6,9 to the UART (A48-20).

(See also Section 6.3.3 for P6).

Clear to send is input on P3-5 (by A60-8,lO) yielding -CTS which the CPU
can input on T' (A54-l, page 1).

(See also Section 6.3.3.)

-57-

A "Data Carrier Ready" signal can be selectively input on P3-6 (as
switched by 55-1,14) or on P3-8 (as switched by 55-2,13).

With both

switches open 3.3Kit resistor (R32) pulls the input to +12V, the true
condition.

(

The output of the RS232 receiver (A60-ll, page 2) becomes

-OCR which the CPU can read on port 2 bit 5 (45-36, page 1).

(See also

Section 6.3.3.)

Transmit Data'for the computer RS232 port is driven to P3-2, TXD, (by
A59-4,5.6, page 2).

The input to the driver (A59-4.5) is enabled (at

A61-4,5,6) by the control signal -SELLPT (A62-4 to A61-5) which. before
inversion (by A62-3,4), is +SELLPT as output by the CPU on bit 4 of
memory mapped I/O port 40CH (See Section 2.4.1).

When -SELLPT disables

the transmit port (-SELLPT low) the output (at A59-6, P3-2) is kept low
(defined by the RS232C specification as the "OFF". marking condition, or
binary 1 condition.)

-BREAK (A47-10, page 1, CPU output to 40CH bit 3)

when true (low) can force (via A61-l1,12,13, page 2) the transmit data to
the spacing condition (RS232 is positive, defined as
A6l-4,5,6) by -SELLPT being high.

"ONtI ) i f

(

enabled (at

The data signal itself (at A61-l2) comes

from the UART's -TXD output (A48-25).

(See also Section 6.3.3 for P6.)

The CPU controlled -RQS signal (A47-7, page 1, CPU output to 4.CH bit 2)
is

the source for driving (using A59-2,3, page 2) the RT5signal at P3-4.

By closing switch 55-3,12 this driver will also drive DTR at P3-20.

Alter-

natively, DTR could be pulled permanently to the "ON" (positive) state
I

,

by closing switch 55-4,11 (and leaving 55-3,12 open).

Pin P3-7 is ground on the R5232 computer port.

(1
-58-

PRINTER PORT, P4:
The RS232 printer port has no serial data receive capability.

However

+PRTRDY (P4-20, page 2) is received (by A60-4,6) and sent to the CPU as
-PRTRDY (A60-6, page 2) on CPU port 2 bit 6 (A54-37, page 1).

If P4-20

is left disconnected, then a 3.3KJt resistor (R1B) pulls the signal to
the ON state.

Transmit Data for the printer RS232 port is driven to P4-3, PRT DATA (by
A59-8,9,lO, page 2).

The input to the driver (AS9-9,lO) is enabled (at

A6l-8,9,10) by the control signal +SELLPT (A47-12, page 1) which is output
by the CPU on bit 4 of output location 40CH (See Section 2.4.1).

The

transmit data is otherwise controlled by +SELLPT and -BREAK in the same
manner as described above (for -SELLPT and -BREAK) for the computer RS232
transmit data, above.

The data, as above, originates from the UART's -TXD

(A48-2S).

The RS232 printer port also drives (with AS9-l1,12,13) p4-6 (by installing
jumper Wl2) and/or P4-8 (by installing jumper W13) with the CPU controlled
signal -RQS (A47-7, page 1, CPU output to 40CH bit 2).

Pin P4-7 is ground on the RS232 printer port.

6.3.2 Current Loop Operation

COMPUTER PORT, P3:
interfaces.

The computer has both transmit and receive current loop

The receive circuit uses an opto isolator (4N37 at A6-3, page 2)

to receive a current loop with current (conventional) entering at P3-12
(RXDl) and leaving at P3-24 (RXD2).
path.

Adiode (02) provide a reverse current

The opto-isolator's output (A63-5) feed an inverted (A62-10,11), the

-59-

output of which (when passed by • closed 85-7,8 switch) provide the
UART with serial input data (A48-20).

(Note that the R8232 switch 85-6,9

should be open during current loop operation).

The current loop receiver

circuit is very low impedance such that the equipment driving

t~is

(

input

must limit the current, to not more than 40 mA (with a 20 mA minimum).

The current loop driver for the computer port is opto-isolated (A65,4N33)
also.

Its source (via A62-5,6) is the same as what is input to the RS232

driver, causing it to parallel that pin's actions (See Section 6.3.1).

A

completely isolated output is provided at P3-25 (TXDl) and P3-l3 if
jumpers Wl4 and Wl6 are installed (and jumpers W15, Wl7, and W6, and
resistor R2.8 are not installed).

Alternatively by installing R28, W6, Wl5,

and Wi7, a current (limited by R28) can be driven into P3-25 (TXDl) and
returned to ground at P3-13 (TXD2).

(

(

7.

KEYBOARD OPERATION

The keyboard matrix is driven on connector PI (pins 8 to 15) by the CPU
with bits 7 to • of port 1 (A54-34 to 27), page 1).

The twelve inputs

are received by multiplexers (with all of A69 and A68-9 to 15, and 2, page
1) to be received by the CPU via the four memory-mapped input locations
4,C, 4'D, 4,E, and 4'F (Hex) as described in Section 2.4.3.

This is done

using the 4fC decoder output KBRD (A58-9, page 1) and +Al and +A, (at
A69-2,14 and A68-2, 14), causing the multiplexers to output data on +DBe
(A69-9), +DBI (A69-7), +DB5 (A68-9).

Additionally for all addresses

4'C to 4'F separate switches from the keyboard are input on the following
bits:
+DB2

Pl-5

FUNC

(using A76-11,12)

+DB3

Pl-6

CTL

(using A76-l3,14)

+DB4

PI-4

S11FT

(using A76-2,3)

+DB5

PI-3

ALPHA

(using A76-4,5)

See also Section 2.4.3 for CPU interface usage and Appendix C for the
standard keyboard matrix expected on the interface.

-61-

(I

(

(J

ITHI/
FIr-.iD
NO.

,

RL FT:RENCI:/

QTY PER AS91/ Rl:V LEVEl.

DrSIGNATOR

NOMI:NCLATURI:/ nESCH I PT J ON

PART NUMBER/RH1ARKS

K

L

E

G

H

1

1

1

1

1

1

C2

Cap DIP t-lica 10pf 100D03

2024100

2
3
4

3
1
47

3
1
47

C3,6,7
C1
unmarked

Cap R/L 22uf 15V
Cap R/L 1uf 15V

2025700
2027901

Cap C/D .01uf 20% 16V

2028700

5

1

4

1

1

1

C10

Cap C/D .Oluf 10% 50V Y5P

2028900

6

2

2

0

0

2

C11,12

Cap C/D 330pf SOV 20%

2029100

7

1

1

1

1

1

A42

IC 74S00

2024000

8

5

5

5

5

5

A18,20,40,61.74

IC 74LSOO

2024200

9

1

1

1

1

1

A15

IC 74LS03

2024400

10

1

1

1

1

1

ASS

IC 74S04

2024600

11

5
1

5
1

5
1

5
1

A36,38,44,62,67

IC 74LS04

2024800

12

5
1

IC 74LS05

2025000

13

2

2

2

2

2

IC 74LS08

2025200

14

2

2

2

2

2

IC 74LSIO

2025400

15

1

1

1

1

1

IC 74LS20

2025600

16

3

3

3

3

3

IC 74LS32

2025800

17

1

1

1

1

1

A14
A32,43
A33,46
A19
A22,39,66
A58

IC 74LS42

2026000

18

1

1

1

1

1

A37

IC 74LS51

2026200

19

1

1

1

1

1

IC 74S74

2026400

20

8

8

7

8

8

A17
AI6,28,29,31,34,

IC 74LS74

2026600

3
3 3
1
1 1
47 47 47

35,45,77
NOTJ:S:

PAGE 1 OF 5
TIT 1.\;

1Ji\'J'L

CONTROL BOARD, TVI-912/920 TERMINAL

02-01-83

O.ThleVtdeo Systems, Inc.

I
I

v

v
ITEM/
flNIl
NO
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

QTY PER J\SS~I/REV LEVEL
K

1
1
1
4
5
1
1
2
2
1
1
1
1
1
1
1
1
1
1
2
1

L
1
1
1
4
5
1
1
2
2
1
1
1
1
1

1
1
1
1
1
2
1

E

1
1
3
5
1
1
2
2
1
1
1
1
1
0
1
1
1
1
2
1

G H
1 1
1 1
1
4 4
5 5
1 1
1 1
2 2
2 2
1 1
1 1
1

1

1
1
0
1
1
1
1
2
1

1
1
1
1
1
1
1
2
1

REfERENCE/
llESIGNATOR
A21
A56
A27
A24,25,26,78
A57,70-73
A2
A30
A41,47
A68,69
A76
A51
A4
A59
A60
A65
A63
A3
Al
A13
A52,53
A48
-

~

NGr.1ENCLATURE/JlESCR T PT ION
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC

74LS86
74LS109
74LS139
74LS157
74LS163
74LS166 ,
74LS173
74LS174
75LS253
74LS367
74LS373
IC~ 7 4LS3 74
IC 75188N
IC 75189AN
IC H11G3
IC TILI17, 4N37
IC 2316 ROM A3-2
IC NE555
IC DP8304
IC AMD2111-4A
IC 2502, AY-5-1013A

PART NUMBER/REMARKS
2026800
2027000
2027200
2027400
2027600
2027800
2028000
2028200
2028400
2028600
2028800

j

I
I
I

202900'0
2029200
2029400
2034200
2029300
2034600
2030200
2030400
2030600
2030800

I
I

NOTES:
i

,

PAGE 2 OF 5
IlIYIT

TITLE

CONTROL BOARD, TVI-912/920 TERMINAL

02-01-83

O.1eleVideo Systems, Inc.

ITEM/
FINn
NO.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

QTY PER J\SS~I/ REV LEVE',
G H
K L E
1 1
1 1 1
1 1 1
1 1
4 4 4
4 4
(4 (4) (4)
1 1
0
1 1
0
(1 0 0
(1 0 0
1 1
1 1 1
1 1
1 1 (1 1 1
2 2 2
2 2
2 2 (2 2 2
4 4 4
4 4
1
1 1
3 3 1
1 1
3 3 2
2 2
1 1 0
0 1
1 1 1
1 1
1 1 1
1 1
2 2 2
2 2

RI: FERENCE!
IH:S I GNi\TOR
A23
A54
A6,8,10,12
A5,7,9,11
A49B
A49C
A49R
A50R
S5
S3
Sl,2
P3,4
XA5,7,9,11
XA49
XA50
XA23,54
XS4
Xl
P7
P2,5

NOI\IENCLJ\TURE/I1ESCR I PT ION

PART NUMBER/REMARKS

IC 5027,5037,TMS9927

2031000

Ie Microprocessor P8035
IC TMS4045-25NL, 2114 300NS
IC TMS 4045 Option-2nd page
IC 8332A 32K ROM A49B
IC 8332A 32K ROM A49C
IC 2316 16K ROM A49R
IC 2316 16K ROM A50R
IC A49C1
Dip Switch 7 Pas Top
Dip Switch 10 Pas Top
Dip Switch 10 Pos Side
Connector RS232 RIA
Socket Ie 18 Pin
Socket IC 24 Pin
Socket Ie 24 Pin
Socket IC 40 Pin
Socket IC 14 Pin
Cry 23.814 MHz Fundamental
Plug 2 Pin
Plug 5 Pin

2031200
2035800
2032600
2032600
2032200
2032400
2034000
2174200
2181000
2096800
2097800
2098400
2098401
2098401
2098402
2098403
2098600
2098501
2098706

·NOTES:
I

PAGE 3 OF 5
TITI.E
CONTROL BOARD, TVI-912/920 TERMINAL
-----_.

-

IlAT I:
2-1-83

O.'IeleVideo Systems, Inc.

I

v

~

~
..

ITEf'.I/
riND
NO.
63
64
65
66
67
68
69
70
71
72
73
74
7S
76
77
78
79
80
81
82
83

K

1
2
1
2
3
1
2
2
6
2
1
1
2
1
5

QTY PER ASSf\I/REV LEVEL
L E
G H
1 1
1 1
2 2
2 2
1 1
1 1
2 2
2 2
4 4
3 4
1 1
1 1
2 3
3 3
1 1
2 1
6 6
6 6
1
0 0
0 2
2 0
1 1
1 1
1 1
1 1
1
1 1
2 3
3 0
1 1
1 1
0 5
5 0
0 1
1 0

1
S

5

1
4

1
4

0
4

REFERENCIJ
IlESfGNATOO
PI
R4,31
R22
Rl,19
Rl1,20,29,30
R13
R2,14,25
R9
R3,S,B,10,15,16
R34
R41,42
R7
R12
R17
RI8,32,33
R6
R36-40
R23
1
R23
R23
RPl,2,4,6

u~_

~~_

NOMENCLATlJRE/I1ESCRIPTION
. Plug 26
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res C/F
Res CIF
Res C/F
Res C/F
Res C/F

Pin
68 Ohm 5% 1/4W
1BO Ohm 5% 1/4W
270 Ohm 5% 1/4W
330 Ohm 5% 1/4W
470 Ohm 5% 1/4W
510 Ohm 5% 1/4W
750 Ohm 5% 1/4W
lK Ohm 5% 1/4W
lK Ohm 5% 1/4W
lK Ohm 5% 1/4W
1.2K Ohm 5% 1/4W
I.BK Ohm 5% 1/4W.
3.3K Ohm 5% 1/4W
3.3K Ohm 5% 1/4W
4.7K Ohm 5% 1/4W
4.7K Ohm 5% 1/4W
51K Ohm 5% 1/4W

Res C/F 1M Ohm 5% 1/4W
Res Pack lK Ohm

PART NUMBER/REMARKS
2098701
2051100
2053300
2051300
2051500
2051700
2051900
2031700
2052100
2052100
2052100
2031900
2052300
2052700
2052700
2053100
2053100
2032300
2032500
2031500
2040500

NOTES:

PAGE 4 OF 5
IM"!'L

TITLE

CONTROL BOARD, TVI-912/920 TERHINAL

2-1-83

O~1eleVideo Systems, Inc.

I

I

ITHI/
FIND
NO.

84
85
86
87
88

QTY PER l\SS~I/ RJ:V LEVE'.

K L
1 1
1
2 2
3 3
1

E

0
2
3

RI;FERENCI;j

N()~IJ;NCLl\TLJRE/nESCR

I PT I ON

PART NLJ~1BER/REMl\RKS

G H
1 1

RP3

Res Pack 6.2K Ohm

2040700

2
3

R43
Q1,2
D1,2,3

Res C/F 10K JOhm 5 % 1/4\11
TR 2N4401
Diode 1N914
P6KE15A Diode

2033300
2045500
2047500
2047900

2
3

DESIGNl\TOR

I
I

i

I

!

NOTES:

PAGE 5 OF 5
TITLE

Ill\TE

CONTROL BOARD, TVI-912/920 TERMINAL

2-1-83

O.,1eleVideo Systems, Inc.

()

~--~~---L--~~~---L----~----l---~~----~--1-~----L-1----~1----_L-1----~1----~1----~1~~
1
•
I
•
1
•
[
"
•

I

7

"v~M~",

CI::>-----?2~1~!_il~I~:""'-''''''''-'''''--'
..,.......,.
~

-~(J
-~SEII

-

21
[C~------r;I";J~'20 "N"
~
Fi-::}-------itZ1l"..
_ ,,"
","
"
F'r)-------rn"'7l,
,. r.'Il ....
~

+A'

+AI

-==>+ ...

-=+ ...

.cT""l+ ...

.,U,," .. "

+A7
+U

Fc}-----ir-titl1,

~
CI::>-----'tTT1[1].
;...

()

""'-"".01'
~::

...,--.,

+AIO

.c=+ ..

" "

-=>+ ..

~
h r.:-...
ri;~~~::::::;~~tr1tltl~~~~~'~~
B> 00"
02~'~~~~:t:::f:f:f~::::~~i=nr~::~::::::::::=f::Tfllfffilf::::----------------------------'-~
__
~
CC~-~rl-ttllllt,,;;J~'2
c.-~ 1I<....l,,~
I t ~T
~
nO--rl-H-rtitt717 .
r - - ""s'z.
~

+A~
+A~

'i

+Al
+AZ
+AI
+AO

•

01

10

.

I

'-I.-.J'

"

-

G

,

,

-IIIINICI

-PIIT.oL

E

I

LSZ,]

-

..

'I

, ,

.......

-110

D

CL)
as
-WIle
~C>---------"'-----'L.:'-":~i:-:-..L---"Viiil- OSCS

tElD'tOIE

IJIIWIIC£::::!
PII-7

~>----"7)P.-12
) Pfo-II

)

) PI-I,

.

tr

+1"',

Iii i ~

1-

-J!..,..

--

111

11 TS8

t::...
IL~.~V-O!I:!+Z
_ _ _ _ _'''..,EPS

....

D

_---;;':ft17 NlZ

~~~:::::::::::::::ti:::::::::::::::::::::::::::::::::t::::::::::::::::=t~
. R~
~17~
t¥,

RCM
lCM

t---'i~A"/"'"
..1;.i;\tL--------t:=Pl-Z
.... "

H---;.·~~~I..i).;.!L.-----_--_
H---'~.,,;j.:'~.r
.
--1.j"A
..

Zy

~l
Pl-~
2,.WI );;;....l----r-~,.-.

r--=-r-__

1111

+'zw_

1.1.

I~

W
'A

c;

3 18 S

,

__!"...-,

flOC'ASZ1U
flit 00\1"(""'1)

A1, LSI"

'28

-

--- ..

'"'

(

..

? "

c

r--.

r--

":"1&'...,1Gl,I:If-'++-r-;l'i-;:1N;{T.
~,_o-"CI«~..+-+;--->ii1,8 NS'

~N=-~.=r-~_______)_P._-_I"___-+'i ________==:::::::::::::::::::::::t::~::::::-::::=:::~~1"5Ii
nm

-

,.

RIIZ ..

~~~o~--,
II 5"1 " 1
is-

rt>

"'2I~ .,5"'
'Yr--~ -=::c.
A7'

15188

11

..1

Pl-2O

_---""I~~-.

IIIZOO

FP1-

L--O-oOo----,""-1

IITseIlSZlZ)

c
O'"(1I5Z12)

TEM ROY
TEA" ROf(IISZlI»

7 tnEPHOf€ IIIIIJIACI:

~_,

LSI)7

•

-BRUit

-liaS

•

CTse 1152121

-

DSIHftSZ1D

oeDe RS2J2)

()

•

1

.,

1

•

i.
"

1

IJ

1

J.

I

J.

2

J.

L=,

a

H

'H

(-

I

G

G

-

,

.f~

•

• ..,.... I

'V'~B.
~'Pl

iii ..l' .1!

V~l'

L!iO't

E

I:

.-

(

D

-

c

c

-

I
,,

r-~

,I

•

I

-

TeleVldeo:lnc.

~

..

.~

_. ·t

A

I

.,

,

I

I

1

I 4

I

I

J\

(

•

•

7

+ ..HZ

flASHER (
-SlM.

M

+AD'I'BlA"

•

~c::
..L)---~-_7";.JAn'-·
"
.,J.8L_ _ _ _ _.r:=============::::~
II
~
h 1I
I'Z~8

LSIO

I

I ~

-10 H DOl 'lOW

'711

G

~

~

~ .1

1~!'..l!JAZOr
AZa
f [SIlO

3::J--l-4........I1~,.~r:....
C
-.........
~II

It

1ST LINE

C'""1[:J__-H-4....!.!IZ:;,~))L'A::Z;.,~."\.1>
~ All
~

ID lS81>

~

1'00""

c;Ch-H-f-~":..,].LA::..ZZ~
Co

+00''-

LSll
L-

LS1Z

10

I '-:':<
12

"Aoq./>.IL"-H-+-....
~"iO
11

r - lSZO

I..

All>

~W ~

I

~I"I"

r--

lSOO

GI

LJiM: CTL
10

~ :~

•

1

~L:Z1ZZ1

l ..

~
lin: COl
~1------+41.'£lII-.l"_______+_--~D-D

+11((1."

L....-jl--_-.

108-----++-4--f---.

G

---&--.,

.. 01JL---++--+.,
I~'~

,

2

+'Iv _ APZ-t
_ _ _ _-__,

CUI!'; F\.ASH

10.

........,......

+ DOTAl
+OOTAZ

1

4

:J----------------------------------------------------__________________~--------------__,
~;;;...:;......-...r::)--------------------------------------------.....-..,~
~
T
\,IJ.";~;""":'--_

+aR~C
-----:i
______

~

..---~+---++--_-+_l14-+--'2~0

All

..J

L51..

.--

~

af.lI'l....I--~ All
I>

l510

~r

~

,

,---!!2...

r--lI4---lI4-+--_4+--++-'~lO

ol-'l'l,+-~-{.

TPI'I

+DlgoDATA .,

E

Iii

+Dlgo DATA 0

'lomttl.UO_
C+I IL "DCln

D

+'5""
III

I,llC

~""T~~'" ""

~DIs(" OUT 1

elo
'e..

Ai;.s

_
I
• lifo
Z
...,

efU

'---1

c

AI

"(~~~

III -......--+--+---+m
+'iy
'II

I"

A

I..,Z'--_--.

UYz
-e-T"""") + AES£T &IUIf
~-WR

-

~De

a8~------~~--------------------------C1~

Q7'

L~~n

--=:-

Q~, Z
D)

~+Al

0;

•

=::~
',~~
"'-II >-~-+-I-~~+-+--I--7ir;
>-~-+-I-~+--+-------tl~ ,ez

DI ,,,

PI-Iq

:~'''~:t:t:==:t=============:t::t:~~:t~~+t:1:t=======:J

10 '(1

"-20

zeo

"-ZI

I' ZCI
'Z(Z

PI-ZZ

~21

IG
IY

ZG

,........"....

D
It

-'iOHZ

~T

PI-l

52

i:

f lEt lEt ii,p
a:

IE

,

.,.

..

J,.

'·"'"'1~-,.."..o----+-++-I-------------+-CI::)r,l ... AOvADOIIWIlT
q

l51l

b4f!=!-,

"CUI

RP2-1

+IZOOIIZ

_R
A.l
LSO't

~l8RZq
11D

Q2

ZNZZ"

!

'0
.-+--f-,bM20

~

II 1 ~OZ
0; b "0'0
.. ~
1 ~ -.l ~8

zi...J 1'2_

,oSl

PULSE

A

...

-RDE

.

.(""7, - DS
~

~A"~-c::5::)-SEL

(Ill CHII'

~s

za

1Q 10
,...........,
~~~~~+1--1---------~~c~-----+---------{-----:J~+~R wRT
100 4

....----. ... 1'6

~-RQS

LSI~

SEL

~ -SAU.

,

I

4

-

." ..
=.....
.

TeleVldeo:lnc.
. -I"

c

~-SWE

r---------------.C=~_CJ-t-fOACE

P'i-" )----------t---I---+---""1"--+r;y

7

''<<·108~0

l
+IZV ----------------------1ti;l1~~~~~~~~~~~~~ii~iiiiii~~~~~~J,1J~------------------{~:I~+5a
I

+'IV

.~

CUI

lS.,Z

1

1'1 A
~,
L-___~

L-~-----------------------+~~--+_----~------------;_rt-r.I~'QK A~'

P'I-'i )----------------..,...--...,.------_

)

'2 D A'iS

/1 C

I",

~ bD

+IZV

P'I-I

' A..,

APZ-8

lD
L-_+-r+1r.1i~~g

+~y~--~-~RN11~-'1~-~li~rlA
1

~'Z
LSIO

f--I'i

'~'7-1 III

LSOO

r--~-If------~N-:..,I107;:;(

l

+'IV--~........;;'.qCLII ~~~..

B

IA~O ;~e-THI:----__;:===:;:::;:::::--t-{~.....--.r--..:::l:::J- WRf

'i4 i!J--

IK

-12V

D

a=D+D8S"

1

PI-t

c

---- ..

LSO+

>-------~-r-t_1--~~~~~~~~r;::~::::::::~r_t_----ti------------------_t--t__r----_rt_r_-+-----------------~ltiit_-----------+_j~r_t_--_j~~~-~+D86

PI-If

(ll

E

ZJ(

:.t---

nKl~

of

...

~ ... A'

QZ "

"r----,Z

tAl

~ +Ao;
,..:;:::::: + A~

all Ie;

H+H++-t-+','..G_"____at-'~

E

f

~+A'

G'i ,q

Y-+-+-I_1'-in..
.w,

G

~--~--------------------------_L~_~-PRTaL

~

H-++-+-+",;i7 Dl
H-++-H--+-I'-lDl
l
H-+-Hf++-+"""-IDI

liZ LSl'il

Nj

...--.--... - 05(5

I-"-Dl

f1! 011
+-++-1-'18"1 DO;

ZV ,.

AbS

I~155o~mCE REQUIRES
PRO~UCT IOH ONLY

crTz
'Z A.b .11

/1.-------,'l

C~

2GJ:;__
"'-----.,

>-------+---+-'-:':-12"
~:7" >------_--+i-:'zHZ(Z
>-________..+:':..!..jl ZO
Z

AIlE
5£IIIE5

~-IID

L-____~'l~~~I~Z~------------------------------,

!5

VAl\.6
'I'oXlI

~

1'I~
'1 L~7't

____________________________________~;_r++1_rrt__--~1

AU Ie S AIlE

08

"77

~

t~lJA~CITOIII

IS

"VlSO't

0.------., 15

PI-2I>
PI-2';

~ 1+~
r4
..

'UUb

tSv

.-+--.s:y#.~D
,..."

,~
DB '1

-ZQ. '55 liD

l

,---.. . .

All RESISTOAS ARE IN OHltS,

I/~W,((

0::: ~ PRE .
))l..I...a---------i~::;[~:J-ROlt'CS B> SPACE FOIl SOCKET PROVIDED
:

~

OBb.~'f!l=========================::;_,

11 Plio

.,

NOlES

D>
B>

::.:r.z~,--------------------------------------_HI_-+lh_-----------;=;:nC~D87t-;'-;'l---------------------------,
~ .

~~:~ >::=======~11~p,'i
11 ~~ (~~~~I 081:~p.~~:========================;_)
~
>
>--------------':l~'iPll
i f L.Y" 08'ADBUQr.,71----------------------,'
r.,-<-z------------------------------------"

c

.(!;O~A'I

lZ

>----------'l;;o;iPlZ

I,'
<
hV

..

P2zHZ~1~-------------------~

>--------~~~:' Pli

H

AU
LSO..

pz~'1;l<;i===========~-J

27 PII

WZ'f

1

tt~

,21"z.o

~CJL->---------------~I,T.

PI-Il
PI-I~
"-Ie;

12

1~1

1

PU "ti""-,.
_w

LJ---5;;;~:.:..-----.,.
n INT
TI

P,-8
PI-'I -

~~~
1B

\" p27m7;'-++-""c-~~

;>0::8:+----------"1
X,
A'i'i

q

~

PI-IO

ALPHA

1

r-------------------------------------------------------+-------------------~~~C)+~HZ fLA~ER

ril~'0;~7--mlb~~~O~q~

NC'--·2 Xl

KEYBOARDS

2

CSCJ--------------------~~----~
+~r_----;I_t------------------------------------------------------------------------~------------------~~:J~-'SEH
RPl-q

-CTS

3

4

3

-.".

2

ILANK

l'T

B

•

I
c:r::::>

-IIOPtICS

LLJ

~II'

+A.
~A7

+u

25S

"II~

~

1

o>ll'f..

W35

(llll»

]

wza.

(211Z)

5

r

I

I

1

2

H

(
-

~

+11'
+Al

-

•

.I

c:::r;>
g;?
c:::r;>

+1110

-

7

G

~
~

+AZ
+AI
-+AO

I........!....J

+AII

CD--

L-1-.I

,

,
-IIOPt.SCS

... 11

E

12 II

Nl2
IIIIA
011

-

(ZillA)

I..

n

E

12 II

----.,

NIl

llilA
OR
(ZillA)

~.

!We"
lit
AZl

C52

D

~O

_
WIT Pl-Il

5/1{

(S2

TIID2 (TTY)

(

----- ..
D

!,O

-SW£

-

-os

"*

-NJE

+ !?CV E-'UD

+ lwn Hue

c

.. R£5EIUART
A(Y[)UISl12)

i,4

1.71 LSI'?
2Y

2A

~ ~ !\~),l""'_ _ _-1r-~Pl-"
I Il

3 28
.

+.zw

ICrt>

II~~- to
"

~P"-II

I

~'Ac;. I,?~-~~
II
~o

RXD2(TlYI

-

All
1.1.

1

/:1

+SEL LPT

'8 5

IY~L.

7~188

, 1.7'
l5l57
-IIIE.U

~

Pl-ZO DTACA5Z12)

):P"_II

-PII-"
P1-l
"'-7

L"O:=O_ _ _-)

F

IITSCASZ'"

c

TERI1 ROY
TEAll ROY (AS2lZ)

TElEPHONE INIEIIFACE

T

I

I
-ROS
CTS (ASZ1Z)

-

D5111A5l'1V

oeoc 115232)
- PRioL

A

+ PRTRDYCAS212)

• &.;.;.tr.'

8

-

(

•

,

7

5

2

4

I

DISPl.'Y RAM ADDRESS

+
H

"A"A1
A'
A'

H

•

"Z
,,'I
A"

A'

,,1
M
AI

+
G

"A"AI

G

+Al
Aq

oliO

Al
A'I
A~

A'
A7

A.
AI

F

-

+ AO

-

..

...

=~

or •

'!:

!

5~

.cm..caaoC.

:!

I

_N,.,.,..~ZZ

It

~

~

~

1;

1

:r

:r

~

~

,

,..

E

E

,J.A
D

+ PG sa.

3

~

a

Yl .'1
yz .~

G

.5

v,
,,27
LSll'I

+-5V

l

10......---.

\~

C

+ 017
II

'I

.

1

z

+

-+

I
DBO
PlO PUl SE

:;::::::;:::::
;:::;::::::
;::::;::::: -

:;::::::;:::::

I_A
T-R

11 BI

Ib

~

18

AI

~ =

=

':'

a

r~ ~~

~

'"
I?

is ... !

:::.

;(N

0

..

r~ ~~ = '!:
~

'"~

'T
0

:::.

:r

"'=
c'"

rg~~~

=

~

-:

""r"-D~
~ ~ ~ ~

OPT

ci

~ ~

1£1~
II)

a

__ "'~sr-.D~

CD,...") IT .7 ~ 11.4 -

~ccco~:c~cc

I!~
~

1-;

~

:!

I

:r'" N

""'1'1'
-

a

~cc::;c~L_-L..>---------------'

A
REVISED P~R 5Io4U:'T "

.u.=-.....

7

•

5

4

•
+CUl5OA

0::>-

+~HZ flASHER

~

-BLANK

H

~

'I An

.1

'1-

~~
lSIO

-

~

8

z

~
fmil
11..........
'51 LINE 1 -:l'
"II'''~'
• ,"y
IO~
lS1Z
_ _ lSlO

.

+DOTAl

G

0:::::>

+DOTAl

OJ

~

~
........-

+001'"

qJAZZ

8

ls1Z
'--

AZZ

,
~

20

11

A'"

o:s..

1
~.
~~.

"

~

(;1

II:

lD: Gl

~
lSOO

-~

U,

OUTP

10

crL

lO

'0
10
10

~O

D

If

.

"'Q.-

'"

0.5..

m..
I
~A.
f

~

II:

!!! "f -+'iY

t!!

1

"',-1
I

,-IZ o

t~\ ..

.-!.'

a \I 'l,--,o.c.
6

.1.~

PROTEcr
:VZ

INrENSn

,

H

lSOl

1

I

...........--. +o(C''''-

RPZ-l

~

10

::'t "D

lSlZ

!!!

'I"

2

IIPl-I

It--h-

~'.~~~

RPl-l

10

~

+n

~
~FUSM
:.II ..II

I I

~II
LSOB

-10 H.DOT 'lOW~
12,
\1'
Ala 1

+ DOTAl

J

lSOI

12·

~

-V5YNC

•

I

10.

~

+AIl'IBLANK

,

7

(l" A~~l

G

~

r----+~----~+_------+1_r+_~~4D

'l..[>o!1-

~ ..

A6Z Lsot

~p4~-~~l:~:

All

LS7'o

i5~

....-l!9....

~~~__~~+-____~~__~~'~ZD

+OISPDATA 1

f:

I

~

;::::::;::.....

~• 9?

,,~

1
Z

,

+ DI5P 01.1. 0

;:::;:::::.
;::;:::::
;::;:::::

-

11 M

OH

~ G

:~ E

I~ D

.If

OE

I"
110

00 10;
T C l517 .. O(
I
OB "
8 A
OA

~

f

!-!
'i

OG
OF Z

1 "

o~l'ly-~~. T~~

"

LS 04

A 14

L!i.05

>OROl

~A!i5

+ OROZ
)!!OI

ORoe

504

~
~

~

L\OO

""Ioro
D

+0( CA"RY
+cu
-CUI

- .. - ..

VIOEO SMlno CiND

..-.--..

Hill "OEO)

;::::;::::::;
....-,-:::::.

-

. , SYNC

,...."...-"

RT

I.ZK

1'-

J..

~t~~l RSI

C

+, SYNC

..--.--..

+ItAHII
... roACE It.,.

rr=;.
;:=r;

-(OIIP SYNC
-H SYN(

D

~

Pl-~

-AOY BUNK

(o.t.)

~A"'2 Lso4

.DRD~
+ORO~

+

A.3'

~ OIs(H oull-ll----~Pl-'

;::::;::::::;

+NSYNC

c

(10

Ai-;-s.
lc'!

_.01

• All

~

-

".1

Z

mv

A'

NE~C;C;

IN GNO

l'

•

8

TeleVldeo:lnc.
A

7

I

5

4

I

8

I

7

I

6

5

T

I

4

I

3

I

2

1

1H

H

(

I
I

-

-+'iV

G
RP~-'

.

r d~

n.ll~

"HI To Z ~ 11.'01 "HI
+ ... ~ .. 1."OZ "HI

--

G

QA~I"

o

HP

r

~ ~T
c:~r:J-----____-+~~l (L~

r'l

r----~~I (LA

----+11(2111-(111>
0010
0011
0100
0101
0110
0111
1000
1001
1010
lOll
1100

F

--

-

All

"-+---,'f~ ( L S III..

lD

51

Q~f!JI~----,
1D9,Z11 HI_'III 'UOO .AUD • lDUOO
ZO _~
QO~IIC:::;:::+---~~::~~~H~I~G~H~DC~~~~/~II-I~H~P~U~T~(~LD~c~.r5----'I~__~
__ ~!5~"~~~--' I~OO IAUO

Q

~

(ARRY~

,

r---

~

-

LSOO

E

E

(

_ .....--11--

+~v

~A

R4Z

"'6' 'S

,J;t-+---+-~~ D

Ii<

-::

.------,

('It 1 'i)

r-4S
I

AIIZ

--

..~~ P

L.!,\ T
(lK

I

L-1

z

Ii"

.L..-...!:- (lR

ATI
-ij8 lSlbl

DA ~
DBIjt

iD

b'
I-ffiP

r. T(lK
I-f
L..-I-:!< (LR

D( ~
DInf!Il-,1_ _-,

LD (loRRY

n

U

1

PlSOIf

---

~A

A72

r-+-+~I-i~~ lSlbl

~

D

~i. ::::::::::::::::::::~~~~-I~~~~'b~~

010 11

It-.--h+-

III

IZ_ti'!:

0 D j..lL-----'-------~
l--~-t={r')-----------...:---------------------------t--~~

_ _'l!.r____.

I

11.11.1..
LSOO
w 3., I

1

~A11f

+IZOO

+

+

HI

~cv ~UD

XMT MUll

c

4

+SELLPT c:I::)~------------------------------------t__1--_-.~lSOi;oe;a ____ ~

-BAUD

RATE GENERAl ION

o

B

--

TeleVldeo~'lnc.

I
I

-

i

i

,
i
i

1-

i

eL:.ol.

I

I

I

7

. _ - - - -I _ .

..
-- =:.:. : -: -.

•

I

•

4

I

I
--- - - - - - -

.--

......

- _ ' ' ' _ _ .. -.1.<0''-

,

I~-

-

-

2

---- -

-------~-------------------

(
A

ioU

- ~~/-H f-i\l.!'-t;

I
- - - - --

1

----~----------------.----------

---~----

- - --

\

at

7

..

5

6

:5

2

-DCR
- P1A .ROY

-PHN
~~-----------------I/-I------+~~--r::::~tl1---------------------------------------------------------------------~----------------~ll~~
-t-"iV
r--O

-

~l

I ! .....

-R~~ ,..J~~~~-'K~~~~
,

RI"i
IK

1

B

a. .. NK

- AOW

-(T5
KEYIIOARDS

t

2b

55

EA

~O

YOO ..:

~

sO'<

a:s
~

n•

D46'
11

52 ·1

I'Z

1

.W

Pzu.~~l<;!===========~-J

INT,
P1l'z..

I!

10

•
"'&7

"i

A"7

LSQIo

..

1

~

LSO~

OBt>

~~ (S1~SJ

.,

I"
po
I

l

II:

l!

fz

~

lIi

l

a:

19

[3>

~---,2:....jD

Q~

~A~b)

mz

"7T
I

ALE·f"c:.'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .

.t

PI-Z~

PI-7

=

~

~

~
LS 1Z

lH't

~

z

zeD
1Cl

E

lco:

II:

2e;
ZV

ZCl

B

IK

J'"
~ II:
f

:r

a:

lCI
lez
11 1el

D

sz a:
~~

.

.....,, .., or
a.. f f if
a:
II:

II:

PI-l

SHfT

PI-It

Cll

1'1-10 '

c

CUI

II:

a:

a:

I::

Q

a:

[

, 'r
i ~
".

0-

a:

~

---

...
D

+08S"

':::::::=.. +087
~

~ ""i

-

1

I

1'1 ........ 11

i IZ

II

-"

+081

~ +08l

LJ!_c~

q

+OBb

~

'-"'--"--' -t-D8~

-CIS + RD PU.SE

t-+--I,-,I.q

10

_"

~

~

'"---t

10

ZO
10

T lS1Z"

q

Z

rt;-

.-+-~ZO

L....-++-H"".!C-i' ~O
!~ bO

zo

LSOO

b.l>-!-l.....:..~Z------r-{"',-, _ swE

~ ~b-:-::~~O~~---~Cr_")
.. ~
1~

Z

A

~08

r; W'Tl_____-

.(l~

- ROE
-os

:1JA~ -

SEL " " (HIP

"LsOs

10 10
"O~H4_"""-------'.""""M---~------.(..r-lll' + ROOH .. RI

i!i

~Q
~O i!:!

~u,

~

+PG SEl

l-----------------------tJllJ~~~~~~~~~~~~~~iliiiiii~~~~~~JllJr:II

~ -ROS
• SEl

VI

r...------:---c:r::J-ci::J..-rOfKE

'>-----------......--....------ +IZV
e~

Zl

c..

.01

+o;V

pcj-"

C1

A

22

[P

TeleVldeo: Inc.

1";-1

...
)

• -Irt

7

6

5

"

c

1

~[';

'--+____....:.1'1-'1

l0ltl-

~-t----------------------~~~--4_----~------------+~~~~~M
A~I
1. (LA LSIl'<

I

Il 0 A~8
LS ..l

I.. B

10
>,;< .. 0

ZAOl

A"a

L-i-________~----~4_----------_4_++_--~l~SI~O--~ll C

~ 10

B

I

r---~-1~-------+H-.!.1bC;(

PULSE

- - q _-IIIIRO

~z

LSOO

1.oH,~,---",

1 AO,ROORIIRT

lA~o\.~8'---+1H_+-------------+_<:::::__-___"_-,-J -IIRI

LSI),

10 Z
lQ I ~

~
_

"l~="b
~ Al'1 r~--,-:101 _-----H++------------~--<

r~;:;;==;;;;:::::I1
~cUI
eLK A" 7
~
APZ-I
L517..

pcj-l

0-

~

+001
-

,CC

riOl

Abe

1'1-1. '

+"iV

~

A I"

ze1

A.
A8

II~I/

::::;::::. -IIR
..............,
-AD

t~

15

IIOIE5
All IIE51510R5 ARE IN OHMS,

- ROIIIC5

-c::I::' -

•

,-,;.......

11.f'....IZ

.. ~V
I~

~

THIS DEVICE REQUIRES AN
Ie SOCKET
PAE-PROOUCTION ONLY

liD

YS5

l!
10
I
12
11

, '",
l.

~LJA""ClTOII

-=

PI-2b
PI-Z"i

or

[P

-.........

~1

..-----..+ +5V~
~ rITz

~

°08B~ ,~

os:; I';
DB I~
OBI 11
DB0IHI,.;:-Z----------------------------.

...
l!

.c;o +A'O
~

S

f

D>

LSOOo

PZ8 21
087 ,q

pl-q - >-__________-!2~'8 PI I
t~o;,.~
Zq P l Z "
PI -IO ~
PI-II ~
10
(SO'c~~----~ XI

+bIlHZ

-¥SYNC

RPZ-.

-BREAK

BLAHK

B

I

8

I

7

W'"

("/).

-

5

T

4

I

I

I

2

1

'"'Fl';35

c:r::::>~----O~Zi~1

-IIOrll(5

I

6

1

(ZHZ)·

H

1-

(

+1010

-

"t A'I

+AI
+A~

+u
+A~
+A~

-

+A'
+Al
+AI
+AO

G

+AII

I~(IOQT

~

"UD)

,

F

S5

----------------0

-

-

10

H 11133
£

E

--_..... -

M-l'i TlO! em)

WI'i

~.

W
Wil

TIIDI (TTY)

Pl-11

D

-

(

D

-SWE

-os
-ROE

:

+ Rev 13AUD

ffi:
'
IJ'.
L-LJ~=====-________-r'--------------IR~~~~~~~~

-t XMl "bAuD
+RESE11JART

c

RCV\)(RSZ1Z)

Pb-~
Pb- b

P1-1

RXDI==T

Pb'IO )-.-.11'1

D5RIRSZlZ)

P1-1>

8

~ ~~?8q '\~~~" •• SV
11~"

I

"1,71<

>---~~~--...:..:..

."(
I)
-

AbO

I-

OCR

122.~6'I_.!JX_
n-r-------r=~~;,;=~;:!]cr-,;;::~+=+=I=+:=f.~~::J====i
~_
~
~ ;,,>O~b ------------------'-----~
=. __ . L!:-~-~-+-I_+__+__t
_
Al__+_m_O ~Y(=RS=Zl~21 P_~_-ZTO~W~2~J ~ ~~':S:~31~¥~~,~~~~~~~~:S~V~______-r________Ii________~__~1r.E!11~1~:~\lI~ct~E!~()~:~I:n1::C:.~.J~L---'________l-~~-jL
___
-~R~E~V~.-cK~'~'r__~.~ET~ ~ ~'lo~l ~E;~
I
I
·~8
I
I
1
I
oeoc RS232)

- PRioL

~

CI'-CTS

S~

'l~=____.:t.u..L___________________.__

PH >
11
f'
cr:::>
---·-·-----·-·-1
_,r-,
,
PIf-Ij

____

22

"T, 71(

I

____

____

7

+5'''

.(I)-PRYO\'
'-

..... _---+------------'"'

I

r
l2

_. __ ... __
............ _ _
,_..
_
_ '''_.
__

r-

___

33.0

r--

407K

5

5

4

3

2

_ __
_

A

(

)

8

7

6

5

3

4

2

1

DISPLAY RAM AOORESS

+

,

RAI1A 1

H

r-r;~
~

A

L.!!....J

AII

~
~
;:::::;::::::::

AZ
A~
A~

AI

107

H

,....-,---,.

CD

A6
AI

+
G

RAI1,.

"

+ A'
A'
1010

AZ
A~
A~

,--,--.,

G

OS
~

;:::==:
~

~
~

AI

A7
A~

AI

f

+ AD

~
~
;:=.......
~

-

'"
~

IC

':! !

or

~

e

.

,e~
......

. . "' =,... .,.. ., ...,
!!! ... ...

,..

f;.

0-

Z

~

r

,

~

!!!

f>

E

E

..
--- -

-(51
-(52

D

D

-(51

-(511

l ~"'"

"',. " . .".,.

1[1,,'"

Cl'cn""',D.rZ(9"N_O

CD

'(Jc q

04

<0(.

-< ... c c <

C

II)

,..

0

r~
c

0

::: :::

~

!:

...

"'~

1£ :?,...

~
":'
z
i5 "'eN
:::
~

0

,..

!:

rY"

;z r-

l~

0
~,.
r"" .u~
o-CD,..,ov-z,.N
0

L.<~'4;

~

c .. c. c c.c ..........

OPT

!?

-

tp&

B>

If

r~ ~ ~ ~ ~ ~~

...!
~ ;eN
~

--

I[

IJ"

':"

...Ii;'

r~ !!!~ -- I:!

N

lea.. ~~'C~~.l~~:Ci

.21 =1 '!:I £/

!

I>

I
I
1
AI 1
rr~~+
I I
.;:=:;r:)
AZ~8L-+_------~_4--+_--+-----~~~+-~------------+--}_4~--------~~~~+_----------_4--+_~--------~--~-t~~----------1--+--t_----~~~r_---{:3~

~

,0.1

I

+ 087

I

I>

DISI'OATA 7

If

1
Z

Abr...~t_------~~--+_--+_--------------------------~~_4------------------------------~--+_~------------------------------~_t~r_---------------C:3:J

'I
~

.rTJ
~r7~r_------~_4--+_--+_----~--------------------+_~~--------~~------------------_4--+_~--------~--------------------+--r~r_----~--------_(_5_l
,.......,.--..

A7fZ~t_--------~~+_--+_----------------------------~_4r_--------------------------------~~---------------------------------+--t_---------------{~~
~+
~r'--t_----------~---+------------------------------~----------------------------------~--------------------------------~~--------------<=3:J
EN~
c::LJ-

1
Z

~

I

RD PULSE

C

•

.;=;;=;

~
~r~~+-------~~--+---+-----~------~------------+-~~r---------+_------~----------~--+-~---------1------~~----------1__+--r_----~r_~~--_{~~

+ DBO
+

~

..

,..

:(:~:~:~~:(~

I

DI5POATA 0

'''"c.,

B

B
+RODRIfIT

+

All

"Z

lTJc:II:::.>----1...,.,.!{lIA~

II

If ~500

~~b----~--~IO~~~______~
~
!1 m }1
2 ~500

+~YAOOAWAYc-r:>

I

~SlZ

TeleVldeo; Inc.

A~f~l----~t_-----------------------------J

tsoO

- WAY PULK l"'rlL..L>-----------------..J

=- =.-..
~~---."7~:-.::-~~
-- . ...-~CJA

A

I=----....+.=---d_

7

Ii

5

4

1

2

REV. K

I

I

8

I

1

r

I

I

I

2

I

H

Ii

(

+'iV

... 4
I

'"

Q.

-

cr

~cs

- SHCMfCH."

G

+A'I

c::::g-g;:)

+41

g:;:>-

+AI

~

+..
+001

+06.
+06~
+ 08~

-

--~L------------t--~q
~
c;:::g1 ';1

+081

+ 08Z

+ 081

+080

I

'/'l

~O AI
lq .."

G

16 007

~
~

IqOBb
20
<;

~

0S
ZI DB4
,

'---L--T

Z 2 O:B 1

LJ::.:)

Z4 D'8 1
Z~ 08"

g;;
---=----

21

L..LJ

D'~Z

1>lP't

f

f

"..J'
•
\,.'t~

1>"'1

-

I--

C;..J'

V

A1 •

L5O'I

£

E

(

-_ ....

.,

L - - - 6 -I

D

D

-

c

c

-

I-

B

-

B

-. .>--------

Tel eVI deo; Inc.

T

:

7

:.1

I

1

IS

-

---

--

l'

I

•

7

Ii

I

2

H

H

PROI[er
: III INI["~n

vSYMC

G

-

+001A1

~

+OO'AZ

C!LJ

G

~

~OOTAI

~

+00''''

I~A6Z.. LC;04

~

~

~R
t5V

~

+DC.

~~,

,

~
LS3Z

~

A.%

LSo4

:E

Pi ....

D

+0< CARRY

+a.1

--- ..

'10[0 SMlnD GIlD
(+l!L "0(01

0::::::>

D

0:::::>
;:::;:::::;

-ClJ(

~

Pl-"

-AllY kAN.

~

I.

1.2.1(

~

C

+, S'IMC

~ !~~l N~I

DISCH OuII-L-----+Pl-I

~

=

+k_
k""

- COI1P SnlC

+, SYNC

~

Al

+ FORCE

+W10l0

('0

+"5,"'

c

T.o,~~ mv

~

HI
~ lit.
I

~
...............

- " SYNC

".1

AI

"[~~~
IN ""D

J.I

•

B

TeleVldeo;lnc.

7

•

•

I

4

•

I

•

1

7

;

I

1

5

l

4

I

I

1

2

I

1-H

H

-

(

~

..... ,:

G

III

j:\P!)"

11
1r HAcI L\lbl

n.,I" I'IN, ... Z .. 11 .• 071414.
... 1.~ .. 1."02 14141

-

1."02 14141

+0(1

-

0;

-!-

.--...

t---jij

t-

QA[

0

P

~T
1 elK

I

0010
0011
0100
0101
0110
Dill
1000
1001
1010
1011
1100

-

~

I CLII

+ It (21.-CI~)

F

G

O.
Oc
00 "

1O S '.1

'O"Z71 141.". I'IZOO lAUD. 101.200
~/II

"1(114 OC

INPUT CLOUS

~

r.:-rr17

~

-

P

E

gi

0;

III

t-

L-_ -.J

-! .
~ ~o NI~'

I~~.nb ~ ...

0 ft
11
08

P

:T
:Ii

,II.
17

L500

' ..

,

I'UOO IAUO

ZOo S 1. I

LO (APR'fl,

T

DC 'l

CLM

0

(LR
LO (ARR'

''''0''' ". .. '0 •
,. ... u M .. ' 0 '

"

r;:-rr 71

ill • 'I.bOO : 11\1.Il00
~lIO = 1>.100

.1111 141= la

~

I.

18
t7

= l8._00

:

'IJO

I~.

...00 lAUD
....OD lAUD
1."00 laU~
1,100 lAUD

1

..
C{

II>

E

L-_ -.J

I!i..

~b

.. HV

I

D

R"Z

,,!J, .15

(s itT

.. )

4:m
t1

-J-~
Iill.~P

Ik

-!.

(tf

T

eLK
. I (LR

AI>l

-

~~

Z

LSO"

.

1o

OA~

~
'-ti

O~
0:
I

'l

a II

lO CARRY

lSI!>'

P
T
CLM

OA

,.

I11

ac 1Z.

00 III

l

(LR

LO CAAR1 ~

D·

~

II

.00 lAUD
100 lAUD
10;0 BAUD
70;

lAUD

r-::!P6-12

--- .'lOO"1

.1 -:-

,---

s!.,! 10

~"0

J

c::z::::J

J.Q{A7"

II.

.1...--

!-

Muo

+ Jie V

~·u+
J

•

'[500

;tAl"

+S[UPT .....:::r.=)

(

... ...

}4:
1-_W
!I.--

110 '''UD

- SELU',

.-

>--

,--

~rr: l:"1

a. 11

"

C

_-

~

W

A All

L51bl

o

,--

~
11
I~
~
L-_
I~

BIt(/])

J( MT

lSOO ~

e

",,3'

1

W40

l~O

-

f-.

BAUD

RATE GENERAT ION

,,,

•

B

-

!-

TeleVldeo~lnc.

,-

A

\

•.."..... I

I

.,

I

"

I

I

!

4

I

-

1::"'-'"

J

I

-_ ..

..

---

.....
=-.
11\_.
-

_ _ _ IIIII _ _ .. _ U I

f" • •

,,-

-,- - REV. K
2

I

-

(
A

7!Ft:~oo 1},:r~
~

7

RP2-q

I
I~

IK
RI~

IK

~

+I>MHZ
-¥SYNC
-Af1II a.ANk

-C15
KEYBOARDS

G

'I

+~ r------+4---------------------------------------------------------------------------------~~--------------------~~c=~~-PSEN

WI

~

"'1

2bl

40 q

N C'----..!.. X2

/ClA~=--------'----'2'-1 XI

r-__________________________________

II .:>o""I0c--_'i:q

~:4~~~~~------------------~
PZ~~4~-------------------------J

CJ~i:J_--~S~~~----------~b INT

LS04

.('"2,L) +AIO

A1>1

LS04

10PI~
~I PI4

1. PI,
~~ PI!>
~4 Pl1
Z4
r--<>W",=c_--,4:ljRESET

001p.I~q--------------------------------------------------------_,

r---~~+'V

;.----------------------------------------------------1
OB,HI~1----------------------------------------------------__,

084
OBl
DB
OBI

.r-zc--,_

H------'<~D

110
I~
1'1
11

"LS~ ~

DB0H:T~--------------------------------------------,

IZ Ab&

r..ll

-CD

~

I

~~Ri,DT-~W~R~~~~
10

-llI1~~~IZ~

______________________________

~D8

~

D7
~ Db
H-++,i8"1D'I

ZV~14~------~r-----,

AT
B-=-

a8rIZ~------+4~------------------------~lZ~

l~~71

H~+-

ICZ

----------rIO~IC1

PI-I'I >-+-t--t_+....

KmIOAROS

PI-ZO
PI-21
PI-ZZ
PI-21

+~V~I~_.-f~K~1--,
i""oDU"'tII

IL
4 S2 a:1

D

ifa:' if",'

:P:P

i2 i!

48f.~~4--~-------t-----------------------------t--t--~t-i-t-i-t-i~;rt---------------J

A~--~------_t_----------------------------t__t--~t_i_t_i_~_t;rt---------------~

4--

IG
IV
I I ZCI
ZG
IZ ZC Z
2V 'I
11 2C1 "'&'1
, LS2~1

>-~-t--lr_+-----------__'i'H2CO

-

r-+--.--t.Zkt-~-'-_'--1,"I--_ + o;v
'r~7~'fLf1

'---+++-t-iI-+-1i

~+081

""


al> 1'-1'i~-----+-+_--------------------------~lZ,~i4 + A~
Q~ 1'1
~+A4
a4 2
0;
+ A1
QJ
~+A2
Q2 b
~+AI
QI II>
+AO

HI-++t;~+-rl,1L.G_______trr__'~":'

E

F

~

"-t+_H-+-:i4 D'
..l'
17 DD21

AbB

~-17 >::t~~t:~=4::t:~:::::~~ICI

RO/tICS

.(=i=)-RO

ZG Ho~c--------~

~-I' >-_t~r-t__t_-t--I__i_~--~b ICO

G

SPACE FOR SOCKET IS PROVIDED

;=;=; _WR

~

t~
Pf-Zb >--+-----I__---+----tTIOTj2CO
PI-Z'i
I I 2CI
PI-24
IZ 2CZ
PI-7
11 20

~

THIS DEVICE REQUIRES AN
IC SOCKET
PRE - PRODUCTION ONLY

~_r------------------------_{~~-LJ-PRTOL

A8T

-V LS04
____

ROMICS

ALL Ie S .t.RE 7ljXXX SERIES

IL2_~__________________________________________~~~~~_rt;~--~ ~2~--------~~--------------------------~,--,,-...~[--~+RESET~RT

F
~

tkLJAPAC!TDR VALUES ARE

ALL RESISTORS ARE IN OHMS,

~-DSCS

~Lm

~

,

20 VSS

8

~ ~Z
~

QI-"~,+--,

• c. A7-r
4 lAbb '- ~
r--><-!.d'

~

[$>
...

~_1

I Z JAbb )>..l.------------~~[_:::.z.::J -

4!

OB&1-718

80~~

II~W,CC

~~

p~~Z~I------------------------------------------------------------------~~--~_r._----------------~~~~+A8

A,4
14A
(8048)
(8148)

28 PI I
2'1 PI2

D>
"

LSO"

PZI~Z~.--------------------------------------------------------------------------t;----~r_------------------~~=zJ:)+Aq

CI,I

~-f8

NOTES

.rT.r1+ All
M1

"

AU

PZZr.Z~~~------------------------------J

;;:T"'>-_________________~211!:_l PI.

1'; V

12

m4

PZ&~

(=ii=).
1'1 TI
1 Te
(=i==).Li:----.J---------'-i
PI-'1
PI-IO
PI-II
PI -12
PI-Il
PI-I..
PI -10;

-HALF OUP

V~CCP~ ,N ~8
18 S2 ... ~
PZ1'*n~1--t+-''''<>--~~1'':'

55 :A

8

I

IK
1

H

r-----------------------------------------------------------~--------------------~{~~c=J·+4HZ FLA~ER
1

-

1

2

3

4

~

- PTR ,RO\'

H

5

1

-DCII

6

~

8

D

~+DB~

7

-~~z~~'~~_t_t_j~t-~~~=;~~~:::::t:::;~::::=+4=::::::::::::::::::~4==i::::=+~~4=~::::::::::::::~~=+::::::::::~~+=4=~::::~~~~+D~

>--------~_r~--r_t_~~~4l·~~:0;=4::::::::::~--r_--~It------------------~r_1r~----~Irt_....------~--~~~~--1rt1_r------------~_r_t~j_--_r-{~-----~~+DB6

ALPHA

PI-1

SHFT

CTL

PI-~ ,>--------~_t~_;~~:=====~========~~IT--_tt_----------------II~--t_--_1I1~------------------tillt_------------~_r_t--~~~~-~+DB4
PI-I>
I
141'..11
~+DB1

FUNC

PI-<;

~

2

PI- 2

IZ

/'

II

-

>------------~_r~~;====4==========r-ttl1itt_----------------r_t-_r----~------------------_lrtti----------------~----~........--.....~-~4~+DBZ

I~ ~~..

.

~_r_i------~~------------------_r_H~------------------------~~c=r=J+~PUL~

~-~~

~

~ ID

'---1 ZD

'----fi" ~D

I~ 4D

L------h147iO;D

+

L-----~iiI>D

A1I
IQHIZ;.-___--,
ZQI-:!O;i--____,

1Q,r.I~=----'
liZ

&Or-'-

~10

zAb!

+IZOOHZ

LSOO

,~

I

~~~~
Ab7
LS04

no

f2-8 --1rttt:----;:::==;-:::;;;:::;:-r-<

LSOO~'
12

_
A4b
r----+-t_------------H.....--I:...r.=:'
LSIO

10; A

'-+_1-i4H~
>-----f.IT1D

rrt

4g
~o

1:';;' r+408

z>J.i-J
~ o'j

~------'

~

-WRT PULSE

~
-

~

~" ~

~A4~-SEl

?

L..!.c CLR LSI'"

~~~~~~~~===~~1~~~~~~~~~~~~~~~~111~~~~~~~~]~I

r-------------~

~-~,.

,::::;;:=:;

~~

~-------------------<~a=:-~+SEI.
lPT
:=
r-----------------<.-<,-,--,...5:
"=.J)+ FORCE BLANK

'--________________________________________________________________________________

~

~-I!

22

-IZV

8

~ -1

)----11----.----_--....----+___....--..--------------+ 1'(0 - , "

P~-I

)

) P"- ',10

7

CRT CHIP

The

PO; -II r--------------r----r----r---""'T---+o;v
C7

A

05

~

~-~)~------~----~l-co;~l~==~t~~·~+],~~=====:)-~---I'I-·----~I

fI

5

4

3

c

SWE
- ROE

'
liD
~QH!IH-~I-'.....--------=40C:-----~---------<~:=I::)+RDOR WRT
~-++_H~o;D
o;Q
I~ &0
bO I
...-----------------------g;;:>-C-,j+PG SEL
IK AIf!
~-RQS

__2NZ21'1

2Z.~

7 q 4t(-QRD
IZ 0 Ao;8
6
402
LS~Z, b 40~
AC
~~

I~ B
~r-----'

Rll P7-2 n.....
+C;V_--'---JV'.s;m---O-=-In
68
P7-1
Sll
I

q IA40

RPtz-e

+<;V---RP-2'11_1I\8.--'~ClR LSI74
IK

+8EEP

Ls~T

LSOII

0;0. ~

.--------------71'-bCLK O\~7

CUI

B

~

:"..&

~+~Iu.I~.J'oo".IO _ 0; I A~~r...,..--J:;:O,-...--.------H++----------------------+-(~_=:I:::)+ AOVRDORWRT

PI-I

c

2

•

i
,:

I

8

I

7

I

6

~

5

4

I

I

3

P"-2
P1-1

I
I ZONE I Lml

I

"'t.O "'~I!'"
B

I

2
I

1

REVISIONS

I

DESCRIPTION

I

10

"

o

"404.7K

DATE

I

+'V

I

APPROVED

I

-C.TS

~

- 'SELlPT

-a-'!

(
0

P3-Z'7

AI.O 7S18V

fe~3

IN'' 'lOS'

Il

P~-3

8

P3-1'2,

C

5'5

..,
P4-8
P4-<"

P3-Z"i

c

P3-4

P.oI-"i
P4-Z0

P3-Z0

P'I-8

I

P'I- ~t-RC.V BI4.UP

P"'-~~--------------------'
P,-q
+XMT e.toUD

~

P'-I~RE5f.TUAAT
i""""i""'")RDe

p.,-~
~~~---------------------------------------------------------------------------------------------------------------1---------------------,
~-~I

:=r=

SCS

~RPI

"10

~"8

1'K

+A4

B

(

+o;V

~-Wli'

~-

____________________________________________________________-~O~C.~R~_C~,

1

~IGNA. L Gt-JD

I

)

P!-1

)

P4-,

IZ

~~A~3--------------------~~+4~~~----------~------~4_~~~~--------+4_+--_+4_~~--------_+4_+_--~-+~
>=F
A'l.

B

-

All

-

DB~
DB'"
DB'

I
I

+DBo;
+0610
"'DB

+'7V

A

:q;

l'i7

!
I

I
7

L __ .J

';rT
e

1

~

~

I
A7'7
A'T'1
I!»~ '4~~"'7

J

A7<;

~-(>i

1#
C;

1

(OPTIO~)

660000 1- 00 I

z

I-==-:A-::":::L-y'C_AT:::IO-::"~"UNLt:" OTHERWISE
I

NIXT AISV

,

I

UIID ON

NOTED OWN

~

!J-'6f·BI

IMIHltONI ARt: IN

CHIC ~

ANO 2 piL.e 3 PLC

EMf'

7/'1/t2

FINISH

"IAL

I

i

5
..•

------ -

-_.-

-

---- ..

_--

4
---

-

I

I

TeIeVIde«Inc.

PCB SCHEMATIC
S',65
312/920 CONT. BD.

"PPD

I

•
T TLI

ICALI:

6

~

~~ptfi
,1K

1"$4l
e:
j.,

~

2

I

1

A

(

8

7

6

5

1

2

3

4

DISPLAY RAM AOORESS

+

,-.,---..

RAI'1A~

~

~q

H

~

~Z

(==ii=;

~~

~

Alf

(==ii=;

AI

~

III
116

~

;::::::;::::::

All

G

~

+

R~I'1~'

~

+

A~

S22
;::::;:::::::

~q

'oliO

G

,---,--..

A2

...........;:::

~~

;:=:r=;.

Alf

;::::::::::::

AI

;:::::::;:::::
;:::::::;::::
;:::::::::::

~1

A.

,.1

F

H

~

c::L>

~I'

r=r=;.

+ ~O

L-L.J-----------------"'.,,..
~

I'.!."

= !:!

:r !::

"'~

r-------ft-"'_~:-fv!~ - : '" : ~ :
~

,...

0'

:r

F

..... =2!!!:

~!;S~~'1'¥

'-cmcCDCIZIC CD
;

1~

~

r-----------~--------------~~--~~--------~~~~----------~--~

E

E

-D

'--

--

.... --. ....
D

+PG sa

~!'!~~:c:uu~:c!l
v

,..

0

r~ ~~ =

~ ~

C

~

+ 017

B-A
T-R

81

~ 81

b

~

~

~

If

,----,---.,

1

11

18

I

~I'I

080
RD PULSE

;::::::;::::::
~

II

I

All
AZ 8
1.1 b

8Z

BIf

eo; Jt\\,.,

~ B6

Z

+
+

17

Bl

eo
~;~

~

I

:r

~ t~
:!:

1

I
l

'--';::::::' +

DISPOATA 7

~

c

6

..... ~4_------+-4_~--+_------+_--~----------+_~_+----------4_---+----------4_~_+----------~--~----------~_+-4------_+~~---<:J[S
r;
r--..--..
~ 7

~_+---~~~-+-_+--------------~_;-+_----------------~~_+----------------~_;-+_-------_{~=~~~~
F--r---------+-;---+--------------------------~~------------------------------~~------------------------------+-4---------------~~~~:J
.(=ii==) +

"6 If
A7 Z
flO I

EN

:l1-

-

8

2
I

DISPOATA 0
CPAC.e...

B

+ II) OR
+

lilT

All

IT)

12___.

I~I,.'IO~
CD,'}--.....,..!.f'S=-~S~OO./~

~~b--~-~I~~--~~
_ _ _~
~
!lA~9)..e
LS~

ZLSOO

+ "lJY
-

AD OR WRT~

WAT

I A'IO

P-'~'-----'

LSOO
IlULIEC
~r)---------..J

A

,I

7

•

5

4

•

I

I

7

I

6

T

I

I

4

I

3

I

2

1

+IZV

H
...... I~

04

H

t

(

11

:,t:

i

--

r-4 e5

~~J--------------+---~~DS
c:I:)-------------+-~2~Al
, I liZ

~O

AI

i'~ AI

G

G

c=r:J--------------+-~:~18~OBl
"Iq

C:r:::r-----------t---c,'::ZO:i08b
c=c=~----------;_~~

c:r=)--------------+-4'~Z~1 OB~
c:r=)--------------+~r~2~OBl

--

--

c:r:)--------------+~'21~D9Z

c:r=)-____________

24

OBI

+-~z~~ ~

F

f

-~--------------------------r---------------------------------~------------~<:JC:)::[:)+RAMAl

+RAM AZ

E

~------------------------------r-----------------------------------------------~~::£:)+RAMAI
~------------------------------~r-----------------------------------------------~~::E:J+RAHAe

E

'------------------------q-'i

B

Vt~

yr--------------------------+--------------------.......-----r---+----......-------+_--_~~::J + DCI

c

~~ 10
~+cLK(B4n5)
~l O~----------------------------------------+_----------------------------------------------1<=I:)~:=J.+"HHZ

f"-b-4-+-",IZ~eK

.l.. J

AD'I BLANK

t~lk

...... T

~~

~~
~
I I ~~

~_

~~b

~>.,,~"';----------c,....,..--..~:::s::::::J+Pl)V
BLANK
'P~·.·
LS04

~---I---.......f__"'----+-------....:..bcK

I

B

LS~

--:>---------------------------------------------------------------+--+-t-I«IK

Q

I

t~'lR

--

f~~

'-T
r
~~+~----~-----------------------------------------11'~---------------------------------------------~~:J~~)-C~R
-CD.

~~~oq' I

eLK Is..nS)

B

llO

5PF( ON, SOME BOARDS)

--~:

--

-

........... - ...

1-

==::::
-.

A

•

--_.
--

..........

8600001"001

PCB SCHEMATIC

'312/'120 CONT. 80.

REV L I EjZOO'B 00

I

7

I

6

I

5

4

I

3

1

2

I

1

~

A

I

7

6

5

~C=~J---------------------------------------------------------------------------~----------------,

+ CURSOR

b

~

+~HZ RASHER L-1--)C-r-~--------------------------------------------------------------------~--~
-BLA*
"'->L~~J-------~IO.--,

H

c:t:S

+AOY BLA*

mA11}R~~
A12'-8
~

LS08
IZ...--

I

1:Soa

IZ r--;~!lmAZOr
I 13m
~
I

-10 HOOT 'lOW ~.I
13 AZO

13 •..-'L ;'----+-+-"-'1Z-Y.\II:A'-=2"1'"

+OOTA1
+OOTAZ

G

C3':J
-

~

C~~::~H-+_~~O~~
C"'-"-""=:::::![::::>-t+l-t-...e-..:.."ct.]A..,.:Z::JZ

+OOTAI

+OOTAlf

~

1ST LINE

'/~AZZ "
'lSeb

:/1'

LS1Z

LS1Z

u.

~-lL
o
Q5...

All _II
f7T.
-1
CSiio
-+'I-R1'.k

l

I

q

11

~

m~
1

1i.ll..

~

I

,-lZ o

Q
Alb

LSn

r1l

1i

Q.

H

O.C. PROTECT
=1/2INTENSIT

~

f.e-

LS01

3

RPZ-l

10

~

RP2-Z

+'iV

IK

~A1~)o"I.:...1-If---------t-i--------------------------..,

- YSYNC

RPZ-B

WIISFlASH

1

Z

3

4

~

AI'I')'.I!....
8-t-1f-+--~0
./
LSZO

Q

Alb

1

~I

fs.
G

~TPI"

rD·

'-"Itt-

I

~
LSU
+OCl

F

F

+0ISP DATA 1

CI:::>

b

Q2-

'i
~

E

1
Z
I
+0ISP DATA 0

03S!2-

E

;:=;::::::
~
~

+VIOEO

D

VIDEO SHIELD GNO
<+ITL VIDEO)

+OC CARRY
+CLK
- CLK

PZ-'i

-A.OY BLANK

---. ...
D

+V SYNC

~
~

c

C
+V SYNC
+BL A*
-+FCRCE BLA*
-C0t1P SYNC
-H SYNC

=

~
~

(=ii=)
~

•

B

A

I

7

i

5

•

I

I

7

I

6

T

II

I

4

I

3

2

I

1

I

H

H

(

iI
!
\

-

t--

,

+1V

G

IK

i

HHl + Z => 11.'101 MH~
+ 1.0; => ~."D2 MHZ

2~.ellf

-

..... 02 I"IHI

+DCI

l

-

I> ~
'.., P

S\l,

LA

.>---ffi'

"~T

;I

Z CLK
I CLR

+ II (211)-CII>>

F

'A

~B

II

........,......

G
R~'+

I

0010
0011
0100
0101.

LD

I--

ff

Q Ilf
A
Qa
Qc
QD II

10'l,271 HZ-II> X 19200 BAUD .. 10UOO
HIGH DC

CARRY~

-

F

E

+

L-

-! A~ tlfl,~
D
P
T

.~
r---t (LR

+,,'1'1

~CLK

H

~

IK
L-

... -'

:.1'9.
la.
I

LSOO

7

:k7

-iF
Xo;

,...::f

1>1b H~ ..-11> X '1,C>00 :: 10;1.1>00
7,118 H~'" Ib X 1fB0 = bilOO
lB.b'i'l Hi .. It> K Zjlocr = 18."00
1'I,no H~", It> K ,
= 19.200

:::~

r-':T

L

It5-

~
-C.LR~

~
I

-

~

f-J A A7Z
~~ LSll>l

~P
I T

ti
q:I

A71
~ AB LSII>'!

~
L-t]:

QBg
Cl(

(lK

II

(lR
LD CARRY

II

~

I--

:~

I ..
11
12:

1

tf5-

L

-

D

-:~

f----l

fi.!.:..10

' 1 - .•

12_
..uJA74

..1Qjl7&t}

J

LSOO
2_

~l7"

..

:

BAUD
100 BlUD
10;0 BAUD
7<; lAUD

:::~

- 5ELLPT G:::)
+SELLPT :::...----

....... -. ...

-C'C) +1200 Hi

II

(

bOO

--'.!.., ~..!..IO
.,.
i

--

-.::

~ ~b1

(

I ..
D
IIA 11
P
QB 112
T
lie
ClK QD I
(LR
LD eARR1

110 lAUD

C

E

~--~
L,...---1

1

QA~

D

z
LS04,

BAUD
BAUD
BAUD
BAUD

OPt!;~

,

I

q,1>00
4,800
2,400
1,200

-=.~

18
17
II>

14
11

D

t--

r; !:k.Z1

1~1f

II I"
ill
liB
ri2
IIC
II
Q

LD CARRY

1'1.200 BAUD

~ ~.

~

3

1 Cl-'-~o-L-

-1!!.,

otto

011'1
1000
1001
111·10
1011
1100

15~1

20

0;/11 INPUT CLOCKS

4'

I

I--

+ RC.IIS'-lIO
I:

Pt.-IZ

lSOO

..

W!I'I

rnfo

C

_ T l +XMTBAUO

'0/40

f

-

t--

BAUD

,

RATE GENERATION

,i

•

B

-

r-

-

i

A

.

8

1

I

6

I

II

I

4

1

-----... --

I

'I

R:B '3CHEMAH::
BD.

912192DCONT.

REV L I

I

(

860000-001

I~= ."'
1'17

7

.....
.... -

........ ----.......

1

71200~300~
1

A

t,z,
3 REdO

(- 0 4 Ok! L"f)

•

.. •...)••••••••I

,.

••••••••• I

...........
)

;[::::::j
O
•••

."'4

H()PII

•

••••••••• •
I
•••••••••

d

•

I

••

n•••••••I

•

•••••••••
I,
1

I!oP'1

..........
••••••••••I

•

;:.

·

•• • ••

• --c:::r--.

•

.. "a

•
••
••
r

til' ,.

•

Q, . . . . .

'

AJ , .

~,."
..

I! .... • .;

)•••••••••• 1

•

t

.:; >

I
•••••••• •••

•

•

••
."

• -<:::>-.
l8CU

•

•••••••I • •
e. )

·<:J>'~
.......
;;

•

•••

)•••••••••• 1

•

•••••••
5) • .1
•

......
.
••

• :

•
•

•

l" In, ...

:)

..'

• I ••

•

• • •

,* ,•

I

••

.

•••••••••••••
••••••••••••

•
••

•

.~.,..

'

..

~ ~

.........
• I

c •••••••
LlOO

.~)

ll.., ..

•••••••I

: )

ll"O • • • • • • •

•

".0 .. '11

«::>i~

J•

..::::JD' ~ :.::-'"
• ,••••••••I
~

~

•••••••

I J.'

at

•••••••

,:)'

>.
•J
•••••••

PI,"~

!!

. .-<:::>-tHO
4;»
.--<:>'!!&sso

••••••••

i

IU,·

I. •

1

",,:-.,'
"
••••••••

......
..
••••••••

)

I

'

I

"3'0.'-.-,: ~~...

.~:. ~€>"%~I

,

•

• C. 0'

~,

I I '"

•••••••

•••••••••••:

I · • ••••

It ' ' ' .

•

1

,. t.,

t.

..::::JD

w'

•

,..~.-.-.-.-.-.-.-.-.-.-.-....

• •

•• )

•

····is ·::9"it.,: • ," ••••••••
••..."
.\..p ! ,•••••••J •• ,=.._____
• c

•

:

•

~

~ .-<:::>-!

:.

•

~

r

r:---'. •

• ~ • I: : I ••

.. _ ~ ,'.~.~~:,"'.
,.

c(3.~

\

•
!)•••••••I • • • • •

, 1(11

••
•

l •• ,

~ )

:

~.

· "d··· D·· h. G
...~. .
• .,
•
t:
«::> ~. ,. I.! oo-<:::>-t
•
• ••••••••
r.l ..
• .;.4

LI'"

•••••••
) •
J
•......
•••••• •

?g.
,

;:~:; .?~~:: I": I' :~~ ·

~

•

........

.......

:
. ': .::..... ..-••.. •
••••••• ".•. •
• ••••••"
: ......
,'. .
••
• ••••••
)

• ......... IIJ."'OIilU

~ .'~

•

.~.~~...

II"

•••••••
L".
til. '"
•
•••••••
• ••••••I
S)
I
•>
•
•••••••
..
• <:J> ",.
•
• -c:::>-e

•
•
•

•

•••••••

•

11ft

r----] · ~~. ,..,
,. :1

lliO

<:J>• ••••••
",.

•••••••• .
. r----'
•,----..j
•••••••

'f." I

•••••••

·..

•••••••
• •••••••1
1• : )
••••••• • ••••••••
• ••••••1 C».~
:)
••••••••I
':)
•••••••
CJ> I.' ••
• ••••••••

••

•

.......
'~31

: )'

•••••••I
:)

LIU)

•

..

•
• ;=
:;.
•
•
• • ~.~ ~ •
•••••••• •• • • • c~
••
"10
•
P
I •
•• •
· ,.0 •
• •••••••

........

CJ> l l " .

•l

"l!!!!!~.J
)•••••••••• 1

• )•••••••
.1
• ••••••• ••

•••••••I
!)

LOIIII,IOI ...

••••••••J
0;) •

.
•

•

•

• •
•

•

••

'1(1/1)

•

..'

•
•

I'.

•

··

00 •

•

••
<:J>••••••• •

10(1

litO

•

•

••

:; )•••••••1

l\ll!'.

:e

• -<::>-e

'1.11

•••• ••••1• •
•••••••
:q
;>
1• •
••••••• • « • • • • • • • • :' •

.'
•

II' • --c:::r--. • '0
• II,.-<::>-e ,,,

I

•••••••

I

1

<3>

..
0,.. ,,.,·
• -<::>-e
• -<::>-e

,4to' ..

11'1\'

•••••••
or.

•

•

1 •

•••••••

•••••••

•••••••I
;)

•

9,. ~

•

~)
•

"' ....
o..~~'"
ro··~.
• tit, .... ,

......

"

....~ ___-'I

4

•

•o

••••••••
• 'III .

ct.. ;;;;-..,

••••••••

IP'"",

•) •••••••1

~

'II .... ,

• •
••••••••
: )
1

•

••
•

_0'

q
<:J>

; f······
I·

<::J>•••••••
'010
•• •
:

•
••

:

110"

•

OJ •••••••

I

·0)'

•
H•••••••I =)•••••••
. )
• •••••••

•

I'" .

}It,U

•

I
• , ." )
C» 'RJ} t;~'

)

.g

:···:o,j;CJ
.
....... • ......
• b
•••••••
I lUI

• <:J>•••••••

·
.........
.
•
•••••••
••

••

[::::::]
O · ," '.
:

"

•

•

• • • •
• • •
• ••••••••
•
•
••
• o
•
•
o ••
•
""I'"
• •

• •• •

I •

••••••••

o·•

.0

o

.
•••••••

•

I

l'

~

•
••
• • •

i)

•

••

o.

•

•

;

)II •••••••• "
l• ~
• •
CI>
•••••••• )II •••••••• "
•

o•

• •

•

•

O~ [::;;:.:)
•••••••••

•

«

o

•

.. )•••••••I

•••

d

l' ...

•

.
•

•

••• •
•
•••••••••
)
J

••

.
• ••••••

•

I

•

.--:J> •••••••
,.

• ......
.....--........

•• ••••••••••••
••••••••••••
•o·

• ••••••
,
•••••••
)
I
•••••••
; )•••••••)

••••••••
. L:..-:::J

t

•

o.

o•

•
•••••••• ..::::J>••••••••
•
•••••••
•
) • I

••••••••••
")
I.
•••••••••• • •
•• •
•••••••••I • •
:)
•••••••••
•
,"

• •••••••
)
.
I •

.

•• ••

~=,

c:t::> ••••••••••

..,

'.iI!'

• •

•

II!19M+.l+lP14

(

(

(

ITBII
Flt-;D

QTY PER ASS~ljREV LEVEL

REFERENCEj
I1I:S 1 GNATOR

NmlENCLATlJREj IlESCR 1 I'T J ON

PART NlJMHER/REMARKS

NO.

K

L

E

G

H

1

1

1

1

1

1

C2

Cap DIP Mica 10pf 100D03

2024100

2
3
4

3
1
47

3
1
47

C3,6,7
Cl
unmarked

Cap R/L 22uf 15V
Cap R/L luf 15V
Cap C/D .0luf 20% 16V

2025700
2027901

5

1

4

1

1

1

CI0

Cap C/D .01uf 10% 50V Y5P

2028900

6

2

2

0

0

2

Cll,12

Cap C/D 330pf 50V 20%

2029100

7

1

1

1

1

1

A42

IC 74S00

2024000

8

5

5

5

5

5

AI8,20,40,61.74

IC 74LSOO

2024200

9

1

1

1

1

1

A15

IC 74LS03

2024400

10

1

1

1

1

1

ASS

IC 74S04

2024600

11

5
1

5
1

5
1

5
1

A36,38,44,62,67

IC 74LS04

2024800

12

5
1

A14

IC 74LS05

2025000

13

2

2

2

2

2

A32,43

IC 74LS08

2025200

14

2

2

2

2

2

A33,46

IC 74LSI0

2025400

15

1

1

1

1

1

A19

IC 74LS20

2025600

16

3

3

3

3

3

A22,39,66

IC 74LS32

2025800

17

1

1

1

1

1

A58

IC 74LS42

2026000

18

1

1

1

1

1

A37

IC 74LS51

2026200

19

1

1

1

1

1

A17

IC 74S74

2026400

20

8

8

7

8

8

AI6,28,29,31,34,

IC 74LS74

2026600

3
3 3
1
1 1
47 47 47

2028700

35,45,77
NOTES:

PAGE 1 OF 5
TITLE

flATE

CONTROL BOARD, TVI-912/920 TERMINAL

02-01-83

O.1eleVideo Systems, Inc.

I

ITEM/

FINn

.,-"

~

~
I
::0
o

rOUT

)

0"
0 0

'":.

~
~

~?

I

I

~

>i

-

~

'11

1

=I~

i~:.

ADDRESS
DECODE

~

NOTE: SEL- DEVICE SELECT

I:~
i~

I-- I .
r-

l"-

.A.

"IT
IVI
ROIl

DATA BUS

U
~-

ACIA

-:r

I

<

I

r

•

CLOCK
CIRCUlTRV

.... CI.OCIl
JM;T

,OCII

J

I

I_PORTr--.wPORT
c-T)

BUFFER

J
J

LATCH

.J

\"
A3-••

It-

CHAitACTER
GENERATDR
!'la-AI
ROIl

\..)

..!t-I

.rARALLEL

.!!..

-

r J

,)

MPU ADDRESS BUS

J

~

~T

'0
....

f--IIIW

IIPU

iii

r-il

Ll

110

'!!:.. ,.....-

'"~ '"~

~
DISPl.AV
RAil

~~

.~

"

~-

_I)

C

~

' - - ClIO

i~

AifDR.ljw)

CRTC

910 CONTROL BOARD

Figure 4-1

VIDEO
OUTPuT
CIRCUlTRV

I-

~

()

Model 910/910 PLUS MEMORY MAP

FFFF
FOOO
EFFF

READ
READ
READ

9001
WRITE

110

D7

De

D5

D4

D3

D2

D1

De

N/u

N/U

N/U

N/u

N/U

N/U N/u

ij"u

' .. UD

.,n

I"UD
tAU

StOP
lIT,S

NO

WOlD

'"I'''

'AIITY

LING'"

CUISOI
MODI

CUUOI
MODE

IVIN'OD<

"Al"

DIPSWITCH PORT #1

DU'U.

CONTROL LATCH

N/U

N/U

N/u

'UNe

Al''''A

N/u

fUll

50"0

.. Z

IA1'
liT]

IMUlA'ION

UNOII,0 HZ ..
LINE
jOwl
CUISOI

lAUD

lIT 2

IMUL .. 'ION

IXUNSION
MODI

lAUD
IAU
In 1

I"

0

,.IM

'11M

(HAl

CMAI

ILiNK
ClOCII.

IILL
ONIOU

PlINTIt

UIOII

! / //,/1771/~ ~ UNUSED
lID

KEYBOARD PORT #2

8070
READ

8060
WRITE

8050
WRITE

80~~

u.

Nlu

N/U

DTI

RESET NMI F-F

NO DATA (DON'T CAREl USE 'STA' CMD. )

(

NO DATA (DON'T CAREl USE 'STA' CMD. )

I

DATAl PROGRAM

J

DATAl PROGRAM

WJg;W, n

4800
47FF
4000
3FFF

N/u

ASCII DATA

8032
6551
803, witTE ,.CX::tl~MED IliAD S1.~~US
8030 ".NSMIl OAt. IIICfIVU OA1A
802 READ OR WR I TE RO+R31 } 6545
8020 lEAD STAtuS 01 WI lYE 10 ADD lEG
READ CHARACTER SET
8010
SPARE
, 8000
7FFF
UNUSED

WIlT,

loe ..

KEYBOARD PORT#l

RESET 60HZ IRQ
CONTROL REGISTER
COMMAND REGISTER

8040
IUD'

UNUSED

DIPSWITCH PORT #2

9002

READ

~ UNUSED
SYS.
ROM
SPACE

SPARE

900<:

~FFF

PROGRAM INSTRUCTIONS

W!!I;l//;~

9004

8080

DATA

SYS. ROM

lJI/;j;I/;:'jljj;

COOO
BFFF

9000

LOCATION

DATAl PROGRAM
ENGLlSH=OO
GERMAN=Ol

FRENCH=02
SPANISH=03

f l SPLA~

RAM

DISPLAY RAM

UPDATE OR REFRESH DATA
UNUSED
SYS.
RAM

0400
03FF
0000

SYS.RAM

PROGRAM DATA

Table 4-1

()

't

J

U

1

2

,j

REVISIONS

~roo..:::.::..1!-=l::.:"'+-::":":'-:=~=--::o(:::SCJ>:,.;,*"'YEO

I

SH 2.4
_'ISH Z.~

~! ~
DI~~=========================================================t+;===========tt:==========~~:

o

I

[J

eor:;02 A

\~
C~AR

eLK

31

rl.r.

V{R~/tm I

~ (AUA)

z]A-If./)()"",-=.3_ _....:z..a
4~
'14L"

c

,::> Me;

01

.;; 1!~3Z
~z

~
;...

..;.

...

fCf .;.
is

I'

GoIJD
IZ,

I

Z rRloo

c.zz

1611D

i~'--__-'-I\

OUOUT· ...

CV

To'O~ 'l1~
!5.ot,J
b

AU

,~r8~~

z~~....

..121

)00'"

~4

~

c·ze

1

¥CL C'i> ttNl

G-

tOI

"f

o.o!,w-'

/4.'50

4{

toZ

ZII4to,

14
II~
I~

[04 III
GotoID

..,ET DIS? RAM

I

C~AR

ql

I

:I

CoLt<.

!

1<;

.~

A

A
~---------------------------------------------------------------------~
L--.-..
- - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - . - - -_ _ _ _ _ _ . - - - - - - - -_ _ _ _ _ _ _._ _ J

-------------------------

--------------------------------lIt.flll'Al

".

.

8

7

6

5

4

3

'NISH

2

(

()
__
i
__

~

_ __

(

(

(

.1

....

7

3

4

5

6

1

2
REVISIONS
DESCRIPTION
SE.E. SHTI

3'141 L.., 3Z,

APPROYED

B
I-lORIZ
~~II----------------------------------------------------------------------------------------------------__________________________________________~~~~~~~~
,",ORIZ SVt.lc..
~H~O~R~I~Z~S~V~~~C~___________~~----------_ _____~q
6
.c;,~,-

SHZ,

o
">Hz'
SH'Z.

T~"V

74L">O.t\

AZ3

ql I 61~Y

_~D~IS~P._=E~~~________________________________________~-------------------1~34~K

M~ ~~ IZ

D'5

~C~U~R~S~O~R~

Q<;F-

0

~

D~L

DISP EI-j

'SH4

D~L

C.UR50R

'5H4

QI~

r-'-'Q I. r',I~~~4_~------------------------------------------------------------------------------------------~~~~~~~~
14 P&'
7~L<;174
HALF' IIJTEU~lry

~C~H~A~D~'~----~----------+_--------------_4~~Io 05

r-~A~~~R~I6UT~~E~--_++_~44P2
",,- ~t

-

"

~3

'
()7'

U'LK
2.
~
~
CiIfI Iq
18
'1
Q"
4 011.43 GIl ~
110
I'

, Pt.74L~!-1i

14

2

QII
Q.,

e ~
13 0-45

Q!

'.,"

I~

Gl4 ll...::..

&1001.

I~p
..,1012-

!oH'Z.
'5HZ

RA0
RAI

1 SET DISP RAM

RAt

C;HI

B

B
SI-II,Z
L-_________q~

AZZ.

)~8~--------~C~H~A~R~C~L~K
74';0""

ell0
elT I

8

I

RA3

10 M<.

~~--_1~------------+_--------~~

.Z

N

o

b
SHe;

8

SHe;

SH2,4

74l~8

.3
3

ROW If/>

<;1-11

II

RAO

A3'~ ~.!.-----------------------------------------------------------------------------------------------------------------------------------~~~-

k)...:::'-"-'-:'==-1-13

RA.O

'SH3

BLltJK

'5\44

BLIUI<.CL

DESCRIPTION

4

BLAtJK
DOT SERIAL

'51-13
'>1-13

I-lORIZ SVkJc:..

'Z..

ROW 10

12

S\43

Ut-iDERLiloJE

13

";1-13

DEL C.URSOR

'51-13

REV VIDEO

SHI)

BOW/WOe

'71-\3

DEL DI5P Et...l

SH5

APPROVED

SEE. SHTI

0

pz.- \

"t-?v

Rz.

iz

It.
II
13

c..2.

1<:4-

4

7'50
£10

'51-13

ATT BLK

~H3

HALF'IIoJT IoJSI'TY

("

<;1-13

HORIZ 5VI\IC.

'5Hz'

VERT 5,(1\Ic..

Rt.'T

ell

I.n
IK

QZ.

270
!:I~

RG.

VID€.O

COMP V +TTL VloEO

c

~

P

G/ r-'-

10

'14 "'14

R

5iUI1l'

I

DATA RDV

GotJD

~

Y'!b

"

~'n.:'I;.T-'LM

O"nl

....

1

~

14..u.

3

-r'5V.,.
P~-ZO
P3-~

DTR

Pt..-3

R .. O
<
< --.K"'O

P3-'5

....

P~-8

P3-("

:

I
13

10

CTS
DC.D 12

... O~R l?l

___ q

A

A

q./"

6

CI ..

c

Z

'''l'300

~~: Il!I!"~
II:

4.7K

ZI

Ilo

II

q

'1'}16CJ D d e
C""'t

....

71

-b

C.5 C1 C.6 (6

T' If

fljZ

Z"f

ACb
A

13
14

.R

+5V~

R''Saf

~0

ZI

DI

xTAl..I

Dz

M P1
ID

sv;;i RESET

4

cotJTROL LATc.H

)(~1

iY.>((

3

10

VDD

I"

~A

Ala

38

IY
~

<4 ziJ'7l88

DZ

~

'7 ZI!!
IZ
~ ...
<\B

"

ZV

.-II'

\/00- 6"'0

71-LSOO

I

I '7J,

-IZV

Go

Qz

GO;

D04
DO;

3 DI
14

D"

RTS..,.:",.
,

P~-4

.

-:.ERI .... 1. DATA.. PR'fIJTE.!:

,I

111

SZ

-J

l~

-

h CJ
G-I

-,

~

1'3-Z0

rRQ (Ac..IA)

VI

+'5 v

f .8432.
MHe

I

SHI

-",

P<.,-IZ

o
p;

Rib

ui

lA8

? R: z.o

10

q
BELL

A2.\

8

74 L"j oa

~ 330
R/9

330

8

P7-Z

'V

GNt:

B

N

'SP£AKER

fv

~

Q\

P7-1

2tJZZf"3

-

!3L1IJ K (.LI(

EXT

WHi'! 150HZ

"iI-iZ

CURSOR'" l.lIJDE.RUNE.

'SH2

Il.

2
QI
15 HZ
Glo ~·'!.PARE

6IJD

6.b

ROW 10 (llo20 HZ.)

P3-z'

Elq
Ell!!

Pt..-z

nD~
,

RxC,.

II D04
Q4 10
<4 74L"j1'74
~
D5

OTR

~e:I"l

OTR £IJ \0

I1R

DZ

nDMODEM~

1

"

D3 ,1.18 Qc3

13

J

~'4.7K

110
~ CI<. ~ '£c.
'1

D~

~

GUD

1:!:-

8

"III

p0

Gi7i't

8

'3

~y -=DI

~

14T
Z
q

'51-\1

+o;v

'5

RxC

D3
ZZ
Z!I D4
DI1
;:04 p,"

07

2(.,

imi

RSI

vc.c.

S

PZ-5

<5>YtJC / IRQ.

C
J1

P A7 Q
CI(.
'1z
14 LS74
~

13?

RPI

~ ~

Dt..

A

"41

R

TlZV

T

AI~

~

I~

I;

1/

m :>l!-

3 C3T

~

D2P3
DlI

'51-11

Ill)

Go?? lA-I

{~p,

"7HI

TxD

ACIA

~I

'7H I,'l., '}

~+".~

m

i:f21)

330pf

J!.l!N

SHI
'51-11
SHI

Ff~P

12

"r

vc.c.

C.SeII

m

1("

~t"!l

81"
6IJD

flLoE'6

'SEL ACIA (aX"3ic)

'S HI

'51011

4

v--v
-0-

swz.

B

EI.,.f1<;

Aiu

II(

~

'"

Ci

RE'!iET tRGi

RP4

MO

u:

PZ-G.

VERrsvt.J

AZZ
V

L-...!:-

PZ-4

l..8

2tJZZ I q

PZ.-3

-=-

8

?

0

VIDEO -<;HIELD6

RtS

II<

+'5V

4.7...... '

R'?
IK

"P~LICATION

.......

NUT AUY

e... .. --:">'

~!5S OTH(~WIS( MOTlO DW" ..-.."'~ 4·9

UIfO ON

I"II:"'$IOI'I! "~I !N

"'" I, ...el' ""I

,--lr-k ~h

..

4 81

~'-.~ "
..,~

IJitGII ~_ ---'

••PO

0

TeleVIdeo:lnc. ;: JWITC.H PORT # I

..,1-11
SHI

'SI-II

'*"

KYBD PORT
1
I< Y B D PO RT • Z.

HI

lie:
PI-4

QXX2,

ex",lC
6it'fj(

DC.
07
0" }

) IK

IK

q 3~ 1

All

IK

'>!:,l.===~,,+_!f.,,+_..s:z:l/q "'"1fT
74cx..

"

PI -4> :::

All.

~7

81

'>!IO~_4~;Q,jC~ROL
4OC.
AI
Iq

I~

82 1%

I /10.'1

8 ... ,_
e., .~

3 " ..

..

~ AV-5-SfJX)elo :

"i A!>

KR-3""'~~"
VAJU .......
Z".. vv~..
a..,
"'-' 1Go

(.,

~: : ~1~~:::::::::::::::::::~~~'1"
~~
>-_______

PI- 6 ...
~.dO\)(etl
PI- CJ >---------!~g.j)(1

Pl-IO~

F~Q

PI-II <
PI - I ~ ...
PI-I!5

:510

~'S
~
!o~

PI - 141 ...
P 1- I '5 ~

II~

-+-'?v"D.. ---.,_.I\~A2A6"......:A=-e

C~

~

:~
E1I

at!

£.,

P

II'"

e,~

C~!,

£37

Il~

ZB t;

D'5

RPZ ~
II(

D4

/I

SI

"iB

3e,"'.!.-~D:..:3~1-----I

"B ...~..!.....f!:D::!2:..f-1-_-I
...

e~

-+"

no
e:u~

2 114LS3~ >

•

) ") >

8

7 Go r; ..

14

-

13

_.

12
II

,~Ml),1J'
-.(L~

10 4 ,..
Co
!A
It. 'SA

2 eORTZ

3 eORTI

4 BD RTf!

4

IIi

14
2

C.

1">.-

+IN

3 Z.

I eD~!I

17 ."'-

!;i'«.C..G2
12.J.
~~I!.'--!:::D~I-+-I-_ _"
14 '_A AS L . . <,-1:!.3--.!:::0~..-I-_ _
_r
... ZA
'l.PI-'p!S=--.::::DIt>~I4-_ _--I>-J

u..
uc.

,q

>

10 q

2.0
16

·,.11-.-----

~,T
I Nt.T\':\')

IEZ,.

;:;

D7

Ph

1L.._-f--"~Z4 74L~'!I.'
&1.10

:~Io

&.lot

A
6tJO

1"

31

q

"*"~..

I!n

ZA

"3'
..
10 A

'T

5
I/EI.AV

~

10

3

13

A.~ I.e

r;"

PZII

~ C:hue

100 K

LOtiO

4

201(181(1I~J

Z ZOpf'

3..Art;:5,

IC"
1C5
ICC.
1('1'

t'11t..

D3r.-1'!o-;<----..-1H--H----,

14

.... ~ -A

pot 14

"I

I~;I;

1-------.....------4---!:z=-l 1'«;.," C!I ~~

A!

I

CotJT

,,-rltz.

110 I'

D'f r.-1'1
'" It.
DI! l~

2.

..,

{Hf-:-

Z!I Ylo

'.(;,- ....,----,

r,e iAq,;.

ZetlV!I
~I

PI-Z '" <~
'"
PI- 18 <
PI - Z3



All

q

03

..,

O~

PI

'J4LS3f. 7 ~

DGI

,..

3

""'
DO;

1\

Ol.

28

48 13
1

C

..... 0
e~

~II

.,.c.HA~ I

~O

:,~
12-

?:vcc~

14

07

13

"AC. 106
Z"
2" '5

~

01

'T4L">5"''''
18 3
1°04A
'Ie q

PI _ '5 .. ,FUNC. KEV

-

"IS

38
"8 II

I"

.,

Iq

on

ZA

Z

PI _ 3::

SH l,l,4

01
00

","'IV

A~Pf' vc.c..

%5

8!1H,-?I'-----+.....-----~2 II.

......._ _ _ _ _ _ _ _~I"74_1V...
PI-eo<"
18 ...

PI-17~

ZI

V~:;T- -fZ~

-,

r - - - - - - - - - - - - - - - - - - - I - - - - - - - H I - - -......l-++-I--~D:3~
02·

~T,,)V.

~Dt~

\U...

'71>.

~:: ~~ "<

D4

~ -t-'5V

__T
~

RP4

:- <

c

SHT I

ALPHA L-

SH3

BIT~

BITI
PI-I
PI-Z
P~-I

~OTE~

P~ I~

+tZV

A I-PIU ~OC.KE.T IS ItJ'STALLED FOR Pc..,

*

-IZV
t~1{

A

t
t
t

8

:
~
:

P3-"7

PI. - I
P~-14

PG. - '5
PIo-IO
P," - lJ>

P(,,-

.. ~IO - 10; >>-_R=lI:::D...:+_-.-:>~
RxD>

* PIo-0

P3 -2«;;>
P3-13>

>
>
>

T>
~12 RD,( SH3 ~~~HA~R~C~LK~-------~J~~D - ::S'e <> A47 '-__________________-4!-.JA'2.I~ 10 D21-'1!-1_---+_...;D:::..2=--_+_~ ~ D3r-1'3~_+-~0:"'~~~--H 14 t;H'a. B :PY .-+_______t-____:..;y;l!L:::S:.=:!l:=2.'-.J DI ""IO><-_--+__...!O"-'-I__-1--41 A4S OISP RAIV\ WR. ~L f'li ·f·HI'! c:.>:;'2", '3 Dtl Dp!-'!----I----!::~-4 "I 1'1 I vec :3 A7 Cl'- 112- 0 'I L.574 7 D4 4 D4r..:......---+--...:::....!--++-~.. Q ~ 0 1~ DISPRAM c !>1-\2. DSI..:I.:.')_ _I-.....:;D-==5~-I-I-+~-4 D@~16~__~__~D~G~~~~~~ I D1 A9 AIO I':! All t'V t~V I P6 ~~ AG PCRT"2. (212.. W lo~ 12. ; ) BI cr 2 AS A..., DIP~WITC.H SH4 e.1-I~ ('ND Iy(U).:::4+-oh 1¥p ~; CONTROL LATC.H ~xff AI ~:- :3 7'-lLSOB r13~ Bl.)OO-BFFF :~211~5''t-+--ftoAl'D''C){','''_'''B'''''FF.El-IH+H+h .01 -1>.'1: ] 2y~~IOL----------1-ttlrttlrt---t----------~~~----r-------------~~~----------~~~~~~~ 51-1" All 21 (;'3 74L532. A9 f II t)IPSWITC.H -;aLSI~'3 2Y3~ IG I 4LS TI9&.~t?==~9:X=X:¢==~~t+++~::~::::===="---'====::~=~I.~~"A=2_~9,~ r~_~_~_-_-~~~~~_-_~-_-_-_-_-_-_-_-~~~~~~~~~~~~ POR,,"I E. PER EtO SZ- III<> ""00 RELE.A~E PER ~tO la5.u"z.,lb5"04.112 REISSUED. liCO 2.111 APPROVED SH 2,4,' DS 28 A¢ 8 BY 31 D6 21 07 ?h +sv PROD REL1:-ASE. 83 32. .... r '2') A 81 82 SH 2. 4 (Zl'Z DATE DESCRIPTION lTR ZONE \U 1 REVISIONS +5V BY I 2 18 All ID GND D7L:.,:7----+----=::....:...---H-+44-++-4 r I'Z. t---t-_rt1-rt1-rt;-r+---------------~r_----~-~~~~~~------~_r++_r~1_~---------------------------________________~------~S~V~S~R~E=S~ET~---'H4 +-sV ,lQ(X . ~FH > RI3 <' 8 3.3K 6--~RST > 1M ...--_2::.jTfiG c~z DOl f ..... B CRI.4 47K IN514 vee THR b 4 ~ Rlt' KI4 1 DIS I CI4 +1 IO......f A4 555 t--';1i.<;~'--------I~~ Nf,vce 1~~~A~3~::::::::::::~~AZ A50 ~V 1~iit~~~A~'4§~~~~~3~~~~'3 AS R'22 ~ GND 1 I .r:- 74SQ4 A1 1 A1 Aq Aq AS 4.7t<. ~ OUTf-{?1 ~~~·2-.~ CV C28 I A22 QOI ...f De'> IOIr-14L---+-~~--l I02r-13-=---I--~-.--J 6 10 B II A'-I AF) D3 C;I vrJ B Y5 2. YI 'f2 Alb 71-\,-.,,38 ~II Y" '(to ~1 1'5 1"1 13 CHAR SET SEOL R 51-15 la SEL AC A 5HL-t .51-1L-t SH'a. II 9 5HI.I 5H!5 7 SH5 10 HESE M\ GND ~ - C'2~ D.o\ .....+ SE1 DISP RAM R2.1 'A A~c GND !ll l ~ t';V 1.t,?IK IloLA 6Ltl CL 01 D2 AS 2114 I031-'1~2----~~~----~ A6 4A ,l,~ Ala CS f?/W ~~A~Z~---------~~AI I--- I -=- --,-..=" I 7 1 6 I 4 5 I 3 I 2 1 1ZONE 1LTRJ t.t-:, IIR _~ -~'1 1 REVISIONS 1 Dt:SCRIPTION DATE I F:F 1 APPROVED 1 C.UI(SOI<: +---------t---------··-··-··-------------=-"'iR~1>..6~~--RI>..I RAZ, RA} o plSP EN HORIZ SV"-Oc. VERT +sv .----e~~;~¢I~-----. ,,4 r-------------rA~,,~+-+-t---iiA~ 1';==========~~&:++=t==~..!L'1H . . , A0' B va. ? ~/v:i A1A30'I0 I A'l' .-------+eAc-;!>:,.'---1Hr-r--':4n . .: $"",r. ~:4~--1r--~~'~~========================================================~~ 04)' D I DZ DI' IOZI,Ic=3---+-~-t~ D3' D4 D..'2.' ~_ _ _+-,:,A4:o-'r--t-IHr------:H3 A4 2 114 02' ~____-+-',A:..;.o;'r-++-+__--:2-;A'i r,:;,~ '"'c=Zc--_+----"-=--+H 01,1.>'''' ;7;';--t-t--+---;I-'.:;'!rl A1 .------I-A l'A r'..:.I----+--D;...;3~t-1H"., DI. D r-;.::-tjA~e?':~:~=~~::~,(P~AB - A"I' I~ } SH~ I "q "Ir.,-_ _ _-, ,,,'."F.J~ _.-- <:1-\1 ~~:3~K:'~·--·--j.. K .' - .- _ _ _ _ _"'-~-I-1 : -' "'P(1i.~ c"- i_'_-+-'~"-"'-'?'-".:...._ _ _ _---.;'=-0'-,--<...l ~ .-,1,:"'HI L---~8~,6;~~r---~~ ;;. tWA" '. "J ? c flO:; A2I.J. E";45 '''~~7 A0 ..1. ~--------7:7';;;;-+------':.H IA I 1o"«.c. I c..r r~4----t~======~~~~~,0~+====.'2.'-=1~~ , 'I Ai.? 2V 1-":t.'----++--------:=;Mri";-:,·'--+----;..JL. 71l l! AZ IA .... '14L'.'!'i7 j..:w~___+-H_________Mri-A:..:'l.=--+__~I.2.>f"1.!! 4Y A3 " 3ot. '1 r-----tM~~-:;3!;--+-----:;-;;"rI;1! 3'( """ AI1J' IS AZ' '1 C~ .LC. ~/w ~t~~1~~1~~E13~E~A~7~'s~l~l::::~t..~AoJ !~ A340 I j..!1:::4_+-+----=D:...4.;...'+H+f A 4 M [Ot 111,2.... 3--!-I1-....:::~·,-++t-Ir-t... ~~' i 2114 III-'-Z--!~I----!:D:!:r..:...'t-Ir-t++_H AI..' I A"J 103 .. I-'''''----t''''''.... 3' '1 AI' ,Z A?' A7' L.Aa. "I A3' A" to Dr.' A4 ~"'! If., A~8 \ 15 [04 /I D7' i.!..:.--++--..:;...!-t+-+-H+"H P'1 - 0; »..!T:!.'~Z:!V ______--<_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -\"IZ'I q .1 C (.2~p ~ B B - $.. 'J. ':l\'- - OPTIO~AL (.I..H P - A A BbDOOII-003 I .-._.._;"'_I._,..,IC_AT_~-:.-O-.-i.~~:::~::':. ANG2PLCIII\C NOTI ... ~- 4·" IJI c_, )~ J .- • ., ' ''- I., , - - -H- I 7 I 6 I 5 t 4 I 3 I 2 I • .' "'Il..I....l~.1nc. ".....u, ...... S? 1 ITlTLi , Ie 1:'..trro~3QZ Ii! 1 ( ( ) ( ) 8 7 6 3 4 5 1 2 REVISIONS APPROVED O£SCAIPTION HTI -., .. 4 !-lOR IZ SVIJc.. E .__._---------------------- ----------------------------------------------------------'-"-~~-"--'-==--= "'HZ. o l'lA. HORIZ S'f"-lc. T 1""V I-IORIZ SVt-lc.. ',~ R;I ,4.11<.1 ~I I A41 ~ ~'2 Z A41.. I! I QZb'i~~~-._---------------------------- ...._ _..;..II:..ICK '14 LC,08 -- o;H4 ---- ' .• 1-1<1 a~ 'It R 1--'"------11 1-~1/ a.. q " 1101 I CI< \,(.(. 6IJD --'- (;' 4 ~+ ~"'~ r----------+----------~-I DI J, ~ I:> Q" r-='- Q!t-'l-- Q I ~----------~14,D~ r---------+-----------'~34D'i r -_ _ _ _ _ _ _ _ _ c '::H4 ------.------.._- --A1'T eLK 4 pzMt QZ ~ r-------------+-----------~~~I 74L~I14 ~z----+---------------------------------------- .~ UIJDEPL.IIJE )A SHt!! ----------------------~~~ BLIIJK -:'>i4 eLAIJK. -;,,,,4 _. A ~--'~ ~H4 REv vIDE.O Q~I_I~~:..---_+---------------------------------------Q'iI_I~2.~--_+-~B~L=A~~~K~---21~ 10 "'r..ID D~ _IA41 ~ I '" 'G~"'5 '\.)"'~:""'-"",,~'L...J-, -= -+-; _-.------- OIJQ 10'" '74 .... ,~ I ~1-----r----------~4_----------------+---~1~3y zrp I II .. w.-'_ ~ q r---+-4o---,""-I 0 ~40 Q Il II Mi:So'2 L-._ _ _ _ __ ~~4 ~ DEL C.URSOI< 14 74LSI14 1<; ,--O~ Q~~~~+-------------------------------------------------------~~~~~~~~ HAL F' IIJT£IJ~ ITy r-I";:. - '.H I 0 --- C ~Ol 14L"'~l PCCARRY I 1"';vI>"T 01 1-""'------------i;rlO I M ~ :3 A? 1/ 02 '5 Ol 13 Z A'_ D~ ~'---------.,:10;"j· D~ 14LSll.f. I A'7 14 P4 H7--------------~~ I., Z Ae p~ IZ ,,~ i!2 110. +'5V"'I>-<.-----, 1 A9 A40 Do. 1'1 14 ~; CI-lAD'Z> C.HA.D I CHADZ '" CHAD? C.HADA ; ... AC '5 C'lAC I<> ~~i (;1 CE Pi< ~J' , ~~ 'SHi 1!.("08 ·HA~;..,n-kr B ~HSflfl.T 'I M~Z. i1DI <]+'511 RPI A.11<. e.t-_....---.;I_.-jl,~ - tJ hi I m ,,~ ~zq RZ3 c.'!>O I .3'30 'OpF' Ifl", ~:'J ~\Z An D 15 13 TCI-'-":"---:-::~ An ~.,. '74L~It..3 X1'A.L ~""''Z. ~ ----td----.., q ....... fK. L ~ p AIr; yz a?H 2- 1(.1 z r.. vee '14,,04 RIB 4'70 f ________O_Q_r__~_£_R__'A__L___ I '4L~D4 ~CL OAr.I~4------~~~~----~!~~~--~ ----T A. oc. ~ QBI-iI"*~--~r.\0:_i.r----.... ~ Ale '" 8 :=:1~ ~11 ¥- QD /I ~I '74 L*) 10 ] z.. 11.41 .J I '!.ET DI04 Azt ,4"0<1 A1.Z ~ -- I A~G. PA.! 10 ~~---+-+------------~--------~~ ------------------ ~ ? ,T'" '''>is I!IT' SH? ROW 10 _ _ _ _ _w __ SH2.4 74l~oe 13. iZ B ~Ol ~ 1/ 3 It ___ A~sI~~------------------------------------------------------------------------------------------------------------------------------------------------~~~--,_ I A3? rb-'~--:..=- 14L?OO F" I ""TEt-JSI, V' R? 7'50 R3 ~--~~~ i<> Rl1 II< 210 -~---I.--~----H at IK RI.. VIDEO ,r~____-*__~vv______________~ '" COMP V ... T1'L vIDEO 8 vERT ';.Y"-Ie. PZ-d &.8 HOI?IZ ~YNC. PZ-Go I/£Rf-;'YIJC 'SYNC I IRQ "R PZ-'5 'SI-\I c c ~ ~"TI? ..... DATA RDY 8\("5')( I ~. P.E~tT ~MI '1J. - --.-.---. --. [ [> T? 'I 141 eTR I ~ R~P 1'0 Q IN R CTS 10 , DC. D I Z ....- , D?R ~ _0. q -v EI4 EI~ 4 rr ~£16 13 '5EL AC.IA (8)( t<.lrN A"i 1'51'39 c IOJ 1 J. ~)() f, - 3 2 J~< :< c.: 17' Q( 1"1L500 4,IK 1.1 IZ' ,II "I (5 C1 (l (S rIlT I ':1 Ol z D~ Z... "(,, 01 n SYS ~£SET CO~TROL _TALI Z! D" DE RIAL Ele II ,;' I '1J- I t:rrli' [lJ I SZ >4,71( 1i1 ~ ; -J I flrn ~ l ~ P3-l0 B (AUA) l'he.. ... YI I' +'511 l.e4~'2. Y' MHl. Rib 1- P7-Z ·V ';;PEAK £R RW 330 10 ~ 3lo n'D -:;. 8 6J- H.z. ) 'T"IID MODEM ~ '5 Gl z It <)'$ PI. 13 (!jIJD P("-I:3 \1«( Di Ale. Gil' P!> 05 ROW 1(/) ( 11020 5 210 . II --- - ----,------,._--- I'.,'H qll A 74l':iOO c c I I r I+- _ _ _ _ _ _ _ . _______,_________ ._. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---1 -------------------------,_--------1 ~2-"f/J+<:r-- u4-'I_...:'-"'f"-',\-=.I_ _ _ _ _ _ _ _ _ --< '''1 (: £MClJ .J2--\.-'---.l2-. 3 -~ 4 '50/10 0 CURSOR B B RP3 ~ -< ~_ >~ 1' II( Ie. - - eow/WC5B +'5V BITI PI-I PI-Z p" - I t-JOTE; Pt.. I';> A 14- 01< rt.-Plt-.J DIP ~OC.KE.T FOR QPrro~ BOARD C:O"-JIJECTIO~. PI"-J~ (];(I' AR~ PI"-J~ ICIG. IF A 1G;.-PlkJ o;.O(.KET IS l'YsrAl..lED FOR Pt... * 3-" +-1 zv - ....t...---::"" -IZV t'5V A T ; T : p p Pd!- 1 Pi. - I PI.> - 14 Pel -7 Plo - '5 Pt.--IO p(" - I.> Pia - '1 A 1-____.:..:,":::."O:;:.,::,"O:::"_ _c....•.. O- - - .....,,''/ 4 ') PI..- 1 Pt.-- NIIIr.II, 8 U81DON .....ItON . . . . . -I' ....,....., 1-----1-~!t_4+ IeAll . ,!"J " T 7 I 6 I 5 i 4 I 3 I 2 .. eMIl ~I :: Ia.I.. - ~-""".Inc.S-Jgi1 • IVRJ'W~ """41' ._} -,,, ~.}<, /111' ru. PCB SCHEMAnc. ...· COt.lTRDL BO 0\\0 PLUS I 1 ( ( 8 7 \ I 6 \ 5 4 3 \ D I;' ',111 A27 10502 A R2S'; \K '> - CHAR. C LK SH4 NMI 37 ¢O 6 NMI '3 51-\4 VER1 s'{NCllRQ 10 '3H4 IRQ (ACIA) 8 4 A28 )(,..,>""--...:.a IRQ 74LS08 4D rt RESET ~ so 3 ! Db~6 00 5\-\2.,3.4- () DESCRIPTION DATE APPROVED JY,3/r.J. PROD PE.L ?OcR ECO '2.4-9 PROD REL pm ECO 0379 PROD REL PER ECD 0400 M PROD REL PER ECO O':JIG ,0521. 052.'7, .'- r '") }SH:H:4S Db 9 ~lli M II D W 161 1\3 ~z. ,------,Z"'-!RDl' 5\-\3 l TR A A2. A3 vee.. R/W I-"'~r----------------------------------~--~R~'/A;w~~ PIl-2.0 ¢z.L39 ct;z. SH2.3A 1. ~h~sR~~PI~~s Aft~El~eLwK~T ~ N 2. ALL CAPACTOR ARE VALUED IN MICOFARADS ±lO% AND ARE 50 VDC. 3. DRAWINGS COMFORM WITH TELEVIDEO SPEC. NO SOOOOOO-OOL 4. 11-11';> SOItMA11C. A~~ USW faA co~r~t.. eD 910"" (';rIA. +5\1 1 REVISIONS ZONE NOTES UNLESS OTHERWISE SPEtIFIED· I 2 I 2 I~ AI4 AI 4L24c -jiO " ,..,1:' A 11,15 <.:;) 13 AA~ ~ I~ -J Ab~lr5----+-----~ A7 f-+'i~--f----, flAB r.-II!.---+----, 9 AIO J--io;;'~--+---. All L.f,2.;=---t AI 2.0AI, ~ It>. '-'A 2. I A29 ZG ~ z. 2 13 A21 74LSOO I LJR34- 3 sH4 CUVTROL LATCH "'::lXX, ~ DIPSWI,CH POR1:#1 SH 5 BCiiiO-Bffi - IYI~~t~~~~·-~~tti-rtti~rt---------------------------------------------~40~O~O~-~7~ F~F£F~__ SI-!:3 I'(ole: _ IG (';Ntl IY 74504 Z 74LS3Z .--------=dJ 2'13 P-; .:tV 3 15 _74LSI3'J :~~ ~>- 12 ~ 9XX,+, 2Y2~t-----ii-rttil~-f------------------------------~~ilrx~~~------~ITI~~\W~C~:H[Ew~~·]*~L== 5HS A7n TI3 12. Z~'YI ' III ZVrl. ,... I AI vee 13 12 A34 .--------..!.=-d J 81 p""'"'--_ _ _ _ _ _ _ _ _ _ _....:D::..:I:..::S::...P_R:..!;Ac.:!M~W.!..!R~ SH 2. 74 LS 32.. S'(f"ttlGND GND c c R7< 47K <" -, CRI ~~INgI4 ~R6 B :BK r-~VC~C;::----'6 ~ I A ,IiRt=~-~ RSl' DISI-'·(~_.. >R8 1M I~471'? avll-'~"-----....I..o A4 55!:> ~ TRG .1. -=- +SV " __~--------~5~Y~S~RE~S~E~TL-SH4 t------------t-tttttttiiii-----------t-~~~~~Allil-'~~_t--_++++++4+4~------------------------~ +5V -t5V .uv, 2 t-.;,;A:,;;:¢_ _ _ _---1l-4l s AI rol 14 13 H+-~3'------+-Tl.:A2. A32 H-+-I-+-l7i\.;;-4------+-~"!A4 'Z1I4 C6 o.ol"""f DI 102 t-+-+-I-++-'\~6s~----~f As I03 DZ I04 II D3 SH3PZ' W vee ~-~AA~L---------+~h~~r .-7C'Ar/Jf-_ _ _~-5~ H~~A~:---------+~43~~~ ..+ ..++-+-+-1-1-_1-1-~~~~st::::::::Jt~c.A4 AG I AS 15 12 ''I- ~_'- A A~c \~ '1z G~ ~1 Ys ~~ CS <- 'g 31': 7 j I ~ N :[.:-' ~j SH 4 ~~~ B I-- ~ A31 2114 N o & o IOlrI4~____~D~4~__~ I02~1~3____=D~S______~ 12 Db 103.-=----.:::;..;::...-----1 IO·~I~I__--~D~7~------~ Ao; 91 ________________________________ r----------rrrr--------------------~----~A~¢~-­ sH2,4 3 r - - - - - - - r r t t - - - - - - - - - - - - - -..'-----------:J;A'1I:.:.:.~ P/ISHZA PiI-S r -----t-t-t-t----------------:,.... .-------_-EA.fL"""_-_-_-....:.~ 5HZ PII-7 r----1H-++------------~~~~~JA~--32.---_-~ SH2. L.......---"'"A""-4--4 PII- 8 ~--~ 1f~~~~~~~~~~~~~~~~~~~~~A~~;!fo~~}_SH2 I A B60001l-002 ~PPLICATIOH ~NU!SS OTHIEAWI'E HonD OWN -'--u.-,.-o-.4:'.'.510••••, 'N I-.u -,."',-.-, ANG 1.014405 12 PlC ~ "L.C 1-\. H, ...1'" I-l\-BZ CHK'· )/~. ,.k, !"~ /---:t-~; ..u.il, • I, "PO" ~j,;, "l, .1 .l r ••po 1-----I----t::SC;7,AL-!-''"""'N;-;:CN~E.,-L--t:A-;:: ••7"D- - - - - - 1 MATlEnlAL I FINISH TeleVldeo~lnc. SJO PCB SCHEMATIC CON, BD 910 G/A II!' I, I _ID~"'". NO D I~~~_J 2QI4301 ,.---4-- ? • ;h.J~. TlTlt: 1-----1------1, ." 1----+---1 7 I R/w __ I SH 2. <.. I IO.--I------H-++--I DIS~PR~AM~ ~--------~~~~~~~~~~~~~~ SH3~ A37 74LSI38 §.L GND I - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4A ~B ~ ~tttt~:~A\~.~I========jilrl~~ A'2 A" ~ R,24 >47\<. sA 16 6 GZAGcBVCC GI IS ~XOX , yq,pfr-~ffi;--.-'""'7iS~~~~~PI\-4 1A 'II 14 )<. (HAl E SEL R8 5H S eND I~V J - D¢ t+++~r----~~A3 U~+tt:t:~~~,8~====tiq~~ I ++I+t:t+I+:j~====:t:~~.AB .. A~ B " It sJ lolr----t--++++++++"t1-I-----~:::J~=:II vec cs R/W t+-T\Lr-----I-6~~f 7406 -:3~ 1'1' I 1 II A'A6·, ( ( ) () ( () 6 4 5 3 2 1 REVISIONS DESCRIPTION SEE APPROVED SHII HOR I z. S,(NC. B SH 4- o PAGE. ONE Dis~ RAM ¢2 ·W sH Z. SHI,Z. SH LZ ROW 10 VIDEO SH4 SI-l4 ~ PII-1'7 T HALf. INTEN51 rl si14.. ~ PII-l.b T SH4 COMP0SIl"E \JIDEO c c '$ zol \ICc. .!D~aS'-1H-r.'::>~SI DQl _I ,r. r 9AI6i2L 2 PJI.l\ '" CP 1 , CHA~ 5 z41vee. zll_ CS~L..:g~--"'3::1D9S qi-J ~ IQ2~---t++~~~41A'3, 10 DI l<.ti 8 +5~ 1 I I I +SV II eLI< Q95Tg . . J;~!f:·3'-' JD2!1_'-+-H-'-;iiD7 Q7 S DZ' -1-++',*17 4 DI674LS374:"r A/Z QI _'6 ..Q.2u;--+-++::;1D Qo 6 -+-t-t-:-:7;;1D2 QZ 15 -+-H-,;'4:;; D5 QS 9 • B 0' ,n .lD2!:i,..!.-,-+-H-::'3;i 4 q4ti1- ...!::D~4,-· -r~:!2..·· ~D6 ~"--+-+~~DGND \. B A4 CHADI 1 15 4 01" DZ 1'3, D3 14 CI-lAD6 2l A9 D(, 11 D DS 5 10 D4 '<4- ib -tsy G~8. At7 07 233L ~ - -...... >RP3 <> I ..6. A 2 . .·>4.710<. AI + ~ >RP3 -<1 ..... -L- -{ R ~D~'Or~pf--~.~N~~1 ~IIt~M"ZCIB RI4 RIY2 :BA z. 1rJ..!.::19:---.---r=G,--::";1' -- Ai 18 1 ~.~," 5V c'L pf4:E6 7 E36 E37< ~D RI7 5 .A." ~)v'2. Y,7A'~5'k -I I~ I:> air ~ Dr"YSi< 74SI'I,A AZI CK LD 15 A '25 TC 9 ~ P4-7 P6-7 -7 P6-B 8 1.:.::.._ _...., ~ 74504. 8 74LS02 74LS16~A UI4-L----:--:-:-:::;:-;::::--~lf"":~ ~QB.~\3~~~ 1274LSOOII A24 ~~_~9J__ _ QC~ 13 A'Z9 'eL ~ ..!I. P3-7 ,.Ivee z 9, a G p 'T 'To'.1TI' ~ PI-l. I ,,:;) 4.7~ 12. Db 14 iT 0 Cl' IlS """ A ..£j ~~~+---------1-±J=t========~8A¢ ~ "7 R~~t=~t4======-----t-tlt±=========~~A 5HZ. ~~ "7f'LS'~b6 4~--~':"1 I"js " DS cHADZ '3 AS C1-lAD3 AO'A ZI Ab CH J(.j. A7 cHADS 23 A8 6E --""p I-I PI ~B 10 ..!I. PII-9 ..!I. PII-19 B -'- QD ~c CHAR eLK SH I L-..:::G"rN_D_ ~ N ~o o cHAR eLK SH I ·-~04 j5: VI o A21 2o~~ u~-.: ~ ~-E.~ 5~-,: -,: -,: -,: -,: -,: -,: -,: -,: -,: -,: -,: 1~-,: -,: -,: : := = = = = = = = = = = = = = = = =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-~ ~:~ t l~_ ~~ ~ - -,,001> CS2 E7 L------,bwz 74LC;OZ. 0 ~--- ~GIW ~ A'29- ... LS08 74 .i;. AZy ... 74-LSOO 74504. A2i 470 AZr ¢ JU'....--...~ 12 _ _ _ __ A35 74LS04 A A APPLICATION IuNLI!II QTHEfltWll1 NO I--:::':-r:::=;;;;--), IMENIIONS ... fltE NEXT ASIV USED ON !1.DI-UOS IN CHK EN - ~"~'D----; I LpCB SCHEMATIC CONT BD '310 GfA AIt'D L.._-+-_-; 7 6 5 4 3 IllATE~ FINISH A6 2 ( ( ( ~ ___________t 7 8 5 6 4 2 3 1 REVISIONS DESCRIPTION SE~ 5 Azi 0 l-IoRIZ S'(NC B SH3=1i8r~~~ VERT SYNC __________~__~~~kl~~~~________~ 5HZ APPROVED SHi I )P2-1 VERI SYNC 74504 !JERT .:sYNC D PZ-5 IRQ SH 1 D --------.-----~r_--~~~~+5V 1R~E~sI~ET~~I=R=~~8=.~=4=~===============~____~____________________________________~~~ 5H I = 3 .1.-..0--0-.... VIDEO SHiElD GND PZ-:, RZ7 SH3=~V~/D~E~O~~~~==========__________________________________________~~-iR~2~~~~~~~~~~--1f~~Q2--~----~~~~~----------------~V-ID-E-0--7P2-4 ~ ~ ~~ ~~ ~~::~ ~C~O~M~P_~~+_T~T~L~~~ID~E~0--7)P2-6 f-IALF INIE.NSI1Y SH3 SH3 A7 __ _5~ COMPOSITE.. VIDEO __ __ ________________ E40 -"'P/O -/I . E 4-2. 2. E4"3 Qo~ Q( f- Cl -t5V!> DTR lAIN RXD t " P3-8 ,,P3- b " DSR ~ , 4.7K -~=.~~ A 13 D1N AiO ~ D 0 2. Ir. Ir. cr: II D~ 12 ..rV"0 13 - 9 EI4 fclS ~ 0-~E16 4 ~ 6 BIIV GND 1f r - SW2 SEL ACIA (8X3)() TX'D RT5 DTR ~ C51 26" IRq R/W 27 rpl I? 4.7,ryp~+5V 141 14 D¢ IB DI D2. 19 DI 20 DZ DTR I)(D MODEM TXD 3~~ B A'?J 3YtJ ZA 75188 5 2B 2.ytJ6 .~ +sv '«;7 74-l 00 h ~ 4A , ,fl 4B 4Y '1 >41k -Izv -q{' [~ 330pf 1\ EIB SERIAL DATA, PRINTER p 4-3 W~ -'-- - R)(C T E45 y MHl. EM-V" =;= D4 z:., D5 R'ST \. 4 5YS RESt..1 CONTROL LATCI-1 ;q DSR + I V 911 16 CK ~ vee 17 ~ D'3 q3 DI II 10 D4AII Q4 5 DZ 4 Dl74LSl14QZ D3 13 05 Q5 ~ Z 04"3 DI QI DS 14 Db GND Q6 ~SPARE A ~ GND A'Z8 , 3 74LSOB BELL P10-4 PIO -b ; PIO-'Z. P 10 -/2. - R3 }J>A ..r. P7-Z SPEAKER R4 330 R5 . f\/' 330 QI .J""I ~2NZ2.I'3 - BLINK ClK 3 A7.4 . 74-06 - [ 4;?;t<. 7{/f3' ~:SV cuR OR =c BLocK ""PLICATIOH HUT AllY fJolfi/IJS P7-1 'SH '3 EI<..,. ~ ROW 10 (16'20 HZ.) USED ON ~ SH 3 t"fHSIOH! AAE AHQ r••Lcr, ~ A/n" ~---+::;;;'-----l 5 4 3 2 TITLE R'::'B SCH EMAT Ie CON.,. BD 910 G/A FINISH .----4-- 6 BGOOD 11- 002. JuNLI!IS OTHEJlWI SCAL.I: ".An.UAl 7 B '-P 10-/3 1 - ~V 24 Db zs err..- SHI --"p b-IZ '- 21 D3 1)5 '- P3-20 IRQ (ACIA) YI 17 til VT I 2- Ol.84Z 22 EI9 33Opt-:::- DTREN 101 J"\~L. 330pf ~ P3 -4 ~H i~ D¢ D4 D6 SH3 P6 -\3" Ell DTR -"'n ·2 RTS 330.J't VDD- GND RP4 P6 -z 1 3A ') Az9 SH 5 JZV RSI XTAL2. c - ~ 4 3B blL SH I~ ~ voo IY tJ3 ~ 9 II'. 8 ?6 NMI 14 RXC 0 XTALI RSql AI 4-71< ~V -y'A 'J RP4 1 0 AIS ALIA 6551A-1 ~T u~T~Sf 3?Dpf u 0 1)7 S HI vee DCD u f)3 S 1-11 ;T ~ +5V I 15 eso '-~ RKD BtJ"S B A¢ -< 7 f 74 6z 16 R/W QSZ B &2 ~ CIS 75189 - 8 IOCIN C JVg CTS " DCD 14T \CC P3-"3 " RI<.D P6-3. -'" PIO ·7 Ii: D SAlbVCC.Q~ Illr t<.74LS74- Q 8 JLI R GND D"l"A RDY 8)(5)<, RE.'3El" NMI P4-2Or ) PIO -10 E3C) PIO-5 SH :; SH I R'26 E38 .J E41 PIO-9 P3-S ________ 74-0b ~ ... PIO-8 c lOt<. If<,.-.:.: ,I' A ( ( ( 7 8 5 6 4 3 1 2 REVISIONS APPROVED DESCRIPTION SEE SHT I 8liX CHAR SET '::,EL RD -{ D DIPSWITCH PORT ¥2. 9XXZ. D yv RP'Z < >RPZ RP'Z.> < 4.iK r -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~-----4_~------~D~~~T~A~R~D_~~_ ~V 30f 471<.~ } 4.71<. A7 4.71<.~ ~....., vee 16 6 0 s"\r1 RD'( =PI 4 ,, ____+-=3~9a B r '-1 740b 11 r VDD- :£!- -12V PI-b 5 10 1/ 740b A7 y .. .--:-+ 8213 PI -IO /~---------....;1_:'_I7 y¢ PI -16 / 18 YI PI-2.1 19 YZ PI-17 70 Y3 ZI Y4 P zz. 2.Z. Y5 P11-18 ~ 36 PH~ Bb ') B7 8 A2. 1 G ')-_ _ _ _ _ _ _ _ _..:::37-1 4 Xb PI-14/ 33 )( I CONl 8 3 R2. t5V 1')1'>--e--.J\R""1\r-_4.... 11K 'y ~? RPZ 4.7/<. > > > ,>RP2 ,>47K 1 3~ AQ:\ 'IT GND 20Y IBylZ ~ EZ~. J ~Z5 AkO~ looK 15 . ..L E24 :r:Z6 ;. f.Zg r.'Z/ EZ!L ~ £30 E31'" -- E32, E""'~ ~ E34- r--.---.. -~ ~~~ 8XGX. , ~lbfIS~r----"'" %... 7EIDW/WOB L..--.....J tsV ':7 I 'Y-t5V 1611 Gl c5 \~ ~ 1..-f_t_-+-+-l-+--f-.:2::::.j/'j{C 4- 5 f 7 B 9 I( RF'S.: >< < I > ~ < ~ tz: '--_________-' ~~A 68 1"$ D¢ 58 \I DI .!i sA B GND 61L+-~------++-IH-+++-I~5:.:.!O~:.::.60:..H:.:.:Z=- SH 2 IBI-=3::...+-_---------------..... BOW/WOB 1..-f-r-l-+-r4~14,GA 6B~13~_+~----------~ D7 4 A3 5 I 06 L--f-t-4-+-I~1~12A~~~fB~I~1~~-------------..... L-----------------------~~-------------4~4-~-+~--~D~5~ 1..-f-l-+-If-:.!:j'SA 6 .......-t--+~IO 3A ~~~·4A SHI C 2D Sz. I EM I Fsv 19 .::; 2 EM<.t ~ rv o-+'3::.....:5:.:::.oA'-!:6::.::0=--______+_+-.....-~6 3I1G I Vce. 17--=:;C4...!-+-t-t_t_.... 11 -0 14 CURsoR 4 ZA 2BI"'5~D~5-+-+-+-l-+..... 16 <; CURSOR 'Z. IA A33 IBI-':3:-=D,,:,6-+-+--+-+-lr-+-. ~~~ 6 !=/HDX 10 4A4.l53b74tlI-'9:......:::Dc.:..7'-+-+-+-lf-+-+-+-4 £8 C8 ~'9" lb;039 t:.71~f - L- KYBD POR1:# I ~V GND >-!:!!=.!....IJ.!:~~~::...!_ SHI '> 6-1- DTR SH4---=:...;..;....:..-------t--t--------, FUNC KEY P 1- 5 >-A!....:L~P~~p.,....!L~O::..:C,-K.-K,...,E".,.Y-,----+-+------, PI-3 _ _ _+-_ _ __, B < 20 SI o-f-IB!.!lo~D!.llRH~/049_t_18_+_7+6_+544_t_3_l,I_Z-~IO \iCC Gl G2. 1-'94~D~0--._-----~" PII-I~ 19 -v ~~ Z BDRTZ G~ ~~f-!7-t---¥=!DI=--.......-+-----~" PII-IZ /8"'V' 3 BDRTI IZ SA AS 1/ Dl 17 ~ 14 SDRT ¢ 4 hA 74LS367~~5~~D¢.~.-+-l-----------4 PH-II PII -10 ~~ 5 WD LNGTH 14 ." 6Bf-I"3~_lIPl_~_+_+_~~----4" PII -16 ~ PH-IS ~ ro 6 Pp.,R 2. IA 18 1-='34-f::'D5lt-H_+_+..----~ M -~ 7 OlE GND 13 -v 18 STP BITS 8-1~r--+-+-__-+-'I~2. GI vee G.?:.,IIII....!D~b~+_H_+_+...J__<._--~ " PlI-18 SA SBrL--_ _~--f_..!::t.j14 6A 6B J!-'13'-D=:.7.!-f-+_~-+-_+_+_H--~" p/I-z4 ,---..--_t_--+,...,4:-l ZA A5 2Bt::5:-,D",",I7t-~ L-__-Irf--_--4~---4...:z;.!IA74LS36718 3 DQ:\ R9 .--__-+-107-l4A 4Bt::c)~D:::-ZI-t_t_.... ~~~~3A ~~7_D~~~~-r.... DI,IO r----9 D¢I-'!- ,!.2. N~ ;rk AID OE <. IbT 16156 D2J-!.!---, 7 AI La/Ro ~LI\Y GND P 1-15 ~> D7j.!.17.!-------. B8~------+-I-+-t--+-~~--';::-I ~~ FREQ1 ~o7tl 35 X'::> 4,7S S? S ~ ? S 2. A6 Dbj.!.16~--------...., 1lS "3 AS D51-l L--------. 4- A4 A'Z. D4j.!.14~------. ~ A32716 D31-!-:3;:"1- -..... PI - 23 ~------------------"'2~4Y 6 AI BCJ PI -19 -:IS Y7 AV-5-3600 "~---------...!;L"=lyB PI-z6 ~ 4{) KR·3600 PI- B 39 x¢ PI-9 38 XI PI - 10 31 )( 2. I CI ::~:~ " A7 I 83 12 134 " 135 10 23 c WI 211 24 BIJ.!.=14::I:...-------------------=Z"'l,.At~-vrr- 4 Z8CCNTROL SH4 ~ vJ o D043 ~~+-+-~--------~ L-------------------------------4_+-------------_+4_~~------~~02. 5HI.2,4 ~V r--- KYBD PORl # Z 8-'/..-7-t... N o l SB 7 3Bl-'g!...4--+-4---------. END Cl-L sH4 ~~~~~~~~---------lr~~--------~+-~lnIJI5~ ~~5AGI~~§~I~I--+_~~----------------------------------------~~------------...J__<~----------~0~I~ ~6A 68~13~-+_r4_+_--------------------------------------_+4_------------_4------------~D~¢~ '--------4-;;:;.tZA A8 281-=5~-I--+-+--J Ifl4-LS36 '1 IB 1-=3:"'--1--+--1 L..-_ _ _ _ _ _ _ _ _ _ _--;;;.!l G 7 '----------~IO 311 A 38 ~9~--I-..J L---------...:..:..j4J\ GND4B ~ 86000/1- 002. t-.c:-EX-=-T:.,.,::-~ICr-ATU-I::,-Oo-.-\.,~~:::I~::(::~~: HOTED ~:: .~\.. -6-82 • ~= AHG 12 PLe 3 PL.CT L SH3 BII¢ T ENC:iji A'.O _ _ _--1 MATERIAL FINISH " Q""""'(!I . .rr:UPRr~5 ·... "n''''''''.".., 8 PC B SCH E MAliC U,)NT BD giG G fA ~==j:===t!~;,+~~~-~E-~··~·o---~ I'CALE, NOIVE. A••O SH3 BIT 1 IR'I e,'>HOP TeleVldeo:lnc. S ;.~'i TITLE 7 6 i 5 ~ , 4 3 2 A () () ~ _____ - I I.TEU ••••••••••( IW. •••••••••• )••••••••• 3 "'"• I 11' • 1!17 •111•• • CI • • • • • 5'4 •••••••••• O••••••••I C1) • 1'3 • •••••••• "52 74LS387 • • • • • • • SW21 ( •••••••••• "1") E'4·········· n.. . I E15 • • • • • • • _ •• 1 ..... I: O •• .""d r--,-:'I -~-...;-~~ I !J. ., ... .. Q2 ~ ~ fW\ W ~ ~ .~, ":D 1i'.Et2 . . . . E13 8900011-001 - ...--El.Ii.. 0········tr1 '- CI o ,.1 0 C'I • • • • • • : • • •••••••••• •S I ••••••••• f- 0' ,~ , .' ~ : '. . , • "-'. • •• ~ ~f ..... ~ ... ~ ·~·{r·~<-·~) " '" ,, .~- ,(. • I ~ " . . I.'. ~ .f , ... ; . . "ii, •• 1 ,', -if .i ..f ,,"' J "." i·.:~ .> >., , ." ,'\, j" ( ( ( .......... 0 H r\ ••••••••••< ~ I •••••••••• J·o: . . >0 _ A~' 0 .. .<:i u • o .~ 14 0 • 0 • K A~···:··· t:::::a • •••••• •• • • - :.E4t.. 'I •• i;;_...:.;;;,... • ••••• )1518,.' ~40 ~~to. .!'..,;.·;;.... .;;;,... ..,;.r";..,;..;;................,;. ....;. . ..;;;, . ...,;. . ...,;. ...;;..·1·~, "'fA-t •• • •••• I '0 • • £43 751 •• : .:;3 ••••••• • • e17 • • : 1" c::JI~ • • • • • • • ••• )I. t:::::a • • ••• • 1'••1 •••••••• ·AL.t~I..I.LII"""'''''''''''''''''&.I• • • •• • • o • • • -I cRTC,o •••• " •• u • •••••••• o·o~· ~ ~ • O· ~ =:= t.!!!...J ~ u A.O ~O C3" > ~ ~u 0 •• y E42 • • 0 A4 : ....; : •• E44 • • t:::::a • • • .~. • • ••• • > 74LSlU • • • •• . ,.2 7 • • .1 74LUI7 • ~ • • t:::::a •• • • A".' Atl •• .&._~~~~,.. _0. ~ '74LU74 •• \ HZ • • 70100-t • • •• • • • .:o·~ •• : A' Ell • • • • ~t :...... Att •• • . .... .:.. • A 11 .. 17 AI t • .·~~ldt.() Svste&s, Inc. .. · ~E".-A~ _ _ :.J Al4 • • • 233& 431 • ·0 P2 •• •• . . :."~ IO! • ~ 5'.Li131. : I ) . 7.LIUl°-:1 It1l Itl. ••••••• • •••••••• 5• ••••••• .... . 74l1S' • • • z, ..: 0 •• .• • • go!•• 0. ••••• ···Ctt ) 1OLU&" \ • Vi2 .W1 • • t:::::a ~I: 'I'~, • • zz ... AU • • • •• 0 •• ~ • • • •• •• 2114 >••••••• 7.ll00 • I ••••••• ••••••• • C 20 .of. • • • • • • E3ltEZ • • UO ,. e7 4L101 \:::1.),.7"0, • •••••••• • ••••••••••• I:::::::::::: :J .:: 1:::::::::::::Ie..· · Ptt • .., • 1Z'~:nl"'l:-:Tr.l""ln:-:'Z >:4L!fJ •• • e.-. · .. ~ •• • •• •• • • • .~ Ati •• • ";)1;'.~... :.: :~.~'. :.:{·mT.:~ ~:f;;;~ i ~A:' :e.: At7· ..·: ......... . y,W • L:J ,. 0 0 •••••••••1 • • •••••••• •••••••••• ast .. . Aa7········ ) • OE1. A25 • • • AU 0 ' 0 • • '" ••• ~. • ••• • • • • c-;-;•••••• ~ • o .4L115Z • . ,.......,...rr...r"B'...,ra......rr...... • • ) • • ,.la, •• I ••• o· AU .' • • I t tl • • • •••• • "-----_...< .' • o c:::::I ••••••••••• •••••••••• I • • • • •• •• • • • • s, • • •••••••• •••••• ••• > I , 11' • • • •••••••• ••• • )• •••••••• • •• • • • • •••••••• oEffi!!:;;:::] • AU swz • •• • •• ·.:.::. eto :-..·.t!4I. ••••• ~4~.~4~::· i··· .... r:~'~7·: .;.:.. .. .00.... ••••• • ••••••• •••••••• .1. • •• • .," .' .. • • ......... ........ . . .. . fA ••••••••••• •00:o· ..... • ... ..... .... .. .... .. AI... . ............ . •••••••• . • .... • ~71·.IO;~ ":",::::.:• :.j. c: :=;!:.:.:: :••• :••••• . . >.••••••• ••••••••••.. ......... • Sb .•••••••••••• • 74LS387 A33 ~~----~~~--------~,--~~ A::tO ....... :. •• 1.1) • • •• •••• UU A IT---.....'------~ 1:3 • •••••••••••• ••••••••••••• Ell ,11 ~;"';"';;r";''';'''';''';''----''' 0. . ~t:·::J.·· _ I~u !,4LS317 O~O.E~ .;.J.-.. ~ I ULan7 A5) e'3 ·0 • • • • •••••••••••• ••••••••••••• l:3-=-e,~ 0 •••••••• • ~. • e e" 0 • • •c:::.6 00 • • ••••••• • •••••• • ) .7~so4.1 • ••••••• ••••••• . QI AU AU - • O)·7.&.132 • • ••••••• " ••• • • . • () ( () ITHII FINIl NO. 1 2 3 QTY PER i\SS~11 RI:V LEVEL B RI: FI: I{ EN Cr: / Il!:SICNi\TOR 4 5 6 7 8 1 1 1 1 1 1 1 A40 A4 A39 A17 A16 A45 A48 9 10 11 12 13 14 15 16 17 18 19 20 1 2 1 1 1 1 5 1 1 1 1 2 A44 A50,51 A24 A43 A49 A1 A3,5,8,11,52 A7 A5 A10 A19 A18,41 NmILNCLi\TlJIU:/ nrSCI{ I PT I ON PART NUMBER/REMi\RKS . IC 74S74 IC NE 555 IC 6502A Micro IC 74LS139 IC 74LS138 IC EP 32K 350ns Sys Prg 910 IC ROM 32K 450ns Char Gen 910 IC 74LS245 IC 2114ICB RAM IC 6116 RAM 150ns IC 74LS374 IC 74LS166 IC Encoder Kybd 910 IC 74LS367 IC 74LS74 (TI,SIG) IC 75189AN IC 75188N IC SY6551A-1 2MHz(SYN,AMI) IC 74LS174 2026400 2030200 2049600 2027200 2041000 8000020 8000016 2036200 2035800 2049200 2029000 2027800 2051800 2028600 2026600 2029400 2029200 2053000 2028200 NOTES: PAGE 1 OF 4 1M']' L T lTLE PCB ASSY CONTROL BOARD 910 - - - - - - - - - - - - - - _ .. _ - - - - - - - - - - - --- ---- I 1-14-83 O.,'IeleVideo Systems, Inc. ITEM/ '--' ~ .~ QTY PER ASS~I/ RJ:V LEVEL HI: FERENCLj IlLSIGNATOR NOMENCLATURL/llESCRIPT1ON FIND NO. B PART NUMBER/REMARKS 21 3 A9 13,34 IC 74LSOO 2024200 22 23 2 3 A21 46 A29,33,35 IC 74LS08 IC 74LS32 2025200 2025800 24 1 A28 IC 74LS10 2025400 25 1 A47 IC 74LS02 2041600 26 1 A14 IC 74LS86 2026800 27 1 A23 IC 74LS04 2024800 28 1 A22 IC 74S04 2024600 29 1 A12 IC 7406 2034800 30 1 A15 IC 74LS163 2027600 31 1 A26 IC 68B045 CRT ContrjROM 2052600 , 2MHz 32 3 A25,32,38 IC 74LS157 2027400 33 1 A42 IC 74S174 2044600 34 1 R13 Res CF 3.3K .25W 5% 2052700 35 4 R9,10,11,22 Res CF 4.7K .2SW 5% 2053100 36 1 R14 Res CF 47K .25W 5% 2033700 37 1 R12 Res CF 1M .25W 5% 2031500 38 1 R25 Res CF lOOK .25W 5% 2032100 39 1 R3 Res CF 270 .25W 5% 2051300 40 2 R4,24 Res CF 750 .25W 5% 2031700 NOTES: PAGE 2 OF 4 T IT]'L PCB ASSY CONTROL BOARD 910 Il/n L 1-14-83 ------- -~- O.1eleVideo Systems, Inc. -~ - I ITE~I/ FIND NO. B RI;FERENCU DESIGNATOR 41 8 R1 ,5 , 7 ,8 ,15 ,21 , QTY PER ASS~I/ REV LEVEL NOMENCLATURE/I1ESCRIPTION PART NUMBER/REMARKS 2052100 Res CF 1K .25W 5% 26 27 , 42 43 1 R2 Res CF 22 .25W 5% 2033500 44 2 R6,16 Res CF 66 .25W 5% 2051100 45 3 R19,20,23 Res CF 330 .25W 5% 2051500 46 1 R18 Res CF 470 .25W 5% 2051700 47 1 R17 Res CF 1.8K .25W 5% 2052300 48 3 RP2,3,4 Res Pk 1K lOP SIP 2040500 49 1 RP1 Res Pk 4.7K lOP SIP 2041300 50 1 C30 Cap Mica 10pf 2024100 51 3 C3,20,37 Cap Elect 22uf 15V 2025700 52 1 C14 Cap Elect 10uf 16V 20% 2027300 53 3 C22,23,28 Cap Cer .0 1uf 2028700 54 1 Cap Tant 10uf 25V 10% 2027100 55 1 C35 Cap Mica 20pf 2024300 56 1 C32 Cap Mono .039uf 50V 10% 2030300 57 4 C2,11,13,19 Cap Tant 4.7uf 16V 10% 2027500 58 4 C5-8 Cap Cer 330pf 50V 20% 2029100 59 19 Unmarked Cap Cer .1uf 50V 10% 2030100 60 2 CR1,3 Diode IN914 2047500 - NOTES: PAGE 3 OF 4 TITLE llAT I: 1-14-83 PCB ASSY CONTROL BOARD 910 - ---- ---- ----- - O.,'IeleVideo Systems, Inc. ~ ~ '-' -- ITEM/ rIND NO. ~ .- QTY PER 1\SS~I/REV LEVEL RI:rERENCI:/ IlI:S J GN1\TOR B NmIENCL1\TURE/IlESCR I I'T I ON PART NUMBER/REMARKS 61 2 Q1,2 Tran 2N4401 NPN/Si1icon 2045500 65 1 Y2 Cry 13.608 MHz 2098605 66 1 Y1 Cry 1.8432 NHz 2098602 2 Sl,2 SW 10 Pos DIP/20P Sid Adj 2096800 71 3 X(A2) ,45,48,24 Socket IC DIP 24P 2098401 72 3 XA1,26.39 Socket IC DIP 40P 2098402 73 74 1 XA19 Socket IC DIP 28P 2098404 75 2 P3,4 Conn 25P PCB D-Sub Fern 2097800 76 1 P1 Plug 26P RT 3 2098701 77 2 P2,5 Plug 5P STR Waf 2098802 78 1 P7 Plug 2P STR Waf 2098800 62 63 64 67 68 69 70 I 79 80 I NOTES: PAGE 4 OF 4 TIT I.E PCB ASSY CONTROL BOARD 910 III\T!: 1-14-83 -- O:IeleVideo Systems, Inc. --- ITE~I/ fiNn NO. QTY PER ASS~I/ REHRENCLj REV LEVEL llEsrCNATOR A NOMI:NCLATURL/nESCRI PT ION PART NUMBER/REMARKS 1 2 3 4 5 1 A4 IC NE 555 2030200 6 1 A27 IC 6502A Micro 2049600 7 1 A30 IC 74LS139 2027200 8 1 A37 IC 74LS138 2041000 9 1 A38 IC EP 32K 350ns Sys Prg 910 8000020 10 1 A17 IC ROM 450ns Char Gen 910 8000016 11 1 A14 IC 74LS245 2036200 12 2 A31,32 IC 2114 ICB RAM 2035800 13 1 A13 IC 6116 RAM 150ns 2049200 14 1 A12 IC 74LS374 2029000 15 1 A18 IC 74LS166 2027800 16 1 A1 IC Encoder Kybd 910 2051800 17 5 A3,5,6,8,33 IC 74LS367 2028600 18 2 A16,36 IC 74LS74 2026600 19 1 A10 IC 75189AN 2029400 20 1 A9 IC 75188N 2029200 21 1 A15 IC SY6551A-1 UART 2MHz 2053000 i NOTES: PAGE 1 OF 5 IlATI: TITI.E PCB ASSY CONTROL BOARD 910 GATE ARRAY 1-13-83 O. TeleVideo Systems, Inc. I v I TEI\I/ FIND NO. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ~ ~ QTY PER AS91/ REV LEVEL A 1 1 1 1 1 1 1 1 1 1 1 3 Rl:FERENCI:/ DESIGNATOR A24 A35 A21 A7 A25 A20 A19,23,26 IC IC IC IC IC IC IC IC IC IC IC IC R6 R9-13,18,24,25 R7 R8 R2 Res Res Res Res Res All A29 A28 A34 A22 1 8 1 1 1 NOMENCLATURE/DESCRIPTION PART NUMBER/REMARKS 74LS174 74LSOO 74LS08 74LS32 G/A 910/925 74LS02 74LS04 74S04 7406 74LS163 CRT Cant SY6545A-1 74LS157 2028200 2024200 2025200 2025800 2057400 2041600 2024800 2024600 2034800 2027600 2052800 2027400 3.3K 1/4W 5% 4.7K 1/4W 5% 47K 1/4W 5% 1M Ohm 1/4W 5% lOOK 1/4W 5% 2052700 2053100 2033700 2031500 2032100 CF CF CF CF CF NOTES: PAGE 2 OF 5 IIAT I; TITLE PCB ASSY CONTROL BOARD 910 GATE ARRAY ~- 1-14-83 O~1eleVideo Systems, Inc. I TE~I/ QTY PER FIND NO. 43 44 45 46 47 48 49 50 51 52 53 A AS91/ REV LEVEL RI:FERENCI:/ IlI:S I GNATOR NmlLNCLATURL/ llLSCR I Pl ION 270 Ohm 1/4W 5% 750 Ohm 1/4W 5% 1K 1/4W 5% 22 Ohm 1/4W 5% 68 Ohm 1/4W 5% 2051300 2031700 2052100 2033500 2051100 Res CF 330 Ohm 1/4W 5% Res CF 470 Ohm 1/4W 5% Res CF 1.8K 1/4W 5% Res CF 33 Ohm 1/4W 5% Res CF 10K 1/4W 5% 2051500 2051700 2052300 2034500 2034100 RP1,5 RP2-4 Res Pk 4.7K Ohm lOP SIP 2041300 Res Pk 4.7K Ohm 8P SIP 2042900 C18 C2,3,7 Cap Mica 10pf 50V 5% Cap E1ec 22uf 15V -10% to +100% Cap E1ec 10uf 16V 20% 2024100 2025700 R22 R14.21 R1,20,23,28 R19 R3 R4 ,5 ,17 R1 R15 Res Res Res Res Res R26 R27 2 3 58 59 1 3 60 61 62 1 27 1 1 2 4 1 1 3 1 1 1 1 54 55 56 PART NUMBER/REMARKS CF CF CF CF CF 57 C5 C6,9,21-43 C4 Cap Cer .01uf 16V 20% Cap Cer .1uf 50V 10% 2027300 2028700 2030100 NOTES: PAGE 3 OF 5 11A'I E TITLE PCB ASSY CONTROL BOARD 910 GATE ARRAY 1-14-83 O.JeleVideo Systems, Inc. , "-" ~ ~ ITUI/ FINn NO. A 63 1 C1 Cap Mica 20pf 50V 10% 2024300 64 1 C8 Cap Mono .039uf 50V 10% 2030300 65 1 C19 Cap Tant 4.7uf 16V 10% 2027500 66 67 8 1 C10-17 C20 Can Cer 330nf SOV 20% Cap Tant 10uf 25V 10% 2029100 2027100 2 CRl,2 Diode IN914 2047500 2 Ql,2 Tran 2N4401 NPN/Silicon 2045500 75 1 Y2 Crystal 13.608 MHz 2098605 76 1 Y1 Crystal 1. 8432 MHz 2098602 2 SW1,2 Switch 10 Pos DIP 2096800 81 3 A13,17,38 Socket IC, 24 Pin 2098401 82 4 A1,20,22,27 Socket IC, 40 Pin 2098402 83 1 A15 Socket IC, 28 Pin 2098404 QTY PER J\SS~I/REV RI;FI:RENCI:/ LEVU, DLSlr.NJ\TOR NmlLNCLJ\TURE/nESCR I PT rON PART NUMBER/REMARKS 68 69 70 71 72 73 74 77 78 79 80 NOTLS: PAGE 4 OF 5 IlinL T ITL!: PCB ASSY CONTROL BOARD 910 GATE ARRAY --- ------ - - ------------- 1-14-83 O,,'IeleVideo Systems, Inc. ... ITHI/ riND A NO. QTY PER B~C; 2 86 87 88 89 90 91 92 93 94 1 2 1 REV LEVEL REFERENCE! D!:SIGNATOR P6 P3 4 PI P2,S P7 1 84 ASS~I/ NOf\II:NCLATURE/IlESCR I PT I ON Socket IC. 16 Pin Conn 2SP PCB D-Sub Fern Plug 26P RT 3 Conn SP STR Wafer Conn 2P STR Wafer PART NUMBER/REMARKS 2098405 2097800 2098701 2098802 2098800 NOTES: PAGE 5 OF 5 TITLE PCB ASSY CONTROL BOARD 910 GATE ARRAY '----- IlATE - - 1-14-83 O.1eleVideo Systems, Inc. ( ( VIDEO MONITOR/POWER SUPPLY SCHEMATICS AND PARTS LIST TeleVideo Systems, Inc. 1170 Morse Ave., Sunnyvale, CA 94086 (408) 745-7760 TWX 910-338-7633 "TVI VIDEO" () (1 TO POWER SUPPLY MODULE-P11 DRIVE TRANSFORMER TO DEFLECTION YOKE-P12 . I TO CONTROL BOARD I (SIGNAL)-p10 . FLY BACK TRANSFORMER o H. V ANODE CAP CRT SOCKET VIDEO MONITOR MODULE o o o -+- HEAT SINK (B) o o o DC 13.8V (LAS 16CB) DC 5V (LAS 1605) UNREGULATED DC OUT PUT --~nl~ - ..~~:~ I, "00 .== . () =;= , ~=~ARD VIDEO B+ ADJUST POT () = = ~ TO 0 -~ ~ IT ~ ; r~WE~~1LE i 'J === gg L j t 1:lr ~WER .~ F102 FUSE (3A) (+13,8V) . F103 FUSE (3A) (+5V) POWER SUPPLY MODULE TRANSFORMER --P13 v ~ ~ V- HEIGHT - v - LINEARITY - - - I CONTRAST - - ~: t - ,n • . ! I L I .. ~~ :; '3" : ~u J~~I {, r-i:J +-~ I 1N914 C500 050'1 0" KDlIIJ! +, 'II - ~~ "'m 2" !l::c ~ 1'"'' !~t - ~I ~ ~ 10 ! _ 1t7'\ i --111 , : I 0;102 --:~II 'r+o,IIWJeL-___ i; L_ -WI i I . '~--I ': l ' I e - T 101 ~2V GNO 5V UY J 5 Vp_p 124 M\\\\MA - !\ .~I~~ l~~mt - r r C E ~3 lSA 495 25Cl72 P 0 iJ I I , ,2SC 2211 25C"U '- __ ..f ~ i, I I POWER TRANS ! 1§4.n ~ .:' o (! : j : ti]j 2'iC 1~73 2SC 98) ~I I I ~I BeE h ~-,:J .. 0 ·LAS1&Q15 lAS '5C8 0 I. 2. All resistance values in OHM K =1.000 M=I,OOO,OOO. All copacitor values in FARAD U=IO" p=16'~ 3. Unless otherwise stated, working vottages of capacitors Gre SOyolts .. 4. This schematic diooram cover. basic or repre.entative dlassis only. Thar'e may be same KfC 1627... component or portiol schematic difference between acluai chassis and the schema lie diaoram • KTA10115 D KTC 1'" '1 TR WAVEFORM and VOLTAGE Attachement 1 BaseCIn) Transis tor Locat '- ion vtg' DC AC Funct Parts - ion CIC 1) LAS1512 Regula - t ion CIC 2) LAS1605 ".. (lC 3) LASl812 Wave DC V Form vtg' AC Vp.p V Vp-p ~ 12 0,0 0,0 0,0 1,6 ~ 5 0,0 0,0 0,0 0,' ~J -12 0,0 0,0 0,0 V Vp-p 12 2,5 - - - ------;---; 2SCS09 Form Vtg' DC AC Emit ter( GND) T- Wave Form ~-I:t~- ~::-I ~o _--_-_---_-----if-o--'o-+-o--'~- --------... (IC I.) LAS1SCB Q102 Wave Collector lOut j "',. t-- - -- ----- ! 78.7 : 0,0: I --- ---I I I 86,1. 11,5 1 ~ 98,0 0,0 i a 203 2~9~ ~ ~~loo~11-~-----~-7-5,-7~0-,O~---,~~~~~-,-'-,-9~-O_,O~ ~ I I ~ ~ ,--.---l v~rrt,ve i 'T( i ~~ ,------- ---- - r--r2SC"7~rV~r~t t+~--.~- ~:_r~------+_8--,7-6+--6-,-S-+-~-----=-~----'-t 'a 2SAL7] 0103 ____ 0201 ____ 2SAL95 VertP",e 2,0 I 0,6 I -- - - - - --'--1---'------'---+-- Dr I ve 0202 2S072 3,01 : 0,68 0,5 8,0 0,57 Q 301 6,5 • 0,0 0,0 -------=+---+----+---~-----II 9,36 2SC735 V:~t Horiz 8,0 6,5 -0,25 0,61. 2SC2233 Horiz -0,08 6 Out ....-0-5-0-'+-2-S-C-9S-.3+V--;;:: 0302 OS-lOA ~~ 0,0 0,0 8,6 6,5 12 20 0,0 0,0 12,8 121. 0,0 0,0 76.8 25 -0,8 2,8 ~~ ...., Drive 0302 1,7 ----1---- --~-------- 20L 1,0 kJ1f I! :r~ 1flJ Oampin:; 12,8 A uu 132 DC Voltage reading taken with VTVM from point indicated to chasSIS ground_ AC Voltage reading taken with Oscilloscope from point indicated to chassis ground lJlJ ( ITHI/ FINn NO. QTY PER ASS~I/RJ:V LLVEL H.HTRENCL/ IlI:S I GNATOI~ NmILNCLATURL/ IlLSCI~ I PT I ON PART NU~'1HER/RBIARKS 1 RI0l 2.2M Ohm 1/2W CFR 2186500 2 3 RI02 RI05,106,208 390 Ohm 1/2W CFR 2186100 2053100 4 RI07 5 RI08 6 RI09,201,205 4.7K Ohm 1/4W CPR 3.9K Ohm 1/4W CFR 27K Ohm 1/4W CFR 2.7K Ohm 1/4W CFR 7 RII0 30K Ohm 1/4W CFR 2039300 8 R202 lOOK Ohm 1/4W CPR 2032100 9 R203 2.2K Ohm 1/4W CFR 2038700 10 R204 ,212 ,213 0.6 Ohm 2W 11 R206,503 820 Ohm 1/2W CFR 2186200 12 R207 2039100 13 R209,505 6.8K Ohm 1/4W CFR 47K Ohm 1/4W CFR 14 R210 330 Ohm 1/4W CPR 2051500 15 R211 150 Ohm 1/4W CFR 2033900 16 R214 270 Ohm 1/4W CFR 2051300 17 R301 470 Ohm 1/41\' CFR 2051700 18 R501 47 Ohm 1/4W CFR 2037700 19 R502 90 Ohm 1/4W CFR 2177600 20 R.504 56K Ohm 1/4W CFR 2039500 21 R506 220 Ohm 1/2W CFR 2186000 NOTLS: ~ire 2177400 2037300 2038300 Wound Res 2177100 2033700 I PAGE 1 OF 5 Ili\TL TIT!.!: VIDEO MONITOR AND POWER SUPPLY PARTS LIST ---- -- -- ---- 1-13-83 O"TeleVideo Systems, Inc. ITEM/ fiND NO. 22 23 24 25 26 27 28 29 30 31 QTY PER ASS~I/REV LEVEL Rl:fERENCEj DESIGNATOR R507,509 R508 SFR1, SFR4 SFR2 SFR3 VRI VR2 TlI201 C101-109 C113 C114,115 Cl16 Cl17 C119 C120 C201 C202,204 C203 C205 C206 C207 32 33 34 35 36 37 38 39 40 41 42 ~ ~ \..,; NOMENCLATURE/DESCRIPTION 1.5K Ohm 1/2W CFR 10K Ohm 1/2W CFR lOOK Ohm Pot 2K Ohm Pot 5K Ohm Pot 500 Ohm Pot 2H Ohm Pot 1.1K Ohm Thurmister O.OluF 16V Ceramic 20% 3,300uF 35V Electrolytic 0.33uF 35V Tantal 470uF 35V Electrolytic 4700uF 16V Electrolytic 110uF 160V Electrolytic 22uF l60V Electrolytic 10uF 16V Electrolytic 4.7uF 16V Tanta.l 22uF 15V Electrolytic 100uF 10V Electrolytic 22uF 10V Electrolytic 2200uF 10V Electrolytic PART NUMBER/REMARKS 2186300 2186400 2177700 2177800 2177900 2180200 2180100 2180300 2028700 2196500 2198100 21982002196600 2196300 2196400 2027300 2027500 2025700 2196000 2196100 2196200 NOTES: PAGE 2 OF 5 TITLE VIDEO MONITOR AND POWER, SuPPLY PARTS LIST P/H L 1-13-83 OwlCleVideo Systems, Inc. _l ITEM/ QTY PER ASS~I/RJ:V LEVEL F I Nfl NO. I~LFERENCL/ ! NmlJ:NCLATlJRL/nLSCR I IlT I ON IlI:S I CNATOl~ PART NUMBER/REMARKS 43 C208 0.047uF/50V t,Iylar 2197100 44 45 C209 C301 0.OOluF/50V Mylar 4.7uF/16V Electrolytic 2196900 2196700 46 C302 0.01uF/50V Mylar 2197000 47 C303 0.0068uF/200V J.ly1ar 2196800 48 C304 0.047uF/400V Mylar 2197500 49 C305 220uF/16V Electrolytic 2199300 50 C306 16uF/25V NP 2280000 51 C307 0.039uF/50V Hylar 2030500 52 C501 220PF 50V Ceramic 2195900 53 C502 54 C503 O.OluF 50V Ceramic 2028900 55 C504 O.luF 600V Mylar 2197300 56 C505 22uF 100V Electrolytic 2196100 57 C506 0.47uF 50V Mylar 2197200 58 SG501 1KV Spark Gap 2030900 59 S~;}O 60 SW102 O.01uF/50V 1 2197000 SPST 115V 10A/230V SA Pwr SW 2097300 DPDT 115/230V Power Line 2097400 Slide Switch 61 F101 1A/250V 2097000 62 F102,103 3A/125V 2193100 NOTES: PAGE 3 OF 5 T ITLT: I )I\'/' I; VIDEO HONITOR AND POWER SUPPLY PARTS LIST -------- ------- ------ .--.----------~-- ---------- 1-13-83 ---- O,JeleVideo Systems, Inc. --- -~ ITEMI FlNO NO. 63 QTY PER ~ ~ ~ J\SS~I/REV l~EFERENCIJ LEVEL NOMENCLJ\TURE/I1ESCRfPTJON DESIGNATOR PART NUMBER/REMARKS M003 Fuse Clip 2180400 64 Q102 KTC 1627A or MPS-A06 2046700 65 Q103,501 2SC983 or 2N5551 2193200 66 Q201 KTA 1015 or 2N3906 2042200 67 Q202 KTCl1815 or 2N3904 2046500 68 Q203 2SCl173 or 2N6121 2199700 69 Q204 2SA473 or 2N6124 2202100 70 Q301 KTC 200(2SCl166) or 2N4401 2045500 71 Q302 2SC2233 or HJE13006 2047300 72 IC1 LAS 16CB 13.8V Regulator 2126900 73 IC2 LAS 1605 5V Regulator 2126800 74 V501 B 75 V501 CRT Green P31 12" 2049300 76 D101-108 DS 135D or 1N5391 Rectifier 2200600 77 D109 DS 135C Rectifier 2201400 78 D111,112 EQA01-l2 or 1N759A Zener 2201600 & W Pr 12" 2049100 Diode 79 D302 DS-113A or MRI-1000 Damper 2201700 Diode 80 D501 1N914 or KDS1553 Switching 2047500 Diode NOTES: I PAGE 4 OF 5 T ITI..L I IJi\TL VIDEO NONITOR AND POWER SUPPLY PARTS LIST -~. 1-13-83 .~1eleVideo Systems,Inc_, I I· I ITHI/ FINn NO. QTY PER i\SS~I/ RI:V LI:VLL RLHRLNCLj ilLS I GNi\TOR D502 81 NmILNCLi\TlJRL/DLSCR 11'1' ION DS-130TB or lN4004 600V pi\ln NUMBER/REMi\RKS 2202200 Rectifier D201,202,301 82 KDS-8513A or IN920 Silicon 2201800 Diode . 83 D113,114 DS 135D Rectifier 2200600 84 L202 KYS-00060 D.Y Coil 2200800 85 L201 5.4ulI Linearity Coil 2200900 86 L201 Adjustable Linearity Coil 2213600 87 L302 27uIl Inductor Coil 2201000 88 T101 Power Transformer 2201100 89 T301 Drive Transformer 2201200 90 T302 Flyback Transformer 2201300 NOTES: PAGE 5 OF 5 T IT I.E VIDEO t-l0NITOR AND POWER SUPPLY PARTS LIST -_.- Il/\TL 1-13-83 O. TeleVideo Systems, Inc. ( ( VIDEO MONITOR/POWER SUPPLY SCHEMATICS AND PARTS LIST TeleVideo Systems. Inc. 1170 Morse Ave .• Sunnyvale. CA 94086 (408) 745-7760 TWX 910-338-7633 "TVI VIDEO" ( ( ) VIDEO MONITOR The Video Monitor is made up of two sections; the vertical amplifier and the horizontal amplifier. These amplifiers provide the voltages necessary to drive the CRT yoke, which deflects the electron beam across the CRT. The electron beam which is generated by the CRT electron gun is swept across and down the screen to create what are called scan lines, which we discussed in character generation. The movement of the beam is driven by vertical and horizontal sweep rates which are both determined by the display circuitry on the logic board. The horizontal sweep is approximatly 16KHz and the vertical sweep is usually 60Hz for domestic and 50Hz for European applic~tions. The Horizontal sync pulses corning into the Video Monitor are inverted by transistor Q305 and then trigger IC301. In the precision timing mode of operation, the pulse width of IC301 is precisely controlled by R304, R306 and C312. The output Of IC301 is then coupled by 0303 and Q301 to drive transformer T301. The output of T301 is then amplified by Drive transistor Q302. This transistor drives both horizontal yoke windings, as well as the step-up transformer that produces the anode high voltage and the grid voltage for the CRT grid in the neck of the CRT. A new width coil is used for better Raster width control. The Vertical sync. pulse's corning into the Video Monitor are converted to a sawtooth wave-form. When this is first done the sawtooth pulse is going from a negative leading edge to a positive falling edge, the pulse goes through transistor 0202 and is inverted to it's usable form. Now the pulse is going from a positive 2 volt leading edge to a negative - 2.5 volt falling edge. The timing here is critical because with in one sawtooth pulse there are 250 horizontal pulse's that will occur. This is the total number of horizontal scan lines on the CRT. The sawtooth pulse has to be proportional to all the previous pulse's or the timing will be wrong for the vertical sweep as well as the horizontal sweep. When the vertical sweep is negitive 0201 is conducting and C202 will be discharging. During the positive portion Q201 will cut off and allow C202 to charge. ,During the time that C202 is charging the electron beam will be scanning. The vertical sweep scans from top to the bottom, once the scan reaches the bottom of the page a (blank) occurs the video beam is turned off and it is retraced back to the top of the screen, this is the time when C202 is discharging. After the retrace the beam is once again turned on and begins it's scan routine. Adjusting SFRI (vert. height) and SFR2 (vert. linearity) will change the rate of charge of C202 thus changing the slope of the sawtooth pulse. POWER SUPPLY ( Voltages are created and regulated as follows. A 24VAC voltage is rectified by Diode 0105, 106, 107 and 108 resulting in a 31VDC output. This 31V is then filtered through CI06 (3300MF/50V) and applied to five Volt switching regulator lCI03. The output voltage of lCI03 is filtered by LIOI (200uH 5%) and ClIO (2200MF/IOV). The raw 24VDC voltages for the positive and negative l2VDC are rectified by Diodes 0101, 102, 103 and 104. The +24V is regulated by lCIOl and 0101 for output voltage +12V. This is then filtered through Cl16. Negative 12V is stabilized by lCI02 and filtered by CI05. A 79 volt AC waveform is applied to the halfwave rectifier 0109 which is filtered by Cl15. the resulting 92VDC level is then regulated by a series voltage regulator. The stabilization network comprised of sensing and control elements, 0103 and 0102. The 75VDC level goes to the Cathode of the CRT tube and spot killed quickly by 0501 and C506 to protect burn out on the screen surface of when user turned off. The high voltage needed to drive the CRT tube V501 are derived from the flyback transformer T302 on the Video Monitor. ( (/ TUBE SPECIFICATION 14 INCH 90 DEGREE. HIGH RESOLUTION DISPLAY TUBE 340CXB 4N The 340CXB4N is a 14 inch 90 degree high resolution, rectangular display tube primarily intended for use as a alpha-numerical and graphic display tube for computer peripheral devices. The tube is 'provided with banded type integral implosion protection (with mounting lugs). The tube features a low reflectance, high contrast screen. ' ELECTRICAL M1A Heating Indirect by AC or DC: Heater voltage • • • • • • • • • • • • • • • •• 12.0 volts Heater current • • • • • • • • • • • • • • • •• 75 nA ..• • • • • ...·..• ..............• Focusing Method •• ' •• • • Electrostatic Deflection Method •• • • Magnetic Deflection Angles (Approx.) Diagonal • • • • • • • • • • • • • • • • • • • 90 degrees Horizontal • • • • • • • • • • • • • • • • • • • • 80 degrees Vertical • • • • • • • • • • • • • • • • • • • • • 65 degrees Anode voltage • • • • • • • • • • • • • • • max. . . . . . 16,000 9,000 min. volts volts Using high voltage with this tube internal flash-overs may occur, which may cause damage to the cathode of the tube and to various circuit components on the video monitor board. Therefore it is necessary to provide protective circuits using spark-gaps' etc. These should be connected as illustrated in figure 11 below. Figure 1. No other connections between external conductive coating and chassis are permissible. OPTICAL DMA Faceplate. • • • • • • • • • • • • • • • • • • • • • • Filterglass ~ scree~:i~r~f:e~t:o~ :r~a:m~n: : : : : : : : : : : : : i~~:i~~zed Appearance • • • • • • • • • • • • • • • • • • • • Low Reflective* * . The dark-colored screen, in combination with the filterglass, produces the low reflectivity (equivalent to a 20% light transmission filterglass) for easy-to-see display. MECHANICAL'~ Tube Dimensions: Overall length • • • • • • • • • • • • • • • • • • Greatest dimensions of tube (excluding lugs) Diagonal. • • • • • • • • • • • • • • • • • • • Width • • • • • • • • • • • • • • • • • • • • Heigth. • • • • • • • • • • • • • • • • • • Useful screen dimensions (projected) Diagonal. • • • • • • • • • • • • • • • Width • • • • • • • • • • • • • • • • • Heigth. • • • • • • • • • • • • • • • • · ·· · ·· · · ·· · · · ·· 297.0 max. mm 348.3 +/- 2.7 mm 295.3 +/- 2.7 mm 237.0 +/- 2.7 mm 322.3 min. mm 270.2 min. mm 210.7 min. mm Pin Position Alignment • • • • • • • • • • • • • • • • Pin No 7 aligns approx. with anode contact. Operating Position •• • • • • • • • • • • • • • • • • Any Weight (approx.) • • • • • • • • • • • • • • . • • • • 3.5 kg Implosion Protection • • • • • • • • • • • • • • • • • Tension band (with mounting lugs) (\ GENERAL CONSIDERATIONS: 1. ~ handling. Care should be taken not to scratch the tube. 2. Impact. The tubes should never be exposed to impacts of more than 30G during handling or transportation. 3. Grounding. The external conductive coating of the tube should be grounded with multiple contacts (e.g. a contact plate having many fingers.) Poor contact might cause local heating resulting in tube leakage. () WARNING SHOCK HAZARD: The high voltage at which the tube is operated may be very dangerous. Design of the equipment should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken i~ the servicing or adjustment of any high voltage circuit. Caution must be exercised during the replacement or servicing of the tube since a residual electrical charge is stored within the tube. Before handling the tube remove any undersible residual high voltage charge from the tube, by shorting the anode contact button to the frame of the terminal as illustrated in figure 12. Discharging the high voltage to isolated metal parts sucha as cabinets and control brackets may produce a shock hazard. CRT Jumper CorJ_~ Figure 2. TABLE 6-1 SIGNAL WAVEFORMS DC AC COL .(OUT) DC 12 0.0 0.0 0.0 -12 0.0 0.0 0.0 s 0.0 0.0 0.0 AC EMIT( GND) LOCATION FUNCTION DC AC BASE (IN) ICI01 REGULATION 22 1.0 ICl02 " -22 0.0 IC013 " 28 1.0 /\J QI0l " 22 1.0 /'\.../ QI02 " 65 0.0 100 1.0 QI03 " 125 0.0 50 Q201 VERT AMP Q202 " 0.2 Q203 " 5.0 8.0 ~ 12 0.0 S.O 8.0 ~ Q204 " 4.0 8.0 fZ---J 0.0 0.0 4.0 8.0 ~ Q30l HORIZ AMP -0.7 1.5 Q302 " Q303 " Q304 " 0.6 0.0 Q305 " -1. 2 2.2 Q501 VIDEO AMP 0.4 0.0 /\J 12 0.0 0.0 0.0 /'\J 0.0 lrU -O.:S 0.6 ~ 0.5 ~ 3.5 8.0 f"..J -0.8 3.0 JLJl -3.0 4.0 lJLJ 2.2 1.5 JLJ1 ~ 65 0.0 12 0.0 0.0 1.5 ~ 0.0 0.0 0.0 160 /"LM 0.0 0.0 3.0 1.5 JLJl 0'.8 3.5 0.0 3.0 'V\ 1f'V 0.0 0.0 ULJ 0.0 0.0 0.0 8.0 37 27 ~ 0.0 0.0 15 0.0 ( ( ~ 0.0 0.0 ALL VOLTAGE MEASURES MADE WITH OSCILLOSCOPE DC READING TAKEN OF SIGNAL BASELINE AC READING TAKEN OF PEAK TO PEAK AMPLITUDE NOTE: ANY RIPPLE MEASUREMENT LESS THAN ONE VOLT IS NOT ILLUSTRATED. ( 8 ( 6 7 1\201 2.7K D R~O!i 5f"'1 .AI,~OK C 203 22/1bY '2'~!:A ~.J-"vv'"'''''__-'VI,,.tv. ..·--"-C-2-02.~~T~J\,y>IV''v--i V, '~ I R20~ lOOK C201 10 16Y P,203 2.21(. 5 -I-+-~I f..J\,/\/'v 0.+.:::.. 4 .. VI OED IN o---~'----r~"'~ iS~-;L j. iF"KPo.: I C20 • ~ /.'M rtJ I 1'.204 ) 0- 1 °zf> 'pjQ R 210 < ~;g5 <0 R~OI FUll I !:sO 47 "ft:;- 1 ~ C206102ai 22 R21l. -. 10V R209 R20 7 ".aK I> o R ':>06 r~ ".> ~8°Z C207 2200 J12.3 ~ C2~1 1 RZI4 .. 7 22.0<..04 ~ JIZ.I V. YOK E 112W'?1~ n.-~_"'...J I KYS·OOObO D "!)O I :340C.)(.B3IlN) ~ ~ I'OOK >- H3 H4- P.5D7 I:~'" J1'8~" 'n rn =--t. : : : ~_ ~__ 1 1 1 . IS . r fib , . -... 112,,,VV R5D4-K'(~ ~ AtlOOE ,.J II'f'7 il NS ~IZ./17Zli'f~~T 1 1 I V l 1"/7 T T TTl... ~3E~_ L301 fj7 R503 B20 1/2'1'1 R50s ·~!S('"SOZI~ R'.iO,.!--+-£!~h--------------------------~ "_. ..- • r/2w~ 10K > 15K . ~~!» • ~ 117c.503 oJp,1I2W 56503 >~~;W JP' _ _ _ _ _ _ _ _ _ _ _ _~_ _ _~~~ .~~~_ _~~~~~~~~~~~~ > , ' LbOI I ~~~'~i8~ J/2.5 G20-4 ~~ 2SA473 __---4~------~----~------~ 1i7 I : 2W !) 56 SOl SPA'RK GAP ) > ~< ~)C~ R2DS rh VR2.... 177L-----~--------~------_, L-__________________~----------------------~:~--I ~\...w------------+----, pfJ'~ij toiL c CSOb I WHT POWER SE.lEC.T / 8LU 230V SWI02 .......~f-O ... 0 r-- Al f-oll 0-1...-f-o 14 S~ITC.H L- 1"10' F'USE I" \:.50\ 6''''1 BUt Ii 6 I 1 7 8 ~ SWIOI POWER SWnc.H !lfiV ~~T POWER ,","'NS 2.Zl35V :rC 103 7 / ._D-I~ f-- IT1 PFR8U 3 C !l0? 8 R302,.--;n , 200UH '!>.bK I Q 102 > ~RIDS RIM ~'Tc. 161. 7 ,.. "' GI£)3 • T CIl ... 22 I Ic.oV 3.'K .. ..... 5 0.1 R505 j • D301 KOS 4148 S.6K SF R'5 "r'i4J.+.__5_K_<;. ,"'P '(.302 .01 '01\. 1~ f > RIOS OIlOt 12V B II Z7K ~ A4-""·7",,K...-~...i50~K~-=I'-o/V' .A_-r~ 4.7K __'" r-=- :5 RI07 )- KTC 22.2'9' Z 10 ;;y.._'110 -J~===!====~j---------~l.Z~ZOO~I~OV~,~--------+-~~I~Z~ ,J.. C.1I2 Kz RIO'!!}. - I" ISOP ~~ RI6,,'" C115 IDOllbOY D503 7 ,. L...-_ _ MPHI" IE. 12'!>V b 1 • CI\3 2 220/25V 5 l CIII 33001 IOV l ____________ mjI;- rh C.~Ob LIOI 51-S0!lQC;Z " I 4 F'IDlS 4-11. IZ5V BY2S1 c 0502 PlRBI7 Cllb)'t..L T . m I"VI+OR C!)02 .1/100V 2200 IbV T g!: 11..0':.1",0;,3 5 102 e.IOS Z~~ "12 Z.2/.!I5V T L -____~I~~~-__J~~ T D~I 4 T i 3122P :c.e. 0109 IN4004- TIDI 1 r'MZiPl.......jL....--, :xc. 101 1y: - C~I~05 1,102 l' 3!1OO 1 !I!)Y :5300 ¥ 2585'!'!) tn02 .4-LWW) w 1 ';IOI'r D&O!o-I08 L Rm 6"" ~ I!U.U ~ J C 1\£. B 4- Rt1l F'IOZ F'USE 3" II2!)V I :5 IISV GoIDI 1 ~~ r-0 3 'i~2~ 1 2 r..TC:..:,2~C.~C..::.9---<~B~R.~IG~H~T:""-__~.J~P7~...:.2~2-;.0~"..::2:"-'~"""-F=-III- , R2.13J~< 0.6 0201,I ,~.OOI II( tt;14.711.•> ~igf.. Tlb?91 ®... '\I' • > a. 5 0 ZSc. "330 3 : Q 2 03 H~I--/·_2_5Y__'i__-+.-J'4117I1K'v-~lb__V'+'__+~_W_b'-+:HIO" LLrI ~ Q201 KTA 1015 - B~t~/~ ~ 4 5 2..1 J( ZfT .>'.> 1. MOTES: A 1 All RESISTOR VAWES II OHMS. 2 All CAPACITOR VALUES II FARADS. 3 UNLESS OTHERWISE STAT§!f WORKING VOLTAGES OF CAPACITORS ARE 50 WllLTS. II THIS SCHEMATIC DIAGRM COVERS BASIC OR REPRESENTATIVE CHASSIS ONLY. THERE MAY BE SOI'IE COIIPONEIITS OT PARTIAL SCHEMATIC BETllEEN ACTUAL CHASS I S AND THE SCHEMATIC DIAGIWI. -- TMllDOC:UIIINT.THlIIIIlI'EfITt'OI T'ILIVIDEOSYS1'DII.IHC.AHDCIOMT" N"OfIMAnDN WHICH • (;iONP'lDI!NTW.. AHO~","TOTIl.EVIOEO.fiIO l MR'fOf"..DC\ICUMIHT .....,..CCPIED. MNOOIJOII) (MIl DIKUIIID TO THIN) I'M'MS WITMCIUf THl P9IOft \IWI'TTItlI ~OI"TELDIOfO"""'1NC A ........ •• MATE_ 7 6 5 4 3 - . .... -- -::. . -. .. ..... CON"""" ..... N. .... - -~IDOn ••1eIlMdeo Systems, Inc..> 2i' PCB SCHEMATIC DIAGRAM POWER SPLY VIDEO MON ~no 3201200 -.. SHEET 2 1 () ( ( ) TERMINAL TROUBLESHOOTING GUIDE Document 2191400 Revision B 28 February 1983 Disclaimer Te1eVideo Systems, Inc. makes no representations or warranties with .respect to this document. Further, Te1eVideo Systems, Inc. reserves the right to make changes in the specifications of the products described within manual at any time without notice and without obligation of Te1eVideo Systems, Inc. to notify any person of such revision or changes. Te1eVideo is a registered trademark of Te1eVideo Systems, Inc. Te1eVideo Systems, Inc. 1170 Morse Avenue Sunnyvale, California 94086 ( ( ) . \ , (J 1. INTRODUCTION This is a general troubleshooting guide to be used with the Operator's Manual, Maintenance Manual, and Service Bulletins as required. By following the procedures described here, you should be able to quickly isolate and repair most field failures. The following sections are included: Page Overview of Terminal Modules 2-1 Functional Description of Modules 3-1 Troubleshooting the Logic Board 4-1 Visual Inspection Large Scale Integration Failures Data Line Operation Debugging Tables for TTL Boards Debugging Tables for GA Boards 4-1 4-2 4-3 4-4 4-12 Troubleshooting the Keyboard 5-1 Visual Inspection Debugging Table 5-1 5-3 Troubleshooting the Video Monitor Visual Inspection Debugging Guide Troubleshooting the Power Supply Visual Inspection Debugging Guide 6-1 6-1 6-3 7-1 7-1 7-2 2. OVERVIEW OF TERMINAL MODULES The design of TeleVideo·terminals permits fast fault isolation since the terminal hardware is divided into four main modules: 1. Video monitor 2. Power supply 3. Main logic board 4. Keyboard The video monitor and power supply are common to all TeleVideo terminals and may be freely interchanged. Terminal keyboards are interchangeable, as outlined in the section on the keyboard. The main logic board is the only module that provides each terminal with its unique characteristics. The quickest and easiest way to isolate the malfunctioning module is to exchange (swap) each module with a known good module. Once the faulty module is identified, refer to the appropriate troubleshooting table. WARNING 1 High voltages are retained by the CRT tube and capacitors even after power has been turned off. As soon as you open the case, clip one end of a wire to the chassis. Attach the other end of the wire to an insulated screwdriver. Being careful not to touch the metal part of the screwdriver, gently slip the metal end of the screwdriver under the cap of the anode, as shown in Figure 2-1. ( rRT "node ~Ieta 1 frame Figure 2-1 Discharging Voltages 2-1 () 3. FUNCTIONAL DESCRIPTION OF MODULES Logic Board The logic board processes and controls all data received and transmitted, and generates the video and sync signals required to display data. The logic board consists of the following five functional areas: 1. 2. 3. 4. 5. Display processor Display generator Keyboard interface Main port interface Printer port interface Power Supply The power supply provides DC operating voltages to all circuits in the terminal. The power supply contains two user-replaceable 3 AG-type fuses. Video Monitor The video monitor contains horizontal, vertical, and intensity modulation circuits which produce a television-type conventional noninterlaced raster display on the screen. Character signals received from the display generator cause intensified dots to appear at precise intervals on a raster line. These dots, when combined with other dots on other raster lines above and/or below a given line, produce characters. Keyboard 910/910 PLUS/912C/920C--This keyboard sends matrixed data via a ribbon cable to the logic board, where the ASCII code is generated. This data is encoded in the 910/910 PLUS by the keyboard encoder (position AI) and in the 912C/920C by the CPU (position A54) and the multiplexers (positions A68 and A69). The keyboards for these models are all functionally interchangeable. The 910/910 PLUS keyboard has a PRINT keycap where 912C/ 920C models have a BLOCK/CONV keycap. The 920C keyboard is also fitted with an additional top row of function and editing keys. 925/950--0n this keyboard, data is encoded by a microprocessor on the keyboard (position U6) and sent in an ASCII serial data stream to the logic board via the coiled cable. On the logic board, the keyboard interface circuits convert the keyboard data from serial to parallel data for input to the display processor circuitry. All detachable keyboards are identical and interchangeable. 3-1 4. TROUBLESHOOTING THE LOGIC BOARD Visual Inspection With the Logic Board Instal1ed--Turn off power to the terminal, open the case, and check the following possible problem areas: * Internal and external switch settings: correct? * Socketed chips: their sockets? * Connectors: are they all are they 'all plugged tightly into look for Loose or damaged connectors Broken or loose securing clips on pins at connectors Bad crimps Dirty contacts * * Wires: are any broken, loose, or frayed? Components: are any overheated or burned? With the Logic Board Removed--Make these inspections with the logic board removed. The procedure for removing the logic board varies slightly according to the model. Follow the appropriate directions for your model. 910/910 PLUS/912C/920C To remove the logic board: 1. Turn the power off. 2. On the logic board, disconnect: Pl P2 P3 P4 PS P6 P7 (keyboard input) (video signals) (RS232C port) if connected (printer port) if connected (voltage connector) (modem connector) if connected (speaker connector) 3. Remove the four (910/910 PLUS) or six (9l2C/920C) securing screws on the logic board. 4. Carefully remove the logic board. 4-1 ( 925/950 1. Turn the power off. 2. On the logic board, disconnect: PI P3 P4 P6 3. (keyboard input) (RS232C port) if connected (printer port) if connected (modern connector) if connected Carefully slide the logic board half way out of the terminal and disconnect: P2 (video signals) P5 (voltage connector) 4. Carefully slide the logic board entirely out of the terminal. with the logic board removed, inspect the logic board for: * * * * * Overheated or burned components Missing or broken components Cracked, broken, or lifted traces Poor solder joints (loose solder balls, cold solder joints, or solder bridges) Bent pins STOP! If defects are found, correct them and recheck the terminal before continuing. If no defects are found, reinstall the logic board before proceeding with the procedures in the next section, Large Scale Integration Failures. Large Scale Integration Failures Since most failures involve Large Scale Integration (LSI) chips, this step will quickly repair most failures encountered. Exchange all socketed chips, one at a time, with known good chips. If the logic board malfunctions after the chips are swapped, confirm the operation of the data lines described in the next section, Data Line Operation. 4-2 NOTE! The remainder of this guide involves troubleshooting to the component level and requires schematics, an oscilloscope, a working knowledge of transistor-transistor logic (TTL), and basic debugging skills. ( ) Data Line Operation Confirm that the data lines are operating properly before proceeding further. NOTE! It is beyond the scope of this bulletin to list all possible data line problems. The best place to check the data lines is directly from the C~U (see page I of the schematics). There should be activity on all data lines and the signals should range from 0 (ground) to +4.5 to +5.0 volts. If the malfunction persists after you have confirmed proper operation of the data lines, follow the procedures in the next section, Debugging Tables. Debugging Tables NOTE! The items listed in the tables in this section are only suspect areas: they should not be automatically replaced when the symptoms listed are present. () 4-3 Table 4-1 910/910 PLUS Logic Board Debugging Guide Suspect Areas Part No. Position Symptom No video 6502 6545 2114 or 6116 Crystal 74LS163 2332 2N2219 Distorted video 6502 6545 6116 or 2114 Schematic Page 1 of 5 A39 2 of 5 A26 A30, A3l, 2 of 5 A36, A37 A24 Y2 A15 A45 Q2 2 3 3 1 4 A39 A26 A24 1 of 5 2 of 5 2 of 5 of of of of of 5 5 5 5 5 2332 74LS166 A30, A31, 2 of 5 A36, A37 A48 3 of 5 A49 3 of 5 Horizontal bar across screen 6545 74S04 A26 A22 2 of 5 4 of 5 Loss of underline, reverse video, blinking, or blanking 74LS174 6545 A42 A26 3 of 5 2 of 5 Loss of half intensity 74LS175 6545 A4l A26 3 of 5 2 of 5 Loss of all attributes 6545 74S74 A26 A40* 2 of 5 3 of 5 Unable to transmit data 75188 6551A AI0 A19 4 of 5 4 of 5 Unable to receive data 75189 655lA A5 A19 4 of 5 4 of 5 Poor/no printing 75189 75188 6551A A5 AlO A19 4 of 5 4 of 5 Incorrect/no keyboard response Notes *Must be a Texas Instruments part. **If used. 4-4 AY-5-3600 Al 2716 A2** 4 of 5 5 of 5 5 of 5 Table 4-1 Continued Suspect Areas Part No. Position Symptom Schematic Page SHIFT or CTRL keys do not function A6-5-3600 Al 7406 A12 RP4 5 of 5 5 of 5 5 of 5 ALPHA LOCK or FUNCT keys do not function AY-5-J600 Al 74LS364 A8 RP4 5 of 5 5 of 5 5 of 5 Keys repeat AY-5-3600 Al 5 of 5 *Must be a Texas Instruments part. **If used. ( 4-5 Table 4-2 912/920 Logic Soard Debugging Guide Suspect Areas Part No. Position Symptom No video, no beep No video, constant beep Horizontal bar across screen Schematic Page 8035 5027 23.814-MHz Crystal 74LS109 74LS163 System ROMs System ROMs 2332 A54 A23 Xl 1 of 6 4 of 6 4 of 6 A56 A57 A49 A50* A3 4 of 6 4 of 6 5027 2114 page 2114 page A23 4 of 6 A6, A8, 3 of 6 A10, A12 A5, A7, 3 of 6 A9, All RAM, 1 RAM, 2 2 of 6 2 of 6 5 of 6 5027 74LS08 74LS05 A23 A32 A14 4 of 6 5 of 6 5 of 6 Area X of screen** 2114 RAMs 2114 RAMs A8 A12 3 of 6 3 of 6 Area Y of screen** 2114 RAMs 2114 RAMs A6 A10 3 of 6 3 of 6 74LS157 A24, 3 of 6 A25, A26 A40 3 of 6 A54 1 of 6 A23 4 of 6 Bad video or incorrect character displayed in: Bad video on entire screen 74LSOO 8035 5027 Notes * If installed ** x y Areas X and Y of Screen 4-6 Table 4-2 Continued 5uspect Areas Part No. Position 5ymptom Schematic Page Distorted characters 2316 8035 2114 RAMs A3 A54 A5 through A12 5 of 6 1 of 6 3 of 6 Unable to transmit 75188 74LS157 2502 A59 A78 A48 2 of 6 2 of 6 2 of 6 Unable to receive 75189 74LS157 2502 A60 A78 A48 2 of 6 2 of 6 2 of 6 Loss of blinking or blanking 74LS74 5027 A35 A23 4 of 6 4 of 6 Loss of half intensity 74LS74 74LS03 5027 A16 A15 A23 5 of 6 Loss or underlining/reverse video 74L574 74L574 5027 A28 A29 A23 5 of 6 5 of 6 4 of 6 Incorrect or no keyboard input 8035 74L5253 74L5253 A54 A68 A69 1 of 6 1 of 6 1 of 6 ALPHA LOCK, SHIFT, CTRL, or Function keys do not function 74L5364 74L542 A76 A58 1 of 6 1 of 6 Unable to select one or more baud rates 74LS163 Counter A70 through A73 Sl 6 of 6 Baud rate switch 74LSOO Nand A74 Gate 4-7 ( 5 of 6 4 of 6 6 of 6 6 of 6 ( Table 4-3 925 Logic Board Debugging Guide Suspect Areas Part No. Position Symptom "J:) beep, no video Y2 13.6080MHz Crystal A55 74LSOO A37 74LS139 A60 6502A A59 6545A-l Schematic Page 7 of 7 4 4 1 2 of of of of 7 7 7 7 Lonstant beep, no video 6502A 6545A-l 74LS223 A60 A59 A44 1 of 7 2 of 7 7 of 7 Horizontal bar 74504 6545A-l A16 A59 7 of 7 2 of 7 Bad video 10uf cap 74LS74 6545A-l C41 A6 A59 1 of 7 4 of 7 2 of 7 Distorted characters 74LS166 2332 A30 A31 2 of 7 2 of 7 Unable to transmit to computer 75188 6551 74LS32 A34 A32 A26 5 of 7 5 of 7 5 of 7 Unable to receive from computer 75189 6551 A9, A17 A32 5 of 7 5 of 7 Unable to transmit to printer 75188 74LS32 6551 A34, A25 A26 A32 5 of 7 5 of 7 5 of 7 Unable to receive from printer 75189 74LS32 75188 A9, A19 A26 A25 5 of 7 5 of 7 5 of 7 Loss of any video attribute 74LS173 A19, A20, A21 A40 A39 A50, A49 3 of 7 74LS245 74LS374 2332 No keyboard communication* 1.8432-MHz Yl Crystal A33 6551 A60 6502A 2 of 7 2 of 07 1 of 7 5 of 7 5 of 7 1 of 7 *Refer also to Service Bulletin 2, Eliminating Keyboard Lockup 4-8 Table 4-'3 Contin.ued ( Suspect Areas Pa.rt No. Position Symptom Unable to select switbh bank Sl Unable to select switch bank S2 Switch 74LS244 Resistor pack Switch 74LS244 Resistor pack Unable to select switch bank S3 Switch 74LS244 Resistor pack 81 AS3, AS2 RP5 Schematic Page 6 of 7 6 of 7 6 of 7 S2 A5l, A52, A53 RPI 6 of 7 6 of 7 S3 6 of 7 6 of 7 6 of 7 A43, ASl, RP4 6 of 7 ( ( 4-9 Table 4-4 950 Logic Board Debugging Guide Suspect Areas Part No. Position Symptom No video, no beep 6502 6551 6545 Program ROMs User ROMs Character Generator ROMs 23.824-MHz Crystal 74LS163 74LS109 Schematic Page A53 A49, A50 A5l A56 A4l, A42 1 of 7 A52 A32, A33 1 of 7 4 of 7 aSCI 6 of 7 A3 A6 6 of 7 6 of 7 5 of 7 2 of 7 1 of 7 No video, constant beep 6545 2114 RAMs A56 2 of 7 A25, A26, 3 of 7 A27, A28 Horizontal bar across screen 6545 2114 RAMs A56 2 of 7 A25, A26, 3 of 7 A27, A28 Bad video, one section of screen 2114 2114 2114 2114 A25 A26 A27 A28 3 of 7 3 of 7 3 of 7 3 of 7 6116 6116 6116 6116 A37 A34 A35 A36 3 3 3 3 74LS157 A43 through A46 ASS A53 2 of 7 Bad video on only one page Page Page Page Page 1 2 3 4 Bad video on entire screen 6545 6502 Distorted characters 2332 74LS166 6502 All 2114's 4-10 A32, A33 A22, A23 A53 A25 through A28 of of of of 7 7 7 7 2 of 7 1 of 7 4 4 1 3 of of of of 7 7 7 7 Table 4-4 Continued ( Suspect Areas Part No. Position Symptom ) Schematic Page Unable to transmit to system 1488 741S32 6551 741S157 A48 A58 A50 A59 5 of 7 5 of 7 5 of 7 5 of 7 Unable to receive from system 1489 741S08 6551 A57 A29 A51 5 of 7 5 of 7 5 of 7 Unable to transmit to printer 1488 74LS32 6551 74LS157 A39 A58 ASl A59 5 5 5 5 Unable to receive from printer 1489 6551 A40 AS1 5 of 7 5 of 7 Loss of any video attribute 74LS174 74L8157 74LS174 A19 A20 A21 4 of 7 Incorrect or no keyboard input 6502 6551 A53 A49 1 of 7 3 of 7 Unable to select one or more baud rates 6502 6552 74LS367 RP 2 RP 3 Switch 1 A53 A54 A65, A66 1 of 7 7 of 7 7 of 7 7 of 7 7 of 7 7 of 7 of of of of 7 7 7 7 4 of 7 4 of 7 ( () 4-11 RGate ArrayR Logic board, Supplement Debugging Guide Although the components are laid out differently, RGate ArrayR boards are completely interchangable with TTL boards. When troubleshooting the RGate ArrayR Logic boards care should be taken when handling the CMOS devices. The RGate ArrayR chip positions are listed below. When exchanging these custom CMOS chips one must be grounded to earth ground to avoid damage to the chip from static discharge. Model No. 910, 9l0Plus 925 950, Chip A Chip B Televideo Part Number 2057400 2057400 2057600 2057800 Location A22 A39 A34 A37 Follow the procedure in the begining of this section for visual inspection of the logic board. 4-12 a Table 4-5 910/910 PLUS GA Logic Board Debugging Guide Symptom Suspect Areas Part No. Position Schematic Page No video 6545A-1 6502 6116 Crystal 2532 74LS163 74LS166 2N2219 70200-11B A20 A27 A13 Y2 A38 A25 A18 02 A22 2 1 2 3 1 3 3 4 3 of of of of of of of of of 5 5 5 5 5 5 5 5 5 Distorted video 6545A-1 6116 70200-11B 74LS166 2532 A20 A13 A22 A18 A38 2 2 3 3 .1 of of of of of 5 5 5 5 5 Horizontal Bar across screen 6545A-1 74LS08 A20 A37 2 of 5 2 of 5 Loss of Attribute 70200-11B A22 6545A-1 A20 3 of 5 2 of 5 Unable to Transmit to Computer or printer 75188 6551A-1 A9 A15 4 of 5 4 of 5 Unable to Receive from Computer or printer 75189 6551A-1 A10 A15 4 of 5 4 of 5 Inncorect/ no keyboard response AY-5-3600 Al 2716 A2 A3,A8 74LS367 5 of 5 5 of 5 5 of 5 Shift or CTRL keys inoperative AY-5-3600 Al A7 7406 resistor RP2 pack 5 of 5 5 of 5 5 of 5 Alpha Lock or Funct keys inoperative AY-5-3600 Al 74LS367 A8 resistor RP2 pack 5 of 5 5 of 5 5 of 5 Repeating keys AY-5-3600 Al 5 of 5 (1 ( () 4-13 Table 4-6 925 GA Logic Board Debugging Guide Symptom Suspect Areas Part No. Position Schematic page Crystal 70200-llA 74LS139 6502 6545A-l Y2 A39 A38 All A28 6 3 3 1 2 Constant beep/ no video 6545A-l 74LS273 6502 A28 A26 All 2 of 6 6 of 6 1 of 6 Horizontal bar across screen 6545A-l 74S04 A28 A40 2 of 6 3 of 6 Bad video 10uF cap C28 6545A-l A28 70200-lla A39 1 of 6 2 of 6 3 of 6 Distorted characters 2332 74LS166 2 of 6 2 of 6 Loss of Attribute 70200-llA A39 A14,A15 2333 3 of 6 1 of 6 No transmit to computer or printer 75188 655lA-l 74LS32 A23 A4 A24 4 of 6 4 of 6 4 of 6 No receive from computer or printer 75189 655lA-l A2 A4 4 of 6 4 of 6 No keyboard response Crystal 655lA-l 6502 Y3 AS All 4 of 6 4 of 6 1 of 6 Unable to select Sl Switch 74LS244 resistor pack Sl A3,A4l RPI 5 of 6 5 of 6 5 of 6 Unable to select 'S2 Switch 74LS244 S2 A3,A4l, A34 RP2 5 of 6 5 of 6 S3 A34,A29 RP4 5 of 6 5 of 6 5 of 6 No video/ no beep , resistor pack Switch 74LS244 resistor pack Unable to select S3 4-14 A17 A12 of of of of of 6 6 6 6 6 5 of 6 Table 4-7 950GA Logic, Board Debugg ing ,Guide ,: Symptom Suspect Areas Schemati..e Part No. Position Page 6502 All 1 of 7 50f 7 6551 A29,A33 A36 6545 A6 2 of 7 740012 A34 4 of 7 A20,A25 2532 1 of 7 A30,A31 4 of 7 2332 Crystal OSC 1 4 of 7 No video/ no beep No video/ constant beep 6545 6116 A6 A3 2 Of 7 3 of 7 Horizontal bar across screen 6545 7406 A6 A39 2 of 7 6 of 7 Bad video 6116 6545 6502 740012 AS,A13 A17,A22 A7,A12 A16,A21 A6 All A34 3 3 2 2 2 1 4 Distorted characters 2332 740012 740012 A30,A31 A34 A37 4 of 7 4 of 7 6 of 7 Loss of Attributes 740012 A34 4 of 7 Unable to transmit to computer 75188 74LS32 6551 74LS157 A18 A19 A29 A28 5 5 5 5 Unable to receive from computer 75189 740012 6551 A9 A37 A29 5 of 7 6 of 7 5 of 7 Unable to transmit to printer 75188 74LS32 6551 74LS157 A23 A24 A33 A28 5 of 7 5 of 7 5 'Ot 7 5 of 7 Unable to receive from printer 75189 6551 A32 A33 5 of 7 5 of 7 Inncorect/ no keyboard response 6551 6502 74LS32 A36 All A19 5 of 7 1 of 7 5 of 7 74LS157 4-15 of of of of of of of of of of of 7 7 7 7 7 7 7 ( ( 7 7 7 7 ( ) Table 4-7 continued Symptom Suspect Areas Schematic Part No. Position Page Unable to select Sl Switch resistor pack 74LS367 6552 6502 Unable to select S2 Switch resistor pack 74LS367 6552 6502 4-16 Sl RPl,RP2 7 of 7 7 of 7 Al,A4 A43 All 7 of 7 7 of 7 1 of 7 S2 RP2 7 of 7 7 of 7 A4,A38 A42 A43 All 7 of 7 7 of 7 1 of 7 5. TROUBLESHOOTING THE KEYBOARD Visual Inspection With the Keyboard Installed--Turn off power to the terminal. Check keyboard alignment; are any keys binding on the cover? Open the top case. 910/910 PLUS/912/920 Remove the two screws from the bottom front corners of the terminal. Carefully tip the top case back until it rests on a firm surface. . NOTE! The terminal will now be top heavy and may tip over if there is not sufficient table space to support the top. 925/950 Remove the four screws from the bottom of the keyboard case. Carefully life off the top of the keyboard case and set it aside. ( Check the following areas: * Key switches: Foreign objects (e.g., paperclips, staples, matches) Liquid residue (e.g., coffee, soft drinks) Broken keyswitches Missing or incorrectly placed keycaps * Cables: Broken wires Loose wires at connectors Creased, kinked, or cut cables * Connectors: Loose or damaged connectors ( Bent pins Dirty contacts 5-1 NOTE! If def~cts are found, correct them and recheck the terminal before continuing. With the Keyboard Removed--Make the following inspections with thE keyboard removed from its case. The procedure for removing the keyboard varies slightly according to the model. 910/910 PLUS/9l2/920 To remove the keyboard: 1. Unplug the ribbon cable from the logic board. 2. Remove the two securing screws and washers from the inner bottom corners of the keyboard. 3. Carefully remove the keyboard from the surrounding case. 925/950 To remove the keyboard: 1. Disconnect on the keyboard: P6 (speaker connector) P7 (keyboard cable) 2. Remove the four screws from the bottom corners of the keyboard case. 3. Carefully remove the keyboard from the bottom case. Inspect the keyboard for: * * * * Overheated, damaged, or burned components Cracked, shorted, broken, or lifted traces Poor solder joints (loose solder balls, cold solder joints, or solder bridges) Broken, loose, or frayed wires NOTE! If any defects are found, correct them and recheck before continuing. 5-2 Table 5-1 Keyboard Debugging Guide Symptom Suspect Areas Models One key inoperative/ intermittent Respective keyswitch Open trace/bad solder joint 8048 keyboard CPU, position U6 A A B Several keys inoperative/intermittent A Open/shorted trace A Broken/loose jumper C, D Defective ribbon cable C, D Bent pin at ribbon cable connectors B 8048 keyboard CPU, position U6 B 10K ohm resistor packs, positions RP2, RP3 10K ohm resisto~,pps!tion R3 B All keys inoperative Open/shorted trace Defective ribbon or keyboard cable 8048 keyboard CPU, position U6 7805 +5V regulator, position VI 5.7143-MHz crystal, position Xl SHIFT, FUNCT, or ALPHA LOCK keys CTRL key inoperative Incorrect characters 10K ohm resistor Pack, position RP2 8048 keyboard CPU, position U6 10K ohm resistor pack, position R2 8048 keyboard CPU, position U6 Shorted trace Shorted/improperly plugged ribbon cable 8048 keyboard CPU, position U6 Legend A = All B == 925/950 C = 910/910 PLUS D = 912/920 5-3 A A B B B B B A C, D B ( Table 5-1 Continued Symptom Suspect Areas Keys repeat Respective keyswitch* Shorted trace Shorted ribbon cable 8048 keyboard CPU, position U6 Models B, D A C, D B Legend A = All B = 925/950 C = 910/910 PLUS D = 912/920 Note *On the 910/910 PLUS terminals, a key which is shorted will not repeat on power up. Instead, any key pressed will repeat until another key is pressed. 5-4 6. TROUBLESHOOTING THE VIDEO MONITOR ( Visual Inspection With the Video Monitor Installed--Turn off power to the terminal, open the case, and check the following possible problem areas: * Connectors: look for Loose or damaged connectors Broken or loose securing clips on pins at connectors Bad crimps Dirty contacts * Wires: are any broken, loose, or frayed? * Components: are any overheated, leaking, or burned? If any defects are found, correct them and recheck the terminal before continuing. With the Video Monitor Removed--The following inspections should be made with the video monitor removed. ( To remove the video monitor: 1. With the power off and the cover removed, disconnect the following connections on the video monitor: JIO (signal input) JIl (DC power) J12 (yoke) 2. Disconnect the following parts on the CRT tube: CRT socket (small printed circuit board at rear of tube) Anode lead (SEE WARNING ON PAGE 2-1) Ground wire 3. Remove the three securing screws on the video monitor. 4. Carefully remove the video monitor. ( 6-1 With the video monitor removed, inspect it for: * * * * * Overheated, leaking, or burned components Missing or broken components Cracked, broken, or lifted traces Poor solder joints (loose solder balls, cold solder joints, or solder bridges) Bent pins NOTE! If defects are found, correct them and recheck the terminal before continuing. If no defects are found, reinstall the video monitor. Apply power. WARNING! High voltages are present on the video logic board. CARE during troubleshooting. USE EXTREME The four adjustments which can be made to the video board are listed in Table 6-1. The controls are shown in Figure 6-1. Table 6-1 Video Board Adjustments Problem Control Characters are too bright or too dim Brightness Whole screen is too taIlor too short Height Characters are not even in height from the top to the bottom of the screen Linearity Characters are not sharp Focus 6-2 Foc...;s jj(~lcr.t Briqhtness V~rtlcal LInearIty Figure 6-1 Location of Controls on Video Board Debugging Guide This section will help you troubleshoot specific malfunctions. Table 6-2 lists voltage levels and wave forms. SYMPTOM: 1. 2. No Vertical Deflection Check 0201 collector for vertical deflection. a. If it is present, proceed to Step 2. b. If it is not present, check the base of 0201. c. If vertical deflection is present at the base, isolate the 0201 collector to see if signal is being pulled down. If there is still no output at 0201, suspect 0201. d. If vertical deflection is not present at the base, troubleshoot between the base of 0201 and PIO pin 5 (vertical sync signal from the logic board). - Check 0202 collector for vertical deflection. a. If it is present, proceed to Step 3. b. If it is not present, check the base of 0202. () 6-3 Bosetln) Transistcr Locot '. ion Port S (lC 1 ) LAS1512 Fu net DC V . ion Regula Vtg' AC Vp.p 12 CollectN ( Out i Vtg' DC AC V Vp-2 Wove Form 2.5 ~ 12 0,0 . t Ion Emit ter( GND) vtg' Wove Wove DC V AC Vp.p 0,0 0,0 0,0 0,0 00 0,0 O,C (l,G r . . .....j"---....-J JC ,l) 0.1) Form (lCn LAS160S ", 1,E, r" ...... / . . . . . . ''---1 S 0,0 CI C LAS 1812 /, 0,1 r· ..· ...... r. . . . . ,. . ..) . 12 0,0 , " 1 I. I r", 13 ,8 0,0 BCI). 1 ~. 75.7 0,0 --- 1 "'~ 0,0 0,6 0,57 ~.~ 1,0 1,7 e ,r, 6,"- l,~ 0,0 0, 1? o,~ ------ 87E, 6,S 0,0 0,0 8,6 6,5 12 20 t111 0.0 0,0 _~rJl 0,0 0,0 J) ( 1C L. ) LAS1SCB o10? 2SC :)CfJ " 7e) CI 0103 2SC 983 " 12,0 0,0 .........../ --.....J u --- ----- ---- .---- Form ---- --L..--------"- 0201 25Al.95 Vert Pree 2,G 3,0 0202 25C372 Vf> r t ~,,':::TIl ,::::;;~p G C, p " I C 25(1173 Vert 2SAL.73 VerI .., 9.Jf, E: ~, 8,0 5,5 -{l.2S 0,51. Out 0301 2S( 735 HorlZ 2Scn]3 2SC9fJ ---- 6 ~ 128 121. 0.1. 3 1fu' 76.8 25 Amp 0102 D5-113A ~ ·O.OB Horlz Video '\ ~ ~~ ..-., - Out 0501 -.. --l"~, ,... i .~ Drive 0302 I i Out o 20L. I' " Drive a 2:]3 I I Dr I ve Damplrt; 12.8 132 1~IlJ _rJl 1'0,8 DC Voltage reading taken with VTVM from pain! indicated to chasSls ground, AC VoIIage reading laken wilh Oscillu~cope Iron Table 6-2 pOIII! mdlcakd to ChaSSIS ground Voltage Levels and Waveforms 6-4 V1/1 rj 2,B ~~ ~~ mf 3. c. If vertical deflection is present at the base, isolate the 0202 collector to see if signal is being pulled down. If there is still no output at 0202, suspect 0202. d. If vertical deflection is not present at the base, troubleshoot back from the base of 0202. ( Check the negative side of C207 for vertical deflection. a. If vertical deflection is present, the vertical drive section of the video monitor is good. If a vertical problem still exists, check the following areas: Connections CRT socket Related components (small pcb at neck of CRT) b. If vertical deflection is not present at C207, check the 0203 emitter. c. If vertical deflection is not present at the 0203 emitter, check the base of 0203. d. If vertical deflection is present at the base, suspect 0203. e. If not present at the base of 0203, troubleshoot back. f. If 0203 emitter is good, check 0204 emitter. g. If vertical deflection is not present at 0204 emitter, check the base of A204. h. If present at base, suspect A204. i. If not present at base, troubleshoot back from 0204. NOTE! Since 0203 and 0204 are a matched set of push/pull amplifiers, replace both if one require replacement. SYMPTOM: 1. No Horizontal Deflections Check the 0301 deflector for horizontal deflections. a. If horizontal deflections are present, proceed to Step 2. b. If not present, check the base of 0301. 6-5 ( 2. c. If horizontal deflections are present at the base, isolate the Q30l collector to see if signal is being pulled down. d. If there is no output at the Q301 collector, suspect Q301. e. If horizontal deflections are not present at the base of Q30l, troubleshoot between the base of Q301 and PIO pin I (horizontal sync signal from the logic board). Check the Q302 deflector for horizontal deflections. a. If horizontal deflections are present, proceed to Step 3• b. If not present, check the base of Q302. c. If horizontal deflections are present at the base, isolate the Q302 collector to see if signal is being pulled down. d. If there is no output at the Q302 collector, suspect A302. e. If horizontal deflections are not present at the base of Q30l, suspect T30l (drive transformer) or Q302. f. If the proper signal is present at Q302 collector, suspect the following areas: C306 L201 SYMPTOM: 1. No Video Suspect the following areas: L302 Q302 Q30l T302 (FBT) C305 Q501 2. Check for cracked, broken, or lifted traces. SYMPTOM: Jittery Screen 1. Make sure that yoke connector J12 is not dirty. 2. Suspect C504. 6-6 3. Check for ( * Bad crimps * Po6r solder joints (loose solder'balls, cold solder joints, or solder bridges) SYMPTOM: Poor Linearity 1. If horizontal linearity is the problem, check L201. 2. If vertical linearity is the problem, check the following: a~ Adjust SFT 2 (linearity potentiometer) b. Q203 and Q204 SYMPTOM: Fuses Blow and/or Voltage is Low 1. Check T302 (FBT) 2. Check for cracked, broken, or lifted traces. ( () 6-7 7. TROUBLESHOOTING THE POWER SUPPLY Visual Inspection With the Power Supply Installed--Turn off power to the terminal, open the case, and check the following possible problem areas: * Connectors: look for Loose or damaged connectors Broken or loose securing clips on pins at connectors Bad crimps Dirty contacts Depressed pins in connectors * * * Wires: are any broken, loose, or frayed? Components: are any overheated, leaking, or burned? Bad fuse NOTE! Check the fuse with an ohm meter. visual check. * Do not rely on a Loose fuse holder If defects are found, correct them and recheck the terminal before continuing. With the Power Supply Removed--The following inspections should be made with the power supply removed. 7-1 To r enlove the powe r supply: ( 1. Turn the power off and remove the cover. 2. Unplug the power cord from the wall outlet. 3. Disconnect Kl (AC input) on the power supply. 4. Disconnect Jll on the video monitor. 5. Disconnect J5 on the logic board. 6. Remove the securing screws on the power supply (four on the 925/950~ three on 910/910 PLUS/9l2/920). 7. Carefully remove the power supply. With the Power Supply Removed--Inspect the power supply for: * * * Overheated, leaking, or burned components Bad crimps Bad connectors/connections NOTE! If defects are found, correct them and recheck the terminal before continuing. Disassemble the power supply by removing the four securing screws and spacers which hold the small pcb on the heat sink. Debugging Guide This section will help you troubleshoot specific malfunctions. Table 6-2 lists voltage levels and waveforms. 7-2 ( SYMPTOM: 1. No +5V DC Remove FI03 and check for approximately +13V on one side of the fuseholder. a. If correct voltage is not present, suspect the following areas: CI05 through CI08 DI05 through DI08 Bad crimps Loose or damaged connectors Broken or loose securing clips on pins at connectors b. If correct voltage is present, suspect the following areas: FI03 (fuse) LAS1605 Cl14 Cl13 Bad crimps Loose or damaged connectors Broken or loose securing clips on pins at connectors SYMPTOM: 1. +5V DC is Low Check the following areas: LAS1605 Bad crimps Loose or damaged connectors Broken or loose securing clips on pins at connectors 7-3 SYMPTOM: 1. No +12V DC or 13.8V DC Remove FI02 and.check for +24V on one side of the fuseholder. a. If correct voltage is not present, suspect the following areas: CI01 through CI04 DI0] through D104 Bad crimps Bad connectors/connections Broken or loos~ clips b. If correct voltage is present, suspect the following areas: LAS15CB/LAS16CB Cl15 ell3 Bad crimps Loose or damaged connectors Broken or loose securing clips on pins at connectors SYMPTOM: 1. ( +12V DC or +13.8V DC is Low Check the following areas: LAS15CB el13 Bad cr irLps Loose or damaged connectors Broken or loose securing clips on pins at connectors (I) 7-4 SYMPTOM: 1. No -12V nr Check the following areas: CIOI and CI02 DIOI and DI02 Dl12 Cl16 Bad crimps Loose or damaged connectors Broken or loose securing clips on pins at connectors SYMPTOM: 1. No +75V DC Check the following areas: CI09 (can be removed; do not need to be replaced) C120 Cl19 0102 0103 SYMPTOM: +7SV DC is Low 1. Adjust SFR3. 2. If +75V DC cannot be adjusted, check the following areas: 0103 Cl09 If no defects are found, reinstall the video monitor. Make sure the securing screws are locked tight before proceeding. Apply power. 7-5 ( () TROUBLESHOOTING GUIDE FOR 970 TERMINAL 1 (: (~ \ This is a general troubleshooting guide to be used with the Operator's Manual, Maintenance Manual, and Service Bulletins as required. By following the procedures described here, you should be able to quickly isolate and repair most field failures. Overview of Terminal Modules 1 Functional Description of Modules 2 Troubleshooting the Logic Board 3 Visual Inspection Large Scale Intergration Failures Data Line Operation Self tests Debugging Table Troubleshooting the Keyboard Visual Inspection Debugging Table 3-1 3-2 3-3 3-4 3-5 4 4-1 4-2 Troubleshooting the Video Monitor Visual Inspection Debugging Guide 5 5-1 5-2 Troubleshooting the Power Supply Visual Inspection Debugging Guide 6 6-1 6-2 2 SECTIO~ The 1 ( OVERVIEW OF TERMINAL MODULES design \o~ Televideo terminals permits fast fault the, terminal is 9ivided into four main modules. isolation sinc~ 1. Video monitor 2. Power supply 3. Main logic board 4. Keyboard The 970 terminal begins a new generation.of terminals. The design of the video monitor and DC power supply boards has been simplified to use fewer DC voltages. This change in design makes these two boards unique and noninterchangeable with the earlier Televideo terminals 910, 912, 920, 925 and 9S0.Interchange the video monitor and power supply boards only with boards of the same type. However a logic board of the older type terminal maybe connected to the video monitor and power supply of the 970. To verify a malfunctioning module exchange (swap) each module with a known good one. Once the malfunctioning module is identified, refer to the appropriate section in this guide for futher troubleshooting. ( () 3 D~SCHARGE rRQC~DUBE High voltages are retained by the CRT tube and capacitors even after power has been turned off. As soon as you open the case, clip one end of a wire to the chassis. Attach the other end of the wire to an insulated screwdriver. being careful not to touch the metal part of the screwdriver, gently slip the metal end of the screwdriver under the cap of the anode, as shown in Figure 1.1 CRT Test C1 ip Jumper CorJ~W---ol. FIGURE 1-1 Discharging Voltages 4 SECTION ~. FUNCTIONAL DESCRIPTIQ~ or MODULES LOGIC BOARD The logic board processes, stores and manipulates data received and transmitted, and generates the video and sync signals necessary to display data on the terminal's screen. The main logic board is divided into the four following active sections'~ 1. Main processor 2. Display processor 3. 16K RAM memory 4. I/O Interface logic POWER SUPPLY The power supply supplies four DC voltages 12v, -12v, 75v, and 5v to circuits within the terminal. Two fuses located on the power supply are user replaceable. ( . VIDEO MONITOR video monitor contains horizontal, vertical, and video amplification circuits which produce a television-type noninterlaced raster display. Video signals received from the display circuitry generate pixels (dots) at various positions across scan lines. These pixels, when combined with other pixels of scan lines above and/or below a given line, produce characters. Th~ KEYBOARD Data is encoded by a 8049 microprocessor located in position A6 of the keyboard. The encoded data is sent to the main logic board serially via the coiled interface cable. On the main logic board the serial data is converted to parallel and applied to the main processor which by way of terminal firmware deciphers the two bytes of encoded data received from the keyboard processor. ( 5 TBOQijLESHOOTING ~ ~ LOGIC ijOARD VISUAL INSPECTION With the logic board installed and power r~moved, remove the two screws at the bottom of the vented cooling tower and swing the bottom part of the panel away from the case, and check the items listed below. 1. Socketed chips: are they all securely seated into their sockets and are the chip pins all straight? 2. Connectors: look for Loose, damaged or corroded connectors Bad crimps 3. Wires: are any broken, loose or frayed? 4. Components: are any components deformed or discolored? With the logic board removed, make the following inspections. To remove the logic board: 1. Turn the power off. 2. On the logic board, carefully disconnect: PI, P2, P3, P4 and PS connectors 3. Remove the four screws in the four corners of the logic board 4. Carefully remove the logic board. 6 (l With the logic board removed, closely inspect the board for: 1. Deformed, discolored or missing components. 2. Cracked, broken or lifted traces. 3. Poor solder joints (loose solder joints, or solder bridges). _ 4. Bent pins on the IC chips. balls, cold solder NOTE! If defects are found, correct them and retest the terminal before continuing. ~ LSI FAILURES Since most malfunctions involve LSI chips, this step may quickly remedy most failures. Exchange all socketed chips with known good chips, testing the terminal after exchanging each LSI chip. If the logic board still malfunctions after completeing the previous steps, confirm the operation of the data lines as outlined in the section Data Line Operation... ( The remainder of this section involves troubleshooting to the component level and requires schematics, an oscilloscope, a working knowledge of transistor-transistor logic (TTL) with experience in TTL troubleshooting • .J.,..l ~ L.INE OPERATION Confirm that the proceeding futher. data lines are operating properly before NOTE! It is beyond the scope of this troubleshooting guide to list all possible data line problems. With the logic board reconnected check the data and address lines that interface the zeo CPU chip with the rest of the terminal logic. There should be activity on all data and address lines with voltages rangeing from Ov to 5v. If the malfunction persists after you have confirmed proper operation of the data lines, follow the procedure in the next section, Debugging Table. ( 7 The following tests are designed to aid the service personel troubleshooting the 970 terminal. in Two 25 pin male RS232 connectors are needed to make a test cable. The cable is an one to one pin assignm~nt for the following pin requirements:2, 3, 4, 5, 6, 7, 8 and 20. This cable is to be used when testing the comunications of the terminal. tests: Depressing shift SET UP 1 will display all characters and attributes on the screen. Depressing shift SET UP 3, 4 or ESC t 8 will fill the entire screen with one particular character. This test is helpful 1 when -adjusting the terminal focus, height or linearity. Displa~ Comunication tests: A test cable as outlined above is required to successfully exercise the test. Connect one end of the test cable to P3 and the other end to P4. Depress shift SET UP 2 or one of the sequences below. The result of the test, PASS or FAIL will be displayed in the lower right of the status line. Confidence test; Confidence test wil preform certain tests to the terminal. Depress ESC [ 2 1 Ps Y to initiate the test. Ps is the parameter indicating the test to be done. Ps is computed by taking the weight indicated for each desired test and adding them together. The values assigned each test are defined in table 3.1 •. TABLE 3-1 WEIGHT TEST PERFORMED 1 ROM AND RAM TEST (CHECK ROMS' LRC AND TEST DISPLAYABLE RAM) 2 RS-232C PORT TEST (P3-P4 LOOPBACK CONNECTOR REQUIRED) 4 EIA CONTROL TEST (P3-P4 LOOPBACK CONNECTOR REQUIRED) 8 REPEAT SELECTED TEST(S) INDEFINITELY (UNTIL FAILURE OR POWER OFF) 8 ~ LOGIC BQARD DEBUGGING TABLE NOTE! The items listed in the table in this section are only suspect areas: they should not be automatically replaced when the symptoms listed are present. SYMPTOM SUSPECT AREAS PART NO. Z80 9007 6116 74LS166 74S25l 2N22l9 No video SCHEMATIC POSITION A80 A69 A56 A50 A48 03 PAGE 11 14 15 15 15 16 I Constant or no beep 8049 (KYBD) Z80 Firmware A6 A80 A82,87,99 11 11 12 No cursor 9007 74LS374 A69 A6 14 16 Distorted characters 6116 74LS245 74LS374 74LS173 74LS157 74LS166 74S25l Firmware A56 A65 A64 A33 A40 A50 A48 A82,87,99 15 15 i5 Bad video every other line 9006 A54,60 #8 Bad attribute" 9006 A53,59 18 Loss of specific attribute 9007 74LS374 A69 A37,45 i4 i8 Horizontal bar 9007 74LS32 74LS32 A69 A68 A7 14 14 19 No transmit P3 75188 Z80 SIO Z80 CTC A43 A74 A92 17 17 110 No transmit P4 75188 Z80 SIO Z80 CTC A5l A74 A92 '717 "" " 9 ( IS 15 15 15 .2 110 ( ~ DEBUGGING TABLE CONTINUED SYMPTOM SUSPECT AREAS PART NO. 26LS31 Z80 SIO Z80 CTC . No transmit P7 POSITION A89 A85 A92 SCHEMATIC PAGE .7 .7 .10 No-receive P3 75189 74LS08 Z80 SIO Z80 CTC A27 A58 A74 A92 .7 17 .7 .10 No receive P4 75189 Z80 SIO Z80 CTC A57 A74 A92 .7 .7 t10 No receive P7 26LS32 Z80 SIO Z80 CTC A84 A85 A92 .7 .7 .10 Incorrect or no kybd response 7414 Z80 SIO Z80 CTC 74LS138 A100 A85 A92 A93 17 17 110 19 Incorrect Baud rate Z80 CTC 74LS138 74LS163 A92 A93 Al15 110 19 .1 Loss of Bidirectional comunication 74LS374 74LS32 A23 A62 12 17 10 SECTIQB i ~ TROUBLESHOOTING ~ KEYBOARD ( VISUAL INSPECTION Disconnect the keyboard from the rest of the terminal and remove the six screws from the bottom of the keyboard case. Carefully lift of the top of the keyboard case and set it aside. Check the Key switches for the following: 1. Foreign objects (e.g., paperclips, staples, matches) 2. Liquid residue (e.g., coffee, soft drink) 3. Broken keyswitches 4. Missing or incorrectly placed keycaps NOTE I If defects are found, correct them and retest the terminal before continuing. Visual Inspection with the keyboard removed from the case Remove the screws from the corners of the keyboard and remove the keyboard from its case. Inspect the keyboard for: 1. Deformed or discolored components 2. Cracked, shorted, or lifted traces 3. Poor solder joints (loose solder balls, solder bridges, or cold solder joints) 11 ( llJl KEYBOARD DEBUGGING l'ABLE SUSPECT AREAS SYMPTOM SCHEMATIC POSITION PAGE PART NO. Keyswitch 11 Open trace,solder joint 11 11 8049 (kybd) A6 One key inoperative/ intermittent S~veral keys inoperative/intermittent Open/shorted 8049 74LS145 Resistorpack trace A6 A4,5 RPI 11 11 11 11 All keys inoperative Open/shorted 8049 Regulator Crystal trace A6 VRI Y1 11 11 11 II Incorrect characters Shorted trace A6 8049 11 11 No beep or key click 8049 A6 11 12 SECTION .2 ~ () TROUBLESHOOTING THE VIDEOHQNITOR ;. VISUAL INSPECTIQN With the video monitor installed turn off the power to the terminal, remove the two screws from the rear of the CRT case and place the cover aside. Check the following possible problem areas: 1. Connectors: look for A. Loose or damaged connec'tors B. Dirt~ contacts c. Bad crimps 2. Wires: are any broken, 3. Components: are any deformed, leaking, or discolored? If any defects are found, before continuing. loose~ or frayed? correct them and retest the terminal With the video monitor remov.d--The following inspections be made. should ( To remove the video monitor: 1. With the power off remove and set the cover aside and disconnect the following connections on the video monitor: A. Jl (DC voltages) Bil PIO (signal) C. Jll (yoke) 2. Disconnect the following parts on the CRT tube: A. CRT socket (small circuit board at rear of tube) CAUTION pull socket off straight back to avoid breaking the small nipple of tube. B. Anode lead (WARNING see discharge procedure in section one) C. Ground wire 3. Remove the securing screws on the video monitor. 4. Carefully slide the video monitor out of the case. 13 With the video monitor removed inspect it for: 1. Deformed, leaking, or discolored components 2. Missing or damaged components 3. Cracked or lifted traces 4. Poor solder joints (loose solder balls, solder bridges, or cold solder joints) NOTE! If defects are found, correct them and retest the terminal before continuing. If no defects are found, power. reinstall the video monitor and apply WARNING! High voltages are present on the video monitor • USE EXTREME during troubleshooting. ~ The four adjustments which can be made to the video monitor listed in Table 5-1. The controls are shown in Figure 5-1. are TABLE 5-1 PROBLEM CONTROL Intensity of characters too bright, too dim Bright Whole screen is to taIlor to short Height Characters are not even in height from the top to the bottom of the screen Linearity Characters are not in focus Focus 14 ( FIGURE 5-1 ~ VIDEO MONITOR DEBUGGING GUIDE The remainder of this section deals with specific and possible causes. SYMPTOM: 1. malfunctions No Vertical Defection Check the emmiter of 0201 for the vert. signal. A. If it is present, proceed to step 2. B. If it is not present, check the base of 0201. C. If the vertical deflection is not present at the base, troubleshoot between the base of 0201 and PIO pin five. 2. Check the collector of 0202 for the vert. signal. A. If it is present, proceed to step 3. B. If it is not present, check the base of 0202. C. If the vertical deflection is not present at the troubleshoot back from the base of 0202. 15 base, ( 3. Check the negative side of C207 for vertical deflection. A. If vetical deflection is present, the vertical drive of the video monitor is good. The following areas should be checked if the vertical deflection continues to fail. (1) Connectors PIO and J12 (2) Yoke windings B. Check emmiter of 0203. C. Check base of 0203. D. If v~rtical deflection 0203. present at base of 0203 suspect E. If not present at base of 0203, troubleshoot back. F. If 0203 emmiter is good, check 0204 emmiter. G. Check base of 0204. H. If vertical 0204. deflection present at base of 0204 suspect I. If not present at base, troubleshoot back from 0204. Since 0203 and 0204 are a matched pair of push/pull amplifiers, replace both if one fails. SYMPTOM: No Horizontal Deflection 1. Check the collector of 0305 for horizontal pulses. A. If the pulse is present, proceed to step 2. B. If absent check the base of 0305. C. If the Horizontal deflection is not present at the base troubeshoot between the base of 0305 and PIO pin one. 2. Check the output of IC301 at pin 3 if absent suspect IC30l. 3. Check the collector of 0303 for horizontal pulse. A. If present proceed to step 4. B. If absent monitor the emmiter of 0303. C. If not present at the emmiter troubleshoot back. 16 4. Check the pulses. collector of 0301 for horizontal deflection ( A. If pulses are present proceed to step 5. B. If missing check for a signal at the base of 0301. C. If no signal present troubleshoot back. 5~ Check the collector of Q302 for the horizontal signal. A. If present the horizontal deflection amplifiers operating properly. Check the connection from Jll the yoke windings. are to B. If not present check the base of 0302 for the signal. C. If the signal is absent at the base of Q302 troubleshoot back. ( ( 17 SECTION ~ .6. TROUBLESHOOTING ~ POWER SUUPLY VISUAL INSPECTION With the Power Supply Installed--Turn off power to the complete the procedure on removal of the logiC board, the following possible problem areas: 1. terminal, and check Connectors: look for A. Loose or damaged connectors B. Dirty contacts C. Bad crimps D. Bad fuse 2. Wires: are any broken, loose, or frayed? 3. Components: are any deformed, leaking, or discolored? NOTE I Check the fuse with an ohm meter. Do not rely on a visual check. 4. Loose fuse holder 5. If defects are found, correct them and retest the terminal. 18 With the Power Supply removed--The following inspections be made. should ( \) To remove the power supply: 1. Turn off the power and unplug the power cord from the wall outlet. 2. Remove the main logic board as outlined in section 3. 3. Disconnect K1, K2 on the power supply PCB. 4. Carefully slide the power supply PCB up away from the regulators and remove it. With the Power Supply Removed--Inspect the power supply for: 1. Deformed, leaking, or discolored components 2. Burned or lifted traces 3. Bad crimps on K1 and K2 connectors 4. Poor connections If defects are found, correct the defects and retest the terminal before proceeding. ( ( 19 . ~ POWER SUPPLY DEBUGGING GUlpE The remainder of this section deals with specific and possible causes. SYMPTOM: 1. malfunctions No +SV DC Remove Fl03 and check for approximately 34V DC. If the correct voltage is not present, suspect the following components: A. Dl05 through Dl08 B. Bad crimps, or poor connections to Kl. If the correct voltage is present, suspect the following components: 2. A. Fl03 B. 80S06Z C. CI06 through Cl12 SYMPTOM: 1. +SV DC is low Check the following components: A. Iel03 (80506Z) B. Cl06 through Cl12 C. Damaged or loose connectors SYMPTOM: 1. No +12V DC Remove FI02 and check for approximately 26V DC. If the voltage is not present, suspect the following components: A. DlOl through Dl04 B. Bad crimps or poor connections to KI. 2. If the correct voltage is present, suspect the following components: A. ICIOI (3l22P) B. QlOl C. CIOI, CI02, Cl03, and Cl16 20 SYMPTOM: 1. (: +12V DC is low Check the following components: A. RI02 B. lCIOl (3122P) C. CI03 D. Damaged or loose connectors SYMPTOM: 1. No -12V DC Check the following components: A. 0101 through 0104 B. CI04 and CI05 C. ICI02 (7912) D. Damaged or loose connections SYMPTOM: 1. No +75V DC Check the following components: ( A. 0109 B. C1l3, C114, and C115 C. QI02 and QI03 SYMPTOM: +75V DC is low 1. Adjust SFR3 2. If unable to adjust SFR3, check the following components A. Q102 and Q103 B. 0110 () 21 Intel 8048 H/8048H-1 /S035H LlS035H L-1 HMOS SINGLE COMPONENT S-BIT MICROCOMPUTER • 8048H/8048H-1 Mask Programmable ROM • 8035HL/8035HL-1 CPU Only w:ith Power Down Mode ROM • 641K xx 88 RAM CP,U, ROM, RAM, 110 in Single • a-BIT Package • High Performance HMOS • Reduced Power Consumption 1.4 usec and 1.9 usec Cycle Versions • All Instructions 1 or 2 Cycles. • Over 90 Instructions: 70% Single Byte 27 1/0 Lines • Interval TimerlEvent Counter • Easily Expandable Memory and 1/0 Compatible with 808018085 Series • Peripherals • Two Single Level Interrupts The Intelt!) 8048H/8048H-1/8035HLlB035HL-1 are totally self-sufficient, B-bit parallel computers fabricated on single silicon chips using Intel's advanced N-channel silicon gate HMOS process. The 804BH contains a 1K X B program memory, a 64 X8 RAM data memory, 27 110 lines, and an 8-bit timerlcounter in addition to on-board oscillator and clock circuits. For systems that require extra capability the 8048H can be expanded using standard memories and MCS-80'·/MCS-:-B5'· peripherals. The B035HL is the equivalent of the 804BH without program memory and can be used with external ROM AND RAM. To reduce development problems to a minimum and provide maximum flexibility, a logically and functionally pin compatible version of the B04BH with UV-erasable user-programmable EPROM program memory is available. The 874B will emulate the 804BH up to 6 MHz clock frequency with minor differences. The 8048H is fully compatible with the B04B when operated at 6 MHz. These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for bOlh binary and BCD arithmetic. Efficient use of program memory results from an instruction set conSisting mostly of Single bit instructions and no instructions over 2 bytes in length. PIN CONFIGURATION BLOCK DIAGRAM LOGIC SYMBOL ~r TO ITAL 2 VCC T1 P27 IUsn P2. ft P25 P24 ITAI. 1 iHl' fA 1(0 ;SEN \iii ALE I'll 01 2 1'10 Ol~ VOO PROG P23 01 5 01, I041H I035HL I04IH·l IOl5HL·1 "4 P13 P12 01, 1'22 1'21 Vss P20 WORDS OATA MEMORY ,~ 1024 WORDS PROGRAM MEMORY CLOCK PORT ' 2 P17 Pll Pl5 01 0 Oi, 0114 PORT ·1 A ') I BIT CPU - 'v-- V • BIT TIMEII EVENT COUNTER V 27 1/0 LINES IUS In.el CorpOtaflon aSlumes no ,esponl.blhty for the uN of any ttrCUlt~ Olne, than cueul")' Imbodled '" an In,•• produCI NO other CI'ClIll palent heenHS .re Implied &In'el Corpor.hOf\ 1110 AFN·Ol4ilA·OI infel 8048H/S048H·1 /S035H lIS035H l-1 ~OO~[LO[MJOrm&OOW PIN DESCRIPTION Designation Pin: Function VSS Circuit GND potential Vce 20 26 40 PROG 25 Output strobe for 8243 110 expander. P10-P17 Port 1 P20-27 Port 2 27-34 8-bit Quasi-bidirectional port. B-bit quasi-bidirectional port. P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243. VOO 21-24 35-38 DBD-DB7 BUS 12-19 Pin: Main power supply; +5V during operation. True bidirectional port which can be written or read synchronously using the RD. WR strobes. The port can also be statically latched. Input pin testable using the conditional transfer instructions JTO and JNTO. TO can be designated as a clock output using ENTO CLK instruction. T1 39 Input pin testable using the JT1. and JNT1 instructions. Can be designated the timer/counter input using the STRT eNT instruction. INT 6 Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also ( Function testable with conditional jump instruction. (Active low) Low power standby pin Contains the 8 low order program counter bits during an external program memory fetch. and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, RD. and WR. TO Designation RD 8 Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device. Used as a read strobe to external data memory. (Active low) RESET 4 Input which is used to initialize the processor. (Active low) (Non TTL V,H) WR 10 Output strobe during a bus write. (Active low) Used as write strobe to external data memory. ALE 11 Address latch enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory. F5'S'EN 9 Program store enable. This output occurs only during a fetch to external program memory. (Active low) SS 5 Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active low) EA 7 External access input which forces all program memory fetches to reference ~xternal memory. Useful for emulation and debug. and essential for testing and program verification. (Active high) XTAL1 2 One side of c"rystal input for internal oscillator. Also input for external source. (Non TTL VIH) XTAL2 3 Other side of crystal input. AFN·QU,\A·O, ( ( intel 804SH/S04SH-11S03SH L.. 1IS03SH L-1 -"'STRUCT~ON SET Sub,outln. MnemOllle ADD A, R ADD A,@R ADD A,' dlla ADDC A, R ADDC A,@Ro ADDC A.' dala ANL A. R ANt A.@R ANL A.' dlla ORL A. R ORL A@R ORL A. /I dall XRL A. R XRL A. @R XRL. A .• dala INC A DEC A CLR A CPL A DA A SWAP A RL A RLC A RR A RRC A D..erlpllon Add ,eglSle, to A Add data memory 10 A Add Immedllte to A Add ,eglsle, with car,y Add dala memo,y wllh carry Add Immedlale wIth carry And ,eglsle, 10 A And dlla memory 10 A And Immedlale to A 0, ,eglste, to A Or dlla memo,y to A Or Immedlale to A Exc.luslve. or ,eglste, 10 A ExclusIve or dall memory 10 A ExclusIve 0, Immedlale 10 A Incremenl A Dec,emenl A Clear A Complemenl A DecImal adlusl A Swap nibbles 01 A Rotale A lell ROlale A lell Ihrough ca,ry Rotale A rlghl ROlale A rlghl Ihrough carry ,, , , B,I•• C,e", 1 2 2 1 1 2 2 t 1 2 2 1 , , 2 2 1 2 2 oun oun , l ,, Byl•• C,e'" 2 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 R.gl,'.r. Mn.monle INC R INC@R DEC R D •• crlpllon Incremenl ,eglsler Incremenl dala memory Decremenl reg Isler Brt• 1 Cye", O..crlpllon Jump uncondlllonal Jump Indorecl Decremenl regIster and skIp Jump on carry = , Jump on carry = 0 Jump on A ze,o Jump on A not ze,o Jump on TO = 1 Jump on TO = 0 Jump on Tt = 1 Jump on Tt = 0 Jump on FO = 1 Jump on Fl = , Jump on Ilmer flag Jump on INT = 0 Jump on accumulato, bll 1,1•• Crele. De.erlpllon Clear carry Complemenl carry CLea, flag 0 Complemenl flag 0 Clear flag' Complemenl flag' Brl •• Crel •• 2 2 2 2 FIIg. Mn.monlc CLA C CPL C CLR FO CPL FO CLR Fl CPL F' , ,, Mnemonic MOVA. R MOV A. @R MOV A.' data MOV R. A MOV@R. A MOV R • dala MOV @R. 'oala MOV A PSW MOV PSW. A XCH A. R XCH A. @R XCHD A.@R , , ,, , , MOVX A @R MOVX @R. A MOVP A. @A MOVP3 A, @ D •• c"ption Byl •• Cycl •• Move ,eglsler 10 A Move dala memory 10 A Move Immedlale 10 A 2 2 Move A 10 regis Ie, Move A 10 dala memo,y Move Immedlale 10 ,eglsle, 2 2 Move Immedlale 10 dala memo,y 2 2 Move PSW 10 A Move A 10 PSW Exchange A and ,eglster Exchange A and dala memo,y Exchange nIbble 01 A and ,eglsle, Move exlernal dala memory 10 A 2 Move A 10 exlernal dala memory 2 Move 10 A Irom currenl page 2 2 Move 10 A I,om page 3 , Timer /Counl., D.lerlpllon Read IIme,/counler load Ilmer/counle, Slarlllmer Slarl counle, SlOP Ilme,/counler Enable IIme,/counler Interrupl DIsable Ilme,/counter Inlerrupl Byl •• Crc", Mn.monle EN' DIS' SEL RBO SEL RB, SEL MBO SEL MB' ENT 0 ClK D.lerlpllon Enable external Inlerrupl DIsable external inlerrupl Select reg ISler bank 0 Selecl ,eglsler bank , Selecl memory bank 0 Selecl memory bank , Enable Clock Oulpul on TO Byle. Cycl •• 1 Mnemonic NOP D.lcrlpllon No ope,atlon Byl.' Crcl •• 1 1 Mn.monlc MOVA T MOV T. A STRT T STRT CNT STOP TCNT EN TCNT, DIS TCNTt Conlrol B'lnch Mn.monlc JMP add, JMPP@A DJNZ R. add, JC add, JNC add, JZ add, JNZ addr JTO addr JNTO add, JTt addr JNT, addr JFO addr JF, addr JTF add, IN' addr JBb addr D •• crlplion Jump 10 sub'oulllle Relurn Relu,n and ,eSlo,e stalus D.la Move. Inpul/Oulput D ••crlptlon MnemonIc Inpul porI 10 A IN A. P OUlpul A 10 port P. A And Immedlale 10 port ANL p.' dal. ORL P.• dlla Or Immedlale 10 porI INS A. BUS Inpul BUS 10 A BUS. A Oulpul A 10 BUS ANL BUS .• dlla And Immedlale 10 BUS ORL BUS .• dala Or Immedlale 10 BUS MOVD A.P Inpul explnde, port 10 A MOVD P, A Oulpul A 10 expande, port ANlD P. A And A 10 expander porI ORLD P . A O r A 10 explnder port Mn.monlc CALL addr RETR RETR Byt •• Cyel.. , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , S04SH/S04SH-1/S03SHL/S03SHL-1 A.C. CHARACTERISTICS (PORT 2 TIMING) TA = O°C to 70°C, VCC = 5V± 10%, VSS =OV . Parameter Symbol 8048H 8035HL 6 MHz Min. 8048H-' 803SHL-' 8 MHz Max. Min. 11 MHz . Min. Max. Max. Unit tcp Port control Setup Before Falling Edge of PAOG, 110 105 ns tpc Port Control Hold After Falling Edge of PAOG, 100 90 ns tpA PAOG to Time P2 Input Must Be Valid tpF Input Data Hold Time top Output Data Setup Time 250 210 200 ns tpo Output Data Hold Time 65 35 20 ns tpp PAOG Pulse Width 1200 970 700 ns tpL Port 2 I/O Data Setup 350 300 250 ns tLP Port 2 I/O Data' Hold 150 65 20 ns al0 700 150 0 0 150 0 ( 650 ns 150 ns PORT 2 TIMING ALl J \'--_ _~I -ilCAr ( \'-------:----~ r- OUT'UT 'C" 'ORT 20 3 DATA I POIIT COHTROL 1DP T'PDl I OUTPUT DATA EXPANDER 'OIlT I IN'UT PORT 20 3 DATA PCH PORT COHTROL ,pc~ LICP- I '1I0G------~~··--{-, I BUS TIMING AS A FUNCTION OF TCY • SYMBOL TLL TAL TLA TCC (1) TCC (2) TOW TWO TOA FUNCTION OF 7/30 TCY 1/10 TCY 1/15 TCY 1/2 TCY 2/5 TCY 2115 TCY 1115 TCY 0 TeV MIN MIN MIN MIN MIN MIN MIN MIN SYMBOL TCC (1) : AOIWA T (2) : PSEN cc • APPROXIMATE VALUES NOT INCLUDING GATE DELAYS. TAD (1) TAD (2) TAW TAD (1) TAD (2) TAFC TCA FUNCTION OF TeV 11/30 MAX TAD (1) : AD TCV 3/10 MAX TAD (2) : PSEN TCY 3/10 MIN TCY 1/2 MAX TCY 1/3 MAX TAO(1):AO TCY 1/30 MIN TAO (2) : PSEN TCY 1/15 MIN TCY ( 8048H/8048H-1/8035HL/8035HL-1 WAVEFORMS ""'1-----r- -. -ILl---! ALE ICY-··-- -----1 I JI L.._ _ _ _ _ _- ' L J ALE J ~'ee-j I- ~lllA PSEN _ _L..--I- - - - - I IAFe: IUS FLOATING I- --------, I-- L -'DR I FLOATING !:~,:' -lAD Read From External Data Memory Instruction Fetch From External Program Memory WR -I f-- ~ ~- J ~ iFlOATING _ _ _:1'AL ALE I liD leA L lec 2.4V - - - - " " " \ O.4SV . ,oX ,..._ _ __ 0 ,~X 20~ _ _ _ _- - ' TEST POINTS 2 -:0 _ - '---_ __ - IUS Input and Output for A.C.Tests. Write to External Data Memory A.C. CHARACTERISTICS TA = ODC to 70 DC VCC = VOO = 5V ± 10%, VSS = OV 8048H 803SHL 8048H-1 803SHL-1 Symbol Parameter tLL ALE Pulse Width 400 270 150 ns tAL Address Setup to ALE 75 75 70 ns tLA Address Hold from ALE 65 65 50 ns tcc Control Pulse Width (PSEN, AD, WA) 700 490 300 ns tow Data Setup before WA 370 370 280 ns two Data Hold after WA 80 80 40 ns ICY Cycle Time 2.5 1.875 1.36 J.ls tOA Data Hold tAD PSEN. AD to Data In tAW Address Setup to WA tAD Address Setup to Data In tAFC Address Float to AD. PSEN tCA Control Pulse to ALE 6 MHz 8 MHz 11 MHz Conditions Min. Max. Min. Max. Min. Max. Unit (Note 1) NOTE 1: Controloutputl BUS outputl 0 CL = 10 pF CL = 150 pF 200 0 500 150 340 210 230 0 950 100 ns 200 ns ns 200 650 400 ns 0 0 -1 ns 10 10 0 ns NOTE 2: BUS High Impedance Load: 20 pF CL = 20pF (NOTE 2) ( PART NUMBER R6551 R6500 Microcomputer System DATA SHEET Asynchronous Communication Interface Adapter (ACIA) Th. R6551 Asynchronous Communicltion Int.rflC' Adept.r IACIAI provides I progrlm-controlled int.rflCe betw_n B-bit microprocessor·baaed syst.ms Ind IIri.1 communic.tion dltl IIts and mod.ms. W,th its on-chip blud rite gen.rator, the R6551 is ceplbl. of trinsmitttng It 15 differ.nt prog"m·aelectlbl. rites betwHn SO baud Ind 19,200 baud, Ind ree'iving It .ither the transmit rite or It 16 times In IlCternll clock rite. The R6551 hIS pro· . grlmmlble word lengths of 5, 6, 7, or 8 bits; even, odd 'or no perity; 1. 1·1/2 or 2 stOP bits. W,th the R6551, I cryltll is the only required elCternll support component - eliminlt,ng the multiple-component suPPOrt thlt il typiCllly nHded. In Idchtion. the R6551 is designed for maximum programmed control from the CPU. to simplify hlrdware implem.ntltion. A control reg'ster Indl separlte command reginer permit the CPU to '"ily llleet the R6551', operatinll mode. end chICk detl, perameters and stltuS. FEATURES • • • • • • • • • • • • • • Compltible with B·bit microprocessors Full duplex or hllf duplex operltion with buffered rece,ver end transminer 15 programmable Blud R,tlS ISO to 19,2001 Receiver dltl flte mlY be identiCl1 10 blUd rite or mlY be 16 tim" the extern~1 clock input Dltl set/m.m control functions Programmlble word lenllths, number of Itop bits. Ind parity bit gene fit ion Ind detection Programmlble interrupt control Software reset Progrlm·selectable seri.lecho mode Two chip IIlects 2 MHz or 1 MHz clock rate Sinille +5V :t5% p_r supply 2B·pin pllstic or ceramic DIP Full TTL compatibility Number PICk... Type Frequency R.... OOC to +700 C OOC to +70o C R6551P Pllstic 1 MHz R6551AP Plastic 2MHz R6551C Ceramic 1 MHz R6551AC Cerlmic 2 MHz OOC to + 70°C OOC to+700C <::. DATA 16--ru BUS BUFFERS TRANSMIT DATA. IHIFT REGIITERS i1IO "'--Rf1 AJW "'--mf CSO es; RSO I/O CONTROL a..""'.. R.c "--XTL. I--.XTLO "51 AIW "2 VSS CSO C51 iAQ If£! A.C XTll XTlO 07 D6 05 5 6 7 8 O. eft 9 03 02 T.O 10 0' D'fR "12 ~ A.O ASO AS' ,. 13 DO C Aock_"ln'er _ _' Corpof •• oOn , . , All A,o"" A.... P"n'eeI ,n U S.A JI2 iii TIMING • CONTROL LOGIC aTJ( 11ft vee VIS RECEIVE DATA. SHIFT REGISTERS R.D bD 6'ErI vee R6551 Pin Configuration :::T a = o c • n o 3 3 c _. n Ordering Information TemperetuN :1 n ::I 1)().07 Or.r l> ~ R6SS1 Interface Diagram cha,.. Wllhoul _ICe to ,..1 Doc_ft' No. 21000 DIS R.". 1 • .Ienuery ! o·::I Control Register INTERNAL ORGANIZATION The Control Register selects the desired baud rate, frequency lOurce, word length, and the number of stop bits. RII iiiO I L..~ I &Ill II"'; ".c: c:so C$; • TLI ( • 1_ 1'.L.'• .L. . . 1_ I ' ,••1' ••"••"."1I I hO DOD' aLICTEO hUO IlATE ' ••• H! ••• ••• ••• •••• •• •••, ,••• , , ,• •• •••, ,. .... ano . •• " ·... .... IIfJi .n '" _d ••0 ...I...... ..'10.. _ ,.... c..... _ 10 --.•- --'10 _ lID _ --..... -1M _ ~--------- .ICIIVIII CLOCI _ I , _ ,........... .·' .......1"--=... ................ ' - - - - - - - - - - - - - _ . 0 LlIIOGTN IWLI R65S1 BI')ck Diagram Transmitter/Receiver Bits 0·3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then RxC becomes an output pin and can be used to slave other circuits to the R6551. II, ... . , , " '---------------- ..OO'." ......u ....1 '-'It.e ,·z ......... ........ ...... ., .,t'.. WL· ..........."1 '....L·._ ....'I R65S1 Control Register ~-""'T'--R.D ( ~---------------------- R.C Command Register ICTLI XTLO The Command Register controls specific modes and functions_ Transmitter/Receiver Clock Circuits L.-J ~ Transmit and Receive Data Registers These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit Data Register is characterized as follows: • Bit 0 is the leading bit to be transmitted. • Unused data bits are the high-order bits and are "don't care" for transmission. OATA fE .... INAL .IADY lOT., •• Del. ' ......1 NIM ......" dS,.. ..... 1 • DItII T............. fGTl' UwI lNTu • ...,. IIOUIIT DIIAoILU 11_ •• IIIIaI ...... ' · ••00...... TIIANWo"n ,'''',,",," ITICI II _"L m.N... T, _ _ ... O_ . , 11ft. L... ,....-. I.......... ....., , • 11ft. L.... T,..... I....' ..... INIIIIIIII .. ....... _....... . . . _0_ 1 111ft. ", L._ . , Tr..-.;t: ,.,... ~ _ ....... .. ToO ' - - - - - - - - - - IIKIIVI.ICHO _ I "'UI' ' ••....,1. . . . . . The Receive Data Register is characterized in a similar fashion: L-_ _ _ _ _ _ _ _ _ _ _ ....OTYMODII_LU_. .... _ROL_ ....,c..O_ ,...... , ,..... ........" •• a.-...t • Bit 0 is the leading bit received. L..--------------.A."'tMODI • • Unused data bits are the high-order bits and are "0" for the receiver. Pari'y bits are not contained in the Receive Data Register, but are stripped-off after being used for IICternal parity checking. Parity and all unused hlgh-order bits are "0"_ I I ,_*"........ 11000000,.,.•• T,................ • ""11" I~I~I~I:I:I:I:I:I=='- , 1'. . Patti, , . 1IIffII ..... y •• T~ ..... ya...t.D ....... , , ....... ""'.cY',............ ..... ,OIeIIlD...... R6551 Command Register esc, CS1 Status Register The StlltuS Register reports the status of various RS551 functions l I I I I I 11] L ,,,,"y "."1, IChip Selects) The two chip select inputs are normally connected to the processor address lines either directly or through decoders. The R6551 is selected when eso is high and CSl is low. RSO, RS1 (Reviner Selects) E...,· o • ,.. The two register select lines are normally connected to the processor address lines to allow the processor to select the various R6551 internal registers, The following table indicates the Inlernal register select coding: 1,- 1 • P.,IIlV I"., Detect" f'''''"1fIIfI 1".,- o .... ".-"" ',ro' 1 " FI~ E"~ De,. ." 0 -.... 0 . . . . ' .. '·'tIM T'-"Im.., DeUI Reti'$l~ RS1 RSO Write Read 0 0 Trllnsmit Data Register Receiver Data Register 0 1 Programmed Reset (Data is "Don't Care") Status Register 1 0 Command Register 1 1 Control Register fMP'tv O· .... I""". 1 .. ER'ItIM't t D.15 c."..., O.. ctC1 I~I o .. DeD to .... 1000ecl' 1 .. oeD h.... INol OCliH11!1l!1 Dill. $tvt Rudy IDSRI o. DSA fDw CR_"I 1.m~INoI 111_,.,1 ktc.. rvlM unal OiliNG .,...,'. 1 .. l"t8t"fYl"l .... 0eN". Note that only the Command and Control registers are read/write. The Programmed Reset operation does not cause any data transfer, but is used to clear Bits 0 through All ~ - - . . CoIyIor..Roght............ "'""ed III U.S.A Byt.. Byt.. Bytes Byt.. II,. • I -! n ~ 8 m •o fit 21 (I) Ordering Informetion Order Number: ....... n R65XX __ _ Microproc.ssors with On-Chip Clock Osciliitor Modll a IT.mperlture Range: No suffix· DoC to +700 C E .....OoC to +850 C (Industrial' MT. -6So C to +1250 C CMilitary) M· MIL-STD.a83. CI. . 8 Package: e· Ceramic: p. PI-"= (Not AIt.ible for M or MT .,fflx) FfWt/Uincy Ringe: No suffix· 1 MHz A· 2 MHz Mod.1 Oesignltor: XX· 02,03,04, ... 15 NOTE: Contact your local Rockwell Repre.ntatiVl concerning IVliiability. SpeclfleetlOM .,bjeGt to chWlgll wl1hout no. . ." ... c: - R6500 Signal Description ClGcbI.,.• ~ The R651X requlntl a two ph. . non-overlllPPlng clock that runs III the V cc volt... lwei. Non n.lt'" l..-rupt CAllI) The R650X clocks are IUpplled with en In ..maI clock uener1lltor. The' fnlquanc:y of theM clockl II axtamally controlled. RIll II en unconditional Interrupt. FoilowI", completion of the current instruction, tha sequanc:e of operations defined for iRa will be performed, ,...rdl... of the state Interrupt m.k fill. The veCtor add,.... loaded Into tha progrlm counter,low and high, are locatlOl:ll FFFA end FFFB raapactlvely, tharHy transferring program control to tha memory vector located at thlll add,..... Tha Instructions loaded It these locations c.... tha microproc· IIIOr to brlnch to a non-m.kab/a interrupt routine in memory. Add,.. .... IAO..A11) Th_ outp<l are TTL compatlbla, ClPabia of driving onaltandard TTL load and 130pF. o.u IIuI (00.07. Eight pins ara used for tha data bus. Thil II a bidirectional bus, traNferring data to and from tha device end paripheral.. Tha out· p<I ara t,i .. tate buffars capable of driving one standard TTL load and 130 pF. DlltlIIuI Enable IDBEI Thil TTL compatibla input allows external control of the t,i ..tate dati output buffers and will enable tha microprocessor bus driver when In tha high nata. In normal operation DBE would be driven by tha ph... two '.2' clock, thus allowing da .. outp< from microproceuor only during During tha rud cycla, tha dati bus drivers ara Internally disa6led, becoming ...ntlllly an open cin:ult. To dlJlble data bul driversaxtamally, DBE should be hald low. .2' R..ty (HDV) This input signal allows the ullr to halt or single cycle thl micro· proclUOr on all cycles except write eycl... A nllJlltive transition 'to tha low stlte during or coincident with phlle one 1.1' will halt thl microprocessor with the output addr... lines reflecting the currant addr... being fltched. If Ready il low during a write eycle, it is ignored until the following raed operation. Thil con· dition will remain through a subsequent phlle two 1.2' in which the Reedy signal is low. This feature allows microprocessor inter· facing with the low speed PROMs II well II fISt Imax. 2 cycle' Direct Memory Ace... IOMA). lnt.rupt H. . . . liAO) This TTL level input requests that an Interrupt sequence begin within the microprocessor. Tha microprocessor will complete the current instruction being eXlCuted before recognizing the request. At that tlma, tha interrupt milk bit in the StatUI Code Register will be examined. If the interrupt milk fll9 il not lit, the microprocessor will begin en interrupt sequence. Tha Program Counter and PrOClllor StatuI Register are stored in the stack. The micro· processor will then lit the interrupt mask flau high so that no fur· ther internJpts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from locatiC)n FFFF, therefore transferring program control to the memory vector located at these addresses. Tha ROV signal must be in the high state for any interrupt to be rec· ognized. A 3Kn external resistor should be used for proper wire·OR operation. A naptive going edge on thl. Input raQUelti that a non-malclble Interrupt sequence be generated within the microproc.or. NMI also ,.quintl an axtemal 31< n retll.tar ~ Vcc for pFoplr wlra-OR operationl. Inputs iRQ and NMI are hardw. . Interrup1l.lin. that are SImpled during .2 (ph. 21 and will btuln the appropriate intarrupt (ph.. followi", the complation of tha curroutine on the rant Instruction. .1 l' let Overflow Fill (1.0.) A negative going edge on this input IIts the. overflow bit In the Statui Code Regilter. Thillign.1 il sampled on tha trliling edge of .1 and must be .xt.rnally synchronized. SYNC Thll output line il provided to identify thOM eyela in which the microprocessor is doing In OP CODE fatch. The SVNC line I0Il high during of an OP CODE fetch and Itaya high for the remainder of that cycla. If tha RDV line II pulled low during the clock pulll In which SVNC want high, tha prOClllOr wlilitop in its current Ita.. and will remain in the ItllI until the RDV line goes high. In this manner, the SVNC Ilgnll Cln be used to control ROV to Caull lingl. instruction execution. .1 .1 ( Ha.t This Input is uled to ....t or ltart tha microproclllOf from I power down condition. During the time that this line is held low, writing to Or from tha microprocessor is inhibited. Wh.n a posi· tive edge Is detected on the input, tha microproclllOr will imm.. diately begin the reset sequence. After a system initi.lilltion tlma of Ilx clock cycl.., tha m.k interrupt flag will be set and the microprocessor will loid the program counter from the memory vactor location. FFFC.nd FFFO. Thil is the Itart location for program co!'trol. After VCC reaches ".75 volts in a power up routine, reset mUit be held low for at least two clock cycles. At thil time the RfW Ind ISYNC) signal will becOme valid. When the reset signal 90IS high following these two clock eycla, the microprocessor will proceed with tha normal raset procadure detailed above. (/ ADDRESSING MODES ACCUMULATOR ADDRESSING - Thil form of edd,..ing iI nlPrnented with a one byte i"'truction, implying an aperation on the accumuletor. IMPLIED ADDRESSING - In the implied edd,.ng mode, the add,.. containing the aperanc:l It implicitly Ita1IId In the _ration code of the lnatruction. IMMEDIATE ADDRESSING - In Immadl. . edd,..lnt, the operand iI contained In the MCond byte of the inatruction, with no further memory edd,..ing required, RELATIVE ADDRESSINO- Relative eddraaslng .. uaed only with InndI IIIItNC1ionI and .tabn. . a daItIMtIon for the condition_lnndI_ ABSOLUTE ADDRESSING - In abIolute edd,..lng, ~MCOnd b\lte of the instruction rpacif... the eight low order bitl of the affective add,.. while the third byte rpaciflas the eight high order bitl. ThUI, the absolute add,..lng modi _IOWI to the antlre 85K bytal of addmuble memory. -=- ZERO PAGE ADDRESSING - The zero page Instructlonl _low for thoner codl and execution tim.. by only fetching the MCond b\lte of the instruction and _mine , zaro high edd,.. b\lte. Ca,.,ful u. of the zaro paga can ,..,It in lignifant incre_ in code 'fficlency. INDEXED ZERO PAGE ADDRESSING - IX, Y indexing) - Thil form of addressing il ul8d in conjunction with the index regi.ter and i. referred to .. "Zero Page. X" or "Zaro Page, Y". The effective addrea il calculated by adding the IICOnd byte to the contents of the index regilter. Since this is a form of "Zero Paga" addreaing. the content of the second byte referenc:ea e location in page zaro. Additionelly due to the "Zero Page" addreuing neture of this mode, no carry i,added to the high order 8 bits of memory and crouing of page boundari.. don no,t occur. INDEXED ABSOLUTE ADDRESSING - (X, Y indexing) - Thil form of addressing il ul8d in conjunction with X and Y index "It ilter end is referred to .. "Absolute. X", end "Absolute, Y". The effective addre. il formed by adding the contents of X or Y to the addrea contlined in the second Ind third byt.. of the innruction. Thi. mode Illows the index regilter to contein the index or count velue end the instruction to contein the base addreu. This type of indexing IIiOWI eny locltion referencing end the index to modify multiple fields resulting in reduced coding Ind execution time. The MCond bvtI of th. instruction bacom. the aperand which .. an "Offeet" added to the COnlanti of the lower eight bits of the progrem counter when the counter ..... It the nut Instruction. The range of the offIet II -128 to +127 by. . from the next instruction. INDEXED INDIRECT ADDRESSING - In indexad Indirect addreuing (referred to .. (Indirect, XII, the aacond by. of the instruction It added to the contents of the X index register, discerding the carry. The result of this addition points to I memory 10000ion on page zero whOM contents Is thl low ordareight bitl of the effective add,... The next memory location in page Zlro conteinl the high ordar eight bits of the effectivi add,.... Both memory locltions specifying the high and low order by. . of the effective add,.. must be in paga zaro. INDIRECT INDEXED ADDRESSING - In indirect Indexad addreaing (referred to .. (lndirectl, YI, the second byte of the instruction points to I memory 10000ion in paga zaro. Thl contents of thil memory locltion il added to the contents of the Y index regiltlr, the result being the low ordar eight bits of the effective add,... Thl clrry from this addition is added to the contents of the next p . zaro memory 10000lon, the result baing the high order eight bits of the effactive add,... ABSOLUTE INDIRECT - The second byte of the innruction contains the low order light bits of e memory location. Thl high order eight bill of that memory locltion is contained in tha third byte of the illltruction. The contents of the fully lPICified memory location II the low order byte of the effective add,... The next memory location COntlilll the high ordar byte of thl Iffectiva address which is loaded into the sixt.en bits of the progrem counter. INSTRUCTION SET - ALPHABETIC SEQUENCE ADC Add Memory to Accumulator with Cerry AND "AND" Memory with AccumulltOr ASL Shift left On. Bit (Memory or Accumulatorl BCC BCS BEQ BIT BMI 8NE BPl BRK BVC BVS Branch on Carry CI.lr Branch on Carry Set Brlnch on Result Zero Test Bits in Memory with Accumulator Branch on Result Minus Branch on Result not Zero Branch on Result Plus Force Breek Branch on Overflow Clelr Branch on Overflow Set ClC ClD Cli CLV CMP CPX CPY Clear Cerry Fleg Clear Decimal Mode Cleer Interrupt Disable 8it Clear Overflow FIlii Compare Memory and Accumulator Compare Memory and Index X Compare Memory end Index Y DEC Decrement Memory by One OEX Decrement Index X by One DEY Decrement Index Y by One EOR "Exclusive-or" Memory with Accumulator INC INX INY Increment Memory by One Increment Index X by One Increment Index Y by One JMP JSR Jump to New Location Jump to New Location Saving Return Addr... LOA LOX LOY LSR Load Accumulator with Memory load Index X with Memory load Index Y with Memory Shift One Bit Right (Memory or Accumulltorl NOP No Operation ORA "OR" Memory with Accumulator PHA PHP PlA PlP Push Accumulltor on Steck Push Proceuor StatuI on Steck Pull Accumulator from Stack Pull Proceaor Status from Steck ROL ROR RTI RTS Rotate One Bit left IMemory or Accumulatorl Rotate One Bit Right (Memory or Accumulatorl Return from Interrupt Return from Subroutine SBC SEC SED SEI STA STX STY Subtract Memory from Accumulator with Borrow Set Carry FIlii Set Decimal Mode Set Int,rNpt Disable StatUI Store Accumulator in Memory Store Index X in Memory Store Index Y in Memory TAX TAY TSX TXA TXS TYA Transfer Transfer Transfer Transfer Transfer Transfer Accumulator to Index X Accumulator to Index Y Stack Pointer to Index X Index X to Accumulator Index X to Stack Regilter Index Y to Accumulator vss ROV . , (OUT) iiiQ N.C. NMi REs .2 (OUT) S.D. . 0 liN) N.C. N.C. SYNC VCC AO RiW A1 02 03 04 A2 A3 A4 FUN,. of R&502 • • • 00 01 A6 A7 OS 06 07 A1S A8 A14 A9 A10 A13 A12 A11 VSS AS R6502 - 40 Pin P.cbge • • • • ( 6SK Addressable Bytes of Memory CAO-A151 IRQ Interrupt On·the 3 I~ 3 2 I' I 2 ,. 3 r.. 3 2 2' I 2 3t 3 06 ~ 2 ~A 2 , I. 'AGI, I I. . . . ' O' • O' ,~ IISI O' O' ", ., 2 2 30 , ,a a 2 7 3 'E n n 3 , ]I .• .• 11 ... ,,1 liS .• , • '0 , 3• n • O' _ICT O' ,_.. O' n • _ISSII SUlUI ClOlS , . .. ..I . . .'t 3 N v • N V• 3 N. I AND N. I C A5 L 0' I C ADe ICC IIlIANCH Otli C = 0 ,2, 10 2 ICS I"ANCM ON C :; 1 '2, 10 2 2 ... I"ANCH ON l: '0 2 I ,2' 30 2 2 I .. , "' DO 2 2 INE 111 2 lED I" , I.E = , .2, u .. 2e IAAHeM ON N II: 1 IUNCHONZ =0 Eo , 3 2' 3 2 0 ,2, , 8'L '''ANCH ON N BREAK Ive '''AHeM ON Y = 0 ,2' !KI 2 2 IVS IRANCH ON V =, 70 2 2 C LC o-c e L0 0~0 C L , o~ e LV O~V C'" A-" Ct 2 2 eo cpx x - .. EO 2 2 Ee c.v v _ .. CO I 2 CC DEC M - 1-M DE' )( 00 , N C M .. '-M ," x ,,,. X .. 1 - J'" JUMP TO NEW lOC JUMPSUB ~ LOX M ~. LOY .. - V LSA o- ", ,,, r::::::=::3- 09 2 1 '0 A\;'M-A P-hlis • L, s. 3 C. 3 1 3 el 5 2 3 '5 3 2 3 E6 S 2 ", A9 3 20 8 3 2 2 AD '2 2 2 'E 2 2 'C '0 • ·• · 'E I C 09 1 2 00 3 2 3 '6 ,. " 1 2 3 1 ~ 1 ~ 3 3 3 3 2E 6 3 26 ~ 2 2' 2 L-~===t:J 6E 6 3 66 S 2 6' 2 SEC ·-c • 3 ES 3 O. 3 • .~" 10 S T X x~ .. Ie '0 I ST. v- M 8C T, X ,~x T, v .~v • 6(l 6 l IS l 2 3 86 3 2 3 3 2 .. s-. 2 5 2 55 , Fe 6 2 8' 5 2 B~ .. 2 2 .~S ,. 2 Ie 2 V~A IS CROSSED ,I, AOO ,2, ADO 1 TO PIlI IF' BRANCH OCCURS TO SA~E PAGE A002TO N IF 8RANCH OCCURS TO DIFFERENl PAGE ,3, CARRy NOl :: BORROW II, IF IN DEcn~AL MODE Z F LAC. IS INVALID ACCUMULA TOA MUS' BE CHECKED FOR ZERO RESUL 1 I 2 " ~ 2 .~ C L , • • 2 5'l 2 FE 7 • 1 80 • • · I BC 2 5E 2 .0 •, • CLv N • 3 • • • • 3 • 3 3 ~ C'" C" c.v Z C N 3 51 Z C Z C Z DEC Z OEX z DE v N I EOR N • Z , N C N • I , N X N • I • , , I 2 3E 76 6 2 'E J'" ... Z L 0' 2 N • Z LOX 3 N· I L0 v 3 o• z C LS " NO' I 0.' 'M' Z • L, ZC .. 0 l 3 89 3 , • ., , 3 3 86 • J S .. · . J , , • L• ,RESTORED, J N' 3 N' ZC I 2 F1 S 2 FS • 2 FO , AT S 3 "• l " 6 2 IS • • Z N •• , , 2 131 , 3 III $ SIC SEC SED • 2 10 S RO. AT, fRESTORED] •, S E , ST, 3 "• 2 S •• 2 • , ST. N • Z N • Z , N' Z t N' Z , · , N v 3 'H' II 8' 2 I' 2 BOU~OARY 6 S, 6 '~A PIlI IF PAGE 7 3 DB CLC C LD N' E' AI 110 2 5' , 2 78 •, I ~ 31 2 S TA 2 DE , • , Fa 2 , -, 2 00 , • 21 , , •- 0 S E , • • 3 MI-P 2 EO , • . 2 i--c=:::;-©-.J 2 os • E' 2 5 .. '-5 II, E9 2 56 I De A - .. - C-A 5 8. 61 ATANSUS 2 D' • M5-A AT S BvC 0 8E S - '-S S8C , ,. "1 2 ••• IvS It .~ 3 I • L • 0 " 2 ... 0 D6 I 2 2 I 0 C' I S 1- "'RHINT • • S T• A 1 'C 3 S - '-S AT, T X, • EE 6 NO OPE RA TION A-Us. TS X 3 C8 2 ," PM' PM P SED 2 3 Eo E8 A D.' ADA · 3 C5 3 Y .. 1 -., M • 2 81 2 x L O' A sa III y - 1- 't' A OW"-A J 5 A , , I eA 2 EOR • L• .OL • CE I , -" - De 2 ,a , OEv NO' '" , .,. I CS lED , 2 ••• , .. ....... ICC T, • .. T, Y TS • , T XS l N • • ,v ...., INO£II • IHOE_ I( ACCUMULATOR MEMORV PER£FF£CTIVE ADDRESS "'EMORY PER SlACK POINTER ·- ADO SUITA.CT •V .ND OA • UCLUSlvE~ Tv A M· "EMORVll' 7 ", MEMORV IIT6 n • NO CYCLES NO BTTES Timing for Reading Date from Memory or Peripherals Clock Timing - R6502, 03, 04, 05, 06, 07 --j toe-- TR.O ·olINI ~-""-H-"'''''---~!!" 1.SV --\.. . . . . ;:"".:'"'-:. . . --1 r-TF.O I---rn ::.l.. "'OL PWH.OH--l -------', I-- --l '\ O.4~"'"L1._SV____O.4_V-1l'~ ':::2 PWH"j ·210UTI RNi =\. _______.J/ . 1 1 0 U T I ! = UV ~ REF "A" REF =t- ADDRESS FROM CPU DATAFROM_~ "a" 2.0V +-___-r___ ____ ~ MEMORY RDY.S.O. SYNC Timing for Writing Data to Memory or Peripherals Clock Timing - R6512, 13, 14, 15 r-REF"A" ,.-------T ... CYC ------~ Rfij ., ( ADDRESS FROM CPU -r___ DATAFROM __- ;_________ ~ CPU REF "8" Not.: "REF." muns Ref••nee Points on clocks. PROGRAMMING MODEL 15 I I7 A I7 Y ( X A I INDEX REGISTER Y 0 IINDEX REGISTER X 0 I PCl I S 8 7 11 I ACCUMULATOR 0 7 PCH 7 0 7 INlvl o IBJDJIjZJCJp ROCESSOR STATUS REG 'P" L CARRY ' - - - ZERO 1· TRUE 1· RESULT ZERO IPAOGRAM COUNTER "PC" IRQ DISABLE I STACK POINTER DECIMAL MODE 1 - TRUE BRK COMMAND 1 • BRK 1 • DISABLE 0 "s" OVERFLOW 1· TRUE NEGATIVE 1· NEG. REGISTER SECTION AD tll r- .... ..... r - - CONTROL SECTION - - - I..... INDEX "EGISTE" ~ INTE""UPT LOGIC Y 11.2 11.3 11.4 ..... ..... ..... INDEX "EGISTER X ~ STACK POINT REGISTER E "- "DY ABL - ~H z 11.5 4 - Ali I J Al 4 - (5) a: w INSTRUCTION DECODE ~ ..... Z -I.!'rw ALU ~ A1 4 - 1 . ADDRESS BUS All "9 AID A', :z: 4-r-- 0 .... c ACCUMU~ATOR oJ A C Z ~ w ., ·2 t+- fI, liN) ! ~ PC~ .... ~ ~ PCH IC= INPUT DATA LATCH (OLI ~ A,3 4 - ... .... 4-L-- I DATA BUS BUFFER PROCESSOR STATUS REGISTER p J L... 1::: t' l .... t t. 1 DO 01 02 11 . 03 B BIT LINE 04 05 I Not. , 2. -- INSTRUCTION REGISTER Dli • 1 BIT LINE 01 Clock G.n,r.l0r il not included on "6512, 13. '., '5 Addr.".". Capability and control option, va'y with Nth Of 'hi R6S00 Productl. RS500 Internal Architecture DATA BUS } R6512. 13. ' •• 111 fl2 11N ) CLOCK GENERATOR ~ L0- LEGEND ~H - A12 4 - A'S TIMING CONTRO~ r- ~ ABH A'. ~ a: .... r-r-- .--- DBE (: ( ( PART NUMBER DOCUMENT NO. 29000 047 REVISION 1. OCT. 1978 R6522 R6500 Microcomputer System DATA SHEET VERSATILE INTERFACE ADAPTER (VIA) SYSTEM ABSTRACT FEATURES The 8·blt R6500 microcomputer system II produced with N· channel. SllIcon·gate, depleiton·loild technology. Its perform. ance speeds are enhanced by advanced system architecture. Its mnovatlVI' architecture results in smaller chips - Ihe semi· conductor threshold 10 cost·effectivlty. System cost·effectivity is further enhanced bv provldl.ng 8 family of 10 software-com· pa"ble microprocessor (CPU) devices, memory and 110 devices. , , as well as low-cost deSIgn aids and documentation. • Organized for simplified software control of many functions • Compatible with the R650X and R6S1 X family of micro· processors ICPUs) • Bi-directional. 8·bit data bus for communication with micro· processor • Two Bi-directional.8-bit input/output ports for interfllCe with peripheral devices' OESCR IPTION • CMOS and TTL compatible input/output peripheral ports The R6522 VIA adds two powerful, fle.ible Interval Timers. a serlal-to·parallel/parallel·to·serlal shift register and input latch· ing on the peflpheral porlS to the capabilities of the R6520 Peripheral Interface Adapter (PIA) device. Handshaking capa' b,llty IS expanded to allow control of bl~irectional data trans· fers between VIAs In multiple processor systems and between peripherals. • Oata Olrection Registers allow each peripheral pin to act either an input or an output • fnterrupt Flag Register allows the microprocessor to readily determine the source of an interrupt and provides convenient control of the interrupts within the chip • Handshake control logic for input/output peripheral data transfer operations Control of peripherals IS primarilv through two 80bit bidirectional ports. Each of these ports can be programmed to aetas an input or an output. Peripheral I/O lines can be selectively controlled by the Interval Timers to generate programmable-frequency IQuare waves and/or to count ell1ernallv generated pulses. Positive control of VIA functions is gained through its internal register organization: Interrupt Flag Register. Interrupt Enable Register. and two Function Control Registers. • Oata latching on peripheral input/output ports • Two fullV'programmable interval timers/counters • Eight-bit Shift Register for serial interface • Forty.pin plastic or ceramic OlP package. liS Ordering Information Order Number Package Type Frequency Temperature Range R6522P R6522AP R6522C R6522AC R6522PE R6522APE R6522CE R6522ACE R6522CMT PlastiC PlastiC Ceramic Ceramic PlastiC PlastiC Ceramic Ceramic CeramiC 1 MHz 2MHz 1 MHz 2MHz 1 MHz 2MHz 1 MHz 2 MHz 1 MHz OOC to +700 C OOC to +70 0 C OOC to +70 0 C OOC to +70 0 C 40 0 C to +85 0 C 40 0 C to +85 0 C 40~C to +85~C 40 C to +85 ~ _55°C to +125 C RIIT DAtA IU~ TO 6:.00 CPU CONTROL ROW 112 (lOCt: Rf C,I S1fR AND CHIP SHE(TS R6522 IRQ 8 lIT DATA PORT CONTROL Basic R6522 Interface Diagram @ Rockwell In........ ,on,1 Co< ""'ilion 1178 All Righu Rese, ..d "',n.td ,n USA. TO PERIPHERALS VSS PAO PAl PA2 PA3 PA4 PAS PA6 PA7 PBO PBl PB2 PB3 PB4 PBS PB6 PB7 CBl CB2 VCC CAl CA2 RSO RSI AS2 RS3 REs ~O 01 02 03 04 05' 06 07 .2 CSt Cs2 R/W iFi'Ci Pin Configuration \ Speclflcatlonl ,ublect to chen.. wlthou, notice :z G U ""< " ::I U ): -r"' n - :2 OPERATION SUMMARY Register Select Lines (RIO. RS'. RS2. RS3) The four Register select lines are ncrmally connected to the processor address bus lines to allow the processor to select the internal R6522 register which is to be accessed .. The sixteen possible combinations access the registers as follows: Rag.... Remarb RS3 RS2 RS' RIO L L L L ORB L L L H ORA L L H L DDAB L L H H DDAA L H L L T1L·L T1C·L Write Latch Aead Counter T1C·H Trigger Tl L·LlT1C·L Transfer H L H L , Controls Handshake L H H L T1L·L L H H H Tl L·H RU RS2 RS' RSO R ...... H L L L T2L-L T2C-L Write Latch Reed Counter H L L H T2C·H Triggers T2L-L/T2C·L Transfer H L H H L H H ACR H H L L PCA H H L H IFA H H H L lEA H H H H OAA Remarb ( SA No Effect on Handshake NOle: L" O.4V DC. H ,. 2.4V DC. Timer 2 Control RS3 RS2 RS' RSO RIW- L H L L L Write T2L·L Aead T2C-L Clear Interrupt flag H L L H Write T2C·H Transfer T2L·L to T2C·L Clear Interrupt flag Aead T2C·H R/W-H ( Writing the Timer' Register The operat;ons which take place when writing to each of the four Tl addresses are as follows: RS3 RS2 RS' RSO L H L L Write into low order latch L H L H Write into high order latch Write into high order counter Transfer low order latch into low order counter Reset Tl interrupt flag L H H L Write low order latch H Write high order latch Aeset Tl interrupt flag X I H H Operation (R/w • LI Reading the Timer 1 Registers For readIng the T,mer 1 registers. the four addresses relate directly to the four registers as follows; RS3 RS2 RSl RSO Operation (RIW • HI L H L L Read Tl low order counter Reset T 1 interrupt flag L H L H Aead T1 high order counter L H H L Read Tl low order latch L H H H Read Tl high order latch ( TIMING CHARACTERISTICS Read Timing Characteristics (lo.ding 130 pF and one TTL 1oMI) Symbol Min Typ T ACR 180 Del.y time, clock positive transition to d.tI valid on bus TCDR - Peripher.1 data setup time TpCR 300 - Dati bus hold time THR 10 Rise and fall time for clock input T RC - Per_.... Del.y tim•• .cIdr.SI v.lid 10 clock positive tr.nsition - .... Unh - nS 395 nS - nS - nS 25 nS TRF PHASE TWO CLOCK k-~~--~--+---~-------------~4V ADDRESS ----~~--+_--;----r-------------------OAV PERIPHERAL DATA ~~~~---+---+------------------~V T DAV r---""I- - _H.!' ________ ~V DATA BUS - - - - - --DAV Read Timing Characteristics Write Timing Characteristics P.rameter Symbol Min Typ Enable pulse width TC 0.47 Delay time, address valid to clock pOSitive transition T ACW 180 - Delay time, data valid to clock negative transition T DCW 300 - Delay time, read/write negative transition to clock positive transition TWCW 180 - Data bus hold lime T HW 10 Delav time, Enable negatIve transition to peripheral data valid TCpw - Delay tIme, clock negative transition to peripheral data valid CMOS (VCC . 30%) T CMOS - - PHASE TWO CLOCK ,..------------ ~4V ADDRESS _.....:;=.;, 1::::r--__ ---,::~~~~t:====~:~4V 1 CMOS UV TDCW+--~ -O.4V READ/WRITE DATA BUS - - - - - - - - - O.4V - - - - - - - - -VCC -----------_ Jr'--------Z.4V PERIPHERAL DATA Write Timing Characteristics Max Unit 25 ,.S - nS nS - nS 1.0 ,..S 2.0 ,..S nS I/O Timing Characteristics Symbol ChwllCte,iI1ic Min Typ - •• Unit 1.0 flS 1.0 liS R.se and tall time lor CAl, C8l, CA2 and C82 ,nput sign.ls TRF Delay t.me, clock negative transition to CA2 negative transItion (read handshake or pulse model TCA2 - Delay tIme, clock negatove Iransition to CA2 positive Iransltoon (pulse model T RSl - - 1.0 liS Delay tIme. CA 1 aCllve tranSItIon (handshake model T RS2 - - 2.0 liS Delav tIme, clock posItIve Iransltlon to CA2 or C82 negative transitIon (wrole handshake) TWHS - - 1.0 ,.,S Delav lIme, peripheral data valid to C82 negalive transition T DC 0 - 1.5 liS Delay lIme. clock poSItive tranSItion to CA2 or CB2 positive IranSlllon (pulse model T RS3 - - 1.0 115 Delav lIme, CBl actIve transition to CA2 or C82 positive transItIon (handshake model T RS4 - - 2.0 115 Delay lIme. peripheral data valId transItIon (Inpul latch,ng) TIL 300 - - ns Delay tIme CB 1 negallve transilion. to CB2 dala valid (,"Iernal SR clock, shIft oull TSRl - - 300 ns Delav lIme, negallve transItIon of CBl input clock to CB2 data valid (external clock, shift out) TSR2 - - 300 ns Delav tIme, CB2 dala lIalid to positive transition of CBl clock Ishlfl In, internal or external clock) TSR3 - - 300 ns Pulse WIdth - PBG Input Pulse T IPW 2 T ICW 2 - ,.,S Pulse WIdth - CB 1 Input Clock Pulse Spacing - PBG Input Pulse liPS 2 - ,.,S Pulse Spacing - CB 1 Input Pulse IICS 2 - - "s 10 10 CA2 positive transilion CAlor CBl ac;tive PB6 INPUT PULSE COUNTING MODE C T'PW=:1___ C82SERIAL DATA IN T ICW ~ ( ( ,." 2.4V - - - -O.4V ~.4V 2.4V CB1CLOCK TSR2 2.4V CB2SERIAL DATA OUT O.4V I/O Timing Characteristics ( Timer 1 Operating Modes Two bits are proliided in the Auxiliary Control Aegister to allow selection of the Tl operating modes. These bits and the four possible modes are as follows: ACR7 Output Enable ACR6 "FrH·Run" Enable 0 0 Mode Generate a single time-out interrupt each time T1 is loaded 0 1 Generatll continuous interrupts 1 0 Generate a single interrupt and an output pulse on PB7 for each Tl load operation 1 1 Generate continuous interrupts and a square walle output on PB7 FUNCTION CONTROL Control of the lIarious functions and operating modes within the A6522 is accomplished primarily through two registers, the Peripheral Control Register (PCRI, and the Auxiliary Control Register (ACRI. The PCR IS used primarily to select the operating mode for the four peripheral control pins. The Auxiliary Control Register selects the operating mode for the Interllal Timers (Tl, T21. and the Serial Port (SRI. Peripher.' Control Register The Peripheral Control Register is organized as follows: Bit fI 7 I I 6 CB2 Control Function 5 4 CB1 Control 3 I 2 I CA2 Control 1 0 CAl Control Typical functions are shown below: PCR3 PCR2 PCR1 Mod. 0 0 0 Input mode - Set CA2 interrupt flag !lFRO) on a negative transition of the input Signal. Clear I FRO on a read or write of the Peripheral A Output Register. 0 0 1 Independent interrupt input mode - Set IFRO on a negative transition of the CA2 input signal. Reading or writing ORA does not clear the CA2 interrupt flag. 0 1 0 Input mode - Set CA2 interrupt flag on a positille transition of the CA2 input signal. Clear IFRO with a read or write of the Peripheral A Output Register. 0 1 1 Independent interrupt input mode - Set I FRO on a posltille transition of the CA2 input signal. Reading or writing ORA does not clear the CA2 interrupt flag. 1 0 0 Handshake output mode - Set CA2 output Iowan a read or write of the Peripheral A Output Register. Reset CA2 high with an active tranSition on CA1. 1 0 1 Pulse output mode - CA2 goes low for one cycle following a read or write of the Peripheral A Output Register. 1 1 0 Manual output mode - The CA2 output IS held low in this mode. 1 1 1 Manual output mode - The CA2 output is held high in this mode. Auxili-v Control Register Many of. the functions in the Auxiliary Control Register have been discussed previously. However, a lUl!'lmary of this register is presented here as a conven.ient reference for the R6522 user. The Auxiliary Control Register is organized. follows: 7 Bit' Function I T1 Control 4 5 6 T2 Control I 3 1 2 Shift Register Control 1 0 PB Latch Enlble PA Latch Enable ( Shift Registar Control The Shift Register operating mode is selected a. follows: ACR4 ACR3 ACR2 0 0 0 Shift Register Disabled. 0 0 1 Shift in under control of Timer 2. 0 1 0 Shift in under control of system clock. 0 1 1 Shift in under control of external clock pulses. 1 0 0 Free-running output at rate determined by Timer 2. 1 0 1 Shift out under control of Timer 2. 1 1 0 Shift out under control of the system Clock. 1 1 1 Shih out under control of external clock pulses. Mode ( T2 Control Timer 2 operates in two modes. If ACR5 "0, T2 acts as an interval timer in the one-shot mode. If ACR5 • 1, Timer 2 acts to count a predetermined number of pulses on pin PB6. ( PAATNUIIBER A8545-1 R6500 Microcomputer System DATA SHEET CRT CONTROLLER (CRTC) DESCRIPTION FEATURES The R6545-1 CRT Controller (CRTC) Is designed to interface an 8-b1t microprocessor to CRT raster scan video displays. and adds an advanced CRT controller to the established and expanding line of R6500 products. • Compatible with 8-bit microprocessors • Up to 2.5 MHz character Clock operation • Refresh RAM may be configured In row/column or atraIght binary addressing • Alphanumeric and limited graphics capability • Up and down scrolling by page. line. or character • Programmable Vertical Sync Width • Fully programmable display (rows. columns. character matrix) The R6545-1 provides refresh memory addresses and character generator raw addresses which allow up to 16K characters with 32 scan lines per character to be addressed. A major advantage of the R6545-1 is that the refresh memory may be addressed in either straight binary or by raw/column. Other functions in the R6545-1 include an intemal cursor regIster which generates a cursor output when its contents are equal to the current refresh address. Programmable cursor start and end registers allow a cursor of up to the full character scan In height to be placed on any scan lines of the character. Variable cursor display blink rates are provided. A light pen strobe input allows capture of the current refresh address in an internal light pen register. The refresh address Hnes are configured to provide drect dynamic memory refresh. All timing for the video refresh memory signals is derived from the character clock input. Shift register. latch. and multiplex control signals (when needed) are provided by external high-speed timing. The mode control register allows noninterlaced video display modes at 50 or 60 Hz refresh rate. The internal status register may be used to monitor the R6545-1 operation. The RES input allows the CRTC-generated field rate to be dynamically-synchronized with line frequency Jitter. ORDERING INFORMATION Pert Package Number Type R6545-1P R6545-1AP R6545-1C R6545-1AC Plastic Plastic Ceramic Ceramic • AackweIIlrMmIIIkInII Corpordon 1880 Temperature Frequency 1 MHz 2 MHz 1 MHz 2 MHz Range O°C to Ooc to O°C to O°C to +70°C +700C +700C +70°C • • • • • • • • • • Non-interlaced scan 50/60 Hz operation Fully programmable cursor Light pen register Addresses refresh RAM to 16K characters No external DMA required Internal status register 4Q-Pin ceramic or plastic DIP Pin-compatible with MC6845 Single +5 ±5% Volt Power Supply vss m LPEN CCO/MAO CC1/MA1 CCZ/MA2 CC3/MA3 CotIMA4 CCIS/MAIS CC8/MA8 CC7/MA7 CRO/MAS CRt/MAg CR2/MAtO CR3/MAt1 CR4/MA12 CRIS/MA13 DISPLAV ENABLE CURSOR VCC VSVNC HaVNe RAO RA1 RA2 'RA3 RA4 DO Dt D2 D3 D4 DIS DI D7 5 R8 .2 FVW CCLK R8545-1 Pin Configuration AlIRIgIa~ SpecIICIIb. MjlclIO cIw1ge wIhauI ~ Printed In U.S.A. Doau........... D17 D.a.... t_ INTERFACE SIGNAL DESCRIPTION CPU INTERFACE ~ (PhD. 2 Clock) The input clock is the system Phase 2 (;2) clock and is used to trigger all data transfers between the system processor (CPU) and the R6545-1. Since there is no maximum limit to the allowable clock time, it Is not necessary for it to be a continuous clock. This capability permits the R6545-1 to be easily interfaced to noo-6500 compatible microprocessors.. ;2 R/'R (Read/Write) The R/W input signal generated by the processor is usen to control the direction of data transfers. A high on the R/W pin allows the processor to read the data supplied by the R6545-1, a low on the R/W pin allows data on data lines 00-07 to be written into the R6~5·1. CI (Chip Select) The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The R6545-1 is selected when OS is low. CURSOR (Cursor Coincidence) The CURSOR Signal is an activ~hlgh output used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any· character () in the address field. Furthermore, within thechar8cter,the cursor may be programmed to be any block of scan lines;'slnce the start scan line and the end scan line are both programmable. The cursor position may be delayed by one character time by setting Bit 5 of RB to A "1". LPEN (Light Pen Strobe) The LPEN signal is an edge-sensitive input used to load the internal Ught Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The actiVe edge of LPEN is the low-to-high transition. CCLK (Clock) The CCLK signal is the character timing clock input and Is used as the time base for all internal count/control functions. An The Register Select input is used to access internal registers. A low on this pin permits writes (R/W = low) into the Address Register and reads (R/W = high) from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high. The ~ signal is an active-low input used to initialize all internal scan counter circuits. When RES is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. must stay low for at ,least one CCLK period. All scan timing is initiated when goes high. In this way, can be used to synchronize display frame timing with line frequency.1!i!§ may also be used to synchronize multiple CRTC's in horizontal and/or vertical split screen operati6n. ( DO-D7 (Data Bus) REFRESH RAM AND CHARACTER ROM INTERFACE 00-07 are the eight data lines used to transfer data between the processor and the R6545-1. These lines are bidirectional and are normally high-impedance except during read cycles when the chip is selected (~ = low). MAo-MA13 (Refresh RAM Address Lines) RS (Register Select) VIDEO INTERFACE HSYNC (Horizontal Sync) The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable. VSYNC (Vertical Sync) The VSYNC signal is an active high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC time position and width are both programmable. DISPLAY ENABLE (Display Enable) The OISPLAY ENABLE signal is an active-high output used to indicate when the R6545-1 is generating active display information. The number of horizontal display characters per row and the number of vertical display rows are both fully programmable and together are used to generate the OISPLAY ENABLE signal. OISPLAY ENABLE can be delayed one character time by setting bit 4 of RS equal to 1. m m m These 14 signals are active-high outputs used to address the Refresh RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of charactersl line and lines/frame. There are two selectable address modes for MAO-MA13: In the straight binary mode (RB, Mode Control, bit 2 = "a"), characters are stored in successive memory locations. Thus, the software must be designed such that row and column character coordinates are translated into sequentially-numbered addresses. In the row/column mode (RB, Mode Control, bit 2 = "1 "), MAO-MA7 become column addresses CCO-CC7 and MASMA 13. become row addresses CRO-CR5. In this case, the software can manipulate characters in terms of row and column locations, but additional address compression circuits are needed to convert the CCO-CC7 and CRO-CR5 addresses into a m.,mory-efficient binary address scheme. RAo-RA4 (Raster Addre•• Lines) These 5 signals are active-high outputs used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows. . () INTERNAL REGISTER ORGANIZATION Aeed Addr_ RII"r a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AS 4 3 2 1 0 X 0 0 1 X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 , 1 1 1 ,, ,, , ,, 1 1 1 1 1 1 , X X X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 X X X 0 0 0 0 X X X 0 0 1 X X X 0 , ,, , , ,, , , 0 0 0 0 1 1 , 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 , Aeg. No. X X X RO R1 R2 R3 R4 R5 R6 R7 RS R9 R10 R11 R12 R13 R14 R15 R'6 R17 Allister Neme Address Register Status Register Horizontal Total Char Horizontal Displayed Char Horizontal Sync Position YSYNC, HSYNC Widths Vertical Total Rows Vertical Total Adjust lines Vertical Displayed Rows V\!rtical Sync Position Mode Control Scan line Cursor Start line Cursor End Line Display Start Address (HI Display Start Address (L1 Cursor Position Addrass (HI Cursor Position Address (L1 light Pan Register (HI Light Pen Register (LI Allister Units Register No. Wrltlt (AJW· (A/W. Highl Lowl V VV V V No. of Characters/Row No. of Characters/Row Character Position No. of Scan lines, .characters No. of Character Rows No. of Scan lines No. of Character Rows No. of Character Rows V V V - V V V V V V". - V V V - 5 5 5 5 5 V V V 4 V II 5 4 V'" V 1/ 4 V V V V - 4 3 2 1 0 V ./ 6 4 7 6 5 4 V V l/ 5 V 7 6 6 4 :/ V 6 4 7 6 5 4 V ,, ,, ,, ,, , 5V ./ ../ / 8 8 6 6 6 6 4 4 4 4 4 ../ L / / 4 /' 6 5 4 L 6 6 4 7 6 6 4 7 7 7 7 V No. of Scan Lines Scan Line No. Scan line No. - 7 6 & 4 3 2 1 0 V V ~ ~ VV V V _.. A. . . . Bit 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 , 1 1 1 0 0 0 0 0 0 0 0 0 0 O. 0 0 0 0 0 0 0 Table 1. Overall Register Structure and Addressing UND - CPU I/F STATUS REGISTER (SR) VIDEO I/F ~D7~~~~------~~~~HSVNC 1--4I~ VSVNC DISPLA V ENABLE ~2--e... CUASOR LPEN RNi ---t.. Ci---t.. RS - .....~--....,...,J This 8-bit register contains the status of the CRTC. Only two bits are assigned, as follows: CCLK RES '"----.v...----' - - - - N O T USED L.I MAO.MA13 RAO-AA4 REFRESH AAM AND CHARACTER ROM Vert.1 A.T.... (VATI . o - Saln II not .....-ty iii Ito .....1 _ time. 1 - Saln 10 ......ntly In Ito ....icII ..._ tllM. N_ "'-' thit bit .......Iy . - to • H1 U . . . . . . . . . . . . . . . but . - to • T fiwo ~ clOck t i _ ....0,. ....iCeI ......10 "'-' orit-.l tim..... for RAM .....ionI _ _ idld. R6545·1 Interface Diagram ...t,_ - . Nf'" ' - - - - LPEN A.....' Full (LAFI o • A. . . .'A1.o'A17h............ bythlCPU. INTERNAL REGISTER DESCRIPTION ADDRESS REGISTER This S-bit write-only register is used as a "pointer" to direct CRTC/CPU data transfers within the CRTC. Its contents is the number of the desired register (0-17). When CS and RS are low, then this register may be loaded; when CS is low and RS is high, then the register selected is the one whose identity is stored in this address register. In" 1 - LPEN stroM hi. ...... _ ..... ' - - - - - - No! Ueed NOTE: The StltUI Regine, tlk" the State. I-I 0 11 1-1-1 -I -1-1 immedilt.ly afte, _ , IVeel tu,n""n. R~HORaONTALTOTALCHARACTERS R7-VERTlCAl SYNC POSlnON This 8-bit write-only register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The treq!'!9!'!C}'-ott-!S'tNC-!s-th!..!s-determinedbyt!'!!s-register. This 7-bit write-only register is used to select the character row ( time at which the vertical SYNC pulse is desired to occur and, . . thu$,.ls-used-toposiOOn-t!'!e-displayea-text-ln-the·vertical dll'GCtion. R1-HORIZONTAL DISPLAYED CHARACTERS RI-MODE CONTROL (MC) This 8-blt wrlte-only register contains the number of displayed characters per horizontal line. This 8-bit writ8-0nly register selects the operating modes of the R6545-1. as follows: . R:i-HORIZONTAL SYNC POSmON 11 Me7 This 8-blt wrlte-only register contains the position of the horizontal SYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC determines the left to right location of the displayed text on the video screen. In this way, the side margins are adjusted. - •• """ """ - caK 3210 MC4 Me3 Me2 Me. MCO D•• 0 RAD - 0 ~ R3--HORIZONTAL AND VERTICAL SYNC WIDTHS ....... Pn>gram 10 "0" NotUood ..._-.. , - This 8-bit write-only register contains the widths of both HSYNC and VSYNC, as follows: , ) AM Addl'Ollintl ModI fAA"1 or .., ..... ' binary r Row/Column ---- ........... , II '0 am to "0" D_" no""", ftIIbIt; stlow (DESI O· for 1 • to awtlllV Display EnebN OM dMlraetrW tilM. C._Ilkew ICSKI o .. 1 HSYNC Pulse Width at for no ."v. 'D dobV Cut'Mf' ana ciwlrlM:1. ,ime!. }~ The width of the horizontal Ivnc pulse (HSYNC) in the number of charllele, clock times (CCLK). ( ' - - - - - - - - - VSVNC Pulse Width The width of the vertical .vnc pulse (VSVNC) in the number of IOCan lines. When bits 4·7 are • " "0". VSYNC will be 16 ICin lin.. wide, Control of these parameters allows the R6545-1 to be interfaced to a variety of CRT monitors, since the HSYNC and VSYNC timing signals may be accommodated without the use of external one shot timing. Rg.........ROW SCAN LINES This 5-bit write-only register contains the number of scan lines, minus one, per character row, including spacing . R1~CURSOR START LINE R11-CURSOR END LINE These 5-bit write-only registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor blink mode, as follows: R4-VERTICAl TOTAL ROWS Bit Bit The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then RES may be used to provide absolute synchronism. ...!. ..!... Cursor Blink Mode 0 0 1 0 1 0 1 1 Display Cursor Continuously Blank Cursor Continuously Blink Cursor at 1/16 Field Rate Blink Cursor at 1/32 Field Rate RS-VERTICAl TOTAL liNE ADJUST The Vertical Total Line Adjust Register (R5) is a 5-bit write-only register containing the number of additional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time. R6-VERTICAl DISPLAYED ROWS This 7·blt write-only register contains the number of displayed character rows in each frame. R12-DISPLAY START ADDRESS HIGH R13-DISPLAY START ADDRESS lOW These registers form a 14-bit register whose contents is the memory address of the first character of the displayed scan (thfJ character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the R6545-1 as a result of CCLK input pulses. Scrolling of the display Is accomplished by changing R12 and R13 to the memory address associated wit" the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13. ( .. NUMBER OF HORIZONTAL TOTAL CHARACTERS IROI r~--------------------_A~-------------NUMBER OF HORIZONTAL DISPLAYED CHARACTERS IR11 __--__~, r~--------------~A~--------------~, START ADORED HIGH IR12,START ADDRED LOW IR131- § F= NUMBER OF VERTICAL TOTAL ROWS IR41 a ~ \ NUMBER OF VERTICAL DISPLAV ROWS IRII • N~R Of' ICAN LIN 11111 !"- \ CURIOII STAIIT LiNt Ilitli --" INO LINI 111111 POSITION ADDRED HIGH IR141 CURIOR POSITION ADDRED LOW IR111 HORIZONTAL RETRACE, PERIOD INON-DISPLAVI DISPLAV PERIOD VERTICAL RETRACE PERIOD INON-DISPLA VI VERTICAl. TOTAL { ADJUST IRIiI Figure 1. Video Display Format R14-CURSOR POSmOl4 HIGH R15-CURSOR POsmON LOW DESCRIPTION OF OPERATION These registers form a 14-bit register whose contents Is the memory address of the current cursor position. When the video display scan, counter (MA lines) matches the contents of this register. and when the scan line counter (RA lines) falls within the bounds set by R10 and R11. then the CURSOR output becomes active. Bit 5 of the Mode Control Register (RS) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories. VIDEO DISPLAY R16-UGHT PEN HIGH R17-UGHT PEN LOW These registers form a 14-bit register whose contents is the light pen strobe position. in terms of the video display address at which the strobe occurred. When the LPEN input changes from low to high. then. on the next negative-going edge of CCLK. the contents of the internal scan counter is stored in registers R16 and R17. REGISTER FORMATS Register pairs R12/R13. R14/R15. and R16/R17 are formatted In one of two ways: (1) Straight binary. if register RS. bit 2 = "0". (2) Row/Column. if register RS. bit 2 = "1". In this case the low byte is the Character Column and the high byte is the Character Row. Figure 1 Indicates the relationship of the various program registers in the R6545-1 and the resultant video dllplay. Non-displayed areas of the Video Display are used for horizontal and vertical retrace funclions of the CRT montor. The h0rizontal and vertical sync slgna/s. HSYNC and VSYNC. are pr0grammed to occur during these intervals and are used to trigger the retrace in the CRT monitor. The pulse widths are C0nstrained by the monitor requirements. The time position of the pulses may be adjusted to vary the display margins (left, right, top. and bottom). ' REFRESH RAM ADDRESSING Shared Memory Mode (RI, bit 3 = "0") In this mode. the Refresh RAM address lines (MAO-MA13) dlrectly reflect the contents of the internal refresh scan character counter. Multiplex control. to permit addressing and aeIectIon of the RAM by both the CPU and the CATC, must be provided external to the CRTC. In the Row/Column addl'88l mode. linea MAQ-MA7 become character column addresses (CCO-CC7) and MA8-MA13 become character row addresses (CRO-CR5). ADDRESSING'MODES BIts 5 and 61n the Cursor Start Une High Regiller (R10) control ( the CUI'8Of' dIIpIay and bInk ..... as foIowa: Row/Column In this mode, the CRTC add,... lines (MAQ-MA13) are generated 18 8 column (MAO-MA7) and 6 raw (MA8-MA13) addreI8I8. Extra hardware II needed to comprees thll addl'888lng Into a straight binary sequence In order to COI'188IV8 memory in the refreIh RAM. Bit 8 Bit I au.., Opeqtlnt . . . . 0 0 1 1 0 1 0 1 Diiplev CUl10r Continuoully Blenk CUI'IOI' Continuoully Blink Cunar et 1/18 Field Rete Blink CUrIOr et 1/32 Field Rete ....ry In this mode, the CRTC addl'8S8 lines are straight binary and no compr888iOn circuits are needed. However, software c0mplexity 18 Increased since the CRT characters cannot be stored In tenns of their raw and column locations, but must be sequential. USE OF DYNA.C RAM FOR REFRESH MEMORY The R8545-1 permits the use of dynamic RAMS 18 storage devIce8 for the Refresh RAM by continuing to Increment memory addl'88888 In the non-dlsplay Intervals of the scan. This is 8 viable technique, since the DIapIay Enable signal controls the actual video display blanking. Figure 2 Illustrates Refresh RAM addresalng for the cue of binary addressing for 80 columns and 24 raws with 10 non-dlsplayed columns and 10 non-dlsplayed raws. The cursor of Up to 32 ci'laraeters In height can be d~ on and between the scan lines 18 loaded Into the Cursor Start Une (R10) and Cursor End Une (R11) RegiIter8. The cursor is positioned on the screen by loading the Cursor Position Address High (R14) and Cursor PoaI1Ion Addresa Low (R15) registers with the desired refresh RAM add..... The cursor can be positioned in any of the 18K character positions. Hardware paging and data scrolling Is thus allowed without loss of cursor position. Figure 3 is an example of the display cursor scan line. UNDERLINE OVER LINE CURSOR CURSOR BOX CURSOR o 0 O~~~~~ 2 3 2 3 2 3 TOTAL -10 . DISPLAY -10 , 0 1 2 3 76 83 156 H 78 79 80 81 161 89 169 80 81 82 157 158 158 160 160 161 162 237 2,38 239 240 249 240 241 242 317 318 319 320 329 1680 1681 1682 1757 1758 1758 1780 1789 1649 1780 1761 1762 1837 1838 1839 1840 1840 1641 1642 1917 1918 1919 1920 1929 1820 1921 1922 1997 1998 1999 2000 2009 2000 2001 2002 2077 2078 2079 2080 2089 2640 2641 2642 2717 2718 2720 2729 "8115 "6iii1 " ' . 15 IS (l 7 7 7 8 8 8 9 9 10 11 1011 9 10:1+~~:t: 11 CURSOR START LINE - 9 CURSOR START LINE - 1 CURSOR START LINE· 1 CURSOR END LlNE-9 CURSOR END LINE - 1 CURSOR END Figure 3. LlNE-9 Cursor Display Scan Line Control Examples Figure 2. Memory Addrlllin, Example (SO x 24) CURSOR OPERAnON A one character wide cursor can be controlled by storing values Into the Cursor Start Una (R10) and Cursor End Una (R11) regIstirs and Into the Cursor Position Address High (R14) and Cursor Position Low (R15) registers. () MPU READ TIMING CHARACTERISTICS (V cc = 5.0V ±5%. T A = 0 to' ?OoC. unless otherwisil noted) 1 MHz Ch.rllCtllriltic 2 MHz Min M8x TCYC 1.0 02 Pulse Width TC 440 Address Set·Up Time T ACR 180 Address Hold Time Cycle Time Symbol Min .M8x - 0.5 - 200 ns - - 90 - ns - Unit lAS TCAR 0 Rm Set·Up Time TWCR 180 - 90 - ns Read Access Time 340 - 0 ns TCDR - 150 ns Read Hold Time THR 10 - 10 - ns Data 8us Active Time (Invalid Data) TCDA 40 - 40 - ns It, and tf .. 10 to 30 ns) READ CYCLE MEMORY AND VIDEO INTERFACE CHARACTERISnCS ( (Vee· 5.0V ±.5%. Til.· 0 to loDe. unletl oth.rwi .. noted I , MH. Svmbol Ch"H*istiCi 2MH. Min Mo. Mi" Mo. «I Char. Clock CYcle Tim. TCCY 0.' «I 0.' Chlr. Clock Pulse Width 200 - 200 MAO-MA 13 Propag.tion OellY TCCH T MAO 300 RAO·RA4 Prop.gltion D.IIV T RAO DISPLAY ENABLE P,OP. O.lev TOTO T HSO - HVSNC Propagation D.IIY - VSYNC Prop-altion TVSO Cursor PrOP1911ion DeilY TCOD - LPEN Strobe Width T LPH 150 LPEN 10 CCLK DeilY T LPI 20 CCLK to LPEN Delay T LP2 0 300 450 450 450 - - 450 - - 160 300 300 . '450 450 450 450 - 20 0 Unite .'., "' "' .,"' n. "'n. n. n. t,.. tf • 20 n. {mlxl SYSTEM TIMING DEFINITIONS ~------------TCCy------------~-i 2.0V 2.0V CCLK \\..--- SIGNAL' (800 Belowl • ( SIGNAL SYMBOL (XI SIGNAL MAO·MAI3 TMAO RAO·RA4 T RAO DISPLAY ENABLE TOTO HSYNC T HSO VSVNC TvSO CURSOR TCOO LIGHT PEN STROBE TIMING DEFINITIONS CCLK O.BV I-----..J LPEN lEE NOTE ---Ill...___ MAQ.MA13 _ _ _ _ ..,..JIl...___ "_+,_ _ _ "_+2_ _ _ [ NOTE: SLASH AREA DEFINES THE ''WINDOW'' IN WHICH AN LPEN POSITIVE EDGE WILL CAUSE ADDRESS N+2 TO LOAO INTO LIGHT PEN REGISTER. TRANSITIONS ON EITHER SIDE OF THIS "WINDOW" WILL RESULT IN UNPREDICTABLE VALUES BEING LOADED INTO THE LIGHT PEN REGISTER. ( SPECIFICATIONS Maximum Ratings Symbol Rating Supply Voltage Valul VCC V IN Input Voltage Operating Temperature Aange TOp TSTG Storage Tem peratu re Unit -0.3 to +7.0 Vdc -0.3 to +7.0 Vdc o to +70 °c °c ·55 to 150 All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be taken to prevent unnecessary application of voltages in excess of the allowable limits. Electrical Characteristics (V CC = 5.0V ±5%, T A = 0·70 o C, unless otherwise noted) Symbol Characteristic Min Max Unit" Vdc Input High Voltage V IH 2.0 Input Low Voltage V IL 0.3 VCC 0.8 liN - 2.5 ~dc ITSI - 10.0 "Adc V OH 2.4 - Vde VOL - 0.4 Vdc Po - 1000 mW CIN - 10.0 pF 12.5 pF 10.0 pF Input Leakage (02, AtW, rn, ~, AS, LPEN, CCLK) Vdc Three-State Input Leakage (00-07) (V IN = 0.4 to 2.4V) Output High Voltage I LOAO = 205 "Adc (00-07) ILOAD = 100 "Ade (all others) Output Low Voltage I LOAD = 1.6 mAde Power Dissipation Input Capacitance 02,ANV,RES.CS.AS.LPEN.CCLK 00-07 COUT Output Capacitance TEST LOAD 2.41<0 Fl8545-1 PIN 130pF I R R-11Kn FOR 00-07 -24Kn FOR ALL OTHER OUTPUTS (~ ( (/ CRT 5027 CRT 5037 OlI't'OO1letltkln so you keep ahead ofpn CRT 5057* . IL PC FAMILY CRT Video Timer and Controller VTAC® tal PIN CONFIGURATION FEATURES o Fully Programmable Display Format Characters per data row (1-200) Data rows perf.rame (1-64) Raster scans per data row (1-16) D Programmable Monitor Sync Format Raster Scans/ Frame (256-1023) "Front Porch" Sync Width "BackPorch" Interlace/ Non-I nterlace Vertical Blanking Lock Line Input (CRT 5057) o Direct Outputs to CRT Monitor Horizontal Sync Vertical Sync Composite Sync (CRT 5027, CRT 5037) Blanking Cursor coincidence o Programmed via: Processor data bus External PROM Mask Option ROM o Standard or Non-Standard CRT Monitor Compatible Refresh Rate: 60Hz, 50Hz, ... Scrolling Single Line Multi-Line o Cursor Position Registers o Character Format: 5x7, 7x9, ... o Programmable Vertical Data Positioning o Balanced Beam Current Interlace (CRT 5037) o Graphics Compatible A2 A3 CS R3 R2 GNO Rl Rt! os [ LLI/CSYN VSYN DCC Voo Va; o o o [ [ [ [ [ [ [ [ [ [ [ [ [ HSYN [ CRV [ BLC OB7( OB6 [ OB5 [ 1 2 3 4 5 6 7 8 ....., 40 39 ~ Al At! HfJ 37 ~ Hl 36 ~ H2 35 PH3 34 ~ H4 33 ~ H5 H6 32 10 31 PH7/0R5 90 11 30 P OR4 12 29 P OR3 13 28 POR2 14 27 PORl 15 26 PORf! 16 25 POBfII 24 POB1 17 18 23 POB2 19 22 0B3 20 21 OB4 38 PACKAGE: 4O-Pin D.I.P. o Split-Screen Applications o o o o o o o Horizontal Vertical Interlace or Non-Interlace operation TTL Compatibility BUS Oriented High Speed Operation COPLAMOS® N-Channel Silicon Gate Technology Compatible with CRT 8002 VDACTM Compatible with CRT 7004 GENERAL DESCRIPTION The CRT Video Timer and Controller Chip (VTAC)@ is a user programmable40-pinCOPLAMOS@) nchannel MOS/LSI device containing the logic functions required to generate all the timing signals for the presentation and formatting of interlaced and non-interlaced video data on a standard or non-standard CRT monitor. With the exception of the dot counter, which may be clocked at a video frequency above 25 MHz and therefore not recommended for MOS implementation, all frame formatting, such as horizontal, vertical, and composite sync, characters per data row, data rows per frame, and raster scans per data row and per frame are totally user programmable. Thedata row counter has been designed to facilitate scrolling. Programmi ng is effected by loading seven 8 bit control registers directly off an 8 bit bidirectional data bus. Four register address lines and a chip select line provide complete microprocessor compatibility for program controlled set up. The device can be "self loaded" via an external PROM tied on the data busasdescribed intheOPERATION section. Formatting canalso be programmed by a single mask option. In addition to the seven control registers two additional registers are provided to store the cursor character and data row addresses for generation 01 the cursor video signal. The contents of these two registers can also be read out onto the bus for update by the program. Three versions of the VTAC@) are available. The CRT 5027 provides non-interlaced operation with an even or odd number olscan lines per data row, or interlaced operation with an even number of scan lines per data row. The CRT 5037 may be programmed for an odd or even number of scan lines per data row in both interlaced and non-interlaced modes. Programming the CRT 5037 for an odd number of scan lines per data row eliminates character distortion caused by the uneven beam current normally associated with odd field/even field interlacing of alphanumeric displays. The CRT 5057 provides the ability to lock a CRT's vertical refresh rate, as controlled by the VTAC'stli vertical sync pulse, to the 50 Hz or 60 Hz line frequency thereby eliminating the so called "swim" phenomenon. This is particularly well suited for European system requirements. The line frequency waveform. processed to conform to the VTAC's8 specified logic levels, is applied to the line lock input. The VTACtli will inhibit generation of vertical sync until a zero to one transition on this input is detected. The vertical sync pulse is then initiated within one scan line after this transition rises above the logic threshold of the VTAC.tII To provide tne pin required for the line lock input, the composite sync output is not provided in the CRT 5057. 'FOR FUTURE RELEASE 121 Description of Pin Functions PinNa. 25-18 Symbol Name DB~-7 Data Bus OS 12 DCC 38-32 H¢-6 7,5,4 R1-3 I/O Chip Select Register Address Data Strobe 3 CS 39,40,1,2 A~-3 9 Inputl Output 31 H7/DRS DOT Counter Carry Character Counter Outputs Scan Counter Outputs H7/DRS 8 Rf6 Scan Counter LSB 0 26-30 DR0-4 0 17 15 11 10 BL HSYN VSYN CSYNI LLI Data Row Counter Outputs Blank Horizontal Sync Vertical Sync Composite Sync Outpull Line Lock Input CRV Vee Voo Cursor Video Power Supply Power Supply 16 14 13 0 0 0 0 0 0 Oil 0 PS PS ( Function Data bus. Input bus lor control words from microprocessor or PROM. Bidireciional bus for cursor address. Signals chip that it is being addressed Register address bits for selecting one of seven control registers or either of the cursor address registers Strobes DB~-7 into the appropriate register or outputs the cursor character address or cursor line address onto the data bus Carry from off chip dot counter establishing basic character clock rate. Character clock. Character counter outputs. Three most significant bits of the Scan Counter; row select inputs to character generator. Pin definition is user programmable. Output is MSB of Character Counter if horizontal line count (REG.91) is ::=:'128; otherwise output is MSB of Data Row Counter. Least significant bit of the scan counter. In the interlaced mode with an even number of scans per data row, RI!! will toggle at the field rate; for an odd number of scans per data row in the interlaced mode, RQI will toggle at the data row rate. Data Row counter outputs. Defines non active portion of tfbrizontal and vertical scans. Initiates horizontal retrace. Initiates vertical retrace. Composite sync is provided on the CRT 5027 and CRT 5037. This output is active in non-interlaced mode only. Provides a true RS-170 composite sync wave form. For the CRT 5057, this pin is the Line Lock Input. The line frequency waveform, processed to conform to the VTAC'sil!l specified logic levels, is applied to this pin. Defines cursor location in data field. + 5 volt Power Supply + 12 volt Power Supply ..... ....., ." =" ...,. .~~~ .311••40 ••• , •• 2 --1=-3----4 BLOCK DIAGRAM 122 ( I ) Operation The design philosophy employed was 10 allow the device to interface effectively with either a microprocessor based or hardwire logic system. The device is programmed by the user in one of two ways; via the processor data bus as part of the system initialization routine, or during power up via a PROM lied on the data bus and addressed directly by the Row Select outputs of the chip. (See figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words are shown in Table 1. The information contained in these seven words consists of the following: Horizontal Formatting: Characters/Data Row A 3 bit code providing 8 mask programmable character lengths from 20 to 132. The standard device will be masked for the follOWing character lengths; 20, 32. 40,64, 72,80, 96, and 132. Horizontal Sync Delay 3 bits assigned providing up to a character times for generation of "front porch". Horizontal Sync Width 4 bits assigned providing up to 15 character times for generation of horizontal sync width. Horizontal Line Count a bits assigned providing up to 256 character times for total hOrizontal formatting Skew Bits A 2 bit code providing from a 0 to 2 character skew (delay) between the horizontal address counter and the blank and sync (hOrizontal, verttcal. composite) signals to allow for retimlng of video data prior to generation of composite video signal. The Cursor Video Signal IS also skewed as a function of this code. Vertical Formatting: Interlaced/Non-interlaced Scans/Frame This bit provides for data presentation with odd/even field formatting for Interlaced systems. It modifies the vertical timing counters as desCribed below. A logic 1 establishes the interlace mode. a bits assigned, defined according to the follOWing equations: Let X= value of a aSSigned bits. 1) in interlaced mode-scans/frame = 2X + 513. Therefore for 525 scans, program X = 6 (00000110). Vertical sync will occur precisely every 262.5 scans, thereby producing two interlaced fields. Range = 513 to 1023 scans/frame, odd counts only. 2) in non-interlaced mode-scans/frame = 2X + 256. Therefore for 262 scans, program X = 3 (00000011). Range = 256 to 766 scans/frame, even counts only. In either mode, vertical sync width is fixed at three hOrizontal scans ('" 3H). Vertical Data Start 8 bits defining the number of raster scans from the leading edge of vertical sync until the start of display data. At this raster scan the data row counter is set to the data row address at the top of the page. Data Rows/Frame 6 bits assigned providing up to 64 data rows per frame. Last Data Row 6 bits to allow up or down scrolling via a preload defining the count of the last displayed data row. Scans/Data Row 4 bits assigned providing up to 16 scan lines per data row. Additional Features Device Initialization: Under microprocessor control-The device can be reset under system or program control by presenting a 1'"" address on A3-9'. The device will remain reset at the top of the even field page until a start command is executed by presenting a 1110 address on A3-\lJ. Via "Self Loading"-In a non-processor environment, the self loading seguence is effected by presenting and holding the 1111 address on A3-{J, and is initiated by the receipt of the strobe pulse (DS). The 1111 address should be maintained long enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing sequence will begin one line scan after the 1111 address is removed. In processor based systems, self loading is initiated by presenting the ,,111 address to the device. Self loading is terminated by presenting the start command to the device which also initiates the timing chain. Scrolling-In addition to the Register 6 storage of the last displayed data row a "scroll" command (address 1(11) presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications. 123 Control Registers Programming Chart Horizontal Line Count: Characters/Data Row: Horizontal Sync Delay: Horizontal Sync Width: Skew Bits Scans/Frame Total Characters/Line = N + 1, N = 0 to 255 (DBO = LSB) DB2 OBi DBO () 0 0 20 Active Characters/Data Row 0 1 = 32 0 1 0 40 0 1 1 0 64 1 0 0 72 0 1 1 80 1 1 0 96 1 1 1 132 = N, from 1 to 7 character times (DBO = LSB) (N = 0 Disallowed) N, from 1 to 15 character times (DB3 = LSB) (N = 0 Disallowed) Sync/Blank Delay Cursor Delay DB7 DB8 (Character Times) 0 0 0 0 1 0 1 0 0 1 1 2 1 1 2 2 8 bits assigned, defined according to the following equations: value of 8 assigned bits. (DBO LSB) Let X 1) in interlaced mode-scans/frame = 2X + 513. Therefore for 525 scans, program X 6 (00000110). Vertical sync will occur precisely every 262.5 scans, thereby producing two interlaced fields. Range 513 to 1023 scans/frame, odd counts only. 2) in non-interlaced mode-scans/frame = 2X + 256. Therefore for 262 scans, program X 3 (00000011). Range 256 to 766 scans/frame, even counts only. In either mode, vertical sync width is fixed at three horizontal scans (= 3H). N = number of raster lines delay after leading edge of vertical sync of vertical start position. (DBO = LSB) Number of data rows = N + 1, N = 0 to 63 (DBO LSB) N = Address of last dsplayed data row, N = 0 to 63, ie; for 24 data rows, program N = 23. (DBO LSB) Register, 1, DB7 1 establishes Interlace. Interlace Mode programmed number of CRT 5027: Scans per Data Row = N + 1 where N data rows. N = 0 to 15. Scans per data row must be even counts only. CRT 5037, CRT 5057: Scans per data Row = N + 2. N 0 to 14, odd or even counts. Non-Interlace Mode CRT 5027, CRT 5037, CRT 5057: Scans per Data Row = N + 1, odd or even count. N = 0 to 15. ( = = = = = = = = = = = Vertical Data Start: Data Rows/Frame: Last Data Row: Mode: Scans/Data Row: = = ( = = = = U ttl"~ ~ D~~~--~r----------~ SMC CAT 5027. CAT 5037 or CAT 5057 VTAC/!) DB7 ~~--++-I+H+p---(>1i::I RJ SELF LOADING SCHEME FOR VTAce SET-UP 32.SPAOM HARRIS HM· 7602 OR EQUIVALENT 5 (from system ) A. R;. Figure 4. 1 srOA1i Au cs t--t-H HA,t--+-HH HA) ROW SELECTS TO CHARACTER GENERATOR 124 ( \ Register Selects/Command Codes Description Select/Command A3 A2 A1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 Af 0 1 0 1 0 1 0 1 Load Control Register 0 Load Control Register 1 Load Control Register 2 Load Control Register 3 Load Control Register 4 Load Control Register 5 Load Control Register 6 Processor Initiated Self Load 0 0 0 0 1 0 Read Cursor Line Address Read Cursor Character Address Reset 0 0 1 See Table 1 Command from processor instructing VTAC" to enter Self Load Mode (via external PROM) Resets timing chain to !QQ left of page. Reset is latched on chip by OS and counters are held until released by start command. Increments address of first displayed data row on page. ie; prior to receipt of scroll command-top line = 0, bottom line = 23. After receipt of Scroll Command-top line 1, bottom line = O. Up Scroll 0 0.= o 0 o 1 Load Cursor Character Address' Load Cursor Line Address' Start Timing Chain 1 0 Receipt of this command after a Reset or Processor Self Load command will release the timing chain approxfmately one scan line later. In applications requiring synchronous operation of more than one CRT 5027 the dot counter carry should be held low during the DS for this command. DevicELl"'ili begin self load via PROM when DS goes low. The 1111 command should be maintained on A3-0 long enough to guarantee self load. (Scan counter should cycle through at least once). Self load is automatically terminated and timing chain initiated when the all "1 's" ..£Qndition is removed, independent of DS. For synchronous operation of more than one VTAC®, the Dot Counter Carry should be held low when the command is removed . Non-Processor Self Load • NOTE: During Self-Load, the Cursor Character Address Register (REG 7) and the Cursor Row Address Register (REG 8) are enabled during states 0111 and 1000 of the R3-R0 Scan Counter outputs respectively. Therefore, Cursor data in the PROM should be stored at these addresses. TABLE 1 BIT ASSIGNMENT CHART HORIZONTAL LINE COUNT REG_I?, I , i , , ,~, SKEW BITS DATA ROWS/FRAME REG3Iffi,;, , i i , ,~, LAST DISPLAYED DATA ROW ,~--'-,-'-I. . .i--L.,---I.,--'~, . REG6L..-'............... SCAN LINES/FRAME , REG SCANS/DATA ROW CHARACTERS/DATA ROW 21 , ~, I; I i ITlJ I ,. , ,~, CURSOR CHARACTER ADDRESS I REG 71 ~, , , , , , '~I VERTICAL DATA START ~ :;:::=;::,=*=',:::::;:,=;:I:::::;I:::L..,~ REG 5 . - l = 1; : : : : , CURSOR ROW ADDRESS I 125 REG 8 ~-'-,-,-I........i---LI--,I---,~ 1...-1.L.......L..-' I AC TIMING DIAGRAMS ( FIGURE' VIDEO TIMING DOTCARRY COUNTER I I~ ________________________________________-JI I~--------------------PWL--------------------~~------PWH----~~ H'-7 H SYNC. V SYNC. BLANK. CURSOR VIDEO. COMPOSITE SYNC ...- - - - T o " , - - -......._--1 FIGURE 2 LOAD/READ TIMING ~------------------------------------~ FIGURE 3 SCAN AND DATA ROW COUNTER TIMING 1\ HSYNC------------j ---- - , / R8-3 DAJ-5 -------------f----..J1 \.... _____ __ -ToEL 3 ° - °R0-3 and DRQJ-5 may change prior to the falling edge of H sync CRT 15051 LINE LOCK LINE LOCK IN (110 HZ. 110 HZ) '---.-'11 CRT 15051 LOGIC THRESHOLD I I I l.-l-lIF LINE LOCK----.l 1"FlINELOCK ± I H , VERTI~SVNC _ _ _ _ _-+---, LINE LOCK i--------'--------.. . . .... ~------~j~i·-----~'--~~~i~----------OUT ( MAXIMUM GUARANTEED RATINGS' Operating Temperature Range ............ . ............. O°C to + 70°C Storage Temperature Range .................. . ................. - 55°C to + 150°C Lead Temperature (soldering, 10 sec.) ....................................... " ...................... +325°C Positive Voltage on any Pin. with respect to ground .................................................... + 18.0V Negative Voltage on any Pin. with respect to ground .................................................... - 0.3V . Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transient~ on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver + 12 volts may have large voltage transients when Ihe AC power is switched on and off. If this possibility exists it is suggestecj that a clamp circuil be used. ELECTRICAL CHARACTERISTICS (TA=O°C to 70 D C, Vee= +5V:<::5%, VOO~ + 12V:<::5%. unless otherWise noted) Parameter Min. Typ. D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS Low Level, VIL High Level. V,H Vee-l.5 OUTPUT VOLTAGE LEVELS Low Level-VOL for R!l-3 Low Level-VoL all others High Level-VOH for RIl-3, DB"'-7 2.4 High Level-VoH all others 2.4 INPUT CURRENT Low Level, ilL (Address, CS only) Leakage, IlL (All Inputs except Address, CS) INPUT CAPACITANCE Data Bus, C,N OS, Clock, C,N All other, C,N DATA BUS LEAKAGE in INPUT MODE los POWER SUPPLY CURRENT Ice 80 40 100 A.C. CHARACTERISTICS DOT COUNTER CARRY frequency PWH PWL tr. If DATA STROBE PW&s ADDRESS, CHIP SELECT Set-uptime Hold time DATA BUS-LOADING Set-up time Hold time DATA BUS-READING TOEL2 TOEL' OUTPUTS: HIl-7. HS, VS, BL. CRV, CS-ToELI OUTPUTS: RIl-3, DRI6-5 TOEL3 10 25 10 Max. Unit 0.8 Vee V V 0.4 0.4 V 250 10 p.A p.A 15 40 15 pF pF pF 10 p.A 100 70 mA mA V Comments IOL" 3.2ma IOL ·,l.6ma IOH ',BOlla IOH.04Olla V ,N =O.4V O$.VINS,vce O.4V"'" V ,N TA 0.2 35 215 4.0 10 150ns 50 MHz ns ns ns = "'" 5.25V 25C Figure Figure Figure Figure 1 1 1 1 Figure 2 10l-'s 125 50 ns ns Figure 2 Figure 2 125 75 ns ns Figure 2 Figure 2 60 ns ns Figure 2. CL = 50pF Figure 2, CL= 50pF 125 ns Figure 1, CL=20pF 500 ns Figure 3, CL=20pF 125 5 * ·R~-3 and DR0-5 may change prior to the falling edge of H sync Restric.tions 1. Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore loaded into the chip by presenting one set of addresses and outputed by presenting a differenl set of addresses. Ther~fore the standard WRITE and READ control signals from most microprocessors must be "NORed" externally 10 present a single strobe (OS) Signal to the device. 2. In interlaced mode the total number of character slots assigned to Ihe horizontal scan musl be even 10 insure Ihal vertical sync occurs precisely between horizontal sync pulses. 127 General Timing HQRIZQNTAL TIMING START QF LINE N Jl START QF LINE N+ 1 n flzll71III/ZII/IIII/I/iIOn I ACTIVE VIDEQ= CHARACTERS PER DATA LINE . HQRIZQNTAL SYNC DELAY IFRONT PQRCHI I ]mIll . . HQRIZQNTAL SYNC WIDTH i" HQRIZCNTAL LINE CQUNT= H - - - - - -..........., VERTICAL TIMING START CF FRAME M CR 0.00 FIELD 1- JI ~ VERTICAL DATA START n ~ ACTIVE VIDEC= DATA RQWS PER FRAME . vm VERTICAL SYNC !!! 3H Composite Sync Timing SYNv~ VOH -\ .VI/I I ZZllUllillZZU7/IIIZZZ1111 o=j" -I VOH H START QF FRAME Mt 1 QR EVEN FIELD SCANL~ESPERFRAME i ~ n~~nL----------lnL--_1L I' , i V SYNC : . . V-OL-r!------~ :"""--H [' ~--------- ~4--- H ------.i L.JLJL VOH: :"'HI2-+l: Ur COMPOSITt1 SYNC VOL Vertical Sync Timing .1 - - fRAME M - - - - - - - SC:A~ OAT"-: H:- ri1 SCANS ROW - , COUNTER AO N . CJ U U 0 ~ CQUNTf A IS HELD RE5£ 1 [)URH'\I(j V HLANIO. rn m n u. u u J Gil r1l III r;l Po U U LJ U 0 ") b .j m IRAMt M · ' - - - - - - • • • ( 1 ~' U LII " 23 -- 9 L _ _ _, _ _--.J .IIERTICAl OATA START <;C"''''' BlANM REt, ~I .JlllW1LW~ 1'"1 _______ VE~TICAL S'VNC EXAMPLE BASED ON Non Intf"litCPdIRI'9' 8", 01 "4r1>l1,1'U""~ 'O"'itn~ ditt.1'':''' Start-up, CRT 5027 When employing micrcprccessQr cQntrolied Icading Qf the CRT 5027's registers, the fQllQwing sequence of instructions is necessary: o o o COMMAND Start Timing Chain Reset Load Register 0 o o LQad Register 6 Start Timing Chain ADDRESS 1 1 1 o o o o 1 1 1 0 The sequence of START RESET LOAD START is necessary to insure proper initialization of the registers. , This sequence is not required if register loading is via either of the Self Load modes. This sequence is optional with the CRT 5037 or CRT 5057. ,Circuit dlagraJ'lls utiliZing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility IS assumed for ,naccuraciesiFurthermore, such informatIon .does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others: SMC reserves the right to make changes at any time in order to Improve design and supply the best product possible. 128 ( COM2502 COM2017 you iftaI pn COM2502/H COM2017/H Universal Asynchronous Receiver/Transmitter 35 Marcus Blvd, Hauppauge NY 11787 (516) 273-3100 TWX-510-227-8898 rnrrwlllHftlYl SO (31 keep Of UART Pin Configuration FEATURES Vee Voo o Direct TTL Compatibility- no interfacing circuits Gnd R"m: required ROB R07 R08 RDS RD4 RD3 R02 RD1 RPE RFE ROR o Full or Half Duplex Operation - can receive and transmit simultaneously at different baud rates o Fully Double Buffered - eliminates need for precise external timing o Start Bit Verification - decreases error rate o Fully Programmable-data word length, parity mode, swr number of stop bits; one, one and one-half, or two o High Speed Operation-40K baud, 200ns strobes o Master Reset- Resets all status outputs o Tri-State Outputs- bus structure oriented o Low Power- minimum power requirements o Input Protected-eliminates handling problems o Ceramic or Plastic Dip Package-easy board insertion RCP ROAR ROA RSI TCP POE NOBl NDB2 NSB NPB CS TD8 T07 T08 T05 T04 T03 T02 TOI TSO TEOC TI5'S' TBMT MR PACKAGE: 40-Pin D.I.P. Functional Block Diagram TOl TD2 T03 T04 TOS T08 T07 TD8 '11m' 23 25 TSO TEOC ~ GENERAL DESCRIPTION The Universal Asynchronous Receiver/Transmitter is an MaS/LSI monolothic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's P-channellow voltage oxidenitride technology. The duplex-mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be 5, 6, 7 or8 data bits, odd/even or no parity, and 1, or 2 stop bits or 1.5 stop bits when utilizing a 5-bit code from the COM 2017 or COM 2017/H. The UART can operate in either the full or half duplex mode. These programmable features provide the user with the ability to interface with all asynchronous peripherals. 59 TBMT APE AFE ROR ADA 18 21 1 2 Rtrof MR ~~~ Gnd DESCRIPTION OF OPERATION- TRANSMITTER ;,' commences. TSO goes low (the start bit), TEOC goes low, the TBMT goes high indicating that the data in the data bits buffer register has been loaded into the transmitter shift register and that the data bits buffer register is available to be loaded with new data. If new data is loaded into the data bits buffer register , at this time, TBMT goes low and remains in this state ' until ,the present transmission is completed. One full character time is available for loading the next character with no loss in speed oftransmission. This is an advantage of double buffering. Data transmission proceeds in an orderly manner: start bit, data bits, parity bit (if selected). and the stop bit(s). When the last stop bit has been on the line for one bit time TEOC goes high. If TBMT is low, transmission begins immediately. If TBMT is high the transmitter is completely at rest and, if desired, new control bits may be loaded prior to the next data transmission. At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. Under these conditions TBMT, TEOC, and TSO are all at a high level (the line is marking). When TBMT and TEOC are high, the control bits may be set. After this has been done the data bits may be set. Normally, the control bits are strol)ed into the transmitter prior to the data bits. However, as long as minimum pulse width specifications are not violated, iDS and CS may occur simultaneously. Once the date strobe (TDS) has been pulsed the TBMT signal goes low, indicating that the data bits buffer register is full and unavailable to receive new data. If the transmitter shift register is transmitting previously loaded data the TBMT signal remains low. If the transmitter shift register is empty, or when it is through transmitting the previous character, the data in the buffer register is loaded immediately into the transmitter shift register and data transmission ( TRANSMITTER BLOCK DIAGRAM ( ODD/EVEN PARITY SELECT DB6 DB7 DB6 DBS DB4 DB3 DB2 OBI CONTROL STROBE ~--4--- DATA STROBE TRANSMITTER BUFFER EMPTY 16xT CLOCK SERIAL OUTPUT TIMING GENERATOR PARITY BIT GENERATION LOGIC END OF CHARACTER DESCRIPTION OF OPERATION-RECEIVER At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate isapplied and master reset is pulsed. Thedataavaiiable(ADA) signal is now low. There is one set of control bits for both the receiver and transmitter. Data reception begins when the serial input line transitions from mark (high) to space (low). If the ASlline remains spacing for a1/2 bittime, agenuine start bit is verified. Should the line return to a mark- ing condition priorto a 1/2 bittime, the start bit verification process begins again. A mark to space transition must occur in order to initiate start bit verification. Once a start bit has been verified, data reception proceeds in an orderly manner: start bit verified and received, data bits received, parity bit received (if selected) and the stop bit(s) received. If the transmitted parity bit does not agree with the received parity bit, the parity error flip-flop of the 60 status word buffer register is set high, indicating a parity error. However, if the no parity mode is selected, the parity error flip-flop is unconditionally held low, inhibiting a parity error indication. If a stop bit is not received, due to an improperly framed character, the framing error flip-flop is set high, indicating a framing error. Once a full character has been received internal logic looks at the data available (RDA) signal. If, at this instant, the RDA signal is high the receiver assumes that the previously received character has not been read out and the over-run flip-flop is set high. The only way the receiver is aware that data has been read out is by having the data available reset low. At this time the RDA output goes high indicating that all outputs are available to be examined. The receiver shift register is now available to begin receiving the next character. Due to the double buffered receiver, a full character time is available to remove the received character. RECEIVER BLOCK DIAGRAM FRAMING ERROR RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 TRANSMITTER BUFFER EMPTY RESET DATA AVAILABLE BITS FROM HOLDING _____________ CONTROL REGISTER J:::::::;:::::~::~~~==========~======l SERIAL INPUT RIGHT JUSTIFY LOGIC 16xR CLOCK DESCRIPTION OF PIN FUNCTIONS PIN NO. SYMBOL NAME FUNCTION Vee Power Supply +5 volt Supply 2 Voo Power Supply -12 volt Supply 3 GND Ground Ground 4 ROE Received Data Enable A low-level input enables the outputs (RDS-RD1) of the receiver buffer register. 5-12 RDS-RD1 Receiver Data Ou.tputs These are the S tri-state data outputs enabled by ROE. Unused data output lines, as selected by NDB1 and NDB2, have a low-level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output. 13 RPE Receiver Parity Error Thistri-state output (enabled by SWE) is at a high-level if the received character parity bit does not agree with the selected parity. 14 RFE Receiver Framing Error This tri-state output (enabled by SWE) is at a high-level if the received character has no valid stop bit. 61 DESCRIPTION OF PIN FUNCTIONS PIN NO. SYMBOL FUNCTION NAME 15 ROR Receiver Over Run This tri-state output (enabled by SWE) is at a high-level if the previously received character is not read (RDA output not reset) before the present character is transferred into the receiver buffer register. 16 SWE Status Word Enable A low-level input enables the outputs (RPE, RFE, ROR, RDA, and TBMT) of the status word buffer register. 17 RCP Receiver Clock This input is a clock whose frequency is 16 times (16X) the desired receiver baud rate. 18 ROAR Receiver Data Available Reset A low-level input resets the RDA output to a low-level. 19 RDA Receiver Data Available This tri-state output (enabtP.d by SWE) is at a high-level when an entire character has been received and transferred into the receiver buffer register. 20 RSI Receiver Serial Input This input accepts the serial bit input stream. A high-level (mark) to low-level (space) transition is required to initiatE: data reception. 21 MR Master Reset This input should be pulsed to a high-level after power turn-on. This sets TSO, TEOC, and TBMT to a high-level and resets RDA, RPE, RFE and ROR to a low-level. 22 TBMT Transmitter Buffer Empty This tri-state output (enabled by SWE) is at a high-level when the transmitter buffer register may be loaded with new data. 23 TDS Transmitter Data Strobe A low-level input strobe enters the data bits into the transmitter buffer register. 24 TEOC Transmitter End of Character This output appears as a high-level each time a full character is transmitted. It remains at this level until the start of transmission of the next character or for one-half of a TCP period in the case of continuous transmission. 25 TSO Transmitter Serial Output This output serially provides the entire transmitted character. TSO remains at a high-level when no data is being transmitted. 26-33 TD1-TD8 Transmitter Data Inputs There are 8 data input lines (strobed by TDS) available. Unused data input lines, as selected by NDB1 and NDB2, may be in either logic state. The LSB should always be placed on TD1. 34 CS Control Strobe A high-level input enters the control bits (NDB1, NDB2, NSB, POE and NPB) into the control bits holding register. This line may be strobed or hard wired to a high-level. 35 NPB No Parity Bit A high-level input eliminates the parity bit from being transmitted; the stop bit(s) immediately follow the last data bit. I n addition, the receiver requires the stop bit(s) to follow immediately after the last data bit. Also, the RPE output is forced to a low-level. See pin 39, POE. 62 ( ) ( \ ( ) DESCRIPTION OF PIN FUNCTION PIN NO. FUNCTION NAME SYMBOL f 36 NSB Number of Stop Bits This input selects the number of stop bits. A low-level input selects 1 stop bit; a high-level input selects 2 stop bits. Selection of 2 stop bits when programming a 5 data bit word generates 1.5 stop bits from the COM 2017 or COM 2017/H. 37-38 NDB2, NDB1 Number of Data Bits/Character These 2 inputs are internally decoded to select either5, 6, 7, or 8 data bits/character as per the following truth table: NDB2 NDB1 data bits/character L L 5 L H 6 H L 7 H H 8 39 POE Odd/Even Parity Select The logic level on this input, in conjunction with the NPB input, determines the parity mode for both the receiver and transmitter, as per the following truth table: MODE NPB POE L L odd parity L H even parity H X no parity X = don't care Transmitter Clock This input is a clock whose frequency is 16 times (16X) the desired transmitter baud rate. 40 TCP TRANSMITTER TIMING-8 BIT, PARIT,(, 2 STOP BITS I TOS ~ TBMT __________ ~r-- TSO ~;2:~il.· ... ID~T~~~~~jsToPl'sTOP2IsTART TEOC ------,~____lI_m_e_______________________ L_ _ _ __ ~ Bil I--- TRANSMITTER START-UP ...JLJLJU" I I TCP --I TDS TSO ~---,L. ______ 1/18 Bit time f-- Upon data transmission Initiation, or when not transmitting at 100fMlineutillzation, lhe Itart bit will be placed on the TSO line at the high to tow transition 01 the TCP clock following the trailing edge of TOS. RECEIVER TIMING-8 BIT, PARITY, 2 STOP BITS RSt ~~A.2I .... ·Io~T~a}~R~1 STOP I'STOP2IsTART CENTER BIT SAMPLE RDA' ROA" -oot I+- 1116 B,ttime ---- ------------- ---..., II "The RDA.line was previously not reset (ROR = high~lev.I), ··The RDA line was previously reset (ROR = low·level). START BIT DETECT/VERIFY RCP RSI MS~-' . ~"'rIfy. . 1'---_·_- Begin verify If the ASIline remains spIcing for. 1/2 bit time, I genuine stl" bit is verified. Should the liM return to. marking condition prior to .1/2 bit time. the start bit verification proceu begin. again. 63 MAXIMUM GUARANTEED RATINGS· Operating Temperature Range .........................•............•............... DoC to +70°C Storage Temperature Range .................................................... -55 0 C to +150° C Lead Temperature (soldering, .10 sec.) .............•....................................... +325° C Positive Voltage on any Pin, Vce ............................................................ +0.3V Negative Voltage on any Pin, Vee ......................... ; .................................. -25V ( r 'Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. ELECTRICAL CHARACTERISTICS (TA == 0° C to 70 0 C, Vce = +5V ±5%, VDO == -12V ±5%, unless otherwise noted) Parameter D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS Low-level, VIL High-level, VIH OUTPUT VOLTAGE LEVELS Low-level, VOL High-level, VOH INPUT CURRENT Low-level, IlL OUTPUT CURRENT Leakage, ILO Short circuit, los" INPUT CAPACITANCE All inputs, CIN OUTPUT CAPACITANCE All outputs, COUT POWER SUPPLY CURRENT lee Min. Max. Unit 0.8 Vee V V 0.4 V V 1.6 mA see note 4 -1 10 .u A mA SWE == RDE VOUT=OV 5 10 pf VIN = Vee, f 10 20 pf SWE = RDE = VIH, f = 1MHz 28 28 mA mA All outputs = VOH, All inputs Typ. Voo Vee-1.5 2.4 0.2 4.0 100 A.C. CHARACTERISTICS CLOCK FREQUENCY (COM2502, COM20i7) (COM2502H, COM2017H) PULSE WIDTH Clock Master reset Control strobe Transmitter data strobe Receiver data available reset INPUT SET-UP TIME Data bits Control bits INPUT HOLD TIME Data bits Control bits STROBE TO OUTPUT DELAY Receive data enable Status word enable OUTPUT DISABLE DELAY Conditions IOl == 1.6mA IOH == 100.uA TA DC DC 400 640 1 = VIH, 0 ::=; VOUT ::=; +5V = 1MHz = Vee = +25°C KHz RCP, TCP KHz RCP, TCP RCP, TCP MR CS 500 200 200 200 .us ns ns ns ns ;:::0 ;:::0 ns ns TD1-TD8 NPB, NSB, NDB2, NDB1, POE ;:::0 ;:::0 ns ns TD1-TD8 NPB, NSB, NDB2, NDB1, POE Load = 20pf +1 TTL input RDE: TpOl, Tpoo SWE: TpOl, Tpoo RDE,SWE 350 350 350 ( ns ns ns TlJS RDAR "Not more than one output should be shorted at a time. NOTES: 1. If the transmitter is inactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within one clock period (TCP) after the trailing edge of ms. 2. The start bit (mark to space transition) will always be detected within one clock period of RCP' guaranteeing a maximum start bit slippage of 1/16th of a bit time. 3. The tri-state output has 3 states: 1) low impedancetoVce 2~'8E impedanceto GND 3) high impedance OFFe 10M ohms. The "OFF" state is controlled by the SWE and inputs. 4. Under steady state conditions no current flows for TTL or MaS interfacing. (COM 2502 or COM 2502/H) 64 ( DATA/CONTROL TIMING DIAGRAM VIH VIL - - - Tpw· DATA INPUTS tr =tf = 20 ns VIH VIL TSET-UP~O THOLD ~O CS CONTROL INPUTS ~:~ ____ fiole---- Tpw· ---..:;-.j :~:T~. L VIL ~_ _ _ _ _ _ _ _ _ _ _ __ "Input information (Data/Control) need onl~valid during the last Tpw, min time of the input strobes (TDS, CS). OUTPUT TIMING DIAGRAM Outputs Disabled OUTPUTS (RD1-RD8, RDA, RPE, AOA, RFE, TBMT) VOH VOL TPD1, TPDO NOTE: Waveform drawings not to scale for clarity. ROAR ------~ ~---200ns--~ VIL VIH - - - - - - - - - - VOL TMBT VOL RDA 14---- 300ns - - - - - + I 65 400ns FLOW CHART-TRANSMITTER FLOW CHART-RECEIVER ( YES HAS NO A STAAT BIT BEEN? VERIFIED 8-16. elK ( NO HAS THE LAST STOP BIT BEEN ON 1 HE LINE FOR 1 BIT TIME? RESET DATA A.VAILABLE - 0.4. = 0 Circuit diagrams utilizing SMC products are included as a means of illuslraling typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the besl product pOSSible. 66 ( APPENIX D KEYBOARD MATRIX 912C/920C Below is the matrix ("schematic· ) that is expected on the keyboard attached to connector Pl. The character interpretation is actually a firmware decision. #0 8 COLUMN PINI II 9 '2 10 13 11 $ ROW 10 20 N 4 R G 11 16 X ESC TAB A T H 1,. Q S 6 Y J W D % 12 M 21 5 ! #3 14 C 17 < 22 #4 #6 15 12 13 14 LINE BLOCK I II FEED CONVI \I _I I LI I -I *1 I I_______ ~_L + 0 • I• ? / =( 17 15 I l z CLEAR 9 @ IS 18 16 23 #7 19 18 26 V 2 > & B 7 I 3 E 25 LINE ERA LINE DEL LINE INS 110 24 F8 19 III I F71 I I 7 ALPHA LOCK 3 SHIFT 4 I I I I FUNCT 5 I CTRL 6 GROUND 1£2 U P ENTER SPACE BAR DEL 0 BACK SPACE K BERAK HOME } ]I { F [ IRETURN SEND BACK I SEND PAGE LINE ERASE _~!\BJ. __ ]? AGE -CHAR CHARI F11 F101 DEL INSI F9 ----1--I I F31 F21 F1 F5 F41 I I I I I -,, F6 I I I ) 1 APPENDIX D KEYBOARD MATRIX () 912B/920B Below is the matrix ("schematic") that is expected on the keyboard attached to connector Pl. The character interpretation is actually a firmware decision. COLUMN #1 P IN fF~ ~ 8 9 IF2 10 4t3 it4 its 11 I' 1 #6 14 P ROW 4t0 20 N 4 R G CR PAGE ] 4n 16 X TAB ESC A I L : Z In 21 M 5 T H PRINT Eo- 8 t #3 17 C 1 Q S 0 . - CLEAR #4 22 . 6 y J RUB I 9 it5 18 V 2 W D It6 23 . 7 U K In 19 #8 26 4t9 25 B IFlO 24 4t11 7 E P (a 0 BREAK SP 1\ HOME [ PROT F LF "- BRK SND PAl SD LIN ERA Fll FlO F9 F3 F2 Fl LIN ERA LIN DEL LIN INS CRR DEL F8 F7 F6 F5 F4 ~3~ SHFT ~4~__~__ FUNC ~5,- CTL _loL-- ~ CLR TAB TAB CRR INS AUHA 6 3 ~ ( PG __~__ __~__ _.-r-_ GROUND ...:1:.a..:2_ _ ( D-1 APPENDIX E CONNECTOR LISTS PI KEYBOARD CONNECTOR (See also Appendix D) PIN 1 Ground for Keyboard 2 3 " " " Input from keyboard ALPHA KEY Bit 6 of 4'C to 4'F 4 " " " SHFT KEY " 4 " " " 5 " " " FUNC KEY " 2 " " " 6 " " " CTL KEY " 3 " " " 7 Input from keyboard Matrix Bit 5 of 4t'F 8 Output to keyboard Matrix Column Bit 9 Output to keyboard Matrix Column Bit 1 of Port 1 10 Output to keyboard Matrix Column Bit 2 of Port 1 11 Output to keyboard Matrix Column Bit 3 of Port 1 12 Output to keyboard Matrix Column Bit 4 of Port 1 13 Output to keyboard Matrix Column Bit 5 of Port 1 14 Output to keyboard Matrix Column Bit 6 of Port 1 15 Output to keyboard Matrix Column Bit 7 of Port 1 16 Input from keyboard Matrix Bit 1 of 4,C 17 Input from keyboard Matrix Bit 1 of 4'D 18 Input from keyboard Matrix Bit 1 of 4,E 19 Input from keyboard Matrix Bit 1 of 4'F 20 Input from keyboard Matrix Bit ~ of 4fC 21 Input from keyboard Matrix Bit fJ of 4,n 22 Input from keyboard Matrix Bit fJ of 4f)E 23 Input from keyboard Matrix Bit f) of 4f)F 24 Input from keyboard Matrix Bit 5 of 4f)E E-1 of Port 1 " Pl KEYBOARD CONNECTOR (Continued) 25 Input from keyboard Matrix Bit 5 of 4,D 26 Input from keyboard Matrix Bit 5 of 4IC P2 VIDEO CONNECTOR PIN 1 -HlSYNC 2 ''KEY'' 3 VIDEO SHIELD GROUND 4 +VlDEO 5 -VSYNC 6 +Tl'L VIDEO (or -CCNPSYNC with S2-10. 11 open) COMPUTER PORT P3 PIN 1 2 TXD (RS232) Transmit Data, Output 3 RCVD (RS232) Receive Data, Input 4 RTS (RS232) Request to Send, Output 5 CTS (RS232) Clear to Send, Input 6 DCR2 (RS232) "Data Carrier Ready, (S5-2, 13), Input 7 GROUND 8 DCRl (RS232) "Data Carrier Ready" (S5-1, 14). Input 12 RXDl (TrY) Current Loop Receive Data 1, Input 13 TXD2 (TTY) Current Loop Transmit Data 2, (Return) Output ( 9 10 11 14 15 ( 16 17 £-2 ! P3 OOHPUTER. PORT (Continued) PIN 18 19 DTR (R8232) 24 RXD2 (TTY) Current Loop Receive Data 2 (Returns) Input 25 TXD 1 (TTY) Current Loop Transmit Data 1, Output 20 Data Terminal Ready (85-3, 12 and 85-4,11), Output 21 22 23 PRINTER PORT P4 PIN 1 2 3 PRT DATA (R8232l Transmit Data, Output 4 5 6 TERM RDY2 (R8232) "Terminal Ready" (WI2), Output 7 GROUND 8 TERM RDYI (R8232) "Terminal Ready" (W13), Output 9 10 11 12 13 14 15 16 17 E-3 p4 PRINTER PORT (Continued) PIN 18 (l 19 20 +PRTRDY (RS232) Printer Ready, Input 21 22 23 24 25 POWER SUPPLY CONNECTOR P5 PIN 1 -12V 2 "KEY" 3 GROUND 4 +5V 5 +12V ( P7 PIN 1 2 Speaker 8.r.L " " ( E-4 \ Z8400 ~ Zilog Processing Dail ...... J ~-l _. 081 -=j ={ c_ Pia De.criptlo... Au-Als, Address Bus (output, active High, 3-state). Ao-Als form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges. ·.USACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, 10RQ, RD, and WR have entered their highimpedance states. The external circuitry can now control these Hnes. BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the cur· rent machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, 10RQ, RD, and WR to go to a highimpedance state so that other devices can control these lines. BUSREQ is normally wireORed and requires an extern~ lor these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs. Du-D,. Data Bus (tnpuVoutput, active High, 3-state). Do-D? constitute an 8-blt bidirectional data bus, used for data exchanges with memory and I/O. HALT. Half Slate (output, acttve Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a non· maskable or a maskable interrupt (wtlh the "zao WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wail state as long as this signal is active. Extended zscrcPu Celltral F_ur_ mi!sk enabled) before opertltion can resume. While halted, the CPU executes NOPs to maintain memory refresh. lutructloa Set INT.. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal softwarecontrolled interrupt eMble flip-flop (IFF) ts enabled. INT is normally wire-ORed and requires an external pullup for these appliCdtions. IORQ. Input/Output Request (output, active Low, 3-state). 10RQ indicates that the lower half of the address bus holds a valid I/O address for an 110 read or write operdtion. 10RQ is also generated concurrently with Ml during an interrupt acknowledge cycle to indicate that an interrupt response vector can be placed on the data bus. MI. Machine Cycle One (output, active Low). MI, together with MREQ, indicates that the current machine cycle is the opcode felch cycle of an instruction execution. M'l, together with IORQ, indicates an interrupt acknowledge cycle. MREQ, Mem~uesf(output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation. NMI. Non-Maskable Interrupt (input, active Low). NMI has a higher prtority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H. RD. Memory Read (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an liD device. The addressed I/O device or memory should use . this Signal to gate data onto the CPU data bus. RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I Snd R, and sets the interrupt statuI to Mode O. During reset time. the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cyCles before the reset operation is complete, RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the system's address bus can be is a trademark. of Zi 1og. Inc. with whom the publisher is not associated." WAIT periods can prevent the CPU from refreshing dynamic memory properly. WK. Memory Write (output, active Low, 3-state). WR indicates that the CPU data bu. holds valid data to be stored at the addressed Qlemory or va location. used as a refresh address jo the system's dynamic memories. o o The ZBO microprocessor has one of the most powerful and versatile instruction sets available in any 8-btt microprocessor. It JnclYdes such unique operations as a block move for fast, efficient data transfers within memory or between memory and JlO. It also .allows operations on any hit in any location in menmi'y. Yfle following is a summary of the ZOO instruction set and shows the assembly language mnemonic. the operation, the flag status. and gives comments on each instruction, Tile Z8G CPU Technical Manual (03COO29-0l) and Assembly Language Prooromming Manual (03-0002-01) contain significantly more details for ·programming use_ The instructions are dtvlded tnto the follOWing categories: General-purpose arithmetic and CPU control o J6- bit arithmetic operations . o Ratates and shifts o o 16-bit loads I-BII LOad Group - Exchanges, block transfers, and ..... rches - ........ • •"- I PlY. C r - r' LOr. " LOr. n LOr. tRL) Llh. UK+d) r r - Bit set, resel, and test operations o Jumps o o Calls, returns, and restarts InpUt and output operations .A variety of addressing modes are Implemented to permit efficient amUaat data transfer between various registers, memory locations. and input/output devices. These addressinq mades Include: o a-bit load. o 8-blt arithmetic and logic operaliOfls o Immediate 0 Indexed o o Immediate extended o Register hmlrect o Relative o o o Extended " III III . . . , . 01 , 00 , r - lD(HLl. r LDUX+dJ. r (HL1- r (IX+dl- r IIl+d) DO 7 19 FD I. DO 7 I. -d- • • II III 101 01 r 110 -d- LD UT+dl. r flY+d) - r 01 UO r II all 101 01 110 r _d_ • X • 11 III IDt 01 HO r -dLD(HLI .... IHLJ - n X X 00 liD HO FD " JI 10 I" -n- LDUX+d}, n UX ... dl- n X X II 011 101 DO 00 110 110 31 LD{IY+dl. n UY+dl-n • X 11 III 101 PO 110 110 lIS -d-n- oa I. -dOA II.. 3A 7 7 13 00 000 010 03 00 010 010 00110010 12 32 7 7 13 11101101 01010 III II 101 101 01 011 III 11 101 101 01 000 III II 101 101 01 001 III m LO A. (8C1 A- (Bel LO A. (DE) tD A. Inn) A - Inn) 00 001 010 00 all 010 OD III 010 lD {Be}, A LOIDE), A (Bel -A (DE) - A LD(nnl. A (nn) - A LDA,l A -I XOXIFFO LOA. R A-R XOXIFFO A - (DE) -n- lOtI.. I-A X LOR. A R-A X .. • NOTES r, T' _ . . eny 01''''' NOli ...... A. B. C, D. E. H. L. IfF .... .,.,....", 01 ,he ,nterr.. pt_blelilp-liop. UFfl" cop..d,nfo,hePtVtla\J I • - ~ 01 LDr,(lT+d) Btl eyw. .... " 110 r 110 II 011 101 r 101 Implied ................. 1 01 (HLl UX+d) Register o Modlfted page zero 57 ID 51 ED 41 ED 4f FOI.nup..... honolll .... notII,'on.ndl'IftboI.· ..... _ _ !.lb!.. _ Sylllboloc NoM".... MdIOll IoU".'IIIl",bIft. 001 DID 011 100 101 III C D I H L A II-Bit Load Group - LDdd. nil LDII,OII --- ..... I' dd-_ • • IX-_ X • • X X • ""IC ()pcIoU I... 110.0111 IIo.aI T " MlI1D ... ..,... era- ...... 00 ddO 001 • X '0 II 0.1I 101 DO 00 100 001 II . II III 101 FD 00 100 001 21 " 00 101 010 lA 16 ExchaDIJ·· Block Trawer. Block Search Groupe c-~ 00 Be 01 10 II DE HL SP CDD LDHL. (no) IT-an x • X H-(nn+l) x • X . • •• • X • lXH-(nn+1) lXL - (nn) • •. X • B Opco.t.. PlY. C 0 X I 0 LDDR (DEI - (HLI • • x 0 x 0 0 • DE - DE-J HL - HL-J A - (HL) HL - HL.I I II OJ! )01 DD X ~ CPl' I x • x • •• x .• x • II 101 101 ED 10 101 00l AS 16 II 101 101 ED 21 10 III 000 88 '6 II 101 101 ED 10100 001 At '6 II 101 101 ED "'6 II Be" 0 II BC _ 0 CD X I X <6l I A - (HLJ I I • I • CD I X I X 1 10 Ita 001 81 BC-BC-] II III 101 FD 00 101 010 lA 20 00 100 010 Xl A ... {HLior '6 ,J - iI-. CPD -nLO (nn). del . (nn+ I) - ddH (nnl - ddL W(na),lX (nn ... 1)-IIH (nn) -lXL • LOCnnl.IT (~"'Il-IYH • • x • x • X • X • J. • X UBC" OanQ. A" (HL) IIBC .. Oar A", (HL) Rapooat unli] BC . . (nn+H- H (nn) - ~ "-- BC _ 0 CP' 20 01 ddl all IYL - (nn) LD(on).HL Cyd. ...... RepNl un!i] <6l 11 101 101 ED X 00 101 010 lAo ITH - {nn+ II Ro." ...... JllIo.ofT Jyt. BC-BC-I HL-Hl+1 LO IT. (nn) " sa 210 lin CD x (DEI - (HLI BC-BC-I LDII.tan) ..... Z DE-DE~I -nddH-lnn+1) ddL- (nnl • BC-BC-J L - Inn) .tOdd.lnn) ... Ht-HL-I (Continued) LOIY.lID -_ -. II 101 IOI.m BC-BC-I '" 01 ddD all CPDR -nil all 101 DO CD Gl X A - (HL) HL-HL-l 1 X <6l , A - (HLl I I • I X I X I I • HL - HL-l BC-BC-l 20 00 100 010 12 10 101 001 A9 '6 II 101 101 ED 2' 10 III (XU B9 '6 II 101 }Ol ED (!) IIBC"Oancl A. (Ktl JlBC,. Oar A. tHL) IWpHtuntd A .. (HL)er Inn) -ITL 11 III 101 FD 00 100 010 :z2 LDSP. II' Sf - HL SP-IX , L II 011 101 DO 2' 2, 11 111 LDSP.IT SP -IY x • I PUSH . . (SP-2) - INL (SP-I)- qqH SP-SP-2 (SP-21 - IXL (SP-Ii-IXK SP-SP-2 (SP-2) - IYL; (SP-II-IfH SP - SP -2 CIIIH - (SP ... 1l X X • !Xii F9 11 1Il 101 FD 11 III 001 PI PUSH IX PUSH~ FOP . . I • • II qqO 101 X II all 101 DD lIH":" {SP+1l IXL -:- (SP1 SP-SP+2 LTH-(SP+1l LTL":' (Sf) SP-SP+2 POP If NOTES- I • X IP!.:~~~~~::"~ Exchcmge. Block Tr......... llocks-da Group. IX 01. HL ElM,U DI ': 'i~h ........ and , '0 II lI'l ;C 15 01 10 II 11 III 101 FD II 100 101 IS 15 11 qqO DOl '0 • I- • J: • 'x • x 11 all 101 QD IJ 100 001 El . II III 101 fD II 100 001 El " II 101011 E8 00 001 000 (II. 11 011 001 DI AF-Af' Be~BC' H '- (SP+J) L - (51) • X • X • II 100 011 I3 '0 X· ., X • II 011 101 DD 1110001) 22 11 111 101 lD It 100 011 13 22 11($1'), II I -e" X (DI}~{HW I 0 .I I 0 I 0 I 0 0 a CD 11 101 101 ID 10100 000 AD 01- 01+1 . HL- HL+I BC-BC-I _ (01) - (HI.) I I X I X V 0 I 1.0m;! r ~. A-A+n I I X t X V 0 I II mI 110 0008 t X V 0 I IOIm.uO I X 0 t II 011 101 10gilO 00' C 010 D ADD~.. (HLI A - A ... eHU ADD A. UX+d) A - A ... ·UX+d) V - ADDA. (lY+dl A - A + UY+d) I t Jt I X V 0 I d - 11111101 - AND. A - A-'-CY A-A'" a IIXIXPOO OR. A-AVa I I X 0 X P XO" A -A •• I I X.O X P ImII A - A+ •• CT SUS. A - A-. _ A"-. I I 'NC, r - r + I INC (HW (HW INCClX+d) -(HL) + I I nX+dJ - I I I X V X X 0 I X VII I X V I I X , X V I I X I X V 0 I' I X I I t X X V V DD m INCClY+dl (lY+d)(lY+dl+1 I I m-m-I 01' • " '0 '00 H 101 L III A all any 01 r. n. (HLI.,(lX+d), (IY+d_1how1l lor ADD Ulltrucbcm. Theindiclledbll ~thtlllll) 'M ADD . . abawe. I!llI D!!!II I 00 , II 011 101 DD II 2J m 22' 00 1I0iID I .. X I X V 0 - I I X I X V 1 d - 11111101 00 - DEem J' - 00 II0ma (lX+d)'+i .... d I!mI I!lllI mIll I!m IIIlI AOCA •• SBCA •• 8eQI.... benk and • IIH'- (SP+l} .... -(SP) IrK - (5P+J) ilL - (SP) LDIR A -A + r ADDA.n awublry~ 11(51'),11 LIlI, M .cQhl b.. d1M Nq_»>1>" ,.....:II"',. DI-~ D(sp),HL DE HL ADDA. r CPo low ordw DE - HL HL - HL' 8-BIt ArIthmetic aad LogIcal Group lOugHO x • x • dd .. enr 011'- ~..,.. pt.,.. BC, DE, Hi. SP. pt.'" AF. Be, DE. ill qq .. ..., oIlho AlQlOI •• 6" '0 II 100 101 ES INL - (5P) SP-SP+2 1'01'11 NOriS. (!)PIVIIaq .. Oil ,1. ....11001 Be-I'" 0 om..... PIV '" I ~ZU.eq"ldA _(HL].oIt.nr ... Z.O Uill 001 B -nLO'SP. HL Be·O 20 IJollII d - JmlI 1IIo".nyofr, (HU. (lI ... d).IIY+d) .iMwn lor tNC . DEC_",,-, _ a .... . . . . . . INC. mID_ .....................,.. Lo.d tHW iM) {OIl. mc.-nt countw (lSC) DE - DE+I HL-HL+I BC-BC-l ..... • II 101101 ED 10110000 BO 21 '8 HSC.,O Hac .0 8C.O II:JIa 1l)Iw ..... o... -a • ..:-I .. 0........ "" .. I. 2 ~, ~ ~ Gen.ral· Purpooe Arlthm.Uc and CPU Control Groupe - -......... .... I Convltl'1. ace content Inlo peded BCD tollowlnq add or .... btra<;1wnhplld-.:l BCD operand. I I CPL A-X '.XIX-] NEG A-O-A CCF CY - CY SCF CY - I NOP HALT No nperetlon CPU nalt&d 01. EI • IMO IFF - I 5.1 mterrupt • X X I 1 X X ' " If ? .. C I V J 1 x x x .. 0 1 OX, 0 I Cpa. Decima.] IIdjud eccumu]ator 00 101 III 2F ComplenMInl accumul"lor (one', complement) NlllQ'lt. lice (two', II 10\ 101 ED 01 (OJ 100 « 00 III 111 JF lIolm. "nd Shill Group eo.- Itm. (Continued) moo-O • • x • x .. ADDHl. .. HL-HL+ ... x HL - HL ....... CY XXXVOI II 101 101 ED 5~ HL.. HL - Hl-a-CY X 11 101 101 ED nil" X V a x PO, I@I 1 I X 0 X POI [ill] r r X 0 X POI r r X 0 X P 0 X 0 X P 0 C X IX - IX .. pp X X • 0 I n~@!] RLO l1..-_~.:~~ I I 00 01 10 BC DE HL 11 SP 0 [ 11011 101 DO 15 RRO l!.:..~li~ ~.:;oJ • (Hl) [ill] mil r {HLU1X" dUlY. dl Bit S.I. B_1 5lTb.r z-~ and T..t BIT b. (HU Z - X dIT1b BIT b. (IX+d)b Z - (IX+dlb 1 X I X X • e X X X • 0 I 11111 [O[ FD BIT b. (lY +d)b Z - (~lb IX - IX + I - u au nO 011 II 011 101 DD 00 100 011 n I I 1 I I 101 FD 00 100 OIl 23 00 .. 1011 11011101 DD 00 101 0: I lS 1IIll1OIFD 00 101 Oil :.IS + I INC IY IY - IY + I DEC.. DEC IX u - II-I X • X • IX -IX-J DECIY IY-IY-I X • 6F II tOJ tOl ED 01 100 III 67 19 Rolar. dlqU IotII and roqntJ;",tw_n Ihe 9ccumutalor end tocahon (HLI Tha conl.nl 01 lhol upp"'r hall 01 lhe accumulator " J X I X X 0 X 12 >l II 001 011 CB d 01 b 110 XrXIXXO- 11 III 101 FD 11001011 CB d b ~ 001 010 011 100 101 2II 'p, Oll 1I0 Shill Group RLCA SP DE IY SP • SETb.1 1'b - I SET b. (HLJ (HLJb - SETb, (IX+dJ (IX+dlb-1 X .. X b , I I 001 011 CB " IS o X 110 11 Oll !OI DD II 001 Oil CB X" d II - IIJJ 10 SETb(IY+d) (IY+d1b-1 _ .' X " X • ".. 6 10 b 110 I I III 101 FD 11001011 CB _ d - [I] RES b. m mb - 0 m _ r, • • X • X • • • (HLJ. b " liD --""" IilJ To lorm rww [j] Th~ notohon mb ,nd" 0' ... b" b 10 '0 71 Dr loc~t,on m l"]L[;-,-.p RRA LC=-tilC"l ~[';}l RLC r • 0 , Rolale lell .... r<:ular 00(0) III x 0 X • 0 I 00 010 III x 0 I7 Jump Group Rot .. l" 1,,11 OF X RLC IlX+dJ X 0 X X 0 X 00 011 III POI XOXPOI [5iJ.l,[:;::,::.::o:J-1 x 0 X POI r(HLUIX+dLIIY+dl IF II (lO1 011 00 000 [10 X X • II ce 010 10 OOJ HZ 12 001 Z 'IfOro 010 NC non-car,.,. 011 C carry 100 PO perltr odd 101 PE perlty.....n II 0 P Ilqn poI'lUflI III tot aiqn neqell .... 12 If condition UI met. oX:" X 00 011 000 18 x • X 00 III 000 38 cc " Rotat" nQhl JR. PC - PC+fI CB IR C." IIC 11 011 101 DO CB - '''q ..I", , 15 OliO B 00' C 0[0 D E 100 H Ill! L III A d • 00000 110 x 0 X E O. PC-PC .. " JR NC .• IIC ~ Ii C K X I " non·taro X .. • " II condilion not mel. II condlllOl'l no4 met. 00 110000 30 - 8-2 - FD CB 12 O. PC - PC+" I! Z ~ 0 X • • • II condition II mel 11 <.ondillon not met 00 101 OOJ 28 1/ Z w I, PC-PC+e Inolrud,on j",m,,) IR NZ ... II Z s X I • X e-2 12 If Z " 0 TP (HLJ PC-PC+. PC - Hl IP (IX) PC - IX RI" s 3 If condlUon not met 00 100 (0) 20 - POI I))() '" Condition - 8-2 - continue II C ~ l. m_r iHtl 'IX +d!.lIY' dl ~[0J m _ r iHLI nx + dIllY. dl 10 .. ~ II 001 011 d - II III 10l RRC m II 000 Oll C3 II cond,hon ce ,. tru" PC - nn. R"tat")"ftnrcu[,,, , II ((;1 (111 m • lP ce. nn Aolat" nQht ",rcular TPZ. " RL X PC - nn CB OOOOOllU If'']_. -[,C-'1-1 x • lP nn .. c.umulalor 00 "" RLC(HlJ 01 SET b .• .. uh (g. FlaqIt arw:lltrn.i/Ull"'or SET ,n.tructlon. (IY.dl ac-cumulator RReA , l 3 '" IJ 001 all CD X. [j] X I _ p.'I,_' fl' I""" fir ~:-·[,,-:'iP 0 (I] b accumulator RLA H 100 10< 110 DE " "~ny ,,[ ,to .. '_""''''' ."". [\' Rotate and C D E ~ 000 00< 010 (IX + dl. ~~y ..1 'hp rp'l''''P' pp .. ~My "I 'h .. r~ .. .. " I" t 111 A IX 10 II u INC IX ED 01 101 111 01 ffi-Pc' 01 00 rrl 001 INC •• II 101 101 II 001 011 CB 01 b r II 001 011 CB 01 b ])0 11011 JOI DO 0 XrXIXXO ~. 01 10 II IY-IY+ rr eo.- eye.... .... ~-~ ~ 00 SIll 001 01 ppl 001 ADDIY,rr .......... IilllI PO, 01 nO OW ADD IX. pp 71 WI ZIG un~flect..d 01 .. I 010 X X SRl m Set Clirry flaQ Group .. I ~~IIXOX ................. 1 ~ PlY II II 101 IOJ EO 01 all 110 5E ADC HL. .. X J II mar IHL).(IX+dl.{IY+dl ,nd,u,,, mlftrrup" or .. nol ... mplPd '" li>e .nd ol [lor DI X @]~n .... I m_r.(HLI (IX + d) p CY md,eal.. 'he c-a"y 11,,,11<>,, IS·Bit Arithmetic Group -- • m_ r (HL),IlX +d) OY .. dl ComplelTl<'lnl ""rry 00 110 111 37 00 oo:J OOJ 00 .,....,. II 101 101 ED 01 010 )10 56 mod" 2 It RRm SRA m 01 OOJ 110 46 x • x -SlA m II Ito 011 F3 11 III 011 FB II 101 JOt ED Sellnlerrupl mode I Set Interrupt 1M2 71 U3 210.. . , . . 00 100 III Il 01 lIb 110 76 IFF - 0 IMI 110." Mo." II 1I00of T Opeode • OAA " X • X \1 101001 E9 II Oil \01 DO II 101 001 E9 If condillon J, met J.... Groap (Conllnued) - - ..- JPlm • .... I -- Dna.. • ,IY. I PC-IT 1- 8-1 • I .u 1.0, I • • I - C . • -- a....! ........... , " IU III - ..... c,.a.. _ II III 101 'D 11101001 a 00 010 000 10 lupUI cad 13 PC - PC •• SUIDIDIIr7 of _2 .............._ ... ~I CALL .. Flag OperalloR PCt (SP-lJ PC- .. CALLoc. liiio ~ . -1Gt (SP-I) .......... -. licondlllon --~ • I • I I • • 11001 101 CD PCt. - PClf I (SP) -- . -- . I • ,Bce."". 17 liccjalnle. I ......... • X • IIccOOO Hee.f.... • -'.......... I X • I • X • 11 101 QI 001 11101 01 000 ",,01 101 IOJ 101 ... ED 4D ED 45 "-pi X {SP-U - PCH PCt. • X • II t 111 II PCH - 0 PCL - P CCF IN ~{C, INI. IND. OUTI. auTO INIR. INDR. OTUI.. OTDR LDI. LOD LOIR. LODR CPt; CPIR; cpo: CPDR II cell true. ~ """",,pi 000 Ai 001 010 all 100 Condillon non-zero Z ani He non-carry C carry PO pull}' odd LOA.f. LOA.R SIT b., 101 PE plrlty even 110 P mqn poNllq, III M "Qh~_ Symbobc Symbol ;.,. liaH Notation S Z PlY 001 OBH 010 10H all ISH 100 20H 101 28H 110 30H III JBH NOTl 'RETH Ioado IfF:z - lffl IDputcad INA,In) A-In) Output Group DI ,. IC) r-ICI Ifr _ IlOonl.ytM tl.Q._t1lbeaJt.ct.d I INI (HW-(CI 8 - 8-1 HL-HL+I (HU - Ie) 8 - 8-1 HL-HL+ I X I DI" _.nUI DIDO (HL) - (C) B -.B-I HL-Hl-I IHU-{Cj B-B-l • X • 11 all 011 DB II nloAo - A1 X 1 X P a II 101 101 ED 01 r 000 12 CtoAo - A7 81oAe,-AJS 1 X X X X I 111011"01 ED 10 100 010 A2 " CloA(j - A7 BIoAa - AI5 I X X X I I II 101 101 ED 10 110010 B2 21 eloAQ._ A7 810Aa - AI5 (n}-A (C)-r OUTI (e)- (HL) 8 - B-1 HL-HL+I (CJ-IHU S - 8-1 HL-HL+l vnul X 1 X X X X I 11101101 ED 10101010 AA I I X X X X I II 101 101 ED 10111010 SA .. X • I • I • Ie) -IHL) 8 - 8-1 HL-HL-I • N H&N I. c 5 (Uh,O) • I. CIoAo - A7 BIoAa - AI5 21 _ PlY II X X eloAo-A7 BIoAa-AI5 C ................. . " HI 1 uo... ayw. 0ydeI; ....... II 101 101 ED 10111011 5 21 "-e 10 Ao - A7 BtaAs-At5 IDB_O) '," "V Z 1 .. .. C x X XI, X 1 X 1 1 X X 1 0, g g} ~ x 0 X I , X X X X 0 0 , X X 1 1 X X 0 1 , X X P () I 1 1 X X X X X X X 0 X 0 1 1 X P P • x a X a' X X X X X X X X 1 X X X , , X , X X , X x X x X II x, 0 X 0 X x 1 0 0 0 1 IFF X 1 1 --- S·b,' add or add WIth carry. B·b,t mblr4Ct, aublrac:t With carTJ". and MQaie lIIcc:um.ulalor. a bllincrefllllni. a·blt decremlllnt. 16bltlldd 16·bltlKid wlthearry. Ift·blt,ubtr4Ctwilhcarry. lIot4l11o.ccumuw.tor Rotalll o.nd vult 1000Ilon•. Rot4111 doQ11 Lelt and rlQht. Dec,ft'lll .dlu,1 4ccumuialor. CompLeru.nl accumuialOr. Selc:arry Complemant <:IIIrry. Inpulrwq,_rtnd,rec!. 1 1 :} 81oc:1r. mput end output. Z • 0 II 8 ... 0 olhlllrw. . Z _ O. 0 0 :} 81oc:1r. traneier InIlruc"ho.... PlY .. I II BC ... O. ot:herw. . PIV - O. 1 81ocl:. _reh InlltrudlOl1&. Z .. 1 II A _ (HL). otMrwl.. Z _ o. PlY _ I Ii Be ... O. otharw... P/V _ O. T"" contlllnt of the tnte~rupt lllnable fhp·llop (IFF) .. COJHIId IDIo It. P/V 1I.q. The Mill! 01 bl' b 01 1oc4hon 1 " copied trllo the Z I~ Operatl_ Sign S "'" 1 If the MSB 01 the result is 1. Zero flag. Z = I if the result of Ihe oper"lion IS O. P",rdy or overllow fl(u;~. Panty (P) and overflow (V) share the S4me flag. LOCJlcal oper",hons affect thiS !lag with the p4rtly 01 the result while arithmetic oper4tlons affect thiS flag with the overflow altha result. 11 PlY holas p4nty. P/V :::: 1 II the result of the oper"hon IS even, P/V :::: 0 il result lit odd. tJ PlY holds overllow. 'P/V :z 1 If the result 01 the operallon produced an overllow. HaH·c",rry 114'1. H :::: 1 II the ",dd or sublr",ct operation produced 4 catTy mto or borrow lrom bit 4 01 the dccumuldtor. Add/Subtract N :: 1 If the preVious oper&hon was a subtract. H "nd N are used an conjunctla"n with the decirDtll adjust Instruction (DAA) to properly correct the result into packed BCD fOrm"t following ",dddion or subtr.schon uSing operands with pdcked BCD form"!. Carry/Link flag. C = I if the oper"'tion produced a carry from the MSB 01 the oper",nd or result. n"g. Q;ll"tlpoN loc;lcalopillratlOllll Symbol I o 1 X V n"q. n"qs R ()pe. 16-blt value In ranqe < O. 65535 > . I. U 010011 D3 n II 101 101 ED 01 r 001 II I. CIoAo - A7 810-'8 - AI5 21 eloAo - A7 SIoAa - AI5 X I X X X X I 11 101 101 ED 10 100 011 A3 I I X I 11101101 ED 10110 ell 8l a..... a.o OUTD 5 {!f8ttOJ X (liB_D) (l) CT'. "15 {IJ R-OJ -,...., B·O OUT (C). r mAs - (l) HL-HL-I DUr(n}·A Ac<:. (l) 8.0 DID 'H X 1 H X ",16 iU S .. OJ • ADD A .• : AOC A .• SUB •. sse A. I. CP •. NEG AND. OR I. XOR. INC. DEC. ADD DO... ADCHL... SBC HL . • RLA. IILeA. RRA. RRCA RL m. RLC m, RR m; RRC m. SLA m; SCF II ...... ,.......... (SP-21- I DM 10 lIlT "sr. I x SJlA m, SRL m RLD. RRD 11 001 001 C9 CClat_ IlErNI ap.r.u-.. Ie) - (HW 8-B-1 HL-HL-I R-,...Iunld B • 0 CPL U ......... IIETI 10 -ISP+l) ......... ---. BIT~ • 17 II cc 100 X • <:Au. .. BIT OTDII III" O. ..-.tt._Ul .... ..-u........... --.. . . . . . . . . . hfa·l~nll. . . Ullhe,."..< -Ill. Ill', . - l l............. _ _ _ _ .. _'*_"'pe . . . . PC .. CaDCIIICI ........ Groap "-Ie UJ. O. - .-2- UB.O, 1I011S: • ............. Output Group (Continued) X X X 12 5 IUS ... OJ • I. nloAo - A7 Ace. 10 As - AI5 CIoAo - A7 BIoAa - AI5 IUB-OJ • CD 1 I X X X Il01"l: (i)11 .... ~afl-I .. _tt.ZU'OIll ..........._II I II 101 101 ED 10 101 011 A8 I. CIoAo - A7 810 As - AI5 .. _ . 4 ~ ~ ~ 18410 ~ zaer DNA DIrect Me..ory Aceess Co.troller Zilog F_...... ...! D:: ",,:{, .::s{ Pin DeKrlpUOD this DMA la the addressed port il its CE pin and its WR or RD pins are simultaneously active. As an output, alter the DMA has taken control 01 the system buses, it indicates that the 8-blt or 16-blt address bus holds a valid port address for another I/O device involved in a DMA transler 01 data_ When 10RQ and Mi are both active simultaneously, an interrupt acknowledge is Indicated . MI. Machine Cycle One (input, active Low). Indicates that the current CPU machine cycle is an instruction fetch. It is used by the DMA to decode the return-from-interrupt instruction (RETI) (ED-4D) sent by the CPU. During twobyte instruchon fetches, is active as each opcode byte is letched. An Interrupt acknowledge is indicated when both and .fORO are active. MREQ. Memory Request (output, active Low, 3-state). This indicates that the address bus holds a valid address for a memory read or write operation. After the DMA has taken control 01 the system buSes, it indtcates a DMA --... ,y... }=' Ao-Als, System Address Bus (output, 3-state). Addresses generated by the DMA are sent to both source and destination ports (main memory or I/O peripherals) on these lines. BAl. Bus Acknowledge In (input, active Low). Signals that the system buses have been released for DMA control. In multiple·DMA configurations, the BAI pin of the highest priority DMA is normally connected to the Bus Acknowledge pin 01 th"e CPU. Lower-priority DMAs have their BAI connected to the BAO 01 a higher-priority DMA. BAO. Bus Acknowledge Oul (output, active Low). In a multiple-DMA configuration, this pin signals that no other higher-priority DMA has requested t' " system buses. sAl and BAO form d daisy clidin for multiple-DMA priority resolution over bus control. BUSREQ. Bus Request (bidirectional, active Low, open drain). As an output, it sends requests lor control of the system address bus, data bus and control bus to the CPU. As an input, when multiple DMAs are strun2..~ther in a priority daisy chain via BAI and BAO, it senses" when another DMA has requested the buses and causes this DMA to refrain from bUB requesting until the other DMA is finished. Because it Is a bidirectional pin, there cannot be any bullers between this DMA and any other DMA. It can, however, have" buller between it and the CPU because it is unidirectional Into the CPU. A pull-up resistor is connected to this pin. Chip Enable and Wail (input, active Low). Normally this functions only as a CE line, but it can also be programmed to serve a 'WXIf function. As a CE line from the CPU, it becomes active when WI! and iOl\O wwm. are active and the liD port address on the system address bus is the DMA's address, thereby allOWing a transfer of control or command bytes from the CPU to the DMA. As a WJ!JT line Irom memory or 110 deVices, alter the DMA has received a bus-request acknowledge from the CPU, it causes wait states to be inserted in the DMA's operation cycles thereby slOWing Ihe DMA to a speed that matches the memory or I/O device. m m CLK. System Clock (input). Standard l-80 Single-phase clock at 2.5 MHz (2-80 DMA) or 4.0 MHz (2-80A DMA). For slower system clocks, a TTL gate with a pullup resistor may be adequate to meet the timing and voltage level specificdtion. For higher-speed systems, use a clock driver with an active pullup to meet the VIH specification and risetime requirements. In all cases there should be a resistive pullup to the power supply of 10K ohms (max) to ensure proper power when the DMA is reset. Du-Dr. System Dolo Bus (bidirectional, 3-state). Commands Irom the CPU, DMA status, tmd data from memory or liD peripherals are transferred on these lines. Programming lEI. Interrupt Enable In (input, active High). This is used with lEO to lorm a priority daisy chain when there is more than one interruptdriven device. A High on this Hne indicates that no other device of higher priority is being serviced by a CPU interrupt service routine. lEO. Interrupt Enable Out (output, active High). lEO is High only il lEI is High and the CPU is not servicing an interrupt from this DMA. Thus, this Signal blocks lower-priority devices from interrupting while a higherpriority device is being serviced by its CPU interrupt service routine. INT/PULSE. Interrupt Requesl (output, active Low, open drain). This requesta a CPU interrupt. The CPU acknowledges the interr~ by pulling its 10RQ output Low during an MI cycle. It is typically connected to the INT pin 01 the CPU with a pullup resistor and tied to all other INT pins in the system. This pin can also be used to generate periodic pulses to an external device. It can be used this way only when the DMA is bus master (i.e., the CPU's BUSREQ and BUSACK lines are both Low and the CPU cannot see interrupt.). 10RQ. Input/Output Request (bidirectional, active Low, 3·.tate). As an Input, this Indicates that the lower haU 01 the address bus holds a valid 110 port address lor transfer of control or status bytes Irom or to the CPU, respectively; The 2-80 DMA has two programmable lundamental states: (l) an enabled state, in which it can gain control of the system buses and direct the transfer of data between ports, and (2) a disabled state, in which it can initiate neither bus requests nor data transfers. When the DMA is powered up or reset by any means, it is automatically placed into the disabled state. Program commands can be written to it by the CPU in eithpr state, but this auto~ matically puts the DMA in the disabled stale, which is maintained until an enable command is issued by the CPU. The CPU must program the DMA in advance of any data search or transfer by addressing it as an 110 port and sending a sequence of control bytes using an Output instruction (such as OTIR for the 2·80 CPU)" Writing... Control or command bytes are written into one or more of the Write Register groups (WRO- WR6) by lirst writing to the base register byte in that group. All groups have base registers and most groups have additional associated registers. The associated registers in a group are sequentially accessed by first writing" byte to the base register containing register-group identification and pointer bits (1's) to one or more of that base register's associated registers. This is illustrated in Figure 8b. In this figure, the sequence in which associated registers within a group can be written to is shown by the vertical position of the aSSOCiated registers. For example, if a byte written to the DMA contains the bits that identily WRO (bits DO, DI and D7), and also contains j's in the bit posHians that point to the associated "Port A Starting Address (low byte)" and "Port A Starting Address (high byte)." then the next two bytes written to the DMA will be stored in these two registers, in that order. 5 transfer request from or to memory. 111). Read (bidirectional, active Low, 3-state). As an input, this indtcates that the CPU wanta to read status bytes lrom the DMA's read registers. As an output, alter the DMA has taken control 01 the system buses, it indicates a DMA-controlled read "Irom a memory or 110 port address. RDY. Ready (input, programmable active Low or High). This is monitored by the DMA to determtne when a peripheral device aaaoctated WIth a DMA port ta ready lor a read or wrtlt> operation. Depending on the mode 01 DMA operation (Byte, Burst or Contlnuoua), Ihe RDY line indirectly controls DMA activity by causing the BUSREQ line to go Low or High. WIt Write (bldtrectlonal, active Low, 3-state) . As an input, this indicates that the CPU wants to write control or command byte. to the DMA write registers. As an output, alter the DMA has taken control of the system buses, "it indicates a DMA-controlled write to a memory or 110 port address. Reading, The Head Registers (RRO-RR6) are read by the CPU by addreSSing the DMA as an 110 port using an Input instruction (such as INIR lor Ihe 2·80 CPU). The readable bytes contain DMA status, byte-counter values, and port addresses since the last DMA reset. The registers are always read in a fixed sequence beginning with RRO and ending with RR6. However, the register read in this sequence is determined by programming the R'ead Mask in WR6. The sequence 01 reading is initialized by writing an Initiate Read Sequence or Set Read Status command 10 WR6. Alter a Reset DMA, the sequence must be imtialized. with the Initiate Read Sequence command or a Read Status command. The sequence of reading all registers that are not excluded by the Read Mask register must be completed before d new Initiate Read Sequence or Read Status command. Flx..t·Addr_ ProgrammlDIJ. A special cir· cumstance arises when programming a desH· nation port to have a fixed address. The load command in WR6 only loads a fixed address te> a port selected as the source, not to a port selected as the destination. Therefore, a fixed destination address must be loaded by temporarily declaring it a lixed-source address and subsequently declaring the true source as such, thereby implicitly m.aking the other a destination. • The following example illustrates the steps in this procedure, assuming that transfers dre 10 occur from a variable-address source (Port A) to d fixed-address destination (Port B): I. Temporarily declare Port B as soUrce in WRO. 2. Load Port B address in WR6. 3. Declare Port A dS source in WHO. Programming (Continued) 4. Load Port A dddress 10 WH6. 5. Enable DMA INT~':UE;r":~!.~) ! R.ad ftegiater 0 D, D. (I, I .. , 0, D, D. I II n. D. I x I I I .. STATUS 'HE I L-, l:".o,,"U"" ... saCCOIHIED - READY AClIVE : Zilog J.. STOil' 0" IIAICH : . Features I I II I I I ~o Z8420 Z80~ PIO Parallel Input/Output Controller ~ Writ. R.glalw 3 Gro,,"p WR6. Jtl 110-11,. Pori B Bus (bidirectIOnal, 3-state). This 11111,11( IYT£!O .. COMP .. IIIEI 8-bit bus transfers data, status, or control information between Port B a.nd a. peripheral device. The Port B data bus can supply 1.5 rnA at 1.5 V to drive Darlington transistors. So is the least slgnific,?-nt bit of the b~s. L==~==: :1i;~~~luPENDltjG Il • fND OF Il~~ aeadR.gtslerl Writ. l---r---l 11- TT]IYTECOUNTEfillOWIYlEl f. CUogp IYTE COUNTER tltlGH IYTE) '"'~~:! CONO"ItOQIlAI ,~ Roo.d Regillt«'" T I"OIIT I STARTING "OORIII ILOWOYTlI ~~~~ ~~~~~£U COUNTER T ITTJ O i CI : : I t i l I ;o.!!::r:"EI>SCOUNTEIl WrtleKegt.t.OGrov.p ...ll I !.L lNTIl:JlinU'T ON RI STAYUI AFFECTa VI :CIOIII .. , ~:!~~~l E':! I .. 'ULSI! OiNEIIAUD ~:T~l~I( I.T...RUPT { CO.TftOL 0,0. 0,°.0,0,0,0" ill .1_ t. I I I 1 'IUE IIEGII1'E" IYTE /!!,, ., 1 _ I'OIIT ._1'0111', I'OIIT A STAIIYlNG A£Kl.IIiEU YICTOII IS AUYo...nC"LL Y MODIFIED AS SHOWN ONlY.f "SlAIUS .."ft:cys ... t::CTOJliRIIIYIIIIIT {I ! . 0 , , 1 D 1 (lO.IYrE) I'0Il1 A STARTING ADOREA INTERRUPT ON lillY .. INURIIIUPl 0"1 M.. TCH .. INTEARU'l 01'1 END OF ILOCI( _INTERRUPTONMAICI1 AN~ ENII Of IlOCK Wrl,. ReglatlN"5Gra .. p =~;.::=aTH I' I n I I I 10 ill 01...SEAEOISTEIII_IYTf A.EADY "'CliVE lOW I _ llEADY ACTIVE MIGIH /1D-C!O"lLY Output Mode. ThiS Signal goes octive to indicate tha! the Port A outpul register has been loaded and the peripheral data bus IS stable and ready lor Iransler to the perIpheral deVIce. , - EWilf MULTIPLEXED Write 8.giahlr I Group Il, 0, U, 0, D, 0, 0, 10' ! i Il : , ~ : :1~~ ~:II~~~i'~'E~I(OF ILOCK 0" )l!O[O!.ARIIEGIITEIII'TE 1 . I"OI'll .lIS uo ~ ::g:~: :gg:~:: ~ ~ I- n ~ II 0, 0, 0, 0, 0, 0,- 0, 0. :g:EE::::: 100'" A"DOIIQ& FlliD ~ i I,! I I !, I, I USEMEGISTEIIIYTE I I I I t _. <_.~u_ IIOORT ....... IIIA.LE TIMINO .YTIl: II III I GENOIl '!!. (;:YCLE EAJliLT Input Mod•. ThiS signa} IS active when the Port A input register IS empty and rsady to accept data trom the 'penpheral deVIce. Writ. RegillllN" 6 Group l.1'01I1AISMEMOIIl n o .. CYCLE LUlIlTK .. ~ 0 I a CYCLE U"IGllf .. l : ~: ~c~n:Ttt 2 ill NOS '" CYCU EAIILY .. 1 .. IiiUiRi £NOCI '" CYCLE EAIILY " o .. 1NIlli ENOS v. II " I n;. Cl_ftIESH ,_ C7 ~ !IIESET POMT A TIMINO 0 ~ CI .. IIESH IOOftf I llMING , " ,,~O] _ , , " CYCU UJliU " 1 _ Cf Bidirectional Node. ThiS signal is active when data is dvalldble m the Port A output rSQlsler tor t.ransler to the perlpherdl deVIce. In thiS mode, data IS not placed on the Pori A data bus, unless ASTB IS <'Jictlve. ~ LOAD _ CONTlJoIUE Conlrol Mod.. ThiS slgn",1 IS disabled and forced to a Low st<'lte. _"'f. 1 GIS .... lEI .. TEIIIIUPTS "" .. I _ E .... lIlEINTEMflUPT5 0 ~ .. ) • RESET _111<10 OISAillE INTERRUPTI I ~ 11 .. EN"ILE .. HEARElI ~ : :: ; ASTB. Port A Strobe Pulse From Peripheral Device (input, active Low). The meaning of :~I~~r~:~~~Ss;!~~s DYTE this signal depends on the mode of operation selected for Port A as follows: Wrlile a.p... 2 GtotIp Dr Do 0. II. 0. 0. II, 0- 1.1 I I ! lolololUHltl;w~nlUYTI! Il l.""',." ....., l-fOIIIT . . . 1IO , • • • t ~ ~1 .. PORY I ADDAIU Dl!CIIIIIIENTa .. JI'OfIT I ADOIIEN INCRlE1IPI11 .. PORf'AODM"FIli.IU) II ! !.C~CL£LfNGTH"4 I I I I I I I I WlLNO&V.CYCU:IAllLT .. ! • DADe "" CTCU UN,y ... ~_I6C1'CUINILY.' IJIOIrfIVAJlLdUTlIMCUYTi Output Mod•. The posItive edge 01 thiS gtrobe IS issued' by the perlpher<'ll to acknowledge the receipt of data made aVllil<'lble by the PIO. D I .. 17" ENIoILEDMA " "" II" DlSAllEOIIA ~ I'! I I " 0 1 I RegIster A Ready (output, active H,igh). The meaning of this signal depends on the mode of operation selected for Port A as follows: L BlOCK LENGTH IttICiIHIYTIE) 110-1.7' Port A Bus (bidirectional, 3-state). This 8-bit bus transfers data, status, or control information between Port A of the PIO and a peripheral device. Ao -is the least significant bit of the Port A data bus. AHDY. tHIGH lYrE! 0,0,11,0.0.,0,0,0" I 8STB. Port B Strobe Pulse From PerIpheral Devlce (input, active Low). Thls signal is Pin D..cription 00 Noruu: m TRANSFlIl • IlEAACH -UAJlCl1ITfWIIIIFIUI 0-1"0111 I_I'OIITA This Signal is similar to ARDY, except that in the Port A bidirectional mode this signal is High when the Port A input register is empty and ready to accept data from the peripheral device. , T-1 -[TJ :;.0;; :~:RESS COUNTEJI R_d!logbleri i Ii -iEIIA:A:::s:~:L~::A'lEI IIII ~L-"A,","" Input Mode. The strobe is issued by the peripher<'Ji1 to iO<'ld data lrom the peripheral mlo the Port A input register. Ddla 15 loaded mto the PIO when thil> Signal is active. '---== IYTE on. COUtu;::" <.,",," "'.w on" IHllliK DYTEI POI'I! A ADDRESS (LOW ITTEt 1'0111 A ADOIIIE" \HIQI1IYTlEt Bidirectional Mod•. When thiS sigMI is active, data lrom the Port A output register 18 gated onlo the Port A bidirecbOMI data bus. The posihve edge 01 the strobe ocknowledges the receipt 01 the d.ata. 1'0111' I AIHIRES.,lO. IYTEI ~T I ADOIIIUS (MIG" IYTlI • ' " CYCLE l.aJtllTH .. a ".CTCLfLeNGTH_1 I 1 DOJeOfU8l! , .. i:RIQ\"'V.CYCLIUN.Y Conlrol Nod•. The strobe II inhibited internally. Slmildr to ASTB, except that In the Port A bidirectional mode this signal strobes data from the peripheral device into the Port A input register. C/O. Control Or Dota Select (input, High = C). This pin defines the type of data transfer to be performed between the CPU and the PIa. A High on this pin during a CPU write to the PIO causes the Z-80 data bus to be interpreted as a command for the port selected by the B/X Select line. A Low on this pin means that the Z-80 data bus is being used to transfer data between the CPU and the PIO. Often address bit Al from the CPU i. used for this function, CEo Chip Enable (input, active Low). A Low on this pin enables the PIO to accept com· mand or data inputs tram the CPU during a write cycle or to transmit data to the CPU dur,ng d read cycle. This signal is generally decoded from four lIO port numbers for Ports A and B, data, and control. CLI[. System Clock (input). The Z-80 PIO uses the standard singleR phase Z-80 system clock.. Do-07. ZBD CPU Dota Bus (bidirectional, 3-state). This bus is used to transfer all data dnd commands between the Z-80 CPU and the Z-80 PIO. Do is the least significant bit. lEi. Interrupt Enable In (input, active High). This signal is used to form a priority-interrupt daisy chain when more them one interruptdriven device is being used. A High level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine. FISJ1II'e lb. Wdt. Reg. . . . 6 /~ B). BHDY. RegIster B Ready (output, active High). ,0lllY!J sr .. JlillHO .. OOllEII [HIIlH IYTI!) R_dRegbIW.s = This pin defines which port is accessed during a data transfer between the CPU and the PIO . A Low on this pin selects Port A; a High selects Port B. Often address bit AI:J from the CPU is used for this selection function. CONTINUO' Rtoad Regilll ... 3 I i ! ' ! I I I I ~~:y~:flEi5COUHTER r- B/A. Port B Or A Select (input, High .~::! ! Re (41'8 with a 4 MH~ clock). The maximum timer interval is 256 x r; x 256 (16.4 ms with a 4 MHz clock). For longer intervals timers may be casCaded. laterrupt Vector. Progr-DIJ. If the Z-80 eTC has one or more interrupts enabled, it can supply interrupt vectors to the Z-80 CPU. To do so, the Z-80 CTC must be pre-programmed with the mast-significa~t five bits of the interrupt vector. Programming consists of writing a vE!clor word to the 1/0 port corresponding to the Z-80 CTC Channel O. Note that Do of the vector word is al.,-ays zero, to distinguish the vector from a channel control word. DI and D2 are not used. in programming the vector word. These bits are supplied by the interrupt logic to identify tbe channel requesting interrupt service with a unique interrupt vector (Figure 7). Channel 0 has ihe highest priori~y. "'T_O._~" 0 .. VECTOR [D>[..jiiJ 0.1 0,1 .. 10.1 .. 1 1 .. CONTROL WORD ~NTlHUED DI'E.....T1ON 1 _ SOFTWAIIE I!IESEr ~~~~~ TlllaC:ORST••T a .. NO TIME CONSTANT FOLLOWS 1 _ TIME CONSTANT fGU.OWS nMmI ........ • ~ .. ::E:c,.~:~IEL~:;:: L- rq.. !.. lo.! .. !.. I°,J .. 1 ....... VJ-Va-.J · ·SUI"PUlD L 0• _TIEtIIWI'T ';n.WORD 1 - COtITIKI&. WCMlD CHAMNELlOENTlAEtI (AUTa.A1lCaU'f tllllEllTI!D .'CTCIc.... N.. n. • 0_ • 1 _ CH"NNELl , a. CHANNR! 1·1. CttAtINElI 1 .. CLKIllIa PULSE sr..IITS TIMEfi "TIMUMODEONLY Fl_l. Fl_ 5. n_ Coutaat Ward ........ 7...-.opt V _ Wo«i C........l CoaIrol Wo«i 8 ~ ~ ~ Z8440 ~ Zilog Pin DftcrlplioD (Continued) ZSfr 110 Serial mput/Output ConlroUer f eatur.. "" r--- - ".~ l..fl..- ilt.n~ CU:. Syslem Clock (input). The SIO uses the standard l-80 System Clock to synchronize internal signlll5. This is a single-phase clock. CTSA, CTSB. Clear To Send (inputs, active Low). When programmed as Auto Enables, a Low on these inputs enables the respective transmitter. If not programmed as Auto Enables, these inputs may be programmed as general-purpose inputs. Both inputs are Schmitt-trigger buffered to accommodate slowrisetime signals. The SIO detects pulses on these inputs and interrupts the CPU on both logic level transitions. The Schmitt-trigger buffering does not guarantee a specified noiselevel margin. .-.... .~ ...., { CM"-rtI "TaMtU" CC*TMK. Pili o-alptioD RxCA, RxeB. Receiver Clocks (inputs), Receive data is sa.mpled on the rising edge of RxC. The Receive Clocks may be I, 16,32 or 64 times the data rate in asynchronous modes. These clocks may be driven by the 2-80 CTC Counter Timer Circuit for programmable baud rate generation. Both inputs are Schmitt· trigger buffered (no noise level margin is speCified). In the 2-80 510/0 bonding option, RxCB is bonded together with TxCB. Do-o,. . Figures I through 6 illustrate the three pin configurations (bonding options) available in the SID. The constraints of a 40-pin package make it~sBible to bring out the Receive Clock (RxC), Transmit Clock (TxC), Data Ter- minal Ready (DTR) and Sync (SYNC) signals for both channels. Therefore, either Channel B lacks a signal or two signals are bonded together in the three bonding options offered: SYNCB lacks i5TRl'i • 2-80 SI0/2 lacks • 2-80 slon • 2-90 SIOIO has all four signals, but TxCB and RxCB are bonded together The first bonding option above (SI0/2) is the preferred version for most applications. The pin descriptions are as follows: B/A. Channel A Or B Selecl (input, High selects Channel B). This input defines which channel is accessed during a data transfer between the CPU and the SIO. Address bit Ao from the CPU is often used for the selection function. C/O. Conlrol Or Data Select (input, High selects Control). This input defines the type of information transfer performed between the CPU and the SIO. A High at this input during a CPU write to the SIO causes the information on the data bus to be interpreted as a command for the channel selected by B/A. A Low at C/O means thdt the information on the data bus is data. Address bit Al is often used for this function. CE. Chip Enable (Input, acllve Low). A Low level at this input enables the S10 to accept command or data input from the CPU during a write cycle or to transmit data to the CPU during a read cycle, BIA, C/O, CE and RD to transfer commands and data between the CPU and the SIO. When CE, RD and 10RO are all active, the channel selected by B/A. transfers data to the CPU (a read operation). When CE and 10RO are active but RD is inactive, the channel selected by BIA. is written to by the CPU WIth either data or control information as speCified by C/O. If 10RO and Ml are aclive simult"neously, the CPU is acknowledging an interrupt and the SIO automatically places its interrupt vector on the CPU data bus if it is the highest priority device requesting an interrupt. Mi. Mochme Cycle (input from 2-80 CPU, active Low). When M1 is active and RD is also active, the 2-80 CPU is fetching an instruction from memory; when M 1 is active while IORQ is active, the SIO accepts MI and 10RQ as an interrupt <'!cknowledge if the SIO is the highest priority device that has interrupted the 2-80 CPU. System Data Bus (bidirectional, 3·state). The system data bus transfers data. and commands between the CPU and the 2-80 SIO. Do is the least significant bit. DeDA. DeDS. Dolo Carrier Delect (inputs, active Low). These pins function as receiver enables if the SIO is programmed for Auto Enables; otherwise they may be used as general-purpose input pins. Both pins are Schmitt-trigger buffered to accommodate slowrisetime signals. The SIO detects pulses on these pins and interrupts the CPU on both logIC level transitions. Schmitt· trigger buffering does not guarantee a speCific noise-level margin. RD. Read Cycle Status (input from CPU, active Low). If R5 is active, a memory or 110 re~d ~ration.J.~r: progress. RD is used with BI A, CE and 10RO to transfer data from the 510 to the CPU. RxDA. RxDB. Receive Dala (inputs, active High). Serial data at TTL levels. RESET. Resel (input. active Law). A Low DTfIA. DTRS. Data Termmal Ready (outputs, active Low). These outputs follow the state programmed into 2·80 SIO. They can also be programmed as general· purpose outputs. In the 2-80 SIOII bonding option, DTRB is omitted. RESET disables both receivers and transmitters, forces TxDA and TxDB marking, forces the modem controls High and disables all interrupts. The control registers must be rewritten after the SIO is reset and before data is transmitted or received. lEI. Interrupt Enable In (input, active High). ThIS signal is used with lEO to form a priority daisy chain when there is more than one interrupt-driven device. A High on this line indicates that nO other device of higher priority is being serviced by a CPU interrupt service routine. RTSlI.. RTSB. Request To Send (outputs, aclive Low). When the RTS bit in Write Register 5 (Figure 14) is set. the RTS output goes Low. When the RTS bit is reset in the Asynchronous mode, the output goes High after the transmitter is empty. In Synchronous lEO. Interrupt Enable Out (output, active High). lEO .. HIgh only if lEI IS High and the CPU is not servicing an interrupt from this 510. Thus, this signal blocks lower priority devices from interrupting while a higher priority device is being serviced by its CPU interrupt service routine. modes, the RTS pin strictly follows the state of the HTS bit. Both pins can be used as generalpurpose outputs. SYNCA. SYNCS. SynchronizatIOn (inputs/outputs, active Low). These pins can act either as inputs or outputs. In the asynchronous receive mode, they are inputs similar to CIS and DCD. In this mode, the transitions on these lines affect the state of the Sync/Hunt status INT. Inlerrupt Request (output, open drain, active Low). When the SIO is requesting an interrupt, it pulls INT Low. IORQ. Input/Ql1lput Request (input from CPU, active Low). IORQ is used in conjunction with 9 bns in Read Register 0 (Figure 13), but have no other function. In the External Sync mode, these lines also ect 6£1 inputs. When external synchronization is achieved, SYNC must be dri ven Low on the.second fialQQ edge of RxC after that rising edge of lixL: on which the last bit of the sync character was received. In other words, after the sync pattern is detected, the external logiC must wait for two full Receive Clock cycles to activate the SYNC input. Once SYNC is forced Low, it should be kept Low until the CPU informs the external synchronization detect logic that synchroniza.-tion has been lost or a new message is about to start. Character assembly begins on the rising edge of RxC that immediately precedes the foiling edge of SYNC in the External Sync mode. In the internal synchronization mode (Monosync and Bisync), these pins act as outputs thd.t are active during the pc"Irt of the receive clock (RxC) cycle, in which sync characters are recognized. The sync condition is not latched, so these outputs are active each time a sync pdttern is recognized, rega.rdless of character boundo.ries. In the Z-BO SI0/2 bonding option, SYNCB is omitted. T;;CA. Transmiiter Clocks (inputs). In asynchronous modes, the Transmitter Clock.s may be I. 16. 32 or 64 times the ddta rate; however, the clock multiplier for the transmitter and the receiver must be the same. The Transmit Clock inputs are Schmitt-trigger buffered for relaxed rise- and fall-time requirements (no noise level margin is specified). Transmitter Clocks m.y be dMven by the 2-80 CTC Counter Timer Circuit for programmable baud rate generation. In the Z-BO SIOm bondlnQ option, ~ Is bonded l&1elhei' 'WIth !!XL:n. bDA, TxDB. Transmil Dala (outputs, active High). Serial data .t TTL levels. TxD changes from the falling edge of TxC, W/RDYA, W/RDH. Wail/Ready A, Waif! Ready B (outputs, open drain when programmed for Wait function, driven High and Low when programmed for Red.dy function). These dual-purpose outputs may be programmed as Ready lines for a DMA controller or as Wait lines that synchronize the CPU to the SIO data rate. The reset state is open drain. r;cs. Programming' The system program first issues d series of commands that initialize the basic mode of operation and then other commands that qualify conditions within the selected mode. For example, the asynchronous mode, character length, clock rate, number of stop hits. even or odd parity might be set first; then the interrupt mode; dnd finally, receiver or transmitter enal!e. Both channels contain registers that must be programmed via the system program prior to operation. The chdIlnel-selecl input (B/A) and the control/data input (ClDi are the command· structure addressing controls, and aTe normally controlled by the CPU address bus. Figures 15 and 16 illustrate the timing relationships for programming the write registers and transferring data and status. Read Reglat.... The SIO ccntains three read registers for Channel B and two read registers for Channel A (RRO·RR2 in Figure 13) that can be read to obtain the status information; RH2 cont~ins the internally-modifiable inter'rupt vector and is only in the Chdnnel B register set. The status information includes error conditions, interrupt vector and standard communications-interface sign.lls. To read the contents of a selected read register other than RHO. the system program must- first write the pointer byte to WHO in exactly the same· way as a write register .operation. Then, by executing a read instruction, the contents of the addressed read register can be read by the CPU. The status bits of RRO and RRI are carefully grouped to simphfy status monitoring. For example. when the interrupt vector indicates that a Special Receive Condition interrupt has occurred, all the appropriate error bits can be read from a single register (RRl). Write Regtaten. The SIO contains eight write registers for Channel B and seven write WRO is a special case in that all of the basic commands can be written to it with a single byte. Reset (mternal or external) imtializes the pointer bits Do-D2 to point to WRO. Th,s implies that a channel reset must not be combined WIth the pointing to any register. ProgrlllllDllDII (Continued) WRITE REGISTER 0 WRITE REGJStER " 10" .. 1.. 10.\ .. 1.. 10,1 .. , ,t ,I IIEOISTEIIO ,,, 0,, IIEGISTEII1 IIEGISTER: AEOISTEAJ ,, ,, REGISTEIiI ,, ,, :::::~~:: MEG!aTf.II1 10,10.'0.1 0.1 .. 1.. 10,1 .. 1 o READ REGISTER 0 0 0 , 0 1 0 I I L -.. AAITYEN .... I.L. ..IdIIITYEVENIODD D SYNC MDDCS ENULE 1 1STOfOSITICHAI'I...CTEII 1'It STOP8ITSlCKA,,",CTEIII 1 2 STOP BlTIICHAJlACTEII o ~ ~IS~~TS;~;CC::~ NULLCC SENOAI OAT (SDt.Q IIESETI! 'ISTAruIUrfTEIIIWI"TI o ..... ! : f E:r~ (I 1.. 10.1 .. 10.1 0,1 .. 10,1 .. 1 o 1 L..== 1111 ~t .L-•• INTCH PEHOING ICH .... OHL VI ,""'"'''''''''' Ta SUFFEIIEII~TY ~:Cl"UNT : o } C" , o TaUNDEIiRUNlEOIi SfiEAlUA&C)IIT 1 ~ ~ ::r"8:': '" IlOMINTICH-ADNLY) NULL CODE IIf.SET II. CIIC CHECKER IIflET T. CRC dENfUTDA IIINT T. UNOERNlNIEOII UTCH ·Vs.eDW,tn hleonallSla'us Inl."U(lII/lOCle READ REGIStER It III L-AC"EN' .!: '..:: ~ , , , D ~ ~AIIITYfllIlO. II. OVEIIIWN EItROR CIlCIFIlAIIINGEliItOIt I!NDOFFIIAIIEIIDLCi TUHd W'Ih-5pe-t,,,~.,,, TV'''_~ STAT~ ICH.SONLY) o , R. INT OH 'IIIIT CHAAACTP , .0 !NT ON ALL , CNAllACTEIIII"AIIJTY AFFECTS YECTOII} } INT 0loI ALL b CHAIlACTEIIS ",AIII" DOH NOT """ICT ·QooJn IlEADV ON lIlT EADVFUNCTlOlII I ~~}~=~ WRITE REGIStER 2 (CKAIRIEL • OIU.Y) WRITE REGIStER • 1.. 1.. '0.10.1 .. 1.. 10.1 .. 1 1111 J ~~~~ll} WRITE REGIStER I WlllTE REClSTEIl 7 ' .. I~lo.l .. I.. I.. loN 1.. 10.10.1 .. 1.. 10.10.10.1 II.L.::::......" ~E~c.r.;!~~=:::.-g L.~========~~III~~ FI....... '3. -Regia... III F........... II. J"TSlCMA""CTEIII 1 Ib 7 'ITS/CHAMCTfli II A. . . .TIICHAIIACTU 1 R•• 8IrliCHAIlAC-TUI • registers for Channel A (WRO- WR7 in Figure 14) that are programmed separately to configure the functional personality of the channels; WR2 contains the interrupt vector for both channels and is only in the Channel B register set. With the exception of WRO, programming the write registers requires two bytes. The first byte is to WRO and contains three bits (00-0:2) thai point to the selected register; the 'second byte is the actual control word that is written into the register to COl"' figure the SIO. Of • 1.. '.. 10.10.1 .. 1,,'0,1 .. 1 IIII SlalUSAliltClS o;P.og •• n ...... ".r.'IITIIC~" ConOollO'l IIII~U~~- Con",,_..- L. 0 hS8ITSiOllLEUjlCHAIlACTIJI • , .,.7 8/TSlCH.. IIACTEII l O T•• 8ITllCHoUIACtH Spec ...1 i'JIEAOyEItAaLI ·Resollue DMlolfa, lO,gnl R. B"..ch.'acle" Plog'~mmea ~ I ~i::::U II -=======~~ o E , [DtTo.TIi,It>, i~IDllo.lo.l V.CIOI ID.(o.lo.ID.I~ID,!D,!a.1 1 READ REGISTER 2 1111 WJU1'E REGISTER 5 .OIl.INT~LE I FIELOsn, IFIELDln.1N ) IN ~IIf.VJOI3 HCOtoID HlEVJOUI SYTl SYVE .D WIU1'E REGISTEIl 1 10" .. 1.. \0.10.1 .. 10"0.1 L-.,,, .., •••OUE ~ L-=::f.INTEtlASU: AFI'ICU VlCTCMI ~lli' ""'..., I I. IDdo.!D.!o.lo,!o.lo,!DoI IDLC MODt: (lHn no FLAGI EXTERNAL SYNC IIOH D .1 CLOCI( MOOI! , XllCLOCKIIOH • X:12 CLOCK MOot , .... CLOC.. ~ :~To:.:ro.~b CHARACTEII IVNC"f' I"NC"TF llll'~~~lli} . lYtIC SIT'. lYtIC lIT II ·FD- " .. A ... " " [ .... L R!I CAT Il007 VAll- • AOORESS BUS VPAC· oft vg~' 51 \ll.T • Sl.' ~ 0 R3 Ft2 Wl!m ~CKE"ClK ~ DIN 7~' CRT!IOO6 SINGLE ROW BUFFEA ' I 4 1 1 B U S OOUT1-' (IE' He Rl R CUFtSOR VSVNC J RETBl LDISI'I ATTRIBUTES CAT IlOO2 YOAC" o J 'ct:tIt C\J S A T A }i - CIII.ANI( A riDn IG~~ORI VDC CI4AAACTERIATTRlIIUTElI GENERATOR 1\7-' TO VIDEO ( IoiONITOR FIGURE 6: CRT 9007 CONFIGURATION WITH SINGLE ROW BUFFER ---,L-......-l:-----------(111----------_, ...__------__ .. ____ ...._-..h! n I!-_ _----tl ~;- VLT • I I I eo _ _ , I 'I: ""'- I I l 11[: .074 ~: VA1~ lij~qij ~- . 0 • ~I jr-----------~--------------- !! : \'1..____-;.-_________ .l 0: 0 • liJI--~IM:::':P~~~AN~H=CE:::-r------ li,'L i 0 0:: 0 . I(CLOCKS 'CLOCKS CURS: _l)fj~tiJ:=:fl:a-vCURSOR AT 5TH CHARACTER POSITION :-4'1." IF 2XH OR :..-.n (NO SKEW) ' - - - ' OR n 5 CLOCKS: 2XW '----~ ~~ c[&d i; I SL3-0 I 2XW STABLE COUNT~: ----.. II STABLE COUNT • FIGURE 7: CRT 9007 SINGLE ROW BUFFER TIMING (32 CHARACTERS PER DATA ROW) 4 ( Double Row Buffer Operation Figure 8 shows the CRT 9007 used in conjunction with a CRT9212 Double Row Buffer. The Double Row Buffer has a read buffer which is read at the painting rate of the CRT. during each scan line in the data row. WhOe the read buffer",.·., is being read and supplying data to the character generator for the current displayed data row, the write buffer is being loaded with the next data row to be displayed. This arrangement allows for relaxed write timing to the write buffer as it may be filled in the time it takes for N scan lines on the CRT to be painted where N is the number of scan lines per data row. Used in this configuration, the CRT 9007 takes advantage of the relaxed write buffer timing by stealing memory cycles from the processor to fill the write buffer (Direct memory access operation). The CRT 9007 sends the DMAR (DMA request) signal, awaits an ACK (acknowledge) signal and then drives out on VA 13-VAO the address at which the next video data resides. The CRT 9007 then activates the WBEN (write buffer enable) signal to write the data into the buffer. If for example there are 80 characters per data row, the CRT 9007 performs 80 DMA operations. The user has the ability to program the number of DMA cycles performed during each DMAR-ACK sequence, as well as PROCESSOR the delay between each DMAR-ACK sequence, via the DMA CONTROL REGISTER (RA): If 8 DMA operations are performed for each ACK received, 10 such ~MAR-AC?K seque.nces must be performed to completely fill the wnte buff~r. The programmed ~elay allows the user to evenI)' dlstnbute the DMA op~ratlons so as. not to h?ld up the process,?r for an excesslv~ length of time. This feature also permits other DMA devlce~ tobe used and a!l~ws the processor to r~~pond ~o real time events. In addition, the ,:,ser has the ~bllrty to dlsa.ble t~e. CRT 9OP7 DMA mechanls~. Rgure 9 Illustrates typical timing for the CRT 9007 used with the CRT 9212 Double Row Buffer. Since the CRT 9212 Double Row Buffer has separate inputs for read and write clocks (RCLK, WCLK), it is possible to display proportional character widths (variable number of dots per character) by reading out the buffer at a character clock rate determined by the particular character. The writing of the buffer can be clocked from a different and constant character clock. Figure 10 illustrates the CRT 9007 used with two double row buffers and a CRT 9021 Video Attributes Controller chip to provide proportional character display. INTRf---------------, /lPi/IC ...C K I - - - - - - - . . . . , DM ...ROf------, ...ODR OAT... DMAR MEMORY ... RAM VIDEO RAM ... ROM ...ODRESS BUS ... .. . ACK GND INT CRT 9007 YPAC· V07-' lWE N IlRl! SLD VI T B U 1 !1m lJ ... ...T r! CRTDOUBlE1212 -..JI., ... ,.. +5V v""~, o 5 111 RST ! CURS 74378 ~ J aaac ~~.~~ DCIUT'''I--- l~~J1"'TTRIBUTES y __..:..j CRT8OO2 "-----,.1>."IJ IIE:.--_ ' - - _......11 ...7-. ~-----~ CHARACTER/... GENERATOR I VDCI----..... VDAC'· TTRlBUTES AOWBUFFER I~~ORI VlDEOI-------~ITOR '----------~ FIGURE 8: CRT 9007 CONFIGURATION WITH DOUBLE ROW BUFFER HS ---,L--J.. _____ --- . . ,r-"'---------------. . --L-Jr--______ ~- ~T_,~ ORB--,~ ~ _______ ~- ~~--------··~U~--------------~ ____________________________________ ACK ---l}-~ _______··~I ( ~ I .... 16 OMA CYCLES -1.8 DELAY,,", VA1~----~1J~~~~~~;t--------~Jn~~~~~~j-----------Bilili~-----------------VD7-8 x x x WBEN CURS FIGURE 9: CRT 9007 DOUBLE ROW BUFFER TIMING (32 CHARACTERS PER DATA ROW) ( INTR PROCESSOR ACK DMARa DATA AD"" • ... MEMORY ROM RAM VIDEO RAM :. '" , .. DMAA ACK J. . INT H! V,,1M r ADDRESS BUS CRT 9007-VPAC'" -'" 'r---Y YO'" .A.. 'Ii -y , D1N7" SCAN LINE DATA r oy ...... I;lK 00\IT7.. CRT 9212 DOUBLE ROW BUFFER -'" .. , WI;; -'" -'" ... CHARACTER WIDTH CHARACTER ROM "n·oM r L....J..., -,I CHARACTER ATTRIBUTES ... • r • ,t,,7 .. " CRT 9021 VOC r-- IHCl ATTRIBUTES VIDEO VIDEO ATTRIBFRS CONTROLl R FIGURE 10: CRT 9007 CONFIGURATION FOR PROPORTIONAL CHARACTER DISPLAY 6 ~ I-CHAR. CODE . ooun-l CLOCK GENERATOR r---- CRT 9212 DOUBLE ROW BUFFER DIN'" TO MONIT OR = BUFFER CONTROLS DATA BUS } VI TOMONITOR ( Repetitive Memory Addressing Operation In this operation mode, the CRT 9007 will repeat the sequence of video addresses for every scan line of every data row. The CRT 9007 address bus will enter Its high Impedance state during all horizontal retrace intervals (except the retrace interval at a data row boundary If the CRT 9007 is configured ina row driven addressing mode). This arrangement allows for such low end contention schemes as retrace intervention (the processor is only allowed access to video memory during retrace intervals) and processor priority (the processor has an unlimited access to video memory). A high end contention scheme can be employed which uses a double speed memory such that in a single character period both the processor and the CRT 9007 are permitted access to video memory at predetermined time slots. Figure 11 Illustrates the CRT 9007 configured with a double speed memory. Typical timing for this mode is illustrated in figure 12. . INTRI-.------------------, PROCESSOR "P/"C ADORt--_ _. , DATA D A ROM RAM l n II! CRT 9007 VPACTM VIDEO RAM }! vs ~ CURS CBLANI( CURSOR RETBL ATTRIBUTES DCLI( ..Il.rt.I1..Il. U-L- U cct:R n-.J VIDEO RAM ADDRESS n! -::::::J. rVPAC X PROCESSOR X VPolC ~ESSOA '------,1/ A7., CRT 8002 VDACTM CHARACTER/A ITRIBUTES GENERATOR VSYNC VIDEO TO MONITOR ~ DCLI( CLOCK GENERATOR CCLI( T1 T2 FIGURE 11: CRT 9007 CONFIGURATION WITH DOUBLE SPEED MEMORY • FIGURE 12: CRT 9007 REPETITIVE MEMORY ADDRESS TIMING (32 CHARACTERS PER DATA ROW) 7 Attribute Assemble Operation This configuration allows the user to retain an 8 bit wide video memory in which attributes occupy memory locations but not positions on the CRT. This mode assumes that every other display position In video memory contains an attr!· . . buteo During one clock cycle, attribute data Is latched into the CRT 9007; during the next clock cycle a character location Is addressed. The attribute data is driven out along with a WBEN Signal allowing the character plus its associated attribute to be written simultaneously to two 8 bit double row buffers. Fi~ure 13 illustrates the memory organization used for the Attnbute Assemble mode. The first entry in each data row must begin with an attribute. Figure 14 shows the CRT 9007 configured in'the Attribute Assemble mode used with two CRT 9212 Double Row Buffers and 8, 16Kx1 dynamic RAMS. This mode, since it retains an 8 bit wide memory while providing all the advantages of a 16 bit wide memory, lends itself to some cost effective designs using dynamic RAMS. The CRT 9007 will refresh dynamic RAMS because twice the number of the programmed characters per data row are accessed sequentially for each data row. * Figure 15 illustrates typical timing of the CRT 9007 used in the Attribute Assemble mode. Memory Addr8III (typ) Memory Data (8 bits) uooo AllrlluteO 0001 Character 0 0D02 AIIrbIte 1 0003 Character 1 o o o 0 0 0 2N Attribute N . 2N+1 CharacterN Figure 13: Attribute Assemble Memory Organization ·Note: For 50 Hz operation there usually is about 3 milliseconds extra vertical blanking where refreshing might fail. In this situation the CRT 9007 can be programmed with about 5 more "dummy" data rows while extending the vertical blank signal. This allows the CRT 9007 to start addressing video memory much earlier within the vertical blanking interval and hence provide reftesh to the dynamiC RAMS. When displaying double height or double width data rows, only half as many sequential locations are accessed each data row and dynamic RAM refresh might fail. PROCESSOR .... """" ,. ""TA • '"'" DMAAC - I-r--_ IIQ CQ 3"~~ ( lOT ~ """ . """ 1-'- OM A--~ RAMS A 07.. Y J.. ,.. A T .(: ~'" . -v' """ OfT ""M . CRT 9007 VPAC fM 1107.. IlCll! WIlEN'" VLT CtJAS Ill! lUI TO MONITOR " '*- " B U S ............ ~I - nr C~T~ IICU Mn ~""TA -"OOUBl£ ROW BUFFER"""" (ATTRIBUTES) II! .J 1 t , t J.-.... t t VOEN--crr~1I!B IIIICIR ;t-4DOUBlE ROW BUFFER"""" (DISPlAy) II! YI I 10 1111 'i~ . . . .t . . IIDa.....&..DtIR..,.. .. I L. .... 'Q':" :'t r .....,... ... CRT 8002 VDAC" . CHARACTER/ATTRIBUTES GENERATOR FIGURE 14: CRT 9007 CONFIGURATION FOR ATTRIBUTE ASSEMBLE MODE 8 rM1 V IDOT~1 ---J ..... - ......, GENERATOR TO Smooth Scroll Operation Smooth scroll requires that all or a portion of the screen move the data row that starts the smooth scroll interval. To allow up or down an integral number of scan lines at a time. 2 user complete flexibility in smooth scroll direction and rate, one pr~rammable registers allow one to define the "start data can update the offset register In the positive as well as negrow • and the "end data row" for the smooth scroll opera~ . ative direction and can also offset any number of scan lines tIon. A SMOOTH SCROLL OFFSET REGISTER (R17). each frame. Since a smooth scroll can momentarily result when used in conjunction with a CRT 9007 vertically timed In a partial data row consisting of one scan line, the loading interrupt, allows the user to synchronize the update of the of the write buffer under DMA operations for the start and offset register to the vertical frame rate. The offset register end data row of the smooth scroll operation is forced to occur causes the scan line counter outputs of the CRT 9007 to in one scan line. This condition ovenjdes the programmastart at the programmed offset value rather than zero for ble DMA CONTROL REGISTER (RA). ~~r::::~·~'-~--~Q~""'''''''''''-VlT 1 ...._ _ _ _.... r _...............~n~------- ORB --,....____.....___.....___..........___....................______.....___~r-.....---...............---..........~"~------- ooo~ WBEN • DMA cycles will always end at a character fetch FIGURE 15: CRT 9007 ATTRIBUTE ASSEMBLE TIMING (32 CHARACTERS PER DATA ROW) 9 ADDRESSING MODES Row Table Addressing .ri In this addressing mode, each data row in video memory is designated by its own starting address. This provides greater flexibility with respect to screen operations than with other addressing schemes used by previous CRT controllers.· The row table, which is a list ('jf starting addresses for each data row, can be configured in one of 2 ways. The choice of row table format is highly dependent upon the particular application and the programmer's preference since each format allows full utili~ation of the CRT 9007 features, T~~~ . : l. Row Table In Memory .~ '" .,..:.. ..... ~:... C . o . ." E I :.,- . . .. .. F 0 0 0 lsi Char 2nd Char Contiguous Row Table Format In this format, the TABLE START REGISTER (RC and RD) points to the address where the row table begins. The contents of the first 2 locations define the starting address of the first data row. These 2 bytes define a 14 bit address where the first byte is the low order 8 bits and the second byte is the high order 6 bits. The 2 most significant bits of the second byte define double height/width characteristics to the current data row. The contents of the third and fourth locations define the address where the second data row begins. Figure 16 illustrates the contiguous row table organization in video memory. lsi Dala 0 0 0 Lasl Char Row 0 0 0 lsi Char 2nd Char 2nd 0 0 0 Dala Row Lasl Char Linked List Row Table Format 0 0 In this format the TABLE START REGISTER (RC and RD) paints to the memory location which starts the entire addressing sequence into operation. The first byte read is the lower 8 bits and the second byte read is the upp.er 6 bits of the next data row's start address. The 2 most Significant bits of the second byte define double height/width characteristics for the data row about to be read. The third, fourth, fifth, etc., bytes read are the first, second, third, etc., char· acters of the current data row. Figure 17 illustrates the linked list row table organization in video memory. Table Start Register lsi Char 2nd Char 3rd Dala 0 0 0 Row Lasl CIlar FIGURE 16: CONTIGUOUS ROW TABLE ADDRESS FORMAT ( I Row table address for second data row ~ I Byte 1 I Byte 2 I Byte 3 I Byte 4 I , I 000 I Byte N I 'V characters for first data row J Row table address for third data row ~ I Byte 1 I Byte 2 I Byte 3 I Byte 4 I 000 I Byte N I c.~ l V characters for second data J row FIGURE 17: LINKED LIST ROW TABLE ADDRESS FORMAT Sequential Addressing In this addressing mode, characters on the display screen are located in successive memory locations. The TABLE START REGISTER (RC and RD) paints to the address of the first character of the first data rowan the screen. In this mode the TABLE START REGISTER does not point to the start of a table but the start of the screen. As each character 10 is read by the CRT 9007 for display refresh, the intemal video address register is incremented by one to access the next character. For more versatile systems operation in the sequential addressing mode, SEQUENTIAL BREAK REGISTER 1 (R10) and SEQUENTIAL BREAK REGISTER 2 (R12) may be used to define the data rows at which two additional () sequential display areas begin. Note that DATA ROW END REGISTER (R12) is defined as SEQUENTIAL BREAK REGISTER 2 (R12) for the sequential addressing mode only. The starting addresses for these two additional display areas are defined by AUXILIARY ADDRESS REGISTER 1 (RE and RF) and AUXILIARY ADDRESS REGISTER 2 (R13 and R14). When the raster begins painting a data row equal to the number programmed in one of the sequential break registers, the CRT 9007 addresses the video memory sequentially starting with the address specified by the corresponding auxiliary address register. Figure 18 illustrates a display with 80 characters per data row having sequential breaks at data rows 3 and 6. Usin9. the sequential addressing mode with 2 breaks, it is possible to rolla portion of the screen and keep the rest of the screen stable. Double height/width characteristics can be attached to the 2 sequentiallv addressed screens defined by SEQUENTIAL BREAK REGISTERS 1 and 2 by using the 2 most significant bits of AUXILIARY ADDRESS REGISTERS 1 and 2. See the description of these 2 registers for their bit definition. Double HelghtIWidth Operation When double height/width characters (2XH/2XW) are displayed, the following will occur: 1. the CRT 9007 will address half as many characters for each data row by incrementing its address every other character clock. 2. the high speed video shift register supplying serial video to the CRT must shift out dots at half frequency. 3. For double height, the scan line counter outputs (SL3SLO or SLG, SLD) are incremented every other scan line. The CRT 9007 is informed of the double height or double width display modes via the 2 most significant bits of the row table address or the 2 most significant bits of the AUXILIARY ADDRESS registers depending on the selected addressing mode. In any case, once the information is obtained by the CRT 9007, it must initiate the 3 tasks listed above. Tasks 1 and 3 are performed as appropriate and task 2 is performed using the CURS output of the CRT 9007 during CBLANK (horizontal retrace) to signal the external logiC that a change in the dot shift frequency is required. Tile exact time of activation and deactivation of the CURS signal during horizontal retrace is a function of addressing mode, operation mode and actual scan line number to be painted. Tables 1 and 2 show the cursor activation and deactivation times as a function of the buffer configuration and addressing mode for the top scan line of a new data row. Tables 1 and 2 assume a cursor skew of zero. A cursor skew will effect the cursor position during trace as well as retrace time. For all subsequent scan lines, the CURS Signal is activated 3 CCLK's after VLT trailing edge and stays active for exactly 1 CCLK assuming no cursor skew. When the cursor is placed on a double height or double width data row, it will become active for 2 CCLK's to allow the cursor to be displayed as double width. If the cursor position is programmed to reside OPERATION MODE Repetitive Memory Addressing I Single row buffer Double row buffer ADDRESSING MODE Row Driven (linked list or contiguous) Sequential 1 CCLK after high byte 1 CCLK afler TSC of row table read leading edge 1 CCLK after high byte 1 CCLK after TSC of row table read leading edge" 1 CCLK after high byte 1 CCLK after ACK leading edge of row table read Table 1: Double HelghtIWldth CURS activation for top scan line of new data row. TABLE START REGISTER = 1000 AUXILIARY ADDRESS REGISTER 1 = 2000 AUXILIARY ADDRESS REGISTER 2 = 0800 SEQUENTIAL BREAK REGISTER 1 = 3 SEQUENTIAL BREAK REGISTER 2 = 6 o.t.Row o 1 2 3 4 5 6 7 8 Address range 1000 to 104F 1050 to t09F 10A0 to fOEF 2000 to 204F (Break 1) 205Oto209F 2OA0to20EF 0800 to 084F (Break 2) 085Oto089F 08A0to08EF o o o Figure 18: Sequential Addressing Example With Two Breaks in the top half of a double height data row, it may become active for all scan lines in both the current and next data row to allow the cursor to be displayed as double height. For row driven addressing, a particular data row or pair of data rows can appear in one of the following ways as a function of the two most significant bits of the row table address (bits 15 and 14). -Single height, single width (Row table address bits 15, 14 = 00). The CRT 9007 will display the particular data row as single height, single width. -Single height, double width (Row table address bits 15, 14 = 01). The CRT 9007 will display the particular data row as single height double width by accessing half as many characters as appear in a single width data row. The CURS signal becomes active during horizontal retrace in the manner described previously. -Double height, double width top half (Row table address bits 15, 14 = 10). In addition to providing the special tim-. ing associated with single height double width data rows, the scan line counter is started from zero and incremented every other scan line until N scan lines are painted (N is the number of scan lines per single height data row). . In this way, new dot information appears every other scan line and the top half of the data row appears in N scan lines. -Double Height, Double Width Bottom Half (Row table address bits 15, 14 = 11)-Same as Double Height, Double Width Top except the scan line counter is started from N/2 (or (N-1 )/2 if N is odd), and incremented every other scan line until N scan lines are painted. In single row buffer operation, a double height bottom data row can never stand alone and is assumed to follow a double height top data row. OPERATION MODE Repetitive Memory Addressing Single row buffer Double row buffer ADDRESSING MODE Row driven (linked list Sequential or contiguous) at the leading edge of at the leading edge of VLT VLT at the leading edge of at the leading edge of VLT VLT 1 CCLK after leading 1 CCLK after leading edge of CURS edge of CURS Table 2: Double HelghtIWldth CURS deactivation for top scan line of new data row. 11 PROCESSOR ADDRESSABLE REGISTERS All CRT 9007 registers are selected by specifying the address on VAS-Q and asserting CS. All 14 bit registers are written or read as two oonsecutive 8 bit registers addressed low byte first. Only the VERTICAL CURSOR REGISTER and the HORIZONTAL CURSOR REGISTER are readlwrite registers with 2 different addresses for read or write operations. The register address assigned to each register represents the actual address in hexadecimal form that must appear on VAS-O. Figure 2 illustrates all processor to CRT 9007 register timing. Tables 3a, 3b, and 3c summarize all register bits and provide register addresses. HORIZONTAL TIMING REGISTERS The following 4 registers define the horizontal timing parameters. Figure 19 relates the horizontal timing to these registers. acter times, represents the number of displayable characters during the horizontal trace interval. The difference RO minus R1 represents the number of character times reserved for horizontal retrace. This register Is programmed with the binary number (N-1) where N Is the displayable characters . per data row. HORIZONTAL DELAY (R2) This a bit write only register, programmed in units of character times, represents the time between the leadinQ edge of horizontal sync and leading edge of VLT. This register is programmed with N where N represents the time of horizontal delay. By programming this time greater than the horizontal blank interval, one can obtain negative front porch (horizontal sync begins before the horizontal blank interval). CHARACTERS PER HORIZONTAL PERIOD (RO) HORIZONTAL SYNC WIDTH (R3) This a bit write only register, programmed in units of character times, represents the total number of characters in the horizontal period (trace plus retrace time). This register is programmed with the binary number N where N is the total characters in the horizontal period. The horizontal period should not be programmed for less than 12 characters. This a. bit write only register defines the horizontal sync width in units of character time.s. The start of the sync pulse is defined by the HORIZONTAL DELAY REGISTER and the end is independent of the start of the active display time. This register is programmed with N where N is the horizontal sync width. However this register must be programmed less than or equal to [(A/2)-1] where A is the programmed contents of REGISTER 0 rounded to the smallest even integer. CHARACTERS PER DATA ROW (R1) This a bit write only register, programmed in units of char- ( VERTICAL TIMING REGISTERS The following 5 registers define the vertical timing parameters. Figure 20 relates the vertical timing to these registers. displayed on the screen. This register is' programmed with (N-1) where N is the number of data rows displayed. VERTICAL SYNC WIDTH (R4) SCAN LINES PER DATA ROW (RS) This a bit write only register defines the vertical sync width in units of horizontal periods. The start of this signal is defined by the delay register (R5) and the end is independent of the start of the active display time. This register is programmed with N where N is the vertical SYNC width. The 5 LSBs of this write only register define the number of scan lines per data row. These 5 bits are programmed with (N-1) where N is the number of scan lines per data row. When programming for scan lines per data ro~(~eater than 16, only the serial scan line pin option (SLD, ) can be used. VERTICAL DELAY (RS) SCAN LINES PER VERTICAL PERIOD (RS; R9) This a bit write only register, programmed in units of horizontal periods. represents the time between the leading edge of vertical sync and the leading edge of the first VLT after the vertical retrace interval. This register is programmed with (N-1) where N represents the time of the vertical delay. Registers R9 and the 3 most significant bits of Ra define the number of scan lines for the entire frame. Ra contains the 3 most siQnificant bits of the 11 bit programmed value and R9 contains the a least significant bits of the 11 bit programmed value. The 11 bits are programmed with N where N is the number of scan lines per frame. In the 2 interlace modes, the programmed value represents the number of scan lines per field. VISIBLE DATA ROWS PER FRAME (R7) This a bit write only register defines the num~r of data rows ONE SC~N LINE """- -- VLT HOR.SYNC I· "1 . (RO-R1)-+ R1 RO ACTIVE DISPLAY TIME J FIGURE 19: CRT 9007 HORIZONTAL TIMING 12 I I ~2.... I FR3~ ( ......---ONE COMPLETE FRAME--~.... .......- - - R7 x R8---...~--t1 .... --~---------R9--~~------~~ VERT. BLANKING (NO SKEW) DATA ROW DISPLAY TIME II ~R5"'" I I '--_____--'F -==L R4 VERT. SYNC FIGURE 20: CRT 9007 VERTICAL TIMING PIN CONFIGURATION/SKEW BITS REGISTER (RS) This 8 bit write only register is used to select certain pin configurations and to skew (delay) the cursor and the blank signals independently with respect to the video signal sent to the monitor. The bits take on the following definition: Bit 7, 6 (Pin Configuration) These 2 bits, as illustrated in tables 4 and 5, define all pinout configurations as a function of double row buffer mode and non double row buffer mode. (The buffer mode is defined in the CONTROL REGISTER bits 3,2, and 1.) The attribute assemble mode is assumed to be a double row buffer mode and obeys table 4. Bits 5, 4, 3 (Cursor skew) These three bits define the number of character clocks the cursor signal is skewed (delayed) from the VLT signal. The CRT 9007 PIN NUMBER REGISTER RS BITS 7 6 28 0 1 1 1 DMAR DMAR 0 0 1 0 29 30 31 32 VLT signal is active for all characters within a data row and a non skewed cursor will always become active within the active VLT time at the designated position. The cursor can be skewed from ato 5 character clocks (Bits 5, 4 and 3 programme(j from 000 to 101, bit 5 is the most significant bit; bit 3 is the least significant bit). For double heighVwidth data rows, the cursor signal appearing during horizontal retrace is also skewed as programmed. Bits 2, 1, (Blank skew) a These three bits define the number of character clocks the horizontal blank component of the CBLANK signal is skewed (delayed) from the VLTsignal. The edges of VLTwili line up exactly with the edges of the horizontal component of the CBLANK signal if no skew is programmed. The CBLANK can be skewed from to 5 character clocks (Bits 2, 1 and programmed from 000 to 101, bit 2 is the most significant bit; bit a is the least significant bit). a a CRT 9007 PIN NUMBER REGISTER 6 BITS 33 WBEN SLG SLD CSYNC ACK WBEN SLG SLD LPSTB ACK NOT PERMITTED NOT PERMITTED 29 30 31 32 33 7 6 0 1 1 0 0 1 SL 1 SLO CSYNC TSC SL3 SL2 SL 1 SLO LPSTB TSC SL3 SL2 VBLANK CSYNC SCG SLD LPSTB TSC 0 1 NOT PERMITTED 28 Table 4: Pin configuration for double row buffer and attribute assemble modes. Table 5: Pin configuration for Single Row Buffer and Repetitive Memory Addressing Modes. DMA CONTROL REGISTER (RA) These 4 bits define the number of DMA operations in one DMAR-ACK sequence. Bit 3 is the 11l0st and bit ais the least significant bit respectively. When programmed with a number N, the CRT 9007 will produce 4 (N + 1) DMA cycles before relinquishing the bus. When programmed with 0000, the minimum DMA Burst will occur (4 x 1 =4) and when programmed with 1111 the maximum DMA Burst will occur (4 x 16 = 64). When bits 6, 5, and 4 are programmed with 111, no DMA delay will occur and the Burst count will equal the number of programmed characters per data row as specified in R1. Refer to figures 9 and 15 which illustrate a DMA burst of 16 and a DMA delay of 8 for double row buffer and attribute assemble modes respectively. For single row buffer operation, no DMA delay is permitted and bits 6, 5,4 must be programmed with 000. This 8 bit write only register allows the user to set up a DMA burst count and delay as well as disable the DMA mechanism of the CRT 9007. The register bits have the following definition: Bit 7 (DMA Disable) A logic one will immediately force the CRT 9007 DMA request to the inactive level and the CRT 9007 address bus (VA13VAO) wi" enter its high impedance state. After enabling the DMA mechanism by setting this bit to a logic zero, a start command must be issued (see START COMMAND, R15). Bits 6, 5, 4 (OMA Burst Delay) These 3 bits define the number of clock delays (CCLK) between successive DMAR-ACK sequences. Bit 6 is the most and bit 4 is the least significant bit respectively. When programmed with a number N, the CRT 9007 wi" delay for 4 (N + 1) clock cycles before initiating another DMA request. If 111 is programmed, however, this will result in a zero delay allowing a" characters to be retrieved from video RAM in one DMA burst regardless of the value programmed for the DMA burst count. Bits 3, 2, 1,0 (DMA Burst Count) CONTROL R~GISTER (RB) This 7 bit write only register controls certain frame operations as we" as specifying the operation mode used. Internal to the CRT 9007, this register is double buffered. Changes in the r~ister are reflected into the CRT 9007 at a particular time dunng vertical retrace. This allows the user to update the CONTROL REGISTER at any time without running the risk of destroying the frame or field currently being painted. 13 The bits take on the following definition: Bit 6 (PS/SS) = 0; The smooth scroll mechanism is enabled permitting the SMOOTH SCROLL OFFSET REGISTER (R17) to be loaded in the scan line counter (SL3o or SLG, SLD signals) allowing for a scroll on the screen of a predetermined number of scan lines per frame or field. The starting and ending of the smooth scroll operation is define9 by the DATA ROW START REGISTER (R11) and DATA ROW END REGISTER (R12) respectively. = 1; The page blank mechanism is enabled. The CBLANK signal is made active high for a continuous period of time starting and ending at the data row defined by the DATA ROW START REGISTER (R11.) and DATA ROW END REGISTER (R12) respectively. Sits 5, 4 (Interlace)-these 2 bits define one of 3 displayed modes as illustrated in figure 21 = 00; Non interlaced display = 10; Enhanced video interlace. This display mode will produce an interlaced frame with the same dot information painted in adjacent odd/even scan lines. == 11; Normal video interlace. This display mode will produce an interlaced frame with odd scan lines of characters displayed in odd fields and even scan lines displayed in even fields. This mode can be used to allow the screen to show twice as many data rows at half the height since it effectively doubles the character density on the screen. = 01; This combination is not permitted. , Bits 3, 2,1 (Operation modes): These 3 bits define the various buffer configuration modes as follows: = 000; (Repetitive memory addressing)-In this mode the address information (VA13-VAO) appears during every visible scan line and the address bus enters its high impedance state during all retrace intervals. When using a row driven addressing mode (linked list or contiguous), the address bus is in the high impedance state for all retrace intervals except the horizontal retrace interval prior to the top scan line of a new data row. This period can be disting!,!ished from other retrace intervals because the DRB (data row boundary) Signal is active. = 001; (Double row buffer)-In this mode, the CRT 9007 will address a particular data row from video memory one data row prior to the time when it is ctisplayed on the CRT. During vertical retrace, the first data row is retrieved and loaded into the double row buffer. At the next data row boundary (in this case atthe end of vertical retrace), the first data row feeds the character generator while the second data CHARACTER SCAN LINE CHARACTER SCAN LINE 0 0 1 2 00000 0 1 3 -e 3 4 -e 6 0 0 0 1~-1 - - ~~ (8) NON-INTERLl.CE ~-------·2 4 _ _____ 3 - -------- 5 -------- 7 6 ----------- 1 1-----;---- 5 4 - - - - - - - - - . 3 1---------6 ------ 7 6 ---------- 5 ---------- 7 Odd Even Odd Even Field Field Field Field (b) ENHANCED (e) NORMAL VIDEO INTERLl.CE VIDEO INTERLl.CE FIGURE21: CRT 9007 INTERLACE MODES 14 ( -f-:-:-<>- 1 I-;::;--~-;..--- 3 0 - ?j ?j.~-- 4 5 () CHARACTER SCAN LINE --7--",,-,,-0 2_ 4- 0000 5 7 2 row is retrieved from video memory. The address bus will enter its high impedance state in accordance with the DMA mechanism for address bus arbitration. =: 100; (Single row buffer)-In this mode, during the first scan line of each data row, ·the CRT 9007 will address video memory, load the buffer and feed the character generator at the painting rate of the CRT. If the CRT 9007 is used in a row driven addressing mode, it will drive the address.bus during the retrace period prior to the first scan line of each data row in order to retrieve the row table address. It will automatically enter the high impedance state at the end of the first visible scan line of each data row. If the CRT 9007 is used in a sequential addressing mode, it will drive the address bus only during the visible line time of the first scan line of each data row. = 111; (Attribute assemble)-In the attribute assemble mode, character data and attribute data are shared in consecutive alternating byte locations in memory. When the CRT 9007 reads an attribute byte, it loads it into its internal attribute latch. During the next memory access, a character byte is fetched. At this time the CRT 9007 isolates its bus from the main system bus and outputs the previously latched attribute. A WeEN signal is produced during every character byte fetch to allow the character and its associated attribute to be simultaneously latched into two double row buffers. This mode assumes that there exists twice as many byte locations as there are displayable character positions on the CRT. The first byte of every data row is assumed to be an attribute. All other combinations of the CONTROL REGISTER bits 3, 2, 1 are not permitted. Bit 0 (2XC/1 XC): This bit allows for either single or double height cursor display when the cursor is placed within a double height data row as follows: = 1; (Single height cursor)-The CURS signal will appear during every scan line for single height data rows and will appear only during the top half or bottom half of a double height data row depending upon where the VERTICAL CURSOR REGISTER (R18, R38) defines the CURSOR data row. = 0; (Double height cursor)-If the VERTICAL CURSOR REGISTER (R18, R38) places the cursor in the top half of a double height data row, the CURS Signal will appear during ~very scan. line of the top half (the current data row) and the bottom half (the next data row) of the double height data row. If the cursor is placed in the bottom half of a double height data row or if it is placed in a single height data row, the CURS signal will only appear during the one particular data row. ( TABLE START REGISTER (Re AND RD) This 16 bit write only register contains a 14 bit address which is used in a variety of ways depending on the addressing mode chosen; the 2 remaining bits define the addressin~ mode. Register C contains the lower 8 bits of the 14 bit address. The 6 least significant bits of register D contain the upper 6 bits of the 14 bit address. The 2 most significant bits of register D define four addressing modes as follows: Register D bits 7, 6: = 00; (Sequential addressing mode)-The CRT 9007 will address video memory in a sequential fashion starting with the 14 bit address contained in REGISTER D bits 5-0 and REGISTER C bits 7-0. One break is allowed in the sequential addressing scheme as defined by SEQUENTIAL BREAK REGISTER 1 (R10) and AUXILIARY ADDRESS REGISTER 1 (RE and RF). = 01; (Sequential roll addressing mode)-The CRT 9007 will address video memory in a sequential fashion starting with the 14 bit address contained in REGISTER D bits 5-0 and REGISTER C bits 7-0. SEQUENTIAL BREAK REGISTER 1 and AUXILIARY ADDRESS REGISTER 1 can be used to cause one sequential break as described in the sequential addressing mode. A second break in the sequential addressing can be defined by SEQUENTIAL BREAK REGISTER 2 (R12) and AUXILIARY ADDRESS REGISTER 2 (R13 and R14) permitting upto 3 separate sequentially addressed screens to be painted. = 10; (Contiguous row table mode)-The CRT 9007 will address video memory according to the contiguous row table format. The 14 address bits contained in REGISTER D bits 5-0 and REGISTER C bits 7-0 define an address that paints to the beginning of the contiguous row table. = 11; (Linked list row table mode)-The CRT 9007 will address video memory according to the linked list row table format. The 14 address bits contained in REGISTER D bits 5-0 and REGISTER C bits 7-0 define the address at which the second row table entry and the first data row reside. SEQUENTIAL BREAK REGISTER 1 (R10) This 8 bit write only register defines the data row number in which a new sequential video address begins as specified by AUXILIARY ADDRESS REGISTER 1 (RE and RF). To disable the use of this break, the register should be loaded with a data row count greater than the number of displayable data rows on the screen. DATA ROW START REGISTER (R11) This 8 bit write only register defines the first data row number at which a page blank or smooth scroll operation will begin. Bit 6 of the CONTROL REGISTER determines if a page blank or smooth scroll operation will occur. ~ATA ROW END/SEQUENTIAL BREAK REGISTER 2 (R12) This 8 bit write only register has a dual function depending on the addressing mode used. For row driven addressing (contiguous or linked list as specified by the 2 most significant bits of the TABLE START REGISTER) this register AUXILIARY ADDRESS REGISTER 1 (RE and RF) This 16 bit write only register contains a 14 bit address. The 6 least significant bits of REGISTER F contain the upper order 6 bits ofthe 14 bit address and REGISTER E contains the 8 lower order bits of the 14 bit address. When the current data row equals the value programmed in SEQUENTIAL BREAK REGISTER 1 (R1 0) the remainder of the screen is addressed sequentially starting at the 14 bit address specified in this register. This sequential break overrides any row driven addressing mode useH prior to the sequential break. The 2 most significant bits of REGISTER F allow one to attach double height and/or double width characteristics to every data row in this sequentially addressed area in the following way: For Double row buffer or attribute assemble mode REGISTER F Bits 7, 6 = 00; single height single width = 01; single height double width = 10; even data rows are double height double width top half odd data rows are double height double width bottom half = 11; odd data rows are double height double width top half even data rows are double height double width bottom half For Single row buffer or repetitive memory addressing mode REGISTER F Bits 7, 6 = 00; single height single width = 01; single height double width = 10; odd data rows are double height double width top half even data rows are double height double width bottom half = 11; even data rows are double height double width top half odd data rows are double height double width bottom half defines the data row number which ends either a page blank or smooth scroll operation. The row numerically one less than the row defined by this register is the last data rowan which the page blank or smooth scroll will occur. To use the page blank feature to blank a portion of the screen that includes the last displayed data row, this register must be programmed to zero. For sequential addressing, this regIster can cause a break in the sequential addressing at the data row number specified and a new sequential addressing sequence begins at the address contained in AUXILIARY ADDRESS REGISTER 2. AUXILIARY ADDRESS REGISTER2(R13and R14) This 16 bit write Qnly register contains a 14 bit address. The 6 least si~nificant bits of REGISTER 14 contain the upper order 6 bits of the 14 bit address and REGISTER 13 contains the 8 lower order bits of the 14 bit address. In the row driven addressing mode, this register is automatically loaded by the CRT 9007 with the current table address. The two most significant bits of REGISTER 14 specify one of four combinations of row attributes {for example double height 15 double width) on a row by row basis. Refer to the section entitled Double Height/Double Width operation for the meanirlQ of these 2 bits. In the sequential addressing mode, this register can be loaded by the processor with a 14 bit address and a 2 bit row attributes field. The bit positions are identical for the row driven addressing mode. When the current data row equals the value programmed in DATA ROW END/SEQUENTIAL BREAK REGISTER 2 (R12), the remainder of the screen is addressed sequentially starting at the location specified by the programmed 14 bit address. The 2 most significant bits of register 14 allow one to attach double height and or double width characteristics to every data row in this sequentially addressed area. The bit definitions take on the same meaning as the 2 most significant bits of AUXILIARY ADDRESS REGISTER 1 and affect the display in an identical manner. START COMMAND (R15) After all vital screen parameters are loaded, a START command can be initiated by addressing this dummy register location within the CRT 9007. A START command must be issued after the DMA mechanism is enabled (DMA CONTROL REGISTER bit 7). RESET COMMAND (R16) The CRT 9007 can be reset via software by addressing this dummy location. Activation of the RST input pin or initiating this software command will effect the CRT 9007 in an identical manner. The reset state of the CRT 9007 is defined as follows: Reset state CRT 9007 outputs High impedance VA13-0 High impedance VD7-0 High HS High VS High CBLANK Low CUS Low VLT High ORB Low INT Low Pin 28 Low Pin 29 Low Pin 30 Low Pin 31 Low Pin 32 SMOOTH SCROLL OFFSET REGISTER (R17) This register is loaded with the scan line offset number to allow a smooth scroll operation to occur. The offset register causes the scan line counter output of the CRT 9007 to start at the programmed value rather than zero for the data row that starts the smooth scroll interval. The start is specified In the DATA ROW START REGISTER (R11). Typically, this register is updated every frame and it ranges from zero (no offset) to a maximum of the programmed scan lines per data row (maximum offset). For example, if 12 scan lines per data row are programmed (scan line 0 to scan line 11) an offset of zero will cause an unscrolled display. An offset of one will cause a display starting at scan line 1 and ending at scan line 11 (eleven scan lines total). An offset of eleven will cause a display starting at scan line eleven. The next scan line will be zero, starting the subsequent data row. To allow smooth scroll of double height rows, the programmed range of the register is from zero to twice the programmed scan lines per data row. Whenever the offset register if greater than the programmed scan lines per data row, bit 7 of the register must be set to a logic 1 (offset overflow). It must be set to a logic zero at all other times. The 6 bit offset value occupies bits 6 through 1. Bit 0 must always be pr~rammed with a logic zero. By setting the offset overflow (bit 7) to a logic 1, it is· possible to have the bottom half 16 of a double height data row stand alone in Single Row Buffer Mode by programming the scrolled data row as double height top half and loading R17 with the proper value. VERTICAL CURSOR REGISTER (R18 or R38) This 8 bii'readtwrite register specifies the data row in whiCh the cursor appears. To write into this register it is addressed as R18 and to read from this register it is addressed as R38. ( HORIZONTAL CURSOR REGIS.TER (R19 or R39) This 8 bit read/write register specifies the character position in which the cursor appears. To write Into this register it is addressed as R19 and to read from this register it is addressed as R39. It should be noted that the vertical and horizontal cursor is programmed in an X-Y format with respect to the screen and not dependant upon a particular location in video memory. The cursor will remain stationary during all·scroll operations. INTERRUPT ENABLE REGISTER (R1A) This 3 bit write only register allows each of the three CRT 9007 interrupt conditions to be individually enabled or disabled according to the following definition: Bit 6 (Vertical retrace interrupt)-This bit, when set to a logic one, will cause the CRT 9007 to activate the INT Signal when a vertical retrace (I.e., the start of the vertical blanking interval) begins. Bit 5 (Light pen interrupt)-This bit, when set to a logic one, will cause the CRT 9007 to activate the INT signal when the LIGHT PEN REGISTER (R3B, R3C) captures an X-Y coordinate. This interrupt, which occurs at the beginning of vertical retrace, reflects the occurrence of a LPSTB input on the frame or field just painted. This interrupt need not be enabled when other CRT 9007 interrupt conditions are enabled since the STATUS REGISTER (R3A) will flag the occurance of a light pen update and servicing can be done off of other interrupts, Bit 0 (Frame timer)-This bit, when set to a logic one, allows the CRT 9007 to activate the INT Signal once every frame or field at a time when a potential smooth scroll update may occur. In this way the user can use the frame timer interrupt as both a real time clock and can service smooth scroll updates and other frame oriented operations by using the appropriate status bits. This interrupt will occur after the last row table entry is read by the CRT 9007. In single row buffer operation, this will occur one data row before the start of vertical retrace. In double row buffqr operation, this will occur two data rows before the start of vertical retrace. STATUS REGISTER (R3A) This 5 bit. register flags the various conditions that can potentially cause an interrupt regardless of Whether the corresponding condition is enabled for interrupt. In this way some or all of the conditions can be reported to the processor via the STATUS REGISTER. If some of the conditions are enabled for interrupt, the processor, in response to an interrupt, simply has to read the STATUS REGISTER to determine the cause of the interrupt. The bit definition of the STATUS REGISTER is as follows: Bit 7 (Interrupt Pending)-This bit will set when any other status bit, having its correspondinQ interrupt enabled, . experiences a.O to 1 transition. In thiS manner, when the processor services a potential CRT 9007 interrupt, it only has to test the interrupt pending bit to determine if the CRT 9007 caused the interrupt. If it did, the individual bits can then be tested to determine the details of the CRT 9007 interrupt. Any noninterruptable status change (corresponding interrupt enable bit reset to a logic 0) will not be reflected in the interrupt pending bit and must be polled by ( the processor in order to provide service. The interrupt pending bit is reset when the status register is read. All other bits except Light Pen Update are reset to a logic 0 at the end of the vertical retrace interval. The light pen update bit is reset to a logic 0 when the HORIZONTAL LIGHT PEN. REGISTER is read. Bit 6 (Vertical Retrace)-A logic 1 indicates that a vertical retrace interval has begun. Bit 5 (Light Pen Update)--:-A logic 1 indicates that a new coordinate has been strobed into the LIGHT PEN REGISTER. It is reset to a logic zero when the HORIZONTAL LIGHT PEN REGISTER is read. The light pen coordinates may have to be modified via software depending on light pen characteristics. Bit 2 (oddleven)-For a normal video interlaced display, this bit is a logic 1 when the field about be painted is an odd field and is a logic zero when the field about be painted is an even field. FIELD ONE INTERLACED Bit 0 (Frame timer occurred)-This bit becomes a logic 1 either one or two data rows before the start of vertical retrace. Since this bit is set when the CRT has finished reading the row table for the frame or field just painted, it permits row table manipulation to s~art at the earliest possible ~ime~ . . VERTICAL LIGHT PEN REGISTER (R3B) This 8 bit read only register contains the vertical coordinate captured at the time the CRT 9007 received a light pen strobe signal (lPSTB). HORIZONTAL LIGHT PEN REGISTER (R3e) This 8 bit read only register contains the horizontal coordinate captured at the time the CRT 9007 received a light pen strobe signal. When a coordinate is captured, the appropriate status bit is set and further transitions on lPSTB are ignored until this register is read. The reading of this register will reset the light pen status bit in the STATUS REGISTER. The captured coordinate may have to be modified in software to allow for light pen response. I HS CSYNC VS------------------------~ r- FIELD INTEW&ED I HS -CS-YN-C ~ ,~ !~~ 3 SCAN LINES BEFORE VS""'- PROG. VSYNC WIDTH ~ 3 SCAN LINES AFTER VS ~ __~--____--__---------I------------~--------~--------- ___________________________r_------------~ ______________________ FIGURE 3: TYPICAL SYNC WAVEFORMS FOR INTERLACED AND NON-INTERLACED MODES CCLK CCLK VlTl , I I I I I VLT I I SLG I I I I.e SLD 5 CLOCKS I~ .' 5 CLOCKS I I I I I~I~I~I~I~I. FIGURE 4: SERIAL SCAN LINE TIMING: NON INTERLACE OR SINGLE WIDTH CHARACTERS ., I SLG ... SLD [ 5 CLOCKS I 6 CLOCKS .'Ixl~I~I~I~I~1 I I I I I • FIGURE 5: SERIAL SCAN LINE TIMING: INTERLACE, DOUBLE HEIGHT OR DOUBLE WIDTH CHARACTERS 17 MAXIMUM GUARANTEED RATINGS· Operating Temperature Range ..........•...•.•....••...••.....•..•....•.............. , .. ~ ....•...... 0° to + 70°C Storage Temperature Range. . . . . • . . . . . . . . . . • . . . . • . • . . • . . . . . . • • • . . • . . . . . . . . . . . . . . . . • . . . . . . . . . .. - 55°C to + 150°C Lead Temperature (soldering, 10 sec.) •..•.•....•.••.•.•.•....•.•••....•.....•..•......•.•.•...••........ , + 325°C Positive Voltage on any Pin, with respect to ground ................. ; ......................................... + 15V Negative Voltage on any Pin, with respect to ground. : -.. ::-:•• ; ':-.: '; ~''': ; '..•••. :-. : ... : .• ;-; ; •... '. ; .•. '. :-.".;' ... : .. .-. - 0.3V . ·Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. NOTE: When powering this device from laboratory or system power supplies, it is important that the AbsOlute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used. DC ELECTRICAL CHARACTERISTICS T" =OOC to VL V.., Vrtt2 Va. VOH t, PARAMETER Input voltage Low High High Output voltage Low High Input leakage current + 700C, Vee. =5.0V:!:: 5% MIN TYP MAX UNITS 0.8 V V V ~excePt~ 0.4 V V 1a.=1.6mA IOH= 4O!LA 10 50 !LA !LA O""VIN""VCC ; excluding CCLK O""VIN""VCC ; for CCLK 10 25 pF pF all inputs except eco< CCLKinput 100 rnA 2.0 4.3 2.4 1L2 Input capacitance CIN , C1N2 COMMENTS L input Power supply current Icc AC ELECTRICAL CHARACTERISTICS- TA =O°C to + 70°C, Vee =5.0V :!:: 5% lev tau. toeH toeR PARAMETER Clock clock period clock low clock high clock rise time toeF clock fall time TYP MAX UNITS 10 ns ns ns ns 10 ns tVA 125 125 150 150 100 ns ns ns ns ns los.. los to. Iosv 500 185 185 185 ns ns ns ns ns 10, MIN 250 23 203 COMMENTS measured from 10% to 90% points measured from 90% to 10% points ( Output delay' tar Io:a to. tvos 50 'Ivao 0 tSl.G tSlD ns 185 185 185 ns ns ns 140 50 400 ns ns ns ns ns ns ns ns 125 ns 41ev ns measured to the 2.3V or 0.5V level on VA13-VAO valid for loading auxiliary address register 2 or the attribute latch ~=5OpF Processor Read/writ&! 100 0 155 100 O ~ ~ !tow !,.os ttt- 10 t.m -" Miscellaneous timing I.TS iAW . NOTE: 1. Timing measured from the 1.5V level of the rising edge of CCLR to the 2.4V (high) or 0.4V (low) voltage level of the output unless otherwise noted. 2. Reference points are 2.4V high and 0.4V lOW. 3. Loading on all outputs is 30 pF except where noted. 18 measured from the O.4V level of ACK or fSC falling edr.e measured from the 0.4V evel falling edge to 0.4V level rising edge () CCU< VLT,WBEN ~ I ~ ~~ ~!-tc...~l======~'======~r-----~====b~========~i "I '--- ~----I .......--~'---..Jr-----.,!!tt--.r_-_-_-_-_-.:_t.,._-_-_-___ -'.J.t04-1 ---------+------------- VA13-e )( --------~====~~~==~------- ________~__------------------~---------------p.~------- ~ ~ CSYNC,DMAR,INT(l£ADtNGEDCIEONLYI ~------------------~----+-------------------~ .. CBLANK, CUR..;.S~_ _ _ _ _t::====i;.:====J~ ~-----Ioo------J-I~------- 14-----100 V07-0 I-------Ios. - - - - - - - . . , ________-+________________ SLG ATTRIBUTE OR ){ 1 Ivoo---------~J ATTRIBUTE J~~~~W~T.~~~LE~~~~~A~IN-J~~~\--------J~~_~~~~~~~_ _ ___ I+-t-.:-t- '--f )( --------~====~==~~-- -I .. ----------+----------~-~~ ,-~.----SLD )[ -----~~==~.~~,====~------ FIGURE 22: CRT 9007 TIMING PARAMETERS: OUTPUT SIGNALS VD7" (WRITE) HIGH IMPEDANCE VD7"(READ) lr:==-. - ... , --===1( !NT (laJling edge only) FIGURE 2: CRT 9007 PROCESSOR READ AND WRITE TIMING PARAMETERS FIGURE 23: CRT 9007 MISCELLANEOUS TIMING PARAMETERS 19 ADOAE88 DECXJDE AllgilllrTwPe WIVT1ii VAS VM VAl VAl VAl V,. 0 0 0 0 0 0 _0' m 0 0 0 0 0 1 MSB WIVT1ii 0 0 0 0 1 0 WRITE 0 0 0 0 1 , MSB WIVT1ii 0 0 0 1 0 0 MSB WIVT1ii 0 0 0 1 0 1 MSB 0 0 0 1 1 0 PIN WIVT1ii WIVT1ii 0 0 0 0 1 0 1 0 0 4 0 0 0 1 0 1 0 1 05' ~R 1M I III D1 D2 ALPERIOO I atAAACTERSPE MSB' WIVT1ii REGISTER BIT DEFNTION OiARACTERS PER DATA ROW HORIZONTAL DELAY I H6RIzoNT'AL SYNC WIDTH MSB VER'TlCAl. SYNC WIDTH ' IIERTII::Ai. DELAY CONFlG-I URATION CURSOR SKEW i.S8 MS8 ,I MSB I (B8) E (BID)) (87) I MSB LS8 FlO LS8 Rl LS8 112 LS8 R3 LS8 FI4 LS8 lIS BlANK SKEW LS8 ( R6 I VISIBLE DATA ROWS PER ~E MSB SCAN (HElQ LS8 R7 LS8 N LS8(BO) R8 'SCAN UNES PEA DATA ROW SCAN LINES PER FRAME -" '11[; Table 3a: CRT 9007 Screen Format Registers RegisIer Type WRITE WRITE VAS 0 0 VM VIo3 0 , 0 VAl VA' 0 , VM D7 0 os D8 ~I PIIS' X WRITE 0 0 WRITE 0 0 1 0 MS8 WRITE 0 0 1 1 1 1 WRITE 0 , ATTR~sl 0 0 0 0 MSB 0 0 0 '0 0 1 MSB ~SSI 1 0 0 1 0 MSB 1 MSB 0 ATTR~J 0 LS8 RE AUXILIARY ADDRESS REGISTER 1 (MS BYTE) MSB LS8 .-' RF R12 0 1 RD DATA ROW ENDISEQUENTIAL BREAK REGISTER 2 LS8 WRITE 0 LS8 Rl1 MSB 0 MS8 RC LS8 1 0 LS8 TABlE SmT REGISTER (MS BYTE) RB RIO 0 1 2XCIIxC LS8 0 1 OPERATION MODES I DATA ROW START REGISTER 0 0 INTERLACE MODES RA LS8 'SEQUENTIAL BREAK REGISTE~ , 1 0 MSB AUXILIARY ADDRESS REGISTER 1 (LS BYTE) 0 WRITE 0' I DMA BURST COUNT TABlE START REGISttR (LS BYTE) WRITE 1 D2 DMA BURST DELAY MS8A LS8 DISABLE , , , , , 1 WRITE 1M I DMA , , 0 " REGISTER NUMBER (HEX) BIT DEFINITION ADDRESS DECODE AUXILIARY ADDRIOSS REGISTER 2 (lS BYTE) T LS8 1113 AUXILIARY ADDRESS REGISTER 2 (MS BYTE) MSB LJ 1 LS8 R14 ( Table 3b: Control and Memory Address Registers ~Type VAS VM VIo3 VAl VAl WRITE 0 1 1 0 , 0 , 0 READ OR WRITE 0 1 1 0 READ OR WRITE VM 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 , 0 1 , 0 1 0 D7 1 1 1 , , ,'I 1 1 0 0 1 1 , 0 0 os D8 DCJ 1M ~R D2 (HElQ 01 START COMMAND i!1 FLOW RESET COMMAND I I I , QfFSETVALUE Rte • LS8I MSB HORIZONTAL CURSOR REGISTER (coL COORD.) MSB NT , R15 veRnc:AL.CURSOR REGISTER (ROW COORD.) MSB 0 MSB I R1I..-RII LS8 RII..- ... FRAME R3A VERT1pAL LIGHT PEN REGI~R (ROW COORD.) LS8 RIB HORIZONTALLlGHTPENREGI~(CO:--~') L88 R3C .j,~J MSB LS8 lilA "JSTA~REGISTER I J PEND- ' RE· LIGHT ING TRACE PEN 1 At7 i= VERlRRlJPTENABlE REGISTER TICAl. RE· LIGHT TRACE PEN X X X X X , REGISTER BIT DEFINITION ADDRESS DECODE 0IlDi EVEN X TIMER Table 30: Cursor, Light Pen, Offset, and Status Registers Circuit diagrams utilizing SMC products are Included asa means ,of Illustrating typical semiconductor applications. consequently complete information sufficient for construction purposes Is not necessarily given. The ~ Information has been carefully checked and is believed to be entirely reliable. However. no responsibility II 'I J~ ....... 1Ihd " " - NY 11111 assumed for inaccuracies. Furthermore. such information does not convey to the purchaser oflhe semiconductor I~" m 3100' TWHIO:Z27._ devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes DIJ",mmoettIillWip/Clllapft!adOfWQIIS. at any time in order to improve design and supply the best product possible. ( CRT 9006-135 CRT 9006-83* DARD MICROSYSTEMS /lPC FAMILY • 35 M.¥cus Blvd . Hal(lpauge. N V 11787 1516) 273· 3100 TWX· 510·227·8898 mrn'll'tttinn SO you CiI1 keep ftaI of \QI'S. Single Row Buffer SRB PIN CONFIGURATION FEATURES: o Low Cost Solution to CRT Memory Contention Problem o Provides Enhanced Processor Throughput for CRT Display Systems o Provides 8 Bit Wide Variable Length Serial Memory o Permits Active Video on All Scan Lines of Data Row o Dynamically Variable Number of Characters per Data Row... 64,80, 132, ... up to a Maximum of 135 o Cascadable for Data Rows Greater than 135 Characters o Stackable for Invisible Attributes or Character Widths of Greater than 8 Bits o Three-State Outputs o 4MHz Typical Read/Write Data Rate Static Operation Compatible with SMC CRT 5037, CRT 9007, and other CRT Controllers 024 Pin Dual In Line Package 0+5 Volt Only Power Supply TTL Compatible Inputs and Outputs o Available in 135 Byte Maximum Length (CRT 9006-135) or 83 Byte Maximum Length (CRT 9006-83) o o DOUT3 GND DOUT2 DOUT4 DOUTl DOUTS DOUT" DOUT6 ClK DOUT7 WREN OE ClRCNT OF CKEN DIN7 DINO DIN6 DIN1 DINS DIN2 DIN4 DIN3 +sv Package: 24-pin D.J.P. APPLICATIONS: o CRT Data Row Buffer o Block-Oriented Buffer o Printer Buffer o Synchronous Communications Buffer o Floppy Disk Sector Buffer o GENERAL DESCRIPTION The SMC Single Row Buffer (SRB) provides a low cost solution to memory contention between the system processor and CRT controller in video display systems. The SRB is a RAM-based buffer which is loaded with character data from system memory during the firs! scan line of each data row. While data is being written into the RAM it is also being output through the multiplexer onto the Data Ouput (DOUT) Lines. During subsequent scan lines in the data row, the system will disable Write Enable (WREN) and cause data to be read out from the internal RAM for CRT screen refresh, thereby releasing the system memory for processor access for the remaining N-1 scan lines where N is the number of scan lines per data row. The SRB enhances processor throughput and permits a flicker-free display of data. ,!F or eLK CKEN I ADORESS COUNTER I R... I '''''''' I I -'00. READ DATA OCTAL 2 TO 1 ..ux I t------i 3-STATE L U • T T P C ~ WRIT 2fj~=~==~ o H 8 U , , DOUT7-' F R l P T N • u C T H Single Row Buffer Block Diagram 'FOR FUTURE RELEASE 135 () (, ( CRT 9212 f..LPC FAMILY 3S MillI:US Blvd. HauiJ!WOe. N.Y. 11788 15161273·3100 • TWX·Sl0·22]·189II t'IIIft'WfHlMSO PI cal keep Dad of,:m. Double Row Buffer ORB FEATURES PIN CONFIGURATION o Low Cost Solution to CRT Memory Contention Problem o Provides Enhanced Processor Throughput for CRT Display Systems o Replaces Shift Registers or Several RAM and Counter IC's in CRT Display System o Permits Display of One Data Row While Next Data Row is Being Loaded o Data May be Written into Buffer at Less Than the Video Painting Rate o Double Data Row Buffer Permits Second Data DIN2 1 DIN1 2 DINO 3 DOUT7 4 DOUT6 5 DOUT5 6 DOUT4 7 Vee 8 DOUT3 9 DOUT210 DOUT1 11 DOUTO 12 28DIN3 27 WCLK 26 OE 25 WEN2 24 WEN1 D DIN713 DIN614 Row to be Loaded Anytime during the Display of the Preceding Data Row 23 GND 22 ROF . 21 WOF 20 REN 19 CLRCNT 18 fOG 17 RClK 16 DIN4 15 DINS PACKAGE 28-pin D.I.P. o Permits Active Video on All Scan Lines of Data Row o Three-State Outputs o Dynamically Variable Number of Characters per Data Row-... 64,80, 132, ... up to a Maximum of 135 o Up to 4 MHz ReadlWrite Data Rate o Compatible with SMC CRT 5037, CRT 9007. and other CRT Controllers o Cascadable for Data Rows Greater than 135 Characters o Stackable for "Invisible Attributes" or Character Widths of Greater than 8 Bits o 28 Pin Dual-In-Line Package o + 5 Volt Only Power Supply D TTL Compatible GENERAL DESCRIPTION The CRT 9212 Double Row Buffer (ORB) provides a low cost solution to memory contention between the system processor and the CRT controller in video display systems. The CRT 9212 ORB is a RAM-based buffer'Which provides two rows of buffering. It appears to the system as two octal shift registers of dynamically variable length (2-135 bytes) plus steering logic. The CRT 9212 permits the loading of one data row while the previous data row is being displayed. The loading of data may take place during any of the scan line times of the data row. This relaxed time-constraint allows the processor to perform additional processing on the data or service other high priority interrupt conditions (such as a Floppy Disk DMA request) which may occur during a single video scan line. The result is enhanced processor throughput and flicker-free display of data. MAXIMUM GUARANTEED RATINGS· Operating Temperature Range ................................................................... : .... O'C to + 70°C Storage Temperature Range ..............: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55'C to + 150°C " f Lead Temperature (soldering, 10 sec.) ....................................................................... + 325 ( 'to . Positive Voltage on any Pin, with respect to ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. + S.OV' ....~ Negative Voltage on any Pin, with respect to ground. . . .. .. .. . .. .. . . . .. . .. .. . . . . . . .. .. . .. .. .. . .. . . .. .. . . . . . . . . .. - 0.3V t ·Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. ELECTRICAL CHARACTERISTICS (TA =DoC to 70°C, Vee = + 5V ± 5%) DC CHARACTERISTICS INPUT VOLTAGE LEVELS Low Level VH.. Level VI." Level V OUTPUT VOLTAGE LEVELS Low Level VOl Level V INPUT LEAKAGE CURRENT High leakage ILHl Low Leakage ILL, High Leakage IU<2 low INPUT CAPACITANCE CIN , 0.8 v V 2.0 4.2 V 0.4 2.4 excludiV9~; WCU< V V rn: excluding excluding WEN1 WEN1 10 10 400 400 rn: 10 15 pF 100 mA SUPPLY CURRENT AC CHARACTERISTICS' tcvw tc"" fcKH fcKL 250 250 200 30 DC 10 10 fcKA fcKF los to... ~",2 ~~ ~ ~ .. 50 0 0 100 0 trw 175 175 175 175 ~ too., fop! fcs ~ ~ 100 0 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Write clock period Read clock period measured from 10% to 90% points measured from 90% to 10% points referenced to 'FiCtR referenced to 'FiCtR CL = 50 pF; referenced from WCU< CL = 30pF 1fcvw 1 • Reference points for all AC~C[Kmeters are 2.4V high and O.4V low. 2· For REN. referenced from ; for WEN1 or WEN2 referenced to wrxR. 3· For ROF. referenced from RCU{; for WOF referenced from wrxR. 4· At least 1 WClK rising edge must occur between CLRCNT or TOO (whichever occurs last) and WEN (= WEN1-WEN2). wcLi<' I RCLf<" I I l,---;/~:-----------------------------~tl)----------------------------..... ,. ... ~--~I~~---~ ~:~ I I r--;- ,-, ____________________________ ____________ _____________ ~"' ~ 'C- I I I I I INTERNAL RAMADDR (WRITE) I 7I!III!!////!;/I1!//////!!1I!!/&t~-AD-DR-O--'x ADDR -~!I!!////I!//Il/. 1 X,--_A_DDR_2 \\.._....1r-----------.. .lllt·-------------------------- WEN ,...-----. (=WEN1.WE_N2...;..)_ _ _ _ _~1 INTERNAL WEN WOF~ (.~l--""/ • in general WCLK and RCLK can be different FIGURE 3: CRT 9212 DOUBLE ROW BUFFER WRITE TIMING +5V WENl WEN2 ,. RCLK 9212 "Au " WCLK ~ .. : .., REN J .. ... v_ DIN7·0 CLRCNT TOG - ..... - I...--. WEN 1 WEN 2 .... RCLK ~ WCLK REN ... < " ... DOUT7-0 ROF WOF .. ....... ..... .- DIN7-0 , -- ....... ,. 9212 "Bit '.. ' DOUT7-0 .. ::::,. .: I ......... >: ',) y .'" CLRCNT TOG FIGURE 4: CRT 9212 CASCADED CONFIGURATION FOR DATA ROW LENGTHS UP TO 270 CHARACTERS "7 --. -y fi;;:; ... ;) ", ....... ..,.' INTR PROCESSOR "P,,,c ACK DMARa "ODR DATA ~ "- DMAR MEMORV ADM RAM VIDEO RAM .. .. ". liCK 1 1 1 RIfT +5V GNo - INT ~ ADORE VAl3-. BUS CRTDOO7 AS VPAC" "" "'. " CBlANK V07-' - VS WBEN I'll! Sl.D VLT srn ~.t ~3~ 0 A T II B U S 1 wtLII. r WEN. f'Oll tlAC...'!" RfN CAT 9212 DOUBLE L-J., 01'111" ~c ATIRIBUTES I rlDh 'f} . . ~~.~,~~W~,~~ 1 ROW BUFFER col ! ACLK ilOUT'4 ct:rR' CURS LD'SR CRT8002 VOAC·· J o R CLOCK I GENERATOR I VOC CHARACTERIATIRIBUTES GENERATOR A7·' r }i VIDEO Oll>-CIND TO MONITOR FIGURE 5: CRT 9212 CONFIGURED WITH THE CRT 9007 VPAC AND THE CRT 8002 VDACTM ~----------------~~.~~l----------------~ RCLKORWCLK DIN7-0 REN, WEN 1,2 DOUT7·0 WOF,ROF CLRCNT OR TOG WEN 1,2 f~ Iwr * FIGURE 6: CRT 92121/0 TIMING ©4/82-SM DESCRIPTION OF PIN FUNCTIONS SYMBOL DINO-DIN7 PIN NO. 3-0,28, 16-13 12-9,7-4 NAME Data inputs Data outputs DOUTODOUT7 17 Read Clock RcrR 18 Toggle Signal TOO 19 Clear Counter CLRCNT 20 Read Enable REN 21 Write Overflow WOF 22 Read Overflow ROF 24,25 Write Enable 26 Output Enable 27 Write Clock 8 23 Power Supply Ground WEN1, WEN2 O"E WC[R Vee GND FUNCTION DINO-DIN7 are the data inputs from the system memory. DOUTO-DOUT7 are the data outputs from the CRT 9212 internal data output latch. Valid information will appear on DOUTO-DOUT7 two RC[R periods after the rising edge of REN. This introduces two pipeline delays when supplying data to the character generator. RcrR increments the current "read" address register, clocks data through the "read" buffer and moves data through the intemal pipeline at the trailing edge. TOG alternates the function of each buffer between read and write. TOO normally' occurs at eve data row boundary. Switching of the buffers occurs when both TOO and CLR NT are low. Clear COunter clears the current "read" address counter at the next 'RCO< positive edge. CLRCNT is normally asserted low at the beginning of each horizontal retrace interval. CLRCNT clears the current "write" address counter when the TOO is active. REN enables the loading of data from the selected "read" buffer into the output latch. Data is loaded when Read Clock is active. WOF hi~h indicates that data is being written into the last memory position (position 135 . When WOF is high, further writing into the selected "write" buffer is disabled. WOF may be connected to the WEN1 or WEN2 inputs of a second CRT 9212 for cascaded operation where data row lengths of greater than 135 characters are desired. See figure 4. The Read Overflow output is high when data is being read from the last memory position (position 135). ROF high disables further readin~ from the selected "read" buffer. ROF may be connected to the REN input 0 a second CRT 9212 for cascaded operation where data row lengths of greater than 135 characters are desired. DOUTO-7 will switch into a hi~h impedance state at the second positive transition of R'C[K after ROF goes hici . See figure 4. WEN allows input data to be written into the selected "write" buffer during WCCK active. Both WEN1 and WEN 2 must be high to enable writing. WEN1 has an internal pull up resistor allowing it to assume a high if pin 24 is left open. When the O"E input is lov< the data outputs DOUTO-DOUT7 are enabled. When O"E is high, DOUTO-DOUT7 present a high impedance state. DE has an internal pulldown resistor allowing it to assume a low if pin 26 is left open. WC[R clocks input data into the selected "write" buffer and increments the current "write" address register when WEN1 and WEN2 are high. + 5 Volt supplv Ground 6 OPERATION Figure 1 illustrates the internal architecture of the CRT 9212. It contains 135 bytes of RAM in each of its two buffers. In normal operation, data is written into the input latch on the positive-going edge of Write Clock (WCLK). When both Write Enable (WEN1, WEN 2) Signals go high, the next WCLK causes data from the input latch to be written into the selected buffer (1 or 2) and the associated address counter to be incremented by one. Loading of the selected RAM buffer continues until WEN goes inactive or until the buffer has been fully loaded. At the next data row boundary, the Toggle Signal (TOG) will.9..Q..!Q~When Clear Counter (CLRCNT) goes low, the next Read Clock (RCLK) will begin to reset both buffer address counters to zero, swijching the buffer just loaded from a "write buffer" to a "read buffer", permitting the next row of data to be written into the other buffer. Data from the current "read" buffer is read' out of the buffer and to the output latch whenever Read Enable (REN) is high during a Read Clock (RCLK). Each read-out from the buffer RAM causes the "read" address counter to be incremented. REN is normally high during the entire visible line time of each scan line of the data row. CLRCNT resets the present "read" address counter. The negative edge of CLRCNT is detected by the CRT 9212 and the internal "read" address counter is cleared independent of the CLRCNT pulse width. The CLRCNT input may be tied to the REN input for proper operation. Figures 2 and 3 illustrate the functional timing for reading and writing the CRT 9212. It is possible to cascade two or more CRT 9212's to allow for data storage greater than 135 bytes by employing the read overflow (ROF) and write overflow (WaF) outputs. Figure 4 illustrates two CRT 9212's cascaded together. The CRT 9212 is compatible with the CRT 9007 video processor and controller (VPACTM) and the CRT 8002 video display attributes controller (VDAC TM). A typical video configuration employing the three parts is illustrated in figure 5. ... ADDRESS COUNTER 1 AODR7-0 RAM 1 135x8 y ~ 4 . V ...< ) r-- DIN7-0 ... ... y 110 CONTROL L A T C H ..... ~ r- OCTAL 2-1 MUX "' ./ L..- ... 1/0 CONTROL f--J\ i~ hi t[-\l H '- 3 STATE DRIVER ~ DOUT7-0 ...) l~ ~ >- TO CLR ADDRESS COUNTER 2 ... ADDR7-0 ) ... RAM 2 135 x 8 OE --K RCL READIWRITE CONTROL REN WCLK WEN1
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2013:06:21 17:28:22-06:00
Creator                         : pdftk 1.44 - www.pdftk.com
Modify Date                     : 2016:07:22 13:30:34-07:00
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Creator Tool                    : pdftk 1.44 - www.pdftk.com
Metadata Date                   : 2016:07:22 13:30:34-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:5c325a04-9734-0b40-b512-0355be2d70a4
Instance ID                     : uuid:536b5360-4d58-3048-be4a-fb601d92b20c
Page Layout                     : SinglePage
Page Count                      : 558
EXIF Metadata provided by EXIF.tools

Navigation menu