36810701_Control_Data_8092_Tele Programmer_Programming_Reference_Manual_May67 36810701 Control Data 8092 Tele Programmer Programming Reference Manual May67
36810701_Control_Data_8092_TeleProgrammer_Programming_Reference_Manual_May67 manual pdf -FilePursuit
36810701_Control_Data_8092_TeleProgrammer_Programming_Reference_Manual_May67 36810701_Control_Data_8092_TeleProgrammer_Programming_Reference_Manual_May67
User Manual: 36810701_Control_Data_8092_TeleProgrammer_Programming_Reference_Manual_May67
Open the PDF directly: View PDF .
Page Count: 103
Download | ![]() |
Open PDF In Browser | View PDF |
CONTROL DATA CORPORATION CONTROL DATA® 8092 Te IeProgrammer PROGRAMMING REFERENCE MANUAL CONTROL DATA CORPORATION CONTROL DATA® 8092 TeleProgrammer PROGRAMMING REFERENCE MANUAL Pub No. 368 107 01 RECORD OF REVISIONS Rev. Date Notes Reprint with revision. Revised to reflect ECOs 1163, 1198, 1268, 1291, 1334, TITI, T354, 1401, A 8/24/64 Chanqe 1 5/21/65 Change 2 1402. 1403. 1411, 1431, 1470, 1505, and 1585. (Revision packet) Revised to reflect ECO DP2193. (Revision packet) 8/25/66 5/15/67 Renrint (includes chrlnae 1 rlnd 2) C 1967. CONTROL DATA CORPORATION Print.d in the United States of America CONTENTS CHAPTER ONE-PROGRAMMING General Characteristics The Central Processor Basic Concepts in Programming the TeleProgrammer Instruction Word Format 8092 Instruction Repertoire Description and Examples of Instructions Load Instructions LDN Load A (No Address Mode) LDM Load A (Memory) LD I Load A {Indirect} LCM Load Complement to A (Memory) LC I Load Complement to A (Indirect) TTA Tag Register Contents to A BER - Contents of BER Register to A Store Instructions STM - Store A (Memory) ST I Store A {Indirect} ATT - A to Tag Register ABR - A to B~ffer Entrance Register ABX - A to Buffer Exit Register Jump Instructions ZJP Jump, if Contents of A = 0 NZP Jump, if Contents of A :f 0 PJP Jump, if Contents of A ~ 0 NJP Jump ,if Contents of A < 0 UJP Unconditional Jump Shift Instructions SHA Shift A Left One Bit Arithmetic Instructions AD N - Add (No Address) ADM - Add (Memory Address) AD I Add (Indirect Address) SBN - Subtract (No Address) SBM - Subtract (Memory Address) SB I Subtract {Indirect Address} RAM - Replace Add (Memory Address) RAO - Replace Add One (Memory Address) Logical Instructions LP N - Logical Product (No Address) LPM Logical Product (Memory Address) LP I Logical Product {Indirect Address} LSN Logical Sum (No Address) LSM Logical Sum (Memory Address) LS I Logi~al Sum {Indirect Address} iv 1-1 1-2 1-3 1-6 1-9 1...,10 1-10 1-10 1-10 1-11 1-12 1-12 1-13 1-14 1-15 1-15 1-15 1-16 1-16 1-18 1-20 1-20 1-20 1-21 1-22 1-22 1-23 1-23 1-24 1-24 1-24 1-25 1-26 1-2.6 1-27 1-27 1-28 1-29 1-29 1-30 1-31 1-31 1-32 1-33 Input/O utput INN OUT IB I IBO INA OTN - Instructions Input Normal Output Normal Initiate Buffer Input Initiate Buffer Output Input to A Outout No Address 1-34 1-34 1-35 1-37 1-38 1-39 1-39 Control Instructions External Function EXF CIL C lear Interrupt Lockout CBC Clear Buffer Controls ERR Error Stop HLT Halt 1-40 1-40 1-42 1-42 1-43 1-43 CHAPTER TWO = OPERATION TeleProgrammer Operator's Console Switches Displays Status Indicators Starting the 8092 TeleProgrammer Loading A Program or Data Entering Data From the TeleProgrammer Console Examining the Storage Contents 2-1 2-2 2-4 2-5 2-7 2-7 2-7 2-8 CHAPTER THREE A BRIEF LOGICAL DESCRIPTION OF THE TELEPROGRAMMER Input/Output Section Program Step Arithmetic Section Storage Section Control Section 3-1 3-2 3-3 3-5 3-7 GLOSSARY APPENDIX Appendix A - TOSAS - A TeleProgrammer Assembler Appendix B - Programming Examples Appendix C - Mathematical Tables Change 1 v A-1 B-1 C-1 8092 TeleProgrammer VI CHAPTER ONE PROGRAMMING GENERAL CHARACTERISTICS The CONTROL DATA~:< 8092 TeleProgrammer IS a highly flexible and versatile stored program processor specially designed as a high speed buffer memory system for use in a variety of data communication applications. Among the more important features are the following: stored program parallel mode of operation 8-bit word length 2048 words of core storage - 4096 (optional) 1 Direct I/O Channel (8 bits) 1 Buffer I/O Channel (8 bits) versatile instruction repertoire of 42 instructions 3 Auxiliary Tag registers of 4 bits each indirect and direct addressing and modification interrupts 12 bit external function address codes 7 internal program registers physical size: height, 68 inches; width, 34 inches; depth, 30 inches storage reference cycle time of 4 microseconds The ability to use the OSAS . or OSAS-A assembler for those who have a 160 or 160-A computer. ~:< Registered Trademark of Control Data Corporation 1-1 THE CENTRAL PROCESSOR The TeleProgrammer is a parallel, single address electronic data processor. Operations are controlled by an internally stored program located in sequential addresses. seconds. The storage cycle time is 4 mlcro- The basic memory may be expanded from 2048 words to 4096 words. Each internal core word contains 8 bits. Instructions are executed in one to four storage cycle times; with times varying from 4 to 16 microseconds. The average instruction time is approxi- mately 10 microseconds. The Block Diagram indicates the principal functional divisions ARITHMETIC t - CORE STORAGE I CONTROL i 1- 2 INPUT/OUTPUT BASIC CONCEPTS IN PROGRAMMING THE TELEPROGRAMMER The TeIeProgrammer has some Unique features for programming. of these center around the word length of 8 bits. addresses fur 4096 highest address IS words, 212 - 1). 12 Most In order to carry bits are required (2 12 = 4096, where To provide for 12 bits, the TeleProgram- mer makes use of three 4-bit Tag registers (Tag registers 1, 2, and 3). The carryover from 8 bits to 4 additional bits, in the Tag register, causes a split in the second octal digit from the left. This is indicated below: 4-bit Tag reg. 3 8-bit word length 2 1 3 3 Split octal digit In this manual, the 8,.;; bit word length will be represented as two full octal digits and one quartic digit (the leftmost 2 bits). The Tag registers will be generally represented as shown above, with one full octal digit (on the left) and a single bit (0 or 1) on the right. ( c:J D) The jagged ends of the registers indicate the split octal digit. 1-3 Change 1 In addition, this manual will refer to numbers of "three octal digits" being contained in the 8-bit word length. Actually, this is physically impossible, since three octal digits occupy 9 bits and there are only 8 bits in the TeleProgrammer word. However, what IS meant here, is that the leftmost bit of the three digit octal number IS to be discarded. For example, show the octal number, 277, in a TeleProgrammer word. Octal 277 = a 10 111 111 In binary discard) 1 quartic digit 2 octal digits This convention of representing the contents of the 8-bit words will be used many times in this manual. Looking at the above 9-bit configuration, one can see that to discard the leftmost bit, it must be zero. that the highest quartic digit of the word is 3. This means This, in turn, indicates the maximum "octal" of three digits which can be expressed In the 8.. bit word length; --it is 377. IS equivalent to 256 registers. The octal range 000 through 377 Since each Tag register holds 4 bits, there are 16 possible configurations for the 4 bits (0000 through 1111). Thus, 16 times 256 = 4096 total registers available. 1-4 WORD FORMAT People who work with computers are generally acquainted with the term, "octal". It is the number base associated with three bits --which turn, provides eight possible number states (zero through seven). In Since the 8092 TeleProgrammer has an 8-bit word length and partitioning by three bits over the complete word is inefficient; the number base of four with partitioning by two bits is used for the ~ two bits of the word. The number base of four, is referred to, in this manual, as QUARTIC. Keep in mind, that only the ~ in Quartic. bits are expressed by two octal digits. The lower upper QUAR TIC digit Bits 00 01 10 'lii IS SIX two bits of the word length is expressed The represented by bits, as shown below: The Upper QUAR TIC Digit o 1 2 3 The CONTROL DATA 8092 TeleProgrammer word contains 8 binary digits. These are shown below with the least significant bit (b o ) on the right. I 8 bits b 4 b 3 1b 2 I b 7 I b 6 Ib 5 I I Single Word Binary Format I Ib 1 I bO I Any binary digit above can be represented by any combinations of ones or zeros. Although the 8092 operates in binary, it is more efficient to consider the word format as containing 2 octal and 1 Quartic digits, as shown below: ~I 8 bits 1-Z3 Single Word Format With Two 0 ctals and 0 ne Quartic Quartic Digit (0,1,2, or '3) 1-5 c\ ~ Octal Digit (0 thru 7) Octal Digit (0 thru 7) INSTRUCTION WORD FORMAT The TeleProgrammer operates on a two word instructional set. Most instructions are contained in a set of two sequential storage locations. The first word contains the Function Code, in the lower 2 octal digits, and the Tag register designator, T, in the upper quartic digit. The second word of the instructional set holds: an operand of 2 octals and 1 quartic, or a partial address of 2 octals and 1 quartic. Three modes of operation are possible in the 8092; NO ADDRESS MODE, MEMORY ADDRESS MODE, and INDIRECT ADDRESS MODE. Tag register Designator ~ shown below: Examples are Function Code ~ (2 octals) I NO ADDRESS MODE Where T = 0, since there is no Auxiliary Tag register used in this mode. The operand must contain 3 digits in the octal range of 000 thru 377. T F 2 Octal Digits MEMORY ADDRESS MODE Where T can equal 0, 1, 2, or 3. The lower 8 bits of the operand address appear in the second word and the upper 4 bits of the operand address appear in the Auxiliary Tag register designated by T. If T=O, the address of the operand is fully contained in the second word of the instructional set. 1-6 T F I INDIRECT ADDRESS MODE Where T can equal 0, 1, 2, or 3. { At one of the first 256 core locations, T F given in the second word, is the lower 8 bits of the operand address. ....-'------------------t\ The upper 4 bits of this operand lOne of First 256 Core Addresse~ address· will be found in the Auxiliary (Octal rang of th dd ~ " "d" d b T e ese a resses T ag reglster 10 lcate y . is: 000 thru 377 I Examples of the Three Operational Modes Example 1. NO ADDRESS MODE Put the octal number, 277, into the A register. Octal IFunction Code Tag Solution: { Since no Auxiliary Tag register is involved, T = o. The octal code for "LOAD A" in this mode is 20; thus F = 20. The octal operand, 277, is placed in the second set. as 2 octals (77), and 1 quartic (2). I 0 I 2 ! ! 2 7 I 0 7 Operand of 3 digits (2 octals and 1 quartic) Example 2. Load the contents of octal address, 3771, into the A register. MEMORY ADDRESS MODE Solution: The Tag, 2, indicates Auxiliary Tag register 2 holds the upper 2 quartic digits of the address whose l()wer 8 bits are given in the second instruction word. Note, octal 3771 is contained in the designated Tag register and the second word of the instruction set. I I ~ Octal ".r-T..:...::a::i!g:....--rF:.....::u::.:n=c~ti:.:;o.:.:n:....:C=o-=d:.=:je I 2 i 2 ! \ 3 ! 1~~3 ~ Full 7 12 Bit Address I 1 I 4 Note: The quartic and 1 bit fit together to form octal, 7, the second digit of the address. 1-7 1 Tag reg. 2 Example 3. Load the operand whose complete address is in address 0126 and Tag reg. 1. INDIRECT ADDRESS MODE Solution: { Octal 126 is the address given in the second word. At this address, 0126 ,the lower 8 bits of the location of the operand are placed. The upper 4 bits of the operand location are placed in Auxiliary Tag register, 1, indicated by the Tag designator of the first word. Continuing this example, assume address 0126 and Tag register 1 contain the quantities shown below, show what finally is loaded into A. Tag I 1 I I Octal Function Code 2 i 2 I digits 1 quartic digit Assume Tag register 1 1 contai7 Assume address, 0126. conta~ Octal . }~~ Address ___ Formed Assume address 2546 contains: --; r--O~-r~7'-ii~6:-1~L-------------~th~ls IS loaded into A ~ o : 7 8 bits 1-8 ! 6 ~I THE 8092 TELEPROGRAMMER INSTRUCTION REPERTOIRE Cycle Rei. Octal Time Code Code Functions * ... Functions A RITHMETICS : LOADS: Load A (No. ) Load A (Mem. ) Load A (Ind. ) Load Comp. (Mem. } Load Comp. Und. ) Tag Reg. to A Clear A BER to A LDN LDM LDI LCM LCI TTA CLA BER 20 21 22 25 26 03 03*** 06 Add (No. Adr.) Add (Mem.) Add (Ind.) Subtract ( No. ) Subtract (Mem.) Subtract Hnd.) Replace Add (Mem. ) Replace Add 1 2 3 4 3 4 1 1 1 STORES: Store A (Mem. ) Store A (Ind. ) A to ·Tag Reg. A to BER A to BXR JUMPS: Cycle Rei. Octal Time .,. Code Code STM STI ATT ABR ABX 41 42 02 04 05 3 4 1 1/2 1/2 2 3 4 2 3 4 4 4 Log. Log. Log. Log. Log. Log. LPN Prod. (No. ) Prod. (Mem. ) LPM LPI Prod. (Ind. ) Sum (No. ) LSN Sum (Mem. ) LSM Sum (Ind. ) LSI 10 2 3 4 2 3 4 11 12 14 15 16 IN-OUT: ZJP NZP PJP NJP UJP DON 60 61 62 63 64 02*** 2 2 2 2 2 1 Input Normal Output Normal Input Buffer Output Buffer Input to A Output No. Adr. INN OUT IBI IBO INA OTN 12 13 10 11 16 14 EXF CIL CBC ERR HLT 15 13 01 00 11 .......... .,..,. ...... .,..,. 1/2 1/2 2 2 QQ~TROL.fi; Sl:IIFIS; A Left 1 bit 30 31 32 34 35 36 51 55 LOGICALS: **** H A = 0 H A f 0 H A ~ 0 H A < 0 Unconditional Do Nothing ADN ADM ADI SBN SBM SBI RA.M RAO SHA 01 1 Ext. Function Clear Interrupt Clear Buffer Error Stop Halt * Cycle Times; each cycle = 4 microseconds. ** 3 + 2 (X = 1) + terminate time. Where X = No. *** -No tag should be referenced. **** Jump cycle time is 1 cycle, if jump is not made. 1-9 of words. Change 1 3 1 1 - 1 DESCRIPTION AND EXAMPLES OF INSTRUCTIONS LO AD Instructions Seven LOAD instruction are available. LDN LDM LDI LCM LCI TTA BER These are: LOAD A (No Address Mode) LOAD A (Memory Address Mode) LOAD A (Indirect Address Mode) LOAD Complement to A (Memory Address Mode) LO AD Complement to A (Indirect Address Mode) Tag Register Contents to A . Contents of B ER Register to A LDN - (20) - LOAD A (No Address) 2 Cycles Load the A register' with the contents of the second word of the instructional set. Octal numbers 000 through 377 can be entered into A by this instruction. Example: {i I Put the octal number, 177, into A T LDN 0 2 1 i y7 8 bit A register 0 ~ i 7 LDM - (21) - LOAD A (Memory) 3 Cycles Load the A register with the. contents of the memory address whose lower eight bits are given in the second instruction word and whose upper four bits are contained in the designated Auxiliary Tag register. Example: Assume memory address 3573 (in octal) contains the octal quantity, 033. Load this into. A • 1-10 o A register 3 3 Memory Address =l...-...;0:::...---L_...::3'---'----'3~__' LDI - (22) - LOAD A {Indirect} 4 Cycles Load A with the contents of the address whose lower 8 bits are contained in one of the first 256 (decimal) addresses, and whose upper 4 bits are contained In a designated Auxiliary Tag register. The location in the core (one of the first 256 decimal addresses) is given in the second instruction word. The Auxiliary Tag register is indicated in the first word. Example: Assume octal address, 3646, contains the octal number, 277. Load this number to A, using the indirect mode via octal address 0216. LDI 2 2 bit ~uartic 2 10 Address 0 2· 1 6 contains Tag register 2 Address 3 6 4 6 A register 7 '----=2:..-...J---:._"'--_7=-----' --~~I'----=2=----11_7"'----'-1_7"----' 1-11 LCM - (25) - Load Complement to A (Memory) 3 Cycles Load the A register with the complement of the contents of the memory address whose lower 8 bits are given in the second instruction word and whose upper 4 bits are contained in the designated Auxiliary Tag register. Example: Assume memory address 2077 (in octal) contains the octal quantity, 125. Load the complement of this quantity into A. 2 complement 207 7 Memory Address r __r-:-~~:-~r-I-_______ Of 1 2 .5 J ~25 is 252 (Note: quartic complements are "three's complement". Thus, the complement of the quartic digit, 1, above is 2; whereas, the complements of the octal digits 2 and 5 are respectively 5 and 2.) LCI - (26) - Load Complement to A (Indirect) 4 Cycles Load A with the complement of the contents of the address whose lower 8 bits are contained in one of the first 256 (decimal) addresses and whose upper 4 bits are contained in the designated Auxiliary Tag register. The location in the core (one of the first 256 decimal addresses) is given in the second instruction word. The Auxiliary Tag register is indicated in the first word. 1-12 Example: Assume octal address 3467 contains the octal number, 053. Load the complement of this number into A, using the indirect mode and via octal location 0023. ister 2 ! 4 3 7 Address 0 0 2 3 ~f o_...i._r6_~~_~ L __ ~§ 6 7 complement L-O~-'-""":5~...L--=3!...-rl--_O_f ~ ..... )3 324 Note: The 1 bit of Tag register 3 and the quartic digit at address 023, form the bits, 100, which gives the octal digit, 4. Also note the complement of the quartic digit, 0, at address 3467 is equal to 3; whereas the complements of the octal digits 5 and 3 are respectively equal to 2 and 4 TTA - (03) - Tag Register eo A 1 Cycle Load the contents of the designated Auxiliary Tag register into the A register. Pack zero's in upper 4 bits. Example: Load contents of Tag register, 2, into A. o TTA 3 " Three bits Note: The four bits of the Tag register are: 0110. 00 000 110 = 006. When packed to the right of A, they give the following: CLA - (03) - Clear A 1 Cycle This instruction is the same as the preceding instruction (TTA) except that the TAG is not referenced. The A register is therefore cleared (all zeros). 1-13 Change 1 BER - (06) - Buffer Entrance Register to A 1 Cycle Load the A register with the lower 8 bits of the Buffer Entrance register. Example: Load Buffer Entrance register into A BER Code b! (; o Upper quartic digit '- "'1<=-----8 bits---~~I ~1~-1-0--rl--11--~1-0~0~~1-1-0-'1 Buffer Entrance Register (10 bits) (Shown in bi~fONnat) Note: 0 n this instruction, the lower 8 bits (1 quartic and 2 octals) are trans- ferred into the A register. The upper 2 bits (1 quartic digit) are not transferred. On the reverse transfer (A to BER), the right 2 bits of Tag register 3 are sent to the upper 2 bit locations of B ER • ABR instruction. Change 1 1-14 This is explained in detail in the S TO R E Instructions Five S TO R E instructions are available; these are: STM STI ATT ABR ABX STM - STORE A (Memory Address Mode) STORE A (Indirect Address Mode) A to Tag Register A to Buffer Entrance Register A to Buffer Exit Register (41) - STORE A (Memory Mode) 3 Cycles Store the contents of the A register into the location whose address is eqUlva- lent to the combined contents of the designated Tag register and the second word of the instruction set. Example: Assume A at octal address, 2356. contains the octal number, 155. Address 2 3 5 6 STI - (42) - STORE A 1 Store this number 5 (Indirect Mode) 4 Cycles Store the contents of the A register into the location whose address is equivalent to the combined contents of the designated Tag register and the contents of one of the first 256 decimal cOre registers. The exact location of one of these 256 registers is given, through its address, in the second instruction word. 1-15 Example: Assume the A register contains the octal number, 037. Storethis number in octal address, J 777, by using octal location 0102, and the indirect mode. l'!'~I} _ C I ::C ____ ----------------- ~a~reg. 1 J~ Address 1 02 contains 1 1 1 3 o Address 3 7 7 7 ATT - (02) - A to Tag. Register 1 Cycle Transfer the lower 4 bits of the A register into the designated Auxiliary Tag register. Example: Assume the A register contains the octal number, 073. Store the A register at Auxiliary Tag register, 3. ATT ! 0 I 2 o ! 7 ! 3 3 Tag reg. 3 Three Bits 101 } Last 4 bits ILj-*-~:_~J.-Jl+oo:---------::.J0ll One bit DON - (02) - Do Nothing 1 Cycle This ins'tl"Uction is the same as the preceding instruction (A TT ), except that the tag is not referenced. This instruction has no operation. Control goes to the next instruction set. ABR - (04) - A to Buffer Entrance Register 1 Cycle, 2 Cycles if jump is made. Transfer the contents of A to the lower 8 .bit positions of the Buffer Entrance register. The rightmost 2 bits of Tag register 3 become the 9th and 10th bits Change 1 1-16 of the ~uffer Entrance Register (B ER); the upper two bits of Tag register 3 are referenced for bits 11 and 12 of BER. If the buffer is busy, a jump occurs to the combined address contained in the second word of the instruction set and the designated Tag register. If the buffer is not busy, control goes to the next instructional set. Example: Assume one wants to effectively enter a starting octal address of Shown are the program steps involved. 2534 into the Buffer Entrance register. To effectively enter a starting address, ·2534 into BER Tag I 0 ILoad A Coda 0 I 2 I 0 Tar I i 5 0 - IStore A Codel ·0 2 I i I 8 bit A register o Load octal number,S, into A 5 . A register Store A at T~ reg .. 3 Q_ i 01 Tag reg. 3 4 bits I Tag I 0 1 ILoad A Codel i 2 ! 3 0 I 4 Load octal number, 134 into A 8 bit IA to B ER Code o If Buffer is busy, jump goes to address 4 35 7 5 bits----~ 1-17 Buffer Entrance reg. Shown in 10 bits Since BER is a 10-bitregister, there is not room for the full 12-bit address. The upper 2 bits (1 quartic) are obtained by referencing the left 2 bits of Tag register 3. In the above example ,the left 2 bits of Tag register 3 and the leftmost bit of BE R give the octal digit, 2. A B X - {05} - A to Buffer Exit Register 1 cycle, 2 cycles if jump IS made. Transfer the contents of Ato the lower 8 bits of the Buffer Exit register (BXR). The right quartic digit (2 bits) of Tag register 3 fills the 2 upper bits of BXR. The instruction is used to store the terminating address for buffer transfers. The left quartic digit of Tag register 3 is referenced by the TeleProgrammer to determine the highest order 2 bits of the address. F or a Buffer Input instruction, enter the LWA + 1, and for a Buffer Output instruction, enter the LWA + 2. H the buffer is busy a jump occurs to the combined address contained in the designated Tag register of the first word and the contents of the second word of the instruction set. H not busy, control continues to the next instruction set in sequence. NOTE: The above concept may be clearer, if it is remembered that 12 bits, rather than 8 bits, are required to cQver the whole possible address range of 4096 registers. As a consequence, it must be possible to perform buffer operations covering the complete address ra.nge. To accomplish this, the BER or BXR (of 10 bits) uses the 8 bits of the instruction operand, 2 bits from TAG register 3 (the lowest order 2 bits). By referencing the highest order 2 bits of Tag register 3, _ the full 12 bits are available. The use of a words. The highest order during buffer Change 1 10 bit BER and ·8XR allows a maximum buffer operation of 20008 first word address and last word address must be identical in the 2 bits. The highest order 2 bits of Tag 3 must not be altered operations. 1-18 Example: S how a program which places octal address, 3520 into BXR; if the buffer is busy, wait until it is not busy. Location of Instruction Instructions Explanation of Action which Occurs 3420 3421 020} 007 Load A with the octal number, 007. 3422 302 S tore lower 4 bits of A at Tag register, 3. 3423 3424 020} 120 Bits, 0111, go to Tag reg. 3 Load A with the octal number, 120. A goes to bits 1 thru 8 of BXR, right quartic 1.3) of Tag reg. 3 goes to bits 9 and 10 of BXR." ... Left quartic digit of Tag reg. 3 is referenced for upper 2 bits of address. reg. 3 (in bits) If buffer is busy, jump goes to combined address of designated Tag. reg. and contents of second word. In this example, jump goes to 3425. Upper quartic is referenced for leftmost part of address. . This combined with leftmost bit of BXR gives octal digit, 3. 1-19 reg. BXR (10 JUMP INSTRUCTION Five JUMP instructions are available, they are: ZJP NZP PJP NJP UJP JUMP, if contents of A=O JUMP, if contents of Ai'O JUMP, if contents of ~~ 0 (positive) JUMP, if contents of A < 0 (negative) Unconditional JUMP ZJP - (60) - Zero JUMP 2 Cycles if jump is made; otherwise, 1. If the contents of A equals zero, jump to the combined address contained the designated Tag register and the second word of the instruction set. the contents of A are not zero, continue In In If sequence with next set of instructions. Example: Test A for zero, and Jump otherwise continue. to octal address, 6254, if A ZJP 0 6 : If A = 0 Jump to 1 Address ~ If A i' 0, continue in sequence NZP - (61) - Not Zero JUMP 5 2 : 2 Cycles if jump :l ) : 74 I}: zero; ZJP ~::ruction I ; } Next I IS IS Instruction Set made; otherwise, 1. If contents of A are not zero, jump to the combined address contained in the designated Tag register and the second word of the instruction set. If the contents of A are zero, continue in sequence with the next set of instructions. 1-20 Example: Test A, and if not zero, Jump to octal address, 0222. continue in sequence. see If A If A ~r-...:iL0--'---6--'---1-----'1} N ZP f= 0, jump to address = If zero, Instruction 0 2 :::2=-2_---------l:--=2--'--=2--'---=2-----11 --C I} 0, con~t~in~u::e:::--------~ =====================1 in sequenc e Set Next Instruction Set Note: Since the complete jump address can be expressed in 8 bits, no Tag register is required. Thus, the Tag designation = 0, in the first instruction word. PJP - (62) - Positive JUMP 2 Cycles if jump is made;' 'otherwis~, 1. If the contents of A are positive (equal or greater than zero), jump to the combined address contained in the designated Tag register and the second word of the instruction set. sequence. (If leftmost bit If the contents of A are not positive, continue 0, contents of A are positive.) Example: Test A, and if positive, jump to octal address 4715. continue in sequence.' 6 If A is positive jump to octal address In Otherwise, 2 47 15 I} If A is not positive, _ _ _~~ continue in sequence/" .------.-----.-----.1 with next set of ~----'----........----' instructions 1-21 Next Instruction Set NJP - (63) - Negative JUMP 2 Cycles if jump is made; otherwise, 1. If the contents of A are negative, jump to the combined address contained in the designated Tag register and the second word of the instruction set. If the contents of A are not negative, continue in sequence with the next set of instructions. Example: Test A, and if negative, jump to octal address, 0012. negative, continue in sequence. If A is negative jump to address 0012 0 6 3 I} I} ~ _______--------~C=OZ~~C~~1~~~~~2~~1 If A is not negative, continue in sequence----_ _ » :=================1 Since significant portion of the address can be contained In If not NJP Instruction Set Next Instruction Set B bits, no Tag register is required and thus Tag designation of first instruction word is zero. UJP - (64) - Unconditional JUMP 2 Cycles Jump to the combined address contained in the designated Tag register and the second word of the instruction set. Example: Jump to address, 1323. r Jump to address 1 Change 1 3 2 3 4-----~ 1-22 SHIFT INSTRUCTION One shift instruction is available: SHA = SHIFT A LEFT ONE BIT SHA - (01) - Shift A Left 1 1 Cycle Shift the contents of A left--end around--l bit position. left end of the A register Bits coming off the enter the lowest bit position on the right end of the register. Example: Assume A contains the octal number 023. of A by 2, using the shift instruction. Multiply the contents A register Tag Q Shift Code a I 1 Tag register designation IS zero on shifts Q 2 1 J 0 4 6 I before I after shift shift Note: One shift instruction is required to shift A one place (1 bit) to the left. Each left shift is equivalent to one multiplication by 2. To shift 5 bits left, it is necessary to give 5 shift instructions, or loop through the single shift instruction 5 times. 1-23 ARITHMETIC INSTRUCTIONS There are eight Arithmetic instructions: two replace adds. three adds, three subtracts, and These are: AD 0 (No Address) ADD (Memory Address) ADD (Indirect Address) ADN ADM ADI SBM SBM SBI SUBTRACT (No Address) SUBTRACT (Memory Address) SUBTRACT (Indirect Address) RAM RAO R.EPLACE ADD (Memory Address) REPLACE ADD ONE (Memory Address) ADN - (30) - ADD (No Address) 2 Cycles Add to the A register the 8 bit number given in the second word of the struction set. In- The sum is left in A. Example: Assume A contains the octal number, 122. 211, to A. Add the octal number, Initial Contents of A 122 Tag Instruction Set { ' 0 Add Code 3! 0 ~I-=2~~~1~~1~~r- /- .... 2 3 Add 1 3 Final Contents of A 3 ADM - 3 (31)- ADD (Memory Address) 3 Cycles .. Add to A the contents of the combined address given register and the second word of the instruction set. 1-24 In the designated Tag Example: Assume A contains the octal, 011. Add the contents of address (Assume contents of address 1523 are 111.) 1523 to A. Add Code 1 3 ~I 1 5 2 3 1 0 Initial A ! 1 : 1 1 1 1 ,. C;; 2 1 2 2 1 Final Contents of A (32) - ADD (Indirect Address) 4 Cycles ADI - Add to A the contents of the combined address contained In the designated Tag register and one of the first 256 decimal locations indicated in the second word of the instruction set. Example: Assume A contains octal number, 110. Assume octal address, 4413 contains 302. Add the contents of address 4413 to A, by using the indirect mode and octal address, 0222. I { . Tag reg. I 4 r-I Tag 1 Add Code 3! 2 Initial A Contents 1 1 ; 0 I -2-..----2-,----::-2---,~ ! 3 0 o o 1 II- 1 1 2 3 (see note) 3 Final A 1 1 "'-- ~---- Address 4 4 1 3 3 2 Note: The addition of 1 and 3 in the rightmost quartic digits overflows the register and the carryover (1) is added to the rightmost digit. 1-25 SBN - (34) - SUBTRACT (No Address) 2 Cycles Subtract from the A register, the number contained in the second word of the instruction set. Example: Instruction Set SBM - The difference is left in A register. Assume A contains 003. f .I Tag 0 Subtract 001. 0 Subt l Codel 3 1 4 I Q 0 1 ~o ~tract 0 Initial 0 0 0 Final A (35) - SUBTRACT (Memory Address) 3 Cycles Subtract from the contents of A, the contents of the combined address contained in the designated Tag register and the second word of the instruction set. Example: tains 233. Assume A contains the octal, 113. Assume address, 7622 conSubtract the contents of address 7622 from A. Subt. Code 3 5 1 2 reg. 2 1 3 3 subtract ) Address Initial A i 1 1 3 7 6 2 2 = 2 2 Final 3 3 1-26 7 A SBI - (36) - SUBTRACT {Indirect Address} 4 Cycles Subtract from the contents of A, the contents of the combined address contained in the designated Tag register and the location of one of the first 256 decimal registers, indicated by the second word of the instruction set. Example: Assume A contains the octal, 333. Assume address 3502 contains the octal number, 123. Reduce A by the contents of address 3502, using indirect mode and octal address, 0002. J 5! Instruction Set 0 3 2 Address 0002 = 1 ! ~_1 ~ __ 1 Initial A ! 3 ! 2 3 3 2 s~aclL-~2~~F~i~n~al~A~-0~-- __2__' -__3__ Address 3 5 02 RAM - (51) - REPLACE ADD (Memory Addtess) 4 Cycles Add the contents of the A register to the contents of the memory' address formed by the contents of the designated Tag register and the second word of the instruction set. The sum thus formeQ, remains in A, and replaces the initial contents of the memory address. 1-27 Example: Assume A contains the octal number, 200. Assume address 1000 contains the octal number, 233. Increase the contents of address 1000 by the contents of A. } Ttre I ~ I 0 1~. i Initial A ! 0 i 3 \ 0 3 0 Address Memory 1 0 0 0 Initial Contents 2 3 3 Address Memory 1 00 0 Final Contents 0 3 4 ~ RAO - Ad( Set o g• Instruction 2 2 (55) - REPLACE ADD ONE 4 Cycles Add 1 to the contents of the memory address indicated by the combined contents of the designated Tag register and the second word of the instruction set. This sum is performed in A and remains in A at the end of the instruction. Example: Add 1 to the contents of memory address, 0200. Instruction .Set Tag 0 f I 2 I Add : 5 1 Code ! 5 I / ~ 3 goes to A 0 A reg. 1 1 i 3 ( Add 1 3 Address 0200 = (Initial contents) 3 1 Address 0200 = (Final contents) 3 1 4 1-28 1 Final A 4 LOGICAL INSTRUCTIONS There are six Logical instructions: three are Logical sums. three of which are Logical products; These are: LPN LPM LPI LOGICAL PRODUCT (No Address) LOGICAL PRODUCT (Memory Address) LOGICAL PRODUCT (Indirect Address) LSN LSM LSI LOGICAL SUM (No Address) LOGICAL SUM (Memory Address) LOGICAL SUM (Indirect Address) Logical Product is defined as a "bit by bit" multiply which observes the following rules: 1 0 0 1 times o times o times 1 times 1 0 0 0 1 Logical Sum is a "bit by bit" sum without "carries" which observe the following rules: LPN 1 + 0 0+1 1 1 0+0 1 + 1 0 0 (10) - LOGICAL PRODUCT (No Address) 2 Cycles Form in A the Logical Product of the contents of A and the contents of the second word of the instruction set. 1-29 Change 1 Example: Test A for "even". I Tag Instruction Set Zero Jump l LPM - { ILog.Pr.Code . 0 ill 0 I 0 0 1 {I If even, Jump to octal address, 0100. Initial A I where d The Logical Product, using 001, will give a zero in A, if A is initially even. ZJP 6 octal digit = ! a 0 ~____.-____~____~ I 1 0 a 0 where X X If A = 0, jump to address, 0100. Final A 0 : ; 0, if initial A 1, if initial A X IS ~. IS odd. (11) - LOGICAL PRODUCT (Memory Address) 3 Cycles Form in A, the Logical Product of the contents of A and the contents of the memory location whose address is the combined contents of the designated Tag register, and the second word of the instruction set. The initial contents of the memory location remains unchanged. Example: Assume A contains the octal, 222. Assume memory address, 5211, contains 033. Form the Logical Product in A. Tag Log.Pr.Code 3 1 1 2 Log. Product o Final A o Memory Address 5 2 1 1 1-30 3 3 LPI - (12) - LOGICAL PRODUCT (Indirect Address) 4 Cycles Form in A the Logical Product of the contents of A and the contents of the memory location whose address IS the combined contents of the designated Tag register and the contents of one of the first 256 decimal locations. The address of this decimal location is given in the second word of the instruction set. The initial contents of the memory location remain unchanged. Example: Use the indirect mode to form the Logical Product of A and memory location 3700. Use octal location, 0030 in the process. Assume initial contents of A and location 3700 are respectively: 133 and 012. Tag 2 { Address A Log.Pr.Code I 0030 1 2 3 o 3 Logical Product 3 700 = ~~0~~~1--~~2~~~ 2 fFiaiI -A LSN - (14) - LOGICAL SUM (No Address) 2 Cycles Form in A the Logical Sum of the contents of A and the second word of the instruction set. 1-31 Example: Assume A contains octal number, 002. Tag { I a Ii Log.Sum Code 1 ! 4 I o Initial A LL09~ Add Note: The bit-by-bit Logical Add of the above example is: 002 = 00 000 010 001 = 00 000 001 Logical Sum = 00 000 all 003 LSM - Set A to 003. a I a i a 2 1 (see note) ) 0 a a 3 Final A (15) - LOGICAL SUM (Memory Address) 3 Cycles Form in A the Logical Sum of the contents of A and the contents of the memory location whose combined address is given in the designated Tag register and the second word of the instruction set. Example: Assume A contains octal number, 111. Form in A the Logical Sum of the contents of A and the contents of memory location, 6112. Assume this location contains 333. Sum Code 1 5 / 1 3 Initial A 1 3 ! Note: 6 1 12 3 3S 1 3 (see note) { Log. Sum Memory Address ! 2 Final A 2 : ! 2 The Logical Sum performed above, is shown below In bit form. 111, 333, Logical Sum 01 001 001 11 all all 10 010 010 1-32 222 LSI - (16) - LOGICAL SUM (Indirect Address) 4 Cycles Form in A the Logical Sum of the contents of A and the contents of the memory location whose address is the combined contents of the designated Tag register and one of the first 256 (decimal) locations. The location of one of these 256 locations is given in the second word of the instruction set. Example: Assume A contains 010. Assume memory location, 1510, contains 301. Using the indirect mode, and location 0300, form in A the Logical Sum of the contents of A and the contents of address 1510. ILog.8um COd~ 1 6 I : I ! 0 0 I o Initial A ! 1 ! 0 3 0 1 ------~~---------- \ 0300 3 Memory Location 1 5 1 0 1 3 1-33 Fir:fU A ill INPUT-OUTPUT INSTRUCTIONS There are six instructions directly related to input-output functions. These are: INN OUT IBI IBO INA OTN - INPUT NORMAL OUTPUT NORMAL INITIATE BUFFER INPUT INITIATE BUFFER OUTPUT INPUT TO A OUTPUT NO ADDRESS (72) - INPUT NORMAL INN - (see p. 9 for timing) Input a number of words to memory starting at the memory address contained in the designated Tag register and the second word of the instruction. The ending address plus 1, is contained in a third word immediately following the second word. Thus, this instruction set is composed of three words. (The Tag register designation indicated in the first word is automatically assigned as the Tag register designation for the ending address plus 1, in the third word. ) Example: Input 80 words to memory starting at octal address, 6577. I 1 6 7 7 I Instruction ~ -iL....--=3--'--O:l--'--7:..--..11 ~S et Ending Address Plus 1 Starting Address Difference = 120 in octal = 80 decimal 6717 6577 120 Input Memory Locations ; ! 16577 6600 6601 I 6716 1-34 OUT - (73) - OUTPUT NORMAL Output a number of words from memory starting at the memory address contained in the designated Tag register and the second word of the instruction set. The ending address plus 1, is contained in a third word immediately following. Thus, this instruction set is composed of three words. (The Tag register designation, indicated in the first word is automatically assigned as the Tag register designation for the ending address plus 1, in the third word.) Example: Output 300 (decimal) words from memory, starting at octal address, 1200. Tag reg. 3 ~-----t -4 3 Tag IOutput Code 3 7 3 2 0 0 3 7 7 First 127 (decimal) words puted from octal addresses Ending Address Plus 1 Starting Address Number of Words (see note) Tag ILoad o ! 2 o ! Tag 3 Tag reg. 3 IA i 0 to 0 ACOd~' 0 I ! ! 3 I TaS r,} I 2 . Load A with 003. Change Tag register, 3, by storing A at Tag register 3. Tag register 3 now contains 0011 (in bits). Tag IOutput Code ~I 4-4 0 0 0 ----? 2 5 5 6 are outshown: 1377 1200 177 = 127 10 J ! 1 ! J I Next 173 (decimal) words are outputed from octal addresses shown: Ending Address Plus 1 = 1655 Starting Address = 1400 Number of Words 255 173 10 127 + 173 1-35 = total 300 words NOTE: The "ending address plus 1" of 1377 above, resulted in a "gap"--that is, no output came from this register. The reason is that quartic address, 1377, falls at a "boundary address" as far as the addressing logic of the TeleProgrammer is concerned. "Boundary addresses" are those, which when incremented by 1, cause a change to occur in anyone of the 4 leftmost address bits. above) . This in turn, requires a change in the Tag register (as There are 16 such "boundary addresses" in the whole 4096 regis- This condition is not serious due to the following alternatives: ters. (a) If output follows input or vice versa such "gaps" would have existed in the identical places anyway, and thus are of no consequence. (b) If one wishes, he can fill the gap location by loading one word into A and storing at the gap address. (c) By effective memory allocation, boundary addresses can often be entirely avoided. (d) Buffered operations do not have this situation. The previous example was given to indicate that a change changes any ~ In address which of the 4 leftmost bits of the 12-bit address, requires a corre- sponding change in the contents of the Tag register. It should be apparent, that the maximum transfer without changing the Tag register is 256 (decimal words. 1-36 IBI - (70) - INITIATE BUFFER INPUT 1 cycle, 2 cycles if jump is made. Before using this instruction, the starting address of the buffer transfer is sent to BER, and the ending address plus 1 is sent to BXR (see these instructions) . If the buffer channel is not This instruction initiates the input buffer cycle. busy, control goes to the next instruction following the second word of the instruction set. If the buffer channel is busy, a jump occurs to the memory location whose combined address is contained In the designated Tag register and the second word of the instruction set. Example: Initiate buffer input, and if busy wait until not busy. Assume the instruction is given at the location whose octal address is, 1203. at address, 1203 at next address, 1204 If Buffer IS busy,jump goes to 1 2 0 3 (waiting) If Buffer IS not busy, control goes to _ _ _ _ _ _..... }) '-----'----'---......&1 Next Instruction Set ~======:============~I. in Sequence 1-37 Change 1 IBO - (71) - INITIATE BUFFER OUTPUT 1 cycle, 2 cycles if jump is made. Before using this instruction, the starting address of the buffer transfer must be sent to BER, and the ending address plus 1 must be sent to BXR (see these instructions). This instruction initiates the output buffer cycle. If the buffer channel is busy, a jump occurs to the combined memory address given in the designated Tag register and the second word of the instruction set. If the buffer channel is not busy, control goes to the next sequential instruction following the instruction set. Example: Initiate buffer output and if busy jump to octal address 0010. T Instruction Set { ag ~ @:U · II B u.f 0 u t C 0 d e Tag reg. not required here, since jump is to octal address, 0010 "f b ff . b I U ens usy. Next set of instructions in sequence if buffer is not busy. Control goes here after buffer output is started. Change 1 1-38 INA - (76) - INPUT TO A This instruction inputs one word from a previously selected input device to the A register. Example: Assume a previous instruction (see EXF) has selected the paper tape reader for input. Input one frame (one word) to A. Tag IINA Code ! o 7 i Note: This is a single word instruction, and the Tag register designation IS always zero. 6 OTN - (74) - OUTPUT NO ADDRESS This instruction outputs one word. This word IS the second word of the instruction set. Example: Assume a previous instruction has selected the Printer. the number 0102. Instruction Set { I Tag 0 IOutput Code 7 i 4 Note: The Tag register designation is always zero in this instruction. I LL-.I---=.0_,,--=-2---' CONTROL INSTRUCTIONS Five Control 'instructions are available: EXF CIL CBC ERR HLT Output EXTERNAL FUNCTION CLEAR INTERRUPT LOCKOUT CLEAR BUFFER CONTROLS ERROR STOP HALT 1-39 EXF - (75) - EXTERNAL FUNCTION This instruction is used to select an external input or output device to communicate with the TeleProgrammer. The select function is accomplished by '~ending out on the output lines a 12-bit llfunction code". Each external device is capable of recognizing and interpreting only its own unique code. Thus, the programmer by selecting different external function codes can use this same instruction to select all external devices. The 12-bit function code is contained in the second and third words of the three words which make up this instruction set. The format of the three words are best described by the following:' , Instruction Set Tag I 0 IEXF Code ; 7 0 a I where a b 5 The upper 6 bits of the function code. b The lower 6 bits of the function code. c d 0 c a d b I I ·c d I I The 12-bit Function Code Note: If the external device cannot be selected the TeleProgrammer halts. 1-40 Change 1 Example: Request the status of the typewriter (ready or not ready) , if busy, wait; request typewriter input; and input to A. I (0010) Tag (0011 ) (0014) 7! 5 o 4 2 Request status of the typewriter. { { I I Tag 0 is 42 Tag 0 Ilnp'ut to A 7 ! 6 ! 40 I I 0 (0016) I 0 (0017) 0 ~ 2 (0020) 0 2 0 Tag { Tag I (5 Input status response to A INon Zero Jump ! 6 ! 1 (0015) (0021) ~Theoctal function code for this :=:0=====4~=====O===~ (0012) (0013) IEXF Code 0 1 0 If A = 0, typewriter is ready, continue. If A f 0, it is not ready, jump back to address 0010 (wait). (see note) IEXF Code ! 7 I 5 Request typewriter to input a ~aracter to A. The octal ~ code for th,g 's: IlnEut to A I 7 ! b Input the character to A Note: In the jump back to address 0010 above, no Tag register is required since the octal address is one whose significant bits can be expressed in 8 bits. 1-41 CIL - (13) - CLEAR INTERRUPT LOCKOUT NOTE A do nothing (02) instruction should be used at interrupt locations 10, 20, 30 and 40 when such interrupt levels 'are used; then use the 013 or 113 instruction. This instruction clears the interrupt lockout flip flop (F F). This instruction must be programmed at the end of every routine which is initiated by the interrupt. This instruction returns control to the main program. Example: Assume an interrupt has occurred and a routine entered. At the end of this routine show the instruction required to clear the Interrupt Lockout and return control to the Main Program. Tag 1 CSC - ICIL : Note: In this instruction, the Tag designation becomes a part of the function code itself. It c an only be o or 1. Thus, to return to main program after clearing interrupt lockout, the Tag designation must be- 1. If zero, control continues in sequence. Code 3 ! 1 CLEAR SUFFER CONTROLS (07) - This instruction has the effect of sending a zero to buffer control and thus putting that device in a "ready state". If this instruction is used during a buffer operation, it will stop the buffer. Example: I Tag 0 Change 2 C lear buffer control. lesc i 0 Code ! 7 A Tag register designation ignored in this single word instruction. 1-42 IS Two S TO P S are available; these are: ERR HLT ERROR STOP HALT STOP = = ERR - (000) - ERROR STOP This is an illegal instruction -- as such, it can be used as an Error Stop. Example: Use the Error Stop instruction. o o o Error Stop HLT - (77) - PROGRAM STOP This instruction is used to bring the program to a halt. Example: Tag 0 I Use the S TO P instruction. I 7 I 7 Program Stop 1-43 CHAPTER TWO OPERATION P TAG ~EGISTER ---,- --I- •-I- •• -I- --I- •-I II o CLEARP TAG REGISTER SELECT 1 I : 2 : 3 1 I- - -I RUN,ERR,SEL, -- + -- .. - A I a I '10 , 8 , REGISTER 7 I 6 , 5 7 I .6 I 5 I A CLEA9 't-- - ... C 10' --+---+-I I aXR I 3 ' 2 , I I 0 2 , I I 0 REGISTER , 3 I AL..·~....;:·;......... I.~....;:-:-.;:::;.....&I...:::-:-_-=---=.:....I REGISTER 17;6:5:4:3:2:1 :01 CLE~zl- ~'I' NON- LOCK LOCK RUN ~ RUN SWEEP MASTER STEP CLEAR Figure 2-1 4 , 4 Z IN ,OUTIIaA,OBA ~z(jIP~EN~~;MANUAL INTERRUPT , 9 8092 Operatorls Panel TeleProgrammer OPERATORl s CONSOLE The 8092 TeleProgrammer Operatorls Panel consists of several displays and switches necessary for the operation of the TeleProgrammer. The panel (see figure 2-1) contains six display windows, six switches, and a lock switch. Four of the display windows can display in binary the contents of nine 8092 registers. Buttons beneath these displays clear and enter data into the P, A, Z, and Tag registers (the only registers into which data may be entered or cleared). A fifth window contains information as to which Tag register has been selected. The sixth window contains the operating lights which indicate the status of operation 2-1 of the TeleProgrammer. ing and mode switches. At the bottom of the panel are located all the operatThe operation of these switches is explained below: SWITCHES Manual Interrupt -Momentary depression causes the TeleProgrammer to enter an interrupt routine to determine the nature of the interrupt. BFR.Z - This 3-position switch chooses the register that is to be displayed in the a-bit Z register display. -Y.P.. - Displays the last word processed during the last buffer ope ration (B FR register) Center - Shows the current contents of the Z register (Z register). Down - Not assigned. BER. P. BXR - This 3-position switch chooses the register to be displayed in the 12-bit P register display . .Y..e.. - Displays the lowest-order 10 bits of the address of the last word transferred out, or the next word to be transferred in on the buffer channel (BE R) register. Tag 3 must be referenced for the highestorder 2 bits of the address. Change 1 2-2 Center - Displays the address of the current instruction (P register). Down - Displays the lowest-order 10 bits of the LWA + 1 of the buffer area (BXR) register. Tag 3 must be referenced for the highest-order 2 bits of the address. ENTER/SWEEP -Sweep is used to display the contents of core storage locations. Enter is used for entering information into core storage from the console. LOAD/MASTER CLgAR - LOAD position allows speciallyprepared paper tapes to be read into storage by the paper tape reader. Master CLEAR performs a TeleProgrammer clear which: a. Clears the registers b. Clears the control flip-flops c. Clears all waiting interrupts and ~emoves interrupt lockout. Note: The master clear does not alter core storage. RUN/STEP .Y.!L - In RUN position, a program 1S executed at high speed starting at the location specified by the P register. 2-3 Change 1 Center - C enter position stops the computer program. If the switch is in RUN and an ERR or HL T instruction is executed, the switch must be returned to neutral and then placed in RUN to continue computation. Down - In STEP position, one storage cycle of an instruction IS executed each time the switch is set; a program may be executed one instruction at a time for debugging. NON-RUN LOCK RUN LOCK In the Lock position all other switches are disabled and the TeleProgrammer is locked In the RUN position. In the non-lock position, the console switches are enabled and the TeleProgrammer programs can be operated and modified from the console. DISPLAYS Z REGISTER - This display known as the Z register group displays the Z and B FR registers In accordance with the setting of the B FR , Z switch. A Register -Displays the current contents of the A register. 2-4 P Resister - This display known WI the P regis&.r gr"up di.plays the BER. p. and BXR registers in accordance with the setting of the B ER. P, BXR switch. TAG REGISTER - This display indicates the Tag register currently being referenced by an inatruclion. The contents of any Tag register m oIllY be displayed by depressing one 01 the buMons directly below the .elect indioa6Drs. Oe- pressing one 01 the .eIect bulk»n. alao enabl. . the Tag regi ..... to be manually set or cleared. STATUS INDICATORS RUN -Indicates &hai the Tei.P!"OfIjJr..,m.r i. in RUN stalus. This does not necessarily indicate that instructions are being executed. ERR -Indicate. that a timing fault haa occurred. SEL -Displayed each tim. 8ft EXF ilUltruction is ex.:utad; remain. until ••I.tion i. completed. A con...... display of BEL with no apparent il!l)ut./ output _Doa usually indie" the TeleProgrammer has Mhmp'-:< Instructions Tagl Codes Cycles Action Performed I LON 01 } 2 Load A with 1 I ATT } 1 Bits, 001, go to Tag reg. I EXF } 3 S elect the TTU, starting with the first TTU. I INA } 2 Input the character from the selected TTU to the A register. I } } 3 Store character in A at desired memory location 4 Add 1 to memory location where characters are stored. 4 Add 1 to TTU select address. This also tests last TTU address. 2 Subtract one more than number of lines being serviced. 2 If not last servicing, jump back to servIce next TTU. I 04 20 I I STM 00 I I RAO 65 } SBN 32 } } 0475 0476 o I o I 0 I 0477 0500 1 I NJP o I 63 0501 Continue I Note: The above instructions contain mnemonic function codes in order to indicate the type of instruction being performed. Before program execution, these must be replaced by their equivalent numeric codes. B-2 Example 2 Assuring Transmission Validity Several techniques have evolved to assure message content validity. One such technique is a form of the Fire code which is described the following problem. In By this method, specific words of the data to be transmitted are added into eight "Check Sum" (S) words. After computing each of the eight sum words, at both origin and destination locations, comparisons of the corresponding sums indicate message validity. This technique provides the advantage of being able to use all bits of a message character as jnformation bits. a parity bit is not mandatory. Thus the presence of However, the presence of a parity bit· does not affect or degrade the method. Assume a block of 240 words of 1 character per word is to be transmitted. This block is preceded by an 8 word header, and followed by 8 Check Sum words. Using a Fire code, the data in the header and information portions are to be checked through comparisons of the accumulated sums in the 8 C-heck Sum (S) wopds. The accumulated sums of the sum words are determined by the following algorithm: 8 1 W. + W. + W + ---------- + Wn 1 J k S2 W i +1 + Wj + 1 + Wk +1 + + Wn +1 S3 Wi +2 + Wj + 2 + Wk+2 + + Wn +2 8 8 Wi+ 7 + Wj + 7 + Wk +7 ------ + Wn + 7 where i ,j ,k, --- n are the computer addresses contb,ining the data words which are to be transmitted. W = data words, thus W· = data word at address J J 81' S2' --- 88 =·Check 8um words B-3 In order to implement this method, a matrix of 32 words is used. Each of the 32 words contains 8 bits which indicate the computer addresses of the words which are to be added in the first Check Sum word, S 1. Thus the bit locations within the matrix indicate: i, j, k, ---n addresses of the preceding algorithm. The technique is indicated by the flow chart and diagram of TeleProgrammel" areas below: Data Block 1 1000 - - 8ave previous contents of 81' 8 2 ---8 8 Zeroize: 81,8 2 ---8 8 Address, A o ' (see sketch) Zeroize B, 8 Header Words M (B = bit counter) 1 iE-----------(2 Octal Addresses 240 Data Words j 1367- 1370-- I 8 8um Words 1377Ao _ _ Wt + 8 1 - 8 1 Al WtH + 8 2 --8 2 A2 where: Al = 0334 A32 = 0373 A 32 - - (0374) (0375) (0376) (0377) B-4 Temp M B 1M . B·It atrlx 32 Words j THE PROGRAM Location 2000 2001 2002 I 0 1 LON o 1 02 1 1 I ATT Action Performed Cycles TI Code } 1 } 1 3 Preset Tag register 1 to 0010 , (in bits) I 2003 2004 2005 2006 2007 2010 2011 2012 2013 '2014 2015 2016 1 I LOM 3 170 o STM 3 24 21 RAO 0104 2\ RAO 01 06 °ISBN 3 34 21 NZP 0 03 1 } 2017 2020 2021 2022 0 1 LON 0100 11 STM 31 70 2023 2024 2025 2026 2027 2030 } } } 4 S ave the contents of the· check sum words by storing initial contents at following .addresses: Sl-+ 0324 4 S2 } 2 } 2 } 2 } 3 21 RAO 01 22 2, NZP o 17 1 } 4 } 2 OISTM 3 77 1 } 3 I I 3 ~0325 Sa -+0333 This loop presets each of the eight check stirn words to zero. . Set Bit Counier, B, to zero. (B is loc~ted at octal address ,377 • ) B-5 THE PROGRAM Location T Code Cycles Action Performed 2031 2032 2033 2034 0 3 0 3 LON 33 STM 76 } 2 } 3 Store first address minus 1 of Bit Matrix at M; where M is at address 0376. 2035 2036 0 3 RAO 76 } 4 M + 2037 2040 2041 2042 0 3 2 1 S8N 74 ZJP 12 } } 2 Test address at M, and jump if last Matrix Word has been serviced. 2043 2044 0 3 LOI 76 } 4 Load next Matrix Word into A 2045 0 SHA } 1 Shift Matrix Word left 1 2046 2047 0 3 STM 75 } 3 Store shifted Matrix Word at temporary register (at address 0375) . 2050 2051 0 0 LPN 001 } 2 Look at what previously had been the leftmost bit of Matrix Word. 2052 2053 2 0 NZP 66 } 2 If bit -I 0, jump; otherwise, continue. 2054 2055 0 3 RAO 77 } 4 8 + 1 - - 8 (Increase bit count by 1.) 2056 2057 0 0 LPN 07 } 2 Look at last three bit positions of count at B. l~M 2 8-6 THE PROGRAM I Location TI Code 2060 2061 21 ZJP 0135 Cycles } Action Performed 2 If next Matrix Word is required, Jump. Otherwise, continue. 3 Return the current Matrix Word to A and jump back to look at next bit. I LDM 75 UJP 45 } } 2066 2067 2070 2071 01 LDM 31 77 o STM 3 1 74 1 } } 2072 2073 2074 2075 1 1 LDI 3 I 74 11 RAD 3 1 70 } " 2076 2077 2100 2101 01 RAO 3 I 74 2 RAO o I 75 } } 2062 2063 2064 2065 01 3 21 °1 2 I I } 3 Bit Count ..... t, where t is at address 0374. 3 3 Wt + Sl---j. S 1 4 Update parameters In above equation. . 3 I I 2102 2103 21 NZP 0172 } 2 Loop back to lac ation , 2072, if not zero. } 4 Store into last. Check Sum Word at address 0777. } 4 I I 2104 2105 2106 2107 1 3 1 3 2110 2111 o I 54 21 UJP } 2 Loop back for next iteration. 2112 OIHLT } 1 Stop I LDI 174 I RAD 177 . B-7· APPENPIX C - MATHEMATICAL T~BLES TABLE OF POWERS OF TWO o 2 4 8 1 2 3 1.0 0.5 0.25 0.125 16 32 64 128 4 5 6 7 0.062 0.031 0.015 0.007 256 512 1 024 2 048 8 9 10 11 5 25 625 812 5 0.003 906 25 OD01 953 125 0.000 976 562 5 0.000 488 281 25 4 8 16 32 096 192 384 768 12 13 14 15 0.000 0.000 0.000 QOOO 244 122 06.1 030 140 070 035 517 625 312 5 156 25 578 125 65 131 262 524 536 072 144 288 16 17 18 19 0.000 0.000 0.000 0.000 015 007 003 001 258 629 814 907 789 394 697 348 062 531 265 632 5 25 625 812 5 1 2 4 8 048 097 194 388 576 152 304 608 20 21 22 23 0.000 0.000 0.000 0.000 000 000 000 000 953 476 238 119 674 837 418 209 316 158 579 289 406 203 101 550 25 125 562 5 781 25 16 33 67 134 777 554 108 217 216 432 864 728 24 25 26 27 0.000 000 059 604 0.000 000 029 802 0.000 000 014 901 ~OOO 000 007 450 644 322 161 580 775 387 193 596 390 695 847 923 625 312 5 656 25 828 125 268 536 073 2 147 435 870 741 483 456 912 824 648 28 29 30 31 0.000 0.000 0.000 0.000 000 000 000 000 003 001 000 000 725 862 931 465 290 645 322 661 298 149 574 287 461 230 615 307 914 957 478 739 062 031 515 257 5 25 625 812 5 4 8 17 34 294 589 179 359 967 934 869 738 296 592 184 368 32 33 34 35 0.000 0.000 0.000 0.000 000 000 000 000 000 000 000 000 232 116 058 029 830 415 207 103 643 321 660 830 653 826 913 456 869 934 467 733 628 814 407 703 906 453 226 613 25 125 562 5 281 25 68 137 274 549 719 438 877 755 476 953 906 813 736 472 944 888 36 37 38 39 0.000 0.000 0.000 0.000 000 000 000 000 000 000 000 000 014 007 003 001 551 275 637 818 915 957 978 989 228 614 807 403 366 183 091 545 851 425 712 856 806 903 951 475 640 320 660 830 C-l 625 312 5 156 25 078 125 OCTAL-DECIMAL INTEGER CONVERSION TABLE .0.0.0.0 to .0777 (.octal) .0.0.0.0 to .0511 (Decimal) .octal Decimal 100.0.0 - 4.096 2.0.0.0.0 - 8192 3.0.0.0.0 - 12288 4.0.0.0.0 - 16384 50000 - 2.048.0 6.0.0.0.0 - 24576 7.0.0.0.0 - 28672 .0.0.0.0 .0.010 .0.02.0 .0.03.0 .0.04.0 .0.05.0 .0.06.0 .0.07.0 .0100 .0110 .0120 .013.0 0140 .0512 to to 1.023 (Decimal) 1777 (.octal) 1 2 3 .0.001 .0.0.09 .0.017 .00.02 .0.010 .0.018 .0.0.03 .0.011 .0.019 .0.0.04 0.012 .0.0.05 .0.013 .0.02.0 .0021 .0.024 . .0.025 .0032 .0.033 .0.026 .0.034 .0.028 0.036 .0.04.0 .0.048 .0.041 .0.049 .0.057 .0.042 .0.05.0 .0.058 .0.027 .0.035 .0.043 .0051 .0029 .0037 .0.045 .0.065 .0.066 .0.074 .0.082 .0.09.0 .0.098 .01.06 .0114 .0122 0.067 .0.075 .0.083 .0.091 .0.099 .01.07 .0131 .0139 .0056 .0.064 .0.072 .0.08.0 .0.088 0096 .0.073 .0.081 .0.089 0097 .015.0 .01.04 .01.05 .016.0 .0112 .0113 .017.0 .012.0 .0121 .0.059 .0115 .om 4 .0.044 .0.052 .0.06.0 5 .0053 .0.061 .0.068 .0.076 .0.069 .0.077 .0.084 .0.085 .0.092 .01.0.0 .0.093 .0101 .01.09 .0108 .0116 .0124 .0117 .0125 0132 .014.0 .0148 0156 .0164 .0172 0133 .0141 .0149 .0157 .0165 .0173 .018.0 .0188 .0181 .0189 .02.0.0 .0128 .0129 .013.0 .0136 .0144 .0152 .0160 .0168 .0137 .0145 .0153 .0161 .0169 .0138 .0146 .0154 .0162 .017.0 .026.0 .027.0 .0176 .0184 .0177 .0185 .0178 .0186 .0171 .0179 .0187 .03.0.0 .031.0 .032.0 .033.0 .034.0. .0192 .02.0.0 .02.08 .0216 .0224 .0232 .0193 .02.01 .02.09 .0217 .0225 .0233 .0241 .0194 .0195 .0196 .0197 .02.02 .0210 .0218 .0226 .0234 .02.03 .0211 .0219 .0227 .02.04 .02.05 .0240 .0248 .0147 .0155 .0163 .0249 .0242 .025.0 .0235 .0243 .0251 0212 .022.0 0 1 2 3 4 5 6 7 .0257 .0265 .0273 .026.0 .0268 .0275 .0276 .0284 .0261 .0269 .0277 .0285 .0293 .03.01 .03.09 .0317 .0262 .027.0 .0289 .0297 .03.05 .0313 .0258 .0266 .0274 .0282 .029.0 .0298 .03.06 .0314 .0259 .0267 .044.0 .045.0 .046.0 .047.0 .0256 .0264 .0272 .028.0 .0288 .0296 .03.04 .0312 .0263 .0271 .0279 .0287 .0295 .03.03 .0311 .0319 .05.0.0 .0320 .054.0 .055.0 .0118 .0119 .056.0 .0126 .0127 .057.0 .0321 .0329 .0337 .0345 .0353 .0361 .0369 .0377 .0322 .033.0 .0338 .0346 .0354 .0362 .037.0 .0378 .0326 .0334 .0342 .01.03 DIll .0328 .0336 .0344 .0352 .036.0 .0368 .0376 .0325 .0333 .0.095 051.0 052.0 .0530 0134 .0142 .015.0 .0158 0166 0135 .0143 .0151 0159 .0167 060.0 .0384 .0385 .0610 0392 .04.0.0 .04.08 .0416 .0393 .04.01 .04.09 .0386 .0394 .04.02 .041.0 .0418 7 6 .021.0 .022.0 .023.0 .024.0 .025.0 .035.0 .036.0 .037.0 10.0.0 0 .0.00.0 .0.008 .0.016 .0213 .0228 .0236 .0221 .0229 .0237 .0244 .0252 .0245 .0253 .0.0.06 .0.014 .0.022 .0.0.07 .0.015 .0.03.0 .0.038 .0023 .0.031 .0.039 .0.046 .0.054 .0.062 .0.047 .0.055 .0.063 .0.07.0 .0.078 .0.086 .0.094 .01.02 .011.0 .0.071 .0.079 .0.087 .040.0 .0410 .042.0 .043.0 .062.0 .063.0 .064.0 .0174 .0182 .019.0 .om .065.0 .0183 .0191 .066.0 .067.0 .0424 .0432 .044.0 .0198 .02.06 .0214 .0199 .07.0.0 .0448 .02.07 .071.0 .0215 .0223 .0231 .0239 .072.0 .0247 .0255 .076.0 .077.0 .0456 .0464 .0472 .048.0 .0488 .0496 14.0.0 141.0 .0222 .023.0 .0238 .0246 .0254 .073.0 .074.0 .075.0 0 1 2 3 4 5 .0512 .0513 .0514 .0515 102.0 103.0 1.04.0 105.0 .052.0 .0528 .0536 .0544 .0552 .0522 .053.0 .0538 .0546 1.06.0 .056.0 .0521 .0529 .0537 .0545 .0553 .0561 .0568 .0569 .0517 .0525 .0533 .0541 .0549 .0557 .0565 .0573 .0518 .0526 .0534 .0542 .055.0 .0558 .0566 .0574 .0519 .0527 .0535 .0543 .0551 .0559 .0567 1.07.0 .0523 .0531 .0539 .0547 .0555 .0563 .0571 .0516 .0524 .0532 .054.0 .0548 .0556 .0564 .0572 .0575 liDO .0576 .0584 .0577 .0585 .0593 .058.0 .0588 .0581 .0589 .0582 .0596 .0597 .06.04 .0612 .062.0 .0628 .0636 .06.05 .0613 .0621 .0598 .06.06 .0614 .0622 .063.0 .0583 .0591 .0599 15.0.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 .0644 .0652 .0645 .0653 .066.0 0668 0676 .0661 0669 .0677 .0684 .0685 0692 .0693 .0654 0662 067.0 .0678 .0686 .0694 10.0.0 1010 1110 112.0 .0592 113.0 114.0 115.0 116.0 117.0 .06.0.0 .06.08 .0616 .0624 .0632 .06.09 .0617 .0625 .0633 .06.01 .0554 .0562 .057.0 .0578 .0586 .06.02 .061.0 .0618 .0626 .0579 .0587 .0595 .06.03 .0611 .0619 .0627 .0634 .0635 .0643 .0594 6 .0629 .0637 .0638 .0615 .0623 .0631 .0639 12.0.0 .064.0 .0641 121.0 1220 1230 1240 125.0 1260 .0648 0656 0664 .068.0 0688 .0649 0657 0665 0673 0681 .0689 .0642 .065.0 0658 0666 0674 0682 .069.0 .0651 0659 0667 .0675 0683 .0691 127.0 .0696 .0697 .0698 .0699 .07.0.0 .07.01 .07.02 .0695 .07.03 13.0.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 .07.04 .0712 .072.0 .0728 .0736 .0744 .0752 .076.0 .07.05 .0713 .0721 .0729 .0737 .0745 .0753 .0761 .07.06 .0714 .0722 .073.0 .0738 .0746 .0754 .0762 .07.07 .0715 .0723 .0731 .0739 .0747 .0755 .0763 .07.08 .0716 .0724 07.09 .0717 .0725 .0733 .0741 .0749 .0757 .0765 .071.0 .0718 .0726 .0734 .0742 .075.0 .0758 .0766 .0711 .0719 .0727 .0735 .0743 .0751 .0759 .0767 .0672 0732 .0740 .0748 0756 .0764 .0646 .06.07 C-2 .0647 .0655 .0663 .0671 .0679 0687 .0283 .0291 .0299 .03.07 .0315 .0324 .0331 .0339 .0332 .034.0 0347 0348 .0355 .0356 .0363 .0364 .0371 .0379 .0372 .0387 .0395 .04.03 .0411 .0426 .0434 .0442 .0419 .0427 .0435 .0443 .0449 .0457 .0465 .0473 .0481 .0489 .045.0 .0451 .0458 .0466 .0474 .0482 .049.0 .0459 .0467 .0475 .0483 .0497 .05.05 .0498 .05.06 .0417 .0425 .0433 .0441 .0491 .0499 .05.07 0 1 2 3 143.0 144.0 145.0 146.0 .0816 .0824 .077.0 .0778 .0786 .0794 .08.02 .081.0 .0818 .0826 .0771 .0779 .0787 .0795 147.0 .0769 .0777 .0785 .0793 .08.01 .08.09 .0817 .0825 .0832 .0833 .0834 .084.0 .0848 .0856 .0841 .0864 .0872 .088.0 .0888 .0865 .0873 .0881 .0889 .0842 .085.0 .0858 .0866 .0874 .0882 .089.0 16.0.0 .0896 .0897 .0898 161.0 1620 1630 1640 .0904 0912 0920 .0928 0936 09.05 0913 0921 .0929 0937 .0944 .0952 .096.0 .0968 .0976 .0984 .0992 10.0.0 142.0 165.0 166.0 167.0 17.0.0 1710 172.0 173.0 174.0 175.0 176.0 177.0 .0292 .03.0.0 .03.08 .0316 .0323 .0768 .0776 .0784 .0792 .08.0.0 .08.08 7 .059.0 .05.04 .0281 .08.03 .0811 .0819 .0827 .0835 .0843 .0350 .0358 .0366 .0374 .0382 .0389 .0397 .039.0 .0398 .04.06 .0414 .0422 .0391 .0399 .04.07 .0415 .0423 .043.0 .0438 .0446 .0431 .0439 .0447 .0476 .0484 .0453 .0461 .0469 .0477 .0485 .0454 .0462 .047.0 .0478 .0486 .0463 .0471 .0479 .0487 .0492 .05.0.0 .05.08 .0493 .05.01 .05.09 .0494 .05.02 .051.0 .0495 .05.03 .0511 .038.0 .0388 .0396 .04.04 .0412 .042.0 .0428 .0436 .0444 .0452 .046.0 .0468 4 .0772 .078.0 .0788 .0796 .08.04 .0812 .082.0 .0828 .04.05 .0413 .0421 .0429 .0437 .0445 5 .0773 .0781 .0789 .0797 .08.05 .0813 .0821 .0829 .0891 .0892 .0885 .0893 .0906 .0914 0922 093.0 0938 .0899 0907 0915 0923 .0931 0939 .09.0.0 .0908 0916 0924 .0932 094.0 .09.01 .0909 0917 0925 .0933 0941 .0945 .0953 .0946 .0954 .0947 .0955 .0948 .0956 .0949 .0957 10.08 .0961 .0969 .0977 .0985 .0993 1.0.01 10.09 1.016 1017 .0962 .097.0 .0978 .0986 .0994 10.02 1.010 1.018 .0963 .0971 .0979 .0987 .0995 1.0.03 1.011 1.019 .0964 .0972 .098.0 .0988 .0996 1.0.04 1.012 1.02.0 .0965 .0973 .0981 .0989 .0997 1.0.05 1.013 1.021 .0859 .0867 .0875 .0327 .0335 .0343 .0351 .0359 .0357 .0365 .0373 .0381 .0883 .0851 .0294 .03.02 .031.0 .0318 0341 0349 .0836 .0844 .0852 .086.0 .0868 .0876 .0884 .0849 .0857 .0278 .0286 0837 .0845 .0853 .0861 .0869 .0877 .0367 .0375 .0383 .0455 6 7 .0774 .0782 .079.0 .0798 .08.06 .0814 .0822 .083.0 .0775 .0783 .0791 .0799 .08.07 .0815 .0823 .0831 .0838 .0846 .0854 .0839 .0862 .087.0 .0878 .0886 .0894 .09.02 0910 .0918 0926 .0934 .0942 .095.0 .0958 .0966 .0974 .0982 .0990 .0998 1.0.06 1014 1022 .0847 .0855 .0863 .0871 .0879 .0887 .0895 .09.03 0911 .0919 0927 .0935 .0943 .0951 .0959 .0967 .0975 .0983 .0991 .0999 10.07 1.015 1023 OCTAL-DECIMAL INTEGER CONVERSION TABLE 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 2000 20)0 2020 2030 2040 2050 2060 2070 1024 1032 1040 1048 1056 1064 1072 1080 1025 1033 1041 1049 1057 1065 1073 1081 1026 1034 1042 1050 1058 1066 1074 1082 1027 1035 1043 1051 1059 1067 1075 1083 1028 1036 1044 1052 1060 1068 1076 1094 1029 1037 1045 1053 1061 1069 1077 1085 1030 1038 1046 1054 1062 1070 1078 1086 1031 1039 1047 1055 1063 1071 1079 1087 2400 2410 2420 2430 2440 2450 2460 2470 1280 1288 1296 1304 1312 1320 1328 1336 1281 1289 1297 1305 1313 1321 1329 1337 1282 1290 1298 1306 1314 1322 1330 1338 1283 1291 1299 1307 1315 1323 1331 1339 1284 1292 1300 1308 1316 1324 1332 1340 1285 1293 1301 1309 1317 1325 1333 1341 1286 1294 1302 1310 1318 1326 1334 1342 1287 1295 1303 1311 1319 1327 1335 1343 2100 2100 2120 2130 2140 2150 2160 2170 1088 1096 1104 1112 1120 1128 1136 1144 1089 1097 1105 1113 1121 1129 1137 1145 1090 1098 1106 1114 1122 1130 1138 1146 1091 1099 1107 1115 1123 1131 1139 1147 1092 1100 1108 1116 1124 1132 1140 1148 1093 1101 1109 1117 1125 1133 1141 1149 1094 1102 1110 1118 1126 1134 1142 1150 1095 1103 1111 1119 1127 1135 1143 1151 2500 2510 2520 2530 2540 2550 2560 2570 1344 1352 1360 1368 1376 1384 1392 1400 1345 1353 1361 1369 1377 1385 1393 1401 1346 1354 1362 1370 1378 1386 1394 1402 1347 1355 1363 1371 1379 1387 1395 1403 1348 1356 1364 1372 1380 1388 1396 1404 1349 1357 1385 1373 1381 1389 1397 1405 1350 1358 1366 1374 1382 1390 1398 1406 1351 1359 1367 1375 1383 1391 1399 1407 2200 2210 2220 2230 2240 2250 2260 2270 1152 1160 1168 1176 1184 1192 1200 1208 1153 1161 1169 1177 1185 1193 1201 1209 1154 1162 1170 1178 1186 1194 1202 1210 1155 1163 1171 1179 1187 1195 1203 1211 1156 1164 '1172 1180 1188 1196 1204 1212 1157 1165 1173 1181 1189 1197 1205 1213 1158 1166 1174 1182 1190 1198 1206 1214 1159 1167 1175 1183 1191 1199 1207 1215 2600 2610 2620 2630 2640 2650 2660 2670 1408 1416 1424 1432 1440 1448 1456 1464 1409 1417 1425 1433 1441 1449 1457 1465 1410 1418 1426 1434 1442 1450 1458 1466 1411 1419 1427 1435 1443 1451 1459 1467 1412 1420 1428 1436 1444 1452 1460 1468 1413 1421 1429 1437 1445 1453 1461 1469 1414 1422 1430 1438 1446 1454 1462 1470 1415 ;423 1431 1439 1447 1455 1463 1471 2300 2310 2320 2330 2340 2350 2360 2370 1216 1224 1232 1240 1248 1256 1264 1272 1217 1225 1233 1241 1249 1257 1265 1273 1218 1226 1234 1242 1250 1258 1266 1274 1219 1227 1235 1243 1251 1259 1267 1275 1220 1228 1236 1244 1252 1260 1268 1276 1221 1229 1237 1245 1253 1261 1269 1277 1222 1230 1238 1246 1254 1262 1270 1278 1223 1231 1239 1247 1255 1263 1271 1279 2700 2710 2720 2730 2740 2750 2760 2770 1472 1480 1488 1496 1504 1512 1520 1528 1473 1481 1489 1497 1505 1513 1521 1529 1474 1482 1490 1498 1506 1514 1522 1530 1475 1483 1491 1499 1507 1515 1523 1531 1476 1484 1492 1500 1508 1516 1524 1532 1477 1485 1493 1501 1519 1517 1525 1533 1478 1486 1494 1502 1510 1518 1526 1534 1479 1487 1495 1503 1511 1519 1527 1535 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 3000 3010 3020 3030 3040 3050 3060 3070 1536 1544 1552 1560 1568 1576 1584 1592 1537 1545 1553 1561 1569 1577 1585 1593 1538 1546 1554 1562 1570 1578 1586 1594 1539 1547 1555 1563 1571 1579 1587 1595 1540 1548 1556 1564 1572 1580 1588 1596 1541 1549 1557 1565 1573 1581 1589 1597 1542 1550 1558 1566 1574 1582 1590 1598 1543 1551 1559 1567 1575 1583 1591 1599 3400 3410 3420 3430 3440 3450 3460 3470 1792 1800 1808 1816 1824 1832 1840 1848 1793 1801 1809 1817 1825 1833 1841 i849 1794 1802 1810 1818 1826 1834 1842 1850 1795 1803 1811 1819 1827 1835 1843 1851 1796 1804 1812 1820 1828 1836 1844 1852 1797 1805 1813 1821 1829 1837 1845 1853 1798 1806 1814 1822 1830 1838 1946 1854 1799 1807 1815 1823 1831 1839 1847 1855 3100 3110 3120 3130 3140 3150 :i160 3170 1600 1608 1616 1624 1632 1640 1648 1656 1601 1609 1617 1625 1633 1641 1649 1657 1602 1610 1618 1626 1634 1642 1650 1658 1603 1611 1619 1627 1635 1643 1651 1659 1604 1612 1620 1628 1636 1644 1652 1660 1605 1613 1621 1629 1637 1645 1653 1661 1606 1614 1622 1630 1638 1646 1654 1662 1607 1615 1623 1631 1639 1647 1655 1663 3500 3510 3520 3530 3540 3550 3560 3570 1856 1864 1872 1880 1888 1896 1904 1912 1857 1865 1873 1881 1889 1897 1905 1913 1858 1866 1874 1882 1890 1898 1906 1914 1859 1867 1875 1883 1891 1899 1907 1915 1860 1868 1876 1884 1892 1900 1908 1916 1861 1869 1877 1885 1893 1901 1909 1917 1862 1870 1878 1886 1894 1902 1910 1918 1863 1871 1879 1887 1895 1903 1911 1919 3200 3210 3220 3230 3240 3250 3260 3270 1664 1672 1680 1688 1696 1704 1712 1720 1665 1673 1681 1689 1697 1705 1713 1721 1666 1674 1682 1690 1698 1706 1714 1722 1667 1675 1683 1691 1699 1707 1715 1723 1668 1676 1684 1692 1700 1708 1716 1724 1669 1677 1685 1693 1701 1709 1717 1725 1670 1678 1686 1694 1702 1710 1718 1726 1671 1679 1687 1695 1703 1711 1719 1727 3600 3610 3620 3630 3640 3650 3660 3670 1920 1928 1936 1944 1952 1960 1968 1976 1921 1929 1937 1945 1953 1961 1969 1977 1922 1930 1938 1946 1954 1962 1970 1978 1923 1931 1939 1947 1955 1963 1971 1979 1924 1932 1940 1948 1956 1964 1972 1980 1925 1933 1941 1949 1957 1965 1973 1981 1926 1934 1942 1950 1958 1966 1974 1982 1927 1935 1943 1951 1959 1967 1975 1983 3300 3310 3320 3330 3340 3350 3360 3370 1728 1736 1744 1752 1760 1768 1776 1784 1729 1737 1745 1753 1761 1769 1777 1785 1730 1731 1738 1739 1746 1747 1754 1755 1762 1763 1770 .1771 1778 1779 1786 1787 1732 1740 1748 1756 1764 1772 1780 1788 1733 1741 1749 1757 1765 1773 1781 1789 1734 1742 1750 1758 1766 1774 1782 1790 1735 1743 1751 1759 1767 1775 1783 1791 3700 3710 3720 3730 3740 3750 3760 3770 1984 1992 2000 2008 2016 2024 2032 2040 1985 1993 2001 2009 2017 2025 2033 2041 1986 1994 2002 2010 2018 2026 2034 2042 1987 1995 2003 2011 2019 2027 2035 2043 1988 1996 2004 2012 2020 2028 2036 2044 1989 1997 2005 2013 2021 2029 2037 2045 1990 1998 2006 2014 2022 2030 2038 2046 1991 1999 2007 2015 2023 2031 2039 2047 2000 to 2777 10ctaii 1024 to 1535 IDecimal1 Octal Decimal 10000 - 4096 20000 - 8192 30000 - 12288 40000 - 16384 50000 - 20480 60000 - 24576 70000 - 28672 7 3000 to 3777 10ctaii 1536 to 2047 10ecimaii .. C-3 OCTAL-DECIMAL INTEGER CONVERSION TABLE 0 4000 2048 10 10 4777 10clal) 2559 10ecimal) Oclal Decimal 10000 - 4096 20000- 8192 30000 - 12288 40000 - 16384 50000 - 20480 60000 - 24576 70000 - 28672 2560 10 10 5777 10clal) 3071 (Oecimal) 2 3 4 5 6 7 0 1 2 3 4 5 6 7 4000 4010 4020 4030 4040 4050 4060 4070 2048 2056 2064 2072 2080 2088 2096 2104 2049 2057 2065 2073 2081 2089 2097 2105 2050 2058 2066 2074 2082 2090 2098 2106 2051 2059 2067 2075 2083 2091 2099 2107 2052 2060 2068 2076 2084 2092 2100 2108 2053 2061 2069 2077 2085 2093 2101 2109 2054 2062 2070 2078 2086 2094 2102 2110 2055 2063 2071 2079 2087 2095 2103 2111 4400 4410 4420 4430 4440 4450 4460 4470 2304 2312 2320 2328 2336 2344 2352 2360 2305 2313 2321 2329 2337 2345 2353 2361 2306 2314 2322 2330 2338 2346 2354 2362 2307 2315 2323 2331 2339 2347 2355 2363 2308 2316 2324 2332 2340 2348 2356 2364 2309 2317 2325 2333 2341 2349 2357 2365 2310 2318 2326 2334 2342 2350 2358 2366 2311 2319 2327 2335 2343 2351 2359 2367 4100 4110 4120 4130 4140 4150 4160 4170 2112 2120 2128 2136 2144 2152 2160 2168 2113 2121 2129 2137 2145 2153 2161 2169 2114 2115 2122 2123 2130 ·2131 2138 2139 2146 2147 2154 2155 2162 2163 2170 2171 2116 2124 2132 2140 2148 2156 2164 2172 2117 2125 2133 2141 2149 2157 2165 2173 2118 2126 2134 2142 2150 2158 2166 2174 2119 2127 2135 2143 2151 2159 2167 2175 4500 4510 4520 4530 4540 4550 4560 4570 2368 2376 2384 2392 2400 2408 2416 2424 2369 2377 2385 2393 2401 2409 2417 2425 2370 2378 2386 2394 2402 2410 2418 2426 2371 2379 2387 2395 2403 2411 2419 2427 2372 2380 2388 2396 2404 2412 2420 2428 2373 2381 2389 2397 2405 2413 2421 2429 2374 2382 2390 2398 2406 2414 2422 2430 2375 2383 2391 2399 2407 2415 2423 2431 4200 4210 4220 4230 4240 4250 4260 4270 2176 2184 2192 22M 2208 2216 2224 2232 2177 2185 2193 2201 2209 2217 2225 2233 2178 2186 2194 2202 2210 2218 2226 2234 2179 2187 2195 2203 2211 2219 2227 2235 2180 2188 2196 2204 2212 2220 2228 2236 2181 2189 2197 2205 2213 2221 2229 2237 2182 2190 2198 2206 2214 2222 2230 2238 2183 2191 2199 2207 2215 2223 2231 2239 4600 4610 4620 4630 4640 4650 4660 4670 2432 2440 2448 2456 2464 2472 2480 2488 2433 2441 2449 2457 2465 2473 2481 2489 2434 2442 2450 2458 2466 2474 2482 2490 2435 2443 2451 2459 2467 2475 2483 2491 2436 2444 2452 2460 2468 2476 2484 2492 2437 2445 2453 2461 2469 2477 2485 2493 2438 2446 2454 2462 2470 2478 2486 2494 2439 2447 2455 2463 2471 2479 2487 2495 4300 4310 4320 4330 4340 4350 4360 4370 2240 2248 2256 2264 2272 2280 2288 2296 2241 2249 2257 2265 2273 2281 2289 2297 2242 2250 2258 2266 2274 2282 2290 2298 2243 2251 2259 2267 2275 2283 2291 2299 2244 2252 2260 2268 2276 2284 2292 2300 2245 2253 2261 2269 2277 2285 2293 2301 2246 2254 2262 2270 2278 2286 2294 2302 2247 2255 2263 2271 2279 2287 2295 2303 4700 4710 4720 4730 4740 4750 4760 4770 2496 2504 2512 2520 2528 2536 2544 2552 2497 2505 2513 2521 2529 2537 2545 2553 2498 2506 2514 2522 2530 2538 2546 2554 2499 2507 2515 2523 2531 2539 2547 2555 2500 2508 2516 2524 2532 2540 2548 2556 2501 2509 2517 2525 2533 2541 2549 2557 2502 2510 2518 2526 2534 2542 2550 2558 2503 2511 2519 2527 2535 2543 2551 2559 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 2823 2831 2839 2847 2855 2863 2871 2879 0 5000 1 5000 5010 5020 5030 5040 5050 5060 5070 2560 2568 2576 2584 2592 2600 2608 2616 2561 2569 2577 2585 2593 2601 2609 2617 2562 2570 2578 2586 2594 2602 2610 2618 2563 2571 2579 2587 2595 2603 2611 2619 2564 2572 2580 2588 2596 2604 2612 2620 2565 2573 2581 2589 2597 2605 2613 2621 2566 2574 2582 2590 2598 2606 2614 2622 2567 2575 2583 2591 2599 2607 2615 2623 5400 5410 5420 5430 5440 5450 5460 5470 2816 2824 2832 2840 2848 2856 2864 2872 2817 2825 2833 2841 2849 2857 2865 2873 2818 2826 2834 2842 2850 2858 2866 2874 2819 2827 2835 2843 2851 2859 2867 2875 2820 2828 2836 2844 2852 2860 2868 2876 2821 2829 2837 2845 2853 2861 2869 2877 2822 2830 2838 2846 2854 2862 2870 2878 5100 5110 5i20 . 5130 . 5140 5150 5160 5170 2624 2632 2640 2648 2656 2664 2672 2680 2625 2633 2641 2649 2657 2665 2673 2681 2626 2634 2642 2650 2658 2666 2674 2682 2627 2635 2643 2651 2659 2667 2675 2683 2628 2636 21i44 2652 2660 2668 2676 2684 2629 2637 2645 2653 2661 2669 2677 2685 2630 2638 2646 2654 2662 2670 2678 2686 2631 2639 2647 2655 2663 2671 2679 2687 5500 5510 5520 5530 5540 5550 5560 5570 2880 2888 2896 2904 2912 2920 2928 2936 2881 2889 2897 2905 2913 2921 2929 2937 2882 2890 2898 2906 2914 2922 2930 2938 2883 2891 2899 2907 2915 2923 2931 2939 2884 2892 2900 2908 2916 2924 2932 2940 2885 2893 2901 2909 2917 2925 2933 2941 2886 2887 2894 2895 2902 2903 2910 2911 2918 2919 2926 2927 2934 2935 2942 . 2943 5200 5210 5220 5230 5240 5250 5260 5270 2688 2696 2704 2712 2720 2728 2736 2744 2689 2697 2705 2713 2721 2729 2737 2745 2690 2698 2706 2714 2722 2730 2738 2746 2691 2699 2707 2715 2723 2731 2739 2747 2692 2700 2708 2716 2724 2732 2740 2748 2693 2701 2709 2717 2725 2733 2741 2749 2694 2702 2710 2718 2726 2734 2742 2750 2695 2703 2711 2719 2727 2735 2743 2751 5600 5610 5620 5630 5640 5650 5660 5670 2944 2952 2960 2968 2976 2984 2992 3000 2945 2953 2961 2969 2977 2985 2993 3001 2946 2954 2962 2970 2978 2986 2994 3002 2947 2955 2963 2971 2979 2987 2995 3003 2948 2956 2964 2972 2980 2988 2996 3004 2949 2957 2965 2973 2981 2989 2997 3005 2950 2958 2966 2974 2982 2990 2998 3006 2951 2959 2967 2975 2983 2991 2999 3007 5300 5310 5320 5330 5340 5350 5360 5370 2752 2760 2768 2776 2784 2792 2800 2808 2753 2761 2769 2777 2785 2793 2801 2809 2754 2762 . 2770· 2778 2786 2794 2802 2810 2755 2763 2771 2779 2787 2795 2803 2811 2756 2764 2772 2780 2788 2796 2804 2812 2757 2765 2773 2781 2789 2797 2805 2813 2758 2766 2774 2782 2790 2798 2806 2814 2759 2767 2775 2783 2791 2799 2807 2815 5700 5710 5720 5730 5740 5750 5760 5770 3008 3016 3024 3032 3040 3048 3056 3064 3009 3017 3025 3033 3041 3049 3057 3065 3010 3018 3026 3034 3042 3050 3058 3066 3011 3019 3027 3035 3043 3051 3059 3067 3012 3020 3028 3036 3044 3052 3060 3068 3013 3021 3029 3037 3045 3053 3061 3069 3014 3022 3030 3038 3046 3054 3062 3070 3015 3023 3031 3039 3047 3055 3063 3071 C-4 -- OCTAL-DECIMAL INTEGER CONVERSION TABLE 0 , 2 3 4 6000 6010 6020 6030 6040 6050 6060 6070 3072 3080 3088 3096 3104 3112 3120 3128 3073 3081 3089 3097 3105 3113 3121 3129 3074 3082 3090 3098 3106 3114 3122 3130 3075 3083 3091 3099 3107 3115 3123 3131 3076 3084 3092 3100 3108 3i16 3124 3132 3077 3085 3093 3101 3109 3117 3125 3133 3078 3086 3094 3102 3110 3118 3126 3134 3079 3087 3095 3103 3111 3119 3127 3135 6100 6110 6120 6130 6140 6150 6160 6170 3136 3144 3152 3160 3168 3176 3184 3192 3137 3145 3153 3161 3169 3177 3185 3193 3138 3146 3154 3162 3170 3178 3186 3194 3139 3147 3155 3163 3171 3179 3187 3195 3140 3148 3156 3164 3172 3180 3188 3196 3141 3149 3157 3165 3173 3181 3189 3197 3142 3150 3158 3166 3174 3182 3190 3198 6200 6210 6220 6230 6240 6250 6260 6270 3200 3208 3216 3224 3232 3240 3248 3256 3201 3209 3217 3225 3233 3241 3249 3257 3202 3210 3218 3226 3234 3242 3250 3258 3203 3204 3211 3212 3219 3220 3227 , 3228 3235 3236 3243 3244 3251 3252 3259 3260 3205 3213 3221 3229 3237 3245 3253 3261 6300 6310 6320 6330 6340 6350 6360 6370 3264 3272 3280 3288 3296 3304 3312 3320 3265 3273 3281 3289 3297 3305 3313 3321 3266 3274 3282 3290 3298 3306 3314 3322 3267 3275 3283 3291 3299 3307 3315 3323 3268 3276 3284 3292 3300 3308 3316 3324 0 , 2 3 7000 7010 7020 7030 7040 7050 7060 7070 3584 3592 3600 3608 3616 3624 3632 3640 3585 3593 3601 3609 3617 3625 3633 3641 3586 3594 3602 3610 3618 3626 3634 3642 7100 7110 7120 7130 7140 7150 7160 7170 3648 3656 3664 3672 3680 3688 3696 3704 3649 3657 3665 3673 3681 3689 3697 3705 7200 7210 7220 7230 7240 7250 7260 7270 3712 3720 3728 3736 3744 3752 3760 3768 7300 7310 7320 7330 7340 7350 7360 7370 3776 3784 3792 3800 3808 3816 3824 3832 0 , 2 3 6400 6410 6420 6430 6440 6450 6460 6470 3328 3336 3344 3352 3360 3368 3376 3384 3329 3337 3345 3353 3361 3369 3377 3385 3330 3338 3346 3354 3362 3370 3378 3386 3331 3339 3347 3355 3363 3371 3379 3387 3143 3151 3159 3167 3175 3183 3191 3199 6500 6510 6520 6530 6540 6550 6560 6570 3392 3400 3408 3416 3424 3432 3440 3448 3393 3401 3409 3417 3425 3433 3441 3449 3206 3214 3222 3230 3238 3246 3254 3262 3207 3215 3223 3231 3239 3247 3255 3263 6600 6610 6620 6630 6640 6650 6660 6670 3456 3464 3472 3480 3488 3496 3504 3512 3269 3277 3285 3293 3301 3309 3317 3325 3270 3278 3286 3294 3302 3310 3318 3326 3271 3279 3287 3295 3303 3311 3319 3327 6700 6710 6720 6730 6740 6750 6760 6770 4 5 6 7 3587 3595 3603 3611 3619 3627 3635 3643 3588 3496 3604 3612 3620 3628 3636 3644 3589 3497 3605 3613 3621 3629 3637 3645 3590 3598 3606 3614 3622 3630 3638 3646 3591 3599 3607 3615 3623 3631 3639 3647 3650 3658 3666 3674 3682 3690 3698 3706 3651 3659 3667 3675 3683 3691 3699 3707 3652 3660 3668 3676 3684 3692 3700 3708 3653 3661 3669 3677 3685 3693 3701 3709 3654 3662 3670 3678 3686 3694 3702 3710 3713 3721 3729 3737 3745 3753 3761 3769 3714 3722 3730 3738 3746 3754 3762 3770 3715 3723 3731 3739 3747 3755 3763 3771 3716 3724 3732 3740 3748 3756 3764 3772 3717 3725 3733 3741 3749 3757 3765 3773 3777 3785 3793 3801 3809 3817 3825 3833 3778 3786 3794 3802 3810 3818 3826 3834 3779 3787 3795 3803 3811 3819 3827 3835 3780 3788 3796 3804 3812 3820 3828 3836 3781 3789 3797 3805 3813 3821 3829 3837 5 6 7 4 5 6 7 3332 3340 3348 3356 3364 3372 3380 3388 3333 3341 3349 3357 3365 3373 3381 3389 3334 3342 3350 3358 3366 3374 3382 3390 3335 3343 3351 3359 3367 3375 3383 3391 3394 3395 3402 3403 3410 3411 3418 3419 3426 3427 3434 3435 3442 3443 3450 3451 3396 3404 3412 3420 3428 3436 3444 3452 3397 3405 3413 3421 3429 3437 3445 3453 3398 3406 3414 3422 3430 3438 3446 3454 3399 3407 3415 3423 3431 3439 3447 3455 3457 3465 3473 3481 3489 3497 3505 3513 3458 3466 3474 3482 3490 3498 3506 3514 3459 3467 3475 3483 3491 3499 3507 3515 3460 3468 3476 3484 3492 3500 3508 3516 3461 3469 3477 3485 3493 3501 3509 3517 3462 3470 3478 3486 3494 3502 3510 3518 3463 3471 3479 3487 3495 3503 3511 3519 3520 3528 3536 3544 3552 3560 3568 3576 3521 3529 3537 3545 3553 3561 3569 3577 3522 3530 3538 3546 3554 3562 3570 3578 3523 3531 3539 3547 3555 3563 3571 3579 3524 3532 3540 3548 3556 3564 3572 3580 3525 3533 3541 3549 3557 3565 3573 3581 3526 3534 3542 3550 3558 3566 3574 3582 3527 3535 3543 3551 3559 3567 3575 3583 0 , 2 3 4 5 6 7400 7410 7420 7430 7440 7450 7460 7470 3840 3848 3856 3864 3872 38&0 3888 3896 3841 3849 3857 3865 3873 3881 3889 3897 3842 3850 3858 3866 3874 3882 3890 3898 3843 3851 3859 3867 3875 3883 3891 3899 3844 3852 3860 3868 3876 3884 3892 3900 3845 3853 3861 3869 3877 3885 3893 3901 3846 3854 3862 3870 3878 3886 3894 3902 3847 3855 3863 3871 3879 3887 3895 3903 3655 3663 3671 3679 3687 3695 3703 3711 7500 7510 7520 7530 7540 7550 7560 7570 3904 3912 3920 3928 3936 3944 3952 3960 3905 3913 3921 3929 3937 3945 3953 3961 3906 3914 3922 3930 3938 3946 3954 3962 3907 3915 3923 3931 3939 3947 3955 3963 3908 3916 3924 3932 3940 3948 3956 3964 3909 3917 3925 3933 3941 3949 3957 3965 3910 3918 3926 3934 3942 3950 3958 3966 3911 3919 3927 3935 3943 3951 3959 3967 3718 3726 3734 3742 3750 3758 3766 3774 3719 3727 3735 3743 3751 3759 3767 3775 7600 7610 7620 7630 7640 7650 7660 7670 3968 3976 3984 3992 4000 4008 4016 4024 3969 3977 3985 3993 4001 4009 4017 4025 3970 3978 3986 3994 4002 4010 4018 4026 3971 3979 3987 3995 4003 4011 4019 4027 3972 3980 3988 3996 4004 4012 4020 4028 3973 3981 3989 3997 4005 4013 4021 4029 3974 3982 3990 3998 4006 4014 4022 4030 3975 3983 3991 3999 4007 4015 4023 4031 3782 3790 3798 3806 3814 3822 3830 3838 3783 3791 3799 3807 3815 3823 3831 3839 7700 7710 7720 7730 7740 7750 7760 7770 4032 4040 4048 4056 4064 4072 4080 4088 4033 4041 4049 4057 4065 4073 4081 4089 4034 4042 4050 4058 4066 4074 4082 4090 4035 4043 4051 4059 4067 4075 4083 4091 4036 4044 4052 4060 4068 4076 4084 4092 4037 4045 4053 4061 4069 4077 4085 4093 4038 4046 4054 4062 4070 4078 4086 4094 4039 4047 4055 4063 4071 4079 4087 4095 c-s 6000 to 6777 10ctal) 3072 to 3583 10ecimal) Octal Oecimal 10000 - 4096 20000 - 8192 30000 - 12288 40000 - 16384 50000 - 20480 60000 - 24576 70000 - 28672 7 7000 to 7777 10ctal) 3584 to 4095 10ecimal) OCTAL-DECIMAL FRACTION CONVERSION TABLE OCTAL DEC. OCTAL .000 .001 .002 .003 .004 .005 .006 .007 .000000 .001953 .003906 .005859 .007812 .009765 .011718 .013671 .100 .101 .102 .103 .104 .105 .106 .107 .010 .011 .012 .013 .014 .015 .016 .017 .015625 .017578 .019531 .021484 .023437 .025390 .027343 .029296 .020 .021 .022 .023 .024 .025 .026 .027 DEC. OCTAL DEC. OCTAL DEC. .125000 .126953 .128906 .130859 .132812 .134765 .136718 .138671 .200 .201 .202 .203 .204 .205 .206 .207 .250000 .251953 .253906 .255859 .257812 .259765 .261718 .263671 .300 .301 .302 .303 .304 .305 .306 .307 .375000 .376953 .378906 .380859 .382812 .384765 .386718 .388671 .110 .111 .112 .113 .114 .115 .116 .117 .140625 .142578 .144531 .146484 .148437 .150390 .152343 .154296 .210 .211 .212 .213 .214 .215 .216 .217 .265625 .267578 .269531 .271484 .273437 .275390 .277343 .279296 .310 .311 .312 .313 .314 .315 .316 .317 .390625 .392578 .394531 .396484 .398437 .400390 .402343 .404296 .031250 .033203 .035156 .037109 .039062 .041015 .042968 .044921 .120 .121 .122 .123 .124 .125 .126 .127 .156250 .158203 .160156 .162109 .164062 .166015 .167968 .169921 .220 .221 .222 .223 .224 .225 .226 .227 .281250 .283203 .285156 .287109 .289062 .291015 .292968 .294921 .320 .321 .322 .323 .324 .325 .326 .327 .406250 .408203 .410156 .412109 .414062 .416015 .417968 .419921 .030 .031 .032 .033 .034 .035 .036 .037 .046875 .048828 .050781 .052734 .054687 .056640 .058593 .060546 .130 .131 .132 .133 .134 .135 .136 .137 .171875 .173828 .175781 .177734 .179687 .181640 .183593 .185546 .230 .231 .232 .233 .234 .235 .236 .237 .296875 .298828 .300781 .302734 .304687 .306640 .308593 .310546 .330 .331 .332 .333 .334 .335 .336 .337 .421875 .423828 .425781 .427734 .429687 .431640 .433593 .435546 .040 .041 .042 .043 .044 .045 .046 .047 .062500 .064453 .066406 .068359 .070312 .072265 .074218 .076171 .140 .141 .142 .143 .144 .145 .146 .147 .187500 .189453 .191406 .193359 .195312 .197265 .199218 .201171 .240 .241 .242 .243 .244 .245 .246 .247 .312500 .314453 .316406 .318359 .320312 .322265 .324218 .326171 .340 .341 .342 .343 .344 .345 .346 .347 .437500 .439453 .441406 .443359 .445312 .447265 .449218 .451171 .050 .051 .052 .053 .054 .055 .056 .057 .078125 .080078 .082031 .083984 .085937 .087890 .089843 .091796 .150 .151 .152 .153 .154 .155 .156 .157 .203125 .205078 .207031 .208984 .210937 .212890 .214843 .216796 .250 .251 .252 .253 .254 .255 .256 .257 .328125 .330078 .332031 .333984 .335937 .337890 .339843 .341796 .350 .351 .352 .353 .354 .355 .356 .357 .453125 .455078 .457031 .458984 .460937 .462890 .464843 .466796 .060 .061 .062 .063 .064 .065 .066 .067 .093750 .095703 .097656 .099609 .101562 .103515 .105468 .107421 .160 .161 .162 .163 .164 .165 .166 .167 .218750 .220703 .222656 .224609 .226562 .228515 .230468 .232421 .260 .261 .262 .263 .264 .265 .266 .267 .343750 .345703 .347656 .349609 .351562 .353515 .355468 .357421 .360 .361 .362 .363 .364 .365 .366 .367 .468750 .470703 .472656 .474609 .476562 .478515 .480468 .482421 .070 .071 .072 .073 .074 .075 .076 .077 .109375 .111328 .113281 .115234 .117187 .119140 .121093 .123046 .170 .171 .172 .173 .174 .175 .176 .177 .234375 .231)328 .238281 .240234 .242187 .244140 .246093 .248046 .270 .271 .272 .273 .274 .275 .276 .277 .359375 .361328 .363281 .365234 .367187 .369140 .371093 .373046 .370 .371 .372 .373 .374 .375 .376 .377 .484375 .486328 .488281 .490234 .492187 .494140 .496093 .498046 C-6 OCTAL-DECIMAL FRACTION CONVERSION TABLE OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. .000000 .000001 .000002 .000003 .000004 .000005 .000006 .000007 .000000 .000003 .000007 .000011 .000015 .000019 .000022 .000026 .000100 .000101 .000102 .000103 .000104 .. 000105 .000106 .000107 .000244 .000247 .000251 .000255 .000259 .000263 .000267 .000270 .000200 .000201 .000202 .000203 .000204 .000205 .000206 .000207 .000488 .000492 .000495 .000499 .000503 .000507 .000511 .000514 .000300 .000301 .000302 .000303 .000304 .000305 .000306 .000307 .000732 .000736 .000740 .000743 .000747 .000751 .000755 .000759 .000010 .000011 .000012 .000013 .000014 .000015 .000016 .000017 .000030 .000034 .000038 .000041 .000045 .000049 .000053 .000057 .000110 .000111 .000112 .000113 .000114 .000115 .000116 .000117 .000274 .000278 .000282 .000286 .000289 .000293 .000297 .000301 .000210 .000211 .000212 .000213 .000214 .000215 .000216 .000217 .000518 .000522 .000526 .000530 .000534 .000537 .000541 .000545 .000310 .000311 .000312 .000313 .000314 .000315 .000316 .000317 .000762 .000766 .000770 .000774 .000778 .000782 .000785 .000789 .000020 .000021 .000022 .000023 .000024 .000025 .000026 .000027 .000061 .000064 .000068 .000072 .000076 .000080 .000083 .000087 .000120 .000121 .000122 .000123 .000124 .000125 .000126 .000127 .000305 .000308 .000312 .000316 .000320 .000324 .000328 .000331 .000220 .000221 .000222 .000223 .000224 .000225 .000226 .000227 .000549 .000553 .000556 .000560 .000564 .000568 .000572 .000576 .000320 .000321 .000322 .000323 .000324 .000325 .000326 .000327 .000793 .000797 .000801 .. 000805 .000808 .000812 .000816 .000820 .000030 .000031 .000032 .000033 .000034 .000035 .000036 .000037 .000091 .000095 .000099 .000102 .000106 .000110 .000114 .000118 .000130 .000131 .000132 .000133 .000134 .000135 .000136 .000137 .000335 .000339 .000343 .000347 .000350 .000354 .000358 .000362 .000230 .000231 .000232 .000233 .000234 .000235 .000236 .000237 .000579 .000583 .000587 .000591 .000595 .000598 .000602 .000606 .000330 .000331 .000332 .000333 .000334 .000335 .000336 .000337 .000823 .000827 .000831 .000835 .000839 .000843 .000846 .000850 .000040 .000041 .000042 .000043 .000044 .000045 .000046 .000047 .000122 .000125 .000129 .000133 .000137 .000141 .000144 .000148 .000140 .000141 .000142 .000143 .000144 .000145 .000146 .000147 .000366 .000370 .000373 .000377 .000381 .000385 .000389 .000392 .000240 .000241 .000242 .000243 .000244 .000245 .000246 .000247 .000610 .000614 .000617 .000621 .000625 .000629 .000633 .000637 .000340 .000341 .000342 .000343 .000344 .000345 .000346 .000347 .000854 .000858 .000862 .000865 .000869 .000873 .000877 .000881 .000050 .000051 .000052 .000053 .000054 .000055 .000056 .000057 .000152 .000156 .000160 .000164 .000167 .000171 .000175 .000179 .000150 .000151 • .000152 .000153 .000154 .000155 .000156 .000157 .000396 .000400 .000404 .000408 .000411 .000415 .000419 .000423 .000250 .000251 .000252 .000253 .000254 .000255 .000256 .000257 .000640 .000644 .000648 .000652 .000656 .000659 .000663 .000667 .000350 .000351 .000352 .000353 .000354 .000355 .000356 .000357 .000885 .000888 .000892 .000896 .000900 .000904 .000907 .000911 .000060 .000061 .000062 .000063 .000064 .000065 .000066 .000067 .000183 .000186 .000190 .000194 .000198 .000202 .000205 .000209 .000160 .000161 .000162 .000163 .000164 .000165 .000166 .000167 .000427 .000431 .000434 .000438 .000442 .000446 .000450 .000453 .000260 .000261 .000262 .000263 .000264 .000265 .000266 .000267 .000671 .000675 .000679 .000682 .000686 .000690 .000694 .000698 .000360 .000361 .000362 .000363 .000364 .000365 .000366 .000367 .000915 .000919 .000923 .000926 .000930 .000934 .000938 .000942 .000070 .000071 .000072 .000073 .000074 .000075 .000076 .000077 .000213 .000217 .000221 .000225 .000228 .000232 .000236 .000240 .000170 .000171 .000172 .000173 .000174 .000175 .000176 .000177 .000457 .000461 .000465 .000469 .000473 .000476 .000480 .000484 .000270 .000271 .000272 .000.273 .0002"74 .000275 .000276 .000277 .000701 .000705 .000709 .000713 .000717 .000720 .000724 .000728 .000370 .000371 .000372 .000373 .000374 .000375 .000376 .000377 .000946 .000949 .000953 .000957 .000961 .000965 .000968 .000972 C-7 OCTAL-DECIMAL FRACTION CONVERSION TABLE OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. .000400 .000401 .000402 .000403 .000404 .000405 .000406 .000407 .000976 .000980 .000984 .000988 .000991 .000995 .000999 .001003 .000500 .000501 .000502 .000503 .000504 .000505 .000506 .000507 .001220 .001224 .001228 .001232 .001235 .001239 .001243 .001247 .000600 .000601 .000602 .000603 .000604 .000605 .000606 .000607 .001464 .001468 .001472 .001476 .001480 .001483 .001487 .001491 .000700 .000701 .000702 .000703 .000704 .000705 .000706 .000707 .001708 .001712 .001716 .001720 .001724 .001728 .001731 .001735 .000410 .000411 .000412 .000413 .000414 .000415 .000416 .000417 .001007 .001010 .001014 .001018 .001022 .001026 .001029 .001033 .000510 .000511 .000512 .000513 .000514 .000515 .000516 .000517 .001251 .001255 .001258 .001262 .001266 .001270 .001274 .001277 .000610 .000611 .000612 .000613 .000614 .000615 .000616 .000617 .001495 .001499 .001502 .001506 .001510 .001514 .001518 .001522 .000710 .000711 .000712 .000713 .000714 .000715 .000716 .000717 .001739 .001743 .001747 .001750 .001754 .001758 .001762 .001766 .000420 .000421 .000422 .000423 .000424 .000425 .000426 .000427 .001037 .001041 .001045 .001049 .001052 .001056 .001060 .001064 .000520 .000521 .000522 .000523 .000524 .000525 .000526 .000527 .001281 .001285 .001289 .001293 .001296 .001300 .001304 .001308 .000620 .000621 .000622 .000623 .000624 .000625 .000626 .000627 .001525 .001529 .001533 .001537 .001541 .001544 .001548 .001552 .000720 .000721 .000722 .000723 .000724 .000725 .000726 .000727 .001770 .001773 .001777 .001781 .001785 .001789 .001792 .001796 .000430 .000431 .000432 .000433 .000434 .000435 .000436 .000437 .001068 .001071 .001075 .001079 .001083 .001087 .001091 .001094 .000530 .000531 .000532 .000533 .000534 .000535 .000536 .000537 .001312 .001316 .001319 .001323 .001327 .001331 .001335 .001338 .000630 .000631 .000632 .000633 .000634 .000635 .000636 .000637 .001556 .001560 .001564 .001567 .001571 .001575 .001579 .001583 .000730 .000731 .000732 .000733 .000734 .000735 .000736 .000737 .001800 .001804 .001808 .001811 .001815 .001819 .001823 .001827 .000440 .000441 .000442 .000443 .000444 .000445 .000446 .000447 .001098 .001102 .001106 .001110 .001113 .001117 .001121 .001125 .000540 .000541 .000542 .000543 .000544 .000545 .000546 .000547 .001342 .001346 .001350 .001354 .001358 .001361 .001365 .001369 .000640 .000641 .000642 .000643 .000644 .000645 . .000646 .000647 .001586 .001590 .001594 .001598 .001602 .001605 .001609 .001613 .000740 .000741 .000742 .000743 .000744 .000745 .000746 .000747 .001831 .001834 .001838 .001842 .001846 .001850 .001853 .001857 .000450 .000451 .000452 .000453 .000454 .000455 .000456 .000457 .001129 .001132 .001136 .001140 .001144 .001148 .001152 .001155 .000550 .000551 .000552 .000553 .000554 .000555 .000556 .000557 .001373 .001377 .001380 .001384 .001388 .001392 .001396 .001399 .000650 .000651 .000652 .000653 .000654 .000655 .000656 .000657 .001617 .001621 .001625 .001628 .001632 .001636 .001640 .001644 .000750 .000751 .000752 .000753 .000754 .000755 .000756 .000757 .001861 .001865 .001869 .001873 .001876 .001880 .001884 .001888 .000460 .000461 .000462 .000463 .000464 .000465 .000466 .000467 .001159 .001163 .001167 .001171 .001174 .001178 .001182 .001186 .000560 .000561 .000562 .000563 .000564 .000565 .000566 .000567 .001403 .001407 .001411 .001415 .001419 .001422 .001426 .001430 .000660 .000661 .000662 .000663 .000664 .000665 .000666 .000667 .001647 .001651 .001655 .001659 .001663 .001667 .001670 .001674 .000760 .000761 .000762 .000763 .000764 .000765 .000766 .000767 .001892 .001895 .001899 .001903 .001907 .001911 .001914 .001918 .000470 .000471 .000472 .000473 .000474 .000475 .000476 .000477 .001190 .001194 .001197 .001201 .001205 .001209 .001213 .001216 .000570 .000571 .000572 .000573 .000574 .000575 .000576 .000577 .001434 .001438 .001441 .001445 .001449 .001453 .001457 .001461 .000670 .000671 .000672 .000673 .000674 .000675 .000676 .000677 .001678 .001682 .001686 .001689 .001693 .001697 .001701 .001705 .000770 .000771 .000772 .000773 .000774 .000775 .000776 .000777 .001922 .001926 .001930 .001934 .001937 .001941 .001945 .001949 C-8 GLOSSARY GLOSSARY OF TeleProgramming TERMS The following glossary gives the meaning of terms that are used relatively specialized sense in this manual. In a ADDER In general, a device used to add two quantities. Specifically, the borrow structure in the subject computer. ADDRESS The number designating a storage location; also the storage location itself. NO ADDRESS MODE The TeleProgrammer permits the performance of arithmetic and logical operations by an a-bit constant associated with the instruction and using the memory location immediately following the instruction as an. a-bit operand. MEMORY ADDRESS MODE A mode of addressing wherein an a-bit operand in any storage location is addressed by the memory location (immediately following the instruction). and the contents of the Tag register . as referenced by T. INDIRECT ADDRESS MODE Instructions employing indirect addressing use the memory location immediately following the instruction to refer to one of the first 256 storage locations. The contents of this location are used along with the contents of the Tag register to form the address of the operand. BIT BORROW BUFFER Binary digit; may be either "1" or "0". In a subtractive counter or accumulator, a signal indicating that in stage n, a "1" was subtracted . from a "0". Noun: A device in which data are stored temporarily in the' course of transmission from one point to another. Verb: -To store data temporarily. jl Change 1 BUFFERED INPUT/OUTPUT A term indicating that the computer may carry on high speed computation at the same time it is exchanging data with a peripheral device. In the TeleProgrammer, this term must be distinguished from normal I/O, during which the computer cannot engage in computation. CARRY In an additive counter or accumulator, a signal indicating that in stage n, a "1" was added to a "1". CHANNEL A transmission path that connects the computer to a given external equipment. CLEAR A command that removes a quantity from a register by placing every stage in the "0" state. COMMAND A signal that performs a unit operation, such as transmitting contents of one register to another, shifting a register, setting a flip-flop. COMPLEMENT Noun: See One's Complement to Two's Complement. Verb: A command which produces the one's complement of a given quantity. CONTENT The quantity or word held in a register or storage location. CORE A small ferromagnetic toroid used as the bistable device for storing a bit in a memory plane. COUNTER A register with provisions for increasing or decreasing its content by 1 upon receiving the appropriate command. END-AROUND BORROW A borrow that is generated in the highest order of an accumulator or counter, and is sent directly to the lowest order stage. ENTER To manually place in a register a quantity that is not from storage. In the TeleProgrammer, quantities may be entered in only the Tag A, P, and Z registers. FUNCTION CODE The lower 2 octal digits of the first word in the instruction set. Change 1 -2 INPUT DISCONNECT During an input instruction, a signal sent to the computer by the external device to indicate that the device has completed all available transmissions to the computer. INPUT REQUEST A request, by the computer, for information from an external device. Occurs during input instruction only. (See Resume.) INTERRUPT A signal (or class thereof) which, when received and recognized by the computer, forces the computer to forestall its current operation and jump to a subroutine, the starting address of which is determined by the class of the interrupt. A subroutine may have any number of options. It may merely stop the computer, it may determine the nature of the interrupt in order to take corrective measures, or it may retur1\ the computer to another phase of the main program. JUMP An instruction that jumps from one sequence of instructions to a second, and makes no preparation for returning to the first sequence. LOAD To place a quantity from storage in the A register. LOCKOUT Any function (usually of machine logic) that inhibits an action which would normally occur were the lockout not imposed. LOGICAL PRODUCT In Boolean algebra, the AND function of several terms. The product is 11111 only when all the terms are "1 11 ; otherwise it is 110". Sometimes referred to as the result of "bit-by-bit" multiplication. LOGICAL SUM In Boolean algebra, the OR function of several terms. The sum is "1" when any or all of the terms are 11111; it is 1'0" only when all are "0". MASK In the information of the logical products of two quantities, one of them may be used as a mask for the other. The mask determines what part of the other quantity is to be considered. Wherever the mask is "0", that part of the other quantity is cleared, but wherever the mask IS a 111", the other quantity is left unaltered. MASTER CLEAR (MC) A general command produced by placing the Load/ C lear switch in the down (C LEAR) position. An MC clears all of the crucial registers and control FFs to prepare for a new mode of operation. MODULUS An integer which describes certain arithmetic characteristics of registers, especially counters and accumulators, within a digital computer. The modulus of a device is defined by rn for an open ended device and rn-l for a closed (end- around) device, where r is the base of the number system used and n is the number of digit positions (stages) in the device. Generally, devices with modulus rn use two's complement arithmetic procedures, and devices with modulus rn-l use one's complement procedures. ONE'S COMPLEMENT With reference to a binary number, that number which results from subtracting each bit of the given number from the bit "1". A negative number is expressed by the one's complement of the corresponding positive number. OPERAND The quantity sl1ecified by the 8 _bits of the second word of the instruction set. This quantity is operated upon in the execution of the instruction. OPERATION CODE Th~ OVERFLOW The condition in which the capacity of a register is exceeded. PARTIAL ADD An addition without carries. Accomplished by toggling each bit of the' augend where the corresponding bit of addend is a "1". PROGRAM A' precise sequence of instructions that accomplishes a computer routine; a plan for the solution of a problem. Change 1 low&r 2 octill digits of the first word in the instruction set also called Function Code and identified by the letter, F. After the code is translated, it conditions the computer for execution of the specified instruction. QUARTIC A number system with a base of four. These numbers are normally partitioned into groups of two for ease of reading. READ To place a quantity from a storage location into a register. The quantity in storage remains unchanged. READY The input/output control signal sent by either the computer or an external equipment to alert the device that is to receive a transmission. The ready signal indicates that the word or character has been transmitted . RELATIVE ADDRESSING . A mode of addressing wherein the address of the operand is determined by adding (or subtracting) the contents of the execution address portion of the instruction word to (or from) the instruction address. REPLACE In the title of an instruction, the result of the execution of the instruction is stored in the location from which the initial operand was obtained. RESUME The output control signal sent by an external equipment to indicate that it is prepared to receive another word or character. The resume· signal is thus a request for data. (See Input Request.) ROUTINE The sequence of operations which the computer performs under the direction of a program. SHIFT To move the bits of a quantity right or left. SIGN BIT The bit in the highest-order stage of the register (in registers where a quantity is treated as signed by use of one's complement notation). If the bit is "1", the quantity is negative;. if the bit is "0", the quantity is positive.' SIGN EXTENSION The duplication of the .sign bit an the highest-order stages of a register. 5 STATUS 1) The condition of an external device, as reflected in the response given to a status request interrogation by the computer. 2) The condition of the computer as shown by the Status Mode indicator on the console. May variously indicate what it is presently doing, why it stopped, or what it will do when it next starts. TRANSMISSION FORCED A transmission where both set and clear inputs, only one of which will be a "1", are simultaneously gated into a F F which has not been cleared previously. TRANS LA TIO N An indication of the content of a group of bit registers. A complete translation gives the exact content, while a partial translation indicates only that the content is within certain limits. TWO's COMPLEMENT That number which results from subtracting each bit of a number from "0". The two's complement may be formed by complementing each bit of the given number and then adding one to the result, performing the required carries. WORD A unit of information which has been coded for use in the computer as a series of bits. The normal word length is 8 bits. WRITE To enter a quantity into a storage location. 6 COMMENT SHEET MANUAL TITLE _.. ;;8;.;;0;.;;9;.;;2;;.. . ;T;;,. e;;.:1;.;e;;.:P;:.. r;;;.. ;:;,o,cg.. ;. r.;;.;a.. ;. m_m_e.;. _ .r _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Programming Reference Manual PUBLICATION NO. _...;;.3_6_8....;.1_07_0_1_ _ __ FROM: NAME: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ REVISION ________ BUSINESS ADDRESS: __________________________________ COMMENTS.: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number references and fill in publication revision level as shown by the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged to use the TAR. :·1 ::1 ....~ I "- iI ~I NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A . FOLD ON DOTTED LINES AND STAPLE STAPLE STAPLE FOLD FOLD I -------------------------------------------~ FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. BUSINESS REPLY MAIL w Z :::; NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. (!) z « o.... POSTAGE WILL BE PAID BY ~ ~ u CONTROL DATA CORPORATION Technical Publications 4201 N. Lexington Ave. St. Paul, Minnesota 55112 FOLD FOLD ..... ~ ~ .l i, 1111"", »> .~ CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB CONTROL DATA CORPORATION 8100 34th AVE. SO .. MINNEAPOLIS. MINN. 55440 LITHO IN U.S.A.
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2015:11:09 11:30:52-08:00 Modify Date : 2015:11:09 10:41:43-08:00 Metadata Date : 2015:11:09 10:41:43-08:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:d57ff64f-a56a-7146-955d-a9f1929def52 Instance ID : uuid:2be58eba-82ca-e342-a265-2c234f585ce9 Page Layout : SinglePage Page Mode : UseOutlines Page Count : 103EXIF Metadata provided by EXIF.tools