89633300H_AB107_AB108_Hardware_Maint_Manual_Jul80 89633300H AB107 AB108 Hardware Maint Manual Jul80
89633300H_AB107_AB108_Hardware_Maint_Manual_Jul80 manual pdf -FilePursuit
89633300H_AB107_AB108_Hardware_Maint_Manual_Jul80 89633300H_AB107_AB108_Hardware_Maint_Manual_Jul80
User Manual: 89633300H_AB107_AB108_Hardware_Maint_Manual_Jul80
Open the PDF directly: View PDF .
Page Count: 748
Download | |
Open PDF In Browser | View PDF |
89633300 CON1'R..OL DATA CORfO~TION CONTROL DATA® CENTRAL PROCESSING UNIT AB107 AB108 BA201 BU120 BT148 GD611 GENERAL DESCRIPTION OPERATION INSTAllATION AND CHECKOUT THEORY OF OPERATION DIAGRAMS MAINTENANCE PARTS DATA APPENDIX WIRE LIST HARDWARE MAINTENANCE MANUAL REVISION RECORD REVISION DESCRIPTION a--____02_____ I __E_C_0__C::.cK.:.: 0. :.4."'5____ 6 r_e_l..:..ea::..:s'-e_d_m_a::..:nc.:.u_a_l_t::..:o.--,-c_la_s_s_B.:..,_________ .____._._____ ..._._ . _... __. ____. _.... __ ._________ .___._.__.____._ (JanyarY,,197;L, I. . ,- J j ; . 03 . '-'. ECO ·tK'O''''''S2'''''Z--an-d--EC-0--C-KO-7-4-8-c-o-m-p-l-et·-e-l-y-re-v-i-s-ed--m-a-nu-a-l-.------------·-.. --· ....-..-..- -----.-----.-------.---.. --(October:1974) ~.I-"-'--.,,-.-------;------------~----'-------------------------------.-------.---.--------... - - ' -- - - - - - , - - - - - - - - - - - - - " - - - - i s_e_d_ma_n_u_a_I_.__~__________________.______.______________________ _ I_~~'~g_4____,__~ dCO-H!JJl.,.re._vc_ (March 1975) I-'----=-:...::..c.----I------------· _________________________·____·___ ---------.------------.--A ECO CK1312 released manual to class A. 1--------------1----------.------------------- ----------------------.--(Augu st 1975) B ECO CKI347 affected pages: xv, 2-5, 2-6, 3-13, 3-19. 5-7. 9-1, 9-147. -------------------------1 (October 1975) C ECO CK1421 incorporated Field Change Orders CK1415. CK1422. CK1431. (January 1976) Pages revised: ii to xv. 3-13, 4-45, 4-46, 4-56. 5-39. 5-87. 5-145, 5-151. 5-155. 5-159. 5-259 5-379. 5-380 to 5-383. 5-385. 5-389, 5-393. 5.397. 5-403, 5-408. 5-409. 5-414 to 5-421. 5-430. 6-4, 8-1, 8-2, 9-2, 9-7, 9-26, 9-36, 9-37, 9-40, 9-45, 9-49, 9-55. 9-57, 9-63, 9-80, 9-85, 9-88. 9-89, 9-90, 9-93, 9-98, 9-147 Pages added: 3-13A, 3-13B, 5-160 to 5-166, 5-410 to 5-413, 5-422, 9-2A. -----~----.------------.----~.---------.-------- 1--------1--- D (July 1976) E I_ _--''--_ __ (July 1977) ECO CK1559 incorporated ECO CKJ526 and CAR'sLJL043, 158. 173. 174. -------------1-------- ECO CK1830. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __'___ _ _ _ _ _ _ _ _ _.._..--CAR's incorporated: LJL046/268, LJL072/383. Internal CAR 406, LJL186/505, LJLI99/515, LJL203-381/5J7 LJL206/519. LJL207/520. LJL211/524 I·--=--'--'-=-::..:~..::.c::...:... ~-----------I------ ---.--~----~:--------~----~~----------------------- ECO's incorporated: CK1054. CK1436, CK1588, CK1788, and ECO/FCO CK0676. 1-___________ ...!_<3~.~~ __':lid~~__ 3-29, 3-30, 8-3. Pages deleted: 9-2A. 1________.____ ~Cl~.~~ ...r:~\I.i~~~: iii to vi, vi i i. xi i to xvi i, 4-5, 4-9, 5-23, 5-32, 5-36, 5-82, 5-89, 5-J45, 5-296, 1-________.______.._.5.:-171 to 5-4'0, 5-1.35, f..-h h-?7, f\-l. F\-? q-l to q-8. q-4~. 9-61. 1-________..____~_~_a.!=E!~_:.._Manual-to-Equipment Correlation sheets and Parts Data. F ECO CKI996 Incorporated Models C and D. Reference CAR LJL209/522, CAR LJL216/531. 1 - - - - - - - - - - - - ------------------ 1------- (November. 1..97.11.. __ . ____________._.________________________________________________________ G ECO CK2784 corrected the following: 1 - - ' - - - - - -.. - ...- - - - · - - - - - - - - - - - - - - - - - - - - - - - - - ' ' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 (July 1979) Wrong Console PWA part number 89602068 changed to 89602069: pages 5-143. 5-145, 5-157. ,__________ ~_iJ:~hcap__.P_art number 89769400 added to Parts Data; 29 must be ordered with Console PWA 89602069 __________ I_~in~s~e~ri~e~s~~_y~~s 8-1~8-2. Pag~e~8~-_~3~de~l~e~t~e~d~b~y~ne~w~l£ay~o~u~t~.________________1 1________ -.TJ:ll::~~_ wi res_..chan~.!;L-ln-Jt{LrJng-Jj.sLdue I _ _ _ _ _ _ _ _ ~ng to E..c.oJ£il_CK2372: pages q-34. q-6.1.'-".~q'--"'68"".~--------. error corrected..hy adding connection 115-11 (sheet 6) to 1152-4 (sheet 2)' page 5-395 I - - - - - - - - - I - - - - ; - - - - - - - - - -..--·:--;---;----·----;~-:_____=__;_---___;_-__:_--__;___;--------------1 H ECO CK 3018 Incorporated changes of Series Codes, part numbers and pin numbers in the wiring list. 1--(J-u-1Y-1-9-8-0)--II-=R-ef:=-.--:'C-A-:-;R:;--;;2-=-52·~and TAR 065965. Pages to be replaced: ii, iii/iv, 5-143, 5-421, 5-425, 5-429/5=430, --5-4317S:432;--8-1~-8-2, 8-3/8-4, 9-46, 9-65, 9-66, 9-71 and Comment Sheet. 1 - - - - - - - - - 1 - - - - · - - - - - - - - - -..· - - · - - · - - - - - - - - - - - - · - - - - - - - - - - - - - - - - - - - - - - - - - - 1 Publication No. 89633300 Page ii @ 1974 to 1980 by Control Data Corporation Printed in the United States of America Address comments concerning this manual to: Control Data Corporation Publications and Graphics Divisio 4455 Eastgate Mall, La Jolla, California 92037 or use Comment Sheet in the back of this manual. MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET This manual reflects the equipment configurations listed below. EXPLANATION' Locate the equipment type and series number, as shown on the equipment FCO 109, in the list below. Immediately to the right of the series number is an FCO number. If that number and all of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual accurately reflects the equipment. MANUAL EQUIPMENT WITH REVISION TYPE 02 AB107-A04 AB108-A04 AB107/8-A05 AB107/8-A06 AB107/8-A07 BT148-A04 BA20l-A03 BA20l-B03 BA20l-A/B04 BU120-A03 GD6ll-A02 CK0573 CK0263 CK0677 CK0705 CK0736 CK0668 CK0652 CK0457 CK0673 CK0705 CK0245 03 AB 107l8-A08 BT148-A05 BU120-A04 CK0840 CK0677 CK0939 04 AB107/8-A09 AB107/8-A10 AB 107l8-A 11 AB107/8-A12 BT148-A06 BU120-A05 CK1063 CKI 0 11 CK0992 CK124l CK1063 CK0992 A/B AB107/8- A1 3 BT148-A07 BA20l-A/B05 BU120-A06 CKll09 CK0906 CK0978 CK124l C AB107-A14 AB108-A14 AB107l8-A15 AB 107l8-A 16 AB107/8-AI7 BT148-A08 BU 120-A07 CK1272 CK12 73 CK14l6 CK1415 CK1431 CK1415 CK1272 D/E AB107/8-AI8 AB 107l8-A 19 BU120-A08 CK1448 CK1526 CK1588 F AB107l8-COl AB107/8-C02 AB107/8-C03 BTI48-COI BT148-c03 AB107/8-DOl BT148-DOl CK1491,1931 CK1502,1931 CK1562,1931 CK1491 CK1842 CK1909,193l CK1909 G/H AB107/8-D02 CK2372 02/03/04 02 up COMMENTS ECO/FCO , 89633300 H ... I I 1/ I V PREFACE This manual provides customer engineering information for the CONTROL DATA R AB107 and AB108 with memory and supporting equipment. The AB107 and AB108 computers are physically compact and are designed for high computation and input output speeds. They feature a semiconductor memory with a basic size of 4096 (4K) 18-bit words which is field expandable in 4K word increments to 65K words. NOTE: Equipments identified without type identifier A,C,D refer to all three. The following Control Data publications may be useful when installing and maintaining this equipment. Pub. No. Control Data Publication 1784 Computer System Reference Manual 1784 Key to Logic Symbols System Maintenance Monitor Manual (SMM17) AB107/AB108 Execution Charts 89633400 89723700 60182000 1784 Computer Input-Output Specification Manual CDC Mini-Computer System Site Preparation Manual, section 2 89723800 89673100 60437000 1784 Computer System Peripheral Equipment Hardware Maintenance Manuals: (HR/M means combined Hardware Reference/Maintenance Manual) AF108 Paper Tape Reader/Punch Controller HR/M 89865200 AT310 DJ815 FA442 FA446 FA716 FC106 GN109 FEl19 TTL A/Q DSA Bus Expander Asynchronous Communications Controller ICL Magnetic Tape Transport Controller LCTT Magnetic Tape Transport Controller Cartridge Disk Drive Controller Key Entry Station Controller Key Entry Distribution Unit Card Reader Controller FE203 FF524 FJ505 FJ606 Card Punch Controller Line Printer Controller Binary Synchronous Communication Controller Synchronous Communications Controller 89633300 F I 89758600 HR/M 89600054 89637700 89637700 89638100 89672200 89672200 HR/M 89637500 89910800 89637300 89934100 89638500 (Continued on next page) v I PREFACE (Continued) Control Data Publication FV497 ICL Phase Encoding Formatter Fv618 LCTT Phase Encoding Formatter I vi Pub. No. 89796100 89796100 . 896333000 F The following list includes the documents associated with the cQnversational display terminal: Publ ication No. Ti tl e 713-10 Operator's Guide 62037900 713-10 Reference Manual 62033400 713-10 On-Site Maintenance Manual 62048500 713-10 Installation Instruction 62048700 Following is a 1 ist of documents relating to the non-impact printer station: Title Pul icat ion No. 713-11 Operator's Guide 62149600 713-11 Reference Manual 713-11 Installation Instructions 62149700 62149800 713-11 On-Site Maintenance Manual 62149900 Other Publications For 33 ASR/KSR teletypewriters: I Teletype Bulletin 310B, Volume Teletype Bulletin 310B, Volume 2 Teletype Bulletin 1184B, Parts Schematic package WDP03l6 includes document Nos. l1805D, 9334wD, 9335WD, 9336WD, 4970WD, 7887WD, 181821, 183079, 183087. For 35 ASK/KSR teletypewriters: I Teletype Bulletin 281B, volume Teletype Bulletin 281B, Volume 2 Teletype Bulletin 1201B, Parts Schematic Package. 89633300 F vii CON TEN T S SECTION 1. Page GENERAL DESCRIPTION Introduction Physical Characteristics 1-1 1-4 En vi ron men t 1-5 1-5 System Power 2. I 3. OPERATION AND PROGRAMMING Programming 2-1 Ope rat i on 2-1 Switching On Initial Conditions and Operation 2-1 Battery Operation 2-5 INSTALLATION AND CHECKOUT Introduction 3-1 Uncrat ing Inspection and Preparation 3-1 Mechanical Inspection Electrical Inspection and Preparation Ins ta 11 a t ion Initial Operation Installation/Removal of the Battery Installation of the Battery Remova 1 of the Bat te ry Procedure to Install External Shielded Cable Assemblies Te letypewri ter (TTY) Models 33 ASR/KSR "odels 35 ASR/KSR 35 ASR/KSR I/O Cable Connections Conversational Display Terminals (COT) vi i i 2-4 3-2 3-2 3-5 3-14 3-11t 3-19 3-19 3-21 3-22 3-21t 3-21t 3-25 3-25 3-27 89633300 F CONTENTS (continued) SECTION 4. THEORY OF OPERATION I ntroduct ion Basic Computer The Central Processing Unit (CPU) Data Path Main Registers Control and Timing Section Memory System Introduction Memory Control System Principles of The Dynamic Semiconductor Memory Chip Detailed Operation of The Memory Unit Refresh Time Chip Select Power Supply Levels I nputC lock Amp Ii tudes System Considerations Memory Module The Memory Module Block Diagram Auxiliary Circuit Functions Low Power Data Retention (LPDR) Mode.. Power Back-Up Programmer1s Console In.put!Output The Teletyp.ewriter (TTY) Controller Direct Storage Access (OSA) A/Q Channel Interrupts Power Supply Electrical Mechanical General Description and Block Diagram 89633300 Page D 4-1 4-1 4-4 4-4 4-4 4-8 4-12 4-12 4-12 4-15 4-26 4-29 4-29 4-29 4-30 4-30 4-31 4-32 4-34 4-36 4-36 4-38 4-39 4-40 4-40 4-45 4-51 4-55 4-55 4-57 4-57 ix CONTENTS {continued} Page SECTION 5. DIAGRAMS lntroduction Key to Logic Symbols Signa 1 Flow Logic Diagram Revision Correlation Sheet Memory Sys tem Memory Module Protection Against Catastrophic Failure Memory Address Kiloword Selector Row Selector Column Selector Module Selector Data In Data In: Parity and Protect Bits Memory Control Low Power Data Retent ion (LPDR) Memory Control Access Selector Memory Control Timing Memory Control Basic Control Signals Basic Control Signals Write Control Signals Memory Control Data Output Li nes Memory Control Bank Address The Central Processing Unit Programmer I s Console Register Selectors Data Bit Selectors Control Switches and Indicators Switches ,and Output Signals Indicator Lights and Input Signals x 5-1 5-3 5-3 5-8 5-19 5-21 5-30 I 5-45 5-49 5-52 5-57 5-60 5-65 5-685-81 5-83 5-90 5-99 5-to5 5-107 5-115 5-121 5-429 5-141 5-143 5-147 5'-15t 5-155 5-155 5-156 89633300 F I CONTENTS (continued) SECTION 5. Page DRAWINGS (Cont I d.) Arithmetic ~nd Logic Unit (ALU) Addend Registers and Gates Augend Registers and Gates Arithmetic and Logic Operations Shifter Interrupt Logic Decoder Instruction Register and First Level Decoders Addend Gate Controls Augend Gate Controls Controls for ALU and Addressing Register Clock Controls Timing State Equations Typical Timing Sequences Oscillator and Phase Generator Counter Interrupt Timing, V Register Control Logic Main Sequence Flip-Flops Auxiliary Sequence Flip-Flops Input/Output (I/O) Interface A/Q Channel Control Memory Request Logic Index (i) Address and Write Enable Controls Decoder for Fl Field Augend Controls and X Register Clock Control Controls for Shifter and A/QChannel Direction Main Sequence Flip-Flop Controls , Overflow Logic Enable-Interrupt logic 89633300 D 5-168 5-178 5-182 5-190 5-193 5-202 5-211 5-215 5-220 5-225 5-228 5-232 5-241 5-242 5-245 5-249 5-258 5-265 5-270 5-277 5-291 5-294 5-299 5-302 5-307 5-310 5-314 5-318 5-322 5-327 xi ··CONTENTS (continue,d) SECTION 5. (Cont'd) Page DRAWINGS Console Interface Start/Stop Sequence Flip-Flops Program Protect Logic Test Mode and Autorestart AlU Logic Enter Interrupt Logic Skip Logic Te 1etypewri ter (TTY) Controller PWA 89967400 A/Q Channel Data Path Controller/Teletype Interface Oscillator- Baud RataSelector Address Decoding- Reply/Reject Logic Control and Interrupt Logic Breakpoint Logic Teletypewriter (TTY) Controller PWA 89947600 A/Q Channel Data Path Controller/Teletype Interface Osc ill ator'" Baud Rate Se lector Address Decoding- Reply/Reject Logic Control and Interrupt Logic Teletypewriter (TTY) Controller PWA 89984700 A/Q Channel Data Path Oscil1ator- Baud Rate Selectpr Breakpoint Logic Te 1etypewri ter (TTY) Controller PWA 89976400 Osc ill ator- Baud Rate Se 1ector Enclosure Power Input The Power Input Ci rcui t Power Supply Unit Power Supply Wiring Diagrams High Power (HP) and Control Assembly LoW Power Circuit Assembly xi i 5-337 5-339 5-345 5-352 5-357 5-364 5-369 5-374 5-374 5-379 5-382 5-386 5-390 5-396 5-402 5-404 5-405 5-406 5-407 5-408 5-410 5-412 5-413 5-414 5-416 5-418 5-421 5- 4221 5- 423 5-426 5-437 5- 446 89633300 F 1 CONTENTS (continued) SECTION 6. Page MAINTENANCE Tools and Special Equipment Calibrate Power Supply Levels Check Battery Inspection or Replacement of Printed Wiring Board Inspection or Replacement of the Power Supply Unit Check Programmer's Console Controls and Indicators Inspection or Replacement of Programmer's Console and 6-1 6-3 6-5 6-7 6-9 6-12 6-15 I Components On It Inspection or Replacement of Cooling Blowers Power On: Procedure For Switching On Power Power Off; Procedure For Switching Off Power Emergency Shut-Down Regular Shut-Down Diagnostics and Margin Tests 7. 6-22 6-26 6-27 6-27 6-27 6-28 MAINTENANCE AIDS TTL Ci rcu it Oper.at ion MOS Circuit Operation The MOS Process and Silicon Gate Technology Precautions in Handling the Memory Modules Protection Against Catastrophic Damage 7-1 7-3 7-3 7-9 7-9 8. PARTS DATA 8-1 9. WI RE LISTS 9-1 89633300 F xi i i I LI S T OF TABLES Section 4 Table Page 1-1 Equipment Description 1-1 4-1 Basic Computer Functional Units 4-2 4-2 Basic Timing Specifications of the Memory Units 4-25 4-3 DSA Channel Pin Assignments 4-41 4-4 A/Q Channel Pin Assignments 4-48 4-5 Interrupt Access Pin Assignments 4-52 4-6 Summary of Regulated Power Supply Circuits 4~63 I 4-63 6 6-1 Power Supply Levels and Tolerances 6-4 9 9-la TTY Internal Cable PIN 89684200 9-2 9-lb TTY External Shielded Cable PIN 89642300 9-2 9-2 Memory Expansion BU120-A08 External Cable Assembly {pO AWG 28 PIN 89658101 (3 sheets) 9-3 9-3 Memory Expansion BU120-A08 External Cable Assembly (P2) AWG 28 PIN 89658501 (3 sheets) 9-6 xiv 9-4{a) AB107/AB108 Backplane Wiring-Signal Name Order 9-9 9-4{b) AB107lAB108 Backplane Wiring Card Slot Order 9-51 I 9-5 BT148 Backplane Wire List 9-138 9-6 COT External Cable Assembly Wire List 9-147 89633300 F LI ST OF FIGURES FIGURE Page 2-1 2-2 AC Power Switch and Connection 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-3 Card Placement Slot Assignment: Expansion Enclosure 3-4 Power Supply Heat Shield and Retainin.g Screws 3-6 Inside of Main Enclosure Front Door 3-8 Power Supply Connector Panel 3-8 AC Power Switch and Connection 3-9 Rear of Enclosures 3-12 General View and Dimensions of Main Enclosure: Type Ident. A 3-15 External Dimensions of Main Enclosure: Type Identifiers A,C,D 3-16 Rear Cover With Battery 3-20 Installation Kit Part No. 89986600 For External Shielded Cable 3-23 4-1 4-2 4-3 Computer System Simplified Block Diagram CPU Block Diagram 4-3 4-5 Memory Address System and Data Flow 4 ... 13 4-4 The Memory Ce 11 4-5 Memory Unit (a) (b) (c) (d) 4-6 Memory Timing (a) CPU and DSA Cycles (b) Refresh Cycles 4-7 4-8 4-9 4-10 4-11 4-12 Memory Module Block Diagram AC-to-DC Converter and Protection Circuits: Block Diagram 4-13 Power Supply Regulator and Control Circuits: Block Diagram 4-14 Switching Regulator: Basic Circuit and Waveforms 4-17 4-19 4-20 4-21 4-22 4-23 4-24 4-33 4-42 4-49 4-50 4-58 4-60 4-64 4-66 89633300 Computer Front View 2-3 2-7 Card Placement Slot Assignment: Main Computer Enclosure Block Diagram and External Connections Detailed Block Diagram Circuit Details Circuit Details DSA Channel Timing A/Q Channel Timing A/Q Channel Input/Output Lines Power Supply: Simplified Block Diagram F xv I LIST OF FtGURES (continued) FIGURE Page 6-1 Computer Backplane Showing the Power Supply Test Points 6-6 6-2 6-3 6-4 6-5 6-6a. 6-6b. 6-7 6-8 Use of Board Extractor and Board Extender 6-8 6-8 Exposed View of Two Lower Fans and Electrical Connections 7-1 Diode AND Gates 7-2 7-3 7-4 7-5 7-6 7-7 TTL AND Gates xvi Power Supply Heat Shield and Retaining Screws Power Supply Adj us tmen ts and Fuses 6-11 Power Supply Terminals and Reta in i ng Screws Inside of Computer Enclosure Front Door 6-11 Inside of Computer Enclosure Front Door 6-20 6-21 6-25 6-19 Blower Assembly in Top of Enclosure (All type identifiers) MOS Inverter Circuits 7-2 7-2 7-2 7-6 7-6 MOS Inverter With Output Booster 7-7 MOS Transmission Gate 7-7 Typical Logic Level Margins for TTL Micrologic Typical MOS Characteristic 89&33300 F SECTION 1 GENERAL DESCRIPTION GENERAL DESCRIPTION INTRODUCTION The CONTROL DATA~ABI07 and ABI08 computers are small, stored program parallel mode digital computers with semiconductor memory of a basic 4096 (4K) 18-bit words, field expandable to 65K words in 4K word increments. The main computer enclosrues houses the first 32K words {32,768} memory bank, the second bank (memory expansion) being accommodated in the BT148 Expansion Enclosure. The main computer and the expansion enclosures also house the peripheral controllers. The following table lists the equipment which make up the ABI07 and ABI08 computers. Equipment described in this manual (see preface for CE Manuals of associated equipments). TABLE 1-1. Equipment Number ABI07-A EQUIPMENT DESCRIPTION Description The central processing unit performs the following functions: a. Arithmetic and logical operations required by the stored program. b. Control operations to execute and synchronize operations within the central processor, in the memory and for input/output. c. Interrupt processing for one internal and fifteen external priority interrupts. d. Program protection to protect one set of programs in the memory from the effect of other programs. The equipment combines with 'up to eight BA201-B Memory Modules housed in the computer enclosure to provide a bank of 32,768 (32K) words of semiconductor memory storage with a cycle time of 900 nanoseconds. 89633300 A 1-1 EQUIPMENT DESCRIPTION (cont'd) AB107-A (cont'd) The memory Illay be expanded by up to eight BA201-B Memory Modules to provide a second bank uf 32K words housed in the BTI48-A Expansion Enclosure with the BUI20-A Memory Expansion Controller to give a total of 65,536 (65K) words memory. The memory is innerentlyvolati Ie. I t may be made non-volati Ie within an enclosure by install ing the optional GD611-A Memory Hold Battery in the enclosure. The equipment includes the following, in addition to the central processing unit: 'a. Front panel Programmer1s Console carrying all the system b. controls. Non-buffered input/output channel based on the A and the Q register (A/Q channel). c. Direct Storage Access (DSA) channel for the buffered data transfers from peripheral control equipment housed in the main computer enclosure or external to it. d. Controller for the standard input/output Teletypewriter. The Teletypewriter to be used is the Teletype Corp. Models ASR/KSR 33/35. e. Wiring, power suppl ies and enclosure for the ABI07-A equipment circuits and in addition, for the following circuits: FA716-A Cartridge Disk Drive (COD) Controller FA442-A/FV497-A Magnetic Tape Transport (MTT) Controller it: peripheral controllers, up to four on the A/Q channel and I up to three on the DSA channel . FA446-A/FV618-A Magnetic Tape Transport (MTT) Controller * GD611-A Memory Hold Battery (optional) The equipment works from 110 vac 50/60 Hz line voltage, and can be field converted to 220 vac, 50/60 Hz. 1-2 , 89633300 A EQUIPMENT DESCRIPTION (cont'd) AB108-A Equipment identical to the AB107-A except in that it combines with BA201-A Memory Modules to provide a memory cycle time of 600 nanoseconds. The Input/output operations (A/Q and DSA channels) are correspondingly faster in this computer but the input/output equipment used is the same as in the AB107-A. The equipment works from 110 vac 50/60 Hz line voltage, and can be field converted to 220 vac, 50/60 Hz. BA201-A BA201-B Semiconductor storage module containing 4096 (4K) 18-bit words. The unit is designed to operate with the AB107 and AB108 computers and uses control logic provided by them to execute read and write operations. The storage read/write cycle durations are: BA201-A controlled by AB108-A: BA201-B controlled by AB107-A: BT148-A 600 nanoseconds 900 nanoseconds Expansion enclosure houses (but does not include) a) a bank of up to eight BA201-A or BA201-B Memory Modules to provide a memory expansion of up to 32,768 18-bit words for the AB107/AB108 computers. b) the BU120-A Memory Expansion Controller (similar to the Memory Controller of the AB107/AB108). c) peripheral controllers for I/O expansion. thi~ (Note that requires TTL A/Q-DSA Bus Expander, equipment AT310-A in the main computer enclosure). The equipment includes the cabinet wiring and power supplies. It works from 110 vac 50/60 Hz line voltage and can be field-converted to 220 vac, 50/60 Hz. 89633300 A 1-3 EQUIPMENT DESCRIPTION (cont'd) GD611-A The AB107/AB108 can util ize an .optional Memory Hold Battery, equipment GD611-A,which can be housed in the computer enclosure. On failure of the main power the equipment switches automatically to the battery. This wi,11 supply power for retaining the memory content in the full memory of 32 kilowords for at least eight hours, but will not provide the equipment with normal operating capabil ity. The battery is recharged automatically during power-on periods, and is fully charged in not more than 32 hours. The GD611-A equipment can also be installed in the BTI48-A Expansion Enclosure so as to preserve the contents of the memory expansion of up to, another, 32 kilowords. PHYSICAL CHARACTERISTICS . Dimensions (approximate) each enclosure Weight: 1-4 Width 19 inch, 433 mm Height 15 3/4 inch, 400 mm Depth 20 inch, 508 mm The basic complete enclosure weighs about 80 lbs, 36.4 kg. 89633300 A ENVIRONMENT Operating Temperature 40°F to 120°F (5°C to 50°C) Operating Humidity Storage and Shipping Temperature Storage and Shipping Humidity 10% to 90% non-condensing -40·F to 160°F (-40°C to 70°C) o to 100% RH non-condensing NOTE Extremes of temperature and humidity must not occur together. SYSTEM POWER Power input 104 - 127 vac, or 49 - 60.6 Hz, single phase, 600 VA 198 - 264 vac, 49 - 60.6 Hz, single phase, 600 VA Note: the equipment can be field-converted from one voltage range to the other (see Section 3). Equipment ground The equipment chassis is connected to the third (ground) lead in the line cord. It must be connected to a good ground (refer to Site Preparation Manual, publication No. 60437000). The logic ground of the equipment is isolated from the chassis. It should be connected to the general logic ground of the ins ta 11 a t i on. 89633300 A 1-5 SECTION 2 OPERATION AND PROGRrut4ING OPERATION AND PROGRAMMING PROGRAMMING For programming information refer to the 1784 Computer System Reference Manual, Publication number 89633400. OPERATION This part describes the switching on and operation of the computer using the controls and indicators on the Programmer's Console (front panel). The console is illustrated in Figure 2-2, the controls and indicators are described in section 6 of the 1784 Computer System Reference Manual, Publication number 89633400. SWITCHING ON PROCEDURE After the computer has been installed, checked and the initial operation procedure carried out (Section 3), the computer may be switched on by performing the following steps: 1. Connect the main computer enclosure (equipment AB107/AB108) to the power outlet by means of the power cord and apply the power by sw i· tch i ng on the AC POWER sw itch a t the top of the enc los u re rea r panel (Figure 2-1). ENCLOSURE REAR PANEL TO LINE POWER OUTLET POWER SWITCH SOCKET FOR AC LINE CORD 89633300 A 2-1 2. Switch ON the dc POWER switch on the Programmer's Console front panel (see Figure 2-2). The indicator above the switch should 1 i gh t. WARNING If the indicator does not light or if any other fault is suspected, the computer must be switched off immediately by turning off the AC POWER switch at the top of the rear panel. Refer to Section 6 for further procedures. EXPANSION ENCLOSURE FRONT PANEl DC POWER SWITCH 3. If an expansion enclosure (equipment BT148) is connected, carry out steps (1) and (2) above for the expans ion enclosure. The control s on the expansion enclosure are in the same relative positions as those on the main computer enclosure. WARNING Should it become necessary to switch off the computer always switch off the expansion" enclosure first at the rear panel AC POWER switch. 2-2 89633300 A ... (I) en ..,N U c ..,: CD • .c:u ~ OJ - ~ c( 0:0 ~~ ~O ~~ 0° lH b :::;)~ """" 0 c( CD •.,. .::11 ~ U C ... -,:a o u . ... ; ~ CD ..¥ u o U) Figure 2-10 89633300 0 AC Power Switch and Connection 2-3 INITIAL CONDITIONS AND OPERATION NOTE The manual controllers and indicators on theProgranmer's Console (front panel) are shown in Figure 2-2 and are described in Section 6 of the 1784 Computer System Reference Manual, Publication number 89633400. Set up initial conditions by the following procedure (use the controls on the Programmer1s Console). 1. 2. 2-4 The installation has up to 32K word memory: 1.1 Press MASTER CLEAR pushbutton. 1.2 Set Mode switch (65K/32K) to 32K. 1.3 Set ENTER/SWEEP switch to ENTER. 1.4 Set INSTRUCTION/CYCLE switch to its central (COMPUTE) position. 1.5 Set PARITY FAULT STOP switch to the central (off) position. 1.6 Set SELECTIVE STOP and SELECTIVE SKIP switches to the down (off) position. 1.7 Press the GO pushbutton. 1.8 Press MASTER CLEAR pushbutton. The installation includes memory expansion (equipments BU120-A and BA201-A or BA20l-B) in the expansion enclosure (equipment BT148) and ,therefore has more than 32K (but less than 65K) words memory: 2.1 Press MASTER CLEAR pushbutton on the main computer. 2.2 Set Mode switch (65K/32K) to 65K on the main computer. 2.3 Set ENTER/SWEEP sw itch to ENTER. 2.4 Set INSTRUCTION/CYCLE switch to its central (COMPUTE) position. 89633300 A 2.5 Set PARITY FAULT STOP switch to the central (off) position. 2.6 Set SELECTIVE STOP and SELECTIVE SKIP switches to the down (off) position. 2.7 If the full complement of eight memory modules is installed in the 2.8 expansion enclosure: set P register to FFFF 16 • Press the GO pushbutton on the main computer. 2.9 Press the MASTER CLEAR pushbutton on the main computer. The computer may now be operated. NOTE Do not switch SELECTIVE SKIP or PROGRAM PROTECT switch when computer is in RUN operation. BATTERY OPERATION Introduction On failure of the external ac power the computer automatically switches to the Low Power Data Retention (LPDR) mode of operation, and so connects the optional Memory Hold Battery, equipment GD6ll-A. In this mode, the battery (if installed) supplies the power to retain the memory content in the full memory of 32 kilowords, but the equipment does not have normal operating capability. The battery, when installed, provides power for'LPDR operation for at least eight hours when fully charged. It is recharged automatically during normal operation and reaches full 89633300 F charge in not more than 32 hours. I Memory Expansion I The Memory Expansion Controller, equipment BU120~Af and the BT148 Expansion Enclosure provide the same facilities for power failure to the memory expansion. Thus with a Memory Hold Battery, equipment GD611-A, installed in the expansion enclosure, the full memory content can be retained for eight hours after fai lure of the external ac power. Operation Failure of the external ac power is shown by the POWER indicator light and all other indicators going dark during operation. If this happens, check the external ac supply. If this failed because of no voltage or voltage reduced under allowed tolerances (see section 1) System Power) this is indicated by "brown out II of illumination. The battery will conserve the contents of the memory for eight hours. Operation of the computer may be resumed as soon a.s ac power returns. If the ac power appears to be in order but the front pane 1 ind i cators are st iI' dark, swi tch off the AC POWER switch at the top of the computer rear panel (figure 2-1) and refer to section 6. WARNING Do not sw itch off the f ron t pane 1 DC POWER switch. 2-6 • IIi I: 'l · I- •· -fo- I-- · ~~ en I--I-- III ~_I =I [±l-II I l·t E)-Jl a-II, ~>:;: sO °i 01 O-[] OaE) 0, 01 0-8 ID 01 oi O-I!J aD a '. ~ :-1 ;-1 ~ I i ~ j O~[] ~. 0 1 01 O-E] J~D • 0'_ 1 0 10 o ·EiI 0; -,". I Figure 2-2. 89633300 A Computer Front View. (Programmer1s Console, Controls and Indicators). 2-7 SECTION 3 INSTALLATION AND CHECKOUT INSTALLATION AND CHECKOUT INTRODUCTION This section provides installation procedures for the AB107/AB108 computers. To install peripheral equipments refer to the appropriate Customer Engineering or Installation manuals. Refer also to Control Data Mini Computer Systems, Site Preparation Manual, publication No. 60437000. UNCRATING INSPECTION The equipment is packed in cartons with adequate packing material in the carton to isolate it from shocks in transit. must be made before uncrating. A preliminary inspection of the carton Evidence of damage must be noted and reported immediately (refer to Field Procedures Guide). UNPACKING To unpack the equipment lay each carton in turn on a clean smooth flat surface. Cut the sealing tape of the carton, open out the flaps, re~ove the packing material on top and sides of the equipment and lift out the equipment onto the clean surface beside the carton. Check the contents of each carton against packing (consignment) list and inspect each item for transit damage (dents, scratches, signs of breakage). Note and report damaged or missing parts (refer to Field Procedures Guide). CRATING INFORMATION Consult Control Data procedure 8.504.00 in the Customer Engineering Field Procedures Guide. 89633300 A 3-1 INSPECTION AND PREPARATION Inspect the main computer enclosure and the expansion enclosure BT148 (if ordered) as follows: a. Mechanical inspection * Inspect the enclosure for superficial damage, loose cables and screws * Open the enclosure * Check the Identification Plates on the right hand side of the enclosure (inside the door). Make sure that the equipment supplied corresponds to the Customer1s order * Check that all the printed wiring assemblies corresponding to the equipments shown on the Identification Plates are inserted in their proper slots (see Fi gures 3-1, 3-2) I f necessary insert them and stick the corresponding Identification Plate on the right side of the enclosure interior. * Check that the computer enclosure corresponds to the Memory Modules supplied: I Enclosure main expans ion I ABI07 AB108 BT148 BT148 Computer Cycle Time 900 nsec 600 nsec Memory Module BA201-B BA20l-A * Check that each printed wiring assembly is properly seated * Note serial number and part number of equipments suppl fed for future reference. This information is written on the Identification Plates. 00 \.D (j\ DECODER W W W ALU (LEAST SIGNIFICANT o o ALU (MOST SIGNIFICANT) " MEMORY CONTROL MEMORY ADDRESS 1111111 EIGHT MEMORY MODULES I mI AQ BUS TIMING rL /O INTERFACE CONSOLE INTERFACE i DSA BUS AQ BUS '11 I'fi' TTY CONTROLLER IIII II I III II I II CENTRAL PROCESSING UNIT CARTRIDGE DISK DRIVE CONTROLLER :.- ...... 0 CIt % :;; ~ '"::u CIt '" 0 i 0 0 :.- :.CIt CIt PHASE NRZI MAGNETIC ENCODING TAPE TRANSPORT FORMAT-. TER !coNTROLLER c ~ 6 -< ::u ~ ::u 0 0 % ~ 0 0 0 :.-0 ~ ~ i ~ :.- :.- ::u CD 0 :.Z r- '" ~ 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I , PWAI S part of equipment ABI07/ABI08 NOTES 11. W I W IIIIIIII The Memory Control board and-the Memory Address board together form the Memory Controller. This is similar to equipment BUI20-A in the Expansion Enclosure. 2. Memory modules must be installed sequentially from slot 29. For instance, if equipment contains 16K, four modules are installed in slots 29 through 32. 3. See section I for definition of equipments. Figure 3-1. Card Placement Slot-Assignment: Main Computer Enclosure - I I r?r DSA BUS \N I .c:- MEMORY CONTROLLER J, I EIGHT MEMORY MODULES !6 ~ 34 33 32 31 30 29 28 27 2e DSA BUS I I 11-, II I I' I OPEN 25 /Q BUS A/Q BUS DSA BUS. A/Q BUS I I OPEN OPEN 24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I NOTES 1. The Memory Control board and the Memory Address board together form the Memory Expansion Controller, equipment number BUI20-A. ~ 2. Memory modules must be installed sequentially from slot 29. For instance, if equipment contains 16K, four modules are installed in slots 29 through 32. ~ ~ Q o ~ 3. See section 1 for definition of equipments. Figure 3-2. Card Placement Slot Assignment: Expansion Enclosure b. Electrical inspection and preparation * Check the ac line voltage available * The equipment can accommodate one of the following nominal line voltages: Note: * either 110 vac, 50-60 Hz, single phase or 220 vac, 50-60 Hz, single phase the exact specifications are given in Section l. Check the enclosure Identification Plate for the line voltage of the enclosure. If this coincides with the one available, skip the next paragraph and proceed to the one after; if the enclosure line voltage is not the same as that avai 1able, proceed with the modification as described in the next paragraph. * To modify the enclosure (main or expansion) to allow it to accommodate a line voltage (110 vac or 220 vac nominal) other than it is connected for, proceed as follows: make sure that the enclosure is not connected to line voltage remove the power supply heat shield by removing its retaining screws on the inside of the enclosure front cover (refer to Figure 3-3). 89633300 F 3 I F4 r~ ~ • • • - r--- ll~ • " I I Figure 3-3. 3-6 • • • Power Supply Heat Shield and Retaining Screws 8.9633300f connect the shorting links on TB2 of the power supply connection panel according to the supply voltage available. See figures 3-4 and 3-5. NOTE: The view in figure 3-4 is exact for series A12 and down. Three areas, marked PC, PS, MH in figure 3-4, were physically altered in series A13 and up, including type identifiers C and D. PC: The soldered connections of the programmer's console cable to the programmer's. console card were ~eplaced by two horizontal connectors, which are mounted in the same area and are marked J20 and J21 on the nearby enclosure wall. This change affects the procedure for removing the console card. PS: The three soldered connections to the power supply were replaced by a single vertical connector. This change affects the procedure for removing the console card. MH: The route of the main harness to the backplane under the cardfile was shifted away from the enclosure wall towards the center. This change does not affect the procedure for removing the card. SHORTING LINKS FOR 110VA.C INPUT NOMINAL INPUT VOLTAGE 110 vac SHORTING LINKS FOR 220VAC INPUT SHORT I NG LINKS ON TB2 TERM INALS 1-2, 3-4-5, 6-7-8, INPUT TO TERMINALS 3, 7 9-10 220 vac 89633300 F 2 - 3, 5 -6 , 8 -9 3, 7 3-7 PC I Figure 3-4. Inside of Main Enclosure Front Door _(Not _app 1i ~ab le to ~ l·~eriesi. See ...!'ote on pag!.. 3-7. L GND o • • • I Figure 3-5. 3-8 Power Supply Connector Panel 8963330{) F * As a further check inspect the power supply connections as follows: make sure that the enclosure is not connected to line voltage remove the power supply heat shield by removing its retaining screws on the inside of the enclosure front cover (unless already removed). Refer to figure 3-3 and to figure 3-4. inspect the shorting links on TB2 of the power supply connection panel and make sure that they are in their correct position. Refer to figures 3-4 and 3-5. * Check fuses: Fuse designation Fl Function Current ac power 8 A for 110 vac 4 A for 220 vac Speed (b low) - F2 battery 1 A slow F3 F4 dc power 5 A fast dc aux 100 rnA slow Locat i on Location refer to Figure 3-6 Input unit } Power Figure 3-3 Supply - Figure 3-6. 89633300 F AC Power Switch and Connection 3-9 * If the system includes the memory back up power source, battery equipment GD611-A, check: proper installation of the equipment in each enclosure (refer to installation procedure) voltage at the battery terminals (nominal 28 vdc; for exact specification refer to Section 1) If the battery has to be changed refer to battery installatIon information at the end of this section. * Check for electrical short circuit between conductors on the equipment power supply cable connector, also between each conductor and logic ground (do not forget the third conductor). Use highest resistance scale on the multimeter and make sure that the AC POWER switch at the top of the equipment rear panel is OFF (Figures 3-6 and 3-7). I * Check all connections for tightness. * Reinstall the power supply heatshield by replacing its retaining screws (refer to Figures 3-3 and 3-4). * If the system includes a BT148 Expansion Enclosure, check that the equipments match by checking the identification plates on the enclosure, on the two assembl ies of the Memory Expansion Controller , and on each of the memory modules (refer to the table on page 3-13). Make sure that the main computer and the expansion unit match. 3-10 89633300 F 12. If the system includes memory expansion (equipments BUI20 and BA201-A or BA201-B) in the BTl48 Expansion Enclosure and therefore has more than 32K words memory, carry out the following: Switch off the dc POWER on both enclosures. enclosure cables (refer to Figure 3-7). Install the expansion I Switch on the dc POWER on both enclosures. 12.1 Press STOP sw itch on ma i n computer. 12.2 Make sure that the main computer and expansion equipment have I the same memory cycle time (see page 3-13). 12.3 Perform steps 1 and 2 above for the enclosure. NOTE All control switches (except the dc POWER ON switch of the Expansion Enclosure) are located on the main computer front panel. 12.4 Press MASTER CLEAR switch. 12.5 Set Mode switch (32K/65K) to 65K. 12.6 Set ENTER/SWEEP switch to ENTER. 12.7 Set INSTRUCTION/CYCLE switch to its central (COMPUTE) position. 12.8 Set PARITY FAULT STOP switch to its central (off) position. 12.9 Set SELECTIVE STOP and SELECTIVE SKIP switches to their down (off) positions. 12.10 If the full complement of eight memory modules is installed in the expansion enclosure: 89633300 F set P register to FFFF 16 . 12.11 Press the GO pushbutton. 12.12 Press MASTER CLEAR pushbutton. 12.13 Perform steps 12 .. 4, 12.5, 12.6 above. I 3-11 W I ..,. N COMPUTER ENCLOSURE Part Cab le I Number EXPANSION ENCLOSURE Connections Computer Expansion Figure 3-7. 3 4 89658100 89658100 89658500 89658500 5 89802800 2 $0" w w w 0 0 .,., 33Pl 31Pl 33P2 31P2 23P1A07 _~3Pl B11 (GND) 31Pl 33Pl 31P2 33P2 27P2A23 27P2B21 (GND) Rear of Enclosures Equipment Number Memory Cycle nsec I 900 600 E x pan s ion Me m 0 r y Enclosure Contro t 1er Memory Module BT148 BU120-A BA201-B BT148 BU120-A BA201-A Note power supply requirements: Initial Operation paragraph 4 Insert the Memory Expansion Controller assembl ies (2) and the memory module assemblies in the slots of the expansion assigned to them and make sure that they are well seated. (Figure 3-l) Connect the five cables of the Memory Expansion Controller (refer to Figure 3-7 and Section 9). I Note that the Memory Expansion Controller (slots 27,28) are wired to slots 31 and 33 through the back plane. The flat cables plug into slots 31,33. * Connect on each enclosure a length of insulated wire of adequate crossection to the enclosure ground and one to the Jogic ground I lug (refer to Figure 3-7); make sure the wire is long enough to connect the computer (or expansion enclosure) to the nearest logic ground outlet in the installation. Adequate crossection for this ground-wire is considered to be 89633300 F 110 vac line voltage: AWG 12 llO vac line voltage: AWG 16 3-13 INSTALLATION Ensure that there is no obstruction to free air circulation around either enclosure and that there is enough room to insert connectors and open the rear cover. See figures 3-8,3-9 for the necessary clearance dimensions around the enclosure. I En'sure that the equipment· is properly grounded by performing the following for each enclosure: * check that the third pin (ground) of the power cord (chassis ground) connects to a good ground * connect the logic ground of each enclosure to the system logic ground (refer to Figure 3-7 and the paragraphs on preparation of the equipment) * I connect the chassis ground to the system ground. Refer to the Mini Computer Site Preparation Manual, CDC publication number 60437000. Hook up the power by plugging the equipment line cord to the enclosure rear panel (Jl: I . Figures 3-6 and 3-7) and then to the util ity outlet. INITIAL OPERATION The equipment has been fully tested in the factory before despatch. The following procedure checks the equipment on first installation on site and prepares it for operation. It is assumed that it has been checked as detailed in the previous paragraphs and any discrepancies corrected. The computer main enclosure is set up first; only when that is prepared is the expansion enclosure prepared, if it is part of the installation. 3-14 89633300 F l 00 \D Q'\ \,\I \,\I \,\I o o / . "T1 I ! I \( / .... /' II! I :. I .,.. - t - - .. - r. ... I i 1·---·_ .... \,\I I ~ .-~ .:t -..-. ..... L. __._w I i ~'-- .. .. ,/ AIR -- +'! I!! I :t'·ml!:If, ~~ ~·iiTTtT y .... -......-til. t-.....--.....1 I j -, \\ '\'.. \\'L-.... '. aJ " AIR INLETS __ -4 -1_ .... Figure 3-8. General View and Dimensions of Main Enclosure: Type Identifier A '--\'t:-_.... ... - Type Identifier A AB107-A AB108-A BTl 48-A ,f Type Identifier C Type Identifier 0 AB107-C AB108-c B1148-c AB107-D AB 108-D BTI48-D * Type identifiers C 16~40 Tc) FAN: eAst * , I I and D have two fans installed in the base of the enclosure. I Figure 3-16 3-9. External Dimensions of Main Enclosure: Type Identifiers A,C,D 89633300 F INITIAL OPERATION - Continued The Programmer's Console (front panel) controls used in the following are described in Section 6 of the 1784 Computer System Reference Manual, publication number 89633400. The console is shown in figure 2-2 of this manual. 1. Open the front cover of the enclosure and pullout all the printed wiring assemblies from their connectors but leave them in their slots. 2. Turn on the AC POWER switch at the top of the rear panel (see figures I 3-6 and 3-7). Examine the enclosure to see that all blowers work. NOTE: The number of blowers is four or six, depending on the type identifier. Refer to Maintenance Section 6. If there is no airflow, or some other fault is detected, switch off the equipment immediately using the emergency shut-down procedure on page 6-3. Location of the air inlets and outlets is shown in figures I 3-8 and 3-9. 3. Turn on the DC POWER switch on the operator's console (enclosure front panel - refer to flgure 2-2l. The indicator above the switch should light. WARNING If the indicator does not light, or if any other fault is suspected, the equipment must be switched off immediately by turning off the AC POWER switch at the top of the rear panel. See page 6-3 for the emergency shut-down procedure. 4. Check the power supply voltages (see section 6). Check that the value of VSS is correct for the memory modules installed: BA201-A or BA20l-B. See table 6-1 for power supply voltages. 5. Switch off the DC POWER switch on the Operator's Console and re-insert the printed wiring assemblies. Make sure that they are well-seated. 6. Repeat step 3 in this procedure. 89633300 F 3-17 I INITIAL OPERATION - Continued 7. I If the Expansion Enclosure,.e.quipmentiiS;J:l;;#i"Js part of the installation, repeat steps 1 through 6 for it. Set up initial conditions by the following procedure: 8. 9. The installation has up to 32K word memory: 8.1 Press MASTER CLEAR pushbutton. 8.2 Set Mode switch (65K/32K) to 32K. 8.3 Set ENTER/SWEEP switch to ENTER. 8.4 Set INSTRUCTION/CYCLE switch to its central (COMPUTE) position. 8.5 Set PARITY FAULT STOP switch to its central (off) position. 8.6 Set SELECTIVE STOP and SELECTIVE SKIP switches to their down (off) positions. 8.7 Press the GO pushbut.to,n.· 8.8 Press MASTER CLEAR pushbutton. Check all registers by entering data in each one. Note that this check also serves as a lamp test for the indicators associated with the registers and the data input keys. 10. Enter a pattern into memory and correct any problems. 11. Sweep the memory to check for par i ty error. NOTE In steps 8 and 9 refer also to 1784 Computer System Reference Manual, publ ication 89633400. 3-18 89633300 F INSTALLATION/REMOVAL OF THE BATTERY (Figure 3-10) The optional power back-up source, rechargeable battery equipment G0611-A is normally packed separately. cover of the enclosure. In operation, the battery is housed in the rear To install the battery follow the outline procedure given below. Installation of the battery 1. I If the battery is new, install the battery, starting from step 4. If the battery is not new, or if there is some doubt about its state of charge, go on to the next step. 2. Check the open circuit voltage of the battery. 2.1 Connect a vol tmeter/mul timeter of 20,000 ohms per volt or more across the terminals of the battery. 2.2 Measure the open-circuit voltage to be 24.2 vdc or more. 2.3 If not, replace the battery by a fully-tested one. I f yes, go on to the next step. 3. Check the full load voltage of the battery. 3.1 Connect two 60 ohm, 5%,10 Watt resistors in parallel across the terminals. 3.2 Connect the voltmeter. 3.3 Measure the full load voltage to be 24.2 vdc or more. 3.4 If not, replace the battery by a fully-tested one. If yes, disconnect the multimeter and resistors and install the battery, starting from step 4. 89633300 F 3-19 -----, ___ - - -__ J Figure 3-10. 3-20 Rear Cover With Battery 89633300 F I 4. Remove rear cover of the enclosure by undoing the two th~mb-screws at the top of the rear cover, tilting the cover back and sliding it out of its slots. I 5. Fix the battery to the rear cover (Figure 3-10)using the four screws and corresponding nuts and washers provided. 6. Install the battery cable provided as follows: 6.1 connect the cable shoes under the nuts on the battery terminals, the red lead to the positive (+) terminal 6.2 slide the rear cover (with the battery fixed to it) into its slots and support it by hand 6.3 connect the other end of the cable to connector JO on the enclosure, inserting the red lead to the lower pin of the connector 6.4 close the rear cover onto the enclosure and tighten the two thumbscrews 7. Check the battery fuse (refer to Figure 3-6). If the equipment is newly installed or has not been used with a battery before perform also the following steps: 8. Load the memory with a pattern and check the pattern under normal operating conditions. Record the pattern. 9. Turn off the equipment power supply (Power Off Procedure, section 6) 10. After a few minutes turn on the power again (Power On Procedure, Section 6) and check that the pattern in the memory has been retained. If the pattern has. been retained, proceed with normal operation. If the pattern has not been retained recheck the battery (see step 1 above). If battery is in order proceed to memory diagnostics. Removal of the battery 89633300 F Do steps 6, 5, 4, in that order. 3-21 PROCEDURE TO INSTALL EXTERNAL SHIELDED CABLE ASSEMBLIES (Figure 3-11) The ground screw to which the external shielded cable is to be attached may or may not have a cable already attached to it. Ground Screw Without Cable Attached 1. On the interior surface of the rear connector panel, scrape off a 0.5 inch (12.7 mm) diameter circle of paint around each of the three lower holes. 2. Open Installation Kit Part No. 89986600 that contains all the attachment parts needed. 3. Slide the external tooth lock washer onto the screw. 4. Insert the screw and external tooth lock washer into the hole of the rear connector pane 1• 5. Mount the spring lock washer. 6. Mount the plain washer. 7. Mount one of the two hexagonal nuts. 8. Slide the flat-locking terminal of the cable onto the screw. 9. Mount the other hexagonal nut. Secure the cable into place. Ground Screw With Cable Attached 1. Remove the securing nut and save it. 2. Slide the flat-locking terminal of the cable onto the screw. CAUTION Do not mount more than four external shielded cables onto the same screw. 3. Mount again the nut that was removed in step 1. Secure the cable into place, making sure there is proper electrical contact with the cables already attached. 3-22 89633300 FH Addr... L ~ Add..... ~ Stabl. Addr.ss Can Chang. t OVH H Prlohar,e 2 I V L .." \Q ..,r:: CD H Cenable " L ~ - I -~ III • 03: ""0 CD c:~ III .., H Read/Write Data In (Write Only) t OVL - / "'" H L Co -4 (/13 » -. ::::J Data Out (Write,Read/Write ) X Data Can Change H L O\Q tpo "- ~-- ~ "< n =40mV RLOAD =IOOA CLOAD =IOOPF VREF CD III Data Out H ( Read) L V ~ L ::::J"< c -. ~ twp tpw - -- --- I', ~g~a N t V~fi~ Ii ~ '.,. -Data Out Valid , --------Data Out Valid I N W Data Can Chanae Stable Data 1\ 'L CLOCK Addr... ( Row Only) Precharge H L H L H Cenable Read/Write L H 2 3 I I 4 5 6 I 7 8 9 I I ~ ~ /' "- L Figure 4-6. Memory Timing. (b) . Refresh Cycles 4-24 89633300 A The memory unit described here has two versions differing in their basic cycle times: ~': the BA201-B module allows a computer cycle time of 900 nanoseconds in the AB107 equipment ~~ the BA20 I-A modu 1e allows a compute r cyc 1e time of 600 nanoseconds in the AB108 equipment One type of memory module (BA201-A or BA201-B) may be accommodated in the I enclosures (computer enclosure .and expansion enclosure, equipment BT148) at anyone time. The memory controller and memory expansion controller are suitable for both types and only the enclosure supply voltage (V SS ) has to be changed. This is done at the time of installation of the first memory module in the enclosure. The basic timing specifications of the memory units are given in Table 4-2. TABLE 4-2. BASIC TIMING SPECIFICATIONS OF THE MEMORY UNITS , Symbol Per i od MIN tREF Time between refresh tAC Address to Cenable setup time tOVL Precharge & Cenable overlap, MAX Chip used in BA201-A Module MIN 2 low tOVH Chip used in BA201-B Module 115 MAX 1 UNIT ms nsec 30 , 25 nsec -10 Precharge & Cenable overlap, high 140 tpw Precharge to Read/Wri te delay twp Read/Write pulse width tpo End of Precharge to 165 500 nsec 500 nsec nsec 40 50 output delay 115 85 120 75 nsec t ACCl Address to Output Access 300 135 nsec t ACC2 Precharge to Output 310 165 nsec 89633300 F Ac~ess 4-25 DETAILED OPERATION OF THE MEMORY UNIT To begin a cycle, Precharge is brought low, to approximately VDO potential. This operation activates the row and column decoders, and also charges all read and write data lines negatively, i.e., to the equivalent of a logic "high" state for the P-channel MOS. (In the discussion which follows, clocks, etc. are considered "on" at VOO level, and "off" at VSS level. "High" and "Low" refer to the change with respect to the MOS substrate.) The decoder circuitry is somewhat faster than the line charging circuitry, so addresses need not be stable until somewhat after Precharge is applied. Address data may be provided before Precharge is turned on. After Precharge and address data have been present long enough for the data lines to charge and the row and column decoders to stabilize (time tAC after Precharge is low). the Cenable clock is turned on low state. i.e., dropped to its At this time, the desired read-select line is activated and the read-data line charging circuits are disabled. This initiates the writing of the contents of the 32 cells along the selected row into the 32 on-chip refresh amplifiers, one amplifier for each column in the array. The data lines begin to discharge selectively, with the signals on them approaching values corresponding to the complements of the data stored in the selected row of cells. As the read-data lines selectively discharge, the Precharge signal is turned off, i.e., raised high to VSS. Following this the contents of the refresh amplifiers are written back into their respective columns; and after the period !PO the output appears. This is accompl ished by the removal of the charging signal on the write-data lines, and closing a path to selectively discharge these lines. The cell contents are restored by activating the write-~elect line corresponding to the selected read-select line. The signal level on the write-data line is a function of the overlap time between Precharge 4-26 89633300 A and Cenable. If this overlap is too short, the read-data lines will not have discharged sufficiently when the discharge path from the refresh amplifiers to the write-data lines is closed. levels written into the cells may be reduced. As a result, high (negative) If, however, the overlap time is excessive, weak lows within the cells may result in some discharge of the read lines before closure of the write-back path. Thus cells with weak lows have higher levels (even weaker lows) written back into them, eventually resulting in lows changing to highs. This problem is somewhat aggravated by the small but unavoidable capacitive coupling between the data and select lines and the cell storage capacitor. Provision is made for controlling the overlap time in the Memory Control and Memory Add ress un i ts. When Cenable is turned on, a current path from VSS to the output is established, for one column decoder is enabled and all write-data lines have been charged high (negative). If the selected cell (the cell at the intersection of the selected column and selected row) contains a low, the write-data line will discharge after Precharge is removed and the output current will be cut off. If, however, the selected cell has been negatively charged (high), the output current will continue to flow. Cenable must remain present for a sufficient time after Precharge turn-off to allow the contents of the selected row of cells to be refreshed. Even after Cenable is turned off (raised to VSS ) the addresses must remain present for about 20 nanoseconds to allow completion of internal operations. Precharge will not be applied again until Cenable has been off for at least 85 nanoseconds (see Memory Control operation). To write new data into the selected cell, with or without a read operation, all sequences proceed as above. However, the write line is activated before Cenable is removed and tpw after the pos:tive edge of Precharge; this allows the write-data lines to stabilize. As a result, the read 89633300 A 4-27 data lines are discharged, effectively disconnecting the refresh amplifiers from the write data lines. ~ path from the data-input line is also enables into the selected write data 1 ine. Thus., a direct path from the data input to the selected cell is established. A signal on this input will then overwrite the contents of the cell. The timing specifications for operating the unit are shown in Table 4-2. All the time values listed, except t po ' t ACCl are generated by the memory system. The time designated tpo refers to the time delay observed between the turn-off of Precharge and the availability of data at the chip output terminals, and is a characteristic of the unit. The two access times, t ACCl and t ACC2 represent a combination of system operating parameters and characteristics of the chip. Thus the stated "minimum" values represent the shortest access times which can be guaranteed when the unit is operated within the limits specified and with rise and fall times of 20 nanoseconds. System access times will exceed these values because of the additional delays and tolerances introduced by the rest of the system. 4-28 89633300 A REFRESH TIME The maximum time interval between accesses to memory cells (t REF ) is specified as 2 milliseconds for units on the BA201-B module, 1 milliseconds for units on the BA201-A module. To guarantee that data is retained within the memory, at least one read or write cycle must be executed for each row of cells within this refresh interval. As the rows are selected by address inputs AO through A4 at least 32 memory cycles, one for each state of address lines AO through A4 must be executed in each refresh interval. These cycles may result from normal accessing, as in a sequential-access mode of operation of the memory. In other cases special refresh cycles must be executed. In the Memory System (AB107 equipment) the cells are refreshed every 1.5 millisecond, in the Memory System (ABIOS equipment) every 1.0 millisecond. CHIP SELECT In operation, the Cenable clock also acts as a chip (memory unit) select. That is, Precharge and write signals may be applied at their normal times in the cycle, but if Cenable is not applied, the unit will neither deliver current to the output terminal nor will the contents of any cell be altered; no refreshing of memory content takes place during such a cycle. POWER SUPPLY LEVELS Signal and power supply levels are important to the proper operation of the unit. Speed is a function of both the VSS level and clock amplitudes. In general, higher amplitudes or voltages result in faster operation. Substrate This bias improves noise bias VBB also has an effect on performance. immunity and prevents parasitic interaction within the device. 89633300 A 4-29 INPUT CLOCK AMPLITUDES To guarantee operation of the memory chip over the full temperature range at the speeds specified the clock amplitudes must be maintained at the specified values. These are:High: Low: The value of the supply voltage (VSS) determines that of the bias voltage VBB (refer to Figure 4-13 of the Power Supply Regulator and Control Circuits). SYSTEM CONSIDERATIONS The memory units are used in a rectangular 18 x 4 array to provide storage units of 4096 (4K) words of 18 bits each. S~ch an array with its supporting circuitry is called a Memory Module, with the main addressing and control circuits for up to eight modules carried on the Memory Address and Memory Control units. These are described in other parts of this seetion and in Section 5. Maintenance and safety precautions relating to the Memory Modules and to the memory units are given in Section 7. The contents of the memory unit has to be refreshed periodically as it is a basically volati Ie store. The memory system, however,', is made nonvolatile for at least 8 hours with the use of a battery and a special Low Power Data Retention (LPDR) mode of operation. This is also described in other parts of this section. 4-30 89633300 A MEMORY MODULE The Memory Module is the basic unit of the AB107/AB108 memory system. It consists of a 4xl8 array of memory units to give 4096 (4K) 18-bit words together with' immediate supporting circuitry, all accommodated on a single 50-PAK printed wiring board. given in Figure 4-7. The block diagram of the Memory Module is The memory units are described in previous paragraphs. The following paragraphs give the description of the block diagram followed by the function of the auxiliary circuits listed in the table. Function Circuit Level Shifters adapt TTL logic levels to MOS levels Cenable-Precharge delay regulates the overlap (t OVL ' t OVH ) Aux iIi a ry log i c generates internal control signals from available control signals LPDR ci rcu i t generates the switched supply (Vccs) used in Low Power Data Retention operation Data Out Sense Amplifiers convert the signals appearing on the opencol lector of the memory uni t data out lines to TTL signals (current to TTL logic conversion) i . I ~ A description of these circuits is given in Section 5 (Memory Module). 89633300 A 4-31 :J THE MEMORY MODULE BLOCK DIAGRAM -J. :1: The memory matrix provides the actual storage 1oca tio,,·ii th i n the memory system. It is an array of four rows of 18 memory units, forming four thousand words of 18 'b i ts each. The data flow to and from the IlIf;!III1Ory matrix is on the 18 data-i,n and 18 data-out lines corresponding to the 18 bits of each kiloword. The data-in lines of the memory units of corresponding bits in the four rows are connected together in a wired-OR and the same is true of the data output lines. A level shifter is incorporated in each of the 18 data-in lines to adapt the TTL levels from the CPU to the HOS logic levels needed in the memory matrix. Similarly the data out lines from the memory matrix are buffered and level converted in the sense amplifiers. " Selectfbn of a particular location in the matrix is achieved In two stages: first one of the four rows of 18 memory units (one kiloword) is selected by the corresponding kiloword selector signal (fl<.t):::'·rough lK3). This allows the memory control signals (Precharge, C:enable) to reach the if memory unit-&: of that word. In the second stage th~row and column address signals, through the address. level shifters, select a particular 18 bit word within the selected kiloword • '. . ~ The memory control and timing signals perform functions as follows: r--"'" . ; Cenab Ie R/W Read or Wri te Strobes output data . Chooses memory modulei .... J 4-32 89633300 A 00 \.0 0' Cenable Precharge Delay w w w o o ." Kiloword 4, Select (IK0-IK3 ) . 4 • I ~ 4 ~~ 4 Precharge Level Shifter 4 1 T .. I ermlnatlon, CE - - I I Memory Matrix - 4 - ( Y 18) 4 Cenable Cenable Level Shifter - Data In Leve I Shi fte rs Precharge (Bits 0-16) 4 B - -- 18 Fast Precharge (Bit 17) 4 - 4 x 18 Array of Separate Control Signals For Each Kiloword Memory Units Forming four Kilowords of 18 - Bits Each. (IKO through IK3) Read/Write 4 ,'4 '5 B 4 R/W ..... R/W Level Shifter r----- ] Common A'idres:1 Lines to All Units 5 Strobe Row A,ddress (ARAO-ARA 4} 5 5 - Address Level Sr.ifters ~18 , Column Address {ACA5-ACA9 ) Addres~ 5 ~ ~~~,~ary Logic Strobe ..... Disable REF MDX Stnbe --+ ] Common Level Shifters I MD --+ Controls VCC2 • s(robe '; ". .. MD 1-----.. B 0 ' I cnJ eet ?ILPDR • , VCCS 18 Data Out Lines MPWRO~-+---' I. .s::I W W I Figure 4-7. Data - out Sense Amplifiers Memory Module Block Diagram ~ Data flow is shown in thick lines. --r=;:=::t..T 2. Transfer takes place only when condition i. pre •• nt. AUXILIARY CIRCUIT FUNCTIONS Leve t Sh i fters: TTL to MOS TTL logic levels are 0.7 volts (low) and 2.0 volts (high). MOS levels are A level shifter is needed to approximately zero volts to VSS (17 volts). match the two kinds of logic circuits. The following signals use identical control signal level shifters: Precharge Read/Write (R/W) Address I The Cenable signals use the same level shifter but with two components added. See page 5-23. Level shifters are also used on the 18 data-in lines to adapt the TTL logic levels of the incoming signals to the MOS level of the memory circuits. The Overlap Circuit (Cenable - Precharge Delay) There is an overlap delay circuit in the precharge line of each kiloword unit on the Memory Module. It regulates the overlap timing tOVL and tOVH in the memory units (see Table 4-2 and the Detailed Operation of the Memory Unit), and consists of a diode switching network controlling RC delay circuit. 4-34 89633300 F Low Power Data Retention During power failure the computer reverts to Low Power Data Retention (LPDR) mode. During refresh cycle bursts in this mode none of the TTL logic circuits receive power. This circuit controls the V 2 supply to produce the switched cc logic (V CCS ) supply, provided the optional power back-up sources battery equipment G0611-A is installed. This arrangement preserves the memory content for up to eight hours (see next subsection). Data-Out Sense Amplifiers The open collector outputs of the corresponding bits of the four kilowords on the module are wire-ORed to form 18 lines. These are ampl ified in and gated by the sense amplifiers to form the 18 TTL-compatible output lines of the memory module. 89633300 A 4-35 LOW POWER DATA RETENTION (LPDR) MODE POWER BACK-UP The memory chips are volatile: they will lose their stored charges if they are not refreshed periodically. To make the memory system non-volatile, it is designed to switch over to battery operation automatically in case of power failure. A bac·k-up battery, optional equipment GD611-A when installed can supply power for the retention of the full memory contents for a period of up to eight hours. When the utility power fails, the voltage on the dc power supplies begins to drop. The power supply senses this voltage drop, and raises the signal RGPWR to the Memory Control. Due to large storage capacitors in the power supply, the voltages remain in the uncritical region for at least one millisecond and the memory continues to function. When the Memory Control receives the raised RGPWR signal, it continues to operate normally for half a mil1 isecond. During this time the CPU performs a special interrupt subroutine. At the end of this one-half millisecond period the Memory Control switches to the back-up mode. To retain the memory content in the back-up mode the Me~ry Control will not perform CPU or DSA cycles, but immediately performs a burst of 32 row refresh cycles in rapid succession and so refreshes the whole memory. The power supply switches to battery operation. All circuits which require constant powe~ such as the memory chips, continue to operate from the battery. All circuits that do not require power, such as the CPU, are allowed to fail as the util ity power fails. All circuits which need power only during refresh burst, such as address drivers, are power switched by the Memory Control during refresh burst. Since 32 row refresh bursts require 4-36 89633300 A only 14 microseconds to perform, and refresh bursts are performed once every 1024 microseconds, the power switched circuits are off for a considerable time, conserving a significant amount of power. In the back-up mode the memory chips use most of the power. When the power supply senses that util ity power has returned, it switches to util ity power, and drops the RGPWR signal. The Memory Control performs one more refresh burst, and then switches to normal mode operation. During LPDR operation the Memory Hold Battery (optional equipment GD611-A) supplies power. During normal operation the battery is recharged from the power supply. 89633300 A 4-37 PROGRAMMER'S CONSOLE The equipment front panel serves as the Programmer's Console: it carries the switches and indicator lights which enable the operator to control and monitor computer operations. The front panel controls and indicators are described in the 1784 Computer Their layout is shown in Reference Manual, publication number 89633400. Figure 2-2 of this manual. The circuits on the Programmer's Console can be grouped in three functional areas: * * * Control switches and indicators and associated circuits; Register selectors; Data-bit selection circuit. These circuits are described in SectionS of this manual. 4-38 89633300 A INPUT/OUTPUT Any peripheral controller that uses the A/Q channel or the DSA channel may I be accommodated in the ABI07/ABI08 equipments. The following table is a partial list. See the preface for more information. CONTROLLER EQUIPMENT No. I CONTROLLER DESIGNATION Part of ABI07/ABI08 Teletypewriter FA716-A Cartridge Disk Drive Controller (CDDC) FA442-A ICL Magnetic Tape Transport Controller (MTTC-ICL) Fv497-A FA446-A ICL Phase Encoding (PE) Formatter LCTT Magnetic Tape Transport Controller(MTTC-LCTT) Fv618-A LCTT Phase Encoding (PE) Formatter (TTY) The Teletypewriter (TTY) Controller forms part of the ABI07/ABI08 equipment; the other controllers are separate equipments and are accommodated in prewired slots within the main enclosure (ABI07/ABI08 equipment). Other controllers may be connected to the compyter through one of the two access channels, the non-buffered AQ channel using the A and Q registers and the Direct Storage Access (DSA) channel. In the following a short functional description of the TTY controller is given as well as the pin assignment and timing diagrams for the AQ and DSA channels. The TTY controller logic circuit diagrams are given and are described in detail in Section 5. Refer to the 1784 computer Input-Output Specification Manual, pub! ication number 89637100 and appropriate peripheral controller manuals for further information. 89633300 F 4-39 THE TELETYPEWRITER (TTY) CONTROLLER The TTY Controller can interface the computer CPU with a Teletypewriter Terminal and with a Conversational Display Terminal (COT). It provides for communication at 9600, 1200, 300 or 110 bauds. The baud rate is selected by inserting a jumper pI ug in the appropriate 10cat ion on the board. DIRECT STORAGE ACCESS (DSA) The DSA channel provides fast external access to the computer (equipment AB107/ABI08). Access connections are available on identical pins of preassigned slots of the main enclosure (equipment AB107/AB108) and of the expansion enclosure, equipment BT148 (refer to Figures 3-1 and 3 w 2) I Printed wiring boards conforming to 50-PAK specifications can be accommodated in these slots. on the DSA channel. Figure 4-8 shows the timing of the signals The pin assignment for the slots allocated to controllers using the DSA channel is given in Table 4-3. DSA Circuit Connections The DSA channel is designed to be used with TTL 2-input NAND buffers (IC 7438, PN62031200). Each DSA line is terminated by a 270 ohm pull-up resistor (to V ) in the CPU. Each input to the CPU loads the linewithup to cc 20 TTL load units. DSA output lines should be loaded with one TTL load unit or less. Scanner conditions are not prewired and should be made at the time of installation (refer to customer engineering manual for appropriate I controller). See the list in the preface. 4-40 89633300 F TABLE 4-3. OSA CHANNEL PIN ASSIGNMENTS P2 P1 I A S005 so06 5000 S012 SOll so03 so04 Me S'R'SM SRQ PIT S016 m SOl7 32kW i !I I SAOS SA09 SAIO SAlt SA12 SA13 GNO SA14 SA15 I A B 5001 1 5002 2 so07 3 so08 4 S009 5 SOlO 6 7 8 S013 9 S014 10 11 12 SS 13 SPI 14 S'iIT 15 16 SCRiM (SRi) SVIO 17 18 AUTOLOAO 19 SC FMM (S'FJ) 20 SWRITE 21 22 SAvO 23 SAO 1 24 SA02 25 26 SA03 SA04 27 SA05 28 29 SA06 30 SA07 31 1 B 1 GNO i 2 3 4 5 6 7 8 9 10 11 Vcc 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 GNO -- NOTES: 1. Signal polarity Address bits (SAOO~SA15) are active high. Oata bits (SOOO~S015) are active high for OSA transfers from the computer (Write). Oata bits (SOOO~S015) are active low for OSA transfers to the computer (Read). All other signals on the OSA bus are as indicated (overlined: active low). Power Supply v =+5V. 2. cc Total usage of all controllers on A/Q and OSA buses should not exceed 30 amperes in each enclosure. ~ GND = logic ground. 89633300 A 4-41 . fI) CD en IV Q. ... )( CD C ...0 1- .l -,.- Z J. L. 1 CD '+CD U L. .. -- ! Q ... In CD z0 .J ...~ --- --fI) fI) kI a:: I~ 8 c ! -- - 5z kI iLl 11.1 i I Figure 4-8. 4-42 - ----a:: kI ;~ -i ~8 -... 00 -~- III ...~ ~·ft tC Q~ ... - ~ I11.1 ~ iE f DSA Channel Timing 89633300 A NOTES to Figure 4-8. 1. Signal names: TAC : SRQ: 2. DSA Access Time Memory Access Request from DSA channel. Timing 1 784 - 1 1 784 - 2 Remarks minimum (nsec) A. B. - c. - D. E. F. G. H. J. K. L. N. S. - TAC 50 390 - 110 70 - 0 150 0 typ i cal (nsec) 440 600 - - maximum (nsec) - - - 605 - - 655 900 10 - - - - 215 285 220 - 855 1455 89633300 A - typical (nsec) 70 175 120 60 490 - minimum (nsec) 50 - - maximum (nsec) 110 200 245 60 705 - - - 320 470 330 -. 1240 190 120 0 210 0 10 - 2140 at maximum DSA access rate wi th DSA Pr iori ty without" DSA Priori ty 4-43 NOTES to Figure 4-8 (Cont'd.): 3. Refresh cycle time: 4g0 nsec once every 32 microseconds (600 nsec Memory) 735 nsec once every 48 microseconds (gOO nsec Memory) 4. Modes of Operation Worst Case ·The maximum DSA access time (TAC ) oC'curs whe'n the memory system performs CPU access cycles 'and successive Refresh cycles. DSA Priority signal active The memory system cannot perform CPU cycles. The DSA access, time (TAC ) is minimum; It is increased by the regular occurrence of Refresh cycles. Successive DSA requests The memory system cannot perform CPU cycles on the memory bank addressed by the equipment on the DSA channel. The DSA cycle time Is equal to the memory cycle time (600 nsec or, goo nsec). The DSA cycle time will be Increased by the Refresh cycles. Note that on single-bank operation no CPU access can occur if the DSA requests are generated fast enough. 4-44 8g633300 A A/Q CHANNEL This is the non~buffered bi-directional input/output (I/O) channel for the computer (equipment ABI07/ABl08). It util izes the 16-bit A and Q registers of the CPU. The Q register contains the address of the peripheral equipment; the A register contains the data equipment status and director functions. Access connections are available on identical pins of preassigned slots of the main enclosure (equipment ABI07/ABI08) and of the expansion enclosure equip~ent BTl48 (refer to Figures 301a, 30Ib). Printed wiring boards conforming to 50-PAK specifications can be accommodated in these slots (refer to AB107/AB108 Computer Input-Output Specification Manual, publ ication number 89637100). Output on A/Q Channel A single word is output from the A register whenever an output instruction is executed by the computer. The presence of the output data is signified by the active state of the write I ine. The peripheral equipment whose address is in the Q register should respond with a Reply or a Reject signal within 4 microseconds. The computer generates an internal Reject and reinitiates execution of instructions if no response is received from the device within 12.8lJsec (ABI08) or, 19.2lJsec (ABI07). If a Reply is received by the computer, the next instruction executed is the one following the output instruction (P+l). If an external Reject is received, the next instruction executed is located at P + 1 + 6, where 6 is the lowest eight bits of the output instruction, the highest bit of 6 being a sign bit. If an internal Reject is generated the next instruction executed is located at P + 6. P is the address of the output instruction. 89633300 C 4-45 Input on A/Q Channel A single word is input to the A register whenever an input instruction is executed by the computer. The request for data by the computer is signified by the active state of the read 1 ine. The peripheral device whose address is in the Q register responds with a Reply when data is available to the A register. If no data is available, the peripheral device responds with a Reject. In either case, the peripheral device must respond with a Reject Reply within 4 microseconds. If no response is obtained in 12.8psec (AB108) or 19.2psec (AB107), the computer generates an internal Reject. Reply causes the computer to go to address P + 1, where P is the address of the input instruction. An external Reject causes the computer to go to address P + 1 + 6, where 6 is the lowest 8 bits of the input instruction, the highest bit of 6 being a sign bit. Internal Reject causes the computer to go to address P + 6. Status on A/Q Channel Each peripheral device must have one or more codes which can be loaded into the Q register. When the computer executes an input instruction the status of that device will be loaded into the A register. All devices must respond to status requests wi th a Reply s inee the status must always be available within 4 microseconds. If a no response is received by the computer, it gen~rates an internal Reject after 6.4 psec (ABI08) or 9.6 psec (ABI07). 4-46 89633300 C A/Q Channel Access A/Q Channel accesses are available on identical backplane pins of prewired card slots of the equipments. va r i ous signa 1s • Table 4-4 lists pin assignments for the A/Q Channel Timing Figure 4-9 describes timing restrictions of the A/Q channel. In addition to the signals shown, a timing pulse is generated 135 nsec (±40 nsec) before a Read or Write signal can appear on the A/Q channel. The timing pulse is active for 75 nsec (±20 nsec). For more detailed signal description and timing, refer to I/O Specification manual number 89673100. A/Q Channel Loading Rules Each signal (data or control), transmitted from a peripheral controller to the CPU .in the A/Q channel, must be driven by an open-collector NAND buffer (IC Type 7438, CDC PN62031200). Each input line is terminated at the input to the receiver on the CPU by a 180 ohm pull-up resistor (to V ). cc loads the line with 20 TTL loading units. The input Each device on the A/Q channel is allowed to load any line from the CPU by one TTL load unit. The data bus (A register) is bi-directional. Figure 4-10 gives examples of typical input, output and bi-directional 1 ines. 89633300 A 4-47 TABLE 4-4. A/Q. CHANNEL PIN ASSIGNMENTS P2. P'I A A05 A06 AOO m: All )ijJJ A04 TP A)5 0.00 0.02. 0.04 0.06 Q,08 0.10 0.12. rui WEZ READ REPLY PRTM GND Notes: I 1 2. 3 4 5 6 7 8 9 10 Jl 12. 13 14 15 16 17 18 19 2.0 2.1 2.2. 2.3 2.4 2.5 2.6 2.7 2.8 2.9 30 31 B A -AO) I m m I 2 3 4 5 6 7 8 9 10 Q,O) 11 12 A02. A07 A08 A09 GND ~ CMI GND 0.03 0.05 0.07 0.09 0.11 0.) 3 0.)5 WRITE REJECT RC 1) Q.OOiQ.15 are active high; Vcc 13 14 15 16 17 18 19 2.0 21 22 2.3 2.4 2.5 2.6 2.7 28 2.9 30 31 B GND all other signals are active low. 2) Vcc ~ +5V. Total usage of all AQ. and DSA controllers should not exceed 30 amps in, each enclosure. 3) GND = logic ground 4-48 89633300 A INpuT OPERATION j At1T. b ____~--~II~______~ DATA -,Bje- READ L -.J REPLY OR REJECT ~SEC MIN A = 0 B = 0.0 ~SEC MIN (ci) COMPUTER C = 0.0 "SEC (q) E----~~________~r_l~___ PERIPHERAL DEVICE D =0 "SEC MIN (ci) PERIPHERAL DEVICE E = "SEC MAX (ci) PERIPHERAL DEVICE 4.0 0.2 ~ SEC MIN (ci) PERIPHERAL DEVICE MIN (ci) PERIPHERAL DEVICE OUTPUT OPERATION -.J DATA .... A REPLY OR REJECT L I. A = 0.1 B = O. 0 ~ SEC MIN ~ COMPUTER C = O.O.~ SEC ~SEC I I~------~~___ ~ WRITE L U j-j.--------i.1 D t-I A ' - MIN ~ COMPUTER MIN ~ PERIPERAL -tBI- .mL..-..,; ______ ...jCI- E ./ DEVICE D = 0.1 E = ~ SEC 4.0 ~ SEC ~!lL-.-_ MIN (ci) COMPUTER MAX (ci) PERIPHERAL DEVICE 0.2 ~ SEC MIN ~ PERIPHERAL DEVICE NOTE: THE ADDRESS BITS WILL BE ON THE CHANNEL A MINIMUM OF 0.1 ~SEC BEFORE AND AFTER THE READ OR ~RITE SIGNAL. Figure 4-9. 89633300 A A/Q Channel Timing 4-49 Vee OUTPUT LINE I 204 ~ 1 1 180 Vee INPUT LINE 1 146 I 180 ~--'---~----~I~--~1L~2=~~r-- I Vee I I I I "'I- I 204 .... r :·,80 I I I BI-DIRECTIONAL LINE 146 I I COMPUTER NOTE: I I I I I I I I I BACKPLANe:' CONNECTIONS .A I • 204 I PERIPHERAL CONTROLLER ~ 146 can be replaced by any TTL logic circuit gate providing that the line is loaded by only one load unit. Figure 4-10. 4-50 1.. 146, I I I .A I i I 1 A/Q Channel Input/Output Lines 89633300 A INTERRUPTS There are 15 external interrupt positions provided, each brought out on an individual backplane pin. These are used to interrupt the computer program on specified conditions arising in the peripheral devices. The computer program determines the interrupt priorities, that is, the order in which the interrupt requests are ~ealt with in the cQmputer. The program acts th-rough the computer mask (M) register. Should two interrupts occur simultaneously, the hard-wired order of interrupts will- determine priorities (refer to table 4-5). Interrupt Access The 15 external interrupts are accessible on the backplane pins of the main enclosure. A single wire (part number 89724702) is required to connect an interrupt source to the appropriate interrupt level. I Table 4-5 1 ists the pin assignments for the interrupt levels. Interrupt signals are active low. See section 3 for the installation procedure of the interrupt cable. For the interrupt connections for controllers installed in the BT148 expansion enclosure, refer to Hardware Maintenance Manual publication number I 89758600 of the AT310 TTL A/Q-DSA Bus Expander. 89633300 F 4-51 TABLE 4-5. INTERRUPT ACCESS PIN ASSIGNMENT ABI07lABI08 Card Slot Line Pin o 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 PI Bl 0 PIA07 P1B07 PIA05 PIA06 PIB06 PI B05 PIAIO PIBIO PIA07 PI B07 PlA05 PIA06 PI B06 . PIB05 NOTE: Interrupt priority levels are in reverse order of interrupt line numbers. _._-_ _- ........ '---_ 4-52 .. ------------" 89633300 F Timing Considerations for Two Bank Operation The computer can have one or two memory banks (see paragraphs on Memory System in this section), each with a maximum of 32K words. The two banks work independently. Any memory request using an address of 7FFF16 or less will access the lower bank. Any memory request using an address of 8000 16 or above will access the upper bank. logic. The two banks have identical control Each bank can perform three types of memory cycles: refresh cycle, DSA cycle or CPU cycle. The DSA has priority over the CPU and refresh cycles have priority over the other two. DSA and CPU cycles are initiated by external signals while refresh cycles are initiated by internal timing logic. If the CPU accesses one bank, the DSA can simultaneously access the other bank. In this case, the CPU and DSA can work at maximum speed subject to refresh cycle requirements. If the CPU and DSA access the same bank, then memory cycles are shared between them. If the CPU requests a memory access while a DSA cycle is in progress, it must wait until the DSA cycle is finished. If a refresh cycle is pending when the DSA cycle ends, the CPU must also wait for that refresh cycle to be completed. Similarly, if the DSA requests access while a CPU cycle is in progress, it must wait until the CPU cycle is finished. If a refresh cycle is pending when the CPU cycle ends, the DSA must also wait for that refresh cycle to be completed. 89633300 A 4-53 Successive DSA cycles: if a DSA cycle is followed by another one within the maximum delay specified after the start of RESUME (see Figure 4-8, note 2) and the CPU is waiting to reference the memory, then the second DSA request will be taken and the CPU forced to wait. This is because the memory system gives the DSA priority over the CPU. Thus the DSA can obtain continuous memory cycles and block CPU memory accesses by sending memory requests at a high enough rate. This does not apply in two bank operation because the CPU can access the upper bank while the DSA sends a request to the lower bank. If the DSA then tries to access the upper bank it has to wait until the CPU access ends. The DSA can unconditionally block all CPU memory accesses with the signal PRIORITY. This allows the DSA to access both banks at maximum speed, except when it has to wait for a refresh cycle. Note that the speed of data transfer is a functton of the computer clock in the Timing circuits. This clock is 1.5 times faster in the AB107 equipment than in the ABl08 allowing proportionally fasterDSA access. 4-54 89633300 A POWER SUPPLY The following paragraphs descdbe the functions and organization of the power supply unit. The power supply unit is part of the main computer enclosure (equipment ABI07/ABI08) and the expansion enclosure (equipment BT148) I Detailed circuit and connection diagrams are given in Section 5 of this manual. ELECTRICAL The power supply receives the main line-voltage through the three-conductor flexible power cord which plugs in the socket at the rear of the enclosure. The AC POWER switch and input fuse are located adjacent to the input socket (Figure 2-1). The power supply unit provides all the operating supplies for the equipment within the enclosure, including the charging and protection circuits for the backup source, Memory Hold Battery, equipment G0611-A. The supplies,with brief characteristic~ are lis ted in Tab Ie. 6-1 . The input ac line specifications are as follows: or Note: 104 - 127 vac, 49 - 60.6 Hz, single phase, up to 600 VA 198 - 264 vac, 49 - 60.6 Hz, single phase, up to 600 VA the equipment is normally suppl ied for nominal Il0V operation. It can be field converted to nominal 220V (refer to Section 3). 89633300 F 4-55/56 I MECHANICAL The power supply unit is mounted on the hinged front door of the computer and expansion enclosures (Figure 3-2). Access to it may be obtained by opening the front door of the enclosure. It is cooled by a blower mounted immediately beneath it (in the door). The power supply may be field calibrated (refer to Section 6). The memory hold battery (equipment GD611-A) when installed, is situated on the inside of the equipment rear cover. The battery fuse is part of the input circuit situated at the rear of the enclosure (Figure 2-1). WARNING The power supply does not use a main isolatin'g 1 ine-transformer at its input; its circuits between the ac line input and the isolating networks are therefore at line voltage. Do not handle the powe r supp I y un i t wh i I e the compu te r 1 i ne co rd is connec ted to the ac supply. GENERAL DESCRIPTION AND BLOCK DIAGRAM The power supply unit is described below, the explanation being based on the simpl ified block diagram of Figure 4-11. More detailed block diagrams follow. Detailed circuit diagrams are given in Section 5. The ac input power is taken to the computer enclosure through the power line cord. This plugs into the ac power socket of the Input Unit mounted at the top rear of the computer enclosure (Figure 2-1,3-5). The Input Unit contains the computer main circuit breaker (AC POWER switch), the input fuse (Fl), the battery fuse (F3) and the line filter. Note that the input unit is not part of the power supply unit. The computer chassis (frame) is connected to the third conductor of the line cord; the conductor must be connected in turn to the ground (refer to Control Data Mini Computer Systems, Site Preparation Manual, publication number 60437000). The logic ground is brought out on a separate pin and should be connected to the logic ground of the installation (refer to Section 3). The equipment is switched on in two stages: first th..: ac line power is applied to the power supply unit of the enclosure by switching ON the AC POWER switch on the rear panel (part of the Input unit); in the second stage the power supply unit is activated by turning on the dc POWER switch on the Programming Console. 89633300 A 4-57 .c:- I \1'1 00 VCC AC to DC ConYerter V~C Regulator .., 10 ., C (I) AC Po .c:I ~ .,z,. + 35v Input Circuit * ~ ) ., (I) V) Chall •• Ground - - ..... 35vac 35vdc auxiliary ..--. AC Line Cord i" Preregulotor ~ 25vdc auxiliary -7ydc Circultl Protection f-4~ ~ -- Vss ..... - - Reference -----Reference Generator "C "C - 4 ~. CI) :I "C Battery Choroer and Battery Crowbor + Sen.. -h from (I) Q. VCC back plane Terminal CD n 7:' Q AI .,AI 10 No t!.: Til t main in IIcoted power flow i. by thick line. \0 '" \AI \AI \AI 0 0 » * Isolating Diode Battery F3 Bottery :I 00 I 1t ~~ f 0 T The Input Circuit i. not part of the Pow.r Supply Front Panel DC POWER }--1 ~ -= VCC2 -5" C -< VBB Regulators -12" overcurrent VCC Logie Ground Fu.e Equipment GD6J1-A (Optional) ~30v Unregulated -SENSE am back plane ground terminal The main source of dc power is the ac-to-dc converter. This provides the main unregulated logic supply of the computer (V cc ) and the internal auxiliary supplies (+35V, +25V, -7V). The circuit uses a high frequency switching regulator to generate Vcc. This circuit serves as preregulator for the other supplies which are derived from the +35V supply through the regulator section. Closely associated with the converter are the overvoltage and overcurrent protection circuits which switch off the whole of the unit, should preset fail conditions be exceeded on anyone of the supplies. One of the auxiliary independent supplies (+25V) provides the voltage for the reference generator of the regulators to aid in operation of the circuits on switching on. On failure of the ac line power the +35V internal supply fails and the backup power source, optional memory hold battery equipment G06ll-A (if installed), suppl ies the regulators througn an isolating diode, connecting it to the +35V line. In this case the computer switches to Low Power Data Retention (LPDR) mode of operation and only the memory power supplies are active. The LPOR operation is described in paragraphs on the operation of the Memory in this section and in Section 5. Note that the front panel DC POWER switch must remain ON during LPDR operation. The battery charge circuit charges the memory hold battery during normal operation of the equipment. The battery is protected by its fuse both against excessive charging current and against overload. The battery fuse is blown also through the battery crowbar (SCR) circuit when an overvoltage is detected on any one of the power supplies used during emergency (LPDR) operation. The front panel dc POWER switch controls the power supply: with the rear panel AC power ON, the DC POWER switch disables the power supply circuits when off and enables them when on. The AC-to-DC Converter and Protection Circuits Figure 4-12 shows the block diagram of the main dc generator circuits with their controls and the power supply protection circuits. 89633300 A 4-59 I ! • r- - f • ~ I + - - -----, ~I--~ I ~I I !I: t I L____ -- _ ____ J i I I I I+ 111-! I~ f • + t r---- --l 1 A---f--=t 11. I II f- ------...J I illli ti~1 I I I I r---- --i I I ;1 I!!I + I I L _______ JI !II Figure 4-12. 4-60 AC-to-DC Converter and Protection Circuits: Block Diagram. 89633300 A A feature of the power supply main power path is that the main isolating transformer works at a frequency of about 20 kHz. Its bulk is therefore drastically reduced compared to the input transformer of a more conventional solution working at 50Hz. The 1 ine rectifier is connected directly to the ac input line and its sl ightly filtered dc output taken through a voltage regulator to a 20kHz inverter. The isolating transformer can handle substantial powers in a small volume because of its high frequency of operation. This frequency allows also high efficiency final filtering with comparatively small components, resulting in a dc output with very small ripple-content. The technique of employing an isolator removed from the direct input makes it necessary to employ small isolators in the control paths. Signal transformers serve in the alternating and interrupted current paths, and an optical coupler is used where the coupling signal is dc (switching regulator curcurrent·sense circuit). The main switching regulator regulates the logic supply (V ). Its control cc reference voltage from the reference generator to circuit compares the V cc the V voltage sensed at the computer circuits. The regulator therefore comcc pensates both for input and for load changes on the V I ine. As this carries cc typically 35 amperes, the load regulating feature with remote sensing is particularly important. The remote sensing points (+ SENSE, - SENSE) are at the backplane of the enclosure. The switching regulator serves as a preregulator for the +35V and -7V internal dc suppl ies, though load changes on the V supply will show as regulation cc noise on these. As they feed the final regulators, this noise does not appear on the power supplies, except the +30V unregulated supply. An auxi I iary supply (+25V) is generated by a conventional I ine transformer and rectifier filter directly from the ac line input. This supply is used in the reference generator and the regulators which get their supply from the +35V I ine: when the ac I ine is appl ied to the computer (Ae POWER switch on the rear of instrument) this connection allows the regulators to stabi] ize before the front panel dc POWER switch enables the circuits in the main power path. The auxil iary supply is protected by a separate fuse (F2: 100mA). 89633300 F 4-61 I The Low Power Data Retention (LPDR) mode of operation is initiated when the main logic supply (Vee) fails, due to anyone of several conditions (see Protection circuits below). The failure of the V supply is sensed in the cc . Power Failure Detector by the absence of the switching signal to the V cc switching regulator while the front panel de POWER switch is ON. During LPDR operation, only the circuits are supplied which are needed to retain the content of the memory within the enclosure, provided the power back-up source (memory hold battery, equipment GD6ll-A) is installed (refer to paragraphs on memory operation in this section). To avoid hunting on momentary recovery of the ac supply, the power recovery delay allows the computer to return to normal operation only when the ac supply has been established for some seconds. Note that the power fail detector is actuated also by failure of the switching regulator control circuit: when the duty cycle of the switching regulator tends to 100% (continuous current) the power fail detector initiates an LPDR signal. Protection Circuits The power supply is protected against both overvoltage and excess current. Over-current occurrring on anyone of the supplies, the whole power supply shuts down. When an overcurrent condition occurs in the main power path, the main voltage regulator (switching regulator for V ) is shut down. This is cc done by stopping its switching signal through the overcurrent protection circuits. Should the overcurrent condition last for more than one second, the overcurrent latch reduces the voltage of the switching regulator and so activates the power fail circuit. The overcurrent latch is set also if any of the circuits in the regulator section detect an overcurrent condition. In this case, the LPDR mode of operation is initiated. If the overcurrent protection circuit fails to shut down the main power path, the crowbar drive is activated directly through its isolating transformer and so fires the SCR of the main crowbar circuit. This in turn blows the main fuse (Fl). Each of the supply voltages is connected to the overvoltage detector. Should a preset volta~e be exceeded on anyone of the supplies, the detector actuates the crowbar circuits, which in turn blow both the main fuse (Fl) and the battery fuse (F3). 4-62 89633300 F Regulators and Control Circuits The computer supplies, other than the main logic supply (V), have individual cc control and regulator circuits. Table 4-6 summarizes these. TABLE 4-6. Supply Designation SUMMARY OF REGULATED POWER SUPPLY CIRCUITS Type of Regulator Overcurrent Detector Supply from Vcc2 swi tch i ng yes +35V dc VSS switching yes +35V dc VBB series no +35V dc -12V series no 35V ac - 5V seri es yes -7V dc +30V none yes +35V dc Figure 4-13 is a block diagram showing these circuits. I All regulators receive their reference voltage from the reference generator, except the VSS supply,whose reference is a tap of a potentiometer divider on the VBB supply. The reason for this arrangement is that the memory unit bias and supply voltages must be applied together and at a definite differential between them.to avoid possible overheating of the unit. Note that the +30V supply has no regulator but relies on the regulation from the V regulator acting on the +35V internal supply. cc The reference generator uses the sense line (the remote computer logic ground, -SENSE) as its reference ground, thus compensating for current in the ground circuit between the power supply and the computer. The reference generator is actuated as soon as the AC power switch on the rear panel is switched on. It is thus stabilized whenever power is applied to the computer and is ready for operation as soon as the front panel dc POWER switch is thrown ON. 89633300 F 4-63 ,f:I 35vClc 0'\ ,f:- -- + 3!5v Line (+30 V ) "- AuxlllClry+25v Front Ponel DC Power Reference aenerator t--+ To VCC Regulator 4 .. -- - Sen •• .. .. Switching Regulator (VCCZ) -.. Switching Regulator (VBB ) L ----- ~ g ~ Auxiliary -7vdo - Serl •• Regulator (-5v) Vaa ~ .~ f' ~ Switching Regulator (VSS) VC02 ~ V SS Ref.renCI ~ --llv -'" Computer Logic Ground & 30v ~ Series Regulator (-IZv ) ~- -- 1 -+ Overcurrent Detector - Vas ~ - -Iy ~ • re C~".~ Lt,,'. Circuit Figure4-l3. Power Supply Regulator and Control Circuits: Block Diagram (see also page 5-448) The Switching Regulator Figure 4-14 illustrates the basic principles of the voltage conversion circuit which is at the heart of the switching regulator. Transistor Ql is a switching transistor in the main load path. It is switched on and off by a pulse waveform generated in the switching network. The voltage and current waveforms are shown in part b of Figure 4-14. This voltage is smoothed by the LC filter to give dc output with very little ripple. Diode 01 is a catching diode to complete the inductor circuit when the transistor h. off. The output voltage of this circuit is thus the average of the switched waveform VO: t V out = v.In~ T and it is substantially independent of the load current. The dissipation in the transistor is determined by the difference in input and output voltages and the load current~,·as in a series regulator. but is reduced by the duty cycle factor (to/toff ) compared with the conventional series regulator. The output voltage can be changed for· a particular input by varying the duty cycle of the swi tched \ i To determine which memory bank the CPU or DSA is addressing. SIGNAL SOURCE/ CONNECTOR PIN SIGNAL ffi P2AOl P2A05 CRI CAA 15 32KW P1B26 PIA25 P2A06 CRQ. ICA P2A09 P2A08 SA15 I NAME OF SIGNAL I 1::1 LOCATI ON .. .SQUARE .~HEET DSA address Line 15 More than 32K of memory are ava i 1ab 1e CPU Index address OOFF CPU address line ALU15 32KW Swi tch on Ma inframe front panel. I I 6 6 C-3 B-3 6 C-3 6 B-3 6 6 0-3 0-3 6 C-l B-1 C-l C-l Ouq~uts: IC0 ICfI IS0 TSJ P2B03 P2A02 P2A04 P2B04 II I I Lower-bank Lower-bank Lower-bank Lower-bank CPU CPU DSA DSA address address address address correct incorrect correct incorrect 6 6 6 Description of Operation The outputs of this circuit are connected via the back-plane of the computer enclosure to the appropriate CPU and DSA address function. The circuit decodes the CPU and DSA address information to determine if the memory bank is correctly addressed. 89633300 A 5-129 MEMORY CONTROL Signa 1 Funct ions SIGNAL (Drawing number 89619100, sheet 6, cont'd). SIGNAL SOURCE/ CONNECTOR PIN FUNCTION LOCATION SHEET SQUARE IC' u66/6 Lower-bank CPU address correct 6 If any of u66/6 inputs are Low" ' the CPU requests access to the lower memory bank. Otherwl se the memory reques~ access to the upper memory bank. Cl iCJ U6/8 Lower-bank CPU address incorrect ., The inverse of IC". 6 Cl IS' u63/3 Lower-bank DSA address correct. If any of U63/3 inputs are Low, the DSA requests access to the lower memory bank. Otherwise the memory requests access to the upper memory bank. 6 Cl IS' U62/10 Lower-bank CPU address 6 i nco rrec t. The inverse of IS'. ' Cl Interconnections: The Bank address is connected to the Access Selector via the back-plane wiring as follows: Lower-memory bank: IC' TCJ I Sri IS' ---- ICA ICA ISA NOT CONNECTED Upper-memory bank: I Cf} Ttl I Sf} TSJ 5-130 m ICA NOT CONNECTED ISA 89633300 A . 00 \0 I~ <7' 1 4 AI' \Ill \Ill \Ill o o I IS 14 ~ HI ) vce RGTR 168 Ulill II CO 181=-2 O r o - ZI R24 470 --- PIAlli ...---!! Ifp-- MUT9 PII15 2~ti ~ ut8 9--10 - :~ vee ~ I I D,UT 10> PIAII .• I vee =~~ MUTI5)-'- ~ '. f- a OIUT 14 4 5 , >-- I PI824 I "I' 470 ~~ PIA21 ~ ~ _ , ~ ~ 41 ~ ..... V1 I ......... ''0 I 4 AL 12 UlS ~ - 0.- 5 K ~. '~ro "~, 5 L!2t. I >_!!~ DIUTI RI5 AT 4.lI 470 vee E D'UT2 PII04 RI9 470 F vee II PIAU U30 II-- III 3 ..... ~ I ~ l-- ~ tJJ @-=! __ • I • -.. 1\ PIIU e!!- 0'UT4> PlI07 _, PII12 PIAZO PlAit ,"5014 , HI "SOIll -, ". ,IIX.II _ '" 2 4 ~II iPEc IIX411 II PZIIID ,DF~ ~OELE" ".. D'UTI d I I T 6 IoIxaL PlBllI "IoIX7L - • P7_ -'PEL ...... 0 Ji:ePE a DETAILED LOGIC DIAGRAM MEMORY CONTROL COO[ IDENT IC cw(; NO 89619100 ,HUT -.- - 5 I I~V MEMORY CONTROL (Drawing number 89619100, sheet 5,. cont'd.) MX17 [P1A26] This signal is connected to CXO and 017 from the Memory Address card (P1B27). sends the status of the protect bit to the CPU on read and write cycles. CPB signal is active, MX17 will be low. be high. It If the If the SPB signal is active, MX17 will If the CPB and SPB signals are inactive, and the memory location is unprotected, MX17 will be low. If the CPB and SPB signals are inactive, and the memory location is protected, MX17 will be high. For MX17 truth table see table at end of this part. CVIOI [(U P1A28] This signal is connected to CXO and Protect Fault. When a protect fault occurs during a CPU cycle, this signal is low, otherwise it is high. The signal is high during a read cycle because protect fault only occurs on write cycles. SXO [U20/7] This signal is active high for 5 clocks of a OSA cycle, beginning at clock 8. SXRO [U21/6, 8] This signal is active high for 5 clocks of a OSA read cycle only, beginning at clock 8. 5000-5015 (H) These signals are connected to SXRO and the data out latches after O~UT lines. They transmit stored-buffered memory data to the OSA on read cycles only. The true state of this data is active high. Data to the OSA is transmitted by powerful open collector 2-input NAND buffers. Pull-up resistors are located on the OSA lines. by one of two signals, SXO or SXRO. These NAND gates are opened All data to the OSA lasts for 4 clocks beginning at clock 9. 5016 (odd) [P2A21] This signal indicates the parity of data read from or written into memory of the OSA lines. 89633300 A It is connected to SXO and a parity selector UI4/6. 5-125 MEMORY CONTROL (Drawing number 89619100, sheet 5, conti d.) 5016 is active such that the sum of the data on 5000-5017 (18 bits) will be odd. During a read cycle, 5016 is determined by the parity register U15/8. During a write cycle, 5016 is determined by 016 P2B06 from the Memory Address card. 5017 [ell P2A18] This signal indicates the status of the protect bit during a OSA read or write cycle. It is connected to SXO and the protect register U1S/6. If the location in memory is protected, 5017 is low, otherwise 5017 is high. SVlft [ell P2B24] This signal is connected to SXO and the Protect Fault. When a Protect Fault occurs during a OSA cycle, this signal is low, otherwise it is high. This signal is high during a read cycle because protect fault can only occur during write cycles. TRUTH TABLE FOR MX17 CPB SPB lOCATION PROTECTED MX17 H X l X H X X l H l H l NOTES: 5-126 L L H = High, L = Low, l H X = irrelevant. 89633300 A MEMORY CONTROL (Drawing number 89619100. sheet 3, S. cont'd). Parity error is indicated by the data registers and parity checker circuit. Because the D0UT 1 ines are stable on clock 8, and because D~UT may change after clock 8 on a write cycle, the data must be stored on clock 8. Between clocks 6 - 8 the data latches U33. U34 are opened. The first 16 bits of data pass through these latches during this time. and enter the parity checker. The parity checker for the first 16 bits (U16, USI. U32) is relatively slow (100 nsec). It requires stable data to be present before clock 8 and to continue until clock 10 in order to allow the parity checker to be stable by clock 10. Bit 16, (D0UT16), the Parity bit, and bit 17 (D0UT17), the Protect bit, are stored in D-fl ip-flops (U1S) on clock 8. The outputs from UIS/8, 9 and UIS/S, 6 do not have to stabil ize until after clock 8 because the parity checker is relatively fast (SO nsec) for these two bits. The parity checker is designed so that if the binary sum of 00UTOOtD0UT17 is even. the parity checker output U32/8 will be high indicating a parity error. Otherwise U32/8 will be low (i .e. parity error did not occur). The 00UT 1 ines come from the open collector sense ampl ifier outputs on the memory modules. MC assembly. The pull-up resistors are located on the 00UT 1 ines in the Only one of the possible eight memory modules sense-amplifier outputs can be active, as determined by the module selector MOX and the signal STR~BE. Protect Fault [(H) U28/6] - refer to sheet 3 Protect fault [condition 1] occurs when an unprotected instruction (u28/S) attempts to write ~28/3) u28/6 is active high. to deactivate u28/4. into a protected location (u28/4). Protect fault The protect register is preset (UI5/4 low) on clock 5 This prevents unnecessary spikes between clocks 6 - 8 when the other two inputs are stable and CXO or SXD are stable. prevents unnecessary spikes on 5017, the DSA protect bit. It also Protect fault is val id between clocks 8 - 5 after the protect register is stable. 89633300 A 5-123 MEMORY CONTROL (Drawing number 89619100, sheet 5, cont'd). Note that the memory system recognizes protect fault condition 1 only. Conditions 2 and 3 are conditions within the CPU and are not related to the memory or DSA operations. Both the parity fl ip-flop clock (U15/11) and the protect fl ip-flop clock U15/3) are positive edge triggered on clock 8. Data to the CPU (MX) and to the DSA bus (SO) is transmitted by high speed open collector 2-input NAND gates. Pull-up resistors for these signals are located in the CPU. These NAND gates are opened by the signals, CXD (CPU) or CSRD (DSA). All data to the CPU is val id at clock 9. CXD (U31/6,8) CXRD [UI3/6,8] - signal origin: sheet 4. These signals are active high between clocks 6-10 for CPU cycles only. They are to gate the memory data for CPU cycles. MXOO-MX15 (H) These signals are derived from the D0UT 1 ines gated by CXRD. They transmit buffered memory data to the CPU during read cycles. The true state of this data is active high. DElE0 [ell P2B20] This signal is sent to the CPU on a read cycle only. MXOOtMX07 are all at logic low. The signal is low when DFE0 [(l) P1B20] This signal is sent to the CPU on a read cycle only. The signal is low when MX12-MX15 are all logic low. MPRY [P1A27] This signal is PAR (P1B28) from the Memory Address assembly gated by CXD. It Is a special parity bit to the CPU on write cycles (bit 16). If the sum of the 16-bit data sent from the CPU to the memory is even, MPRY is low. Otherwise it is high. Information on MPRY during CPU read cycles is meaningless and is not used by the CPU. 5-124 89633300 A MEMORY CONTROL MEMORY CONTROL DATA OUTPUT LINES (Drawing number 89619100, sheet 5) Funct ion: To transmit data to the CPU and to the OSA SIGNAL E B CMOR clock 6 G"PE'C ,SIGNAL SOURCEI ICONNECTOR PIN [Ull. 7] LOCATION SHEET SQUARE Clock signals [U10/7] P2B02 E·B 4 Par i ty 5 5 3 4 4 [u63/11 ] I P2B23 I I 016 017 PAR ! CX RX F clock 7 OOUTOO+00UT17 I P2B06 P1B27 P1B28 I [U7/8] I [U45/6] B-1 ! 0-2 A-3 B-1 0-41 0-4 I [U24/6] End of cycle (clock signal) [U28/2] 18 locat ions Memory data output I i , Outputs ! 1 CCP'E m CPEC OELE0 OFEO MPRY MX17 CV101 I I I I , 89633300 A P2A1O P2B26 P1A31 P2B20 P2B19 P1A27 P1A26 P1A28 , CPU cyclic parity error General parity error ; i MXOO·MX01·MX02 ••••• MX07 MX12·MX13oMX14·MX15 = 0 Parity information to CPU Protect bit status to'CPU Protect fault =0 , i 5 5 5 5 5 4 4 4 A-l! I I A-l/ A-31 I A- 4 1 A-4,, I 0-3j 0- 3 1 A-3 i I I I 5-121 MEMORY CONTROL Outputs (cont'd) (Drawing number 89619100, sheet 5, cont'd). SIGNAL ICONNECTOR SIGNAL SOURCEI PIN SD16 SD17 SVlfl MXOO-MX15 SDOO-SD15 P2A21 P2A18 P2B24 16 locations 16 locations FUNCTION Par i ty bit for DSA data Protect bit for DSA data Protect fault on DSA cycle Data to CPU Data to DSA on read cycles LOCATION ! SHEET SQUAREI 4 4 4 D-2 I D-21 D-2 I ! Ci rcu it Descript ion All the Data lines are open collector. Corresponding bits are connected to the same bus line for multi-bank operation. Parity Error Checking is performed on CPU and DSA read and write cycles. If a parity error is detected, it is an indication that the memory is not working correctly. Parity error is detected when the summation of DI/JUTOO-DOUT17 (data out bits 00-17) is not an odd number. There are two types of indicators for parity error detection. 1. PEL [P2B26] General parity error: a parity error was detected. The J - K register (U48) continues to be active until U48/3 is cleared by the CPU signal GPEC(P2B23). The J input, u48/4 will detect a parity error, excluding the refresh cycle (RX U30/9 is not low) if U32/8 is high at clock 10. The clock (u44/l) is negative edge triggered at clock 10 by the F-register (U45)· 2. 5-122 CCPE [P2A10] CPU Cyclic Parity Error: a parity error was detected on the last CPU cycle. The J - K register (u48) continues to be active until CPEC(P1A31) (a multibank output) clears u48/8 on clock 7 on the next CPU cycle. The J input, u48/9 will detect a parity error only on a CPU cycle (CX U30/12 is high if U32/8 is high at clock 10. The clock (u48/1) is negative edge triggered at clock 10 by the F-reglster output. 89633300 A 00 \.0 0'. W W W .... ." o o 204_~ 5 , In",. <5DI7 o J:- s{N) , ......& '~I s.'.' • P2AOT 6 J V1 I \.0 "N o D'UTlT~ '~I DETAILED LOGIC DIAGRAM MEMORY CONTROL MEMORY CONTROL (Drawing number 89619100, sheet 3, cont'd). R/WREG [(H) u44/8] This register provides timing to the Read/Write (R/W) signal in memory. It also determines if the R/W signal should be activated. This register is negative edge tirggered and is connected to the 0SC (u44/13). It is activated on clock 8 (u44/8 goes high) only if one or both of the AND-OR K inputs is active on clock 7. only on clock 7. U44/10, 11 is active If the instruction from the PROTECTREG is protected (u44/9 high), or if the protect bit from the memory location addressed was inactive (u44/12 high), then u44/8 can activate on clock 8. Thus, a write cycle will not occur if the location in memory is protected and the instruction is unprotected. The only other condition necessary for the R/WREG to activate is that the WRITEREG (U44/5) indicate that the memory cycle is a write cycle. If the memory cycle is a read cycle, the R/WREG is preset, (u44/5 is active low) and u44/8 will remain low on clock 8. If the R/WREG activated on clock 8, it will deactivate on clock 11 after 0 (u44/3, 4) activates the J input between clock 10 - 5. The J and K inputs can never be active simultaneously because of this timing. Read/Write: R/W [ell P2A20] The R/W signal activates the R/W signal within the memory. If activated the R/W signal will go high between clocks 8 - 11 (U59/10 high). The R/W signal cannot activate if the INHIBITREG is active (U59/9 low), or if the system is in lPDR operation (Normal, U59/13 low). DE [(l) U5716] DE activates the data-in 1 ines on the Memory Address assembly. These 1 ines transmit data to the memory on write cycles. It is desirable to activate these lines by clock 8 because these 1 ines may create noise on the data out 1 ines from the memory and interfere with parity checking on a Read/Write cycle. DE goes low on clock 8 when (U57/4) goes high. DE goes 89633300 A high on clock 12 which is approximately 50 nanoseconds after 5-117 MEMORY CONTROL (Drawi"ng number 89619100, sheet 4, cont'd.) register Ewent low as determined by the RC delay on U57/3. The D£ signal needs to be active until after the R/W signal within the memory has completely deactivated. If the WRITEREG register indicates that the memory cycle Is a read cycle (U57/5 Is low), DEwitl not activate. 5-118 89633300 A MEMORY CONTROL (Drawing number 89619100, sheet 3, cont'd). WRITE CONTROL SIGNALS Function The memory system includes a protect system. The primary purpose of this feature is to protect the program in foreground from being destroyed by careless programming, or faulty memory operation. of the write system within the memory. The protect feature is part The read/write and protect status of the memory cycle is determined by multiplexer-selector u64. The following table shows its input and output signals. Input Controls RX SX (Pin 3) (Pin 13) Outputs WRITE cycle I Cycle Selected \ Unprotected Instruction (Pin 2) (Pin 15) PRTM CPU cycle SPl DSA cycle Refresh cycle L L WE L H SWRITE H L Low Low H H irrelevant irrelevant I : --- , Signal Description The following paragraphs describe each signal in detail: the signal name heads each paragraph together with the integrated circuit and pin number where it appears. The letter (H) and (L) indicate whether the signal at the corresponding pin is active High or active Low. WRITEREG[(H) Ul2/5, (L) U12/6] This register is positive edge triggered. On clock 6 it stores both during a read cycle (pin 5 low) and a write cycle (pin 5 high). inverse of pin 5. Pin 6 is the U12/4 (active low) is preset (pin 5 goes high) on clock 4. This is to prevent unnecessary spikes on the data out 1 ines to the DSA and CPU 1 ines. 89633300 A 5-115 MEMORY CONTROL (Drawing number 89619100, sheet 4, cont'd.) PROTECTREG (H) U29/8, (L) U29/9 This registe~ is positive-edge triggered. On clock 6 it stores whether the cycle is a protected instruction (U29/8 high) or an unprotected instruction (U29/8 low). P9 is the inverse of pin 8. U29/13 (active low) is cleared (p8 goes high) when the PRTSW (Prote.ct Switch, P2BOl)- is low. In this case (protect switch low) all instructions appear as protected within the memory system. The protect switch is situated on the programmer's console (front panel) INHIBITREG [(L) U29/5] This register is positive edge triggered. On clock 6 it stores provided either one of two conditions occurred: The first condition is that a parity error occurred on either memory bank while the instruction was unprotected. The second condition is that during a CPU cycle a parity error occurred in the selected memory location and that the SPB or CPB (Set or Clear Protect Bit) is activated on this memory cycle. The two conditions may be summed up: when an attempt is made to execute CPB or SPB instructions when a parity error exists in the selected memory location. The procedure for recognizing condition 2 works because before CPB or SPB, the program must read from the location in memory, and immediately afterward perform the CPB or SPB in that same location. If the INHIBITREG register recognizes either condition 1 or condition 2 or both conditions, U29/5 will go low. Otherwise U29/5 is high. U29/4 (active low) is preset (U29/5 goes high when the PRTSW (Protect Switch, P280l) Is low]. When the protect switch is low, the protect feature of the system appears to be disabled. 5-116 89633300 A MEMORY CONTROL 3) (Orawing number 89619100, sheet 4,6, cont'd). The memory system is processing the CPU request, but has not yet reached clock O. The combination of the following conditions define this: the memory Is processing a CPU cycle between clock 6-11 (U60/10) , and has not yet passed clock 8 because register B (u60/9( is active. Two memory systems are used in systems having more than 32K word memories. A second signal (G_M2: P2B07) is employed in the expansion memory system; it is basically identical to GIJMl in its function. Further explanation of the CPU memory request system. Schottky TTL circuits are employed in this system because timings must remain synchronized with the oscillator. The CPU transmits the CPU request signal CRQ between its clock 2-5 of pass 1 only. Also, the signal G_Ml must be high for one clock at the end of a CPU pass, which is why GIJMl is released before memory system clocks 3 and 9. The timing relationships are shown below. __ CPU PASS CPU PASS 2 -f I i CPU Clock 0 Memory Clock 0 CRQ e'MI 89633300 A 1 0 2 0 I I 3 4 2 5 3 I 6 4 7 5 8 6 I 9 7 9 0 8 9 I 2 10 3 11 I I H L H L 5-113 MEMORY CONTROL (Drawing number 89619100, sheet 4,6, cont'd). Basic Control signals to the DSA SRSM (L) P2Bl8 The SRSM synchronizes the DSA with the memory. Because the DSA is an asynchronous device, the SRSM does not have to be a fast signal. The SRSM appears at an open collector gate, and can be used as a wired-OR function. In multibank memory operation the SRSM of both lower and upper banks are connected together. This is an active low signal; normally the line will be high. When one of the memory systems wants to activate the SRSM line, it merely activates its own SRSM signal. The entire SRSM is then forced low until this same bank deactivates its SRSM signal. When SRSM is high, at the beginning of a DSA cycle, it informs the DSA device that the memory has not accepted the DSA address, and that the DSA should continue to transmit the address. When SRSM falls, it informs the DSA device that it has accepted the DSA request and address. The DSA should immediately clear the DSA request and address lines, and it can send a new DSA request and address if desired. Further, for a DSA write-into-memory cycle, the low SRSM signal informs the DSA that the memory has not yet accepted data, and that the DSA should continue transmitting data to the memory. Also, for a DSA read-from memory cycle, the rising edge of the SRSM signals informs the DSA device that data from the memory is now valid. The SRSM is low between DSA cycle clocks 3-11. Refer to DSA Timing Specification in Section 4 and the Input/Output Specification Manual. 5-114 89633300 A MEMORY CONTROL cxp (L) (Drawing number 89619100, sheet 4,6, cont'd.) (P2B16) sxp (l) (P2All) HelD (H) (P2B14) These three signals provide initiate and hold signals for the selector/latches on the memory address assembly. Before a memory cycle begins, HelD is High to hold the old memory address. SXP and CXP are also high. When the ex access selector activate at clock 1; CXP goes low, which allows a new AlU address into the MA address selectors. The CXP signal is also fed into U23/10, so U23/8 goes high and HelD (U42/8) goes low. This overlap of exp and HelD is important, because it allows the outputs of the MA address selector/latches to change only once. On clock 2.5 the signal AP5 (U58/4,5) goes low and HelD goes high. This holds the address in the MA address selector/latches. The HelD signal and AP5 are fed into a NAND gate whose output (U23/11) causes CXP to go high. This overlap of HelD and CXP prevents the HA address selector/latch from changing during this transient period. In other words, exp and HelD behave like the Q and Q of an R-S fl ip-flop; except HelD is Q inverted. For a DSA cycle, SXP behaves like the CXP signal during the CPU cycle. the DSA cycle, exp always remains high. HelDW (H) During (P2A24) The HA address selector/latches for the kiloword decoder do not have the same This decoder can have transients requirements as the other address bits. when the Disable signal is inactive between clocks - 1.5. However, it is desirable to have the kiloword decoders completely decoded before the Disable signal activates at clock 1.5. For this reason, a special hold signal called HelDW is used for the MA kiloword decoder. It is the signal AP5 inverted, and is active high between clocks 2.5 - 11. No time is wasted in the kiloword decoder when exp goes low at clock 1 because H~LDW is already low on clock 1. 89633300 A 5-111 MEMORY CONYROL (Drawing number 89619100, sheet 4,6, cont'd). Basic control signals to the CPU GeM 1 (H) P2B09 The CPU and memory are both synchronous devices using the same oscillator. However, the memory system is not always ready for the CPU because it may be performing DSA or Refresh cycles. When this happens, it is important to stop the CPU. The CPU is a two pass machine. During pass 1 the ALU caloulates address information and holds this information at the end of pass 1. During pass 2 the ALU calculates or receives data information and holds or accepts this information at the end of pass 2. Both ALU passes are 5 clocks long; therefore pass 1 and pass 2 together take 10 clocks. This causes a discrepancy, because the CPU memory cycle is 11 clocks long. When the CPU is performing a memory request, it must be stopped for one clock so that both the CPU and CPU memory cycle will have the same number of clocks, namely 11. The CPU is stopped by the memory system with the signal G0Ml. If this signal is low at the end of CPU memory request pass 1 or pass 2, it will stop at the end of that pass. Further, the memory system requires address information between CPU memory cycle clocks 1-3 and data information between clocks 3-9. conditions for lowering the G0Ml signal can now be defined. 1) The memory system is busy with a DSA or Refresh cycle. the following three conditions define this: The three The combination of if the memory is not processing a CPU cycle (ex: u60/5), the CPU requested memory access (CRQ: U60/6), the address is in this memory bank (ICA: U60/4). 2) The memory system is processing the CPU request, but has not yet reached clock 3. The combination of the following conditions define this: the CPU requested memory CRQ (U60/1) for this memory bank leA (U60/11, 12), the memory cycle has not passed clock 2 because register A (U60/13) is active. 5-112 89633300 A (Drawin~ MEMORY CONTROL DISABLE number 89619100, sheet 4,6, cont'd.) P2B10 (l) Disable activates (low) when IPS (u41Pl0) ~oes high at clock 1.5. Disable deactivates when F (U41P12) goes low. One clock after F goes low, BUSY (U41P9) goes low. Then F goes high. When the next access selector activates, BUSY goes high. If leADRA (U41PI3) is low, Disable is inactive. leADRA is used for lPDR operation. CE (l) P2B27 This signal falls at clock 4 when register C falls, and rises when register rises. REF (l) E P2A07 This is a 2-2 AND-OR gate. REF is low during refresh cycles because U61Pl,13 is connected to RX. REF is low for DSA and CPU cycle until clock 3 when register B (U61P10) falls, and REF remains high until clock 11 when register E (u61P9) rises. STROBE (l) P2Al2 This signal is the inverse for register D. Because Disable and CE are critical timing signals going to eight memory modules, they employ extra powerful buffers to be less noise susceptible. STReBE is extra powerful because each of eight memory modules uses 2.5 TTL logged units from this signal. 89633300 A 5-109 MEMORY CONTROL (Drawing number 89619100, sheet 4,6 cont'd). Basic Control signals during refresh cycles. SXA (l) P2B08 This active low signal informs the Memory Address (MA) assembly that a OSA cycle is being processed. Pl6 (l) It is the inverse of SX, active between clocks 1-11. P2A17 Active low signal opens the 16 bit parity latch on the MA assembly; activates at clock 7 when A (U23/2) rises until clock 9 when C (U23/1) falls. B (l) P2B12 Active low signal clocks the protect bit (bit 17) register on the MA assembly. Activates at clock 7.5 when 0SC rises. Deactivates at clock 8 when 0SC falls. B cannot activate during other time intervals. CHOR (l) P2B02 M1 Active low signal provides timing to the CPU data in memory latch. CHOR activates at clock 4 when E (U63/5) goes high and activates at clock 8 when B (U63/4) goes low. 5-110 89633300 A MEMORY CONTROL (Drawing number 89619100, sheet 4,6, cont'd.) Introduction The Control unit processes a collection of control signals and can be divided into two parts: 1. Basic Control Signals Control signals necessary for all types of memory cycles, i.e., read or write cycles in protected or unprotected locati ons. 2. Write Control Signals Control signals for write memory cycles used with the protect system. For timing signals refer to Memory Control Timing (sheet 4). Note: BASIC CONTROL SIGNALS DISABLE (L) P2B10 The falling edge of this signal activates the precharge signal in the memory. The falling edge starts at clock 1.5, giving the memory system half a clock period to select one of four kilowords on each memory card. As each kiloword has its own control signals (precharge, cenable, R/W) only one kiloword will be activated. Since the precharge signal consumes most of the memory power delaying the disable until clock 1.5 conserve~ power consumption without imposing critical set-up or hold time restrictions on other memory signals. The rising edge of the disable signal deactivates the cenable (cell enable signal) in the memory. This occurs at clock 10 for DSA and CPU cycles, and clock 8 for Refresh cycles. 89633300 A 5-107 MEMORY CONTROL CE (L) (Drawing number 89619100, sheet 4,6, cont'd.) P2B27 (Cenable) The falling edge of this signal at clock 4 activates the cenable signal in the memory. Also, within the memory, the canable signal forces the precharge signal to deactivate. The crossover of the cenable-active precharge-inactive is performed on the memory card (rather than the memory control card) because of critical overlap times required by some memory chip manufacturers. The CE signal deactivates at clock II for DSA and CPU cycles, and clock 9 for Refresh cycles. It is important to have the CE signal deactivate one clock after the Disable signal deactivates. If the CE ~ignal deactivates earlier, the precharge signal may reactivate at the end of a memory cycle. REF (L) P2A07 The REF signal blocks the module selector (MDX#) within the memory card. During Refresh cycles the REF signal is always activate low because a Refresh cycle must refresh all of the memory modules. During DSA and CPU cycles, this is low during clock 1 to 3 because the module selector decoding is slow The REF signal goes high between clock 3-11. and not stable during this time. For all unselected memory modules during this time, the precharge signal deactivates one clock before the Cenable signal, and the cenable with the memory card never activates. Only in the one memory module selected by the module selector does the precharge-cenable sequence continue. STR0BE (L) P2Al2 This signal is active low between clocks 5-10 for DSA and CPU cycles, and clock 5-9 for Refresh cycles. It enables the data out sense amplifiers within the memory card. It also deactivates the Read/Write (R/W) signal (see R/W signal later in this section) slightly faster than the cenable signal, helping meet an end of cenable - end of R/W specification for the memory chip of some manufacturers. This signal performs no useful function during refresh cycles. 5-108 89633300 A MEMORY CONTROL (Drawing number 89619100, sheet 3,4,6). MEMORY CONTROL BASIC CONTROL SIGNALS Function: To provide all control signals to the memory, memory address, CPU and OSA devices. Note: The following signal I ists include a number of signals not directly connected to the circuits described here. Inputs SIGNAL !SIGNAl SOURCE/, ICONNECTOR PIN: PRTSW PRTM P2BOI I FUNCTION , , PI B30 LOCATION SHEET SQUARE 3 A-I 3 0-2 3 C-2 j SPI PI B29 WE P1A30 I Ii 3 0-2 SWRITE P1B31 ! 3 C-2 6 0-3 6 0-3 3 A-2 IIISCA U38/6 CRQ P2A09 ICA PBC 89633300 A I I , II i I I I Oscillator buffered CPU cycle Request I P2A08 P2A22 I ! 5-105 MEMORY CONTROL (Drawing number 89619100, sheet 3~4,6,(cont'd). Outputs SIGNAL . SIGNAL SOURCE, CONNECTOR PIN GriM 1 GfJM2 DISABLE P2B07 6 0-1 6 0-1 I! 6 B1 P2B08 DSA active ('SX) 3 A-2 R/W I, P2A20 Read/Write 3 C-2 CXP I P2B16 CXeSX-HeLD-AP5 3 C-2 ! P2A24 AP5 3 C-2 3 B-2 3 C-2 4 B-1 4 B-1 4 C-I 4 A-I 4 D-4 i H"LDW HrlLD SXP S'RsM I I I REF CE DE P16 B I STReBE CMDR CVIOI . i I cx] ; P2B14 AP5 [SX + P2A11 SX·HOLD-AP5 ! P2B18 SX.[D + B] DSA Synchronizing signal II P2A07 RX [B + E] ! ,i P2B27 • P2B17 Data-line Enable , i 1 P2AI7 A·C I i P2B12 Second Counter stage 4 B-1 i P2A12 Timed by D (='6) , 4 B-3 P2B02 B'E , 4 B-1 4 A-3 I II I I t t i I I i I I ! i It I CX~B.E LOADRA-f-BUSY .. IP5 I I I ICA·CRQ + P2BI0 ill I P2B09 LOCATION SHEET SQUARE FUNCTIGN -[.'C = C + E, (Cenable) I ! ; ., !, I, i , I : I I ; PIA28 (See sheet 5) I , 5-106 89633300 A (Drawing number 89619100, sheet 4, contld.) MEMORY CONTROL Detailed Circuit Description The BUSY signal clears the five-stage ring-counter (U9, When this signal goes high the counter is free to run. will be the first to toggle because outputs E and the J E UIO, Ull). Flip-flop A (U9/S) are inversely connected to and K terminals of the A flip-flop relative to the other J and K connections. The ripple-through process shifts the toggling along the counter on the appearance of each clock pulse. The counter is clocked by the 0SC signal, the flip-flops being triggered on the negative going edge of the signal. The J input activates the flip-flops, the K input and the Clear input (Busy signal) deactivates them. The K input activates Register F (U4S). During DSA or CPU cycles, this register activates after inputs U4S/11 (f), and U4SP12 (D) are activate. However, during Refresh cycles this register activates two clock cycles after inputs u4S/9 (RX) and U4S/10 (A and B) are active. The J inputs are grounded, so only the Preset input u4S/S (BUSY) can deactivate the Register. to the ~SC The clock U4S/13 is connected and is negative edge-triggered. Half of U9 (U9/7,9) is not part of the ring counter; it generates the timing signal APS. It is activated on the half clock after the J input U9/11 is active. The K. input (U9/12) is grounded, so this register can only be deactivated by the clear input U9/14 (BUSY). This register is negative-edge triggered, but because it is connected to ~SCA it operates between clock cycles. The IPS register consists of two NAND gates wired as on R-S fl ip-flop. inputs U42/1,S are high, the flip-flop holds its state. When Both inputs will never be low at the same time because the BUSY signal is common to both of them but inverted in U42 5. After an access register activates, U42/1 (BUSY) goes high. On the half clock after the access register went high, U42/12 and U42/13 (BUSY) is high. (~SC) goes high, U42/S goes low, activating the IPS flip-flop. At the end of the timing sequence, the BUSY signal (U42/l) goes low, deactivating the fl ip-flop. 89633300 A Since IPS is connected to ~SCA and activates when 0SCA is high, S-lC3 MEMORY CONTROL (Drawing number 89619100, sheets 4,6) the IP5 activates during a half-clock. All the register, A, B, C, D, E, FI AP5 and IP5 are super high speed Schottky TTL devices to meet specifications in the high speed (600 nsec) memory system. Q ~~ o~ ;~ 0 0: 0 >CI) X 0 ;:) ID 0 ..J "Q :z: Go )( 0 I~ I~ lit "Q ~ !e Go .... 0:: 0 0 5-104 89633300 A MEMORY CONTROL (Drawing number 89619100, sheet 4) MEMORY CONTROL TIMING Control Signal Diagram for DSA Cycles Memory Clock SXA I 2 I I ¥ 4 8 6 7 8 9 I I 10 " 2 I 3 ¥ I I I 4 I n I I CXP SXP 3 H L H I I + I ~ :1 I I t t H~LDI H L. H L H SRESUME L Control Signal Diagram for Refresh Cycles I Memory Clock Disable I I Cenable REF 89633300 A 2 3 4 8 6 7 8 9 2 3 4 I H L H L L 5-101 (Drawing number 89619100, sheet 4, cont'd.) MEMORY CONTROL The advantage of the full ring counter is that only one of the five major timing signals (A, B, C, D, or E) can clock a cycle. Any timing sequence can be chosen from this pattern by simply ANDing or ORing one or two timing signals since only one timing signal can change at any time. On clock 10 of DSA and CPU cycles register F (End of cycle) activates. This deactivates the Access Selector one clock later, and the Busy signal will fall, clearing the timing circuit. There are two special purpose timing signals, IPS and APS. Both of these timing signals activate on half clocks (in between usual clock edge triggering) instead of full clocks. Both of them are cleared by the Busy signal. IPS activates between clock I and.2{referred to as clock 1.5). APS activates during clock 2 and 3 (referred to as clock 2.5). . is shorter because data For a Refresh cycle, the timing sequence is shortened two clock cycles. A Refresh cycle is neither read nor written during this cycle, so time need not be allowed for data from the memory to stabilize. The Refresh cycle is shortened by activating register F (End of cycle) on clock 8 instead of clock 10. When the Busy signal falls during the next clock, all· timing signals are cleared. The J input activates the Timing circuit registers. deactivates them. The K input or clear A hazard may arise in the Refresh cycle timing sequence as registers D and E are asynchronously cleared. Any timing function combining registers D and E may have spikes in it. Care was taken not to use function D and E (or their inverses or combinations) in places where spikes might impair the behavior of the system. 5-102 89633300 A MEMORY CONTROL MEMORY CONTROL TIMING Function: (Drawing number 89619100, sheet 4) To provide all timing signals within the memory system. Inputs SIGNAL f}SC ~SCA BUSY RX SIGNAL SOURCE/ CONNECTOR PIN [U56/6,8] [U38/6] [U38/12] [u24/8] NAME OF SIGNAL Clock Oscillator buffered One of access selectors active Refresh cycle selector LOCATI ON SHEET SQUARE 3 3 3 3 04 Cl Cl 03 Outputs A A AP5 AP5 B B [U9/5] [U9/6] [U9/9] [U9/7] [UIO/9] [UIO/7] C [UI0/5] [UIO/6] C 0 0 E E F [Ull/5] [Ull /6] [Ull /9 [UII/7] [U45/8] [U45/6] [u42/6] F IP5 1 Clock phase 1 > } Clock 2.5 } Clock phase 2 1 Clock phase 3 1 Clock phase 4 } Clock phase 5 } End of cycle Clock 1.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 02 02 C2 C2 C2 B2 C2 C2 02 B2 B2 B2 B4 A4 A2 Description of Operation The heart of the memory timing circuit is a five stage ring counter (fl ip-flops contained in U9, UIO, Ull. This gives the main timing signals (A,B,C,D, and E). The counter is cleared by the BUSY signal (active low). The clock cycle is selected by the Access Selector when the BUSY signal goes high. This frees the counter which starts generating ~he clock pulses. The pattern of pulses is shown in the following two figures. 89633300 A 5-99 (Drawing-number 89619100, sheet 4) MEMORY CONTROL MEMORY CONTROL TIMING Memory clock I , 2 6 4 3 a 7 I I 8 , 1O 9 3 2 /I 4 6 I I ~- Disable H L L~ cenabl. H REF L L: STROBE H Pia L H LJ PI7 l H H91LDW L H R/W (Write Cycle Only) l 2 I SXA CXP SXP , I t 4 I 5 I I a I 7 I 8 I 9 I 10 II 2 I I I I 1 I III I I I H9JLDI f 4 I I I I 3 I I I I III I I I I I I 5-100 3 I I , 2.5 2.5 I I t 89633300 A 5 I H L H L H l H l 00 \D 0' \II) \II) \II) o o » &. THE CDC TY PE DESIGNATORS "'OR U 6, U24, U25, U56 AND UII8 VCCR'...... \TI I \D ...... ....... \D 00 (NOT """" ,1'2A1J I '''1 A RE DETAILED LOGIC DIAGRAM MEMORY CONTROL PENDING. MEMORY CONTROL (Drawing number B9619100, sheet 3, conti d.) CX Selector Flip-flop (U7) K inputs to CX activate CX, J inputs deactivate CX K input to CX (U7) This is a 2,2 AND/OR input gate. U7/9,10 are grounded, reducing it functionally to a 2 input AND gate. U7/12: U7/11: Synchronized CPU request. Conditional activate CX if: 1) U5/9, 10 A (Sychronized) Refresh cycle is not requested. or 2) or 3) U5/2,3 a) and b) 4) or a) The (Synchronized) DSA priority or 32KW are not blocking the CX selector. The CPU address is not valid and did not address this memory bank: U5/1: CPU request delayed 2 clock cycles. Sychronized. U5/3: Incorrect CPU address to this memory bank A DSA cycle is not desired: U5/6: DSA request was activate for at least 2 clock cycles to allow time for the DSA address lines to stabilize. Synchronized. and b) U5/4: Correct DSA address to this memory bank. J input to CX F(U7/1,2) End of cycle B9633300 or U7/3,4 and and 1. 2. 3. A Condi t ional The CPU address is valid and it is found that the CPU did not desire usage of this memory bank: uB/l: CRQ2 CPU requests delayed two clock cycles. Synchronized. uBI2 : CRQ CPU reques t . Synch ron i zed. UB/13: Incorrect CPU address to this memory bank. 5-95 MEMORY CONTROL (Drawing number 89619100, sheet 3, cont'd.) Preset input to CX (Active Low) U7/5: Conditional deactivate CX if: 1) U38/10: RX is active 2) U38/11: SX is active 3) U38/9: LPDR operation. Clock input to CX U7/13: Clock fall ing edge triggered clock connected to the oscillator. Qoutput from CX U7/8: CX CPU cycle Q Output from CX U7!6: not a CPU cycle. ex Indicating output signals BUSY (U41/6) One of the 3 access selectors is active "SC (U56/6,8):· Osci llator buffered. Usually used to clock faJ1 ingedge triggered flip-flops. (U38/6) Oscillator buffered. Usually used to cl~ck rising edge triggered flip-flops. Because the ~SC line is long, it is double buffered and terminated AUXiliary Circuits The signal at P2A29 is always high because a pull-up resistor R2 is attached to the line and the line is never connected in the computer. This line is used during manufacturing testing to pre-synchronize certain signals. 5-96 89633300 A MEMORY CONTROL Signal Functions (Drawing number 89619100, sheet 3, cont'd.) RX Selector Flip-flop (U24) J J inputs activate RX, K input deactivate RX inputs to RX R'X{U24/5) RRQl (U24/3) Synchronized refresh request. BUSY(U24/4) The memory system is not busy with a DSA or CPU cycle (or redundantly with a Refresh cycle). Synchronized (with the clock). K inputs to RX F{U24/9, 10,11) End of cycle. Synchronized. Clear input to RX Active low LOADRA{U24/2) Kaster clear signal to deacti'late RX before going into LPDR operation. Q output from RX RX{U241B) Refresh cycle Q output from RX RX(U24/6} Not a Refresh cycle. Clock input to RX Clock(U24/l2) Falling edge triggered clock connected to the Osc ill ator. 89633300 A 5"93 MEMORY CONTROL (Drawing number 89619100, sheet 3, cont'd). SX Selector Flip-flop (u6) J inputs activate SX, K inputs deactivate SX J inputs to SX MSXA(u6/4) The other memory bank is operating on a DSA request. Ignore DSA requests on this memory bank. Synchronized. ISA(U6/3) Correct DSA address to this memory bank. (u6/S) Conditional Activate SX if: 1) U40/1,2: Refresh Synchronized cycle is not requested. The double connections ensure that the condition is held when it occurs (RRQ) and one clock after (RRQ1). and 2) u40/4 The memory system is not busy with a Refresh, DSA or CPU cycle. Synchronized. and 3) u40/S The DSA request was activated during the last clock cycle. This allows the DSA address lines to stabilize so that the SX selec.tor wi 11 act ivate only on the correct Synchronized. memory bank. K inputs to SX U6/9,lO, 11: F End of cycle. Synchronized. Clear Input to SX (active Low): u6/2 Normal: When the memory system is in LPDR operation, the SX reg i ster is constant 1y dea.ct i vated. Q output from SX sx(u6/8): DSA cycle Q output from SX SX(U6/6) : Not a DSA cycle Clock input to SX Clock(U6/12): Falling edge triggered clock connected to the oscillator. 89633300' A MEMORY CONTROL (Drawing number 89619100, sheet 3, cont'd) Outputs SIGNAL RX RX SX $x CX ex I i II esc BUSY 0sC'A ! HsXA \- R/W I CXP 89633300 A SIGNAL SOURCE/ CONNECTOR PIN u24/8 u24/6 u6/8 U6l6 U7/8 U7/6 U56/6,8 U38/12 U38/6 P2A14 P2A20 P2B16 NAME OF SIGNAL LOCATION SHEET SQUARE ~ Refresh cycle 3 D3 ~ DSA cycle 3 C3 ~ CPU cycle 3 B3 3 3 3 3 3 3 D4 Cl Cl A4 C2 C2 Oscillator buffered Active of access selectors Oscillator buffered DSA cycle bank selector 5-91 MEMORY CONTROL (Drawing number 89619100, sheet 3, cont'd.) Description of Operation The basic units of this circuit are the three cycle selectors/registers RX, SX, and CX (U24, U6, U7). These correspond to Refresh cycle, DSA cycle, and CPU cycle respectively. Only one may be active at any time. After the cycle is over, all of the selectors must be inactive for at least one clock cycle. To assure this operation, all the registers are activated and deactivated synchronously (through their J or K inputs). The active low c1ear inputs of these registers are used for clearing them during LPDR (Low Power Data Retention on power failure) operation. The active low preset input on the CX register is used for lPDR operation and to assure that theCX register will not activate during a Refresh or a DSA cycle. If simultaneously more than one access cycle is initiated at the beginning of an access cycle, only the one with the highest priority is selected. The order of priorities for the different cycles is as follows: Refresh has the highest priority. DSA has the next highest priority. CPU has the least priority. Because there can be two 32 kiloword memory systems, one in the main and one in the expansion enclosure, communication between these two units is essential. The signal MSXA prevents the DSA selector from being active simultaneously on both 'banks. The CPU selectors on both banks may be active simultaneously, but the improperly addressed bank may not reactivate until the next CPU is sent. The signal SRQE tells the CPU selector that the DSA request has been accepted by one of the memory banks and that the DSA address is no longer valid due to transients. The DSA priority signal blocks the CPU access selector. The 32KWE signal blocks the CPU selector only on the upper bank if the CPU is in 32KW operation (a switch ,on the AB107/AB108 front panel). When the 32KW switch is active, the CPU never addresses the upper bank. Blocking the CPU access selector assures the DSA that its access time to the memory will not be delayed because the CPU selector is active. On the lower memory bank in the main computer enclosure 32KWE is not connected to the 32KW switch. Instead it is permanently wired to ground so as to make it inactive. 5-92 89633300 A I 00 \.0 P21150 (7\ w w w o o tTl tYCC3 :1 RG'WII >'ZII21 "" ... " MO YCC3~ 470 \.T1 I 00 \.0 ~ ~~~~~~=-~'~U~51, iiiWil ~ I ~ I 61 ~CD " I 3.5-- I GNO PIA29 \AI I ,-:--.-.--L . • I ~6~t~ • 1 47 GNO a 68nf a .-< ;~o r: J ~;J. o. GNO PI6)P2A14 o p P2812 (GNO) P2821 0110116 ':' , --- -~.;;;w;z.;-C~IT-- -----,1 I I +57V !!.L...J iJii:PIAli CPlM PII" :~: 1221 I I -M~R P2A30 P2831 R30 330 ~ L ____ 146: If 4 I R31 LOK . + C, I -'- 33"F iOV T ~ ~u (+5V SWITCHED) C5.CI2.CI3 ~_~ I c II ___ _' R5I ~:~ v." 19 61 13 ~I-il-:lt-I • -51.' • ~ 2A2~ I 14~H ~ 2 B I I R35 270 R41 8 9 00 43 ~ ~ F 6 ibLl!-- ~ 6~ ~t--_ _ _.:;:I0"f~ ~ ~ 9 PIBI6 R36 ~ 502 S ---'! 2 3 ] SD7,-PIB05 ,L-..!! 4 PIAI7 /DINIO ,7 PIAI8 DIN9 ~2~70~+-__~r+~ 4 U 13 U31 s~r~~~: r!---! 00 ~ 270 SD6 PlB06 SD5'PIB07 4 U47 ' 5 , ! 146 "i\>++---"'H--'-fCO ~ U46 --.:;J.1ji\. 6 ~ ~ ..tp\ 2\J B ~ I-- I II 0 I I 14 0 13 I R34 270 vee Br--'~ ~ R47 270 R46 ~ S I 4 3~ R49 270 r * -- '" - 2 0 I 5 0 --.!. I ----.! ~ 270 ~, K 6 502 U45 ~ -t i, ,!t,J ...... 8 2 R44 270 R50 r-- r-+-++_~I0:t I . 270 ,---+-+-t-+~-~9:i V1 I I .,~: IU60 _ U43 ,'~ ~ 146H 16 CD ~ U44 18 ~ 20 ~121 , , CD r=----'" 22 ~ p!.J ~ _ 4 PIA03 APP SD9~~~------, ~ : ~ I I CHKO 5011 \. PIAI5 SD8,PIBI4 RRGTR 168 14 ~ 0 12 PIB02 /, 13 I ,DINI - R43 270 vee W ORFT DATE h~O L-----------+T+-H-4::1:5i;,GI ~ ;JC J!I U64 DESCRIPTION 5010 \. PIB20 . / PIBI8 I r 15 ~~I SD2,.PIB04 ~~ L...t:. RRGTR _ .,,;., l'R~Rr I ~~ ~ ~ 146H 2$' .........!! CD .!!.J U48 » L~vL £CO SD3'--"-'''!.l''- ~ ~ ~C ) REVISION RECORD ,,- PIB03 500 501'- PIAOI Q) \D . - 12 PIB24 DINI2 j DWG NO C 89615200 SHEET ~ 5 I 100V A HEHORYADDRESS DATA IN: (drawing number 89615200, sheet 6) PARITY AND PROTECT BITS Function: This circuit generates the parity and protect bits for data into the memory. The Power Switch Circuit for LPDR operation is also shown here. SIGNAL CONNECTOR PIN FUNCTION LocATION SHEET SQUARE In~uts U45/6 u41/6 U31/6 U2716 SXA DE P16 Df}UT17 CPBH SPBH CHDR B [K] [H] ['F) 1 6 c4 C2 C3 Cl B2 B4 c4 A4 c4 C4 B4 A4 6 C2 I. A2 D2 A2 B2 B2 5 I Pari ty Generator Outputs t ! [L] J [A] [D] P2A14 P2B10 P1B13 PlA12 P2A06 P2B08 I I 5 6 Protect bit output Out~uts DINl6 DIN17 016 D17 PAR PBC P2B12 P2A10 P2A22 P2A13 P2All PlAl3 Pari ty bit Protect bi t j I 6 Functional Descri~tion DIN16 and DINl7 are the parity bit and protect bit into the memory respectively. Their outputs "are always low if DE is high. The purpose of DIN17 is to rewrite the protect bit during write cycles. The protect bit read from memory (Df}UT17 line) is stored into register UI8/5, 6. The negative edge of B (P2B08) clocks this register on clock 7.5. On clock 8 of a write cycle, DIN17 will be the same polarity as Df}UT17 was on clock 7.5. 5-68 89633300 A MEMORY ADDRESS DATA IN: (drawing number 89615200, sheet 5) 16 BIT DATA AND PARITY GENERATORS Function: To select data from the CPU or DSA lines and transmit this data to the memory. SIGNAL CONNECTOR PIN FUNCTION LOCATION SHEET SQUARE Inputs SDOO -: SOlS ALUOO .; ALU15 SXA DE CMDR DSA bus ALU (CPU) bus P2A20 P2Bl8 P2A06 Outputs DINOO -: DIN15 DSA cycle selector Data Enable Data Input to memory [U45/6] [U4l/6] [U3l/6] [U2716] Par i ty Generator Outputs 5 II 5 6 B3 B4 B4 5 I I 5 C4 C3 C2 Cl Circuit Description The CPU data enters the memory system on the ALU (ALUOO~AlUI5) lines. These lines, buffered and inverted, go to the address latches. Because their polarity is wrong for data to the memory, they must be inverted again. The AlU lines must be buffered because they may otherwise be overloaded, especially if the AlU lines are connected to both the lower and upper memory banks. The double buffered AlU lines enter data latches. These latches are opened jf SXA (P2A20) is high and CHDR (P2A06) is low. Thus. data can enter the data latch during clocks 4 - 8 of a CPU or Refresh cycle. On clock 9 the latches are 89633300 A 5-65 .... .... VI I (7\ (7\ :I{L) ••• 47 • PI6~P2A14 r-- --POW-;.;-;W;;.;-C';;I:;-----,' I SP8M):P:IA:I.~_ _ _ _-=~ Cl>iiii )..-...... ____ -. I I 1221 lIr .4 -L 6 +!I.7V P2AaO iiPWri PZII3I t 10V - .~--+-.. R:llI 410 I I I . '-'X 2.4.lI (PSC 1'- . --'- (DINI7 IP' V (D17 . II~, II • -_.- QC) \J) '" \oN \oN \oN o o ):0 ! ..OK CII.CI2.Clli IP'- . --.. (PAR 1 RliO 330 CII +as,.F V_ (+:lV SWITCHED) I I I I L ____ :._t ___ --1 1961 13 P2BIO D.UT ~7~ P2808 . R31 DETAILED LOGIC DIAGRAM MEMORY ADDRESS co .. \D 0' w w w o o ~ I@" 5.1.I@CIIP » , PIlOt I I ...." 111 vee PlI.. ALU811" SAI4 U 1.1 A" AW4' .. J 170 II~ I Plall J 110 Il1O "ILD vee I ~ lIT" 4. I , .!l~ UI4 ~ I • ,f:j~ I-'Ii ~. 1111 ZM J IIZI III 1111 III II r:~ ~r-;-II 140M ~ . 12 .... PRIGS , 1i1U PIAGI..,iiiili , PIA041: , iiDii ~ I. 4 , r::i 141" • ~ ~ ~I-~ ;:J~ n I~ ~.. I PlI041 1iiim . PlIOI;, , iii1iiI I~ ~I • "I 141M ~~ "'" ~ .... I PlAG7J iiDii pn07 iIDI PZAoa ii6iY ~ ~ ~ 5 - 1.8 I~ 4 , ~ T RI2 III iii1i" ~ ~ roe ...,Jt; : ~PZI05 m :~PU05 .. , P21 .. "0' ~~ I II ....Mp.!2...-- r ~I H I • lUll ... 12 II 1- Z ALU 11- II • I 141" --'..!!.!! lIB PIIII .~ ~ 0' Lr;.!!! I 140"--r.~ 4 ~ ~ m , PZIOI D Ir-- .....! . . . I ...!l- Ull m W Sf' --' ~ 217M 4. I vee 11M III 148" ~ Fl' ...I~bL I· ~~I 1111 III 31 ~r-..---l!' I . ,,"127 1M2., IIZI III , i~~1rL- I .... " UIO " un I" 14'" UI2 vee [CO I~ use 40 r----"I t-• II~" 4. "ID~I , "ASO "[V l.Jgr-..-- "'4~1 >"All I PUOI " URI SAil 1127 III vee .1.1 lIE IIIP ALUlIi V1 I ~ 7ii" PUll ~ I 148H ,I 51 U5S """- 8 r®& J PIBI9 J, ElIIT COMPUTERS LTD • 111.5""" •• DETAILED LOGIC DIAGRAM ME MOllY ADDRESS • MEMORY ADDRESS (drawing number 89615200, sheet 4, cont'd.) Description The module selector selects the address of one of eight memory modules according to either the DSA address or CPU address, and latches it. The CPU lines are active low, the DSA lines are active high. The selector outputs are active low. If a memory module assembly is installed in the computer, it pulls the DX# signal corresponding to its location to ground. Otherwise the DX1 signal remains high. CPU and DSA addresses must correspond to each other. That is ALU12 ALUI3 ALUI4 must correspond to II II II II II II SA12 SA 13 SAI4 DXI refers to module I (the second memory assembly location) and MDXI activates memory module I. The sign U (DXU) represents one of the memory location numbers (I ~ 7). The first memory assembly location is always occupied. No information is on the module selector during refresh cycles. The REF signal activates all the memory modules during a refresh cycle, so decoding of the module selector is not necessary. However, the module selectors remain stable during a refresh cycle and no spikes occur on them. This is a safeguard and not strictly necessary since the REF signal provides timing on the memory modules for the module selectors. If all eight memory modules are installed the module addressed is the one that is used. If less than eight memory modules are available the module that is used is selected by the storage-wrap around table, built according to a) b) how many modules are available which module is addressed. Formulas for this are given below: 12, 13 and 14 refer to address bits ALUI2, ALUl3 and ALUI4 or SAI2, SAI3 and SAI4. The wrap-around table resulting is also shown. 89633300 A 5-61 (drawing number 89615200, sheet 4, cont'd.) MEMORY. ADDRESS MDXO MDXl MDX2 MDX3 MDX4 MDX5 MDX6 MDX7 = .. = = = = = = (DX 1. 12) ( 12) (DX3.12) ( 12) (DX5.12) ( 12) (DX7.12) ( 12) (DX2.13) (DX2.13) ( 13) ( 13) (DX6.13) (Dx6.13) ( 13 ) ( 13) (DX4.14) (Dx4. Pi) (Dx4.14) (Dx4.14) ( 14) ( 14) ( 14) ( 14) Storage Addressing Wrap-Around STORAGE SIZE (KWORDS) STORAGE MODULE ADDRESSED o1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 65 234 5 6 7 8 9 A B C D E F o0 o0 o0 0 0 0 0 0 o1 o1 o1 0 1 0 1 0 0 1 2 2 o 1 2 2 0 1 2 0 1 2 3 o1 2 3 0 1 2 o 1 234444 012 o 1 234 5 4 5 0 1 2 o1 2 3 4 5 6 6 o1 2 o1 2 3 4 5 6 7 o1 2 o 1 234 5 6 7 888 0 0 0 0 0 o o 1 1 1 1 1 1 1 234 234 234 234 234 234 234 5 5 5 5 5 5 5 0 0 000 1 o 1 G 1 2 o 1 2 2 3 0 1 2 3 3 4 4 4 4 3 4 5 4 5 3 4 5 6 6 3 4 5 6 7 8 8 8 8 8 6 7 89 898 989 6 7 8 9 A A 8 9 A A 6 7 8 9 A B 8 9 A B 6 7 8 9 ABCCCC 6 7 8 9 ABCDCD 6 7 8 9 ABCDEE 6 7 8 9 ABCDEF EFFECTIVE MODULE ADDRESSED For example, if the computer has 16K (16,38410) words of storage, the highest permissible address is 3FFF16. If the program attempts to address location 504016 (located in a nonexistent storage module 5), it actually references location 104016 in module 1. 5-62 89633300 A 00 \0 . (7\ W W W - 11' AEVISION RECOIIO o o ll2r-~ ~ J> v_ AW7L ~PIAa. 1 I I I ... PIIU I I46H ~ ....... PIUO r-- ,. .. ALII .. , ... , PlAIt I I y ~~ II 4 ~ 2 , vee ALII.; PI. . 4.U®" I4IH UI7 .r-L~ U@)- II I I46H "re UI7 vee II I ~I. III 210' Y I IIZ1 110 11111 Il1O I - I~ lUI Il1O PIli' "1.1 0 . - -- CODE IDENT DETAILED LOGIC DIAIII. . IC 1IIII000Y ADDIIES' DWG NO ....zoo SHEET 1 I I I~V MEMORY ADDRESS (drawing number 89615200, sheet 4) MODULE SELECTOR Function: SIGNAL Ineuts ALU12 ALU13 ALU14 ALU15 SA12 SAt3 SA14 CRI CXP SXP HflJLD DXt SIGNA(SOURCE/ CONNECTOR PIN DX5 DX6 DX7 P2A16 P2B09 P2B16 P2Bl3 PtB27 PtA3t PtA30 [AG] [AF] [AE] [AH] P2AOl P2BOt PtB31 P2Bll P2B06 P2B05 P2A05 Outeuts MDXO MDXl MOX2 MDX3 MDX4 MDX5 MDX6 MDX7 CAA15 P2B03 P2A02 P2A04 .P2B02 P2B04 P2B07 P2A07 P2A08 PtB19 Off DX3 DXli" 5-60 To select one of eight memory module cards. LOCATION SHEET SQUARE FUNCTION 4 B4 D4 C4 A4 B4 D4 c4 D4 D4 04 c4 D3 B4 A4 A4 A4 A4 A4 I IMemory Module Address CPU (from I, j I I i I Module Address i from DSA ~Memory I I 4 3 4 J 00FF 16 address from CPU CPU cycle selector .0SAcyctesetector .. i I Memory Module Presence Indicators ! I I I i I, I 4 4 Memory Module r,ie 1ector Signa 1s. 4 -. Dt Cl Cl Cl Cl Bl Bl Bl Al 89633300 A (drawing number 89615200, sheet 3) MEMORY ADDRESS COLUMN SELECTOR Function: SIGNAL To select and latch the memory column address to the memory card. SIGNAL SOURCE/ r.ONN~"('""nR PIN FUNCTION LOCATION SQUARE SHEET Inputs: ALU07 ALu08 ALU09 ALU10 ALUll SA07 SA08 SA09 SAlO SAll CRl CXP H0LD P2A09 P1A28 P1A22 P1A27 P1B28 P1B23 P1B30 P1B29 P1A26 P1B21 P1B22 y2/8] P2A25 3 Memory Address Lines \from CPU I I I I ,I I I i , ; Memory Address Lines from OSA , ,I \ I 00FF 16 address from CPU CPU cycle selector Latch hold (row,column, module) 3 2 2 04 c4 C4 B4 A4 04 C4 B4 B4 A4 04 A4 B4 Outputs: ACA5 ACA6 ACA7 ACA8 ACA9 P2B19 P2B17 P2B24 P2A18 P2B20 3 Memory Column Address Signals I I I 3 01 Cl Bl Bl Al Circuit Description Note: This circuit is similar to the Row Selector. The column latch selects and latches the memory address from either CPU or DSA address. The output of this latch is sent without decoding to the memory chip column address inputs (A5-A9). The memory address inputs are arbitrarily wired. 89633300 A 5-57 MEMORY ADDRESS ; (drawing number 89615200, sheet 3, cont'd.) However, CPU and DSA addresses must correspond. The CPU address must select the same locat ion in the memory as the DsA address for that location. Thus: ALU07 must correspond to SA07 II II ALU08 II SA08 II II ALU09 II SA09 II II II ALU10 SA10 II II II ALUll SA 11 The DSA address inputs are active high. Jow. The CPU address inputs are active When CRI is active (high) ALU07 appears as low, and ALU08-ALUJl appear as high. During a refresh cycle there is no special information on the coJumn address. However, the lines are held stable during this time to reduce system noise. The latching circuit is similar for the row, column and module selectors. It is described opposite sheet 2. 5-58 89633300 A .. ~ " 00 \D ~ \AI \AI \AI o o » I - _ _....;.-.:~""" ___( iiiiiiii ~ V'I I V'I V'I ...... V'I I V'I ~ DlTAlLED LDeIC DI_AM MEMOIIY ADDIIESS 4 MEMORY ADDRESS (drawing number 89615200, sheet 2, cont'd.) Functional Description The row latch selects and latches the DSA or the CPU addresses. The outputs of this latch, through the Refresh address Selector (ARAO through ARA4) , are sent without decoding to the memory unit row address inputs (AO through A4). The memory address inputs are arbitrarily wired. However CPU and DSA addresses must correspond, i.e., the CPU address must 5elect the same location in memory as the DSA address. That is ALU02 must correspond to ALU03 ALU04 " " " ALU05 ALU06 " " " " " " " " " SA02 SA03 SA04 SA05 SAo6 The DSA addresses are active high; the CPU addresses are active low. When CRI is active (high) the ALU address output appears as all zeros. Although no decoding is performed, (the 5 to 32 conversion is performed in the memory unit) the latch does go through a Refresh Selector. When a refresh cycle is being performed, it is not the latch information that goes to the memory row address but the refresh row address from the refresh address counter (U33). Circuit Description The row refresh address is stored in a five bit binary counter circuit U33. ADVANCE (P2B14) advances the counter just before a refresh cycle is performed. L0ADRA (P2A29) presets the counter so that BRWRA (P2B29) goes active (low) on the 32nd count advance after L0ADRA. BRWRA remains low only during the 32nd count. exception. The outputs of the counter are arbitrarily wired with one The memory units save power if the memory row address bit A4 goes low to high after the last Cenable was inactive. 89633300 A 5-53 MEMORY ADDRESS (drawing number 89615200, sheet 2, cont'd.) This is very desirable for lPDR (low Power Data Retention) operation. Thus, ARA4 is wired so that it will often be low on the 32nd rapid refresh cycle, and high after the 32nd rapid refresh is completed. The row address information is taken through the Refresh Selector gates (AND-OR gates U36/8, U35/8, U35/6, U51/8, U51/6). The control inputs (U36/1 and U36/10 fO,r ARAO and corresponding terminals on the other gates) are driven from RXA and its inverse; RXA active selects a refresh cycle row address, RXA selects the outputs of the DSA/CPU address latches. This arrangement avoids spikes on the row address lines (ARAO ~ ARA4) when changing from a DSA or CPU cycle to a refresh cycle. Row, Column and Module Selector latching The row, column and module selector register share a common latching system. This is described here. The signals SXP, CXP and HelD from the memory control assembly ~re designed so that spikes will not occur on the row, column or module selectors. By overlapping signals so that SXP (Ul/8) and HelD on a DSA cycle or CXP (U2/6,8) and HelD on a CPU cycle are never zero at the same time, the selectors will not generate unnecessary spikes by blocking all the information lines. HelD overlaps with CXP (SXp) at the beginning of the cycle so that the new address can be fed into the latch before the old one is finished. CXP (SXp) overlaps with HelD at the middle of the cycle assuriilg that the address is latched before it is blocked. 5-54 89633300 A MEMORY ADDRESS (drawinq number 89615200, sheet 2, cont'd.) DSA Cycle Input (Active High) SAO 1 SAOO L (SXP low) Output (Active Low) lKO 1K1 1K2 L L ~I L H H L H H H H H L H CRI (HiQh) H 1KO H H H L L Refresh Cycle Input --- RXA H H H H L H H H L H H L H (CiP low) CPU Cycle Input (Active LOw) ALUOl ALUOO L L L H 1K3 Output (Act i ve Low) 1K1 1K2 lK3 H L H H H L L H H H H ~ H H H (RXA high) Output (Act i ve Low) 1K1 1K2 1KO L L L 1K3 L The kiloword selector must be stable at clock 1.5 so t~at only one kiloword will be activated by the Disable signal on the Memory module. Note that the critical kiloword selector circuits use super-high speed TTL circuits. 89633300 A 5-51 (Drawing number 89615200, sheet 2) MEMORY ADDRESS ROW SELECTOR Function: cycles. Input SIGNAL ALU02 ALU03 ALU04 ALU05 ALU06 SA02 SA03 SA04 SA05 SA06 CXP SXP HI/JLD CRl RXA L0ADRA ADVANCE To select and latch the memory row address for DSA, CPU and Refresh SIGNAL SOURCE/ LOCATION FUNCTION PIN SHEET S_Q.UARE " P1B10 B4 2 P1A10 B4 . Memory Address 1 i nes 02 P2A17 from CPU P2A15 C2 1.1 P2A12 B2 B4 P1BOl B4 P1A06 02 }Memory Address 1 ines P1B09 from DSA C2 P1A09 J B2 P1A21 B4 CPU cycle selector P2B26 A4 P2B28 DSA cycle selector B4 Latch hold (row, column, module 2 P2A25 04 00FF 16 Address from CPU P1B22 3 2 Refresh cycle selector 03 P2B27 2 load Refresh Address A3 P2A29 Advance refresh address counter 2 P2B14 A3 ~ON~TOR Outeuts ARAO ARAI ARA2 ARA3 ARA4 BRWRA 5-52 P2B15 P2B22 P2A23 P2A21 P2B23 P2B29 I' 2 I } Memory Row Address Signals 32nd Refresh Address count 2 B2 B2 01 Cl Bl Al 89633300 A MEMORY ADDRESS (Drawing number 89615200, sheet 2) KILOWORD SELECTOR Function This circuit selects one of four kilowords on a memory module. Inputs SIGNAL ALUOO ALUOI SAOO SAOI CXP SXP HilLDW RXA CR1 SIGNAL SOURCE/ CONNECTOR PIN PI812 PIA II P2A24 P2825 P2B26 P2828 P2AI9 P2827 U42/12 FUNCTION 1 CPU address bits LOCATION SHEET SQUARE 2 } DSA address bits CPU cycle selector DSA cycle selector Latch hold (Kiloword) Refresh cycle selector 00FF l6 Address from CPU 2 3 04 c4 04 c4 84 I A4 c4 03 03 Outputs I KO m 1K2 I K3 89633300 A P2A28 P2B30 P2A26 P2A27 I' 2 ) Kiloword Selector Signals to Memory Module J 2 02 02 C2 C2 5-49 MEMORY ADDRESS (drawing number 89615200, sheet 2, cont'd) Description U19 and U3 select and latch the first two DSA or CPU address bits. This is achieved as follows (for timing diagram - clocks - refer to Figure 4-6) and to the timing diagram associated with sheet 4 of the Memory Control circuits. Between clocks 1 and 2.5 either SXP (for a DSA cycle) or CXP (for a CPU cycle) will be active low while H~LDW remains low. This allows SAOO, SAOl (for a DSA cycle) or ALUOO, ALUOl (for a CPU cycle) to pass through U19 and U3. At outputs U19/8 and U3/8 the signal is inverted. The signals are re-inverted and fed back into U19/1 and U3/1 in separate AND gates U34/1, 2 and U34/13, 12 forming a latch. At clock 2.5 H~LDW goes high, allowing U19/1 and U3/1 to pass through to the output (thus, the address is latched). After clock 2.5 SXP and CXP will be high so that their corresponding addresses can change without affecting the address that is latched. At clock 11 H~LDW goes down, losing the address-latch. The address is no longer needed after clock 10 because the Disable signal blocks the kiloword selector on the memory module assembly. Dropping the H~LDW signal at clock 11 decreases through-put time for a new address. The address selector must be stable by clock 1.5 of the next cycle when the Disable signal does not blook the kiloword selector on the memory assembly. The signal CRI is inverted and ANDed into the CPU address lines (refer to sheet 3). When this signal is active (high) andCXP is active (low) and blocked, ALUOO and ALUOl appear low; CRl is a signal used by the CPU to automatically address location (OOFF)16 in the memory (second Index Register). All inputs to U19 and U3 are active high. This implies that SAOO, SAOl are active high. Outputs U19/8 and U3/8 are used by the one-out-of-four decoder (U17, U50) to select one kiloword of the memory module (lKO through lK3). The kiloword selector output is active low. If the memory system is performing a refresh cycle, all the kilowords of the module are activated. The following tables summarize the operation of these circuits (in tables; H = logic high, 5-50 L = logic low). 89633300 A co \,0 w MEMORY ADDRESS ~ o continued from previous page 0\ w > Address and Control Lines to Memory ALU12 f AL014~ Module SA12 + SA14 ~ Selector ~ MDXO + MDX7 Module Presence DXl + DX71'7 (first module is al\iaYs present). Data t , PU : fALUOO + ALU15 # 16 lLALU08 + ALUIS From DSA: SDOO f SD15 ~16 )V Protect Bit} from Memory JrHodule Address Unes L I I Data-Inl l~DINOO I 4 I D~UT 17 f DINI5 Decodes the memory modul e address and· selects one of eight memory module assemblies. Data to Memory Parity Generator Output Pari ty BI t IProtect BIt Logic Descr i pt ion DIN16 DIN17 Selects data from the CPU of DSA 1 ines and transmits this data to the memory. Parity Bit} Protect Bit To Memory PAR1 .. IMemory Controll:to CPU for Pari ty Check DI7Jr HX17 = Protect Register Status. Generates the parity and protects bits for data into the memory. VI • .t:r ..... Memory Address Block Diagram V'I I - I I REVISION RECORD SHEET REIIISlOII STATUS ~ (X) 1/1/ II£v I 2 I 4 5 5 . , , - SHIET llUEIlENCI LETlE II ." - SHEET ."'EIlEIICES IS" Z S [II ~~N ,~T 4 • 5 A IZ n , IS 14 12 14 cs D4 II e4 D4 L . el D4 ez D4 II DZ A4 I' CZ I II IZ S T D4 OS U V W e4 x M DESCRIPTION U'''- To DR_NO EIIIIOIII ON' 1HZ' T.p 54 SH 4, UZ4-J. U24-5.IIIO, "" SH5, PlA05 SH., "","" ,!NYEIn'Eil UI4-II,ID 01 eK7I5 eORREeT DWG EilRORS 09 CKIII _ U: 1111 WAS "". Sill LII:,,"_S l1li1. liEF DESIG. DID NOT 'IT ASSY PWG. A4 e A4 @ Y# I lICe Ivee v.o' IS CS @ es D4 CZ @) -'_". 1;'" - 1At- "~Jot. .. ~ -".~ 1Wit. .!r-+ jsor.", ~'L $II' 4 IIU IIICC ..0;. es DS D4 14 AI AS es DZ Ae e4 DZ es n AD AE A4 DS D4 AI' A4 DS D4 D4 IS 84 ez es 04 l1li N,TES' I. ALL RESIST.IIS ARE 0.25 WATT S'I(, es z. THE VtfLTAGE SUPPLIED Tf ALl THE INTEGRATED elRCUITS 14 C4 i PUSI IS Vee EXCEPT 1"11' I UI7.U". UU. U3S.USI.U50.U5I.AND USZ T' WHleH Ve.. IS SUPPLIED -'IICC ~ 'ND~ PIAn + ;;~ PlIII CIO SSpI' IOV pZAOI. CI-C4 :::~C.-Ct .IN' '''D, pZIZI (X) '''D t UNLESS \'''IERWlS[ sprCIFED DltIlN51tJ11 AIitE 'N INC"S ~ \.0 ~ \AI \AI \AI Cl 2 ... !! t. 2 PI.AC[ 1: ANG ... ES t. DO NOT SCALE DRAWING I FIRST USEe ON TITLE Of e .____:~ • >- APPR FI=----_--- ..,,. ZS./~-II &~. MATERIAL _ - - - - - LOGIC DETAILED DIAGRAM ABI01-A 'IIImjmllMbl II.'''·1f ""'U"'k~ "' ~ D4 AA 'ND, I til) I va; 111 III "if VA ,.~ ~. If"' r=:~"!....=",:,,~~" FtI.TEll. _ " . , ".toN TDSMJ. 1125 III CHICD A", t.iif:i1i 14.:1. DETAOIED LIST AV WAS. PI ~-.urt DiTE _T <_ n ....- 07 CI< 770 A D4 Y AG AH AJ . A4 AS AI z + IV 1/ D Q ECO OS CKJ5' 01 CII 5Z5 / I:.NGR MFG Q.A ~ ... • :-t!- A,~ 1Ui1• ;11,i [. l' iI ~ MEMORY ~ •. 1J I." .... tf/Y. ~ TOE IDENT <·:A. E I ~ ADDRESS Ic I ORAWfliG NO 89815200 -TSHE£T ... f 01 & MEMORY ADDRESS The Memory Address circuits receive the address buses from the DSA channel and from the CPU and generate the addressing signals for the whole memory system. They also generate the data parity and protect bits. The memory data input is routed through this assembly, it also accommodates the switching circuit for the switched +5V supply (V CCS ) used during LPDR (Low Power Data Retention) operation. This page lists the principal blocks of the Memory Address. I ts block diagram is given on the next two pages. THE MAIN FUNCTIONAL BLOCKS - ......- - - - -. ", Des i gnation -......... ... ...--". - ..----, - -~ Shown on sheet Ki loword sel ector 2 Row selector Co.1 unm se 1ec to r Module selector Data in: 16 bit data and parity generators Data in: parity and protect bits 2 89633300 A --.-,-~ 3 4 5 6 5-45 V1 I J:C7' MEMORY ADDRESS The Memory Address circuits are accommodated on a single 50-PAK printed wiring board. The logic circuit diagram is given in drawing number 89615200, (sheets 1-5). These pages show the pr i nc i pa 1 blocks mak i ng up the Memory Address together with the main input and output signals. Both the circuit and the signals are described in detail on pages ~ssociated with corresponding sheet of the circuit diagram. CRQ SRQ CXP SXP RXA CRI HI1JLD HI1JLDW LI1JADRA ADVANCE Address and Control Lines to Memory CPU (ALU) & DSA (SA) Address and Data Li nes ALUOO, ALUOI SAOO, ALU02 SAOI ALu06 5 T -,I- SA02 .: SA06 ALU07, ALU08 00 \.0 C7' 'oN 'oN 'oN T ~ SA07 T SAIl Ki loword Selector Kl } 1lKO 1K2 1K3 Kiloword Li nes Row Selector ARAO ARAI ARA2 ARA3 ARA4 BRWRA Row Address Lines (decoded in Memory Unit) (5 .. 32) Selects and latches the memory row address for DSA, CPU and Refresh cycl es. Column. Selector ACA5 ACA6 ACA7 ACA8 ACA9 Column Address Lines (decoded in Memory Unit) (5 .. 32) Selects and latches the memory column address to the memory ca rd. 5 ALUll 5 5 Descr i'pt ion Selects one of four ki lowords on a memo ry mod uIe. Address o o » Memory Address Block Diagram (diagram continued on next page) "Pages 5-40 to 5-44 are unassigned ll 5-40/5-44 89633300 A 4 VI ~ C! 1 \AI (X) r.:o! o _)r"e 'I OINIY'- 11 =~~= . Iii 1":"~IM' '1>' • (1101 pi ~ .,)r_1W • 1>'1111 I I I 1,,:, ICIIIOI r.~? Iell" IV.. ? .p. .pl' r.r lCIIII [? [eM; ., 1~:, Ial42 1,- tIM. 1,,:, lCll4? "I I , IT lCRM (11)1 IV. al '1 ,~. , 'As p" I t -rc;; 1,.111. l'u 1M ,S hi? lCIIS? 01')1 IT lCMI I,,:: ICll40 I v.. 21 • p~ B _)'I.U _:: DlNII ~s r • 1Ir==J>. ,~rrI8 lun: JO 4 rt ? I~ , , @I E :v.. I (X) \D <7' AI U \AI \AI \AI 0 0 » .. 4 ~ t 64 011 \.0 ! Vol > ::::: ~ w 0 0 ("') 35 om 0 - 39,F - 4700F 35V - + 04 530F lCI _ R2 IK RI 100 2.. VCCI/-"W'> V. ;;j=::IOnF ;;j=:: 10tIf' 1iJ5Wlf) P2810 iii)!&! C69-C72,C77 CII,CI2,C84,C89, ctI.cM,CH-C98 100nF. 1 r .... > Plnl • I V. iF i- ~ f..-t'"~'· :e" -- W W Z M II~ M CRI CRS i:: ;l: 2N2_ PI811 CI G GIlD PZAOI Voo >PIAOI ~ y 1: C74,c7ll,C7lI,CIO,C90, • v.. ~ EC'7,ClB,C1JR/W'I'lIUF • . ____ 470.' V. 65 GND P2821 15 .. II GND PIA29 Ie ~QI iii' P2121 iii >P2801 011 ,!1215' 112 t I .... I~ l!!r-:-w Ie iii !:t CIOII • +2IV + +2Iv>P2AOI 67 ~.,>P2AII I T4.7pF .... 10V V.. !1:C5. Vee' 'T'llpF .... 10V _IIV>PIAZ6 BI CII52 IN4005 calX 470nFT en, C78, CIII, CIZ ~ CIIlI II N CIIS ~ R6 270 ..L CII4 '1'£ ~ 2 xl ~ - .-IIV m TC60,:7I,C95 t [ CI04 »toF 470nF .... >P2A24 1111l...!ra1 L!!!.J RII v. IB Vo.. mIIII )PZA07 A A \II I W \.D !iOX'PZ- .. DETAILED LOGIC DIAGRAM MEMORY o V1 I r---------------------------, \oN 0" I ," +ZIV 1£ ILEV£L 'S"",TEII 11104 . w • IC;IIICUITL: I I II + II I, rev",.,W.IIl c £ (X)I •• THE COII_UTS INCLOIID III DQHED LIIIIIS FOil II " LEVIL ."'TIIIIL.•.1 THE liEF. DESIt. t1F IT CDilPONINTS FOR THI DIFFEIIENT ..LEVIL StlFTEIl CIRCUITS IHOWN ON Ttli lHEET MI lIVEN IN THETMLI. DESIIl. °NColN TAILI NEANI: COIIPONENT AND LINE / I'IoT ODNNICTEO IN THI SPECIFIIO I..' . (Y)4 .41 I@--- 10 - II I--. L.S... ";--- IW L.U be ~v I / ..(.1. 10 1 I~ "r FAST\;z~~Z.5,4 @S,4 'I """ 1 jr~pc"182" i v,' FA!!I 'No lliiji" .. ·~2.S.4 fiQ .,4 ':"""~2 J1 OQ \.D 0" \oN \oN \oN o o l> , o T fl) ",/ // 1..1. II 1. .•• I 'ii' CINI8 . . . . .I2 .1.4 /I 121''';;'' "''''8 2 •1 ,4 DETAILED LOGIC DIAGRAM MEMORY LEVEL SHIFTER CIRCUITS '+ ~ (X) \0 0'\ \AI \AI \AI o o I: » ARAO) PU25 ARAI >P2A21 3 3 Ef} 14~H Eft I4~H 4 UI 4 I 8 14~S U7 ARA2 > P_2~A::.2,,"1_ _ _ _ _ I ~ 14~S . L.S I AO @Z,3,4 I AI @2,3,4 RII2 41 RIOI ,.!.! 45 Rill 41 .!eo. U3 I I L.S U3 5 "I S 2.3,4 &. AM3) P2125 ~4 13 I L.S :;.., I ~~ THE TYPICAL LEVEL SHIFTER CIRCUIT IS ON SHEET 5 @2.3.4 OUTPUT ARA4 >_P_21_2=1_ _ _- ACA5 >P2821 i "I ~ 14~H 13 12 L.S .1:..... , I L.S RI22 .!! 13 I RI21 12 I ~~ @2,3,4 AS @2,3,4 UI ~ ACAI) P2823 3 14~ 4 L.S 1; I AI@2,3,4 UI ACAI ACAI >P2822 >P2AI7 I I~:H 2 ~ 5 I:H I ~ 1114~H REFERENCE QA QI Qt 10 I L.S RI23 I RI20 L.S I L.S ,.!.;. !.eo, ~o, R"I 43 I AT 8 2,3,4 DESIGNATIONS IN LEVEL SHIFTER CIRCUITS QO ItA • IIC au CA CI CU AO Q80 068 014 Ql6 A90 1161 123 II4S CI8 C40 Cltl1 Al 016 Q54 Ql0 Q32 A86 1163 RJ9 141 CI4 C36 ClII3 A2 Q19 Q57 QI3 Q3S A89 III 122 R44 CI1 C3t Cltll A3 018 Q56 Q12 Q34 A88 R115 121 143 CII C38 CltIS ~.4 Q77 Q55 QlI Q33 AS1 RIi4 120 R42 tiS a1 Cltl4 AS Q90 Q68 ~. 1146 Rloo R11 R33 ASS C2II CSO tRZ9 A6 QI19 067 023 Q4S R99 R16 R32 R54 C27 C4. CR28 A7 091 069 Q2S 041 Rl0l R18 R4 A88 C2t CSI CIt:lll AI IJ8II Q66 Q22 Q44 R98 A15 R3I R53 C2t C48 CR21 A9 081 Q6S ~1 1143 197 A1. R30 R52 C25 C41 CR26i I--- ~ ACA7) P2AU SIGNAL 10 I I A8@2,3,4 51 A9 @2,3,4 UI ~ \11 I \AI ""-J DETAILED LOGIC DIAGRAM MEMORY LEVEL SHIFTER CIRCUITS . , ~ ~ REVISION RECORD REVI 00 \.0 0' 3 512 4 256 2 128 I 64 15 32 --.8.. 16 AOOoo 7 » J. H ...i 1111'1 5®, R/WO 2,3,5 AA lSl ~HO Y FA T ,3,5@CENO ORFTI DATE .ICHI MEMj UOl7 12 A2CD AI,2~ 512 256 x-v 2 128 64 ~ 32 ,~ 7 16 9 ,. ~ ~ 3,5 2,3,5~@R/WI AE : FAST PCHI 18 LJ '~~a 16" ,3,5@ AOooO c Lt.&:. VCC G2 I> MEMj UII7 ~A2CD AI2 RI62 180 14 3 512 4 256 2 128 I 64 ~ 32 8 16 AOOOO Lt. x-v ~ ~ 8 J I~ ~@R/W2 ,2,3,S AJ FAST PCH2 8 3 RI61 I~ '2,3,S@ CEN2 .". 2,3,6 2,3,6 2,3.6 2,3,' 2,3,6"4P' I -!~ ~2,3,6 AT 4 I ,2,3,6( AV 2.3,6 AX 2,3" 2,S :? '2,3,6 AR 3 4 512 256 x-v Y AS AS A7 -.9. 9 ~ ~ AOOOO ~ AIT V 6 G2 RCVR 162C UI5 2 ltJ) 1,2- 2,3,~ RI42 &,. 4 P2A02 J oeUT 17 330 2'110 & .". 18 2.3,5@ R/W3 FAST PCH3 . Z,3,5@C£'N3 A "~; 16 a G2 I>MEMI U 317 L.J!fA2CD V"1 I W V"1 2,3,8 AI.~ 2 128 I 64 15 32 8 16 7 B ~2,3 G2 I> MEMJ U217 12 A2CD 2N2222 RI60 IS 2". ~~~a 3,S 1'" .-Lt. &. AI,2 p.!.!- WBIT COMPUTERS IT! • IUISIDI •• ' 0' I DETAILED LOGIC Illml:TIImlB ., '" DIAGRAM MEMORY (BIT 17) rODE 'DENT 1 :'1 owG NO C B961~ . SHEET 4 REv A V1 r----------------------------, I W '" I +28V: I&. I I LEVEL I !HlHER I CIRCUITIL.SI V" &. : I : THE I I RI04 I I I 18 34 X)2,! FASTPCHOTD BIT RL ""-i ~-L.S-.2-1 >= .. .@ I 00 \.0 '" ~ > ',~ '0 L.S.4 .< 0) L.U I '(11) L.S. 10 I .@ • ~r 17 REF. DESIG. OF IT COMPONENTS FOR THE DIFFERENT LEVEL SHIFTER CIRCUITS SHOWN ON THIS SHEET ARE GIVEN IN THE TABLE. OESIG 'NC'IN TABLE MEANS' COMPONENT AND LINE NOT CONNECTED THE SPECIFIED L.S (YH 38 ! 41 'No ~ I• 1 L.S.3 > ~~3 THE COMPONENTS ENCLOSED IN DASHED LINES FORM A LEVEL SHIFTER( L.S.l CENO 02.3,4 I '_@.",. FAST~I PCHI t @'" PCHI@2 )J ~ o "" •@ ®=2 S I rAt;ill"'y"y ~"T . 11 L.S. 12 ~ I ~.~ }; ! (Atj3,4 e6 CEN3@2,3,4 i ""@"'" W W W o o m DETAILED LOGIC DIAGRAM MEMORY LEVEL SHIFTER CIRCUITS . IN [ ~ Cot V1 " I W ~ ~ ~3512X_T 256 III I 14 -=========-=11 r : ---""2 ) 1 : I AOOOO iiiiii" .IT I&A 'H ~===ffffftmF~~ ! 511 X-T 118 t~+4~~:tl:~BIH H-+-...Jl6U~ 18 4.5 -4512 .....,. 258 -i ~8 r X-T -'132 1'1 16 3 " lID I 21 I 12 PO DOUT I TlA I IA "51 I II 100000 I "57 'IAO II) 1'S' " 1.'55 '". '21 '2 " ... ,~ '5 I"s~ I .. 'IAI7I 17 .1'5' 'IAI9I I, 11152 12. ' " '12 ,,' '" ,,, PI ...' 21 "'5' .... 5' 'J ,AlSO ,. , I, ,,8 '" '12 , ...~, 25 II , .. "8 '2 " ".,.1 I 12 p'..,'1 ., 1"~7 I I Pltz,')1 JR'''' ,,, .. 1,.1 12 'In I 17 I 13 lIP I 17 ,~ IIQ I ,6 ' " Ir;;-T., '5 I" II I 2 I" 12 I' 15 II 12 I.'~' 27 ,.,U c 33 I"~s "1)'1 10 ,.,~~ , ... " " I"~J A AIT :; .!J.t~ u:n. ~R/W2 2"~8I'CHZ I 22 I ' '". ,,' '2 " 14 PC I, 'It , tJ 1 Hf-+-+-.....JU: 4 " 'Zl I 2 ,.. '2. '2 " 5 :: t1+H-i--I-..J1!!I , I P' I .. '.1'22111112 1 (SEE SHEET 1)- 1.& I V, .!!.t I!JGI T 1> MEM r .& B TPA ~S£IE~ I'D oeUT .~O...ii1itI 4,5 @-:r.;';;\..CEN2 2.4,5®- 1IiIl!l!lIlI-! ! ! i!~!l Il!lIl1l1li!1512X-T !!IAZCD AI,Zp..!L ":" 1128 I:: .!.2!!.22. I4:'~ 101023 &. 25& 1 18 00 \J) ~ A W W W o o I tllil "'Ml'Vltn U~ , . . . . . . , . . . to 1&111::2111• ):> .1": DETAILED LOGIC DIAGRAM MEMORY(BIT 1+16) ~ r:E~:] . . ~ 00 \.0 '" \N \N \N ift'II&& 1111, o o . AOOOO iiOii' 5 - ~ 0-3 II '-'ST DIFFERENT VALUES IN THE lAND 600Nsec(EOUIPMENT SA- 201A) 27DPF 4 C 55 RI61 \lOOO- UOl7 U100-U1I7 U2OO-U217 U300-U317 ~ ill 1~7+ ",y' ~53. L.A' . cr.!4-. # ,./ V ...~ 0 PIN NO. 10 Veel 10 V•• 11 V.. II v•• 10 uNLESS Be , 8-1 TABLE IlN SHEET 3 ., BB -'J ~// 8-Z A-3 i .t. & ""', '1 APP ~ II ........"5 .,,, '6,"02- V55 8-2 C-3 UII -U23 UOOO-UOI7 UIOO -U1I7 U200-U217 U300-U317 C -I .oS & & .6\ II~T"c~~t> It- F~l~!t~'MP~.~~ THE 8 V' ~ \)1i .. ET£t> (%'*&.0-3 . 8-2 SHEET CtlMPIl~ 1"'''' 89876300 (900WSI L.·'-/ 8 ".N'2' 8-3 9OON"C(EQUIPME1iI'k~ 8-3 AH AM &"imrE~TIl /I 1-3 8-2 c •• DEClO AY "' ... ~ ut.s,*,,;t CI("O l!4N0/0 INST'-'.INCoRR ..c.r "W ""A5 C_aA...c"T At ..,.. 5 .,~ 15"'02- 8-1 ~·""'liI'TES' C-3 AD AL ~ 0-3 Z AG '""", 8-2 :; 011 cti .78 • • • " ••~ " .. 7 #IIIQ .,."" "'I".t.J'I. C,rt • . ,..... fW'"".,rao rq , .•. our_ur C-2 & A-4 A-4 0-4 AA AC 8-4 A-4 10 7 C-I C-I OIIFT DATE C_ DESCRIPTION 02 CK 364 REDRAWN PER CDC STD. 03 CK498 C 105 WAS IOpl'.35V 04 CK 621 IRa WAsno 1ltI1I•. & 05 CllIoT! 0," CI(77C 0-3 8-4 8M A 8 C-4 B-1 .. itA 0-2 J 8-4 PI A II A II a A A II L,IIIcATlIIN K U I 3 8 S ,l.r~" SHEET 0 T /'" B 0-1 0 _. 7 6 0-4 ~ I--- 5 A ECO 5 6 7 8 REv 0 0,01 jo2PZ III I SHEET LeCATI"N P !'-.:~ P2~ SHEET REFERENCE 'FF 2 3 4 ()~"*.RWtSl SPECIFEO OIMEloiSION ARE IN INCHES TOI..ERANC£S 3 PLACE ± Z PLACE ± ANGLES ± 00 NOT SCALE DRAWING MA::------ FI::-------A ElBIT COMPUTERS LTD • su.,", •• , 'f 11'llllil'!,! OWN CHKO FIRST USED ON TITLE BAZOI-A BA201-B IONA k".. MFG ., ,', ,\. ,,() APPR HAIM f. a:;? 4A ~ DIAGRAM J MEMORY DEC. I A.b, •. ENGR ISH'YfT DETAILED LOGIC '.0&-::'.11. , rODE IOENT '1-' I Ic I I, .r:/.JJ" SCALE I .. DRAWING NO 89615502 ISHEET I OF8 4: [ .CMI & 0' CR 59 \oN \oN \oN o o . ~ i '+ IREVI ~ I AlVISION IlECORO O"-CRI""O~ ____ .-lOI!FTJ.9~TJ JCHKOI j,j.p ECO I CR 6~ . I[ o » - J~ CR CR 74 70 l .- . . CR 44 CR77 :. ~I a.4~ AQ AO Clt79 'C1I1l! 1 1PC!I RIWI 5 A.I iil4 • II • CR4I VSS ~ ~ • ~D'" u. 2 ~~I 2 ,..!!,IAZCD Ie 1£& AI r 1 14 512 ~ X_¥II I ~ 1-1 ~ M CR 51 CRee ........- iil2 Aoooo 7 : • CR Ie ~ --9!!!. l RIW2_ 81 I- 84 iil2 ~ .. A102ii1 U~ CR CR 81 15 I>MEIII CR8i!I ~ 2 121 111'\. CEIiII AI _·1 rr •.... r-r ..2116 A102ii1 ] 1£ .A. tiD IE ... AS4 - CR CR !112 96 CR 55 CR95 R CR56 R9I CR99 1 CR96 RI59 .1:IiE_ _ _ , I- D.UTO i!Ii!ID 2... CRI I CR97 ~ I' ~ .. REv DETAILED LOGIC DIAGRAM MEMORY ( BIT 0 ) V'I I \oN \oN ~ ~ 1 MEMORY MODULE (drawing 89615502) Power supply considerations. Setween VSS and VSS the memory unit presents the equivalent of a silicon junction diode, which is reverse biased under normal operating conditions. During power supply turn on, VSS should rise at least as fast as VSS and during operation VSS should not fall below VSS. To insure proper VSS regulation and to guarantee these turn-on characteristics, VSS is generated by regulating VSS at 3-4V below VSS. Secause the memory unit draws very little current from VSS protective series resistance used; VSS is adequately bypassed to VSS at the unit, and level shifters connected to VSS are connected to the power supply side of the series resistance. 89633300 A 5-31 - .. I SHEfT IllEl'fMNC( fFF V1 I \AI tiff N SHEfT 1IJ.f'~.I'I!i~ I 1,.~T1:~'" ~ 3 4 I II 0-1 B C-4 0-1 Q C-4 0-2 E C-4 0-1 BE I' C-4 C-2 BF C-4 REFERENCE LETTER 2 C-I BG C-I BH L 1-4 C-I AJ M 1-4 C-I BK N 1-4 C-2 BL P 1-4 B-1 BM Q 1-4 B-1 BN R A-4 B-1 BP &. &. C-3 &. &. &. &. C-2 B-2 BO BW U &-4 B-1 BX &. &. B-2 1-2 1-2 A-2 BY B-2 1-2 &-2 &-3 BZ x 1)-4 1)-4 1-2 & ,t, Z 1)-4 1)-4 0-4 0-3 11-4 0-4 0-4 0-3 AB C-4 SHEET ct!MP!lNENT C-3 C-4 1-3 8 C52.C53. C54 C 55 AE C-4 C-4 C-4 1-3 4 AI' B-4 RI61 UOOO- UOl7 U100-U1I7 U200-U217 U300-U317 1-3 1-3 AH B-4 1-4 1-4 &-3 AJ B-4 1-4 1-4 1-3 AK A-4 2 .&. & &-3 lA-4 &-4 1-3 A-4 &-4 &-3 &-3 AM A-4 AN A-4 A-4 A-4 AP 0-4 8-4 A-4 £ AO C-4 .A- 4 A-4 C- 3 AR B-4 A-4 A-4 C-3 AS 8-4 A-4 A-4 C-3 AT A-4 A-4 A-4 C- 3 AU A-4 A-4 A-4 1-3 AV A-4 .A-4 A-4 1-3 ~ AW .A-4 .A-4 A-4 1-3 AX A-4 A-4 A-4 1-3 AY A-4 .A-4 A -4 A-3 o o SA 0-3 A-3 / A-3 / C -I \HI .&:. 0-3 II(: &. I)-~ / INTEGRATED CIRCUITS UI- UIO w,," eft( 978 . . . c":;' R::' "'."C ~~:I ~.~~ RI!Lfl'Sfb e v•• C~ flU 1'("." A.1,0 cLIIH -,. WA, ,~..., ,..• 4»8 cIS 'P'. "N. SM .8 VSs .0,- N"I'4-,. ('It... ....... ·fVlr ~ #Ms Tq , .•. 04l7P"r _"""'11 CAPIICl'IIRS SETWlU Vee .£_f ~"'''F &. II..L. "- '·'.76 "". D J~~ fl.C.o. l' E CK TO MATCH MFD. PWA'S:· J~30 SH 1 , NOTE 2 : 900NS: 89876600 REPLACES 89876300 600NS: 89876300 REPLACES 89876600 ELEMENL • IDENTIFIER SJ.\5. 11. ~ IIjIi ~ ~ 39 PI' 27.4 1103 OHMS!~ 1103-1 ARE PENDING I " VOLTAGE APPLIED Vees Veel V•• ~ PIN NO. '* ~ I"t17 V.. II VA 10 UNlESS QTHERWlSl sPECIFEO OIM[JiSION ARE IN INCHES TOlERANC£S HalT COMPUTERS LTD I FIRST USEO ON TITLE 'IU'SIDI'.'Of~GI"~ DETAILED LOGIC 0 8 li'I:lliI'II'M~ BA2.0Ioo~~ 8 (SOOHS) MEMORY ± .t ~ !~ e, !?:J:. g 8 DEC. '"~ .... Ie ...c 00 NOT SCALE DRAWING OWN A.IONA, k J GM~ '"iO ::: i! rODE ID~T c HYtT'1-1 ~ ~ . . .. . .. 5 PLACE 2 PLACE ANGLES l CI) ~ CHKD c II [)c:(..Il.. EHGR CI) >- DIAGRAM ~ oJ CI) CI) 'lI &-.1+. ,#,'+ It"'" ,,",A$ CoitA.EC, lit ~" 15302- /I ,""2, B-1 ~ ALL UNMARKED RESISTIIIRS ARE 0.25 WATT 5%. ~ lh A B-2 ..,. ALL UNMllRKED DIIIIDES ARE IN4151 UII -U23 UOOO-UOI7 UIOO -U1I7 U200-U217 U300-U317 0-3 -a, C C.K S.Ma : VA L\JE OF 13O'" <:93 CoRR.e:CTE B-2 56.20HMS!2% +- 'f- "' .......,,'50 lSI. 15502- (2DIII 0-31. B-2 Ino;""a~~ ...., 7 Ar l>~L£"-"1> DI'I"'~CT.O B-3 270 PI' Col C,.D IONA DEClO AY "'''I~ 191.5'402 CK'SO R"'O(.IM$Tj\.IMca~.c.r B··I 122~IA;': DOFT DATE CK77C l)£TAC.U'lI LIST all THE FIlLLf/lWING CIIMPIINENTS HAVE DIFFERENT VALUES IN THE C-4 1-4 . 01. 9OON ... IEQUIPMENT SA 201-BIAND 600NHCIEOUIPMENT SA- 20IAI C-4 CIc; ('75 p7 B-3 / C-4 AL ""'''' I!I 0$ Till TABLE \liN SHEET 3 C-4 DESCRIPTION CK 364 REDRAWN PER CDC STD. CK498 C lOS WAS IO}lF.35V CK 621 R 3 WAS 350 "HMS. C-2 B-2 C-3 1-4 02 ·03 C-I C-3 NIIITES' REFER 0-3 A& AG A AA 0-3 0-4 ~ 0-3 &. &. B-1 ~ 8 C-3 &-4 V. 7 6 & A-4 I, A lh lh &. S _. . i~ ECO A A 1\ A A II III 0-2 T W 5 REVISION RECORD 5 6 7 8 REV !l4 ~CATI~ 4 3 BD 1-4 AD I SHEET 1111'1' SHEET K AC \AI \AI \AI 8 0-4 Y 00 7 A 2 34 -' / SMUT L'<:ATItIN J f'T'I • SHEET REVISION STATUS - FI:-------- MFG t'1', APPR HAl., T. QA ~ ... ) I '.' w I I, ::/.7J'" SCALE I DRAWfNG NO 89615502 SHEET ... I OF8 MEMORY MODULE (drawing 89615502) PROTECTION AGAINST CATASTROPHIC FAILURE Capacitive coupling circuit The MOS-level signal, after the level shifter, is fed to the precharge 1 ine on all memory modules. This 1 ine includes a capacitive coupl ing circuit, which protects the memory chips from catastrophic damage. Power dissipation in the chip is a function of precharge duty cycle. If a precharge driver fails or remains active (low output) for too long, the memory units may overheat and be destroyed. However, with the capacitive coupling circuit, the precharge is pulled up even if the level shifter output continues to remain low. The capacitive coupling circuit does not slow down the precharge signal in operation. A series termination resistor (22 ohm) connects the MOS-level signals to the memory chips, after the capacitive co~pling circuit. The signals run down the l8-bit kiloword bus, connecting to each memory chip. The address lines branch into 4 groups, each running down a separate l8-bit kiloword line. A clamping diode is connected at the end of each line to VSS to prevent the signal from exceeding VSS. There is one diode for each kiloword line, that is, a total of 4 diodes are located on the address lines. For bit 17 (protect bit), the one physically closest to the level shifters, the precharge signal is connected directly after the capacitive coupling device without series termination. This decreases precharge overlap time due to line reflections, and thereby decreases data output time for bit 17. 5-30 89633300. 03 l/ / MEMORY MODULE Power su (drawing 89615502) con side ra t ion / Between VSS and VBB the me {y unit presents the ~uivalent of a sil icon junction diode, whicH, is reverse biased nder normal \ operating conditions. During~ower supply tur on, VBB should rise at least as fast as VSS an~ during oper ion VBB should not fall below VSS. To insure p\oper VBB r gulation and to guarantee these turn-on character\s.t. i Ci:'BB is generated by regulating VSS at 3-4Vbelow VBB • \Becau e the memory unit draws very little current from VBB protec iv series resistance used; VBB is adequately bypassed to VSS at ~he unit, and level shifters connected to VBB are d to the power supply side of the series resistance. 89633300 A 5-31 MEMORY MODULE (drawing 89615502, sheets 3,4) Sense Amplifiers The data output (terminal 14) of the memory units appears on an open collector. The output pins of corresponding bits of the four kilowords on the module are wire-ORed to form the 18 output lines of the Memory Module. Each wired-OR is taken through a 330 ohm resistor to ground which converts the current source output of the memory unit to a voltage level. This voltage level is fed to a differential sense amplifier (receiver unit l62C) whose output is the D0UT line. The other input of the receiver is connected to a reference voltage. This reference voltage is determined by the two resistors acting as a divider on V using Q92. The value of the reference voltage (VREF) differs in the cc high speed and low speed units: BA20I-A: BA201-B: VREF VREF = 110 mV = 50 mV The data output is activated by the cell enable (Cenable) signal to the memory unit. The output of the sense amplifier is not enabled unless the STROBE is low (during clocks 5 - 10) and the module was selected (HOi low). When the sense amplifier is not enabled, its output is high. Pull-up resistors located on the Memory Control assembly pull the D0UT lines to Vee 5-28 89633300 A MEMORY MODULE (drawing 89615502, sheets 3,4) VCC STRt6BE ----.;;6...62 RCVR RI61 162C VREF I RI60 15.4 ~4~-DfJUT MDX--..... --~2% TERMINAL OF MEMORY UNITS (DATA OUTPUT) Equipment Note: BA201-B BA201-A R161 56.2 ohms ± 2% 27.4 ohms ±2% VREF 50 mV 110 mV Data-Out Sense Amplifier Circuit Diagram 89633300 A 5-29 MEMORY MODULE (Drawing 89615502, sheet 8) Low Power Data Retention Between refresh cycle bursts in the Low Power Data Retention (LPDR) made during a power failure, none of the TTL logic circuits receive power. This circuit ensures that the Precharge and Cenable signals do not activate as the Vcc is switched "on". It achieves this by keeping the enabling inputs of the Precharge output gates low (at U9/6). VCC2 33,F l·:---T VCC2 68nF 1.5K LPDR CIRCUIT OUTPUT U9/6 IOnF 1"' f T IOnF Switched Supply (VCCS ) and LPDR Circuit The circuit senses that the switched logic supply (V ees ) dropped, and, with a short delay, holds U9/6 low; when Vees rises, the circuit releases U9/6, after a short delay. The attack time of the circuit (the time allowed between Vces dropping and U9/6 being held low) is 10 milliseconds. The release time is determined by the Disable signal: Disable will not go active (1 ow) for 1.6 milliseconds after MPwr is active (that is Vees is active, thus the circuit has 1.6 milliseconds before it must release U9/6. 5-26 89633300 A MEMORY MODULE (drawing 89615502, sheet 8, cont'd) The main logic supply (VCC ) may fail during normal operation. This will not affect memory operation If the optional back-up source, battery equipment GD611 is installed. In this case the computer switches to Low-Power Data Retention (LPDR) mode and to conserve power the following TTL circuits are connected to the switched logic supply (V CCS ): - Column address (A5 - A9) Data-in level shifters Data-out sense amplifiers During intercycle refresh bursts, all circuits not directly involved are switched off by VCCS. The outputs level of the sh ifter.s to precharge, Cenable and R/W continue, however, to rema.ili high. Address Level Shifter.s To avoid long transmission paths on the memory module assembly five of the addresses, located far from the connector, have two TTL inverters instead of the usual one. 89633300 A 5-27 MEMORY MODULE 89615502, sheet 7) ! f / .' Data-In Level ! The level shifters for the data input to \ ~ch " memory unit is an open collector inverter with a 1 Kiloh"\pull-u p resistor to VSS. The DATA IN (DIN) lines are normally low. When a D~TA-IN line beobmes active (high) during a write cycle, \ the information on it is i diately valid. The outputs of the data-in level sh i fters have a a comparatively slow rise time, making them suitable XIV Data To Data In 0 - - - - 1 200 . . - - - _ -.....~-----4,...--O Memory Units (Terminal 12) Data-in Level Shifter and Clamp 5-24 89633300 A MEMORY MODULE (drawing 89615502, sheets 5,8) The Overlap Circuit (Cenable - Precharge Delay) One overlap delay circuit is in the precharge line of each kiloword unit on the Memory Module. It regulates the overlap timing tOVL and tOVH in the memory units (see Table 4-2 and the Detailed Operation of the Memory Unit), and consists of a diode switching network controlling an RC delay circuit. The circuit is snown below. In normal operation Cenable at the output of a level shifter is high, blocking diode 01 and so allowing a voltage of about 2 volts to develop on the delay network (Cl, R2). This voltage enables the precharge output gate. When the Cenable line is activated (gone low), diode 01 conducts and blocking diodes 02, D3 isolate the delay circuii. The voltage to the precharge unit decays with the time constant of the delay circuit so end i ng the precha rge s i g na 1• vees RI 100 e.nabll (HI8H- -lev, To Precltar,. LOW-O.7V) Output lat. el Overlap (Cenable-Precharge Delay) Circuit: 89633300 A Circuit Diagram 5-25 MEMORY MODULE (drawing 89615502, sheet 5) Level Shifters: TTL to MOS TTL logic levels are 0.7 volts (low) and 2.0 volts (high). MOS levels are approximately zero volts to VSS (16 volts). A level shifter is needed to match the two kinds of logic circuits. The following signals use identical level shifters: Precharge, Read/Write (R/W) and Address These level shifters are common emitter push-pull inverting amplifiers, using four transistors. They accept TTL input and provide an output to drive MOS circuitry, that is, they drive a 300 pf load in 45 nanoseconds. Two capacitors are used to speed up the operation. The use of -5V and +28V power sup- I pl ies improves delay and rise-fall times. See page 4-34. The Cenable 0, 1, 2, 3 signals use the above type of level shifter, but with two components added: a 470-ohm resistor and a type lN4151 diode. The resistor and diode are connected for the Cenable level shifters only. To indicate this, they are drawn in dashed lines in the circuit diagram below. In logic drawing 89615502 sheet 5, the 470-ohm resistor is marked RE and the type lN4151 diode is marked CRB. Vss +28V IN 4151 470 12K TTL INPUT 470 ,--- i M.O.S LEVEL "--~OUTPUT 1N4151 : f- I1_ _ - I -5V ® TTL to MaS Logic Level Shifter Circuit Diagram 89633300 F 5-23 MEMORY MODULE (drawing 89615502, sheet 7) Data-In Level Shifters The level shifters for the data input to each memory unit is an open collector inverter with a I Kilohm pull-up resistor to VSS. normally low. The DATA IN (DIN) lines are When a DATA-IN line becomes active (high) during a write cycle, the information on it is immediately val ide The outputs of the data-in level shifters have a fast fall time, but a comparatively slow rise time, making them suitable for this signal polarity. Vss IK x,/y Data In 0 - - - - 1 200 To ...----411--.....- -.....- - 0 Data Memory Urnts . (Terminal 12) I Data-In Level Shifter and Clamp 5-24 89633300 F MEMORY MODULE The Memory Module circuits are accommodated on a single 50-PAK printed wiring board. The logic circuit diagrams are given in drawing number 89615502, sheets 1-8. The equipments, BA201-A and BA201-B are both designated Memory Modules. The difference in function between the two equipments is their speed of operation expressed in terms of the memory read/write cycle time, as follows: Memory Module Equipment Cycle Time BA201-A 600 nsec BA201-B 900 nsec Accommodated in Equipment I ABla8, BT148 AB107, BT148 The memory module,as pa-rt of the memory system is described in Section 4 of this manual. The principles of operation and circuit configuration of the two equipments are identical. The component memory units they util ize are similar and differ only in their speed of operation (refer to Section 4'of this manual for detailed operation and timing). Changes in the values of other components between the two equipments are noted on sheet 1 of drawing 89615502. The memory module block diagram is described in Section 4 of this manual. Detailed circuit diagrams are given here. The circuits are repetitive and for bits 1 through 16 they are identical. Only one circuit diagram is given therefore and it is supplemented by tables defining each component. The level shifters and other circuits which make up the memory module are described in the following. The memory unit is described in detail in Section 4. Its terminal functions are summarized in the following diagram. 89633300 F 5-21 AO ROW SELECTOR SI GNALS AI A2 A3 A4 A5 COLUMN SELECTOR SIGNALS A6 A7 A8 A9 RIW PRECHARGE (PCH) CENAB LE (CE) 3 512 X.Y 4 256 2 128 I 64 15 32 8 16 7 8 9 4 13 2 s AOOOC A 1023 I 181\ 51\ 161\ ~ ....a G2 III t>MEM DATA IN I 2 {A2CD AI.2:,'4 DATA OUT SUPPLIES SUPPLY VSS VOLTAGE + I9.7V(BA20I-A) +16.7V (BA201-B) TERMINAL 17 17 VBB VSS +3V 10 VOD GROUND II Memory Unit External Connectors 5-22 89633300 F MEMORY SYSTEM The memory system consists of the printed wiring assemblies (PWA's) listed in the following table: Designation Slot Location Memory Module 29 th rough 36 Memory Address 28 Remarks Equipment BA201-A or BA201-B ) ) Memory Controller System PWA's Memory Control 27 ) Notes: I 1. The slot allocation is identical in equipments AB107/AB108, BT148. 2. The Memory Controller system in the expansion enclosure is equipment BUI20-A. It is similar to the Memory Controller used in equipments ABI07/AB108. The memory timing is shown in figure 4-6 and in the timing diagram associated with sheet of the Memory Control assembly. 89633300 F 5-19/ 5-20 "Pages 5-9 to 5-18 are unassigned." 89633300 F I 5-91 5-18 j?r I I DSA BUS ex> \.D MEMORY 0' W W W CONTROLLER DSA BUS 11 o o ." I I EIGHT MEMORY MODULES A/Q BUS /Q BUS DSA BUS ~BUS I TIl DSA BUS 1m I 1", 'I' A/Q BUS I ! I OPEN OPEN OPEN , 36 35 34 33 32 31 30 29 28 27 26 25 2~ 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I I I L..- I NOTES 1. The Memory Control assembly and the Memory Address assembly together form the Memory Controller, equipment number BUI20-A. defi~ition 2. See section I for 3. Slot 25 is provided with an additional connection to logic ground at 25P1A03. of equipments. Slot 26 is provided with an additional connection to logic ground at 26p2B06. \J"I I -....J Card Placement Slot Assignment - Expansion Enclosure DIAGRAM REVISION CORRELATION SHEET The following is a numerical list of the logic diagrams (prefix LD) and the wiring diagrams (prefix WD) included in section 5, with the revision status for revision F of this manual. See the table of contents. NUMBER-REVISION WD 89601601 - A LD 89614300 - A fLD 89614900 - A LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD WD WD WD LD I 5-8 89615200 89615502 89616400 89616400 89616400 89616400 89617000 89618800 - 89619100 89619700 89640500 89640501 89640502 89640800 - A E J H G F A B C A B A A D 89657700 - B 89762200 89911800 89942600 89982800 - 05 B A A NAME Power Supply Wiring Arithmetic Logic Unit (ALU) Decoder Memory Address Memory TTY Con t ro 11 e r TTY Cont ro 11 er TTY Cont ro 11er TTY Con t ro 11 e r Timing Console Interface Memory Control Input/Output (I/O) Interface Programmer's Console Programmer's Console Programmer's Console LP Card - Power Supply HP Control Unit Power Supply Input-Output Wiring Power Supply Wiring Power Supply Input-Output Wiring Anti-Bounce Circuit 89633300 F Test Points The test point symbol on the logic diagram shows the connections of a test point on the printed wiring board (PWB). The number adjacent to the symbol refers to the test point position on the PWB at the edge opposite the connectors. Only test point number one is labeled on the edge of the PWB, the other test points are numbered sequentially. CONNECTING LINES Connect ing and Non-Connect i ng Lines Lines eonnected to a common point or at a junttion point are shown in the upper part of this illustration. No more than three lines are normally connected to a common point in the diagrams. NON - CONNECTING LINES Lines crossing but not connected are shown in the lower part of this illustration. Connectors All PWB connectors are sockets (female) and are shown as such. The name of the signal is placed in the open end of the connector symbol (shown below), using the full name of the signal or the common abbreviation applicable to logic diagrams. The connector number, pin row and pin numbers are located above the line extending from the connector symbol. Refer to Input/Output specification manual publication number 89673100 for an explanation of the mechanical location of connector pins. , . - - - - - - - - - - - - - - - SIGNAL NAME CONNECTOR NUMBER PIN ROW , . . . . - - - - - - - - PIN NUMBER r------------r---------- READ 89633300 A »)---------5-5 V1 I '" m " I, AO .... TIMINI ~ Ilo' INTERFACE MEMORY CONTROL MEMORY ADDRESS i l ::s n 0 .e C n .,AI Q. "0 I I I I' I I I EIIHT MEMORY MODULES AI n CD ., i::s r1' I CONSOLE INTERFACE I 1.1 II I I I II I I I I I CENTRAL PROCESSING UNIT CD ITI r1' 0 ,...- .., C » III CD III ::s n III en S•t • : ;;-c Ic i 0 III ai 5::s r1' 36 00 '" \At \At \At 0 ·0 » • 34 33 32 31 30 29 28 27 ~ 25 24 23 22 21 20 DSAIUS AGIUS n 'I I r _ZI PHAIE CARTR IDIE DISK . . .ETIC ENCOD'TAPE 'ING DRIVE CONTROLLER TRANSPORT fORIMrI~ TER ~II ca ::s \D 11 TTY CONTROLLER '1 • 0 ~ =- 0 n .z , n !! =• Ir0 III ~ ~ ~ ~ II 17 II Ie 14 13 12 II let • I 7 I e 4 3 2 I NOTES The Memory Control assembly and ,the Memory Address assembly together form the Memory 1. Controller. This Is similar to equipment BUI20-A in the Expansion Enclosure. See Section I for definition of equipments. 2. ~y TO LOGIC SYMBOLS Publication 89723700 (Key to Logic Symbols) or equivalent, lists the symbols used in the logic diagrams in this manual and gives a short description of the functions they represent. The symbols confo~m ~enerally to Control Data usage (Microcircuit Handbook, publication number 15006100), using the polarity logic convention. The following paragraphs describe the signal flow conventions used. SIGNAL FLOW Input signals are drawn coming from the left or above; drawn going to the right or down. The signal lines are sometimes interrupted to components and to avoid long lines. all~1 output signals are· logical grouping of At each such. interruption one of th.e following indicators is used: On-Sheet Continuation Reference Symbo.1s These symbols when used with the logic symbols in the following diagrams indicate that a connection exists betlt/een two points on a sheet. The arrows attached to each circle point from signal origin to signal destination. The letters, C, H, I, 0 and P are not used inside the circles, since they bear special significance on logic diagrams. 89633300 A 5-3 ( ON SHEET Off-Sheet Continuation Reference Symbols 2 ) These symbols when used with the logic symbols in the following diagrams indicate two sheets in a series of related drawings. These symbols point from output to direction of input as shown in the illustration. The number(s) --------.@3.6 (ON 23 SHEET 6) next to each hexagon indicate the ~~----------- sheet(s) that the signal is continued from or on. For instance, the numbers 3.6 refer to sheets 3 and 6, while 2.3 refers to sheets 2 and 3. It should be noted that the referenced sheet number(s) is always placed opposite the line extending from the hexagon. r--' SHEET OFF-SHEEl SIGNAL', REFERENCE l 2 3 4 LETTER A BIT3 O-r I B BIT2 C-r C BITl B-r 0 BITO A-r E 5 ; ,, PTAOO 0-2 0-2 The interconnections are listed in an Off-Sheet Reference table in the logic diagrams. This table gives the location of the off-sheet reference on each sheet and generally indicates the signal on which the signal originates (~). The signal name at the interconnection is ~lso generally given in the table when avai lable. ~ F QTAOO 0-2 0-1 G KTAOO 0-2 0-2 - ----- MTAOO A-2 D-2 ._-- 5-4 '-_.-.................. ... 89633300 A SECTION 5 INTRODUCTION This section carries the explanation of the detailed logic and circuit diagrams r~lating to equipments AB107/AB108 and BT148. These equipments are described in Section 1 of this manual; their theory of operation is given in Section 4. The explanation is grouped in functional units, as follows: Functional Group Circuit/Board Memory System '} 5-20 Memory Module (equipment BA201-A or BA201-B) Memory Controller Memory Address Memory Control Central Processing Unit (CPU) Programmer1s Console Arithmetic and Control Unit (ALU) Decoder Timing Input/Output (I/O) Interface Console Interface TTY Contro 11 er Power Input Circuit Power Supply Unit High Power (HP) and Control Low Power (LP) Board 89633300 F Page 5-21 5-45 5-81 5-141 5-143 5-167 5-211 5-241 5-291 5-337 5-373 5-424 5-427 5-436 5-461 5-1 I Notes: 1. All units, except the Power Supply assembly and Programmer1s Console, are mounted in slots in the main body of the enclosure (refer to card placement slot assignment, pages 5-6, 5-7). The order of the explanation follows the reverse order of slot assignments. 2. I I The Memory Controller, (consisting of the Memory Address and Memory Control boards) as equipment BU120-A is installed in the BTl48 enclosure. 3. The calibration of the Power Supply unit is different in the AB107 and the ABI08 equipments. The following table gives a summary: EQUIPMENT I I ABI07 and BT148 connected to it AB108 and BT148 connected to it CALIBRATION VSS VSS = +16.7 = +19.7 V V This information is given in other parts of the manual as required. See the Diagnostics and Margin Tests on page 6-7. The diagrams, together with their latest revision status, are listed in the Revision Correlation Sheet. The diagrams themselves are not bound in this manual, but are packaged separately. An explanation of symbols used in the diagrams is given in the Key to Logic Symbols and Signal Flow. 5-2 89633300 F SECTION DIAGRAMS 5 ... /lfFF - SHEET REFERENCE 00 I.D 0" W W W "FF SHEET REFERENCE LETTE R A 8 o o 0 SHEET LeCATllJN 4 2 3 A-I A-3 8 -I A -2 C-4 0-2 C"> BATTERY) I f1"" ~P.S P22-A / P22-B r P22-c eN/tiFF GRQJUND .,.,...-; S30 POWER ®H RII2 IK ...... ,YCC P21 -19 YCC NilTES >P2U-II YCC I C8-CI6 C18-C20 , OND r OND , P20-11 OND OND GND P21 -08 I .;:V'1 """ V'1 I .;:- - .... P21 -13 , OND / GNO P20-13 )P21 -04 OND OND -I , P20-34 , P20-37 OND OND - I YCC ! CI7 33"F 10V P20-27 OND V'1 ..... ........ OND , I CI-C7 ARE InF 2 ALL RESISTeRS ARE 0.25 WATT 5'" 3 RI- R17, R34+R50 AND R97 ... R103 ARE 180 ,sHMS 4 RI8 -R33, R1I4,R1I3 ARE 330 II)HMS 5 RSI - R74, R 76, R77, R79, RBI-R96,RI12 ARE IK 0HMS 6 R104-R110 ARE 5609lHMS 7 R 75 AND Rill ARE 33K 0HMS. B C23, C24 ARE 100 nF 9. C21, C22 ARE 0.47 MF 10 R7B, RBO ARE 5.6 K II) HMS P21 "II P21-24 P21 -2' / -...P21-1L ,,'<", ..... "", .. , .• , - 'I :111111 ...... '",- o\RI 'rr. ,.rHl ~ 00 I.D DETAILED o N o LOGIC DIAGRAM PROGRAMMER'S CONSOLE I.D 0"\ 00 >« ~ c;.,. ... INO NO ---'.' 0" Logic Diagram 89640500, Sheet 1, For Programmerls Console PWA PIN 89985400 and PWA PIN 89602069 I PROGRAMMER'S CONSOLE (Sheet 2) REGISTER SELECTORS Function The the has The seven pushbutton switches (Sl through S7) allow the selection of one of I six internal registers or the Breakpoint (B) register. When a register been selected, the corresponding front panel indicator lamp lights. circuits are actuated on pressing the pushbutton. Pushbutton Switches PANEL DESIGNATION CIRCUIT DESIGNATION M P Y X A Q B Sl S2 S3 S4 S5 S6 S7 FUNCTION Selects Selects Selects Selects Selects Selects Selects register register register register register register register M P Y X A Q B Inputs SIGNAL ACTIVE SEN H P4M CLREG H H 89633300 F FUNCTION Active when computer stopped (from TTY Controller) Clock from Memory Address LOCATION SHEET SQUARE 2 D-2 2 3 B-2 A-4 5-147 PROGRAMMER'S CONSOLE (sheet 2, cont'd) Output I SIGNAL ACTIVE CSM CSP CSY CSX CSA CSQ CS8 CLR8 8CK CSCK CLREG PCL L L 5-148 FUNCTION L l L L H L H H L L Register control signals LOCATION SHEET SQUARE 2 2 2 2 2 2 2 Clears B Register 8 Register clock Clears selected register Clears all CPU timing flip-flops when P Register is cleared 2 2 2 2 2 8-1 8-1 8-1 8-1 C-l C-l 0-1 A-I A-I 8-1 C-l C-1 89633300 F PROGRAMMER'S CONSOLE (sheet 2, cont'd) Circuit Description The switches are connected to the corresponding register control lines through input network and gating circuits. The input network also ensures that only one register at a time may be selected. The input network consists of a set-reset flip-flop in each selector line; the set input of the fl ip-flop is taken from the switch through a pull-up resistor and delay capacitor, the reset input from the inverted output of a~ the switches. 8-input NAND gate whose inputs are also taken directly from When anyone switch is pressed, its I ine is grounded and all the register select fl ip-flops are held reset, including the one selected. When the pushbutton switch is released, all fl ip-flops remain reset except the one selected; this is set by the signal (ground) conserved on the delay capacitor at its set input. The indicator lamp drivers are actuated from the selector fl ip-flop output and cause the indicator to light when the flip-flop corresponding to it is set. The register control signals are obtained by ANDing the output of the corresponding selector fl ip-flop with the signal SEN in AND and NAND gates. This prevents manual operation of the computer while it is running under program control. 89633300 A 5-149 I PROGRAMMER'S CONSOLE (sheet 2. cant'd) The other output signals are as follows: Signal Equation Function/Remarks CIRB CSB'ClREG Clears the B register CLREG Clears selected internal register PCl CSP'ClREG Resets all CPU timing flip-flops when P register is cleared CSCK SEN· P4M·C Clocks data into one of the six internal registers. It is produced when anyone of the data bit or clear pushbutton switches is pressed [condition C (U26,10)] and is active only when the computer is stopped (condition SEN). The frequency of the clock is that of P4M. P4M - clock signal from Memory Control; repetition rate approximately 0.44~sec for AB108, 0.65~sec for ABI07. BCK 5-150 P4M·CSB·C Clocks the B register. It is produced when anyone of the data bit or the clear pushbutton switches is pressed (condition C) and has the frequency of P4M. 89633300 A ., It oJ 00 \.0 vec '" W W W o o o SEN ') r •.•-.... " 1213MI r., .... ( Ie; R51 IW vee ~ -....... R97 . • I I "I V1 • V1 IICC I..... ~I DETAILED LOGIC 04AGItA,. PROGRAMMER'S CONSOlE .. PROGRAMMER'S CONSOLE (sheet 3) DATA BIT SELECTORS Funct ion The circuit allows data input to each of 16 bits of the computer from the programmer's console when the computer is stopped. The indicators associated with each b.it allow monitoring the contents of each bit location, both on manual operation and when the computer is running under program control. The clear pushbutton and its circuitry are included here. Pushbutton Switches PANEL DESIGNAT/Oti 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CLEAR CIRCUIT DESIGNATION S23 S22 S20 S21 S19 SI8 S17 SI6 S15 S14 SI2 S13 SI 1 SIO S9 S8 S24 FUNCTION ASSOCIATED SIGNAL SET 00 SET 01 SET 02 Se t s da ta bit in selected regi sterj corresponding indicator lights Clears selected registers (sheet 2) SET 03 SET 04 SET 05 SET 06 SET 07 SET 08 SET 09 SET 10 SET 11 SET 12 SET 13 SET 14 SET 15 CLREG .. I 5-152 89633300 D PROGRAMMER'S CONSOLE Input See switches and notes on output signals. Outputs SIGNAL ACTIVE CNS aL thru eNS lL CNS OM thru eNS 1~ Notes: a. b. FUNCTION LOCATION SHEET SQUARE L Main data path 3 L Main data path 3 3 ! ! A-2 8-2 C-2 0-2 these signals are bidirectional when computer is operated from the front panel. these signals are inputs when computer runs under program control. Circuit Description Each pushbutton switch is connected through a pull-up resistor and an inverter to an open collector NAND gate used as an inverter. The open collector outputs drive the CNS lines corresponding to the switch pressed. When the computer runs under program control the main data path signals appear at the pins carrying the CNS signals. The indicator lights corresponding to the bit locations are lit according to the signal on the appropriate CNS line. Two auxiliary signals are produced as follows (these are used on sheet 2): Condition C: CLREG: 89633300 0 active high when anyone of the pushbuttons in this circuit is pressed. Clear Register 5-153 1 O'l I vee ~ O'l ~ , §l w W eN ~ o DETAIlED LOGIC DIAGRAM PROGRAMMER'S CONSOLE PROGRAMMER'S CONSOLE CONTROL SWITCHES AND·· INDICATORS SWITCHES AND OUTPUT SIGNALS PANEL DESIGNATION AUTOLOAD MANUAL INTRPT. STOP MASTER CLEAR GO POWER BREADPOINT STORE BREAKPOINT PARITY FAULT STOP AUTO RESTART PROGRAM PROTECTS TEST MODE 32K 65K ENTER SWEEP SELECTIVE SKIP SELECTIVE STOP INSTRUCTION CYCLE CIRCUIT S25 S26 S27 S28 S29 530 SWITCH TYPE Pushbutton (P) Tog~l e iT) P P P P P T S31 T S32 T S33 T S34 T S35 S36 S37 T T T S38 T SIGNAL OUTPUT AUTOLOAD M.1. ST0P CS MCCS G0CSW PWR. SW AUT0RSW PRTSW TMSW 32KW (32KW) ENTER SWEEP SLK INSTEP ST0PCS NOTE: The signal PRGST is transmitted to the console interface board. It;s used to stop the computer under certain conditions. 1. When the cyclic parity error signals CCPE is active and the PE stop switch is set. 2. When the BEAC signal is active and the Breakpoint stop switth is set. BEAC is active when the contents of the Breakpoint register equals the CPU memory address. 89fi33300 n 5-155 I PROGRAMMER'S CONSOLE (C9nt'd) 3. When the BEAC and 0PST signals are active and the Breakpoint store switch is set. 4. When the SLSE signal is active and the selective stop switch is set. INDICATOR LIGHTS AND INPUT SIGNALS PANEL DESIGNATION INTERPT ENABLED PROG. PROTECT OVERFLOW PROTECT FAULT PARITY FAULT CPU INACTIVE INSTRUCTION INDIRECT ADR. INDEX OPERAND POWER - CIRCUIT DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 OSlO DS34* - - INPUT SIGNAL EINTB PRT BIT 0VFL PRFIND PEIND SEN RNIB ADDR RIND 0PIND PWRIND CC'J5r 0PST BEAC SLSE PWRSW * Indicates dc power switch on. I 5-156 89633300 0 . f vr:r ~ r RBI --'oN 00 \.0 P20-01 (j\ W W W 0 0 -;;~ P2114 1'21-17 STIJI'CS INITIP 1''',INO) P20-21 I DETAILED LOGIC DIAGRAM V1 00 - ~"I [: vee C') IOAFTloAu- 5CR1P·10~ -=B'. r------~-- fPST~ RIO Df .!Co _ 3 ~ I"' "~IO IOB CCPE~QI - - _ . PROGRAMMER'S CONSOLE Logic Diagram 89640500, Sheet 4, For Programmer's Console PWA PIN 89985400 and PWA PIN 89602069 . ~ 00 \.0 0' \oN \oN \oN [ o o "T'I I :1 veC' " - - - ' . : I I I . ~IREDIVCC .---. I~" I.. I.. r,' 1 CI -'T' I t" Ie ~:: P=+ ~'~"'... RT. ... 5... IWHTI'iiT t2 ~ I .(BLKIGND ~ IORYI 00 SWITCH SIDE IBRNI M.I SWITCH SIDE U'NLns o,.......,t: V1 I V1 \.D PIN 89987600 AND PWA PIN 89987700 ~rcl,.t:o Ot."I.OtrI .... , ... IHOCS ~ USED WITH PWA fO!,.lltAJilClS DETAILED LOGIC DIAGRAM ANTI-BOUNCE CIRCUIT J. ... I • 51001 '"o OFF SHEET IREFEIIENCE LETTER A 8 D ECO __ I IlEVISION RECORD I_TIDAT& DESC...TIOfI I~ ItltftfliA 11~5591-- A I-I ~'Hr'~ OFF - SHEET REFERENCE \11 I STATusl .___ l.!l!l!L4 '''h.J'hJ _I ClAU LOCATION SHEET 4 2 3 A-3 A-I A-2 8-1 D-2 I C-4 1 f- If ~' I. CI-C7 ARE InF. 2. ALL RESISTORS ARE 0.25 WATT 5110. 3. RI- RI7, R34.R!IO AND R97+R103 ARE ISO ,eHMS 4. RIS-R33 ARE 330 "HMS. a. R51-R96 ARE 1000 -..MS. ~ 6. RI04 - R liD ARE l560 "HMS· 7. LO 89982800 REFERENCED ON $.H.4 IS LOGIC DIAGRAM FOR ANTI- SOlNE CR:UT SlII-ASSEMBIY S. LOGIC FIlS AIM 8964OaOO i£WJRKED TO PIN 89987600 8Y FeD CKI43I Yee) ~ I T I ...oo II ~+5Y CS-CI6 CI8-C20 68I1F GN~~----~--------1 CIT 33,.F lOY f- .... FOR PWA '-----@--..oo <".. ....... 0""......... II. . .IION Hi!: WltICMb o 00 ~ '" W W W o o " .N..11 :i ~ ....... TO~:=' 05" .. .. j;; 0"\ l!f co l!i ~ « DO HOI" SCALf DIIAWING ElIIT CllIIMEIIS IJlI ,_ •••••• I l . ' • PIN 89987600 "WST USED 0011 nTLE f '.Mlgi._ DETAILED 107-A LOGIC DIAGRAM IJ PROGRAMMER'S CONSOLE FOR PIN 89987600 10NA z. CHKO HAIM 106£f' EN.. b#KD "'EllS MN OWN A_i ! ICoILI r;B. IIIIA.... NO 89640501 I_TI 111'4 co \0 m w w w o o o (J'1 I ...... m ...... DETAILED LOGIC DIMIWI PROOR_R', CONIOI.I y w .. (J"I I 1..& 0\ '" ~ m w w w o o o ~ DETAUD LOGIC DIAGRAM • .. .., 00 ~ 0'\ W W W Cffi)r4_7_ _ __ ." .~ o o IIf --- II 't:::j' ill~ . - rE, • IIOIPIIGST +5V 1185 49 PWR.sw) S8 I II "4 1178 .esUloo 699&800 !114 'il +5V >I ~ 1117 II. . ...'" 1188 'U IT PROGIIAM PROTECT ~AuTiiSw 6 !! 01- TEST IIOOE 5SS 1189 RIO 2 '=' UK ~ 534 '=' IL(PIITIW ~II2KW 1192 11.1 'PINO) 5 PWRlNO)4 r r I ENTEII "1- SWEEP I"u r I ~I 203 ~4 US. 535 '=' ':iiiU 5. ( H(tNTEII . SKIP 1193 0 4( lSM "8 11M h(SUi SE!-. STOP 0 ? 1195 Vl MIl)!! , ADDII)!5 , 41 'I f 121 I 0'\ W PRF 11'I'lN01) • 1179 :TlON SS7 °lOCVClE 5S8 • ~+5V FOR PWA 89987600 ;!FF - SHEET REFERENCE , \.n "FF SHEET REFERENCE LETTER A B D C1' .t:- SHEET L8CATIBN 3 4 2 A-I A-3 B-1 A -2 D-2 C-4 1 P2Z-B rr'"~P.S. P22-A " p22-e ~ BATTERY) GlltlUND S 30 InIIIIFF ) POWER RII2 ® ..IK '.{>, vee .vec P21 -III .~ " NIITES' ,P20-1lII vee , ce-clS CII-C2D liND GND GND GND GND GND PZD-D4 i"'-----"i" &lNF " I. 2. 3. 4. CI -C7 ARE In F. ALL RESISTSRS ARE 0.25 WATT 5%. RI - Rt7, R34+R50 AND R97+ R 103 ARE 180 .BHMS. RI8 - R33 ARE 330 !l'HMS. 5. R51-R74, R 76 - 96 AND RII2 ARE IK 0HMS 6. R104-R1I0 ARE 560 !l'HMS. 7. R75ANDRIII ARE 33K 0HMS. vee .., + crl' ;; j"5J"f IDV .... , P20-1J r ,P2D-IB r ,,P20-27 ,P2D-54 " , P2D-57 ,PZI -04 GND r GND GND GND GND GNO GNO 00 1..0 ,,P21 -08 , P21-15 , PZI_I' P21-24 FOR " P21 -29 ." PIN 89987700 UffLUS 01l£AWlS£ SPE.CII'E:O EII.".tON .ltf IN INCHU P21-57 " TOl.l.RANCIEI - C1' W W W 0 0 PWA r DETAILED LOGIC DIAGRAM DRAWING NO :3 .,: 1213HI'c; r~.,-", r~, -«; ( CSB [AJ P2I-55 ( m , ~ R51 iii , I I·" vee ~.:o.y U'1 I 5@ CUIU J-I 0'1 U'1 DETAILED LOGIC DIAGRAM PROGRAMMER'S CONSOLE , " .,.. rr=- Interrupt Li nes ,. Location Sheet Square +5v P2A31 GND PI Bll GND PlA29 GND P2A03 8 A2 GND P2821 8 A2 50::172 Vee Logic Ground 89633300 0, ALU (drawing 89614300) Outeuts --'-""--' Signal " Active Connector/ Pin -.-> ..-.- ..- ...... ~-- ~ ,,"" . ',. • _ •• _ • • • •4 • • , ...... ' . . . , _ .. _ ' _ 0• • _ _ , Locat ion Sheet Square Function .......... , - ....... ,'. "'".. , ••••••••• __• ... ;. . . . . . ~., f-----... 2 C2 P1B12 2 B2 H P1All 2 B2 Q.02 H P1A08 2 B2 Q03 H P1809 2 82 Q.04 H P2A24 3 82 Q.05 H P2828 3 B2 Q06 H P2B25 3 82 Q.07 H P2A28 3 82 WEI L P2829 QO3+Q.04+Q05+Q06+Q.07 3 C2 XGQ H P2At7 {X} > {QJ 3 D2 XSQ. H P2818 {X} 3 D2 rlAOO H P2A05 4 82 rlA01 H P1B02 4 82 rlA02 H P1A30 4 82 f/JA03 H P2804 4 A2 rlA04 H P2A23 5 82 f/JA05 H P2824 5 82 rlA06 H P2A22 5 82 H P2B22 5 82 Q30 H PIB08 Q.OO H Q01 rlA07 89633300 A - .........- ..• QOO-Q.01-Q02 Q register bits ~ < {Q.} .... Gated A register outputs ~,,-, 5-173 ALU (drawi.ng 89614300) Outeuts (cont I d.) Signal Connector/ Pin Active i .-._'-"'--' -- ... ~,~- AOO L P2A27 AUG07 H AEZ -_.'......... Locat ion Sheet Square Funct ion '" Least significant bit of A regi ster 5 A3 P2B08 5 Dl H PIBI6 AOO -A01·AOf·A03 -A04 -A05 -A06--;;;O-; 4 A3 XSElO7 H P2A19 SHA H A07 5 D2 P2B26 6 C3 H P2B23 6 C3 Q.7A H P2BOI 6 A4 CNSOO L P1B31 6 B2 CNSOI L P1A31 6 B2 CNS02 L P1B29 6 B2 CNS03 L PIB28 6 C2 CNso4 l P2Bt2 7 C2 CNS05 L P2Atl 7 C2 CNSO~ l P2Bt3 7 A2 CNS07 l P2Bl1t ... 7 A2 GH H P2B03 "- 7 B3 PH H P2AOI 7 B3 H i ! PIB2t 6 B2 6 B2 GL Pl H ~ 5-174 ... ... ..... -.. ~ , ... I .J X selector output bit 7 >CNS data bus bits Carry generate and propagate PIA23 . . . -' .... ................. -.,.-" ........ , ". - -- ....,...... ,................ ..-..... ...... ~ 89633300 A ALU (drawing 89614300) Outputs ------.-.----.~- Signal ..... - - t _ - - ..... - ...•......... , .. - .... -_ .. , .•.••. ,., ..._._ •. _ - - , .. , .., ......,.-.-_ ... - .. ' . Connector/ Pin Active 1------+-,--,_... _----- ..... ,. " 0 . . . . . . . . . . _ , ' " .... , .... ..-'.' .•. ' ' .. ~'.--' -'-......, .. Locat ion I Sheet Square: Function ... "'" ..... _..... _._........... ., . . . . . . _ _ . _. . . . .' . ,___ .. _._ .. r.'·.~ •. ' ___ .• _._ .• __ ." ~ TA02 L PIB04 8 Cl TAO 1 L P1A04 8 Bl , TAOO L P1B02 8 Bl GS L PIA02 8 Bl L P1BOl 8 B1 ALUOO H P1B24 7 ALUOl H P1B30 7 ALU02 H P1B27 7 ALU03 H P1A21 7 ALU04 H P2B17 ALU05 H ALU06 7 04 P2A16 7 c4 H P2A15 7 c4 ALU07 H P2B15 7 A4 ALU07A H P2B02 7 A4 ALUOA H P1A27 89633300 A »ALU signals to bus . __ ; ~ 5-175 V'I I .~ ..... tIFF SHEET REFERENCE LETTER A 8 C D E F G K L M N P R S T U V W X Y Z 0 AA AI AC AD AE AF AG AK AL AM AN AP AO 2 D-I C-I 8-1 A-I D-2 D-2 D-2 D-2 A-I 8-1 C-I D-I 8-2 C-3 D-3 D-4 8-3 0-1 D-3 D-3 D-3 A-I 0-2 . D-2 D-2 . C-4 : 8-4 D-4 8-4 A-4 A-4 A-4 C-4 IIFF - SHEET REFERENCE SHEI UR:A I'IIIN 4 3 5 6 8-3 8-3 8-3 8-3 D-2 D-I D-4 D-2 D-2 C-2 8-2 D-2 D-2 7 8 8-3 8-3 8-3 A-4 C-3 2 . AR AS AT AU AV AW AX AY AZ C-3 C-3 D-3 D-3 8-3 D-3 D-3 D-3 8-4 C-4 C-4 8-4 D-I C-I 8 ... SA C-4 8-4 8-4 8-4 8-4 A-4 A-4 8-4 A-I' C-I 0-1 8-1 C_NTINUES D-4 ·sv )"...... I lIN I . 3 8-1 A-I A-t 8-1 C-I 0-1 A-I A-I A-I A-I SHEET. 5 6 7 8-4 8-4 A-2 8-2 0-1 D-I C-I c-a -' c-a o-a -" t I~ I::z Ivee GNO~ 8-4 8-4 GND~ GNO)rsp§! HI '! "TE: ALL RESISTeRS ARE 0.25 WATT 5... 0) 00 \.0 ~ \oN \oN \oN o o » ............ ,... - • UJLIa 0 " ' - . .eIND DETAD..ED LOGIC DIAGRAM REVISION RECORD iliFF-SHEET REFERENCES (C "'TlNUEO FRill.. SHEET 00 \.0 a\.II) \.II) \.II) 0 0 J 2 I I L » ...f :1 ~ II I I I L I I- 8B BC BO BE BF BG BK BL BM BN BP BR BS BT BZ BU BY BV BW BQ CA CB CC CO CE CF CG CK CL CM CN CP CR CS CT 8X 3 4 0-2 0-2 0-2 0-2 0-2 A-3 0-3 0-3 0-3 0-3 C-4 0-3 C-4 B-4 C-4 0-3 C-4 0-4 5 0 7 6 0-1 C-I B-1 A-I 0-2 0-2 0-2 0-2 0-2 A-3 0-3 0-3 C-3 0-3 B-4 0-3 B-4 B-4 B-4 0-3 C-4 0-4 B-2 B-2 B-2 B-2 B-3 B-4 B-4 B-4 B-4 B-4 I 1I 8 "1 II I 0-1 2 C-I 3 4 5 CU CW A-I tv CX CQ CY OA DB DC DO DE OF OX OY A-I B-1 C-I 0-1 B-4 B-3 B-3 B-3 B-3 0-1 8-1 A-I C-3 A-I B-1 C-I 0-1 B-2 B-2 8-2 C-4 DESCRIPTION ----- I I C-4 8-1 J B-2 B-3 .1 6 7 C-3 B-3 C-3 B-3 C-I C-2 C-4 C-4 C-4 C-4 C-3 ~ 0-2 A-I 0-2 0-2 0-2 C-4 0-1 0-2 A-3 0-2 0-3 0-2 I 3 I· 8 J j ~ A-3 A-3 I I II 0.,.3 I- I IJ DETAILED LOGIC DIAGRAM ALU V1 I -....I -....I A " p>o' ID'NT] . C I DWG NO 89614300 I..·HT. • I~ ~ ALU (drawing 89614300, sheets 2,3) ADDEND REGISTERS AND GATES Functlon This section contains the following circuits: the addend registers Q, P, M; the X register which is used both as an addend and augend register; the addend gates and the comparator for comparing the X and Q register contents. Description NOTE As in the rest of the ALU, one board accommodates the circuitry sufficient for eight bits and therefore two boards are used. In the following the numbers refer to the lower eight bits 00 through 07 (ALU slot location 25): for the board dealing with the upper eight bits (08 through 15)· increment the bit number by eight. The Q, P and M registers store the information selected by the shifter (refer to sheets 6,7). Each one is timed by a separate clock signal (QCK, PCK, MCK) generated on the Timing board. The P and M registers are reset by the Master Clear (Me) signals, the Q register by its own clear signal (CLRQ). The Q register outputs supply the A/Q channel The three least significant bits bus through open collector buffers U36, u48. of the Q register are also sent, in complement form, to a three-input AND gate (U49/6) to produce the signal Q30 = QOO-Q01·Q02. This signal leaves the board through an open-collector driver. 5-178 89633300 A ALU (drawing 89614300) sheets 2, 3, cont'd. The five higher bits of the Q register (the W field) are used to produce the function WEZ: Q03·Q04·Q05·Q06·Q07 at U35/8. The signal, from the most significant ALU board, is sent to the A/Q channel through the console interface board. The WEZ and Q30 signals from both ALU boards are used to sense when the contents of the Q register is zero (see Console Interface sheet 6). The X register and its associated selector are described on pages facing sheets 4, 5 of the ALU circuit. The comparator U54, u62 compares the outputs of the Q register with the complement of the X register. This comparator produces the signals XSQ and XGQ (X Q) which are sent to the console interface card. This comparator is used only during divide instruction. Because the absolute values of X and Q must be compared and the X register content is always negative during the divide instructions, the complement of the X register content is input to the comparator. The addend selector gates select the outputs of one of the addend register for transfer to the ALU under control of the signals QTADD, PTADD, MTADD and STADD. 89633300 A 5-179 ... \11 I .. .... _ _ It 00 o vee R44 II< C"PARA11IR 4~8 % I 4 524 4J!,!,.i)-J2 2 AM lrxt.~ i E$. 5U CI< PUllS 1 J,4, u.s@- M-REGISTER R 12 I '!" Ace 14 8 " 4 8 9 2 A08GI I r8 co;-- ~ 10 5-~ 6., AD ICI< PIAI4 CLRO"PlAl3 I AN" 49 I I 1 E ......i ] 520 U46 CDo 5~ 12 13 3 AE PCI< 4.11.6 AG 00 \D 0' PI813 I ~ .....!~ a 23 2 ...! U48 4- 7 6 10 r-vr '81 co.- " 15 14 (§f p-REmER I 9 C RRGTR 520· U63 5 COo u9- 1JQ. _ II 13 U64 4®-tl I@ MTADD " PI814 3 f~5 180 8 R28 f80 I::;:;: II .~ 2~ r.:.. ...... PI808 "050 , 4,6 AL 12~~ 4,6 AI< 13ro-15 I 14 » • - tf" • 10 • PI8I2/~o.0. Ir-"~ 2~ PIAII, .0 to0 • 8 UI2 4~ ~ PIA08 0 • ~ 3 • 4- .010 4@-yf PI809 ~O.,o" 9 10 -• UI4 6 • ~~ .:-- J®8 r-"I" I 13 • • 2~ 3 • ~ 4~ ~ 4ID-rl 7 -~ 10 • U31 9 10 • ~- ~L ----@8 \AI \AI \AI o o • 4~ 9 7 4~ ~ I 4®-rl: V3 4',6 @ ~]E 13 • 6 • ~~ I 10 U64 R27 180 UI5 10 • vee ft26 180 • 9 oooi R46 2~4 2~ 3 • 4~ vee 2~4 4 213H 6 3 U49 ~ OTADD" P2A26 XTADD;' PlA09 ~~" :~ER 1iJ: C Ii:\. 6.3 F 7 L-.@3 ADDEND GA' I r-"r""j"" 13 • • ,Ie PTADD "PlA12 !.-.@ 3 R45 ~ CO. 3 E ~8 ~ 13~~ I 14 1""1 DATI ICIII I 3 G 7al ~ ECO ~3 ~.83 !-oj- .~ I...r. C ....RRGTR 520 U47 r-~ COo H. \ 2 A 0 8 GI " . . . GI A08 I U62 G2 IlO£vl DETAILED LOGIC DIAGRAM ALU 6 • I I RE1I1SION RECORD 10EvI I OESCRIPTION ECO 10RFT OATEL:HKDlup 00 \.0 0'\ W W W o o 1-"--:"';='-<.JU:t\lL, XGOM ) I 32KW) P2A29 ~VFW) P2B27 » 7 7 P2Bla 2 2,4,5.6, ,-I AF}---.....-'''''l!' " CO 5.7 az 5 CD4 • 5.7fiiih. >::::/ 5 7 BX • 2 ===========---:-===---==11 3 5 I CO;--~ 12 co-- ~ 13 IIIII 62 AD z@ 11111 ~~ R43 IK 10 8 I Wffi.WEzi. P2B29 U39 C04 10 13 - 15 14 CDr I _ U CD .~12 6®--- _ a ~04 Tr - R31 180 3 U23 ~ 8 AR 7 . BIT-5 II ~ ~] 10 ~ 1:....-J I-~ I; ~ 209H ' 3 8 12 R54 180 " yee 13 U50 5~a U24~S}7 U I 4 - r®1 AZ 8 BIT-.f >=J I 9- a 10 ~I 8A B ::.&.,. ;J:it~ " AX 8 - -{ill AY 8 ~ '----~ ELBITCDMPUTlASLlD ... "., .,," faD' q P2BOI If 5 6 9- P2A28 07 015 ~ 12~CD 15 6 00 I 4 - 5 AU ~06,014 ~ ~ I~I Q7M a ;®-rl a R32 IBO P2A24 ,04,012 P2B25 ~ -~ 2_ 209H 3 a I P2B28 '05,013 1_ L-. 5 '3 4 I---- ~~ 6 "9lJQ. - 8 1; RGTR ~ R30 180 ~~ 1I11Llli.~C 520 U40 R29 180 I~a II T 13 2 ~[REGISTER AO 7 ~~ yee 12 - a -----1l ,... 13 F::-3 c ~ U7 9110 a 9 U50 RRGT 520 ~~ \J'1 I 41- 5~ a "-'-' U 44 I"'~ i-= 2U "f: a 3 ~iREGISTER 5 ~ 7 ~CD5 6 IIIII Zt- I - 15 ~ I ~~~4 --.JQ. ~ I~~I yee 2 213H,lL 13 U35 9 .;;.;;;. ~ - III ! l !@-t,......2 V a r-- ~ 76 TI ~ I !lh=t ~ Ii 7 BY )(SOM DETAILED LOGIC DIAGRAM ALU 1411111mlllM I ') ... " I '0"', , DWG NO C ,REV 89614300 St·t t T .. 3 I A ALU (drawing 89614300, sheets 4, 5). AUGEND REGISTERS AND GATES Function This circuit contains the augend registers A, Y and the augend gates; as well as the X register, which is used both as an augend and addend register. Descri pt i on NOTE As in the rest of the ALU, one board accommodates the circuitry sufficient for eight bits and therefore two boards are used. In the following the numbers refer to the lower eight bits 00 through 07 (ALU slot location 25); for the board deal ing with the upper eight bits 08 through 15) increment the bit number by eight. The A and Y register store the information selected by the shifter (refer to sheets 6, 7). Each one is timed by a separate clock signal (ACK, YCK) generated on the Timing board. The X register stores either the shifter outputs or the MX outputs of the memory control board. The choice between the two inputs is made in the X selector (US3, u61) under control of the signal XEZ from the I/O interface circuit. The MX data from the memory control board is the memory output durin~ a read memory reference cycle: MXOO through MX07 for the ALU board dealing with the least significant bits, Mx08 through MX15 for the ALU board dealing with the most significant bits. The MX data lines are terminated in 330 ohm pull-up resistors on the ALU boards The A and Y registers are reset by Master Clear (MC) whereas the X register has its own clear signal (ClRX). 5-182 89633300 A ALU (drawing number 89614300) sheets 4, 5, cont'd. The outputs of the A, Y and X registers form some of the inputs of the augend selector gates. The outputs of anyone register are transferred to the augend gates under control of the signals ATAUG, YTAUG, XTAUG. The other control inputs to the augend selector gates are SG, 51, SF and DELTAUG. The following figure shows the augend gate control signal connections. Notes (to Augend Gate Control Signals): 1. 2. 89633300 A 01 : 03 on the LSB, are bits 04 : 07 on the LSB, j are bits bits 09 . lIon the MSB. bits 12 t 15 on the MSB. 5-183 AlU (drawing 89614300) sheets 4, 5, cont'd. SF ,'" SI XTAUG 8 ,'" ~ ,'- 8 H YTAUG , Xo ~ ~ '- ATAUG ,'" I BIT 0 8 Yo ~ 8 Ao , SG ,'" ~ E 8 I ~ a H Xj ~ ~ BITS j . a Yj ~ a A·J ~ ," E a I ~ DELTAUG ,'" a Xi ~ BITS i a y.I ~ a Ai ," 5-184 ~ ~ E Augend Gate Control Signals 89633300 A ALU (drawing 89614300) sheets 4, 5, cont'd. The augend selector gates can, with the aid 0; the above signals, transfer the content of the A register, Y register, or X register to the ALU. These gates can also transfer part of the content of the X register with the upper bits zero, as follows: Transfer Signal DELTAUG DELTAUG L- Remarks . Remaining X-Register bits: X Register Bits transferred 00 T 03 00 T 07 00 .. 07 12 bits 8 bits 8 bits to bit recognized as zero recognized as zero si!=jn-extended according X07 1 The output of the augend gates is active low. The following table summarizes the selection of the constants: r'Contro 1 Signa 1 SI·SF S I·SG SI·SF·SG ATAUG·YTAUG·XTAUG·ST 89633300 A . ..--- _..-...-.. .." ....... _----, Constant Selected I +1 -1 -0 +0 5-185 ALU (drawing 89614)00) sheets 4,5, cont1d. The following truth tables show the augend gate control signal configurations for both ALU boards and the corresponding augend gate outputs. AUGEND SELECTOR - MOST SIGNIFICANT BOARD (MSB) .. I Augend Gate Control and (Corresponding Signal) i I I"'.' -_..... . .-.. ! . YTAUG l XTAUG (YTAUG) (XTAUG) 1-----+--- DEL TAUG' SF (H) (SE) i' SG SI (SSE) (I M) "--'-'~---~---+-----il------I l H l l l L H H L L l l L H H L L L H H L l xb7 X07 X07 X07 X07 l.___. . I l H H H H H · l L l , ··:i _-- ................. -- .--..... ! . .. .-. -" .. '1"........ ........ '''. A:rAUG (ATAUG) " Augend Gate Output (act ive low) -"--''' ........ .... -,,-.~----- L . l L L H H I, I I A register Y register X register Extended sign bit of ~ 00 16 FF16 -I.-_.l--.---I.._--4t__ . .___- - - - - - ...I.-_--'-_ _ ! AUGEND SELECTOR - lEAST SIGNIFICANT BOARD (lSB) '~"-""--.~"~----"---"'~'--'-'~-''''''"'''''-- -'-.- .. -----.~.' ..... ....----.------,--.-----.--~.----- Augend Gate Control and (Corresponding Signal) ... -.-.". .......... ..... I----r-----,:--~--·--··--- Augend Gate Output (act ive low) ...- ..-.- ...- - - - - - - . _ - - 1 r-'" ATAUG (ATAUG) YTAUG (YTAUG) XTAUG (XTAUGl) H l l H H L H l H H l l H H H l l H L H l l l H H l l l l H l H • _ _ _ _ _L _ . _ _ ....._ DELTAUG SF (DELTAUG) (SFl) ... A register Y reg i ster X register lower 4 bits of X, 11011 extended I: -_ The signals ATAUG, XTAUGL, XTAUGM, and SIL are produced on the decoder board. The signals YTAUG and SGL are produced on the timing board. The signals SFl, 1M, SE, and OELTAUG are produced on the I/O interface board. H = active high, 5-186 l = active . ....... ..... _-, ........ low 89633300 A ALU (drawing 89614300) sheets 4,5, cont'd. The A register outputs supply the A/Q channel bus through open-collector NAND gates. The outputs of these gates are controlled by the A/Q channel control signal, AQC, from the I/O interface. The A register outputs are wire.-ANDed after inversion in Ul3 and U3 to produce the signal AEZ. This indicates whether the content of the A register is zero. This circuit includes a fl ip-flop (U5l/6) which stores the least significant bit of the A register. The input to the flip-flop is the least significant bit of the shifter. It is clocked by the A register clock and cleared by Master Clear (MC). Its output is used during multiply instructions where this bit must be stable early in the cycle. 89633300 A 5-187 .r. v V'I I 00 00 0'-:', '" j;;( ~ PIAI8 XEZ .. -.X, ~hg~> 5 CB 5 au VCC RH R6 R7 RB 330 330 330 330 MX3L PIAI6 M M MX3M' MX2L PIBI5 M MX3M M MXIL PIAI9 M MXIM M MXOL MX PIBI8 MXOM, MX 5 CA YCK PIA20 CLRXr~ Me ILl 189 U61 9 110 10 I I 3 0 AF ~:g U45 5 BK 15 5~76 4~~2 Ll...-- II~ I r-r-- ~181~ 'I~a , 4~ 'm1 5a ~60 10 I~ 6 9 10 J J!ro;-15 ~ 2 2 ,6 AG .r:-::>. '~ 2 AK 2 AL . ~R !J C R I 4 YGTR( 520 U44 COo I ~2 2; I ~ a 2 ~ 2 13 6 ~ reo-- ~ 00 15 0'\ \N \N \N o o » cf ISO ISO a I -r--- 2 ~ 120910 5 6 9 10 r:@" PZ AQZ. 121-- II r@6 ~14 '-- ~~ 3 26 10 I UI3 _~ 13~~ II~~ ~~ ! PIA30 a U28 6 ~ BIT-I a ~~ P2A05 J'AO"A8 r@)6 W- A "j=~_6 8 II~ ~ RI5 180 ~9 I-- ~_ I "--- 3 RI6 Vee RI4 RI3 2 204~ U30 41-== 5 _ 6 fo:-:.-- ~ 10 12 CD 6 ~a 4- 5@- 5~ 1 C ~al "--- ~ 1 ~. 8 BJT-2 UI2 ]E ~2 .:....-.. -.!co.-~ ....!:co;- 7 BII. .CK PIBI9 A CK ~~ 520 12 r!-::-;-@ 1IT.-3 lOa W 2 I....- U29 9~ L 2 ~ CDo I 209H 5a 6 ' IK 5~ ';~ W R 2,3,5,6,8 2 ,- ~a 4~ !,.QI 'Ice a 2~ XTAUG~~ N 2 ~2 13 5@ XTAUGM P 2 I ~2 ~'ir-4 j ~ T AUGEND GATES I r-r-- 5@ 5 BG 5 BF 12~10 13 I 2 r--!~7 I ~ 17 IJR 13 CDI ~1i>-12 6 I , PIAI5 25 iii, JA9 SE(MI,PIB22 SFL 1 ~]E I~ 13 a I 2~ 209H in ,iiAiO a P2804 {ii!, iJ,ijj :a ~ Y UII 9 II P1816/AL AM 29 4~ 8IT-0 15 a ~JE '--- k!ID5 ~Vcc IK l~l'lT tllllPlmIS,LT!I ' ......... " nF'TAII F'n lOGIC DIAGRAM rOOE IDEO' _I OWG NO C ALU 4 89614300 1 .... v 0) .P2AI9 _~.9/XSEL7M '@};~f---d ,.. '""I ;,P2A30 ,/ 13 iii 209H 213 8 41- A-REGISTER ..9 JR ) 3AU 59 520 )RGTRI U37 4 CD. 2 ~I-- 131ci;-- 15 ~I-12 II ~ ~~ V'1 I 0) \0 2,4,6 ;'\ '.J r-'j'"' ~S-~ 2 5t6 ~ 203M L---.J! If 4 ~- ~ IE 7 13 iii 209H 2138 4 I 5 U22 6 8 10 9 8 4ill IN 4 8 I1T-4 ~ ~L 3 I--:~ T 131--~ I ~ 11 , i6 P2A27 ----.; IHAIT rn.PIIIIA~ 11111 • ... ... lI.eI:,'Ua'in!ih1· 7 <------...! I"" . . . . r®r ,I P2822, iA7,lii5 eo ~J.:..- , DA 4 52_ ~ 2,3,4,6.~ I '--- 12 3 ~ 175H I" R U51 - I BIT-5 r:::llf- ji4 'AI2 P2124';IA5,iAi3 {---@7 ,. P2A22 iiA6, jjAj4 ~- 6@- ~ ~.' CE 7 <41 12'cD;-~ 13 146H UI8 CF 7 P2A23 2 204 3 U20 5 _.6 10 5 III U21 6 9 10 iii Vee ~~~~~ ~r-;;- ~ 51cD;- 7 I Be 7 BIT-6 r;f!f- s~ 3,7 85f '~L- ~~7 ~ ~ , BB 7 ~I- ~ 4 8 BIT-7 ~~ IMIHIGH III "cii";'- ~ 5f~ AUG7M 4 5 111 U4 6 9f10 III R!IO III i5EL'ii'OO P2B16 10 AUGEND GATES I I'""'j""" 13 III 209H ~III 4®--l 9j "1iJ Y 4@ Vee 10",.TI DATE I DE5CRIPTION YTAUG PI817 Y-REGISTER 4 ~®--l55;4 c, ATAUG P2A21 ~~3 3 !.O....I • I SEIMI,SGL ,PlA22 SIM ,SIL :PIAI7 5~ 7 BQ 3 CD. ~ 4~ 2 IR 3 CD. s ,....J~4 , ... P2A20 ~~ ~ ~~7 0 I fr co;-- 12 13. 6 -; I 9 t-- ~ T 4 BU IB9 ~liI U53 . MX7M,MX71 ... P2B19 » 4 GI IAEVI 'co " X-REGISTER OF TAILF.[l lOGIC DIAGRAM AI.l/ I"'C'" r c DWG NO 89614300 I ...... 1 & I ALU (drawing 89614300) sheets 6, 7 ARITHMETIC AND LOGIC OPERATIONS Function The ALU microcircuits U57, U59 form the heart of the ALU board. the nine arithmetic and logical functions used in the computer. Description They perform NOTE As in the rest of the AlU, one card accommodates the circuitry sufficient for eight bits and therefore two boards are used. In the following, the numbers refer to the lower eight bits 00 through 07 (ALU slot location 25); for the board dealing with the upper eight bits (08 through 15), increment the bit number by eight. The outputs of the addend and augend gates are combined in the ALU microcircuits, the four lower bits going to U59, the four upper bits to U57. The control inputs (SOO through S03, M) are generated in the Decoder board. The carry look-ahead function is provided in the Console Interface circuit which produces the four carry signals for the ALU boards. The ALU microci rcuit outputs (ALUOO through ALUO]) form the inputs to the shIfter and feed the ALU bus through 33 ohm series termination resistors. The ALU bus carries CPU memory address and memory data to the memory address card of both the internal and the optional expansion memory banks. The CNS data gates, (U56, U58) are open collector NAND gates which transfer ALU data to the bi-directional CNS data bus. The eNS data gates are controlled by the signal CLREG from the programmer's console. 5-190 89633300 A ALU (drawing 89614300)sheets 6,7, cont'd. The ALU Microcircuit (509) The Arithmetic Logic Unit (ALU) microcircuit is a commercial I.C. package (509 or 74181/9341 described in the Key to Logic 5ymbols, Control Data publ ication number 89723700 (or equivalent) and in manufacturer's specifications. Its salient features are repeated here and its specific use in the computer ALU circuit is described. The parallel ALU is controlled by the four Function 5elect inputs (50,51,52,53, having binary designation 1 ,2~4,8) and the Mode Control input (M). It can perform all the 16 possible logic operations or 16 different arithmetic operations on active high or active low operands. In this computer it operates on active low data because the addend and augend selector gates complement the data. When the Mode Control input (M) is high, all the internal carries are inhibited and the device performs logic operations on the individual bits. When the Mode Control input is low, the carries are enabled and the device performs arithmetic operations on the two, 4-bit words. The device incorporates full internal look-ahead carry and provides for either ripple carry between devices using the signals PL (carry propagate) and GL (carry generate). PL and GL are not affected by carry in. When speed requirements are not stringent the 74181 can be used in a simple ripple carry mode by connecting the carry out 16 (pin 16) signal to the carry input (C) of the next unit. For high speed operation the 74181 is used in conjunction with the 74182 carry look-ahead circuit. One carry look-ahead package is required for each group of four 74181 devices. 89633300 A 5-191 ALU (drawing 89614300) sheets 6,7, cont'd. The computer ALU circuits utilize nine of the possible 32 functions of the ALU microcircuit. The functions and the control signals are shown in the following table. MODES OF OPERATION OF ALU MICROCIRCUIT (509) M INPUTS S3 S2 Sl FUNCTION OESCRI PTI ON SO _______ 1..... ·• H L L L L AUGEND 1. Complements the register selected by the Augend. H L L L H ADDEND-AUGEND 2. NAND function H L H L H ADDEND 3. Complements the register selected by the Addend H L H H L ADDEND,AUGEND 4. Transfers register content (except Q) through the ALU when the computer is stopped. H L H H H AUGEND -ADDEND 5. Transfer the Q register content through the ALU when the computer is stopped. (In this Case Augend is zero). H H L L H ADDENDtAUGEND 6. Exclusive-OR function H H H H L ADDEND-AUGEND 7. AND funct ion L L H H L AUGEND MINUS ADDEND 8. Subt ract ion L H L L H AUGEND PLUS ADDEND 9. Addition H - logic high, 5-192 I L - logic low 89633300 A AlU (drawing number 896l4300) sheets 6,7 SHIFTER Function The shifter outputs determine which data is valid at the input of the CPU registers at the end of a cycle. Description NOTE As in the rest of the AlU, one card accommodates the circuitry sufficient for eight bits and therefore two boards are used. In the following the numbers refer to the lower eight bits 00 through 07 (AlU slot location 25); for the board dealing with the upper eight bits (08 through 15) increment the bit number by eight. The circuit consists of eight-input selectors (505), one for each bit of a computer word, and a flip-flop. Each selector is controlled by three selector lines (three of CO through C3) which select one of the eight input signals. The table following the next paragraph is the truth table for the shifter, together with the operation of the ALU circuits. The circuit functions are explained in the paragraphs following the table. Shift Fl ip-Flop In addition to the selectors, the AlU board carries the Shift flip-flop and associated gating (U5l/8,9 and U26, U3/8,lO, UlS/2,4,lO, Ul9/S). The flipflop, located on each ALU board, stores information during the first step of a double-word long shift. The information stored is from the ALU board itself or generated in the current cycle on another board. It is stored here so that it should not be lost at the end of the cycle, as it may be needed during the ?econd step of the long shift. During the first step of a long shift or during a short shift the content of the flip-flop is never used. It is sometimes used in the second step of a long shift. 89633300 A 5-193 VI I SHIFTER CIRCUIT OPERATION \0 -I:" r Contro lSi gna 15 C3 C2 Cl CO Selects Input No. Bits j BI ts I OUT PUT S Bit 7 Bit 0 Bit (15) Input of flip-flop Operation I~ ~--~--.----- L L L L L L o o L o H ALtJ06 ALU06 n ALUi-l ALUlo-1 SHB -., Short left shift Z5 Q .. First step of long left shift; used only during divide Instruction. This code usedl also during second step of any long left I III ~ ::::J IQ ::::J C L L H L 2 2 SHC l H L L it it ALU07 6 6 ZI ALU i+ 1 ALUOI ° ALUi ALUOI ALUI_l SHB H H L H L L H H L H H 3 3 H 5 QA07 7 CNS'07i . CNS i ALU06 ALUOO ALUi+1 L ITAI A'EUOo Second step of any long right shift Direct transfer ALU data .......... g. .,CD 00 \0 0' ALUOO Short right shift or first step of any long right shift -I:" W Q First ste~ of cyclic long left shift In shift Instruction. Transfer trap address :r • ITAO o o I II CD CD ,..,. III 0' H H L H 5 H H H H 7 .• _ ,_,1 .. _,j QAi QAOO -CNSOO Transfer A/Q data ....... Transfer CNS data n o::::J ,..,. Q.. NOTES: \0 i • 01 through 06 t j • OOt 07 for ALU board in slot 25 (LSB) 09 through 14 t j .. 08 t 15 for ALU board in slot 26 (HSB). W W for 00 3. Control Inputs are connected as follows: r· 0' W o o » jO. Bits 01 t 06 t 10'; 13 connected to H. ~ High- logic high; L=logic low Control signals CO Cl C2 C3 --0.' . . . . . . . . .'__ .•.. _ _ . . . . . . __ B C A ALU (drawing 89614300) sheets 6,7, contld. The connections to the shifter selectors and flip-flop are summarized in the following figure. CO co C2 z:s SHI ALUI ITAO ALUO- liT 0 i1ii liT? ALUI_I ITAI ALUi liTS i OJ CNii SHIFTER SELECTORS CII CI SHIFT FLIP-FLOP 89633300 A 5-195 ALU (drawing 89614300}sheets 6,}, cont'd. Shift Operations NOTE Timing diagrams for shift operations are given in the first sheet for the Timing ci rcuits in section 5. During a short left shift, each output of the shifter receives the next lowest bit of the ALU. The lowest bit of the shifter (SHOO) receives the signal Z3. The signal Z3 of each ALU board is wired to the most significant bit of the ALU output on the other ALU board. Thus the shift is cyclic. The first step of a long left shift. is similar to a short shift. During the first step of a long left shift during divide, the SHOO bit is connected to SHB. During this time, the signal QSX is stored in the shift flip-flop. QSX is equivalent to the end-around-borrow resulting from substracting the X register from the content of the Q register (X from Q). In the MSB, SHB is connected to ALU07 of the LSB. In the LSD, SHB is connected to SHA of the MSB. During the first step of a long left shift, the signal QTADD is high so thatSHA becomes bit A07 of the MSB. During the second step, QTADD is low so that SHA becomes the bit that was previously stored in the shift flip-flop. The first step of a cyclic long left shift differs from a long left shift in that the bit stored in the Shifter/register is Q07 of the MSB. The execution of a long left shift is shown below. 5-196 89633300 A AU) (drawi n9 89614300, sheets 6,7, cont'd.) MSB LSB 0 0 00 07 CONNECTION ON COMPUTER BACK - PLANE A 00 07 a L..-_-I SHIFT ~~~ } - ..... FF a o CONNECTION ON COMPUTER BACK - PLANE _--' OSX OR 007 STORED 1. 07 First step of double word left shift. MSB LSB A A CONNECTION ON COMPUTER BACK -PLANE o SHIFT FF 2. 89633300 A a CONNECTION ON COMPUTER BACK -PLANE Second step of double word left shift. 5.. 197 ALU (drawing 89614300) sheets 6,7, cont'd. The short right shift may also be used as the first step of a long right shift. During the operation each bit is shifted one place to the right. The least significant bit ALUO is stored in the shift f1fp-flop. The most significant bit of the shifter receives Zl. In the LSB Zl Is connected to ALUO of the MSB. In the MSB Zl is connected to the function. (ALU07 of MSB) + (F = 2) This causes the resulting word to be sign-extended, except during multipl ication, when a positive sign is assumed. The second step of a long right shift is the same as the first except that SH07 receives the input SHC. On the LSD, SHC is connected to ALUOO of the HSB while on the MSD it is connected to SHA of the LSB. The execution of a long right shift is shown below. , AW07 OF MSB) + (F=2) MSB LSB A ZI StlFT FF CONNECTION ON COMPUTER BACK-PLANE 1. First step of double word right shift. MSB A SHC LSB SHe A 07 SHIFT FF SH CONNECTION ON COMPUTER BACK-PLANE SHA=SH CONNECTION ON COMPUTER BACk- PLANE 2. 5-198 Second step of double word right s~.ift. 89633300 A ALU (dra~ing 89614300) sheets 6~7, cont'd. The signals which are used during double word shifts to control the end bits in the shift flip-flop are connected as follows: " , _ ••••• , . • "'''. ~.''''' _. INPUT .0 A _ _ _ _, SIGNAL t40st significant board 89633300 _~ = (F = 2)+(ALUOO Least significant board of MSB) ALUOO of MSB Zl ZJTSH Z3 ALU07 of LSB ALU07 of MSB Z5 QSX QSX SHB ALU07 of LSB SHA of MSB SHe SHA of LSB ALUOO of HSB 5-199 V'I .. "" I N o o 33 7 SHIFTER po- ~._W(~ & (7\ \N \N \N o o ;I> DETAILED LOGIC DIAGRAM ALU . _- ...1 ..l. IREvl "" I.~ 3.;" mIo I I I Eca '! 'CtIKD' ~ .~~::~ I SHIFTER .oj: I' r 6{CY .rB~-5 r - 3;5 ~ I~ VI I N o A 4J Z I- " I I I I - - AlU (drawing number 89614300) sheet 8 INTERRUPT LOGIC Function This circuit accepts the signals on the interrupt lines and processes them to produce outputs according to the content of the mask (M) register and the predetermined interrupt priority. Description NOTE As in the rest of the ALU, one card accommodates circuitry sufficient for eight bits and therefore two boards are used. In the following the numbers refer to the lower eight bits 00 tnrough 07 (AlU slot location 25): for the board dealing with the upper eight bits (08 through 15) increment the bit number by eight. The interrupt signals are stored in the interrupt register (UI6, UI7). This is clocked by the interrupt clock (INTCK) from the Timing board and reset by Master Clear ('Me). The signals on the interrupt I ines are active low. 5-202 89633300 A ALU (drawing number 89614300) sheet 8, cont'd. The outputs of the register are gated through to a priority encoder (U6S) under control of the content of the M register. The priority signals coinciding with a logic high in the M register are allowed to pass, and are considered active. The priority decoders on the two ALU boards are connected in cascade to detect the highest priority interrupt which is active at any time. The interrupts have ascending priority from INT1S to INT08 and from INT07 to INTOO,the interrupts on the board dealing with the least significant data bits (LSB) having priority. The following table shows the operation of the priority encoder: EI o o o o o o o o o INPUTS 2 . 34 S 6 OUTPUTS TA2 TAl TAO Ee x X X X X X X X· H H H H H H H X X X X XX X X X X X X o 7 GS H L H H H H H H L L L L L L H L L L L H H H L L H H L H L H H H H H H H L L H L H H X L H H H H H H L H H H H H H H L L H H H L H H H H H H X X X X XX X X X L L H H X X X L H H H X X L H H H H X L H H H H H = Logic High L = Logic Low X = irrelevant The input EI on the LSB is connected to ground while El on the HSB is connected to Ee on the LSB. The signal GS from both ALU boards go to the console interface card. GS from the MSB is connected to ITAS of the LSB. The outputs TAO, TAl, and TA2 of both ALU boards go to the console interface and are used to produce the trap address bits (ITA2, ITA3, and ITA4) which are connected to the LSB of the ALlI (see console interface sheet 7). 89633300 A 5-203/S-204 6 7 9 ~ 7 V1 I N o V1 r.t" I IS Pla04 PIA: Pia ~TA2L. TA2M !AIL. TAIM TAol. TAOM PIA:2 ~:.GSM Pia DETALED LOGIC DIAGRAM ALU "Pages 5-206 to 5-210 are unassigned". 5-206/5-210 89633300 A .. ~ECODER The Decoder circuits are accommodated on a single 50-PAK printed wiring board. The logic circuit diagram of the unit is given in drawing number 89614900, sheets 1-6. The Decoder circuits include the instruction register with its decoder and other CPU control circuits. This page lists the functional blocks The circuits and signals are described in accommodated on this board. detail on pages facing the corresponding sheets of the circuit diagram. MAIN FUNCTIONAL BLOCKS ---_..._--------- ------------~------------------~ Designation . -.---................ .............. ,..~ Shown on sheet --------.,--- Instruction Register 2 First Level Decoders 2 Addend Gate Controls 3 Augend Gate Controls 4 Controls for ALU and Addressing 5 Register Clock Controls 6 89633300 A 5-211 , V1 N N PFF - SHEET REFERENCE reFSI£ET EFERENCE LETTER A 8 0 E F G J K L M N 0 R S T U V W X Y Z AA 00 \.0 0'\ UJ UJ UJ o o » AB AD AE AF AG AJ AK AL AM AN AO AR AS AT AU AV AW AX AY AZ BA BB THIS SIGNALS 2 0-4 "OEC 0-3 DEL 8-4 17 8- 3 17 RI 8-3 WI' 8-4 Jrr 8-4 R4 8-3 8-3 R3 A-3 R2 A-4 R3 A-4 R4 fa C-2 8-2 TI T4 8-2 8-3 Flo() 0-2 T3 A-3 FloA C-I TI 16 8-3 16 8-3 C-4 ~ B-3 15 C-4 1'4 C-4 14 0-3 0-4 13 C-3 12 12 C-4 C-3 !" C-4 11 10 0-3 10 C-3 165 B-3 B-3 123 Fl'6 B-3 Flo7 B-3 Floe B-2 A-3 FloC FloO A-2 FloF A-3 FI-O A-2 FoO C-I F-2 B-1 TABLE CeNT HUES elN n SHEET LPCAT/~N 3 4 5 C-3 8-4 8-3 C-2 C-I 8- 2 A-4 8-1 C-2 0-4 C-4 C-2 8-2 C-4 0-4 C-I 0-4 0-4 0-4 C-4 0-4 8-4 8-2 8-4 8-4 C-I 8-3 8-3 C-4 8-2 0-3 8-3 0-2 A-3 C-3 0-3 A-3 A-3 B-3 A-4 C-3 B-3 A-4 C-4 A-3 A-4 6 0-2 0-2 0-2 C-I 0-3 0-3 63 8-4 +5V) B-4 ~el GND ) P2A03 , GND ) PIB21 I :.~J'F I I vec l' ~et 68HF !"IAU GND. GNO') PIBU C-3 A-4 0-3 A-3 B-3 B-4 B-2 RI (ii) 0-2 )!.. Ivee C-2 A-4 A-4 ~, A-4 C-4 C-4 A-4 B-3 B-3 A-4 0-3 C-4 0-3 SHEET 7 ALL UNMARKED RESIST""S ARE 0.25 WATT 5% ~ ELEMENT JDENTlFER IS PENDING UNLUS Oft«'""" PlCI'EO D._liON -=-I .A, ... TOLIItMCII OETAIL"EO LOGIC DIAGRAM DECODER ... • I 00 \.0 ~ \oN \oN \oN o o » V'I I N \oN ....... V'I I N ~ lRE~ (C~NTINUEO FR;M SHEET I) ~FF - SHEET REFERENCE eFF-SHEET REFERENCE SIGNALS LETTER F=3 8C 81) F-5 F-6 r- BE Fo7 8F 8G FoB FoB 8H FoO BJ FoE BK FoF 8L 8M FIIlI FI.8 BN FI=9 BP 80 FI =2 FloO BR 8S FI'A FI=E 8T F .... O BU F.9 8V BW F.... A BX F.. Y F .. 5 BY F~7 BZ CA FoOC C8 F .. O CC F.. F CD RE1F CE ITR CF 016 RNl21 CG fIIPE CH CSM -2J FI,o&+7+F CK CL RI.R2,R3.R4 CM RNlI2 RNIII CN CP F"QFI°2.3 ePO CO RNI22 CR CS MOSE CT MOSE CU ~ CV CW ENl2E CX fIIOO 2 CY 0002 000 CZ 000 DA . 2 8-1 C-I 8-1 8-1 8-1 8-1 A-I A-I A-I 8-2 B-2 8-2 SHEET L"CATIt1N 4 3 5 8-2 A-3 A-4 A-4 _I DRFT I DATE DESCRIPTION CHICO " " 6 0-3 (>-3 B-3 B-3 B-3 A-3 B-3 8-3 C-2 C-I 8-4 8-4 A-2 A-3 A-2 C-I C-I C-I C-I C-I 8 -I 8-1 A-I A-I REVlSIOII RECORD ECO 0-4 C-3 0FF - SHEET REFERENCE LETTER 08 DO DE OF OH OG OJ OK OL OM ON DP OQ DR OS DT DU 0-3 C-3 B-3 A-4 C-3 C-3 C-4 C-3 C-2 0-3 8-3 8-3 C-3 8-2 0-4 0-4 0-3 0-4 0-3 8-4 A-4 C-3 C-3 A-3 8-4 A-3 8-2 0-2 0-1 0-1 8-1 8-1 A-2 A-2 A-3 A-2 0-3 0-3 C-3 C -2 C-2 0-4 A-3 A-3 8-4 A-4 A-4 C-3 C-3 8-2 C-3 8-4 8-4 C-3 C-3 C-3 0-4 0-4 0-3 8-4 C-3 SIGNALS 2 ENI20 RE 18 MDS1 FIE23 OELTAUG IO+SHI SIL II'CNTE~ CSA ~ M6T CSO SHI SHEET L;CATI N 3 4 5 A-I 8-2 8-4 C-4 C-3 0-3 0-3 8-4 B-4 A-4 0-3 A-4 C-4 C-2 C-I C-2 C-4 B-1 8-1 C-I C-I C-4 C-4 C-4 A-2 I 6 8-3 D~4 0-1 8-4 B-2 0-2 8-3 C-2 8-2 A-4 A-4 8-2 8-4 I C-4 0-4 0-4 C-3 A-3 C-4 C-3 j C-2 8-2 0-4 8-3 0-4 A-3 C-4 0-4 C-3 -ft - - • .... "".. .. 'I •• DETAILED LOGIC DIAGRAM DECODER COOE IDENT IC DWG NO 89614900 SHEET or. ~ 7 I pr 'p.~£OD~ (drawing 89614900) sheet 2 INSTRUCTION REGISTER AND FIRST LEVEL DECODERS Function This circuit consists of the instruction register and the first level of decoding logic. . Ineuts . SIGNAL CONNECTOR PIN ACTIVE -,,------- -HDEL IRCK HX03 HX04 HX05 Hx06 HX07 Hx08 HX09 HX10 HXll HX12 HX13 HX14 HX15 CLRIR ..... NOTE: I H H HXOO HXOl HX02 H H H H H H I I l I I• H H H H H H H H H H ! ; LOCATION ! SHEET SQUA~~ FUNCTION H I, ! I I II I I I I I I, ! ; I P1B20 P1A21 P1B16 P1A16 P1A18 P1A20 P2B19 P2B17 P2A19 P2A18 P1A25 P1A:l3 P1B14 P1B15 P2B05 P2A08 P2B.08 P2A05 P1A31 -..1.---_ ••. -_ .._-...._---._-- fl field zero from memory 04 04 2 Instruction Register Clock c4 C4 04 I I I ! I, I, >Oata read from memory i , ! I !• ! ! I !; I I j I, j I II I i Clear Instruction Register _ .___----l ...". 2 . 04 c4 B4 c4 B4 B4 B4 A4 A4 C2 C2 C2 C2 A4 An alternative notation, emphasizing the significance of the bits of data read from memory employs the letters L (less s'gnificant) and H (more significant). Thus the following pairs are identical: HXOO - HXOL, HX07 - HX7L, Hx08 ~ HXOH, HX15 - HX7H. 89633300 A 5-215 I I I I• I !; I I I ~ : : ., : \ '. i i ! ,! I ! ,\ 1 ; ; (Drawi ng 89614900) sheet 2, cont I d. DECODER Oytputs , ::GNAL I AC~'VEf.::I:c~or-:~=_~~.-·- FUNCT;-~--. ::~~ATf~~R~'·1 I ' I i Ii I I I I I, i I I I• I ,I I R2 R3 R4 10 H P1A28 H I P1A24 H l p 1B28 H I P1B13 11 12 H 13 14 15 16 H Tf L L DE[ H H H H DEL2 Tl T2 H T3 T4 H Of L L L L 02 03 OD 165 H H H H I· P1B05 P1B10 P1A10 P2B26 P2B24 P2B23 P2A23 P1A14 P1A15 P2A06 P2B09 P2A09 P2B06 P1B30 P1B31 P2BOl P2AOl P2A22 i I I Fl field of instruction register A3 A3 A3 D3 . Instruction Register bits A field zero (stored) see text F - field outputs F - field content is F - field content is 2 F - field content is 3 F - field content is D16 16-15- 2 D3 D3 C3 C3 C3 C3 C3 D3 D2 Cl Dl Dl Dl Bl Bl Bl Al B2 -_._-_ ------~~------~--------~--------------------.----,~--.---- 5-216 ' ........... 89633300 A DECODER (Drawing 89614900) sheet 2, cont'd. The instruction register is a 16 bit register. Its input is the data read from memory through the memory control board (signals MXOO through MXI5). The register is clocked by the tRCK from the timing board and cleared by CLRIR from the console interface. The register itself uses two types of components. The Fl field of the instruction register are high speed dual D-type flip-flops (u45, U46). These are used because the Fl field must be decoded early in the execution of the instruction. The F field and ~ field are stored in quad D-type flip-flops (U39, U41, U47) like those used in the ALU registers. The outputs of the F field and the Fl field are decoded in two four-to-sixteen decoders (U57, U58) each having sixteen active low outputs, one for each possible input code. Four outputs from F-field decoder (OT, 02, 03, OD) which are active when F = 1, F = 2, F = 3, and F = D respectively, (hexadecimal notation) are outputs of the Decoder assembly. The DEL flip-flop, (U60/8), stores the signal MDEL from the memory control assembly This signal indicates when the delta (~) field is equal to zero. The flip-flop is clocked by tRCK and cleared by CLRIR. The output of this flip-flop is an output of the assembly, through an inverter, as (~FO). orr The outputs of the instruction register fields are summarized in the following table: FIELD 89633300 A .... ............... OUTPUTS -- ... ...-...- BITS ~ F TI, T2, T3, T4 FI Rl, R2, R3, R4 to through 17 A '--- _ - -- 12 18 60 ·· 15 ·· II ·· 7 5-217 DECODER (Drawing 89614900) sheet 2, cont'd. The signal DEL2 is produced by decoding MX data lines. I ts equa t i on is: DEL2 = MDELoMX11 MXlOoMX09-MX08 • (Fl=5)-(6=0) 0 It is used by the interrupt logic to sense the inhibit interrupt instruction and prevent an enter interrupt sequence under certain conditions ~ee Console Interface sheet 5). The signal 123 = 17- ib is produced by U38/3 The signal 165 = 16 15 is produced by U38/8. 5-218 0 It is used on the I/O Interface. 89633300 A ... 00 \D [(Fl~0).(R4.R3).DEl] = Rl·R3 + Rl·R3.[(Fl~0).(R4.R3).DEl] 89633300 A ... oJ 00 U) 0'\ W W W o o W9A) P2B13 GOeS) P2B25 , 4 r ~I ,1'6 P2AI3 (S3 I'a ..,,,... 20 ... " 23 3.4 M , , V'I I N W PIB24 I"~-T'- (AIH I' .. , , PIA26 (AD2 DH>4 REV DETAILED LOGIC DIAGRAM DECODER A .. DECODER (drawing 89614900) sheet 6 REGISTER CLOCK CONTROLS Function This circuit generates the register clock controls WP, WA, WQ, WH, WXLI; bit bucket signal (BB) and the signal FIE23. the The WP, WA, WQ, WH signals are used on the Timing circuit to generate clock pulses for their respective registers (refer to timing circuit, sheet 3). The WXLl signal is part of the condition for writing into the X register. It is transmitted to the I/O interface board where it generates the signalsWXL, WXH. r Inl2uts o , I :::NAL ... DBB BBCK WRQ WE BXI5 HDS' QI5 CRQ JiNT XI5 r~:I ~-~. r·~C~~~:::TORT··H H H L H H H H L H PI B21 PIA22 PIAl I PIBI2 P2A28 P2B27 I PIB28 PIB26 PIA04 PIB22 L H H H H H H PIAl2 PIB25 PIB04 P2A26 P2B03 P1B29 P2829 FUNCTION ... ........ --~ r - . " ..... LOCATION SQUARE .,. -. SHEET6 ! .. ~ ..• . I I ,• I It ., i . ; I I I I I I 6 D4 D4 D4 D4 D4 c4 B4 A4 C2 C2 C2 Outeuts wrr BB WP WA WM WQ F1E23 5-232 6 II I . (FI-2)+(Fl=3) I 6 C3 DI Cl Bl Bl 81 Dl 89633300 A DECODER Description (Drawing 89614900) sheet 6, cont'd. The BB flip-flop (U60/5) stores DBB from the console interface. This signal is used during multiply and divide instructions (see Console Interface. sheet 7). The flip-flop is clocked by the signal BBCK from the Timing assembly. The output is used on the Decoder assembly and is also transmitted to the I/O interface. The signal F1E23 = (Fl = 2) +(Fl = 3) is produced by the AND gate Ul3/8. is used on this assembly and also transmitted to the I/O Interface. It The equations of the register clock control are as fo'llows: WP = JRNI + CSP '+ CRQ'SIL + RNI·~DD·(F=O)·(Fl=l) where CRQ is generated in the timing circuit and is active during the first part of a CPU memory cycle. This is an ~DD cycle in which data is sent from the CPU to memory. SIL is active whenever the P register is changed (incremented or decremented) by one. WH = CSH + RNI·EVEN·(F=0)·(Fl=8)·10 WQ = + + + + + + CSQ + HD1·BX1S + HD21·Q1S HDS·EVEN·(CNTE2 + Tl) ITR·0i6·15 RNI·EVEN·(F-O)·(Fl=C,D) RNI·EV~N·(F=E,F) RNI·EVEN·(F=0)·(Fl=8)·ll RNI·EVEN·(F=O).(Fl=F).IS·1b·(SHI + ~ WA = CSA + HDS·8DD·(CNTE2 + Tl) + HDS1·~DD·BX1S + ITR·EIS·16 + 8P·EVEN· (F=O)· (Fl=2) + RNI·EVEN·(F=0)·(Fl=F)·[IS·16·(KO + 10) + 16·00' + SHI)] +RNI·EVEN·(F=0)·(Fl=8)·12 + RNI·EVEN·(F=O)·(Fl = 9,A) + RNI.EVEN·(F~0)·[T4·T3 + (F=C) + (F=7)·PEF + (F=2,3)·BB] 89633300 A 5-233 DECODER (Drawing 89614900) sheet 6, cont'd. WXLI = WRQ·WE + MDSI·000·(X15 + Tl) + RNI·eoO·(F=0)·(Fl=2,3,8) where - WRQ is produced on the Console Interface and is high during the second pass (EVEN) of each CPU memory cycle - WE is produced on the I/O interface and is high during a CPU memory read cycle. Thus the term WRQ·WE clocks data read from the memory into the X register. 5-234 89633300 A . v I 27 " I IREVI '00 -' ECO IIEVISIOII RECORO DESCRIPTION IDRFTI DATE IC"ool UP \D '" ~BB W W W o o II o J.!!...--- » .1 ~I 13 UI4 - ... PIB04 CRQr=:!!--" I (WP ~ .. ~ I( 2.3,4 II P2A26 4 0'. 2.4~N I4t • DU II UI2 . 14 .'1'1 Y1 IS 12.2222 IItZ. 897711201 Y1 IS IB.3133 IIIl baTHE ~1LL\lJIR CIRCUIT (SIIEET 2. 1IlIIE 1-2) FnR ASSEJIIlY 11!177'1?OO HAS : C16 - ~_47 F IS NIT _EClED P.I~ - 100 0I1'1S IS 1fT "MEnED C15 - 47PF IS SHORT - CIRCUITED BY JIII'ER WIRE s. AELEl1EnT IDEnT!.fIER ARE PENDlno. "I' AriD 1149 ARE 7451411. (-2 0-2 .. I , ' • . . . . . '!>t " . " ' •• '!a, "M" It ....,.. '.' r'.I. • nIl , ::t:o Nil> DETAILED LOGIC DIAGRAM TIMING --~ ...... .t. .a_.......,. .. •••• , .... , t .s TIMING (drawing 89617000 sheet 2) OSCILLATOR AND PHASE GENERATOR Function The oscillator and phase generator form the basic clock of the CPU and therefore of the computer. The basic oscillator frequency is determined by crystal Vl. This frequency differs in the two versions of the computer as shown in the table: , "e,. 1. I1._Equ.......i pment I AB107 AB108 .!.••. --,~ ....... ~.•• ,.- •... ,- Memory Cycle Time .... ..... ..... ,., ,~ ...... . , ... 900 nsec 600 nsec ' .... .~ ..... _-----.. -_ _---: ..... : Basic Clock Frequency i .. -i· .. .. ...... ! ....---1 12.222 MHz 18.333 MHz ." -.l The oscillator circuit itself is a resonant circuit using the crystal Vl as the frequency determining element in the base-collector circuit of transistor Ql; the simplified circuit diagram shows this clearly. The output of the comparator acting on the threshold of the logic circuits in the feedback path ensure that the oscillator output signal Is a symmetrical square wave. Transistor Q2 and the common emitter resistor R13 stabilize Ql of the oscillator; series stabilizing transistor Q3 isolates the VCC2 supply line from the oscillator signals. 89633300 A 5-249 TIMING (drawing 89617000, sheet 2, cont'd.) ISOLATED SUPPLY ( VCC2) CI8 C8 RII RI3 Oscillator Simplified Circuit Diagram 5-250 89633300 A TIMING SIGNAL VI0 G0AQ i I G~MI I G0M2 ;, CSPR , - (Drawing Number 89617000, sheet 2, cont'd.) ACTIVE CONNECTOR l L L PIA06 PIBI6 PI AoB P1A05 l P1A04 H I ! , I I H II STPCK EXCK i ClREQ I I , !.. MMRQ ~ ". 89633300 P2B22 PIAI9 PI B27 l SS I EXT A lOCAT 10N·_· _ . SU.E ~_:_ SQUARE Program Protect Violation 2 0-4 Hold CPU during 1/0 operation Hold CPU on busy MelOOry (bank I) Hold CPU on bu~y Memory (bank 2) 2 0-2 2 0-2 2 0-2 Clocks registers to enter data Ii 2 0-2 2 0-2 Set Go 2 B-4 Set Stop Extended odd CPU cycle (compare 00D2) Stop Clock External Clod Clear Reque~t 2 0-4 2 C-4 2 B-3 2 A-2 C-2 B-2 from Programmer IS Console i i i SG-I I FUNCTION H H i H i H I. H I ......4 PI B07 PlB02 P2Al5 P1B03 ... ". • ; Hem()ry rPfjUest ............... ~ ••••••••• " ."' _. _ _ • • • ~_ _ ~ I !, 2 li _ _ _ _ _ _ _ _ . . . _. _ _ _ _ • _ _ • • 2 _~ __ 5-251 TIMING (drawing 89617000, sheet 2, conti d.) outouts: , i SIGNAL ACTIVE ... , , , , I I I i I I j I PHI PH2 PH3 PH4 JKCK GfJCS EVEN fJOO fJ002 fJ002 H L I CRQ CRQ H L iSC L H I I, 5-252 H H H H H H H L· OCK I : i I I : ~ .. ! j I ! I CONNECTOR FUNCTION -----.----..-.- ... ............. .... .., PIAI5 PIB08 PIA22 PIB25 P2B05 PlB21 P2AI8 P2BI9 PIB22 P2Bli ....- ; .. - ..... , ~~ Phase generator outputs I } PIA03 PIBI9 PIA07 PIB06 TOCJJ:TION SHEET SQUARE Phase 5 of Phase generator Computer running Even CPU cycle Odd CPU cycle I C-2 C-2 C-2 0-1 C-I 0-3 B-1 .B-I 2 C-3 B-3 2 2 2 2 B-1 B-1 A-I 0-1 .2 Two consecutive odd CPU cycles CPU cycle request to Memory Control card I 2 2 2 2 2 2 2 2 Clock to Memory system Not connected I! I iI I I I I I .1! I j ! ! I I II , -.--~.------.j 89633300 A TIMING (drawing 89617000, sheet 2, cont'd.) Description The output at U66/6,8 provides the clock signal to the memory system (0SC); the output at U48/8 (0SC) drives the phase generator. The oscillator is stopped by a low on signal STPCK. clock signal may be connected at EXCK. In this case an external The oscillator output drives the five-phase generator (PG). This consists of three-stage counter PG1, PG2, PG3 (U17, U18) and associated gates forming a fivestate machine. The equations of the phase generator outputs are as follows: PHl = PGl • PG2 • PG3 PH2 = PGl • PG2 PH3 = PGl • PG2 PH4 = PGl • PG2 • V10 PHS = JKCK = PG3 The output waveforms of the oscillator and phase generator are shown below. Note that the waveforms are the same for the two equipments AB107 and AB108, the time scale shown applies to the AB108. To obtain the timing for the AB107 (900 nsec memory cycle), multiply the figures by 1.5. 109 ,.--""" 'SC 183.5 218 272.5 TIME (nstc) I L~ L: PHI H L PH2 H L PH3 H L PH4 H JICCIC L The fifth phase of the clock (JKCK) is the last phase of the CPU cycle. trailing edge forms the main timing data for all state flip-flops. 89633300 A Its 5-253 TIMING (drawing 89617000, sheet 2, cont'd.) The signal V10 causes the phase generator to jump directly from PH4 to PHI, avoiding the JKCK clock. This occurs during program protect violation (types 2, 3) (see program protect: 1784 Reference Manual, publication number 89633400, pages 4-9, 4-10, 5-3,6-4, 6-7). The signal G~AQ stops the phase generator while waiting for the Reply or Reject in an I/O operation. The CSPR is active when the computer is not running. It enables D-type clocks used for setting bits in registers of Programmer's Console, while J-K clocks are avoided. In this circuit it gates flip-flop PG3. The signals G'MI and G'M2 are generated by the Memory Control (upper and lower banks) and are used to hold the CPU on phase five; this occurs in two cases: 1) When a CPU Memory Request arrives while the memory is busy with a D5A request (CPU held just before end of an odd cycle); 2} When the CPU is wa.iting for data or sending data to the memory (CPU held just before end of even cycle). Computer Active/Inactive The G'C5 flip-flop (U61) indicates whether the computer is running or not; its output (G'CS) is connected to the CPU INACTIVE indicator on the programmer's console (computer not running). The G~CS signal also stops the computer on phase 1 (PHI) of the phase generator, just after the beginning of an odd cycle. The G'CS flip-flop is set by signal SGI and is cleared by S51, both from the console interface board. The flip-flop is synchronized by the clock output (~SC); fl ip-flop U61114,15 acts as a synchronizing buffer for the G'CS flip-flop. 5-254 89633300 A TIMING (drawing 89617000, sheet 2, cont'd.) Even - Odd Circuit Every CPU cycle is defined as either an even or an odd cycle. The even and odd fl ip-flops (u4) determine the state of the machine. Usually even and odd cycles will alternate so that one fl ip-fl~p will be set and the other reset on the first cycle, and both flip-flops will change state on the following cycle. In some cases the odd state continues for two successive cycles. In such a condition a third fl ip-flop, called 0002 (U8) will be set during the second odd cycle. The 0002 fl ip-flop is set by the signal EXT from the I/O Interface board and resets itself after one cycle. The fl ip-flops EVEN, 000 and 0002 are clocked by JKCK. The input equations are as follows: SET Fl ip-flop , I EVEN 000 I 8002 I I RESET MPC i .J 8002 + EXT H SGI G0CS H H MPC 800'EXT i K II H 8002 + EXT 8002 Ii The RQ fl ip-flop (UI7) produces a timing signal for CPU memory requests. It is set at PH3 on odd CPU cycles and cleared at the end of the cycle. The output of this flip-flop is multiplied by VIO and by the signal MMRQ from the I/O Interface to product CRQ which is transmitted to the Memory Control Card. 89633300 A 5-255 TIMING (drawing 89617000, sheet 2, cont'd.) A timing diagram for typical. CPU Memory Cycles Is shown below. Note that the JKCK signal is extended in the even .' part of the cycle when the CPU is stopped by the G'MI or G'M2 signals, the timing of the CRQ signal is determined by the RQ flip-flop. The timing shown is for the 600 nsec memory cycle. To obtain the timing for the 900 nsec memory cycle multiply the figures by 1.5. 0 Tim. (nllo) 8'l8 PHI 109 218 327 436 I I I I 16!.8 272.5 n Sl 548 I 496.8 381.!5 L..-_ _ _ _ _ _ (0) 109 I I 600 n ~ 5'l8 1~3.8 I I l I ----~_j:~ ... I I I I '--____~n -+----'n I H L H L I: I L--_ _ _ H L H L H I GOMI I L I' H I 'DO --1 L H I EVEN L I CRQ I : I 200 I I :~::~s ________~I-~r--lL_______________I~------·r! DATA FROM MEMORY I I V.=~=L~ID~_______Ir----------------~ I DATA TO MEMORY ~ST.!!~=8:::LE::""______ 472.8 I I I I : I I I I I I I f-1- - - - - - - - - - - - - - - ' L !-..~------ 5-256 436 ONE MEMORY CYCLE (600 n.. o ) J H L H L H L H L , 89633300 A 00 1.0 Vii) GOM2) PIA05 PIA06 Giiiil eSPR GeAQ 9 0'\ \N \N \N r II o o T 0.1 0.1 RI4 vecI ~.....-Yh~ ~ r ... ~ (PH4 » ... ~ 3 2 PIB22 P2811 (eD02 m"P2822 ~~ I VCC2) PIAOI .!r: RIT IK r t::' . MMRQ)PI803, PI8t9 (CRQ ~I ---t-I-'\~-IL.II_ - -; - -- - - ~ '"'., (iii; ·C2 ~I V1 I N V1 ...... VCC I ) P2A31 I C3+ C6 I I :1CI ~v "'" 33,.,. I 5.6K I'll. L ____ _ I II£> DETAILED LOGIC DIAGRAM TIMING A TIMING (Drawing number 89617000, sheet 3) COUNTER Function: The 5-bit binary count down counter is used for the following: I. During shift instructions it is used to count the number of times a word is shifted. 2. During Multiply/Divide instruction it is used to count the number of iterations necessary to complete the operation. In this case it is loaded with the number 10110 2 • 3. During any memory reference instruction it may be used to count the number of memory reference cycles needed to calculate the effective address of the operand. In this case it may be loaded with either 00000 2 , 00010 2 , 00100 2 , or 00110 2 • 5-258 89633300 A TI HI NG (Drawing number 89617000, sheet 3, cont'd.) Inputs .T--.-. - . --; . SIGNAL ACTIVE: CONNECTORII . PIN : l-······· .. · ......FUNCTION I LOCATION . SHEET SQUARE -+----+----·+-I-----------~--·-· MPC- L [AS] ENT L [T] Master clear or clear-to-P-reglster, CPU in interrupt state JKCK H [S] Clock from phase generator(sheet 2): 10 II ~ 12 H PIBl7 PIB18 P1A17 P1B05 P1B24 P2A10 P2B10 P2B09 [AV] [AN] see [V] H H 13 14 15 16 H 'Ji'TR L PH4 H F23 H PG2 AOI A02 Outputs NO CNTE2 N41 H [W] H H P1A16 P1B20 H H H L H Jib £15 to101 L L H PIB28 P2A09 P2B07 P2Al6 P2Al7 I I Least significant bits of instruction register I f I fJ Set ITR flip-flop Clock phase generator (sheet 2) Instruction register F=2 or F=3 Second stage of phase G c4 c4 c4 04 04 03 02 02 A4 A4 I , I ., I II Least significant bit of counter Counter conten.t .. 00010 2 Counter content ~ 00001 2 '00'16 EVEN-IS "' __~._._._.. _. P2B01____... L.'=~::!"'--:=N~3--=N=2"""=-N:l--:-N:O:---A~0~R~_F~2~:3 ... __.___.__ ._.__ 89633300 A 3 .- 3 A4 B4 03 04 03 B3 Bl Bl Bl Al B3 5-259 TIMING {Drawing number 89617000, sheet 3, cont'd.} Description The counter itself is made up of five flip-flops; NO, NI, N2, N3 and N4 (U13, U14, U12). The most significant bit is N4 and the least significant is NO. All the flipflops are clocked by phase S of the clock (JKCK) and they are cleared by either the clock signal MPC or by signal ENI. MPC is active when the CPU receives a Master Clear signal or a Clear to the P register. ENI is active when the CPU goes into an interrupt state. The counter is loaded through the set (S) input of each flip-flop, as follows:For Shift instructions the counter is loaded with the five least significant bits of the Instruction register, 14,13,12,11,10. The setting of the flip-flops is enabled by the signal JITR·PH4 which is produced at US8/1l. For Multiply/Divide .instructions ·the counter is loaded with the number 10110 2 • The flip-flops are set by the signal SP-EVEN-PG2-F23. The signals SP-EVEN and PG2 define a specific time period while F23 is active, that is, when the F field of the instruction register is decoded as F = 2 or F = 3. For Memory Reference instructions the counter is set by the signals ADI and AD2. These signals are produced on the Decoder assembly. They determine whether the counter will be preset to00000 2 , 00010 2 , 00100 2 , or 00110 2 • The setting of the flip-flops is enabled by the signal RNI-SDD-FEO-PH4, where RNI, SDD and PH4 define a specific time period and FEO is active when the F field of the instruction register is not equa I to zero. Eac;.h fl ip-flop changes state on JKCK when its J and K inputs are high. This occurs on th~signal transmission (high-to-low) when the previous flip-flop changes state. 5-260 Thus the counter counts down. 89633300 A TIMING (Drawing number 896l7000, sheet 3, cont'd.) The least significant fl ip-flop (NO) changes state on every JKCK clock except when one of the following conditions is true (signal at u45/6): 1. (Counter = 0) -RN 112 - (ADl + AD2) at U44/8. This function enables the counter to decrement immediately on loading the memory reference instruction. Note that the function N41-ml determines that the (Counter = 0) and that this situation exists most of the time. Here N41 = ii4-N3-N2-NT 2. ADR-(Counter = 2)[(Fl = 5, 7, D, F)-32KW-Xl5 + EVEN]. This occurs during multi-level indirect addressing, when the counter is not decremented until the last level is reached. 3. J ITR This occurs when the counter is loaded at the beginning of a shift instruction. 4. MDS-EVEN This occurs during multiply/divide instructions, when the counter is decremented only on odd cycles. This occurs during Double Word Shift operations, when the counter is decremented only on EVEN cycles. A simplified diagram of the loading and decrementing counter is given on page 5-264. 89633300 A 5-261 TIMING (Drawing 89617000, sheet 3, cont'd.) Three signals derived from the counter are also used on other assemblies of the CPU. These are: Counter content Connector/pin Signal -----,----+-------------" . -t---------------t CNTE2 P2A9 N41 P2B7 NO I I .....__- -...-.....--.-.-.-,---'.~--.. .. 00010 2 I 00000 2 or 00001 2 lit. - PIB28 , , -. -_.... ...--- ......._--- ... ~ , ....... ....._.. ___ .o~~ n~:be~~ The following signals produced on the Timing assembly are used by the Decoder: I. MOl, (at UJO/8), is active during multiply/divide instructions when the counter is at 00001 2 2. m = iDD + 1b iT6 and EI5 are used during Shift Instructions. 5-262 89633300 A . .... AD2) PIB2D 00 \.D 0'\ I 5®-:-:= ._ " PIBIT • 11> PIBla 13) PIB05 , 14" PlB24 \10.1 \10.1 \10.1 0 0 » II '" 11111 '~ II I I I ~ 22 ADI) PIAI6 15 -II I /1'1 1 17 21 5~J~----------~-t~===--, pia;' ,'( 5,6(AN) RI) I I ...... ,.. 4,5@~ 8 ~ .I1T1f) . P2809 I!!~ P2AIO pgBIO 16' V'I I N 0'\ \10.1 , !I ' I DETAILED LOGIC DIAGRAM TIMING P2A17 (EI!! TIMING i I • ! i · ~ 0; • I i i !II j IfEil. ..... ..! , 8 _ ~ i. i !I i 5-264 89633300 A (Drawing number 89617000, sheet 4) TIM I NG INTERRUPT TIMING, V REGISTER CONTROL LOGIC Function: This circuit includes timing signals which control the transition into the interrupt state and logic for controlling the V register in the ALU. Inputs FUNCT ION _____.. _........_... . IN32 JENI KEN 11 R2 R3 R4 [AC] [AD] [AS] [AK] {Fl=4}+(Fl=C} (Fl=6)+ (FI=E) Sets ENI Resets ENI Bit 9 of IR Bit 10 of I R Bit 11 of IR Programmer's Console selects V-register See sheet 5 See sheet 3 See sheet 5 RNI12 (AOI+A02) o'NO oN"loN2 o'N3 oN4 [AP] NO oifl oN2 oN3 oN4 = NOoN41 H L PIA20 P2B12 P2A28 P2Bl8 PlB29 H H H CSV L 32KW N41 MPC H H L eOD NO L ,: [K], [R] H [A] eOO02 H [V] I GeCS I AOR H [L] H [V] 1m l [AY] ep2 H [AQ] RNI EVEN H: [xl H [N] • 89633300 A 0 See sheet 2 See sheet 3 N41 oNO [AP] t I _._ ... _._...!..--. .... .... LOCATION S UARE 4 03 04 c4 c4 B4 C4 04 04 02 .~J:iEET See sheet 5 See sheet 5 See sheet 2 .... .. ........._--------_ ..... .. ! ~~.,-- ~ : , - 4 5-265 TIMING (Drawing number 89617000, Sheet 4, cont'd.) Outputs r--'--------T-" i SIGNAL ENI ENI03 H ENI02 ENI20 H L L L H H L ~P2' I ::~UG I ADY ,--,-,.,~.--,,- P2Bl5 P2B16 P2A06 P2A21 P2A20 P2A24 P1A3.o P2Al4 P1A24 H ENI2E ; ·CONNECTOR PIN ACTIVE -.- • • • •_ _ , _ _ _ _ _ , •••• ~~, • • _ . __ • • • • • • ~- . . . . . . ._ I FUNCTION Enter interrupt LOCATION SQUARE: i SHEET ----~----------~; 4 ENI·INf2·G~CS EN I ·~DD2 ENI2·~DD ENI2·EVEN . ~P2·~DD Controls output of Y register -lor -0 to Augend gates Add Y register • 4 A3 A3 B3 A2 Bl 01 C1 B1 01 A Descri pt ion The Enter Interrupt Sequence is initiated by the signal JENI from the Console Interface card. This signal causes the ENI flip-flop (U7/15) to be set. The flip-flop is clocked by phase 5 of the timing chain, JKCK (see Timing, sheet 2) and is reset by MPC (see Timing,sheet 5). The output of the flip-flop is at u24/2. At the end of time ENI ·~DD2 the ENI2 flip-flop (U7/11) is set. This flip-flop is also clocked by JKCK and cleared by MPC. The output of the ENI2 flip-flop is ANDed with EVEN and ~DD (see Timing, sheet 2) to produce ENI2E and ENI20 respectively. ENI20 is used to reset the ENI and ENI2 flip-flops. This is the normal end of the enter interrupt sequence and is followed by the setting of the RNI flip-flop (see Timing, sheet 5). The Enter Interrupt Sequence may be aborted prematurely by the signal KENII which resets the ENI flip-flop and prevents the RNI flip-flop from resetting. 5-266 89633300 A (Drawing number 89617000, sheet 4, cont'd.) TIMING Other signals produced by this logic circuit are: ENi'tn= EN I •ENi1f1 •Gee S and = ENI02·EVEN = ENI2E SGL (at P2A14) SGL is an ALU control. Timing diagram for this logic circuit is shown below. ENI Completed ENI Aborted "00 ____~r-l~__________ '002 RNI ----1 __ _ -i'L.-.._ _ _ _..... ____~r_l~__________ -----------,.L ---NOTE __ ~~---- ENI ENr02 ENI03 ~~---- ~ NOTE: RNI mayor may not be active at this time. ALU Y register control The signal YTAUG is produced in this section. This signal allows the output of the Y register to be enabled through the augend gates to the adder in the ALU circuit. The logic equation of this signal is as follows: YTAUG = CSY + f}P20 + ADY where ADY = ADR·Gf}CS·Nl·Rl.(R4+R3)·NO.INO·Nt·N4l·(IN4+IN32·32KW.X15) 89633300 A 5-267 TIMING (Drawing number 89617000, sheet 4, cont'd.) The first two terms of AOY are G(lJCS (see Timing, sheet 2) and ADR (see Timing, sheet 5). This restricts the YTAUG to situations where the computer is in the addressing state, and is running. The remaining terms of ADY define specific cycles of the addressing state where the YTAUG signal is not active. The signals NO, Nol, and N4, are produced by the counter (see Timing, sheet 3). The signals Rl, R3 and R4 are equivalent to bits 08, 10, and 11 respectively of the instruction register. Signals INO, IN32, and IN41 are produced on the I/O Interface and are decoded from the FI field of the instruction register. The signal XIS is the most significant bit of the X register which is stored in a flip-flop (see Timing, sheet 6); the signal 32KW is connected to the 65K/32K mode switch on the programmer's console. In addition, the terms CSY and (lJP20 produce a YTAUG signal when the Y register is selected by pushbutton on the Programmer's signal is active. ~onsole or when the (lJP20 timing The signal WY at the output of U24/12 is the decoded condition for writing in the Y register. It is transmitted to the Timing circuit {sheet 6} where it is ANDed with a clock signal to produce the Y register clock. The logic equation of this signal is: WY = EAO + CSY + RNI·(lJDO + (lJDO·(COUNTER ~ 0) + (COUNTER = 1)·R2 The signal EAD (End of Address or End of effective Address) is generated in the Timing circuit (sheet 5). It is active on the last CPU cycle of the addressing sequence for the memory reference instruction. CSY is active when the computer is stopped and the Y register is selected on the programmer's console. The signal RNI.(lJDD is active during the first CPU cycle of each instruction. The signal Rl is active when the counter is at I and bit 9 of the instruction register is such that Fl = 2, 3, 4, 7, A, B, E, or F. ~-268 89633300 A .. 00 \0 '" W W W R4>PZBlI , 27 __ r--:'\ -,PI12' CSy 0 0 » AS> PZA21 W(;;fv ~ l..!!!!.J PIA24 PIAZO 1P:!I!.v......,.._ __ PZA20 6 P2AI4 ~atI''''''"--- II) iii ~ , V'I I N '" \0 m! ENI (ENl2E multiply/divide • I ins truct ions 6 fI I I ~ Bucket clock Timing for sh I ft F =0 01 1 ~ Register clocks I I I ! .) • • • ~n~ ...... . . . . . -• • - Cl Cl Cl 03 03 c4 A3 B3 03 6 Bl Bl AI AI AI AI AI B3 B3 B3 89633300 A TIMING (drawing 89617000, sheet 6, cont'd.) Description Signals MOS and MOSI are active during multiply/divide instructions. During the ~P.EVEN cycle of multiply/divide,the counter (Timing, sheet 4) is loaded with 101102 (22 10 ). On the next cycle, the 0P stat~ is not active, the counter decrements to 21 10 and the signal M021 defines the timing. M02l is the J-input of the MOSI fl ip-flop. MOSI is active for the following two cycles and its K input is connected to the function MOSI -000. The MOS fl ip-flop becomes active immediately after MOSI and remains active for 34 cycles. The K input is connected to the funct ion CNTE2 -000 where CNTE2 means "coun ter equa Is 210". The M021 signal is also combined with the fourth clock phase, signal PH4, to produce BBCK which is a clock to the bit bucket on the decoder card. The bit bucket is used to restore the sign of the result in multiply/ divide instructions. The ITR fl ip-flop (U22) is active during shift instructions. Its J and K inputs are produced on the I/O Interface board. The fl ip-flops MOSI, , MOS and ITR are all clocked by the fifth phase clock signal JKCK and reset by MPC. The X15 fl ip-flop (U64) always holds the most significant bIt of the X register except during multiply/divide. Its 0 input is XSEL7M which is the input to the X register taken from the ALU assembly. Its clock is PG3-WXM-MOSI The FEO flip-flop (U64) stores the signal OFEO which is active when the F field of a word read from the memory is equal to zero. The predecoding for OFEO is on the Memory Control assembly. The clock to this fl ip-flop is: IRCK 89633300 A = RNI-EVEN-PG3 5-279 TIMING (drawing 89617000, sheet 6, cont'd~) JRCK is also used to clock the instruction register. The flip-flop is set by the signal ClRIR which clears the instruction register. Thus this flip-flop indicates whether the F field of the instruction register is zero. Register Clocks Clock signals for the registers in the AlU are produced in this section. The clock signals of the various registers are produced by multiplying JKCK ~hase 5 of the clock) (Timing, sheet 2) with the appropriate signals (W): Regi ster Q. P Y M A Signals for clock generation WQ. WP WY WM WA WXM X The signal AMCK which clocks the roost sign i ficant 8 bits of the _Aceg istercan bebloc-k.-ed by the CiIT' signa 1. Th i si s used by peripheral devices which transfer only 8 bits of data on each input on the A/Q. channel. The signal W9A is transmitted to the decoder card AlU/shifter. equation is: W9A 5-280 Its = RNI·EVEN + M021 + MD1 +.MOSI + GeCS 89633300 A V1 I ~ 00 ___ P_2~iiil DETAILED LOGIC DIAGRAM TIMING "Pages 5-282 to 5-290 are unassigned." 5-282/5-290 89633300 A INPUT/OUTPUT (I/O) INTERFACE The I/O Interface circuits are accommodated on a single 50-PAK printed wiring board. The logic circuit diagram of the unit is given in drawing number 89619700, sheets 1-10. The I/O Interface circuits generate control signals for the main inputo.utput (A/Q) channel and for the circuits commanding the peripheral controllers. It also generates control signals for the CPU. This page lists the functional "locks accommodated on this board. The circuits and signals are described in detail on pages facing the corresponding sheets of the circuit diagram. MAIN FUNCTIONAL BLOCKS Des i gnat ion Shown on Sheet .. - .'-"'-- -- .--------------------.--.... - - - -...- - - - - -.---.-----l.... A/Q channel control 2 Memory request logic Index (i) address and write enable cont~ols 3 4 Decoder for FI field Augend controls and X register clock control 5 6 Controls for shifter and A/Q channel direction 7 Main sequence flip-flop controls 8 Overflow logic Enable-Interrupt logic 9 L_______ 89633300 A 10 ._---/ 5-291 . V'I 'I N I \,0 N SHEET REFERENCE LETTER 2 A • C-4 0- 3 o E C- 3 C- 3 F G 8-3 8-2 J K A-2 L 8-1 M 8-1 3 4 SHEET II 3 4 5 6 7 8 9 I~" REV All 8 9 C-3 C-3 0-2 8 -4 C-2 8 -3 8-4 0-4 A-4 0-2 e. DESCRIPTION _T illiTE REDRAWN PER CDC ITO R.I. Uev" L. ~,/...( ...... 1_ <.7l """ 12 ._5 I..,~ .,,~_ N __ ••ac.,."" _.... AIPIT. . . . P ~ oc c.oc 6ZJ; __ ..c'"- ... ,,_. 7 6 fCO 04 CK lI23 OCATION 0-1 C-4 A-2 2 04 04 04 It A It It It It It II- II It SHEET REFERENCE ".oFF flFF C-2 C-2 ;i ei. "';C "".- 10 0' C-3 C-3 /I 41611 . . . . ZC "to ~ CHIlD APP .." + '.... -""I 11_ I~ _. '-..... 1".,. 1"""'•. __ ",1.... 7400. ~ 4DD1ID CIOOS" .'0. 'wI( uf./11# ItELlUSII]) ClASS II- ,...., 1"_ 8-2 1S781~otI fttI.C/ ~ ~'P ~1L I...?" f- C -3 8-3 II ~ 1 C-2 8-3 C-2 8-3 N 0-4 Q 0-4 C-I C-2 8-1 R 0-4 0-3 S T U 0-4 C-4 8-4 5V1 C-I V C-I W X 8-4 C-4 I 33MFW C-I Y C-3 8-1 Z 0-3 0-2 AA AI I-I 8-3 A-3 AD C-I 0-1 0-4 AG AJ C-Z C-Z A-Z AK AL 8-4 8-2 Q C~ AN 0-2 0- 2 AQ 0-2 C-J AR AS C-I A-2 1-4 I- 'Vee C2"C9 10V C-3 0-4 I C - I . CI A -3 68.F :- Lo I" A-4 C-4 RI IK "" +IIVI 0-2 ® A-3 C -2 C-Z AE N_TES: II 0-5 C-4 A:'5 (:-4 1-4 C-5 C-4 C-4 II ALL RESIIT6RI AJI£ 0.25 WATT II .. C-4 C-4 2) THIS SHEET IS C6NTINUEO 'I SHEET II. !I DETAILED LOGIC DIAGRAM 1/0 INTERFACE II C-t ~2 C-4 C-2 C-2 C-4 0-4 D-4 C-4 A-4 C-4 UNLESS OTt£RWlSE SPECIFED O'IIIENSIONAAEININCHtS 00 O o I!! \,0 0'\ o W W W ~ 0 ! o o It) 0) to . - 1'0 >- :it c( c( ,.LA" !l" iii ~ ~ i5 . tIlN C~ AT AU » REVISION RECORD SH£ET RE\IISION STATUS ~ :!l TOLE'''''''' 2 PLACE ANGLES ± ± DDNOTSCALE DRAWING MATERIAL FI RST USED ON "'mMn" OWN CHKD N1 A ENGR NI A A.... MFG FINISH - ElIlT COMPUTERS U'D • '.'111."" TITLE I' A8107-A Ir84I1B~A ..... IU3 RACHEL l/j~trt;:",,, iik.t. )1 ~r/o ,J> "'."H Il"'," HI/litf j. Q.A 1.1,-.- I',: 'II!J. _ -I'CODE IDENT DI'.O .f""':" 3.17.75" ,., SCALE 1 II C .. I, ORA...G NO 89619700 SHEET I OF II .. - ~ 00 \D OFF . I 111£" IIEYIIIOfI RECORD ECO IDRfT DATE ICHKDI_ DESCRIPTION SHEET REFERENCE (T\ OFF SHEET II £FEll ENCE LET TEll W W W o o AV AW AX AY AZ BA 81 10 IE IF IG » SHEET LOCATION Z I C-4 A-I 8-4 · • BO III IS IT 8U IV IW IX IY , I OH 7 • I C-4 10 I 8-1 0-3 C-2 0-3 A-3 C-4 C-2 0-2 C-4 C-4 A-4 C-3 1-3 0-2 O-Z C-I 1-4 C-4 C-I C-4 I C-4 I-I A-I D-2 A-I B-3 0-1 C-Z 8-2 0-2 C-I C-2 1-3 C-3 1-2 B- 4 C-5 A-2 1-3 B-4 0-4 1-2 B-3 0-3 1-4 A-2 8-4 0-2 0-4 0-4 C- 2 ~ 1-4 C-2 I ~-4 C-3 0-2 C-2 C-3 D-I OS EA • A-3 IZ OA 01 DO DE DB · 5 C-Z ... IK IL 1M 4 1-4 1-4 1-4 A-4 C-4 1-4 C-4 1-3 8-2 0-3 0-3 O-Z 1-4 C-4 DP J IElIlT COMPUTERS l 1!1 VI ...... ".".. I N 1.0 W - .. 11'1111iI'II'td~ll DETAILED LOGIC DIAGRAM 110 INTERFACE - CODE IDEN] C DWG NO 89619700 SHEET II ~ I l~' INPUT/OUTPUT (I/O) INTERFACE (drawing 89619700, sheet 2) A/Q CHANNEL CONTROL Function This circuit controls the A/Q data channel. The A/Q data channel is used to transfer data, controller status, or controller instructions between a peripheral controller in the computer and the A register. The Q register defines the address of the peripheral controller. This circuit transmits two control signals (READ, WRITE) to the peripheral controllers via the A/Q channel bus and receives one' of two responses (REPLY, REJECT) from the controller addressed. Inputs 5i gna~-;:t~:;l_~~~~~c~~~~ P4M MC REJECT REPLY RNI JKCK H L L ~ I I i I H P2A21 P2A23 P2A24 C4 B4 P2B25 PtB20 P2A19 2 B4 P2A22 2 B2 Cl Outputs RP TRJ 1RE"Ai> I WRITE L~ 5-294 H I ! L L L L I I' .•.... - .. '.,-, P2A25 1 P2B02 P2BOt P2A26 -.-- .--_._.,._ ....... ! ! -.-.~-~,-- -- -- --.- - .•.. _............ _... ........ -.. ; 2 Bl Bl Al I I J! ------.---- ---.---~.... 89633300 A (I/O) INTERFACE (drawing number 896l9700,sheet 2 continued) Description The A/Q input/output sequence is initiated by the signal RNlll.FlE23·JKCK (U2/l2). This clears the A/Q flip-flop (Ul/10) and clears the reply latch (U2/6 , U2/8). The output of the A/Q flip-flop gates the signal P4M through U3/8 to the count-up of the internal reject counter (U19). up/down counter with a carry output. This is a four-digit binary P4M is a clock signal generated on ~sec the memory control board with a repetition rate of approximately 0.88 for the ABl08, 1.30 ~sec for the AB107. The output of the A/Q fl ip-flop is ANDed with OP·EVEN·JKCK·FEO to generate G0AQ at U51/8. ~P·EVEN Its function is to stop the basic timing chain in the state, with phase 4 and JKCK of the phase generator both high (see Timing sheet 2). (U20/3, U20/6). G0AQ is also used to set the READ/WRITE latch The output of the latch gates the output buffer-gates (U27/3, U27/ll) to generate either a READ or a WRITE signal according to the code (Rl through R4) present on decoder U58 (refer to sheet 5). The READ, WRITE signals control the direction of data flow in the A/Q channel. The read/write latch (U20/3) gates the response signal (REPLY or REJECT) from the peripheral controller in reply to the signal READ or WRITE. I The timing chain remains stopped until a REPLY or REJECT is received from the channel. If no REPLY or REJECT is received within 12.8~sec in equipment AB108 (19.2~sec in equipment AB107) of the Read or Write signal, an Internal Reject signal (IRJ) is generated at the carry output of the internal reject counter (P2A25). 89633300 E 5-295 (I/O) INTERFACE (drawing number 89619700, sheet 2, continued) IRJ is transmitted to the Decoder and is also used to preset the A/Q flip-flop and clear the reply latch. The signal G0AQ goes high, allowing the timing chain to continue running. As the timing chain continues, the read/write latch is cleared by G0CS·0DD and both READ and WRITEgo high. The computer increments the P register ac~ording to the state of signals IRJ and RP (both sent to the decoder). In the next CPU cycle, the internal reject counter (U19) is cleared by RNI·WRQ. The timing diagram of the sequence is shown below. Ilf a REJECT signal is received before the internal reject (IRJ) is generated, then REJECT resets reply latch U2, causing signal RP to go low. REJECT is also gated through U3/6 to set the A/Q flip-flop, which is clocked by P4M. Therefore, the input/output sequence terminates synchronously, as described above. Ilf a REPLY signal is received before the internal reject (IRJ) is generated, then REPLY is gated through U3/6 to set the A/Q flip-flop. The input/output sequence terminates as described above. ... I 00 \D 0\. \,Ill W W 0 0 1I 1'411 ) PUll ~"'.IO ):0IIC) PZAU 146 11 U51 t'1 II~ 51 tl . .1 INTE RNAL REJECT ctlUHTER j X·Yoj I .... t-IJ. ! PIAU (fiiJ CARRY veei ,. R4 180 PIAU iiiTECT~ _ _... PII2I ~. REPLY JKCIC ... PZAIt vee In 55 110 f R2 110 1'1801 (iiiiD RNI) 1'1820 It REPLY F.F. 5~ u 1 1 1'2101 ';iiii1i 1'113) 1'2120 PUI6 (iiii V'1 I N \D ..... ....... V'1 I N \D 00 \ DETAILED LOGIC DIAGRAM 110 INTERFACE INPUT/OUTPUT (I/O) INTERFACE (drawing number 89619700, sheet 3) MEMORY REQUEST LOGIC Function This circuit generates the memory request signal (MMRQ) to initiate the CPU memory cycle by way of the signal CRQ on the Timing assembly. C4 04 04 04 3 A4 A4 02 3 Cl RNI·'OO· (F"O) RN I ·eoo· (F=O) Outputs MMRQ FIEF H H P1A07 PI018 I Memory Request ,_ _ _ • _ _ • • • 89633300 A ~_ ."<~ ~ • • •_ _ •• 01 5,-299 (I/O) INTERFACE (drawing number 89619700, sheet 3, cont'd.) Oescr ipt ion' The MMRQ signal is generated by high speed gates (series 74H) to conform to the constraints of the memory access time. The equation of the signal is as fo 11 ows : MMRQ = AOR [N41-(F=2,3,8,9,A,B,C,E,F)-(Fl=1,2,3)-OEL] + (lJP-(lJOO + (lJ002 + (lJP2-(lJOO + ENI2-(lJOO + RNI-(lJOO-(F ~ O)-(Fl=A).(~ ~ 0) + RNI-(lJOO-(F = O)-(FIEF)·SHI + (F=O)-Fl = 1,2,3,E,F-ENI3 5-300 89633300 A 00 \D ~ \oJ \oJ \oJ 0 0 J iPii .001 » ~7 PI _ N 141H 10 iifii )"~-- 1141 " )Pt8l4 II f-!!!!-l J \:J-'- IIII 5.8~~ LI I .: I ; 1.7.8 <:.:7 _PlACe 1r::El I ••, .. 12 :1113H • 5.1 I! .='(- • 8 .-.-. II I _>PI8I2 1.8.1~ PIEU)PtAZO .. ~ 5r:r UID 110 ~ ,... _, .,1,. • 5.7.1"'" 81C1)PIA. ~)n_A08~ iiiiiii >'1104 10 "'''~al 13 ________ I 1'10 r::::J'.. "1 13 1U3D1 lol •• ;u t-..8 I I , Pta", ~J)4.6.' , (E)2,6.8.10 ~ \n I \oJ o DETAILED LOGIC DIAGRAM 110 INTERFACE f1EF INPUT/OUTPUT (I/O) INTERFACE (drawing number 89619700, sheet 4) INDEX (i) ADDRESS AND WRITE ENABLE CONTROLS Funct ion This circuit generates control signals for an index (i) address operation and Write Enable involving: a. the second index register (location 00FF 16 ) b. the memory write cycle (signals WE, SPBM, CPBM, 'PST) (I/O) INTERFACE (drawing number 89619700, sheet 4, cont'd.) Descript ion The signal CRI is defined by: m = ADRoCNTE2 o (Fl = 5,7,D,F)oX15 + [ADRoCNTE2 oDEL + 0 32KW RNlo0DDo(F~0)oDEL]o[Fl = 1,3,9,B] Itis used on the Memory Address board to force the current memory reference to be made to the second index register (memory location 00FF 16 ) rather than the address specified by the ALU lines (indirect addressing). The output of the index flip-flop (RIND) controls the INDEX indicator on the Programmer's Console. It is active during the second pass of a CPU memory cycle in which the index location is addressed. The signal INDIND = ADRoRIND controls the INDIRECT ADDRESS indicator on the programmer's console. It is also used on the Console Interface board to determine the timing in which an interrupt is accepted (see JENI, console interface). The signal WE is active when a CPU memory write cycle must be performed. It acts on circuits on the memory control board. Its equation is: -WE = ENTER + + 'P·(F E~12oEVEN = ~.5,6.7.D) + ,p·G'CSo'DDoFEOoDEL·(FI 89633300 A = 6,7) 5-)03 (I/O) INTERFACE (drawing number 89619700, sheet 4, cont'd.) The signals 'S'P'BM and C'P'iiM' .i~dicate that the computer is executing a "set protect b'it" or "clear protect bit" instruction respectively. These signals are used on the memory address card to determine the polarity of the protect bit written back in the specified location. Their equations are as follows: SPBM = SP-G0CS-000-FEO-OEL-(FI = 6} CPBM = 7} = 0P-G0CS-000-FEO-OEL-(FI The signal 0PST is used by the breakpoint stop logic on the Programmer's Console to allow the computer to be stopped when executing a memory write cycle to a specified location. Its equation is: 0PST = 5-304 ENTER + ENi2E + 0P-(F = 4,5,6,7,0) 89633300 A . ~ &. & 0' w w w o o )10 ,..6"" 'F'...LI_ _ _ _--'-'PZAOI (RIND (I.IND PIAl2 (51 CiiTi'i) ......, .PC) ..... PIAI4 Ta) PIAII 1.-:""'1 I (1PsT T4' PlIII roo I{!! d ) NIO ENTER) pt. -) .... , , "I I "I . """" I ,.815 I !I VI I W o VI ...... VI I W o 0' DETAILED LOGIC DIAGRAM I/O INTERFACE . (iii INPUT/OUTPUT (I/O) INTERFACE (drawing number 89619700, sheet 5) DECODER FOR Fl FIELD Function This circuit decodes the Fl field of the instrwction register on the Decoder assembly (Rl, R2, R3, R4), and generates control signals using these decoded signals. Ineuts .......... -....._.- ...._..... -~ Signal R4 R3 R2 RI ENi1i Outeuts IE INR INO IN32 IN41 SLS SHAOR X\C 89633300 A ,"'- I ' .., ......... _... ---'-'.- _- Location Connector/ Sheet Square Active Function Pin ,._-_._- •.. -.... -.--. _....__... _..... - _. . _-------- -"-"---""'- - ... __ ._... 04 H PlB22 5 H PlBl9 04 FI field H PlA23 04 PlA24 04 H '5 B4 Enter Interrupt Indicato PlAIa L __ H H H H H PIA22 PIB23 PlB27 PlB29 PlA30 PlB24 P2Al6 L PIA21 H H _. " '" 5 Selective Stop Short Address Q. channel control (see sheet 7) 5 01 01 CI Cl 81 BI Al CI 5-307 (I/O) INTERFACE (drawing nl,lmber 89619700, sheet 5, cont'd.) Descri pt ion The decoder's (U5R) 16 active-low outputs correspond to the instruction register Fl field codes (RI, R2, R3, R4). The following signals are generated with their aid and are transmitted to other boards: The signal SHADR is active during memory reference instructions in which one CPU cycle (RNI-O) is enough to calculate the effective address (and therefore the ADR timing is not needed). It is used on this assembly as well as the Timing assembly to produce the control signals for the RNI and ADR flip-flops. Its equation is: SHADR = (FI = 0) + DE[-(FI = 2,8) The signal SLS is sent to the programmer's console and stops the computer if the SELECTIVE STOP switch is set. Its equation is: SLS = RN I- EVEN- (F = 0) - (Fl = 0) - ENi1i" The signa I ENi1i' is produced on the Console I nterface and is used to prevent the first cycle after an enter-interrupt from being interpreted as a selective stop. It is used here to generate SLS. Other signals are: IE = (Fl = E) INR = FEO-(Fl - 8} INO - (Fl - 2,6,E) IN32 = (FI = 6,E) IN41 - (FI 5-308 = 4,c) 89633300 A .... 16 00 \.0 0\ 24 \N \N \N 3,8 0 0 PIA22 (IE » PII22 114) Plllil 11:\) PlA23 8 PIB23 (INR 112~ III PI, I {a; PIB27 (INO 4 ,.. 8 PIA21 (.iQc c 41 20. 1 ilL PI1I29 (IN 32 '11.30 (IN41 PI824 (SLS iii') PIAIO 2~ 51 JB 1- PZAII(SHADR " \1'1 I W o \.0 DETAILED LOGIC 110 INTERFACE DIAGRAM INPUT/OUTPUT (I/O) INTERFACE (drawing number 89619700, sheet 6) AUGEND CONTROLS AND X REGISTER CLOCK CONTROL Function This circuit generates: a. augend controls not included on the Decoder assembly (DELTAUG, SE, 1M, SFL) b. X register clock controls (WXL t WXM) Inputs Signal Connector/ Pin Active WRQ H PIEI SKT H ffi' lMT L L MDS2 H H ~ j P2Al0 PIA27 P2A30 PtA)1 PtB28 PtBl3 Function Locat ion Sheet Square ._- 6 04 c4 c4 B3 B3 02 6 C3 C3 01 Cl Cl Bl Bl Al 6 FI - I Skip condition Outputs XEZ DELTAUG C'lRQ WXH WXL SE SIH SFL 5-310 H L .L H H H H H P2A05 P2B30 (X - 0) Pl807 P2A07 P2At5 P2A04 P2A09 P2B05 . Clear Q register }x Register clock controls 89633300 A ( I/O) INTERFACE (drawing number 89619700, sheet 6, cont'd.) Oescription The augend gate controls are described together wi th the augend gates (ALU circuit, sheets 4,5). Their equations are as follows: OELTAUG = RNI·000·0D02·(F = O)·(FI- l)·SKT This function is active during skip instructions when the skip condition (S KT) i s me t • = ENI2·EVEN SE + RNI·SOO·(F = 0)·FIE23 + RNI·SOO.(F ~ 0).0E[.R4 1M - 17 + ENI2·EVEN SF'[ - ENI2·EVEN·FE'O·OEL The X register clock control signals are used on the Timing assembly to produce clocks for the two ALU boards (WXL is associated with the ALU LSB, WXM with the ALU MSB). Their equations are as follows: WXL - CSX + WXLl + EAO + ENI3 WXM - WXL + RNI·SOO·(F = O)·[(FI = E) + R4·17] where WXLI comes from decoder (sheet 7) EAO is produced on the timing card (see Timing, sheet 4) and is active during the last cycle of the address calculation. The signal XEZ is transmitted to the ALU circuit and controls the X regi.ster selector. When this signal is high, the X register receives memory data from the Memory Control board; when it is low, the X register receives data from the shifter.. The equation is as follows: XEZ 89633300 A = WRQ + RNI·SOO.(F = O).(Fl = 0,1,4,5,8,9,A,C,O) 5-311 (I/O) INTERFACE (drawing number 89619700, sheet 6, cont'd.) The following signals are decoded from the Fl field of the instruction reg i s ter: F1EI= (Fl = 1), used in Console Interface circuit FIEF = Rl·R2·R3·R4, used in timing circuit The signal CIRQ is transmitted to the ALU assemblies to clear the Q register. Its equation is: - - CLRQ = MC + MDS2·MDS·EVEN-03 It is act i ve dur i ng Master C1ea r and when the computer is runn i ng; it clears the Q register at the beginning of the multiply instruction execution. 5-312 89633300 A . , ~ 00 \D C7' \.AI \.AI \.AI o o 40 WRQ')P2A1O » 8 MDSI ')!!!!! II PII07 <: CLiiQ 5.11 'I' 'Ii' rSRYR( XIZ FIEI) PlA2T I PZAOT( WXM 3.5~ P" SKT,)P2AI0 P2110(GEL TAUG , • PZAII( WXL 10•• I212" I I j,!1!-_ _ _ _ __ PlAII ,$PII2I 5.7.8 US7 36 1I{81') , P~"--I- ;II ~ - - - - ,'2!!Q4 4 II '1111(., I '1114 (KRIll I • I (lit .~r.J UIS J.4.6{A~ II F 01)"'" 'PIS (.iiii • PIAII ( oIOPl 6 • filj') ....6 1.IO~ 6~ V'I I IoN N 10 '.10(_ 12 44 1'1.01 (lIT 6 I DETAILED LOGIC DIAGRAM 1/0 INTERFACE .. INPUT/OUTPUT (I/O) INTERFACE (drawin~ number 89619700, sheet 9) OVERFLOW LOGIC Funct ion This circuit generates the overflow signal (eVFL), for arithmetic operations in the computer. Inputs Signal r Connector/ Pin Active Function 1 - - - - - + - - -......- - - - - -... __ . KflVF BB A7M H 03 L 32KW SO ADD7M AUG7M ALU7AM H M H PTA DO H H H H H H H I P2B19 P2A27 P2A20 P2B07 P2A02 P2B26 P2B28 P2A28 P2A29 P2B03 P2B24 . " "..-.. . . Locat ion Square I Sheet ~'''--------_+_-----__f Overflow flip-flop, K Input 9 c4 B4 B4 ~ :: I Addition/Subtraction control 9 B3 B3 B3 A3 C2 D3 Outputs 5-322 BXl5 H 'VfL H P2B27 P2Al2 9 C3 01 89633300 A (I/O) INTERFACE (drawing number 89619700, sheet 9, contld.) Description The state of the overflow flip-flop (U39/IS) determines the overflow signal. Its output (fJVFL: U41/2) is transmitted to the Programmerls Console (OVERFLOW indicator) and to the Console Interface. The J input to the flip-flop is connected to the signal Jf)VFL (U38/8): J~VFL = MMRQof)OOoABRo(F = 2)o(F = 3)oPTAOOoM ° (AUG7M ~ ALU7M) (SO ~ AUG7M .~ ADD7M) 0 This restricts overflow to instructions in which arithmetic sums occur ADD, SUB, RAQ, ADQ, INQ and INR. The signal SO controls addition (high) and subtract (low) in the ALU. Thus during addition an overflow will occur according to the function: (AUG7M $ ALU7M) ° (AUG7M <.T.) A007M) Thus on overflow the two numbers being added have the same sign while the sum has the opposite sign. During subtraction an overflow will occur according to the function: (AUG7M ® ALU7M) ° (AUG7M (t) A007M) Thus the two numbers being subtracted have opposite signs; the subtrahend and difference also have opposite signs. The K input, Kf)VF, is produced on the console interface card and is active during skip-on-overflow and skip-on-no-overflow instructions. The preset is connected to the signal (u40/6): f)pof)OO·FEO·(FI = E)·32KW·XI5 + [f)P·f)DD + MOS·CNTE2].(F = 3)·A7MoJKCK 89633300 A 5-323 (I/O) INTERFACE (drawing number 89619700, sheet 9, cont'd.) Thus the overflow flip-flop is set during an exit-from-interrupt instruction when the computer Is In 32K mode (Operator's Console switch 32K/6SK) and the sIgn bit of the X register Is set. The flip-flop is also set during a dIvide Instruction If the quotIent is too large for the A register. The overflow flip-flop Is cleared by the signal (U55/12): Thus the flip-flop is cleared under the conditions for setting it, except that the sign bit of the X register is not set. Itis also cleared by Master Clear '" ... 'IIU _>PlAOI tHO}'2"1 1I '" \.AI \.AI 8 ~ ...... ALL . . . . , . . AM O.·WATT,'" DeTAILED LOIIC DIAGRAM CClNIOLE INTERFAC£ IK CONSOLE INTERFACE (drawing 89618800, sheet 2) START/STOP SEQUENCE FLIP-FLOPS Function This circuit works in conjunction with the Timing board. It produces the signals for starting and stopping timing sequences under control of signals from the Programmer's Console and from other computer control circuits •. 1nputs -T-·-·----···· f'· . i Signal Active i, I· Connector/ ! Pin I, . Function .. -... ··t "'--'--""'-'- ........... . -.. - .. - ..-- .. -..... _... -.. locat ion Sheet Square . RNI H INT-SW STfJPCS PRGST H McCS L GSeS H t~(1RMAL H PC'[ L l l L SOD. JKCK. H PlAl7 PIBl6 PlAl6 .PlAlO P2B27 P2AOS P2Al 1 P2A22 PlBl3 P2Bl8 CRQ MPRY H PlB25 P2AI2 GfJCSW L P2A04 - L ----".-,.~-- 89633300 i Read Next Instruction iI -, 1 I .. ·····---·1 q I i. . 2 I i .. I ; Normal/Power fail indicator Odd cycle Last phase of clock Parity signal 2 04 04 04 04 c4 c4 C4 c4 B4 B4 I, 1 A4 A4 A4 .. A 5-339 CONSOLE INTERFACE Outputs (Drawing 89618800, sheet 2, conti d.) ~gn;~_. -__~-t~v~ __ ~ _ ft~::t~~~_~~ • • ~~~.~~~~~~n~~-_- ~r--_S~~!:~t~~:. re MC l Me H SS I H l l I P2A27 I 01 1 j 01 P2A13 Start timing chat1 el I, I PIA27 P2B22 WRQ H ; PIAII PRY H . .i i I I. I' P2B28 i.... .... _. __ 01 PIB15 I I TP 2 I I I Master Clear ! P2B29 H I Master Clear I ,I H MPC I I l P2B25 el el ! Memory Request _...... _._'.... . Bl ! BI 2 .~ .•• ' •.••. ,,_.- ___ ..•••.• _..... ' ..••~._~ .. ,..,_~.~. __ .. __ •. ____ ... _ ... _ .". I Al .. I Description The Timing chain is started by the signal SGI (see Timing sheet 2). is generated in the GQI fl ip-flop (U22/S). of its clock input. This is set by the positive edge This signal may be produced by GQlCSW from the Programmer's Console or by the test mode logic (sheet 1.). after the active. SGT signal 5-3"0 Two clock pulses is received by the Timing assembly, the GQlCS signal becomes This resets the GQI fl ip-flop. also be reset by MPC SGI = MC Alternatively the GQI fl ip-flop can + PCl. 89633300 A CONSOLE INTERFACE (Drawi~g 89618800, sheet 2, cant'd.) The timing chain, and therefore the computer, is stopped by the signal SSI produced by the stop flip-flop (U23/8). The stop flip-flop is set by the following signals: WRQ (RNI-INST + STOP.CS + PRGST-FS) + HCCS + HCT where - WRQ is active during the second CPU memory cycle (see below). This flip-flop is clocked by the signal PH3 from the Timing assembly phase-generator. According to this equation the flip-flop is set (and the computer stops) - - at the beginning (Phase I of RNI'~DO) of the next instruction with the instruction stop switch set at phase I of the 0DO that follows the firstWRQ with the CYCLE step or the STOP pushbutton set when the PRGST signal from the Programmer's Console is active at phase I of the first 0DO cycle after the master clear is pressed or when a signal is received from the test mode logic. The stop flip-flop is cleared by MPC and preset by the NORMAL signal from the Memory Control assembly. The First Step signal (FS: U23/5) is active high during the first memory cycle after a master clear or P register clear - 89633300 A after P clear after an abor·ted ent~r- interrupt sequence, (see sheet 5). 5-341 CONSOLE INTERFACE (Drawing 89618800, sheet 2, cont'd.) The signal is preset by MPC+ KENI1-JKCK and clocked by EVEN-PH3. This signal causes the CPU to request the memory according to the address P (Instead of P, + 1) in the fol1owlng cases: - while reading first instruction when starting to operate program when first enter/sweep is executed when the ENI sequence is aborted and the CPU has to call again on the instruction located in address P. The Master Clear signal MC (U30/6). Its equation is: The Master Clear is active when the N'RHAL signal from Memory Control Is low the computer Is not running and the master clear button on the Programmer's Console Is pressed - Master Clear signal is received from the test mode logic when the computer is running and the Master Clear button is pressed, the computer is first stopped by the stop fl ip-flop and then cleared. The signal N'RHAL is active high unless the computer is in power fail mode. The signal WRQ (U26/11) shows an EVEN cycle occurring after an 'DO cycle in which a request to memory was made. Its data input is eRQ which is produced on the Timing assembly. It is clocked by JKCK and is cleared by HPC. The WRQ2 flip-flop (U26/1S)is active during the odd cycle that follows the The parity fl ip-flop, PRY (US/S) is clocked by WRQ. I t stores the parity of each 16 bit Word written into the memory by any store-type instruction being executed in the CPU. PRY (Parity) is high when the nu~er of I bits in the 16 bit word is even. The output of the flip-flop, PRY is transmitted to the Decoder assembly and used in the execution of the SPA instruction. The parity of the word written into memory is generated in the Memory Address assembly. S-342 89633300 A 00 RNI 1.0 ~ vee 0" W W W 0 0 J 32 PIBI6 INT.SW 8 vee 2 204 U43 P2A27 (Me vee ~ 180 3 R 22 560 PIBI5 551 PIAI6 ST¢!> CS P2B2 CJ MC "''' veel PRGST 3~ R21 560 ~-.--- 40 ..... PUll MCCS SGI ..",n G~CS P2A05 > N8'RMA~ U30 4~ IAn II 6 r--- a L.. T I I I I I I r- , .. 1"'- 1"- ..... ..,' I s(w} ----. .. L. 12 CRQ PiAI2 MPRY i .-,,"".. II 560 , ,,, r -'='" ...... I -'='" -'='" T.P. na" ( WfIQ PRY W \J"I I 10 W W 1'2821 ". Jl'AI efCsw) II P28II JKCK I ( MPC 3,4,6,7 4 \J"I ( FS P PCl JDl) ~140~ WLJ DETAILED LOGIC DIAGRAM CON8oLE INTEM'ACE CONSOLE INTERFACE (drawing number 89618800, sheet 3) PROGRAM PROTECT LOGIC Function • used by the program protect system This circuit includes most of the logic of the computer. violations: a. It detects two of the four types of program protect An attempt to execute a protected instruction after a non-protected one. b. An attempt to execute an unprotected instruction which can affect the protect system. The other two types of violation are detected in the Memory Control. They are transmitted to the Console Interface by means of a single signal (CVIOl). Inputs .. -.. ····__ ·_····Loca t ion _._-, Signal Shee t . ,," ~ Squa re I . .... .. I 04 I . ~ - PRTSW H MX17 IRCK H H P2A14 P2A19 P1A20 FEO Ql002 L L P2A10 P2B11 B4 INR H P2A29 B4 10 IF H P2B23 H R3 R4 H P2B19 P2B06 B4 B4 B4 H P1A30 89633300 A 3 c4 , -~-, I ! c4 c4 3 B4 5-345 (Drawing number 89618800, sheet 3, cont'd.) CONSOLE INTERFACE. Inputs (cont I d.) _ I~~-~f~~: I~ "~~~_-:-:ct-o-r/-~Ii[----F-~~~ti ~~=-F ~_~~h~~~~~ t~~~a re SWEEP ENTER PIT CVIOl PH3 PHI L L L L PIB17 P1B18 H P2B05 PIAI4 H Pl B06 P2B04 ! . I ! ~ j ; f A4 A4 c) I I I C3 B3 .i! ,. Clock phases .1 ............... __......... ... ~--- ... -.~'.- A3 A3 3 ...---'".... ...- . - - ....- _..,._." ~ Outeuts . [ S1 9 nal Act i ve ." PRT BIT PRTAQ 'P"R'TM INToo PEF Vii" PFIND CLREQ ClRXM 5-3"6 ~_.- .-.-.. . Connector/ Pin ~ H L L L L L H H H Function "'-""", PIA25 P2A28 P2B24 P2B07 P2A09 P2B15 P2B13 P2B12 P2A29 .,'" . '-~' ....., -.-.. ".,'.-. Par i ty Bit " ,- .-- .. ... , -~- Locat ion Sheet Square ..-...... _.-....... -. -', 3 I Protect Faul t Indicator (PRFA) Clear RQ flip-flop ! L! 3 Dl Dl Cl Cl Cl Bl B1 Al Dl ---' . __... 89633300 A CONSOLE INTERFACE (Drawing number 89618800, sheet 3, cont'd.) Description An illegal instruction sequence is detected by the flip-flops MXl7 (U48/s,8). is MXI7. The MXl7A flip-flop (U48/S) is clocked by IRCK. Its data input The first half of the fl ip-flop (MXI7A) stores the protect status of the current instruction. Its output clocks MXl7B (U48/9). When a protected instruction follows a non-protected one, the output of MXl7A goes high causing the Q output of MXl7B to go high. The MXl7A flip-flop is set by the signal MCT +ENI + PRTSW. Thus the first instruction after a master clear or after an enter-interrupt sequence may be protected without causing a protect violation. When the protect switch is NOT set, every instruction is considered protected. flip-flop is cleared by ENTER + S\/EEP + PRFB. The MXl7A PRFB is active when a protect violation caused by an illegal instruction is sensed~ instruction is executed as a non-protected selective stop. sweep modes are also non-protected. Such an The enter and The output of MXl7Ais also used on the Memory Control assembly and by the A/Q and DSA busses. The flip-flop MXl7B is preset by: MCT + ENI + PRTSW + ENTER + SWEEP + PRfB This blocks a protect violation when the protect switch is not set and allows a protect violation to be cleared by the master clear signal or by the enter interrupt sequence. It also causes the fl ip-flop to be preset after a protect fault is detected. The MXl7B is cleared by PRfB to ensure correct t imi ng. The protect bit flip-flop read from the memory. (see sheet 2). Console. 89633300 A (u24/6) stores the protect bit of every word The data input is MX17 and it is clocked by WRQ The output, PROTFCT-BIT is displayed on the Programmer1s 5-347 CONSOLE INTERFACE (Drawing number 89618800, sheet 3, cont'd.) The flip-flops PRFA (U35/15) and PRFB (U35/11), are set when a protect fault is detected on the console interface card. The clock is PH3 and data input to both flip-flops is the following function: VI0 = PRTSW·MX17B + PRTSW.MX17A.RNI·0DD.(F=0).(INR.,0+IE+R3·R1D This signal is active when the protect switch is set and an illegal sequence is detected; or when the switch is set,. the current instruction is not protected, and one of the following instructions has been read: EIN, liN, SPB, CPB, EXIT, or INR (Inter Register). Here the M register is a destination register. The flip-flop J-input is VIO. It is also used by the Timing assembly to block the memory request signal CRQ and to avoid the clock JKCK when one of these violations occurs (see Timing, sheet 2). The PRFA flip-flop may also be set, through its preset input, by the signal CVIOI from the Memory Control assembly. This signal becomes active when the memory control detects protect violations during a memory cycle, caused by the CPU. CVIOI also sets a latch made up of two NAND gates (U8/8,11). reset by the signal: This latch is 0DD+0DD2+PH3+ENTER+SWEEP+RNI The signal PEF is active when the latch is set or when the signal PEL·MXI7A is active. PEF is sent to the decoder and is used to avoid changing the A register during the SPA instruction in case the memory write cycle was aborted due to protect fault or parity error. The PRFA flip-flop is cleared by the signal MC·PRTSW. It may also be reset by KPF which is produced on the Console Interface (sheet 7). It is active during skip-on-protect-fault or skip-on-no-protect-fault instructions. 5-348 89633300 A CONSOLE INTERFACE (Drawing number 89618800, sheet 3, cont'd.) The output of the PRFA flip-flop (PFIND) is connected to the PROTECT FAULT indicator on the Programmer's Console. It is also wire-ORed through open collector inverter (U47/8) to be part of the signal INTOO which is hard-wired to the zero level interrupt on the ALU least significant board (LSB). The equation 6f INTOO is: INTOO = PEL·RGPWR·PFIND The PRFB flip-flop is cleared by PHI. It produces the signal CLREQ which is sent to the Timing assembly to clear the RQ fl ip-flop. This prevents any memory request signal even after the VIO signal has become inactive. The CLREQ signal also clears the instruction register so that the instruction is executed as a non-protected selective stop (see Console Interface, sheet 5). 89633300 A 5-349 Timing Sequence During Protect Fault Caused By Illegal Instruction \on I W \on o -I INSTRUCTION ..----, PHI ILLEGAL INSTRUCTION CLOCKED INTO INSTRUCTION REGISTER I REGISTE~R CPU EXECUTES CLEARED ________________ SELECTIVE STOP __________________; ~-, J;7 ...----. A~ :::r CD rT 3 ::J IQ -. ., ~ III IQ PH2 -I m ::xJ ~ ....... .,c III rT ~ CD ::J IQ ., "0 0 rT CD 0 rT ""'h ::J c: 3 CT .,CD 0) III \..0 0'\ rT 0) 0) ~ 0 0 c: RQ Z ""'h 3 :::r JKa< 0 m n m ., PH4 en r III 0 PH3 n 0 z CD rT CD 0 EVEN rT III III :::r CD CD CD rT c: W .0 RNI CD ::J 0 CD 0 0 ::J rT VIO III III :::r 0 0) \0 0'\ w W w 0 0 l> CLREQ ~ ::J CT CD cr:rmr 0 ~ -. ~ .... .... 00 ~ I" 0'\ , ...;..n ( CLRXM co"§>' ( PRT BIT W W W o o pv » PRTSW) '7"'" , 1"- ,"I . - (PRTAQ IF''' MlCI7 JRCK 'ffi) .. ~ -~ 1f'12, ~~I"""'~ AG 8 U:53 ~&I~J 11002 "12Ci3lf'1O , (Pii'fii P2IOl (INTOL PEF U8 ~ l_ INR IE RlI R4 ) PlMQ I I ~@I Il6 I 7 .~ 1 cM RGPWR ) _Pl_822;;:;""..L1~w I , SWEEP U1 • "'" U1 00iii DETAILED LOGIC DIAGRAM CONSOLE INTERFACE nlla (VIJ 1'1" """o;! (PFIND II''' ......... (elMO CONSOLE INTERFACE (drawing number 89618800, sheet 4) TEST MODE AND AUTORESTART Funct ion This is the circuit which executes the commands from the TEST MODE and the AUTORESTART positions of toggle switches on the Programmer1s Console. Both features cause the computer to start running after a master clear. Inputs r--'~-igna 1 ........ ..... ---...-......-----.----,.---,.. - .....-.. ........ Connector/ Pin Function ."~' Act i ve r-i~~:~ "--i- ~--.~ ' -,.~-- ...... -,....._,.. ~ T'MSW L 32M H H P2A30 .. ~,. --- ..'- .... ..._.,._-Location Sheet Square ~.--- ..,' .. 4 P2B09 P2B31 P2A08 P2A2 1• P2B26 .,' Breakpoint signal Autorestart switch Test Mode switch 04 04 B4 B4 B4 Outputs BEAC 5-352 controlled .........1IBEA ___________ _ 4 CI -----.-1 89633300 A CONSOLE INTERFACE (Drawing number 89618800, sheet 4, cont'd.) Oescr i pt ion The test mode feature is activated either by the TEST MODE switch or the AUTORESTART switch, both on the Programmer's Console. These switches produce the signals TMSW and AUTRSW respectively, which clock the test mode fl ip-flop (TM1, TM2: U17) with the signal 32M-(TMSW + AUTRSW-AUTiRS} where 32M is a clock of about 32 psec period generated on the memory control board. - AUT'RS is the output of flip-flop U5/8 (see below). The outputs of two-stage counter formed by TM1 and TM2 are decoded as H"CT (U44/3) and Gif (U20/6). These signals generate a Master Clear (Me) and then a clock pulse to the G' flip-flop. The latter starts the computer running (see sheet 2). With the AUTORESTART switch set the computer is master cleared and starts running on restoration of line power after a power failure. When a power failure occurs, the signal N'RMAL from the Memory Control assembly goes low. When power is restored, NIRMAL goes high, clocking the AUTIRS flip-flop (U5/8). If the AUTORESTART switch is set, the test mode flip-flops are activated, causing Master Clear (MC), and clocking the GI flip-flop. The GI flip-flop produces the signal SGT (see console interface sheet 2) which resets AUTIRS thus clearing the test mode flip-flops and allowing the computer to run. 89633300 A 5-353 CONSOLE INTERFACE (Drawing number 89618800, sheet 4, cont'd.) The AUTiRS flip-flop also resets a latch (U6/3, II) which blocks the breakpoint signal (BEA). This latch is cleared by Master Clear. The gates U3/6 and 1J34/6 produce sync pulses when the contents of the breakpoint register and that of the memory address register are equal. These pulses may be. used for hardware debugging. 5-354 89633300 A .. v 00 \D 0' W W W o o OPST) riEpY! » :1 2.56.7@ e?.!@ l _ ............ IlEA) 1"2'11 , ~ 2@ 'I IS P2A!O <8EAC 1201111>6 (AD) 2 PO' CAl> 2 vee AUTRSW) pc"...". iiiii> P2AU 52M >P2826 , VCCI' I I , V'I I W V'I V'I ........ V'I I W V'I 0' DETAILED LDGIC ·DIAGRAM CONSOLE INTERFACE . CONSOLE INTERFACE (drawing number 89618800, sheet 5) ALU LOGIC Funct ion This circuit performs arithmetic and logic functions in conjunction with the two ALU boards of the CPU. These functions are: - carry generation calculation of the trap address QSX: (contents of Q register) < (contents of X register) DBB: that bit of the bit bucket register which is used to generate the sign bit for the result of multiply/divide operations. NOTE Two ALU assemblies are used to accommodate the 16 bits of the computer word (without parity or protect bits). One assembly designated LSB, operates on the least significant bits (bits 00 through 07), the other assembly (MSB) operates on the most significant bits (08 through 15). Signals associated with the LSB are labelled L, those associated with the MSB are labelled M, these letters being appended to the signal name. 89633300 A S-357 (Orawing number 89618800, CONSOLE INTERFACE sheet 5, cont'd.) Inputs r"'" .... '-"--"'r-'-' .-........... '1' .-.·..--.. . -.....·.-----.. -T---.~····-·-------·-···· : Signal I Active ! I --: l TA2H 1 ! TA2l H J Connector/Pin! f ' j. i I H Function . ...... ...- • Location sheet square __._._- 5 P2A21 04 P2B26 Trap address generators • ! TA1H H TAll H : TAOH 04 P2A17 04 P2B17 04 H P2B16 D4 TAOl H P2A15 GHH H P2B03 ALU Carry generate (b i ts 12 T 15 04 c4 PHH H P2A02 ALU Carry propagate (b its 12 . 15~ c4 GlH H P1B20 ALU Carry generate T 11'J c4 ; PlH H PIA21 ALU Carry propagate (b i ts 8 T 11' c4 i GHL H PI B31 ALU Carry generate (bits 4 T t c4 i PHL H P2BOI ALU Carry propagate (bits 4 T 7 c4 .: GLL I H P2B02 ALU Carry generate (bits 0 T 3' c4 i PLL i H P2AOI ALUCarry propagate (bits 0 T 3) c4 ; A7H H P1B08 D2 H P1A08 D2 j Q.7M I1 ! 03 H P1B09 D2 i XGQ.L H i XSQ.M H i 1 !, I I i (b i ts 8 1 i I i XI5 I I II XGQ.M . -_.... 5-358 L H I 1 I I P1B07 F - 3 C2 P1A03 {X} > {Q.} on LSB C2 P1B02 {X} < {Q.} on MSB C2 P1A02 0' • ..... ._. {X} > {Q.} on MSB ... ~'" ._ ..... ~ .!_---- -.~. ~- j 89633300 A I (DrawIng number 89618800, sheet 5, cont'd.) CONSOLE INTERFACE Outputs r - - - - - - r -...- - - - . Signal _ ..... _ ....... _ ...._. _.-.. __. '-"' ........ - .......... - ..... -- ........ - ....... " Active Connector/Pin Function locat i o~""'-sheet ITA4l l P2A26 ITA3l l P2A18 ITA2l l P2A16 MCNM H P1B30 lCNM H P1 B29 MCNl H P1A31 LCNL H PIA2) DBB H P1A06 QSX . _ _ _ _ _ _ _ _ . . . . . . . . . _. 89633300 A H ___ .p' h_ .. 5 Trap Address • __ .~ ••. ~, ..... , D3 ! II C3 - C3 Carry output to lSB _ It _ Bit bucket sIgn bit {Q} < {X}, over 16 bits ~_, ••. , ...... _.. _ _ .. _ .. _ •••.•.•• _ . . . . . . . ·._·· ....... _ · _ _ ._'· •• I C3 Ca r ry output to MSB P1B03 'h'_'~' squa re 1 . . .... ··_····_·1 D3 I D3 - '! I J 5 B3 Cl Cl P.__ .. _· . ...... _. __ ... __._., . . .,. .. ~ 5-359 CONSOLE INTERFACE (Drawing number 89618800, sheet 5, cont'd.) Description NOTE The two ALU boards will be refered to as follows: MSB: Board dealing with eight most significant bits; LSB: Board dealing with eight least significant bits. The carry generator of the ALU is the look-ahead microcircuit, U49. It accepts the carry propagate (p) and carry generate (G) outputs of the ALU microcircuits (74181) from the ALU circuit (sheets 2,3), and returns four carry inputs. Each group of four bits of the ALU produces a G and a P signal, the suffixes specify the group of bits. The following table is a key to these suffixes. I Board -p;:;;-;;;-~f bi"~;-i h8j~ -N;;'~.Sufflxl _ LS;-..-.·.-I.----~::~·-----:·-· I higher MSB i lower H58 i._.... ...... . .. ,". 5-360 j LSB , i higher . •...•..•... ___ ..... ' .. ~._ .• II I I I t i -io ~ . . . . . . --, -;.-~.; 4 "LL .. -.- 7 HL 8 t 11 LM 11 ............ _~ T f 15 . HM .............._ _ _ _ _+_ - _ .. _ ...- ............ _. 89633300 A CONSOLE ItITERFACE (Drawing number 89618800, sheet 5, cont'd.) The logic equations for the output signals are: LCNL = GMM· GML • GLM • (GLL • PLL + PML) + GMM • (PLM • GLM + PMM) MCNiL = LCNL. GLL + GLL.PLL LeNM = LCNL GML GLL + GML • GLL PLL + GML PML MCNM = LCNL • GML • GML • GlL + GLM • GML • GLL • PLL + GLM • GML • PML + + GLM • PLM The signal LCNL is generated in the super-high speed AND-OR-INVERT gates U50, U36/6. The output signals are returned to the ALU board designated in the last letter of the signal name: LNCL and MCNL to the LSB, LCNM and MCNM to the MSB. The trap address is calculated from the TAO, TAl, TA2 signals of the two ALU boards, the corresponding signals from the two boards being ANDed together to form the trap address signals (ITA2L, ITA3L, ITA4L) which are returned to the lSB. Comparison of the contents of the X and Q registers is performed on each ALU board for the bits on that board. The following signals are generated and sent to this circuit as inputs: Signal Origin Significance o XGQl XGQH XSQH Note: V(} lSB MSB fo1SB 00 -- _._ O-----t {X} > {Q} o {)(} {X} > {Q} CO {Q} signifies "content of register X over the eight bits of the board". The output of this circuit is QSX which is active when the content of register Q is smaller than the content of register X, over all 16 bits. Its equation Is: QSX = XGQM + XGQL • XSQH 89633300 A 5-361 (Drawing number 89618800, sheet 5, cont'd.) CONSOLE INTERFACE The bit bucket, located on the decoder card, is used to store a bit at the beginning of multiply and divide instructions. In mUltiply instructions the bit stored is A7M{jjXI5 where A7M is the sign bit of the A register and XI5 is the sign bit of the X register. In division the bit stored is Q7MEB XI5 where Q7M is the sign bit of the Q register. or divided. Thus the bit will be set if numbers of different signs are multiplied The bit bucket is set by the signal DBB generated at U54/8, from signals of the A, Q and X registers on the MSB: DBB 5-362 = (AI5E9xI5) ·03+ (QI5¢ixI5) ·03 89633300 A . ~ 00 1.0 '" \oN \oN \oN 0 0 TA2M TA2L TAIM TAIL TAOM TAO!.. > I"v "'qI~'" (iii4L A7M til r~"'D ~ miL XIS P2A18 iTiiL. v rf!1OI rf! 015) Pl801 Os >PlB07 'lII04I (D. GMM PMM GLM PLM ... GMt.. PML GLL PLL ? :!~!?~ 5n. a 4K AW p.' 5-:.' ( ~ P-":~' ( xeOL >PlA03 XSO. ~ xaQ. '- PlA02 SID ~";--:;;:;u.~ P CF ,L.-:_ _ _ _ "' Me... LCN. MCNt. GIl ~ ..ri1r.1205S II 111111 t--iU50 M ~ LeNt. ! 91- II~ I ~ V'1 I \oN '" \oN DETAILED LOGIC DIAGRAM CONSOLE INTERFACE CONSOLE INTERFACE (drawing number 89618800, sheet 6) ENTER INTERRUPT LOGIC Function This logic circuit controls the initiation of the enter interrupt sequence. (see Timing, sheet 4). Ineuts ---...--.- ... ... r ..... Signal Act ive r . ..... _...- - - --. ·······1·--- -.----. -_ ..- ' . ' _ •. Connector/ Pin _,_.,..~ _ _ _' • __ 0_." _ _ _ _ Locat ion Sheet Square Function .. ENI H ENI20 KRN 11 GSL GSM INO INO EINT DEL2 DFEO L P1A1S P1B24 P1B28 P1A22 P1A24 P1B23 P1A19 P2A20 P2B08 H L L H H H 6 03 C3 C3 B3 B3 B3 B3 B3 A3 6 Dl 6 I I Masked Interrupt detected _---- I I Indirect Address i nd i catal i Interrupt System Enabled . Outeuts 'VFW L ENi'4 L CLRIR KRNI H KEN I I H JENI H . I --_'_"'_'",._----.,.- 5-364 H ..... "- ENI ·fJVFL P1B12 P2B14 P2Bl0 P2A06 P1A28 Clear Instruction Regist P2A25 ... .................. ' -~ -- ............... _ ,. - .....- .. '. ... Cl Cl Bl Bl . .. .- ..., .............. 6 At 89633300 A CONSOLE INTERFACE (Orawing number 89618800, sheet 6, contld.) Description The ENI f1 ip-flop on the timing card is set by the signal JENI. is: JENI = [(RNI·IPS + INOINO)·(GSM This signal + GSL)·WRQ·EINT]· [RNI.MX17A.MXl7·~ • [RNI.MXl7A·MXI7·OFEO·OEL2]· [RNI·PRTSW·DFEO.OEL2] where EPS is active during enter of sweep mode EPS = ENTER + SWEEP - GSM and GSL are generated by the ALU boards and are active when any interrupt line is active and its corresponding bit in the M register is set INOINO is generated by the I/O interface and is active when the computer is doing indirect addressing EINT is produced by the I/O interface and is active when the interrupt system is enabled. The JENI signal becomes active during RNI or in indirect addressing in the CPU cycle following a memory request if the interrupts are enabled and a masked interrupt is detected. However the JENI signal will be blocked if one of the following conditions exists: a. b. The next instruction is liN and the protect switch is OFF. The next instruction is a protected liN and the present instruction is protected. The next instruction will cause an illegal instruction sequence (because of a protected instruction following a non-protected one) and a protect fault does not already exist. c. 89633300 A 5-365 CONSOLE INTERFACE (Drawing number 89618800, sheet 6, cont'd.) The signal KENII is used to abort the enter interrupt sequence when the H register is changed just before the sequence has begun and the Interrupt is therefore no longer masked. The equation of KEN I I is: KEN I I = Gsii·GSt·RNI·ENI KENII is used to block the KRNI signal which allows the RNI state to remain active. It is also used to preset the FS flip-flop (see Console Interface sheet 2). The signal CLRIR Is used to clear the Instruction register. during: It is active - RNI·ENI which is the first CPU cycle of the enter interrupt sequence (at U20/13); - ENI2._DD (timed by PH3 during sweep or enter) at the end of the sequence; - CLREQ (see Console Interface sheet 3) at U20/9 and Master Clear at U20/12. The signal ENI2·_DD sets the ENI4 flip-flop (U24/9). The output of this fl ip-flop prevents the fi rst RNI cycle after the enter inte.rrupt sequence from being interpreted as a selective stop. This is necessary as the instruction register is cleared at the time of that sequence. The signal _VFW = ENI·'VFL is used to set bit 15 of the P register with the status of the everflow bit during enter-Interrupt when the computer is in 32K mode (32K/65K mode switch on Programmer1s Console). 5-366 8g633300 A . .... 00 \0 '" IoN IoN IoN o o I'" (OVFW » iTiiO > r'8.~ i!1 (\8 P2814 (EHI4 P2"", (CLAIR ICMII - KRNI iii. EINT PIA DEL2 P2AN DFEO~ ~ .. , ""......'", , rrU\R (JENI V1 IoN V1 IoN '" 00 DETAILED LOGIC DIAGRAM CONSOLE INTERFACE 1 CONSOLE INTERFACE (drawing number 89618800, sheet 7) SKIP LOGIC Funct ion This circuit carries the logic used i'n executing the skip instruction. lnputs Signal 32KW 15 FIEI IJVFL 14 Act ive H H H L H SLK AM AL L Wffi' L QEZI H mr L 16 H IT L H H Computerl Pin PlAl2 P1AOl PlA09 P1B10 PlBOl P1A07 PlA26 P1B26 P1At3 I I P1B27 P2A07 P1B05 P1A05 Locat ion Sheet Square Funct ion .-. 7 Bit 5 of Instruction Register Bit 4 of Instruction Register I ~ontents of A register 200 I ~ field of Q-register equals zero Bit 6 of Instruction Register Bf t 7 of Instruction Register 7 04 04 04 c4 c4 c4 c4 c4 B4 B4 B4 B4 B4 : Outputs ~VF H rnr L SKT WEZ H 89633300 A L PIAlO P1B21 P1B04 P2B30 7 Skip Condition ~EZ - WEZM (logically) 7 01 Cl Cl Al 5-369 CONSOLE INTERFACE Description (Drawing number 89618800, sheet 7, cont/d.) The signal SKT is active when the conditions for a skip exist. Its equation is: SKT = 15·16·17· (TIiE9AL AM) + T7.lb.IS· (T4$A7M) +T7.16.TS". (fli"Qi)WEZM·WEZL·QEZ ) + T7.16.IS· Cf4 $Q7M) + 17·1b·T5· (".{~ SLK) + 17·lb. IS· (l¥(i)i\iF[) +17016.T;.(TZi'$PEL) + 17. 16• IS·Cfli'$PFIND) where - 14, IS, 16, 17 are bits 4 T 7 of the instruction register, - AL and AM are produced by the ALU boards and are active when the contents of the A register is zero - A7M and Q7M are the sign bits of the A and Q registers - the signal WEZM·WEZL·QEZ) is hiqh when the Q register is zero - SLK is low when the selective skip switch is set - the signals ~VFL, PEL and PFIND are active during overflow, parity error, and protect fault, respectively. The signal CGPE is used by the Memory Control assembly to clear the general parity error flip-flop. It is active during skip-on-parity-error and skip-on-no-parity error instructions and also during master clear. The signal K0VF is used by the I/O Interface assembly to clear the overflow. fl ip-flop. It is active during skip-on-overflow and skip-on-no-overflow instructions and also when the computer enters an interrupt while in 32K mode (programmer's console switch 32K/6SK). The skip logic also produces a signal (U27/8) which clears the protect fault indicator during a skip-on-protect-fault or skip-on-no-protect-fault instruction. S-370 89633300 A . , ~ 00 \0 0'\ eN eN eN a a 32KW) ptAI2 1&) ... AO, ~ 12r I'T1 T &1 - T ptA' FIEI I,,§L _ _ _ _ _ _P_'_A'O ( KtlVF PIB21 (em I~ ~FL) pt_B='O"--_~ J 4 ).----f!IQ! ilK) I 4 b~_______~P~IB~0__ ~ PlA07 AM) PIAU "'I AL) ptp, .. '" I ",,,,, 'I WEIM) I (SKT Q30·QE~ WIn.) P2A07 '" I E 1. > I'!IOO , 11 > !'1M 1""1 & I CJ'1 ~ a ~ 6 ~ 4 '- 1:" 180 P2B30 (WEZ ~ I eN -....J --' ......... W -....J N A DETAILED LOGIC DIAGRAM CONSOLE INTERFACE ... TELETYPEWRITER (TTY) CONTROLLER The Teletypewriter (TTY) Controller circuits are accommodated on a single I 50-PAK wiring board. The logic circuit diagrams and descriptions cover four different printed wiring assemblies (PWA) in the field. The relevant pages are indexed in the lower table on this page. The TTY Controller interfaces the computer CPU with a Teletypewriter Terminal or with a Console Display Terminal (COT). It provides for communication at 9600, 1200, 300 or 110 bauds. The baud rate is selected by inserting a jumper plug in the appropriate location on the board (see circuit description, sheet 4. This page lists the functional blocks accommodated on this board. The circuits and signals are described in detail on pages facing the corresponding sheets of the circuit diagram. This board also carries the Breakpoint Logic. MAIN FUNCTIONAL BLOCKS Shown on sheet Designation A/Q channel data path 2 Controller/Teletype interface 3 4 Oscillator - Baud rate selector Address decoding - Reply/Reject logic Control and i nte rrupt logic 5 6 Breakpoint logic 7, 8 PWA PART NO. PAGE 89967400 5-374 5-402 89947600 89984700 89976400 89633300 E I 5-410 5-416 5-373 I TTY CONTROllER (PWA 89967400, logic Diagram 89616400, Rev. J) A/Q CHANNEL DATA PATH I (sheet 2) Function: This circuit receives parallel data from the CPU and converts it into serial form for transmission to the teletypewriter. It also receives serial data from the teletypewriter, converts it into parallel form, and transmits it to the CPU. Inputs LOCATION SIGNAL SOURCE/ SiGNAL FUNCTION SHEET SQUARE CONNECTOR PIN AOS P2B23 0-4 A register bus bits -2 A13 P2A I I 0-4 RDA [U22/181 Reset Data Available D-4 } SDIN CP EPS [U22/20] [U22/l71 P2A28 Ser i a I Data Input Clock Pu I se PARITYSEL P2A22 Even Parity Select Pa r i ty Select -12V P2A23 Supply vo I tage B-4 c-4 D-2 D-2 l. B-4 2 ..... I A- I Bi-directional Signals AOO P2A20 A5T A62 P2B20 Busy Status P2BI9 Interrupt Status Data AD3 A04 P2AI7 P2A21 , AOS AOi5 P2B22 End-of-Operation Status Alarm P2BI8 lost Data Status A07 P2AI9 Parity Error Status A09 AIO P2B24 A-I A-I or data B-1 bits B-1 to/from A-register B-1 B-1 B-1 -...I P2B26 A-I 2 A-I -2 D-4 Outputs m P2B28 SPIaUT [U22/2S1 TBMT [U22/221 E0C [U22/241 0R DA PE [U22/IS] [U22/19] [U22/ 131 S-374 Serial Data Output C- I C- I End-of-Operation Status C-I Data Available .A-4 A-4 A-4 2 89633300 E TTV CONTROLLER (drawing 89616400, sheet 2, cont'd) Description Lines AOO through A07, A09 and A10 communicate with the CPU and serve both as input and output lines. Lines A08 and A13 are served as inputs to the contro 11 er. Signal All is an output from the controller. The input signals are buffered and converted. They are used as director function bits and are input to the Universal Asynchronous Receiver/Transmitter (UAR/T) U22, and other parts of the controller. The cirCUit is built around the Universal Asynchronous Receiver/Transmitter (UAR/T). In its receive portion, this accepts serial data from the teletype- writer (SDIN) and converts it to data on eight parallel 1 ines (terminals 5 through 12) timed by the clock pulses (Cp) from the oscillator baud rate selector (sheet 4). In its transmit portion, the UAR/T accepts parallel data on eight lines (terminals 26 through 33) and transmits it to the teletypewriter as SDeUT under the action of the same clock (cpl. The control inputs to the UAR/T are XR, OS, CP, RDA, PARITVSEL, and even parity: XR resets the internal registers of the UAR/T OS is a strobe for parallel input (transmitter) CP is the clock input RCA resets the data available signal DA (receiver) PARITVSEL is used to select the parity option, EPS: selects whether even or odd parity is used. The following table summarizes the action of the parity selector signals: SIGNAL LOGIC LEVEL EPS High Even parity generated in UAR/T EPS Odd parity generated in UAR/T. PARITVSEL Low Low PARITVSEL High 89633300 E FUNCTION Enables parity in UAR/T (7 data + parity bit) No parity generation (8 bits from CPU) 5-375 I TTY CONTROLLER (drawing 89616400, sheet 2, cont'd) The control outputs are PE, SR, DA, TBMT and ESC signals. PE is active when the parity option is selected and a parity error is detected in the serial data input. SR is active when a new character is received on the SDIN input, and the DA output has not yet been reset. DA is active when a character has been received on the SDIN input and is stable on the parallel data outputs. TBMT is active when a new character is transmitted in the SDSUT and remains active until the start of transmisston of the next character. The data flow from the CPU to the teletypewriter is thus from the common input/output lines of the controller (AOO through A07, A09, A10) with parallel data, to the single line serial data (SDSUT), according to the baud-rate clock and according to the control signals. The data flow to the CPU is selected by multiplexers U23, U37. The outputs of these multiplexers are either the eight data bits from,U22 or the eight status bits: Busy, Interrupt, Data EOP, Alarm, Lost Data and Pari,ty Error. One status bit is always "1". The data selectors are controlled by signal DSEN which comes from the address decoding and reply/reject logic. BitsAOO to A07 are strobed by the signal (DSEN+RDA+READ) which comes from the receiver/transmitter control logic. This signal is active when the controller sends data or status to the CPU. The status bits are strobed by signal DSEN. They are used as follows: A09: read mode All : manual interrupt NOTE I Sheet 2 on page 5-378 differs from some older revisions in the following areas: * * * 5-376 zone B-4: U22/20 is not connected to U22/21(zone C-l) zone C-3: AND-gate type 140 is U7/9,10-8 zone A-2: AND-gate U68/1,2,13-11 is type 213S 89633300 E 00 1..0 _0' v.> v.> v.> o o rr1 fFF SHEET REFERENCE OFF SH[ET ""'EII£NCE LETTER 4 8 ______ 0 __ F G J K L M N P 8-4 - --- -B-4 B-4 8-4 C-3 A-4 C -I ,1.-4 C-3 5 T U V W )( Y - C-I C-3 C-2 . @ -----"IIV'tr--4 vee ~:n--~vcc v.> C-4 ,1.-3 C-3 B-1 0-1 0-1 B-1 2 AV AX AY AZ BA BB - BO BF BG IfH"-- -A-4 BK BL BM BN C-3 C-3 0-2 0-4 0- 3 - - ---iii>-- 0-4 C-I 4 0-1 5 6 0-3 C -3 C-3 B-2 0-2 C -3 C-2 C-I B-1 C -I B -4 C -I 0-4 B-2 B-2 0-3 C-I 0-3 B-3 0-4 D-3 B-1 8-1 as B-2 B-4 ---- B-2 B-1 -~~ --- --- -- - -------- BU BV ,1.-2 ---,1.-4 - "'Z t-- - - i N(lTE -- ---- A:J RESISTeRS I. 8 B-3 8- 3 0-2 C-I C-I C-I A-3 ,1.-2 0-3 B-3 A-3 ALL UNMARKED ARE 025 WATT 5"4 --.J R,. ® a.. ,vcc~vcc R3S R8 IK If< ®- ~vcc ®-~--- .3 P2A:29 (CRT-REC -12V :;:;:s 38 TTS FF lis -- I S QJ Z".z.H G GK R33 +19V )r_P~2=B2=7'----'l;..~?':;.___..,.______J~..J1.12Y CII2 I .. 759A US R 61 ••• ~A!I G;3" CI C4 C!I 68.' C6 - - C7 61., 1 .. C9 cta CII CI2 CI5 .1.' 68 ., .1., 61., .1.' \11 CI!I .8.' CI4 00 - - - - . ...........".-. :z * 1I Ic! T. -=- f DETAILED LOGIC DIAGRAM I W I -12V) P2!2 4 I I I I I ..Lc.~ 1 r I I I I I I I\U T~ 1-T I - 1 1. T 1 I I T 'Ft7 : - . TTY CONTROLUR .t 55Y -: 611." 1-!2V TTY CONTROLLER (Drawing number 89616400, sheet 4) OSCILLATOR - BAUD RATE SELECTOR Function: The Oscillator-Baud Rate Selector Circuit generates the clock signals required to oper.ate the controller at four different rates: 9600, 1200, 300 and 110 baud. The three higher rates are used only with the COT. The circuit consists of a clock section and a group of programmable counters forming the rate selector. SIGNAL SIGNAL SOURCE/ CONNECTOR PIN FUNCTION LOCATION SHEET SQUARE EXTCLI< P2A09 External Clock STPCLK P2B09 Clock Stop Enabl e 0-4 BAUD SEL P2A08 Programmed Selector Enable 8-4 4 D-4 , Outputs I CP [U7/l1] Clock pulses 4 8-1 1 .3].ls [U15/3] ].3 J.lsec clock 4 0"1 5-382 89633300 E TTY CONTROLLER (drawing 89616400, sheet 4, cont'd.) The Clock Section The main oscillator consists of U45, U68, Q5, Q6 and a 12.2222 MHz crystal. The output of this oscillator is divided by 10 (programmable counter U31 and flip-flop U14). I The resulting signal of 1.2222 MHz goes to divide-by-16 counter (U15). One output of U15 (Pin 3), is a clock with a 1.3 microsecond period used in other parts of the control logic. The output at U15 (Pin 6) is a 152.8 kHz clock which goes to the Baud Rate Selection Circuit. The Rate Selector Baud rate selection is accomplished by changing the preset inputs to programmable counters UIO and Ull. These process the 152.8 kHz clock signal according to the preset input lines coming from multiplexor U12. This chooses between two groups of four signal lines: BAUDSEL active selects four hard-wired logic levels as inputs to the selector, setting the programmable counter to the 1200 baud rate; BAUDSEL inactive selects four programmable lines from location U13 as inputs to the selector. A removable jumper plug at this location selects one of the baud rates as follows: Baud rate Jumper plug in position U13 terminals 110 89633300 E JO - 7 300 1200 11 - 6 12 - 5 9600 13 - 4 5-383 I TTY CONTROLLER (drawing 89616400, sheet 4, cont'd.) The action of this circuit Is now described. When the 9600 baud is selected, the jumper plug at U13/10 -7 forces U12/4 to logic low while the other outputs remain high. This clears flip-flop U9, blocking the output from counter UIO, and gates the 152.8 kHz clock through u8/3 and U5/6. The resulting clock pulse (Cp) goes to the clock input of U22 in the A/Q channel data path logic. When 1200 baud is selected, pin U12/12 becomes low while the other outputs are high. This causes the data inputs of programmable counter Ull to be 1011 2 and the data inputs of programmable counter UIO to be 0000 2 , The circuit composed of U9, UIO and Ull thus behaves as a divide-by-8 counter and the clock frequency signal (Cp) becomes 19.1 kHz. Similarly, when 300 baud is selected, the counter divides by 32 to produce a frequency of 4.77 kHz. When 110 baud is selected the counter divides by 87 to produce a frequency of 1.76 kHz. Note that the jumper plug for baud rate selection in location Ul3 has to be inserted at the time of installation. I NOTE Sheet 4 on page 5-385 differs from some older revisions in the following areas: * * * 5-384 zone c-4: two capacitors (CI8, 0.47NF and C20, 47PF) and 180-ohm resistor R62 are not moUnted in the oscillator circuit. zone C-3: AND-gate u68/11,9,10-8 is type 2l3S. zone B-1: AND-gate type 140 is U7/12,13-1l. 89633300 E 00 1..0 0" Vol Vol Vol £lCTCL. o o _ _ _ _ _ _ _ _ _~ >~..:.P=.;ilA::::ot~ ~ ~~~,---~ ITI vec ~ R!I!I R!l6 !!. 4vcc IK ........ hlCc ., ......... ...... ... yr .L ~T4'" CIII 12~~22 MHZ "'---,11 11115 a.1. r 111Uf I. '\ 12 .~ \1'1 I Vol 00 \1'1 OSCILLATOR -BAUD RATE SELECTOR DETALED L08IC DlAIRAIl T.T.Y CONTROLLER TTY CONTROLLER (drawi ng 89616400, sheet 5) ADD~ESS DECODING ~ REPLY/REJECT LOGIC Function This circuit decodes the A/Q channel address bits from the the CPU as well as the RE'Ai) and WRITE signals. It decides (REPLY or REJECT) to the CPU based on these signals and on the controller itself. The circuit also generates control other parts of the controller. Q register of on the response the status of signals used in Inputs SIGNAL ACTIVE WIT L QOO Q04 Q05 Q06 Q07 Q08 H H H H H H H H Q09 QIO RfAi) WRITE Me L L L I CONNECTOR PIN FUNCTION LOCATION SHEET SQUARE P2A15 P2A05 P2B07 P2B15 P2A14 P2A06 P2BI4 P2AI6 P2BI6 P2A04 P2B06 P2B08 5 P2B13 P2BI2 5 5 5 c-4 B-4 C-4 c-4 c-4 c-4 c-4 c-4 c-4 B-4 B-4 A-4 Outputs REJECT REPLY I 5-386 L L 89633300 0-1 0-1 E TTY CONTROLLER (drawing 89616400, sheet 5, cont'd) Description The CPU addresses the TTY controller through the signals WEZ. Q04 through Q10. When WEZ, Q10, Q09, Q08, Q06, Q05 are at logic low and Q04. Q07 are at logic high, the TTY controller is selected and the logic high at the output of the address decoder (u44/12: TADR) opens the decoder gates (U30, u44/6). The decoder gates produce four signals, which are active according to the information and data flow (under CPU command): Note: TADR is active high at u44/12 when the TTY controller is addressed. Termi na 1 Signal Equation Information/ Data Flow U30/12 RDEN TADR. READ. QOO Data from TTY to CPU (Read Data Enable) U30/6 WDEN TADR.WRITE.QOO Data from CPU to TTY (Write Data Enab le) U30/8 DSEN TADR.READ.QOO Status of controller to CPU (Director Status) u44/6 DFEN TADR. WRI TE .QOO Director function from CPU to controller The strobe flip-flops provide the timing for the controller outputs (REPLY. REJECT). They are clocked by the 1.3 microsecond pulse train from the oscillator/baud selector circuit (sheet 4) and cleared (stopped) unless either the "R'E"AD or WRI TE command is act i ve. The controller gives a REPLY or REJECT output to the CPU during strobe pulses. The REPLY signal is active when the output control gate (U39/6) is high. This occurs when anyone of its inputs is low. The following table summarizes the input conditions to the output control gate. 89633300 E 5-387 I TTY CONTROLLER (drawing 89616400, sheet 5, cont'd.) Input Signal REPLY Active U39/1 i5'S"EN Read Status, Reply always U39/2 OS·WRITE Transmission of character f rom con t ro 11 e r to TTY complete U39/4 RBA. READ Character from TTY i n con t ro 11 e r and ready for transmission to CPU U39/5 Decoder output (U58/8) Director function sent from CPU to controller when exp ress ion in note i.s high Te·rmi na 1 I NOTE Sheet 5 on page 5-389 differs from some older revi"s ions in the following areas: *zone 0-2: U57/9, R/R CLOCK, is connected to U5/9 (zone A-4) *zone 0-2: TPl2 is connected to U57/9. 5-388 89633300 E ... 0.1 ,,~ 00 \.0 a- IoN IoN IoN o o R/R CLOCK IT1 ,i' IOm-· o o9 , Q. Q • .- o• Q4~imi 1111 I 21 o7 . . ) PZIlaIl I 'r lOll.,!)-" l -- (iIu)4 ~ ADDRESS DECODING - REPLY/REJECT LOGIC V1 I \,oJ 00 \.0 " '~ ..AlII 4ocK ro---qUM' DETAILED LOalC DIMRAMI T.T. Y CONTROLLER I \,; I .....400 I'd I = i \It TTY CONTROLLER (drawing 89616400, sheet 6) CONTROL AND INTERRUPT LOGIC Function This circuit generates an interrupt signal for the End-of-Operation (E~P), ALARM, DATA and Manual interrupt conditions. It also contains a number of control fl ip-flops and generates the associated signals: Signal Fl i p-flop READ/WRITE, M0DE DATA READ, L~ST DATA MECH BUSY WM0DE, RM~DE ~, L~ST DATA(LD) BUSY, E~P, DATA, MECH-BUSY Inputs SIGNAL ACTIVE MNL -INTRPT MNL - IR:T~~T CONNECTOR PIN FUNCTION P2A13 PIA05 ) Manua 1 Interrupt J from Progral1ll\er I s console 6 6 c-4 c-4 P2B25 P2A12 Character Input Interrupt (E~P) 6 6 A-3 0-1 L L LOCATION SHEET SQUARE Outputs ..&.- CHI' INTIL NOTE: , 15-'390 L L , Sheet 6 on page 5-395 differs from some older revisions in the following areas: * zone C-3: the Manual Interrupt flip-flop is U5/11, type 242H * zone c-4: 6.8NF capacitor C16 is not connected between signal MNL INTRPT at P2A13/PIA05 and ground. 89633300 E (Drawing number 89616400, sheet 6, cont'd) TTY CONTROLLER The Interrupt Circuit Each of the interrupt conditions (DATA, E~P, ALARM) is set by the corresponding director functJon (A02, A03, A04) together with the signal DFEN, and is latched in the corresponding D-type fl ip-flop (part of U2). The interrupt conditions are reset by the Clear Interrupt (CLEAR). (U2) are clocked by DF=WRITE·MC. The latches When the latch output (interrupt enable) coincides with the corresponding signal, an interrupt signal is produced at the output of U6. The Manual Interrupt signal (from the MANUAL INTERRUPT pushbutton on the Programmer's Console) sets the manual interrupt fl ip-flop (U5) and also sets the interrupt signal through u6. The following table summarizes the action of this circuit: Note: Interrupt Condition Director Function Gate Data A02 U36/6 U2/4,3 E0P A03 U21/8 U2/ 12, 11 ALARM A04 U21/6 U2/5,6 Manual --- U5/11 --- ALARM INTERRUPT = PE·DATA·READ + L~ST Latch Terminals I I DATA that is when a parity error is detected on input data or data is lost. The output of gate u6 is used as the interrupt status bit in the A/Q channel data path logic circuit (sheet 2); its inverse (U56/1l) is transmitted to the CPU. Control flip-flops The Read/Write gate (U36/8) forms a latch with U2/13, 14 to produce the clocked mode signals WM~DE and RM0DE used in the control and teletype interface circuit (sheet 3). It is set by the director function A08, ANDed with E0P and DFEN and reset by RESET from the address decoding and reply/reject circuit (sheet 5). 89633300 E 5-391 TTY CONTROLLER (drawing 89616400, sheet 6, cont'd.) The Data Read flip-flop (U43) stores the information showing that a character has been received from the periphe~al device. It is preset by the function DA·RM~DE·ID·MECH8USV Where RM0DE means that the controller is in Read Mode DA is an output of U22 in the A/Q channel data path logic L0ST DATA,(~ is an output from flip-flop U9 and means that a character has been received by the controller and not transferred to the CPU MECHBUSV (output from flip-flop U43) means that the controller is sending a character to the peripheral device. The data read flip-flop is cleared by the rising edge of the signal from u28 and it is asynchronously cleared by CC0N+MC or L0STDATA atR. The flip-flop Lost Data (U9) is clocked by the rising edge of the signal. DATAREAD·MECHBUSY·0R toutput of U29) , where 0R comes from the UAR/T of the A/Q channel data path logic. The flip-flop is cleared asynchronously by CC0N+MC or RM0DE (u60/8). The signal L~ST DATA (LD) is used as a status bit in the A/Q channel data path logic. The MechBusy flip-flop (u43) is set while data is transmitted to the controlled peripheral and is cleared when the transmission has been completed and the WRITE signal is no longer active. Its actuating signals are as follows: Set: Preset: Clear: I 5-392 by TBMT from the UAR/T to the A/Q channel data path (sheet 2) CC0N+MC by rising edge of E0C·TBMT.RDEN·WQEN 89633300 E TTY CONTROLLER (Drawing number 89616400, sheet 6, cont'd) Miscellaneous output signals are produced using the signals of the above fl ip-flops. These are: Signal BUSY Equation Description/Remarks Origin LOST DATA + CHI to UAR/T of A/Q channel data path (sheet 2) U29/6 READ'DATAREAO Character Input prevents the most significant field of the CPU A register from being changed during a read data operation U52/8 MECHBUSY + DA'RMeDE Status bit U59/11 Status bit (End-of-Operation interrupt) U24/12 DATA Eep·WMODE + DATAREAD Status bit (data interrupt) U42/6 PARITY ERROR PE·DATAREAD Status bit (data interrupt) u8/11 ALARM PARITY ERROR Status bit (alarm interrupt) u8/6 Active after transmission of u28/6 D$.·WR ITE character used in the UAR/T of the A/Q channel data path (sheet 2) timed by 1.3 psec signal. NOTE: OS = E'P 89633300 E WMODE WDEN + DATAIN RMODE MECHBUSY (1.3 psec) at U27/8. 5-3931394 I II (AZ) , 48 _PF~'~NL--r-_ _ _ _ __ ex> I.D I "'I 2.5fAB' ~ AZ ""' w w w ~ .. '.. o o R[II.S.Of< RECORD 0, . • ':> - ,to'. , Iv .. ,.r I 0 ... · ICHICD • .,.~ '-@2 100 ENABLE "NL G> I INT 1''' "P'" +5V~ 24 2H r'r~~~NA~~~~~t~~~-fT--1T~M~N~l.~1N;T;===:::l;±f11 1t - ~O:~E 10. FF (~ EOP rOEOP ENABLE 31 ~ 2 '. iiNl R"'DE ~~ 144 iiiii. iffiiji'J 49 I .0' U43M "ECH BUSY LOST DATA l 1~5 .-+ ,.30 47 I LOST DATA 0') 2 2(Gr--+=---'-I 305 ) I • -----------. ~I ~ , "I V1 I W I.D V1 "U ~ L ____________~=~=_ I (~"\35 P2b~'l - ,.UIe "" srJsl> 146 .f/VFL )-f2&'l. ~ EtlT)~UII!I 0" ~ 1154 00 \,0 voc ItO W W W " ,8 • PINe <'JIIDt P!J2I (.e om ~ .... ~ Ij aREAl( PflINT LfGJC o o !ICy DETAILED LOGIC DIAGRAM T.T.Y CONTROLLER I'T1 " A REV O~ C'l 09 ECO C.K4-IO I REVISION RECORD I DRFTT DATE I CHKD lAPP DESCRIPTION tlEOftAWN PElt CoDe. STDS CK~J2 c.\<.~3a 07 CK'7co5" 03 CK"'~'t 10 CK795 ~ ~~ s \ v-. , \.~ CK8Se A CK \, 79 P.ELEASED CLASS A. ALL +5V R.EPL. BY vee.. Il s", B CK.\2.'2.~ O~F-S\-\EET C cKI241 CK\229 CANCt:.LLE"D. COMBINED J) cK928 E CKI2~8' 'U22 -19!U'-C)-4 f EL~TEJ). CODE 'DENT C REV DWG NO 89616400 SHEET J 9 .A. 89633300 E 5-401 TTY CONTROLLER (PWA 89947600, logic diagram 89616400, revision H) The logic diagrams and logic descriptions for PWA 89947600, logic revision H, pages 5-402 through 5- 40 9, are basically the same as for PWA 89967400, logic revision J, pages 5-374 through 5-401. The sheets of logic revision H are located on the following pages of this manua 1 : sheet page 2 5-403 5-404 3 5-405 5-406 5 5-407 6 5-408 7 5-399 8 9 5-400 5-409 PWA 89947600, logic revision H, differs from PWA 89967400, logic revision J in the following areas; Sheet 1: Revision H matches PIN 89947600 Sheet 2: *zone B-4: U22/20 is connected to U22/2l (zone C-l) *zone C-3: AND-gate type 140 is U5/2,1-3 Sheet 3: ,'tzone B-3: the TTS fl ip-flop is U7/11, made up of two type-140 gates. *zone c-4: the signal atP2A10 is not identified. Sheet 4: *zone B-1: AND-gate type 140 is U5/5,4-6 Sheet 5: *zone c-4: U39/6 is connected to U5/9 (zone A-4) *zone c-4: TP12 is connected to U39/6 Sheet 6: *zone C-3: the Manual Interrupt flip-flop is U5/ll, made up of two type-140 gates '~zone c-4: 68NF capacitor C16 is connected between srgnal MNL INTRPT at P2A13/P1A05 and ground. Sheet 9: revision record H The logic descriptions for revision J also apply to revision H. I 5-402 89633300 E 00 ~ 0FF SHEET REFERENCE 0' \oN \oN \oN o o J"T1 OFF SHEET ~.~. ~. o 8-4 8-4 A-4 F G J K I L loll N I o I I R 5 I I T I p . A-4 I I C-I I I C-3 8-3 8-3 8-3 A-3 e-2 W )( Y I I C-3 I C-3 I 0-2 I 8-4 I I I I C-2 8-2 8-2 8-2 8-1 I I I I I I C-2 I C-2 0-4 0- 3 I- -_.,•. BH'-~ A-4 1---. 8K ~.~N_~ BP 0-4 -.--.- 8-2 8-4 f f I I B-2 =~ == f~lf:l+=~t~1itt~- 13 ~ ~!'A~ ~. .;~~ .vee "40 lK @~.vee RI' I~ V1 I ~ o - @:J~vee ®H4 RI2 IK ..... R3S 6 C I B-4 C -I 0-4 C -3 C-3 8 -2 0-2 C -3 C-2 C-I 8-1 -- BO f:: .-. NIITE 8-1 8-1 - A-4 A-3 RESIST0RS & -.. II< IK RIS II< II< A •.,-- 8 '--- - A-2 B-3 B-3 0-2 C-I C-I C-I A- 3 0-3 I ARE 025 WATT 8-3 5% PIN 89947600 RI4 ,~ee riil\...~~'L. ~vee R8 R35 0-3 B-2 A-2 A-2 A-4 - -- T 0-3 • C-4 B-4 8W U~MARKED 7 C-I 0-3 B-3 0-4 r--- BU BV ALL T B-2 B-2 0-3 Bioi 0-3 B-4 5 0-3 BL C - I . - l .. _ _ ~ C-I A-4 4 0-1 3 AX AY AZ IBA - ---- -----f--_ 8. 8 _ BO BF 8G 0-2. C-2 I AL _ _ _ C.:I AM C-I AN A,. AQ 2 AV C-2 C-2 C-2 I C-3 8-1 0-1 0-1 C-4 C-2 C-I C-I 8-1 AK f 8-4 C-2 8-<1 C-2' 8-1 8-1 f C-3 A8 AC I f 8-1 A-3 C-3 C-3 Z AA AF I 8-3 8-4 A-4 C-4 A-3 I I I ---I--- - C-3 I AD 8 A-3 U AJ f- - C-4 C-3 8-3 7 6 8-1 v ~ ___AG t..=-· C-I A-4 C-3 . L~CATIIIIN 5 SHEET 4 8- I 2 3 8-4 8-4---' REFERENCE LETTER A 8 DETAILED LOGIC DIAGRAM T.T.Y CONTROLLER ®-~vee~.~---ovcc ~'lCC ~ ..... vce RI IK ~ ~-'---- "WJ IIi X.Y] ~ 3 )iGI ~'?/ ~.. U~3 I ~ 9 I-- :~ AA~ ~ 146·R I - @r~ I ":~~ ~~~ lVCC ~. ,I ~' DATA PATH PIN 89947600 ~~_____~~I~r------~6 DETAILED LOGIC DIAGRAM TTY CONTROLLER 00 \..0 '" W W W o P2B30 o ( .----_----'t-4Ivcc ITI R26 / 1.211 Q4 R25 4,7K TTY-KT.) r'MW R32 ~~.oP2AZ6 TTYPR ...... - P ..c:.* .. :1 2N2901 •• CII5 .41111 1"9 "'''0 (MOTOR ON ~3 P2A3p (CRT-REC .i I~ 13 L -_ _ -12V , ~ '19V ) P2B27 E R33 150 YoI'. 1,12V CR2 IN ~~ 'If r- . I I C4 I I I 'T I ~ - lC~ 'In' r I "oF I Ice C6 C1 6Bn' 68nl 1 I -12V) P2A24 I I I I 1 I~ ,~C9 1 IC~ 61nF. 68nF I I ell 6BnF CI~ 68nF CI2 V"I I - CONTROLLER/ TELETYPE V"I ---,_., '-A' INTERFACE I -:- 6BnF ICl3 68nF ,,",C14 !'t68rr "!. O I 63 c2 .t:- 1~9A I T. 1.+ 61 1 1-!2V C3 4i8~F 55Y ~ j OETAILED LOGIC DIAGRAM TTY CONTROLLER - • -' b=: • ~IIECOM) :t " .. .,.~ .,'1. .. ' .......1_ V1 I '5 0' EKTCl.K :l >.P2Aot II ~ ~~~------R56 IK vee ........ ~~~A' ~VCC .. It ..... ,.. 11M T. ...L CI9 471'1' I~ , YI ~ 12.2222 MHZ 'I'~ lin I. •• ~ t /.~ It'3 Ie A ~ 110 I- CD I. 1.0 0' \N \N \AI o o IT! OSCILLATOR/ BAUD RATE SELECTOR DETALED LoeIC DlAIIIAIl T. T. Y CONTROLLEIt 00 \.0 (j'\ Vol Vol Vol o o R/R CLOCK ITI .=I' '\ "I 11: ) roo..... Me PIN 89947600 PIN ~ V"1 I g ...... ADDRESS DECODING - REPLY/ REJECT LOGIC DETAILED LOGIC DiAl RAM T.T. Y CONTROLLER I I "I •••••00 i 1,» I -- - • 11£1115'0lIl RECOIID • (41 \.11 ) on!! I I &~ 't. 2.S~~) ~ ':> ... If' • ,.- '" (.... ,.tIOA· ICHlCD • •" I .. , r&;;' ... 2 4& .J:- t o ex> VA'A , --@2 10D ENABLE MNL lINT 1'(1 .., ..,' Ciiii lOEOP [!!ABLE -:l\.... , ... ~ _ ell .... nr I ~ w ( iiiTit EOP EDP WMIDE MANuAL. I NTEflR,.\lPT ..L - FF f MNllNT ~ PIAl. IIM'OE 144 . ."., I I MECH 8USY -.30 CONTROL AND INTER RUPT LOGIC 1 CCON + Me • <~ R ) 35 ex> 1..0 0" W W W o o I'TI .~ . "t.AU rwt."'~ S I ..,. 146 "--, 2. L lOBs . p2e<,_~ U52 204 8__ .__ ~Oii f!!m CO"PUHR~ lT~ DETAILED LOGIC DIAGRAM TTY CONTROLLER mTIl1Ulli1M.J ~ PIN 89947600 PIN 89984700 PIN 89976400 J .. REVI O~ C' Oa REVISION RECORD ECO CK4-IO 1DRFT1 DATE I CHKD lAPP DESCRIPTION ~e:DftAWN PEr( c:.oc. STpS cK'12 C.K"38 07 CK7foS 09 c.K.. 7<8Lf10 CK7~5 II cK8Se A CK 1'79 S\ t-\ \,.~ '< 'rc.. B RELEASED CLASS A, ALL +5V R.EPL. BY vee. CK\2.2~ O~F-S~EET REF "BV" ADDE D. SJ.\2. AP REPL B'( V"S C CKI2.41 U~8 WAS 2.J3H. FITS ASS,( 8994-2.700. CK\2.2e CANCELLED. COMBINED WITH CKIZLtI.SAM!: APPEAR 1N CK 12.28 APPEAR IN cl( C~ANGES THAT \,2. Lj. , • D cKca2.8 E F G 'l4 f<.EVERSE cHANGES To us I, U7 IN ECo ~12. U22 -19!U'-O-4 .e.EPLACES UZ~-J~7U~S-~ 2 j u2.!:) -8/ U("'8-1)2 f<.ePLAe'ES U2S-VU 4-b:-.9 j U"'~-/2./U4-'-.9 REPLACES u~e-12/u~O -4-. CK 142.2 FITS PWA ~99'7<;'!fOO.INcoRPoRATES REWO~.K OF CKI2.~8l.pEL.ETES OSCILLATo/'Z P-EWCRK 01= eK.eS's. u~e IS 7'HH I . C.KI2.~8 CKI'+If~ FITS PWA 8998Lf-700. INcoRPoRATES REWoRK 15 7'+ H II . ~ OF ct<.I2.~e. U~8 CK \'+ 4-7 "eVISION R.ECORD: U"8 WAS 213 H. FITS PWA GM . of T.T.Y. CONTROLLER I CO()£ IO£NT C 'OwG NO REV 896' 64-00 SHEET H 9 A 89633.300 E 5-409 I TTY CONTROLLER (PWA 89984700, 1ogi c ~ i agram 89616400, rev i s ion G) The logic diagrams and logic descriptions for PWA 89984700, logic revision G, pages 5-410 through 5-415, are basical1~ the same as for PWA 89947600, logic revision H, pages 5-402 through 5-409. The sheets of logic revision G are located on the following pages of this manual: sheet page 1 5-411 2 5-412 3 5-405 4 5-413 5 5-407 6 5-408 7 5-414 8 5-400 9 5-415 PWA 89984700, logic revision G, differs from PWA 89947600, logic revi s ion H, in the following areas; Sheet Sheet Sheet Sheet Sheet 1 : Revision G matches PWA 89984700. 2: *zone A-3: AND-gate u68 is type 213H 4: *zone C-3: AND-gate u68 is type 213H 7: *zone A-3: AND-gate u68 is type 213H 9: revision record G The logic descriptions for revisions J and H also apply to-revision G. I 5-410 89633300 E 'IF ex> 1.0 OFF W a a IT1 SHEET SHEET REFERENCE LETTER 2 A B B 4 B-4 I __ r-. f--.. D 3 L0CATI0N 4 5 . 6 F A-4 A-4 J K C-I A-4 B-3 B-4 L C-3 C-I C-4 C-3 B-3 C-3 I I I P o " s I 9-3 B-3 A-3 T I I U v w )( I I y I C-3 0-2 C -2 AA C-2 I I ~- :~ I _ C-3 --- --- A-4 C-2· C-I C-I B-1 Rf_y':_ ~- ~ 2.1 ~ Iif .f). G: 7 81"9 J AA A A A AA A " B B A B AI I...... B A ~ .D D B p, DBA C-2 C-4 I I I C-3 B-4 B- 4 f-- B-4 I I C-2 I I C- 2 C 2 I I I C-2 I B-2 I I 0-4 B-2 BK BL C-I ~_ I 1--.!,,_-..:2=---1-_ _+ B-1 ------f----~-:::~f___ R40 IK ~.vee ~3~vee R36 ®-- IK RJ IK R68 BV BW ~ --.t'.. NflTE ·.----tvcc @ "".., I vee I . ., 1 H 'l' 0-3 1 C-4 I B-3 B-4 0-3 B-3 0-2 B-2 C-I 1 ::: 1 ::; 1 ARE 025 WATT 5% PIN 89984700 JO NOT SCALE DRAWING I :4'\j ¥Al! RIA .... c:.,. .. I ,~, > .',' N ' . . ~' 1;-":._ IU. '.0 en ,n .. I~i~.: 0-4 I B-3 RESiST0RS ... , T TLE IS.TiLl.lda itS. 1~lhlli\lJli1J1lI : :~,-~ gl§. ~~ ~ 0-3 A-3 ALL UNMARKED ~ 0-3 B-3 B-1 A-4 mIT COMPUTfRS lTD' II< B. t. Ed ¥:- =- ¥ ~ vee ~~--- DETAILED LOGIC DIAGRAM T.T.Y CONTROLLER I" ,"' Ic I 896~~:~~ 5'1~fr I ()~ E I V1 I J::- r' _·-· .." ....t) P2AZ2 :~ i: -> ::::: ... > '. H6 -r_T+-____...uJ· ~ ~____ __ , ,. Z 3.5 . ~ AA5.6 6~ ABS. ~ AO AC S I lvee IiI ~ "~ ." b .IS E.VEN PARr-f'2A28 N U22 j--@3 ·T" ~6 . ,. x.vu 4~ 6(8)"""",' " -, UNlIT s@..ti-~~ 3/" \!~ 6 LtftttE- I~ l l & 0" ~ .: W W W o o IT! t !i A/Q CHA NNEL TlW" ~ e DATA P2BI9 (m ~~ PIBIS 50> P2800 L® . B f 8 " w \AI m 32KW >PIIO • I ~ fi I ~::: ~ o S1ii p.LI::I!!IlL..<'SEN GfilCS>".Idill""'-'''I C.. -~. ~ vee ~2:*"m " 203 I" 'EL)P2A07 RNI P2804 I I'- II!& ~ II 'j 8REAKPfilINT Lfil61C DETAILED LOGIC DIAGRAM TTY CONTROLLER ., .. PIN 89984700 PIN 89976400 .. ECO REVI O~ C.K4-IO O~ cK'12 CK"3S C' REVISION RECORD 1DRFT1 DATE 1 CHKD lAPP DESCRIPTION REDf'tAWN PE~ CDC. S"'OS 07 CK7C.S 09 CK....,~~ 10 CK795 1 I cK8Se ~~~S \ '" \..~ \ CK l \'79 "ELEASED CLASS A, ALL +5V REPL. SY vee.. B CK\2.2«e O~F-S~EET ~EF' "BV" ADDED. SJ.\2. AP RePL B'{ v,s A U~8 WAS J) 2.J '3 H. FITS ASS,! 9994-2.700. cKI2Lf-\ CK \229 CANCeLLED. COMB)NED WI"'H CKIZ4-I,SAMe C"ANGES. THAT APPEAR IN CK 12.28 APPE.AR IN cK \ 2.Lf. \. cKca2.8 /tEVe.RSE cHANGES To us £. U7 IN Eco "2.. , E C.KI2.~8 F rt-EPLAC.ES u~e-J 2/u~O -4-.. ..... FITS PWA S997"Lfoo.INcoRPo·RATES REWO~K OF r'III CKI~2.2 C\<.I2.~8l.pELETES OSCILLATo1Z "ewoRK O~ CKtl5"a C U22 -19!U'-O-Lf f<.EPLACES UZ~-J9/u"e-~ 2 j u2.3-8/ U'=oS-I)2. REPLAcES u2.S-&/U4-b-.9; U"~-/2./U4-'-.9 LJ~e IS G 7'+,", II. CKI'+'+(;:. FITS PWA 8998lf700. INcoRpoRATES REWORK OF c.KI2."e, U"8 IS 7", H I I . , I . PIN 89984700 LTD oF I DETA'LED LOGI C T.T.Y. I> GM. CONTROLLER CODE IDENT C REV DWG NO 896164-00 SHEET G 9 .A. 89633300 E 5-415 I TTY CONTROLLER (PWA 89976400, logic diagram 89616400, revision F) The logic diagrams and logic descriptions for PWA 89976400, logic revision F, pages 5-416 through 5-419, are basically the same as for PWA 89984700, logic 'revision G, pages 5-410 through 5-415. The sheets of logic revision F are located on the following pages of this manua 1 : sheet page 2 5-417 5-412 3 5-405 4 5-418 5 5-407 6 5~408 7 5-414 8 5-400 9 5-419 PWA 89976400, logic revision F, differs from PWA 89984700, logic revision G, in the following areas: Sheet 1: Revision F matches PWA 89976400. Sheet 4: >'~zone c-4: The oscillator circuit contains 47 picofarad capacitor C20 and 180 ohm resistor R62 in the path of crystal VI, and 0.47 nanofarad capacitor Cl8 to ground, on the input line to the base Sheet 9: of transistor Q6. revision record F. Except for the change in the oscillator circuit on sheet 4 described above, the logic descriptions for revisions J, H, and G also apply to revision F. I 5-416 89633300 E ... 00 eFF SHEET REFERENCE U) (J'\ IoN IoN IoN OFF SHEET REFERENCE LETTER o & o I L__ ~~O 1-4 A-4 J C-I A,-4 G I( L N I I , I o I I I i I I I I " • T U v W It Y I 1--_ Z AC AD AF SHEET 4 I A-3 A-3 C-3 C-3 C-3 0-2 I I C-2 C-I C-I I-I B-1 B-1 AJ I 8-1 L!lCAT~ 5 I B-1. 6 I 7 8 8AIBSIA 13IA D D D BlB I'D BIA -f- _ E E DIBIB E &-4 C-2 B-1 0-1 0-1 B-1 2 I C-3 I 1-4 I 1-4 I I I C-2 I I I I I I C-2 I AZ B-4 B~ C-2 8-2 B-2 B-2 I 0-4 I 0- 3 I L=:~ BL I C-2 I A-4 ~~ It< - --, ® ~12 c~ B 2 BW NIHE ALL UNMARKED RESIST0RS ~r ~ 0 ~~ ~~8 ~ ~ ~vcc ~ ..... vcc @ v.* Ivee ; ~I!i 0-3 C- I I IE: I I I ~ 0-3 C-I H 0- 3 8-3 ARE 025 WATT 5% pIN 89976400 " t )Q .... A1 JO" Iiij;l:iji~'~j I:: :o,-~ NOT SCALE DRAWING I ,., I H~II\ "I T TLE DETAILED LOGIC DIAGRAM T.T.Y CONTROLLER I "C' 1:""1._ "'~_1~·.!..._ ;.i>~ I~I· B-2 C-2 C -I 8- I I HBIT COMPUTfRS lTD I ••• ' IK C -3 * I,,~__ IK a 7 I I I r~=: ~8-2 IE: I IA-,~ IA-2: I:=~ I,-.~~~ I RI. 1M,......,... ... • "" IVCC~VV~VCC R~ R8 --v¥'----oIVCC I I A-4 I I A-3 BV ~ ®-~VCC®--~--- P2Aot I ma:;~ II 15 ~::t. Hl>J' R56 • II( ...... lvee - to ._H07..t - -.. ~ ~ 5~.K ., lIZ c.e "2,- I / Hlr~ czo V ....,pF 0.£+'7 NF • ~ 1~222 IllS ~'K :T\ T.. ~ I( . 10 A ~ 113r.r;l'2 Ii![ 110 I- ' 'Il00 00 ~~c \,0 '" w w w R o o f"I'1 OSCILLATOR - BAUD RATE SE LECTOR ~ l DETALED LOItC DlA.AII T.T.Y COIITROUD PIN 89976400 ,. REVISION RECORD REVI ECO Ob CK4-IO Ott3 07 C' CK7~S 09 cl<..7C8lf I RE:Df<.AWN PE~ c.oc. STDS cK'12 cl<~3a ~ ~c, 10 CK 7<65 I I DRFT I DATE I CHKO lAPP DESCRIPTION S,,,, ,\..~ I CK8S6 A CK l 1'79 "ELEASED CLASS A. ALL +5V REPL. BY vee. REF "BV" ADDE D. s~2. AP REPL B'( v,s B CK\2.2.'2I 01=F-S,l-'IEET u~a WAS 2.J3H. FITS ASS,( 9994-2.700. C CKI2.Lf-1 CK\229 CANCelLED. COMBINED WITH CKI2lfl,SAME C\-\ANGES THAT APPEAR I N \ 2.4}' etc:: 12.28 APPEAR IN cK "'2.. D cKca28 f<..EVE.«..SE CHANGE s To u5 I, U7 IN ECo E CK12~8 U2.2 -19(U'-O-Lf t<.EPLACES U2.2-19/u~e-I.l2 j U2.3-8/ lJ~ca-IJ2 «.EPLAcES U2S-&/LJ4-b-:.9 j U"~-I2./U4-'-.9 F REPLACES UbB-12/u~O-4-. CKILf2.2 FITS PWA a99'7"lfoo.INcoRPoRATES CKI2.~8 u~e IS & DEL.ETES 7*J..l/1 • REwo~K OSCILLATo1Z P-EWC~K 01= ..... OF eK.ess. ~ r- PIN 89976400 LTD oF I CODE IDENT DETAILED LOGIC DGM. T.T.Y. CONTROLLER 'REV DwG NO C 896\6LtOO SHEET F 9 A 89633300 E 5-419/5-420 I ENCLOSURE POWER INPUT The power supply and power input wiring of the main computer enclosure (equipments AB107/AB108) and that of the expansion enclosure (equipment BT148) are identical. A Power Supply Input-Output Wiring Diagram shows the input power distribution in the equipment. The power line enters the enclosure through the line filter unit and is taken to the power supply unit (PSU) and the blowers through the PSU terminals. The PSU generates all internal suppl ies for the equipment. The power supply wiring diagrams in this section apply to the fol lowing different equipments: DRAWING NO. 89762200 PAGE NO. EQUIPMENTS 5-429 AB107-A04 to A12 AB108-A04 to A12 Part of BT148-A06 BT148-A05 and down 89942600 ..}, 5-431 AB107-A13 to A19 AB108-A13 to A19 Part of BT148-A06 89911800 "k 5-433 AB107-A10 to A15 AB108-AlO to A15 BT148-A07 5-435 AB107-A16 and up AB107-C AB107-D ABlo8-A16 and up AB108-c AB108-D 89601601 BT148-A08 up BT148-c BT148-D The wire I ists in section 9 give details on the interconnections. Tr.e I ine filter unit and the power supply unit are described later in this section. *In using WI ring diagram 89911800 for the programmeris console connections in series A13, A14, A15, substitute the progr3rlmer i s console connections of wiring diagram 89942600. Note also that al I series have one forced-air blower in the power supply and three axial fans installed in the top of the enclosure. Type identifiers C and D have two more fans, installed in the bottom of the enclosure. 9633300 H 5-421 I THE POWER INPUT CIRCUIT The input circuit of the enclosure (Line Filter Unit) is mounted at the top center of the rear panel. See figure 3-7 and the detail on this page. The following table summarizes the components and their functions. FUNCTION NAME DESIGNATION J1 Line power socket Accommodates the 1 ine power cord Fl Input fuse Line protection F2 Battery fuse Battery protection S1 AC line switch (on/off) Appl ies ac 1 ine power to the equipment Line filters Isolate the equipment from surges and noises on the ac line Margin test socket Used in the Margins test (Refer to section 6) FLl, FL2 J2 AC Power AC Fuse SIr"witch Socket for Power Cord Battery Fuse OFF JI 5-422 eA o J2 IAS8 89633300 F POWER SUPPLY UNIT (PSU) . The PSU is an autonomous assembly mounted at the top of the front door of the AB107/AB108 main computer enclosure and in the same place in the BT148 expansion enclosure. The PSU is part of the equipment which it supplies. This sheet summarizes the circuit diagrams showing the power supply ~nit; the diagrams themselves are. given in the following pages, together with a brief description of the circuit functions. All connectors for connecting the PSU to the rest of the AB107/AB108 or the BTl48 equipment are brought out on the power supply connector panel on four terminal strips: TB1,TB2,TB3,TB6. These terminal strips are shown in a figure on one of the following pages. The interconnection (wiring) diagrams show the interconnections between the main units of the power supply, including terminal strips, for all series of computers in the field. The power supply unit receives the main line power through the input circuit mounted at the rear of each enclosure. This input circuit, as well as the general power input connections to the enclosure, have already been presented. The block diagrams of the PSU and their descriptions appear in section 4 of this manual. The diagrams are repeated in the following pages for convenience. Most of the circuitry of the PSU is mounted on two printed c~rcuit boards within the power supply assembly, as follows: BOARD DESIGNATION DRAWING NO. ASSOCIATED CIRCUITS High Power (HP) and Control 89657700 Ac-to-dc converter, V regulator, cc +35V preregulator, Protection and control circuits (except individual current limits) Low Power (LP) 89640800 Regulators, individual current limit circuits, reference voltage generator, battery charge circuit WARNING The power supply does not use a main isolating line-transformer at its input. Its circuits between the ac I ine input and the isolating networks are therefore at line voltage. Do not handle the PSU while the computer line cord is connected to the ac supply. 89633300 F 5-423 V1 I .l:N VCC .I:- AC to DC VG C + AC~Line Pow.r ~ Regulator Pr.regulator to-- ~ * AC Line Cord auxiliary ---- '--------'~ ~ 25 vdc --- Regulator. auxiliary -7vdc r-" r'-'I Cha .... Ground Logic --- Ground --. 35vac 35vdc Input Circuit » 35v Converter Circuit. Protection overcurrent VCC --t- ;;;f~;;;'-- Reference G.enerator + Sense Battery from bock V CC Terminal Charger and Batte ry Crowbor plane main indicated * 00 '-D C7' W W W power by The Input port of t f Note: The w flow i. Isolating Diode Bott.ry F3 Battery thick line. Circuit i. not the Power Supply Front Panel DC POWER I--~ ":" I -= o o .." POW E R 5 U P PLY B L 0 C K 0 I A G RAM FUI. Equipment GD611-A ( Optional) VBB VCC2 -12v -5v ~30V Un regulat.d ... I........t - - L -____________~------------------_+-------------------------~~)~----~ ~.--------. VSS -SENSE From bock plan. ground terminal POWER SUPPLY UNIT (continued) COMPUTER DC SUPPLIES Supply No. Designation Nominal voltage volts Nominal Current Remarks 1. V cc +5 35A R 2. V cc2 +5.3 3A R,M 3. VSS +16.7 5A AB107/BA20l-B,R,M VSS +19.7 5A AB108/BA20l-A,R,M 4. VBB VSS + 3.5 40mA R, M 5. -12V -12 100mA R, 6. -5V -5 lA R 7. +30V +30 300mA unregulated, M 8. battery cha rge r 200mA cur rent regulated Internal suppl ies +35V +35 preregulated 10. auxiliary no. 1 +25 unregulated 11. auxi I iary no. 2 -7 unregulated internal supply 9. NOTES: R: regulated supply M: supply to the memory only The tolerance on all regulated voltages is The maximum permissible ripple is ~ ~ 0.5 percent. 2 percent of each regulated voltage. See also table 6-1. I Use adjustment VBB to adjust VSS' 89633300 H 5:-425 POWER SUPPLY WIRING DIAGRAMS I These drawings show the circuits of the complete power supply units for all computer series. The circuits accommodated on the two main printed circuit boards are shown on separate circuit diagrams. High Power and Control (HP) drawing number 89657700 and Low Power (LP) drawing number 89640800. Terminal connector strips TBI, TB2, TB3, and TB6 on the power supply con- nector panel provide the connections between the power supply unit and the other circuits of the computer. A following figure and figure 3-5 show the connector panel. The following table lists the connections. T Connection TB-l/J Designation Connection/Function ON/OFF Connection to programmer1s console dc POWER on/off switch; controls power supply operation. /2 + SENSE Sensing wire from +Vcc connection on enclosure back-plane (Figure 3-7). /3 RGPWR Power fail indicator signal for Low Power Data Retention (LPDR) operation (to Memory Control board). /4 -SENSE Sensing wire from logic ground on enclosure back-plane (Figure 3- 7). /5 -12V -12V regulated supply output /6 -5V -5V regulated supply output /7 +30V +30V unregulated supply output /8 VBB VBB regulated supply output to Memory system /9 VSS Vss regulated supply output to Memory system /10 VCC2 VCC2 regulated supply output to Memory system continued 5-426 89633300 F I POWER SUPPLY WIRING DIAGRAMS (continued) TABLE OF TERMINAL STRIP CONNECTIONS (continued) Connection Designation Connection/Function TB-2/1 /2 /3 Main line voltage inputs from Input circuit: Nominal Input to Shorting 1 inks voltage terminals (terminals) /4 /5 110V /6 220V 3, 7 3, 7 1-2, 3-4-5, 6-7-8, 9-10 2-3, 5-6, 8-9 /7 /8 /9 /10 1 TB-3/1 Vcc MARG /2 VBB MARG /3 + 30 V /4 GND Ground for margin circuits +BAT Battery positive terminal TB-6/1 J Connections for margin-tests on VCC and VBB (refer to section 6) /2 not used /3 not used /4 89633300 F TEST 5-427 POWER SUPPLY WIRING DIAGRAMS (continued) • GND o • • Power Supply Connector • Panel (See also figure 3-5) The main logic supply (V ) and logic ground are brought out on two separate cc terminals. A heavy gauge wire, suitable for carrying the high current of this supply (nominal 35 amperes), connects these terminals to the backplane of the enclosure. The cabling of the other supplies also terminates on the back- plane, as shown in figure 3-4. Power supply internal connections are made on terminal strips TB4 and TB5, mounted inside the power supply unit on the frame carrying th~ output filter and capacitors. Other components are shown on these drawings grouped according to the mounting positions within the power supply assembly. They are shown in their functional relation to the rest of the circuitry in circuit diagram 89657700 for the High Power and Control Unit (HP) and in circuit diagram 89640800 for the Low Power (LP) Card. They are described in the following pages. For instructions and explanation of enclosure grounding, refer to the installation instructions in section 6 and to the maintenance aids in section 7 of this manual. Refer also to the Site Preparation Manual, publication number 60437000. 5-428 89633300 F 4 3 00 I..D 0' . USED ON \.N \.N \.N AB107-A04 to A12 o o AB108-A04 to A12 :c PART OF BT148-A06 CABINET ASSY BT148-A05 DOWN CiND UNIT i"iRT-OFLINEFILTER UNITASiliiiL'i I I ~ PO -"-':!:LI.lo...----i1 I k 0 11£0- WHT 1I I. . E_VU-WHT __________ ~2 [pAiiT GND PLANE Of (iiiOUNDPL ... NEA'Ssi1 I IIIIUOOO ::~-WHT ~ 1-.. · ~wn'- m. . . u. <6,), ! ) ~ I ! V1 I ~ \.N o I. • GND BLOWERS fPAiiTOFTOPASSY - I I I I I .. I L~!....J & - , ILK I~f :~: I' L _________ ~ • , , UM.U, OTl1E,""," .t:CIt"IED 1lI_IiIIION Aft' IN INCHLS TOLlR"NeiU I "- I I I PROO. CONSL.61 A~ )E6 ~ N ClND ~ '-,---tl-):~O I t ------ -.J .,I . I 0 IIWHT• PIIOG. CONSL GND vee ( :ILU f(_If-!'!!::L~U_ _ _.-J £5 r - - - - - i - - 4 ) [I V1 I..D BRAID LJ__ _ [I ~ :: I I -.J WIRE I 000 I r~ ~- -:- t -BRN~ --I~-+--' I IICC 0 I '=' ~...!. ~ Mil i1:-1I£0 ii'1 I_JIO LL~J VEL-GRN ~V"A J(BLK rm~ ~-~ .~': +~ II-~~.--~~ I~I ~~SI.!..._ J LINE FILTER BATTERY PART NUIII8ER I r89773800-,I Aee,It, _ _ ARI 'OlOEII POINTS ON THE _AIIIIIIIR'S CONSOLE PW ASSY TO OW lID. 89780800 fOil SUPPLY DIAGRAM ......aoo. ~.nll POWER COMf'LETI: WIIIlNt Of r.I .... ND TN. 00 I.D '" W W W o o USED ON AB107-A13 to A19 AB108-A13 to A19 PART OF BT148-A06 r----1I PARTOFREAR~NECT.PANEl.. C,A8INET r - - - - -I WIRE I 1 :::z:: EI2 IBRAID JT : A., .... E II II 'T)7. lStLAS~!§. 2~.J lEt~SI~G~J LINE FILTER UNIT rtAii"T-OFLINEFILTER UNITASSEMBLY - - , 89880100 r"-- ------': BATTERY 89650100 PI 250V/8A I, JIL( ILK _14 r I!:!~'" '_ L_ _ I I!!! r-"""""", LZ ~ powEll ASSY = I" y ~ . - -i-"---"?i, .c:- \.AI V'1 -.I. -.- ~~ H-iu- ~~ 1.. 1- ,I , I I ~o Ll _I_ .. ~t rc--, L .........., . r·-:; ....... • ' I i:a.!., lb~""~~"t:' ~ ,or-,I CIO, . . 'u........ ~~. ~ TI'UT . eee·· e .... ~ eel v. ----l:!! e e +... Vd I (lltA 1 ee.-$V OL ""ee,-tlY ""'-m....,.... m fliED ·:=. e ii :;5 ee &'CS.MIfTf11P.S.IIOUNTtIFIWIIE Am. ALL OTHER. MItTS SMOWN ._ II IrNI"UTi v.!v...:'':'. ~OII' T -1 "'"! .SlNS£~ 2 MN e e l Qt VCC2 (See also page 4-64) Power Supply Regulator and Control Circuits: Vss ~ -5v I-- . To Current Lllllit Circuit Block Diagram POWER SUPPLY UNIT (contld.) LOW POWER CIRCUIT ASSEMBLY (draw.jng 89640800, contld.) The VBS regulated supply is derived from the +35V internal supply. It is regulated by a conventional series regulator using transistor Q30 as the series element and the differential amplifier in the reference voltage generator package (U3) as the comparator. The two inputs of this comparator are the general voltage reference (VREF) through R79 and the tap on the voltage divider chain on the output. The output voltage of the regulator can be adjusted by means of potentiometer RV3 in the output voltage divider chain. The potentiometer is accessible through the top cover of the power supply unit (refer to Figure 6-4). Note that this adjustment affects the value of VSS directly see VSS supply below. The supply is connected to the overvoltage detector through diode CR34; its current is limited by the conventional circuit of Q31, R77, which cuts off the series regulator on occurrence of overcurrent. The regulator output voltage (and therefore VSS ) can be changed by loading the output voltage divider chain and through it one of the comparator inputs through the VBB MARGIN terminal (refer to Section 6 for Margin Tests). The VSS regulated supply is derived from the +35V internal supply, and is regulated by a switching regulator (see Section 4 for the principles of operation of switching regulators). I The switching element in this circuit is transistor Q44 with Q9 as predriver and Q8, Q33 as parallel drivers. The main output filter capacitors are located on the filter board in the power supply assembly. See the relevant power supply wiring diagram. The regulator is driven at about 22 KHz by emitter-coupled oscillator QlI, Ql3. The duty-cycle of this oscillator (and therefore the proportional regulation of the circuit) is determined by the ratio of emitter currents of the two transistors. This in turn is controlled by the differential amplifier QlO, Ql2 sharing the current source Q39, Q40. One input of the differential amplifier is the VSS reference voltage derived from the VBB supply through driver transistor Q34. To avoid sudden changes in the inductor current (and therefore large voltage spikes on the inductor) a rise-time limiter integrator (RIOl, C47 and Q45) is included in the reference line of the regulator. 89633300 F 5-449 POWER SUPPLY UNIT (cont'd.) LOW POWER CIRCUIT ASSEMBLY (drawing 89640800, cont'd.) Overcurrent in this circuit is detecte~ by the voltage developed on R98 acting as the gating voltage on transistors Q14, Ql5 cO'nnected as a Silicon Controlled Rectifier (SCR). This is driven by the oscillator output and is therefore reset on every cycle of·the switching inverter. When an excess current flows through the switching transistor, +35V is connected to the overcurrent bus through transistor Q15. This supply is connected to the overvoltage detector and crowbar circuit through diodeCR33. The Vcc2 regulated supply has a similar circuit to that of the VSS supply. It receives its reference voltage through a reference voltage divider chain and its output voltage can be adjusted by potentiometer RV2. Access to RV2 is obtained through the power supply assembly cover (refer to Figure 6-4). The reference generator utilizes the reference portion of the voltage regulator package U3 (see the circuit diagram below) to supply the reference voltage to the regulated power supplies. ground (-SENSE); Its supply is referred to the remote enclosure it is switched through from either the auxiliary supply or battery by transistor Q32, under control of the dc POWER on/off switch on the Programmer's Console. The overvoltage detector and crowbar input circuit utilize the comparator in the voltage regulator Ul to turn on the transistors Q24, Q25 connected in a Silicon-Controlled-Rectifier (SCR) configuration when an over-voltage occurs on anyone of the regulated supplies (-12V, -5V, Vcc2' VSS ' vBB,V cc )' The positive supplies are ORed to the inverting input through common base level shifters Q22, Q23. The comparator thus changes state when the absolute voltage on anyone of the suppl ies increases over the value preset by the voltage divider on each supply. The inputs to the comparator are biased from the reference source in Ul. 5-450 89633300 F LOW POWER CIRCUIT ASSEMBLY (drawing 89640800, cont'd.) VOLTAGE REGULATOR (~A723C) CIRCUIT AND TERMINAL ASSIGNMENTS 14 NC NC CURRENT LIMIT 2 13 FREQUENCY COMPENSATION CURRENT SENSE 3 INVERTING INPUT 4 NON -INVERTING INPUT 5 12 V+ II Vc 10 Vout VR1' 6 9 Vz V- 7 8 NC V+ FREQUENCY COMPENSATION TEMPERATURECOMPENSATED ZENER INVERTING INPUT .>-....-0 REF NON-INVERTING INPUT VOLTAGE REFERENCE AMPLIFIER V- t----o OUT CURRENT LIMIT ERROR AMPLIFIER 89633300 F '---OVz CURRENT SENSE CURRENT LIMITER 5-451 LOW POWER CIRCUIT ASSEMBLY (drawing 89640800, cont'd.) Thus when Ul turns on transistors Q24, Q25,they apply the switched battery or auxiliary supply to the crowbar bus. This signal turns on the battery crowbar (SCR Q46) and actuates the crowbar circuit on the HP assembly (drawing 89657700), which in turn blows the main supply fuse (Fl), and the battery fuse (F2). I The following text relies on HP assembly drawing 89657700 and on· the relevant power supply wiring diagram. The on/off dc POWER switch on the Programmer1s Console controls the supply to the crowbar input circuit (just as it controls the supply to the reference generator). When it is on, transistor Q32 switches on the battery or the auxiliary supply through to the supply line of the crowbar circuit. The auxi I iary on/off sensor (U2) is a vol tage regulator package connected as a Schmitt-trigger. The on/off dc POWER switch of the Programmer1s Console controls its output frequency which forms the input signal of the power fail detector on the HP board. Two auxiliary supplies are generated on the LP board. The -7V supply (feeding the -5V regulated supply) is generated by full-wave rectifier CRI2, CRl3 from the 7 vac output winding of the main transformer TI. The +25V supply is generated by the rectifier bridge (CR21, CR22, CR23, CR24) from the separate auxiliary mains transformer T2. This supply feeds the auxiliary supply line while the main power circuit and isolating power transformer TI do not reach their normal voltage. This may occur when the equipment is first switched on, or when it recovers from power failure. 5-45a 89633300 F POWER SUPPLY UNIT (cont'd.) I LOW POWER CIRCUIT ASSEMBLY (drawing 89640800 cont'd.) With the main power circuit supplying full voltage, the 35 vac winding on the main transformer (T1) takes control of the auxiliary line through halfwave rectifier CR30. The battery charging circuit charges the Memory Hold Battery (equipment GO 611-A) from the +35V internal supply. When this supply is on, transistors Q20, Q21 form a current source which feeds the battery through current amplifier Q43 (terminal 17). The battery supplies power to the +35V bus and through it to the equipment through isolating diode CR31 when the +35V supply fails (power fail condition: Low Power Data Retention (LPDR) mode of operation). 89633300 F 5-453 ... 070 5.' • 11~-----------+-----+--~--+-----l------------------4-------------------------- "::N ____~~_IEN'E GO Ni)-.______..;m;.;.;.....__________________..J n u 89633300 F .,. ... I.t • - .__ ------------4-< _..... ~,- ______ Q 89633300 A ~~ ID __________________..J (,) ID 5-469 SECTION 6 MAINTENANCE MAINTENANCE This section appl ies to the equipment listed in Section 1 of this manual. TOOLS AND SPECIAL EQUIPMENT The following is a 1 ist of maintenance tools for the equipment. Part Number • Part Description 12210275 Tweezer Fine Point 12210314 Iron Soldering 15W Miniature 12210315 Tip Soldering Iron .046 In. Spade 12210433 Stripper Wire 20-20 Ga 12210437 Solder 60/40 24 Ga. (.022 In) 12210849 Tool Wire Removal 20-26 Gauge 12210436 Desoldering Tool 89688700 Board Extender 89980600 Board Extractor Quantity 2 2 Oscilloscope (Tektronix 453 or Equivalent) Voltmeter (20,000 ohm/V min) Load Resistor 60 ohm, 5%, 10 watt Isopropyl 89633300 F 2 Alcohol 6-1 The pubJications Jisted beJow are appJ icabJe to the equipment. PubJication Number Mini Computer Site Preparation ManuaJ 60437000 J784 Reference ManuaJ 89633400 J784 I/O Specification ManuaJ 89673JOO J700 Computer System Codes ManuaJ 60J63500 TeJetypewriter C.E. ManuaJ 60J63700 System Maintenance Monitor (SMM J7) 60J82000 Refer aJso to Preface of this ManuaJ. 6-2 89633300 A CALIBRATE POWER SUPPLY LEVELS This calibration appl ies to both main and expansion enclosures. Check/Condition 1. Action System power on, system 1. Open the enclosure rear cover. not opera tiona 1 • 2. Connect the voltmeter (multimeter) to the test point (TP) for the main logic supply (Vee); location of the test point is shown in Figure 6-1. Check the value of the V cc supply (see Table 6-1). Correct? a. No Yes + Adjust the V supply voltage cc by screwdriver control located as shown in Go to next step Figure b. 3. 6-4. Repeat check. Repeat 2 with the computer running under test. 11. Repeat 2 and 3 for the following suppl ies: -12V, -5V, +30V (see Table 6-1). 2. System ac power switch OFF, front panel dc POWER switch ON, memory hold battery installed. 89633300 A 5. Repeat 2 above for the following suppl ies: V V (see Table 6-1). V cc2' SS' BB 6-3 TABLE 6-1 Supply No. - COMPUTER DC SUPPLIES Designation Nominal vo I tage volts Remarks Nominal Current 1. V cc + 5.0 35A R 2. V cc2 + 5.3 3A R,M 3. VSS +16.7 5A AB107/BA201-B, R, M VSS +19.7 5A AB108/BA201-A, R, M 4. VBB VSS + 3.5 40mA 5. -12V -12.0 100mA R, 6. - 5V - 5.0 lA R 7. +30V +30.0 300mA unregulated, M 8. battery cha rger 200mA current regulated R, M Internal suppl ies +35V 9. 10. auxiliary nol 11. auxi I iary no2 NOTES: 1. R: regulated supply 2. preregulated +35 un reg u I ated unregulated i nterna I supply - 7 M: supply to the memory only The tolerance on all regulated voltages is less than + 1/2 %. The maximum permissible ripple is 2% of each regulated voltage. 3. All power supply levels are generated in the power supply unit (terminal configuration shown in Figure 6-5). 4. All power supply levels are to be measured on the computer backplane at the test points (TP) shown in Figure 6-1. I 5. 6-4 Memory supply voltage (V SS ) is varied by VBB adjustment. 89633300 H CHECK BATTERY (Optional power back-up source, equipment GD611-A) Check/Condition Action System power off. 1. 1. Make sure the battery is fully charged. Note: the battery is fully charged if it is charged 32 hours. fully dis~harged If the battery is not a shorter period of charging may be sufficient. Disconnect the battery from its terminals in the enclosure; refer to Figure 3-7. Connect the voltmeter {multimeter} across the battery. WARNING Do not short battery, I Check the battery vol tage () 24.2V). Cor rec t? , -----~. No Yes Change battery (refer to instructions in Section 3). Go to next step 2. Connect two 60 ohm 5% 10 watt resistors across the battery in parallel. Connect the voltmeter (multimeter) across the resistors. Check the battery voltage (~24.2V). Correct? No -----------------~~ t Change battery (refer to instructions in Section 3). Yes Reconnect battery Go to next step. 3. Switch off all power and close the enclosure rear 89633300 F cover. 6-5 1'1 AC F2 OOFFGeONO 0 .J2 _ VBB. Console GNO[l] • -SENSE TTY Internal Cable .SENSE. • PWR •• -12V VCC2 FAIL Figure 6-1. Computer Backplane Showing the Power Supply Test Points 89633300 F INSPECTION OR REPLACEMENT OF PRINTED WIRING BOARD Should it be deemed necessary to remove or inspect any of the printed circuit assemblies in the enclosure, proceed as follows: NOTE WARNING Make sure that system Do not remove any circuits with the enclosure power on. is not operational before switching off system power. 1. System power off. (Power off Procedure, 1. Open enclosure front door. NOTE refer to page 6-27). When removing a printed wiring assembly note its slot number carefully for future reference. In a system including 2. 2. Remove the suspected printed wiring assembly the expansion enclosure from its place in the enclosure using the its power must be card extractor tool (part 89670300) as switched off before the illustrated in Figure 6-2. main enclosure. WARNING Memory Module assembl ies (equipments BA20l-A, BA20l-B) require special handl ing: refer to Section 7, Protection Against Catastrophic Damage. 3. Replace a suspected PWA into its slot only if it is not faulty. Otherwise substitute a fully tested similar PWA. 4. 89633300 A Close front door of enclosure. 6-7 BOARD EXTRACTOR PUlL TO IIfMOVE I'WA > BOARD EXTENDER I'WA W_R TEST IIOAIID EXTRACTOR Figure 6-2. 6-8 Use of Board Extractor and Board Extender 89633300 F INSPECTION OR REPLACEMENT OF THE POWER SUPPLY UNIT Should it be deemed necessary to remove or inspect the power supply unit in the enclosure, proceed as follows: NOTE The power supply unit should not be repaired in the field. In case of a fault the unit should be replaced as a whole. 1. System power off. 1. Open the enclosure front door. (Power off procedure, refer to page 6-27). 2. I n a sys tem inc 1ud i ng the expansion enclosure, its power must be switched off before the power of the main enclosure. WARNING The power supply -does not use an input isolating transformer and parts of its circuits are at line voltage during operation. Do not touch the power supply unit while the line cord is plugged in. 2. Remove the power supply heat shield by removing its retaining screws on the inside of the enclosure front door (refer to Figure 6-3). 3. Remove all connections from power supply connector panel (refer to Figure 6-4). 4. Remove the power supply unit by removing its retaining screws (refer to Figure 6-5). 5. Reconnect the power supply after repair and testing or reconnect another one by reversing the procedures under 3 and 4 above. 6. Recalibrate the power supply voltages as described earl ier in this section. 7. Replace the power supply heat shield by reversing procedure in 2 above). 8. " 89633300 A Close enclosure front door. 6-9 I - ..-- e • • • • • • Fisrure 6-3. Power Su?plv Heat Shield and Retaining Screws 6-10 89633300 F ( ( .... ~ti== »>";' .) ~ f3 5A 0 F4 0 lOOmA () 0 Figure 6~4. Power Supply Adjustments and Fuses GIlD o • • / / • POWER SUPPLY RETAINING SCREWS figure 6-5. 89633300 F Power Supply Terminals and Retaining Screws 6-11 CHECK PROGRAMMER'S CONSOLE CONTROLS AND INDICATORS NOTE Section 2 describes the controls and indicators of the Prog'ranvn~r's Console. These tests relate only to the main computer enclosure after its proper installation. Action Check/Condition 1. I. System power on Check that all I ights corresponding to regist~r positions (except the Breakpoint register) on the front panel are extinguished. Yes No - - - - - - - -....... I~-----------~. 2. Press MASTER CLEAR switch a. Take appropriate action b. Repeat check Press the M register selector and the data enter pushbutton switches (0 through 15) Check that all indicators corresponding to the switches pressed light (1) Yes No.,;;..··-----------1... a. Take appropriate action b. Repeat check __________________..... 3. Press CLEAR button l ~ ~ Check that all data enter indicators are extinguished Yes No ----------------.. a. b. Go to next step 6-12 Take appropr iate act ion(2) Repeat check Note,s: refer to next page. 89633300 F 4. Repeat 2, 3 for registers P, Y, X, A, Q, B 5. Actuate each of the following switches in turn: AUTOLOAD, MANUAL INTRPT., STOP, MASTER CLEAR, GO All pushbutton switches Check if the switches operate correctly (refer to Section 2 and the SMM manual). No __________________ Yes t Go 2. ~.. a. . . (3) Take appropriate action b. Repeat check to next step Controls and Indicators checked. Notes: 1. The CLEAR and MASTER CLEAR functions are defined in the Computer System Reference Manual (publication number 89633400). The signals may be traced with the aid of the Programmer's Console basic diagram (refer to Section 5) and the back-plane wire list (refer to Section 9). 2. To replace an indicator lamp, carry out the appropriate procedure outlined in the following pages. 3. 89633300 F To replace a pushbutton switch, carry out the appropriate procedure outlined in the following pages. 6-13 E"ECTOR PIN MARKS (4 PLACES) l f REMOVE AMY PRO"ECTION FROM MOUNTING BASE Bottom View of Programmer's Console Pushbutton Switch Part No. 89652300 (See also CDC Specification 89652300) 6-14 89633300 F INSPECTION OR REPLACEMENT OF PROGRAMMER'S CONSOLE Should it be deemed necessary to inspect or remove the Programmer's Console printed wiring assembly; to inspect or replace a pushbutton switch or indicator lamp, proceed as follows: NOTE Make sure that system is not operational before switching off system power. Switch off system power according to Power Off procedure below. 1. 1. Open the enclosure front door. 2. Remove the power supply heat shield by removing its retaining screws on the inside of the computer enclosure front door (refer to Figure 6-3). 3 •.. Remove two screws hold i ng cover of front panel from the rear of the front door (refer to Figure 6-6a). ; 4. Remove two small front covers (carrying names of switches and indicators) from the front of the door. 5. Remove three screws from each of the two edges of the front panel as shown on Figure 6-6b. WARNING Do not remove the other four screws on the (hinge side) edge of the front door, as these secure the door to the enclosure. 89633300 A 6-15 SYSTEM 17 PROGRAMMERS CONSOLE PUSH BUTTON SWITCH INSTALLATION 1. SCOPE These instnic,tions detail requirements switch PIN 896S~300, used on System 17 PIN 89640300. 2. installing push button rogrammer's Console APPL I CABLE DOCUMENTS \,\. "',,- \t, CDC SPEC 89652300 - 3. REQUIREMENTS 4. Premounting 5. pus~~ttqil Switch, X 1\ preparatiO?~ . / / SPST. '\ \, " ''\. Switch Preparation ,f Switch mounting b . .e shall be free from burrs, as outlined in Fi~re 1, and other undes eable projections. Note, the Rohdium all0.'; contacts project 0.0035 ,ttes below the mounting base. A smoot/, projection free, mounting ba~\~ is imperative for proper sWitcfoperat ion. 6. / \ \ Printed WVring Board Preparat ion - Cleaning / I \ \ \ The sW~Ch is sensitive to cleaning solvents. Safe ~Jeaning solvents to usr are trichlorethylene, methyl denatured alcohol r isopropyl alcoiol. PWB's shall be cleaned and dryed before mountl i and/not afterwards. WARNING I Do not use Freon TMC. It will eat away at / / ~ the plastic material. Freon TF will distort I \ 6-15A 'Jl'.~' \S ~ ~ I D 9. 3. To replace an indicator 10. Check the pushbutton switch (refer to previous subsection). Locate and remove the faulty indicator lamp on the Programmer's lamp: Console assembly, perform lamp and remove it. steps. 10~ 13. unsolder the two legs of the To remove unwanted solder use suitable copper braid. (Indicator lamp: WARNING Do not use suction to remove unwanted solder, suction may lift off printed conductors from the board. CDC PIN 8963700) 11. Clean the printed wiring board with methyl denatured alcohol or isopropyl alcohol. 12. Mount the replacement indicator lamp by inserting its two legs in the freed holes until the lamp is seated flat against the board. Carefully solder the two legs to the printed wiring pads. Remove unwanted solder and clean the area using the materials of step 11. 13. Check the indicator lamp (refer to previous subsection). 89633300 A 6-17 4. To replace the 14. Programmer's Console Proceed in removing the whole'Programmer's Console by the following procedure: assembly follow steps 14 through 16. - * unsolder the. power supply connection at bottom right hand corner of the assembly I NOTE: Steps noted by asterisks apply to series A12 and down. For other series, see the notes at the bottom of this page. (looked at from the inside of the front door of the enclosure: refer to Figure 6-6a) - * open rear cover of enclosure, remove the connector of the assembly (refer to Figure 6-1) and slide the cable and connector through under the card nest to the front of the enclosure remove the printed wiring assembly by removing 10 screws around its periphery. 15. To reconnect the printed wiring assembly after repair or with another, good one, reverse the order of procedures 1 through 5 and 8. 16. Check all Programmer's Console indicators and switches according to the instructions (refer to previous subsection). I * This step in the procedure appl ies only to series Al2 and down. For series AI3 and up, including models C and D, this instruction reads: - remove the power supply connector at bottom right hand corner of assembly (looked at from the inside of the front door of the enclosure}. Refer to figure 6-6a. ~ This step applies only to series A12 and down. For series AI3 and up, including models Cand D, this instruction reads as follows: - disconnect the two connectors on the programmer's console card which attach the main harness. They are marked J20 and J21 on the enclosure. 6-18 89633300 F 00 I.D ~ BLOWER WIRE SOLDERED JOINTS W W W o o ." GND vee BLOWER RETAINING SCREWS OF DISPLAY PANelS ~ I I.D Figure 6-6a. Inside of Computer Enclosure Front Door Note: This view does not apply to all series. See the note on page 3-7. REMOVE THESE SCREWS o •• Figure 6-6b. 6-20 Inside of Computer Enclosure Front Door. 89633300 A LOWER FAN BASE WITH FOUR RETAINING SCREWS (TYPE IDENTIFIERS C AND D ONLY) Figure 6-7. Blower Assembly in Top of Enclosure (All Type Identifiers) 89633300 F 6-21 INSPECTION OR REPLACEMENT OF COOLING BLOWERS I Each enclosure of type C or D is cooled by sLx centrifugal blowers'. Three blowers are housed in the top of the enclosure (figure 6-7), two in the bottom of the enclosure(not installed in type A, see figure 6-7), and one blower is in the front door of the enclosure. (figure 6-6a). The blower in the front door cools the power supply unit mounted above it. The blowers in the enclosure (three on top and two on bottom) supply cooling air to the printed wiring assemblies in the main body of the enclosure. Should it be deemed necessary to inspect or remove one or more of the blowers, follow the appropriate procedure outl ined below. WARNING The computer must not be operated or switched on with the blowers outside the enclosure, or otherwise not operational. Note that free access of air around the enclosure must be maintained. Inspection of the b10wer in the front door Provided proper care is 1. Open the enclosure front door. 2. Inspect the blower visually. exercised system power need not be switched To check the airflow a sheet of paper may be placed off. momentarily on the air inlet: with proper airflow the paper will be sucked close to the body of the blower. 3. If the blower does not function switch off the power to the enclosure immediately (refer to Power Off Procedure), check wiring continuity according to appropriate wiring diagram (see Section 5) and if necessary, remove the blower. Otherwise close the enclosure front door and 6-22 proceed with normal operation or further checks. 89633300 F Inspection of blowers in the enclosure To inspect the three blowers in the top of the enclosure and the two blowers in the bottom, they have to be slid out from the body of the enclosure. 1. Make sure that the system is not operational and switch off th~ system power according to Power Off Procedure. CAUTION In step 2, do not let the blower box that is mounted in the bottom of the enclosure fall freely after its four mounting screws have been removed. Support it by hand or some other way, to prevent strain and possible damage to the two connectors. 2. Undo the screws holding the blower box (two screws on either side of the enclosure: refer to Figure 6-7). See Caution. 3. Open the enclosure front door. 4. 51 ide out the blower box carefully and inspect the blowers and the wiring. To check the airflow of the blowers, prepare a sheet of paper, switch on the power to the enclosure for a very short time and place the sheet of paper across the inlet of each blower momentarily; with proper airflow the paper will be sucked close to the body of the blower. 5. If one of the blowers does not function, check wiring continuity according to appropriat~ wiring diagram (refer to Section 5) and if necessary, remove the blower according to outline procedure below. Otherwise sl ide back blower box carefully, replace the four screws holding it, close the enclosure front door and proceed with normal operation or further checks. 89633300 F 6-23 Removal and replacement of a blower NOTE Make sure that the system is not operational before switching off system power. Before removing a blower inspect it (see two previous subsections) and make sure that its removal is necessary. I. Undo electrical connection of the blower: a. the wire of the blower in the front door is part of the cable form of the door; to remove the blower connection cut the ta~ing of this cable, cut the heatshrinkable tubing over the blower connection and cut the wires (Figure 6-6a); b. the blowers in the top part of the enclosure are wired through a terminal I ADDENDUM: c. the blowers in the bottom part of the enclosure are block (refer to Figure 6-7); to disconnect a blower its wire has to be removed from this terminal block. wired to individual connectors (figure 6-8). To disconnect a blower, pullout its plug. 2. Remove the blower bodily by undoing the three screws holding it (refer to Figures 6-6a, 6-7). WARNING Do not operate or switch on the computer without one of the blowers. 3. Ensure that replacement blower is in good working order. Install it by reversing the procedure of paragraphs 2 and I above. After installation inspect the blowers and close the enclosure (refer to previous subsections). 6-24 89633300 F ___ tL. ___ l1.. __ ... ,1 {~/I 1 (V'-I " ~I ---1J-YV-- I REFERENCE: MAl N HARNESS 89633300 F / Figure 6-8. Exposed View of Two Lower fans and Electrical Connections 6-25 WARN TURN M - , POWER ON: PROCEDURE FOR SWITCHING ON POWER To apply power to the computer (equipment AB107lAB108) and the Expansion Enclosure (equi pment 8T148), proceed as follows:· NOTE It is assumed that the equipment has been installed and is operational. For Power On Procedure on first installation refer to Section 3 of this manual. 1. Make sure all the power switches of the computer are off. are listed in the following table: Equipment Swi tch Des i gnat ion The sw itches Location ABl07/AB108 AC POWER DC POWER Rear Panel Front Panel BT148 AC POWER Rear DC POWER Panel Front Panel 2. Make sure that the power cord of each enclosure is connected to a utility outlet. 3. Switch on the power to the utility outlets. 4. Turn on the equipment switches in the following order. On turning on the DC POWER, the associated indicator should light. Step Sw itch Designation Location Panel 1. ABl07lABl08 AC POWER Rear 2. AB107/ABl08 BTl48 BT148 DC POWER AC POWER DC POWER Front Panel Rear Panel Front Panel 3. 4. 6-26 Equipment 89633300 F POWER OFF: PROCEDURE FOR SWITCHING OFF POWER To remove the power from the computer (equipment ABI07/ABI08) and associated Expansion Enclosure (equipment BT148) proceed according to the following instructions: EMERGENCY SHUT-DOWN In case of emergency (suspected burning in the computer and associated equipment) perform anyone or all of the following steps (the steps are given in order of preference): Step Action Locat ion 1. Swi tch off circuit breaker of ins ta II at ion Depends on installation 2. Switch off AC POWER switch on each equipment AB! 07 Pull power cord(s) from .uti I ity outlet Utility outleds) 3. ABI08 BT148 J rear panel REGULAR SHUT-DOWN To shut down the computer proceed as follows: 1. Make sure that the system is not being operated. 2. Turn off the equipment switches in the following order: Step Equipment Swi tch Designation 1. BTI48 DC POWER Front Panel 2. BTI48 AC POWER Rear 3. ABI 07/ABI 08 DC POWER Front Panel 4. ASI 07/AB 108 AC POWER Rear 89633300 F Locat i on Panel Panel 6-27 DIAGNOSTICS AND MARGIN TESTS TEST PROGRAMS SMM17 Memory, Command and Random Protect Tests. TEST CONDITIONS (See alJo table 6-1) CONDITION VCC VSS NOMINAL DC VOLTAGES 1 +5% +5% VCC: 2 -5% +5% 3 -5% -5% 4 +5% -5% +5.3 VDC VCC2: VSS: +1~.7 VDC (AB107) VSS: +19.7 VDC (AB108) VBB: VSS + 3.5 VDC -12.0 VDC -12 - 5.0 VDC - 5 +5.0 VDC I Operational Tests At nominal voltages, run several passes of each SMM test. errors on any test are allowed. No Run several passes of each test at each of the 4 conditions listed above. Return the supply to its nominal values, and re-run the tests. Shock testing is not recommended, but very light tapping should not produce errors. 6-28 89633300 F SECTION MAINTENANCE 7 AIDS MAINTENANCE AIDS TTL CIRCUIT OPERATION The transistor-transistor logic (TTL) is analogous to diode-transistor logic (OTL) in certain respects. As shown in Figure 7-1 a low voltage at inputs A or B will allow current to flow through the diode associated with the low input, and no drive current will pass through diode 0 3, If inputs A and B are raised to high voltage, drive current will pass through d10de 0 3 , In TTL circuitry the multiple-emitter transistor performs the same function as the diodes in OTL (see Figure 7-2). However the transistor action of the multiple-emitter transistor causes transistor Ql to turn-off more rapidly thus providing an inherent .switching-time advantage over the OTL circuit. Although one-volt dc noise margins are typical for TTL circuits, an absolute guarantee of 400 millivolts is given for every unit by manufacturers. Each output is tested to ensure that the logic high output voltage will not fall below 2.4 volts. This is done with full fan-out, lowest Vcc and 0.8 volt on the input: 400 mV more than the logical low maximum. Each output is tested to ensure that the logic low output voltage will not exceed 0.4 volt. This is done with full fan-out, lowest Vec and 2 volts on the input: 400 mV less than the logic high minimum. In actual system operation, the majority of circuits do not experience worst-case conditions of fan-out, supply voltage, temperature, and input voltage simultaneously. In addition the threshold voltage of the TTL circuits is about 1.5 volts. These characteristics allow a larger voltage change on an input without false triggering. This typical noise margin is shown in Figure 7-3. Another important feature of the design is the output configuration which both supplies current (in the logical high state) and sinks current (in the logical low state) from a low impedance. Typically logical low output impedance is 12 ohm and logical high output impedance is 70 ohm. This low output impedance in either state rejects capacitively coupled pulses and ensures small R-C time constants which preserve wave-shape integrity. 89633300 A 7-1 Vee Vee 01 Input A 03 Output o-~I--I--II~o Output 02 Input Input A B Inpllt B o----J "=' Figure 7-1. Diode AND Gate. OC Leve' Figure 7-2. 2,8 Vee 4,715 V (volta) 2,0 V ',2 - . ,a. Figure 7-3. 7-2 r .. Not.. " ..gift I I 40 I 80 Logio Hi,h Logio Low 1 Logic LoW • 20 I TTL AND Gate. IT Lotic High "argin 0,4 o - ~ eround III' T.,..,.rotur. (Oe) Typical Logic Level Margins for TTL Micrologic 89633300 A MOS CIRCUIT OPERATION THE MOS PROCESS AND SILICON GATE TECHNOLOGY The memory unit is realized with silicon gate metal-oxide-silicon (MOS) technology. This technology offers a number of advantages over aluminum gate MOS technology; some of these are listed: a. Gate oxide is protected immediately on formation in the silicon gate process. b. The self-aligned gate of the silicon gate device permits the construction of a smaller device with less gate-to-drain capacitance than is possib.le with aluminum technology. Faster, more compact circuits are made possible. c. The silicon layer can be used for interconnections, permitting reduced chip area per function. This is an important factor in large scale integrated (LSI) circuits where interconnection area affects cost even more than active component area. d. Improved reliability of the 'silicon gate devices due to the number of layers above the gate. e. Lower threshold voltage due to the use of silicon rather than aluminum as the gate material. 89633300 A 7-3 Static and Dynamic HOS Circuits The characteristics of the HOS field-effect-transistor (HOSFET) permit the construction of a wide variety of logic circuits with a large device and function density while giving good reliability and yield. An example of the application of these circuits is the memory unit of the computer, a 1024-bit random access, fully decoded read-write memory unit, accommodated on a single semiconductor chip. In general the HOS device may be used as an active amplifier or as a load Typical characteristi.cs of a HOSFET device are shown in resistor. Figure 7-4, together with a curve corresponding to it used as a load resistor with a 12 volt supply. The curves show drain current (IO) versus drain-tosource voltage (VOS) with gate-to-source bias voltage (V GS ) as a parameter. The substrate is assumed to be at source potential. The load resistor curve In the following is approximate as substrate bias effects have been neglected. discussion on the various circuits high and low refer to the relative magnitude of the voltage with respect to the substrate voltage level (VSS). Polarities are taken as correct for a p - channel device, i.e., all voltages negative with respect to the substrate. Note that the supply voltage for MOS devices is typically -15 to -18 volts; the logic high and low signals to the memory unit are typically as follows:· min. 7-4 max. input low voltage VSS - 17 VSS - 14.5 input high vo ltage VSS - 0.7 VSS + I 89633300 A Four types of MOSFET inverter stages are shown in Figure 7-5. In Figure 7-5a two MOS devices (Ql, Q2) are wired as a static inverter. When input is sufficiently hi.gh, Q2 turns on and the output is low. If the input is low it causes Q2 to be off and Ql pulls the output high. This circuit requires that for equivalent bias, Q2 should have much higher conductance than Ql to get reasonable noise margins; the two devices have therefore radically different geometries. This is shown in Figure 7-5a by representing Ql as a resistor and Q2 as a FET. As a result of the low conductance of Ql, current available from it to charge load capacitances is quite limited in this inverter and low-to-high transitions are rather slow. The circuit of Figure 7-5b is similar to that in Figure 7-5a when the clock is active. By making the clock voltage higher than V, a more consistent high output level is established. Once the output level is established, the clock may be switched off to save power. This technique is used in the low power data retention mode of operation (lPDR) to conserve battery and may be used also to give improved noise margins. The circuit of Figure 7-5c behaves as an inverter when the clock is active (high). This circuit may be used to drive relatively large capacitive loads through the high conductance of Q1, though it may consume relatively large amount of power while both the input and the clock are active (high). In the circuit of Figure 7-5d the capacitive load is charged when the clock input C is high and is discharged when C goes low, provided that the input is high. This circuit draws current only to charge and discharge the load and there is no dc drain. The load capacitance is, however, reflected back into the clock driver. The circuits of Figures 7-5b, c, d make use of temporary retention of data on the load capacitance and are therefore said to be dynamic, while that of Figure 7-5a is dc-stable and therefore static. 89633300 A 7-5 " •• idor C ...v. Load - 4.0 Ves =-IOV Vas·- IV . - 2.0 Ves =-IV Vas =-4V Vas =-2 V -8 Figure 7-4. -10 -18 Typical HOS Characteristic V V V C o--t VDS -20 V C 01 o--t Output Output o--t C>-i Input tftput - a. Statio Input - It. Gated Static Figure 7-5. 7-6 Output Output I c. I Input ,.,.... I -!- d. Dynamic. Low Power ....L '" - -:Dynamio I -L- HOS Inverter Circuits 89633300 A v Q3 _-0 Output Q4 Input Figure 7-6. MOS Inverter with Output Booster C 0 • I I I rt *cs I ~ Figure 7-7. 89633300 A • I I ...L. ..,... CL I + MOS Transmission Gate 7-7· Larger capacitive loads may be driven by static inverters only if a booster stage is added. A loss of high level is introduced unless bootstrap techniques are used. A booster stage is shown in Figure 7-6. A transmission gate is shown in Figure 7-7. The load capacitance CL is charged When towards the voltage on the input capacitor Cs when the clock C is high. the clock input is returned low it switches off Ql and CL retains the voltage it was charged to. The circuit of Figure 7-7 may be driven from a number of different source circuits. When the source is dynamic the transmission gate clock C should be kept high during the entire period when Cs and CL are being charged and discharged,otherwise improper voltages may result. For example if Cs is initially charged and CL initially discharged, they will share their charge when the transmission gate is opened by the clock being made active. The voltage on the capacitors will thus be a function of the relative values of the two capacitors. Unless the circuit is designed to operate with such intermediate voltage levels incorrect operation will result. Such circuits make up the memory unit (Section 4) which work together with auxiliary and control circuits in the memory module, memory address and memory control circuits. 7-8 89633300 A PRECAUTIONS IN HANDLING THE MEMORY MODULES The The and and memory banks are arrays of memory units mounted on the Memory Modules. memory units are MOSFET circuits characterized by very high impedances some special precautions should be observed while handling them both in out of circuit. PROTECTION AGAINST CATASTROPHIC DAMAGE As with any semiconductor component, the memory units can be damaged by misuse, or misapplied voltages. The component should be protected from such misuse during shipment, handl ing, and when installed in the system. MOS circuits are characterized by high impedances, and therefore are capable of being charged to high voltages by static charges. The gate circuits of MOS transistors are subject to destructive breakdown if excessively charged. The memory unit has an effective gate protection circuit for all input connections, and requires no elaborate precautions in normal use. However, some environments are subject to extreme build up of static charge, and are capable of releasing sufficient amounts of energy to damage any semiconductor MOS components in particular should be protected from these static component. charges. Some precautions which are easy to implement and yet which are quite effective are: 89633300 A a. Carry components and memory unit cards in conductive trays, such as metal or foil-lined pans. b. Personnel must touch ground, the chassis or the carrier tray before picking up components and memory unit cards. Avoid high static materials and fabrics in work areas. 7-9 SECTIor~ 8 PARTS LIST -~ PARTS DATA (Sheet 1) Use the parts listed below to maintain the equipments listed on page iii. Numbers enclosed in parentheses indicate notes. PART NAME PART NUMBER IN EQUIPMENT AB107-A/C/D AB108-A/C/D BT148-A/C/D BU120-A ALU PWA Timing PWA (1) Decoder PWA I/O Interface PWA (1) TTY Controller PWA (6) Console Interface PWA Memory Address PWA 89614100 89614100 89778200 89934400 89791300 89967400 89600043 89615000 89778201 89934400 89791300 89967400 89600043 89615000 89949000 89602069 89893800 89637000 89652300 89690200 89764900 89949000 89602069 89893800 89997700 92371016 93419306 92383005 9341922r ~637100 89637100 89637000 89652300 89690200 89764900 53397915 53397918 93947009 51788834 97030200 53397915 53397918 93947009 51788834 97030200 Memory Control PWA Programmer's Console PWA (2,3,4) Console Cable Assembly (2,5) Power Supply Unit (7) Fuse, 5A, fast blow Fuse, 100 rnA, slow blow Fuse, 8A, slow blow Fuse, lA, slow blow Blower (mounted in door) Blower (mounted in enclosure) Lamp, indicator bulb Switch, pushbutton (3) Switch, pushbutton (4) Switch, pushbutton (4) Connector, Rlug .. (5) Contact, socket (5) Connector (2) Contact, socket (2) Switch, DPDT (AC input) Lamp, miniature, 6v (power on) 89633300 H 89997700 92371016 93419306 92383005 93419222 89637100 89637100 89615000 89949000 89997700 92371016 93419306 92383005 93419222 896371 00 I 89637100 97030200 89818700 8-1 PAR T S DAT A (Sheet 2) PART NUMBER IN EQUIPMENT PART NAME AB107/8-A/C/D AB108-A/C/D BT148-A/C/D BU120-A Switch,toggle, 2P, 7201/Jl-CB 89640901 89640901 Switch,toggle, 3P, 7203/J2-CB Lens, lamp red (power on) 89640904 89640904 Lens, lamp, white 89633100 89640901 89780201 89633100 Equipment BA201-A, 600 nanosecond Memory, Part Number 89876300 Equipment BA201-B, 900 nanosecond Memory, Part Number 89876600 Equipment GD611-A, Memory Hold Battery, Part Number 89650100 NOTES: (1) Timing PWA 89778200 (or 89778201) and I/O Interface PWA 89791300 must both be used at the same time. If you replace one, you must also replace the other. (2a) The PIN for the programmer's Console PWA with its related series code is as follows: PWA SERIES 89987600 A04-A12 89987700 A13-A16 89985400 A17-A19 89602068 88602669 C01-C03 D01- (2b) Programmer's Console PWA PINs 89640300 and 89987600 include an integral cable assembly PIN 89893800, used in series A04 to A12. Programmer's Console PWA PINs 89881800 and 89987700, used in series A13 up, do not include the cable assembly. To install PIN 89881800 or 89987700 (more lately 89985400 and 89602069) into series A04 to A12, make sure of the following: * Install cable assembly 89893800 at the same time. * Use connector 93947009 and four socket contacts 51788834 on the power supply wire harness assembly (P22). I 8-2 89633300 H PAR T S DAT A (sheet 3 of 3) NOTES (continued) (3) Pushbutton switch 89652300 is used with Console PWA 89640300 in A04 to A12. (4) Pushbutton switch 89690200 is used with Console PWA 89602069 in A13 up. Twenty-nine switchcaps PIN 89764900 must be ordered together with Console PWA 89602069. (5) Plug connector 53397915 and contact sockets 53397918 are parts of Console Cable Assembly 89893800. (6) TTY Controller PWA 89967400 is one of four valid TTY Controller part numbers in the field. See page 5-373 for details. (7a)The PIN for the power supply PWA and its related series code is as follows: PWA SERIES 89964700 A04-A09 89983000 Al0-A19 DOl 89997700 (7b) Two power supply wiring diagrams and two power supply I/O wiring harnesses are provided in section 5 to cover Power Supply Unit part number 89997700 and the other valid units in the field. 89633300 H 8-3/8-4 I SECTION 9 WIRE LISTS WIRE LISTS Table 9-la gives the wire list for the TTY Internal Cable. I Table 9-lb gives the wire list for the TTY External Shielded Cable. I Tables 9-2 and 9-3 are the wire 1 ists for the Memory Expansion Cables, which form part of equipment BU120-A. Refer to Figure 3-4 for placement details of these cables. Table 9-4(a) and 9-4(b) give the backplane wiring of the AB107/AB108 in, respectively, signal name order and card slot order. These tables incorporate the wiring for the CPU, Memory System, A/Q and DSA buses and that for the slots preassigned to equipments FA716, FA442, FA446 , Fv497 and Fv618. For slot assigned allocation refer to page 5-6. Table 9-5 gives the backplane wiring of the BT148 Expansion Enclosure in signal name order. For slot assignment allocation refer to page 5-7. Table 9-6 supplies the COT external cable assembly wire list. Note: The signal names shown in the wiring 1 ists may differ slightly from those listed in Section 5. Equivalents of typical signal names are given below. Signal name in Section 5 Section 9 ACA05 ACAS D~UT07 ALUOO DOUT7 ALUOL ·· · ALU07 ·· ·· ALU7L ALU08 ALUOM ·· ·· ··· · ALU7M ALU15 MC 89633300 E MC* , Notes I" Double/single digit representation of numbers under 10 16 signals to 'the two ALU assemblies: suffix L: least significant suffix M: most significant Inverse signal: over1 ine/asterisk 9-1 TABLE 9-1 a. TTY INTERNAL CABLE PIN 89681,200 CONDUCTOR I DENT. COLOR RED 1 2 ORIGIN DESTI NAT ION (1) (2) P2A03 A08 A 13 3 4 B21 A22 5 6 7 8 9 10 11 12 13 11, RED A23 A24 A25 A26 A27 A28 A29 A30 P2A31 I Pl-24 13 23 58 41 43 45 1,7 49 51 53 55 57 PI-08 REMARKS/ SIGNAL NAME GRO UN D BAUD SEL M. I • GROUND PAR.SEL -12V -12V TTY-KB TTY-PR CRT-TRANS EVEN PARITY MOTOR ON CRT-REC VCC (1) Origin: 66-h61e connector shell plug. (2) Destination: 62-hole connector block. _ _ _ _ " _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-1 TABLE 9-1b. TTY EXTERNAL SHIELDED CABLE PIN 89642300 --'--r--COLOR CONDUCTOR I DENT. 1 2 3 It 5 6 7 8 I, BlK RED GRN WHT BRN BLU ORN YEL ORIGIN REMARKS/ SIGNAL NAME (1) DESTI NAT ION (2) 5 43 -12V 7 6 8 45 -12V TTY-KB TTY-PR NOT US ED NOT US ED NOT USED NOT US ED 47 49 (1) Origin: Molex type. (2) Destination: Continental type. I 9-2 89633300 E I TABLE 9-2. MEMORY EXPANSION BU120-A08 EXTERNAL CABLE ASSEMBLY (PI) AWG 28 PART NUMBER 89658101 (sheet 1 of 3) ------- CONDUCTOR IDENTITY 1 2 3 4 5 6 7 8 9 10 i1 -12 13 14 1'J 16 17 18 ;q J; ?; n 23 :~4 25 26 27 28 29 30 COLOR GRN-WHT BLK GRN-WHT GRN-WHT BRN GRN-WHT GRN-WHT I RED GRN-WHT i GRN-WHT ORN GRN-WHT I I,I GRN-WHT VEL I I GRN-WHT GRN-WHT i GRN GRN-WHT , GRN-WHT I! BLU , GRN-WHT ! GRN-WHT I! VIO f GRN-WHT I GRN-WHT GRA GRN-WHT GRN-WHT WHT GRN-WHT I I I i I I I I I ORIGIN DESTINATION (I) (2) GND P1BOl GND GND P1B02 GND GND P1B04 GNO GND P1B06 GND GND P1B08 GND GND P1B09 GND GND P1A10 GND GND P1B10 GND GND P1All GND GND P1A12 GND GND Pl BOl GND GND P1B02 GND GND P1B04 GND GND P1B06 GND GNO P1B08 GNO GND P1B09 GND GND P1A1O GND GNO P1B1O GND GND I P1All I GND GNO P1A12 GND I -- !, -~I REMARKS/SIGNAL NAME SLOT 31 SLOT 33 MXOL ---I -"'-1 i SOl I Ij , ! I MX1L SA2 MX2L SOO ,I I I MX3L S02 , , I MX4L I SD3 I I ,! I MX5L SD7 I I I ALU3L I SA3 i I I ALU2L SD6 ALU1L SOS ALUOL 504 -- Numbers enclosed in parentheses indicate notes. See sheet 3. 89633300 E 9-3 I TABLE 9-2. MEMORY EXPANSION BU120-A08 EXTERNAL CABLE ASSEMBLY (pl) AWG 28 PART NUMBER 89658101 (sheet 2 of 3)" CONDUCTOR IDENTITY 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 COLOR GRN-WHT BLK GRN-WHT GRN-WHT BRN GRN-WHT GRN-WHT RED GRN-WHT GRN-WHT ORN GRN-WHT GRN-WHT YEL GRN-WHT GRN-WHT GRN GRN-WHT GRN-WHT BLU GRN':'WHT GRN-WHT VIO GRN-WHT GRN-WHT GRA GRN-WHT GRN-WHT WHT GRN-WHT ORIGIN (1) GND P1B12 GND GND P1A13 GND GND P1B13 GND GND P1B14 GND GND P1B15 GND GND P1A16 GND GND P1B17 GND GND P1B18 GND GND P1B21 . GND GND P1A22 GND DESTINATION (2) GND P1B12 GND GND P1A13 GND GND P1B13 GND GND P1B14 GND GND P1B15 GND GND P1A16 GND GND P1B17 GND GND P1B18 GND GND Pl B21 GND GND P1A22 GND Numbers enclosed in parentheses indicate 9-4 REMARKS/SIGNAL NAME SLOT 31 SLOT 33 MX6L SA5 MX71 SA4 MXOM SPBM MX1M CPBM MX2M SD8 MX3M SDll MX7M SD9 MX4M SD14 MX6M SDl3 MX5M SOlO notes. See sheet 3. 89633300 E I TABLE 9-2. MEMORY EXPANSION BU120-A08 EXTERNAL CABLE ASSEMBLY (Pl) AWG 28 PART NUMBER 89658101 (sheet 3 of 3) CONDUCTOR IDENTITY 61 62 63 64 65 66 67 68 69 COLOR ORIGIN DESTINATION GRN-WHT BLK GRN-WHT GRN-WHT BRN GRN:"'WHT GRN-WHT RED GRN-WHT GND P1B22 GND GND P1A23 GND GND P1B23 GND GND P1B22 GND GND P1A23 GND GND P1B23 GND (1) (2) REMARKS/SIGNAL NAME SLOT 31 SLOT 33 ALU1M SA6 ALU2M SAll ALUOM CRI (1) Origin: 62-contact connector I (.2) Destination: 62-cQntact connector 89633300 E 9-5 TABLE 9-3. MEMORY EXPANSION BU120-A08 EXTERNAL CABLE ASSEMBLY (P2) AWG 28 PART NUMBER 89658501 (sheet 1 of 3) I CONDUCTOR IDENTITY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 COLOR GRN-WHT BLK GRN~WHT GRN-WHT BRN GRN~WHT GRN-WHT RED GRN-WHT GRN-WHT ORN GRN-WHT GRN-WHT YEL GRN-WHT GRN-WHT GRN GRN-WHT GRN-WHT BLU GRN-WHT GRN-WHT VIO GRN-WHT GRN-WHT GRA GRN-WHT GRN-WHT WHT GRN-WHT ORIGIN DESTINATION (1) (2) GND P2B02 GND GND P2B03 GND . GND P2B04 GND GND P2B05 GND GOO P2B06 GND GND P2A09 GND GND P2B09 GND GND P2A10 GND GND P2B10 GND GND P2All GND GND P2B02 GND GND P2B03 GND GND P2B04 GND GND P2B05 GND GND P2B06 GND GND P2A09 GND GND P2B09 GND GND P2A10 GND GND P2B10 GND GND P2A11 GND REMARKS/SIGNAL NAME SLOT 33 SLOT 31 ALU3M SD12 MX17 SA7 MPRY SD15 CVIOl SAlO WE SA12 PRTM SA9 CPEC SA14 SPI SA8 S WRITE SAl3 CRQ EDX Numbers inside parentheses insicate notes. See sheet 3. 9-6 89633300 E I TABLE 9-3. MEMORY EXPANSION BU120-A08 EXTERNAL CABLE ASSEMBLY (P2) AWG 28 PART NUMBER 89658501 (sheet 2 of 3) CONDUCTOR IDENTITY 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 . 55 56 57 58 59 60 COLOR GRN-WHT BLK GRN-WHT GRN-WHT BRN GRN-WHT GRN-WHT RED GRN-WHT GRN-WHT ORN GRN-WHT GRN-WHT YEL GRN-WHT GRN-WHT GRN GRN-WHT GRN-WHT BLU GRN-WHT GRN-WHT VIO GRN-WHT GRN-WHT GRA GRN-WHT GRN-WHT WHT GRN-WHT ORIGIN DESTINATION (1) (2) GND P2Bll GND GND P2A12 GND GND P2B12 GND GND P2A13 GND GNO P2B13 GND GND P2B14 GND GND P2B15 GND GND P2B16 GND GND P2B17 GNO GND P2A18 GND GND P2Bll GND GND P2A12 GND GND P2B12 GND GND P2A13 GND GND P2B13 GND GND P2B14 GND GND P2B15 GND GND P2B16 GND GND P2B17 GND GND P2A18 GND REMARKS/SIGNAL NAME SLOT 31 SLOT 33 CCPE --- --~ GOM2 SA15 ALU7L PRTSW ALU5M 32KW ALU6L NORMAL ALU7M MSXA ALU5L SDl7 ALU4M SRSM ALU6M SS ALU4L SD16 - Numbers inside parentheses indicate notes. See sheet 3. 89633300 E 9-7 I TABLE 9-3. MEMORY EXPANSION BUI20-A08 EXTERNAL CABLE ASSEMBLY (P2) AWG 28 PART NUMBER 89658501 (sheet 3 of 3) CONDUCTOR IDENTITY 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 I COLOR ORIGIN (1) GRN-WHT BlK GRN-WHT GRN-WHT BRN GRN-WHT GRN-WHT RED GRN-WHT GRN-WHT ORN GRN-WHT GRN-WHT VEL GRN-WHT DESTINATION (2) GND P2B18 GND GND P2A19 GND GND P2B19 GND GND P2B20 GND GND P2A22 GND GND P2B18 GND GND P2A19 GND GND P2B19 GND GND P2B20 GND GND P2A22 GND REMARKS/SIGNAL NAME SLOT 31 SLOT 33 DFEO SVIO MDEL SAO SAl GPEC SRQ PEL RGPWR Origin: 62-contact connector (2) Destination: 62-contact connector (1) 9-8 89633300 E TABLE 9-4.a WIRE LIST AB 107/AB 108 BACKPLANE (in signal name order) 89633300 A 9-9/9-10 PAGE N) ~ 1 I TO R F l I A 8 1 0 118 S T SIGNAL-NAME w.l. 20P2A24 08PlAOl QAP1 AH C8PIR30 08P2A 11 08P2 Bll 08P2dOA 08P? AJ1 12 PI ~Ofl -12V A NOENV ( 1) A POST MII8lE A POS1AMBlE A REACY f A REACV G A.SKEINCVF F A .SKEwCVF G 13P2Rl~ AID AID O~P2A06 11 PI R31 1'5P2AIA 13P1Al3 08 Pl All lOP2AOt) lOP2A26 09P2A2b lOPl A04 09I Pl A04 lOPl A2 8 09P1A28 lOP! All 09PIAll 09P2A!3 lOP2A13 09PIAl8 10PIA18 LOP 1 B30 09PIB30 OQP2 A2 2 10P2A22 10PIA11 O:)PIA11 lOP2B09 09P2B09 29PlB26 34P2B26 32P2Bl6 30P2B26 35P2826 33P2R26 31P2B26 29P 2826 2~ P2 B23 33Pl8l3 31P2B23 3t;P2R23 32P28l'3 30P2B23 34P2 B2 3 29P2R23 09P2 A2l. 08PLA19 O<;PIA04 08P2A16 09PIA2R 08PIB29 09Pl All ORP1A12 D8P2R06 09P2 All 08P2A09 09PIA18 09P1830 ORP lA 14 OBPIAll 09P2 A2") 09PIA17 08PIA06 OC;P2B09 08PIIlI? 28Pl B19 35P2B26 33PlB2n 31P7.B26 36P2B26 34P2826 32P2B26 30P2B26 30P2 B23 34P2B2'3 32P2B23 36P2BZ3 33P2B23 31P2B23 3t;P2823 2AP2B 11 89879100 8<1879100 89319100 89879100 89819100 89879100 8<1819100 89819100 89319100 8<1819100 89319100 89879100 89819100 89879100 89879100 89879100 89979100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89879100 89819101 89819101 89a 19101 89819101 89879101 89879101 89819101 89819101 89819101 89879101 89819101 89879101 89879101 89879101 89819100 FROM 20P2A23 lOP2A25 10PlA24 lOP?B07 10P2B30 10P2 A04 10P2A06 lOP1B26 13P2B 11 14P2812 12Pl B06 16P1831 14PIB17 O~P2A06 89633300 A AID A/Q CLEAR A=B AS CLOCKOUT AB CLCCKCLT AB DA TA Ae DATA AB OEN A8 DEN AB DOT AB DOT AB LOl AS lOl AS PARITV Ai! PA~ITV AS PR ESE T AB PRESET Ae PENAPlE* AS RENABlE* AB TOG AS TOG ABCNE A erNE AB~RES(5 t AB~RES(5) A(A5 ACA5 ACA5 A(A5 ACA5 ACAt; ACA5 ACA5 ACA6 ACA6 ACA6 ACA6 ACA6 ACA6 A(A6 ACA6 fR .lEV TO.lEV 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 1 2 2 2 2 1 1 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 l 2 2 I 1 2 1 2 Z 2 1 1 1 2 2 1 1 1 2 7. 1 2 7. 2 2 1 1 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2 '9-11 PAGE NO 2 FR1~ 28 P2 B24 30P2A23 34P2A23 32P2A23 29P2A23 33P2A23 31P2A23 31)P2A23 29P2822 33P2822 3lP2822 35P2B22 34P2812 32P2B22 30P~ 822· 29P2B12 29P1A21 30P2A27 3ltP 2A2 7 32P~A27 29PlA27 31)P 2A27 33P2A27 31p2A27 IOP2A02 10P2A02 19PIB09 19P1 A05 16P1822 19P2A25 19P2830 19P2816 19P 2611 26P2A14 22p2B22 21P 1A31 28 P2 814 24P2B01 24P1B24 24Pl A26 lOP2A24 10P2A09 10PIB03 lOP lA26 21)PIB16 25PIB19 ZI)P2A09 2bPIA21 28PIB12 28P1A28 31PIA12 9-12 W I R E Tl 29 P2 A21' 31P2A21 31)P2 A23 11 Pl All 30P2A23 34P2A23 32P2A23 36P2A23 30P2827 14P282' 31P282' 36P182' 35P282' 33P2822 31 P2 82' 28P2A 1 A 28P2810 31 PZ A27 35P2A21 33P2A27 30P2A21 36P2A21 34P2 A27 32P2A27 08P2A17 08P2A1C) 15P2A29 I1P1AIA 15P2B30 16PIB24 17P2B24 1 7P2 Aot; 18P1B 30 22P2Bl8 23PIA31 24P1B01 21 P2 8lt; 23PIA24 2.3PIAln l3PIB20 oap2BO,) 08P2 AO, 08P2 A04 CAPl626 2191626 23'Pl814 25P2B 11 25Pl A09 25PIB24 26PIB24 28 PI fH2 l ( S T A B 1 SIGNAL-NAfole w. L. A(A7 ACA7 ACA 7 A(A1 ACA7 ACA7 ACA7 ACA1 ACA8 ACA8 ACA8 ACA8 ACA8 ACA8 A(A8 ACA8 ACA9 ACA9 ACAC; ACA9 ACA9 ACA9 A( A9 ACA9 AC1· AC2 AODR ERR ADOR.CKWO=O AOOR.ERR* AOORESS ECP ACORESS 12* ADORESS· AOOT I NOE X. AD01M ACR* AOR* ADVANCe. ADV* ADI A02 AENV(l ) AENV(2) AfNV(4) AENV(5) Al ALCK AlUOAM AlUCA"AlUOl AlUOM ALUOl 89879100 89879101 89819101 89819101 89879101 89879101 89879101 89819101 89879101 89819101 89879101 ,89879101 89879101 8987(jl01 89819101 89819100 89879100 89879101 891179101 89819101 89819101 89819101 89879101 89879101 89819100 89819100 89A 79100 89319100 89879100 89879100 89d 79100 89819100 89819100 89879100 89879100 89979100 89819100 89879100 H9879100 89879100 89879100 89879100 89d79100 89879100 89679100 89879100 89879100 89879100 89319100 89879100 89879100 o 7/e fR.lEV TO.lEV 2 2 2 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 2 1 1 1 1 1 2 1 1 2, 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 2 1 89633300 A 3 PAGE NO ~ TO FROM 31PIB23 3IPIAl! l8P lA 11 28PIA22 31PIB22 31PIRIO 28P1810 28Pl A2 7 3lP 1 A23 31PIAI0 ?8PIAIO lap L828 31P2802 ~lP2A18 28P 2Al7 2AP2A16 3lP2816 3lP2815 28P2A15 28P2B09 31P2Al3 31P2B13 28P2All 28 P2816 31P2817 26P2A04 26P~ A04 26P2802 25P2A04 31P2B12 28P2A09 28P2811 31P2B14 13P 2B22 13P2A21 26P1Bl6 26PIB19 lOPl A07 10P2AIO IOPIA16 10PIA03 10PIB25 25P2A21 10P2A29 10P2805 25P2A30 26P2A30 2SP2B15 "33P2A25 31P2A25 29P2A25 IRE 2APIA2~ 28PIAll 25PlR30 !.!6PIB30 28Pl A2? 2SPIBIO 25P1827 i6Pl B27 28P1A27 28PIAIO 25PIA21 26PIA21 28 Pl. B2A 28P2Al1 25P2Bl1 26P2817 28P2A16 28P2Al,) 25P2 A16 26PlA16 28P2B09 2AP2 A12 2'5P2A11) 26P2A15 2AP2816 21)P2B02 26P2B05 25P2A04 27P2A29 28P2 A09 25P2Bl'5 26P2815 28P2Bl1 12PIB16 08P2A2421PIA26 23P2A 11 08P2A12 OSPIA2) 08Pl825 08P2 B0408PIB27 24P2A02 08P2B 19 08P2A19 22PIA21 25P2A 30 29P2A25 34P2 All) 32P2A25 30P2A25 89633300 A l 1ST A B 1 SIGNAL-NAME W.l. AlllOM ALUIL AlUll AlUIM AlUIM AlU2L AlU2l AlU2M AlU2M AlU3L AlU3l AlU3M AlU3M AlU4l AlU4L ALU4M ALU4M AlU5l AlU5l AlU5M ALU5M AlU6l AlU6L ALU6M AlU6M AlU1Al ALU7AL ALU7AM AUJ7AM ALU1l AlUll AlU7M AlU7M All Al2 AM AMCI< ANOOROPOUTt ANOEN~ (2 J ANOENV( 3» ANOENV (4 J ANOENV,5J AD* ACNEf* AONEG* 89819100 89879100 89879100 89S19100 89819100 89879100 89879100 89879100 89819100 89a 79100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89879100 89819100 89819100 89879100 aCJ819l00 89819104 89819100 89tl19100 89819100 89819100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89679100 89379100 89879100 89879100 89879101 89879101 89879101 ~CC* ~QC* ARAO A~AO ARAO ARAO o 1/8 FR .LEV TO.L EV 1 I 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 1 1 2 2 I 1 2 2 I I 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 1 1 2 2 2 1 2 1 2 2 2 1 2 I 2 2 1 1 1 1 1 1 9-13 PAGE I\IJ 4 FROM 35P2A25 34P2A25 32P2A25 30P2A25 30P2A29 .14P2A?9 3ZP2AZ9 Z9P2AZ9 33P2A29 31P2AZ9 35P2A19 28PZR?2 29P2A28 Z9 P2 A28 33P1A28 31P2AZ8 35PZA28 32PZA28 30P2Al8 ·34P2AZ8 30P2S25 34P2825 32pZSZ5 31P Z825 33P2825 29PZ825 35P2825 28P2A21 Z8P2823 29P2828 33P2828 31P2B28 35P2828 34P2828 32PZ8Z8 30P2828 19P2804 18P2807 OAP28t3 lOP 1 AZ7 26P2A21 25P2A21 26P2B08 10P1820 16P2B08 20P lAO 1 04P1818 03PlB 18 lOPIB19 17Pl B2 9 19P2B12 9-14 W IRE TO ~6P2A2t; 31)P2Alt; 33P2 A2t; 31PZA2t; 31PZAZ9 35P2AZCJ 33PZAZ9 JOP2AZ9 34P2A1Q 3ZPZA29 36P2AZ9 29P2A2Q 28PZAZ3 30P2A28 34PZA2A 32P2AZA 36P2 AlA 33PZAZA 31PZAZA 31)P2 A2A 31P28Zt; 35P2825 33P18Zt; 32P2821) 34P28?t; 30P282t; 36P1B2t; 2 qP2 a21) 29PZ81A 30PZ8Z8 34P2B28 3ZPZBZ8 36PZ8Z9 35PZ8ZA 33PZ828 31P282A 18P lA 14 16P280Z 1 OPZ All 08PZA13 2t;P2AZl 14P2A24 2ZP2A28 05Pi8lA 10P18Z0 10P1819 05P1818 04PIB18 05P1818 16P2 BOS 17P182Q L I S T SIGNAL-NAME APAO ARAC ,\R,\O ARAO ARA1 _RAI ARAI ARAI '\RAI ARAI ,\.Ul '\PAI ARA2 _RAZ ARA2 ARA2 ARA2 ARAZ ARA2 ARA2 ARA3 AR,\3 ARA3 ARA3 ARA3 ARA3 ARA3 ARA3 APA4 ARA4 ARA4 ARA4 ,\RA4 APA4 ARA4 '\RA4 ARCUR C .. A. ARCUR-CA. ASYNC 12. A5VNC(4. ATAUG ATAUG AUG7M AUTOLOAD AUTCLCAO AUTOLOAD AUTOLOAD Al:TOLOAD AUTOLOAD AUTOlO,\CZt Al.TOLGA02* AB 1 W.L. 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879100 89879100 89819101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89879101 89819101 89819101 89879101 89879100 89879100 89879101 89879101 89879101 89879101 89879101 89819101 89879101 89879100 89879100 89879104 89879100 89879100 89319100 89819100 89379100 89879100 89879100 8987910Z 8987910Z 8911 79100 89879100 89879100 o 7/8 FR .• LEV TO.LEV 1 Z 2 Z 2 Z Z 1 1 2 Z 2 Z Z Z 1· 1 1 1 1 1 1 Z 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 Z 2. 1 1 1 1 Z Z 1 1 1 1 Z 2 2 2 1 2 1 1 1 1 2 2 1 1 1 1 2 Z 2 2 1 1 2 1 Z 2 1 2 1 2 2 1 1 1 1 2 1 3 i 1 1 3 1 Z Z 89633300 A PAGE NJ WI R E 5 FRJ.,. 21 p~ A08 IOP2A05 18PIA25 17P2 A04 16P1821 1Qp2B03 11Pt 809 111» 2803 19P2AIO l8P1829 I1P2A21 19,,1820 lap 1824 17PlB20 17P2819 lAPlA30 18PIA28 17P2A17 17P 214 16 18Pl827 laPIS13 17P2Al5 11P2B02 19P7A19 18PIA2b 1~Pl828 I1P2AOb 18P1B26 19P2A27 17P 2812 18PIA21 ISPIB18 lap 11424 17P2A08 13PIA18 18PIBl9 IltP'-B08 2lP180a 22P2A20 l8Pl R2 3 17P7R14 17P2B13 18PIA20 27P2B12 09 P2 1425 09P2AIO 09PLA16 09PIA03 09P2801 09P2830 09P2BOb 89633300 TO 20Pl A09 08PlAl7 17P2 A04 l5P2 A1415P2A2R 17PIB09 16PIB21 15P2B IS; 18PlB29 17P2R01 15P2Alft 17 P2 A21 11P2820 15P2A13 1 S;P2 811 11P2819 17P2A17 15P2 Al~ 15P7817 17P2A16 1 7P2 141 Ii 15P?8l4 l5P2A27 1AP1A26 17P2807 18Pl B26 15P2A2~ 17P2A06 laplA21 15P2817 17P2812 11P2A10 17P2AOQ 15P2816 12p2a07 11P2AOA 12P2 B07 22P2A20 26P2821 17 Pl 81,. lSP2ROS; 1l)P2A15 17P2 B11 28P2S0A oaPIA30 08P2 BO~ 08P2B07 08P2 Bot O~PIB31 08P2AIO 08 P2 S01 A l 1ST SIGNAL-NAME AUTRSW* A\lRES U -It) AO AO AOAF+MC* AOAF+MC* AOAF+MC* Al Al Al AID Ala All ALI Al2 Al2 Al3 A13 Alit Al4 A15 A15 A2 A2 A2 A3 A3 143 A4 144 144 A5 146 A7 A1 141 A7 141M 147M A8 A8 49 149 8 8 NOE~V( 1) 8 NCENV (2 » B NOENY(3) B NGENV(4) B POST~BteF B READY F B SKEWOYF F A B 1 o 7/8 W.l. 89879100 89879100 89819100 89819100 89819100 89319100 89879100 89819100 89879100 89819100 89819100 89319100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 8<;879100 89879100 FR.• lEV TO.lEY 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 1 I 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 9-15 PAGE NO 6 FROM 091>2A05 24Pl B2.5 24PIA22 l3P2A14 09P2B02 09P2A02 21P2831 21P2A30 18PtA13 18PlA27 IBP'A01 17PIA14 15?lA]1 09P2A29 14P2S19 28P2829 09P2AOI 14P1814 13P1814 17P 1815 l')P7B23 I1PlBl8 12PIB09 14-P2A07 13PIB28 19P2A30 24P7 Al8 28PIB19 19PIA31 19P2 AOIt 19P 1813 19P1A12 19PIAll 19P I A08 l~Pl A06 19PIBOit 19PIB21 19PIB20 19PIA21 19P1819 19PIA18 19PIB15 I:}P1814 19PIBI0 I1PIBIO 14PlAl1 19P2B05 11PIA24 19P2 A29 lSP2809 18P2811 9-16 \oJ I TO 08PlA28 22P2 A27 23PIB30 IIPIA17 OA P2 817 OAP2Blt; 20PlA07 2 OPt B2f» l7Pl A30 17PIB17 16PIA2l 16PIAOA t6Pl A08 08P2820 13P2801 27P2 B27 OAP2814 t3PIB14 12 PIB20 t6PIA16 16PIAlt; 16Pl t:ll,) 08P1Al') 12P2BIO 12P2BIO 15P2A07 22 P21321 27PIA2t; IBPIA1') 18Pl Bllt 18PlA12 18PIBI2 18PIA16 lSP 181 ') IBPl B17 lAPlAlR 18PIB16 laPl A17 1 BP lA21 18P1821 1SPIA22 1 BPI B27 lS1>1810 18PIAI0 16PIAOQ 13PIBl1 IAP2A06 16PIB13 11Pl A24 16P2B2t; 16P2B2 7 R E l [ S T SIGNAL-NAME B Be ~RES( 1-4. BBCK BCD BCI* BC2 BEA BEAC Bl-BOIH CYl Bl,=O BL=O SCNEF* SOT BRWRA* SSI* BUF 1/0* 8UF 1/0* 8UF F 1- BlJF F 2 8UFFlBUFF2* BUFF2 FUll* BUFF2FL*kMO BUSY BUSV BUSY RR* BXl5 CAA15 CAC WAO CAC WAI CACkAIO CACWAII C AC WA12 C ACWA 13 CACWA14 CAChA1S CACWA2 CACWA3 CACWA4 CACWA5 CACWA6 CAC kA 7 CACWA8 CACkA9 CAL -SH IFT* (ARCURAD* C ARST* CAU SHIFT* CAU S~IFT* CAL J* CA12* A B 1 a 1/B w.L. 89819100 89319100 89379100 89819100 89319100 89319100 89819100 89819100 89819100 89819100 898'19100 89819100 89879104 89319100 89879100 89819100 89819100 89d 19100 89819100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89a 79100 89a 19100 B9879100 B9819100 89819100 89619100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 B9819100 89879100 89819100 89819100 89d 19100 89819100 89879100 89879100 89819100 89819100 fR.lEV TO.L EV 2 I 2 2 2 2 1 1 1 2 2 1 2 1 1 2 1 2 ·2 1 1 1 1 2 2 I 2 2 2 2 1 1 1 2 2 1 2 1 1 2 1 2 2 1 I 1 1 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 1 1 89633300 A PAGE N1 W I 1 FROM 1ap2AOa 18P2AIO 18P2 B08 18P2A05 18P2AO 1 18P2A04 lRPlA05 18P2A22 18P2B06 lRP2B06 l8P2 A09 ~1P2AIO 30PIB23 31P2Bli 35P2A26 331>2A26 3lP2A26 29P2A26 32P2A2b 30P2A26 34P 2A26 27P2827 l'iP1807 23P2831 2lP2B25 12PIB21 02PIB07 06Pl B07 OlPIB01 26PIA03 19P1B29 19P2A05 19P2A13 lQP2BOb lRP2817 13P2 A02 26Pl 1428 25PlA28 23P2A15 23PIA23 21P2BIO 22PIB01 25P lA13 26PIB20 28P2AOb 25P 1831 26P1811 25PIA31 26P 1 A3l. 25Pls29 26PIB29 89633300 TO 16P2B20 16P2B2R 16P2B31 16P2B2<} 16P2 B30 16P2Blit 16P2BlS lSP2AOB 15P2Al1 16P2BIQ 16P2B18 30Pl B2l 20PIA28 21P2AlO 36P2A26 34P2A26 32P2A26 30P2A26 33P2A26 31 P2 A26 35P2A26 29P2 A26 12Pl B21 20P2B25 15PIB07 C7PIB01 06PIB07 01Pl B07 02PIB07 25PIBOl 17PL B06 17PIB24 11Pl A18 16P2 BOli 11PIB22 12PIA05 25Pl A28 20PIB01 2lP2B12 24PIA31 23PIA23 25PlA11 26PIA13 21P2A29 27P'l. B01 20PIB11 20PIA14 20PIBIQ 20PIB15 20Pl ALB 20PIB14 A R E l r S T A B 1 SIGNAL-NAME W.L. CA13. CA15. CA16* CAll* CA18* CAI9* CA20* CAl. CA65M* CA65M* CA7* CCPE* cePE. CCPE* CE* CE* eE* CE* CE* eE* CE* ce* CHI. CHI* CHI* CHI* CHI. CHI. CHI. C( CKWO SHIFT CKWOL 1 CLEAR CKWO* CLEAR CCNTR CLE AR-SHI FT ClR LOWER. CLREG* ClREG. CLREQ ClRIR ClRIR CLRQ* ClRO* ClRXM CMOR* CNSOL* CNS(M* CNSIL* CNSIM* CNS2L* CNS2M* 89879100 89879100 89819100 89879100 89819100 89319100 89819100 89879100 89879100 89819100 89819100 89319100 89819100 891319100 89819101 89879101 89879101 89819101 89879101 89879101 89879101 89819100 89879100 89819100 89819100 89879100 89819103 89819103 89879103 89819100 89879100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89879100 o 7/8 FR .LEV TO.LEV 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 I 1 2 2 2 2 1 1 2 2 2 1 1 2 72 1 1 1 2 2 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 I 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 2 2 1 1 2 1 2 1 1 1 1 1 1 9-17 PAGF NO 8 W I R E l 1ST A B 1 o 1/8 FR)~ TJ SIGNAL-NAME W.L. 25PIB28 26P1B28 25P2B12 26P2Bl2 25P2A 11 26P2Ali 25P2B13 26P2B 13 25P2B14 26P2B14 22PIA17 23P2A09 25PIB21 26PIB23 19P2 A12 14PIA28 I1P2AO 1 28PIBl3 3]P1B14 3lP2809 12PIA3l 27P 1826 33P1823 22PlA12 21P lAO] 31P2All 24P1B26 25PIR03 21P1825 26PIB03 21PIB19 24P2820 24P2A04 : 2ltP1803 23PIA04 24P 2A10 22P1A31 24P2A21 23P1829 16PIA26 19P2A08 3lP2B05 27Pl A2 8 18Pl828 18PIB28 21P2B16 22PIB09 25P2AIO 2'5PIAOl 26PIAOI 22P1804 20PIA20 20Pl A15 20PIA01 20PIBO] 20PlA06 20PIA03 20P181l 20PIA04 20PIAll 2 OPl B05 . 23P2AOQ 24P2A30 22PlAOlt 25PIB23 11P1B16 12P2A06 12P2A02 22P1811 28PIBl3 27PIA31 11 P2 B30 28P 1822 28PIR22 27PIB26 24P1826 21P2 A09 21P2AOQ 23PIB19 20P2 B05 25P1801 21P1825 2 OPl B21 20Pt81' 20PIA25 20P18l0 20PIA21 20PlS31 22PIAll 20Pl829 15P2831 16PIA26 21PIA28 21P2804 I1PIAOA 19PIB25 CNS3l* CNS3,..* CNS4l* CNS4,..* CNS5l* CNS5M* CNS6l* CNS6M* CNS7l* CNS1M* CNTE2* CNTE2* CO CO CCMPARE ceN TAC T CONTACT* CP8M* CP8M* CPEC* CRCC STATE* CRI * CRI* CRI* CICO CRO CfCO CRO* CfCO* CRO* CRO* (SA* CSM* CSP* CSPR CSo* csx* 89819100 89879100 89879100 89879100 89879100 89819100 89879100 89319100 89a 19100 89819100 89819100 89319100 89819100 69819100 89819100 89319100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89879104 89819104 89879104 89879100 89379100 89819100 89819100 89819100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89919100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89819100 9-18 28P2B7.~ 2'5P2AIO 26P2AlO 22P1801 25Pl A01 25P2 83 t C~X* CSy* CTRLR BUSY C TRlR 8l ~ \' CVIOl* C ~ I 01* C"A-C(UNT* CW~-COUNT* cxp* Cl Cl C2 C2 C3 FR.LEV TO.lEV 1 I 1 1 I 1 1 1 I 1 1 2 2 1 2 2 2 2 I 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 I 1 1 1 1 I I 2 2 1 2 2 2 2 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1 2 2 1 1 1 2 2 1 1 89633300 A q PAGE NO FROM 25P7.Bl1 19 PlIH 7 18P2R13 13P2B14 24-1>1B21 27P2B17 24P1A14 22P~B30 241>?810 24P1A15 lc}1>2Al4 211>2fH9 21 P~ B08 ~lP2B18 29P1803 321>1B03 30P1803 34P1803 31)1'1B03 33P 1803 311'1803 7.91>1803 2Ql>lA03 331>1A03 31P1A03 15P1A03 30PIA03 ~41>1A03 32PIA03 29PIA03 2ql>1A28 34P1 A28 321>1A28 301>1A28 35PlA28 33PIA28 311>1A28 29Pl A2 8 79P lA21 33P1A27 31P1A27 351>1A27 30 PI A27 34PIA27 32PIA27 29Pl A27 l8PIB24 341>1825 32Pl B2 5 30PIB25 291'187.5 89633300 W 1 R E TO 26P2B 31 11P1Al() 1 7P18 14 121>1A01 .21 P1 AOI) 2AP2BIA 22P1411) ? 4- P2 B 1 0 ?5P2R 1'" 21 P2 A2h I1)P2AOl) 21P2808 23PIR01 27P2BIC} 28P1AO? 33 1>1 ~04 11P1801 31)P1801 36P180l 14P1803 32 PI 801 10P1801 30P1A03 14P1401 32P1A03 36P1403 31 PI A03 35P1AOl 331>1~O3 2 APl 80' 2 8P1A 11 31) 1>1 A28 33PIA2 A 31PIAl8 16P1478 34P1A2A 321>1A28 ) OPI Al8 30PIA27 14P1A27 32P1427 361>1A27 31 PI A27 351>1A21 33P1A27 7.8 PI 816 2ql>lB 25 35P1B2') 331>1821) 311>1621) 30P1821) A l IS T SIGNAl-NAt-E C3 f).No.teMP. DATA DATA DPR DE* DEL* DElTAUG* DEL TAUG* DEl2 OF-GATED OFEO DFEO OFEO DINa DINO DINe o INO DINO DINO DINO OINO DIN 1 OlN1 DINl . DIN 1 DINl DINl DIN 1 DINl OlN10 OINIO OlNI0 DINIO DINIO DI~10 DIN 10 DINIO DINll DIN 11 OlN11 OINtl OINll DINll OIN 11 OINll OlN12 DIN 12 O(N12 OINt2 DIN 12 A i3 ~ .L. 89879100 89879100 89879100 8'1879100 89a 79100 89879100 898791JO 89879100 89819100 89d19100 89319100 8981"9100 89879100 89879100 89d19100 89819101 89819101 89d79101 89879101 89879101 89d79101 89819101 89819101 89879101 89879101 89819101 89879101 A9d 19101 89879101 89879100 89:319100 89819101 89879101 89819101 89879101 89819101 89879101 89879101 89819101 89879101 89879101 89879101 89379101 89879101 89819101 89;:J 79100 89819100 89879101 89B 79101 89819101 89879101 1 o 7/8 fR.l EV TO.l EV 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 7. 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 7. 7. 7. 2 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2" 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 7. 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 9-19 PAGE N() 10 FROM 33PlB25 31P1825 35PIR25 29PIB21 33PIRZ'1 31P1827 351> 1827 30P1821 34P1827 32PIB27 2CJPIB21 29PIBZ8 32P1828 30Pl R28 34PIR28 29PIBZ8 33P1628 3lP 1628 35PIBl8 29P 1 B26 331>1826 31PIB26 35P1826 30P 1826 34P1826 321>1B26 29P1826 28P281Z 341>2A04 32P2A04 30P2A04 35P2A04 , 33P2A04 31P2A04 29P2A04 35P2A05 33P2A05 llP2A05 29P2A05 301>2A05 34P2A05 3lP2A05 28P2AI0 2'JPl A05 32PIA05 30PIA05 34Pl A05 29PIA05 33PIA05 31PIA05 35PIA05 9-20 W J R E TO 34P182S 32PIB2C) 36PIB2S 30PIB21 34Pl821 32 PI 821 36P1821 31P1821 35Pl B21 33P1821 28P1826 28PlA 25 33PIB28 31 PI B2R 35PIB28 30PIB28 34Pl B28 32PI828 J6PIB28 30P1826 34P1826 32PIR26 36PIB26 31P1826 35P1826 33P1826 28P1825 2 QP2 AO. 35P2A04 33P2A04 31 P2 AO. 36P2A04 34P2A04 32P2A04 30P2A04 36Pl AOt) 14P2A05 32P2AOt) 3 OP2 AOI) 31P2AOC) 35P2A05 33P2 AOt) 29P2AO'i 28PtA04 33PIAO'i 31PIAOli 35Pl AOt) 30PIAO'i 34PIA05 32 PI AOt) 36PIA05 l I S T S IGNAt-NAME OlN12 DINt2 DIN12 DINt3 o INI3 OlN13 DIN1) DIN 13 DINl3 DIN13 DINl3 DIN14 DIN14 OlN14 OINi4 DIN14 DIN14 DIN14 DIN14 DIN15 DINt5 DIN15 DINt5 DINl5 DINlS DINt5 DINl5 DINl6 DIN16 DIN16 OlN16 OIN16 DIN16 DINt6 OlN16 DINl1 DINt7 DINt1 OlNl1 DINl7 DIN 17 DIN11 DIN11 DIN2 DIN2 DIN2 OlN2, DIN2 DIN2 DIN2 OlN2 A B 1 W.t. 89879101 89879101 89819101 89879101 89879101 89879101 89819101 89879101 89879101 89879101 89iJ 79100 89819100 89879101 89879101 89819101 89879101 89819101 89819101 898'79101 89ff19101 89819101 89879101 89879101 89879101 8981910 1 89819101 89819100 89a19100 89819101 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89d 19101 89819101 89879101 89819101 89879101 89819100 89819100 89879101 89879101 89879101 89819101 89879101 89879101 89879101 o 7/8 FR .lEV TO.lEV t 1 1 1 1 .1 t 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 t 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 89633300 A PAGE NO W I 11 FQ.l~ 29PIA01 331'1801 31P1B07 15P1807 101'1801 34Pl801 321'1801 29P 1801 Z9P1 A07 34PIA01 32PIA07 3JPIA07 29PIA01 33PiA07 llPIA07 15Pl A07 291'1816 33PIR16 :'UPlfHb :i5PIBI6 30P UHI> 34P lR 16 3?PIBI6 Z<)PIIH6 ZC}PlAI5 32PIA15 3()PIA15 34P1A15 29PIA15 33PIA15 31Pl.A15 35PIA15 29P1Al8 33P1A18 31PlA18 35P1A18 30PlAlA 341> 1 A 1 8 32PLA1B 29Pl A1 A 29::>1819 34P1619 32PIB lq 30»> 1 B 19 2:JP1B19 33P1619 31P1B19 35PIB19 29PIB20 33P1820 31PIB20 89633300 T1 30 Pl BOl 34P1B01 32PIB01 36P1801 31PIBC7 35P1801 33 PI B'J1 28PIA03 28Pl AOA 35PIA01 33PIA01 31 PI A01 30P1AC1 ~4PIA07 32 PI A07 36PIAG1 30PIB16 34Pl Bl~ 32PIB16 16PIB16 31PIBlh 35PIBlh 3 31>1 B1 h 2SP}A07 2BPIAlh 33PIA15 31PIA15 3SPIA15 30PIA15 34PIA11) 32PlAl5 36PIA15 30PIA18 34P1418 32PIAIR .16P1 A18 31 P1 Al 8 15PIAl8 33P1A18 2AP1B11 28PIA14 35 P1 B19 33P1B19 31PIB19 30PIB19 34PIB19 32PIRl9 36P1 B19 30P1B7.0 34PIB20 32PI1320 A R F l I S T SIGNAl-NA~E DIN3 DIN3 DIN .3 DIN3 DIN3 D IN3 DIN3 DIN3 DIN4 DIN4 DIN4 DIN4 DIN4 D IN4 OlN4 OIN4 DIN5 DIN5 DINS DIN5 DIN5 DIN5 DINS DIN5 OIN6 DIN6 DIN6 DIN6 OlN6 OlN6 DIN6 DIN6 OlN7 DIN7 OlN7 DIN7 D(N1 OlN7 DIN1 OlN1 D[N8 DIN8 DINS -DIN8 DIN8 DINS DIN8 DINA OlN9 DIN9 OlN9 A jj W.L. 89819101 89879101 8<1819101 89819101 89819101 89819101 891319101 alia 79100 89879100 89879101 89879101 89879101 tVld79101 89819101 89d79101 89879101 89879101 89879101 89879101 89:379101 89819101 89879101 89879101 89819100 89879100 89879101 89d 7910 1 89d 7910 1 89d 79101 89979101 89819101 8987910L 89879101 89879101 89879101 89819101 89819101 89819101 89879101 89879100 89d79100 89879101 89819101 89B79101 89819101 89879101 89879101 89879101 a~a 79101 89179101 89819101 1 o 118 FR.LEV TO.LEV 1 1 1 1 2 2 ? 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 9-21 PAGE NO 12 FROM 35PIB20 30PIB2O 34Pl820 32P1820 2~ PI 820 27P2RIO 30P2A21 34P2A21 32P 2A 21 35P2A21 33P2A21 31P2A21 29P2 A21 19P2B08 IRPIB31 19P2A09 19P1830 21P1801 29PIA02 33P lA02 31 PI A02 35PlA02 34PIA02 32Pl A02 30PIA02 30PIA04 34PIA04 32PIA04 29Pl A04 33Pl·A04 31PIA04 31)PIA04 27PIA02 29P1824 31)P1824 33P1824 31PL824 29P1824 34Pt824 32P1824 30P1824 30P 1A30 34Pl A30 32PIA30 29PIA30 33PlA30 31PIA30 31)PIA30 29Pl A30 29PIA31 29PIAll 9-22 \II ( R E l Tn 36PIB1O 31P1820 35PIR20 33P1820 28Pl A18 29PlA 21 31P2 A21 35P2A2t 33P2A21. 36P2A21 ·l4P2A21. 32P2A21 30P2A2t lRP181l l1PIAIft 11t»IAll) 16PIA 28 29Pl AO'30Pl A02 34,PIAO' 32PIA01 36PIAO, 35PIA02 33Pl A02 31PIA02 :JIPIA04 35Pl A04 33PIA04 30PIA04 34Pl A04 32PIA04 36PIA04 Z9PIA04 21PIA16 36P1824 14P1824 32P1824 30P1824 35P1824 3.3PI824. 31 P18?r. 31PIA30 35P1A30 33PIA30 30P1A30 34Pl A30. 32P1A30 . 36PIA30 21Pl Al1 21P lA 21 lOPl A31 1ST SIGNAl-NA,,-e 0lN9 DIN9 DINg 0lN9 DIN9 DISABLE DISABLE DISABLE DISABLE o ISABl E DISA8lE DISABLE o ISABl E oOF OOf OOF-LA OOF-lA-AlTO· OOU10 00U10 00U10 00U10 oOUTo 00U10 OOllTO OOUTO DOUTI OOUTI Doun OOUTI oOUTI OOUTI oOUTI Doun 00UT10 00UTI0 ooun c oOUllO naUllO ooun c DOU1I0 DOU110 OQUTl1 OOUTll oOUTll OOUTll OCUTtl oOUTll 00UT11 OGUll1 OOUTl2 00UT12 A B 1 \II .l. 89819101 89819101 89819101 89819101 89919100 89819100 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819100 89319100 89819100 89819100 89819100 69819101 89879101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89819101 89819100 89879100 89879101 89879101 89819101 89879101 89879101 89819101 89879101 89819101 89879101 89819101 89879101 89879101 89819101 89819101 89879100 89319100 89979101 a 118 fR.L EV TO .lEV 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1· 1 1 1 1 2 1 2 2 2 1 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 L 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 89633300 A PA(;E N) 13 FRUM 33PIA31 31PIA31 35PIA31 ':l4PIA31 32PIA31 30PLA31 30Pl829 3~PIR29 32PIR29 Z9Pl829 33PIRl9 ':\lPlB29 35PIBl9 29PIB29 29P1830 29Pl B30 33PlB30 31PlB30 35P1830 32PlB30 30P IB30 34P1830 30P IB 31 34PlBli 32PIB31 29PIB31 33PIB31 3lPl B31 35PIB11 ?9P1831 29P2AOI 21P2AOI 33P~AO 1 31P2AOl 3SP2AOI 3lP2AOI 10P2AOl 34PlAOl ':lOP2A02 34P2A02 32P2 A02 2t}P2A02 33P2A02 3lP2 A02 35P2A02 27P2B05 28 PlBIO Zt}P lA06 29PIA06 33PIA06 31PtA06 W J TO 34P LA .31 32PIA31 36Pl A3'. 35PlA31 33PIA31 31PIA31 31PIBZ9 35P1S29 33PIRl9 30PLB29 14P18l9 32P18l9 36P1829 21PIA2lt 27PIR24 30PIB30 34P1830 32PlB30 36PL 830 33PIB30 31PIB30 35P1830 31PIB.31 3SPIB3l 33Pl B31 .30PlS.3l 34PlBll 32Pl Rli 36PIR31 27PIB2S 27P2 A16 30P2AOl 34P2 AOt 32P2AOl 36P2AOl 33P2AOt 31P2AOI 3'5PlAOl 31 P2 AO? l5P2A 01. 3 3P2 AO? 30P2 AO? 34P2A02 32P2A02 36P2A02 lAP2810 29Pl AO? 21P1804 30PIAO& 34Pt AO£» 32PIA 0& 89633300 A R E L I S T SIGNAL-NAME OOUTl2 OOUT12 DOUT12 OOUH2 DOUT12 OOUT12 DotHl3 DOUTI3 DOUTt 3 00UTt3 00UT13 OCUTl3 OOUTt3 00UT13 OOUTl4 00UT14 00UT14 00UT14 00UT14 OOUT14 00UT14 00UT14 OOU11 5 OOlJ TIS 00UT15 OOUTlS DOUT15 DOUTl5 OOlJTlS 00UT15 OOUT16 OOUT16 00UT16 OOUTl6 00UT16 00UT16 00UTl6 OOUT16 OOUT17 00UT11 00UTl1 OOUTl1 00UT11 00UT11 OOU111 00UT11 OCUTl1 00UT2 00UT2 00UT2 00UT2 A B 1 W.L. 89879101 89819101 89879101 89879101 89879101 89819101 89819101 89879101 8987910 I 89819101 89819101 89879101 89819101 89819100 89819100 89819101 89819101 89879101 69819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89819101 89819100 89819100 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89879101 89819101 89819101 89879101 89319101 89819101 89819100 89819100 89819100 89879101 89819101 89819101 o 7/8 FR .lEV TO.LEV 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 Z 2 Z 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 1 9-23 Pt\GE NO 14 FR]M 35PIA06 32PIA06 30PIA06 34PIA06 ]OPI A08 ~4PIA08 32PIA08 29PIA08 3~PIA08 31PIA08 35PIA08 29PIA08 29PIA09 29PlA09 3~Pl A09 31PIA09 35PlA09 34PIA09 32PIA09 30P1 A09 30PIA14 34PIA14 32PIA14 29PIAl4 33PIA14 31P1A14 35PIAl4 29Pl A14 29PlA17 29PIA17 3JPIA11 3lPIA17 35P1A11 32PIA11 30P1A11 34PIA11 30PIA19 34PIA19 32PIA19 29PIA19 33PIA19 31PIA19 35PIA19 29PIA19 2~PIA20 29PIA20 33PIA20 31P1A20 35PIA20 34PIA20 32PIA20 9-24 W r RE TO 36Pl AO~ 33PIA06 3lPlA06 35Pl AO~ 31PlAOR '35Pl AOA 33 PI ADA 30PIAOR 34P1 AOA 32PIAOR 36P1AOA 27PIRO~ 21PIB01 30PlA09 14Pl AQq 3?PIAOC) 16Pl A09 15Pl AOC) 33PlA09 3lPl A09 31PIA14 15PIA14 33PIA14 30PIA14 34PIA14 3?PlA14 36PIA14 27PIB09 21PIBIO lOPlA 11 34P1 A17 3lPIA17 36PIA17 33 PI A17 1IPIA17 15PI411 31 PI A19 35P1419 33PIAl9 30PIA19 ~4PIA19 32PIA19 36PlAIQ 21PIB12 21 PI All 30PIAlO 34PI4.20 32Pl A20 36PlA20 35PlA70 33PIA20 l r S T S(GNAl-NA~E DOUT2 DOUT? DOUT2 OOUT2 DOUT] DOUT3 DOUT3 DOUT3 DOUT3 DOUn DOllT3 DOUT3 DOUT4 DOUT4 DOUT4 DOUT4 DOUT4 DOUT4 DOUT4 DOUT4 DOl) T5 DOUT5 OOUT5 OOUT5 DOUT5 DOUT5 DOl!T5 DOUT5 DOUT6 DOUT6 DOUT6 DOUT6 DOUT6 DOUT6 nOUT6 DOUT6 OOUT1 OOUT7 DOUT1 DOUT1 DOUT7 DOUT1 DOUT1 DOUT7 DClJ Ta DOLTS DOUT8 DOUT8 DCUT8 DGUT8 onUT8 A B 1 W.t. 89879101 89879101 89879101 89879101 89819101 89a79101 89319101 89819101 89979101 89879101 89879101 89379100 89879100 89979101 89819101 89879101 89819101 89879101 89879101 89819101 89879101 89879101 89819101 89819101 89819101 89819101 89879101 89819100 89879100 89879101 89319101 89879101 89879101 89879101 89879101 89819101 89879101 89879101 8 2829 14P2A04 18P7.B20 15P IB23 25PIB20 19P2826 13P2A09 20P2B08 151>1B23 01PIA09 OlPIB23 06P IB23 01PIB23 9-28 W r TO 23P2 A24 22 P2 BI0 21PIA28 22P2Bl1 21PIAI0 21P2A06 21P182A 15P2B01 16P2BOI 16P2826 15P2802 12PIA09 11Pl A09 21P1A21 21P1B2 COl MXOM MXCM M)lOM A B 1 W.l. 89879100 89819100 89879102 89879102 89879100 89879100 89a 79100 89819100 89879100 89819100 89879100 89879100 89a 19100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89819100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89379100 89819100 89879100 89819100 89979100 89879101 89879101 89819101 89819101 89819101 89879101 89879100 89879100 89819100 89819100 89879100 89879100 8913 79100 89819100 89819100 89819100 o 118 FR.lEV TO.lEV 3 3 3 3 1 1 2 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1 2 2 2 2 2 1 1 1 1 1 2 1 2 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 2 1 9-29 PAGE NO 20 fROM W I T1 31P1602 24P1A16 25PIA19 26PIA19 2lt-PIAl3 llPl811t31PlR03 11P2A19 27Pl BO~ 25PIAl PIA02 11P2B09 25P2A22 UPIA11 2\)I>2R18 1jPIA19 UP1/:i20 1~Pl11I6 20P2A19 25P2H72 l')PIROl 17P2B08 06PIH03 alP 1/:i0:1 02 PI RO 3 02Pl H04 OoP 11:)04 01 P I Ru 4 26P?AO'5 15PIR04 17P'!A13 l'JPIA15 ?OP?B23 14"lBZQ 14P 1 1122 19PIA13 ?OP2R24 15P1805 17 P2 A12 26P7A02 06 P IROl) 01 PI80 ') 02PIAO') 22PIBlo 21PlRl'3 22:> UH 2 21PIA13 24P1AO.? 23P1B22. 2lP2Bl1 24P7R16 17P7B05 UPlA22 23.,lA27 23PzA04 21PIB23 89633300 A .., I T1 R F l I S T S IGNAl-NA~E O?Pl AOl 06PIAOl 06P 1 ALP C7Pl AD' OA5* OA5* OA6* 02Pl~O? OA6* OA6* OA6* OA6* OA6* OA6* OAA* flA7* pA7* OA7* Oll7* OA7* OA7* OA7* OA7* OA7 OAR* OAA* CA8* OA8* OAH* CA8* OA8* OA8* IlAR* OA9* OA9* 0119* OA9* OA9* OA<;* OA9* OAg* OA9* 00* oCO* 000* nco* OCD2 0002 1 Wl A19 1 QPl Al 7 20P2RIA ItjPl~()? 17P2H09 07P1AO] 07 PI ~O~ lSPIRal 17PZ'10R ?OP2 Al 'I 1 ~PIR?() 19P1f11A 07Pl~Ol J?Plf10l 06PIBtH 0f1PIR04 C7PIR04 02PlB04 20P21:Pl 14Plf3?9 19PIA1'> I,)P 1 B04 17P241'.:\ 07PIA04C7PIBO'5 l'5PIRO'> 17P2,U] 14P 1 B 2;> 19P1 All 201>2824 07PIBO,> ()7 PI BO'> C6PIB05 24f>? :\01 2'3 P2 B19 24Pl RD'I 2?PIBP 23PIRl7 22PlA2R 23PlBl1 23P7A16 L6P2ROl 17P2f\O'i ??PIBl4 ?4PZB2Q ?()PIB2~ OA6* * 0002* 016* eN C Vl eN CYl OP OPE* OPINO A B 1 0 1/8 w.l. 89879103 89379103 d9319103 89319103 8'H19103 89319100 89'J19100 89979100 89819100 89379100 8987:H00 89819100 89-379100 89d19100 89-119100 89819100 893 7'J 100 89 i 7910 3 8':7379103 89879103 69819103 89a 19103 89379t()3 89819100 8<;819100 89319100 89879100 89'379100 89619100 A9 P2 A1ft OAPIA2h (;9 PI R24 (;t)Pl A30 OBP2R2,h OPST OP20* OSC* nVFL* OVfl* D'IIFW* 01* 01* 01* 012 012 02* 02* PAR PAR ERR. PAR ERR. PP.C PC 16CO* 10PIA~1 09 PI A:H 24PIB,0 O~PIB24 IJPIB24 10PIA 30 09PIA30 27PIB28 13P2A18 14PIR2j 28PIAlj 13P2801 09P21301 26PIR13 2SP 1 B 13 21P2A22 10PIB01 13P1RJi 14P2 AUI 13PIB'~0 11PIB29 14P2R23 12P 11375 13P2B06 1~P7ROR 13P2A29 11P7A30 24PIA27 04P1Al1 O~PIAI7 12P1801 21PIR06 27P2R2b 19:>IAI0 20P2 A07 31P2A?7 21PIA14 22PlBl9 22p2R20 21P2R05 25P1A23 26PIA23 25P2A01 ~qP2All I1P2R17 13P2AIA ~ 7P2 A2:> 10pl1\01 10P2AOI ?5Pl!:Hl 23P1811 20PIA2h CC;PIBOI ORP 1 AlB OAP2AIQ 08P2BOQ 08P2 AOI) 1 ~ P7 B01, OAPiB02 oaP1807 08P2817 aQp2A14 08PIB1~ 71il?AOQ 05PIA17 (14Pl A17 05Pl1\17 19PIAI0 2 OP2 A17 l?PIBOl 21 P IR06 27P2 B7ft 23PIA1'l 21P1B08 23PIA27 22P2R20 21P2AOI ?lPIA21 21p2ROl A S T 2P~B06 22P2A12 26P2B27 9-34 I 22PIA19 22PIAIQ 22PIA()6 2lPIAO-' 22P2412 ) Vi OPO* AS 1*/8S0 * PCK PCK PCl* pe2 PE PE PE PE ENABLE fOP* LOST C,dT PAR ERR pE ST,dRT PE: ST,dRT pE STtRT PE WOI 25P lA 11 12 P 2B22 20P2B16 26PIAl2 24PIA19 25Pl A12 16P2B12 10PIAOl) 10Pl A20 09P1AOl) 09P2Bl2 09PIA20 10P2A21 09P2A27 lOP2B12 lOP2B03 08Pl A07 10PlA02 10PIB21 O<)Pl AO? O<)P2810 09P1821 1 OP2 821 09P2821 lOP2BI0 10P2B08 08PIAIO 08Pl A02 OSPIA1) 21P2Al1 20Pl821) 22P2A21 2.6Pl A14 25Pl AI419PIA28 20P2 AOI) 25P2A06 24P2802 26P2A06 25P2A26 26P2A26 12P1831 15PIA12 01PIA12 01Pl A12 02PIA12 06PIA12 12P2BOI 01P1B 12 . 15P1812 19P2802 15PIA11 15P2 AIO PSFM* PTAOO PlAOO PlADO PUR* PWOIN 0 PwOIN 1 PWOIN 2 PWOIN 3 PWOIN It PWOIN 5 PWOIN 6 PWOIN7 PWOINP PWIO PWOUT 0 PWOUT 1 PWOUT 2 PWOUT 3 PWOUT It Pt-OUT 5 P"'OUT 6 PWOUT 7 Pt.OUTP PWRESET PWRO PWROSHI F TEO P16 P4H PitH OCK OCK 00 00 OSX OSX OSX OlAOD OTAOO 00 00 00 00 00 00 01 01 01 01 010 010 89879100 69879100 89879100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89619100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819103 8981910.3 89819103 89879100 89819100 89819100 89879100 89879100 89819100 >02P1612 >06P1B12 >01P1B12 06P1B12 f)7P1B12 02P1B12 Ql Q1 Q1 89879100 89879100 89B79100 9-36 o 7/8 FR.lEV TO.lEV 1 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 1 1 2 1 1 2 2 1 2 1 1 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 89633300 C PAGE NO W IRE 21 FROM TO 15P 1A11 15P2AIO 26PIA08 02P1All 0!»PIAI7 0lPIAl1 02PIBl1 06Pl811 0lP1811 15PlB17 26P1809 26P2A24 15PIA18 02PIA18 06PIA18 01PIA18 02PIBl8 06PIB18 01P1818 15PIB18 26P2B28 26P2825 15PIA19 02Pl A19 06PlAl9 OlPIA19 02PIB19 06PIB19 0lPIBl9 24PIB28 15PIBl9 26P2BOI 21PIB09 19P2801 15PIAl3 2SPl A08 02PlAl3 06Pl A13 OlPIAl3 06P1813 OlPIBl3 02PIBl3 15PIB13 25PIB09 26P 1 B08 25Pla08 C1PlA11 12P2B22 20P2Bl6 06PIAl1 07PI All 02PlA11 06PIBl1 01P1811 02PlB11 07PIBl1 15Pl Bll 15PIA18 01PIA18 06PIA18 01PIA18 02P1A18 06PlB18 01PlB18 02'Pl B18 01PIB18 15P1818 l5Pl A19 01PIA19 06PIA19 01Pl A19 02PIA19 06P1 B19 01PIB19 02PIB19 26P2A28 01PIBl9 15PlB19 24Pl B28 l5plA l'l 07PIA1) 19P2BOt 06PlA13 07PIA13 02PlAl) 07PIB13 02Pl B11 06P1B13 01PIB13 15Pl B13 25PIBOA 21PIB21 02PLAl4 06PlA14 06 P IA14 07PlAl4 89633300 C lIS T SIGNAL-NAME A B 1 \II .L. o 118 FR.L EV TO .LEV 89379100 89879100 89879100 89819103 89879103 89819103 89879103 89819103 89819103 89879100 89819100 89819100 89879100 89879103 89819103 89879103 89819103 89819103 89819103 89879100 89879100 89819100 89819100 89879103 89879103 89879103 89879103 89879103 89879103 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879103 89879103 89819103 89819103 89819103 89819103 89819100 89879100 89879100 89819100 2 2 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 "1 2 1 ·04 04 010 010 010 010 010 010 Oil 011 011 011 011 012 012 012 012 012 013 013 013 013 013 014 014 014 014 014 015 015 015 015 015 015 015 02 02 02 02 02 02 03 03 03 03 03 030 030 1 2 2 I 1 2 1 1 2 2 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 2 2· I 1 2 1 1 1 1 2 1 2 1 2 2 2 1 1 1 1 2 2 1 2 1 2 1 2 1 2 2 2 1 1 1 1 2 2 1 2 1 89879103 2 2 89879103 1 1 9-37 P4GF NO 28 F~OM OlPlA14 15P 1 A14 25P2A24 20P2801 2(1)2811j - 21SP2828 I1)P1814 06PIB14 01Pl1l4 02PIB14 02PIAllj 06Pl A15 01PIA15 1SPIAlS 2CjP282 S 20P2A14 12P2 A24 20P?A06 2ljP2A28 l5PIR15 15P2809 06P1815 01P1B15 02P1815 02P1Alo 06PlA16 OlP1A16 15P1A16 I1)P2A09 26P1Bl2 20P2S14 _ 12P2R23 12p2A2.j 20P1A16 26P lAll 15 Pl8l6 15P2810 06P1816 01P1816 02Pl816 19P280l 19P?B09 18P2Ali 11P2A21 19P2821 21P2A20 lSP2821 3)P2R27 31P282l 29P282l 30P2827 9-38 W I R E T1 . l I ST SIGNAL-NAME 02 PI A14 C1P1A14 20P? 1307 15P1A14 1l)P1814 20P2.BllS C1PIR14 01P1814 02P1814 06P1814 06Pl A.l1) 07P141'i 02PIAll) 01PI Al 'i 20P2A}4 lISPIAlt) 15P181 IS 15P2BOCJ 20P2 A06 C1PIBll) 12P2A 24 C1PlBl'i 02 PI 81 IS C6PIB1'i 06PIAlb 01PIA16 O?PIA16 01Pl A16 12P2821 20P2.B14 15P2. A09 1 CjP LA 16 15Pl R16 15P2 BI0 20P2A16 01P18lf, 17.p2 A21 01P1B!"6 02P1816 06P1816 11P2B07 18P2 All I1PIAlI 16P2Bl1 17P2 A'l1 04 04 04 04 05 (1) 05 05 Olj 05 06 06 . 06 06 06 06 01 01 01 01 01 07 01 01 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 041 R+C+CC R+W+C RHIi+C R "W+C+CC R+W+C+CC 2~P2R21 R/h R/W 36P2827 34P?821 32P282l 30P2821 31P2827 R/W R I .. R/W R/W A 8 1 W.L. 89319103 89d 19100 89819100 89819100 89819100 89819100 89819100 89819103 89819103 8981~10l 89819103 89819103 89879103 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89819100 89819103 89819103 8931910.J 89819103 89819103 89879103 89819100 89819100 89879100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89819103 89879103 89879103 . 89819100 89879100 89879100 89319100 89819100 89819100 89819101 89879101 89819101 89819101 89819101 o 7/8 FR.LEV TO. LEV 1 2 1 2 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 1 2. 2 2 2 1 1 2 2 1 1 1 2 2 2 1 1 2 .2 1 1 1 2 2 2 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 1 1 1 2. 2 2 1 1 2 2 1 1 1 1 1 2 1 1 2 89633300 A PAGE NO WI R E 29 Tl FR'1M 14P2827 32P2B27 12PIA27 l~Pl A02 13PIB02 13P lA03 IitPIB03 14PIROI 13plAOI 13P1801 14P lAO 1 14PIA06 13PIB06 l3P LA01 IitPIB07 14PIA04 13Pl A04 13PIS04 14P LB04 l1P1R30 19P2Ali 16P lA06 le}P2820 17P2815 15P lA21 20P2A04 12PlB29 19PIB02 22P2802 02PlA21 06P1A21 01PIA21 13P2Al1 21 P2 A01 32p2A20 30P2A20 34P2A20 31)P2A20 33P2A20 31P2A20 29P2A20 15P1822 02P1822 06P1822 01P1822 19P1801 22P2A24 1,)PIB22 20P2813 20P2B12 15PIA22 35P2 B27 33P2B27 11P2A21) 13Pl BO? IlPIA04 llPIAO? 13Pl A03 13PIAOl liPI A05 11 PI AOft I1PIBOl 13PIB06 11 P1804 l1P180? 13Pl A07 13PIA04 I1PIAOl It PI AOR 13PIB04 16Pl AOt. 17P1830 15P2B06 11Pl Ale} 16P281l 12PIB29 19PIBO? C7PIA21 15PIA21 20P2 A0406PIA 21 07PIA21 02PIA21 12P2A13 29P2A20 33P2A20 31P2A20 35P2 A20 36P2A20 34P2A20 3?PZ A20 30P2A20 12P2A14 06PIR2? C1P1822 02Pl R7.? 1')P182? 20P2B13 Q7P182;J 19PIBOt 19PIA03 01Pl A72 89633300 A l r S T SIGNAl-NA .. E R/W R/ .. RDS· RCTAPE 0 RCTAPE 0 R [TAP E 1 RCT APE 1 RDTAPE 2 RCTAPE 2 ROTAPE 3 RCTAPE 3 ROTApE 4 RCTAPE 4 RDTAPE 5 R[TAPE 5 RCTAPE 6 R CTAPE 6 R[TAPE 7 ROT APE 1 READ RfAD READ READ tATA READ GATEREADREAD. READ. REAO. RfAO. READ. READ. READ· READY REF· REF. REF. REF. REF. REf. REf. REF. R EJ EC ,REJECT. .REJECT* REJ ECT. REJECT. REJECTREJ ECTREJECT. R EPl Y. REPLY'. A 8 1 MI.l. 89879101 89879101 B9819100 89879100 89879100 89879100 89379100 89d19100 89819100 89879100 89879100 89819100 89879100 89!179100 89819100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819103 89879103 89819103 89879100 89a 19100 89819101 89819101 89819101 89819101 8987CJI01 89819101 89819101 89819100 89819103 89879103 89879103 89819100 89819100 8987CJI00 89879100 89819100 89819100 o 7/8 FR.lEV TO.LEV 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 1 '3 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 1 3 2 1 1 1 1 2 2 2 2 9-39 PAGE NO 30 FRUM SEE BELOH 22P2825· 1:}Pl.A03 02PIA22 06PIA22 01PIA22 1l)P 1A 22 14P2 A2 9 ·13P2B11 > 18P 1Al1 15P2B20 16P1421 BP2B19 BP2819 I1PIB01 13P2A11 14PIA01 13P2A28 12PIB19 14P2805 08P2B10 08P2BI0 24P2B15 23P2A26 21P2828 33P2Al2 22P2A17 12P2 A05 14P2A25 llPIA06 20P2B04 2lP1A17 20P2 B04 ?2P2B04 22P2B04 22P? A06 23P2828 23P2B26 2lPl82b 23P2A25 24PIA08 134>2422 12P2B31 14P2B15 13P~B2b 14P2A22 27P2A25 24P1827 24PIB21 24PIA28 24PIA28 21P780b >18P2BOl 9-40 ·vI I TO 20P2B 12 15PIA22 06PIA27 01PIA22 02 PIA2~ 12P2R14 13P2B11 12Pl Al1 16P lA 01) 15P2R01 15P2B20 16P1A21 16Pl A21 16P1 A11 12P2818 12PIB26 12PIBIQ 11PIA31 13P2A28 14P2B06 IlP2 BO? 23P?AIQ 24P2427 21PIB27 21P2B28 20PIA21 11 PI B30 l2P2B05 12P2801) 23P2 A2Q 22PIB20 21Pl A17 24PlB08 23P2821 23P2 B2B 24P2B30 24P2 A29 23P2826 24P1401) 22P2 A2"l 11P2B14 IlP28Z9 13P2 B26 12P2831 IlP2B2R 28P2821 23PZA I? 22PIA24 Z2PIA2~ 23PZB 17 27PIBIQ 1 8P 1 A11 R E l 1ST A B 1 0118 SIGNAL-NAME i4 • L. REPLY* REPLY. REPLY. R EPl Y. REPLY. REPlY* REO* REQ* REQUEST· RESCTRBSY· RES(TRBS't. RESET eTR R RESET eTR B RESUME RESl* ReSl,l* RES2* R ES2* RES2* REV* REV* RElf RE18* RGPWR RGPWR R INO RMOT RMOT* RMOT* RNI RNI RNI RNIll* RN111* RN112* RNIl2* RN121* RNI21* RN122* RP RklD fHtUNlD RwlO* RWLO* RkLD* RklJNlO* RXA Rl RI R2 R2 R3 89819100 89819100 89819103 89879103 89879103 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89879100 89879100 89819100 89819104 89879104 89879100 89819100 89819100 89819100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89879100 89879100 89819100 89819100 89819100 89819100 89879100 89819100 898791f)() REfl"EST* fR .lEV TO .LEV 1 1 2 1 1 3 1 2 2 2 1 2 2 2 2 2 2 1 1 1 1 2 1 1 3 1 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 1 1 I 1 2 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 2 1 2 2 1 2 1 2 2 1 1 1 3 3 I i 2 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 2 1 2 2 1 2 LEN 11TH 8" 89633300 C PAGE NO 11 FROM 22P181<} 21P2R06 21PIA30 22PIR22 21PIA30 12PIA19 27P1831 l~Pl 805 31P2810 0.P1821 OJP1821. I1P2A26 03P1823 04P1823 13P1805 28P2A24 18PIA02 33P2Al9 18 PI R03 33P2819 28P2825 I)Pl A2l 04P18,4 01PIR24 04PIA25 03PIA25 28PIA26 18P1802 33P2805 14P1805 28P1821 14P lA2) 18P1 A03 33P1A23 03PIA26 04PIA26 04P1A27 03PIA21 18P1801 33P2806 28P1827 14P1 A08 28Pl A31 1.P1A26 18PIA04 33P2810 01PIA28 04P1A28 04P1A30 OlPl A30 18P 1804 W t TO 24PIA24 23P2A2A 2.3P28lR 24P1821 22P1822 05P1821 16P1805 12P1A19 21PIB31 0l)P1821 04PIB21 19P1822 04P1823 0l)P1821 05PIB2'J 18PIAO' 13Pl BOI) 28P2A24 13P1 A23 28P2825 18P1801 05P1824 05P1824 04P1824 05Pl A21) 04PIA25 18PIBO? 14P1805 28PIA26 0'5P1A21) 18Pl AO\ 05P1A26 14P142\ 28P1821 04PIA26 05Pl A26 05PIA21 04PIA27 14Pl A08 28P1827 18P1801 05Pl A21 18P1A04 05PIA28 14PIA2ft 28PIAJI 04P1A2R 05P1A2R 05PIA30 04Pl A30 14P1809 89633300 A R E lIS T SIGNAl-N'ME R3 R3 R4 R4 R4 S WRITE. S WRITE. S WRITE* S lIfR I TE. S WRITE. 5 WRITE* SAMPLE thEt SAO SAO SAO SAO SAO SAO SAl SAl SAL SAl SAL SAl SAI0 SAI0 SAIO SA10 SAIO SA10 SAIl SAIl SAil SAil SAIl SAIl SA12 SA12 SA12 SA12 SA12 SAl2 SAl3 S~13 SA13 SA1l SA13 SA13 SA14 SA14 SA14 A a 1 "'.L. 89879100 89879100 89879100 89879100 89679100 89879100 89879100 89879100 89:1 79100 89879102 89879102 89879100 89819102 89879102 89a79100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879102 8987910~ 89879102 89879102 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879102 89879102 89879102 898'79102 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89819102 89879102 89819102 89879102 89879100 o 7/R FR .LEV TO.LEV 1 1 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 1 2 1 2 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 2 2 1 1 1 1 1 .1 2 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 I 1 1 1 1 1 1 9-41 PAGF NO 32 FinN 33P2809 28P lA30 1lt-P1809 27P2AOl 14P1825 18PIA01 31P2A12 03PIA31 04P1 A31 0lt-P1825 03P 1825 18P1808 33PIB02 13PIA05 28Pl B01 28P1A06 13P1823 18PIA08 33P1AIO 03PIB26 04P1826 O·JP 182 7 04P1B27 18PIA09 31P lAll 28PIB09 13PIB08 18PIA09 13PIA26 l8PIB09 31P1812 04Pl828 03P 1828 03PlB30 OltP1830 18i»1806 33PIB22 28PIA21 13P lAO 9 28PIBl3 13PIB25 18P1A06 33P2803 04P1B31 03PlB31 04PIA23 03P1A23 18PIAOl 33P2A1O 29i»1830 llt-PIAOS 9-42 WI R T3 28Pl A30 l8P1B04 05P1430 18Pl AOI 05P143l 14Pl82'i 27P2 AOI 04Pl A31 05Pl A31 OI)P182r; .04PU12'i 11PIAor; 28P1801 05PIB2'i 18Pl BOR 18P1AOR OSPla2#) 13P1823 28P1A06 04P1826 OSP1826 04P1B27 OSPIA27 13PIROR 28PIB09 18Pl A09 05PlB21 18P1809 05P1828 13PIA26 28P1 A09 05P182R 04PlB2R 04PIB30 05Pl830 13PlA09 28P1A21 lAPl B06 05P1830 18 PI A06 05P18.3t 13P182') 2RP1B23 OSPl831 04PIB3t 05P1 A2l 04PIA2'4 IltPl AO,) 2AP1830 18P1A07 05PIA2l f lIS T SIGNAl-NAfiE SA14 SA14 SA14 SA15 SA15 SA15 SA15 SA15 SA15 SA2 SA2 SA2 SA2 SA2 SA2 SA3 SA3 SAl SA3 SA3 SA3 SA4 SA4 SA4 SA4 SA4 SA4 SA5 SA5 SA5 SAS SAS SA5 SA6 SA6 SA6 SA6 SA6 SA6 SA7 SA7 SAl SA7 SAl SAl SA8 SA8 SA8 SA8 SA8 SA8 A B 1 W.l. 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879102 89879102 89879.102 89879102 89879100 89879100 89879100 89879100 89879100 89879100 89d79l00 89879100 89879102 89379102 89879102 89879102 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879102 89879102 89879102 89819102 89819100 89:3 79.100 89879100 89879100 89879100 89819100 89819100 89879100 89879102 89819102 89879102 89819102 89879100 89819100 89879100 89879100 o 7/8 fR.lEV TO.lEV 1 2 2 2 2 1 1 1 2 2 1 I 1 2 2 2 2 1 1 1 1 1 2 1 1 2 2 2 2 1 1 2 1 1 2 1 1 2 2 2 2 1 1 2 1 2 1 1 1 2 2 1 2 2 2 2 1 1 1 1 I 1 1 1 2 2 2 2 I I 1 1 1 1 1 1 2 2 2 2 1 I 1 1 1 I 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 89633300 A PAGE NJ W I 33 R E TO FROM 2RP1829 14PIA22 18PUW7 33P2A09 03PIA24 04PtA?4 16P 1 A04 t Z!-Z! "~I!I 19P1821 19P?A01 19PIA23 19PIA77 L6P1801 l~a~fSZ8 ?BPIB03 l3PIA12 27PIAOl "1'1PIB04 IB P2 828 04PIA03 03PIA03 0~P180L 04PlijOl IBP2A27 27PlA03 ".:\lPlFW 1 Z8P1AOI 13PlA10 14P 1 A10 28P18Z0 ?7P lRl8 33PIA22 l>~PZA30 04PI806 t)3°1B06 04PIA05 03PIA05 IA P21H 1 27 Pl ALA 33PIA16 ZAPlAL5 14PIA12 ZAPiA23 14PIB15 27PIA;JU 3 jP 2 1302 lQPZA28 OjPIA04 04PIA04 0:3PIB09 04P1R09 lAPIB07 05PIA24 14Pl A2') ~HPIB29 04PIA~4 0") Pl A241?P2B?'l B5el EH~ 15P2A?4 15P2824 15P2A2') 15P2B2'i 12P2A27 B!i I!~ eat !Ii 27Pll\01 15PIAOl 11PlAl') 2BPIBO":\ 13PIA12 05 PI A0':\ 04PIAOi 04Pl801 05PIBOI 13PIA10 13 PI Al 0 2RPIAOl 27PIA03 05 P1 Rot o 5P 1 R 06 27PIBlR 14PIAlO 2RPIB20 14PIAI0 05Plf10ft 04PIB06 05 PI AO'i C4Pl Ao'':i 14 D 1.'\P 14Pl AP 2 RP 1 A1 'i 2 7Pl A1 A 05 Pi AOI) 27PIA2 0 05PIA14 14PlR15 2SPIA2i l'tPlI-H I.) 04PIA04 05PIA04 04P180Q 05PIROQ 89633300 E l I S T A 13 SIGNAL-NAt-It:: w .L • SAg SA9 S /l9 SA9 SA9 SAg SCF(O( SCF[M 5 CEf '! II~ t I ~i I 5COSEO SCQ Sf 1 scnSE2 SeQ SE3 S(ROO{S(RIM 89879100 8987910C 89379100 89879100 8937-1102 5f~ft~ff!1 ~ sao SOO SOO SOO seQ SOD SOD 501 SOl SOL SCI 501 SOL 501 SOLO S CIO 5010 SOLO SOLO SOlC SOLO SCII sell sell SCI 1 SI1Il SCll SOIl So 1 Z 5012 se12 S012 SrI2 S012 SCl2 5C13 S013 t 1 0 7/8 F~ .L EV TO.LEV 8Cjj 19100 ? 2 1 1 1 2 1 a:2 f~ :l'i i Ii a 2 2 Removed by 89'179100 89379100 3937'1100 8:J819100 t!9879100 ? 1 2 I 1 2 1 2 1 1 8~-:Sf!:llfjl~ ~ ~ 89879100 89379100 898791.tJO 89319100 8987'1100 398791JZ 69879102 8987<1102 398791J2 898N100 B9179100 89B7JI00 89d7'1100 89819100 89879100 09<379100 89i79100 89379100 89879100 8987HJ2 8 t H791Ji 898 -7910 2. 2 '2 1 1 '3 2 2 I I 3 1 1 I 1 3 I 1 2 2 2 2 I I 3 1 1 1 1 3 1 1 2 Z 2 2 1 1 89~19102 8J879102 8 18P2A12 14P1A25 llPIA25 13PiA27 14PIA27 19P1A04 lAP1805 14P2B02 16P2AOb 16P2A04 1bP2A02 16P2AO 1 19P2B29 19P2A14 27PlAOA 05P 1 AOl BPI Bll 28PIB07 13Pl Alb 28Pl BOft 27P1AI0 05PIA02 13P1Alb 04PIA02 05PIA02 04Pl803 05P1803 13P1 APi 27PIA12 05P1803 13 PI APi 28PIB05 14Pl Bll 28P1 B1'+ 27PIB14 05P1804 14PlfH2 05PIB04 04Pl B04 04PIB05 05PIB05 14P1810 27P1816 05Pl B05 14PIB10 28PIB 1 R 26Pl822 26P1 AU 15P2A07 l1Pl A2'5 16P2BIO 13P1A25 12P2Bll l2P2A II 13PIA27 18Pl B05 15P2A 01 11P2B07 15P2A26 15P2B26 l5P2A27 15P2B21 16P1A2'5 16Pl A30 506 S06 S06 506 S06 507 S07 SOl 507 507 507 S07 508 SOB S08 S08 508 508 S08 509 509 S09 S09 S09 509 509 SE SE SE.U.PRT. SECTOR GHe SEe TOR GAlE SElAO SEL AO SELAI SEtAl SElD.UTP I 10 SElD.UTPl.l0 SEDP. SEDsel* SED SC2* SEOSC3. SEOSC4* SET ALARM* SET erR SEE 19P2B15 17P1A12 SECTOR GillE > 89633300 C S05 505 505 505 S06 506 AB 1 lotI.L. 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879102 89879102 89879102 89819102 89879100 89879100 89879100 89879100 89879100 89879100 89a 79100 89819100 89879100 89819100 89879102 89879102 89879102 89879102 89879100 89879100 89879100 89879100 E9379100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 o 7/8 FR .LEV TO.LEV 2 2 1 1 1 1 2 2 3 1 2 1 2 3 2 2 1 1 1 1 2 2 3 2 1 1 2 3 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 1 1 1 2 2 1 1 1 1 2 2 3 1 1 1 1 3 2 2 1 1 1 1 2 2 .3 1 1 1 1 3 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 3 3 LENGTH g" 9-45 I PAGE NO 36 fROM 17PIA12 18PIAU~ I 25P1B22 08PIA20 08P1A20 23P2A14 21P2A13 20P 280 1 21P2813 26P2811 2&P 2826 22P1806 18P2816 18P2B05 17P1A31 24P1819 22P2A09 22P2A30 21PIA01 22P1824 18P2A 18 18P2819 22P2B26 25P2A08 24P2A12 33P1B13 28PIA12 12P2A18 21P1829 16P lA03 31P2AIO 04P1814 03PIB14 04P1A15 03P 1 A15 16PIA01 33P2B20 12PIA20 21P2A28 12PIA14 21P2B18 16PIAI0 33P2816 03P1A13 04PIA13 03PIB12 04PIB12 33P2811 16P1B03 12PIB22 21P2ALQ 9. . 46 W I TO 16P1 A18 15P2804 22P2801) 11 P2 BID 14P2B1A 25P1 A22 23P2 B22 21P2A13 22P2A16 25P2826 25P2805 24P2 Bll 17P2A22 17P 1 A31 16P1 BOq 25PIA11 26P1 A17 21P1804 20P1AI0 20P1824 16P1A1'4 16PIB14 24P2 A12 26P2A08 25P2 AOA 28 PI A12 2 2P lA25 0l)PIB14 16P1 AO~ 12P2A1A 21P1829 05Pl B14 04PIB14 05Pl A15 04PIA15 12P1420 21 P2 A2A 05PIA15 16Pl AOI 05Pl Al1 16Pl A10 12PIA14 21P2BIA 04PIAl1 05 PI A11 04P1Bl? 0I)PIB1? 21P2A19 12P1B2;> 05P1 Bl? 16Pl B01 R E l I S T S tGNAL-NAr-E SET NEEO* SET.ADO~.ER SFL SFM* SFM* SGL SG1* SG1* SJ-!ADR SHAL SHAM SHI SHIFT CLeCK StH FT-BUUFI S H I FT-BUU F1 SIL S 1M SKT SLK* 5LS SMPXO SMPX1 SO SO SO SF8M* SPBM* 5P 1* SPI* SPI* S PI* SPI* SPI* Sf; 0* S~O* SRO* Sf/O* SRO* SRO* SPSM* SRSM* Sf/SM* SRSM* SRSM* SJ.lSM* S $* SS* SS* ss* SS* SS* A B 1 W.l. 89819100 89879100 89819100 89819104 89819104 89879100 89819100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89319100 89819100 89819100 89879100 89879100 89819102 89879102 89819102 89819102 89879100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89919102 89819102 89879102 89819102 89819100 89819100 89819100 89819100 o 7/8 FR.LEV TO.LEV 1 2 1 1 2 1 1 1 2 1 1 2 1 2 2 1 2 1 1 1 1 1 1 2 1 1 2 :> 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 2 2 2 2 1 1 1 2 1 2 1 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 89633300 H PAGE NO 17 FROM W ( TO 2.1P 1A19 14P2B13 14P2B31 14P2816 21PtA16 14PIA21 13PIB22 13P2804 13P2AIO 14P2801 29P2A07 30P2A07 34P2 A07 32P2A07 35P2A07 33P2A01 llP2A07 29P2A07 13P2A01 14PtA31 12PIA13 04Pl Bll 03P1817 21P28?4 12PIAOl 33P2B18 19PIA09 21P1811 28P2A20 28P2828 26P2B09 25P2809 18P2ALl 18P2A16 2&Pl AZb 25PIA26 25P1825 26PIB25 16P1A20 15PLA09 21P2B28 25PIB02 26P1802 16 P 1A21 25P1A04 26PL A04 25P1B04 26PIB04 17P1828 16PtA 14 19P2A15 21P1BPi 12P1B07 12PIA21 12PIB21 20PlA31 13Pl822 12P2 A09 12P2 Bil 12P2BOQ 12P2 AOt 27P2 A12 31P2A07 35P2 A07 3.3P2A01 36P2A07 34P2A07 32P2A07 30P2A01 12P2 A15 13P2AOl 11P2 A05 05Pl Bl1 04PIB11 19P1 A09 C5P1817 27P2824 12Pl A01 20PIA23 21P280A 27P2A11 25P2809 24P2AIA 11Pl AO~ 11PIBOl 2SP1426 24P2A17 24P2A13 25PIB2'i 15P2A2\ 01PIA09 15Pl A09 21P2Al'i 21P2B16 15P2819 21P2817 21P2A17 21P2B20 21P2A21 16 PI A14 15P2B21 16PIA31 89633300 A R E lIS T A 8 SIGNAL-NA~E WI . l . SS1 STO.P'R.ERR STOP 01S1. STOP* STOPCS. STRBUF* STRBUf* STRCC SnHNT STRMF STROBESTROBE. STROBE· STROBE. STROBESTPOBE. STROBE. STROBE. STRUS SlRVS STWCRC* SVIO* SVIO* SVIO* SVIO* SVIO· SVIO* SWEEP. SXA. 5XP* 51 SI SII S15 52 S2 S3 S3 T.E.D AlHOl T.P. T.P. TAOl TADM TAS EXT. TAll TAU4 TA2l TA2M TOI TDI TOl* 89819100 89879100 89819100 89819100 89879100 89879100 89819100 89819100 89819100 89819100 89879100 89879101 89819101 89819101 89879101 89879101 89879101 89819101 89819100 89879100 89819100 89879102 89819102 89819100 89819100· 89819100 89819100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 1 o 118 FR.lEV TO.LEV 2 1 2 1 1 1 1 1 1 1 2 2 2 I 2 2 2 2 1 1 1 1 2 1 1 2 1 2 2 1 1 1 2 2 2 1 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 1 1 2 2 2 1 2 2 2 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 2 1 2 2 .2 1 1 2 2 2 1 2 2 1 1 1 2 2 2 2 1 1 2 1 1 PAGE "iA Ni) FROM It-PIA20 18P2BI0 I1PIA20 19P2A16 19P2B14 17 P2 A2 3 lAP2602 17P2Bll 19P2A23 lAP 2AO 3 21PZA24 13P28Z4 13P]Blb 12P2B29 14P2A19 06PIA09 OlPIA09 02PIA09 14PIA03 13PIBO 3 14P2A28 14P2811 14P2A24 11P2Bli 14P2A23 24P2A09 24P2806 HaPl804 lZPlA08 l4PIB02 14P2 A09 14P2R09 14P2Bll 16P2A14 16P 21\09 16P2 A08 1bP2A07 21P2A31 27 P2 A30 23P1406 29 P 2A16 l~PIAZ7 lRP2A19 17PIR19 19P2AOl Z4P2426 19P2R22 11PZR27 09P2A07 10P2A07 13P?A09 9-48 W I R E T1 15P2829 17PIA20· 16PIA20 16PIA26 18P2A02 16 PI A17 17PZA23 16PIAll IRPZ803 11P2B 11 ZOPl AOa I? P2 A30 12PZBZ9 OR P2 82':\ 13PZIH6 01PIA09 02Pl A09 06P1A09 13PIBOl I.? PI 807 I1P7.828 lZPl Bl1 13P2 Alq t4P1806 13P2819 22Pl A14 2ZPIA16 ·1';P2 AQ6 IlPIA27 12PIAOl 12P2 A03 13P2B27 13PZ A27 l5P2BU 15P2A 1\ 15P2 A04 15P2BOR 2CPIBOI Z·3PIAOl 21P2B15 ZOP28Z7 11PIA27 17PIB19 16PIAO~ 1 AP2 Ai q 23PIA 14 I1P2 A2R 1 OP2 407 OAPIAOl 09PZA01 12PIAl~ L I S T SIGNAL-NAME T02 T02 T02 T02* A B 1 W.l. 89879100 8~8 79100 89879100 89879100 lD3 8~819100 T03 T03 T04 TC4 T04 TMSW. TMI T"'3 89819100 89819100 89879100 89819100 89tJ 79100 89819100 89879100 89819100 89d 79100 89879100 89819103 89819103 89819103 TM3 T"'3 ·TP TP TP TRANS* TfCANS* TT READY TTBUSY* TTDENSTAT* T10Nli NE* TTREAOY* T3 T4 ULT.S~C.PRO UPPER UPP XI* USA lJ~O USl US1* US2* US.3* U54* VCC V((Z VIO* 'ISS W.CKWO* WtC WtC W+C WA WA-ADR ",eLK WCLK weLK ~OS SHIfTED 89~19100 89819100 8':J819100 89379100 89879100 89879104 89879100 89819100 89879100 89,;) 79100 89819100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89879100 89879104 89819100 89879100 89819100 89879100 89,179100 8C;a 79100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 o 7/8 FR.lEV TO.LEV 1 1 2 1 1 1 2 2 7. 1 1 Z 2 1 1 1 1 ? 1 Z 1 1 1 2 1 1 1 2 2 2 1 1 Z 2. 1 1 1 1 Z 1 Z 1 1 1 1 1 1 1 1 1 Z 1 2 1 Z Z 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 Z 1 1 1 Z 1 2 1 1 1 Z 2 1 1 1 2 Z 89633300 A PAGE NO W I R F 39 FROM TO LIS T SIGNAL-NA~E 21PIA30 24PLB12 311>2806 02PIA20 OoPI A20 0lPIA20 IlP2A25 21P2B30 21P2B30 24PIB12 22 PI B21) 27PIA30 Q6PIA20 07PIA20 02P lA20 07Pl A20 15plA20 12P2A25 WE* wE* WE* WEI* wEZ* WEZ* WEZ* wEZ* WEZ* 21P2B30 19P1AO? tJEZ* 25P2B29 2&P2B29 26P2B29 08P lA21 12PIR24 14P2825 10P2816 24P2803 12P2804 14P2824 2ftPIR04 24PIB29 14PIA30 13P2A05 t4P2A17 19P2B13 13PlA06 13P2"A06 17 PI B21 18P2A21 17P2B23 15PIB21 20P2B06 12PIB30 19P2B31 22P 2BO 1 OlP1821 06PI821 01PIR21 21PIAll 21P1All 13P lA08 13PIAl2 14PIB21 14PIA11 14PIB16 14PIA13 14PIA16 14Pl A24 13PIB27 13PIAll 21P2A07 21PIA13 2 OP2 All) lZPIB24 10P2816 12PI82ft I1P2BOl 23P2 B21 11PIAI0 12P2B06 23PIAI3 23PIBI2 13P2AOR 08Pt BIA 13P2A05 17P2B2A IlPIBIO I1P2B19 loPlBlo 16PIBOA 16P2B22 l2PIB30 19P2831 07PIB21 15P1821 20P2B06 06PIB21 07P18ll 02PIB21 24Pl All 2lP2AIO 11PIA22 IlPl A21 IlPIAl6 I1Pl8l7 11 PI B21 IlPIB20 IlP182t; I1P1824 IlPIBZ6 IlPIAZI) WEZL* WElM* WEZM* WFM WFM/TM* WFH/TM* WFM/TM* WM WHOT WHOT* 89633300 t WP WO WRENABlE wRECUEST* WRECUE 51* WRITE WRITE CLOCK WRITE CLOCK WRITE [AT~* WRITE ENABl WRITE GATE* WRITE* WRITE* WRITE· WRITE* WR( TE* WRITE. WRITE· WRI TE* WPQ WPC WRTAPE 0 WRT 'PE 1 WRT~PE 10 WRTAPE 11 WRT'PE 12 WRTAPE 13 WflTAP E 14 WflTAPE 15 WRTAPE 2 WflT~pE 3 A B 1 01/8 W.l. 89879100 89879100 89819100 89879103 89819103 89879103 89319100 . 89819100 89819100 89819100 89819100 89879100 89819100 89819104 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 ·89819100 89819100 89819100 89879100 89879100 89879100 89879103 89819103 89819103 89879100 89819100 8Q819100 89879100 89879100 FR.LEV TO.lEV 2 1 1 2 1 1 2 2 2 1 1 2 1 1 2 2 3 3 1 1 1 1 2 1 1 2 2 1 1 1 2 I 1 I 2 2 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 8~819100 2 2 1 1 1 2 2 2 Z 2 2 2 2 2 1 1 1 2 2 2 2 2 89819100 89819100 89879100 89879100 89819100 89819100 2 2 2 2 2 2 2 2 2 2 2 2 LENGTH 1011 LENGTH 1111 LENGTH 7 11 LENGTH 1411 1 2 2 1 2 2 1 1 2 1 1 2 9-49 PAGf "'4) 40 FROM. IlP1816 13P1A14 11PIA17 IlP lA24 14PIB08 14PIB21 2JPIBIO 24PIAl2 23P1B15 24P2813 22P2A05 2l)PIA18 21)P2A17 26P2A17 25P1A15 26PIA15 76P2A19 26P2B18 26PIA09 l'jPl A09 24Pl831 24P~A20 24P1R22 23P1826 24P18'22 2]Pl~12 Z,Pl A20 2l)P1Bl1 21PIA30 26P2A09 19P1805 17P2A25 22PIBO] 2)P2A10 21PIB01 22P280 1 2lP lA22 28PlA28 34P2A30 32P2A30 lOP2A30 29P'A30 31P2A30 35P2A30 33P2A30 35P2B29 3,lP2829 31P2829 29P2829 30P2R29 34P2829 9-50 vi t RE TO 11P1A20 11PlA19 II PI Alft 11PIA2l I1P1B2l 11 P182? 22P2A15 22PIB28 22PlAOl 23P2AOJ 25Pl A18 26PIAIA 21PIAOl 21 PI AO' l~PIA 10 23 P IB09 21P.1 AO' 21P180' 25PIA09 2/tP1A09 25P2A2l) 26P2 A2l) 23PIB26 ?2P21H 1 21 PI AOA 2ljP1AZO 26PIA20 . 26PIB11 25P1811 22P287.1 . I1P2AOl 16P181ft 24PI811 24P2BOl 22P2R01 24P2 BOI 21P28 l'J 29P2A30 35Pl A30 33P2AJO 31P2A30 30P2A30 32P2A]O 36P2 A30 3/tP2A30 36P2829 34P2B29 .32P282Q 30P2829 31 P2 87.CJ ]l)P2B29 liS T SIGf'Al-NAME wrHAPE WRTAP E "RTAPE WRTAPE WRTAPE WRTAPE WXl WXLI. WXM W9A* XfZ XEl XGOl XGOM XlCK X,,-CK XSEl7fo1 XSOM XTAOO XlADO XTAUGl XTAUGM X15 X15 X15 YCK yCK YTAUG YTAUG 11TSH 010 011 02* 0303· 03* IE 1KO. 11(0* lKO*· 11(0* 11(0· IKO* lKO* lKO* lK 1* lKl* lK1* lKl* 1 Kl* 11(1* '+ 5 6 7 8 9 A Ii 1 W.l. 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89819l()0 89879100 89879100 89379100 89879100 89819100 89819100 89819100 89879100 89819100 89379100 89879100 89819100 89879100 898191()0 89319100 89879100 89879100 89879100 89879100 89819100 89379100 89819100 89879100 89879100 89819100 89879100 89819100 89819100 89819101 891379101 89819101 89879101 89819101 89879101 89879101 89819101 89879101 89819101 89:) 7910 1 89819101 89819101 o 118 FR .lEV TO.lEV 2 2 2 2 2 2 2 2 1 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 1 1 1 2 1 2 2 2 1 1 2 1 2 2 2 I 1 1 2 1 2 2 t 2 1 1 2 2 2 2 2 2 1 1 1 2 2 1 I 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 89633300 A PAGE I\J'J 41 W I TO FROM 32P2R29 78i»7R30 7RP2A26 3lP;?B24 JOP2R24 34P2B24 3 ')P 2 i3? 4 . 31P 2B24 31P2B24 29P2R7.4 3SP2A24 33P2A?4 ':\lP2A24 29P2A24 3QP2 A24 14P2A24 32P2A24 28P2A77 17P IB31 11P2B05 llP1A05 13P2A12 27P2 A06 2'lp2B08 21PlAl2 OlPIAll 04PIA21 72P2AOl 21PIA12 26PlA29 31P2A13 2l P 2B26 12PlA29 1.3PlA24 13P2A26 t4 P 24l1 131>l824 33P2B2Q 19P1B 29 2Qp2Bl4 ~'lP2B24 ~lP2B24 35P2A24 36P2A24 34PZ624 32P2B24 3CP2Bl4 36P2 A24i4P2 A24 32P2A 24 30P2A24 11 P7. A24 35PlA7.4 33P2 A24 19P2 A2ft. 16P1AI7. 11 P1 BOS 12P1R1R 11PIA30 26P2A2Q 22P2A02 OSPIA2l 04Pl All OSPIA21 71PIA17 20P1804 23P7f\CR 27P2 AOt:. 27P2B]O tlP2BOC; 08P2421 1 t PI A2A 13 P 2A26 lZP1430 89633300 A R F l 1 S T SIGNAL-NAME lKl* 1K1* lK2* 1 K2* 1K2* 1K2* 11<2* lK2* 1K2* 11<2* 1K3* lK3* 11<3* lK3* 11<3* 1 K3* lK3* 1 K3* 16RITS.Oll 1600 1600 2FWC 32Kw .32KW 32KW 32KW 32KW 32KW· 32KW 32KW 32KW 32M 4MHl 1t;IPS 9T 'IT 9T· A 8 1 0 7/8 w.l. 89879101 89879100 t398 7910 0 89819101 eC;819101 8'J3 7910 1 89879101 8987Q101 8r~8 79101 89879101 89879101 89879101 89879101 89819101 89879101 39879101 891379101 89879100 89819100 89879100 89879100 89319100 89619100 89879100 8<;819100 89879102 89879102 89819100 89879100 89379100 89d 19100 89879100 893191IJ 0 89379100 89879100 89d 19100 89319100 FR.LEV TO.LEV 2 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 1 2 2 2 1 2 2 2 1 2 3 1 1 1 1 1 2 2 1 1 3 1 1 1 1 1 2 Z 2 2 1 1 2 2 9-51/9-52 TABLE 9-4.b 89633300 A WIRE LIST AB 107/AB 108 BACKPLANE (in card slot order) 9-53/9-54 PAGE NO W I 1 TI) FROM OlPlAOl OlPIA02 OlPIA03 01Pl A04 OlPIA05 01PIAOb 01 PI AO 1 0IP1AOC; OIPl All 01P1A12 0lPIA13 01PLA14 01PIA15 01PIA16 01PIA11 01PlA18 01PIA19 01PIA20 01PIA21 0lPIA22 01PlA2] OlPIBOl 01PIB02 0 1P.l803 01PlB04 OlP1805 01PIB06 01PIB01 OlPIB09 01PIBI0 01PIB12 OlP11H3 01PIAl4 01PIB15 01PIB16 01PIS11 01PIBl8 01P1819 01Pl821 01PIR22 01PIB23 01PIB23 02PIAOl 02PIAOl 02Pl A02 02PIA02 02PIA03 02PIA03 OlPIA04 02PIA04 OlPl A05 02PIAOl 02PIAO~ 02PIAO~ 02 PI A04 02PIAO'i 02PIA06 02 PI A07 OZPIAOQ 02PIAll OZPIAL2 OlPIA11 02P1A14 02PIA1,) OlP1A16 OZPl All 02P1A1R 02PIA19 02 Pl A20 02PIA21 02PIA2? 02P1 A2l 02PIBOl 02PIBO? 02PIBOl 02PIB04 02Pl BOI) 02P1B06 02PIB01 02P180Q 02PIBIO 02PIRIl 02PIBll 02PiB14 02PIB11) 02PIBIt. 02PIB17 02Pls1A 02PIBIQ 02P1821 OlP1822 02PIB21 OlPIA09 01 Pl AOI C6PIAOl 06P1AOl 01PIA01 OlPIAOl 06PIA03 OlPIA04 06PIA04 OlPIAO'i 89633300 C R E l 1ST S IGNAl-NAP-IE OAS* OAb* OAO* CA12* nAll* GA3* OA4* TP OAI5. CO 02 04 06 08 010 012 014 wEI* READ· REPLY. PPTM. OA1· OA2* OA7* OA8* OA9* OAI0* CHI* O~13* OAI4* 01 03 05 01 09 011 C13 (a5 WRITE. REJ ECT* Me· Me. OA5* OA5* CA6* OA6* OAO* OAO* GAI2* OAI2* GAll. AB 1 o W. L. 89879103 89879103 89819103 89879103 89819103 89879103 89879103 89819103 89819103 89819103 89879103 89819103 89879103 89819103 89879103 89319103 89819103 89819103 89819103 89819103 89819103 89819103 89819103 89819103 89819103 89819103 89879103 89819103 89819103 89819103 89819103 89819103 S9819103 8(j819103 89819103 89819103 89819103 89819103 89819103 89879103 89879103 89819100 89819103 89819103 89819103 89819103 89819103 89819103 89819103 89819103 89819103 7/8 FR. lEV TO.LEV 1 1 1 1 1 1 1 1 I 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 I 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 .1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 2 1 9-55 PAGF Nt) l FROM 02P 1 A05 02Pl A06 02PIA06 02P1A01 OlPIA07 02PlA09 02PlA09 02PlAlI 02PIAli 02Pl A12 OlPIA12 OlP1Al.~ 02Pl A13 OlPIA14 02P1A14 02PIA15 02PIA15 02PIA16 OlPI A16 OlP lAl 7 02Pl Al 7 02PIA18 02PIA18 02P1A19 02P-) A19 02PIA20 02PIA20 02P lA? 1 02PIA21 02PIA22 02P IA22 02PlA23 02PIA23 02PI801 07.P1801 02P1B02 02P1802 02P1803 02P1803 02P1804 02Pt804 02P1805 02P1805 02P1806 OlP 1806 02P1807 .·02PIB01 02P1809 02P1809 02P1810 02PIBI0 9-56 "' I R E TO C6PlAOl) OlPlAOh 06PIACh 06PIAOI 01 PI A07 06PIAOQ 01PIA09 01Pl All C6P1All 0IPIAl? 06Pl AI? C6PIA13 OlPIAll 01PIA14 06PIA14 06PIA1'» OlPIAll) 06PIA16 01 PI A16 01PIA17 06Pl A17 01 PI A lA 06PIAlII 06Pl A19 01PIAIQ 06P1A20 OIPI A20 06P lA 21 QIPIA2) 01P1A2'C6PIA2? 06Pl A21 01 PI A2l 01PIAOt 06PIAOI O)PIBO'06PIB02 06PIBOl 01PI801 OlPIB04 06Pl BOlt OlP1801) 06P1805 C6PIB06 OlPIB06 ot P1 B01 06PIBC7 01P1809 06Pl BOCJ 06PIB1O OlPIBIO l ( S T S IGNAl.-f' 179103 89879103 8<;879103 89879103 89879103 89;)79101 89979103 8~879103 8<;879103 89879103 89879103 89379103 89879103 8<;879101 89379103 89879103 8981910~ 89819103 89819103 89879103 8987910.3 89879103 89879103 89879103 89879103 1 o 7/8 FR .lEV TO.l EV 2 1 2 2 1 2 I 1 2 2 1 2 2 I 2 1 I 1 1 2 'l 2 1 1 2 2 1 2 2 1 1 2 2 1 2 2 1 I 2 1 2 2 1 2 1 2 1 1 2 1 I 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 1 2 2 1 1 2 1 2 '- 2 1 1 2 1 1 2 1 2 1 89a79~03 2 89879103 89879103 891319103 89879103 8987910.:J 89879103 89879103 89819103 2 2 1 1 1 2 1 1 2 1 2 2 .1 2 2 1 89633300 A :>.\G E 'IlJ W I 3 FROM 02PL812 02P1B12 02PIB13 02P1813 02PIB14 02PL814 02P 1 B 15 02PIB15 02PIB16 02P1B16 02P1817 02PIB11 02PIB18 02PIB18 02P1B19 OlPlfH9 02P1821 a2P 1B21 02PIBl2 02PlI:~2l 02PIB23 02P1823 03PIAOI 03PIA02 0)PlA03 O:lPIA04 03PIA05 03Pl A06 03PIA07 OlPl AQ9 0~PIA09 03PIA11 O~PIAI3 03PIA15 O_~P 1 Al 7 03PIA18 OlPIA20 03P1A21 03PIA23 O~PIA24 03PIA25 03PIA26 03PIA27 03 PI A28 03PIA30 O'~PIA31 OlPIBOl C3PIB02 03PIB03 01PIR04 03PIB05 TO 01P1B17 06PIB12 06P1811 01P1B13 ObP1B14 01PIB14 C6PIB15 01PIB15 01PIB1fJ 06P1Bln 01P1811 06PIB11 ObPIBIA 01PIB18 C6P1819 01P1B19 QbP1821 OlPlall OlP1 B22 ObPl B2') 06P1B2-4 01PIB21 04Pl AOt 04PIA02 04PIA03 04PIA04 04PIAO') 04Pl AOfJ 04Pl AC7 04P1 A09 01 PI B21 04PIA 11 04PIAll 04Pl Al t; 04PIA11 04P1AIR 04PIA20 04PIA21 04Pl A2l 04PIA24 04PIA2') 04Pl A7.() C4PIA27 04PIA2R Q4Pl A30 04PIA31 04PIBOl 04PIB02 04PIB03 ()4P1804 04P1BOS 89633300 C R E l I S T SIGNAL-NAME 04 01 03 03 0!5 05 01 01 09 09 011 Oll 013 013 015 015 W~ITE* WRIIE* R fJfC T* REJECT* ~C* MC* S05 506 seo S012 5011 503 504 Me* Me* S015 SRSM* 5,"0* PEL* S016 5011 32KW S~8 SA9 SA10 SA11 SA12 SAl3 SA14 SALe; SCI S02 S07 SOB SOq A B 1 w.L. 89819103 B9679103 89879103 89819103 89379103 89819103 89879103 89d 79103 89819103 89819103 89819103 89879103 89879103 89879103 89879103 B9819103 89819103 89819103 89819103 89879103 89819103 89879103 89819102 89879102 89819102 89819102 89879102 89819102 89819102 89819102 89819100 89879102 89819102 "89819102 89879102 89819102 89879102 89879102 89879102 89879102 89879102 89879102 89879102 89819102 89879102 89879102 89819102 89819102 89819102 89879102 89879102 o 118 FR .LEV TO.LEV 1 2 2 1 2 1 2 1 1 1 I 2 1 1 2 1 2 1 1 2 2 1 I 1 1 1 1 1 1 1 2 1 2 2 1 2 1 2 1 I 1 1 2 1 1 2 1 2 1 1 2 1 I 1 I 1 1 1 1 1 1 2 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I 1 1 1 1 1 I 1 9-57 PAGE NO 4 fRr:lM 03P1806 0~PIB09 03P 1610 01P1812 03PlB14 03P1817 - 0]P1818 03PIB21 01PIB~3 03P1824 OJP182S 03P187.6 03PIB21 OlP 1828 03PI830 03P1631 04PIAOl O~PIAOI OltP1A02 04PIA02 O~Pl A03 0itPIA03 04PIAOit OItPiAOIt .0lt-PIA05 04Pl A05 04PIA06 0itPIA06 04Pl A01 04PIA01 04PIA09 04PIA09 OltPtA11 OItPIAll 04Pl A13 04PIAl3 04P1A15 04PIAl5 O~PIAll 04PIA17 04PIA 18 OltPlA18 0~PIA20 04PIA20 04PIA21 04PIA21 04 P IA23 OltP1A23 04PlA24 04PIA21t 04Pl A25 9-58 W IRE TO 04P1806 C4Pl BOq 04PIIHO 04PIB12 04PIB14 04PIB17 04PIBIA 04PIB2t 04PIA21 OltPl B2~ 04PIA2S 04PIA2t. C4PIB21 OltP1B2A OltPl A30 OItPIB 31 03PIAOl 05PIAOl 03PIAO~ OSP1 A02 05Pl AO) 03PIAOl 0.3Pl A04 OSPI A04 03PIA05 05PIAor; 05PI AOft 03PIA06 03Pl A01 OSPIA01 03PIAOq 05P1 AOq O~PIA 11 05Pl All 05PIAl1 03PIA13 03P1 All) or;PlA15 03PIA17 or;PlA11 C5PIAIA 03PIAIA 05Pl A20 03PIA20 03PIA2t or; PI A21 O13PIA21 03PIA23 013 PI A24 03PIA24 or; Pl A25 l 1ST S"lGNAl- NAME: SOlO S013 S014 5S* SPI* SVIO* AUTOLOAD S wRITF* SAO SAl SA2 SAl SA4 SA5 SA6 SA7 SOt) 505 S06 S06 seo SOC SOl2 S012 5011 SOli S03 S03 SOIt SOIt Me* Me* S015 S015 SPSM* SPSM* SRO* SPQ* PEl* PEL* S016 5016 5011 SCll 32KW 32KW SAA SA8 SA9 SA9 SA10 A ~ ".l. 89379102 89819102 89819102 89819102 89879102 89819102 89819102 89819102 89879102 89d 19102 89879102 89879102 89819102 89819102 89879102 89819102 89a 19102 89a19102 89819102 89819102 89819102 891319102 89.') 19102 89819102 89879102 89819102 89d1910l S9819102 89379102 89819102 89879102 89819102 89819102 89819102 89819102 89819102 891;1 19102 89879102 89819102 89879102 89819102 89d 79102 89819102 89879102 89819102 89879102 89819102 89819102 89879102 89819102 89819102 1 o 7/8 FR.lEV TO.LEV 1 1 1 1 1 1 1 1 1 1 1· 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 89633300 A PAGE 5 til] \of I RE TO FROM 04PIB2~ 03P1A2C; 05PIA2£. 03PI A26 05P1Al7 03PIA27 OlPl A2A o5P 1 A2 R 0C;PlA30 031>1 A30 03PIA31 05Pl A31 03PIBOl 05PIBOl 05Pl RO~ 03PIBO? 05PIROl 03P1BOl 03PIB04 05PIR04 05P1 BOI) 03P1SOC; 05PIR06 03P1 R06 05P1809 03P1809 OlPIBI0 05PIBIO 05Pl B12 03PIS12 03P1814 05P1814 05PIBl1 03PlfH1 OC;Pl BIA O.3PIBIR 05Pl8l1 03P1821 03P1Sl1 05Pl B21 OC;P 18 24 01PIBl4 05Pl825 04PIB25 04P182b 04P18?b 04P1821 0ltP1627 04PIB28 04P1B28 OftP1830 04P 1B 10 03Pl8l6 05PIR26 0.3PIBl1 OSP1B27 05PIB2R 03PIB2R OSPl830 OJPIB )0 04PIA25 04PIA2b 04PIA2b 04P lA2 7 04Pl A27 04Pl A2 8 04PIA28 O'tPl A30 04Pl A3 0 04PIA31 Oft-PLA)1 0'tP1R01 04PIBOl 04Pl B02 04PIR02 04PIR03 04P1803 04P IR04 04P1804 04PIB05 04P 1805 0ltPI80b 04PlS06 04P1B09 OftPIB09 04PIRI0 04PIBI0 04P18l2 04PIB12 04PIB14 04P1S14 04P 1811 Olt-Pl tH 1 04P1818 04Pt818 OftP1821 04P1821 04P1823 04PIR23 04PIB24 04P1824 01p182~ 89633300 A l I 5 T SIGNAL-NAME SAL 0 SAil S~lI SAI2 SA12 SA13 SA13 SA14 SAl4 SAl5 SA15 501 SOL S02 S02 S07 S07 SDB S08 S09 SD9 SOLO SOLO 5013 SC13 S014 S014 SS* SS* SPI. SPI* SVIO. SVIO· AUTOLOAD AUTOLOAD S WRITE. S WRITE. SAO S_O SAl SAl SA2 SA2 SA3 SA3 SA4 S_4 SA5 SA5 S~6 SA6 A B 1 C 1/8 W.L. 89879102 89819102 89819102 89879102 89879102 89819102 89819102 89879102 89879102 89819102 898'79102 89819102 89819102 89819102 d9879102 8<;819102 89879102 89819102 89879102 89819102 89879102 89879102 89879102 89819102 89819102 89879102 69819102 89879102 89879102 89819102 89879102 89819102 89879102 89819102 89879102 89319102 89819102 89819102 89819102 89879102 89819102 89a19102 8981910l 89819102 tt9d1910l 89819102 89819102 89819102 89819102 89879102 89819102 FRo .LEV TO.LEV 1 2 I 2 1 1 1 1 1 2 2 1 1 2 I 2 2 1 '1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 1 1 1 l 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9-59 PAGE NO 6 FROM 04P1831 04P18:31 05PIAOI 05Pl AOI 0.,PIA02 0.,P1A02 05PIA03 05PlA03 05PIA04 05PIA04 05P lAOS 05PIA05 05PIA06 05PIA06 05P1A07 05P1A07 05PIA09 05PIAli 05PIAll 05PIA13 05Pl AI3 05PIA15 05PIA15 05PIA17 05PIA17 05 Pl A18 05PlAl8 05PIA20 05 PI A20 05PlA21 05PIA21 05PIA23 05PIA23 05PIA24 05PIAl4 05P lA25 05PIA25 05P1 A2 6 -05PIA26 05 PI A21 05plA27 05PIA28 OSPIA28 05PIA30 05PIA30 05P1A31 05PIA31 05P1801 05PI801 05P180l 05P1802 9-60 W ( TO 05P1831 03Pl Rn 04PIAOI 13P181) 1JPIA1" 04PIA02 04PIA03 13PIA12 14P1815 04Pl A04 04PIA05 14PIA12 13P1812 04PIA06 04PIAJ7 13P1815 04PIA09 04PIA11 14PIA14 12PIA14 04PIAIJ 04PIA15 12PIA20 12PI801 04PIA17 04PIAIA 27P2A2t 27P2A18 04P1A20 04P1A21 21PIA12 14Pl A05 04P1A21 04PIA24 14P1 A2' 14P1805 04PIA25 04PIA2f1 14PIAZl 14P1 AOA 04PIA27 04PIA28 14Pl A26 14PI80Q 04P1A30 04P1 All 14P1B25 13Pl AI0 04PI801 04P 18 02 13P1810 R E l I S T SIGNAL-NAME SA7 SA7 S05 505 506 506 SCO SOO 5012 S012 5011 5011 503 503 504 504 Me. 5015 SD15 SRSH. StcSM. S~Q* SRO· PEl* PEL. 5016 S016 5017 SC17 _32K" 32KW 5,\8 SA8 5,\9 5'\9 SA10 SAIO SAil SA II SAi2 SAI2 SA13 SA13 SA14 SA14 S'\15 SA15 SOl SOl S02 S02 A 8 1 W.l. 89879102 89879102 89879102 _ 89879100 89819100 89819102 89879102 89879100 89879100 8987-9102 89879102 89879100 89879100 89879102 89879102 89879100 89879102 89379102 89879100 89879100 89879102 89879102 89819100 89879100 89879102 89879102 89819100 89819100 89879102 89879102 89879100 89819100 89879102 89879102 89879100 89879100 89879102 89819102 89819100 89879100 89879102 89819102 89879100 89879100 89879102 89879102 89819100 8Q879100 89879102 8987910Z 89879100. o 7/8 FR.lEV TO.lEV 2 1 I 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 . -2 1 -1 2 2 I 1 2 2 I 1 2 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 89633300 A I>AGE Nt] 7 W I TO FROM 05P1B03 0'>P1B03 05P1B04 05P 1 804 05 PI B05 05P1B05 051>1806 05P1B06 05P1809 05P1809 0'> PI RIO 05 PIB 10 05PIB12 0,>1>1B12 05PIB14 05Pl B14 6 5@ 18) /, 05PIB17 05 P 1 B17 05P1818 05PlIH8 05i>IB18 R E L I S T SIGNAL-NAME 131>1Al'> 04P11303 041>1 B04 14P1B17 141>1 RIO C4P1RO'> 04P1806 14P1A10 14P1R76 041>U\OQ 04P1810 14PIA1'> 12P1R2? 041>1R1? 04PIB14 pP2A1A S01 S01 508 S08 S09 509 5010 5010 5013 SC13 SC14 S014 SS* SS* SPI* S P 1* J 2 P? B2A 5 OW ttl 12P1AOI 041>1B17 04P181A 10P1B19 1 OPI B20 SVIO* SVIC* ALTOLC.AD AUTOLOAD ALTCLGAO A 8 1 0 7/8 N .L. 89879100 89819102 89819102 89879100 89879100 89819102 89879102 89:-379100 89879100 89819102 89819102 89379100 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 SQf)79 J flO ? esa 79100 ? 89819102 89379102 89879100 89819100 2 1 1 3 2 ~ 2 2 2 3 2 Removed by f FCD CK676 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 1 2 21 2 1 89879102 89879100 89879100 89819102 All S • ~!i2I!H !!j l?f?"?fI 5eEf~UBt51 B9fH~ OSP1821 05P1821 051>1823 05 PI 873 05PIB24 05P1B24 05PIB25 05PIB25 05PIB26 05P1B?6 05PIR21 05PIB21 05PIB28 05P 1 B2 8 05Pl830 05P1B30 05PIB31 05PIB31 06PIAOl 06PIA01 06PIA02 06PIA07 06PIA03 06PIA03 06PIA04 06PIA04 06PIA05 06P lAO 5 121>1A19 04Pl B21 04P1823 13P1BO'> S WRITE* 89379100 89879102 89879102 89879100 89879100 89879102 89879102 89819100 89879100 89879102 89879102 A9879100· 89d79100 89879102 89379102 89879100 89879100 89379102 89379103 8<;879103 89879103 89879103 89879103 89879103 89379103 89879103 898791)3 898791J3 13PIA2~ 04P1R24 04PIB2'; 13PIACS 13PIB23 04Pl B26 04P1B77 1 3P1 BOA 13P1 Alb 04P182A 04PIB30 13P1 AOq 13PIB2'; 04P1831 01PIAOI 02PIAOI 07 PI AD? OZP1AO? 07P1A03 02 PI AO'" 021' lA 04 07P1A04 02 PI AQ'; C1P1AO'; 89633300 E S ~RITE* SAO SAO SAL SAL SA2 SA2 SA3 S~3 SA4 SA4 SA5 SA5 SA6 SA6 SA7 SA7 OA5* OA5* O/J6* OA6* OAO* OAO* OA12* 11 A12* OA11* OA 11* FR.LEV TO.LEV hHi 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 ? 1 7 2 1 ? 1 Removed by I FCD CK676 I 9-61 Pf4GF NQ 8 FROM 06Pt A06 OOP lA06 06PIA07 06Pl A07 06PIA09 06 PI A09 06PIA11 06PIAll 0l)PIA12 00PIA12 06PIA13 06PIA13 06P lA14 06Pl A14 06PIA15 06PIA15 06Pl A16 06PIA16 06PIA17 00 PI A17 06PIA18 06PIA18 06PIA19 061>1A19 06Pl A20 06PIA20 06PIA21 06PIA21 06PlA22 06PIA22 06PIA23 06PIA2:3 06PIR01 06P1801 06P 1 B02 OhP1R02 06P1803 06P IB03 06Pl B04 OhPIB04 OoP 1 BO 5 06P1 B05 06PIB06 06P1B06 06Pt sO 7 06P 1 R07 06P1809 06PIB09 OoP 1 B 10 Oft PI Al 0 OnPIB12 9-62 W I R F TO 07PIA06 02P lAC6 07Pl A07 02PIA01 C 7Pl A09 O?PIAQ9 C7PlA 11 02P1411 02PIAl' C1P lA 12 07P1Al".\ 02Pl An 02P1414 071>1A14 C7PIAl'i 02PIA15 07PIA16 02PIA16 02PIA17 01PIA11 o 1P tAl R 02PIA18 02 PI AIQ 01Pl Al Q 02PIA20 07Pl A20 07PIA21 02PIA21 02PIA22 C1PIA2? 07Pl A2~ 02 P IA2i 01PlROl 02PIBOl 02P1807 07 P IB07 02PIBOl 01P1R01 02Pl B04 07 PI B04 07PIBO'> 01PIBO'> C1PIRCh 02PIROA 02 PI 801 07P1R07 C7 PI B09 01 PI B09 C7p 1 B 10 02P1BI0 O?PIBl? l I S T SICNAl-NAME OA3* OA3* OA4* OA4* TP TP OAI5* OAI5* 00 QC 02 02 04 04 06 06 08 08 010 010 012 012 014 014 WEl* WEZ* REAO* READ* REP l v* REPl v* Pf 379103 89879103 89a 79103 89879103 89879103 89819103 89879103 8987~103 89879103 89819103 89819103 89;319103 89819103 89879103 89d7Q103 89879103 FR.lEV TO.LEV 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 I 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 2 89633300 A PAGE NJ WI R E 9 F~OM 06PIR12 06P1813 06PlS13 OoPlSl4 ObPISl4 ObPlBlS ObPlB15 ObPIB1b ObPIBl6 OoPl Bll ObPIB17 OoPIB18 ObPI B18 06P1B19 06PIA19 06Pl B21 06P1B21 Ob Pl B22 ObP1822 ObPlB23 ObPls23 01PIAOl 07PlAOI 01PIA02 01P lA02 01PIA03 01PIA03 01P lA04 07PIA04 01PIA05 01PlA05 01PlA06 07PIA06 07PIA07 01PIA07 01Pl'A09 07PIA09 01P1All 01PIAll 01PIA12 07PIA12 07PIAl} 01P1A13 07PIA14· 01PIA14 07Pl A15 07PIA15 01PIAlb 07PIAlb 01PIA17 01PIAll TO C1PIBl' 01Pl Bl1 02PIBl'3 02P1814 07PIB14 02PIBIl) 01PIB15 07PIB16 02PIB16 01PIBl1 02PIBl1 02PlB18 07Pl BIR C1PIB19 02PLB19 02Pl B21 .. 01Pl821 02Pl B22 C1PIB22 02PIB23 LIS T SIGNAL-NAME 01 03 03 05 05 01 01 oc; 09 011 011 013 013 015 015 WRITE* WRl TE* REJECT* REJECT* MC* 07Pl82~ Me. 06PlAOl 13PIB19 13P1Al9 06PIA02 06P1AOl L3P1829 14Pl819 06P1A04 06PIA05 14PIAZO 13Pl82t 06PlA06' 06PIA01 13P1 A20 15PIA09 06PIA09 06PlAll 14PIA19 12Pl831 ObPIA11 06PIA13 15P1A13 15P1A14 06PIAl4 06P1 Al~ 15PIA 11) 15PIA16 06PIA16 C6P1A 11 15P1A11 01'5* OA5* OAb* OA6* OAO* OAO* OAI2* OA12* 01'11* OA11* 01'3* 01'3* OA4* OA4* T.P. TP OA15* OA15* gO go 02 02 04 04 06 06 08 08 010 C10 89633300 C AB 1 W.L. 89a 19103 89879103 89879103 89819103 89819103 89819103 89d 1910.3 89879103 89819103 89819103 89879103 89819103 89819103 89879103 89879103 89879103 89819103 89879103 89879103 89879103 89879103 89819103 89819100 898.,9100 89879103 89819103 89819100 89a 79100 89879103 89879101 89819100 89819100 89879101 89879103 89879100 89879100 89819103 89819103 89819100 ·89819100 89879103 89879103 89879100 89819100 89879103 89819103 89879100 . 89819100 89d19103 89879103 89819100 o 7/8 FR.LEV TO.LEV 1 1 2 2 1 2 1 1 1 2 2 1 2 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 2 1 2 1 1 2 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 .2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 9-63 PAc;E NJ 10 FAOM 07PIA18 07'1A18 C7Pl Al q 01PIA19 01'1A20 07P1420 01P lA21 07Pl A21 07PIA22 01P1A22 01PIA23 07PIA23 07P1801 C1P1801 07P1802 07P1802 0'1P1A03 07P1803 07P1801t 07P1804 07Pl&05 07P1805 07P1806 07P1806 01P1807 07P1807 07P1809 07P180~ 07'1810 07'181.0 .07P1812 07'1812 01P1813 07PIA13 01PL81.4 07P1814 07P1815 07P1815 07P1816 07'1816 07P1817 07P1817 07P1818 01P1818 07P1819 07P1819 07P1821 07P 1821 01P1822 07P1822 01P1823 9-64 VII IR t: TO 15PIAl~ 06'1 A18 06PIA19 15PIA1<"1 12P2A21i 06P1A20 06P1421 12P1829 . 15P142' 06PIA2' 06P1 A2l 12P2AIQ .06P1801 1 1Pl A30 13PIA21 06P1802 06P1801 13P1820 14PIB2Q 06P1804 C6PIROli 14P1821 14P lA20 06P1806 06P1 B')7 12P1821 14P141" 06P180eJ 06P1810 ·14PI8111 15P1811 06PIA12 06Pl Al1 15P1811 15P1814 06P1814 C6PIA1'i 15P1811i 15P181" 06P1811. 06P1811 15PIA11 15P18111 06Plalf1 06PIA1Q 15P\ 819 12P1830 06P1821 06P182'15P1821 15P1821 liS T SIGtfAl-NAME 012 012 014 014 WEZ* WfZ* READ* RFAO* AEPl V* REPl v* P~TM* PRTAO* OA1* OA1* OA2* OA2* OA7* .OA7* OA8* . OA8* OA9* OA9* OAIO* OAI0* CHI* CHI* OAI3* OAI3* OAI4* OAI4* 01 04 03 03 05 05 01 07 Oq 09 011 011 013 013 015 015 WRITE* WRI TE* REJECT* REJECT· MC· A B 1 " .l. 89879100 89879103 89879101 89819100 89879100 89879103 8987910J 89879100 89879100 89879103 89879103 89879100 8987910J 89879100 8<;879100 89879103 89879103 8<;879100 89~79100 89879103 89d7910;) 89879100 89879100 89879103 89879103 89879100 89«179100 89879103 89819103 89879100 89879100 89819103 o 7/8 FR.lEV TO.lEV 2 1 1 2 2 1 1 2 1 1 1 3 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 3 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 ? 1 1 1 1 1 2 2· 2 2 1 8987~10l 'I 89879100 89979100 89879103 8'-)879103 89/379100 89879100 89879103 89879103 89879100 89879100 89i179103 89879103 89819100 89879100 89879103 8987910J 89879100 8~8 791{;O 2 2 1 1 2 2 1 1 2· 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 .2 89633300 A I\GE NO WIRE 11 FROM TO 01P1823 08PIA01 08PIA02 08PIAO 3 08PIA06 OBPIA01 08P1AI0 08PiA11 08PIA12 08PIA13 08P1A14 03 PI A15 08PIAl1 08P1A19 06Pl B23 09P2AC1 12PIA28 13Pl B31 09PIA11 14P2A30 I1P2 B26 09P 2A On 091>2A22 12PIB12 09PIB30 12P1S0Q 10P2AOl) 09P2A26 11P2BI0 14P2B18 12PIB24 09P 1 A it 1 OP2 Al 0 14P2B14 09Pl B24 14P2 B20 09P2AOl) 091>2A25 10P1A24 12P1B21) 13P2 B06 09P2B09 13P2A30 13P2A05 12P2Bl1 09P1821 10PIA16 10PIA26 10Pl a2e; OqPIA28 10P2B07 09P2 B07 10P2A25 10P2 A09 1 OPI B03 11P1B29 10P1826 I1P2AOI 09PIA18 09P2 B30 10P2B 30 10P1A07 I OPI A21 13P2A 29 10P2A02 DqPl A04 08PIA20 08Pl A20 08PIA21 08P1A22 08PIA23 081> lA24 08 PI A26 08PIA27 08PIA28 08 PI A30 08PIA.31 08PIB02 08P1802 08PIB12 08PIB13 08PUH 8 08P 1822 08 PI B23 08Pl a2 5 08PIB26 08 PI B21 08P1829 08P1B30 08P1831 08PlAOI 08P2A02 081>2A04 08P2A05 08 P2 A01 08P2A08 08P2A09 031>2AI0 08P2A11 08P2A12 08P2A13 08P2A14 08P2A15 08P2A16 89633300 H i LIST S IG NAl-NAME MC* WClK PWRQ I>E FNABL E ABONE P WI 0 PwRESET AB ClGCKOUT AB TOG P WI< QS... IF rED AB RENABL E* BUFF2Fl*WMO AwRES(l-41 AS DATA SfM* SFM* WFM AS lOZ ANOENV(2) 10 ABGR T* 012 PRBOT B WRES(1-4~ R NCENV(I) A PCSIAMBlE PE START PE ST~RT ABWRES(5) P EClOCK * WPEQUEST* GC128 PRFB ANOENV (3) AENVlS) ANOENV (5) AB DOT A POSTAMBlE e POSTABU:F A NOENVtl) A EN VI 2) AENV(4) PE PARERR* A.SKEWOVF G PSfM* AB PRESET BREADY F A READy F ANODROPOUH ASYNC(4) PECHARClK AC2 AB DEN A B 1 0 7/8 w.t. 89819103 89a 79100 89879100 89819100 89879100 89819100 89879100 8987'HOG 89819100 89819100 89879100 89819100 89819100 89879100 8903 19104 89879104 89879104 89819100 89879100 89879100 89819100 89879100 FR.lEV TO.lEV 1 1 2 '2 2 1 1 2 2 2 2 1 1 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 I 1 1 1 1 1 8q819100 2 89819100 8'J819100 89879104 89819100 89879100 89819100 89819100 89819104 2 2 1 1 1 1 1 2 2 2 2 2 1 1 2 2 2 2 89379104 89319100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 B9819100 89879100 89819100 89819100 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 1 1 2 2 1 1 1 1 1 9-65 PAGE NO 12 FROM 08P2All OBP2A18 08P2A19 OAP2A21 08P2A22 oap2A23 08P2A24 OBP2A26 08 P2 A27 08P2A28 OBP2A30 08P2BOl OAP2B02 08P2a03 OAP2B04 OSP2BOS 08P2B06 OSP2B07 OSP2B08 OBP? B09 08P2B10 08P2BIO OR p2 Bl1 08P2tH2 08P2a13 ORP2814 08P2B15 08P2B16, 08P2Bl7 08P2R19 08P2R20 08P;>B23 08P2B24 08P2B26 ORP2B27 08P2B28 ORP2 B2 9 QRP2B3Q 09P 1 AO 1 09P1A07 09P lAO 3 09PIA04 09PIA04 09PIA05 09PIAll 09PIAll 09PIA12 09PlA13 09P lA 16 09PIA17 9-66 W I TO lOP2B02 14P2 AOt lOP2BC5 13P2 A240C;PIA31 11P2825 13P2 A21 09P2A21 lOPIBO? lOP2AOA 09PIA13 09Pl A01 o 9P LA 16 09P2AIO 1 OPl AO~ lOP2A24 OQP2Al1 09P2B06 10P2B06 1]PIB30 IlP2BO;> 14P2B06 1 OP2 A0413P2BOR 10P2 All 011P2 AOI 0C;P2AOl 09Pl BO;> 09P2AO? 10P2A29 09P2A29 12P2B29 12PIA06 09Pl A30 lOP IA 25 LOPIA11 10P2A21 C9P?AOQ 09PIBll IlPlfH 1 081'2801 10PiA04OAP2Alit 1lPlBl6 oaPl A2" lOP 1 A 11 IIPl A12 08P2 A30 08P2130;> lOPIA17 R E L I S T SIGNAL-NAME AC1* PE EOP. ACNEG* 7'5IPS 01* PRSTROBE Al2 PRTY FN 81* PRTY GN A4* PRTY GN A2* PRTV GN B3* 8 NCE~V(4) B NOENVn) B NOENV(2) ANOENV(4) AFNV( U AB PAR lTV B SKEwCVF F A.SKEWOVF F PE lOST C .&T REV* REV* ,A REACY G PE wORNING A5YNC(2) AS1* Be2 PRTY GN 84* BC1* AONEF* BCNEF* T~3 POSTAMBLE 02* PRJ ... GN A5* PRTY GN A3* PRTV GN Al* PRT\, GN 132* Gt\D PMOUT 2 A NOENV(4) AS DE/\; AS OEN PwOIN 2 AS LGl AS LOl PRIN 6 PRTY GN 83* B NOENV(], AACNE A B 1 0 7/8 w.L. 89879100 89879100 89379100 89379100 a9a 79100 89879100 89879100 89879100 89879100 89879100 89879100 89379100 89879100 89f:i 79100 89879100 89879100 89879100 8'1879100 B9879100 89:i79100 89879104 89879104 89879100 89879100 89879104 89879100 89'379100 89879100 89879100 89879100 89879100 89879100 FR.lEV TO.LEV 2. 2 1 1 1 2 1 2 2 1 1 2 1 1 .2 2 1 1 1 2 2 2 2 1 7 2 2 1 L 1 2 .1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 89879104 8913 79100 1 89879100 2 89879100 89879100 89879100 89879104 89879100 8'7879100 89a 79100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 1 2 2 2 2 2 2 2 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 2 I 2 2 2 1 896~3300 H PAGF Nl 13 FR;J M 09P1A17 09PIA18 OQPl Al R 09PIA20 0<)PIA21 09Pl A2~ 09PIA?H \)9 PI A~ tl OtJPl A j lJ 09PLA30 {HPIA;il 09PI.Ail OJPl AO 1 nqpIH02 WIP 1 H06 09PIRlI 09Pl Al j 01PIB24 09 PI R24 09PLA77 09P1B27 WIRE LIST A B 1 0 7/A SIGNAL-NAME TU AH( NE Ae PRESET 8'B79100 10Pl~lR CRP7 A09 AE PRtSFT 89319100 11PIAl'> 11PlfD7 llPlfH'> lOPIA2Q PIII.OI N 4 a937~100 CQPl\CI, 08P1829 C8P2B2f:t 10Plt\ sO a~179100 8 'Ii 79100 89879100 :J PRDOUT PPIN ~ AR OOT 89i7~100 CUT AB n2* fJ 2* 10PI Ail 01* CAP2A?' 01* 10PIR:11 PCl Of\P;UH~ PRTY (.N 134* IIPIBOR 09Pl A()) PRUrl.lT b GND 11;>7~?O P~OUT ORPIA2h 1112 012 LOPI R24 08P1821 lOP 1'327 4 PR~fl PRF !:3 1\8 f A07 wet K 09P;?A08 C3P2 R10 O<)P2AI0 08P280l PRTV GN 82* Ii NCENV(2) 09P7A12 09P2Al3 11PI110l PFDOUT CRP280A toR PARITY 10P2 A l-i 11 PI R1 "1 AR PAR.ITY PI< T N 4 08P2A2h lOP? A22 AS CqPIA17 AB OQP2A13 09 P2 Al Q 0 1A28 PWOUT 3 I1Pl B 10 P~OIN3 J IP2824 11 PI A14 C BI> 2410 09P? AOI 13P2811 11fl?809 PwOUT 6 PPIN2 8 RfAOY F AS1* 08P2B04 09P1404 Af\OENV(4) A8 DEN P WOI N 0 I1PIAI" OAP2 A12 I1P2A04 0<;P1411 11 PI All 08P2B28 08PIB25 (;9P1 A17 091>1A18 11PIA09 11P1809 11P11114 08Pl A31 DRP2A?7 OAPIB2" OBP?A11 o 9P 1 A? R PC 1600* P~OLT a ANOORCFOUTf PRINP AB LOl PRIN 5 PRTY GN A3* AND ENV( 3) ABCNE AB PRE SE T PWOIN 1 PRDOUT 7 PRIN 7 /':. PCSTAMBlE PRT\' GN A5* A EN V( 5 ) ASYNC(4) A8 001 07* 01* 09PIA30 09P1A31 09PIBOI 03 P2A27 10PlfH)6 11P1801 20PIAOI o5P 1 91 ~ 16P2 BOA 05PIBUl 11P2"lOA OQp1B24 OBPI '327 PROOUT5 AUTOLOAD ALTOLCALJ ALTOLOAD 10PIB26 13P1827 10P1828 lOPIB30 08P2A07 09PIB27 A.SKElI\CVF G 10P2A02 08 P2 AI') oap 2811 10P11319 10Pld20 10P18?} 10PI824 10Pli125 10P2A04 10P2 A05 10P2A06 10 P 2A07 9-68 I 1 P1 Al '3 101>1A31 101>1B01 101>1802 101>1B03 10P1820 A07 10P2A08 10P~ 08P2A04 10P2B01 09PIB30 OQP1A17 09P2 AO~ IlP2B?7 OQP2A07 C8 P~ FR.LEV TO.LEV SIGNAL-NAME 10PIA30 1 OPlfH 9 I Til A B 1 0 7/8 lIST A2q pe2 PRTY GN A4* AENV(4) ALTOLUAO P~OLT 1 D12 ANCFNV(5) PRFB NCDPOFClT RENABLE* he AC2 A READY G A ~R ES ( 1- 4 ) AS CLUCKOUT wCLK WCLK PRTY GN A2* 89879100 89879100 89d79100 89879100 89,')19100 89879100 89879100 89379100 89"179100 89819100 89879100 89879100 89379100 89879100 8 1B29 llP1830 11plS31 IlP2AOl IlP2A05 11PlA13 IlP2A18 11P2A25 11P2R01 Ilp2B02 llP2803 11P2B04 IlP2805 llP2R07 11P2808 9-70 W I TO 13PIA24 13PIAl1 13PlAlI 14PIB21 12PIAOFt IJP2A26 13P2B 12 12PIB19 lOPIB06 13PIA07 09P7. Al ~ t3P IB 06 13P2BO,) 12PIBIA 09P2A2R 09PIA21 09PIB06 IOPlA2. 09P2Bll lOP2AIQ 09P2A19 1 oPt A23 09PIA2J 09PIAor; 1 OP2 A27 10P2B03 09PZA27 14PIAIJ 14PIB16 14PI B21 14PIBQ A 14PIAZ4 14PI A16 13PIB27 14Pl All 14P2 B01 oap2AO') 12PZA05 12P1S06 08P2AOfJ 17.PIAl~ 09P7.BIO 12PIA26 12Pl A27 lOP2B16 08P2Sl0 IlP~ AOA lOPIAIO lZP2 A2q 14P2BO? lOPIS2} R E l I S T SIGNAL-NAME kRTAPE WRTAPE WRTAPE WRTAPE UPPER 7 6 :i 10 9T 2FkC RFS2* PROCUT5 RCTAPE 5 PRDOUT 4 ROTAPE 4 1600 .1600 PRDOUT 2 PROOUT .3 PRDOUT 6 PRDOUT 7 PWDIN 3 PR IN 1 PRIN 4 PRIN 7 PR[N 3 PWDIN 2 PhOIN 5 P wO I NP PWDIN 6 WRT APE 13 WRTAPE lZ w~T ~PE q hPTAPE WRTAPE hRTAPE WRTAPE WRTAPE 8 15 14 2 11 FIll PE PARERR. RMOT AID PSFM* STWCRC* PhOUT 3 LRCC STATE ROS· WFM1TM* R EV* EOP PRINP 4MHl SEOP* PhOUT 1 A B 1 07/8 W.l. 89379100 89d 79100 89879100 89879100 89879100 89879100 S9879100 89879100 89879100 8llS 79100 89819100 89879100 89879100 89879100 6987910C 89879100 89879100 89879100 89879100 89879100 89379100 89S 79100 89879100 89879100 89879100 8C;879100 89879100 89879100 89879100 89879100 89879100 89tj 79100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89,:179100 89879100 8987910·0 89879100 89d 79104 89879100 89879100 89879100 89879100 89819100 FR .lEV TU.L EV 2 2 2 2 2 2 2 1 2 2 7. 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 7. 2 2 1 Z 1 1 Z Z Z 2 7. Z 7. Z 2 2 2 2 2 2 2 1 Z ·2 2 2 2 2 2 2 2 7. 1 2 1 Z 1 7. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 Z 7. 7. 1 1 1 1 1 1 1 89633300 A PAGE NO 11 FROM 11P?B09 11P2B10 11P2Bli IlP2EH2 11P2B13 IlP2B14 I1p2815 UPl816 Ilp2S11 IlP2BIR llP2819 11P2B20 11P2B22 11P2 82 3 11P7B24 11P2825 11P2826 11P2B21 IlP2B28 llP2B29 I1P2B30 11P2B3l l2PlA01 12PlA01 IlPIA02 12PIA03 12PIA04 12PIA05 12PIA06 12PIA08 12PIA09 12P lA 10 12PIAll 12PIA12 12PIA13 12PIA14 12P1A14 12PIA16 12PIA17 12PIA19 12PIA19 12PIA20 12P 1 A20 12PIAli 12PIA23 12PIA24 12PIAl5 12PIA26 12PIA27 12Pl A28 12PIA30 89633300 H W I R E l I S T A B 1 07/8 TJ SIGNAL-NAME W.L. 1 OP1 AO' Pl 13P2 AOb 0~PIAI3 14P2B17 13P2B2? I1PIB05 IlPIA31 IJP2A2R IJPIB14 07P1807 15PIBC7 16P 1 B03 05Pl Bl? 10P2B16 14P282'> 08Pl A21 08PIBO? 14PIA01 14P2B16 13P2B20 01PIA21 15PIA21 15PIBll C1PIB21 C7PIA12 15PIA12 14P2 B01 l.3P 2A 01 14P2B2l IlPIB30 14PIA28 14 P2 Bl 0 13P2Al1 11P2B03 13Pl B2l 13PIA21 13P2B02 13P2A11 15P IB22 13P2A07 R E l 1ST A 8 S IG NAL-NAME W.l. CRce STATE* PEl* PEl* 89879100 89879100 8<.i879100 89879100 89379100 89879100 89819100 89819100 89819100 89879100 89879100 89879100 89879100 89819100 89819100 89879100 89819100 89879100 89879100 89879-100 89879100 89879100 89819100 89879100 89819100 89819100 89819104 89879104 89879100 89879100 89819100 89819100 89879100 89819100 89a 19100 8CJ879100 89379100 89879100 89879100 89819100 8'1879100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 STO.P~R.ERR UPPX1* LOST DATA ISTSP AID AID· T~ANS. I NCCA* BUfF2Fl*WMO WRITE CLOCK P ~R Q SH 1FT EO TTBUS\,· ALl 1600 RESZ* RES2* BUf 1/0* CHI* CHI* ss. ss* WFM/TM* wfM/TM* WfM PE START RESt. 1* STOP* ENA* READ* READ* WRI TE* WRITE* 00 00 STRMF CONTACT* lEGMF RMOT CONTAC T lEGCf EOP EOP STR8UF* SElAl lEGUS READY REJECT* STRUS 1 o 7/8 FR.lEV TO.LEV 1 1 .2 1 1 2 2 Z 1 1 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 1 2 2 2 1 1 .2 2 2 2 1 2 1 2 1 2 2 1 1 2 2 1 1 1 2 2 2 1 1 2 2 1 2 1 2 2 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 2 2 2 3 2 2 1 2 1 2 2 2 2 3 2 89633300 A P Ar.E NO ~ 19 TO FROM 12P2A17 12PlA18 12P2A18 12P2A19 12P2A19 12P2A23 12P2A23 12P2A24 12P2A24 12P2A25 12P2A25 12P 2A26 12P2A17 11P1A19 11P2A30 IlP2801 12P2ROl 12P2B02 12PlB03 12PlB04 12P2 BO 5 12Pl805 12P2B06 12P1B07 llP1R07 12P2809 IlP1BIO 12P2BI0 IlPlBll 12P2Bll IlP2B13 IlPlB14 llP2815 12P2816 IlP1B17 12P2817 12P?B18 l2P2B19 12Pl82l 12P2B22 12Pl813 12P2823 12PlB25 12P1628 IlP2Rl9 12P2Bl9 l2P2B31 12P 2B31 13PIAOl 13PIA01 13P I AD 2 I 14PIB24 05PIBl,. 16PIA01 C7PIA21 1l)P2B2A l5P2BI0 15PIB16 15PIBll) 15P2BOQ 07PIA20 21 P2 R30 05PIR19 16Pl BOI 1lP2 B05 1 lP2B 14 19P2 R02 15PIBl2 13P2AOQ 14P2 A09 IlPIAIO 14P2A15 13Pl A06 14P2R24 13PIA18 1,.P2B08 13P2AI0 13 PI B2A 14P2 A01 13PIAl5 14P1831 13P2B04 15PIAl2 l3P2A21j 13PlBl5 14P2826 08Pl B22 l3P2A 11 13PlB09 l5P2 A 10 15PIAl1 l5PIAl6 11)P2A 09 16PIA04 05P1 B16 13P28lb 08Pl B21 13P2826 11P2B lq 14P1BOl llPlAOe; IlPlA04 89633300 C R E l I A B 1 C 7/8 S T SIGNAL-NAME FfI./TM SPI* SPI* PRTAO* PRT~O* OS 09 07 07 WEZ* WFZ* S. SCFOM{ BU SCROD ( SCR 1M ,.MHZ TM1 01 01 MC* USA WMOT RMOT* RMOT* WMOT* A7 A7 . S TR (NT RUSY RlSY SElAO LEGCC StRCC R EPL y* PICOTECTEC tNT GC128 GC128 RESt* LDlWA* 010 010 08 08 SCfOO( SCf 1M SCRCMleUS) TM3 TM3 RwlD* RIIrolD* ROTAPE 1 RCTAPE 2 L O.,.Xl* W.l. 89879100 89379100 89879 LOO 89879100 89879100 89879100 89379100 89879100 89879100 89879100 89~ 79100 89879100 89879100 89879100 8987910C 89879100 89879100 89879100 89879100 89879100 89879100 8911 79100 89819100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819104 8'i819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89a 79100 FR.LEV TO.LEV 1 2 1 2 1 1 3 2 2 1 1 2 2 3 2 2 1 1 2 2 3 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 'l v 1 2 1 2 2 1 2 1 2 2 2 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 LENGTH 10" LENGTH 7" 2 1 1 2 2 1 2 1 2 1 2 2 2 3 2 2 1 2 3 2 . 1 2 1 2 2 1 2 1 t 2 2 9-73 P4GE NO 20 FROM 13PIA03 13P lA03 11P1404 13PIA04 13P LA05 13Pl AO'.) 11PIA06 1.~PIAOl 11Pl,..01 13PIA08 13PIA09 13Pl A09 13PIAI0 L3PIAIO I1PIAIO 13P lAll 13PIA12 13PIAl2 13PIA12 13PIA13 13PIA14 13PIAlS 13PIA15 IlPIA15 13PIA16 13PIA16 13PIA16 13 Pl All 13PIA18 13PIA19 13PIA19 13PIA20 13PIA20 13PIA21 13PIA21 13PIA22 I1PIA23 IlP lA23 13Pl A24 11PIA25 IJP1A25 13PIA26 13PIA26 IlPIA21 13PIA21 13PIA30 13PIA30 13PIA31 I1PIA31 13PIBOI IlP1801 9-74 W I R E T1 11 PI AO~ 14P1801 IlPIA01 IltP1404 l8P180A 05P182'i 12P280'i IlP180' IltPl R01 IlPIA2' 05P1830 18P1806 27PIAOl 05PIROl 1 AP2A21 IlPl42'i 18P282A 0l)PIA01 27PIAOI 14P1811 IlP1AIQ 21Pl A12 OSPI BOl 18P282'i 18PiA21t 05PI AO' 21PIAI0 I1PIA24 12P'-801 07PIA02 15PIA02 15PIAC7 01PIAOl 01P1802 15P180'IIPl A21 0'iPIB2~ l8Pl801 IIPl A21 12p2811 14PIA2'i l8Pl R09 05PIR 2A 12P2AlI 14Pl A21 C1P1801 15P1801 IltP2A21 12PIA2'i IlPIA()6 14Pl Aot lIS T SIGNAL-NAME RCTAPE ROT APE R CTAP E ROTAPE SA2 SA2 RMOT* RDTAPE 1 1 6 6 5 5 tfRTAPE 0 SA6 SA6 501 RCT~PE SOl 501 WRTAPE 3 SOO 500 SOO A=-8 ~RTAPE 5 501 507. 507 506 506 S06 WRTAPE 6 A1 OA6* OA6* OA4* OA4* OA2* OA2* hRTAPE 1 SAl SAl WRT,6PE 1 SElAO SElAO 5A5 SA5 SElAl SEl Al OA1* OAI. fOC* ECG* ROT APE 3 RCTAPE 3 A 8 1 W.l. 89879100 89879100 89819100 89819100 '89819100 89819100 89819100 69819100 89879100 89879100 89ii79100 89d19100 89879100 89819100 89319100 89879100 89819100 89879100 89819100 89879100 89879100 89819100 89879100 89879100 89879100 89879100, 89tl79100 89819100 89819100 89819100 89819100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 8913 19100 89879100 89819100 89879100 89819100 89819100 89a 19100 89819100 89819100 89819100 89819100 89679100 89819100 o 7/8 FR. lEV TO.lEV 2 1 2 1 1 2 2 2 1 2 2 1 1 2 3 2 3 2 1 2 2 1 2 3 3 2 1 2 2 2 1 '1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2 2 1 2 2 1 1 2 3 2 "3 2 1 Z 2 1 2 3 3 2 1 2 2 2 1 1 2 2 1 2 2 1. 2 2 1 1 2 2 1 2 1 1· 2 2 1 89633300 A PAGf NO w I RE 21 FROM 13P1B02 LlPIB02 131>1803 13P1BO] 13P1804 131>1804 I]P1805 13P 180S 13PIB06 13P1806 11P180a 13P1806 13P1809 13P1809 13P1BI0 13P1 81 0 13PUHO 13P1B12 13P1812 13P1812 13Pll:H3 13P1813 13PIB13 13P1814 13P 1814 13Pl81S 13P1 R15 13P1815 l3Pl816 13P1811 13 P 1816 13P1819 13P1B19 I1P1820 13P1820 13P1821 13P1 A21 13P1822 11P 1822 l1P1B23 13Pls23 13P 1824 13P1825 13P182S 13P1B27 13Pl B28 13P182Q 13p1829 IlP1830 13Pl Bl1 13P2AO 1 TO 11P1A04 14P1 AD' 12PIBC7 14PIAO~ 14Pl60ft 11P1AOA laPI A02 CSP1B2~ I1PIB04 14Pl AO~ 18PIAOQ OSPIB21 12P21H9 14P1AOQ 21P1AOl) 05plS0' lSP2R2lt 16P2A21) 05P1A06 21P1806 27Pl AOA 05PIAOt 18P2824 l2PIR20 l4P1814 21Pl A,)1 18P2 A23 0t;P1A07 IlPl A20 14PIA17 I2P1808 01P1 AOI 15P1AOl 15P1803 01P180l 07PlA06 15Pl AOe. l2P2 A09 141>1A21 1RPI AOA 0'5P1826 12P1A30 18P1A06 05PIB3t IlP1B26 12P2 R10 01PlAOl 15PIAOl C8P280q 08Pl A03 12P2AO~ 89633300 A l ( S T S tGNAl-NA~E RCTAPE RCTAPE TRANS* TRANS. R[TAPE ROTAPE SAO 0 0 '1 1 SAO R CTAP f 4 RCTAPE 4 SA4 SA4 lCLWA* lOlWA* S02 S02 S02 S03 503 S03 S05 S05 S05 8UF 1/0* aUF 1/0. S04 S04 S04 WRT'PE 4 CARCURAO* INCC4* OAS* OA5* OA1* OA1* OA3* OA3* STRBUF* STRBUF* SA3 SA3 9T* SAl SAl WRTAPE 2 8USY OAO* OAO* PE lOST CAT PE ENABLE CONTACT* A B 1 w.L. 89!:) 79100 89879100 8S819100 89319100 89879100 89819100 89819100 89879100 89919100 69879100 89619100 89679100 89:119100 89879100 89879100 81879100 89679100 89679100 69619100 89819100 69679100 89819100 89879100 69879100 89819100 69619100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 69619100 891319100 89819100 89919100 89d79100 eC;81910 0 89819100 89819100 89819100 89879100 89819100 89879100 89a19100 89819100 89319100 89879100 89819100 89819100 o 118 FR.lEV T D.l EV 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 3 3 2 1 1 2 3 2 1 1 3 2 2 2 2 2 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 1 2 2 2 ' 2 1 2 I 1 2 1 2 2 1 1 2 2 1 1 2 3 3 2 1 1 2 3 2 1 1 . 3 2 2 2 2 2 1 1 2 2 1 2 1 1 2 2 ,1 2 2 2 2 1 2 2 2 9-75 I) AGE NJ 22 FROM 13P2A02 13P2A05 13P2A05 111)2A06 13P2A06 13P2A01 13P2A01 13P2A08 13P2A09 13P2A09 13P2AlO 13P2A 11 13P2A12 13P2A13 13P2A13 13P2A14 13P2A15 13P2Al1 13P2A18 13P2A18 13P1A19 13P2A20 13P2A20 13P2A21 13P2A22 13P2A23 13P2A24 13P2A25 13P2A26 13P2A26 13P2A27 13P2A28 13P2 A28 13P2A29 13P2A30 13P2BOI 13P2801 13P2.B03 13P2804 IlP280S 13P2806 13P2B06 13P2B01 11P2B08 13P2809 13P2BIO 13P2Bli IlP2B12 13P2B13 13PlB13 11P2B14 9-76 W ( R E TO 12PIA05 08P1818 14P2A17 11P281Q 12P1810 12P2A15 14PIAJl 14Pl A30 12P2AO' 14P2A04 12P2B09. 12P2818 12P1804 14P2801. 12P2A08 11PIA17 II P2 B31 12P2A 13 14P1823 11p2817 14P2A24 12Pl A23 14P2830 OAP2A24 11P2814 12PIA 16 08P2A21 I?P2 A15 I1PIA28 14P2Alt 14P28lt 14P2B05 12P1819 Oap2A14 08P1813 14P2819 12P2Al? 14P1B30 12P2S13 I1P18011) 14P2823 OSPi80' 10Pl AOt 08P2812 12PIAl' 12P1Ali 21 P2 A27 11PIA 30 12P180& 14Pl 81 'IlPIA03 L [ S T A 6 1 SIGNAL-NAME W.l. ClR LOwER* WREQUEST. .. REQUEST* ~RI TE CLOCK WRITE CLOCK STRUS STRUS WPENABlE MC* MC* STRINT RFS1* LOST CATA EOP EOP BCD MODE5El· READY P'R ERR. P"~ ERR. TTDENSTAT* C5A WPEN. OSA WREN* Al2 R~LC R.. UNLO LOS r" OA TA* 151PS PPOTECTEO 9' 9T li 51 RES2* RES2* PECHARClK P EClOCK. BOT LEGLS IllUSCODE SlRCC 1600 PE ST'RT PE Sr'RT PC 1600* PE WOPNING hOS SHIFTED EARl Y .. OS Me* lFWC AID AID DATA 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 898'19100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89379100 89819100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 d9879100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 o 118 FR .lEV TO.LEV 2 2 1 1 2 2 1 2 2 1 '2 .2 2 1 2 2 1 2 2 1 1 2 1 2 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 l 3 2 2 1 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 1 2 1 2 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 .3 2 2 1 2 89633300 A PAGE N1 WI R E 23 FR)f14 13P2SIS I3P2B 16 13P2BI6 13P2R11 13P2817 IlP2B18 13P2B18 13PlB19 13P2820 13P28l0 13Pl822 13P2823 111'2824 13P28lS 13P2826 I1P?826 13P2821 13P2B28 14P LAO 1 14Pl A02 14PIA03 14PIA04 14P1 AOS l4PIA05 14P1A06 14PI AO 7 14P lA08 14Pl A08 14PIA09 14P lA10 14PIAIO l4PlAlO l4PlAl1 14P1A12 l4PlA12 1le-PIA1Z 14PIA13 14PIAl4 14PlAl4 14PIA14 lle-PlA1S Ift.PlA1S 14PlA1S 14PIA16 14PIAl7 14PIA18 14PlA18 Ift.P1A19 14PIA19 14PIA20 14P1A20 89633300 TO I2P? Bt& llP2B2C} l4P2A lC} 14P2 A?q IlPIAI1 14P1B24 11 P2 B11) 14P2A2~ 12PIB2R I4P2829 12PIB16 14P2827 I2P2Al0 14P282R 14P1Bl'i 12P2831 14P2B09 14P2A1R l3P1BOl 13Pl BO' l1PIBOl 13PIA04 18Pl A07 eSPIA21 13P1B06 12P181.6 1APlBOI 05Pl A27 13PlB09 19P2A30 05P1806 27PIBIR llP1827 27Pl AIR OSPlA05 18P2831 11 PI 820 27PIAIQ 18P2830 05Pl All 05P1810 18P2A2Q l7Pl82' llPl~ 25 13Pl B17 07PlR09 15P1809 15PIAll C7PIAl1 07PIAOl) 15P1 AOI) A LIS T SIGNAL-NAME INT TM3 TM3 REO* REO* fM/TM fM/TM TfREAOV* ENA* ENA* ALI EOT* TM1 G~P CLOCK R~LO* R~LO* usa TT REAO,{ ROT APE 3 ReT .PE 0 TRANS* ROTAPE 6 SA8 SA8 RCTAPE 4 RESl,1· SA12 SA12 LOLWA* 5010 SOLO SOLO WRTAPE 11 SOLI SOLI SDll WRT.PE 13 S015 S015 S015 S014 S014 S014 WIHAPE 14 CARCURAO· O~13* OA13* OAlS* OAlS. OAl1· O~ll* A ~ W.L. 89879100 89879100 89979100 89819100 89819100 89;319100 89819100 89879100 89379100 89879100 89819100 89879100 89879100 89879100 89319100 89879100 89879100 89il19100 89819100 89879100 89819100 89879100 89879100 89879100 89d 79100 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 891) 79100 89879100 89879100 89879100 89879100 89879100 89379100 8C;S 79100 89879100 89879100 8913 79100 89879100 89879100 89379100 89879100 1 o 118 fR.LEV TO.LEV 2 2 1 1 1 2 I 1 2 1 2 L 2 1 1 2 1 1 1 1 1 1 1 2 1 2 1 2 I 3 2 1 2 1 2 3 2 1 3 2 2 3 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 1 1 2 I 2 1 2 1 I 2 1 I I 1 1 1 I t 1 2 1 2 1 3 2 1 2 1 2 3 2 1 3 2 2 3 1 2 Z 2 1 1 2 2 1 9-77 PAGf NO 24 FROM 14PIA21 lltPI A22 14P1422 14PIA23 14PIA2] 14P1424 14PIA25 14PIA26 14P lA26 14Pl A21 14Pl A2 8 14PIA30 14Pl A31 14PIBOI 14PIB02 1ft-PI 803 14PIR04 14Pl805 14P180.5 14PIB06 14Pl807 14P180A 14PIB09 14Pl B09 14PIBIO 14Pl810 Ift-PIBIO 14PIB12 14P1812 14PIB12 14Pl813 IltPIB14 14PIBl5 14PIBI5 IltPIB15 14Pl816 IltPIR11 IltPIBl8 14P1818 14PlfH9 14PIB19 14P1820 14PIB20 14PIB2l 14P IB22 14PIB22 14PIBl3 14PIB24 14Pl824 14PIB25 14PIB25 9-78 W I TO 13PIR2? 18PIA07 05PIA24 OSP 1 A21. lapl A01 11PIB24 13Pl A25 laP1404 05P lA 28 13PI A21 12 P2 AOft 1:3P2AC8 13P2A07 13PIAOl 12 P 1BOl 13Pl A01 13PIB04 18PIBO? OS PI A25 I1P2Bll 13PIA07 11 PI Bll lapIB04 OSPIA30 18P2A26 05PIB05 27PlS16 27P1814 05PIR04 18 P2 B21 12PIAOQ 13PIB14 21Pl A20 lAP2A2A 05Pl A04 11PIB21 13PIA13 07Pl BI0 l5PIRIO l5PIA04 07 PI AO~ 01PIROI. ISPIROI. 11 PI B2~ C1PIROS 15PIB05 13P2AIA 13P2BIA 12P2A17 1APlAOt OSPIA31 R f l 1ST SIGNAl-NAfilE STRBUF* SA9 SA9 SA 11 5 All WRTAPE 15 SElAO SA13 SA13 SElAl CONTACT WRENABlE STRUS RCTAPE 2 UPP)(I* ROT APE 1 RCTAPE 7 SAI0 SAIO TTONlINE* RCTAPf 5 WRT4PE 8 S414 5414 509 509 S09 S08 508 508 LAST WORD BUf 1/0. 5012 ·S012 5012 WRTAPE 12 A=R OAI4* OAI4* OAI2* 0,\12* OAlO* OA"10* WRT4PE 9 OA9* OA9* P~R ERR. FM/TM FM/TM SA15 SA 1 c; . 4 B 1 W.l. 89d 79100 89819100 89879100 89879100 89819100 89879100 89879100 89d 79100 89879100 89879100 89819100 89879100 89d79100 89879100 89879100 89879100 89879100 89879100 89879100 89879104 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 898791.00 89879100. 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 o 118 FR .lEV TO.l EV 1 1 2 2 1 2 1 1 '2 1 2 2 1 1 2 1 1 1 2 1 2 .1 2 3 2 1 1 2 3 2 1 1 3 2 2 2 2 'I 1 2 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 1 2 1 2 1 2 3 2 1 1 2 3 2 1 1 3 2 2 2 2 1 1 2 2 1 2 2 1 2 2 1 1 2 89633300 A PAGF NO w I R E 25 FROM 14PI 826 14P 1 826 14Pl B2b 14PIB?1 14P 1 B29 14PIB29 14PIB30 14PIB31 14P~ AOI 14P2A04 14P2 A01 14P~ A09 14P2Al3 14PZAt4 14P1Al1 14P2Al9 14P2 A21 14P2A22 14PlAl3 14P2A24 14PZA25 14Pl A21 14P2A28 14P2A29 14PlA30 14P~ROl 14P2802 IltP2803 Ilt-Pl805 Ilt-P2806 14P7.807 14Pl808 llt-Pl B09 14Pl810 Ilt-P281l Ilt-P28l2 14P~8l3 14P2811tllt-p2815 14P2816 1lt-PZS17 l4P2618 Ilt-P28l9 llt-Pl820 14P2822 14P2823 Ilt-PlB24 14P2825 l4P?826 14PZ827 l4P1828 89633300 Tl 18P2BZQ OC;PIBOQ 21PIBll 11PIAlh 01PIR04 15PIB04 13PlB01 IlPlBll 08Pl AIR 13PlA09 12P2810 12 P2 BO~ tlPIAO? 11PIAI0 13PlAOC; 13P2Blh llPl Al6 I1Pl82R 13P2R19 13PlA19 12p2BOt; 13PIA1t 13Pl8lR 13P2Bl1 08PIA01 13P2All 11P2801 11 Pl8ZR 13P2A28 08P21ll0 12P2 AOI l2PlB01 l3P28l1 12P2407 13P2A21 13P2813 12P1802, 08P1AZIt11P2 Blf» 12Pl821 l2PIAl1 08Pl A20 13P2801 08P1AZ1 12 P' A0" l3P2R06 lZP2806 12P1824 12P28l1 13P2871 13PZAl'» A t I S T SIGNAL-NAME S013 S013 SD13 ~RT~PE 1C OA8* OA8. I tLl SCODE l EGCC PE EOP* MC· BUSY USA PROT FAUt T LCCKOUT* WFECUEST* TM3 'IT R .. UNLO* TTR EAOY* . TTOENSTAr* RMOT. EOG* TT READV REO* PWID EOP SEOP* Fill RES2* REV. STRMF A7 USO lEGCF USl AID STO.P~R.ERR [e ABORT* RWLO* STOP* TTBUSY. SFM* 801 PRP.OT LEGMF PE START WMOT* "FM/T~* GC128 EOr. GAP CtCCK A B 1 lII.l. o 118 FR.LEV TO.lEV 89819100 3 89819100 2 1 2 2 1 1 1 1 1 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 89819100 89819100 89879UiO 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 891319100 89819100 89819100 89:1 79100 89819100 89819100 89819100 89879100 89879100· 89819100 89879100 89679104 89819100 89679100 89879100 89819100 89819100 89879100 89819100 89879100 89879100 89879100 89879100. 89879104 89879100 89379100 89879100 8C;S 79100 89879100 89879100 89819100 89879100 89879100 3 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 9-79 PAGE NO 26 FR()N 14P2829 14P2830 14P2831 15Pl AOI ISPIAOl 15PIA02 15PIA02 15PIA03 15PIA03 15PIA04 15PIA04 lSPIA05 15PIA05 15PIA06 15Pl A06 15PIA07 15PIA07 15PIA09 15PIA09 15PIAll 15PIAlI ISPIA12 15Pl A12 15Pl A13 15P lA13 l5PIAl4 15PIA14 15PIA15 15PIA15 lSPIA16 ISPIA16 15PIA17 15PIAl7 ISPIA18 15PI~18 ISPIA19 lSPIA19 IljPlA20 15PIA21 ISPIA21 lS~IA22 .15PIA22 15PIA22 15P1A23 15PIA31 15P1801 15P1801 15P1802 ISP 1802 ISP1803 9-80 W I TJ R E liS T SIGNAL-NAME A B 1 W.L. o 7/8 fR.lEV TO.lEV 13P2820 13P2A20 12PIA21 19PIA19 13P1819 13PIA19 19PIA11 19PIA30 13P1829 14P1819 19PISOA 19P1812 14Pl A20 13P 18 21 19PIA26 19PIB18 13Pt.A20 21P2828 07PIA09 19P1801 14Pl A19 12P1831 19P1 A2B 01PI All 19P2801 20P2801 C1PIA14 07PlAl,) 20P2A14 12P2823 01PIA16 07.pl Al1 12P282'26P2A24 01Pl AIR C7PIA19 26P2825 ENA* DSA WREN* STOP OIST. OA5* OA5* OA6* OA6* OAO* OAO* OAI2* OA12* OAl1· OAll* OA3* OA3* OA4* OA4* T.P. T.P. OA15* OA15* 00 00 02 02 04 04 06 06 08 08 010 010 012 012 014 014 89819100 89879100. 89879100 89819100 89879100 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89819100 89819100 89879100 39879100 89819100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 1 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 I 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 I 1 2 2 1 1 ·2 2 1 1 2 2 1 1 2 2 1 21P2830 19P1802 .12P1829 19PIA03 07PIA2? 12P2814 15P2828 16Pl A08 19PIB26 13PIA30 13PIA21 19P1824 19P1816 WEI* READ* READ* REPlY* REPlY* REPl y* PRTAO. 8l=0 OAl* OAl* OA2* OA2* OA7* 89819100 89879100 89819100 89819100' 89879100 89879100 89879100 89879104 89879100 89819100 89879100 89879100 89819100 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 1 1 2 2 2 1 1 2 2 ~ . 89633300 C PAGE- NO 27 VI T(l FROM 15PIB03 15P1804 15PIB04 15PIB05 1 'i Pl B05 l5PIBOb 15PIBOb l'iPlB07 15PIB07 15PIB09 15PIBOq 15PIBI0 1'j PI B10 15Pl fH2 15p 1 B12 15PIB13 15PIA13 15PIB14 15PIB14 15PIBl5 15PIB15 15PIB16 15PIB16 lSP1R11 15PIB11 15p 1 B18 15PIB18 15Pl B19 15 P IB19 15PIB21 15P1B21 1,)PlS22 15Pl B22 15P1B7.2 lSP1823 15PIB23 1 ,)P 1 ~2 3 15PlAO 1 lSP7.402 l5P2A04 15 P2 A05 1SP2406 15PlA01 15P~ AOS 15P2A09 15P2A09 15P7AI0 15P 2AIO 15 Pl All 15P2A12 15P 2A13 ,RE LlPl B;>O 14PIB2Q 1 qPl A1 c; . 'I qp 1 A11 14P1 B7J 14P1B20 19P1A14 20P2 Bl5 12PIB21 14P1A1A 1 qPl A07 19P1 ~ 01 14P1BIA 12P2BOl C7PUH2 07Pl Bl1 25PIBOq 20P2Bl'i 01 P1 Bl4C7P1B15 12p2 A24 12PZ A2l 07PIB16 01P1B17 2bPl BOq 26P2B2A 01P1BIA o1PlI:nq 26P2BOl 12PIB30 19P2B 31 01Pl!}2? 12P2 Al41 qPIBOl 16PZ B07 07Pl B21 25PIB20 18Pl B05 1 qPl Al~ 16PZAOA 19PJ.A24 16P1J:\04 19P2 A30 18 P2 A2' lZP2!i21 lOP2 B14 2 OP2 SIS 17P2fJ27 16P2 A09 1 7P2 Al 7 17P2820 89633300 A L I S T SIGNAL-NAME OA7* nA8* OA8* OAQ* OA9* OA10* OAIO* CHI* CHI* OA13* OA1.3* OA14* OA14* 01 01 03 03 05 e5 07 07 09 09 011 011 013 , 013 015 015 WRITE. WRITE. REJ EC T* RfJ ECT* REJECT* Me* ~C· MC* SElO.UTPI1O SE.U.PRT. US). ' Of-GATED UlT.S~C.PPO BUSY RR* C /J6 08 08 010 010 US2* A13 All A 8 tJ.L. 893791()O 89879100 89819100 89819100 891179100 tl9879100 89919100 89379100 89819100 89819100 89819100 89819100 89879100 89d 79100 89879100 89879100 89879100 89879100 89819100 89319100 89879100 89879100 89819100 89319100 89819100 89819100 89819100 89819100 89879100 89819100 89d19100 89819100 89819100 8~819100 89679100 89819100 89879100 89819100 89879100 8<;819100 89819100 89819100 89819100 89879100 89819100 89~ 19100 89319100 89819100 89819100 89879100 8'1819100 1 o 7/A FR .L EV TO. L EV 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 Z 1 1 2 2 1 1 2 2 1 1 Z 2 1 1 2 2 1 1 2 1 3 1 1 2 3 2 1 1 Z 1 1 2 Z 1 1 Z I Z 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 Z 2 1 1 2 2 1 1 2 2 3 1 I 1 ) 2 Z 1 2 1 1 Z 2 1 1 2 1 Z 2 9-81 P~GE NO ,28 FROM 15P2A14 151>2A15 I'5P2AI6 15P2Al7 15P 2A18 l5P2A19 15P7.A20 15P2A21 15P2 A22 1 5PlA2 3 15PlA24 15 P2A25 15P2A26 15P2A21 15P7A28 151>2A29 15PlBO 1 15P2B02 151>2803 15P2B04 15P7A05 15P2B06 15P2B01 15P2B08 15P2B09 15P2809 15P2BI0 15P2810 15P?8l1 15P2B12 ISP2813 15PlB14 15P2815 15P2816 15P2811 15P2818 15P2819 15P2820 15P2B20 15P2822 151>282'j 15P2824 15P7.B25 15P2826 15P2B21 15P2B28 15P2B28 15P2B28 15P2B29 15P2S10 l'iP2831 9-82 WI R E fJ 1 7P2 A0417P2Bll 17PlA21 18P~ BO~ 16PIB31 19P1 BOl 19P2810 16PIA20 17P2802 I1P2A06 19P1827 19P1 A21 16P2406 16P2402 l6PIB21 19P1 AOq 15P2820 16P280416P1829 18PIA19 I1P2B14 16PIA06 19P2 A28 16P2A01 20P2A06 12P2 AZ\12P2A21 20P2Alf. 16P2 AI4I1P2A16 11P2819 I1P2A15 11P2BOl 11 P2A08 17P2Bl' 16PIA19 16Pl A21 16P lA 7.7 15P2 BOl 16PIAI416PIB23 19P2 A07 1 QPl A27. 16P2404 16P2AOI 21P2A2R 12P2A19 15Pl A23 16PIB20 16PIB27. 16Pl A2~ l I S T A B 1 o 1/8 SIGNAL-NAME W.l. AO At; AI0 CA6SM* A /0 CLE~R ECU .NUM.MAT 89879100 89879100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89'S 79100 89819100 89879100 89819100 89d79100 89819100 89819100 89819100 89879100 89819100 89a 19100 89819100 89819100 89819100 89879100 89a19100 89319100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 eC;819100 89319.100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89379100 89819100 89879100 89819100 89819100 89819100 89819100 PCKM T.E.O ALTOl A2 A3 SCOSEO SCOSE2 SEO SCI lit SEO SC3* AOAF+MC* AODR ERR RESCTRBSY. LA OIFF=O* EOPMC T 8SV* S ET • AC() R • ER A8 READ LA US4* 07 01 09 09 USl* A14 A12 A15 Al A1 AA MC T AS EX T • RESC TRBSV* R fSeTRBSV. TDl I NCR 1A seOSE 1 SCOSE3 SEOSC2* SEOSC4* PRT~Q* PRTAO* PRT ~O* TD2 ADOR. ERR. CTRLR BlSV FR. LEV fO.LEV 2 Z 2 2 2 1 2 2 2 Z Z 2 Z 1 2 2 2 1 2 1 2 2 2 1 1 2 1 2 1 1 2 2 2 2 1 1 7. 2 1 1 2 2 7. 1 2 2 2 1 1 2 1 1 1 1 1 1 1 2 3 1 1 1 2 1 1 2 1 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 2 " , 1 2 2 2 1 1 2 1 1 1 1 1 1 1 2 3 1 1 1 89633300 A PAGf NO W I 29 FROM 16PIAOl 1&P1A01 t6P lA02 16PIA03 IbPIAO'l 16P1A04 16PIA05 16PIAOb 16PIA06 IbPIA01 16PIA08 16PIA08 16Pl A09 16PIAIO 16PIAI0 16Pl All 16PIA12 16Pl Al 3 16P1A14 16PIA14 16 P 1A15 16PIA16 16PIA17 16PIA18 16PIA19 16PIA19 IbPIA20 16P lA21 16PIA22 16PIA23 16P lA25 16PIA26 16PlA26 16PIA21 l~Pl A21 l6PIA27 16PIA28 16Pl A30 I6PIA31 16PIBOl 16PIB03 16P1803 16P1B04 16PLB05 16P1805 1~PIB01 16PIR08 16P1809 16Pl Bt 0 l6PIB12 16PlB13 TO 12PIAlO 27 P2 A2R 17PlfHQ 27PIB2Q 12 P2 Al R 12P2B2l) laPl All 15P2 BO'17PIR30 18P2B04 17PIA14 15PIA .31 11P1810 12PIA14 21P28lR I1Pl B01 17P2B 1l 18P2AIA 1 7Pl B28 15P2B22 l8P2B2' I1PIBlr; 11PlA21 17Pl A12 I1PIA22 15P2B18 15P7. A21 15P2BIQ 19P2A18 18P2 A01 19P2B2Q 15P28.11 19P2 AOR L9P2B19 19P2 BIC) 15P2B20 19PIB30 L9P2 414 19P1A15 12P2Al1 12Pl B2l 21P2A 19 15P2 A06 21PIB31 12PIAL9 19PIA24 lR P 2A.21 11PIAli 11P2 Alft. I1Pl R 11 11Pl A24 89633300 A R E L 1ST SfGNAl-NAP'E SRQ* S .. O* W+C SPI* SPJ* SCF 00 ( SC F I M REOUEST. REAO READ OSA-BUfFl· BL=O Bl=O CAl-StHFT* S~SM* SRSM* RESUME TD4 SMP )CO TOI TOI BuFF1SUfF2· BUFFI-BUFF2 T03 SET NEfO* Me MC T .E.C AUTOl TAS EXT. LOST [ATA Bl>CYL SET ALARM. C TRLR BUSY C TRlR BUSY RESET CTR B RESET eTR B RESCTRB5Y. OOF-LA-AlHO SET CTR SEE T01· SCRODe SCR 1M ss* S5* UlT.SAC.PfOO S WRITE* S WRf TE* OS#\ ceNNECT WRITE ENABL SHI.FT-BUUfl I NH IB IT NEE 168 [ T 5. ell CAU SHIFT. AB 1 vi.l. 89d79100 89379100 89879100 8<;81<;;100 89819100 89d79100 89879100 89819100 89879100 898.79100 898191uO 89879104 89819100 89819100 89d 19100 89819100 89819100 89819100 89!J 19100 89619100 89819100 89819100 89a 19100 89819100 89819100· 89619100 89819100 89d 19100 89819100 89819100 89819100 89819100 .89819100 89819100 89819100 89819100 89819100 89819100 89319100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89619100 89819100 89819100 89819100 89819100 o 7/8 FR.l EV TO.l EV 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 2 2 1 2 2 1 I 1 2 1 2 1 2 2 1 1 2 1 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 1 2 1 2 2 1 1 1 1 9-83 PAGF ~O 30 FROM 16PIB14 16P1815 16P1816 16P 1819 16Pl B20 16Pl820 16P 1821 16P1811 16P1822 16P1823 16P182) 16P1824 16Pi825 16P1826 16PIB27 16P1828 16P1829 16P 1829 16P1830 16P1831 16PlAOl 16P1A02 16P2A04 16P2A06 16P2A07 16P2A08 16P2 A09 16P2A14 16P2801 .~P1802 ...16p2S03 loP 2804 16Pl805 16P?806 16P2807 16P2808 16P2809 16P2810 16P2811 16P2812 16PZB13 16P2814 16P2815 16P2816 l6P?817 16P2818 16P28L9 16P2820 16P2822 16P2823 16P2824 9-84 W [ R t: L 1ST TO SIGNAL-NAME lRP2819 17P181A 1 7P2 All) 18P2A 11) 17PIAlO 15P2829 17P1809 15P2 A2B 15P2R30 1l)P2R21 18PI A31 19P2821) 17PIA06 19P2 A16 19PIB2A 18P2820 1l)P2 BOl 19P 18 31 19PIA20 1l)P1AIA 1l)P2B21 15P2 A21 15P2B26 15P2A16 15P280A 15P2A04 1l)P2Ali 15P2BlI 19P2A2A 18 P2 807 .17P2lJOI) 15P2BO? 19P2S06 17P1829 15PIR21 10P182() 1 QP2A 17 lAP2A12 19P2 A20 1 QP2824 17P2A27 1 AP2A04 18P 1 AOI) 17PIB27 17PZR11) 18P2 A09 18P2 BOt. SMP Xl BUfF2 fULL* 011 LOAD SH(f T* T02 T02 AOAF+MC* AOAf+f4C* AODR.ERR* (NCR lA· I NCR lA ADDRESS ECP EOS T02* I HI T Q MC* EOPMCT BSY* EOPMCl BS.,* EOP A/Q CLEAR SEOSC4* SEOSC3* SEOSC2* SE~ SC •• US4* US3* US2* US1* LA ARCUR-CA· eN LA DIFF=O* CLf'R CONTR AUTOLOAD2* 18P2AO~ CA13* WR ITE GATE· DRIVE fAULT DRI VE SE* 17P2B21 19P2 B2l 19P2Al'i e'fa. ~C* AUTOLOAD INDEX GATEIl SECTOR GA Tt: DRIVE RIl. PUR* R+W+C+CC CAl c;* CA20* WRITE C,T,* READ GAlE. CA1* CA65~* A B 1 w.L. 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89d79100 89879100 8981.9100 89879100· 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89819100 89819100 89879100 898"19100 . 89879100 89879100 89879100 89819100 89819100 • 89879100 89379100 89a 79100 89879100 89819100 89879100 89819100 89379100 89879100 89d 79100 89319100 89879100 89819100 89819100 SC;819l00 o 7/8 fR .LEV TO.LEV 2 1 2 2 2 1 1 2 L 1 2 1 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 2 1 2 2 2 1 1 ' 2 1 1 2 1 1 1 1 1 1 1 .. 1 1 1 1 1 1 1 1 1 1 1 1 1 ·1 1 1 1 1 1 1 'I 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 89633300 A P4.GE "'40 31 \of FROM R r L I S T SIGNAL-NAME TCl W.L. FR.LEV TO. LEV 18P2A17 89819100 89819100 89819100 89819100 S9B 79100 89.3 19100 89319100 89879100 1 1 I 1 1 1 1 2 1 1 1 1 1 1 1 2 11PlA06 ·11PIA08 17P1A09 17iJIAI0 l1PIAll I1PIA 12 16PIB25 18PIB2A 19P2 AO& 19P 1817· 18P2 All 16Pl AlR EOS CWA-COUNT. leL* D.NO.CCMP. R+W+C SET NEED. 89819100 89879100 89819100 89879100 89819100 89379iOO 1 2 2 1 1 1 1 2 2 1 1 1 I1PIA14 11P.lA15 I1PIA16 I1P1A17 17PIAIA 11PIA19 11Pl A20 17PIA20 I1PIA22 11P1A22 I1P1A24 > 17PIA24 17PiA25 17PIA21 17PlA28 11PIA30 17Pl A31 11PIA31 I1P1803 I1P1S06 17PIB07 17P 1809 l l P IB09 17PlslO 17P IB14 I1P1815 17PIB16 11PIB11 17PIB18 I1PIB19 17P1819 11PIB22 17i)lB24 I1PIB27 11Pls28 16Pl A08 19P2AOq ,l8PIB31 19P2 A2l 19P2A13 19P2B20 18P2810 16Pl820 18Pl B2') 16Pl Al 9 16PIB11 19P2 A29 l8P2A12 19PIA21 19P182l 18PIA13 16PlB09 18P2 BOli 18P2A16 19PIB29 16PIAll 19P2B03 16 Pl B21 16PIA09 18P2B13 16PlA16 19P2A12 lapl A'27 16Pl 81 ') 16PIA02 18P2A19 18P2S17 19P2Aor; 16P2816 16PIA14 8L=0 DOf-LA .DOF IN(T CLEAR CKWO* READ OATA T02 T02 MC MC CAU SHIfT. CAU SHIFT. SECTOR GATE W.CKWO· INPUT CKWO Bl-BORAO"· SHlfT-BUUFI SHlfT-BuUFI S15 CKWO SHIfT RESUME AOAf+MC· AOAF+MC* CAL-StilfT* DATA 8UFf1-BUFf2 (CMPARE BL-LOAO. BUFF2 FUll* W+C 1 1 2 2 1 1 1 2 2 1 1 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 TOI 89879100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 89879100 89879100 89819100 89819100 89819100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89379100 89819100 89819100 89879100 2 1 1 2 1 2 1 2 1 2 1 2 17P 1A25 19P2B15 SECTOR GATE 89879100 3 3 > 18P280Q 19P2Bll 18P2811 18P2AIO lAP2AO,) "18P2AOl A 8 1 o 7/P, CA1J* LA CLEAR* CA12* CA15* CA11* CAI8* CA16* 511 16P2B25 16P2826 16P2821 IbP2828 IbP1B29 1&P2B30 IbP2831 17PIA04 SEE BElOH I 18P2BO~ 89633300 c . W+C CLEAR-SHIfT CKWDll w~ITE tATA. 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 2 2 1 1 2 LENGTH 99-85 P&\GE NO 32 FROM I1P1829 I1P1829 11P1830 17 P1830 17P1831 I1P2AOI 17P2AOl 11P'A02 I1P2t,)2 I1P2 AOft 17P'A04 17P2A05 17P2·A06 17P2A06 11P2A01 17P2A08 I1P2A08 11P2A09 17P2A 1'0 I1P2Ali 17PlAll 11P2A12 17P2Al2 17P2A13 17P2A13 17PlA14 17P2A15 I1P2A15 17PlA16 17P2A16 17P2Al1 17P2A17 17P2A 18 17P2A19 17P2A19 11PlA20 17P2A20 I1P2A21 17P2A21 17PlA22 I1P2A23 17 P lA23 17PlA24 17P2A25 17P2A26 17P2A21 17P2A21 17PzA28 17P2801 11P2S02 I1P?' 802 9-86 W .1 TO 19P2812 16 P2 80r. 16PIAO~ 19P2All l6PlR12 20P2819 19P1824 19P18~~ 20P2820 15P2 Al~ l8PIA2'i 19P281~ 15P2A21 18P1826 19P1801) 15PlRl& lAP1819 lAPIA24 18P1R1" 19P181A 20P2A21 20P2824 19PIAll 19P1 All) 20P2821 16P1810 18P1811 15P2814 15Pl812 18PIR21 lAPIA2B 1 C)P2A11 1qP1AO'i 26P2A2l 19P1 ROA 19P181' 20P2 !32A 15P2Al" 18P1820 18P2816 IBP280' 16PIA17 19PIA2C) 16P1816 19P1822 1 9P2 827 16P2811 19P2822 lAP'- AO' 15P2A22 18Pl A26 R f l 1ST S·IGNAl-NAME AUTOlOA02* A1JTOlOA02* REAO READ 168ITS.OII OA2· OA2* O.Al* OA1* AO AO AODRESS* A3 A3 010 Al A1 A6 . A5 OA4* OA4. OA9* OA9* OA8* OA8* IN~ 181T NEE All) A15 A14 Al4 A13 A13' ADOR.CKWO=O OA12. OA12. OA11* OA11· A10 A10 stHFT CLOCK T03 T03 LOAD CKWC I 011 SAMPLE CHEC A+W.C+CC R +W+C+CC WA-AOR (NCR.SECTeR A2 A2 A is 1 W.l. 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89879100 89819100 89819100 89819100 89879100 89a 79100 89879100 89819100 89819100 89879100 89879100 89819100 89(119100 89879100 89819100 89879100 89879100 89819100 89879100 89819100 89a19100 89819100 89a19100 89819100 89819100 89819100 8«;879100 89319100 89879100 89979100 89679100 89879100 8C;d 79100 89879100 89819100 89819100 89819100 89879100 89879100 o 118 FR.lEV TO.lEV 2 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2 1 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 2 1 1 2 2 1 2 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2 1 2 1 1 2 2 1 1 2 1 1· 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 2 1 1 2 2 1 89633300 A PAGf NJ ,. 33 fRUM l7P 2803 17P2R03 17P? B04 17P 7.804 17P2805 17P2R05 17P2806 17P' 806 11P2R01 I1P28l18 l7P2ROa I1P2B09 11P2809 I1P2810 I1P2810 11P2811 I1P2811 I1P281l 11P2812 11P2R13 11P2B13 11P2814 11P2814 17P2815 I1P2816 17P2816 I1P1.817 11P2811 17P 2818 11P2818 11P2819 17P2R19 I1P2820 I1P2820 I1P2822 17P2822 llP2823 17Pl824 11P2828 18PIAOl laPl AO 1 18P1A02 18P1A02 lAPl A03 lSPtA03 18Pl A04 18PIA04 18P lA05 lAPlA06 18P1A06 18P1A01 I R F TO 15P2B Pi 18PIB2Q 20P'-A20 1 C;P 1 A lO 16P260':\ 19P2 A2' 20P2A17 19PIA26 19P1B07 20P2Al9 19P18lft 19PIA17 20PlBIA. 20P2821. 19PIA19 19P2B01 16Pl AI' Il)PlBl1 18P1 A21 18PIA20 1 t;p 2 All) 1l)P2 BOI) 18PIR 1.1 16P2811 19P1 AOI 26P2A22 20P2All 19P1 A01 19P1801 26P2R22 15P2811 18P1A)0 18PIRZ,. 15P2Al1 20P282ft .1 9Pl AI,. 16P282' . 19P2830 lQP2f.H\ 14P1821) 21P2AOI 28P2A24 13P1805 l4Pl A2\ 28PIR21 28P1A1l 14Pl A2" 16P2811) lJP1825 28P1821 28Pl831) 89633300 A L [ S T SIG~AL-NAME Al Al OAO* OAO* Ct\ CYl ON CYL OA3* OA3* R+C+CC OA1* OA1* OA6* OA6* OA5* OA5* T04 J04 A·4 A4 At; A9 ·A8 A8 READ GATE. OAI4* OA14* OA13* OAI3* OA15* OA15* A12 A12 All All OA10. OAI0* WRI TE GA TE* ADDRESS 12· WRITE 5A15 5A15 SAO SAO 5 All SAil SA13 SA13 CA20. SAl SAl SA8 A 8 W.L. 89819100 81}S19100 89619100 89819100 8'1819100 89819100 89319100 89819100 89819100 89d19100 89819100 89319100 89819100 891)19100 89819100 89cJ 19100 89819'100 89819100 89819100 89819100 89819100 89'319100 89819100 89819100 89819100 89819100 89319100 89819100 89879100 89819100 89879100 89819100 89879100 89819100 89819100 89879100 89cJ 79100 89819100 8-1819100 89819100 89819100 89819100 89:1 7910·0 89879100 8')819100 89/J 19100 89819100 89819100 89819100 89879100 8«;879100 1 o 71P" FR .LI:V TO.LEV 1 2 2 1 1 2 2 ·1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 .1 1 1 2 1 2 2 1 1 2 2 1 1 1 2 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 I 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 I 1 2 2 9-87 PAGE ·NO SEE BELOW 14 W [ R E FROM TO 18PIA07 18PIA08 18PIA08 18P1A09 18P1A09 18PIAIO > 18P1All 18PlA12 18PIAl3 18P1A14 18PIAlS 18PIAl6 18PtAl7 18PIA18 18P1A19 18P1A20 18PIA2J, 18PIA22 18P1A23 18PIA23 18PIA24 18PIA25 18PIA26 18PIA26 18P1A27 18P1A28 t81ltA30 18PIA31 18PlA31 18PIBO 1 18PIBOI 18PlB02 18PIB02 18PlB03 18PIB03 18PIB04 18PIB04 18PIBOS 18P180S 18P1806 l4PI AO; 13P1823 28PIA06 28P1809 13Pl808 19P18l0 16PIAO; 19P1813 17PIA30 19P2B04 19P1A31 19PI All 19P1820 lCJP1804 15P2804 I1P2813 19P1 A21 . 19PIA18 19P2A27 17P2Bl2 17P2A09 17P2A04 11P2802 19P2A19 17P1817 17P2A11 17P2B19 19P2A26 16P1821 14PiA08 28PIB21 28P1A26 14PIB05 13Pl A21 28P2B25 28PIA30 14P180c) lSP2AOl ·19PIA04 13P1A09 28PIA21 28P182c) 14P1A22 13PIA05 28plBOl 28PIA09 13PIA26 19P1811t 19PIA12 17P2A15 19P2A04 18PU~06 18P1807 18P1807· 18PlB08 18P1808 18P1809 lBP1809 IBP1810 18P1812 18Pl813 Pl8 >1 P1A f4 1 18 9-8.8 18P2B01 lIS T SIGNAL-NAME SA8 SA3 SA3 SA4 SAlt CACWA9 REQUEST. CACWAI0 8l-BO~POW* ARCUR CWA* CACWAO CACWA12 CACWA3 CACWA15 SET.AOOR.ER A9 CACWA4 CACWA6 A4 A4 A6 AO A2 A2 8l-LOAD. A13 A12 INCA TA INCR TA SA12 SA12 SA10 SA10 SAl SAl SA14 SA14 SElD.UTPII0 SEL D.UTP 110 SA6 SA6 SA9 SA9 SA2 SA2 SA5 SA5 ·CACWA8 CACWAl1 A1S CACWAI REQUEST* A 8 1 W.l. 89819100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89879100 89819100 89819100 89879100 89819100 89879100 89"819100 89879100 89819100 89879100 89879100 89819100 89879100 89879100 89819100 89819100 89879100· 89819100 89879100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 o 7/8 FR.lEV TO.lEV 1 1 2 2 1 1 2 2 1 2 2 2 1 I 2 1 2 2 2 1 2 1 I 2 2 1 1 1 2 1 2 2 1 I 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 1 3 1 1 2' 2 1 1 2 2 I 2 2 2 1 1 2 1 2 2 2 1 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 1 3 LENGTH 8" 89633300C PAGE NO W I 35 Fi{OM l8PlFH5 1~PIBI6 18P1B11 18P1818 18PIB19 18P1B20 18P1821 18P1B22 18 P IB23 l'iP1 B24 18P IB 25 18P1826 IBPIB26 18PI827 18P1828 TO 19P1A08 19PIB21 19P IA 06 1 7P2 AID 17P2 AD8 11P7.A21 19P1Blg 19PIBI~ 18PIB29 18P1829 18PIB30 18111831 18PIB31 18P2AO I 18P2A02 18P7A04 lRP7A05 18P2A06 18P~ A07 18P2A08 18P7 A09 18P2A 1 0 18P2All BP~ All 18P2AI2 18P2A12 18P2A15 181) 2A16 1HPl A17 18P2A18 IRP? A).9 IsP2A19 IRP;tA21 l!:JPlA22 181>2 A2 3 lAP2A24 laPlA25 18P7A26 18P2A27 18P2 Al8 18P2A2Q 18PlA30 11P281411P2820 1 7Pl A2l I1P2A06 19P2 B28 I1P2A16 19PIB2S 17Pl AOR 17P2B03 19P2AIO 19P2B 11 17PIA16 19P2B08 16P2830 171>2801 16P'!. 81416P2B29 19P2 B05 16 PI A2~ 16P2B20 16P2 B18 16P2B28 11PIAll 19P2B09 11PIA2'i 16P2/l10 16PIBIQ 17PIB03 17P1A0416Pl All 17P1819 19PZ AOI 16PIBOA 15P2A08 13Pl fU5 13PIA16 13p1311. 14Pl RIO 1:3PIAIO 14P1815 14Pl Al 'i 1-4PIAI0 18P2:l01 l8P 1 ~.11 18PIB~8 89633300 C KE l A B 1 I S T o 7/8 FR .LEV TO.LEV SIGNAl-NA~E W.L. CAC~A 13 C ACWA2 CAC wAl4 AI) A7 AIO CACWA5 C AC wA 1 AS All MC A3 A.3 Al-4 (liliA-COUNT. C kA-CGUNT At Al ADOT INDE)C* OOF DOF CA18* I NC R • SEC TOR CA19* CAL 7* CAR ST* Bl>CYl CA13* CA7* CAIS* R+k+C R+W+C SEC TOR GAlE SEClOR GAlE LOAn SHIFT* 515 Sl1 89319100 89879100 89879100 89::179100 89879100 89879100 89819100 89819100 8987 18PIB30 16Pl A27 16P1A27 I1PIA19 17P2 A2A 16P2821 16P2817 16Pl B2418P2820 I1P2A27 18P182& 16PIA25 ACORESS* ADOT (NDt:)(* RESET eTR B RESET CTR B READ CArA I1P28Z4 ZOP2806 15PIB21 10P1819 ZlP2B31 26PZAll Z6PZ Al1 25P2All 25P2B12 21 pl A2421P2A08 21PIA01 21PIA18 25P2814 26P1831 26P1828 25P1829 25P1828 22P2A17 22PIA19 21 Pl817 21PIBIR 24PIB01 21P2A2? 24P2AIO 30Pl821 21P1816 21PIA16 21P2A3I 26P2Bll 21PIA1? 26P2814 2SPIA2R 21 P2 82 7 2lP2A14 23PIA04 89633300 C W~-ADR DRIVE fAULT PUR. ADDRESS EOP MC* R+W+C+CC A3 SET ALARM. ADtRESS 12* wRI TE. WRITE* AUTOLOAD 8EA CNS5M* CNS6M* CNS5l* CNS4l* TMSW. AUTRSW* SlK* PRGST CNS1l.* CNSCM* CNS3M* CNS2l* CNS3l* RIND OPST· SWEEP* ENTER* csp* PCL* CSO. cePE* I NT. SW. STopes· vee CNS4M* 32KW eNS 7M* ClR EG* MCCS* PRTSW CSPR A 8 W.L. 8'1B19100 89 R7Cll 00 89879100 89819100 89819100 89819100 89819100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 a'7a 79100 89819100 89879100 89879100 89879100 89819100 89819100 89819100 8-;879100 89879100 89879100 8987910.0 89819·100 8987.9100 89819100 89819100 89879100 89879100 89879104 89879100 89819100 89819100 89879100 89819100 89879100 89879100 1 o 7/8 FR .LEV TO.L EV 1 1 3 ~ 1 2 2 2 1 1 1 1 1 2 2 1 1 1 1 Z 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LENGTH 9" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9-93 PAGE "'i) 40 FROM 20P1812 20P1813 2~P1811t 20P18l5 20Pt811 20P1819 20P1822 '20P1823 20P'824 '-OP 1825 20P1826 20P18l7 20P1828 20P1829 20P1830 20P1831 20P2AO 1 20P2A04 20P2A04 20P2A05 20P2A05 20P2A06 20P'-A06 20P2-A01 20P2A07 ZOPZAll ZOPZA 11 2C)p,- A12 20P2Al4 ZOP2A14 20P2AIS ?OP2A16 20P2A16 20P'-A17 20P2A17 20P2A18 ?OP2A19 20P2A19 20P2A20 ?OP2A20 20P2A21 20P2A21 ZOP2A23 20P2A24 20P2801 20P2802 20P2802 20P2803 20P2804 20Pl804 70P?805 9-94 WI R F T!J 24P2~04 25P2S13 26P182Q 26PIA11 2ljP1831 2ljPl A11 21P2811 23P1821 22P18'4 2. lP2A21 21P2A30 24P2820 21P2A04 23P1829 21PIA21j 22PIA31 27P2 All 22P2802 19P1802 19P1 A28 25Pl812 Z5P2A28 15P280Q 27P282" 21P1806 17P2817 26P2824 2SP181!) 15PIA11j lljP2821) 26P2829 26PtAll ISP2810 25P2804 17P2806 22PlA08 t7P280A ZI)P282' 25P2 AOIj 17PZR04 17P2Al1 25PZ All 20P2A24 20 P ZA21 21P2Al1 21P2AOl) 23P18l1 22P2RIA 23P2A29 21Pl A17 2lPIA25 l I S T S (GNAl-NAME CSM. CNS6l· CNS2M. ehS1M. eNSOl· eNSlL. PRF(PFIND' OPINO SlS P4M REAe eSA. GOeSW. esv* PRl81T e5)(* OVFL. RfAO* RfAO* CO QO 07 07 PEL· PEL. OA1.3. OAI3* INTll. 06 .06 vElM* o~ 09 OA3. OA3. INOINO. OA7. OA7· OAO* OAO* flA4. OA4. -12V -12V SGl* Goes Gees FINT RNI IHH CRO* A8 1 C 7/8 w.l. 89879100 . 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89i:l79100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 , 8987910" 8981910'"' 89879100 89379100 89879100 89879100 89879100 89879100 89879100 89·:179100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89:1 79100 89879100 8c;a79100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 119879100 FR .lEV TO.lEV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 2 1 2 I 1 1 2 2 2 1 1 2 2 2 1 1 Z 2 1 1 1 2 2 1 2 Z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 . 1 2 2 1 Z 1 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 1 2 2 1 2 2 1 1 89633300 A PAGF NO 41 W I R F TJ FR1P<4 20P2 BOb 20P7.BOb 20P2B01 lOP2 R01 20P2808 20P2B08 20P2B12 20P2BIZ 20P2811 10P2813 20P2814 20P2B14 20P1B15 20P281S lOP2alb ZOP281b 20P2818 20P1818 ZOPZB19 20P2819 20P2820 20P2820 20P28ZZ 20P2B12 ZOP281J ZOPlB23 20P2824 ZOP2814 ZOP2825 lOP181'S ZOP2B26 20P2826 ZOP2827 ZOP2828 20P28Z8 2LP lAO 1 21PIA02 21P1A03 ZIPIAOS 21PIA06 21PIA07 2IPl A08 21PIAOfl 21PIAI0 21PIAll 21plAll 21PIA12 21P1A12 ZlPlAl2 21PIAl3 21PIA14 19P2831 22P1ROl 25P2A24 1SP1 A1ft. 25Pl R20 21P2A21 1 qPl AO'.l llP182'» 22P2A24 1 QPl ROI 26P1812 15P2 AOq ISP1814 ZI)P28Z8 26P1AOR 15PlAI0 ZSPZA21 11Pl RQ9 I1P1AOl ZSP1A3n 2'SP2A02 17P2AO' I1P281n 2SP2824 26P1AO'S I1P2 All 11PZA 12 26P1AOl 23P2831 15PIB07 17PZ82, Z6PIA30 29P2Alft 26P2 BOft. 17PZAZO 23P2A10 26P2Al1 2SP2All 22PIAOt 24PI B2t 20P1410 24PIB22 22PIA27 22P2Bl9 24PI All 22P2AIO OIjPlA 21 22P2 A01. 20P1804 26P2829 23Pl AIS 89633300 A lIS T SIGNAl-NA~E W~ITE. WRITE* 04 04 Me* . Me. RFPLV* REPLY* R EJ ECl* REJECT. 08 08 OS OS 010 010 OA6* obb. OA2* OA1* OA1* OA1· OA5· OAS. OA8* OA8* OA9. OA9* CHI. CHI. OA10* OAI0· " SS OAl1* OAl1· 15 XGCM XGOl 17DBB SlK. XIS FIEI KOVf WIlO WfCO 32KW 32KW 32KW WEZM. Pt41 A B 1 W.L. 89319100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89819100 89879100 89819100 89<:179100 89819100 89879100 89879100 89879100 89879100 89319100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 o 7/8 FR.lEV TO.LEV 1 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 Z 1 1 2 2 1 1 1 2 2 1 1 1 1 I 2 2 1 1 2 2 3 1 1 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1. 1 1 2 2 1 I 1 2 2 1 1 1 1 I 2 2 1 1 2 2 3 I 1 2 9-95 PAGE NO ft2 ~ IRE FROM TO 2lPlA15 21Pl.A15 21PIA16 2lPlA17 ZlPIA17 2lPIAl8 21PIA19 21P1A20 21P lA21 ZlPIA22 21P1A23 21P tA2ft 2lPIA24 ZIPIA25 21PIA26 21PIA21 21P1A28 21PIA30 llPIA30 21P1A3l llPIBOl 21P1B02 '21P1803 21 PI B04 llplS05 21P1806 21 PI BO.6 21P1807 21PIB08 21PlS09 21P1810 l1PIBll 21P18l3 llP1813 2lPIBlS 2lPlB16 21PIB17 21PIB18 21P1818 2IP1820 21PIB2I 21Pl822 21PIB23 21P1B24 21PlB24 2IPIB25 21PIB25 21Pl826 21 PI B21 21P1828 2iP 1B29 24P IB 02 23P2811) 20PIA3l 20P2B04 22 Pl 820 20P1Al1 2 2P2 BIR 23Pl A09 26PIA21 21)PIA02 25PI82'» 25P2Al' 26Pl A02 20P1830 26PIBI6 24PI AO~ 23PIA20 23P2BIR 22PIB22 25P2AOl 23PIB2ft. 26P281R 24PlBO, 22Pl430 23P2810 lOP2401 19PIAIf) 22P2807 22PlA20 9-96 24PIB2~ 22P2A l ' 26PZB21 22P1 Bl' '3P2Bl9 23Pl A19 20Pl A.30 20PIA21 20PIA24 22P2RlI 26P1821 21 P2B21 21P282R 2 2P2 AOR 22PlA05 23P2A21 2·3PIB19 20P2805 21)P1B1Ft 25Pl BOR 22P2alft 26PIB2Ft l r S T S·IGNAl-NAME ENI ENI STOPCS* RNI RNI PRGST E (NT (RC I< PLM GSL* LeNl GSM* GSM* PRT81T AM FS* KENIl* R4 R4 MCNl 14 XSQM oSx SKT 16 PEl* PEl* 03* A1M 015 QVFl* OVfW* noo* 000* SSI INT.SW* SWEEP* ENT ER* ENT ER* GlM GPEC* RGPWR INOIND* EN120* EN120* eRO* c .. o* Al 030 KPNIl lCNM A 8 1 ill .l. 89819100 89379100 89i:J 19100 89819100 ·89879100 89879100 89819100 89879100 89879100 89879100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 891179100 89819100 89879100 89819100 89819100 89879100 89819100 89IJ 79100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89d 1.9100 89819100 89379100 89819100 89819100 89819100 89819100 89819100 89819100 o 118 FR.l EV TO.LEV 2 1 1 1 2 I 1 2 1 2 2 2 I 1 I 1 1 1 2 I 1 2 1 1 2 1 2 1 2 2 1 I 1 2 2 1 1 1 2 I 2 2 1 2 1 1 1 ·2 1 2 2 2 1 1 1 2 1 1 2 1 2 2 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 2 89633300 A )AGE NO W I 43 TO FROM 21PIB30 21PIB31 21 P2 AO 1 21P2A02 21P2A04 21 P~ A05 21P2A05 21 P 2A06 21 P2 A01 21P2A08 21P2A09 21P2AlO 21P 2AI0 21P2Ali 21P2A12 21P2A13 21P2A13 21PlA14 21P2A14 21P2A15 21P2416 21P2411 21P2A18 21P 2A19 21P2A20 21P2A21 21P2A22 21P2A23 21p2A24 21P2A25 21P2426 21P2A21 21P2A21 21P2428 21P2A29 21P2A30 21P2A]1 21P2801 21P2802 21P2B03 21P2804 21Pl805 21P2806 21P2806 21P2801 21P2808 21P28u8 21 P2 809 21P2810 21P2811 21P2812 26 P2 407 25P2B03 25PIA2l 26P2401 20PIB28 24P2 B21) 20P2B02 23P2821) 25P2 B2~ 20PIAOQ 24P147..7 23P2B17 22PIAIR 27P2811 21P1427 20P2BOl 21P21322 ZOPI BOq 21P280t 25Pl BO? 25P1425 26P1404 25Pl A2ft 21PIA26 25P281n 26Pl R04 20P1A2" 23PZ A27 20PIAOR 2.3P2413 24Pl Al I) 20P280R 13P2fHl 15P2 B2R 26P1820 20P182" 20P1801 25P2AOI 25Pl B2l 26P280l 21P1428 22P2820 22P1819 23P2 A2A 25Pl AI0 21P1801 21P2 81 Q 22P1 Al q 23PIA21 23P2811 23P2A1r; 89633300 A R E L J S T SIGNAL-NAME MCNM GML PLL PMM GOC SW* Goes GOCS KRNI WEll* AUTRS"* PEf* FEO· fEO* NORMAL MPRY SGI. SG1* PRT SW PRTSW TAOtI TA2l* TA1M [ TA3l M)ll1 ITA4l* TA2M PCL* [NR TMSW* JENI DEL2 MC* MC* PRTAO* CLPXM BEAC VCC PML GLl GMM C VI 01* PH3 R3 R3 [NTOl DfEO DFEO OPST ClRIR 0002* Cl~fQ AB 1 W.L. 89d19100 89819100 89319100 89d 19100 89819100 89819100 69819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89d79100 898191UO 89819100 89819100 89819100 89819100 8,}819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 8981910<\ 89819100 89619100 89819100 89819100 89819100 89819100 8981~100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 o 7/fJ fR.LEV TO.lEV 2 1 1 2 1 1 2 2 1 1 2 2 1 2 2 2 1 2 1 1 2 2 2 1 1 . 2 2 1 2 1 1 1 1 1 2 3 1 1 1 2 2 2 2 2 2 1 1 1 2 2 1 1 2 1 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 .2 1 1 2 2 1 2 1 1 1 1 1 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 1 1 2 9-97 PAGE NO 4-4 FROM SEE BELOW WI R E TO l 1ST SIGNAL-NAME PRFCPFIND) ENI4* VIO* TAOH TAll JKCK 21P2813 21P2814 2lP2815 21P2 R16 21P2R17 2lP2R18 21P2819 21P7820 21P2822 21P2B23 21P2R24 21P2B25 21P2B26 21P2821 21 P2B28 21P2829 21P2830 > 21P2830 21P2B31 22PIAOI 22PIAOl 22PlA02 22Pl A03 22PIA04 22PIA05 22PIA05 22PIA06 22PIA07 22P1A08 22PIAI0 22P1411 22P1A12 22PIA14 22PIA15 22 PI A17 22PIA18 22PIA19 22PIA19 221>1A20 22Pl A21 22PIA22 22PIA23 22PIA24 - 22PIA25 22PIA26 22·Pl A21 22PIAZ8 22PIA30 22PIA31 22P lA31 22P1801 20PlS2? 22Pl AI0 2 3Pl AOft 26P1802 25Pl A04 22P2A19 22PIA27 25P1804 22P2B15 21PIB17 27P1830 24P1BOh 27P2 B30 20PIBOA 15Pl A09 22P2A2'J 15PIA20 12P2 A25 20P1A07 21PIA05 24P2 A23 24P2A 15 2_3P2B30 25P182l 21PIB 24 24PIA07 23P2824 23PIR03 23P2 B16 21P2R14 23PIB21 27 PI 826 24P2A09 24PIA14 23 P2 A()9 21P2AI0 20Pl A27 21 P2 B09 24P2B29 25P2A30 21P2B19 24P1A28 24PlB27 28PlA12 23P2 B14 21 PI A09 23PIB2? 23PIAzr; 20Pl B3l 24P2A21 25PIAOl ENI3* ENI4* GOCS CRI* T3 OEt* CNT f2* FEO* OPST OPST F IE23 AQC* IE R2 RI SPBM. EAO* FIEI 0002 IN4I csx* C sx* C2 > 21P2B31) 19P1A'.l2 ~IEZ* 9-98 iE TA2l MPC 10 PRTM* PRY 32M MCCS* T.P. MC WEZ* WEZ* BfA 17* 11* I TR MOS CO E N120* ENI20* OP20* MMPC A B 1 o 1/8 W.l. 89079100 89879100 89a 19100 89879100 89a 19100 89879100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 , 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 FR. lEV TO.lEV 1 1 1 2 1 2 2 2 1 1 2 1 1 1 1 2 2 1 1 1 2 1 2 2 2 1 1 2 1 1 1 1 2 2 3 3_ 1 1 1 1 2 2 1 2 2 1 2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 1 2 1 1 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 2 1 1 2 I 1 1 2 1 2 2. 2 2. 2 LENGTH 1111 LENr,TH 7" LENGTH 1411 89633300 C )AGf NO 45 FROM 72PIB02 22PIB03 22PIB()4 22PIB05 22PIA06 22PIR01 22P 1808 22Pl B09 22PIA10 22PIB12 22PIR12 22PlR13 22PlB14 22Pl B15 22PIR16 22PlB17 22PIB18 22PIB19 22P1819 22P1B20 22P 1B22 22Pl822 22Pla2J 22P1824 22P1B25 22P IB26 22P1827 22Pl828 22Pl.B29 22P2A02 22P2A02 22P2A04 22PZA05 22P2A06 22P2A01 22P2A08 22P2A08 22P2A09 22PlAIO 22P2A11 22P2 A12 l2P~A12 22PZA13 22P2A15 22P2A 16 22P2A11 22P~ Al8 22P2A19 22P2A19 21P2A10 22P2A20 W I TO 24P2A22 24P1B31 25P2 BJ 1 23P2RC7 24Pl Bll 25Pl All 23PIB21 25P2A10 24P2AOI 24P1B09 21PIBl~ 24PlA13 23PIA,27 24P1 B18 24P7BOb 28PIBl) 23P7. R20 21P2B06 24Pl A,24 21PIA 1·1 21PlA]O 24P1823 23P2A27 20P1824 24P1 Bll 23P2B2b 21P1A2l 24Pl All 23P2A01 21 PI A12 23P2R08 26PIA22 25PIA18 RE l I S T SIGNAL-NAME Il:5 02* C3 N41 Sl-il CLPC* EXT C1 00* 000* 000* MOSl OP FNI2E* T4 CPSM* FIEF R3 R3 PNI R4 R4 (NR SLS WE* RN[ 21 * INO WXLl* IN32 32KW 32KW SE XFl 2~P2828 RN112* 2.3P181'i 21PIB23 20P2AIR 26PI411 21 PI All 23P2801 21P1810 20P2AOl 23P2809 13P1810 WXM 23P281~ 20PIA,21 23P2 AOS 21P2818 23P2BOS llP180A 26P2B23 89633300 A (NOINC* INOINO* S 1M WPO MOl* OVFl* O"Fl* JITR* WXl SHADR RIND JOP2 JKCK JKCK A1M A1M A B 1 C 7/8 w.L. 89819100 89;]79100 89319100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 898'19100 89879100 89879100 89819100 39879100 89879100 89819100 89819100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89379100 89819100 89919100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89879100 FR .LEV TO.LEV 2 1 1 1 1 1 1 1 2 2 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 2 1 2 2 3 2 2 2 2 1 1 2 1 2 1 1 2 2 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 2 1 2 2 3 2 2 2 2 1 I 2 1 2 1 1 2 2 2 1 1 2 2 1 2 1 9-99 PAGE NO 46 FR'lM 22PlA21 22P2A21 21P2A22 21P2A23 21P2A23 22P2A24 22P~A25 21P2A26 22P2 Al7 22P1A28 22PlA29 22P2A30 22P2ROl 22P2S02 22P2803 22P2B04 22P?R04 22P2B05 22P2B07 22P2 BOl 22P2R08 22P2BI0 22P2Bli 22P2812 22P2B13 12P2B14 22P2B15 22P2B15 22P2B16 22P2817 22P2B18 22P2818 22P2B19 22P2820 22P1R20 22P2B22 22P2823 22P2B24 22P2B25 22P2826 22P2827 22P2828 22P2829 22P2830 23Pt AO 1 13PIA02 23PIA03 23P1A04 23PIA05 23Pl A06 23PIA07 9-100 W I TO 20P1825 27P2Al') 24PIA08 21P2829 25P2B 30 lOP2Bl1 24PIB17 23PIB16 24Pl B25 26P2ROA . ,2')P2 A04 21 PI 804 20P2B06 20P2A04 24P2 A07 24PIBOA 21P2 B27 25PIB22 21PIBOl 24P2 BOI 2~P2B02 23P2A24 2lPl R18 23P2804 23P2A23 21P1828 23PIA26 21P2822 24P1830 2'3P1826 20P2803 21PIA19 21PIAI0 21 P2 Bor; 23PIA22 23Pl A31. 26P2 A09 24P lA 19 20P2Bl1 24P2 A12 24P2A28 26P2 A14 23P1BOA 24P2B10 27P2 A30 26P2A19 24P1826 20P1BI0 33P281l 21P2Bl') 27P2 A2'J RE l 1ST SlGNAl-NAME P4M P4M RP Me MC REJ ECl. IRJ* GOAO* BS AUG1M AlU1AM SKT WIH lE* REAO* M R NII1. RN (11* SFl 03* 03* F23 JRNI* ENTER* JOP K ITR KPNIl MPC MPC 01* X15 EINT EINl KOVF PH] PH) ACR* ZI TSH PlAOO R EPl y* so RX15 AC07M PH2 OEl TAUG* "CC2 XSEl7M CRO CSPR GCM2 VIO* OSC* A B 1 o 7/8 W.l. 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89d 79100 89879100 89879.100 89879104 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 B9819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89819100 89d 19100 898'79100 89879100 89819100 89879100 89879100 89879104 89879100 89879104 89819100 89879104 FR.lEV TO.lEV 1 2 2 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 .2 2 1 1 2 1 1 1 2 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 2 1 1 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 1 1 1 89633300 A 'AGE NO WI R F 41 TO FROM 21Pl AO 8 23PIA09 23PIA09 23PIAIO 2lPl All 21Pl Al2 23PIA13 l.lPIA14 23P1A15 ?3PIAlb 21PIAl1 23PIA19 21PIA20 2l P IA21 l.lPIA22 23PIA23 23PIA23 23PIA24 23Pl A2 5 23P lA26 2JPI. A2 7 23PIA28 23P 1 A30 ·23PIA31 23PIA31 7.1PIBOl 2JP1801 21PIB05 23P1B08 23P180CJ 23P18l0 23P18l1 23PIB12 231»1813 21PI8L4 23P1815 2)P1616 23P1Bl1 231)1817 23P1818 23P1819 21P 1819 21P1820 23P1821 23P 1621 2JP1822 23PIB22 23P1823 23PLB24 21P1B24 23P182b l1P2BOq 24Pl A2l 21PlA20 25P1 Ale; 2 5Pl A14 25PIA20 24Pl ~t)4 24P2A2~ 21PlAI4 24PIB24 24PUHO 21PIB15 21 PI A2R 22PIB21 22P2B20 7.4Pl A31 21P2B 10 24P2B07 22Pl A30 22P2B15 22Pl B14 24P2R04 25P18I7 24P1807 22P282' 21P2B08 2lP1A07 24PIA 10 22P2829 26Pl A15 22P2A15 21P2821 '4plB2CJ 25P1Bl"1 25P181CJ 22P2AC1 22P2A26 21 P2 823 24P1811 24PI801) 25P1803 21P1B21) 24PIA26 22PIAll 20P2R02 24Pl AO'22PIA2A 20P1823 21 PL 801 2ltP2826 22P28L7 89633300 A l 1ST SIGNAL-NAME GOM I JRCK ( RCK XlCK CCK YCK WP .A PHI A01 12 SSl KENn* INO PH} ClRIR ClRIR ADY. IN4l MPC OP MDS2 YTAUG ACR. ACR* OFEO MMIHl 13 PH2 x,,-eK WXl GND WQ PCK AlCK W)eM GOAQ. 10 10 11 CPO· C~O. AD2 Goes GOCS 0002 0002 OPIND 14 14 Xl5 A B 1 W.L. 89819104 89319100 89879100 89819100 8913 19100 89819100 89819100 89879100 8Cid 79100 89879100 89819100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89819100 89819100 89S19100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89879104 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89d79100 89819100 89819100 8CJ819100 89819100 89819100 89819100 89819100 89819100 o 118 FR.lEV TO.lEV 1 2 2 1 2 1 2 2 1 2 2 1 1 1 2 1 1 1 2 1 2 2 2 1 1 2 1 1 1 2 2 1 2 1 2 Z 1 2 2 1 1 1 2 1 1 1 2 1 2 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 1 2 1 1 2 2 9-101 PAGf ~] 4A FROM 23P1S26 23P1827 23P1828 21P1829 23P1830 23PIB31 . 21P2AOI 23P2A02 23P2A04 23P2AOS 23P2A01 23P2A08 23P2A09 23P2A09 23P2AI0 23P2AI0 23P2 All 21P2A12 23P2A13 23P2A14 23P2A1S 21P2A16 2'JP2A11 23P2A19 23P2A20 23P2A21 21P2A22 23P2A23 23P?A24 23P2A24 23P2A25 23P2A26 21P2A27 21P2A27 23P2A28 23P2A29 23P2A30 23p2BO 1 23P2801 23P2802 21P2B03 23P2804 23P2805 21Pl806 23P2B07 23P2R01 2'JP2B08 21P2B08 23P2B09 23P2810 23P2BIO 9-102 W I TO 24P182i' 22PIBOA 24P2 AI420PIB29 24PIA22 24P2 B12 24P2B1.3 24P1Al1 24-P2 B2A 22P2AIB 22PIR29 24P2827 24P2A30 22Pl All 21PIAOl 24P2 B2426P1819 ~24PIR21 2lP2 A2~ .25Pl A22 21P2B12 24P2 B16 24P2BIA 24P2811) 24PIBIA 21PIB24 2SP2All 22P2811 22P2BI0 24PIA0424PIAOf) 24P2A27 22PIR2!t 21P2A2~ 21P2BOb lOP2 B0414P2BOl 22P2All 24P2 All 22p2BOA 24PIROl 22P2B12 22P2A19 24P1 A06 24P2.B 14 R E l 1 S T SIGNAl-N'ME XIS EXT NO CSv* B8CK M021* WC;A* MOSI OPE. JOP2 IN32 MOSO CNTE2* CNTE2* IS 15 A"'CK Rl JENI SGl ClREQ 016* EIS* RE1F ENI2E* fNI20* MCK KITR JRNI* JANI* RN122* REl8* INR INR R3 RNI 03* M01* MD1* F23 MOSE JOP JKCK OPO. N41 22PIBO~ N~l 26P2 A2Q 22P240? 22P2A13 32KW 32KW J HR* 16 16 21PIBO~ 24P2B21 A 8 1 W.L. 89B 79100 89819100 89879100 89879100 89879100 89879100 8~8 79100 89879100 89819100 8981~100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89B 79100 898 7~100 89879100 89819100 89879100 89819100 89819100 .89879100 89879100 89819100 89819100 89879100 89819100 89879100 89319100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89879100 89319100 89819100 89819100 89819100 89819100 o 7/B FR .lEV TO.lEV 1 1 2 1 2 2 2 1 1 2 2 1 . 2 1 2 I 2 1 1 1 2 1 2 1 1 2 1 2 2 l 1 1 2 2 1 2 1 l 1 2 1 1 1 2 1 2 1 1 2 1 2 I 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 1 1 1 2 2 1 1 2 2 2 1 1 1 2 1 2 2 1 1 2 1 1 2 1 1 1 1 2 2 1 1 2 2 2 1 89633300 A AGE NO ft9 F~1M 21P2Bll 23PZB1Z 23P2B1.3 23P2B14 21P2815 21P2816 23P2B 1 7 23P2B18 23P2819 21P~820 23P2822 23P2B23 23P2B24 23P2825 23P2B26 21P2626 23P2821 23P2828 23P 2828 23P2829 71P2830 23P2831 24Pl AOZ 24P1A03 24PIA04 24PIA05 24PIA06 2ftPI A01 24PlA08 24PIA09 24P1AI0 24PIAli 24PIAIZ 24PlA13 24PIA13 24PIA14 24PIA15 24PIA16 2ltPIA17 24PIA18 24PIA19 24PIA19 24PIA20 24P1A21 24PIA22 24P lA23 2ftPIA24 2~PIA25 2~P lA26 2ltPlA27 2lt-PIA28 WI R E TO 21 P2 Bll 24PIA2~ 2lP2A1n 22Pl Alb 21P1Al1) 22P1AOA ZlP2 AI0 21PIA30 21PIBll 22PIBIR 21PlAll 24P2801 22P1A06 21P2A06 2 2P1 B2" 24P2A29 22P280ft 22P2A06 24P2830 24P2Alr; 22P1AOl 20P2 B21) 21P1822 21PIA21 23P2 A2ft 23P2A21) 23P2BOt. 22PIAOr; 22P2A2? 25PIA09 23P1801) 21P1Al1 22P182R 22 Pl811 23P2A02 22P1Al1) 21 P2 A26 25PIA19 25P1811t 25PIBl1) 25PIA12 22P2824 25PIA16 21PIA09 23P1830 26PIAIQ 22P1819 26Pl B18 23PIB20 21 P2 A09 2?PIA2'l 89633300 A t 1ST SIGNAL-NAME 0002* R2 SHAOR EAO* ENI ENI3* FEO* R4 000* FIEF SG1· WM OP20* KRNI RN121* RN121* RN111* RNII2* RNI1Z* ITR MOS CHI* 0002 F S* JRNI* RN122* OPO* EN120* RP XTAOD . 11 WRQ WXll* MOSI MOSI DEl* OEl2 MXll MTAOO M)e2l" PTAOO PlAOO M)ell IRCK seCK MXIM R3 "XO" AD2 PEF* R2 A B 1 W.L. 89879100 89879100 89879100 89879100 89819100 8913 19100 89879100 89879100 89879100 89879100 89819100 8913 79100 89879100 89879100 89879100 SC;679100 89879100 89819100 89619100 89819100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89319100 89819100 89819100 89819100 89819100 89879100 . 89879100 89819100 89819100 89879100 89819100 89819100 89879100 o 11 P, FR.LEV TO.lEV 1 1 1 1 1 1 2 1 2 2 1 2 2 1 1 1 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 2 2 1 1 1 1 1 1 . 2 1 2 1 2 1 1 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2 2 2 .9-103 PAGE NO 50 FROM 24PIA28 24PIA31 24P1601 2ftP1802 24PIR03 24P1804 24Pl805 24Pl806 24PIB07 24PIB08 24P1809 24PIBIO 24P1812 24P 1612 24PIB13 24P1814 24Pl B15 24PLBL6 24PIR17 24PIB18 24PIBl8 24PIR19 24PIB20 24PIBll 24P 1622 24P1622 24PIBZ3 24P18Z4 Z4P16Z5 24P1826 24P1626 24PI821 24P1621 24P1628 24Pl 82 8 2ft.P I B29 24PIB30 24P1831 2ft.P2 AO 1 24P~A02 24P2A04 24PZA05 24P2A01 24P2A01 24P2A08 24P2A09 24PZAIO 24P2A11 24P2A12 .24P2A12 2ltP2A13 9-104 W I TO 2.3P2Bll 23Pl A23 23P2B03 21 PI A1 ') 20plA2') 23PIAIl 23PIB18 21P2B25 23PIA31 22P2804 22PIBl? 23PIA11 21Pl A30 22PIB25 21PIBl1 26PIBl') 26PIA16 25P1818 2 2P2A 2'i 23P2A20 22 PI 81 'i 25PIAl1 27P2BlO 21 PI A06 23P1826 21 PI AOR 22PIB22 23PIA16 22 P2 A27 23PIAOl 27P2A09 23P2 A12 22PIA24 21P1809 l6P2 AlA 23PIRIl 22P2Bl6 22PI BOl 22P1BIO 25P2A27 20P181Z 26P2819 22 P2 BOl 25P28C1 26P2B20 22Pl Alit 20P1A21 23P2BOl 2?P2B26 2SP2AC8 25PIB25 R E l 1ST S IGNAL-NAJ4E R2 ClRIR MOSE ENI CSP* WP 11 PRY AOR* RNI11· 000* 12 we· we. fa MX2M MX3M MXOl IRJ* ENI2E* ENI2E* Sll MOEl 088 XIS XIS R4 AOI ee eRO eRO Rl Rl 015 015 WO 01* 02· 00* AO* CSM* MX1M M M . MX5M T3 eso* MOI* SO SO S3 A a W.l. 89879100 89379100 89879100 89879100 89879100 89879100 89879100 89979100 89819100 89379100 89819100 89879100 89879100 89879100 89379100 89819100 89819100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89319100 89819100 89819104 89819104 89819100 89819100 89319100 89819100 89819100 89819100 89819100 89879100 8981910-0 89819100 89819100 89819100 89319100 89819100 89819100 89879100 89879100 89819100 89879100 89819100 I o 7/8 FR.lEV TO.lEV I 2 I 2 I I 1 1 2 1 2 2 2 1 2 I 1 1 2 2 1 2 2 1 1 2 I 1 1 1 2 I 2 1 1 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1 2 2 1 . 1 2 2 1 1 2 1 2 2 1 1 1 2 I 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 1 1 89633300 A AGE NO 51 FROM 24P2A14 24P~A15 2lt-P2 A 15 24 D 2A16 2lt-PlAl7 24P2A18 24P2A19 24P2A20 24P2A21 24P2A12 24P2A23 24P2A24 24Pl A26 24P2A27 24P 2A28 24P2 A29 24P2A30 2lt-P2aOl 24P2BOl 2ft.P2B02 24P2802 24P2803 24P2B04 24P2805 14P2806 241»2807 2lt-P2808 24P28LO 241»2.110 24P28l1 24P28 L 2 24P2813 24P2814 241»2815 2lt-P2816 24P2817 l4P 2818 24P2B19 24P2R20 l4P2B22 24P2823 24Pl824 24PlB25 24P26lb 24P28l7 24P2828 24P28~9 24P2830 24P2B31 25P1AOl 25 P IAOl W I R E TO "23P182A 22PIAO' 23P282CJ 25P2819 2SPl A26 25P2809 2SP2AIA 26P2 A25 22Pl A 31 22PIBO, 22Pl AOl 25P2A21 23PIA14 23P2 A2b 22P2821 23P2 B2~ 23P2A09 22P2R01 23P1A30 21PIBOl 2SP2AQ6 23P282l 23PIA28 26P1A10 llPl81f. 23P1A24 26P2 ALA 25P2Bl6 22P2830 22 PI 80~ 13Pl831 23P2AOl l3P2801 23P2AlQ 23P2Al& 25P2820 23P2Al1 25P2 A20 20Pl821 25P2A26 23P2810 23P2AIO llP2Aor; 23Pl B2~ 23P2AOA 23Pl AOft 22Pl A2Cl 23P2B2A 21)P2 A25 26Pl AOt 22PIBOt 89633300 A l I S r SIGNAl-NA~E NO ITR I TR M)c7l 52 SI M)l6L XTAUG.-. C 5)(* 165 17* ATAUG WA RElS* 8X15 RN[Z1* CNTE2* 03* 03* 05)( QSX WM MDSl MX4M T4 AOY* M)c6M OElTAUG. DEL TAUG* SHI M021* W9A* Nlt1 REIF 016* MX5l E[S* MX4l eSA* OTAOO 16 15 Goes 14 MOSO OPE* FIE23 RN112* XTAUGL C2 C2 A B 1 W.l. 89879100 89879100 89B 79100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89379100 89879100 e9a 79100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 8987.9100 89879100 89879100 89879100 89879100 89879100 89d 79100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 o 7/8 FR.lEV TO.LEV 2 2 1 2 2 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 2 1 2 1 2 1 1 1 1 Z 2 1 2 1 2 2 2 I 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 9-105 P4GE NO 52 FROM 25PIA02 25PIA04 25PIA08 25Pl A09 25PIA09 25PIAIO 25Pl A11 25PIA12 25PIA12 25P1413 25PIA13 25PIA14 25Pl A14 25P1415 25Pl Al 6 25P1416 25PIAll 25PlA18 25P lA18 25PIA19 25PIA 19 25PIA20 25PIA20 25PIA21 25P1422 25PIA23 25PIA24 25Pl A25 25PIA26 25PIA26 25P1428 25P1428 25PIA30 25PIA31 '5P IBOI 25P1802 25P1803 25PIB03 25Pl B04 25P1808 25P1808 2,P1809 25PIBIO 25P1812 25PIB13 25P IB13 25P1B14 25P1814 25PIB15 25P1BL5 25P1816 9-106 WI R E T1. ZlPl A22 21P2B17 19P2BOI 26Pl AOCJ 24PIA 09 21 P2B07 19P2B02 24P1419 26P141'l 26P1411 22PIR07 26Pl A14 23P1411 23P1410 27Pl AO" 24PlA20 24PIB19 22P2A05 26P1A18 24Pl A16 21PIB01 23P141' 26Pl AlO 281>L410 23P2 A14 21P2 AOI 21P2AIA 21P2Al~ 24P2Al1 26PIA2b 26PI A2B 20PIB07 20P2RIQ 20Pl BIQ 26P1401 21P2A15 26P1803 23P1819 21P2B20 26PIROA 21PIB27 15P1811 lOP2A12 20P2405 23P181 ~ 26P1B11 26PIR14 24Pl A17 21P1404 24PIA1B 2lP1826 l IS T SIGNAL-NAME GSL* TAll 02 XTADD XTADD (NTOL 01 PTADO PTADO CU~O* ClRO* OCK QCK XlCK MX3l MX3l 51l XEZ XEZ MXll M)(1 L YCK VCK AlU3L 5Gl PLl I TA3L ITA2l* 52 52 ClREG* ClRfG* OA2* CNSIl* CI TAOl CRO* CRO* TAll 030 030 03 INTll* 00 pel< PCK MTADD MTAOD M)e2l MX2l Al A 6 1 W.l. 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89819100 8987'9100 89879100 89879100 89879100 89879100 89879100 89819100 89819100 89879100 89879100 89819100 89879100 89a 19100 89819100 89879100 89819100 89819100 89819100 89819100 89879100 89619100 89819100 89879100 89819100 89879100 o 7/8 FR.lEV TO. LEV 2 1 2 2 1 1 2 1 2 2 1 1 1 1 1 2 2 1 2 1 2 2 1 2 2 1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 1 2 1I 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 2 2 89633300 A ·AGE NO W IRE 53 FROM 2,PIB17 25Pl811 25P1818 25P1818 25PIB19 25P1820 25P1820 25P1B2l 25P1822 25P1823 25P1823 25P1824 25P1825 25PIB25 25P1826 25PIR21 25P1828 25P1829 25P1830 25P1831 2Cj P2A01 25P2A02 25P2A04 25P2A04 25P2A05 25P2A06 25P2A06 2ljP2AOl 25P2A08 25P2A08 25P2A09 25P2A09 25P2A10 25P2AI0 25P2411 25P2A12 25P2A13 25P2A13 25P2A15 25P2Al& 25P2Al1 21)P2A18 25P2A18 25P2A20 25P2A20 25P2A21 25P2A21 25P2A22 25P2A23 25P2A24 2SP2A25 TO 23PIA30 26P1811 74P1816 21P1802 23P1814 20P2B08 15P1 R2l 21P280' 22P2805 26P1821 22PIA04 28P1812 26PIB25 24P2A13 21PIA23 2AP1810 20PIA20 20Pl A18 28PIA 11 20P1811 21P2801 20P2820 26P280? 22P2 A2q 20P2A20 26P2A06 24P280' l1PIA31 24P2 AI? 26P2AOR 25P2811 26Pl A21 26P2A10 22P1809 20P1 Aor. 21P1A24 23P2A2? 26P2A1J 28P2A12 28P2 All) 21PIA03 24P2A19 27P1 All 27PIBOR 24~2819 24P2A24 26P2A21 20P2819 20P2A21 20P2B01 24P2831 89633300 A l J 5 T S IGNAl-NA .. e YTAUG YTAUG M)COl MXOl AlCK MC. Me* Gll SFL CO CO AlUOl 53 S3 lCNl AlU2l CNS3l* C~52l* AlUll CNSOl* FMl OA1* ALU7AN· ALU1AM OAO* QSX 05X NCNL SO 50 ALUOAN AlUOA,. Cl C1 CNS5L* GSM* MCK MCK AlU6l AlU5L XGOl MX6l MX6l MX4l MX4l ATAUG AfAUG OA6* OA4* 04 XTAUGl A 8 1 W.L. 89819100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89819100 89819100 89879100 89819100 89819100 89879100 89819100 89879100 89819100 89819100 89819100 89819100· 89879104 89819100 89d 19100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89819100 89819100 89879100 89919100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 o 7/8 FR.lEV TO.lEV 2 1 1 2 1 1 3 2 1 1 2 2 2 1 2 2 1 1 2 1 2 1 t 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 2 i 1 2 Z 1 1 2 1 1 2 J 2 1 1 2 1 1 3 2 1 1 2 2 2 1 2 2 1 1 2 1 2 1 i 1 1 2· 1 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 Z 1 1 Z 1 1 2 1 9-107 PAGF NO 54 FROM 251)2A26 25P2A26 25P2A27 25P2A28 25P2A30 25P2A30 25P2802 25P2803 2SP2804 25P280S 25P2806 25P2807 2SP2801· 25P2809 25P'809 2SP28l0 25P2811 2SP2B12 25P2tU 3 25P2814 2SP2 B1S' 25P2816 211)P28l7 25P2619 25P2B19 25P2820 25P2820 25P2822 25P2824 25P2825 25P2826 25P2B28 25P2B29 211)P2830 25P28'30 25P2B31 25P28.31 26Pl AOI 2&PlA02 26P1A03 26PIA04 26PlA08 26PIA09 26PIA11 26P1A12 26PIAl] 26PIA14 26PlA15 26PIA16 26PIA16 26PIA17 9-108 W ( R E TO 24P282' 26P2A26 24P2AO, 20P2A06 22Pl A21 26P2A30 26P2A04 21P1831 20P2A17 26P2826 .26P28U't 24P2A07 26P2807 l4P2AIA 26P2809 21P2 A20 2SP2AOQ 20PIA07 20Pl Bl1 20P1Al1 28P2A09 24P2810 28P2Al7 ?7PIBl1 24P2A16 24P2817 27 PI A09 20P2Al9 20P2822 20P2A14 ?6P28 11 20P2B11) 21P2A07 26P2830 22P2A21 26P283t 22P1804 25Pl AOI 2lP1A24 25P180l ZiP2A17, 'OP2816 25Pl A09 20P2 A16 25PIA 12 2SPIA11 25PIA14 23P1809 24Pl BPi 21P1R 19 22 P 2A09 liS T S IGNAl-.NAME OlADD OTADD AO* 07 Aoe. Aoe* AlU7Al GMl OA3* SHAM HIGH M M 51 51 (TA4L* AlUCAM CN54l* eNS6l* eNS7l· AlU7l OElTAUG* ALU4l M)e7l M)e7L ")cSl MX5l OA7* OA5* 06 SHAL 05 WEZL· Me ~c C3 C3 C2 GSM* CI TAIM 010 XTADO 09 PTADO ClPC* OCK XMCK MX3M MX3M S 1M A 8 1 W.l. 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89i79100 89879100 89879100 89879100 89879100 89879100 89819100 89d79100 89879100 89879100 89879100 89879100 89a 79100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 o 7/8 FR .lEV TO.lEV 1 2 2 2 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 2 2 1 1 2 1 1 .2 1 2 1 2 1 2 1 1 1 2 1 2 2 '- 2 2· 2 1 1 2 1 1 2 2 2 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 1 2 1 2 '- 2 2 2 2 1 1 2 1 89633300 A 55 'AGE "'0 W IRE FROM TO 26PIA18 26PIAl9 26PIAl9 26P 1 A20 26Pl A21 26PIA22 26P 11422 26PIA23 26PIA24 26PIA25 26Pl A25 26PIA26 26PIA21 26Pl A28 26PIA30 26Pl A31 26P1802 26P1803 2&P1804 26Pl808 26PIB09 26P1812 ?6PlR13 26P1814 26P1815 26P1815 26P1816 26P1811 2£tP1818 26P1818 26PIBl9 261)1820 26P1821 26P1822 261)1823 26P1824 26P1825 2£tP1826 26P1821 26P1828 2&PIR29 26P1830 261)1831 26P2AOl 26P2A02 26P2A04 2ltP2A04 2-6P2A05 26P2A06 26P2A01 26P2A08 25PIAIR 7.4PIA21 21Pl Alii 25PIA20 28PIB2R 22 P2 AO~ 26P182' 21PIA21 26PIA25 26PIA24 26P2 All 25PIA26 25P2A09 25Pl A~a 20P2826 20PIBl5 21P2816 7.5PIB 03 21P2A7.t 25P1808 15P1817 20P2B14 25PIBl1 25PIB14 24P1811t 27PlBl7 21PlA26 25P18l1 24PIA7.5 21Pl A14 23P2All 21P2A29 21P1820 26PIA22 25P1823 28PlA2R 25P1825 2lP1829 2 8Pl A21 20PlAl5 20P1814 28Pl A22 20P1A14 21P2A02 20PlB24 25P2BOl 26P2801) 20P2821 25P2A06 21 Pl830 25PlACR 89633300 A l [ S T S .(GNAt-NAME XfZ MXIM MXIM yeK ALU3M SE SE PlM HIGH HIGH HIGH S2 ALUOAM ClREG* OAle· CNSIM* TAOM CRO. TA2M 030 011 08 PCI< MTAOO MX2M MX2M AM YTAUG "XOM "XO" AMCK CtRXM GlM SE CO ALUCM S3 LCNM AtU2M CNS3M· CNS7.M* AlUl" CNSCM* PMM OA9* AlU1AL AlU1At nA8* QSX MCNM SO AB 1 W.L. a 118 fR .LEV TO.LEV 89879100 89879100 89819100 89819100 89879100· 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 . 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 1 1 7. 1 2 2 1 1 1 1 2 2 1 2 1 1 2 7. 2 2 1 2 1 89879100 89819100 89879100 89879100 89879100 89819100 89819100 89819100 89879100 89819100 89879100 89819100 1 1 2 1 1 1 2 2 1 1 1 1 2 1 7. 2 1 1 1 1 2 2 1 2 1 1 2 2 7. 2 1 2 1 1 1 7. 1 1 1 1 2 2 1 1 1 1 2 1 2 2 2 2 2 .2 2 1 1 2 1 1 1 2 1 2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 2 9-109 PAGE NO 56 FROM 26P2 A09 26P2AIO 26P2All 26P2A12 26P2A 12 26P2A13 26P2A14 26P2A15 26P2A16 26P2A17 26P2A18 2C.P2A18 26P2A t"9 26P2A20 26P2A20 26P 2A21 26P2A22 26P2A23 26P2A24 26PlA25 26P2A26 26P2A28 l6P2 A29 26P2A29 26P2A30 26P'-801 26P2A02 26P2803 26P2804 26P2R05 26P2B07 26P2B08 26P2809 26P2810 26P2810 26P2811 26P2812 26P2B13 26P2B14 26P2815 26P2816 26P2816 26P2811 26P2B18 26P2819 26P2B19 26P2B20 26P2B20 26P2B22 26P2B23 2bPlBl4 9-110 W I TO 22P2823 25P2A10 20PIA03 26Pl A21) 26P1810 25P2Al"4 22P282A 28P281h 28P2809 21PIAO, 24P280A 2iPIA2l 23PIAO' 27P1821 24P2801) 25P2A21 17P2816 17P2Al~ 15PIAIB 24P2A20 25P2 A26 24P182B 23P2 B08 21P2A06 25P2A30 15Pl Bl9 25P2A04 21P2801 ?OP2 B2B 26P2A04 25P1801 22P2A28 25P2809 26P281ft 26P2Al, 25P2826 lOPl B01 20PIA04 20P1801) 28P2811 26P2810 25P2BOft 28P2A16 21P180' 21P1820 2ltP2AOl) 24P2AOB 21Pl A21 17P2BIR 22P2A20 20P2A11 R E lIS T S {GNAl-NAME llTSH C1 CNS5M* HIGH HIGH MCK A007H AlU6M AlU5M XGQM M)l6M .. X6M XSEl7M MX4M NX4M A TAUG OA14* OAI2* 012 XTAUGM OTAOO 015 32KW 32KW AOC* CJlS ALU7AN GMM OA11* AlU7Al M AUG7M SI HIGH HIGH SHAl CNSftM* CNS6M* CNS7M* ALU7M HIGH HIGH AlUftM XSQM MX1M M)1'" MX5M MX5M oAt5* A7M OAl3* A B 1 W.l. 89879100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89879100 8987910.0 89879100 89879100 89819100 89979100 89879100 89819100 89819100 89d19100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89819100 89819100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89819100 89819100 8(1) 79100 89819100 89319100 89g 19100 o 7/8 FR.lEV TO.lEV I. I 2 1 2 2 1 2 1 I 1 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 1 1 2 1 .1 1 2 1 2 1 2 2 2 1 1 r 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 1 1 2 1 1 1 2 1 2 1 2 2 2 1 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 1 2 2 2 1 1 2 2 1 1 89633300 A PAGE NO 51 FROM 26P2B25 26P2B26 26P2B21 26PZB28 26P2829 26P2829 Z6P2Bl0 26P2 B31 21P lAOI 21Pl AD 1 21P1A02 21Pl A03 21PIA03 27PlA04 21PIA04 21Pl A05 27PIA05 27PIA06 27PlA06 27P 1A01 21PIA07 21Pl A08 27PIA08 21Pl A09 27PIA09 21PIAI0 21P1A10 27PIAll 21PIAll 21Pl A12 27P lA 12 21PIA13 21PlA14 27PIA14 21PIA15 27P1A15 21PIA16 21PIA17 21PIA18 21PIA18 21PIA19 21PIA19 21P1A20 21PIA20 21P lA21 21PIA22 21P1A22 ·21PIA23 21PIA23 27PLA24 27PIA25 W I TO 15P 1A 19 25P2B05 21PIB11 l5PLBIA 21 Pl All ZOP2415 25P2B30 25P2B31 28P1B03 13PIA1? 29Pl AOft. 13P1AIO 28Pl AOI 25PlB15 3lPlB04 28Pl R04 13P1810 25PIAlb 31P180f) 13PIBll) 28PIBOR 28PIB07 13PIB11 25P282l) 31PIBOq 13PIA16 2AP180~ 25P2AIA 31PIBll 28PlB05 13PIA15 29PIA20 26Pl BIR 31PIBl1 31PlB14 26PIA19 29PIB24 29PlA30 14PIA1'28PIA15 2 8Pl A2~ 14PIA14 . 14Pll\15 28P1 A21 2QPl431 26P2 A18 31P1821 31PIA2l 26P28Z0 29P1829 28P181Q 89633300 A R E l I 5 T SlGNAl-NAME 014 SHAM OVFW* 013 WElM* WEZM* Me C.3 soo 500 Doun 501 501 M)(2 L MX2L 502 SD2 MX3l MX3L 504 504 505 505 MX5l M)5L 506 506 M)c6L MX6l 507 501 OOUT8 MXOM M)COM ,",X1M MXIM DQUTIO DOUTll 5011 5011 SOlS 5015 5012 5012 OOUT12 ,",X6M MX6M M)l5M MX5M Doun3 CAA15 A B 1 w.L. 89819100 89879100 89319100 89819100 89819100 89819100 89819100 89819100 89819100 8981.9100 89819100. 89819100 89819100 89879100 89319100 89819100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89819100 89379100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 o 118 FR .lEV TO .LEV 1 2 1 1 1 2 2 2 2 1 . 2 1 2 2 1 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 2 1 2 1 2 2 1 2 1 2 1 1 2 2 1 1 2 1 I 2 2 1 2 I 2 2 1 1 2 2 2 I 2 2 1 I 2 2 1 2 1 2 2 1 l 2 2 2 2 1 1 2 2 2 1 1 2 2 1 2 1 1 1 2 2 2 2 1 1 2 2 1 9-111 PAGE ~O 58 FROM 27PIA26 21P lA26 27Pl A27 21P1A21 21PIA28 27Pl A28 21PIA30 21PIA30 21PIA31 21P1801 21P1802 21P1802 21P1B03 27P1803 "21PIB04 21PIB05 27PIB06 21PIB06 21P1807 21P1808 21P 1808 21PIB09 21PIB10 21P 1812 21P1813 21P IB13 21P1814 21P1814 27P1S15 21P1S16 21P18~o 21P1817 27PIBll 21P1818 21P 1818 27P1819 27PIB19 27P1820 21P1820 ?1P1821 21P1821 21P1822 27P 1822 21P1S23 21P1823 21P1824 21P1825 27P1826 21P1826 " 21P1827 21P182B . 9-112 W I R E TO 3lP2B03 2lP2A19 21P2A12 31P2B04 31P280r; 21P2804 24PIB12 31P2B06 31 P? B09 29PIAO' "25P18UI 31P1801 31PIB02 25PIA19 2qPIAOh 29PIAOA 28Pl"A05 13P1B l ' 29PIAOq 25 P2 A20 31P1BOA 29Pl A14 29PIA11 29PIA19 25P2819 31PIA1"l 14PIBl' 28Pl B14 29PIA21j 28P1S1A 14P1810 26PIB15 31P1815 I~Pl AI0 2AP1820 26PIAlh 31PIA1£» 3.1PIB11 26P281 ~ 26P2A20 31P181A 28Pl A19 14P1A15 14PIB26 2BPIA20 29P1830 29P1831 28P182'22PIA12 28P2A13 26P2Ali l I S T SIGNAL-NAME MXl7 MX17 MPRY MPRV CVI01. C~101· WE· WOE. ePEC· OOUIQ MXOl MXOl M)CIl MXll DOt; T2 DOUT3 S03 503 OOUT4 MX4l M)c4l OOUT5 OOUT6 OOUT1 H)c7l M)e1l 508 508 DOUT9 soq 509 MX2M HX2M SOlO SOlO MX3M M)l3M M)llM MX1M M)(4M MX4M 5014 5014 SOl3 S013 OOUT14 OOUT15 CRI* CRI* 011 P~R AB 1 W.l. 89819100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819"100 89819100 89879100 8<;819100 89819100 89819100 89819100 89819100 89819100 89B19100 89819100 89819100 89819100 891)19100 89819100 89819100 89879100 89819100 89a 19100 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89879100 89879100 89819100 89819100 89819100 89819100 89879100 89819100 89819100 89819100 89819100 898"19100 89819100 89879100 89819100 o 118 FR .lEV TO.lEV 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 1 2 2 1 2 2 "2 2 2 2 2 1 2 2 1 2 2 2 2 1 1 2 2 2 1 2 1 1 7. 2 1 1 2 "2 1 2 1 1 2 2 2 2 1 17. 1 1 1 1 2 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 2 2 1 2 2 89633300 A AGE NO W t 59 TJ FR!)M 21P1B29 21P1829 271)1830 21P18'30 27PIR31 21P1831 27P2AOl 27P2AO 1 27P2A02 21P2A04 21P1AOS 27P2A06 21P2A06 21P2A07 21P2A08 ?lP2A09 21P2A09 21P2A10 21P2AIO 21P2A11 27P2A12 27P?A14 21P2A15 27P2A16 21P2Al1 27P2A18 21P2418 27P2A19 21PlA19 27P2A20 27P2A21 27P2A21 27P2A22 27P2A21 21P2A24 27P2A25 27P2A26 27P2A28 27P2A28 21P2A30 21P2801 21P2BOl 27P2602 21P2BOl 21P280S 21P2B06 27P2808 2·1Pl809 27P2BIO 27P2B11 27P2811 16P1AOl 31 P2AIO 21P2~24 31P2AOq 31P2810 16PIBOf) L8 Pl AOt 33P2A 11 27P2811 21 P2 B1 f) 31P2A 11 33P2All 26P2A29 29P2A20 21P2801 31P2A 11 24P1826 ' 31P2811 30P1821 28P2B28 ZQP2 A01 33P2f.H4 22P2621 29P2AOt 28P2A14 33P2815 05P1A20 33P2811 16P1 BOl 29P2B21 OSPl AIR 33P2 At R 28PlAtl 23Pl A01 28P2At9 28P2821 28P2A29 33P2820 16P1AOI 23Pl AOt 33P2B12 21P2A14 28P2 AO~ 27P2AOR 28P2BlO 28P2A2? 28P2A20 23Pl Aoa 29P2A2t 21P2Al1 33P2813 89633300 A R E L [ S T SIGNAL-NAME SPI* SPI* PRTM* PRTH* S WRITE* S WRI Te* SA15 SA15 ICA*'CO* [SAlSa EOX* 32KW 32KW REF* ICA-ICO CRO CRO cePE· cepe* SXP. STROBE* M5XA* PltM DOUT16 P 16 SOIl SOIl SS* 'SS* R/W S016 5016 P8C OSC* HOLDW RXA LOAORA* SRO. SRO* vce2 PRTSW PRTSW eMOR. leA-ICO 00UT11 016 SXA* GeMl DISABLE NORMAL NCR,..AL A 8 1 o 7/8 W.l. 89879100 89879100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89819100 89879104 8981910,. 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 8'l879100 89879100 89879100 89879100 89879104 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879104 89879100 89879100 89879100 FR .LEV TO.lEV 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 1 2 2 2 1 2 '1 1 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 Z 1 2 2 2 1 2 1 2 1 1 2 1 1 .2 2 2 1 1 2 1 2 2 ·2 1 2 2 1 1 1 2 1 1 2 2 2 1 1 2 9-113 PAGE NO 60 FROM 27P2812 27P2813 27P2814 21P2815 21P2816 21P2811 27P2818 21P2818 21P2819 27P2819 27P2820 21P2820 21P2821 21P2822 27P2823 27P2821 21P2824 27P2824 21P2825 27P2826 21P2826 27P2821 21P2828 21P2828 21P2830 271»2831 28P1AOI 2APIAOI 28PIA02 28P1 A03 281»1A04 28Pl A05 28 P IA05 28PIA06 28PI A06 28PIA07 28PIA08 28PlA09 28PIA09 28PIAI0 2.8 PI A10 28PlAll 28Pl All 28PIA12 28P1A12 2SP1A13 28P1A14 28P1A15 28PIA15 28PIA16 28P1411 9-114 W 1 R E TO 28P280A 21P2AO'2AP2A21) 21P2A04 28P2826' 28P2818 16PIAI0 33P28lf_ 21P2S0A 31P2818 31P2 Al<1 '-4P1620 23P1811 28P2829 31P2820 21P1821 ' lQPlAOq 33P281A 28P2 81~ 31P'-A 2' 20P2407 2QP2 A26 21P182' 33P2A2' 21p282& 28P2831 21P1A01 33P1801 29P1801 29Pl BOl 29PIA05 33P1808 21P1806 18PIAOR 33P1410 29P1816 29PIA'Ol 13P1812 18PIRO<1 25PIA21 31 PI Al 0 31P1411 25P1830 22 PI A21) , 33P1813 21P2422 2QPIB 1<1 21PIA18 13PIAIt. 29PIA1'> ZQPIA2A l J S T SIGNAL-NAME 8 ICA.ICO· HOLD I SA J SO exp* OE* SRSH* SRSH* OFEO OFEO MOEL MDEl GND BRWRA* GPEC* GPEC* SVIO* SVIO* AeVANCE. PEL· PEl* ee* RGPWR RGPWR 32M MPWR* SOl SOl DINO DIN3 DIN2 S03 S03 SA3 SA3 DIN5 OlN4 SA5 SA5 AlU3l AlU3l AlUll AlUll SP8M* SPBM* PRe DIN8 SDll SOlI OlN6 OINlO A 8 1 ~ .l. 89819100 89879100 89819100 89879100 89819100 89879100 89819100 89819100 89879100 89819100 89819100 89879100 89879104 89819100 89879100 89819100 89819100 89819100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89379100 89879100 89a 19100 89879100 89879100 89a79100 89819100 89819100 89819100 o 118 FR.l EV TO.LEV 1 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 1 I 1 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2 2 1 2 2 89633300 A ·AGf NO 61 FROM ?APIA18 28P 1A19 28PIA19 28PIA20 28PIA20 2apl A21 28PIA2l 28PlA22 28PIA22 28P 1A23 2aPl A23 2aPl A24 28PIA24 28P1A25 28PIA26 28P 1A26 28PIA27 28PIA27 28PIA28 28PIA28 28PIA30 28PIA30 28PlA31 28P lAll 2aPl60 1 28PIBOI 28PIB02 28P1603 28PIB03 2APIB04 2AP1804 2aPIB05 28P1B05 28Pl806 28P IB06 28PIB07 2AP1807 2ap 1808 28 PI B08 2AP1809 28P1609 28PIBI0 28P1810 28PIB12 28P1812 28P 1813 28PIB13 28PIB14 28P1B14 28PlBl6 28P1S17 W1 R E Tl 2 9Pl 820 33PIBIR 27P1B22 27P1B21 33PIB2t 33Pl B2' lAPIB06 26PIB30 31 PI 822 27PLA20 33P2B02 33P2 BOft 2.7P1AIQ 29PlB2A 18PIRO' 33P2BO'> 26Pl B27 31PIA23 31PIB23 26P182ft 33P2BOQ lAPl BO,. lAPl A04 33P2AIO 33PIBO' lRPI B08 29PIA03 27Pl AOt 33PIB04 33PIB06 27Pl AO!) 27PIA12 33PIB09 33Pl BI0 27PIA 1 0 27PlAOR 33Pl All 33PIA12 27Pl A07 18PIA09 33PIA13 25P182l 31PIBIO 31PIA12 2') PUl2,. 22P"lB17 33PIB14 33PlBl't 27PIB14 29Pl A2l 29Pl~lA 89633300 A l I S T SIGNAL-NAME DIN9 5014 5014 5013 5013 SA6 SA6 ALUIM AlUIM 5012 5012 5015 5015 OIN14 SAlO SAI0 ALU2M AlU2M AlUOM AlUCM SAt4 SA14 SA13 SA13 SA2 SA2 OINl 500 500 S02 SC2 S07 507 506 506 505 505 SOIt SD4 SA4 SAlt AlU2l ALU2l AlUOl AluOL CPBM. CPBM. S08 508 olNtl 0lN7 A B 1 W.L. 89879100 89879100 89879100 R9879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89d79100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89819100 89879100 89879100 89819100 89819100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 89879100 89879100 89819100 89879100 o 7/8 fR.lEV TO.LEV 2 1 2 ? I 1 2 2 1 2 I 1 2 2 2 1 2 1 1 2. 1 2 2 1 1 2 2 2 1 1 2. 2 1 1 2 2 1 1 2 11 2 1 1 2 2 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 2 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2. 2. 1 1 2. 2 1 1 2 2 1 2 1 1 2 2. 1 1 1 2 2 2 2 2 2. 9-115 PAGE Nil 62 FROM 28PIB18 2APl B18 28P1B19 29 Pl 820 28Pl 82 0 2AP1821 28P1821 2AP1822 28P 1822 28P1823 28PIB23 29P1B24 28P1825 28P1826 28PlB27 28PIB27 28P1B28 28PIB28 28PIB29 2SP1829 28P1B30 28PIB30 28PtS)1 28P2 AOI 28P2A02 28P2A04 28P2A05 28P2A06 28PlA()7 2ap2A08 28P2A09 28P2A09 28P2AIO 28P2All 28P2A12 28P2A 12 28P2A13 2AP2A14 28P2A15 28 P2A1S 28P2A16 28P2A16 28P2A11 28PlAl1 2AP2A18 28P2A19 28P2A20 28P2A21 28PZA22· 28P2A23 28 Pz A24 9-116 W I TO 27PIRIt. 33PlRl1 21P1A21) 33PIA2? 2 7Pl 81R 18PIAO"J 33PIA23 27P182h 33PIB2"j 33P2BO~ lRPlAOh 29PIB2') 29PI B2~ 29P1B27 18P1801 33P2R06 26PIAli 31 P2 BO? 33P2AOQ t8PIR07 l8PIA07 3 ~P2A 10 32P2BOl 3 OP2 BOI 30P2AC6 31P2 A06 36P2BOl 27P280? 3t;P2 A06 16P2A06 31P2fHZ 25P2 B15 2<;P2AOI) 27P182R 25P2 All) 31P2Bl~ 21P187.7 21P2A17 31P2Bl1) 2SP2A16 26P2B11 31P2B16 31p2A18 25P.7.B11 29P28l1 21P2 A2427P?ROR 29P2 B21) 27Pl806 2QP2A2A 33P2 A19 R E l 1ST 5 IGNAl-N"~E 509 5D9 CAA15 5010 5010 SAil SAIl CRI* CRI*· SA1 SA1 DIN12 0lN15 OlNl3 SA12 SA12 ALU3M ALU3M SA9 SA9 SA8 SA8 OX3* OXl" MOXl* MOX2* OX7* CMDR* MOX6* MOX7* ALU7l ALU7l 0lN17 PAR AlU6l AlU6l 017 P16 AlU5l ALU5L AlU4M AlU4M AlU4L ALU4L ACA8 HCLOw SXA* ARA3 016 ARA2 SAO A ti 1 o 7/8 w.L. 89879100 89819100 89819100 89819100 89879100 89879100 89379100 89879100 89879100 89819100 89879100 89819100 89879100 89819100 89879100 89879100 8<1879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 89819100 B9879100 89879100 89679100 89879100 89879100 89879100 89819100 89879100 89819100 89879100 89879100 8ii379100 89879100 FR.LEV TO.lEV 2 1 1 1 2 2 1 2 1 1 2 2 2 2 2 1 2 1 1 2 2 1 1 1 1 i 1 2 1 1 1 2 2 2 2 1 2 1 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 1 1 2 2 1 2 1 1 2 2 2 2 2 1 2 1 I 2 2 1 1 1 1 1 1 2 1 1 1 2 2 2 2 1 2 1 1 2 2 1 1 2 2 1 2 2 1 2 1 89633300 A 'AGE Nt1 63 " I Tn FROM 78P2A24 28P2A25 28PlA26 7. 6P 7. A 2 7 28P2A28 28P2A29 281l2B01 28P2B02 28P2803 28P2804 28PlB05 28P2B06 28P2801 28P2808 28P2809 28 P2 B09 28P2B10 28P2B10 28P2B11 28P2812 28P2813 28P2813 28P2814 28P2815 28P2816 28P2816 28P2811 28P2818 28P 2B19 28P2B20 28P2B22 28P 282·3 28PlB24 28P2.825 28P2825 2AP2B26 28P2B27 28Pl828 28P2B29 281)2B30 2'1P2831 2RP2831 29P 1A02 29Pl A02 29P1403 29PIA03 29PIA04 29PIA04 29PIA05 29PIA05 29PIA06 1AP1A07 271>2814 2QP282lt 29P2A24 29P2A30 27P2A2ft 31Pl!30l 32P2 AOft Z9P2AOh 33P2A06 35P2 BOl 34P2BOl 34P2 AOn 21P2 B1' 31p7A11 26P2A1& 29P2 A02 21P2805 33P2801 29P2404 26P2815 31 P2 B14 27P2825 29P2425 26P2A15 31p2817 29P2823 27P2811 29P2R26 29P2427 29P2A29 29P2B28 29P2A21 18P180::l 33P2819 27P2 B13 21P2A2') 21P2411 21P7. 82' 2.9P282.9 29P2830 21P2831 21P1801 30P1 A01 28P1802 30P1A01 21Pl AOZ 30PIA04 28PIA0430P1 AD') 30P1406 89633300 A R F l I S T SIGNAl-N~ME SAO HOLD 1 K2* 1K3* 1KO* LOAORA* DX2* MDX3* MDxn* MOX4* 0)(6* 0)(5* MDX5* B ALU5M AlU5M OOUT11 DOUT17 OX4* 0lN16 AlU7M AUnM ADVANCE* ARAO AlU6,., AlU6,., A(A6 OE* A(A5 4(A9 ARAI ARA4 A(A1 SAl SAl cxp* R )CA SXP* BRWRA* 1K1* MPWR* MPWR* DOUTO oeUTO DINI DINl OOUTI DOUTl DIN2 0lN2 00UT2 A B 1 W.L. 89879100 89879100 69879100 89879100 89379100 89879100 89879100 89d 79100 69879100 89879100 89879100 89879100 89319100 89819100 89619100 89819100 89879100 89879100 89819100 89819100 89819100 89819100 89879100 89879100 89879100 89379100 89879100 89879100 89819100 89819100 89879100 89879100 89879100 89879100 89879100 89879100 a9a 79100 89879100 89879100 89879100 89879100 89879100 89iJ 79100 89879101 89879100 89879101 89879100 89879101 89879100 8987910 1 89879101 o 7/8 FR..LEV· TO.LEV 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 2 2 2 1 2 1 1 1 2 2 1 1 2 2 1 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 1 I 2 2 1 2 2 1 2 1 2 1 2 1 2 1 1 9-117 P4GE NO 64 FROM 2~PIA06 29P 1 A07 29PIA01 29Pl A08 29PlA08 29P1A09 29Pl A09 29 P IA14 29PIA14 29PIAlS' 29Pl A1 5 29PIA11 29P lAl1 29PIA18 29PIA18 29P 1A19 2~P1A19 19PIA20 29PIA20 29PlA25 29PIA25 29PIA21 29PIA21 29P lA28 29PIA28 29P1A30 29P lA30 29PIA31 29PIA31 29PIA03 29P180 3 29P IB07 29P1807 29P1816 29P 1816 2~P1819 29Pl B19 29PIB20 2~P1820 , 29P1824 29P1824 29Pl 82 5 29P IB25 29P1826 29Pl B26 29P1821 29P1821 29P1828 29P1828 29P1829 29P1829 9-118 W1 R f Tl, 27P1804 28P140A 30PIA01 27Pl ROI) 30PlAOA 30PIA09 27PlB07 21P1809 30PIA14 28PIA16 30PIAll) lOP1411 27PIA 10 2APlSl1 lOPl AlA 27PIBl' 30PIA19 21PIA13 30PIA20 27 PI Bll) 30PIA20 28P1B16 30PlA27 10PlA2A l8P!A17 27Pl A17 30PIA]0 21PIA21 30PIA31 28PIA02. 30P180l 28PIA03 30PIB07 30Pl Bl" 28PIAOl 28PIA14 30PIB19 28PIAIA 30Pl820 21PIA16 30PIB24 30Pl B21) 28PIB24 30Pl B2l. 28Pl821) 30PIB21 28PIB26 28PI A21) 30P1828 21Pl A24 JOP1829 l I S T S JGNAt-NAME 00UT2 OIN't 0lN4 DOUT3 QOUT3 00UT4 00UT4 00UT5 OC-UT5 DIN6 o IN6 00UT6' 00UT6 0lN7 OIN7 00UT1 DOUTl 00UT8 00UT8 oeuT9 00UT9 DIN 11 DINII DINIO OINIO OOUTll OOUTll OOUT12 DOUll2 DINO OINO DIN3 DIN3 DINS 0lN5 0lN8 0lN8 0lN9 0lN9 OOUll 0 OOUTlO OlNI2 0lNl2 OlN15 olN15 OINll 0lN13 DIN14 0lN14 OOUT13 OOUTl3 A B 1 W.L. 89B79100 89879100 89879101 89819100 89879101 89879101 89819100 89819100 89819101 89819100 89879101 89879101 89819100 89819100 89879101 89819100 89819101 89819100 . 89819101 89819100 89879101 89879100 89879101 89379101 89819100 89819100 89819101 89879100 89819101 89819100 89819101 89819100 89879101 89819101 89819100 89819100 89879101 89819100 89879101 89819100 89819101 89819101 89819100 89819101 89879100 89879101 89819100 89819100 89819101 89819100 89819101 o 11A FR.lEV TO.lEV 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2. 1 2 1 2 I 1 2 7. 1 2 1 2 1 2 1 1 2 2 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 I 2 1 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 1 I 2 1 2 1 2 2 1 2 1 89633300 A 'AGE NO 65 W IRE TO F.R)" 29P1830 29PIB30 29P 1831 Z9P1831 29P2A01 29PZAOl 29P2A02 29P2A02 29PZA04 29P2A04 29PZA05 29P2A05 29P2A06 . 29P2A07 29P2A07 29P2A16 29PZA20 29P2A20 29P2A21 29PlAl1 29P2Al3 19P2A23 29PlAZ4 29PlAZ4 29P2A25 2~PlA2S 19P'-A26 2CJP2A26 29P2A27 Z9PZA27 29PZAl8 29PlAl8 lCJPlA29 29P2A29 29P2A'J0 211PlA30 2~P28l2 29P2Rl2 2CJP2823 29P2823 29P2B24 29PlBl4 29P282S Z9PZB2S 19PZ8l6 29Pl826 29P2B21 29P2827 29P2B28 29P2828 2CJP2B29 Z1P18Z4 lOPl B 30 30P1831 21P1825 27P2A 16 30P2AOl Z8P2810 30P2A02 30P2A04 28P2812 28P2AI0 30P2 AOli 28P280] 30P2AOl 21PZA12 20P28Z7 10P2A20 Z7PZ A07 21P2BI0 30PZ All 10P2A21 28P2824 28PZA21 30P2 Al4 30PlAl'i lRP2R1'i 21Pl8l7 30P2A26 28P28Z0 30PlA27 28P2Al3 10P2 AlA l8P2821 30Pl A29 28P2A2R 30P2Al0 30Pl822 28P2AIR 28P28l7 lOP2821 28P2A26 30P2824 10Pl821i 28P2A21 28 Pl 81CJ 10P2826 JOPl821 21P2A20 28P2B23 10P282R l8P2 830 89633300 A liS T S (GNAt-NAME 00UT14 00UT14 00UT15 OOUT15 OOUTl6 00UT16 OCUT11 ooun 7 0lN16 0lN16 DINl1 DIN11 MOXO. STR08E. STROBE •. "5S REF· REF* DISABLE OISASlE ACAl ACAl 1K3* lK3* ARAO ARAO CE. CE* ACA9 ACA9 ARA2 ARA2 ARAI ARA1 1KO· lKO* ACA8 ACAR ACA6 ACA6 lK2* lK2* ARA3 ARA3 ACA5 ACAS R/W R/W ARA4 ARA4 11<1 * A B 1 0 7/8 w.t. 89819100 89819101 89819101 89819100 89819100 89819101 89819100 89tl79101 89819101 89819100 898i9100 89819101 89819100 89819101 89a79100 89819100 89819101 89879100 89819100 89819101 89819101 89819100 89819100 89879101 89819101. 89879100 89879100 89879101 89879100 89879101 89879100 89879101 89919100 89819101 89819100 89879101 89819101 89819100 89879100 89879101 89879100 89819101 89879101 89819100 89879100 89879101 89879101 89879100 89819100 898,79101 89819100 FR.LEV TO.l.EV 2 1 1 2 2 1 2 1 1. 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 1 2 1 1 I 2 2 I1 2 2 1 2 2 2 1 1 2 Z I 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 .1 1 1 I 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 9-119 PAGE NO 66 FROM 291»2829 29P2830 29P2830 30P1402 30P1402 30P1403 30PIA03 30P1404 30P1404 30PIA05 30P1405 30P1406 )OPIA06 30P1407 30P1407 30PIA08 30P1408 30PIA09 30PIA09 10PIA14 ·30PIA14 30P1415 30P1415 30P1Al1 30P1417 10P1A18 3OP1418 30P1419 30P1419 30P1420 301»1A20 30P1420 30P1425 30P1427 30P1421 10P1428 30PIA28 3OP1A30 30P1430 )OPI A31 10PIA31 30P180] 30P1803 30P1801 30P1801 10P1816 30P1816 30P1819 30P1819 30P1820 30P1820 9-120 W I A E m .30P282Q 28P2831 30P2830 29P140'31 PI 40'" 29PIAO~ 31PIA01 29Pl AOft 31P1404 29P140ai 11P1401) 29P1AOft 31Pl A06 29PIACl 31P1401 31Pl AOA 29PIAOA 29PIA09 31 PI 409 19P1414 31P1414 29Pl All) 31P1415 31Pl A17 29P1417 29PIA18 31Pl AlA 29P1419 31P1419 29P1420 31P1A20 '29P1421) 31P1420 29PIA27 31 PI A21 29PIA2A 31P1428 29Pl A30 31PIA30 29PIA31 31PIA31 31P180~ 29P1801 2QP1801 ':JIP1801 31P1816 29P181'6 31P1819 29P1819 31P1820 29P1820 l J S T S IGNAl-N·AME lKl· MPWR. MPWR* OOUTO OOUTO OINt OIN.l OOUTI DOUTI 0lN2 DIN2 DOUT2 00UT2 OIN4 DIN4 DOUT3 DOUTl 00UT4 00UT4 DOUT5 00UT5 DIN6 0lN6 000T6 00UT6 DIN7 DIN7 00UT7 00UT7 00UT8 00UT8 00U19 00UT9 olNtl OINll 0lNI0 OINIO OOUT11 OOUTll 00UT12 00UT12 OINO OINO 0lN3 DIN3 DINS 0lN5 OlN8 0lN8 DIN9 0lN9 A 8 1 ~.l • 89879101 89879100 89879101 89819101 89879101 89879101 89879101 89879101 89879101 89879101 89879iol 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89819101 89879101 89879101 89819101 89879101 89879101 89879101 89879101 89819101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89879101 89819101 89879101 89879101 89879101 89819101 89819101 o 7/8 fA.lEV TO.lEY 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 . 2 1 2 1 2 2 1 1 2 1 2 t 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 I 2 1 2 I 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 2 1 89633300 A )AGE ~O &7 W I R E TO FROM 30PIR23 30P1823 30Pl8Z4 lOP18?4 30P18Z5 30P1825 30PIB26 30P1826 30P1827 101)1B27 30P1828 10P.l828 30P1829 30P1829 lJPlB30 lOPIB30 30PIB]l lOP 1831 10P2AOl 30P~AOI 30P2A02 30PZA01 30P2A04 30P2A04 30P2AOlj 30P2A05 30P2AOb 30Pl A07 30P2A07 lOP2A20 10P2A20 30P2A21 10P2 A21 30P.?A?3 3JP2A23 10P2A24 3()P2A14 30P2A25 30P2A15 30P1A26 30P2A2b 30P2A21 lOPZA27 10P2A28 10P2A28 lOP2A29 30P2A29 10P2A30 30P2A30 30,.2BOI 30P2822 27P2AIO 20PIA2A 31 P18Zft. 29P1824 31Pl811) 29Pl821j 29P182la 11 P182£. 3tPl827 29PIB21 31Pl81R 29P182R 29Pl819 3lPIB29 31P1830 29PI BlB 29P18'U 31Pt831 29P2AOl 31P2AOl .llP2AO? 29P2AO' 2C;P2A04 31P2 A04 31 P2 A05 2C;P7AOI) 28P2A02 29P2 A07 31P2A07 29P2 A20 31P2A20 29P2A21 3lP2 A21 29P2A21 31P2A23 29P1A24 31P1A11t 29P2AZI) 31P2A21) 31P2416 29P2426 29P2A21 3lP2A21 29P2 A2A 31PZA2R 29P2A29 31 P2 A29 31P2A30 29P2A1O 28P2AOl 19P2817 89633300 A l I S T S·IGNAl-N~ME CCPE* cePE. oOUTIO oOlll10 DIN12 OlN12 DIN15 DINl5 DIN13 OlN13 OINIIt 0lN14 00UT13 00UT13 00UT14 oOUT14 00UT15 00UT15 00UT16 oOUT16 00UT17 OOUll1 OlN16 0lN16 olNll OlNl1 MDXl. STPOBE. STROBE* REF* REF* DISABLE DISABLE ACA7 AeAl lK3* lK3* ARAO ARAO ce* CE* ACA9 ACA9 ARA2 ARAZ ARAI ARAI lKO. lKO* OXl* AeA8 A 8 1 w.L. o 118 FR.lEV TO.LEV 89879100 89879100 89879101 89819101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89819101 89879101 89879101 89879101 89819101 89819101 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89879101 89819100 89819101 89819101 89819101 89819101 89879101 89879101 2 1 2 1 2 1 1 2 1 2 2 2 1 2 1 1 2 2 1 1 1 8~879101 1 89819101 89879101 89879101 89879101 89819101 89879101 89879101 8'J87910 1 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879100 89819101 2 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 2 1 1 1 1 1 1 2 2 1 2 2 1 2 1 Z 1 2 2 1 1 Z 1 2 1 2 2 1 1 1 1 1 2 1 2 1 2 1 2 Z 1 1 Z 1 2 1 Z 2 1 1 1 9 -121 P4GE Nil 68 FROM 3OP2822 30P2823 30P2823 30P2824 30P2824 30P2825 30P2825 30P2826 30P2826 30P2821 30P2827 30P2828 30P2828 30P2629 30P2829 30P2830 30P2830· 31PIA02 31P1402 31PIA03 31PIA03 31P1404 11PIA04 31P1405 31PIA05 31P1406 31PIA06 31P1401 31P1401 31P 1A08 31PIA08 31PIA09 .31P1409 31PIAI0 31P1411 31p1412 31P1413 31PIA14 31P1414 31P1415 31PIA15. 31P1416 31PIA11 31PIA11 31PIA18 31P1418 31P1419 31P1419 31P lA20 31PIA20 31P1A20 9-122 W I T1 31 P282:? 29P2B2~ 31P2823 29P2 B2~ 31P2824 29P282'S 31 P2 82'S 29P282f» 31P2826 31P2827 29P2827 31P282A 29P2R2A 29P2829 31P2829 31p2830 29P2830 32P1401 30PIA02 32PIA01 30P1401 30P1404 32P1404 :l2P1405 30PIAO,) 32Pl A06 30PIA06 30P1407 ~2Pl 407 32P1A08 30P1408 30PIA09 32P1409 28Pl AI0 2APIA 11 28P1812 21P1811 30P1414 32PIA14 32plAl1) 30P1411) 21P1819 32P1417 30P1Al1 10Pl A.1A 32P141A 32P1419 30P1 A1 q 30PIA21) 32PIA20 30P1420 R E l I S T SIGNAL-NAMe ACA8 ACA6 ACA6 1 K2* lK2* ARA3 ARA3 ACA5 ACA5 R/W R/W ARA4 4RA4 lKl* lKl* MPWR* MPWR* OOUTO OOUTO o INI OINI DOUT1 OOUT1 DIN2 0lN2 OOUT2 DOUT2 0lN4 DIN4 DOUT3 OOUTl 00UT4 OOUT" AlU3l AlUll AlUOl M)ell DOUT5 DOUT5 0lN6 0lN6 MX3M 00UI6 DOUT6 DIN7 DIN1 OOUT1 OOUT1 DOUT9 OOUT8· 00UT8 A 6 1 W.l. 89879101 89879101 89819101 89879101 89819101 89819101 89819101 89879101 89819101 ·89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89879101 89879101 89879101 89819100 89879100 89819100 89819100 89819101 89819101 89819101 89819101 89819100 89819101 89819101 89819101· 89819101 89819101 89819101 89879101 89819101 89879101 o 7/8 FR.lEV TO.l:eV 2 1 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 89633300 A ~ AGE NO ~9 FR)M W ( TO 31P1A22 31P1A23 31PIA25 3lPIA27 31PIA27 31PIA28 31PIA28 3LPIA30 31PlA30 l1PIA31 31P1A31 31P1BOI .31PIB02 31PIB03 31PIB03 31Pt804 liP 1806 31P1807 31PIB07 31P1808 l1P1SOq 31P1810 31P1812 31P1813 31P1814 31P1815 31P1816 31'1816 31P1817 31P1818 31P1B19 31P1B19 31PIB20 31P1820 31P1821 31P1822 31P1823 31P1824 31P 1~24 31P1825 31P1825 .31P1826 31P1826 31P1B27 31P1827 31Pl828 31P1828 31P1829 31PIR29 31P1830 31P1830 21PIA23 28Pl A27 32PIA20 30Pll27 32 PI A21 32PIAlR 30P1 A2q 32P1 A.30 30PIA10 30Pl An 32PIA3t 21P1802 27PIB01 30PIB03 32P1803 27P1A04 21P1A06 30P1B07 32P1807 27PIBOA 21Pl AO 33PIA01 33PIA01 ]3Pl~08 33P1A08 33 PI A09 33PIA09 33P1A1O 3'3P2A23 31P2 A23 31P2A24 33P2A24 31P2 A25 33P2A2c) 31P2A26 33P2 A26' 31P2A27 33P2 A21 33P2 A2,. '3lP2A2A 13P2 A29 31PlA2Q 33P2A30 31 P2 A30 2APIBn 31P2B27 33P252? 33P2823 3lP2 B21 33P282431P2824 31P2B21) 33P2 8 21) 31P2B26 33P2B26 33P2827 31P2B21 31 P2 R2A 33P282A 31P2829 33 PZ B2q 33P2830 32PIA02 34Pl A02 32PIAOl 34Pl A03 34PIA04 32PIA04 34Pl AOI) 32PIA05 32PIA06 34Pl AO& 34Pl,A07 32PIA01 34Pl AOA 32PIAO~ 34Pl A09 32P1A09 28PIA06 89633300 A l 1ST SIGNAl-NAf4E ACA1 ACA1 11<3* lK3* ARAO ARAO CE* CE* ACA9 ACA9 ARA2 ARA2 ARAI ARAI lKO* lKO* 0)(3* ACA8 ACA8 ACA6 ACA6 lK2* lK2* ARA3 ARA3 ACAI) ACA5 R/W R/W ARA4 ARA4 1Kl* lKl* MPWR* OOUTO OnUTO OINl OINI DOUTI DOUTl DIN2 OIN2 00UT2 OOUT2 DIN4 0lN4 OOUT3 00UT3 OOUT4 OOUT4 SA3 A B 1 \tI.l. o 7/8 FR.l EV TO.LEV 89~ 19101 89819101 89879101 89879101 89819101 89879101 89879101 89819101 89819101 8987?101 89819101 89819101 89819101 89819101 89819101 89819101 89819100 89819101 89879101 89819101 89879101 89879101 89819101 89819101 89819101 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 2 1 1 2 89~19101 2 2 1 1 1 89819101 89a19101 89819101 89819101 89819101 89819101 89879101 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89879101 89819100 2 1 1 2 1 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 1 1 1 2 2 1 2 1 2 1 1 1 2 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 1 1 2 1 1 1 2 1 2 2 2 2 1 Z 1 2 1 2 2 1 1 2 1 2 2 Z 2 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 9-127 P.GE NO 74 FROM 33P1Ali 33PIA12 33P1A13 3.3PIA14 33P1A14 33PIA15 33PIA1S 33PIA16 33PIA17 33PIA17 31PIA18 33PIA18 33PIA19 1'4P1419 33PIA20 33P1420 3)PIA20 33P1422 33PIA23 33P1425 31PIA27 33P1427 33PIA28 33PIA28 33PIA30 33P1A30 33P lA31 13P1A31 33PIBOI 33P1802 33P1803 33P1803 33P1804 33P1806 33P 1807 13P1807 33P1808 33P1809 33P1810 33P1812 ])P1813 13P1814 33PIB15 31P1816 33P1816 33P1817 33P1818 33P1819 33P 1819 3JP1820 3~P1820 9-128 W· IRE .T) 28P1807 28PIB08 28Pl B09 32PIA14 34PIA14 34PIA15 32PIA15 28PIA15 34PIA17 32PIA17 32PIA18 14P1418 32P1A19 34PIA19 32PIA25 32PIA20 34PIA20 28P1820 28P1B21 ~4P1 A20 14P1427 32P1427 34Pl A2~ 32P1A2A 34Pl A30 32PIA30 34P1431 32P1431 28P1401 iSPIBOl 32P180' 34PIBOl 28P1801 28P180~ 34Pl807 32P1807 28Pl A05 28P1805 28 PI BO" 2SP140CJ 2SPIA12 28P1811 28P1814 34P1816 32P1816 ' 28P1819 28P1AIQ 34PIRICJ 32PIB1Q 32P182() )4P1820 ., liS T S IGN4l-N·4ME SOS S04 S~4 OOUTS DOUT5 0lN6 DIN6 SOli OOUT6 OOUT6 DIN7 0lN7 DOUT1 DOUT7 OOUT9· DOUT8 OOUT8 SOlO SAIl OOUT9 DINll DINtl OlNI0 DINI0 OOUT11 DOUlll DOUT12 OOUT12 SOl SA2 DINO DINO 500 502 OIN3 DIN3 503 S07 SC6 SA5 SP8N* CP8M* 508 DINS DIN5 S~q 5014 DIN8 DIN8 0lN9 OlN9 AB 1 W.l. 89879100 89879100 89879100 89879101 89879101 89879101 89879101 89879100 89879101 89879101 89879101 89819101 89879101 89879101 89879101 89879101 89819101 89879100 89879100 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879100 89879100 89879101 89879101 89879100 . 89879100 89879101 89879101 89879100 89879100 89879100 SQ879100 89879100 89879100 89879100 89819101 89879101 89879100 89879100 89879101 89819101 89879101 89879101 o 1/8 FR.lEV TO.lEV 1 1 1 2 1 1 2 1 'I 2 2 1 2 1 2 2 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 2 I 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 2 1 1 2 1 1 2 2 1 2 1 2 2 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 1 ' 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 89633300 A PAGf NO 75 FROM W I TO 33PIB21 33PIB22 ~3PIB23 33PIB24 33PIB24 33P lB25 33PIBl5 33PIB26 33P IB26 3lPIB27 31PIB21 33PIB28 33PIB28 31PIB29 3::iPIBl9 31PIB30 311»1830 3~PIB31 33Pl B31 33P2A01 33P2 AOl 33P2A02 3]P1A02 33P2A04 33P?A04 33P2A05 31P2A05 33P2A06 33P2A07 33P2A07 33:l2A09 33PZAIO 33PlA 11 33P2A12 33P2A13 33P2A18 31PZAL9 33P2A20 33P2A20 33P~ A21 33P2A21 33P2 A22 3"JP2A23 3.3P2A23 3·:lP2A24 33P2A24 3~P2A25 33P2A25 33P2A26 31P 2A26 33P2A21 28Pl A20 2 8Pl A21 lRPlB27 32PlB24 34Pl B2~ 34PlB 21) 32Pl B2"i 34Pl B 2f1 32PlB2f1 32PIB27 l4PIB27 34PIB28 32PlBlR 3lPIB7Q 34PIBl9 34PIB10 32PIB 30 32PIB31 34PIB 3( 34P2AOI 32P2 A01 37P2A02. l4P2A07 34P2 AO\. 32P2A04 34P2AOl) 32 P2 AO"i ?AP2B04 32P2 A07 34P2 A07 l8PIBZCJ Z8Pl B30 2TP2AOl) Z1PlAOI 27 P2 AOIt 27PZA21 28PlAZ4 34PZ A20 32P2AZO 34P2 A21 32P2 A21 27P2B2A 34P2 A23 32P1A23 34P2 AZ4 ~Z P2 A2it 34P2A21) 32P2 A25 32P2 A2b 34P2A26 34P2 A21 89633300 A R E l I S T SIGNAL-NAME S013 SA6 CRt* 00U110 00U110 OlN12 OINl2 OINlS DIN 15 OINl] OINl] DIN 14 OlN14 DOUTt3 00UT13 00UT14 00UT14 OOUT15 OOUTlS OOUT16 00UT16 nOUTl1 00UT11 0lN16 OlN16 DIN 17 OlN17 MOX4* STROBE* STROBE* SA9 S~8 EOX* SA 15 ~lKW S016 SAO REf* REf* DISABLE OISABlE RGPWR ACA7 ACA 7 lK3* lK3* APAO ARAO Cf* CE* ACA9 A B 1 .... L. 89819100 89d 19100 89819100 89879101 89879101 89819101 89819101 89819101 89819101 89819101 80}8 79101 69819101 89819101 89879101 89819101 8'1819101 89819101 89<:1 19101 89879101 891319101 89879101 89879101 89819101 89819101 89819101 89819101 89819101 89819100 89819101 89819101 89819100 89319100 89819100 89a19100 89379100 89819100 89819100 89a 1910 1 89619101 89879101 89819101 89819100 89819101 89819101 89879101 89819101 89819101 89819101 89879101 89819101 89;)79101 o 118 FR.lEV TO.lEV 1 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 2 1 2 1 1 1 2 1 2 9-129 PAGE ~1 16 FROM 33P2A21 33P2A28 3JPlA28 33P2A29 33P2A29 31P2A30 33'2A30 33P2801 31P2802 331»2803 33P2804 33P2805 33P2806 33P2809 33P2810 33P2811 33P2812 33Pl813 33P2814 33P2815 33P2816 33P2811 33P2818 33P2819 33P2820 33P2822 33P2822 33P2823 33P2823 3)P2824 33P2824· 33P2825 33P2825 33P2826 ))P2826 33Pl821 33P2821 33P2828 33P2828 33P2829 ~3P2829 31'2830 33P2830 3~Pl A02 14PIA02 34PIA03 )~PIA03 34PIA04 34PIA04 34PIAOS 34PIA05 9-130 W f R E TO 32P2A21 34P2A29 32 P2 A2J1 34P2A29 32P2A29 34P2 A30 32P2A30 28P2811 28P1A21 28P1821 28Pl A24 28PIA26 28P1821 28P1 A30 28PIA31 23P1AOli 27P2801 21P2811 21P2A14 27P2 A1J1 21P2818 27P2 A19 21P2824 28P282'i 21P2 A2A 32P282'34P2822 32P2821 34P2821 34P2824 32P2824 32P2S2~ 34P2821i 34P2826 32P2826 34P2827 32P2827 34P2828 32P282A 34P2829 '32P2829 32P2830 :)4P2830 33PIA02 35PIA02 15Pl A03 33 PI AO=l 33PIA04 35PIA04 33 PI AOli 35P1 A05 lIS T SIGNAL-NAME ACA9 ARA2 ARA2 ARAl ARAI 1KO* lKO* OX4* 5012 SA1 5015 SAI0 SA12 SA14 SA13 GOM2 PRTSW NORMAL ft4SXA* 5011 SRSM* SS* 5'110* SAl SflQ* ACA8 ACA8 ACA6 ACA6 lK2* lK2* ARA3 ARA3 ACA5 ACA5 R/W R/W ARA4 ARA4 1Kl* 1Kl* MPWR* MPWR* OOUTO DOUlO DINt OINI Doun OOUTI DIN2 OlN2 A 8 1 o 118 W.l. FR .lEV 89879101 89879101 89819101 89819101 89819101 89819101 89819101 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819104 89879100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819100 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89a19101 89879101 89819101 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89819101 2 1 2 1 ,2 1 2 1 TO.lEV 2 1 2 1 2 1 1 ·1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .1 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 .1 1 2 1 2 89633300 A· PAGE NO W I 77 R E Tn fRlf14 "3~PIAOb ~4PIA06 14PIA07 34P1A07 34PIAOS lft-PlA08 34PIA09 34PIA09 3ft-P1Al4 34PIA14 l4PIA15 34PlA15 34P1A17 34PIA17 l4Pl A18 14PIA18 14PIA19 34PIA19 14P lA20 3ft-PIA20 l4PIA20 l4PlA25 ]4Pl A27 34PIA21 34PIA28 34PI A2 8 34PIA30 3ft-P1A30 ]4PIA31 34PIAl1 3ft.P180] 34P180] 3ft-PIB07 3ft.Pl B07 34Pl616 34PIB16 34P1819 34P 1819 14PIB20 3ft-P1820 34P1824 14P1824 34P1B25 34PIB25 14P1B26 34PIB26 14P1821 34P1 1'2 7 34P lB28 34Pl828 14P1829 1ST SIGNAL-NAME 35Pl AOE» 33PLAOb 33PlA07 35 Pl A07 33PIAO~ .11)Pl AOA 33Pl AOq 31)P 1A 09 35PlAl4 33PlA14 33PIAl1) 11)P1UI) 33PlA17 35PIA17 35Pl Al ~ 3'P1A1A 33PIA19 35Pl Al q 31)P1A20 13P1 A2() 33PIA21) 11)P1A20 35PIA27 31PIA21 'J5PIA2A 33Pl A?A 33PIA 10 35PIA30 35Pl A31 3.3PlA31 33PIB03 35PlBO':\ 33Pl807 15Pl B07 35PIBl6 33P1816 35Pl BIC, 3]PIB 1 q 31)P1B20 33PIB2n 33P1824 35P1B24 33P1821) 35PlB21) 3.3P1826 35PIB26. 35P1B27 33P1827 35PIB2A 33P1828 33PIB2Q 89633300 t A OOUT2 DOUT2 OIN4 DIN4 00UT3 DOUT3 DOUT4 OOUT4 OOUT5 DOUT5 DIN6 OlN6 00UT6 00UT6 OlN1 DIN7 DOUT1 DOUT1 DOUT8 DOUT8 OOli19 00U19 OINll OINtl OlNI0 DINIO 00UT11 OOUTll OCUTll 00UT12 DINO OINO DIN3 DIN] DINS DIN5 DIN8 DIN8 DINq DIN9 DOUTI0 DOUTI0 DIN12 D[N12 DINl5 DIN15 OlNl3 OINl] DIN14 DIN14 DOUTl3 A 8 1 W.L. 89879101 89879101 89879101 89819101 89819101 89879101 89879101 89879101 89819101 89879.101 89879101 89819101 89879101 8913 19101 89819101 89879101 89879101 89819101 89819101 89819101 89879101 89879101 89879101 89819101 89879101 89879101 89879101 89879101 89819101 89879101 89879101 89819101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89a19101 89879101 89819101 89819101 89819101 89879101 89819101 89879101 89879101 89879101 89879101 89819101 o 7/8 FR.lEV TO.lEV 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 1 1 2 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 2 1 1 1 1 2 2 1 2 1 2 1 2 2 1 2 1 1 1 2 2 1 2 1 1 9-131 18 P4Ge NO FRON 34P1829 34P1830 34PIB30 34P1831 34P1831 34P2AOI 3ftP2401 3,.P2A02 34P2A02 34P2A04 34P2404 34P2A05 34P2A05 34P2A06 34P2A07 34P2407 34P2A20 3ftP2A20 34P2A21 34P2421 3ftP2A23 34P2A,23 34P2424 34P2A24 34P2A25 34P2A25 34P2426 34P2A26 34P2A27 ~4P2A27 34P2A28 34PlA28 34P2429 34P2429 34P2A30 34P2A30 14P2801 34P2822 34P2822 34P2823 14P2823 34P2824 34P2824 34P2825 3ltP2B2S 34P2826 34P2826 34P2827 34P2821 34P2828 14P2828 9-132 W IRE TO 35P1829 35PIB30 33P1830 33P1831 35P1831 33P2AOI 35P2AOI 35P2AO' 33P2A02 35P2 AOft 33P2A04 35P2AOt) 33P2 AOS 29P2807 35P2401 33P2401 33P2A20 35P2420 35P2A21 33P2421 33P2A23 35P2A2"4 33P2A2,. 35P2 A2ft 33P242') 35P2421) 35P2426 33P2A26 33P2421 35P2A27 33P2A29 35P2A2R 33P2429 35P2429 33P2 A30 35p2430 28P280& 35P282' 33P2822 33P2823 35P2823 3,3P2824 35P2824 35P2821) 33P282,) 33P282& 35P2826 33P2827 35P2827 33P282R 35P282R lIS T S IG.NAl-NA.-e OOUT13 OCUT14 OOUTlIt OOUT15 00UT15 00UT16 OooT16 00UT17 00UT17 0lN16 0lN16 OINll OtN17 MOX5* STROBE* STROBE* REF* REF* DISA8LE DISABLE ' A(A7 4CA7 lK3* 1 K3. ARAO ARAO ce* CE. AeA9 ACA9 ARA2 APA2 ARAI 4RAI 1 KO. lKO* OX5* ACA8 ACA8 A(A6 ACA6 lK2· 1 K2. ARA3 ARA3 ACA5 4CA5 R/W R/W ARAIt ARAIt A 8 1 W.l. 89879101 89879101 89879101 ' 89879101 89879101 89819101 89879101 89879101 89879·101 89879101 89879101 89879101 89879101 89819100 89879101 89879101 ,89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89819101 89819101 89879101 89879101 89819101 89819101 89879101 89879100 ,89819101 89819101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 o 7/8 FR .lEV' TO.lEV 2 2 1 1 2 1 2 2 1 2 1 2 1 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 2 1 1 2 1 2 2 1 2 1 2 1 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 89633300 A PAGE NO 79 FROM WI R E Tll 34P2829 ~4PlB29 ~4P2B30 14P 2830 35P1A02 35PIA02 35P1A03 35PlA03 35P1A04 35PlA04 35Pl A05 '35P lA05 35P1A06 35PIAOb 35PIA01 3SPl A07 ~5P1A08 31)P1A08 35Pl A09 35PIA09 35P1A14 35P1A14 35P1A15 15P1A15 35PIA17 351> 1Al1 35P1A18 35PIA18 35P1A19 35PlA19 3,P1A20 35P1A20 15P1A20 35P 1A25 35Pl A27 35PIA27 35P1A28 15P1A28 35PIA30 35PIA)0 35Pl A31 35PIA31 35PIB03 35Pl803 35P1801 15P1801 3SP1816 351)1816 15P1819 35P1819 35P1820 33P2Bl9 35P2R29 33P2B30 35P2R30 34Pl AO? ~6P1AO? .~6P1A03 34Pl AO~ 36PIA04 34PIA04 36 Pl AOI) . 34Pl AOI) 36PIA06 34P1 A06 16P1AQ7 34P1 A07 16P1AOR 34PIAOA 34Pl A09 36P1Aoq 34P1414 16P1Alft. 34P1A15 36P1A11) 36P1A17 34P1A17 36P1 ALB 34P1A1R 34PIA19 36Pl A19 34PIA20 36P1A20 34Pl All) 36P1A20 36P1A21 14Pl A27 36P1A2A 34P1 A2R 34P1A30 36P1A30 36Pl A3l 34PIA 31 36P1BOl 34P1801 36PIB01 34P1B07 34P1816 36PIB16 36P1819 34P1819 36P1820 89633300 A l r S T $,IGNAl-NAME 11<1 * lKl* MPWR* MPWR* OOUTO OOUTO OINl OIN1· DOUT1 DOUTI OlN2 DIN2 DOUT2 OOUT2 OlN4 DIN4 OOUT3 DOUT3 OOUT4 00UT4 OOUT5 DOUT5 OlN6 OIN6 00UT6 OOUT6 OlN7 OIN7 00UT7 DOUT1 00UT8 DOUT8 DOUT9 00U19 D INll DIN11 DINI0 DINlO DOUTll OOUTll OOUT12 OOUTl2 DINO OINO DIN3 DIN3 OlN5 OINS DIN8 DIN8 DIN9 A B 1 ~.L. 898791ul 89379101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89319101 89879101 89a79101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89879101 89819101 89879101 89819101 89879101 89819101 89819101 89819101 89879101 89879101 89919101 89819101 89819101 89879101 89879101 89819101 89879101 89879101 89819101 89879101 ,89«179101 8987910l 89819101 89819111 89819101 89879101 89879101 89879101 o 7/8 fR.lEV TO.LEV 1 1 2 2 1 2 2 1 2 2 1 1 2 1 2 1 2 1 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 2 1 . 1 2 1 1 2 1 1 2 2 2 2 1 1 2 2 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 9-133 P4GE NO 80 FROM 35P1820 35P IB24 35P1824 35P 1825 3ljP 1825 35P1826 35P1826 35Pl821 35Pl827 35P,1828 3ljP1828 35P1829 35P1829 35P1830 35PIB30 35P1831 35Pl B31 35P2AOl 35P2AOI 3ljP2A02 15P2A02 3ljP2AOit 35P2AOit 35P2A05 3ljP2A05 35P2A06 35P2A07 35PlA07 35P2A20 3ljP2 A20 35P2A21 35P2A21 3ljP2A21 35P2A23 35P2A21t 31j P2 A24 35P2A25 35P2A25 35P2A26 35P2A26 35P2427 35P2A21 35P2A28 35P2A28 35P2A29 35P2A29 35P2A30 35P2A30 15P2801 35P2822 35P2B22 9-134 W IRE TJ 34Pl B20 34PIB24 36P1824 36PIB25 34PIB21j 34Pl B26 36P1826 36PIB27 34PI B27 36P182A 34P1828 34P1829 36PIB29 36P1830 34P1830 34PIB31 36Pl B3l 36P2AOl 34P2AOl 3ltP2 AO,36P2AO? 34P2A04 36P2404 34P2AO'i 36P2 AOIj 28P2A07 36P2A01 34P2A01 34P?A20 36P2A20 36P2 A21 34P2A21 36P2A23 34P2A21 36P2A24 34P2A24 36P2A21j 34P2A21j 36P2A26 34 P 2A26 36P2A27 J4Pl A27 34P2A2A 36P2A2A 34P2 A29 36P2A29 36P2A30 34P2A30 28P2BOl) 34P2821 36P282l. l I S T SIGNAL-NAME DINq DOUTIO DOUTI0 DINl2 DINll DIN15 DINl5 DINl) DINl3 OINllt OlN14 OOUT13 DOUTl3 DOUTl4 OOUTl4 DOUT15 DOUTIS DOL116 DOUT16 OCUT11 OOUll 7 DIN16 DIN16 DINI7 DINl1 MOX6* STROBE* STROBE. REF. RfF* DISABLE DISABLE AeA1 ACA7 lK3* 11<3* ARAO ARAO Cf* CE* ACA9 ACA9 ARA2 ARA2 ARAI ARA 1 IKO. lKO* 0)(6* ACA8 ACA8 A 6 1 W.l. 8981910 1 89819101 89879101 89879101 89879101 8981910 1 89879101 89879101 89819101 89879101 89819101 89819101 89819101 89819101 89879101 89879101 -89819101 89879101 89879101 89879101 89879101 89819101 89819101 89879101 89879101 89879100 89879101 89879101 89819101 89819101 89879101 89879101 89879101 89819101 89879101 89879101 89879101 89819101 89879101 89879101 89879101 89819101 89819101 8~819101 89819101 89819101 89819101 89879101 89819100 89819101 89819101 o 7/8 FR.lEV TO.lEV 2 2 1 1 2 2 1 1 2 1 2 2 I 1 2 2 1 1 2 2 1 2 1 2 1 1 'I 2 2 1 1 2 1 2 1 2 1 2 1 2 _1 2 2 I 2 1 1 2 1 2 1 l 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 21 1 2 1 2 1 89633300 A )AGf NO B1 FROM W I T1 31)P2R23 35P2823 35P2824 35P2B24 35P2825 35P2825 35P2626 3SP2826 15Pl621 35P2821 35P2828 35P2828 35P2829 3S;»2829 lSP28}0 3SP2B30 3&P1A02 3&PIA03 36PIA04 36P1AOS 36P1A06 36P1A07 36PtA08 36P1A09 36P1A14 3!tP1A15 36PIAl1 36PIA18 36PIA19 36PtAlO 3&plA20 "36PIA27 '36PIA28 16Pt A30 36PlA31 36P1803 l6P1807 36P1816 36P18L9 3bP1820 36P1824 36P1825 36Pl~26 36P1821 36P1828 36P1829 36P1830 16Pt 831 36P2A01 36P2A02 36Pl A04 l 1ST S IGNAl-NbME 36P2 B21 34P2B21 36P2B24 34P282434P2821) 36P2821) 36P2626 34P2826 36P2821 34P2821 36P282R 34P2828 36P282Q 34P2829 34P2B10 36P2830 35P1A02 35Pl AOl lSPIA04 3SP1401) 3SPl A06 3SPIA01 35PIAOR 3') PI AOq 3SPIA 14 35PIAll) 35P1A11 35PLAIA 3SPI Al Q 3SPIA20 35PIA25 35Pl A21 3Sp1A28 35PIA30 35PIA31 35P1801 35P1807 35P1816 35P1819 15P1820 35P1824 35P1821) 35Pl B26 35P1821 35P182R 35Pl"829 35P1830 35PIB31 35P2AOI 35P2 AOl ·35P2 AOft 89633300 RE A AeA6 AeA6 1K2* lK2* bRA3 ARA3 bCA5 AeA5 R IW R/W ARA4 ARA4 lK1* 11<1* MPWR* MPWR* 00010 OINl Doun o IN2 00UT2 DIN't DOUT3 DOUT4 -oOU1S 0lN6 00U16 0lN1 00UT1 00UT8 00UT9 OINll OlNI0 OOUTII OOUT12 OINO DIN3 DIN5 0lN8 DIN9 DCUTlO OlN12 DIN15 DINl3 DIN14 DOUT13 OOUT14 DOUT1S 00OTl6 DOUT11 DIN16 A 8 1 W.l. 89879101 89819101 89879101 89879101 89819101 89B 19101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89879101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89a 19101 89879101 89819101 89819101 89879101 89879101 89819101 89819101 89879101 89819101 89879101 89819101 89879101 89819101 89819101 89819101 89879101 89819101 89879101 89879101 89819101 89879101 89879101 89819101 89819101 89819101 o 118 FR.lEV TO.lEV 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9-135 PAGE NO 82 FROM 36P2A05 36P2AOb 36P2AOl 3(1)2A20 36P2A21 36P24l3 36P24l4 36Pl A2'i 36P2A26 36P2A21 36P2A28 36P2A29 36P2A10 36P2BOl 36P2822 36P2823 36P2824 36P2B25 36P2826 36P2B21 36P2828 36P2829 16P2830 14 r R E TO 35P2A 01) l8PlA08 35Pl A01 35P2AlO 35Pl A21 35P2All 3SP2A24 3 5P2 A21) 35Pl426 3SP2 Al7 35P2A2A 35P2AlQ 35P2A30 l8P2AOl) 35PlRl2 35P28l1 ViP2-82ft 35P2825 35P2826 35Pl827 35P2828 35P28l9 3SP2830 l 1ST SrGNAL-NA~E OlNl1 MOX1* ST~06E* REF* DISABLE ACAl 11<3* ARAO CE* ACA9 ARAl ARAI 11<0* OX1* ACA8 ACA6 11<2* ARA3 ACAS R IW ARA4 l1C1* MPWR* A a 14 .l. 89819101 89819100 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89819101 89879101 89819101 89379100 89879101 89819101 89819101 89879101 89819101 89819101 89819101 89819101 89819101 I o 118 FR.lEV TO.l EV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 :; 9-136 89633300 A TABLE 9-5 89633300 A WIRE LIST BT148 EXPANSION ENCLOSURE BACKPLANE (signal name order) 9-137/9-138 OlPIA21.06PIA21 06PIA21.14PIA21 14PIA21.22PIA21 14P181A.22P1818 02P18lA.06P1818 06P181A.14PlAlB 12PIB01.13PIA01 IlPIB07.12PlA01 03PIB01.0~PlB01 32KW 32KW 32KW AUTOL06C AUTOLOAC AUTOLOac CHI* CHI* CHI* CHI* CHI* CHI* CHI* CHI* CHI* WIRE LIST BT148 OSPIB01.1lPlB01 04PIR07.0SPIA01 01P1801.03P1801 19PIB07.20PIA01 13PIB01.19P1801 20PIB01.2lPlA07 13PIB23.19P1823 ~C* 19PIB23.20PIR23 MC* 20PIB23.21PIR23 MC* 14PIA09.22PIA09 ~C* 06PlA09.l4PlAO~ MC* IlP1823.12PIB23 MC* 04P1823.0SPIR23 MC* 03P1823.04PlR23 ~C* OlP1823.03PIA23 ~C* 02PIA09.06PlA09 ~C* lZPlBZ3.13PlR2J ~C* OSP1823.l1P1823 ~C* OlPIA03.0~PlA03 OAO* 05PIAO).11PIA03 CAO* IlPlA03.12PlAOJ CAO* lZPlA03.13FIA03 CAO* 03PIA03.04PlA03 CAO* 04PIA03.05PIA03 CAO* l3PlA03.l9PlA03 OAO* 19PIA03.20PIA03 CAO* 20PIA03.21PIA03 OAO* 20PlBOI.2IPIROl OAl* 19PIAOl.20PIBOl OA1* 03PIBOI.04PIROI CAl* 04P1801.05PIBOl OAI* IlPlB01.12PlBOl OAl* 13F1801.19PlROl OAl* OSPIAOl.llPlBOl OAl* OlP180l.03P180l OAl* l2PlBOl.13PlBOl CAl* l2PlB02.13PlA02 CA2* IlP1802.12PIB02 OA2* 05P1802.11PIB02 OA2* 04PIB02.05FIA02 OA2* 13P1802.19PIR02 OA2* 03PIB02.04FIB02 OA2* OlP1802.03PIR02 OA2* 20P1802.21P1802 OA2* 19P1B02.20PlR02 OA2* 19P1A06.20PlA06 OA3* 20PIA06.21PIA06 CA3* IlPIA06.12PlA06 OA3* 12PIA06.l3PlA06 OA3* 05PIA06.11PIA06 OA3* 8963331)0 A 9-139 04P1A06.0SP1A06 OlP1A06.03P1A06 03P1A06.04P1A06 13PIA06.19P1A06 lJPlA07.19PlA07 03PIA07.04P1A07 12PIA07.1JPIA07 OlPIA07.0~PIA07 OSPIA07.11PIA07 lIP1A07.12PlA07 04P1A07.0SP1A07 20F1A07.21P1A07 19PIA07.2~P1A07 20P1AOl.21P1AOl 19PIA01.20P1AOl 12PIAOl.lJPIAOl 04P1AOl.OSP1AOl IIPIAOl.12P1AOl 03PIA01.04PIAOl OSPIAOl.liplAOl IJPIAOl.19P1AOl OlPIAOl.OJPlAOl OlPIA02.0JPIA02 IJPIA02.19P1A02 OSPIAO?.1IP1A02 03P1A02.04P1A02 IlP1A02.12P1A02 04P1A02.0SPIA02 12PIA02.IJPIA02 20PIA02.2ipIA02 19F1A02.20PIA02 19P180J.20P1803 20PIBOJ.~iplBOJ 13PIBOJ.19P1BOJ llP1BOJ.12PlB03 03PIB03.04PIBOJ OSP1803.11P1803 01P1803.03P1903 04PIB03.0SPIB03 12P1B03.1JP1B03 12PIB04.1JP1B04 04P1B04.0SP1804 OlP1B04.03P1804 llP1B04.1~P1B04 OSPIB04.11PIB04 13P1B04.19P1804 OJPIB04.04P1804 19PIB04.2~PIB04 20PIB04.21P1904 20PIBOS.21PIBOS 19P180S.20P190S 04P1BOS.OSPIBOS 13PIBOS.19P190S OSP1BOS'liP1ROS llP1BOS.12P1BOS 01P180S.03P190S 03P1BOS.04PIBOS 12PIB05.1~P190S OSP1B06.11PIB06 12PIB06.1JPIB06 9-140 OA3OA3OA3OA3OA4OA4OA4OA4OA4OA4OA4OA4OA4OASOASOASOASOAS* OAS* OAS* OASOASOA6OA6OA6OA6OA6OA6OA6OA6OA6OA7OA7OA7OA7OA7OA7OA7OA7OA7OA8OA8OA8OA8OA8OA8OA8OA8OA8OA9OA9OA9OA9OA9* OA9* OA9OA9OA9OAI00.10- WIRE LIST 8T148 89633300 A 04PlB06.0SPlR06 OAlO* 01PlB06.03P1B06 OA10* IlP1B06.l2PlBO~ OA10* 03PIB06.04PIBO~ OAI0* 13PIB06.19PIBO~ OAlO* 19P1B06.2~PlB06 OA10* 20PIB06.2lPlB06 OAI0* 20PIAOS.21PIA05 OAll* 01PlA05.03PlA05 OAll* llPlAOS.12PlA05 OAll* 12PIA05.l3PlAOS OAll* 03PlAOS.04PlAOS OAl1* 19PIA05.2qPIA05 OA1l* 05PIAOS.llPlA05 OAll* 04PlA05.0SPlA05 OAl1* 13PIA05.19PIA05 OAll* OlPlA04.03PlA04 OA12* IlPIA04.12PlA04 OA12* 04PlA04.0SPlA04 OA12* 03PlA04.04PlA04 OA12* 19P1A04.20PIA04 OA12* 12PIA04.l3PIA04 OA12* OSPlA04.liP1A04 OAI2* l3PlA04.19P1A04 OA12* 20PIA04.2lP1A04 OAI2* 20PlB09.2iplB09 OA13* 19P1B09.20PlB09 OA13* l1PlB09.12PlB09 OA13* 03PlB09.04PlB09 OA13. 05P1B09.1iP1B09 OA13* 01P1B09.03PIB09 OA13* 13PIB09.19P1B09 OA13* 04PIB09.0SPlB09 OA13. 12P1B09.13P1B09 OA13* l2PlB10.l3PlBlO OA14* l3PlBlO.19P1A10 OA14* OSPlBlO.llPlRlO OAI4* 03PIB10.04PIBIO OA14* OlPIBIO.~3PIBIO OA14* IlPlBlO.12PlBlO OA14* 19P1810.20PIBlO OA14* 04PIBIO.OSPlRI0 OAI4* 20PlBlO.21P1BlO OA14* OSPIAll.llPlAll OAlS* 04P1All.OSPlAll OAlS* 11P1All.12PlAll OAlS* l2PlAll.13PlAl1 OAlS* 13PIA11.19PIAll OAlS. 20PIA11.21PIAll OAlS* 19P1All.20P1All OA15* 03PlAll.04PlAll OAI5* OlPIAll.03PlAI1 OAlS* 02PlA17.06PlA17 PEL· 06PlA17.14PlA17 PEL* 14PIA17.22PIA11 PEL03PIA23.04PIA23 PRl~* OSPIA23.11P1A23 PRlM* 11PIA23.12PIA23 PRlM. 19PIA23.20PIA23 PRlM* OlPlA23.03PlA23 PRlM* 89633300 A WIRE LIST BT148 9-141 20PIA23.2ipIA23 IJPIA2J.19PIA23 12PIA23.13PIA2J 04PIA23.0SP1A23 OSP1A12.11 P IAI2 12PIA12.13P1A12 03P1A12.04PIA12 11PIA12.12P1A12 04PIA12.0SP1A12 01F1A12.03PIA12 13PIA12.19PIA12 20P1A12.21PlA12 19P1A12.20PIA12 OSP1812.11PIB12 13PIB12.19P1B12 04PIB12.0SP1812 20P1812.21P1B12 01F1812.03P1812 03P1812.04P1812 12P1812.13P1812 19F1B12.20P1912 11P1812.12PlB12 04PIA13.0SPlA13 OlPIA13.03PlA13 11PlA13.l2PIAIJ 12PIA13.l3PIAi3 20PIA13.21PlA1J 13P1A13.19P1A13 OSP1A13.11PlA13 03PIA1J.04P1AIJ 19PIA1J.20PlAiJ IJP1813.19PIB13 04PIB1J.OSPl913 19PIB13.20P1813 20P1813.21P1BlJ OlPl813.~3Pl~13 12P1813.1JP1813 OSP181J.liPl813 OJPIB13.04PIB13 11PIB13.i2P1813 12PIA14.13PIA14 11PIA14.12PIA14 04PIA14.0SPIA14 13PIA14.19PlA14 20PIA14.21PIA14 OlPIA14.03PIA14 OSPIA14.11PIA14 03PIA14.04PIA14 19PIA14.20PIA14 19P1814.20P1814 04PIB14.05P1814 20PIB14.21P1814 03PIB14.04P1814 OSP1814.11PIB14 13P1814.19Pl814 01PIB14.03P1814 12PIB14.13PIB14 IlP1814.12PIR14 12PIAlS'13PIA15 04PIAIS.OSPIAIS 9-142 PRlM. PRlM. PRTM. PRlMCO 00 00 CO 00 00 CO CO 00 01 01 Cl 01 Cl 01 Cl 01 Cl C2 C2 C2 C2 02 C2 C2 02 C2 OJ C3 C3 03 C3 03 03 03 OJ 04 a4 04 a4 a4 C4 a4 a4 a4 as os as as as as as as CS 06 a6 WIRE LIST 8T148 89633300 A llP1A15.12PlA15 19P1A15.20PlA15 IJPIA15.19PJAlS 20PlA15.21PlA1S 01PIA15.0JPIA15 OSPIA15.11Pl~15 OJPlA15.04P1A15 20P1B15.21PIB15 04PIB1S.0SP1B1S 03P1815.04PIB15 19P1BlS.20P181S OSPlBlS.llPi815 12P1815.13P18l5 l3P18l5.19PlBlS 01PIRlS.03 PlB15 IlP1815.l2PlB15 OSPIA16.11PlA16 IlP1A16.l2PlA16 12PIA16.i3PIA16 IJPIA16.i9PIA16 19P1A16.20PlA16 01P1A16.0JPlA16 20PIA16.2lPlA16 04PlA16.0SPlA16 OJPIA16.04PIA16 01PIB16.03PIB16 03PIBlf.04PlR16 20PlB16.2lPlB16 19P1B16.20PlA16 OSP1B16.l1PlB16 IJP1B16.19PIB16 12PIB16.13PIB16 04PIB16.0SPIA16 IlPIB16.lZPlB16 03PIA11.04PlA11 OSP1A11.1lPlA17 12PlA11.13PlA11 OlP1A11.03P1A17 IIPlA11.12PlA11 19PIA17.?OPlA11 lJPlA17.l9PlA17 20PlA17.21PIA11 04PlA17.0SPlA11 19P1B17.20PIB17 ZOP1811.21P18l7 03PIB11.04PIB11 OIPlB11.03PlB17 l3PlB17.l9PIB17 l2PlR17.13P18l7 OSPIB11.1lP1817 04P1B11.0SP1811 IlP1811.12P1817 19P1A18.20PlA18 OSPIA18.11PlA18 03P1A18.04PlA18 llP1A18.l2PlA18 l2PlA18.13PlA18 20PIA18.21PlA18 OlPlA18.03PlA18 04PlA18.0SPlA18 89633300 A 06 06 06 06 06 06 06 01 01 01 01 01 01 01 01 Q1 08 08 08 08 WIRE LIST BT148 as 08 08 08 08 09 09 09 09 09 Q9 09 Q9 09 010 010 010 010 010 010 010 010 010 Oil 011 Oil 011 011 Gil Oil 011 Oil 012 Q12 012 012 012 012 012 012 9-143 IJPIAI8.19P1AI8 05P1818.11P1818 20PI818.21PIBl@ 0IPI818.03P181@ 13P1818.19P1818 12P1818.i3P1818 19P1818.20P1818 I1P1818.12P1818 04P1818.05P1818 03P1818.04P1818 04PIAI9.0SPIAI9 05PIA19.11PIA19 IIPIAI9.12PIAI9 12P1A19.13P1A19 01PIA19.03PIA19 20PIA19.21PiA19 13PIA19.19PIA19 19PIA19.20PIA19 03Pl&19.04PIAI9 05P1819.11P1819 13P1819.19P1819 12P1819.13P1819 20P1819.21P1819 19P1819.20P1819 11P1819.12P1819 04P1819.05P1819 01P1819.03P1819 OJP1819.04P1819 04PIA21.05Pl&21 OSPIA21.11PIA21 12PIA21.13PIA21 I1PIA21.12PIA21 01PIA21.03PIA21 IJPIA21.19PIA21 03PIA21.04PIA21 19P1&21.20PIA21 20PIA21.2ipIA21 OSP1822.11P1822 01P1822.03P1822 19PI822.?OP1822 12P1822.13P1822 20P1822.21Pi822 OJP1822'04P1822 IJP1822.19P1822 04P1822.0SPIB22 I1P1822.12P1822 04PIA22.0SPIA22 12PIA22.13PIA22 IJPIA22.19PIA22 01PIA22.03PIA22 20PIA22.2iPIA22 03PIA22.04PIA22 11PIA22.12PIA22 OSPIA22.1iP1A22 19P1A22.20PIA22 06P1812.14P1812 02P1812.06PIB12 14P1812.22P1812 06P1823.14P1823 14P1823.22PIB23 9-144 012 01J 013 01J 0(3 013 013 013 013 013 Q14 Q14 014 014 014 Q14 014 014 Q14 Q15 Q15 Q15 QlS Q15 QIS Cl5 015 015 REAO* REAO* READ* READ* READ* READ* READ* READ* READ* REJFCT* REJECT* REJECT* REJECT* REJF.CT* REJECT* REJECT* REJECT* REJECT* REPLY* REPLY* REPLY* REPLY* REPLY* REPLY* REPLY* REPLY* REPlY* Ss* SS* SS* SAO SAO WIRE LIST BT148 89633300 A 02PIB23.06PIB23 06PIA03.14P1A03 14PIA03.22PIAOJ 02PIAOJ.06PIA03 06PIB24.14PIB24 14P1B24.22PIB24 02P1B24.06PIB24 14PIBOl.22PlBOl 02PIBOl.06PlBOl 06PIB01.14P1AOl 06P182S.14PIB2S 14PIB2S.22P182S 02P182S.06P182S 14P1802.22P1802 02P1802.06P1802 06P1802.14P1802 06P1826.14P1826 14PIB26.22P1826 02PIB26.06P1826 14PIA06.22PIA06 06PIA06.14PIA06 02PIA06.06PIA06 14P1821.22P1821 06P1821.14P1821 02P1821.06P1821 14PIA01.22PIA01 02PIA01.06PIA01 06PIA01.14PIA01 14P1828.22P182B 06PIB28.14P1B28 02P1B28.06PIB2e 06PIAOI.14P1AOl 06P1830.14P1830 14PIBlO.22P1830 02P1830.06P1830 14PIA02.~2PIA02 06PIA02.14PIA02 02PIA02.06PIA02 02P18l1.06P1831 14PIB31.22P1831 06P1831.14PIB31 06P1803.14P1803 14P180l.22PIB03 02PIB03.06P1B03 06PIA23.14PIA23 02PIA23.06PIA2l 14PIA23.22PIA23 14P1804.22PIB04 02PIB04.06P1804 06PIB04.14PIB04 06PIA24.14PIA24 14PIA24.22PIA24 02PIA24.06PIA24 02PIBOS.06P180S 14PIBOS.22PIBOS 06PIB05.14P180S 06PIB14.14PIB14 02P1814.06PIB14 14PIB14.22PIB14 06PIA15.14PIA15 89633300 A SAO 500 500 500 SAl SAl SAl 501 501 501 SA2 SA2 SA2 502 502 502 SA3 SA3 SAl SOl 503 503 SA4 SA4 SA4 504 S04 504 SAS SAS SAS 50S SA6 5A6 5A6 506 506 506 SA1 SA1 SA1 507 507 507 SA8 SAA SA8 508 508 508 SA9 SA9 SA9 509 509 509 SPI* SPI* SPt* SRC* WIRE LIST BT148 9-145 02PIAI5.06PIAIS 14PIA15.22P1AlS 06PIA25.14PIA25 14PIA25.22PIA2S 02PIA25.06PIA2S 14PIB06.22PIB06 02PIB06.06P1806 06P1806.14PIB06 14PIA26.22PIA26 06PIA26.14PIA26 02PIA26.06PIA26 06PIA05.14PIAOS 02PIA05.06PIA05 14PIA05.22PIA05 02PIA27.06PIA27 14PIA27.22P1A27 06PIA27.14P1A27 06P1A04.14P1A04 14PIA04.22PIA04 02PlA04.06PIA04 06PIA28.14PIA28 02PIA28.06PIA28 14P1A28.22P1A28 02P1809.06P1B09 06PIB09'14PIB09 14P1809.22PIR09 06PIA30.l4PIA30 02P1A30.06PIA30 14PIA30.22PIA30 02PIB10.06P1810 06PlB10.14PIBlO 14P1810.22P1810 02PlA31.06PlA31 06PIA31.14PIA31 14P1A31.22PIA31 02PIAll.06PlA11 14PIA11.22PIAll 06PIAl1.14PlAII 02PIA18.06PIA18 06PIA18.14PlA18 14PIA18.22PIA18 06PIA20.14PIA20 02PIA20.06PIA20 l4PlA20.22P1A20 06PIB21.14PlR21 14P1B21.22PlB21 02P1821.06P1821 14PIA13.22PIA13 02PIAIJ.06PIAI3 06PIAIJ.14PIA13 02P1817.06P1817 06PIB17.14PIB17 14PIB17.22PIB17 03PIA09.04PIA09 01PIA09.0JPIA09 13P1A09.19PlA09 19PIA09.20PIA09 IlPIA09.12PIA09 04P1A09.05PIA09 20PIA09.2ipIA09 9-146 SROSROSAI0 5AI0 5AI0 5010 5010 SOlO SAIl SAIl SAil 5011 5011 5011 5A12 5A12 5A12 5012 5012 5012 5A13 5A13 5AI3 5013 5013 5013 5A14 5AI4 5AI4 5014 5014 5014 5AI5 5A15 5AI5 5015 SOlS 5015 5016 5016 5016 5017 5017 5017 SWRITf* 5WRITE* 5WRITE* SR5MSRSMSA5MSVIO5VIO5VIOT.P. T.P. T.P. T.P. T.P. T.P. T.P. WIRE LIST 8T148 89633300 A WIRE LIST BT148 12P1A09,13P1A09 05P1A09,IIP1A09 05P1A20,11P1A20 04P1A20,05P1A20 l1P1A20,12P1A20 12P1A20,13P1A20 20P1A20,21P1A20 13P1A20,19P1A20 03P1A20,04P1A20 01P1A20,03P1A20 19P1A20,20P1A20 19P1B21,20P1B21 01P1B21,03P1B21 13P1B21,19P1B21 05P1B21,11P1B21 12P1B21,13P1B21 20P1B21,21P1B21 03P1B21,04P1B21 04P1B21,05P1B21 -11P1B21,12P1B21 T.P. T.P. WEZ* WEZ* WEZ* WEZ* WEZ* WEZ* WEZ* WEZ* WEZ* WRITE* WRITE* WRITE* WRITE* WRITE* WRITE* WRITE* WRITE* WRITE* TABLE 9-6. COT EXTERNAL CABLE ASSEMBLY WIRE LIST (P/N 89668300) COT WIRE WIRE CPU CONNECTOR/PIN GAUGE COLOR CONNECTOR/ SIGNAL NAME PIN AWG22 BLK P14-51 CRT-TRANS -3 RED Pllt-57 CRT-REC -7 GRN P14-58 COMMON (GND) WHT/BLU Pl-5* CLEAR TO SEND jumpered to REQ~EST TO SEND f!-2 Pl-4 AWG22 * Pl-5 (CLEAR TO SEND) is jumpered to assembly connector for COT. 89633300 C pl~4 (REQUEST TO SEND) at 9-147/148 COMMENT SHEET MANUALTITLE CONTROL OATA R CENTRAL PROCESSING UNIT 8A201-8, 8T148, 8U120, G0611 0 _ _ _ __ 0_ PUBLICATION NO. _8-=9:.....6-=3;,.::;3..::;.3_ FROM: ABl07, ABl08, BA20l-A HARDWARE MAINTENANCE MANUAL REVISION _ _ _~H_ __ NAME: ____________________________________ BUSINESS ADDRESS: _____________________________________________________ COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number references and fill in publication revision level as shown by the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged to use the TAR. NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. FOLD ON DOTTED LINES AND STAPLE STAPLE STAPLE mw mw ---------------------------------------------------------------------------------------------------------------~1I 111111 I NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES I I I I I I 1 BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 8241 w MINNEAPOLIS, MINN. Z :;:; POST AGE WILL BE PAID BY CONTROL DATA CORPORATION PUBLICATIONS ANO GRAPHICS DIVISION 4455 EASTGATE MAll LA JOllA, CALIFORNIA 92037 l- I:::> :u I I I I I I I I I I I I I 1 1 1 1 1 I 1 I ---------------------------------------------------------------------------------------------------------------~ ~w mw
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : No Create Date : 2016:06:17 10:45:10-08:00 Modify Date : 2016:06:17 11:32:22-07:00 XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Metadata Date : 2016:06:17 11:32:22-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:c34422a9-9f7f-684b-9623-5213d8d20273 Instance ID : uuid:5e280238-38ea-a64b-824c-fa1cc3a9c818 Page Layout : SinglePage Page Mode : UseNone Page Count : 748EXIF Metadata provided by EXIF.tools