Adel S. Sedra, Kenneth C. Smith Instructor's Solution Manual For Microelectronic Circuits, Inter

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 601

DownloadAdel S. Sedra, Kenneth C. Smith - Instructor's Solution Manual For Microelectronic Circuits, Inter
Open PDF In BrowserView PDF
Oxford University Press, Inc., publishes works that further Oxford University's
objective of excellence in research, scholarship, and education.
Oxford New York
Auckland Cape Town Dares Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto
With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 20 II by Oxford University Press, Inc.
Published by Oxford University Press, Inc.
198 Madison Avenue, New York, New York 10016
http://www.oup.com
Oxford is a registered trademark of Oxford University Press
All rights reserved. No part of this publication m11y be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

ISBN: 978-0-19-976570-6

Printing number: 9 8 7 6 S 4 3 2 I
Printed in the United States of America
on acid-free paper

Contents
Exercise Solutions (Chapters 1 - 16)
Problem Solutions (Chapters 1- 16)

Preface

This manual contains complete solutions for all exercises and end-of-chapter problems included in the book
Microelectronic Circuits, International Sixth Edition, by Adel S. Sedra and Kenneth C. Smith.
We are grateful to Mandana Amiri, Shahriar Mirabbasi, Roberto Rosales, Alok Berry, Norman Cox, John Wilson,
Clark Kinnaird, Roger King, Marc Cahay, Kathleen Muhonen, Angela Rasmussen, Mike Green, John Davis, Dan
Moore, and Bob Krueger, who assisted in the preparation of this manual. We also acknowledge the contribution of
Ralph Duncan and Brian Silveira to previous editions of this manual.
Communications concerning detected errors should be sent to the attention of the Engineering Editor, mail to
Oxford University Press, 198 Madison Avenue, New York, New York, USA 10016 or e-mail to
higher.education.us@oup.com. Needless to say, they would be greatly appreciated.
A website for the book is available at www.oup.com/sedra-xse

lV

Exercise 1--1

Ex: 1.1 When output terminals arc open circuited
For circuit a. n0 c = u,U)
For circuit b. l'oc
(,(t) X R,
When output tenninals arc short-circuited
.., CJrcmt
. . a. i ,.. "' l'~{f)
.·or
For circuit b. f.,.

v 0 ·~ 10 mY X

If R,
<'(J ·""

"~

.....M!Q_
100 + l

9.9 mY

10 kH

10 mV X _!Q_ - 9.1 mY

10 +I-

If Rt."" lk!l

i 5{ I)

For equivalt~ncy

t'o = 10 mV X _I_
I+ I

Rsis(t) ""' t•s D = 0001

1•.1

2 V => D "" 0010

15V=>D=IIII
(b) (i) +I V (ii) +2 V (iii} +4 V (iv) +8 V
(e) The closest discrete value rep.rcsented by
Dis 5 V; thus D ~" OIOL TI1c error is -0.2 V or
-0.21 5.2 X 100 •·~· -·4%

I

F..x: 1.6 (al T

(c) T ""

""

I<:x: 1.7 If 6 MHz is allocated for ench channel.
then 470 MHz to 806 MHz will accmnodate
806 - 470 '' 56 chnnnels
6
Since it starts with channel 14. it will go from
~:hannel 14 to ehanncl69

Ex: 1.10 Voltage gain '" 20 log 100 •·•· 40 dB
Current gain " 20 log 1000 "" 00 dB
Power gain ~" 10 log A,. "' 10 log lA, A,)
-~ 10 log )()5"' 50 dB

P,,

Ex: 1.11

15 X 8

120 mW

120 .... 18

102 mW

·r

-~~-

I ,. .!
.•• ~--dt

Ex: 1.8 I'

r.

120

R

"'.!.x.~xT
T

:cz

R

v.,"' l

PI+ P, + P, +

.

'"(~r ~ + c:~7J ~ (5·~~r k~ ...
y_: x
R

x_'

>: ( 1 +

r:.J

l ~

iJ

_I +

25

l't.

10
II)'·' V "' IOp. V
101' + 10 --

X

< 0.5
6.25 X 10

0.25 X 10 ''

Ex: 1.9 (a) lJ ean rept\~~ent 15 distinct values
hetween 0 anJ + 15 V. Thus.
l'.t = 0 V ~ D
0000

W

_-.-!!J_ X A X ~
+ R1
'"
Rl i· I(.
__
I - x I x ___
HL_.. ~ 0 . :25 V

p
Power nain ( 4 ) ~ _L

. 9l" 25

f

11

N;

Voltage gain

O.SI

10

I X

Fra<.;tion of energy in tirst live harmonics

····-~(!
;/

J()

I.

With the butTer amplifier:

l. + ... )

found from dirCl'! calculation.
Frat·tion of energy in fundamental

~

,.. ( 10 X 10 . )

IR

0

49

It can he shown by direct calculali<'ll that the

,_h

I?

cc·

infinite series in the parentheses h;ts a sum that
approaches

100 ·~ 15%

Ex: 1.12

Altt~mtively,

p

X

lO log A,

·.c

44 dB

0.5 p.A

0.25 p.W

0.25 V/V

Exercise 1-3

This figure belong,.Ho. ExerCise Ll5

r---1+

"- t

I()()K

-

lOt~,

Ex: U3 Open-circuit (no load) output voltage =
At'n''i

Output·voltnge with load connected
Rt
"'· .A~ II; - . - -

p

"'

L

11~

RL

100

'"'

v,

001!;2

-

lf,

fl,

11.

Jl,

v,

vi2

vil

Vs

_E ""· ._!.:~ X _,!,! X ...!.!

""' 90.9 X 9. 9 X 0.909

""8l8V/V

=

uh "'' 818 I's ., 818 X I

1-·- =» R0
R0 + I

"' -

Ex: 1.14 A,.,.

t·-

+

For t', .•., I mV

" R1_ + R"

OJ~

~
~
-=:-

+

lM~

lOOK

0.25 k.O

818 mV

250fl

40 dB ""' 100 V/V

"0.909 X 90.9 X 9.9 X 0.909::: 744
""

('A '" t'·-.!!.!:_)
rR
'RI. + Ro .
2

fur V,"' I mV

I.

2
=v~'X
(1oo x -I +1 -)
I IIJOO
' .
I

V.

·

n

2.:hl,.

744 xI mV

744 mV

t<:x: J.17 Usiilg voltage amplifier model.it can be
represented as

R,

IOlogA,,
Ex: 1.15 Without stage 3 (sec figure above)

~ "' (

IM

)< IO)( 100100
K
K+I

u5

100 K l- I M

. X

(100)(__Ji}Q_)
IOO+IK

~

K

R; "" I MH

)

R,. = IOU
A'", = A,. 1 X A,.2 = 1),9 X 90.9

·~ RL8 V

~, -~
R, + Rs

Vs

Vo
Vs

Ex: 1.16 Given v,

For R 1 ·~ 10 H
Oventll voltage gain

(0.909)(10)(0.9901 )( 100)(0.()<)09)

I mV

v,

X A

X

'"'

__!!_L__
RL + R,

·~ ...... !.!v.L~ X 900 X _J_O_

lf,

0

900 V!V

The overall voltage gain

I M 1 100 K

= 0.909 So

0.909 lis = 0.909 X I ·"'· 0.909 mV

10 ·' I()

409 V/V

For R, '' 1000 H
Overall voltage gain
.~

1'-_i_ _ X 900 X -

_ _!_.

I M ! 100 K

IOOO__ = R10 VIV
1000 + 10

.·. Range of voltage gain is from 409 to Ill 0 VIV
For u, ,. , 1 mV
1';2

9X

ll~ ·""· t) )(

1

9 mV

Exercise 1--4

Ex:l.l8

Ex:l.2l

FromnPdr
equllli(ln
atE

···-·--··0·--··----·-···-t'J,

G
= ihr" + (13 + I )ivR,

=i 6 {r.,+(~+

But vi> =

11,

l)R,I

and ip = i., thus

Ex:t.l9

R,

K": 1.22
f

Gain

10Hz
lOkHz
lOOkHz
I MHz

60dB
40dB
20dB
OdB

Gain !dB)

Rt
R1+ R,

,,, "'t's-tis ""

G,.t,1(R 0

::O.,vsRl

II

RE)

:~ Rs (Ro !1

RL)

111Ull.

to t<¥

R,
-tlo = O,.--.-(R
0

R1 + Rs

tis

II

R1)

Ex: 1.20 Using transresistance circuit model the
circuit will be

t04

103

...

3 dB
frequency

Ex.: 1.23

+

!1

~

is

-·

___!L

v)1 ~-'

;.x~

R

'"'

G,..V 1

..L + _!_ + .vC

R, -1· Rs

RI. ·+· R0

Ro

Rr.

Thus, Vo ""

v,

....i!L_
"'Rr + R0

Vo .""' R

i1

Now V 0 ~ Vo X !J. '~ R ....!!.L_ X ...i!.L
is
i 1 is
"'Rt. + Ra R1 + Rs

=R -.!!.L X _.!!.L..
"'Rs + R1

Rt + R0

I.

G,.
-~--~

- +-

R0

RL

I

sC

1
+ __.::._

_L + j_
Ro

which is of the STC LP type.
DC gain =

'

~ ?.!

..Lt..L
Rn

Rl.

100

RL

Exercise 1--5

..L
+ Rr_
J_$0,.
R
.100
0

"" 1Q.IOO - 0.1 ntA/V

I ··~. 0.0& mA/V
RI. .,:;·o·.I~ ~.O·.
t

R1. ~

·'

o.!>s kft ~..

Ex: 1.24 Refer to Fig. El.23
V2
V

=

s

RI

.

R.,+

.1..
+R
sC
'

R,
Rs +- R, +
s

s

which is a HP S'I'C function.
12.s

kn

1
hdn ··.. 2rrC(Rs
c~

+ Rl) 5

·-~I_ __

I

· -+-R,}
C(Rs

100Hz

2rr(l + 9) Hl X 100 '"' 0.16 ILF

Exercise 1--6

Ex: 1.25

b. 1imc tnken to cross 2 J.l.ffi

T= 50K
ni ""'· BT;ne ···1Jgl(2K11

length '=

::

..1.~;

6.75 X Hf

""' 7.3 X IOJ\50)JI1

.~ 9.6

x

e-1.12112xU2/IIJ-5

x~I!J

' qnJt,.E

= L6 X 10" 19

T"'"' 350K

n; ""· BTm e.
"" 7.3

c. In n-~i driff current density Jn in
J~

IO-:l9/cm3

X JO'~(JSQ)J/1 C·-l.la/tl X $.42

··-~

X I() • X .1~01

l V

2x

""' Aqn11n£
= 0.25 X 10·-B X 1.08 X 104

"" 27 11A

Note 0.25 11-m 2

From Exercise 3.1 n1 at
T ,.,. 350 K = 4.15

X

•

=

_

0.25 x 10· 8 cm2
dn(x)

Sx. 1.29/,. ··· qD,--

1011 /cnl

dx

Nv """ 10 11/cm 3

From Figure E 1 • 2 9

= 10 17/cm~ "" 10~ I (JJ.m) 3

llu

ni2

p,a!-N

'
Dn " 35 <-1n·/s

f)

X 10 11 ) 2
1011

dx-

J

106

-~-

lit

•

=

·-

qD dn(x)

,
n

Pp = N"
Want electron concentration
w
I

.5 X lO

>'I\

dn _ 105 -0 _
····· 10'1Lm~ 2

Ex: 1.27
At 300 K, n1 = 1.5 X IOH1/cm 3

TIP ""

4 2
35 x (10)
(f.tmr /s:

= 35 X 10~(!1-m) 2 /s

"' 1.72 x 106 /cnl

1.6 X 10~ 19 X 35 X 108 X 105

"" 56

X

10- 6

AI( 11-m )2

= 56 11 A/( 11-m) 2

"' 1.5 X 104 /cm)

For 1. = I mA ""1. X A

=-> .4

.2

;. N A = Pp = !!!..

=

I nv\ -· . !OJ IJ:A
::::.18
Jn
56 )J.AI(t.l.tn) 2

TIP

Ex;l.30

( 1.5 X 10 10{
1.5 X 104

Using equation 1 . 4 5

1.5 X 1016fcmJ

D.
llo

~ =

v,.

li-p

Dn = Jl,V,. = 1350X25.9X

Ex:l.28
a. u,·driff = -~J.-nE
Here negative sign indicates that electrons
move in a direction oppOSite toE
We use

'-'··drifT

$!;

Dp

X

35 cm /s
'

=

)LpVT "'

a.:

12.4 cm2/s

J<;x: 1. 31

--=---,

Equation 3 . 50

2 x Hr·4
•.

. 4

"" 6.75 X 10 cm/s "'""' 6.75 x 10 mls

W=

w->

2

'" -!J.-.E

·"-' 1350

w-·l

,,~ 1.08 X
A!cm2
d. Ddff current 1, = Aqnu,.-dritr

N 0 = 10 17/cm 3

(4.l5

1350 X

104

Ex: 1.26

=

X 1{) 1t, X

lit/l!IITI

= 4.15 X 10 11 /cml

It, ""'

30 ps

480 X 25.9 X 10

-;!

lltn~

Exercise 1--7

As one can sec from above equation, to increase
minority carrier-concentration (fin) by a factor of
2. olic mu1>tlowcr ND (= n,) by a factor of2.

J<:x: l. 34
Equntion

391,~

L

Aqn 2( . .!!.e._
1 L ,N
1 0

'"'

+

D, )
l ••N,,

D.,
D,
since ··"' and ·-·· here approximately

Ex: 1.32

t.,,

L,

In a p+ n diode N 1 >> ND

Aqu:(. 1._!!,/!._
+ Jl!c .. )
,N v

Equationl.. 5U(,

L,N,~

1

., lO"' X 1.6 X I()'

x[

v
w~-'---' --

Equation 1. 52 X J'

X

5

19 :><: (,

L5 X 10 1) 1

l

JO
+ _ ._ _
l!_l
16
--4
.·IS
10 X 10 X 10
10 -·1 X 1~

N_, + N 0

since N 1 >> Np
Nn

I

:::W·_;;;'

I,( e

\'/\' ..
1 ·-

I)

lY ,l

,.,

•.
r:quatJon

1

~

. .;- 3(. 1
<

)

-

.

tl > N1)
.
;V,
,

Ex:

l. 36

::. A,1,v"w

/l

1.()~ X

X

•J

1().

1.6 X 10- IQ

1.66 >: 10

11

(_!_-- + ___1_,)(0.814- 0.605)

ern

!(}IX

10 1"

0.166 IJ.rll

r;:.~-~--~~-

A .j2~sqN 0 V 0

Kx: 1. 37
[ " " v~

In

.-~ampk

N ~.>

1. 2;>

'f.

:

10' /em· and

V1

1

••,."

~~

" ' "~------,~-~"""

t~'(~; • ;~)v,. + vi?J

Ex: 1.33

to''inn·'

In the ll·Tt';!ion nf thi' pn jm:tinn diode

n,,
J' . ,

,\1 ,
II,
11,.

IO"'tnn'

ll-?

>-::

ll)'')'

10"'

(,J)l{

u~ing

Q1

)<

!()

Clll

equation 1- 53

' ·V V ,
Aq( -~~-"'-'·-~) W
iv_, 1 /v "·

0.601\

Jllll

Exercise 1--8

"·' I0- 4 xL6XIQ-ItJ ( IO

18 . 16)
XIO
X6,(}8XI0-Scm

1018

+ 1016

Ex: 1.40
r::quation 1 . 7 4
L2
::J!.

•"' 9.63 pC

D,.

I "" Is "" llqn/(..!!.JL..
+ [)~ )
l.,.N[) L.N.,

Reverse Current

10···!4 X 1.6 X 10-l? X ( 1.5 X 10111 ) 2

x( 5

X

10 · 10-4 X 10 16

+

18
)
10 X 10-~ X J0 1K

7.3 X }(}" 15 A

(5 X 10- 4/
5
--: 25 ns
Equation 1 . 81

cd ~ (;:) 1
In example 1.30 N,.. "'" l0 18/crn1 •
N0

""

l0 16/cm 3

A'>suming NA >> Np
'~'r::

-.fl ""

25 ns

:.CJ "" ( 25 X 10-~ ). O.J X 10-J
25.9 X 10 ~
( 10

18

10 16)(

X

%.5pF
!

+ 10!6 0.814

1018

= 3.2 pF
Bqualion 1 • 71

Ci""

C;o

R
3.2

X

10- 12

~
= 1.12pF

Ex: 1. 39
C1 =

'

1Sl.
""
dV

-!!...{-.r/)
dV

d

=-{-.rXls(e
dv
d

= Trl~(e
~ dV.

VN

T-J)]

I'll'

r- I)

)

Exercise 2--1

Ex: 2.1

Therefore:

The rrrinimum number of terrrrinals required by a
single op amp is five: two input terminals, one output
terrrrinal, one terminal for positive power supply and
one terminal for negative power supply.
The minimum number of terminals required by a
quad op amp is 14: each op amp requires two
input terminals and one output terminal (accounting for 12 terminals for the four op amps). In
addition, the four op amp can all share one terminal for positive power supply and one terminal for
negative power supply.

Ex: 2.2

v2

=

-

V 1)

isA = J.LGmR. For G"' = 10 mAN and
100 we have:

J.L

104 YN Or equiva-

100 X 10 X 10
A
lently 80dB

Ex: 2.4
The gain and input resistance of the inverting
amplifier circuit shown in Figure 2.5 are

- R2 andR 1 respectively. Therefore, we have:

Equation are v3 = A(v2
V;d

V 3 = J.LGmR(V 2

That is the open-loop gain of the op amp

v 1,

-

V;cm

-

R•

v 1 );

R 1 = 100 kfl and

1
2(v 1 + v2 )

=

a)

= 0 - .1_ = -0.02 Y = -2 mY
103

R 2 = -10::=>R 2
RJ
Thus:
R 2 = 10 X 100 kfl

IOR 1

IMfl

+ 0.002 y

0- ( -0.002)

Ex: 2.5

2mY

R= IOkfl

-1 mY

!(-2mY+O)
2
3

b) -10 = lO (5- v 1)=> v 1 = 5.01 Y
V;d

= v2

= 5- 5.01 = 0.01 Y = 10 mY

11 1

-

~(5.01

+ 5) = 5.005 y

.::5Y

1.1
From Table

c)
113
11;d

=

A(11 2 -11 1 )

=

v2

= 103 (0.998-1.002) =-4Y

~( 1.002 +

0.998) =

=

IY

I

V0

R,

d)

-3.6 = 103 [712- (-3.6)]

=>
V;d

J2

=

= v2

-

=

I
-(v 1

2

R; =

= -3.6036- (-3.6)

-0.0036 Y
=

IO\v2 + 3.6)

-3.6036 y
V1

=

+ Vo)
~

-3.6 mY

Ex: 2.3
From Figure E2.3 we have: V 3 = f.L V" and
-

G"'V 1)R

=

G,R(V 2

-

V 1)

0

V; - Ri;

0- Ri; = - Ri;
Ri;
= -R=>R,
i;

~'0 ~;" = o

-R

-IOkfl

v

__!

V;

thus R.I =

I
2[3.6 + (-3.6)]

-3.6 y

Vd = (G"'V 2

~ 0 I; ~ 0 , i.e., output is open circuit

The negative input terminal of the op amp, i.e.,
V; is a virtual ground, thus V; = 0

v 1 = 0.998 - 1.002 = -4 mY

-

R,

we have:

and V; is a virtual ground (V; = 0),

Q=
•

0 => R.I = 0 fl

I;

Since we are assuming that the op amp in this
transresistance amplifier is ideal. the op amp has
zero output resistance and therefore the output
resistance of this trans resistance amplifier is also
zero. That is R0 = 0

n.

Exercise 2-2

R =Jb1cll

~v.

Rt
0:5 rnA

C.onnectlng.the sig~IUI source shown in Figure.
e~:s to the inp!ll (If this. amplifier we have:
V; js a virtual .gruund that js V1 = o. thi,~s the ~r"
tent flowing through the to kll resistt)l' connected ·between V1 and ground is i.ero. Thercfui'e
V0

V,-Rx0.5mA,O-IOK'X05mA

""

=

-sv

For.the cifuuit shown above we have:

v (} = I

.:OW
A

If A ""

101

TXiO

then c; c., 9.901 and

E~e:l.14

(a) lo~d voltage

:·~ G-10 to X 100 "" -0.99%
......- . -I%

e

For V 1

'~

IV, V 0

G X V1

"'

,~,

I kH
x I V :::: I mV
I kH + l MH

9.901 V and

v,l = A(V~- V_)~ v+- v_ ""·

Vo"" 9.901
A
!000

(b) load voltage= IV
Ex! 2.15

:::: 9.9mV
If A = 104 then G ""' 9.99 and

E. ""

-0.1%

For V 1 = IV, V 0 = Gx V 1 = 9.99V,
therefore.

v • - v . . ,. vA0

""'·

?·~
104 "'

0.999 mV -I
- mV

If A ·"" 105 then 0 = 9.999 and

-0.01%
I V. V 0

£ ""

For V 1

v.- V_

""

9.999 thus.

A ~

"" Vo "" 9.999 = 0.09999 mV
JO'~

A

4

;:.:O.ImV

R1

V 11

2

jL ""' ~
I k!l

R.. ,on

v, "' I v,

;I "' OA, VI :::
""

,. R2 = 200 • IOOV/V

V,
\' 12 -

(b)Rid""2R 1 =2 X 2k!l=4k!l
Since we are assuming the op amp is ideal

Ex: 2.13

i1

R 1 =R3 =2 kH, R1 "'R4 = 200 kH
Since R 4/R 3 =RiR 1 we have:

(a)

G X V1

"'

I kU

(c) A,..,

=

=

~
V

101

I rnA

=

(....!!L.)(
I - ~ &)
R +R
R R
4

3

i 2 "" i 1 = I mA,

= (,: : }

1

4

-~~)

9kn
R4- R2
R~
R1

i.,_~

~--'-'"--+...-.()

v,

~+I

R3
The worst case C{)mirion-mode gain A,,m happens
wbenjA.,l bas its maximum value.

\1 0 "'

V1 +lzX9k!l

i ...

l'o

t. -

i0

v0
V;

I k.O - I kH

10 v
l V

I+IX9

-· lOV .. !OtttA,

""' it+ i2 =
""

=

~

IOV

If the resistors have I% tolerance, we
haveR.tnomO- O.OJ) :s;; R4 :s;; R4 nom(l + 0.01}
RJnmn(l + 0.01) RJ R:1"''"'( I - 0.01)
where R 1"'"'' and R411" 01 are nominal values for R3
and R.t respectively. We have:

R,311'"'' "' 2 kH and R~nom "" 200 kH, thus,

1.1 rnA

200 X 0.99 s ~. s ?00 X 1.01
2 X 1.01
R~
2 X 0.99

wYV

98.02 $

or 20 dB

~ .$
Rl

}{)2.02

Exercise 2--5

Simlarly, we can show that

-20 ==!X lOX I ms
CR
CR ·""

~~ X

'

I ms X 0.5 ms

Jt:x: 2.19

c

().OJ

-oV,(+)

IJ.F Is the input capacitance of this

ditl'crentiatoi:. We want CR "" !0- 2 s (the time
constant Of the differenliator), thus.
10-2

R= - -

= IMH

0.01 ILF
From equation (2.57 ), we know that the transfer
funcdon of the differentiator is of the form
V 0 (jw) _
. CR
- - - - -]W
V;(jw)

Thus, for w = 10 rad / s the diffcrentiator transfer function has magnitude

IVol ""
V;

+ ""
The input resistance of this inverting integrator is
R1, therefore, R = 10 kfi
Since the desired integration time constant
is 10-J s, we have: CR "" 10-:; s =>
•
10 -J s
C = JO k!l = 0.1 !LF

10 X 10- 2 ""' 0.1 VN and phase

-900

For w = 103 rad Is the diffcrentiator tnmsfer
function has magnitude

~~~~

""'

10~ X 10- 7

"'

10 VN and phase

::: 15Hz

9.9 .k!!
9.9 kH ::: 10 Hl

With this value of R:~ the new value of the output
de voltage (using equ:tti>fi, which
is the case .in this cxercis<~) and write:
Open-loop gain atf::: 20 log()")

vos, ··~ t•J
"• 0 .•... ,,r (/.\' ··r·' CR
. ""'" ~
::::} 1 """

0.16 Hz

Tht~rcli:m~:

12V··2mV
.,< I ms :::6D "'} 1
2 mV

Open-loop gain at 300 Hz ""·
"'

6D

20 Joe~ MHz

81) dB

300

~

Open-loop gain at 3kHz"'

20 Joo 3 MHz := 60 dB
"'3kHz
·
Open-loop gain at 12 kllz "'
201o<> 3 MHz = 48t!B
"'12kHz
·
Open-loop gain at 60kHz''
20log 3 MHz ···' J4dB
60kHz

Ex: 2.27

c

With the feedback resistor RF to haw at kast
• 10 V of output signal swing available. we have
to make sure that the output voltage due to l'os has
a magnitude of at most 2 V. From e(

!0 MH

beln'~:

v..---., \', 1+ 1
0 ········

1~F

l .•

~:R -~ ~ V, I

' )dt

ll1c wavefomls for one period nfthc input and tlw

We knnw RC ·.·· I ms ami

R

;.,., '

output sigmtls are >hown
10

7

-H--

.

1--I IllS .

_________,_.

2 Ill'

I ruo/ s
~-..._

__.·-JOV

Exercise 2--9

t ms

()

~----~1

2ms

slope-"'SR
1.6V

We have
-20 "'

=..!J' m• lO dt

CR
=}

0

CR =

t,.

=..!X

-20 "'

CR

;~ X

10

XI

ms

t = 0.9 X 1.6- 0.1 X 1.6

'

I ms "" 0.5 ms

Ex: 2.28
Since de gain of the op amp is much larger than
the de gain of the designed non-inverting
amplifier. we can use equation(2.35 ).
Therefore:
hdh ""'

__£___ and I

R1

I+ R2

R,

100 and

R,
J,"' 2MHz
Hence !Jdb

2MHz
100

20kHz

E.x: 2.29
For the input voltage step of magnitude V the output wavefonn will still be given by the exponential wavefonn of C{JUationf2.40)
lfw1 V sSR
That is V s SR ~ V s SR
w,
27Tf,
V:;:; 0.16 V, thus, the largest possible input voltage step is 0.16 V.
From Appendix F we know thal the 10% to 90%
rise time of the output waveform of the fonn of

equation (2.40) is 1r

:::

I VltJ.S
~I,

2.2 J..

w,

Thus. 1, ::: 0.35 JLS
If an input step of amplitude 1.6 V (I 0 times as
large compared to the previous ease} is applied.
the the output is slew-ntte limited and is linearly
rising with a slope equal to the slew-rule, as
~hown in the following fi.gure.

= 1.28 11S

Ex:2.30
From C{Jllation (2.41) we have:

f

--

M -

SR

2r.Vom"'

"' 15.915 kHz ::: 15.9 kHz

Using equation (2.42). lbr an input sinusoid with
frequency f
5 fM, the maximum 1>ossible
amplitude that can be accommodated at the output
without incurring SR distortion is:
V o "" V o ,..,( fM ) '"' I0
5 fM

X

! "-"
5

2 V (peak)

Exercise 3-1

Ex: 3 .1

(c)

Refer ro fiig3. 3(a). for V 1 ;:;-: 0, the diode q:mdu<:t!; and prcs.ents a ~ voltage drop. Thu:>
V 0 ..~ V1 For V1 < 0, the diOde is cut-off, zero
current flows thro1igh R:md V 0

""

0, The

res1dts is lhe tnmsfer characteristic in Fig E~ .1.

OAt

1~

Ex:3.2
see Figure). 3aand:3. 3b
f)uriilg the positive half (>f the sinusoid, the diotic
is Jnrward bia.~e !l${1.< ·' !II

V!V

"" I 5e

r '" 6.91 X 10· e

- 0.7V = V

·JJ

""54.6 rnA

R =

10-2.4
54.6 x to··l

" 139

I

2.5 k!l

1'

I '" '\'7

I ..,e

ln

:1

dioth:
\ ~ '/ \ '

i \ )
('

v

\':\·,

I

in
j \'J\.'T

;}):

ifi! t'

if)}

,)\

i,)j

-

c. If i 0

lmA

ai 0 (mA)

aip(mAl

'mall

expo.
model
·---·--·-<>·-··---·-

a

--10

-DA

-O..B

h

-·5

-0.2

-O.IH

c

r.'i

+0.2

+0.22

d

+10

t-0.4

;0.49

-~·-

Ex: 3. 15

v

:

mY

Ex: 3 .16

\! 11

lr

~3

.~.977

For a t.ener diode

I ().()1 X 50

\ 1 ,.,

--

,/,.7

+

\!,.,

\ 1 ,., -

--ilJo-

-4 mA

J

9.5 y

Fnr I z

~R

5

i,

0.7-143 v
Vohagc drop across 4 diodes
4 )f 0.7443 ..• 2.977 v

10

•

t'

5

'' 1 1n

\-'{1

+l:'i

rr~t\

)'. HI

. ('-·IIsJ)

Vn

25 mV

signal

"

tl7~·!1'3-

/\cross t'ach diode 1hc vollllgc drop is

thing equations ( I ) and 1~) r.:sulb ami u.,ing

jV(mV)

4.7 ·.r 10

I'.'\ I

I)

In I hi., problem i 1, 1

'

I'

i /)

II

\ l

in,(<'

V1

0.75

4

J

5 mA

9.5

1

(1.()05 X 50

~

9.75 V

Ex: 3. 17

-o V,,

t

15Y

I
~I/

a. In this problem __ _

V5 cos{1T- 0)- V 0 (n- 20)]

COS(1T- 0) :::-1

11'- 20 ::: 11'
vu .• ,g "'

A V0 -~"
AI,

-

Al;rz
I mA

_ 7 mV

mA

2Vs V 0
211' - T

-

Vs
Vo
---;-2

For V~"" 12./2 and V 0 = 0.7 V

t>o.av~ ·'"'

t2J20.7 = 5.05
1T
2

v

and

Exercise 3-5

c. The peak di 0

is

~'IT,... 2 fJ) X 100

PlV "" +Vs
::: 17V

2'lT

Ex: 3. 20
::: 97.4%
Average output voltage V 0 is

input
V.o""" 2Vs- Vn"" 2X 12./?:_- 0.7
1i

.

Peak diode current

'IT

in

is

, __ v5 - v 1)
In ·- ·--R--

J():JmA

F'IV '"' V.1. - Vn +
12./2 .... 0.7
a. As shown in the diagram the output is zero
between ( r. ~ H) to (r. + II)

20

•.• 33.2

V~

12Ji

v

Ex:3.21

Here 0 is the angle at which the input signal
reaches \1 0
:.

~'ssinO

o '"'

"" V 0
< \'

sin · i (

•

'/')

1- .\'

b. Average value of the omput signal is given by

v
z_5rr

.!_J2V~- 2V 0 (r.- 2H)j
1l'

Vn

"

But ens H ''" 1
cos( rr - U) "'' · · I

c.

Peak current occers when •f>

20

~- Tf

2V1.

Peak Cunent

~::.'!ll(:rgl_ ::-:_~!!
R
If 1\ is I 2 Vlrms)
then \/..:; "".

1T-

X

12 ~.· 12J2

:2Vn

1T

2 :X I2.J2

'' 1.4

<).4

v

10.1

v

Exercise 3--6

(b) Peak diode CliiTCI\t

''"'

Peak Volta~
R

" -~L=-~-~Q ,., 12J2- I~
R
lOO

~
(!)/(

156mA

PIV"" Vs-Vn = 12J:i-0.7
Ex:

16.3

v

3. 22

Full wave peak Rectifier:

.
Ve1T+I
't>.•v = wil1R
"
where wilt is the conduction angle.
Note the conduction angle is the same expression
as lbr the tmlf wave recti tier and is given in
EQt3.30

JivVI,

wili'"E· - '

(b)

Substituting for

J

~~,~ ~

tll ilt

we get:

if!;
')11

+I,

~-R

ve

Since the output is approximately held at v,..

~""I
R
,. Thus"
..
assumed the
/ l~eat diode ,
charges to V1,

""') j/),a>

$!!'

"' /1.[ I

1Tlt_!Fv; +fl.

;

'IT

jFv;]

Q.E.D

If t "' 0 is at the peak, the maximum diode current
occurs at the onset of conduction or at t = wilt.
During conduction, the diode current is given by:

i0 = ic
The ripple voltage is the amount of discharge that
occurs whel\ the diodes arc noi conducting. '111e
output voltage is given by:
V pf' -tfFIC

iv.mu =

"'

v l'e

RC

+-

'00%

lie
vI'(1-t! _ffi)

'

(t - l + T/2)
RC
v

"' _:_p__

2.{RC

.
/1.

lit

'

(a)

'lb find the avcmge current. note that the charge
supplied during condu<.1ion is equivalent to the
charge lost during discharge.

OsurvuEn "" Owsr
SUB (a)

jv

"

-Csin(-wilt) X wVr

+ lr

for a small conduction angle
sin(-wAt) =-wilt. Thus:

i0 _,. .. "' Ct<~At
Sub (b) to get:

for CR » T /2
--

+

-CsintlltX wV 1,+ 11•

"'*

.-:: V1

d;

c!!(v1 coswt) + ,,

discharge is only

half the period.

v'

cdtls

assuming iL is const. it=

·- 'lj£

vi' - v r

+ it

X

wVe + 11.

Exercise 3-7

The conduction angle wAt can be obtained using
equation 4.30

wAr =-

fi'v. =

rv;:

c=i.XT- = 0.36

.J 12J2 -

2 x o.8

rnd = 20.7e
The average and peak diode currents can bt~ calculatetl using equations P . 34 and P · 3 5

Ex: 3. 23
(}"

ac

and V1,

I
tJ

too n·

t(l + 21T~)

~~,

"" 2.74 A
PIV of the diodes

)

) 11

16.2 v
Vs- V 110 ' 12J2 ··· 0.8
To keep the ~afcty margin, sck>ct a diode capable
of a peak current of 3.5 to 4A and having a PIV
rating of 20 V.

• 11 RC

Ex: 3. 24

At the end of the discharge intcrv:1l
,,

·

1.45 A

+

(vr-~vvot'

l'o "" (1/ 1,

14.1JV
Here / 1 "' ----·-··-

12./2- 2 X 0.8, V, ""' 1 V

""'

it.•••

The output voltage, ''o. ean be t~xprcsS<.-'<1 us
llo

~, 11 ( 1

'"'".

-~-·]

line
voltage

~·)
· + 1T ..:.JJ....
2v,

1.1 •

2Vt>o- V,)

The discharge occurs almost over half of the time
period :: T/2

For time constant RC >>
,,·U/11'::

E »:

I -

2

~

I', r

1

__!__
RC

(\', I' ·· -'V {)() )X 2RC
_I_

cc

Hert• Vr

c.c

1/ /)1) =

0.8

11.['1 and Vr

7 ·'

The diode has 0.7 V dmp lll I mA curn:uL

v

c

···

·.o7 1.•11 ""

2

X

O.lO

X :::---:"::--'-:-::-:c:
.
2 X 60 X 100 X

{ 12.[2 ,. 1.6)
2:.~

6(lx-liio

1281

\Vithour com.idt'ring the ripple
otHput \ nl t;tg,•

C

pJ~

volt:r ''t ?: 5 V
Diode D2 conducts and

0V

.. 12 v

be;;ause it is ideal amplifier.

Po ;c"

I
+5 + Z(t•
1 •• 5)

Jt:x: 3. 25
=
>KJH--.0

t 1,,

(:ts+ ~)v

tl0

Ex: 3. 27
Reversing the diode results in the peak output
voltage be.ing clamped at 0 V:

v1 > 0 - diode is cutolf
110

""

0V

v1 < 0 - diode conduct> and opamp sinks load
current.

"o

=

"r

Here the de component of v0

Ex: 3. 26
IOkfi

+

+
D~

+
5V vo

,.,

IOk!l

Both diodes are cut-off
s +5
for ~ 5 s

v,

""

V0

"' ~ 5

V

Exercise 4--1

lwJ "" lsc ·""

'

. 13

to·•~

1()-16 "'

100

A

r.·l

t.~E "'· ' S(.. [.. , + !i. ~-= !(,..~~ x 100
'.<.H
"" 1.01 X HfHI A

n1JE1· ""700+251n. ( 0I• 1.)

V8 £

c]. .,

Vrln [ 1
Is

,,.

'"" 642 mV

v11 n

+ 251n

700

25ln [' 1 mA J•
·.10"16

· · 25 X 29.9336

'i

[ 0]

""· 748 mV

'' 758 mV

4.6

Ex:

Ex: 4. 2
Yn·=+5V

:.a= _L
Jill

.2Q_ <

Ct

50+ I

150 +I

< tl <

0.98

< __!1Q_
0.993

c

B

Ex: 4.3
fc·""'le-le
·:=

1.460 mA-0.01446 mA

=

1.446 mA

n ,.,.

!.r
"'
IE

l.440 ·"" 099
1.460
.

13 ""

!.r
"'
In

1.446 . "' 100
O.QI446

t•oe ·"' 690 mY

v/f£n'r

lc., I rnA

t5 e

lc "'

For active range V c '<:!: V 8

Is "" .....!s_ "" 1.446
'loE'vr
e100<~s

Rc(rnax) = Vee- 0.690
lc

e

=

1.446 A

=;.

10 -tsA

""5- 0.69
I
""'· 4.31 k!l

ell!

Ex: 4.4

fl .,. ~
I-«

and lc '"' 10 rnA
.

For u = 0.99

13 .,. ,. . 0.99

..

Foru ""0.98 13 "".
Ia "'

t "'· ~

,.,... 99

I -0.99

!.r13 "' 99
1!1 .,

1• .,

Ex:4.7

0 ltnA

f.~c ""' 100 X 15

().98 "" 49
1 -· 0.98

Ex: 4.8

.

'= 0.2mA

(~ e

11

lsf: e

~"Bt"' 11 r

(~ ""· w··tll A,

l3 = 100,

lc ""' 1 rnA

lsc + lsa ==· lsc[l +

~]

lsc"" e_ _
1
1{.
e"nc "r""'(!

~'nc1 YT

.... fsc e

0

1'nr'"r

Given:

=

VBE 11''r

for ic

10- 13 A

""

ic "" Is e

Ex: 4. 5

lsr:

.;:· w-•5 A
Areac = 100 X Areali
(~

fl.' HE- ~'ncl 1 "'r

nc' 11 t

Exercise 4--2

E~:

4.12
t

1.5

v

2mA

v

·-1.5

13 ·"·· 100,

Fig6.12
0.8 Vat lc

Vl!F

Vrlnllu11 1 d

V 1w~-V 11 t: 1

25 X 0.693 " 0.0173J
.\ \1 BEl

-

0.817 V

~_cr -::...~~r
lc
~

100

X

R1,

Ex: 4.10
I r . :-'~ ~~e FNF ~-.,

V

-

HE ••

~ lO

,,

~:li.£ - V !IX .~JL..
(13+1)

lc

1.5- 0.817 >< 100 kf!
2
101

({

2 mf\ "'

=soon

0.2219 '"' 22.2

t•/flf

338 H

t·r

50

1'\ !1

-- l

rLlO'z •

X

SO

5I

X

l'J' :j

' '

Ex: 4.13
tJOV

= 650 mY

_j~_ 1

p ' ; [

., 50

v

-~

5i . -

Ex: 4.11

t,.

1.5 A

:.Far ~· \', inl1.5 >< lfl ''I

(en mV

Fig 6.13
1:1 '·'
Vr

so. Vnr;

0.7

v

Fli ···· 0.7 V

I mA

Exercise 4-3

"" 0- 0.7
l. F-

~'

lr· =
.

= -0,7

v

E.'!.: 4.15

-0.7 + 10
10 K
0. 93 mA

~ /... '"' 0.91 mA
51 "

Vc "'' 10- 0.91 X 5

v

"·" 5.45

'" '"' !s:fl

= 0.91

50
0.0182 !.LA

-5Y

Ex: 4.14

V1Jr; < l I I = U:l99 mA
!01

E:x: 4.19

Fig 6.20
Fnr v118
111 = 0

0

Tr:m:;istor is OFF
.-. 1,. . 0

'

' 10- I)
; f()V

R,····JOk!LI3
(a) artiw

511

r, - 5 v

OJJ98 mA
1.68

v

Exercise 4-5

EX: 4.21

Ex: 4. 23
+IOV

ForV88 = 1.7V

18

.!.} -

'"'

10

0·7 ·""' 0.1 rnA

(a) edge of saturation ~rcc

""' 0.3 V

10- 0.3 '~ 1.94 kH
- .. ·-5·-

Vee · V cJi .

1.-

t'n: ~"' 0.2 V

(b) deep saturation
111

V 8 -0.7

""' 4- 0.7 "" 3.3

lc"" Pltl
"' 50 X 0. f """ 5 mA
Vc
10 - 5 X I kU
+5 V > Vm; (so Active)

Rc .

vR o"'

v

Rr. "' 3.3 V "" 6.6 k!l
·
0.5mA
Vc '"' V11 +2 V
.<'-c4+ 2"'·' ·l6V
Vee·-· Vr

Rc •<" ····--,-= 10-6 "'

g kH

0.5

0.1 rnA {unchanged)

lc ·- J3F.,«J/ 11 = 10 X 0.1 "' I mA
Nc =

10- 0.2
tm.A.
'"'

t<:x:

4. 24
+ IOV

9.8 kH

Jo:x: 4. 22
+lOY

t
~4.7 kH

+4';'

0.2

l3k!l

E__t,v
r-

(t

= I

flh>I'C<•l =

·nwn (

Fig4.22
At edge tJf ;;~uuration <'u: '· !D V
ldR( ·i R 1.i

;- 0.3

lO ·- 0.2
4.7 f 3.J
11R 1

Vn"

'

1.225 mA
0.7

- 1.225 >< 3.3
•c

4.7V

0.7

·.~.

5
5 111

1,:=61.
I = __
!!_)

-= (!:L _____

11

/( R, · 03 ' lFRr

Vn
-~,

ov

~3.3 kH
Io

v

v,
V,.,

j X

4.7

A

• 0.226 mA
61, .'< 3.3
·•··• '~A8V
V, I 0.7
"'· 5.18 v

6

X

3.3

Exercise 4-6

Exi

4. 25

Ex: 4. 27

+lOY

+IOV

~

~Rc

~

50513 ~£ 150
In active range

10 v

11, "= 5100
mA
- 0K
•7 ""' 0043
..

V. ·cc: I}
V,"" +0.7V

V, lowest for largest

!!L::::~U

0

2

···-·

0.99/,

.,. 1.5 kfl

10 - 0.4 i 0.7
Rc .. -·--··,··-~--,.
0.99 X 4.65
= 2.2 kH
0 ' 0.7- 0.4 "' >0..~ VJ

[V,{max)

Vee - 0.3
i5o
x o.(MJ

Rc · · ·

4.65 rnA

1..

13

1, ·""" J3 1. ' 150 X O.Cl43 A

Ex: 4. 26

Fur f3 '·" 50
1-',
10- 50 X 0.043 = (}.78 V
Forf3 = 150
v, "" 0.3 v

Ex 4. 28

+ 10 v

+15V

+

Rc

~ Rr

5kH

•0.7V~i

~---t:j

0

4V

'~·-I

~ Rc

~R,
I

(

!OV

I,

V,

15 X 50 "" S V

VJHI

= /,
9.~

v,~

150

kH

50i! 100
100/:~ k!l

4

--~11!! ..:: •....~.'.!!5........ .

--.w
10- 4
!

() k!!

1~in

_ ,____1 ()
~ 50kH

~
I mAt
T

1? 1

'

•

;

IR 1111 1W; l)l

I 100 .. 1

:1

1.1 X m;\

51

v

Exercise 4-7

¥f·

IE

Ex: 4. 31

1.15 rnA

co

1.28- 1.15
1.28

%change

+5V

Ex: 4. 29

Totnl current drnwn

+ 1.252 + 2.75 mA

"0.103

4.135mA

Power Consumed "'· V X 1

"" 15 X 4.!35
'" 62 mW

Ex: 4. 30
.

2.78

4. 32

Ex:

-~~-~-~---·--·"!--·-·------·

'15V

~2kn
t

+5

rnA,!

··-~( Qz

+t;IOV_ - .. +

.., 7- i

~-

J

::. T

IOkH
"NNr---< B

mA,T--KQ.I

CD
_, ON

(J:/1· _
"-

(j> +- I l/11
"" 7.()3 mAX Sat"

E

~

!

2.1 H!

v

~ ~~~~ n
I

lk!!

!

"·--··--~-~~.----.v....L-.,

{3

·c

J()()

IE: unchanged
lei unchanged
Vr; =·· V0 -· 0.7 V
11:,
=

> 5 :. Saturation
V ·"">lice-- 0.2
L
I

~~C::-

0.7
0.470

55V

101/u_;

IB

Vc2)
2.7 J

101[ 2.75

•

= 'LXV

.L!L=-~.:~
10

11.:••"> 4.8 mA

0.45 m/\

lienee

?..75

0.7
4.R

0.45

-Ll5mA
h.2 ... 0.7

Vn
047

")(

!00

!01

6.36

Ir

v

13.4 lll.-\

- ±.2?
0.45

9.6 << 30

-"4

4.8 mA

Exercise 4-8

Ex: 4.38

Ex: 4. 33
Vee- Vn; ~-- 10- Vee
l'r
0.025

A., •=

+IS

-320 VN

R,.

,, Vu: "'' 10- 8 -··· 2.0 V

IOk!l

JO-.1

8 kfl

2.0-0.3

1.7

lmA

10 ILA

I

l!a Swing

v

13

v

100

.LL
.l \f llt

1.7

5.3 mV

J26

J.....I:!IA
25 mV

~·

40 mA/V

Ex: 4.34
4{) X 10
·--400VN

fc "'·· Vn· ··-- lcRc
15 ... J

X

10

5V

N<{t) '"' Vc t· Nc(l)
.,., (Vee - lcRc) + Avvl,.(f)
= (! 5 - I 0) -· 4{){) X 0.005 sinwr
"" 5 -· 2 sin w1 (t)
;,,(l) "' lu +· 11lw(t)
•·• 10 I 2 sin wr (j.LA)

Ex: 4. 35

Ex: 4. 39
Ex: 4. 36
If· '" 0.5 m;\ ! cnnstan!)

I) · 50
0.5 mA

25 mV

-- 20 mAr V
II!

1,.

·- 20 mAN

0.5
50

II

0.5
200
2.5 mA

I 0 11.A
r4 ··"·
Ay() ""

':n · .· ·

Ov = JS(roft Rc R Rt) ,

x. 1000·
l5 -·- 049V
.-

"

5 kH

R1N

A11

n

zs n

·"' 40 X 5

R,.)=g,l?c

11

~·

200 VN

5

""

Gv =

Avo X .5~:5 ·-= 100 VN

~ · Av

Rs + I~ IN
"'0.5V/V

~-

:!£! • ! x 65.6 · -.12.8 VIV
2

!:1 "" ..2..... ""' ! "'* ~~ . "~
••s 5 + 5 2 "~

llro! "'

"' ,.~ ....

Avo"" g,.(r0

"o

tJs

= 100 "" 2.5 kfl
40

r' ""' ..2:.L
13+1 .... 25•

"'' 9.5 k

,..,

g.,

200 k!l

A. v _ -190..5 X5
5 + 9.5
= -65.6VN

G1•

4.44

.Ex:

r .~ A

5.0 kn

""· lO kl! 200 k

~'

10 nN

32.8 X 10 Ill ~. 0.33 V

Ex: 4. 43

"'* lc

gmRc

·i·

'·~

Av = 40 VN

'" 80

=

gmN;.

80!20 " -l kH

I lR f,'

r.,.
r~ i(

ri

I

P lnser130

I)

l+~.t~.A'QED
r,

!!.~
t>,

rc

I 00 ::~~ 1 + I() K + ...~!!.L

10

5!101

50

20 X 5 = 101.1 VN

Ex: 4. 46

r·~

~.,

"" 25/50 '~ 0.5 mA

= ~X

:. Rt:

'' I " I~ + _____!!.£___

X 100

son

"'* Av

;_!. •; + .CJL:

25

5000 + 25

Vr
mV
R 1N "" r, = = 25
- -....
.
lr
IF

Gv

vs

"'-

Ex:4.45
Rs""'

AwJ "'

~~~

+ 40.4

}c
I
g., "" Vr ""' 0.025 ~"' 40 ms

20mAIV

-20(2Ut'Jk n 10 k)

Rr-11

IOO.x 10
10

""'- l9.8VIV

"" -I ()();5 V/V

Rq

+ (~ + 1)0.35 ""40.4 k!l

R1N ,. 5 k

Rs1a + Rut

Fur lc=0.5-tnA and Rc ""' 10 kf!

r0

7 X 5 = _!- 0 3SkU "" 350 U
101
OJ
.

Vj

= A ....
,.., <~..• ""' .125••

r, "' ·~~

~. R""' -=

ib = ~-=:~VI.~·:,~~:: ih)!!J
l'w

Exercise 4-11

= O.S + IOIX. I ;;;: IOlSktl
CfvC~ = l(R1, mov¢d; t:o- = ,.;1
R_o = "'+-Rs
"" o;s101+ to ~-· .104 n
(i + I
Ov ,.,. ~ = ~
vs
Ro + Rs

=

l

O.H)4 + t

:tl

IE=

2.6

M95 mA

=

+ 3.3

..

l5J
%

= 0-995 - 0.984 X

IOO

1

"" 0.91 VN

Ex: 4. 48
Ex:: 4A7
+IOV

Vn:

R,

R£
lmA

lmA

Design I
13 .""' 100

Rc = 3 kfi

~~

R1111 == :

vliB

= 26.7 kn

v

1, = .!.=.Q1_ ·""- 1.01 mA
26~7

.

V

+3

101

Vt.

:. maximize Rc

I

= lcRc + 2 + 0.3 + I,RF.
VEE- 0.7
""
4.3
Re+ R 8 1(~ +I)
R~r+ R 8 !(f3

=
£

~Rr.

+ R11 /(f\ +

+ l)

-· l mA

I) = 4.3 Ul

For independence fnm1

.

f3, set R8 == 0 (OK for C8 )

c-=:>Rt: = 4:3 kH

ll""50
1£ "" ...2:.L..
.
26.7 + 3

·

/gg1ven

T

12 X 4() "" 4
80+40

""

lt.Rc

Av ""

""'

\!(.(min)

1.04 mA

= VE + 0.3 V

"" -0.3 V

VCQ = Vc(min) + 2V "" +10 V

151
% change = I.04 - 0. 937 x If}()
I
'z

10.3%

Rc ""' Vcc - V CQ

""

0.9

40
= ~sx+4

V B/1

""

"'·' 2.67 kfi

1.2 X 4 c= 4 V
8+4

13""'

fu· "' 4 ~ 0 ·7 "" 0.99 rnA
..
26.7 + 1 ~
101 ....)
'~ I 50

Vc

lr " _ll_ •· 0.984 rnA

2.6
51

13

::c:

kfi

+IOV

R 88

.

= 8.48

Ex: 4. 49

Design2
f\ ""· 100
R~::= 3.3kfl

f\

!!!.=___

lc

+

J.3

V,;

+ 0.4

l

100

2

+2.4 v
Rc '' ~cc- V r;: "" (()- 2.4 = 7.6 ~· 7.6 k!l
I

150

I

I __
Ill . . . . ._t:

f3+1

IOJ

mA

Exercise 4-12

{cont.)

R8 ·-- Vcl0l(2.4o;1) ,.. l7t7 kJt
.. JH Va ·~
..

+ luRtt + I eRe- V<·c

I

__

,., 0

lower· ::;) hr = 0.005 mA so V 6

10-0.7
ISO + 7.5(~ + I)

-OS- tM- 2

r0

It; = 101 X 111
'" L002 mA

v

= -2.9 V

""

100 ·""
lm
1
Vr

100 kO

1 .
25m

g- = ..£. "" .~ = 40 mA/V

V <: ""'· 10- 7.5(L002)

"" 2.5

-0.5

Va"" IOOV

9.92 J.1.

JH ''"

-t;96v

-L9(;V- 0.4-2 -4.4V
13 = 200 : upPei' still 8V,

Rc = 751dl R."" J80.kfl
().7

~

=

Using 5% resistors:

11 -

v
= SQ: upp.ih'lt111 8 V:.lower
~I,;= o:ol96mA so v 8 ""'

~wingf...,.:J.4 .;.2:= -3.4

~

·

v

r

Ex 4.50

"

J!. ""'

""

g,.

tOO ''' 2.5 kH

40m

r:,
r;. .,. (fH I) 1!!:! 25 .U
F..x: 4. 52
.I!Karilple 4 . 50

v

~~

R.

. , 100
~

R,
18

o.•

100 kH

7.5 k!!

""

~a~: r_ = 25k0

/1'!(!3 l· I)~~ IE! 100

lb

= O.ot mA
= 0- / 11 R0

\1~.

=

-I V

~=

X

R0

I X 7.5 ·""'-

IRm;

2.57 V

t

"' 19.3 kU

Avo '" -g,(ro

•
(,~.

=

V.-

10 - 11 k( I m) ·• ·1·2 V

\'"

100 k

\' 1,

··I·· 0.7 "·' --1.7 V

·ll.(l! m) ·

(3 ·"' HJO; upper limit=* V cc..

v;

V 11

-1.4V)

·····

II

Rc

R~_) "'' ,-40 X 3.5

= -g.,(ro

II

' 7.4 kH

Rc)

= -40 X 7.4 " -296 V/V

O.(H m;\

~

II

Ro "" roll Rc ~ 10011 8

lc ,. a( I m) ""'I mA

lower value

kn

Rc · 8 kH

·

Avo

Ex: 4. 51
Rd'er to Fig E4 . 51

X (

= 2.44

'""-119V/V

R"' Vcc-0.7+\!u= 19.3

•·

r, = 10011 2.5

Avo = ·-MmRc= --40 X 8 "" -320 V/V

v!1- 0.7 v "" .. 1.7 v

Vc .... \1<..<. -· ~.
!Hl

111

R,,u

RIN ""

~r/1

"

RIN
=- ----·

R~

+

/?IN

R(.
Av - Ru + Rr

~-(-216)--.1__
. 7.4 + 5

5 + 2.44

'"" --39.1 VIV

···IV

•

R;o;

+ /(IN

••

1'~ ·"'· - - - · \t ·.=
'

v,.

=

8V

V c ""' OA V (where

15 mV

RIN

lvo! "

Gv!;,~l

,,. 39.1 X 15 '"' 586 mV

Exercise 4-13

withRF.:

v,,, "" 5 +2020 = 4~~V-

"~

5 mY
wloR,:

~!!L '"' .5 + (2.5 8 100) = ~

5 mY

Av

v

I~ s

{2.5!1 100)

IV ol •• IVrl X

= 625mY
·

512.4 · 62 mV

Ex: 4. 54
g~ '"' 40 mA!V
r., '" IOOk!l
Example

4 . 50
r, ._,_ . 2.5 kH

g,, ····· 40 mAIV
1~,"" 100 k!l

V, "'" 100 V

R;,;g '"' 5 kO.
R,
1?, "" r" + ((~ + IJR,
R11•1

Rill! R 1

_, ••,

oc

25 ·- 2.5
l () l
A,,) '' 11··,~·-:;li;

0.22 kn

l

'" ii-4(3Tnij

R.,.1

·- 32 VIV

l?,;~+i!1+

OR G 1-

'"

___

l)(r,.

f!.t~-- x

R,,~

-12.4 VIV

25 ; 223

R,:

+ N1:-:

Note: wirh,,ut R,: :\ 1-

t

/? 1.)

A1

""

-

·

lr. '"' I mA
l'o)

'"

Rc II r0

,,.

II

ru)

!!__ "" __
,.,_
r, 1g
R, 18 + r,
·.· O.ll05 VJV

__?1___
+ 25

5000

Gv • o:(Rc.lR1.)
R,;~

+ r,

"'0.6V/V

°

2 K :<

25 K

12.4

R";;JJ;:;;..

C:_~Rc II RL)

R1 )

·- --123 V!V

¢1,
i

B

.

!

--i_~

nv

i~.

r

! .

1,

iH:

Rs
i
,-./VI/'---1

F,

0

51dl

. Ln

100 k)

= 40 X 3 "'' 120YIV

• -9.9 V!V

~.,,(R 1

II

7.4 k!l

A,, -'' +gm(Rc!l R,_

·--40(S)

100
0.99

'" 40 X 10-~ X (8 k
-296VIV

223 H

-8 K:i 5 K.'..
'"' -Ncii RL ____
r,

f3'"'
tX""

~

R,,., ""'8 k!l
;\,.

v,"' 100

Avo = +g..,(RcU

4 X R;;r. = 20 k!!

"'·'

"'!~,Rc

R."" 100 kH
Rk!l
R, "' 5 k!l

r.-"' 2.5 kU
r, = 25H
R,. '" r,-"" 25!1

= 15mY

c

Exercise 4-14

Ex: 4. 55

= ().5+ (101)(2011
= 96.7k.H

l)

R,N '"' R11 11 RH, ""'· 4-!lli 96.7
(•

__ V 0 ___ V 1

V0

V_1-

V1

1v ·- -

V5

~-

X ....______ _l~:+-

Rs+ R1N

r

.

28.3 kH

-·- X -

____RtN

(Rs II R8 )

'" 0.796VIV
,
_
40
.
( 'I'O
--· - . - - X
I0 + 40

~~I

=

ll R1,_)- - ._
I )(r, + (r 0 II) R1J

l)(r 0

+ (f3 +
. .

20 K

(.!.Q.JS.L
40 K) ('iF -t101
• •

.

•5

+ ?().. ·K·.)
~

lc

100(25 m)
---5 lll-----

ro

'-~:)

!00
5 nl

lc

Gvo "" 0.8 VIV
500 H

2() kH

R,,,, ""

r(,11

(r,

+ [R.dl R8 ])! (j3 +

I)

•• 20 II I 0.05 + 0.079] kH

--· s<~ n
· _ V, X (r 0 II r,) ......... 0.1)1
X 0.95
Vo .... ----------····--···
-·--.- 0,005

r,.

. . -

• , II, -

If;,

-

r.

-

i,(!3 ' I}( 'oil Rl)

--~~---~----~-~-~~-........,.""'"---

'•

Ex 4.56 blank

For R,(k{})
G, (V/V)

0.5
0.68

1.0
0.735

2.0
0.765

1.9V

Exercise 5--1

Ex:S.l

!,.·
~V 2
2 L

In =

34.5 pFl m "' 8:625 fF I (J.1m) 2
4 nm

~

for all 1los

o~t

~

= 0.25 rnA

V 01•

""

0.5 V.

I~x:.S.6

v.~

I

>.
IJ$

5.15

1 kn
I. "' 0.18 ~llll,

so

w

0.93

v > v0!'

~Saturation:

~un

10

F.x: 5.2
2.30 fF!

I

""'

"'-'

!

X

2

40 V,

....

0.()25 V ···I

v,,

v

l

50 X 0.8

VAL

200

v

0.5

'·"

I 11
X

J.ll

0.8

X

0.5 2( I

40

2 V

L

X. I)

78.4 k!l .:: 80 kH

0.51

SO K

!!::'

0.025

0.51 rnA

jU111

r ,,

0.2 mA.

!

~"

0.!!25 mA

Ex:5.7

= 20

:. V 0 r = 0.40 V.

0.40 V. for saturation

l<~x- S~3
h

I

•

!{
~
2 " !f
/. V ov

"'
/)

in samration

Change in /,, is:
(a) double L. 0.5
(b) double W, 2
tel double 1~,. 22 = 4
V,, no change (ignoring length
modulation)

(d) double

!:!:
,_,
I.

lO ~ k

,.. 600 I-LA I V~

I'

.

(e) ch;mgt~s fa) - (d), .f

J

ease (c) wnuld Cl!Usc leaving saturation if

v

l)s

~...:

+ -i v.

2 v(}\'

Ex: 5.4 In

~alunuion

<'ns

?

V,v,

~o

2 V or

fb) Triode region oc.:urs for

J'u/) <

or l'n > 1',; ·! I

Ex: 5.5 V 01•
gVS

k',

~

w\' (}\

7~~

(c\ Conversely. for saturution

0.5 V

1

kn

(d) (liven A. 20
I. W

0
.

2~kJ1 --I
L I· u\ .
For 1'ns

IV 01 !

"' 0.5 V

75 Jl!\

ll,"

v.

Exercise 5-2

/. 7i(; =

+ 35 V.

s

+ I = 45

Vo

Vt;

!! = .o.n v.m
L

V,

X ,, 0

<~) f('>rk ""' -0.02 V~ 1
10

75

.,.

(I) At V 0

~A-Aand
""

r,.

tind

_L ""

=

=

.o.s

667

kn.

IVovl

!21/ f)

V.

0.8 V."" 1.8 -1 0 R0

VD ""'

··

lo ""

3 V.

1k~ yiVolO + IA!Iriosl>

lo ""

4.0

0.18 p.m

I

2

t.s-

F..x: 5.10

At V 0 = OV,
1,1

"'

r,

~

kn

0•8 "' 13.9
72 ~A-A

:. R '""

"" 75 JtA( L04) "" 78 j.t.A

, W

i~A-nc ... y(V D- v,n) '"' 72 p.A

+

1.8V

75 JL.:\( l.i0) "' 82.5 t-LA

AYns

3V,

Aln

4.5 tA.A

Ex:5.8
lo ""'

1 . w 2
:2""11 C.,,TV 1,v => 0.3

!x l.lO
2

JO(l()

From Bxc. 5.9, V Gs
V ov "" 0.5 V ~ Vas ""' V(w

1.5

+

V, -

0.5

v

+

I

V 0 1' = 0.3 V.

1u

=

12 IJ. A (saturation)

At the triode/saturation boundary
Vn "" Vov = 0.3 V

- 1.5 - (- 2.5)
0.3

l.S V - OJ~

:. R• "'

72 ~LA

•

= 20.8

k!l

Ex:S.U

Rs "" 3.33 k{l
2.5- 0.4
0.3

R0

""

12.4 X 2 "" 24.8 kU

7 k!l
Vm ""' 5 V, Assume triode region:

Ex:5.9

I X (5- I )V /1.1. -- -2· .

24.8

~ V~ 5

-

8.08 Vus + 0.4 ·.-, 0

~ V ns "' 0.05 V

\/ Ut

0.5

v.

v;,s)

(

5- VM

 0)
V 1 "'' 2.5. V:

t<:x: 5.lJ

t\lmed on. then

In "" 0.32 mA
"""> Vov ""'

V liS

symrnetricul V., = 0 ruid therefore Vos"' 0 which

0.8

""'

Vs

I DN

0.8 V

+

-

1 'w
ik• L ( vGS

v, )2

-

l "' 1.8 V

+ V < 0.1(}4

v

-· 2.5 V: Again if we as> tunc that

tttrncd nn. then

Or is

r., > -2.5 v anu VI;SJ <()which

implies the Nl'v!OS Q,,., is turned nff.
InN'" O

1.04

Exercise 5--4

!k w(v ·";

l !Jr'

"~ / 111 ,

IU04 mA

·-

Ex: 5.17

1v . ·)·

2 "L

·~

V0

- 10

0.104

I.C\4 V
7'(;,v

Ex: 5.16

0

\1

'

0.4

v.

L8

\i[)[l

V,;\-

v.

0.6 V.

k = 0.4 mA:

"

IV

Ui

\'/)/)

17.."

Rn

v

k,

v·
1

17.5

.~JJf

k -L v("'

IV

800 1.u\ ;

tl

v

lilr A 1

()

(t\)

k!!

Rn

kn

1 mA;

\

10

v.

0.4

'

I.

v

v'

I2.'i kH

CutntlJSaturation Boundary
V,

1.8

O..+V.,v..

v.

011 Saturation/Trindc Boundary
1',

1
,k,f v,;, -·

0.8

\'/).',

0.4V.

v.

!h) keep Rv

F,f Rn I
1

0.08 rnA.

0.6 V .• I"

17.'i k!!

-10

'

c.'}

/i,,.

."i71

~A

rV

J

<'us

! l.l\
0.143V.

:.\1 01
T',;s

lp
{JI}

,.{J)

0.54 V. I"

v 1_,,
'!0.7 p.;\

!U}4 mA.

1.1 V.

Ex: 5.18

O.:'IJ V.

(C) For "U(;s)(
v()\'

v.(j\

·=· 0.61.1 V .• 0.1 'iR.'i

v""

1.8 V .• triode.

u v.
( k, \ "')
Vos\r

17!) l!
18 mV.

~

I \'rw=5V'

Exercise 5--5

V, =

0.7 V,

kn =

I rnA I

i1

.o;·

£!+;=E!+g
tJ
_
·
. nr · l
r.o

v"

r,1

Ex: 5.20

2
( !k
2 ;; Vov)R

VN, '" 5 V.

l)

v(;s '" 2

·=

V,

v.

I V.

A= 0

and
VoF "' VIJn ~ V,- 10 /l, ~ 4.3 ··· 12.5 Vot·

k,. "

20 f!.A IV~

:. 11, 1 = 0.319 V.
:~19

!LA! V

78.5 kfl
2V

o"}

\1 01•

~"

I V.

V OS

200 JU\

o + 26 vi :'.=. v,

Vrw ·- I,Rn ··-

\-' {)S

27 mV.

·W
k ,, v '"'

L

('bJ g,,.l

"'

+ J V

400

j.Li\

If OS + 71J, ~ 2.2 :•;

Vn:;

I

v

Ex: 5.19
A,,

(c)

...;+..

0.2 sin

Rcq

-o.s

V..r,
Vv~

¢,

......; G

i _ '- - · · · ·

V.

(t)l

sin l•>t

v

(c) Using (5.43)

i l_! .

!k ( v '•' - \'

·-")

JJ.

fr.)

~~

!•

k--"( \'--·{tS- \''
ik·o1l,!,,.
2
1 !)(,':::-~ -+ 2

ts------

iu

200 p.A

t ( XO ,.u\) sin hll

+ (!{ fLAlsin: ..,l

ce; 3.R V.

Exercise 5--6

"' f2(){) .,_ 80 sinl»/

+

Ex: 5.24

(4- 4 CQSWt}liJ.A

1n shifts by 4 JLA

1 ·w
·:zk"L(Vm-

It> =

i2

2HD ""

X 60 X

J!i
0.8

X ( I 6 ·- I }~
.

216 iJ.A

Ex: 5.21

!2 X 60
.

2lo ·"· 2 x 216
1.6 ~ I

.100 p.A

0.72 mAIV

0.5

0.3 mA, Vur

v

(}.()4

"'* v_·,

~' J '""·
h

1.2 mA/V,

v

-~

In

720 JJ.AIV

g,. "·" Vov

X40X(!.5, 1) 7

rd ·-

1

jV,j)

I

0.()4

,~

25 V /n n1
....

25 X 0.8 '" 92.6 kO

0.216

15
0.3

)(} kf!

Ex: 5.25
,g,:nr.p .-.-.-.-.-

,,
'""'iH

':':,,
In

15
0.5

100 VIV

30 kl!

Ex: 5.26

Ex: 5.22

1,

,,

'~rol

0.8 J.Lm ''.}A,,

L

!.55 mAIV

(5.70) J\ 110

l mA/V, k,

0.1 mA, g.,
211)

'

- . - " " ' \• 0\

2

X 0.1
'''···-··

=

l

tt"ot

'.'

·""

(5.72) R, =

0.2

-

gm(RIJ

II

r0

)

Rl> II r 0

v

21/)

k,~ F~_~t

....2...:::_QJ_

100

-~E~•• o.2·

1000
Ex: 5.23

"

•'>g., ·""· 10 mA IV
200 k.H

""·

0
g,. = 11
Vol'

Gv ,. .

2/ n
- ·--=>lo
'''
0.2V.

·..•.•

rnA

TJv
l','\"i,\!

' UJno
R0

"'·

Rn ll r 0

:::.

RJ> "'" 20 k!l

.>ttl "" Gv "" - gm(/?1>

!I

r11 !I

Rl) :::

- g.,(Rn II Rt) ·.~ ~ 20 V!V

for

iJ~,

iJo

"' (IO'JH 2V 0 v ·""
( Avt'#'l

"'

{)J)5

mA I V)(2

kHl

"'+10
Ex: 5.30
CDamputicr
1

100 H =>g.,

~·

10 rnA IV

.~!..!!

211,
- - => 10
0.25V

•··•

1.25 mA

V.

l V.

Vov

Ex: 5.28
0.91

1}(J

,..,_
T.l.~-·-

....

.. ,

v.

91 mV.

fJs (!~ ···~····'-·--····

I +g..,R,

Rout·::::~.

IOOH

;-;;~~ T . ,~ 0.9V
A.,,.

I

~ RL

I
Assuming V ~ ·-t

x

From Ex 5.27

Ex: .5.31
CD (sou ret~ follower!
50 mV

_!_'J:'

---·-···- =>

vfh_,

200 mV

200!! "'
R'
· "' ··
'i

I

:-;~ ~

gm = 5 mA IV

,"'>,•tl

:. N, = 1.5 kH

-g.,( Rn

!!

~2

' g,.R\

···20
4
In -

Ex: 5.29

tkn

I ·IV
L

,2

-k,--- \· 1)\

2

0Ji25 mA

Exercise

Ex: 5.32

~8

V:s-

R ·' -

-2-(-5)

Vss

6kfi

0.5

lu

4Rs '"' 6.2 kH
lf We d1t1ose R., "" R, = 6.2 kfl then 1, will
slightly chl\1\ge:
I.

11,

I

2X

"'

2

I ) . Also

X (Vas -

Vas ~-" - V,f '''" 5 ··- Rsln

(4-

2/J) .,.

6.21,i

:} 38A417)- 51.6/~ + 16

=*.I0 = 0.49 mA, 0.86 rnA
1" =0.86 results in v~ > 0 or v. > v" which is not.
acceptable, therefore 1,. =0.49 mA
V,"" -5 + 6.2 X 0.49= -1.96 V
V, = 5 - 6.2 X 0.49 = + 1.96 V

g.. ra

+ gmr<)

I

0

R" .should be selected in the range of I MI 1 to
10 MU to have low current.
Ex: 5.35
11> "' 0.5 rnA
0.5 X 2
I

= 20 V.

frir tt,

v ov

+ .:..!lY

0.40

4(!\',

2

X I ( V 1,.

'"'

-

v.

o~

=> R"

6 k!l

0.5

6.2 kfi standard value. Forthis R,.

we have to recalculate / 1,:

Ex: 5.33
1 ·w .
,
In ... 2k,T.('-'Gs .. tt,r=>0.5 mA
_I_

5-2

"' v":} Rn

A 1~() = 0.99 = -~":-.- ~

"

I=

l )2

10 = ixlx(V 1;s-l) 2

"" lI ( Von

If

- Rnl n -

'

(V(;s = l'n ~ V 1>t>- Rf)IJ>)

l'r;s -" 2 V .

I

2(4- 6.21 1>)

Ill =

:.

'"* 11, :.s: 0.49 mA

IF V,::.: 1.5 V then;
1,

!

~.-

X

I X (2- 1.5) 2 '' 0.125 mA

d/ 0

0.5 - 0.1.25

1,.

0.5

::::J>-

v

[J

"'

0.75 = 75%

I

-"~

111

f<:x: 5.34
Rn ::;::-

\•

~

1:

~~~_._!2

ln

5

~·-

2

6 kH

0.5

=> 111 u
/llf"F

I
...
2

v

....

I ·'.
X .,~
y (/\'
.

5 -· 6.2 -~ 0.4? ~

1.96

v

Ex: 5.36
Using Eq. 3. 53

rrR: ~ ~~; ~ u '·'
I 11

"

=> Vu '·'·'·

X

~

O.l mA

0.1 . . .

(l.l .X 2
0.8

0.5

w) \! ,,.

1 ·( -·
~k,.
..

L

.1

.1
~ \·tit"

I

0.5

0.25 => V OV

3.5

v

v

Exercise 5-9

" = f~-~~~
""'
v, ""

V ns2 ?.:· V ov ~· \lDS,•i• "" Voy ""· 0.5 V
~

-45

vl>min "·'

= I mA/V

150 kfl

In

v

Ex:5.37
R;, .., Rc; '·" 4.7 M!l

v,"" 1,5 v
'w
.
l
kn- ""' I mA IV

R., 0 ,

VA = 75V.

10

""'

- t:.,RJ) = -15

APV

L

For r 0

0..5mA

1.0 V.

Rh ,,

,.,

R;,.

""

1.5 k!l

Auo

-g,(Rpll r 0 )

R.,.,,

Rp II

G~.

··"''

'" "'

R;,, +

R,;~

flo "'·

b. a 2.8 V 1• •

lf I>S +

,.

a 2.5V de voltage.

Ex: 5.39

-lOV

v(JS "" v,
II,.;
0

Yov

v~

~2.5

v.

lin

Vno

·~

2.5 v

lnRn ,.,

+ 2.5 V.

I mA' V

.Y..o!
//)

- Vx~t ~
Ex: 5.38

1~'.1

=

tso kn

4.0 v.

f)

4> (fR, '"'
gu/~!..'J~

i I)K

-

·""·

-13.6

13.6 k!l

-~A\'O

11 fiS '~

1.10

!5 k!l

150 kH, R 1•

4.7 M!l

R,,

R,_ + R,,,,

-7.0

li,J.,

sinusoid supcrimt)(Jsed upon

Exercise 5-1 0

Ex: SAl

_ _ _--:g"'roRt>
(Rti + rt)) ! R5 {1 i g,.r0 )
Rs

"~ ~(Rr:..!" r~ •""
1+

2.185

1-g,.roRD

3 R0 +-;;;
k!l

gmr(J

..

_l·

15 K. ru '" !50 K,

Ex: 5.40

g,..

I mAl V

r0

150 Ul

(a)

g,. =

50 H
gm

R;,

l kH

-~-----~-------~

oo

r,

=

150 k!l

4.7 Mn

4.7 M!!

1.0

0.993

----·-4------~--------

A.,

+ 15
gm! f< .. r/IF.mln}.

1,

~VIlE 1 VT

~'-,.

85.5

~tA

{'

J. I mA
- Q8 fi.A

3.1-mA)
V1. In ( - an d "•r
0.8 ~tA

(25) mV

Ex: 6A.2 f-or an NMOS Fabricated in th.: 0.5
= !(), we want to tim! the
L
tmnsconductancc and the intrinsic gain ohtaim~d
for the thllowin~ drain cum:nts: (/. 0.5 ~lin)

•

. . :tJ

f.l,C_,,"' ( 190}

J2 X

g..,.,=-

\1,

,.

_..2

J

r:

,q ...

J

I

___ v

0.57 mA

..r r .

,....__~-

2 rr (C,.,

t-

Cg. 1)

211' (8.3 + 2)

8.8 GHz

p.:;
v·

Ill --

190 X 10 X
V 'L

0.2 mA

v

20 >< 0.5

= --~1 -=----'" I MH
ID
10 f.U\

For/,= I011-A.

~" 0? mA
I 00

I MH ~ 200 ~

·- v

X

~li\ we

haw

v

g,., · ·

./2( 387 p.Aiv:~)('l())(~~

0.28 rnA/V

m,ing .:q.r6. 15
A,,

"
·"""'
A,.,

.Q;~

20 X
- 117 kH
85.5 fJ.A-

,~'='·'""""''""·-·---

/1, r.t c. (IV)
--I)·
L

"
lo
intrimic gain
..

fu

Ct,

~tm process, with !!~

1,, = (10)' JLA.I?

!'.~'.t:. · · ·.

"

"

A, = g'"r" "'' 66.7 V/V

= 207 mV

=> .G.\!liE

r

v, p;~;.~;~~f:D
·-·J

.Jili

0. 62 '.1_1:'~ - 0.6 m A

v -

v

20 X 05

100 fl ;\

.. ,. 0.62 mA >< 100 ldl

v

A,

100 ld!

50 V/V

Since g, varic~ with Jl~, and A 0 with
li2

vi v

.,!1;,

Exercise 6-2

Ex:6.3

For
I

lv

=

m(I~Ji

100 p.A =}g,, "' 0.28

.89mA/V

!.
A1, ,.

10 ) 1
so(-_
.I()(}

For / 0

""

rss VIV

···"'

I mA:
I

g,., "'

· 1 )2
.28 mA!Vh)iO

A{J ,.

so(-0: 0 Y= s VIV

"' 2.8 mA/V

I

I,.,

= I ,,,

J()O ~LA

In ..... O.I_J!.:A ~' 4 mA/V
Vr
25 mV
TJTJC"<

.1!_1_. "' __!QQ_
4 mA/V

g,. 1

' 25 k!}

~ "'"· .J~!..Y . soo w
I

0.1 rnA

IV,l '' . ~?.~~~- ..

500 kH
I
0.1 rnA
A,,= g~, r,, 1 (4 mA/V) (500 kHI ..,. 2000 V IV
A,······ g.,, !r" 1 II""")= ·· (4 mA/V)
(5()() k!1 !1500 k!l)"" 1000 V/V
Since all transistors have the same

!!:
I.

0.36

J,Ltll'

we have
lm~•ID2

/KEF

itil''

0.55 f-LIIl, and
?

f:x:6. 4lf Lis halved: L

= 1"-~~

l()()~tA

jVAI ''

jv,;j. L,

! V,J -~

5

VIJLITI-t9.:~;J: ()l) - 1• hnl. ··· ----...
2

1.55
(c} V 5 m
V 0 ~2

L8 - 0.2 ·-·

!

"

(().1 )

v
IV> r,) then,

R.,,

so that r0 t and r04 are >> r.,
Tb¢n; R,,n ""' (g..2r01 )r~: ""' ~ 2 rm

Al!ll1n ""

«.,. ·""' (g,.~r,12 )(r01 I! r..:~)
If Q1 and Q4 can be selecled and biased so lhat

R.,. "''·

Av_(lee~Wflen Qi and Q4 are selected and bias

v,1 ·"'

R,, ::: I0 k!l[ I

+ 40 1~(0.5

R.,::. 176.7 kfl

g.i!(~1rm !! f33r1n)

without R. (that is, R., = 0).

R, = r0

Ex: 6 · 12For the npn trasistors,

!Jd
jV 1!

0.2 mA ""ll mAIV

25'mv
100

"-' 12..5 k!l

=

JOkH

.f::X:6 . 14 Fig.G . 2l(a)

~'111

·"'

'o2"' 'u =

llmA/V

r

·-- r

o~

o1 ·

·- Ir '1I
--

I'd

5 v
0.2 mA

..

25 kfl

!'

~-

{)nt

1.67 MU

Mml"'

r"'r the pnp tmnsistors,

0.2mA

gm.1 ··- J.:m-4

r ,_1

'·"

,. 0.\ ·coo·

r ~• ""

S mAIV

25 rnV

1!. "·' ~::1 mA/V

g.,

W!
~

4V
~'o-• "~
·~·= ·-·;:;·-·ild
fL mA

R,.r " (,W"" 50f.l.ID
1 JJ.nl

So the dimensions of the matched transistors Q1
and Q2 should be changed to:

W •• 50 JJ.IU and L= 5 f.l.lll
I~x:6. 16 For the circuit Figure4 · 7we have:

(Wit.)~ I
/1.) 1 ' '

I

J,
•

and I

o----r

Since all channel lengths are equal
L 1 ~-- l-2 _, ••• =-' l. 5 ~' I J!.nl

)

(llld

Q!

.....,

/REI'

~

50kH

r~.>l

-~

4 rnA/V

R,.

~·

(I mA!V)(50 k!l)(4 mA!V)(50 kHi

(50 kH i! 25 kH)

I

1 .w~~w,
u~:~-w,-

·~

"

Ex: 6 . 1 51 n the current source nf Exampk 6 . 1 5
we have I 0 ~ !00 tti\ and we want tn reduce

80 JJ.A.

'"'

-- 60 --- 6
\()

/REF

w!

w, ,~ w~ ~ !2
,w" tV 4 J_,

I

- 1-l

2

r.

/l

20

/REF

10

~ =·

=

c ,.., (lV)
-.L ::! v 21)\' 1

10

~

( ~)
L c

v- -l..

~

120
200 >< (0.2) 2

b
l\' J
IV,

I '(W)

,1
-k
2 rl ~
L-:; \1 01' 2

-~·

IV,

Jllll . ......:: =

w,

6 c-7

2•;W_, ,, 2>:w,

w,
~

5p.m

}!O
ro~

X

! 00

1'01 ,_ 1,

~~;\

IV

Mn

I !'A

I--SO [.tA(IV)
--,w -- t0.2!.2 ""'

2

V\ 2:_!:

"}

I \H}

1

a~ tI1al

20 ;< /_

L.,

XO X (0.2/

lOUV
~0

v·

2 X SO

lOll 1u\

(I

ol.

4

In order to allow thl~ voltage at the drain of Q5 to
up 10 within 0.2 V nf positive supply we n<.'ed

That is !!.I,,

\Hll

2

~200 ~(~) (0.2)~ ~

60 v.A

the change in output current ,)./,) . .:nrrt~spomling
tn a l V change in output voltage, J. V,,, to I'k nf

.!2.

1

., -668 X 10' VIV

~·

20 IJ.A •

In order to allow tht~ voltage at the drain of Q 2 to
go down to within 0.2 V of the negative supply
voltage we n<.'cd V 011 "' 0.2 V

1?,, '" 167 lV!H
-·i mA/Vil67i\-Hl)

I

l,

/,

A"'' = -g, 1 R,.

w,

I IH'l'

1,

Prom Fig. 6 . 19 R~;

w,

w" ""} w~

I'

r,. ,_, 25 kH

r>~l

G_ :: M~t

/~ =~

1., " I, "-' 20 1.1.A and

,, -~ mtVV

g,. 2

10 11-A, 11 ·~ 60 p.. A, / 3

'

we have:

From part (a i.
g,. 1 - I mAiV

g,. 1

(WIL),
RHI'{W I L)r

e' I (WI L),
4(W /1.)4

s

I!;

I

«E!'(\V

50 p.m

V!p.rn

IV

.

-

n fE· xampI'~ 6 . 1 5 "i o! the trans1s!or

-;hnuld remain the sanw. Ther.:Jorc

•f ."' W.J ,_ 5() JLI!J
4

Exercise 6-7

Ex: 6.19
See next page:

J<:x:6 .17 From equation p. 72 we have:
'·

~

'"'(, +

~~· + v. ;,~")
r~

1, = I mA[·-I+L:f::J,
. I .)r I + ~ -I!)(Q_l.?_)·

1.02 mA

100

I" '"' 1.02 mA

R0

\!
100 v
=rm- "'-..:!
=---10
1.02mt\

1\x:6

,

=98 kH - lQO kH

-

.18

v,."

•'

From equation f . 7 4 we have:
In

~i-i~':, J1 J( I + ~~'~-~AVrn) ~

0.5 mA =

.. /R.·. a~--.

--.(.1 ; 2-500.7)=>
,

I ; (2! !001

0.497 mA

f Kl'F

R

.2=_ O.?_
OA97 111A

43 S.65 kH
0.497

1/""''" = k'u;sxr 0.3 V
F'or ~:, '" 5 V, Fmm equation P • 7 4 w(•lmvc:
t,

'··

j:/{~;>~~)( I

+

\/::.i:::;~~!f)
0.53 rnA

Exercise 6-8

Titus:
~Ef'_,
I+·~:! .. ~
Ignoring the effectl1f finite ()utput rcsistnnces, we
have
It "c. lz "" ... '"" l,v "" lq!II.H•
'CQREF

+r

I REFc~)

=:

I "" I fiQRU' + I Itt +· ...

13
'~REF

J

,e.

I.,
1.-.!n.r

i

-~(~

N + l

11

From{*) we have:
lcvREF +I ,., /RtF~

/Rf'!'
.
-·-·N· + 1 ?> I REF( I - 0.1)

1+-13

+ I !>N
leN

",,. (!f1

13
For an error not exceeding I O':f· we need:

j

~)

.-...
- , 1·

N

_!__ -~
' !;!.:±:_! .c.·c_. ---t\
0.9

>

,}·_! s

0.11

-~•:> N +

I

N i I
+ ··--·

I ,;; 0.1!

ll

~<;

1. I I

f) •~}

N + I cS II ~ N cS 10
111c maximum number of outputs for an error not
exceeding to be lessth:m I 0'.>;, then we need N< I 0.
In this case the maximum number of outputs for
anderroroflessthan 10'!{- i5N=9.

Exercise 6-9

whereas for the simple rniJTOr from equation

Ex:6 • 20Refering tQ Fig, 6 • 3 2

lm ""' lnz '"' lm '"' 104

'"", / 11 1!!'

""' 100 ll.A

p.69wcMve:

, t ,. (WJ'',v2
v "" ill.•"·"• L ,ov

_.1_

S . , 1,
•. mce

l

+ -~
f3

= 0.98

1/ - J REP!I
Hence "-"

X

100 ~· 2%

/l!lll'

For the Wilson current miJTOr we have

=023 v
'l1te minimum output voltage is

R. '"
~l

V,.+ 2V,. '" 0.5 V + 2(0.23 V) "" 096 V
Tb obtain the output resistance, Rrr we need g,.3.

g.,.;"'~ ~ =
Vm./2

2(0.1 rnA)''"'' 0.87 mA/V
0.23 V

,, ,. • ~= V,1 (L)

r
01

(?_Vi Jl.1U)(0.36~
0.1 rnA

,

1,

(h

1

·" 282 kH

Ex:
For the Wilson mhror from tht' equation
16. so·we lmve:
I

J
-i- - ..-.-:___ _

"" 0.9998

t!..::.- lnr.FI x

1()0

2

the simplcrnirror R., = r., ""· 100 k!l
]';x:6 • 22 For the two current sources designed in
Example 6 • 6
we have:
lc
lO f.!:A "" 0.4 mVA and
g~, ··=·
25 mY
Vr

For the currcnl source in FlgP · 3 7 awe have
It, "" r,.,_ '" r,. cc·., 10 MH
For the current source in Pig.6. 3'tb li·mn equation
6. 9S we have:
R,,::;! I+ g.,(Rrll r.)lr,.

In Example 6 · 6 Rr = RJ

11.5 kH,

therefore,

(3{(3..;.. 2)

'11\us

2

ro

18 k!l, From eq. 6. 77
R~,~=gm_;r,,1 r, 2 •·= (0.87 mA/V)(18kH)

~-S = 100 x 100 kn .,.,_ 5 M!l and for

=

OJ)2':-f·

r?,_-

[t , o.4 !!!~nu
v . kn

/REf'
=}

R., = 54 l\.28 V to 1.0 V

().4 mA( 2 ) ,~ 4 mA IV

Ex: 7. 2

~-o:zv-

(a) Tht~ vnlue of <~0 that caust~s Q1 to conduct the
entire current i~
·t

J2 X

2o v

J2 Vuv

0.3!6 • 0.45 V

A 4 = g,.(Rn Jl r 0 )

An·=- (4mAJV)(5KII50K)= l8.2V/V

0.4 X 2.5 "" 0.5 V

\I'm "' \! 00

+ 1.5 V

·"·

Ex: 7. 5

!b) For Q2 to nmduct the entire cun·cnt:
•·id

= ... J2

V 01•

-o.45 v

"'

With I '·" 200 JL<\ . for all transistors,
)/) "" {

2

then.

L

i !5V
~"m

- !.5 - 0.4 >-.. 2.5

~

Vn: -· 11 1>;: from 1.5 - 05

= ·- I

ro~

Since I Hl

Rder to answer table ft}f Exercisc7 . 3 where val·
ues were obtained in the following way:

JnK IV.· L --'> ~
.

L

=

2

0.36

jJ.Ill)

..

ru:;

"

(!!')
L

=
I

KV,w'

·•

(~)

·.o.

lo

f.llll)"

361d!

(".. ,,.

(w)
T 1.

'

'o\·'

J.L,~C,.,I V(!l.) 2

2( 100 p.Al

(!f)
!, . '

I~
v I

___2_!J,__

'"

L,

...

21 1u \

1m

~-tA

JLI11

rn1

U.!J-~:'J~Ill) (IU6
0.1 mA

V

Ex: 7. 3

V,il

-

rol

' l V

= 200 JLI\ "" 100

2(0.18

0.5 V

(c) Thus the differential output range ib:
to 0.5 · · 15

50 k!1

.c

OAmA

then.Vm""" Vrm-IXR 0

= L5 -

v

12.5

(!f) .

2

,L "

2( I 00 J.ll\ l

50

(l'fm 1v\ i v' i(0.2l'

Ex: 7. 4
I

O.S mA

2

2

l .('IV'
-k
• )1 V.

2 '·. L.

........~.i!."..

l\' 01 i;·,?-

0.4 mA

. ! I00 J.Lt\ )(_:!.,)
0.2V

I mi\; V.

so.
' So thm

1 )'

" .

An ""
~

gml(roJ

18 y;y

II

l"o:d

I( 111:\/ V)t36 K II .<6 Kl

Exercise 7-2

Ex 7.6
L

=

CMRR(d8)

2(0:18 JJ.!tl) = 0.36 Ji!tl

All r0

_

'!
IV,,i•L

'"

·--

~ ~'

20 log 10

(0~ I)

Ex: 7. 8
From Exercise 7 • 7

2002 ~ ""' lOO JJ.A

W II. '" 100 ,JL.C,,(0.2 rnA I V2),

fo ,, ~ ':" 0.8 ;nA ~ 0.4 rnA

36 k!l

Refering to Fig7 . 12 .. ~:· ~-

(h} .li,,,

-:=

5 -- 0.683
IC

:·c·

0.5 + 20

,, 0.5

I

_05

VT

4.317

i
·o;

v

~L~!

JlX}()t)

(d)

-

= (15 -- 0.5 X

feR;) - 0.1

c'(

ReSin( 2'lT

"n

10

+

X

10) · · 0.1 X 10Sin(2li f(){Klt)

"' 10- ISin(2'lT X IOOOt). V

0.25 kH

ll}() K I ((){) K - 200 VN
0.25 K

r,

0.1 Sin( 21T X 10001), mA

( v{ (.

25 mV
0.1 mA

/~'

IA,J! :::

in "' 0.5- 0.1 Sin(2'JT X 1000/), mA

t•n '

~I

Since R, >> r,.

v

x 0.005Sin(2'lT x

r,.

r,.2

20 '-'-~

0.025

50 kU

200 JLA

10001)

R;"

2r #

R;J

2(25 K)

r"

Ji
gm

···-·

100

4mAN

25 kU

50 K

If the totnlload rc~i~tam:e is ;~ssurncd to be
mismatched by I'll·.

IA.,.I

ARc

1Sin(2rr X \0001). V

(c) r•n ·· l'cl

(fl Voltage gain

cc

2 · Sin(2'lT :-.:: IOOOt), V

CMRR(dB)

·~

20 lm!

~-~d

I "' 20 lo"

~It! A,,,

el!l

1200 1

0.01

= 86 dB
Note: lf only tht~ load transistors are mismutchcd.
und since n::: I.

Exercise 7--4

( 100 K

II

100 KJV;,-.,

--2(5(fK-)-(}.25 K

Ex: 7.15
From Eqn.7 .127

,

v ""'

--- 0.4 99

\lp .. -[(R,~-~--~Rr Jil_'j:l\~'-'-"'
t
2REF + r,.
.t.

!t 1.01 l 101) Kl !I tOO K _ v,,,
2(50 KJ ; 0.25 K
C:\IRR

'lA,~~~!

•l·/~

25)10.021 2

(ILl (

2.5 mV

0501 li,.,.,

f3 ;

o so 1 -- o...J.!J'l

2 :.,-: 101

I)

:: 0.5 1-l r\

I ( ~13.)

fo,\

I 00, 000 --> I 00 dB

100

100

1/1

iA,J

, '~I ')2

'(if~,)'

\r,j_~····

"

Using eq. 7. 103

0.5

11

50 nA

0.1 J.LA

X

t<:x:7.16
20 m

0.2 Ill X I 00

'-0.8 mA .

From Exercise 7 . 4
v.,, 0.2 v
Using Equ. 7.108 we obtain\',... due to t:.R,, I R,,
as:

(~R'')
( v~").
. Rn
0· 2 ;< 0.02 -

i.e 2 mV

gm

J'!.

-

(0.8
mN2).
.
0.2 v

\im·

(Jm

g,,l

Ro

ru:t

ru,

' 0.002

--> 2 mV
~ Vt is obtained

from Eqn. 1 7 . 116

il

~-··-~-·-

20
t(Ul m/2)

50 kH

1/)2

~/..c'.L:
1/) . 1

(lUI m/2\

- -20- -

50 Ul

50

50 •·· 25 k l!

Ad

"'

·I '!!~
V

C1m R (}

Vu..,· :::-

CMRR

-

~---­

J.46 mV

X

i (2 X !0

1)

Y.

25 kH

!00

~

Prnm Eqn.i? .148a

A.....:-: 2g~,',u:~

. . . . - - = :10; 2
- J3 (2
.)

v

ro.!

v. . ,

t:.Vr 2 mV
finally. from r::qn. 7. 117 the total input off,el is:

1

v

From Eqn. t7 . 141

'Inc offset voltage arising from

.j(2)< 10

·lm~

IIlii'>.

R0

0.02

4 mA;

...

v.\11

Wi/..

)( ~~v / _z.)
( .:.~~~.
2
w! I.
(~)t) X

thus.

~'o'J

To obtain V due to ~!Yc.L
"'
lbc Eqn.t7 .113

0.2 v

20 mA/V

From Eqn. ,7 .138

0.002 V

2

X

v

J

Ex: 7. 14

v,,s

-

Since all transistor' have the same drain curre!ll
(1121 and thi.' mun.~ product W II,>< ~-tC. then all
tnlllsL·nnductance~ g . arc identical.

R1, , : : 1.6:::\ MH

Vm

v

Ill~

'1()

(W/L)p X fJ-pC .. · OJ Ill X 200

~

tl005 V/V

100
0.005

20,000

Ex: 7.17
From &Jil. i7- 156 U. ~ g,.,
II1
g.,,- .,..;--

'r

(..QJ!__I!lA/2)
15 mV

From Eqn. ,7. 15 9

16 mA

v

Exercise 7-5

., v.\ 11
lc2

v ""

"' 100

Using Eqn. (7 • 17 9

v.~ _!~
lc4- 1 /!2

0.8mA

1 - (WJL),
1 - (W! L) (I)
~

12Hfi

=> 100 ·"" ( W !L)-, X
200
thus, (WI L).,"" 200
(b) For Q,,

From F..qn.l7 .162

N,,.,·2X r_,.

I .• I

-· 2Jl.p C"' (t LW) 1 "•m·i.,

~ 2 X _!L_p "" 2 X 25 m X 160

-

U; 2) ''

(O.ls m/2)

For a simple current mirror the output resistance
(thus Rr,) is r,
_v_a
tOO V
0.8mA
I
l"'n1m Eqn. !1 . 16 7

j=.::=~so············=:.

=> vov1 =

""20k!l

~

125 k!!

2

(c) g., ""

(J.J05 V

1.0125!
160. ()(}()

lo

\!·¥·

g,.,

Q,

501-lA

0.129V

0.775 rnA.V

Q,

501-lA

0.129V

0.775 rnA/V

Q•.

I001.tA

O.IOSV

1.90mA/V

104dB

(dJ r,,,

r..

Ex: 7.18
1 m:2 = 20m~

25

,.

~
1/2

() ~

-7

Ro4

' j),,r,"

Ill

v

IOOV_"'
200 kl!
0.5 mA

=

50 X 200 K "' 10 l\1H

!0/0.05

1;,. '"' !0/0.1 • lOOk!!
li ·o. 10/0.1" lO!lkH
(e)Eqn.l7 .176
A, ""

-g,.,

~ lr !1" ~"o-• H 13< ~~ l

i\.o

g., ~<

R,.

.

~

200 l

· 77.5

'!.v

.177
.:Zm() { r(J(J

n r(n)

Ex: 7. 20

'5 MH

20 >< 5000
i.e. !O()dB

-

l!

·.· ... 95VIV
Overall voltage gain is:
A, i" A, "' 775 >< 95 •··· 7361 V/V

From Eqn. 17. 174

riO!! 10) J\1!!

lro~ll rw)

= -0.775 CWO

/\::

"'

200 kH

= lO 10.05 ·· 200 kf!

Eqn.1?

R.,

?!.I~
v(,..

v

!20001

.,

ov~

·

-· .!ll25y

20 log 10( 1(;(). (ll)O)

v

0.129 V

100 '" .\ X 9() X 200 V

--2 X !15 K

CMRfl

"'

0.129

200

X

For Q,,

j"(;(i": VOYb

. - \ ( ). Flg.7 · 42 all/,. values an: rlw same.
If}' V/V

'0.

1',,.,.

V,

I /,J?,.

Using the equation developed in l.ht'

t~xt.

Ex: 7 .19
Refer 10 Fig r7 . 41

ra) IJsin~ Eqn. !7. 17 8

'"

=~

rlV.-·n.
--,·---'
r I ! 2l
rH·
!L),,
!00

(IV f.~:l._.>

thus. r W / /.) h

100
200

·-~

( @)
Y

\

)2o ···I}

50

Hl\0)(10 p.A) ...

5.:'7 kH

Exercise 7-6

v.,..,,"" v,.'S,l- v..

vetS.:= o:~.s + o.1 ,, o.ss v

+ I•Rn- v...
""0.85 + 0.15 -- 2.5
=- !.5 V

thus, V,;,.u = Vt;.t,!

Vov

11 ""

I"ov~l

~ Vr;s il ""

V1;

Ex 7. 21

0.3

""' 0.3 V

+ 0.7

''' IV

LS + I ,., ·· 0.5 V

11 "" ••·

Finally.

/1,""·90~A

Vn•""' Vm;-

J.t.C:., =

160 p.AIV 2
J~~

=0.6mAJV

""

~s +

101

Since!!.. of Q,., Q., and Q" are identical toN~ of
Q. and Q, then:

15.7
15.7 t 303.5

v;,... """

(t3 v
Thus. forQ ..

(0.3 )~ ""
4

2 X~~.!!:___

160 J.t tH·; L) 13

3

(W! L!u ,, 12.5

i.e. ( 10 I (J.!I)
Since Q, is 4 times as wide as Q,. then

( ~)
/_.

= 4 X 10 ,. 4()

2

,.--:-(\v) /2v-..( "' - - I
1

"'

-

J- .

2

·( f{W!L);; __ 1 )

~tw:np

214.8

100

N, + R2

=-

f3:

;,

'"' ().()126

0.8879

100

Thus the overall current gain i;:

"
_( /40 ! 0.!1 I )
tj 12.5 ....

.

2 X 160 f-1- X -- X 90 IJ·
•

f

R 1 -+ R2 ..!. Rr1

i .. ~

B

40-

13~ =

ihs =

0.8

0.8

l1

-t R 11

0.0492

~

= 101 X 0.()492 X 100 X 0.0126 X I OIL

jI

X 0.8879

0.8

X

I00

"" 55993 tVA
and the overall

1.67 k!!

The vollagc drop on /(, h:
1.67 H! X 90 ~LA • 150 mV
0.15

v

voltag~·

V0 =

!?_!~ . it-~

V;.J

R"

gain is

i1

. " __;~__ )( 55593
20.2

$256 V/V

Exercise 8-1

Ex:8.1

C8 ~

~X 10 X I X 3.45 + 1.72

=

10

XlXIOK

tO+ 0.1
;\., '' - 9,9 VN

Cgd

2

.f1',3

0.016lh

l

I

2;rX I J.L/2 m

,. - - - - " - · - - -

+ R0 )

2trCc2(RL

C,n, ·-

318Hz

27rl J.L X (10

+

10)

R

"''

40-m~ ~) l

r rr

=

2.5 kH = j[ •""> f;

r

'

"''

Km

25 mV
l mA

)

!K'(~)

2 " L "

40 m :-:. 25
=

Ill

1 mA

t

In

=

cJ, =

zs n

2) 1

1800

Ex: 8. 5
Jrm

100

= 5V

(V h-V )1

"'"· !2 X 20 X 20(5• · · ·

"

4.1 fF

2(::6 l

Ex: 8. 4

I J.LF

v

Jt ~~~·

n•

6.1

10

Peak <:urrent occurs At V1 = V,lt

i Peak""'

.h ::::.ln""' 318Hz

"'"

J;-·~· ~~~

C,u,

""'.8Hz

Ex: 8. 2
Cc1 "" Cj;; "'. Cc;

10

Vo

··-· -::------=-1-:-c----,.--o2tr X I t.t X ( 10 + OJ M)

24.72 fF

1.72 fF

Jt ~'Yss

l
2trCc 1(Ra +· R.1v)

2trCsl g.,.

= C0 v =

c.h = c,,.,

.f/'I = . .

f/'2 ""'

2
JWLC.,.• + C 0 v

""'

~f~ ~· A~~~
T.f·

·g..,

=

20

"'

40

11~/

x w- 12 x 40 x

Jo··3

'"' 0.8 pF
2 q,., = 2 X 20 Cz 40tF
C.,. ·" Cdc+ C)r = 0.84 pF
cje =

~ 2tr IJ!IIOO K II 2.5 1('!~5 KJ
frr

21.4 Hz

20 fP

'

, !OOK~l

2rr · I 11{25 .

.f..,

J

fr ~· --·~"!-2tr(Crr + CJ.L)
40 X ((J·.I
2rr(O.R4 + 0.012) X 10- 12

2.2 KHz

=

f 1, 3 = ')~Tr'

c·C2 . (R C ··!·· R1•. )

l
2rr · IJJ.(R K '5 K)
12.2 Hz

f~,

Ex:

JOI

8. 3

I" ·I - fr
f --~ 10
}t•

.'.45 x 10 ·lF / m2 = 3.45 fF 1 tJ..m~
C 0 1·

WLm.c .. ,
= 172 fF

10 x (J.05 x 3.45

7.47 GHz

-

.c.

Lt.
50

::.:> fr = 500 lVUiz

fr

·= 2:·1~ ..~. J.Q._
10 X 10·9

=

Ex: 8. 6

2rr(Crr

··II

t,.,

12 fF

Crr

f Cj!

+

CJ.t)

.. 40 X 10

2·;r X 500 X I 06

Crr=- !2.7 .. cfJ.

12.7 pF

12.7-2= 10.7pF

Ex:8. 7 Diffusion component of Crr at/, of I mA
'"· 10.7-2 R.7 pP
Since Cj, is propo11ionalto I c. then:

Exercise 8-2

ci" ·= 7 + r o + 40 .x J0-3 + 1.s + t03)

C4 (It:= 0.1 rnA)"" 0.87 pF
Orr Uc

= 0.1 rnA} = 2.87 pF

f 1·Uc

=

0.1 rnA) =

= 68pF

g,.
27T(C1t + C~-t)

:=:)

I .
= 1,42 MHz
211 68p · 1.65 K

fH ,.

-.,..-4...:..-~x I,..::.o_-.~~-

21r(2.87
·~·

+ 2) x w··ll

Ex:B .11 Using equations a. 61and a. 63 we can
write the general fonn of the transfer function of a
ditect-coupled amplifier as:

130.7 MHz:

Ex: 8. 8

A(s) = __A...,:v~c'--- where Af)(. is the DC gain

Rr;
A,., ·'·"· _____
., . Rt,
"'
R-+R-'""
·
(,
~Jg

1+-s211'/u/J
ofthi! :unplitier andf~8 is the upper 3dB
frt.'<]uency of the amplifier.
In this ca.o;e we have A,J(. "" 1000 and
f.ldn ""'· 100KHz= 105 Hz
1000
Therefore A{s) =
I+
s

R~. ~- 7.14 kH, g,.. = I mA/V
Rsig"" 10 kfl
AM""·- - 4.?Mfl

(4.7

+ O.ol)

MH

X l X 7.14

= -7.12 V /V
21tC 1 .(R,i~l !Ro)

C;,.

I

3.7 MHz

:r;;>< 4.26( w K n 4.7 M)

fn

21T X 105

4.26 pF

Ex: 8.12
For this amplifier we have:
i\M

H(s)

Ex:8. 9

=('I+ 2-)(1 + ....£)
Wp1

ex.• == I pF
C,.., "" (I + ,q 111 RL)CK,1 = (l + I X 7.14)

A;,

. . )!2
IH( .fuln
= 1

s.l4c~, 1

c~;~ =

Wp2

By definition at ro = lo, we have
=:)

"'

fr 2c. I MHz =:) - - -1- - - t?: I MHz
21l'C;n(R, 1 ~11 Ru)

C1n

= C~s

h(l

+ Ceq "" I pF .;. 8.14

f~,rm

I

+ 8.l4C11,1)pF(IOO Kl! 4.7 Ml

?

I MHz

I + 8.14C"''
C~~J ""' 0.077 pF or C711 "'f 77 tl'
1.63

=:)

?

[I+

c:;Jl' (:;:rJ
+

If ron"' Ktop 1 and uJ11

[ 1 + (·_o.9wp

(Dt\., = -39/2

-19.5 VN

- 100
2.5 X 40 · 10 'X R;_
100 -~· 5 . 2~5~T"()~{>:1 r ( I 00 !I 5)

r., !! He
R,~)

1.5 k!l ·· ( 100 ji S

..-> R1

(J)f 11

=
.....

If w11

=

2

= 0.1

k!!

( 1 + 0.99-) I
0

I

1.9 k!l

. · R,;, -· 1.05 kH
'

2r.C,., · R,,r

=:)

K ,

0.99 <.o>I'J, then :

R1

I? I.

· · - ·1
--

=

(o;r " ' ~.~ =(o;y
h>r 1

1.5 k!l

7.4 k

;r)

, +

2

}( WpJ

[ I + (~.99wpJ )2][ I + (

~·

K~"~~[I +(uly)ll[t
+(·<:!!1.)11
J
hll'l

I

w"'

I

0.64 ttl1., (exact value)
.,, ) we
(note that in this case the zeros are at S
have:
to>H "" I !

l~ I , +-:~-~
A

,.,.

1'1"

"'

l I. [ I

~(J)Pt2

~

+ }
K

{0/'12

"" 884.2 nsec

Rs,1CnJ ~- (R'

+ u;_ + g.,Rj_R')Cif,1

'T 8 ,, '""'
'Tgrt -~.-

803.4 nsec

Tt,1 ••

..

r-~.~7··- ~-

J >.~2 -

1

211' X 180KHz
80.8 nscc ~ T grl = 884.2 - 80.8

2

~

Wp2

J2hln

27T/n

wll

wn ..,., Kwp 1

R '" R;,. II

R,;~

., 80.8 kll, g, = 4

f'gd'"" I pF
1lnls
803.4 nsec .,., (80.8 kH

~ 324.2R1'

'

nt,

+ R;, + 323.2RiJ + I pF

S03.4 nsec- 80.8 k!l
I pF

""

::,; Rj_ ···"'· 722 ·6 ~!_! '"" 2.23 kfl
324.2
For the .:ase of K "" 2. the exact value of w" can
be found from the following equation:

[1 J][I (K:::JJ 2
+ (;;1

t

·=

Assuming "111

,,

Jhx

4 t (

X4 + (K2

K~)x 2

1+

+

I )X 2

-

+ 1

·

u•)

420

X 4 X 2.23 ·"" -7.2 VN

420 X 100
Thcrcfurc. the gain-bandwidth product is:

7.2 x 180KHz= 1.296 MHz:: 1.3 MHz

2 ==:>

=

R;n

R. + I?. (f<,."t
~~
"''r

M

AM =

X we have

b) I$!

Xl\

For this value of f?j_ we have
-'1

=

(I ! X 2 ) ( I + K:)

"'} R{ "" 2.23 kH

= 2

Ex: 8.15

~

IOkfl

K2 = 0 ~

F·or K ··· -) _,
._., wn

0 . 84

~ hlH

-

().•.8'"tl>Jp 1

Using Miller's theorem we have

(1)1'!

fn this case, the approximate value of (J), is:

. ~-,~-~
() 09
I' ., --~ '' .o blrt
..,.
K·

wp 1 1

4, using equation ( * ), the exnct value nf

ForK
wit is:
ltl 11

••

!{.

•

"'

R,"

'

\1" ~ ··AV,
Assuming V.,, = I V

A(V/V)

0.95

v. "· __!!.!_"-\/.

10 kH
A + I'

\VC

·l

have

V,-(mV)

R;n(!l)

\~,(V)

toJ,,,

t•>n

-~

~~----~

rl; i'
·~

K~

\Ve have A,

····10.8 V/V andJ~:: 128.3 KHz. therefore.. the
gain hand width product i~:

IO.R X l 2XJ •• I.J856 1\-lHz ;:_ l ..W Mllz

909

476

4.76

4.76

99

90

-9

•• <)

1000

9.99

9.9

-9.9

-9.9

10000

I

0.999

-9.99

-9.99

10
f-·

Ex: 8 .14

~/\lsi!!

(~)

In this ca'it\ tht approximate value of ''luis:

.

and

I kH "r

··-~,...,.·~-~

100
1----

L.-----.........

..i..

Exercise 8-4

Ex:S · 16 Refering tO the ~lution of Example

a .10 the value of/11 detennined by the exaCt
analysis is:
/ 11

=

R~

j X 10 K = 2.5 kO

=

!AMI = 8m • R[ = 2.5

J,., = 143.4 MHz

Also,

AM ""' -g,. ·R;_ = -1.25 X 10 = -12.5 VN
Therefore the gain-bandwidth produt.-t (/r) is:
f, "' 143.4 X 12.5 =- 1.79 GHz
Since fr is less than f,.! = 2.44 GHz and f ""
40 GHz, therefore it is a good :lpproximation of
the unity gain frC<)ttenl:y.

= 6.25 AlA
Using equation a . 9 3 and assuming/,,::::}~.
we have:

.Ifrt

.

+

2-tr{ (C"',

ro,ll.2 ' 02

R' ""
I.

!AMI ·""·

g,.!£!~ 'm ""'

° ""

1.25 X 12

+

CqJ(l +

.

g.,R/J] · R;ir; I

f

Sf( I

!·

VA~ "' 13() V

(CL

+ C~d)Ri.J

1.25 x 5)] · 10 K

+ ( 25f + 5j) X 5 K ]

g, 1

_ 2lvl
·•··

V

Ri. ""'

~6 k!l

I

C,n

~, 250 mA

v

r,
R,;~ ·+ r,

R;_

r0 u 1 i!
F

...!!

In

r 0 Q2 =

=

( r,)(JI

ij ~"oQl)

'""

t

=

=

175

~

v

C, + C"( I + g,Rj_)

···->

C; 11

448 pF

,/.,::::

21TC:,N,;~

10 k!l in example

increasing 1, by 4 reduces

Ill

=

-

i . roo:
I()_ K ~':QQ.!.
. , 4 "
4

+ 40

21ff'; ..

X

36)

~·

448 pF

(~~-r(R, 1 ~ I

r,)J

82.6 kHz
.!'lTJ<448 pFI5ll (36

I

0.2)]

~

::::.4.3 kn

Thus:
~"oQ1 "'

(" R')

v
V

both r001 and r002 by 4
~"o(ll I

+ r"

= 16 pF t 0.3 pF(I

9.10

Since r 0 -~

5 kH

(b) Using Miller's theorem \ve have:

(2Vuvl)

R;,,

""

v

J\.1,1 = -17;,-

,..,,~u

If

209-

40 rnA

--.- 5-_--(40 X 36 kH)
36 l 0.2 + 5

is 111 , is increased by 4 and V,,. by 2

(}\"'!

To calculate

130 kfl II 50 k!l

,1.11) From equation 13 . 97 we have:
''

0

""

I mA "" 40 mA
25 mV
V

g, = Vr

A,., = ~

then:

J.L
_lsomvA ·= -"iO k''

~"onpn !I ~'opnp

l?m

Ex:B .18Rcfcrring to the solution of
Example 8 . 1 0 ~

·-~

R; '""'

r, = ~- =

"'6.25 X 223= 1.4 GH1

130 k!l

I mA

1 -~-~Ae!

yopnp ~

};,::: 223 MHz

IAMI·f11

f X 2.5 I(

= 250 MHz

6.25 X 250 ~: 1.56 GHz

"'

I

I

fr =

f,. :::k

Ex:8 .19

I

In::: 21r[[20f

= 250 MHz =:>

/ 11

6.25 VN

Using equations. 92 and as~mning_t;, :::;J,.,.
we have:
f,,:;:
21T·HC.~,

! C8 ,.)Ri}

+ 5 f(l + 6.25)110 K + {25 + 5)

2-rr!T20 f

_{, : :. IA,,,J · f 11

and therefore

+ g.,R;)JR,,~ + (Cr

C~, 1 ( l

In ""

F..x:

Referring to the S())tttion of Example
8 • 1 b if a load resistor is connected at the output
halving the value of R~ , then we have

X 2.5

1

4

(c) Using t.he method of opcn"cin:uit time constants, from equation e , 10 0 we have:
7 11

=

CrrR,;f

I

C;.l (I

f

g,R; )R:;p +

f?!

I

t CtR/,

Exercise 8-5

Thus:
'fn '~ 16 X 4.3

+ 0.3[( I + 40 X 36)4:.3 + 36]

R, 18 = 10 kO,

+5 X 36

fn = --1-

.:::75.1 kHz
2rrr 11
(d) Using e"i:Jtiations s .102, a .103 and s .104
we have:
40 tnA

- ·v21T0.3 pF
/~,
.l

21.2 GHz

= 20 kfl.
I
500 K
+
1.25 m 1.25 X 20

g,.,r,

g,

=- 20Jlk0

~G =
R,.
•
R.;g +
To obtainfH:
Rii.•

500

II

R,;g

10

R;n

Rin

"" R1J R0
R0 = r 0 + R,;g

16.2 V /V

+ 20.8

10 K

II

r0)

·

21T[C,. + C 11 (1 + gmR/_)lR~i~

i

(C~_ + C11)R/.

75.1 kHz

+ (g

111

R,;t " 280 K

(same as in Eq. 8 . 12)

RM,, = 500 K II 280 K '~ 179.5 kO

cg.• · Rg,· + (Cg,1 +

T 11 ""'

!,2.::::

c,) · R#.~

+ (5 f + 15 fl X
+ 3.59 ns 3.72 ns

·"' 20 f X 6.75 K

...!_LC, ~E1,(1 + g,.R;)JR,, 8 + (C1_ + C~)!~

1C,.( CL

21T

i

6.75 kH

20.8 K

RRJ

=

= f, 1 ""

R~_

l
-+
-R,.-

R;n =

'fn = 2.12 nsec

15 fF.

Cg. = 20fF,Cifd"" 5fF CL

C") + CrC,_.]R;;gRt.

of,Tu

0.135 ns

Thus,

f 11

1""' - -

21TTn

f,,J "' 25.2 MHz

Sinct'1;, 1 << 2 GHz

ro)

CASCODE Amplifier:

R 0 = 2r 0

-

945 fF

ll

----7

I
I
A 1,"" --(o
= - -2X 40 '"" -20 V IV
2 ~"lm r,J)
~.

~Av '"' -g"'(R0

----:-::---='12::,:·::..5---::-:::-:-:- - 'i X fF

179.5 K

•c.

il

Rt)

+ (g..,r 0 ) · r 0

=

r 0 (2 f gmr 0 )

42r 0

~ .4 1.

'-'

...

g,.,(42r 0 !1 r 0

) -

-

g,, · r 0

Ex:8 · 21 For a CS amplifi('r fed with R,;g ~ 0
~.!'

we know that:
gm
I. .
. '

cc.

ln((\

CASCODE

=

c;,;)

f

-4Q , 2
-2:0

AFCS

~)) f,, : Neglect cornpnnents of T 11 that do Ililt
'·
0.25 c,,
include R, 1 ~; abo C,.t

CS ·Amplifier:

Tho;>rl·forc.

[

f,

L
f,

T }/ =

~- ... ~:~:!!!_(2nC,.~)
g,,! [2-rr(C 1 + C,J]

cI.
cgd

l

"'> L
/,

Ex:8. 22 R1

I

i

C,,, • R,;~ + Ced[ (I ·~ gm · R;)N,;(! + k',l

EL

(~utl

500 kH. am! from

Example 8 . 12
g, ·.·· 1.2:5mA,V,r,,

sine(' Cx.t
20 kH.

0.25 C_,, and g,,r 0

·"

40

Exercise 8-6

"* t If = C1, · R~it ·1- ~0:..25 X C~tj( 21 }( R•i•
=R~,.,,x c~~

x 6.25

CASCODE.- Amplifier:
Using P.A:J8 .i19and neglecting the tenns ~do
n~ inclu<,le R-.;1

T, = R.;,[e~, + c,lfr 11 '" 339

!A vi ·In
fT·CASCODF. """ (IAvlcA$CODf.) X(fH CASCODl!)

fiJ"" - 1 -

c) /r =

IAvlcs

In cs

= 2 x 3~6
~

Ex:S • 2 • Referring to the solution of
ExerciseS • 19 we bnvc:
"'" 40 mA
v and r 1t '"' 5 kH

Note that for the cascode amplifier considered in
this exercise:
r,, '"'· r.,2 = rrr;;; 5k!1

g,.,,

16 p)

ns

21fTn

=!AMI·

1
-469KHz
21r X 339 ns -

=

IH

= 242 X 469 KHi

=113.5 MHz

Compared to the CE amplifier in Exercise 8 . 19
lAM! has Increased from 175 VI V to

7.2

..
..,,.,

·

fr

R0 )

x $5 + (5 p + 0 + 0.3 p)(SO KJI

""' R•is · C$, X6;25 = 3 _6
R,;,. · C11 , X 1.75

.frc.

c 1.

=

+ 16 p X

26M)

35

159 ns

t.4 pf

+ 0.2 kH ''" 5.2 k!l

A., "" 8m · r., = 40 X 130

=

5200 VI V

Ex:B.25R' 1• = Rtll ro = 20K!I20K
= IOK
From Eq.a. ~2~ we have:

200 + I
X

,. AM "" _g,.R' t.
. '
I + g,.R' 1•

1.25 X 10 '" 0.93 y
I + 1.25 X 10
V

__!_X

130 +_50
130

2?T

+ J.Q.

·- 8 GHz

201

f

R;n: :: 35 f!

R" :: j3 2r 02

""

1.25 m
(20 f + 5 f)

200

X

130 kH "" 26 MH

__!_ · 1Im "" _!_ · L2 5...!E - 10 GHz
2?T CK,
2?T 20 f -

~

R!!d = R,;~ "" 10 K

R

=

R,;s + f!~

1 + g,., · R' 1•

~'
'0

1.48 kn

""

10 K + 10 K
1

l

1.25

X

10

Exercise 8--7

E;c;S • 28

lt "'·.

Using Eq f-.153 to f. .157 we have:
R'1. .,. . RtU R0 "' 20 Kll 60 K ·"" 15 kO

I
21r · Css · Rss

ll8 t1

.1
. = 15.9 MHz
l1r · (0.4 p)25 K
Ex:B • 29Por a loaded bipolar dilfereotlnt
·-

''

11•--

ro
"n. s Xr- -+· ·R-

I

,,,R,:;g

1! 2 = 0.5 tnA
Vr

25 mV

VA

100 v
0.5 mA

//2

=

7 11

2

+ f!.§

200kU

~O + .I "" 10.5 kkl
2

cg,Rg,. + cgt/ · R*' + c~.n·l.
""' 20 f( I0.5 K + 5 f X 235 K + 5 f
··~

l.46ns~f,"" -.. -1-

X

IS K)

= 109MHz

21TTII

20 mAX 2(Kl kH

X

20+ 20

'"

~· g~
1. = I kH ~ R,RJ

R.s

20 mAJV

T 11 ""

!

x.....l.Q_

2

where,

"Km

I+ 2

I+.<> R

Q

2_gm • ro

235 kH

""

R,1, +R:s

R _

amplifier:
t\,1 ~"

+ R' 1•

R.1s(1 1- Gm« t)

v

~-=

U/JP

10 X 109 MHz:::l.l GHz

'"' 2000 V IV
The dominant pole is set by !he output load

Ex:8. 31

capacitance

R;.,= {f1 1 ·l I )(r,. 1 + r, 2 )

f

I

' ·'" in-· Cr(ro2 II

Since in this case r,. 1

rm)

l

=

r,. and

13 we have

211" X 2 pF X (200 K I 200 K)!l
0.796 l\•1Hz. :: 0.8 MHz

2r,

= 2 ~\lr- 10 kH

lc

-

we have:
Ex:S. 30 (a)

Vo

=

AM"" -g 111 XR'~_

A,~~ =

-2

To calculate

°~~
T 11

X

-g.,(R~.II r")

(20 k!l!i 20 k!l)

I(

··20

=

Rin .. )

7 R·

Vs;g

-

in

>

+R Srg
. . .~ ...

R

L

~

using the method of open-circuit

we have:

time-constants we can employ Eq t8. 84
Tfl

""'

c~,.

R.,jg

+ c.,JR,,~(I + gmR'JJ + R'd

'C / , . R' L

T

20 f

Tu

X

20 K

l

5 f[20 K( I + 20)

I

10

Kl

fpt

= --·------.-:...-·-·---2...(6 iF+ 2 pF)(Io Kil 10 K)

!5fXlOK
T 11

''

2.6 ns => f

11

2·r.r n
The gain-bandwidtb product is:
GBP
(b)

61.2 MHz

lr1 = ~~·~1?

20 x 61.2 M ·•·• 1.22 GHz

With source degeneration of

-1f'--

2
gm

l~s

X

20 k!l = 60 kH
A(1·)

A.ll ,,,

--2

X

j.t

2·rr

1.

20

2 pF

X

10 K

- -.............AM. _ __

(I

v
.. 10-

l

i~~f':~ )( I • '2~>;.~)
I--;:A.,,I

v
2 mA

3

X

::8 MHz
Therefore. the transfer function of this CC ·CB
amplifier is:

R 0 = r 11 [ I + g,,Rd •• 3r0
R0 = 3

::6.4 MHz
we have:
I

v

J2

or IA ( s)i''·

·'

;. . //

Exercise 8--8

F..x:8 • 33To obtain Req:

Thus:

Req "' Rzll rol

II

r ..s

20k!l

JOOV

VA_
( 1+

f:t)(

ln

le2 ·-· 0.25 rnA
1+

~~) ""

2

Solving thls e C,. 5

4.8 pF

7. -

G,.1

211 · Cc

40 m
- 2 p ·· 14 pF
21T X 400 Ill

thus;

From Eqn. tS. 173

r · ·.
• ·

"

Ceq= 2pF+l4pF+2pF(I+40X3)

~
G,;

c~ f. "" 0.6 mA / V
.. z
211 X 4.8 pF

g, 6 =

0.6 mA/V

20 MHz

c•258 pF
Finally,

f,, ""'

·

From Eqn. 1 8. 177

0.6 mA/V '"' 48 MHz
21i X 2 pF

1

211·Req·Ceq
I
21T X 2.2 K X 258 p

·~

280KHz

Exercise 9--1

Ex:9 .l(c)A = lOOVIV andA1 = tO \ltv
_ . A
I
1
I
I
A f c.. 1 + BA => l':l
A! - A
I0 - t 00

= 0;09

Rx:Q • 4 For Example
A0

""'

6000, ~

(I +A~)

=

=

7 .1

10- 3

(I + (6 X 103 ) X 10-:l) "". 7

= fH( I+ A~)

/.fJJt

"' l X 7

=

7kHZ:

''"" 0.09
since: I

+ !'!1

1

Ex:9.

13

R1

V

R,

1

R1

().09

=> --= ""' -.- --· I

= 10. l J

I

+ AB ""· l + 100 X

vl

'~ I~·

v
v.I -"" ....!!
J\

V0

,,

,~-

-10 ..

0.09"' 10 which is 20 dB
i\1 Vs "'' to x 1 '" 10 V

x

0.09

!0 = 0.9

v

l(!()

80

10 -- 9.7561

Ex:9 • 2 (c) A ,_.

"' ().99

·---~

v

=

40 dB

li}x:9 • 6 Replacing the amplifier by its small
signal model

2.44% of A,'" 10
}

V,

I
Ai

I

I
I
10' - 104

A

v,
I

= --l =

15

110.1
Open~Joop

(d) The amount of feed hack is:

AJ3

«f+Vnf

+ 0.0099

=-9X!(f 4

l t-

V

I X V,.
l+(J00Xl)XI

an impr()vement of 20 log( 100 I I)

to4 V!V and A1 = 103

I ..;.. J3A

R1

+

AI

"I +A,A2~

9 7561

"'"

Al=-A-=>~

R,
=-'

+V

ArA2

+A,A1~

New SIN ratio = 100 /I
~" 0.1

-·"----------1
+go x oo9

ilAr

·'J

Thus, V,I"" I V and V,.,."" O.OIV

(I) If A decreases by 20%:
A 0.& X 100 SOV/V

A1

"" V

(I X 100) X Vs
l+(lOOXl)Xl

,

(d) The amount of ti.~cd-back is:
(c) For Vs "" 1 V: V0

"

5

I

+ l(f1 X

grounded:

9 X 10" 4

,--;

10 which

is 20 dB
i\ 1 • V 1

\1 1 ~

f3 · F 0

Vo =
V~_, =

(c) For \/5 ., 0.0! V:
V0

10 1

10

X {).()!

'

9 X

I(J .J X

-R,.v., ><

Rn

- \l~ ~A ~:: gmRv

Feed·back factor:

v

1.3
"

gain: without R2 and R 1 > Ru

0.390 maximum

-gmV.ts' Rn

Rrllo

R 1 + R:

1?2

+ 1? 1

Exercise 9-2

k} . vs.

<> R
~v.·.Jt~=gRV.
{

o

R+R
I

,..

2

I
Closed-loop gain: A J = Vo

Thus:

s

V;,

AI = --"·

+ g,.,RDR 1 !(R1 + R1 )

Vs

ifA•r3 >>l => (g.,R0 ) · R 1 I (R 1 + R2 ) >> l

10 = A 1gm2 V1 and V1 ""· Vs- VF
10 = A 1g;,:r£Vs- V 1 } = A 1g., 2{Vs-lo/1p}
~

loO + RFAlg,a) ""' A,g.,1. Vs

Ar =

~.
s

= 1 A 18"'2
which is the sante"
+ RFAIRml

asA =_A_
I+ ~A

.f

Ex:9 • 7 From Example 9 . :Z we know tha~:
-g,;,z.Ro where -gm RD .IS t he open2
! + _KmzRo

If AP >> I
A

JC:

~ RFA 1g, 2

A.g,.z.
R,,A1gm2
I

I+ RF

-')AJ - -

- RF

RM
loop gain

Ex:9 · 9

The equivalent small-signal circuit fhr
Fig 9.llb)

ifloop-gain A{3 >> I

Ex: 9 · 8The equivalent srnall-signal model for
Fig 9 . 1 0 b) is:

V

-~

V0

f:- +A
Il

-

>> I and

-

+
-

-A

I

v
'

-

oo

-v

-AV.-> V = _ _o

A

I

I

(I)

Is = I;+ l.r

~~·'
.
I

-

(2)
+

Opt~Jl·loop

gain: V, "" V;

=

-RrVo{ AR;r~
I A1 I }
I

t

··-·~--= R r-·--

( 1 1 _!.

A

+ RF )
AR;,1.

if A.>> I and AR;,1 >> R"

Exercise 9-3

Ex:9 .1.0

R;N = R((- Rs = 201 - lO

FrQm Example 7. l

Ao .... 600ll, ~ ""

x 103)

(! +AI3) ""' (I+ (6

:. f111

=

Ror .;':: {Rf'IU, II R,)

ro- 3

x 10~ 3 )

fufl +A~) "'~ I X 7

=

""

7

:::::} R,..,

~

Vc2

181

IK80

951

n

a) The loading effect ofthe feed-back network at
theinputis:R 1 11 R2

In == 0.5mA
0.7 ·-

lr;:J

= 5mA

r, 1

'"'

r, 2

~

Ex: 9 · 12The feed-back network is composed (}f
the voltage-driver resistors R1 and R2

= 10.7-0.5 x 20 = + 0.71·

v.. ,.

19.1

I+ Af3

191 kfi

7kHz

Ex:9 .11
1111

=

= - R.,

=

'"

b) The loading etTect of the feed-back network at
the output is: R 1 + R 2

v1!/!.J "' 0

The A circuit is:
VA I I ""' 50H , ~'e:1

5fl

A-Circuit:

Vo
1

'

Rtlt /?2

":"

"::"'

~·,

2K

A""' g,.lRDij{U 1 +R2)]

To obtain

R;

(20 II (1~ 2-t:" I )(rtJ

+ 2!1 10))
r + r ' + ~ + (I I! 9)
d

( 2 11 !0)
;." + (2 !! 10)
1?1

Rs

= 10 +
R0

For the CG amplifier:

"'

r•

.

:::: 85.7

~l

+

J

J31 +

PI!

9)

[r,., + ~~hJ

2 !! 10!!

-

/:;Q

X

I

v! v

+ ((3 + l )(rc~ + r,. 2 ) + Rr!l

101(50 +50)+

J3:

R~

21 kn
181 fl

;,' 1. =

B-Circuit:

v,.

= __!!.;__

V0

f<, + R~

A-I

+AI~

s· ub·

·

·

slltutm~:

•

Ar ~ _ _g,.,RI_,- -

I+ Rn(l-l g,R 1)
R 1 + R1
if R 1 + R2 >> R 1, we obtain the same result as in
Exercise !OJ)
From the A circuit:

/?2

~£3~
R
V;,

V)

1

..

· · ·~·

R;=

\! ...

v,

A

I

+A~

cc

_1_(1 •Af'.)
(Rv

0.1 V /V

91

lig,~R;,

t\ 5·7
-l i 85.7 X 0.1

~ X.96V / V

201 k!!

II R, + R2)
1 + t\f~

Exercise 9-4

(c)Rt

= Rsll

fl""

RF

Followin3 the procedure used inE~lilllpk 9 , 7
R·f "'·
'

--.i!.L_::::} j_ ~· l + ~
I + Af3
R1f
R;
R;

1 .. 1

R11

II R,)g;,(r0 II

(Rs

- = ·- +

.

R,

(Rs.ll R.,) · R:r

II

Ji. "' g,(r0

~

.~ or R 1

R1

R,

Substituting for R; '"' Rs
R;r ""' Rs

II

Rp) .
tfwecal

II

n,
II -:
fl

II

II

RF

n,. ""'

I

R;r ""·

-.!!J_

Rr)

II

Rr

10

=

6.67 kO

l

+ Af3

I

+ Af3

n

909 ''" 22s.6 n

4.(}3

6.67 K
4.03

' L66 kH

IOK
-1_+_5_•-n(.::,:I::..K::.::. .,.!1-I..,.O""'K'O:':') "' 1.66 kf!

II

r0

""'

•:c• cc r 01
""

1

-·· +

(Rs

R0

II

I KH R 1

.o,

JOKn

90k!lg, ..,. 5mA/V

r () '"' 20 k!l

Refer to Example 9 . 8
R1 =~ 100 K, unchanged

R
__
o_ ...;,. _!_
I + Af3 """' R., 1

R,,r

II

10 K
. "" 291
K H 10 K)

Following the procedure used in Example 9 . 7
"f

20

""'

Ex: 9.16 Ji ....~. 100

+ g,,(r0 !I

R

n

+ 5 m(20

R.,u, "" 20 K

Rr
. ·
(1 + Ji )

R2

R0

I + 3.03

Rs II R,. = l II 10 ,. 909

R0 ·"'· r 0

/(~

{d)

3.03

,, -3.03 K 0". -7.52 kU

AJ3

Ro

Since

I

=

-0.1 mA/V

Rr:

fl

=Rs

=

R;

Rr

II

Rf'

R;

··""·

'

l +

·

=

-1/lOK

Afl = -30.3 X -0.1
Ar ""' _A_.-

R")

= ,...t +

1
R1r

-c-

.

=

-1/Rp

=

_!_ + ~
R0
R0

R,)g"'(r0

II

R;

I! u~ '" - 100 .

A ,, - fl . Rl

I0

100
II 90

~.~ - L I I X I 0 3 A / A

Rr)

·~~--

R, · (r 0 1! Rr)

f3 ,,, --0.1 A I A. unchanged

if we call

Af3 = Ill
.\

A 1 '" -l.ll X lO

,,, -9.91 AlA

.l +Ill

Ro~ '~

R

()

II

.,.2_9K=900!1

R

Rr

"'

fl

1? 0

Substituting for

100

=

R,,"'

900 KSl, unchanged
=

(I 1- Ill). lJOO K

= 100 M!l

Rr

I+J.L
All of I 0 is fed-back.

=

r 0 •·H

(c) For g,.

R1

=

IOkH

R.1.

=

I kf!

if A!3 »

i\ 1 •= --.'.
r () =

f3

20 kfl

A = - ( l K i! 10 K) · 5 m ( 20 K
-30.3 kn

ideal

I A/A

R; "' R,, !1 R;,/

Ro

I --)

rm + (!?,

I

!?,

"'

!!

10 K l

II

0) I g,t·o}l?,

Replacing R~ for 0 in Eq 9 . 6 9

!i

':f~

R, .·.~ R,

i!

0) = ro2

Exercise 9-5

.... .,..R;roz

A

.l X r
g,,

02

A
= -.

Al

I + A!J
PromEq 9. 77

R.,u, "''

-fL. g,· R1
l + JLf(,. · R1'

8mVr

Rr

fL • R, · g,.rm ·

R 1 =o·

JLg,.r1>2 •

R1

To obtain R1":
•Ci2'0. A(JW)
... '""·(..hx-7.

10

.

_,q,

180 :::::> tan

(w 180ll04 )

J3 :::::> tu 1No

At. w.

18(1'

Amplifier stable if iAi31

4

+ jw/10

I

.. l

)1
4

•

((" 1110,/10 ) ·""' 60

J3 X 104 rad!s
at c" 111w

""

<.~IO~__,K,....__ _

(IOK+9K t--1 K

!I

114m)

(·_ _l_!L__) · 10 K 16.66
I K !I I /4 m
Compared to l7.39 obtained in Example 9 . 4

+ 105

X ().()J

=

fPt = J'p(l + A 0 ~)

For Closed loop gain
f.··~f(I+A
pi
tt
()

1001

.o

100

= I.

X

!OO.IkHz

100!

13 "" I

f3)

Ex:9. 22 From Eq. 9. 92 Poles will coincide
when
(wp 1

!•Jp 1 ) 1 -

+

4( I

i

A,,J:\) w 1, 1 oJp~ = 0

Using

+ JQO ~)X 10 10

(!OJ i (() 6 )2.

4(1

1+

1.0 1) 1 X !()()I

~;:}

J()(l

fl

f3 ''"' (

4

0.5

H'r maximally flat respon:;e Q

J.~ 1 +

I 00[3) X

=

0. 707 and

lOTI) ;;;-.) (3

JO'' + !!l''
CoJTC!iponding gain i~
A

5 m ;-< 20 K X 1 K
20 K + 10 K l l K
as compared to :un obtained in Exercise 9 . 15

Q

0.245

Corresponding Q

Ex9.19 V,

-co

lOO
I + 100 >< 0,5

0.5

L96 V/V

Exercise 9--6

ExEJ • 2 3CIO!!ed loop poleil are found usin$
I + A(s)(:\ = 0
(I + S/104)3

:/. + 3:P + 3St
10 12

108

'"" S 1

"

=

10'113

(I+ Sl4P +

c~

~=0

10)

1.+

+(I

H~

-

0

+ 100~)

""

o

104

+ JS., + 3S, + (I + 100~)

=0

+20dB/dec

for

s,.
OdB

Roots of this cubic equation are:

f

<- 1-10r~~~:\- t + s~uJ ± j 5./313' 13
Amplifier becomes UU!>tllblewhen complex p()Jes
are onjw a-.is ie. when f3 = f{,.,
1 ! .l
I013 cr

··•

.••

I
""' 2 ::::) f3~r
cos60;

0"

0.008

Rate of closure "" 20 dB/dec
Ex:9. 27 Must place new dominant pole at
.

A. ()

Ex: 9. 24 A

A.o

0 ·'

+ j f lf,,

jl;

fo ·"" -

t1

. 106

'"' -.

Ht

:.fn""' lOOHz
dB

+ J .fi 10

w' x 0.01

IA !3!

13 "" O. f =104 Hz

At f '' 10~ Hz
 = -tan -

1(

IOJ/ 10) '"' -9()0

making phase margin 180- 90 '" 90°

.-E-

Ex:9. 25 From Eqn 9.105

. l;. = ,-·~·..!-,I ;r~
In.. .. (.'"''
I .
- '
i l + ('- i~~
For PM"' 30".0

I A 1Ut•J1 )! ! (I If~)
60".

= Iow .1.re·
f3

Ex: 9 · 28 The pole must be moved

1.93

fv where

f

!i1 1(}td,,,.) i i ( I!~~)
Ex:9.26 r~

1/SC

-.1 I , ( ..JC R)

Thus CR

2:

0.1595.

()

I +SCR

to

x w<•
I 04

~·····

1, 1

• Ar

f- (

100 dB- 20 db)

=
Hz
The capacitance at tiR~ controlling uode must be
increased by ~mnt· f<~ctor asfis lowered.
10 3

R + liS('
r-·:--.-.-1

=

A
10

= 0.707

f

~~ Frequency of_?!l~j)S!~

· u

~· LO

For P.'rl "'., 90". 0 = 90°

1

J

.r,t

tti)

150"
120°

(l =

IArU••'1) I / ( l! !3 l

~~~

102 JO.I 104 10~ 10~

10

d I
-

180° - Phase margin

quency gain 0

For Pi\·1

an

-40

:. c"""

·=

c."'' x tooo

Exercise 9-7

13.3
a. P1. , (V;..J./il

Ex 13.1

Ex

ForQ,

1 ,. Vee- Vcgsat

15 ·-0.2

. Rt.

J"k:fi

Rr..
(- V

-

rc>

-0.7-(-15)

14.8
""0.971c
">rA
"' • l - l · ~? X
. 100 ··~ I -~

In cxarnplel3 . 5 I,,

-~•

2
~ ~
<\,""

I

25 .• '" 6.25

+2

n

100
100 + 6.25

RL
1?1. + R.,,.,

v1

1 mA, and ftJr v_, '" 0

0.94

IOV

n -~

1U V
100

·"

,_ -

100 rnA

Again calculate i, (for lv "'" 2 mA) using equation
13.27 i, = 99.96 mA

0J)4 mA

(2)
~:.r_
is+ i,

25
99.6

o.25 n

+ 0.04

% Chanrre""
!_= I0 ·94 >< 100
,

=

6%

For Ia ~= 10 rnA, change is 1.2')}
l'ix /" ""· 2 mA, change is 6%
(c) The quiesent power dissipated in each transistor
1,, X V"
Totalpowcrdi~sipatcd • 2 x lOX 10
x 15
""300m\V

[

)()-.'

)
-

i.v(iN- 0.1)
(JO-D)2

i,,U, -· 0.1) = 9 X 10 ''
If i, is in mA, then
i,(i, - 100) =

I)

i/ - 100 i,- 9

Ex 13.6
From exampleD · 4 !',, ·- 15 V. R,
l 00 n
oc.· 10 ",>\ nnd 13
50.

Q, and Q,, malched and/,
/,,",

i,. = i.., ,. i 1

= 0. I mA
10 V and i 1

3 rnA

10
0. I A
For v., 10 V. f 1
100
As a first approximation i, :: 0. l A. i,.
0.1 A

"

j{)+l .:: .. rnA

=0

100.1 mA

., .. I 0

···O.l A

100

-IOOmA

0,

i,., : : .

A~

a lirst approximation assunw ;,

ix.:: 0 since i,

'"!

100 mA.

0. current through diodes

:I nli\

Exercise 9--9

3.x
:.V 11, - 2Yrln [ .

w-)]

Bul V89

"'

Vtln(

_i:v)+
-

ro·· u

Vrln

(m-l"'_)

_,_J.vnf·' '~r ·~ 1 X .,_!)05;o.O:l5
In "'· I X •
•

(4)

l

Equating t~quati(lllli 3 and 4

[ 3 >:

!

X 10

3

itir ·· ~-·!1

~o•J

1.~

""

~::

ln '" I X e 01 ·om~

=

54.60 mA

(10 !l)2

I= 54JJ{) +0.58 "' 55.18mA
For AV 1w ·~ -50 mV

I Cl

i" (i,- J{)()J = 81
i/ ~ 100 i"- 81 0
~ i 1•
100.8 mA
0.8 mA

V8 r

= 0.4 mA! m V

Thus, j_fc =• 0.4 X 2 X 5 "" 4 mA

X c-O.!IotOJl2>

VTJI' '~

I

I .0 V

R

In

Thus In -"' I mA

F:x 13 . 9

I

2.4

0.417 mA

X

111 n.i\25

e

= 0.018 mA

Using equation 13 . 4 3
C•.

1. 25 ~- 0.52 mA

,.,, _I_
2.4

I'' 0.43 mA

2.4

1.5 mA

0.13 mA

0.5 V

l'uE

Thus. I

'"

0.46 + 0.13
0.59 mA
For .1V 1111 , .. -200mV:

Reier to Fig.l 0. 14
Ia) To obtain ;lletminal voltage of I .2 V. and since
13 1 is Vt:ry large, it follows, that VIII .... VIa= 0.6 V.

l.l = 0.5 rnA

0.46 mA

~

Ex 13.8

v

0.37 mA

0.85 mA

1.1
2.4

'

1.2

"'

0.55 V

=

In '" l
I

!i!.1J!:~

£,---om5 iiHJJ.<

v·811 ----•l.l v / 11

where g., is in rnA I mV
25 mV

X

0.48 I 0.37

:lie = g., X 2 mV !"C X 5 "C.mA

=•

l

'"'

For .1 V 118 == - 100 mY:

Ex 13.7

"

1.15
2

VIlE ,.,

,, 0.575

Expressing currents in mr\

-~"'

IR "" l.l 5 ....,. 0.48 rnA
2.4

Vr111 "" 1.15 V

ip (i, ~ 0.1} ·~· 81 X 10 4

iv "" i, -- i, ""-

'' 0.58 mA

0.7 V

V 8E""

+ V T ln (l)
JO·l3

w--:Y '"

"'7.39
I"' 7.39 + 0.54"" 7.93 mA
For~ V 11fl "" +200 mV:
V8 n '" 1.4 V

l X .10 J.. -""
2Vrln [ -_·_-_--! X 10 D
J
'
V In (;,._- 0•1)
T
10 L\

= 065
. v

L3
2

1
= V-rln(_ ir(ip 1,)_·
to-ui ·)_ + Vrln (_,,-...

Here i, "" 0.1 A

0.54 mA

(3)

_
.! X J0- 11
3
.

IQ -

I
. (W!L),,
. n;,., (IV I L),

0.2 (_IV 1 Ll.,
I W !I.)"
( W i L),
(\Vi

Li,

5

J2
2~k·(!Y)t~'---v
11
' L
I'
(,.\
1FJ

,, !!?-~ :' {l_(_i)~

<'

2.72 mA
2.72 i 0.5'2
For :. l' u11

'

c1.24mA
100m V

0.2

I >< 0.250(._!\~)

2

,_,} ( T.W')' -

L

-10

(0.2)'
1

Exercise 9-1 0

""··,.~ k1.' ( !)2 ( VGS "'"' IV ,!F

Q,: lui a,,
Q,2

=!

2.

XO.IO(} X

(!f).
X (0.2)2
L z

Oain J!rror "" -0.035 x 1.00 = 3.5%
21
2 X I X J()·l

Cmo ""' g"'P

?"'' ""

=

0.14

= 14.14mAIV
R.
.....

= .

}l.(g,,

I

+ g,..,)

I
10 X (14.14

+ 14.14) X

::::3.50

Ex ;1.3 .12
See solution on next page

l k
. '("")
Q·
t ""'. 2.. -!V!)l
P• (I
p
f. I'(V (,S
I

~" !

2

( !!:,·') ,.
L.

X OJ()() X

(!f.)
.X
L.

0.22

p

500

P

Now F,,, "·"· V""

+ V""
+ V,)

= (V,,. 1

+ (V.,, 2 + !V,!)

"' (0.2 + 0.5) + (0.2 + 0.5)
= 1.4 v

Ex13.10
i1 ~,

l.v

10 rnA

!!') \-'1

. 10 = !k
' ('
2 ·n L

··

10 ""' !2
=}

.<:

nv

0.-..
"50 X 200

X

v.,,

0.63

X

V2

(~\'

v

Using equation 13 . 4 6
VDn- vm-lfhll'~-

\/oma:o.:::.:;.
• 0

vm-.. .

\!m·N

2.5 - 0.2 - 0.5 - 0.63

""J.l7V

Exl3.11
New values ofWn" arc

••
(!f)
L N

S~JO •• 400
4

I>:!()·'~.! XO.I
2
.=} v,.,,. '" 0.14 v
Gain Error

~"···~~~~~-

4ft! '.!Rt

··0.035

=

X 10

'x

IOOOX V;L

J()--~

Exercise 9-11

Ex 13.12
Need to prove when v.,2. = 4/r;/{L then vGSN2 = vtn
Assume Q,voff ( Vos.v *" V,..) so i/1.'2 =0 nod
ip2

=iu

(Von .-. V IJf)) "" - V SGPQ
[V(;sn ORlusing (I):

. (! ""

+ jV,,J ""' -· VsGPQ + IJ.(Voz- v,l)
+ 2Vsc;PQ- jV,Pj
+V , (Vs<;rq- jV,rJ)
V
+ V oVQ

- 2VsoPQ
!J.(V 12

41

VsGPl = -

+ IJ.(VQ? - Vi2)
v.SGPQ + !J.(Vm- Vii)

2lk"I• (W)
I

("

I

y

SOY~

.....
Vn····

-IV
j)l
l lp

-

Vw) "' - Vst;PQ

m•

en

IJ.

·IJ.

p

Plug this value for Vn into the value for V tun

and show VtiSN2 ,. V,,\'

r----------------

<.- 'J(s +

~l(l)pWml't -jV,;.D
2(V,HJPQ -jV, 1~) "' (I!SOP2- w,,,j)
2

Vs<;Pi "' 2Vwrv-· 21\1,~
"' 2VmPo

(

V 0 [)

·-

(l)

:

vsoro) + 1-t( v,, 2 ••

1J.(Vv2- V;2l ·""

~l(v)i-~- V;Q)""

Vovu '"' ( v(.iSNQ

-!V,,J
~' w•2

+

v(iN2-

VGSN1

where

+ jV,1,!

Find V 12 f{lr the gate voltage,
Vw, 2

VosNQ

Vt;s;vQ)

V

"'

v,.) ., O'st,'I'Q - !V,I,p

< Hf. 3 }( 100 K /2) = -50 VI V

Ex: 10.3

A 2 = -G,. 1 R 2

The small-signal equivalent circuit for the op-amp
in Fig. HI. 1 on page of the Text is redrawn below
for a unity-gain huller.
From Eq;o .s, lD. ·; ,le>. 14 ,lD. 1son page of the

Text:

(;,d

=

(2 X 10

1 )(r..

,,U

r,,1 )

""(2X to-")(40( Kl/2) = -·40V/V

A '"' A 1 • A 2

(-

50)( - 41)) •

+ 2000

gm 1 ~

2-rtCz

21TIO .. "

.,J\

IJ = tan

=tan _,100 X 10<> = 17.4.

fr

318 XJ06

+ 1.2 V
(c) ·- U V s (V reM )lio'ni :!i: + 1.2 Y
(d)- 2.9 V S ( V ICM ).,,.,., 011 :S + 2.9 V

Find SR lor f, = 100 MU:r.
0.2

""'

v

SR = 21Tj,V011 ~""" 2r. X 100 X 106 X 0.2
125~67 ~

=

+ 2.9V

(b)DySym;
- 2i~ V .$ (VicM)p S

Ex:10.5

v01'1

;;;: - 2S + 0.3 + 0.3 + 0.7 = - 1.2 v
:. - L2V :S WrcM)N :!i:

99 - a ::-: n.6~

t>M ·""·

:s + 2.5 - 6.3 + 0.7 = + 2.9V
~ ;.;.. vss + Vtw + Vov + Vr

vl('M(mlu)N

l .
.
2
11 = 2K(W/L)(V0 s 1 ~ Vr)

126 VI JLS

SR .,., cl ~ ../ = SR X

c

Ex:10.9

Cc

lz =

:. I "" 126 X 106 X 1.6 X 10"' 12

~K(W4/L)(V0 S2- V 1 ) 2

For 11 = / 1 :

~ 200 JLA

(Vc;~ 1 - V 1-)

2

""''

4(Vcm -- Vr)

2

i.e., Vos!- VT .... 2(V!JS2- Vr)

Ex: 10.6

or Vast = 2Vasi- l' 1·

+ 1.65 - 0.3 + 0.5 = + 1.85 v
VICM(mi•J 2 - V s.~ + Vovu + Vuvt + V,.
2 - 1.65 + 0.3 + 0.3 + 0.5 "" -0.55 v
$:

v.,(m•xl;;;;; Vrm--Wo~·9!-!Vov!

s + 1.65.-0.3-0.3 =

;;;;: - 1.66

Ex:10.10

m

2 X 100 X 10- 6
0.2

.

g,.r~[~o!l

,.,.

=

~'o

... VA

lt:x:

1.0 X 2lXi X I! 3 X 10~ ""' 13.33 M!l

X

X.

10-;

X

13.33

X

lO''

10:; V! V

Given: all V 01. = 0.3 V,

\1 1q

JVrl ·

fnr NMOS

VIOI(m"'l!l' s;

v/)(J -·

I

25 ~ 5 k!l

X

25mV
=
lmA

2s n

125V
JmA

125 kH

lc

10. 11
/~e

1'u: 1'r

""~ V 8 f: '" \!Tin(! .I 1s)

and 1·' ~~ 14 • I 1

""'

I~

Vov

0.7 V

vTin[.!..!.]
+ v 7 Jn[~J..J = v7Jnr '''4·]
1stIs~
~l\st~4

:. ln[___!l___J
"" ln[_1_]
l~• · I.Q
ls:•/.1·4.

2.5V
0 ,., 1

Vr

From cct ; V 8101 + Von = V llf'J + V 8 E4

..;,.; 10.8
Vm>

= 20015k "'40 mA/v

r .. ~~ f:J,. """ 200

2))

A '"" G,.R, '0 '· 1.0

25 mVInJ.Q._"' 633 mV
10-14

""

g.,= {3/rc
1.0 mA/V

Ro "' lg .. 4r,1(r,,2 il r,w>l li lg.,(,r,6r,51

(U)

50 V

-·3

V 91,

21
Vov

13.33

""'

+ 0.3 + 0.3 + 0.5 = -0.55 v

(,
V
r ·"' ...A ,. ?O X IO ~ 200 kH
"
I
100

=

125 V

"'

+ 1.05 v

IVAI "" 20 V. \1 0 v "" 0.2V. I = 100 p.A
C"<

I0- 14 A .(1 = 200,V11

pup: ls "" l0- 14 A,(3 = 50.V11

Ex:10.7
G

=

npn :Is

+

Ff
:. / 1 ·"'·

I s-1 S4 "~
/ 1[ -'-:L-j
I stls2

I

2

Exercise 10-3

Ex: 10 .12
VIlE""' 0.7Vfor/c

f.:"l::
Sec 1->ig.l o. 2 2 on page of the Text, Let R 1 = R,

l mAiorQil

R2 =R + ~R Assume f3 >> 1 and r.,s "'r,6 , then
Vn 5 = lln6 =i(re5 +R 1) = i(rc6 +R2 )

lc "" 10 ~tA for QJO
V nt:tt!

0.7 + V,lnl·to [LA] "'· 0.585 V

"'

. I mA.

Voltage across R4

rc~

.

.
r,.~

r.;+ R
+ R + tlR

r.~ 4

Ex: 10.13

"' + 15 - 0.6 + 14.7 v

For ~!i
R

+ 0.6

0.3

E

= .... Vss + V liE~

R

+

.

AR
1-----.
r,.~ + R + ~R

·-I

~R

0.02 :

0.02

().()2R

,,

R + 0.02R + r, 5

"'

+ 0.6 + 0.6 + 0.3

"' .... 15

+ R + AR

iu""' icb- i = i

0.115 V

:. It, '"' I

V /I.C.:: l_(J__~''J(2.(>3 1'- :x .U ..1 ''-)
X 1(} ' . 2.63 Ji ' .11.1 lA
5.5

;<.

10

Exercise 10-4

(A2)otc "" - G,.l Reo

1.68 x 10' or 104.5 dB

If the conunon-mode feedback is not present, as
explained in the text, coronion-mode transconductance and common-mode gain are both reduced
by a factor of Pr Hence,
CMRR ""

!·68 xJ_cf ·"'
50

"" -6.5

X

8.1 "" -526.5 VI V

Kx: 10.23

3360 or

CMRR "" 70.5 dB

Ex: 10.19
f:Jr6"' fJn = 200
r-'6 ""

25 mV
162 fLA

1.54 kU

25 mV
I61J.A
= 1.56 K
~

rj•t9

,.,n "" 25 mV "'' 45.5 H
0.55 IliA
R~ "" 100 H. R9 ·~ 50 kH
Substituting into Eq. «8. 77
R12 '' 201( L54 + 50 l! (201

r

,, _200

~lS

40X().J65

'' 30.3 k!l

X 0Ji455)]

'"' 4 MU

l':x: 10.2 0

.--1L.. . _v~>!.L

i.p

/3 + I r,. 17 +

.,

vb,,

--~

45.5 + 100

R~

··-· V ·[-1- I 6.6 X 0.917]
7 18.8 K
18.8 K .

I

:. r

145.5

V7 [0J)5 + 6.05]
VT

.

~ R 1 " " - "'- 163

needs Rm = (/3 l I )(r.-~,

lr

l

= 2011455 ; !00) = 2Y.2 kH

.·. V, 17
Ex:

··• V~e

Ex:

10.24

X 0.92

t

rl'
Ro

10.21

R,l

n

R8 )

~-~- ~'rl-t

+

R,.plll) R,r;
50V

0.55 mA

90.9 k!l

R c~ 0.0?2 +
0
0.005

'IS. F 1

f:lp +I
( 163 + 25 M + ~l K)
180 f.l
51
20 I
200 nnd

l25V

227.:> kH

0.55 mA

22 mA/V

I,'-' "

R0

200 = 9.()9 k!l
22
R, Thus

lOll H

R,,, ~ 722

I knee R,, 2

kfl

90.') !I 722/.. ·• ~~ kH

•

Ex: 10.22

!.~
V,

!fUl

+ (>.6

X 0.917

=fl. II
npctH:ircnil \ nlta)!c gnin

0.05 + 6.05

180 1.tA !rom Table

5 + ( 163 + UlJ -1 1588) ~' 5 +I.}·'
I'
'u=
201
·
...
14A H

Exercise 10-5

F-x: 10.25

Ex: 10.28

SR '" 0.63 VlttS

using eq.llO .129

using eq,

f ,

SR

n

2r.VO••••

0.63

""

10kHz

J "" Vrtn((n) where Vr ·"" 25 mV
Rz
ln

R3

R4 "" 0.2

R1

V rlnCs2)

10.26

Ex:

R2

A., "".

2.43147 X 105

(i I "

_!_X IIJ-J
5.26

"'

:. A., '"' Onot R
:. R

~"

""* 1279 MHz

A0 I Om 1

J<:x: 10.27
SR "' W, where
a

a "' G.11
2/

""* SR ~"'

Z/

G.,t

X

w

'

with R r inserted in emitters of Q3• Q4
G,.,,

= 2x
2

X

4r,.

I

+ 2Rr

0.025 mV + R,
1
"

for I ~ 95 X 10- 6 A

0 ·050
9.5 X 10- 6

Rr ""'

.

= 5.26 kn

X . .,,. , IR t: )
now,,''R ·"' -2/wr
1- • !- •'r .,.

nev"'

c·.:
.

G'

__.!.ti

"c.. ,

C,.

2C,

:. C,. must be reduce X factor of 2

30
2

Gain Au G, 1

:.

15 pF

A also hahcd
101.7 dB

{ 1,

lOJ.L

.·c

fJA

"'J; ha~ been halwd

I

"'

25m

20. ooo

.ls 1

--ln(2) "' I. 733 !l
lOtt

n

Exercise 10-6

Ex: 10.29

;,.

Find -:- for fVtp)

use RJ = R~ "" 20 k!l

and I

,~

For / 8

10

1st

froin Exercise 10.28

Assume i~r"" i0 and in ""' is2

10 tJ.A ·""'

""

For / 10

~tA

5 tJ.A "'

'·"'

~,then (!l:)
k

ha~

Since V s

l-.

Jl)

to equnl the original

(Vee- I "'RJ) = Vee- 0.2 soR8, R9, and R 10
can be found by

R8

""

R,, ,,

0 ·2 "" 20 kH
10 1L
0·2 '" 10 kH
20 fl.
0.2
40kH

5

Ex:

fl.

lb) i 11 J

10.30

(a) Find

!""

·.~ i~

(Assume j3,v '"' 40 l

I~ I,.

for (V11,;)

1/1;

.!.!L!1! ~ 6.25 tJ.A
(40) 2

~~

(Assume [3 1• = 10}

f3?f3s
10m
··---

( 1()) 2 • 40

Assume

in= iuv

( i.~)(')
·13v

!3,v

2.5 fLA

Exercise 11-1

Ex: 11.1

IT! (dB]
!T1 = I 0.99 0.9 0.8 0.7 0.5 0.1

A = -20 log

A::

0 O.t

3

2

6

20

Ex: 11.2

0
:. T(s) "' k - - -...,-~,;;_,__ __
(s + I) (.~· + s t s + 1)

Am.,·""· 20 log 1.05- 20 log 0.95 "" 0.9dB

sinceT(O) ·"" l, k = I

A.,.~~ 20 log [o.l~ 1] ·"' 40 dB

Ttmk T(.r) ··"" ---..:.:1- - {s

l)li+s+ I)

t

I

Ex: 11.3

+ j2)

T(s) : k--(s

(~·- j2)

(s + ~ + j }§) (s + ~- j A)

J( l -

i+.~+!+~
4

= k

I

JI -

""'k-

ji

(I

k

,,,2) + t/ (I + Ill~)

w4 ) (I -

+ ~t.l.ldll

(i + 4)

Ex: 11.6

4 s1 + s + I

''w.a:~~;

Ex: 11.4

(; =

T!.l')

!1'(Jul )I = ·

+ 0.1 + j8) (s + 0_1-jS)
+ 0.1 + jU) (s + O.l-jl.2)

~

4'r::'

A(w,)

=

"" 10 log I +
lllus, 10 log( I

J)lv
'

/~~-~,.L 30"
\

--

... ·1i

:. Use N

,..

rr

'y,
----~

\

'•(W--1.·)1~·1

f.-

I and Q

::Q

=

+

-

0.5888 1 ;..;

~=

1.5'Nl

>

30

II and nhtain

A."' " 32.87 dB
For A,., to be exactly 30 dfl
10 log(l l· ~.~ x 1.5'~ 2 !

I o:ns60 ~·· 1
2

0.3654 :::::> Ama<
0.54 dfl

E :::::>

1Cns60 ·-·· l/2

As shown. the pair of cmnputcx

hl 11 /

.h)p

..

.'lO

~~--~

('

rt.~,,I2Q ~

-~~)Jl\
{J)p

N"' 10 LHS = 29.35 dB
N ~ II LHS ~' 32.!\7 dB

I ---.... __ ,l

)(

0.5088

1
f '(

-

Ex: 11.5

- I

-20 log!T(jw.)l

r

+ 0.23 + 1.45)

~ 10 111

10 Iii -I =

(s

w,, -

28.6 dB

JI;3i'

4

.·. T(s)

(s

)

A(3) "" -20 log--1-

I

I rad Is

(>))dll

2

6

pnlc~ ha~

~.

l

20 Jng)l ! 0.3654 1

l<3x: 11.7
real pole i~ at s ""
Tht• .::omph:x conjugate pol~:~ an: at
s = 2 C{>~6(Y> :• .i sin 60"
Tht~

""

•m

0,5 ?:

i

~~

..... 2

Exercise 11-2

Valleys are obtained when

Cos2 [ NCos-

'C:,)J

= l

=

0, 1,.2

• = w .Cos
· (br}
5 k =

0, I, 2

5Cos··l(:,) "" hr.k
:. w

w,

pCosO

.;,_2

wpCos:?!'
5

·-----

-------~--"---------

(s I >(s + 0.5 j .R)(s + 0.5 i

i

;:;+ )}~7-,:-:;--,---1-l l~>r DC'"'" "'~ I

j

j~.)

O.Slwp
0.311up

t<;x: 11.9
~\mu,
E

...

10

0.5

'11i"

A(w:1) c.·, 10

Ex: 11.8
"" 10 logfl

·~~ N=5



Fur A ...,= I dB,

=

E

.

J10° 1 ,__ I

A(~o1 1 ) ·"-' 10 log( I +

'
l

u)iii - I

I

•

~ 0.5088

0.5088 2cosh 1 {7cosh- 12))

68.2 dB
This is an increase of 3.3 dB

Ex: 11.10

Jtoih~
for w

< wf'.

Peaks an: ob!ained when
1

cos 5

0.508&

(a) For the Chebyshev Filter:

~Ne(lS '(·~·-)1
L

A(t•>s) =

10 log! I

+ 0.50SS'cosh 2 (Ncosh - 1 1.5)1

:;:, 50 dB

0

lUp. _,'

N

7.4 :. choose N
Excess Attenuation

10 log( I+ 0.5088 1 cosh 2(8cosh
.icos '('-"-'-)- (2k + 1):?! k
hlp/
2.

·( 10")

"" 55- 50 = 5 dB

0, l, 2

(bJ For a Butterworth Filter
0, I, 2

.·.(J)

1 1.5)1-

E

0.5088
10 logf I
L

'

'(l•l )ZN-,.!

(. - -

s

(dp.

%

.)

h)p ( .,_.0!'. --.-

.~ 10 log(! + 0.5088 1( 1.5)zN I
;Vee

15.9 :. choose N

Execs' attenuation
• !,) -~-

16

2

50

50

Exercise 11-3

£x: 11.11

d '"'

I03 rad Is

selected to ytilld a centre. Frequency gam Qf 10.

Ex: 11.15
(a)

104

t

=..!..

R1

(Rt

IOkfl

= Ml~-tF

H.F. Gain "" - R 2

-10

Ri

R2 = 100 kn

Ex: 11.12
RefurtoFig.l1.14

..L '"" 10> rad f s
-•
CR
For Rntbitrttrily selected to be

17'(jw)l .,_

•·•-1 "'-'

1
'" 0.1 ~-tF
10:\ X 104
The two resistors labelled R, can- also be selected
to be 10 kO e.-tch.
10 kU C "$

w2~>)2

I+.

u

(l!lb- (ll2)2Q!

for any two frequencies m, and co, at wh.ich ITl is
the same

Ex: 11.13

•2

00

T(.r) ""

s

w1 w(J

lilfWo

2

+ sj2w0 + oo~1

(for de gain"' I)

(Ill;}- ~~~n2
.,.

"}

w 1(w;:,-w;) =
::::)(I)IW2""'

=

j;f + w4

1010£

WTJ

(I)

[t +--~~]~A
(wf, - wf)2Q2
1

WIWO

(l)b ::-;;~
=

2

1u 2(t1lo- lllf)

Now to obtain attenuation ""' A dB at m, and m,
where m, ···· t•l, = Bw,

2
-7w""o'-::-:=

At w

wi)l

(wi)-

'

.!. :;:;: JtOk' 10-

I SUB (I)

Q

w0 , !T1= _!_ which is 3 dB below the

./i

value at. de( unity) Q.E.D.
~ .!. ·:?. IJ(}I
IJW" Q -.~

Ex:11.14

j

=> Q :;; ·-·~-~-·--~"

T(.~) oc.·

IO's

-=

/H¥.,~0 ·····1

(b)

This

ln·::·l

l

tOtv

Q.E.D.

For A '' 3 dB

Q
IJW ,1

J10°'- I

OR BW, = m.JQ

BW,
Q.E.D.

Exercise 11-4

From Exercise 11. 16above 3dB bandwidth

= lilo/Q
2r.J0"~2'1T60/Q~Q

6

Q -""· w.,CR
6 -== 2n60 X C X 104 ~ C
10

1.6~F

Q ""' _!!._
w.,L
L

2'1160

4.42 H

6

X

Rx: 11.19
/, '"' lO kHz il.f 3rl 11

"'

500Hz

Q = _[_ = Hl" "" 20
ilf,Jn

500

Using the data at the top ufTable 11. 1

= 0.986 rod/s

CA ·'"

C6

1.2 nF

Rl .., Rz

R .!

2~1071 ";; 1.2 -;; 10- 9

"' 3.17

lnJx)! =

Q2

R6
.

0.69

1.44

~ QI w r
"

"'

13.26 kfl

20
2'1110" X L2 X IO .. q

=

265 kfl

Now using the data in Tablcll . 1 for the bandpass
c.:as-c

Ex:l1.17
Maximally flat ~ Q
oo,, "' 2o. X 100

>

=

K =centre-frequency gain"' 10
l l r 1 /r 1 =!0

1

J2

Arbilrarily selecting R ..,, 1 kH

Ex: 11.20
Eq fl6.25)-

1125 pF

T(s)

L

o------111"----,-:-o
I

;
!

'

C

~R
i

o~--------------L--1-o
R

Also Q
:. L

·co·

/{
bJ.,Q

90 k!!

Sl'lecting r 1 = 10 kH thenr 2

Hl

=

lu 1,

= 2-rr Hf"

-'

w'

8.1408(s + 0.2895toJ 1.)

x

--------'---------eX
2

(/ + s0.4684(v, +

0.4293u> 1,

)

(~' + s0.1789'''r + 0.9883111/l
The circuit consists of 3 sections in l'asc;u.k:
(a l First order .;cction

2.25 mil

Ex: 11.18
L

'T~r--r.
o-------·1

---o

the number cod1icient was set so that the de gain =I .
T\.')

-0.2S9:'it~

s + 0.2S95t,,,.,

Exercise 11-5

Ex: t1 .. 21

LetR 1 = JQkfl

=

 _,. !)0

R "'·-1-.""

IT(}t~t)l ~ 0;2985we
·· ·

coC:R 1..

w

I

C""

0.2895 X 2-tt 104 X: 104
(b)SeOOlld•Order l!ection with transfer (unction:
T(.v} =

•.

.

0.4295w~

15.9 kfl

""

2

where the numera«>r cQiiflkient was selected io
yiclcl a de gilin.ofunity

10 kU

=
""

R2(2Q- I) ""' 10(2

x 2- I)

= 30 k!l

a" .

High .freuency gain = K "" 2 -

s· + 0.461J-1w,. + 0.4293t~t;

·=

R1
Ri "" lO kO
Using Eq.l1.63 and setting R2 .~ 10 Hl
R3

. . . .·

1 . _9

l1rl0 X 10

UsingEq.li.62 and selecting R1

= 5SnP

.

4

la),;C

1

1.5 V I V

T!w tf$i~1er function to the output ofthe Jirst inte!rarotis
sKI(C!!L_
2

w.,

2

s+sQ+w.,
Tims the. centre-frequency gain
"' K J1
CRw.,

""'

KQ

lJ/Z

1.5 X 2 '"' 3 VI V

·~: 11.22

Select R 1

=> C ·""
C4

=

""'

R2 = R 3

""

R5 =

10 kfl

1
J0.4293 X 2nl04 X 104

"" 2.43 nF

C6 = C ,., 2.43nF

Q = ..}i)A2'93w,, = 1.4 => R6 =
0.4684wP

-'L

= 14 kfl

C
(c) Sccond·Order Section with Transfer-function;
to) 0

~ '
0.988..Jw11
~-· + s0.1789w 1, + 0.9883w 211
The circuit is similar to that in (b) above but with

T(s) "'

,

R1

""

"'

R2

R3

·"'

R5

""

10 kH

given C "" lnF RL = 10 kH

R ~,. _1_ "'
I
2n5 x 10~ x 10··~
w.,c
R1

"" 1.6 nF

Q ·""" Jo.~ss3 =
O.lr89

5_56

Thus Rt. = Q t 111 0 C ""' 55.6 kH

Placing the three sections in cascade, i.e. connecting the output of the first-order section to the
input of the second-order section in (b) and the
output of of section (b) to the input of (c) results

in the I)V.:ralltmnsfcr function in eq. Ill . 2 5

"'

Ulkfl~Rf,

31.83 kH

IOk!l

R2 = 10 k!l ""} RJ "" R1 (2Q- I)

= 10(10 -· I) '"' 90 kl!
811 w 2
R 1, "

''"

1,)

n

OC gain""

2 ~ R11

·'-"

2
10(~)
5

""·

x::. "' ( b):: '"

Rf. '"' 3 X to

2- 115

2-

'" 16.7 kfl

25.6 k!l
3

Exercise 11-6

Ex: 11.23

.l·+J{ 10-'J

RefertoFig.16 .2S(b)

CR =

.!. => C

""-

L59 nF

2'lT 10• X l0 4

Wo

RJ '"' QR "" 20 X 10 "" 200 kfl

Centre frequency gain= KQ ·"" I

2

2 X 105

X

i

+ s(3 X 104 ) + 1011

s

=

-3

x to4 ±

+10~

9 X

l

5

X

0

=

J9x-108-:..·4-x.lo8
2

= -'0.382 X 104 and -2.618 x 104 rud
s

·K=l=l.
..
Q
20
R~

)+ to- l 10

104

Ex:11.27

200 kH

'" R!K"" 20R

Rju

l<::t: 11.24
Refer to Figll. 26and Table 11. 2
C "" lO nF

R ""· _l_ "' -

._, 10 kH

104x 10 >< 10-~

lo.,c

QR ""' 5 '< 10

,~

50 k!l

C X 11m gain "' In '/ I

R

10 nF
~I

R! I • 10 k!l

gain
,. " 10 k!1

I?;

R~ ,,. Q.' = 5 X 10

+

50 kfl

v,- v,,

~--~ "" 2 X
I()~

C\

·~

C1

t~V 0

+

10\

SC;R.Jl?.,

Sf~ 1 t 1/ R ~ ~- -

.

4

ZOO "'' 50 kH
4

Ex:11.26

~g

F,

R., • 5 Y.

i

I
ClC 2 R,I(,
.

C 1 ~ 10 ..., F. R, .... 2 < !0' H.

w' n.

I ---

SC 1 1?,!? 1

I

~

C 1C2 N,R,

'I11is is a bandpass function whose poles arc idcn~
tkal to the zeros of l(s) in Fig. 111. 29a).
ForC, c.- C,"' lO''ER,"' 2 X Hl' 0 & H.• = 5 X
IO'H

'l11c tr:msfcr function of the fcedb:Kk network i>
giwn in Fig. 111 . 2 8a .The pole'\ arc the roob of
thl' denominator pnlynmnial,

"'

s(-1- +_I_)+
c,u:, c,R,

S' +

s(·-1_ ; _I_ ' . I )
C,N,
C,R,
C,R,.

1-

C;./?1

-S{J(/(C 1 R~)

Prom eq. ill. 75
R
M

=0
-n!

Thus R, = 200 k !1

for C 1

,\

0

In!-'

I? "' l X !(~=-~ = 200 kfl
Io··>

s2 f

.c

-ll

R,./(1-a)

l'o +SCI v() + £<:.1 v, +(I- u)Vo + ciVj
R1
SC 2 R 3
SC 1 R 1 R 4
1(,

Fmm eq 111.76
w,,

A

R,itY

Ex: 11.25
CR "" ?_~

o

'

I

gam

For C

at (A)

v
_.!! + sc (v - v ) +

··-S X 2 X J()J X«

,

s"i-r. S X 10;1 + JIJo

For unity centre-frequency gain
2 X HI' X
0

Thus~(~
"

=

n

=

10·1 =:}

100 kH:

rt '~

0.5

R,

··~

I ·- ''

100 k!!

18

10

=0

Exercise 11-7

Ex: 11.28

S~"

=

S~

'-"'

_!::::) Awo

•

'

., -I%

w0

2

-!::::) ~ """ -! X
Q

2

2

2 = -I%

(c) Combining the results in (a) & (b)
~Ci)Q

-

""' ·- I -· I "" -2%

ulo

~"'

~

I- I

0%

(d) using the results in (c) for both resistors being
2% high we have:
·
.:\u)o "" ••"'oACt ·!· •.-·.. AC2

"''CJ-.>-J("..,--

c,

1<1()

'"' -!(-2)

2

. Cz

+ ::l(-2)2

2

.

2

"" 2-2 = 0%

V,
V., I SC, V,, R,
= V,,(l +SC,R,)
:£ I nt (;\)

AQ

Q

V. Vo Vo
,,<'('·', V o....! + -R + -SC.R,
.
R
R 1 ••• •
1
1

-!-·

0(-2)

Vo SC·4 (•SC· ~ R2 )

vo[S2C,C<~R2 + SC3R2 + SCl + 1.]
R1

-

Rr-

IIC~C4R1Rz

st!

ACt

•0 .:\C2

="' • nc + sn Cz + o

+ (0)(···2)

I 0 '

0%

)<;x:ll. 31
From Et]lll. 96 & rll. 97

Cl ""' C4 '~ w0 TcC
= 21T 10 4 X - - -1---- X ?()

200 X

~=

10~

-

6.283 pF

From Eq. 111.99

c\ _,_

C4 = 6.283
Q
20

0.314 pF

From Eq tll. 100
Centre-frequency ~2ain "' C 6 .,. 1

.

Ex: 11.29
Frnm Figll. 34(c)
R,,R,=R IOkil
CR -~ 2QioJ,,

Ex: 11.32

c"'2Q..=

R ~ R1.il r 0

w0 R

111

C

4Q~

.""

Rr ~ woLQv ... 2r.10 6 X 3.2 X JO-" X 150

2i.fi

2 ;;(4 X J03) J04

5.63 nF

Q '"

R,. ~ 2 k!l=::::'> R 1_

(R 1

I!

R;,.) ( b) 0 L

1(}1 i! 1()-'
(21TX455X lf)J)X5X 10·<•

::!.81 nf

Refer to the rcsu.lt~ in Exmnpk 11.2
(a) :!J.RJR. ·· +2%

='> j,Q I

/3.R., I R,

II

Ex: 11.33

4( D"' 2

Ex: 11.30

!h)

c5

Q

=

BW

~.

J,/Q •·

(2n

~X 2

X

455

I J KHz

455/35 ·

X

X

5

X. 10

24.47 nf

c,

24.47 - 0.2

24.27 nl'

••

15 kH

3kH

Exercise 11-8

Ex: 11.34
To just meet specification!>
fo ." 455 "' 45 _5
HW
10

Q =

· ~.JL 112 R"~

"' 72.8 pF

R"" _J__ =
CB,
72.8

,., 45.5

m,>L

1? 1 1! nlR;,. -"" 45.5 X 455 X HP Y 5 X 10-u

650
n 2N1,.

n

12 X

141.4

C -~· __1_""'

R '"
24.47
24.36 nF

IR!n &

40 -~-Q,~)?
1.36

I

74.7 pF
I ___
CB2 ... 74.7 X 10

I
12

X 141.4 X 21T

Ex: 11.37

191~
.A

). X 15.5 X 15.1 "" 117

Gain or ~ynchronous-tuncd amplifier at to

Ex: 11.35

Lf2
Q

,fzt .

! -

I

tl

Eq ti6.1H)J

"' 4!D
Ratio "" 1 17 "" 2.42

I

48.3

10.7 / 10!') 2 >< 3

X

7.1.7 pF

c I?
73.7 ·-..: 10 "X 2rr X .HO.ll X 10 3

Ex: 11.36

r
- "'

=

r _,_ ~1rB
?.,fi

Eq(l6.! 15)

- (!-

10.7 Mil' ; ZOO kHz

10.77 Mllz

2

Eqnn.llt>J
10.7 ;\Ill!- ~f)f)fl./2

200

.J2
For stage I

R"!itil~t: I X R'!.Ug.t~

6.95 X 6.95

= 3!0.!lkHz

c

1-ll..t Kl11

10~

Gain of stagger-tuned 11mplilier atf;J is proptlr·
tional to
I
I
J2R'"'t<

16 ><

to ''

I kHz
Ex: 12.5
Working from the uutput bm::k to the input and
continuing the equatimh \Vt get I

~! + -~'L-

R1
( "". .

.. R, '

SCR 1 R

V.,
SCR 1R

SCN

Vo )
SCR!"i?

v

(I

SCR,f?
\Vhc"r<.'

R

10 k!i and C

~

16 nF

Thu'
Us)

S X 16/ lO '

The clo><'d lnnp p,>ks are found hy
Usl., I. thai is. they arc th.:: v:tlucs

.~

I S X 16 /

10 ' '

~\·tting
of~-

satitiying

)

sc

Exercise 12-2

Ex: 12.8

c

--

--~-1~--1

v,.
SL2
-0

+

gmV·+1

v,

L2

- -

-

L1

-

I

V

v,. '"' v" + S/.
-.....!!. · · SC

Thus:

2

-SCR;

Vo

Node equation at collector:

v,

v

v,.

·:-'L + g,. v + 1:

.Sl-2

vo .
v,

R

v,.

()

+ -·

S/. 1

-(JW)

+ V"( I

Ex: 12.6

s.

The circuit will oscillmc at the value of w that

v
v,.

l ::2-(!~L···)

0

,, -· '

Since V, t- D, (oscillations have started) it can

makes ~(;'w} a rt~al number.

be eliminated

It follows that w, is obtained from

S 1L 1 L2 C(g,,. +

~) + S2(L,C +

l-1
R
Substituting S

jw

3

CR

~

.WI)-

_L_

w 11 CR

'!1ms. I,

~ -=
I

:=) "'··

.

J'J.CR

2rrJ3 X 16 /. J(f'' X 10 X 103
~

574.3 Hz

re.~ulting

in

L2C)

+S- +I = 0

11 ·- ~./cu_,

L"} 1+ jw

1

For oscillations to begin. the magnitude of

= 0

v.

~(j1o1} should equal to tor greater than) unity.

v,

that is

o1~C 1 RN, ;_, I
4
Thus the minimum value nf R, is
4

R, ·"· - ,-,h)~C" R

4 R

4 R
I

w~C2 1?:

= /;.!_ + L~
L!
c..}

for

- 12 H or !20 kH

f:,.,R

/. 1 ( 1.1

o~cillatinus

to stan

g,.R --, L,! 1-:• Q.E.D.

Ex: 12-7

..,,.,- L .) CR
CR

l•:x: 12.9
2;rl0 '

R

For C ,_ !6 nF R ,, 10 kH
.·. the output is twi.:c a<. larg<: as the Yoltagt•

=·----l_(~_J-li 2X IO'JI IOOx 10 5
IO'ix 10 ,,,

anm,, the resonator. the 1"-'ak-w-peak amplitude
lOij 2!1

b
-1

v
1T

-H2
X 1.4)
--- ., •
·-··-~··•·-~~v-"'-

3.6

v

I.M kl!

!00

40

X

1.64

'~'

65.6

Exercise 12-3

C1 = 65.6 x 0.01 "" 0.66 p.F

Ex:l2 .13

L-= - - " - -

z clc1
C1 + c2

10

wo-.- -

-----=-----:

5

6

lOll X 0.()1 X 0.66 X 10

100 p.A

$!

+ 0.6C,

fl.OI

-5

J<:x: 12.10
from Eq 112 . 24

f~

-10

= _ I _ ""

21T .{l:C,

--;:::=:=====;:;:
21rJ0.52 X (},012 X 10· 12

10

'"' 2.015 MHz
from Eqll2 .25
1

ft• "''

2r.

rz-.
tci'J+c"

-10

CsC"

Time delay =

I

001'>

r" ..

J

2'1T 0.52

X .'

- X

. I )·-12

4X

0.012

-!

ms '"0.125 ms

_L_.

+4

2.018 MHz

=

Q

r

r

21T X 2.015 X 106 X 0.52

12

120
"" 55, 000

~-----~

Ex:l2.11

~·~~.<

'-"'v••·'~-·• -•-••,...

J

111

-12

1!1 -

1.6

R!

lfi kH

Rr

A comparator with a threshold of J V and output
lewis of :+ 12 V

Ex:l2.15
Ex: 12 .12
Vm- Vn "''

~W

Wri= 1 ~=50mV

.

5
R:

· 1Rr

Pt.ls,ihk du•icc R 1

Rz

10

R,

0.()6

Rz

.200 R1

ti)r R1

lkH R2

20() ld 1

Exercise 12-4

Ex~

12.16

~ = _R_t_
Rl +Rl

r

=

100
100

1-(3

'~OJI0365

"

t

2"rtn!...±.l!

2 X 0.01 X IOwt> X

j . ""

0.01)1

+ 1000

1(}6

X In(

LOI)I )
I - 0.~)1

s

!T ""'

274 Hz
l)uring T,

J;;x: 12 .17

V11 (f) ""' 12- ( 12 + v,)e··llS

R,

V8

~-~-~-f

Vn uti"" T/2

z

V 0 -~ 12- (12

IOk!l

12 ···

"'' 2

f

+VI>)
v,>

21'ln(l2

T

+ V 0 )e-T 12 ~

>c

0.1 X JO-t> X J(} X I()J X

1

=

?)

tn( 12 + V 1

.12- Vn

>)

T

111 (12 + v1
12- Vn

500

ln(l2.7)
IJ.J

-12

Ir-

T/2

-

AI ObC. V n

T ..,_,

II,.

=4281Hz

0.7 + .05 ,. 0.75 V

·c-

500

In( 12.?~) = 3, 995Hz

=

11.25
At 50¢C. \'/) = 0.7 - 0.05 = 0.65 V

=

fj"'c
..

-

500
= ''· 611 Hz
1n ( ·12.65.)
-·
11.35

At IOO'C. l'v ~-

f1

•

0.7-0.15 '"' 0.55 V

500

<. ,.
ll>l'.

In

T/2

(I'>~.:l.-'i)

··· 5. 451 liz .

11.-15

Ex: 12. 18
To obtain a triangular wavc:fonn with 10-V peakIn-peak amplitutc we ~hould have
VHI
--\'11
5 V

But \'.,. 1
Tim~

- 5

-~

--·

l.

I

R1

R,

···10:< 10
R::_

Exercise 12-5

Por I kHz frequency, T "" 1ms
Thus,

=

T/2

05
. X

10"'3

To ()})t<

10

R1

6171 fl

6

0.1 Xw·"

'""

X R1

In(:~:~)

3 + 8.7
1.25
R~

5

:::.>Rj '""' 1.2.5 Ul

Ex: 12.20
T ,,

R3

= ·~ + 8 -

6.4
""

R2

To obtain a perfect nmt1.~h at 11"' 8 V we must. have
to select R., so that i = 6.4 mA,

I.ICR~R

At

T! l.IC "" 9.1 kH

t'"" 3V;the circuit provides

.

~ · = 0.6 mA while ideally
5
i '"' OJ X 9 ·""· 0.9 mA . 'lltus the error is
-0.3 IliA.
*At V .., 5V; the circuit provides
i "'

Ex:12.2l
T "" 0.69CU(l

+ 2R8 )

I

J-{){) ~l~

:::.> R.1 + 2R8 = . .. I
4
0.69 X 10-

.,.

R,~

A + Rn
R 1 + 2R 11

+ R11

(I)- (2)

0.75 X 14.44
~

10.88 kH

(2)

Rll =' 3.61 k!l

Nnw. substituting inio (2l
R,1
7.27 kf!
Use 7.2 kfl and 3.6 k!!. standard 5% resistors.

Ex: 12.22

l

5- 3

2.6 mA. while ideally

1.25

i ·"" 0.1 x 25 '"" 2.5 mA . Thus the error is
+0.1 mA.
*AI t! .,., 7 V, the circuit provides

Using Eq (13.45)
0.75 o~

~

5

14.49 kfl (I)

i =

Z+ 71.25
- 3

5

"' 4.6 mA , while ideally. Thus
.

the error is -0.3 mA
*AI v "" I()V; t.he circuit provides,
j

~~

.!Q +

10-1 + !0- 7

i(mA)

i

I

(}----;..

Slope

+

4

•.c.

0.1

At "

(]

,r
2 V. i

0.4 mA

2

5kH

=R 1/fR .m?,
~

, '-....__,..,... 'I I

,.,._;'~---..

i = O.li.:'

6

;

10 lilA, while

6
1.25
1.25
ideally i = 10 rnA. ll1us the error is 0 A.

Exercise 12-6

Kx: 12.23

= 0.5 V

so

VA · ·"' Vo.

+ lin

0.51 V

""

= 1V

111 ""

l V~

i 1)

I mA, v0

u1

-

-

110

=

0.7 V ";\

=

1.7 V

I V -The negative feedback loop is not

-

opcr.:ttive.
ll,, '" ()

~-

. 242 Vr

Thus, t'n

v

l',1"" -

.12 v

········-M/'R

-l

~'

1, 1

~-=

I+ {2.42 V,); I?

1[ I + ~.42 Vt]
II?

.

t[t
~' /(I

Ex: 12.25

I• [ """ I( I

'·' 2:!.5
. . 42.·)

1,., s: '(·,·'I -

?;42 )
•.5

lc~R,.)

{ V,.,. - l.lR,) - 1V,, 1,. 2 )R,

·- (/,. 1 -

-· IR
-

X , . · }.4]
r

;:._ /-_

0.25

2.5
2

X J() X

X

l.4l
2..5

4.H4 V
For the diode to conduct and close the negative

Ex: 12.24

feedback loop,

, :~~=t>~-;.::·
!

'f

:. -""~'-·~·-· ·"-'"~···~~~~~-·~m-~····l-~-~--~0

.:~R t .J,...'

R

l'·'o

·. The opamp i:;, id.:al ''", '·' ;•1 h.•r v
"Ut

in
Given

10 mV

lO mV
N
·.~

i,,
Pn

~.

> 0.

0.7

v

11,

= 111

The diode will be cut otr and
In ~ummary
F,.,,

0 for v, ?

()

l-'n

,,,

0

For positive v1 • the

for

l'J

~;

vr> ·""'

0.

Ex: 12.26
For ;•1

!0 ,.li\
ntA

the op amp and thus

Refer to Figtl2 . 34

!0 mV

'i't.i

must be negative, in which

op amp saturates in the positive saturation level.

R"' tkn

..L

P,

.:ase. the negative feedback causes a virtual short
circuit to appear between the input terminals of

+IV:

D, will conduct and close the negative feedback

O.l rnA
0.6

v

10 p.A
0.5

v

loop around the op amp. u _

0, t.hc current

through R, and D, will he 1 mA. Thus the vnhagc
--'--< 10 kfl '" 10 V

10 + ''m

10.7

v

Ex: 12.27
-1•,,:;:;::

fJV

VI>()·· Equivalant Circuit

- D,, on . IJ, off

15

R

o-- ..
''t > ()
Current llnws from

111

through R,. R,. D, into the

output terminal of the opamp. '\• goes negative

R

and is thus off. The fnllowing drcuit results:
I ""' 15
.'R
A~

v1

f '.]

goe~

R

negative. tlw above dreuit holds so

that i'o = 0. "lltis n<:~:ur~ as the 15 V supply

sources the eurn:nt I ewn for small negative r 1 •
This

~ituation

.!~+:!.
R

rernaim the case until I ·- 0
0

3R
l't!

~

J'

R.
R,

....._.._

l';

< --· 5 V

/)~

nil /J,

·Oil

Exercise 12-8

b) t'l "" I V - similar to the cin:·uit in (a) but
with all of the undergrounded opamp input tcmtinals at

r11 -~

I V

t•u = I V

I = I I 10 k!l

.1)

lo<> ( 0
"' I

+ 0.1

"' I ·! 0.7

''ll "' 0 -· IR

0.1 mA

1.6 v
(c)
~'

v1

"'-v1 - 5

note

11,1 '~

:. tim

r•11 + 0.7 "' -

0-

1!1 -

4.3

10 V- similar to (a) & (b)

-an input terminals (not grounded) of opamps is
equal to I0 V.

>0

'111;

v_, < 0- {)2 off!

""

10 V

I •., 10 == I mA- diode voltages "" 0.7 V
10
V,, •• vii··'· Um
d)

v, .•

II 11

·co·

10

+ 0.7

.···• 10.7 V

v

V0 + V 111

••

= 0.1

0.1

+ 0.7 + 0.1 log ( 0 ·~12 )

"' 0.63

v

Ex: 12.29
l't

_f + /~"' 0.02 mA

Vo=·· ,.,

.. o.tv

~'11 ~

_,...J), i O.IV"'7h
o I
IOk~tO.OimA ''I

"(.l.l + o. 7 + 0.1 log

lei 111
~'

0.1

\I )

·· I V · ll"-:' cin:nit in !til

0.1 rnA
;•1

fl

'"

I '1/

I.

0.1 m/\
1,,
I ' /. .... 0.1mi\
1',.... V. ..... \',.,

v

NB
1\)r all o.:in:uits. cmTenls are giVt~ll in mA.
tano.:e in k!! & vnltages in \'.

0J.O::!~

,. 0.6JV

,.
a) ,.,

\'n + l 1m

re~i>

.. I l 0.7; O.llog( 0 ·2 )
. 1 .

- 1.63

v

Exercise 12-9

I<::t: 12.31
t'ft is ti sinusoid of 5-V rms (peak voltage of

(f) 111 = -IOV' use circuit (d)
/= .OmA
tt0 "". -rJ1

=

10 V

5../2JThe average current through the meter will

1, ""· J.O rnA

be

1.,. "" 2mA
10-,-0.7

+ 0.1

log(D

""10.73V

~ x5

f. To oblain toll-scale leading. This

currC!Jt must be equal to I mA. lltus

.~

rr

x

sji "''
R

I n1A; which leads to R "" 4.5 kll

v..

l!:x: 12.30

will be mnximum when V,1 is at its positive

peak, i.e. v.~

"'

5../2 V. At this value of VA, we

obtain

''r ~~ V m + V M + V tn + V 11 where
Vm = Vm "'' 0.7 V and

V,11
For u1 '·'" {j • i.e.

v2
v0

''''·

lv11•

1:1

! ·- 2 X

-jv11

-I t•J!
-!x- jll1!!

For ,,, os: 0, i.e. ,,, ·"'
11~

=

= 0, t•n "'

S../2 X 0.05 "' 0.08 V

4.5

Thus
V,!m.s "" 0.7

··I n1! and
·- I r>1

=

+ jt•l!

Thus. the block diagram implements the absolute
value opemtion.
Using the circuits of Figt12 · 34 a). with the diodes
reversed, to implement the half-wave rectifier, and
a weighted summer results in the drcuit shown
below.

+ 0.8 + 0.7 + 5J2

Similarly we can cakuhue :
ti,.Jn>in '=

-ll.55 V

8.55

v

Ex 13.3

Ex 13.1
ForQ,
I = V CC

a. PL = (Vol ./2)2 = (8/ ./2)2 = 0.32 W
RL
100
Ps = 2 V'ee X I= 2 X lOX 100 X 10- 3
=2W

15- 0.2
1k!1

V CEsat
RL

-

I= 14.8 mA
V D - ( - V cd

= -

- 0.7- ( -15)
14.8
14.8
= 0.97k!1
vomax =Vee- VCEsat
= 15-0.2
= 14.8V
v•.ru. =-Vee+ VCE"''
=-15+0.2
= -14.8
Output signal swing is from 14.8 V to -14.8 V
Maximum emitter current = 2/ = 2 X 14.8
= 29.6mA
R

Efficiency Tl = PL X 100
Ps

= 0.3 2 X 100
2
= 16%

Ex 13.4

2.53

w

Ex 13.2
At v0 = -10 V, the load current is -10 rnA and
the emitter current of Q 1 is 14.8 -10 = 4.8 rnA.
Thus, v 8 E 1 = 0.6 + 0.025

'TT

At

V0

iL

4

'TT

I

2.53 X 100
2.15

lJ

(d)

Peak input currents = - 1-

= Oand i£ 1 = 14.8 rnA

Thus, v 8 E 1 = 0.6 + 0.025 In 4 ·8

PL X 100

(c)

v1 = - 10 + 0.64 = -9.36 V

= 0 V,

RL

= 6 X .!_ X 4 ·5 = 2.15 W

In(I~· 8 )

= 0.64 v
Thus,

I Vo
p + = p- = V cc X - -

(b)

2

Ps
=59%

X

J3 +

= 0.67V
v 1 =+0.67V

=

V"
1 RL

_!_X 4.5
4

51

=

At v0 =+lOV, iL =lOrnA and iEI = 24.8 rnA
Thus, vBEI = 0.6 + 0.025 In (24.8)
= 0.68V
v 1 = 10.68V

(e)

22.1 rnA

UsingEq.U.0.22

p DNmax = p DPmax

To calculate the incremental voltage gain we usc

~=~
RL

V;

+

rei

At u0 =- 10 V, iEI =4.8 rnA and
rei

=

25
4.8

Thus.~ =
V;

Similarly, at
and,

5.2

=

Ex 13.5
(a) The quiescent power dissipated in each transistor= lg X Vee
Total power dissipated in the two transistors

n
1

I + 0.0052

0.995 V /V

=

~

V0

14.8

I + 0.0017

=

1.1

= 0.998 V /V

Atv0 =+10V,iE 1 =24.8mAandr" 1 = 1!1
Thus,

I+ 0.001

n

2/Q X Vee

15
=60mW
(b) IQ is increased to 10 rnA
At V,, = 0, iN = i" = 10 rnA
From equation 13 . 31
= 2 X 2 X IO-' X

R
OUI

= 0.999 V /V

= ~
ip+iN

25
JO+JO
100
100+ 1.25

Exercise 13--1

1.25

n

v

...!!.

=

0.988 at v.

i 0 = Ia;.. - iaN = 3 - 2 = 1 rnA

=0V

V;

V88 = 2 Vrln [

At v. = 10V,
iL =

1~ ~

=

I0-3

!

)

X I0-13

3

0.1 A = 100 rnA
This

use equation 13 · 2 7to calculate iN
ii - iNiL - fa2 = 0
iN2 - 100iN-1Q2 = 0
~iN = 99.99 rnA

~

is because biasing diodes have

~

area of

the output devices.

+Vee

using equation 13.26
[2

ip = :Q -1rnA

IN-

R

out

=~
iN + ip

25
99 _99 + 1

=o.2475 n

100
-1
100 + 0.2475 %change= 1 - ~- 988

100 = 1.2%

X

In exampleD . Sla = 2 rnA, and for v. = 0
R

out

'!!!!=
V;

=~

~-6.250

2+ 2

iN+ ip

RL +Rout

v. = IOV
IL =

IOV = lOOrnA

too n

Again calculate iN (for Ia = 2 rnA) using equation
13.27 iN= 99.96 rnA
.
[2
22
tp = :g = - - = 0.04 rnA
IN
99.96
25
99.6

o.25

+ 0.04

n

But v•• = Vam
V 1 ln

I

= Vrln

From example 13 . 4 Vee = 15 V, R,_ = I00 0
QN and Q,. matched and I, = J0-' 3 A and ~ = 50,
/ 8 ;,. = 3 rnA
A

100
As a first approximation iN= 0.1 A, i,. = 0, i 8N=
0.1 A -2 rnA
50+ I -

(2)

[l ~~~~,) ~

V,ln ('•

~

;,)

6%

Ex 13. 6

...!.Q. = 0.1

eN(i~~ iL)]

Equating equations I and 2

For Ia = 10 rnA, change is 1.2%
For Ill= 2 rnA, change is 6%
(c) The quiesent power dissipated in each transistor= IQ X Vee
Total power dissipated = 2 X I 0 X 10-3 X 15
= 300mW

For v. = 10 V, I L =

(I)

(~) + V 1ln eN~ iL)

2V,In

%Change= 1 - 0 ·94 X 100

+ V8~:p =

[

!

10-3 ]
X 10-13

2

= iN(iN- 0.1)

( 10-13)2

3
iN(i.. - o.1) = 9 x w-•
If iN is in rnA, then
iN(iN - 100) = 9
i,.'-IOOi,.-9=0
~iN = 100.1 rnA

i,, = iN - it. = 0.1 rnA

For

110

= -10 V and iL

-10
100

-0.1 A

= -IOOmA

As a first approximation assume ip

= 100 rnA,

iN= 0 since i .. = 0, current through diodes = 3 rnA
Exercise 13-2

:. V 88

-

2VTin ( 3 X lQ-3]

!

0.54 rnA

(3)

X lQ-13

1.3
2

3
But V 88

let

1X

=

0.65

v

/vBE 1 vT =

1X

eo.osto.ozs

= 7.39
I= 7.39 + 0.54 = 7.93 rnA
For 11V88 = +200 mV:

Here i1• = 0.1 A
Equating equations 3 and 4
2VTln( 3

!

x 10 - 3 ]

3x

w-3]2_ ip(ip- o.I)

~X

lQ-13

1 X e 0' 1 10'025

=

I eJ

VBB =

(I0-13)2

IR

l.15V

]CI

1.1
2.4

lei

where 8m is in rnA I mV

=

I X

Thus, Me = 0.4 X 2 X 5 = 4 rnA

V 88 =l.OV

Ex 13. 8

VBE =

Refer to Fig.l 0 · 14
(a) To obtain a terminal voltage of 1.2 V, and since
!3 1 is very large, it follows, that VR 1 = VR 2 = 0.6 V.
Thus /CJ = 1 rnA

Thus,

I

=

ICI

+

IR =

0.5 rnA

=

I

vBE. =

1.25
2

0.625

I eJ =

I X e

R

!J.VBE 1 VT

·

=

=

I
2.4

0.417 rnA

-

0.018 rnA

Ex 13. 9
Using equation 13.43
=

I .

I

(WI L),

B•a'(W/L)I

Q
=

0.2 (WI L),
(W!L)p

0.52 rnA

v
e

0.13 rnA

I= 0.43 rnA

I

1·25
2.4

IR

0.5V
I c1 -_ l X e -0.110.025

1.5 rnA

(b) For 11V 88 = +50mV:
V88 = 1.25 V

e-oo5t0.025 =

I= 0.46 + 0.13 = 0.59 rnA
For 11V 88 = -200 mV:

10 rnA = 0.4 rnA/mY
25 mV

2.4

0.46 rnA

V8 E = 0.55V

Ale= g,X2mV/°CX5°C,mA

= ~ = !.1

0.48 rnA

For !1V 88 = -100mV:

Ex 13. 7

R 1 + R2

1.15
2.4

I = 0.48 + 0.37 = 0.85 rnA

iN = i, - iL = 0.8 rnA

IR

=

1.15
2
= 0.575
= 1 X e-0.025/0.025 = 0.37 rnA

u, -

"'

54.60 rnA

For L\V 88 = -50mV

i,
0.1) = 81 x w- 6
Expressing currents in rnA
i, (i, - 100) = 81
i / - 100 i,- 81 = 0
~ ip = 100.8 rnA

=

=

I= 54.60 +0.58 = 55.18 rnA

ipip- )
V In ( -0.1)
- + V T In ( T
lQ-13
J0-13

g

0.58 rnA

V8 E = 0.7V

=

X lQ-13

3

(

- -1.4
IR
2.4

V88 = 1.4 V

002510.025

(WIL),= 5
(WI L) 1

Q,: /Bias =

= 2.72 rnA
I = 2.72 + 0.52 = 3.24 rnA
Fori1V 88 = +IOOmV

0.2

=

~ k~

V GS- V,Y

! x o.25o(!!')
2

L

40
Exercise 13--3

(!J:1 (

(0.2)2
I

Qz:

/Bias =

~

0.2 =

!

kp'(-I1

Gain Error= -0.035 X 100 = 3.5%
(V GS-

jV,i) 2

X0.100 X(~)
X(0.2) 2
2
L
2

_
_ ?:.!...fJ _ 2 X 1 X lQ-3
8mn - 8mp - V
O 14
Ott

=

14.14 mAIV
1

Rout=-----

~(~)2

= 100

!2 k n '(~)
L N (V GS - v )2

QN: Iq =

t

!

1 =

2

~(~t
Q,: lq

J-l(8mp

X 0.250 X

(~)
L

0.22
N

10 X (14.14

Ex 13.12
See solution on next page

=!2 k/(~)
(Vas-IV,I> 2
L p

1= !2 X0.100 X(~)
X0.22
L
P

+ Va,

Now Vee = Va,,

= (Vovl + V,) + (Vov2 + jV,!)
(0.2

=

= 1.4

+ 0.5) + (0.2 + 0.5)

v

Ex13.10
IN= iLm" =lOrnA
:. 10 = !kll'
2
I0 =

!

2

(~) v~v
L

II

X 0.250 X 200 X

V~v

~ vov = 0.63 v
Using equation 13.46

vomax =

Vvv-Vovlsias-vtn-vovN

= 2.5 - 0.2 - 0.5 - 0.63
=

1.17V

Ex13.11
New values of WIL are
2000 = 1000
2

( ~)
L N

= 800 = 400

lq =

! kp'(~) v~v

I X

2

L

2

IQ-3

P

2
= !2 X 0 . I X I0- 3 X 1000 X V ov

~V 0 ,=0.14V

Gain Error=

~=

=

4tJ.lqRt.
-0.()35

14.14) X lQ-3

::3.5 n

200

=

+

+ 8m11)

0.14
4X lOX I X I0- 3 X 100
Exercise 13--4

•

Ex 13.12
Need to prove when V0 z = 4 1i?L then VGSN2
Assume QN off (VGSN = V111 ) SO im = 0 and

= V,n

- 2VsGPQ
.

IL2

4/Q =

= -Vo2 =
RL

~k; (~)

41

Q

(VSGP2

-

+

VsaPQ

J.L(Vo2- Vd

[VGSP2 OR]- VsGP2 = - VsGPQ

+

~-t(Vo2- V;2)

using (1):

ipz = iLz
ip2

(VaP2- Vvo) =

+ jV,pj

J.L(V;2- Vo2) =

V i2 -_

-!V,PI) 2

+

V

02

+

- VsaPQ

=
-

VsGPQ

+

~-t(Vo2- Vi2)

+ 2VsGPQ -!V,PI

(VsaPQ -jV,P!) = V

02

+

VovQ

IL

p

J.1

Plug this value for V; 2 into the value for V GNl
and ShOW V GSN2 = V,N
(- o/.s

~;(f) p(V SGP2 -

IVtpD

2

v GSNQ +A~

2(VsGPQ -jV,P!) = (VsGP2 -jV,p!)
VsGP2 = 2VsGPQ- 2jV,P!

vi2

v ovQ
(1)

for the gate voltage,

V GP2 = (V DD- V SGPQ)

v GP2:

+ JJ.(V 02-

J.1(Vo2- V;2) = V GN2- (- 'l{s)

- ~ -v

;Q) =

v GSN2

where

+ IV,P!

= 2VSGPQ -!V,PI
Find

+ V GSNQ) +

=

(V asNQ -

V g,6Q- V c/tvQ

v,,.)

+ V 111

=

= V GSNl Q.E.D.

Same proof for p transistor.
V;2)

Exercise 13--5

C

+I.OV

Ex13.14
(a} From symmetry we see that all tnmsistors will
cmiduct eqttnl cumntund have equitl Vne's Thus.
t•"=OV

+l5V

~~....t5k!l

-15V
Negleetiiig .I83 ,
lc1 :::: IE! ::;J 1 = 0.86 rnA

But at this current
V/.IEI

= V1

ov

ln(1Isc•)

3)

x 10
3.3X 10- 14

"" 0.0251n{0.86

""0.6V
'Thus, V£ 1 = + 10.6 V and 11 "'0.88 rnA No fur-

ther iterations arc required and let :: 0.88 mA.
To find lc:z we use an identical prot'edure:
-ISV

V11£2::0.7V
V£2-~

If VuE =-0.7 V lllen

Vet"" 0.7Vand / 1

/2 "" 9.3- (-15) ·=
""

5

I (4.86
V BEl. "' 0025
• • n

At !his current, VnE i~ given by

X~~~~} :::0.63 V

3.3 X 10
Thus V,,.1 ~' 0.63 V and / 1 '" 2.87 rnA
No more iterations arc ~1uired and

10-.')
-H

+ 1.0 V:

To start the iterations Jet VBEl

"'0.643V
V~-z "'' 10 --.643 ""+9.357
12 "' 4.87 mA
10 =. 4.87 mA

Finally,
,.

lo
In
Where

iCI ""· in "" ;0 ·~, in:::: 2~7 mA

TilliS,

X

3.3 X 10

lc 1 ::: 2.86 mA

V 11 E = Cl0251n(2· 86

4.86 mA

5

15 - 0 ·7 = 2.86 rnA

If we neglect 183 then

(b) For v1 "'

10-0.7=+9.3V

V 11t:"" Vn;
:: 0. 7

3.3 X IO·IJ e

'"::~ .,

0.6:! V

V
Thus. / 0 "" In ,._, 1.95 mA

Exercise 13-6

. !'t',

i'h

1

The :.-ylll!Jletry of the circuit enableo; us to lind tbe
values for v1 = -10 Vas follows:
ln "" 4.87. IllA lcz""- 0.88mA
10 "" Ic4 "" 1.95 rnA
For v1 ,. + I() V, tt" =·Vet ..... Vnt:.l

"" 10.6 .... 0.62 = +9.98V
For tl1 "' - 10 V, v., =V t;;1- l 181,3

"'-9.357 - o:62 "" -9.98 v
(c)For v1 "" ·l·IO
t'l)::

v:

3

· In ( ·.100
= 0.025
_ .X 10_ 14 )

Vstl

3.3 X 10

= 0,72V
Thus, 110 = V£!- VRE.l
19.86 v

" 1.0.58- 0.72
Vo£4

= v,, -

V£2

"" 9.86 - 9.36 = 0;5 v
'fh·.
US, 1c 4 "' •3 •3 X

.J()-!4 eO.$dl.OZ5

.-: :. 0.02ll'IA

JOV

For sylnmetry we lind the vahte for the case
1•1 ""- lOVas.

ft:::. HlOmA
lcr= lllO rnA

10 ·"" 4Jf7 rnA 10 . "-'0.38 rnA
J0 =0.02mA fc"4=lOOrnA

I{)()

lin "" 201

tJ"=-9.86V.

::0.5 rnA

'1<::.:13 .15
For Q1 :

t9t'."Jl! VT

ic .::: 13,.., l_~p e
Thus. Elfective seale current

= !3N fsp

ic
iu=---

pl,(f3N, !)

Assuming that V8 £ 1 has not changed much from
0.6V. then

-

ic
"' /jl'f3N

Vm :::.10.6V
/ 1 =

irj(f{N+-1)

~-==-~Q;_~
.)

lEI= 1 1 -IR~

" • 0.88 mA

0.88- 0.5 = 0.38mA

In :::038 mA
V/11'1.

c•

(b) EtTective current gain "''·

1 _ l (0.38 X 10-:\)
00
• ~.) ll.
··P
3.3 X 10

Vn ·~ !0.88

v

•.. !5 - 10.58

5

I

0.88 mA

50

X

-t•

PFBifW25

10 • <' .

=

= 0Jl25 In (2 X 10 11 l
0.651 v

Ks 13 .16
See Figure 13. 34
When 1',, " 150 X l!l ' X

0.643 V

10 - 0.643

Vr2

12

jH

JO()()

''HI

'llw$. I 0 ·- 0.30 mA
Now for Q:! we h;m::
\!/IF';' =

=

IOOX Hf 1

0.58V
I

"'c 2() X 5()

;(.

9.357

4.lP mA

R,.,. then /, .,

2 mA
vi!E5

"

VIIn

('f)

ln~::O

lcz

:~

4.87 rnA (as in (h))

""25:>: 10

Assuming tha.t I 0 :: I00 mA.

'" !Hi51 V

Exercise 13-7

1

tn( 2 xJ() l~l-~.'_)
I~

!.,,...

150 X 10''R., ""Q.65J

Rn

=:

II' peak output current
V..,. '' Rn X lOQmA
"-'.0.434V

irs """ Is e

4.34X 100 X JO·'

v- - :v
Jl£5'

RL

I.-

= 100 lllA
c,

tal current out of mode B

A

v

.r

"" 10- 14 e<~.4JM 2s x w- 3

!

8.2

Thus

·"" - 3 -- ]

;!'r

Q.E.D

-·6 mV /"C

hut FromEq.llO. 58
iiV..(;g
.JT

(l + R~·)av/JE6
iiT

""

4

R
( I + ~)

Thus - 6

~~'

X ... 2

2

R~

Ex 13.22
Refer to Figure 13 . 4 4

ForAR >> R 2
,,
2R,
_!,!- ----==

I DN

-·-

100

X

10

"" !2 """ c ~<'V.
L ~ (,S·I

J

e

"'

·~X 2CIVd-

=

-

v >1
j

3J'

I!Vd .... vy
VGJ = 3.32 V

0.1 "
:=)

Exl3.18

I fJP

VL{; ""

R

=

2

v,, "" 6.64 v
vr;o ~. __(~.£~---

20

~ ..32

20 >: 10 '

111/\

n

Using equation
Vc;c;

..:xl3.19
For Fig. 1 1J, 3:.: Wt~ set: ihat for f\!i~'!.ip;tt!tm to be .Jess
than 2.9 W, a rnaxin1um ~upply voltage of 20V is
called for. Tht~ 20-V-supply curve intersc,·ts the
3'Yc distonllion line at a point for which the output
power is 4.2 W. Since

(I i t,)v11f.,, (.I

6.64 == ( l +

Exercise 13-8

I

:n )(

0. 7

i

(

.

I

I

~!)VuE'·-

i

'!..! .) /
R,

41/111.

0.7 -- 4

X

0.7

Exercise 14-1

Ex: 14 .1

Noise margins stay unchanged, because

rn the low-ouput state, the transistor is on ami
R,,

V ot.,V011 • V JL· V 111 only depend on V 110, V,, and

I ___
= rns:::: ----,-,.,.-,..:....

V,. Since V, bas not changed, noise margins

c !!.(v <;s -vi•·
J.ln ''·' L

stay the same.
Inotder to calculate the power dissipation, we
need to llrst recalculate

Tht:refl)re, the current drawn fmm the supply in
this ~tate can be cah::uh1ted as:
f f>l>

.,_,,

I

\l
_J!Q_ ,,,, 50 l.tA "'~ RJ} + r 1,s
Ro .,.. ~'~>s

2.5 v
50 11A

·I

JJn·

"" Vnn- Vot

nn

Rn

=

L 8 - O.IZ ""' 168 uA

10 kfi

'"'

1.8 X 168 tLA ' 302.4 IL w

50 kH
151 p..W

Note that keeping V, unchanged resulted in
higher power consumption. but noise margins
stayed the same.

Substituting for

~') l
R o + ros:,.

.,
-·--soriJ:>kH "'¥rf)s

':> <;

.... 2 '"'1
"'

Ex: 14.4
and hence:Rn '·'· 48 k!l

To determine V, , we use:

.,. I . W
we usc
o n Jlalll

7: ,

and with Rn ·•··• 10 kH and K,

v,
unchangt~d:

V ,

Rm

vt!

Rm

..2.:: '" -

1 X 101 X 125

. !:1::
.. L

=

'5

= 0.089 X~ "" 0.22V

10

'

To calculate the new noise margins. we hnve to

!O·t• X (2.5- 0.5)

X

=:> V

lind V 011• Vm. V 11.. Vt.n ..

?

1-' 011

-

V nn '" l.ll V unchanged

-co

V, ' V, ....- 0.5 1 0.22 ..., 0.72 V

V 11

\\'hen the switch i~ closed or in low-output state.
the current drawn from the supply is 50 ~lA.

v/II

v1+

=

1.63 jff;;;;fl~

- vI

Pm, -· l'm,l rm "" 2.5 X 50 X 10 ''
125{111'
When the swiich is npen, Ill) current i., drawn
from the

~upply:

P 0 [)

=

UIV

0

___
VDD ___

llur =

-

-

I + Vm>- V,

v,

Ex: 14.2
\Vhcn input is low. the output is high and equal to

V011 . In this
R c~ .

ca~.:\

thcr~~fore

lienee,

1.8
I + 1.8-0.5

V,·,

~

NM 1
The power dissiption

::;

\Vhen the input is high. the output is loR' and equal
to V m . The switch is cmmcctcd to R,-, . Hcn~c

.5

2

;<

l

Voo --~·££

Rn

3V

P,

. .•

" ""''"''

Ex: 14 .. 3
.
, o (IetcrnlJlit."

II'

stitute \',

O.OWIV. R,

E, we usc:

L'
J\ .,

R

become~:

1 v[)fl 1fJ[} -... !v
2 /)/)

5V.

T

0.22

NM 11

the- switch is conncetcd to

the .::un-.,'nt through R n is zero.

~-'uu ·•

! :-:

Nntc that ke.::ping

0

I.S ;< 1_,8 ·- 0.2fl '·' I J9 ll W

2

l0 kH

~;:

unchanged resulted in lower

noi'e margins and highcr power dissipation.

k,:

~oo 1 ~.A · v' ·

J()() X !()

/

W <. 10 / !()
L

0.26

3.75

v

Exercise 14-2

Ex: 14.5

~ Jg~~~j:

k,

=

Ex: 14.7
FtolrtEq.14.36wehavc:

!t ~J

0>•

3

From Eq. 14 · 20: V 011 -~~ Vm>- V,

::: 32.4 X 10-11

""'-

32.4

JJ..W

ci V 2 ,,m

v,i

C.11' 2 nm

1k2r(Vm)- 2V,)

v

66.73 :::66.8

From Eq.l4 . .?.2 V 1c.

0.5

v

unch:mgcd.
From Eq. 14.23
VM "" V f>l)

1

..:x: 14. 8

(VM-

"" 0.12

•

,, fCV 01,

6 XI00XIO··Ux!8 2
Pi(>nl. = 100XI0
•

1.3 V

unchanged
From F-t1.·14. is
V ..Ot ="·

P,~y.

Jtx: 14 . 9

+ (~c_!,~~ --~ 1.8 + (3 - 1)0.5
k,

+I

...

---Ttl·--

l',.(r)

=

V,('<)- (V,(:c)- 11.,(0'))e- 1 1T

"" 0.7 v
From E(j;14 · 26 t.()gethcr with St~tting
.. I:

fon 1,w = .10 pscc. with C
1

= ! .S . If~(· 0.69
lOP

:. 32 [0.12- VIII+ 0.5 + 0.12] = L8- 0.5- 0.12
9[0.74

~

V111 1

l.IS~ Vm ·"'· 0.61V

Nlvl 11

v,m -

NM 1

Vn- V0 1. ~~ .5

V 111

=

1.3 - .61 = .69 V
.12 ''·' .38 V

Ex: 14.6
The inverter area is approximately
IV
A ~' W 1 L, + W •,L,• Since
___! = K, and
.
L,

W,

-~ =

L2

I
·:·.we hav<: IV,
II,

L, ·= k, W 2
d and

•

Asstuning k,

~>

I. we have

w..

Thus:

A

k,L,/. 1

W 2 kr1V,. -~

k,t/, + k,.W' 22

=

l 0 IF and Von= 1.8 V

1.2 mA

Exercise 14-3

Ex:14 .. 10
throu$11 the Pu whiclj is 20 1¢0:
V(l(t) ""' V;i(i») ~ (V 0(~f- V 0 (d'))e"''1'

z<1 V:vn + v. wJ

l3S pSec
For trHL• the output starts ai il08 and goes to VOL
through Pd which is 10 kO .

fpUI"'" 0.69R.C=0.69 (20K) (!Of)=

FQr ,,.Liflbe:ou~p!Jl SIUtu ai: vQL and goes to Voll

.. ,

""'

vOil- ( ·v(!II -

1
z(Voii

·

+ Vm)""'

.

..

Vol.- (Vm.- Voy)e

··-•,.u~.lr

. . -•t•t;t/T
Vm)e

(~~Van+ ~Vr)tJ
- (il,;,} + Vin.

T(-··ln(~))

= tptu

""
Inn "" 0.69.R.C "" 0.69 X 10 K X IOJ "" 69
tp "'

~(t 1,nr + tl'l.ll)

~( 138 p + 69 p) "'"

p!ici;

H)'' pset

Exercise 14-4

F..x: 14 .11
V 0 (t)

V0 (x)- {V 0 (i.,)- V 0(0+)]e-' 1'

Vo(t)

() .~

rv[)n-

tris when wltngc is
,

, IVm> = - V 00(~

O}e~I!(21C' I!.IOh ~ ~

= .l Vt>o

··(0·· 1/)17

-ln(.l) "" tf_t

r

2.3 · • ;;~ 'r
tr"" 2.3 · 2 K · IOO I

0.46 nsec

Exercise 14-5

Ex: 14.12

k.'(r)J(v;- v,n>Vo-~v,1]
~ 0.2 X 10·~ = 50 X 10'" 6 X (r).

;I)=

a)FromEq,l4.S8
V

,....jV,IJ) + V,,.

... r(V,,p

··r+l

M""

0.6 = r(l.2 ~ 0.4)
+r

=0.8r + Q.4 ~ r
r

·.or

+ M ~0;6

[(s- 1)o.2- ~ x o.22]~(it ~ 5

""" I

= r;;;;;,.··. ·""· U·~-~!
~'j;o1wn.

+ tl.6r

,.)4-

'"'·

I~~

From abt.we:

4

tVt,

·wEt

EX!

ov

~(5 X

= ft(SVM - 2V,)

Vm

·~~ ~(3Vm>+2V,)

:::: 0.:55

~(3

1.2- 2X 0.4)

X 1.2

~(~)
= 10
L I'

14.14

UsingP..qsJ4.63 to H.67wehave:

u.c
I Pill, "''

.

+ 2 X 0.4}

U.tt

.

k.'(z). von

=0.6SV

Vn

= 2w
II

~ (w1, "" 4 X 0.13 1un "" 0.52 J.tlll)

b) Vvu "' vllf> ··= 1.2V, V(n '"

wl'

'

z7__3v,.1

~::::

4

Vnn

( ~~·· )2
/)/)

v

NM 11

V 011

-

V 111 =•= 1.2 ·· 0.65

0.55

v
Noting that

c) The output resistance of the invc1ter in the low-

t l'l!t

jV,"j. then :x.

_.:...:;:e;;_;~~::_:_:.::__ _

300 X 10'" 6 X 1.5 X 1.8
1ru1

6

C'O:

1.99 X 10 X 10' 1 ~

=

output state is:

430 X l 0

v,n

= -

a,C

k/(.~)
\1 0 /)
1. I'

"" 24.7ps

or

X I ( 1.2 -· 0.4)

24.6

X

4

X 1. 5

""2.9 kH
Since QN and Qp are mawhcd, the output resistance in the high-output state

the same:

"' 49.4 ps

2.9 k!1

rusr "' rosN

d) For

i~

(!Y)
(!!)
L
L r

I
t,. -"' 7,(11'1.11
+

=

O.S( 1.2- 0.4) + OA
I + 0.5

M

37ps

From Eq.H . 6 Bwt~ haw:
0.69RNC and if we substitute for RN

tPlll.

hence: V

~(24.7 + 49.4)

Ex: 14.15

-

= O.:l,

X

1/'Hl)

4

1.0. we have

n

J4.rr--I

3

0.53

v

from Eq.l4. 70 i.cRN =

12·5 kn then:

(w)

L"

Ex:14.13
ll>ing Eq. 1.4. 51l ·3nd 14. 59

0.69 X 12 ·5 :X: 10 1 XC

8625C or

(IJ,.
r( 5 -

I) ;.

J

~····················~/'

r+l

/t-tp~~-:1.' :::::> ~-l_:r

·~Jl"lt'"
When V 1

H',

\inn and \1 0

=

0.2V.Q.vnpcrates

in triode rt•gion and hence the circuit is given as:

:.(. l.Y)
L_

=

3.5

,1

Similarly. using Eqs.l4. 69and 14.71 we obtain:

Exercise 14-6

.

0.69Rp C

Ex: 11!1.19

= .0.69 X 30 X lu -.-.c~

a)As trientioned on page of the Text, C1n1 is the
t;ontribution of intrinsic capacitances of QN and
Qp .. Therefore,

(t)l'
or

Cine =

2egdl

+ 2C~tJ 2 +

c,,, + Cnhl

+ 2 X 0.3375 + I + I ""' 2.*.) fF
CgJ + Cg4 + c ... ""' 0.7875 + 2.3625 + 0.2

.·. Cint "" 1 X 0.1125
CUI ·""'

= 3.35fF
b) From Eq.l4. 79 we have:

8.3

t1,

Ex: 14.16
t 1wt and 'NR arc pmportionaltq C
t Pfll. - .orginal
"'
·.. ·..

""

0.69(R.qc., +

part of1P is: 0.69;R..,C.,, and in order to reduce

c~
•.,
Cn~d

the e>ttrinsic part by a factor of 2. S has to be
increased by a factor of 2. Note that S '"' R.9

and

R.~

TI1crcfore,

c..hl + Jp ·.,
I

2{1nn
ex.

28p

11

!· 'nu) '"

* .l0625P.
625f

'poLo·~

Rc-q

has to be reduced by a factor of 2

or cquivalenlly (. !!') and{!!') have to be

6.25f + .tp

L.,.

..10625 pF

I

~R.qC:•.,) The extrinsic

im:reascd by factor of 2.
c) From Bq.H. 79

C

·d:,::

"" 0.69( R.,,0 C;, 14, + ;R.,1,1,c...}Itence,

476 psec

Ex: 14 .1 7

2.9 + 3.35i2

W1, is reduced from I 125 jlm 10 0.375ttm

375 X
. .0·1.125

.L . . 1,

2.9

100 = 33% reduction

X

+ 3.35

28 p~

·"' 20.5 ps
d) A ·"" W X Land since

(z) is doubled and L

is constant, then A or area is a!so doubled.
C

(4 X 0.3.l75f) +If+ If+ (2 X .78751') + .2f

Ex: 14.20

4.225 tV
I Pill, =

24.6

X I() 12 ;,.:

(~-225()
6.25f'

Using &J. 14. 35
16.6 psec

PdP'

I

fCV 01 / =

X

109

X

6.25 >< 10- 15

=J9.1

p.w
1l1e maximum possible opentling frequency is:

!c 16.6p + 21.3!') ~"
2

19 psec

/,.,,. '~ ;}- . Hence.
~tr

PDP
Ex:

14 .18
!7.9 Glh:

The minimum period at whid1 the .inverter can
rdiability opcra.t.:: is
Tmin

r PilL f t rur· Thus..

2 >< 28
"' !7.96 Hz

· ·· ('. ·x··. l'. 2 [){) X t,,
"' ...I-. ·"

2r 1,

6.25 X 10,

2

15

X

2.5 1

19.5 fF 1 J

X

2.5 2

Exercise 14-7

Ex: 14 .21

.. ~ . 1.e.,
.
' seale.d
The power u<:ns1ty,
d .PJ..,
1s
eJVearea

a) Pot NMOS devices:

~ = ll
L

=

0.27
OJ8

0.18 X 1.5
0.18

For PMOS device~:

0.18 X .,;.·_,
,
.~ ...
,., 2.16
4 p~,-L
0.18
O.IS
b) For NMOS device~:

W

-'~'

!!{.o4n.,.,O.ISX4XL5
/,
0.18
For PMOS dcvi;;:.:s:

}! ,, I' '"' QJ.S.
L

0.18

y

1
.

Using Eq.14 , 94 we have:

0.25 X 10

LOS
0.18

i~

Ex: 14.26
Por the NMOS transistor, Vos "" 1.2 V results

l.

Ex: 14.23
.
. power
· d't!>stpatmn
. . ts
. sea Ic db. y -;;
I
,S mcc
t Iynam~e
S"

and propagation delay is scaled by

~,hence. PDP

Ex:l4.24

\Gtlc

by

~ . thu~



CV~n1>. i-> st:alcd by
Cl

s

X 1.5 X 0.34( 1.2 - 0.4

(I f 0.1 X 1.2) "" 154.7 I-LA
if velocity-saturation-were absent, the current
would be:

hoth larger than

a remains

~cab! by ~.and

linergy/Switching c~dc. i
I

b

v{J/)

scaled bv S. therefore t
•

greater than V n.m• ~ 0.34 V. Also,

1\' Gsl

any·

mnrc. They are kept constant 1
-..:

1.2 ·- 0.4 ""· 0.8 V which is

in the ab,encc nf velocity saturation.
For the PMOS transistor. we see that since

If VJ)D and Vt <~re kept eonst<~nl. the entries in
Table 14 . 2 that ehangc arc llows:

I'

v,. '"'

X (I+ 0.1 X 1.2) = 231.2 J-lA
Satumtiun is obtained over the range

SnPDP

decreases by a factor nf S.

1

in Vr;s-

in "'' 430 X 10

Obviou$ly. Vnn and V, do not

101 X 10.. ,

""0.63V

0.54
0.18

s'

X

4oo x ur· 4

Ex: 14.22
(a) ·ntc minimum current available to charage a
load capacitatlt.'e is that provided by tl ~inglc
PMOS device. ·n1e maximum current available to
charge a load .;apacitancc is that provided by t()Uf
PMOS transistor~. ·nms. the ratin is 4.
!b) Th.:rc is only one possible configuration (or
path) for capacitor discharge. Thus the minimum
and maximum cuntnt~ arc th<~ same

=> ratio

-6

''

~

X

11 ()

v

~aturation

X

1.5 X 0.6(1.2

0.4 )"(J + 0.1 X 1.2)

59.! (.t/\

1',.\ <

v,,5 C',

1.2

v

or ()J:{V

~~

lins

<,

1.2V

Note that the velodty saturation reduces the
NMOS ClllTt'nt by JJ% and the PMOS curn:nt by
-~ 7CfL

Exercise 14--8

Ex:l4.27
a) Using F..q.14, 102 we have
in
l,;v'(;sl nVr
·
Thus, log 'n

~-' Jog(~+

Vus log(e)
-V
It

T

Therefore, the slope of the straight line represent-

ing subthreshold conduction is. given by:
11V 1
--""' 2.3nVr
Jog(e)
b)Vr = 25 mV for i 0

IOOnA

atVca = .21V

lOOn =

/se·l!IU2i2Sml

f., ··· .InA
in = .lne

'• ol'

r "" .InA

c) For Vcs ""' 0, i0 = .InA
Jtmul

500 X 106 X .I X 10- 9 = 50 rnA
l,.,a1 X Von

= 50 m

X 1.2 = 60 mW

Exercise 15-1

15.1
(W/L)3
fnn '~

1.5

""

0.32

(WIL)P =

0.5 ns

since \1ou """ Von- \1,.

tn.H ""' 0.03 ns

Substituting values, we. gl.'t

15.2

0.5

V,

Using eq. i1 S .11

(

(2.5 ... 0.5) :<

0.27 V

""'

ll:!

03V

1.8 V -- V, I 0.85 V-

J. . . . . . . . . ...

O.R5 V)

+ £J.3V 112

V, "'' 0.5

Squaring both sides yields

v;- 0.446V, + 0.05 "" ().(}9(2.65- V,)

using eq. u.s .13nnd t15 .14
V,- (Vnv- V,)r I·-

NM 1•

·I

./ .................- ........................... -

J2.6sv- vi- o.:w' n JO:s·!fv
v,- o.223, o.3J2.65-=v,

[t- Jl- ~]
V 0 ,_

v,., + 1 (Ji'rm -=·v, + 2:[;~- Ji;J;;)

v,

TilE NOISE MARGINS WILL NOT CHANGE

L

r;=·I'Y __ .

~•

1 --]
/y( 'I + I ).

..

v; -- 0.356 v, -" o. 189 '"' o

$n that.

Solving this quadratic equation, yields nne

0.7 v

NM1

practical value for V, :
\1 1

~'

NM 11

(I

(Vno ·-

~ ~) -=
..,13.4

v,>(t ·- ~)

t2\ X

0.648 V

0'

Vrm- V, .... l.X V --- 0.648 V

\' 011 "'

"" 1.15

v

0.85 V

15.4

. (w)
I: "

ll.,f",
'I

oc·

'

. (w)
!.lt.c.,.
T
.

.-.(T)i'

/)

(a) Referring to Fig 15. 12 withnut loading,

115 J.l cl.375)
0.25
4

cv) ,.
t_I

Jo 1

5 V

V011

-7

\! 01

-)()

V

(bl Refening 10 Fig.ls 12 (a).

.

1.44

'n.v(o) ....

I (··w)·
:::,!.:,
-L·· (
-

v,,- \i.,,)

J

Jj

<

using cq. 115. 12
I

">l~l

P0

"" !c;o
1.4-1)(2.5 ··· 0.5) 1 = Sh..f ru\
2 ," •tl!
t'
.
I,.,.,Frm = 86.4 J.L2.5 = 0.22 mW

"'

using cq:tiS. 15 and

as. 16
'~

1.68

·(w·)

.

=

.

I
:::,kr•
(linn- \',.,) 2
J. {'

lpp(o) =

~(20tu\! V2{1J_;~}_~

. . ''·/. (.375).
......... .< 2.;,.25 .

I I'\ 'C I!)

.

+ 320 JLA

= 1120 JLA
To ubtain iv.vUnu). we note that this siwation is
idcntio:altn that in Exumplel5.?. (s·. 2'v)· _2!(s
V) J..
2
.. 2
2

icl.,,

=.325 p.A

&o1vb1g for

~(li~Op;A + 3l5,.r;A) = 7t2:5 p.A

=

c(v;'')
.

clap

tJs v -lv:;r+·o.6 v - Jif6V 1
JV,~- o.6l3V = o.sv'' 2 js.6v -- w.p]

7225( l0:- 6)A

squaring both sides and setting one side equal to
zero. we have the quadratic equaiion,

== (t24 Its
(c) Referring to Fig.ts .12(b);
i,>N(o)

""lk'(.~)
(Vllh2 n.L,. ··

~(50~tA IVz)(i)( 2y)· - !(
V)
'.2
2 2
5

2

]

V 00 which corresponds to V ,.0

2

""'

Rr6 =

T

-y[ff+~- ~]
, r /5 V
r;;-;-;-,]
; o.5 v -lJT + o.6 v- .,o.6 v ,
J

i

I
C

U1'

l

1.49 v

L

I'

Rrc "" 12 ·5 kH =

' (i},

g:~ k!!

r,

21) fl A . 70ll JLA

"~

0.69J(C., 0 , 1 + Crr; 1 )R 1

X IR 1 +
91·1 Jt A

12.5 kH

I

IC;.~ ·I C 71 ;~)

R~)

"' 0.69(( !OfF+ SfF)( 15kf!) + f !OfF
X (IS kn + 125 k!l) 1

c( v~'>)

=

(I}

Using Eq.llS. 38

So.

'I'll I.

lU kH

with Eq. jl. 5 · 3 6 we see thut

1.49Vr"' 20 tA-A

!_!,~>.E:!l 2+ 708 1~!~

!~Si :.:

30
30 .
R,. 1 -= (~) k!l -, ( 2 ) kH = 15 kH

icUrm) ": ii>N(IP/1!) I· im,UrmJ

= 688 JLA

~~~·~)"

15.7

rp

J-

1.5

lhingEq.tl4. 71

= VIO +

~(20~tAi V1 )(i)[ 5

=

Von

·n1us, 'nrUPiu.
.
>= 2
Jk·(w)·
·,. L P [v/)n
2 - ·v
! 1].2
=

(I). (it
Using Eq.a.s. 36

::: 688/iA
To find im.( tpm). we first determine V, when

"' 1 v

= 0.69RC = 0.69(5.5kfl)(70)( I0- 1 ~)F

15.6
5

1

.

liS

tpLJI ·'~ 0.27ns which is close to the- value of
0.24ns obtained in Exercise 15 . 14

f)/)

IV.,.I

~(0.24 ns + 0.1.9 ns)

= 5.5k(l

.,voo _ !.(vm>·)~
[( v _ v"'2
22J

=

=

15.5

ic{o) "" i 1m(o) ~· lm,(o) '" 800p.A

r•,

= 1.6 V

I V)2 = 320p.A

= ll20~tA

= SO
.

IV,A

= ~(tpu1 + tPF11)

:: 0.22

~k~{~)1,( VIJD- V,,i

ftw({)) '

jV,~,

jV,~ "" JV + o.sv'' 2

7!J< to-" 15 )'(~)

t;.w. "" -i.-- =

jV,J

v,.. + 'Y[JV,, -jV,,,] + 2, - .firl

w.~ =

::275 p.A

Tbuli;i,;(tpui) = SQJ.LA + 27!ip.A

<2,;\11/iJHumoffwben V., =
where

t,. "" 0.64 ns

0.19

ns

I

5fF)

Exercise 15-3

"'lxsox
2

1(5- t) 2

= 400~-tA
= 50 X

I[ ( 5 - I ) I -

i

X

I]

"'115J.LA

=

iodv,. ·"" 400 ·; 175
(c)illl

L.,,at c:·.

288p.A

c,_, Av,,

AI= Cu(Vrm- V,)"" 40 X Hf 15 X 4
imlu,,
288 X w··fi

""0.56 ns
(d) f'OIIowing the hint we nssume lhnt Q"''

remains satumtcd during At .
imj 11 ,,

. 1>"' '"
11)2(

=

'(W)
L

--

lI

im!,... ••

:

I
3V)"'" :;k~

(3- I)
f'¥(2

.
'
X 50 X 1(3 ---If

= l()(lJ.LA

15.9

. . ., 1 1 _ 1( c·
S.mcc
1n( • Ill> ·· ::; .J.Ln "'

J( Lw) (.•,.tw -

...

doubling

'"')_will double( Lw)
(z

so i 0 (VM)"' 2(76.1 J.L;\)
This new(

v' -)2 ·

i'lj

"'I

100 X 10. 6 X 0.56 X 10

and i 0 ( V v!J)

152.2 J.LA

z} will also double i (V;") :
0

4

;,f';&)""' 2(68.9J.LA)"" 137.8 J.LA
Thisdoublesl,,.to 2(72.5 JLA)
the new tpm_ is

o_·v)

145 J.LA

= - 1.4 v
Thus, "r2 decrease lo 3.6 Y.
15.11
0

Vou
V 01_

=~

-0.8:! V

SHOULD BE SHIFI'ED B '( ·- lUiS V
V 011 =

0.88V AVrER SHIFfiNG

·

11 01 •= - 1.76V AFTER SliiFrJNG

l'
C··(· \' /J{J - -:;-<

=

40

9

X 10- 15

-

15.12
Refer to Fig. 15 · 12 Neglecting the base currelll
of Q 1 , the cnrrentthwugh R 1•
n,. JJ2 and R 2 is

P-5( lO '')A

15.10

_ 5.2- vm- Vm

I-·············----

Refer to Fig. El5 . 10

-~(-·

R,

!!:)

=

~(---~~)
__ f.

0.907
'

R1

5.2- 0.75- 0.75

"- ._I.

(. ~-)
L."''

f

_I X ~ "'

2

2

~-

4.98
l~,

~'

0.6285 mA

-0.57

v
1.32V

Exercise 15-4

15.13

r•011

Referto Fig.1s .26
-

/E.. ·"" -

E

0.779

Vdok"" -yX4XRd:"'-4X0.245 "~ -1 V·

Vdo.1 (!8 "'

OV (because the current through Re~

is zero}

15.14

v

::::0.818

vIll

4.018

=·

1.205

-

Vc!un""

4.12 mA. The

3.98 mA

11

o.?s +  input rc~i.stancc into the hasc of Q_1 is

1.205 . 0.788 .,_ 5.2

Thus. ~'ciux

0.788 V

-0.88-0.788 + 5.] '' 4.53 rnA
0.779

V ud Q:l = 0. 75

v.,. 011

0.783 v'
and correspondingly

=

= -0.22 X 4.53 ~· -I V

VN(Jll

- 1.205 - 0.75 + 5.2
··----·
. ·"' 4.166 rnA
0.779
Thu~ a

0.906- 0.798

E "'" - - ·-

-= 0.767 v

IQ.I

6.88 mA

A better estimate !'or V nF.Iv:~ is

= 0.785
and eoncspondingly,
.

x 4.12

0.9()6 -· 0.75 "-" .,., 1.656 V

656 ±.1 '"
=-1·0.05

,.,,

(JJ

-0.22

v

"" -0.906
liNOR ''" ••·

·nms a better estimate of V 1u:j 011 is

F1/tlo"

'

The value of IE we found in Exercise 15 . 14to be

Assume FnEiaR .., 0.75V, IF. '"' 4.018 mA
X

''oR is

0.49- 0.8.18 "" -1.31 V

15.15

··- - 1.32 - \1 lWQN + 5.2
0.779

0.99

15.2 mA

REFER TO FIG.lS. 32for

I£ -

''"

+2 =

Thus a better estimate for
V(IR "'" '-·

Refer to Fig.lS. 28
For\/1 '"" V,1;, 1{>8 "'' 9910 ,,.

I Qll

0.05

v1u:IQ2 = o.1s + o.o2stn(1;·2)

m

""

1.24

A better estimate for VnHif!2 is

+ 5.2 . 4 A

..., 1.32- 0.75

0.49- 0.75""' -1.24 V

-

11E Q2 = -

VII- VsEIQR -. (-V,;e)

-R

""

X

0.245 = -0.49 V

I
5.55k!1

Exercise 15-5

Th. f) ...
US,

v, + 0.79- OJ
0.22

.

,. 0..99

X

v,- ().79 +sa
0.779

·=>

v$ ... -t>.ss v

15.16
Refeno .Fig,1s. 26 For the referenceclrcuii, the
current through R1, 0 1, D2• and R2

d) See figure below. Assume V»t: '"" 0.79V

.is 5.2- 2 X 0.15 = 0 6··2.9 A
4.98 + 0.907
• · · '"
VBI(It ""'

v It

-0.57

v

= - 057 - 0;75 ""' ~ 1.32

I I! !·Ql.

·""' -

v

1.32 + 5.2 ""' () 636 rnA
6.1
•

Tbus the· refereru:;e circuit !!raws a current of
(0.621J + 0.636) = L265 rnA from the 5.2 V

v<>--i
s

supply. h foliO\Vs that the power dissipated in the
reference Cit"C\d.t is 1..265 x 5.2 = 6.6 mW. Since
the reference circuit supplies four gates; the dissi-

'

-5.2V
(because the current will be 4 to 5 rnA). At the

range of saturation,
lc =  -·

·)2
v,.

2

" ~(·~oo
P:)(L 0~)[(1.8 -- os1(·!&·)- !(.9)~]
.• 4
0.18.
2
2
.
l

(12 X 10

b)(.!!:')
L

~

172 X Hf~

=

(·!!'t "·) "" 2.5
a

14.3 "" 2 ·6

(US

Ex 16.2
BiiS for row

=::.

~

fJ.nl

Ex 16.5
·C,, X .6. V :

I

addr<~ss:

1,_ "' !(,
2 .-n C. "'

2M~·· 1,024

log 1 (2M) ···-~ log 2 ( I. 024)

.. (IV)

fl.

~ ~~1f:t_L~.024l

10

>("")(V
-I' - V
L
fJ/}

. "'

Q·)

2

a

~X 300

I,

.

2.5

Ill) . -

L

·r·o hn
. d I ,. we usc

~

X

10

"X

2-5

X (

Ul- 0.5 -- 0.5)1

lng 2 ! 2)
240 f.LA

Bils for column address:

ut "'
7

(bl
Bits for block address:

2

10- 12

X

X

0.2

(Tw)"

=

1.s

15 = !x300X 10
J

Bits

1.7 ns

240 >< 10

,;X

1.5X(I.l\-0.5···0.5) 2

log_.(:'\2 i
I"H J.lf\

logJ(2)

Ex 16.3

ut
or:

1 X 10· 11 >< 0.2
14"1 J-LA

2.8 ns

----~~····-~--·~~----

~~ n

J..
!,

o ---1.....

('.!:)

therefor<~.

L "

.ilr

1.7 ns >< 2·5
1.5

2.~

ns

Exercise 16-2

Ex16.11

Ex 16.6

~ (!f) X 1Lnf I (!f)
L "
· L. ., IJ.,,L

V,.

(I -

V m> -

~ (!) X 4 J< f I - (1 (!)
L
L "
L
P

·)z]
v ...
)2]

0.5

I ,,.

L8 - 0.5 .

""2.5 x 2.5

~

Cf)

• .,,
1

--or

I

cvi>Q

5()~'F X L8

At

0.5 ns

v

I'

en"

cv /)/)

From Eq.l6 .18 At

180 v.A

1.8 X 180 fLA

/)/)1

, 324 1-1 W

I<::X 16 .12
Refer to Fig. 13.26
Our decoder is an extension of that show:

6.25

J<:x16.7
F-rom F.qs.lG. H andl6 .15 we have:

We have M hits is the address (as opposed to 3)
and correspondingly there will be zM word lines.
Now, cuch of the 2M word li.nes is connected to M
NMOS dev.ices und to one PMOS trunsistor. Thus
the total number of devices required is

AVio:::

M2M(NMOS)

For minimum area: sck-ct

wn '"" w,, "" w., =

0.18v.m

;;ox w··l-' . 1.2

- - - - - - - - X -~
0.3 X 10 12
2

I)

Refer to Fig.13 · 2 B Our tree decoder will hav,~ 2N
bit .lines. Jltt1s it will have N levels: At the llrst
levels there will be 2 transistors. ut the second

- Cs X l!ml
C8
2

22 ••• ., at the Nth level there will be 2N transis·
tors. llms the total number of transistors, can be
lind as

,. -60 mV
Ex 16.8
Area of the storuge array
X

+

Ex 16 .13

AVw;::

64

~' 2M(M

6.0 mV

+ 2M(PMOS)

1024

X

... ; 2'!'{

Number

1024

X

2

"' 2

"" 134.2 mm1 or equivalently

(I r 2

·!

22 + · ·

Geometric series r

I

2N- 1 )

2

11.6 mm X 11.6 mm

Total chip area

=

174.46 llllll~

1.3 X 134.2

v

2' ··· I

Thus,

f~X 16 . 9
Refer to Example 16 . 2

Number'~

c

Since !:..1 is proponionalto r
reduce

t:.r

by a f>tt:!Pr of 2 by

- . \VC

G,,

decr(~asin)!

can

r by the

2(2·"'·· I)

Ex16 .14
f

=

same factor. C:.t " r ,.. •L.

c·'m

Hence. G,., has to he doubled. G.,
and h1>th Kmn and g,. 1, have 10 be increased by a
factor of 2. The itKt<:as<~ in g.,, can lx· nchkvcd by

.mcreasml!
.
. thc con-e,pondng w
-.
c
••
L thus:

(rt

2

(TJ,.

1X

'"lo.:

0.54

0.18
2.16
ll.IS

6

24

100 Mllz
2

X

5 X 10 ''

Exercise 16-3

Exl6 .15
(a)

1,.

=

(c) In one time-constant the voltage reached is

k; (f)

.P

[< J()

IZ X

J ;< lff'

2.9 ns

Chapter 1--1

1.1
.!: "" .~ "" 10 mA
R
nn
f "" lQ V "" tO Ul

(a)/ "'

(b) R. .,.

l
I m.-1
(c) V = /R "' 10 mA >t; UHU ... 100 V

t'd)l=·y""
..!2..Y.
"'OIA
R
lOOfi
.
Ntut: \\ill,$, rnillillmps, and ldlo-oltms ~tillite a
~t ~~Ct of lft\itll,

1.5
v1, = v 110 ~
R, + R

1

To fi~ B0 , · we ;hort cirwit VPt> and IOI.1k !:mclc
.i.ntn liOde'X•

Rn .,. R•. U Rl ""

1. 6 •

RiR:
R1 + R:

Use vol• divider to find Y.,

v• "" .;-22"""·· ·.•··•
. l.l + 6.8 ,.., "'·""'
f.~l\'ill~toorputresi~ Rn i~

1.2
{I} V "' IR •~ fOmA X I kJl "" lO V

I' "'.jlR "" (10 rnA)1 X I k{l '"' WO rnW
{bJR"" 'VJI"" 10 VII IliA .. lQkll

P "" VI "' 10 V X l mA "' 10 tuW
(c)/"" .NV" I W/lOV=O.I A

R() ... <3~~ ~en

a 6,a w> .,

.2.~ ~c.o

The extreme Ylllues t)f V(, for ::!:!i % tolemnce

nm11toran:
V •.
.., 9.-.
),~(1 - O.O!ij
.
o ..,.
3.:tt 1 - o.os> + un + QM)
"' :t7S V

R "' V t I "" 10 VIO.l A ''" 100 {}
(d} V "'PI/ '"'OJ W/IOmA

"' 100 mWIIO!rtA.;. IOV
R"" VIJ- l!lVIIOirtA"'I\fi
{e) P ..., 11 R,. t = JPlR

I ""

./tooo mW/1 kll

... 31.6 mA

V "" IR •~ 31.6 mAX I !ell

= 31.6 V

NCIU!: V. lrtA, Ul. and mW conmltute a cunMS··
tenlllel of llllits.

1.3
Thus. there ate 17 ~ble resistaw.:e value,,

This figure is for 1.3
10

46.7

1.4
Shtullbig the 10 Ul by ll miliu u!'vatue of
R rcsuti in the wmbtfllllioo having a mistance
R•••

R "' lO.R
"1
R + 10
Thus, fur a 1~ redu.ttioo.
.....!!_ "' 0.99 • R "" 99o kU

R + 10
For a 5'.(, teduclioo.

R : IO "" 0.95 ~ R .. 190 kO.
for a 10% n:duetioo •

U)

lQ

~6.1
10

·~-r-~L.
- L.W.-1 -

"*

10.

·~·

__JL_
= IQk{l
R + lf) ·~ 050-,R
.•
Ul k:O by

(Jl) I Mfi mult in

:..>lUX IQQ2"" J£L,; 9\:tkO
"' . UJOO + 10
tot
. ' .· '
a 1% R!duclion;
(b) 100 k!l rosuli~ in
R

R~., "'

Ml?.tW
roo+ to ""' .ill
u "" 9Wt~O
· · ·

11 9.1% rt®ciion:

(u)

to kfi tesultll hi

.. ~
10
"••
- iif+:1'0
u50%~ioo.

"' ",.,..

" .....

?0

8.0

......1L._ "' 0.90 R ,.. 90 l / 1

+ /JRJ

I,:::. 1.06 rnA
I,:::. U 3 rnA
11 :::. 1.19 rnA
V :::.. 2.38V
(b) A node equation at the common node can be
written in tenns of V a.~
15 R1

v + 10 - v = .Y

R2
Thus,
.15 - v + 10 ~
tO
5

v =

=>0.8

""HJ/1 + (/ 1 +12 ) X 2

R3

v - !:
2

3.5

=> v = 2.375 v
Now, / 1, 12, and /3 can be easily found as

"" IU 1 + 2/ 2

I, ,

15- V = 15-2.375
10
10
= 1.0625 rnA :: 1.06 rnA

+l5V

{, = 10- v = 10- 2.375

+IOV

"

5

5

"" 1.125 rnA :.: 1.13 mA
/J·

= RX"_

3

= 2·375
2 = 1.1875 rnA
. -- U9 mA

Method (b) is much preferred; faster, more
insightful and less prone to errors. In ~neral, one
attempts to identify the least pos.~ible number of
variables and write the corresponding minimum
number of equations.

1.13
That ls,
121, + 212 = 15

(l)

Similarly, the vol!age drops across R 2 and R, add
11p to I0 V, thus
lO '~' 11R 1 + 13 R3
511 + (1 1 + /2) X 2
which yields
21, + 712 "' 10
(2)
Equalions (I) and (2) can be solved together by
multiplying (2) by 6,
=

12/! + 4212 "'' 60
Now. subtracting 0) t1·om (3} yields
40/?
45

1.125 mA

en

From the symmetry of the cin:uit, there will
be no current in Rj. (Otherl•lise the symmetry
would be violated.) Thus c.ach branch will carry a
current V.f2 k!} and l,. will be the sum of lhe iwo
current,

I = 2V,
'
2 kfi

V,

I k!l

-

1,=2VJ2 kH
V,/2 kfl

fr

Chapter 1-5

1.14
(a)

v

R ,..J =I kH
I,

If

Now. if!(.~ is raised to 1.21dl the symmetry will
be broken. To find 1; we use Thevenin's theorem
as follows:

v1

+ 1 + 0.545

At

f

l/jw

C

.

= -~2"1f'j X

= too kH1~ z
""

2

1 GHz,

z

1 = 60 Hz,

R,

Z = -j0.8 MO

At f = 1 GHz,

Z == - j79.6 0

':'

lk!l

At

f ""

=

_,

j2-rrf X 10 X lO .

Z = j3.77 0

At J = 100kHz.
RJ

on

= - jt.33

At/= lOOkHz,

At I = 60Hz,

J;t

lkfl

-it 59 n

=

Z = - j0.016 H

(d) Z = jwL"" j21fjL

p;

I
lOX 10- 9

Z = - j265k0

= 60 Hz,

At 1
At f

At

v, + 0.022 v, x o.s

"'

z=

= I kO at all frequencies

(c)Z = 1/jwC = -jZ"'f'/X;Xl0-12

£5 = 0.545V,- 0.5V, = 0.022Yx

0.5

(b)

z

Z "" j6.28 kO

t GHz,

Z

=

]62.8 0

z "' jwL = j211'fl· "' j211'j(l X 10 -9 )
f = 60Hz. Z = j3.17 X 10-1 = ]0.311 il-0

(e)

v,

Vz

R.

J=

R4
l.2k0

lkfl

lOOkHz,

Z = j6.28 X 10- 4

f = 16 Hz. Z

=j0.628 mO

= j62.8

0

1.15
(a) Z = R

= IOJ +
""' (I -

lb) Y ""

+ - 1-

jwC

l
_9
j21f X 10 X 103 X 10 X 10

jl.59) kO

! + jwC

R
1
-6
l
= --;_ + j2'1f X 10 X 10· X 0.01 X 10 .
10

=

z

=

+ J0.628J

1o·\1

n

1000
I + j0.62S

y

1000(1 -· j0.628}

I+ 0.628 2
= !717:!- J45.04)
(c)

Y

=

-~

R

n

jwC

t

--=----:, +

--j'~<

1

j21T X 10 X 10 X 100 X 10 '

100 X 10
10- 'n

l

+ j0.628 J
~

7~

10

I + }0.628
(71.72 .... }450.4) kO

05\f, X Ul22 '·" 0511 V,
F1 +

1

F' ,, I':

I,

/l ' 1,

v

100 + j6.2S X 100
.c

0.467V,

·

0.956 V,

. H. ··-~ "" -'
I, ~- LO:'\ Ul

:-q

~

100 + j2r. X J0 X J0 X 10 X 10

l'

"'l"k?l
v_
· · v2
I
'··-···"!Hi.

R+J(oL

(dJZ

I,R~

(

100 + J628J

n

J

Chapter 1-6

1.16
1.18

Norton
Equivalent

'rbevcnlo
F.quivnleot

R,

··C .
v0 ·= v, - i 0 R,

''o

Voc "" rJs

=

(i, - i 11 )R,

isc "" is

·= i,R, ·- i 11 R,

vs = isRs

v0 = v,- i 0 R,

Thus.
'~-'oc

Open-circuit
(i0 "" 0) --+ v,

Rs"" -..
isc

(a) ''s ""· vor

=

voltage

10 V

is =· (sc = 100 p.A
R· "" !!££ ""' _!.Q..Y_ = 0.1 Mf!
5
isc
tOO p...<\
(b) vs

is

=

=

= \00 ldl
0

voc = OJ V

isc "' 10 1-k"-

voc
Rs""" -.1sc

~ = 0.01 Mn
tOn:\

=

10 kO

Sbott-drcuit (t10

""

0) current

r

1.17

1.19
(I) 1.26
(2)

R 1 represents the input resistance of the processor
Thus.

For ''o = 0.9

__!L "' 30

R
0,9 ''"' - -1-·- =>I?,

Rt. + Rs

I+_&

For i, "'0.9 i,

100

and

_3!_L

'-'r

0.9 =,
\0

I+~

10
Dividing (I) by (2) give~
l + (R./lOl "· 1
1 + (Rs/100)

·

~ l?s = 28.6 kH

~=>N
Ns + R,

L

1. 20
~---.------~-------~.-------~

Case

w (rud/s)

f

(Hz)

7' (s}

! a
6.28 X HF
l X 10''
I X !()''
----,r------+-------L~----1
b

I X 10'

1.59 X !0'

6.28 X I(P

60

X

Suhstituting in t2) giws
11, "' 38.6 mV
The Norton curwnt i, can be found 1"~

10;

Chapter 1-7

1. 26

1.21

v,.,t

= 117 x

(c) V pc two harmonics will have the ratio 7 to 9.
which is confirmed by the measurement reported.
Thus the fundamental will have a frequency of98/
7 or 14kHz and peak amplitude of63 x 7 ""441
mV. The rrns value of the fundamental will be

441 ;J2 = 312 mV.Toflndthepeak-to-peak
amplitude of the square wave we note that

0

l

I

I

+7

4V !1t = 441 mV. Thus,

I

0

0

0

-0

I

0

0

I

-l

I

0

1

0

-2

1

0

1

I

-3

I

l

0

0

Peak-to-pe.al.. amplitude
=

2V

Period T

441 X E.'

1

693 mV

I

71.4 !J.S

f

-4
"

1.24
To he barely audible by a relatively young
listener. the 5th haml(>nic must be limited to 20
kHz: thus the fundamental will he 4kHz. At the
low end, hearing e11tends duwn to about 20 Hz.
For tht> flfth and higher to be audible the 11fth
mu!\t be no lower than 20 Hz. Corresponillngty.
the t\mdamental will be at 4Hz.

1.25

\:;,! 1?.

If this power is 10

equal that delivered by n sine w;;vc ofpe;ik amlitude

l' tb~n

1

0

l

-5

1

I

I

0

-6

I

I

1

I

-7

Note that there are two possible representation of
zero: 0000 and I 000. For a 0.5-V step size. analog
signals in the range ± 3 ..5 V can be represented

Input

lf the amplitude of the square wave is V..,
then the power delivt.>red by :he ;;quare wave to a
re~iitptcn~y.

.,~·~·-~-~"~

Chapter 1-8

1.28
(a~Foi'Nbits~wm bell"~blc Jc:v~

1.31

el$. ftoD:I O.to Vn• Thus there wilt be (2'<- thfls~ stf:Pa. from 0 to v.!$wid! the step. sit,.C.given
by

'

'

A,. = uoio = .!Q X !!?
v111
u1 11
= 2 X 10' X 2000
=4 X lO'W/W
or 10 log.A~ = 86 dS

'

Step size = · V F,t
zN -t
Tbl& Is too ililalog cbailge t;Otresponding to a
change in tbe.LSB. It is the vulue of the reSOlution

..

OftheADC.

='

2

2H=I

i1

I mA

~ = lOOOAIA

ttlil

i,

"'

= 10 X 1000 = JC}'W/W

or 10 log., A; = 40 dB

Vrs

22V=l

This is known as the quantization error.
(c) 10 V

v

u0 i 0
u0 X i-0
Ap=-~-

ll

1

I mA
or, 20 log 1000 "' 60 dB

step

step size =

=- lO V = JO V /V

i;

i_
X

v,

or, 20 log 10 = 20 dB
A, = !g ,.. ''ol Rt. == 10 V /10 Q

{b} Til¢ DI#Ximllm error in conversion.~
when the analog signal Vt\llle is at lite middle tlf a
step. ThuS the ma:dmum error i~

!

.!!:!

(c) A =

1. 32
+3V

:s 5 niV
1 rnA

lY /'\
\r\"',

2N-l;;;o.2()00

= 11,

2N~2(J()l=:::)N

2.2¥

120 mA
t(average)

ForN= 11
Resolution = - 1110

= 4.9 mV

Quantization error
...-

= ...42.·9__=_ 2.4 mV

2 -1

1.29
There will be 44,100 samples per second
with. each sample represented by 16 bits. Thus the
through-put or speed will be 44,100 x 16 =
7.056 X Ill" bits per second.

C\{1" "'

-3 v

A, = "o .. 2.2
'';

0.2

= llVN
or 20 log II = 20.8 dB
A;

1.30
(a)

=

'

~

A = ~ "" _!.Q_Y_ = 100 V /V
~

v1

= •'o I R,,
ii

i1

tltJ~o

""

Tltlt

ltnA

or, 20 log A,

,. JO VI 100 0 _ 0.1 A
tOO J.L11
- tOO p..A

!11 X ~

= 100 X 1000

I;

VI

= IO'Wtw
.,. ~ ""

1 V

A,, = Po ·""- (2.2/ ,/2)1 /t(.)Q
P;
0.2 X to··3

"" 2 X 10~ V ! V

t10

!R1 = 2 V/tOk!l
!flO ni\ ·

= 0·2 mA ""' (},2 X IO . ~. '"' 2000 A i A

100 nA

HlU X 10

or 20 log A, = 66 dB

-~

,/2

n "'

('>2/ /?}2

;~ = ~ioo

Input power=·

i;

./2

or. 10 log A,"" 23.8 dB
Supply power: 2 X 3 V X 20 mA"' 120 mW
Output power '"
v1

" t t1
IOJLV
or, 20 log 2 X Ill"""' 106 dB

A.""~""
'
i1

= 26.8 dB

= 242W!W

or 10 log HY ""' 50 dB
(b) A

2.2 VI 100 {}

=

=~""22AIA
I mA

100 mV

""'JOOOA/A
or, 20 log .1 000 = 60 dB
Ap =

~
I;

or, 20 log 100 = 40 dB
A·

=

~~

24.2 mW

=" 0.1 mW (negligible)

Amplifier dissipation:::: Supply power ... Output
power
"'' 120 .... 24.2 "" 95.8 mW
Amplifier efficiency "" !]~t£Ut power X 100
Supply power
"" ~X
ll)(l
120
. == 20.2%

Chapter 1-9

(a)

IORs
x A X
IOR 0
IORs + Rs
"" lORo + Ro

V(l

vs

- r - - - - Voo - 1.2

= !Q X 10 X !Q
II

= 8.26 VI V

11

or. 20 Jog 8.26 = 18.3 dB
(b)

_ _ ___,_-- - Vnu

!:Q "' __&_ X A. X .....!!.rL_
vJ
Rs + Rs
" Ro + Ro

= 0.5 X 10 X 0.5 =2.SV!V
or. 20 log 2.5 = 8 dB

+ 1.2

(c)

Rs/10
XA X
R 0 !l0
(Rs /10) + Rs
•'u (R 0 /10) + Ro

For V00 = I5 V, the largest undistorttld sinewave OU!pllt is of 13.8-V peak amplitude or9.8

= _!_ X 10 X

V.,... Thelnputneededis9.8V/500= t9.6mV_.

Il

or 20 log 0.083

=

1.. = 0.083
11

VI V

-21.6 dB

1. 35

1. 33

IOfi

(a) For an output whose extremes are just at
the edge of dipping. i.e., an output of 9- V,.... the
input must htwe 9 V/1 000 = 9 mV-·

+

•
I

20log A.,0 = 40 dB

(b) For an output that is clipping 90% of the time,
0 = 0.1 X 9~;

'"·' 0.5

won

w

9V

... 57J V and the input rnust be 573 V/

1000 or 0.573 V,,,.

1. 34

T

lkH

IC~HH

AM-o--,

P,

10

!00 mV

"':"

H1t';. f.
I'

~l~-~.
OOP,

":"'

-

'

.

IOOfi1· ''·

-

::(!

__!Q_~_fi__

'\

10 k!l + 100 k!l

.!.(~.

110

X 1000 ;x:

X l ()(Xl X

.! ()() "
1100

I 00 {}

100 f!
8.26 \ 1 ! V

·t

I kU

Chapter 1-10

This figure is for 1.37
tMn

IOOkll

1.36
The signal loses nboot 90% of its strength when
connected to the amplifier input (because R, = R_,l

Total gain

10). Also. the output signal of the runpl iller loses
approximately 90% of its strength when the load
is oonnected (becauseR, = ~/10). Not a good

= 99.9 X 9.09 X 0.909 = 825.5 V/V
The voltage gain from source to lood is

= r'r. ""' A., 1 X Av:z X A.3
flil

!1: =!!!:_X~= A.,·
11s
vi 1
"'s

design! Ncvertheles.~ if the sourt'C were connected directly to the load,

1111
115

= 825.5 X 0.5

"!!.!!,.,~
"s

= A.,

= 412.7VIV
Tbe overall voltage has rediiCild appreciably. It is
due to the reason because the input impedance of
the first stage, R... is comparable to !he source resisrance R,. In example 1.3 the input impedance of the
first stage is much larger than the source resistance

R1_+ Rs

100 !l

too n + too k!l
:::_O.OOlV!V
R9 = 100 k!l

1. 38
a. Ca'\C S-A-B-L
V0
vs

+
v,

""

v,b v..

(1X
Vo

which is dearly a much worse situation. Indeed
in.~rting the amplifier increases the gain by a factor 8.3/0.001 "' 8300.

Vs

V.s

IOO ) X (100
100 + 100

=

X

10 )
___!QQ_)
X(
100 + 10
100 + 10

4.13 V /V and gain in dB 20 log4.1 =

12.32 dB (See figure below)

1. 37

b. Ca~e S-B-A"L

In exrunple 1.3 when the first and the second stages are interchanged, the circuit looks like
the figure above

100 k!l + 100 k!l -

Ad = ''12 = 100 X
V; 1

·-

V0

_

V5

-v1.·vi"

V 0 V1.,. V10

v~

= (100- X 100 IOO
) X (I
+ 10 K

_ (} 'i vI v

100 kil

l/11

"s

Vox V 1bx Vi•

'

(

1 Mil

I Mil+ I kil

""99.9V!V

X

lO K . ) X

10 K + 100

lOOK
)
100 K + 100

Vo "'-'· 0.49 V / S and gain in dB is 20 log 0.49 =

lOX

v5

lO kH

-6.19 dB case a is prefcrTed <~~it provides higher
voltage gain.

10 k!l +I k!l
= 9.09V!V
l X

JO() !l

won

+-

ton

~· 0.909 V!V

This figure is for 1.38(a)
;

... ~-~-~

!1)<>!1~

..
·0;

,'

This figure is for 1. 38 (b)
I{IHU'l

w.

l

v.cb

0

I:-.. Y~,

!Ul

•. l
\'

"

~"'Hl

w.
<:>>IX<·\·,.

I

'''"'~ :.

Chapter 1-11

200

IK!l

+

IOKO

tlf2

This figure is for 1.39
1. 39
Deliver O.SW ton 1000 load

R,

Source is 30mV RMS with 0.5Mil source resistance. Choose from 3 amplifiers types

-D>--1>--D>Rp IMU

Rp tokn

R;= !OkU

,'\,,"" 10 v/v

.4,,= 100 v/v

A,r I v/v

RJ: lOkU

R,,lkil

R":20!1

Choose order to eliminate loading on input and
output
A -I st-to minimize loading on 0.5 Mn source
B - 2nd-to boost 2ain
c . 3rd - to minit;lize loading at 1oon output.
(See figure below)

~ = .2 v . =
vs

1 .,.,

235.7 < (.

30m V

0.5t,L

Co~ to)oool(w1 ~

)no)

+ lt,L

RL
=X-Rt + R

300V/V ""_2Q_XA

90 + 10

667 0

··,

I
l + 0.667

X

=>A,0 = S55.7V/V

= 100 kfi (I X 10' 0)
Rv = 100 !1 (I X l()l U)

(e) R,

300 = _!QQ_ X A

too+ to

~A,

"•

X

1000
1000

+

too

""363 V /V

1.41
R,= IOOkU

w

p
-

1.40
(a) Required voltage gain

1-

,-~l'•

R,

IOmV

""' '!!.'!

(a)

'~

J03 mV

__jQ__
10 + 100

Ol
.. IL''• = -IOmV
- . - ~ R, + R ~c 100 !d1
/?8 + R,
·
'

(b)~ "" 303 mV

Thus R; '·" 90 kn.
h:1r R,. = 90 kD. ( = 0.1 t,LA peak. and

(c).~

v,iR
0 wrall current gain '"' ~
-.- - =, 3 X 104 A. A
0.1 f,L/1

~::)'
____ ::{}:
_____

' l()(j()

..·) (0.1 xii;~;;:
(. J!L?<_!i>.~
J2 'X -J2 ·-)
C)XI(YW/W
(This litkcs_intn an~t the power dissipated in lhe

mttornal rest stance of t:hc !iourct•, 1

fc) If (A'',, ,,) hrt~ irs peak value llntit(•d ro:;

largest value of N, . is fnuntl from

''s

(d)

I,

J mA

v. the

~

-

10 mV X

(b) The smallest R. allowed is ohrui ned from

+

tl-

lOkfl

~

= 300 V i V

(

=

0

0.58

-.

3 '

(d) For R, = 90 k!1 and Ro = 667 0. the required
value A.., can be found from

1
1)(1 )(2o -~oo)

n0 = (253.6)(30mV) = 7.6! v RMS

3V

""

(lfR., were greater than this value, the output voltage across Rt would be less than 3 V.)

235.7 < 253.6

= (l.OI V

. 2
-R1

'"' 3 => R0

0

..-omy

1000 X

X

1000 X

100
100 + 200

= 303 V 1 V

100
100 + 2fJO = 3.H3 V !V

Chapter 1-12

Connett 11 resistance R, in parallel with the input
and select it~ value from
(R,. II Rl)
- 1 R,
(Rp H R,) + R~ - 2RI + R,

~ I + ~ ""' 2.,::::} R u R
Rp H

~

Rl

'

21 2

100

2i - 2t

Overall voltage gain

"" .!!.!!

•• J!s-_

::::}l + .!_
R,.

p il

Rs _

= 4020 ~

1·9 .·o··'"' v /V

21

R1

WO

1.44

R1. "" .
I
"" 9.1 lr:U
0.21 -· 0.1

1.42
R,

+

(a) Current gain =

i, = it + j1
i 1 = tJ1 /R 1

~I;

=A-~

i11

"Ro + Rl

= 8m . !-lfj _,

Vi

VX

"'· 10010
11
=

(b) Voltage gain =

90.9~ =

39.2 dB

, - - - + - - o Out

::'!!
t:5

=

= 90.9 X..!_
101
'-" 0.9 VN ""'· -0.9 dB
(c) P!Jwer gain = A

JOOk!l

~!L_f!L_
i1 R~ + R,

r ,~ ''oi.o
nsli

,,., 0.9 X 90.9
= 81.8 W/W ~' 19.1 dB

1.45
Tmnsresistance amplilier
To limit a,,, to 10% corresponding toR, varying
in the range l to 10 kO. we select R, sufficiently
low;
R _.:::; R .nniu

1.43

I

10

Tim~. R1

"'

100 !l

To limit ~"-• to 10% while R,varies over the

range I to 10 Ul. we select K,sullicicntly low;

RI > ...s Rt_.~-~
10
G.,.= 40mA/V

R,. , 20 k!l
R, • l kfl

ThtiS, R0

=

100 0

Now. for is = 10 !LA,

R,

¥1-.
R.,i.

-~;:·_·r~-I to

v,

IOkO
7:Jo

-

--

Chapter 1-13

Rt""l"
= 10 -~ R- R
R,.,;,. + R1 •Rt.mln + Ro

ttomirt

= 10_,

1

=;)

1.47
Current Amplifier

1000 R
1000
1000 + 100 '"1000 + 100

+

R., = L21 X 105

121 k:fl

lkto

ln:-1;;
1

toon

JOk.U

toon

For R_, varying in the range I kil to 10 kil range
and load voltage variation limited totO%. select
R, to he sufficiently IQw:

-

R ~ Rsmin
I()

I

1.46

=

R'

Voltage Amplifier

l k!l = 100 H = I X 102 H
10

For R, varying in the range I kfl to 10 kfl and
load voltage variation limited to 10%, R., is
selected sufficiently large:

R,
I to IOkfl

R"

vs

l',
L-.----l.-..,...........J.....---_j

Rt
1 k to
10 kfl

R0

2:

10 R 1_mu

= 10 X IOkfl

= 100 Hl

""' 1 X 105 U

Now we lind A,,

V Omin = 10 J.l A X
For R, varying in the range I K to 10 k!l and

!J.i<' variation limited I<> I0%. select R, to he suffi-

R;

IO X 10 -6

10 Rsmo.

2:

10 kfl = 100 kfl = 1 X 10' H

X

For R1 varying in the range I ro l 0 k!l. the load
current variation limited to !O'Jl.•, select R, sufficiently low:

~A;, =

l(smin

/(~min

+ R,

R_~miu
+ Ri

10 X 10-6

ciently large:

R, "" 10

X

X
• · X R0
~ nH

.

Ro

=

'''(Ro

I kH
I kfl + 100 fl

x

10
Now find A,.,

+

I X

tw n

Rt

1x

"100 K

~"- 10 X 10· X

IO(J kf!

Hi '· 10 kf!

I
X A", X 100 fl -'· 10 kfl
I X 10 ) = 10 X 10-' X !OO X A ... X ~l_110
•·
tton

I K

111.1 A/A

+

121 V!V

R,,

A, i,

I

X

102

n.

A 1,

'0 '

111.1 Ns.

1.48
R,. .,. Open-circuit o_~!.[Hll voltage
Short-circuit output current

=I kH
1+4

8V

R.,' lkH

r---¥/'lror

.

Vollage amplitier equivalent circuir i>c
l X 10" !!, A,.,,

R11 ~- f X 101 H

121 V!V and

v,,

R 0 =I X 10' fl

10/

R,

+

Current amplifier equivalent circuit is

w" n

_ R,
X A ... ----·j __ _
·+- R,,·m~ro
... Ro + R,!!l:.lx

100

A,.,,

Rlmin

i(!
...,...

i, mio '" 10 mV X

J0- 3

R l-tnin

i\ 100 K X I K

:-~"

l k!l

II

A- RoRtmin

Rstl\in

R

Ro:s;

RL

~
' lfl \/
I

11,.

n--

lOY
lO mA

Chapter 1-14

A =vo=

8
I X 10""'3 X (1000 10) X 103

• v,

fur(a) V0

=888 VN or58.9 dB

i

'!11 =

A, ""

3
= 81(4 X 10)

R1

110 /

10-:; X _j.QQ._

100 + 10

V~jl Rt.

Vn
V1

ltO

wherek=l

;fRI

I

(

10

1 + SCR

w,. = ..!_ from table 1.2 it is low pa~s.
"

8 2 /(4 X 10))

=

v{ 1 /;~~ R)

= _._1_

tOO

10- 3 X -

"' 2200 NA or 66.8 dB
A. .,.

""

····~X ~)2 10 X
100 + 10

103

RC

V v,[-R1)
R+-

for(b)

0

·=

SC

19.36 X 105 W/W or 62.9 dB

,

Overall current gatn '"' 1

io

fU\
V 11

_ tJa!Rr _ 8/(4X 103)

-

=

I

fU\ -

=

S

v,

10-3

s+..L
RC

2000NAor66dB

where k =I

=

w6

1.49

..Lrrom table 1.2 it is high pass.

RC

1. 51

Using the voltage divider rule

" = 100mA/
...-y
R1.= 5k!1

lim

a. i(?

::-:..~ .l:mi!t -- 8m"P~

''o = i,.R1. "' g,.R~_(v 1

h.

l'J

=

Fl .'.PI! ""

·-

v2) = ''n

__R_,__

~

OV

V~

=
(R 5

+

R,
R;)+ sC,R,R~

I +

+ R,)

s(' 5:-;:!R,R~)
.R1

IOV

\Vh~rc K ·~

1. 50

(R~

N,+ R,

<•J "" (.'1? R.
"f

(

I

!?,

R,
(i(,+R,)
from tahlc 1.2 low pass for given

·'

values w,, = J2.5 Mllz

Chapter 1-15

1. 52

1. 54
The given measured data indicate that this
amplifier has a low-pass STC frequency response
with a low-frequency gain of 40 dB, and a 3-dB
frequency of 10" Hz. From our knowledge of the
Bode plots for low-pass STC networks (Figure
1.23a) we can complete the Table entries and
sketch the amplifier frequency respn ~ - - - - - . . . . . . ; . . - - - - 2;;- - 21T X 0.1 X 10 6 {10 + 40) X !OJ

31.!1 liz
K

0.57

J2

I
I
I
I

I
I
I
I

102

103

104

106 j(Ht)

.ftHz)

IT!(dB)

LT(")

0

40

0

100

40

0

1000

40

0

to•

37

-45"

10'

20

-90"

10'·

0

-90"

T(.Y)""' R2/(R 1 + R2 ).Aiso,fromthecircuit

observe aJI s ~ cc , ( I I sC) ~ 0 and

I
I
1
I

vrv

1. 55

1.53
Using the voltage divider rule.

c

R,

v.r:.-~~
*
~
RI.
··

T(s) =

where

R 1 + R, + ..L
·

Since the overall transfer function is that of
three identical STC LP circuit.~ in cascade (but
with no loading effects since the b1llTer amplifiers
have input and zero output rei>istances) the overall
gain will drop by 3 dB below the value at de at the
frequency for which the gain of each STC circuit
is l dB down. This frL'qUency is found as follows:
The transfer function of each STC ci rcuil is

sC

<•111

= I !CR

Thus.
Rr
R~_

s

+ Rs,

which is of the high-pa.~s STC type 1 ~ec Table 1.2)
with

K '·--~L...

Rr t· R..:;

For/,.~<:

"'-">

····I

h
i~ ('
0.64 ~tF

w 1d 11

051<<~ 0

Rv2JI R;3 =

= 27rCl R

6 MHz

100 kfl .

Thus R, 1 = 1.07 k!l
Similarly, for node B,

27r X 15 X 10·1 X I X 10" 9

1 5

10.6 k!l

21t X 6 X 106 X 105

""

11.9 Jc!l

She should connect a capacitor of value (.~to
node B where C" can he found from,

""0.26 pF

1. 57

10kHz

Since wben Cis connected tbe 3-dB frequency is
reduced by a large factor, tbe value of C must be
much larger than whatever parasitic capacitance
originally existed at node A (i.e., between A and
ground). Furthermore, it must be that Cis now the
dominant detenninant of the amplifier 3-dB frequency (i.e., it. is dominating over whatever may
he happening at node B or anywhere else in tbe
amplifier). Thus. we can write
!50 kHz

R,, 1

= 2r.C(R,,
. 1 II,
1

R,2 )

~c;.·

I

27TC,r dJe input circuit, the corner frequency f.., is
found from
,

f.J
2rr X 150 X 10~ X I X 10-'l

R.

""'L06k!l

!Okfl C1

P-'Wv-J~+
\i
·'

"'::"

R;

~

IOOkO

":"

FDr f." .:s.; 100 Hz ,
1- - , - ---···--2r.C;(10 + 100) x 101

~;

100
..

Chapter 1-17

"* Ct ~

. I
. . = 1.4 X 10-R
2'11' X 110 X 10' X 102

Thus we select C 1 = I X w·· 1 F •"" OJ p.F.
The actual comer frequency l'e!>1llling from C,
will be
··' I
"' 14.5 Hz
2r. X tO . X Ito X IOJ
For the output circuit,

fl/ 1

.f,1

""·

-

Better approximation
(3,dB fmquencies)
Bandwidth= 10'- 10" =9900Hz

1. 60
TM)

llsC1 + R 1

LP

I

-1T C·z( R o + R1J

-

.,

For f,, 1 $100Hz.
I

2wC,( I

"* C, ~
•

+

< 100

l) X !03 -

.

·· I
· 2 = 0.8 X lO
2;r X 2 X 103 X 10

Sele<:t C 2 "" I X 10-• = I ~F
This will place the comer frequency ar
fo2 =

_J

,

2r. X 10 . X 2 X HY

T(.s) ""' 100.

= 80 Hz

s

(l + 2;>,J( I + 2;~/'J

1. 59
The LP factor l/{1 + jJllcY) result~ in a Bode
plot like that in Fig, L23(a) with the 3dB fre-

qucn<-)' fo

=

104 Hz_ The high-pa~s factor

11(1 + 104/jJ) results in a Bode plot like that in
Fig.l.24(a) with the 3dl:l frequency

lo

=

= 53 Hz

2;rl00 X 10-Q X 30 X 10'
:. T{S)

T 1(S)T 0 (S)

104 Ht,.

The Bode plot for the overall transfer fur)(.:tion
can be obtained by summing the dB values of lhe
two individual plot~ and ihen mising the resulting
plot vertically by 40 dB (corresponding to the factor I 00 in the numerator). The result is as follows:
~1 •. 1.

3 dB frequency

I

1+

X -666.7 X
S

2rr X 15.9 X 103
-20 dB/decade

t 20 dB/decade

dB

t

1- 20 dB/decade

- 20 dll/deeade

Bandwidth= 16kHz-53 Hz:::; 16Hz

1. 61
!?I

vi ""· v,f? .\.+ R'
a\ To satisfy constmint (I), namely

.ffHz.)

V12o(1

+

,;~))v1

\Ve substitute in Eq.( I) to obtain

r = 10

W 2 10; HY1 j(}i 106 HP (Hz)
1.·1,1 ::20 40 40 40 20 0 -20 tdH)

-~;:,

Rs

+

R1

1 ...L

100

S

S + (27T X 53)

Chapter 1-18

Thus

The firsl factor on the LHS is (from constaint ( 1))
greater l?t equal to (t -.r/100). lltus

RR+RI..::: __l _

Rt

- 1-....!..

G,. 2::.

100

Ao

(3)

(t - I~)) using

8 '" 7.3

10 1 ~ (.'m 'K " 2 :

X

k ., 11.62 X 10 \:VtK: E.,

1.12 V .we

hav.::
T

7(l"'C '" 203 K:

rt,

or
C 1R 1 "" C2Rt
When this condition applies. the nttcnuator is said
to be compensated. and its transfer function is
given by

V0

c,

_

v, -

!l"C ' 27:1 K

T

1.52

!1,

T

C 1 + C2

which. using F.q. (I) can be expressed in the alternate foon

Vo
V;

Th;~ti5.uneou!uf.:very 5.13 :< 10 1' silitnn
atnm' is ioni7ed at thi;; temperature.

!+&

R1
Thus when the attenuatot is com!JI!nsatcd (C,R, =
C,R,) its tran.>~nission can he dctennined either by
it.> two resistQili R,. R, or by its two capacitors. C,.
C,. and the transmission is nm a functitm of frequcncy.

)(

20"C

'"':

=

II,

..

~
N

'

105 X. 10

H

:'9J K.

KfiOX to"

c::;-~

r

J0 " i.'fll

llln"c

t'Jll

' '!J

l

N

nx

10. ll

C\?:l K:
~

2.87 X 10

c·m : ~

9.45 X H!

I'
l ..Ux !0t'l!l

T

U:I'C ... WS K:

'{I

·1.72X 10 12

';

"'
,\'

!l

:I

1. 65
Hnk coilt.:t~ntm1hm in intrinsic S,.

II;

1. 63
The HP STC circuit whose response deter·
mines the frequency response of the ampli!1er in
the low-freqvcncy range has a phase angle of
11.4" at/= 100Hz. Using the equation for

hdow intrinsic k\'d hy n fm:tnr uf 1o't

L T(jw) from Table 1.2 we obtain

:. f Jot~ c\mc·cnlrull<\1' in I' doJ'c'd Si h

tan-! /,, = 11.4'';=> (.,
100
.

1.5

hokslcm

Y

hnl~

ln pbn,;p.bnrus ./,.

n,· 'p.,

"·

!.:" /

1. 66

l\tf = 100Hz the drop in gain i~ due to the HP
STC nctwork. and thus its value is
20

lng-;:::::::::~=1~ ""

I, + (;o.l6r

'-'

T

=

27'C = 271 + 27 '"

-t\.!7 dB
At 300 K. II;

Phosphorous doped Si

100 .

Similarly. at f = l kHz. the flrnp in gain is caused
by the LP STC nelw(lrk. The drop in gain is

n, = :V 0

o·•

10 16 /cm'

0 17 dB

llok C<>tH:cntration
The gain drops hy J dB at the e<>llKf frequt'IKirs
of the tW(l STC nt•tw;wks. that i•. atf 10.16 fl;.
and( 4959 A fl1

T

!25'T

···" p.,

~00

K

Chapter 1-20

= 7.3 xto'sx(l9Slae-t.I21(lxs.6zxto -5 xml
2

= No
n1
p,.--

10 nm
~

= 4.72 x 10 11/cm~

tV

E=_!_Y_=

Need }drift -~ I mAI~tm>

9
- 2 .23. X 10 / em-~

10" 3 A

-

_8

_

l

-

,

4

lOX 10- em

1.6 X 10

= 10' Vlcm

= q Nn Jln E
--19

Nn X 1350 X 10

)

10 Clll

At 398 K. hole concentration

~Nn

"

p;, = 2.23 X 10 fern ~

= 4.63 X

10 17 /cnl

1. 67
(a) The resistivity of silicon is given
For intrinsic silicon.
p "" 1i "" n1 "" 1.5 X 1010 cm-' 3

1. 69

Using 11. = l350 cm21Vsand

From Figure p3.IO
l Op.v-Pno
8
__

= 480 em2/Vs, we have:

l1p

=

p

- n/

P.~ - No

w

2.28 X 105 O•cm.

=3x

(b) "• = N 0
2

p. =

~

!!L

"•

= 10

R
lOp
••

o.t x

w- 4

x to- 4 em

X 2.25 X 104
0.1 X 10- 4

3

dx

10-s cm 2 • we have

= 2.25 X 1017
Hence

0.

R = 7.59 X 109

-

since OJ j.Lm = 0.1

=

Using R = p • ~ with L 0.01 em and

A

"" (1.5 X J0 11lf
1016

= 1016 em -J:

1 = -qD ~
Pdx

P

= 2.25 X 104 cm' 3

=

Usingj.L. = !Jl0cm2!Vsand

-1.6 X 10- 19 X 12 X ( -2.25 X 10 17 )

= 0.432 A/cm 2

11.1, ""'400cm~/Vs,wehave:

1. 70

p "" 056 0-cm: R = 18.8 kO.
1018

(c) "• = Nn ""

P. =

n/
"•

cm- 3 ;

N, = N" ~~ 10"' em' and
n; = 15 X 1010 cnr-' we have V0 =< 695 111 V•

. 2 ··3
2.25 X 10 em

~

A

Using (3.26) and E,"" 11.7 X 8.85 X 10" F/cm.
we ha~e W = 4.24 X 10' em= 0.424 Jtm. The
ext~mst~ o! the depletion width into then and I
rcgwns 1s gJVen in (3• ·?7)
d 0.28) respectively:7
k
• nn

Using fl.."" 1110cm2Nsand

f.lt,

2

= 400 em !Vs, we have:

5.63 X 10_, 0-em:R"' 188 0.

x.

= w-~
N,.l + Nf)

·-

·"' ~ IJ.m

As expected, since ND is increased by I 00, the
resi~tivity decreases by the same factor.

xr

'~ w-~
NA + N[) ·-""

0"1"
·- ~ IJ.lll

p ...

(d) p = N 4
r

·

"" 2.25 x

~

.,

10 1& Clll

tt

P

'"'

·
',Since bmh
. re
. gwns
are doped equally. the deple-

~
n'fl

uon regton ts symmetric.

w·i em-·'

Using (3.2(J) a~d A "" I o·'' ern' the <·hargt~ magnitude nn each stde of the junction is:

p '" 156 fl.-em; R = 521 kH
(e) Since pis given to be 2.8

X

!0 -~H-em. we

direct! y calculate R "" 9.33 X 10- '

n.

1. 68
J~rifl ~"' q (IIJ.ln + P~lf,) E
Here 11 ,.,_, N~ and since it i~ 11 - Si. one nm assume

I'<< 11 and ignore the term p!J, Also

·-0"1'

01

=

3.39 X !O"C.

.

Chapter 1-21

1.73

1.71
Vr a.t 300" K = 25.8 mV
built in vobage V,

n, .

JfNA·orNoisi~byafactorof 10, then
new value ofV0 will be
·

ln(NA~») = 25.8 X 10-u

V0 = Vr

Vo = Vr ln(N4~»)

.

fit

1
5
( to fl X 10'

lio = Vr
)

In ( 1.5 X to'6}1

tnCO n,N~N")

The change in the valueofVois

= o.633V

,..

ln(lO)

ln(NA~D)
n,

1. 74
with N,. =

to 16 cm·3•

1016 cm·3,

N0 =
and n1 = 1.5 x 1010, we have
Vo= 635 mV.
and V.~t= 5 V, we have
W = 2.83 X 10'4 em = 2.83 Jlm.
with A= 4 X l~ em:~, we have
QJ = 4.12 X 10'" C.

Depletion with

w=

~1'::'·-Es-(~1-.-+---c-1 -::-)-v-0 +-equation 3.26

4q

No

1. 75

J? X l.04 X 10.:.17(.l +-'-)X 0.633

=

W

Nil

1.6 X l0-19

"j

lOti

1015

= 0.951 X I0- 4 cm = 0.951 J.Lffi
1o find

=

X.

Xn and XP

N

W

N 11

16

+" Nll = 0.951

X

IO

10 t6

+ 10 ts

= 0.8642 p.m
=

X

W~ = 0.951
NA +No

P

X

IOI$
1019 +lOIS

= 0.8642 J.lffi
to calculate charge stored on

either side
Q1

=

Aq (

~" N W where junction area
NA +No

°)

"" 400 J.Lm2

= 400 x

I0- 8cm 2

= o.95t

x to·•

Hence.
Q, ., 5.53

x w· 14 c

1. 72

1. 76

Charge srored Q1

""

q AXN

Here X"' O.l flm ", OJ x 10 'em
.k" 10 fl.m X 10 t-tm "'" 10 x 10' em
X 10 X 10 'em

'' 100 X ]() 'cm 2

I, "·" Aqni(_!!L + /)" )
t 1•• N 0 l..,N,~
A "" 200 p.m 1

= 200 x

I, "·' 200 X 10" 8 X 1.6 X 10 !'!X ( 1.5 X lOw)!

+

So. Q1 ''' L6 X to l'l X 100 X 10 8 X O.l

-

X!O 'X 10 16

5 X 10- 4 X 10 17

"l6fC

10 .g cm 2

10

""l.44Xl0

6

A

18
10 X 10 ·!4 X 10 16

Chapter 1-22

I~ I,e

VtV

cJ""'

T

cJ,

,t.44 x to··l6 x e'llt,,z.w

( I+

79~tA

s

c1 =

ForV.= I v,

= BT312e·lioHlKTJ

""'0.45 pF

For

At300K,
II;

= 7.3

X

10

I$

J il

.

X

(300) .

X

e

-1.121(2

X

V,.= lOV. cj =

n12 (at 300 K)
At305K,

=

7.3 X

10

X

I

JQ..)j

0.75

=0.25 pF

= 2.232 X
ts

0.6 pF
(1+

8.62 X 10 -S )( 3().1)

=1.4939 X 1010 /cm 2

11;

1

)'i
0.75

( I+ 1

1. 77
nl

0·6 PF

VR)'"

Vo

(305)

1. 80

10""

312

X

e

-uv(zx8.62>' w- 01 ,oos)

=2.t5i X 101(1

c4

GJ
7

=

10 pF "" (

'Tr

_·)_ X 1 X 10- 3

25.9 X 10

n12 (at 305 K) = 4.631 X 1011.1

3·

'Tr "" 10 X 10- 12 X 25.9

n/(at 305 K)
so .
. = 2.152

= 259 pS

n/(at 300 K)

Fori= 0.1 rnA

1. 78

c,

=

G:)x

1

== e59 X 10-12) X 0.1 X to·J
25.9 X 10· 3
= l pF

1. 81

_ !::1 ""'

for p + -n junction N4 >> N 0

:. I :::: 11,

IT(c

·• D
Aqn,·

=

p'

71' -

V.'l'r

I)

,!!-{f-n ~

10 4 .><

Ll-~ cm1 x

Q,. =

1.1\" l'l · Fl

~r~

X ( 1.5 X

4)1

71'/1'

100 X to-'l X 0.2 X 10 '

10 1") 2

.

(10 X 10
10

note 1t.un = 10 · 4cm
= 100 ns

{1

For this lease

l, ::: Aqn/

Dl'

IO

10 X

J(J'

4

2oxw·'~c

X 10 16

C

"'3.6 X 10- 15 A

.J

= (_

'r)l

Vr

F \' ..

= l,.(e

3.6

X

1 -

!} = 05 X lO ·l

10 ''( ,v:(ZS!h

""} \'

0.6645

v

9
( loox 10 - )xo.2x 10

25.9 X

l!·· ') ··

1)

0.5 X 10

1

- 772 pF

1()-'

Chapter 1-23

1. 82
a.

X,.

0

Depletion . . I
Region ....,
Length of p and n region

=- 11, + I,
Find current component 11'

b. The current I

QP -- Aq X 'I2 [p.(X") - p 00 ](W. -X.)

t . [

= :zAq Pnot!

wv,

I

= 2Aqp. 0 +(e
I

nr'

-

D

P •• HW.- X.)

-

Vll'r

-l)(W.-X.)

:;Aq-N· (W.-X.)(e

> Xp
dl

1 1'd\1

But l = l~ (e 1'/V,- 1)

dl
d\1

lse

VN.

'

Vr

f
-~'r

. c···d ·= 'TT ·

SO

(e

fI

~~

V,l'V•.

' .. 1)

w!

= 1
1 x 10 1
'
2 10 25.9 X 10·'
Solve for W,

d.

The excess ch~mge. Q1, can b<: obtained by multiplying the area of the sheded triangk of the
p,.(x) distibnti<1n ),!J:tph by Aq

c,.

w. '"'

63.25 lllll

'-1)

Chapter 2-1

2.4
2.1

2.2

ik. vot~c a..t -t\u.. pos\~,tt 'lnpu!: h.Q.b-\::.o
be. - ~ .~ooY .
~ •-3.0.2.6\f"

,A. t...\

, =.--3.

(U'+ -Lt.)

=\00

- 3.o26 ..(·3)

2.5

''"" = I u Sin (27160)r "" ~( ''' + v2}
,,, = 0.01 Sin (21TIOOO)t

2.3
#

t.l

v,

1

'I?,J=

u.

vr/t•,

vl- ,,,
1

0.00

o.oo

0.00

0.00

-

2

1.00 1.00

0.00

0.00

-

(b)

1.00

1.00

2.6

(a)

4

1.00 1.10

0.10

10.1

I0 I

Circuit

5

2.01

-O.ot

-0.99

99

a

1.99 2.00

6

~0

(c)

0.01

1.00

(d)

-5.10

Fo
·- 001
V
(h') v i i = )
\ = 1.00
100..
T' 4 "'' l.OlJ- 0.01 ~" 0.99V
The missing entries for experiment #7:

(a) v, = " ' -

1', =

"

.:· 5 · 10

100

= ··0.051

v

u,+ ,,,=5.10-0.051 =5.049V
All the resluls seen to be reastmable.

(C)n,

t>/.,,(VIV)

-100
lO

100

experiments 4.5.6 show that the gain is app!'O)ci·
mately 100 VN. The miasing entry for expemnent
#3 can be predk1ed as follows:

(.d)

v,= ''""- u,/2 ""Sill(l207l')t- 0.005Sin
201:l01rt
,.. , -= 1• ''" + '',I 2 = Sin 120m + 0.005 Sin 2000111

3

2.00

= 1•,- "'

"" -10

R.,.(kil)

10

b

-10

c

-10

10

d

-10

10

10

virtual ground no current in I 0 kil

Chapter 2-2

2.10

2.8

=-~a

-=>- R..2. = 5~1
R,'+ R.2 ... 1.2.o.t..n. =>- SR, +R, .=-l.loK..Q~
R, .. !tet/<..Jt ->- R.,_::: roo ~Jl

~
::: - 5
1):.

There.are four possibilities:

,~

f , 1(/l.

~ "' -2 VIV Rin
lf;

=

10 kJl

lOkfl

2.11
lOkfi

lOkfl

~

= -0.5 V/V

ll'i

R,. "'

t

lo~IG.(= ~ JB ~ u..,.-fq. qs- ~v- ~ ~ "' ..
:=::)- ' \ . = I i . 't S" R, { 10 H Jl
For IQr~esl-

10 kfi

R..2.

poss:.lole i"'~

-= 1o HJl. --7

R, c::. Soo KJl.

R;"' ::: Soo ~o

.A,

I

~ c.lo.s...d toop

~a.:_ .( C:r}.

G-:

2.16

~ :s..SD~
£?
If

v.·c-*>
" A,

-=

2.15

2.17

""

-R,

R2

5

G=-"=-·~-=v1
R1
R1
15

v, = OV,
1• 1 = l', = 5V
For ±I% onR.. R,: R1 = 15 ± 0.!5 .kll

R2

-R,

v, = ll;~ =

s "" s !5 X

= 4.9 v $
For
$

v; "'' -

(Jp:5

=:> 4.85

1_R2

'R;

.tsx4.95
~
15.15

-

~4~~~5
''"

$5.1

110:5

P..

I); -

....

~

t'i - ~
RJJ.

. - Ro/R.,

5.15

(1+~)/A

_ -

100

1--t

1,~bo

... _

.9o.g Vt

~

::::.)'-.!&,. ::::lJO, g ~(T

v

+ .
· V 14 85 X 4 · 95
15-0.15
· · · 15.15

:5

«>"'; -

Oj "" 1 ~

";·

~ lf.ssvMe

- 15 X 5.05
l ).
•
14.85
l'

5 ::!:. 0.05 kll

"'

v

R; .. RJ( (/ R,

wh..en ~. = 11($1..

YR. ...~1oo V'jv
V,·

!J.· -IJ;

~
,.,,

:;

tJ, - tJD :arR' a R .. ~- :!P)i~-~)
f?
'
J ·1oo 1oooV\ tooo
-~

R.' _ J-O.:.!
, -

""'o. sqeu~..n.

J.oot

__., ~ =~. 9 I< .n.

!:!

5.

;;: ~::: .....&sf<,-t ~ I +f\..c.

al- I<.Jl t ,z

Chapter 2-4

2.18

~t~lb:.t3c ~f. +4
c.Ji(t
-tk_..

';l
• ..

1ttlltll"h'rt1

v.= -At•. =II.- i,R,
i,R, = 11 (1 +A)

ijl~ Wwt~•,.eJ.

=

TJ•..

(

lroM

Vil"l ~ j"'lllfl

Vof~3t c.F ~f!ro

:Joll t.o ~ . TJu.JS

d.· (ooo

Will

d

tooo ·

tpoA.t-

.il..

i-t"PIM "U'\e

"J a, M"">C;,,u,,.,

i; Rl
I+A

Again v,=i,R, +

• ,_ 1

lq&lj

.R +
-1, · I .

ctP .t 10 ,.,v:

~ =

SoRID =

11

2.19

11

.

R2

11--

J+A

R +..!!J_
1
A+ 1

2.21
G'

VJ

=

-R21Rt'
t+l+R 2 /R 1'
A

il
,.__-+-....:.._-l----4·

In order for G' = G:

G =

=

-RziRI'

I+ l +R2 lR 1'
A

-R2

R1

a) For A "" oo: v,"' 0

b) For A-finite: u1
-tl

:::::l> 1!0

""

-•-

A

""

-~. tJ0 = v1 TJ

(Rl

i 1Rr

+ Rc)A

R,A = R,

Rr

= ARc+ Rc

+ ~(R 1 + R,.)

+ GR, + GR.

R" _A- G

i 1Rr= R,. "" .-!" = - - - ·
''
1 + .!_
A

:R;-I+G

2.22
2.20

(; = -R.,_ /R.,
I+

E

I-+ lt1/R1

p..

::I !;-~........:........!!
"'l v.Gt........-.....1..
~.. ~

lb.- G_.....,...J • ..1oc

'tv

f>. = (I Hoi>) ( .L -1}
C>·(

ih•'.s ;, &

~J

-'\

e- .. (o'l.:::: o./

='lo, V{v

,W......:.wJM ..,, ~J..iN!d

vtJ.u..o. tnr ~ •

Chapter 2-5

2.23
(a) A!Gl!IOI "" I+ R1 1 R1
AAIA
A

{b)

A~l ~

0..5%.

o.oos _

1+

A:= 50%.=~= tOO
too

S--A-

A = tOI(.5)
(.005)

= 10.1 k
2.27
a)R,

=8

l!

82 = (R

R3 ·= (Rz

II

R)

+~

R) +

R4 "" 

=

1+1 =

+~

""'

11

+ / 12

= (

P..,

<:.l ", = I, R = -/8

"' = ···l,R = -2/R
", = ... J,

I? == -41R

- I 8 + T, 1i

'

.2

• · · · 4/R

···· 81!5 •

2

-818

Chapter2-6

2.30

R1 = R, = lOOkO

!e ,. -RuR• + R. +
v1

R4

R1-\R3

v
= O=:~o...!!
v

R2

-R
= - 1 = -1 =:~oR1 = IOOkU

R1

1

R4

""

t)

10 kO =:~o.!!! .., - JO
v,

= -l X

(.!!!.!!!
+ .]!!!!_ + t)
R
100 kO
3

+10 =

(1~ + u)=:~oRj =

1.12 kO

Potentiometer in the middle:

!?t
'~';

=

5- + i )
-1(5 + R:1 100 + I

~"" -1.87VN
V;

2.31
2.29

.

~

..

t>

\t. =.0

..-!)- t..

=
0

~~:JMA

fr.o..v.

po.l"t"Q..:

.

"1..="" "''1:

~

.::t

~0 Wt~

Chapter2-7

2.32

cltoou ikt 14)~"'-t-~d S~--tr Co"kdura4"

Wt

tt-·--

2.35

v.= v, + 2v,·-3tJ,-4tJ.:

R

For a weighled summer

~__...,,__...~
).

circuit:

assume:

R0 = IOkO

2.33
v. = -(2l', + 4v, + 8v,)
R,R,,R,;;.IOitfi
R.
R..
R
-!; "" 2, -!; = 4 ....[ = !!
R1

R2

R4 = 10 kO => R<

R3

R1

=

Rb

I ~ X :!Q = I
R2

R,

Rb

=

R,

=

R.-= IOkfi

~ .= ..3.s;-.,. c.t.n~<&c t:)- o. ol s.-... ( :trr ,.,ooot>
sl\.o o\c\. 'bt..:

c.Pt

= _5s.:""wt. -5
fl.Sf>VI'II\..t.:

I)":

5S•".ut}

~:: ?..v

~=

-v, -+~S'{)

! .... a.. wual\..t:-c.d .ScJW\~f' ~\dll~~"":

Jk. :: .<. .s

JSL : .....,,
R,

R.1.

p_

:li>K..Il.. ......,.. •.,.

&

3

L',::: 3 S.n.(ltJJC6ot.).,.. o. ofS,·" ( .:z n Ylflttot)

"'lhe.. ov....tp.....t "~d~\

R2

40

2.36

2.34

oH.

:!Q

R.""' 40kH,

R, = 20kfi
R, "'40kfi

~~

40 kfi => R3 =

= 13.3 kO
Ra x

R.1 "" 10 kH =:) Rr = 80 kfi

I.T0

=

"'1c:;K

:R,

q

v)~f' Co

ltcwe :

~ .= 10 ~ _ 10~

Chapter2-8

2.37
This is aweigbled 8UIIltller Cireutt:
V.,

·

2.40

R,
. R11 . . R, . R,.. )
=-( -. V0 +-t!t+..o-11:1+~t1J
. R0 · R1
R,_
R3
•

wemay~:

"'I=
Vt.

SvXao

til= 5v>kfl
0.1 mA

As indicated, i only depends on Rand v and tbe
meter resistance does not affect i.

2

F

v., = - R1;

(20a0 + 2'a 1 + :22a2 + 2la3)

2.41
tJ.=

fl 11

+3n.,-2(v,+3v,.)

RR,N3 = 2 I·r RN)

= IO.kfl=>R,""' 20kfl

RRrN4 = 6=>RN4

,. -6· = 3.3 kO

RN

=

20

Rm II RN4 = 10 K H 3.3 k

(I+Rr)Rp
R,v Ro

=

l=>(t+12.)R,.
2.48 R,. 1

= I =>9.06 R,.

Rt' "" R,.t

II

Rn

= 2.48 kO

II

= R,. 1

R,.l => R,.

2.39
..!_+...!_+...!_
Rl't
Rn Rl'll

(l + -Rr)Rr
-

RN Rl'!

R,,

R
1•

= 3 => 9.06- =3
R,.2

=> Rn:::.3R,

X 3Rr
II Rn = 9
""9+'") = 2.25R,..

R,. "" 2.25R,

II

R,.D

=> R,. + Rro = 2.25 R, 0 =>Rro = 1.8 Rr
Rp "" 10 k!l => R,. 0 ""' 18 k!l

~=2

u,

Short•circuit R,;

R., = 9 X IOk = 90kfl
R., = 3 X 10 k = 30 kfl
Rr=20kH

IOkfl
IOkfl
IOk!l

--

Chapter 2-9

2.42
2.45
tokO

2.43

Setting

output component due to

tJ,

11,

= o, we obtain the

as:

110

=

t•1...J.Q__

l

v.,=-20v
Setting t•, = o, we obtain the output component
dueio t•,as:

v02 = u7( I +

2~X 20~~

R) = 20

(t + !.Q)
I

2.46
t'2

lOOkQ

The total output voltage is:
tt.= n,., + ""' = 20(r•,- tt 1)
Fort>,"' 10Sin21TX 60t- 0.1 Sin(21TX lOOOt)
u, = IOSin 211" X 60t + 0.1 Sin (211" X 1000 t)
tt, =

+ lO

+

lOY

4Sin (211" X 1000 I)
a) Source is connected directly.
110

2.44
\)"o

0,-

"''+..&.-R,

~>( ?<. 4 \ _.,.

=\+~-=- \+L-t=:.L
:x.
".X.

I {. QA. -<..
-~

DO;)

= 10 X _I_

=

(}.()99 V

101

i1 = ~ = 0 ·099 ·= 0.()99 mA
.
I kfl
I
Current supplied by the source is 0Jl99 mA.
b) inserting a buffer

;Jt w~ ~d. o.r-6t.$\-or o" -tloo..l. arou"c\. to:th,
~=I-t lt-?C.ltiOK
q.
.?t.artOlt + R.

Go,,~y....., 2.\ wh~"'
-x.... o

-=*>'" !U :::\ -t
-'r

10'<.

R. = .!B.!S...
!tc:>

R.
.=

0· 5 \C. ..t)_
110

.

11

=

IOV

JO V

= lK =

10 mA

current supplied by the source is 0.
The load current i1. comes fmm the power supply

of !h.? op-amp.

Chapter 2-10

90k0

~:
-

eq,

lOkfl

IfA= lOOtben:

a_..., __,_A =
••.-....

I+ 2_2
to
tO
9·- v...,
1 + 1 + 90/10 = iJ ""' '"" '"
100
I +90+90

G"""'l'"•••lod = _ _.:.:10:.._.::.36~
1+

ertorof dam magnitude

f!it- ,I
l!LJ
1

~)

=

= --'A+l
1000

100

125

'i:i25

I +90+2Q
. 10 36

too

.

= 11.1 V IV

10

2.49

Vo(Y).
v

0.999

Oain
error

-0.1%

0.990

0.909

_§L• G0 -GX tOO= GofA ~tOO sx
I+ Go

~';

-I%

A

-9.1%

:::} A 2: G0 F where F = 100 - 1 .:: 100
X

A= 50V/V

I+~=
R,

G = !:Q =

IOV/V

Thus for:

Rl
Rt

l

t'1

x=O.Ol:

+ t + R.yll 1
A

1 + 98/10

I+ I

+ 90/10

0 0 (V/V)
A(V/V)

x=O.l:

x= 1:

G0 (V/V)

(510R,h + 90R,h + 900)

= 50 X ( JOR,b + 90R,~o
3()()();:}R,b ""

+ t)(J())
36 kfl

x= 10:

10;

G 0 (V/V)
A(VIV)

IOOR,, ""'

tol

J()l

105

tot"

tO' J(}ll

Hfl

too hlgb to
be practical

A(V/V)

X

to4

10

_ 10 _

- 1.2 - 8.33 V/V
50
In order to compensate the gain drop,
we can shunt a resistor with R1•
Compensated:

10

X

= lOk{l:::}Rl = 90kfi
1+

G =

l+ Go

Go

A

2.48
ifR1

G"'

G0 (V/V)

102

lO

to2 tol lo4

to4

HP

loti

101

10

102

tal

104

1(}1

104

lOS

J()<\

10

to2

Chapter 2-11

2.50

2.53

for oon-:inverting amplifier

lf we assume R3 = R 1• R4 = R1., then

G =Go
-l + G(J
A

,e = Go- G X 100
Gt,

Rtd

for inverting amplifier
Ga
,. Go-G X 100
G=
,E
(!
It)
I+ 1-tio
i\(VIV)

R,

R1 = R2

Go
{VIV)

a

e%

G

b) A,1 =

(VIV)

-I

b

10

-0.83

16

10

0.91

9

R1

= R3

c

-I

100

-0.98

2

R. 1 = R3

10

10

5

50

d) AJ =

e

-10

100

-9

10

f

-10

1000

-9.89

Ll

g

+I

1

0.67

33

-

30X20

20 + 100 + 20

-

- 15

·

+

+ 20

20

2.52

~ ""
Rl

=

1.()7

10.714 V

=

v+ :

onlv:
R1 = "1!1
.
I "" R

R

V

Noh(#. f{..c...t
...u hi:a.ll'e. ; & "" .&.... _too
{0
f{3
~

--

R.,.J. :: 2 R, :: .2o~.n.
p.)iN

20Ul"" R4

0.5 V/V => R2 = 5 kfi = R4

I'() :S;

.:1Po "" 2 X 10.714

=

= 10 kfl

= -10.714V

+ 10.714
pot has 20 tum, each tum:
-f0.7)4 :S;

= !Ok!l

= lOk!l

Considering that u _

••1

30 X 20

20 + 100

= 2 V/V =>R2

2.54

when set to the top:

t.o -

= 10 k!l

R4 = 10 kfi

""'

R 1 = R 3 = JOkfl

when potentiometer is set to

- l'i+

='>

~

R3

z:

c) Ad= R2 = 100 VIV=>R2 = 1 Mfi= R4
Rl

the bottom:

,

""

d

2.51

=

a) Ad= Hz = I V/V=>R 2

A

case

= 2RI => R.

t:l;threovf hy  Rs = (R 1 + R2) II (R3 + R4)

"'0

II

R

2.56

A,M .. ~ .. A_ (•- ~.!!..)
t_, i ltlf

UiU"f

1l..c. wot-StR
" 3 connected

to both

f<,

~

\~ w~t'." ~- t.....~ \\-S.

c.o.JJ.A-

R
lT

1&

~<--. = \

" 2:

.&1...

R1 =.!!"" R
I

t \-

·H

B:.a.. !3..)
~~

ct,

R-...,

M~ ~..... :=:...,..

v~ O..f\d

h

hAs to l.:.c oJ:

o..\SoR'-'

~

ho.J>

~{.&. ~ ~.

R

\OO't:X.

R_'1

R

bt..

""''"''~.

\00 -t.ll.

R. 1

\oo..:x.,

1oo-~
\00 t)(.

{{....

l'f~

to

t~,{h-1:.. ~

IOo-.::X.

Jb......:

R

.Ba.

\t'£ ~i~

-

~ :: 2.o tod l ~ \ . No.-\ ~t. h.A.II'C to c.a.lc:u.ltJQ.
~ \!>~ o""' ~ ~ c_h,ose fa.,- f\-1\
C.t'\

.,....\ft.

"""~

V<;.

'\...,. Ko.,c. •

(:(1.:::.R.~-::1oo-.,;

~::. ~~ + '-"o2.
1'

~

::

-.,.., qppty \II\~ .su~r pas:Ho""

-~_l._ " ; + '-'2. ~ li-t fh. )
"1r,"
R.)+~
~

'{"' _
l)O

R,:=:~..:\00-t-:X.

~oo-X.

o- +

'-"'2-

•
=-12o10.01"'-~ {)- -+ &
I
2.

1 aot;t.

(I-t

:J.,bo

\00-t-X..

j}-

wt_

C..O"'!h'd.H

~ ~~
jOO-tk,

(oo-;x.)
1 oo-tX.

Chapter 2-13

CMRR

CMRR =

lk

20 log

for~' << L

2.57
A

""

if k "" AJ,.,.,.1

...J!.L.(l~~)
R + R.;
R R

=

3

1

=

vu 1

+ tlo:!

=

-R1 v 1 + 1':!~(1
R1
R., + R4

+ ~)
R1

"'·

~ ~~.

100,

= 20 log 0.04
lQ!

CMRR

4

In order to calculate Ad, we use Superposition
principle:

v0

+'I

4~

0.01

"' 68 db

2.58

then replace v 1 =
'=

100 (1 - 100.100)
JOO:'ti)O
I00 + I00 .

A,m =o

Referto 2.17:

~

~

R)

R1

R

=> A,t = -1 "'
Rl

li) Since A~ = o.

IOOkQ

Ad

CMRR

ClvtRR

then if we apply

v"" 10 v, and

Therefore, VA

I,+!~

CMRR

20 lng

I
II

·•

!~!

-:R;I

2 R, ___

~-~~
R, R,

I

fm worst case, minimum CMRR we haw ~o maximizc the dcn.mtin-

~i5

v,,, ''., = o.

·-~lQQ_____
"" 100 + 100

11

5 '$

I.'...: Ill ~7

5

~

2.5

Chapter 2-14

c)we.aplythe Supeqmition principle to calculate
A,.
tl •• is the oulptlt voltage when 11 ,. = o

= t'IcM ( -

""" i.s the output. voltnge when u 11 = o

...3z.. = Aer•

I 00 kfi II 10 k!l
)
I + 12(100 kU 11 10 k!l) + 100 kfi
=

0

f~(;M

Now we calculate ~~.,. range:

- 25 s
-2.5

119

s 2.5 ~

100 kfi U 10 kfl
< 2.5
< I'JCM X (tOO kH II 10 k!l) + 100 kH

-30V,.; t'R"',.;30V

lOOk!l

2.59

+
11" 2 =

(l +
11,;,1

too ~c.n II 10 ~c.n
!l 10 kfi + 100

t'u 100 kO

. 100 kfi
)
too kn II to ld1

= tJI.:: X

~

v,=

11"

so we can consider v , . v a virtual

1

u,} ""- u., 1 + u.,z

= -

1~ 1

+ l'lz~A<~""

I

Now we calculate A,~:

then:
()~ l'AII

l.-'tl

.-::::

·~

j

' ""
v, =

t'ICM

kf!

lkM- II,;

100 Hl
T!A -·

i1
lt

10() kO !1 10 kH
100 kH il 10
+ !()() kfl .

100 kfl X i,and
.

·•

i, '= t 1

-

FA
!(} kfl

", ·- I 00 kH X i,

+

lO X ,, ,

·-[i;R! +VIlA+ i,Rl]
11'1

- [2i-;R2

+ 11o,d

Chapter 2-15

2Skll

25kll

2.60
a)

and 0 together
a)

v,

iv).!!! ""
l'+

=

b)~ = -1 V/V

v,

+! V/V

2 ""

2

v.

Ttl

i)

25k.O

25k0

2.61
v,

ii)

!2

= +I VIV

'l.li

3-o.a'ISi,.,.,t V
251t.O

25kD

o.oc,S:nwt ::f3-t1.o~S,-,.wb) .: o.olS.~wl;)'•A
'" + Sotr.wt.:
. 3+ 't.olf s,·,. wt, v'
.. 3.,.o.o~S;"'wt

1.. =
~

3+

V, .. 3-C'#.ol.tS,~~t:-51>/C-" i =3-4.ol.fs:..,..,t, v
"t ='b =t ~ . . '· s _ .2 .o 2. s:;'l ..1 t:: ~ If
The circuit on the lefl ideally has infinite input
resistance

iii)~ = +2 V/V
l';

\{ ::: ..,.13 -~ ... - B.oB S,'A.wl; , r/

Chapter 2-16

2. 62

.a.

(t + ~) ""· 101. If

The gain ofthefmt stage is:

the opamps of the first stage saturate at :t: 14 V :
-14 V
~

:S

v 1 S + 14 V

-0.14 V :S

viplained in the teJ>t, the disadvantage of drcuit in Fig. 2.20a is that v ~is amplified by a
gain equal to v"' (I +

~:)

in the first stage and

2.64

therefore a very small tl ...,. range is acceptable to
avoid saturation.
b) In Pig. 2.20b. when v...,isapplied. f'. for both
A, & A, is the same and therefore no current
flows through 2R1• This means voltage at the out·
put of A, and A1 is the same as "'~·
-14 :S v, :S 14~ -14 :S l';cm:S 14

Aa(2) of the second stage is

&
R)

=

0.5

R, = 100k0,R,"" 200k!l
we use a series configuration of R,. and
R, (Pot): R, = 100 kOPot
(Fixed)
Minimum gain =

This circuit allow for bigger range of n •~·

(I

+

t,) ~ 05(

I

+ 100

:'+

R,

2

I :s A.t s 100 => I =

o.s(t

+

l

2R2
RIF+ IOOk!l

=> R1r + 100

2.63
A., "" Jb_ {_1-t- Ra.. )
...

f\,....:oo

~j

c

R,

.!.fle!

(l ,_

1<» 14

J!Yl.!:) ,. .21 \//
!i',._

lti

,..d r:: 21

(t + 2L)=>
Rlr/1

ZR, = 199 Rw

(2)

R,

= o.so5 k!l:: o.:nn
= 50.25 kfl:: 50 kfl

2.65
a)

!]!
1~

=

I +

otpplyVc.., t.o
c-d note. tt....ed: \lew.. w ~ \\ o..pptiM"'

t:..._ ordtr to c.c...\UA.t.oli. Ac.,.....,
b:>'tk ;.... ~..J:.s

loo'\-h o "'kp....t "'\er-..l"''''h a f. 1"W.. ~:r,.h~.
to..,.. lt."Cli.lt.lok

W4.

:;.c..(O~ S~f.

Cod

t.'o

':.t

±;x..(

.t..:::;J

Ac__

=,..

..ll

~y~:"'a-- 'iWt.

do""- \..._ f'f'6\o\~ '2..6!.),

Wo.b

I... P2 . 6 'S ,...a .s ho...xd 1i-..J i ~
I.._

(1)

Maximum gain= 100"' 0.5

!>0

-±ll•
•

U:. a.\1 rtl\st-o.-s: on.

No...>

2R1

o). <2) => R1r

C.HRR = 2.o~~ ~~~ :::

cJ;

=

=~ . lh~"~6t"f. ii.Q

o-"""

i~ 41S6~.

Ac..w..-:L

c.-~ R R. ,. !Z..o

l>o

c

e.'\

!:o

So
,::;:-o.a'L

$<)

..2.1..._ ,. 6 0 Jh



=

z,_;,,

we use supe.rposition:
Vl

~

J11- V:-

t•, only:

V 11 = V 0

2

Zt.i.,t

ul---2-

z j
..1.:...£!.-i
ot (•
.(.J_ •·R)
,
2
----~--

RI

i 1 R~it'"~
o
R

•'<;(\-')

...

15 ~

z~,i.,t
2

r)

Now if only (-

11 ,)

is applied:

tllJ

l'A

The total current due to l>oth sources is:

1.5

:.1--~=~
R
R
R
has ideally inlinitt·
The circuit
input re&istant-'e, and 11 requires that both terminals of Z, be available, while the other cir<:uit has
finite input rcsistnnce with one side of Z,
groumkd.

Chapter 2-18

2.67

2.69
ITI

= - 1- if ITI = 100 VN for/= I kHz.
wRC

!TI

then for

= 1 VN, jhas to be I kHz X 100

=

lOOkHz.

Also
RC ·"" j_

wT

1.59 p.s

2'11' X I kHz X 100

2.70
b)

+
~,a..,4J qt/' ioD.
J
-d

if reS«Jlts

b~ ~i.. u

R., = R, ThusR = IOOkO.

ih::.!...,
.

•

·~~ ou.t'p~ ~..ek"J -Hu.. ,-,f~b'/ '10

!6 iF .Fre1vl!"'GV
;F- /o,.Jt!rt:J /,'/ ~tfb.tfor
JW
J
ol- tb, t'h.e111. #.c ~tA.l-rJ 'th>old..t.., Cf'(!ASt! IDy t:4h:ctlbr

C.) L-'0 .:: 1):•

.,,. (0,

ITI = - 1-

wRC

RC

..L
~ C = -:-::-::-:---=--,-,...,..,
RC
1000 X 1002

with a 2V-2ms pulse at the input. the output falls
linearly until f = 2ms at which

-

ft.,& D~

I at w = j_ .

w = 1000 rad I s =

1' " -

cl; Th.t P~e doun.t~f: ~e. d!VIJ
S*l'fl le..ds 1-4 ~ l..y 'fo"

=

v,.

=

t'o

-1
C

-2

t = RC t = -2t Volls

where 1 in ms
TilUS 11 1 "'

-4 V

2.68

R,·t'l =R. ~ 1ooK..n.

c R "'r s ->-c.

2!------,
_1_ •

to 6ltlcl>

'OJf.F-

"7

0

r (ms)

2

2

-t.h.a ~H·""t'~ ..-~c:.w

o.I'\J n- r-e.~ t..S

to v- tJ:

a.t t~ tofU•. :
e "' :M s "'"

olf

10

-lo

.-

...,.t(msl

los

'

f:
with V, ·•·• 2sin 10001 applied at the~ input.
2 X __
I .--·······
100{) X 10 '

l•.,(l)
P ,.(I)

o•.•

2sin ( lOOOr + 91Y')

~in( IOOOr
..

f

90'').

IOmF

Chapter 2-19

2.71
R,=R,.,20ill
a) when noR,

1- = t a t
111=wRC

w = 21T X 10

I

kHz~

C "' --......,....,-!.,,----:--:-:

u.,(t) ""

2w X 10kHz X 20 K

;(U

l.dl

-62.8t o""

r"" 0.1 ms

C=0.796n.F

~=

RFI R and dte finite de gain is -R"·
u1
I.+ S CRr
R
There fore for 40db gain or equivalently I00 VIV
-Rr
we have: R = -100 V!V
~ Rf

= 100 X 20 k

b) with R.: !t0 (1) ""
(Refcrto pg. I 12)

110 (oo)( j ·--

t>,("") = -I X R., "" -tJo(t) = - 100( I -

e

11CRI')

2~ ~ X 2 M

-100 V

r•t !.~)

= 2 Mfl

The comer frequency _l_R is:

c

0.796mX 2M

I

F

=628Hz

T~(ll)

----4-------L----•H(ms}
0.1

2.72
Each pulse Jowers the output voltage by:
j..,

"

= _!__. 1·· l.dt = 10 !}:S =
RC
RC

~
I rm

= 10 rnV

Therefore a total of I 00 pulses arc required to
cause n change of I \'in vJt).

l

<\(1)

0.1

~-_._____0

D

Chapter 2-20

2.73
__g.._

~=

"''

,·s.

VR,

~:a. .otSC.

y~

-a.

1>1 k.:c:k

:h.

LP dr~ w;T\.. o. de.~

Stc.

Oo.lfl

•-

0.5ms

of- ~ owl· c. ~-~ID ~ ~ ~::: t~:
~ {~ rt~'"~:~Mc.t.. ~~ t-o~~ . S6 S!or:

R;. t l<

R, ... \\C.J"'. o-d ~t~~r clc.~}~ .ofJ.O~r

=>

-2,____.

....., Ra_=\0 ~

;..Ba..::r\0
R,

\0

~

~clb ~~~ <~~~ L(~'*4!o-! W.C, ... 1tt~~
a

{h.c. 11>'1.4 '11-

(.0 d. b)

is 4 0 \4- ~ 2:

it>

=

-CRd";

''o = -I rns x _!__Y_

10

and

110

2.76

2.74
~(s)

= -sRC

-s X O.Ql X 10'

6

X 10 X 10 1

V;

~ 1110
1 "'
'l1;

I when w = 10\ad ! s

orf= L59kHz
for au input 10 times this frequency, the output
will he 10 times a~ large as the input: IOV peakto-peak The (·j) indicate~ that the output lags the
input by 90" . Thus
110

(1)

d1

therefore:
For 0 ,s t ,s 0.5 :

=

·-·5 sin ( to'r + 90") Volts

2.75
)p

0

0.'\m~

=

0.5 ms
0 otherwise

-2 V

Chapter 2-21

+""- oJ~

1'hl.t4 -t\.4 f>CA t. vcJ.vA,. of.

it. O•'tMI.xto"-A... li\1" • '1ha.
l$. ~ ~~ D.'

$,Wif\.L W4IAI

w.e, ""*"1 b~ \-WI o~t.rl:

tk .... ~~ (.lIt\+'!.) •

'"'~

R

\u4.A· \o \oc.

w~

Q;

0"

~
'"'c.n.tMMl

-t'\..A.

\-'K\t-1...

I

IV fl"K

+\..4

t.o

tl\pr.J::

0 ·

0~

\0~

hl.

J..Q_""

~ .s" \..e.1'1'!'-

'*lil\.&

~o..vt is ec.~t!

4

tt ~

ba,.

~ oJ:. t.W. ot..t'pt.J: •

.:s:a-t

~r~d "t

M&.t:~~ s \

Of'.L 0 ..

tt..... .f.&~~v.JkCf
.

~\%<.t>.o: -RC.

,_\kol'l.

Slot'

Slbpt

o~ lft~ *.vt)

oc..c»rs ·~ tk

oukt.,J: c )."C\)II.\oo6,.. ~c. • 6-:Ul"ll"

"l1\.& Ma.J:i."'JJ& ptA"- of.G..'J r'J: cr-t. wt•o, .111, •••

=

RC

to- 3s when

C = tomF~R

100 k!l

=

..3

Jc.f;· ,. _oJ,.fo-~/OJ __ ,o J«?;·
~c

4t

~l.t) ::- _,;3,. .t.rt ,.1tuto , Co., tlltP 106 ot:.)

Jt

q> ""

I ~~

'{.,1:)::- :trt C,.s (.2.rt,..!D<:OC't)

Tf;

-90" always

=

I

~w

""

1
= lkrad/s
unity RC

Gain is lO times the unity gain, when == the frequency is JO times the unity gain frequency. Similarly for w

= .l
krad!s.
10

gain is 0.1 V N . (for

w = 10 krad!s, gain = 10 VN)
for high frequency C is short circuited,

-R = -100~R 1

110"'

R1

u1

!::!!

~ »'Jdb
hJh

I. kO

-Res = -HfJs
R1Cs + I
10-5$ + 1

=

v1
1::

= 100 krad / s or

= !5.9 kHz
R

-tk ov.tp.....t.

.W..

to

t.-j>

i>

tn\/~rt~

"' - 6. !li

S.·t1

S•"' t

•

:trt.c tooot +'ftJ)

(,2 rf• 'CDc:> t. +

q/)

'-'ot:t1 ::-6.28 Co.a<..:>.rt>;.s:"'as, L~s vc..\.141.. \s .2.1"\~~<1000 .""'t\~ts. "'""' ttA"-

2.77

"{ .. >.'yt(..tt\ll:.\000 b}

o.. !>lM!..$oi tlo..l

wo.;.\M ~rM o.c<

ou..tp....t

~C.~"MA.ot;~

equal t.o

s~u. t.W. ~

1M.. ~c. ~ ol- tkt o~p.J: ;s.
,.

t.) 1M pt.Qks o~ t\...t.

for unity gain:

ilo 'sl
if w

=

=

Ito-\ + 11 ==< "'u

10.1 krad! s:

~~~~
F;j

~ i""frtA~U. ~~t'QCJI.d\.tS. t\. (. a..s. ~ \tcc...~ -a-'''o~b\;t J-.tt.ll} S6 uu. e.w... ,._\ul:- R, .. \6\l-J\. a) for w To ~'oi-cU-11\. "W.a"1.-~~ ~~ of. LtO!\. l t. t.. too) ~ .B.!: .. \OO -""")- (\.:\.. • \ M..S\. • R\ b) ~&r o. '3.d\, ~\1&\.C.~ ..L- ,. .2 "'- 'tt\Ooo Et,c """Y .. ~ c.. .. 1~!10 t\1:- ~ \5. ~"" F \00 \ '("'C;.4~u.s l.h "o(. ) -RziRt -R2R1 . .Raw - JW - - - - - j-TJi + ~)- wtfjw R 1 w1 (t JW forw, << w<< w2 "o · -(pv)::: -R2 k, 1'; c) for w >> w 2 and w2 >> w1: ~ uM.t-1- ak -R2R1 !1!(jw)I 11; ~-. ~ ..e lr•de _J,·~l'"eu,...... \,e\o~, u.>t. se.e.. t"ka..b = w1 << w 2 - -RtRI + jwfwl jwlw 2 "" j(RR2t)(l:z.) .. from the results of a), b) and c) we can draw the Bode-plot: = ~ o.o\ ~> ~ h C1 "'· w1 1.59 IJ.F '~ 10Hz.~ w1 "" 21T X 10 X 10 1 '~ ~­ R1C1 Chapter 2-23 2.80 = v05(t + ~ + R2 tm) = ::!::2 mV t'o == 0,01 sinult X 200 + ''os X 200 ''os = 9.09= v0 s X 101 2 sinwt ± 0.4 V => l00v08 2.81 Ou.t:-t">u.t Pc. of-fs~ ~ , '-'os .s:""'oiJ :s "' oC: tlvor.J: ruulhs ....._ t>M -l" tw "'-f\i~u ~ -0.22 => ''os -2.2 mV A.., ; .. p~ Qp,. IOMO .:>..J:.puJ:: 13. 3 =to\}".,q 11::: JPI I 181 ~~f-ore 'f"hc. + 100001111 (I). (2) • IO - M\1 is CAp~'"* toup\~,~: R= IOM.O = i.L,. t3-"" \600 c) In this case. Since R is too large, we may ignore u05 compare to lhe voltage drop across R. ''os << R18 , Also Eq 2.46 holds: 2.82 R3 = Rdl R2 therefore from Eq. 2.47: ''o = los 1.4 fit! ttos X R~ => 10 s = 10°~~.0 10 s = -80 nA = :~ = 1.4 mV 2.84 2.83 IOM.Q p a) In (lfJ! + flr;J/2 R2 open input: t•o ""' t'+ + Rzl Ill l'os 9.31 = "os + J{J{J{){J/1!1 input conneded to ground: + R2/lll "" cl • R 3 = JOOkO 1+!!2=200 Nl (l) "f>l =· 100 199k '\()? fl ... - RlCl = 27T X 100 ~ Cl o• 3.18 ftF _I_ "·' 211' X 10 c7 C., RJC~ - .,.• 0.16 ttF SClO x I 27T X toO Chapter 2-24 2.85 \t, • "as(. f+ .!.!!) "ol ,.4(1+100): l.f(llf,..l{ IOJI. llt~ o...t"f'.J"oo-ft'~ --"'---L :£8 or 'i"t....t" . c,\)p\ed ="cs V+= ".. d44A- Co VOs is : dt.U.. -to CAfo..u 'h._,.\~ h,.. "'TII.t ol.l.t'p....l:" c."" pt l'ltl'\ t v,. • Vos Voa o\. "A'+,,.,' .YJu_ " Ill\. VI)= IOOI \lOs -.!'"Uoi.t\1' ~Of ~hV(.~ teup\t..cl \1'-t..v- • "o~ b:a.t C..UO"'\td- i"' ~f.....t C.C...St.· 2.87 AI O"C , we expect :': 10 X 25 X 1000 1-L = ::+:250 mV "'fl,...t w.,rst 0..0 t Llo.~.s t) DC. o~f..H.t- 1.)1)11--~ td:" -tl-o. tw.!p.,J; i & "fO~ + 6'o ::: Lf 5l( """V' At 75"C, we expect :': 10 X 50 X 1000 1L = ::+:500 mV \~e expect these quantities to have opposite polar- Jlles. 2.88 ~ =F\IIR:t=.,_qKS>. (Rf!f.e.r to .z ·lf6) Vo::. 'lo.s R.:l ~ • 2.."11 Va ::.o.l.t,. :tos ~<- tM => lf. ~s: IMV '(,.,. -~((3~~s lb!> .. o.Z.\ ~" Chapter 2-25 ..!..M!!) v.0 = 3 mV(l. + 10 kfi + 10 nA """ 0.303 X I Mfi v + 0.01 v · V 0 = 0.313 V ..L=- ..1.. R3 fl., 'T -1r =-,. r\l • - re, .. ! ~~ (,t-1"}-> "2. I ... ,.. ras. :: :t I"'" "l."\l'o lr VJe ·Clft.., o\\.Qf' "'* f, ~ s~ tA.l~M- c.~ ~ S; +o t~ CM.~ i l- ~~\\ ~u.\. e F-ht.l- o"' ~ 2.89 . 2.90 w, = Aawh ,. ± o.t )A" e.w::l cJ. R_, , "\'h.t"' oH·S-Q.\o ,. av.k" ou.t;>tA.t: . ! a) To compensate for lhe effe~t of de bms curren I B• we can consider the followmg model t "kt. 0. !JIA "' Aofh Ao fb(Hz) J;(Hz) lOS lo2 to' Jo6 lo<' lo5 J0.1 J08 1[}7 J0-1 1()6 2X 10~ 10 2 X 106 1Mn 2.91 10 nF A.... ~.. I tJ' w;..llo =::> IAI- \"-•\ J. . . ~z >A.=: LiOdb@ j:., IOoii;.He R3 ·~· R1,I[ Rr IOkn!.i I Mfl~R, the. de output b) . voltage of the integrator when the mput JS grounded is: v,, Vo.{ I + ~tJ + 1nsl?t 9.9k0 Chapter 2-26 2.92 d) A 0 = JO X 100 = 1000 VN A 11 + fbif.l = lolXU 1--~ 10 ::::> O.J X 109 = !& Jijij => fb = 10 MHz /, = 1000 X 10 .MHz = 10 GHz e)A = 2S V/mV X 10 = 25 X 104 VN 11 +ill= fd 10~l.SkHz ,, = ../99~/, = 2.51 kHz UlOk:Hz 10kHz A.0 = 8.3 X leY V/V 2.., A Eq.2;.,: [, = Aofb = 25 X 104 X 2.51 X 103 =-L 2.95 l+J h = _R2 GNom [, = Avfb 5. 1 XlOJ "" 8.3 X 101 .. J~ + ecx;:sr ~ 1 + (100 kHz)2 (4 w3dh "" hdb "" 47.6 kHz !!Q _ 2.93 = 20 dB +A(db) 20 db= 20 logiO => A 0 "" lOA a) A 0 = 10 X 3 A = =It+ j.ll' "" Ao =· I + jflfh fb A X 105 = Ao l. 6 _2UQ_ = fo 1= 3 X 106 Hz V/V -20 -R2/Rt 1+ 1't we have: I s w{t+~) 0· 11Jdb=>/!!Q/= f"" l0/ldb=>l 1101 = 111 10 ::::> l+~ =roo~,,. R1 v ,.,.~ A = 50 X 105 X 10 VIV ::::> A 0 = 10 X 50 X 10~ =SOX 104 VIV c) A ~~ h "' .,/99=>J~o = l H1 = too J = 19.9vtv = 19.9VIV = .4 0 Cf.,._,., =>;> ""' 1500 VIV QL~!~ "" 199 ==> / 1, r" f~r "" 15000 X !0 K .,=- 150 MHz 10 kllz , f.~ :2-oMtt-a fc.t-i a- _.,. Cf= - t~ /9-3<1. ._ L ,. f.Hto J.,.5-.).U,.1C~{, 0 ,. Cf., -t'4•--.> J:.,. ~.u.. = 50 MHl lO => Gg·ul} I +j "" 10::::> lOHz = fh = !500 VIV It + jf.l' ~ ./J + 100 f~l. .. -b.:_ ::: 2oo = Aofb - 20 JJ + (0.J )2 2.96 b) f, 215 J99 f, "" Aof& = 3 X 106 X 60.3 = 180.9 MHz h + j[l = t .fb + 2vXJ06 V; =>ft. "" 60.3 Hz r w, = 2r. X 10~ I+ R2 R 1 I+ 20 "' 2v X 47.6 kHz A 0 fb == 8.3 X 10~ X 60.7kHz = 503 MHz A 0 (db) -20 Ao = 104 VN = 106 Hz fb [, = 60.7 kHz "" R, = 2,65 f, = = 627.5 MFlz Ao w ~ rtt.t" = 2-IKI-l:! 1.'l Mffe Chapter 2-27 2.99 a) Assume two identical stagett. each with a gain 2.96 function: G = a)!!l <= -IOOVN.!Jdt. = lOOkHz Rt Rt W)d"\_ w, 10.1 MHZ overall gain of the cascade is (t "" 10 MH1. f ., = f 3db + ~) Rt r = 2 VN. /Jdb = 10kHz 10 MHz X2 = 20MHz d) -~ = -2 V/V, /_~db = 10kHz F1JJ2- = fJdb b)40db=-20Jog Rt = 10 MHz(l + 2) = 30 MHz fJdh "" -lOOOV!V. hd~"' 20kHz = _Rl e) R, .' = _r, I 1 MHz f, ~ "" - L = I+ !!J Rt 1 MHz "' 10kHz 100 Rl 6 "" 10 TO = 10 5 Hz- 2.100 + e.,. ~o .... ~ ,..J o o Vflf' +~ R., f-1:::-:.: 8 x 100:: a-oo t:.t+e.>'.)b = '-"'f-H:c : : f, ""' 100 x 5 'tr \C.\-\ 1: 0"1),• ~ 2.e. ::::.40 \!~,.. f'v IAI = :!Q I MHz "/l + f gain K. then its 3-db frequency will fin MH1. I IGI 2 !GI 0.'->9 "~> f 0 1,12 MH; The fullnwcr hehs STC dn:uit with a rime con,tant T ···· = 8 vrv To obtain a overall gain of I 00, three such amplifier cas~:aded, would be required. Now, if each of the J stages, has a low-frequency (d} closed }{l(>p 2.98 (. = 500 MH1. if single op-amp is u:;ed. with op--amp that has only f, "" 40 MHt., the possible closed 100 p gain at 5 MHz is: 5 fldh = 2 MHz 2.97 I = 100 The overall hd~ "" 10~ J./2- I "" 64.35 kHz which is 6 time greater than the bandwidth achieved using single op amp. (case b above) f >dl> = 1 MHZ = I MI. I + l) G0 ~G0 + ~ "" 10 and therefore a 3db frequency of: .f1 - == !MXI "'lMHz g) - I R, 20.02 MHz R2 = I VN • };db · f) 1 +Rt /, 1 +~ = 201og.fi c) Each stage should have 20db gain or = 20kHz( 1 + 100) f f(f.Y (f;~b = .fi. Note 3db 1+ f, d0 The gain will drop by 3db when: +~ f,"" + jflft I Rt c) 1 Gt1 I = 100 VN. fH~t = tOO ldlt. + Ra b) l t + j!! (l + R~)-:::. f = tOOk X 101 w, "' __!!_g_ 1- , -- 2-rr X tO~> :" _!_ 211' JJ.S '!2 Ml-lz.k Chapter 2-28 Thus for each stage the dosed loop gain is: I~= J':H ~ - 1Q which atf IG~Mtbl J:J:...Af~1. We d v't.,S i1a.. - ___, .,"i - I+ S/WJ) = Jt + (~Y The overall gain of 100: 100 "" I-tS '\) ~t,k. k 5 MHz be<:omes: k "" - ~IR.ta. '~•/2. - [frrr] +UY I• I ..,J:s.. . 3 S.·-iiM- r.t.!l.u(b c- he, c\.+~ l.ZA.. 3 ~ t 2.103 k=5.1 Thus for each cascade stage: hdh _7 = 540 lhe peak value of the largest possible sine wave that can be applied at the input without output iJJh"" 7 MHz · 1s: ' "100 ±llV c rtppmg The 3-db frequency of the overall amplifier!1, can be calculated as: value ""' 0 .PV ~ = PO ~ m V nns = 120 = 85 mV J2 3.6 MHz 2.104 ~ ~ o~p....t '' -h-f4\Jh1"" wa-1.\. ~ s~e..V 2.101 o f- Ao ~.> . L. order b:.. -r-~os.L. GBP"' Gain GBP h) I + X f l ht~ I +k R, R= I. " f '•lb - f, - l GBP k k The non-inverting amplifier reali7..es a higher GBP and it's independent of k. 2.102 ~3.11.. ~(.1:: V1.. t»t I.AOA. ::::o I N?w vs;.,~ ~t:Vt~i-1-' ~ot"e.;'l-1,.. c_,-,..~ kh "" ''d.!= f, 10 P..·...,.,I )J.S o::O·I'>)AS:::: r!)O>'I.S • ~f'fhN ~ .......A.""'-~ pv\s.~ .A.:cl~\... \.s k....b__ = '3> \J", ,·'" t'-o.I'U Co s....... ptd·;r tkR.. i~ r(!svlts ;..,_: f\$, l':)o ~~. Chapter 2-29 2.105 w p 0.9 ~ [/ 0.5 I 0.1 - """}! I ~t.W= 2~J.S t, + t, = 0.2 W = OA JtS t, = r, = 0.2 J.LS = (0.9- O.I)P SR t, = Q&2UQ \ 1\. II' ~· = 40 V/p.s 0.2 2.106 Slope of the triangle wave = 20 V = SR T !2 Thus ¥!X 2 "" ~ T "" 4 J.LS or For a sine wave t<" f "" f= 1 P., 1T mu ~ ;,., . = 250 kHz = l' ,sin (27T X 250 X . = 2 X 250 X 10 du., --...!' dt 10 VIJ.LS = l dll,, "' !Otucoswt ~ d 1 dt dt '"1 .m.. =lOw The highest fre.quency lit which this output is possihle is that for which: du,,, dt m~:t. = SR= lOw,,,.,= f>OX = 6 X 10' ~ fow •·• 455 kHz I0· 6 ~(1J.,."' Chapter 3-1 3.1 1!1 I.5V (b) ~ LJ vl) ------() The diode can be reverse-biased and thus no current would flow, or forward-biased where current would flow. (a) Rc.verse biased J = OA.. V0 "' 15 V (b) Foward biased J"" L5 A V0 = 0 V J= 1 kH3 3.2 (c) V11*:::::0V Vp-=-IOV (a) +I V o---Dof----, + 2 v o----1'>1-----+--o V "" 2V ;f Conducting 2k!1t u0 =0V Neither D 1 nor D2 conducts so there is no output (d) t = 3.5 mA -5V (b) 5V 1 ~2kH , I Conduc~ nl J T 5 -(+1) /=~2= 2 mA +IV~V=lV Vp+"' IOV Vp- =OV f""- I kH 3 Both D 1 and D~ conduct when V1 > 0 (e) +2V~ [)., 'c· .tllnrt· " 3.3 (a) VI'·•"' IOV V1,_=--IOV f"" I kH 3 when l~ > 0 ami Dz conducts when ''I < 0. Thus the output follows the input. [) 1 conducts V1,.,"' IOV f'' I kll 1 V11 .. ,,.. OV Chapter3-2 0) (f) Vp~-= lOV V,_=OV /= lkH3 -D1 i$ cutoff when VJ < o Vp~-=lOV V,_=-SV f= l kH3 When ''1 > 0, the output follows the input as D 1 is conducting ~ When l'J < 0, D1 is cut off and the circuit becomes a voltage divider. (k) IOV Vp~-=OV V,_=-'-lOV /=J kH3 D 1 shorts to ground when v1 > 0 and ls cut off when "' < 0 whereby the output follows "r (b) "o = 0 V -The outpUt is always shorted to ground as D1 conducts when fiJ > 0 and D2 conduct\ when t'f 0, D1 is cutoff and D2 is conducting. The output becomes IV. When ''t < 0, D1 is conducting and D2 is cutoff. The outpUt becomes:t.r0 = v1 + lV 3.4 Vp- = -5 V f =1 kH3 When ''I> 0, D 1 is cutoff and v0 follows :•1 When I'J < 0, D 1 is conducting and the cin:uit becomes a voltage divider where the negative peak is lkH •-IOV=-5V I Ul +I kH Chapter3-3 J:~ J-s: \!!o rtt!uc~A. \o~ \O•fo ~ pJtAk ..,o.\"4t. .o~ i.~ r.oMo.\f\s "\'h~ ~----~----- eonlu~~o~ ~\@. ::. 11"-2.& - &0k" c:Jtl'\d \):r 1), / \.., lT:c 1>?. 4· S \1 < ·,$ ''* o~~ 4 ·S V '}), ccnduets. c.uT~ so t~;tO~. !="or l:h. Cb'\duc.+$ a."' d. \:u.st ""'4... Cor c.o~cluc. ~\olo\ ~Y"M\-;tH\ o~ ~-t. c~c:Jc.. 1'"-Z.& : 1l' - ?. S,n.'("'•S'I I'\ ) 21t" z.ll' = .J_ 3 T\.o:l>: ie.o."~ =- ~ [•oo . f 1 i-h""' d.\s. c.o"""ec..\-;~ th"f. '"~ot ~ . ~\\ o~ th~ c:.un"tU\t t\..._V\ ~lev:>& Thro"~\,.. tJ...c.. bo.-t\Q.t ~ • toS\n e e ~ ,_,.~ =. c:..or.t\"c:.ho"' f""MLT\o"' oy i5o ~·"v.o."' x::. C.~V\~~ S. :. ~3·~ 1'\'\f!.t V (:!·'"fro) ca.~\t. = 1\- z.& Sll'\ •I c.'jc..\Q.. 3.5 5-0 R. \,'\1 ~~ Tr- z.e R. 21\ 3.6 The maximum input current occurs when one input is low and the other two are high. ~q sO.l mA R R ~50 kl! Chapter 3-4 3.7 sv (~) If· (b) 5" ~ V= 5/z.- CJ/z.. = -2V v +- 101/IO::.Sit..n.. c.ufofi s t•o). T 101"10 = 2·5V -::- -sv (b) -tSV I 5-C-S}- .L ~ IS ~ - 3.9 R~~~3.4kfi Ml\ 50 The largest reverse voltage appearing across the diode is equal to the peak input voltage 'Pz.. • C..Cl'\c'-U<.tm~ V= - 5+ 4/!> (s) S~.n.. 120./2 == 169.7 v 3.10 ; - 5f& \} -sv 3.8 V I= '- '7/,---- \.!_0112.0)+1..0 ::. D . _!_ 2.. 25- A .. ,TT D starts to conduct when 1~ >0 Chapter3-5 3.11 ::··::. . ~· ... ... •• lo; o.v8 = i.,, pak/z. .: Z6mA ··\10 .-·· 3.13 I uo, 0'0, ~" ·-= .,..~ : :ov +S v RED GREEN 3V ON OFF • D, conducts 0 OFF OFF OFF ON · No current IJows -'3V 3.14 l1'o J. t : t [3 ~ J • D2 conducts . 11 = 3 /2 o.11vr = 1, e • v = 1.0 _3 0.5/VT '2 "' • 1., e , ~ = ...!1... .. e il 10-3 O.S-0-7 IHll.~ i; = 0 ..335 p.A 3.15 .: _ ..,trf".rr 3/z. 100 . IS , - -'-$ e. - 0·11 3.12 v 0·"1" o."~V D·C,V Z•... . -- D .z.T ==-- :;::l\ =~J .::r; = s (to-') e.-o·"'lo·ot.~ ~ a·Lt'x'asA 3 V 2.:5Y •·""Jb·o~s = .:r. e. 0 tPo r·J.fJ, ""A 273·21rtotA 3·!>~ rvt.A tfl· 'S.,....u.A lO 1, -r1.1i/o·ot.s ,:--se Chapter3-6 3.16 eaJcJ:~I-.t.t To X$ t.ti..IL -V/n.;,. x6 • X e ::: :r -Y'fo~~,,.o'Z.S e. 'To c.alcul~k +A..c. vol'h!3Jt. "} tli~ i,.::: 4 m..t~~esVI".ftl 2. It=/ /1::.2. CA] [A] Cv] f_V t·l~1 ro·• 0·1 O·SB Z.•O'i~ t•t.fl•rO 0·81. 1\ O·l t>·~ t ·OI.f2. 2·15Kt0 O·"t '"'~ &·IIX ro-•S 2·24XIO-'t 0·53S O·'-ilO 5·(11(10 0·1- a,.cuxro-'' t'·~1.x to~' '2.·2.,)(10 0·5~5 0·1.12.0 o•S 0·1 3.18 0·,50 lOJtA 10-1 o·s IOf\ 0 l·t~"l 10 0 •1\ (~~l 1·131- 0·1 ltw\A \0 (A] Is 11. 0•" O•(, -t! ~~ ~·Cfl XlO 8·~Zl(t0 D"585 O•Lf70 ~I} 10...1\ v'l.. [v'] [v] .,... 11 1 b::J =- v~ = n. ~ l~t. ~~~ :I: y,_ qt IOI t!alt:.v laf.f.. +J..e. .I..~J-4... vof/-ryj.e ° TJ.f.. vo 1~-t. -to ... .... o.5J«f 0·1.170 3.17 t .t.. .f.-t. "T"' X, :: ..t...s I z. e." ' Itt vr = Is e v.. fntlr ,. x, /!o 2·81 '"A Iz. -:r, = e. It '"'A ltlh- Vz. - V, ] II\ :r.!A; :r. . ::. 2·SJ. ::: -T, Vr.. -V, = -'- [ Vr :r=3·et .. A Vo ~ + r:::. v= v2. ~ 2. e~~Vt))? D•o\. {yL- %)/fie 3·Br -:'.': 0·'1 ~c;k J.;oJ..a.. across. Vt,/3 t$ O·B e. o-oz.s - 2?.. ·BmV Chapter 3-7 3.19 ~e.. c:."tf't:t\1\t ~ro"(}"'- lh. .YJ_ Is et\Vr I. s :: O·Ot- \S. r2. ~ =(o ·O\- r2.) e." w:t\.. two J,~,e~ ;1'\ po.ra\\-c.l J the.. CIJIT'tt\t sp(,ts. h... \wll..e.f\ eAch d.;od. ~ &c ""'a.t ~e. clt;Ju. eC\c.l,. h.o.O- 58 0 =: S,;.e4 t~t; J.,~.,. 'lol~ '-r Yf"'" ' :'Afc{y 1/tU.ftUt.fl. II\ .J.t,..putt/..,rL. 1~ 'Z. M'/ r:,.. .,....,...1-A~/...,f'.tl.. ~ wtvst ltQ.\"- :t 120MV ro 't J.ett'eaacs JI.Nf':J •1°C. • t"~ JUittltoJI'I IPlct'.t•s•J I,J -= tbO "C.. l='or 'du-.·hca.\ :r~u e. c.w"f.tl\+s \St /ll')r ::. - \.1:-\h.. e. lut~j J,~s; paW : s eo 'I( ,o--& x .s .. 8. 'liiJ PD&A>.fr" TkerMal "R.Jt~slant«. • \T; h'lr ::t:S. v-... {n'Jr z.e.. 10'~ -v-'1.. = "\),. 'V\ 10 ... f ....~t-;.1-u.-~ rist.J lwd : =""ls·l =,., •7'~ 2-G:IC/D-'!. I"' 10.., -::. ..o. z.~'{ I.£.1Jtl VOC1'-4'!t 01Ft:l£/t£NC.6 8£TkJ6l't.l "T14E~ Otooas L.S ...v.:t3 v tNlli!PCNDr;...tr o.: '1'1-1£ c.vt<'£1fT. J..l~w£v€R, S 1N(.l;: '"f'IJ( 9'-! 14 FACTO~ of 3 (o.S MA DIF~€R.€NC.£ o.B.J V t~V-, :t. "f:or CA.~rr.u~ f va7~'j &.1-w.u.l\ 2. 1 =0·5""A /c· ta.=I·Sn~A, tft-tt... 'lol~..t... lJj vari.f..s from cAN t.f~P.y TWO C'Jtfi(I!NrJ TO r.s "'A) '1'61£ VOL"T'4~ 1-1 Jt..L ~E: t,., 3 ': :; 0.~3 V"!: ~.IS (4/IV StNC.e 1"1!MfJ~RA"'f'11Q.&. C~AN,, ~fFEc.·rs R.ei\1AIN5 C.t:~N.S"TAN'f. 3.27 ~ Z.(o·01..S)I.-. (~:,;_~r::,-1) "0·"boS V . ..s .rtvr 1::. tO ...,~L :>o s.crr"' 4)100ES SIIVJtLA.It.l'l' TN€' l)rFf'mfNC.l: VoL"T4'G -e.., n=- 1 f.,.,-t -11..... VI> J.tct'.IAHS &:1 "ffTO'XI~tlllt!:J Znt \1 hw .11\l.ft~ 1•( .~uu.s• ,',., .Jc,...[U'alvr.J.. 1 t> flu. volk;J~ + 5 Om V b~ "W''A:J "'rv:J Gw #.4. :t Z.S' C. h'fflla/w.t_ vart4ho" . 0 A &k..lt.k oj tkt.. ~rAf~."tAi._ tc!W\S.h~~.J.o clkr~.~ tt..a.. ~h·~ fC>; "t ·~ .sko w"" b... \o ..0 • Chapter 3-1 0 i ~.W..":J. "'"k ,... .Q"W~Q l :J'•P"•c.d ..._..,.,fi. 4o mockQ. 6'~ :. t::. o-·a:z.; -tr a n~ tci"(L ....._. e...a"/ooot.ia. .... O•l( o•'l t:r' ~) :fv.oftl\ """'- abo~ akt\:.k w4 a.u. ~ "-. .,,....,"h~ po;tl\t -usi l;t. lul-wl.b\. -...J. \J""':. O•C. o·""' A. D•':l- \} :::~., tl\C.C.V._k.~ AI\. !\'~a"v.t. -.MJl i "- &·&fo c.;J. it-.t.. f'Dt~~ W\bi.L. ..ei\\A~ ~n:a.p". ~~ Pfoflld. • • 1or 3.28 t =>0•3ft'\ #'( :: . -tt. 10 v 10•026 u- =- ""o·~ =:> ! lk .sL. --1 e. I\ "'A\~a.\ s. - ""v . L ::. l -O· \ ~ v~ '-wOM.V =-":> (.. :::: u; f.vT-O~v ~ l : i 1. :: l 0·3-q """" o-~3~-A -t>,yt?:i :: ':J. .. ()o!,JWu\ - 0·3'?.4:\~ M~ ' (fit\ lr) ' ~ :: o ·3~ ':1 mPt \J:. " ' ~ ·LI It\\1 .. 0 0 c- i c:.Gtl nol: cl-a"'a. .,..k, p N.7uL • h~ -m&~ck Chapter 3-11 3.30 3.29 Jo\1 Ul).::. -t ;:;..tJ··"fSV t;,.=. X$~ 1>/t\Vr "' ... i&.:: e."""it" c;,, (b) lt-uA~Wl ft.Ml:Js"'s ~l \M.ll\ UJ> = o·+ v oX 'lb =·-~ 3.31 s.~(.J... \T'::: o·t- +O•OS\" ::: O•':f-2.0V t·~ \ J l.r> ::. r - b ·?HJ2 41 0·2. :t .. 3 tr; 0· ?2.1:> f- o ~ b·~ll;." i.t.'f l·tf,.,A if~. dou 4o ~ 111 pC~~..AAJlal. . r~d,.-tt.l. _1·2£>\1 1 '\.U.fl. • pet'"" ot cl.tOA.l s. 4-o e.rht- ~ cuntl\t -4!-Mft ~. ·os'"e·1;) ~ l.l) = l-t>·7lk 0·2. :: l·Lf 2.1111A v.:::o·~(,+o-cs\"('?at1..:..) ~ tD= (.q:z. Jt\"" : 0· 'i-l' \) 2 VD::: "'"'" ...o V::. 2. [o·t- N::. 2.. ~ i- 0·1 l~ 'i~ J =-t·2.5V =') Uu 3 c.eh. " c\,~ V= z(o-1- t-0·\W>~'~)=- 1·2-tl'-t\/ Chapter 3-12 3.32 -CONSTANT VOLTAGE DROP MODEL (b) (a) 3V +IOV a> \l±:fJ-0.7 ~ tf4ll0- lO =lOrnA 'f\:!/-1- -1. 235 + 0.7 = -0.535 v@ CD OA~ Q)-0.7¥ ·~353mA v "' -3 + 0.353(5) l V = -1.235V s kn ®-o.7; w = 1.86mA -3V -IOV (b) 3.34 +IOV (a) OO!I20)kfl 5kfl ('20) 6X =!~ ti=O 1 lOkll I = -IOV 102 '" lO- ( -10) - 0.7 15 - IO v "' 1.29 mA (toll4-0.7 20) + 20 20/ = 2.48 "" 0.124 rnA v (b) + 1.29(10) + 0.7 "" 36 V 3.33 (a) t:utoff ·: :.I ~<~ 2 2 = OA v ""' ~2 - ~2 "' ·0 ..'; v G) Chapter 3-13 3.35 /o t.+tAttJC,e = ~·"lo- ~ 100 -=- -'!.'!>0/o 0 (,.,,,..)aoo ::. . .. = 1f1.pc4k 0 R R ~ 120./2- 0. 7 50 = n==-'2. ~or c:.. ~ ~ \i..i,\....J.~.:!\0\ 3.38ldl "" 120./2 "' 169.7 V. The design is essentially !he same since the supply voltage>> 0.7 V tt>,_ : :. -.--- b'U/ftctJ •Ol& .e. .: o ·1' 4c I ·I l.J>\ 3.36 Lt "&.tl'\~ t~ ~ f""'r\i,A_ OW\ ohl lt> ::. :Ls. ~ hV/n'h e_ . 3.37 0·0~(0•01$") b\'1'{,..\}r ' ':.. l.t)\ % e.. t I 0.7 $50 tlt.tl"olt - Reverse voltage -1, A> 1\::r. :: l•'f '1"r ·2.'2-l e_ - 1\%\ - 1'\::.'2,_ ~ ~.~ ·'1-~2..- \)x roo.:::. U 1 ·2'2\- t)~troo +1.1'1·2% :::: u ·\ Dfo ~PI l\::L ~Q.C~ J.~J.~ has. • l..l) :: 0 .I ~ 10 +h-e CUt'"t"tt\t ~ 0· OJ/\ ~a.c"' J.,Oc:l ~ \..a. s ' .,~\\- st~"'Al I".(SJSroll\t.e.. r~.:: tli!i ,. o·o'?..s ,.. 2 ·SSL .:r:, 0 ·0 \ Chapter 3-16 ~) :t. ,. l~t\ rz. -=- ''g..rr 0•01!> r4., -=- ~. =- o·~2 ..;;;;.....;;;;.::::.....c...--- i"'o tto-s- lbJJO-ft =- 2~·2.S...Q... v-"/.r.r,. .. o . o rv/v.. :r.,_,:::. Y:, :t-= to~ A '4, .: : . O·OZ.S 'D~A­ Ji. . . :. O·pl.~ 't'lo r.to-/11 10~10'1:> = 7..+·f. t..sz.. :::: 250 .st... v. ro k .a. R I (MAJ (+) 1: =,oo..)-4 l\ T 7. r:; r;l\ ::: o ·o·v; Gt:IO )C l1)~1>' ;:. :.: ch. 'ft·G.~..sl- '2. '::: 4-0~11- 'Vo /'V'i {vjv) 0 0 I C ~'3 o. r"7 0.01 o.~t? 0•0'2.5 /ioo Xto-f. Q.l o. q 5 £ R.~s I!..T~tt WI~._ 6£. I( )..5 kSL . % L.IM rr 1'Ht cvMf.N'f' St~NA.c.. 7'b A f'1Alt1Mtt"'' OF 107. Qf GIA.S 7~£. cvtV<.E.NT Sl uJAt.. Mvsr dt: ' ~ I }AA. 1NoS' ..,-,..£ SI6NAl.. 1}0l.-1"A.Mf, wJ.IIl:~ vAt-U£ "To 1S APPfl.vXIMKfE/..H i#Jl! \JKit..J-1 '1JiC sw 1.J6 Sflout.o C>6 t.J.M ti.JPUT' 5tr.NAl. rr-cli. 1"H! St61\JAl cvttlit..€...,. l.l"'\11"(0 "T~ 'J()t...'TA~t£ _2.e_ :: :r TIJ05 I J ..:. ()~ I) t: -rN€ CNAN'E C."tJ 13~ FO.JI'lf.) - I v IN {jiOol. fROM ~. '3 ~ "1't> -+ ~. 31> J.,(J(J(\t)'Y.IMA."it:.l-."( ae: 1$ .,.., e A "'"o /" 'Jr =o. 'l AA A'\/'p :!:. /0 I l:l. '\/'p -A~.S 1"fi£ ''SfAI(vi!:O" oroDE.: WIL-L 13£ l.5 M.\) (b) lf' 1''0 M 1.1 v :t ". 5 M V Chapter 3-17 {lb C.1)1'1.1'( J fol( 'ftiE P..(MAtN Ot To 1.5MV. = 1'0 ~v Now, ,,: ~~..t;,«14 t< wt CAN o&'f'A'"' 'ftl~ fou.owtN' srruA1"tol\) . I .-1!> £~GU 01'00€ 1.$ CA.I:/ft..Y tNG. A G(Jtt.A~~ .:S1~NAt.. oF o.as ""A. fott ..,.,.,,$ -ro 6£ fHf.IS, KT ft10S7'" /OY. r lt • ) (CJ f'o~ I= I MA, Ill-:: 0. 5 111A, Fott IOZ I Ib:: 0.0.51"\A. J~u.s if>= 1id • 0. I ~A Co/.lfl..E"~JI'ONQII\)~ ; -: M IOk.a 1\fo ::: 5"' V ANO :: o. 5 ,_..A . SE£ FIC.Uf<.E:. [AC.N DtODt: l-IAS ttA,:: 7:11£ Ac ctJAAE,.,. till ei'Ceu L>mtle Mvsr 4~ lo"T t.EAST D.. 5}"'A. :Ir FOt.t.<:lW.S -r"A.T' Tile MIIJtl\fL1""1 tl14.t..UE OF l"t(I.ST llE 5~A. Ml\lCtl\ftJW\ :SI,NA\t. (),:" We ~et!' ruJ(I c,oi(~£NT, de:. OP THE ().I MA AN.O 71/t MA'X l"tfJIVI '\1'-0 ~ f() k..!l :::: lut colt~tf~;>o,..,o '"'& A,.,O I". 1 ,$ P£41( INPI.IT' 50 .n. O.I,..A .-----~~~~---~tv Chapter 3-18 3.42 11()(11) ii; (mil.) ;, ·'"' i, ;. =i, (rnA) (rnA) '" ~~"" (mV) v.= v, (mV) I ~3 iljf_ ~ Dl + + -- vl v~- i, v, _.,.. v4 + ~4 D4 - JOk!l R - 112 - = ,,1 and v 1 0.7 V, 11 ""' :::} lJ "" tn(~) Vr 0.7 + = 700 vT "" I mA tn(D 0 0.5 0.5 683 683 0 +l 0;1 0..55 0.45 685 680 1.005 +2 0.2 0.6 0.4 -687 677 2.010 0.25 -693 665 5.028 +5 0.5 0.75 +9 0.9 0.95 0.05 -699 -62..'i 9.074 +9.9 0.99 0.995 0.005 -700 568 10.09 9.99 0.999 0.9995 0.0005 -700 510 10.18 10 1 0 10.7 vo ., o, io ""' O, the current 1 = I mA, divides equally in D3, D.1 side and Dt• D2 side. = 11 = · -:::: l:t · l_1 = · l4 xr;:::; 2I = 05 ·~ JUt<\ 700+ 25ln(0.5) ;;:683mV v = P 1 = "" ""' 683 mV From circuit v1 c.c - 111 + v3 + u0 = ·-- 683 + 683 + 0 = 0 V For r•o '"' I V, i 0 '~ 1 10 K '" 0.1 mA Because of symmetry of the circuit !. 2 and i 4 i1 + t.f! 2 co ()5 + 0.05 0.55 mA = 0.45 t'' v1 = 7(X) + v4 ~'J '" 700 _,,1 + liz+ t•o = -0.680 + 0.685 + 1 "" 1.005 v Similarly other values are ca.lculated in the table for both positive and negative values of v., The hugest values of v0 on positive and negative side are +10 V and -to V respectively. This restriction is imposed by the current J == I mA A similar table can be generated for the negative values. It is symmetrical. For V, > 10, ''o will be saturated at 10 V and it is because I = 1 mA. For I "' 0.5 rnA, will saturate at 0.5 mA X I 0 K = t\,(V) Calculation for different values of vo · /1 = 0 5V + 25ln(i) 25!n(f) 7(HJ + 251n{i1 ) 685 mV = 680 mV ... 0 tt1 I""'· l mA Each diode exhibits 0.7 V drop at I rnA current. using diode exponential model we have ~~, I= l mA ~v, + ~+tt.lnV Chapter 3-19 :: = oVr "VT 1- 1:. t{ + J:(. Uo -- y+_o·~ yz· t+ scrcl Ysc+fc( : :. -la"·'(z:rr ~ ~phttu 105 X IO')(fO·'l B"+t oj -If~ 1..1fltf K IC(\t>-4\) ~ ) :r.;: 'Ji'_ ~~ - . m(n\lr) n,(nVr)t- Xt{ 0·~5. -::. \ ~.#. o~ flw.U 6~-~l; -1-n 15-:r~,. A.-4 : -ff~·;t n'\'ltO•!f- R Xo·o1.~fr.) ::. --!.m~(..Llnur:V..._r-..,j)L--_ __ "'~(n \lr) ... v+-- 0· ".f-wt ::C ==- !51-,u~ """ .J:.: 1-o- 5·'11° IS·~iJ. (c) t.,..L 1<:Jk.lt:tf.wn..t i)m=J - :::. - ... .::. ~\Jo A'It- 3.44 vr X: Ys(;_ "Pl.,.,. SI.H· ~ - :J"ft·• ("'~r ~Vo :t'c,. (b) '"'WM. . -{R ,, t;i) .J:. 1> c, ~/ ' . Cfl/.1-llf A-~I.J) ... 10"" t\- R=- ,,n--c,.1: .. to-o·':f = q~o..Q .I0 lO = - r.... ( Rur~) 1}\Jo :: 10-0·J: ro- o·1 + e.-os ~s 1'.. J,~,k &l.erJil la.t Q. e. t>. (c.1 "1-rN l'r\ J,~,s To ::. t,J+- q.M £. I.,r y't"~·=t A.. t liJ.MI+ J.fMk • ~ :: m(n\1,.-) :I:::i> -\ A/so 14 = n\Jr :x;, :. _ _ _ -..:.,l_ _ _ _ __ To ~\lo X.- - -'--:-- if"+ ia = . . ..,., , v,. - -::,_--=---::::- Ip ,...& mn\J.r. v '"-0.7wt -t-1 n'Vr vt--o·l- v+-- ~-1-m t rnnVr ::. - n\Jr r;- ~ 1 i- nVr V'"-o·"T v-t -o·"t Chapter 3-21 3.46 +5V R,=IOO!l: l,=ll=l5mA . 100 The diode current reduced by= 15-JO = 5 rnA .·.AVo= -5mAXrd = -1.7rnV R, h ._-=-=--...---o ,fO =75 n: h = 1.5 = 20 rnA 75 Diode current reduced by 20-10 = IO rnA :.Avo= -lOrd= -IOX0.34 = -3.4mV R, = 50 !l: IL = ~i = 30 rnA Diode current reduced by 30-10 = 20 rnA AVo = -20 rJ = 6.8 mV Diode has 0.7 V drop at 10 rnA current "• =1.5 V when R, = 150 n 3.47 VJVT 10 = lse 10 X 10-3 = lse0.1I0.025 ~Is = 6.91 X 10-IS ::r:.. A / Voltagedropacrosseachdiode= 1:} = 0.75V :.fo = fse VIV T = 6.91 X 10-IS X e0.1SI0.015 = 73.9 rnA IL = 1.5/150 = 10 rnA s"'a., 1oMt. or IS-'~ f I= 10 +/L = 73.9mA+ lOrnA = 83.9 rnA :. R = 5 - t.s = 41.7 n 83.9mA Use small signal model to find voltage ''" when load resistor, R,, has lower values rd = Vr = 0.025 = 0.34 n 10 73.9 When load is disconnected all the current/ flows . through the diode. :. 10 = I = 83.9 rnA 110 = V·1n(!.Jl) Is 1 = 0.025 X ln( 83 ·9 X IO~l) 6.91 X 10 IS ~~o=0.753V So No load, v0 = 2 V0 = 2 X 0.753 = 1.506 V. Increase in voltage = 1.506 - 1.5 = 0.006 V Now load is changed For ~ mua.t' t"-... W.t loa! ~ o~ 'l.. ~ -:J."'tt 1 'J:. bt.. ~r-~ ~II'\ 1- """'. 1'1w!!> S ,..._ .seuru we\J\~ "'o+ c:l o . ~ 10 o.~ '-.·H- -to c.~ bt.~ ~ \!b Ill\~ ~oren. pnv'~ \o~ ~ lk... \S "'lt. \.oo.A vjoJlt..h.,CJV'\ .kod.c..::, wil\ WA.~ ~.,.._ f:t,_~·,~ "tiv-evj"- ~M. -.t ..ll ~-s. Chapter 3-22 A\~r"'.k so\oho\A. ~ ~\o.\.t~ '.(. r:,o .. ~ ll~• ~I>Z.. ::. e.. W/2..., n\h- L,"e ~~~ <&MOll s~ ~ ~-..d,o~.u L,.. b.\J/o~ 1.. o IAfa;J~ ~ o\ "', e.. ~~ =- 3fto to "fro = - no""\1 ~ -2:2.. ~N\ :. 1\a. ~ ~ ~ ~eu.. v ·,!. -\'2.0- (-'2.'2.·3) ~ -lOOM\) foaJ Ttft4~ -=- ~\lb ~ ~ -_m_Q_ 5 -;;-A =--2..() """ Loo.! ~"\"'~ Co-r r ":- ISM~ • IJ&.u.. ..tkL ~ ~..,"3" rl.... ~ ~.t ~ t f-t:, 13M~ ~on/,1 fo ~aJ rl;jA-4 {tt J.uM ~ -.1.11 5 J,ss.•ptit~ . Q.~ ~~ f~ :Ctt : IS -Lf.. s]:'" -:.!:1_ .:: -1-~1114} I S""..fl ·) ~0 t:::::=th~: ;:JJ... t~bvt;,ll~ d,s,-.,Jva~~-4- ~ ."~'~ f'k I 5 "'A -:wft':J is. ~ ~vtr~C 0 L~~ ~rY~t S&Ut>CL ~.!.. : \TO AVo :: O•l \n ( ~113) = -4-Cf ,.,tJ . ~ IS ..A b iij. Chapter 3-23 3.48 SO now +5V zvo = = 1.401 v Yo== z[o.7 +2.3Yrl(ige~~] b. As found earlier. with no load v., = L434 V + v " tSI)fi c. With tso n load connected and v., is lOWered by 0.1 V ofits nominal value. V 0 = 1.401-0.1 = 1.301 V Voltage aero.~& each diode = I .301/2 == 0.6505 V = 10 X 10-)t In AVIV 7 where i\V .., 1.401; 1.301 .,. 0.05 V Both diodes are 0.7 V, 10 rnA diodes First fiild v., with no lood, I.e lr. = 0 and r = 1,. ... 7.4 rnA = 1.301 V = 8 7 rnA 150 0 . Use iteration to find Vo and lo I ,. 5 - 0.1 X 2 .,. 20 rnA I V1 - V, = 2.3Vr lot{~) :. New value of SV supply-= :.I= 10 +/t"" 16.1 rnA t8o n » V2 = t o.1 + 2.3 x zs .x to- 3 x IogG~) = o.717 v ln = 5-0.717 X 2 = 23.79 rnA 180 180 0 X 16.1. rnA + V 0 E11< 4.2 V So the S V supply can be lowered to .... 4.2 V = d. New value of the voltage supply 5. + (5-4.2) = 5.8 V. Now do the problem again a.\ done in the begining and in parts a and b. I v1 = o.1 + z.Jvr tog(2~·:) f) V2 = V1 + 2.3Vr = 0.7216 v l = 5 - 2 X 0.7216 "" 19.76 rnA v2 = 0.7 19.76) + 2.3Vr log( W = 0.717 = 0.722V I v _ 5.8 - 2 X 0.722 180 .,. 24.2mA DQing one nmre iteration, almost same value is obtained :. V0 "" 0.722 V, In = 24.2mA Now when 150 !l load is present 11 - = 5-2 X 0 •71 7 = 19.81 mA i1ii I /) 180 It is almost similar to earlier result, we stop itera- I tion here V0 0.717 V and l/) ""' 19.81 rnA = So V 11 log(~) 0.7 + 2.3 vr log(z;"i,4) = 180 p = 5.8 -· 2 X 0.7 = 24.4 rnA 180 = 2 X 0.717 = 1.434 V I "" 2 X 0.722 = 9.6 rnA 150 So lv = 24.2-9.6 "" 14.6 mA L a. Load of !SO 0 is con.nected I I. ... v, "" o.1 + 2.3 x vi' = 0.7!7 X 2 = 9.56 rnA 150 :. I v = lr 9.56 = 19.81 - 9.56 = 10.15 mA 0 logC: 6 ) = 0.7095 v V 0 "" 2 V 0 "" 1.42 V :. Loaded output voltage ""' 1.42 V e. Percentage change in output voltage = 1.42 ~ 1.~<2.!_ X 100 5.8 -· 4.2 '""'7.4'*' Chapter 3-24 3.49 ~) v.,. = Vao ..,." + 'tt-'2- l t:> :::. r~ + =- r., _..,. r-a-T r..,. @.) r ·6 "so~tP 'V?:o ~ \J~o \Jc ::. '/"2.0 + rr \C 2l"eT -=- t\ ·4 .... ~" 1&01C lo-'!::> ::: IO•q\} l ·~ ~ LfSO)( I D '"3 .: r· 'i p .: -3. = z·2..\1 V"'t :;. ;. •'2 t'PouJ.d" Ollh~! +\ ·S X ?.00~10 '":1•1 V x t~CO )( to-!o =- 3·12W 3.50 (a) Three 6.8 V zeners provide 3 X 6.8 = 20..4 V with 3 X 10 == 30 0 resistance. Neglecting R, we have Load Regulation = -30 mv/mA. (b) For 5.1 V zeners we use 4 diodes to provide 20.4 V with 4 X 30 =< 120 fl resistance. Load regulation = -120 mV/mA (b) 3.51 ~ W14JI 1!o~nAI 'M'U>th.f .ft:N" J,:..C. ,.., ulcl,;.,! ~..11.. (C.) (,·~ -::. (0 ~ :r~:r + ).;'""--~ u;y Z lC :C;,r =lOolllll\t- ~ :: (cl) 1i .::. r~ :::. ~~·2.. I fC •i t:.U"~ -3. lfctO..Q... V?. -;: . J'f. 'lp ::. +-re- "'Sllto X ..... ~'-lo ,,0"' "'lliC(~ l0 J(. t t'>- 3. .:: 5 ::. \ g ·F:" 5+&2. = ..!L 8'1 ::. l8 ~ M\10 s 3''1- .:: )( ~lis X I·~ 1-41·1- m\J Chapter 3-25 '*" 05 Vo-= +7. 1.1 V 7o + 7.' V 3.52 f'\Q ': WITf.l 30.n. Vo Izt< = o.s MA ~ Vz.0 + 11-\lo 'l( 0 o. 03 ==/' V0 =- 7. ss V - II\} 1:1 MA +I d. ~ 3D ~ ,0 - 3 7. S -= Vz.0 A'-'n IJ,..:: 0·'-5 v].. = 1.s v rz ': v+ = 1/ v "' =-7 Vt...o -= 7. lt.f V 12. ::: 7.5 :. S£UC.T :r ': J. ~ S'O '1#41' \J '.is ,., A 1'-7.J55 {0 ,.., -0·'-' c:. 7. "'Jf ,..A A I..z -.:. 3. 7,.., A ~' c.~-t rs '/ IzK R::. 10-7.5 /0 tpJ - 7.l'l+o.o3"' -::. ?.tsSV 5"" rt 2_ ,..., -V· o.s ~,___ _ __ J -- d-_50 .D.. Rl...MI"' - 7. 155 7. J'i -0.5 = /. 04- k. ..a F'<)" lsv -t = ~ 1v /1~ : "!: I X . J.:J.fo. 03 c. ~ 50 +(J.1/j o.o3) ::::.!O.IV Chapter 3-26 3.53 l35V 15V ;t 10% 300kfi R ..--------<> lOrnA~ Rt. tlllr 03mA 8.83 v t lkil = V,, + ri, V,., + 30({W09) v"" -""' s.s3v V, Lowest output voltage= 8.83 V 9.1 = Vz = 8.83+30(0.01) = 9.13/1 kfi = [IlL IR = 10 + 9.13 = 9.13V 306.8 = 19.13 ""'300 Vz = =L - . 30 R + rz ... 300 + 30 ""90mv v 9.13 rnA Load Regulation = 19.13 mA ts- 9.13 .·• R "' Line Regulation = -(rz II R) = -29.1 mY rnA n n 8.83 + 3oC 5 3~Vz_ 1 ~) 3.54 "" 10.33- Vz _ _ L 10 100 Vz = 9.14 V vz ""· 8.83 + Vz = 3oC 5 =!~- vz _ ~~~) 1.113[8.83 + L5 ± 0.15] = 9.14 ± 0.13 v :.±0.13 V variation in output voltage Halving the load current "' v.z = R~_ 8.83+3o( 15 doubling ··Vz .. 300 1033 = 9 '6 = 1.115 .. .;. v~_-_) 2000 v. :. 9.26 -· 9.14 0.12 V increase in output voltage. At the edge of the breakdown region Vz"" Vzo ""' 8.83 V lzK = fU lllA R _ I. - -:::':8:-'.: . 8:::..3_ __ 13 ..5 - S.83 0.0003 30() " 578 n !Lu.l ~r VPo ::O•rV tl fj, ..o .., t~; vo + Chapter 3-27 =- 0'":. +t>'':f \1. 1 \Te> ,..o, (-..) U"'eoo ~ tr$ •':f. .. Q5 A l6o: · •·s-xtt>s - ,. • (e) 1'1tJ OQ!OI'S +!A.A. fUAL (b) ..ol.a~ A,J. V. is. af c.To .::0 • 'PtV ~ C""""""" tSV 3.55 D + R (c.)l\....~ ~ & ::. s,t\-t ¥s- -:. ~+ Z·b~o t s-lops o.t ~ T-& ... r:rT-·'33• "llw.~ fu ~~ ~\ ..•: \~ 11"-2& ~ 11-4 ., 'o or 3·05 ~ · \1T-&o --i;r J U., • .,~-= ~ ~ ~ t 11 = lse vpl~T iu .., /''o inO rnA) ''tia~lmA))IVr vn- tln(at lmA) ·""- Vlln~ I rnA "tiR] t'o"" r•D(atlrnA)+Vrln [~ 10 . t& s •.,;- a ·1- ~'(> -Jr L'r,c..,., 4> -o·t-~ :-& = l's- t'o(at lmA)-V.,.In(7f) where R i~ in kH . tfi. Chapter 3-28 3.57 3.56 ideal 0.7V Po = 12./2 - 0.7 = 16.27 V Conduetlon begins at vs "" 12./isin6 = 0.7 0 = sin -t(.~}z) = 0.0412 rad Conduction ends at 'IT - 0 :. Conducti(IJI angle = The diode conduCts for '1;ncl .. 2·.S"" ,. ""7'f }.,_:::::; -'! 3 2 ~. ~ h .. \,\\'• (I • V o. .., = Tf~- o •Ofi.ST:::.. 0·43'01 = 5.06 mA o.""' = vo,,.., R (z·s -o. 's-) (=i -·~ 1000 to'Z-'D ( 0 . :, .-,;.;l) '# ~335" = 3.06 rad 2~ J (12./isin~ - 0.7)d~ = 5.06V ; 20 X 100 = 48.7% of the cycle "'$"' .--.... t l 'If - Chapter 3-29 Peak voltage across R = 12./2 - 2 V0 12./2-1.4 15.57 v 0 = sin -I lA "" 0.0826 rad 12./2 Fraction of cycle that D 1 & D1 conduct is 20 X 100 = 47.4% 21f _'If- Note D3 & D4 conduct in lhe olhet half cydeso that there is 2(47.4) = 94.8% conduction interval, 1'f ·- n 2(12J2cos9) _ L4(v- 20) 1T 9.44 v 9.44 3.58 9.44mA 3.59 12oi2 ± 10%: 24J2 :':: JO% =>turns Ratio"' 5: J .+ II 12Vm, 1>.-., = 24 J2 2 :':: W%• P[V = 2Vslm., -· V 00 Vn = o.?v "4Js 2 X • 2 "' X 1.1 - 0.7 J6.6 v using a factor of 1.5 for safety we select a diode having a PIV rating of 55 V Chapter 3-30 3.61 3.60 ..... The circuit is a full wave rectifier witb centre tapped secondary winding. The circuit can be ana· + lyzcd by looking al tJ,:) and vi) seperately. 12Vnns = (i) v,"" (V p - V00 ) ;;R R v:~ Eq. (4.28) T O.l(Vp- Voo) -- (\'p- Voo)CR C = I 0.1 X 60 X 103 = 166.7 ~tF (iiJ for 11, I ,--', /1'-< ' ,, II = 0.01 (V1'- Vn 0 ) (a) ' \'1,- V no- ' '\ 2l Vr = 12./i- 0.7- ~(12./2 -· 0.7)0.1 (12./2- 0.7)( I - 0{) 15.5 v ... ''o. "8 = ( ,..,-·J12 -· 0.7)( I I!) = ZVs_o7 15 = 16.19 1T assumed Vs >> 0. 7 V v' = !2_+ 0.7 7r = 24.66 v s 2 Thus voltage across secondary winding = 2V,,. = 49.32 V Looking at D 4 PlY ~- V, -- V 0 \'_~ ·o + ( v, 2V1 - -- 0.7) 0.7 48.6 v If choosing a di<'{k. al!uw 1.5PTV 7:1 V 8 Sltldy margin nf v -~ 2 001) Chapter 3-31 (b) we have the conduction angle = i) wilt~- J2V/(V1, - Vt;o) 2 X O.J(Vp ·- 0.7) (Vp-0.7) J[2 0.447 rad .. f-raction of cycle for conduction "" OA47 X 100 211' = 7.1% (ii) wilt:::. 2x O.o!(~: =~:~) = 0.141 rad Fraction of cycle"' 0 · 141 X !00 "" 2.25% 211' tc)(i) 1r(1 +n,F~) if>,avg VoR·••·•(t + ;r f 2(\'p- ~) •JO.l(Vr- v, 0 ) = 15.5(1 + IOJ f2) 1T •JO.l 233 mA + ;r./200) (ii) io . .-g = 16.19(1 !OJ ' ·.· 735 mA NB next user h z Vr!R v p - v fJ(J. - !v 2 " hut here are used i D.,,~ wiJkh is mon~ 15 -;l(t 10 Vr ... vL~ R R accurate. i 2r. [2 ) '. ,.1 (ii) iv. ••·• (d)(i) (ii) = 100 = 4.5% i ./it.) = 119 mA + 'lTIJOJSi) ""' 356 mA 14 79( I 15·49 (1 l = 8.84 v + 'IT (b) (t + 21T 4'~) 0:2 = 223 mA 15 .49 (1 + 21T II) = 704 mA I ~Ml 10 = 10 = "" VD - Vno- 1/2 ttr ::;: 9.3-2I 0.93 (ii) Fraction of cycle =- :. v 1·= 9.3- 9.3(1- T /CR) l4.79 1 At=> 3.63 tlt => ..!Q..."' 0.93 T 14 + R V" IOOH At At:: 0.02325T = 0.02325 ms (c}:. Charge gained during conduction= Charge lost during discharge i,, :J~& .6-t-= Cvr 100 X 10 "I 6 X 0.93 ().02325 X 10 = 4.0 A ,..._---T=lms·~i . -~ Chapter 3-33 R= c ihlt = at = JOO X 10-6 X 40 X !OJ 11= 0.2 75 n C = 1722 j.~>F Consider Ds when looking at PIV :::: 4A = 4 + t/0 , 0,../IOO = 4 + 9.3/100 PlVoverD, ::: 4.09A. Note that in this case ''""'' = i"- during to the linear input (it is constant and ic is approximately constant). 3 •64 let capacitor C be connected acros8c each of the .load resistor& R. The two supplies, ttt and t-1}- are identical. Each is a fullwave rectifier similar to that.based on the centertapped-transformer circuit for each supply, tbe de output is 15 V and the ripple is 1 V peak-to-peak. Thus W''' 15 :t !12 V. It follows that tbe peak· value of v,,musl be 15.5 + 0.7 = 16.2 V. PlV= = 15.5 + 16.2= 31.7 v. Allowing for 50 % safety margin PIV= 1.5 X 31.7= 47.6 V use Eq( 4.34) to find iv.••:"" J,(l + 1TjVp12Vr} :: 0.2(1 + v RMS across secondary . Turns Ratio = 120 = 32,.:4 = .Jz I 2) 1r Jt5.5 = 1.95 A . . Voltage across SCL-ondary =2(16.2) "' 32.4 tiQ + l;s 3.65 \.Jo = tT:t:· ( 1:1:- r:?.fR) ::. 2. U r. ~ 22.9V rms IA:J fu d.1 od-e I!::. vr.h~- = 5.24: I 22.9 Usc Eq.(4.35) to find ;,_.,,..= T1.n + ztrj\i1,i2Vr) "' 0.2( I + 2rrJJ5.5/2) = 3.70A Vr ~'r"' 2fCR= l Eq (4.28) DISCfli\RGE OCCURS OVER T 12= 21f ~· C= _..cl:..::5.;c5:_._ 2 X 6Q X 75 where :wo mA "" ~ R u;.=m U'o "l.f\) = 9 & :::-tv (JA"" ~V -' J_,_~ tf'o=~ 0\} v:,. = tt. c.v.f oJj C.onJ - Chapter 3-34 d) \li: =-2.. \1 U"'" =.. 1'2..\1 IJo ~R.lt 0:. ~~ r--.,.• -sr 3.66 (Go) 3.67 a·~" + ...:Z·f~Ui ~ 2.·S" ·~·~'ti-...... c.owluc:fs. "''* D---4\~"""--r---o \To lMPf &*)~ Ub =o·":l-'1/ -bo:\\o. '>, z Cl~ -\.1. ::. \,}:t (1,) w ~ -;q. :l· s..J ""D, o t'\. U~>r :::-o-r oJ: t1>1 ~ 1rvdr ~'ll = 'J·":J-\1 ._t. U';t:.::: ?.·1-+ t~' ---- : 3·2.V 1 Chapter 3-35 3.69 ~ fbr ..tZ&tck ~= H:.r ~ "i!:.~NI.r~ b-{~ r:~~os; ____ __.,.. __ ... "t,..•'5""' -~--· ---~. -~·T I I 't>t. ~ I « -t>t t• 2. :::.\leo,_ tO'JC 10'!. x"Z.O V"l:C = 'i' ·OV ~ t>z. ~,-_.,1-J.,..io.l), ofll 1k. \~M·,i(r "'llvu..\..n\L,. OJtiL ± ( z 1CO ·4lG +t·o) :: ± q.3 v For t1"1:? tot·~ (•s~cw ~ \Ji: <- ~t-'~) ~~ :. r.,, ...,. t"a.,. r1>t- ::. 3(to) ..· ~ o-os? v l\l.fi t r"' tft'tr.z. tkJtt3(tc) \1 \To(V) I I I $1Df"'. t-5 Z.·5 I •D-f>" I I -q ·?. - - - : - - - - - • -'1-'t I --- - - I Dt 0 FJ" "Dt.. OtV b,"\ 'Vl,. OF,::. t\ •?~... oFF I '1.. 1:\,l>t, I I I flrlL I)to IH!'!S I 1 t--ow~ AU OFF -...., ~) t>L;& OtJ 1'>,5 1 l>tc- oFF Chapter 3-36 3.70 forb, G,~ .k_ ,., IMh -...., (trt.-o·"+) ~ 1\V;-t,.,(i'j)f,rv-.t.:) : ;:; o · r to"' t: <1- .:CA" ~~ lb_) • • • i D =- 10 ·~ :::: 10 IJ'o (\1) o·~ 0·1- t>·+ ,. T- O·f 10·1- 0 0 -o·5 -0· -o., )C c.T.x. c..v) O·Sr'O 51 -o. '1- -0·7:1- -t·+ - 0·8' -10·1- o r >t _3 D• t" ..J \.to·3 tro -o·':l- tO o ·• tb(IJ'"~o-o·r) Uf>&ll'w\ LJ> Tt_ \;~ ,.\u- ·,!. Ce.:.n·\~ \.ox!, J<. v,;,'"' ~ l L-t ~ O·Y;V ' L- ::! - o ~tv a. 0~ Chapter 3-37 3.71 (b) ltt< lli: <.(0 't>!- 1 "\)q O!) =:;> I=- - -.r:, \Js -=- - ( ..,...,. 't"()pt.) VA :; - (v& ~~ lt6+ ef ve =-0 po'"""~ .,_5X.) \1" "70 fo..l I;_ (Mfr) \llt!o, ~ Oe~U:+Vr.~t-~ c·bool tl i)ll()l O•'f O•bO I O•eet 0·~ 1•00 l . t) l 0·01 O·l O·~ I • 2.\ 1·2.e,. o ·1 o ·I O·f- •·So l·C\0 b·'Z- O•l. O·'T3 l•l>'- 2.•€1"- 0·3 0·} 0·15 1·('0 5-~o O·'i O·f:h 0·-.:rf ,.qz. i>(\2. o·e O·lf O•S '2·0l.f lf·5'f 0·~ O·f.o 2.·' ~ 5·1 ~ lh.. (v) (~) 0· ?t" (.\/) 0-t' "" N) 0·~ Chapter 3-38 (F>) Ls.+ "1 ""Po,W\k {o,r :r, Oo,,Ott... (•l) (v) Ue. N) " ' <.'0 "'"' {v -o-to -t•OO .. o.to -t·Ul -f ·l!> b•IO C•lt 0·':1 -l·ttb O•'tO 0. l-l -l·tf{, _,.qo -z.q" 0·~0 o·7'S -l·SO -~·00 D•ftt> 0·1-k ·6·52.. b·St> 0·11- -·~ 1·«3"\ 0·''0 o. r.r -1-5.{:. -Lt~ D·l-0 0·~ -1·51- -f>·Ol- o•oool O·'f t>•bO f 0·5 &01 a -l·ot a-... -4·oq -s -If ~_l -z.. "A '""' lT" (V) -ID''f ·Oi. q 3- -01 ./ue. -J•f) -I•'L .,.., -··" t;; 3.72 3kJL lYo <-;. j ~ i .l:J)\ I . i.l>"l- tv -2J ftl:Wrt'btf!> i,,) /waft 1 Vor tt O· +V kt tJ:~u =- o ·-:r-1'1 o; .,. s· :rv Chapter 3-39 Vo :. 1·1-\ + = 1•1-\ "- l1>1 1 D.~clwh·d tkSL (\)%'- -~·1-1) 1f' Loa u., 10..0 o·l.4\1- H-1i'- 1·'2.1!1- 7!~ -.t- to·• 0·52-l- 1·521' I·S&l3 '"'' t"' \To)'~ 10 D·Sf'f I· 5'15 (0 -'f DVl/ •. ,lS t..O&f'Z. -'"at. t.,,~o 1·1'12.. -5 :o~ lJi >S'J '61~ lro{IJi. lf"J:~ "2 'It- Y«t- LroCv2 i1>z-=- 0 10-~ tJi :('lk)iDI ~0".. V +I 2.·1- s·:J- 5·f 'Z: 1-?.'Z.S O·l'ICIO D·1-'i ,.o ~·1lf J'Z,• rY Z·l-i"t5 ro·'l. O·lSt' 11·'?5 Ltl·'fS 7·0 !.·D~'Z.S ~.0 .s. 'l.t'Z...S 't·O ~·S32& IO·O ·l't> 0 -'L "'·- 3·1-'t'Z.'b O"o (\I) ~,. Yw.::. +2. .::Lse. lJ),& =- ii>'Z. :0 \ipJ.fo.o:t.s ® t,..,. ... ""--.'t''2.. ® l>tn. .. D•D't61t'\(~llfiiiO'iJ) ITo - i1>2. Vi= X3 o.. 'Z. .,.,,.·'" -·· -2.·01 ~ ~ ~·'-!"~ .u-~ ~" 9A.L. cole··~ ....,., v ~ ~ : -'l.·IO -z:zo -l.-5 -l·' -Z·~ 10 3·'1'1110 •.a. to·• (f) \c. SL (l/) -2.·001 @) v-. (\I D·SU -t.·'SU' ao·S to·" -t·~I\S D• ..&fl. ·l.· 'll.JI -!.. O'l.lf 0·5tS -~ -?.·51\® -z·,'L5 ~1110 o·t.'IIID CHo\'\ •t•n, - '5·'{SC\ ~~~A- o•S'IUO•'S O•,tz. -3·1U' -'I·G•U ~ Dof.JCIOJ t>•(Jol? -?t.z.n- -5·01'-'f 1•1Jl ....~ o•lt~ -3·'11.1 -1·5'1~ O·'l2.0 -~·If! - If> ,,,.... "' -2·'f1 '"' z.·z..,A 1"5-.A ® (w ~ Lot, 'D.!. i~"" ~ 1>z i. 00\ •·• \.,. ~'-s. ~..~~ tk.n. ......-;~'-" c.o..rr. Chapter 3-40 (!} O·S \1 ~r 'Da; fo © UA ....uwt.s l>& CAU&..t.s 6~ \-o ~ =' .. 2.·1-V VD~ ~ l)~ ~5 ~ R'- :s.o ~ "D!, u,:M.~el Tlt.. ~ lCt'l.. 1lut. O•'!J ""'*- vol...,._ Average (de) value of output ; 14.14 v = 10J2 Chapter4-1 4.1 4.3 C!~U 1!1 A~r2 "" 10- 6Am ~ -wlot>lt' I 141 d/l.l:fn~A. = m·• ln 0 BEl 1 VT = ls,.e "111J1 1vr 2. $a:lvr~ f-ie#'\ ir: 1 == ls1t 3 a.c:/-;,JJL ~lvYit.k~ ic:J. 't 5 ,;.v1r+ul . '" f.ne tA.C.f...~ Wlod.L ls1t ~~-.v;.A. ":/ e I )·-l6 i\ t·'· ··· .. ~Is ·~' 6273 x < For · -.0.907 mA 1 Chapter4-2 rAI'l'J•U For ic "" e to p,A => 10 x to- 6 "" 6.273 x lo w··• 6 (rowt. 15· oslo~ A ''se.UO:.t1 :. v111, HM Po........,- 0.587 V ""' Alternate way-- without calculating Is _is:_ 0.7 •. 0.76 e't'i:iu3- = 10mA :. ic = 0.907 4.9 rnA • 'c: For ic = 10 p,A vBbJVT = lse is=~ USE-Q16 tox w- 6 "" e~ .;...;..____._ 13 . 10 X 10- 3 . 'E' "" = 0.587 V t'BE 'I X .Ic.~Jit =if '.II'"" = tas,.,w = 0.7 V For v1111 :a f!...±:_! . 1c 13 ic = (5 X 10- 1')e 0 MO/R025 = 977 p,A i c is .constant and independent of 13 . . 4.7 . • z, :: f'Lea 4l>b:: ;;t to p-1-·5 : o( • .}_ x to- 6 50 19.6 p.A -6 !£' = 977 X tO 13 200 = 4.89 p,A iE ranges from ':ll2J2 :: I ic _ 977 's ranges from ~ - f!...±:_! 'f·!" 13 :: . =~ 977 X 50 10- 6 ., 998 fLA tolL±_! ic = 201 977 X 10' 6 = 983 fLA 13 200 t> ·1K2. P.tl ir 4.10 if: = 4.8 1 mA Qls!U: 111 50 p.A "" = ic = it- i 11 J3 = ~ Tc. =f?> I e. YIU"J-'S :=. "ox-;;;"'~A = 3mA- !YoM +o &;oxS"g.,A 1o 15h1A- a = 950 = 1 X 10--:1 X 50 X 10- 6 ""' 950 p.A lO. 6 = 19 iy 50 X 10"6 __IL_ 13 + l = ~:ifl - 19 = 0 95 20 = IOp.A -'\ ir = i£ - i 11 ""' I X 10 . - 10 X 10 990 j.tA • ~ ~' i11 _lL.. !3 + 1 ?90 X --6 10 10 X 10- 6 = 99 ~!.. "" o.99 100 -·r). 1\ Chapter4-3 ~:i 11 = 2511-A = = IE- ;11 i(: 11.3/VT I X 10 -3 . A-25 X 10 -6 inc = f.,c e A For Vee= 0.3 V = 9751J.A !£· = 975 X 10 = ia iuc -~ . J! = 39 ~- 40 • toe tI e v VIIEIVT ' => V uc "' \1 r In = 25ln[·5 X1010. !>_lJ 3 liE 18 = I cll25 "' 10001125 = [jj'JI] T; -U l4 -1' 2R i11 "" i 81, +inc = 14.5 + 0.02 = 14.52 11-A ic p.A = = 1.45 mA 1.45 mA/14.52 J.I.A = 100 ice- i11c == 1.45- 0 icli 8 """ V8 c,0.4V ForVce"'0.3V +SV +SV ib = 14.5 + 0.089 = 145.89 11-A ~-::::: = 1.4.5 mA ic "" 1.45 - iclih c B = 2.65 mA = 10 ·e = 1.45 mA V8 c=0.3 V lsc e ForVce=0.4 V 650mV =8 = 0.7-0.1 = 0.6V = 10 · e 0.1/VT ice = 0.089 J.i.A = 10 · e 0.61VT = = om6s J.i.A = (l7- 0.3 = 0.4 V ·-U 16 OAIVT I sc e For Vll£:: 0.7 V "" 0.975 4.11 I8 = lsc: e V ac ForYc£=0.1V Y 8 r 25 X 10" 6 _jL p +I = U 12 10- e · = = 1.45 mAJ146 11-A For Vce=O.J V '• = 14.5 = 9·9 V8 c= 0.6V + 2.65 "' 4.1 mA ic "" 1.45-2.65 = -1.2 mA 1.-'cE loo low for model Rn = \lllil- vllh ~--,--­ Is Vu:-·Va fc 5 .. 0.65 = 544 k!l 0Xl08 5 ... I I 4.13 given: ic 4kn 4.12 ~ ~~ 0 • "V vcr 1v1 e ,. sc• . r l e · __,., I .v se IV llr lsr· l."c1f,;l , r fe thai lsc - 13-/- f.IT:~ -~ X r + !Hsclld ~"''""" lsc[~i + B ~~<><~•<~ll Is J:l-13 ~ton-ed J ~ 25ln TOO For va ~' 0.4 v v !IC fsc[ I + ~~f.,t.:«l 0.7 l QED T; .T-llrot<'d/13 J 115J.nV 0.4 '' O.J V For f3tnrwl ~' 50 - . ·' .-,-.--cl\c:-,- - - - I+ SO -~ '5 Itt 1_ HKJ . ·.·."···'_--· -· . ·I :'iH/!00. Chapter4-4 = :25 ln[i02.00] = 230,8 mV f1or J'io~cM, = 4.15 10 = lS ~n[too· 1 :1o~~ooJ Vctw. = 2S tn(t22.l} = t71.7 mV Pr"'"" = S Vc,... -= ~Jn[lOO·l :;,~ooJ For = 2S tn(631.61 1 ·: ic: .,. 13 e"£s Yr = 161.2 mV For Pro..u = I ... V C!>ait = 2S In = 2S •Es -·U.8 i Use -.!: = to.w lA [·100 t+t ] to calculate v68 for a particular ic • 1 - 1/100 For ic = = 132.7 mV ln{202] to lilA Forie= 5A 4.14 tl611 = 0.685 v veil= 0.840 V 4.16 ic.,. ~ i.e ~ lQ.. ,, ~ 1o -:. 'f.Df,.lt = ~ ' '- l La ::. Le-- k:=· o •'t I an'~~••IVr i., ... T.s e. ,,. '/ca/o· o?r 'f·D7110 -:s = 10- e -lOV f3 Vc =Vtt& = 40 O.f ""' 40 41 1.~ = 10'" 13 A '". "" 0Is (Vz,;s'"r-1.~ I s( /t'BtVr(! - l) = Vnt"r + 002 X 10-} A . 0.02 X 10·-3 A 10 -n /£8 10'02~(:~- I) = 0.02 V EB . 11. "" = Is 0 0.570 V ~ e 11t:n 1"r = ··IJ .!!Jl. = !Q__ cum; 40 V c ,. - 10 + air X 10 =--2V for f3 = 15 iP. = (13 + I )i11 10 "" ai£~ '"' - 10 + :!Q 41 10-J A -0570 V VB "" =0.82 mA ic X 4.17 X 0.82 X 10 (J3 + 1 )iB =- o· roo\} Chapter4-5 4.19 (a) 11 = 10.7-0.7 = 1 mA 10 (b) • -- lO 18 16 -- 0625 · • A Calculating lsi 12V rt ~ i~ it· = · !HI c 1.5 x· l(J _ 1 j6 ~ Sl / 31 = 1~ 1 = ' ''~rat•r e · ,;l.H~JtL;)l;l £. 1.608 X 10~ 14 A V1 "" 12 - 5.6 X 2.5 = -2V Compare this to . -'-'li»lt~r lsl ""' 'c e "' 10~) e-0.7/0.0l.~ = 6.914 X -2.7V -4+ 10 --~ 10- 16 2.4 =2.5mA ·:Isnarea Areal ~ ls1 _ 1.608 X 10- 14 Area2 - fs2 - 6.914 X 10··16 -IOV {c) "' 23.3 times larger IV 4.18 15k!l OY 0·-( -10) = I rnA 10 -lOY E It {d) ir I De t lrc ::Z u- +lOY + ¥'u• -~ . ¢'' i i, u -lOY Chapter4-6 1SV6 + 139.5 =SO- SV6 ·;J ('~ = 3 rnA v6 =-4.475V 16 = 1 _ V6 - 0.1 + 10 IE = I,+ 18 = 3 rnA s 5 - = - 4.415 - s 4.20 0.1 + 10 = V, = 3 rn(l K) = 3 V 0.965 rnA !1 1 = p+ I = 8 SV (a) Is = 6.3- 3 = 33 f.LA lOOK 1..!!!. 33 fJ. = 90.9 p = 89.9 4.21 Vee=+ 9V +2V !£ = p = (. 2K) (_Q_) 18 -1..!L = = 93 0.0215 m 200 K SV (b) For F.S.D i6 = SO ~~oA ic = 1000 - SO = 950 ~~oA SinceR. = 00 VcE=VBE=0.1V :. active mode R .. Vec- Ve • 9- 0.7 .., 8 3 kO e lc lmA · I c = PI,..• (1, + 1,) = I, = !.£ 11 ii e·~-K2·3 ) 950 P = 10 = 19 ForFSD/5: i 6 = 10 f.LA, ic = 990 = 10 rnA ~~oA =tj3=99 = 0.1 rnA = (10 m-0.1 rn) = 0.1 m For FSD/10: i6 = 5 f.LA, ic = 995 f.LA p = 99 =P .. 4.22 199 +I.SV (c) IOV +7V VE =-0.1V -l.SV Chapter4-7 a""1 It= V,r;- Vet: = 0<8 = 80 p.A RE lQK lc = _1_ Ir. Ji + 1' . I~- I = (- 0 ·7 - ( -lS)) = 50)( llQ = 78 v.A 51 " = 80 = 1.6 v.A p + 1 51 = 6.8 kO = 2•1 rnA v. = 15- SJ K(2.l m) Iii ,.,. . lt Vf = V•r " Vc = 4.3 V 4.25 -I,Rc = l.SV- O.Q78X 5 V t.n v +t.5V 4.23 +SV 0.1 mA lmA o.sv -tv p = 100 -t.5V -sv A.VsE = Vr In [1C7] In V Be(lmA)- V BE(O.tmA} = :. = 251n IO.ll = 2.'itn[.l.] 0.1 V11E(O.H Vuf:(lmA/ "" 640 mV Rr· . !~ 16 R _ - 0.742 + 1.5 ""0.99mA "- Rc·= -l-(-S)=4041t!l . 0.99 . 1!..±1 13 lc = 100. 0.758 101 Re = 5 - ~-698 = 4.3 k!l Vc can be rai!led untill = 1.5 - 0.5 "" 10 k:fl 0.1 V8 = -0.742V + 57.9 mV =698mV lc""' -57.6 mA = 742 mV 0.1 = 7 5 k!l . = +0.4 V Rc ""' 5 : : / = 5.45 kCl 4.24 4.26 (A.) Va:::~ y6 ..,. 'le. -o ·"f +ISV IIi'~ -==- - -0·1-.,...!? "2.·2- ·- 3- I • o 'Z. ~ 7. • '2- .: 0 • rS" \] X~.,::: oi.IE' • -\} )f 4· ,_. 't :::: if· 73~ f.t Vc. ... Cf- I lC X c.::: Cf- 4.1 • rl ~ _U·U U.., :J:"y,_ -=- ~~ - -=- ::t'a .... 4.27 Vao;.~ v6 v..... o·1t ::::- .Q· I11 :: '!-'/e- :::. 3 ... c·1- .,. ?t$MA l r l ~~. !.\ ~ ,o·c.. ~ '2.·2.'~-t A ... z. r&·l.~ t"D }( := I 2i"O ~t /+ ....La - ::z:c... ~ z.. 23 ~ o · t>9·'+3~ttA - fO ~) 4.28 lena 30 ic -c '/&,;.;~ Ve: Ve. t-0·7- ~ .3· 'XV .,. ,_J.l ti-Ve I . I•I :::: .1U?,. )( '51 ="'·f2~ttA E 4. f'l. = ~·' ' .... t\ 0) for [:l opendrcnited. in"" 0 and ( l) gives pe 1, •·1n; 1 "r Ve'= 3-o·"f;:, = fuw=:>l' ''tn 1 vT . suhstitute into (2) & 13) =:> ~ Ic::: VtFfo·4r;. '2·> B:' MA . e) -n.. ~a.s.e - t~,\\:.t.r \1c \~.._ ~,. C.~ ~t£ro-- c ·-=1--V tA.t ~tu. ~~ At: w·c... <10-."" l{20 lt!O 30 3.)(tD-l v ;;:: 3·3~J"L :::.f:>·'CN Chapter 4--1 0 4.35 f..,,, 4.33 6,. ,.J. h - r.,"' "" fr.c.. ic. = f.a P#f ,... ~ ts-r J) c. t 1•2.Y¥1Ao "ir,/f.-\ O•Jmlt. :: ~ O•yh ~ g~·3 kSL 4.34 = 0:72V -ic VBE = UlmA Vel!= 2V ic = 2.4mA Vcc = ~U"c..s:.. 14V ro r 0 = &Va = ~ = 20k!1 Me 2.4 - 1.8 :r. Near satumtion Vn, "' 0.3V :. & v.a = 0.3 - 2 = 20 k!l ic- 1.8 Ate ic = L72mA Jttx ;uA -t- I• 'LNIA- _,... A l~ ••• 'k_.-:. C-alculating VcE for ic = 2.0 mA AV ---.fE: Me = ro 4.36 VeE- 2 2 _ LS = 20==>Va = 6V Take the ratio of currents to find the early voltage (with Eq 5.36) V/1/i'- VIlE e~v-·1'- (I+ 14/VA) 2.4 = 1.8 ~ = 2.4 + 4.8 = VA 1+2/V,1 I 1.8 . B =so + 25.2 VA VA=34V v ro ""' ~ (a) active region lc where l (: is the current near saturation •·~ active boundary. As calculated above l c "" 1_72 mA ro =- 1 7~ VA .... m = 19.8 kf! compared to the above calculation of 20 kU. -· Vee1,- .R,'i ·- 1 ·"" lK In = \1118 v,. = 4mA ~ ~" ~~ = 0.7 2fn•3k.T2. : :. 0.08 mA + 20:::':..:! = +2.:\V 50 = 0 ·Zf-1/ttAit Chapter 4-11 (b) edge of saturation I c---.--. @) "c "" 0.3 V lc:IP = 4.7150 = 0.094 rnA "" V1111 + 0.7 "" 0.094 X 20 O'IJ - eu+o«- 'IE-::.. .Q..lL Ie-=ott.. Yc.= IDL - 5-0.3- 47mA l8 V& ::: = 2.58 V (c)drepsaturation t'c = 0.2V fir= 10 lc = (5 - 0.2)/1 = 4.8 rnA ln ""' lciProrced V811 "' 0.48 = 4.8110 = x 20 + 0.7 4.39 0.48 mA "" +10.3 V ftN 4.37 Assume active: VE == 3 V, V 11 ""' 2.3 (Assume V8 E"" 0.7 V) 18 "" Ve = Ye. 2·3 = 2.3 rnA IOK 1. = 2.3 m(50) = 115 rnA V< = ll5m(l K) = 115 V, Vc < Vo(not true!) saturation. Use VECSAT = 0.2 V + 3 - Vl£SAT - Vr "" 0 v,. = 3 - 0.2 = 2.8 v \18 = 2.3 Vr,:= 3V I _ lcs~~.I - . !lr,mJ - I;;" - '2- ::. O·&t'l, H6) l·G>S,.,A - wo..rtf' Vs 2.8 rn 0.3 rn . R II { 11 3 Ill '/e.-::. 2V 'Ve::: z..-o ·+::1·3Y 'ie:., = I ·3"' J\ l Ic. O·IIS"mA "' VB "" 2.8 "' 93 kH ~\·oM~ (b) r ~ ,.h...,_ ~ a>~ At~~~ e~ ~Ml. VSE =-C>·S v 4.38 ...LG' ::o :rI!! = -fo x 1·I -;;:A1 A Ve- = -3 + {).liS" K '2... -= -2.. "1-1- v VP.:. = Ve-+ 'D·1- ::. - '2..·c-:r v - w,_J- ( o..) v.:> J...u, = = 9.:n Transistor will openlle at edge of saturation when v,. '" v8 ,, 2.8 V " -t>·,. :. -1·1- => - ' ~ I:e = \1 E' 1'"?, v. > v8 < VE .·.SATURATED (2.8) ~ = ( 1 ~ K) -o:=1 Va -:-:.IV - VG% 1 -o ·"'f= O·~Y. \t& • .. Va - o · 5 - Z.Ie -t?>-:..0 VB"" -2.·6\J ~Xe-:::0 Af~. efCD..Jc,chcm Chapter 4-12 4.40 sv a., .~~ ~ \Jur • 0·1..'1 \lee, =-o J0'\1 __, 0 : • 'Ia + '2.· a -:.: . 4-·5-'1• v.. :. ~·\'J +'all 'J!t = (JO -~•" ' ~. +fe.l.- #. => :r:CM..t: \Ie.- 0•1:t'c.s,~.~~.'t' = (le.z S :::.2 ~.~z.. Rr., +-2•1.- "=' ~co \c. ...sL-{'.e. = XC&At:- .,- IGcAJ: Ea2 )!. '2.5 'Ra.,__ = 'JE t = "2- :::Ca :reF' ::. .:Ce. -r S 5 = 2.. to k. J2... R •' -=- _!P »&.. = -3 T Z:I'E ::.. -3 + arCU!.'i::'2.• 3 '\-'i& 3. Xe... lie(.- l..'la -o· s} ::: X(.CA:f: 2. ~·<.>-Va-- ~t-z.·~) -r 7\J~ Ve. ::: fco, G) 2- 'fJ:r) -o·-r -.14(•) to I Te • I·ZtfwtA =0 Chapter 4-13 tft.;''!j 5 •to ,t.t.Ais.W ~ "j2_. :::s 'Rc.- '2:1-kSL "3·'\k.J2.. Ier -::. 'l- O· +- :\ z.. 1 z.~h3·tf 4.41 'leo \V '=" - 't-t- .. 'Z.·I'Z;,c '2.· 2.. : () '-J '@, (., -= =- -14• oV !::!. .~\1 4.43 \fc. :\S+o>1CS"(t;) =-H>":J-6'1 =re-re. :O•f-0·015 -5v ::. 0·7SELt1A ® f6~~= ::r:e. D·Dio !) o(:::. I.:.. = :r"' O·'"f8'5 ::: 52.·3 0. 1=8"5 -;::. 0 • -l f' O•'r 4.42 IE : ;:. 2. "!. '2.4 ~ Mlr Ve. ==- 'R& :rt!' fa, ::: V~; :: 'f- ~ ·1- Ie-::::. I< - 21f'L i- 't :.0 "·11-Re-flc. .-:o LeT Ve.:::. Vc.. ~ -4f; CF- SJ'TUCI\T)O,} 5-(Yt;+0.7) lu = Rfl 5 -(Vf+0.2) lc = I. = E. Y.!:l . v1'. = •• . I ·"= I 8 . + lc 4.3 ··•· vf. + 4.8 .... 10 --·" vf. Chapter 4-15 4.46 lOVR + V« + IOV 11 "" 4.3 + 48 @l) sv (£) Ve=2.49V + 0.2 = 2.69 V Vc = 2.49 I•,kJl. VB "" Vr.+ 0.7 "' 3.19 V Check: lc / 11 = 5 - I2·69 t 'Lrr1A- 'V-a..= S-2.(''')® ·"' 2.31 mA .:: l•tr'V = 5 - 3· 19 = 0.181 mA 10 !.£· = 2 ·31 = 12.76 < 100 0.181 Hence, we are in satumtion a~ assumed! (c) R6 I kU ·expect satumtion. use circuit in (b) 'fJ = 18 = 5- (VE + 0.7} RB = 43- Vr fc,. 5 -(Vt•+ 0.2) = 4.8- VE . I 1 1 (b) 6V 1£=1 8 +/c=VE 43-V'r+4.8- VE = \'E VE=3V V8 ,3.7V v':!. = s- •. ,:r"' ® \l'c=3.2V Check 111 = Ic = 4.8 - 3 = 1.8 rnA !!; = .!.& = u 18 .:: I· ~1--it.Y 4.3- 3 = 1.3 rnA 1.4 < 100 :. Saturation as assumed J :~:'* -= -o· :t- + 5 ® '2.· 2.. :=. l·~65mA {, s;.~1 ~ O· 'l3~"'A ® 'V't "'"I· '2-+o ·=1- ~ ::: I·CfV = v, = -5-r 0·'15,(5.1) ~ -sv = - ~· 'X- 2.0Cf \) o ·"fact IV1 A ® ® Chapter 4-16 sv 4.47 "'~ I·CI5SMf\ (£} t---c "l- . . 5 - ,., :o ~--o f.= 1()0 sv ('i) -lfltllcu-.m IN{NA) 3t. Afl voll4,.tt tit (V) (t•q Sf::>) I· t12~ ® v,_ Vrt; • o-o·"l-:: -o·f-V ,........._ V1 : - o· ot'ft(~l..) "' z.,..A -6\/ (e) ;:: -I· IB.'V ® 5\1 3·SkSL 15-V11 "lllc.Jl.. V '-~5 ~ .= -5 + "l.·'l. .:re- @ .: :. -t· o~t 0 • 0 -o·~ I c. ~T€ -:: :' 5- V, 3·2. v,.,_ -;; - s . . ():. ~~~) s·t ,.. - o ·'2J.It:t v Ie::. 1·1-?~NJA- @ V· 3~1 V \} Chapter 4-17 @.) sv v,,_ = .!.2.!2.. Ie X 5· I - 5 :. - 101 0. ~ r=l- v - - -sv' ~op CD 5-a·-a:x:~ ~o·1--&sl-1·'2.:o 4.48 101 f :. t.lOMI;._t ~ I 1'\0W\If\Al ol :. VT-:. -S+S·Ix~T:: -o·ii'"'Z..V 101 f\OWIIM.l -~ 'I: r; noMII\A.l I\OMI~\ (e) 'Uu ~~ ~ '£ .../:l.A- -::J~b/1 tt I :::. e£ 101 :. 0 ·'\'\ ,. \WI(\ J:c: • 0 .q '\Mt\ Vt:. sv ~....... Jo ~ ~.t ·. Vee.== -s . . ~"''o Raa 100 • == 1·'2.2.Lf v 5' .r,4 kJL :: J4·"!> ~.. +- ~ 101 RG = (1) 14-• S IOI F\~ 'F- ~ ~ 4[)0 1-o 1~0, ~ h. ~ ...tt.a. .....,. :_ L ;,...._ ~ ~ k> ..tl0°lo 'ik -GV 0 ~. lwd\. ~ ~ ~~ ilh I.- o,w~ •Bt> ( ~ Off'O~ ~ 'f' :o\Sb). To C..,. l S-&.l. ~ t- .........-.-it.J: \00 ~ ~L +o so ~ ~ ~ ~ ~ .l&.u.u.\#~ -ttv.. '--- ~ 0... ~~ ... ~fr--. (,OtJ-\ • Chapter 4-18 4.49 -- :::. tt>·OLJ\l --e::-V6 c.-?·3-I0·01f :. -0·?-Lf ~~~·u Vsc.. <. -O·Lf.'J +kL -h'-AI\Sts~ SC\.+uro.ll..o ~ Chapter 4-19 4.50 p: = ·· = ra- 4. =J. -= r . s Ki-f. 'l -sv tf.z. • + 3V V8• Vt! I-;('\";; +'5v Vuo.~ ~ ve ·v~ = z..qv "' :o -:SV '.~tr.. @ -sv Q.9' - .:Z:&z) Jt 6. I -=(~+ t) .::t.a2. 'II 4 .=1 + o. ~ .:csz = o,o I 'iLl I.M.A .I.ez.. = l. Y6 """A V~=o.rv Vt.t=o.gv - ® -:::;;;:=- (I ·'l'-l -.I.s~) K ~ == o.-l + 1.3 )( ( ~+r )·.I.8~ .J: 8 3 • () • 0 8 8 MA J:-£s = ~. 8-5'1MA V5::. -4.3v V~,= -5v =- -o 3-= V£ )( to + 0.7 + V£ I l ~ v~ == .2.. .oqv VB':I ~-~qv Chapter 4-21 4.52 (a.) to-vc 20 -S : ({1.5- tOle '"-'fii:--t ~ ZOt<. l(i "------... •(t- <'•l.~ )TMA O.Q$VC)WLA 1.40d~ Co.;- o.oo5Ve)+ 5-o.:; "I< .. (tt -a, 1\fe) =-Uc: Vc. = l. :3V -~v = \lj · c~l a~ ~a.~~:~·~ td'"'Ve .. = 3 .::: 4 .zq + 10 ::. /. 43k,.( A rf IO 0 ra e..d It 4. 2 q ::. I, 43 -3. Chapter 4-22 4.53 (c.) \JC. • I \1 1- b. \1 '-v• 1011;. -I<.~ ~ = - J!t:l. • -a~~ 0'01.t' - Node etvo..bto~: -- 10-V +110-V •o.JV+O.IV+O.IV ~o lO 3a -Jv + 10 -v = 9V 40 =13V ==> v = Ckvs, 3 .()8 v Ve3 t::: Vc.4 Iss - o.t v o ro O~~f2.""'A = 0. 6fZ. -0.308 •0.39'f...,A (l !J toro•J = o. 38lf .I.e'I o8 v o.sos \IVLA .:r.e.s • l0-3.08 a:~3 :: 5. • o.sos l o - 8. QB =- o . 2.3 I"""'"' = = w'Jrtlt'IM'I~ ~\T' :: I · 2..5 30 0.1 v o ·308 ~.4 :C::t>q .. o. 30& -o.2.31 o.o:!l~ (')'f fDt"Cl&d a () • 2. 51 = ~ o.o':l~ - Ieq • :o \MA /yM1 -~~ ::: e>·O't.S '"' 1:1:_ .: 1·87-,.,IJ ' . ::c~""""" ~ ~ ~~.._ ~ ~~""""'"CAA.. ..wa.&.. _:b...a. ~,..;_ Av ~ c.!.~ ~ ~Mil M ~ ~ r -- bc.r. -.or!" 4. .-J.r"l: .,,~ ~ ~ ,.-o·~ -!."0 "I•Cftt.,.-.V Chapter 4-23 4.54 lOV 'U'e\io VeE : : lO .... l.Orc... ~ ClfJIUdor l>L .,,,,.,..... Av ::: - J:etec.. U) ft> cttlwla.k. tlut #..;.._ ~. (?.),(}) totA.lwJ4k k .u~-p.,t;/,M,h. I'A ~ J..r_ lo :s.ku.t ;~ 11\.r.hMJ.. ..._.,k ~ ca... pa,..htu~Ar" :!c.&. Ft) Vr ~ ~ Av l''lv) I -40 = - .L..,r.t.O 2.. .. 0•0'10 .5 -:::: -/k~ ~ ~ ~~ tio'O~V .M ...,J;I..L ~ t.Tee 1-o ~ ~rt~· .•l> UC-= 0·5 =- ID- ie fIc.. =. L.b Xc.. r equation. ::: -o·'!f. fo Since we are a~suming linear operation we don't ~t!'i r C v) I -1-· fo 2.. -l.f ·1- to 5 _,. 4.55 have to go to ir == Is e .:C c:.. • t 1 Chapter 4-24 4.57 sv toV => \J"'o I pi I pi "=- l.fo \Jx. Vee"' OJ+ IPI + fcRc IAvf ~SV ::::.. :I: c. r?t.. 'J1.. =-1oo .J/v = (- )g .R "'" lcRc \'A \w\(:lu&A~ '1ft..t.. ~~ tc.."' "T;,. :.eJ/0.,. ( A. ....,..,. rtl.s.ol~ k ~ e. -=- M..~ k>;tf.. w.t. n.<>~·ilJ: .::: YAv,. t-rc.r(.. \J'*c.e/l)lt) l t- l!'r.t!!IJ-r :I:t. e .:: \) /1, + \)(IE v-....-ttc!'k. "'b(s-ar\t) ~·1 ~~~ tlt.. ~ vol~.t. ~ . g4Nf;,:, ~.~ iW. uol~~ A.:t tt..A~ tN\L ~t IV;#.. it... bu-~ - ~ .. ::: 0 e> o ~v = J • l~~ -~e.c./vT - \t>O \ + _;:G.::...;·S""~­ IOb"'-l·S'*" , Vat \f"c v~, i ...,_.,. ···~ li~ ll~tt'llur Chapter 4-26 4.60 +SV (~ t:ct" ~ J ~L (}~ 1.>100/J. ~~.;IN.~~ A., 111 -rc ~/ \tT • 1\..\..o t.d...o ~ ~ ~~ ~ ~ ~.Jk+i A11 ir.Alu,--.1-t.i::M. : -tlec..- Vc.na:t Vr .::...,5-O· 3 OV o.ot..s::.-t For l-'0 -= 2V, Rc = t kfi rr "lv 5 - 2 =3mA lc== . I -l(·Rc· Av"" - - · = -120V/V Vr AV0 = -l20X5= -600mV AV 116 !1 "' Vr lnfl 2 1ld = EAtllJI!lt.'t = E.!i/2.~ II (a) / 2 = 11 e~ns = 3 X 1.22 = 3.66 rnA AV 0 = (11 - / 1 )Rc = 0.66 X 1 = 0.660 V Av = -66015 = -132 V/V (b)/ 3 "" / 1 e-~n~ AV0 = {1 1 A~.= - = 3 X Vu;; Vr lDD Vc.tF"" ~ 11 )Rc = 0544 V {c) FeN' AV 1111 AV 0 (exp) AVn (linear) -1·5mV -·660mV -600mV -5mV +544mV +600mV sv -.:::. \}c.c. - 0.82 ""2.46 mA -54415 = -l09V;V 4.61 f\ \f -- 01.. tic. ~ ~t o j tJ.f',..A- ~OS ~ w~. vc.eN): '!;·0 ?.·~ (+) w t.•O \Je~ !:< C>·<,;; i.. -:: O·S '- :/J..;.s ~ 5 .- t =Q·IMn A ,_ p..RA-.;. ~1'..y.11cJ ollie:... I . k. (,.Jt)· o·" o·S (OV .:Go~ ~,f3 . ' Lb 1&;._ = f> = ::. 5 kJL = .Q..:..£ :::. D·Ob5~t~~lr o•q /DO Q...:.L !00 ";::: 0 ·001 >ttlt ! t Chapter 4-28 4.62 4.63 (a) Using the exponential characteristic : ~ 'c = lue . . ic v~,...JVr -lc . vl,_ll'r =e giVIng - lc - 1 (b) Using small-signal approximation : ic "" g., 11 _£!. Av = -lcRc = --· ic ButV,. = -icRc See table below For signals at ± 5 mV, the error introduced by the small-signal approximation is 10% .·. _icRc, _lcRc vb, Vr The error increases to above 20% for signals at ± lOmV. Now g,..= Output current ,. ic Input voltage flh, . .. g,. vh Thus, - = ---! fc Vr Vr t'h• vb, """ ~. vn. lcRc c=v R iJic Ex pan. iJlc small +I +0.041 +0.040 -2 -I -0.03P -0.040 +2 +2 +0.083 +0.080 -4 -2 -0.077 -0.080 +4 signal. g.,= fc! Vr g =~=40~·s 25 mV ..~ "' %Error (mV) 1.1(1~ T for lc = I rnA 4.63 +5 +0.221 +0.200 -9.5 lc mA) For~= lOO: 1,-={318 --5 -0.181 -0.200 +10.3 Load line for Rc = I kn 5 k - - r - - - - - - - - i · =50 pA +8 +0.377 +0.320 -15.2 -~-----=~:::--------- ip = 40,.A 3+------""-..:----"7'...----i~"" .m ,.A 2+--------~~~-----~=20pA +---------~~---i8 =lQpA -8 -0.274 --0.320 + 16.8 +10 +0.492 +0.400 -18.7 -10 -0.330 -·0.400 +21.3 +12 +0.616 +0.480 -22.1 -0.381 -0.480 +25.9 -~~- 2 0 I Penk-to-peak. V, swing"" 4-1 "' 3 V ForQ point at Vee! 2 ·"' 2.5 V V0 , = 25 V : I c = 25 rnA ! 8 = 25 fLA ~-12 ·--~ -- -·- Chapter 4-29 4.65 3W\ ~ X.e = VT rrr = C> lf Be• o.~ + lfbe wker~ U6e • o. oo5v (/~) lc ;-I.e. (of+ er. (5.83) VT lC Q:> I...c. +- c.:c t"c. fe= c tfiM. ill where : a .oos = o.t.."""" 25""' .1\MA +- O.Z."""A Va. =Vee- L~ R.c. * e~. c!>.1or J ~ sv-..z.v qA.i\1\ .. u w/.Uie. -z.v =-4oov;v V tt.o Ft \2.1 F?r a.. 6ra..s curreu(; at l2C?JtA J.e. 10 CiJM.e$ low~r: J~ • l:J.! ~ 4 .s "-«Aiv la frr • to,. z. .s = 2.5 K c..t ( t!! :. I 0 )( 2..0. l. = 2. o 6 c/1.. 4.66 I.e::! ... Z.W\4 Q fe ....;> ~IM. =~ z-s""'v W\. .. 0.005 v ... ~""'. R.c = -lw, .to/!!= -{foo U ~~ ~IV 48~ = 2.. M.\1 aoiMA IV Vr 1 .::X:.E -= I.e (/l-1-1 ) = .::r.e ~ .:te: = 2.lM4 f3 ' 2J. • 2.. .0(( 1M A .5o f e = 25""" = 12 . 2.:5 c.ll.. Z.O{liAA. frr-. Jl = 0""' 5o -:: '25<1l. 80111d 3 Ja.ivt : - ~"" )( R.c For; \ ~c aur/ D-te =~lc.\V =SK cA. (j ~ = - 8"0"""" =-.2.. v lf 51< x 5"""-V Chapter 4-30 . + .~"'·"JE>e tt) Lct.t) .. .:I.e. 4.67 ~ lM • \) = 60 lM.A =.I.e. V VT ~ ..I.e • 0"'"" \IT • ~Ow... lC 2.5"t .. ;f.f-51N\.q ftr· .2.1< =A=$:'(!.> =z:K.-A.50~ ~" i9Q, .j~ ct = !£q = o.ii 101 IE = .:I..c = 11 · Z'Swvi = 1. 26~MA -== oL ~~q 0 :: tc 2.- o, G Slw we = lett> I() . L8t ~) ... 1 v va.ri~s tro~: t.z-.&o•jZWI~ lo o.g x Go= 4BJMA p tlar{es tra&M. sa fiH.{ b~.1~ =- t.a Z.O.o rrr = f5 10 """' 0 Lar ea {;. value : ( TT • 4_ w.c.a.:l! :: !:::!!£ $M Mi 4 9 M \t = t.{.t..Kvt. f) w.a/J.es t valve : ( rr ~ tM.h1 = 50 d--i2Z.k1 lA wtiM,..,.. ;::: 6tf 4 ()L 4.69 Vc~ ZV ==}xi= Vee -Vc t<..c .J:.c.= 5-t 3K = -1tM.A <(""' • .Ic :: IJ\M ~ (j VT 25JV\ 4 OIAA.~ V v t.t:J +o.z . .s h-t. wl: I v ~~"" 1100 = t 0 + 2. Volta.~e 4.68 R.c Yeo::) -= ·5 - \...) ce) ~) (11+ « &.E..D. vr . VT • - .:t.c V Vac- V8£ VT -f b 1.00 0.990 0 ~ .. - '< ~. t<.e Volta.se 0€M~ = - a tOO "" lc c d ~ t s 0.98 I 0.890 0.90 0.841 "" 100 9 16 so 1.00 0.89 1.00 1.00 0.48 4.5 17.5 l.OO 1.00 1.02 1.00 0.25 5 18:6 0 0.002 0.5 !.10 (mA) I< c fe ~ (mA) -V6e 0 0.010 0.020 40 39.6 40 40 0.01 180 700 t.({l) 25 25 24.5 25 100 5 !.34 r,(fl) 00 2.5k 1.255 00 !OJ k 50 227 In (mA) Vbe g. (mAl V) R..eit! = 5 ... o.:t -o.aos t1 +- =3.C,V 0-005 4.72 o.azs JU fJS Vc = I 5 - 3. c :t:.c ::: -1VV~.A , (:> = 1'2 a ot. =o. Vf2 3~ =- ~ = !._ = 40UA.~ ;: -+ L 4 V VT A1M.pl4tode a~ ovb fu b ~et.tal ,., ... ",q -( Vsc. +v&e)0 -=- - L t.t - o.:t - o.oos f e = Y.I :I.e Vo lt-\)e :!:Ja.itA. :: ... 0.695: -~J!_ v ().005 Volf;o..qe ~~ - J 0 =- (6o. -a. 7- o.aQ5) oz~ a. cxr5 ::::- -1" -(4~ ll1e. r;/,'frereuce . t'.! aavsed 6~ 0 Otuerwis e: Valbo.«._e ~~, - v () -rlA.e. IJb~ =- 3 K vt 40x10$ = ~ = o. :3""' 'IZ :::- 2. 4 . 8 V2 Zj"();r o •., <:J r.ovr ejuiva..leut aireu.l..t w.oJ/e/3 a.Jc.e: e, 0 c ... V Ctr 31C/\ 5*11Rr 0 .O·Ll tfbe t4 tl. v _,.. ftr 31<.1\ V/V clec!ltM.tLI rav~tt~iue.-uf Of f<.c Ia. 3~ v 0.695 elteel< frr· /!J '2.5 -= 12.0 c c . oLLe. • O.f/92.. lt! O.'=t lG 0~00_5 =-14 3 v;v Chapter 4-32 4.73 (.> 'v~ l.v:5k v~ ot,.::: I 4.75 :t:.. c.:.. .X.. E.= 0. 5MA \Ia • -5 - -:r. 5 x 0-5 .:. + t. ~5V :!.£. • o .5MA- QW\ • U 2.6~ Vi 1:'. W~A V :4 :::::= r-----.--o t!c frr ~ ~ \Sle + N,;, ~- ~ IC. ell R,.• + Nft r,. E 06&erve 6ka.1 (fbe:.- tft: tke avbr,ut: volta.~e Uc. .H.J fovrA.o/ f'a~AA.: U {fc. • lfbe ~e. 1-. 5 K. 0"" ~~ 1:. ke volt:~ e. £.[:_ = -10~0.1 ""3.1mA If v0 = ±0.4 V E= 30mV . ~~ = Vr,, = lc = tlJ ft-+ a>- ..1:.!_ = ' I"' " I"' 0.023 ns • 13 = 25: 0.32 X 30 m = 9.8 rnA 26 X 0.023 X 10" 3 r, = 41.8 n 4.80 c g.=~"" 25126 "'' 23.!!!1 r, 41.8 V 4.82 hut; r " =VA=~ lc Vr·g.., ~Va~_v .. Vs Vr ifV, "" 25 V ~ V0 A Vs ifV" = 250 V "" - ~ Vo v, = J(UV\ Y ""' V ~--10.. 000 Y v = 75 n I _ 25 mV 1: 75 fi ""(0.33 mA) RE "" -~.QI ,, ::!8 kfl . 0.33 n =:. 2.8 Rc = 14 k!l Vo -· nRc ·V1 ..... -;::- 14 oms 187 v! v Chapter 4-35 4.83 ~i l4 :: {?.. E [{ (e. ( e ~ l OOd kA.(.J£1A_ volts. ca lle(!i:cr Ualt~e ZS .. 6 K.. t.t Jalk ,. ~ =- 5 Rc =14 3 trv Chapter 4-36 4.84 for la.r'(.e {Ji l:lte. oe 6QJe eurrew.~ wltl 6 e """- a valb~e a.l: Tuos 6ue oc l:ke /;a..s~ ea.~ bel" vwd dlrea.l:l'1 va ~~~( 1;/Je Bubsl:itul:lu.,j re • ~ =aut! R.E = 6 .. Btu - volt'0e tf.. c/ivlchir rule ve, =t •t:\1 ae o \00 ~ tOO+loa o.~ VE. =- =J.s -o.-1 ~IE=- # 6-BV = 6 lfo1 t fl =t. s \) 15 . r/ tl ~ 4 t:l.lit R.c.:::: q .SK~ ~ t'f!e.S ~.g a.ot5 + 6.8 = o. fJV6 6 .. 8 t-o ..oz-s I tlte uoJe ltl.hele J tfat. ,·~ V COV\Ke.a.l:ed bo '<.rovw.d: L.. lfuv\ -= V R..E.::. 0 lfat • -ct..R.c l..e llor .. v7: &. ~e+-fe ·e. D. ':=! Given: R, = 100 Kfi Al = 2 kfi & R, "' l k!l Plnd : R.,, Aw, R, a) !Vi(e)j ~ 0.9j,~(r)j 1t;u 1 - Also, lt! .. U'b if£. - S ~ 0.9jPsU>I ~~0.9 RIN + Rs Rl Rr + Ro bi "oUl '"' ~.··-AI'o 11;(1) -= - ot ll.c !ft..' (e --r l!.i! Ua2. = IN f ,Rn; . R;l 1. re+f,;~ ::=:> Gvo R1 + R, 1t = l!oitJ., 18 + V; R = - - .'-.4t'o R; -r R.n·~ Connecting the load Consider the form (R/e)ll R: R,. "' R RR AI a+ R I II I' 1? r + (Hz II 1 ' Ll R +a RtJ ] + g,.• IRz ·• Rt> The circuit f{>r A,., is ~[£F1R,~ Chapter 4-38 4.88 = = Rc "" .to kO, V. 50 V.fl H)(),/,. "" 0;5 mA I 0 . -3 g = _£ "' ·5 X IO "" 20 X 10-.l S .m Vr 0.025 · ' = tOO kfi 50 . ro = V..t "" 0.5 X 10- 3 /11 r, "" J!. ""' g.,. JOO 2o.x to- 3 = 5 X 10J 0 Rcll ro = (10 X 103 0 100 X 103) = 9.09Ul Ro "'" + = Riu = r,. 5 X 10~ The circuit is now (see figure above) for values given R = 99.90,Aw"' -9.9989, R, = 100 The dependence on Rl is = R· 100 m 1~) If Rr decreases th~ gain becomes sensitive to R, lfR1 --')oo R.. = JOO,A.,= -10 Av "" ( Gvo - ...-!!Jii...A . R. + R vo 1N avg: = )< S X 101 -95.2) "' -31.74 5 X 10~ + 10 X 10 3 max. Jno(t)! = 5 X 10-J = IGvl -99.9 ( -9.9989) 99.9 + 100 = -4..997 V/V 4.89 IGvl = f3 WithoutR1 Gvo "' ( ·' mall\ signal r~,18 is witbR1 .~ R,) = -(20 X 10-J' )(9.09 X 103 !1 10 X 10 3} Av= -95.23 1100 Rr + 105 · 6 1100 Ri + 1.21 X 10 Avo "' -10 (;,1 ~·~ = -~ = -gm(Rol! tJi A,, IOOJ~too)<- !0) = 31.74 Rei! RL I 157.5 J.LV ro R,;g + rr. -5 IF r0 --> x then Rc II R1. Let l?t' II r0 --') Rc !I 1? 1. = Rc Jl R, R' !Gvl = 13----L.... R.; 8 + r" _!!_i__ ~+c.: 13 13 But r,Jj3 =• l!g~ ' . !Gvj ·= ' Rl, . ~!it+!.!. 13 R/ ' 0 g., 10 k!l; R., I, "' 1 mA ·· IOkfl; f.1 ~" 100; Chapter 4-39 a) IGvl .!.Q..4 + 0.025 ROV/V 4.90 10~3 100 !Gvl = 13 Rcil b) If~ ranges from 50-+ 150 For~=50: IG I ~. v - ~ 1·0 w•+o.o2s 50 10-J R~. II ro ""' + r, l3 (Rc!l R, 18 "" 44.44 Ur 0 + r, R1) R, 13 v IV (Rc !3 = I! RL) 7; ~+~ J3 13 Vr 109.09 V/V ~ II I ~-~ g, lc c) What is~ range if G 4 ~ jG,j :5% at!G,j"' 64: ~+ 4 to "' 64 => 13 104 + 0.025 13 to -l = 76.19 13 Rc II RL = v., lc 10 H. Rs;g = 10 kH. VA = 25 V, and VT = 0.025 V at!G,J = 96: 126.32 (104 )1! 25/lc 4 .!Q.. + 0.025 100 d) Suppose the nominal G,. is G, . ~"' .and lc is lc 25 X 106 /c variable 13 "" 0.8 G~' _ "''"' 50 => G 11 13· ,. ISO:::::> Cv = 1.2 Gv-nom Then H/__ = _ __:..;:: OJ\ Gv ... """' 104 + ()J}25 50 Ic to" 104 + !),()25 fc 150 Take ratio 104 150 + 0.025 f,. 104 + 9:025 50 lc 0.8 => t, J.2 () 125 mA 1, (ref) IG.I 0.1 27.47 0.2 41.15 0.5 55.56 1.0 57.14 1.25 55.55 The values of I, that result in !G,I "' 50 are : l X 0. 925 mA and 0.324 mA. The 0.324 mA would he preferred since a lower fX.lWt'r is required. Chapter 4-40 4.91 4.92 = t11/ (r, + k,) ih = i - ai "" (I ~ ' R; 0 i;, a)i. = (l - a)_!L_ ~+I , 100 +I I 1h R; 0 "" r = VT • (jl = IE VT + l )(r, + R,) = a Vr -101 R)c + (2 X 10') I,= (l01)(0.025) (F.q A) Equation becomes lc oms 3) = 49.5 n 0.5 X 10 = = 2.525 Our unknowns are lc & R, This is one equation. i, "'u,!rn+g.,v,"" (1/r,.,+g.,)u, (.! ])a ., = p ' _ R,. = ( 100 + t )( 49.5 + t5o) "" 2m so n Avo l)R~lc + R;.lc = (13 + l)Vt 13 = 100; R.,. = 20 kfi; V1 =0.025 v Given lela ,. (0.99>( rnultiplybothsides - (Jl + r, +R, V;fib "' l)(~~ + R,) (fl + by lc and rearrange : 111 (!J + I) = lc R;n = a = _L ""' _!QQ_ = 0.99 I )(r, + R,) Vr r, ~-- r, + R, · {!3 + "" .l. 6m.,»' -ni,Rc = ~nRc-1r, + R, Avo "" -(0.99)( 10 x 103 )! ( 49.5 + 150) now model becomes = R,(l13 + 1).Vr fc "" + tt, + ~ h· v 13V "' 1 t!!'!ig - ~~t>iR -- OJ - 0.005 R,lr [ -1 + 13 = ·t]""R lf' + R,;&"• .. .JC Vr [-1- + JOO + (_'\000 )(.'i X 10 f Il[5 0.025 X 10 --ll. j .L ' ')I ( 100)(0.025) (' 0.005 = 0.202 RJ, + 10 1, (Eq B) -~ __!_QHl_. (-496") 10 kn ''· -165R2 + 10 kH · .20150!1 · · - 2015o n + 1oooo n BVr Chapter 4-41 4.94 tiquations A and B can be wived simultaneously lc = 1.25 mA R,lc: 0.00064 o:i, = =»R, = 0.22264/1.25 X 10" 3 l'•ig lf~tg. fllf l 1si& }(1. 250.025 X !0-J) = = -{5 X 103 = (-250)(5 X IO-J) Gt' 0.1 t•b,(t) = r,i, -250 l'o(t) = ~ai,( Rc !I R1J = -12.5 u (.t) = - r "' = . I3Rc R,;g + {\3 + I )(r, + R,) Suppose o. = I lr Jt•o{t)j"" ( 10 !Gvl "" !3Rc R,;g + (fl + l)(Vr! ft.·+ R,) lOkU; !3 = 100; Vr = O.Q25V: I= lfnA R., (X _L fl + = Gv 101 1.: = IJ<• = 1.01 X IO·•A lfR,"'O ( 100)(10 X 103) lOX 10' + (101)[0.025/(LOI 80 11Rc h•s(tll = luoUll I Gl' lr,,1g(t)j = 0.5/4.R8 = ll'oUllm., = (0.5 V) !i {t)l "' I ' ) at j3 = !50 G,. = 1.2 G, . . - w·' + Rc) These two equations ~.·~m he solved simu!lnneously for 1?, & (;, "'"" 1795 v (} ,. """' .,., I11oUllnm RI •m•x V V · 1 r, = -=>I~= _!_ I r· r, rwm (!50)( IO"L-~-10'1 + (IS l )( OJI25 / LOI X lO J + R,) K · .· · 0.1025 V = ....J!:~~··· X I o·' 2 = 250j.l.A r, = lub,(l)j,..., = 5 X 10 ·' = ZOf! lic(l)j,," 250 tJ.A = O.SG,.. '"'"' (50)( 10 Rcll R1 Rell Rr. = a - - - · = o. -~:..._!:,_ R,;r + r, R,,~ + Vrl IE 4.95 variable (note that a = 0.98): JO'; + (Sl )(0.025! 10;X = u0 (t) I t',;g!tl X 10- 1)] Suppose !G,I has a nominal value G.-.•um and 0.8 G,·num corresponds to 13 = 50. Let R, be a 1 rnA)( 10 X 10-l) Gv = (to kO)!I (lO k!1) Since a= I I k!l + 0.025! 10- 3 = 4.88V/V lOO = 0.99 l IGv[ "" kUJ.~2~10 kfl)(0.25 luo(t)~ = 0.5 V = IOkfl;R,."' = R1) r, r = l-'r ' vo(t) 'o( Rcll lt'o{l)! "" o( Rc II R!,)lv,,_(l)l 4.93 IGvl E + l'o "" Vo ~ = rtfi~ Rs~, = 178.tl Gl' R, B lirU)j,," 1.2G~, -nit'tn , (,,, ·= 1,,. -li,-(t)!.,, f3 = 1.2mi\ 20 = II''· 1ic(()jm, lidtll,., Suppo&e 0.025 LS mA I mA 100 (15 + I) R . ...- ............1;••.•.•.. .,, ......... ([1• l)R 1 +{f\+ IJr,,+R,i~ 30.625 { 101 )(:.!X lOll (Wi);2 X 10 1') +fl-fll)(2(i)"': 200~JOi , ().49<) Chapter 4-42 ( v6 ,.(t) I vo~ 8 U) = (r, I R1JG 11 v 0 (t)l v, 11(t),.. 1000 ~~ 2 . 772 = 0.8178 This agrees with G ,, =(24.752/1000){0.8178)"" 0.02024 v"(r) = v0 (t) + v11,(1) = vb(t)!tt, 18(t)"" Gv + (r,!Rt)GI' .,.. (1 + r,!R 1JOv + 24.752/ 1000)(0.8178) v,(t}l "•;g(t) = {1 .; 0.838056 Gv"". (~ b) ur,,(t) I v, 18{1) = 0.02024 ,.lflo~s< 4.97 /,."" 0.25 mA; R.;8 V,= 0;025 = IOkfi: (~+ I)RI. + l)R1• +

l...,, = !l!h,{t)l.,.•• t 0.02024 jv.;,{f)lm•• "" 10 X 10 3 /0.02024 = 0.494Vo!d lu,,(t)lma• "·~ Gvh;~(!)!.,., .o~ (0.494)(0.8178) "'0.404 v c) lf R,_ is renl =0 '.z.q 1<.62 v,(t) = (g.,r.,r,..- RE)Rc (r.,Rc + R~;r" + r,r,.. + g,.REror,. vs~,(t) + RcR8 + rQk8 + R;;Rc + RcR8 ) RE(g.,r,r.. + Rc + T 0 ) Rc + Rcr... + '"'" + g,Rgr r, + RcR8 +Rr.r, + r 0 R8 + Rr.Rc + Rr;R 8 ) +RE:ro v.(t) ... (r11 I'•ia{t) 0 =~ I c Part b) Nodal equations: Re S l(sz o.&f ~s' .,. o.6 f ~61 4.3/ ~sz. -=o.6'i~81 Rs1 :. =l> R8 Solving: ra = -i" '" a + c + @ s,·IAce V&E == 5 l Vss = o. 6~ ~ v I • /;lu<_s Vae- raiA.~e" f'a~ 0.67811 l;o 0 . :r oztfJ (!OIJ{. Chapter 4-44 .:r: a .... .:r. Fo f .Ia: g e V&.4! 1 VT jar Vbe-=- O;GfO-;.. Zc- .fwA .-=:t ror .:I:.., e f.032.}(l0-f'S VeE· 0.618 Vee -: o. ':102. ~.I.e-: ..Ic (Q.""":t·'!J trotM A, 62tM ~. @ lt -"~e= o . .:l:_ 4.101 tf. 'z'" a. 618 H-t.A- l:o ((c.::: 31( tJl ~ c. Vee • 5-3 /t:. ._ o. Gl~ • .3. 14V Va.e • 5 - .3 K" 1. 6ZtM..:: o.l4 v th8 e/rCAM.i: Is l:oa seu..s/i:/vt! l:.o fa.ro..IIIA. e. /::.e. r varla.t/a us a& 3Uoww lte re fOro.. 1 ::. I.. c. etwo.se ~ Rs= If oo == r ror tUest!! 19 +I 3 valve.s of R. Qk,j f<.s ::: : I.e .. 5 - 0. =t )( 50 0-~ V -- ~ ·~$'C" ~~ r:J.. -= 0. ..:Cc = .2 ~ 8 o a-w A ::: + 3. 5 V t~o: ..I.e.= t-5~A Vee.- ~ 3. =r:J v IS II 13 ::: 7. 55/Clll :r:.e-"' 5.7=7 -o.? = 2.~3Wt.q 4SOIC lff= 131<.1./L \Jee = q x r3 -11< .... I.e.. =0.,:50 kA.A -::9 VeE ::: 5 - 3 K >< 0. 5 IAA 1g.~vt ----ltf R,•R2.•/fK 5V- 3 K .A !MA = !LV l ~ = 60 .scn'~a.61e. ~ ra res tstof.1' f<2.=l2.3K.~ {)::: f'O: Vcr= R.2. ::: t2..SK to ((, = /~.1-K 5-o.':J =- /1'11\A. r<.s 4BoK..t.A -7 lf I?.E. is redveed ..Jt R.e - f tOc/l ~ ~e I.e 6J ""'1-~~/t. = .3 .09t.4-1-A =3.051MA · Chapter 4-45 Is. wi tkiw ± 5~ Of w.oc.wic.co:l 4.102 0~6 :. R, = = 5 kO vb = 0.1 + 3 = R1 = 2..::_1Z fe/2 Ie (('>::.~o) >/0.9J5ZE(~-=too) RE = 3.7 O( I \] ~- R1 IE Suitable 5%. Resistors: R1 = 17.4 kfl R2 = 12.1 kfl li = 90: = 12.3 kfl RE .,_ R.e, or, IE = 3.7 - 0.7 5 K + 78.4 ;>,., o. Y5 ( Re+ ~) ~I RE ';?/ fR2 = V 1'1M.f0.3e tL:.e COUS~fCUkf Wt!! IM.V8t Forji = oo,/8 = 0,/E = 0.6mA ~ ~ £J.T3 R.e ~vs, tl:= 1oo) aocu r~ a& btr.e low e.v..d Of (5 valves (.(';=-5o) . Tf..tus, to Keef ::. Vee -1+({&., 3 Vse, =..L Vee. ( -1 + 5...:!2) +- o.=J 5 ~ tor VS 8 :: 0. S-5 Vee + o. ~ (c) Vee • IOV Vs&~o.SS"IO.,..O.'t • 4.Z..V ~ f<'2- IC. ' 0 :r 4 . 2 /<.1 + R2. R" = o. 42.. 0 (<.,+It 't. I.£. l<.e ... ...L Vee 3 C!OIVT. Chapter 4--46 t X RE = ...L -=-> R.t:. I0 X 3 bul:.: .IE= .I c = I. 6=1 KVL Rs ,: 5. ~ 3 )C ' · 6~ t:: y. 55 K u f{,.R.1 = 9.65 R..c+f:, __, 6 aouz 6e~f'-'1 ~ G.t.Kt.t =00 : .:Le e 0 .I.e.= I..£ Vs=o UE.-=- -a.=# Ic. • .3 -o.':/ 4.104 (o.) = 3-o.~ =a. S8t4otA !<.~ Vt!.:: 6'80 .3- g$8"""Y"'"-= -0.38V '"For (1 ~ ~0: .:r.e = ..-2..5 s.o~""A -= SSo+-6.fK 91 (.b) {1 = (jO - VRE :: V~e, Ia Is. t = 50 l S N J2. • 2. OQ I< r.ll. tue 13Jr vsed kas /;ke e~AA.iHer t!t~trt!!t.LI: (t!!:s v l /:;/lA'{_ t:!.o.~ be f o" t;t.d f r;::>v... £ s ."''f.l) .Ie = Vee - Vse R..c...,. Rs 1 f c - t.>+ = 6 - o . !l 6 . 6 .,. a lA. tl .:r. s =:: - I o. !.lltAAA -51 Z-0() o..:.!:!J_ a.- ~Jt A 51 /U.u...! fke collecta r w; U 6e l,cr ~~ ke( 6Lta.-u bke. ba..se U 3 "-O·Z. = {.6 V 1 a-lla~uJ 0- ± I.~ V tH5(.. vt.a..l swtu~ at bLte colh!ai:o ( . u to;- "':F""oc {) == 150 : :I.e .. = o .sq &M.A :5-o-~ G.b+~ I5 J I 4.106 lb.! =0 B l:.ke . -5 l( '::. .!3 6.JtA 16t collea.i::af" volt~e <.»iU be iM;~ker t~ l:ko..'t' af f:ke ba.ise £, lf . 3·6 XQ.2. .:f}OM=!l.V a..Uow,.111.j .s o.5 Fof {!>-:: lOo ; - Is:::: .Is: -:: . f-:' +-l t"O IA..a...l ra.r a 1Al'1 .s vv ,·0 . U + a. ~z.. v Chapter 4-48 4.107 4.109 .:C.5 • J-c.tf> .SIMA/~o-=o.os!.t'4 Ve • R& . .:t.s + o.T Ve • 1• 5 v ~ R. e • ,t4. 2..1<. Lt. :r:..£ ~ ..:t..c • 3 .03\M4 1: +5V O.t mA (+0.5V) +t.OV 1>(. ::l:. • .I:.c - ..l: s a ..:r: E :t: • 3 .03W'A -sv 4.108 l1le conslraints imposed cannot be met v.. < -0.7V forQ 1 active. Change V.. to 1.5 V then V.,= -3.5V V.., =Vn + 2.5 = -t.OV V"' =V.,. +l.S = +O.SV Forp = oo Ra • l.S VIO.t mA = 15 k!l V11 = -3.5 + 0.7 = -2.8V Then v«• = 2.8 = VR2 22 !!! R2 V,.=0(/11 =0) Va = -0.7V Vn = V11 + 1.5 = +O.BV Vee RC2 = 0.1 mA . 42 k Thus, ex • I _ ex/ 0 - _ E - rI.R+R y c:c:R2 t - V ] 2 + (Rl II R E BE R2) P+l n For I.,.

//fTr = 'f.64//t.S•/./5Kc.t BlM. - ~"""" =- :P6 ·81MA =fo =VA : v - v Chapter 4-50 Vsg- Vse R..e. + R.s .:t.e : (-;'H 3 -a.~ 2..:: => R.e =~K.J.t ~e. f l0/101 =II~ c.t U:Je lle Av;: era :: Ch'. Cft> __.,.... __... lJ$ \lt..' , t;a.tA ( R.o llft.) ~ Us R.i -:;t. f<.s+ lf ~ - I. 15 Tlt~ r~tAE:it.t.~ .Je wlli/:J! (ft.' fft.' It =? 6 . lJ X (2.. ll f/2..) l0+/.15 :::- -8.13 V/V ~ A t' U.1 I ( R.J rl<.i) -= cf(;) • v fo .. At"-= fo :-: lfo. ~L !{ J:E.. ~ 3 '>Jo.:t ::: .t.Of ~A J +- lO/tat ::c.e. • ~~~. I..e. - o. qq tt 2. .a f = 2 ..o ~ \.c.4 A _<{"" ,. .Xc. -.: :. 2 .. 0=1 • 8Z . '3 ~ VT O·OZ.S v f1f' :r f'.> ::: 100 ::. 1-ZI KCA. f<.s t R. t' iii /tL. ~ - B. I 3 ~ { l 0 +- I. I~ ) 2.. -= -45.3,.. AlA J~ 82 .. t 5K. I:JAv~ v awd' A6•I.s =0.6 Y! : : ( f1T --5K) ~ ~ ~ • f rr ::: 5 2-!>0UL tkeu. f<_s • ........___ 'R_; ... 2.f .S8f13.S5 II:' a.QtKI.Il r" Ra.,. rn 5. 85 K til. fo-= tao =-l5/.5KCA R.e, ~s ae:> R.;.., =5K.c.ll. (# O. OZ-.5 'I:.; ~s IE""' 3 .t8 -().1 :: 0.66\M.A \) +5V 4.114 ......___ 161.51/6·8 nt ,. [.53~"' t<_e altoo.!le 10~ I< r: 100 f( vt . (kud :!.8 :r '1. 'T~JtA ::!'.E • {fo +I );!.8::: /01 ,c 4. ':f&.)lA I.E= Q,lf81MA x ::.I.e _., .:r: ~ o. s M.ot. 4 Jo a.vo id .so.l;uro.JAoiA: Vc.- vs ~ -o.c; 'Vc. :: sv -l For l<.s =/OK , R.L -= Cf!!.. -=- -5 w. (i.e II ~t.) /OK AIf .s 4.471< Z.Z.3 V/v -50\M.'tt - x -22.3 -:S·HO (fC : Ub -=- 5 __. . (/a __... lfa trs {/b :r: zo t.«_i v 2.<$M = roo =- 5 K ell. lfa ::. tfrr x c.fo (Js c.Js urr = -74 .s v;v -= -:: _ - ---- - (Jb '= 0.5 ~ ~:w ... Iii ~ -:::- VT = - 40'5 V/v lfb 2..oa ~t.t "= ~ Wl : : R.s =.2...5 K , fnfrr+ R.s -- 1r -elMu 5 ~ 2..0 5+2.S ((a II klll!.t) (too II to II I a ) -= - 8 6 V!V 4.115 .Ie.• 0.6tMA (a.) IE c -o.~ 15 l<.e 0.5 ::' t- B.L f.:,+-1 /l/.3 10() ~ f<.e.=- Z8 .5=/t< 6.<8:: 8.Su == Chapter 4-53 m (b) (f) 1/bt + flt."' ~ l/o ___..... lfs K lf6z _..._..._ ll lib• .. O.SZ..'ll -68.! w. J ---lfs =lf61 U'62. ~<. -5lf.3 12.~2..- "= - ifo ...,.......-.. . V/V =- ~·1'1111 ~st = Rsz. .. 0w J 1 ::t \M R&::::: azKc~t z. = o,. 1?6 = as. 4 ""!. O.OZ-5 ftrt = ftt!. V - = toa -:: 2~6 s s.q Kef .: :. f<..e z. ::: K VL fat= (. n. =< Gb '::: V tJbr :: (J: 100 fe = Vr = o.oz.5 = J.6o« - ::I.e 0 .I (1.60+!.:50) £iVI• fOl • 50.-5 Kc.Jt s' II r;., U6- 52.(/t..£= R.;w1 J2 S t- t. R.i w = ( ~ + t) cr e + 2. 6o ) 'I( G. 8 K tit (c) tliv. 1 =I< 4.119 ':::; /(.,;,.. I Z-.4 5+Z-l..f (d) l<.iYtt. = R.ez II ftrL :::- 32..11 f...~ =t.. 4 K VL ===- Ub2. = - 0"-tt urn C f<.ct II f(lYL~) =-5S.l.J cfb, (6.811 /!..4.) - Lfbz. -::: -68.1 V/V tfbr == -:~\-W.Z Vrr2. ( R.ez 11 RL) '=' -38 ":it lf6z (6,8 lit.) -==- -51/.3 v;v l5o • o:~z. ,t,.-/9.8 = -t4.z vlv ~ l.fs "Fof 1f6e = 5Vv..V , 7.fe = 6'1M\I a.fsa (s,·u.ce I.e= fe"" 2.5ovz.) /tu..Ls, lfb = 6 +-5 7.Jr. '"" Ce) Uo lfo tf6t. cyltus, ?fa :rt # IOIMV lO\M = 1'3. g 8 W\ V __. 0 .'=ll. /3 .88 X (l.(. Z = /<{:'/ , 2. 1MV Chapter 4-54 4.120 +Sv 4.121 (;a..) l:e • o.f t.ra ::: - f o V/v w ====- o =Ve- o =- .aJ K t.o ( /l.C! II J..) - 5 - (1.5 I.e. t<.a.+-1 5 ~a. .,.. 5-o.!> I.e z... o.5 I.e. -0.2 ~c.= o 0.5/l..t: z. -l{ ."!JfOtA. ~ flurl ~ue volt~~~'·"" f5o/cJ9 jlr•t c-..o~~ Ve = R.,· ~Ri y4 lfc iTe. Thvs. fOr~ =Zoo, I.e:=~= ~'"" So ::::. o. 6 6a+ -5o (Tc:ai:a.f rest'.r~e o.t:<:) fe ~ -1 JC (lOO~tA. /1 ,f K\4.) =-ol Ve • + 6.5'(V .f- zat 6.tq v (b) Ri•lOQIC.cJL//C{3tt){re~c•ur>) = I oo II ( {>+-t) C re .. o.6J IE • 2.. 41~A Tor (lJ ='to , e,· l:iAtJs to. a~ Vt fe • too 11 '" x ((). Ol()~ t().f) • I oo II 2..1 = (':~. 30 VI. t: J( (9.9 V/V ~ ·1~.9 ~<0·5 (J.s 'foe ~ = UJO ~ /:)4 tJ~ ~,· c = - I.e.== f- o. '=l f -1- IOQ /(/S+I1 I. I! • 5 .:5' 'l\M 4 fe = 4. 51 lOO cJL H 101.'( 60.3 A::~ -- = CJ6 • £.S -= 4.123 1 =too 1/z.at ( o.ooqs ro.s) '::' ='?.Y VIV (c) t!a Cfs (a..) - t.f-IQQ ~ == 60e~t c - Vs • 4.122 Ike", Ve:c.tl'l(.t.Cll• t..l.{IV va • .t.l.( 1 f-o.!l· .3. uv Rt.' lfo cf6 • ( 1/t t) i!S+Rt' C• llt)+ r~ For()== 'lo, ~ ... l':l-.3 Us I 0 + r:t . ! IC. 0.5 0. 5 .,. c. o '"' 1 = 0. 6Z I VIV fo; (> = zoo, «fa • 5o. s us to ~o 6o.s o.s o. 5 + o.oo4~ = a.sz.:, vtv Chapter 4-56 4.124 I.e: = = ~ .oo \.11tA 5-o.~ a.~+~ .:I.e1 = 60Jt +..I..s.z. ::: 60 + ~~2. c 5CJ + 50IJO. lOt ~'Z.+f re "" 2 5 - t.5t.Jt 4#00 R..r.:· (fo ~~) [ re + ( s.st tJ] • 130.0KtA lfo : : Ub • Vo = Rl VS iJ"S "iib Tf..tv9 1 Lfo : tfir ( .3. 3 II t) lls+-tet te + cs.5hl) ~ )l ..l:& I= 0. _., "-tA (60+1) ~ l. {/ e. + L 0' OZ.S = o.=t9bl2.'*"') e;+l \.) flt..+fet. R.t.:: -1 K Lt.. -= 71-=t. 4 AlA 1/ [re ~L = tib2. -1 Roul: ~ 3.s £efer l::o Ft~ . P. 5. f4 1 tie Uo /I<.L ifs o.s )( rs" = a. .-e.-zv (_.3 •?, /1 I) \ to 0.1""'A Vat= 4. 580 tOI X ( 4 .(}05) :::: IOL .5 Kc.t. f.&:! = Lfba -- fet-.. Vr f!..t' bt.. ~ t'6t. +- re. = .Zbou \OO)'A -.:r lfer -: : lOI. 5 -=-lJbl Lat . 5 + a. z s 4.125 (a.) -:I.Ez. = .?'M A p,. . 6o,-- (!:,2.. =too 0. 9'17 V =====--v R..t..' = -t!tvz.lttJHt.t.l/(fl,+t)(fe,+R,:&t) -: -1 //A /l5l){(o.zs+ ta,.s)K~ '=- 11/1 -1/l 5. 2. M l/2. =. 0.4'!(WlL)V(1tt,t = 200=>{WIL)V()v; 1 = 12;5 Condition 2: l000=>(WIL}Vuv,2""' 2.S lf condition l is met. condition 2 will be met since the over-voltage can always be reduc:ed to satisfy this requirement. For condition l, we want to decrease W/L as much as possible (so long as it is greater than or equal to 1). while still meeting al.l of the other constraints. Titis requires our using tbe largest possible ,,.,, voltage. V cs.• = 1.8 \bits, so V •'»~• = t .4 \blts that W/l.. = = v.(W. 2 -- I ::::> (J.LnCnr)(~)(Vov) 12.5 - W /L - (a) v.. i~doobled ..... r.,.ishalved. factor= 0.5 5.4 k. = 5 mA /v~ (c) Wand Late doubted -+ rmis unchanged. factor ,., 1.0 {d) If oxide thickness t,.,_ is halved, and = ~(IX~ 2.5 - 028 12.5/1.4 - . v,,u = 0.68Volts :=:> 0.68 ~ v,, s (b) W is doubled-+ rD$ishnlved. factor= 0.5 c(IX ~ St 8.93 1.4 Condition 2 now can be used to lind va.u With V,.. small. compared to V... PS = Vof',t 5.2 r ill v, "" 0.5 1.8 v Small tim i0 = k. ( Vos- V,) Vns "" k. V,w VM Hps = J_ "" k. V,w l~:t 'vs c,. is doubled. If Wand L are also halved, r1~ is hlllved, factor"" 0.5 tlos = 2.5V -------------- 5.3 I The transistor size will be minimized ifW/1. is minimi:r.ed. since WIL appears in the equations that must be satisifyed, we. can minimize (W/1.). Clearly we want to minimi7.c L by using the smallest fcture siz.e. L"' O.l8~tm 'Vcs= I.'SV 250pA I Vcs = I.OV 125pA I -~r::::;;;; Vt;s ""0.5V _ _ _ _ _..e:;.+-.,. 50mV rns .,, _ _ _.:...-_ A;.tWi L)(Vas ·· V1) I __ 'os ""' _ _.;_ k:cw !L)tlav tim Chapter 5-2 5.7 p-Channel (V) (mS) (fi) Vov 0 g/>S rns 0.5 1.0 1.5 2.0 2.5 5.0 7.5 10 (V) Vas 0.5 1.0 1;5 2.0 2.5 0 v,v = (a) luovl lias = - 1.2 "" 400 200 -0.7 V. = tJc; P · ·' "' ( ···1.2) -· {-0.5) 133 100 '·' t>S = ·-0.7 v. tJt>S = 11v S ·-0.7 V. = l mA in saturation mode :. kp = VDssat= = 0.5 V. (b)fiJr Uav "" V, , Un• = ~(·•- V . (c) ln 5.5 v. v.. For v,. =Vas-Vt =2.5 -I = 1.5 V =:::> VDS sat "' 1.5 V = -10 m V, ohmic mode 110 jD = 2iv = 8 mA/Vl ( 11as- v,,) 2 kp(11aS- V,p ·- ~Vns)(vl>S) In saturation: . lp = iv = i0 !2 K'u ('f)V L 2 "" OV ! X~ X {1.5 2 yl = 39.6 !2 KuV OVz For ''n V)1 = (1.125 rnA) = 5.8 1 )l.A ···2 V, sat mode. i 0 'w iD "' ikn[(V GS- v,)2 = I mA kn "' ll-nCox for equal drain cun-ents : 2.5 0.4 5.9 ·W c rorsmall V,.,ooi - k nJ.. -(V,.. ·· V,) Vns ~s (J q for s~l t.tos; (tr,ob ,.~ :+ " ,. v~S tP 11 .=-o.4V Vc,.5 ::: 'bv :: --';.....,..- K~i'lv011 "' '- f-fJi11 iD=. ~ f '{,v. ~S =IOOo t:1..6.,-,..10':,.~ v -..J----::--...,.-- -+{ = o.4+0."+= !.IV o.lt Otf .,_ 50 X 10 6 X 20 X (5 - 0.8) 'us = 2J8 n Vns r 0 s Xi, = 238 mV for !he same performance of a p-channcl device: W,, J.L., w. J.lp 20 X 25 => 1.5 :::'.> j-J?I' L ~~ I. 50 w -...!' X 2.5 L Chapter 5-3 b)~~~¢~$~ N..,b,__; ..~Jr:'&s-VI: 'to= j: K"-1.( C. ~.s cr !:q!L.f•IO xtOJ(I·,f:JJ.IIIA -"f c.) trltn:l• ~.D ;'&.: "o.s VG-$- \ il>., t~" 11~.1~1;6_,10)/(S-o.Bf~~t 9.5tMI\ 5.11 fU69 I Ji I 3 OA 0.4 Chapter 5-4 = 1.91.7 X I0-6 X 10[(5 - iv 0.7) X 0.2 - ~(0.2) 2 ] =1,6lmA (d) satu.rntion region: V~~< > Var v, i 1> = !2 X 19L7 Xl0~ 6 X 10 X (5- 0.7)~ '"' 17.7 rnA 5.12 Sat mode, A '"" 0 (k.it.') ""' !2 v 2 C\' Slope at Vov"" l V. zvz IV~ 0 ...""'"---+--+--+---_.,... ttov 0 2V. IV. Ohmic mode, )1. = 0 I , v., .. l/1.>~ - - v" (~) k,, . = " ' 2DS 5.16 htr {M. rt.M-'.wot ~tS..-\~CAb : cl\MM.\ U '~t>:!.>~ "c,s-v\:. ...,.,.. 'hs...o..or = ,.s_o.S': o.":JV 5.17 r," = w [k.' -. V 0 v']'' [. 100 , 50XS·(~·Gs-l) Mn I ·nor -'!.. 11 iillt>'' f' ·~' ttos '"' n For prnos, change l-'ns ·-~t i·'ov-}' V;;s ••· l V~;s Ll \!~ r 0 s II V ""> l.~~o tJs,c ---- ~'os = -.-.--. kfi IV tpl ~ 10 Hl = r,, IOOf! won ~;; r,. .. :£. 10 kH Chapter 5-5 5.19 a) rn! a ~ so if Wls halved. r,. is doubled: 2000::s> rn3 ::s> 20 kO b) r0 s a L so if Lis halved, r/)$ iulso halved: 50 n s rns s 5 kn c) r0 s « ~ so ifootb Wand l~are halved, ~ stays unchanged and so does r,.,. 100 n s r 1u s to kfi 11»s "" "Gs = ~k11 ( Vos - V,)1 in 5.18 v, or0 I lk. 3k. 2kn 4k. 5.20 v00 i0 "" "' 0 =*saturation v""=v,,-v, .1'. V rm ~ "s I ikn [(V 00 V,)- r~s] - 1 0 0 s tis s O'tm- V,) v~ 2 ( \! rm ·-- V,) nS are possible. h.( lie~- V,)2 2"' + , -1.0 + 1.0 CU!-Off r/i] 2k. +1.0 triodt!, ··1.0 0 ..:ul-nf[ +1.0 sat. ···- r--- r--··"· -·- .........-+2.0 sal . .... () ---trindc. --·~ with V"'negative, drain and source an: revers~~d to show the st•n v,_. t' 6 "/ :tt: A \1P.! \ ::: .-.!..::!L A. 1,.:2.. tp I}"G1 CoN:\- 2.. To CA.Itu.lcU'<... VA > Ct>"' s.>c:U r VA + l.t • 1.-A. x r0 z""•)z]-t . = 4r 1 ·4W(l new r 0 = [ 2.Ak. 41_ • "-0 tt. J\. Note that quadrupling Wand L bad no effect, but decreasing the overdrive voltage by half increased the outpUt resistance by a factor of 4. -\-"'*- 1-.e.c. tn-(\u: :l,. :to :: 40 IT ..,.,. VA, ?.6,'1/ c )\ • ..l- ::: o.ol.'8 \f1 5.24 MC$ 5.22 ). "" 0.02 11- 1 ::=) V~= 50V for /, = I p.m V 1 = t/At: ::=) = 50V V'A v.. 1 = 0 ~ 0.08 187~ ,. kfl .. 'l '3 0.01 o.o) o.\ 0.00'5' Vp., LV) 5\\ 100 \0 ~ rl) <.w\A> 5 3.33 o.t 0.2. t;, (IU\) \0 3o \00 lOOG ro-= .YA. )\"' .L Vp. 5.25 Vas"" -3V V,w;= 3V V, llu.' _ A V[)s _ - -- - r,, 5 I ~- ., 7 _ 1., :. = -4V Vsn = 4V ¥,4 ). "" -0.02V = 1. n I-LA = = -I ;, = I ·W ' 3 = 'J.kPL(-:\+ lf{l +002X4) from SO ftA to 82.13 ftA . Ain . 2.7 'of change . . r,. 111 = I) Ai In nrder to reduce ...,!! by a factor of 2. Ai,, has ljs A to he hal vet!, or equivalently r, has to be doubled. In order w double r,, V, has to he dnubled and this can bt• done by dnuhling the length. L = 1 X 3 = 6 ~-tm .w 2.16ki'I -IV --!'iOV for VI'S raised from IV to 5 V . i, increases - 1-=: 4 ).tv~ to forL = 31-'-m: V4 = 50X3 "'· 150V r0 '~ 0 Chapter 5-7 5.26 v. v., v" a +2 +2 0 ov. b +2 +l 0 c +2 0 d +2 e r IY,.1 \'w Region of Operation 2V. cutoff +IV. ov. ov. 2V. cutoff/sat {) +2V. IV. 2V. Sat (} +I +2V. IV. IV. Sat/ohmic +2 0 +1,5 +2V. IV. 0.5V ohmic +2 0 +2 +2V. lV. ov. ohmic ""' pmosV.,=-IV. 5.28 5.27 +2.5V."'f', dk~ t..T + oi0 1 oi1)i ~f~t,,,, iJk~ ID dT dVt t..T iiV,Io dT r 'w -k.-( l u.,<- V,) ZJI ? "L. •··· ~- 't) pmos v,11 = -o.sv. Vs!l = 1.5V. Vas~- :. TJa 0.002 ·""' c• V,P => Cuwff for \'1 "" + l V, 2.0V. =>Cutoff 2 (dk:) tim> :S V,F ='> ohmic :.V1;u :s + 0.5V =>ohmic 0.5 Cutoff Sat. Ohmic 0 " 1.0 1.5 2.0 2.5 .!. If/en ···(·.1_.)(M• 2mV) k~ dT 4v V,, = 5 V, If,,."' 4 V, dT. -~ -0<)()3!C"(-0.3%C"J k.~ c" Chapters-a v,. ... -IS ... )..•-"" ,vs • -?. +\Vtk\ •tlv ~-.... . =~ =')..c;'¥..1\... :t"' order t.lt G:L\~ ~ t~~tu.. \.11\t.A.orl:' cd ;"' ""'•'d w:\io<. \\1. tl~, Vl:>s k.IIIA \:o \Ha. «J{Qdl to "Go:S-"~~:, So~~ ckV(u. is o~ , ... "'t~ ~ .~ ~na.:ot'\..: \'"osl• 'S,_\ •1v- . N;,te. ~ s.·. . ca. i 0 ,·$.fW~ Vt;..s SWA.'j5 0..) ~ s.c..-1. • Rb ~ • 3 ;_l,.. 2.""A \o) '~.2.•-:tV ->- N6t& +htM- v.,. 0 ·5' ltJL 1 ~ vl):-:l+:t.=o-.,.R0 ....:;,l=o.S t's F'\o:&d tltt"''JII~k c..) V'-$ =- ~ V -')' '{5 VG:S,.. S'i". .. ~ rr 3 'I . Now f:.o r V'b$ bo be -l.\t 1 Vp h,Q.S to be. \\1. '\:.~ ~~ .. 0· S'~ .n. .. v....., __ '3 v c& > - 't. .. '{, • 2.". Aelc~.:rta -tW.. t"'t£,·s~ o..-.d dr~ N\t.CVI.S ~-*. VJ) \lAo bo 5 -1. .. -a v o.nA ~~ \u..~ , " vo\t:.c..ac. u-,p \.c~ ~f.~ ~ ""- on -\Wl N!Ot ~I'D r •• Rt.fli'A~t 1:" ,., LlL := o.lS -.J\- 5.31 In= 1 mA, V, = 0.5 V, VM = 1.8V. To operate at the edge of saturation. Vns must equatv"' of"cl..r tc:. e»J.c.u).A.G.. -u- ~t puinor 'bJ· ~ ~~ n.ot:le. ~ oJ.Lad. doa..s..l~ c:l.-w ~~ S,'>'\Gt.. ~acJi t.4.t.'"-~ ,t.h.c.. VoJue of! +~. ~$·~~... is. •• ~ ... ;C*.\· ('/ow we. c..e».l~ ~_,. ,(l<£Sc)~ ~ t"'-t. ofo\tc.ae. d-~ \CQA.t O..) ~.ss tW... w~ s.oo~f11l ,_~ v; ,.. '11 "¥ t\M.t'\.. v66 : = ..!L-2-5' kA SMc...,.r 1 Ft. ~ ..,.-.,. ., \15 = 0a_..,= ,·s. ....t 'f)"" L8- o"' 1.s v v,., = v,.,- v, = 1.8-0.5 = +1.3 v with V.,. =· V,,. = 1.3 V, v"'"" v,- v.• "' Rv "' VIII>- VII "' 1.8- 1.3 "' 500 {l //) I mA ' Chapter 5-9 5.32 5.36 R.;L.5:.. .. 3.64 ~ o.ns 2. 4 O.lls •..I...AOitlOlt)!L t-\·5-t-c.l))-')-W•lf.'I',UM. c.t lilA !l. = In circuit a: V2 10 - 4 X 2 = 2 V assume saturation: 11» = 2 = ~X l X (Vr;s-2) 1 = Y(;s = 4V ::::> V, 5.33 = -4V , VM = 6V > Vas·- V, so our assumption was correct. rn circuit b: =\.2-S I<.A R: 5-3.S 0.12.0 ! ID == I = 'J._}(WI _.,.. W:2 '*' X I X (Vas- 2) 2 =::i} VGs = 3.41 V V; = 3.41 V In circuit c: 10 = 2 mA =::i} V05 = -4 V =::i} V~ 5.34 Vc;st = !.5 V [20 11A = ! 2 w V5 = -IOX2.5X2 = -5 V ! X 120 X -1(1.5- 1) 1 In circuit d: l 1/J = 2 mA ::::> V05 v(1s2 "' 2 v =::i} v1 VGSJ w, = - 4, 2 -4 V =::i} V6 6 V v If we replace the current source with a resistor in each of those circuits: In circuit a: I W2 120 11-A = - X _1 (2 - I) 2 I W2 = 2 = V6 "' ~-tm R = - 4 -(-lO) = l.5V 2 s.,.m =- 3.0! kfl (by looking at the table for I% resistors) .. - Vr-) 2 now recalculate ID : I /J = !2 X I x ( Vt._) Vc;s- 5.35 V1 • Yc;..s,. S V , V6 '"t>s"" son." l!J).S. to t:t>.,. = 0- (" 10 + 3Jll/11 ) - 2 = 8 - 3.01//l ::::} ..-Vt>.s"' o.oS V =,.. v, ~. o.oo\ "'""' 1""""' So R.c '(p()-"o ""7-o.oS ,.t.t.C\S I<.Jl.. ~0 1.99 mA I '~~"os { Vc;.-s -"~;; .,..,. t.nod.~ re~:""'" ~ • K~ .!t£I- ((Ve;.s I,.. loo.tci..!'. Y:L f -V~;.) v,..yS Ll t'S"...! - v& ]' "'- )~o-o'> - o·~ ~ :. ]-::rY:L"" So L ~ v~ = 2.04 v Chapter 5-10 3' r -k JlO·Lfx (.f-Ix t-1)2. _,.. :t .,,. !t"""A. v, = -4,01 v 1: v • 5-t. s~,.' ... ?,.,,.v Itt circuit. b: R = lO -l3Al = 6.59 k::::. 6.65 k!l = 10- 6;651 "'!X 1(10- 6.65!-2{~ I = 0.99 mA v1 "' v 2 to- 6.65 xo.99 = 3.41 _.,. 3'- -t·lf v " .. ::-S' +100)10•0 then Vas h) ; =7::,.. o· '-h ( ; - tc.o- :t ),z :t~"""; o.o~,~ 1\btc +hcla.t t'#O.o'IS""A ~~ c.i,~$ h. o-J·~ is ,.,,. c.c:upt'QI>fc 1 hc:c-.M ;f.' f'e,vlb ;...... ,:s fJ..u- ~.(~ ~~tot t>~to'tP..U 1 p.ss: ble.. In circuit c: R = JO; 4 :::3.01 k!l, Vag = -(10 +::tOll) l =! 2 X l X (- 10 + 3.011 + 2 )2 16 = L99 mA V4 = 10- 3.ot x 1.99 = 4.01 v V5 =- 10 + 2.5 k X 1.99 = -5.03 V In circuit d: R = !2 = I k so V 1 iss!.ill 2 V. V!lw t.ss 11 :s >'lOt- er.~1'll\>\c bc.cJ;rMD4 H· i"' V'Gs <.o ~ l.s Mt -1>1 1.'1'1 02 po..,sill>kfof' ca.... NMt).s •. va. .. -.l.s&v 'Tk..f"t!'H>roe L ,.-i_ f'($()(1:-, ="r Y.1.-t-S'~,.. .L,.l.(S"-'{-•l...,.. = ('1-V~ tJ 1~ "" ""'> l.tN-tl.'1'"• 7 11,..2.lf4V I I ~ .. s.s,vx ikt..s.ot.co~ CA.... s.....e.r i""d1l\ts. ,., ~ .. 5"-S".'S"& 'S-~-J -~-~ -J ... ,.. ~·2.'S, -~ 6) V) ,€) •>' .l~-') ,..to-~ _..,.. v~ "'5v ®...;:- v, .. <'I-Vs->l. -:> ~z_q~+-16 • .:>:::o>v,.... ,s.f.i\ V.,.,d:.ss ruulb '"'- ~t> ,. 6·S"S"..,A J ov•d thi.sism•f" 7 Vs .2.Lfs-" V..) • l.f.'ft;V f>l-js~ pes$;brc. . .SC, 'vj: I0-2.qS' ... '1:5.S'V \f•-2-ltsY' Chapter 5-11 O.S "" [<":m- I)(YsG- 3)- ~ 2 v sG =: 2 v Vw b) = IR = 10 X OJ ~ I V => saturation V,w; "' 2 V ~ Vsu = 2 . t = I V C! R "" 30 kfl ~ IR = :'10 X 0.1 "" 3 V =>triode region 100 = 8X 3.24 - 3 = 0.24 V 100"" 8 X 25 X ""VsG-IR R "' 10 kfl := X = lO V ~ triode region Vso ":w 100 kil~ IR = 100 or Also, YsG = 324V, -1.2 V X 25 0.1 2] Chapter 5-12 5.41 Sine" V01 :;:; Vi>1then Q 1 is in satu~on. We assume that Q 2 is also in saturation, then beCause l,. lm, V,..., would be equal tO V«c· = V1;s1 = Ym't = ~ = /1 2 I V(;~ "" Yas1 I )1 "' 562.5 11-A 2.5 V. SinceQ3 andQ4bave the same drain current, then Y(m = VOS( = 2:5 V. This is based M the assumption tha Q3 & (4 are saturated: ""' VGsJ = YasJ ~ lz = las3 = lasl 'W(·(vaH- V1)Vos.c- :u~ut ')11 [*•7: =v,D~ V»s.c + 1600' [ (0.2.5 X 10-l )40((2.5- 0.5) -(Uti.....bi'.C: The roots of this equation are 0.07720 & 4.04778 . Clearly the v., .. 0.07720 is the choice because: the other one is ~bove V""· The curre.nt, i0 • corresponding to point C, = 562.5 11-A Vz = S- regiont1 VIJS,c, +RD = 2.5 V ! X 50 X 12{2.5 - Parte Find Yo;, .. corresponding to point c.~. v,_ =2:~ Volts and the transistor is in ihe triode i, c. is 2.5 "' 2.5 V Now if Q3 and {4 hl'l\!'e W = tOO 11-m then: = ! X 50 X 100(2.5- /2 2 l l)l = 5.625 mA or lfl3 "" /ql If\ w, = = 2·5 ~~720 = l.514mA An equivalent resistor value can now he calculated at point C ~ ~ IQl 10 R 10 X 562.5 11-A "" 5.625 mA VDs,t _ . !iqllt\Uiem"' • ltJs.c - 0.07720 1.514 x tO-' _ ..0 •98 ,.. -., •• This can be comtmed 10 the \t~lue of rns • which Is really derived for t'll>' = 0. 5.42 Part a TtJs ""--:,-....;_-- ·w ~,. - v > k.-r< Find the R0 corresponding to point B, which is the saturation-tri()(}c boundary with 1 I Vvs,s=0.5 Volts io. ff 5 R [) "" 2 (0.2Sxl0-~(40)@ s "'50 (0.25X10- 3){40){2.5- 0.5) Also on the boundary 'W. K -11 .L m;,6 5 1.25 mA 25 - 05 s t6oo n -3. The wlue is close to the equimlent re$istor '\0lue, but they are not exactly equal. Part d V,;s ""0.8, so the transistl)r is in saturation. .Find V,,. l.25xW · Part b Find "GS corresponding to point B. """"= 05 ~ vi)SJI = Vm,s + v,,.= V; + Vm.e= 0.5 + 0.5 = LO Volts = 2.5 \),s "< 1.78Vohs The voltage gain is A,= ·w -k.T(V,.,-V1 )RfJ = -(0.25x 10""3 ) (40){0.8 - 0.5)(1600)"' -4.8 ~Mid]· 2 . Chapter 5-13 5.44 5.43 Q) Po;"'t- A : ""~=\", \1~ VJ>t> -:::.'5'1/ fc..,.. '{<'-';: , +~ frt~~ns;sf>t,, is nof 0"- >-~oi~tf A is wfvl,... ~ .. ve tMJ +W. fr6c,..ri'Sf-<~,. "•= .As timtS on ~ irtcr-#14e.J 1 #....t ~ .-,..CJ(!6./d ~J ~ ~C$. ~ Jtve.C..S~S ~+INa. r-·Jf/tJ RD • .2oJC.n. .~ v~o-2.v ='>' ro,.o.t .... 4 }\,. ~ - 1. VAt;. -t-16 ._ - !:!.!, -> ".,:: t>• tt" Vov Vo11 VG>s••·'-V _,.If!. • 1.2-c:t.l.l• tJ.T\1' .t It>"' tJC~ ~ ~~~ _,.. o.f ·t-So"'t;3 .!f o.qz. - ->JlL. ... .2.5' \,: t's t.&w 'i ~t~y 't vt~U=S. Af ~ p,,·.. t, 81~ HOS~~r enkt:J -#vi. -+-.-.·,~ "'#'.~"' ~ "~""~B-\1'1:; it or lft>s:\lz. -s; ,.t.. .. J.. ·"" ( .2. v6-S- rl =!>' I· &l\T ,.,. Vr -::I. fP' v65 c e.: Po;"'t- v08 • 0 Vp'fi"'.d J~\16;- '2.l~.s.,. '~ '{, :./." -1:0.61 0 v II' ,,,\1' v,, =t.(:.t\1' At B: o.S"+I • ~ v()S we. ~ve..~ A"' ...-2. v.. o/v().., ... -_at.v!>I>-~B) Vov All""'-:t.<.S-2) =-u.v~ t\.4. '"fill; is.: ry- -n. • 1 ._ .. gt.tUt to X,Q-'{,6 :'2.-0.f>\ . I .u ..• .J ;...,plie-4 bj """" a-ptt't·vc.es. ;s: 100 ~J..A, 'it.....:.,_ i !> S.3j_ .U ~~ ~IV\. (.c:..\c.u.l,d.d I.._ f>Ool'l.ttlo). w \~e tr"~M--Sfu· e...~Jrtf«. p~,..~~ li(\Uo..r. W [_ 2 X 100 1J.. _ = SO !00 1.1. X ((l2)" (d) VI'D "- fvRn _,- 0.7 5- lOU 1J.. • R0 = 0.7 ==;. R0 fus 't.YuL i'"\~htf d;~N.V\CL iS d.WI- to t'\.-L ~ Ct-wJ: -tW.. s.~ ~ 0 f. t£.,.4.. I'\Ot- c) If I 0 = oP. ;v... qurpt.J;- vo\~ e s;~"4l tW g......:...... ::: -.!:li. ,. ~~-'~ ~ o.u V" 1-o.M_ AV j = ±0.5 o·= + I I 6 mV 43 -· . In saturation: J0 C'c.Solh iS a.ppro~iMOli\~ 41u~l !k;s + o.5 "" o.7 v w~le t\,o. ~nsist-c:.r rctoM~i.._ lktb.!mkcn 1\,e. "-""f'lit"lldt. V' = 0.2 tha..t Ce:tM lo:>c:.a.flplic..d to 1.61-\.S:::o.\IV" .,. t-~ • = Vnv = 0.2 ~V;X43=8VO ,.vs·" tv~.,.,....,., v1 e.,.\·6t~~". "Tlw.A+h.t. \Qr8n,.. G\PApl;tvde. o~ .., .s:"" w<>.ve = 50 VI V -->!.A vi = (S -· 0 ·7 ) ""' 43 V/V 0.2/2 ""' ot-t t";s pied pl')~n.t , Fro ..... e.t:tVC)h'o.... Y-41' o. 5' (0.212) to allow for ± 0.5 V swing t\Jaw t'o ce..ICM.lc::t.t'e ..,he. iA(..r.e.wle.ntc..l ~Q•'r-t C) v1 Q. "' - - - Vvsl "" Voslu- v, v /)$~8 1)' 10 5 J)JJ -.-,_!ti;:__ ( V0 v/ 2) the gain is maximum when V,., is minimum ("" 0.2 V) and when the drop across Rv ( == I,R") is largest possible. which occurs when we operlle closest to point B b) 1 • .1. .. 1 :11 o.Sl...ro.us..... A Q 2. ~Q ... 5'- :J.'f,-o.tzs-: 2."' V!Q ::: '16-.S • ""+\Ito the maximum gain achievable is: 5.55 c.c,.,s,'dtNd ~f't. Is ·" 43 kH Chapter 5-14 5.46 for v,s v,s v, V., + 5.48 i,, and itn equate a) (![) 1 [vDP-v~- v,t= (~l[v,- v,]l [V V ~ = 0 for / • - "J>o-f\ t~aiO-'b').E. VI>.., 2..JV •[V--V] • I /(W!L>J ·~UV!Lh rg~) l(i) ~ = JiO 0.5 -3.16 So w.:. e."""- w r, '1-« "os- o .S' .f vG-s _,. o.l - "f:. v05 ~ v65 .,. "·6-o.f .=-.,. v£>5 ~ ¥er -"'·2 (tfSo, F,......, +h.c. e+-N.r s•cl~ ; v05 + o.s~ V00 or or v05 ~ 3;o.S" _ ~ v0 J ( 2..-S'\1" Chapter 5-15 5.50 We... ~~··t., ~ c..\~ ~,. lo.w-tst ()o~ra.c~ "l>s ~c..t' 3~ ~ .U.v:u.o~·o,..(ll 'S~v-~o ... ~ Vt>s. "Z>I> _ ~ ~. ,,.. .. EQ. ll'ov vt>s.,. Yc;.s _o.'L. Ro\ .,.> ve7s-o.'l.s '3-S"o..,. :t0 M•'ni.M.UM "bs '!1.'1.-"crs ~ S'o ~\so' ~ro- ..., . o.l.lt Vt»-•·f Jl. _.,.Va.-s•l·4q\l" -a ... R.o Av .. "1·"\-\' '"'" 2. rp ... Vo-s _..,t: ,z.'l.-VQ:S So ? r os ::: o.l l F we 't/_ J) 0 co.o'l'( .... ~ -~ vDs fu ~3' oF- s-Jvrc.Z.·o,..: ~ ~j-"' Oy tf>s-r:,._ "'~6$-IC-"f> -1'\.1 ~.... v6.s ... v,: _v, ~ ~ ~ pto.."' All" w•l-1.. (i) : '1.('11>1)-Vo_) Vo~ VI> (I + yl,...V 4- ~. . oy ' UVov ) ,.. V.ov ~ ~~ _... 2.~ ~i Vov A. .... vp .. Yov +""•' ~~~~tO ~IJ'Ifvovl ' + 2. ( 0"(1/Gv) Yoo• ~v • v. • I> A :tF 17' ~· • :u> ""'v ""'•\= 1o- Yalt V• o.2.+ o.o1.+ 2.llll! to ..o.6ty' I-+ 2.,. o.t .,...2 l.o.6~\ • - !2.S.l. Vf"' < O•l. tc• too}\ ,0. ~V • o. aV ,.:o;,l.y_ _ z. ;o,4 "' I- ' "" ::. _ 2. ~o "tp Vov ~po.1..5.l.tr..n.. .,.,, 2.'3. '1...,. 1,. Rp "o. I :r'> o.-z.. Chapter 5-16 5.51 = 500c:m1 / Vs = 2!10c:ml/ Vs Cox = 0.4~ 1.1.m Given u. l.l.p 2 lr' • = u. ,...,. Cox = 201J.AIV k· p 2 = I01.1.A/V Use equations (5.55 )g., = k' <5.56>gm = ![ v•., j2k'r'o (5.57) g., = 21o v... case lo (mA) IV... I a(N) 0 @ b(N) Q) ® 1.2 c:(N) ® - type @) @) - f(N) 0.1 g(P) 0 @ - d(N) e(N) h(P) I j{P) @') (o) lr(P) 0.05 /(P) '@ i(P) - w w lr'!! L (Jlm) L (Jlm) r I 100 C) 100 2 2 0.7 ® ® 0.125 400 8 4 - Q) 250 Q) 250 5 10 @ - - 200 4 2 @) 1.41 @ 5 0.1 0.141 I 10 0.2 0.2 - ® ® 2 - ® • IV,I 10 10 IV.I 2 - I@ (9 - (2) - - I - - (4) - - - IJ) I(:fa) e) - ® - - Note- the eire: led ennies are the givens. gm(ms) (mAIV•) .. See conunent I@ I 2000 20 20 125 1.25 5 10 0.1 so 0.8 I~ 0.1 0.04 Chapter 5-17 5.55 NM6$; .,/1 (!f.:r... &. ff ,.. "I) =J2,9'•11 t0\:tt,.~i -0.~ .I ~ • !!t!. • h.!.. =16otu\. r., . "" o.a -"• y • .2J2tt "'l".sd 0· S' :::::: • o.::t .1Jt.,co.3ff t ,....,..)..,,.. c o.1.,..o.&c2..• o.ofl.f w..A/\1' 5.53 , • • !t'.Q _:I' V.,v v ... ~v 2..--·l • · o." t. PMOs~ ''"' =b~t3011fi:s, ,_,.., ,.0 • !YAJ. • \2.:t; 1. == 2J.i 0 II'.J\.. T" •·I X. .o.l.. o.~ttv • o.2.tt _.,. ,_.b =o. ,.,.().'2..\(= ~""A/u- '(, ::: .t"t.J • o.B3V " o. 2.14 5.56 . w 1 V =tV k = - .. 2mAIV ' • " L (a) de analysis V0 = 2. IS 15 V, = SV , assume lp = 1 rnA Vs ""' 3 V, Vcs = 2 V. V0v "' IV. 1() = !k'V~v = 1 rnA {check) 2 5.54 VI> = (b) ro g., "" '~: ~::: _,.'ffwtA.fiT +.....-J .:a..o.tf '1.}... ~ .. _,,.. Cr;,JIR.t..> .. ..o.erJ(Io,._llt~).:::-B·31v• Vm>- /pRJ> = 7.SV. V 11 _ IOOV.,. JOOkfi II> - J;A j2k,1;, = 2 mS = -MAt Chapter 5-18 (c) Ru 3.33m!l Where iN = Norttm's currentsouree == l -l~j where G.., = Ava Ro .... R!. io lOK l·· fa·•• -== ~ and R., ·"" R, this is equivalent to Fig. P5.82 D (d)Riu AvvVI R0 == 3.33 Mfl If the output is shorted, i., = Gm\~ or "" 0.97 = !.!ll G., -8.2 viR~_= 0 I·· with a signal source and o load connected, . .r~.~=r. m.:Q R$ig a .. ~·1 -= "'=" by voltage division, Vi . S1UCC Vo = GmV ( R o f , ~I- "::" -=-=- ]I v .. 5R1, = R1• + R,;g R. l- ) , substitution for v; yields Vo 82.6 9090 = V,; 8 Ri" • G m.·(R o 11. R,), sothat . Ri,.+R,ig Chapter 5-19 5.59 note R1• = R1 R;. ll + R~ "'Rl II R/, 1!t RI R1+Rf R 1 +R{ I = - - - + grnt·•,-,-- it 11 ( l - - 1) g,Rl . Rf { = 11;- ' = R;. n, ''o J... , 1 n'tn I+ '';f I~ n;.(l- = RtL g.,Rf)l n;_+R1 ~ n; +R1 1 + gmRI = Rl II n;) = R211 (R 1 Jl R · ) + R t = J_ R[~ Ri.- R~ + g,.R 1R1 nf R.r+ n; R_, 100 = n, R1. stgu I + gm(R I · Rsig) Evaluate for R1 = 100 k!l, R1 = I rn!l, g"' ~, 100 mAN = 1 kU {R . assumed) · Slg . · · g.,R!. n1 + n;_ A 1,0 R +R' n:. "'' --~ __ 1. tn Ro ,.n; n'l + Ri _ R2 (Rt-; oo) ~ = = 1+ 8 n;, +~ l = .r R1 + l + om o R' I. I + g..,(R~ R1,=R1 l!R,.,""R ll l RJ " I Rt II R,r,l Rr + R. !I R1 . '. + g"'(R 1 '"' -!OJ) R11 = 100 1i R1) n /(,is out in half by R1 Given R,;g ·"' 100 k!l, R 1 -+ "''• and R 1 = 1 mfl Output resistance assuming R"' = 0 Ro ~· R: fti Rr""'R, C'r - -".'.o 1'-is Output rc$iSI~tnce including R,., r~ "'" g.~R.· ~ ;ig 1+ ~ Rt Gv ·-455(R 1 -;·:r.),G~.= (1? 1 = l m!l) l R;.. . n·.I..,.~ 1. + R ( -- gm = .50 ktlll6 kfl = S.36 kO 5.63 WITH R,=tO kO and assuming losse!l due to g.,= 5 mS source ilnpl:dance are negligible G11 = A'I) = -g.,(r.,URoliRt> = -0.4m11A(S,36 kfii!IO kfi) = -1.40V IV F6r a o.2Vpealt output, tbe input must be ot: g,. :. n = OJ43V peak - I I+ glif R• - S .i = soon g.., = J .m 5.61 5.64 = I kfi Rs -g, l R' L -g,.R'L . g ·· b) If Gv =-lOYIV, R£ "' 15 kfi,Rn""" 2RL = 30 kfi. what is gm? Gt• = Au = -g,.(R{)!loo~R 1) -IOV /Y = -·g.,{30KJI l5K) "" -g..,· !OK gm=~ v therefore: /1) "" V.v." 2 .,., "" 0.2~_Y. 2lmA/V ,:.• 0.125 mA. - m- for A 2.lc> VA- 2VA- 2·12.5- 100 V,, • ID - V,.v 0.25 - "" +g,,R3 t.t = ·-15 -30 I R""' • I ms "" -lO,Iet R = .f l.. Sm = 2 kfi ) Chapter 5-21 5.65 R- = "' + I KRout ;a: L6K 2 + L6KR!)U( 2 2K ..l g,. 400 <:: 0.6Rout ""250fi ROUI ~~~~ Rli, n Gu ""' = g,(RDII R1) t'_.;11 R, 1!t + Ritt g 111 = J2k.fD, so for ..l = Rsig•Km g,. +3.3 must s 667fi for R4 111_. _ Rl.. mu R1.. mlli + Rout :$ ( LlO) Rt..nom Rl., nom + Rout 3K :s; 2.4K 3K +Rout 2K + decrease to 112, and I tJ must decrease to 114 R,., Rw 1 s2 kfi Therefore RL. min is the ruling case and Rout :S667fi Rv 5k g - 1., = J2k!v2: • 6670 k. = l6mA/V2 :. Io a:: 70 p.A R.;g I v = lip gm 8V = 0.093V. 5.67 Source Follower !u85! :5 50mV jv,! 5.66 ::5 O.SV RL = 2kf! R ~ SOOn1V I ''" = g.,"~' '·:::?g..,~ 50m V 2k0 5mS For low distortion. keep < 0.2Vot' ~ V lu.l ,.,,f! 11t.' ... IK < RL< 3K I' 1n~-r~ JJ1 t1712 0.6 5mA in. peak ,~ 500mVpK 2kfl Rl.,nom = 2K = 0.25V. g = "~'iO·~Apk ~- ' ill, rna' "" 0.625 rnA+ 250 ~LA = OJH5 mA if>. rnis = 0.625 rnA ··· 250 ~LA ~o (}.375 mA 11,;& = l'p + ,., =- 550mVpk Chapter 5-22 "" VDS ,...5' a+ +'t-M =- LA- 1t<::>-:U." (3.'-1-'9".2.1: 2. • - 2...4) ! )........... :t~ ..,o.c"""""~ 5.69 . ' . I. :r.... - 2,..,.. A "' L lc.., ~ V.:0 v v - ~,. .. t-26 'Ins ,..y0 1/ 2. t.. ..., >' 2.,. .L" 2. -3 So.. wx ~ 2 .L.f V:"01/ v e.(::i" of. tro"od.t!- fii'Oifo)~~of:. c...t.toH t"os=~n>~ b~-~"'-}"f. (.'IDS= V~HI) is ..,) \u.f\ Vb$"' ?,o ... t. :ll. tr:ode o~ .. ,... Ve>s.: 1'3. 6311 l. -.r-,.. "s" -~-~-.v •'>''\.• -2,-32.-t\5 1. "Crs= :l.-3:t R1 ... 6.3Lf~e:..n. v.s + "o.s"' -2..32.+ \S. 63., t3. 3\ v... ~ R • 1'.5'-1~-~\ 0 2.. Rn ::.o. as KJ\.. V0 • 5.71 ~ c"J,.'M ~.r .t!) =l;: .. 1. t ~.t _ r 0 ,., _ '-)" v.,_ 1: l.v » ~.. z ~ rl>"' "• :to-1..\t.o ""'>'I.I>=l""ll-,/.\,_ :t 0 .. 4 ...,,.. re.!>vlh '"' v..~~c.h \'"' - \" ....~~\ole ,""'-a..-e ~o..- ~ 'et. rl') "'\.,. 1 t f-ort t:.D '== \ ""'~ • So/_ ~t'r , (.c.. II!-'~=~""" "'JVL 4-fb -l.) l..->rt> =- ,_ \3 .... "' :t 0 i>~'<.NC...S.~S \o'f 1 ~/•• IIU\. Chapter 5-23 5.72 vG:s, s-~-~v , r.,. ~.&..=2.-~ R,s t. I :S:oc2.• ~,.1,.(.1-') _.,..!1·"'11 .. ~ f. ... .., ~·u ~\-\.. !!! - 2Rs f!RKaT, iJio = aK K V" =->'{•l.5'ct "\.,.. l·'i'\-•·'5"• t.o'\", - :r0 • ~ "' 2. "'t.s- ~·' -•· o"t )2. """ .r0 • 2. Si ~• v.s. 2. •.3"\f 4K ilk ill"(l + 2A Rs) = !_Kt> ~ sfo- alt>fS. = aK K- iJK/0 I I + 2A Rs JOO~~oA/V 1 , A:= :!::10~. b) K = V, = I V,lt> • 100 t~-A 5.73 --··""""''-..r .,..:.. ,..,. TO de.\~" ~ .. '41-t. 1-.-t p.ss;~o~~ c...s.·..t-.t ~-1 w.·~ cuto~o~.·d ' VI' p-p ,.~-1 J. • ' "o 'Swi~. vb~ • Vb--.._ • VJ) -1 V•- vt. .. o- 2. -••" Yp-1 • -1 •> VJ> c-IV =>l ltp c 19-tj? clltc.A .... rD=t..r l.[o-t-JotJ,.,_,) -'-] •' .,. IJr(f-~)z. =---r==~~====~ I + 2 J100 X 10- 3 X 100 X 10-lRs ~Rs = 45 kO = R,c'PKJl. = Now find V"' and Vss when 10 100 t~-A and K = 100 ~~oAIV• 100 IOO(Vas- I)' ~Vcs=2V Also V.,. • Vs.f -1,/l, 2 = V.,- 100 X 10 • X 45 X lOS 5.74 = 6.5 V ~vss k = h·~ 2 L C.ForV.u=5V _ -Vas+ Vss lo Rs - s - 2+ = 30k0 100 X 10- 6 =0.14 • ForAK = •tO% Alo = ±1.4% .. /" = K(O + V58 - R51"- V,) illo ilK = (Vss- Rsln- v/ + 1 K - ' 10 Chapter 5-24 5.75 e>ot\o. vl>tr c.a.4U c:..t"&. 5.77 r... ~m.t.:...... ~o"' , b~ t. 0 .l.:~ 'C.0·'-'"-(;V6-$; -l) Vo-lo-5' .. \c&; v- o..) , .. ~ .. o.'.i' vt>S ::: \>) to=o· 2.-.J. • f..sr >. . "t: . ' v~> '"""Go .. t., • '-~ • 3'Stc.J'I.. "G-S, 'J.V 'l. .. t''c,.s-') •'>"6-5. .. '!.\1 '"s•-~V rrv "" t =d.- , \.l.S" • 1 tvG-s- ,_)t .-> v.e;s "'s.'!V, \Is"'_'?>.?> vo.s•1" o.~ Q ...V- , ... vo .. o.2.( 'i>-')1.-> 36 "os=t.:sv L -> ~r-i:_~<•·&.ftvD-t) SAe\c..& Rc,•36 KJl. v., .. :t.v- , t:D""o.:U -A. 5.78 5.76 Vm; = 0 5.79 a) 10- 1'0 a)--10- I - X 0.5 X ( F o - !) 2( to- 2.5) I 2 2 =-15 V/V Vr; = 2.7 \l b .) .I f 1.1 • ·o~ I.~. halved ( Vov "' 0.5) then In is divided = h.}. 4 •.. 1. e/ [) => v/) = :1os v = 0.125mA 0.5 4 Since VDis kept unchanged at 2.5 V then: = 10 - 2.5 = 60 kfi. R 0.25 f) 2lv - ~ Vov v ~" - - · - 0.5 m R "' I' '·'· o A V 10 _2 :=!> ,. = V(> ° _ "" 15 x 2 l."i_ 4 X r 01 "' 4 X 0.5 = "'' 600 kfl -30V/V(withoutr;) Chapter 5-25 c)lf we take ,., futo account : Avo = -gm~<"t) n R,)} = -o.s(600* H ook) = -21.3VIV R.,.,t "'R,>n r0 cl) R1~ = 600*H ro* = 54.s ~rn Ra = 4.7 Mfi "" R0 == 54.5 kfi G v ""' = R. 4.7 R. m RL A- +Rsg. ·1. VORL+Rv.. m 4·7 X27.3 X IS + 0.1 IS+ 54.5 Gv = 5.77 V/V e) As we can see by reducing Vov to baJf of its value or equivalently multiplying drain current by 4, Avo is almost doubled, while RIM is multiplied by4. As a result G,, which is proportional to both Avo and R!., is only shightly reduced. (G, was -7 VIV before and it is 5.8 VIV now) Chapter 5-26 5.80 +5V. 5K c~,, 1~ r 2K vgd + • ;.o - o..5 u,+m := Von s V, = 0.7V . ,;ce max = ... 1.07 V pk __ max _ v~P tl_,;g,rnax ·- - 4-.1- v,= 0.1 v. Vr; "' , IV. gm --l'~g1 +g,.R., then u~, V~+ + 2V V 0 s = +IV. ll 0 r = 0.3V 0.5 rnA= h 2 V 2 =}k a· t''" "' ··" 11 lmA • VD = 5- (5 K)(0.5 mAl = Vun = -0.5V < V1 :. Gr ~ 5!_ = i!-s~g ( 5 K H ,., :! 5 K ) J ..BmS ~ G; = v l;; = )00 k!l .. 4 . ! g,(5K!i5Ki\ lOOK) + 2.5V. Saturation b) R., = 2(X) K J! 300 K ,., v?. 8.! 2 120 ld1 g,.Rl. l + g.,Rs II'-t.:.·•I = = tto + ....::_0.5 s 4.06 ~ 261 rnvpk !_ = 300 !1, d) Add R 1• = \!A= 50 V. a) with 10 ~ 0.5 rnA - ;,,,,max = 4.06 0.7 V. 0.96 V Chapter 5-27 5.81 5.82 ~) +2.5V. ':rl) • o.l ~ 3:,. o.S,. V zv 0 v .,.'(, 11 -.oS ~vGs= o.s-.. '"' ,.sv Dol -'·~" x--t~ v(O..o -vs• ~ ... -1·'5 -l-~) ., 35\C.J\, 0·1 $ "t,s • 5'- R0 wO·I "D!~ .. -S" ~e.$~ p,p;\J\e. Ro is o..~&ve.cl f-or Vo,sh\on. R0 v,P = -0.7V, .., -- .,..~ 0 • ~."SSIO.A ~ ftf:., •Vov .,.vl>.s-I•Vov .,.vos~ V•s-Vtr • ..,.vi)••I+O·'S•I·SV -2.5V. tt.., - tOM .s\. · v_. __.."" a)for 10 = 0.3 mA,jV0 ~ = 0.3 V · V.m = l.OV.,Va = 0 Vs = 2.5 -l~s = 1.0 V. :. Rs = 5.0 kO o.. c--.......o.,.,-'8.c:IIINL C'cw\.h'1u,...&·o0\ .~• vd~f 2/ b) g., = _!!. = 2 mS Vov ~ Gv = .;!. = -g.,Ro = -10 vJ,, :. Ro = 5.0 kO c) vsd + Vao 2: v,P = -0.7 -I;+~~+ !V.2: -0.7 • 10 ;0 s R.... c;..,. v•• max- 01SSV . pk v, = 50 mV, changed Ro -li•o + g.,Ro vo I+ (2.S -foRo) 2: -0.7 d) for 11 for g., = 2 mS,/0 = 0.3 mA -~~~g,.R 0 v, 11 + 2.5 -10 Ro2: -0.7 g.,Ro (t•si•• = 50 mV) - 7.88 kO Ro"' Gv = -gmRo = - 15.8 ~~ 1o £.,. '1. 1"2.: tt.s.·a ,... "o II'\) ,.o.'t .. (o • ,·s ~nllel..,le.cl ~ ~ ut"c:W:I.:: bc.eo-.s, a. C.) I 'fo i5 grov..d.td, '"ht." t~ c.i~ 1.-c..co-.es !>oorc:a.. f-ol\o~er '-"~;aor~o"'. e.,. 't.lo3 : , ~. .. ...r.e.__ '"•+..L. l(,....t: .,..~ \\ "o '"~lllfao s- R....t • e:) ll' ............. ~ l.too &f40of'h o. .2..&fB~J\.. J:~ " eo.....---.- \s ~..d·cl "'.,;a, , ~ c..i~'t:lt.u::........... , c.o"' t-l~uro.L:o". ~·~- .1.. \\ ,.... Rs. "511.\\....L.. .. .2-331A -tV /V g., ,,.,R I'IUI .l. = g., !5 = = 0.2 kH is a oonunon • gate configuration: b) 5 = 0·-? I = I kfi R = A~ =g.,(Rvl!Rr) "" 5(5Kli2K) = 7.1 V/V iii g.. The test for region of operation for a depfe.. tit>n mode MOSFBT is the same as for a ellhancement mode MOSFET. The threshold voltage is negative; however. V1 = -3 Volts, n0 =0, t~,t=O Pva.= 0 a) n,. 0. t Volts Pv,. = O.l and tim- 111 "' 3 IU111 11, so transi."'tor is in the triode region b) tlo"' 1Volts 1'1•..,= t and t1""11'=3 Pv/>11< ll,;rt.'to so transistor is in the triode region. C) t>\):=3 Volt.<; F'vy,=3 and ll.,.-fl1=3 l'lu:= Thf-111' so transistor is at triodtHaturation boundary. d) TJu =5Volts f'vn, = 51 alld th;-t~ = 3 Pvm > u,,- 't\so transistor is in the saturation region. c) lfwe connect both stages together, then: for the R first stage: Av = A voRL +~ ·~· where Rt is fact R;9 of the second stage. Therefore: Av I = I X ~ 0.2 + 0.2 "" 5.87 0.5V IV For the second stage: A tt = 7. i VI V overall gain A v = A A 'l-'t 7.1 X 0.5 = 3.55V I 1.~2 D v 5.84 V s Vw; = v/JS Vns < = v v, VGs - V, (always) First. when V = Vas > • is negative so v, From TABLE 5.1, this is triode region in= k~(~)£r "'0.6 v. 0< V,.< 4V. V, V,., + r!J2d·;·-:;:·l\ 8 - J?o1 ] for 0 < j/,. < 4V., \-',., < V, < F,, + 0.685V. so 1V. < V, < 1.68 V. Since t .,. (i:ji\i.~€~ . . . r·-:·:-·-. an w.:re;~><> nr 4~ tn1 ,I '( make.~ k:(zX1 v- - v. l'J (. ~; t C,, 4x lower. ;md V, !x:.::omc$ IV V1 Vws• = -V (VD'S' is therefore positive) Since VGD' =V < V, this is saturation region (see Table 5.1) S{} V(Vl v;a: Y, vl Chapter6-1 6.1 Forl::dO~A: g r = "' Vr = 1T' ,. 1• o !\ • 0 6.2 !_ = IO ~tA = 0.4 mA/V .! "" Vor 100 T = 250 ld1 g., OA mA/V Vd , I 10 V = I M!l lO !LA ,.. g lo g.,= -,so 25 mV ID = g.,Vov = 2 mA/V(0.25 V) = 0.2S rnA 2 2 r = V~ = __!Q_y_ = 400 V/V vr .m 0 0.025 v Fromcbapt. ~t.Cox 5, k; "" sioo: g 111 = ./2t.L.Cox( WIL)Jfn, For I= 100 Ji.A: gm r = = 1T' r a 100 JLA "' 4 mAN __!QQ_ 4 mA1V ~tA/V 1 )( W/L)(250 f.LA) 2 mAIV = J2(200 25 mV yielding = 25 kn WIL = 40 so that = ~ = 100 k!l !00 !LA ·'\, == 4mA/V(l00 k!l) W = 40(0.5 J,tm} = 20 11m = 400 6.3 Assuming that the MOSFET is opemting above Jl',, _ V"' j2( 11.c.,}{WL) Aorr -.Jlo If I0 is t]e(;reased !() 25 JLA, A Fori"' I rnA: g r r 15 mY = Tr o 100 40 mAfV is increased by = J1i4 = 2.5 kn 1/2 If ! 0 is increa<;ed to 400 tJ.A, ""' IO V ·"" 10 kH I mA A 0 is t]e(;reased bv J_ = • g,. increases by ~LA "" 2 so, g., is t]e(;reased by A 0 = 40 mAN (10 K) ,, MJO 10 ~ "'1/4 g,., = j2(p..C.,){ WfL) · Jl~, I mA = 40 mAN = "' () 0.4 mNV 250kD I 00 !LA 4.0 mNV !25 k!l 1 M!l 400 I 00 kD 400 ~~--jf-----1------l----+---1 I mA ~0 mA!V k!1 10 k!l 1 400 __ j2.5 • J4 J4 = 2 !2 Chapter 6-2 Vm) = 1.8 v.L = r v 5V/JJ.m (0.36!:!-m) = 18 kO 100 JJ.A _!I_ .,. o 10 A 0 = g,.r0 = 253 JJ.AIV(I8 kO) = 4.56 V/V c) Now, with a new Wand V.:w = 0.25 V, 10 = tOO 11A, g "' __!_g_ = = I OO f!-A = 800 J.1.AIV 0.25 V12 V,:w/2 r = ~·L .., 5 V/JJ.m(0.36 JJ.ID) = JS kO The edge ofthe Saturation region is defined as when IV0~ = V(;J - !V,I = IVo1i I :. The highest instantaneous output voliage is 100 11-A 10 0 = 2 ~·L ""' (2)(5V/J+m){0.36 11m) V0 r 0.25 V A 0 Vrw - Wo~ = 1.8 - 0.3 = 1.5 V = 14.4 V/V d) 10 is now 10 p..A, first. find k11 : k = 2lo .., 2( 100 !!-A) ,. 3 mA/Vl n 2 1 V0 r (0.25 V) 6.4 L a) g.., = 2 (0.18 11m) = 0.36 J.lffi "" .!.JL "' 10 JJ.A = 80 J.lA v()v 0.25 2 2 so, now with I 0 v _~To_ -k - VOl'- V, V/~-tm (2) (0.18 Jl.ID) 10 ~-tA 2 (5 V/f!-m) {0.36 f!-ID) Ao ""_V_o_v = 0.25 v "'14.4V/V = = k " Zln \l1~V = tso kn 10 !LA 2 {1° p..A) (0.25 V) 1 2 0° f!-A) 3.2 mA/V lO !!-A 0.07912V = 0.079 V 253 p.,AIV -r; - = 2 ~·t = 2(5V/JJ.m)(0.36 o o.079 v(IV 180 kO e-m) v "' 45.6 V/V e} The lowest Ao is 4.56 VIV 320 JLV/A 2 Solving for V0 vwith In '~· 100 JJ.A: when V0 v = 0.79 V, /D 100 J.A.A, L = 0.36 f!-ID The highest A0 is 45.6 VIV with /ll = 10 ~-tA. V0 v "' 0.079 V vOf' If W/L is held cnnstant, and 1- is increased IOtime.s, 2 ( tOO J.I.A} "" 0. 79 Volts 310 JL"./V 1 , 10 f!-A. _ ~·L _ (5V/JJ.m}(0.36 f!-ID) ro 10 ~-tA A 2~. L b) with In lo . g,. - V01' 12 so. 5 ' _ 5 V/11m !\ = _ In g,. - ~ OF ,_. 100 f!-A 0.79 V/2 = since A (J 253 JJ,AIV + 2V-L (or since l;m remain~ \10\' constant., and r0 is increased by L J Each gain is increased by a fuetor of I0: Low A0 = 45.6 VJV High A0 =456 VIV Chapter 6-3 6.5 6.7 lv = ~k:(~v:~. W ""' . 211> . L , .2 Aj, vov = 2(100/'A) . z 2oo p,AIV (0.25 V} = 16 so, W = 16(0.4 p,m) ,... 6.4 p,m ez; v) It; _ 100 tJ:A = 800 IJ.A/V !tm. = v.wt2 - rtJ ~ L "'" 20 V/Jl,m(().4 !LID) = 80 kll lo 100 !LA ""' l.f L "' 0.8 !LID, W ,:. 0.8 J.LID(l6) "' I2J! J.Lm g,. = Va = VpJJ- Vsm "'Vuv ·-IV'Pl- IVmJ 1.00 :.tA , 800 uA/V .... (o.zg v) =2.5 ·-05- 0.3 =1.7V 160 k!l _ 6.6 2(100 JLA) I LI - (200 f.l.A/Vz)(0.3V) 2 1=50~tA 2 ( 100 !LA) = _ 22 .2 ( 100 fiA n;)(0.3 ) 2 v'An "" 1!v'.1 p.I Since r •.s·mce A (f 01 L = AoVt!r- = 100(0.2 V) , . 2(20 V/fim) 0.5 ~m ,~ r 02 o =• r = 100 kH lt.<.>.t l'ov 0.3 I 2 V 2/n 2 (50 J-~.Al (200 f.u\IV 1 )(0.2 V)' 12.5 20 V/p.m (0.5 f.I.Ol) 100 J.!.A J..l. A!V . " so. '"~g., r0 •c -3(667 J.LA/v)(lOOkf!) = --33.3 V/V w ... l ") A1. r - - YovJ = 5 - 0.53 = 4.47 V Now to Find the linear equation for segment Ill, we can write i01 = i02 : Ak:Pn<,,-,,.>2(1 + ~:.) = !k:(i)}v-lv,rl> (1 + Vo~= "o) ~200(V1 - 0.6) (1 + ~) = 65X0.53 x(l + Voo1 ~ Vo) 6.11 +1.8V 2 2 2 (V,6 -IV,PI>tl +Vat~ "o) 200 (V,- 0. 6 )2 65 X 0.53 2 = 1.5- ''oliO I + !1! 20 7.J(u,- 0. 6)2 = I- tt0 1l5 I+ !1! 20 I- 0.067 v0 I + 0.05 "o -I - 0.117 "o ~ Vo -1.5 v (a) If G and D are open, and no current Hows to either gate, V0 = VG and 101 = 102 I · 2 lm = ik.(WIL)j!Vc;-V.r-V,) = 102 VIA =0.86V To detennine coordinates of B, note that v18 - V,. =v08 or V18 - 0.6 =V 08 Substitute in I: Vc; -IV,!) 2 or, (VG- (- 1.5V) -0.5V)2 = (Vc;+ 1)2 = (1- Vci~vc; =o SO, /02 = lo, =~(I mA/V 2 )(0 + 1)2 = 0.5 rnA (b) For r0 = "'.the small-signal model becomes: + v,, V08 = 8.57- 62.57tr~ 8 ~ V08 = 0.36 V = - (l.SV- VG -0.2 V)l = 8.57- 62.57(v1 - 0.6) 2 If we substitute for v0 A = 4.47 V, then I · = ikr( WI Lh(V00 = V18 0.6 + 0.36 0.96 v Therefore the linear region is : G 0.86 V s V1 s 0.96 V or + 0.36 V s V0 s 4.47 V VI R * lim V,, * D + Vo + v,, - lim V,, * V0 = V1 - 2(g,. v8,)R v,, "::' = V;,SO Vo = V;-2gmRv 1 Atr = Vo = I - 2 g R VI ., ":' * Chapter 6-7 substituting values, Av = I - 2(1 mA/V)(1 MO) = -1999 VN Substituting in numerical values, = R (c) ~ r0 = = llol r01 Adding I Mfi '" t-[ I - 2(1 mA/V)(I Mfi) J = 40 kfi 20 V 0.5 rnA = 24.9 K I +(2)(1 mA/V)(40kfl) and r 02 to the model, we get (d) If tbe gate is driven as shown: i; a- D s s KCL at D yields, v-v = 2 g .. 0 - 1- - R v,, V0 = v v,, + r___!!_ R1• V, 11 and since 100 k.O 012 v,. = !JR - 2g Av =- IOO k.O v. m Vo v1 = Vo R I + 2 Vo so that R + 2S k.O · ( -39.2 VN) = -7.84 VN must be i!: IVot~ with V6 = 0, Vest = 1.5 V, Vscz = 1.5 V .!-2 .!.+.1 l"osl (e) ro R g., = --- + R1•• A,, 25 k.O :. IVot.-1 I - 2g R = --"'I+2R r0 = 1.5 - 0.5 = 1.0 V Given the :t I .5 V supplies, r0 -0.5VSt~0 :S0.5V Substituting numbers, we get: Au = I - 2(1 rnA/ V)(IOOO kfl) I+ 2000 k.O 40 kfi -39.2 V/V 6.12 To find R10 , note that lanF = 3 .. R· = _ 3- VBE3 23 k.O a) /REF = In - !J,,. /RHF v0 = v{' -2g,.R) 2R 1+ro ~30.7 = 0.1 rnA =In= 5/o lc 2 =I= 0.5 rnA=/= 0.5 rnA ' 3V 3V Q, so that, R,. = ~ 11 = --.,.-...!R.!.__..,. I_(I - 2g.,R) I+ 2R ro b) IVAI = SOV=rot = r 02 = 50 = 100 kfi o.s 50 ~ = 0.5 I = 100 kfi Chapter6-8 Total resistance at the collector of Q1 is equal fu II rOl r 02 • thus: '"'• = 100 k!l ~ 100 k:H = SO kH r 101 = SO kn g.,. •.!EL =50 p.A(2) ..,_, 0.5 mA/V V0 v12 0.2 V -10 VI V 'o = -(1/2) (0.5 R0 = rm Av = ll r02 Q 1 _ _ 40 k!l(0.05 rnA) or J• •t 5 V/p.m I! 100 kfi -g.,. 1R0 = -20 0.4 p.m for Q2 and Q3. 2.5 kfi "" llol so. ~ ]. --so - 2..5 kfi r,.,-- g., 20 ""' = 40 kll lv~jl. c) g 1 = 10 = O.S = 20 rnA/ V ·"' Vr 0.025 d) R1" == r, 1 mA/V) X 100 kfl "" 50 kfi = 50 -1000 V IV I. = = L, 2 40 k!l(O.OS J.LA) = O.JJ J.tm 6VIJ.LID ' Since we want L 1 = l-1 = L3 and L he an integer multiple of 0.18 J.Lm, we choose L = 3(0.18 J.Lm)"' 0.54 J.l.ID (Note: Choosing 0.36 J.tm results in slightly less 6.13 than-IOV/V.) checking, V L = 2L, 5V/~m (0.541.1.m) 01 10 0.05 mA ' 02 rm r 54 kfi = 6V I p.m (0.54 JLill} 0.05 rnA = 64.8 kH Ali = -g,.0 (rm II rm) ·-0.5 mA/V(54 Kll64.8 K) -14.7V/V If the gain is to be doubled. and the For an outpu.t of L6 V, VS/)2min !V( v!. = L8 .... 1.6 • 1 0.2 = 0.2 V, v (Lw) 1 ., ~(p.pC<>x)(WIL)V 1:\. (w) L the san1e, r 01 II r01 must dooble. If r01 and r02 had been equal. this would have meant doubling L and W, making the area 4 times L 1 = 0.8 J.tm L2 ·= 0.67 p.m -~-2/vL_ J (p.pC 0 The closest integer multiple that satisfies om ,)(Vvvl 2(50p.A) requirement is (0.18 p.m)(5) ""0.9 JLill. so. with L 1 "'L~ = L.1. 29.1 ! 86 !LA i V1 )(0.2 V) 2 5 VI p.m (0.9 fl.lll) 0.05 mA ForQ 1• (I.w) , '"" ps7 ~-'A2(50;vp.A) )(02 VJ 1 2 A1• must he at least • 10 VI V, and 111' = -~ g,,( rO!!! toz) If we wam to make r01 and rm equal. Ar · !\(\, 1,; ... l, ratios kept greater. Foragainuf ·-20 V /V, Since Im "" lm = lm = 50 p.A, and Ill= I r 2'~.-~~ " A;- ·::jJI'Re,t 6.46 90 k!l Q~j f!.lll (0.9 fl.ln) 0.05 rnA This result.• in a gain of Ar"' ··(05 mA!\/)(90 H1 AF '" - Ln kfl !I 1.n k!l) 26.8 vI v This rcprci'ents an increase in area of JL'Z-.) 1 (054 ''' 2.78 (instead of 4) . , Chapter 5-9 2WL = 2(0.18 J.Lm)(O.l8 J.Lm)n =' 0.065 n AS$umi.ng that the driving NMOS tmnsistors bilVe· similar g. and R0 , 6.14 K=40=g2r .· Si) "' ·tn .,._!L J'()y,z Y.t = -~g..,Ro Ar diat = .K'Ylw = 2 . 40(0';iv) = 4 v 2 Av = -4(0.1 mAtV)(810 K)"' -40.5 VIV rr r'= s v tJ.Lm; " L = Y., y~ = For /, ,.. 0.36 p.m: 2 l = 0.8 p..m 4V IR .,; 2(5 V /p.m) (0.36 J.Lm) .,. 32 .4 S V/J.Lm 0 R v (0.2 V} = ..B:1_Y.. = 3.240 kll 0.01 m.A 0 Hm .remains unchanged Av = -i(tU mA/V)(3.240 K) =-162 V!V 6.15 Area= 2 LW = (0.36 1J.In)2 n(2) = 0.26 np.m2 For L = 0.54 Jl.rn: 2 IR = 2(5 VI p,m) (0.54 J:A.ID) 0 R 0 2 (0.2 V) = A.= = 72 .9 y J!l!...::!_ = 7.290 kO 0.01 rnA -~(0.1 mA/V)(7.290k0) = -364.5 VIV V0 v3 = Vov4 Area = 2(0.54 n){0.54) Now, use I = 0.1 rnA: = Yew . ,44 A J~·\L = g g,...trol =Am ... !" · r orrZI (0.2 v) Ro = fRo = I A,. = so that 2jvj}L .lv"iL Ro::: !Vorl f-Inally. fRo "" Now, ~~i1 "" z!v. r£} R ~-tm, Wov\ "" 0.2 V For L ,. 0.18 11-m: . IRa .,. 2!5 v 1 e-m> ' (0.18 !J:mr (0.2 V) ·- IR, ,. ..J.J...r_ Rn ~ -T 0.01 mA ·- g.. - rnA I v)(81 K) "' -40.5 VI V = = 8.1 v 0 = 810 k!l 0.1 mA!V 2(10 n)(O.I8 JLrn) 2 !lf,l-111 2 = 0.36 ,._m: 32.4 V ~ 324 k!l 0.1 mA A. = ! Area = 2 WL 2 (I mA/V)(324 K) = 2.59 "" IL ., JU!.L.!!!~- "' (0.2 v r2) w(;r112 -4(1 = 0.65 For L lVl , Ot1 ~ 8.1 V , 81 k!l O.l rnA Area = 2 WI. I 5 VI 2 (O.l mA)(2.) = I mA IV "' lv,.iL I Vo4 = 1 • Smce 111 = - kr (WI L)V1) • 2 " WI L will be ten times larger (1 On) V.=V,:V, Al 0.58n !J:In2 L = 0.18 J:Lrn =L L4 = L 3 = -162 V /V = 2( 10 n)(0.36 J,trn)Z O).L012 For I. ·""'- 0.54 1-llll: Ro ,., 72.9 V ..... 729 k!l 0.1 mA = Chapter 6-1 0 L = L..1n = 0.18JJ.m IR0 = 8:1 g,.. Ro mAlV kfl L= 2Lmio v IR 0 = = 0.36 J.Lm 32.4 v L= 3Lmin ""'0.54 p.m IR 0 = 72.9 v A~? 2WL g,. Ro A,,. 2WL g., Ro A." 2WL V/V J.l.ltl2 mAN kfl V/V J.l.m1 mAIV k.fl V/V J.l.llll -162 0.26 n 0.1 7,290 -364,5 0.58n 0;1 810 -40.5 0.06.5 n 0.1 3,240 1=0.01 mA WIL= lOn 1.0 81 -40.5 0.65n 1.0 324 -.162 2,6n l.O 729 -364,5 5.8n l=O:OlmA 10.0 8.1 -40.5 6.5n 10.0 32.4 -162 26n 10.0 12-9 -364,5 /=O.OtmA WIL.=n 58n W/L=lOO.n A. = -!(1 mA!V)(729 K) = -364.5 V /V " 2 Area = 2 WL = {2)(10 n)(0.54 JJ.m)2 "' 5.8 n ~-tm2 = Now, for I For L = 1.0 rnA. 0.18 J.l.ln: I mA(Z) = IOmAiV (0.2 V) Ro "' S.l V = 8. I kfl I rnA Av = -!(tom:\ !V)(8.l k) 2 ""-40.5V!V Area "" 2 WL = 2(100 n)(O.l& 11m) 2 = 6.5 n f.l.ffi 2 For L = 0.36 11m: = 32.4 V = A •.• = -lno mA/V)(32.4 K) = -162 V /V R 0 ' l rnA 2 2 WL = 2( 100 n)(0.36 J.l.m) 1 Fnr L = 0.54 p,m: R 0 = 72. 9 V = 72..9 kfl I rnA -~(10 mA/V)(72.9 K) = -364.5 V /V L = = = 26 n p,m 2 Av = ~ = lOOn Rur Area 'P4k!1 ·-· Area = 2 WL =58 n iJ.ffi~ The table = 2( 100 n)(0.5 f.l,m)2 summari1..es the calculations. Comment~: (a) R0 and A v are increased hut at the cost of larger device area. As 1- increases by a factor of X, A 1• and R0 increase by a facwr of X2. The device area increa~s at this same rate. (b) gm increases with III. but R 0 decreases with l m· The device area increases with ill. (c) Smallest area= OJJ65 n ~-trn2 Largest area= 58 n p.m 1 Gain and g., have been increased, l'>ut at the expense of increased device area. Chapter 6-11 6.17 6.16 2/p g.,, ""' .,--. •ov !10, Io = g...,Vvv = t mA/V(0.2 V) 2 100 v.A 2 Ra = (g,.zrm}rm However, if we make g., 1 = T Since all devices have the same VA and ID• 'm = 'm = 'o3 = 'o" Rml = g., = and r01 = r 02 = r0 , we can say that 400 kfl = I mA/V · r~ = rt ~ ln = ....!.Y_ = 40kfl 0.1 mA Ro" = g.., r~ = (0.8 mA I V)(40 kfl)2 ·"" 1.28 Mfl 400 k? :::::> r 0 = 20 kfl l mA v . 10 100 A Vo: = (0.2$ i)/2 = 800 JLA/V = R"P = g,. VJ.L t:, = L28 Mfl = 640 k(l Ro = Ron H R0 p smce r0 == / ; ' Av = 100 JLA(20 kJl) "' 0.4 !LID 5 V !JLm -g.,,Ro -800 v.A/V (640kfl) -512V/V I Vo Va2 o--t 6.18 Since Av=-gm 1 Ro Qz Ro o--t Q, =~ = -200 -g,., -2 mA/V "" IOO k(l If all have the same I 0 and l'~. and + V·I since R 0 = R.,. R Ror• and g,. = J2 JL. C,, {lV l L) · JJ;, so that gm, ~ Xm2 ~ RmJ = 1:,4 ~ g~,, solving for r0 , we get ( IOOO !LA/ V)1 = 12.5 2(400 JLA I V 2 )(100 !LA) For maximum negative el(cursion at the output. we want the MOSFETs to be biased so that each transistor can mach Vus "" V 0 v v,. + \''0 v + V,w 0.5 + 0.2 + 0.2 = 0.9 v :. Set Vm = = = minimum output ''oltage will be 2 V 0 v = 0.4 V 2( 100 kif) 2 mA/V - 1= g,!Vm·l 2 mA! V(0.2 V} = 2 0.2 V. = 10 kf} 2 0.2 mA ," 200 !LA S.mce r0 "' lv:iL -"-. In ]0 kH(0.2 mA) 5 v / J.l-01 0.4 ~m Chapter 6-12 In general. circuit (c) has a higher output resis-tance, and for the same V0 v of transistors it has Since g, = ./(2 p.A C0~)(W I L) · ./f; (~I "" (~1 "" lower output swing. The output swing is limited to 2 Vov on the low side for circuits (b) and (c). but limiled to only V0 v in circuit (a) 8 2 ~t. ~,,,10 (2 mA/V)2 2 (400 f,LAIV 2}(200 ~A) 25 6.20 Similarly, ForQ 1, Vov "" VI - V, 0 = 0.8 - 0.5 "" 0.3 V (2 mAIVt 100 Since all transistors are identical, and k.l "' k.: = kp3 = kp4 with Im "" 1112 = lm !Vo~ = 104 • = 0.3 V (since 10 "' !2 k!Vol·) with V02 and V03 fixed, 6.19 Vs2 """ Vm- VGs2 1.2 - 0.5 - 0.3 0.4 v 2.1 v V:n "" Vm + V(;s) Forsame /: For same /, if I Vvvh V:lva 1.3 v,2 + V0 11'2 = 0.4 + 0.3 0.7 is divided by 4, V:w is multiplied by 4, or equivalently v is doubled g., = p..c.)[ V Thus g,. for V,53 - V0 n = 2.1 - 0.3 = 1.8 V so the output range is 0.7 V to 1.8 V 01• \ 1on = 2.5 V circuit (b) is half of the one for circuit( a). VA 2V~L . X - = -,-· . Thus. 1f fv \'ov Lis multiplied by 4, and V0 v is halved, then Ao is A 0 = g,.r 11 21 0 = -,- '-ov Vm = 1.3 V o---1 doubled for drcuit{b}. In summary, for circuit (b), Vo~· is doubled, gm is Q1 halved, A0 is doubled. (b) Each transistor is circuit (c) has the same V0 v as the one in circuit (a). Vm A.vo = G,. 2 -tlo "" ----(R,.ro) = g., 1 '= V:w as the one in circuit {a). 8mi .," gm (satne as circuit. (a}) Note that for the transistor in {c), the f?m nnd r, are the sarnc as those is circuit (a). Thus. the intrinsic gain for circuit (c), A,.,= ... A~ where A0 is the intrinsic !Win for circuit (a). V; ,.0.8V g., (same as circuit (a)) doubled. (b) Each transistor in circuit (C) has the same ~, o---1 1 Note that for the transistor in (c), the gm and r0 are the same as those .in circuit (a). In summary. for drcuit(h), V,,,. is doubled, J?m is halved A 0 is G"' v The highest V 0 is then V0 + 0.5 + 0.3 The lowest V 0 is Ql Chapter 6-13 6.21 + Vo ,------+---D 5 V !V --<:2--__,l...._..._o i·· + Vo v F L II' dis shorted to ground, the current Howing -·1~~- lo through the :;hnrt is -~£iA-~--R,;~. "' + R;, r0 L?~Y..L!!:!!!li9-36 i!'m 1 200 JJ.A •• 9 ldl Chapter 6-14 This raises 1<0 p to I '(W)···· ~ Zk• T V ;VI In = R.,P = {g.,3r03)(g,4ro4)ros F> Vovt = 2 <200 p.A) 400 p.A I g,;l = . = 0.26 v vzf 5 ·4 ) Setting R,.(%.9 ). R1. + (96.9) ~0.36 = 200 e-A 0.26/2 lm Vov = (0.769 rnA f V) 2{9 kfi)J "" 431 k(l We can now find an R1• that will allow a gain of -100 V /V: Since 431 kfi ~ 12.'5 .kfi = 96.9 kfi = !.54 mA/V 2 100 0.52 Rr. = 197 kfi To find the gain of the CS amplifier, we calculate Rm: Rm = [(431 kOft 197 kfi)(l.5 mA/V) (9 kfi)JD (9 kfi) ~tA 1 v 1(1A) 0.36 ROI = 9 kfi v so, An = - g .. 1R01 lOOp.A -769 1L A" .,.,3 =~><>m4 = (0.5 I v 2 V)/ 2 " "' -13.9 V /V Ron :::: (g.,Jri1J)r0l = (1.54 mA/V)(9 kfi) 2 = 125 k!l 6.24 Rop = (g.,Jrm)ro4 = (0.769 mA/V)(9 k!l) 2 ""62.3 H! R., = R,r II Ru• = 62.3 w The value of R0 R f) II R l -- . 65 kfi, we get Rm "' (Rop !I R~_)(g.,Jro3) R rm 2(200 p.A) = = n 125 kn "" 41.6 II Rr needed is t1v -g,. 1 -- - w -100 1.54 mA/V "" 64.9 kO This is greater than R 0 ! This ciln't be done with the present design. One thing we ~'Ould do is double cascodi: the current source to raise R,)(>: b) / 1 = V;g,. By current division, +Vno also, i3=.~ "o + RJ = ( 1.54 rnA I V)(9 kfi) Chapter 6-15 c) V1 ""' - V1g..,(r0 II R3 ) '-Vig,..(ro)(i.. + ro) -=---,.-~~-- 'o +-+'a g.. -V;g,.r0 I +.....!5!_ l -+ro g.. "" -V1g,.r0 l -50mV +-··~~-::: I+ _l_. g.,ro V2 "' v,g.,[(g.,r~) U (g., 11 r~)] i .2 = 2(g.,ro) ::: - 1I v,g.,r 0 d) V1(f)::: - 1l2 (I) 50 mV ~ V,,i1.,r0 with V1P••< = 5 mV, Vtpea< VJt) = -~{5 mV)(20) =-50 mVpeat c~ -~ V,(gmro)l Vzvcuk ""· -!(5 mV)(20) 2 = ·I V pe>k 6.25 Since I 0 = w ~(~t"'C,)(r)1Vovl 2 • 2!0 L 2(100 t:J.A) Iw ,~ so (for all transi smrs) I_V1jL 'I r" c .•. f0 = = {6 VI fLm)(0.18_J,i;Ol) 100 flA !0.8 kfl To permit the maximum swing, each Vos . tliiJl should equ;1! IV 0 .,J . Sn. Chapter 6-16 Vat = Vnp -IV,PI-IVo~ o.s - 0.2 "' 1.1 v = 1.8 - =(1.8 - 0.2) - 0.5 - 0.2 = 0.9 v Rinl = R,,.. 1.. + r, g., = Vntma•- W~,,I-IVo~~ Ym = (1.8Ro d) If R, = Vm mtx -jV,pi-Wo~ r(/2 "" 0~2- 02)- 0.5- 0.2 = 0.7 v =rm(g,.lroz)(g,.,Jrm) 6.26 a) Assuming that all transistors have the samegm and 3( 10 kil) + __ 2_ r~. ZmA/V -129 V /V = '• Rm H.,,""',.. H.,,""' (11m3 '•3 ). Rm ll R02 = g.,roGro) = ~g,rz1 6.27 ~"' 50, VA "" 5 V, I= 0.5 m.-\ If the base currents are ignored. we can use the same r 0 and 8m for each transistor. = I z J.g.,ro c) If Vo is shorted to ground. R-~ '"· = _!_+_Q_ = _!_ lim gmrt~ 8m Using current division. Rm = !J. = 0.5 mA \'I 25 mV 5 v , 20 mA/V 10 kO 0.5 mA R,, ( 20 ~ 1 A)oo kflH 10 kll !I 25 k!1) R" 400 ld1 i, Chapter 6-17 6.28 6.29 If the transistors are identical, = roz ro1 8.,1 '•I = = = ro = R = o c = g,. = !fPT 8m2 '•2 = '• = Ro R = • ~~AI ~ r 0 = ~~~[ =(g,.zr02)(rolll (l!£1 ~)(~ II Vr'IId lid [ PVr lTd lTd with/c=l, • fRo 50 rnA. rnA) .5rnA = If T 1.0 = 400 kfi rnA. Vr II .1!. = g., 25 rnV __!QQ__ = 25 kfi 4 rnA) = I rnA rnA IV R 0 p) 100(1 Mfi) = 100 Mfi R00 = IOOMfi = 200,000 VN g "' " = ~ = 0 ·5 rnA = 0.02 A IV .1!. = Vr = g., 25 mV when R. = 0, 100 0.02 A/V = 5 kfi R 0 = r0 a) For R. = 5 · r •• R = 2 Mn(.l o = 200 kfi 5 = [I + g.,(R,II r,.) ) + 0.02 AN (R, II 5 kfi) 5 = I = I Mfi =1!£1=~ r,. = -g,.,( Ron 0.1 rnA so.Av = -4mAIV(IOOMII lOOM) r R0 = 2 Mn(· 1 = Av .!QQ..Y. = R 0 "'r.ll +g.,(R,ii r .. )J . _ I _ = 2 Mfi ~+..!.. O.lmA If I= 0.5 "' T 6.30 5V 5v =g ~ R•• = (g.,zr.z)(r.lll r .. z) For IVAI = 5 V,l3 =50 lf/=0.1 rnA, " "' 2 = r0 = = (4rnAIV·I Mfi)(l MOll 25kfi) =~~ =~. I Vr ' 1 + 13Vr Vr _1_ +...!... IVAI 13Vr IVAI IVAI - + 0113) R = =g 2 Rop = 13r. lid IR = ~[IVAI· PVr] o Vr IVAI+ PV1' IR "' 1 0 = 4 mAIV r. 1 = r,. 2 = PVr) ~ Wcf·wr ] Vr·~+ g r,.z) = r 1 Chapter 6-18 RR 5k!l=-4= 0.2k!l •II 0.02JVV ""'' . R, · 5. kfi _ O., k" .,..,Vlng, R. + 5 kfi - .~ u R s k!l(0.2 t!l) = 4.8 k!l t b) FOr R<~ ""' lO • "" since g,;,r" t-.:&. loa n g. "' rI) • --R!3ro 1 +...! r., There are several ways to derive the equation for Gm. Method t: Take the basic small-signal model: A VfJ -- r.,, 10 = I+ (0.02 A IV)· (R,U 5k) 9So durt R, . 5 Hl .,. - = 450 !l R. + s k.n 0.02 JVV Solving, R, = 495 n c) For R11 "" 50· r;,. R, =~ - c..,.._;, B=;t so ,. 1 + 0.02 JVV(R, n s k!l) R,·Skfi R, + 5 kfl = ~• + ""2.45kH V; 0.02 JVV v'" r1r = 4.8 kfi E + 6.31 With the output unloaded, the small-signal model can be drawn as follows: c B Note that V, = V1 - V, + V; v1F + ro r'" Vn io = 'o' '::" + E v, R, l ~ 0ro v, + 8m v" - -v, + l?.,n ("'v; ro Assuming that 10 >> i 0 V, :: i 0 R, Then. -ioR, in = - l'o . Rtllm + gm Vt + lo Since no current flows out the collector. V0 = - g,. V~r0 + V, By voltage division • V, ..!.l!.L r.+R,, and V _ "' V;r ~ ., r,.+R, substituting. we get V" = -· g,r0 r" + R, Avo= Avo •! ~, r ~ +R r- = dividing by r" . I, -gmro· ···---! t !!! ~'e v) ,. since U,. - << l usuaII y. ro Chapter 6-19 Method2: Con&ider the model _.,&_ -gr~ 1110 R t l +...! r,. 1,.. -(S mAJV)(JOO kO). R0 ra "' t+-- - 12.5ldl Avo= + (Re II r,.) + (g..r 0 )(R, H r,,) or -784 V/V G "" g,., .. - 1 + g,.R, = r0 [1 + g.,(ReU r.,.)] R0 - 0.25ldl lOO(lOO.kO) 0;25 kJl 8mAN l + 8 mA/V(J2.5 kfi) 2.67 mAIV ShOrting the output removes Rr. from the CKT. "r t -R . -A,,() = ""' 0 " ' (from part. I above) r.,+ R, G .., g,.,r0 r.,- R. + Rt) + g,.r0 R,rfl' Dividing by r0 r, , we get R, ~ r 0 (r# g,.--;-;a.. = .......,,...-.........,~o-'"::..,_­ r0(r, + R,) +. r0 r,. g,~ R/!" . r +R R smce _!!.___.! :::.1 and-' << r-, 'o'" G g:,. - "' - l ~ with g,, + g.,R, = 100, r0 = 100 kfl, lr "' 0.2 rnA, and R, = 250 11, 11 "' = l.&j = Vr r:,. = ~ "" g., 0.2 mA "" 8 mA/V 2'i mV 100 = 12.5 kfl 8 mA v R0 .:: r0 + (Re II r ,}{I + g.,) .::r11 +r0 g.,(Rei! r~) R0 ::::. 100 Ji .l l'ov; 2 Rin = ~' () 'l "/'l -~ r, 1 '·" " lm/\JV ~ 25 kfl Cl?m;r01 )rm '" (! nv\/V)(.'iO K) 2 2.5 M!l 4 m/\JV, •·, 2 ·= 25 k!l gml Rje = Y;; Ro = (g,.2rrnHrm II r wll R 0 = (4 mAJV)(50 k!l)(SO kfl II 25 kfll ·""' 3.33 Mil ..... GnJ?o Avo Avo'" . g., 1R 0 .... 3.:13 X 10' VIV -I mA/V(3.33 MO) Chapter 6--21 ConuneniS: (l) A MOSJo"'IT for Q1 6.35 ~~'~»='·•v miikes R;. -4 ""· (2) The output re.~stance when Q 2 is a BJT is limited by r:r1. lit cases (a) and (d). R, was higher due to the value of ra and 8m2· "os, v., _vt:. "o--... •Vos ••"''-'•="t;.~-Vt*7 5 (3}111 these four cases, Avo wa~ highest wilh two IJJTsA,, lowest with two MOSF&'Ts. These results could be changed with different biasing. was ->-'{;, '= \ ·8'- o. 'l::::: t" R.. • L.:.o.s_p... '""'"" S'J'"" , vt. = o. '1' 1/ .,.,to..U... Rt: "* 1. 8' _o..,. = o.oso ,. "<>Q-"vs ~ ~ -;;..'1 r N. R = ..22\C.ll.. Gl,ow..d Q~ ""'~At. -t-M. s-..-.4 Vc,.s .11i.t.lo~sl- voJIAL oF \{, or Von. "*' "" o .'1 ....o .'5 .. o.2.1/ ~....it "' o.l.v Jtertt41 '0,. ,·s wMn. lll>S:::: "-s _ YA. .. VA\.. :&C> .,. 2.0)<0. c; .. ~00 IL.l"l.. o .OS I:e> />. f"c:oct AIJ'.., -::: ..L_.,. 5 LIA -> A!0 : S'j(A r.. uot( ; . 6.34 ?~~~,. .. ~5o)''Yv"' 1 ~.,_!lt:>~"' ~"' 5/..,..:>~"b-:::.S.J'A to . ,.-0 ::::_!!::!e. :: ro = '41... =>- ,._to 1. SS" <;;P L.• t:o = 31 o h.r , '\=o.6v .t>~•I·'B-o.'JS::!·s/ "-5\. I:JY' .!f- '"'0'.1 ,..~:d·'SS'}!..., 2.c .==-=-• VI\ y -"t:. .,. o.ac; =>v6S,.. o. 'l.5+0.~::o.!'; V0 _.,"'-.,.. v65 R= Vet>- V~S-..s .,. 1. ED r-o .as- ... q,.,.-._n.. o.1 _.,.w.!"t 't't- r,;:> .. .L ;., C..)' 't:lL\VG.s-vet ::z. .:="7W::: .._ !ll!: t.S'!>w;IOO . : :L'5'o (O.'tS'-o.£)'1. 2. 1<(. I>:S-Vt) \9.a-4f'- =..!.,__ : :2. ~,.1.'3'0)i~l 2 . v 5 0 ,. .l.-,.2.S'o~<5:..(VGS-o.r;)..,.>VGs•o:1V, o.'l :1. o.") f.o Y.!!: I 'l. .'!S tt..Jl. r 0 o.oJO l:o ..:..1-J;~ (.VcA -vt:.f YL 6.33 v~:o.~v : . .. ·:t-· t;...C.V(;s•"~::> ...., Chapter 6-22 6. 3 7 I · Vest = "vc;sa (WILL So 3 df'l!kteJ' PJ-p~ ~ ""re p•S.Si/1/c. Jept-J,·, ,n w""'h h.uo +r-s/r:lr>rs A~ T,;; - --'"and (W/L)t 50 that En - (W/Lh loz "" [Rfli'(W/l,)! cJ,'#t:k _ tp,h4-cnJ • ln2 "' lm (WIL), ""'" lv 3 Vos3 "" Vc;s4 50 that ~ - J,14 10 "" /p4 "' 6.38 11= tkL f:a." !3 too ~C &!a e fOO,!C !tQ. 1ft to If .L;c. lo;t. J!L( "S&- o. '1) .z I .,..,. Ct;t,(-,3" ~·,, . W: II> i$ dt'oJ&-t:.o>U'I~chJ_, #?IJOfiA tF- tvt trDt...,d:.o-o.,. witJ. 11'1• 11.0 ,·s d.~-c-.....uhd 'I2.."' 100,. !.1!.. ,.. So~ A tkl."' : ~Gr: z :l.oo)IA :o tO we CA.JtuJoJA.. Vs&o"' I 0-11 "'h"-c -tiM s-. ".sc.. f.,,. e-1 aiV'It... (W/l,h (WR.)4 lR!il'(W/l,),·("Wii:h ~'.ffo.r w,'tk. tNM.: f~o r::. lm In4 _ - H#r.> 6 •39 . tllc small-signal model can be drawn as tollows: .2.0 ~.,.too ,. ~ -.2..ooft/lo. ,26 t~ -tt.... b--_,;stor wo~ W-::.'"1o ~: t.. "' too'!( .... ,·s di6tlt:-c...,.,.uJ~J, a'"'\0 . . :J..!';r/>. X:.l:.'\OC> IC ~ ,.. Lfo f!;;ojt,.. + $.,. for CA.s~s #vJ:oH'1 ~ t.ol'\,..u.h:c/, 1 +rc<+tS"t"Sior ,·$ d.i>c:lc + v, ~ Jd/;~rt.....f: o...fpr;..t ~ a.re possi,/e..(dcf1tNui'"J """ rk (j;.,.,(:.,/~"'"' we. (l) V0 dtoo>e..). V.,z = Um - (2) Vx.vt = IF 1 fraASi.Sfors Gl"« .f,L of!. fM vJ/df-t.s of! ~e>J:J... f-N.,. J:, ... too Y fl!l. =J3~,)4A w/Jtk.. is 'ft.. -'"""" r~ tF- =to+ 1P Wt,tJ:, ,. ~I+ int r.tn - Rm~ \l,t.1·l rn~~ -v, .. 1 .~,.. 1 -~ substituting (3) into (2). we get \l.\1"·12 = - VRrl -fn,......Ji> lor: wdf- R/.)V~,~ g.,2 vg,l) rm rol f'f,..ay c..c.t- cu :rr II -gm3 (r01 .... 2o f Iff> 1-t()t-(0 3D t~ 1:"11 •IPOJ( ~ r t:~ r;, f6.7,JtA .,.fOOl(!£_"' #o~t>- >o (4) v<.o} ~· . suh~tittHing y~f' Kml -V "} rrp rot "". ~.:: - ·!'1 rm J1 ml r m (t + roz + g.,! r,J) rm .· (4) into (I). we get , gml \,J{.ll . rol J.,'1.~3o .,. .l(lltf Chapter 6-23 v0 = -g (r mJ VJ II R )[ /_ -v,,, g.,, 'o2 ( I + ' 02 +11m2 'm 'o1 since V,, 1 = ~v, = g ) l v, v,.2 = since ix - = Riu2 (r mJ m 'rn ] /. ( 'm ) I+-+ R"'2 roz R )[ 11 llml 'o1 = 02 ii; - V1, = I = Vx 'o2 + g,H2 Vx _!_ + g.,2 'm ~ = 'x 'mil _J_ 8 ..2 1 -g,., ( g-11 'mil "12 lim I 1/.,)(roJ II R,) 2) ( ..!. +..!. + g 'o2 'ol m Assuming all r0 values arc>> I, ~ = g.,, g.,3 V; 6.40 R,_ 8m2 • 1 Smce / 0 = -k ·(w) - V and V ov "' 2 2 ,, /.., 1.,. 2 Vov2 = VovJ , Also, /1., = __!_g_ making g., o / 0 which is a .!:!:' VG.'-1· V0 y12 Tlv,.,h.r~ I o, R,. Here, L.z = L3, so we could also express the gain as Vo :: g.,, \1. (W3) RL W, • Now, to find the resistance looking into the diode-connected drain of Q 2, we apply a test voltage Vx: ~IOM.4 -~O.'f>~Vef:(o.71tiV is rtuy lwj"-~ .r6 ~ _. CREF .----ov, , 10)4A ( rREF! L ,;8;11G.f I Vx, ix The CS gain is vvd, divide out r0 : ~ ;K = vVx + g,.z v,,2 ,'$ ""'-' t•!Jlhle. to;tAt ~ fo ( ~~ ""A li:CJ lwt.u Chapter 6--24 6.43 6.41 Is,_"' Is, ~..., ' rc:., .. t;; .rQff. ,. Ic. +' ~ +' ~ (i) va,,• '~~!3Ez ->v: t-.&.. 'f. e.. .h. rs, r ~ .le... Ee .!.sa. ru... "'""' -:.ore. .. ro;.... ~s, "r s ""$,..(hth'"3 f.o (' ~c. ,.,. (j) : ~Re-F- • h. ._ b_ + ~ =:;> 1sz_. c ,... .f,(>~f JS ,rr,IJ _k.. = __.;IY';.;.;...._ _ ~E-F I -t J:t.!!! fr +- ;3- -"'....,--,..- I fo iJ' 1Nj re.Htll: ,·s +N s_.e ()1.. 1 E' · 6 · .2.2 · reto = Cc., =I. I 6"" A 6.42 "C-9 ::: VC:.ID .. Vat" = S' -"· '1=4· 3 V tc.t, =- rc.ro ""1. 86 ... A 11c.n For identical transistors, the transfer ratio is the same as eq. (7.69): .!JL = __I _ = [REF I + 21 f3 1I + .1 20 = 0.91 = t. ,., "1 "'1. 1"6v Chapter 6--25 6.44 6.46 0.) /l.::IDI<.Jl.. v, =-0-~V' 1 _ 5 - VBE _ 5 - 0.7 E 4.3 k!l - 4.3 k!l = I rnA J:o) R,. took.I\V,= _o."f V c:.> 1c, ::. -0·'1-of'/D.':I ,. ()./..,A ' (J q ;z ____,. I,. .2 "C.t~ r : O.'l""A v3 ,.o.1-v VI~. -'O·, -. , v~, 5.1_o.7. +l"' /00 .. _(). '1- v s-" Ro""ro+g.,ro(R,II rwl In this case, _ lc _ I rnA lim - v /0 since 13 >>1, I= lc-IE= I rnA To find the output resistance, we canuseeq. (7.50)orsince g., r 0 >>I, Yr- 25 mY = 0.04 A/V rw = ~ = IOO = 2.5 kO liS' :. - I o · 'f +- o. I J1 JJ2Q. • - S' •'1 .04 g., 2- ro = ~ lc = 100 V = 100 k!l R0 = 100 K I rnA + (.04 A I V)(IOO kO) (4.3 kOII 2.5 k!ll 6.45 T::~,.lMA R -.,. It .. T. 'w:.n. R0 = 6.42 MO If the collector voltage changes by I0 V, 6.1 = A V = __!Q_Y_ = Ro 6.42 M!l 1.56 ~A-A Chapter 6-26 6.47 t\11 i\u.. ~S:$tc.r.S 1"1 ~s ptbbt~ ~n. (!.\::a. btAS ~of t>-S~~>tA. ~ ~ !50.tL f"e • 3m.....:lo """AJv , ' M S.·,. at C;.u ,.. a.} c,... _.., - Ew.l H' J -.I ~ - c ; > . . - . q "-01!14! t I ,.. ~ (f;;t-t rf;;.>%. ~ ... ~~' 1 _..L_ :z 2n ZH Zr1 )I 9.,. 1 1'1 "'"r- f>"le : !p, .. · r . 1 "" (;.lfMffl: .2rr 5'-2. ~ I lrJ;l+(tt tn l< i!JOJ(. ::.5HHt HH1: 'lv · p (c.., + 2 $t.1) -2-,.,c._tt:J_f_l1"-)l<-."-,..,-,> f.Pl-"" l ,.,., c. r: nz. t.t .. I i> =53oKW~ 211 1<6 ,.c.os ~~h~k.l = .£n $tt !1- Re J!.n -,.2. "!'- I 0 J.p.3-:::. :f. 'f 611 ffZ i'kM..s: J.lf~ 2-n ( t !'(flak..) (3>.,. 2.,/ QJ::pt>J:- p.. lc. ; Pp,2.... I .., J. ,., -=f. '}6 1o +S 4.~':1-HH-a, ft+M..\.clJie,.; so '7.; =I.' Hlt2- =- too,co.'l'fJCto~_, 6 v l-n (~~II,.,) Jpofe: 2.nc;, 1 r~ ., IOO)IIO ~~1-2.rn ~; Lt<>llpF .At- ~pu.J:" : fp~... I CA$c-..d~ C) CC- Cf> .n. IDI o: IOIC..J\.. ~) li1eJ~J ?? .. .J!~,_~ ( .. ,!.rl,.2~'.clo"" I ..,1-.Cf6 HH?: _._~,_ 1 Stl11 .. tltJ.t ~~ A_x, ~ ";;, ~111 + ~ !{, *" :;,,_ ~~"):: 2,. 4f.BI-r6)1fo·'""+lfoaxa.ILt'1 ..,..2.)(10 J.lt Jbr ( Hs;; 1/'itt) (Cm-t '"$u) fi>~,. j-1-j :: 'Y" /p,• - ' - - - - - - - ou.l;p,J: paM·; ' =- 'S "II t;: A-<2 & =- :J.,p:d pole .._'f.tf/ICr ='5/J .Jh:.Eb-= flflfJ'l.. '+:l.i>JitS' o1e.s-t rnz. 1'1-,_, ,.,.,~ ntr 't ~~ lrtr't+ r,a) ~htrf! c..r""' c..,.,,_.,. ~ 1 (.t+,,..,z.. Rc)=~-tZ(I+UJo) :::: II'Tit.f-f?. ~th.: A"""'- 'tJ "II ( ,8 ,. t) Ptl ~1 * ~ b) 411 ~)IP• lt/4 //1~>111 [.o.b;+,.J \ Fa .. c: ;. rq "' iiiC) ... _ lt1f)l(OP:~f~ .-tlflf~ ,,., 'S'+(fllht~ y f!s.-,.,.. r,, +(,A+ t)r;,l. ~l·'f.,·t:...-f A,..""'_ rrt . ., 1£. ... _.§.._ ~tsg- 'Tr ,., to+$ f, d) cc.-.cs. c.......st:Atl.-: AM,. - ( ~1-f: I);J.tt.~:. e frt10 ~, ... lok..J\.. l.oAvc.: ~"tt"" SI'A . "' pi! J.ttu:l'1 .:J.p J! ...:::> <;., ,. 6p F ,. Of't.mfl(J Jf::;;;:1. of" J·1~ c: =-> "-t·l H 1-t& • Chapter 6-27 F> C<=-Cf!> CAsc...le: A • ~+ tJI'f,.~ ·. .... l~>l~to.'f,~t• .c'58 ~tr ~1-; pote : ~., I 24-f ~ ju · . ., • 6.'tt-tfU: ::::".f.'t' I H In :;!Jf 1< < >t'tt> "::5HHi! J~+;.,,. . St~wtllltA/ ",_. 6.49 rt5tJ{fJ: C,nP•;urai:.:..., 0tH2) f). (HH't:) Al-f l~) G.t3. 25 J.tA, /REF "" 25 11A = 11 W1 /4 = wl = wl ""' 0.) CE- b) ~c..c>cl<• e.\ c.c _c.s CAD~ ell c..cce.~Cc.clt (.) lbld.t.d ~~ tJ c:.e.L..B ~<. -66.1- o.ll":f -n.s -6' 4-! 2."H -r 5"0 5.0 '2.$"() -lql.f 1-6 3!0 -'-' -tS'o lf .t 27-/ 5.0 :2.50 40 11 rn J _ I k, W 1 f2 I - :) -L \ OVI =:> 25 n I ~ 1X = -2 200 X ~I v;,·J·v1 =:> V,JV · t = ~'ovo ~ !J, "' Vmq • (WI L)l (!!:) J, f •. ~ /2 = 25 X 7 "" 354 V = 0···· I 500 ttA 12 = 0.5 mA = ! 3 10 xll6r "' ?Pft" = rlf =~ .. r:z. • r3 vGJ ,... ,..., } 11} Y- ov v"ALU. ..s • / VGs ... Vc;. 1 :: 'r ~a z. ov - .. o.08':-i:-,.4><"v-"'bv=o.2..V "ov- + ~~"t; ::::o .a..o. S" .. o. Y.V ~ .=o.:J y .c v54 """ VG4(::: 0.'1 + V6 $lf"" t.lf V -=> VG3 = f,Lfv ,.,. ~'::. l.~v-~::.. o.'lv ....... va"' vo,. '""" As ... =~~ . . ~v =o.qv ',.? + V, = 0.354 + 0.6 = 0.954 V = vGst + v<>s4· Since / 1 = / 4 and W 1 l'o.n = ...,.:r~ VOVl Vcn = 0.954 V A fl +ra-s;s fo,- s ~V"£ +Ju. s-A: q L 0.5 mA = llv.\'1 6.48 r = ~pi = roJ + U + (g.,3 + K,.v,>rmlr,_n + [1 + 2.82 kO X 40 kO X 40 = 4.6MO Ro = 40 k:O X 40 kO QI"C .kO) Q.th Q~2.r-·~ ~Ef all ~~~~~.aJ;dued t" Q 1 : to, "" ~.a,.. . • • =I.,., .. ! 0 Q .f-: 1AAt tt.n~lffu .:~I 'b s,ppJ~.s I ~ j ~, ~ ~~ 1-orcdl :: &-l'\ .,..t -th.A. ba.bt.. , f! Q.3 Y,o.tliJ ~ rllt:F "'r_+ (n+ot., , 11w.t.J .-.L._...,_ . .,..~.J~~ J9>1 f!..v..., v~ •f. ,8'1.. (f!SS flt--.Ml: ill.::::. I "'"'7 n+l.: I 6.51 I~ ·-=>,... ... e_, =>11.:: s> :l. ,_ I+ ~ ~'&. 11'1 fl:l- ipil( 6.53 Q" R"' 96t<.IL = lr!l = lo2 "" lr13 ··· = lon lo The emitter of Q3 supplies the base currents for all transistor so 1. "" (n + 1)/o 1·3 fl for deviation of . I% from unity; 99.9 1 :=)n9E9 100 I + (n +I) 100(101) ~~ is ol!hM<11f".d wk«. Q3 ls.scotur~te.,l, .l;u,:l.r--=rV.. .. 'S... o."i_o.?..'t.Jv Jl t'.-"\)1' = ~ Chapter 6-29 6.56 ..) See lhe analysis on the circuit. 2 I .. = I+ .JLt....LI = II! + 213 + 2 13<1!+1) Rbf lor = loz = /01 loz _ /REF - IHI3+1) ! 1!..:!:.11 2J!+l = ! 13(1! + 2) /RF.I' 2 J! 2 + 213 + 2 =!x t 2 1+2!(J! 2 t213) ..&t_ =! __I _ 2 I + 2 113 2 /REF Observe that !he deviation factor - -1is I + 2/13 2 independent of the number of outputs or the value of each output, i.e.: The current /REF can be split into any number of outputs through l!!! appropriate combinations of parallel-connected transistors. (Q 3 and Q 4 in !his case) The reason the error factor remains unchanged at - -1- - is !hat lhe base current I + 2/132 that need to be supplied by /RP.F (subtract from /Rrw ) remains unchanged. b) The I rnA reference current can be used to generate lhree output currents of I. 2, 4 rnA by using 3 transistors in parallel having relative area ratios of I, 2, 4 as shown: lo1 _ I I - - - ---=>lo, /REF 7 I + 2113 2 = 0.998 rnA (I I --21+ fj2 rnA ideally) Chapter 6-30 (e) If a small-signal model is added to account for Q.. the cin:uit is changed to G) s. ~ ~ --'--, => loo = 7 I + 2113- /REf = ( 1.996) mA (2 mA ideally) ~ ~ - -1- - =>1m = '••r 7 I + 2113' = 3.992 mA (4 mA ideally) Since Y0 ,, = Yes• = -g.4 Y,, 4 r,.., (no current into gate 3) = Vcs• = V054 0 so that Y 01 = Ym and there is no effect. Ro-=- (fnrJ'oJ)rnl (a) Fi ... t. we need an esrimate for V.,., and V.,. Since the currents are all approximately g I ' the same, nnd //J = i(JJ..C.,,)( W /L)Y0 ·v. R.,,. (I mAIV)(200 kfi)' = 40 Mfi 6.57 v.,. = OV = ....!JL v.,,./2 = ~ 0.2 v/2 = I mA IV 2 1, 11-.C,.,( WI L) JJ.A) = J(4002(100 jLA/V)(I2.5) y ., = 0.2 V since no value is given for v,•. we have to estimate this with 11-.c., = 400 JJ.A I V 2 ,! + this fabrication process is similar to the 0.18 11-m technology. We will therefore approximate v.as approximately 0.5 V. Yes = Y,. + V.,,. ~ 0.5 V + 0.2 V ~. 0.7 V (b) V052 = Ve 51 + VcSl = 1.4 V. which is , =12 · Y.,,> r =~= " !J.J I 20V =200kfi 0.1 mA = AV,,. = 1.4-0.7 '· = 0.35 ILA 200 kfi '· .. ,REF- M so that, /,. = 100 - 3.5 = 96.5 11-A (C) /,."' /RCF (d) .... v.. . = v,. + 2 Y.,. =0.5 + 2(0.2 V) = 0.9 V ~:''l ..__-'--..-...::.. . '"1),, : :: i..:&- =: daot.2- 'I:J:SL @ v.1s 2. .... v_,sJ .. v" . s,.,., c.c. Q:l a-d Q_, he~ow t-~ .s_...... ~h:rs a-J ~ ~, tN.rc for~ v.f$.t•~s.l Vx. • 2. vj.S.J.. ='7 ~s2. = ~ S<~PSI"it-tl~ for ~.s~ •'"' (f): i..)t. ,. , ...l. ,. tr- R. -~=.!:- ,..,_ c.. '"' !L Chapter 6--31 b) k_ = o. 1 11r.EF VR6 = Vr 6.59 .......,. e.... to:: Io .. to j4 f>.. 57.!>~ ,..11 A~~ D· S"(,... 5. '"161U\.. '" '0 = ~ "'...1oHA 10,'1 , ..... , ....... A;.,. 1\, • (I.,J,.. l~e) '0,.. 33H.!l Q,~ to ~"o•/OMn.. Vost• 2-Vc:;..s V.Ds:t.• V~s ~~~·zt Q ~I T Vers I ~- r:R,( t~~ ~(1/h.s.Vt:J&(I+~loo .. ..L.,.boo (1/&,s -o-6f z. :l I ""(Vc;s -o. 6) (lo-t Vc;.s) v6-.s ~ o.qr v 1• • Zi>z .. t :: !2..o ( b;t it-~r,J:·.,"') Cl k _ . o.ol ...,.t0 r#ISF VRE .. VT ~< :J.t1~ c"c:.-.s -o-6/ o.'f -:r ~ .qO.J'A e......1, :l.63MV "·1 ~.v ~.63"'" .. 'fC1,.UA '-1-:SJ\.. ro " 'iA- "" 1.11 f-1 .1\.. !0 ''":: 3.t; "'1-'v- '\, ... ( ,..., ... ~.eJ-o •I.23MA.. e.._ too .,. ltSMV ~·lf2 =IISf'.~ I '"' ., o. o "1 ,., A/.,~ ,..5'6oH.t\ .. U-t,,.. '\>'0 6.62 :CR.Ef IJ~ r 0 : ~ .,(ooH.J\.. ~ #lOO.S17/'fA.24 Tlw.o -there ··:. ~ or o.'Sf erll'o~.HoJdJi"'"l . 1"0 "' (T t-M. "·..-""'"" .:u F,·,. 6. 61 c. e.nsv..-v -thM- Q, -.1 ql '-.IIY. f~ .s.....- vos tMJ +'-.1 dt~~ v_ .. V..r ....,. - C...,:.~ t"~· 1'ffl- Chapter 6-32 6.63 tAJ R,.3 ,_,11J.l..= ,..H.=o.cr?s~ u. R,.P .,.o.ct' ~ 1,.,. :J.lf.ltA. =,.fH c.- S"J'. 3''1H2: b) f?:s.h.:fotc.Jl.; J!.u, ct Jl KJ!. , \f\1"' R,.=I2:~J2. -,. lj,_ .,. 1. 2.'?-t-ffta C) Rs.-,t~t./tlo#C.A: 1\H..,.o.q AH• o.ltct''ilf(v- ll;c•SO.,KA 7 /},..,6.27-4-:> f!14 .c r.3~.HH'il. Chapter~33 ~· ~ 1-, + c;., IJ,, + c;. Rr -+ c.}a + 'i.) ~z tH .o..2,c t• + I.Jf~·.15'+11of. ~-q.S#f2. +(O.Z.,.I):rttooo 6.64 - • j + o•'r'l + .:l?'f.tS+ Uoo AS ~ '1lws .( 'i .. ~,.)A.)!. a. f$ ......... J.,.,-4,J,.:t~t; ~ +h.· -.Ck. •p; .........,.s/tl.r s ;s ope,J;.: •; illob& •~s ~4J I# 4(1(*i~ t•9A .~: ' ..,_..!.!!e. :.25'Kn. ,,.. .. ~-If""'"/,.v ~~tr ~ r'e.t.2'io..n.. !} CL_ I'll Cy,+7f"' u:::-:: .«t.· .ltr.;. 111 'lfllfOo"' ·iG • tfX> • t>•l ,,...n.. :::I•S'~' _, C .. I.:Jt,.F n ~A) f{;,... • (~+I) [ret+ (rnJ.II"bt1] R,~ • lot (L5'o~tti~.2.s~Cu . .. /IH • • ~.·n rMA1• .t.s HA. f'ru. U~'e• r4 +(r,1 /lfiJ,) ~·... +tls,'l 111 3 r,._ ,..,. /4 ,. _. g ..;" )t ,J.'S"Ill/11-t . ,.lot JCIH H .t.~o.ol o-15'-t( 2J"IC/I l'i) ~To tAttA.tltd£ 1!11 , . (} lt~Cf'U>.S•'"d +ht b:e..s ~b hf 4 hitt,.,y of. lo: ,., ... ifq.,.... 'i'tr '7 'i t: .t."1' J'L 'n*' ; ,.., ,. o. .2 .'5f'A. ftJ, 14/L # I+ o· 5i ..-10 a6. "f,F J., 2't'f IC/L " z.s"-nteoc. by <;..= (}.(12$"'+ (2.~/ltJel') 6. ?-t: <1·2.{1+ l.foxroo) .. Rr= ~ .'5'-Jt to"If .1·S'tlO • IO I lf1.1JL RT t:S. a.f..,.o~f" redtJud hy a (Q..c/or of! 3. R;n, 2. .. r-n1li tOt::"- .lfltiVl.. R.n, .., lo" :r '-· .lf6f ,. 13-o .tL ~ •412.$' Rnt is «IMt~tsf" Jec:.~ ~'1."" '02.=-tootc.IL ilt1 ~.yr., c..,. s 4r.z+SNz.l t+p..tJ 'Oa.) 'r • 1-31tP·.t.ltt~ 1l..rlf}f:J.. r.,J..Jir. fl '' 'D;t :r pv,i h.i "" f()CC"JK tO) !1. 1?-. ct 2 n5 T1..uc -Ht.t... do~ ef:.l=ec-1:, +hJ ff>l- +lu. DJp~ pole.) is rtteiVCAd hy 4 fQ.c.lru· pf:- (D. ~r>~~c ('i_ .... ~2.) r~-..u.s c-f$~ e.t~Ai..lc 1'02. dttc#'t!ASt!S It>)' ~ f,:...eh:JrDf l">k>OO)..,B'or.6pf'- P+t lilt. fr>..c.O.rof li'ol> .,,.o.ffg + f.2.)cloo l; ... 1. ~ 2 r o. 8'" + q S'". 2.+ 1.2.0 ... "Jh.,:.s occ.&J.,.~ '"'z.vm.. rm"f'l\ ,. ~u..t 10.3 .,. t'(J'L r~:a. ""J,...._ h+l lr...., + ~'!l } j),t• ~-.(-"' '-·'5'+....L-_(;So-t- ~js.IAf.fJ'\. IDI t<•l N~l«-,,_,, 'ii : IOm:lR, A~:rJqo"~v- nn 6.67 I = _!g_ "' 10m "" 99 JLA p+l 101 ~~~ In "" 1112 = 99 p,A In "' a/ f. I = :~(99 In = alt:! "' :~(10 p,) ~ m} "' 98 J.LA 9.9 rnA Neglecting Early effect using resistance reflection rule: R;. = r. 1 + r,ztll 1 +I)+ I K((3 2 + l){P +I) R;. = J!Vr + (3V1 (101) + lk(IOI) 2 In lcz ., 100(25 m) + 100(25 m)( IOI) + 10_2 M 98119.9m · R;. = 25.5 K + 255 K + 10.2 M ~ R I) - R , o ~'w? PJ IJ 100(25 m) + [25.5 K + 100 K]( I ) <101 J(9.') m) lO'l 101 WI 1_-) "' R 0 = 2.5 + (253 + 9')0)( .. · JOI t\,.0 A,= = 10.252 M + [ r vi . !()() K l( I ) +I . p, +I .. p, + P: + i I, 000 VN I X I,OOO 14.8 + I, 000 "" 0.985VN 14.8 f! , Alf" .. ,,,o~:~t:> ,.o.IJB"f~ l"f.lt~t""" rv Chapter 6-35 0.5 "'"' NMOS PMOS I v,,.(V) v., O.I3J.1m 0.18 """' PMOS NMOS PMOS NMOS PMOS 0.32 -0.54 0.27 -0.46 0.23 -0.48 0.2 -0.42 1.02 -1.34 0.7 -1.08 0.71 -0.93 0.6 -0.82 0.5 ""'" NMOS PMOS I 0.62 gM (mA/V) 6 ·69 0.25 """' NMOS 0.25 """' 0.18 """' 0.13 """' NMOS PMOS NMOS PMOS NMOS PMOS 0.73 0.43 0.88 0.41 1.02 0.48 0.37 If the area of the emitter-base junction is changed by a factor of 10, then 15 is changed by the save factor. If V8 , is kept constant, then I c is 2 X IOO = 11.98 - 12 267 X 0.25 2 For PMOS: (IV'J also changed by the same factor: => L V8£1VT P lc = 15 e 15 a A, lc"' 15 => lc n A = 2 X 100 93 X = '14 4 - 34 0.25 2 • . - A,= 10 A, =>lc 2 = 10 leo If I c is kept constant, then V"" changes: VBF.tl'T 1.12 = l01 50 =>1se --.-.,- VHL"I-VBE.2 r =Vr lniO 6.72 · - '"''. := 2J.L" I C (IV) I v = 0.058 V or 58 mV '"" - = Ill ~IJ.pc.,,(T) V0~P It 1 OVIt (I) p we also have g,.,,. = g 111 , 6 . 70 1, = I = 10, If) = 100 fl. A, ! ( .!!' v' 2 L gm 21n === Vov => Vav,. (Z') ()V (j), ~ => ...:::.:..£ (~) I. " 6.71 IVo.l 1 f) = 0.25 V,l" = 100 IJ.A =!k'~v'=>~=2!t?_ 2 L t)V L k' v :' J/ "()y For NMOS: - ~67 ~ • v' = = Vov,, 460 ~ = JLp 160 (2) = 2.88 Chapter 6-36 6.73 6.76 V0 v"" 0.2$ V for an npn transistor: g "' L = 0.3 p.m. In !.£. "".J!l. = 4 mAIV Vr 0.025 = f-orM NMOS with the $."line g .... i.e. " nm "'210 .,. 2X100X w··l"" 1 mA/V V0 v 0.2 g '" g., "' 4 mA/V we will have : 10 = 0.5 mA "' VII X L = ~ = V,. r ""· Vov 21o ~ Jl.• "~ ~~ " X Voy "' 0 5 mA 2 - • ~ /0 c•• zVor=:> 8,. X L "' I X 0.3 p..C.,Vov 3R7 X 10-J X 0.2 W "' 3.88 Assumiugl~e 6.77 g.,. L 10~ -;::===::====:::::; 1.58 k!l PVr ()V <11 + ,. = 250 ,! X nt,""' I 2 0.025 OT ~tm C W y2 2 ...... ,L ll - +!3I )gm Vr W = 6 JUII, _ I I For case (b) we have (fj 0.3 Vov = 0.2 V X 200 X 10 X 0.1 X 101 r!l',. g: - ).I.IU r. For both transistors, for case (a) we have r = 1 r = = 15 k!l g,. "" ..... 6.74 Jz ~I A.= g,.r."' I X 15 ., 15V/V W , r = 100 p.A, = 0.2 V Vr>v 387 . X J!_ 0.3 X 0.2J 155 11-A = 0.155mA 10 0.25 k!l 210 = 1.55 mA/V n Vov ~~ 3 L C m + C(>"~ "' ~3 WLC, ~~+ WL 0 vC.,, 6.75 2 X 100 X 10 0.5 C,.. = ~3 X (, X 0.3 X 8.6 + 6 X 0.37 0.4 rnA /V = 12.54 fF 2.22 fF 25 X I = 250 kfi 0.1 fy = ,.-.,-::::"'g"'-'"-:-;:-:- 21T(C., ·I C,.,) --~''-.5""'~~ 2-11( 12.54 g,. XL 0.4 X I If we IJSC 1'-'0'--'--::; = 16.7 GHz X 10 1 ~ + 2.22) the approximarion formula: J..l,,C,,,lVov , 1.5 / 450 .f,:: ~.,,.., X 10 , 4 X 2 X -.r X ().:\' X 10 The g., 0.35 X 10-• X 0.4 X Io-' : = lr = C1, C. 30 X 10-9 X 40 mNV ""-fr = 21T(C. + CIL) g. 21T(c. fr = 5.3 MHz i 0.4 X 10 _, "' 26.1 MHz \ 21T(2140 + 300 X 10 ) C4, = .,,g., = 0.35 ns x 40 mA!V g,. = 10 X 0.4 = 4 mAN, C1,=2Xl=2pF c4, C,. = ;::O.JpF = 1400 IF c. c.=34001F= fr lc; g.. 4 x to·' = 21T(3400 + 300) X 10- 15 = IO ILA. Low-voltage process = 10 X 10- 3 0.02S : c•• = 10 X 10-ll X 0.4 X J0-3 c1, = 2 X 5 IF = 10 IF c. = c._+ cJ• = 14 IF c 11 :CILo = S IF 21T(C~ =41F Ao = g,. 'o lr = g., 21r(C_. + 2nawLc... fr: In Summary: Standard low· Voltage npn lc= IOp.A 26.1 MHz 172.1 MHz OHz 3.35 c,. + ca.) I X 2 3WLC., .. 1_ 11 Vov 41T "L2 As we can seefr can be detem1ined after knowing Vov and L, it is not dependent on either I0 or W. lc= I0011A I 1.6 MHz ~WLC.,,: k~WILV0 v 2n lc= 100 I1A + c,, = r.t.I ·w v;..) ' (replace 10 wilh 2 = S IF = 11.60Hz lc= 1011A -y;;- c••> lentlyc,,>>C,,and C~ I 2VA _ 2V.AL = Vov - If we assume that Cov is very liJJJall or equiva- _ JOOX 10-' = 4 mAN 0.025 g .. - Standard High-Vollage npn 210 V,.. = Vov X J;, 2/ufVov lc = IOO ji.A, Low-voltage procellS 4x1o·' fr = 21T(SO + S) X 10- 15 = 391 MHz Therefore A0 is only detennined by setting values for Land V0 v • 3.350Hz fr 2 .,(~~~)pF 6.80 _ c4, = IOX4 = 4011' c. = 40 + tO = 50 IF. 14pF • = 14 + 2 = 16 pF =lr = 0.4 X 10-J +C.) - 21T(5 + 14) X 10- 15 g., fr = 172.1 MHz 0.4 mAN 40mAN 211'( 1200.6 + I) pF + c~) Elu:JuuJ: = 100 ILA, High-voltage process: = 10 X 140 1200 pF = 2C1,. = 2 X 0.3 = 0.6 pF = 1200.6 pF C~;:: I pF = 0.3 pF = 300 IF -) = lc; c 110 .,,.g,. = C4, = = 2000 IF = c 11 40 mA IV fl!um.p: = 140 x 10-" F = 140 IF CJ• = 2C.Jr• = 2 x I = 2pF C.., = c1, + c1, 2140 IF = !.£. v,. J Chapter 6-38 6.81 Vov "" 0.2v, t. "" 0.2wn. 0.3 f.llll, 0.4 ~tm = SOLVN fr :::L5~'!.~1W ,, ,15 X450 X 2nC "'~.1 1?" X ~~2 t: X II) • 4 2 X 3.14 X GHz Ll L(j.lm) 0.2 0.3 0.4 A0 (V!V) 10 IS 10 fr (GHz) 53.75 23.9 13:.4 6.82 L "' 0.5 JLffi. V0 v fr '~ lOOMHz = 0.3 V, C1. ,. I pF, = 21fC,, ~=41?,_ m -- "r.Cf ,.';,. * l r fT ., 2rr g I pF X 100 MHz "' 628 p.AN X = llo =41 V01..' i'Jf fj - g - X tff < V'(HP,.., ::::. 6 - 28 X ().3 2 1, '' 94.2 1J.A I _ 1,. W 1_,1 D - ;;A~tr•·(.~\>'~ '""' 2LI, »·, _- -.-,-. /c,~ v;.W 2X0.5X942 = 5.51 flnl "' -· 190 X 0.3~- IV···'· S.Sl tJ·l!l 2; X '"15 Mlh I l pF X 1(!6.2 ld1 Chapter 7-1 - Le) Ve.111tx. =- V 1:: +- Voo - ~ Ro 2.. = o.~ +2..5- o.t..c 2.. s 7.1 Vr>o = vss K\11'~ vz L :r. = o.2.'-'1AA ,- Vt111"' o.t-v l<..o V~s = Vov + Ve == -= j O.Z6 +o.~ -\. 7.2 (a) \Jov z.q- Q. rt6 '='- -- -'2..2 \1 J.::t..lt- :'!.:. x Ro = + 2. 5 - o. I v 2 . .; 2.. = i.. . 2.5 V (_ c ) I f u-C/WI :: ..... J! v Vst :::: Vs z. = -+ I - 0 . q6 :: o .0 Ior-=-.l.oz-- 0-IINIA VDt :::. VDZ =- -2, 2 ~ V Vtt = V~z = -I -0-96::: J:..r,. ,.. .:I.o 2. • 0 .I w A Vor "' Vo2. ... 2 -:zsv 4 V -==- tb) For Q' OM.d Q2. f::o l\1\ sa.tu ra.hia v. : Vo s {:. V~s - VI::. --t;. Ve.~--t .>,.. (~ Ro - retM.a..iu Voo) r -z.-5 VcMWAiY~ ... O_:l,e2. 2.. VI: -0~8 -:;:: -2,b v To allow .5vt;../eJeuf u(.,M. - -1 v ~ -0.45 -o.g -: 0 + I • 2.5 • + I. 2.S V VoL ~ ~ )( R.o - Voo @ Vsr ';. V_gz. = .I.ot :;'; ..Loz = ~ -= - o. li5V = Vov.,.. VI:::= u,,-=- Usz. 0-2.\M.A Ld) tJ: 'tJCJ1tM.i\4 - V&~ '1M i\4:: w IL • o.L ; ; .., o~Zf v ""' O.Cf6V @ ~ -- c v.' ':!. \J S = 6 K.vt J I.. / K.. (a.) Vov +2.95v (J) 1JeHIN. - Vss + Vcs i- v~ + Vov I .. -2.5 +o.?> +o.':l +0-ZG -== -L Ll.l V =2..5V 3w~ ; • c -I. ~6 v ===-- for vo!~e 4;ue. e-uHeUi: c!3ovrce. l::a V Ofera.l:e r,rf/fer/'1: Vef-t ~ V.!S - Vcs + ( Uv 1:: +- VQv) -t> VcM !M.A.)( ... z.. 5 -:: o. -o. 5 -1 . 2. 5 :t5 v / Chapter7-2 7.3 7.4 V<>~ "' 1114 i/)1 "" OJ I mA Vtn "" 0 /0 im "" 0.09 mA I ' W - k -(V., 5 2 n l. ._, 2 V,) - ForQ1: O.llm"" -t ll(;q iI 5 m(V(;$ 1 -05)-~ "" lt71 v ForQ2: i.I 0.09 111 "' -25V v, = -v652 ll'cr: ~ 't1id 2 "'· -0.69 V + V GSI ·= - 0.69 + 0.71 = Vs ,, 0.02 v V 1J Wht-n all the current.is on Q 1 : m( l'<;s 1 - 0.5) Vest = 0.69 V -1 V 02 = 0 5 Vm- V 01 = 10 k!l (i01 i01 ) - ··"" 10 kV (0.11 2 0.09) m =0.2V thus Vm-Vot=~=IO = V,+ /iVov and Vc,, is reduced to V, thus Vs iben v1J "'" when i 1, 1 -v,. t!c;s• + Vs "' "' V, + ().02 = 0.09 mA and im = 0.11 mA Ji Vov- V, = Ji. V is the reverse condition from the case we just studied, thus v14 = -0.02 V 0 , In a similar manoer as for the NMOS Differemial Amplifier, as v; reaches - Ji V0 ,, Ql turns off and Q1 on. Thus the steerine range is Ji Vnvs V,::s; -J2 Vov 7.5 For this particular case v()~~ 0.25 rnA = 0 _25 4 mA/V1 = v V,. + V 0 v = 0.5 V V fH V G4 = - V SS + V <'S = - 1.2 V -0.5 J2 X -0.::!5 ::<£ V;J ::<£ Ji X 0.25 0 4 ld1 X 0.5 mA - 2.5 Vm 0-2.5V im VS J> (~) - V,z ·= ·;· OJ! V 1/111 when 1} l'tl ·:::. -0.5 v . (. = +0.:i5 V, ~ l'GSI ::::;. Viii- Vtl !.US V + 0.8 V "' !15 V ··0.5 v = 1.2V ::_0.2 V 0.2 mA 5kfl. (!!::.) = 0.4 ,mA[k ·V 2]· ~ L.! . ll OV 2() (11' ) . l. 0.4 m;\[ 0.0 I mA J 1 40 l ~) .. \ L ·• f, Vm "" -25 V I!,; V vi). ~~w- Vm 0.4 mA i 2 ! + 0. 7 mA = -25V 0 : i 02 ~· 0.5 rnA l 1td· = R im ~- 0.5 mA, i 02 Vs (U V = 0.7 V v l',o- R -0.35 :5 ''. ·.... ForK= (U)1 AI = 1./JO,...,:o,.,..,-l(:--1-"7"0.0~1) =O•.J98 X 1 v,.,;..•• = 2V0 .,J[Oi FQI'K ""o.t AI = 0.2Vo~· = u J-o.~-u"'"""-o.~.> ,, o.st Vu,.a. = 'i.VovJiS!i. =0.894. V(JV 7.8 I.o =L w (Vs-s- Ve) 2 z..".l..4.\.( eox 7: .t.aa 2 =..L x 'Ia z. ==t> lf&-s = 2 )( lao ( Vtr.s -o .. ss) TI I • It:[ V Q~-w • .t..I.o =- .f..'l( loa= l.o6~ Vs~- Vb U tf;d (I ·I '1 - l ) If~fv.!!t:r::q { 1:-:: R \.l (VGS- Vt;.) == 0~2..1-V ~o double ~Lu·s va.lve , llc;s- VI: 7.7 ( ViJm"'/2)2 ,. ,. K . Vav Q.E.D. ...• ,·f)l ..····_. 2 I ~ ·• I ,.,jl\ r;;K·(--1··~::;···-.;;··)· )\ "·-~ V £~LU.Ls {; be doul:,le.d wl.u·a.Lt tM..elUcs fkal: tJIA.ovl d 6e f.va.dru/.e . :I el.Lo.,tA.01e d f:o: f'ed. :r..p ~ODftA Chapter7-4 ivz im Vo.\< VosJ VG- (p.A) (ItA} (V) (V) (V) 50 50 1.5 1.5 0 0.5 33.3 66.7 1.4()8 L577 -0.17 0.8 47.4 52.6 1.487 1.513 -0.026 1.4886 1.5012 -0.013 im tim 7.9 - -Vov o.ZwtA- ::Z:O w j_)tCA (tOIL '2 .~ 2. V QV L too :. ..L y. qo" ~ Jllo.z.) z. 2 47.75 0.9'> 50.25 For lfJJ f ioz ·"' 20 ""'> i112 Vi:;J = 4.76 JlA im "" 95.24 p.A v. v()$2 = 1.154 VGSI "' 1.690 Thus Vm- Vm"" 0.536 V L = 55.6 ~ 7.11 (a)V,J = Vl.>!-VVI = {Voo- imRv)- (Von- i,.R 0 ~ 50 = ~ For X 400( V vS - = vc 1 "' + (-/ Yo>· 0, v5 (im- im)Ro !)~ VGs"' 1.5 V TIGI "" ) "' )(VId) I_ 2 (V,dl2)'i]Rl, Vov -1.5 V tl 01 = 11 Gl =2 v; t• s = +05 V The dmin currents are equal in both cases. For ForV02 =0: (b) see plot slope of linear portion Tnreducei02 by 10%, im ,, 0.9 X 50 "" 45 J.LA = d (IRn. V 4) -_ IR,I Y , JV:1 0 dV 1J V 0 v im "" 55 JLA ~+I= I "i Thus. V c 1 "" Vcs, - "os~ iu~ i 01 plot when the bias current is tloubled, V0 v so IA7V "' L5'"> 400 ~+I . .~ To increase ioz by 10% ' (~)see = v (UJ5 Y v , v.fd = ~,JJ 1) 2JR Ji Vov f _(Jiv,4 ')1 iolcrease$ by a factor of 12 --- Vov Ji the slope of the linear part hus increased by a factor of Ji 55 11.A "' (d) sec pl01 45 fl.A ''un. ~ 152 V ''(;$) = 1.47 co.}~·(;) lfWfL is doubled, l''ov reduces hy a fa~! - as high. '= o.t 7.16 HAlF-CIRCUIT - .:t.. -v Vov For a differentia! amplifier A., g,.R 0 with I= 210 So the differential pair requires twice the bias current as the CS ampli.ficr. The power dissipation at the diffamp is also tWice 0.$1' . also: Vov -~ :r. I /(VI' W!L ~ !:!:!.. --t:>o tt V (o. at6J :z. ,.. t... R..o rs IMA O .. t ~ )( (Yt) o. v~ r: g5 ~ 51<-t.€ =t> Adr:(J-w.f<.o • 3 ~ x S l V,then Q3 will operate in triode. r,"'l = [ k.. Iw v,.J ]-! (See solution to 8.21) l ~ ------~g~~~··~z_R~o~----I + l!mt,l W [ (~).' ·• (r ). ·2 ·g.. ,.~ .. 4 I+ l ~ OVl Kml (d) rps;t = - , - . (i)RI "" - L :<.• _.!_ .·. Vo~J o• V,, .~llfl From(b)V that .\:!:' "'- 2 //} ' t f-1. c.,_,v 0,. ForQ7, ( .\:!:') "' L 1 f.I.Al . 2( 100 24.7 90 J-lA t V!(0.3 V} 2 For Q4 and Qs. (~t = 2!50 ~M (~)~ 12.3 9() J.I-A I Vl(0.3 )! For Q 1and Q2· (~), = {y)l 2(50 ~tA) ~;.'_ 30 JLA J V~(0.25l 53.3 For Q6 and Q3. For l RfF "' 100 15- {-1.5) 0.1 V.,:n "' V 0 s4 "' Vt-..v 6 :;:;::. "' 30 k!l m V,,, ·-- V,.., ! .5 - 2.5 -~.., - I I - 0.7 ~ ti.:l V v V 0 v_1 = \'r.s- V~!~ = - I - (-0.7} ·.: : : -0.3 V Ftnm section 8.23. we know that Q2 Q) Q4 Qs Q6 Q1 J.L(-:.,_( 30 30 30 90 90 30 9() JLAN2 ln 50 50 100 50 50 .100 100 I-LA ....{).3 0.3 0.3 -0.3 0.3 v 74.1 12.3 12.3 74.1 24.7 ·I I 1 -1 I Vo~· w -{1.25 -0.25 53.3 53.3 L A., '' g,.,(r,d \1 r, 4 ) Since Q1 and Qz cirruits arc symmetica1 VGs .· -0.95 -0.95 With I '" I REf --~ I 00 j.l.t\ I,_J = !2 = 50 ttA 20 v 50 ;u\ -tOO kH 7.20 So, Hll V 1 V = g,.,,(400 K Ji •1011 K) ami g"'' o= .tm ttA i V Since V1;.1 - I·, is equal for hoth transistors : .cC) JIH I0, but I 2(50~ 400 ;•.A /V 025 v ~Ov 1' 1,; 1 Vun •• Vm -0.95 v V, 1, •• ·- 14.1 I. ' Alt II){\ ~'cs~ '" - 1.5- (-15)"' 1 V Von "' V,w, "" V,.,., v "-'" "" v (;.\I 2(100 I!:A) 30 f.I.A I V 1 (0.3 V)~ In summary. the results are as i'ollmvs: ~lA. R (~) {y). -25V 0.15 ·• 0.7 }_]OJ ln1 +· ln2 J/IH v Chapter7-8 1m = 113 = 2113 lm (b) VQV "" IVovl = 0.2 V For A 4 = JOOO VI V and V GS- V, 2n !Vo.-1 woo= Vov• "' Von ""· Vov 2 1 VA <::> J5fij · 0, 2 V "' 4.47 V trlv~l = I. "' 4.47 v JOV/p.A = 0.447 j.LIIl 10 V l}l.M For high g,., the bias current should be high, but with :!:.0.9 V Supplies the bias current must not exceed ~ = 0.556 mA to keep power dissi· 1.8 v pation at I mW -g.,, tl(\t "' T. RI> X ";.t "' _!_I_ · R, · ll·J 3Vov ' 7.22 t!·d Vov "oz = + 8'•• 2 x ~ · RJ) 'i K!v1 1 ~ "ol - "m , (~ + ~)· _I_ . fl14 .3 3 Vov R,, 1-·R ,zxVov I> .~\M. U = f7iT = o. t.6 v W/L I} 3 J... , = .;:!:_ = o.Z\MA -:. o,uv Vov (a.) 8iu~e- 0.~7~ V eudul oul::fvt.~ 7.21 /1 4 = g,. 1(R.,. [I R"P) "' c,.,[(/l,..Jrt· mcm) is sutlicient. 6.1 1o-4 )t 7.25 Cli I?.R = 5. I z. -= {_f 6 80 6. ":f- 'lf to-4 -TI' ?l.:_l.l -riB If A, '"· 100 (40 = 0.25 mA t .... for ie = 0.5 rnA .V Bl = 0.683V Vn - -s • 4.6 x -0.4 V ifV 81 "'0.5Vand VH 2 = OV,V;, = 0.5V 1 0 1+ -5V 7.30 0.5 rnA 1 +eo~'o2s - O.S rnA "" I X 10-" A - 4.85 X 108 V..: = 690 mV at ic = 1 rnA P = 50 VcE(SAT) = 0.3V Rc = 82 kfl Vcc = - V F.£ I = 20 = 1.2 V ~tA (a) 10005 WI . rnA= 0495 . ::-:1\) rnA V8 , Vco = 2.5 V- (0.495 mA)(8 k!l) v -sv e-o.~v;o2~v = 0.5 rnA = 0.5 rnA I + e-lO = -1.46 = lkfi I kO 0.5 rnA I · 'c• -0.3 + 0.1 = +fi.4V -O.JV v, vn = 690 mV + 25 mV In ( 1 = V 8 -V 8 = v0 = 575 mV •= -575mV = 1.2 V - ( 10 ~tl\)(82 kfl) = 0 ..18 V Chapter7-11 (b). VcMMAlC ., 1.2V - ~ 10 p.A ' 82 kfl + M V "'OJ!V [r)) VeMML\1"" Vu+ Vo+VIIf "' - 1.2 v + 0.3 v + 0.575 v ~~ -0.325 v Zl'L. .(, ;JtA ~+\ So -0.325 V < Vnt < 0.&0 V -=~ :r.. ~ 4 t(->+t)jtA /uvs, :Z::.. • l.i )( IO~A"" 03iCJ'ljtA !3eleel: :r. =- 0.4 tMA (c} -viil ~·1' (t82 = e - V.tln(0:82) = V;,1 - 5 mV + SmV ifVez == O.Vnr"' lOKvt. : t. 7.31 Willt only common-mode at the inputs Vn = Vc 1 = Vee- a{Rc t-V, 7.33 therefore the ripple voltage directly appc;rrs at the single-ended output V c1 and V n However, because the differen!lal output . I +I? V.,J = ¥'c- V n does not include the G,1 .,., lf(!. I 1 t. .,... 2- (mV) nccnn.;. lf· i.::l,te c.vrre.u.t- is :3teered & , , l::ueu tf e 1 = Ve_ (! - :r... I< c. , a.. e Lt. a.M...je ob: vcz.. ~((!! := Vee. 4- ~ 2 I R.c a.. e~ol!. _ 05 5 10 20 30 40 9.97 9.87 9.50 8.95 8.30 Observe that the gain stays relatively nmstant upto V.tnearly 20 mV. Then it decreases ~ignifi· cnntly with the increase in signal level Whenever gain depend~ on -signal level. nonlinear. disto11inn Vae. - :r.. . f<..e (b) I:; o = /1n = !!.it'll G,. \,<\A o::u::_ T I I Define 11ormali:led Gain tXI (!/-( lJJII- 1 '82 I 7.32 u = -v- lie 1 == in-112 common·mOde output, the ripple voltage doe~ not appear on the differential output. This is. an advantage of using the differential output compared to using the single ended output (_ Q_) I 1£1 - - - - ''t!J VJ QiJ Chapter 7-12 7.34 7.35 Wlftt: VtH- i~ t "' i£1 "' vsa.. ro t-1Av -=*:.--...,......-- : : t + e- tott5 0. 5 f 8 :r:. {ec +{e. c.. "' with :r.. io ,:: in "" For a.. eolleal:-ar res ia baM..ee l!.t:. (f o ... lf~,- Uez.-= (U{!(!; ... t'e, Re.) (..Vee.. - iez.l!.e.) (tl:..z. -L~t) ~c. -= - ot ( t'E.t- t.:et) /(e ~ - 0. -ruvs 1 I '16.. ::t:.· a. c. Now I.~ ZI.M.A , =l 5 mV. and n = t. -- 0551 • ~mVJ1lmV ··• 1 , = 0.45 1 I+ imVI,looY =~ "' VM , + 0.55. IRe '" OJ IRe (0.1) IRe _ .,., 0.005 V - (~0 JRc)V IV (b) Each collector is biased at V cc - ~ Rc If we want to mainmin the same differential input., below its bias value. so, Vn.,;•> "" Vre- 0.5 IR,- 0.05 IRe lflhis is permitted until l'cn = 0. V /CM(m"') = VC(mon) VC(' - 0.55 I Rc lfthc gain is 20 IRe - De Cb itU) vo U::a...~e at e0-au ea llee.E:-or \J -= Vee - :J... R.c = l o- l ~ - !V l Rc = A so that .....!' 20 vtcM'"'"'l C. ·· vcc- 0.5:i ----w-A,. = lice- fHl275 A,. 2..5 -= --=f. '5V For a.. -l V oul::ful: .swi~, t:-1.-t.e vutz...titMUUA. vo lba..J e. b.f ea..eU coli e e. bar ,·g : -z_ l I +e "' 1 = Vee- 0.55 Ike l::.uu!J 1-. -5 - 0~ 5 = 7 ,OV T!Av s , Vx elM tM.~.. tl8 ~ /•a'"r each collector should be allowed to fall by R.c= 2. .5KVl. "C."' - = - 0.45/Rc A ~2- 7Ja =-tv / 0.1<16 I.l?..e ::I: R.c. :. 5 . l 0 2.. 1+ r Vn- Vn "'CVn:-iczRr)-Wcc-ict Rc) 0.1/k(' for . ""' ---.:::,......,.,.. I and 'n ,., 1.1 = 11111 V1o1 in:: i~~:• ~' o. 402 .L iez. ... . .I_, 1+ e so, for a given VCC• A ,, reduces the maximum allowed V1cM· A.,(VN) 100 200 300 400 11cc- 2.75 lice •c 5.5 ~·n·- (V) 8.25 Vee-· It IRe (V) 5 10 15 20 Rc (k!l) 5 10 15 2{1 VJC.Mtm:;,'tl fur example, if Vcc '" I 0 V, a gain of 2!)!) can tx~ a<: hived by incre:L~ing Rc to 10 k !), the muximum commfm-modc input voltage would be Vee -· 5.5 4.5 V 1fa gain of300 is rcqmrc(~ if c;;~ be ad1ievcd by changing RC to 15 kO. l!owcrver this means thnt V1cl!imaxl = Vee ·- 8.25 '~ f. 75 V Chapter 7-13 7.36 :::C: = b k.t A (c) lue etJrrw.l: wt'U (Avicle 6el:wettJA. bke. ?:.wo f::rtJ.usl:Jta/9 ,·"' f~'of'''t:a,. ttJ l:lt.eN tvltlt. etAA Hrer ar~s. 1ti.v, t'~..tfVI:: (.(0 For Vnf.J ('~ 8) 690 mV + 25 mV ln ~" 690mV + 25 mV In Va,; 1 "'' V"n -~- { V 111. 1 =tet+Z.Ez.-== z..s I.Ez = 61M.4 Iet =2. .q t.wA = "" "" 640 mV (-~2 ) ""' 620 mV ~· 20 mV 200 mV =' VM ""· Vno- V,n 1 Iet• 1-~.:C.r:z. 'IEt V Ml + 138 1tA -(l!neJ Rt + V 1,) + 62 p.A Rt: + Vd 200mV == V 111 - V 82 + ( 13ll1J.A- 62 ~tA)R£ 180 mA "" 16 JLA • Rc c3.6&-UA Rc "' 2.37 kf! CoL:: { Iet "" .5.6 u-tA I Ct.:: Z. 1../r.M.A.......,.,._ ~ I o etva.kte tlte eotJeei;ar eurreut!J we tlff,l_~ a c/,fJ.e!'euce st:~~.~ta..l tftJ /; 1 V"Bz.- (/6 yl wlt ose va.Vve c.a.~.-t =Iset e(e (( with V6t -VE)Ivr) w ke f e ::x :JE t 1 I :1t::Z. =- I . 5 AJ ow , (Gt -= (Gz w !te~-t. (va, ,vl!tz.)tvr1 ~ 1_5 ?JcJ ;- Ue,t -/}'61 c IJT lv... L5 ""10.1 ~A mV causes a differen- LO mV V~t- iE~vr) LEt. .. ']:. SGl J~d of20 tial current of76 G,., = .~6 ~A = :U mA/V ~ (263 H)- 1 be c!e&er&M.tM.e.r/ asc£otlow:r ·. (El (d) Without Rf:, a RE = 2.37 kf!, a <'M of 200 mV causes a ditli:rential current of 76 f,lA 76 ~ G'm -- 200 1)18 m·V -- .. ,_, e t.uV 'IV rlli'\ -· (76' -~., kf!' -o _..,... ) ·I So G,. has been reduced by a !actor of 10. This is Jhc same fa;:tor by whkh V;,1 increased. So we have traded differential gain for a wider usable input range. 7.38 7.37 (,a) v810 ~ Rc 690 onV 0. Vid ,, 0 ib) Eqn SJJ tcr + 25 mV ln CL!J 2) •o· 6}2 mV Ea.e. k de vle. e ; s af.'e rQ..l::,.&A.~ u...f: a.. CUHeuf:: ar- 150.JtA = 0-I'S&.uA. i!Avs 1 o'M ~ o.ts 'MA ;: b wA IVa .. ":: t{·:: -v 2.$ W\V 2.(~+1) (e -y 2. )( 150 :::: Z frr '?'5 K Ut ~ Chapter 7--14 7.41 7. 39 R. i J :>/ I 0 I( ell. i Ad :=: 2.. 00 vI vi (}; i"/ lOO i VC!e :: I OV RuJ .. 10'4 ... z.rrr = 2.." ~ cS~ ((,.""'= 2-0tMit/v =I> ilws eUfA. dev/~e. fs 0 f.era.b,·w.J o.~ ().51MA a.tA.d I • ~A fe •VT I£ :: ZS"" ="""' 'Z.~cll VoLE:~ e. Oo..iVI .. ,~....... f<.c \.) z.oo , tb R.c. =l> f<..c.. ~ ( 0 ~Ill. : O.f V 2. ( 2 ~ + I oo) (b) t£,:: {+ o. 4 (t;z.:: 1 - 7.40 Ill ~ L:!i \-\14 o. 4 = 0.61Nf..4 5""'v fe. : Vr -: 2.S~V :X../2.. Ha..f r..- , '= 6oo vt SQ)'tA el rav,·t ((a.i"'-=- o<.f,zoo f<.lvt ,./ 8oK Chapter 7-15 (b) VC'M ..... ~ ,.111. = l ( ()+ t ) ( re -4- R. c ) o;. =1> 2 re 'It ZOI IC t.O (e.= gooo Thv5 ea.e.~ deviee. i& ore,.ab~f a): a.. e.vrre&A.I: o~ Z.~ = t..SM.4~ IOcA. ~ .:C:: ( v,. + Tli'ld) = 5V + 0.4 V- S mV- 100 (30 mV) = 2.39SV li',J = A 4· "'d = 100 • 10 mV = I V IRe = 21rRe Eqn 8.80 g., = !.£ v, 1,. = g,.V,. IRe= 2(g., V 1 ) Rc Eqn8.93 A4 IRe 5~MA Ad = 5 v + 0.4 v - 10 ;'v - 100 ( 2S mV + IO ;'v) 80kfll to (.4 C" 80000 :. li',. = vec + 0.4 v - T = g,. Rr: = 2V1 A4 = (2)(25 mV)(IOO) = 5 V 1 = quiescent power = S mW Vee- (-V££) 10 V Rc = S V I = O.S mA = 10 kO (c)ForVc.,_ = OV = SV OV 7.43 A (a) V sc s 0.4 V V8 - 4 (for + 0.4 V- = 5.4 V - V;•- A 4 (25 mV + V~•) S mV - A 4 (30 mV) = 5·395 V = 180V tV 30mV V, 4 = 10 mV) Ves0.4 V CVc., + v,.l2)- CVec- inR,.) s 0.4 V 7.44 with IRe = 4V, andBSl>1lmingthata =I, V eo = V n .. = !.£ v, g =S-2=3V Tji>.d -[~g,.V1 RcJ+(g.. li'tRc)] VeM-• = Vee+ 0.4V- = Vre + 0.4V- li';•- [A 4 I = V ce- 2. Re Vee= +5 V1 +Ad~~] = Vce+0.4V-~4 -A.[v,+li';•] v., v, Chapter7-16 Vel (t) (a) .V!r1 = l + 0.005 sin(...,,}. llirJ "' I - O.OOS sin(~»t) we see ,.~-- 3.0~-- ll.S that since VM = 10.0 mV .,. 1M, Vr 25 mV the output will he fairly linear. With the information given, since ic "' l, in ;: l+e ,!vc It! I •J 1 and ic,:: l+e (~i!l:tr) - ----------- ----· ,.BE_ • VoW 3.0~- 0.5 --------- ---------- • .. ·t or V.,;~ 7.45 = withlRc"" 4 Vaod jV14 = 10 mV. 1 =sv( l+e~wt~ - t' •><~mat • 1 ) l+eiOJl~. "'989mV ,,:E ~ IOmV 3.0 2.1\04 79.2 Diffenmlinl 1/alf- Circuit --------------- ------------ IVA! lc (b} t~8 ~ URI = J + 0.1 -· \I d \7,' Sin(t.J/) II, - = LO V _'s_. 25 mV = 1 - 0.1 sin(wt) flere, 200 v,J "" 200 mV = 8 Vr 25 mV sec that this will dearly n::prcscnt large-signal operation with significant distortion. Using the same equation, V,J '""' ·"' 4 V 1 ~..·- (-25 1 + t" ;(11},- t -+ l e~f~J/~~ 7.46 ) ;:4.0\' \ - ~~ d - v~ul t~·~.J 5 0.2 v '" v rn+(fl+I)R, 25 waveform is distorted; uppo::r extursions arc lim- ited to 5\' and I,. So, Chapter 7-17 (a) +Vee Differelllial 2 1/al[-CiiY:uit istM same as rhe c:ireriit of Part (a) v,.,. + 2V.> r., 7.48 1:~: ~ ",.~c Ifa= I, t.Jt tb. -===:: l£!!. ~ /((! v.:r:(!M z.~t I V.!!:l - Rc = = Z.o. IC t.t - 2r, v~ na (b) A,.= ... o . a, v;v .1.!.. 2(50) = 20 vrv 2R:~c r, -4oal8 Of --=== 7.49 tla Vl ( Z. f e + z.. 1t. J..oo ) Wllt.re re ... VT - = o.os v- taocA. 0.5 0.'3f2., -- R.i = -= 2.0 aoo ifo tft' l..ll \t-\,4 3'!1. ~v tv 6ot;} (.{!>tt) (Zfet--ZJC1.tX1) rat x 2. x 301 ~ 6o 1<.. c..t -=- £ a..a lt tra tA.s is tor l s af e f(A/:.,·t.A j a.f:- :r..E • tfwA bkv' re • 25vz. t:tiAJ rrr * fat)( 2.5 1 '='- -1/t' Vo -::. ()(.. x ? .s I<.Vl. (tfe. + 2.0Q) ~ l ,., ( ~ + I) ( f e. t.( t Z..OO 't (' e with V, .• "= 0. V, "· -1}.7 V ~'A.:::::..~..t! ' :::...QL::::.~. ::. ~ " ,. " !':r I, Rr 25 mV ,= ~~ 4J K so n t5 z~ lll .- 7.51 ' A - ;:! K - 023 ··- 2(4.3 K) +50 - . (c) CMRR (dB) = 20 log,. IVoiVIJj A,,. I mA ) ~ l. 5 K til. "" 20 log 10 l.l!l "" 0.23 38.8 dB {d) V 111 "' 0.1 sin 211 X 601 + 0.005siu 21T X 1000 1 V 81 = 0.1 sin 211 X 60t - 0.005sin 211" X 10001 V.., = 0.01 sin 211" X 10001 v•• = 0.1 sin 21TX 60 1 so that vo 7.50 (a) 1 "·' common-'mode half circuit If u "" I, = Iv,4v.,. v,. +At,.. v,,., V.{l) = 20 fO.ot sin 2:n- X JOOO tJ + 0.23 £0.1 sin 211' X 601] \IJl) = 0.2 sin 211' x 10001 + 0.023 sin 211' x 601 Chapter7-19 ~ AJ c f!o ......... ct. .[ . V'i Rc.: ll(Rt..IZ.Jl fe + RE/2.. . ~ i0//5 '= U ·T V/\1 a.ozs -ro.too -===::llr R.id • 2.. ( ll& ll tf..+r) ( fe. + R£/z.) 1 [.son 101 (o.cns .,. 0-10&>) 1 lt. 'B K.JA. ._ ":. 1.. '= Tke C!OtM.Wt.ou .. Aetu. • - tfo -::: U:uz:w. WA.ode ko..lr ~ireuil­ 0 -.300 f 7.54 J""' IOOp.A, fl "'SO, V-1 = 20V ForQ,, Ret"',. ' J o = v,. I = .lQ..Y_ = 200kfl (UmA 20V V r "" r8 • = r , = ~ "" - - = 400 kfi " ' •· 112 0.05 mA Using Eq. (8.103). I+ Rc R "R lcnr::. 1-' U. 1 R + c J3r.., + 2R . n 'o I+ R - 50(200 k) • • ""' - andR('<< r.,, 7.53 (_a) R;,.,.:: 50 (200 K) (.5) = 5 MH Ad { s r"'s'e~eu.JQJ -::: e>t.. (~e. z.r e. oubpvl: fe. WUefe 0-025'11 -::: c 11 r o) lOQu 0· Z5u 10- 51- 0.51 I= 1.8mA Vn = Vn =IV = A= 20 kH whercr 2r,. • c 1.8 sin ~ol. V r.:~:_I_V I rc~Q._'!_+IV rAQ.: ; 40 dB R; 7.58 25 = 27.80 0.9 Thus. A,= 360VN ~ ARc cm,R; flRcl Rc = 2% 0 = A ., ARc .. 1 2IR c- /12R5 V, c 2''"w v<.uvn~o th- tb Acm flRc . • Rc ARc Thus, 20 log - 2- -t J = R; IR c- /12R c 5. Vn = VC(.- 2 2SIOWI "n = Vee- Rc CMRR = ~=~ e:7 ~+ ~ aRc. !lRc Chapter 7-22 £1o.J' 1 -=J_ ll o. U:~ K o .o~ Vott 2.. -= t .t.s 1/Vt.v -::===.= For :L = Vov"' Vs-3· VI:. Vo., = .L lC = o. aI' v o . 0 t • 8 . t 6 UA.V --=Tkos bo~IA Ad a.M.-d Vos r'uerQa..!t! ~~ tlte ~c.:L~M.e. f'o!ra "tw.ee.. 6oH..t. V art! fns1rarb,.ow.a.l l::a [Z' .2. 0. 3l' JC 7.59 fO; :I:. ~ z.oa fl-4- : • J f:ywo. ... J2. K~~t' WfL :r.~ ... Z~t 4 ~~.a ·• • -=- 0- 8-~ WtA /v 12o::. lOKc.ll. itu.u.> A J u 9.. \M ~D I '#- .. ( 0 ~ 0~ 9 f ;: SR ~ =./1 7.60 Wofs b eases: 4V c • IO\MV Af.o =o.o4; A CwtL} = o.otl R.o (_wtt.J Vos 1 (!ve l:::o ARo) .. \ftN A~D • rro '= 6tMV/ o.s T 'A: o.o~ Chapter 7-23 --- Vas,_ (due i:tl Alllll-) • \bv 41J.JIL. r: o.,J{(J .01[ 2.. W/{.. 2 ::: 'I,4A. v// 7.61 Vov c Voss CrJve./;of:.JJI:):: AVE.:== lO'IM.V -==-- Oiwee tke,e Off3ets are H.Ob aor re l1'"r'[;;=w~_..;_ll_-=------. Vo:s :: JVos, z .f Va~ c.'l. ,... Vas;"·" Vo 5 -::: J 6 t+ 6 z -~o l o ~ ""' 1.5. ll u. v ::::::=o===r ~ c ,-,;;;;-' J~L J~Zo = o. t2.!V we obtaiu. Vas '·'du~1 to A..t.o fRo a..s: Vo$• Vov Al.o =O.t..Z5)f..O.OS T l<.o ?l -:: f"r () lM 6.~~1- I c "" 2 11lus, the 7.64 v,. 1 300 v lO Vo3 = 25 ( 100 - = L7mV 10) 300 Chapter 7--25 :r.. . -- AR~ 1.. ((';+I) -2.. re -AI. . R$ - .6J:. . .....- .! (~H) .2_ = I.05JMA Icz = o. YS"'"A Otfs e 1: /A..v lltl.t.l{ t'3 a.c.IM.e v e.J (b) .Ia' ~ :..:!_ .6."! + A I R. s t- A:t. f e .!c:~+-~ l 2 z¢.-'> 6I. [ (e +...&_]-;: !1 wlteu x. v /s .!Jua.I.A i:::lw..t "·05 (X +5) :or- 0.95 ((1-x)~~) T _!:_. AfH A\J~ -== 7.69 -e.:z:.. Rc. ::: -.::r.R.c 6R..s _A-:-_ fe + !;;> f re lvo~l ~ ..b.(/1Rs) z~ .I.s\4.o.cu: = ' 7.70 &.E..D · 7.68 .Ie-r • kJ:__ .3 +{Jl , 1 ~ ::: /!.cz. + ({-X) Jt. IK01. -5. Z5 +-X =- 4. :ps + ;f- X .-t> X ., o. Z.5 I..ez"' ..L:t. 3 tw,-u flu a.reo.. Of AIJ c ~ U"c.z.- Vet adlu'eve..fJ' wUe.IA. ~ Y'-3 -'tJc.'-< i:W ~ aMd 6. Z.tb K..vt R.e 1.. "" -5 X o . 95 = 4 . 1- 51< lll. Peft.e.e6 oftsel: f/ltJlltu~ will be R.c. t ~ ~ :. ~A I/Z. {31M•'" + t So+ 1 Is \M.,· . . • :I: I z.. ... ~ I.;Jjt A f?:.KA-•11 +I 2.co + I Ios -= .I:sM4A¥ -.:z: SM.t•'"' .. ~A- (_(y, Rc.t "' 5 )( I ·05 : c. ret-~ r, +I r;-rt (a.) a.zz5 e: Qz.) 1.. I ~c. 3 --===- NowJt.talLI.f , ArJ c: vl?.c. = :x.. R. c. -(e LVr Vo!l =- .6-lfe "" z.. vr = /6 . ".? wt. v 'Ttw~ 1 AJ3-- S IM-ail- 8r'q_ua..l a.ua..~'f s t' 5 prediats tl, ~ . . . r OA • _ __:__ 2R.,;$ ] + Km:. Ytr.~ l'i(ttt A,,. ' -v,._, ·= Ia) /"' c~· I "" 200 FA -1 v -i:~~~~. l + 11 mA...:..IIV,.,_}-{l-!JI_lk_) "" -1).()1 CMRR!dB) "'' " 2() I<> I!,., (J_Q_ ). "' ' . 001 ~ . m!A...:!ul 20 lt•g 74 dll Chapter 7--28 7.74 7.75 CMRR = (g.r0 )Cg.R..) (a) For a simple current mirror R.ss = r 05 =>(for/ll = 1!2) CMRR = (g. r ")(g. r ml _(21" v,) (21o v,) V 1 V v 21 0 ,. 1J 0 0 =2·~·~ Vov = Vm, z(~)' Vov Q.E.D. (b) for the modified Wilson current source of RSS =. g., 7 • r07 · r 0 ~ ·c.• , 'u7 ro,> => CMRR = (gmr 0 }(g,. for """ For Q5, 6, 1.8: Vovs = J.w while for 0 1• 1• 3, 4 : k 11. ~I Vov~Jk:!L => Vov.< = .fi Vov' Thus, (for I= 2/0 ) VPO t- Vss 21 vA vA jiv 0 • . T. T 7.76 4 VA' VA'' v.,. vov .fi - , = 2 . .fi --.2 Fork. W!L = 10 mA/V 2 /=I mA IJ.AI = IOV I mA 10 mA/V 2 = 0316V . => For the simple current mirror case: CMRR = 2(_!Q_)' 0.316 = 2000 -+ 66dB For the Wilson source: CMRR = -+ =:2. (r.5)+Z(1.35) = CMRR = _!_. ~ . _!_ V0 v (/ /2) V0 v. = =VGs - \1 ss-+ Z VGss-• t 2. VGst-t-1 -= Voo 21 2.fi~ (0.316) 1 R9442 99dB ::; g,.rj, ROf, ~(g..,. rf'f>) r0 • = g ... r~~ A, = s~ I 1! = g,. · igm r" 5.~v = Chapter 7-29 thus. g.r., = 2V,I v., ~A 4 = Q.E.D. Note, through, that this is inconsistent with KVL. lfiu"' o. Pro= o~ but Ym = Ym = -11;,14. 2(VA!Vov)z v14 but .Ib'IS C(}hfl'ICIS .Wit. h ··''J)l 4, =0, V t>J If 110 f'or V,1 , ·""· 0.25 V & V, "' 20 V A, "" 2 (20 I 0.25)' "' 12300 V/V L-· vctng v,d -4. It appears that the appro:dmatioos for Vir.• and "• prevwt a clean 110lutron. If these were more cuct. 7.77 all current and voltage relutionships should be consistent. 7.78 I . I _ I _ 100 f.LA m = I m ""' I m = t.N - 2 - · 2 g . ml .ml 0.5 mAIV "" v... -- ro,\ 2_I Rm r o % 6 tl.(J- i!il T~4 = In 20 v -~·= 400 kH 0.05 mA !l.~; ~A = 240 kH R,. = r,.l II r,~ "' 400 k lr 240 k '-"' 150 k!l However. if we usc KVL. i = 50 1>-A =·~= 50~~oA v.,12 02 v /2 -O'l - ., mt\IV =g G., ""g,. 1 ~" A4 = G,.R. = {0.5 mA IV)( 150 k) = 75 VI V Gain will be reduced by a factor of 2. if RL = R,, = 150k!l f' -id ::::::;:· rH g,.l v--i"d 4 7.79 R.;r)- ({j+ 1) 2. fe. (which is the same a< i3} - j f e = zs""v • -sect~. ~OJ' A __:p. R.o = 0 gml'_\{.>·.:t ' 4I $,, R. ,.rl ~ I or Y. t aoa Vd 0 • I 0 II< «A. (ar.at faz. ;:: fo i fo== VA L Ie Chapter 7-30 Ad= c;~f<.o W;biA. .. Z1< (600::: szaa V/V svh~e~ve.ut s~a.~e l..o..v,'tcj tt a.. 100 /(.c..l. 11Acvb re& t5totAI!e.' Ad =G~AA (to {{ taatu) = 188.2 V/V ===" 7.80 ~IM. • :r.tz • 5""" 7.81 v Vr .X. • 26oM R• • Gl, 6-(:-~-v,. ..~----co IlL -'P fo::: VT • i:/2. wU.tU. , ! ~ \M. V ~IAA4 R.id = t5l X !.X 0-2. 'l!. : lOa :r • 11 Z.OO c./l. ~0. C( /( "t SooKvt. ::I.e o.tzs & ,. [!! .:: 4.ool<.c.t 'Z.. -=--- Ad-= OIM R.o = 6~ 4oo ... tooo v lv .:1:8. =.!.!:..-. ~ .. 0-85}t4 (.lf-1 /51 j'-" ;>6~/clv .:t: • ~ 4 ( rrow. Prol>lttM. ~.68 above.) -=Joo. o.z.s f e. • S~M is s~rll ~(~J l:o; .!.:! :: 3~. z I< c.t -5" R. irl c (~ +1 ) 2.. re Rt'tJ" ({h• ).t (re+Rl) a~.,........_,. ll-ud fe:: Y!:-= -VEe J..ooc/L 1 (o• 80QJCIA. 'S-It. lk lid • IOOKvz. ~ U lOOK • 151" 2. 11 --t;t (zoo+ lle) flE. • 13I \A. lo ob Go.ht Ad: Ad= GIM. .l..o (E~a.t· 1.16~) A& iu l:.U.e. d~riva1iou ok t.oz. £M. £ i u . (-=?. I 6 Z), & z. ca."- be ff~"~ bvt ~lt,.w tiiMe.v w,dl,·w.( ll<.a.6 I.e aJ 6ke. uiiu'{ €'f"'-. (6.151}, etMA:!ta ollJQz {) (el .,u,: + i.ll£ Chapter 7-31 ~~ • flit. [ I+ 5....f{ lao ~Zii:or)P fn~ Ro't • 9001< [ \ l.ot :: + 5""" lt2M+ tJc t&r) (~o.zt< ~ (~+l)fe J..,' tO K Cit AeiNl : - fo'l 15o,c Z'lOI( = - aJMJ t!H.Rt. 1 Js.s._vlv =lt.l.(oo.r~. -J B.StA4 ,;o, QSl f,e.. 105 dB ~ 0 • ~ot.ll fol( -=b> • - (Zle ZllOK) {3a~Ec - (2.'2() UBOO) 1<. • AcJ• ~~ )( ~IS a: = 6!3l sumtiluting in for if. A<"nl :S:./z. 1. 5 I< '-t. tor a. ~ twp le. Z.ttao~ V;., [A., i 1 - G"""" V1..,)R0 ,. v,.) i . t; I - .r:~} ~ I - ~ r(,J'' = A. it so~ A,. i; . 1- Si!l(:e 8m4 g.,4foJ 11 , g,.,,, I 1+-· Rm'J .rl~Ji C~mtinuing, IAion {"ffJ we can substilute this i1110 the equa- o~p: 8{-·--·-' -lJ (a): - III("HI tnl:' 1 1+-·-g>i<(\ ro:t fl Chapter 7-32 7.84 for a wilson current mirror, A"" '"" I -('l + _ t )] [ , . g.. t~l' (~-)· ~R,. lo _ /I!U-J+ J 1+-'- g,., r., I .2 . lHP + 2) ·. As no active load,. thi!l menM that one collector - current will be n/, while the other is 2 + (1/(1 2 :r·~ ) 2 al(1 T r-13Hl +-2) - t) l!.lr'I = nl(~] 13<1~ + 2l a.J -::- ':" 'm r,, tib +ib f· T a/ g., "' Vr = 2Vt G., = IV .! _ ()Sj _ Ai _ . al Gm - 13(@ + 2) a/ - 2\lT for (3p "=· 50. 2(25 mV) IV m I -- 50(50""' 2) - A '" '"'(_!!_).{3 + 2 - 2Vr 13<13 + 2) 19 2 V · ~t I 1 + 2/13 7.85 Now, suhstiW.ting into the resulting <'> 2. (!'!-@- 2) ~ +2 .. = -r,,. (--,L') ,.J3 + 2Ru:" (;MA.Ro 2~ wl Vhit..umtll =:- Ran.ge of is: VJJia! -~(L4 V VA G m Ro :: UO/ o.tu.) II ( 12..0/0-l&M.) ='46e.lil c;JAA. : :. KA-1 ""' J .:t:. J<. I< p' w I L' r""' Jo.L/t.wJr~ 6-4111AA/vz. ::.=t> Gtu =l. 61M 4 = 5!l, f1~ 150 & Ad: GJM. ~ Ro ... 1-6UA.~ x. 46 ~ lA. 12() = g r ~-'I <3 V ---v c- n..t << vbi"·' "'' 4.11 v For: l " 0.4 mA. 13" I/2, d V cr- 0.2 -· 0.7 = VM"' ""''· And: V 0 ~ t' 1,~(Jsmm :I/2.. = ~:.?.!!0 'g!:O.~ 15 mV V ~V>" A-rl: v 7 3.6 V/v ==-- Chapter 7-34 7.88 1m =1 =1 = / 01 08 116 n• = !_ = I ·2 = 1m 1,, = lo2 = I jVd = luF = 225 11-A 225 tJ.A 2 g.,, ·· • = 112.5 !-LA From Eq. (8.180}, systemic balance will occur in this circuit when r (I), (w) . 2 - (I\ (w) (2}(~) 4 = 112 ~ 0.225 rnA = 80k0 9V = 40k0 0.1125mA 'o•> -(O.l =- V SS + V CSJ = - 1.5 with jV nsl = IV ovl· + 1 = 0.5 V this would be when V 51 = - 0.5 + 0.25 = -0.25 V = 0.25 v /OJ = ~ 1.8 mAIV A 0 = A 1 X A, = (-36)(-36) = 1296 VN 60 11-A IV o•I'·. = = 0.25 V A, = -gm6(r0611 ro,) W6 = 20 !Vovl,,, =~ 112 = = 20 To find 0 1- • = 0.9 mAIV = 2(225 11-Al A 1 = -g~,(rolll ·(.!Q) ( 60) 0.5 0.5 -().5 SO, I = 225 11-A 0.25 V I V0 ¥JN '"•-• T. • - (![), T. = _f!1_ I V ovll2 8 "'5 (I).= 2(I), (I). = IV.! + jVovl , so all are = 0.75 + 0.25 = 1.0 v IV G~ ~ ;:-c r-n Vi•mi• = V 51 2( 112.5 11-AJ Ox 180 IL Atv'(.!Q) 0.5 V,~mu = 0.25 v V 50 = -0.25- I = -1.25 V = Voo -!Vovl v,• .,., = 21 - Tile upper limit is when a~ leaves saturation: 2(225 !LA) = 1.5-0.25 = 1.25 V Vsmu- Vsr. = 1.25-1.0 = +0.25V so, range is (-1.25 V to +0.25 V) For the output range, V omu is 60 11-Atv( 60 ) 0.5 = V oo - IV ovl = 1.5 - 0.25 = 1.25 V Yamin = - Vss + !Vovl = - 1.5 + 0.25 = -1.25 v = 0.25 v V omu so the output mnge is (-1.25 V +1.25 V.) Q, Q2 Q3 Q, Qs Q6 Q, Os I,(!LA} 112.5 112.5 112.5 112.5 225 225 225 225 IVovi1 = 111...,-"" 200 J.tA = 400 flA No requirements are given for Q6 and Q1, so choose * Jm, (d)rm = r04 = ~"' lm r06 = rcn "' ~ 1 ; = 2..Y_ 0.4 mA 111 ""' lm "' 2/ flU 400 j.i.A "" g 2..Y_ 0.2mA = 25k0 = 12.5 kO ·2 mA_2mAN .. , -~ - ,,..~ -R- vovn - 0o::rVn - Q, Ql Q) Q4 Q, Q6 Q1 Qg g ·~ = JIJJ6! ., 0.4 gtA = 4 mAIV 25 25 100 too 50 100 50 25 A1 (! "' Vc"n 0.2n = g;. 1(rozll r 04 ) ""25VN A2 = -g.,;t(r06tl = (2 mAIV)(25 kQ -4 mAN(I2.5 r 07 ) = 25 k) kll = -2SVN (!)u.s "' A0 = A 1 ·A 2 = 25(-25) = ··625 VN 2f11n· k~(V 0\')1 25 (t)H 21Ru 2(200 k 1,(V,;;)! 400 ~LAIVJ!0.2 = 7.90 ~tA) I = v}' = J(j() (!L (a} V0 ,. by tn g., = 21/Vov = k · "' 200 Ideally. 11 0 (dc) . 4(200 j.t.A) if k increases by 4 gm increases by x 2 (hlA 1 =gmROl 100 flAiV 1 (t.U VJ' o ·me !Vosl = - V 5s + - I V + 0.2 V = -0.8V -0.2 v 0.4 + 0.2 - 0.8 The upper inpntlirnil is when Q 1 and Q21eave the .sn:turatif)n region: l - (0.4 Vm ·= Voll- VsM Vas! = o· V 01 IVm·l "' ,. v,. 0.2 V. = + 0.:!) so o..t v "" "'· the range of input vohug;: ! --0.2 V to +0.8 Vl 0 ' ~·> A 1 increases X 2 as does r\ 0 (c) Offsets due to V, mismatch are unaffected. Others reduced x OJ! v ~X 90 4() OAV ~ -O.R V ><)range i;; 1-0.1\ V to +fUl V) "A ,... = 112.5 ~ 90 ~. 22.5 flA => V. "" 22.5 J.l (r,.6 ll r.,7) i~ = since .4 0 increases X 2 7.91 /' 1 "· o,q W,,l i = 112.5 J.tA Output off.\ct ~urrenl "" ID7 - ID6 (c) The mu.ximum output voltage is - Vss + V(>V ~ (h) For the common-mode inpot range: lower limit is when Q5 is leaving saturation. Vm J¥ If K Increases by 4 ~ V ov de.:reases (,(V,w)' 4/RM kr(V(wl' L c = 2(2/RtF) "' 50 ('!:\::) h. V~v 2 - I +- 0.2 = _I_O_ = 88.9 k.fl 112.5 j.t v" "" 22.5 11 ( 111 k 11 88.9 k) ~I.IIV I mV 12.5 k) Chapter 7-36 7.92 Oftsel:. euaeut .. .I oz.- ~ott .... ~ Io3"' z. .I..o~ ( Vu-s- Vl::) - fer:. reL.: 2~ .. Zt50t.ll (b) 0-l"'-A~ ~O't ~ (es "'..t5Joo\A.II1\4.1-4 f~ • ~v""' I.vq "" K ( VGs - (Vt -+AVt))' z .:r: o :: r I # = o3 - "For I 04 l(V(Js- Vc- Vcs! t VI:- tAVt:) >< )1 z 2. .:I:o = f_eaa..lf =J> l2..5ut 2..\MA ( V6s- Vt + Vo-s- 'Jc -AVe A \It.~ ( V6.$ -2v1: -AVe) ~ Z..5lA. GW~r = .2.'1/.A.V 0· 31M flo la.) .:I:.e• .. Le2. "' o.t 'IM.A ::!:: .:rr.s , .:te'4 IE6:: Z.IMA zso V z lo~ I V/V Far tk e. eoWt.IM..O w- e IM.i tt e.t : A 5 ;:. - 0\M.S . I< cs -(J.f!.L -=- -too,. tOJ( res z.s -= -4o, ooo v;v For fl.te e!M.i lte..t J.oUowe.A; A~6 ~· "For AVt "' 2w.. v Vas = 0 · .s~ )(. 2\,V\ = aetlve. loo..ded rqkc ; Reeo.ll trOIM. q~;t. ~_!._=_I ; K ( VGS- vt.) • A \1 E:: J'-"3 .A\It 6ue t{ a.€ (7.1~1) t:.1< e dow.A.tA.o.r.A-E: lcwt~~iueu0 role.. ts .!Je/; Ce 9< (C..) .S1·"'-ce fp .. ,... =t> c :::. -= zrr.r<..o1 60 = LOOH~ _., (A6.,.1)cc ....___.__.._ e/1 ~'I lUll eA. ed "/ ( zrr J<.Z5'i5 l( 'IOK ~ 100) 15. '=i-6r~ Chapter 7-37 7.94 r6 225 p;A "" V OYIJ ,_,, C0 x = lllO p.AJ'fl = .. then /2 X 225li ,., 0.25 ,J60f,J.X:I20 Vou v _21o_2.x225~=t c.... 9 IV ••~ - - 0.25 + 0.7 = 0.95 V + 0.95 = Vc;•o = 0.4 V Vas "" Vov- Vs~:,11 = 1.5 + (- 0.25- 0.7) = +O.SSV Finally from the rcsuhs above: (Wl L)10 = 20 I 0.5 (Wi L) 11 = 20/0.5 (W ILJ12 = 8010.5 (IY U)u "" 20 I 0.5 "'~ I "" IV o•l." IV ov•l = 0.25 V Vt;u = - 0.:55 p.1 Cmr 60 p.A I V1 For Q1 & Q9 : WIL = 6010.5 =>jV••f "" ~ V,;su '"' 0.25 V ,. I.SmAIV Since g.. of Qu1, Q11 &. Q,3 are identical to g., of Qa & QA) then v,.n = 0.25 v ThusforQn · 2 X 225 11 - 180 p. X (W IL)n ,1 _ (0. 25 ' 7.95 --. ( W IL)jJ = 40 i.e, (20 l 0.5) Since Q12 i., 4 times liS wide M Q13 , then (W/L) 1, = ~ .• R,"' = 80/0.5 2 Jz k~ (W !L),ll, J2 -t 0.5 X ·( ISO.:~ Xl25. ['-'--.;-f4~--,-] R11 = 555.6 A'-:. .tt<..c. If f<.,·dz Z (i.Et +ret) f.,·rJt•(('.>+l) (2.(e.2.)% =P At = tz.s v1v n The voltage drop on Rfl is : 555.6 X 22511- = 0.125 V. To Qbtain the gale voltages:( assume IVrnl 0.7V) 2 X 225 "' !V,rl = Ai.:: /;;;:: p. .., 0.125 V 80 180 !A- X ().5 VOVIZ = VG$12- _, v"·"~ -= + 0.7 "' OJUS V VGI~.n = V., 511 0.825 + 0.125 ==- "' -0.55 v + IIJR 11 - Vu - 1.5 7.96 - ...!!.L+r ~~ t- I '" Ro - = R c Thus R5 aiTccls R0 We want R1~ il 3 k "" 76 "~ R0 '" 7~ ""}R~ =·' = 7.34 kfl f>l.i f.t'dz. + l.t..c. 4 L4 x 1.0 AlA thus, %> 2..fAn = 8513 X "iOO"+i5:! = 3378 7.98 {)-=- 100 ~ 0(-=- ..:Z:EI = 1.03\M.A Loa ~ I a\ .. J.oz ""'"A 101 ~ lfooc = Thus, (3+-1 -· Vc1 ~ Jov- r.oz""'A x s.1 KVl. :: 4 .g v = 1\\UA 4.5 K\..l _. :X:.c z. ... o. ~ • too :: 2.~1<\.ll ~w.· ~ --~z /I too II Z..5)K =l~S~I<~ .,. ,., wltere. /l,·IA =-=1>' , t.P'. " -- t.rrx s-szp r,-, l~ /1 [ fe3 _., Root.:: IOK -= l1. 81+-t)(fe!>+ lot<.) -= to. 6 KIf rot x ( .t5 + ra K ) -::::: l0.5fs '" V ov So, Vllmi••"" Vcs•+Vov+Vss= V,+2Vov-Vm, Tho maximum limit occurs when Q1 or Q2 hegins to leave the saturated regiQn: For example, when Vs, = Voo-Vs(n-Vovt ( l _ _1_)1 - Since i = " g,., .1J.. 1 rmJJ g,.4 amlrm = r0~. v·w"'[( I - _I )(I - _1 )] Rss ' Cm_,roJ g,.~rM V 0 = i 11 (r,6 ll r 08 ) and Since - 1- >>I gltf3ro) V,(mnl = Vn•••" = V, -1· Vot + Vsl V,+V 0 ,+V00 -V,+2V 0 v V,(max)"" Vm,- V<>«J So the range is (d) lfthe current souree is fabricated as a simple current mirror, R 5 , (- V 0 /l + V, + 2V£w S V 11:M S v, I 7.100 (a} +5V -5 v \1 00 - ~' 0 .,) Chapter 7-42 DC All!lly$is 1M! -1-4.3! ""79kll R·""' ~;t Node v(iltaps: v:. .,. -4.3V !ii.,.l + "' .._ ~ ~- IX !x l.65 X to' = 3~ 2 v 100 !LA v,"' Vc"" +0.7V VE .. Vel -().7V 'l'bu5; !!/.,. 3300 VN (Polarity corrett) "" = 0 v v, vt... + 4:3V + 3.6V .(d) R1• Vc·"" +4.3V .. 2 "•• ""2X. IOO :50\.0 4 (b) Transistor ic;(mA) em( mAN) r,(mfij a, '0.1 4 2 Ql 0.1 4 2 Ql 0.1 4 z Q4 1.0 40 0.2 Qs 0 0 QA 0.1 QB 0.2 Qc 0.1 Qo 1.0 Q£ 0.1 Qp (U Q(i 0.2 "" R. = ""' ··················· ~-··· 2 0.2 n n· T DO • 04H [r . •• + rozd f! +~'t»] I "' 0.2ft 0.21 [ 25.10- 6 + l J :~X 2] ""16.4 kn (ch•u.'M1miol = - 4.3 - 0.4 + 0.1 = -4V VICM!iau1 = VG + 0.4"' + 4.7V (f) The vohage at the base of Q4 can rise to Jln. ( V E) ········~~-~"······ T + 0.4 "" +4 V b!lfore Q) saturating. Thus "o can go up to + 3.3 V Thll voltngc at the output Cllll go down to v"- of Q0 + 0.4 "' VA - 0.4 = - 4.3- 0.4 .. -.4.7 V Thus the linctlr range at the output is - 4. 7 V to +3.3V (g) AI the positive limit of v0 ······· ....... (c) Total resistnnce at '-"<>llllC1or Q3 is "'l:l.•'o.•llrodl (!34 + l)(ro.l! ro/)) = IOOX2U2ft t01(0.2lj 0.2) "' 1.65 Mil I..arge .? (ignore.) f-tmA +3.6V R,. + v, i.e. "t) "' + 3.3 V and Q2 just cut off R, ,, . 3.3 V · 9.1 mA = J63 n (this is the minimum allowed R, for+ 3.3 V outrut) Chapter 7--43 -33 V and At the nq1,ativc limit of ''o Le. v 0 l 2 Q1 has cutll roc= ((28.3 X 5)(2.5 II 2)) II s = 4.9 Mn + v mA -:f +2Ve-i = 28.3 X 4.9 = and vo = 138.7 V /V 2kfl (rooll r06) Crooft 'o6) + ...L v.,, 8 .. 6 (I II I) lo = ... I (IQ l)+_L 200 0 • - V,) 2 =.) V0 ""0.17V For the lowest posible output, the circuit becomes ~=138.7V/V R;. = I W 2"•CoxL(2V oo R.,.,=roollro611 llg.,6 = Ill •II 11200 Mn -skn (e) VtC"Mimul = VG + V, = +4.3V VICMimiol = Where: Q6 cuts off and Q7 conducts V GSI + V Rmin = Vest+ VA- V, = 1.7 - 3.3 - I = -2.6 V (t) Vo.,.. = Vc.,..- VGS6 Io = = = Vt + IV,I- Vcs6 =+I +1-I.S=+O.SV Vomin = v.i- v, = - 3.3- I = -4.3 v Vo T - 0.05 mA ~IL,.Cox('~)<- tio + 4.3 - =.) 9o = 1.45 V That is, the range of v0 is - 1.45 V to + 0.17 V 1)2 Chapter 8-1 8.4 8.1 CTOr = Cs+ Cn + Cc~"" 3 ~tF rl)"' ,_ .. • 'l-"" '""'"/.., U$o"' ..., • 't·fCf Rc = 10 MH, R,, "' 100 kH, g,. W« ....0!.\J'lt ~ }.. . = _, ... Q.p :: -~ "H•I·'i~~;,..R.s ,.,,.., = 2 ;A. R0 = Rt"" IOkfl -~ x 1o···J . ....!_ " (,., = -"-"'-~C$ = · • 211'· Cs · 2n ln 4 _ 3.18 X 10 - - fn _. __ I /,., = 211' · Cn · (RG. + R_.~~it ) 8.2 ~Cr =:) .,. '"l . -7 ~ ~(1\.+ ~ollro) ); l. / ="7 ~to"" I I /, IC1l(l.I111(1C"-t' 1/tl)t>lf.) Cc 1 .::.0.1-)A? => t~ f,,) -;>C. '), o. 6 7)4F Cz. 7 .. Cf.62Ha. ! f r 0 i; cluvbtecl t.V,·t-h.. botH. r0 ~ RI> hAivd: f I :::: ~- ~rt,.o.;r(lo~<+~ll~) !)... )..; Cc, = L57 X 1{)-s .r,., = ;:;---:;:,---!---2n-. Cr1· (R 11 + Rt.l => Cu "' 7.95 X 10' 6 fp, If we choose· J, - ~ r • • 1'2 --'L>ll'l = fti25,fl'3 =frf5 (ror"" 3 ~-tF = c5 + c0 -t Cn 3 ~-tF "' ~ + 1.57 X 10-a ft. .h/25 . 13.5HI: + 7.95 X JO-~ l,15 => J, = 120 H1. and C, ~ 2.65 1~f; Cn "' 33 nF. 0.33 ~·F (:{'2 = If wcehoose: _r,, = f/ ~ -· - ClOT = 3 ~-tF = C5· ,-l!. = f.J.. I _ LJ: ') . I'J '" :!5 + ('Cl ' Cn ~ 3 ~tF "" l.!.!.~_I_Q_~ + I_ 57 x 10 s f, f,_i'i + 7.95 >< w·" ---.1;125 "=> f,_ = 172.3 Jb·. c\ , LX 1~r. Cn = 455 pf~ Cc "' 1.15 ltF 8.5 7.44 kH, If c" ,~, 50 R,_ '" 72 n. l.l Ul R,, , ,._._r. Cc, = Cc~ = 2 !-'-" f/', -- ------'----- 211. Ccl Rc, ' ··-.-~+ ·--.. - J..p_, .. __,.1_ _ __ 2.nC'L (.IL +~) -'D U .rrX2<10 lt., = 2 rr . (:;~~--: I R' X7.4-txro' 10.7 Hz Chapter 8-2 8.7 8.6 Zrr· 50 X 10~~ xn = 100, lc = 100 p.A 13 = '21rCc~ R0 X Hf.~X 6J Hz 13 X !OJ 1:., = lc ,.. 1.00 p.A = 4 ~ Jl h "" fr,+ f,,l + f!'J = 40mA/V, r 0 = 25 Hl and Thl'Jl, n II Rn "' (Rn If I c is reduced by half, since _ Ic , 20 rnA ,lim - V, 4g,. V J!. 4 rw) g., 4 + R,; 1 25 K) + 20 K Rn = 42.22 kU RF: "' ,., R,,, Rsll + fl + I ° r, = 50 n "' 247 5 + <200 Kft 2 K) "' 427.52 0 . 101. Then: Rn II r rr = 5 kfl and gm r, "' .£. w--·.• > "' 247.5 n g:t:t "' 4Xo.9'10-J "" (200 K r~ = V _!!!L_ ""· 25 kfl 4 x g,. "'61 Ht r, ·"" Km 25mV Vr FmmEq9..19 r, = 25 20 kO, Rc "' 20 kfi, ""' Rn .., 200 kfl, Rc "" 10 kO, I .... 2rrX 2 R,;1 44.2 Hz = (R 8 tl Rc2 = Rc r ~} = (100 K !I + R,., 5 K) R = r + Rn ft R,,. £ < 13+1 + RL = 20 K + 10 K = 30 K lfwechoose ft"' 100Hz and +5 K = 9.76 kfi SO+ !_Q9_K !i 5 K 101 fr2"'0.9Xft cf.. · = 21T(0.9 X ' .fd X R£ = 97fl Rc7 "'· R.- + R,_ = 13 ld! Fort;. to contribute SO% of ji_ 21f X 2rr X 0.1 X 2rr X 10() = _ __,;..,_ _ Cn · 9.76 90 wo =· - -•.. X 427.52 = 4.2 tJ.f X JO' 5% off L each we have: C - cc "' 2'11'(0.05 . Cl - X 100) X (42.22 K) I --.,...-.,...---,~---:-:-::-::-:- 2'1T(0.05 X 100) X (30 K) The resulting 0,! X 27T I Selecting Cc 1 and Cc such as they contribute 100 ~ _I_-~ C£ = 20.51 J.l.f . Ct: · 97 For Cn and Cn !() crmuilmte W% o(h each 0.8 X '"' 0.8 tJ.F I f.LF f ,_ is: L_. ···~ Cc; · J:'\ >: l(ll fl '" 2'JT{4.2 fl. /(427.52) ··> Cn = !.23 t-tF Tb verify Ihe value of fi that results, f, :}; (elf X 1 20.::> I J.l.· + 9.76 K :; + L(~tf~ 99.X9 Hz + p.~JOK} J, = 98.65 Jh. The 1<1tal capacitance is: cI li 0.8 fl. X 4:1.22 K 0.1" J.l + I J.l + 4.2 ll = 6 J,l.f Chapter 8-3 8.9 8.8 Tu select eli: so that it contribute~ 90% of the value offi_ l r 11 ~"- ll cr~ + r11 ) t..vl.ere ((,-= .53ktll ' Rz. = Zl K.C4 l(,·va s I . . 0.9 X 100 R.: = 110.8 fi (Fmm problem 9.1.1) f X =50 a.Vt.d, frr-=- {)o '= lZ..O =} --0\M -= lZ.O = lOK...t O. 3X L(Q R. iVP· ·~ • , 211" Ct: · R1; !> 3// 2.2 II I o. 05 "" 15.9 11F Cr.~ so that it contrihutes 5% ofJi..; Ret"" 10.7kfl \2 ~ 5.9 /(Ill 'Co C k' To select c, = -~-....!--~- 21T· 10.7 X IOJ X 0.05 X 100 " .2.97 J.tF AM ,. - Ri\11 ftr . . . 3~ (~! u~ c.Ura) Riw + Rs frr + f>~.. -=- ~ •_JE._ . 12 (4.)-f16.~l!:Jao) f . To seleet Ca so that it contributes 5% of ft: R .., = 10.3 kfl (_ ~Cc2:::::::: -~~.....:,----- 211" · 10.3 "" 3.1 fJ.F 5.~-r-5 10+-0.05 '""" -JG. Ll V/V RSt'j .. ( rr If [(X 1 + ( R.t(l ~zit rz,,~ )] = 2..69Kut R.c 1 "" t< s +- LR. e, 11 ( r" +- rrr J1 = ro+[1olf R. e ' • R. ~ (/ 2.~3rF ""' (2. . =t 3 = Z 1T ¥.':/00 .rol. I 1 ). - l.=l~pF -::: = s3rF fH !J/ [ Tf e j \1\ • f!. S i ~ -::. "/2. n 33 .t0 .2.Y 6q' I o'!> ~ 1 1zll 1( -;. l . -=1 )> 11 Ht:. --~-*''"'''''' v--'"'* -----·-······------·- + o.r +- (_ 1attta) 100+) -::: 5'=1Vt fof Ce e} vall Of' err +Sf<-(I!+.J\M.R.'l...) t . ":l 3 p + It f' ( If+ 12.x z. 6 3 ) Civt = ~ ~II t av...d J pF .f rr .r r x + ( Rsll 1!. ~ ) po+-1 = fo II Rc 1/t C e &, 1 Ce R.e'"' Cct. R_ct ::: Rc 1 Rt.' -:: ro. <:( 9 = 1'13 o,o51 ~ Chapter 8--4 8.11 Thus 4> = tan t,. = f:l· '· = 13. v, Rs + r,.. V0 = -lc(Rc I R,.) = -13 (Rc U Rtl. Rs+r. wp£ CJlpc =·-(tan- 1L v, /,E t tan·tLJ he =-[tan -I L +tan -I.LJ _ V 0 _ _ 13 (Rcll R,) A.,-v,Rs+r. 100 10 Thusatf= lOOHz cf> = -(tan- 1 1 + tan- 1 10) = ( + ~) c,. r, 13 +I b)PoleduetoCE: "'n -tan -1("') -1("') .:: 129.3° I PoleduetoCc: "''c '~ Cc(Rc + R.) zeros are both at < 40dB~ 20 loa (100) =0 26d8~ __.e:..--+- 20 log(20) I c) A(s) = A.,. (s [s + ( I C, R, + d) AM - IR,xc,l ~)]X [s 13 + = ~c•. c, I -- I 31.8 2s + w, I .fpc= 10Hz~ 10Hz = 21T Cc (RL I 21T X 10(10 :I..e == .:r. e Vo • -R..c I-c. - R.e fe+-Re+ A(S ) = ~ + 10) · 10 + Rc) , = 0.8 fe+~~ + _1_ s .,.r +- _,.,,;.___ ce (fe+~a) fe+ ~e lJJ L • 32dB 40d8/Dec OdB -L-'------1---~lOHz lOOHz Unity-gain frequency must be an octave lower than 10Hz i.e. at 5Hz g) A(jw) ... 2 ~ -A.,. (w, •• + jw)(wpc; + jO>) I 4{). (w,. + jO>)(w,.,. + jw) f _-1-'--- Ce;.Ue-tl!..e.) . V..s SC£ = -..:..R..:::c::..___ - t?..c 12d8 -----, 1.. SCE. 20 dB/Dec f) 31.8 Hz La.) I e V.s = 21r. 100. (0.025 + 0.100) X IOJ = ~ tS9.1 = 12.1 .,.r ~ Cc It 1$9.1 s-=-s- I I -40 VN e) Since the resistance that fonns the pole "'P£ is very small, we choose to make "'P£ the dominant pole, thus: I /p£.=ft=IOO= ( IOK) 2" ---20db 8.12 + Cc(R: + R,)] I - 100(10 II 10) 100 10 + 40 - 201or -f;l (Rc II Rtl Rs + r • = A(s) 0 + Wp£)(s + w,c) ChapterB-5 (b) A11 is reJve.e.d 6(} l:ue. (e fa..el;o I' qx = 4.3 lo "" 100 fl.A "" ~X vov v =;:> V05 "' wldau /s l:lt.e sru«l! a.-1 6ue -~ctt'&-t. re dvebtou 1- a.e&ot. {l-w.J 1 U tke vo.ive of £e cau 6e o.1ed as l::b.e ra.ra 1M ete r ~or exeret'srue the Ja.!w- 6a.udwld!lt r0 =.J....= A/0 J::: ~-= lO,aoo.,. re 'C ZtrCe Po lower fL 5 use: Of 5 z.s re 4ao V!v - -1_~- '::< _ _ t..n~~.roth.to~"J(z..s ~'1 a..fael::ar Of V lootA. . ilte<~o...i1.1. towf!re.d to Vlw X = 0.05 J ~Saturation 1 X 0.1 "' ~ 00k'! ., 7 _0 ·5 ~ 0.19 2J0.65+1 r 2~ g,.b "' Xfl,. "' 167.2 JJ.NV Cov = WL 0 vC.,,, = 20 ? - 63.71- Ht:. ,·s atso 1.5 V > v,;. X~ X 0.05 4.3 X "" 4.3 ff f..e:::o: R.e = 4re ""' = 0.23 193.5 g,. "' = 880 JJ.NV, Vov trade of!V f L. ~ 21o (e. lAM 10' 3 F/m~ ,~, 4.3 fF! 11m~ ,, 193.5 1J,A/V2 is redve!e. d 6_'1 tlt.e aetar ( 1 +- €!E_ ) V t_d) X k: "' fl.C., "' 450 X 10- 4 X 4.3 X 10'~ (c.) Wt.. t "' t~:., = 3.45 X JO' II '•• 8 X 10 9 C +- R.e re If + l(e re - 8.13 80 v;v 6\1 a.. Ft-or = C11" j X "' c - 20 X C0 v I X 43 + 4.3 = (i 16 fF = 4.3 IF c..... ,, -f-f- ~,:; -·- J ' -~ " 15 9 6 fF 7 fF Chapter 8-6 8.17 8.15 The intrinsic gain A 0 is Ir j2 ·"'· ·c,):!:' · 1, fl.,. = Also "'!1 ·ro = '" V."·L [, c,,:: ~WL ·c.,, if C1 , >> c,. then w< then we have : Ir Vnv lo = 2 V• ancl Vov = 5VIJ.LmXI. 2 X 5(V/!!;m). L =50 0.2[VJ Linmm. • From problem 9.19 c,d· lfwereplaceforg.,and c,, can ignore (21o)·(~) X l. VN with 3 x 45o[vc~s'] · 0.21 v 1 Ir - 3!!;. Vov - _ _......,:...:_...:::.,::,___ _ -· 4rr ·1. 2 4111. 2 = ./21J.., • C,,.(W/L)/ 0 2 · ,.,.. ~W 3 · L·C , .. 2.15 X 10- 1 L.' /.nun Therefore we can see that the higher the current I 0 then the higher isir- Also the frequency is inversely proportional to the size of the device, i.e. higher frequencies are achievable for smaller devices. 8.16 I ,. -- fl. •• 2'1T(C,, + c,dJ = 0.18 X 10- 6 m IL_ 2L_ Ao(VN) 9 18 27 36 45 f;.-[GHz) 66.35 16.59 7.37 4.14 2.65 3L,_ 41..... 5L.., For C1, >> C8d and the over lap capacitance of CB·' , negligibly small: Also g~ = c,,:: jWLC.,, ·w v2/oov = k.,zVov If we substitude g. a~ formulas: Ir = 8.18 c, . in {)from the above k):!:' Vov 1 21r x L ~WI.C.,, 4rrL" Therefore, fm a given devicefr ;, proportional to "Vov ~~ ~TT ( CTT+ C.)t) -= =>I.,= 3"'·v~,. Vov·Ir fT• t!G>< to·! f. rr (to+ 1) J( to-n :: 4.~4GH1:. For L = I IJ.IO, V0 v = 0.25: Ir = 3 X 450 X to-• X 0.25 4 X 1T X I X 10- 12 For Vov = 0.5 V :ITJ In = V o•' v,», ""'In = 2.7 x oois fr = 5.4 GHz 2 .7 GHl. fr 1 (3o = (4.Zl.ljtso)x ~ .2..9.2.6MHe 101 ChapterB-7 AI:: I.e '"' if .OwA 1 lkte.l = II. G tJ.t f .. oao 1-t Ha 1 l:b.vs : o r, ,, 100 'il ~- lc r = ·"' v,. n C.JL = ~ -11' C tr .:- $ ~ -C)t z_ rr fT 2. rrt-r C11 (:r.e• a.t\.144) = 81t to ·.3_ a.o5.to 12 Ctr+ Cn (.:tc. " zn w ,.ts.tall 0. '1686 pF 4ono·$ -a.o&,no'' tt{.Q\M4).... !1. n ~ 15.7 fJ' C,:: 2C~,"' 2 X 20 -: 40 fF Ct. ,, -r.- g.., = 30 :< 10· 1 ~ = X 20 X 10·J 600 IF !0 ' 211'(0.64 + (}.0!6) 1.04~6 ---; X J0 pF f.{O,t0 1 ca0e 21r(C~ +C.,) 20 X --= 6.8wiQ" 't:f .. I. 04=1-6, •6 SolvilA.{ Ef"'"· (.a' a.w.d (2..) tke't ,~leLJs, gm r = l( S,·wee C1T "''fj·e t- 'tf,~'" , Cje + 8..- ro"tr ::: a.t/6'1/t> X lo-•1.. CJ'e + C • = C1, + L~,,, = 0.640 pF 1, 5. S c!:-Ha 2..11 ( err + C:.Jt > = 0.5 mA = "'0 mAN 25 mV ~ VA = . 50 V ~' 100 kfi J, 05 rnA " c fT '"' 11.6 ~ 500 • fr ==- 0w. · = Cje ::. 'b.'i5pF 4.&5 GHz 1 L 12 lVT = j~ I Ccn t- C.Jt) l "' te \ = tT I r oAt :Ic=0.2.1M.A, ll1te\-=-Z..5 a& f = soo JtHt: , tuv.J: ZTT xSx IO ~ = Z.Oxto-3 C _ fT+o.t (CTr+O.l)XIO-t~ - zo =- o.¢4oF !OTT f Clf• 0.64 fF Lr::: t.-5 x !!Jaa ::: t. t5 &-He l - - [3\M = 2a-w.Atv ftr:o t2;s~ = 15oft-a ~ fft:: fr !(>; .. (2.) LF =,f-!flps 8.21 8.20 (I) ::;, s /(t.l. Chapter8-8 8.24 8.22 le .,.., g,. (fl} (mAN) "• Po (rnA) {kO) I 25 40 2.5 t.(l() (a) {b) I 25 40 3.13 125;3 (c) 0.99 25.3 39.6 2.525 1.00. {d) 10 2.5 400 0.25 100 (e) 0.1 250 4 25 (f) 1.0 25 40 0.25 100 10 (g) 1.25 20 50 0.20 10 8.23 i! • f)(+ :. J.. +J·""~'II" fTr .,. . r,.. I t-j W.-- 110 c .. c.. (pF) (pF) (MHz) (a) 400 2 13.9 4 {b) 501.3 2 10.7 4 (c) 400 2 13.8 4 (d) 400 2 157 4 (e) 100 2 4.4 1 (f) 400 2 13.9 40 (g) 800 I 9 80 Wt1 -frr 10() =? too ( affro)f() '• 8.25 + ~~~)1 +(~)z \ lr {MH:t) CONT. I -~- C;. = c,, + c,4 "' c.,+ C8d (I + g,.R~) = 0.5 + 0.1( I + 29) "" 3.5 pF Neglecting R c; : . Cl . R fu "' ., ..,.'1'1 f.> IOMlJz ""> R,; 8 ~... ~ ~i- i.e Rc; is very large if l >R. 21T·3.5xto·•~x106 .,, < 4.55 Hl Chapter 8--9 8.27 8.26 g.= I mVA: C1, = I pF; C84 = 0.4 pF; Since Rc; is very large: I Cm "'4.26pF;AM= v ;f11 -7V =382KHz ~GB =" 7 X 3&2 ·IOJ = 2.67 MJh We also Know that: Cg, ·"' C;. ·.,;; 2 tr X 10 X 106 X I X 10' C,.,;; 15.91 l'F -·.~(·· ~,._,., ~It-~ +c 5 x 10 ~z + IX 10· '\I + 5 X 10 ' · Rt). ,;;; 15.91 pF ~ RL,;; 1982 fl Since Ra is very large: t\" = - g,. · RL A.,;,: -5 x w·l. 1981 ~ .4, z -9.91 vrv Gain. bandwidth product: GB .. GB;;;,: t}.l x !OX 10" tm If .f 11 2: ;;'> IA\1i · BW 91 MHz W ·Cox+ Wl. 0 v · C 0 x WCo.t(~ + t 01) "' (I+. grn R~l,;; 15.91 pF ~yJ- ~ C8a"' WL0 v C,._.. =l> if W is reduced by half so are Cs• and ~ c,, 2 = o.s pF c,,11 = 0.2 pf CR.~­ In saturation: 1 ·w ~ . . . In "" -k -(V00.) =0 For ln to remant 2 11L · unchanged while w is halved =l> ( V ov) 1 is doubled !f MHt I --g .fi"' n then : R~ s 8349 A,;;. -47.75VfV GB;? 139.2 MHz ·"" 0.707 mA IV we can now calculate the new values of A~h Cu fHandGB -.l.·V/V .fi "' -4.9 V/V C, 1 ~ (J ·I 0.707 t 7.14) · 0.2 X 10··!! 1.21 pF .1.71 pF 2-rr. 1.71 )( 10 950KHz GEl;! The 4}) X 950 · lO~ '" 4.65 MHz r~tins of new vs old vahws are: 1, Chapter 8-1 0 8.28 R,,~ • roof) ;!&. t';,j L R~~$+1-tf{~s .!:L .. -" '{ 1- s I+S'<~+~)R~,. c - 111 ~) IF- ""a... '" 'J 8.32 = 2 mA, p = 100, f r = 800 MHz = 4k0, r, = 500 v. = 100, C~ =I pF.R.,1 = 5k0 ~) =~(1-t..l-- +5..!.) (1- =875KHz R1 = 50kfi,Rr Vs~-<,,..~s+~+"'> w _, ..!&.- .:t: ~~ "'C,J R1. llm r • = 5 kfi = 2 mA 25 mV = 80 rnA V = g., ~ = ...!QQ. 80 m = 1250 n r = ~ = 100 V = 50 kfi " fc 2 rnA c.+ C~ ' = !!! = 80 X 10-l 211' X 800 X 106 U>7· -j,., t( I+ S(cc.+Sd)RL C~ =I pF~C. 16 pF = ISpF .,----·. _ A - R• --;-''•:....X:-g7;.,;-RT,t'-;;--:-; R8 + R,11 (r • + r, + (R 8 II R, 1,)) = '• II > R,ir.• 'x << R,.,, =87 pF R•i• >> r 11 , g,R~ >>I. The resistance seen by C r is R r. g., R~C~ >> C1r R, 1 fu = 21T X 10- 12 X 100 X 2.5( 103 ) = 636KHz / 11 = r.ll I~~:l / 11 = 6.36 · 106 Hz when A., HR, IIR3 II 21 lito = 3.2 w =572KHz R't=25k0 A.,,: 40 R, =6.25 II 68 Thus I fu= 2-CR 1T 1" T I 2'1T(6.36 X 10 6 )C~ X f:l ~ g., = 2 GH7., = 120 CJ.L = 1 pF, R,;,= 0 = 80 mA v = 120 = 1.5k0 0.08 L ~x10• 2tr(C, + CJ.L) => • = 0.08 X JO'l => C = 5.4 F 21T(C. + 1) • p = -IOV/V a)lfA., C• = 1 X 10-" f:l = 100 R~ = 250 n -10 8.34 II where r. = R, r • R1• = "' 0~0~ 5 ~ = 17 pF Thus / 32 mA/V 2tr · A.,= R ;·R. s •• 2n · 17 X IO·I. X 133.3 = 3.2 - 4 ·72 kfi , X -g,.R, X 32 X 10 + 4.72 =-32.8 V /V 5.1 -0.8 = 1.5 pF 1.6 GHz u = ,.. wII'"f ,. = ~ n => R;_ = t3.3 c,. = f 11 32 10-.1 27T X 10 '" = O.S mA = 20 mA IV 3.2) 25 mV =~=~=5kfi 20 mAtV g, v. - 8 . '3 E5' T; - c,. + c..,_ 4.3 pF X r X ------. =5.1 pF ~ b) A.., = (-I VI V) ''" C 1 = 4.3 + 0.8 (I + 32 MHz 3.2 C,. = Ctr+CI'-(1 +11.,R,l where C1r + CJ.L c,. (R~) -----'--,,:---- = 70.2 6811 2711 6.25 = 4.72 kfl R- C1r 11 200 = 6.25 kfi 32 R~ = Rcll RL = 4.711 10 = = 1.;~-~. · 0.08 X R~= 133.3 0. = 5.4 + 1( 1 + 0.08 X 133.3) Vr lim g,. = c,. II '• J! and 11~ = !.s:_ R,. = R, 1 c. t c..,.o +g. R~> = = 100 v 0.5 mA = 200 k!l !G! w, = 211' 20 X 10-> ~ 4 pF X 800 X 106 Chapter 8-13 z, ""' ___;,.-.__ c,... "" Since l pF -t C1r "' J pF The midband voltage gain is: (g.. +~)+ sC'lT -R~~ R8 + R,;,~ r# ;::--t r, + (R il /?,!I R;. :(2oo!l 8 n s) kfl. + sC11'r, .!. +sC11' 1! R,.g). g.,. R~, 11 re ,.,. __1__ , , re wilh !?,_ ""· r 0 Since C 1t contains a component that is proportional to the bias current, it ft>llows that at high ,,,3 kn Then ~:.,R;;='20 X Jo•60 V !V -100 - _ ___i___-· 100+5 5+!l05+(100i! 5) = -29.1 V! V or 29.3 dB A.., "" currents C'lf >> C11 and X 60 T() detem1ine [ 11 : !r, + (R 8 H R,,,)J · 5 n 10,05 Ttm~. / 11 "noo !I (at high currents) The phase angle will be -45" at ,., 0 r~i! Thus, l+s/w1- 4 + l · (I + 60) '- 65 pF R;,. g,. l ::::2,;C;:::11r · C'lf r, z, = __r_l'_ C.,.+ C~J. (I + g,.,R~) C'" f1 5)J f = J1 2.45kfi = wr, or = 400 MHz __,_·,_ For a lower bias current so that C 11 fr = - -1--- and 4nCnr, z.' 1 +....!... 2w-,- -45. angle is obtained at w GB = 29.1 X 999 X !OJ = 29.1 MHz In example 9A: A., = -39 V /V, 754 KH1. --~ GB 29A MHz Nn1ice how operation at lower supply voltage, thus I r n::duL'ed tho: mid-hand gain. im:r"nsed the ( 11 while keeping the gain-bund width pr(lduct consrnnt. 8.37 = 2wr or J =2fT= 800 Mlh. (Assuming { 7 remains constant which is nol necessarily true) Chapter 8-14 This figure is for 8.38 20log/A($) 40db-+---.... 20db I ' I I I I I ! IM fH (MHz) (log) -20db --------~-~-------------- 8.38 40 db = 201og A0 ~ A0 + IOO 2rr~ 10 1 )( 1 (l + _!.--:)(I r- (b) 20log A 2tr~ 10;,) X 10'• · + --w._.v6 ) 2n X 10 60 -r---- Slope- 20d0/decodc ~ 40 {)r..s ·-.p IK ;~·=·~ ·)~ •J'--:!:r:XH)"'. f11 "' 0.995 MHz 8.39 + (t+.~) + 100- 2r. Wn 100 VI V (I+ sllOO X}()' X 2tr) (• + A(s) "' "" ··t 6 t . ;f =-L~ y) . (= . 2-:;y_·J(I/ \2.'l'f·<'.;Hf'...- ~:~ - --- I() K 100 K I M •• - -- w •• 1 (c) Gain-bandwidr.h product •"' HlOO )<: f(J·l )·. z log scale 10 K IOMHz {d) Frnm the gain plot, unity gain frequency= 10 MHz (e) From the plot unity gain frequency = 1 MHz Chapter 8-15 8.42 201ogA SlC "" - 2f) dB/de<'ade 60+----""" 40 2U f~z) 0 -1---.--+--..---'~-..l K 101< lOM 8.43 8.40 fu(s) ., ---..,:'-:---- wH!!:' (t + :J(t + ~:J tn,., < Wr~ I ~str;.l w 11 t:: I fir'?J.s•SJ, .. IPF using the root sum of squares fotlllula: "-'II::: wrl fl + I ~ ...~, w~1 ~ J;~·:-··w,l 1 L,J o'l11 is: ( f'ro,.. EJ,c-.plt 6.6) ,1{ .,3.33k.J'L. •j.,.etrMA/11" =--~--~~~--~~~------~ to 1 );.~-tli'2 ( tl~.33;1. 411'1 "':2-nJ,,oJ( If ""6'f.o~ =>R•o2.6tc..ft. 0 "'r!: ~"'" II w,.i f1lrt 8.44 for dw" where: r_,, = C,_, · Rr< = C,_,('R,.. IJ R,;~) JO%z0.l""'>l! '' 2.07 (I),~, for n«)n I%= 001-"'" r,,1 = C,J · Rsu:>Mto.>: to ro'rndfs ~ . R,, · N,, 1 Ri -t R,!l ll RL I;., R I + ~il r. !l '.IF) ..! Chapter 8-16 b) r ""' C1• • R;,, where R~ 11 "" c,. "" c.,+ c•• where RoO R,11 and c." U.the result of applying miller's thenrem to rellect C,a to the gare-groond nodes. Frumf..q9.76 _llsCt" I - ( -g,.R~) z''q "'~ I- K _ , !_ _ sC,u( I + g,.R;) ~ C,, ~ C,i I + g,.R:) r = Thus (c., + c,a(l + g.,R~)) . Ra ~ R,,!! Rc; . R,,~ Evalvating for: R0 = 420 k.O c., C3;~ = I pF R~ "" 3.33 kH = R,,1 =- lOO k.O g,. •"" 4 mAN ( 1) For the complete expression found in part a) 'Tn "" 1.230 11S -t '"n ""' 813 K rad/s (2) For the npproximate expres.~ion found in part b) .,. = !.228 fl.S -t w 11 = 814 K rnd!S ('Til-T) X 100/'T = 0.163% 8.47 8.45 a) If a capacitor CL is connected Jn parallel R~ then with w 11 "" I . Vo-= -g.,Rt.Vs,Ol V.~-~ =- \l.'lix-RsXgm\l,gA v_,J I + g.,Rs) = v,,, ....... + ..,J + RL. CL the values of r 8 , aml T, 4 remain unaffected since each is derived by selling the other capadtors to lCfO. When mosidering the re,;istances seen by c~.. C~.,"' CnJ = 0 a.nd Vc, = 0 ~ the open-circuit time constant of C1 is: R ;, · C L ~""II '"' t~fJ.~ .. tlf.M)) y_ w- 9 H-'-----· ~ 13~x 103 2nx w--l~ "'" ·.•, 765 K radl~ / 11 "" <>• 11 !21r = 121.7 MHz Rl..\ = ~::~ i\ R Chapter 8-17 = 100 !l: Rs ~ - 4 X.5 v,,, I R~, = J+ 4 = -14.3VIV + 4 X 0.1 100 + 0.1 X O.l "' 11.5 kO RtJ ,., 5 + IOO + 4 X 5 X 100 I +4 1533.6 kH X 0.1 I IO·I! X 11.5 X IOJ !Oainl Vc,. -Ri_v - 10 ·ll X 1533.6 X 10' 623 K rad!s to calculate R~ V5 + V,,} Riv- X Bandwidth = 14.3 X 623 K "' 8.91 M radls 2so n: R,"' V 5 ""'Rs X g.,V,, -4 X 5 -10 V/V I + 4 X 0.25 100 + 0.25 """ 50.1 kfi 1 + 4 X 0.25 5 + 100 + 4 X S X IOO + 4 X 0.25 I 1105 kfl "'n = -...,.,------,--'1---:-::----......-.., 10 I! X 50.1 X 103 + 10 " X 1105 X 10~ = 865.7 K rad/s lgainl X Bandwidth 10 X 865.7 K "' 8.66 M radls Summnry mble: Rsoll.) tl a, c.c..ltA.Lt...h. ~::_;_;A_ _ 1000 "" I r:: 30 ~ 31o d"-t 2.'1 3.75'" .2"t6."1~ :1 v.....:.'( i.....,:.., 1-re'fu.t.M.'7J : l~fz:l v;- f1.5 ~.S -t c;..t -t ~ H r... 1+): ~~s -1000 Chapter 8-19 8.52 Using Miller's 'Ibeorem,. i" each c•tbe capacit;mce nt.the input is C(l.-A) and the capacitan«\ at the oolplll is c( I - k} C,·,... 'flillll: IIOpFa:nd C""" II pF ~, ~s +~ ~"' +1.1\.t. t"tt • Ss Rs.J +~ f ~,.~ <~+;... ~> +R:J + 1.'{ 7;,~: .2~ '"I)"+ ol[~«c,.,. ;,J.DJ '+ .t:.J -t ,,,. .2o"' lH • = -R. {Miller's theorem) v 'r--tf "'.26 'f 11S b) IN = .:...!!! R,;g R,,,ll R,. f.11 ~ ...1- • 6o3 ICHa. i',.., •-9,., R~ /LTI~ ~,.s : ~J : :(F If R.,."" Rthen: -~=~ ,U({! Nfpt-"''f Flf to '"''1'' J1 ffv,. t>lf.A. olttcu..~J nc:> f'(a t~ Prqblc,... dJAA te> lt.Affke.l-r),/ +Jw. fl..e. c.onslb..n.fsof'i A--d ).s . KCLat /\: Vo_ V 2 C,.,tr/i>,J;'4,. oF ~4ek. fr'i+w:.~ '~-·' 1 6'.6/i ~ ~ R c) N~t~, IS.1Z ;,. p,-,,/eW1 6. (; 6 1 tJJ e R,v = Rl! (-R)"' '",.'•·'" l" 2---~ + :!11 .. -'S',..2o.:-llloVfr n.3~. rL ; "" R,;~ J.olt. 8.55 8.53 R., = (E.,.6.,.;} {. ..., . 6 .'544} 1n~ett.t~ R: •(2+o·l (1-t'S.,:lo)j:).o +Cf.,.o.t),.lO • :2.6'f n S ,. 26Li,.lo"l ~e.c. ~Pf>t'OK•'.........G., 11'-..L..t.of. fp 1 is : ~_; I oH~4 I .tn[(C,HC.,cl (lt-3., R:J)~g + (C.Lt1 ~ Wp:a. .....~ ~....re.: ""'Pr .. '3.81.1"''., rod(5 Wp;t "'-7"3 .\2. f'"""'/!1 ~~- f;, vs,"; &1. .&·C6 ,·, I·Ji lowrr +"-. tft.. cx.cu.t 1/tJw.. _,,.;1...'/c #/.&.ut-I~ oi- ltz is .,f,rJ....t fkj/.4,. fl.-lfs ~~. esfo/M...G- 1.3z ... ..,. f-r .. ~ .. 6l\.1"§"-ll~ " '1''0 fpJ. = 4S.67 hH• 1h~ 1, !> =CI -> I '-1'1 F-p,_ = ~ : 'f5.o6Ht+~ ::tn c>bJ-c.c.i.wl us~ = [cc..."c;J.J)s +-tz. c;,] R~ Rs,) 2" -t'fl.o J fCtH c,., ,.~ =[l.S..+~.a)~s -r~c..,.d ~at~... (L is f-p1 : +kL tr-...skr- fv,c)-ton oF e.rr....,.:C.·~~~~(6.6o),wko.se. ~-.\inQ.~or is 9: J.p, ,__d ;.~ << '-: , ~S~,",.,Q):~ {.,,. }H 8.57 R.' = ~ICJ'L : AM"-,,., ( = -'SJCS' .,.-.2-~ ~V" f .Pl ... ~P."' 1 I 1rt~C.,'t'~JCI1",1.,.(~J?\') -r-(li.+)c~IR~] I .ttt[( :t+O.I .. (I+ ')~S)).2.o +(ftD·1)15] tp1 ::/.63 HH-a ~PJ" [Cp-t5f~C1-t$=(J]~·,.,. '5,.-c;p\ < f<~+~l'Js-t-£C,c~] Rs.~ I'.ZIT IJ.z..,. C.t. + o.1( 't')•5')).to + (t.,.O:!J5 (<•+11·1) .. :1_ + /•9·1) f.PJ"' s~ ..CP, << t.p~ S",.J.o K2n 675' MHi! g_ ::: .R..:::_ C,J "? o-cJ lp, {< -,..t .,, n q__ S"' ~ ::: -L!!:!.. .. ~2 J"C,c1 -.. -5>, 2rr11.1 iJ tilL ~Hl J;;:~ Chapter 8-21 t, ~ ~p,• I. 63 HHl: ~~ f• AH.- e-Jw.'t/H,.,. .1.5,. f.'-' .. teD. U H fla. r11 .,.1}_ .. 12.£ .,5'~ frM =- ~t. .,.f1411ffl;., =' lt0.1!FJ.IH._ S,·,Le. ~« ?.r ,,.. (1,./{> I I;; ( .1c:h< 5') + o. :J. + '5 "l'v: c.,. 6'~t: AM= So.65 / c,." ::: c11 -+ ~ r ,....; .. Rt. >·•" + o. 5'£1+ .1ol( ~)= &o,;~ AH• -5",ctO::r-So"{11 1 · ):.P:J."" rn ~a,r,+~ Us,-,; M•llu".s T/..t11rtwt ~J /(::.co 11\.Jl...: .2n J.o ~I ~/ << f.i ,I().. Jt>....c.'..-.t pal• e.xrsts. ~Pt.. 8.58 G-'f· 6. '"lf, A; . . . . ,. . ftz. +et.l (H f"~IO)}JIJ +(I-tO .I)JCtDj :a • r11 ff (~Srj .,. rx) = S~l(tl<+o.2) R;,,3 "D.11f(JL 1.o.li HWe ('l.+D·ICI+~I'to)).!tJ t (1+!411!11 :. 52'/~MH~ (}t-f<<'•IJ.2. 1" (J·U ID•lf>)<2.Ji f 1 ,.._a__ : 7.ti6GH"J. 2rhtN << f!(>L fp, t f.p, «Fa. -7 J1.t pole ct.• J +1-.Lrr {-.,f'Y. !A,_, I· tS t-1.. do~'it-J' f.p1 ,. /. o4f H HJ. Fi-t "' 5o>< 1 ot.; ... s:l MI-l , , f.r""" Pr,Jcft,..6.6.1..vtht«K.· = 603.16 K rl :~, -the. IA,..I.f.u S·i'IC.C: tA <.< F-<1 , rJvrt.fo,..~ ;~ tkffroY-,-...ItbJ ?p, !AMI· f:~ ihe rese~lt~ ,t~rrFcY"e. f.r ,·s SJN..II11'r~ ar<. 5vwt"''ar:ee:d ,.,. "'this ~-q bfe.: s-/(1\.. IO t<.J!.. td'l. !l.O ~..15 -50 ~loo 1.63 1.04 o.6o 5:uo 6c.32 ~1>.15 R~j + 0,3 kHJ=764n p[{ I + 40 X 5) · 764 +5KJ+3pX5K r,, = 7J>411$+ 47.57 ns + 15 ns !,, ,...60.32. MH~ <. V"M/•f,.. + C 1,(( I + g,.R;) · R.. , + 7n = (10 p X 764) ·c:::· f.11 !.Cf.h::: 6<.3.16Kfl'l fp:~. Tn = C, · R;,, R;,g = r,ll (R,,, + r,) = z.sxnn o kO+o.t J.ol"''...irt~ pp/l! a.nd ?11 ~ b!. by?,. .A.,= -139VN Using the method of open-circuit time constants, fmm equation 9.100: + C,·R; f.P.:t = 4~.61 Hf/1< J:~ ,. "f.'f6 Gl-/2;. AJ.U"7't << ~~ A4AJ 8.59 70.21 ns ~ ._-rr-ru :: 2.27 MHz The .(.l:> ('Ontributions to T11 1[Jr.cach capacitance .are: CJT: IO.ll%. Ctt : 67.8%. c~,: 21.4% f, is 10.6~'f· higher than the,/;, nhtaincd in this pmhlem Chapter 8--22 8.61 8.60 ~'1c-8o.6S"l'V' , R~3"o.l'f7'-.ll.. Ji. • ..1m_ = 2o .., .tn7-t .2rbo.~P F. "' • 6. 3 '1 (r/-1 ~ I p,- 2n [ (~ + C,UCI•!..R(JJ~., -t-Ci+ SAJ!t~] f.. ,. , p,- Z.rt [' '" 1- o.'>(t+ 2#,.s-)Jo.n-r 2.s;. s] Fp,: 2.)/.tMH~ ' ' _ ( c, 1- ~,..a.,.,.,.IIJ)Its.; 1 .,. ( C... +$11Jil~,. .,.tz. 7<] R$.3 ~~ ~ I PJ.- 111 ( c.ttcc;_.,.<;..) fp_ "3 C' ( fCI + 11S(I + 2#,t!)p.f? + l·S"J c • + c• 40 m 211' X 400 M = 15.9 pF c.. = 15.9-2 = 13.9pF Pole frequency: 2Tr(22: IP = +c.> J,. = 213.74 MHz = g., 90 X IOO X 100 . 1.6 = 1060 fLA/tt = rlll = VA, = 12.8 40 m - X gM = 1.06 mA/v Zero frequency: fz j2 jz.,..c 0 ,~1 1, g.. = w-' 40 x 27T(2 X 13.9 + 2)pf 21TC• - 211' X 2 p OT loo 3.18 GH1. 'o~ = ~ = l1 1n! 19.2 = 192 k!l 0.1 DC·gain = -gm (roo = -1.06 (128 X 128 kO II II ro,l 192) = -81.4 V /V Total capacitance between output node and ground 8.62 "M" f: ,. H -3.., ~I.=- 5~<.2.0: -roo V/V' I 2n(tj_ 1' 'y.1> p~ • I 2n( I +~.fhJ.o = c,., + cd., + c,,., o.o1s + o.o2o + o.OJ6 = :a 1.l'JHHi. CL = 0.071 pF Write a KCL at output: <"'~tc t/..,d' ,·.,_ -c:1 S:_,H Wf "'~H IUUf +lv, W,. • = 200 J.1. = 8 mA and "" 0.025 v 21) 8"'2 ~t.CoxUH V•• ~t.Cox(T.),v•• -A. 1 + Lo "'T + A.J = .-!QQ... = 0.5 Mfl 200 J.l. Thus the OC-gain = -g•. r 0 = __-....;g;;.o'":,:l_l.::g;::.m·"-'_ V; = Forlr = 200 J.LA, V, = IOOV: r0 Thus: ~ _ _ .r [ I - sC e I g., ] - g.., 0 I +s(Ct+C.)r 0 (g,., + gm/oad) w, w! = -8 X 0.5 X 10-' = -4000 V/V For C,. = I pF, C. = 0.2 pF I (I + 0.2))> X 05 M 0.5 . Chapter 8-25 ""L67Mradls 8.67 f .... "'f~"' 265A KHz fz "" ~ 21r · c~ 8111 2r. x 0.2 p "" fr ""' [At~ ' IH "' Bode plot for !AI: 4()0() .~o 1 .• where 2TrC;nR,1, lu::: fp; "" 6.4 OHz R·. "' ~ = 20 kfl "' 2 2 X265A "" 1.06 GHz R;, "' IAidS ·~ n Ill kO + C#4 (l + g,R;) C;. '" Cg, 4000 V N e,, 720 dB = r 0 U r 0 "" ~"" c.. = 0.1 p + 0.1 where 10k!1 p( l + 2 X 10) "" 2.2 pF ~ 1·II -- 211"··X 2.2 Ip X 10 K "" 7.~.. "3 MH z -20dB/d!Xade i) If the bias current I is reduced by 11 fi!Cior of 4: vi,v "* For Into reduce by lf4, Vov Since 11, o is reduced by 112 2111 ). = !.1 !(2VM AIV 2~m. - 2(1,/4) g,.; - ( vovm I rnA v 4X20ktl=80k!l 8.68 8.66 tt- =- ~..,... .11'1 ( -~ ll_ ~ C,.l c:;_ + c:...cl =::1 To 1\R\/'C- ~ b""' "'\f-lO "3 :2.1"\ ~ l.l' tO"! ~n.:: u:; 1'\~, I MJ../IT ' ~ then: "';2.6\'1'2:. C;" T = +q.61 u: we ....~, R;,, ~· R~ = "' !:22 = 80 kfl '' 40 kt1 2 0.1 p + 0.1 p( I + 1 x 4tl) ,, 4.1 pf "*ln 1 ·· 211' ;..; 4.2 p = 09'> .•. !\>1u uz 40 K X ii) if the bias current is increased by x 4: -'> V 0 v is increased by a factor of 2. '!> C.l-"" C. .l ::. I Z:ID "' I 5"'\ · 2.3 fr;:' :1 2 !\ ,.,..,. \11'\ Thv11 »>"- n.. e.cl a- a.d..U. t.\o"""-\ C~cilc""-"C£-of- _gmil = 2(4 X.1 0) _ 7(2/D) ~ V0 {2 X V 0 y) - 2X2mA,o v lhcn 1?;,. 4!1~ v R;, " r 0 }2 = = 2.5 k!l c,o= 0.1 p+O.I p(l + 4 fu = 2n x L21p 2.5 K ·.~ X 2.5) '"-· 1.2 pF 53 MHz + CL. Rcr C"". 1(,, + C,,1 ·!!?;.·, •. (I r , .,. l + R' l ' - ~"'" J. t ·ru = c,it'•R,>P + + X ,, CL (·,'f:.!Rr.:d ·R; Where R;,, R, 20 Hi ··~ Tn ·.~ 100 ldl i/ 12 !d! 0.2 p 7.5 Hi 100 K HUp[ HWJ f.;( l + 1.5 x 7.51 + 7.5 K I c,, · 1<; ·• 20 ns ·I 246 ns 266 c, . 17..'\ flS j K) + c,. (75 K) Chapter 8-26 8.70 a)lfCL = 0=>T11 = 266ns-+f 11 = - 1- 2-rr-r, b)CL = 598MHz = 10pf=)T11 B r,.• + = 341ns-+/11 oo =467 MHz SO pF =o-r11 = 641ns-+ f 11 c) CL = v,.=- -v. =248 MHz Using the Miller approximalion : Eq 9.80, 9.82 C;. = C,, + C,J! I + g,.R~) = 0.2 p + 0.2 p (I+ 1.5 fu X 7.5) = 2.65 pF = 2.r · C110 • R,.11 W~ observe that v,. vollage 111 the emitter. is equal to - V • . We can write a node equation at the emitter: 2.r X 2.65 p X 100 K = 600MHz Notice how 1his resull is clo!ie 10 case a) whete CL = 0 and diverges further wilh increasing value of CL• showing !he importanCe of C1• in delennining.f11 I = - V ~ .(l . r• = + sC ) - g,. • V ., v.(f. + N. + .• c.) Thus, the input admittance looking into the emitter is: !.:. l + g + sC• = r,! + sC # v"' r, IJf Therefore we can replace lhe lransistor at the input of the circuit by this admittance as shown below = + fro,.... ~· $; ., PI ,.,,.o; ...!'------ ..oc. '1\A\I't. ~ • 1"1 ln~,t~,. \\...1-) I • 5S7tiH'I .2rt,.Zrf(IIC"....1--) Fro~ ~· v,"' - v. '3 ',:~ s.,o:us 6·10' o.>Ja h\lfe: Sin u. ~ .(,(. f-p 1 1 -t~ S:pa.. 1•5 +hi, c.h,..,.;n-l: po\(.~1 ftt ~ S.pa.. '3 ,,,1"114 .. a) As we can see above, !he circuit can be separaled into two pans, each wilh its own pole: fr, = 2.r· c (~. n ) (inputsidc) 11 f r' 2 .,.(C P "• r, ~ C L )RL (outputside) Chapter 8--27 8.72 If we compare the poles for MOSFETS. we observe that these equal ions are their bipolar counteparts: 1 fr1 = c,.(R,;,ll t) 211 · R0 = 2r0 + (g.r 0 )r0 = 2 X 50 k!l + (I 9.108 X 50) X 50 kO = 2.6 MO Av = -g.,(R 0 Rd 11 -1 m(2.6M U 2M) =-1130 ~ v =? C • ~1T( .cJ {po . I C + ,)R, 9.109 Av = b) For C1r = 14 pF, C • = 2 pF. C, = I pF. 1,. = I mA v + R4 , T 11 = - 1- 271/11 Ras ,. R.s, ~ " :zo "'.n. c,,R,, + T 11 fu = - 1- p) 8.71 11 = 22.5 kO MHz f, >> f,. and(, » If / 41 kO +(Rtil R,.)(C, + C•• + C, 4 ) P( I K II 14 X I X 50 = 'o n R;., = 50 kO II 41 kO •u = R,; 1 (C,, + C,.(l + g,.R 4 ,!1 As.•uming 13 = 100 /"' = = 50 kO + 2 MO = RJI = 40 rnA 2'11 v R;., = ro + R, g.,r 0 0.~25 R,; 1 = I kO, R, = 10 k!l =>g.,. = -1130~ 530.5 p = 20 f X 1.38 K + (5 p + C~) X 18.7 K Thus c~ = 21.9 fF Since the original CL in Eq. 12 was 15 fF ~ We must add (21.9- 15) = 6.9 fF at the output to reduce/,. from 396 MHz to300MHz c "" 1s ~s ""C,.. ~" -r1. ~ I ); .. 2.P,.Jl.pi<;1.0 • IOOV/V' • 01 1 1"' "'v Ro!Ak • '0 1 + All'ol. r01 R~. A....r.Av: •-11\~too" ~ '1' ~..X 0 .:: ').(JK ~ 02.1 '-to ... ";~oo") "1.411 M.l\. ••'lB."'VJ' !l.o 1o-t:l.'l'40 ---I.!J u.,.,3 E,.~.13l, ~" .. Rs. 3(c~., "'l"·t"'·a ... ~,> 1.. f\i,Lc-,.~,-+ 'a-.i'" ).J -t tR'-11 Rout )lCs,_ + ~o~,l..) Rei,= ro, 11(-1- - ..,. .!J,._ :J...'J.+'l .. ..a ""'.. 1. Rd,,.l)..(,"'lll + .:l.o ) t:r :toICr 5''1' o.t...'5 , I = I rnA, ?',.. , 11 A., = r r\S J..- f\ = 100. r0 = 100 k!l p ~.'-l•l1 ) (.I+ o . .l) 1;. • t5. I . R,;1 = 4 kO, RL = 2.4 kO, .. o.32'li<.SL I :Z.I , 8.75 !l.to.2(.1tS"0.31.'t)J+o.:n:J(o·2.t0·2+ l)-t (.2.0KI( ~H ., l c 2..1.2 Mt4~ g = • m '• '• + r, + R.i, g,.(flroll RL) ..1! = ___!.QQ._ = 2 5 kfi !s_ V, = 40 rnA I V g,. = X A.,= I /0.025 2.5 2·5 + 0.05 + 4 . X40X(IOOX 100 II2.4K) A., = -36.6 V /V ., + R,; 1 ) = ... = R: = r .II (r, R : = 1.5Sk!l 8.74 R., A" • '6cl~ • 1"lqS V fv-- .A.:t• "~.t R\, R._.., c.~Md -i. 0 ,..t ~~..-R...t-':>A..,.A AL ~ ::1. a. a. o A~ 0 =ll+,,.,r;, 1 ),..,,ro 1 ~ ,.,.'0 '"(~:~ •¥c;-)·(~:ja. ..1...~ ( .2.t 10 ..,.> 1'\1'5 • ~ t -..,. . 5>nct'\;a 'lH '6 ~ ( 'i. s ..... c...H , ~....t) .. c.1 4 J(Rt.. II £1) CJ•/ ,. A~.:~. r;, 1 -t ~u..t (fM fOz. c ( 1-+ ~...t .. 6SIO IU'\. ""6.5 MSI- 1;; S:11 ~ ( IPF+ o./fF) ,.ftl.f,S ~<.Ha I R/,. Rc>~ " (~.): 35Fo.5 ns .:t I A"'J·FI+ . . . I 'f't 5 )C ~ tt. 5 C' 8 11. 8 M H 2 If:-th.£ (D.SeoJe frAnSo'$t'or is r"(OVIO\I'e.c) 1 ~ J.'" !: we ~ve. "'- c..,...,,..,Oif\-5ocJrCe.. C-dT! ~•3vr~h'ot1.. +4 R, 1 ... + RL ) R,, - 'n• H r,, { 'o +'oRL/f\ +I ~ 100 KII 100 101 K( 100 + 2.4) 100 + 2.4 101 = R, 1 I kfl R. 1 = 1.55(1 + 40 X I)+ I = 64.55 kfl = fl · r,. = 10 M!l Tu = c.,R., + c.,R., + (Ccs• + c,,)R,, + (CL + Ccn + c.,l(RLU R•• ,) V.,tf j,,,r;,) r; "" ~ (0.05 - R•• , ~ ..,,YA. , !E.. ::-loo~.Jt , q .,l!.Q .. o.631 "'""!., II = R: = (I + g.,R, 1) + R, 1 V011 cO. 3t'f 'I ~~ ~ a. ->-I: ,...L...;_:t£..1/' .-L .. .2.0o,.\O ,.,o,.o.3tl :.o,t.._A ·-o .2. \... ov 2. 2.5 K T 11 = X T 11 + 2 X 6455 + (0 + 14) + 2)(2.4 K II 10M) 14 X 1.55 I + (0 = 169.6 ns ! 11 = 939 KH1. K) Chapter 8-29 8.76 I~ Q) .1- C,.,S e.~f>loy f"'lil\oer't. ~~- to IIJ(. Or l ? ~ptat'S c...... ~ .25-s , , , t.D R;'§ (C,., + .2~) e->"-'Ch rdl) fb R,,, r ,.., 0 -'rt/?t':1(c;.,T~) rt.fu f.,. ~~.6.4L 1 .,.:Jt/fl SUikCI.t'fi...R. ou.tp...t" pol~ is : ~.t :::---..:..'----~ -2tT('i+c:($,_+_5ue.) RL Rs,~ .. JI<..n. b) -> 1{3.,. 'W 1/~j"' ',i:.tJts- II' ....,. R's,lJ "'o. '11'1 k.n. ~ . "' f>1 h .. P,. I . .. :: 31.85 HHA 2tt"o.?t't1s+.:t>< 12.4) + 12.4 kH R., 645 kH c.c:;>·r 11 = C, 1 R" 1 + C" 1R,. 1 + +C,,,, (R 1 1J C,~Rn R0 J where R,, = 13 1 - r 0 ;_, 7 11 z, 0.54 p X = x 12.4 K + (U r, · 5.08 100 x I MH = 100 Mil 12.5 K + 0 I p X 645 K + 0.54 p r { I00 tvf I~' ~ tr'Tu ' 3U Klh 'I 100 M I Chapter 8-30 8.78 where C,, = C,, (I - K) and K = R~ g,. I+ g., R~ c,,[l - c..R~ .J c,,L +;mRJ ~ c,. = = I+ g,.RL 1- . ] c,. = c,, n c,, = c,. + c,.[-I+ g,.RL At>:= -L- .. o.83Vl Ro • .. a~·~a b • 1+)1. lt~•-lo d) w:n R\..= lli.S\. II. , ... I+ .,.., I+ g,..RL Notice that this is the same result as obtained in problem 9.86. This estimate is higher than that obtained from the method of open-time constants reduces the contribution of c~ from: I+,...Fl~ 1\. . '\. nro K..L=1""n 10"-\1 .J..! ,..,.. 1-6 ~'"'~:r"' ~) since it neglects the contribution of C,. to -r 11 and ,.. "' ,..., R;. ~ 21r · R, 1,( C, 4 + '" 1\r"o = ...L....! \\10... .. to 3.S\. -'} '!!?30Z'IQ v-.,.a. S"'l:) :O·"'HiVt, '( & 3f<>A. C,, · R,,, h C•' · (R.,, + R~) . to .• t us I + 1/mR< I + g,.Rt. effectively reducing the value of 'Tn, and therefore increasing fn g,. =_VIc'= - 1- O.D25 8.79 Using the Miller approximation, the resulting input equivalent circuit is: 8.80 fr = r ' r• = (13 ___!!_ = 25 n + l)g.., g., 21rcc. +c.> ~C~+C• c~ = 0.1 = .[ g., = 40mA/V, = 2 GHz = 3.18pF pF~c. = J.os pF = 2.5 kfl 'o = ~ = ~ = 20 kfi I lr r. is in effect parallel toR,_, so R~ = RL II r0 R~ = I kfiil 20 kfi = 0.95 kfi. _R_,,'---+ r X + R. A., = Rsia + r • 13 + I ' 0 ·95 I + 2.5 + 0.1 + 0 _95 101 R~ = R;,,ll (r, = 0.964 VI V + (fl + I)R;) R;,, = R.,, + r, = I + 0.1 R. = 1.1 K II (2.5 K + 101 = 1.08 kfi = 1.1 kfl X 0.95) Chapter 8-31 8.81 l:.luv>. "tH ::. 3 0 f }(. 2..0 1<. 5~ [2..0K( lt-0.8)(19.18)+l$Ja~ t ~o,.. ... sf)~< IS.ts~ -4- "' + L.H ::: 0- G'-\s .... l.64vt'3 + I. t2.\lt.S (b) Ad:: _q_tM. ( R.o tJ fa) whu e. Uro .. I!A -:r 2..0 ,. z.oa K.tt -o.z..;z (H ==-¢o> "" 8. A-d "" 0. 8 wt K (Z.OK lt W K) -= 14.54 V;v ....-::::=' tc.) Tor a- cs ~t.c;tfer wue~-1. R~l~ i9 low: -1 { H- _ _;__ __ 8.82 t~ I ::o t. TT C, Rs s t sfJ ~L1 fz a~ArJ eL' 8i~.<£!e tar a... ~rou~;~.c/~d .sovree t.M. fo.ft.o.llel wl6lt f:l..e laa.d. ~ cc.· = ro +5== Y?rr = fl = ~ = ..1Q.Y.. = 300 kll 10 100 J.O.A I 21r · 100 f · 300 K = 5.3 MHz If V.,. is reduced from 0.5 V to 0.2 V while I is unchanged. For the current-source transistor: when V,,. = 0.5 V 0 ~k~(~)V~v __. 100 !LA = =[~k;,~11 ] X (0.5) 2 -"1 2rr ( i~+s)ro'$" "" 6':f. S4 ft H ~ ~ I= I tb, f l-( Tf ( o..tp )(root<) = 21r · Css1 · Rss Rss = r0 = .., 1'8. t8K.t./Z. -= Cc. +- C.d6 C.dW t'5 1. w, w, = 2500 ... 400 w,• = 6.25 w, The width of the current-source transistor is made 6.25 times larger to operate at V"'' In= IOOftA If Css is directly proponional toW: Cs.l r;,J·IC... +c,.n +g,.RcH I :lir((JO.ft + 100)1 5 It l·() :: 2//) _ 0.2 m .. I mA 02- V \1 0 , . - The low-frequency differential gain is: I mX 100k!1 = f,,, fr, 8mRo( l+ jt~CIRJ At unity gain: !AJ( '"' ll "' Ro 2'tr :X 100 f X I!Ml K ..!G._ 21rCm I 25 fF v response of Ais) passed the unity gain Thus: c, ro = 100 ld1 1 15.9 MHz (d? GHz. •J ,-) I ~ ./1 fz = ~:..Ji!!.t~· .~:;. 'lXfrL = l2.74GHz.. ::::K::"':::R:':"== :!rrC 111 + (w,{;N~~~ a ~!! 2 >> l ,.. ~f:' lfM)V/V NPticc in the fh>dc plot the ln.;-;•tion nf the unity-gain frequenc'Y -~ --? W 1 ....--- . .. >>! Cs. Chapter 8-35 8.90 8.89 ~l A,.. .. -Ar> ~!.. ~j..+l;i') "to A~ c R~.rl R0 ~ R,,. "'~. , (I+ ..,._ 4 .-: C...,~) (J riT ..,...,.. (b)JfjAMj '~ 20V/V ..:lbF-.1\. wht-N> &"""' ''"' and t-H "' i'f; • f '= II R85 ., R5 ~ .... ib~ 20 "' 100 VIV, Rt = 20 kfl Aa = g,.·r0 =*ra"' ... RL "" ~~"' 20kfl r 0 = 20 kfi Wtl Cllll )s R3.s ~ )d f)~ + c.~.. 1-?Cz. AM = -G..(R0 ~.o:tH+ I l< ,1e~K,. 2bl.t\S 'lit,.. ...,.1o o- >t 60 'l .If "'E. a· 'l'S ,.. \01Ro R ·!- 20 = 80kfi 0 Since Rs c b) R0 Soo.n. 1\,u,l:: • fo [I AMe-~ I ... l~..-'}...J '0 R..b ~'t ... R,..l:; Rs,J ,.'-\o[l-+(..5-+l}o.S') .,lbo\~e"to,.__.!:!.2..- =-...,OVh,. "\0+\~ \1 1\_ := Rl..ll fl0 ..;,. "''1¢r. \\ 1&0~" 32.~JL {+ G.., R~) 'o [• . . .la ..... ,... J~) ~'"' ~~a &.,., 1 im"e G-,.," 2x ~0 .,.l.")..t;..-.A.{IT Lto t• + L<:> -t l)o.s) ~~.t "' .:to IC- () + 1.:ts'"'x 32..'~') "' g 2..o "'-J\. l)s.. R.s.;, + H:s 1-tC,,.. T 'J., 0 ) f?J s ,. :lo" ... o s - ft I'! c... tr:. ,_ 8 . 2 J0l.. I+( ,.,_, )o.S ...!::Ul.1-fe~+lfo R'-t..'" fl~.-11 R......t -~~"" 3:1 tc.Jt ?;t ""C_,1 ~.r+£!,., 7'-11 *' I'Jq. Lf MS (.H "...,!__"' .2n 't-fl /Atff·f-t+ => 1.; tl]_ ~.::: .2x '1.2+o.t.,f'2o.,.32.>< 1 I· .22. HH 2; 41!.8 HHlr "' ra(l + g,. Rsl "'20 K [J + 5 m X Rsl = 80 K=}Rs"" 600 H Chapter 8-36 K f- nn•thod: RP XC,,, + R,, x Cd + llt. :.<; C~_ >u 0 we can see thni Setting CA'-' R, _-: :. Tr~ C;.;-d ~'n obtain ll~,J set C the fi',Ho\-\:ing drcuit: 0 we can S('t: thal IA,I· fn = 20 X 56.8 M = 1.14 0117. (b) for the low-frequency analysL~ of the CD-CS consider the following circuit Chapter 8-38 ortheCS: Vo "" Viol(-g..;roi) (Eq I) For a CD amplifier: A _ R¥Jl = ( 8 .... _!__ +rm g... For the high-rrequeney analysis of the CD-CS oonsider the following cltcuit + Ctd~ [( _!_ U r01 )( I + g.,l r 02) + r02] . g,., + cl. ·ro2 f-or the circuit parameters of part (n): r 01 r 01 20K I •(1 X20) = -19VN -+20K 1 Ill C8J 1 • R,,, = 5 f X 20 K = 100 ps AM= 1'1/ = 20fx (20 K + 20K) c,,, X Rkdl + CR•I X R_•• , + CR•I X R1 _, 2 + C~,.~R$Jl + CL · Rn To obtain the value of the resistors we must determine the corre.~ponding equivalent circuits when all other capacitance.~ are set to z.ero. For cf,.: Pue to the ground C<:>llllet.'tion on the drain of Ql Cgdl 500-'> Rg41 ,.,. Rsig (I + I X 20) "" 38.1 ps c~-·~(...L g.,, rOI). = 1! 19.0ps 20 f(l KM 20 K) c,,l1[(t~ II I'm). (I + g.,1rml + rm] = 5fX{(1K ll20K)(1 +20)+20K} ForC8_. 1: I I( -_ Vxll +g.,rcl R.;, + r0 "" 200 ps c.· r0 l :=>R8, 1 = Rx ""(R,,t+r 01 )1(1 +g,. 1r 01 ) For C 8_a: C~_,2 sees Roun which for a CD ampli- fier i~' Rom·• "" R,_,z = _!_ . For(~: 11mplifier g,lf) "" 10 f X 20 K = 200 ps -r 11 = 100 + 38.1 !! rm Referring to the analysis of the CS =>fu ·"" ..,-1- .._-17' ·Ttl + 19 + 2()() + 200 557.1 ps = 285.7 MHz jA..,I· f 11 = 19 X 285.7 M = 5.4 GH1. Comparing with the stand.- alone CS amplifier of pnrl (a) we can see how A.~ is approx. the same. whilefH and thus the gain-bandwidth product have incre.ased by a factor of 5. }B_ "v~ -8xl'", 1 R,,,. -- " - Chapter 6--39 8.94 b) To calculatefH· Each of the transistors is operating at a bias current of approximately 100 p.A. Thus: g • = 0.025 J!:.L = 4 mA/V • r • = 100 4 = 25 • kll r, =: 250 ll. To = ~~ = C+C=~= • " ~c.= 2nfT I MU 4m 2n X 400 M R., R,., = 25 kll t.39pF R,. =

II 'ooll R,. = 101[250 X 10-) + 25 kll H I Mil) a) = R.,, II R;. = IOkll II 2.5 Mil= IOkO 1.59pF Q I Mil R;.2 = 24.4 kll 1 R•i• + Ri•! I+~+ R •• = R,., =: 2.5 Mil Using Miller's Theorem for A.,=-~>< R,. + R., 1 X R., c.,: = 10 + 24.4 I+!.Q+~ 25 '•> II 'oo r,, + (r., U 'ool Cr = = 0.35 kO 0.25 c.,+ c,.,(l + g,., ro,) C1 = 1.39 + 0.2(1 + 4 X 1000) = 801.6 pF gm 2r 0 , 2.5 M X 2S K I I M 0.25 + (25 K Q I M) 2.5 M + 0.01 ><4><1M A., = -3943.6 V/V r R.,. '••p ++I = 25 K II 1000 K H 25 + 10 101 roo '"' .... R,•• '"'• - r,, II 'oo II Rr- + v,. Chapter 8--40 c) at mid band: R,..2 = r 02 = 1000 kO ~ = c,..,R,.., + c.,R., + c,Rr Tn r 11 = 0.2 X 10 6.80 5 (6.80 5) + ..!._ V; + (C,.., + CL) + R,..2 + 1.39 X 0.35 + 801.6 X g.,, 0.342 2.88 + (0.2 +I) X 1000 r11 2.88 + 0_!_ = 2 + 0.49 + 274.15 + 1200 ns + C,.. 2 JR,.. 2 Thus (CL .63 is the dominating term, The second most significant term is C 1 R,. So (CL + C,.. 2 ) dominales and lhen Cror equivalently C ,.. 2. / 11 ~ v, vf.= -g., 2 V,(I KH 3 Kl where we have neglected lhe effect of R0 • = -21rr1-11 = 27T X 1476.6 I n = 107.8 MHz ~ v. Note: Although ralher long, this is an excellent problem with considerable educational value. IX>Bia.' = -40 X ~V 4 Vo = -19.2V/V 2 => = i v.,s X 2( V GS - = 1.316 v .. 'If v. ForQ,:/ 01 = -1 k)~!Vus-V,) 2 I. 0.1 ~ = -30V => 11' = 0.64 X (-30),. -19.2 VN 8 · 95 a) = 0.64 VtV IO" I - (-19.2) = 495 kO I )2 Vo V,;, v /,.,:::0.1 mA 1.,:: I mA see analysis =~X~= ~X-19.2 R, 11 + R;, "• 495 + 100 = -16VN d) Allow frequencies : C 1 -tf - PI - 21T X 0.1 I X 1()•6 X (100 + 495) X 10' = 2.7 Hz +5V 3kQ C 2 -t l n = -:---_,..,~....:...~----=-: 27T X I X J()-• X (3 b) For Q,: ,.-----,,g .. , = 2-rrk'·I'" = J2 X 2 X 0.1 = 0.63mAIV For Q,: g., = 40 mAIV r , 2 = 2 ~ = 5 kO 4 C + C = ...!!!!!.. • " 21TfT = 40 X IO·-' 27T X 600 X 106 = 10.6 pF Since C,. = 0.8 pF =>c. = 9.8 pF + I) X 1()-l =40Hz Thus f.. ::: 40 Hz e I At high frequencies : The high frequency ~-quivalent circuit is as follows: c, = c.+ C,..(l = 9.8 + g.,,R' L) + 0.8( I + 40 X ~) = 34.6 pF Chapter 8-41 Rj4 = R "' R',,, +£6.8 KH 5 K) = 83.2 + 2.88 1 + g., 1(6.8 K fi 5 K) I + 0.63 X 2.88 1' R',;1 ,.. 100 K ft 495 K "" 83.2 kfi IOM )()M = 30.61dl Rr"" (J.!\11511 I g,. litO (an increa.'le from -I 6 VN) Now R'., becomes approximately 100 kO, as compared to 83.2 kO, and1:orrespondingly R,..becomes IOOkO,and Rg.~ bewmes 36.6 kfi while R, and R' • remain practi· J:ally unchanged. Thunu becomes 172.5 nS and!, decreases from 1.07 MHz to 0. 92 MHz. 8.96 Vs. t/5~ Z.I31M. + R.s Va-= :X. ~o "' Var " R..o Vc;, ::: ~ V$ Zl.~"" ~~~lNI X 2! ~ \>!A .... !<. s R'L = 0.75 k£1 7u = C,,,R,_, + C,_, R,. + C, R, t C, R', + 34.6 X 1 • T" ""I X 83.2 + I X 30.6 0.75 "' 149 nS f,,::::. ~ Vs. R..o 2/~/'A + (<..s f)JI X ~Aa::: Y£:: IJ\MRo 1.07 Mfll. ...... 1T'T 11 VB fi Tilere will no longer be a signal feedback. The left hand si,fe J0 Mf! Resbtor will in effe<:t 3ppear between the input terminal and gn;und. Thus: R, ·= I 0 Mfl (a factor of 20 in(·rca,e) and corre~!Kmdingly Au becomes: ,t., ~ J..Q. tO.! X(-191) = -J9V!V 0 1M. ::: ="t> T't:-e Z.O~ftA o.z..sv ~+ 8w f<.s =0 · 8 1M_ft v Ao ::: 0,8 ~ 5o - o. 2.4 V!v z.. -1- o. 8 ""z.ao Lu:<;~-~feWA/tr 1 C.,.,-t e , ,u , ,.,,. ~ .:31Ul.. ..1.!::!..:: !tO';__;;-= 'f./, F .tnt, 211~/WT • 11C,•'· 6pF IJs.·,.l s.,. o .18'5': .,..!!L J....( !<.-.... )' R 1-f f1"t '1 .:;: .2. f?,.A + les'J .,. I.. A ~l~'~-=.t.r, A,..,= .L :c. f )t =2., 3fo<.Jl.. .=:61<.Jl... .-f:..__ l2 = 2,.,~~L ...--1---., I ~ 2n.r:o. ;t ,.,.,. J.#,.. 1 .· Vi~l+tJ;J ::3/.81-fH?: .:: T.olf(H-a, - Chapter 8-44 8.99 All the tra~,iston> in this problem are operating at a bias current of 0.5 mA and thus have : r,"" 500, g,. C. + C.. ""' • 20mA/V,r. ""· 5Ul -r.<. 5 MHz f1t)2 (J)Z ~\t,.. + !,,2 d) CC-CE Cascade: 20m . "" 8 pF 21r x 400 m ~ Thus:/11 {jll AM ·= + I )fi1Rc sincec-11 "'2pF~C., ""6pF,r.. ""' "'· r,. "" 0 !0 + 5 + 101 X 5 Refer to Example 6.13 in : a) Common-Emitter amplifier: R.,~ 10 kO, Rc = 10 k!l Rl' 1 AM "" _ ___f____+• g,. Rc =- - -5-20 R, 11 . r~ 10+ 5 X 10 . .~ . 21t{R,;g!l r.)(C, +(I+ g,.R,)C,J fu = = l 2v{l0 ~ !I I ~ 5 )[6" + (I + 20 , JOrJ X Ri,. 1 IOkll 101 "" X 117KHz hi CaSL'<:Kle : jl 1n 2R, AM__ --Rqt. + re•-• -66V!V Input pole R~, "' rwtU 1-i-gml r•2 R,, "" II r ffj + R,,, 13 + r "2 1 + I )J reJ + r ,.1 ] lO.OS + 5} "" 9.81 k!l R, + r,z "' -66.7¥ IV J, ~ (R, 11 U R1n) "" IOk II (~ "" I 10 + 5 = 5ft I +20X5 ""· 1440 = 'ik - II 5 + 10 = 144 101 where C1 = C1 1 = R.,., = C,1 + C" 2(l + g~,R.-) "'6 + 2(1 + 200) 408 pF -r 11 Rc = 10 kfl c,.,R.,, + c.,R., + c,.R,. + c,.,R~ 1 T 11 2 9.81 X -r 11 = 19.62 +6 X (1.144 + 408 + 0.86 + 58.75 + 20 = X 0.144 = 99.2ns 1.6 MHz. 27! X 99,2" e) Fnlded Cascode : 100 X 0.99 X 10 10 + 5 output pole : I 2nC,. 2 Rc -66( V)/V 7.96 MH7 pnle at midband nndc ; Input pole: I 5305Mllr. 2-nl:"-;:.:!r~} f,,t = "~(D .. ~~ r"' )(<' + )(,:,,)· ~ "' - ~ -" n"~ ' very high r ~(ff, "' f,,,J ----·"~'"~~- /// o• l I I ( I \' 211( -tlMHz f,, = w II s)(6-·i4) 4.77Mlh. 1\1 middle: c) CC>-CB Cascaw illlodifkd diff. amplifier! !1,,1 __ f!!_r____ R,., ·i !.f_1Q_Y_,_I_2 2r" I ·-=-"Wc"VV_,.. _ _ 50 VI V I(I + lO 53/JMI!z very high! Input pole AI output: 1 :f,,, 2-rrC~;.:Rc f,,, " 2rr(JO'jl td I(~+ 21'" • 6.'1 1\.Hh / •'''· 7.'!6Mih 4.1 Mllz Outpu! pule 7.%Mlh n ~ 2 X 10 Chapter 8--45 DC-gain= (Gm 1R1) X (Gm 2R,) f) CC-CB Cascade : A., = (fl 1 + I )a 3 Rc 101 X 0.99 X 10 10+ 101 XO.I R,,, + (13 1 + I )2r, =(I X 100)X(2X50) = IOKVN~80d8 (b) From Eq (9.175) if Ccis not connected: I C 1 • R 1 + C, · R, w/'1 =50VN Input pole :f,, = 21T(R,,,/i 2r.)(C.,z f 1 = I ' 21T( 10' II 10')(3" + Output pole: J,, = 2,R1cC.. ~ z•J = 9.1 Mrad s = 6.4 MHz 21T X I 0' X 2P = 7.96 MHz I = 5 MHz +_I_ 6.4 3 7.96 1 Summary of result' : fH= J__!_ 0.117 7.8 -66 4.1 271 c) CC_CB Cuscade +50 5.0 250 d)CC_CE Cascade -194 1.6 310 b) Cascode w111. wp:! .::·.:') w,.l -··· -66.7 a)CE = - -1- _ C 1R 1 + C,R, fH G.B (MHz) (MHz) AM => f r• = 1.45 MHz To obtain "'n we equate the coefficients of s' in Eq (9.171) to 1/(wnwp) Thus. for Cc not connected. c,c,R,R, (VN) ConFiguration I 0.1 p X 100 K + 2 p X 50 K +c.> e) Folded Cascode -66 4.1 271 f) CC_CB Cascade +50 5.0 250 C1C,·R,·R, = 0.1 p X 100 K + 2 p X 50 K O.l p X 2 p X 100 K X 50 K = IIOMHz~fr 2 = 17.5MHz The Bode plot for the gain magnitude is 80 dB+----"', 20dB/dec I I I I 40 dB/dec ~t., I 1 I I fPI 1.45 M 17.SM (c) Since (C 1 =0.1 pF) « (C2 = 2 pf) and if C 1 « Ccthen from Eq (9.177) ...,., = ~In G,., c,= ..rywrl 2m I G dl = 2p = ra s 159 MHz two octaves below are = wn/4 40 MHz then, from Eq 9.178: =250 M radls ~ 250 M s G,., => C,- :5 ~ => C c s 4 pF Cr 250M For Cc=4 pF and Eq (9.176) 8.100 1 Ia) To ohtain the DC-gain: for s = 0 in = - 100 K X 4 p X 2 m X 50 K equivalent to 25 Krad s Chapter 8-46 ~ f PI (a} DC- Voltage gain = 3.9 KHz ..,l = = Yo From Eq (9.173): G., =2 Cc 4 m = 500 Mrad p s -g.,. 2ro 2 X = -g,tro, Vsta ::::)AM= __fL vsia = (g,r 0 )~ = (I The Bode plot for the gain magnitude is => C, 91 = I I I I I I I I 1/,, 40M J.'IK + g.,R~} Eq (9.46) c,., = c••• + c,,, I I I (c) R, 11 •!, 1~9M SOM I G., =g., =g.,; transconductance of input stage. G.,= g,..; transconductance of second stage. C 1 =Cat node D2 = 0.2 pF C2 =Cat node D6 = 3 pF = SOMHz = 21r ~ X Cc ~C = c Im 21T X 50 11. = 3.2 pF ~ 3m • G., 21TC 2 fr(50 MHz) 52.5 11' The pole cau..OO by C., at node G1 is /p, = I 2n-. R, 11.C101 211" X I 10 K X 525 f (d) Using the Miller approximation at node G2 c,,, = c,.,(l + g,. 1 rm) c,., = cJ., + c,,, + c,,, = 505 fF = s r + 20 r + sos r = 530 fF = _1_!!!__"" 159 MHz 211" X 3 P < .f2 (149 MHz) < / 2(159 MHz) /p 2 = 8.102 1 211" 530/ X 100 K X = 3 MHz (f} The total capacitance at the output. nnde is cdb, c()lll = + c~ where, using the Miller theorem, C, is c, = c,.,(1 + Ru.;!ro - 1 - ) = sr(1 + -L) = s.os rF 100 2 ~c •• , = s f + 5.05 f = 10.05 11' c.. and r, Thus a third pole is caused by I For both transistors: V,w = 0.2 V C1, 20fF I = 0. I rnA C8J = 5 fF 2r.C•• ,. 'm = IV·I = 20 f + 50.5 f = 10 kfi (e) At nnde G2 a pole is caused by C1• 2 and r 01 2 ,. X 3_2 p- 149 MHz f, = = 50 11' = 30.3 MHz 8.101 For fr 100)1 = 10 KVN c,J 1( I + g., 1r01 } = 5 f (I + 100) 20dB/dcc ,,. I I X (b) Using the Miller approximation at node Gl C,, = C1 J( I I ----r--- and v v,.l => fz = 79.6 MHz- 80MHz OdB V 1~ 2 = IOV C..,=5fF 2XO.ImA 0.2 10 0.1 rnA I rnA v IOOkfi v I 21T X 10.05/ X 100 K = 158.4 MHz From the 3 poles:.fp 1 = 30.3 MHz./n = .1 MHz. In= 158.4 MH•.fn· the pole formed at the interface of Q1 and Q2 is dominant. (g) The pole formed at the interface of Q1 and Q2 is dominant pole. II is at lhc frequency of 3 MHz. Chapter 9-1 Ar:.:::: A ~ 9.1 ,., = ----- = (.i)A = 0.8X 1000 IOO 1+,.~ ~· -1 = t.t~q lOU • + (0.099)(800) -- "''"'5 "·"'' ~ ~· 9.91510"' -0"'"'"" A 10 .~~ (ii) A = 0.8 X 100 101r - = . . .•_o_?» . _______ ~p ~ "" 9.7~; 10 : 'lc .~q luu = SOV IV + (0~))(80) = Ar "" l I 4- tol. ( ~·'\'\ x to'"3) :' Cfll • qq - ( eti ~ = SOOV/V 1100 l J qttq :=!J> ,. .. A :::.to "!I A = 9.756 = -2.44% (iii) A = 0.8 X 12 = 9.6 V/V - li "'c At = 9.6/(1 + (0.0167)(9,6)) ~ "" 8.27 8.27,; 10 = -17.26% "-= 9.3 All OtA.tfUt Vel~ i~ ~ b~clL 9.2 (a) Replacing the op-nmp with its equivalent ~ circuil model: = loo I -::::: 0 ; • ~ ::..l .qq +IODXl I+ Af' = \ + \ooxt -:::tot V0 ::: o ·C\ q '4!. = o .qqv Vi =Ys- 'Vc~ -=-1-0·~'l • A == qo :::;:. lq. = qo =4o.tdS -::::.. IOM'/ ~ o·qsq \+(\011.1 ll Air- o ·'ti-1- o-qq c:. A~ - O·tifi - O·l Cfo R! c.c}{:l. (b) R 1 = -'" Rl + R, 10 k!l, A,"' 10 VIV, what isR, if: (i}A"' lOOOVIV A I Ar = 1 + ~ = --::----..__, ~1\ b..t. Wl~\Vl '/ l~~) -::. 0· 01 (Q) ~(I -+-'/Aof) Jt..%- W~ttr. )( .X. l1:rr l~o! A 0 ~::: '/(i·OI = too M0\\'a 4H> n; b I<. "Soh,-tu)II\S • Ltt Au:=. lo 'i' ... Aof> =too ~ ~::. ti i l A •··•· 100 V IV _I_ .• J_ = ~0 13 9Ull kH ()J)99 (i = !:.2.__ 1-t-f.ot!> _I, - _L = !).()99 !OJ.! I K 10-3 {},) kt< ~%! f>rofJ"' '/o·OS -::: "Z.i:> lt.t Av .... ,o.; "}r.cf.>="2.o ~ ~::r1~io"' (G) f!ov IO%: Ad~-::: 1/o·l -::... 10 lt.t Ao ~ I o S' " Au p., -::. 10 -=:!!:) (d) :J!t,i ~o%: A,.-.:: 1/o·) -:: 7. ~ -: lo- 4 Chapter9-2 letA 0 •1o~: Ao~•'2.,. ~t«o,. Ao fb=-::hlo-S ={I o11'"/{1Ao) = S"oo AF l+/lo11 G to Atf IOo 2o lo ,, .e, J + f;aoop., S'o '2. 3 -!> I IOf AF • Ao ._ S"ooo 1-+t,. '21 = 10 : = Goo 10 O•OOib- "U::otl8 9.7 AI,=~=-L=IVIV I+ A 0 ~ An = I + An /x = I+: I+ 0 0.5 X I An= A 13 -.!!L = I+~ 2 = 0.667 V/V = 0.5 V/V {b)forAo= IO:A11 = ...!!!_ I +0 = 1+10XI=0.909V/V 10 An = -'.Jl!!..._ I + .!!!Q 2 An "" I ...!!1!L = IOOVIV 1+0 = 1.96 V IV 9.8 !~oo = 0.99 V IV (d) ForA.= lo': A11 lo• An=-= 1 + w•12 An = IOVIV 1.6V/V (c)ForAo=IOO:A 11 = • = ...!!_ 1 + 1o• • = .lQ_ 1+0 A,= '·' 104 V IV 1.99VIV 25;~ AI .. I%;M = 10% A ~ I iM 10 AI= I+Aj3·A~I = ~~Ap =9 Since At= = 0.9999 V IV lhus -"-~25 I+PA 13 = ..!.. = 250 = _L-+A 1+9 = 2SOV/V 0.036 9.9 9.6 A 0 : :1.11'1 v ... I J .., = 25:~ = A1 I%;M = 10% A ~ = _I_.M~I = __!Q_~AI3 = 9 A1 Since: I + Aji S''f48 $"Gl)O('f/~)-=q: rq.oa~8. Aop • 0 ::s p :s I linear (a) For A 0 .. 1: : Thus:~ = Ar -c> f!A "' _ I _ . i!.~ -->5% I + j'!A A 71.43% l + f!il co> 9.8 A0 I+ 2A 0 Tl A A I-<- [M 14286 ~I+ 2Ao " - 13.286 1428.6 0.5 = ( 1 1 ] "' 10 --- 9.8 A0 [J__J_] = 2Ao 9J:I A 10 0 1428.6 VI V IllS, >' - = II) :.p =_1_-.L Then An = 13.286 100 A + 2A 0 1l from An: I + A 0 f3 = A,J9.8 Since Ar lAo l gainis:A ""A'x1 =:> 0.0093 .JL4~ -+ flA = 141.86 2A 0 :. 2A 0 [..!._i.] "' 2-1 9.1! 10 = 490 I + !3A 100 =~->A= 14286V/V 142.!!6 14 1. 86 ~ 0.00993 14286 Following the same pnwc•Jurc: IOand i!A 1 !A 1 5% if A 1 and f:\ = [..!._- ..!_] A I •· A 0 · 9.8 [:\A = 13.28(> hy 1% l:t~Ji() = 7 if A 1 I\A I!} 0_ If (! varies by :!: 1% th<.' worst case for A1 is if :md i!A .•! A, '~ 20.41 v /v 0.5':"<. 14U\6 1423.6.,..., ,, .~ 1423.6 7 20-Hl'J V ,y 48 490 9.8( l + A,_.f31.0l) = Au 9.11 '.U! ( I A!S) = t\m __;L_ s4 1~\ 48 1.01 ) + Au-c490 13 Chapter 9--4 9.13 A1 '= ..hJL_ .f~ =- .fh I '= -r fL/( I+ Avf>) ;:: 1~-~ If V,,1 L1-+ Aof3) = 98.89 and then A 2f\ - v = 0.09899 If V Nf = :t I mV ,then A 2 13 13 lt111/ru-::: 10 H.,_ =101!.)(10 = :!: 10 mV, A, = 10~ IODf3 = loo;ro :=. ro Aof->) :. ( 1-+ = .JgQ_ _ : I0 Aof3 H ::< A, = 10 [OOl(H?: K~, fl = 998.89, and = 0.099889 9.16 For an 8fi loudspeaker and.f. = 100Hz to..!.=> A/10 = 99 10 I+ (iA/ 10 Compare these two: f:IA = 890 f:IA + I =>A = 100(1 ~ 13 = 21T~C ~C = ft.= 21T X ;00 X 8 = 199 J.lf A 1 =_A_ ~ l+I3A -> c= 891 = 89.1 X 103 = O.ol A = ~ - 89.1 X 104 I I + 1013A - whenA->oc A 1 = = IOOO = 100 I +I3A 10 fq =/,./(I + (14) = 100/100 = I Hz Since feed-back reduces the effectivejl.,. then a smaller capacitor C can be chosen for a larger value off,. IffL, must now be 50 Hz: 1.!. 100 = + I3A) 89.1 x w·' when A increa.'ied 10 time.~ If feed-back is used and: A1 = 10 VN, A= IOOOVN 50= = 100, when A reduces Nominal _A_ I + I3A 9.14 =*f< =5KHz= 21T X 8 X C 3.98 J.lf = IOO.IO 13 9.17 A, bas/., high, A, has A 11 = 10 VI V with fL = 80Hz, f 11 = 8KHz. AF = Require = 100 A,A, I+ A 1A 2 13 f 111 = 40 KHz = 8{ I + A,A,13) :. I+ A 1A 2 13 and A,. = = 40/8 T AA 9 · 18 =>A,= 9.15 1+8900 l = 100 = 5 = 100 => A 1A2 = 500 500/A 2 = 500/10 =50 I +A,A,13 = 5=>13 = 4/A 1A2 = 41500 :. f:l = 0.008 = f A,13 • I + 0.9A 2 13 8.88 Substituting in (I): 0·9 Az I + 0.9 X 8.88 10-> A 2 thus p = 8 ·88 = 0.0888 100 Using the same procedure: = 100~ V Dead band with be narrowed by the factor I + Af3 = I + A since 13 and since A>> 1. 1 +A_, A :. new limits are :t 0 ·7 = A :!:m = 100 - + 7 m v Chapter9-5 9.20 gain 5 A A ~At·"' _A_ 0.99 J New slope""" gnin ""· A1 "" 1 ~A ·""'>~ I+ 100 + f3A t+(·~) R 1 +Rz when: A>> I -'>At - R, + Rz - R, =' 0.99 For: A 1 "" 100 V IV. A "' 10•, R 1 I kfl HXl "" _ _..-:;.10::_4_ __ 1 + m•x~ 9.19 A.-:: to" { St>l.tt.t lU"Wt.t-f 'M) f-o ~ · % ~ iv. gl(i-,.... l>tJ ~cfo1' t~! to 1-+Af!> = to ~ F.> =~/to~ For -r;,., ~7. = I K + R1 NtJ('If 1 ::: 10'1; 1=-·0t' 1. 1 -:::. to~: A 1r- -::: tJ-Ito = to lu~ H· td( 'll(o'\.) to?> -? l + _1_0_ "' lOt m-' + R2 = 100.01 '-">R 2 k!l If we use the approximate resuh for A 100 "' l A1-F ';:: .!!__ 1-+ It{!» ------ 1 + R~ I K -? R, - >> l 99 kH If R 1 is removed: lo·qa =. 'Off t=. - - - 9.21 (a) If R2 and R 1 are removed and the mmsi~tor gate .is gmunded 1hen we have a CG amplifier Thus: A g,. · R, Referring to Ext•rcise .I (!_6, the cquivaltmt smallsignal circuit for Fig 10.1 e is: The mnmmt of feed-hack I + g,,:, R!!~{!_1 R, + /?. PA is: Chapter 9-6 R 1 ·Vx (b) For a CG amplifier (with no feed-back) (c) To obtain R1,, consider the following circuit s .... = g,.R,v,+~+Vx R1 + R 1 R 1 + R2 Ro => l.v = g,Vgs v, {g,.R 1 +I+.!.} R 1 + R, Vo Vgs v, = R 1 + R, but V 1, = R0 R1• = llg,. and R 0 R, + + g.,R 1 + I + J.. R, + R2 R0 Ro v, R0 => R r • Ro = --:::--:;;---"---;;-- g.,RIRo+ I+~ R1 + R2 R1 + R2 Vx . R;nf:- t, lx SonceR, +R,>> Ro-t R1 = -s.v,, (Eq I) R0 Vo = lx·Ro V0 R 1 R1 Vx = R1 + R2 R1 + R, -V,, + V1 (Eq.l) (Eq2) Ro + R, =0 Ro BmRIRD • 1 + AP Rur ; V1 = - - = (lxR 0 l - - ~ to re-IUTBnge let's multiply by R, 1+--R, + R2 The output impedance is reduced by a factor of I+ A[3 Sustituting Eq I and 2 into Eq 3: Vx = ~ Bm 9.22 + lx R, R 1 R, + R, (a) A positive change in Vs results in a positive change at the gate of Q. which in tum will cause I 0 to increase, causing a positive Vx_(l R,R,) => ~ + R1 + R 1 g: Rearranging: R1,1 ; (l.Xt + 11 • Ro R /1,. R + R, 1) change is v1 1 Thus R1•1 = R,. (I + Af3) The input impedance is increased by a faclln of I+ A(3 To obtain R,1 consider the following circuit: s Vs I 'o~thisisCS I t degeneration! I I Chapter9-7 II .. +•,.. .+ - -·~ + G ..,; R. -~ . R 1 ""' g.,R· 'o = -IJ,Is RciJecting '•:t andRE towards the tmse·~ But: fi2Re »Rc ThenifOJ'I!. most Of 11 wilt 1JoW thru Rc and V112 win be: VB2 d) Ar ""· t: fM . .,. 'e2 > r,:i (e.g .for (R~: !t fo R,+Z:+RJxR "'!t = 10 lc .. I mA, P = 100-+r, "" .25 1 R11 R 1 R 1 + R2 +R,., fl) Then: Vo:: -P,Rcls Vo -p • R ,.. A = -.,. 1 Is c To obtain A, removeR 1,R2 and Rw and ground To obtain p: if the signal voltage at the input is the negative input of the OP-AMP V 0 = ! 0 ·RL nearly zero: '-~F V 0 = p.V1 ""JI.V;=I0 Rt. -+A=!f!,.,J!:. V; A I RL "" _A_ = (1£,/Rd !+PA (RR) I+ R,~~2 (p.tRL) ,..p=!.t.=-1 Va RF To obtain A 1: At the input side: . . R,+Rl I If I'JA IS>>l ~A,,., RM. Rl::: ~ 9.24 The equivalent small-signal dreuit without the feed-back resistor Rf. is: 1,, = ib 1 + ;, ib 1 =Is- i, AI the 011tput ride. after rellecti11g the emitter resistors towards the base: Chapter 9-8 For 13 100, Rc = 10 K and R, = 100 K -IOOX 10 K AI • I+ (100 X 10 K)/100 K r,(fl-,+1) -90.9 X 103 VI A ,-...l---..,---oVo - t = ;,.. since~ v5 -o 9.26 Recall that: Rc << (:l,R" R, << R, -t R£1~ 1 << R,-(:1 2 -t Rc << R,-(:11 Thus: Rc II {((:1 + l){r, + R, II RF.ll Therefore: Y,:: -(:1 1ib 1 X Rc and Y 0 = to"!,. 2. ... 1+ 2,fo3u·J = -R,i,--ti, = -Yo R. = 9.27 l#r-c.. &-) =..v 0 (l J'!. o 1$ folriUfd ~ GIWI.\Otot'l'lt ~ f!?o R, which is the name result we would obtain from substituting A and 13 into: A1 = A/(1 +A (:I) = 100, Rr: = R£ = 10 kfi A-6 ;:. 7q = 1!..t¥ {I+Af3):::.t!l\)t8u:: 9.28 R, = 100 kfi A= -IOOX IOK =-I X IO•VtA; ~ -10• A,. = I + 106 X 10_, = -11100 K = -I -90.9 KV/A X The derivations are also valid for the case when A is a function of frequency To obtain Z, 1 and form: z., A(S) 10_, 9.25 To oblain A remuve R,. and consider the z., = small-signal response of the resulting CE: -1311 • Rc=<>A = V0 = v _Q I, = -(:l(Rc II if r 0 >> Rc=<>A:: -!:IRe If the voltage at the input is near to ccro volts =<>I = - V o -t I R1 A AI = I p, = !.£ = .=! Y0 -!:IRe + " 1 A = --ri'jf" ,.. I+~ R.- R, o{ -fo/db4cL i:'-, (t+Af!)=So + 13 1 = -f3 1Rc·l 5 R, Vo -f3,Rc ~A,=-=--Is I + p,&z (:1 'i·'l5 'v -!f.u_,- i,lRc = Rc Vo = -P,IsRc-PoR;_:Yo If (:1 1 p I+ 1>. R;! -= 12t (I+ A~) I (a.o1) -=-ao1 K.Jl. l?.o~-= F4>/{t+Af.>)= I/21JJ,. 4'·~75~ = -(:l,Us- i,lRr again, since we <·an neglect r, Y.:: Y 02 AJ: =_A_ = R<. ro) Ro 1+~~:~ I+.£ WH we must replace A by its i~JL Chapter 9-9 9.29 To obtain Ihe equivalent circuits: z., ""' R, A,~ h' h --'· R, + 5 w •e correspo•...,. to: V 1 = h 11 11 + h 12 V1 12 = h~ 1 J 1 +hnV1 1+b)y 11 12 +o-----o---.o.AA.~+-0 •. R, he = ~, Vz /,, 1111 (b) j{ 1-'-~ -Rz ~ "~ Rl + R1 \', Rl + R2 -~ v, R, R2 =c>- = NA J ~, - Ro R1 + R 2 !;I.,, h22 _L + (Aofl! R,i)_ ~V/V ., ·o R2 1111 '• R 1 + R1 (I J- I = u 99 13 =>R1 = R 1 !99 = 10.1 !l "'" Thus /1 11 = lO fi; 11 12 "' 0.01 V/V (c) This is equivalent to a circuit uf the form: z,,c_~>---->-.-I.-,)--.t,. o--- R = I. I ' L _ _ _ _ _ _ _l ~ 9.30 Ro IV 11 A.,f:l RoJ ::: r = tooo l+ l t+A.~= toooftoo::::lo Ap = ~ :.. (oo _ IOV/v 1-1-t\£, 12o{ IO "'-"> eo '::: ~ -;: q.q.Jt l+A I+ lo4 Chapter 9-1 0 9.31 ~: = ~ (a) If the loop gain is large R 1 +Rz = J..-+V(} 1+10 =! •~ tl V5 (b) To. solve fori., ~ r IIVN + i/1 1 "' i0 -· lz Substituting and. re-organizing: i,, + 1.7.10- ~ "' = I I {4•J 1 )1oo 15501"-Afl/ _ 69~}'Av a) Transistors Q, and Q, are used in CS configuration. lberefore an increase in V, causes the small-signal drain voltage of Q, to increase, followed by a voltage increase at the drain of Q,. Transistor Q, is used io CD configuration. An increase in gate voltage at Q, result~ in an increase at the output VD (source of Q,) which through the voltage dividing feed-back causes V1 to increase. The feed-back is indeed negative. lj,.-,4 -:: 1.r~ 6o(t'l.CJ/•) ~oo - Zt:l1fil,w.Av ~IV).,_ r-o, 1-' -= "" 7..'fr, or;~ =- 1oz. -=- '2-4 /too ~ bq;rAfv 'L4e K...n... -==> 1.~ ):::Jt ..: '1Jr- /1 OlJ ~ "2.4-o t: J1. '(0 ?> => fo 4 -:=: '2-4/ ~IX) 10 s -::= 24/1 oov ~ £.-4- I< ~v ~.Jl (e)oFt'"'r ,a·~ A~ ~ "'l!:t~~U103)x 1 [ ~ (3~t)C~;*) b) If the loop gain I + A~ is large then Al3 » I A I R 1 + R, A1 = - - -== 10 : ~"' 1 f-ot] I+AI3-J3 c) Find DC voltages : V"' - V, : .. A ~ ~t (<•1-lt\o~) =t;> A-:=: 6'J3:acl'l.u X t•F3:: 'b-#- =l : AF::;:. ~ :: I+Ap. R.o::: = 0.7V. Then: = V Sl V DC - V G.-:.IEI·i ~f = Ru / (I +1-{1:) == V 1, . -4 Vas == V.,.. + V, for all transistors jV G•l = 0.2 + 0.5 i4 "(ot;; llros- ::: 1l...f-=- = --· R1 +v '/5'·3 rt..fM R4 u•. s ::- -5' = 12 /lfrt·'it :: 7rt}..JL IV ovl For source / 1 : jV 0 ~ = 0.2 V = V 00 - Vc 2 = 0.7 V 1,: V., ==Vm == 0.9V /,: v... = v,., = 0.2 v. d) obtain the A-circuit Load of feed-back network atthe input: R 1 II R2 Load of feed-back network &I the output: R, + R, The A-circuit is: Where r"' == r0 is the output resistance of the current somces Chapter 9--12 9.34 (a);,.. = l,.r. ;., = i., = i = i.,. =50 J.LA :) im = 100 J.LA 01 i,. = i"' = 250 J.LA For Q,: 2.5 V - 1,,. X 80 K = -2.5 V + V0 .,. = -1.5V. = 0.25 v VGs6 V. + V,. =0.75 + 0.25 = I V Gain of each stage: Allg.'s = 21 0 /V 0 v = 2XO.I m/0.2 1 =I mAN = v.n, = 1010.1 all r;s ForQ,:Av 1 V5 = 'os> s I+ g,. 1R5 Rs = R1 Rs = Vvc' = /1,.,11 (ro.JJ II ~·(r 01 (1 +g,. 1R5)il Val= II v., = m = 100 kO lref = 'os); = ~J.L.c.,(i).V~•· (w) co.25r• L • 2 R2 2 K II 18 K = =>(~). 1.8 K and I +lim R, 16 T For Q 7 and Qs: =>Val= !...!!!((IOOKX2.8)IIIOOKJ 2.8 v, ¥ 107 = 100 J.LA -t (~), = = 26.3VN ForQ2 : 108 = 250 J.LA -t (~) = ~ L 8 I For Q, and Q,: rt)l == rm lim>= 8m IDI.l = 50 J.L -t (WI L) 1•2 = 16/1 V Gl = g !£ = I m X 100 K Vm '"2 2 For Q, and Q,: Since J.LpC., = ~J.L.C., and 50 VN 1,.1 = lm = ForQ 3: Av = _ Vo _ vGJ - ( 1• 2 = ;gI v.,,.. =ov Since: V01 '= VoJ =- Vc;) ... =?( 2.5) V - V sal- 0 RL II RL) +...!.. gm V GS! = 0V VGsJ = V,,=+0.75V+0.25V =IV where RL = 'os II (R, + R,) Av, - 1M For Q5: Transistor Q 5 must be sized such as 'o (ro I,, = 1 = 2 X (~) ( ~) L l.4 L (R 1 +R 2 ) =lOOK II (18K+2K) = 16.7k0 For a common-drain amplifier: =? 0.05 mA 1 = -1ool-l - = I + 1.8 = 2.8 r0 sll 8~ K = 100 K 0 16.7 K 100 K II 16.7 K) + I/ I m = 0.93 Find the overall voltage-gain: => V ass = 2.5 - VSGl =v•• ,-V0 . , - => 250J.L v,. = 1.5 V = 1.5-0.75 = 0.75 v = ~ IOOJ.L(~)s (0.75) 2 A = Av; · Av 2 • Av 1 = 26.3 X 50 X 0.93 (b) The common-range is the range of commonmode input voltage in which Q, Q, and Q, remain in saturation. Q, and Q, will enler the triode region when: VGI.2 ~ VDI.z + V,h = 1.5 + 0.75 = 2.25 V Q. will enter the triode region when: VGl.2 VG1.2-Vrh+VGSI.2= 1-0.75+1 = 1.25V Thus. the common-mode input mnge is: 1.25 to 2.25 V = 1223VN (e) Find fl: 13 = R 1 :• R, v; = V (0 At = 2 A I + Al3 2 + 18 = O.l = 1223 I + 0.1 X 1223 = 9.92VN which is - ~ = 10 as found in (b) (g) For the common-drain stage: n (ros II R.:.l. g.. R, +R,) =I K II 16.7 K _ 500 1L .~ .. , - 0.75 =9440 R - 01 - Ro I+ Af3 Since RL (c)Findgm:llm = 2/11 = IOOf': = 0.4mA Vov 0.25 V Q~: Vov ~ VGSS -V,h = VGI- Vss -V,h = 2.5 V -IV-OV-0.75V-0.75V 944 I + 0.1 X 1223 = oo => Rout = Ro, 7.66 n (d) 0 _67 mA v 'o = VAllo 10 so J.L rIlK = _.!.Q_ = 40 kO 250 ... 200k0 Chapter 9-13 (e) A-circtlit: v,~ Gain: For the nctive-londed differet\tial path: A, ·"" g.,(r,lll OA m rOt) "" X 20~ K IK = 40~ I + 36.4 X 0.0725 Excluding RL: For the common drain I' r -- 051 stage:A 1 "". (r,,,!! r,..\1 where R'L = ~ A2 = Rovr = 11(.J...- ---1-·) 275 lOOK R' '- = 276 0 R'L)+J... 8m.~ + R2 ) RL (R 1 = 22.2 kH 40 K!l 22.2 K 1(40 Kl! 22.2 Kl+ --,· 9.35 = 0.91 R67m Total gain; A 1 X A 2 = 40 A X v 0.91 36.4\i If _J_ _ _I__j_ __l_ 10~ v A1 A 10 36.4 (a) V, is taken acros~ R,. If V, mcreascs, so docs the current at the output of A, and the voltage at the output of A,. It follows that Vo increMes and a portion of it is sampled by the Resistor divider R, I( R, t R, ). (b)Refer to circuit diagram. {c) A-circuit A _ Vs _ ( - v~; - ·.·•. 0.0725 .82 K 82 K K + 10 K +9 x (20 x (20 1~ 2on x ( R, I -----o V,, . I! _ ) X ( 20 X 5 K ) 90 .3.2 K + 5 K _100 K n 1 K. _) I! I K + 1 K 100 K ---'1/VY- ' A "" (0.82) X (I:!· 19) X (200) X (0.5) A"' IOOOVN R2 I + Af~ 10 K ~ 0.1 10 K + 90 K = I + 0.1 X J()()(l ~ 101 {e) A J = __!_QQQ_ = 9.9 V/V 1 + 100 (dl f1 = ~~ = _!!__-.,___ R, + R 1 and R, + R 1 "'* R 1 R, I f) '" * 100 kfl = 0.0725 >< J(J() (t) R; = 82 K + ( 10 K ton K • 7.25 kH _L !I R; 14.3 K 11 R,, 15 K 90 K) +9 R., "' R,-(1 +Af3l '' I()()K(!OI) ""'HU MH K- 7.2:'\ K = 92.2:'\ kil g<,.";.. II =lOOK For t!w common drain ,;tage R,, • 21s n I kH ~ 10.1 M -- 9K:-IItl M!l K Chapter 9-14 9.37 8 100 K ft J K) _!!g_ = 500 -sn I+ AP 101 - Ro "" (g) R., = W/0 R, : Rm•r· "' . (h) If ht "' 500 fl (I K '"' l . 1- ""O.IAN To (;blain ·"" 5.02 fl .l liAAIJifAislargethenA1 =~ {a)A 1 = li: 5 -IK + 100 Ilz-?fut "~ 100 ><101 f -'-~ 1+50 ""· ~ won IOO!l ""!A,~A ""'JOOO ~· 500 2 2 (i)ifA; A Rs:, Rs, "'HU KHz ' 9.89~/.9 = 13 = ~ ""· 98 Ia 13 .,.. == -Lot% Rn 100 X 100 Rs2·Rs1 + Rf· + Re, 100 + RF + 100 104 = 200 I RF u! "'o.t-tR1 =soon 9.36 13 A = li-M -:: :; too""' ~/v ,.-.~ = , t\:7 ll A-61re4M.t R~-z RF 800 V• - V' t - I lu · - ---- lV +IO+Il> Gnt v, v. 1I 3 : -::" I = (OCJ ~() .'2% v, , MA (OO+{o+l>·l A= IZ •l -:: ; For the first stage: V 111 -g,. · Rm _ -::: - + g.,(R5 R R, I Rd ,, f2 2 -:::< Vo, = -294 VN V; . Vrp V = -g..,Rm ..Q. 0 . 21 ~Jl IICI·/I'<..Il = "l 4'S. 4 KJt t: RIH = 10 K (R51 lJ Rr I Rsl) = 90 !l For the second stage: 17...0 • g f::..JL -;! fl.o1 == 12-o (I+ A f7) IZv" t ';: : 12of ~ Rt.. -:::.1-S'l~ +~·'ZS{O· l) = "?:>€> ~ fZ I (I .. Af-o) + ~·ZS I 12' s. "" IZ. ,,. + g., flo -:::. f2.t. -+ flop I Suhstitutipg: g., "' 4 mA IV v,· I+Afl' := -::" 100 To obtain A: V; - Ar =- --F---A rl i. 1000 Rs~ 4-3 '3 . 4-~..JL Q -4x 10 = ~40V/V Dl For the third stage:!.£. -· 1m Vn 1_ - VcJ l/gm I R.s:IJ (R" I R,) Substituting g,. " 4 mA/V (R 5 ~II R.n I R,l "' 90 .!..£.. ~' Vn~ 3 mA IV c n Chapter 9-15 For the third stage: Vm _ Vsl Vm - Vm Combining the gain of the three stages: !.£ A = = -29.4 X -40 X 3 X 10-3 VI R.nU (R,+R51 ) It g.,+ Rs2M (Rr + Rst> = 3.53 AN (c) 1 + = A{! ""· I I 3.53 X 10 "' 36.3 0.265 V /V Combining tbe gains of alllhree ~~~: AI = VII "' _A_ = 3.53 _,. OXI97 A IV Is I I Afl 36.J A = Vo = -29.5 X -40 X 0,26S Vs The design value for A 1 is 0.1 AN = 312.7 V /V ~ = _0.003 = -3'*· .4J 0.1 (d) Rm =r 03 I +A~= I +3l2.7xO.HI = 35.74 (f) To change A, ruch as it gets clo~er to 0.1 .iiiJV R, must be reduced. this will increase both the ~alues ofAandB R.,•• l = (I + AP)R,. =(l + AIJ) (Rszll + [R.,!! (R, + Rs 1 ll + A!3)R,.~ ... I roD .L = 35.74 X {90 I 20 K I 250} = 2.35 kO "'· 20K+90 .:::20Hi R,_ =Rot"" (I Rsl + R,) = 36.3 x 20K =726kfl (e) Jf the output is taken at v.~ The feed-back network changes to: :-rv· R,. fl = 8001~}100 OJ ll Therefore the A-circuit changes at the wur.ce of Q,to: R,. II R, 100 ~ II 800 ss.9 n 9.38 13 (a) The circuit: :~~·}""": ' 1R,-ur z",:[or. tR,nr.,)l,, .f - __ A_ for Al3 >> 1. l + Afl 10 mt "* 13 = 100 '\r! -fi if n 1oo.5 n (b) The A-cio·cuit: For the first stage: = -29.5 v rv VJP For the second stage: --;-'l·m = -40 V / V (l!nchangedl p. ICW)OV/A g.,, 2 mA!V r,, 20 K (C) Af1 ' P·.'R., = ro(l + A(3) I I (e)Ro '" + = 20K X 201 AP 201 = 9.95 mA/V v, = 4.02 MO 9.39 V.a= v, r ...lx·R, R, + Ru + '• + g.,V.r., = l,y{r., v11' = ib· r, V5 + (R,II r. + R8 )} r, · R,. V x- R, + RIJ + - gmr 0 V • = ib(r. + r0 ) => V 5 = g.,r 0 r.ib + ib(r • + r 0 ) rr:g"'ralx => ib = Vs g.,r0 r.+r.+r 0 and: .!::! lx = ro + (R,I '• + Rs> R,n > r" then: R0 = r0 + r.{ I + g,.r 0 J If R0 = 0 and R, = oc: r ib = 8m, and ir0 = ib r.R, ) • 8m'oR + R + r ' X R0 = r 0 = B " g.,r .v, 8mror.+r11'+ro + g•.V. =(I+ g.,r.) · V_, Rm'o'• + rrr+ ro Chapter 9-17 9.40 .------.-~..0 Vx !t ""'. ~ = lx R 1 • RJ 10 R1 -~ R1 + R3 1 if A j3 >> I '-"-> Ar - - - r~ R +R +R I 2 l R,RJ ""· Jf A · = 100 m~ OJ = 200 v, 1 + R2 --t + Rz 100 X 100 V soo n ~· Jl ,., 10 A-circuit: V • "" -lxr~ v~-g.,.rar,.lx = v.r 1 = = R0 ly(ro + r ..) o>----~o + V; Vs rn + r, + g.,r0 r, X = + r~ r 0 {1 + g,.r.,) = rrr +roO+ h 1,) 9.41 For: g,.. 1 = g,. 2 = 5 mA!V. 'm = assnme R 0 20 K, I kfl A ~ fo - C R C ~ v,'f ~lrtl O~HJ!. )'m~ gmlgm(.R/) I 16.67 il I ~ For gm = I mA + g,.,R, R1 X 10-'~ = Amounl of fee(J.f:>ack: I 16.67 rnS v __ A_ R, 1?"1 tO'""' A = 999 ·" 99.9 = !() 11 = 10()0 X 9'l.9 .::o109 X !0 3 V /V = R,( I ! A(J) ~~ and X 10 __, · 100 = 2.67 l6.67mS ,, 625 mS I + AIJ 267 N,fl(r,21 R 1 ) = 99.5 tl ,'\ 1 I K + 90 1090 + Aj3 ~ 1000 i.e. liOdB 100 !l + AIJ '' l + 16.67 A=~=~ = 99.5 !l · 2.67 " 266 R, is dcg~ncrmed Ro r,_, I· by R 1/I(R 2 + R3 ) g.,.r.. [R 1!/R 2 + R,l + [R,I!R? + RJJ 50 kH + 90 H + 4.5 U1 n R,.,., = R11 (l + Afll 5459 k!l 54.59 MH 9.43 I /II 9.42 ~': l f)::' I,, OJ{ nu\ _-!,!,,!! g,l, lo, 2 X O.l m fl.2 1 mi\ 1 V n.x 2 :.m ---- 02 X mA!V 20 fl. 1m 20 ' 2:'\k!J lUi m O.h V Chapter 9-18 9.44 (b) (a) +l2V t (iii+ 4.7K -'ttJVv~,_....--o t)/B + 0.7 m Vc ~ J31n (c) A-drouit: Vo vc "" 0.7 + (ltl + 0.07)47 "' 3.99 + 47 1b 12- v and~ g,.V'IT = (IJ + J)/8 + 0,07 Solving both equationsresults in: I 11 0.015 mA To lindA: l,(«sR R 1 U r,.) = -g,.V. (R1 !1 V0 iv =)A = v, r ~ "' 1!. g., 25m = R R,l = -g,.iRrll R,.) (R,!i Rri! g., "' lc = 1.5 m = 60 m~ V and r~) ~~ «••. 60 m Vl Substituting: A "'- - 3SlU k!l = «,n «,II Ro = R,Q R1 r. = lA kH = 4.27 kfl = ...!!2__ "' 4.27 K I +At\ 1 162.2- = (e)A. = ~:i! 1 Is . Vo I v;Vo -_ t; . 14 47kfl -41.6 K A + A(1 ' 1 = _iS_ I+ Ap 1 ·'~ K ''i\6~ n -4.16 VN "'ifK -4.7VN (a) if A J3 >> I =>A 1 ::: =::: Vu t, -353.7 162.2!! -~ with jJ = '' .. K63- ·-41.6 Hl R 495 l +. ,,,_, ''' = .,.11:> o ' A1 I n 9.45 = --=1._ A<> ,., = 358 47 7 = 7.61. t64.87 Is. Rs Vo _ -47 1 = 1 iO'K = __1_ = ·--1- " ' I I I 1 495-;;; R.,, -If,_ """v,- W !L "' .::! Vo R I if A{l >> I ""A 1 =-47 kH (d) To dcteTIDine {l: p = = 495 fl. • 8.63 «,.= __I _ = I 1 R,, -~ ..!.Q2. "' 1.67 k!l R, Rc ~ Ro :::: lc::L5mA:mdVc"' 4.7Y V,. "". R1, 1,~. for\!""' JoYy v, •h) ;• r, R, -R 1 Since V 1 = R<: ,~> ~o s = ~R5 -Rf lkl1=>R1 Hl' Vi V R,,; 0 ·' 100 kH l kfl 10 K. R, .. I K :J -R;£ R1 lOk!l Chapter 9-19 = lOOft R1 = Ruft R1 ft I(~ I "' 901 lOll ""' -!J.R, . (R~>.ft Rt) 11 'Q + !RrH RtJ = V., A , -103 X 901(10 K) , I K + 10 K -lH9ldl AJl "' !!_!2 ~, 81 9 10 ' + AF\ = l 82.9 A = _A_ = -819 X 1 l +AIJ 82.9 \'o -- - 9·88 v~- 101 -9.88 kH -9.88 V /V -,- io lind R;.: Since R1d is large Rt (Eq 10.58) R;n:: --; 11 p.' "' _!"(Rrll RL) r0 R ,. + (R1• II = IOK = II 909 = 9()<) RL) n Since: R, >> _ _ r,._ R I R + 11.....! R, _&.~~_!Q_x!=tun '""- R, r0 '" (c) f 11 11 0.901 I IOOOH JJ. = 1000 I kHz=> fur = =I K X &2.9 ~" 32.9 k!J1. I K( I + !\j3) n Chapter 9-20 9.46 (a) V ov = Vas- V, ~ V as 1• 2 Yov = 0.2 .!. + + V, R1 + o.s = 0.7 v g,., ·'or· (R, g,., + (R, H (1/ g,., · r 01 (R, U 'oz) lfwe define: IL = Va, = Vasr = 0.7 V = V as 1 = 0.7 V V02 = V o + V asz = 0.7 + 0.7 (b) /01 =lm = O.S mA (II Vo = 2/ 0 -t g g vov ~ 'o = I ~R., = 1.4 V v. T,;-t'ou Since R1r 10 = O.S rn = 20 kfi R, + IL I II 'ozl ..!... + (R, II r02) 1 + g,.,ro,(R,. g,, v,·(R,H R.r = 1 :~li Since: R., 'oz> _ -g., 1 • rOI(IsR,)(R,Ii 'oz) RL = - R A R, = -g., 1r01 (1 5 Rr} I! g.,,+ (R,II r 02 ) 0 - R-11...., ' 1L and Rs = oo 1• 5 '" = 15 R, v, v - = R 0R ~R· = _!!L_ = (c) A-circuit V1 n R, _ _ 'ozl) R, - Rra-- - "' I+ IL v 0.2 g,., + (R,. ft I u. -+=~R- 1 = R1 R1 ' = , = 2 x O.S rn = 5 rnA .... • B 'o>l ro,n · R.- llg,.,+(R,-11 'o2l = Yo = -g~, ·'or· Rr (R,Il ~ R••• and = R"' II ltg..,)(llg~ 1 + (Rtli rm)) I/ g.,,+ (I + g,.,rorHRI fi 'o1l Ror = > (3) At the input: I r = I 5 - v R, RF 9.48 A-circuit: ..:..£! ~ Rs Combining v, ""g,. 1 V~,·Rm V,, = -1 5 (R 1 !1 l!g.,.,) => V, = g,. 1 • R 01 (R1 with (I) v,,- 1.. Vu = I,- R, · v,. ~ V R~ \/ v f:· + --:i:: ::::::) -..- - ' ' ' Rs (RFJ! R,) '-"·> V.,c (,IR 1 !! Rsl + " . (..!.. + L) .•, Rs RF :;-:.- -g..,1V,(Rm ~ ~0 v = s Is -+ .-2. R,. V 0..·~~JR" R;·) = Vo !I -g,.~(R 02 II g,. 1 • g,~ · R1>1 • (Rm (4) ~ To simplify let'$ call: K 1 = llg., 1 ) R1 ) X g., 1Rm(Rr II R1 )(R, II U I. I 1?., 1) I I g, 1 l ::_1. ·=!< A' = ~--Rr I + Al3 -g,q · g,. 1 • R 1"(R 02 I + 8'"'·7fR1>1 (R 112 K ~ = Rr!! R, and K, = r0 !! R1 The Eq (\)and !4) become: II R 1 )(R 1 II II R 1 )(R1 II .I !g, 1 ) I !g,q) I R, = ( R r II ~) '· · /? 0 ~' (Rp;o This figure is for 9.48 II Rt) .~.. li and Ra R,) = __!!.:_ I I A(3 anu R,. 1 = R 0 1(1 +AI~) Chapter 9-22 9.49 . (a) Due to the feed-back we can assume that/1 is very small. => V0 ::: = 0.7 V v., v82 v0 ~ + 0. 7 = 1.4 v 5- 1.4 = !OK Al3 I 1 = 0. 7 + 5 = 0.57 mA::: 1,:, •• 10 K '•c (C) 13 = =-=!_ = -IOOJL~ -l. R.- 10 K + Al3 = 57.6 (d) A 1 = _A_ I+ Al3 R = 0.36 mA '1 In = 0 ..36 mA - 0.51600mA leo= I HC-1.\ V = 100 J1. X 566 kfi = 56.6 R "1 _!!i_ = I + Al3 = ~ I + Al3 = 9.8 kfi = 4.16 = 73.14 fi K 58.4 = = 2.4 n 140.5 58.4 = 0.35 mA (b) A-circuit: neglecting r, 1 and r,1 9.50 = 0.35 m = 14 mA 25m V g.,, A-circuit = _I_QQ_ = 7.14 kfi 14m r 1 • - 25m 0.58 m X 0.99 = 43 ' 5 r,, - v., = J., (r.,ll v, n ~~--.--+ R1) =Is {7.14 K II 10 K) =1 5 X4.16K -g,. 1 • V. 1 • Rc · R.-11 Rdl3 +I) Rc + (13 + l)(r, 2 + R, II Rel Vo = 14 m X 10 K X SK X ( 101) V 10 K + 101(43.5 + 5 K) •• -136 V0 "' v., 13 = -II R, V 0 = -1-Lv, (-136 X 4.16K)l, :.Vo =>A= Vo,. -566kfi = Is R 1 11 r.=4.16k0 (R~: ~'')11 _ Rt:li Rr Ar - IRs A 1 + A13 -1-L(Rs = (JO K101+ 43.5] II s K = R,.) = -p.ls (Rs ft Rf) A•~=- .... ~ Is R1 II V 1 = 15 (Rs 97.5 n II I + 11-(Rs R1.) -.,.(Rs I + p.(R 5 R,) !,ll") B + This figure is for 9.49 II II II R,-) R,.)R.- Chapter 9--23 This figure is for 9.50(b) A Then A,. = 1 + Af3 = 100 needed __!.![__ = V0 + I large V 0 1s _ -R,J... = -R, _ Ys - /;V, - Rs fo = CC will cause loading of Rc 101 JJ x 10' = 15(10/25)- 0.7 = 5.3 V .. 0011 mA (6 + 474.4 J x 10' 4!!0.7 K · I c = 100 18 = 1.1 rnA v - ( L - II Rs II II ForS 1: R 1 = Rs, R 1 = :. v, II 6 R;.ll 2.286) = 1.35 K R" v! -..·v; II 104 X 99.4 104 1100 9.51 = 1.5111.5 Vs = 0.13 Vs ForS2: R, = Rc )v• 2.286) K = 1.5 K = (7.5 II r, + Rd to• + I = 100/2.286 K -+43.7 mA/V R,. = (15 1110 Rc R,_ VL = (1/8.5) = 0.11 V 0 r. = (f3 + l)r, = 2.286 K = f31r. (Rc Now A 0 = 1.65 r, = V 7 1/ = 22.6 0. g~ -+RF= IOOXIOK=IMO. RFIRs= 100 We can ignore leading effect of RF in A-circui!. R, _1_0_- V 10 + 15 B£ 1< 15 II IOJ + (4.7 x 100 13 Selec! R,. so thai Rs (b) For circui! of Fig p8.46 (b) V .!. = = 10sf3 R8 (a) To lower R;. and raise R•• , SHUNT· II '• SERIES (b) lo raise R;. and R •• , SERIES- SERIES -g..,R, = -43.7 X 1.35 (c) To lower R;. and R.,, SHUNT· SHUNT =-59V/V For S 3: Same as S 2 ..· ~ v, = -59 V i V 9.52 l'orS4 : Vo- -g..,Rc = -43.7 X 7,5 v, X Vs ~ v. 59 X 59 X 327.75 - 1.488 X 10' Because we have ignored r, etc let us estimate V o I Vs =- A1 V IV = -IOOA/A =>I+ Al3 ~= -0.13 -+ = -327.75 I X 10 1 which is qui!e large. and I +Af3 is40dB 100 = Al3 99 and since A, A A/( I = - 100 X 100 and f3 = -0.0099 R, = Rs II R,. II + Af3) => = (R 1 10.000 A I A + R 1 ) and Rs = R;J = "'=> R, = R 0 R;,,. + R, ~=>I "' K ~ 11 Chapter 9-24 II R~ n lfweassumelhat.!. « (R, g .. rm) !hen we can use eq (I 0. 73) Al3 = p.R1 -+ Al3 = (R 1 + R2) R1 (RziJI.) -+ 99 = R, + R2 13 =For (I) I K -R, "' R, + R2 13 = -0.0099 R 2 = (100.01)R 1 (2) Combininc (I ) and (2): R1 + R~ '" 99 K R2 ., (IOO.OI)R 1 = 980.1 n :=R, R2 = 98.02 kO 99 = 1:':· 99 K-+p. 98.02 K Given g,.. = S = 98.02V/V m$ and r 0 = 20 K we observe that the assumption .!. « g .. (R 1 R R 2 U r. 2 l is not valid (s'm = 2oon) .. ((980.1 u 98.02 K II 20 K) = 92S.S) , cannot be used. Instead we use: _ _ -~~: • 99 K ( 20 K IO.OOO - 200 + 92S.S 20 K + 970.4 = ... = 119.2 To calculate R•• , we cannot use • ) + g.,~r01 (R 1 ft R~) +CRoll R 2J R., = R11(l + Al3) = 11.950 R. = r02 Since: R ••, = R.,- RL and RL = 0 =R.., = R.,, = 9.7 Mfl 119 kO Chapter 9-25 This figure is for 9.53(c) io i:O G2 GJ + + io ~ - 'az 9.53 (a) Vcs = V0~ "" 0.2 + 0.5 = 0.7 => Vcs 1 == Vc 1 Since IG, = 0~ "' V,, "' -lx(R 1 II R2 ) Vx + gm rov •• "" lx(ro + R, + V, v v: 0.7 V I n• = Vsz '"' .· 0.7 . "" 0.2 mA R1 3.5 K (b)g m r ·· "' R2) = r 0 + R1 1 R2 + gm r 0 (R 1 R0 = 1 Vs 2 ""'0.7 II R0 = 50K+(3.5 R0 "' (e) AP !I R1 ) H I4}K+2X50(3.5!i 14)K 332:8 kfi ,, 2/1> •• 0.4 m == 2 mA/V Vov 0.2 VA I0 = _J_Q_ = 50 kfl 0.2 m (c) The A-circuit: ~·, = Is (/? 1 + R1 ) = 555.3 X 0.2 = = _A_ = -555.3 = _ 5 filA A I +A f Vl = -g,. 1 r01 V1 = -g., 1 r 0 ,(R, + Rz)ls {f) R,. """ R,r I!gmz+Rli!R,li 1, 112.06 II ' R5 since R5 = ""=> R,. R,, rol R -g,.. 1 ro 1Ut, + Rz)ls I! gm}. + R1 !! R1 l! Yo~ ~ ~ 111.06 •• --.!!J_ "" I + A(3 R"~'' ~ - g,. · r0 · ( R 1 + R2 ) II g.,+ (R 2 ii R, II ro) 112.06 Rof- RL but RL R.,., .., R.,(l ·~ •• 332.8 K -2 X 50(3.5 + !4) K ., _ 555 _3 ~ 500 + (3.5 li 14 II 50) K A R, = R2 + R 1 ,. 3.5 + 14 = 17.5 HI = 17.5 K = 1.56.2 !l = 0 :::::::> R,~ut ;;~ Rnf AP) X 112.()6 = JB Mll. 9.54 To get R0 : (a) if J.1 is large. 1he loop gain is large the current at th~' t~egative input is - o~ v," ~- -R.,, /., lx --;o Vx r---+~ Since / 1 - .- f,., =-> ~t,-- ~nd I A I r\ (b) A-circuit; I ,, CD Rid ·:::: ."J::· ,f -- i ___;;__~~-~-J" ;! 11/l( 'HI -- s - Chapter 9-26 V 1 = 15 ·Rs =I= = (tJ.· v,) ~1 0 I tJ.·R5g.,·ls llg,. ~A = !_g = tJ. • Rs ·g., Is R1 (c) = Rs R0 = '02 =I 1\ (d) A~ A = tJ. • Rs · g,. A I fl.' Rs·g., - = I + A~ - I + fJ. • Rs ·g., ~ lfr»l (e) R;r A1 ::1 R1 Rs = 1 + A~ = I + 11Rs • g,. ~.!. Ru =.!.+ ... ·g.. Rs R11 = R5 U I I fJ. • g,. since R11 = Rs I R;. ~ R· = _I_ ifr>> I -+R1• = 0 p.. g,. Ul R.r = R0 (l +A~) = rll.!(l + 1J.R5 g,.) R01 = R""' + RLand RL = O~R•• , = .!. + tJ.Rs g.. if IL >> I ~ R•• , = "' ForQ1: This is equivalent to circuit I, =g.,V, v,o--+ _v,. lo .. Vzg,. 1 grn.v., ILB,.z'or I + ILB.,zTor V,g.,, if ILB,.z'o• > I R.,. .. rr.(l + ~A) '" 'o:z( I + fLI'orB.,z) "'IL('r.B.,zro) Wilh: Chapter 9-27 9.55 (a) When v.\ is positive: I,= V, R R When V x is negative: X 1,= v. R (b) When 1_. is positive: H,. = I JJ.(8,.v + Gmnl When JJ is negative: 0 (ifJJ. »I) ~V, = 0 - Rin,= 00 X .----.v ov Chapter 9-28 11/,= I, (c) When R,"" is r 02 11 , 04 ::: 'lS""'v -:: 'l.SOJI.) rc 1 :: 1S JL f),/ ...,A 9.56 N.e.jtnt ~ 2 ;rl!.·r VP..c;; ::: 0·7V ~ '7::: -:: 2 "" 'A Vg. 1 -::-+ o.;y :. ~ ';: ~"?- 14il ':: fl.f ... Jt, 2\.{l'l"'~t 8CA.t' M ~·C. ~p0111W' 1\... V'!, :. !2!.(r.i.lvVs)-= o-i/lor.. :::f!J·07rA rF -:: ~..,. Xe.s +'re.r-:: 0-o( ... O·OO'Z. -; 0• V7'1. .... A to.'"' ~::II tut!.n ~(1.s:o) :t's :::. 4-·7. )(co" r~ VE.l.;:: 0·7 +lOX D·O'n ":: CI·7+0·?l.-:: 1·4'ZV v g, :tc::.'Z. I· 41./r+t~ 1- a. 077..-::: to. '2.n.. A tg-z. -:: Ir.z./ (~t): 0·1 J4A ~ !;_ 2oorA ~ lo' = 1-k"fA.-ff : ::: • ~~~0 ..>< o ·D?!. .,. 1. wv t.s-z..-= 1·41/o.r~o -+O·O(f o::to.r ... A t.Bt.: Vgl- to·tltol = fo.:J}AA = V\;'1 -tV'P..e. V.D -::: to -= AF - LJ - ::- '2.·1/v A - •·", lCIOl :t!. - ;:;,..~ - "j:;"(. b~ICID1 .·.Xc'Z.":.{Otv./1 '=' I·IJ.I-+ 0·1 -lox S"OOJL -:: -1 ~ .--~'---,...(or e1 + rolLIItl.k>) l· '-q x to"!> ,..,,.. 1( 1:~ I ::- f.Gt>r A -toot' A "' c>. oo l.f*. A /ov VE'1- ""0-"7 -+ ro + 101::.11111-0) .., 4·'Z.X ID'3 (f>+t)(t'l-1 ~, ;ot.(O•OI3t) -= !Dq .G, ::::> Vo -:: :to 12.L _ t.;oo. b~.~ V:s 'i;i$ - tv"' rz. i. -:: \IJ "- 1\ \O .r 41'- )\ "Z.S'l< e;t . . rz.: /D+At.) ~ "=' fl."' ll12..s -= 4·2.. "= 3 .sv,(,l ..f ·7. '= '=- K.n. ll'2.·c;Jt 14 'l!. ., ~ e,r.J = llS',,.-rt. Chapter 9-29 9.58 (a) V 81 :: ! 12 1001 15 "" L57 V VF-t:: 1.57-0.7 "' 0.117 V /~- 1 = 0.8710.87 = 1 mA-> g,. 1 c~. 0.99Xj ""'altl v, 25 - 4o!!1A ·- V n :: l2 - 10 X I "" 2 V VEl, :: 2 - 0.7 "' J.J V I c~ :: I .3 I 3.4 :: 0.4 rnA -t g,., "' 0.99 X 0.4 _ 16 mA 25 6'#<~ ~t (1 +C?.. I -::. 1-u >tl ~ ~ e..re.. ~yo, I -::: lt.r;,:::: ~o; s...Ajv 9WV\f "" IINI,A/V IO I< A = ro JCJl. l -t tu '"' (JN) #1?1N-=- e,f (evll~c)~ IZ.t> =' ~1>1 (1-+Af>) ShiM\~ . flow-t '= r<:p. /0 ~A f.;) -== -:::1(p - "et> ""1. ~ 5 /l..n. ""i: '= 'S"-J'I.. v - Vn :: 12-0.4 X 8 = !Ul V r.- 1 = _]!_ = JOO 40 m g,. 1 r,, "" f6~ r,,• "" v1 ~ I c~ "'· = 2.5kfl = (J.25 Ul 25 ~0.4 ."" 62.5 n v Chapter 9-30 (b) kw, IIRm= R11 R, '"' To obtain A: RIJ ~= R/ltll kn1 V, 1 ~ 11!R5 !i (Re~ + R 1)9 R 11 0 ib r • .J "" l.S)Sk X / 1 V 9 ~ ""' -g,. 1, v., {Rc.H tr~ 2 +(fH I)(Rnll - I - RrH vb~ r, 2 + (R£~11 Rr) Combining these equations we obtain: - A = !Jt /_~ 0 - = -201.45 AlA R; = Rsl! (RE 1 +R1 )!1R8 !1r. 1 = L535kfl R0 is obtained by looking into nodes Y andY', with 11 set to zero I, -(!3 + -Rn x ib "" I )ib (13 + l)ib[r, 2 + R1 11 Rnl + Replacing - ib by f ,/( 13 S<~c Fi gun: below. ~ I) ~'. Chapter 9-31 V R = ..2 = _u_ + r,, + (R 1 U R£2 ) = 2.69 kO 1, iJ +I • R0 -~- ~·~ V. - 'm + RL + R, 0 (R,J + Rs) ~ R, + R,J + Rs xR, 4 XA 1 (d) Re-grouping to put this equation in the form of I, 'oz Cro1 -~ = -1.:! = -0.254 Rn + R1 (R,J + R5 ) .R ' Since RF is usually<< R1d 13.4 ) R ) ( 'm +'oz RL + R, . ,. I+ AIJ = 52.1 Rif = I :~IJ A = !£1 1 + RL + R,O = Sl.l (e) AIJ where the term RFis the only difference recall that = 29.5 !l iJ = R, thus RF is small = _A_ = -3.87 A/A I+ Af3 1 R., = R0 ( I + Af3) = 140.1 kO 9.60 = _f!.g_.!.!:- __!!.n_.!.!? t••. - t••• t,.-ts (0 X RL+Rn 15 -RL+Rn 15 -+ 1••• = -3.44 A/A lift R,. = - 1- 1- 1 :: 29.5 0 v, R,;'R; -w.; Notice that R1• = R,, AI = !£ 11 = !_g Is To obtain R0 : recall from problem 10.49 that: r. 2(1 +g.dr.,ll R•• , = r 02 = ~~ = 8ml = 16mNV R., = 187.5 kO R,,l) r., 140.1 kO =oR•• ,= v,. v. = V8 = v. = Vc 2 and V 5 -+0 -g .. ,(ro, II 'o•) CR., II 'oz) (R, II r 0 ~) + II g.,, 18.1MO 9.59 R, = 6.25 kO 1 m (ro2 ft 'a.)(R, II ro5l g 2 (R, II 'os) + I/ g,., 9.61 ~ - R~ ~wr:. ~ +r,.v.- v! .. ~ ~~ V, Rr + R•J ~ = (RF + R;J)jj R,. CR.+R,.)II R.,+Rt+ro V, AIJ = 11 Rr- R,. (RF + R,.) II R,. + R14 (Rp + R 14 ) II R,. + RL + "o (RF "' 11 cR, t + R14 )U R,Jl II R., RH RM + R, + ro = 11 RM + RL + 'o Chapter 9--32 v. = ln.• ro!'l = 30k!l v. = 24 10-J 'o• Ius g.,,= ~/I>S'J 0.3 80k!l X = J2.120 X 10- 6 • 20 · 100 X 10- 6 = 0.693 X 10 ··J = 0.693 mS 2k'.(~}us' = 2 mS 9.62 9.63 -v, v, t (R, + R5 II Rid) II + (R, + Rs Rs II R;J Rs II R,d + R, Since R,.1 = Rs II (R 1 II ro) R;Jl II (R 1 II .... = oc:) The expression reduces to Al3 = -v, v. Breaking at the gate of QS: ~ V, (~x!g 1 + g,,urM 2 = QUI roo r.,.) ;~ -I"·· ~ .,.. 2 X 10-l • 30 X 103 + 2 X 10- 3 • 30 X 103 I G. o.693 x 10-' ·sox to)) = 27.26 I+ A[3 = 28.26 = ..!.._I_ = 17.7 !1 R ""' k'n V, g.,., I+ Af3 = 2k', = = 120 .,.A tV' 0.7V V, = 24V/f1m = 997 .... r0 ) Chapter 9-33 9.66 9.64 Tc, Ro ":' 1---<> v, _lc 1" ~l ":' + vr w Ang(A) IAIB 1 IA!Bl 0 0 10' HF HF 45 7.07 X Hl' 70.7 10' 95.7 9.85 X 10' 9.85 10' 180 500 0.5 "" 0 0 0 Assume that C, and C, arc small and oo not load the output. Neglect r,. and r,, Since / 0 " ' lm 1,. I,. = Vm ""-gm,V,·R 0 1/SC II, "' II m · l . •1 sc, + sc, -v, =4V, Af3 = = _c_,_.i!mf· C! + c, ... Rn ~ 0.1 + 0.9 (not to scale) · l X lO =· 'J 9.67 i\(S) 9.65 A(Sl 10~ 1 + 5 _,roo Ang (Af3} ;\ng(A) =- -tan---~--~-A- 2ta'1-t~ 100 -Jtan·'~ 10' 10' at ..>,.,: AngfA) '= - I SO .. for '"••· >> l{Kl 90',' + 2tan ![~;;~JJ For ISO''"''"" "' 10·' '"'~" J(J' Jj x to• radh For I Aj31w,.,) < I Jl-:r7:\li i.e. +5110' :l S'l"'. K I{. (I+ 5! 10'')' cc?K _ K IICY Anvf!\) ,-::. -tan-~-~:~~ ~· 2 tan .. . lo-' t ...!:~ 10' try w "·' 10': 0 S -15'' -+- 2 ' 5.7 try"' == !()' : 0 5 l:l-1.:>'' •· 2 x 45 ll<-nKtion yidd' w ---· ....JEQ~--- I. I ' W' radh \Jl i'jj:')IJii i.l"l > !l > 0.02-14 ,1 :1<>.4" 17-1.2'' Chapter 9-34 9.69 A{Jf) = (ro ')( tt.>6)/re)4 1 + jl/ro.f A{j~) = IA 1(55 Kfb:)j lu~ j ftroi l-+ (c)frO!n S2 .f>· : 0 • I t~"~clt(>~(o •1) f~ -f04 1 + ..,..,\~f~.-..,.....-to+ (1 +tJI'{o•t)) 1·'1 q.q vtv '>'> -f1'1 above 2 2/N Wp) "" 0 105 P + 21.25 X }09 = 0 (d) pl +I;) X WP +(I+ ~p~ + 1.1 X p"' -1.1 )( IO':tJ(I.IX J(}S)Z-4(21.25 X )011) 2 105 ± j 2.7 X I()S 2 = -5.5 X 104 ± j 1.35 X JO$ Hz X j.Pj 2(5.5 )( 1()4) ·~ I • A = 0.16- )166.3 = 166.3 + (w 0 1Q)S + (o~ cf Q "' '=- to4 (101) '=' (.OJ MHc .i + j0.3) Q = 1o_ ·= ! ,., -1.1 I+ j.f/( 101lflo4) 1\.f(o) = 49;75 ~f49.74(M "' • .f ,for A.f = I ! .f :=o-:ft q.q = ./(5.5 X )()4}1 1.1 ldlilOl) ~ + (J .35 X 10')1 X JO' = 1.33 = IOMH2 foJ.e r!.. siMfkl( -b'3 {H 1\lo) ~): loJ 9.70 9.71 A(j) "' 1 W + iJilO")(J + j 1 ! 10') (I (a) closed-loop poles given by I +A(f)B= 0 usingP =)1 PI + P (10' + 10') + (l + l(}'jl)IO'. 10' "' 0 i.e. PI + (1.1 X 10') P + 10" (I + 10' fl) = 0 COillJlllf\l.. terms witll (P+fp1 ) 2 A~ (o) = ""'P~+2fP.r·P+ft 1 and ( J 5.5 X + IO'fl) fl 5 2.025 1f'l""- 10·1 ti,+p ( .f,~~,__) = 3:o2.5 .~ (b) At 55 Uh H(._ ___,..,... 3 ( I+ j55 XI0 )(l +.!55 X w• (I 10~) 105 + }().().')) "' - cl() .J ( f +tol!>f.>) 10 3~f ro~ -rfpt , + )5.5)(1 + }0.55) ···24.75(2.025 75 .... j 149.74 9 -ffl-+ * .ft>~ I ... (49.7.5 + Jl49.7-!)2J)25 X 10 3 - -= t fi (ZKI0"3~ -+ IO~ '2..( t-+ro"!.t?'3"1cb = =!~)( IA(55 kHz)! "" 157.7 A I (55 k Jh.) .,. ____ ..:::...~2:Z~=-1.!:2:.IL.......____, .. (I·+ Au13)({•1t.f,_.) :::..o f•-+ t'- ~ 10:' "" -~Lll~1 + }6.05 - 3Jl25 - 2.025 + jli.05 ~" -+ G '::: [(, +Aof?) f•fL X 10· 3 A(f) = -;: l 00 I+ ro'!> g ~ f.l . . ,., q x. to-"3. v/v Mtl){tw-4(~ -flct\f hlh-tM ~ = 0•101 e 1/..fi 2/Pf = (1.1 X 10<) ( 1 + JOlp) X Iff' ""· f~f ""'>frr !u 3 '= 10!1 j z [(rra xro~Y·- 4 (to') 11·~ 4- 1<1-17. • Chapter 9-35 9.74 A(f) = .,---.:.:10':..~...,...,. I +iJIIO for P = .1: A(f)B i"' scv,~v= 10 for/» 10: IA131·~~ W · ~ vr +SCRV . r "' V,(l + SCR} By KCL: I 1 =0 a + 1/SC KSCV,- SCV, (I =V =»/, = I MHz V +..,. (KV,- V) _ V =* -- I·""- R -- R 5 1 + 2.1 ~ A(/) = lOs 1 + J1 t to (l + ]j/104 ) + l] AP(O) = 105 p + _1_ ____!![__ => p""' O.OJ A,tO) .., 100 = I + IO'p CR 2 !A I'll = I=» II+ i.r110f S~+ (~)s+w(J "" 105 p = + l ft0 2 HJ + f /101 ) (I Q - t + foo• + 10 I 2 )- 2.1-K Pole.~ coincide when Q = l/2 !:::. = 2.t- 2 "' OJ = 2.1 - 1.414 = 0.686 "' 106 (I08 )(J02 )106 = + Jw' + 4 x 6 o 106 2 7.86 KHz margin "'l80-(ton-t7.86XHP+t 10 2.1 1111 -o7.86) 10 "" 180"- 90°- 3!U6" = 51.8" 9.73 A(.f) = __ -.:;:.K....,.., For PM :, 45": 11111 -11..!.. :S 45" l+fttiO~ ' JO• =» f 1 s 10• 1(3 Iori'\"' l: AJ'l = - - . - .-, (t+fo;) thus For o~cillalions to occur : !A~~ 2 I at 4>(A~) "" 180" (~~() "' 180• ~ ! / 1,,. = 173.2 KHz 100• Amplifier is unswb!e if Jj X 10' Hz iM3i 2 r2,-+K""2 l)t + (.)) l'i.J )A~i l :u I lM>' I = , 13 3tmr• I( - Pha.~ Osd!lales when Q ~ "" r. 108 =» 61.8 X 106 =» f = maxillllllly flat when Q "' I I .fi ·II + ]j/101 103 from which w., "' IICR ""!> /( "' 1 9.75 ..., __ -.!:K:..:.I..::C;:.:R...!:S;__ ""> K 1~ .. go.. 10 - -KICR S CR =::~ K tlltl-• + SCR) Collecting terms: K SCV. R = V, ((SCR)l + 2.1 SCR Thus L($) A - V, IV, "' otf,: phase IJUU'gin = tso• - V +. SCV, (1. +RSCR + sc)· JO ' = I.+IO' . i,rllO = = .fi !(X) WI? JJ + (10') 2 -./2 = 0.0141 9.76 II+ e-iQJ = ll +cosO- jsinOI + cos0) 1 + (sin0) 2 1 =II I· 2cos0 + cos~(l +I- cos 2oj•n = -/2(1 + cns0)" 1 = [(I for 5%: I + cosO ,., I Ji)s' for 10%: I +cosO = - 1= -0.586 1.P(2) 0 = 101 = (•+#.)(• ~ 1L) 10 7 125.93° and PM = 54.07° for 0.1 dB"' 10°· 1120 = 1.0116 cos 0 0 =-1- - - I = -0.5114 2( 1.0116)' Ao = 120.76° and PM = 59.24° A for I dB "" 101120 = 1.122 cos 0 = __I _1 - I = -0.6028 2( 1.122) 0 = 127.01° and PM = 52.93° I fr.. '"' From sketch, we need A v 9.77 IJ;)( I + ).1/x 10')( I t ~if.) tan , . ~f1 = = Af(o) -45-5.7 106 -50.7° + 50.7) = 39.3° Gain margin exists at w 1110 then tan (3.16)2 . .fi . ./1 = :. PM = 180- (90 135° IO'p t X Ang(A) = -tan.-'1 - tan.·•o.t 3.16 X 105 Hz IA13l = I = Jl ~p = 49 X 10 6 21f At I MHz Ang(p) = -90o = 180-45 _,LJ.. + tan.-•--/_,_ + tan.-•1.!. 10' 3.16 X 101 10'> •solve "' = ~ = 159.2fl.S 2Tr/ •• Assume p independent of frequency For 45• PM: 8 - I = A" ~RC = ~ 10' A(iJ) = -----=----~,--:(I t I 21r! .,cR - + (0.316) 2 :. [,.111 _,LJ.. +tan -•L 106 . J01 . = = 90o ./106 · 10' = geometric mean = 3.16 MHl fl}' = I + 10'(4.9 X 10"6) 16.9 X 10" Ap(/ 1111 ) = 20 logiAI- 20 logjl/131 IAI has fallen 10 db, IPI has risen 10 dB thus GM =I (10)-(-10) = 20d8 9.78 9.79 c~ r·~ For 90° PM: tan -11J.. +tan .. ,i1_ +tan -•11. . 10' 106 107 From graph / 1 thus 71.6 ~ = l!SC _ R+i/SC - I I f3(f) = I + j2\rJCR + SCR ~ B = 89.9° (close) IO' + 0.3 2 • Jt + 0,03 2 3J.ox to·• .fi+3i. Jl I !API= 1 :. A/(0) = 3 X 10' Hz + 16.7 + 1.72 = lAC/ >I = = 90" = ~ = 2.32 X I + 10'13 For PM = 45° / 1- J04 106 Hz from graph thus 84.3 + 45 + 5.7 = 135° (ok) [A(f,)J = IO> .[l'+iOi . ./2 . ./1 + 0.1' IAJ31 = t ~ p = 1.43 x w-• :. Af(v) = ~ I+ IO'P = 6.54 X 10 3 = 7 X 10' Chapter 9-37 9.80 •fl :: 9.83 "2. M t\ fl. eo c=ts • Au-= ~- = to4 Ao lo4 i'P =,, I A :: ('2X td')/t 0~ -::: 'U>OH'! tol.tJ A+ 10~ to'~ 1b1Hi 9.81 -f"Pt -=- '2.M H~ • .f-pl. : Au :. ~ ot5 ;:: lo4 }t> = ft=o -:: 1 o.-.. 1 ~.,. .f' : Ao 1o rvni'l -::: lo~ H~ lo+ 1/(Cx +C...:.)2'ftf!.11( -+ C 1< 9.82 ~ "= 'lOt>OC. .f-r =- .J_ -z.,..ce -=!!> c ::: e = IIVIJL ttnd "2.tr IOC. {lo) 9.84 A0 "' I C,R1 I C 2R2 =--'IO·C·R ~R, = 80 dB ss 10• -~-~R, 21TC 1 R1 j, 1 = 105 "" - . = __ I_ 21Tj 1• 1C 1 21T·IO~·(I'soxJO-") fr "' J06 = I0.62k!l = _ l___ -- .Z1rC2R 2 I C·R .f1._, _ f;., _ 2 x w• Assuming j' n >> r . PI ...,· n ·- ·= - c _ _·h:::..L-- C 1C 2 + C 1(C 1 + C:l J()4 ~ ~ •.•. 200Hz. I nnd f'p 1 g,.,Cr - c,ic, + c,) + c,c~ ~c~ .·. c, 2-:r(4o x ·~ w ~HI0.62 x IO')(:il:ss x •o')2oo 58.8 P1 {'" = _I_ . '' = _!.__ g,.Cr 2rrc,c, + C 1(C, + --- c,) 40 X I0'-'(5S.8 X 10· 1 ~) 2rr(l50 X 5)10 ·'' + 58.ll( 155)10 :;:; 37.95 MHz Chapter 9-38 9.85 I J3(Sl = I+ SCR =--~- 1 + JO->s (a) 10' I AJ3(S) = I + S /10. i+S7'iQ) 10 102 10' 10' f1. (b) From plot lAili = 20 dB at 10' = "' Hence IA131 = I at 31.6 Kradls Gdec) At "' = I 04 the phase is -180" decreasing at a rate of 45" /dec. at 31.6 K r~d ~ (dec above "' = 104 ) the phase margin is - 22.5". The circuit will oscillate. to> (c) A (S) I 'i+SiTo I+~· I + S II 0 .,-I-+-::S'-,1..,-10""' 10'(1 + S I JOl) (I+ SilO)( I+ S/103 ) . A .. s = 1( ) Zero at S poles at + 10' I + S 110 3 I + S 1106 + s~ /109 10°S + to• S2 + tO'S t 10' = -10 ... , rad/s - 10> ... ../to•- 4 x to• 2 = - 101 :!: j 63.2 X IO' 2 =-500:!: j 31.6 x 10' rad /s "'o = 31.6 Krad/s Q = 31.6 ...- . Zero PJ• dB Wo ~ -f()l P 2x Re -Wo '----'--+-.....___ w to-1 : Wo 10' Chapter 10-1 10.1 "fhM~ (1-+ Af5) =-s-o 41 n~ l ~ V 0.4 ,_,A, ='2'2.·'U..st _ 1i, .a.Jn~ ""\~it~ t-\c. otA:t-f"T d.~. ~ £(.-t' Cw/r...)t,. ... Cw/L-}+ Qs, ct", ca.., C~M~ ?.(. W/L)? (w/1...)~ -r c:wc( ~ 4- ~~h. S4-hf~ l'tlllf-\«.~ ~ IM~~ ~ M-Jt fi'/t.)f"Z. s,.,:,u.. ~ :: J '2..(J'-CoxXwty t:. • 2. \C(Vov) ~~ ~1.,~ ... o·4...A(o:tsv:. l·b-..A{v = 't--'(, ... "~,!VOl '::. ., ·?.. ""'* :. A= (l·" )( 44·4 )( ~ ·'2.)0-"2.·'2) fe.c v.~ 'o.\v- ~~ /J.. f == --,._ 1-t-~ ... so41 t+&;o..,76 ::::: 1 =~041 V/v Z. r2. ~ [~wl~= ~~ wht""' vA:: tovtl"w- ~~. 'r"" J.l.wtA. c: Vov -: 1/,._/So A :A,A"'L. -=~~~ (r<~'l..l\1'fw) GMz((oE.I\<01) ),~u. .f ·4Jl.. 10.4 Rss = r,., 80d 8 = E.J.(! X VA) X 2 X 211 (~) v 2 I, vov I' OV = (~) 2 x 2 (Note Is =2/3) Vov I!XXX> = 2(:,;J. v, = v...JI0.2000 VA = .15 X I;; V, = V~XL==>20.:i_XL ,.m I. = 0.15 X 100 =:./. = _!.L 20 X ..fi 20..fi = 0.53 I'm = 1ov toJr;;o-:: o ·7...Y Chapter 10-2 10.5 ..... 12"2. -. o., = 03mA,IvG,.7 = 1),6mA/V Ci=tp rot = rt~t, = 221 kfl ~a. ,.., r~ '= llt kfi ... o.il =0.6 ~oo<' 2'1rCz iw 1(f' It <•> I , ,.z J... (b)R = ,..!_;., G..i (c)For pm, ,. 0.6 mr: = 9S.S .MH:t tan-If~ = to~ It=/p2 IBn 10"' 2'& = 2w/, '=- ~ * X "2..·35' : l.59pF 10) Fot- - R = - - 500 = 0 0,..2 2 95;5 Tile zero must be moved to reduee the 19.1-10 = 9.4° tan = o..2 _, I = tan -133.7 = l9.4n fp =:;>C • l X JO 21f 100 .X I06 C•(••wl == 1.4pF 1~ro ha~ been moved to "" ForPM .. 60: j,,. j 91 tan(90- 60)" = /,ltan3o• ,. 173 MHz =:;> fPl !, :=:. ft = 0.16 /, "' 0.16 X 33.7 = 5.6MHz Cl"' G,.l ,. 2 X 10-3 2'"fn 21f(l73 X 106 ) = 1.84 F p 10.8 to'l · t0-' 6 Hence(R-110,.] o~, 56 X 14 1t' ~ • • ,$Po R = 1.67 + 20.3 = ::!1.97 kH SR"' 60Vif.I.S k"'50M}fz = 2.,.,f, v.,. 1 (a) SR ~Vool = SR!2TTf, "" 10.6 1"wo-s~ o.""'f' rM.~ C1.. =I p1 :h =- fooMH-e , PM= 7'>" ~ f'M:;..js;": to.~-tt = l~o ~ ·.f\=' .fc +aV'I IS" 0 = "! ·1?. t~ ~ ~1'31\1 tl~ ff''2. :: ~ - I ::: "31~Mtt'"l. '2."'f CL ''2..:\\" IZ..2. I o -I 'L (c) I "' ·~ (~) L 60 X 106 ""0.2 2v(.50 X 106 ) v -?- ~ Cc = 60XIO' ~ "" (b) SR = Cc !f.l C (~!I 2 4 '1.£..sz. Cc.. = 0.3 X Ill X 0.6 X 55.5 = l109 •60.4dB Donamant pqlef,;J =It I !AI Thus fpl is appmx 3 decirdes below ft i.e; !1116.84 KHz providing unifonn 20 dB/dec slope drown to , "J..D'' 'lC C<. =4'2Jo..a.. . SQ..: ''l:t.ft:V'OIII 10-1 6 ::02.83 pF 2'1rl6.84 X 10 03 co "to ~f Y- ~ 'tv\iM'~ = 9Sis X O.i76"" 16.84 MHz Cc _- i;_ ~ Gwt.. '= s 12 = l.66,k0 I D l1.. l.1i (?>l'!t"IO") ( W 1 L)( V ] 1 = _2_1- ~·~· - 10() 50{0.2f - T J .67 F r =. f.UKIO" 't'f!!, Chapter 10-3 10.9 V/CM{~ut,c) = Vbb -\>lo"q f -+ Invert circuit l!lllving Von x Vss and neverse all \(In -:: + l·"s:" -O·l. + O·S -::. + f·1~Y \'r!M(Wtth) -= -Vt;,s +'t/01111 ... V'ov1 +Vr arrows on FETS. -= -f.&,S: .a. 0·1.. .. 0. '2. + 0· -= - s 0·1Sv -V'ss + 2. Yov -+Vt~ Vo '$ .,. '(Db -2. Vov -1·1>~ + O·l.f+&·~~ V~t ~ + l·I>S'- 0·4 - 0·1S'v ~ '1/o ~ ~o I· 25' v 10.10 10.12 !i} r~ 11-r>rA I l&: l*5"o~A • Vt::: 0·2 v PSRR'' ~: gm,{r,12 !i r~A Jgm6r~~6 Hw- Q'l,lillu: [~J, ~ tf:o}" A I.-::. J,_ ( J.AC..><){W/t-)(Vov ),_ l~o -:i. qo (VVL) ( 0•'2.)'2.: v-T - (VA)·1 v- =2X/./2('! V"'.)2l.V,_ 2 v,.v 2(1 I 2\ b)!V.,,) = 0.2V ,PSRR !V' AI = 20V I ·~"'80dB, = "" j.Lffi Iv I' '::::tp. PSRR = 2 V "· - => 80 dB = 10000 = ("i~·3l/f) ~ (t..~/1-JI,l.-=. (1'2.·5/1) 10.11 V& 1A"I: 'Is Ct\11'\.Y'It..t V 'D~ :. Vs,AS.I CDIM fo riu \ft>b+V7 -Vov ~ VSJ - V uv =Yt>b- '~~>·llo -V'o'lo.t-+ \/r -= 1· "t; - O· '1 - o· ,_ .Jo o·S ::-: 1·1Sv '{ SIAS't ~ '{ l>t> -'I ot/ fo -:: -+ 1·'-5'- a ·1- VStA!.; (W/L)1,to r::o,.. c.x, •6l,. .' t = 1'£.~}A A /"l 4'. rts- ::. -i "'ZSo ( W/y( o ·it !Jf' = J:=oy 6C 11 I. ::: /'2 S p. A : I'ZS" ::: \ ~ 2 So {w/1-) (o ·'2.)1. (W/L..)II f::c.r 6l '.!. ~ 4 : I -::. 1'2 r>)"A /'t. it'2!;-:: i '(Oo (fi-J/L-)(0·?.)'2. ...?,> ( w "-}!>. ... ':: ( t;;-z. I I ) ~ 6lsJ~e:.,Gb_,6!~: =+ 1·45V --Vss + Vov 11 -::.. - I· b S' -+ " · "2.. -::::: - I · 4 'i:V -:: (7.S/t) -4:. ~ [. ::: 1'1.. SrA/z. 5.. '2.S"o(W/L-)(o·2-:).,_ {w/r....) r,f.:J.'& -= (\'l·S /t) tzs- '= Chapter 10--4 10.13 1000 R., :: GI. = 05 = . (4) = R I + G,R, " uf ft.t~+ : ~... ""04 ( fo~Jl YD11.1) = ( r'oG. /l'io 8-) J,!IOOO = 7.96 KH1 (5) 6 = -tan ·•f.- ~lu: =;t 0 ·IS: ._Afv !; = 90• _tan -•[7.96 MHz] 25 MHz VO,o -::: "t.' ~ ~ "'- G.x : 1: -:: : J1.Sr~t ~ c:I~ -:: ..- :. X f2.oc. -:. eJ -~1 ~o -::: "Z·"l!I'S: A 0::::. ~· K...n... = ll Sp = I·~ M.a.. o-~~ x eca -- =- teoo = 25 MHz (5) £i. I -t ('/sc) -=- I+ ~c -= \o :. f.'-:: sc c~ s => g7.96 = !Q_£f = c/-6.796 c~ -:: .'5 S'l e OF-......__..... - Ro -- -l·& "'= -5" ·9 I +A~ - l -+ .;s<6x0-t t .... ,&.f. 10.14 = .!._=>I = SR X Ct c~ =. 'l·~ = 100 1'-A (I) 18 = 1.21 3t.'"'l ~JL = A = -'-·Jt 2'ffCLR,. ' = 100 f.I.A 0.2 v = 80 dB /, 18 = I All same = 10 MHz C 1• = 10 pF !V...j. L = OJLm 20V ,.. =1Land/ =~ Vov , 21TCL A = g,.,(g,.. rOf(rmll riO)] II (gm6 '"" r,,.l ~kn(WIL] 1 (V.,_f I = 2200( IV /I.],(V..,] ' Q1 Q1 Q5 Q6 Q7 Q8 are same = 120 ~~oA .. = 2//2 v... = = . 10.15 =lOX 106 X lOX 10- 12 f 1.19 Con. SR = 8 4 V I .,_s IVAI (2)f c~ 1/to::: o~ l A F =- L SR = 6.7 MHz 0.27 X = fr a;'c;)CjJ => (•7sqc) = 72.3. 17.7" .,.,Jt/v 1!).-;, J(pO = 90.- 'o~~o 160 A 411(. '= 'l !~q K x I boK 6 o oo I< X lbo 0·~1 (e.o4 -:: - -•~) 2(1an f. = 90"- tan -•LL Pm@ p ! ::. '! B Qro : = 2 mfi :. Av = 0.5 X IO·l X 2 X 106 = 1000 f, 1Zo4 = ~C. A =- lim, Ro 2 kfi = 21, and '•• = Gm gml = 0.5 mA/V ConsiderQ3,Q4 :1 1 = 2'ffCc O.S X IO_, = 7.96 Mllz 2nl0 x 10···•> v"... ~ /1 I, =>(WILl,~ ~kp(W!Lh(V,.,.J' I 200 2 = 2 2.5 I IV I l.J,l v •• 1 2.5(WII.J 1 Chapter 10--5 = g., a and rm.• B... :t.• = rol ~kp(W I L) 10(V.J 2 ConsiderQ9 Q10 :1 10 = iI 21 1 = ~ = S(W f L) [W IL) 10 For L = I ~~om: W • = 200 l 2 _5 tW/L),0 (V.,J 1 IJ.. ao = 2g,., and 'w.ao = '"''' = ~kn(W/1.) 11 (V.,,] 2 ConsiderQ 11 :1 11 l WI L), p.m .. width forQ 1 .~Q,.Q6,Q1 ,Q8 =15.7 p.m for Q3.Q4 = 39.25 jLm for Q,.Q1o = 78.5 ILm for Ou = 31.4 J.Lm I 21 1 = 2200(W/L) 11 lV•• J' = 2(W/L] 1 ~IWIL] 11 g.. 11 -.. ''•• Simply invert cin:uil relative to VDDoV,. and reverse aiiiiJrOWS on FBTS and r011 = r01 ,'J Thus = g.,.(g.,,r0 .(ro1 111' )]lltg.,, '•• rod = g,.,(g.,,ra.J{rOI H~ H '•• ) A • 10 10.17 I 4'·· g.,, '•• '•• = => g,., '•• = 200 N on 8"' 1 '•• = VA 21 v•• · T =>V.,. = 2VA/200 = 2(20)/200 = 0.2V Hence g., 1 = 21r;,CL = 0.628 rnA /V = 200/g,., -.. r 01 8 = .. = 318 kO y_~l = ~ v.... 2 = g.,, v., __. 11 = 0.678 rnA I V X 6.7V 2 2 All ~Mt k:(W,{.) = 62.8 !LA SR = 21f/ V = 21fl0 X 106 X 0.2 = 1 0, Q, Q, Os Q6Q1 Oa: I = ikn(WIL](V.,)' 62.8 "' = ForQ3,Q4:1 = 62.8 (W/LJ 9 15.7 ~ ;~lWILJlV,j = 2.S(W/LJ 1 = 39.25 = 5(W/L) 1 = 78.5 = 2)W/I.], ForQ 11 :(W/L) 11 All SA*C. ro ':. v,. It 0:: IO'I/IfJUJIA ': ldOU. :t : ~ lc [WI\..1 (Yov)'l. Yo(W\t~)-: 1-Vo't' fa (l.old~ ~-h, -31) O.wl O.SSCAMIWt :t 11 ~ff-CM.t- SCli\CCe is. i "u.). (.,':roe, ) "= ("vll +~.fo,) ~ ~M'"(o"~~ = ~ ;~(WILJl0.2) 2 =l-(WILJ, ForQ9oQ10 : !.1-S VD'l :Yo : ~2001 WI LJl V,.,i ~(W/L] 1 12.5V I .·.:to == Xut=> = "!:.! :: Vov 1h~ rz." "2,.J( 101> ~ ,,.,.,.,.., O·'l. ~ ~!'u""-::: I i< \OS'xros ~ lo4MJl. = 31.4 Chapter 10--6 10.18 Model: .... . . ~- --- . . ..... 10.20 s, /"mr = 0.73 rnA '' lu = 0.25(0.73) = 0.1825 rnA R, \\ .......... _,. ___ ....... _, V.-a G, r,,. = ~ -ls+g.,V,+V, (~ '•• (I g,., + n = 6.85 kfl + l)r•• r,.4 = V • = 274 kfl lo + R5C,S) = O Rs V, 88 = V,.n, = 0.625V I T; - = 0.625V = 7.3mA/V = 134.3 g,,.A Summing currents nl node S3: (I !J,_ v1 lcv;: - II••• -- R, R5 C,S +I _ = Vrln0.1835 X 10 0.25 X JO-I< . A I V1 = 0.75(0.73) = 0.5475 rnA lc 8 = 0.5475 = 21.9 rnA /V 25 8 •.& + R5 C,S) Rs n = .2.. = 44.7 r #B 8mB = (13 rd + l)r. 0 = 2.28 k!l '·• = 91.3 kfl f = 75o: !_!.. For Pm L_ J,, ,, 10.21 = tan 15° = 0.27 letV 8 E = 0 = Cp = 0.27 CL :. Cp For breakdown Vf(J = VBi V R.-. + V Bt' or Vw ;;;, 58.4 v > = 0.27CL · = 11 "Sc1.• 153 154 151 IS2 = 154 10 •• · 3 y ., 10.22 10.19 /3 _ + 7 + 50 x + s;. ... -=... = ".:.a.. '~sc;;• ...- "~.,..,~ o~. ~UC~\ '1,.' s w· •• w-•• · 6 x w·•• = 36.31LA 6<" J~ 1<, ... 1<., ~_!.. ..... I 1'-4 s ....... ---ff + .p"' "'" \c. 1<., ~~~- --ri:, 0<" -i*' -= 'X, :~., ~ II. h ..... - ~ Chapter 10-7 10.23 10.27 AsV8 c "= 0.1 At I "" 9.5 11A 1,.,"' 5-14-(-5) . R, VJIU "" Vnu ·"" 517 mV = 220.5 11A and V Jl6 At this current level VB£ ,. V ,.1 11 220.6 X I()' 1044 ,., 1,,, "'· 595 mV 39 k X lfR2 is shorted V llli 6 = V 110 .,. 526.5 mV = 14 11A = 10- 2(0.625) 0.73 + IRz :md let. "" Is ,/'•t·6tVT '~' 10- 2{0595) For 1,., "" 0.75 mA Vae R,,.• VBf;& "' "" 526.5 mV ·.~ 0.625 V "' 12 kf! 10" 1 10.28 10.24 ~~t'>O.~<>>-t. ict.q~> I ~ ~" + _!_) P,.; 10.29 ~f(t I Assume. equal collector current ~) 1.., = o~ \Vtthnut the abuH~ ~h'i.t.Jmpti,·Hl an-d tHing th<: (~.\:\tt rchllionship 1;,, 1" = 7.79. 10.26 o 4L ....... 1 1'~ 1 • >> l J I 1!~11, J~,.. ;.,:: 9.4 J1.A Thus V n> = 515.8 m v 1{1[- J/!;,,1 >I :: For 021 "' ~ "" ____l1_ + 21 l t :!If~;· !3,, = .: : u( 1 0' + rl3 "" !_ 0 = IJn. = 10.25 1\. I +I i I 9.4 .0:::::. '2.0ill;.\ V"B Assume •·~ ·lim l 21 P,. -1.7> JtA l.'H kO lc~ = 9.5 1-lA 15.7 mA ~(1,"55.-l onA lucl Chapter 10--8 10.30 10.34 lv,- •. = 1,., ¥) :x._,- l"l.e:t. lc 14 + lc• +leo + 162) p.A ~,.A :. + ln.•• +lens+ +In+ lc•• = (730 + 180 + 550 + 154 + 19 + 19 + 10.5 = 1.68 rnA Pm,. = Pa = lv,-,.(V cr + V Eli) ---- ~._ ;!.SO "1.&"'A 1.68(15 + 15) mW = 50.4 mW 10.35 Series connection of devices llllsures the same bia.. currents. R,, 10.31 = (/3 + I )(6r,) r, = _2. ~ 9.5p.A 2.63 kH R 1• = 3.17 M!l 'lo,.. = a.\lae = 127 p.A/V -::: "'•'- "ae.t. -=- '\/r \.., ~ R,. 4 = r.,(l + gm(R,- Hr, )) Km = I/ r, R.: ~ 2r, = 5.36 kU '• = (fJ,+ 10.32 At '"' I 011 l)r,= 134 k11 ThusR.4 = 15.4 MU 618 mV = 550 p.A. vB£11 = 550 200 ~ ICI• - "75 uA - *• R.6 = 18.2 MO (from text) R.,, .... = R.. ll R,,. = 8.34 Mfl G.,R. 1 = 127 X 8.34 = 1059 VI V See gain decrea..es due to negative feedback = 9.5 p.A 10.36 or R• = 99.7 kO R. = r,,.(l +g,.6 (R,IIr. 6 )) need to double the second factor Since r ~ 6 >> R 2 10.33 Neglecting base currents I no = V8 n 1 le~• = 180 2 = 90 p.A =V 1 1n 90 XIO 10-14 -· =573mV R06 ::: r.o(l Thus + a...R,) I+ g.,.R', = 2(1 + g.,6 R,) g,•• = 2.631 kO' R!= I kfl R' 2 = 4.63k!l Thus R 10 = V ••" = 6.37 kl1 Ins 1n4 = 3 X 10- 14 / ' " " = 270 p.A Chapter 10-9 10.37 = lc1 fd "" lP - + 19.2!1 50)! k!l (R, 11 JI R1 ) r,.,, + (Rm !I R.) ";~ v With Qn remo\·~'<1. current in Q 17 incre.ases to 730pA This changes G.,2 n => R,~ = 201[(1.54 + V ('Eutl7 + V Btl) + V 81''20 10.45 I .54 kfi = 45.5 V u: 5 + 0.2 + 0.6 + 0.6 v1. = 3.1 MH 34.2 r' 17 = 730 11A n t• '-* G , = 0.923 = 6.8 mA IV "'· 100 + 34.2 Because r., 17 >> r, 00 R02 remains Virtually = 1l'h';2 unchanged at 81 kfl. Rn = (f3+ IHRLII r, 13 _,)"' 74k.O c7A, = -6.8(81)~ = -263 V tV 74 + 81 10.43 10.46 R,,p 787 H! Ignore base current of Qs i, 55U ItA 180 11A p 11 1!m!i'it 22mJ\!V; r, 1., ~ UJ + ll! g,, 2.J2 k!l In; + I i3n where I ·"' I R~ l(l~ .-:;~ I sf' r Hf: VI where V "" '' I R6 Thus I .,''I fi ISO~tA 27 191,422 VI V 105.6dll .J__ Ill"''--,-,-.. . . 2()J Chapter 10-12 10.51 Output eummt iS limited to ± 20 mA (see ~em 37 aild 38) =tiV~ < 20 mA(200) (Y.I <4 V To Oblahl a seed S<~lutioo, let I = 0 right hand side =*I = VrlntSO J!:A = 2U rnA 21 ~ ...• ""+ 10~14 ltcnlringl .. 21.0 rnA c:l ....... , .... p T~'....:£!L - c• • ~ ....... .fa.... 10.47 ..... "!-'&, 10.\\'!1 Rcc-~~;~ """"' \,,....,U••..ol;~• •tf.ccil- -f..,._¥-+"'• f .........,'!(. . . . . . ' ' " ' . Maximum output cummt of Jhe J>' !ltage,.; t9f,I.A =*len"' l9p:A ~ V6 m"" V 6li~ 534 mV = +,. - ..{,, ( I T =>/1111 "" .S:W = f0;7pA 50 :J~21 .. (19 l'"'-il ......,... L...., ~;... ""P • + 10.7)p.A = 29.7 p.A Af' ) ;" -ft., ,..,. :a.,...,.,:· To;;;. ._ :a;•..,a >~-•~ and Vltt'lt == S4S.3 mV VIU'll "' JR, "'* I = 20.2 mA A simple doubling of R1 10.48 .lt•• 10.52 ~......,;,.,..,..,·'\- I"" I"- +, = :>t: R lAC... 'I ; """ lc:.oo ~.,), \\.., 11oi~\.,., ..... 1-ct...:-" ~+r,. th ...'\ "'""~ _.,. ~,..,. p-'• '"""~~ \Q• ..... -\1-.z. = s .... ., 1"'\\\a 10.50 1:<=1., 'p1>\« <>dch r...,:: , -l.'t_ -... {..,. s. • ~ Chapter 10-13 10.53 or!..l=!J. '·· '•• Since Is = 10 <:....,Rc Ae,w ... •oa.,-_• ... ,~ ~J.A a, I I' then 1•• = I or lSI a, equivalently and have the same emitter area. f-or 6:16 • 40 ~~oA or 16 = 4/1. Similar to 5: .._ u.•'1 ~ 'Cor,\\<'"co.) ::> I· :Z.I> AI l<. (l = C...•R.• - '2·<;; ~'ii"'""'i "''4 1---f--Q, 10.55 1 = A Is> = 2, 10 I' • i;, R, = 1.73 kO ,R, = R. "':" 20k0. t, = JO~J.A.I• = 401'A From v,~, = v,F.,~v, In 1 '••' '· v, In;;, Q, -: -= Q. R• ":" Chapter 10-14 10.56 10.58 a) Vcc=3 V VIllAS .. 2.3 V The minimum alluwed value ofVIOV in ibe circuit of Fig. l2.40(a} is limited by the need to keep Q1 in the active DIOde. Since the collector of Q1 is at a voltage Vllll3;:: 0.7V. we M:e that the v R,.1 = 19.8 M!l . .R "' 36.3!! 19.~l A0 "' 1.3 i 2 = 0.1\2 M!l G., 1 R '" 0.087 X 10-J X 0.62 X 10" =54 V /V Chapter 10-16 10.60 using f3P Aopll (~_L) g.,] _ In _ 21 8'" 7 -Vr-25m = '!.!: 2 I 28.3(2) + I RL 2/ 28.3(R 1) r • 7 ""' :!!!x25m=.! 21 21 56.6 J XrI+_]}_ X~] (0.2 + 1..) ~ 25 m 2/ [ 0.2 x I A '1 ~ + .TJ U 2/ 31 = 21 ro.2] ~+~X II + I. ZOO! 21 [0.4 + 31 . 6/ j ~ + O.Z X I, 201 2/ R n1 3.4/ Rwj = r 09 R ~ 0.) " 21 6.8/ ·+· (R~)! I60VN = 953.7X2X 10•x1 56.6 + {X 2 X Jd' 160(56.6) +(/X 2 X 106 X 160- I X 953.7 X 2 X IO''J = 0 /(320 1 oc X 101' - I, 907 X 10') = -9056 ~ 5.7 fl.A -:_905 6 __ -1,587 M 320(566) - -,r ~d( 1 +· = fmA .. " Fori\,= llOVN'' I,90?MX/ '· . . 56.6 I /(2M) _ 102 f 240.2 _ 50.3 - + IR 1. = 33 _7 / X 28.3(RtJ = 953.1/RL 56.6 + IR 1 56.6 + lRr. ;!,.)r0 ,J) \.vhere I = 18, 112 i;2o7 :vi [I. 907 !\1 - 320( 2 M) j/ = 143 fl.A Chapter 10-17 10.61 (a)To find the loopgain of the common-mode feedback loop for lhe circuit in Fig. 12.44 of lhe Texl, we selthe inpul voltage 10 zero (lhat is, 11, and 12 are zero), break the loop allhe input of lhe common-mode feedback circuit block. apply a test voltage v, to lhe input of common-mode feedback circuit and find the oulpul vollage v0 at the oulput of the amplifier (where lhe loop was bro- v.. cangoupashighas Vcc-0.1 VwhenQNis inactive and Q,. supplies the load current : O.JV::s:v.sVc-c-0.1 V r cuit and assuming that r01 is relalively large, we R0 . have :.07 "" (fJ + "• 1)(r,, + R,) . Note lhat (fJ + I )( r, 1 + R7 ) is the small-signal input resistance seen at lhe base of Q1• Th n· . I us, • = r,., = ,.,., "" (fJ v, l!..:t_!( fJ fjv, + I )(r,, + R,) r,, + R7 ) .. r,, + R, r,, + R1 ~ AfJ = -~ ... R.,,IIR., = R.,9 = 12.9 MO~R.,IIR., = 8.3 MO r 7 = ~ = 2.5 kO and R7 = 20 kO ' 10 11A ' R.,U R.9 = r,, + R1 = 368.9 ~ A/3 8.3 MO 2.S kO + 20 kO "' 368.9 (c) Wilh lhe CMF present. we have AV 20 = VlpAI' = 0.4 = SO kO = 30k0 R _AVe., wbenCMFisabsent I + AfJ ~AVe.,= _11Y_ = 6.76 mV I+ 368.9 Note thai the corresponding value for AV eM found by a differenl approach in Example 12.6 is 6.7SmV which is only O.l%offfrom the calculated value in lhis problem. 10.62 = 0.4 mAiLM•• = 10 mA a) The outpul vollage v., can swing as low as 0.1 V when Q,. is in active, and QN supplie., the load current : ·~"'.,;" = 0.1 V 30 kO = ....l!!!_ = + AP I I = 0.3 0 + 10! X I d) IL = lOrnA Since it is al its max, then QN is inactive mode. Hence:;,. = f= 0.2 mA and = 1,. +it~ 1, = 10.2 mA = -lOrnA then Q, is inactive and since we have: ip = 0.2mA. ForQ,.:i,. -It ;,. = 0.2 - (- 10) = 102 mA 10.63 v,.Jn ;,. Is,. v86 = R,i4 + V 1 ln 1.i Nocelhal = R,i4 + "••·• S> IF we substitute for i 4 = "so "B£r;. unu , then : = ~(v 8u- "•o:•> + V 7 1n~ R 1., Note lhat 4 Rs=R4 v86 = V7 1n ;,. - V 1 1n~ + V1 1n_i lsp eM - 10 0.4 r, 1 + R1 (b) From Example 12.6 of the Text. we have: R,.1 23 MOand Thus A{J ,. = 1S kfl .. 1, (R.,IIR.9 ) ... v, 64 1R£F = 1.S IJ.A The minimum current in the inactive output tmnsistors, QNnnd Qpo is ~/ 0 or0.18 mA. Chapter 11-1 11.1 T(s) = ___!.___ _ (s + I )(s 2 + s + I) T(jw) = [j(2w- + (I - 2w'll IT(jwll = [(2w-u/) 2 ·f (l-2w 2 )~]- 1 4w4 + w6 + I - 4wz + 4w4 ] =(4w 2 - =[I+ w6) -~ = -135• tan '(~ 1 ) or- 135" -135" = 10 radls: JT(jw)J = (I + 10 6 ) For phase Angle: = -tan (w) = 2.356rad = -45• tan-•(~ 1 ) = For w = 0.707 = -3 dB Also: tan- 1(-1) = -45" =--·- ~ = I I ./i. + 16 )- 112 -ran-•(~ 1 ) = Note: G / + 2s' + 2s +I w3 ) IT(jw)l = (I 1 '' = 0.001 '[2( 10)- 10'] I - 2(10 2 ) = tan-•[/m[T(j.,)J] Re[ T(jw)) =-tan -•[2"' "''] I- -2w' =-tan -•[-980] -199 = - [ 180• + tan For w = 0.1: JT(jw)l = (1+0.1 6 ) '''at (w) = -11.5" For u> = I radls: = -0.20 rad -•G:)J = -258.5" =4.512 rad Now consider an input of A sin wr to 7ls). The output is then given by: AJT(jw)lsin(wr + (w)) Usi~g Ibis result, the output to each of the followmg mputs will be: INPUT OUTPUT 2sin(O.I r) 2sin(O.Ir- 0.2) ie 2 x 1 = 2 2sin( I r) ./i.sin(r- 2.356) i.e. 2Xll./i=.fi 2sin(l0r) 2 X I0- 3 sin( lOr- 4.512) 11.2 fll,dB 0-1----~---------- -· -o.5-J----, +-Stop band - · Pass -40dB - - - ~·?~ - - - - f------.......:L- -t---1-~---------+w Chapter 11-2 11.3 IT(jrop)j "" - - Jt +w! ITI :. fUP = 0.5088 rad/s At the stopband edge: IT(jw,)j = r.-~·--; 10 IOIJO ,.,;J +b); :. "'• -~ 3 rad/s Sele<.iivily = "'·• 5.9 (l)p 11.5 Passband is defined by:.f::;, 2kHz 5 f (kHz) ~ w, "' Stopband is defined by: Note 111 is shown in a linear scale but A ••• aud A_ are in dB ~ b = A.,,. f s l kHz w, = 2'1T(1000) rad/s fl'<)m the problem !! 211'(2000) rad/s IT(jw)l (dB) l.I,C = O.l'ita()rf ""0.001 a 0 -0.5 = 20 log 10a - 20 log 10 b :=20 log 10a I b ""20 .ll'lg 10(1.1 ) =0.83 dB Ami• "' 20 logwa- 20 log 10c =20 2()(l(hr =20 log 10(0J)OJ} "' 11.6 Passband: f E {!0, 10kHz] U (20 Hl7, =(iOdB Stopband: Selectivity= w, 11.4 400!hr (rad/s) Note we assumed a maximum tr:Jnsmission of OdB. log 10(~) f it~.= I dB. A"''· h!I"J x If E 112kHz., 16 kHz.l 40 dB A (dBl /,.L/LL 0 f- then J.. ·" I Chapter 11-3 11.7 Poles at -I and - 0.5 ::t j0.8 gives a deOOitli!lator: D(.f). "" (s + l)(s + 0.5- }0.8)(s+ 0.5 + ]0.8) ~(s + ll(s2· + 2(05 )'s. + 0.5 1. +· t.t8 1 ) "'(! + l)(i + s + 0$9) 7..eri'IS at "" and ± j z giYe a numerator; N(s) "' k(s + j~)(s ·- jt) "'' k(.v 1 + 4) Note there is one zero at "" because. Degree (D(s)) - Degn.oe (N(s)) - I T(s) ., (s IT(jo)' "" . I '0:. k + .~ = 0.89 I .·. DC <>:aln "' 0.225 0.222'5V3 + 4) :. T(s} ·"' (s G,. 1 k(i + 4) l)(s2 + s + 0.89) ·"" + l)(sJ I mA/V ,(~.,. 1 R"'500!l + s + 0.89) "' 2 mi\N, = Chapter 11-4 11.8 :.V1(2i + 2s + I) Eq. (b) (a) -+(b) rrt (dB) V0 (2.Y3 +2s+1)1 V0 (4.$4 .+ :f1{4 =V0 + 4) + .l(2 + 4 + 2) + $(2 + 2) +'I) A ""' T (s) V ( .) 1 II .$ V 0 +2sV 1 + 2sV1 V0 (s) r( ) "' =s j 2s J 4 , 4• + 8s' + 8.f· + 4s 0.5 2 +·2s +2s+ I Poles are given by: Numemtor is given by a, (s- i.i)(s1 )(i + ( 10l)2 + (3 X 101 )~)3 s' + 2sl + 2s + I ·"' 0 (s + I )(i + s + I) = 0 .:. Poles are s = - I nnd s 11.10 (,~2 f (6 X 103)2) A_= I dB, A.... + 9 X 106 )(i + 36 x 106 ) ""a 1s(l + to")(.t2 Degree of Numerator . ~ m "' 7 Pegree of Denominator ~ N using: A< ...,) =20 dB, w/w, "' 1.3 = , o log [, t t1 (::f'] Given that there is one zero at "' : N-M:::J=t>NzS a1 s{i + 106 )(i + 9 *. :. T(s) ~ . X 1 l06 )(i + 36 X 106 ) 6 s + b1 s + b6 .• + ... + b 0 From circuit : ~.:urrent drawn from V00 rail = 21B = cmrent rerumen to Vss nul :.Power= (V 1JD+ Vs 5 )X2111 =t> log(toAm;, 'w-1) = I mW = (1.65 + 1.65) X 2 In .·. / 0 "' 1 mW = 151.5 11-A 4 X 1.65 V ~I '"'·· 18 ! 1.1 "' 126.3 ' A . flO N JLA 11.9 >.r)-- .12 =" OJl\24 Eq. I) =0 (a) l(llng( I + 0.73 k "'o ' "'o (s 4.88 + w~ "'o :. T(s) = . log((IO•m••""- 1)112 ] ~ i + 1.618w0 s for unity de gain = 0.7647R Manipulation Eq ( 16.15) we get: N P, yields: P, yields: X-:---~·--~ J, = 10kHz 15 p2 =s 2 + 2Re[P)s + IPf Also, note that for a Butterworth. all natural modes have a magnitude of "'•· :.T(s) = 873.59 -1 n = -873.59 11.12 J, = jf3 , the following P, yields: s + w 0 = -706.75:!: j 513.49 P1 = w 0 (cos1r:!: jsin1r) = -w 0 Given a natural mode - a :!: term results (s +a+ jf3)(s + a-jf3) find solution graphically p2 = 873.59 <~:[! = "'o(cos 8101f:!: jsin 8101T) I + w0 ) ( / + 0.618w0 s + ..,;,) Chapter 11--6 ;., 0, 1,2 ... w, = Cos[W] i = 0,1,2, .... 1.0 for attenuation at 20 kHz ~ =~ =2 "'• 10 A(w.> = 101og[1 + ~'(~rJ N "'2 .... = 0.9010 =27.8 dB 11.13 ... , 0.6235 w, 0.2252 Ol values nl which ITI = o + r'>-"' = 0.2252 Note w, = ' '' '' To find IT(jz)l ... =(I+ 0.5088 2Cosh 2 (7Cosh- 12)JT = [1 + ,'cosh'(Ncosh"'(~))r IT{jwJI -I = 3.898 X 10··• VI V = Jradls ITI ••= -68.2 dB F!)r roll-off consider = 0.5088 I T(s) = for w s since"'> w, ··I ' ''' ' ''' J.9x w-• ----------------~-----Given Am., = I dB::) -(dl! k s' + bos" + ... bo for w »wp !T(jwll .. .; (l.)p "' If IT(jooJI = ~ or 201og(~) I = I+ t 2 Cos 2 (NCos- 1(wlw,)) :. Roll-off is ..,, = I peroctave = -42 dB/octave. NCosCos -o (u>) 1(w/l) · wI •. = Cos- 11.14 1(0) 2i +I 2N"' = = Cos [ -2'1-2N+I -11J · N-1 w s repeat after this value i = 0, I, ... , - 2- "'o = 0.9749 "'• ... , 0.7818 0.4339 "'J 0 (JJ values at which A,..._. 10 "To""- I = IdB=> I A.n,:.ll =0.5088 IT,.j =(I+ /(w5 1w,J'Nf 112 Tel = [1 + t'cosh'(Ncosh-'[~J)r"' jT8 j 6.13 X 10 ITcl 5.43 X 2 ::) -24.3 dB 10 ·l::) -45.3 dB l'rl note w, = -0.4339 = -c.o2! If ITI = II I/ j'l';.7 I = ~ (I+ 12Cos 2(NCos- 1(wlw,)l( 112 Cos(Ncos '(~)) NCos -•(w) '' ' j'l';.7, then = Cos - 1(0) CIIEBYSIIEV--:-24.3 ' ' ------------1------, ' -45.3 ------------~------------ ...' ' ' ' Chapter 11--7 11.15 (a) fr where the second order tenns of the denominator are given above. k is the de gain :. we want the de gain to be = 3.4 kHz Am,. = I dB~~ = 0.5088 fs =4 Wsf Wp = 35 dB kHz Amin k = - 1-, = 0.8913 I+,. = 1.176 Using F.q (16.22): Wp = 21T X 3400 + r'Cosh'(Ncosh ·•(~))) A(ws) = 10 log[ I & trying different values for N N A(w,) 8 28.8 dB 9 33.9dB 10 38.98dB :. Use N = 10 = 39 - 35 = 4dB Excess attenuation (b) Poles are given by: PK = -w,.Sin(2k; 1 + ·1)sinh(~(sinh-'(D)) jw,.Cos(2k; 1 • ¥)cosh(~sinh '(;)) 11.16 fo = 100KHz R,(x) lOOkfi !T(ooJI = 1 fork= 1,2, ... ,N. Since 1 = 0.5088 and N = I0 Sinh(l!NSinh .. 1(l/t)) = 0.1433 Cosh(I/NSinh- 1 (1/t)) = 1.010 wp[- O.l433Sin(fo) + ji.OIOCoo(fo)] . .P 1 = Wp(- 0.0224 = R1('-C) + )0.9978) IT vinual short between tcnninHls :. l, I -- S; l I S•· Chapter 11--9 Note tan "'o- S "'o = w0 + S = -S - = 1' = 180- 2tan = Clearly (0) +tan(~)-b)o 360•-2tan-•(~) = -2tan -•(wlw 0 ) tan Wo + "'o I[>(W) = 180° = -•(~)- = 180- tan = 1"'- "'o }"' = 180"- tan -wo = T(S) "'o S + "'o T( 'W) J 1~ ! ·: -•(~) ta»o tan tan-•(~) = 180- tan -•(~) 11 • 2 1 J.. Rc W0 . R = tan(-p/2) = 104 tan(-,P12) " CW 4> = -Jo•,...()()".-90·.-120".-Jso· R = 2.68 kfi, 5.77 kll, 10 kfi. 17.32 kfi. Wo -•(~) 180" & tf>Cw-+ :x:) = o· = 10' radls Low pass oo 0 T(S) = --"'a"-"-' too 2 S" + s0 + w 0 T(O) = a 0 w~ = = W~ = :.T(S) = Wmu 106 100 s' + IO.IS = "'oJl - - "'o -72 37.32 kfi -•(~) = I DC gain= I Oo RcW = tan( -1[>12) -wo Q Now this equation can be rearranged: ~ = tan( -,P/2) <= w 0 = -21 1~ + 106 I/2Q' n = 0.707 radls 11.20 ITmnl = , R, w;:, <=a, = ... ~ I- 4Q' =£ v, ...~Nt 2/./3 = 1.15 VN V+- _ _ R_ V - R + 1/SC ' Where w0 = _S_y, S + "'o J.. dB Wp= I radls A.,., =3dB I0-'00 = 0 708"' . Rc V,- (SIS t, = = = 1.21 11.22 J.. ./i There are many Q-values which may be used + "'oJV; R, 1'11 = - 5-V,-t,R, S + "'o V0 _s_v _ v(• = S+w 0 V0 _ "V; - • ' 2S - S - w 0 S + w0 __ s_) S+w 0 S - "'o S + "'" Now: c!>(W) = tan -•(~)tan -•(~) -wo wo w Chapter 11-10 Q s 11 Ji- no peakiltg 4Qz:>2 1 <1 o> uJ2- pe3ki:Jii 4(i i SolutiOII I Q :si 11./i For Q = ll.fi tile rt\!lponsebmaxi~ ilaJ. Because ll:iiS is !b.illltite, ll!ie: Q T{S) "" . ii(, :Ji !!!!.. ,.. w~ 4 Q . ·.·· S 7 + SW0 ./i + W~ !T(O)\ ..; <~o""' = .-.J-~>tn . =0,5412 or 1.3066 ·:(}> ~ - l Now at the passband edge wh 11'(}1)1 .... ll./2 fT ll.fi Q J2J1 - l/4Qz !aol w~Jt- 114Q2 "'' Q ."' .[iJr-,-_-11_4Q...,2 :. ci "" 2(1 - 4Q" ~) "'2--~- zci 2Q 2 + ! == 0 2 Solving for Q2 gives: .c" I ·.t. ./2 ASIDE: ·: Q Q1 > lf.fi > 1/2 t Q' 2 :. Tl(S) = D>:;./i Now!T!m.. "" QZ !(w:, - 2w~ + + w;] = I W0 "" 0.841 IT(O)f = 11./2 "' a~ Wo Q4 - ,. W~(2- l/Q2 ) From the figure: :. ao "' Qz tJ S~+.fiS+l - 2 (Wl -l)2 + W0 l radls "" · T (S) •• (W:;./2)2 IT(JJ)fl "" (Wo-n+ 2Wo W0 Q = 1.3066 • w:.J./2 SO+ Wo!QS + , w;, 0.5 = I ~ + 0.644s + 0. 707 JfW5 =2 !7' 1(j2)1 = 0.242 !T1 (j2~ "" 0.1414 :.Amio.J = -12.3 dB Amia,} = -17 dB 11.23 V2 1ags V1 by 120" V3 lags Vz by 120" w ., 211'60 & C "" 1 JJ.F Chapter 11-11 tso•.+tan··l(. -b)-) -tan ···l(b)) roo cf>(cu) = T(jw) = jcua 1 • (cuf,- wl) + Jti1Wo Q -t<~o sub: tan(~) = 180 - tan-•(.2-).. -·u•~ aW W0 :::; (M} "" -2tan(w/ M0 ) Now~ -uo~ "" at w = 2-rr60 -- t:roo ., -2tan(WRC) -60 '-"' -tan··l(21T60 X R X Part (a): !T{jro 1>I 10-~) =: 4.59 kfl R, can be arbitrarily chosen use R1 aw 1 R ·"' "' IT2 + (~~~~IJr jw ,, ¥ ' I ! ' Glt1J "" wff[i) ,., ' 2 + 2 + wf(w~-~+wn = wi(w~-~+<.,1) tt),r(J)~ + bliwf wb(w~ ~ roi.> = (l).iw~ = <»~(wf- wi) = X + wfwt wi{l)1- tu1tt>~ w}w[(wr- wi) Natural Modes: - ·~ :t r;3 (b) For Fig. 16.4: '''"' = 8100 mdls uJ , 2 = l 0000 rad/s A.,,., = ldB blb ../ + .~-wo Q + w;:} :ntx); o, = 1 + ·' + 1 (8100)( JOOOO) jT{jwp 1)j ., = 0.891] . 17 . )' (J"'r•, -- .· T(<) = !TY FOR ALL PASS: 0.8913t pole frequency then m. > ro0 = -20iog(0.1537) ,. 16.3dB Now w,- 1 and w52 are geometrically symmetrical aboot w0 : (d.H w.vz = rob 90002 "'n ""' 3000 = 27000 rad/s t= a~-------- .. w ~<>q~ 11.28 11.26 Q"" w0 "'o owJwM~-1 = 2'11'(60) OW "" 2'1T6 A = 20dB = 1.005 T(Sl = s:- SW(/Q 1 + w~ 0 s· + SWc/Qo + "'o ZeroQ ~•iiiQo al lfQ 1 >Q0 ITUwo)i = Q~~o < QJ Q. =I Q' >Qo ···········~- .... ·~···--·····-·······~'"""""".." - -.............. _..~ ...., Chapter 11-13 11.29 w "'_l_ OJ[(; 11.31 Jf L' "' 1.0 ll. Lo~ "P~s.:s.: w;, .:. (l.OILC)-rn "" 0.9> lll, L, & 1.., are "open" Cis shm'ted s Lev,+ s v, + f[(Y, l ITl"" l 11.35 1 S1 _ - I = 0.2346 0 92 Forro<< ro~:l/L1C _ 1.2 ITI"" li(L 1 L1 )C - L 1 + L 1 Using superposltioo V0 ~ I ,.. Ltfl-z = = Tu (S) + SIRC + ...!_ L"'C. R, R, l.C R,IR, Choose R 1 = R, "' R 3 :. L = C4 .·. Vo = V.'S1 +SIRe+ 1/Le R, 10 k!l x to• For: V, z st S · l SIRe + lite + V, SIRe S +SIRe + tiLe L= l IOH,C 4 xtos~c. IOOnF L=lH~C4 "'10nF 11.34 J., V,o-C!J-rr· ~ - From Eq 16.46 S2 T(Sl but: to.>~ - + liL,C '" ..J."' = L,C 11.36 = .10 log( I A.,,. st + S(l!CR) + 141' I .. ,1 tz)C Rrcircuit DC Grain =I = + t'i = J dB 10. Q use fig 16.13 (a) R~/R 1 coc>R 1 = R2 Hlldl Chapter 11-15 1- . = 1.618 Now: Q = · - 2 cos 72 Rt> -= QI woC6 "" 1.618 kfi ""IOIIf @ . v v,.1 N;J @ HN=2 ® H. N"<3 @ ~•• 36. fo"" 4kHz fN "" 5kflz Q "' 10 now C4 = IOnF and k = I m de gain .... m~ . 11.37 For circuit (b) Wo = (C4(C6t + C62)R,R3R!IR2 rtn ' ,. c6 Choose C6 "" c. "' .: ' IOnF '~ R2 = R 1 = R3 = R, W(} I eM+ C62 R = (C4 C6 R2 )" 112 ;,u\0 I R =_I_ woe. =:> R 1 = R1 = R~ "' R2 3.979 kfi w. = (C4 C&R 2)-m C 61 - 1 w 2R2C ~ CM = 6.4 nF ·4 ~, C62 = 3.6 nF . ... It Q = w,J cos 36 - 2Q RJC6, + c~>,. __!!z__ 6 R 1 R~R 5 C4 Q "' _ _I _ 0.618 R1,1R 1 :q R6 = 39.79 k!l = R,!!; = 2 Cos 36 11.38 T(S) 0 :. Use fo lkllz Wl;,"' .. R2 Q"' I C,C1,R 1 R3 R5 L~t Let C "' R1 =·· R, c. "" c,. 1 b) " ~"'~ = R, c -.-·· c' R} ·"" = C,, R ~ V.'oC I - 159.16 kH 100 nF C,, Wo ·= - 1-. cc> R, ·R""_l·-cc7R 1 ·· R, I kii Q l 10 9 ::!nl0' Nowusi.ng: Q R,,c,. hlc,·C ':"_, ·.~ C, R~ R,, "' ..J!_ c.(';<(!)~! For drcuit & Q = 06Pl = 618 tt::} U"d." !nF IIC 1R 1 I USE C4 C, RI n ·. R6 159.16k!l · = R1 -~ R, R, = R 1 Chapter 11-16 11.39 At DC~s =0 =k c61 7'(o) '· C...:...ov'r-W\r-+'"\M!..-+--'VVIr-...-1 c6, + c61 R2IC~ C6 R 1 R 3 R5 + C62 ) Rz!C.(C61 R, R3 R 5 ~ 7'(o) "' k ~ DC Gain! Note that C61 + C62 is the total capacitance IIC~US-'IR6 2 - R2 1C4 M, - Because of virtnal ~ at opamp inpilt terminals all JUOde,s are at V2! 11 = -SC6V1 Since no current goes into the opamp input terminals we have: V.=V 1 - l 1R1 = Vz(l + SC<>R 1) = I, . (V - V 2 )..!_ • R, " ~C4 C 6, :. c6 "' c6, + c62 w; ""~ c6, + c•2 w! - c6, ,,/- c6 " :. c6, R1 = (llh- => ,, ., V 2 )SC4 " Rt ~ ~_;: /} = c (~)~ ro(t f R2 ~C., (Co 1 + C61 ) R, R,,, R1 • Now the voltage souree see:s an input impedance given by: V, 2 .,,; "" R2 1C4 C 0 R 1 R1 Rs S 2 C 4 C 6 R,R 1 v, • lw ( :· ) Clearly from T(S) above: = ll,-SC6R 1RJ • Rl /1 = C6 o v, -l~R) = R2 R 1 R3 R, R1 /C4 C61 R 1 R3 R, R2 1C,(C61 + Cd R 1 R 1 R1 w: "'SC6RI v~ I = '-"> "' c6 R, R3 R, 11.41 R, = -,--·-- s·c,.c,R,R, As required for s ,, j"'' ""> st Z('<~) = ···•· 1 '' - •.,~ -Rz ,J.. c.c.R,R, .,,, -R(W) ie. A PURE NEGATIVE RESISTANCE' At high frequcw:ics S ,_, "' T ('"') '., k 11.40 ~ high freq gain Ohservc that the equivalent re,;istaoce at the tuc tenninal of 1\ 1 is: J.. = R5 For th.: J.. + J.. R51 R;~ r~:snnator j / AND (!a hie 16. 1) I (t)oC .::-..,. ii~ ' {t)~ R, -; (I)~: Chapter 11-17 11.43 RL = Rn RofQ=>RB = QR, RL = Rn 11.42 Rat Gain= -K R1 1R 11 Pnn (b) T(s) - w. = 10• rad/s Q o.4sos csl + 1.6996 > + 0.7294) + 0.2786s + 1.0504) (S 2 =2 Flat Gain Pnrt (a) Replace s with slwP ChooseC = JOnF => R = - 1w .. T(s) Choose Rr = R, (S c = R ..1 = 2Q - I R, = 10 10 kO = 10 kO = 3 => R2 = 10 kO R1 = 30 kO T(s) NowK=2-IIQ= 1.5 :. Flat Gain = 10 = ( 1.5) RF R" = ro• rad/s Subw, :. R 11 = 0.15 R,. T(s) 4508 (S2 + Choose RF = 100 kO 1.6996 x 10"> cs + 7294) cs + 2786• + 1.0504 x 108 ) Pnrt (b) R11 = RL = IS k!l R8 = QR 11 = 30k0 First decompose T(s) into I st and 2nd- order sec- tion. k, = 7294 Note w. does not depend on R or C From Now k 1 k, = 4508 => k 2 = 0.6180 :. T,(s) = 0.~1 · 80 (S2 + 1.6996 X s· + 2786s + 1.0504 x a 10 ) 108 As a check: • T,(o) = 0.6180 (1.6996 X 10 ) = J.OOO 1.0504 X I0 1 AS EXPECTED! :. T(s) = T 1(.<) · T 2(s) w., = 7294 rad Is DC Gain= I LetC= IOnF R1 = R, = - 1-=>R 1 = R, = 13.71 kO .. w11 C - - w, ... w,.- R;. 4[R;; Thus: ..,· = w f[Oj .. "4D.99 = I.Oiw., w~=w.. ~ = 0.99 "'• :. w,. can deviate fromw" by =l% Chapter 11-18 11.45 Use Tow Thomas to realize a LPN ,.,., = to• f'Tefer not 10 lrim a capacitor ro use {a) ! o "" w w. "' 1.21>)., 11.47 DCGain·"' I C "" lO nf OR (b) lrim C 1, and r or R3 T{s) r "" 20 kO R"" - 1-"" HlkH t•)0 C From 16.16(e): 0.4508 (,f + L6996) + 0.7294) (S 2 + 0.27865 + L0504} (S Part (n) Replaces •vith s/1!),. wP '" Hl'1rad Is. T(s) ~ u· a2 = HF · Gain r Cl _ \,..-0-"} - R = 2 ~ ' 1.2' R(w,Jw.)~ HFGain = R T(s) lOX 10. 9 - {S , ( I "' " L2. )2 . 1 .., X ( .... f + 0.7294 wl') ' = 10 ldl + 1.6996 w!) + 0.27865 '"PS + 1.0504 0.4508 ")e (S2 _ = 6.94 nF (S + (52 4508 (S1 + 1.6996 X 108 ) 7294) (S! + 27865 + 1.0504 X 10 8) For FIRST ORDER SECilON ..... ·= 7:294 DC Gain"' l Choose C = 10 nF 11.46 For all pass: For SECOND ORDER SECTION· T(S) -,/ (~(~) + S -('~. (.RJ_, - ...!.....) + RR, 1Hi37 ~~- X 101 10.249 X 103 C:RRJ = 2786 Q Q = 3.6787 DC gain= l For Tow 1l10mas LPN Choose C = 10 nF I - .,C - R- f0.249 / 10' / 10 X 10- 9 9.757 kH Choose r = 20 k!l (e): :! 2 (1. - .3:_) /f~ • .R, RR, t-jC jifi?~ 1 For All Pass R 1 ~ "· To adju>t Q,. t.rim r or R1 (intkpeod~lll of U!, 'l -~ sodot}vttrimRorC! CR Note if WI~ trim R2 or C 1 to adjust W1 Thi" will also affect Q,.. So the options are: For W,: Ia) trim R, and (1 "' 1?1) to maintaint.ht• valu<:' of(!,. T(o) = a/:'~ = I'''" rlz ":~ :. HF gain= c, R7 R2 C X ,/ 0.618 R "~ R,. ·~ 6JH k!l QR "' 35.89 kn 0 RCw 0 - 2 - "' 2 Rl: RC Q 2-r 2-r 2-t i.e. twu roots on the negative real axis If the network is placed in the negative feedback path of an ideal amplifier (A "" ..., ) then the pole' are given by the zeros of t(S): Closed loop pole-~: S '" -liT (multiplicity = 2) ., 2 . .,. s· + sQ + "'ct ITis !Tis = = 0} () )i . Bandpass 8~ CENTER FREQ 4/ II 2 11.50 -sC\-h 16 II C/16 - R --wv--- i'- v.. -V/R • R. ov r-~w..--_v_____,...w..,...... R 4 RC Let w 0 = - - , =:. w0 ~Q ./5 "" - + J6 S :. T(s) ·"" -:---'s:....::.:l6:..o/.::.R::.:C::..'_ _ / + i I RC + 16 I RlC2 ~ -3 ± J6n iT~+ 2T V, Poles of t(S) an! given by the quadratic formula: s /1'V,.+ srV,,+ J6V" "'-· () + 16)""' -16s'V, Yo = 7-eros defined by w, = 117 ~ T V,, + 16-r V, s + 7 Q, = 16 R we· ,. s'- + s';., + 1 1 -r~ 16 mull by: 16 Rand let RC"" V., [/'' + s X 21 + S1 I RC .·.J(S} ,. ' + Vo ""0 - 1- + - 1- + - 1- ) + - - ' c,R, C,R. C 2 R3 C 1C,R 3 R4 + sCV. + s 1 C 2RV 0 + sCV 0 c l tn: 1 14 lz - R v c 1-VJJC ,, t I J rt v, - c R 4Q2 ~ "L-~=j?~--~- '"""~, Note lir>l - sC V '' 16 ·· V ..L R \' R 1 ·t R:: 0 V l ·.c V l, H'. due lo virtual c>hnrt Chapter 11-20 kV1 - V 0 = V- kV 1(SC) R V I = S~R(kV;- V0 + sCRKV1) !latV=O 1,+1,-1,=0 SC(kV,- V) + ¥ _ kV 1 + V 0 A + ==>1_2QlR,=-I R, A :UC(v A 1- kV, SCR _§_£(kVI- Vo A sc sc SCR + kRV-- """SUB CR = kv,) +~- VoR) "' 0 I R2 ! R 1 I +R 2 1R 1 ~ & R = jg_ wo C'"o =...JL + v. - kV, + 4 Q 2 \<'. ' 2 _ J .:! I+ Q' 2 14 Q kV,"'o + V 0 t•>0 4 Q _ 4 Q1 kVS"tfj S'lfj ' For Notch: I - 2'Y~!!1 .,, 0 R1 _ "'· R, V t.Jo R = v,ft- 4Q' + 2kQ("o + 4Qzk + k + 2tQS"I -' = R, R Jtr)' 2Q' & _ _ , - '' ~ . R, -~ R, I "'o J S L l R; - 2Qi o[l + 2Qwo + I + W] S 11.51 Si4Q 1k- 4Q~ + 2 K) v + 2kQov 0 1 S~~~Q + S(4Q 2 k- .::::..) _!] ;.:::: wo 4d + 2kl + 2kQ"'~> v, s~ • s"~'( 2Q1 2 - 2~ + 1) + ...,} ---~- -k-·- s' + s'::'£ + '''o1 Q R<'<'>~ll k .,_, _r!:_L_.. R, ·•· R~ and t k R, + /(, 1', + 2d Chapter 11--21 11.52 :. No current can't Row into the tenninal y _Ro = SC~(Vo-Y) ) Y Y,ft + -1- ) = '\ sc,R 3 II@Y=O _ Y 0 + Y,- Y SC _ Y- Y0 R3 I ,-~ .lR + .lJ + Y[- sc,- .l) = R R Y 0 [- 3 A_= 3dB -sc, Y, Yo [R, - R,] + V [SC, R,R, + R,j = V,SC,R,R, Y 0 (R 4 R3 ) + Y - = (IOJ!IO- E 4 4 1-) R 1 = R2 = (~ ~ = _1_ +_I_ = C 1 + C2 Q V IV = 1Q. => C, w R C 10 Hl = C = 10.3 nF C,. = m ~ = 0.984 nF 11.53 For a bandpass fi her .fi. 70.7 kn t(s) = -:--"'-=o-1-=Q'-.•-- . i+sw 0 1Q+w 0 1 center freq. gain = I complementary transfer function : I = I -r .t~ + Woz • ,""NOTCH! s· + sw 0 1Q + w,; Chapter 11-22 11.55 s: + s•Q [1 + .Jj[_.· A+ 1 2 0 ) + ..,,/""" 0 Now the actual w0 and Q are given by: Q = 21T(J04 cv 10-n(l) ~ l pC 100 klh, average current is given by; c, 1 ~--, lpCX-~-~ c6 lwF c, Q T = = 6.28 pF 100 X. I()' =OJ !LA For each dock cycle. the output will chang~ by the same: arnoum ~ts rhe chrwge in vohag_e acros& C2! ~ \/ )(--'--)20 X 10· n 200 10-' X = For J;1 :. c Q!C, .L.££ 10 pF = tu v w 0 TcC -·Q = s 0.157 pF (' -· ~ O.IS7pF Q ':!_oTcC Q 11.61 = "'o '"' 104 , Q DC gain . ·cc~ ~ Ro ., For !. \ 1 ~ 0. l V for each dock cycle, the {,, ampliikr will s;H\lrllle 111 c, => l!./2,fc ~~ C4 HXlkHz = 1 10 pF cf\ C,, 4(. If) l ·---~, 10() X. 'l I() . 10 ,,. J0 ' X Chapter 11-24 "' I pF = C./Q = 1.41 pi' c, 2.533 nF n _, _!_ RC R, = ----......_,:__ _ __ (2r. X J0 X 10 1)(2.533 X 10-'J) I pF. fl = C~ ~ " 6.283 Jdl IOpF, I 20() R1 r" '~ X Jl) '')I() ") ~!)2_~--- ~ 10 ' 5.025 - !U8.8 HV J"'.l Ni, --66,6 VJV HW 'I (I k!l) I RC ,~ R 9~0 (} R_.·-"'ol- I Chapter 11-25 and w2 ;:;w~( I 2w 838.8 X JOJ X 36 X 10" 6 sow~- = 47.4 + 2::) = -2&wCd0 ILl:! :.JT(jw)l• 11.65 oiQiwo L rorQ>> . .r Q,e~ I+ I:Q'(2~... r"' a>(2!;) ~ IT(Jw)l "'-;=:!::::IT:::(J:;·"'~o¥)1=::;. I+ ITl I+ 4Q 2 (~:r I for wCp<< WL For N bandpass sections, synchronously tuned in cascade, half power is given by: : . ..,z<< _I_ LC,. ie well below resonance :. gain = -gM(jwL) :.y,. = = ::- + jwC • + jwCP( I ""'• + g.,}wL) [. .~(~rr ·~ (I + 4Q'(~:rr = 2 (~-w2 g,.c,.)+Jw(C.+C,.) 4Q2 (~:)' AS REQUIRED! 11.66 &... T(S) = _ __;a:.J.Is::.__ w0 :a Q~2::r = 21/ll I - = "'2Q0 J2 11N- I :. Bandwidth: "' s +s-a+ "'o 8 = 28w = "'o Q ja 1w J2 1"' - I 11.67 l"or hrsl order lowpass: T(S) =~ S 1 IT(Jwll = a 1 w[ + ...~ for a bandpass response arount w 0 with w~ = Wo: 2Q JT(jw)l"" wc/2Q (llw>' + 1 (;o) + &t1, &w << I wcJ2Q "'" ~ k~)'caw>' + 1 2Q~\ ...(J I Chapter 11-26 • = [_lOliN _ l_l'n Nowat(l)""f~>oot&o=O ""' lrU•o~ 1..4(2 1" ' - 1)J Ratio of 30 dB 10 3 dB I, then 'i'(jf~J) ... . ITl •+4Q2(~:r BW = 2Bx = 2x B Part (h) N For N ~ly tuned lllettioi!S ill case~; 3 dB bandwidth is giwn by: !II "' ..!.. ,fi (ITIJITD(l1 = .J.. OR 2,m 1+ 4ci(!:'1"" zliN OR 11.68 28.Col. = ~#IN1 Q Thus: IT(JCII)!o....lt "' (16.110) (a) For the narrowband approximation variation of fi around 0 is equivalent IO SW around Wo Thus, a low•pass ma:~imally flat filler of bandwidth B/2 and order N for which fT(j...}f~ -I IT! = L(l + 0/B/2) 214 JT is transformed to a band-pass maximally Hat filter ofbandwldtb 812 and order 2N, and centre frequency ro 0 for which: NOTE Q ., '!J£j'!irN _ I 111 .. Q .. _ __,.,!T""'(J'.... ---'o:....>l""'"""'·••:.::o••... • -....-, [· + 4 :f (::rt (2''14 _I) (I + (!~rr/2 (b) .For bandwidth 28, &o = B & IT! = (I + (:nrrll lni...o>!ovmll N [1 + 4 (2 1m- I) (&;'tt Part (c)(i) fur bandwidth = 28, ic 5w ~ :t B Art "" -20log(l + (2 1r.<- I)(I))··W:! = ION N I 2 Att(dB) 16.70 3 3 4 5 111 0.447 0.242 0.124 0.062 0.031 IT!~, -6.99 -16.3 -18.1 ·-24.1 -30.1 -~ 4 J 2 8.4') 19.281').79jl0.13 • 3 dB bandwidth f:>w "' ± B/2 !),., = x . rutio = 25 w IJ -2H~Ioe{l + 4(2 11" 2 ~ 2!11 w) ' "" 999 -· I w 998 812 Now the rntio of 30 dB to 3 dB l:lantlwidth is (& 30 dB bandwidth 10-M:Z '~ _1_ 31.6 Part (ii) -30 = 2 -30"' 20Jogx~X"" 3} 1 1 For 30 dB bandwidth, -ION log(I+2Jo 11 1 = B Qt = wt~B ./3 (2) w02 ""48 .fj + w0 82 B =2 (3)1dol""4B-wo BJ""' 2(1)o Ql"" B B 2hlo 2 QJ""s X Chapter 12-1 12.2 12.1 For tbe eimlit of problem .I. the poles, which are tbe zeros of the characteristic equation, are gi'Ye» by: 1-L(S)=O L(S) .., K(s)0 S AK(7J)s w·o (a) for oscillations I - AJ3(s) = 0 W2 .~ = s s-' + s "'o 0 +wo2 • }W ("'Qo·)(Ao · K· - AK> + ...~ "' o :. Poles are. at : Q W 02 - ~ 82 + s"'Q0 0 - _____.Q,._.- - sz + SWIJ + Ul~ "'o An KQS 1 s-+s 0 + "'o A "' A0 > 0 IJ( s) = _ = = - roo(l - AK):!: Q (Cdo)\t Q AK)l4 R 1 Slope= R4 tR 1 s O.OS R4 :s R 1 X 0.05 IOOkO => Chapter 12--3 = 4.3 kfi R4 s 5 kfi => Let R4 i.e. A Band pass! 2 I Wo = R2c;1 => wo = R• => R1 = 4.3 kfi = Rs = 3R4 = 12.9 kU ·: R1 R2 ~=2..=>Q=! For standard resistance values: R2 = Rs = 13 :. L- kfi =-15R3 =-15XQ R2 12.9 Q RC 3 For centre frequency gain: S = joo 0 = jl RC v., = -4.96V a -5 V + 5 V => use Offset is I RC v: V 8 ~ - IS V - k s O·RCI - :. R 8 = 3R 1 = 300 kfi = 12.7 2_ __ I_+ R'C' and5 = R 1 1R8 15 ! = 3 j!RC (.L) + _1_ RC RC 12.9 "• "• V22 + 0.7 = L(joo) I+ R2 1R 1 3 + i(wcR- c!>(oo) = -tan -a (WCR 0 -I (1.r (b) (a) Iiq{l7.11) 1-) -WCR wa) ~ v using atan -(V,, +0.7) ( WC~ ~ _I_)' ,j( I+ CR + W}CR) WCR 3 12.8 v._ V: - 1/sciiR 1/sc II R + 1/sc = =..!(CR + CR) !?.11 ow = -0.1 for A4> A ac!>taw sc x sc ' ' s·c s'c' ·. New frequency of oscillation ~ 1.15 "'o SCR ..!...s o v. 1.15 RC Poles of closed loop given by: L(S) = I I+ RC has zeros al 0 and = I s __ I + R2 I R1 .( ) - 3 + SCR + 1/ SCR SCR + (I + 2SCR) + S 2C 2R 2 ~ -2/3- 12.10 SCR SCR + (I + SCR) 2 Note -0.1 ~ ---1 = 0.15 "'o 1 )' -R + ( -+R sc rad "'o sc !!.. = - 2 CR 3 iC (Rise) +..!_+R +R) 3 I +R (R/sc)t(~ + R) (~ R'C' centre freq. gain :x = R.IR 1 - = 3 +SCR+ _I_ SCR s' + .l..(2 - ~) + - 1RC R, R'C' Chapter 12-4 Q = =0 SCRflo I (2- R2 tR 1) for Q = "" - poles on jro axis -R2IR 1 = 2 ~~q(l + SCR + SCR + i'clR~ + SCR) , SCRVJ j!(s) ~ !! = SCR S2CR 2 + 3SCR + 1 "' for poles in R.H.P R2 1 R1 > 2 I + SCR + 3 1/(SCR) 12.11 · assuming resiSiance of timiling networlt is very low At positive peak o -- 11 (' +1020.3 K K) "o = 3.03v, A = 1 + R1 tR 1 IJ(jw)"' -~--!1_ __ 3 + i(wcR- - 1-) wCR (1) Zero phase when wCR vo-[Rs~R6· = SV VI = ).OJ 0 . s IP(W = 1/ RC)I 3 • L(s) s-C 1R.·cv.+ ls>)-o.7 = 1.65 = AP = L(jw)= = 1Q_I 2.6S R6 = 6.5 kO = R3 If R, = R6 = oo from (2) ~ ;;, 2 R, I+ RliR, 3 + SCR + SCR I+R1 /R 1 3 + i(wcR- - I+ R6 - 2.65 -'-) WCR 12.13 R6 flo-C = 1 for oscillations I + R, 1 R, ;,: 3 ~ = 1.65 V using (2) R5 = 1 kO 20 wCR ... = CR ...L Now for IOVp-p out v = _I_ !,)-o.7 = 3 ~3 flo- 0.7 = flo "· 3.3 flo= 1.04 v :. oppoutput is 2 "o = 2.08 v,_ •. II at node 1 12.12 v,o-f~v rR CI ~ "= 0 SCVn=i "o - ~ - 0.650 "o 30 = +vo-0.65-~-0.65 0.1 ":" 0.00666vo "•R flo - I/ = SCvo => v 1 - Vu( I + SCR) 11o(l "o :. IIIII R "• + SC( ••• - 10 + 0.666v0 - 0.65 = 10.156 V Max. ouput =20.3 Vp-p 12.14 VJ) + sc •.., = 0 wo = RIC + SCR) + SCRht, + ~~uSCR) - SCRv, + C • = 211'10• I R = 10 kO 10• X 2'11' X 10• ~ C,. 1.6 nF Chapter 12-5 I +0.2"' __J_-o1lt wh) (WCR ~ :; ofl(w) = -tun-• M 0 R.tC . Rx J I M 0 C- 0. .1 R Rx , 1.2 given: . v ...- iltun··l I ov + t' •1.t uSing: - - - -- - -2 7 I il.t we get = 2'11'104 11> 0 C "' 1.6 X 10_, R = 10 Rx = 1.5 k.O 4 Now: f3Uwo} At(>) "' ...., "" j_ il.jl( 3 {lag :...OJrad) Now s.r ... O.Irad A · "' 0.15 w -0.1 :. "'M. = · :::J.Rc -213 RC '' = 1.5 kHz :. New frequency of oscillation = !t5 kHz To restore Operation: = = . 2 + 1017.:1 I + j(l- 1I!3Uwo>l = -. 3.35 .·. I + R 2 f R 1 = 3.35 for oscillations R, Jt "" 2.35 (not 2 as before) I 12.15 I R.t!l SC Rtl _!_ +R+_!_ .. sc sc Rx!SC Rx +I I SC RxiSC + R + l v,. SC I Rx+ SC = u + ...!..!! SCR '"" •{1 + SCR _t_) RxiSC Rt / SC + RRt + .!!.... + R< + - 1-- . · · sc · sc slcl :. J3(.s) 2 + ]!_ + SCR + R.t -·lnn"' ( 1- SCRx WCR- _l_ ) WRxC 2 i IU Rx I!' ·~ 1,. + !! i R s v~ "" v, 1 ·----. . --.:.. u + where "'" -~. l ! .RC - -l w,,R.IC "'uRC - ---.1I -- - - h)oR.\·C = 12 + R RxH ·0.1) 2!' + ~"' 1~ I? SCil2 + 1~ ..-c -.!;_ + sCJ"'(:.E + -"-.) · R sCR''· .<(/? Now it is re 0 ~Poles in R.H.P.! for A<< I S .••JH2:tj2"" ..L(~+J)QED ,.- 2RC RC 4.. 12.18 The transmission of the filter normali:r.ed to the centre frequency, w. is: IT(jw)f = _ _w_c.J..::o_IQ::;:;.--;-l-::;2 ( 2 c.J0 -w Frum the volmge divider around the upper branch: ll+"' l; I = tl- !llo! - u llw - ol + 2R f\r. - +w Colo Q2 !,,o:! 2 = 0 at the input 2 - z)l voo sc!:'.l£ + _2_ _ 2 -!!!.!! "" \11 R . 1 ,. . (!.2 +. sc-"A) ·= 'lR ~vl t•rp(scR- ~) o R1 Zvm t SCu 2R "' = v01 ((~r-, r + ~~(~r Relative to the amplitude of the fundamental (a) The second bnnnonie =0 = 2R .l Hi1 0 R (b) The. third ham1onic .!_X! Vo1 ,! · (c) The fifth harmonic R 20 J 3(~-ly +(~f(~) "' 6.25 X 10-·:l .!_X! .·. l!oz .-=:::. SCR- A/2 Vo1 Now: Pot SCR _:::JJ SCR SCR- A/2 Charw:1eristic equation L(.v) =l :. Poles are ( 20 ""' 2.08 X 10 . 25 (d) The 41h harmonic = 6'h "' J(~h = () .·. L(S) "" .·. S2C~R2 _ SCRA 2 1 25 = ...=..!.. IJ, _) 20 5 -S( I ). I )!( I ) --1 + - + l "' O 71h hammnic "" L04 X 10 ·l 9'h h:lmtonic "' 0.625 x 10 '-' RMS of 2•• lo 10' 0 harmonic is RMS of fundamenlal (6.25Z + 2.08~ + 1.()4 2 = 6..7 X JO 1 OR OY% + 0.625~!"~ X 10:1 Chapter 12-8 -Break the loop at v; and assume unit return, 12.19 + SC1sl. "• = I Consider tl~ small signal models for each circuit. Assume r ~ very lnrge: "" I+ S 2C 1 sL l:l ·•.o g,. + SCz + SC 1(1 + S1 C.sL) + (I+ S1 C1sL) ""' 0 ' R . 0 at .... :. g,., +IIR + S(C 1 + C 1 ) + S 1 C;L + S 3C;SL R "" 0 This is the characteristic equation. For s "'jaJ: .~m L 1 wzC1L . ; + R- -R- + J{(Cl + c,)w- Ill (C,C1L)) "' 0 IMAGINARY PART"' 0: C1 + Cz .zc, + C1L = .. C 1 + C1 "',., c,c,L "" Frequency of Oscillmion REALPART=O + 1 _ .,}czt. ii- -T g., g,.R (~ I ; 2~2 )C2 t.c I ~ g,.R ~ i"' LIMIT ON GAIN For Circuit fcl g,. t sec+~+ sc,[st.(sc, ' ~) + G!wn N,>>w,,L. drcuits(a\,{bJand(dlarethc ".' '''" ~a me cxct: C 1 Chapter 12-9 12.21 12.20 v (a) frequency of mcillatioo w0 = - 1- .[U: gain » t gain ""' RC ""' _!if__ 2r. 2Vrll !2 ,_!!!£ 4ttr for v1 = 0.025 V then /RC '2: 4tt7 RC '2: OJ J I for oscillations to shllt. ! (b) F6r RC = I e;r) (a} ':£./ at (k!l} we have 1 gain = _jJj_ "" 2 4 x o.ozs = = 10 Rt v has a P-P amplitude of :!.rr = . 1•. Fundamental I .17 \' 1•• r RJ R2 tH(.lR, + 1.RJ + 1.) = £. + ~ R~ Vm = (V !Rl Vcc - I . 'Therefore. output will be l V p + 1-r-VTH Vill = V- VrH Oscillations will shllt (1 0> 1) and gmw until QI, Q2 go into cutoff. Output will go from V n: to V cc - I RC + "'- node; = (f + R_; R2 + L 1 ! R,l(.!. + _!_ + R, R1 1.)·' R_~. ~)n, II n, II n, Similarly Vn ~~ (~ + ; 1-)4.9 = {1) X LYJ. =;>OS, ')_<) • - (2) => 0.49 = .:_!1~ R1 SUJHRt\CTTO GET 052 ,_ ()_4!) _IQJ R, ,., = 8Jl6 + 17,9 R- 25.96 tiOlOI 10.1 I tl4'l + R, R 1 '"I'll\ kf! S56.8 k!l 17.9 Chapter 12-10 12.22 "• 0.7 -0.1 (a)for v1 "" L+ • vii ~ "" vii- Vrt 1frL vn and v0 "" 0.1 I. +initially -0.7 R, R1 R1 Vif- -L+ Rl Rz = v11 - - 12.24 = v11(t-~)~·~.L+ R~ R1 :.tfrL ~n~ , - !± Similarly "R - vm -R-,- ~ - L_ tt11 R2 - . vm - <>R(I +. Rz!R 1 ). - R, k;L. (b) Given L+ ""'-L_ ""V "o = R 1 10 kt1 Vn=O Vm"' VIIO Substituting tbese values we get: 0"' V8 (1 + WIR 1 ) - IO!R1 V x_ 10 = V.(l + 10/R,J • - + !0/R,V - 0.7 -0.7 (I) 0.7 (2) -f}7 CD12' . • I R2 "'· () = -X. JO "" 12.25 200 kH v"'~0 + !() 1200 l . . - (a) A 0.5 V peak sine wave, is nvt large cnvugh II> change the state vf the circuil. Hence. the output will be either +12 V or -12 V ati)C !h) The Ll V peak will change rht' state when l,Q_ v 2tK) l f) / 200 v - '7 < ' \' \' I< ---- .I""+ 10/200 - '' ·''~ m , 1.1 sin 6 "' I 0 "" 65.40 12.23 OntplJI kvds ~" ·:t0.7 V Threshold levels= :!: - 1-0- . x 07 10 + 60 12--0.7 __ 10 07 10+60 OJ v Ll2 mt\ Chapter 12-11 'J'!le~i,s• ~~JieJ*wave :·. • rn,.. fPIICY/. a Jaaalbe•ioe ~by anl!iJle:of 6s.4.; ;11te rqure wave bas a swing tit :± 12 V. Since fltii- tit!. = l V, if the . . . Sbif\i by an amot111t soei~lhe +ve.or ~veswing ia <1 V, ~no i:haop of Sllltll willoccut; Ckady, if the Shift is 0.1 v; lbe outpUt wiU be a OC wltage. 1 I ·0 = 'i.SV~R, = -Vn =0 ~R 1 = 1~2 R1 = 6.67 kO ;= NwfromFig l725(c) slope= -L- J •: R2 = = O.tmA "" = R2 ....1:1.... R + Ri 37.Skfi --R- - 2R 1 I"" ~+0.1 R R = 4.1 kfi J._ RC = _!!!_ => R ."' 25 kO 10- /2 3 12.29 For 15 Vp,. output v, = IS 12- 0.7 = 6.8V f'Or the integralt)r. 11'~----- + 1.5 12.27 --f INPUT ~ T "' 2Tld !..:!:.@ l - ~ = __!!!_ IO R 1 + R2 = 26 T = 2(10 X 10-!1)(62 X t03 )l ( 1 + 10/26) . . • I - 10/26 T = 1.006ms ~ r C=O.OJp.F 1 ... l ·mA _ 12-1.5 . 7.5 - = .T=< J0-3 sec. Vz=6;8Vwith V,o=0;7V. t1 = (0.2 + l)mA ~ fur/= IUb: .s v For !if. ... -L- .. 7 For ·" 13R- 5 RC 12.26 ForV,., Mu diode c:urrent = I mA t L_ .. I I I I • -7.•S V• I tt ---~~- 7.512 ~------ -1.512 = 994.5 Hz vc(1 1) "" R~{,~ vdt + v,(/0) - v is a square wave 1:} ,. Rlc(t'- 'oH7.5- (-7.5))- 7:} 12.28 for :±5 V""'P•" V, "' 5- 2VDIO!>l< "' 5- 1.4 = 3.6 V Fnr :tsv•• ,: (t 1 - t 11) = I !.2 T 7.5 ~ fiC2(15) "'L~R=L,..J.. RC V711 = -Vn = S.V RC Ma>. current in feedba~;k nelwork = 0.2 rnA 5-;;:::)R 1 = .·.0.2 ""-R 1 + R1 R~ = 25ktl fC I 104 (0.5 X 10- 9 ) :.R = R1 • 6 "" ZOOktl Minimum level current = I mA J3- 7.5 ,. I + ...1:l_ + 7.5- V c R, R1 + R: R~ Ma~imum <:urrent imo the integrator when Vc "' ::7.5 2 . 5.5 ... 75 I + ]2. + I 1.25 400 200 Chapter 12-12 At Treeovery: V m = 12 - t3.2e -Trl• :, R, = 5.12kfl~e R7 "" 5.1 kfl IJI!egl'lltor output ii triangular, with period =' IOOp.s and :t1.5 V peaks; (i.e. -r"' R3C 1 1 -12) Tr-R 31 C n~ (Vnt 2 X voltage at capacitor) 12.30 -(6171)(0.1 See sketchei that follow: 96 p.S QJW. Trigger: )(f 6)1n(!!:~) 12.32 v,,r CbooseC1 =lnF L~-L. T = - X = RCtn(L+V,er -L.) RCtn( V,:'r ) L. L. R1 I =R = 100kfi=>f3"'~2 2 0.7 + 13 T .-... C 1R I ( ·r - l w·• n - 13(0.5 - I) ) = I0- 9 R In( 13 ·7 ) J 13(0.5) R) = 134.1 kH NeedR4 >>R 1 ~choose Min trigger voltage"' R4 ""470Hl U~L.,- V 02 + Vm) = 65V For recovery "'' = 13 - (13 - 13L_)e -tt, = 13- 19.5eq'' = 0.7 = -(134.1 X 103 )(10 9 )(-0.4608) 61.8 J.lS 12.33 for v1 > 2 i 3V n: comp -I ="I" and cnrnp T -2 = "0" and fhp flop is reset I.E. t'o " OV. 12.31 Forrecowry. •·11 goes fmm j3L- In Now "o will not change until t•1 = when comp - 2 = "I" ami comp -I set: I.E. V0 =Vee =''0" and Ff is L, until ll 1 For condw.:t" at Vm = 0. 7 V !:l V ( c < t•1 I /3 V cc , < ~ V cc· cornp - I = eornp- 2 3 "' "0" and no change of stat.: will occur ___.-TO '-• /:: / f.------ (~1.~ For rc.:nvcry v 11 = - 0.1(12) 'fl2 '· 1.2)(1- e'.'l (. i.e. au inverting histahle cir•·uit. Chapter 12-13 12.34 = e• Ttlf!R.~ ••sl Vee- Vr11 (a)C=lnf Vee- Vn. "c "' V a·( I - e--u•) T11 where -r "' RC Pulse width of I0 JLS when t•c "" V-m "'~v,.,. 3 .. ~L RC ""' Cln(l/3) = 9.1 kfi lb)for T"' 20JLS R ""9J kfi,C,Jnf " 15( l - ,9.1 l --20x w.-h ~ to 1 X IO .• q Vcc-Vrn for CXpPJientinl fall: ··t/ICR11 Vc"' Vmt! = ln(l)=-R 3 + R9 )ln( vce - v. n ) C(R" . -'tLfC R/j :.Vn -= Tt = CR 11 tn(~::) Vmt! for Vr11 = 2 Vn. => Tt. ""' C R 8 1n{2) (b)C"' lnF,RA <> 1.2kfi,R11 :. r, + TL"" "' 3;6kfi =0 Vee = 6 V Vr 11 .,., T = ln2{RA + 2RR)C T = 9.98JLS4.f = lOOkHz RA Duty cycle R,~ + RB + 2R 8 = 0.75 =>15% ""13.3V 12.35 C = 680 pF f = 50 kHz T = 20 !LS = 1"11 + TL = From Eq (!7.43) we have: 680 l' 12.36 11 'In~ R8 ) ln(2j r;_ = 3.33 3 v = 4.33 V v + 7.") X ~ 103 ln(~) 5- 4.33 jJ.S ~' 10 ·Q :. f 10 "" ') ~. 17 • .,.,_ 15.6 10.6 k!l 15 X 10 ·• _ JO.Ii X JO.l X JQ. IZ ln(2) 21.2 kH 2l "• 1Til !I 680 X 10 From f"] I l7 A I) Cl R" t· "' v:. T 1 = 10-9 (3.6 ln2 5 X 10-6 .·.R" = = 3 ' V 11. 5 !LS T, = CR 8 Vm = ~X5 foriV input For 75% Duty 7"11 = 15 p.s T1. = 5V. {c) Vu x 3.6 x to~ ln2 "' 2.5 JLS I "" 55.2 kHz (15.6 + 2.5)10 (, dutv cycle • = 2.5 15+ ·615.6 = 86.2% fnrlV input v.g, v:~ ., = 2.33 1.11 .. r!: "' Jo·''o.6 7.2)t0 3 tn(S- "" 3.92 !LS -r;' + r; ·r . ' = !.1 7) 5- _33. ·"' 25 f1S -~~~ + 2.5) (3.92 f'orthc tisc: duty tyclc 3.92 ---25 ' 3.92 156 Hit Chapter 12-14 12.37 12.39 ~1' 0 -5 ' 27T = -nV 1 1n(~) Rls Now. -nVrln~ v. = Slope of u0 at t = 0: Vn ~ -nV 1 1n~ Tt if110 = 2n = AT cos A~1r • (21T) T tJ, = 0 .1.. T/4 = I kO Rls Vc = +nV,InJ... Rls SLOPE AT ZP.RO CROSSING Slope of .:1- wave R Rls v0 = AsmTt V, = -(V• + V 8 + Vc) ~ T A21T . 20 _ ··-:r--:r = 3.18 V A r-04 =J,e ""' .. vT :. Clamp voltage: = - V. = 3.1 K = 2.48 = 2.5 v Vr =I 0. 7 X V1 V 2 = V1 V, Rls R ' t'o = -i,4 R = - V 1 V 2 X R R :. "o = - "• v, ANALOG MULTIPLIER To check v, = 0.5, v, = 2 12.38 / 01 = 0.5 mA-+ VA = - 0.7 + nV 1 tn( 0 j5) ;0.7 + 2(0.025)1nG) = -0.6653 - Yiz- "::: '"' ,~. ":\. "* \Jo \.sn:;J ~ -t\\J"T )t\l~~J' v Chapter 12-15 10: = z mA _,VB "" (0.7 Vuz = + O.OSin(Z))(-1) a *-'0.7347V = 0.700 V 1m "' I mA _, Vc = -(- 0.6653 - 0.73-17 + 0.7) V0 = VD4 ~- 0.7 v =0.451 Vt For t'o "' 0.5 v.,. 2X0.5 "" I _ 0.5 I _ For l'J = 3. lit"' 2: 101 = 3mA _, i-'A = -(0.7 + 0J)5ln3) = lmA _, VA = -(VA+ V 6 v0 6mA "' 6. For squarer: v, "'2 through ~ kfi = 4mA _,VA resistor \'0 Ill!$ "" IR -~ 0.25v7 0.25V 1 R = Vo·•. 0.8 I "" + 2- ln0.2) = 4.197V 1 + 2.4 - ln0.04) = 6.292 V 1 ·= 2.42\' 1 1,. = 0.968 I + 2.42- lnO.o32) =6.519V 1 3.999 rnA 0..... = 6...:...6 sin-·• ( - 11- .'.....'.'! 0.25V 1 __ tlo /'tJ 1 0.25 0.50 1.00 1.50 2JXl 2.40 2.42 0.451 0.905 1.85 r.r1 1..11 I t.t 1 tnl'~) . . I 1.0 J ....,... -· ·· ··· ·~r·~, ·· ·t 1..79 2.81 -~.- :HJ ······-·----Y•"f"""""w~"""'T'~-------'1 0.435 0.874 2.89 4 . 20 6 . 29 6.52 4.09 (i!kall ~' 11 ! V,ln(LI) !. 90 1l1 / Bvl I!V l __') 2.42 v 1 (l:t ""' : . = 2.42V 1 sin(~ x 90") 6.6V 1 4. I v"'". . . . = 2 \' T I R Ideal curve given by 12.40 Say V 1w = V0 @1 n ""-· ln0.4) V 1 = Vr(lnl.968 110 for v0 + 1.5- V 1 = \'rOn 1.96 "" -(0.7 + 0.05ln4) -3.999 V i.e. 21 :. V 0 V1 (1nl.6 V0 = 2.4V1 IR "' 0.961 ~ I! ~" V 1 = V1 (1nl.8 ""-0.76')3 V 0 = -(-0.7693) = 0.7693 V 11>4 = Vr[ln 1.4 + I - ln0.6J =2.886\'7 = -6 V i.e. 2 ~< 3 fiJI "" V1 o.7\1116 ,o.7 :. v0 = V1 1... 0.41 V1 Vo., l.5V1 lk = 0.6 I v0 to.~ I!~"" V0 "'L847Vr + Vc} = +0.7896 V .. 1/),t - 1.~1! .. I rnA - ls/'-'10-'JS lrn"' + 0.5 -ln(0.8)] =0.905Vr "' -(0.7 + 0.05ln2) lm = I rnA_, Vc = 0.7 V = V0 .. 0.2 I V 1 = Vr[ln(t.2) ""-0.7347V .·; V0 25 ·· lx ·• _,_0;7549V lm + V 0 + VIIE:J + 0.25- ln(0.9)) "'Vr[ln(J.I) = 0.7 V=?lm"" I mA .j..e. V0 + Vrln(0.9) VI = - V,u v(J ·'· v., = -l V Vn+nVrtn(I-~ 110) 5 "··-r ·--· · 6 t"; ................ 6(16 6.60 Chapter 12-16 12.41 .!J Avg = T J'/l 10sin 2 .,., dt T 0 2.,.t X (-10)(' 2 =!Lcos T2.,. T '. 0 = -IO(~"OS.,.- cosO) 2.,. =lOin = 3.18 V 12.42 for v1 « 0 v = (1 + t,)v, 0 for a gain of2 R, = R2 = 10 kfl for v1 = IOV,. sine wave "" ~ forv1 <0:)v0 R,. = R 1 +10·-r\_j\_ 0 o m r = = -R 1 1R 1 :.R1 IOOkfl 200kfl 12.43 for high R., use R 1 = I Mn Ac gain is given by R, I R, :)R1 = I MCl Now for I VrMs sine, peak is 1.414 V. The value of V, is then 1.414 = 0.450 V ,. For 10 V out at second stage gain (de) - 10 --imli 222 . :. R4 1 R, = 22.2 I & Choose 211R4 C 10 Hz (i.e. comer fre. quency) To make Csmall, make R4 I MCl :. C = 15.9nF R, = 1 2~~ 45 kH 12.44 At the +ve terminal V. = - 5V for ,,, > -S D, is "ON.. and faces vinual shon. :. V. R. = -5, and no current will flow in feedback :. v0 = -5 V for v1 < -5 D, is "off" and v0 _ -5- v 1 -;,- --R- v0 + 5 -R- Chapter 12-17 12.47 Simply place the .LED .in the feedback path, T/6 -5 .... t~ -5 12.45 for t~1 <0 D; "off' ""'v, -I 12.48 tluz =·o v TIJ for v1 >0 D, "off' %1 v, 0 fit)~ -I lft l'o ./"' VI im = ji,.I = c~ dl using R = I k!1 ~ . - ,.'"I -- R lvl -- I ]1~ - . kU ..• 1,. Now 11 = Vsin2'7T60t 1., - 12.46 - I11J ll'A . ' ~ i.,. "" C X 2ff60jcos(2r.60fll for equivalence: Ljsin2'7T6I)tl "" 2rr60YCjcos2rr60tl JO' :. c = __I___ 2rr60 10) AI 120 Hr.: i,. For v, < il- Diode is on, and c;nhodc is for~:<'d to ""'ov. For t-•1 Jows '" - I For ...::n ·u, 2'1TI20VCjcos2r.60t! i, 111 ~n ·~-::.. 3i,r.6ll ~-wave > 0- Diode b off. and the cath(~)e now fol· t.~f since no curr-ent flows in: resi~t<.)r. Sn ~eak {t11 must follow P1 so ~~r 2i,,,f~j A·t I XO Hz: :. ( "o I v1) ,, 2.c.s that no current lhlW5 in fe.:dh;~t•k ~ L_L.~-~-~ r rc;;Hor 0 +I with R. Chapter 12-18 i., = I mA, R = l kO :. Pun wave !'edified wilve bas avmge voltl~Je=N, .:.Vi> v., -- f0t(v 1 - 0.007) r;, 1.5- • + 'S v "-' 15 at Z· ~ v 1 v -rf:... t:.O·v~'t( 'UGs- - 14)'" \{iS' .. This relationship applies for v 1 ;, 0.007. Similarly, for v1 sufficiently negative so that Q1, conducts, the voltage at the output of the amplifier becomes v., - 0.7. thus (t•1 - v.,) X 100 => v. = v,.- 0.7 I = f0t(v 1 • ~ ?· (2-~-1)&. • Od Tt...., J D·:ll'S r-t/>. ~L= ..1...:.!_ .... , tl• 'Z 1 '!1. fzn 13.8 + 0.007) For Vee= 10 V and Rt=IOO !l,the maximum This relationship applies for v1 ;, - 0.007. The resull is the transfer characteristic sine-wave output power occurs when . I and as Ptmu V.. = V cc v:,c = 2. fi;. =! = X IOO O.S W 2 100 Correspondingly, = Ps- = !'lr Y:.vcc RL Ps- Without the feedback ammgement, the deadhand becomes :!:700 mV and the slope change a lillie (to nearly + I VIV). = ! X _!Q_ X 10 = 0.318 W 'lr 100 For a total supply power or P, = 2 X 0.318 = 0.637W The power conversion efficency 1J is 1] = ~X Ps 100 = _Q1._ X 100 = 78.5% 0.637 ForV;,=5V, pL = !~ 2RL = ! = Ps- = ! Ps 'lr =!X 2._ 'lr 100 P5 lJ =! X 2 ! 25 100 8 W Y:. Va RL X 10 = ...!... 2'1r W = 0.318 W " =~X 100 1/r. ! 8 X HXJ 39.3% Chapter 13-4 13.9 Vee = 5 V For maximum 11. Peak current from eac:h supply ii.=Vcc=5V The output voltage that results in maximum device dissipation is given by Eq. ( 12.20), ii. = 1f 1vcc Thus, P, = 11)P, = (I - 11)~ = I - 0.785 PL = 0.214PL 0.785 11 ~X 0.274PL = P,;.,;pallooldevke ,. ~ 11 = 3.54 X 61 1f l X 3.54 X 61 1f Ps ..!.!1Q. = 137.4 Using Eq. ( 12.22), 73"ll> V~c PaN mu = Pn, ..... • "lR, 0.137PL For a rated device dissipation of I W, and using a factor of 2 safety mrugin, pdiuipationl de-vice X = 137.4 w 1f If operation is always at full output voltage, 11 =78.5"ll> and thus = (I - -R,:-16 3.54 A ! = P, _ P•• = _!X S = 3.18 V Pdissipalioo - ii. - 56.6 = 23.6W 13.11 = O.S W = 0.137PL PL =I> 3.65 = 3.65 w l(ii")v $$ 2 RL =~X~ =:. RL = 3.425 n (i.e. R,"' 3.425 n > The corresponding output power (i.e., greatest possible output power) is 3.6SW. If operation is allowed at ii• = = 11 :!!~ 4Vcc ~ V cc = 2.5 V, (Eq. 12.15) O.S 2I l..=..:!.>pL "1: = 0.112PL RL = 4.83 n (i.e., l!: 4.83 0) 13.10 P, v' = 2 f. 1 ~ 100 =! 2 16 v. = 56.6 v vcc = 56.6 + 4 = 60.6 .... 61 v ii. ii. vis = RL = Ps- P, = tvss-~ RL . RL = Ofor I 2.5 2 IRL _ 11.... = I (I 00%), obtained for ~ji• = 2 R. V! Ps - ii.v 55 RL - Vss c)pdis,ipatim~~ = 0.112PL = 0.647 W =:. P, =I> 'I=~_ Pdinipvlion 2 P diuipatfoa/lkvicc -- = tvss RL PLm•a =:!!x!=0.393 4 Ps VSS 2 {I, ., RL - "ii; ii,• = Vss 2 Correspondingly, 11 = V ss 12 v;;- ! 2 or SO"ll> Chapter 13-5 13.12 .::::;:. 1?""., .. l ...n. :::tcp. l'l•5 ... Chapter 13-6 This table is for 13.13 v.(V) ;, (rnA) ;. i" (rnA) (rnA) v,_ v... (V) (V) V,(V) R.. (O) VJV VJV ;, 2 +10.0 100 100.04 0.04 0.691 0.495 10.1 0.99 0.25 1.00 +5.0 50 50.08 0.08 0.673 0.513 5.08 0.98 0.50 1.00 +1.0 10 10.39 0.39 0.634 0.552 1.041 0.96 2.32 0.98 +0.5 5 5.70 0.70 0.619 0.567 0.526 0.95 4.03 +0.2 2 3.24 1.24 0.605 0.581 0.212 0.94 5.58 2.56 1.56 0.599 0.587 0.106 0.94 2 0.593 0.593 0 +0.1 0 0 2 R. (0) 5050 5080 0.2 5205 0.96 0.1 5260 0.95 0.04 5300 6.07 0.94 O.Q2 5300 6.25 0.94 -0.1 -I 1.56 2.56 0.587 0.599 -0.106 0.94 6.07 0.94 -0.02 5300 -0.2 -2 1.24 3.24 0.581 0.605 -0.212 0.94 5.58 0.95 -0.04 5300 -0.5 -5 0.70 5.70 0.567 0.619 -0.526 0.95 4.03 0.96 -0.1 5260 -1.0 -10 0.39 10.39 0.552 0.634 -1.041 0.96 2.32 0.98 -0.2 5205 -5.0 -50 0.08 50.08 0.513 0.673 -5.08 0.98 0.50 1.00 -I 5080 -10.0 -100 0.04 100.04 0.495 0.691 -10.1 0.99 0.25 1.00 -2 5050 IQ -1 = = v•• = 2V 11, 25 x..JO-J = 2[0.1 = 6.25 rnA + v, In __l.t!__ - ___!_p_ = IJN + I j!p + I .". 13N = l3p = 13 = 49 V7 !21g_ R, + (V 7 /2/Q) V 7 !211l. RL + (V 7 /2/Q) Vr 2RLIQ + V 7 • = ....!:L 2/QRL jL 13 + I Using values of 11 from the table one can evaluate R. ~ ~ b. Quiescenl Power Dissipation = 2V« /0 = P0 c. • X Quiescent Power Dissipation = v, - - X 2VcclQ 2/QRL :. •Po ,, U$ing resistance reflection rule R;""' I3R,_ = 49 X 100 = 49000 For large input signal the two values of R. are somewhat same. For !he small values of"" the calculated value in the !able is larger. = V., X (Vee) RL = v, (~c) 25 X J0- 3 X .11_ d. = V T VeeRL 100 = 3.75mW 3.75 X Po = 13.14 1- ___f!j,_ RL + _!:L If 2/QRL >> V, 13.13 a. E = I - ROUI 2/Q •= The current i 1 can be obtained as :. Rin RL + (~;g)] = 1.26 v iI = = , ___R_L_ 1()-l P,)inmW ~~ Til v~, 0 0.05 75 O.o2 187.5 O.ot 375 Chapter 13-7 13.16 10 :::; 11>1-.. 05 mA, neglecting the base cur~ "' rent of ON· More precisdy. At 70"C, Is = 3.78 x 10- 11 ( 1.14)j() -'-sL ~+I lv "" I · - b'" ~ 10 11>~•t-.. "" = 2.64 =0.9liXO.S=OA9 rnA l+-'- l'• "" (IJ.v + I )/b•••RL .: 51 X 0.5 X 100 fl = 255 V The hugest possible negative output voltage is limited bytbc saturation of Q,. to- lO + \>' 1x 5 ., -10 V To achieve a ma:(!!:' ) "' L 2 "" O.l v Q.,: 1 = 2_I X 0.250 X ( ForQN = k;,Vov = k. X O.t g,. 50 ~(!!:) = 24.5 L N k. "' 24.$. mAIV 1 Q,: n=~=245 kl !!:) L X ( 0;2 r N 200 l "" l2 X0.100 X(··'!/,:'). X(0.2)2 1, enl' 20 = 12.25 = 500 b. From the circuit we get - r~ + Yc.,. Since v. = 0 t~ = VG,. and II} = nibi>• 12.25 >O- ::::::::: y(iSN To find V"·'"' = if>Nmu ~ I VY k.'I(VGSN- . 10 = _2 X 0.250 X 200 (VGs~- V.) ~ V GSN - V.;,, ''= 2 V, = 0.63 V v. + 0.63 = 0.45 + 0.63:::: 1.1 v = 2.5 -· 0.2- .·. t•.m .. 1.1 = 1.2 V 13.21 1,, = 3 rnA, jV,,.I g = 0.15 V _ 2/o .• "mp ·- V,,,. '"'· _ g '· "w - 2X 3 0.15 = -lOmA!V Using equ;Uion 11.57 = I = 0.1 (_W 1-~1 {IViL} 1 (W /l.l~ -~--1- J.I.(8n.p + Snr•l} = 2.5Jl 13.22 IIJ (WI L) 1 !Gain Ernnl From equation !1.57 !U lxo25()x(-~J2 .• L x(ozr R.... --- ---··--·jJ.( !!.,,,, g,.,,) I 1= ;;--· o...fl)!m when 11.'-•" ·. !Gain Errnrl = ,,,_ ~ ,. = g_, /' 1 R, 0.04 Atv Chapter 13-10 0.05 So for v. > 0.3 V, Q, cOIIducts all the current. f. the situation at v.= v_ will uccur when Q, will go ftom saturation to trillde region and it will he approximatly 2 V. Linear range oft>. from 2 to -2 V I !Gain Error! 211-c ..Rt. 1 --:-:~ = ~~~ 2 X 10 X g., X 100 g. = 0.01 AN "" 10 mAN 13.24 ~ OJA '"" v ""~ Em 10 Jw V.. !22.=..ZQ -"" = 13.23 TJ "" 50 = ~ ~ X 100 X J0• 6 (~) (0.15} 2 L r L + 0.625 13.25 "") (-l~') ::: 1333.3 128 m W 0.625 I k 'lV V' I a.Q=>i•I;• X J0-3 0.625"CtmW At 70"C, Power rating ""0.2V 1.5 = 62S°CIW 0.2 2 X I Pf>o P 1333.3 100 = 1125"C r ''"'" - r •VI = (a} Ohl X = 100-25 = 37.5o C/W 2 (250/ 100) (b) At T_, = 50''C b. g.,= ~ 2XL5 QT5 vor p 20m/\JV _ T1, = 0.02/\JV - 100- 50 - I Tc- T_. -~ 00 P" ( Ocs + 0~,,) P 0 10 =<> P, = c. Oai n. Err(}r T1 0.15 4X lOX 1.5X 10 JX50 Gi\in Ermr = Y+· d. In the quie•cant state P. ~· 0 The voltage at the nut put pf each amplifier will be = ~ ( tt - (_~~J -:::::: - J.l :(/! c. Q, tum off when the w>hage :tl its gate dR>ps from quiesc••nt value nf- L85 V to -2V, at whi~h point V"'' V,,. and an equal change of -0. 15 V appear at the output of the tnp ampli!lcr. (··w) t(U)· . , l ;:,kr ··· I' J...X 0. lOU 2 i. ·• 6 mA ·~ = 6 >c 10 X 13}3..1 X O.Y · x 5o n ru v r,- T., ~-­ 100 Ors + 05 .~ Tc "" Ou:.Po - 130- 90 -0,05 . l.. w 13.26 21-l X 0J}2 • 1.33 (c) T 1 = 25" -~ J7.5 X I = 625''C l fJ. = 25 .X 2 X 0Jl2 ... = T,1 -~- I R""' = ~ g_ "' g_ '"' Jl~ -V.om 25 = •., OJA lJm,a.l - = 01 c X 100 "'*Ow=0.4"C!W 13.27 r,- r, ---p;;1'1 - 2.6"C!W T, ,. II 15 P0 180"- T 5 = (OJC -~ r, - t, 84-- w 1' 5 ,~ f OcslPn J8o- (26 + o.6) x Jo = OqPn OvA X 30 LS"C tW Required hcat-,;ink length 3 <"Ill 84'' w Chapter 13-11 ln2 ""' 13.28 (a)For R~, = "": ~-:: 1, = ls2- lar AI VJ = "' 24.4 p.A = 22.5 f.I.A -IOV,/i = -22.5 f.I.A 13.29 Circuit operating near t\ = 0 and is fed with a signal source having zero resistarice. The resi$tance looking as shown by tbe arrow X iii ~ ·Rt U r4'1 This resistance is reflected from. base to the emitterofQ, is= (~1 + I)I(R1 H r. 1) This resistance seen as shown by arrow Y,. from the UpPer half of tbe circuit = R1 +r,j+(JJ)+I)I(R 1 0 r, 1) A similar resistance is as shown by the arrow Z and both· of these resistances (seen arrow Y and rurow Z)are parallal, therefore At·t'I"" OV. 18 r '" lJi: "' 1t "" I Ul At t~1 = - ;!1 R~·· ltn .,. 0 +lOV. ,. (),SS rnA= 4.4 1-1-A J· 200 Ill 1 112 "' 4 ·87 rnA = 24.4 11-A 200 It ~· lnl-IB, ~· 20 p.A Atv1 "" -IOV. I "' 4.87 rnA "' 24.4 f.lA 200 81 1 81 "'· ~ 200 rnA "' 4.4 11-A 11 "" fn1 -In, "' -20 11-A (bl For Rt"' 100 n: AI p1 ""·· 0 V, /1 = 0 Att•t = + IOV, 0.38 JM = 20!) ~_ 9 ~v\ = ~IRJ+r,J+(R,Ii r.,)t(P 3 + I)J Chapter 13-12 13.30 R +Vee = !(o.735 2 ... 0 ·625 ) + 0.625 + 50+1 =0.69 fl Output voltage for L\ = I V and R, = 2 fl I..etv.:: IV ic = 20 ~ = 500mA i 6 , = 500 = 10 mA 50 10-0.7- I 1":: 0.215 kfl - 10 V; 28.6 mA So V '"' = 0.7 + 25 X (2~06) 10. 'In = 0.726 V = V., v, tV,.,= I+ 0.726 = 1.726¥ Assuming i,.:: 0 V "'' = 0.7 + 0.025 -Vee In e3~) it = 500 mA :. i£> = At L\ SV, the voltage v.. across the resistor R, is "'" = v,.,- 0.7- 5 = 4.3 v i., = 2 X 10 rnA The current ;.,should be enough to allow for i.,as much as 10 mA and only a 2 to I variation in i, R, = Vo, = __±}_ = 215 fl = 0.215 k!l i 81 20m 10-0.7- 0 215 v, 81 = 0.7 + 25 X u8 .., = 0.7 'In ( 4 ~01 ) 0.7366 V = 40 mA and/., = 31, = 30 mA + 25 X JO·>In (~) = v,.• ,-vsn 0.7366- 0.7072 .. 0.74 fl 40 X JO·' ' I QJ Similarly R, = 0.74 fl Output Resistance at v, = 0 _ 21(R_, + r,J + ~ r, II R -! -2 1 ,..., ~ - . i,_::0.35A 7 mA = 10- I - 0.73 _ 7 II S = ·31 · 0.215 kO El A m v,., = 0.7 + 0.025 Inc:;;) = 0.729 V v HJ = I + 0.729 = 1.729 v,._, = 0.7 + O.o25 In v (l 0 15 1 ) = 0.729 V =0.761V Here iu = ic = 0.35 A = 350 mA R 1 ::r,, is there because of two paths to output. o.625 n 0.35 'u.l~SJ:: 1) (R,· + r-3 +~)Since r,. 13, +I This . ''· = I. = 0.7072 V R Rou• - = 0 349 A - 0 35 A This value of i, gives 2 !1 X 0.349 A = 0.698 V The voltage drop across the series combination of R, and the emiuer base junction of Q, can be determined as follows V., V., V,- V.., = I - 0.74 . '• +2 = ::0.74V In Q, 0.74 = = 43.3 mA JO· = 1.726 - O.no c - 0.26V V.. 0.26 V, leaves a drop across V.,.. and R, of u. - v... that is 0.698- 0.26 = 0.438 and this will give i,. 0 as assumed earlier. Do one more itera1ion ForL\=OandV,.,::0.7V = :. ; = = Similarly R, = 215 fl = 0.215 kfl Now solve for R, and R, iRl = 0.770V I. L ''o = 1.729-0.761 2 + 0.74 = OJSJ A = 2 0 X 0.353 A = 0.706 v .. Chapter 13--13 13.31 a. v1 2R.., = 0 and transis10rs have II = I00 = IE• = lu = 1£1: I rnA More precisely I Q = _JL_ X I = 0.99 rnA = 25+~ 101 IQ • IEJ II+ = 'rJ + ~~r~, I R.., = 12.6 n I Input bias current in zero because 181 = 181 output voltage = 0 V 13.32 +SV I Mil v, b. Prom the equivalent half circuit 2R1 = (11 1 + I )(r,,, + (11 3 + l)(r,.1 + 2R1 )J a. DC Analysis Current through I kfl : I cz rr 1 =rJ=~=~=2Sn r If 1 S = (100+ 1)(2.~+(100+ =t R = 1.15 Mil 2R, 1)(25+2X 100)) 1 = lk X lc:1 + IM X 1c:,1 + 1.4 13" lc• - = _lL I + 1000 inmA 112 =3.3mA In = 1 ~' = ~!! = 0.033 rnA A,.= ~ = V; . 2RL 2RL + r.-J + __!u_ ~~~+I 200 200+ 25 + ~ 101 'c = g,~ r re~ -•-•-1 + r., a,+ · V; Chapter 13-14 13.33 +5V -td(,tr •.<.. 1" ............ .:..-~~!.c. Z ..,.~ T4 1 ~tn Vasa = IMH ....->NII'--+---4>---If---o v., "' fo.- ll'. "'-' 9a 0.. ·~J Q,. .;_ Ya.,,. • 0·7 i>0·02s jl..._ (~).,. JC~..!.. > - Vawt."' = ~o ~'-"' Jst. ~~it•,.. Rm~rd . ic = "' c. z 100 I~o;._ "' 1110 ltO·Z. .. v6E,"' rd + r~2 Butgm1 r,l:::: I 0 ..t.._ •-~~,. u." r 2(1 PA 7o l'.l!O p.A-~ = 11 IC"> " 2o-z t!; I a-7-+ o.o-zs V'#B3,.. o.~,o ~ 0·112 ..,,. '2.1'-(1. 14A ·1 -;- ci·OZ 5 _/.._ l1·<1:f ::- v~ ~i. .. lien ... Vt!u= 7. 0 .{j(J() l·I1G4 V v "' . lc:::: 2r,, . ic g., cqu•::-" p 1J/;:::. -to v '!Q = -66 rnA C. , -g.,.equi X rr; X I k v v, ii = ibt + q~,- X I k -JO ......-= 1t"' -66 V 'V it.\fH ~~His1i>lf ~... t 0 2p 1r,! I MH ,,f--l;-·::;<: + -~~ • ''• (6.6 + 67)" i, c-tl ~ L~.h kH H) ~n KL = I ~(4; r('~t; <;:~,. "'-,.,.,...., '~ ""A IO -rt_.,..,t .J...q ..,./ ,.c, ,. . . _ . ' C/ .... i"· jt-d..,- #'... c..-..-..~ .. ff.-") ~ 1'5 .J- ~ 11· ltHI f ,..,::._ Y V Chapter 13-15 T'-_ .r: '""'"'f''""' . ,.,,.._..s t?. "'""'(/"' (Vg.r;, +-YsEz) ~4..<...._, ~ s-... A~k d'M"" YifEB'"! 1.1 j4,_.__ hJ . ~. ~ -r/;:. Vallot..,. VsE2 _:. "'S~.. Iit.. t1z. ~ -/(... cHGo + o. 6o~ - o ·04 t?, ......, ,f.. "" -t(1• ,.r,._. 1,. "' tl• II 2$ )( 2. .= o ·1 '=' - 0 · 04 ("'" 'o 2 V t- •· v '"'S 11'2!. /" s-s = O·ICJo : '" ~el4<... '5 -t<.:::JA Ye.~;; 5 -= (). 7 " a .._,.. ##L~., ... ~ /.. ~ f'<'ftli<'4<1 -t/ -t 0 ·7 ~,.:r ,.. .... t.,;; . /.._ .!..:.E2 I v 1"1 ~.::.l !If'" u v 0.593 _ 40 • !50 mA .. For a nonnal peak current of I 00 mA, the 1•olta~e drop across R r 1 i$ 401) Ill V and .its collector cu;:_ 5 "'0-€4Z .,.C. _..,/rij/.s.. v "' I jA'A )< 0 2 w~c·• 1'-~, ......,. O·o7"'A>cl-. ·+'<> v...£... ~-v-.l . -r4.. ,. # ,.AN·riC.-,- ).br,.h·,.._ tue 2 X 10 V VBE1"' 0·60Z i'l.SX'2 .. NowQ;has 15 = w·nA_ Thus, ~ :1?1. = I L.n.. Ya£ 2 = o. '6 + o-<>ls !L :::t -- "' .1H:Il.S • '--::; 7~ 13.34 V tJ "c/''..,._ jl' J'BI : a..., IC$ " ' - - - - e_-<1:~\~ ;.,.,..,-...._ A......... ..-t...; ~.,. ""' hltw .-,..kt!:J ... ""'.,... .. ,. · Tt...., Icz ::: IL "" 10 ..,.,~~ . i-~· c.,.,,., ..,1."'1!:11. ,.,, .,~ _P, .._,t /'Yt :; y r,...,.. ( d4t(£·-· -:'1 ,.. s-. M) l V-8'8= IJ·H· ft. ~"::JJ.. 4'-..e 1.. -.t {A,.. j (I ·11 'S ~ --.,__,. 77'-o;,...~y ....,,.t v... = 0.650 R 10·-•.- ,/sr.'vr v o.6so v = 13 0 = " 50 rnA · For a peak output current of 33.3 rnA. = 13 VB£ X V81 =0 VEt= +0.7V vl>= +1.4V V00 = 20- 0.7= 19.3 V 1,, / 81 13.36 v••, = x 10. 11 ) = 4311 ·· R. - = 7.0- (0.7- 100 X = 7.0V 0.(XJ2) v = ..Q2.l 100 I-LA 14 V 1.9 = = V,,21R1.=V,/18 ../8XT.9 = 2Jf = 5 kfi 100 f.I.A 2s·c. v, = 6.8 v. v •. , = 6.8-0.7 = 6.1 v In = Peak-to-Peak output sinusoid At = s= ForTHD = 3%, Pt.n•u = 1.9 W v. v R I = 6 ·5 - 0.5 = 60 kfi Vu•- = 10.5 v V5 = 6.8+(125-25)X2 = 0.5 V,, = 0.12+ ).4+25 kfiX0.358 rnA for 80 load, we see thai V 16V allows more than 1.5 W power dissipation for some input signals. Thus we use At 125•c. = 6.5 341 f.I.A 13.39 13.37 v•., = 0.122 V =0 150k0 6 In = 10· 14 e' 301 " = 0.3 I-LA V,, X /"' = lf. = ~X 358 IRI = IRl = 358 f.LA For a peak output current of 100 rnA, v••, = 430 mV Vz 21 i.e.l V 11 2.:32 C .." v 2!V(iJ "" 4.63 V ."" For 1ft"'' 10 rnA. R ,, 4·63 v " 463 10 rnA VIIB = 4.63 ''" = IK4"' n + 4 X 0.7 ~~ = ·"' 7.43 V SO~tA R, "' R, = 700 mV = !4 kH • 50 11A Now, sita'e Vt~S changes by 2 Y< -3 mV /T oc -6 ~nV! 'C white V11c 1, V8 n, V8 n and V11E 4 remain constant, V1111 changes by -6111 VI "C. But the voltage llcross the Q 5 mul· tiplier remains constant. Thus the voltage across the Q6 multiplier should by made to change by -6 mV/ "C which cm1 be achieved by making I+~= R. "* R, '~ 3 2R, = 28 kfl The voltage across the Q; multiplier is V88 -:WllEb ~ 7.43-2.1 =5.33 V Thus. 5.J3 = ( l . =--> + ~) R,_ :!J = 6/> I N~ But R1 '" 14 kH. thus N1 92.6kH x 0.7 Chapter 14-1 14.1 14.4 \ NMH = VoH- VIH = 3.3- 1.7 =1.6 v NML= v,L- VOL= 1.3-0 = 1.3 v 5V 14.2 o0 (V) VOHJ---.. 4 1\, \ VoL o.s "' , / / : 'v , 6 = 4 -1 0.5 = 3.5 I I I.!':....J.----'l-4-..J-.---1.--.... VOH v1 (V) VoL v,L v,H O.S 1.5 2.S 4 /' v1 LOW f (a) NMH= V0 H- VIH= 4-2.5 (a) VOL= S - O.l 2.2 NMH= V0 H- VIH=3 V NML = v,L- VoL= 0.455 (b) VoH= 5- N (0.2 (b) In the transition region =9.25- 3.5V1 14.5 V 111 = o.sv,o- 0.6V 00 "" 0.2v ,, = v,L- VoL= (0.4-0.I)Vpo = 0.3V,, "/,;" • = 5 V0 \. = o.oV ... '3.o;,_ .. t.sv ·, \b"h = ~ ·, V111 "'t'\11 "'\Jo11-Vr 11 "3.{)-t.s • = ~0.2V,, ~h ~ vt.l. • width of uansition region = Vm- V1L 0.2V,, foraminimumNMof v,, '3V IO'l The '1"1 t'ke '\VQ'f\\i 1.'5 .. Vpo!-z: 1.sv \.'5\/ -o.o • ~ 1"io'tl Vt.~ ion \~ ~ tla"-~""Vo \~ 1.1q'l Nt\\i .. \)Oil. \ll\1 • • F~ 1\0I" ~~Y()i"$ o"''\ '7/lo ~ = _!Q_ = 1.3 I. \lx.1. ._ -o., (1.'\'to) • I."Z,q .. • G • (~. -s-o.o)/(o.qo• -1.~~~) • = V1m1 1, = 2 X 20 ~~oA = 40 ~~oW -J,JI 'V11 when the output is high, the transistor is off: P0 =OW y o~ t\ne , ~:~.. 11. 4'\•!l V, I.SXS when the output is low: P0 '~~ol\ ... \Jot. ~til\ \~\: '/1:." .. "l:~ 14.8 v0/1 = v00 = 2.5 v The power drawn from the supply during the lowoutput state is: = V 00 = 125 IJ."' = 2.5 X = 101> = SO ~~oA P 00 10 " In this stage: I oo = V, 0 - Ro =R" 14.7 ~(2- 0.5) 100 X 10- 6 X = 5 kO "l, ~0- '· li.O. 1.'\'10" o.o • 95 kO p..C,... y = 0.5 + 0.3[J1.13 + 0.8- Jif.8J = 0.6SV lnteration 4: Jif.8J = 0.65V V,, = 0.5 + 0.3[J1.15 + 0.8VoH = 1.8-0.65 = 1.15V :.V,2 = 0.6SV and Von = 1.15V = 1.3- 1.15 = 0.15V V0 H is reduced by 0.1 SV due to the body effect on Q2 = I = ~X 100 X = 36.111-A VIH =VM + 'i7 5.2('!L!.)' = = (~). ...!.. = 0.19 5.2 J0- 6 X 0.19 X (2.5- 0.05- 0.5) 2 Po = Vooloo = 2.5 X 36.111 = 90.2 .,_w 14.12 E.,.._""k 14.10 4wh:; = io, = ~K.,{Voo- VoL- V,)' loo VoH = 1.8-0.65 = 1.15V AV 0 H ' 1.13V lntellltion 3: V, 2 ~ K = fwtL,=>K = = CVoo' ~ 10 X 10- 1 ~ X 2.5 2 E•;u;p.oaJ~c> K, = 5.2 14.13 P= V00 1,,1 =51,.,= 25 mW = 0.74V + (K,- l)V,_ (K, + l) - 2.5 P6>J..-_=fCVJ0 = IOOx 106 x lOx J0' 12 x25= 25mW ,- V 00 = 625 = 2SA (2.5- 0.5) 2 21<. 2,(2.5- 2 X 0.5) VM _ - = loo..,Voo=>loo-,.1 2.5 + (5.2- I) X 0.5 5.2 + l 1..,,=5 rnA Chapter 14-4 14.14 V 0 (1) =S-Se (a)V 01, = 0 V0 (1) = S-Se Vo" = 5 NMt. '"' Vu.- V 0 ~ NMn,. ,. v 0 u-Vm 2.5-0 "" 25\1 = 5-25 = 2.5V II'LII "" - I 1i6;.,C -'2'R,..c = 0.5~1 1 ""O.lOns .. 4.5 ~ t 2 = 2;3 n& 2.3 - 0.1 '"' 2.2ns v, 14.15 t,. "' (t,.11 L + lpL 11 ) /2, but due to {a) Generally, utLOW current ratio, tp 11 L = 0.5tpLlJ • Thus 1.5tr11 t = 2( 1.2ns). whence I~LH "' 2.4/ I.S = 1.6 DS, tllld lpJ.tL = 0.8 ns Check: tp = ( 1.6 + 0.8) I 2 = 1.2 ns (b) Generally, tp = CV II = kC Originally, 1.2n ,.. kC t1 = -~~- !RrJro(~ O.lns V.,(t) t 1 =· 2.3 n~ :.tnu. = t~- 1 1 ~ 5<' Then, J.7(1.2)n = k(C = 0.5V 2.2 ns Dividing (I) + lp) (2) U} 1.7 "' (c + I p) I C Thus, L7C ., C + 1 , 0.7C = I, C "' 1.43pF (the combined load and output capacitances) (c) Witb tbe load inverter removed: sv1---~ '' ' ' -~-'--------.....---.. f) V; 0.6( 1.2n) "' k(1.43 - cl.) Dividing (t)o.6 = ( 1.43p - C,.) /1.43 Thus, c,. = 1.43( I - 0.61 "" 057pF~ C,.. "' 1.43 - 0.57 "' 0.86pF 'nl' .o. For tr 1. 11 0.69 ns , (3) Chapter 14-5 14.16 14.17 ne w.s..\n q(ft-.ol o.....'.lt\\lrv t'.le '3otts ~vt \.,VtvYt"~ ~OII~iVIIICvti'l, t:N F"o.. i111v~ti..~ ~~ , t\te ti"'i"'j clioy•• ~J ~· ..... ....C. 100 ft f"oy ~i,..rlic.•'tlt, o l. 'oat\, i ... ~\t Average power loss at 50% duty cycle =(I +0.5)/2 = 0.75mW Delay-Power prudu.:t is DP = 60 X 10- 9 X 0.75 X 10_, or DP = 45 '" X 10." J = 45 pJ 14.18 " ~: ·~: Note that this question ignores the possibility of dynamic power di-.ipation: Average propagation delayistr = (50+70)/2 = 60ns -~~~__..._.~ ,,,,. t-1) 100 7o (rallotv t~.a~ lo7o h qo~ c1,.,....... ol>ovt a..ll. Cakula~ \o foll.w: 'i:,, i"'VCV-t\!!1 ~J:'!! (llHI.e._, About) : ..) !;, .., o. v\si.., ~t~ , t.:... ~ 'lo 'k c\!.. -~... of -seco...J. """ ··~ b) fO... o. .fsili..-.., ~f".! , +,.;.... .of outf"t oC '111~ '\o.te h ..,t v0 (1) begins at V0 ,_ and rises toward V011 lin this case V 011 = V 00 ) according to 10 +to \o '!o/z•'1511) vu(t) == t•\,-(1",-vo,le-fiCR ~ 'lo l. tl att Von- (Von- V,lL)e -•nH"o T 1 1n2 = 0.69CR Q.E.D. (b) v 0 (t) = T' C(RIIR•• ) tJ... - (v.._- v... R R.• = truu v411 )t> Chapter 14-6 14.19 = r(V 00 -jv,Jl where V l lt 10 +t "" (w) , , k.' ,.- (0.08V'on- O.oosv·nn) L • r=lfR=~ .. o.msk:G:). v!nn a)f"()rwr"" 35w. tll'mntthedcau; for I "" 0.5mA, ~ w. V 00 = 2.5V, k.' ""- 11511AIV2 , wt'llhnve: ~-;;;. 4k. ~2 we haver "' 1 and: Jl.p v.. · "" 0.5 X 10··J "' 0.()75 X 115 X 1(25 ·- 0.5) l +I ~ + 0.5 Von "·'· LlSV , 2 A = (wp + w.)L = 4.5w.L b)·. For w = w : r = p • = 0.53(2.5 - 0.5) V J.3.5I X I = 0.53 !lVM = 1.25 = 1.02 = 0.23V, heoce.Nllftis reduced by 0.23V. A = (wP + w.)L = (w• +· w.)L = 2w.L, th erefore the area is reduced by (4.5- 2)w.L = 2.5w.L = 2.5 X 1.5 X 0.25 X 0.25 25 = 0.56. 56% \ V It X 2 J-:;-5 ·'· + w.}L = (2w. 1 "' (100 X 10 6 t 1.5- 0.5)f 1 = .!Ok!l Thus, "• "" I()() X 10-J X 104 /( 104 + 105 ) = 9.0911\V For v1 = -1.5\', the PMOS operates with r059 = {k 1,(!u,p- V,J = [(100 X 10 0 )( 1.5 -·- O.S)J = IO~U SOmV 14.22 Sioce at M, both QN and Qp operate in sal\lration. The shift in V,,1 is 1.25- 1.15 = O.l V, hence, the NM r is approximately retlu(:ed by 0.1 V or comparing to NML in Pl3.26 above, it is reduced by 9.4%. (wP tos.. = (k 0 (t't- V,)l = 0.76. = 0.76{2.5- 0.5) f 0.5 = USV ~f I + 0.76 A = 9.3 Thus ' 4.5 c) For wr = 2w.: r = ~(~). .. 14.21 mode while the PMOS is cut off. I + 0.53 . The shift in NM L is approximately equal to the shift in VM• that is: 0.2J~£.m 1 or bv X 2.5z L. • For I'J = 1.5 V • the NMOS operates in triode + 0.5 = I O"~V M "' 10' 6(~) + W 0 )L their currents are given Substituting V 1 = V0 "" V" and equating the twu cum,nts results in: .•oN 'k " - .•or- -=4:o 2 ·(w)(\' L, l -v uLl' = 3w.l., therefore the area is reduced by 1.5w.,L or 1.5 X 1.5 X L~ = ()_'\,; 4.5 0.25 Of X 0.25 ""· 0.14 1£-nlJ or by .13% 14.20 .~· we have: r = v nn~·Tv,;J=-v~ r = In the low-output state, V .,, is high and v,.. i~ lnw and therefore NMos oper;nres in triode Now for 1 V" = 0.6Vnn = 0.6 X 1.8 rc-glon~ - v,.JV 0 s-~Vo/). 1')1V on)·~) -·•·(W)(" \"()!\' - ::;l\(vnl> --il'V ---",_ L ,._ !0 = iJ- 0 c,,n~q_, n ('v," '- ~ -· k~ 1 ----· ~ ~~- PDc --~ · f>D G-~·1 i VJ I.OilV -1 Chapter 14-7 14.23 14.25 tJte peak. Qmbnt happens when V 1 = VM and since fl;alid ~are matthi!d Usina the equivaleot resi8tance apJ)rDlteb, we first find RN . Yoo_ "T U = 09V T . Noting .mtt both ~raa~morJ are in saturation Vlii ... regiiin, RN ... Find the liurrent. l = ~~~).(r) , ~rrt 430 x 1o- 6 x (1:). i(0.69 tPLII 2R X = 0.69R,C RN "' C) s 40ps -·· = .18 JJ.ID .!1:1 kfl (~) L 4.4 Since Qp and Q.¥ are matchoo and kn =< k11, !hen Of 40 X 10 • X 2 -=l> R s 5.8kf! 0.69 X 2 X 10- 13 X 10 To detennine the tram.istor widths in 0.18 ~tm techm:>logy, [,., "' Lp 1.9m X 40 (lS :.R s . = ()Y) X ~4.4 X 4 = (.)Y) L r L • kr 0.69RNC, 2(1PHL + lnH) S Since QN and QP are maU:hi!d, then kp =k0 and a.C _ 2.32 X 20 X 10_ 1, lp = k.Voo Ka X 1.2V ... s "' Since '•Ht = trUI, then RN "" RP = R for tP :!£ 40ps, we have to have: = 2 k'.(~).V 00 k'P(~).Vou 20 _., to determine '\; Fo.t k~ = 3001tA IV2• i>"•k .J Ill X tO X lO (~). K s or n S.8.k0 ~ (t)•~ 2.2 17.6 ~ w. ~0.4JJ.m R = .1_0_ kHor II (W) L r> -·~L-x ~::. 5.8kH ""} (~)r ;~ 5.2 (rJ,. Chapter 14-8 to deter· 14.27 2 Jv,. + (-v,0 - J •~. "' 2 I [ 7 -:- - - - 4 V0 n V0 "'2t[Z- 3 X 0.7 + (0.7)2] 4 3.3 __«,,f__ 1.73 X (2ff X 0.75 + Iff') 180 X 10' 6 X 0·75 X :U 0.5 W) k.' ( L .vm> = 4.35 Since, p~ (w) r . "" (w) r. "' k' 1rm. X k~ e. "r "" 1.73. We heoce: p, 1.74 X 18.7 X 10 u 36.5ps ISO X 10 6 X Q:.~ X 3.3 0.5 Since IV trl "" v,. and transistors are matched, trut. ""' Inn == •v ~ tv ·= 36.5 ps. v,. "' !V,r!• then"" also have lpu1 then, trnL =· 1:73 3.3 Considering that tvnL ll!ld lptn both are proportional to C, then for an increase of 50% in r,.. C also bas to be increased by 50%. Hence, dC "' 18.7 X 0.5 "' 9.4 tF 4.85 X 3 = 14.55ps r lr = ~(lvnL i· lp 1. 11 } ~ ~(4.85 + !4.55) If both devices are matched, then tn 11 "' k~ 9.7 ps = k~ tf'm. and 14.29 ~ c,., + c•.,; s => ~ .., '••·1<1 c,.. + c,.. 60 10+ ~=?S 5 "'} 15 •t85 ps 10 + zo 1 s 10 + 20 4 14.28 R.,. a nd hence R.,1 has to be Note that S "' -= In order to determine the propagation delay, we lirst need to calculate the total value for C, using reduced by a factor of 4 or equivalently ( [ ). c and = R,,, 2c ,,J! + 2c~41 + c""' + cd,~ + c,J + cs• + c .. = 0.4 X 0.75 Wh<'rC C,Jt "' 0.4w. Sirk~e ln.\nsistnrs are matched W k'(-) r L . '' = 'W) k'(" L . ,, oc-) W C,u,, c,, = v 180 4J = ---;;'X "'. !0.75 I .0 X w 1, I /l X 3 = 3.0fF X 0.5) X isP,. Now. 9.0 " P, + 120 >< 106 C's and J.2fF 1.0 Xw,. 0.75 = 0.75ff' + c,,,,, 3.7 + 04 X 0.75 + 0.'1 4.7 = P, + C, 2 X = !lUfF X 3.7 + :2 0.3-'- 2 X so:;<:: Subtracting, 4.:1 Whence C,.~M> X 0.75 = 1.99ff' C,.,"' 3 X() 5 106 C 2 5 = 70 0.4 1.2 + 075 X f. J ""· 7.95fF 3 + 1.99 + 7.95 + 2 x JO"C(2:'\l C "' 4.3 !(25 X 70 X Hl"J = 2457pf ami P, = 9.0- 120 X fC V' oo ; St~lic Power Dynamic power is P., 0.75 1 (WL),C .•, ;. have to be increased by a fac:tor of -1. L • 14.30 CW•H = 0.4 X w 0 = 0.4 X 3 = X (Yl.) (UfF = X 10°(25)2457 "' 9.0- 7.37 = 1.63W For 70% of tht• gates active. total gat"s = 0.7 X 10'' Capt.u:Jtance per gate is 2457 X 10. 12 ! (0.7 X 10'') .i5fF X 10 l.l Chapter 14--9 14.31 c = 2c,, 1 + c,,2 +c•• , +c••,+ c,, + c,. +c. w, .4f . w J.Lffi , W = W, = = 0.75~tm c,JI = .:!!!. x )J.ffi = .:!!f. X OM· Wp = C,al . jlnl 75 11 m = o.JfF .75 11-m jlm = 0.3fF ~ll.c...(![)f;''- v,.)' fpc,. = ~ x 450 1.8 1!-nl 7c2s _ o..sr = = 0.28ns The rime when the input reaches V IJIJ = 0.7SfF C, 3 = C 14 = (W/,)C,, + C14.,. + C, •• , 1.8 1~8 0.5 = (0.75 14m X 0.5 ILm) 3 · 7 ~ + 2 X 0.4f X 0.75 ILm jlnl c,, = c,. = 1.99fF t"' = 0.72• X ~ 2 I[?.- 3 x o.7 + (o.7)l] 4 1.74 X 8.7 X 10- 15 IPIIL a,. = 180 X = 2 10. 6 X 0·75 0.5 X 17 ps 1.74 I 1.74 X 8.7 X J0- 1 ~ I lp = i(tPHL P, = 10- 6 X 0·75 X 3.3 0..5 X + fCV~, I IPLH) = i( 17p = I I 68ps + 68p) = I 0.28ns 42.5ps 250 X 106 X 8.7 X 10- 15 X (3.3)! = 23.7J.LW 14.32 0.72 36 11 A X 100 X 10" X 14.3 X 10-l$ 3.3 [?.4 _3 X3.30.7 + (0.7)'] 3.3 45 JX E 1.74 3.3 3.3 X 1.8 X 0.44 ns 14.3fJ P " V, is = + 2 X 1.99/ + 2.f = 8.7 fF = - So the base of the triangle is Ar = 0.72- 0.28 0.44ns wide C = 2 X O.Jf + 2 X 0.3f + 2 X 0.75f " 36 11A The time when the input reaches V, is: 0 ·5 X t"' .!!.. x 0.7511-m 11m" t'"',. At 1.43 !J.W Chapter 14-10 14.33 + AB-+ y = AB + AB = AB Of y "" (A+ 8)(A + B) "' AB + AB y = AD < AB 14.34 Y ·"" A 8 + AB. Directly, the PUN is ns fol· lows:ut PUN for Y "' All + Ail: ul Now, PDN dual to ul Dl y = AIH-AB i\n.i\n Y = AB + AB (A+iht(A+B) nt Directly, the PDN is: ~Note. however that D t can he redrawn as shown, then its colun\s (scrk\• links) .:onvened to rows {pamHallinks of a PUN: PDN for Y = AB + "411: 14.35 Y "' ABC+ ABC. Directly, the PUN is as shown below: ul PUN dual tn D2: u2 The corresponding dual PDN is shown above below. Th<: two circuit> required are U, with Dl and U;c with D;. Chapter 14-11 14.36 a) Even.parity circuit: Y =ABC+ ABC+ Anc + .i\iic, bJPDN directly t,: Dl PUN as the dual of D:z: [Think of the structure oflhe dual ofD 1 when ~'OO$t111Cting this] Tht~ complete circuit, using u2 and 0 2 has ~{) transistors. u2 -- !---<1 It uses 12 transi~torll. A y (c) PDN reduced to I 0 transistors: 14.37 Sum, S = ABC+ ARC+ ABC+ ABC Carry C,. ~ ABC+ ABC+ ABC+ ABC = AB + AC + BC = A(B + C) + BC Crea.te the PUN. directly, simplifying that for S as in Pl3.50 above as s PDN reduced to!! transistors: (X and X are joined) {Think circuit is not ·'planar", bt11 has one "ems,. ba~ no convenient dual] '"'er" fx· x ): it = J;mc + fin + MBC ' nc> Chapter 14-12 This figure is for 14.37 c 14.38 14.41 For matched-inverter equivalence of the circuit 1'.~ I'<' = p,. ,.~ lp I' : l'n and 2(2n) = 4n. n 11 Fov df\iq~, t'hevt aw :t(t,) n" 1'1 t'lliiSosfo.s, 1:\\\ 7 Hl'\o~ u~ f"'/'L)., ., n I f'Mos u.-;es (WA. )f' "' t> ,1" {:, Pf"\OS 4os.t. (\Nil};> "' Total f\11'(0. .. -,(vr.)o.'a + •h.~o)o!i H.(t.Xl.I.)0.\"111;~ 14.39 blank Fo-v Qesi~~., ~ve ~ve 'bh + 'hh. ,..~4"'\i!toVl: 14.40 lgnort• th<: capaci1~nn" of !he transistor< themsclws; For the matched N,\ND. f t•ut :;= t NH NA:-Jf), 1 1•111 ·:..: are tht· same. hut matl:hing, t !' , For the .. unrumpens~ued r,... t f'!u t,.,,. cc· , , ,. 4. Thus, r1.w i.., 4 rime;..; greater with no 6 NI'\M u.~ ( '- I>Mos 14~( ('Nil. )p "' '3p a. ~>nos '-l\!1. { t-J t'\0'> '-'$f \1,//l.)., .; "l ~IL ), • 1" 'N/l ).., " Z'"\ Total t'qu.i'-"llr..tTdtv;(tS is 4t~ .. 1lp+,.~H~·1o., •2op lQto\ ~\IIVo\t"t avto. \'> [to+- "ll"lo)]n "'70~<~, tl-.d, 2. ( To~~,!_~~:_~~.\.,) o.s ""41.<#"'~ o~< ru "'a) Chapter 14-13 14.42 ~g tllOl. matched invmer Chamcterit.ed by nand p where kP "" "• "" k, tire twoinput NOR ~ tnm.~istcm; n and 2p where =(6.81:!:: 29.43)/13.66 = 2.65V kl' "" 2k. t.lleck: [.>2.5V probably OK since one PMOS is a) For A grounded, V 1&o Thus v = C-6.81 OC'CUTS near V ool 2, = v and the voltage acrtlll!> QI'A Thus if) "' kP((S ~ l.):c.- i 1.2] = ~ki'(S -x- r.•-1)1 and iv .,. ~k.( v- = ti kP = k.F-ureachofthe two NMOS (WI L). ·"" n and k. = k . i0 x- t~)V~ and iu"" ~k)v- 1)2 From 2) 3): ±( v- 1)(0.707) Thus, = tt "" v = "' • . 2k/2(v- I)"= (k/2){5v- l )2 2(t1- 1)' = (4- tt)~.:md (l) ±.fi.(tt- I)= (4- u) (2) Thus, 1.414v- 1.414 "' 4- (3) 2.414tt = 5.414. whence 4 - .t - " v,h "' tJ II, = 2.24 v See this is reduced from the $ingle-input value (of 2.65V)! = 1.707tJ 4.707-x or x 4.707v- l.707t• 0.293v = 3.293- x x = 3.293 - 0.293v Now x '"~ 0, in which case = 2.65V Thus at v,1, "' v with all devices in ntunttion: 2k.(4.t - x 2 !2) "" k.(8x- x 7 ) and i 0 = k.(4x ~ v,h ""' (W/L)~"'~"" P and For kp "' 2k. iP 4(6. 83}3().01 )~ 12(M3J b} For A and B joined, the PMOS Cl!nbe !!pproXi· mnted as a single device with twice the length for which the width is twice that in a matched inverter. Thus, fur the equivalent PMOS device hi)' X. and ii> - full on] with Q,.tt and Qti8 in sntunttion and QI'A in trade. Let V"' :!:: (6.81 2 Nt)te that this fact can be used to control the rei a· tive threshold of mulliple gates et)nnected to a sitlgle fanout node in order to guarantee ope.ration sequence for slowly changing signals. 4.707/1.707 2.38 or 3.293/0.293 = 11.2 (clearly too large) Thus x = 4.707- L707r (4) 14.43 a) Now, from I), 3): ( l ' - 1 )z with4) 2(8x- x1 ) -5.83rP· "..J!£... k'Voo' I S S X ,,'- 2u + I "'" 7,5.32-27.32r.l- 44.31 P and k' is scalt · e max1mum operatmg ~f,l fore is scaled hy 4. P,,'!fl = fr.w.,,_CV'2no and thus i~ ::-:c•:~le.tf hy Chapter 14-14 IJ.p· p density"' :..!!ll! and thus is scaled by T ·_ delay by ! s sl and thus it is !~<:aled by docrea.'les) b} lflt'oo and Vm only scaled by i ~ ~ s and 2 em :m = 5.56 x w•.Y. em 14.45 Vrm -r Ym> assuming g,., then: o: remains uncbi.mged and tr is scaled by sx! 10 -• .Y_ so 7 JV,.,(v'")! l X For PMOS:£" "' O.JIS whileS= 4 we _ _ _;:::2_ _---:: 0.13 X 10~& X 101 X 10~1 I 4 I 4x! 3 S 0.6 v 0.18 J.lffi For NMOS:£,, "' 3.33 {PDf> b:IVe: 4- z 0.018V~S s l~ -"'cr {power is scaled by I E. "' Vus... i.e., remains unchanged. .l m Fmm equation ( 13.92) of the Text, we have: .sz PDP is scaled by IV = 180 l~mz V·S ,52 area = 0.18 X J0- 6 m X I01 325 = 0.4 2 X !() 4 v The maximum operating speed Is -.11 and there~ p .., 0.65 fore is scaled by 8. P,,~. '" f m.,CV 2 1w s;dx.l . s 2~ and thus is scaled by sx!x! 4 2 =I Power densilv = p d'" is thus scaled by "' awa I I 5! I I v 14.46 t . P.JIL 16 - CVoo -- :2-'.u~ Since based 011 the assumption in this problem, QNI!ImR on immediately (V1 rises instantaneously 16 PDP is scaled by I x ! ~ to V 1w} and itopcrate.s in the velocity-saturation 8 region then I"'' = I 0 ,, thu~. tl'//1, = CVoo 2/!J,,,;~: b) From equations ( 13.68) and ( 13.70) of the Text we have: 14.44 11'!11_ "' 0.69R,_.C and 0.69C125 -.::'.~ (IV iL),. < Htm i '· I. amJ Vm"'' 0.111 06 V !-llll c) lfthe. fonnula inial and (b) yield the same result we have: ~-~'no -~ Cl.~," 9. c_· 12.5 x .to_.'... 2/p,,., (W/l.), and from equ~linn l 13.94) of the Text we h:1vc: 300 em: v. s (w ) v. 1/)·~;>'t -- tl,) c--·:~.( _-/. -·' 11 ! V. tht~> OS~~~ ( vGS- \', r - I t' JJS\iH ·) :} ... Chapter 14-15 w~ in this ease Vas ""' V00 .thus: 14.48 Yov 2 X 0.69X 12.5 X = a) R .. 27 mfi/Cl X J!..!!!!! p.m o.s l(y !1-.C.;,(~) V95,..(Vot>- V, - ~ V t>.~,..) • :=i> ~ "" .17250 J~Z;O 1.2 (~). 325 X 1{)~ 6 (1 2-0.4- VIJ.~"'.) . . 2 D$w( 1.2.- OA - V;sM>) = 325 X l0- 6 V = 5.61 Vos...( 0.8 - V~'*') =:> 2:805V1os.ot- 4.488V 0 s... Vl>S"" = + 1.2 "' 0 1.261 V or Vos... = 0.339 V The answer V 05 ,.. 1.261 V is not ruxeptable "" as it is above V m> • Thus, V0 .5,.. = 0.339 V 14.47 Ins• = IL.c,.(~).Vns....(vcs- v,.- iv,,,.....) and In.~wr ""' IL.Cu,(~) IV ns...~!V os! - IV,PI- (-~IV m ..J) I' Since IV 0 ~ V <>$ ""' "" V rmli.e., for NMOS V m> and for PMOS IV4~1 "' V Dtl and I os~'"' "" /D.~- we have: IL.Ca,(~Vns-(v""- V,.- ivos....) • = P.,,c,(t)}v0 s...,l( v»P -jV,,J- ~!V.,s...pl) L, "" LP ~ = 4X~ 0.6 Thus, =S4() ·fi · b) C "" O.t ffl!f.rn x lOmm = 0.1 fF /Jl.m X 10000 11m = 1000 fF = I pF c) tddoy = 0.69RC "" 372.6 ps Chapter 15--1 15.1 = 4 :)(~) 430 !J.(I) 1\eve Vt.o./.t • S"/'1 Now~~ '\lo ~\·'!:'9 430 4 • l·lS'V , tl.t Nl'\o'S is c:.u.taff, o. ..d ~'=(~) L 4 4 L • 1, ri'L 11 = 0.18 nsec or 180 pscc using eq. !14.17) and ( 14.18) ~e f'Mo~ is i,.. -tv;ade Wlodt 2/[• +~(·-~)-(3-;x::JJ = w,\"1-) ·. a .. = ~•'-:,t('VS., -Vt)\S1.t>- "\!;o'lr.] , ""d llevt lpuL"" ~ 0 ,. 1.?(( S" -o.a)( S"-l.ts) - (S'-I.l'f)'Ji') ....., ( .... .,5' - -..o1) . .. s.,'l.... t r,. = 2.6 cr.C 2.6( I Of) = 50 ec k,.V,, = (430 JL)(I)(I.2) ps ~(t,. 11 L + tn 11 l ~( 180p l 50p) = 115 psec \'{ow,~ 'I.Tp.f.o.\\\~' ~ ~tt c~.~~.-t.. r txtVN.IItl fvOWI t\le load (s Lo.. - i~ INkd. .. \o,..ltl \:.~lot ,.:op • 1.(&•.,,.\l.p , ro~ tv•od'l T\u.~ ~~~.... ott"o..'l\0... ~o~llt>l( ~ •ll..tql.llo't bo"' 1ide\: ( 1- •t.,.f,X-'1,. .,.;l(v...)~v+o\" O" ~ - ~( ..... ,y• 0 ~ ., 'lt.l... ~ ,. (V..-Vt )l(v(v.,))v' • o.a ....... -../(~.'\ ,.-. ...,)'h •~ 15.4 blank Vr."' .. 'lit ... t V'.fW )Noo- Vt) :0,1+l'Z/'ht1 ...,)'t't• ~ e::, 11.11., V"': Vt + l""o-Vt)/('t'~•)V.. .,o.a +- "i·-a./("4.'\,)'il • ~ Nou~,l'4t'\l\ aVoii-Vs"· 'S.oo-"S:U. ~ ""'- 1-\t'\\. " lh~- '1/01. .. ,,,~,- o.n = ~ 15.5 11.\s i\ uvo ,wloe .. •~ ~ "o , cwf\; • ~ V'ao '1. ,o...- "J'f' • '1 , ov tr-., ~ ,NI'\11 • 4.,. (,- V,fi) • -O.t.(V !;.~ h'l ,HI"\" • 4.'t(l·.11\o -c.,,n- o . .,.ot .. Fo..- """''" (,,,.., ,...,.v"'•-fl-~)~ o.OIA •Att ..n'"'- .. -:t-o.Ul-O·IIC.- o.'ll'! • o:n.s T"lf v ~-z.t, ('(,),. 2--z/<-st,·il)"\(l-'1~·•)~ V(z.th.a})"- 1;1.J v .. "'" .. o.l.'\o - o.&o1. ~ o.lo.., ... o..:l2l a.,, ft.) • .,_ - -a./('1 (u))lf\_ \ h- '/:.-.)'*!(1/(~>*~"t ,. .,_ - Oolol - o•tU -0.111. ,. <;W!§ Ccw.\...t.t V-:r; ~ ... '-~o~!.;tL. ~.. \410.'41~5 o.~t: l'ir1• ~1'\" .. \\rx .. t\Joo-Vt )(1- "'-/tl..)'it.) :::: '\.4(1- -,./h('z.n)f12 "' ~ as propagation delays 'nH It TTIIL "' 8.24/3.65 = 2..26 Now, for fun output swing. there must be time for 2 full transistions in each cycle. : Thus lnJL = 13. 7 /(1 + 2.26) "' 4.19nsaod lrw = 4.19(2.26) "' 9.47ns Since these values are of the same order as the propagation delays. Full swing operation is likely not possible at 72.8MHz. 15.9 For ao Exdusiuc OR, Y ---- y = AB + AB 15.7 blank 15.8 y = X+"8(C+f)), whence f• = A + B(C +D) Thue- the PDN ~:ao he formed directly as >hown : = r( l - OA6 l r) ,_., 2.72 ,., OA6 "' 2. 16 Now. tn 11 L?il / !0 ' 0 )!(25 / 10 ''!UJ/0.~)(5)1 ,,, 8 . 2·\ns AB + AB The PDN results directly : orY = AB + AB. and = AB · AB =(A+ B)(A +B) Chapter 15-3 15.10 Few NOR 41• psf'l.ls l\11/L)p 1:: \:t9hs-)(H/1·'1.)/I0.1t. • ~ ""''0\ · ... n,., . ~~~~~tu$; ~·8/o.~, •• ,.,,,~hi 15.11 JlcitQ;., VQs- V, = 1.2V-0.4V = 0.8V and VJ)s., 1 = 0.6V V<:s- V,> V 0 s.,,but V 05 < VM•• This 4eftnes the triode region. i ns] io,. = ~t.Co,(r). Vos[S + 0.15 "' 0 L"" OJ3p.m In the case of QP, VsG _ V, = 1.2V- 0.4V = O.SV. which is ,,ns "" 1.6:!: J(.l.6i4(1)(0.15) ""· ('8 2 ~ .. J > Vo~M For Jeliable logic levels and noise margins, V,vn > so tJmt QP is \>perating in the veloc- v,,., ity saluration region. Ignoring channel-length modulation, J0 ,., = (I),!V••·A· (vs,; -\V,j- j\Vo••,!] 11 ,c•. ,. !(430tu\/ V 1 )(~) (0.6V) • 4 1- I' Vo~"" v05 ~ 07 • O.IV 15.12 (a)\'Oil "' \' IJO - nndV, = V,., V, + -,<;v;;;;+ZJJ;- jf'.f,~) so.V, "" V,. + -,(./V/Jo- V, + 24> 1 - .{i~) Substituting values. we have V, = O.SV + 0.3V 111 X 1 - ./f.;j;f) + 0.85V- J0,8SV) ~P..c.,(~). CVm;- vn- V,)~ = l7.6!LA ioj.,.. ., 380.3J,lA ;t- 17.6J.lA c(V;o) IPI.I/ "' - . - 1o[.-h• P0 ~ VmiDI' = 1.8V(2.53~J.A} "'4.6p.W 0 = ~(JOOp.A I V 2)( 1.5)( 1.8V - 0.9V- 0.62V)1 ().SV)~ ib, = 2.53!LA v,. + 'Y(•) = V~ •I.I>V-( All = t, 11 v in(lp11L) = Since V 1, 5 < Vas - V, (uiode region), we can io find i," = k.[(v where V, "" 1 - 110 ~.,,"] = !(380.31'-A 2 c(v~'') '(0..54) . t PIU. r, ( J.I5V- 0.5V}t1.,- 2I ~ -v~ 1 - J =· 0.65 3()(l!LA IV\ 1.5) v -~- + 114.8 ~·A) "" 24Hi~LA 10(10 1 ~)F( ~.Y) - - ··-·- ioluu 247.6( 10 ")A "" 0Jl36ns t!~- l 2 ;·uo - (e)t 1, :::~(lpw + 1~'~11) Qr, "!- L3v, + O.Oll2 "' 0 solving ft1r V0 we get t !i, ~t,l•] so that, 2.531'-A = 300JJ.A/V' (UK X 2.SJI'-A no- V,.,)li,- [< 1.8V- 0.5V)(0.9V)- ~(0.9V)~] ;,.,1,_. 4.J'' v,, l t.[(V i0 (11'111) = 114.81'-A : V,)tl"- ~IL.c.,.(1::J.- v,.l2 = O.O!V (c) To find t nu . we can follow the pmcedun; of ~ ll.04 ns = ~(0.045 ns + 0,036 ns) Chapter 15-5 15.13 l.A "' A il> For b) see directly that Y = D For eo~Ch circuii nodeY nominally satisfies biltb conditions. However in a) with A high and B low, Y is 1101 pulled doWn compleiely to ground, but remaillfl at V.,.. due to the PMOS threshold; Circuit b) does not have. this problem., but no® X is Rooting for A.B both high. However, X is oot an output oode, The body e>!Tectmakes this wot!ie! Notice that b) ls exactly a complemamnry cMOS NORgateforwblch Y "'A .jj =A+ B For V 00 replaced by illl inverter driven by C, Y"' ecA· B)= A·B·C= A+B +C. a 3-input NOR for both a) and b). Practically speaking, however. there is a problem because as noted above, the series PMOS do not operate well with a low input. In fact Y is pulled down only to one tlriresoold drop below ground, when Cis high. For the switch gate and input both at V 00 = 3.3V. the switch output is ~l'i'c.,,(r),.1'- J24);] o.s v + o.s v''l[f-·; v + o.6 v- .J0:6'V] .. 1.16 v V 0 1'J- V, "' where\', = V,., + 'Yl.fo 011 + ZF- ~I Substituting for V0 y. we get : = are matched. :) = 11.,.*·:(~.) so that (!!' . L ,. La = 15.14 V, if!VertcJ; is in the saturation region. Since the 'inv~ ttansislors' andY = X· 8 = A· ii V 011 = 2.07V, the PMOS transistor.oftbe If Von Fora) see directly that X = V 10 + -,[,[V1w- V, + = O.SV 2J;;- jEf;,) + 05V"'JI j3.3V .: V, 1· 0.6V- Jo.6V} )(BX3'3V - = !(75!-'A I V2 2 0.8 1 ~ 2 - I . 16V_) = IJ.5J4A it>l "" "" (352fAA + 13.5fAA) "' 183JLA 2 So that, v, = 0.413 v + o.s v" 2 J3.9 v- v, V 1 - 0.4!3 V "' 0.5V 1 ' : j3.9 V - V, Squaring oolb sides, we gel v;- O.ll26V, + 0.171 "'· 0.975- 0.25V, or, v;- 0.576V,- 0.804 0 = = 0.9 ns For lpHJ., V, v,,. and "" C(W) .T. (V ;l>f·~) -- 2.,..., I _. J.O.t II OJ)"""'" V )2 h• Solving this quadratic, we find that V, = !.23V V 011 = Vv 11 - V, = 3.3V- L!3V"' 2.07V with the input Low and the gate switch HIGH, V 0 ~,.-.ov vl(OJ! J.l_') = 75j.I.A I [(3.3 v- in!., "" 0.8 v f·~ v)- 1 H3 ·; vn = 2!352JLA + 311/LA) = 332t.tA ~f;~). in!,... 111 J.tA Chapter 15-6 15.15 = !(75p.A l V3 )(g)(3.3V- 1.65V- J.t6V)z 2 0.8 "' 13:5p.A AI VOl"" = ~t75~tA I V 2 )(~:;)<3.:W- O.SV)z = i I· .. l) "u1 For the illverttT, with v.t ""' v/)/) l = 3.3 v- 0.8 v Qw is in the saturation region, so that -w.. .. 2.5 v 35l.6fLA 2!(135}.tA + 351.6~-tA) = l82.6~tA 01' 1 OV. _ C11o1 - in!.. = 20(10- 1 ~)F(1.65V)., O.ltltts 182.6(10-")A (b) For the inventer, I . . . Vm = S(5VDt>- ZV,) = ~15(3.3 V)- 2(0.8 V)J = 1.86 V = 2!(15pA/V~)(l.0.82 )(v,. 1 - 0:8 V)2 For this value. im = "' 56.25(;'••- 0.8 V} 1 ~J.A QP is operating in the triode region so ifJ, = I k~(i:l.[(VfJ(J- v. 1 - k~(~)J(v oo- Tl,.)(vlm)- ~(IIDS,)JJ im "' {75~-tA /Vl)(l. 2 ) X 0.8 V,.,)(v0 s) [(3.3 V- 0.8 V)(1.86 V)- • ~(1.86 V) 2] -2(11osrl im = 328.5p.A The current in = (25JLA/V 2 )( 3 ·6 ) X 0.8 l f(3.3V- v,. 1 -0.8 V)(0.8 V)- -21 (0.8 V)2 l - = 112.5[ 1.68 - O.lh,.dp.A Since i 0 p ""' i0 "' .we set these equal : :56.25( v, 1 - 0.8V) 2 = 189- 90v, 1 56.25(./,,- 1.6t•, 1 + 0.64)""' 189 -90vm Simplifying, we get v:,- 2.72 = 1.65 11,.)1 = ~~~ (25MA i V 2 )(~) /_ ( ~) (3.3 V - 0.8 V) 2 128.5/tA .1, " "" R 2 :}f8.5p.A 2 I = 1.05 (25J.LA I Vz)(2.5 V)z OR. w - - ~ W = 0.84p.m. and OJ!p.n1 v Q,. ''• """'" +'fl./'·'·• + 2IJ- So, =I) v,, : Ji.:?'i f(>r Qll '" k;{T.)R lW) ~ 0.84~ \I • - 0.8p.m 1nitial!y. a! v 0 1 •= I' 01 ,, i011 ,.,, 0 ,since v Capacitor charging <.:tuTcnt before QR !Urns Pn is doe w the ~mn:m '"PPli<:'d hy Q,. = lp5J.!A i V')( 1.2 2 0.8 .)c:uv - O.SV): = AtV 01 ·= V 111 = 1.8(> V, i 1.•R ' ki'( I)" I(Vw; -· 1•,,.) x :1521-LA Chapter 15-7 15.17 "'(2Sp.A/V1 )(L05)[(33V- 0.8V)(3.3V- J.&6V) Vou "" V rm ~!(3.3V- L86V{l V 0 ~. = 1.8 V 0 V ,._, = 67.3p.A im ""k~(1:)_t(V 6 s- v,,,)(V 0 _,)- im. ::: C&t,01 -n -;--!· = ,~-000 . - )F(3.3V- 1.86V) _ < av 306.6p.A - 94 ps when"" " = Voo 2 .. + 'YL/t'o +-i~- jf$'_,) v, ,. o.s v + o.3 v' '2< ./6.9 v + o.ss v - .Jo.ss V) V, = V,., 15.16 (a} When the input goo$ HIGH. Q is ON and V will approach+ \100 OH (h) when the inpur goes Low and Q is ON vQL -) w.,,! (c) in(o) · h 2 0' p (V f)J.}. - iV !)' :- h'l! . (o ) 'o I . ' = 2(22511A/V')(l.8 V- 0.5 V)2 = J90p.A when v, v;o = • ioUrwl = 0_9 kr[(Vm,- v [V,,!J(V;") --~(r;oy, itilrw) = 225p.AJV 7 !(1.8 I -2(!).9 v _ 0.5 V)l0.9 Vl ' VrJ = l72jti\ fp.uJ C(0.9Vl ·nn 11A 5000C Chapter 15-8 v, = 0.62 v iuN(t,.UI) "" t ·(W) (·7/' · L • Vm,- Von T - V,-)' v,- = ~(15~-tA I V 2)( I .5)( 1.8 V - = !(300,..A/V~)(L5)(U -0.9- 0.62)2 V,)l 0.9 V - 0.62 V) 1 "' 4.41~-tA 2 = ~k~(t), (Vno- im,(ti'HL) = l7.64~tA inr(tp,Jt}"" ~[i1m(O) + im,(O) + i01.(tp111) + im,(ll'/11.)) k~-I),.uv m>- v,.,)(V;v) = -~(v~~·yl .. (75,..A/V~)(L5)[(1.8 V- 0.5 V)(0.9 V) -~(0.9 ~{380.3 + 95.1 + 344.3 + 4.41JJ.LA"" c(Vtm) = = __2_ 1 V) 1 l 15(10- 13 )£(0.9 V) ioj.,. PilL 412/LA 412p.A = 0.033 ns = 86.1Jt.A Qp will tum off when (d) 11,:::. ~(tp 111 + 11, = jV,pj tPJu.)"" "' 0.5 V ~(0.047 + 0.033) ns == 0.04 ns ![380.3 + 95.1 2 + 17.6 + 86.l]p.A VoL> c2 lrw "" 15(10 15.18 = 290,u.A ·~)F(~) 0.047 290~-tA iol.,, liS v,= Vvo (c) For the situation in Fig. 14.12(b), . ) 2Jk·(W) (V _V ~ ~ -L " or, - roN< o = )z /(1 l With V1 going to Von and •;,lol = ~(75J I · ik.(W I L)(Vm>- V,.- 2 llq) v,. "" V,., + -y(~ - ./f$;> "'o.s + o.3 V111 (J0.9 v + u.ss v- Jo.ss V) "'0.62 v Where R ·- N~({ - 1 "' k.[- v,,)v.,- ~i.] ioN ""' for 1.8V-05JV s Y 1m - V,.. l';) ., -(300 11 A !V'}(L5)(1.8 V- 0.62 V- 0.9 V)" : - - - - - ' - - - - =51 k!l k.[cv 2 I){) - \-',.) - 2! v,.] For Q,. initially, ~k,.(v., -!V,.!)J so that i/JP "' _ Rp,q - (75p.A/V~l(l.s>[ts v- o.s v- !p.s v- o.9 2 2v0 kp( t~ - v•t""re JV,J ., JV,rp· j\',J + -y(jVon-''"+ 24> 1 - Jl.b;J = "' IOkfl Rrc(V, = 0.9V) = RN,.I! R 1.,• =51 kH ~ 10 kfl For l~_. :::= V vn = 8.36 ldl Rrc!.,. = ~(3.76 kfl + 8.36 kill trw"' 0.69Rn;C "" 6.06 k.l1 = 0.69(6.116 kill0.5l( I0-' 5 )F = 62.7 ps 2 (1.&V) (300p.AIV'l(L5)(1.8 V- 1!.5 V)' - I RNNJ(t~, - 15.19 - \ /)/))- . kp( = 4.7 HI 2Von -';> w I L)p( vf)l>- IV•..!)" -----.,--"2"-(.:.:L:::..SV_:_:..l_ _ _--:: = !1!.9 kfl (75jLAIV')(t.5)(LR V- 0.5 V) 1 Rn;ltl,, ""V,. 0 J "'R,.,,.ll R1.,1 "' 4.7 kflji ll\.9 kH ""3,76 k!1 AI!', •c Y.!!.'! '' 09 V ' 2 vm,-· v,. = Ul v- n.s ~ l.J v since V"' = 'l• ·- o = 0.90 QN is in the triode region. R . N"l C is charg<~d :SfJ 1hat V (t '""" V" tn~ When !!1 goes Low to 0\-: IJs ;, initi~lly in the sat· uratifm reginn \\: th . ... 1,. (V !~U IIJ},· ~~ 11\,, -- \' = I k, '(IV) 1 I Jo\oiu.c."(, V., ""'\\ fa\\ \,.'j ~~~... ~~~....o.."'t (c,~ ...)(~vc;,). %ol">•'M!.'11 ~ os.o ~o.c., • "4,'\')\1. 'S1~~ ~, '"~•••h l.!.o, ~~ O.'t~MooftUo"' ~-.t' Q\ e,,.,TI'\\>f\ ~ co.,duc,t" i• ve.v,C\eol • ~"s ""v ~~~ "" O·""" ~- t\.at: \( t\oc ~,.,.., t.f~'\' '" , .. clvA~ , it-...,;\\ \I~ to \.4 ,;..,t-,.~•1o\-t.-- ~U« "'TC1 ""'-'V• 'f1Ns o.&.,v '" '"'• h.,c~t- ~.,,,.\o\c ~\o""'\C! • :r,.."""" of X "''I t\.t -...\\'\;.,,.~\'\ \""f".;,,., Cl"'•''1";", O.S$""''- ~..to .. -v • Now,-tl.c cl.._,, ""'i,. "\J'c.1 ~"""'"'f 1;.. CoM.\., C:O.fo.i.~v \11 t\..( ...... ~ ~ .. cv 10 (v-o'\ _. ".lo(s-v) .,...,~ l "" . 11w 0 Jl5k.V (c) t:.r "' Cu(~no - V,) Cu(O.SVnn} 0.115k. v;;1) l{)ltH' k. V DO -· Vov-0.2V"" 02V + . J>/) 2 I = -(0.635 + /R/2) Wnc.ll tl.t '••·· - + /R/2) (e}V111 = -(0.635 = -(0.875 + /R/2) (f)NM 11 (d) Qeq2 will conduct during the time that. ·~, 1 drops from VDD to V, The transition half point is '-- v1 = - (0.75 + /R/2) + 0.115 VIL _ 6.96Cu - (d)forOJ)Ilin QR> "" -0.75-{-(0.635+/R/2)] = /R/2-0.115 NMt '' - (0.875 = + J/U2) -[-(0.75 + IR)J lfU2- 0.115 lg) Vw - Vn "' !k~ (!!.) i 01 L, t 2 = - ( 0.635 (0.6\1M - 0.2Vm/ 'q1 and , o.osk.. (w) I vno = IR = 2(0.345) = 0.690 V (h) Y0 n eqz + I R I 2) - I- (0.875 + I R /2)] That is; JIU 2-0.115 '' 0.230 = -0.75 V; VoL= -0.75-0.69 iml M --c"'' (c)tl.,,z = Yu. L2 Sin~e Cu _ i\!1,2 - Vim O.OU. (6.96CLt) • k , = -0.278V1, 1, Cu -),\-·nv - , Vw =C1.1 So that uy1 is V vn - 0.278 V Dll "' 0.72 Von 15.29 The preo:harge time cun be approximated as the tise lime of the output voltage. In Example !4.3,1, :: 0. 19ns. Assuming thm the cvuluati11n time is relatively ~bon. the total cyde time can be e'timated a' being slighty longer than 1, + rrm.· With r1•111 _::. 0.25 ns, the maximum docking fn:- qucncy is f < ~ :: ~-,-=-7 (1, ,. Inn) = 2.27 GHz 15.30 (a) \1 0-0.75 V0 , rn = 0 -· 0.75 - lR = 075 v -(0.75 + {/?) !hl V,., '" id ,.,, w UR '2 + 0.75) '·" (0.75 + IR: 2'1 Fori= 0.991, 750' 2~!n(IJ90) "'750mV \'. = -(0.875+0.345) -1.44V; -L22V; -(0.635 + 0.345) '·" -0.98 V; -(0.750 ... 0.345"1 -1.095 V. 15.31 See that once starll.'d the process continues; that is we have,an oscillmion. In each cycle. each gate <'Utput rises and falls. , Thus the period h 3(3+7) = 30 n> Fre<:1uency is 1130 = 33.3 MBz. Any output is high fnr 3• 7-t-3 = 13 ns anillow for 7+3+ 7 = 17 n;; Check: 30 ns. Chapter 15-13 15.32 when 111 = Vn = -1.435 V, 1, = 3.97 rnA, v011 = V0 L ·= -1.77 V .~ - when v1 = V8 L32 V, It ·'" 4.(l0 rnA, "nR = -1.31 V -1.205 V, If: "" 4.12 mA. At pc>inl x l'l'Tll .is I% L'oR "' V 011 ·~- -0.88 V Transistor A's emilter t'llr• of /E or 1(;,._ = (ll.OI )(3.97mA) ·= 39.7 IJ.A 25 mV = 630 n 39.7 t.LA ' Transish:>r B's emitter current is 99% of 18 or 10 trllnsilions per cycle, each of Ins duration: Period"' 10 ns Frequency ~ l 00 MHz So that r 15.33 lm, = (0.99)(3.97 mA) = 3.93 rnA Tying two outputs t!>getbet as _ yields a WIRED· OR operation. The most dire¢! implementation is ORing the outputs of two AND gates. The AND function can be obtained using Demorgan's theorem: So that r.c "" - A-~~~A+B"" s-L~-- Using NOR gates as inverters. obtained: A·B and AB are = Vr "" lEA Vy 25 mV lr;o 3.93 mA = son = 4.6 mA So that v, -_ --25mV r,., "' -/E2 4.6 mA = (!3 ·f I )(r, 1 5.4 + R1 J ""' (101)(54 fl +50 H) ~' 5.6 kH Solving for the incremental gain. vh> "•n· _, ifH -~:::, --:t_.:~~-~ . . so rhal rt'A · · 't:~J !loR v; 15.34 6 _4 O -1.77V-(-2V) .... voR-VEE .... .. R., 1c R,.~ AD A • _f!.._r........... t1(Rc1 il r,. 1 + Rr r~A + R;._~! '~n n Chapter 15-14 15.36 "o" ,. so n . . ( 100) . {245 n 11 5.6 kfi~ · Hlt · 630 o + 6.4 n n + so n -;; · SA NMn-=0.325 V, of which 50% is 162 mV, fbr I}= tOO. and VBE2 = 0.83 V. /t!.2"' 22.4 mA. Appmllimately: ""0;33VN Alpointm, -2 + 50 (2 SO+~ . - 0.83) - 0.88- OJ62 tl +I ~ 2mA -l.31-,(-2V) son r., = Vr = 1~ 1 • R; 0 z 25mV ,. 1.8 l (lf 12.511 cc B.S.mA l'l~ +I 50+ n lsJ = 2 v, - son+ '(2450 II. 5.23k!l) 12.5!1 + 12.5!1 At pointY, (100) LSI "'' 6'1 .. (16 = ~1 == 2 1.2 I 1.06 Chedc: for v., "" - .88 ~ . 162 "' (101 )(50.+ LSI) 50 !1 0.958 Hence 11 = 5..23 kO Oain = Voll _ =: l'l +I 13.8 rnA = (I~+ l)(Rr + '•t) 50( 1.17 ~ 50 + ~ n · loi = 8.95 v /V and V t -5~o-n In(~) 19.2 -1.042 "" 19.2 mA 3.85 m V -OK, Since small, can ignore. 15.37 leA "' 0.99(4.12 rnA) "' 4.08 rnA r 25mV "" 6 _13 f1 = VT = A • 4.08 rnA /Ell = (0.01)(4.12 rnA) = 41.2 J.lA / 68 v1" = ~ / 10 s = 607!1 41.2 J.lA -0.88 V- (-2 VI 50!1 =22.4 mA 22.4 mA c. _ t1oR _ Gam - . - ~ + 1.1 H) 50 "" 5.16 k!l 50 fl n+U 0 . ('100) . 10! II s.16 kHl .,. 037 v 1 v n + 6.u n . t245 n 607 15.35 Assume h· is constant at 4 mA (a) Currents are: 3.6 mr\ and 0.4 mA Emittcr-lh>c volta"e difference "' . or25ln9,;o54.9mV Thus VII. ·· !.32- .055 V 111 - 1..12 th)Currem;; ar~: + .055 •c - .·. Eminer- fhse voh:1gc diffcrenc~ 1 (_};22(, J ()(H l 1.375 V 3.996 m.'\ and .001 X 4 = (L()04 mA \' · ln = V 1 ln 0.4 ~? = - !.265 V 4(0.999) = -0.88 + (_88- 2)( 1 _ e ·••kc1 + 1.12 e '''" c Aflcrlns,,." !.77V t."-~ 25~=1.1H R,.? = {101)(50!1 t• or v = - 2 i.e., -1.77 ·= - 2 ·r 1.12 1, '· "". v Chapter 15-15 -lfsOC Oft! - Thu:!l 2- 1.77 and U2 64"' l!2(Hl012.S)(WIL),(5-2.S-0.7-Ii where(W/I..)l> = 25(211) = (511-mll!lm) -l!50C = -1.583 15.41 Thus C lo -~ = ----·-- 50(1.583) ~~ 12.6 X _,. 10 • F "' 12.6 pF 15.38 11 112 (100) (211) (5- y- 0.7 -l)z = 2/3X30cmln&X20cmins Thus, (3.3- tr)z == 2.5{v- 1.7)1 Rise Time = 51 I "" _1J_ -Return Time · ?L/20 Rate - L und(3.3-v) = :!:.fi3(t•-L7). 3,5 us X 20cm I U$ ,. 1 cm = Usefully, (3.3 - v) == {15811- 2.69), hence 2.58 v= 5.99.and v=Vtb= 2.32V For this value, irm "" I I 2 (100) (21 t) (2.32 - 0.7 - I) 5X2 15.39 Vo~.,"" 0.7 V; V 0 w = + 5.0 V More preci~.ely, for V ot "' At the threshold vm, v.. = v, = v,~ = v, and the two MOS operate in &nturation with equal cur· rents. Thus = 38.4 11-A tl and the totem-pole current is {J3 orl01(38.4)10 +5V 6 + I )io:-f = 3.88mA 15.42 2.5 Hi The problem as staled is very general. and corre· spondingly, its solution can be long and complex. the specifications or matched MOS having v ~ 0.7V 18k =<153 51 .. (W/l.)p"' 2.5 (WIL) 0 • n .Em:.Bz~ With ''~>• "" I I 3 "" 0.333 V V, n ios ., 100( 10'- 6 )(2 I I) X 'tr 0.353 (5 - 0.7) + 0.7 + .353 = 1.23 v 25 = 1.23 V Logically: A is high if one of A orB and one of C or 0 are high. ThatisA ~ (A+B)·(C+D) I.e., VOL ForV 1 ·"""· V,, ~ Von;-;;; 5/2 = (I /2) L, ( W i L), (V 1;s- ~· n !2)(100) Hf"!~ n )(2.5 - = 64 /?1 = 0.7 i (0.50 1.5 V_ v} [(5 - 0- I )0.33 - O.:H 2 12! = 256 1•/\ Now, if 50% if this is lost in R 1• 1? 1 = (5 .. 0.333)! (0.5 X 256) o.7 ... ll' fl.A !11 comparison: For the 5{)% case, •·• = 100(64 x /Ji PN w-''! N,IR;. = 6.4 rn;\ Corresponding, !.he totem-pole current is ··= (6400 + 64ll0·o •• 6.46 mA Now~ for i£o: iux~ itJr ·= ioN 64 J.,tA 365 kfl Now, if 20% is lost in R1 1? 1 '~ 2.5(36.5) = 91.1 kll Q, iErJ} 6.70 k!i 209) 1?1 = 0.7 I (0.20 >< 20')) = 16.7 kfl Now, the collector current of = {Ji 6 X Now if 20"4- is lost in R2 , ForR1:iur = (10012.5)10 6(2.5(2/ I)) x 15.40 ; 11 , I (5 - 0.7 - I )0.33 - 0.33J 12] = 209 11A Now, if 50% of this is lost in R2• '~ 36.5!6.70 = 5.45 Fnr the 20% case, 1? 1 iR 1 = 91.1116.7 = 5.45 (why shnuld their equality be obvious'') Thus. in general R 1 / R 1 '~ 5.45 Chapter 15-16 15.43 Thus tnu. = 2 X For ti'U1 : I'or lpLH AtV 0 =0V, in, "" ~(100/2.5)(:211)(5.0- 1)2 ""64011-A iDov "" and i 11.,. At for= (100/2.5){2/l)f(S- 1)2.5- 2.5 2 12) = 550!1-A (640 + 550)/2"' 595p.A :tnd i0 •• = {100 + 1)595 ""60.1 mA Thus = CV/1=2Xl0- 12 X2.5!(60.1XI0- 3) frLH X 2.514.6 X 10-3 = 101(837 X 10"6 )-= 84.5 mA lpuL "" 2 X 10-IZ X 2.5184.5 X H)-) ""' 59.2 ps Thus tl' = (59.2 + 10!1.7)/2 ""84 ps 15.45 For theBiCMOS NAND of Fig 14.39 to have a dynamic response some what line that of the inVerter of Fig. 14.37e: (W/l,}n = (W/L),8 "' (W/L),. and(W/l,)NA = (W/L)N 11 Fortpm.: At ''o"" 5.0 V. A BiCMOS 2-input NOR is as shown: "" 108.1 ps 911 - 140 = 837!1/\ = 83.2 ps i0 _,. ""' Thus V0 ,25V, Thus iofoi! = 10-l! "' 2(W/L):--~ 15.46 ~( 100)(2/l )(5- 0.7 - I)~ = J .09 mA At "u = 2.5 V .i0 N = 100(2! I) [(5- 0.7 - 1)(2.5- 0.7}-(2.5- 0.7)z !2] = 864 11A Thus i 11"'"' "" ( 1089 + 864) i 2 = 977 p..A and in.,. = 101(977 X Ul- 6 } = 98.6 mt\ Thus lrm "' CV i I·"" 2 X 10 11 (2.5) /(98.6 X 10 3 ) = 50.7 ps Thus tr = (83.2 + 50.7)!2"" 67.0 p~ N01e that this solution embodies two a.>.~umptions l l Internal cap.1citances cnn be neglected. 2J Transitions are from ideal 0 V and 5 V output-sig:nallevd. If outputs of (5 - 0.7) = 4.J V and 10 + 0.7) = 0.7V apply. 'r becomes about h7 x (2.5- 0.7)!2.5 • 48ps 15.44 rnbs the bns•; of snme !)fits drive currcol. namely fl. 7 i 5 X II)' ~ 140!-v~; Fnrln.tt :i""" - :W:'i - 1-m= 4551-'-t\ and i 11 ,, JOH 455 Y IH ~') ~- 46.0 mi\ In terms of the basic matched inverter : (WIL)I'A = (W/l..)pu ·'' 2(W!L)" (W/L),v,~ co (W!/.)"' 11 (W-'L)x wht:re (WI L)r and (IV; I. L, inverter. ~har~ctt,.iif' llw Chapter 16-1 16.1 x (IVcsi-IV,Pj- ~IVos,.'PJ)o + 1AiVns) 300 10 X 6 X (~t X 0.6 (u~ _0.5 _~X 0.6) (1 + .l XlzS) = 75 10- 6(~:~:) x 1( u- o.s- ~ x 1)(1 + .1 x Cis)) X 16.2 IL" 3(t)J\Vnn- v,.,) V;o- KV;v)'] = ,. ;t (&)(!!:' ) [tv J.Lp: L n --- {)0. - vfJ~ >(vt>n) ·- !(v nn')']. 2 2 2 . Assuming \lm : :-_, Vrt we have: (tt = 2 ( ~·) 1., !(!r) 21. '= 4 2 5 .·.(i)·. ""4, ~ '(w) '"""£ f1.,.2 X (ft ~(it , 5 0.72 fl.nl 4 0.1!! fJ.ffi This value is greater If the !lip-flop i~ fahrkated in a 0.13-~tm process, lhus requiring 33% more width area of both n transistors as a minimum. we have: I~ W 1 (7:), = (1), = 16.4 v = r(Voo- jV,J) + V,. 0.13 f~ln (fl., I(.~) •. J.Lpi 4 X = 4 X I "' 4 L ." 0.13 = 052 ( ~)_ L., (}f) L., ·= fl.lll ,(·w! -,.I = w. ,'. r "" J! w,, ~ , }. jn V "' v ' 16.3 as~uming OUt!JUt Ur, -::::: __!!.!:~ "' a single where r +I '" equ~vaknt 2 ' and transistor for Q) and --~~ 0.27 IJ.nt and P.. = 0.5 .,. 0.5( 1.8- 0.5) + I 0.5 + I IIV (threshold voltage) Assuming .) ( ~· L, = (!!) = L, {·~·) /, "' 7 (!!.) and Q,. Q l., 6 have an equivalent single transistor !!). . u~e the cquiv;Jknl ( ~) = ~(!!) = ~( , L. ·•q - . /, ~ ~ .L " C V1, 5 - V, ~· ~' L~ · 0.5 0.6V ----~/Vi.;:_,~ IV L8 -0.5 1,3 transistor and 02 arc in triode re&>ion with the same current flowing through them. 11 Chapter 16-2 300J£., X (~),[(1.8- O.S)ll8_~clsn ... 1s x .o-• x (~)[< ts- 03) 1;.8 . "" 0.375 ~ (!!) "' (.!!) L , .1. 5 (~not bave.le:~S tha!l -1e:rJ i0 = ~(Ml)(I.S- l )2 = Ml((S -1.5- l}v.,- v!t2] Thus 0.125 = 2.Sv0 v!l2 lll' v!- Sv., + 0.25 = 0 .I Js 2 - and V.,[--5:!: minimum) - 4(0.25)]12 "" (5 :!': 4.8484)/2 = o.osv Thus v. "" 0.05V ()f4.95V For tt, "" 2.0 v, 3.0 v : 112(2-1)2 ""(5-2-l)v,-v!/2 16.5 th. IS colldtictintt and Q5 is toriducting and operating in triode region: or (2 - I )2 and· ;"rJ ~t.c.,(I)Jwm»- v,.>(v;o)- ~(v "'· ll,c,,(!!L) [(V 00 -IV,pj)~!(V 2 2 2 00 ) 2 ] ' • 2 "' 2 X 2v.,- v! J.! - 4v., + I "" 0 Whence v,. = (- -4 :!': J42 - 41.1)/2 = (4:!: 3.464)/2 "' 0:27 v Thus v0 = 0.27 V or 4. 73 V = 2.25 V or 2.75V: (2.25- I )1 = 2(5- 2.25- 1)11 v! For v1 0 - 1.5625 "' 3.5 v~- 3,Sll0 v.- v: + 1.5625 = 0 b) 4 3 2 16.6 NiJte that the device8 are matcl!e,."' 5 V,OV For,, "" I V, 4 V: one on, one off; "" = sv.ov f-01: v1 = 1.5 V, 3.5 V : l>ne in saturation, one in triode mtlde. () +~.--.--,.""'-- --.-:-::-,r"'""""-r-.-.....1-\,., v, () 2 3 4 5 Chapter 16-3 16.7 Whence -\In, "-V?vo,.,;..ollt ''"'•"'~~ c:.l.•v~v.-ti.: ofe.ulo '""~ P•un '\'\.,.,,.,~., 'l'••;.t'l ·. (o,s),('2.o,,.,,), v. = (- -3.5:!: J3.5J- 4(1.5625))/2 = (3.5:!:2.45)/2 = 0.525 ('1,"\.'C>,,.), l'S",o) • Thus v. = 0.525 V or 4.475 V ~ For v1 = 2.5 V, v. = 3.5 V by symmetry c""'"'' s.., .....t~~tl.o..M\),~ ...a..,o.•) tl.t h....... e1vLt>; .. t' I) = 60 •s , '"\To:.~ • ~ -to 'V , V 0 ., ~"""'"'-""' 1\"V'•'"'' ~ 1 OY%'ZjU'V <;)O.•;. ,, b-vo/A'V"r ~-\a •-lo".V e. o~ ~ ~-\OOf c;~""~""'" is ~·"''"'IJ , wl.c..t 11-• feof ,.,..: --==- to\oe' a.t 1«.\1'(.-1<1\.' ~ \11. ~-·--·t goes low, (Q 1, Q2) eoodnct (QJ also ode. Currents are equal: conducts) The value at the gate of Gz Slays high (through Q1• Q2) Q = 0 and Q "" 1 (value is ..latched~) !J.t.C.,,(l)( 1.8- 0.5- 0.2)1- =' IL,.c,.,(..!!..L) 2 O.IStt ~(0.2) 2 ] [<1.8- 0.5)0.2- Q= I and Q = 0 when cb goes low. (Q3, Q4 ) conduct so gate value Solving (or W 1 = 0.45 J-Lffi at. G1 is low (through Q3, Q4) to keep Q Check condition above : (c) If D "'0 then LM t.8- 0.5 Q 1 coodu.:ts If»= ()then Q Q4 conducts I "" I and Q=O 1 ( -0.45 Jl. .) "' 0.4 < 1.64 (d) No. The operation connect~ either VDD or ground directly to gate of G, which maintains 0.18 f-l Q and Q. values at 16.12 16.9 A r M \, z"',. \\,.., 2o (~). -<\W&~ veq u•Vt~ \1 MliYt\S I;, \'s w\,tyt 1"\\oo.'1 tO'2. •b "vu(.A... 'F},..,~. o.ve 111udtd to ,t Wov<.h , ?.'t • lb Q ..d '-\ l.",h 4>o1! ~.tat ~ttcltd. 1\,.,s Z()--. ""11,. \,it. of ~d.ootlJ o.vf s-...f~•cit"'t. < v,. )J -I Von-- Vu, ---=--- - I 0.7!\ (~) 5 I 17 ( !--~)' 2.5 .• 0.5 ( ~) 5. 0.78 1.5or X I .. " l. " ~' """' ""'~ •• t•.;t1~)A..,Ioh) ·'~·1 /'.~'"\'5'.\3 \h~lt." ~: ~"\1'1\>o.>N<>j' o.cYuto~ ~oY.!. i~lo7..;«1p'lt,.'H'C111). 16.13 =2.5 V and It, "" 0.5 V (al 0.25 ,.un: Vnn 16.10 The cell area is 101>< 0.38 >< Hf' 0.28'> X X 0.71\ X 10 -<• ~~f;Q = V JW - V,)) = 0.5 2.5 - ()j V,.. 0.5 = !L:!5 2 10· 1m 1 l11c chip area h 19 X 10 ; X 38 X 10- 3 = 0.722 x w··'m~ Thus the peripheral drcuits and interconnect o<.·eupy (0.722- 0.2!i9)Ht 3 ~0.433 mm2 t>r ' (m) x 722 •"-} f,WIL)l '"OR (IV//.), 100 •c 60"' of the dip arcn. !b) O.lll J-lffi: \ 11m ·1-) ., 1.8 - 0.5 0 B: ( - •c 0.385 •> .- Ul V nntl \11 = 0.5 V ~, !WILb (Wil.l, (Iw), --:------·'' ··.: l. 7 h:w) 1 1.6·1 Chapter 16-5 16.15 (c) 0.13 !Lm: V00 = 1.2 V and V, "' 0.4 V C: With body effect considerations.: (__JM_) = 0.5 1.2- o.4 V, "" V 1., (v~v.) + r( M;-+V S/J Ji;c;J - v, ., 0.5 + O.J[J0.8 + 0.5- Jo.8J 0.5 [ (U11]c:s (.'!•) (I _ 0,4 L 0.3 I 0.574 )2 - l 1.8 - 0.574 I 0.574 V 2.54 . withoUI body effect: V,n "' V, 0.2 1.64 0.1 4 IIVIL); (W/LJr 16.16 (~)5 for body effect can have a large maximum ratio. (!!:'L ) t(!!:) L 5 I [ (~)5] I 16.14 Q5: j,'r;s- V, ~' 1.8-0.5 = 13 Vos = Ul- 0.:5 > V 0 s,., 0.5- 0 < v"-~"' > 0.6 V ( I- (.1!) 5 . (v = V 1,~~ v,J = ('- (p., i Assuming. C·';>l (Wj L ) V n.\.;n. - '] = :'1 r v.. l'nu- V~r~· 1..'. using Eq. 13.1()(}: !Ln l 0.4 ~ 12- 0.4) 1.3 >0.6 V and 0.6 (not in velocity satuwtirm) Only Q~ is in velocity saturation. . -- I_ ( anJ 0. 6 Q 1: V,;s- V, = Ul- 0.5 ln [ For VQ kept below V,,. Eq. 15.10 becomes When V 0 s V, = 0.5 V : ~'m $ ~ Jt,.) 4 II,, CS - Vt - 2 IV'n.\:;d .) X (I+ !..1' 0 .~) C Negle,·ting 1\(l\ = 0) ~.c.. ,(~) O.h(ts --n:; ... o.s -110.611 .t ~ 1 / ;lV wh••re 15 is nt>taittt'd frn111 I)'"! 430 y 2 X 10 ,, X I"' !,1.2 0.4 ... ()_4) 34.4 !J.A ~-I)! At c ,;\1/ (!!:) J.' (1:), (<:\ without w!ndty saturation: IEq. 15 1) 1Eq.I:Ur .... I 0.5 I.B -· 0.5 )'' ).' /0.2 Jf) ,, I.M ·'" I!H I'A ~~ ~~~!~.\" I' lfl.{ ,., !0 •. •- I 1.6 ns. Chapter 16-6 16.20 16.17 StoringaO: V 0 ""'0, Vii = Vm, Let (!!L} To write a I -t B line mi!W to VDP. D line lowered, and word line raiSed to Voo- V Q cbangefi to LetV~ 0.13p.m 0.13jl.m -== = V,n = 0.4V. Is""' l1 V00 and liil ""' 0. Relevant u-.msistou: l c·ox X 21-L• I X = p..cox x (1.2- 0.4- 0.4) z (r)l x [o.2- o.4)0.4- ~2] Solving for(!) L. (!) L "" .33 so choose I = 0.13p.m = 1 0.1311-m 1 Checking Q4 in saturation and Q11 in triode, which i~ l.s;[(·-~f·l·' the same ns the text for writing a 0. 1.2 Let(~) L 16.18 (Z:) (!!L) 4 [1 - (1- --..2L) 2.5-0.5 (![) ~ 1.75(~) X $ p X /. 2 ] 0., = 0.4V. ~p,PC 0 ,,x I X(l.2-0.4) 1 "' JLpCoxx(~t a [0.2- o.4)0.4- ~(0.4)~] ( !rL )." "" 1.33: 'Sc\V.C\>4! O..V\IO.'i t\.M o.o.<. l<'.a'l ~ 0.-.4 l;t- \l;..t c.,.yo..~:tqw:e \s to~tot'i•l+ll) ( ~) t. = 2 (~) ~ L • 2 = (~·) ~ 0.13 sun L ,, 0,13 J.l.lll Checking !.:2.liJ>_f Whe.., 'S~v\.., Q.' 1 ' , ~f Volh\.~c o., Cs 1d V~~p~Vt) ov(s-1 ..,-) "' ~.'3"\1'. w.~ ~wcl.llv1t -to ~·7.5'f. ~( C\.<~.""3t ,-;., Vot\'t>."!t ""' (,_ .. 3.~-7.,- = l.o\1~ t="o,. Co; v '2' ,F, ~ \),r-\\..e VO~f vtS>4\'n4 f~ 2~ /( 'tl> HoH) • 1 " · ~·u, ~" W\.f"' \lovi.., o.\,',~tvo\'r""jto...,(,\st:>V <>.~II ~t c.l.o,.,'\t is 1 .~·o "'~.,v w.~ o.. V·ts .. IH") \.;~-ll;.,f ..,,,....,.\ of A.si(2S'-t1Dl\)• 1·'.. ~v r -1 <4ll 2 - 04 -(1- __ ,_.- )'l. 1.2 - 0.4 21!!~. 0.13 11m Chapter 16-7 Thu~ (WIL). 16.21 =0.79S X lfr31(JOO X m-6)10.'1 .. 11.36 lfthe memory army hall n cuiun'lns, it tills 2n rows and 2n2 cells Refresh time is 2n (30) 10-9 !1 N(IW; ror di!VieeS assumed to haveleagm L p,m {or, alternatively, fur eaCh 1llienm of device length) = "" w.,.. 11.36 p.mlind'W, 3(11.36) =.34.1_p.nt Now, for a differentiai input sipil of 0.2V (and O.JV on each bit-line);.theresponsetime.iu, where 2.7 = .I.S + 0.1 e....,. whence 1 "'0.6191m (2,7 - 1.5)10.1 = 1.56 ns (1.00- 0.98) s x IO··'a Whence II "' 0.02 X 8 X 10-~ /40 X 10-9 "' 4000 The corresponding memory capacity is 16.25 2rl "" 2(4000)1 ur 32M biis Note that for the inverters k.. = .t;, (W/L). = 100(611.5) = 400 p.A/Vl .k. ,... k~ (WIL), = ( 10012.5)(1 S/l.S) = 400 p.AN• Thlls we see that the invet'tel'$ are mlltched, 16.22 fOy lf< or 16.23 r-ur leakage current /, the voltage change on c in rimeTls V IT = 2(0.241) = 0.482 v lfan additional Ins is allowed: t = .2+ I = Jns andl1v (2.97- 1.65)/e'"'"' = 0.103 V allowing a signal to he used of 2(0.103) = 0.206 V Now, with the original bit-line signal of 0.241 V, and a delay of 3 ns: = He~~<.-e, 0.2V or Av = (2.97 - 1.65)15.478 =0.241 V Thus the initial voltllge between B Jines must be I X to·> X 10-=> I= 0.4 X 10-ll 20 X 10"' 15 = 0.4 pi\ is the maximum leakage current. 2.97 = 1.65 + 0.2411'-"f and e..r "" (2.97 - 1.65)10.241 "' 5An 3.1 "" ln(5.477) = 1.7006 whencej 16.24 Fur lhe bil-line output to reach 0.9 V,., '~ 2.7 V from V.,/2 = 1.5 V in 2ns for an initial bit-line signal a.t OJ/2 = 0.05 V: sigilli! ofO.IIZ 0.05 V: = 2.7 = 15 + 0.05e2'j' whence 21j =In [(2.7- L5)10.05J = J.178 and j = 2/3.178 = 0.629 II$ Thus CIG. "' 0.629 X 10·•,, and Gw =I X J0-•'1 (0Ji29XIO) "' 1.589 mi\IV For matehOO inveriCI'$ 11- = g ... = G./2 "" I .5!19/2 "' !l795 mAN g."" f((Wil,)(TJW ()J!l) =- 3/1.7006 = 1.764 ns Thus C = G.} = 680 L20pF X 10·• X 1.764 X !()-< I o~- 'e51i. and 5 "" J ln(2/ (().3V1>11) (b) Fot reduction of one half the original, G,.. has f.t = For the DRAM arrangement, the signal is. applied tu only one side; Thus in cpmparison to the SRAM treatment, the applied signal is only half 15 c;,. "' 1.7 Gm 0.9 llms the transistors must be made 70% wider (or increased hy a factor of I .7x) For a lpF bit-line capacitance, G. C/1 or G.== J X 10-"/1.086 X 10·• = 0.921 mAN,with0.921 ~ 0.46 mAN from each transistor. Now, for then-channel devke, g."' k',(W/L),(\In., - V,) or 0.46 X 10 ' = .100 X 10-"(W/L).,(25-I) Thus{W/L), = (0.4610.1)/1.5 == 3.07 For mmched inverters, (W/L), = 2.5Cl.f)7) = 7.68 When a 'I' is read, the response time will he t = j lm{2120 X tO·')"" L086ln 100 = Sns (JI(l!e: this is as designed!) When a ·o· is read, t '' 1.086 x 10·9 ln(2/(l 0012) >< 10-' )= 4Jll ns 16.28 !lt = CVo, I I '"" CV"fl = 60 X 10 15 X 1.2 = tu 0.3 ><: 10·9 I'= V,,, I 1.2 X 2401J = 2XX 1.t.W 240 ~A Chapter 16-9 16.29 Here 2• = 512. nlog,.• = log,. 512, n = 2.71'11/ 0.301 = 9.00 Thus the number of bits is 9 1be decoder has 512 output line. one of which is active (high). 1be NOR away requires true and complement input lines for each bit: 2 x 9 = 18 Each row uses 9 NMOS for a total of 9 X 512 = 4608 NMOS and 512 PMOS. for a total of 5120 transistors. 16.32 v,~ rp; Yz • , 16.30 For a 256 K bit square away, there are (256 X I 024) 111 S 12 rows and columns Number of column-address bits is log,512 = 9 = Two multiplc~ors are needed, since both true and complement bit lines are required. For each multi· plexor, there are 512 output lines. For each (halO multiplexor, 512 NMOS needed for a total of 1024 NMOS pass gales. For the 512 output NOR decoder itself, 512 x 9 = 4608 NMOS and 512 PMOS are needed. 1be address-bit inverten need 9 NMOS and 9 PMOS Overall, the need is for I024 + 4608 + 9 = 5641 NMOS and 512 + 9 = 521 PMOS, for a total of6162transistors. r, = ~(Inn + 1,11 <) f- 1 = 20 MHz lOt, - N=ll 2NtP r, = 2.3 nsec From the solution-. above, a square 256 K-bit array has 512 rows and 512 columns for which 9 row and 9 column address bits are needed Check: 2"·• = 2" = 262144 9 levels of pass gates are For the tree needed. 1be total number of pass gates is N = 2+4+8+ 16+ 32+64+ 128+256+512 SeethatN = 2 + 2(N- 512).orN 2 + 2N1024, whence N = 1022 Thus a tree column decoder for 9 bits needs 1022 pass transistors For true and con .plement bit lines, a total of 2( 1022) = 2044 pass transistors are needed. Compare this with the number required beyond the input inverters namely 6162 - 18 = 6144 = ~(6n + 4n) 16.33 f = 20 ~Hz = - 1- 16.31 = I 2( 11 )I p = 5 ns. Chapter 16-10 16.34 Note that the output is high if no word is selected. Thus, logically, high must correspond 10 logic 0 (and no transistor, as noted in the ,rl,rl,rl - te~l). Correspondingly, the words stored in are 0100,0000. 1000, 1001,0101,0001.01 10, and 0010. 16,35 Needz=x+y X y z 00 00 ()()()() 00 OJ ()()()() 00 10 ()()()() 00 II ()()()() 01 00 ()()()() 01 OJ 0001 OJ 10 0010 01 II 0011 10 00 ()()()() 10 01 0010 10 10 0100 10 11 OJIO II 00 ()()()() 11 OJ 0011 11 10 OliO 11 11 1001 ....... ..... ,,.r ::1 ..... ..... ,,r ..... ,,.r ,,.r :~ ,,.r .... ,,.r ,,.r ..... ::1 ..... ..... ,,.r ..... ,,r . .r '4 04 03 02 01 Note lhat a IOta! of 14NMOS and 4PMOS are used. +·+ 16.36 (a) Forthe PMOS, with V8 =2.5 V L 0 = (90/3)10- 6(1211.2)[(5- 1)2.5- 2.5 2 /2) = JO x w·•oo)[4(2.5l- 2.5' 121 = 2.0625 mA Thus the average charging cu~rent is 2.06 mA Time for precharge 1=CVI/ whence 1= I X 10- 12 (5 - 0) I (2.06 X 10- 3 ) = 2.42 ns (b) For the word-line rise. T = RC = 5 x 10.1 x 2 x 10-" = JO n• Here, vw = 5( I - ~ -•""> Thus the rise time (I 0% to 90%) is essentially the time 1 to 90%, where 0.9(5) = 5(1- e-'' 10 ) e·o'IO and 1 = O.J = -10 ln(O.Il = 23 ns Chapter 16-11 At the end of one time constant, T and v., = 5(1 - .t-lom) = I = 10 ns = 3.16 V For discbnrge, i0 •• = 1/2 k; (W!L).(v,.- V/ = l/2(90}(3ti.Z)(3.16- I )z = 525 ~tA Thus, the bit-line voltage will lower t>y IV in aboul r:.t = CAV I 11)•• = I X 10 ...) x 11 (525 x 10"' 6 ) = 1.90 ns 11, ( x ...


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2013:01:17 18:41:13-08:00
Creator                         : Adobe Acrobat Pro 11.0.0
Modify Date                     : 2013:01:17 18:52:29-08:00
Title                           : 
Has XFA                         : No
XMP Toolkit                     : Adobe XMP Core 5.4-c005 78.147326, 2012/08/23-13:03:03
Metadata Date                   : 2013:01:17 18:52:29-08:00
Creator Tool                    : Adobe Acrobat Pro 11.0.0
Format                          : application/pdf
Document ID                     : uuid:52294097-49df-4259-a670-0cb8ec450631
Instance ID                     : uuid:33fabf64-1406-434a-9950-09b812ff3b30
Producer                        : Adobe Acrobat Pro 11.0.0 Paper Capture Plug-in
Page Count                      : 601
EXIF Metadata provided by
EXIF.tools

Navigation menu