Service Manual Basic Four 2460 Fixed Media Disk Drive BFISD8052__2460_Fixed_Media_Disk_Drive_Service Manual_1981 BFISD8052 1981

BFISD8052__2460_Fixed_Media_Disk_Drive_ServiceManual_1981 BFISD8052__2460_Fixed_Media_Disk_Drive_ServiceManual_1981

User Manual: BFISD8052__2460_Fixed_Media_Disk_Drive_ServiceManual_1981

Open the PDF directly: View PDF PDF.
Page Count: 136

DownloadService Manual - Basic Four  2460 Fixed Media Disk Drive BFISD8052__2460_Fixed_Media_Disk_Drive_Service Manual_1981 BFISD8052 1981
Open PDF In BrowserView PDF
BFISD 8052

Basic Four@ Model 2460
Fixed Media Disc Drive
Service Manual

Basic Four
Information Systems

®

The information contained herein is proprietary to and considered a trade
secret of Management Assistance Inc.
All rights reserved. No part of this publication may be reproduced,
recorded or stored in a retrieval system, or transmitted, in any form or by
any means, whether electronic, mechanicaL photographic, or otherwise,
without prior written permission of the BaSic Four Information Systems
Division of Management Assistance Inc.

All Rights Reserved

SF/SD 8052
\

Copyright © 1981 by Management Assistance Inc.
All specifications are subject to change without notice.
Basic Four and MAl are registered trademarks of Management
Assistance Inc.

Printed in the United Sta,tes of America

Basic Four Information Systems Division/Management Assistance Inc.
14101 Myford Road, Tustin, California 92680/(714) 731-5100 .
,

TABLE OF CONTENTS
Page
CHAPTER 1

INTRODUCTION

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.3

General Description (Figure 1-1)
Physical Description • • • • • •
Head Disc Assembly • • • • • •
Main Logic PCB • • • • • • • •
Motor Control PCB • • • • • •
Photocell PCB • • • • • • • •
Frame Assembly • • • • • • • •
Power Supply Assembly •• • •
Terminator • • • • • • • • • •
Disc Drive Specifications • • •

• • • • • • • • • •
• • • • • • • • • •

1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-3

CHAPTER 2

INSTALLATION AND OPERATION

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5

General • • • • • • • • • • • • • • • • • • • • • •
Unpacking/Packing Procedure • • • • • • • • • • • •
Head Carriage Lock • • • • • • • • • • • • • • • •
Spindle Lock • • • • • • • • • • • • • • • • • • •
Installation Procedure • • • • • • • • • • • • • • •
Pre-Power Checks • • • • • • • • • • • • • • • • •
Interface Cabling • • • • • • • • • • • • • • • •
Dc Voltage Check • • • • • • • • • • • • • • • • •
Controls and Indicators • • • • • • • • • • • • • •
Switches and Jumpers • • • • • • • • • • • • • • • •

2-1
2-1
2-1
2-2
2-3
2-4
2-5
2-8
2-8
2-9

CHAPTER 3

MAINTENANCE

3.1
3.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.4.3
3.5

General Description • • • • • • • • • • • • • • • •
Block Diagram Functional Description (Figure 3-1) •
Diagnostic Tests • • • • • • • • • • • • • • • • • •
General Discription of Silver A5 • • • • • • • • •
General Description of FORMAP • • • • • •
•••
Adjustment Procedures • • • • • • • • • • • • • • •
Power Supply Adjustments • • • • • • • • • • • • •
Power Supply (P /N CP353-1) • • • • • • • • • • •
Power Supply (Model 2981) • • • • • • • • • • •
Write Current Adjustment • • • • • • • • • • • • •
Data Window Adjustement • • • • • • • • • • • ••
Fault Isolation • • • • • • • • • • • • • • • • • •

••••••••••
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • __ • • • • • •
• • • • • • • • • •

3-1
3-1
3-3
3-3
3-3
3-4
3-4
3-5
3-6
3-7
3-8
3-9

iii

TABLE OF CONTENTS (continued)
Page
CHAPTER 4

SPARE PARTS LIST/REMOVAL/REPLACEMENT PROCEDURES

4.1

4.2
4.2.1
4.2.2
4.2.3

Introduction • • • • • • • • • • •
Removal/Replacement Procedures • •
Head Disc Assembly (HDA) • • • •
Power Supply Assembly •• • • •
Main Logic PCB and Motor Control

CHAPTER 5

REFERENCE DATA

APPENDIX A

DISC CONTROLLER

iv

• •
• •
• •
• •
PCB

•
•
•
•
•

•
•
•
•
•

• •
• •
• •
• •
• •

•
•
•
•
•

•
•
•
•
•

•

•
•
•
•

4-1
4-3
4-3
4-3
4-4

LIST OF ILLUSTRATIONS
Page

Figure
1-1
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
4-1

Model 2460 Fixed Media Disc Drive • • • • • • • • • •
Spindle and Head Carriage Lock • • • • • • • • • • •
Disc Drive Voltage Selection • • • • • • • • • • ••
Main Logic PCB • • • • • • • • • • • • • • • • • • •
Interface Cable/Pin Assignments and Bus Tag Decode •
Functional Block Diagram • • • • • • • • • • • • • •
Data Head Positions • • • • • • • • • • • • • • • • •
Power Supply Adjustments (P/N CP353-1) • • • • • ••
Power Supply Adjustments (Model 2981) • • • • • • ••
Write Current Adjustment • • • • • • • • • • • • • •
Data Window Adjustment • • • • • • • • • • • • • • •
Component Locations • • • • • • • • • • • • • • • • •

1-1
2-2
2-4
2-6
2-7
3-2
3-2
3-6
3-7
3-8
3-9
4-2

LIST OF TABLES
Page

Table
1-1
2-1
3-1
3-2
4-1

Specifications • • • • • • • • • • • • • • • • • • •
Switch Selection • • • • • • • • • • • • • • • • • •
Fault Isolation • • • • • • • • • • • • • • • • • • •
Status Bit Description • • • • • • • • • • • • • • •
Spare Parts List • • • • • • • • • • • • • • • • • •

1-3
2-9
3-9
3-13
4-1

v

CHAPTER 1
INTRODUCTION

1.1

GENERAL DESCRIPTION (FIGURE 1-1)

The Model 2460 Fixed Media Disc Drive, hereafter referred to as the Disc Drive,
is a fixed media, mass memory device used for data storage with a maximum
memory capacity of 66 Megabytes.

The Disc Drive contains a single linear voice

coil head positioner with three data read/write heads and one servo read only
head.

It has a spindle assembly with a single 14 inch disc and brushless dc

drive motor.

It contains the necessary circuitry for positioning the heads and

transferring data and status information via the Controller to a host CPU.
This manual contains physical and functional descriptions, installation/
operation procedures, spare parts lists, and maintenance procedures.

Figure 1-1.

Model 2460 Fixed Media Disc Drive

1-1

1.2

PHYSICAL DESCRIPTION

The Disc Drive stores data on both sides of a single disc using two moving
heads per surface.

A full head area is dedicated to servo information for

track following, seeking, and timing.

A microprocessor controls positioning

during track seeks, provides interface control and monitors disc drive
operation.

The major assemblies of the Disc Drive are: Head Disc Assembly

(HDA) , Main Logic Printed Circuit Board (PCB), Motor Control PCB, Photocell
PCB, Frame Assembly, Power Supply Assembly, and Terminator.
1.2.1

HEAD DISC ASSEMBLY

The Head Disc Assembly is a contamination-resistant enclosure which contains
the disc, spindle assembly, voice coil actuator, head carriage, read/write.
heads, and filter assemblies.
1.2.2

MAIN LOGIC PCB

The Main Logic PCB contains all the circuitry associated with read/write data
transfers, interface transfers, head positioning and control.
1.2.3

MOTOR CONTROL PCB

The Motor Control PCB contains all the circuitry associated with driving the
spindle motor.

This circuitry receives On/Off command from the Main Logic PCB

and spindle rotational feedback from the Photocell PCB.
1.2.4

PHOTOCELL PCB

The Photocell PCB contains three infrared light-emitting diodes and
phototransistors used to monitor and control spindle motor rotation.
1.2.5

FRAME ASSEMBLY

The Frame Assembly is designed to contain the standard assemblies of the Disc
Drive.
1.2.6

POWER SUPPLY ASSEMBLY

The Power Supply Assembly is an integrated power supply that will operate from
50 or 60 Hertz, and at a selectable input voltage of 100,120,220, or 240
volts ac.
1-2

1.2.7

TERMINATOR

The Terminator is a signal line terminator for the last drive connected to a
Controller~

1.3

DISC DRIVE SPECIFICATIONS

Table 1-1 list the Disc Drive specifications.

I

WARNING

This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in
accordance with the ins tructions manual, may cause
interference to radio communications, as temporarily
permitted by regulation. It has not been tested for
compliance with the limits for Class A Computing
Devices pursuant to Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection
against such interference. Operation of this equipment
in a residential area is likely to cause interference,
in which case the User at his own expense will be
required to take whatever measures may be required to
correct the interference.
TABLE 1-1.
Parameters

SPECIFICATIONS
Characteristics

PHYSICAL
Height

6.8 inches (17.3 cm)

Width

16.6 inches (42.2 cm)

Depth

20.0 inches (50.8 cm)

Weight

47 pounds (21.3 kg)

POWER
Ac Power

100 VAC, 120 VAC,
220 VAC or 240 VAC;
50 or 60 Hz, 425 Watts Max.

Dc Power

+24 VDC + 5%, 7A
-5 VDC + 5%, 2A
+5 VDC + 5%, 4A
+24 VDC-Return
-12 VDC + 5%, 0.7A

1-3

TABLE 1-1.

SPECIFICATIONS (continued)

Parameters

Characteristics

ENVIRONMENTAL
Temperature
Humidity

40% to 60% non-condensing

GENERAL
Capacity (formatted)-

66 Megabytes

Number of discs

1

Number of data heads

3

Number of data cylinders

1116 (0-1115) (excluding diagnostic)

Number of Diagnostic cylinders

5 (2-6 with Switch 10N-5 ON)
(1118-1122)

Bytes per cylinders

60,480

Bytes per track

20 ,160

Track density

960 Tracks per inch (double density)

Recording density

6,430 Bits per inch

Data transfer rate

1.04 Megabytes per second

Recording code

MFM

Interface code

NRZ

Rotational speed

3,100 RPM

Rotational latency (average)

9.7 milliseconds

Rotational latency (maximum)

21.5 milliseconds

Positioning speed

Maximum
(Milliseconds)

Single cylinder
Average
Maximum

1-4

10
48
90

Start Time

30 seconds

Stop Time

60 seconds

Typical
(Milliseconds)
8

45
85

CHAPTER 2
INSTALLATION AND OPERATION
2.1

GENERAL

This chapter contains complete installation and operation instructions for the
Disc Drive.
2.2

UNPACKING/PACKING PROCEDURE

The Disc Drive is normally shipped as part of a data processing system, and
unpacking/packing instructions are included in the appropriate system manual.
When the Disc Drive is shipped as a replacement unit, the following procedures
should be followed.

2.2.1

1.

Visually inspect the container for damage.
immediately.

Report any damage

2.

Remove Disc Drive from container and place on work surface.

3.

Visually inspect for loose, bent, or broken parts.
immediately.

4.

The head carriage and spindle locks (refer to paragraphs 2.2.1 and
2.2.2) are in the locked position for shipment. If received in the
unlocked position, DO NOT INSTALL THIS DISC DRIVE.

5.

When shipping a Disc Drive back to the factory, ensure that the
spindle lock and head carriage lock are properly installed (locked)
and the Disc Drive is packed to prevent damage in shipment.

Report any damage

HEAD CARRIAGE LOCK

Power not being applied to the unit, place the Disc Drive in a flat position
with the Main Logic PCB facing up.

The head carriage lock is located at one

end of the unit (indicated by arrow on the mechanism).

Avoid manual rotation of the spindle or movement of
the carriage. Damage to the disc surface may occur.

2-1

Pull up on the head carriage lock until free from its locked position.

Rotate

the head carriage lock to the unlock position as shown in Figure 2-1.

The head

carriage lock must be placed back in its locked position when the Disc Drive is
moved.

SPINDLE LOCK

HEAD CARRIAGE LOCK

I
f

/_:;:,;--~--_____ LOCKED POSITION
It";.- -~;:..,~ ~

....
_.;:""......
,/............

.......

.....

~:i~t1
Figure 2-1.
2.2.2

UNLOCK

~

Spindle and Head Carriage Lock

SPINDLE LOCK

Power not being applied to the unit and the Disc Drive still in the flat position, locate the spindle lock near the center of the unit (opposite the voice
coil motor) as shown in Figure 2-1.

I

WARNING

Ensure power has not been applied to the unit when the
spindle lock is placed in its unlocked position. The
Spindle motor must not be manually rotated when unlocked.
At this time the fan is free to move and can present
a hazard to the Service Representative.
Place the spindle lock lever in the unlocked position (refer to Figure 2-1).
The spindle lock must be placed back in its locked position when the Disc Drive
is moved.
2-:t.

2.3

INSTALLATION PROCEDURE

The following procedures detail the necessary steps to be followed when
installing a replacement Disc Drive.
1.

Verify the power switch is OFF, and the ac line cord is not connected.

2.

Check that the ac line includes a third-wire earth ground that meets
or exceeds the requirements of the National Electrical Code. This can
be checked by the following procedures:
a.

Locate the circuit breaker that is to supply power to the host
system. With a digital volt meter set to measure 20 volts ac,
and the circuit breaker turned on, measure the drop between the
green and white wires at the power source for the system (wall
outlet). The measured voltage must be less than 1.8 volts ac.

b.

Switch the source circuit breaker off. Measure the resistance
between the green and white wires at the wall outlet. The
resistance must be less than the value shown below for the
applicable circuit breaker rating.
CB Rating

Resistance

15 amperes
20 amperes
30 amperes

0.30 ohms
0.25 ohms
0.15 ohms

If either measurement in steps a or b above is not less than the value
given, request the customer to provide a power source that meets these
requirements.
3.

Remove cabinet covers to gain access to the Disc Drive.

4.

Disconnect and tag all cables from the Main Logic PCB connectors:
J2 (bus) and J9 (radial).

5.

Disconnect power supply plug at rear of cabinet.

6.

Lock Spindle and Head Carriage locks.

7.

Remove the four screws holding drive to host CPU cabinet.

8.

Remove the Disc Drive from the cabinet.

9.

Make pre-power checks (refer to paragraph 2.3.1).

10.

Replace Disc Drive in cabinet.

11.

Unlock Spindle and Head Carriage locks.

12.

Reconnect all tagged cables.

13.

Reconnect power supply plug at rear of cabinet.

14.

Replace covers.

15.

Plug ac line into power source.

2-3

2.3.1

PRE-POWER CHECKS

Verify that the input primary power voltage and the Disc Drive power supply are
configured in the same range.
1.

The following ac voltage ranges are available in the Disc Drive:
100, 120,220, and 240 volts ac.

2.

To select the correct voltage range to match the ac input voltage,
locate the Voltage Selection PCB at the rear of the power supply
mounted on drive frame (Figure 2-2).

VOLTAGE SELECTOR (WAFER)

SLIDING DOOR
REAR VIEH
~~~~~::::t::-

WAFER SLOT

FUSE PULLER

Figure 2-2.

2-4

Disc Drive Voltage Selection

a.

Voltage is selected by the position of this small PCB. The fuse
pull lever, situated above the PCB is pushed to the left to remove
the fuse.

b.

With the fuse removed the selected voltage is read directly from
the PCB. If a change in voltage is required, extract the PCB and
reinsert it so that it is properly positioned for the required ac
voltage designation (100, 120,220,240).

c.

Check the fuse value. A four amp fuse is used with 100 and 120
volts ac, a two amp fuse is used with 220 and 240 volts ac.

d.

Place the fuse pull lever in the extreme right hand position and
insert the correct value fuse into the fuse holder.

e.

No power supply modification is required for changing from 60
cycle to 50 cycle sources.

3.

Locate the Main Logic PCB (Figure 2-3) and verify that connectors,
switch settings and jumpers are in their correct position. The
connectors are listed as follows (for Switch Settings and Jumpers
refer to paragraph 2.5):
Connector

2.3.2

Description

Jl

Terminator connector, or daisy chain
cable connector from/to another Disc
Drive in system.

J2

Bus cable connector to the Controller.

J3

Dc power supply connector.

J4

Motor Control connector.

J5

Voice Coil connector

J6

Servo head and Data head 0 connector.

J7

Data heads 1 and 2 connector.

J8

Control Panel connector used for LEDs in
identifying malfunctions in Disc Drive.

J9

Radial cable connector to the Controller.

INTERFACE CABLING

The Bus cable (J2-P/N 902687) and Radial cable (J9-P/N 902622) are connected
directly from the Disc Drive to the Controller in the host CPU.

Figure 2-4

gives Interface Cabling/Pin assignments and Bus Tag Decode information.

2-5

TO CONTROL PANEL SWITCH
WRITE CURRENT ADJUSTMENT
DATA WINDOW ADJUSTMENT
TP2.

RADIAL "B"

TP9

•

-TP13

00
cc
UJ UJ
....J ....J
1->-

R32

....Jc
~c:(

c:(UJ

lJ.. 0::::

R351

BUS "A"
DRIVE ADDRESS IJI~OIINIIII
SEL. SWITCH *
1
12K

~~ii~~ ill!!!!il
1

HEAD l/HEAD 2
SERVO HEAD/HEAD
VOICE COIL

a
TERMINATOR
MOTOR CONTROL
POWER SUPPLY

* DRIVE ADDRESS SELECTION, 10N-1 THRU 10N-3
WRITE PROTECT, lON-7
DIAGNOSTIC MODE, lON-5

Figure 2-3.

2-6

Main Logic PCB

J2

P2
~

1
11

CONTROLLER PCB

13
15
17
19
21
23
25
27
29
31
33
35
3
5
7
47
37
29
41
43
45
49

BUS CABLE
UNIT SELECT TAG
TAG I(CYLINDER ADDRESS)
TAG 2 (HEAD SELECT)
TAG 3 (CONTROL)
BUS BIT 0
BUS BIT 1
BUS BIT 2
BUS BIT 3
BUS BIT 4
BUS BIT 5
BUS BIT 6
BUS BIT 7
BUS BIT 8
BUS BIT 9
UNIT SELECT 1
UNIT SELECT 2
UNIT SELECT 4
UNIT READY
INDEX
SECTOR
FAULT
SEEK ERROR
ON CYLINDER
OPEN CABLE

RADIAL CABLE
WRITE CABLE
15 SERVO CABLE
3
5 . READ DATA
READ CLOCK
9
WRITE CLOCK
11
SEEK END
19
UNIT SELECTED
21 SECTOR
23
INDEX
25

K

~

0

DISC MAIN
LOGIC PCB

-

~

BUS
BIT

J2

r-

TAG 1
TAG 2
CYLINDER HEAD
ADDRESS SELECT
1
1

1

2

2

2

4

4

3

8

8

4

16

5

32

6

64

7

126

8

256

1024*

9

512

2048*

'--

3214
2
6
8
12

'-

TAG 3
CONTROL
WRITE GATE
READ GATE

FAULT CLEAR
REZERO

READ STATUS

*USED. FOR HIGH ORDER CYLINDER ADDRESS
DURING TAG 2 TIME

Figure 2-4.

Interface Cable/Pin Assignments and Bus Tag Decode

2-7

2.3.3

DC VOLTAGE CHECK

Power is applied to the Disc Drive from the host CPU control panel.

To apply

power, complete the following steps (refer to system manual for detailed
system information).
1.

Place power switch in ON position.

2.

When READY indicator comes on, the dc voltage checks may be done
using the following procedure.

3.
2.4

a.

Locate connector J3 on the Main Logic PCB of the Disc Drive.

b.

Test the following voltages.
Connector J3

Voltage Check

Pin 1

GND

Pin 2

+24VDC+l.2VDC

Pin 3

-5VDC+O.25VDC

Pin 4

-12VDC+O.60VDC

Pin 5

+5VDC+O.25VDC

Pin 6

GND

If voltages are not within tolerance, refer to paragraph 3.4.1.

CONTROLS AND INDICATORS

Controls for the Disc Drive are located on the host CPU control panel.
There are two indicator lamps (LEDs) mounted on the Main Logic PCB near J8.
A green lamp will indicate a READY status.
status.

Connector J8 is provided to test the following signals.
Connector J8

Function

Pin 3

READY

Pin 4

GND

Pin 5

ON CYL

Pin 6

FAULT

Pin 7

PWR ON

Pin 8

+5V

Note:
2-8

A red lamp will indicate a FAULT

Pins 1 and 2 not used.

2.5

SWITCHES AND JUMPERS

Drive Address, Write Enable, and Diagnostic mode are selected on Switch ION
located on the Main Logic PCB (see Table 2-1 for Switch selection).
The Sector switch, 12K, is also located on the Main Logic PCB (see Table 2-1
for Switch selection).
TABLE 2-1.

SWITCH SELECTION

Switch ION
SW No.

Position

1

OFF**

Drive Select Address Bit (Binary Weight 1)

2

OFF**

Drive Select Address Bit (Binary Weight 2)

3

OFF**

Drive Select Address Bit (Binary Weight 4)

4

OFF

Reserved

5*

OFF

Diagnostic Mode

6

OFF

Reserved

7

ON

Wri te Enable, All Data Heads

8

OFF

Not used

Function

Switch 12K
SW No.

Position

Sector Number
Binary Weighted

1

OFF

1

2

ON

2

3

OFF

4

4

OFF

8

5

ON

16

6

OFF

32

7

OFF

64

8

OFF

Must be in off position

*SW5 must be placed in ON position when using Diagnostic mode.
**All OFF = Drive 0
2-9

Jumpers are preset at the factory and shall not be removed.
are in correct location.
Three Pin

Two Pin

W4

1-2

WI

we

2-3

W2

W7

1-2

W3

. Wi4

2-3

W5

Wll

1-2

W6

W12

2-3

W9

W16

1-2

WI0
W13

2-10

Verify all jumpers

Jumper contacts are listed as follows:

CHAPTER 3
MAINTENANCE
3.1

GENERAL DESCRIPTION

This chapter provides a block diagram functional description, adjustment
procedures, and troubleshooting procedures.
3.2

BLOCK DIAGRAM FUNCTIONAL DESCRIPTION (FIGURE 3-1)

The Parallel Interface communicates with all functional assemblies of the
Disc Drive and the Controller.

Its major function is to control and monitor

head positioning, spindle speed and status information.
The Servo circuits, head positioner assembly, and Servo Head align the three
Read/Write heads over a specified track location.

The Servo circuits drive

the heads to the landing zone upon detection of a low power condition or if
both On Track and the Move modes are detected.

These circuits also monitor

voice coil speed.

The Read/Write heads and the Read/Write circuits perform the reading and
writing of flux changes onto the disc.
There are three data heads and one Servo head.

Head 1 and head 2 utilize

the top surface, head 0 and the Servo head utilize the bottom surface of
the disc (Figure 3-2).
The Spindle Motor is a brushless permanent magnet dc motor.

The speed of the

motor is controlled by a closed loop optical position encoder and a frequency
to voltage converter.
The Serial Interface communicates with the Controller and handles the transfer
of data and timing signals.

3-1

PARALLEL INTERFACE
(HEAD POSITION,
~
SEQUENCING, STATUS, .................------~
AND OTHER CIRCUITS
CIRCUITS

SERVO CIRCUITS
HEAD POSITIONER
LINEAR VOICE
COIL MOTOR

READ/WRITE HEADS. _r__-------,
HD2
SERVO READ
AND
R/W CI RCU ITS

n
HDO
SERVO HEAD

SPINDLE ASM.
(BRUSHLESS DC
-------~ MOTOR, SPEED
CONTROL CIRCUITS)
->0

SERIAL INTERFACE
(DATA HANDLING
CIRCUITS, INDEX
AND SECTOR MARK)

-WRITE GATE
---.
*WRITE CLOCK
~
*WRITE DATA (NRZ) ~
-READ GATE
---.

1--1--1--1--1---

* REt'\D CLOCK
*(NRZ) READ DATA
-INDEX MARK
-SECTOR MARK
*SERVO CLOCK

* DESIGNATES DIFFERENTIAL SIGNALS

Figure 3-1.

Functional Block Diagram

CYLINDER NUMBERING
DATA BAND 1

HEAD LANDING ZONES

.,DATA BAND 2

~

~

~

~

DISC
"
~~~~~~@@@~~======~========~~
~

~

DATA BAND 0

A A

SERVO BAND

CYLINDER 1120

HEAD/ARM ASSEMBL,

I,

j I,

I

HEAD 2

SERV~

HEAD 1

~
HEAD 0

UPPER ARM
DISC

LOWER ARM

lri

SIDE VIEW OF DISC AND HEADS

Figure 3-2.
3-2

Data Head Positions

CYLINDER 0

3.3

DIAGNOSTIC TESTS

There are two types of diagnostic tests available for the Disc Drive; Silver
A5 and FORMAP.

For a complete functional description of Silver A5 and FORMAP,

refer to the appropriate User's Manual.

3.3.1

GENERAL DESCRIPTION OF SILVER A5

Silver A5 is divided into two groups:
1.

Group 1 - is designed to check most controller functions and the disc
drive's ability to seek and read.

2.

Group 2 - uses the Diagnostic Cylinders to write and format. Checks
are performed on the controller's ability to detect various errors
such as ID, Alternate Cylinder and CRC. In order to run Group 2,
the "Manual Intervention" option must be selected.

3.3.2

GENERAL DESCRIPTION OF FORMAP

FORMAP's basic function is to format the surface of the disc
all flaws, and to store the map on the subject disc.

~

create a map of

However, several of

FORMAP's options can be used for diagnostic purposes.
The six options are:
1.

Surface Read - will read the full surface of the
exceptions to normal status, which is '40' HEX.

2.

Fault Map Report - will display the contents of the fault map which
contains all flagged tracks and their assigned alternate tracks.

3.

Selected Track Certification - will read ori~inal data of a track,
store it, test the track, and if found bad or manually reassigned,
copy that data to the alternat~ track and flag the original as bad.
(REQUIRES OPTION 4 TO HAVE BEEN RUN PREVIOUSLY IN A FAULT MAP CREATED
BY OPTION 4)

4.

Full Surface Certification - will destroy the contents of the whole
disc, test it for flaws, create a new map, and write a bootstrap in
sector zero. The serial is kept in the map and once assigned, cannot
be changed. (REQUIRES AUTHORIZATION)

5.

Logical Sector to Sector, Head, Cylinder - will convert the logical
sector number to the location -of the disc surface by physical sector,
head, and cylinder.

6.

Sector Zero Recovery - will rewrite the-bootstrap in sector zero using
the serial stored in the map. (REQUIRES OPTION 4 TO HAVE BEEN RUN
PREVIOUSLY IN A FAULT MAP CREATED BY OPTION 4)

dis~

and report all

3-3

3.4

ADJUSTMENT PROCEDURES

3.4.1

POWER SUPPLY ADJUSTMENTS

One of two types of power supplies are found on the Disc Drive (pIN CP353-1)
and Model 2981).

Regardless of which type is found, the Disc Drive

must be removed from
adjustment.

th~

system before the power supply can be removed for

Once removed, the power supply can be placed near to and recon-

nected to the Disc Drive.

To remove power supply for adjustments, use the

following procedure.
NOTE
There is no power switch located on the dc power
supply. Power will be applied when the power cord
is connected.

3-4

1.

Remove ac power from the host CPU.

2.

Open host CPU cabinet to gain access to Disc Drive (if required).

3.

Remove ac power plug at rear of Disc Drive power supply.

4.

Remove Disc Drive.

S.

Disconnect dc power supply connector (J3) from Main Logic PCB.

6.

Remove six retaining screws securing power supply to deckplate.

7.

Remove power supply.

8.

Locate adjustments (refer to Figure 3-3 or 3-4).

9.

With power supply removed, reconnect power cable to J3 of the Main
Logic PCB.

10.

Reconnect ac power plug to power supply.

11.

Apply power to host CPU.

12.

Adjust voltages.

13.

If power supply will not meet tolerance, it must be replaced.
OFF power at host CPU.

Turn

14.

Disconnect power supply from Main Logic PCB.

IS.

Disconnect ac power plug from power supply.

16.

Reinstall new power supply in Disc Drive.

17.

Apply power to host

18.

Test voltages.

cpu.

Measurements will be done at connector J3 at the right rear of the Main Logic
PCB.

Ground meter at C186 on side with C186 designator.
Pin 2

+24VDC+1.2VDC

Pin S

+SVDC+O.2SVDC

Pin 3

-SVDC+O.2SVDC

Pin 4

-12VDC+O.60VDC

Check voltage on J3.

Pins 1 and 6 are ground

Use only an insulated shank screwdriver.
occur to the power supply.

Damage may

Adjusting of power supply will require a long (five inch) insulated shank
screwdriver with 1/8 inch blade.
3.4.1.1

Power Supply (P/N CP3S3-1)

Three voltages +S, -S, and +24 must be adjusted by reaching through holes
inside the power supply chassis as shown in Figure 3-3.

The -12 is not

adjustable.
Voltage

Adjustment

Wire Color Leaving Supply

+24V

R20

Red (return is Brown)

+SV

R40

Black (return is Grey)

-SV

R38

Yellow (return is Grey)

-12V

Not Adj.

Orange (return is Grey)

3-S

000000000000

-5 VOLT ADJUSTMENT
(R38)

0000000

+5 VOLT ADJUSTMENT
(R40)
Figure 3-3.
3.4.1.2

+24 VOLT ADJUSTMENT
(R20)

Power Supply Adjustments (PiN CP353-1)

Power Supply (Model 2981)

On this power supply, the adjustments are visible externally as shown in
Figure 3-4.
Voltage

3-6

Adjustment

Wire Color Leaving Supply

+24V

R3

Black with White Lettering
(return is Yellow)

+5V

R14

Red (return is Solid Black)

-5V

R20

Brown (return is Solid Black)

-12V

Not Adj.

Orange

(re~urn

is Solid Black)

(R20) -5 VOLT ADJUSTMENT
(R14) +5 VOLT ADJUSTMENT
(R3) +24 VOLT ADJUSTMENT

Figure 3-4.
3.4.2

Power Supply Adjustments (Model 2981)

WRITE CURRENT ADJUSTMENT

For this adjustment, you must be writing all-ones.
use any tracks which could contain customer data.
track as possible for best display.

Do not use Head 2.

Do not

Write as many sectors on one

With an oscilloscope, use the following

procedure (refer to Figure 2-3 for adjustment location).
Scope:

Tektronix 465 or equivalent

Probes: Two X10 attenuation
Channell to side of R46 facing transistors. Set input to 1 Volt/
Division (0.1 Volt/Division with non-indicating X10 probe).
Channel 2 to other side of R46. Set input to 1 Volt/Division
(0.1 Volt/Division with non-indicating probe).
Vertical display mode to ADD, Channel 2 INVERTED.
near top of graticule.
Time base = 0.2 ms, TRIGGER SLOPE
dc coupled.

=

Position trace

" ", TRIGGER SOURCE

=

Channel 2,

NOTE: Adjust R351 (near R46) for -5V (Figure 3-5).

3-7

ov
ADJUSTING R351

-5V--------------- ~------------------

Figure 3-5.
3.4.3

Write Current Adjustment

DATA WINDOW ADJUSTMENT

For this adjustment, you must first write all ones, then make the adjustments
while reading all-ones.
contain customer data.
display.

Do not use Head 2.

Do not use any tracks which could

Write as many sectors on one track as possible for best

With an oscilloscope, use the following procedure (refer to Figure

2-3 for adjustment location).
Scope:

Tektronix 465 or equivalent

Probes: Two XIO attenuation
Channel 1 to TPI3 (Window) , ground to TP2. Set input to display
0.5 Volt/Division (50 MV/Division with non-indicating XIO probes).
Channel 2 to TP9 (Data) , ground to TP2. Set input to display
0.5 Volt/Division (50 MV/Division with non-indicating XIO probes).
Vertical display mode = CHOPPED (Channel 2 should NOT be inverted).
Time base = 0.1 us with XIO mag, TRIGGER SOURCE = Channell, de
coupling NORMAL mode.
Adjust R32 so Positive-Going edge of Data is in center of low-going
Window pulse (Figure 3-6).
NOTE
It is normal for the display to "jitter".

3-8

DURING READ

FRONT
OF WINDO,W

REAR
OF WINDOW

I~IIIIII(~----

.06us

NOTE:
DURING WRITE, DATA MOVES TO REAR OF WINDOW

Figure 3-6.
3.5

Data Window Adjustment

FAULT ISOLATION

Table 3-1 lists the Fault Isolation procedures for the Disc Drive.
lists the Status Bit information.

Table 3-2

Both tables are designed as an aid in

troubleshooting the Disc Drive.
TABLE 3-1.

FAULT ISOLATION

Spindle Rotation
Symptom
Rotation does
not start.

Possible Cause

Suggested Action

Spindle lock.

Place in Unlock position

Incorrect or missing
voltage at Main PCB
connector J 4.

Check power supply.

+ OFF signal (J4-4)

Check microprocessor reset signal
on Main Logic PCB: should be
false. Check Power-On reset
(POR): should be false. Check
power reset (PRST): should be
false.

is +5 VDC, should be
o volts for rotation.

Defective Hotor
Control Assembly

Check JI-5 of Motor Control Assembly
for +12 volts (LED voltage).
Check fuse in Motor Control Assembly.

3-9

TABLE 3-1.

FAULT ISOLATION (continued)
Spindle Rotation

Symptom
Rotation does
not start.

Spindle rotates
and stops after
about one
minute.

Spindle rotates
but unit does
not come Ready,
or Ready condition comes and
goes.

3-10

Possible Cause

Suggested Action

Defective Photocell
Circui t Board

Check for open LED, defective
connector or phototransistor.

Defective Spindle
Motor

Manually rotate spindle in clockwise directly only (viewed from
bottom) to ensure motor is not
binding. If motor is binding
replaced Disc Drive. NOTE:
Rotation in opposite directions
may damage disc.

Carriage Lock

Place in Unlock position.

Defective Motor
Control Assembly

Replace Motor Control Assembly.

Defective Photocell
Circui t Board

Replace Disc Drive.

Speed Control not
being sensed by
Microprocessor.

Defective Main Logic PCB.

Spindle Motor has
excessive drag.

Replace Disc Drive

Fault Condition being
sensed.

Check Fault Status.

Intermittent power
supply failure.

Replace Power Supply.

Defective Main Logic
PCB.

Replace Main Logic PCB.

Defective Motor
Control Assembly

Replace Motor Control Assembly.

Defective Disc Drive

Replace Disc Drive.

TABLE 3-1.

FAULT ISOLATION (continued)

,...-------------------------_..-_._.. _ - - - - - - - - - - - - - - - - - .
Command Status Transfers

Symptom

Suggested Action

Possible Cause

Incorrect state Device address select
on Unit
switch (ION).
Selected (J9-2I)
Open Cable Detect
true (JI, J2 pin 28).

Refer to Table 2-1 for switch
definition.
Check controller, cable and
connectors.

Unit Select Tag or
Unit Address missing
or mistimed.

Check controller, cable and
connectors.

Selected unit
does not issue
status

Device Not Ready.

Replace Main Logic PCB.

Select unit
does not accept
commands.

Tag and bus da ta
malfunction.

Check controller, cable and
connectors.
Replace Main Logic PCB.

Select Unit
issue Seek
Error.

Defective servo
action.

See Head/Positioning/Servo.

Select Unit
fails to issue
Index.

Defective circuit.

Replace Main Logic PCB.

Servo Head fails to
READ.

See Head/Positioning/Servo.

Head/Positioning/Servo
Symptom
Fails to move
to new Address.

Suggested Action

Possible Cause

Replace Main Logic PCB.

Command transfer
circuitry defect.

Continuous Seek Defective circuitry
Error condition. or connection.

I

I

Defective servo circuitry on Main
Logic PCB. If fault continues
with operational spare installed,
and spindle speed and write circuits are not the source of the
fault, replacement of the disc
drive is recommended.
Fault connection to servo read
head, check J6.
Fault connection to voice coil
actuator, check J5.
Incorrect voltage, check J3.

I

Carriage locked.
3-11

TABLE 3-1.

FAULT ISOLATION (continued)

Head/Positioning/Servo
Symptom
Seeks to incorrect cylinder
address.

Suggested Action

Possible Cause
Defective circuitry
or servo system.

Defective signal from controller
or fault in the interface cable.
Defective circuitry on Main Logic
PCB. If symptom continues with
operational spare installed, and
controller and cable are not the
source of the fault, replacement
of the disc drive is recommended.
Seek rna be correct and method of
checking for correct seek locatio
may be defective. This could be
caused by a read/write fault.

Write Data Transfer
Symptom
Fault is set
with each
attempt to
write data.

Suggested Action

Possible Cause
Incorrect switch
setting or circuit
defect.

See Table 2-2 for switch definition
Multiple heads selected can be
checked at TP20 which will be high
if more than one head is selected.
Act Unsafe condition is checked at
TPI which will be high if there
are not write transitions with Write
Gate true or write transitions with
Write Gate false.

Data is written
incorrectly and
faults does not
set.

Reads data difficultly. See following section, Read Data
Transfer.

Read Data Transfer
Symptom
Reads header
fields and data
fields correctly, but will
not read newly
written data.

3-12

Possible Cause
Defect in write operation.

Suggested Action
Replace Main Logic PCB.

TABLE 3-1.

FAULT ISOLATION (continued)
Read Data Transfer

Symptom
Fails to read,
but will perform a write
operation without a Fault.

Suggested Action

Possible Cause
Defect in Read circuitry.

Check all cable connections.
Replace Main Logic PB. Replace
terminator.
If read error persists after
replacement of Main Logic PCB
and terminator and if cable
connections are correct, it is
possible that the format being
used is erroneous.
If format is correct, replacement
of the disc drive is recommended.

TABLE 3-2. STATUS BIT DESCRIPTION
Status Bit

Description

o

MULTIPLE HEAD SELECT indicates that more than one head
was selected.

1

NO WRITE DATA indicates that transitions in write current
failed to occur with WRITE GATE active.

2

NO WRITE GATE indicates that write current was sensed
when WRITE GATE was not active.

3

OFF TRACK WRITE indicates that the R/W heads were not
within acceptable track following limits while WRITE GATE
was active.

4

READ ONLY indicates that WRITE GATE became active while
the Disc Drive was not "WRITE ENABLED".

5

PLO LOCK ERROR indicates that the PLO signal was not
correctly synchronized.

6

NOT USED, always zero.

7

POWER FAULT indicates that spindle was already spinning
when power was applied.

8

MULTI-TAG indicates that two or more tag lines were
simultaneously active.

9

READ AND WRITE indicates that both READ GATE and WRITE
GATE were simultaneously active.

3-13

TABLE 3-2. STATUS BIT DESCRIPTION (continued)
Status Bit

Description

10

OFF CYLINDER indicates that the positioner was not ON
CYLINDER while WRITE GATE was active.

11

SEEK TIMEOUT indicates that the positioner failed to
return to track 0 with 900 msec; or it failed to complete
a seek operation within 130 msec.

12

SPEED ERROR indicates that the disc failed to reach or
failed to run at operating speed.

13

GUARD BAND ERROR indicates that the positioner entered
the inner or outer guard bands while performing a seek
or restore operation.

14

ILLEGAL CYLINDER indicates that the disc file was
commanded to seek to a cylinder address which does not
exist in the drive.

15

DIAGNOSTIC CYLINDER ERROR indicates that the positioner
has not moved to one of the Diagnostic Cylinders
(Cylinder Address Register 2 to 7).

CHAPTER 4
SPARE PARTS LIST/REMOVAL/REPLACEMENT PROCEDURES
4.1

INTRODUCTION

This chapter contains the spare parts list (Table 4-1) and removal/replacement
procedures. Figure 4-1 shows component locations.
TABLE 4-1.

SPARE PARTS LIST

Item
Number

Number

1

290000

2

290010

200098

Main Logic PCB

3

290020

200083

Motor Control PCB

4

290030

200138

Terminator

5

290100

400384-001

Power Supply Assy

6

293010

330410

Head Disc Assy

MM

Part
Number
B903028-01

Description
Disc Controller PCB

4-1

MAIN LOGIC PCB

TERMINATOR PCB

MOTOR CONTROL PCB

POWER SUPPL Y--~I-

HEAD DISC ASSEMBLY

Figure 4-1.

4-2

Component Locations

4.2

REMOVAL/REPLACEMENT PROCEDURES

Removal/Replacement procedures are given for spared parts.
4.2.1

READ DISC ASSEMBLY (RDA)
1.

Remove ac power from host CPU.

2.

Open host CPU cabinet to gain access to Disc Drive.

3.

Remove ac power from Disc Drive power supply.

4.

Remove four screws securing RDA to host CPU cabinet.

When removing connectors J6 and J7 (R/W Reads
and Servo Read) be careful not to bend the pins.
Damage may occur to the printed wiring.
5.

Disconnect and tag all cables and connectors from Main Logic PCB.

6.

Remove Main Logic PCB located on top of RDA.

7.

Remove Motor Control PCB located on bottom of RDA.

8.

Remove dc power supply located on bottom of RDA.

9.

Replace Disc Drve and reverse steps 8 thru 1.

10.
4.2.2

Ensure that all cables and connectors are secure.
POWER SUPPLY ASSEMBLY

1.

Remove ac power from the host CPU.

2.

Open host CPU cabinet to gain access to Disc Drive.

3.

Remove ac power plug at rear of Disc Drive power supply.

4.

Remove Disc Drive (refer to paragraph 4.2.1).

5.

Disconnect dc power supply connector (J3) from Main Logic PCB.

6.

Remove six screws securing power supply to the deckplate.

7.

Remove power supply.

8.

Replace new power supply in Disc Drive and reverse steps 7 thru 1.

9.

Apply power to host CPU.

4-3

4.2.3

MAIN LOGIC PCB AND MOTOR CONTROL PCB

When removing PCBs, disconnect and tag all cables and connectors.
when replacing PCBs that all cables and connectors are secure.
NOTE
When replacing Main Logic PCB, remove and save
terminator.

4-4

Ensure

CHAPTER 5
REFERENCE DATA
Title

Drawing Number

Main Logic PCB
Schematic

200098
200099

Motor Speed Control
Schematic

200083
200084

Power Supply (CP353-1)

17048

Power Supply (Model 2981)

2981-902

Filtered Power Supplies

330357

Terminator PCB
Schematic

200138
200139

5-1

---.-------------

il [

15M

~
I

14M

1

---.J'5K

I

S~

I

I

8M

10J

S~

<~

. _ _ _._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- - - - l

Reference Only - Will Not Be Maintained

5-2

HE"AD
o

~

~~
'

t-n

('I)

t1

CRILl

J~-IZ )

CR/7

..J&-II L----1

:::.;.

.I~-9
6,.-~c

e-"-"

-

,N=
.,-s=
~

6 ~.~
.17-6>

('I)

HGAD

::l

I

()

('I)

,
"'7-1'Z~
J7-1,z

~

CRZZ

r- TPi?O

_

~

T270P"'-

RBZ

::s

SN751

-/-HDSEZ.

RIO"~ZI
IK
/liPS

7C

100

Z

S ..... ..

"'"V'"

~

30K

ISK

I

R81
I.BZK

--'

SN79

1>G I

RI17
100

"l-NL) ,c

~
.....

~~

+7V

~/B'7

~
~

:TNT 51

RII.,
X;{ft
100

-fND

.. ...7C 4

~-

I

~
RI,

-j;OI
II<'

rt

8Z0

-fIURTGAT~

fS"A

~
W
q.

6113

\!:::"

lao

G:~R3"

2NZ90~A

8Z

CRI
IN4371A

oL

S.IK

5r.....

RB3
30K

w

R ..9

3.3K

t-SVA

~

&7
ZNZ90S-A

5N73

rt
~

SHT3

.....

--

-_r~T<

rNtlm
----

::l

('I)

p,.

w

-fZ4V·'

-----~
1

!

+

lClsT .1

C7

-IZV

m
C4
ZSTf

"W~

03
7905'
3

I

1
CS

~SO
~ .. v

w

IN74B

IgZ~PF ~

GIB
ZN2ZI'>'A

:;.,zo

&/9

/~7

K95
SIO

R9Z
100

,Z

-sv

R94
SIO

T+

rS-V"

T

I"'VW

T+..J..c,,"s

T SO

,

w&>v

-.try

R<;I8
510

-I-/ZVA

RIZB

-sv

RIZ7
8Z0

39

lat

..J..C40
T·OI

W

.

"TV
-SV"

cq.q
.01

..-

TOlERAHCE UNI

OTHERW~NO'

MA/N Poe.B. cb .... _,
I:bI

I

W

I"/I".irl~
'-i!'416d ..,. I

01

/1

-'''''''-'1IM;' 1>"rfflDI i?00099
~

V1

SHTIO

r-

R93
100

R4&>
I/ZIU

IfAV'3'

c .. &>+J.
Z5'

tMtJ£TI St:L

ZIVZZIVA

H~bK

CIr..J..
25

j[;

if

<"

~TP,.ZS
l

Tal

R'>'I
SID

,.IZV"

R/~Z

CSZ.J..
1.0T

5HTIO

W

U;fv

~

r.z

Rlq3
3U1

.~~

I

~ I

W

'----------+---40

100

~

10K

~"IZVA

13 7C /Z

GZO
R9a,

I

o

C3B
.01

RIOO

740&.

Z

S~~O

'I'/Zli'A

/1<'

"UO'-

f

+ TV·

RI07

d:

77

ZOO

RIO",
10K

RIDS

../K

I

7C

1 ..... _2

3&>.,0

7~

'<

SNTZ

Ii!:

RCJq

o

~AMPI!

- - -....- 1 -... fIZ~_
--~

GIO
MPS
'36>.,0

10K

Rlla,

SHT Z

IC3s

~=", ,-----+-------,.
RB~

C'".,,,,

II

RI03

Plf?l:A/lfP A

'-to

f\l)~"

~~.

II:'

SHT I

P,p{TAMP

£01
/~ J/SUK

e

GIS
ZNZ3h9A
'Z.VA

R3
100

RIL>l
/00

4A

I2Z!J
3.9K

......

rio!! - -

TPZ«

t..l--

-,RPI

"

RI7
I.ZKI

R6>O

Cl)

'f1i'V

ZK

ZNZ36.9A
RZ
3K rZ4V

304'"

~

'5V
R9A

R7

Rt.6.
IK

31:'

DIGITIZeD
REALJ.DATA

::l

~

RIZ

'<

IK

I
""OATA

11

~

.....
~

5#r3

.P

~

-RIG

SNT.3

Z

o

r/cV

rt
R .. 9
Z.I.'

t:I:'

Cl)

R37
510

TP/(D

•

C3:¥~/9
390P.c-

.01

~
.....

S;HT S

rREAL) GAT~
R47

ZK

::l
rt

CR3

INS449

~~

C31

...... ,

0.1

.,.Z~

FS

C

-~

CRZ

ClB

Ql

~PF

RIS

.....

SHT9~

::l

Cl)

100

A~

RP9-4

0..
SNT4

PLO 8 UJ.lr.

R4Z

R41
Z4n

Z-.o
-SI/
~
C~D

j

~39DPi"

LM31BN
j II>TPIS C
~
/C39
VCO
~_S~NTROt. vOt.rAGE

I ,
.'7/;2

~ftb3

~~

aIL>
ZNZ36.9A

R44
430

RP8-4
-PHASe WINDOW

SHT 3

r~

-sv

- ......-::p

~
1I1

I

~

lilff=I::~I:;R w~f;1 Di ~OO~~9
.....

~

ClIte

r(j·lI·W

.,

SHT 2

+SVNC)('

~~=.==========

,sHT 2 - .../ 6

~

I-h

TPIO ,vRZ.
....
KEA/J

~R~A£) CLOCK

SliT 10

,"REA£) £JATA

SliT /0

.DATA
SNT

Z -PIIASe WIN£JOW

Cl)

: , /3

Ii
Cl)

::s
(')

~~ _ _ _ _ _ _ _~i-:K._'"_'''"''_v:/_~2

Cl)

RPI2'-31

o
::s~

PB-S

~Z5
14 'H
7

TPIB

/0102

SNT I

CRID

1.RPls-.$

~

---\~

w
R3Z
/1( 3

~

RP-s.r® I

~sv

-SPA

Z

R72
SNT 9

txI

®RPI7.'"

RP17"7

C3~ r---?':.;

~R7s1 C~7 1
f210rOI
T 1.0
'W W

C43

351?PF~

t-----~~--It--r:====~~==~:::::i:::::::::::::::::t~~==========t__=_t~=================-s==v============~~

IK

o

';'WRT GATE

- WRT ATo 5HT /
+PLO TTL SliT.,.

-f-SV

RPI7·.3

+WR/Tt:" ~ATA

YI 7

,
SliT 7 -REC,£) tvRTC,OCK

R73
IK

R/2/
750 TPZw +PHAS€ ERROR

SHT 7

5f
.....

SHT 7

C33
IOlJOPF

~
.....
~

Cl)

+WRITE CLOCK

®RP20-2

SNTZ~

rt

13

"'UI~T eLK

~/4

'<
I

1 ..

CRZ3

RII2
3.3K

TPI7

""ZV

RIIO

f-SV

::srt

~~ECTIOA/ VQ::.TAG€

1;/!/

50IK

RID9

7S0

Q)

CRI2

~C;f
f.~7

1:ifK

~.

::sCl)

IS.
IOJ

0..

HllDO

SNTS CI'IKRIt:R AMP

,,~_______rs_v____~

3.9K

R30

2'~T, B
14

Z

_

,PIg

+SII

• rp22

P~AScE~RO~

RIC'4

LSIS3

T.~!4

W

.

RI"'~
3.9K

~/O

9011.0
C4t;)

C5f.D

-lCv

+ SYNC

£)E7cCT

5#T4-

",51'
Klto3

RIIi>Z

IK

3.9K

w
5HT~~
SHT8~

SHT~

-SV

RI44

390K

-IZV
+JJ£O LOCK

1 DE"T

..... 1...-

V1

I

V1

IO~

SHTt.

,'$a,

+SV~

J

r.u
A~P QtA/~
8

SHr 3

~

C
D
Cl'
UJ

~P£O rrl.

CD

t-ta

SNT8'

CD
"1
CD

SHTB

_U_

r=---;--------~--~V6

Q
QD

CO

R

~--------~~~~~V?

0; T,..A-

13
~;I

+000

:l
(')

"sv

CD

r~p22

o

~
2

LSD'"

~

~-r_
IOI2~

c
o----I-SV

__________________~P.~~~O~Bl~~~~~~

SHrz

fIleT

5HT .3

+ IA/./)cX

G 3

SHT 7

z

LS8&.

r.§JlI...L. SHr B

TP29

IA:

:l

2

I-'

SNT3

~SYNC

OlTrECr

~

~GBLZ

SNr S

I

~;J/S ~ZV~.~,~------~------===:

~

.....

l('i~9

SE.RvO

S'/o

~I7Z

3.9K

100

I-'
I-'

TP3~

SElf"vO

~170

100

t:!J7%,N r~/"wpp
TP3Z

fSlI

Z

SR34j

5f

+

CIIRRt. PI/MP

:l

CB91

R202

~

Q)
~.

Rzoo

RzOI
ZOK

!UA:

0.

I~S'B

-1211

1<'203
ISOK

I

r

SHT .3

l1yrcClOCK

sNrs,9

TPq.7
PllrERED
PaS-IrIOU

P~SNrs
CB7
.,70PP

R240
1.3.31(",1%

Ib~}~

~
sHe
7

~S8

61.40
ZN2Z1911

~i?LJ4

~/99

fAZOK

I=K

-/zv

~SNr8
+HSiP

,

CR38

:l
CD

~
/97

~OPPf 100
G1.42
2N2Z1911

IDO

rt

fh'Z°
1%

~

.1

tb9

SHrs

POSITION

DEMO£)

SIGNAL

'>h1/1%

ens

I~

(0 rp3"

eTP40
POSIT/ON

rt

b1
CD

Iq~.I%

1

Ib~~

833
z,vZ90SA

o

.R/46

~i:,7~N ~ ~

A'I"B

~5Y~

.....

SNrB

-~r GIl £ArcHES

RI98
fAZOK

-/zv

CI03

f'

1<'193
S'IK

,--<

RZZ7
lOa

)3.3,..

~.fZ2S

w

/0_ -r"""",-- 9

II€LER

, ZQ,f:

SNrs -11115"
SMS

-~SS'

1<9-

C>- -'OG200
I

[::>
zo~
~~
-J06Z00
I

SHrs -VAS.,

SHrs~

SNrs

77

/1

UNYlnn.o SCHEMAT/C LJ/AGRAM

TOLERANCE
SE
0n:: :;

MAIN P.C.B.6650/B4
:~//",A.-JICALE -

~

_1......-0

1I1

I
Q'\

IOU

..aT

4

01//

Ji'§Dlz00099

I,e

3,'"

c.I" oprN
±::5~

AGCZ,

r-----~~--------__,I~D

SC~VO

lJATA
TP.30

co,o

c~zs

IA/7ShA

.01

Rlilf/
91

7,8 (

_83V

•

•

~P2.7

e--12V

r------,
1

S(J6

~

tOPEN

t-t\
(D

t1

:~ OPEN

(D

,-

W7

/PI

C~RR/Ek'AMP

~r-----~I~/~--~------------------,

0,1,

,,

I

~S

Co,.,.

R56
SIO
1E-----'V'VV-

R3S0
10
/VI

1

130

SNT 3 J '4-

+VA2

.1

CS8

acEIV

e2PF

,
~

I?S5"

S.IK

;:l

W

n

.Jr

-VA2

(D

o

;:l

R278
18K

I'i!79
I.BK

cfZ9

""""

~

R277

.0r.6

IBOK

5%

CRSS -CR54
/N75ZA

I

!/N75~A

I

~
t-'o

~

SERVO FRROR

J-

CIZB
.0Be

5%

R.'

C~ZB

~3

+Z4V"

Jill

C~97

RZ;"B

C~8

Z2K

~1/79
.ZK

RZIO
3.9K

CR43

CBS

'?cOO PF

""""
""""
Z
o

--..OPEN
.,... - - -...,
"~,,....

S'NTB~

R2BO

SNTa~

r1'

S'HT~
SNT4

0;,

~

~~---='--'l) t-----

RIBS
3.9K

t.._

+CR3(O

~~/BO
3;"0

~~~2 "?1tffl

G31

'--'lIBM°;.:K.... -leV

lZN~ZI9A

Jl!X€ Ct.OC,..

=r0P?N

w

y~"
"'zo~

(D

IBK

,pJ7B

.no

s:

t-'o
;:l
r1'

CA"9 ....

~

t-'o
:;j

SNT4

(D

WI

0.

~ ~
/4.J

4"V{;'t%
• • '\0---,

+/zv-Vy

R~~~

t==;

:;

............
~.H}UJ

RZOB

;/ f

~

L~02

~ ~2S4

I

I

£.50"1

Z

RZ3B

IS.!

I"

lOOOPF

L---

RP23
-1.71>

w

~

10K

SHT8
CI07

15K

~+sv

~

-FrK

-v,.,~ c.
-VASt.

Ir..!

~

~5NT4

I&.';
''''00

-TPK XINO

-H.rK

Ln

I

......

SHT(o

-08Z

S'NT B

.:t.E/O!&(L

5HTB
SNTB

~5HT~

.!IHT8~
:YNT S ...t£!:!!£l...tJUJD
SHTB~~

SHT~

t.sao

-VAS3

~

,"u

T RPZ3.4.7K

~~s"

_..I'

-........,-!

I-~

SNT~

SCl-I€MATIC £J/AGRAM
MAINPoC.a. 6650/8<1,/tUkJ ICALI_
"'II
S'/2h
DI Z00099

1"""- 1.;.0.;..1...... 5

SHTIJ
SNT8
SNT8
5WT8

~
H)

+/211

SNTB
SifTS

~.$.4-/

allc 5'

".99K

1%

SHT8~

I'D

allc 7

~

SifTS

I'D
:::1

SHT __ +axil

n

SNT4

I'D

-foxa

OIlC,"
~S/

~
C~

'A

~o

i?K

o

IO"YL.

'<
I

'II

CRS2

...

~.34Z

7.S0-t,I%

~R?B"
lOOK

f

t-'

ff343
Z.OS"',lt

it

+SV

"'t'!Jfi'
Clcl
.04'7

:::1

TP-W

vvv-

+SII
~ Ri?O'S
lOOK

,.CURIle-(ilI'll

SlfT4



iir

.r. ri?~V

-fZ4V

RI57
/1(

lOll

RI48

CR'i7

+SV

t

.....
:::1
rt

r

III

.....
:::1
I'D

_--Jv5v·'t\'~~---1~__.=...j

121'>6
fii?O

240

C14'>
.01

~

,..2'1 V
R/40
i?4K

l

Rt.j9

SI

-CFO.R

SI4;T.s

Z'A/ZZ'19A

10K

-!7:: I ~~* ~
11K

RIS/
.5.IK

CR44

027

CR64

R13!

+sv

''

CRU

RI47
S.IK
-PK'ST

R154

RISS

121'>3
I.sK

3.31(

.,20

CR65

SlfTB

RI?2
5.11(

I/zW

"fi?V~
-IZV

t

CR4 >

.IN7,

~7:~ ~

~
(t)

II

IK

0(9,

,

1

J-:WRI

..J1-35

rt

r---

+ READ, ~ATA)

(-READ.
DATA)

~~MfA~_,.kO<4r'L--f·----------------------------------------------------------~~~~~~-'lRP30L{~Y_---f_--Y~}~---f~~(}.
__

(-WRITE DATA)

(+Uj,I(/TE CZOCK)

Jif'-3S

0

1

I

Ii?

c==J ~__ ___ __

11K +SV

LI8Oc;.
OC-

/I,e

R327·

RP26,,8

(.,WRITE LUnl>

,

IAI~,.tNtM"Z
0417
.:;w)"
Ita
/S IAlO
L'N

(,S04

SHT9,IO

~.so-,

/Csi?8

s(7i

T

:

J9-/2

Z

IIJ?~~~~~:9
~a4~I~.?

,-,,-mU=-1

~--

J9-15' (

SHr~/O

1

I

SJlT9,/O

15P

I...

1

(-80S (11)
vt::-/7
JI-17

~/[)~~;~'~~=====t============t=================================================================~===
~5~r'~~~------============~
..1
.
"~~~
,~~.II
,_~~~,~
~~
~ j I
LS04

+U/KIT

I
~

~

LSCH

If'D

Je-IS'
JI- IS f

~

ISP

(-SUS 7)

SHT~

"l.SI ...

~

-..L.I'--..,e
vr

?

(-80S S)

JZ-<'7
JI-<, 7

(t)

A".P2~~~_

(-8US.c-)

JZ-21
J/- 21

(:;;oLSI'I
~

Rs33
if'ZO

~ar

Je-<1/

JI-4-1

~ J2-'13
JI-43

CYLWOCR )

"'DR~"v

~ Jc-'1S

JI--?S

(-READY)

T

51fT:?
SNT8

-SeLECTED

: J2-"'?
1..11-<17

-t/A/IT SiiLiiCT~.D ~9) 21

-SK - - -

-SEEK END

19

( -SiiC TOR)

l
SlfT'!I
.sHn~

-SK

(-/A/DEX)

QVCYL

L

./'

TOLERANceUNLESV TITLE
OTHERWISE NO!Ji6

./

,u

1----./"'7'C----lUHE.lR
H.UlDIESS

,

\0

Z5'

R~&

.....TERlAl!

l.n

Z3

FoNT

.!ox,?",

AIiOU\.~

IE ::

SeNe-MATle DIAGRAM

MA/N P.C.E. '''50/84D£SIOH I~ '//&.40 SCALE

/

O£TAIl

:

~/.

::.::-I"!!R.

'r"/~/kG SHEET

~.~::I)

DI

7

Of

//

200099

SNT9

~

ION
;:'WI

R34~

I'D

~5V

IK

H'I

3

CI73
Zi!p,c

Ii!

I
T

S

I'D

~17,..SV

I'D

::s

2 }(1)IL.1

Ii!

3'J'

fM

04"-

A'33
III'

I'D
SHT !>
SNT 9
J~-3

'<

SliT 9

I

SNT9

/!'/

SNTS

~

....
......

SHTS
S#T41-

......

SNT4
$HT ..

Z

~ ~ :3lIO
~

31<1 .... 7

:~ ~.

+RTZFF

_NTK
_FTK

,b/~

1".";'.3

III

=

~f ~

,qo

~~~

"G8£3

..

a~

.2

~Z'S

I

~

~7.

J'I!I
I'P.

UP INDX

I

~ /)1 cl("611

7

..<

~
7

Q
R

S
cO

"

7

?

~ L

~~Z)

JM
<.S93

DB'"
I
01 10
II
2

,03

0<'

..

as ,,
fH

~1 17

1

'f

t9
6J

17'/)7
6

7'i
3

£lj

19#

~

&.

61

£lAC.,

01

I

U

4)AC,"

£527.3

~3

SliT&::.

rSI4

,Ys""

LSOO

itt

~

Y2

A

~~-4

1i'57 GB

ZI

SNT9
SHT9
SHT9

LATCHES

_Ii'DLd

I
20

~~ ~j

7

13 SK II
~
·13'011

IzM
I;[]S

~

+ OFF

III

I

1,,f!KZ

..,.FWLJ

5HTS
SHTS

,..MOVE

i[.s/~

7RK

CY

SHT 10

-~

ERR

SHT 10

'" 11K
u

SHTS

,.. ,fi'IJY

.,

LS/~

SHT 9

SYNC

SHT3

-SKERIi'
_

it:>r~rT.5A'

"'J"n

-PR5T A

."......
./

....- .£.

T~~
OTHEAWlIE
>u./
'--All

~-:iii?

I-...L

l---.r
I-

o

SHT4

- TI

.~

~OO

I

SI:ITS

h?
1

"f

~
-

I-'

J'f-'f
5HT4

+PO.5M

cf¥

IT.

41~3

SHTS
5HT ..

.. ODD

Z

ZI

5HTS

A~C

II

T

I~-

9

.5HT

+ODD

.".FWEJ

"

3K~

l.11

SHT9

-RD55

P#I I19
P6Z I

5HT4
SHT 9

-RDU8

1/

at! "IIO-e:

:SHT'?>

AD!I

~

1'",

SHT 9

rON T/'?K

10 CK
~,QlH"S~~J
II

"'N
'f'OZO

SHT 10

-~

~S32

1/

B

SHTIO

_RIJ

P!;I

/O.3K

SHT,"

-D'i'rz.T

4.

I'D

_PRST

5HT,"

IJAC7

I

P'-3

11K
131::, Ii!

SHT,;.
S#T,"

ADI

*"

E

SHT'-

£lAC 3

'"~I
':VS
.

5#T~

£lAC i!

15
0. 12

.s

DI

g

DAC (If

.~~~
.z

13
P70 14
P71 IS
Pli!
P13 14
11 PZ.3 PSO I
.3
,9 Pi!i!

0.

SHTIO

OFF 77f:!1C"

LS3;!.

>')

~
....
::s
rt

-DMG

DAC I

~7

~~

I'D

,111(1.

tp~
27I

...l

t;d

A9

~~

~"VS

~G8LI

rt

A~

"(;Lt(.Z

0

·'9

I
Z
A3

"

:!s>

D3

~

-r~KXltVG

5K","cl2

II

LJ8.

I

INT
TI

~SP.D

~~

I

/1IS'
D$,
761

0

~

~raD,f!l,..
J)I.

(')

17P

£SO<#

~

"
07.
OYI
i!~
"MHa

r-s

::s......

I

IJ8; -D87

SHT 7,9,IC

SHT-9
..5HT",IO

ScHEMATIC lJIAG~AM
MAINP.c:tI.4.,-p/II'"

"n.E

-... ..,-

..,...

--.;.. .

'"""
" D1Z~9

i

17P

;>o-

J
.5HT 7
SHr 7

:;;c

51-178

I'D

5HT 7

Hl

".5€L£CTSD

-RESET5KREG

1

~ IZl~,"l s

17,0

9

TI

1i

LSQ4

.5'...l ... 2i.6

oS

m
~~~.' i11

CD
P'i
CD

br/I

~

:::3

9

n

(t)

1

CK

I.f.
G

[)~'

/,3 A

12
II
10

YI
Yc

y~

IYJ'1

<7:; I

D'-

/,?

L5139

LSOO
2K

r

19 9

4

'0

-Q"

3

R

1·'1-1
13
~

2

~

'<
I

I

~

3
~
~4D

~

....

I

~
~
51-177

Z

IDEN Ie.

0

5.478

51-1T8

t:;I:I

s/..r"- 8

CD

S}-/T f3

SJ-I-r B
sw~

:::3
rt

S

SH78
.5HT 7

OJ
....
:::3

.5I-1T8

4
r.

1/6

SHT.;...

SHT 7

I

3A
LA
IA

L-

11M

3Y S
ZY

liD

I
DBt3

'\

I

e

'1

1
1

Ik

I

6

/K

...

2

3

S

"""-1-

I~K~
I
£'5
~44
.
~
I
1/

7

i -- -- ---- -- -- ~

. .,_

R:~~

IJBZ

114

~

Il3r~"
A~L
..;:, 7
A/-

ri

9

DB7

DF.
D.4,Co'
DR4-

'-----------+---.

1

I

I

II

I

L.. _________ ~

+5V

~'PZ4

I

-RD:':C

A~
~~A~D:e~=======t==s=====~/~9:r~~
~,
D2;'
IIDI

~

-/0',

RlJ.

Ir--=--=l
r--!,. eel·
Wk
rfi~B4

I

g

~
3

:J2jf6
LJ8S

D

14'

'"'/

:!"~?
d c'

AD3

J

D
D/ B
7

18~;

eyre

15

/3

~ II:".
~ __ ...;
--0'""

GIY

LS".9C,7

/7

-- 11/

-"L'!..·

I
lel

~~~

7

+VB

n.

DB7

3

4

15

g~

t---l- CK

13~

I

4

96

/

B2

L'500

7M

~
-

"K
LS08
17P

,.!.,

NIS

\I

C;;

LSl23 l3

'--+va

19
E~K

...;:.

754b2

~ 8M "tZi~1O
B
10M

LSOB

4

7 ,......., ;--

r

I?

;

I

IBO

CR_"l

<---,

__...:.J~"~ b
I

-POWE," ON

-ONCYUAJ['~,~

\\,

CR60

~

I

-PEIl£Y
GND
r5VOLTS

7Nf'.'
A

.....

+.5V

•

SHT 7
SI-IT7,/O

2.---

;

5K

3

I

~B
LSOB

+WRTGAT£
(/P/A/Dx

SHTI, 3

SliT

a

I
......TERIA\.

./

./

NO~
~ xx,/

TOLERANCE UNLESs-/1TITlE
OTHERWISE

SCHEMATIC DII'
'/"'GRAM

MAIN RCS.

'50/846650

1A..~<, I"""'';°l~'
c.

I

4

' ) B

AV.,c.//,,/;n

~

I

ON CYL

1-------7"/"------1 LINEAR

U1

3
I

'~-!DI:Z A!l'~"

lorl "

~B

5

:

R 320

L5.

LSOB

~.

7
I

I

+SV

~,180

8

51-1T 10

I

I-SY

IBO

~4"~4

75462

T L5C4

r:.3~.4

"

1:'323

b 17N",T

LSOB

83,~
LS02
-SKERK'

R322

r-______.J'V05OV.I.--__...,..____-:-:-______..:-:!:F~A!!.(,,/L~T
I r---. 3
7NBI

f5V

~/O

5HT Z

+WG

~£~3PF ~5)1

7M B

LSOO

3

~"

SHT

13 .,K

51
A

rrJ

L....-/LSCJS

FL7

I

GD
CO

11/6' (_
~ ~';K

.,.READ GATE

LSD",

'--"<:~

T3

1

•

.7

GA 13

C

~jiJ

-;.::ti-?

SHT 7

I-J.__________~~/~2tt:~rl'!.I----------------------------------------------------------------------________~..:s~yAl==c~_

10

Alp

5HT 8

SeCT

b

~

CLOCK

,.RDV

4-

SJ8N
L~2

,

~~. ' - - -

2.--

SHT B

6

~A
4Y

-.4V3

~/O~/I
SH7fL1

5

D

I

-R£v8

BI
B¢

5H7.5

7

7G 19

7

15

~'V4
4
"s

Y7 16
YI- UL

I

I

+-'c..;-~-------------H----.-/'-'./-l~.;J..!
BS

syi-4

A4
A3
4- 112
2 111G

I

SI-ITI

Y1.~/~2S~D~B~3~
Y..:'

8

I

I

12 SA

1/3

.-;:;: II'2
Y3

~ 1:;139

R329
IK 14

12
13

s

CJ(

10

G

ii

LS04

1

AlAI
BIN

S 3

;;Z

~

/I

1"

Ii:.-

122

Y~
II
'IY ~ 5~R 'iN"
YI P"'---i------++-+-----------=,.--q.j5L

/sJ,

-":r

''', {J)

IS

rS81

/IV
H IN R

Z

A

~.B

Y3

yz
YI

YII

-ILL CYL

SHT8

- SP

SHTB

-SK ERR

~R

"----"LSOZ

SN

,

I-'
I""

II

RDDATA

SHT 7

,042

yz

A3
44;:

Y4

,Jf;44

Y3 I

I

4

LSO~

:~2

~;.
»"'----------'
LS04

9
I

I4P B
'LSIO
17P
/3K IZ

'-----------------------------------~v

U1

J -

LS04

....2..J 8N l'

51178

'-

v
10

19

~AI
YIISSe,
SN

3

.9 -

'O'L~f44

L~32

S

I /rEAl) IJATA
-£J/AG

<~

12-.rI
10K

7

LSI39

5#TB

I"Jp"'9~~~

""-

,.)"

T9

3P
LSI'-'-

LS04

A

tolAi

F=/IV

I_

n

I~
~ A2
A3 t'~~.58~
yz

/3

~
r------

9

'----------------1------'
II'--IIG
i!P
S;;T 3

hit.

A
B

ts'Yo 9 15
~/~O~tt=~=======+======t_-J

SN

/1

m

Gl

2N~
_::-R=T-=~'--'-'~_"g,,61"__ _ _ _ _ _.....-_l-+_lI--'L"'S'-'I=~'-1
.,.READ CLOCK

~4

~
7
lotu
3
'P ali 14
A

.11

LS04

1"'-

l""!I""".d

1-

SKFt:T

./
./
L

./

+~EAIJ CLOCA'X

'!!9" mu

TOl£RANC£ .....

OTttERWISE ~

..... .,"

'."2'

L~

I~ ~
~-

./

<"~7"7

s;;r'

SCJ.lEMATIC DIAGIIfAM

MAIN Po :.t5.. _65o/a.,

- - ~ W!ott.L""'"
.
-~;"..hA.-1/
- _o-..lJIIloI"I2l2lAI!1.IDII Za:x1,a

l1rA/

~,,-tt"':J.

10 ..

I

.1
/,

J

""0"

J3

~
';-1'4

-"'33B
II<'
"1'3
RP23
1

<1.71:' ;

.;-vz

~P2.:;

.;-sv

~"1;.?~ ';-1'1

~

SCNiFMAT/C ,a/AGRAI'(
/IUI/N PoC.B.GGSO! 84-

mu

Z

l:::if?

I

~

w

<-II'/.

I - r~'~\V?

G ~,

CR4
IAl4CJ03

Q3

~.59

,l ~

145

CRZ

IAI

1tJ!:. .t1

~

,<;'10
10

74LX.

ClZ
.01 ~

CR5
IAl4CJ03

,;S
• it'
--;'..0 . . :

,

,I ~

I

C~$ ~~

~31

l

I..--:~-4-Z4V

ell

J

.QI

f%S9

03

,

«r~
[EJ

I

":, r;f ~r
750
3W

- --,
r---Ql;

R~

,

4C03

co

f

10

«([~
0

RS
IK

---1,--

C9

Rl!J

I

RII
7S0

1 Ra

,:"8 a3w

0

9

-;4~

.01~

t:

10

041

CRt;,

~c
~

I
IX

14-

G7

.O/~

t--ft ADB

f- ~

I.l

~

V

I

II

~
12 D

9

II

B

~

~

(I)

RI9
(Pi!D

W

8

..

/J¢

r

9

~~

/3

,1"
~
loT
2

-1-51

.3

74

+52

K

DoS

~B
~-

-- i?-- .3- - -- 5-- '-- - -,

B

,,

,

RPI1'K

,I
i
L _ _ _ _ _ _ _ _ _ _ _ _ ....J

SHT2.

1/
1?l7

~fPF lOOK

l

51/2

Is 1... 1"

5

'SV

,b

eLK

S

"kc

III

74-

1/

ISY

~~I*

IT

"H-

1,«

"r-!:.

::

Q

IH

RPi!

j3
10

9~

.::a,

010

~B

123

@

SO%SPD

SHT2.

J2-3

C,~

CZG,I.O

;¢

R4-3
3bK

W_~_A?~f-l"5"

Q /2
,.
/1

~

+

1/[ .;J

I

~~lOaIlG"'GJ3G

*..

I

7406

I)¢

Ft-l s
ff;E)

~PZ

;;

2H

QI (}4 (}S...

, -53

~.

6f

1':15

,

~

f!I?

28

11'14

JI_S/
4

,

,,

C/U

- --I, -

"SV

~

,

R3
IK

---,

{(t~
[IJ

,

ooc

(I)

0

Ri!
ISK
IW

7'1«.

sPD c..o/'IITROL

~

...--

11'1
If(

::' zc 1
~

-V3

123

~

~

/I

POWE~

C/9

~O

~~/S
C

S

I

~:fiE

;

Ri!O
~,"K

BRAKE ElfNlL£

~

.5,)

+'12

IG 6

/3'

¢e

Q

123t

+V1 OYNAI1IC

+'12.

5

Q

IF
"1"1-

~~

-",

If

B~AKE

10

12

"C;"13

Eo

IF

74-

/0

2~

IIIS~

ie-SHT Z

-~

_Till"""

....""'.

V1

I
t-'
V1

'::::~~JfT

TOLERANCE UNLESS
OTHERWISE NOTED

".....
........,
e_... ""'_
,0

,LlIn

-

"m

SGiEMI/TIC

I.,.'

..

M_
~

MOTO~

:r,,",

r.['-I3&>

DIAG~AM

COIoITROL
SCALI

I
'"
D I:200084-

DTJJ 13'·ZS-.!IIfSHIET

-.. onoe-11IVJR b jlAc
_. ~
,~..l
,.,

~Z4Y

+iUV

~~9

I-I;'V

leZ,?
s~r

*~

I

RC4

i?,c

s ..... ~ ~

~

CR9

I~

~t?"v

-----l
+IZV
RZ/:.

(\)

If33

'"51/

2K
//2W

'51/

~'24VlRt.Z

7*16

I-tt

-tlZ4V

Q42
1. .5"K

R49
10K

C2B

z
o

2MEG

~DI--I--"""'--~

R~

~

R41
10K

R4CJ
I

10K

CRI2

/

2AJc219A

R47

~

13K

QII

--"'>I'",~y---

- -1 ~ ---

~~~

• ~/i?1/

rt
SPo CONTROL

g'

-PO,,!,

~
.....
::s
rt

/=1
10"1


200084-

CR6+
~

~
F\12
~c~

TI

H\

I
Ie!>

RI4

(D

C2-

"1

t24V.

(D

:3

R3:l

(")
(D

csTc6f

o

R21 ~

+CR12

R23

C.I4 5

t,13..,-

~

C.FI 2
C.R !;

R22

.+24 RET.

I

-Ri

~

f*l

~

~
~

o

~
(D

5f

R2 .

CRJ

IN153A
tRI .... 1>
CA 3.-4
_M~1S0
t.RIo'1.IO.\S 1718,19 1'fI41003
(R7.8.13
AElS
CRIII2.
INo4OO3
!>t.RI.~

~

+CR15

CIO"

II

~S08

:3

~

:3
(D

0.
8

~CR9

+

1 CR17

+'RI8
-p

U 1.2.~
U""

4

~N~5

I~

1 23

Jtd)

lit 2923

I!.18 2'.28. 32 ~3
R9,.q2,H
RII12
RI9

7q12

Ik

8'2..r.
",a.!"~

'7.5""
10 ~
2.1A
2.11\
I•• '"

R2.1
RZZ
Rz'S."\\
R'!I"I

2"'' '

R37

.'~.l\.

_

Z..~K

I\ESISTOI\
RESISiTOfI
RESISTOR
ReSIS'tOI't

.... ,'" 2 '" ~., •
" .. yo, Z 7. M.F
'iz.W 5"10 C F
loW BWH

21'.

POTfN1IOM!T£R

.12. .n.

RESisteR..

'105~

PRINffD (.!""CUIl' ";C"·APD

"...

.........

...........

fOUu.a ........

DO hOT SCALE ORA'I. '~.a

I

5'7.(.;:-

Z. ·i·~·i.~·

R"'I8,ZO~40

------=.
~

;'Z\',

RE'SIS'TOR ') ":

r;:.-4,5,fS 17
P',-,R

~

'-l

5'.

Z'OJL
2.2. ....
31OJ\.

CRI9

.1Il

PNP

TI\.-.I 5015101<
T"'NI~ISTOR

1~1
-12V

CIOQ1E 31>.. IOOV.
DIODE IA
'ZOOV
St.? SOV • .3A.
MYI.Ar,
CAPAC.ITOR

TFOANSISlOR.
TRANSI5TOR
I.L vocr~ REGULATOR
I.e. I.OlTIIC:JE R£(;UlATOFl .
RE51STDR 'hW
(I<
RlSISTOI'\ V'zW 5"-· c .•

-SV
CRIO

ZEl'lER
ZloA. ,;rw.
I 1>.. '2."nV.

2K~055

R310

+

ZEN£'"
ZENER

2 ... 3771

~I~.~

±s; 12 RET.

010;)[

0I01lE
DIODE
0100£

0.7
QCo

R3.lo,.n

Q)

MYLAR

BP,IO(,E

TRt.NfoIf>TO~

£,,2901 A

IR2.,3o.~

rt

LS'3

~NbS.S•

QI

IQ'2.
Q 304.5

R I

~~---4-n--~~~

~

A.UJM F_l\::CT
CAPALI10R

DIODE

00 'laOV

R~3

RIO R26

~

DIDDE

IN%SB

(,1

~.-~::~::~~--~~~~=b~-L~:!ti:tI:----~~~~~~:=::~::~::::::=f~~~V
~

CAPN::.ITOP.
MlJI'\ E.LEC. r
c.<>.PA.C.ITDR A.LlJI"\ LLt.CT
CAPACIT~R
MYLAR
AI='AC.I OR ALUM ELECT

_B'"''
IN"'S

tRI

'<

rt

./II00V
llo[NO 15V
3.700 bOV
330,3:1
nO/lloV
9.000 15V.
330 35V
.01 lCOV

(.IS
CSG.
c.a
c.IOI9

c. r2.

~C8

:3

Z

""/50

Lt.1 A 1\ 11 ZO lO125V

t. w

~WH

-'NClATUIIl
0IIIi Dt5CRIf",,*

PARTS UST

i

f'"'....:'t ....

-....

l'f",",a..,:rul' .:3.

."

.•..

~.

n ..

"'lI..-")q

~T"
NG UP.
AIif'ICO'l.D.;'·~··:M"

..

~,

...,.

5C.H[MATIC.) POWER SUPPL.Y

';; ~7~;r-""'104e t G
.1""-'

--

I

---

~L-

r----------------------------------------------------------,I

I

T1

I

1 CR1
1E11N4004

CR1
MR2001
~

I

~J

I
I
1

,..-

Q1
2N6055

~i'

g

I

f"'I

1
I

CR2
MR2001

L __

-..,

E2

C1
+-'13,000 ..;:;:

r - - - - - - - ..
I
I

E

,---§.

4.7K

_...J

2

R7
390

3

R5
;'100

R6
390

I

R13
0.18

,..........

"L1

I

R12
5.6K

RIO
?-100

1
~

+

C3
'I' 470

R9
;. 5.6K

C2

1
, +24V, 5 AMP
1 (7 AMP PECK)
1
1

>Rll
15K

1

~
7

~ R4

I

~f)

~6)

10

~

R3
1K

I
I
I

IC1
LM723CN

IV

I

"::ii

.:(1

+

C4
,1' 220

~~R5
6051

+..., C5
'1' 10,000

I
I

(26)

~
c.....l.?

CR6~
6051

I.....--.

I

CR3
IN
I
4720 I

~
R14
2K

,
I

10
IC2
LM723CN

~

I

R15
3.3K

1
+5V, 4 AMP

R16
470

R17
470

2
3

.L....
7

I

R19
0.1

R18
1.8K

*C6
.001

13
1

C7 +
330 ' f"' CR7
~
1N4004 ,~

I
I

1
I
l'E6
,
1E7
1

IE8
I

1
1
I

I
I

I

Q4
2N6055

CR8

1N~;20

~

'I

..

11

CRi
1N4720

12
C8
+~
10,000 '"

I
I

~

10
IC3
LM723CN

5

R20
2K
R21
3.3K

I
I

13

R22
470

I

I
R26
120

R23
470

R27
33

2
3
R24
3.3K

,r:; ~~01

C10
'F' 330

1

)

SCR1
I
505631531
1
I

1
1
I
I
I

+

CR10
1N4004

I
I

I
1

-5V,2AMP

I
I
I
I

I E9
I
1

I

CR11
1N4739

I

~
7

±5V, -12V, RETURN

I
I
I

R25
0.1

I
I
I
I
I

+24V RETURN

I
Q3
2N6055

~

I
1E5

1
I
1

I

1N~~04

1
1E4

I
I

,

CR4

I E3

I

lli

~CR2
1N4753

I

"Y
I
I

R2
5- R1
>1.8K 1.8K
11

R8
0.18

Q2
2N6055

10'

IN
+*C11
470

IC4
79M12

1

I

OUT

I

I

+_!,- C12
"f"' 22

CR12
'" 1N4004

1
I
I

I
I
II
I -12V, 0.3 AMP
L _______________________________________________________________ J

Reference Only - Will Not Be Maintained

5-18

rVOLTAGE
-------SELECTING t

T TRANSFdRMERl------......

I

I

.

FUSE ASSEMBLY

~~~~

I
I
I

~

ro
t-1'l
ro
r;
ro

.

I
I

g2~~
,,1\11\1

I

I
I
,

I

f
LINEAR

I

Of.lTPUT
CONN£CTOR

~£GULArORS

I

I

RECTIFIERS

I

+Z4V

;:3

I

()

ro

~(/SF

I

4-4 ~OR 100"
ZA FOR 22()v

o

t

leOV "VP(Jr
210 .... INPOi IV I

+24 V RTN

I

,

T

I \.,.

,

+511'

I

I

;:3

;t .sv, -/2V' Rn.t

I

~

-sv

I

'<

)

-tZV

I

I
Z
I

1(6
I

I (S

I

, (I
I

I (3
I

, '4

~

.....

~
~

z

I

o

I

rt

to

ro

I

fir
.....

r- - - - - - -

;:3
rt

III

.....

AC

, ~OT

ro

CONNECTOR

0.

(I

rn

I rL7N£
I I

I

I: rYfn'" I
'

CHASSIS GND

I
I
,

-

-- --

--.-l

- J . -_ _ _ _ _

FILrER - - - - - - ,

I S , ,



o

I
I
TREATMENT I

xxx

HARDNESS

ANGULAR·

SURFACE

;~::AS

I

BROKE'"

II"'SIOE

-

TITLEASSEHBLV DRAWIA/G
DESIGN
DETA1L

."

OUlsmE

-

TERMINA' TOR
SCALE
2/1
£;TIV
'i_I? ;a SHEET
1 OF 1

84-

-

."

DFTG CHI(
APPRO

tEJZ 9-8-8c>
JAQf.

'

SCALE

DETAIL

~M

SHEET

onOCHK

WI.l7/!. 7- I'I-a:
I'-I.r#b I!:I-9-fIC CIZOOl39

APPRO

7-14- :f!,

I

OF

,

APPENDIX

DISC CONTROLLER
FOR
MODEL 2460
FIXED MEDIA DISC DRIVE

TABLE OF CONTENTS
Page
SECTION I

INTRODUCTION

AI.I
AI.2
AI.3
AI.3.1
AI.3.2
AI.4

General Description • •
Physical Description •
Physical Requirements •
Physical Envelope • •
Mounting • • • • • •
Data Reliability • • •

SECTION 2

MAINTENANCE

A2.1
A2.1.1
A2.1.2
A2.1.3
A2.1.4
A2.1.5
A2.1.6
A2.1.7
A2.1.8
A2.2
A2.2.1
A2.2.2

General Description • •
Controller ROM • • •
Microprocessor •• •
DMA Logic • • • • • •
Interrupt Logic • • •
I/O Logic • • • • • •
CRC Logic • • • • • •
Radial Logic • • • •
Bus Logic • • • • • •
Interface Requirements
Electrical Interface
CPU Interface • • • •

SECTION 3

GLOSSARY OF SIGNAL NAMES

A3.1

Glossary

SECTION 4

REFERENCE DATA

• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

•
•
•
•
•
•

AI-I
AI-I
AI-3
AI-3
AI-3
AI-3

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

•
•
•
•
•
•
•
•
•
•
•
•

A2-1
A2-1
A2-2
A2-2
A2-2
A2-2
A2-3
A2-3
A2-3
A2-3
A2-3
A2-3

•
•
•
•
•
•
•
• •
• •
• •
• • •
• • •

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• • •

•
•
•
•
•
•
•
•
•
•
•

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • • • • • • • • • • • • • • • • • • • • • A3-1

LIST OF ILLUSTRATIONS
Figure
A-I
A-2
A-3

Page
System Interconnection • • • • • • • • • • • • • • • AI-I
Disc Interface and Tag Bus Decode • • • • • • • • • • AI-2
Block Diagram of Controller • • • • • • • • • • • • • A2-1

A-iii

APPENDIX A
SECTION I
INTRODUCTION
AI.I

GENERAL DESCRIPTION

The Disc Controller provides the interface between the CPU and Disc Drive.

It

interfaces the 2460 Fixed Media Disc Drive to a Basic Four data processor in a
system configuration.

See Figure A-I for a typical system interconnect

diagram.

BUS CABLE
CPU AND
CONTROLLER

RADIAL CABLE

Figure A-I.
AI.2

I-

BUS
TERMINATOR

DISC UNIT
I-

System Interconnection

PHYSICAL DESCRIPTION

The Diso Controller, hereafter referred to as the Controller, is a single PCB
plugged directy into the main card cage of the processor system.

Two cables

(Radial Cable, PiN 902622 and Bus Cable, PiN 902687) connect the controller to
the Disc Drive.

A complete pin to pin listing of these cables is given in

Figure A-2.

Al-I

P2

h

1

11

CONTROLLER PCB

13
15
17
19
21
23
25
27
29
31
33
35
3
5
7
47
37
29
41
43
45
49

~

K15
3
5
9

11

19
21
23
25

BUS CABLE
UNIT SELECT TAG
TAG I(CYLINDER ADDRESS)
TAG 2 (HEAD SELECT)
TAG 3 (CONTROL)
BUS BIT 0
BUS BIT 1
BUS BIT 2
BUS BIT 3
BUS BIT 4
BUS BIT 5
BUS BIT 6
BUS BIT 7
BUS BIT 8
BUS BIT 9
UNIT SELECT 1
UN IT SELECT 2
UNIT SELECT 4
UNIT READY
INDEX
SECTOR
FAULT
SEEK ERROR
ON CYLINDER
OPEN CABLE
RADIAL CABLE
WRITE CABLE
SERVO CABLE
READ DATA
READ CLOCK
WRITE CLOCK
SEEK END
UNIT SELECTED
SECTOR
INDEX

0

DISC MAIN
LOGIC PCB

'-

3214
2
6
8
12

'"'or

'-

--.-.I

BUS
BIT

J2

r-

TAG 1
TAG 2
CYLINDER HEAD
ADDRESS SELECT
1
1

1

2

2

2

4

4

3

8

8

4

16

5

32

6

64

7

126

8

256

1024*

9

512

2048*

TAG 3
CONTROL
WRITE GATE
READ GATE

FAULT CLEAR
REZERO

READ STATUS

*USED FOR HIGH ORDER CYLINDER ADDRESS
DURING TAG 2 TIME
Fig~re

Al-2

A-2.

Disc Interface and Tag Bus Decode

Al.3

PHYSICAL REQUIREMENTS

Al.3.1

PHYSICAL ENVELOPE

The Controller is housed on a standard Basic Four printed circuit board (PCB)
with all connectors and components mounted thereon.
Al.3.2

MOUNTING

The Controller is installed in the card cage of a standard Basic Four data processing system.

All clearances and airflow provisions normal to the Basic Four

system are observed.
Al.4

DATA RELIABILITY

The data reliability of the Controller is subject to the data reliability
limits of the disc unit.

These limits are:

1.

Soft Error Rate (Recoverable Errors) - Not more than one error in
10 10 of bits of data transferred.

2.

Hard Error Rate (Non-Recoverable Errors) - Not more than one error in
10 13 bits.

Al-3

SECTION 2
MAINTENANCE
A2.1

GENERAL DESCRIPTION

Maintenanc~

of the Controller is limited to replacement of the Controller.

This section will explain the Controller function only as an aid to the
Service Representatives in troubleshooting.
A Functional Block Diagram is given in Figure 3-1 and described below.

CONTROL ROM
(FIRMWARE)

f
-

DMA LOGIC

CPU

INTERRUPT
LOGIC

MIROPROCESSOR

CRC LOGIC

RADIAL
LOGIC
DISC UNIT

""'-

1/0

Figure A-3.
A2.1.1

-

LOGIC

BUS LOGIC

,

Block Diagram of Controller

CONTROLLER ROM

The Control ROM (FIRMWARE) automatically initiates the following:
1.

The Reset Routine.

2.

The Idle Loop.

3.

The Transfer Preparation Routine.

4.

Search ID Routine.

A2-l

A2.1.2

MICROPROCESSOR

The Microprocessor initiates, tests, or controls the entire operations of the
Controller as specified by firmware.
The Microprocessor does three things for each instruction cycle:

it executes

the present instruction (function), it fetches the next instruction, and it
computes the next fetch address, next address, and stack logic.
The Microprocessor does the following:
1.

Translate I/O commands issued by the CPU into commands that the
Disc Drive recognizes.

2.

Performs error checking of information passed between Disc Drive and
CPU.

3.

Detects particular conditions and then issues interrupt commands to
the CPU.

4.

Provides Controller and Disc Drive status information to the CPU.

5.

Implements Direct Memory Access (DMA) transfer between Disc Drive
and Main Memory.

6.

Sychronizes timing.

A2.1.3

DMA LOGIC

The DMA Logic consists of the following:
1.

DMA Interface Logic.

2.

DMA Read/Write Cycle.

3.

DMA Priority.

A2.1.4

INTERRUPT LOGIC

The Interrupt Logic consists of a mask F/F and an interrupt F/F.

If the mask

F/F is set and the interrupt F/F is set, an interrupt will be sent to the CPU
(DMAINT-) •
A2.1.5

I/O LOGIC

The I/O interface logic provides flags used for branch offset by the microprocessor.

These flags are part of the command word which comes from the CPU or

flags which indicate valid data is on the output data lines.

A2-2

A2.1.6

CRC LOGIC

The CRC Logic is responsible for generating and checking the cyclic redundartcy
check bytes for the header and data records on the disc.
A2.1.7

RADIAL LOGIC

The Radial Interface Logic is responsible for the assembly/disassembly of the
disc serial DATAl.

It provides flags for branch offsets to indicate to the

microprocessor when each process has been completed.
A2.1.8

BUS LOGIC

The Disc Bus Interface Logic sends commands to the disc drive and receives
FAULT, SKERR, READY, ONCLY, SCTR, and INDEX from the drive.
A2.2

INTERFACE REQUIREMENTS

A2.2.1
1.

ELECTRICAL INTERFACE
Signal Levels - All signals will be at standard TTL levels.
0.1 to +04

VDC equals logical low

+2.4 to Vcc

VDC equals logical high

The clock and data lines to the disc are differential balanced line
drivers/receivers.
2.

Termination - All TTL signals that pass through lines exceeding 2 feet
in length are terminated with 220 Ohm pull-up and 330 Ohm pull-down
resistors.

3.

Drivers/Receivers - All TTL line drivers are 7438 or equivalent line
drivers. All interface receiver lines are standard TTL input.

A2.2.2

CPU INTERFACE

The CPU Interface signals are as follows:
1.

Master Reset

2.

Clock Phase 1 and 2

3.

I/O Control Registers 1 thru 3

4.

Output Data Bits

a

thru 7

A2-3

5.

Memory Address Bits 0 thru 14 and DMA Memory Address Bit 15

6.

Memory Data Bits

7.

DMA Acknowledge

8.

DMA Request

9.

DMA Interrupt

10.

A2-4

Read Enable

o thru

7

SECTION 3
GLOSSARY OF SIGNAL NAMES
A3.1

GLOSSARY

I 6WAY

This output of the next address control ROM is used to indicate that
a 16-way branch is required.

ADDEN

This signal is generated by the DMA control logic and is used to gate
the contents of the DMA address counter onto the main frame memory
address bus. This signal is true throughout any DMA cycle.

BOX

X = 0 to 7. These are the outputs of the D-register. The D-register
is used to buffer data until it can be written into its destination.

BINDX

This signal is the synchronized and buffered version of the index
signal from the disc. This synchronization is necessary to prevent
a metastable flip-flop in the address logic for the processor.

BRDY

This signal is the synchronized and buffered version of RDY. This
synchronization is necessary to prevent a metastable flip-flop in
the next address logic.

BSCTR

This signal is the synchronized and buffered version of the logical
OR of the index and sector signals from the disc. This synchronization is necessary to prevent a metastable flip-flop in the address
logic for the processor.

BYTE

This signal is generated by the bit counter on each eighth bit during
a data transfer to determine the byte boundaries.

CHCLK

This signal is used by the processor to control the clock changeover
logic. In addition to loading the least significant bit of the
processor output bus into the clock control flip-flop, this signal
initates the series of events necessary to insure a smooth changeover
from one clock to another.

CLKEN

This is a test signal that is used to gate the processor clocks on
and off for testing and single cycle operation with the WCS.

CLRCRC

This signal is used by the processor to reset the CRC generator/
checker.

CLTAG

Set Cylinder Tag. This signal is used by the disc unit to determine
that the information on the disc control bus in cylinder address
information.

CPHX

x

These are timing clocks from the cpu. The controller
runs from these clocks during read data operations and at all other
times except during a write data operation.

CRC

This signal switches the CRC data-into the serial write data stream.
This signal is enabled by CRCENB.

=

I or 2.

A3-1

CRCDTA

This is the serial CRC information that is generated by the CRC chip
for a write operation.

CRCENB

This signal is used during write data transfers to enable the writing
of the CRC. This signal is directly controlled by the processor.

CRCERR

This signal is generated by the CRC chip to indicate that the CRC
that was read in was in error.

CRY

This is the raw carry output of the 2901.

CRYIN

This signal is controlled by the ROM and is used to gate one, zero
or carry saved into the carry input of the 2901.

CRYSAV

This is the saved output of the carry output from the 2901 to be used
for testing, carries, or shift operations in the next processor cycle.

CTTAG

Control Tag. This signal is used by the disc unit to determine that
the information on the disc control bus is control information.

DATAEN

This signal is used by the DMA control logic to gate the contents of
the D-register onto the main frame memory data bus. This signal is
true throughout a DMA cycle only when the controller is performing a
disc data read operation.

DBX

X = 0 thru 7.

u

~",K

This is the processor data input bus.

Disc Generated Clock. This clock is either the disc servo clock or
the disc read clock as the occasion demands.

DECCNT

This signal is used by the processor to decrement the general counter
and test for zero result.

DFLAG

This is the synchronized output of the D-f1ag. The synchronization
is necessary to prevent a metastable flip flop in the address logic
for the processor.

DFLG

This is the raw output of the D-f1ag. This flag is set at any time
that the D-register is loaded, and cleared when data is read from the
D-register.

DIXX

This signal in the I/O control logic is true when IOACTV is true and
the controller detects the DIXX command from the CPU. This signal
is used to transfer data from the controller to the CPU.

DKBSX

x

= 0 thru 9.

These are the disc control bus signals. The information
on this bit is used by the disc unit as either control information,
head addresses, or as a cylinder address.

DMX

x

=

0 thru 7. This is the outputs of the S-register that are directed
to the processor input.

DMA15

This is the most significant address bit from tne DMA address logic to
the memory page control in the CPU. This bit is converted to the
appropriate page control bits in the CPU.

A3-2

DMACK

DMA Acknowledge. This signal from the CPU is used to determine that
the current DMA request has been granted, and the next memory cycle
belongs to the DMA logic.

DMAINT

This is the DMA interrupt request line in the CPU backplane.

DMAQ

This is the output of the D~~ request latch. This signal is true any
time that the processor wants to initiate a DMA cycle.

DMAR

This is the DMA request bus signal on the CPU backplane.

DMASTB

DMA Strobe. This signal is generated by the DMA interface control
logic. This signal is true during the last third of the DMA cycle,
and is used to strobe read data into the controller and to advance
the address counter.

DOXX

This signal in the I/O control logic is true any time that the signal
IOACTV is true and the DOXX command is detected from the CPU. This
signal is used to transfer data from the CPU to the controller.

DTAX

X = 0 thru 7. This is the output from a multiplexer that can switch
from either the shift register or the memory data bus into the
S-register.

E/INSYC

Enable INSYNC. This signal is controlled by the processor and is
used by the processor to control the state of the INSYNC flip-flop.

FAULT

This signal from the disc unit is used to determine that the disc
unit has detected a condition that could lead to the destruction of
data. The disc is therefore interlocked from further data transactions.

FX

X = 0 thru 7. This is the processor output bus. The data on this
bus is moved from the processor to any of several destinations.

HTAG

Set Head Tag. This signal is used by the disc unit to determine that
the data on the disc control bus is head address information.

IDOX

X = 0 thru 7. This is the CPU input bus. This bus is used to transfer
information from the controller to the CPU.

INDEX

This signal from the disc unit is used to indicate that the heads are
currently positioned over the beginning of the track which is also the
beginning of sector zero.

INSYNC

Literally "In Sync". The state of this ,flip-flop is used to permit
data flow when the bit counter is in sync with the data flow.

INT

This signal in the DMA interrupt logic is used to interrupt the CPU
any time this signal is true and MASK is also true.

IONX

N = I thru 3. These are the I/O control signals from the CPU. By
decoding these bits, the appropriate I/O action can be determined.

A3-3

IOACTV

This signal in the I/O control logic is true any time that the (
troller detects its address in conjunction with a COXX command.
signal remains true for the duration of the I/O transfer.

LDADRH

Load the High Address Register. This signal is used by the pro(
to strobe the contents of the processor output bus into the uppe
byte of the DMA address counter.

LDADRL

Load Lower Address Register. This strobe is used by the proces~
to strobe the contents of the processor output bus into the lowe
byte of the DMA address counter.

LDBREG

Load the Buffer Register. This signal is used during data trans
to load the D-register from either the memory or the disc, deper
on the direction of data flow.

LDCLB

This signal is used by the processor to load the contents of the
processor output bus into the lower byte of the general counter.

LDCMB

This signal is used by the processor to load the contents of the
processor output bus into the high byte of the general counter.

LDDREG

This is a strobe generated by the processor that is used to load
contents of the processor into the D-register.

LDLDB

Load Lower Disc Bus Control Register. This strobe which is gene
by the processor is used to clock the contents of the processor
put bus into the lower disc bus control register.

LDPC

This signal is used by the processor to control the contents of
control ROM page control flip-flop.

LDSR

Load the Shift Register. This signal is used during the write c
ation to parallel load the shift register with data.

LDSTAT

This signal is used by the processor to strobe the contents of
processor output bus into the status register.

LDUDB

Load Upper Disc Bus Control Register. This strobe is generated
the processor and is used to clock the contents of the processor
output bus into the upper disc control bus register.

LSHFT

This signal is used by the processor to control the inputs to th
shift registers in the 2901 for a left shift operation.

MAXX

xx

MASK

This signal in the DMA interrupt logic is used to enable the DMA
interrupt request line to the CPU.

MDOX

x

=

00 thru 14.

= 0 thru 7.

memory.

A3-4

t

These are the main frame memory address lines.

This is the unbuffered memory bus from the main f
This is a bi-directional data bus.

MIDCY

This signal generated by the DMA control logic, is used to indicate
that the middle third of a DMA data transfer is now in progress.

MRST

This is the master reset signal from the CPU backplane.

MUXN

N = 1 or 2. These are the raw clocks that are used to generate the
signals TO and Tl. During clock changeover, these signals may contain truncated clocks.

NAX

x

These signals form the least significant four bits of
the next processor address. Since many different signals may be gated
into these bus, this forms the basis for N-way branches.

ODOX

x=0

thru 7. These are the output data lines from the CPU. This
information is used to determine the controller address or to transfer
data from the CPU to the controller.

OFL

This is the raw overflow status bit from the 2901.

OFLSAV

This is the saved overflow bit form the 2901 to be used for testing in
the next processor cycle.

ONCYL

This signal from the disc unit indicates that the disc unit is on a
cylinder and not seeking.

OUTEN

Output Enable. This signal is used to disable the disc bus output
lines when the controller is first powered up. This is to prevent the
random'control information contained in the registers from cauing the
disc unit to force a fault. Once the registers assume a known state,
this signal can be enabled.

POP

This signal is used to indicate that the next address for the processor instruction will come from the contents of the address stack
register.

QO

This is the I/O line for bit 0 of the Q-register in the 2901. Whether
this line is an input or an output is determined by whether there is a
right or left shift operation in progress.

QOSAV

This is the saved output of the QO bit in the 2901 to be used for right
shift operations in the Q-register.

Q7

This. line is the I/O for bit 7 of the Q-register in the 2901. Whether
this line is an input or an output is dependent on the type of shift
operation in progress.

Q7SAV

This is the saved output of bit 7 of the Q-register to be used in left
shift operations for the Q-register in the 2901 in the next processor
cycle.

ROSAV

This is the save output of RAM bit 0 in the 2901 to be used in left
shift operations in the RAM.

R7SAV

This is the saved output of RAM bit 7 from the 2901 to be used in left
shift operations in the next processor cycle.

= 0 thru 3.

A3-5

x

=0

RADX

thru 8. These are the ROM address bits used to fetch the next
instruction from the control ROM for the processor.

RAMO

This is the input/output line for RAM bit 0 in the 2901. Whether this
line is an input or an output is determined by the type of shift operation that is in progress.

RAM7

This is the I/O line for RAM bit 7 in the 2901. Whether this line is
an input or an output is determined by the type of shift operation
that is in progress.

RCLKX

x

L. These are the differential balanced line signals from
the disc that, carry the read data clock. When the read gate is
asserted, this signal may be used to clock data in from the disc unit.

RDATA

This is the received read data from the disc unit. The data takes
the form of serial NRZ data that is clocked in using the read clock.

RDCLK

This is the received read clock from the disc unit. This clock is
used to time the flow of data from the disc unit to the controller
during a read data operation.

RDDLB

Read the Lower Disc Bus Control Register. This strobe generated
by the processor is used to gate the contents of the lower disc bus
control register into the processor data input bus.

RDDMX

This signal is used in the data bus control logic to enable the output of the data mux onto the processor data input bus.

RDDUB

Read Disc Upper Bus Control Register. This strobe is generated by
the processor and is used to gate the contents of the upper disc bus
control register into the processor data input bus.

RDFLAG

Reset the D-flag.
necessary.

RDTAX

x

H or L. These are the differential balanced line signals that
carry read data from the disc unit to the controller.

RDY

This signal is the logical OR of the ready and on cylinder signals
from the disc unit. When this signal is true, a data transfer may
occur.

READ

This flag is controlled by the processor. It is used to control the
flow of data from the disc unit to the memory.

READY

This signal from the disc unit is used to determine that the disc
unit is rotating and up to speed, and no fault exists.

RINT

This signal is used by the processor to reset the MASK and INT flipflops.

ROXX

xx

A3-6

= H or

This signal is used to reset the D-flag whenever

=

= 00 thru 25.

These are the raw ROM outputs that feed the inputs
of the instruction pipeline register. These bits are not used anywhere else since it is the output of the pipeline register that is
used while the next instruction fetch is in progress.

xx

ROMXX

These are the outputs of the ROM pipeline buffer
that contains the instruction for the 2901 part of the processor.
This buffer is loaded on the rising edge of TO.

ROMYY

YY = 26 thru 39. These are the raw ROM output bits that are used
directly in the next address computation logic. The results of the
next address computation are strobed into the address register at the
rising edge of TO.

RSHFT

This signal is used by the processor to control the inputs to the
shift registers in the 2901 for a right shift operation.

RST

This signal is the controller reset from the system. It is used to
reset all of the important functions in the controller for power-on
or for the bootstrap.

RTXX

This signal generated by the DMA transfer logic is used to indicate
that the first third of a DMA transfer cycle is underway.

SADDEN

This output of the DMA control ROM is used to set the address enable
flip-flop on the next clock edge.

SCLK

This is the received servo clock from the disc unit. This clock is
used to time the flow of data from the controller to the disc unit
during a write data transfer. The clock is also re-transmitted to
the disc unit.

SCLKX

x = H or

L. These are the differential balanced line signals for the
disc servo clock. This clock is always kept in sync with the servo
pattern on the disc surface.

SCTR

Sector. This signal from the disc unit indicates that the heads are
currently positioned over the beginning of any sector except sector
zero.

SDFLAG

This signal is used to set the D-flag any time that the D-register
is loaded from the processor.

SDMAQ

This signal is used by the processor to set the DMA request latch.

SDMST

This output of the DMA control ROM is used to set the DMA strobe flipflop on the next clock edge.

SERIN

This is serial data that has been read from the disc.
zero at all times when the read flag is not set.

SEROUT

Serial output of the parallel to serial shift register.

SETS5

Set the S-flag On the Count of 5. This term is used to set the S-flag
during read operations in anticipation of loading data into the
S-register so that by the time that the processor responds to the
S-flag, the data will be there.

= 00 thru 25.

This signal is

A3-7

SF LAG

This is the synchronized and buffered output of the S-flag. The
synchronization is necessary to prevent a metastable flip-flop in
the address logic for the processor.

SFLG

This is the raw output of the S-flag flip-flop. The S-flag is set
when data is loaded into the S-register, and cleared when data is read
from the S-register.

SGNSAV

This is the saved output of the sign bit from the 2901 to be used for
testing in the next processor cycle.

SIGN

This is the raw sign bit from the 2901.

SINT

This signal is used by the processor to control the state of the
signals MASK and INT.

SKERR

Seek Error. This signal from the disc unit is used to determine that
the disc has not completed a seek within a specified time interval and
therefore, the servo is lost and needs to be re-oriented by a rezero
operation.

SMDCY

This output of the DMA control ROM is used to set the mid-cycle
signal flip-flop on the next clock edge.

SRX

X = 0 thru 7.

SRTXX

This output of the DMA control ROM is used to set the RTXX flip-flop
on the next clock edge.

STDC

Set the Disc Control. This signal is used to load the disc transfer
control flags from the processor.

SYNDET

This signal is true when the sync pattern (EE 16 ) is found in the
shift register.

TO

This is the processor clock that is used to define the beginning and
end of the data processing cycle in the processor. On the rising edge
of this clock, all data from the current cycle is strobed into destinations and the new instruction for the upcoming cycle is strobed into
the instruction pipeline register.

Tl

This is one of the major clock signals that controls the processor.
This clock overlaps and lags TO. This clock defines the loading of
the next fetch address for the processor instruction.

W+SD

Write or Sync Detected.
WRITE and SYNDET.

WCLKX

X = H or L. This is the differential balanced line write clock to
the disc unit. This signal is the servo clock re-transmitted by the
controller. This is done to absorb some of the cable and interface
delays.

WDATA

This is the serial data that is to be written on the disc during a
write operation. All data to the disc will pass through this line.

A3-8

Shift register parallel output bit.

This signal is the logical OR of the signals

x

WDTAX

H or L. This is the differential balanced line write data signal
to the disc unit. This passes all data signals to be written to the
disc.

WRITE

This flag is controlled by the processor. It is used to control the
direction of data flow to move data from the memory to the disc.

ZERO

This signal indicates that the general counter has counted down to
zero.

ZEROR

This is the raw zero result flag from the 2901.

ZROSAV

This is the saved output of the zero results bit from the 2901 to
be used for testing in the next processor cycle.

=

A3-9

SECTION 4
REFERENCE DATA

A4-1

Reference Only - Kill Not Be Maintained

A4-2

15Y
BRCK-UP

;d
f1)

{

+5V

H')

.,
f1)

(1)

+'5Y

ERe.}(-LJ P

+5V

PI-81

C4D
.Id

:;j

PI2~T-

n

PRIN-

iI.7 .. t
:ZO"1o

SEL0-

3'5Y

+

(t)

§'
.....

'<

,::
.....
......

.....

'7"

-1Z0"7.
10DY

.Ol"".{:

-=-

PI-A34

PJ-lB!5
P/-I,3b

.-.....

C7-39

'56Y

PI-A.'33

t:r-'
(l)

+80"1.
-2070

PI-I>. I
PI-A 2
PI-ACu'I
PI-M.b

0

rl'

CI-('

5ELI-

PI-Rig
P/-A/3
PI-AI4-

7-

PZ- 2.
PZ-4
PZ- fo
P2.-8
PZ-IO
PZ-IZ
PZ-14
PZ-I&'
PZ-IB
PZ-ZD
PZ-22.
PZ-24
PZ-Zu,
PZ-ZB
P2-30
P2-32
P2-34
PZ-3u,
P2-3B

PI-B2
PI-B(dl
PI-Blo5

PZ-40

PZ-4Z
P2-44
P2-41D
PZ-4B

PI-ESt.

PI-R"!.

-=-

tIJ

=='

r+
~

.....

+5V
1

+5V
1

Z20

=='

(1)

PUI

a..

--

+SV

+5\1

110

220
PU2

)
(2,':>,8,::1,12.,13

-=-

(4,0,7,9,10,12,13)

8

--

b.SIC: I Four c:argo...tlon ~

DIMENSIONS ARE IN INCHES

TOLERANCES

1335 South CI.udlrwl SUMt ANtwlm, Calilorni. 92805

UNLESS OTHERWISE SPECIFIED

.X'!'
.XX!
.XXX!
ANGLES!

~

,

W

.1
.03
.010

DRAWN
CHKD

1.~

/w'i, ~, (,Ok 7-1.·'/7
rN,~

-r

JJ~

ENG

90302.R
NEXT ASSY

1/;>£".
USED ON

MACHINED SURFACES

J

DO NOT SCALE DRAWING

-

:~/Mh7
7i"~:.1

MFG

API'

1(', (L..

19h<;/n

TITLE

LD FIXED DISC CONT

Cr

WGNO

903029
IscAlE NONE' ISH I

!

TiJ
OF

I4

(4) RADO
RADI
RAD2
RA03
RAD4
RA05
RAOCo
RAD7

~

fD
~
~

"1

+

1

> 1213

ro

l

("l) RAD8

~

>8'Z0

:;j

n

z

ro

o

I~

'f 745240

§1

15 19 18

19 18 7 I" 5 ~ 3 Z I
Eo AB A7 Au As A4 A3Az AI ~

14-

IA

4E

;

'<

~5

9 8 7 b ~ ~ 3 ~
Eo As A1 AIoAs~ A3 Az At flo

5 ~ 3 ~ I

Eo A8

4 3 Z I

"'7 ~ A5 ~ "'3 AZ ,.., .&0

4A

46

Os OJ DID Os Cl! OJ Oz 0,
14 13 12 II 9 6 ~. fa C.34'1

0/1 0., ~ Os O~ ~ Oz 01
1-1 13 ~ I 9 ~ 7 fo 10349

15 19 18 17 " ~

I'J 8 17 Ib 5 ~ 3 l I
Eo A8 A7 A, A5 A4 A; A2. AI 110

4C

4D

0,

06 ~ 0(, ~ 04 ~
01
14 I~ 12 I 9 8 1 t. "34'1

~

7 "

EoAe A] ~As ~A3 AZ Aj Ao

08 ~ ~ 05 04 ~ Oz OJ
1-1 I~ 12 I ~ ~ ~ ID '-349

Os ~ ~Ofj OJ  I~ Il '1 t. 5 l

7'153111

l

R~M07

R0MOlo (10,7)
R0M05 (Co,7)
R(ljM04 (!D,7)
R0M03 (Co,7)

(Co)7)
RfllM02 (Co ,1 )
R0MOI (CD,7)
R0MOO (Co?)

.J!... ~ D7 t. Os Ilj ~ Dz
~ DE
SC

3
OJ

0. 8 0. 7 ~ o.S o.~ 0.3 o.Z (;II 145374
17 I" 5 IZ 9
15 2.

14';"\]4

"

R0M 15
R0M 14
R0M 13
RfbM 12.
R0M II
R0M/O

(5£.,7)

(5 (0)

RQJM09

'

(5~7)
(5'(,,])
(51,,'1)
(1'2)

RRlMOB (,5,&,)
(Co,7)

R0M2.3
R0M22
R¢M2.1
R0M20
R0MI9
R0M 18
R0M17
R0M 1(0

R0M 31 (34~

(5)
(5)

R0M 30 (3~'~

(5(,,1)
(5(,,'1)

R0M 29
R0M 2.8
R0M 27
R0M ZiJ,
R0M 25

(5'~1)
(5'~])

(5~7)
(s,~,1)

(I)
PUI

4

R(JM 39

(34'5)
(3'~
("Ii
(3)

RliM 35 (4)
R!6M 34
(4)
RQlM 33 (4)
R0M 32. (4)

(5)
IWM 2.4 (5)

..£ o PRQ .£

...! C

3B
CL

Q..§.

T74514

~

'--

TO

c

3B

CL

Ci.!

'i3f74S74
~

~

I

~

PU 1 (I)
Pu 1 (I)

E..DPRQ~
II

PUI.

(I)

(3)1~

R0M38 (3)
R0M37 (3)
R0M3(P (3)

I
SIZE

C

2 WAY

8 WAY

(II) BHD
(II) BHDY
RTXX-

PI-B

(IZ)

(13~

(12) DMASTB
(13) DfllXX

IN5Y~N~C=========~) I

(10)
t9) Z.ER~
(iD) IER j.(

::0
4

C1>

(z)

'i
(1)

7D y~
BF?

91
(z.) R0M2.9
(2) R0M<\,30n----(2.) R0M3'

C1>

I-+)

R~M2.B

YA..:r-

(13) 5KP

YB~

(13) D6X7

::;j

n

745253

745251

(t)

,,

§'

......

--

.,

NA2.

(4,13)

'<
?:Y:!E!..
(00\

~

5 IA

......

4 ZA

.....
......

B

z

4 WAY

3 3A
I

74532

o

YA~

j.4

GA

2 A

B
GB
100B
II IB

., 0

(II) BINDX
DFlAG

7E

3 I
Z. 2.
I 3
15 4
14
13 ~
12.
7

I

rl

(II) BF5

OJ
C1>

(2.)

2.~7N

R({)M 3(0

~74125

3'.:

.....

PJ

::;j

S~ ~

.....

Q)

,,~.

NA3

13

----(4,13)

III

~NI~.~, iii II

(2) Rf/JM 37

r+

(5)~

Q3) 04

(2.) R0M3~

::1

28

YB~

38

8WA~

8B

/2~1

(2.) R0M.9

(L)~

I

10
II

15 G

-

14
13 A4

L....-----!.:!.lA3

IZ

'----.....:I~I A.I

'--_ _ _ _I~O AO

6C

06li-J
07 7
~
0" 5
054
04

03 '3
02 Z
01 I
fo331

I
IbWAY113)

HAl

II

B

7 Of.

I
745251

t

4WA~

01)



5

,

15~

(7) R5T+A

(3)P¢P

::0

(2,4) R¢Nl 3Z

Z
3

(2,4 )~M33

s

10
Set..

Oy

OA
08

l,q

" I~2Jl

IV

6A

/I

(Z,4 Rl/JM34

ro
~
ro

1/

10

14

(2,4)RdM35

za

zy
~y

74'5240

'.

eLK Oli
/9
Os
Qs
/7
16
D7
~7

18

4-

W

Ii'A 07 (2.)
RIIl)(o (~)
li'ifDS 2)
Ii'IID4 (2)
RIIl)3 ;2)
~~l)2 2)
Rill) I ~.2.)
~II/)O (2.)

/4
IS
Q,
15
12
8 DS SA 615 9
D40
614
7
l>3
Q3
5

°6

~

,

~

12

3il

D2

...1- 0,

13 38

'"1

IOC 'S

Qz
Q,

Z

('t)

::s

745374

74S157

o

('t)

z OR

(3) Nil 3

3

§>

(3) NIJ 2

~

5
E.

'<

(. IVIJ I

/I

3,

14

I

~

IV

7

zy

9

2Jl

;11

3'1'

SEI..

z

Il"
/9
17

12.

14

7

rl

4

I

ro

D7
D,

Q,

Q,

II:.
15

D3

613

Dz

Q2.
Q,

"5"
2

3:

(zt-Mt!J

~.

(l.'I
~.

::s

1~~8fo

(2)~"'Z.

745374

(2) R(JJ/YIZ7
(9

TO-

13

12196

(2f-1-

II

Nl3O

(2)R_fYl31

i74S08

('t)

laJI.B' "

-

ro

r+

It~

O~Lk ~8 19 -

3 D,

tr1

::s

~("B

13
12DS 5B 615
8
9
D4
Q4

745157

o

;

~

~G

~

54 }iD B' "
9~
S

t;!)'~;M55"

18

.- ~ 38

~.

(2)~IY/:J3

(2)RiM34

OV

10 Z8 7A

(3 N/JO

~

Z
I }fDB

.,.

08
11/

74552

(2)~'M3Z

"21)76' 3

~FBJ"
lO::=::

9 }}7B'

a

13'~

-

121176

1/

1

0.

13

(7,.l FJI

It F4-

91 ~

.

4~

(5)

~
I

~

(13)

STDCRST

T

"

~
7"150D

2. 7:]

3

7-fSOB

JlS04

1

74S5'1

~~

I 7L _, '.P-"--;o~.
8K
I

14504

Tpuz

~

2

'o!:
71<

5
74574

eeL. Q~
Rsr~
.3

RADlJ

(2.)

~

IZ ll~q~

7'f..

~c

74S74

aP!-

~13

IbaSIC I Four corporatlo

1,07< "-- .. "

c

(I3)

r.: Ie-I

(9)C.PIlI-

(13'L 0007 -

g

Gi

5 D

~

Gi

12. D

11>

~

t.J/e 13 D

I-+)

(/2)

~

10 DTM3 N/C

Q

II DTM3- (12.')

c:i1

15 N/C

'"i

ro
o
ro
~

-:e.:
f-I.

-

("1)

I'l.

12-

DECCNT-

9)

0004-

(I

"

I

I
I

~

z
o

(z) R0M 29
(2.) R¢M 30
0D03 -

(I

t:J:1

\7

I

"'I

Cil

I

...

~
~

PJ

f-I.

o
I A

15
I 14
Z 13

2 B
3 C

3 IZ
4 II

:;j

rip.)
f-I.

~

ro

"

(I) PUI

0..

.3A

LDUDBLDLDBCHCLK LD5TATCLRCRC-

5p.!J

I~I

,,~

~ GZA

f-< JGZB

5TDC-

7 7

(1/)

(13)

(2) RI/lMZ5

IA

(2)

2 B

RWM2.4
(2.) RQ}M23
(Z) R¢M22
TO

,

~ C

(9)

S

I
7

I

-....I

2A

61
r

19
RAMO

(5)
(5)
(s)
(5)

::c

....,

~

~

~

ro
=='
n
ro

DE
~
-=-25

OB4
DB5
OBCo
DB7

24

IS

03
eLK

(2.) RiMOO
(l) ~0M 01
R0M02
(2.) R0M03

Co 18

28
2~

R0M05
2 R0MOe..

14
I~

(2) R0M07
(2) R0MOS

12

(2'
(2)
(2)
(2)
(2)

......

......

z

0

rl

Yl

14

R0MlO
R0M 21
R0M 1'1
R0M 15
R{lIM ICo

1'5 (S,9,II,I2.,13)

38

Fe.. (S,9,II,I2..,13)

1'7

~Rb

8

P

35

0Fl

34

03 CN+4

110

F3

~'K

.....-

(10) eRYIN

«c..~

OJ

~.

(<0)

:;j

5 IA

4

ro

:3

a.
«0)

(2/
ftJ

L5IlFT-

ZA
3A

I GA
14

R~MI3

A
2
B
~ GB

R(2IM 12

YA

7

"

~

13

eN
3: GO

CN~

4 PO

C/tt8"

L...!c GI

=

0J

~ DB

18
..R 2:8
13 38

GNCAY
PRGRY

d~

~ OA
(I) PU2

:;j

9
YA

3)

5GN

3)

I

I

~.

~FL

¢FL

31

33f 2901

:.?!
rl
III

)
(B,9,",IZ,13

+5Y

ZER0R

G 32

RMl3

(l)

(B~,II,I2,I~)

37

1'=0 II

19 B2
18 BI
17 BO

0:1

1'4

'13 39

II

20 83

(2}R0M17

3G,

41=

I3
12

10
I A3
2. AZ
3 AI
4 AO

~ R0M 18
~~R0M 19

~.

'II

7 I7
5 liD
Z7 15

~2~

~

YO

(9) TO

(l) J:/0M04

......
'<

01

02

ft)

§l

129

eN

00

2.3

zz

2.1

ao

RAM 7
Q7

PI
G2
PZ
G3
P3

IOH

~

CRY

CNtIl ~

II

II

QK

~e

G

p!Q

{!3' RST+

P

pI.

3 01

G.O

4 02
1 03

t:

(10 RAMO
74518Z

(~)lEROlR

804
13 os

QI

2

3)

"1?5T+A

(4,13)

Q2~

Q3~'---

5.J

Q4 ~
Q5 IZ

14 IXo

Q\

1107
16
08

Q1
Q8

CRYSAV

"
R15AV

IlI>

Ie..
19

(0)

(0)

Q15AY

(.;j

745374
7-'15253
aC/JSAY
R¢SAY

$:

'I

\.0

baSIC I Four corporatIon ~

r

WONO

Sc

903029
ISCALE- - I,SH

rEV
.D '

7 0,14

i

(II)

5ERIN

,

(II) DCLK

(to) WRITE
(to) INSYNC-

'"....,
(1)

READ-

(10) LOB REG-

(Joi LOSR-

(1)

OTA7

'i

ro

~

o

§>
'<

(7) F7

(7)

(7)
~

....,-

......
..,-e

7-

GO

(5) LDDRE~-

..,-e

(7)

(~)

Flo
F5
F4

F3

(ID) F 2.
(t,,) FI
lID) 1=0

o

~

1~2.--~~...:..--~;;tt]i~--.J"y 7

DTAID

DTAo

'( 4

DTAA

'(

(I) PU I

(l)

L
GLK

D

eLR
Q
Q

I~

Q

IS

L..!!JC

QI5

19

lit

745195

5R4-

--':~.t
17 0

145151

(10)

I~

------:-a181DD 4J

Q r:;-9- - Q r-=-----

7'D
~O

Q ,...--- -Q ,...----

rl
74273

(1}~,~~

D

I

(12)

00)

5Rl

(10)

(OZ) MOO'

5RI

(0)

(12)

IZ

Of"

Q
Q

15
I~

0

19

Q

o

~O

SR3

...L

11

/I

Q

Q

9

OM7 (5)

~(5)
OM5 (5)
DM4 (5)
DM3 (5)

IC

DMZ (5)
DMI (5)

5

DMO(5)

12

7.115374

0:1
(1)

z.I..j

.-Ol)

:.?:
tu
....,-

GO
OD

MD02

y

12.

9

0""

-~--

Y7

DTAI

y 4

DrAD

~

rl

QO

Q)

....,-

~

ct>

745195

liT

5£R0UT (10)

145151

~Qo)

(to)REAO-

(10

a.

5£T':l~-

4
(12) DMASi6-

(13\ R5T-

OFLAG(3)

WRITE

(10) WLDBI?E/it-

2 D PR 0' 5

3

76.."..1"

o~

(9) TO-

~
I
I-'

o

ISlo

QI19

~c'08
(l>E

CL

iY

5fLG

7-'1574

~74S374

§B&(3)

(j)

(I)

L.:j
ZPR
L--

"....,.,

)SClK-

"i

I SCLK

ro

0

3 C

lOl

12. 0

Q~

lie

PRo
Q

IOl

Cl

ro

(l)
~

10

Q S

I

I 74574

J3174514 II

(I)

r---+--,3=-l7L

§'
.....

f-'-

.....
.....

CPJ.l2.-

2

~CPHI

11~.....

18
4 lG

I

14CPHH(/2./3)

CPJ.lI-

-

rl

tt1

) CJ.lClK-

5

~

ro

......

:'::"
tu
f-'.
~

4K

3

4

~.so2.

e

5l

5 A

Y 7

MUX I

Sll

II<

19

CLKE.N

I

I

Q~

7l
'
74504

Cl
I 1"lS74

5

r-1J- C 6l Q 8

I 74574

Cl
13T74514

CL

12....--.

'

TI

~2.)

HSII

Q~

JZ 0

Q.!..

3 C

I

8

Q

51c:

L-4
: ::!....1-_

),10
PRo

PR

(I)~ D
~
~l

~

(I)
'j'PUZ

4

~

TO ?,4~,iJ,,7)

5

(I)
lPUZ.

15j74S157

l'l

13 51<
7"511
...

G

L--+-----------------+----------~1L4~

) R5T-A

3 TC --(4 ,5 8 , ' , '3)
7
1
7"lS2"lO

2
MUXO

9

~7
10k

>>R"7

Tp2

4

I

WCS T P \

-Y

'--p.J:lR"":"""
2. 0
Q 5

5

19

2" A

L4

~

z
o

Y 12

~B

(I)
5 ) 1 PU2.

......._ _--1ti'

14A

13 B

r-- 02.)

+5V

745340

~

4L YI-

3 B

16

1%45240C~

:..r

/I

A

-

.l£B
CPH2.

rt

(12)

CPI-I2.-2-

5 101(

~ CPH2-I-CN/c.)

-

,-",:,:f745240

/2

74504

I 745,40'
2

~

13 7l

CPI-I2.-1

74504

,......j.---=~:...jIG

'<

~IO

~74S04

pU II

(I)

(l)

aL

Cl

1 PU 1

n

j....:CJ:...-4--_ _ _ _---.

9

~

~450<
4500

~~K)~II----~l~-----------4----~
~74500

rl
tu
f-'.

=='
(l)
0.

) F7

) F"

) F5
) F4
, F3

,J

F2
\ FI
, FO

~\ LDCLB -

T

II

(I)
, DECCNT-

)

P U3

5

JJ

10

'1

9E

(I)

~

BOO 13

I
/-I
/-I

5

I
Kl 9 c.
LDABCDn!3
CARt-'

9!=

u

4 D

DnI

141 312J "'I 71

7415193

~

J8

I 10
LDABC

PU3

(I)
13

ClR QA QB QC GO

'--_____________________~z:..J lOG

~

PU3

CLR QA Q8 QC Or)

111 31 2 1tol 71

,,1,51

III IS

lDABCD~
CAR

U


4

{:
(I I' SRI
(I ;~ SRO-

r~;>8 5YNlH4530

/I

5

13

--1ld 11J •
74500

~

ro

~
(l)

::1

(I )

II

4
5 "fl.1

~

Z.r---

~ Q1H)

74500

/I C

o

(l)

.......

I

'<

DCLK

10

Z

PU4~

~

(I)

10
1

Q 9

76

D

C

B

QB QC Gil)
13 12 II

~.

.......
.......

z

12

FZ

5

(eA

D

8F

((;) FO

13 D

5TOCQ3') R5T-

I

j. S

LD5R-(8)

4
I~

SET~lB)

9J

S~45~0

4

E/IN5YC

IT J.!..

IN5YNC- (8)
IN5YNC (3)
WRITE (8)

0

READ
1,ll)
READ- lB,II, 12)

CLR

5 H.n~

+ ..........-.

11745175

(II)

Elc T7?

"51 1¢6J

14m

"

~

CRCENB

SERl/lUT

.2.. o IF

a..

.!E. o

$

0

Q

7
~

Q
Q~

Q~
Q,lQ

eRe

1
I

CRC-

r-

~

0

a.R
1 74517!i

I
I

ll

4___

29G 12
13 ~
715/0

r-4
..5

IN5YNC

-

i.1

~8J.1)

CRCERR

2~3

P

Q Il 118101 J
rncurA
74500
ERR 13

51

I ClK

~


5CLK

-=-

13

<.l

AM2iDLS31

rllJ,

~
r'13

(9)

SCLK3

-=

~(9)

.

ti) PU4-

RDCLK

Is

(Id

~

READ-

14

<1>

~

1

1-1')

I~
_

<1>

'i

(t)

I

P3-~

==='
n
(lI

P3-5

§l

P3-1
P3-4
P3-7
P3-IO

......

'<

.....

I

_

?~17

~

USLCT-

u

~u

~

-,

=='
r+
(n

.....
=='
(t)

0.

ADD~~~sj

¢UTEN-

II

(7)J:2
(7)-Ef£

'~(I)
~
,- -

-

I~

-

+5V

1

I RIZ (lIe.)

I

1220

L

-'

1

11

D
D

131

-=

18 eLK WE

19
14i
Q
Q I~
12.

I

Q

(7P

1<10

(7)B
(lo)..£.2

13 D loe Q

D

4 D
3 0

F"AULT-

14 D

Q
Q
G

~

D
RDY

,., 10 lOB

AI
71

BSKERR(s)

Q

D

Q

0
eLI(

Q

II

('3) TO-

I

12.

Q

"9
~

I

1.19 - ~5Z40 -= r - - - - I 19

L

VJ

-

- -

I
I'

l

I..AS""

9

I

co

7

I

IS

I

.~

1£

-

BSCTR (3,,0)
BINDX

~BSU-

-

P2 31
rpZ-Z9

~BSC.

lo

&.:

DKB55S _
pZ 27

4

L

z

DKB54spZ _

Z5

L3

DKB53SP2_l3
I.:

I

IA-

I.£"
----=-r
I
IA-

liS

I Iw

I

I

-

I 1

r

-· -

R'5 (lI-F)

220

I

:_ L-...

L

7 -

I

?
~~~I

L

1£'

8 I

BRDY (3,5)

L'f "I

----.:l't.> +5V

I
- ~

.......=-r

? l •

;>~;>~

I

lie

........,:...J

IpZ-35
!P2-33

> ' (lie.')

L

I ~

I

>?

•

~

DKB5Z rpZ_ll

1'3

L

14

11

DKB51 IpZ.-19

1

L

12

Ir

9 DKB50Jp2._17

1-1- . t-. --I- rl
C )
L> 1 ~'5 II-F
- --' 1 : ~
330
745240 I • ~. ? > ~ ?
I
--.l. _ _ _ _ _ _ ---.J1
8'-

>>>: : >>

.J...

(3)

O'P)JC.B\..

(l\E

~

DISC INTERFACE LOGIC

R.IS

R.lh

I\(.n..

I

•

I

-

IS I

41

BFAULT~5)

Q

Pl- II

I ~. ~) ~ I 330
12.
I • • • • • .I
I
~ 8'___J

I

1

7'1:'374
15

,2-

~

I 14

v

ZI

5
2.

ClTAG

I, I I I I ."~ DKB58
J r t- t- 1- t- M RIG

I7J· 3

~iJ

(ID~
(lo~
(c,,)-EQ

Pl-13

CTTAG :PZ-15

I

1

--j

HTAG

IIiiI , ii Ii ~B59

I

I
II I

(13) RST(5) LOLDB-

_~ U': : 5.: B: ": =- _ __

PZ-5 ,
PZ-7 ...

PZ -41 FALl.T- 4

?;.

15

1

L

r -

(5) STDC-

UNITTAG~

I I : I L8

_
~I
745001

<1>

.....

I

5
2.

01

III

9

1

-,

19

:ZZO

12

~

13,~

I3

IB'D8

(8)5¢5

(~

L-(8)

14'D6

"""IIJl=--!PI-B30
5
L-

a
'~A OAf

(eo)-£2

:PI-B40

I B

13'D5

(8)B¢~

81 04

(fJ>6t>2.

l'D3

..A"OO4
,...,-

::1

o

(l)

§>
.....

'<

~

~.

......

......

(5)B¢ I

..

rl

(,)B

~

un{}\3
,.,.,-

L--(8)
uOOz.

L-{;)

:PI-BlB

;PI-B"I3

.. rovll

(7~

L-(:~PI-A35

4'D2.

(,)£?

."

of

A

~:

(1)-£2

~)

2M

~~_

7

Q~h

9 0

(~

9

BI< CR

13j12.174LS193

=':"~-'-L-

( S)lLVUlRH-

5A
1

~

3:

B

~

74574

1-"

::1
RST-

~

A

MWDTEN

1.::.'--_-=:..c...j..---J

7M

(9) C.PIi 1-1

31c

CoL

PI-623

2

an 17
18 MAII- PI-BI3

7438

Q~

_ _ _-2.:15J

1

B

ACK '

~~~~~~~R~~~T~-~ ~

iV74S74

PI- B7

A

~______~~Ir

REQ

Q,-3___-4__~

2E

Q

~-----4-----~
2-

~:----t-~~----J~
QD'
74 LSI93

__

(53) .t:.EJ:L2..

~

(I)
~tAREAD

(S)

1,19

13fiz1 74L51"l3

(l)

0.

PI-A9

QC ,-

9 0
BR CR

ACK

1-"

2D

10

MWDTEN-

rl

RTXX

~32.1

MPD7-

JDN UP CLR
II LD

(l)

::1

~

A151/ir

TI
(9) R0MII

(2)

l-

9 0
Qol?
BR CR
\3T 121" 74L5/93

z

o

2-

QC

(,,)l2,

L-(B) :PI-A~

('D

ZL.

10

(" FZ

(8)

(~

i DMAI5 PI-B57
7'1S240

(5) LDADRL-

17'07

~

'"i

13 116

I~

.. r'\nI(o

.I-i')
~

PUI

urvf.7
,n,..,."
L ---------;PI-Sll

(ID)-i!
,0

(I>

(3) RTXX-

.~ 3M1: DMASTe(3,/O)

~
I
I-'

~

a
74S00

ACKOUT-

PH~4B

74S00

8)

~,~~----------------~-~.
basu: I Four corp .

sCr

WGNO

90302.9
I~":ALE

-. . . ...-.

In'

I

9

8

O

Q 7
PI- B37

0.

'"1
(l)
~

'<

,I
( 7,13,

.....
.....

z

o

rl

tx:1
<'t>

3'!

F5

4

0

IOF

Q
7
_ ~

Ipl- B@

ClI~

::s

r+
(I.)

1-'-

::s
(l)

TIP

L(r~)
5KP(3'~

I

II?,

~
4 IA

I

::1

PI-B58

16 CtlXAD- 15 G

- TIP

¢DOO~5)

(s)

~~({)7

(llOOI-

(5)

00<0

0002-(5)

(5) 0005
(5) 0004

1c.ll003ri"OOl.

"2G

I

5....1'"

51::\..6

(5\0001
(s} 1;2\000

2 2C}"
4 "74520

n

r

s

L _

4

12

A2

10

RINT

PUI

I

eLK

ClR

I.0ACTV

1

Q "
Q 15

05 5
04 4

Q

(\3)

~
~ 4M"

"
74538

Fcr
IT-

I

~

4 0 II<:

Q

IS 0
I~ 0
Ii 0

Q

l~
I ~L-

1"11

I

2.

I

/9

1

~

I - L-

21

ll~
I .... L -

742.73

II

~'O
12.
PR
9
r-D
Q

0. Z
G.

-:::!:-

Q S
Q. 2

-r/I

5L.

c

- 8
Q~

CL

~;

8L

'-I .

9

I~....:a=---

"4504

IPI-Abl

17

IDD5

I

II 151

'l--C
74532 I

13

ID04

IPI-A3l

I~

ID03

IPI-A£.2

liS

rooe.

iPH!I021

I
I

I
I

15

IOOO

I

L ___ -.J
1,'9

RST-A

__.~D::.:I:.:..:.XX:..:..-_ _ _ _ _ _ _ _ _----,

tE!-

I
I

i
19
roo I
I ~ I

~57"

74273

IDDlo

1

1

- L-

1

~

I 14

I 1~1

G. 1(0

'

I~

4,..

Q IZ

s!&'(:3)

~

I

~

Ioo7

1

13!

3 0

liZ

1

1

I

1 0

(<0) 1=2.
(10) 1="1
(<0) FO

IL

I

~

(~ 1=3

(4,8,'dJI~/2J!i)

r - --,
8 I

8 eLK CLR 9
Q
14
0
Q 15

IE Q 19

p",_~
P>20

3l
4508

J(I)PUI

CREJ-

DID lD

Q

145M

III

(I)

II

el

~b

2G

(5)lD5TAT-

DI.X)I.

TIP

5

74500

(7,13)
(7)1="(0
(713) 1=5
'(7) F4

1

C

6I

3

I

r.

SM_

II

r;RST+("7)

II

rz 31-1

F7

4500

Qt

~

JfST-fi (9)

(,331

1

07 7

I

GRST
"- I" > _, _?.J
S - -10 -7 - -ej-5MA5K

04 4
CREJ03 l3 %

13 A3

1

lD331

V1

ID

05

1

02. 2.
01 I

I
I-'

213 ex.
.. -i4 A4

I

OB 9

I

> ~

~~
3

03 3

$:

08 9

-,1

,...___

A

I
G

10

"/50'1

(9) C P I l I - I '

0..

4~

SIal

13

~"

(I) PUZ

8"ZO 820 820 8ZD 820
?>
>>- II
<'
~

07 "7

~C0XAO

(5)

I

RI3

:

_

1 RST-

MAS!:.

6

Q

CL
7
'1':>74

Fro

I

,.,
HSOMA-.
PI-AI'!


~

(12)

MA07-

(1)

(13)
(12)

::l

(i 2)

¢D05MAO'3MAIO-

(i)

'"i

n

(I)

(1)

GND

(I)

{iND

§>

(J 2)

MAOto-

~

'<

(j)

GND

:s::
~.

1-1
~

(J3)

70

rl

(II)
(13)

I-IsDMADISC RDY¢D02-

tJ1
(1)

5
ID
7
8
9
10
II
12
13
14

23
24
25

MAIZ-

(12)

SEL¢-

(12)
(12)
( 1)

MA04MA05-

(12)
(13)

MAI4f/JDOI -

MAI/MAOB-

(/2)
(13)

(13 )

PR¢TGNJJ
DMACI;.IN
(/)D07-

(J z.)

MAOO-

(/,z. )

52

S£LI-

(I)

53

MAO/-

(lz.)

3

54
55

(f)

4

(12)

5

5<1:>

PRINMAOZC,NJJ

(I)

(p

57

OMAI5

(12 )

7

58

¢OO3-

( 13)

59
u,o

I005
I007

(13 )

B
9
10

tol

I¢3X-

roOI
IOO(P

(13)

1003

to2

1002

(I)

GND
6NO

6.3
htf
ID5

(I)

(13)

2

(13)
(/3)

1/
12
13

+5V

(Il

+SV

(n

14
15
If<,
17

fIIIl:U3 J?TXXCI-IP2MR£AD

fl2)

(3)
(9)

(12)

)8

"

20
21
U

23
24
Z.5
2IP

t/JDOfo-

27

MD~)7

( 12)

28

MD¢3

(tZ)

27

ZB
2"

MD¢5

(/2)

30

3'!

(;3)

I¢2X-

31

If; IX -

(J3 )

31

1-"
:;j

(13)
(I)
(I)

ID04
6ND
GNO
MD¢I
MD¢4

32

rDOD
MAlfDMO¢O

(/3)

32

(~ )
(12)
(I)

34
35

ro

rl
OJ

(/Z)

1-"

(12 )

::l
(1)

a.

33
34
35
3tD
37

GND

(II)

USB I
GND
USBZ

GND
CLTK":t

(Il

10

(lJ)

GND

(Il

NTAG
GND
CTTAG

(II)
(I)

1/
IZ.
13

GNO
DIt!3S0
GND
OKBS I
GND
DKBS 2
GNO
OKBs3
GND
DKBS4
GND

(/)

(II )
(I)
(II)
(I)
(//)
(I)
(II)

RCU
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Format                          : application/pdf
Creator                         : MAI Basic Four Corporation
Description                     : BFISD 8052
Title                           : Service Manual - Basic Four Model 2460 Fixed Media Disk Drive
Create Date                     : 2014:05:16 18:30:30Z
Creator Tool                    : Armin Diehl
Modify Date                     : 2014:05:16 10:33:02-07:00
Metadata Date                   : 2014:05:16 10:33:02-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Document ID                     : uuid:eef82a76-d394-bc49-a055-6fa4008c9e2c
Instance ID                     : uuid:ae5fe3f6-8a44-1545-9374-676b9d7a8a1d
Page Count                      : 136
Author                          : MAI Basic Four Corporation
Subject                         : BFISD 8052
EXIF Metadata provided by EXIF.tools

Navigation menu